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Abstract

M
ULTI-user Multi-Input Multi-Output (MU-MIMO) technologies have become

an important feature of the physical layer in modern wireless communication

systems, such as in wireless LAN 802.11 and 4G networks including LTE-Advanced and

mobile-WiMax, that need throughput in the order of hundreds of megabits per second or

more. MU-MIMO has become an important research area, particularly for downlink or

broadcast transmissions. In that scenario, one transmitter or base station (BS) with mul-

tiple antennas sends different and independent messages to each user simultaneously.

The resulting multi-user interference (MUI) can limit the maximum achievable sum rate.

Designing a good precoder for the users’ data symbols at the transmitter can reduce MUI.

In this thesis, we focus on finding the optimal design parameters that maximize the

system performance, i.e., SINR or sum rate, in multiple-antenna broadcast channels (BC)

employing a particular precoding strategy, called Regularization Channel Inversion. We

investigate the system performance maximization under various scenarios. In single-cell

BC, different forms of channel state information (CSI) at the transmitter such as perfect

CSI in independent and identically distributed (i.i.d.) and spatially correlated as well as

partial CSI with uncertainties are considered. We present the optimal strategy for the

regularization parameter of the RCI precoder to adapt in those scenarios. For some cases

we also study how we choose the cell-loading, defined as the ratio between the number

of users and the number of transmit antennas, to maximize the system performance.

Considering clustered or grouped users where each group has different path-losses, we

explore the optimal power allocation across the groups that maximizes the sum rate per

antenna. In two-cell BC, we investigate CSI feedback optimization for different levels of

base station cooperation.
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The analysis in this work is conducted in the large system limit where the number of

single-antenna users and transmit antennas tend to infinity with their ratio being fixed.

The mathematical tools are based on spectral theory of random matrices that explore the

eigenvalues of large dimensional random matrices. Even though the analytical results

are in the asymptotic regime, we show their validity for the finite size system design

through numerical simulations.
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vectors respectively.
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max . maximize

E[X] expectation of X
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Chapter 1

Introduction

N
OWADAYS, we start witnessing the rise of many mobile or wireless applications

that demand high data rate exchanges such as high volume wireless data trans-

fers, high-definition mobile television (TV), online gaming services, and video confer-

encing and streaming via mobile devices. To support this high data rate demands, Inter-

national Telecommunication Union-Radio communications sector (ITU-R) released the Inter-

national Mobile Telecommunications Advanced (IMT-Advanced) standard in 2008. This

standard is also known as 4G, the successor of the current 3G standard, and sets the peak

data rate requirements for 4G services: 100 megabits per second for low mobility commu-

nications and 1 gigabits per second for high mobility communications. Two technologies

i.e., Mobile WiMAX (Worldwide Interoperability for Microwave Access) and LTE (Long

Term Evolution) are often said to offer 4G services, even though their peak data rates are

less than 4G specifications. To be compliant with IMT-Advanced requirements, Mobile

WiMAX release 2 and LTE-Advanced (LTE-A) were then released and standardized in

2011.

To be able to produce high data rates, one of the core technologies for the physical

layer that both 4G candidates rely on is the MIMO (Multiple-Input Multiple-Output)

transmission techniques. MIMO in the communication systems refers to the use of mul-

tiple antennas at both the transmitter and the receiver. The pioneering works on MIMO

systems can be dated back in mid 90s where Telatar [89,90] and Foschini and Gans [22,23]

independently investigated the capacity of point to point or single-user MIMO systems.

Since then, there has been a tremendous amount of work in this area.

In general, one of the main challenges in designing wireless communications systems,
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2 Introduction

besides interference, is multi-path fading. It is due to the scattering of the transmitted sig-

nals by the objects or obstacles that are present along the propagation channel between

the transmitter and the receiver. Hence, multiple copies of the transmitted signals may

arrive at the receiver at different times, directions (angles) and frequencies. This phe-

nomenon will cause random fluctuations of the received signals. One may see it as an

impairment. However, if the transmitter and/or the receiver, somehow have/has the

knowledge about the fading states (propagation channels), then it can be exploited to in-

crease the capacity or reliability of a wireless communication system [6]. In single-user

MIMO systems, for an example, it can be used by the transmitter to determine the send-

ing ’directions’ and ’magnitudes’ of parallel data streams over the same frequency band

and consequently, the total data rate will increase. In information-theoretic point of view,

it has been shown in [22, 23, 89, 90] that the capacity of single-user MIMO systems grows

linearly with the minimum number of antennas at the transmitter and the receiver pro-

viding that the fading channel states, commonly called channel state information (CSI),

are known perfectly by both ends and are statistically independent. This demonstrates

the importance of CSI in the communication system designs.

In practical communication systems where multiple users are present such as in dig-

ital subscriber lines (DSL), wireless LAN 802.11 and wireless cellular networks, multi-

user MIMO (MU-MIMO) has become an important research area recently, particularly

for downlink transmissions, or also called broadcast channels (BC). In this scenario, a

transmitter or base station (BS) with multiple antennas sends different and independent

messages or data symbols to each user simultaneously. With a perfect knowledge of the

CSI at the transmitter and the receiver, the sum-capacity of K users, where each user

equipped with single antenna, grows linearly with the minimum number of transmit

antennas (N ) and users (see [26] and references therein for detail discussions regarding

information theoretic aspects of MIMO systems). The capacity region of the BC has been

characterized recently in [103]. To achieve the downlink sum- capacity, we have to deal

with the multiuser interference (MUI) that presents because the communication between

the transmitter and the users occurs at the same time and uses the same frequency band.

Hence, transmitting messages to a particular user will cause interference to other users
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in the system. The level of the interference can be influenced by some factors such as

the number of users in the system, the magnitude (or power) and direction of the trans-

mitted data that are transferred between the transmitter and the users. The transmitter

can manage the MUI by adjusting those factors according to the CSI that is available at

the transmitter (CSIT) . Specifically, based on the CSIT, the transmitter pre-processes or

precodes the messages with a so called precoder or beamformer before transmissions in or-

der to reduce the MUI. Furthermore, the CSIT can also be used to determine an optimal

user scheduling and transmit power allocation for each user that maximize the downlink

sum rate. However, obtaining a perfect CSIT in practical implementations is difficult.

Any uncertainty that presents on the CSI may significantly impact the overall capacity

of the system. The worst case is when the transmitter does not have the CSIT. In that

case, if the users have the same number of receive antennas and the same fading statis-

tic/distribution, then there is no advantage of performing multiuser communications

and the single-user MIMO is optimal [6, Chapter 2], [9, 34].

The use of multiple antennas in MIMO systems also adds spatial dimension besides

time, frequency and code to separate users in a wireless cellular network. This will lead

to a more aggressive reuse of time and frequency resources in order to increase the net-

work capacity [6, 25]. However, an aggressive frequency or time reuse will introduce

more inter cell interference (ICI) especially for the users in the cell-edge. In the classical

approach, where there is no cooperation between the base stations (BSs), the network re-

duces to an interference channel setup and its capacity still remains an open problem for

over thirty years. In the current and emerging approach, the base stations are allowed to

cooperate by sharing their control signals, transmission data and CSI via backhaul links.

The level of cooperation is determined by the sharing amount amongst the BSs. It has

been shown in several works [25, and references therein] that the base station coopera-

tion, particularly with perfect CSIT available at the BSs, provides a significant increase in

the system capacity compared to the systems adopting the classical approach.

Summarizing our discussions above, CSIT plays important roles in increasing the

capacity of a communication system, from a single-user MIMO to a more complex multi-

cell multiuser MIMO network. A precoder at the transmitter exploits the CSIT to control
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the transmission strategies to achieve the maximum throughput. Thus, it is crucial to the

determine the optimal design parameters of the precoder.

The channel gain matrix in multiuser MIMO communications represents propagation

channels between the multiple antennas transmitter and all users. It has random entries

because as previously mentioned the channel gains are random quantities. Thus, the

study of the properties of random matrices is important in analyzing the performance

of wireless communication systems. Some of the results of random matrix theory has

been applied in [21, 89, 90] to derive the capacity of single-user MIMO systems. How-

ever, the performance analysis for finite-size systems, i.e., finite number of antennas and

users, can be difficult or even intractable for a more complex and realistic system model.

Performing the analysis in the asymptotic regime can provide an accurate approximation

of the system performance with a reduced complexity [14, 95]. It can also be very use-

ful and be applied to analyze the emerging research area of Massive MIMO or very large

MIMO that employs a large number of small antennas at the base station to improve

the rate and reliability of the MIMO communication systems [75]. It requires some ad-

vances on large dimensional random matrix theory. [91, 93, 97] are some works among

others that initiated the application of large dimensional random matrix theory to ana-

lyze the performance of wireless communication systems, particularly for Code Division

Multiple Access (CDMA) systems. Recently, it has been employed to analyze and design

multiuser and multicell MIMO systems [14, 95].

1.1 Focus of Thesis

In this thesis, we consider Multiple-Input Single-Output (MISO) communication sys-

tems, where the transmitters have multiple antennas and each user in the system only

has a single antenna. The main focus will be in the downlink transmissions or broadcast

channels.

As mentioned earlier, the maximum system performance can be achieved by exploit-

ing CSIT at the transmitter side via a precoder. Designing an optimal precoder that

maximizes the system capacity could lead to a complicated task. A capacity achieving
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precoder, called dirty paper coding (DPC) needs a perfect CSIT and its implementation in

practice is computationally expensive [19, 86]. Linear-type precoders offer a lower com-

plexity but with penalty in the system performance. One of the most popular precoders

considered in the wireless communication literature is the Zero-Forcing (ZF) or Channel

Inversion (CI) precoder. With the availability of a perfect CSIT, ZF can eliminate or null

the MUI. However, channel inversion may lead to a significant penalty on the system

performance when the channel gain matrix is rank deficient. To overcome this, a regular-

ization parameter can be introduced in the channel inversion and the resulting precoder

is called Regularized Zero-Forcing (RZF) or Regularized Channel Inversion (RCI). We

particularly concentrate on the applications of this precoder for various channel and sys-

tem models.

The performance measure analyzed in this document is the SINR or correspondingly

the sum rate per-antenna. The analysis relies heavily on some results of large dimen-

sional random matrix theory. We particularly perform the analysis in the large system

limit regime, where the number of antennas at the transmitter or BS and the number of

users go to infinity with their ratio being fixed. In that regime, as being shown later, the

performance measure becomes a deterministic quantity and this could reduce the com-

plexities or simplify the analysis. Moreover, the performance measure obtained in the

analysis can give insights on its behavior in the finite-size or even in the small-size sys-

tems. Based on those facts, we then investigate the optimal values of system parameters,

such as, regularization parameter and cell-loading i.e., the ratio between the number of

users and the numbers of antenna.

1.2 Summary of Thesis and Contributions

In Chapter 2, a brief introduction on random matrix theory is presented. It discusses

some basic definitions and important results on large dimensional random matrix theory.

They will be used frequently in the analysis throughout of this document.

In Chapter 3, we start our investigation on the performance of a single-cell MISO

broadcast channel with i.i.d. entries of the channel gain matrix. The transmitter is as-



6 Introduction

sumed to have a perfect knowledge of CSI and this information is used to construct the

RCI precoder. It is also assumed that the users have the same path-loss gain. First, we

derive the SINR in the large system limit, also called the limiting SINR. It is deterministic

quantity and the same for all users. Then, we derive the optimal regularization param-

eter that maximizes the limiting SINR or equivalently the limiting sum rate per-antenna

of the precoder. It surprisingly takes a very simple form which is a ratio between the

cell-loading and the received signal-to-noise ratio (SNR). A similar result is previously

obtained by Peel et al., in [69]. The optimal cell-loading maximizing the sum rate per-

antenna is also discussed. Some numerical simulations that are presented show that the

asymptotic analysis can accurately approximate the finite-size systems. Moreover, we

also consider the performance analysis of the Moore-Penrose Channel Inversion and sin-

gle user (SUB) precoders.

The case of multiuser transmit beamforming in spatially correlated channel is con-

sidered in Chapter 4. The scattering effects from the propagation environment and the

insufficient separation between antenna elements may cause fading correlation. It is as-

sumed that the users are separated enough so that the correlation is only present at the

transmitter side. Moreover, to simplify the problem, it is also assumed that the users see

the same transmit- correlation. We adopt a separable correlation model, also called Kro-

necker model. Similar to the previous chapter, the base station is assumed to know the

CSI of each user perfectly. We derive the limiting SINR and show that it is indeed affected

by the correlation. On the contrary, we prove that the optimal regularization parameter

of the RCI precoder is independent of the correlation and is the same as to that in the

i.i.d. case. This is an important and a surprising result. With the same settings, we also

analyze the performance of MPCI and SUB precoders.

In Chapter 5, we relax the assumption that the transmitter knows the CSI perfectly. To

simplify the analysis, we consider the Time Division Duplex (TDD) scheme with a perfect

channel reciprocity behavior. In that scenario, the uplink and downlink channel are the

same regardless of the direction. It is assumed that each user knows its channel exactly

and all users send their channel information to the transmitter via the multiple access

channel (MAC). The BS estimates the CSI by the minimum mean square error (MMSE)
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estimator. This will introduce channel estimation errors or uncertainties to the channel

states owned by the transmitter. First, we consider a simple case where the communica-

tion has two phases: the channel estimation or training and the downlink transmission.

The analysis starts with the derivation of the asymptotic sum rate per antenna. Based

on that, for a given total communication period, determined by the coherence time, we

investigate the optimal periods for the channel training and the data transmission that

maximize the sum rate per antenna. Then, we move to a more complex situation where

we add uplink data transmission as the third phase. Each user is assumed to have the

same and a fixed uplink power. Then, we investigate how to split the uplink power for

the channel training and uplink data transmission optimally. Thus, a joint optimization

of the channel training and data transmission period as well as uplink power splitting is

conducted. We show that the optimal training period is one symbol per user regardless

optimal splitting uplink power. The optimal period for downlink (or relatedly uplink)

data transmission and optimal uplink power splitting can not be determined explicitly.

However, numerical simulations suggest that there is a trade-off between these two quan-

tities.

In the previous chapters, it is assumed that the transmitter allocates the power equally

for each user. In Chapter 6, we take a step further by investigating an optimal power

allocation for the users that maximizes the achievable sum rate per antenna. The users

are assumed to have different path-losses. The analysis is started by deriving the limiting

SINR for each user. Then we divide all users into a finite number of groups based on their

distance-dependent path losses. In that scenario, we show that the optimal power allo-

cation follows the well- known water-filling strategy. Jointly with the power allocation,

the optimal regularization parameter is also derived. The water-filling scheme suggests

that the groups whose path-losses less that a certain threshold are allocated zero power.

Therefore, it is natural to ask whether to include the channel gains of those groups in

the precoder will improve the sum rate or not. This leads us to investigate the multi-

mode transmission where we determine the optimal number of groups communicating

with the BS. We show that it is optimal for the BS to transmit to some groups having best

channels. We also provide the necessary conditions for the optimal cell-loading allocation
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when the BS is allowed to transmit to only subsets of the users in the groups.

The last technical chapter, i.e., Chapter 7, discusses the feedback optimization in a

symmetric two-cell network for various levels of base stations cooperation, namely Net-

work MIMO or Multi-Cell Processing (MCP) and Coordinated Beamforming (CBf). We

consider both the analog and the digital/limited feedback schemes. In the analog feed-

back case, we investigate how each user optimally allocate his/her transmit power to

feed back the unquantized and uncoded CSI of the direct channel and the interfering

channel for different BS cooperation schemes. In the limited feedback case, instead of

power, we study the optimal bit allocation or partitioning for the direct and interfering

channel. For both cooperation schemes, we show that when the cross channel gain is

below a certain threshold, it is better for both BSs to perform the Single- Cell Process-

ing (SCP), that is, there is no cooperation between BSs. For the MCP case, it has been

shown in [109] that the SINR improves as the cross channel gain increases. However, in

the presence of the channel uncertainty, we show that this occurs only when the cross

channel gain is above a certain threshold.

The overall conclusion for the materials studied in this thesis appears in Chapter 8.
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Chapter 2

Asymptotic Random Matrix Theory

This chapter presents a brief introduction to random matrix theory, particularly the properties of

the eigenvalues of matrices as the dimensions of the matrices grow to infinity with a constant ratio. A

simple example of the application of random matrix theory to wireless communications, i.e. evaluating

the ergodic capacity of a single-user MIMO system, is presented. This leads to the definition of the

empirical eigenvalue distribution or empirical spectral distribution (e.s.d.) of a (Hermitian) matrix.

As the dimensions of the matrix grow to infinity, the e.s.d. converges to what is called the limiting

spectral distribution (l.s.d.), or just limiting distribution. Some well known limiting distributions

such as Wigner’s semi-circle law, circular law, and Marc̆enko-Pastur law are presented. Moreover,

some limiting distributions that are particularly important for the asymptotic analysis in the following

chapters are presented in terms of their Stieltjes transform. The links between certain matrix quadratic

forms and and the trace of that matrix are also discussed.

2.1 Introduction

A
random matrix can be defined as a matrix with random variable entries [88] or

a matrix-valued random variable (see e.g., [14]). Until recently, random matrix

theory has found its applications into numerous fields, such as physics, statistics, infor-

mation theory and wireless communications, to name a few. The materials contained in

this chapter are largely based on [14, 95] that provide a nice introduction into random

matrix theory and its applications in information theory and communications which are

the area of interests of this work. Some definitions and theorems are also adopted from

[4, 96].

In 1928, John Wishart laid the foundation of the study of random matrices with his

work on the density function of the random matrix
∑N

k=1 xkx
H
k , where the elements of

11
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vector xk are independent and drawn from standard normal distribution [14, 95, 104].

The matrices with this structure are now called the (central) Wishart matrices. Since

then, many studies have explored various aspects of Wishart matrices. For example, now

we can find the joint distribution of (un)ordered eigenvalues and the distribution of the

extremes eigenvalues of Wishart matrices [14, 95]. In information theory and wireless

communications, these distributions are very important and useful in order to evaluate

the performance, e.g., mutual information, capacity and SINR of a communication sys-

tem. An example described below is taken from the work of Telatar in [90].

Let us consider a single-user MIMO communication system where the transmitter

(base station) and receiver (user) have N and M antennas, respectively. The propagation

channel between the transmitter and receiver is represented by anM×N complex-valued

random matrix H. In [90] the entries of H are assume to be i.i.d. and drawn from Gaus-

sian distribution with zero mean and unit variance. The transmitted data vector from

N antennas is denoted by x ∈ C
N and satisfies the total power constraint E[xHx] ≤ P .

Considering a linear relation between x and the received signal vector, y ∈ C
M , the latter

can be expressed as

y = Hx+ n,

where n is the receiver or thermal noise vector and assumed to have complex Gaussian

distribution with zero mean and E[nnH ] = IM . The ergodic capacity of this setup is given

by [90, Theorem 1],

C = E

[
log det

(
IM +

SNR

N
HHH

)]
, (2.1)

where SNR is the received SNR. Note that the capacity above is achieved when x is com-

plex Gaussian with covariance matrix SNR
N IN . It is easy to see that HHH is a Wishart

matrix with rank r = min{M,N}. Let λ1, λ2, . . . , λr be the eigenvalues of HHH . So, we

can rewrite (2.1) as

E




r∑

j=1

log

(
1 +

SNR

N
λj

)
 . (2.2)

Note that the (non-zero) eigenvalues of HHH and HHH are the same.
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Evaluating (2.2) needs the knowledge of the joint density of the (un)ordered eigen-

values of the Wishart distribution, which can be presented in terms of the Laguerre poly-

nomials. A closed form expression for (2.2) is unknown but can be obtained numerically

(see [90, Theorem 2]). When the entries of H are not i.i.d. Gaussian, the system ergodic

capacity is unknown. A simple example is when the entries are independent and drawn

from Gaussian distribution but have different variances. Moreover, if the system perfor-

mance involves a more complicated function of eigenvalues of a random matrix, then its

performance analysis in finite dimensions becomes intractable and only allows numerical evalu-

ations that does not offer much insights. As we will see later, evaluating (2.2) in the large

system limit, where the dimensions of H go to infinity with their ratio being fixed, re-

sults in a closed form expression. Our results in the subsequent chapters also show that

the performance analysis for various channel conditions and functions of channel gain H in the

large system limit can lead to closed form and compact expressions. Hence, insights on the sys-

tem behaviour can be obtained and we can determine the optimal design parameters that

maximize system performances. Furthermore, simulation results presented in this and

sequel chapters demonstrate that the asymptotic analysis can give accurate approximations of

the system performance even for small system dimensions (of H). All those asymptotic results

are derived based on theory of spectral distribution of large random matrices that will be

presented in the next section.

2.2 Spectral Distribution of Large Random Matrices

Let us start with the following definition.

Definition 2.1 ([95, 96]). Let X be an N × N Hermitian matrix. The spectrum or empirical

distribution of the eigenvalues of X, denoted by FN
X , is defined as follows

FN
X (x) =

1

N

N∑

i=1

1{λi(X)≤x}

where λ1(X), . . . , λN (X) are the eigenvalues of X and 1{·} is the indicator function.

When the actual distribution function is not known, then the empirical distribution
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function is the natural estimator for it [96]. Note that FN
X is random since the eigenvalues

of X changes for each its realization and for differentN . The convergence of the sequence

{FN
X } to a limit is one of the major topics in random matrix theory [4]. This limit is defined

as follows.

Definition 2.2. Let FN
X be the empirical spectral distribution of X. A non-random distribution

FX is defined as the limiting or asymptotic spectral distribution of X when FN
X converges to FX

as N →∞.

The initial works on the limiting distribution of large random matrices came from the

area of physics. In a series of his paper [95, and references on Wigner’s paper therein],

Wigner investigated the e.s.d of a symmetric matrix that has a particular structure and

showed that it converges to a semicircle law. By using this result, he was able to explain

the experimental results regarding atomic energy levels [95]. Wigner matrices, attributed

to his name, are defined as any Hermitian matrices whose upper triangular entries are

independent and zero mean with identical variance. Let W be an N ×N Wigner matrix

whose entries are zero mean and variance 1
N . Then, as N →∞, the limiting distribution

of W follows the semicircle law with density [95],

fW(x) =





1
2π

√
(4− x2), for |x| ≤ 2,

0, otherwise.

Figure 2.1 illustrates the semi-circle law and the empirical distribution of the eigenvalues

of matrix W with N = 1000. The diagonal entries of W are i.i.d. and distributed accord-

ing toN (0, 1
N ). The upper triangular entries are i.i.d. complex Gaussian random variable

with zero mean and variance 1
N .

If the square matrix is no longer Hermitian, but its entries are i.i.d., then the limiting

distribution of that matrix follows the full-circle law or circular law where asymptotic

spectrum of the matrix is uniformly distributed over the unit circle on the complex plane.

A graphical presentation of this law can be seen in Figure 2.2.

Although matrices that lead to the semi-circle and full-circle laws are important and

frequently used in the area of physics, their use in the area of wireless communications
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Figure 2.1: The histogram of the eigenvalues of W (N = 1000) vs. its semi-circle density.
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are rather limited. Generally, it can be said that the structure of sample covariance matrix

XXH and its variations (generalizations), where X is a rectangular matrix with indepen-

dent entries, are the objects of interest in this area. An obvious instance of application

is our previous example where the asymptotic ergodic capacity per antenna can be eval-

uated based on the knowledge of the limiting distribution of HHH . The work [53] by

Marc̆enko and Pastur in 1967 was the first to consider the limiting spectrum distribution

of sample covariance matrices. One of the main results is known as the Marc̆enko-Pastur

law, as stated below [95]. See Figure 2.3 and 2.4 for some illustrations.

Theorem 2.1 (Marc̆enko-Pastur Law). Consider an n × N matrix X whose entries are i.i.d.

complex or real random variable with zero mean and variance 1
N . As n,N → ∞ with n

N →
β > 0, the e.s.d. of XXH converges almost surely to a nonrandom limiting distribution Fβ with

density function

fβ(x) =

(
1− 1

β

)+

δ(x) +
1

2πβx

√
(x− a)+(b− x)+,

where (y)+ = max{0, y}, a = (1−√β)2, b = (1 +
√
β)2 and δ(·) is the Dirac delta function.

Equivalently, the e.s.d. of XHX converges almost surely to a nonrandom distribution

F̆ whose density [95]

f̆β(x) = (1− β)δx+ βfβ(x)

= (1− β)+ δ(x) + 1

2πx

√
(x− a)+(b− x)+. (2.3)

For β = 1, the singular values of 1√
N
X (or the eigenvalues of

√
1
NXXH ) are asymp-

totically distributed according to

fq(x) =
1

π

√
4− x2, 0 ≤ x ≤ 2,

which is also known as the quarter circle law.
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Figure 2.3: The histogram of the eigenvalues of HHH (N = 2500) vs. its Marc̆enko-Pastur
density for β = 0.25.
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Now, let us consider the example in the previous section. First, it can be checked that

dFN
X (x) =

1

N

N∑

j=1

δ(x− λi(X)).

Thus, we can write the ergodic capacity per-transmit antennas as, i.e., C/N as

r

N
E

[∫ ∞

0
log

(
1 +

rSNR

N
x

)
dF r

1
r
WWW(x)

]
, (2.4)

where WWW = HHH for M < N . Otherwise, WWW = HHH. So, WWW has size r × ℓ, where

ℓ = max{M,N}. Let us denote γ = r
N SNR and β = ℓ/r ≥ 1. By applying Theorem 2.1,

we can evaluate the integral in (2.4) as follows (see e.g., [14, 95]):

∫ ∞

0
log(1 + γx) dF r

1
r
WWW(x)

a.s.−→
∫ b

a
log(1 + γx) f̆β(x) dx

= β log

(
1 + γ − 1

4
F(γ, β)

)
+ log

(
1 + γβ − 1

4
F(γ, β)

)

− log e

4γ
F(γ, β), (2.5)

where
√
F(x, y) =

√
x(1 +

√
y)2 + 1 −

√
x(1−√y)2 + 1. Let us denote the right-hand

side of (2.5) as I∞. Then, C/N− r
N I

∞ a.s.−→ 0. To test the validity of that approximation, let

us consider the small size systems: N = 4, M = 3 (β = 4/3) and N = 1, M = 2 (β = 2).

The ergodic capacity (2.1) has no closed-form expression but can be computed numeri-

cally according to [90, Theorem 2]. Figure 2.5 presents the ergodic capacity for each case

and the corresponding asymptotic approximation for various values of SNR. We can see

that the asymptotic results give a very accurate approximation. An almost perfect match

is obtained at low SNRs. A very small gap can still be achieved for high SNR values. This

simulation confirms one of the benefits applying large system approximations to analyze

the system performance of communication systems.

In [53], Marc̆enko and Pastur considered a more general matrix structure which takes

the form

Y = A+XTXH , (2.6)

where A is a deterministic Hermitian matrix and T is a real diagonal matrix. When A = 0
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Figure 2.5: Ergodic capacity (2.1) per transmit antenna and its asymptotic approximation
for various values of SNR.

and T = I, the limiting distribution of Y obeys the Marc̆enko-Pastur law. In general case,

i.e., A 6= 0 or T 6= I, the limiting distribution of Y is unknown explicitly. Instead, it is

represented via the Stieltjes transform which is defined below.

Definition 2.3. Let X be a real valued random variable with distribution FX . The Stieltjes

transform of FX is defined as

m(z) =

∫ ∞

−∞

1

λ− z dFX(λ) = EX

[
1

X − z

]
,

for z ∈ C
+ = {z ∈ C : ℑ[z] > 0}.

A more rigorous representation can be found in [14, Chapter 3]. We should note that

m uniquely determines the distribution function FX and the converse is also true. For a

givenm, the density and distribution function ofX can be recovered by using the inverse

transformation which are stated in the following [14, 95].
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Definition 2.4. The inverse Stieltjes transform of mX , where X is a real valued random variable

with distribution FX , that yields the density fX is given by

fX(x) = lim
ω→0+

1

π
ℑ [m(x+ jω)] .

Equivalently, the distribution function is given by

FX(x) =
1

π
lim

ω→0+

∫ x

−∞
ℑ [m(x+ jω)] dx.

Here, x is a continuity points of FX (also fX ).

Now, let X ∈ C
N×N be a Hermitian matrix. The Stieltjes transform of FX, denoted by

mX, can be alternatively expressed as follows [4, 14]

mX(z) =

∫
1

λ− z dFX(λ) =
1

N
Tr(Λ− zIN )−1

=
1

N
Tr(X− zIN )−1,

where Λ is a diagonal matrix that consist of the eigenvalues of X. This implies that

evaluating the (normalized) trace of (X− zIN )−1 is equivalent to evaluating the Stieltjes

transform of FX and vice-versa. This relation will be used frequently in obtaining the

large system results throughout this document.

In what follows, some Stieltjes transforms that will be repeatedly used are listed. We

start with the Stieltjes transform mY where Y has a structure given in (2.6).

Theorem 2.2. Let X ∈ C
n×N be a matrix whose entries are i.i.d. with zero mean and variance

1
n . Let T ∈ R

N×N be a diagonal matrix and its e.s.d. converges almost surely to a nonrandom

distribution FT. Also, let A ∈ C
n×n be a deterministic Hermitian matrix and its e.s.d. converges

almost surely to a nonrandom distribution whose Stieltjes transform is mA. Suppose that X, T

and A are independent. Then, as n,N →∞ with n
N → β, the e.s.d. of

Y = A+XTXH

converges almost surely to a nonrandom distribution whose Stieltjes transform is the unique so-
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lution of

mY(z) = mA

(
z − 1

β

∫
t

1 + tmY(z)
dFT(t)

)
,

for z ∈ C
+.

The case when A = 0 and T is not a diagonal matrix is also of a particular interest in

the subsequent chapters. Let us denote Y in that case as Y1.

Theorem 2.3. Let X be defined as in Theorem 2.2 and T be an N × N Hermitian matrix and

T ≥ 0. The e.s.d. of

Y1 = XTXH

converges almost surely, as n,N →∞ with n
N → β, to a nonrandom distribution whose Stieltjes

transform is the unique solution of

mY1(z) = −
(
z − 1

β

∫
t

1 + tmY1(z)
dFT(t)

)−1

,

for z ∈ C
+.

Now, consider the following lemma.

Lemma 2.1. Let B ∈ C
n×N . Then the following holds

mBHB(z) = βmBBH (z) +
(β − 1)

z
,

for z ∈ C
+.

By using the lemma above, we can establish the following result which is also useful

later.

Theorem 2.4. The e.s.d. of Y2 = T
1
2XHXT

1
2 converges almost surely, as n,N → ∞ with

n
N → β, to a nonrandom distribution whose Stieltjes transform is the unique solution of

mY2(z) =

∫
1

t(1− β − βzmY2(z))− z
dFT(t),

for z ∈ C
+.
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Proof. We can rewrite mY1 from Theorem 2.3 as follows

zmY1(z) = −1 +
1

β

∫
tmY1(z)

1 + tmY1(z)
dFT(t)

= −1 + 1

β

∫ −1 + 1 + tmY1(z)

1 + tmY1(z)
dFT(t)

= −1 + 1

β
− 1

β

∫
1

1 + tmY1(z)
dFT(t).

Hence,

βzmY1(z) + β − 1 = −
∫

1

1 + tmY1(z)
dFT(t).

From Lemma 2.1, it follows that

mY2(z) = βmY1 + (β − 1)
1

z
. (2.7)

Thus, we have

zmY2(z) = −
∫

1

1 + tmY1(z)
dFT(t).

SubstitutingmY1(z) in the denominator of the integrand by (2.7) concludes the proof.

In the Marc̆enko-Pastur law (Theorem 2.1), all the entries of H are assumed to have

the same variance. The following result establishes the limiting distribution of the sample

covariance matrix by allowing different variances for the independent entries of X.

Theorem 2.5 ([30,95]). Let X be a ⌊cN⌋×⌊dN⌋ random matrix with independent entries [X]ij

which are zero mean and variance E
[
|[X]ij |2

]
= N−1

Pij , such that Pij are uniformly bounded

from above. For each N , let

vN (x, y) : [0, c]× [0, d]→ R

be the variance profile function given by

vN (x, y) = Pij ,
i

N
≤ x ≤ i+ 1

N
,

j

N
≤ y ≤ j + 1

N
.

Suppose that vN (x, y) converges uniformly to a limiting bounded function v(x, y). Then, for each
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a, b ∈ [0, c], a < b, and z ∈ C
+

1

N

⌊bN⌋∑

i=⌊aN⌋

[(
XXH − zI

)−1
]
ii

i.p.−→
∫ b

a
u(x, z) dz,

where u(x, z) satisfies

u(x, z) =
1

−z +
∫ d
0

v(x,y)dy
1+

∫ c
0 u(w,z)v(w,y)dw

for every x ∈ [0, c]. The solution always exists and is unique in the class of functions u(x, z) ≥ 0,

analytic on z ∈ C
+ and continuous on x ∈ [0, c]. Moreover, almost surely, the empirical eigen-

value distribution of XXH converges weakly to a limiting distribution whose Stieltjes transform

is given by
∫ 1
0 u(x, z) dx

In the theorem above, x-axis and y-axis refer to the rows and columns of the matrix X,

respectively. This result will be used to prove some theorems presented in Chapter 7.

To this end, we already presented some key results of asymptotic random matrix

theory that will be frequently or repeatedly used to derive main results discussed in this

document. All those key results show that the limiting spectral distribution is insensitive

to the type or shape of the density function of the random matrix entries [95]. Thus, the

asymptotic limit of ergodic capacity (2.5) still remains the same even when the entries of

H are not Gaussian or from other fading distributions.

In addition to those results, the following lemmas also play important roles or are the

heart of the analyses in the following chapters. The lemmas mainly provide asymptotic

results for particular quadratic matrix representations in the form xANxH . Here, x ∈
C
1×N is a random (row) vector with i.i.d. entries and AN ∈ C

N×N has a uniformly

bounded spectral norm. The first two lemmas are necessary as they show the relation

between the quadratic form and the trace of AN . The first lemma is a well-known result.

Lemma 2.2 ([3, 14, 20]). Let x ∈ C
N be a random row vector whose entries are i.i.d. with zero

mean, variance 1/N and a finite eight order moment. Let AN ∈ C
N×N be a sequence of matrices

with uniformly bounded spectral norm and independent of x. Then, as N →∞,

xANxH − 1

N
Tr(AN )

a.s.−→ 0. (2.8)
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Lemma 2.3 ([20]). Let x and AN be as defined in Lemma 2.2. Let y be a random vector which is

similar to and independent of x. Then,

xANyH a.s.−→ 0, (2.9)

as N →∞.

An important quadratic expression is in the form gN = x(BBH + ρIN )−1xH . This

form may appear as a part of SINR or SIR expression of a communication system. For

example, it appeared as a part of SIR in early papers, at the beginning of the 2000s, on the

asymptotic system performance analysis of linear multiuser receivers in CDMA commu-

nications [20, 43, 91, 92].

Lemma 2.4. Let gN = x(BBH + ρIN )−1xH , where B ∈ C
N×n and ρ > 0. Suppose that

the elements of B are i.i.d. with zero mean and variance 1
N , x and B are independent. Then, as

n,N →∞ with n/N → β,

gN − g a.s.−→ 0,

where g is given by

g =

(
ρ+

β

1 + g

)−1

=
1

2

(√
(1− β)2
ρ2

+
2(1 + β)

ρ
+ 1 +

1− β
ρ
− 1

)
. (2.10)

Proof. It is easy to see that gN satisfies the conditions in Lemma 2.2. Hence,

gN −
1

N
Tr(BBH + ρIN )−1 a.s.−→ 0.

From the link between the trace of a matrix and the Stieltjes transform, as previously

discussed, we can write

1

N
Tr(BBH + ρIN )−1 =

∫
1

λ+ ρ
dFBBH (λ).

Now assume that the entries of B are i.i.d. with zero mean and variance 1
N . Moreover,
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suppose that FHHH converges almost surely to F . Then,

∫
1

λ+ ρ
dFBBH

a.s.−→
∫

1

λ+ ρ
dF (λ),

and this establishes that

gN
a.s.−→

∫
1

λ+ ρ
dF (λ) = g.

From Theorem 2.3 (T = IN in the current case), as N,n → ∞ and n
N → β, we have

that g = limz→−ρm(z) is the unique solution of the quadratic equation

g =

(
ρ+

β

1 + g

)−1

.

Solving for g, we have (2.10)

Note that the limiting distribution F in the proof above follows the Marc̆enko-Pastur

law. Thus, we can obtain (2.10) by directly evaluating the integral
∫
(λ+ρ)−1 dF (λ). From

(2.10), we can see that g is parametrized by β and ρ. Therefore, sometimes it is useful

represent g by g(β, ρ). For the rest of the thesis, we will use g and g(β, ρ) interchangeably.

The next lemma can be thought as a generalization of Lemma 2.2.

Lemma 2.5 ([48, Lemma 5.1]). Let xm ∈ C
N ,m ≤ K be independent random vectors whose

entries are i.i.d. with zero mean and variance 1
N . Let Am,n, n ≤ Nη, η > 0 be a sequence

of random matrices independent of xn for each n and have a uniformly bounded spectral norm.

Then,

max
m,n

∣∣∣∣xmAm,nx
H
m −

1

N
Tr(Am,n)

∣∣∣∣
a.s.−→ 0

as N →∞.

The lemma above can be used to prove the following lemma.

Lemma 2.6 (see also [68, Lemma 2.5]). Let m ≤ N . Suppose that Lemma 2.5 holds. Then

∣∣∣∣∣
1

N

N∑

m=1

(
xmAm,nx

H
m −

1

N
Tr(Am,n)

)∣∣∣∣∣
a.s.−→ 0. (2.11)
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Proof. We can have the upper bound of the left-hand side (LHS) of (2.11) as follows

∣∣∣∣∣
1

N

N∑

m=1

(
xmAm,nx

H
m −

1

N
Tr(Am,n)

)∣∣∣∣∣ ≤
1

N

N∑

m=1

∣∣∣∣xmAm,nx
H
m −

1

N
Tr(Am,n)

∣∣∣∣

≤ max
m≤N,n

∣∣∣∣xmAm,nx
H
m −

1

N
Tr(Am,n)

∣∣∣∣ .

Since

0 ≤ max
m≤N,n

∣∣∣∣xmAm,nx
H
m −

1

N
Tr(Am,n)

∣∣∣∣
a.s.−→ 0,

then (2.11) follows immediately.

Suppose that oN = 1
N Tr(X + ρIN )−1, where X ∈ C

N×N is Hermitian. Let pN =

1
N Tr(X+ qqH + ρIN )−1, where q ∈ C

N . It is clear that pN is oN in which X is perturbed

by a rank-1 matrix qqH . The difference between of oNand pN will be the subject of interest

of the following lemmas. The first lemma states that the difference between them is

bounded by (Nρ)−1 which implies that it gets smaller as N grows. The second lemma

provides the generalization of the first lemma in which the difference is almost surely

zero, as N →∞.

Lemma 2.7 (Rank-1 Perturbation Lemma, [83]). Let ρ > 0, A ∈ C
N×N , B ∈ C

N×N be

Hermitian, and q ∈ C
N . Then,

∣∣∣∣
1

N
Tr
(
A(B+ ρIN )−1 −A(B+ qqH + ρIN )−1

)∣∣∣∣ ≤
‖A‖
Nρ

.

Lemma 2.8 ([14]). Let ρ > 0, A ∈ C
N×N , B ∈ C

N×N be Hermitian with eigenvalues λ1(B) ≤
· · · ≤ λN (B), and q ∈ C

N . Suppose that there exists ǫ > 0 such that λ1(B) ≥ ǫ almost surely

for all large N . Then,

1

N
Tr(A(B+ ρIN )−1 −A(B+ qqH + ρIN )−1)

a.s.−→ 0. (2.12)

To this end, we already presented some important mathematical tools for the asymp-

totic analysis in this document. The upcoming chapters discuss the application of those

tools in analyzing the system performance of MISO broadcast channels for some channel

conditions and system setups.



Chapter 3

Multiuser Precoding in i.i.d. Channel

In this chapter, the large system results for a single cell multiuser transmit via Regularized Channel

Inversion (RCI) precoder with i.i.d. entries of the channel gain matrix are presented. In the analysis,

the transmitter (BS) and the users are assumed to have a perfect CSI. The first result is the expression

of the SINR in the large system limit, also called the limiting SINR. Then, the optimal regularization

parameter of the RCI precoder that maximizes the limiting SINR, as well as the limiting sum rate

per antenna, is derived. Its expression is remarkably simple. It is the ratio between the cell loading

and the received SNR. Furthermore, we also derive the limiting SINR for the Moore-Penrose Channel

Inversion (MPCI) and the Single User (SU) precoders. Those precoders are the special cases of the RCI

precoder when the regularization parameter goes to zero and infinity, respectively. For each precoder,

the characterization of the sum rate per-antenna with respect to the cell-loading is also presented.

