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Abstract

During pregnancy, the fetal physiological condition is carefully checked and monitored
during the foetusÕ development. It is well known that the health of the foetus relies
heavily on the nutrient and oxygen supply. The oxygen and nutrient supply is exchanged
from the maternal vessel to the fetal vascular system via maternal placenta.

The hypothesis that this research is trying to prove is that there may exist a strong
synchronised relationship between the maternal and fetal cardiac systems, and the re-
lationship may also correlate to the gestation period. The focus of the research was
to extract fECG and mECG using non-invasive abdominal recordings and analyse the
relationship between the parameters derived from the ECG signals. The research used
derived parameters from the abdominal recordings to analyse the relationship between
the maternal and fetal cardiac systems.

To do this the fECG and mECG signals need to be separated from multiple abdominal
and thoracic signals from open online source recordings. The principle of the ECG
separation was based on independent component analysis (ICA) that considers multiple
component signals statistically independent to each other.

The pairs of extracted fECG and mECG signals are analysed on the time scale to
investigate the synchronisation relationship. Being able to extract the heart rate of fetus
and the mother independently is the key to determining the existence of a synchronised
relationship between the separate cardiac systems.

The findings from the fECG and mECG recordings at di�erent gestational periods is
that there is a direct relationship between the motherÕs cardiovascular system on the
foetus, it may be caused by the nutritional influence during certain gestation periods.
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Chapter 1

Introduction

1.1 Physiological structure of fetal cardiovascular system

The cardiovascular system supplies oxygen to the cells of body and is essential to foetal
development. The foetal cardiovascular system works di�erently to the adult system it
is derived by isolating air from the placenta. Due to the limited amount of oxygen that
the foetus can extract from the placenta, the foetus exists in a state of relative hypoxia
compared to an adult[28]. The oxygenated blood is supplied through umbilical cord
from maternal cardiac system to the fetus. Once the oxygenated blood arrives at the
foetus, the cardiac system takes the most highly oxygenated blood to heart through the
inferior vena instead of the pulmonary veins [26].

The foetal heart has an additional foramen ovale that makes the blood flow to be di�erent
from adultÕs blood flow. The foramen ovale along with the Eustachian valve moves
oxygenated blood from the right side of the heart into the left atrium, then via the left
ventricle into the aorta to supply blood to the head [31]. The Eustachian valve is a
separation barrier between the inferior and superior vena cava to block the blood to flow
across in order to keep the relatively high saturated blood passing into the left atrium
then to the brain [27].

The desaturated blood from fetal body returns to heart through the superior vena cava
and passes the tricuspid valve into the right ventricle [33]. Then it goes into the pul-
monary artery through the ductus arteriosus into the descending aorta. The fetus heart
starts to beat and pump blood from gestation period of 7 weeks, the range of the fetal
heart rate (fHR) is 120-180 beats/min (BPM)[43]. During the total pregnancy varia-
tions in foetal BPM can be caused by fetal motion or various maternal psychological
states. Also some researchers believe that decreases of fHR can create variability with
the hyproxgenation of the maternal arterial blood [28].

1



Chapter 1. Introduction 2

Figure 1.1: The ultrasound image of fetal heart from online source [43]

In general, the heart rates decrease with the increase of age, but fetus in longer gesta-
tional periods does not have faster heart rate.

1.2 Measurement of fetal cardiac function

The general feature of cardiac function is indicated by pressure, sound, flow and electrical
potential. The pressure in the heart chamber includes the aortic pressure, left ventricular
pressure and left atrial pressure. The recording of heart sound, the ventricular volume,
the blood flow such as aortic flow and the electrical potential of myocardium polarisation
and depolarisation by ECG, are the common approaches to measuring the functional
behaviour of the heart [22]. The target variable measurement is the flow velocity related
to the heart valve function which forms the turbulence of blood flow. The signal from
cardiotocography (CTG) is in sound wave form which represents the frequency property
at each stage of cardiac cycle. Tissue Doppler Imaging focuses on the movement of the
myocardium including contraction and relaxation within the cardiac cycle [18].
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1.2.1 Electrocardiogram (ECG)

The electrical propagation is the essential physiological activity that causes the contrac-
tions and relaxations that allows the heart to pump blood. The ECG is relevant to
detecting the primary function of the heart

Lately, the non-invasive of fECG recording has been introduced for research purpose and
it extracts the fECG from the multiple recordings collected by the electrodes at maternal
abdomen. The major problem associated in the non-invasive approach is the low signal-
to-noise ratio (SNR) caused by the weak fECG signal and strong mECGrecorded from
the surface of maternal abdomen.

1.2.2 Cardiotocography (CTG)

The heart sound is produced by valves opening and closing which means the sound of
the heart only indicates the functionality of the valve. The ventricular contraction is
when the mitral valve opens and the tricuspid valve closes - this creates the first sound
heard with the second heart sound coming from the closure of the aortic and pulmonary
valves.

The first heart sound follows R waves of ECG patterns which are formed by ventricular
contraction. The second heart sound is at the end of the T-wave which is when the
ventricles relax. The abnormal existence of third and forth heart sounds are caused by
sudden termination of ventricle and atrial systole.

1.3 Synchronisation

The synchronisation behaviour between two separate systems is caused by the interaction
of a weak external force on each system and can be found between the cardiac and
respiratory systems. It is known as the cardiorespiratory synchronisation, which sees
the neural system act as the external force to balance the function of the two systems
[9]. The synchronisation relationship is analysed by the synchronisation phase of the
events in one system with respect to the cycle of the other one [23].

1.3.1 Proposed synchronisation relationship between fetal and mater-
nal cardiac system

The hypothesis of this research paper is to investigate the existence of the sychronisation
relationship between the fetal and the maternal cardiac system using ECG recordings.
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The possible synchronisation relationship between fECG and mECG is analysed in two
individual biological systems. The analysis principle is adopted from the cardiorepiratory
synchronisation, which uses similar mathematical equations to calculate the synchroni-
sation phase. The di�erence is that the fetal signal is analysed as the time point of QRS
peak instead of the entire ECG cycle, which is used for cardiac signal in cardiorepiratory
synchronisation.

The physical connection of oxygen supply for the fetal system is the hypothesized mech-
anism of the synchronisation relationship. The oxygen supply for the fetal system totally
relies on the oxyganised level in the maternal cardiovascular system, which indirectly
links the maternal cardiac functionality to the fetal cardiac system.

During the fetal development, the growth of the fetal myocardium may change the
heart function behaviour, leading to various synchronisation behaviours during di�erent
gestation periods. The extended theoretical hypothesis is about the relationship between
the saturation level of blood oxygen and heart rate of the maternal heart rate and if this
relates to the fetal heart function because of the oxygen exchange.

The gestation period is proposed to link the synchronisation relationship between the
fetal and the maternal cardiac cycle in a reciprocal relation and as the gestation pe-
riod grows longer, this leads to a weaker synchronisation relationship especially towards
labour time when the two cardiac systems would separate entirely.

There is however a second possible relationship involving the gestation period which
may prove there is increased strength of synchronisation during the fetal development,
which means the synchronisation is stronger the longer the gestation period goes on.

This theoretical prediction may also follow the pattern that a positive relationship occurs
until a certain stage which may be close to the time of labour at which point the
synchronisation relationship then starts to get weaker.



Chapter 2

Literature Review

2.1 Blind source separation

Blind source separation is commonly achieved by applying independent component anal-
ysis (ICA) which was developed to solve a "cocktail party problem" which uses multiple
microphones positioned at di�erent places in a room to enable recording of speech from
several people [46]. The sources are assumed to be mixed by a square matrix and record-
ing positions of the individual sources has the same number of mixing coe�cients and
these related to the number of microphones used in the cocktail party problem. The
de-mixing matrix calculates independent signals and their relation to each other.

ICA separates multiple sources from the mixing recording by the equation X=AS, where
X is a multiple dimension input which is the matrix of all the source signals, A is the
de-mix coe�cients derived from ICA algorithm and S is the mixed signal matrix [44].
The single channel ICA (SCICA) is developed to extract a mix of multiple source signals
into a single recording. SCICA takes the scalar time series to form a multi-dimension
matrix as the input of ICA, it breaks the single signal into the multi-dimension vectors
with a delay factor.

The principle of ICA is to maximize the non-gaussianty of the mixed sources by the
weight coe�cient. It is based on the statistics value to maximise joint entropy or min-
imise mutual information. The common ICA component calculation uses the fourth-
order cumulant or kurtosis [44].

kurt(v)=E(v4) ≠ 3(Ev2)2 (2.1)

5
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The measurement of non-gaussianity can also be calculated from Negentropy as J(y) =
H(ygauss) ≠ H(y) [58]. In the general process of ICA, the number of sources is assumed
to be equal to or less than the number of recorded signals except for SCICA and all
the source signals are assumed to be independent to each other. Also the mixing of
the source signals is assumed to be linear, stationary and ideally noiseless in order to
apply to independent component strategy. The variations of ICA approaches have been
applied to separate fECG from the abdominal recording in a few publications and those
ICA algorithms use the maximum non-gaussianty of components along with the pre-
processing algorithms to increase the SNR.

Jimenez-Gonzalez demonstrated the procedures of constructing a multiple dimension
matrix from a single phonogram vector with a shift variable that is dependent on the
frequency ratio of the potential source components [53]. The multiple components are
projected onto the subspace by a linear transformation to de-mix the source signals.
ICA is also applied as a pre-processing method to remove the artefact noise from the
bio-signal since the artefact component is independent from the main signal [7]. The
ICA algorithms normally involve the higher-order statistical approach to maximise the
independence, so the infomax in Bell-Sejnowski algorithm is the neural network gradient,
and approximates the diagonalization of the eigenmatrices (JADE) [50].

The principle component analysis (PCA) and singular value decomposition (SVD) are
applied at the pre-processing stage and the covariance is taken as the target variable to
construct the mixing coe�cient of ICA [25]. The construction functions of negentropy
are: G(µ) = 1

– log cosh(–, µ) and G(µ) = exp(≠ µ2
2 ), Fast ICA is selected as ICA algorithm

[76]. PCA uses the linear projection to find the largest variation for the most information
by the eigenvectors and it is based on the direction of maximal variance in Gaussian
data.

2.2 Empirical mode decomposition

The intrinsic mode functions (IMF) from the empirical mode decomposition (EMD) use
the frequency order to separate the input signal into multiple ordered elements without
introducing cut-o� frequency. The principle of EMD is to locate the local maxima and
minima to form sinusoid waveforms, so it breaks the ECG into several segment signals.
The primary element is taken as the most frequent peak with the highest amplitude.
But the principle contradicts the actual property of the mECG and the fECG. In normal
case, fECG peaks have higher frequency and mECG peaks have greater amplitude.
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After each estimation step, the reduced frequency will not cover the complete fECG
peaks. The smooth filter also extracts each component into the form of sinusoid function
that is similar to the principle of empire mode decomposition (EMD), but result from
smooth filter is the superposition of multiple sinusoid functions, which is not the case for
EMD. EMD is used with ICA to decompose the input signal into the subband IMFs and
the IMFs are combined into multi-dimension matrix input for PCA [104]. Because EMD
is noise sensitive, a noise parameter can be included to generate the multi-dimension
input for FastICA with the minimised noise e�ect [73].

2.3 Singular value decomposition

The singular value decomposition (SVD) can decompose a single vector to a multi-
dimension vector by applying the eigenvector. SVD takes the periodic input matrix
and produces the singular vales of the matrix [118]. The singular values encode the
prime information of the quasi-period signal, so the ECG components are constructed
into a few dominant singular triplets. The maternal ECG signal is considered to be
the dominant vector in the abdominal recording, so it can be constructed as the first in
the ranking matrix of the singular values [55]. The fECG is calculated as the di�erence
between the abdominal and constructed mECG signal.

2.4 Adaptive filter

The adaptive filter applies the square mean error to update the filtering coe�cient
between the input signal and desired signal. The least mean square (LMS) algorithm
feeds the di�erence between the processed signal and input signal back to the loop until
the coe�cient of the estimation factor for the reference signal reaches stable state. The
adaptive filter has been applied with the noise reference signal to construct the fetal heart
sound with the weight coe�cients [74]. The Finite Impulse Response (FIR) adaptive
filter enhances fECG by applying LMS and it can be used to estimate the fECG from
abdominal mix [54]. The LMS adaptive filter is used to detect the QRS complex of the
mECG that can be taken as the reference template from the abdominal signal. The
subtraction result of the abdominal signal and mECG is fECG signal [2].
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2.5 Wavelet transform

The wavelet transform is to apply decomposition to both the frequency and the time
domain to separate the embedded source signals. The mother wavelet is a unity signal
with zero mean and generally selected to have similar pattern feature of the estimated
signal. The Discrete Wavelet Transform is used to remove the artifacts based on the
spectral separation in order to break the single channel to multiple output [103].

2.6 Clustering

The clustering data is grouped according to the centre mean of each group in term of X-
Y relationship, so each point in the vector belongs to one of the groups according to the
X and Y reference. The K-nearest neighbour classifier and k-means clustering are used
to identify the ECG by determining the distance from the points to the k-nearest point.
In k-means clustering classifier, k is the number of prototype centre to be assigned with
the outlier score and it is used to characterise the degree to the outlier. The number of
clusters is calculated as the square root of the total number of sources over 2 and also
the boundary curve represents the separation between two classes. The hard cluster is to
separate data to only one cluster and no empty cluster, but the fuzzy cluster allows data
to belong to multiple clusters with probability as f(x) œ 0, 1 . The cluster is sensitive
to the initial assumption and it is better to use hard cluster for ECG separation.

The Euclidean distance counts the frequency of peak and interpolates to the maximum of
a polynomial to fit the position where the peaks cross below the lowest displayed contour.
The objective function is the sum of the cluster error as Lkm =

qk
k=1

q
iœGa

Îsi ≠ bkÎ2,
where k is the number of cluster, bk is the representative prototype of the cluster Gk.
The first step of clustering is to estimate the prototype, then the sample is assigned in
an iterated loop until locating the local minimum. The di�erent initiation can cause
convergence to a di�erent local optima. The low-dimension signal can be computed
into high-dimension by the fuzzy cluster, it converts the time series vectors with delay
coordinate into multi-dimension matrix. It then projects each point in the trajectory
orthogonally onto the original vector to convert the processed matrix back to the scalar
time domain.

D(x,c) is the distance or dissimilarity between a feature vector x and cluster c, threshold
q of dissimilarity is the maximum allowable number cluster. The vector is considered
to be mECG signal in the case of ECG processing, the initial number of cluster m is
1 and the cluster contains the first data point. The next step is to check the distance
between the next data point to the data in the di�erent clusters, if the distance exceeds
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the threshold of dissimilarity, m<q, a new cluster is created for next data, otherwise
the data is grouped into the cluster with the minimum distance with all the data in the
cluster.

The clustering method is used to detect the outlier and to remove the noise, which is
formed by the points far away from the centroids of the major clusters that is constructed
by k-mean [121]. The k-mean clustering is based on the measurement of the cost function
for the dissimilarity and the fuzzy C-mean clustering groups the data based on the degree
of membership [38]. The clustering approach is a self-organizing network and it is used
to identify the feature of QRS complex, it maps the multi-dimensional vector onto the
two-dimensional space [66]. The unsupervised learning process in clustering starts the
training steps from initialising the weights till it reaches the termination criteria.

