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Abstract

Recent research in Multiple-Input Multiple-Output (MIMO) wireless communica-

tions techniques promises both opportunities and difficulties for receiving sys-

tems. Robustness and high data rates are offered at the cost of increased system

complexity. This increased complexity presents new challenges for surveillance

or passive eavesdropping receivers. This thesis addresses theory and issues arising

in communications eavesdropping, with a particular emphasis on the recovery of

data streams produced by a MIMO wireless transmission array.

An information theory for MIMO eavesdroppers is developed based on stan-

dard communications information theory and estimation techniques for informed

and partially-informed MIMO wireless reception.

Existing literature, dealing with blind source separation and communications

secrecy, is drawn upon to provide a context and background theory for the MIMO

wireless communications eavesdropping problem. During the development of

the background theory some deficiencies were identified and are addressed in this

thesis. As a consequence, a number of original contributions have been made.

Expressions required for theoretical blind source separation performance bounds

for a complex-valued channel and complex-valued sources did not exist in the

literature and so a derivation of the Cramér-Rao Bound (CRB), for blind separa-

tion of complex sources linearly mixed by a complex channel matrix, is included

here. The CRB is also derived as a function of the source probability density func-

tion (pdf) where the generalised gaussian distribution is employed to represent the

source pdf.

In our source recovery model the two primary parameters are the complex-

valued channel mixing matrix and the complex-valued sources. Use of maximum

likelihood techniques, where either the source or channel is known, is compared

with application of independent component analysis techniques, where neither
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the source nor the channel are known. The theory and simulation results show

that Blind Source Separation (BSS) is not possible when the sources are indepen-

dent and identically distributed (i.i.d.) proper complex Gaussian, in which case

an eavesdropper would obtain no additional information about the sources given

only observations on the source mixture. These results provide a benchmark for

the source recovery performance obtainable by the intended receiver and the

eavesdropper respectively.

To model source dependence effects that may exist in the propagation chan-

nel, Copula theory is employed and an approach derived that incorporates fading

effects as well as control over the type and level of dependence in the channel.

Finally the theory and techniques, developed in this work, are brought to-

gether to provide a method for channel-independent, complex symbol stream

recovery for orthogonal Space-Time (ST) block-coded signals that shows how the

observed signals may be transformed to improve the results of subsequent source

separation processing.
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α and data block length n = 1000. . . . . . . . . . . . . . . . . . . 73

4.8 Mean squared error in mixing matrix estimate Â, as a function of
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Notation

C Field of complex numbers
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! Factorial

G (·, ·) Grassmann manifold

H (·) Shannon or discrete entropy
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∠x Angle of x

≈ approximately equal to

δjk Kronecker delta: δjk =





1 j = k,

0 j 6= k.
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1 k1 = k2 . . . = kn,

0 otherwise.

∀ for all

x̂ Estimate of x

∈ is a member of

[X]i,j Element i, j of the matrix X
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, Defined as
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√
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Chapter 1

Introduction

1.1 Motivation for the Research Detailed in this Thesis

The recent, and ongoing, development of techniques and theory in the field of

MIMO wireless communications systems for increasing the reliability and rates of

data transfer has been, to a relatively small extent, paralleled by the development

of theory which addresses the security of such systems. Also commonly referred

to as secrecy techniques, these ideas have a grounding in the mathematics of

information theory and communications secrecy first developed by Shannon in

1949 [88].

We are motivated by the need to understand and quantify the information

rates that are obtainable by a passive receiving system which does not cooper-

ate with the transmitting system, in a MIMO wireless communications scenario.

Cooperation in a communications link might include an exchange of information

that could be used for channel estimation, exempli gratia (e.g.) a known sequence

of training symbols. However, for a communications receiver being employed for

surveillance or eavesdropping purposes, such information may not be available

and the receiver is faced with the task of jointly estimating the channel coeffi-

cients and the source data streams.

Factors which affect the ability of an eavesdropping system to recover the

individual signal streams that originated from a MIMO wireless transmitter in-

clude: knowledge of the propagation channel, channel fading, correlations in

the channel, knowledge of the source distribution or symbol set and encoding
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scheme in use. The eavesdropper and communicator interference environments

are also factors that affect eavesdropping. Understanding how the information

rate, available to an informed receiver, is affected by such factors and other pa-

rameter errors, provides a basis both for improving proposed communications

secrecy techniques and, from the opposite perspective, for improving eavesdrop-

ping information rates.