3.1 Introduction

A
S mentioned previously in the introductory chapter, one way to achieve the sum-

capacity of MIMO broadcast channels is to employ a precoder at the transmitter

side to reduce the MUI. Precoders exploit the CSI at the transmitter (CSIT) to adapt the

transmission strategies or variables such as the ’direction’ and ’magnitude’ ( or power)

of the transmission for each user’s data symbols. Perfect CSIT will be an ideal case and

is often considered in the performance analysis of MIMO communication systems as a

benchmark for the practical scenarios. Different forms of CSIT will lead to different ways

of designing a precoder. Moreover, different performance criteria and channel condi-

tions e.g., i.i.d. channel and spatially correlated channel will also influence the precoder

design.

While the linear precoder can be optimal for single-user MIMO systems [6, Chapter

27
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3],[100, and references therein], it is not the case for the multiuser MIMO settings. The

sum capacity in multiuser MIMO downlink is achieved by using the Dirty Paper Coding

(DPC) strategy [9,98,99,108]. In [9], the transmit signal is decomposed as a multiplication

of a precoding matrix and an auxiliary input. A successive dirty paper encoding is ap-

plied to generate the auxiliary input. The precoding matrix is then optimized to achieve

the optimal sum rate for a two-user MISO setup. The work by Viswanath and Tse [99]

generalizes the previous result for an arbitrary number of single-antenna users. The sum

capacity which is the maximum sum rate of the DPC-based transmission strategy is es-

tablished by exploring the duality between MIMO-BC and MIMO-MAC. A similar tech-

nique is also used in an independent work [98] to derive the sum-capacity for the case

where each user has multiple antennas. Yu and Cioffi in [108] use a DPC-based decision

feedback equalizer at the transmitter to prove the same result.

DPC requires perfect CSIT and an entire knowledge of the transmitted signals. There-

fore, the resulting interference at the receivers can be computed in advance. As a result,

the interference can be pre-subtracted along with the transmitted messages so that the

sum-capacity of using DPC is the same as if there were no interference. Regardless of the

benefit in terms of the achieved sum- rate, its practical implementation is computation-

ally intensive because it involves successive encoding at the transmitter and decoding

at the receiver [86],[19]. Finding practical schemes for DPC implementations remains an

active research area. The DPC could be categorized as a nonlinear precoder. Another

example of the nonlinear precoding is the vector perturbation technique where the trans-

mitted data or symbols are perturbed in order to prevent power enhancement caused by

the channel inversion type precoders [32]. Although the vector perturbation gives better

performance compared to linear precoders, finding the optimal perturbation vector still

requires a high complexity search of the optimal point in lattice (an example of a well

studied NP-hard problem)[74].

A lower complexity implementation is one of the advantages offered by linear pre-

coders, but with the sum rate penalty compared to the DPC. An optimal linear precoder

is hard to obtain. Some studies propose iterative algorithms for the precoder construc-

tion, but there is no proof for their convergences. One of the most well-known linear
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precoders is the Zero-Forcing (ZF) or Channel Inversion (CI) precoder. It has a simple

structure, i.e., the inverse of the users’ channel gain matrix [87]. Employing this precoder

will completely eliminate the MUI. Although it is a sub-optimal linear precoder, it has

been shown in [107] that the combination of ZF and a particular user selection strategy,

called semi-orthogonal user selection, can perform asymptotically (for a large number of

users) close to the sum capacity of MISO BC. However, as shown in [69], the sum- capac-

ity of this beamformer does not grow linearly with the number of users K, when K = N ,

where N is the number of transmit antennas. Moreover, if the channel gain matrix is

ill-conditioned, the received SNR will drop significantly and this will affect the resulting

SINR and sum rate.

To resolve that problem, a regularization parameter is introduced in the channel in-

version and the corresponding sum-capacity scales linearly with min(N,K) but at a

slower rate than that of DPC [69]. The resulting beamformer is called the Regularized

Channel Inversion (RCI) or also known as Regularized Zero-Forcing (RZF). It does not

fully cancel the MUI as ZF does but it offers a higher sum rate, particularly at low SNRs

[69]. The regularization parameter controls the amount of interference introduced to each

user. Therefore, this parameter should be chosen optimally to maximize some perfor-

mance criteria such as the SINR. For the case K = N , the optimal parameter has been

derived in [69] by assuming K is large. For general cases, it was derived in [62] by us-

ing the large system analysis (see also [101]). Finding it in the finite-size regime can be

difficult.

In this chapter, we perform a large system analysis of a single-cell broadcast chan-

nels with the RCI precoder at the transmitter. The entries of the channel gain matrix

are assumed to be i.i.d. with certain statistical moment conditions. Each user knows its

channel perfectly and the transmitter is also assumed to have a perfect knowledge of the

channel gain matrix. First, we derive the SINR in the large system limit which later is

called the limiting SINR. Then, we obtain the expression for the optimal regularization

parameter that maximizes the limiting SINR. As in [62], the analysis presented here holds

for any cell loading, β = K/N > 0. Here, we strengthen the results presented in [62] by

obtaining a nicer expression for the limiting SINR and a more concise derivation for the
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optimal regularization parameter. We also provide a new characterization of the sum

rate of the RCI over the cell-loading. We also derive the limiting SINR of the MPCI and

SU from their finite-size SINR expressions while in [62,63], the limiting SINR expressions

for those precoders are obtained from the limiting SINR of the RCI by setting the regu-

larization parameter to zero and infinity, respectively. It turns out that both approaches

produce the same results.

A closely related work is [101] that performs the large system analysis for the MISO

downlink for various channel conditions. The current work and [101] are developed

independently and use different approaches in deriving the large system results. Our

approach relies on the behavior of the l.s.d. of random matrices in the model while the

approach in [101] is mainly based on the deterministic equivalent of the involved random

matrices (see [14] and references therein for detailed discussions on this subject).

The contributions of this chapter can be summarized as follows:

1. We perform the large system analysis for the SINR of the broadcast channel with

the RCI precoder, for any β > 0. We show that the SINR converges (almost surely)

to a deterministic (non-random) limiting SINR. The limiting SINR is the same for

each user in the cell. It is the function of the cell loading, regularization parameter

and the received SNR. We also demonstrate that the SINR of the finite-size sys-

tem is well-approximated by the limiting SINR even for reasonably small system

dimensions.

2. For a given received SNR and cell-loading, we derive the optimal regularization

parameter that maximizes the limiting SINR. Its expression is simple and the same

as that obtained in [69] for the particular case K = N . It is the ratio between the

cell loading and the received SNR. Our numerical results show that employing the

asymptotically optimal regularization parameter into the finite size systems only

incurs a small throughput loss.

3. We also derive the limiting SINR of the broadcast channel with the MPCI and SU.

The results are exactly the same as those obtained by evaluating the limiting SINR

of the RCI for regularization parameter going to zero and infinity for MPCI and

SU respectively.
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4. For each considered precoder, we study the characterization of the sum rate per-

antenna over different values of cell-loading. For the RCI precoder, the sum rate

per-antenna is evaluated at the optimal value of the regularization parameter. We

show that for the received SNR larger than one (zero decibel), the sum rate is uni-

modal function with respect to the cell loading. Thus, the optimal cell loading

that maximizes the sum rate per-antenna is unique. For the SNR less or equal to

one, the sum rate per antenna is an increasing function of the cell-loading. Conse-

quently, the maximum sum rate per-antenna could be achieved with cell loading

greater than one i.e., the number of users is larger that the number of transmit an-

tenna. A similar phenomenon is also observed for the optimal cell-loading of the

MPCI precoder. For the SU precoder, the sum rate per-antenna is an increasing

function of the cell loading and converges to a certain value as the cell loading

tends to infinity.

The rest of this chapter is organized as follows. In the next section, the system model

is presented and the SINR expressions of the users when the BS employs one of the fol-

lowing precoders: RCI, CI or ZF, and SU, are derived. The analysis of these SINRs in the

large system limit is presented in Section 3.3. The optimal regularization parameter of the

RCI precoder maximizing the limiting SINR and the optimal cell-loading maximizing the

sum rate per antenna are also discussed. The characterizations of the limiting SINR and

sum rate per antenna over the cell-loading for MPCI and SU precoders are also studied.

Section 3.4 provides some numerical results that compare the performance of different

precoders and also show the applicability of the large system results for the finite-size

systems. Section 3.5 concludes the chapter.
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3.2 System Model

Figure 3.1 illustrates a MISO broadcast channel with a linear precoder at the transmitter

end. The base station has N antennas and each of K users is equipped with a single an-

tenna. The propagation channel coefficient between the transmit antenna n ∈ {1, . . . , N}
and user k ∈ {1, . . . ,K} is denoted by hk,n. The channel gain vector between the BS and

user k is represented by the row vector hk = [hk,1 hk,2 . . . hk,N ] ∈ C
1×N . It is assumed

that the entries of hk are i.i.d. and hk ∼ CN (0, IN ). Even though here, we assume a

specific distribution for hk, the large system holds for any distribution of hk if the entries

of 1√
N
hk are i.i.d. with zero mean, variance 1

N and have finite eighth moment (see e.g.,

[14]).

In broadcast transmissions, the BS sends the data symbols s = [s1 . . . sk . . . sK ]T

intended for each user k simultaneously across its N antennas. Before transmission the

data symbol vector s is precoded by a beamforming or precoder matrix P. So, the trans-

mitted data vector x = [x1 · · · xN ]T is given by x = Ps and has a fixed transmit power

constraint, E[‖x‖2] = Pd. The received signal at user k can be written as

yk =
N∑

n=1

hk,nxn + wk = hkx+ wk,

where wk is the complex Gaussian receiver noise with zero mean and variance σ2. Ex-

panding x, the received signal becomes

yk = hkPs+ wk. (3.1)

In this document, we focus on the RCI precoder proposed in [69]. This precoder takes

the form

P = cHH
(
HHH + αIK

)−1
, (3.2)

or equivalently,

P = c
(
HHH+ αIN

)−1
HH , (3.3)

where H = [hT
1 . . . hT

k . . . hT
K ]T is the K ×N complex channel gain matrix. We should
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+
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hk,2
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Figure 3.1: System model.

note that the channel gain vectors amongst the users are assumed to be independent. The

normalizing constant c is chosen to satisfy the power constraint E[‖x‖2|H] = Pd. Assum-

ing the data symbols {s1, . . . , sK} are independent and each symbol has unit power, c is

given by

c2 =
Pd

Tr
(
(HHH + αIK)−2

HHH
) , (3.4)

or equivalently,

c2 =
Pd

Tr
(
(HHH+ αIN )−2

HHH
) . (3.5)

Using the representation (3.3) for the precoder, the received signal (3.1) can be written

as

yk = chk

(
HHH+ αIN

)−1
HHs+ wk

= chk

(
HHH+ αIN

)−1
hH
k sk + c

K∑

j 6=k

hk

(
HHH+ αIN

)−1
hH
j sj + wk. (3.6)

The first term in the right-hand side is the desired signal for user k while the other terms

are the interference and the receiver noise. Assuming single-user decoding at the receiver
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and treating the interference as noise, the SINR of user k can be expressed as follows

SINRk =
c2
∣∣∣hk

(
HHH+ αIN

)−1
hH
k

∣∣∣
2

σ2 + c2
∑

j 6=k |hk (HHH+ αIN )−1
hH
j |2

. (3.7)

It is in the standard form where the numerator and the second term in the denominator

represent the signal and the interference energy respectively.

Now let us consider the MPCI and SU precoders that can be seen as the special cases

of the RCI precoder. Letting α→ 0, we have the MPCI precoder which is given by

PMPCI =





lim
α→0

cHH
(
HHH + αIK

)−1
= c1H

H
(
HHH

)−1
, K/N ≤ 1

lim
α→0

c
(
HHH+ αIN

)−1
HH = c2

(
HHH

)−1
HH , K/N > 1,

(3.8)

where c21 =
Pd

Tr((HHH)−1)
and c22 =

Pd

Tr((HHH)−1)
.

The first case, i.e., β = K
N ≤ 1, is commonly considered in the wireless communica-

tion literatures. In practical situations, the number of users is larger than the number of

antenna. So, user selections should be done accordingly. The received signal at the user

k can be written as

yk = chkH
H
(
HHH

)−1
s+ wk.

Stacking y1, . . . , yK into a vector y = [y1 y2 · · · yK ]T leads to

y = c1HHH
(
HHH

)−1
s+w

= c1s+w, (3.9)

where w = [w1 w2 · · · wK ]T with E[wwH ] = σ2IK . By using the precoder, it is obvious

that the MUI is eliminated (zero-forced). The zero-forcing scheme can be seen to have

the altruistic behaviour since the precoding vector for a particular user tries to eliminate

the interference that it can cause to other users. From (3.9), the SINR of user k is simply

given by

SINRZF,k =
c21
σ2
. (3.10)
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Since the SINR is proportional to c21, a rank deficiency on the matrix HHH will lead to a

penalty to c2 and also consequently to the SINR.

For the case β > 1, the received signal is given by

yk = c2hk

(
HHH

)−1
HHs+ wk

= c2hk

(
HHH

)−1
hH
k sk + c2

K∑

j 6=k

hk

(
HHH

)−1
hH
j sj + wk .

It shows us that the MUI still presents in the system. Hence, putting the term zero-

forcing for the precoder for the current case could be misleading. The SINR of user k can

be written as

SINRNZF,k =
c22

∣∣∣hk

(
HHH

)−1
hH
k

∣∣∣
2

σ2 + c22
∑

j 6=k |hk (HHH)−1
hH
j |2

, (3.11)

which is (3.7) with α → 0. Intuitively, the limiting SINR for (3.11) can also be obtained

from the limiting SINR of (3.7).

The SU precoder is obtained from the RCI precoder by letting α→∞ and we have

PSU = lim
α→∞

P

= lim
α→∞

√
Pd

HH
(
1
αHHH + IK

)−1

√
Tr
((

1
αHHH + IK

)−2
HHH

)

= lim
α→∞

√
Pd

(
1
αH

HH+ IK
)−1

HH

√
Tr
((

1
αH

HH+ IN
)−2

HHH
)

=

√
Pd

Tr (HHH)
HH .

By using this precoder, the beamforming direction for the user k is given by
√

Pd

Tr(HHH)
hH
k .

It will maximize the signal strength of the user k while ignoring the interference that it

causes to other users. This can be considered as a selfish precoding scheme. The received
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signal vector can be expressed as

y =

√
Pd

Tr (HHH)

(
HHHs

)
+w,

and for user k, the received signal becomes

yk =

√
Pd

Tr (HHH)


hkh

H
k sk +

∑

j 6=k

hkh
H
j sj


+ wk.

Thus, the SINR is given by

SINRSU,k =

Pd

Tr(HHH)

∣∣hkh
H
k

∣∣2

σ2 + Pd

Tr(HHH)

∑
j 6=k |hkh

H
j |2

=

Pd

Tr(HHH)

∣∣hkh
H
k

∣∣2

σ2 + Pd

Tr(HHH)
hkH

H
k Hkhk

. (3.12)

Besides the SINR as the basic performance measure in this chapter, we also consider

an information theoretic measure which is represented by achievable sum rate. It can be

expressed as

Rsum =
K∑

k=1

log(1 + SINRk), (3.13)

where the SINRk may represent (3.7), (3.10), (3.11) and (3.12). Clearly, the achievable

rate for each user is a logarithmically monotonic function of the SINR. Also, there is one-

to-one mapping between the achievable rate and the SINR for each user. The limiting

SINR for each user under different precoders at the transmitter will be analyzed in the

following section.
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3.3 Large Sytem Analysis

The finite-size SINR of the broadcast channel with RCI precoder has been derived previ-

ously in [69] for the caseK = N . It is the function of the eigenvalues of the random matrix

HHH [69, cf. eq. (29)]. Thus, the SINR depends on the channel realization. Moreover,

it is difficult to obtain the optimal regularization parameter that maximizes the SINR or

sum rate in the finite-size regime.

Here, we derive the SINR in the large system limit where N and K tend to infinity

with fixed β = K/N . The result is stated in the following theorem.

Theorem 3.1. Let ρ = α
N be the normalized regularization parameter, γ = Pd

σ2 be the received

SNR and g(β, ρ) be the function defined in (2.10). Then, desired signal converges almost surely

to

Pd
g(β, ρ)

(1 + g(β, ρ))2

(
1 +

ρ

β
(1 + g(β, ρ))2

)
, (3.14)

and the interference converges almost surely to

Pd

(1 + g(β, ρ))2
. (3.15)

Consequently, the SINRk converges almost surely to a deterministic limiting SINR, given by

SINR∞ = g(β, ρ)

γ +
γρ

β
(1 + g(β, ρ))2

γ + (1 + g(β, ρ))2
. (3.16)

Proof. Refer to Appendix 3.6.1

A quick glance at the limiting SINR expression shows us that it is the same for all

users and depends only on system parameters: regularization parameter ρ, cell loading

β and received SNR γ. Figure 3.2 depicts how the finite-size SNRs approach the limiting

SINR for different values of SNR as the dimensions of the system get large. We set β = 0.6

and ρ = β/γ. For each SNR value, 100 channel realizations H are generated. For each

channel realization the SINR is computed based on (3.7) and is marked by the dot. The

dash line and solid line represent the average SINR over all 100 channel realizations and

the limiting SINR, respectively. From the plots, we can see that even for a small-size
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Figure 3.2: Comparison of the randomly generated SINR for user 1 (dot) with the average
SINR (dash) and the asymptotic limit (3.16) (solid line) with ρ = β/γ.

system N = 4, the average and limiting SINR are quite close. However, the deviation or

the spread of the SINR samples from the average and the asymptotic is still quite large.

As N gets larger, the gap between the average and the limiting becomes smaller and so

does the spread. For N = 64, the gap is negligible and the spread is about 2.5 dB.

Based on (3.16), the limiting sum rate per-antenna can then be defined as follows

R∞
sum = β log(1 + SINR∞). (3.17)

For the sake of simplicity in the naming, for the rest, we just call the limiting sum rate

per-antenna as the limiting sum rate. We can see that there is a one-to-one monotonic
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mapping between the limiting sum rate and the limiting SINR. Maximizing the limiting

SINR via ρ and γ will equivalently maximize the limiting sum rate. Since β appears as the

pre-log factor in (3.17), the link between the limiting sum rate and SINR is not monotonic

w.r.t. β. Thus, characterizing the behaviour of the limiting sum rate and the limiting

SINR should be considered separately.

First, let us discuss the role of the regularization parameter for the limiting SINR.

From (3.15), it is clear that the interference energy is decreasing as g(β, ρ) increases. How-

ever, as shown by (3.32), g(β, ρ) is a decreasing function of ρ. So, increasing ρwill increase

the level of interference. Now, how does ρ affect the (desired) signal strength?

Proposition 3.1. In the large system limit, the desired signal strength is increasing in ρ.

Proof. For brevity, we use g to denote g(β, ρ). Let us represent (3.14) by PdS
∞(ρ, g) (note

that g is also a function of ρ) where S∞(ρ, g) can be written as

S∞(ρ, g) =
g

(1 + g)2
+
ρ

β
g.

Then, the total derivative of ∂S∞(ρ, g) w.r.t. ρ is given by

dS∞(ρ, g)

dρ
=
∂S∞(ρ, g)

∂ρ
+
∂S∞(ρ, g)

∂g

∂g

∂ρ
.

The first term in the right-hand side is simply given by g
β . The expression for ∂g

∂ρ is given

by (3.32). It is easy to show that

∂S∞(ρ, g)

∂g
=

1− g
(1 + g)3

+
ρ

β
.

Thus,

dS∞(ρ, g)

dρ
=
g

β
−
(

1− g
(1 + g)3

+
ρ

β

)
g(1 + g)2

β + ρ(1 + g)2

=
g − g(1−g)

(1+g)

β + ρ(1 + g)2

=
2g2

1 + g

1

β + ρ(1 + g)2
> 0,

and this completes the proof.
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Figure 3.3: Signal strength, interference energy, SINR and sum rate per-antenna in the
large system limit for different values of ρ. Parameters: γ = 10 dB.

Figure 3.3 illustrates the behavior of the desired signal and interference energy w.r.t.

ρ. As predicted by the analysis, both are increasing with ρ. To get benefits for the SINR,

we should, at the same time, reduce ρ to suppress the interference and increase ρ to

strengthen the desired signal. Therefore, ρ provides a trade-off between reducing the

interference level and increasing the signal energy and it should be chosen carefully in

order to maximize the system performance. Figure 3.3 also depicts the optimal ρ that

maximizes the limiting SINR and sum rate which is marked by the diamond. The max-

imizer for the limiting SINR and sum rate is the same. We can also see that both perfor-

mance criteria are unimodal w.r.t. ρ. Thus, the maximizer is unique. The behavior of the
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limiting SINR w.r.t. ρ is presented below.

Theorem 3.2. The limiting SINR is a quasi-concave function of ρ. It is maximized by setting

ρ = ρ∗ where ρ∗ is unique and given by

ρ∗ =
β

γ
. (3.18)

It follows that the maximum limiting SINR is

SINR∗,∞ = g(β, ρ∗). (3.19)

Proof. Refer to Appendix 3.6.2.

The expression of the optimal ρ that maximizes the limiting SINR turns out to be very

simple. It is a ratio between the cell-loading and the received SNR. So, at high SNRs, ρ∗

becomes very small and the RCI precoder behaves like the MPCI precoder. On the other

hand, when the cell loading is very high, ρ∗ also becomes large. We can expect that the

precoder will perform like the SU precoder. We should also note that ρ∗ obtained in our

analysis coincides with that derived in [69] which is analyzed for the case K = N . Our

results are also confirmed by [101] by using a different approach of large system analysis.

Now, let us consider how the cell loading affects the maximum limiting SINR in (3.19).

g(β, ρ∗) is the solution of

g(β, ρ∗) =
1
β

1
γ + 1

1+g(β,ρ∗)

.

From the above, clearly, increasing the received SNR will improve the maximum limiting

SINR and the limiting sum rate. It is easy to check that

∂g(β, ρ∗)
∂β

= − 1

β2

(
1

γ
+

1

(1 + g(β, ρ∗))2

)−1

< 0.

This shows us that the maximum limiting SINR is decreasing with the cell-loading. Con-

sidering the limiting sum rate, increasing β will increase the pre-log factor but decrease

the log term. The following proposition states the characterization of the sum rate with

respect to β.
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Proposition 3.2. For γ > 1, the limiting sum rate is a quasi-concave (unimodal) function of β.

The unique stationary point, β∗, is given by the solution

β∗ = γ
(1 + g(β∗, β∗/γ))

(γ + (1 + g(β∗, β∗/γ))2) log(1 + g(β∗, β∗/γ))
. (3.20)

For γ ≤ 1, the sum rate per-antenna is an increasing function of β.

Proof. See Appendix 3.6.3.

Since Rsum is unimodal w.r.t. β, β∗ can be found effectively by using the bisection

method [7].

So far, we already derived the limiting SINR for the broadcast channel with RCI pre-

coder and characterized its behaviors with respect to involved design parameters such

as the regularization parameter and the cell-loading. Now, let us consider the broadcast

transmission with MPCI and SU. The following theorem presents the limiting SINR for

the case of MPCI.

Theorem 3.3. The SINR of the broadcast transmission stated in (3.10) and (3.11), in the large

system limit, converges almost surely respectively to

SINR∞
MPCI =





γ

(
1

β
− 1

)
, β < 1

γ(β − 1)

γ(β − 1)2 + β2
, β > 1 .

(3.21)

Proof. See Appendix 3.6.4.

From the theorem, it is clear that the limiting SINR is increasing with the received

SNR for different cases of β. For β < 1, it is also obvious that the limiting SINR decreases

as β increases. For β > 1, it can be checked that the limiting SINR is a quasi-concave

function of β where the stationary point that maximizes the limiting SINR is given by

β∗ = 1 +
1√
γ + 1

.

Considering the limiting sum rate, it can be shown that it is a concave function of β for
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β < 1. The optimizer satisfies,

β =
γ(

1 + γ
(

1
β − 1

))
log
(
1 + γ

(
1
β − 1

)) ,

and can be found by using line search methods.

For the downlink with SU precoder, the limiting SINR is stated below.

Theorem 3.4. In the large system limit, the SINR of the downlink with SU precoder converges

to

SINR∞
SU =

γ

β(γ + 1)
. (3.22)

Proof. See Appendix 3.6.5

From the above, the limiting SINR is increasing with the SNR but decreasing over β.

Considering the sum rate, it is a non-decreasing function of β since

∂

∂β
β log(1 + SINR∞

SU) = log(1 + SINR∞
SU)−

SINR∞
SU

1 + SINR∞
SU

≥ 0.

As β →∞, the limiting sum rate achieves the maximum value which is given by

lim
β→∞

log(1 + SINR∞
SU)

β =
γ

γ + 1
. (3.23)

3.4 Performance Comparisons

In the previous we have seen that the limiting SINR accurately approximate the finite-

size SINR even for small and moderate N,K. The optimal ρ that maximizes both the

limiting SINR and sum rate is given by (3.18). In the finite size system, the SINR or the

achievable rate for each user is different. Therefore, the optimal ρ that maximizes the

SINR or the rate is also different for each user. In that case, one of the reasonable choices

for the objective function is the achievable sum rate.

Figure 3.4(a) illustrate the comparison between the optimal ρ from the large system

and finite-size system analysis for different SNR values and N but with a fixed β. In

obtaining the optimal ρ for the finite systems, we generate Ns samples of the channel
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Figure 3.4: The validity of the large system approximation for finite size systems.

gain matrix. For each channel realization, the optimal ρ that maximizes the sum rate

is computed numerically by a grid search. Then the resulting optimal ρs are averaged

over Ns, denoted by ρ∗av,FS. We can observe that the optimal ρ from large system analysis

follows the one from finite-size system. The gap between them is already small for a

moderate system size N = 16.

Figure 3.4(b) demonstrates the applicability of the large system results into the design

of finite-size systems. Computing the optimal ρ in the finite-size system by a grid search

is time consuming. So, we would like to see what is the effect of using the optimal ρ from

the large system limit on the finite-size sum rates. The solid and dash line respectively

represent the average sum rates obtained by using the optimal ρ from the finite-size and
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Figure 3.5: The limiting downlink sum rate as a function of the cell-loading β for different
employed precoders.

large system analysis, respectively. We can see that even for the small-size system N = 4,

the difference is almost unnoticeable. For larger N , i.e. N = 16, the two lines coincide.

In the previous section, we already described analytically the behavior of the limiting

SINR and sum rate of the downlink for each precoder. Figure 3.5 compares the limiting

sum rate for different employed precoders. For the downlink with the RCI precoder, the

sum rate is obtained by setting ρ = ρ∗. As predicted by the analysis, i.e. Proposition 3.2,

the sum rate for the RCI-based downlink is increasing with β for SNR 0 dB (γ = 1) and

a quasi-concave function of β for SNR 10 dB. We can also see that it beats the sum rate

of the BC with other precoders. Figure 3.5(a) shows that the MPCI with β > 1 can gives

higher sum rate compared to the commonly used MPCI precoder, i.e. the one with β < 1,

even though it does not eliminate the MUI completely. It is also shown that setting β

close to 1 will result in a poor performance. The downlink sum rates with the RCI and

ZF become quite close, except near β = 1, for a moderate SNR 10 dB. We can expect that

they are getting closer as SNR increases with the exception for β → 1. We can also expect

that for β > 1, the downlink sum rate with RCI will approach the limit (3.23), which is

the maximum downlink sum rate with SU, as β → ∞. This is because as β → ∞, the

optimal regularization parameter of the RCI also goes to ∞. Thus, the RCI will behave
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Figure 3.6: Optimal cell-loading β as a function of the SNR.

like the SU precoder. It can also be checked that the downlink sum rate with the MCPI

also converges to (3.23) for the asymptotic value of β.

The optimal β as a function of the received SNR is depicted in Figure 3.6 (see also [63]).

For the downlink with MPCI precoder, there is a threshold in the received SNR, about

5.85 dB, in which above this threshold, it is better to have less users that the number of

antennas (β < 1) and consequently the ZF precoder is employed. Otherwise, the opposite

is better. In other words, it is better to use ZF for moderate or high SNR values. For BCs

with RCI precoder, the threshold takes at a lower SNR, about 4.87 dB.
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3.5 Conclusion

This chapter presents the large system analysis of the MISO broadcast channels with RCI,

MPCI and SU precoders. We have shown that the optimal regularization parameter of

the RCI that maximizes the limiting SINR is the ratio between the cell-loading and the

received SNR. We also presented the effect of the cell-loading on the limiting sum rate

of RCI, MPCI and SU precoders. For the RCI precoder, we have demonstrated that the

limiting sum rate is quasi-concave over the cell-loading. Thus, the optimal cell-loading

can be found by line search algorithms. For the MPCI, our numerical simulations sug-

gested the optimal cell loading can be larger than one when the SNR is below a certain

threshold. For the SU precoder, the maximum limiting sum rate is achieved when the

cell-loading tends to infinity.

3.6 Appendix

3.6.1 Proof of Theorem 3.1

We can write the SINR in (3.7) as

SINRk =
c2Sk

σ2 + c2Ik
,

where c2Sk and c2Ik represent the signal strength and interference energy of user k re-

spectively. The limiting SINR can be obtained by deriving the large system limit of each

term in SINRk. We start with Sk by first employing Lemma 2.2. However, to apply that

lemma, we need to remove the dependency between H in
(
HHH+ αIN

)−1
and hk. Now,

let us write
(
HHH+ αIN

)−1
=
(
HH

k Hk + αIN + hH
k hk

)−1
, (3.24)

where Hk is H with the k-th row removed. By applying the matrix inversion lemma

(Sherman-Morrison Formula), (3.24) becomes

(
HH

k Hk + αIN
)−1 −

(
HH

k Hk + αIN
)−1

hH
k hk

(
HH

k Hk + αIN
)−1

1 + hk

(
HH

k Hk + αIN
)−1

hH
k

.
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It follows straightforwardly that

(
HHH+ αIN

)−1
hH
k =

(
HH

k Hk + αIN
)−1

hH
k

1 + hk

(
HH

k Hk + αIN
)−1

hH
k

. (3.25)

Thus, Sk can be rewritten as

Sk =

∣∣∣hk

(
HH

k Hk + αIN
)−1

hH
k

∣∣∣
2

(
1 + hk

(
HH

k Hk + αIN
)−1

hH
k

)2 =
|Ak|2

(1 +Ak)2
,

where Ak = 1
Nhk

(
1
NHH

k Hk + ρIN
)−1

hH
k and ρ = α

N . Note that the spectral norm of
(
1
NHH

k Hk + ρIN
)−1

is bounded above by ρ−1.

Now, we can apply Lemma 2.2 to Ak and it yields

Ak −
1

N
Tr
((

HH
k Hk + αIN

)−1
)

a.s.−→ 0.

Using Lemma 2.8, the above becomes

Ak −
1

N
Tr
((

HHH+ αIN
)−1
)

a.s.−→ 0.

Following the derivation in Lemma 2.4, we can show that

Ak − g(β, ρ) a.s.−→ 0,

where g(β, ρ) is the function defined in (2.10). Thus, it follows immediately

Sk −
g2

(1 + g)2
a.s.−→ 0, (3.26)

where brevity, we use g to denote g(β, ρ) and we do the same for the rest of this chapter.

Note that the limiting value for Sk is the same for all users.

Now, let us move to the interference term. Ik can be expressed as

Ik =
∑

j 6=k

hk

(
HHH+ αIN

)−1
hH
j hj

(
HHH+ αIN

)−1
hH
k
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= hk

(
HHH+ αIN

)−1
HH

k Hk

(
HHH+ αIN

)−1
hH
k

(a)
=

hk

(
HH

k Hk + αIN
)−1

HH
k Hk

(
HH

k Hk + αIN
)−1

hH
k(

1 + hk

(
HH

k Hk + αIN
)−1

hH
k

)2

=
Bk

(1 +Ak)2
, (3.27)

where (a) is obtained by using (3.25) and its numerator is denoted by Bk. Let us write

Bk = hkBkh
H
k . We can show that

Bk = (HH
k Hk + ρIN )−1HH

k Hk(H
H
k Hk + ρIN )−1

= (HH
k Hk + ρIN )−1(HH

k Hk + ρIN − ρIN )(HH
k Hk + ρIN )−1

= (HH
k Hk + ρIN )−1

[
IN − ρ(HH

k Hk + ρIN )−1
]

= (HH
k Hk + ρIN )−1 − ρ(HH

k Hk + ρIN )−2

= (HH
k Hk + ρIN )−1 + ρ

∂

∂ρ
(HH

k Hk + ρIN )−1. (3.28)

Hence, Bk = Ak + ρ ∂
∂ρAk and we have (see also [48, Appendix A]),

Bk −
(
g + ρ

∂g

∂ρ

)
a.s.−→ 0. (3.29)

Consequently, it follows that

Ik −
g + ρ∂g

∂ρ

(1 + g)2
a.s.−→ 0. (3.30)

To complete the proof, let us now consider the normalizing constant c2. The denomi-

nator of c2 in (3.5) can be expressed as

1

N
Tr

((
1

N
HHH+ ρIN

)−2 1

N
HHH

)
.

Following the same steps as in deriving the large system limit of Bk in (3.27), we obtain

c2 − Pd(
g + ρ∂g

∂ρ

) a.s.−→ 0. (3.31)
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Combining the large system results (3.26) and (3.31), the signal energy converges al-

most surely to a deterministic value given by

g2

(1 + g)2
Pd(

g + ρ∂g
∂ρ

) = Pd
g

(1 + g)2

(
1 +

ρ

β
(1 + g)2

)
,

where we can show that
∂g

∂ρ
= − g(1 + g)2

β + ρ(1 + g)2
. (3.32)

Similarly, combining the results (3.27) and (3.31), the interference energy converges al-

most surely to a non-random quantity expressed by

Pd

(1 + g)2
.

To this end, we can finally express the limiting SINR as in (3.16) with γ = Pd/σ
2 and

this completes the proof.

3.6.2 Proof of Theorem 3.2

First, let us rewrite the limiting SINR as

SINR∞ =
γ

β
gΥ,

where

Υ =
β + ρ (1 + g)2

γ + (1 + g)2
.

The first derivative of SINR∞ over ρ is given by

∂SINR∞

∂ρ
=
γ

β

(
∂g

∂ρ
Υ+ g

∂Υ

∂ρ

)
, (3.33)

where

∂Υ

∂ρ
=

[(1 + g)2 + 2ρ∂g
∂ρ(1 + g)][γ + (1 + g)2]− [β + ρ(1 + g)2][2∂g

∂ρ(1 + g)]

[γ + (1 + g)2]2
.
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Performing further algebra manipulations on (3.33), we have the following steps

∂SINR∞

∂ρ
=
γ

β

(
∂g

∂ρ
Υ+ g

∂Υ

∂ρ

)

=
γ

β
gΥ

[
∂g
∂ρ

g
+

∂Υ
∂ρ

Υ

]

=
γ

β
gΥ

[
∂g
∂ρ

g
+

[(1 + g)2 + 2ρ∂g
∂ρ(1 + g)][γ + (1 + g)2]− [β + ρ(1 + g)2][2∂g

∂ρ(1 + g)]

[γ + (1 + g)2][β + ρ(1 + g)2]

]

=
γ

β
gΥ

[
∂g
∂ρ

g
+

(1 + g)2

β + ρ(1 + g)2
+

2ρ∂g
∂ρ(1 + g)

β + ρ(1 + g)2
+

2∂g
∂ρ(1 + g)

γ + (1 + g)2

]

=
γ

β
gΥ

[
∂g
∂ρ

g
−

∂g
∂ρ

g
+

2ρ∂g
∂ρ(1 + g)

β + ρ(1 + g)2
+

2∂g
∂ρ(1 + g)

γ + (1 + g)2

]
(3.34)

=
2γ2g(1 + g)2

β[γ + (1 + g)2]2
∂g

∂ρ

[
ρ− β

γ

]

= K∂g
∂ρ

[
ρ− β

γ

]
, (3.35)

where (3.34) is obtained from (3.32), i.e.,

−
∂g
∂ρ

g
=

(1 + g)2

β + ρ(1 + g)2
. (3.36)

Since K > 0 and ∂g
∂ρ < 0, then the stationary point is given by

ρ∗ =
β

γ
.

Moreover, sinceK ∂g
∂ρ < 0, then (3.35) is positive for ρ < ρ∗ and and negative for ρ > ρ∗.

Thus, the the limiting SINR is increasing over ρ until reaching ρ = ρ∗ and decreasing after

that. This concludes that the limiting SINR is a quasi-concave function of ρ ([7, pp. 99])

and ρopt is the global optimizer.

3.6.3 Proof of Proposition 3.2

The proof is divided into two parts. The first part is finding the stationary point which

can be obtained by setting the first derivative of sum rate over β equal to zero. The second
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part is to find the characterization of the sum rate w.r.t. β that use a similar approach to

that in [109].

With ρ = β/γ, we can link β and g as follows

β =
1

g

(
1

γ
+

1

1 + g

)−1

.

The first derivative of g w.r.t. β is given by

β
∂g

∂β
= −

g
(

1
1+g + 1

γ

)

1
(1+g)2

+ 1
γ

. (3.37)

So, g is a decreasing function of β.

The derivative of the sum rate per antenna over β is given by

∂Rsum

∂β
= log(1 + g) +

β

1 + g

∂g

∂β
.

Continuing further, we have

∂Rsum

∂β
= log(1 + g)−

g
(

1
1+g + 1

γ

)

1
(1+g) +

1
γ + g

γ

(a)
= log(1 + g)−

1
β

1
(1+g) +

1
γ + g

γ

,

where in (a), we use the fact that βg =
(

1
1+g + 1

γ

)−1
. Setting the derivative equal to zero

will lead to a stationary point given by (3.20).

Since we know the behavior of g w.r.t β, hence the characterization ofRsum over g will

indirectly describe the behavior Rsum w.r.t. β. We can rewrite Rsum as

Rsum =
1

g

(
1

γ
+

1

1 + g

)−1

log(1 + g),

and correspondingly,

∂Rsum

∂g
= − (1 + g)2 + γ

g2(1 + g + γ)2
log(1 + g) +

1

g(1 + g + γ)
.
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The first derivative above has the same sign as

q = − log(1 + g) +
g(1 + g + γ)

(1 + g)2 + γ
,

and q = 0 when g = 0, and q → −∞ as g →∞. It is easy to check that q = −∂Rsum
∂β . Taking

the first derivative of q over g will lead to

∂q

∂g
=
−g4 − 3g3 − 3g2 − g(1− γ2)

((1 + g)2 + γ)2
.

This shows that if γ ≤ 1, ∂q
∂g < 0 and correspondingly ∂Rsum

∂g < 0. This implies that Rsum

is decreasing over g but it is increasing over β. For γ > 1, ∂q
∂g , hence also q, is positive

for small g. So, Rsum increases up to g(β∗, β∗/γ) and then decreases. This concludes that

Rsum is a unimodal (quasi-concave) function over g or β for γ > 1.

3.6.4 Proof of Theorem 3.3

First, let us consider the case β < 1. From (3.10), the limiting SINR can be obtained by de-

riving the large system limit for c21. Let F 1
N
HHH be the empirical eigenvalue distribution

of 1
NHHH . The denominator of c21 can be expressed as

1

N
Tr

((
1

N
HHH

)−1
)

=

∫
1

λ
F 1

N
HHH (λ).

Suppose that F 1
N
HHH converges almost surely to the Marc̆enko Pastur limiting distribu-

tion F . Thus, the right hand side of the above equation converges to

∫
1

λ
F (λ) = lim

z→0
mF (z),

where mF (z) is the Stieltjes transform of F . From Theorem 2.3, it follows that

mF (z) = −
(
z − 1

β(1 +mF (z))

)−1

.
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Thus,
∫
λ−1 dF = β

1−β . Hence, we can conclude

c2 − Pd

(
1

β
− 1

)

and (3.21) for β < 1 follows immediately.

For the case β > 1, we can see that the SINR expression (3.11) is (3.7) with ρ → 0.

Therefore, the analyses in Appendix 3.6.1 hold directly. Then, the last equation of (3.21)

can be obtained from (3.16) by letting ρ→ 0 with g = 1
β−1 in this case.

3.6.5 Proof of Theorem 3.4

We can express (3.12) as follows

SINRSU,k =

Pd
1
N

Tr( 1
N
HHH)

∣∣ 1
Nhkh

H
k

∣∣2

σ2 + Pd
1
N

Tr( 1
N
HHH)

1
Nhk

1
NHH

k Hkhk

.

In proving the theorem, we only need to find the large system limit for 1
Nhkh

H
k and

1
N Tr

(
1
NHHH

)
.

Since IN has a bounded spectral norm, then the following holds

1

N
hkINhK −

1

N
Tr(IN )

a.s.−→ 0.

Moreover, 1
N Tr(IN ) = 1, thus 1

NhkhK − 1
a.s.−→ 0.