2.7 Neural network

In the neural network, the thoracic and abdominal signals are fed to several classifica-
tion network neurons and the output signals are assigned to the output layer with the
correlation coe�cients to the other output components. The neural network applies the
taps to the signal data at each stage to condense the signal feature into the single value,
which indicates the overall feature of signal. The kernel neural network classifies the ob-
jects based on the closest training examples in the feature space, by giving a neighbour
weight of 1/d, where d is distance to the neighbour. The neural network is included
as the pre-whitening procedure and it also can be used for the separation of sources in
blind separation by deriving the total separating matrix from several steps [20]. The
neural learning rules set for the pre-whitening combine the mixing and de-correlation
algorithms. The Finite Impulse Response (FIR) neural network is taken for the noise
cancellation to extract the fECG and the weight of the network model is a FIR linear
filter [13]. The network tracks the maternal signal with the registers by training the
temporal backpropagation algorithms. The FIR neural network takes the weighted sum
of the delayed input signal into the multiple layers of the neurons and the learning rate
and parameters are adjusted to extract fECG with thoracic signal as additional reference
[14].



Chapter 3

Material and Method

3.1 Recorded database

3.1.1 The recording data

There are 40 pairs of fECG and mECG recordings collected from 38 subjects included
in the database, it also includes the gestation period of pregnancy. Two of the subjects
are recorded repeatedly at two di�erent gestation period. The original ECG signals are
recorded with 11 abdominal electrodes non-invasively in an external institution group
and only the extracted fECG and mECG signals in the duration of 1 minute are provided.

The gestation period is in the range of 16 weeks to 40 weeks with the average of 30.61
weeks and variation of 7.48 weeks. Most the of recordings have the duration of ECG in 1
minute, except for one subject at 24-week gestation period having only 50 second ECG
recordings. The grouping of the subjects to analyse the gestation period is separated as
below 29 weeks, 29-35 weeks and above 35 weeks in term of low gestation period (Lgp),
medium gestation period (Mpg) and high gestation period (Hgp).

3.1.2 The online database

The data used to develop and test fECG separation from abdominal recording are all
from an online database PhysioNet. PhysioNet was the source for 2 thoracic recordings
and 3 or 4 abdominal recordings per subject (the number of abdominal recordings varies
for di�erent subjects).

The recording frequency is constantly 1kHz and the duration is all longer than 60 sec-
onds. The processing data is selected from 60 second durations to keep the comparison

10
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consistent. Because there are no actual recordings of fECG as a reference signal in
the database to test the result of extraction, the possible validation is done by visual
comparison of fECG peak in the abdominal signal. After manually checking the fECG
existence in the abdominal recordings, 20 out of 55 subjects are selected from the data
source to develop and test the fECG separation algorithms.

Figure 3.1: A pair of abdominal and thoracic recordings of one subjects from Phys-
ioNet

3.1.3 Heart sound

The abdominal heart sound is recorded by a mobile phone, the recording is a mix of
both fetal and maternal heart sound.

3.1.4 Mouse data

The mouse data is to analyse the fetal and maternal heart rate in various conditions.
The mouse ECG database compares two groups of mother mice in di�erent conditions.
One is the control group and the other has low protein intake.
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Figure 3.2: The abdominal recordings at two di�erent abdominal electrodes

The recordings of the fECG and mECG are taken by the separated direct electrode
contact on the fetal and maternal mouses’ heart and each recording contains 6 events
with duration of 3 minutes in each event. Three of the events are clipping of the fetal
artery and the other three is opening of the artery.

3.2 Measurement variables

The heart rate of fetus(fHR) and mother(mHR) are calculated from R-R interval of the
individual fECG and mECG cycle as HR = Duration(s)

RR ú 1000 ú 60 60 in the unit of
beats/min. The mean and the standard deviation of fHR involved in the analysis are
labelled as FM and FV, and the mean of mHR is MM, the mean value is the analysis
variable for each subject.

3.3 Synchronisation variables

The ratio of the time interval between the mECG and the fECG is calculated from
4 time point variables, m1, m2, f1 and f2. The time duration between m1 and f1 is
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t1, the interval t2 is between m1 and f2. The ratio between the intervals t1 and t2 is
not constant as the ratio of fHR and mHR is not integer. The initial design of phase
between the adjacent fECG peaks within one mECG cycle is t2+t1≠s

t2
. The number of

sychronisation points (NP) and the time duration of synchronisation (TD) can reflect
fHR by equation fHR = NP úN≠1

T D ú 60.

The synchronisation relationship is computed as the time point of the fECG peak with
respect to di�erent numbers of mECG cycles which is classified as one primary cycle.
All the synchronisations are calculated in one primary cycle which can vary from 1 to 4
mECG cycles. The interval of the primary cycle reflects the synchronisation in short and
long term. The time position of fECG QRS is calculated with respect to the primary
cycle to analyse the synchronisation relationship between the fECG and the mECG. The
number of mECG cycles in the primary cycle is defined as m and the number of fECG
peaks in the primary is defined as n, so the synchronisation ratio (SR) is m : n and the
high SR value reflects the fast mHR or the slow fHR. The time points of fECG peaks
in the primary cycle are converted into the synchronisation coordinates. The phase of
individual fECG peak „ in the primary cycle:

„(ti) = 2fi
ti ≠ Tm

Tm+1 ≠ Tm
+ 2fii (3.1)

where ti and Tj are the time point of fECG and mECG peak, i is the fECG peak order
and m œ [1, 4]. The synchronisation coordinates of the phase Ï

Ï = mod(„, 2fi)
2fi

(3.2)

Due to the variation of the heart rate, the synchronisation relationship may not be
continuous during the entire recording time and the individual synchronisation segment
is determined as synchronisation epoch (SE). The phase locking (pl) value is calculated
from two adjacent synchronised primary cycles, it is the time between two synchronised
fECG peaks of the same SR in the same order of the two primary cycles divided by
n (as shown in Fig.3.3, phase locking value is b1 ≠ a1). The mean and the variance
of the phase locking value (Upl and Vpl) are calculated for each individual epoch, the
gradient of the phase lock value (Spl) is taken as an analysis factor for each SE. The
synchronisation index (SI) is to take into account the statistical variables of fHR, mHR
and SR:

SI = SR ú MM ú FV

FM
. (3.3)
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Figure 3.3: The fetal and maternal ECG signal forms synchronisation points and
phase locking value of corresponding synchronisation points

3.4 Signal processing

The fECG is normally merged into the mECG signal and noise, and the pattern of
the abdominal signal depends on the relative positions of electrodes. In the database
recordings, the fECG is embedded in the mECG waveform which is not consistent in
the three abdominal recordings. The abnormal mECG feature may not occur in every
cardiac cycle, so the irregular change of the abdominal signal needs the thoracic signal
as the reference to eliminate the abnormal mECG cycle from the abdominal signal first.

Heart disease will also cause inconsistent cardiac duration. The period of mECG cycle
cannot be set as the reference to avoid the abnormal heart function to be taken into the
algorithm development.

There are two groups of abdominal signal, one is the mECG with cycle duration refer-
enced from the thoracic signal, the other group is the combination of the noise and the
fECG signal. The abdominal recordings in most journal articles have similar pattern
feature as the the gradient of the abdominal signals from PhysioNet.

3.4.1 Preprocessing

3.4.1.1 Process data selection

To develop the separation algorithm of the processing data, the input is selected to be a
matrix of 3 abdominal and 1 thoracic signals. This procedure is applied to online data
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as the recordings from this source have a large number of points to process. The data
parameters are then set to include1000 points to avoid any error messages outofmemory

during the execution of functions in the MATLAB environment.

The thoracic and the abdominal signal are selected manually based on the curve feature
of mECG data, the high frequency peaks with good gradients are assumed to be the
fECG peaks in the abdominal recordings. The start of the analysis in the mECG cycle
happens 1 second after the recording, so the calculation of the fECG phase starts from
the fECG peaks in the first mECG cycle.

The cardiac cycle is calculated using the peaks in the thoracic recordings, and the
distance between the peaks is set to be over a threshold variable based on the recording
frequency and the normal heart rate range.

The aim of the selection is to eliminate any signal overshoot at the beginning of recording.
The thoracic signal may be used with the abdominal signal for the fECG separation with
the mECG cycle being selected as the start point. The start point is the first peak by
the minimum threshold in both the abdominal and the thoracic signals and any fECG
data that occurs before this point will be disregarded.

However, the individual cycle will not be aligned in the input matrix, because it requires
a normal cycle duration. The processed data will be reconstructed into a 1-dimension
vector and the length of each cardiac cycle will be extracted. The data is then processed
in intervals of 3 seconds using smooth function. In order to avoid data exclusions during
assigning the uncorrelated data to the reference signal, the data signals are constructed
from a continuous point in the chain - point 1 to point 4 then point 2 to point 5 - over
the entire recording.

3.4.1.2 Resampling and modification

The process of taking every 10th data point to form a new data signal is similar to down-
sampling the signal to a frequency of 100 Hz. During the process of down-sampling, some
of the fECG peaks reduce in magnitude and this results in a smoothed waveform. Data
in small windows with a similar mean and standard deviation, form the signal feature
as the creation of the multi-dimension matrix for fECG separation uses a shift window.

The original ECG signals from the open source are modified to enhance the ECG peak
magnitude. The square value of the original signal data will increase signal-to-noise ratio,
but it removes the actual fECG pattern feature. Instead the transform function used
to increase the fECG magnitude is exp function at the current stage, other potential
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approach such as a match table for electrode position or transform function will be
considered in the further work.

The cross correlation function calculates the maximum correlation variable by shifting
the signal in time scale. The same mECG feature do not appear at the time in the tho-
racic and the abdominal recordings, and it is caused by the distance from the abdominal
electrode to the maternal heart. The delayed time is calculated as the maximum cor-
relation of the abdominal and the thoracic signal and the thoracic signal is shifted by
the delayed time align the mECG feature in the two recordings. The first step to align
the thoracic and the abdominal signal is to find the time point of the mECG peaks in
the two signals. The delayed time(D) is calculated from the maximum correlation of
one abdominal and one thoracic signal, and the thoracic signal(length l) is shifted the
delayed value(m).

Cxy(t) = E{xly
ú
l≠m}

D = i ≠ l (3.4)

where Cxy is the correlation of signal x and y, Cxy(i) = max(Cxy), whereas l Æ i Æ 2l

and m > 0 The shift of the thoracic signal to align the fECG peak is for generating
the multidimension matrix for independent analysis and applying the adaptive filter to
separate fECG.

Figure 3.4: The alignment of mECG QRS peak in both abdominal and thoracic
recordings
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3.4.1.3 Whitening

The whitening process reduces the number of the components in the output matrix. One
of the whitening strategies is to use a spherical cloud and then take the vectors of the
system after shifting the centre of the data to the origin. The other whitening approach
is to project the principle component analysis (PCA) mixture in the orthogonal direction
of the maximum variance to rotate the matrix, and then the reduced matrix is taken as
the input of independent component analysis. A long term ECG recording has a large
number of data sets so PCA can reduce both the size and dimension of the processing
data.

3.4.1.4 Baseline wander

TThe baseline wander is not used in the thoracic signal because the motion of the
electrode at the thoracic is negligible during recording. The baseline wander is a low
frequency component, the frequency range maybe overlap the low frequency segment of
the cardiac cycle such as ST. The ST may be removed as part of the baseline wander by
the noise filter. The spectrum of the abdominal and the thoracic signals after removing
baseline wander shows the noise in low density region compared to the fECG peak and
the thoracic spectrum is taken as the reference for the mECG spectrum. In the peak
region, the relationship between the neighbour data points is not constant and has a
minor variation around zero.

The first step is to extract all the mECG peaks in the thoracic signal using a threshold
value in the recording, a moving average or a smooth function can remove both the peaks
and noise and leave a low frequency component which relates to the baseline wander.
The smooth function brings the signal to the zero-mean level and two main weighted
scatter methods can be selected as option, rloess and loess. The rloess uses weighted
linear least squares and nd degree polynormal and loess applies the local weighted scatter
plot smoothing. The number of data points taken for smoothing to construct the new
signal is controlled by the parameter span which is the percentage of total number of
data points, so a small sample number can construct the baseline wander smoothly with
similar pattern features. The weight of function of rloess is

W (x) = (1 ≠ |x|3)3I[|x| < 1] (3.5)

The more data used, the closer the smoothed result to the original signal. However,
the baseline wander is a low frequency component which will require fewer data points
to form the pattern. The weight of the adjacent data points is used to determine the
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number of data points for baseline wander removal, and R-R interval of mECG is taken
as the reference in order to select the neighbour points according to the time of each
segment in the cardiac cycle.

Each abdominal signal is smoothed by rloess and the sum of the abdominal signal is
smoothed after adding the original non-smooth abdominal signal to overcome the mo-
tion artifact of the individual electrode. The abdominal electrodes record the abdominal
motion at di�erent orientations during breathing and this motion aritiface can be re-
moved as part of the baseline wander. The sum of the three abdominal signals is applied
afterwards because the motion artifact may partially cancel each other out.

3.4.2 Independent component analysis (ICA)

The assumption of applying ICA is that the source signal is noise-free and a zero mean,
it uses linear transforming apply a result the correlation matrix. The source signals
of the mixing input are from two separate biological systems, which are non-Gaussian
so they are considered as independent sources [12][29]. The number of output signals
separated from ICA process is determined by the dimension of the input matrix. The
iterative weight factor is optimised based on maximising independence or the correlation
of the statistical property. Even the abdominal signal is a blind source signal and both
the fECG and mECG components share the similar pattern at QRS.

Prior knowledge of signal property can be introduced as the parameter of the algorithm
to separate two sources. The frequency feature of the mixing signal embeds separable
properties of each component as opposed to the original single signal. So applying ICA
in the frequency domain may assist but adding frequency properties may not assist to
identify the ECG from the separated components.

The adaptive filter with the shifted thoracic and abdominal signals as an input can
generate a multi-dimension matrix which can be applied as the input for ICA (the matrix
has the smaller density on mECG compareding to the original abdominal signal). The
recording results from the abdominal signal is a blind source mix because the three
electrodes only record the mix of mECG, but both fECG and noise are present [32].
It will require the prior knowledge of the number of source component and the partial
region waveform of each component to accurately apply ICA.

The fECG and noise are unknown signals with mECG being partially unknown so in
total there are 2 unknown sources signals and 1 partially known source signal. To work
with the partially known sources, we need to create a new BSS model. The first step
of the signal separation is to convert the thoracic signal to mECG signal that matches
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the pattern feature of mECG in the abdominal signal. The second step is to input
the modified source signals into the BSS model. The transformation of the mECG
pattern in the thoracic and the abdominal signal can be either linear or nonlinear. The
transformation algorithm converts the signal pattern based on the relationship between
the depolarisation peak in the signal and electrode at the heart location. The abdominal
signal is taken as a semi blind source as it needs to have magnitude and shape like the
ECG pattern. The mECG can span the subspace into 3 linear independent vectors and
the fECG can span into 2, the abdominal signal is broken into individual cardiac cycles.