1.1.1 Problem statement

In this thesis we are concerned with the passive signal recovery problem. In par-

ticular, we are interested in the recovery of MIMO digital communication symbol

streams that have been linearly mixed in an unknown multipath wireless propaga-

tion channel. The motivation for this research is to determine performance limits

for symbol stream recovery and develop techniques that can achieve those limits.

To this end we need to develop an understanding of BSS theory and how this

theory can be best exploited in the MIMO wireless communications scenario.

1.1.2 Research methodology

The research described in this thesis addresses aspects of the above problem state-

ment. A mathematical model that represents the physical MIMO wireless com-

munications eavesdrop scenario is employed and is first described in Chapter 3.

Appropriate literature has been identified, in Chapter 2, that presents concepts

and background theory required for the development and analysis of the problem

at hand. Fundamental background knowledge requirements include: communi-

cations techniques, information theory, blind source separation theory, communi-

cations secrecy concepts, Copula theory and calculus of complex linear algebra.

The mathematical theory and tools, considered essential for analysing the eaves-

drop problem, were first developed and some deficiencies were identified. Recti-

fying these deficiencies forms a large part of this thesis. To test the validity of the

theory, Monte Carlo computer simulation exercises were developed and the re-

sults compared with theoretically derived expressions. Many of these simulation

exercises involved the use of existing code to perform the task of BSS.
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CHAPTER 1. INTRODUCTION

1.2 Structure of the Thesis

This thesis is presented in four parts.

Part I comprises the introduction and literature review.

Part II is formed from a number of chapters concerning the research into the

theory and techniques required for analysing source recovery performance in the

MIMO wireless communications scenario. Chapter 3 introduces the model and

assumptions used to represent the problem. Expressions for passive eavesdrop-

per Mutual Information (MI) are developed for the MIMO scenario. In Chapter 4

source and channel estimation performance theory, for the uninformed receiver,

are derived. Chapter 5 demonstrates how Copula theory may be adapted to ac-

count for channel dependence and incorporate suitable fading distributions in a

MIMO channel model.

Part III comprises two chapters that involve the application and analysis of

the theory developed in Part II. Chapter 6 analyses the discrete source recovery

problem for the MIMO model. The effect of source kurtosis on information rate is

also studied. Many communication systems currently under development propose

to use Space-Time Block Code (STBC) schemes to exploit the diversity offered by

MIMO configurations. In Chapter 7 an approach is presented that demonstrates

how linearly mixed Orthogonal Space Time Block Code (OSTBC) symbol streams

may be transformed to suit application of BSS techniques.

Part IV contains the thesis conclusions and describes potential further work.

1.3 Summary of Novel Contributions

The chapters of Part II and Part III contain the novel contributions of this thesis.

Part I comprises background material that is original only in the manner of its

presentation.

The chapters forming Parts II and III are summarised here and original contri-

butions are highlighted in each chapter summary.

Chapter 3 When an array of signals are transformed by an unknown unitary ma-

trix we would like to know how this affects the information capacity at the
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1.3. SUMMARY OF NOVEL CONTRIBUTIONS

receiver. We derive relationships for differential entropy, employing the con-

cept of a hypersphere, of a multidimensional array. These expressions allow

us to compare the fully informed capacity (channel known) with the par-

tially informed capacity (amplitude known). This analysis does not appear

to have been previously performed and has been published as [49, 54].

Chapter 4 Blind Source Separation is an important tool for an eavesdropping

sensor array and in this chapter we derive the Cramér-Rao lower variance

bounds for source and channel estimation, where both the source and the

channel are complex-valued. The derivations involve a Modified CRB [37].

The CRB for the case when both the source and channel are unknown and

the source is complex Gaussian is also derived. This derivation is based on

a method presented by Villares [104] which involves fixing one of the vari-

ables to obtain the Fisher Information Matrix (FIM) for the other variable. In

this chapter we also derive FIM and CRB expressions for the complex-valued

source and complex-valued channel case and where the source distribution

is the Generalised Gaussian (GG). A similar result was derived in [99] for

the real-valued source and channel matrix case. For comparison derivations

of Maximum Likelihood Estimator (MLE) expressions for complex-valued

source and channel estimation, together with their respective Cramér-Rao

variance bounds, are included. These derivations have been presented and

published [51].