For the trace term,

1

N
Tr

(
1

N
HHH

)
=

∫
λ dF 1

N
HHH(λ)

→
∫
λ dF (λ) (3.38)

which is the first moment of the Marc̆enko Pastur distribution F . We can evaluate (3.38)

in several ways. First, we can express it in terms of the Stieltjes transform of F as

∫
λ dF (λ) = lim

z→0

∂

∂z

mF (z
−1)

z
,
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where mF (z) is the solution of (see Theorem 2.3)

mF (z) = −
1

z − β
1+mF (z)

.

It is easy to show that

∂

∂z

mF (z
−1)

z
= β

∂mF (z−1)
∂z

(1 +mF (z−1))2

= β
z−1mF (z

−1)

(1 +mF (z−1))2 − βz
,

where the last equation is obtained by using the fact that

∂

∂z
mF (z

−1) =
z−1mF (z

−1)

1− βz

(1+mF (z−1))2

.

It can be checked that the following equations are true,

lim
z→0

mF (z
−1) = 0, and lim

z→0
z−1mF (z

−1) = 0.

Thus,

lim
z→0

∂

∂z

mF (z
−1)

z
= β,

and consequently,
1

N
Tr

(
1

N
HHH

)
− β a.s.−→ 0.

Alternatively, we can derive (3.38) by using the Marc̆enko-Partur density described

in Theorem 2.1,

∫
λ dF (λ) =

∫ b

a
λ (1− β)+ δ(λ) dλ+

∫ b

a

1

2π

√
(λ− a)(b− λ) dλ

=

∫ b

a

1

2π

√
(λ− a)(b− λ) dλ,

= β,

where a = (1 −√β)2, b = (1 +
√
β)2. The last line is obtained by using [28, cf. 2.262(1)].
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See also [95, cf. 2.102, p. 54] regarding the expression for the k-th moment of Marc̆enko-

Pastur distribution.

Similarly, we can show

1

N
hk

1

N
HH

k Hkhk − β a.s.−→ 0.

Combining the results, (3.22) follows directly.



Chapter 4

Downlink Beamforming with
Transmit-side Channel Correlation

This chapter focuses on the design of the RCI precoder for MISO broadcast channels with transmit-

side channel correlation. We also investigate the effects of the correlation on the performance of the

systems employing MPCI and SU precoders. The separable channel correlation model is adopted. The

limiting SINR for each precoder is derived. It is a function of the eigenvalues of the correlation matrix.

For the RCI, we derive the optimal regularization parameter of RCI that maximizes the (limiting)

SINR. We show that it is not affected by the transmit correlation. This is a surprising result since

the SINR itself is influenced by the correlation. We confirm this result through simulations where the

channel has the exponential transmit-correlation model.

4.1 Introduction

T
HE system model in Chapter 3 assumes i.i.d. entries of the channel gain matrix. In

practice, spatial fading correlation is present due to scattering in the propagation

environment and spacing between antenna elements (see e.g., [6, 46, 67]. The spatial cor-

relation between antenna elements (of the transmitters or receivers) will increase when

the spacing between antennas or the number of scatterers around the antennas decreases

[6, 46]. It has been shown in [12] that a separation of ten wavelengths between the ad-

jacent antenna elements is enough for a decorrelation and to achieve a full-capacity in

BLAST (Bell-labs LAyered SpaceTime) MIMO systems [22]. Reducing the separation to

four wavelengths will cause the capacity to decrease about 20% [12]. Considering the

scattering environment, there is a rich scattering around both transmitters and receivers

in i.i.d. fading channel case. If a base station is located in an unobstructed environment

57
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or with a relatively small number of local scatterers and the receivers/users are in a rich

scattering environment, we may only observe the correlation at the transmitter side, also

called the transmit correlation. Related to the distribution of the entries of the channel gain

matrix, the impact and the capacity of spatially correlated point-to-point MIMO systems

have been investigated in [10, 65, 81] for Rayleigh-fading channels and in [15, 55, 56] for

Ricean channels.

There are several correlation models considered in the literature. The most well

known for its analytical tractability is the separable correlation model, which is also

known as the Kronecker model [13, 70, 82]. In this model, the transmit and the receive

correlations are separable. The capacity scaling of point to point MIMO systems with

N antennas at both transmitter and receiver ends under this model was investigated in

[13]. The authors observed that as N → ∞, the capacity still scales linearly with N for

both with a perfect CSIT and no CSIT cases. However, the growth rate is affected by

the correlation in both cases. It is about 10-20% smaller compared to the i.i.d. fading

channel case. A similar problem is also considered in [57]. It studied the cases when

the spatial correlation is present at either the transmitter or receiver side. By performing

the large system analysis, the authors derived closed-form expressions for the capacity in

each case. They showed that the correlation always degrades the capacity and this effect

is more pronounced to the side with less antennas. When the correlation is present at

both ends, the closed form approximations of the mutual information and outage capac-

ity were derived in [52]. The approximations are obtained by first deriving the limiting

eigenvalue distribution of the channel gain matrix. The authors proved that it follows

the normal distribution.

Reference [94] proposed a more general channel correlation model in the framework

of Unitary-Independent-Unitary (UIU) model. The unitary parts are represented by de-

terministic unitary matrices. The independent part consists of a matrix whose entries are

independent, zero mean and can have arbitrary distributions and variances. The Kro-

necker model is a special case of the UIU framework where the unitary parts are the

eigenvector matrices of the transmit and receive correlation matrices of the Kronecker

model [94]. The unitary parts can also be considered to be equivalent to the Fourier
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matrices in the virtual representation, another well-known scheme to model the spatial

correlation, introduced in [79]. In [94], the impact of the correlation based on the UIU

model on the capacity of single-user MIMO systems was studied. Depending on the ca-

pacity achieving input, the correlation can be detrimental or beneficial to the capacity.

If the input is isotropic, i.e., its covariance is an identity matrix, then the correlation is

detrimental for any SNR. On the other hand, if the input is non-isotropic, the correla-

tion is beneficial only when the SNR is below a certain threshold. We should also note

that besides the correlation, the keyhole or pinhole effects can cause the the channel gain

matrices to be rank deficient and deteriorate the capacity of the multi-antenna systems

[11, 24, 81].

The impact of the fading correlation on MIMO broadcast transmissions has been in-

vestigated in, for example, [47, 49]. The former presents the effects of the phase differ-

ence and the magnitude of the correlation coefficients on the sum rate of two-user MISO

broadcast channels. The latter shows the beneficial impact of correlation on the capac-

ity of multiuser MIMO with the maximum ratio combining (MRC) scheme. For a large

number of users in the systems, the sum-rate scaling laws of the DPC and random beam-

forming schemes have been investigated in [1].

In this chapter, we study the impact of the transmit correlation on the performance of

some well-known linear precoders, i.e., RCI, MPCI and SU, in MISO broadcast transmis-

sions. For tractability in the analysis, we assume that the channel correlation is separable.

Our contributions in this chapter can be summarized as follows. First, we derive the lim-

iting SINR for each precoder. The eigenvalues of the correlation matrix determine how

much the correlation affects the (limiting) SINR. For the RCI precoder, we derive the op-

timal regularization parameter that maximizes the limiting SINR. We demonstrate that it

is not affected by the correlation. It is the ratio between the cell-loading and the downlink

SNR, as expressed in (3.18). This is a surprising result because the correlation influences

the corresponding limiting SINR. As far as our knowledge, we are the first to show and

prove this result. In the end of the chapter, we provide some numerical simulations that

illustrate the system performance when the transmit correlation follows the exponential

correlation model.
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At the completion of this work, we noticed a similar work in [101]. The analysis in

[101] is based on the deterministic equivalent of large random matrices which is anal-

ogous to the Stieltjes transform-based approach which is adopted in our analysis. The

effect of the transmit correlation on the optimal regularization parameter has not been

originally discussed in [101] but has been included later. As previously mentioned, we

are the first to show that the optimal regularization parameter is independent of the trans-

mit correlation.

The rest of this chapter is organized as follows. The system model is described in the

next section. Section 4.3 presents the limiting SINR expressions for the RCI, MPCI and

SU precoders. The optimal regularization parameter of the RCI precoder maxmizing the

limiting SINR is also presented. The section also discusses the behaviors of the limiting

SINR w.r.t. the cell-loading. In Section 4.4, we verify our analysis by numerical simula-

tions that are based on the exponential correlation model. The last section concludes the

chapter.

4.2 System Model

We follow the same system model as in the i.i.d. channel case. As we consider the cor-

relation amongst transmit antenna elements and assume a separable correlation model,

the propagation channel matrix can be written as

H = H̃R
1/2
t ,

where the elements of H̃ are i.i.d. circularly-symmetric complex Gaussian (CSCG) ran-

dom variables with zero mean and unit variance. The matrix Rt is the transmit correla-

tion matrix and determines the correlation between the columns of H [46]. We assume

that Rt is Hermitian and positive definite. Thus, the inverse of Rt exists and is also Her-

mitian. We also assume that each user experiences the same transmit correlation. We

consider that H is known perfectly by the BS to construct the precoder. The correspond-

ing channel vector for each user k is hk = h̃kR
1/2
t , where h̃k is the kth row of H̃. The user

k is assumed to know this vector perfectly in order to decode the data sent by the BS.
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The expression for each precoder follows the descriptions in Chapter 3. However,

now each precoder is a function of the transmit correlation matrix. This implies that the

presence of the correlation will change the beamforming direction for each user. Thus, we

can strongly hypothesize that the correlation matrix will affect the performance of each

precoder. For the RCI precoder, the resulting SINR for user k can be written as previously

stated in (3.7),

SINRk =
c2
∣∣∣hk

(
HHH+ αIN

)−1
hH
k

∣∣∣
2

σ2 + c2
∑

j 6=k |hk (HHH+ αIN )−1
hH
j |2

, (4.1)

where α as in the previous chapters denotes the regularization parameter and c2 is de-

fined as in (3.5). The numerator and denominator of (4.1) represents the signal strength

and interference plus noise energy respectively. Similarly, the SINR for each MPCI and

SU follow can be obtained by allowing α→ 0 and α→∞, respectively.

4.3 Large System Analysis

We can see immediately from (4.1) that SINRk is a random quantity and depends on

particular realizations of the propagation channel matrix. In this section, we derive the

limiting SINR for each precoder.

First, let us consider the large system analysis for the RCI precoder.

Theorem 4.1. Let ρ = α
N be the normalized regularization parameter and γ = Pd

σ2 be the received

SNR. In the large system limit, the SINR (4.1) converges almost surely to a deterministic quantity

given by

SINR∞ = ξ

γE22 + ρ
γ

β
(1 + ξ)2E12

γE22 + (1 + ξ)2E12
, (4.2)

where ξ is the positive solution of

ξ =

∫ (
ρ

t
+

β

1 + ξ

)−1

dΛ(t) (4.3)

= (1 + ξ)E11. (4.4)
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Eij is given by

Eij = E

[
Ti

(ρ(1 + ξ) + βT)j

]
. (4.5)

where the expectation is taken over the random variable T whose distribution function Λ is the

limiting eigenvalue distribution of the correlation matrix Rt.

Moreover, in the large system regime, the signal strength and the interference energy can be

written as

− Pdξ
2

β ∂ξ
∂ρ

= Pdξ

(
ρ

β
+

E22

E12(1 + ξ)2

)
(4.6)

and

− PdE22

∂ξ
∂ρ(1− βE22)

=
PdE22

E12(1 + ξ)2
, (4.7)

respectively.

Proof. Refer to Appendix 4.6.1

Equation (4.2) shows that the limiting SINR is the same for all users. This is partly due

to our assumption that all users experience the same transmit correlation and have the

same distance dependent path-loss gain. (4.2) also has the same structure as the limiting

SINR in i.i.d. channel case and in the presence of channel uncertainty (see (3.16) and

(5.10) respectively). Comparing them, we can think of γE22
E12

as the effective SNR. We can

also check that ξ = g(β, ρ) and E22
E12

= 1 when Rt = IN . Thus, in that case, (4.2) reduces to

(3.16).

Now, let us consider the behavior of the signal and interference energy w.r.t. ρ.

Proposition 4.1. Both the signal strength and interference energy are increasing in ρ.

Proof. See Appendix 4.6.3.

The proposition implies that ρ provides a trade-off between increasing signal strength

and reducing the interference energy, as also observed in i.i.d. channel case. Thus, the

optimal ρ should be determined to maximize the system performance and it is stated in

the following.
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Theorem 4.2. The optimal regularization parameter, denoted by ρ∗, that maximizes the limiting

SINR is given by

ρ∗ =
β

γ
. (4.8)

The maximum limiting SINR is then given by

SINR∞,∗ = ξ∗, (4.9)

where ξ∗ is ξ evaluated at ρ = ρ∗.

Proof. Refer to Appendix 4.6.2. We should note that the proof is the adaptation of the

proof for (3.18) to the current case.

From the above, it is surprising and interesting that ρ∗ is independent of the eigen-

value distribution of the correlation matrix. In other words, it is not affected by the corre-

lation. On the contrary, the maximum limiting SINR (4.9) is influenced by the correlation.

Now, let us move to investigate the effect of the cell-loading on the system perfor-

mance. Let

Ĕij =

∫
t

1
γ (1 + ξ∗) + t

dΛ(t). (4.10)

Then, we can show that

∂ξ∗

∂β
= − ξ∗

β − Ĕ22

(4.11)

= − (ξ∗)2

1
γ (1 + ξ∗)Ĕ12 + Ĕ22

(4.12)

< 0.

So, SINR∞,∗ is decreasing in β. Considering the limiting sum rate, defined in (3.17), the

pre-log term is increasing in β. Therefore, for β, there is a trade-off between increasing

the pre-log and decreasing the SINR.

Now let us consider the the large system analysis for MPCI and SU. The SINR for the

MPCI takes the form as in (3.10) and (3.11) for β < 1 and β > 1, respectively. Its value in

the large system limit is stated in the following theorem.



64 Downlink Beamforming with Transmit-side Channel Correlation

Theorem 4.3. In the large system limit, the SINRk of MPCI converges to a non-random quantity

given by

SINR∞
MPCI =





γ

χ
β < 1

γ

γ(β − 1) + ψβ2
β > 1

(4.13)

where χ is the positive solution of

χ = β

(∫
t

1 + χ · t dΛ(t)
)−1

and ψ is given by

ψ =
1

β − 1

∫
dΛ(t)

t
.

Proof. See Appendix 4.6.4

We can see clearly that the limiting SINR is increasing in γ. For β < 1, since ∂χ/∂β =
(∫

t
(1+χ·t)2

)−1
> 0, increasing β will cause the limiting SINR decreases. For β > 1, we

can show that the limiting SINR is unimodal in β. It reaches the maximum point at

β = 1 +
1√
γ

E[T−1]
+ 1

.

Note that in the uncorrelated channel case, Rt = IN , E[T−1] = 1. The characteristics of

the limiting sum rates of the RCI and MPCI precoders w.r.t. β for a particular transmit

correlation model are presented in the following section.

The SINR for user k of the SU precoder is given by (3.12). The following theorem

states the limiting SINR for SU.

Theorem 4.4. In the large system limit, the SINRk of SU converges to

SINR∞
SU =

γ(E[T])2

β
(
γE[T2] + E[T]

) . (4.14)

Proof. See Appendix 4.6.5.

From (4.14), one can observe that the limiting SINR of SU depends on the first and

second moment of a random variable whose distribution function Λ. When Rt = IN ,
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those moments are equal to one and (4.14) reduces to (3.22). It is obvious that the limiting

SINR is decreasing in β. However, as in the i.i.d. channel case, we can show that the

limiting sum rate is an increasing function of β since

∂R∞
sum

∂β
= log(1 + SINR∞

SU)−
SINR∞

SU

1 + SINR∞
SU

> 0,

for positive limiting SINR. The maximum limiting sum rate is then given by

lim
β→∞

log

(
1 +

γ(E[T])2

β
(
γE[T2] + E[T]

)
)β

=
γ(E[T])2(

γE[T2] + E[T]
) .

4.4 Examples and Numerical Simulations

In order to evaluate the limiting SINR, we obviously need the expression for the limiting

eigenvalue distribution of the transmit correlation matrix. Here, we consider correlation

matrices with a Toeplitz structure. Let TN be an N × N Toeplitz matrix and tij be the

element of TN at row i and column j such that tij = ti−j [29]. We can illustrate the

Toeplitz matrix as follows [29],

TN =




t0 t−1 t−2 · · · t−(N−1)

t1 t0 t−1 · · · t−(N−2)

t2 t1 t0 · · · t−(N−3)

... · · · . . .

tN−1 · · · t0




.

Let {λk : k = 1, 2, . . . , N} be the eigenvalues of TN . Then, the following holds [29]

lim
N→∞

1

N

N∑

k=1

F (λk)→
1

2π

∫ 2π

0
F (f(ω)) dω (4.15)

for any function F that is continuous in the support of f(ω). Here, f(ω) denotes the

spectral densities or Fouries series of {tk} and is given by
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f(ω) =
∞∑

k=−∞
tke

ikω, ω ∈ [0, 2π]. (4.16)

We should note that Rt needs to be Hermitian. Therefore, the Hermitian Toeplitz struc-

ture is of particular interest. From (4.15), we can express Eij in (4.5) as follows

Eij =
1

2π

∫ 2π

0

f i(ω)

(ρ(1 + ξ) + βf(ω))j
dω ,

and consequently, we can compute (4.2).

Numerical simulations in this section use a simple and well-known correlation model

i.e., the exponential correlation model. The correlation matrix Rt has the ith row and jth

column given by

rij = ν |i−j|, (4.17)

where ν is the correlation coefficient. One can see that Rt is Hermitian Toeplitz. Using

this model, f(ω) is given by

f(ω) = lim
N→∞

N−1∑

k=−N+1

ν |k|eikω =
1− ν2

1− 2ν cos(ω) + ν2
.

For the RCI, we can evaluate ξ as follows

ξ =
(1 + ξ)

2π

∫ 2π

0

f(ω)

ρ(1 + ξ) + βf(ω)
dω

=
1

2π

∫ 2π

0

1− ν2

ρ(1 + ν2) + β(1−ν2)
1+ξ − 2ρν cos(ω)

dω

=
1− ν2√(

ρ(1 + ν)2 + β(1−ν2)
1+ξ

)(
ρ(1− ν)2 + β(1−ν2)

1+ξ

) (4.18)

=
1√(

ρ1+ν
1−ν + β

1+ξ

)(
ρ1−ν
1+ν + β

1+ξ

) , (4.19)

where (4.18) is obtained by using [28, cf. eq. (3.661(4))]. One can see that (4.19) is a quartic

equation w.r.t. ξ. By using Descartes’ rule of signs, one can also check that it only has one

positive solution. For E12 and E22, we can express them as follows [28, cf. eq. (2.554(1))
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and (2.554(3))]

E12 =
1− ν2
(1 + ξ)2

(1 + ν2)a+ 2νb

a2 − b2
[
1

2π

∫ 2π

0

1

a+ b cos(ω)
dω

]
(4.20)

E22 =
(1− ν2)2
(1 + ξ)2

a

a2 − b2
[
1

2π

∫ 2π

0

1

a+ b cos(ω)
dω

]
, (4.21)

where a = ρ(1 + ν2) + β(1−ν2)
1+ξ and b = −2ρν.

Substituting (4.20) and (4.21) into (4.2) gives

SINR∞ = ξ
γΘ1 +

ργ
β (1 + ξ)2Θ2

γΘ1 + (1 + ξ)2Θ2
, (4.22)

where Θ1 = ρ(1 + ξ)(1 + ν2) + β(1− ν2) and Θ2 = [ρ(1 + ξ)(1− ν2) + β(1 + ν2)].

For the MPCI, we can show that the limiting SINR under the considered correlation

model can be expressed as

SINR∞
MPCI =





γ(1− β2)
β2(µ+

√
µ2 − 1 + 1/β2)

β < 1

γ(β − 1)

γ(β − 1)2 + µβ2
β > 1,

(4.23)

where µ = 1+ν2

1−ν2
. For the i.i.d. channel case ν = 0 and hence µ = 1. Similarly, for the SU,

we can write the limiting SINR as

SINR∞
SU =

γ

β (µγ + 1)
. (4.24)

The results presented so far are illustrated in the figures below.

Figure 4.1 shows how the random SINR in (4.1) approaches the limiting SINR (4.2) as

system dimensions (K,N ) increase. For each value of γ, 500 realizations of H̃ are gen-

erated and the corresponding SINRs are computed. The correlation matrix has elements

that follow (4.17) with ν = 0.4. We also set ρ = β/γ. From the figure, we can see that the

spread of the SINR for finite K and N is getting smaller as K and N increase. Consider-

ing the average SINRs, represented by the dash line, we can see that they are very close to

the asymptotic limit even for small and moderate system sizes, e.g., N = 8 and N = 16,

respectively. These observations are the same as attained in the previous chapter.
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Figure 4.1: Comparison of the randomly generated SINR for user 1 (dot) with the average
SINR (dash) and the asymptotic limit (4.2) (solid line) with β = 0.75, ν = 0.5, ρ = β/γ.
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Figure 4.2: Comparison of the limiting SINR by using Λ (solid) and the approximation
(4.25) (dash-dots) for different values of γ and ν with β = 1.
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Figure 4.3: Limiting SINR as a function ρ for different values of ν.

In practice, the l.s.d. of Rt is generally hard to obtain (as mentioned previously) or Rt

does not have particular properties or structure such that Eij can be evaluated. In that

case, we can do an approximation for E[G(T)] as follows

∫
G(t) dΛ(t) ≈ 1

N

∑

k

G(λk), (4.25)

where G is the function of the random variable T whose distribution Λ. Figure 4.2 com-

pares the limiting SINR obtained between using the knowledge of Λ and the approxima-

tion (4.25). It demonstrates that for small system sizes, e.g., N = 4, the approximation

is very good, particularly for small νs, such as for ν = 0.2 and 0.4. For a strong channel

correlation, e.g., ν = 0.8, one can still notice a gap between the curves. For a moderate

system size N = 16, we can observe that (4.25) gives an accurate approximation, even for

a big ν.

The limiting SINR as a function of regularization parameter ρ is illustrated in Figure

4.3. We can observe that for different values of correlation coefficient ν, the limiting

SINR achieves its maximum by choosing ρ = β/γ. This is consistent with the theoretical

analysis: the correlation does not alter the optimal ρ.

Now, let us observe the applicability of the large system result for ρ to the finite size
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Figure 4.4: Comparison of the average sum rate between using ρ = ρ∗FS and ρ = ρ∗ with
β = 0.75, ν = 0.5.

system. We generate 500 channel realizations. For each channel realization, the optimal

regularization parameter that maximizes the sum rate, denoted by ρ∗FS, is evaluated nu-

merically by a grid search. Similarly, the sum rates by using ρ∗ are also computed. Figure

4.4 compares the average sum rates using ρ∗ and ρ∗FS. We can observe that even for a small

N = 4, the gap between the curves is very small. For N = 8, the gap becomes unseen.

This verifies the validity of using the large system analysis for finite size system designs.

Figure 4.5 presents the limiting sum rates per antenna of the RCI, MPCI and SU pre-

coders for different values of β and ν. The plots for the RCI precoder use ρ = ρ∗. For

γ = 5 dB, we can see the effect of the transmit correlation on the limiting sum rate. This

holds for all precoders. As we increase γ to 20 dB, the effect becomes unnoticeable for

RCI and MPCI precoders except around the maximum limiting sum rates. For the SU

precoder, we can still observe the effect even though it is smaller compared to the case of

γ = 5 dB.

The plots of the optimal β that maximizes R∞
sum for different values of γ and ν are

shown in Figure 4.6. For the RCI precoder, a moderate correlation, e.g., ν = 0.4, relatively

does not affect the choice of β∗ and a high correlation coefficient such as ν = 0.8 reduces

β∗ slightly. A similar behavior is also observed for the MPCI when β∗ < 1 (or after γ
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Figure 4.5: Limiting sum rate per-antenna as a function of cell loading.
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Figure 4.6: Optimal β maximizing R∞
sum for different values of γ and ν.

passes a certain threshold). Otherwise, one can see that the correlation affects the choice

of β∗ (see the case ν = 0 and ν = 0.4). Interestingly, when we have a strong correlation

(e.g., ν = 0.8), the optimal β is less than one even for low SNR values.
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4.5 Conclusion

In this chapter, we derive the large system limit of the SINR of RCI, MPCI and SU pre-

coders in the presence of correlation at the transmitter side. Not only does the limiting

SINR depend on the cell-loading, SNR and regularization parameter (for the RCI pre-

coder) as shown in Chapter 3, but it also depends on the function of the limiting eigen-

value distribution of the correlation matrix. We also prove a surprising result for the RCI

precoder: the optimal regularization parameter maximizing the limiting SINR (or sum

rate) is not affected by the transmit correlation. Thus, as in i.i.d. channel case, it is the

ratio between the cell-loading and received SNR. By using the exponential correlation

model as an example, we present some numerical simulations showing the impact of the

correlation on the performance of the system in terms of the SINR and the sum rate per

antenna.

4.6 Appendix

4.6.1 Proof of Theorem 4.1

Let Ak = hk

(
HH

k Hk + αIN
)−1

hH
k . Then, the signal strength can be expressed as c2Sk

where Sk = |Ak|2
(1+Ak)2

. Let Ĥ = 1√
N
H̃ and ĥk = 1√

N
h̃k. We can rewrite Ak as

Ak = ĥk

(
ĤH

k Ĥk + ρR−1
t

)−1
ĥH
k .

Applying Lemma 2.2 to Ak yields

Ak −
1

N
Tr
(
ĤH

k Ĥk + ρR−1
t

)−1 a.s.−→ 0,

as N →∞. Note that the second term on the LHS is equal to

1

N
Tr

(
Rt

(
1

N
HH

k Hk + ρIN

)−1
)
.
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Thus, by using Lemma 2.8 (R1PL), we have

Ak −
1

N
Tr
(
ĤHĤ+ ρR−1

t

)−1 a.s.−→ 0.

The trace term can be evaluated as follows

1

N
Tr
(
ĤHĤ+ ρR−1

t

)−1
=

∫
dFN

X (λ)

λ
, (4.26)

where we denote X = ĤHĤ + ρR−1
t and FN

X is the e.s.d. of X. Let F be the l.s.d. of X

and suppose that FN
X

a.s.−→ F . Then, (4.26) converges almost surely to

lim
z→0

∫
dF (λ)

λ− z ,

which is the Stieltjes transform of F evaluated at 0. Let FN
Rt

be the e.s.d. of Rt and

FN
Rt

a.s.−→ Λ. Let ξ = limz→0mF (z). Based on Theorem 2.2, it follows that ξ is the positive

solution of

ξ =

∫ (
ρ

t
+

β

1 + ξ

)−1

dΛ(t) . (4.27)

Therefore, it follows that Ak − ξ a.s.−→ 0 and

Sk −
ξ2

(1 + ξ)2
a.s.−→ 0.

The interference energy can be written as c2Ik, where Ik is defined and can be rewrit-

ten as follows

Ik =
∑

j 6=k

|ĥk

(
ĤHĤ+ ρR−1

t

)−1
ĥH
j |2

=
∑

j 6=k

ĥk

(
ĤHĤ+ ρR−1

t

)−1
ĥH
j ĥj

(
ĤHĤ+ ρR−1

t

)−1
ĥH
k

=
1

(1 +Ak)2

∑

j 6=k

ĥk

(
ĤH

k Ĥk + ρR−1
t

)−1
ĥH
j ĥj

(
ĤH

k Ĥk + ρR−1
t

)−1
ĥH
k

=
1

(1 +Ak)2

∑

j 6=k

Ik,j .
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Applying Lemma 2.5 for Ik,j yields

max
j≤K,k

∣∣∣∣Ik,j −
1

N
Tr

((
ĤH

k Ĥk + ρR−1
t

)−1
ĥH
j ĥj

(
ĤH

k Ĥk + ρR−1
t

)−1
)∣∣∣∣

a.s.−→ 0.

Let Dk,j be the matrix inside the trace. It is a rank-1 matrix. Thus, it can be rewritten as

Dk,j = ĥj

(
ĤH

k Ĥk + ρR−1
t

)−2
ĥH
j

=
ĥj

(
ĤH

kjĤkj + ρR−1
t

)−2
ĥH
j

(
1 + ĥj

(
ĤH

kjĤkj + ρR−1
t

)−1
ĥH
j

)2 ,

where Ĥkj is Ĥk with jth row removed. By using the same steps as in analyzing the

asymptotic limit for Ak, one can show that for the term in the denominator

max
j≤K,k

∣∣∣∣ĥj

(
ĤH

kjĤkj + ρR−1
t

)−1
ĥH
j − ξ

∣∣∣∣
a.s.−→ 0.

For the numerator of Dk,j , after applying the rank-1 perturbation lemma twice, we have

max
j≤K,k

∣∣∣∣ĥj

(
ĤH

kjĤkj + ρR−1
t

)−2
ĥH
j −

1

N
Tr

((
ĤHĤ+ ρR−1

t

)−2
)∣∣∣∣

a.s.−→ 0.

One can check that

1

N
Tr

((
ĤHĤ+ ρR−1

t

)−2
)

=

∫
1

λ2
dFN

X (λ)

a.s.−→ lim
z→0

∂

∂z

∫
1

λ− z dF(λ)

= lim
z→0

∂

∂z
mF (z).

Thus, we can write

max
j≤K,k

∣∣∣∣∣Ik,j −
1

N

limz→0
∂
∂zmF (z)

(1 + ξ)2

∣∣∣∣∣
a.s.−→ 0.

Collecting the large system results for the terms of Ik, we have

Ik − β
limz→0

∂
∂zmF (z)

(1 + ξ)4
a.s.−→ 0. (4.28)
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Let ϑ = limz→0
∂
∂zmF (z). It is easy to show that

ϑ =
(1 + ξ)2E22

1− βE22
, (4.29)

where Eij is already defined in (4.5).

Now, let us analyze the asymptotic limit for c2. Its denominator (see (3.5)) can be

written as

1

N
Tr

((
1

N
HHH+ ρIN

)−1( 1

N
HHH

)(
1

N
HHH+ ρIN

)−1
)

=
1

N
Tr

(
Ĥ
(
ĤHĤ+ ρR−1

t

)−1
R−1

t

(
ĤHĤ+ ρR−1

t

)−1
)

=
1

N

k∑

j=1

ĥjX
−1R−1

t X−1ĥH
j

=
1

N

k∑

j=1

ĥjX
−1
j R−1

t X−1
j ĥH

j

(1 +Aj)2
,

where Xj =
(
ĤH

j Ĥj + ρR−1
t

)−1
. Using the previous result for Ak, it follows that

max
j≤K
|Aj − ξ| a.s.−→ 0.

By Lemma 2.5 and Lemma 2.8, maxj≤K

∣∣∣ĥjX
−1
j R−1

t X−1
j ĥH

j − 1
N Tr

(
X−2R−1

t

)∣∣∣ a.s.−→ 0. It

can be shown that
1

N
Tr
(
X−2R−1

t

)
= − ∂

∂ρ

1

N
Tr
(
X−1

)
.

Since 1
N Tr

(
X−1

) a.s.−→ ξ, then

max
j≤K

∣∣∣∣ĥjX
−1
j R−1

t X−1
j ĥH

j +
∂ξ

∂ρ

∣∣∣∣
a.s.−→ 0.

Thus, it follows that c2 converges almost surely to

Pd(1 + ξ)2

−β ∂ξ
∂ρ

. (4.30)
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It is also easy to check that
∂ξ

∂ρ
= −(1 + ξ)2E12

1− βE22
. (4.31)

Combining the large system results above, (4.6) and (4.7) follow immediately. More-

over, the limiting SINR for user k can be written as

SINR∞ =
γ

β

ξ2(1 + ξ)2

γϑ− (1 + ξ)2 ∂ξ
∂ρ

, (4.32)

where γ = Pd/σ
2 is the received SNR.

Substituting (4.29) and (4.31) into (4.32), we get

SINR∞ =
γ

β

ξ2(1− βE22)

γE22 + (1 + ξ)2E12

=
γ

β
ξ

ξ − βξE22

γE22 + (1 + ξ)2E12
. (4.33)

Now, let us consider ξ in (4.27). We can rewrite it as follows

ξ =

∫
(1 + ξ)t

ρ(1 + ξ) + βt
dΛ(t)

=

∫
ρ(1 + ξ) + βt

ρ(1 + ξ) + βt

(1 + ξ)t

ρ(1 + ξ) + βt
dΛ(t)

=

∫
ρ(1 + ξ)2 + βt2 + βξt2

(ρ(1 + ξ) + βt)2
dΛ(t)

= ρ(1 + ξ)2E12 + βE22 + βξE22. (4.34)

Thus, ξ− βξE22 = ρ(1+ ξ)2E12 + βE22 and (4.2) follows easily. This concludes the proof.
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4.6.2 Proof of Theorem 4.2

We can rewrite the limiting SINR as, SINR∞ = γ
β ξΥ, where

Υ =
βE22 + ρ(1 + ξ)2E12

γE22 + (1 + ξ)2E12
.

Let x′ = ∂x/∂ρ. Taking the derivative of SINR∞ over ρ yields

∂ SINR∞

∂ρ
=
γ

β
(ξ′Υ+ ξΥ′), (4.35)

where Υ′ is given by

Υ′ =

[
(1 + ξ)2 + 2ρ(1 + ξ)ξ′

]
E12 + ρ(1 + ξ)2E′

12 + βE′
22

γE22 + (1 + ξ)2E12

−
[
βE22 + ρ(1 + ξ)2E12

]
×

2(1 + ξ)ξ′E12 + (1 + ξ)2E′
12 + γE′

22

(γE22 + (1 + ξ)2E12)
2 . (4.36)

Putting (4.36) back into (4.35) results

∂ SINR∞

∂ρ
=
γ

β
(ξ′Υ+ ξΥ′) =

γ

β
ξΥ

[
ξ′

ξ
+

Υ′

Υ

]

=
γ

β
ξΥ

[
ξ′

ξ
+

(1 + ξ)2E12

βE22 + ρ(1 + ξ)2E12

+
2ρ(1 + ξ)ξ′ + ρ(1 + ξ)2E′

12 + βE′
22

βE22 + ρ(1 + ξ)2E12

− 2(1 + ξ)ξ′E12 + (1 + ξ)2E′
12 + γE′

22

γE22 + (1 + ξ)2E12

]
. (4.37)

By using (4.31) and (4.34), it is easy to show that

− ξ′

ξ
=

(1 + ξ)2E12

βE22 + ρ(1 + ξ)2E12
, (4.38)

which is the second term in the bracket of (4.37). Furthermore, by defining ψ := 2(1 +

ξ)ξ′E12 + (1 + ξ)2E′
12, χ := (1 + ξ)2E12 and Z := (βE22 + ρχ)(γE22 + χ), we can rewrite

(4.37) as



78 Downlink Beamforming with Transmit-side Channel Correlation

∂ SINR∞

∂ρ
=
γ

β
ξΥ

[
βE′

22 + ρψ

βE22 + ρχ
− γE′

22 + ψ

γE22 + χ

]

=
γξΥ

βZ

[
γρE22ψ + βE′

22χ− βE22ψ − γρE′
22χ
]

=
γ2ξΥ

βZ

[
E22ψ

(
ρ− β

γ

)
+ E′

22χ

(
β

γ
− ρ
)]

=
γ2ξΥ

βZ

[(
ρ− β

γ

)
(E22ψ − E′

22χ)

]
. (4.39)

It can be verified that

E22ψ − E′
22χ = 2(1 + ξ)ξ′E22E12 + (1 + ξ)2(E′

12E22 − E′
22E12), (4.40)

where E′
12 = −2(1 + ξ + ρξ′)E13 and E′

22 = −2(1 + ξ + ρξ′)E23. We can rewrite E12 as

E12 = E

[
ρ(1 + ξ) + βT
ρ(1 + ξ) + βT

T

(ρ(1 + ξ) + βT)2

]

= ρ(1 + ξ)E13 + βE23.

Similarly, we can express

E22 = ρ(1 + ξ)E23 + βE33.

Putting these results together, we can establish

E′
12E22 − E′

22E12 = −2β(1 + ξ + ρξ′)(E13E33 − E2
23).

Since the eigen-values of Rt are positive, then by using the Cauchy-Schwarz inequality

we have

E2
23 = E

[
T

1
2

(ρ(1 + ξ) + βT)
3
2

T
3
2

(ρ(1 + ξ) + βT)
3
2

]2

≤ E13E33.



4.6 Appendix 79

Hence, E13E33 − E2
23 ≥ 0. Moreover, E′

12E22 − E′
22E12 ≤ 0 since

1 + ξ + ρξ′ = 1 + ξ − ρ(1 + ξ)2E12

1− βE22

(a)
=

(1 + ξ)[ρ(1 + ξ)2 + βE22]− ξρ(1 + ξ)2

ξ(1− βE22)

(b)
=

1

1− βE22
> 0,

where (a) and (b) are obtained by incorporating (4.34) into the derivation. Finally, we

have

E22ψ − E′
22χ < 0,

since ξ′ < 0. So, we can rewrite (4.39) as

∂ SINR∞

∂ρ
= K

(
ρ− β

γ

)
. (4.41)

Since K 6= 0 for ρ > 0, the only stationary point, denoted by ρ◦, is given by ρ◦ = β/γ.

Thus, ρ∗ = ρ◦ is the optimal regularizing parameter that maximizes the limiting SNIR for

any correlation matrices satisfying conditions explained in Section 4.2. We can also check

that K < 0, for all ρ > 0. So, from (4.41), SINR∞ is monotonically increasing for ρ < ρ∗

and decreasing for ρ > ρ∗. This concludes that the limiting SINR is a quasi-concave

function of ρ. Thus, ρ∗ is the global optimizer. By using ρ∗, we have γ
βΥ = 1. As a result,

ξ is the maximum limiting SINR. This completes the proof.

4.6.3 Proof of Proposition 4.3

Let us write the asymptotic signal strength (4.6) and the interference energy (4.7) as PdS
∞

and PdI
∞, respectively. To prove the proposition, we just need to show that ∂S∞

∂ρ > 0 and

∂I∞

∂ρ > 0. Evaluating the latter results

∂I∞

∂ρ
=

(1 + ξ)2(E′
22E12 − E22E

′
12)− 2(1 + ξ)ξ′E12E22

E2
12(1 + ξ)4

,

where x′ = ∂x/∂ρ. In Appendix 4.6.2, it is shown that E′
22E12 − E22E

′
12 ≥ 0. Moreover,

from (4.31), ξ′ < 0. Thus, ∂I∞

∂ρ > 0 that implies I∞ is increasing in ρ.
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For the signal strength, we can write S∞ = ρ
β ξ + ξI∞. Therefore,

∂S∞

∂ρ
=
ρ

β
ξ′ +

ξ

β
+ ξ′

E22

E12(1 + ξ)2
+ ξ

∂I∞

∂ρ

(a)
= − ξ(1 + ξ)2E12

ρ(1 + ξ)2E12 + βE22

(
ρ

β
+

E22

E12(1 + ξ)2

)
+
ξ

β
+ ξ

∂I∞

∂ρ

(b)
= − ξ

ρ(1 + ξ)2E12 + βE22

(
ρ(1 + ξ)2E12

β
+ E22

)
+
ξ

β
+ ξ

∂I∞

∂ρ

= ξ
∂I∞

∂ρ
,

where in (a), we use (4.38) for ξ′. The sum of the first and second terms of (b) is zero.

Thus, the last equation follows. Since ∂I∞

∂ρ > 0, then ∂S∞

∂ρ > 0. This completes the proof.

4.6.4 Proof of Theorem 4.3

For β < 1, the SINR for user k can be expressed as

SINRk =
γ

Tr
((

HHH
)−1
)

=
γ

1
K Tr

((
1
K H̃RH̃H

)−1
) .

Let W = 1
K H̃RH̃H . Then,

1

K
Tr

((
1

K
H̃RH̃H

)−1
)

=

∫
1

λ
dGK

W(λ), (4.42)

where GK
W is the e.s.d. of W. Suppose that GK

W

a.s.−→ G. In the large system limit, (4.42)

converges almost surely to

lim
z→0

∫
1

λ− z dG(λ) = lim
z→0

mG(z). (4.43)

Then, by Theorem 2.3, mG(z) is given by

mG(z) = −
(
z − 1

β

∫
t

1 + tmG(z)
dΛ(t)

)−1

.
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Let χ = limz→0mG(z). Then, it follows easily that χ is the positive solution of

χ = β

(∫
t

1 + χ · t dΛ(t)
)−1

,

and SINRk − γ
χ

a.s.−→ 0.

For the case β > 1, the SINR for user k is given by (see (3.11)),

γA2
k

γAk + Tr
(
(HHH)−1

)
(1 +Ak)2

,

whereAk = hk(H
H
k Hk)

−1hH
k . It can be easily seen thatAk = lim

α→0
Ak, whereAk is defined

as in Appendix 4.6.1. Hence, it follows that

Ak −
1

β − 1

a.s.−→ 0.