The first step of ICA is to move the input signals to the zero mean level by subtracting
the row mean of the matrix vector. Then it finds the eigenvalue and eigenvector of
autocorrelation and sorts the positive eigenvalue and eigenvector in a descending order
to project the input signal onto the scaled eigenvector by the matrix multiply. The last
step is to find the ICA direction[30].

Processing of the non-gaussianty of components in the ICA process maximises the cor-
relation between mECG and fECG in the thoracic signal without including the high
frequency components. If the mECG pattern in the thoracic and the abdominal record-
ings is not constant, they will be separated into two signal patterns. Two thoracic
signals can be used as input for ICA to separate the segments of mECG cycle into the
two components.

However, if the thoracic signal is broken into cycles, the number of input signals can
be greatly increased and the number of mECG cycle components would increase too.
The positions of the abdominal and thoracic electrodes is classified as â�Ÿunknown
informationâ�è in the entire open database, but the correlation relationship between
the individual abdominal recording suggests that those electrodes are close in position
and will directly a�ect the functionality of the multiple source independent component
analysis [21].

The correlation coe�cient of two abdominal signals is high and the average is above
0.8. Also, the pattern shapes of all the abdominal signals are generally the same. This
indicates coe�cients of the source signals are similar for each recording channel. The
mixing matrix has mECG as the dominant source signal, the fECG as the other source
signal is recorded with the negligible mixing coe�cient at all the abdominal electrodes.
In this case, the three abdominal signals cannot be considered as the input matrix for
ICA because the mixing coe�cients of the sources are similar across the three signals.

All three abdominal signals are combined with one thoracic signal to form embedded
matrix, which is the input matrix of ICA. The single channel independent component
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analysis (SCICA) separates the fetal ECG (fECG) and maternal ECG (mECG) with-
out the alignment of the peak positions in the original abdominal signal on time scale.
The embedded multi-dimension matrix is formed from a single vector by taking the seg-
ments of the original signal with a delay variable as the column of the matrix [2]. The
dimension(m) and delay(�) are predefined as 20 and 10, and the length of each col-
umn(n) is 60000 for 60 seconds recording. Snm is the input signal with three abdominal
and one thoracic signals, so the final embedded matrix has the dimension of 20x4.

The embedded matrix(S) is the combination of four multi-dimension matrixes (S(i)),
where S(1≠3) is are formed by abdominal signals and S4 is formed by a thoracic signals.

S =
4ÿ

i=1
S(i) (3.6)

S(i)
nm =

S

WWWWWU

s1 s1+· ... s1+(m≠1)·

s2 s2+· ... s2+(m≠1)·

... ... ... ...

sn sn+· ... sn+(m≠1)·

T

XXXXXV

(3.7)

The most common approaches to extract the independent component use negentropy
and maximum mutual information in the iterative loop, and the negentropy approach is
applied to extract fECG in this paper. The negentropy(J) is calculated from entropy(H)
in order to maximise the non-Gaussianity of each source component based on the central
limit theorem,

H(y) = ≠
⁄

f(y) log(f(y))dy (3.8)

f is density function
J(y) = H(ygauss) ≠ H(y) (3.9)

And further approximation of J(y) into the following equation

J(y) ¥ (E{G(y)} ≠ E{G(ygauss)})2 (3.10)

where G is a nonlinear function, each mixing coe�cient vector(w) is calculated in the
iterative loop to maximise negentropy by Eq.(3.11)

wk+1 Ω E
Ó

sG(wT
k s)

Ô
≠ E

Ó
G

Õ(wT
k s)

Ô
wk (3.11)
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The non-linear function(G) is chosen to be log(cosh(u)) so its first derivative is tanh and
s is the embedded matrix. The mixing coe�cient matrix is a square matrix of combining
w of all components with the size as the column number of the embedded matrix. The
mixing coe�cient matrix is calculated in the iterative loop to maximise negentropy by
the equation and it has same size as that of the dimension of the embedded matrix.
The extracted components are the production matrix of the mixing coe�cient matrix

(
80ÿ

j=1
wT

j ) and the embedded matrix(s).

3.4.3 Clustering

The hard clustering takes the individual point of abdominal signal into one of the three
groups whereas the fuzzy cluster separates the same point into multiple groups based
on the membership to the group centres. The clustering approach groups the data into
several groups according to the centre mean of each group by X-Y relationship, so each
point in the signal belongs to one of the groups according to the feature of X and Y
reference [3].

The abdominal ECG is the mixing of mECG and fECG. The cluster analysis considers
a single data point instead of a combination of multiples in the process. The thoracic
signal is designed as the cluster centre of one of the two clusters and fECG QRS will be
separated from the rest signal. However it requires the alignment of the thoracic and
abdominal signals in pre-processing.

The thoracic signal is reconstructed by removing the points belonging to the noise clus-
tering in order to estimate the mECG in the thoracic signal. Then the estimated mECG
is used as the individual cluster reference for the abdominal signal.

The average of the group represents the weight of the cluster and the training set takes
into account the possible situation and corresponding value level to separate data points.

Once the fECG is extracted even without matching the magnitude in the abdominal
signal, the two cluster templates are applied to separate the abdominal signal into three
clusters. The third cluster contains all the noise data including the internal and the
external interference. The fECG is then extracted by the down envelop that selects the
parabolic minimum in the iterative loop.

The clustering is applied to find the mECG frequency from the thoracic signal and then
the frequency component is removed from the abdominal signal by the notch filter. The
most applicable approaches of clustering is k-mean and fuzzy c-mean cluster, and only



Chapter 3. Material and Method 22

two clusters are constructed, one of those is for the mECG signal and the other one has
the combination of the fECG signal and the noise.

With the thoracic signal as the reference of the mECG, any additional points from the
abdominal recording changing the cluster centre within may be taken as the mECG and
any other points are grouped as the fECG signal data.

3.4.3.1 K-mean clustering

The aim of the clustering algorithm is to locate the similarity and the di�erence of
data points in x-axis and y-axis, where the x-axis is the thoracic signal and y-axis is
the abdominal signal. The membership for the data groups is clustered as the y-axis
data, one variable µ1 Î�1 is the normal clustering variable, one is the similarity µ2

between the two axes data and the third µ3 is the di�erence between the two signals.
Each data point will have three membership values and they are signed to the di�erent
groups according to the combination of the three variables. The cluster members are
automatically updated based on the threshold of the data distance of the new cluster,
but the noise may a�ect the numbers of clusters. The best clustering result is at point
to have the maximumµ1 and µ3 and minimum µ2. The cluster (Si) is generated from
the data (x)
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The clustering equation is to minimise the sum of the square of the distance to the
centroid

arg min
S

kÿ

i=1

ÿ

xjœSi

Îxj ≠ µjÎ2 (3.13)

The ascending membership along with the corresponding abdominal data uses the av-
erage to group the membership and data into 5 clusters. Instead of searching the centre
of the cluster for individual data point, the input is set as a group of data points in-
cluding the entire mECG QRS. It is similar to the moving average and the group can
be generated by the overlapped data or the continuous adjacent data vector.

The k-means uses the thoracic data to generate 0 as the initial parameter vector for
cluster of the fECG signal. It uses the Euclidean distance to minimise the sum of square
of Euclidean distance of each data vector to its closest parameter vector. According to
the basic sequential algorithm scheme, the cluster mean of the vectors is assigned to
maximise the optimal Euclidean distance, the distance from the new data point to one
of the existed cluster is computed to compare with the threshold of dissimilarity. The
error function of individual data to the centroid of the cluster is used as the indication
of the clustering group.
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The parameter vector for each cluster corresponds to the point distance in one-dimension
space, the points are moved into the regions that have high dense in the points of the
clusters with the similar distance. The clustering starts from the initial estimation of the
parameter vector, if the vector is close to the last parameter vector value, then the value
is updated into the same cluster and the parameter vector is updated for the new cluster.
The first step of clustering algorithm is to set up five cluster groups, then it locates the
two data sets with the maximum di�erence at both the minimum and maximum values.
The maximum value is usually at the mECG peaks without having extreme error. The
di�erence between the data and the maximum is descended and it is applied to separate
the data into 5 groups.

3.4.3.2 Fuzzy clustering

The fuzzy clustering initially sets the centres of the cluster from a random guess, then
it assigns the degree of membership between every point in the cluster to the centre of
cluster [4]. The standard function of minimising an objective function is:

wk(x) = 1
q

(d(centrek,x)
d(centrej ,x) )

2
(m≠1)

(3.14)

The centroid of the cluster is weighted by the degree

ck =
q

x wx(x)x
q

x wx(x) (3.15)

The divergence of moving the centres of cluster is based on minimising the distance
between the data point and the cluster centre. The reference signals of noise can be
the abdominal signal, and the thoracic signals are the reference of ECG signal [6]. The
other approach is to use the thoracic signal as the weight component after aligning the
mECG with the abdominal signal. The iterative clustering loop and the convergence
of the correlation coe�cient are used to separate the data into two groups, instead of
removing the correlated region. The subtraction clustering assumes each data point
is the potential cluster centre and calculates the likelihood to define the cluster centre
based on the density of the surrounding data [17]. The modified algorithm takes the first
RR interval as the initial cluster centre from the thoracic signal. It then calculates the
mean square error within the clusters and updates the cluster centre into a new matrix
that is compared the mean square error to the thoracic signal.
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3.4.4 Beamforming

The ECG is the potential measurement of the myocardium excitation propagation. The
potential signal is a dipole vector in the electrical field projecting onto 3-dimension where
the body is the volume conductor. The dipole projection to the di�erent directions can
be measured by the electrodes at various locations on the body. The heart position with
respect to the electrode is in 3D(x,y,z), the direction of the heart vector is known based
on the physiological property of the heart and it can also be derived from the ECG
segments. The weight of minimising the average power in the error signal is calculated
from input signal with the angle of arrival.

wmmse = arg minw(wHRw ≠ wHE {xdú} ≠ E {xdú}H w + ddú, where R is covariance
matrix and d is source signal (3.16)

The magnitude di�erence between the two thoracic signals is generally consistent in every
cardiac cycle, so it may be caused only by the relative distance between the electrodes.
The magnitude di�erence at QRS indicates the shorter radius from the origin of the
heart vector with the lower magnitude in QRS. The ECG signal is used to reconstruct
the heart vector map, the magnitude is the relative value to the P-wave magnitude. It
is the physiological principle of being able to apply beamforming to separate the signals
recorded at di�erent locations. The beamforming links the behaviour of recorded pattern
to the location of the source signal.

The beamforming is the source position orientated approach to maximize the reception
of the signal based on the direction of arrival. It uses the desired angles of arrival of the
dominant signal during the recording process. The original design principle is to use the
position angles of the two ECG sources. It assumes the maternal heart is at the vertical
position to the thoracic electrode. The same assumption is introduced to the location of
the fetal heart to the abdominal electrode. However, the maternal heart is at an angle
to the abdominal electrode in a practical situation.

The main di�erence of the mECG is the two signals are caused by the horizontal distance
of electrodes and the distance is calculated from the heart to the abdomen in the general
population. The approach derived from the beamforming to separate ECG takes into
account the di�erentiated signals from the mixture. The location di�erence of electrodes
can be seen in the pattern transformation of certain segments in the mECG recording.
The pattern di�erence is due to the direction of the heart vector. However, the pattern
transformation in di�erent locations is only the variation of the amplitude which is not
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constant for everyone. So the change in the amplitude needs to be referenced in order
to connect the pattern change to the position.

In between the abdominal and the thoracic signals, there is time delay at the mECG QRS
peak. The QRS peak can be applied to determine the location relationship between the
abdominal and the thoracic electrodes. But the cause of the delay is uncertain. It could
be due to the electrode configuration or the actual time of ECG signal propagating from
the maternal heart to the abdominal electrode. If the assumption is made that the delay
is based on the signal propagation, the beamforming can construct the original mECG
signal from the thoracic signal with the electrode relative locations. The abdominal and
thoracic electrodes are assumed to be at the corresponding positions of the 12-lead ECG
placement, so the angle between the recording signal and the source signal can be used
for the beamforming separation.

3.4.5 Transform of mECG signal in thoracic and abdominal signal

The additional thoracic signal is taken as one of the source signals for both the magni-
tude and the waveform modification. If the thoracic recording is used to re-construct
mECG by either solving the transformation relationship or removing the partial mECG
component from the abdominal according, it will leave the T-wave of mECG as part of
the noise.

The first step is to use the mECG as the noise signal with the known transformation
pattern from the thoracic recording, then build a transform model of mECG for the
abdominal signal from the thoracic signal based on the location assumptions of the
relationship between the two electrodes. The actual distance in the real application can
be recorded by a sensor that can form part of the input parameter to the algorithm.

The mECG in the abdominal signal is irrelevant to the purpose of the abdominal record-
ing so it can be removed from the segment block. The non-linear transformation function
involves the distance factor between the thoracic and the abdominal electrodes, and the
tissue density variation e�ect. However, neither of these factors is available in the open
database, so the algorithm variables need to be selected or built based on this general
assumption for the template. The thoracic and abdominal signals are transformed into
the same magnitude interval before projecting with or without the magnitude mapping.

If the abdominal signal is considered as the echo distortion of the thoracic signal, then
the ECG will be the matched component between the echo and the ordinal signal. The
Q point is selected as the start point and it is compared to the 10 points on each
side to locate the point with maximum di�erence. Instead of removing QRS by the
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thoracic signal from the abdominal signal, the time interval of QRS is calculated. If
the algorithms flip the downward peak and keep the ordinary QRS peak in the thoracic
signal, the end point of the descent slope is the S point. The advantage of locating the
S point instead of retrieving the peaks directly is the peak magnitude can be removed
completely without leaving the e�ective magnitude which will distort the fECG in the
separation process.

The conversion from ECG signal to VCG signal requires the multi-coe�cients for the12-
lead configuration. It contains information on the location of electrodes and the coe�-
cients are selected through the learning process. Then a corresponding table of electrode
angles is built from the ECG and VCG information. The transform function is applied
to the abdominal signal to estimate the angle between the electrodes based on the table.
The assumption factors made in the method include the steady transformation factor
across the electrodes at both the abdominal and the thoracic signals and the linear
relationship of the delay to the source signals.

3.4.6 Power spectral

The power spectral density of the mECG and the fECG are di�erent in the frequency
feature, but the power distribution of the mECG should remain the same as each segment
of the cardiac cycle contributes the same over the time. The power spectral density of
signal x(t) is

P = lim
T æŒ

1
2T

⁄ T

≠T
x(t)2dt (3.17)

The noise reference is assumed to form the identical magnitude in the power spectral
during the measurement in the reference collection. The power spectral density groups
similar frequencies by using the Welch method of Hanning window and 32 coe�cients
with 50% overlap. The individual component in the same power group is shifted back
from the delay variable and then it is averaged out to find the final result. This is similar
to the cluster approach, the probability density function (pdf) of the thoracic signal is
calculated as a template and is matched against the abdominal information with the
same value and then grouped as the mECG signal. The pdf of the thoracic signal is
compared to the extract the the points with the same pdf.