Chapter 5 To study the performance of BSS techniques, when there exists some

correlation or dependence in the channel, the need for a simple and intu-

itive method for introducing source dependence whilst including different

fading distributions, was identified. In this chapter an approach, based on

Copula techniques, is presented. Previous efforts have only considered the

use of Copula techniques for simple cases such as a bivariate pdf [31]. In this

chapter we combine MIMO methods with wireless communications fading

distributions and implement channel dependence for a complex-valued sys-

tem to obtain simulated data that may be used to exercise BSS algorithms.

This is new work that has been published [52, 53].

Chapter 6 In this chapter we perform computer simulations to study information

rates as a function of source kurtosis and a number of other system parame-

ters: signal to noise ratio (snr), observation data length, channel dimensions.
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CHAPTER 1. INTRODUCTION

Since common digital modulation schemes have distinct values of kurtosis,

this study gives an indication of eavesdropper and intended receiver perfor-

mance as those system parameters are varied. The simulation results and

theoretical predictions show that BSS is not possible when the sources are

i.i.d. proper complex Gaussian, in which case an eavesdropper obtains no

additional information about the sources given only observations on the

source mixture. These results provide a benchmark for the source recov-

ery performance obtainable by the intended receiver and the eavesdropper

respectively.

Chapter 7 In this chapter an optimization algorithm, for finding a unitary mix-

ing matrix, has been adopted and further developed so that the cost func-

tion could be varied. In particular the Joint Approximate Diagonalization of

Eigenvalues (JADE) cost function, Mutual Information Between Sources (MIBS)

cost function and their complex-valued gradients were incorporated. The

gradient of the complex-valued JADE cost function stated in [2, 3, 4] was

found to be incorrect and no derivation has been found in the literature. A

complete derivation of the correct expression for the complex-valued gra-

dient of the complex JADE cost is presented here. A new approach that ex-

ploits the structure of OSTBC signals shows the effective channel that results

is unitary and therefore amenable to BSS using the JADE-based optimization

algorithm. Simulations and analysis indicate the benefits of this new tech-

nique and the information rates attainable by an eavesdropper intercepting

a digitally modulated MIMO transmission. The findings in this chapter have

been published [50].
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Chapter 2

Literature Review

The recent past has witnessed considerable activity in wireless communications

research involving the use of antenna arrays for transmission and reception. This

activity has resulted in an increasing body of literature dealing with improve-

ments to MIMO communications links; particularly in terms of increasing infor-

mation rates or capacity and tradeoffs with robustness to propagation fading ef-

fects. Whilst capacity and robustness issues appear to form the bulk of recent

MIMO literature, other interesting issues and applications have arisen. Communi-

cation link security has always been of concern but now, with the application of

Multiple Element Antenna (MEA) systems, link users have available more degrees

of freedom that may be exploited to provide increased communications security.

Such systems have an inherent physical security provided, primarily, by the more

complex propagation channel. We note that the extra security offered by MIMO

systems does not preclude the use of traditional data encryption techniques so

that the simultaneous use of MIMO security and cryptographic security would

seem to provide a powerful combination. The field of cryptographic research is

already a significant and well established area; it is considered to be outside the

scope of the present study. In this thesis we concentrate our attention on issues

arising through the use of MIMO systems, from an eavesdropper’s perspective

and, in particular, the information rates that are achievable given different states

of knowledge.

In the sections that follow we briefly review the history and literature per-

taining to the problem of MIMO eavesdropping. This review serves two main

purposes. The first is to provide a context for MIMO eavesdropping; bringing
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CHAPTER 2. LITERATURE REVIEW

together the theory and tools that are required to analyse and understand this par-

ticular problem. The second purpose is to identify and shortlist any deficiences in

the current literature that might require further study.