Now, let V = 1
NR

1
2
t H̃

HH̃R
1
2
t . Suppose that that the e.s.d. of V converges to H almost

surely. Thus, 1
N Tr

((
1
NHHH

)−1
)

converges almost surely to

lim
z→0

∫
1

λ− z dH(λ) = lim
z→0

mH(z).

Based on Theorem 2.4, mH(z) is given by

mH(z) =

∫
1

t(1− β − βzmH(z))− z dΛ(t).

Let ψ = limz→0mH(z). Thus,

ψ =
1

β − 1

∫
dΛ(t)

t
.

Combining the results, we obtain the second equation of (4.13) and and we complete the

proof.
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4.6.5 Proof of Theorem 4.4

The SINR for user k can be expressed as (cf. eq.(3.12))

SINRk =
γ(hkh

H
k )2

γhkH
H
k Hkh

H
k + Tr (HHH)

.

For the numerator, we can write 1
Nhkh

H
k = ĥkRtĥk. By Lemma 2.3, ĥkRtĥ

H
k − 1

N Tr (Rt)
a.s.−→

0 where 1
N Tr (Rt) represents the average of the eigenvalues of the correlation matrix.

Hence, we have N−1hkh
H
k −

∫
t dΛ(t)

a.s.−→ 0.

Now let us consider the terms in the denominator. We can express 1
N2hkH

H
k Hkh

H
k as

ĥkRtĤ
H
k ĤkRtĥ

H
k . By using Lemma 2.3, ĥkRtĤ

H
k ĤkRtĥ

H
k − 1

N Tr
(
RtĤ

H
k ĤkRt

)
a.s.−→ 0.

We can write
1

N
Tr
(
RtĤ

H
k ĤkRt

)
=

1

N

∑

j 6=k

ĥjR
2
t ĥ

H
j .

By applying Lemma 2.5, we obtain

max
j≤K

∣∣∣∣ĥjR
2
t ĥ

H
j −

1

N
Tr
(
R2

t

)∣∣∣∣
a.s.−→ 0.

In the large system limit, N−1Tr
(
R2

t

) a.s.−→
∫
t2 dΛ(t). We can rewrite the last as E[T2].

Thus, ĥkRtĤ
H
k ĤkRtĥ

H
k − βE[T2]

a.s.−→ 0.

Considering the second term in the denominator of the SINR expression, we have

1

N2
Tr
(
HHH

)
=

1

N
Tr
(
ĤkRtĤ

H
k

)

=
1

N

∑

j 6=k

ĥjRtĥ
H
j .

By using Lemma 2.5, we have

max
j≤K

∣∣∣∣ĥjRtĥ
H
j −

1

N
Tr (Rt)

∣∣∣∣
a.s.−→ 0.

Hence, it follows that N−2Tr
(
HHH

)
− β

∫
t dΛ(t)

a.s.−→ 0. Arranging the large system

results together, (4.14) follows immediately.



Chapter 5

Optimal Training for Time-Division
Duplexed Systems with Multiuser

Precoding

In the previous chapters, it is assumed that the base station has perfect CSIT which is an ideal

assumption and is hard to obtain in practice. Here, we investigate the effect of channel uncertainty

on the design of MISO broadcast channels. For CSI acquisitions, we consider the Time Division

Duplex scheme where a perfect reciprocity between uplink and downlink channels is assumed. We

study the weighted sum rate optimization of the uplink and downlink data transmissions by finding

the optimal period for the uplink training and the data transmission for the uplink and the downlink.

Furthermore, for a fixed uplink power, we also explore the optimal uplink power allocation for the

training and uplink data transmission. Neglecting uplink data transmission and hence, there is no

power adaptation in the training process, it is shown that the optimal training period maximizing the

downlink sum rate is equal to or larger than one symbol or channel use per user. On the other hand,

by incorporating the uplink data communication, regardless the sum rate weighting, it is one symbol

per user. The optimal period for the downlink or the uplink data transmission and the optimal uplink

power allocation can be obtained by using standard numerical optimization algorithms.

5.1 Introduction

C
ONSIDERING the MISO broadcast channel setup used in the previous chapters,

the full multiplexing gain min(N,K) can be achieved if the system has both perfect

CSIT and CSIR [26],[6, Ch. 2]. Perfect knowledge of the CSI is an ideal scenario and is

hard to obtain in practical situations. The quality of the CSI at both communication ends

definitely affects the system performance. Thus, the optimal CSI acquisition maximizing

83
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the system performance is an important research topic and has been addressed in a large

volume of work, see for example, [50, 51, and references therein], [54], [31] and [8].

One of the most common strategies to acquire CSIR is the pilot-based training, where

the transmitter sends pilot symbols and the receiver estimates the downlink channel

based on the received signals. There is quite a long history and considerably rich litera-

ture discussing pilot-based training in single-user MIMO systems. Here, we just mention

a seminal paper in this area, which is due to Hassibi et al. [31]. The authors investigate

the impact of channel uncertainties or channel estimation errors at the receiver on the

capacity of single-user MIMO in the fading channel. They show that an orthonormal

training sequence is optimal in maximizing the capacity lower bound (i.e., the worst case

noise capacity). By performing the power allocation in the downlink for training and

data transmissions, they prove that the optimal number/period for the training symbols

is equal to the number of transmit antennas. Without power allocation, it is larger than

the number of transmit antennas. The extension of this work for the MISO broadcast

channels with perfect CSIT, reaches the same conclusions [17].

In general, there are two signaling schemes considered in the literature for the CSIT

acquisition: the Time-Division Duplex (TDD) and Frequency-Division Duplex (FDD)

schemes. In TDD, it is assumed that the uplink and downlink communications share

the same frequency but use different time slots and there is a reciprocity between these

two communication links. Thus, the BS learns the users’ downlink channels via the pilot-

based training in the uplink. In FDD, the downlink channels are first estimated by the

users based on the training symbols sent by the BS. Then, the users send these estimates

to the BS via the feedback link (uplink). Considering the feedback signal, it can be cate-

gorized into two types: analog and digital. The latter is also called the limited, quantized,

or finite-rate feedback [50].

The use of the analog feedback in multiuser systems becomes popular after the pub-

lication of [54] (see also [76]). In this feedback scheme, the users send unquantized and

uncoded signals for the feedback transmissions. This allows a fast transfer of the CSI [54].

In the digital feedback, on the contrary, the users feed back the quantized and encoded

signals representing their downlink channels. Various digital feedback schemes in single-
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user and multiuser systems are nicely summarized in [50, 51, and references therein]. In

the following, we will discuss some relevant references.

The focus of [54] is the analog feedback transmission in both TDD and FDD schemes.

It is assumed that each user has perfect CSIR. In TDD, even though the users do not

send their CSIR for the uplink training, they need it to decode their downlink data. The

efficiency of the analog feedback transmission in the TDD and the FDD based on the

mean-square error of the downlink channel estimates is compared. [40, 41] extend [54]

by analyzing the impact of the channel uncertainty on the system performance. Besides

deriving the optimal training period, the authors also propose a linear precoding design

and user selection mechanisms that maximize the achievable sum rates.

A recent work by Caire et al. in [8] analyzes the impact of downlink training and chan-

nel state feedback on the achievable ergodic sum rate of multiuser MIMO systems with

the ZF precoder. Both the analog feedback and the digital feedback via Random Vector

Quantization (RVQ) are considered in the system modeling. The precoder is constructed

based on the CSI feedback estimated by the BS. Often ignored, another round of training,

called the dedicated training, is also performed so as the users can estimate the coupling

between their downlink channel and the beamforming vector. Ergodic sum rate bounds

for various scenarios such as: feedback transmission through additive white Gaussian

noise (AWGN) and MAC channels as well as with delayed feedback are derived. The

authors conclude that a proper and careful design of the channel state feedback can yield

a significant downlink sum rate. The extension of this work studies the optimal training

period and feedback duration that maximize the ergodic sum rates [44, 45].

In this chapter, we consider the MISO broadcast channel as described in the previous

chapter. For the CSI acquisition, we assume the TDD scheme with a perfect reciprocity

between the uplink and the downlink channels. Different from other works mentioned

above, except [45] but in the context of the FDD, we include the uplink data transmission

in the analysis. The BS estimates the users’ downlink channels from the uplink train-

ing transmission. Then, the BS uses the channel estimates to construct the RCI precoder

(for the downlink data transmission) and also to decode the uplink data transmission

via the MMSE receiver. Thus, the channel estimation errors will affect both the effective
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downlink and uplink throughput. Our goal is to find the optimal system design parame-

ters that maximize the weighted sum rate of the uplink and downlink transmissions. As

in the previous chapters, the analysis throughout this chapter is performed in the large

system regime. Our contributions can be summarized as follows:

1. We derive the limiting SINR expressions for the uplink and downlink transmis-

sions. We also derive the optimal regularization parameter of the RCI that max-

imizes the downlink SINR and show that it is the ratio between the cell-loading

and the effective SNR. The latter is the function of the mean-square error of the

downlink channel estimates. This demonstrates that the RCI precoder adapts to the

CSIT quality.

2. Ignoring the uplink data transmission, we perform the optimization of the train-

ing period that maximizes the downlink sum rate. We show that it is a convex

program. We can also determine the uplink training power such that the optimal

training period is one symbol per user. A similar problem is also considered in

[101], but the authors use different approach in obtaining the large system results.

3. Incorporating the uplink data transmission in the analysis, we derive the optimal

period for the uplink training, uplink and downlink data transmission, and deter-

mine the optimal uplink power allocation for the training and the data transmis-

sion. As a result, we show that the optimal training period is always one symbol

per user. The optimal parameter for others can be obtained by using standard

numerical optimization algorithms. Part of the analysis in [45] also considers the

uplink data transmission, but focuses only in obtaining the optimal training pe-

riod. Moreover, that analysis is intended for the FDD scheme.

The rest of the chapter is organized as follows. The next section give the system de-

scriptions including the models for the uplink training, downlink and uplink data trans-

missions. In Section 5.3, the large system results for the SINR of the downlink and uplink

data transmission are derived. They will be used to determine the optimal system param-

eters maximizing the weighted sum rate of the downlink and uplink transmissions for

various scenarios, as discussed in Section 5.4. Some numerical results are also presented.

The conclusions can be found in Section 5.5.
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5.2 System Model

Similar to the previous chapters, we consider a MISO broadcast channel with N transmit

antennas at the base station and K users, where each user is equipped with a single

antenna. To mitigate the multi-user interference, the BS precodes or beamforms the data

symbols before transmission. In order to design the precoder, the BS needs to know the

channel of each user. Here, we focus on the TDD with a perfect reciprocity for the uplink

and downlink transmissions. Thus, for the CSI acquisition, the BS learns the CSI from

pilots or training symbols sent by each user in the uplink transmission. If the training

symbols are sent orthogonally by each user (orthogonal MAC), then the training period

is at least K symbols time (see [31, 54]). Intuitively, increasing the number of training

symbols will provide a better channel estimate at BS, as confirmed later in the following

section. For the uplink data transmission,the channel estimates are used by the BS to

decode the data sent by the user coherently. For the downlink transmission, they are

employed by the BS to construct the precoding vectors for each user. To decode the data

transmitted by the BS during this transmission, each user needs to know the coupling

between its downlink channel and the corresponding precoding vector which can be

obtained by performing a dedicated training [8]. However, it only takes one symbol and

can be considered very small in the system with large number of users or BS’s antennas.

Therefore, for the rest of this chapter, the dedicated training is omitted and we assume

that each user has a perfect knowledge of the coupling coefficient.

Uplink Training Uplink Data Downlink Data

T

Figure 5.1: Transmission phases.

In this work, we adopt the block-fading channel model where the channel is con-

stant for one block that has length T channel uses (symbols) and changes independently

between the blocks. Thus, from our discussions above, each block consists of three trans-

mission types: an uplink training, an uplink data transmission and a downlink transmis-

sion, as illustrated in Figure 5.1. The data models for each type or phase are described in

details in the following subsections.
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5.2.1 Uplink Channel Training

Let Tτ be the training period or the number of the training symbols and st be the vector of

size K that represents the training symbols from all users at integer time t. The collective

training symbols during Tτ are denoted by Sτ = [s1, · · · , sTτ ]. Here, we assume that each

user has the same transmit power for the training, denoted by Pτ . The received signal at

the BS can be expressed as

YBS = FSτ +N,

where YBS = [y1,BS, . . . ,yTτ ,BS] is the collective receive signal of size N × Tτ and N =

[n1, · · · ,nTτ ] is the matrix of receiver (BS) noise. The elements of nt are i.i.d. with dis-

tribution CN (0, σ2u). The matrix F is the uplink channel gain matrix where each element

fn,k represents the uplink channel between user k and the n-th antenna of the BS. The

elements of F are modeled as i.i.d. complex Gaussian with zero mean and unit variance.

For analytical tractability, we consider an orthogonal training scheme proposed previ-

ously in [54]. To be able to estimate F, we need Tτ ≥ K symbols. The training sequences

can be written as [54]

Sτ =
√
TτPτΘΘΘ,

where ΘΘΘ is a K × Tτ unitary matrix (ΘΘΘΘΘΘH = IK). Following [54], the minimum mean-

square error (MMSE) estimate of the uplink channel is given by

F̂ =

√
TτPτ

σ2u + TτPτ
YBSΘΘΘ

H .

The relation between the actual channel F and its estimates F̂ can be modeled as

follows

F = F̂+ F̃, (5.1)

where F̃ is the channel estimation error and independent from the channel estimate F̂.

The entries of F̃ are i.i.d. zero mean circularly symmetric complex Gaussian (ZMCSCG)

with variance

σ2τ =
1

1 + γτTτ
, (5.2)
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where γτ = Pτ/σ
2
u is the SNR per user in the uplink. The entries of F̂ are also i.i.d.

ZMCSCG with variance 1−σ2τ . We can reduce σ2τ by increasing the training power or/and

the training period. Note that F̂ will be used to construct the precoder for the downlink

transmission and to decode the users’ data in the uplink transmission.

5.2.2 Downlink Data Transmission

The model for the downlink data transmission is similar to the one in Section 3.2. As we

assume a perfect reciprocity between the uplink and the downlink channels, the relation

between the uplink and downlink channel matrices is given by

F = HT .

Thus, we can write
H = Ĥ+ H̃, and hk = ĥk + h̃k, (5.3)

where hk is the kth row of H. The entries of Ĥ and H̃ have the probability distributions

that follow those of F̂T and F̃T , respectively. The BS uses Ĥ to construct the RCI precoder

which is given by

P = c(ĤHĤ+ αIN )−1ĤH , (5.4)

where α is the regularization parameter and c is the normalizing constant to meet the

transmit power constraint E[‖x‖22] = Pd. Hence, c2 can be expressed as

c2 =
Pd

Tr
(
(ĤHĤ+ αIN )−2ĤHĤ

) . (5.5)

The received signal model is the same as in (3.6) but hk and H follows the channel

model (5.3). Similar to (3.7), we can express the downlink SINR as follows

SINRk,dl =

c2
∣∣∣∣hk

(
ĤHĤ+ αIN

)−1
ĥH
k

∣∣∣∣
2

σ2 + c2
∑

j 6=k |hk

(
ĤHĤ+ αIN

)−1
ĥH
j |2

, (5.6)

where σ2 is the users’ receiver noise.
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5.2.3 Uplink Data Transmission

For the uplink transmission, it is assumed that each user synchronously transmits to the

BS. The received signal at the base station can be expressed as

yBS =
K∑

k=1

fkrk + nk = Fr+ n, (5.7)

where r = [r1, . . . , rK ]T and rk is the uplink data symbol of user k. We assume that the

data symbols {rk} are independent. fk denotes the uplink channel between BS and user

k and is the kth column of F (or kth row of H).

Using (5.1), we can express (5.7) as

yBS = (F̂+ F̃)r+ n = F̂r+ F̃r+ n︸ ︷︷ ︸
z

, (5.8)

where z is the sum of the receiver noise and the residual channel estimation error. We

can consider the last as the additional noise since the BS only knows F̂ to decode r. The

covariance matrix of z can be derived as follows,

Kz = E[zzH ] = E[(F̃r+ n)(F̃r+ n)H ]

= Pu




K∑

j=1

E[f̃j f̃
H
j ]


+ E[nnH ]

=
(
PuKσ

2
τ + σ2u

)
IN .

In the second line, we use the fact that E[rrH ] = PuIK , and in the last line, from (5.2), it

follows that E[f̃j f̃
H
j ] = σ2τIN .

In order to decode the data symbols {rk}, we employ the MMSE estimation based on

the received signal vector, yBS and the channel estimate, F̂, which is known at the BS. Let

γu = Pu/σ
2
u be the uplink SNR. The MMSE receiver for user k is given by [20]

mk =
(
F̂F̂H + (Kσ2τ + γ−1

u )IN

)−1
f̂k

= constant×
(
F̂kF̂

H
k + (Kσ2τ + γ−1

u )IN

)−1
f̂k,
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where F̂k is F̂ with the kth column removed. Note that the MMSE receiver also has the

knowledge of σ2τ . The uplink SINR then can be expressed as (see for an example [20])

SINRk,up = f̂Hk

(
F̂kF̂

H
k + (Kσ2τ + γ−1

u )IN

)−1
f̂k. (5.9)

From the above, it is clear that the uplink SINR is the function of the (uplink) channel

estimates, channel estimation variance and the uplink SNR. Moreover, since the channel

estimates are random then (5.9) and also (5.6) are also random quantities. In the next

section, we can see that the randomness disappears in the large system regime.

5.3 Large System Analysis

In this section, we will derive the limiting SINR expressions for the uplink and downlink

data transmissions. We show how the channel uncertainty, represented by the channel

estimation error variance, affects those limiting SINRs. We also derive the optimal reg-

ularization parameter of the RCI precoder that maximizes the limiting SINR. We show

that it adapts to the changes of σ2τ .

5.3.1 Downlink Transmission

Theorem 5.1. Let ρ = α
N(1−σ2

τ )
be the normalized or effective regularization parameter and

γd = Pd/σ
2 be the downlink SNR. Let g(x, y) be the function as defined in (2.10). In the large

system limit, the downlink SINR, (5.6), converges almost surely to a deterministic quantity given

by

SINR∞
dl = γeg(β, ρ)

1 + ρ
β (1 + g(β, ρ))2

γe + (1 + g(β, ρ))2
, (5.10)

where

γe =
γd(1− σ2τ )
γdσ2τ + 1

(5.11)

is defined as the effective (downlink) SNR.

Proof. See Apppendix 5.6.1.
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It is obvious from (5.10) that the limiting SINR is deterministic and is the same for all

users. The randomness introduced by the channel estimates disappears. It is the function

of the effective SNR, the regularization parameter, and the cell-loading. Specifically, it is

increasing in γe. Thus, increasing γd and/or decreasing σ2τ will improve the effective SNR

and consequently the limiting SINR. It can be checked that ρ and β affect both the signal

strength and the interference energy. As discussed in the previous chapters, ρ controls

the amount of interference introduced to the users and hence, should be determined

optimally as stated in the following.

Corollary 5.1. The optimal choice of ρ, denoted by ρd, that maximizes SINR∞
dl is

ρd =
β

γe
. (5.12)

Consequently, the maximum limiting SINR can be expressed as

SINR∞,∗
dl = g(β, ρd). (5.13)

Proof. The limiting SINR (5.10) has the same structure as (3.16). Thus, the proof follows

the steps in Appendix 3.6.1.

The corollary above can be perceived as the extension of Theorem 3.2 for the channel

model (5.3) that accommodates the channel estimation error. As mention earlier, reducing

σ2τ will increase γe and thus, will decrease ρd. This will improve SINR∞,∗
dl since g(β, ρd) is

decreasing in ρd.

5.3.2 Uplink Transmission

Theorem 5.2. Let

ρu =
β

1− σ2τ
(
σ2τ + γ−1

u

)
. (5.14)

Then, the uplink SINR (5.9) converges almost surely to a deterministic quantity given by

SINR∞
up = g(β, ρu). (5.15)
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Proof. We can write (5.6) as

1

N(1− σ2τ )
f̂Hk

(
1

N(1− σ2τ )
F̂kF̂

H
k +

1

N(1− σ2τ )
(Kσ2τ + γ−1

u )IN

)−1

f̂k.

The entries of
√
N−1(1− σ2τ )−1f̂k and

√
N−1(1− σ2τ )−1F̂k are now zero mean with vari-

ance 1/N . Defining ρu as in (5.14) and applying Lemma 2.4, we have

SINRk,up − SINR∞
up

a.s.−→ 0,

and this completes the proof.

Similar to the downlink transmission case, it is obvious from the expression of ρu that

reducing the channel estimation error variance will decrease ρu. As a result, the uplink

SINR will increase.

By comparing (5.15) and (5.13), we can see that they have a common structure. More-

over, by rewriting ρd as
β

1− σ2τ
(
σ2τ + γ−1

d

)
,

we can see that it has the same form as ρu where γd can be considered to be equivalent

to γu. Thus, γu(1−σ2
τ )

γuσ
2
τ+1

can be perceived as the effective uplink SNR. For the rest of the

chapter, we just call γu as the uplink SNR.

5.3.3 Numerical Simulations

Theorem 5.1 (and also Corollary 5.1) already provided the expression for the limiting

downlink SINR. Figure 5.2 shows how the random downlink SINRs of (5.6) converge to

the limiting SINR. The random SINRs are obtained by using the same procedure as in

obtaining Figure 3.2. Considering user 1, for different system sizesN and for each γd, 500

channel realizations are generated and the corresponding SINRs are computed. The dash

line in the figure represents the average of the random SINRs. The difference between

this average SINR and its asymptotic limit is about 2.2 dB (for γd = 20 dB) when N = 8

and becomes around 0.25 dB when N = 64. One can see that as the system size increases
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Figure 5.2: Comparison of the randomly generated downlink SINR for user 1 (dot) with
the average SINR (dash) and the asymptotic limit (5.10) (solid line) with ρ = ρd, Tτ = K,
γτ = 0 dB and β = 0.75.

the spread of the random SINRs becomes smaller. It is already about 2 dB around the

average when N = 64.

Figure 5.3 illustrates the applicability of the large system results for the finite-size

system design. Similar to the previous simulations, we generate 500 channel realiza-

tions. For each channel realization, we compute the optimal regularization parameter, de-

noted by ρ∗d,FS, that maximizes the achievable downlink sum rate, Rsum =
∑K

k=1 log2(1 +

SINRk,dl). Then, its average sum rate is compared the one that apply the large system

limit result, i.e., ρd. As one can observe from the figure, even for a reasonable small

system N = 8, the gap between the curves is very small.
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Figure 5.3: Comparison of the average sum rate of the downlink by using ρ = ρd and
ρ = ρ∗d,FS

with N, β = 0.75, σ2τ = 0.1.

Similar to Figure 5.2, Figure 5.4 demonstrates the convergence of the random uplink

SINRs to its asymptotic limit. Our observations from this figure follow to those for the

downlink case. Our numerical simulations so far show the validity of using the large

system results in Theorem 5.1 and 5.2 for the finite-size system. Thus, these asymptotic

results will be used in the following section to derive the optimal parameters that maxi-

mize system performance.
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Figure 5.4: Comparison of the randomly generated uplink SINR for user 1 (dot) with the
average SINR (dash) and the asymptotic limit (5.15) (solid line) with ρ = ρu, Tτ = K,
γτ = 0 dB and β = 0.75.
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5.4 Asymptotically Optimal Parameters in TDD Training-based

RCI Beamforming Scheme

As mentioned previously in the introduction section, most of the works in the area con-

sidered in this chapter focus on maximizing the downlink throughput. Similar to [45],

we include the uplink data transmission in our analysis. So, in this section, we concern

in maximizing the weighted (limiting) sum rate of the downlink and uplink by optimally

choosing the following parameters: the training period, the uplink and downlink data

transmission periods, the power for the training and the uplink data transmission.

As illustrated in Figure 5.1, for one channel block of length T , we have an uplink

training, a downlink transmission and an uplink data transmission. The last two have

transmission duration of T d and Tu, respectively. Let T = T
K be the normalized block

length w.r.t. the number of users. Then, we can write

T τ + T u + T d = T ,

where T • = T•

K . We should note that T ≤ WcTc where Wc and Tc are the coherence

bandwidth and coherence time respectively [45]. Now, let T up = T τ + T u be the total

period for the uplink transmission. Then, for a fixed uplink power or SNR γup, we can

define the following relationship (see [31])

γτT τ + γuT u = γupT up,

where γτ = Kγτ . Moreover, let ν ∈ (0, 1) be the fraction of the uplink SNR which is

allocated for the uplink data transmission. Then, we can write [31]

γuT u = νγupT up (5.16)

γτT τ = (1− ν)γupT up. (5.17)

For the downlink transmission of Td channel uses, the following sum rate is achiev-
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able

Rd =
Td
T

K∑

k=1

log(1 + SINRk,dl).

From Theorem 5.1, SINRk,dl− SINR∞
dl

a.s.−→ 0 and the maximum limiting SINR is given by

(5.13). Thus, we can define the limiting sum rate per antenna as follows

R∞
d = β

T d

T
log
(
1 + SINR∞,∗

dl

)
. (5.18)

Similarly, we can also define the limiting sum rate for the uplink transmission as follows

R∞
u = β

T u

T
log
(
1 + SINR∞

up

)
. (5.19)

Let w ∈ [0, 1] and R∞
w = wR∞

d + (1− w)R∞
u be the weighted limiting sum rate. In the

remainder of this chapter, we consider to solve the following optimization problem

P1 : max
T τ ,T d,γτ

Rw (5.20a)

s.t. T τ + T u + T d = T (5.20b)

γτT τ + γuT u = γupT up. (5.20c)

A somewhat similar optimization problem is also considered in [45] but in the context

of FDD systems. In what follows, we will discuss several scenarios of the optimization

problem above.

5.4.1 Two Phases of Transmission: No Uplink Data Transmission

This is the simplest case of P1. The optimization problem becomes

P2 : max
T τ

R∞
d (5.21)

s.t. T τ + T d = T .



5.4 Asymptotically Optimal Parameters in TDD Training-based RCI Beamforming
Scheme 99

−5 0 5 10 15 20 25 30

1

5

10

15

20

25

30

γτ dB

T
∗ τ

Figure 5.5: Optimal training symbols per user vs. uplink training power (γd = 20 dB,
T = 200).

Here, we focus on finding the optimal training period that maximizes the limiting down-

link sum rate. A similar problem is considered in [40] and also [45] but the authors

employ the ZF precoder at the BS. Independently, [101] considers the same settings as

ours but the large system results are obtained by using a different approach.

The objective function of P1 is a strictly concave function as proved in Appendix

5.6.2. Moreover, the constraint of P1 is linear. Thus, P1 is a convex program. The unique

stationary point can be obtained by setting
∂R∞

d

∂T τ
, in (5.26), equal to zero. However, it

can not be expressed in a closed form and can be found by using standard convex opti-

mization or line search algorithms. Since P1 is convex, we can also determine the uplink

training power such that the optimal training symbols per user, denoted by T
∗
τ , is one

symbol per user by finding γ̄τ that satisfies
∂R∞

d

∂T τ

∣∣∣
T

∗

τ=1
= 0. Figure 5.5 illustrates T

∗
τ as

a function of γ̄τ . It shows that the optimal training symbol is decreasing in γ̄τ . In our

example, where we set γd = 20 dB, T = 200, we need a training SNR which is larger than

28 dB to get one pilot or training symbol per user.
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5.4.2 Fixed Period of the Downlink Data Transmission

The goal of this subsection is to investigate how the training period and the training

power affect the downlink transmission. Since Td is fixed then T up is also fixed. The

weighted limiting sum rate maximization the training can be formulated as follows

P3 : max
γτ ,T τ

Rw (5.22)

s.t. T τ + T u = T up

γτT τ + γuT u = γupT up.

Our optimizing variables in P3 are γτ and T τ . Both will affect the downlink (limiting)

SINR via σ2τ . Since T d is already fixed, then pre-log term of R∞
d does not change with T τ .

Hence, R∞
d is increasing in both γτ and T τ . For the uplink data transmission, increasing

T τ will increase the uplink SINR but on the other hand decrease the pre-log factor ofR∞
u .

Similarly, increasing γτ will improve the CSI at the BS but with the cost of decreasing

the power for the uplink data transmission. Hence, both γτ and T τ provide a trade-off

between improving the CSI at the BS and decreasing the performance of the uplink data

transmission. Solving P3 will give the optimal choice of γτ and T τ and its solution is

summarized in the following.

Theorem 5.3. Rw in P3 reaches its maximum by choosing T τ = 1. For any given feasible T τ ,

Rw is also a strictly concave function of γτ . Thus, the optimal γτ , denoted by γ∗τ , is unique and is

given by the solution of ∂Rw

∂γτ

∣∣∣
T τ=1

= 0.

Proof. We can solve P3 in two steps: first, with a fixed γτ , we derive the optimal T τ and

by substituting it back into Rw we then solve for the optimal γτ . Let us consider R∞
d in

(5.18). From (5.17), we can write

ρd =
β

γd

(
γd + 1

(1− ν)γupT up
+ 1

)
. (5.23)

Since T d and T up are fixed then R∞
d is not affected by T τ (∀ν). Then, let us consider R∞

d
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in (5.19) with T u = T up − T τ . ρu in the uplink SINR can be expressed as

ρu =
β

(1− ν)γupT up

(
1 +

T u

νγupT up

)
+

βT u

νγupT up
. (5.24)

Thus, for a fixed ν, as T τ increases, the (limiting) uplink SINR increases logarithmically.

On the other hand, the pre-log factor of R∞
u decreases linearly. This suggests that R∞

u is

decreasing in T τ . Analytically, it is stated in following proposition.

Lemma 5.1. The uplink sum rate is a monotonically decreasing function over T τ

Proof. See Appendix 5.6.3

Based on the lemma above, the optimal training period is one symbol per user. Now,

we only have ν as the design variable. By using the same steps as those in Appendix 5.6.2,

it can be easily shown that g(β, ρd) is strictly concave over ν. It is also proved in Appendix

5.6.4 that g(β, ρu) is concave in ν. Since both the log operation and linear combination do

not change the concavity, therefore the weighted sum rate is strictly concave over ν. From

(5.17), we can see that γτ is affine in ν. Thus, Rw is also strictly concave over γτ [7]. The

optimal γτ can then be found efficiently by using line search or other existing algorithms

for solving convex/concave optimization problems.

Comparing the optimal T τ obtained in the theorem above and the one from Subsec-

tion 5.4.1, we can conclude that involving power allocation between the uplink training

and data transmission in maximizing the weighted sum rate will lead to a minimum

number of training period. A similar conclusion is also stated in [31] in the context of

single-user MIMO systems. In [44], it can be achieved if a certain condition is satisfied.

5.4.3 Variable Downlink and Uplink Transmission Periods

In this subsection, we consider the original problem P1. It is the same as P3 except we

have T d as another design variable. Now, ρd in (5.23) is a function of both ν and T d while

ρu is a function of ν, T d and also T τ . By using the same arguments as in Theorem 5.3, we

can state the following.
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Theorem 5.4. The maximum Rw in P1 can be achieved by choosing T τ = 1.

The above applies for all ν, T d > 0. Our previous discussions regarding the optimal

T τ still hold.

Now, we only have to determine the other two optimal design variables. Unfortu-

nately, one can show that the weighted sum rate is not jointly concave over ν and T d.

However, since this problem involves only two design variables we can solve it by us-

ing a brute-force method. Since the design variables are continuous, we should first

discretize the design variables and then do an exhaustive search. This leads to an ap-

proximate solution to the original problem. We can expect this solution to be closer to the

true optimum when we use a finer discretization. A more directed approach is by using

the alternating optimization technique although a global optimum solution is not guar-

anteed. In this method, we find an optimum point over one variable while keeping other

variables fixed. In particular, for our problem, the algorithm can be described as follows

[64]: start with an arbitrary initial point value T
(0)
d ; for ℓ ≥ 1, perform the following steps

iteratively

ν(ℓ) = argmax
ν∈V

Rw(T
(ℓ−1)
d , ν)

T
(ℓ)
d = arg max

T d∈Td
Rw(T d, ν

(ℓ))

with V = {ν : νmin ≤ ν ≤ νmax} and Tdl = {T d : T d,min ≤ T d ≤ T d,max}, until ν and

T d converge under a specified termination condition. We should note that we need the

upper bound and lower bound for ν in the above due to ν exists in the interval (0, 1).

This will avoid the training or uplink data transmission to have zero power. Similarly,

we also have the bounds for Td to prevent zero period for the uplink and downlink data

transmissions.

Now let us consider the steps in the alternating optimization. Since Rw(T d, ν) is con-

cave over ν, we can obtain ν(ℓ) by employing existing algorithms for solving the con-

vex programming. Finding T
(ℓ)
d is a little bit more complicated since it is a difference of

convex (dc) problem for some values of ν(ℓ). However, since it is a one dimensional

optimization problem we can use existing algorithms of line search with constraints
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such as the projected gradient algorithm (albeit its slow convergence), or the projected

Broyden-Fletcher-Goldfarb-Shanno (BFGS). The later is one of the members of quasi-

Newton methods. These algorithms can only be guaranteed to converge to a local op-

timum point. Moreover, as we can see later in the simulation results (Figure 5.6(a)), the

resulting optimum points using the BFGS algorithm are relatively the same as those ob-

tained from the exhaustive search.

The optimal design variables as function of weight w can be seen in Figure 5.6(a). In

general, as we increase the weight w, the optimal ν is non-increasing while the optimal

T d is non-decreasing. We can divide w in Figure 5.6(a) into three regions: w ≤ wup,

wup < w < wdl and w ≥ wdl. We refer to these regions as region I, II and III respectively.

We denote wup as the upper limit of w where T
∗
d = T d,min or equivalently, ν∗ = νmax,

and wdl as the lower limit of w where ν∗ = νmin or T
∗
d = T d,max. In region I, the uplink

(downlink) period is maximum (minimum) and ν∗ is chosen to maximize the sum rate.

We can say that in this region, the uplink sum rate strongly dominates the downlink sum

rate. If we allow T dl,min = 0 then we only have the uplink transmission. On the contrary,

in the region III, the downlink sum rate strongly dominates the uplink sum rate. It is also

apparent from the figure that the optimal T d is increasing while optimal ν is decreasing in

region II. In this region, we see a trade-off between T d and optimal ν which consequently

affects the downlink and uplink sum rates.

It is also interesting to see how the regions change as we vary the downlink or uplink

SNR. As shown in Figure 5.6(b), with a fixed uplink SNR, as the downlink SNR increases,

region I is getting smaller while region III becomes larger. This result is intuitive because

increasing downlink SNR implies that we put more weight (less weight) indirectly to the

downlink (uplink) sum rate. For the middle region, it grows slightly.
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5.5 Conclusion

In this chapter, we perform the weighted sum rate maximization of the uplink and down-

link transmissions in a TDD training-based MISO broadcast channel consisting of K

single-antenna users and N antennas at the base station. The design parameters are the

training period, the uplink and downlink data transmission periods, the training power

and the uplink data transmission power. Considering only the downlink transmission,

the optimal training period per user, T
∗
τ , maximizing the downlink sum rate is larger than

or equal to one. Increasing the training power will reduce T
∗
τ and after a certain threshold

of the training power T
∗
τ becomes one symbol per user. Incorporating the uplink trans-

mission and conducting the power allocation between the training and the uplink data

transmission, we demonstrate that T
∗
τ = 1. This holds for any values of other design pa-

rameters. For a fixed downlink transmission period, the weighted sum rate is a concave

function of ν where ν controls the uplink power splitting between the training and data

transmission. For a fixed downlink transmission period, the optimal downlink period

and ν can be obtained, for an example, by using the alternating optimization scheme. We

also show, by numerical simulations, the trade-off between the optimal power allocated

to uplink data transmission and the optimal period of the downlink data transmission.

5.6 Appendix

5.6.1 Proof of Theorem 5.1

We start the proof by rewriting (5.6) based on the channel model (5.3) as follows

SINRk =
c2[Âk + Ãk]

2

c2
[
Bk + 2(1 + Âk)Re{Qk}+ (1 + Âk)2Rk

]
+ (1 + Âk)2σ2

, (5.25)

where the terms Âk, B̂k, Πk, Qk and Rk are defined as follows

Âk := ĥk(Ĥ
H
k Ĥk + αIN )−1ĥH

k

Bk := ĥk(Ĥ
H
k Ĥk + αIN )−1ĤH

k Ĥk(Ĥ
H
k Ĥk + αIN )−1ĥH

k
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Ãk := h̃k(Ĥ
H
k Ĥk + αIN )−1ĥH

k

Qk := ĥkOkĤ
H
k Ĥk

{
Ok −

Okĥ
H
k ĥkOk

1 + Âk

}
h̃H
k

Rk := h̃k

(
Ok −

Okĥ
H
k ĥkOk

1 + Âk

)
ĤH

k Ĥk

(
Ok −

Okĥ
H
k ĥkOk

1 + Âk

)
h̃H
k

with Ok = (ĤH
k Ĥk + α̃IN )−1. Ĥk is Ĥ with kth row removed. In the following, the large

system limit for each term in (5.25) is derived.

1. Âk: It can be rewritten as

Âk =
1

N(1− σ2τ )
ĥk

(
1

N(1− σ2τ )
ĤH

k Ĥk + ρIN

)−1

ĥH
k ,

where ρ = α
N(1−σ2

τ )
. Here, the entries

√
1/N(1− σ2τ )−1ĥ and

√
1/N(1− σ2τ )−1Ĥ

are zero mean with variance 1/N . Applying Lemma 2.4 leads to

Âk − g(β, ρ) a.s.−→ 0,

where g is defined in (2.10).

2. Ãk: Similar to the above, we can rewrite this term as

Ãk =
1

N(1− σ2τ )
h̃k

(
1

N(1− σ2τ )
ĤH

k Ĥk + ρIN

)−1

ĥH
k .

Since the entries
√

1
N σ

−2
τ h̃k and

√
1
N (1− σ2τ )−1ĥk are independent and zero mean

with variance 1/N , then by Lemma 2.3 we can show Ãk
a.s.−→ 0.

3. Bk: It can be rewritten as

B̂k =
1

N(1− σ2τ )
ĥk

(
1

N(1− σ2τ )
ĤH

k Ĥk + ρIN

)−1( 1

N(1− σ2τ )
ĤH

k Ĥk

)

×
(

1

N(1− σ2τ )
ĤH

k Ĥk + ρIN

)−1

ĥH
k .

It is similar to the expression of Bk in (3.27). Thus, we can show

Bk −
(
g(β, ρ) + ρ

∂g(β, ρ)

∂ρ

)
a.s.−→ 0.
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4. Qk: We can rewrite this term as

Qk = ĥkOkĤ
H
k ĤkOkh̃

H − BkÃ
∗
k

1 + Âk

= Q
(1)
k −

BkÃ
∗
k

1 + Âk

.

By using Lemma 2.3, it follows that

√
1

N(1− σ2τ )
ĥkOkĤ

H
k ĤkOk

(√
1

Nσ2τ
h̃H

)
a.s.−→ 0,

where Ok = N(1 − σ2τ )Ok. Then, it follows easily that Q
(1)
k

a.s.−→ 0. Previously, we

have shown Ãk
a.s.−→ 0. Thus, Qk

a.s.−→ 0.

5. Rk: It can be written as

Rk = h̃OkĤ
H
k ĤkOkh̃−

2ℜ
[
Q

(1)
k Ã∗

k

]

1 + Âk

+
Bk|Ãk|2
(1 + Âk)2

=
σ2τ

1− σ2τ

(
1− σ2τ
σ2τ

h̃OkĤ
H
k ĤkOkh̃

)
− 2
ℜ
[
Q

(1)
k Ã∗

k

]

1 + Âk

+
Bk|Ãk|2
(1 + Âk)2

=
σ2τ

1− σ2τ
R

(1)
k − 2

ℜ
[
Q

(1)
k Ã∗

k

]

1 + Âk

+
Bk|Ãk|2
(1 + Âk)2

.

By using the previous large system results, the second term and the third term of

Rk converge almost surely to 0. It can be checked that R
(1)
k has the same structure

as Bk. Then, it follows that, R
(1)
k −

(
g(β, ρ) + ρ∂g(β,ρ)

∂ρ

)
a.s.−→ 0. Thus,

Rk −
σ2τ

1− σ2τ

(
g(β, ρ) + ρ

∂g(β, ρ)

∂ρ

)
a.s.−→ 0.

6. c2: We can write this term as

c2 =
Pd(1− σ2τ )

1

N
Tr

(
1

N(1−σ2
τ )
ĤHĤ

(
1

N(1−σ2
τ )
ĤHĤ+ ρIN

)−2
) .