3.4.7 Learning iterative loop

In the learning algorithm, the clustering will use the correlation relationship to separate
the ECG instead of finding the cluster centroid. The initial cluster data includes all the
abdominal data points, then every 2 neighbouring data points are grouped into the test
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interval and compared to the mECG component. The mECG signal is designed as the
carrier of fECG in the abdominal signal and the learning algorithm uses the iterative
loop to retrieve the embedded fECG. The learning process that will be compatible for
the covariance function in MATLAB.

The first 3000 data points are selected as the input to the machine learning approach
and the output is then filtered to remove the mECG peak in the abdominal signal. The
learning approach is to extract the waveform of fECG and then use the waveform as
the template to compare with the overall signal. The waveform with the most frequent
appearance is taken within the selected interval. The abdominal electrode signals may
change if one of the fECG waveform signals has a magnitude change, this will then shift
the fECG out of scale from each other. The sum will only be applied if the individual
signal contains the small magnitude of the fECG signal.

3.4.8 Template construction of ECG

The first step of template separation is to set up a collection of possible ECG patterns
then apply "trial and error approach" to match the ECG template to the components in
the abdominal signal. The weight of the selected region in the learning data interval is
variable due to the additional appearance of the fECG signal. The controlled parameters
in the template are derived from the peak magnitude, the duration and the spectral
separation of the individual thoracic recording. The parameters can be adjusted by the
number of data points in the template and the shape of the template is initialised for
the general condition. The error of the template match process controls the parameter
and it modifies the template in a continuous loop until it reaches the minimum level of
data errors, distribution errors or energy errors. The initial template of the fECG signal
is defined as a single upward peak, the length of the peak sides is adjusted by the error
controlled parameter.

Template matching uses the correlation and likelihood to find a similar pattern in the
two signals. It is essential to only match the pattern not the magnitude level and only
match the region with the same waveform. Instead of using the template for one pattern
feature, both the mECG and the fECG signals can be inputted to test the relationship
to the template. The template that represents the mECG and the fECG signals can be
linear or high order polynomial function.

The circle matching template has the radius as the same length as the magnitude of
the fECG peak and the value only changes if the deep slope changes. The circle is set
as a measurement tool to monitor slight change in the peak slope and it recognises the
change in the peak magnitude in the circular area based on the percentage error. The
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weighted principal includes the interpolation of the mECG QRS peak and the surface
distribution and generates a template to match the mECG signal in the abdominal and
the thoracic signals.

3.4.9 Empirical mode decomposition (EMD)

The procedure of the empirical mode decomposition (EMD) is to generate the upper
and the lower envelops by the cubic spline interpolation. It then subtracts the envelop
functions from the signal and feedbacks the residual to the input until the residual is
monotonic. The EMD keeps finding the minimum value after each signal update, and
the parabolic minimum is found by setting the linear relationship between the adjacent
three data points. The order of the intrinsic mode function reciprocally reflects the
frequency of the component and the input signal is separated into ordered elements. It
is similar to calculate the membership of the neighbouring data. The decomposition of
the input signal X(t) into multiple IMF(ci)

X(t)=
qn

i=1 ci + rn, where rn is residual (3.18)

The mECG can be extracted from the resulted EMF but the fECG signal emerges as
part of the mECG signal. Because the frequency of the fECG signal is normally higher
than the frequency of the mECG signal, the fECG signal is supposed to be in the higher
order IMF component. The mECG is taken as the 1st order decomposition component
of the abdominal signal and then it is removed from the abdominal signal after the
decomposition. The IMF components may include the baseline wand er signal, because
each quadratic function is only separated into one component and it may not match to
the signal.

3.4.10 Singular value decomposition (SVD)

The singular vector decomposition (SVD) is to form the component that is considered
to be the most dominant in the matrix of abdominal signals based on the eigenvalue.
It can also be applied to compress the ECG signal to reduce matrix size as well. The
original multi-dimension matrix (M) is factorised into the combination of the singular
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values(
q

) and singular vector (V)[32]

M = U
ÿ

V ú (3.19)

3.4.11 Mask for fECG

When the abdominal and the thoracic signals are separated into the cardiac cycles, the
thoracic signal can be used to mask the abdominal signal. The iterative process uses the
individual cycle instead of the overall recording, so the coe�cients are updated in each
cycle. The coe�cient is added to the thoracic signal to maximise the di�erence with the
abdominal signal with the step size increment of the coe�cient depending on the actual
di�erence between the two signals.

The di�erence is taken over a period of 10 data points in order to avoid the removal of
fECG by the single data di�erence. The potential error of masking the mECG peaks
due to the thoracic signal occurs when the fECG peaks align with the mECG peaks.
The removal of the entire mECG QRS complex results can cause the mECG peaks to
be missing and it also causes an inaccurate fetal heart rate calculation.

The mask can be used to find the noise reference like the adaptive noise canceler and
treats the mECG signal as associated noise because the pattern form of the mask is
more closely matched to the mECG signal in the abdominal recording than the mECG
in the original thoracic signal. Both the mask and the thoracic signal are introduced
with shape only to eliminate the error caused by the magnitude. The covariance between
the di�erence and the sum of the abdominal recordings can form the mECG signal with
the minor magnitude in the P-wave and can be used as the mask to remove the mECG
signal in the abdominal recording.

3.4.12 Adaptive filter

The adaptive filter uses the thoracic signal as the reference of the mECG signal and
it removes the mECG signal from the abdominal recording. The adaptive filter recon-
structs the desired signal d(t) from the input signal x(t) based on the reference signal
v(t), where wt is the weight coe�cient controlled by the error between d(t) and v(t).

d(t) = wt ú x(t) (3.20)

Because the principle of least mean square (LMS) is to minimise the di�erence between
the reference and the input signal based on the thoracic and the abdominal signals, the
variation of the mECG pattern in the thoracic signal is left as a part of the fECG signal.
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It is caused by the transformation function of the conversion that is not applicable in
the abnorm al cases. Both the magnitude and the period of mECG are extracted as the
reference from the thoracic and abdominal signals.

3.4.13 Frequency filter

In the thoracic recording, the mECG has a relatively high magnitude compared to the
one in the abdominal recording in the same frequency range. The bandstop filter is only
applied to the thoracic signal to indicate the frequency range of the mECG component
that is in the same frequency range in both the abdominal and the thoracic signals [8].
The abdominal signal can be considered to be the combination of one high and one
low frequency data, and every signal data point as a sum of two source signals. The
frequency filter and wavelet transformation may be applied to enhance the fECG peak
in the ICA component or to separate the high frequency noise.

3.4.14 Other approaches

There are other algorithms apart from the above approaches that have been developed
and tested to separate the fECG from the abdominal signal or to enhance the SNR.
The di�erence between the two abdominal recordings is used as a reference of the fECG
signal o�set to remove the remaining T-wave or P-wave of the mECG component.

Instead of using a single order algorithm, the relationship between the thoracic and
the abdominal signal is reconstructed by several mathematical models with logarithm,
summation, exponential, power and sinusoid functions. The QRS in the abdominal
signal is symmetrical but it is asymmetric in the thoracic signal, so forward and the
backward checking is applied for the symmetric property and it detects the unmatched
mECG QRS complex region. But if the downward peaks disappear in the thoracic signal,
the function cannot find the QRS complex. The magnitude subtraction is applied to
the same cardiac cycle, after removing the time delay of the mECG in the abdominal
signal.

The gradient of the abdominal signal indicates the time point of the fetal QRS more
clearly than the original abdominal signal. The mECG QRS can be removed first from
the abdominal signal, then the gradient function can be applied to the rest signal to
locate the fetal QRS. The number of data points forming the peak is proportional to
the magnitude of the peak, so a line segment is used to approximate the peak by the
algorithm y=Ax+B. The linear regression is to estimate the slope and the intercept of
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the line by minimising the least squares function, it may be applied as a segmentation
tool to separate the mECG from the fECG components based on the linear relationship.

The kernel function in the neural network takes the thoracic and the abdominal signals
as the input to several classification processors and the outputs are assigned to the
multiple layers based on the correlation between each output component [11]. The neural
network applies the taps to the signal data at each stage to condense the signal feature
into the single value that indicates the overall feature of the signal [13]. The Karhunen-
Loeve(KL) function reconstructs the R-wave of the ECG signal, it then projects the
pattern vector onto the ordered eigenvector.

The feature space uses the second-order temporal decorrelation to reduce the dimensions
of the abdominal signal, the size is only up to the number of data covering one mECG
cycle. The wavelet transform (WT) is to separate the components with the di�erent
frequencies in time domain, it groups the components in the high and the low frequency
ranges respectively [7]. The mother wavelet is selected depending on the signal pattern
of the desired signal.
The relationship between the abdominal and the thoracic signals adjusts the param-
eters of fECG extraction equation, and the noise filtered by WT is considered to be
the maxima of the recording. The components separation in each subband should be
correlated to each other because the subband signals are filtered into the same source
and the di�erent segments of ECG are in the di�erent frequency range.

The non-linear relationship between the mECG and the fECG signals can be re-arranged
by the non-linear operation such as trigonometry, log, exp and power, but it requires
further testing on the relationship to build up the algorithms. The threshold of the
peaks location in the abdominal and the thoracic signals is calculated in the iterative
loop and the threshold value should result the same number of peaks in the two signals.
The initial setting of the duration threshold of the mECG cycle is 10 milliseconds to
avoid the double mECG peaks detection.

The last peak in the abdominal may be the baseline wander or the motion artifact and
it is not in the thoracic signal, so the number of mECG peaks is determined by the
thoracic signal instead of the abdominal signal even the time point is extracted from the
abdominal signal. The function exp(coshA) is used to extract the mECG component,
then it is used to work backward to reconstruct another ECG component from other
recordings.

When the signal is plotted as a graphic pattern, the magnitude of ECG peaks is converted
to the vector in the image, and the vector data is interpreted into two sets of data. When
the two sets are linked together in the algorithms, the same feature can be extracted
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by the cross section of the two sets of information. The common noise in the image is
the sudden change in peaks magnitude and both fECG and mECG signals form those
changes.

3.4.15 Heart sound processing

The fetal heart beat tone can be separated by the envelope function into the sound
block. The first few seconds of the sound recording is used as the reference for external
noise because the recording started before placing the microphone on the target position
Fig.3.5. The white noise data can be removed by the adaptive filter and the maternal
heart beat needs an additional reference to use the adaptive filter. The FPCG is passed
to the bandpass filter to remove components in the range of 35-200 Hz. The possible
extended noise is analysed in the frequency domain and the filtered signal is shown in
Fig.3.6.
The abdominal PCG is processed as a single channel signal and the delay time variable
results in the maximum correlation coe�cient which is used to generate the embedded
matrix. The mixed signals have similar properties due to the frequency overlap and one
source signal may be assumed as the attenuation signal. So the fetal heart signal is
considered to be the main source and the maternal heart signal is the secondary source
and is treated as the delayed reflection of the main source from di�erent directions. The
magnitude threshold and parameters are set manually for processing. The process can
be developed into an automatic procedure by modifying the variables according to the
data distribution.

Figure 3.5: The first minute recording of heart sound with heart sound peaks
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Figure 3.6: The heart sound recording filtered by high and low frequency filters

3.4.16 Mouse data

The first step of extracting the heart rate of mouse data is to remove the power line
noise by a notch filter, the cut-o� frequency is then selected to be 50Hz (the data was
collected in Japan). The next step is to remove the random noise and enhance the SNR
of the ECG signal by a bandpass filter at cut-o� frequencies of 20 and 200 Hz. The
interval of the processed data is selected as a section of the entire recording to avoid
certain dominant noise.

The selected interval includes all the analysis events, but the events are missing in the
recording of one subject. The event duration for the mouse data is selected to be 2
minutes from the overall 5 minutes recording, and the region is chosen to have the
best continuous signal with the maximal SNR. The associated noise with the significant
peak amplitude is removed manually in the ECG pattern before calculating the heart
rate. The ECG QRS complex is processed first with a general threshold value, then a
boundary is set to test the accuracy of peak extracting by limiting the heart rate within
a reasonable fluctuation Fig.3.7.
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Figure 3.7: The fetal ECG from normal mouse including events of clipping and
opening
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Result

4.1 Signal processing

The mECG peaks of the abdominal signal from the open source PhysioNet are located
using 0.8 as the threshold value after normalizing the signal magnitude to the interval
[0,1]. The magnitude of fECG peaks in the abdominal signals have slightly greater
slopes than the associated noise. The gradient function of the abdominal signal has
more obvious fECG peaks and is applied to select pairs of signals to extract the fECG
and the mECG signals.

Figure 4.1: The gradient of abdominal signal after removal of white noise

35
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4.1.1 Noise

The SNR of the fECG signal is improved by taking the product of two abdominal signals
and both the magnitudes of the mECG and fECG QRS peaks are increased. The square
root function reduces the magnitude of the mECG peaks more e�ectively compared to
its e�ect on the amplitude of the fECG peaks.

4.1.2 Baseline wander

The baseline wander results in di�erent patterns in the individual abdominal signal as
in Fig. 4.2 as it is caused by abdomen movement and can change when breathing. The

Figure 4.2: The three original abdominal recording with visible potential fECG peaks
from PhysioNet

baseline wander is low frequency noise, so both a butterworth highpass filter of N=8 at
cuto� frequency of 2 Hz and smooth function can remove the baseline wander.

4.1.2.1 Smooth

The rloess process uses 10% of the original data as the single input, but is considered to
be a time consuming process in MATLAB as the result is not instantaneously calculated.
Processing time is shorter with improved rloess as it has the specific data number upfront
and works with a quadratic function to fit to the data points smoothly. The smooth
procedure modulates the thoracic to a similar pattern as the abdominal signal with
existed downward mECG peaks. The longer the data interval, the less accurate the
mECG component reference in the smooth function is. The smooth process can also
remove both the motion artefact and the mECG QRS complex at the beginning and end
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of the signal interval. The smooth function is robust without tuning the cut-o� frequency
for di�erent subjects or a�ecting the low frequency component of the fECG signal. The
baseline wander is constructed first and subtracted from the original abdominal signal
in Fig. 4.3.

Figure 4.3: The baseline wander signal and result abdominal signal after removal of
baseline wander

4.1.3 Cross correlation variables

The cross correlation coe�cient is initially introduced to align the mECG peaks in the
abdominal and the thoracic signals in order to construct the multi-dimensional matrix
as the input of the independent component analysis (ICA). The time delay is calculated
using di�erence of the cross correlation coe�cient and the duration of the data recording
and it is chosen as the start point of the vector interval in the abdominal signals for
the matrix . The delay variable is the same for the three abdominal signals. Then it is
developed to locate the fECG in the two adjacent mECG cycles however this approach
was deemed unsuccessful due to the variation in the duration of the mECG cycles.
The correlation coe�cient decreases with the increased number of the data intervals
regardless of the correlation relationship. If the correlation coe�cient between the two
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mECG cycles exceeds the length of data intervals, it indicates that there is no correlation
between the mECG cycles.