2.1 Development of MIMO Techniques and Theory

In the early 1990’s Winters, Salz and Gitlin provided theoretical and experimental

confirmation that multiuser interference and signal fading, in wireless communi-

cation systems, can be reduced through the use of multiple antennae and optimal

signal combining at the receiver. In [108, 107, 109] Winters et alii (et al.) prove

theoretically that an adaptive antenna array can achieve both interference nulling

and path diversity against multipath fading. In effect they demonstrated that the

information capacity of a wireless communication system may be increased by ex-

ploiting the spatial dimension. In 1999 Telatar [97] derived capacity expressions

for single-user MIMO links, in an additive Gaussian channel, with and without

fading. Telatar confirmed the increase in information capacity through the use

of multiple antennae, noting the need to know the channel parameters at the re-

ceiver and the requirement that the path gains between different antenna pairs are

independent.

In 1993 Wittneben [110] proposed a form of ST modulation employing mul-

tiple transmit antennae that takes advantage of spatial diversity without increasing

system bandwidth. Wittneben’s scheme achieves modulation diversity by filtering

the input symbols so that the information is spread over the transmitted symbols

and equalisation is applied by the single-antenna receiver. Another five years

passed before Alamouti [8] introduced his, now famous, coding scheme which

has become known as Alamouti Space-Time Coding (STC). This particular coding

scheme is known to be the simplest of the orthogonal ST block codes, requiring

two transmit antennae and a single receive antenna. In Alamouti’s scheme two

information-bearing symbols are encoded as a 2 × 2 ST block code and requires

two time slots for transmission and reception; thus acheiving full system informa-

tion rate whilst reducing its sensitivity to propagation fading.

Since these earlier publications there has been significant research activity

into the understanding, use and improvement of MIMO techniques. There have

been many and varied schemes and architectures proposed, e.g. Foschini [35]
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2.2. COMMUNICATIONS SECURITY

introduced a layered ST architecture for Rayleigh fading environments, where the

transmitter and receiver have the same number of antennae. In this architecture

the transmitter does not know the channel matrix and capacity increases linearly

with the number of antennae, with a fixed bandwidth and fixed transmit power.

The information-theoretic aspect of MIMO techniques has naturally attracted

researchers in the field of information theory producing many works in both single

user and multi-user wireless communication link theory. A new type of coding

has arisen to take advantage of such systems forming the field of STC. Thus as well

as coding to combat transmission errors caused by channel fading or noise, STC

exploits the extra diversity available in the MIMO channel. For example, Tarokh

et al. [96], in 1999, introduced STBC, based on orthogonal code blocks, for use

with multiple transmit antennae. Several books describing STC have been pub-

lished e.g. “Space-Time Block Coding for Wireless Communications” by Larsson

& Stoica [57], “Space-Time Coding” by Vucetic & Yuan [106] and “Space-Time

Codes and MIMO Systems” by Jankiraman [47].

Any recently published textbook dealing with wireless communications the-

ory would be incomplete without a description of MIMO techniques e.g. “Wire-

less Communications” by Goldsmith [38], “Fundamentals of Wireless Commu-

nications” by Tse & Viswanath [102] and “MIMO Wireless Communications” by

Biglieri et al. [15].

2.2 Communications Security

Paralleling the development of MIMO techniques for MEA systems, at a some-

what less frenetic pace, has been the emergence of the concept of secrecy for

such systems. Although Shannon introduced the concept of secrecy systems in

his 1949 paper on the theory of communications secrecy [88], this theory was,

for some time, only of interest to practitioners in the field of Cryptography. How-

ever, in 1975 Wyner [111] introduced a mathematical model for the Wire-Tap

Channel (WTC), where digital data is to be reliably transmitted over a Discrete

Memoryless Channel (DMC) which is being intercepted by an eavesdropper via

a second DMC that taps into the first DMC. Whereas Shannon did not consider

channel noise in his secrecy system, Wyner included noise in his channel thus

allowing information rates and secrecy to be determined by both encoding and
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channel statistics.