Following the same step as in deriving the large system limit for Bk in (3.27), the
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denominator of the equation above converges almost surely to g(β, ρ) + ρ∂g(β,ρ)
∂ρ .

Thus,

c2 − Pd(1− σ2τ )
g(β, ρ) + ρ∂g(β,ρ)

∂ρ

a.s.−→ 0.

Combining the large system results above, (5.10) follows immediately and this concludes

the proof.

5.6.2 The Concavity of R∞
d over T τ

We will prove the concavity of the sum rate per antenna over T τ in two-phase training

by showing that the second derivative of R∞
d (over T τ ) is nonpositive for all values of

T τ (1 ≤ T τ ≤ T ). For notational simplicity, we denote g = g(·, ·) as just g, x′ = ∂x/∂T τ ,

x′′ = ∂2x/∂T
2
τ and ρ = ρd.

The first derivative of R∞
d over T τ is given by

∂R∞
d

∂T τ

= −β
T
log(1 + g) + β

(
1− T τ

T

)
g′

1 + g
, (5.26)

where

g′ = −g ρ′(1 + g)2

β + ρ(1 + g)2
.

We can check that g′ > 0 since

ρ′ = − β

γτT
2
τ

(
1 +

1

γd

)
< 0.

The stationary point can be obtained by setting the derivative equal to zero. The second

derivative of R∞
d is given by

∂2R∞
d

∂T
2
τ

= −2β

T

g′

1 + g
+ β

(
1− T τ

T

)[
g′′(1 + g)− (g′)2

(1 + g)2

]
. (5.27)

The first term in (5.27) is always positive. Hence, to prove the concavity of R∞
d we

only need to show that g′′ ≤ 0. After some algebraic manipulations, g′′ can be expressed
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as

g′′

g
= − 2βρ′(1 + g)g′

[β + ρ(1 + g)2]2
− ρ′′(1 + g)2

β + ρ(1 + g)2
+ 2

(g′)2

g2

a
= 2β

( −ρ′(1 + g)

β + ρ(1 + g)2

)(
g′

β + ρ(1 + g)2

)
− 2

g′

gT τ

+ 2
(g′)2

g2

= 2

(
g′

g(1 + g)

)(
g′

1 + 1
βρ(1 + g)2

)
− 2

g′

gT τ

+ 2
(g′)2

g2

≤ 2
g′

g

(
g′

g

(
1 +

1

1 + z

)
− 1

T τ

)

b
≤ 2

g′

g

(
1

T τ

(
1− 1

1 + z

)(
1 +

1

1 + z

)
− 1

T τ

)

= 2
g′

g

(
1

T τ

(
1− 1

(1 + z)2

)
− 1

T τ

)

c
< 0

where

z =
1

β
ρ(1 + g)2 =

1

γd

(
γd + 1

γτT τ

+ 1

)
(1 + g)2

and (a) is obtained by using the relation

ρ′′ = − 2

T τ

ρ′

and (b) from

g′

g
= − ρ′(1 + g)2

β + ρ(1 + g)2

=
1

T τ

1
γd

(
γd+1

γτT
2
τ

)
(1 + g)2

1 + 1
γd

(
γd+1

γτT τ
+ 1
)
(1 + g)2

≤ 1

T τ

1
γd

(
γd+1

γτT τ
+ 1
)
(1 + g)2

1 + 1
γd

(
γd+1

γτT τ
+ 1
)
(1 + g)2

=
1

T τ

z

1 + z
=

1

T τ

(
1− 1

1 + z

)
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and (c) from the fact that

1− 1

(1 + z)2
< 1.

Since g′′ < 0, therefore R∞
d is strictly concave over T τ .

5.6.3 Proof of Lemma 5.1

In the following, we denote x′ = ∂x/∂T τ . To prove the lemma, we just need to show

∂R∞
u /∂T τ < 0, ∀T τ . The derivative is given by

∂R∞
u

∂T τ

= −β
T
log(1 + g(β, ρu)) + β

T up − T τ

T

g′(β, ρu)
1 + g(β, ρu)

.

Since g(β, ρu) > 0 and

ρ′u = − β

νγupT up

(
1 +

1

(1− ν)γupT up

)
< 0,

then it follows that
g′(β, ρu)
g(β, ρu)

= − ρ′u(1 + g(β, ρu))
2

β + ρu(1 + g(β, ρu))2
> 0.

Continuing on, we have

∂R∞
u

∂T τ

=
β

T

(
− log(1 + g(β, ρu)) + (T up − T τ )

g′(β, ρu)
g(β, ρu)

g(β, ρu)

1 + g(β, ρu)

)

(a)
<

β

T

(
− log(1 + g(β, ρu)) +

g(β, ρu)

1 + g(β, ρu)

)

(b)
< 0.

The line (a) is obtained by using the following result

(T up − T τ )
g′(β, ρu)
g(β, ρu)

<
T upβ

νγupT up

(
1 +

1

(1− ν)γupT up

)
(1 + g(β, ρu))

2

β + ρu(1 + g(β, ρu))2

< 1,
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where the last line is obtained by using the fact that

β

νγup

(
1 +

1

(1− ν)γupT up

)
< ρu.

The line (b) is easily obtained by using the well-known inequality

log(1 + x) ≥ x

1 + x
,

and this line concludes the proof.

5.6.4 The Concavity of g(β, ρu) over ν

Here, we denote x′ = ∂x/∂ρu, x′′ = ∂2x/∂ρ2u and g = g(β, ρu). In what follows, we show

that ∂2g/∂ρ2u ≤ 0. The first and second derivatives of ρup over ν are respectively given by

ρ′u =
β

(1− ν)2γupT up
+

βT u

νγupT up

(
1

(1− ν)2γupT up
− 1

ν
− 1

ν(1− ν)γupT up

)

ρ′′u =
2β

(1− ν)3γupT up
+

βT u

ν2γupT up

(
3ν − 1

(1− ν)3γupT up
+

2

ν
− 3ν − 2

ν(1− ν)2γupT up

)
.

Furthermore, it is easy to show that ρu is a convex function over ν, since

ρ′′u =
2β

(1− ν)3γupT up
+

βT u

ν2γupT up

(
6ν2 − 6ν + 2

ν(1− ν)3γupT up
+

2

ν

)

≥ 0.

The relation between ρ′u and ρu can be expressed as

ρ′u =
1

1− ν ρu −
βT u

ν2(1− ν)γupT up

(
1 +

1

γupT up

)

=
1

1− ν ρu − d(ν) (5.28)
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and between ρ′′u and ρ′u as

ρ′′u =
2

1− ν ρ
′
u +

2βT u

ν3(1− ν)γupT up

(
1 +

1

γupT up

)

=
2

1− ν ρ
′
u + c(ν). (5.29)

The second derivative of g over ν is given by

g′′

g
= − 2βρ′u(1 + g)g′

[β + ρ(1 + g)2]2
− ρ′′u(1 + g)2

β + ρ(1 + g)2
+ 2

(g′)2

g2
.

Continuing on, we have

g′′

g
= 2

(
(g′)2

g(1 + g)

)(
1

1 + 1
βρ(1 + g)2

)
− ρ′′u(1 + g)2

β + ρ(1 + g)2
+ 2

(g′)2

g2

≤ 2
(g′)2

g2

(
1 +

1

1 + 1
βρ(1 + g)2

)
−

1
βρ

′′
u(1 + g)2

1 + 1
βρ(1 + g)2

=
2(g′)2(2 + 1

βρ(1 + g)2)− 1
βρ

′′
ug

2(1 + g)2

g2
(
1 + 1

βρ(1 + g)2
) . (5.30)

The term (g′)2 is given by

(g′)2 =
(ρ′u)

2g2(1 + g)4

(β + ρ(1 + g)2)2
,

and substituting it to (5.30), we have (after some algebraic manipulations)

g′′

g
≤

2g2(1 + g)4(2(ρ′u)
2 − ρuρ′′u) + 1

βρug
2(1 + g)6(2(ρ′u)

2 − ρuρ′′u)− βρ′′ug2(1 + g)2

g2
(
1 + 1

βρ(1 + g)2
)
(β + ρ(1 + g)2)2

.

Now, we will prove that 2(ρ′u)
2 − ρuρ′′u ≤ 0. By rewriting

ρu = (1− ν)(ρ′u + d(ν))

we have

ρuρ
′′
u = 2(ρ′u)

2 + (1− ν)c(ν)(ρ′u + d(ν)) + 2d(ν)ρ′u.
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Therefore,

2(ρ′u)
2 − ρuρ′′u = −(1− ν)c(ν)(ρ′u + d(ν))− 2d(ν)ρ′u.

By substituting ρ′u = 1
1−ν ρu − d(ν) to the above equation, we get

2(ρ′u)
2 − ρuρ′′u = −ρuc(ν)− 2

ρud(ν)

1− ν + 2d2(ν)

= −ρuc(ν)− 2d(ν)

(
ρu

1− ν − d(ν)
)

= −ρuc(ν)− 2d(ν)

(
T u

ν2(1− ν)γupT up

(
ν +

ν

(1− ν)γupT up
− 1− 1

γupT up

)

+
x(ν)

1− ν

)

= −
(

βT u

γupT up

)2
2

ν4(1− ν)2

(
1− ν + 1

γupT up

)(
1 +

1

γupT up

)

−
(

βT u

γupT up

)2
2

ν4(1− ν)2

(
ν +

ν

(1− ν)γupT up

− 1− 1

γupT up

)

×
(
1 +

1

γupT up

)
− 2x(ν)

(
c(ν) +

d(ν)

1− ν

)

= −
(

βT u

γupT up

)2
2

ν4(1− ν)2

(
ν +

ν

(1− ν)γupT up

)(
1 +

1

γupT up

)

− 2x(ν)

(
c(ν) +

d(ν)

1− ν

)

≤ 0,

where

x(ν) =
β

(1− ν)γupT up

≥ 0.

From (5.28) and (5.29) it is obvious that c(ν), d(ν) and ρ′′u are nonnegative. Thus, it is

straightforward to see that g′′ ≤ 0 and therefore g(β, ρu) is a concave function over ν.

This completes the proof.





Chapter 6

Optimal Power Allocation for
Multiuser Precoding via RCI

In this chapter, we consider an optimal power allocation problem that maximizes the sum rate of

a single-cell MISO broadcast channel with the RCI precoder at the base station. Unlike the channel

inversion or zero forcing beamforming, the optimal power allocation with RCI precoder is a nonlinear

non-convex optimization problem with many local optima. Here, we investigate this problem in the

large system limit. We assume that user k has data symbols transmitted with power pk, and slow-

varying path-loss ak. Using results from previous chapters, we obtain the expression for the limiting

SINR. Then, we divide all K users into L groups where L is finite, and all users in each group are

assumed to be co-located or to have approximately the same distance from the BS. In other words, all

users in one group have the same path-loss which is distance dependent. Based on this system model,

we investigate optimal power allocation schemes and optimal regularization parameter of the RCI that

maximize the limiting sum rate per antenna under an average power constraint. We also study a

multi-mode transmission where the number of groups that the BS communicates to may change as the

system parameters such as groups’ cell loadings also change.

6.1 Introduction

I
N previous chapters we have assumed that all users are equidistant from the BS and

therefore have the same distance-dependent path-loss gain. Moreover, equal power

allocation across all users (data symbols) is also assumed. In this chapter, we allow power

allocation across the data symbols where the users may have different path-losses. Unlike

the channel inversion or zero forcing beamforming, the optimal power allocation for the

RCI precoder is a non-convex optimization problem with many local optima [35,105,106],

even in the case of all users having the same path-losses. In [105, 106], the authors inves-

115
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tigated the sum rate maximization of MIMO broadcast channels with RCI under a total

power constraint. They showed that the problem is a global d.c. optimization problem

and proposed the local gradient method to solve the problem. Their numerical results

suggests that employing an RCI precoder with power allocation give a better sum rate

compared to ZF. Reference [35] extends the previous works, but in the MISO broadcast

channels setting, by putting additional quality of service (QoS) constraints where each

user’s data rate should be above a specified minimum rate. The authors re-casted the op-

timization problem as a series of geometric programming (GP) problems, called iterative

GP (IGP), and solved it iteratively.

Besides power allocation, selecting the users for transmission can improve the system

performance. A user selection scheme, called semi-orthogonal user selection (SUS), is

proposed in [107]. The main idea behind using SUS is to increase the effective channel

gain which is equivalent to c21 in (3.8). It has been shown in [107] that a combination

of water-filling based power allocation scheme and SUS in MISO BC systems with ZF

precoder can achieve the sum rate obtained by employing DPC when the number of

users is large. A similar conclusion is also presented in [18, 102] but using greedy search

algorithms for the user selection. The performance analysis of that algorithm for the case

of finite (at most two) scheduled users was carried out in [66]. Besides for ZF, the authors

in [84] also proposed greedy user selection based on the closed form approximation of the

expected sum rate for the RCI precoder. Dai et al. in [16] studied MISO BC systems with

ZF precoder under finite-rate or quantized feedback. The proposed power allocation

scheme is binary or on/off. They showed that the feedback rate and received SNR affect

the optimal number of active (’on’) users. Moreover, their scheme can be applied in

heterogeneous environments where the users may have different path-losses. A similar

problem is also considered in [112, 113] but with different settings. Besides considering

finite-rate feedback, the authors take into account the feedback delay by using the Gauss-

Markov model. The authors also assume a homogeneous environment and an equal

power allocation across the users. A sum rate approximation expression as a function of

the number of users is derived. Then, the number of users can be adjusted adaptively

based on the feedback delay and channel quantization error (or feedback rate). This
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strategy is similar to the multi-mode transmission, considered later.

The first part of the work in this chapter considers the joint optimization of the power

allocation and regularization parameter of the RCI precoder in MISO BCs with hetero-

geneous users. The analysis is performed in the large system limit. First, we derive the

users’ limiting SINRs and show that the limiting SINR for each user differs in the power

allocated to that user and user’s path-losses. Then we divide all users into a finite num-

ber of groups, where all users in each group have approximately the same distance from

the base station and therefore share the same distance dependent path-loss. Based on this

model description, for a fixed regularization parameter, we show that the optimal power

allocation problem under the average power constraint that maximizes the limiting sum

rate per antenna is convex and the power allocation follows the familiar water-filling strategy

[27, 107]. Similar results are also obtained in [101] but with different approaches in the

large system analysis. We derive the optimal regularization parameter by substituting

back the power allocation scheme to the limiting sum rate expression. Even though a

closed form expression is not obtained, this substitution yields a one dimensional opti-

mization problem which can be solved by existing line search algorithms.

In the second part, we consider a multi-mode transmission where for a given total

number of groups (L) and cell loading for each group we determine the optimal num-

ber of groups for transmission and also which groups the BS should communicate with.

We arrange or sort the groups based on their path-losses in a descending order. We in-

vestigate two cases. In the first case, for each group, the BS can only decide between

transmitting to all the users in the group or to none of them. In the second case, the BS is

allowed to communicate with any subset of the users in a group. For the first case with

uniform cell-loading over the groups, it is optimal for the BS to transmit to the firstm ≤ L
groups in the mode m transmission. The optimal mode can be determined by comparing

the maximum limiting sum rate of each mode. For the second case, we provide a nec-

essary condition for the optimal cell-loading allocation for each group. Assuming that

M ≤ L groups are allocated positive power, the cell loadings of the first M − 1 groups

should be set at their maximum value and the cell loading for the M -th group can be in

between zero and its maximum value. We also propose an algorithm to solve the opti-
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mization problem. Considering the cell loading allocation, the algorithm offers a lower

complexity in comparison to a brute force search method. In both cases, the optimal

power allocation and regularization parameter are also considered.

The rest of this chapter is structured as follows. The next section describes the finite

size system model and presents the corresponding SINR expression. A brief derivation

of the limiting SINR is also presented. Section 6.3 discusses a joint optimization of the

allocated power across the users and the optimal regularization of the RCI. It is followed

by the investigation on the multi-mode transmissions in Section 6.4. Section 6.5 concludes

the chapter.

6.2 System Model

6.2.1 Finite-size System Model

The descriptions and notations for the received signal model largely follow those in

Chapter 3. Now, by allowing power allocation across the users, we model the data sym-

bol as s = Λ1/2s̄, where s̄ is the normalized (power) data symbol , i.e., E[s̄s̄H ] = IK . Let

Λ = diag(p1, p2, · · · , pK) where pk denotes the power allocated to user k. The transmit-

ted data vector can written as x = PΛ1/2s̄ and has a power constraint E[‖x‖22] = Pd. The

received signal for user k is given by

yk = akhkx+ wk,

where a2k denotes the slow-varying path-loss between the base station and the receiver of

user k. The received signal vector then can be written as

y = AHx+w = AHPs+w,

where A = diag(a1, a2, · · · , aK). The RCI precoder takes the form in (3.3). The normaliz-

ing constant c is chosen to meet the transmit power constraint E[‖x‖22] = E[Tr
(
xxH

)
] =



6.2 System Model 119

Pd. Hence, c2 can be expressed as

c2 =
Pd

Tr (ΛH(HHH+ αIN )−2HH)
. (6.1)

Note that (6.1) is (3.5) with the additional Λ in the trace. The received signal vector y is

then given by

y = cAH(HHH+ αIN )−1HHΛ1/2s̄+w.

The corresponding received signal for user k can be easily shown to be

yk = cak
√
pkhk(H

HH+ αIN )−1hH
k s̄k

+
K∑

j 6=k

cak
√
pjhk(H

HH+ αIN )−1hH
j s̄j .

Based on the expression above, the SINR attained by user k can be expressed as fol-

lows

SINRk =
c2a2kpk|hk(H

HH+ αIN )−1hH
k |2∑K

j 6=k c
2a2kpj |hk(HHH+ αIN )−1hH

j |2 + σ2
. (6.2)

It is clear that the SINRk is a random quantity since the propagation channels fluctu-

ate randomly. In the large system limit, as we see in the next section, this randomness

disappears.

6.2.2 Large System Regime SINR

In this section, we will derive the limiting SINR for (6.2). The large system limit deriva-

tion for each term of (6.2) borrows the techniques and results from previous chapters, par-

ticularly Chapter 3. In what follows, we will show that SINRk converges almost surely to

a deterministic quantity denoted by SINR∞
k .

First, as in Appendix 3.6.1, we can write Sk = |hk(H
HH + αIN )−1hH

k |2 =
A2

k

(1+Ak)2
,

where Ak = 1
Nhk

(
1
NHH

k Hk + ρIN
)−1

hH
k with ρ = α/N . It has been shown in that ap-

pendix that Ak converges almost surely to g(β, ρ). We can write
∑K

j 6=k pj |hk(H
HH +
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αIN )−1hH
j |2 in the denominator as

hk(H
HH+ αIN )−1HH

k ΛkHk(H
HH+ αIN )−1 ,

where Λk is Λ with k-th column and row removed. By following the steps in Appendix

3.6.1, we can show that it converges almost surely to

P
(1 + g(β, ρ))2

(
g(β, ρ) + ρ

∂

∂ρ
g(β, ρ)

)
,

where we define P = limK→∞ 1/K
∑K

k=1 pk. P can be interpreted as the empirical mean

of the users’ power or just average power. Here, we assume that the limit P exists and is

bounded. For c2, we can also show that it converges almost surely to

Pd/P
g(β, ρ) + ρ ∂

∂ρg(β, ρ)
.

Therefore, the interference energy converges almost surely to Pda
2
k(1 + g(β, ρ))−2.

Combining the large system limit results above, the SINR of user k then converges

almost surely to

SINR∞
k = p̄kg(β, ρ)

γk +
γkρ
β (1 + g(β, ρ))2

γk + (1 + g(β, ρ))2
(6.3)

= p̄kfk(β, ρ), (6.4)

where γk =
Pda

2
k

σ2 is defined as the effective SNR and p̄k = pk
P is the normalized power

w.r.t. P . Different from the limiting SINR in previous chapters, here we can see that the

limiting SINR is different for each user and depends on ak and pk. From (6.4), one can see

that fk is independent of p̄k. This property will ease the analysis in finding the optimal

power allocation maximizing (limiting) sum rate discussed in the next section. It is also

easy to see that assuming an equal power allocation across the user, e.g., p̄k = 1, ∀k, fk

represents the limiting SINR. As shown later, fk is vital in determining the optimal power

allocation.
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6.3 Optimal Power Allocation and Regularization Parameter

Let us consider the following scenario. We divide all K users into a finite number L

of groups. All users in each group are assumed to have the same path-loss. Here, we

assume that a1 ≥ a2 ≥ · · · ≥ aL. The number of users in group j is denoted by Kj , with
∑L

j=1Kj = K. Since the path-loss and other parameters β, ρ as well as SNR are the same

for all users in a group, then based on (6.3), we can reasonably assume that the power

allocated to each user in that group is also the same. This assumption holds for the rest

of this chapter.

Based on the scenario above, we can define the limiting achievable sum rate per an-

tenna as follows

R∞
sum =

L∑

j=1

βj log
(
1 + SINR∞

j

)
, (6.5)

where βj =
Kj

N denotes the cell-loading of group j. Our goal in this section is to find the

optimal power allocation that maximizes R∞
sum. Moreover, it is also interesting to explore

how the regularization parameter of the RCI precoder adapts to different path-losses and

also users’ power. Denoting p̄ = [p̄1, p̄2, · · · , p̄L]T , a joint optimization problem can be

formulated as follows,

P1 : max.
p̄�0,ρ≥0

R∞
sum

s.t.
L∑

j=1

βj p̄j ≤ β ,

where � denotes the element-wise inequality for vectors. Note that the first constraint in

P1 is the large system average power constraint. The second constraint ensures that the

normalized powers are non-negative.

Before addressing the solution of P1, we characterize the objective function as a func-

tion of p̄j . Let R∞
sum,j = βj log

(
1 + SINR∞

j

)
denote the sum rate for group j. It can be

checked that it is an increasing function in pj . Moreover, we can show that the following

lemma holds.

Lemma 6.1. The sum rate per antenna R∞
sum is concave in p̄.
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Proof. The second derivative of the limiting SINR w.r.t. p̄j is

∂2SINR∞
j

∂p̄2j
= −

f2j (β, ρ)

(1 + p̄jfj(β, ρ))2
< 0.

This implies that SINR∞
j is concave in p̄j . Since the log operation does not change the

concavity, therefore R∞
sum,j is also concave in p̄j . Moreover, R∞

sum is a linear combination

of R∞
sum,j and this operation preserves the concavity.

From the lemma above, we can see that for a fixed ρ, P1 is a convex program because

−R∞
sum is convex in p̄ and the constraints are linear. For a fixed p̄, it has been shown in

Chapter 3 that SINR∞
k is not concave in ρ but quasi-concave. Since log is a non-decreasing

function then R∞
sum,j is also quasi-concave (not concave) in ρ. Since a linear combination

operation does not preserve the quasi-concavity, the sum rate needs not be quasi-concave.

Now, let us consider the Lagrangian for P1, as stated below

L =

L∑

j=1

βj(1 + p̄jfj(β, ρ))− λ
L∑

j=1

βj(p̄j − 1) + µj p̄j + κρ, (6.6)

where λ and µj are the Lagrange multipliers for the average power and non-negative

power constraints, and κ is the Lagrange multiplier for the constraint ρ ≥ 0. The associ-

ated Karush-Kuhn-Tucker (KKT) necessary conditions are given by

∂L
∂ρ

=
L∑

j=1

βj p̄j
1 + p̄jfj(β, ρ)

∂fj(β, ρ)

∂ρ
+ κ = 0 (6.7)

∂L
∂p̄j

= βj

(
fj

1 + p̄jfj
− λ

)
+ µj = 0, (6.8)

and

λ
L∑

j=1

βj(p̄j − 1) = 0, µj p̄j = 0, (6.9)

κρ = 0, (6.10)

for all j = 1, . . . , L.
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Recall that for a given ρ, P1 reduces to a convex program. Thus, the KKT conditions

(6.7) and (6.9) lead to the optimal power allocation strategy maximizing the limiting sum

rate, as presented in the following theorem.

Theorem 6.1. For a fixed ρ, the optimal power allocation for the optimization problem P1 follows

the water-filling (WF) scheme and is given by

p̄j =

[
1

λ
− 1

fj(β, ρ)

]

+

(6.11)

where [x]+ = max(0, x). The constant (Lagrange multiplier) λ is the solution of

L∑

j=1

βj p̄j = β,

for which the average power constraint is satisfied with equality.

In the WF scheme above, 1/λ can be perceived as the water level. It determines how

power is poured to each user and is based on the value of fj(β, ρ). Recall that the limiting

SINR is given by p̄jfj(β, ρ). It can be checked that fj(β, ρ) is increasing in aj . Thus, more

power will be allocated for the users with better channels which can be represented by

the path losses {aj}. Note that in this case, fairness amongst users could be an issue since

some users might have zero rate.

Since we assume a1 ≥ a2 ≥ · · · ≥ aL, then p̄1 ≥ p̄2 ≥ · · · ≥ p̄L. Now let us assume

that the first m groups have non-zero power. To determine λ, we just need to solve
∑m

j=1 βj p̄j = β. Using p̄j in (6.11), it is easy to show that

λ =

∑m
j=1 βj

β +
∑m

j=1
βj

fj(β,ρ)

. (6.12)

The power allocated to group j is then given by

p̄j =
β +

∑m
j=1

βj

fj(β,ρ)∑m
j=1 βj

− 1

fj(β, ρ)
. (6.13)

To determine m, we just need to find m such that p̄m > 0 and p̄m+1 ≤ 0.
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Related to the KKT (stationary) conditions (6.21), we have (for a fixed p̄)

∂R∞
sum

∂ρ
=

L∑

j=1

βj p̄j
1 + p̄jfj(β, ρ)

∂fj(β, ρ)

∂ρ
,

where

∂fj(β, ρ)

∂ρ
=

γ2j
[γj + (1 + g)2]2

2g(1 + g)

(
ρ

β
− 1

γj

)
∂g

∂ρ
(6.14)

= f2j (β, ρ)
2
(
1
g + 1

)

[1 + ρ
β (1 + g)2]2

(
ρ

β
− 1

γj

)
∂g

∂ρ
, (6.15)

and g represents g(β, ρ). Thus,

∂R∞
sum

∂ρ
=

2
(
1
g + 1

)

[1 + ρ
β (1 + g)2]2

L∑

j=1

βj p̄jf
2
j (β, ρ)

1 + p̄jfj(β, ρ)

(
ρ

β
− 1

γj

)
∂g

∂ρ
.

Recall that ∂g
∂ρ < 0 (see (3.32)). Let qj = ρ

β − 1
γj

. It is also obvious that qj is decreasing in

j. Thus, for qL > 0, ∂R∞

sum
∂ρ is negative. This implies that ∂R∞

sum
∂ρ can not be zero for ρ > β

γL
.

For q1 < 0, ∂R∞

sum
∂ρ is positive and consequently, can not be zero for ρ < β

γ1
. Therefore, the

optimal ρ must be in the interval of

β

γ1
≤ ρ ≤ β

γL
. (6.16)

When we only have one group then the expression for ρ∗ is the same as the one obtained

in Chapter 3. We can also remove the boundary point ρ = 0 < β
γ1

since as previously

discussed, ∂R∞

sum
∂ρ > 0 at that point. Thus, from (6.21) with κ = 0 or by evaluating ∂R∞

sum
∂ρ =

0, the optimal ρ must satisfy

L∑

j=1

βj p̄jf
2
j (β, ρ)

1 + p̄jfj(β, ρ)

(
ρ

β
− 1

γj

)
= 0. (6.17)

By substituting (6.11) into (6.17), it is straightforward to see that (6.17) becomes a one-

dimensional zero/root-finding problem Thus, the optimal ρ can be found by using exist-

ing line search algorithms for the interval given in (6.16).
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Figure 6.1: Power allocation scheme for L = 5, β = 1, βj = 1/5, ∀j = 1, . . . , 5, Pd/σ
2 = 10

dB and a2j = 1/j2.

Figure 6.1 illustrates the power allocation scheme based on P1. In generating the plot,

we set L = 5, β = 1, βj = 1/5, ∀j = 1, . . . , 5, Pd/σ
2 = 10 dB. The path-loss gain are set

according to a2j = 1/j2. Our numerical simulation resulted 1
λ ≈ 3.033 and ρ∗ ≈ 0.2265. It

can be checked that the latter is between 1/γ1 and 1/γ4, as predicted by the analysis. From

the plot, we can see that the last group is allocated zero power since 1/f5(β, ρ) exceeds

the water level 1/λ. This indicates that the users’ channel in the group is not so good that

allocating positive power to this group will not increase the sum rate. In Figure 6.2, we

study the validity of using the large system results for the finite size system. We set the

system parameters: L = 2, β = 1,N = 8, βj = 1/2, ρ = ρ∗ and a2j = 1/j2. We generate 500

channel realizations and for each realization we compute the optimal power allocation,

denoted by p̄∗
FS, by a grid search. In the plot, we compare the average sum rate, denoted

by E[Rsum], between using the power allocation p̄ in (6.11) and p̄∗
FS. The gap between the

curves in the figure is very small and can be said negligible.
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Figure 6.2: Comparison of the average sum rate between using p̄ = p̄∗
FS and p̄ = p̄∗ for

L = 2, β = 1, N = 8, βj = 1/2, ρ = ρ∗ and a2j = 1/j2.

6.4 Multimode Broadcast Channels

In the previous sections, we consider an optimal power allocation that maximizes the

(limiting) sum rate where the base station (BS) communicates to all L groups simultane-

ously. In that setting, we include the channels from all groups of users in the precoding

design even though we allocate zero power to some of the groups. This leads us to ask:

how about if we allow the BS to communicate to only some of the groups such as the

groups that have users with positive power? Could this scenario give a higher sum rate?

For an example, let us consider the case of L = 3. Let R be the radius of the cell. We

assume the path-losses has the form a2j = 1/r2j , where rj = jR/L for j = 1, . . . , L is the

distance between the users in group j to the BS. We set the cell loading for each group to

be uniform i.e., βj = β/L. Figure 6.3 shows the limiting sum rate obtained when the BS

communicates to only the first m ≤ L groups, denoted by R
(m),∞
sum . This means that we

only include the channel of the users from these m groups in the system model and in

designing the precoder. We call this scheme as mode-m transmission.The figure demon-
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Figure 6.3: Multimode Transmission for L = 3 and βj = β/L.

strates that for some values of cell-loading β, the maximum sum rate is achieved when

m < L groups. The optimal m is also changing with β. So we call this as the multi-mode

transmission.

In the multimode transmission, it is clear that there are
(
L
m

)
combinations of the

groups that can be chosen by the base station to communicate to. The question is which

mode and group combination will give the highest sum rate? To answer that question,

we can formulate the following optimization problem,

P2 : max.
p̄�0,βββ,ρ,β≥0

R∞
sum

s.t.
L∑

j=1

βj p̄j ≤ β,

L∑

j=1

βj = β,

βj ∈ {0, βj,max}, ∀j = 1, 2, . . . , L ,

where βββ = [β1 β2 . . . βL]
T . So, P2 is P1 with additional design variables, βββ and β and
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additional constraints related to them. In P2, βj is only allowed to have value either 0

or βj,max. So βj will determine whether the BS transmits to users in group j or not. The

latter occurs when βj = 0. In that case, the channel gain matrix of the users in group j is

not included in the precoder design.

First, let us investigate the optimal strategies for P2 when βj,max is the same for all

groups, i.e., βj,max = β̆. Let us consider the mode-m transmission. In that case, we have

m groups with βj = β̆ and the remaining groups have βj = 0. Let G ⊂ {1, 2, . . . , L},
|G| = m be the set of the group indexes that the BS communicates to (βj > 0, j ∈ G).

Then, the maximum limiting sum rate achieved for a given G can be obtained by solving

max.
p̄,ρ

R
(m),∞
sum (G) =

∑

j∈G
βj log(1 + p̄jfj(β, ρ))

s.t.
1

m

∑

j∈G
p̄j ≤ 1

p̄j ≥ 0, j ∈ G.

(6.18)

We should note that in the average power constraint we use the fact that the total cell-

loading β is
∑

j∈G βj = mβ̆. We can also see that (6.18) is equivalent to P1. Thus, its

solutions can be obtained by using the same strategies as in solving P1. The maximum

limiting sum rate for mode-m transmission can be attained by evaluating (6.18) for every

possible choice of group combinations G, i.e.,

R̆
(m),∞
sum = max.

G⊂{1,...,L},|G|=m
R

(m),∞
sum (G). (6.19)

By using the formulation (6.19), we can rewrite P2 as

P2 : max.
m≤L

R̆
(m),∞
sum . (6.20)

As mentioned earlier, for (6.19) there are
(
L
m

)
possible choices or candidates for the op-

timal G. For the problem (6.20), the number of candidates becomes
∑L

i=1

(
L
i

)
. It grows

when L is large. Hence, reducing the complexity of (6.20) is of our interest. In doing that,

let us solve (6.19) and its solution is summarized by the following lemma.
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Lemma 6.2. R̆
(m),∞
sum is achieved by choosing G = G∗ where G∗ = {1, 2, . . . ,m}.

Proof. Let G∗ = {1, 2, . . . ,m}. Also, let S ⊂ {1, . . . , L} with |S| = m such that G∗ 6= S .

Moreover, the elements of S is arranged in an increasing order. Let aG∗ and aS be the

path-loss gain vector for group combinations G∗ and S , respectively. It is clear that aG∗ �
aS . Thus, for a fixed power and regularization parameter, it follows that R

(m),∞
sum (G∗) ≥

R
(m),∞
sum (S). Now, suppose that p̄∗

S and ρ∗S are the optimal power allocation and ρ under S .

Let us denote the corresponding limiting sum rate as R
(m),∞
sum (S, ρ∗S , p̄∗

S). Under G∗, let us

choose p̄G = p̄∗
S and ρG∗ = ρ∗S for the power allocation and ρ, respectively. Even though

those choices are not optimal in maximizing R
(m),∞
sum (G∗), they satisfy the constraint in

(6.18). Since both G∗ and S have the same allocations for power and ρ, then it follows

that R
(m),∞
sum (G∗, ρ∗S , p̄∗

S) ≥ R
(m),∞
sum (S, ρ∗S , p̄∗

S). This concludes the proof.

It is clear from the lemma above that we greatly reduce the complexity of P2. Now,

we only need to compare L limiting sum rates, R̆
(m),∞
sum . It is also easy to see that Lemma

6.2 also holds when β1,max ≥ β2,max ≥ · · · ≥ βL,max. For arbitrary structures of {βj,max},
we hypothesize that some results in solving P3, as discussed later, can be applied. This

would be a subject for a future investigation.

Rather than restricting βj s.t. βj ∈ {0, βj,max}, we can relax it so that 0 ≤ βj ≤ βj,max.

This allows the BS to transmit not to all the users in the groups but some of them. This

scenario is more general compared to P2 and can be written as follows,

P3 : max.
p̄�0,βββ,ρ,β≥0

R∞
sum

s.t.
L∑

j=1

βj p̄j ≤ β,

L∑

j=1

βj = β,

0 ≤ βj ≤ βj,max .

In the following, we investigate the solution for P3. We start by writing the La-
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grangian of P3 as follows

L =

L∑

j=1

βj(1 + p̄jfj(β, ρ))− λ
L∑

j=1

βj(p̄j − 1) + µj p̄j + νjβj − ηj(βj − βj,max) + κρ

+ µ




L∑

j=1

βj − β


+ ηβ,

where λ, {µj}, {νj}, {ηj}, κ, µ and η are the Lagrange multipliers for the constraints of

P3. The KKT necessary conditions are then given by

∂L
∂ρ

=
m∑

j=1

βjpj
1 + pjfj(β, ρ)

∂fj(β, ρ)

∂ρ
+ κ = 0 (6.21)

∂L
∂p̄j

= βj

(
fj

1 + p̄jfj
− λ

)
+ µj = 0 (6.22)

∂L
∂βj

= log(1 + p̄jfj)− λ(p̄j − 1) + νj − ηj + µ = 0 (6.23)

∂L
∂β

=
m∑

j=1

βjpj
1 + pjfj(β, ρ)

∂fj(β, ρ)

∂β
− µ+ ν = 0 (6.24)

and

λ
L∑

j=1

βj(p̄j − 1) = 0, µj p̄j = 0, νjβj = 0, (6.25)

ηj(βj − βj,max) = 0, µ




L∑

j=1

βj − β


 = 0, κρ = 0, ηβ = 0 (6.26)

[λ κ µ η]T � 0, µj ≥ 0νj ≥ 0, ηj ≥ 0, (6.27)

for all j = 1, . . . , L.

Let us consider the stationary condition (6.21). In solving P1, we have shown that

fj(β, ρ) in increasing in ρ up to ρ = β/γj and then decreasing. Thus, the optimal ρ can

not be zero (κ = 0) and at the optimum,

m∑

j=1

βj p̄j
1 + p̄jf(aj)

∂f(aj)

∂ρ
= 0. (6.28)
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Looking at (6.22), one can see that when p̄j > 0 (µj = 0), it satisfies

p̄j =

[
1

λ
− 1

fj(β, ρ)

]

+

which is the same as obtained in the solution for P1. Since a1 ≥ . . . ≥ aL, then p̄1 ≥
. . . ≥ p̄L. At the optimum, the following holds

L∑

j=1

βj

([
1

λ
− 1

fj(β, ρ)

]

+

− 1

)
= 0

and it can be used to determine λ.

Exploring the stationary condition (6.23) will lead us to the following result.

Lemma 6.3. The optimal {βj} allocation is such that

(i) the first M groups, for some M ≤ L, will be allocated non-zero power

(ii) β1, β2, . . . , βM−1 are all at the maximum possible values

(iii) 0 ≤ βM ≤ βM,max

(iv) the remaining groups are allocated zero power

Proof. In the first part, we will prove (i) - (iii). We show those by considering any two

groups l and j such that l < j, such that the current allocation has βj > 0 and p̄j > 0 and

proving that we can improve performance by having βl at its maximum possible value.

Let us assume an assignment (βl, p̄l) and (βj , p̄j) such that βl ≤ βl,max and βj ≤ βj,max.

In that case, the combined cell-loading is βl + βj . Now, let xl be the new cell-loading

allocation for group l and yl be the corresponding assigned power. In the following we

will show that the optimal xl maximizing the sum rate of of users in group j and l is

βl,max by solving the following optimization problem

P4 : max.
xl,yl,yj

xl log(1 + ylfl(β, ρ)) + (βl + βj − xl) log(1 + yjfj(β, ρ))

s.t. max(0, βl + βj − βj,max) ≤ xl ≤ min(βl + βj , βl,max)

ylxl + yj(βl + βj − xl) ≤ βlp̄l + βj p̄j

yl ≥ 0, yj ≥ 0.
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The Lagrangian is given by

L = xl log(1 + ylfl(β, ρ)) + (βl + βj − xl) log(1 + yjfj(β, ρ))

+ µxl
(xl −max(0, βl + βj − βj,max)) + νxl

(min(βl + βj , βl,max)− xl)

+ λ (βlp̄l + βj p̄j − ylxl − yj(βl + βj − xl)) + µylyl + µyjyj ,

where µxl
, νxl

, µyl , µyj , λ are the Lagrange multipliers associated to the constraints on

xl, yl, yj and the second constraint, respectively. The stationary conditions are then given

by

∂L
∂xl

= log(1 + ylfl(β, ρ))− log(1 + yjfj(β, ρ)) + µxl
− νxl

− λ(yl − yj) = 0 (6.29)

∂L
∂yl

=
xlfl(β, ρ)

1 + ylfl(β, ρ)
+ µyl − λxl = 0 (6.30)

∂L
∂yj

= (βl + βj − xl)
fj(β, ρ)

1 + yjfj(β, ρ)
+ µyj − λ(βl + βj − xl) = 0. (6.31)

From the last two stationary conditions, it follows that

yl =

[
1

λ
− 1

fl(β, ρ)

]

+

, (6.32)

yj =

[
1

λ
− 1

fj(β, ρ)

]

+

. (6.33)

One can check that yl = 0 will never be the optimal solution of P4. For yl > 0, two cases

arise depending on whether yj is strictly positive or not.

• Case yj = 0. To satisfy the KKT conditions, the second constraint is met with

equality, for λ > 0. Thus, we have yl =
βlp̄l+βj p̄j

xl
. From (6.32), we can express

1

λ
=
βlp̄l + βj p̄j

xl
− 1

fl(β, ρ)
.