4.1.4 Independent component analysis

The ICA is applied to the open source data to separate the fECG signal, the extracted
fECG signal has peaks aligning to the points of the predicted fECG peaks in the original
abdominal signal in Fig.4.4. The component matrix from ICA has the same dimen-

Figure 4.4: The extracted fECG is compared to the potential fECG peak in abdominal
recording

sions as the size of the embedded matrix, and the fECG signal is extracted into several
components.The fECG signal could not be filtered out with highest SNR in a learning
processing, the potential fECG signals are selected manually based on the observation
of noise influence in the component signal. The selected fECG signals for the synchro-
nisation analysis need post-processing to enhance the peak amplitude before the peak
detection Fig. 4.5. Because all the recordings are assumed are from healthy subjects
with a normal fetus condition, the cardiac cycle is reasonably consistent. Due to the
relative low SNR of fECG in the original abdominal recording, only the QRS segment of
the fECG is extracted with accurate time point. Some of the subjects have R-R intervals
over 50ms which may be caused by the associated significant noise such as the random
peaks in the extracted fECG component. Because the mixing matrix of ICA is a square
matrix, adding more input sources will result in more accurate components. The ICA
has been tested successfully on simulate signal to separate the mixed sources with the
weight coe�cients.
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Figure 4.5: The ICA separated component corresponding to fECG signal (blue) and
filtered signal for peak detection signal (red)

4.1.5 Frequency domain

After applying 50 Hz notch filter and one lowpass filter, a cuto� frequency of 100 Hz
is added to the original signals. The fECG QRS in the gradient of the signal is clearer
as the minor partial magnitude in both the mECG and the fECG peaks is removed.
The power spectral in the frequency domain of the thoracic and the abdominal signals
has two peaks within the 10 Hz range. The indication of the mECG position in the
abdominal signal is based on the thoracic recording and the frequency of the mECG
component should remain the same in both the abdominal and the thoracic signals.
Clustering finds the mECG frequency in the thoracic signal and removes the frequency
component from the abdominal signal in the frequency domain by the notch filter. The
frequency component of the abdominal and the thoracic signals have similar mECG
pattern and the corresponding thoracic frequency component is used as the mask to
remove mECG in the abdominal signal. The frequency component enhances the fECG
in the abdominal signal, but it is not observable in the original recordings around 80-110
Hz.

4.1.6 Clustering

Clustering can find mECG peaks because they are not influenced by the other segments
of the cardiac cycle. The cluster with the minimum number of points is the group of
mECG complex and it can be located by min function. The cluster components of the
fECG and the mECG signals are not in constant order after each clustering process with
the same input matrix. The input signal of the sum of the three abdominal signals and
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one thoracic signal results in 20 clusters, two of which could be combined together to
represent the fECG signal and the noise can be removed by using the threshold value.

There is no direct relationship between the accuracy of the fECG component and number
of clusters. It can extract fECG with removable errors with generally only 10-20 clusters.
The mECG QRS peaks are clear in one of the clusters but the fECG signals are embed in
the mECG signal in some of the clusters with relatively small magnitude. The clustering
algorithm does not have equal distribution of the di�erence along the x-axis, most of
the di�erent values are in the range of -0.6 to -1. The di�erence range indicates most
signals are far from the maximum and show sharp increases from -0.6 to 0 at the peak
regions in both the mECG and the fECG signals. The cluster centre of the noise signal
is zero and the mean values of the fECG and the mECG QRS complex are also around
zero. The peaks in the cluster group are the QRS complex which is shifted by the delay
between the two signals, so the resulted peak cluster group is delayed as well.

The k-means function of clusters separates the signal into 3 groups, one is corresponding
to noise, one is the fECG signal and the third one is the mECG signal and it also uses
the gradient of the abdominal signal as the input. Both the abdominal and thoracic
signals have to be normalised using the mean and the standard deviation, to set the
cluster centre. When apply clustering to the abdominal signal, the fECG peaks in the
mECG peak are separated into the mECG groups as they are too close to the mECG
cycle instead of separating into individual fECG cluster.

4.1.7 Singular value decomposition

The SVD algorithm can break down the matrix of 3 abdominal recordings into 3 com-
ponents, the second and last component will have mECG QRS removed from the signal
but none of them kept the shape of original abdominal signal. The mECG is separated
from abdominal signal as the singular component with relative high coe�cient but the
extracted signal is not identical to the mECG component in the abdominal signal in
magnitude and pattern. Because fECG is not considered as singular component in the
abdominal signal, SVD will not extract any information regards fECG.

The output matrix of SVD is similar to the abdominal ECG and first component has
negative peak. The result signal has QRS complex align with that in abdominal signal
which suggests that only mECG complex were found.
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4.1.8 Empirical mode decomposition

The EMD applies to the sum of the abdominal signals. The first IMF which has the
highest frequency is supposed to be the fECG signal, but the peaks at the corresponding
time point does not match the time point of the fECG peak in the actual abdominal
recording.

4.1.9 Adaptive filter

The adaptive filter is tested with the mECG signal as the additive noise in the abdominal
recording and having the thoracic signal as the reference. The error signal of LMS,
which is supposed to contain the fECG signal in the design of the adaptive filter, has
the thoracic pattern with the modified amplitude. This is due to the magnitude and
pattern di�erence of the mECG component in the abdominal and the thoracic signals.

4.1.10 Other approaches

The exp function brings the abdominal and the thoracic signals to the same base-
line level which is the essential step for applying the adaptive filter. The function
log(cosh(cov(abd1≠abd2))) can remove the relatively low magnitude component such as
the ripple at the fECG component or the T-wave of the mECG signal. The function also
cuts down the width of the mECG peak by reducing the interval of QRS, which leaves
the partial mECG in the subtraction result. The enhancement of the fECG signal may
also increase the magnitude of the noise ripple if the target is the entire signal pattern.
The location mask is used to remove the mECG QRS component from the abdominal
signal, but it also removes the fECG peaks that are embedded in the surrounding mECG
QRS. The mask matrix is converted from the mask template by logarithm and hyper-
bolic cosine algorithm. The hyperbolic cosine removes some of segments in the mECG
signal.

4.2 Heart rate

4.2.1 PhysioNet recordings

The mHR of the extracted mECG components for the PhysioNet data are more accurate
than the fHR pattern, but the mHR signals are still in oscillation in the pattern Fig.
4.6. Most of extracted fHR and mHR are in the normal, 4 subjects have larger standard
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Figure 4.6: The maternal heart rate in the overall analysis interval for subjects from
PhysioNet

Figure 4.7: The mean and standard deviation of fetal and maternal heart rate for
subjects from PhysioNet
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derivation of fHR which may be out of the normal fHR range as in Fig. 4.7. The gestation
period is analysed with respect to the fHR feature instead of using the synchronisation
behaviour Fig.4.8. In the PhysioNet database the RR ratios of the fECG signal to the

Figure 4.8: The fHR at corresponding gestation period for subjets from PhysioNet

mECG signal is 5:3 so the repeated duration of the fECG signal is 15 cycles. The RR
duration of the fECG signal is 0.4 second, so the minimum time to have the repeated
fECG cycle at the same respect time point to the mECG cycle is about 15*0.4=6 seconds.

4.2.2 Subjects at various gestation period recordings

The mean values of the fHR of all the recordings are in the normal range of 120-180 bpm
except one subject at 28 gestation weeks having fHR below 110 bpm. The mean values
of the mHR are in the range of 60-110 bpm but do not show the consistent variation
pattern with the increased gestation week.

At the same gestation period of 30 weeks, the standard deviation of mean values of the
mHR is 15.73 which it is much higher than the standard deviation of mean values of the
fHR which is 8.16. The general statistical property of the heart rate across the di�erent
gestation groups is summarised in Tab. 4.1. There is no direct correlation between the
heart rate and the gestation weeks or between the mHR and the fHR. The p-value of
the correlation relationship between the fHR and the mHR across all three gestation
groups is 4.64 ú 10(≠36), so the fHR does not significantly correlate to the change of
the mHR in each gestation group. Comparing the data of the open source PhysioNet,
the fECG R-R interval directly a�ects the shape of phase pattern but the mECG R-R
interval may not be in linear relationship to the fECG R-R interval. When the average
di�erence between the R-R interval of the fECG and the mECG decreases from 300 to
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Table 4.1: The mean and standard deviation of heart rate at three gestation groups,
where red is low gestation period, blue is median and green is high

Gestation period
Heart Rate(beats/min) Lgp Mgp Hgp

fHR Mean(±STD) 150.83±4.73 141.77± 14.33 144.76±10.68
mHR Mean(±STD) 84.49±11.13 86.91± 14.91 85.00 ±12.21

250, the ripples feature disappears and the pattern becomes continuously smooth when
the number of stripes drop and stay at 3. According to the research across 20 subjects
from PhysioNet database, if the interval di�erence of the mECG signal and the fECG
signal is below 245, the number of strips is 3 in general without oscillating ripples and
the number of strips is 4 if the di�erence is above 345.

The fHR and mHR of the actual recording is also analysed across three gestation periods
but there is no significant linear relationship between fHR and mHR in overall three
gestation period Fig. 4.9.

Figure 4.9: The relationship between maternal and fetal heart rate at corresponding
gestation period, red is low gestation period, blue is median and green is high
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4.3 Synchronisation

The synchronisation correlation converts the di�erent mECG intervals into the nor-
malised scale [0,1] and has the fECG peak positions in the corresponding points in the
new interval [0,1]. Because the number of synchronisation coordinates for the shorter
primary cycle is more than the number in the longer primary cycle, the spread density in
the same time scale decreases by Nfecgpeak and m, Nfecgpeak is the total number of fECG
peak in 60 seconds recording where m is the number of mECG cycles in one primary
cycle. In this situation, the synchronisation coordinates have less gap in time scale in
the shorter primary cycle in Fig.??. Some of the phase points spread in the horizontal

Figure 4.10: The fECG and mECG extraction from abdominal and thoracic signals
and synchronisation relationship between the two signals at various primary cycles

direction and the gaps between them are too large to consider them for the continuous
synchronisation. The epoch of the synchronisation is not calculated from the duration
in the time scale, because the phases of the fECG signal are calculated from the time
point of peaks instead of the whole ECG cycle. So the epoch is calculated from the
number of synchronisation points (NP) and the duration of synchronisation (TD) that
is converted into the time scale as the time di�erence between the start and the end
point of the synchronised region. The synchronisation coordinates of the two subjects
are analysed in 4 di�erent primary cycle intervals, the time interval is the same for all the
analysis. But as the interval of the primary cycles increases, the time interval between
the neighbouring synchronisation coordinates increases too.

The synchronisation ratio may not be steady across the 60 second recording. Four
subjects showed variations in the synchronisation ratio in 4 mECG cycles and 2 of
these subjects also had variations in 3 mECG cycles. The number of strips corresponds
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to the number of fECG peaks in the primary cycle and the slope of strips reflects the
variation of the fHR such that the higher the variation shown, the greater the slope. The
frequency of the ripples relates to the space between each strip, the higher frequency
corresponds to the bigger space. The number of points is quite consistent with respect
to the time duration in the synchronisation ratio of 7:4 and 5:3, but the correlation
coe�cient between the time duration (TD) and number of point (NP) does not match
in Fig.4.11.

Figure 4.11: The corresponding relationship between the number of synchronisation
points and duration of synchronisation at synchronisation ratio 3:5 and 4:7

The ratio of the mean values of the heart rate is taken as the indirect parameter of the
gestation period to analyse the relationship with the synchronisation behaviour. The
low gestation period group results show an inverse relationship and the variation of the
relationship increases with the increased gestation period Fig.4.12. The sudden change
in the heart rate signals form a rising peak, but it does not a�ect the synchronisation
behaviour unless the magnitude variation of heart rate occurs frequently Fig.4.13.
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Figure 4.12: The synchronisation stability at corresponding heart rate ratio in log
scale

Figure 4.13: The e�ect on the variation of synchronisation by the variation of mHR
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4.3.1 Synchronisation ratio

The general synchronisation ratio is 7:4 for the data from the PhysioNetdatabase and if
the mHRs are in a similar range for all of the subjects, the synchronisation of 7:4 may still
exist with the a di�erent combination of pairs of fECG and mECG. The synchronisation
ratio 3:2 is dominant for the high mHR subjects.

In the overall 20 subjects, there are 4 synchronisation ratios: 2:1, 3:2, 5:3 and 7:4. 4 of
the subjects with the synchronisation ratio of 5:3, also have the synchronisation ratio of
7:4. The ratio 3:5 exists at the great increase in the mHR or the decrease in the fHR.
If the change in the mHR is mono-direction, it results in a constant ratio of 3:5. But if
fHR decreases then increases again, the pattern of ratio of 3:5 would follow the increase
of the fHR.

The synchronisation ratio at the di�erent primary cycles overlaps in the time scale but
does not have to exist in the same duration. The synchronisation ratio ranges in the
recording data are from 1:3 to 1:1 including 1:1, 4:5, 3:4, 2:3, 3:5. 4:7, 1:2, 4:9, 3:7, 2:5,
3:8, 4:11 and 1:3. The synchronisation ratio is not constant during the processed interval
of data from the PhysioNet database. It may decrease from the high ratio to the low
ratio within the 1 minute recording Fig.4.14. The phase locking value is in the range of

Figure 4.14: The synchronisation of fECG at primary cycle 3 and 4 mECG cycles
results various synchronisation ratio for 4 subjects from PhysioNet

0.5 to 1.2, the higher phase locking value corresponds to the higher synchronisaiton ratio,
which reflects faster fHR. The synchronisation ratio of 1:2 exists for all the subjects in
the primary cycle of 1 mECG cycle with a short epoch duration. The synchronisation
behaviour is most distinguishable between the low and high gestation period, where the
median gestation period behaves as the transient between the two groups Fig.4.15.
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Figure 4.15: The synchronisation ratio with e�ect from heart rate variables at corre-
sponding synchronisation epoch, red is low gestation period, blue is median and green

is high

4.3.2 Phase locking value

The discontinuous epochs do not change the pattern of Spl if the phase locking value
is generally steady during the entire recording. However, Spl may vary within the indi-
vidual epoch and the di�erent phase locking values can result the same variance. The
phase locking values are overlapping for same SR at the di�erent primary cycle, but the
gradient is not identical. The phase locking values also can be overlapping at the di�er-
ent SR but with the relatively large Spl. The phase locking value reciprocally relates the
fHR because the phase locking value is the time duration between two the fECG QRS
peaks at the synchronised state in Fig.4.16.