One of the first to address security issues in a MIMO context, Hero [42]

provides an analysis of security in ST communications. In “Secure Space-Time

Communication” he introduces ideas about Low Probability of Detection (LPD)

and Low Probability of Interception (LPI) from the point of view of communica-

tion between a transmitter and intended receiver attempting to be undetectable

or denying information leakage to a possible eavesdropper. In particular Hero

finds that perfect secrecy signalling may be acheived if the transmitter uses a

codeword set S of block codes that have a constant spatial inner product id

est (i.e.) S =
{
S : SS† = A

}
, where A is a nonrandom square matrix. Examples of

such secrecy-achieving codes include unitary codes and Constant Modulus (CM)

codes.

In 1949, following soon after his famous work “A Mathematical Theory of

Communication” [87], Shannon published the treatise “Communication Theory

of Secrecy Systems” [88] where he developed the basic mathematical structure

of communication secrecy systems. Shannon’s schematic for a general secrecy

system is reproduced in Figure 2.1.

Figure 2.1: Shannon’s general secrecy system.

Of particular interest is the notion of perfect secrecy where a cryptanalyst

is unable to recover an intercepted message even if he had unlimited time, re-

sources and encrypted data i.e. after a cryptogram has been intercepted the a

posteriori probabilities of this cryptogram representing various messages are the
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same as the a priori probabilities of the same messages before the interception.

Shannon shows that perfect secrecy is possible but requires, if the number of

messages is finite, the same number of possible keys. A quantity H(N) is de-

fined, called the equivocation, which measures in a statistical way how near the

average cryptogram of N letters is to a unique solution; that is, how uncertain

the enemy is of the original message after intercepting a cryptogram of N letters.

In standard information theory terminology, equivocation is equivalent to con-

ditional entropy and quantifies the remaining uncertainty of a random variable

given knowledge of another random variable. Shannon’s message equivocation

is given by H(M |E) =
∑

E,M P (E,M) logPE(K), where E,M and K are the

cryptogram, message and key, respectively, and P (E,K) is the probability of key

and cryptogram. PE(K) is the a posteriori probability of key K if cryptogram E is

intercepted. P (E,M) and PE(M) are the similar probabilities for the message.

Information-theoretic relationships can also be understood through the use

of Venn diagrams and this representation is used in Appendix A as an aid to

understanding Wyner’s wire-tap channel.

Maurer [73] noted that Shannon’s assumption that an enemy receives the

same message as the legitimate receiver is motivated by considering error-free

communication channels. However, most real communication channels are noisy

and noisy channels are especially relevant in MIMO wireless communications.

2.3 The Wiretap Channel

Motivated by secrecy considerations, Wyner [111] considered a communications

scenario in which Alice can send information to Bob over a DMC such that a wire-

tapper Eve can receive Bob’s channel output only through an additional cascaded

independent channel, reducing the capacity of Eve’s channel. Wyner proved that

in such a setting Alice can send information to Bob in virtually perfect secrecy

without sharing a secret key with Bob initially. Wyner’s model is illustrated in

Figure 2.2.

Wyner showed that it is possible to encode the transmitted data in a man-

ner that maximises the uncertainty, or equivocation, of the data as observed by

the eavesdropper or wire-tapper. When the wire-tapper’s equivocation becomes

equal to the entropy of the data source, then transmission to the intended receiver
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Figure 2.2: Wyner’s Wire-Tap Channel

is considered to occur in perfect secrecy. A secrecy capacity CS was defined

as the maximum rate that allowed reliable transmission in perfect secrecy. This

approach differs from encryption methods and relies on the snr observed by the

wire-tapper being greater than the snr at the intended receiver. A simplified and

more intuitive explanation of Wyner’s WTC is presented in Appendix A.

Wyner’s WTC has been further analysed as “The Gaussian Wire-Tap Channel”

by Leung-Yan-Cheong & Hellman [59] where the main and wire-tap channels are

modelled as additive Gaussian noise channels. Leung-Yan-Cheong & Hellman

show that the secrecy capacity for this model equates to the difference between

the capacities CM and CMW of the main and cascaded main plus wire-tap chan-

nels i.e. CS = CM − CMW . Although developed for single channel communi-

cation links, these works, together with Shannon’s 1949 paper on the theory of

communications secrecy, have lain the foundations for further adaptations of the

concept.

2.4 The Wireless Broadcast Channel

The WTC may be considered as a degraded broadcast channel where one in-

formation rate is to be maximised and the other minimised. Consider now the

model introduced by Csiszár and Körner [27] where Eve’s received message is not

necessarily a degraded version of the legitimate receiver’s message, Figure 2.3.