When yj = 0, it also holds 1/λ − 1/fj(β, ρ) ≤ 0. Consequently, from the equation

above, we can write
βlp̄l + βj p̄j
1

fj(β,ρ)
− 1

fl(β,ρ)

≤ xl .
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From (6.29), we can obtain

log

(
1 +

(
βlp̄l + βj p̄j

xl

)
fl(β, ρ)

)
− 1

1 + xl

βlp̄l+βj p̄j
1

fl(β,ρ)

= νxl
− µxl

. (6.34)

The LHS of (6.34) is a function of the form f(x) = log(1 + x) − x
1+x , which can be

easily shown to be strictly increasing in x. Moreover, at x = 0, f(x) = 0. So, the

LHS of (6.34) is positive. Thus, ignoring the constraint on xl, the objective function

is strictly increasing for
βlp̄l+βj p̄j
1

fj(β,ρ)
− 1

fl(β,ρ)

≤ xl.
• Case yj > 0. For γ > 0, the average power constraint is met with equality and we

have

yj =
βlp̄l + βj p̄j − (yl − yj)xl

βl + βj

=
βlp̄l + βj p̄j −

(
1

fj(β,ρ)
− 1

fl(β,ρ)

)
xl

βl + βj
.

Then, we can express

1

λ
=

1

fj(β, ρ)
+
βlp̄l + βj p̄j −

(
1

fj(β,ρ)
− 1

fl(β,ρ)

)
xl

βl + βj
.

Since for yj > 0, 1
λ >

1
fj(β,ρ)

, then we obtain

βlp̄l + βj p̄j
1

fj(β,ρ)
− 1

fl(β,ρ)

> xl . (6.35)

Using the expression for 1/λ, we can rewrite (6.29) as

log

(
fl(β, ρ)

fj(β, ρ)

)
−

1
fj(β,ρ)

− 1
fl(β,ρ)

1
fj(β,ρ)

+
βlp̄l+βj p̄j−

(
1

fj(β,ρ)
− 1

fl(β,ρ)

)
xl

βl+βj

= νxl
− µxl

. (6.36)

It is clear that the LHS of (6.36) is decreasing in xl. Moreover, for xl →∞, its value

is log
(

fl(β,ρ)
fj(β,ρ)

)
> 0. Therefore, without the constraints on xl, the objective function

is also strictly increasing in xl when the condition (6.35) holds.
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Combining the two cases, the optimal xl is equal to its maximum allowable value. By

using this fact repeatedly, starting from group 1, we establish (i)-(iii).

Now, it remains to show that if no power is allocated to a group, it must be that the

corresponding βj = 0 (see (iv)). Let us consider the stationary conditions for βj and β

which are given by (6.23) and (6.24), respectively. We can rewrite them as

log(1 + p̄jfj)− λ(p̄j − 1) + νj + µ = ηj (6.37)

and
L∑

j=1

βj p̄j
1 + p̄jfj(β, ρ)

∂fj(β, ρ)

∂β
= µ, (6.38)

respectively. In ontaining (6.38), we use the fact that β must be positive, i.e., η = 0. The

first derivative of fj(β, ρ) over β in (6.38) can be shown to take the form

∂fj(β, ρ)

∂β
= −fj(β, ρ)

β

[
1 +

g

1 + ρ
β (1 + g)2

+
2g(1 + g)2( ρβγj − 1)

[γj + (1 + g)2][1 + ρ
β (1 + g)2]2

]
, (6.39)

where for brevity we denote g = g(β, ρ). The derivative of fj(β, ρ) w.r.t. ρ in (6.21) can be

written as follows

∂fj(β, ρ)

∂ρ
= −fj(β, ρ)

β

2g(1 + g)3( ρβγj − 1)

[γj + (1 + g)2][1 + ρ
β (1 + g)2]2

.

So we can rewrite (6.39) in terms of
∂fj(β,ρ)

∂ρ as

∂fj(β, ρ)

∂β
= −fj(β, ρ)

β

[
1 +

g

1 + ρ
β (1 + g)2

]
+

1

1 + g

∂fj(β, ρ)

∂ρ
. (6.40)

Recall that 1 + pjfj(β, ρ) = fj(β, ρ)/λ. Substituting (6.40) into (6.38) yields

µ = −λ
β

[
1 +

g

1 + ρ
β (1 + g)2

]
L∑

j=1

βj p̄j +
1

1 + g

L∑

j=1

βj p̄j
1 + p̄jfj(β, ρ)

∂fj(β, ρ)

∂ρ

(a)
= −λ

[
1 +

g

1 + ρ
β (1 + g)2

]
, (6.41)
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where in (a) we use the fact that
∑L

j=1 βj p̄j = β and the second term of the r.h.s. is zero

due to (6.21). Moreover, (a) give the expression for µ at the optimal operating points.

Plugging (a) into (6.37) with pj = 0, we obtain

−λ g

1 + ρ
β (1 + g)2

+ νj = ηj .

As a result, νj must be strictly positive. This implies that βj = 0 and the proof is com-

pleted.

To this end, we already know the necessary conditions for the optimal solutions of

P3. We should note that in the lemma above, we do not know the optimal value of M

maximizing the limiting sum rate since there are several values of M that satisfy to the

lemma. Let R
(i),∞
sum be the achieved limiting sum rate with M = i. LetM = {1, 2, . . . , M̆}

with M̆ ≤ L be the set of possible values of M . Then, the optimal M is given by

M∗ = argmax
i∈M

R
(i),∞
sum . (6.42)

We should note that in evaluating R
(i),∞
sum , we use {βj} allocation scheme in Lemma 6.3,

β =
∑i

j=1 βj and also the stationary conditions in (6.21) and (6.22) to determine the

optimal ρ and power allocation respectively. The value for βM must satisfy (6.23) with

νM = 0 and ηM = 0, i.e.,

log(1 + p̄MfM )− λ(p̄M − 1) + µ = 0, (6.43)

where µ is given by (6.41). Thus, solving (6.42) correspondingly solves P3. Steps in solv-

ing it are described in Algorithm 6.4.1. We have L iteration when in a particular iteration,

say iteration j, the first j groups are considered. Assuming those group to have their cell

loading at the maximum value, the corresponding optimal power allocation (i.e., solving

P1) is computed. Then, the value of M ≤ j for that iteration can be determined by using

the fact that p̄M+1 = 0. We should note that different js may give the same M and hence,

we need only to consider one of them. After having M , we can set βM+1 = · · · = βj = 0.

To determine the optimal value for βM , we need to compute ηM . If ηM > 0, βM = βM,max
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Algorithm 6.4.1 Algorithm for Solving P3

1: M = {} ⊲ Contain possible values for M
2: for j = 1 to L do

3: βi = βi,max, ∀ i = 1, . . . , j ⊲ Assume that β∗j = βj,max

4: λ, ρ∗, [p̄∗1 . . . p̄
∗
j ]
T ← Solving P1 with β =

∑j
i βi

5: Determine M s.t. p̄M+1 = · · · = p̄j = 0 ⊲ M ≥ 1
6: if M ∈M then

7: continue ⊲ Skip the remaining steps and go to the next iteration
8: end if

9: M←M
10: βM+1 = · · · = βj = 0
11: Compute µ according to (6.41)
12: ηM = log(1 + p̄MfM )− λ(p̄M − 1) + µ
13: if ηM < 0 then

14: βM ∈ [0, βM,max]← Solving P1 and (6.43) with β =
∑M−1

i βi,max + βM
15: end if

16: Compute R
(M),∞
sum with the updated β and {βj}

17: end for

18: M∗ ← Solving (6.42)

(we already set this in the first step). Otherwise, 0 ≤ βM ≤ βM,max. In the latter case, we

need to solve P1 and (6.43) simultaneously. Then, we can update the value for {βj}Mj=1

and β and also compute the corresponding limiting sum rate. In the final steps, we com-

pare the limiting sum rates for different M and the maximum is the solution of P3.

Figure 6.4 illustrates the implementation results of algorithm 6.4.1 for the case: L = 5,

a2j = 1/j2, j = 1, . . . , L, βββmax = [0.1 0.7 0.1 0.05 0.05]T where the j-th element corre-

sponds to βj,max and Pd/σ
2 = 10 dB. From the (upper-left) plot, we can see that we only

have three possible values for M , i.e., M = {1, 2, 3}. For M = 1, we have a positive

ηM while for M = 2 and M = 3, ηM is negative. We should note that for M = 3, η2 is

slightly above zero (0.0028). Executing step 14 in the algorithm 6.4.1 yields β2 = 0.6393

and β3 = 0 for M = 2 and M = 3, respectively. Even though M = 2 and M = 3 have the

same two groups with positive cell-loading, they have different total cell-loadings, i.e.,

0.7393 and 0.8, respectively and consequently have different sum rates. The last plot in

the bottom-right shows that the maximum limiting sum rate is achieve when M = 2. To

validate the result from Algorithm 6.4.1, we perform a grid search where β takes values

between 0 and 1 with 0.001 increment. For each value of β, the corresponding limiting
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Figure 6.4: Algorithm 6.4.1 implementation for L = 5, βββmax = [0.1 0.7 0.1 0.05 0.05]T ,
a2j = 1/j2 and Pd/σ

2 = 10 dB.

sum rate is compute. The results are plotted in Figure 6.5. The plot shows that the maxi-

mum limiting sum rates and the optimal β obtained from the grid search and Algorithm

6.4.1 are identical. This confirm our theoretical analysis and the proposed algorithm. We

should note that even though the line around the optimal β looks flat, the limiting sum

rates in that region, by inspecting their numerical values, are actually increasing until

reaching the optimal β and then decreasing.

We can also observe from the implementation of Algorithm 6.4.1 in Figure 6.4 that

when at the first time (a certain iteration) we find ηM < 0 (and set βM ∈ [0, βM,max])

we can stop the iterations. This is because continuing the iteration (or adding more

groups/increasing M ) will not increase the limiting sum rate. We can see this by real-

izing that the limiting sum rate obtained by increasing βM by, say βδ, is greater or equal

to that obtained by adding one more group with group loading βδ. Moreover, increasing
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Figure 6.5: The maximum limiting sum rate obtained from the grid search (×) and Algo-
rithm 6.4.1 (◦).

βM still gives a negative ηM which does not satisfy the KKT necessary condition (ηM ≥ 0).

So, we can modify Algorithm 6.4.1 by adding a ’break’ instruction after line 14. That will

stop the iteration and jump directly to line 18. This will reduce the number of iterations

and computations.

6.5 Conclusion

In this chapter, we have investigated problems related to determining the optimal power

allocation, regularization parameter and cell-loading of a finite group or cluster of users

so as to maximize the sum rate in MISO broadcast channels. Even though the analysis

was performed in the large system limit, our numerical simulations shows its validity for

finite-size system designs. Considering the power allocation problem only, we show that

it is optimal for the BS to allocate the power to the users by using a water-filling scheme.

Applying that scheme, we can not obtain a closed form expression for the optimal reg-

ularization parameter but it can be found by using line search methods. For some cases
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considered in this chapter we show that it is optimal for the BS to communicate to some

groups having best channels (highest path-loss gains). We also provide the KKT neces-

sary conditions for the optimal cell-loading allocation when the BS is allowed to transmit

to only subsets of the users in the groups.





Chapter 7

Base Station Cooperation with
Feedback Optimization

In this chapter, we study feedback optimization problems that maximize the users’ signal to inter-

ference plus noise ratio (SINR) in a two-cell MIMO broadcast channel. Assuming the users learn

their direct and interfering channels perfectly, they can feed back this information to the base stations

(BSs) over the uplink channels. The BSs then use the channel information to design their transmis-

sion scheme. Two types of feedback are considered: analog and digital. In the analog feedback case,

the users send their unquantized and uncoded CSI over the uplink channels. In this context, given

a user’s fixed transmit power, we investigate how he/she should optimally allocate it to feed back the

direct and interfering (or cross) CSI for two types of base station cooperation schemes, namely, Multi-

Cell Processing (MCP) and Coordinated Beamforming (CBf). In the digital feedback case, the direct

and cross link channel vectors of each user are quantized separately, each using RVQ, with different

size codebooks. The users then send the index of the quantization vector in the corresponding codebook

to the BSs. Similar to the feedback optimization problem in the analog feedback, we investigate the

optimal bit partitioning for the direct and interfering link for both types of cooperation.

We focus on RCI precoding structures and perform our analysis in the large system limit. We show

that for both types of cooperation, for some values of interfering channel gain, usually at low values,

no cooperation between the base stations is preferred: This is because, for these values of cross channel

gain, the channel estimates for the cross link are not accurate enough for their knowledge to contribute

to improving the SINR and there is no benefit in doing base station cooperation under that condition.

We also show that for the MCP scheme, unlike in the perfect CSI case, the SINR improves only when

the interfering channel gain is above a certain threshold.

141
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7.1 Introduction

7.1.1 Background

R
ECENTLY, researchers have started to put more attention to investigate how to

maximize data rates in multicell MIMO networks, particularly in the downlink

[25, and references therein]. The main challenge that limits the spectral efficiency in the

downlink of multicell networks, besides intra-cell interference, is the inter-cell interfer-

ence (ICI). The conventional approach to mitigate this interference is to use spatial reuse

of resources such as frequency and time [25]. The move towards aggressive frequency or

time reuse will cause the networks to be interference limited especially for the users at

the cell- edge. The current view is to mitigate ICI through base station (BS) cooperations.

Within this scheme, the BSs share the control signal, channel state information (CSI) and

data symbols for all users via a central processing unit or wired backhaul links [5].

It has been established in [23,38,42,80,85,110], to name a few, that MIMO cooperation

schemes provide a significant increase in spectral efficiency compared to conventional

cellular networks. BS cooperation can be implemented at different levels [25]. In the Mul-

tiCell Processing setup, also known as Network MIMO or Coordinated Multi-Point (CoMP)

transmission, the BSs fully cooperate and share both the channel state information (CSI)

and transmission data. This full cooperation requires high capacity backhaul links which

is sometimes not viable in practical settings. To alleviate this requirement, only CSI (in-

cluding direct and interfering channels) is shared amongst base stations in the interference

coordination scheme [25]. Several works have addressed coordinated beamforming and

power control schemes to improve the spectral efficiency in interference- limited down-

link multicell networks. Detailed discussions regarding these topics can be found in [25]

and references therein.

In both base station cooperation schemes, the CSI at the base stations play an impor-

tant role in maximizing the system performance. The base stations use this information

to adapt their transmission strategies to the channel conditions. The benefit of having

CSI at the transmitter (CSIT) with respect to the capacity in single and multicell multi-

antenna systems is nicely summarized in [6, 26]. However, these advantages are also
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accompanied by the overhead cost for the CSI acquisition via channel training and feed-

back in frequency division duplex (FDD) systems. It needs to scale proportionally to the

number of transmit and receive antennas and the number of users in the system in order

to maintain a constant gap of the sum rate with respect to the full CSI case [50]. More-

over, in practical systems, the backhaul-link capacity for CSI and user data exchanges

and feedback-link bandwidth are limited [5]. Considering the CSI signaling overhead

from channel training and CSI feedback, references [71, 72] (see also [111]) suggested

that the conventional single-cell processing (SCP) without coordination may outperform

the cooperative systems, even the MCP scheme. Here, to reduce the complexity in the

analysis, we ignore the (important) constraints of limited backhaul-link and CSI training

overhead. We assume a perfect CSI training so that all the users know their CSI perfectly.

We focus on studying how to allocate feedback resources, that depends on the feedback

schemes, to send the CSI for the direct channel and interfering (cross) channel to BSs so

that the users’ SINR are maximized. Two feedback schemes are considered in our study:

the analog feedback scheme, introduced in [54] and the limited (quantized) feedback via

random vector quantization (RVQ), introduced in [77]. In the analog feedback scheme,

each user sends its unquantized and uncoded channel state information through the up-

link channel. Hence, we ask the question, for a given uplink power constraint, what

fraction of this uplink power is allocated optimally to transmit the direct and interfering

channel information? For the digital feedback scheme, the number of feedback bits de-

termines the quality of the CSI. Hence, we can ask, how many bits are optimally needed

to feedback the direct and cross CSI?

7.1.2 Contributions

The main goal of the work in this chapter is to optimize and investigate the effect of

feedback for MCP and CBf cooperation schemes under analog and quantized feedback

(via RVQ). We consider a symmetric two-cell Multi-Input Single-Output (MISO) network

where the base stations have multiple antennas and each user has a single antenna. We

assume that the users in each cell know their own channel perfectly: they feed back this

information through the uplink channel and the base stations form the users’ channel
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estimates. The BSs use these estimates to construct a regularized channel inversion (RCI)

type beamformer, also called regularized zero-forcing (RZF), to precode the data symbols

of the users. The precoders follow the structures proposed in [109]. Unlike [5, 111], we

assume several users are simultaneously active in each cell so that users experience both

intra- and inter-cell interference. To mitigate ICI through base station cooperation, we

consider both full cooperation (MCP) and interference coordination via CBf.

Our contributions can be summarized as follows. First, under both feedback mod-

els and both cooperation schemes, we derive the SINR expression in the large system

limit, also called the limiting SINR, where the number of antennas at base stations and

the number of users in each cell go to infinity with their ratio kept fixed: As our nu-

merical results will show, this is indicative of the average performance for even finite numbers

of antennas. Then, we formulate a joint optimization problem that performs the feed-

back optimization for both feedback models and both cooperation schemes and finds

the optimal regularization parameter of the corresponding RZF structure precoder. The

regularization parameter is an important design parameter for the precoder because it

controls the amount of interference introduced to the users. Optimizing this parameter,

as discussed later, will allow the precoder to adapt to the changes of the CSIT quality and

consequently produces a ’robust beamformer’.

We analyze the behavior of the maximum limiting SINR as a function of the cross

channel gains and the available feedback resources, and identify, for both the analog and

quantized feedback models, regions where SCP processing is optimal. We also show that

whereas in the perfect CSI case, MCP performance always improves with epsilon, this

only occurs after a certain threshold is crossed in both analog and limited feedback cases.

Parts of this work appeared in [60, 61], but without the proofs.

7.1.3 Related Works

In the last decade, there has been a large volume of research discussing feedback schemes

in multi-antenna systems. A summary of digital feedback (also known as limited or

finite-rate feedback) schemes in multi-antenna (also single-antenna) and multi-user sys-

tems in the single-cell setup can be found in [50]. Since the optimal codebook for the
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limited feedback is not known yet [8, 36, 77], the use of RVQ, which is based on a ran-

dom codebook, as the feedback scheme becomes popular. Furthermore, the RVQ-based

system performance analysis is also more tractable. In multiple-antenna and multi-user

systems, works on the analog feedback commonly refer to [54] (sometimes [76]).

The paper by Jindal [36] sparked the use of RVQ in analyzing broadcast channels.

Considering a MISO broadcast channel with a zero-forcing (ZF) precoder and assuming

that each user knows its own channel, the main result in the paper is that the feedback

rate should be increased linearly with the signal-to-noise ratio (SNR) to maintain the full

multiplexing gain. Caire et al. in [8] investigate achievable ergodic sum rates of BC with

ZF precoder under several practical scenarios. The CSI acquisition involves four steps;

downlink training, CSI feedback, beamformer selection and dedicated training where

each user will try to estimate the coupling between its channel and the beamforming

vectors. They derive and compare the lower bound and upper bound of the achievable

ergodic sum- rate of the analog feedback as in [54] and RVQ-based digital feedback un-

der different considerations, e.g., feedback transmission over AWGN and MAC channel,

feedback delay and feedback errors for the digital feedback scheme. A subsequent work

by Kobayashi et al. in [45] studies training and feedback optimizations for the same sys-

tem setup as in [8] except without dedicated training. The optimal period for the training

and feedback that minimized achievable rate gap (with and without perfect CSI) are de-

rived under different scenarios as in [8]. The authors also show that the digital feedback

can give a significant advantage over the analog feedback. In the same spirit as [36] ,

reference [101] discusses the feedback scaling (as SNR increases) in order to maintain a

constant rate gap for a broadcast channel with regularized zero-forcing or RCI precoder.

The analysis has been done in the large system limit since the analysis the finite-size turns

out to be difficult [36]. Moreover, besides analyzing for the case K = N , as in [36], the

authors also investigate the case K < N .

While channel state feedback in the single-cell system has received a considerable

amount of attention so far, fewer works have addressed this problem in multicell set-

tings. The effect of channel uncertainty, specifically the channel estimation error, in the

multicell setup is studied in [33, 39]. In [39], the authors conclude that when channel es-
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timates at one base station contain interference from the users in other cells, also called

as pilot contamination phenomenon, the inter-cell interference increases. Thus, this phe-

nomenon could severely impacts the performance of the systems. Huh et al. in [33]

investigate optimal user scheduling strategies to reduce the feedback and also the effects

of channel estimation error on the ergodic sum rate of the clustered Network MIMO sys-

tems. They consider the ZF precoder at the base stations and derive the optimal power

allocation that maximizes the (instantaneous) weighted sum rate. In deriving the results,

it is assumed that the BSs received perfectly (error-free) the CSI fed back by the users. The

overhead caused by the channel training is also investigated and they observe that there

is a trade-off between the number of cooperating antennas and the cost of estimating the

channel. Based on the trade-off, the optimal cooperation cluster size can be determined.

By incorporating the channel training cost, no-coordination amongst the base stations

could be preferable. The same conclusion is also obtained in [71, 72].

For the interference coordination scheme, [5] investigated the RVQ-based limited

feedback in an infinite Wyner cellular model using generalized eigenvector beamform-

ing at the base stations. The work adopts the intra-cell TDMA mechanism where a single

user is active in each cell per time slot. Each user in each cell is also assumed to know

its downlink channel perfectly. Based on that system model, an optimal bit partitioning

strategy for direct and interfering channels that minimizes the sum rate gap is proposed.

Explicitly, it is a function of the received SNR from the direct and cross links. It is ob-

served that as the received SNR from the cross link increases, more bits are allocated to

quantize the cross channel. A better quality of the cross channel estimate will help to re-

duce the inter-cell interference. The authors also show that the proposed bit partitioning

scheme reduce the average sum rate loss. Also in the interference coordination setting,

[111] takes into account both CSI training and feedback in analyzing the system what

they called inter- cell interference cancellation (ICIC). In ICIC, the precoding of a user is

the projection of its channel in the null-space of the others users’ channels in other cells

so that the transmission form this will not cause interference to the users in other cells.

The work also assumes the intra-cell TDMA and presents the training optimization and

feedback optimization for both analog and digital feedback (RVQ). Based on that system
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setup, the most interesting result is that training optimization is more important than the

feedback optimization for the analog feedback while the opposite holds for the digital

feedback.

For different levels of cooperation, i.e., MCP, CBf and SCP, [109] investigates an opti-

mization problem to minimize the total downlink transmit power while satisfying a spec-

ified SINR target. The authors derived the optimal transmit power, beamforming vectors,

cell loading and achieved SINR for those different cooperation schemes in a symmetric

two-cell network. The resulted optimal beamforming vectors have a structure related to

RCI.

The current work is closely related to [109] in the sense we use the same cooperative

schemes and precoder structure. We extend the work by analyzing the optimal feed-

back strategies for analog and digital feedback under MCP and CBf schemes. The results

in this work are obtained by performing the analysis in the large system limit where

the dimensions of the system i.e., the numbers of users and transmit antennas tend to

infinity with their ratio being fixed. The large system analysis mainly exploits the eigen-

value distribution of large random matrices. For examples, it has been used to derive

the asymptotic performance of linear multiuser receivers in CDMA communications in

early 2000 (see [95]), single-cell broadcast channels with RCI for various channel condi-

tions [58, 59, 62, 101], base station cooperations in downlink multicell networks (see e.g.,

[33, 109]). The asymptotic performance measure becomes a deterministic quantity and

can have close-form/compact expressions. Hence, it can be used to derive the optimal

parameters for the system design. Moreover, it can provide a good approximation of,

hence insights on, the system performance in the finite-size or even small systems.

Similar to [5] and [111], we perform the feedback optimization in interference-coordination

scheme (CBf). As in [111], we also investigate the feedback optimization for the analog

and digital feedback schemes. However, different from those works, we do not assume

the intra-cell TDMA in each cell, and hence each user experiences both intra-cell and

inter-cell interference. We also consider a different type of precoder i.e., the RCI. More-

over, we also analyze the feedback optimization for different level of cooperations be-

tween the base stations, including the MCP setup, and try to capture how we allocate
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resources available at the user side as the the interfering channel gain varies.

The rest of the chapter is structured as follows. The system model is described in

Section II. It starts with the channel model, and the expressions of the transmit signal,

precoder and the corresponding SINR for each MCP and CBf. In the end of the section,

the feedback schemes and true channel model in terms of the channel estimate at the BSs

and the channel uncertainty for the analog and digital feedback are presented. The main

results for the noisy analog feedback and digital feedback and for different types of co-

ordination are discussed in Section III and IV, respectively. In each section, we begin by

discussing the large system result of the SINR for the MCP and CBf and then followed

by deriving the corresponding optimal feedback allocation; optimal (uplink) power for

the analog feedback and optimal pit partitioning for the digital feedback. The optimal

regularization parameter for the RCI precoder is also derived for both types of feedback

and cooperation. The end of each section provides numerical results that depict how the

optimal feedback allocation and the SINR of each user behave as the interfering channel

gain varies. In Section V, we provide some numerical simulations that compare the per-

formance of the system under the analog feedback and digital feedback. The conclusion

are drawn in the Section VI and some of the proofs go to the appendices.

7.2 System Model

We consider a symmetric two-cell broadcast channel, as shown in Figure 7.1, where each

cell has K single antenna users and a base station equipped with N antennas. The chan-

nel between user k in cell j and the BS in cell i is denoted by row vector hk,j,i where

hk,j,j ∼ CN (0, IN ) and hk,j,j̄ ∼ CN (0, ǫIN ), for j = 1, 2 and j̄ = mod (j, 2) + 1. We

refer to the hk,j,j as direct channels and hk,j,j̄ as cross or “interfering” channels. We find

it useful to group these into a single channel vector hk,j = [hk,j,1 hk,j,2].

We consider an FDD system and assume that the users to have perfect knowledge of

their downlink channels, hk,j,j and hk,j,j̄ . Each user feeds back the channel information

to the direct BS and neighboring BS through the corresponding uplink channels. The BSs

estimate or recover these channel states and use them to construct the precoder.
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Cell 1 Cell 2

UT k

UT 1

UT K UT K

UT 1

UT k

hk,1,1

hk,1,2

ǫ

1

Figure 7.1: System model for a symmetric two-cell broadcast channel.

The received signal of user k in cell j can be written as

yk,j = hk,j,1x1 + hk,j,2x2 + nk,j ,

where xi ∈ C
N×1, i = 1, 2 is the transmitted data from BS i, and nk,j ∼ CN (0, σ2d) is the

noise at the user’s receiver. The transmitted data xi depends on the level of cooperation

assumed, and will be described in more details in Sections 7.2.1 and 7.2.2: we restrict

ourselves to linear precoding schemes, more specifically RCI precoder. We assume each

BS’s transmission is subject to a power constraint E
[
‖xi‖2

]
= Pi. In the MCP case, we

relax this constraint to a sum power constraint so that E
[
‖x‖2

]
=
∑2

i=1 Pi = Pt. In the

analysis, we assume P1 = P2 = Pd and denote γd = Pd/σ
2
d.

As already mentioned, in practical scenarios, perfect CSI is difficult to obtain and the

CSI at the BSs is obtained through feedback from the users. We are particularly interested

in the channel model where we can express the downlink channel between the user k in

cell j and BS i as

hk,j,i =
√
φk,j,iĥk,j,i + h̃k,j,i, (7.1)

where ĥk,j,i represents the channel estimate, and h̃k,j,i the channel uncertainty or estima-

tion error. The channel estimates are used by the BSs to construct the precoder.

The transmitted signal, precoder and SINR for each user for each cooperation scheme

will be presented in the following subsections.
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7.2.1 MCP

As previously mentioned, in the MCP, both BSs share the channel information and data

symbols for all users in the network. Therefore, we may consider the network as a broad-

cast channel with 2N transmit antennas and 2K single antenna users. The BSs construct

the precoding matrix using their channel estimates. In this work, we consider the RCI

precoding, for which the precoding or beamforming vector for user k in cell j, wkj , can

be written as [69]

wkj = c
(
ĤHĤ+ αI2N

)−1
ĥH
k,j ,

where ĥk,j = [ĥk,j,1 ĥk,j,2] and Ĥ = [ĥH
1,1 ĥ

H
2,1 · · · ĥH

K,1 ĥ
H
1,2 ĥ

H
2,2 · · · ĥH

K,2]
H . Let ŵ = w/c.

The transmitted data vector can be expressed as

x = c
2∑

j=1

K∑

k=1

ŵkjskj ,

where skj ∼ CN (0, 1) denotes the symbol to be transmitted to user k in cell j. It is also

assumed that the data symbols across the users are independent, i.e., E[ssH ] = I2K with

s = [s11 . . . sK1 s12 . . . sK2]
T . c is a scaling factor ensuring the total power constraint is

met with equality (E[xxH ] = Pt):

c2 =
Pt

Tr

{(
ĤHĤ+ αI2N

)−2
ĤHĤ

} .

The received signal at user k in cell j can be written as

ykj = hk,jx+ nk,j

= chk,j

(
ĤHĤ+ αI2N

)−1
ĤHs+ nk,j

= chk,j

(
ĤHĤ+ αI2N

)−1
ĥH
k,jsk,j + chk,j

(
ĤHĤ+ αI2N

)−1
ĤH

k,jsk,j + nk,j ,

where hk,j follows the channel model (7.1) with h̃k,j = [h̃k,j,1 h̃k,j,2]. The term Ĥk,j and

sk,j are obtained from Ĥ and s by removing the row corresponding to user k in cell j
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respectively. Hence, the SINR for user k in cell j can be expressed as

SINRk,j =

c2
∣∣∣∣hk,j

(
ĤHĤ+ αI2N

)−1
ĥH
k,j

∣∣∣∣
2

c2hk,j

(
ĤHĤ+ αI2N

)−1
ĤH

k,jĤk,j

(
ĤHĤ+ αI2N

)−1
hH
k,j + σ2d

. (7.2)

7.2.2 Coordinated Beamforming

In this scheme, the base stations only share the channel information, so that, for cell j, xj

can be expressed as

xj = cj

K∑

k=1

ŵkjskj ,

where skj ∼ CN (0, 1) denotes the data symbol for user k in cell j; c2j =
Pj∑K

k=1 ‖ŵkj‖2
. We

let

ŵkj =


αIN +

∑

(l,m) 6=(k,j)

ĥH
l,m,jĥl,m,j




−1

ĥk,j,j ,

which is an extension of regularized zero-forcing to the coordinated beamforming setup

[109]. Note that designing the precoding matrix at BS j requires local CSI only (the ĥk,i,j

from BS j to all users, but not the channels from the other BS to the users). The SINR of

user k in cell j can be expressed as

SINRk,j =
c2j |hk,j,jŵkj |2∑

(k′,j′) 6=(k,j)

c2j′ |hk,j,j′ŵk′j′ |2 + σ2d
, (7.3)

where, once again, hk,j,j and hk,j,j′ follow (7.1).

7.2.3 Analog Feedback through AWGN Channel

In the analog feedback scheme, proposed in [54], each user feeds back the CSI to the base

stations using the linear analog modulation. Since we skip quantizing and coding the

channel information, we can convey this information very rapidly [54]. We also consider

a simple uplink channel model, an AWGN channel. A more realistic multiple access
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(MAC) uplink channel model could be a subject for future investigation. Each user in

cell j feeds back its CSI hk,j orthogonally (in time). Since each user has to transmit 2N

symbols (its channel coefficients), it needs 2κN channel uses to feed back the CSI, where

κ ≥ 1. User k in cell j sends

hk,jΛ
1
2
j , (7.4)

where Λj is a diagonal matrix such that the first N diagonal entries are equal to λj1 and

the remaining diagonal entries are equal to λj2, with λjj = 2νκPu, λjj̄ = 2ǫ−1(1 − ν)κPu

and Pu is the user’s average transmit power per channel use. Equation (7.4) satisfies the

uplink power constraint E[‖hk,jΛ
1
2
j ‖2] = 2κNPu. Thus, the power allocated to feedback

the direct and interfering channel is controlled by ν ∈ [0, 1]. We should note that in (7.4),

it is assumed that κ is an integer. If κN is an integer, we can modulate the signal (7.4)

with 2N × 2κN spreading matrix [8, 54] and the analysis presented below still holds.

Now, let bℓ, ℓ = 1, 2, · · · , 2N , be the ℓth element of hk,j , λℓ be the corresponding ele-

ment on the diagonal of Λ, and ǫℓ = E[bℓb
∗
ℓ ]. When this channel coefficient is transmitted,

the signal received by the coordinating BSs is

yℓ =
√
λℓ


 1N
√
ǫ1N


 bℓ + nu =

√
λℓpbℓ + nu,

where nu ∈ C
2N×1 ∼ CN (0, σ2uI2N ) is the noise vector at the coordinating BSs and 1N is

a column vector of length N with all 1 entries. Using the fact that the path-gain from the

users in cell j to BS j̄ is ǫ, the MMSE estimate of bℓ becomes

b̂ℓ =
√
λℓǫℓp

T
[
λℓǫℓpp

T + σ2uI2N
]−1

yℓ,

and its MMSE is σ2bℓ = ǫℓ − λℓǫ2ℓpT
[
λℓǫℓpp

T + σ2uI2N
]−1

p. We should note that {b̂ℓ} are

mutually independent. By using the property of MMSE estimation, we can express hk,j,i

as

hk,j,i = ĥk,j,i + h̃k,j,i, (7.5)

where ĥk,j,i represents the channel estimate, and h̃k,j,i the channel uncertainty or esti-

mation error. Note that the entries of each vector ĥk,i,j and h̃k,i,j are independent and
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identically distributed (i.i.d.) and distributed according to CN (0, ωji) and CN (0, δji), re-

spectively, where

δji =





1
1+νγ̄u

, j = i

ǫ
1+(1−ν)γ̄u

, j 6= i,

, ωji =





νγ̄u
1+νγ̄u

, j = i

ǫ(1−ν)γ̄u
1+(1−ν)γ̄u

, j 6= i,

(7.6)

and γ̄u = 2γuκ(1 + ǫ) with γu = NPu/σ
2
u. The channel estimates are used by the BSs

to construct the precoder. Since each δij and ωij are identical for all users, we denote

δd = δjj , δc = δjj̄ , ωd = ωjj and ωc = ωjj̄ . From (7.6), we have ωd = 1− δd and ωc = ǫ− δc.

7.2.4 Quantized Feedback via RVQ

In the digital feedback case, user k in cell j uses Bk,j,j and Bk,j,j̄ bits to quantize or feed-

back the direct and interfering channels, respectively. The total number of feedback bits

is assumed to be fixed. It is also assumed that each user has different codebooks: Uk,j,j
with size 2Bk,j,j and Uk,j,j̄ with size 2Bk,j,j̄ , to quantize the direct and interfering channel,

respectively. Moreover, these codebooks are different for each user. In this work, Bk,j,j is

the same for all users and Bk,j,j = Bd, ∀k, j = 1, 2. Similarly, Bk,j,j̄ = Bc, ∀k, j = 1, 2. The

total number of feedback bits is denoted by Bt, where Bt = Bd +Bc.

Since the optimal codebook design for the quantized feedback is not known yet, there-

fore in this work, for analytical tractability, we consider the well known RVQ scheme.

As suggested by its name, RVQ uses a random vector quantization codebook where the

quantization vectors in the codebook are independently chosen from the isotropic distri-

bution on the N -dimensional unit sphere [36, 77]. The codebook is known by the base

station and the user. The user quantizes its channel by finding the quantization vector in

the codebook which is closest to its channel vector and feedbacks the index of the quan-

tization vector to the BSs. We should note that only the channel direction is quantized.

Most of the works that employ RVQ for the feedback model assume that only channel

direction information is sent to the BSs. As mentioned in [36], the channel norm infor-

mation can also be used for some problems that need channel quality information (CQI)

such as power allocation across the channel and users scheduling [73].
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The user k in cell j finds its quantization vector for the channel hk,j,i according to

ûk,j,i = arg max
uk,j,i∈ Uk,j,i

|hk,j,iu
H
k,j,i|

‖hk,j,i‖
.

The quantization error or distortion τ2k,j,i is defined as

τ2k,j,i = 1− ‖hk,j,iûk,j,i‖2
‖hk,j,i‖2

= sin2
(
∠

(
hk,j,i

‖hk,j,i‖
, ûk,j,i

))
.

It is a random variable whose distribution is equivalent to the minimum of 2Bk,j,i beta

random variables with parameters N − 1 and 1 (see [2, 36]). Each realization of τk,j,i is

different for each user even though the users have the same amount of feedback bits.

Having obtained ûk,j,i, each user sends its index in the code book and also the channel

magnitude ‖hk,j,i‖ (see also [73]). By assuming that the BSs can receive the information

perfectly, the channel estimate at the BS can be written as

ĥk,j,i = ‖hk,j,i‖ûk,j,i. (7.7)

Note that ĥk,j,i has the same statistical distribution as hk,j,i i.e., ĥk,j,i ∼ CN (0, ǫjiIN ),

where ǫji = 1 when i = j and otherwise, ǫji = ǫ.

From [36, 37], we can model hk,j,i as follows

hk,j,i =
√
1− τ2k,j,iĥk,j,i + τk,j,i‖hk,j,i‖zk,j,i, (7.8)

where zk,j,i is isotropically distributed in the null-space of ûk,j,i and independent of τk,j,i.

Moreover, it can be written as follows

zk,j,i =
vk,j,iΠ

⊥
ĥk,j,i

‖vk,j,iΠ
⊥
ĥk,j,i

‖ ,

where Π
ĥk,j,i

is the projection matrix in the column space of ĥk,j,i, Π
⊥
ĥk,j,i

= IN−
ĥH
k,j,iĥk,j,i

‖ĥk,j,i‖2

and vk,j,i ∼ CN (0, IN ) is independent of ĥk,j,i. It is clear that the channel model (7.8) has

the same structure as (7.1) with φk,j,i = 1− τ2k,j,i and h̃ = τk,j,i‖hk,j,i‖zk,j,i.
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7.2.5 Achievable and Limiting Sum Rate

Besides SINRk,j , another relevant performance measure is the achievable rate. For the

user k at cell j, it is defined as

Rk,j = log2(1 + SINRk,j). (7.9)

It is obtained by treating the interference as noise or equivalently performing single-

user decoding at the receiver. Observing (7.9), it is obvious that there is a one-to-one

continuous mapping between the SINR and the achievable rate (see also [91]). The total

sum rate, or just the sum rate, can then be defined as follows

Rsum =
2∑

j=1

K∑

k=1

Rkj . (7.10)

As shown later in Section 7.3 and 7.4, as K,N →∞, we have

SINRkj − SINR∞ → 0, (7.11)

where SINR∞ is a deterministic quantity and also called the limiting SINR. It is also

shown that the limiting SINR is the same for all users. By using the result (7.11) and

based on continuous mapping theorem [96], the following holds (see also [101])

1

2N
E [Rsum]−R∞

sum → 0,

where the limiting achievable sum rate can be expressed as R∞
sum = β log2(1 + SINR∞).

For the numerical simulations, we also introduce the normalized sum rate difference,

defined as

∆Rsum =
1
2NE [Rsum]−R∞

sum
1
2NE [Rsum]

(7.12)

that quantifies the sum rate difference, 1
2NE [Rsum]−R∞

sum, compared to the (actual) finite-

size system average sum rate.
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7.3 MCP and CBf with Noisy Analog Feedback

In this section, we will discuss the large system results and feedback optimization for

the MCP and CBf by using the analog feedback model discussed in Section 7.2.3. First,

the large system limit expression for the SINR is derived. Then, the corresponding opti-

mal regularization parameter that maximizes the limiting SINR is investigated. Finally,

the optimal ν that maximizes the limiting SINR that already incorporates the optimal

regularization parameter will be discussed.

7.3.1 MCP

We start with the theorem that states the large system limit of the SINR (7.2).

Theorem 7.1. Let ρM,AF = (ωd+ωc)
−1α/N and g(β, ρ) be the solution of g(β, ρ) =

(
ρ+ β

1+g(β,ρ)

)−1
.

In the large system limit, the SINR of MCP given in (7.2) converges in probability to a determin-

istic quantity given by

SINR∞
MCP,AF = γeg(β, ρM,AF)

1 +
ρM,AF

β (1 + g(β, ρM,AF))
2

γe + (1 + g(β, ρM,AF))
2 , (7.13)

where the effective SNR γe is expressed as

γe =
ωd + ωc

δd + δc +
1
γd

=
1− δd + ǫ− δc
δd + δc +

1
γd

. (7.14)

Proof. See Appendix 7.7.1.1

It is obvious from above that the limiting SINR is the same for all users in both cells.

This is due to the channel statistics of all users in both cells are the same. The channel

uncertainty, captured by ω• and δ•, affects the system performance (limiting SINR) via

the effective SNR and regularization parameter ρM,AF.

As discussed previously, the (effective) regularization parameter ρM,AF controls the

amount of interference introduced to the users and provides the trade-off between sup-

pressing the inter-user interference and increasing desired signal energy. The optimal

choice of ρM,AF that maximizes (7.13) is given in the following.
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Corollary 7.1. The optimal ρM,AF that maximizes SINR∞
MCP,AF is

ρ∗M,AF =
β

γe
, (7.15)

and the corresponding limiting SINR is

SINR∗,∞
MCP,AF = g(β, ρ∗M,AF). (7.16)

Proof. It is obvious that the limiting SINR (7.13) has the same structure as (3.16). Hence,

the proof follows Appendix 3.6.1.