The synchronisation with the large primary cycle analyses the long term relation be-
tween the fECG and the mECG signal, so the heart rate variation may not break the
synchronisation epoch but it may a�ect the phase locking value to result the significant
Spl due to the large amplitude change of the fHR. The variance of the gradient of the
phase locking value increases rapidly once the gestation weeks are over 30 weeks in the
long-term synchronisation in Fig.4.17.
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Figure 4.16: The fetal and maternal heart rate, synchronisation phase locking value
and gradient of phase locking value

Also the SR is reduced with the gestation period across 30-week and it is increased when
the gestation period beyond 37-week. The stability of Spl is better at higher SR for the
same gestation period. The pattern of phase locking follow fHR and the average of phase
locking is dependent on fHR, and sudden change in fHR as peaks can cause discontinuity
in phase locking pattern. The phase locking pattern was represented by mean (Upl) and
the standard deviation (Vpl) value of the epoch. As it is calculated from the single epoch,
the multiple pairs of Upl and Vpl can be generated for the same synchronisation ratio
in the same primary cycle. However, neither of the mean or the standard deviation is
constant as the heart rate is not steady to form the constant phase locking pattern.
The value of the three variables in the phase locking pattern, Vpl, synchronisation epoch
(SE) and Spl reflect di�erent synchronisation behaviour characteristics, the smaller value
of Vpl, the sum of Spl and the large value of SE establish a steady synchronisation
relationship. The gradient of the phase locking value shows the variation of the phase
locking value as one of the synchronisation behaviour characteristics in Fig.4.18. The
high gestation group shows more fluctuation in the gradient of phase locking value
across time Fig.??. The phase locking value range remains the same for the same
synchronisation ratio in the di�erent primary cycles, and the range is reciprocal to the
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Figure 4.17: The gradient of phase locking value at primary cycle 2 and 3

Figure 4.18: The gradient of phase locking value at three di�erent gestation groups
of data in 120 seconds
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Figure 4.19: The gradient of phase locking value of subjects in individual gestation
groups in 120 seconds (Top: Low gestation group, Middle: Median gestation group,

Bottom: High gestation group)

synchronisation ratio.

4.3.3 Synchronisation epoch

The normalised synchronisation epoch duration (nSE) is the ratio (SRms) between SE
and Upl, and is used to normalise the epoch duration from the fHR as Upl when related
to the fHR. The ratio is the one with the overall longest synchronisation epoch of each
recording, so SE and Uplare taken for the longest epoch at the corresponding SR. Most
of the group subjects with the gestation period below 30 weeks or above 37 weeks have
nSE within the range of 2:3 to 1:2 but the subjects in the gestation period between
30-37 weeks, the ratio varies in a wide range and most synchornisation concentrates at
the ratio of 2:3. The comparison of the synchronisation epoch between the gestation
groups is focused on the major synchronisation ratios Fig.4.20. The duration 0f the
synchronisation epoch is normalised based on the processing interval of the signal at
major sychronisation ratios in Fig.4.21.

Table 4.2: The p-value of statistical property of synchronisation behaviour at 6 major
synchronisation ratios between the three gestation groups

1:2 4:7 3:5 2:3 3:4 4:5
Synchronisation epoch (SE) 0.11 0.3706 0.11 0.23 0.75 0.18

Normliased Synchronisation epoch (nSE) 6.72*10(≠6) 0.1923 0.0154 0.0167 0.8863 2.89x10(≠4)

Mean value of phase locking value (Upl) 0.04 0.15 0.11 0.23 0.59 0.17
Variance of phase locking value(Vpl) 3.68x10(≠12) 0.09 7.43x10(≠8) 1.07x10(≠9) 0.37 4.98x10(≠12)

Gradient of phase locking value(Spl) 0.90 0.27 0.77 0.44 0.88 0.97
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Figure 4.20: The normalised sychronisation epoch at major synchronisation ratio for
the three gestation groups

Figure 4.21: The normalised synchronisation epochs at corresponding synchronisation
ratios
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4.3.4 Same subject

One of subjects has signals recorded at both 27 weeks and 30 weeks, the SR are consistent
with the ratio of 1:2 at the two gestation periods Fig.4.22 . The correlation between the
fHR of the two gestation period is -0.22 and it is 0.27 for mHR, they still form the same
synchronisation relationship at the overlapped time point.

Figure 4.22: The heart rate and synchronisation behaviour of same subject at di�erent
gestation period

4.4 Fetal heart sound

The first recording has clear fetal heart beat (FHB), most work is applied on the second
data as FHB is recorded as the background signal. The recording is preprocessed in order
to extract the fetal heart sound Fig.4.23 The frequency component is not significant in
the FHB sound with the sample frequency of 16000Hz, so the signal is separated into
di�erent spectrum by the short time Fourier Transform. The bandpass filter with the
cut-o� frequency 2 and 30 Hz extracts the envelop of signal and the bandpass filter of
cut-o� frequency 630 - 750 Hz obtains the significant FHB signal Fig.4.24. The low



Chapter 4. Result 55

frequency range should be above 100 Hz and it forms the least correlation coe�cients.
The bandpass filter of cut-o� frequency range 400-500 Hz results the slight increased
the correlation coe�cient but the possible FHB sound is removed significantly. The
duration of the processing data interval a�ects the frequency range of FHB sound, so
the interval is selected to be 10 seconds. The adaptive filter with least mean square
algorithm is more e�cient to separate the noise from heart beat sound, but the periodic
signal with the great magnitude is more likely to be the mother heart beat sound. The
Independent Component Analysis is used to extract fetal heart sound and the result is
shown in Fig.4.25.

Figure 4.23: The preprocessing stage of heart sound recording to enhance the peaks
of ECG signal

Figure 4.24: The envelop of heart sound signal with manual selected potential heart
sound region
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Figure 4.25: The ICA component of heart sound recording for best representation of
heart sound signal

4.5 Mouse data

The mouse data is processed to extract the best pattern information across the di�erent
experiment stages. The raw signal is preprocessed to remove the noise, the heart rate of
mouse with low protein at each event is manually detected in Fig.4.26. The heart rate
of normal mouse is separated to the individual event period in Fig.4.27.

Figure 4.26: The fetal ECG from low protein intake mouse including events of clipping
and opening
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Figure 4.27: The fetal heart rate from normal mouse at individual event interval
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Discussion

5.1 Signal selection

The database of PhysioNet is assumed to only have the normal cases so this data is used
to design the fECG separation algorithm and to derive the synchronisation relationship
between the fECG and the mECG signals. The processing of fECG in the individual
abdominal signal has both an advantage and disadvantage over processing the three
abdominal signals as one input matrix. On the positive side, the noise associated in the
individual ECG cycle of the abdominal signal such as the breath motion artefact, does
not a�ect the accuracy of extraction in the other abdominal recordings, so the mECG
variation is limited locally instead of using the average function globally to reduce the
error. The disadvantage is that the separation of the mECG cardiac cycle requires
either the thoracic or the abdominal signal as the reference to distinguish the mECG
from the rest signal data. As the thoracic signal is less likely to be a�ected by the noise,
especially the breath motion artefact, the reference of the mECG cycle can be located
in the thoracic signal. The positions of the fetal and the maternal heart source signals
are di�erent and is encountered in both the sound and the electrical information.

5.2 ECG pattern

The direction of the fECG peak depends on the relative direction between the fetal
heart and the abdominal electrode, so the direction may vary in di�erent recordings
as the fetus is non-stationary. The thoracic signal is the stationary signal however the
abdominal signal is not due to the e�ect of the motion artefact. The fECG pattern also
varies at the di�erent gestation stages.

58
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The extraction principle of the fECG signal cannot be based on the pattern feature
or the pattern di�erence between the fECG and the mECG signal. The weight of the
mECG QRS complex varies in between the abdominal and the thoracic signals due to
the fECG variation.

The thoracic signal does not have an identical mECG pattern as the pattern recorded in
the abdominal signal due to the electrode positions and the heart vector. The QRS peaks
may occur at the di�erent time points of the mECG signal depending on the location
of the thoracic electrode. The option is to either manipulate the mECG waveform to
match the pattern in the abdominal signal or develop the algorithms to only extract the
mECG peak.

The most similar region between the abdominal and the thoracic signals is the upward
mECG QRS complex. Di�erences are found in the extra downward peaks of the mECG
QRS in the thoracic signal and the relative increase in the T-wave compared to the
abdominal signal. The removal of the similarity between the two signals tends to remove
the mECG signal entirely from the abdominal signal if the extra downward peaks do
not occur in the mECG QRS complex in the abdominal signal.

The longer distance from the maternal heart to the electrodes does not result in a
smaller magnitude in the signal or more attenuated waveform. The indication of the
mECG locations in the abdominal signal is based on the thoracic recording and there is a
delay of mECG in the abdominal signal compared to the thoracic signal in time-domain.

The pattern of the thoracic signal from the database cannot represent the general pattern
of all the possible thoracic recording, so the S point cannot be considered as the end of
the downward peak, but the Q point is consistent in both the thoracic and the abdominal
signals as the start of the high gradient.

The mECG P-wave is not significant in the abdominal signal and may be removed
during the baseline wander removal process. The transformation of the mECG signal
between the thoracic and the abdominal signals is not linear as the ECG changes both
the magnitude and the waveform pattern. The maximum number of fECG peaks within
one mECG cycle is two in the recording data set, but more fECG may occur in abnormal
conditions. The fECG peaks may sometimes be within the mECG QRS complex, so the
removal of the mECG QRS complex by mask may also remove the fECG. However,
the possibility of removing the fECG component is low and it can be regenerated by
averaging the entire recording once all the processed cycles are linked together.

The peak finding approach is a�ected by the sudden magnitude changes caused by the
abdominal motion. The relationship between the mECG component and the abdominal
signals is 4th degree polynomial, but the higher the results the lower the residual and
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using the 6th degree is accurate enough. The waveform of the thoracic signal is not used
for the relationship of mECG between the abdominal and the thoracic signals because it
is inconsistent in all the recordings. The thoracic signal is only used to locate the time
points of the mECG QRS complex and number of mECG cycles in the selected interval.

5.2.1 Normalisation of ECG interval

The normalisation of the number of input da ta a�ects the duration of the actual fECG
cycle as none of the ECG cycles have the identical duration, so it is inappropriate to use
the normalisation as it would a�ect the synchronisation relationship. When the cycles
are cropped into the same interval as the shortest mECG cycle in the abdominal signal,
it directly changes the length of the fECG interval. The correlation between the thoracic
and the abdominal signals is not a�ected by the amplitude normalisation.

5.3 Signal processing

The common processing domains are the frequency and the time domain. The analysis
unit is either the single point or the group of data depending on the feature represen-
tation. The histogram balance is applied for both the single point and group operation,
but both the averaging and the template are only applied to the group.

5.3.1 Assumption

The assumption of the fECG and the mECG signals is that the properties of the two
signals are independent to each other in order to apply ICA. The abnormal mECG and
fECG signals may result in similar frequencies, but the signals are still from independent
sources. The vector relationship of the abdominal and the thoracic signals is assumed
to be derived from a healthy adult case. The period of the ECG signal is determined
by delaying the data with the time variable however this is based on the assumption
that all the ECG cycles are periodic. There is no assumptions applied to both the
pattern and magnitude of the fECG and the mECG signals in order to design the
robust separation algorithm to extract the fECG signal from the abdominal recording
including in abnormal cases. The last peak of the mECG component in the abdominal
signal is disregarded for all the recordings.
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5.3.2 Error

The additional peak in the gradient signal due to the sudden change in the mECG signal
may be correlated to the abnormal feature of the fECG component. The result from the
gradient data cannot be used directly to calculate the heart rate, it has to be filtered by
the abdominal ECG. The separation of the abdominal signal into segments may cause
the loss of the fECG QRS complex due to di�erent HRs of the fetus and the mother.
The algorithm of extracting the fECG component from the abdominal signal should be
a general process for abnormal mECG and fECG cases, but the algorithm can only be
designed to target the feature of the abdominal with prior information which is unknown
in the abnormal cases.

5.3.3 E�ect

The movement of the abdominal electrode caused by respiration a�ects the measurement
of the projection direction of the heart vector in the cardiac cycle. The thoracic and
abdominal signals are recorded with the same instruments so the noise sensitivity and
the filter tolerance are the same for the two recordings. The physiological feature of the
maternal cardiac system has a direct e�ect on the synchronisation relationship as it is
measured by the ECG signal. If the signal is processed in the normalised interval of [0,1],
the separated ECG signals cannot be converted back to the original magnitude range.
The result is that the signals only present a waveform pattern unless the mean and
minimum or maximum of the original data is saved. The equalisation of histogram of
the abdominal signal will enhance the fECG but also increase the e�ect of other sources
in the abdominal signal.

Due to the significant assumptions for the transform function, it is not an e�ective ap-
proach for the abnormal cases those may have various conditions including the abnormal
tissue density or the ECG pattern.

5.3.3.1 Noise

The variation of the ECG recording is unpredictable, the configuration of the electrodes
can minimise the external noise but it is ine�ective on internal noise such as the EMG
signal. The unknown variables for the ECG separation algorithms include the noise
signal statistical feature, the number of noise signals, the distribution range and the
density. The accuracy of the noise baseline estimation is dependent on the various
recording environments and the individual ECG situation. Because the information of
fECG magnitude is unknown before it is separated from the abdominal signal, there is
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no unsupervised signal selection based on the threshold of the SNR in the preprocessing
stage.

The removal of the Gaussian mix which is the white noise, should not a�ect the prob-
ability density of the signal. The noise signal is the unknown source in the abdominal
signal, it may be either separated as an individual component or embedded into the
fECG and the mECG components. The distribution of the noise is normally assumed to
be white noise with zero mean and unity standard deviation. Special cases such as the
embedded EMG and the abdomen movement may contribute to the abdominal noise
signal as they are not white noise.

5.3.3.2 Motion artifact

The breath motion artefact is an e�ective factor of extracting the fECG signal accurately,
it has to be eliminated from the abdominal signal before the extraction process. Because
the motion artefact results in a significant magnitude change in every ECG cycle in the
abdominal signal, the range of fECG can be changed from the minimum to the maximum
value over the entire recording. The magnitude of the first point of the fECG peak varies
as it emerges in di�erent segments of the mECG component. The mECG signal is at a
di�erent baseline level due to the motion artefact. The abdominal motion changes the
magnitude of the baseline level as the gradient of the abdominal signal cannot distinguish
the motion change from the slope change of the mECG peak. The chest movement is
a relatively significant motion as well, but the baseline of the mECG pattern in the
thoracic signal is consistent at each cycle.

The respiratory cycle is not proportional to the heart rate without intentional control
and there is no distortion in any of the mECG patterns in the thoracic signal, so there
is no respiratory e�ect recorded. The fetus movement attenuates the baseline of the
abdominal signal, which causes the larger magnitude of the individual mECG QRS
peak. The fetus rotation is not a uniform motion, it might be triggered by certain
physiological events however it is abnormal to have frequent position changes.

5.3.3.3 Cardiorespiratory

The cardiorespiratory movement is embedded in the mHR signal as a low frequency
component, the continuous oscillation does not a�ect the synchronisation relationship
regardless of the amplitude of oscillation ripples [24].
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5.3.4 Independent component analysis

The key point of FastICA is to achieve the convergence of the weight vector and find the
maximum independence and the minimum nongaussianty. The mECG signal cannot be
removed from the matrix of the abdominal signa ls using ICA, the reason is that the
fECG peak is considered a part of the mECG signal during maximisation of non-gausian.

The magnitude of the fECG peak cannot be separated by ICA, so it is not considered as
an analysis variable. The time shift of the extracted fECG component from the original
time point in the abdominal signal cannot be retrieved by cross correlation. Cross
correlation is applied to re-align the mECG peaks in the thoracic and the abdominal
recordings.

The P-wave and Q-wave of mECG cycle are disregarded in the separation procedures
because they may distort the pattern and none of the signal analysis is based on the
amplitude level of these segments.

5.3.5 Clustering

Clustering is used to find the membership between data points in the signal, more
clusters means more accurate membership. The fuzzy c-mean and k-means are both
clustering approaches to group data points with a similar statistical property. They aim
to achieve the steady state of the centre of the clusters. Clustering separates data points
according to the relationship to the cluster centre. As the shape extraction is used for
the fECG component instead of the magnitude, the original clustering method cannot
separate the fECG component from the abdominal signal.

Clustering provides the QRS time points and can only be used to separate the ECG
components into the cardiac cycle, not to remove the mECG component from the ab-
dominal signal. The cluster is applied to the matrix by combining the abdominal and
the thoracic signals, because the single input does not extract the mECG peaks, it only
separates the T-segment into the cluster group.

The cluster function can also enhance the SNR of the fECG component in the abdominal
signal. The processing relates to and e�ects the number of clusters defined for separating
data points.

The mixing process of the fECG and the mECG components in the abdominal signal is
unknown. It can be additive, linear or non-linear. Hard clustering is better approach for
the additive process as the fuzzy clustering is not suitable for additive mixing because
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one point of the abdominal signal may be the combination of both the mECG and the
fECG signal points in the unknown ratio.

5.3.6 Empirical mode decomposition

It may be more accurate to design the EMD based on the ECG feature instead of using
the maxima and the minima points of the signal. Because mECG has a large peak value,
it can be used for the upper envelope.

5.3.7 Adaptive filter

The transformation of the mECG QRS complex between the thoracic and the abdominal
recordings a�ects the result accuracy when applying the adaptive filter to remove the
mECG signal from the abdominal recordings. The adaptive algorithms reduce both the
mECG and the fECG magnitudes in the output signal and the magnitude of the fECG
signal should remain una�ected if the adaptive filter is only focused on removing the
mECG signal.

5.3.8 Learning algorithm

The mECG signal of healthly adults is generally uniform in each cycle, so the learn-
ing algorithm between the thoracic and the abdominal signals can be used to find the
transform of the mECG pattern in between the two signals. The noise in the abdominal
signal may a�ect the result of the learning process when the algorithms try to fit every
mECG cycle into the target feature. In the network training process, if the noise signal is
not stationary, the algorithm cannot reach the optimal convergence point. The average
of the abdominal signal is subtracted from the individual cycle to bring the abdominal
signal to the zero-mean level.

5.3.9 Wavelet transform

The mECG component of the thoracic signal is taken as the weight coe�cient of the
wavelet transform (WT). The advantage of using WT is to break down the signal that
has large amounts of data into small data sets according to the frequency range. How-
ever, there is no data compression of the mECG cycle in the WT process.
Both the WT and the EMD decompose the input to sub-levels and the output pattern
is controlled by the mother wavelet in WT, but the EMD is the sinusoid output. The
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normal WT algorithm cannot extract the mECG QRS complex straight from the ab-
dominal signal due to the fECG peaks, but they can be removed from the abdominal
signal as a noise component of the mECG cycles.

5.3.10 Frequency domain

The frequency range of the fECG component may overlap with the range of the mECG
component in abnormal signals. Separating this in the frequency-domain is not successful
because it is impossible to extract either the mECG signal or the fECG signal without
involving each of the other outputs.

The thoracic signal does not record much high frequency noise unlike the abdominal
signal and the adaptive filter can remove the isolating noise. The overlapping of the
fECG and the mECG frequency ranges directly a�ects the accuracy of removing the
mECG frequency component as part of the mECG component is embedded in the fECG
frequency component.

The main issue is the frequency overlap of the fECG and the mECG components as
both components have high and low frequency groups and are composed by the partial
mECG and fECG signals. The time delay is applied before using the banpass filter
which takes the same frequency range for each delay as the analysis matrix.

5.3.11 Beamforming

According to the dipole model, the delay of the mECG QRS complex between the
abdominal and the thoracic signals is caused by the distance between the electrodes. As
the depolarisation is along the myocardium in dimension sequence, the muscles further
down will be depolarised later which results in the delay of the QRS. So the delay in
time relates to the relative physical location of the electrodes.

Once the signal is recorded in the numerical data, the angle of arrival is no longer
available and the beamforming is not applicable to analyse these signals. Beamforming
targets the signals from the sources in the di�erent direction, but the path of the heart
vector to the abdominal electrodes may not be in a straight line. It also requires the
data to be processed with directional information which is inaccessible for the current
data set.
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5.3.12 Other approaches

The di�erence between the neighbour data points in the group can represent the fECG
better than the gradient as the change in a group of mECG QRS points is sharp but it
does not last long. The magnitude of the di�erence is much greater than the magnitude
of the noise ripple.

A few approaches are under consideration. One is to convert the heart vector based on
the di�erence in abdominal and thoracic signal patterns to the electrode positions. The
beamforming is applied afterwards to separate the signals from the sources at di�erent
angles to the electrodes. The other method is to increase the SNR in the abdominal
signal before ICA by applying the adaptive filter with the thoracic signal as the reference
signal.

5.3.13 Selection of the algorithms

Not all the algorithms proposed in the method section have been tested with the open
source data. A few of the approaches such as the beamforming are initiated in the
algorithm design because of the similarity of the signal recording process of the thoracic
and the abdominal signal and the pattern feature. The strategy of beamforming is to use
the recorded pattern and the angle of arrival of the source to construct the source signal
and is introduced to estimate the mECG component in the abdominal signal. However,
the angel of arrival to the electrode is an unknown variable during the recording so it
would be not successful to develop the algorithms based on the principle of beamforming.

Some of the algorithms are aimed to extract the fECG and the mECG signal, but they
can only improve the SNR of the fECG signal, with the partial mECG signal left in the
result signal. The only approach that succeeds to separate the fECG and the mECG
signals from the input matrix is the independent component analysis with pre-processing,
however the separation algorithm is not robust enough for all the data from the open
source due to the di�erent signal features.

5.3.14 Cross correlation

The cross correlation between the selected abdominal and thoracic signals should give
the distance to the next peak with a view to aligning ECG between the two signals
again. By running a loop of cross correlation of the two signals, all the peaks should be
allocated. If the peak point of the mECG cannot be allocated by cross correlation, the
signal is separated into the square matrix. The correlation between the abdominal and
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thoracic signals is used to find the mECG component region in the abdominal signal and
the missing mECG data points from the output component can be retrieved by checking
the neighbouring data around the peak region.

Template matching is a special way of cross correlation. It obtains the time point of the
maximum value of the shifted input data to find the similar region across the two input
data’s.

The correlation coe�cient of the mHR and the fHR signal is generally low. The cor-
relation coe�cient analyses the attenuation of the patterns, but the syncrhonisation
indicates the existence of the coupling relationship of the fHR signal with respect to the
mHR signal instead of considering the two signals as two separate variables.

5.3.15 Very low frequency component

The very low frequency (VLF) component of the maternal heart rate is calculated after
converting the signals by the Fourier Transform in frequency domain and it is selected
as the most dominant peak in the low frequency range. Even if there is a correlation
between the synchronisation ratio to the range of the maternal VLF component in
the subject recordings from the PhysioNet database, it may not directly connect the
coupling between the maternal and the fetal cardiac systems.

In a few publications, the VLF is linked to the oxygen consumption or the temperature.
The temperature is directly a�ected by the oxygen consumption as the metabolism
process requiring the presence of oxygen will vary the body temperature. The actual re-
lationship of VLF to either the temperature or the oxygen consumption is not illustrated
so the value of the VLF does not demonstrate a possible link to the fetal temperature
or the oxygen consumption.

5.4 Demographic information

Table 5.1: The demographic information of recorded subjects

Low gestation period Medium gestation period High gestation period
GP(weeks) Age(year-old) Height(cm) Weight(kg) GP(weeks) Age(year-old) Height(cm) Weight(kg) GP(weeks) Age(year-old) Height(cm) Weight(kg)

16 29 24 156 55.7 36 31
16 30 29 30 156 56.6 36 30 157 55.76
20 30 148.5 46.7 30.29 35 157 52 37 40 153 58.2
20 38 155 55.5 30.86 34 159 56 37 36 155 53
20 31 148.4 46 32 29 50.2 37.43 18 155 61.8
20 35 164 60 32 155 38 34 157 64.5
23 32 21 54 38 24 164 68.45
24 26 161.8 65.9 34 34 159 55.2 38.86 36 153 47.9
25 31 148.4 46 34 21 152 39 27 155 51.6
27 25 163 52.5 34 27 157 55.2 39 35 158 64.3
27 34 162 48 39.14 20 157 60.6
28 30 153 52.1 34.29 25 152.7 56.2 39.71

34.86 29 154.9 47 40 37 155 60.8
40
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Not all the subject demographic information is collected. The information includes the
age, height, weight and the gestation period, but some information may not be released
due to a confidentiality policy.

5.5 Synchronisation

The horizontal line of the synchronisation epoch needs to be evenly distributed to be
considered as synchronised data point. The synchronisation is not time-dependent, it
is event dependent analysis and the absence of synchronisation indicates the unstable
fHR.

When the synchronisation of the fetal and the maternal cardiac systems is analysed by
projecting the fECG QRS onto the mECG cycle on the time scale, it focuses on the
heart rate variable instead of the ECG component. The synchronisation coordinates are
discontinued in the primary cycle with of 3 or 4 mECG cycles due to the limited number
of fECG peaks in the 60-second recording interval. The longer recordings may show the
complete continuity of the synchronisation coordinates.

The synchronisation phase is based on the single time point of the fECG peak with
respect to the di�erent mECG cycle durations. The synchronisation can be interpreted
into the short term and the long term behaviour. When the primary cycle composes
less than or equal to two mECG cycles, it is considered to be short term analysis and
the long term analysis has a number of mECG cycles equal to or over 3. The short
term synchronisation is sensitive to the change of the fHR signal but it can also show
the synchronisation in the single mECG cycle event. The long term synchronisation
with up to 4 mECG cycles in the primary cycle is not sensitive to the change within
each mECG cycle and the alternated increase or decrease of the fHR signal may not be
detected in longer term cycles.

Individual sudden changes will not a�ect the overall pattern behaviour unless it is contin-
uous for a period. The ripple or the continuous shape in synchronisation is not controlled
by the individual interval of the fECG or the mECG signals.

The last synchronisation point is disregarded as it may not result from a complete pri-
mary cycle. The synchronisation may disappear in the longer primary cycle if the number
of synchronisation points cannot be divided by the factor. The di�erence between the
synchronisation of the fetal and maternal systems and cardiorespiratory synchronisation
is that the synchronisation uses the interval of mECG cycle and time point of the fECG
R peaks instead of the phase of the patterns, so the variation in the mECG pattern
feature will not be taken into the analysis.
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All the variables are added to the combinations in the equation to represent the feature
of synchronisation instead of using individual variables. The time point of the fECG
peak in the fECG component extracted from ICA may not be identical to the original
time point in the abdominal signals as it may shift the time point of the synchronisation.
It will result in di�erent synchronisation ratios only if there is a large variation in the
mHR signal.

The synchronisation between the two systems does not consider the magnitude of the
ECG, so the strength of myocardium polarisation is not analysed but it does not exclude
possibility of the relationship at the strength level.

The potential synchronisation force is the oxygen supply to the fetal system totally
relies on the oxyganised level in the maternal cardiovascular system. The status of
the maternal cardiac functionality may indirectly link to the fetal cardiac system. In
this case, it is important to improve the fECG extraction approach to increase the
accuracy of the synchronisation relationship analysis. However, the comparison between
the gestation periods and the synchronisation relationship is not based on the control
group as the recordings are collected from the di�erent patients with di�erent gestation
period and the synchronisation ratio for each gestation period is not constant.

5.5.1 Synchronisation ratio

The synchronisation ratio may stay the same for the same subject but it is not conclusive
from the current dataset. As the synchronisation ratio is based on the fECG peaks and
mECG cycles, the error in the extraction of fECG peak will be carried to the calculation
of the synchronisation ratio. The decrease of the synchronisation ratio can be caused
by either the increase of the mHR or the decreased fHR, the change factor cannot be
determined if no control subjects are included.

Di�erent from the cardiorespiratory synchronisation, once the synchronisation ratio
changes from the constant 4:2 to 3:2, it does not return back to the previous ratio.
Based on the current database, the range of synchronisation ratios of the healthly sub-
jects is within the range of 3 : 2 to 2 : 1, but the ratios out of the range can be caused
by the abnormalities in either the fetus or maternal or both systems.

The overlap region of the synchronisation ratio 4:7 and 3:5 on time scale indicates the
primary cycle controls the synchronisation analysis duration. The less mECG cycles
included in the primary cycle results the shorter term synchronisation. The synchroni-
sation ratio of 1:2 at one mECG cycle is a rare case and presents normally when the
gestation period is in the third trimester. The ratio 1:2 appears in various numbers of
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the mECG cycles, and it leads to a continuous ratio of 2:3. In this circumstance, the
short term synchronisation should not be included to draw conclusion and the size of the
primary cycle needs to be 2 or above to be considered for the synchronisation behaviour.

5.5.2 Phase locking value

The gap of the phase locking value between each strip represents the value level of the
fHR which is reciprocal to the fECG interval. The greater the gap, the longer the fECG
interval.

The phase locking value indicates the stability of the synchronisation between the fECG
and the mECG signals and it is inversely correlated to the fHR but independent to
the mHR. The increased fHR leads to a decrease in the phase locking value and the
synchronisation relationship would be broken at certain fHR and mHR ratios.

The increased variance of Spl corresponds to the discontinuous synchronisation between
fetal and maternal cardiac systems. The discontinuity of the synchronisation does not
necessarily lead to changing synchronisation ratios. The continuous changing in the slope
with a discontinuous synchronisation epoch indicates the consistent increase or decrease
of the fHR without the mHR variation. In most cases, multiple synchronisation epochs
(SE) occur in each primary cycle due to the variation of the heart rate and the duration
of each SE is not consistent for the same SR.

The duration of the phase locking value epoch is measured from the first to the end
points of the synchronisation phase. Unlike the fHR, the variation of the mHR does not
a�ect the phase locking value however it directly a�ects the synchronisation ratio. The
extended variables from the phase locking value, Vpl, Upl and Spl represent the feature
in the synchronisation condition at each individual epoch. The di�erence between Vpl

and Upl from Spl is that the first two variables are single values for each epoch and the
last one keeps track of every point in the epoch.

5.5.3 Same subject

In the recording database, two subjects are recorded twice at di�erent gestation periods.
They are identified according to a subject label which is unique for every subject and
one of them has recorded age and height in the demographic information table. One
of the subjects with recordings at the gestation period of 20 week and 24 weeks has
a short recording less than 30 seconds at 24 weeks and about 60 seconds recording at
20 week. This subject is excluded from the analysis due to the short recording. The
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relationship between the synchronisation and the gestation period is analysed separately
for one subject with recordings at 27 and 28 weeks.

5.5.4 Statistical comparison analysis across the gestation groups

The mean and the standard deviation of the normalised synchronisation epoch at the
individual synchronisation ratio are compared across the low, median and high gestation
period groups. However, the numbers of the synchronisation epoch for each subject are
not consistent and the numbers of subjects in each gestation period group are not the
same, so only the analysis of variance (ANOVA) is applied to compare across the di�erent
gestation groups.