It is interesting to see that the limiting SINR expression with ρ∗M,AF becomes simpler

and it depends only the cell-loading (β) and the effective SNR. Clearly from (7.14), γe is a

function of the total MSE, δt = δd + δc, that can be considered as a reasonable measure of

the CSIT quality. Thus, ρ∗M,AF adjusts its value as δt changes. Now, from (7.14), it is obvious

that γe is a decreasing function of δt. As a result, ρ∗M,AF is increasing with δt. In other words,

if the total quality of CSIT improves then ρ∗M,AF gets smaller. In the perfect CSIT case, i.e.,

δt = 0, and in the high SNR, ρ∗M,AF goes to zero and we have the ZF precoder.

Now, we will investigate how to allocate ν to maximize the limiting SINR (7.16), or

equivalently g(β, ρ∗M,AF). ν is captured by γe (or ρ∗M,AF) via δd. It can be shown that g is

decreasing (increasing) in ρM,AF (γe). Then, for a fixed β the limiting SINR is maximized

by solving the following optimization problem

max
ν∈[0,1]

γe =
ǫ− δc + 1− δd
(δd + δc) +

1
γd

.

As mentioned earlier, γe is a decreasing function of δt. Thus, the optimization problem

above can be rewritten as

min
ν∈[0,1]

δt = δd + δc =
1

νγ̄u + 1
+

ǫ

(1− ν)γ̄u + 1
. (7.17)

From the above, it is very interesting to note that the optimal ν that maximizes SINR∗,∞
MCP is

the same as the one that minimizes the total MSE, δt.
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It is easy to check that the optimization problem above is a convex program and the

optimal ν, denoted by ν∗, can be expressed as follows

ν∗ =





0,
√
ǫ ≥ γ̄u + 1

1,
√
ǫ ≤ 1

γ̄u+1

1+ 1
γ̄u

(1−√
ǫ)

1+
√
ǫ

, otherwise.

(7.18)

As a result, for
√
ǫ ≤ 1

γ̄u+1 , the BSs should not waste resources trying to learn about the

“interfering” channel states. In this situation, the coordination breaks down and the base

stations perform SCP. The completely opposite scenario, in which the BSs should not

learn the “direct” channels, occurs when
√
ǫ ≥ γ̄u + 1. Clearly, this can only happen if

ǫ > 1. When
√
ǫ ≥ γ̄u + 1, the BSs also perform SCP but each BS transmits to the users in

the neighboring cell.

We end this subsection by characterizing the behavior of γe (equivalently SINR∗,∞
MCP ),

after optimal feedback power allocation, as the cross channel gain ǫ varies. This also

implicitly shows how the total MSE, δt, affects the limiting SINR. Let γ̆u = γ̄u
(1+ǫ) . We

analyze the different cases in (7.18) separately.

1) Case
√
ǫ ≤ 1

γ̄u+1 : This is the case when the BSs perform SCP for the users in their

own cell. For fixed γ̆u, this inequality is equivalent to ǫ ≤ ǫSCP
max, where ǫSCP

max ≥ 0 satisfies
√
ǫSCP
max = 1

γ̆u(1+ǫSCP
max)+1

. Now, by taking the first derivative ∂γe
∂ǫ and setting it to zero, the

(unique) stationary point is given by

ǫSCP
AF =

1√
γdγ̆u

− 1.

If
√
ǫSCP

AF ∈ [0,
√
ǫSCP
max], it is easy to check that the limiting SINR is increasing until

ǫ = ǫSCP
AF and then decreasing. If

√
γdγ̆u > 1 then ǫSCP

AF < 0, or equivalently, ∂γe
∂ǫ < 0.

Consequently, for this case, the limiting SINR is decreasing in ǫ. Moreover,
√
ǫSCP

AF ≥
√
ǫSCP
max if the following condition holds

√
γdγ̆u(2− 2γd − γ̆u) ≥ (2γdγ̆u − γd − γ̆u), (7.19)
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in which case ∂γe
∂ǫ > 0, which implies that the limiting SINR always increases over ǫ.

This behavior of γe as a function of ǫ can be intuitively explained as follows. When

ν = 1, the total MSE is δt =
1

(1+ǫ)γ̆u+1 + ǫ, where the first and second terms are δd and δc,

respectively. As ǫ increases, δd decreases whereas δc increases. This shows that there is

a trade-off between the quality of the direct channel and the strength of the interference.

The trade-off is also influenced by parameters γd and γ̆u. As shown in the analysis, when
√
γdγ̆u > 1, the effect of cross channel to the limiting SINR dominates. In contrast, if the

condition in (7.19) is satisfied, the effect of the quality of the direct channel (δt) becomes

dominant. If the aforementioned conditions do not hold, δt causes the SINR to increase

until ǫSCP
AF and after that the interference from the cross channel takes over as the dominant

factor, thereby reducing the limiting SINR.

2) Case γ̄u + 1 ≥ √ǫ ≥ 1
γ̄u+1 : Here, the BSs perform MCP. By taking ∂γe

∂ǫ in that

interval of ǫ, it can be shown that we have a unique stationary which we denote as
√
ǫM

AF.

We can also show that γe is a convex function for ǫ ∈ [0, 1] and is increasing for ǫ ≥ 1.

Thus, if 1
γ̄u+1 ≤

√
ǫM

AF ≤ γ̄u + 1, the limiting SINR will decrease for
√
ǫ ∈ [ 1

γ̆u(1+ǫ)+1 ,
√
ǫM

AF]

and increase after that; Otherwise, the limiting SINR increases in the region. Here, for
√
ǫ ∈ [ 1

γ̄u+1 , 1], we still can see the effect of the trade-off within δt to the limiting SINR as

ǫ changes. In that interval, the quality of the direct channel becomes better as ǫ increases;

However, that of the cross channel decreases and this affects the SINR badly until ǫM
AF.

After this point, the improvement in the quality of the direct channel will outweigh the

deterioration of that of the cross channel, causing the SINR to increase.

3) Case
√
ǫ ≥ γ̄u + 1 : In this case, each BS performs SCP, but serves the other cell’s

users. We can establish that ∂γe
∂ǫ > 0. Hence, for this case, the limiting SINR is increasing

in ǫ.
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7.3.2 Coordinated Beamforming

Theorem 7.2. Let ρC,AF =
α
N , and let ΓA be the solution of the following cubic equation

ΓA =
1

ρC,AF +
βωc

1+ωcΓA
+ βωd

1+ωdΓA

. (7.20)

In the large system limit, the SINR of the coordinated beamforming given in (7.3) converges

almost surely to a deterministic quantity given by

SINR∞
CBf,AF =

ωd

β ΓA

[
ρC,AF +

βωc

(1+ωcΓA)2
+ βωd

(1+ωdΓA)2

]

(
1
γd

+ δd + δc +
ωd

(1+ωdΓA)2
+ ωc

(1+ωcΓA)2

) . (7.21)

Proof. See Appendix 7.7.2.1

Similar to the MCP case, the limiting SINR expression (7.21) is the same for all users.

Comparing (7.15) and (7.22), we can see that ρC,AF = ρM,AF for a given α. For ν ∈ [0, 1], the

optimal ρC,AF that maximizes the limiting SINR (7.21) is given in the following.

Corollary 7.2. The limiting SINR (7.21) is maximized by choosing the regularization parameter

according to

ρ∗C,AF = β

(
1

γd
+ δd + δc

)
(7.22)

and the corresponding limiting SINR is

SINR∗,∞
CBf,AF = ωdΓ

∗
A, (7.23)

where Γ∗
A is ΓA with ρC,AF = ρ∗C,AF.

Proof. Let γeff = β
(
γ−1
d + δd + δc

)
and Ψ = βωd

(1+ωdΓA)2
+ βωc

(1+ωcΓA)2
. It is easy to show that

∂SINR∞
CBf,AF

∂ρC,AF

= ωd
γeff − ρC,AF

[γeff +Ψ]2
∂Ψ

∂ρC,AF

, (7.24)

where ∂Ψ
∂ρC,AF

= −2β ∂ΓA

∂ρC,AF

(
ω2
d

(1+ωdΓA)3
+ ω2

c

(1+ωcΓA)3

)
> 0 with ∂ΓA

∂ρC,AF
< 0 is given by (7.56).

Thus, it follows that ρ∗C,AF = γeff is the unique stationary point and the global optimizer.

Plugging back ρC,AF into (7.21) yields (7.23).
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Similar to the MCP case, the corollary above shows that the optimal regularization

parameter adapts to the changes of CSIT quality and it is a decreasing function of δt.

Finding ν that maximizes the limiting SINR of the CBf is more complicated than in

the MCP case. It is equivalent to maximizing ωdΓ, such that ν ∈ [0, 1]: this is a non-

convex program. The maximizer ν∗ is the boundaries of the feasible set (ν = {0, 1}) or

the stationary point, denoted by ν◦, which is the solution of

ν◦ = − Γ∗
A

∂Γ∗

A

∂ρ∗C,AF
(1 + ν◦γ̄u)

. (7.25)

The point ν = 0 can be eliminated from the feasible set since the derivative of the limiting

SINR with respect to ν at this point is always positive.

7.3.3 Numerical Results

Since propagation channels fluctuate, the SINR expressions in (7.2) and (7.3) are random

quantities. Consequently, the average sum rates are also random. Figure 7.2 illustrates

how the random average sum rates approach the limiting sum rates as the dimensions

of the system increase. This is quantified by the normalized sum rate difference which is

defined in (7.12). The average sum rate is obtained by averaging the sum rates over 1000

channel realizations. The optimal regularization parameter and power splitting obtained

in the large system analysis are used in computing the limiting and average sum rates.

We can see that as the system size increases, the normalized sum rate difference becomes

smaller and this hints that the approximation of the average sum rate by the limiting sum

rate becomes more accurate. The difference is already about 1.3% and 0.5% for the MCP

and CBf respectively for N = 60,K = 36.

Figure 7.3 describes the applicability of the large system results into finite-size sys-

tems. We choose a reasonable system-size in practice, i.e., N = 10,K = 6. Then, 250

channel realizations are generated. For each channel realization, with a fixed regular-

ization parameter of the precoder, the optimal ν, denoted by ν∗FS, is computed. Then the

resulting average sum rate is compared to the average sum rate that using ν∗ from the

large system analysis, i.e., (7.18) and (7.25), for different values of ǫ. We can see that
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Figure 7.2: The normalized sum-rate difference for different system dimensions with β =
0.6, ǫ = 0.5 γd = 10 dB and γu = 0 dB.
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Figure 7.3: The normalized average sum-rate difference of the finite-size system by using
the νFS and ν∗ with N = 10, β = 0.6, γd = 10 dB and γu = 0 dB.
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Figure 7.4: (a) The optimal ν∗ and (b) the limiting SINR for the MCP and CBf scheme as
ǫ varies in [0, 1] with β = 0.6, γd = 10 dB, γu = 0 dB.

the normalized average sum rate difference, i.e., E[|Rsum(νFS)−Rsum(ν∗)|]
Rsum(νFS)

, for CBf has a peak

around 4% that can be considered as a reasonable value for the chosen system size. For

MCP, it is less than 0.47% which is about ten times smaller compared to that for CBf. To

this end, our simulation results indicate that the large system results discussed earlier

approximate the finite-system quite well.

In the following, we present some numerical simulations that visualize the character-

istics of the optimal ν∗ (in the large system limit) and the corresponding limiting SINR

for each cooperation scheme. We are primarily interested in their characteristics when

the interfering channel gain ǫ varies, as depicted in Figure 7.4. In general, we can see that

for the same system parameters, the CBf scheme allocates more power to feed back the

direct channel compared to the MCP. From Figure 7.4(a), we can see that for values of ǫ

ranging from 0 up to a certain threshold (denoted by ǫth
M = ǫSCP

max and ǫth
C for MCP and CBf

respectively), the optimal ν is 1: in other words, it is optimal in this range for the BSs not

to try to get information about the cross channels and to construct the precoder based

on the direct channel information only. Effectively, the two schemes reduce to the SCP

scheme when ν∗ = 1: as a result, the same limiting SINR is achieved by both schemes.

We also observe a peculiar behavior of the limiting SINR of MCP, which we already

highlighted in the analysis of Section 7.3.1. When
√
ǫ ≤ 1

γ̄u+1 , i.e. when ν∗ = 1, the
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SINR is decreasing as ǫ increases. After that the SINR is still decreasing until ǫ reaches

ǫM
AF and then increasing: this reflects the trade-off between δc and δd. Note that this initial

decrease does not occur in the perfect CSI case where the SINR is strictly increasing in ǫ

for MCP. Similar to the MCP case, we can see that the limiting SINR of CBf is decreasing

in ǫ when ν∗ = 1 (SCP). Moreover, it is still decreasing when both BSs perform CBf.

7.4 Quantized Feedback via Random Vector Quantization (RVQ)

In this section, we will derive the approximations of the SINR for the MCP (7.2) and

CBf (7.3) by analyzing them in the large system limit. We use these approximations to

optimize the feedback bit allocation and regularization parameter for maximizing the

limiting SINR. This joint optimization problem can be split into two steps. First, we

derive the optimal bit allocation for the direct and cross links, i.e., the optimal B̄d = Bd

N

and B̄c = Bc

N , respectively. Plugging the optimal bit allocation back into the limiting

SINR expression, we can then proceed to the second step where we obtain the optimal

regularization parameter. At the end of the section, some comparisons of the limiting

SINR and bit allocation values for the two schemes are illustrated.

7.4.1 MCP

Theorem 7.3. Let ρM,Q = (1+ǫ)−1α/N and g(β, ρ) be the solution of g(β, ρ) =
(
ρ+ β

1+g(β,ρ)

)−1
.

In the large system limit, the SINR in (7.2) converges in probability to a deterministic quantity

given by

SINR∞
MCP,Q = γeg(β, ρM,Q)

1 +
ρM,Q

β (1 + g(β, ρM,Q))
2

γe + (1 + g(β, ρM,Q))2
, (7.26)

where

γe =
d2

1− d2 + 1
γd(1+ǫ)

(7.27)

is defined as the effective SNR and

d =

√
1− 2−B̄d + ǫ

√
1− 2−B̄c

1 + ǫ
. (7.28)
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Proof. Refer to Appendix 7.7.1.2.

Theorem 7.3 shows that the limiting SINR is the same for all users in both cells. This is

not surprising given the symmetry in their channel statistics and feedback mechanisms.

Moreover, the only dependence of the limiting SINR on the bit allocation is via γe, which

itself is a function of d: d can be interpreted as a measure of the total quality of the chan-

nel estimates; In fact, given that B̄d and B̄c are constrained to sum up to B̄t, d in (7.28)

highlights a trade-off between increasing feedback bits for direct channel and cross chan-

nel. Comparing (7.13) and (7.26), we can immediately recognize an identical structure

between them. The effective SNR expressions (7.14) and (7.27) also share a similar con-

struction, where (1 + ǫ)d2 in (7.28) can be thought to be equivalent to ωd + ωc.

Now, we move tho the first step of the joint optimization i.e., determining the optimal

bit allocation that maximizes (7.26). It is clear from (7.26) that B̄d and B̄c contributes to

the limiting SINR through d. It is easy to check that the limiting SINR is an increasing

and a convex function of d. Thus, maximizing SINR∞
MCP,Q is equivalent to maximizing d,

i.e. solving (cf. Eq. (7.28))

max
xd∈[Xt,1]

√
1− xd + ǫ

√
1− Xt

xd
, (7.29)

where Xt = 2−B̄t , B̄t = Bt

N and xd = 2−B̄d . The solution of (7.29) is presented in the

following theorem.

Theorem 7.4. SINR∞
MCP,Q is maximized by allocating B̄d = − log2(x

∗
d) bits to feed back the direct

channel information, and B̄c = B̄t − B̄d to feed back the interfering channel information, where

x∗d is the positive (real) solution of the following quartic equation

x4d −Xtx
3
d + (ǫXt)

2(xd − 1) = 0. (7.30)

Proof. The first derivative of the objective function over xd is given by

(1 + ǫ)
∂E[d]

∂xd
=

1

2


− 1√

1− xd
+

1

x2d

ǫXt√
1− Xt

xd


 (7.31)
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and limxd→Xt

∂E[d]
∂xd

= ∞, limxd→1
∂E[d]
∂xd

= −∞. Moreover, the objective function is a con-

cave function in xd since

(1 + ǫ)
∂2E[d]

∂x2d
=

1

2


−1

2
(1− xd)−3/2 − 2

x3d

ǫXt√
1− Xt

xd

− 1

2

ǫXt

x4d

(
1− Xt

xd

)−3/2

 < 0,

for xd ∈ [Xt, 1]. The stationary point, x∗d, is obtained by setting the derivative equal to 0

and it is the non-negative (real) solution of

x4d −Xtx
3
d + (ǫXt)

2(xd − 1) = 0.

Since the objective function is concave over xd, x∗d is the global optimizer.

Now, let us discuss how the optimal bit allocation vary with ǫ. Since xd = x∗d satisfies

(7.30), then by taking the (implicit) derivative of (7.30) w.r.t. ǫ, we have

∂x∗d
∂ǫ

=
2ǫX2

t (1− xd)
4x3d − 3Xtx2d + (ǫXt)2

> 0, for Xt ≤ x∗d ≤ 1.

This implies that as ǫ increases, x∗d (B̄∗
d) increases (decreases). This is consistent with

the intuition that for higher ǫ, more resources would be allocated to quantize the cross

channel information. At one of the extremes, i.e., ǫ = 0, x∗d = Xt, or B̄d = B̄t. If ǫ = 0,

x∗d = Xt, so that when there is no interference from the neighboring BS, all feedback bits

are used to convey the direct channel states, as expected. At the other extreme, when

ǫ → ∞, x∗d → 1 or B̄d → 0. This can be shown by setting the derivative (7.31) equal to

zero and we have
1

ǫ
=
Xt
√
1− xd

x2d

√
1− Xt

xd

.

As ǫ → ∞, the left hand side goes to zero and the stationarity is achieved by setting

xd = 1.

It is also interesting to see how d, after optimal bit allocation, behaves as the cross

channel gain varies. Let d∗ is d evaluated at xd = x∗d. By taking ∂d∗

∂ǫ , we can show the

following property.
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Proposition 7.1. For ǫ ≤ 1, d∗ is decreasing in ǫ and increasing for ǫ ≥ 1. Consequently, d∗ is

minimum at ǫ = 1.

As mentioned previously, x∗d increases and consequently 1 − x∗d decreases as ǫ in-

creases. On the other side, ǫ
√
1−Xt/x∗d is getting larger. So, from the calculation we can

conclude that d∗ is mostly affected by
√

1− x∗d for ǫ ≤ 1, while for the other values of ǫ,

the other term takes over.

We now proceed to find the optimal ρM,Q that maximizes SINR∞
MCP,Q.

Theorem 7.5. Let γ∗e be γe evaluated at d = d∗. The optimal ρM that maximizes SINR∞
MCP(d

∗) is

ρ∗M,Q =
β

γ∗e
. (7.32)

The corresponding limiting SINR is given by

SINR∗,∞
MCP = g

(
β, ρ∗M,Q

)
.

Proof. The equation (7.26) has the same structure as (7.13) and thus, (7.32) follows.

From Theorem 7.5, d∗ affects the regularization parameter and the limiting SINR via

effective SNR γ∗e . The latter grows with d∗ (cf. (7.27)). Thus, ρ∗M,Q declines as the CSIT

quality, d∗, increases and this behavior is also observed for the cooperation schemes with

the analog feedback.

In Proposition 7.1, we established how d∗ changes with ǫ. We can show that γ∗e has a

similar behavior but reaches its minimum at a different value of ǫ due to the last term in

the denominator in (7.27). For SINR∗,∞
MCP , it attains its minimum at ǫ = ǫM

Q , as described in

the next proposition.

Proposition 7.2. Suppose that ǫ = ǫM
Q satisfies

(x∗d)
2 =

γd(1 + ǫ)− 1
2

ǫXt

[
γd(1 + ǫ) + 1 + ǫ

2

] . (7.33)

Then, SINR∗,∞
MCP,Q decreasing for ǫ ≤ ǫM

Q and increasing for ǫ ≥ ǫM
Q .
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The characterization of SINR∗,∞
MCP,Q above reminds us a similar behavior of SINR∗,∞

MCP,AF

after optimal power allocation. We can conclude that the limiting SINR of MCP under both

feedback schemes has a common behavior as ǫ varies.

7.4.2 Coordinated Beamforming

Theorem 7.6. Let ρC,Q = α/N and ΓQ be the solution of the following cubic equation

ΓQ =
1

ρC,Q + β
1+ΓQ

+ βǫ
1+ǫΓQ

. (7.34)

Let φd = 1 − 2−B̄d , φc = 1 − 2−B̄c , δd = 2−B̄d and δc = ǫ2−B̄c . In the large system limit,

the SINR (7.3) for the quantized feedback via RVQ converges weakly to a deterministic quantity

given by

SINR∞
CBf,Q = −

φdΓ
2
Q

β
(

1
γd

+ φd

(1+ΓQ)2
+ φcǫ

(1+ǫΓQ)2
+ δd + δc

)
∂ΓQ

∂ρ

, (7.35)

where

− ∂ΓQ

∂ρC,Q

=
ΓQ

ρC,Q + βǫ
(1+ǫΓQ)2

+ β
(1+ΓQ)2

.

Proof. See Appendix 7.7.2.2

As in Theorem 7.3, Theorem 7.6 shows that that the limiting SINR is the same for all

users. The quantization error variance of estimating the direct channel, δd, affects both

the signal strength (via φd) and the interference energy, in which it captures the effect

of the intra-cell interference. δc, on the other hand, only contributes to the interference

term: It represents the quality of the cross channel and determines the strength of the

inter-cell interference. Since B̄t is fixed, increasing B̄d, or equivalently reducing B̄c, will

strengthen the desired signal and reduce the intra-cell interference: it does so, however,

at the expense of strengthening the inter-cell interference. Thus, feedback bits’ allocation

is important in order to improve the performance of the system.
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To solve the joint optimization problem, it is useful to write (7.35) as follows

SINR∞
CBf,Q = G1

1− xd
1
γd

+ (1− xd)(G2 − 1) + ǫ
(
1− Xt

xd

)
(G3 − 1) + 1 + ǫ

,

where xd and Xt are defined as in the previous subsection. For brevity, we denote: G1 =

−Γ2
Q

(
β
∂ΓQ

ρC,Q

)−1
, G2 = (1 + ΓQ)

−2 and G3 = (1 + ǫΓQ)
−2. The optimal bit allocation can

be found by solving the following optimization problem

max .
xd∈[Xt,1]

SINR∞
CBf,Q. (7.36)

The solution of (7.36) is summarized in the following theorem.

Theorem 7.7. For a fixed B̄t, the optimal bit allocation, in terms of xd = 2−B̄d , that maximizes

SINR∞
CBf,Q is given by

x∗d =





Xt, ǫ ≤
Xt(

1
γd

+1)

1−G3−Xt(2−G3)
= ǫth

Xd =
ǫXt(G3−1)+

√
ǫ2X2

t (G3−1)2−ǫXt

(
1
γd

+1+ǫG3

)
(G3−1)

1
γd

+1+ǫG3
, otherwise.

(7.37)

Proof. Differentiating the objective function (7.36), we get

∂SINR∞
CBf,Q

∂xd
= G1

−x2d( 1
γd

+ 1 + ǫG3) + ǫ(G3 − 1)(2Xtxd −Xt)

x2d

(
1
γd

+ (1− xd)(G2 − 1) + ǫ
(
1− Xt

xd

)
(G3 − 1) + 1 + ǫ

)2

and the stationary is given by

x◦d =
ǫXt(G3 − 1) +

√
ǫ2X2

t (G3 − 1)2 − ǫXt(
1
γd

+ 1 + ǫG3)(G3 − 1)

1
γd

+ 1 + ǫG3
. (7.38)

Now let us consider the term Z = −x2d( 1
γd

+ 1 + ǫG3) + ǫ(G3 − 1)(2Xtxd − Xt) in the

numerator. It can be verified that the sign of Z is the same as the sign of
∂SINR∞

CBf,Q

∂xd
. Thus,

Xd = x◦d will be the unique positive solution of the quadratic equation Z = 0.

It can be also checked that ∂Z
∂xd

= −2xd( 1
γd

+ 1 + ǫG3) + ǫ(G3 − 1)(2Xt) < 0 and thus,



170 Base Station Cooperation with Feedback Optimization

Z is decreasing in xd. Since at xd = 1, Z < 0, we should never allocate x∗d = 1. We will

allocate xd = Xt if Z ≤ 0 at xd = Xt (this condition is satisfied whenever ǫ ≤ ǫth).

Unlike the MCP case where x∗d = Xt only when ǫ = 0, in the CBf, it is optimal for a

user to allocate all Bt to the direct channel when 0 ≤ ǫ ≤ ǫth. Note that x∗d = Xt does not

imply that the cooperation breaks down or that both BSs perform single-cell processing.

It is easy to check that ǫth increases when B̄t or γd is decreased. This suggests that when

the resource for the feedback bits is scarce or the received SNR is low then it is preferable

for the user to allocate all the feedback bits to quantize the direct channel. So, in this

situation, quantizing the cross channel does more harm to the performance the system.

However, as ǫ increases beyond ǫth, quantizing the cross channel will improve the SINR.

We can show that x∗d, particularly Xd, is increasing in ǫ. In doing that, we need to take

the derivative of Xd over ǫ. It is easy to show that ΓQ is decreasing in ǫ. Then, it follows

that G3 is decreasing in ǫ. Using this fact, we can then show ∂Xd

∂ǫ > 0. So, as in the case of

MCP, this suggests that more resources are allocated to feedback the cross-channel when

ǫ increases.

Once we have the optimal bit allocation, we can find the optimal ρC,Q, as we did for

the MCP. For that purpose, we can rewrite (7.37) w.r.t ρC,Q as follows

x∗d =





Xt, ρC,Q ≥ ρth

Xd, otherwise,

where for given Xt, ǫ and γd, the threshold ρth satisfies ǫ = ǫth. So, we have SINR∞
CBf,Q(Xd)

for ρC,Q < ρth and SINR∞
CBf,Q(Xt) for other values of ρC,Q.

Now, let us investigate the optimal ρC,Q when x∗d = Xd. By evaluating
∂SINR∞

CBf,Q(Xd)

∂ρC,Q
=

0, we can determine the stationary point, which is given by

ρ◦Xd
=

{
(1−Xd)

(
(G′

2 + ǫG′
3)

[
1

γd
+Xd + ǫ

Xt

Xd

]
+ ǫ(G2G

′
3 −G3G

′
2)

[
−Xd +

Xt

Xd

])

−X ′
d(G2 + ǫG3)γe

}
β

X ′
dγe + (1−Xd)

(
(1−Xd)G

′
2 + ǫ

(
1− Xt

Xd

)
G′

3

) ,
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where γe =
1
γd

+ 1 + ǫ+ ǫ(G3 − 1)
(
1− 2Xt

Xd
+ Xt

X2
d

)
and G′

2 =
∂G2
∂ρC,Q

and G′
3 =

∂G3
∂ρC,Q

.

We can show that the derivative is positive for ρC,Q ∈ [0, ρ◦Xd
) and negative for ρC,Q ∈

(ρ◦Xd
,∞). Since SINR∞

CBf,Q(Xd) is defined for ρC,Q ≤ ρth, if ρ◦Xd
< ρth then SINR∞

CBf,Q(Xd)

is increasing for ρC,Q ∈ [0, ρ◦Xd
] and decreasing for ρC,Q ∈ [ρ◦Xd

, ρth). If ρ◦Xd
≥ ρth then

SINR∞
CBf,Q(Xd) is increasing for ρC,Q ∈ [0, ρth).

Then, we move to the case when x∗d = Xt. By setting
∂SINR∞

CBf,Q(Xt)

∂ρC,Q
= 0, the stationary

point is then given by

ρ◦Xt
= β

(G′
2 + ǫG′

3)(Xt + 1/γd + ǫ) + ǫ(1−Xt)(G2G
′
3 −G3G

′
2)

(1−Xt)G′
2

.

We can also show that the derivative is positive for ρC,Q ∈ [0, ρ◦Xt
) and negative

for ρC,Q ∈ (ρ◦Xt
,∞). Since SINR∞

CBf,Q(Xt) is defined for ρC,Q ≥ ρth, if ρ◦Xt
> ρth then

SINR∞
CBf,Q(Xt) is increasing for ρC,Q ∈ [ρth, ρ

◦
Xt
] and decreasing for ρC,Q ∈ [ρ◦Xt

,∞). If

ρ◦Xt
≤ ρth then SINR∞

CBf,Q(Xt) is decreasing for ρC,Q ∈ [ρth,∞).

In what follows, by knowing the stationary point in both regions of ρ, we will inves-

tigate how to obtain the optimal ρC,Q, denoted by ρ∗C,Q, for ρC,Q ∈ [0,∞). By inspecting

∂SINR∞
CBf,Q(Xd)/∂ρC,Q and ∂SINR∞

CBf,Q(Xt)/∂ρC,Q we can see that that SINR∞
CBf,Q(x

∗
d) is con-

tinuously differentiable for the region, ρC,Q ∈ [0, ρth) and ρC,Q ∈ [ρth,∞), respectively. To

show SINR∞
CBf,Q(x

∗
d) is continuously differentiable for ρC,Q ∈ [0,∞) we need to establish

∂SINR∞
CBf,Q(x

∗
d)/∂ρC,Q to be continuous at ρC,Q = ρth, or equivalently

lim
ρC,Q→ρ−

th

∂SINR∞
CBf,Q(Xd)

∂ρC,Q

= lim
ρC,Q→ρ+

th

∂SINR∞
CBf,Q(Xt)

∂ρC,Q

=
∂SINR∞

CBf,Q(Xt)

∂ρC,Q

∣∣∣∣
ρC,Q=ρth

. (7.39)

When ρC,Q → ρ−th, Xd → Xt and therefore the denominator of ∂SINR∞
CBf,Q(Xd)/∂ρC,Q and

∂SINR∞
CBf,Q(Xt)/∂ρC,Q are equal. Let N (f) denote the numerator of f . As Xd → Xt, we

have

lim
ρC,Q→ρ−

th

N
(
∂SINR∞

CBf,Q(Xd)

∂ρC,Q

)
=
[
β(G′

2 + ǫG′
3)(1/γd + 1 + ǫ− (1−Xt))

+ βǫ(1−Xt)(G2G
′
3 −G3G

′
2)− ρth(1−Xt)G

′
2

]
ΓQ(1−Xt)

− lim
ρC,Q→ρ−

th

X ′
d(βG2 + βǫG3 + ρ)γe
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= N
(
∂SINR∞

CBf,Q(Xt)

∂ρC,Q

∣∣∣∣
ρC,Q=ρth

)
− lim

ρC,Q→ρ−
th

X ′
d(βG2 + βǫG3 + ρ)γe,

where X ′
d = ∂Xd/∂ρC,Q. We should note that limρC,Q→ρ−

th
X ′

d = −1
2ǫG

′
3

1−Xt
1
γd

+1+ǫ
6= 0. This

shows that x∗d is not continuously differentiable over ρC,Q. It can be verified that the fol-

lowing holds

lim
ρC,Q→ρ−

th

γe =
1

γd
+ 1 + ǫ+ ǫ(G3 − 1)

(
−1 + 1

Xt

)

=
1

Xt

[(
1

γd
+ 1

)
Xt + ǫ(2Xt − 1)− ǫG3(Xt − 1)

]
= 0,

since as ρC,Q → ρ−th, from the (equivalent) condition ǫ = ǫth, the term in the bracket be-

comes 0. This concludes (7.39) and therefore SINR∞
CBf,Q(x

∗
d) is continuously differentiable

for ρC,Q ∈ [0,∞).

By using the property above and the facts that the SINR∞
CBf,Q(Xd) and SINR∞

CBf,Q(Xt) are

quasi-concave (unimodal), we can determine the optimal ρ∗C,Q and x∗d jointly as described

in Algorithm 7.4.1. We can verify the steps 6-13 in the algorithm by using the following

Algorithm 7.4.1 Calculate ρ∗C,Q and x∗d
1: Compute ρth

2: if ρth ≤ 0 then

3: x∗d = Xt.
4: ρ∗C,Q = ρ◦Xt

5: else

6: Compute ρ◦Xt

7: if ρ◦Xt
≥ ρth then

8: x∗d = Xt

9: ρ∗C,Q = ρ◦Xt

10: else

11: x∗d = Xd

12: ρ∗C,Q = ρ◦Xd

13: end if

14: end if

arguments: If ρ◦Xt
> ρth, then the derivate of SINR∞

CBf,Q(Xt) is positive at ρC,Q = ρth because

SINR∞
CBf,Q(Xt) is quasi-concave. Since the SINR∞

CBf,Q(x
∗
d) is continuously differentiable, then

the derivative of SINR∞
CBf,Q(Xd) is also positive when ρC,Q → ρth. Since SINR∞

CBf,Q(Xd) is also
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quasi-concave, consequently SINR∞
CBf,Q(Xd) is increasing for ρC,Q ∈ [0, ρth). This implies

that ρ∗C,Q = ρ◦Xt
. Similar types of arguments can be also used to verify that if ρ◦Xt

< ρth

then ρ∗C,Q = ρ◦Xd
.

7.4.3 Numerical Results

The first two figures in this section are obtained by using a similar procedure to that

followed in the analog feedback case. Figure 7.5 shows how well the limiting sum rate

(equivalently the limiting SINR) approximates the finite-size system sum rate. The op-

timal regularization parameter and bit allocation are applied in computing the limiting

and average sum rates. As N grows, the normalized sum rate difference become smaller.

For N = 60,K = 36, it is arleady about 3.1% and 1.6% for MCP and CBf, respectively.

Figure 7.6 shows the average sum rate difference, with a fixed regularization parameter,

between the system that uses B∗
d,FS and B̄d

∗
to feed back the direct channel states. B∗

d,FS

denotes the optimal bit allocation of the finite-size system. For each channel realization,

it is obtained by a grid search. With N = 10,K = 6, the maximum normalized average

sum rate difference reaches 0.22% for MCP. It is about four-times bigger for CBf, which

is approximately 0.86%. Thus, from those simulations, similar to the analog feedback

case, the conclusions we can reach for the limiting regime are actually useful for the finite

system case.

In the following, we present numerical simulations that show the behavior of the

limiting SINR and optimal bit allocation for MCP and CBf as ǫ varies. The optimal bit

allocation is illustrated in Figure 7.7(a). As shown in Section 7.4, the optimal Bd for MCP

is decreasing in ǫ and B∗
d = Bt when ǫ = 0. For CBf, B∗

d = Bt when ǫ ≤ 0.19, and after

that decreases as ǫ grows. Overall, for given ǫ,B∗
d for CBf is larger than for MCP, implying

the quality of the direct channel information is more important for CBf.

In Figure 7.7(b), the optimal values for the regularization parameter and bit allocation

are used. From that figure, it is obvious that SINR∞
CBf,Q decreases as ǫ increases. In the case

of MCP, as predicted by the analysis, the limiting SINR is decreasing until ǫ∗M,RVQ ≈ 0.72

and increasing after that point. By comparing the limiting SINR for both cooperation

schemes, it is also interesting to see that for some values of ǫ, i.e., in the interval when
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Figure 7.5: The total sum-rate difference for different system dimensions with β = 0.6,
ǫ = 0.5 γd = 10 dB and B̄t = 4.
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Figure 7.7: (a) Optimal bit allocation vs. ǫ, (b) Limiting SINR vs. ǫ. Parameters: γd=10 dB,
B̄t = 4.

CBf has B̄∗
c = 0, the CBf slightly outperforms MCP. We should note that within the cur-

rent scheme, when B̄∗
c = 0, CBf and MCP are not the same as single-cell processing (SCP):

under RVQ, there is still a quantization vector in the codebook that is used to represent

the cross channel (although it is uncorrelated with the actual channel vector being quan-

tized).

Motivated by the above facts, we investigate whether SCP provides some advantages

over MCP and CBf for some (low) values of ǫ. In SCP, we use Bk,j,j = Bt bits (∀k, j)
to quantize the direct channel. The cross channels in the precoder are represented by

vectors with zero entries. By following the steps in deriving Theorem 7.3 and 7.6, we can

show that the limiting SINR is given by

SINR∞
SCP,Q = γeg(β, ρS)

1 + ρS
β (1 + g(β, ρS))

2

γe + (1 + g(β, ρS))2
,

where ρS = N−1α and γe =
1−2−B̄t

2−B̄t+ǫ+ 1
γd

. It follows that the optimal ρS maximizing SINR∞
SCP,Q

is ρ∗S = β
γe

and the corresponding the limiting SINR is SINR∗,∞
SCP,Q = g(β, ρ∗S ).

From Figure 7.7, it is obvious that the SCP outperforms MCP and CBf for some values

of ǫ. For ǫ ≤ 0.13, the SCP outperforms MCP and CBf. Surprisingly, the CBf is still beaten
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by SCP until ǫ ≈ 0.82. This means that the SCP still gives advantages over the CBf even

in a quite strong interference regime with this level of feedback.

7.5 Analog vs. Digital Feedback

In this section we will compare the performance of the analog and quantized feedback

for each cooperation scheme. For the quantized feedback, we follow the approach in

[8,45,78,111] that translates feedback bits to symbols for a fair comparison with the analog

feedback. In this regard, there are two approaches [111]:

(i) By assuming that the feedback channel is error free and transmitted at the uplink

rate (even though this assumption could be unrealistic in practice), we can write

B̄t =
Bt

N
= 2κ log2 (1 + (1 + ǫ)γu) . (7.40)

This approach is introduced in [8, 45]. (7.40) is obtained by assuming that each

feedback bit is received by both base stations in different cells where the path-

gains from a user to its own BS and other BS are different i.e, 1 and ǫ respectively.

We can think the feedback transmission from a user to both BSs as a Single-Input

Multi-Output (SIMO) system. The BSs linearly combine the feedback signal from

the user and the corresponding maximum SNR is (1 + ǫ)γu (see [46]). The pre-log

factor 2κN forBt in (7.40) presents the channel uses (symbols) for transmitting the

feedback bits which are the same as those for the analog feedback. κ follows the

discussion in Section 7.2.3. Our approach is different from the approach in [111]

in which the user k in cell j sends the feedbacks only to its own BS j. In that case,

(7.40) becomes B̄t = 2κ log2 (1 + γu).

(ii) Following [78], the second approach translates the feedback bits to symbols based

on the modulation scheme used in the feedback transmission. In the analog feed-

back, the feedback takes 2κN channel uses per user. Let η be a conversion factor

that links the bits and symbols and it depends on the modulation scheme. As an

example, for the binary phase shift keying (BPSK), η = 1. Thus, we can write (see
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also [111])

ηBt = 2κN. (7.41)

We should note that using this approach, for a fixed κ there is no link between B̄t

and γu as we can see in (7.40).

Let us assume that κ = 1. Thus, with the first approach, we have Xt = 2−B̄t =

1
(1+(1+ǫ)γu)

2 . The comparison of the limiting SINR based on the analog and quantized

feedback for MCP and CBf can be seen in Figure 7.8(a). It shows that the quantized

feedback beats the analog feedback in both MCP and CBf for ǫ less than about 1. A similar

situation still occurs for CBf even for ǫ ∈ [0, 2]. The opposite happens for MCP when ǫ

is above 1.5. The comparison of the analog and quantized feedback with the second

approach, also with κ = 1, is illustrated in Figure 7.8(b). Similar to the previous, one can

see that the quantized feedback outperforms the analog feedback if ǫ is below a certain

threshold. Otherwise, the analog feedback gives better performance. Those observations

can be explained by verifying whether the feedback scheme that provides better CSIT

will give a better performance. This is easier to check by looking at the MCP scheme

because from our discussions in Section 7.3 and 7.4, its performance can be measured

by the total CSIT quality, i.e., ωc + ωd in the analog feedback and (1 + ǫ)d2 in the digital

feedback. Plotting those over ǫ, not shown here, will give the same behaviors for the MCP

as we observed in Figure 7.8. Thus, from our simulations above, the CSIT quality of the

quantized feedback is better than that of analog feedback when the cross channel gain is

below a certain threshold. The plots above also confirm that more feedback resources will

increase the system performance: for a fixed γu = 0 dB, B̄t in the left plot is larger than

that in the right plot and hence gives a higher (limiting) SINR for the quantized feedback

scheme.