5.6 Heart rate

Neither the fHR nor the mHR are distinguishable in between the di�erent gestation
periods because the individual subject has di�erent baseline heart rates and the ratio of
the mHR over the fHR has a tendency to increase in the longer gestation period.

The pairs of the maternal and the fetal heart rates do not show the correlation between
each other or to the gestation period based on the mean value. The synchronisation
relationship is analysed with respect to the gestation period as the mHR feature may
have a unique featur e at the di�erent gestation period.

The mHR and the fHR are extracted from the same recording but they have di�erent
signal length due to the various duration of the ECG cycle. When the correlation
coe�cient is applied to analyse the similarity between the two signals patterns, the
length of the vectors needs to be the same. So the mHR is stretched to the same vector
length as the length of the fHR. The process uses the value distribution of the pattern
from dividing the point value equally into the length of the fHR signal. The single mHR
and fHR mean value only covers the overall average range of the signal.

5.7 Gestation period

The separation of the subjects into the groups regarding the gestation period is tested in
two strategies, first is to separate the subjects into three groups, below 26 weeks, between
26 and 33 weeks and above 33 weeks. The other separation strategy considers two groups
based on the trimester stages and the overall recording database only includes second
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(13-28 weeks) and third (29-40 weeks) trimesters. Only the first strategy is applied in
the analysis.

The initial separation uses the three gestation period groups, the middle gestation period
group is assumed as the transient group and it may have a decreased synchronisation
ratio, but the significant variation of the slope of the phase locking value is not for all
subjects.

The first data analysis result is concluded from the gestation period labelled in the
files of each subject, but the gestation periods are not recorded correctly for some of
the subjects. After regrouping the subjects by the correct gestation period, one of the
subjects is moved from the middle gestation group to the high gestation group and the
rest of the subjects remained in the previous groups.

5.8 Oxygenation level

The oxygenation level in the mothers cardiovascular system is not monitored during the
ECG recording but in under general health conditions. The increased heart rate normally
is caused by a reduced oxygenation level. However, neither respiratory nor oxygenation
level can be taken as a controlled variables as it may a�ect fetal development.

5.9 Proposed relationship

The possible relationship between the fetal and the maternal cardiac systems may be
caused by the oxygen saturation level in the maternal cardiovascular system as oxygen
exchange of the fetus occurs in the placenta. The low level of the oxygen in the maternal
blood system may trigger a change in the maternal heart rate to supply more e�cient
oxygen for the fetal metabolism.

In the comparison of the synchronisation ratios distribution with the gestation period,
the longer gestation periods tend to have lower synchronisation ratios which represent
as the increased mHR with respect to the fHR. It correlates to the fact that the fetus
may require an increased amount of oxygen for the cell development in the later stage
of pregnancy. The variance of Spl may indicate the complex development of the fetus
which disrupts the steady synchronisation to the maternal cardiac system and may be
caused by the shortage of oxygen supply from the mother so then alters both systems.
Also, the synchronisation relationship is strong at the early stage of gestation and stays
in a reasonable ratio of between 2:3 and 1:2 during stable oxygen supply.
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Further questions raised relating to the proposed interaction force and the direction of
regulation are whether the oxygenation level a�ects the fetal oxygen exchange behaviour
by reducing the fHR or the low oxygenation level in the fetal blood triggers the increase
of the mHR. It is also possible that the interaction force is dual-directional so the fHR
and the mHR may a�ect each other in relation to the oxygenation variation. Another
factor that may also cause synchronisation di�erences is that the foetus is isolated from
the air so it is not easy for them to adapt the change of oxygenation level.

5.10 Heart sound

The generated multi-dimension signal is considered to be recorded from the microphones
located extremely close to each other. The creation of the matrix by the delay variable
only influences the high frequency component due to the heart function. Since the
same mixing matrix is applied to the maternal heart sound, the new row vector can
be created by shifting the signal in the time scale based on the method of the delay
generated matrix. The frequency is not a distinguishable tool to separate the FHR in
the sound wave.

5.11 Mouse data

The mouse data is used to analyse the e�ect of di�erent events on the heart rate by
comparing a controlled group to a group with a low protein intake. The original data
is recorded with a significant noise level which causes the signal to have the low signal-
to-noise ratio. One subject with fECG amplitude in the range of 40 has a sudden drop
to -20, which results in the failure of the QRS extraction by the peak detection. The
bandpass filter shifts the signal consistently for every data point, but the data applied
for analysis is time sensitive as the time related events are variables in the recording.
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Conclusion

The research takes two di�erent sources of the abdominal recording to analyse the syn-
chronisation relationship between the fetal and the maternal cardiac systems. The mul-
tiple abdominal and the thoracic signals from one online source are implemented as the
input to separate fECG and mECG. The pairs of fECG and mECG recordings for the
subjects at the di�erent gestation periods are recorded and extracted by an external in-
stitute. That data is then applied to analyse the synchronisation relationship behaviour
with respect to the gestation periods.

6.1 fECG signal separation from abdominal signal

The abdominal and thoracic signals from the online source does not include informa-
tion on the maternal health condition or the reference signals of the fECG patterns.
The multiple recordings of the ECG signal at the maternal abdomen are processed by
independent component analysis (ICA) to extract the fECG and the mECG signals.

An approach is developed for the signals from the online open source PhysioNetand
an extraction strategy is applied by using ICA after testing the separation results of
various algorithms including clustering, wavelet transform, singular value decomposition,
empirical mode decomposition, adaptive filter and beam- forming.

The input signal of the fECG and mECG signals is a matrix of three abdominal and one
thorcic recordings. The pre-processing is also included in the algorithms development
with the first step being to remove the baseline wander from the abdominal signal by
using a smooth function to construct the baseline wander signal in the form of the
sinusoid wave.

74
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The next step is to align the abdominal signal to the thoracic signal according to the
time point of the mECG peaks by finding the cross correlation variable. The multi-
dimensional input matrix of ICA is constructed by continuously taking a shifted vector
from the single vector as the columns of the matrix. The shift variable is 20 data points
for each recording signal and in total three abdominal signals and one thoracic are used
to construct the matrix with the size of 20 by 4.

The number of separated components is the same as the number of columns in the
matrix and both the fECG and mECG patterns are separated into several components.
The components are separated by the demix coe�cients which is a square matrix. The
coe�cients matrix maximises the non-gaussianty between the extracted components
and the algorithm is designed with the non-quadratic function and the derivative of the
function. The threshold of optimising the demix coe�cients in the iterative loop is in
the level of 10≠5.

The separated fECG and mECG signals with the highest SNR are selected from the
resultant components and those components are compared to the estimated fECG peaks
in the original abdominal signal to confirm the correct peak extraction.

6.2 The synchronisation analysis between fetal and mater-
nal cardiac system

The synchronisation equation is developed from the extracted fECG and mECG signals
which are separated from the abdominal and thoracic signals in the online open source.
But the synchronisation is irrelevant to the ECG pattern feature as it only considers the
time point of the ECG peaks when calculating the synchronisation relationship.

The synchronisation takes the mECG cycles as the new time scale for each fECG peak
within the mECG cycle. The constant number of fECG peaks in the analysis of the
mECG cycles is defined as the synchronisation point in the synchronisation phase and
they form the continuous horizontal strips in the plots. The number of strips indicates
the synchronised number of fECG peaks.

The duration of synchronisation epoch is not constant at the same synchronisation
ratio for the same gestation period, but the duration for a high synchronisation ratio
is reduced in the high gestation group. The heart rate signals are not a control factor
in the synchronisation relationship, but it indirectly a�ects the synchronisation ratio
because it is derived from the combination of the both fHR and mHR.
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The synchronisation ratio compares the number of mECG cycles with the number of
fECG peaks in those cycles and the synchronisation phase points with the same syn-
chronisation ratio form a block of synchronisation epoch which represents one of syn-
chronisation behaviour characteristics.

When the synchronisation behaviour is analysed against the gestation period, there is a
decrease of the synchronisation ratio in the longer gestation period. The synchronisation
analysis is based on various variables and the combination of the variables, but none of
them shows the absolute relationship between the stability of the synchronisation and
the gestation period.
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Appendix

The normalise of various signal value range to the same level
maxV=max(input);
minV=min(input);
output(:,1)=(input-minV)./(maxV-minV);

The normalisation of length of comparing vector
check=int32(n/num*i);
output(i,1)=input(check);

The smooth function to remove baseline wander, where bw is the estimated baseline
wander signal
bw = smooth(si1,0.1,’rloess’);
sigp(:,i)=si1-bw;

The alignment of the abdominal and the thoracic signal before constructing the multi-
dimension matrix for SCICA is by calculating the cross correlation between the two
signals, where absg and sig2 are the abdominal and the thoracic signals
X1=xcorr(absg,sig2);
[nou, dis] = max(X1);
delay = dis ≠ max(length(absg), length(sig2));

The generation of multi-dimension matrix from a single vector, where tor is the delay
in time scale
snt(i,j)=sig2(i-(j-1)*tor);

The independent component analysis is in the iterative loop to optimise the demixing
coe�cient wk,

88
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y=z’*wk;
G=(1/a1).*log(cosh(a1.*(y)));
g=tanh(a1.*(y));
wk1=(((z)*(G))-sum(g)’*((wk)))/sz(1,2);

The fECG and mECG peaks are extracted by function findpeaks where h and d are
parameters for various ECG pattern feature
[mp, lp] = findpeaks(x,Õ minpeakheightÕ, h,Õ minpeakdistanceÕ, d);

The heart rate of fECG, where lfk is the fECG peaks in time scale
dm{lp1, 1} = 60000./diff(lkf);

The synchronisation phase of fECG peaks in di�erent primary cycle, where lkf is fECG
peak and mc is primary cycle
mc=mulC(lkm,ml);
[nphas, nphas1] = multC(lkf, mc);
dpha1 = mod(nphas, 2 ú pi)/(2 ú pi);
dpha2 = mod(nphas1(:, 1), 2 ú pi)/(2 ú pi);

Function mulC is to generate the time point of the primary cycle by finding the peak
location of mECG as start and end of the primary cycle. The original synchronisation
phase without normalisation into [0, 2fi]
phasm = 2 ú pi ú (sig1(k) ≠ sig2(m))/(sig2(m + 1) ≠ sig2(m)) + 2 ú pi ú k;

The phase locking value of synchronisation point is calculated from neighbour synchro-
nisation epoch as di�erence in time points
mt2(dl3,dl2)=(len(ps)-len(mt(dl3,(dl2-1)*2+1)))/((intv-1)*1000);
mtt2(dl3,dl2)=(len(ps))/1000;

The bandpass filter to remove excessive noise
hs = fdesign.bandpass(’n,fc1,fc2’,30,(i1-1)*10+1+50,i1*10+50,1000);
Hd = design(hs);
mt(:,i1)=filter(Hd,pr);
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The adaptive filter to separate ECG signals from abdominal recording
P0 = 10*eye(100);
lam = 32;
ha = adaptfilt.rls(100,lam,P0);
[y, e] = filter(ha, nmtf1, nmtm);

The notch filter to remove power line noise, where the frequency is set to 50 Hz
Wo = 50/(1000/2); BW = Wo/35;
[b, a] = iirnotch(Wo, BW );
sign3 = filter(b, a, sig1);



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Wang, Qianqian

 

Title: 

The synchronisation relationship between fetal and maternal cardiovascular systems

 

Date: 

2015

 

Persistent Link: 

http://hdl.handle.net/11343/55635

 

File Description:

The Synchronisation Relationship Between Fetal and Maternal cardiovascular systems


	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Physiological structure of fetal cardiovascular system
	1.2 Measurement of fetal cardiac function
	1.2.1 Electrocardiogram (ECG)
	1.2.2 Cardiotocography (CTG)

	1.3 Synchronisation
	1.3.1 Proposed synchronisation relationship between fetal and maternal cardiac system


	2 Literature Review
	2.1 Blind source separation
	2.2 Empirical mode decomposition
	2.3 Singular value decomposition
	2.4 Adaptive filter
	2.5 Wavelet transform
	2.6 Clustering
	2.7 Neural network

	3 Material and Method
	3.1 Recorded database
	3.1.1 The recording data
	3.1.2 The online database
	3.1.3 Heart sound
	3.1.4 Mouse data

	3.2 Measurement variables
	3.3 Synchronisation variables
	3.4 Signal processing
	3.4.1 Preprocessing
	3.4.1.1 Process data selection
	3.4.1.2 Resampling and modification
	3.4.1.3 Whitening
	3.4.1.4 Baseline wander

	3.4.2 Independent component analysis (ICA)
	3.4.3 Clustering
	3.4.3.1 K-mean clustering
	3.4.3.2 Fuzzy clustering

	3.4.4 Beamforming
	3.4.5 Transform of mECG signal in thoracic and abdominal signal
	3.4.6 Power spectral
	3.4.7 Learning iterative loop
	3.4.8 Template construction of ECG
	3.4.9 Empirical mode decomposition (EMD)
	3.4.10 Singular value decomposition (SVD)
	3.4.11 Mask for fECG
	3.4.12 Adaptive filter
	3.4.13 Frequency filter
	3.4.14 Other approaches
	3.4.15 Heart sound processing
	3.4.16 Mouse data


	4 Result
	4.1 Signal processing
	4.1.1 Noise
	4.1.2 Baseline wander
	4.1.2.1 Smooth

	4.1.3 Cross correlation variables
	4.1.4 Independent component analysis
	4.1.5 Frequency domain
	4.1.6 Clustering
	4.1.7 Singular value decomposition
	4.1.8 Empirical mode decomposition
	4.1.9 Adaptive filter
	4.1.10 Other approaches

	4.2 Heart rate
	4.2.1 PhysioNet recordings
	4.2.2 Subjects at various gestation period recordings

	4.3 Synchronisation
	4.3.1 Synchronisation ratio
	4.3.2 Phase locking value
	4.3.3 Synchronisation epoch
	4.3.4 Same subject

	4.4 Fetal heart sound
	4.5 Mouse data

	5 Discussion
	5.1 Signal selection
	5.2 ECG pattern
	5.2.1 Normalisation of ECG interval

	5.3 Signal processing
	5.3.1 Assumption
	5.3.2 Error
	5.3.3 Effect
	5.3.3.1 Noise
	5.3.3.2 Motion artifact
	5.3.3.3 Cardiorespiratory

	5.3.4 Independent component analysis
	5.3.5 Clustering
	5.3.6 Empirical mode decomposition
	5.3.7 Adaptive filter
	5.3.8 Learning algorithm
	5.3.9 Wavelet transform
	5.3.10 Frequency domain
	5.3.11 Beamforming
	5.3.12 Other approaches
	5.3.13 Selection of the algorithms
	5.3.14 Cross correlation
	5.3.15 Very low frequency component

	5.4 Demographic information
	5.5 Synchronisation
	5.5.1 Synchronisation ratio
	5.5.2 Phase locking value
	5.5.3 Same subject
	5.5.4 Statistical comparison analysis across the gestation groups

	5.6 Heart rate
	5.7 Gestation period
	5.8 Oxygenation level
	5.9 Proposed relationship
	5.10 Heart sound
	5.11 Mouse data

	6 Conclusion
	6.1 fECG signal separation from abdominal signal
	6.2 The synchronisation analysis between fetal and maternal cardiac system

	Bibliography
	Appendix