Figure 7.9 depicts the limiting SINR of the analog and quantized feedback for differ-

ent values of feedback rate. For the analog feedback, the values of feedback rate/bit is

converted by using the previous approaches: κ = B̄t

2 log2(1+(1+ǫ)γu)
and κ = B̄t/2 respec-

tively. For MCP, we can see that initially the analog feedback scheme outperforms the

quantized feedback in both plots. However, after a certain value (threshold) of B̄t, the

opposite happens. A similar observation also holds for the CBf scheme. The explana-
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Figure 7.8: The comparison of the limiting SINR of the analog and quantized feedback
for different cooperation schemes. Parameters: β = 0.6, γd = 10 dB, γu = 0 dB.
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tions for those phenomena follow the discussions for Figure 7.8. We should note that in

generating the figures, the values for B̄t are already determined. So, the limiting SINRs

for the digital feedback are the same in both sub-figures. For the analog feedback, since

κ with the approach (7.41) is larger (with γu = 0 dB) than that with the approach (7.40),

then the training period in the former is longer and will result in a better CSIT. Thus, the

limiting SINRs for the analog feedback in Figure 7.9(b) are larger compared to those in

7.9(a).

7.6 Conclusion

In this chapter, we perform feedback optimization for the analog and quantized feedback

schemes in a symmetric two-cell network with different levels of cooperation between

base stations. In both cooperation schemes, it is shown that more resources, uplink trans-

mit power in the case of analog feedback or feedback bits in the case of quantized feed-

back, are allocated to feeding back the interfering channel information as the interfering

channel gain increases. Moreover, if the interfering channel gain is below a certain thresh-

old, the conventional network with no cooperation between base stations is preferable.

Our analysis also shows that the limiting SINR for MCP, in both analog and quantized

feedback, improves in ǫ if ǫ is above certain threshold. This also implies that above that

threshold the (total) quality of the channel at the base stations is also getting better. Al-

though our analysis is performed in the asymptotic regime, our numerical results hint to

their validity in the finite-size system cases.
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7.7 Appendix

7.7.1 Large System Results for the Network MIMO

First, we will expand the SINR expression (7.2). Let Φk,j = diag{φk,j,1, φk,j,2}. Based on

(7.1) we can write hk,j = ĥk,jΦ
1
2
k,j + h̃k,j . Consequently, the SINRk,j can be expressed as

c2
∣∣∣∣(ĥk,jΦ

1
2
k,j + h̃k,j)

(
ĤHĤ+ αI2N

)−1
ĥH
k,j

∣∣∣∣
2

c2(ĥk,jΦ
1
2
k,j + h̃k,j)

(
ĤHĤ+ αI2N

)−1
ĤH

k,jĤk,j

(
ĤHĤ+ αI2N

)−1
(ĥk,jΦ

1
2
k,j + h̃k,j)H + σ2d

.

By applying the matrix inversion lemma (MIL) to
(
ĤHĤ+ αI2N

)−1
, we can rewrite the

SINR expression as follows

SINRk,j =

c2

∣∣∣∣∣
Ăk,j + Fk,j

1 +Ak,j

∣∣∣∣∣

2

c2 (Bk,j + 2ℜ[Dk,j ] + Ek,j) + σ2d
, (7.42)

where

Ăk,j =
1

N
ĥk,jΦ

1
2
k,j

(
1

N
ĤH

k,jĤk,j + ρI2N

)−1

ĥH
k,j

Ak,j =
1

N
ĥk,j

(
1

N
ĤH

k,jĤk,j + ρI2N

)−1

ĥH
k,j

Fk,j =
1

N
h̃k,j

(
1

N
ĤH

k,jĤk,j + ρI2N

)−1

ĥH
k,j

Bk,j =
1

N
ĥk,jΦ

1
2
k,jZk,j

(
1

N
ĤH

k,jĤk,j

)
Zk,jΦ

1
2
k,jĥ

H
k,j

Dk,j =
1

N
ĥk,jΦ

1
2
k,jZk,j

(
1

N
ĤH

k,jĤk,j

)
Zk,jh̃

H
k,j

Ek,j =
1

N
h̃k,jZk,j

(
1

N
ĤH

k,jĤk,j

)
Zk,jh̃

H
k,j

with ρ = α
N , Ok,j =

(
1
N ĤH

k,jĤk,j + ρI2N

)−1
and Zk,j =

[
Ok,j −

Ok,j( 1
N
ĥH
k,j ĥk,j)Ok,j

1+Ak,j

]
.

Note that for the analog feedback, Φk,j = I, ∀k, j. In the following subsections, the large

system limit of each term in the SINR (7.42), for the analog and quantized feedback cases,

will be derived. For brevity in the presentation, we denote Qk,j = Ok,j

(
1
N ĤH

k Ĥk,j

)
Ok,j .
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7.7.1.1 Proof of Theorem 1: Analog Feedback case

In the analog feedback case, as previously mentioned in Section 7.3, ĥk,i,j ∼ CN (0, ωijIN )

and h̃k,i,j ∼ CN (0, δijIN ) are independent. We can rewrite those vectors as follows

ĥk,j = gk,jG
1
2
k,j and h̃k,j = dk,jD

1
2
k,j ,

where gk,j ∼ CN (0, I2N ) and dk,j ∼ CN (0, I2N ) are independent. The diagonal matrices

Gk,j and Dk,j are given by Gk,j = diag{ωj1IN , ωj2IN} and Dk,j = diag{δj1IN , δj2IN},
respectively.

In the analysis below, we heavily use Theorem 2.5. Therefore, it is useful to define

the asymptotic variance profile for the matrix 1
N ĤH which is a 2N × 2βN complex ran-

dom matrix. Following Theorem 2.5, in our case, we have x ∈ [0, 2], y ∈ [0, 2β] and the

asymptotic variance profile is given by

v(x, y) =





ωd 0 ≤ x < 1, 0 ≤ y < β

ωc 1 ≤ x < 2, 0 ≤ y < β

ωc 0 ≤ x < 1, β ≤ y < 2β

ωd 1 ≤ x < 2, β ≤ y < 2β.

In what follows, we will derive the large system limit for each term in (7.42).

1) Ăk,j : It can rewritten as 1
N gk,jG

1
2
k,jΦ

1
2
k,jOk,jG

1
2
k,jg

H
k,j . Applying Lemma 2.2 yields

Ăk,j −
1

N
Tr

(
Gk,jΦ

1
2
k,jOk,j

)
a.s.−→ 0.

The second term in the LHS can be written as

1

N

[
N∑

i=1

ωj1

√
φk,j,1[Ok,j ]ii +

2N∑

i=N+1

ωj2

√
φk,j,2[Ok,j ]ii

]
.
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By Applying Theorem 2.5, it converges in probability to

ωj1

√
φk,j,1

∫ 1

0
u(x,−ρ) dx+ ωj2

√
φk,j,2

∫ 2

1
u(x,−ρ) dx,

where for 0 ≤ x ≤ 1,

u(x,−ρ) = u1 =
1

ρ+ βωd

1+u1ωd+u2ωc
+ βωc

1+u1ωc+u2ωd

and for 1 < x ≤ 2,

u(x,−ρ) = u2 =
1

ρ+ βωc

1+u1ωd+u2ωc
+ βωd

1+u1ωc+u2ωd

.

The solution of the equations above is u1 = u2 = u where u is the positive solution of

u =
1

ρ+ β(ωd+ωc)
1+u(ωd+ωc)

.

Let g(β, ρ) be the solution of g(β, ρ) =
(
ρ+ β

1+g(β,ρ)

)−1
. Then, we can express u in

terms of g(β, ρ) as

u =
1

ωd + ωc
g(β, ρ̄), ρ̄ =

ρ

ωd + ωc
.

We should note that ωj1 + ωj2 = ωd + ωc, ∀j. Thus,

Ăk,j − Ă∞
k,j

i.p.−→ 0, with Ă∞
k,j =

√
φk,j,1ωj1 +

√
φk,j,2ωj2

ωd + ωc
g(β, ρ̄).

Since in the current feedback scheme Φk,j = I2N then Ă∞
k,j = g(β, ρ̄). Moreover, Ă∞

k,j =

Ă∞ is the same for all users in both cells.

2) Ak,j : This term is Ăk,j with Φk,j = I2N . Thus, it follows that Ak,j − g(β, ρ̄)
i.p.−→ 0.

3) Fk,j : It can be rewritten as 1
Ndk,jD

1
2
k,jOk,jG

1
2
k,jg

H
k,j . Conditioning on Ĥk,j , it is ob-

vious that dk,j , gk,j and D

1
2
k,jOk,jG

1
2
k,j are independent of each other. By Lemma 2.3, it

follows that Fk,j
a.s.−→ 0.
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4) Dk,j : Expanding Dk,j , we have

Dk,j =
1

N
ĥk,jΦ

1
2Qk,jh̃

H
k,j +

Ăk,jF
∗
k,j

(
1
N ĥk,jQk,jĥ

H
k

)

(1 +Ak,j)2
−
F ∗
k,j

(
1
N ĥk,jΦ

1
2Qk,jĥ

H
k,j

)

1 +Ak,j

−
Ăk,j

(
1
N ĥk,jQk,jh̃

H
k,j

)

1 +Ak,j

= D
(1)
k,j +D

(2)
k,j −D

(3)
k,j −D

(4)
k,j . (7.43)

Following the arguments in 3), it can be checked that D
(1)
k,j

a.s.−→ 0. Similarly, D
(4)
k,j

a.s.−→ 0.

Since Fk,j
a.s.−→ 0 then D

(2)
k,j

a.s.−→ 0 and D
(3)
k,j

a.s.−→ 0. Thus, it follows that Dk,j
a.s.−→ 0.

5) Bk,j : It can be rewritten as

Bk,j =
1

N
ĥk,jΦ

1
2
k,jQk,jΦ

1
2
k,jĥ

H
k,j +

|Ăk,j |2
(

1
N ĥk,jQk,jĥ

H
k,j

)

(1 +Ak,j)2

−
2ℜ
[
Ă∗

k,j

(
1
N ĥk,jΦ

1
2
k,jQk,jĥ

H
k,j

)]

1 +Ak,j
(7.44)

= B
(1)
k,j +

|Ăk,j |2B(2)
k,j

(1 +Ak,j)2
−

2ℜ[Ă∗
k,jB

(3)
k,j ]

1 +Ak,j
. (7.45)

From Lemma 2.2, we can show B
(1)
k,j − (N)−1Tr (Gk,jΦk,jQk,j)

a.s.−→ 0. Following (3.28), we

have Qk,j = Ok,j + ρ ∂
∂ρOk,j . By applying Theorem 2.5, we obtain

1

N

⌊bN⌋∑

i=⌊aN⌋
[Qk,j ]ii

i.p.−→
∫ b

a
u(x,−ρ) dx+ ρ

∂

∂ρ

∫ b

a
u(x,−ρ) dx .

Consequently, we can show B
(1)
k,j −B

(1),∞
k,j

i.p.−→ 0, where

B
(1),∞
k,j =

ωj1φk,j,1 + ωj2φk,j,2
ωd + ωc

[
g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄)

]
. (7.46)

Similarly, we can also show that

B
(2),∞
k,j = g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄),
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B
(3),∞
k,j =

ωj1

√
φk,j,1 + ωj2

√
φk,j,2

ωd + ωc

[
g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄)

]
.

Since Φk,j = I2N , it follows that B
(1),∞
k,j = B

(2),∞
k,j = B

(3),∞
k,j . Thus, Bk,j −B∞ i.p.−→ 0, where

B∞ =
1

(1 + g(β, ρ̄))2

[
g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄)

]
.

6) Ek,j : Expanding this term gives

Ek,j =
1

N
h̃k,jQk,jh̃

H
k,j − 2ℜ



Fk,j

(
1
N ĥk,jQk,jh̃

H
k,j

)

1 +Ak,j


+
|Fk,j |2 1

N ĥk,jQk,jĥ
H
k,j

(1 +Ak,j)2

= E
(1)
k,j − E

(2)
k,j + E

(3)
k,j . (7.47)

By using the previous results, we can show E
(2)
k,j

a.s.−→ 0 and E
(3)
k,j

i.p.−→ 0. From Lemma 2.2,

E
(1)
k,j − (N)−1Tr (Dk,jQk,j)

a.s.−→ 0. Following the steps in obtaining B
(1),∞
k,j , it is straightfor-

ward to show that E
(1)
k,j − E

(1),∞
k,j

i.p.−→ 0 where

E
(1),∞
k,j =

δk,j,1 + δk,j,2
ωd + ωc

[
g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄)

]
.

Thus, we have Ek,j − E(1),∞
k,j

i.p.−→ 0.

7) c2 : The denominator of c2 can be written as follows

1

N
Tr

{(
1

N
ĤHĤ+ ρI2N

)−2 1

N
ĤHĤ

}
=

∫
λ

(λ+ ρ)2
dF

ĤHĤ
(λ),

where F
ĤHĤ

is the empirical eigenvalue distribution of ĤHĤ. From Theorem 2.5, F
ĤHĤ

converges almost surely to a limiting distribution G∗ whose Stieltjes transform

m(z) =

∫ ∞

0

1

λ− z dG
∗(λ) =

∫ 1

0
u(x, z) dx.
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Therefore,

∫
λ

(λ+ ρ)2
dF

ĤHĤ
(λ) =

∫
1

λ+ ρ
+ ρ

∂

∂ρ

1

λ+ ρ
dF

ĤHĤ
(λ)

a.s.−→ m(−ρ) + ρ
∂

∂ρ
m(−ρ) =

∫ 1

0
u(x,−ρ) + ρ

∂

∂ρ
u(x,−ρ) dx.

Previously, we have shown that
∫ 1
0 u(x,−ρ) = 2(ωd+ωc)

−1g(β, ρ̄) with ρ̄ = 2ρ(ωd+ωc)
−1.

Hence, the last equation equals to 2(ωd + ωc)
−1
(
g(β, ρ̄) + ρ̄ ∂

∂ρ̄g(β, ρ̄)
)

and we have

c2 −
1
2(ωd + ωc)Pt

g(β, ρ̄) + ρ̄ ∂
∂ρ̄g(β, ρ̄)

a.s.−→ 0.

The large system analysis in 1)-3) and 7) show that the signal strength, i.e, the numer-

ator of (7.42), converges to

(ωd + ωc)Pdg
2(β, ρ̄)

(1 + g(β, ρ̄))2
(
g(β, ρ̄) + ρ̄ ∂

∂ρ̄g(β, ρ̄)
) , (7.48)

where we already substitute Pd = 1
2Pt. Similarly, it follows that the interference (energy)

converges to
Pd

(1 + g(β, ρ̄))2

(
ωd + ωc − (δd + δc) (1 + g(β, ρ̄))2

)
. (7.49)

By using (3.32), we can show

g(β, ρ̄) + ρ̄
∂

∂ρ̄
g(β, ρ̄) =

βg(β, ρ̄)

β + ρ̄(1 + g(β, ρ̄))2
.

By combining the large system results and denoting ρM,AF = ρ̄, we can express the limiting

SINR as in (7.13). This completes the proof.

7.7.1.2 Proof of Theorem 7.3: Quantized feedback (via RVQ) case

Observing (7.8), it is obvious that φk,j,i is random because it is the function of the quanti-

zation error. In opposite, it is not random in the analog feedback channel model. There-

fore, the derivation of the limiting SINR for the limited feedback channel model is quite
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different from the previous subsection. We start with the following notation. For a given

a 2N × 2N matrix X, we can partition it as follows.

Xk,j =


 X11

k,j X12
k,j

X21
k,j X22

k,j


 ,

where X11
k,j = [Xk,j ]lm, l = 1, · · · , N,m = 1, · · · , N , X12

k,j = [Xk,j ]lm, l = 1, · · · , N,m =

N+1, · · · , 2N , X21
k,j = [Xk,j ]lm, l = N+1, · · · , 2N,m = 1, · · · , N , and X22

k,j = [Xk,j ]lm, l =

N + 1, · · · , 2N,m = N + 1, · · · , 2N .

In the following, the large system limit for each term in the SINR is derived.

1) Ăk,j : We can write Ăk,j as

Ăk,j =
1

N

(
φ

1
2
k,j,1ĥk,j,1O

11
k,jĥ

H
k,j,1 + φ

1
2
k,j,1ĥk,j,1O

12
k,jĥ

H
k,j,2 + φ

1
2
k,j,2ĥk,j,2O

21
k,jĥ

H
k,j,1

+ φ
1
2
k,j,2ĥk,j,2O

22
k,jĥ

H
k,j,2

)
. (7.50)

Since ĥk,j,1 and ĥk,j,2 are independent, the second and third terms converge almost

surely to 0. For the first term

1

N
ĥk,j,1O

11
k,jĥ

H
k,j,1 −

ωj1

N
TrO11

k,j
a.s.−→ 0

or equivalently,

1

N
ĥk,j,1O

11
k,jĥ

H
k,j,1 −

ωj1

N

N∑

i=1

[Ok,j ]ii
a.s.−→ 0.

By using Theorem 2.5, we have

1

N

N∑

i=1

[Ok,j ]ii
i.p.−→ 1

1 + ǫ
g(β, ρ̄),
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where ρ̄ =
1
N
α

1+ǫ . By using the same techniques as in [77], we can show that

√
φk,j,i =

√
1− τ2k,j,i

L2−→





√
1− 2−B̄d j = i

√
1− 2−B̄c otherwise.

We should also note that the convergence in mean square sense implies the convergence

in probability. By doing the same steps for the last term of (7.50), we have

Ăk,j −
√
1− 2−B̄d + ǫ

√
1− 2−B̄c

1 + ǫ
g(β, ρ̄)

i.p.−→ 0.

2) Ak,j : This term is Ăk,j with Φk,j = I2N . Hence,

Ak,j − g(β, ρ̄)
i.p.−→ 0.

3) Fk,j : We can expand the term as follows

Fk,j =
1

N

(
h̃k,j,1O

11
k,jĥ

H
k,j,1 + h̃k,j,1O

12
k,jĥ

H
k,j,2 + h̃k,j,2O

21
k,jĥ

H
k,j,1 + h̃k,j,2O

22
k,jĥ

H
k,j,2

)
. (7.51)

By using the same steps as in deriving (7.60), it follows that each term in the right hand

side of the equation above converges in probability to 0. Hence, Fk,j
i.p.−→ 0.

4) Bk,j : By following the representation (7.45) forBkj , we can express the first term

in the right hand side as

B
(1)
k,j =

1

N

(
φk,j,1ĥk,j,1Q

11
k,jĥ

H
k,j,1 + φk,j,1ĥk,j,1Q

12
k,jĥ

H
k,j,2 + φk,j,2ĥk,j,2Q

21
k,jĥ

H
k,j,1

+ φk,j,2ĥk,j,2Q
22
k,jĥ

H
k,j,2

)
.

The second term and the third term converge (almost surely) to 0. For the first term,

1

N
ĥk,j,1Q

11
k,jĥ

H
k,j,1 −

ωj1

N
TrQ11

k,j
a.s.−→ 0.
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From (3.28), we have Qk,j = Ok,j + ρ ∂
∂ρOk,j . Hence, we can show that

1

N
TrQ11

k,j =
1

N

N∑

i=1

[
Q11

k,j

]
ii

i.p.−→
∫ 1

0
u(x,−ρ) dx+ ρ

∂

∂ρ

∫ 1

0
u(x,−ρ) dx

=
1

1 + ǫ

[
g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄)

]
.

By doing the same steps for the last term of B
(1)
k,j , it follows that

B
(1)
k,j −

1− 2−B̄d + ǫ(1− 2−B̄c)

1 + ǫ

[
g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄)

]
i.p.−→ 0.

Similarly, we can also show that

B
(2)
k,j − g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄)

i.p.−→ 0,

B
(3)
k,j −

√
1− 2−B̄d + ǫ

√
1− 2−B̄c

1 + ǫ

[
g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄)

]
i.p.−→ 0.

Combining the results together, we obtain

Bk,j −
(
1− 2−B̄d + ǫ(1− 2−B̄c)

1 + ǫ
− d2(2 + g(β, ρ̄))g(β, ρ̄)

(1 + g(β, ρ̄))2

)[
g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄)

]
i.p.−→ 0,

where

d =

√
1− 2−B̄d + ǫ

√
1− 2−B̄c

1 + ǫ
.

5) Dk,j : We can expand Dk,j as expressed in (7.43). Using the previous results, it

follows that D
(2)
k,j and D

(3)
k,j converge to 0. We can expand the first term as follows

D
(1)
k,j =

1

N

(
φ

1
2
k,j,1ĥk,j,1Q

11
k,jh̃

H
k,j,1 + φ

1
2
k,j,1ĥk,j,1Q

12
k,jh̃

H
k,j,2 + φ

1
2
k,j,2ĥk,j,2Q

21
k,jh̃

H
k,j,1

+ φ
1
2
k,j,2ĥk,j,2Q

22
k,jh̃

H
k,j,2

)
.

Again, by following the same steps as in deriving (7.60), each term converges in proba-

bility to 0 and hence D
(1)
k,j

i.p.−→ 0. Similarly, D
(4)
k,j

i.p.−→ 0. Therefore, in the end, Dk,j
i.p.−→ 0.
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6) Ek,j : The expansion of Ekj follows (7.47). By applying the previous results, E
(2)
k,j

and E
(3)
k,j converge in probability to 0. E

(1)
k,j can rewritten as

E
(1)
k,j =

1

N

(
h̃k,j,1Q

11
k,jh̃

H
k,j,1 + h̃k,j,1Q

12
k,jh̃

H
k,j,2 + h̃k,j,2Q

21
k,jh̃

H
k,j,1 + h̃k,j,2Q

22
k,jh̃

H
k,j,2

)
.

Since h̃k,j,1 and h̃k,j,2 are independent then the second and third term converge to 0. The

first term in the equation above can be written as

1

N
h̃k,j,1Q

11
k,jh̃

H
k,j,1 =

τ2k,j,1‖hk,j,1‖2

N‖vk,j,1Π
⊥
ĥk,j,1
‖2

(
vk,j,1 −

(vk,j,1ĥ
H
k,j,1)ĥk,j,1

‖ĥk,j,1‖2

)
Q11

k,j

×
(
vk,j,1 −

(vk,j,1ĥ
H
k,j,1)ĥk,j,1

‖ĥk,j,1‖2

)H

=
τ2k,j,1‖hk,j,1‖2

‖vk,j,1Π
⊥
ĥk,j,1
‖2

(
1

N
vk,j,1Q

11
k,jv

H
k,j,1 +

| 1N vk,j,1ĥ
H
k,j,1|2 1

N ĥk,j,1Q
11
k,jĥ

H
k,j,1

1
N2 ‖ĥk,j,1‖4

−2ℜ
[
( 1
N vk,j,1ĥ

H
k,j,1)

∗ 1
N vk,j,1Q

11
k,jĥ

H
k,j,1

1
N ‖ĥk,j,1‖2

])
.

Since vk,j,1 and ĥk,j,1 are independent then the second and third term in the bracket con-

verge to 0. It can be shown that

1

N
vk,j,1Q

11
k,jv

H
k,j,1 −

1

1 + ǫ

[
g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄)

]
i.p.−→ 0.

The large system limit for the last term of Ek,j can be done in the same way. Thus,

Ek,j −
2−B̄d + ǫ2−B̄c

1 + ǫ

[
g(β, ρ̄) + ρ̄

∂

∂ρ̄
g(β, ρ̄)

]
i.p.−→ 0.

7) c2 : We can show that

c2 −
1
2Pt(1 + ǫ)

g(β, ρ̄) + ρ̄ ∂
∂ρ̄g(β, ρ̄)

a.s.−→ 0.

Since
a.s.−→ implies

i.p.−→ then c2 also converges in probability to the same quantity as above.

Combining the results, it follows that the signal strength and the interference con-
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verge to
Pd(1 + ǫ)d2g2(β, ρ̄)

(1 + g(β, ρ̄))2
(
g(β, ρ̄) + ρ̄ ∂

∂ρ̄g(β, ρ̄)
) (7.52)

and

Pd(1 + ǫ)

(
1− d2g(β, ρ̄)(2 + g(β, ρ̄))

(1 + g(β, ρ̄))2

)
, (7.53)

respectively. Moreover, (7.26) also follows immediately with ρM,Q = ρ̄.

7.7.2 Large System Results for the Coordinated Beamforming

For brevity in the proof, we define the following (see also [109])

Aj =

(
ρIN +

1

N

2∑

m=1

K∑

l=1

ĥH
l,m,jĥl,m,j

)−1

Akj =


ρIN +

1

N

∑

(l,m) 6=(k,j)

ĥH
l,m,jĥl,m,j




−1

Akj,k′j′,j =


ρIN +

1

N

∑

(l,m) 6=(k,j),(k′,j′)

ĥH
l,m,jĥl,m,j




−1

,

where ρ = α
N . From the definitions above, we can write the numerator of the SINRk,j

(7.3) excluding c2j , as follows

|hk,j,jŵkj |2 =
∣∣∣∣∣

√
φk,j,j

N
ĥk,j,jAkjĥ

H
k,j,j

∣∣∣∣∣

2

+

∣∣∣∣
1

N
h̃k,j,jAkjĥ

H
k,j,j

∣∣∣∣
2

+ 2ℜ
[

1

N2
(h̃k,j,jAkjĥ

H
k,j,j)(ĥk,j,jAkjĥ

H
k,j,j)

]
= φk,j,j

∣∣∣S(1)
kj

∣∣∣
2
+ |S(2)

kj |2 + S
(3)
kj .

In the denominator, let us consider the term |hk,j,j′wk′j′ |2 that can be expanded as

follows

|hk,j,j′wk′j′ |2 =
1

N

(
I
(1)
kj,k′j′ + I

(2)
kj,k′j′ − I

(3)
kj,k′j′

)
=

1

N
I, (7.54)
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where

I
(1)
kj,k′j′ =

1

N
φk,j,j′ĥk,j,j′Ak′j′ĥ

H
k′,j′,j′ĥk′,j′,j′Ak′j′ĥ

H
k,j,j′

I
(2)
kj,k′j′ =

1

N
h̃k,j,j′Ak′j′ĥ

H
k′,j′,j′ĥk′,j′,j′Ak′j′h̃

H
k,j,j′

I
(3)
kj,k′j′ = 2ℜ

[√
φk,j,j′

N
h̃k,j,j′Ak′j′ĥ

H
k′,j′,j′ĥk′,j′,j′Ak′j′ĥ

H
k,j,j′

]
.

In what follows, we will derive the large system limit for each term in the numerator and

denominator above. First, we are going to derive the large system limit for 1
N TrAj be-

cause it will be used frequently in this section. Let Ĥj = [ĥ1,1,j · · · ĥK,1,j ĥ1,2,j · · · ĥK,2,j ]
T

and ĥk,i,j ∼ CN (0, ωijIN ). Then, Aj =
(
ρIN + 1

N Ĥ
H
j Ĥj

)−1
and

1

N
TrAj =

∫
1

λ+ ρ
dF

ĤH
j Ĥj

,

where F
ĤH
j Ĥj

is the empirical eigenvalue distribution of ĤH
j Ĥj . From Theorem 2.5, this

distribution converges almost surely to a limiting distribution F whose Stieltjes transform

mF(z). It can be shown that

1

N
TrAj

a.s.−→ mF(−ρ) =
∫ 1

0
u(x,−ρ) dx ,

where

u(x,−ρ) = u(−ρ) = 1

ρ+
βω1j

1+ω1ju(−ρ) +
βω2j

1+ω2ju(−ρ)

=
1

ρ+ βωd

1+ωdu(−ρ) +
βωc

1+ωcu(−ρ)

,

for 0 ≤ x ≤ 1. Let Γ = u(−ρ), then 1
N TrAj

a.s.−→ Γ.

7.7.2.1 Analog Feedback

Based on the channel model (7.1), we have φk,j,j = φk,j,j′ = 1. The definitions for other

terms such as ω• and δ• can be seen in Section 7.2.3. Now, let us first derive the large

system limit for the numerator of the SINRkj . We start with the term S
(1)
kj . From Lemma
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2.2 and by applying [48, Lemma 5.1], we can show that

max
j=1,2,k≤K

∣∣∣S(1)
kj −

ωd

N
TrAkj

∣∣∣ a.s.−→ 0.

By applying Lemma 3 in [109], we have

max
j=1,2,k≤K

∣∣∣S(1)
kj −

ωd

N
TrAj

∣∣∣ a.s.−→ 0,

where 1
N TrAj

a.s.−→ Γ.

Since ĥk,j,j , Akj and h̃k,j,j are independent then it follows that

max
j=1,2,k≤K

∣∣∣h̃k,j,jAkjĥ
H
k,j,j

∣∣∣ a.s.−→ 0.

Consequently,

max
j=1,2,k≤K

∣∣∣S(2)
kj

∣∣∣ a.s.−→ 0 and max
j=1,2,k≤K

∣∣∣S(3)
kj

∣∣∣ a.s.−→ 0.

In summary,

max
j=1,2,k≤K

∣∣|hk,j,jwkj |2 − ω2
dΓ

2
∣∣ a.s.−→ 0.

Now, let us move in analyzing the interference term. Using the matrix inversion

lemma, we rewrite I
(1)
kj,k′j′ as

I
(1)
kj,k′j′ =

1
N φk,j,j′ĥk,j,j′Ak′j′,kj,j′ĥ

H
k′,j′,j′ĥk′,j′,j′Ak′j′,kj,j′ĥ

H
k,j,j′(

1 + 1
N ĥk,j,j′Ak′j′,kj,j′ĥ

H
k,j,j′

)2 .

By applying Lemma [48, Lemma 5.1] and [109, Lemma 3] twice, we can show

max
j,j′=1,2,k,k′≤K,(k,j) 6=(k′,j′)

∣∣∣∣
1

N
ĥk,j,j′Ak′j′,kj,j′ĥ

H
k,j,j′ −

ωjj′

N
TrAj′

∣∣∣∣
a.s.−→ 0.

Similarly,

max
j,j′=1,2,k,k′≤K,(k,j) 6=(k′,j′)

∣∣∣∣
1

N
ĥk,j,j′Ak′j′,kj,j′ĥ

H
k′,j′,j′ĥk′,j′,j′Ak′j′,kj,j′ĥ

H
k,j,j′ −

ωjj′ωd

N
TrA2

j′

∣∣∣∣
a.s.−→ 0.
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Since 1
N TrAj′ → Γ and 1

N TrA2
j′ → − ∂

∂ρΓ, we have

max
j,j′=1,2,k,k′≤K,(k,j) 6=(k′,j′)

∣∣∣∣I
(1)
kj,k′j′ − ωd

(
− ωjj′

(1 + ωjj′Γ)2
∂Γ

∂ρ

)∣∣∣∣
a.s.−→ 0.

By following the same steps, we obtain

max
j,j′=1,2,k,k′≤K,(k,j) 6=(k′,j′)

∣∣∣∣I
(2)
kj,k′j′ −

(
−δjj′ωd

∂Γ

∂ρ

)∣∣∣∣
a.s.−→ 0 ,

and

max
j,j′=1,2,k,k′≤K,(k,j) 6=(k′,j′)

∣∣∣I(3)kj,k′j′

∣∣∣ a.s.−→ 0.

Combining the results, we have

max
j,j′=1,2,k,k′≤K,(k,j) 6=(k′,j′)

∣∣∣∣I − ωd

(
− ωjj′

(1 + ωjj′Γ)2
− δjj′

)
∂Γ

∂ρ

∣∣∣∣
a.s.−→ 0. (7.55)

Using (7.55), the large system result for the interference term can be written as follows

∑

(k′,j′) 6=(k,j)

|hk,j,j′wk′j′ |2 =
K∑

l=1,l 6=k

|hk,j,jwlj |2 +
K∑

l=1

|hk,j,j̄wlj̄ |2

a.s.−→ −βωd

(
ωd

(1 + ωdΓ)2
+

ωc

(1 + ωcΓ)2
+ δd + δc

)
∂Γ

∂ρ
.

Now, we just need to derive the large system limit for c2j = Pd

(∑K
k=1 ‖wkj‖2

)−1
, where

we can express ‖wkj‖2 = 1
N2 ĥk,j,jA

2
kjĥ

H
k,j,j . We can show that

max
j=1,2,k≤K

∣∣∣∣
1

N2
ĥk,j,jA

2
kjĥ

H
k,j,j −

ωd

N
TrA2

j

∣∣∣∣
a.s.−→ 0.

Thus,

c2j
a.s.−→ Pd

−βωd
∂Γ
∂ρ

,

where we can show that

− ∂Γ

∂ρ
= −Γ′ =

Γ

ρ+ βωc

(1+ωcΓ)2
+ βωd

(1+ωdΓ)2

. (7.56)
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To sum up, from the analyses above, we can express the limiting signal energy as

1

β
PdωdΓ

(
ρ+

βωc

(1 + ωcΓ)2
+

βωd

(1 + ωdΓ)2

)
, (7.57)

and the limiting interference energy as

Pd

(
ωd

(1 + ωdΓ)2
+

ωc

(1 + ωcΓ)2
+ δd + δc

)
. (7.58)

Finally, the limiting SINR can be expressed as (7.21), with ΓA = Γ and ρC,AF = ρ.

7.7.2.2 Proof of Theorem 7.6: Quantized Feedback via RVQ

In the derivation of the large system limit SINR in this section, we use some of the results

presented in the previous section. Here, we have ωjj = ωd = 1 and ωjj̄ = ωc = ǫ. From

(7.1), we have φk,j,i = 1− τ2k,j,i.

First, let us consider the numerator of the SINR. By using the result from previous

section, we have

max
j=1,2,k≤K

∣∣∣∣S
(1)
kj −

1

N
TrAj

∣∣∣∣
a.s.−→ 0,

where 1
N TrAj

a.s.−→ Γ and Γ is the solution of

Γ =
1

ρ+ β
1+Γ + βǫ

1+ǫΓ

.

As stated in [77], we have,

φk,j,j
L2−→ 1− 2−B̄d , (7.59)

where
L2−→ denotes convergence in mean square sense. Since almost sure convergence

and convergence in mean square imply the convergence in probability then

φk,j,j |S(1)
kj |2 − (1− 2−B̄d)Γ2 i.p.−→ 0.
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By using (7.8), the term h̃k,j,jAkjĥ
H
k,j,j in S

(3)
kj can be rewritten as

1

N
h̃k,j,jAkjĥ

H
k,j,j =

τk,j,j‖hk,j,j‖
‖vk,j,jΠ

⊥
ĥk,j,j

‖

(
1

N
vk,i,jΠ

⊥
ĥk,i,j

ĥH
k,j,j

)

=
τk,j,j‖hk,j,j‖
‖vk,j,jΠ

⊥
ĥk,j,j

‖

(
1

N
vk,j,jAkjĥ

H
k,j,j −

( 1
N vk,j,jĥ

H
k,j,j)ĥk,j,jAkjĥ

H
k,j,j

‖ĥk,j,j‖2

)
.

Since vk,j,j and ĥH
k,j,j are independent, then

max
j=1,2,k≤K

∣∣∣∣
1

N
vk,j,jĥ

H
k,j,j

∣∣∣∣
a.s.−→ 0, and max

j=1,2,k≤K

∣∣∣∣
1

N
vk,j,jAkjĥ

H
k,j,j

∣∣∣∣
a.s.−→ 0.

It can also be shown that

max
j=1,2,k≤K

∣∣∣∣
1

N
‖hk,j,j‖2 − 1

∣∣∣∣
a.s.−→ 0, and max

j=1,2,k≤K

∣∣∣∣
1

N
‖vk,j,jΠ

⊥
ĥk,j,j
‖2 − 1

∣∣∣∣
a.s.−→ 0.

Hence,
1

N
h̃k,j,jAkjĥ

H
k,j,j

i.p.−→ 0, (7.60)

and thus,

S
(2)
kj

i.p.−→ 0, and S
(3)
kj

i.p.−→ 0.

Putting the results together, we have

|hk,j,jwkj |2 − (1− 2−B̄d)Γ2 i.p.−→ 0.

For the interference terms, by using the same steps as in the previous section, we can

show

max
j,j′=1,2,k,k′≤K,(k,j) 6=(k′,j′)

∣∣∣∣∣I
(1)
kj,k′j′ −

(
−(1− 2−B̄jj′ )ωjj′

(1 + ωjj′Γ)2
∂Γ

∂ρ

)∣∣∣∣∣
i.p.−→ 0,

max
j,j′=1,2,k,k′≤K,(k,j) 6=(k′,j′)

∣∣∣∣I
(2)
kj,k′j′ − ǫjj′2−B̄jj′

∂Γ

∂ρ

∣∣∣∣
i.p.−→ 0,

and

max
j,j′=1,2,k,k′≤K,(k,j) 6=(k′,j′)

|I(3)kj,k′j′ |
i.p.−→ 0,
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where B̄jj′ = B̄d when j = j′ and otherwise B̄jj′ = B̄c.

Combining the results, we have

max
j,j′=1,2,k,k′≤K,(k,j) 6=(k′,j′)

∣∣∣∣∣I −
(
−(1− 2−B̄jj′ )ωjj′

(1 + ωjj′Γ)2
− ǫjj′2−B̄jj′

)
∂Γ

∂ρ

∣∣∣∣∣
i.p.−→ 0. (7.61)

Using (7.61), the large system result for the interference term can be written as follows

∑

(k′,j′) 6=(k,j)

|hk,j,j′wk′j′ |2 =
K∑

l=1,l 6=k

|hk,j,jwlj |2 +
K∑

l=1

|hk,j,j̄wlj̄ |2

i.p.−→ −β
(
1− 2−B̄d

(1 + Γ)2
+
ǫ(1− 2−B̄c)

(1 + ǫΓ)2
+ 2−B̄d + ǫ2−B̄c

)
∂Γ

∂ρ
.

By using the result from the previous results straightforwardly, we have

c2j
a.s.−→ Pt

−β ∂Γ
∂ρ

.

Putting all the large system results, we can show that the limiting signal strength is

1

β
PdφdΓ

(
ρ+

βǫ

(1 + ǫΓ)2
+

β

(1 + Γ)2

)
, (7.62)

and the limiting interference energy becomes

Pd

(
φd

(1 + Γ)2
+

ǫφc
(1 + ǫΓ)2

+ δd + δc

)
. (7.63)

Let ρC,Q = ρ and ΓQ = Γ. Then, we can obtain the limiting SINR given by (7.35) from

(7.62) and (7.63) straightforwardly.





Chapter 8

Conclusion

I
N this thesis, we consider system performance maximization in terms of SINR or

achievable sum rate in single-cell and multicell MISO broadcast channels with the

precoder having the RCI structure. We investigate optimal design parameters for the

precoder for some channels and various CSI conditions available at the transmitter/base

station. The results are obtained by conducting the analysis in the large system regime.

The results give hints on the system performance and behaviors in the finite dimensional

systems. Moreover, applying the optimal design parameters from the asymptotic analy-

sis to the finite-size system only incurs a small loss, sometimes negligible, in system per-

formance compared to the system optimizations in the finite-size system regimes. The

latter could be computationally expensive.

A brief summary of the results in this work can be described as follows. In i.i.d. chan-

nel with perfect CSIT, the optimal regularization parameter of the precoder maximizing

the limiting SINR turns out to be a ratio between the cell loading and received SNR. The

same result is also obtained in the presence of spatial correlation at the transmitter side.

It is a surprising result since the limiting SINR itself is affected by the correlation. In

both cases, we also investigate the performance of the MPCI and SU precoders and ob-

serve that they are outperformed by the RCI precoder. In the context of TDD scheme, we

consider the weighted sum rate maximization of the downlink and uplink data transmis-

sions when the transmitter only has the imperfect CSI obtained from the channel train-

ing. We show that only a minimum training symbols per user, i.e., one symbol per user, is

needed if the optimal power control between the training and uplink data transmission

is performed. Allowing power allocation across the grouped users’ data symbols where
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the groups have different path-losses, we show that the maximum (limiting) sum rate

is achieved by employing the water-filling strategy: a group with better path-loss gain

receives more power. Under this optimal power policy, we also investigate the multi-

mode transmission where we study the optimal number of groups communicating with

the transmitter that maximizes the sum rate. Two cases are considered. First, all groups

have the same cell-loading and the transmitter should decide whether to transmit to all

user in the groups or to none of them. In the second case, the transmitter is allowed to

send the data to only subsets of the users in the groups. In the last part of this thesis,

we explore feedback optimization in a symmetric two-cell network for different levels of

cooperation between the base stations. We take into account both the noisy analog and

digital/quantized feedback schemes. A common behavior of the limiting SINR with re-

spect to the interfering channel gain is observed. Below a certain threshold of that gain,

no-cooperation between base stations is preferred. For the multicell processing scheme

under some conditions, we observe a behavior where the limiting SINR is first decreasing

until reaching a certain value of the interfering channel gain and then increasing.

The extensions of this thesis will be more toward design optimizations in multicell

networks. Related to the last previous chapter, future works could consider a more gen-

eral channel model such as the analog feedback through MAC channels and a more prac-

tical network models. Furthermore, feedback reduction problems in which the users or

groups of users have different path-loss gains would be interesting to explore.
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