The main channel and Eve’s channel have a common input with the channel be-
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haviour specified by the conditional joint probability PY Z|X . The main channel is

a Binary Symmetric Channel (BSC) with Bit Error Rate (BER) ε and Eve’s channel

is a BSC with BER δ.

Figure 2.3: Model of DMC broadcast channel.

The secrecy capacity, from Alice to Bob, is shown to be

CS =




h(δ)− h(ε), if δ > ε

0, else,
(2.1)

where h(x) denotes the binary entropy function, i.e. the difference between the

two channel entropies.

Figure 2.4: Parallel intercept channel model.

At this point a more general model might be considered for the parallel inter-

cept wireless channel which is very similar to the wireless broadcast channel of

Csiszár and Körner [27] but without restricting the channels to be BSC. This model
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is represented in Figure 2.4 and will form the basis for further analysis involving

BSS techniques. In the figure there is a main channel between the source and

the intended receiver and an intercept, or eavesdrop channel, that is independent

of the main channel. Unlike the wiretap channel however, the eavesdrop chan-

nel may be better, in some sense, than the main channel. Noise or interference

vectors nNi are shown in each of the two channels and these will be treated as

additive random noise vectors i.e. we shall not be considering spatially coherent

interference in this thesis.

2.5 Modelling Channel Dependence

Figure 2.5 gives an abstract illustration of the MIMO wireless Radio Frequency (RF)

scenario where we have a multi-element source (Tx) transmitting an RF waveform

to a multi-element receiver (Rx1) over an RF propagation path (shown in green). A

number of scattering elements (S) are present in the RF environment. The whole

RF environment is represented in grey. RF propagation between Tx and Rx2 is

shown in light blue. This picture represents a communications broadcast sce-

nario, where both of the receivers are intended to receive the signals from the

transmitter and a surveillance scenario, where one of the receivers is not the in-

tended recipient of the signals. In this study we consider a point-to-point, or

single node, surveillance scenario in which a single eavesdropper is observing

the communication link. In particular the model is constrained to the full-rank

interference-free MIMO environment. Model constraints are:

• All transmitter and receiver antennae have the same polarization.

• Diversity is provided by the propagation environment.

• The channel has full rank - all the modes of the Singular Value Decomposi-

tion (SVD) of the channel response are nonzero.

• Transmission power is equally spread across the channel modes.

• Interference at the receiver is modelled as additive white noise i.e. spatially

coherent interference is not represented here.
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Whilst we only consider a full-rank, low mode spread environment, in prac-

tice any of the propagation environments represented in 2.5 could have a non-full

rank MIMO channel response and therefore reduce the channel capacity. Inter-

ference is modelled as additive white noise, which simplifies later derivations of

entropy and mutual information. However a more realistic model would consider

local polarization/spatially coherent interference at the receiver array.

RF Environment Tx

Rx 1

Rx 2

S

S
S

S

SS

Figure 2.5: MIMO RF scenario.

A simple linear mixing model, described in Chapter 3, is commonly pre-

scribed to represent such a scenario for analysis and simulation purposes. Depen-

dence may be introduced at the transmitter array, the receiver array, within the

propagation channel or any combination of these. In Figure 2.6 a block model

for a point-to-point, or single node, MIMO wireless model is presented. An input

message bit stream bi is mapped to a symbol vector s and then encoded through

a space-time encoder. The encoded blocks X may then be pre-processed before

transmission through the wireless channel A. At the receiver array noise or in-

terference W is added. Following post-processing the data matrix Y is decoded

and the estimated symbol vector ŝ demapped to retrieve an estimate of the input

message bit stream.

To develop an understanding of channel effects that introduce dependence

between the transmitted sources and for different propagation fading distributions,

a suitable mathematical model is required. This model must allow flexibility in

the types of dependence and fading distributions so that it provides a good repre-

sentation of physical wireless propagation phenomena. These requirements have,

to a large extent, been individually addressed by various authors. Whilst the
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Space-Time
Encoder

Pre-ProcessingSymbol
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Post-Processing

Channel
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Figure 2.6: Block model of point-to-point MIMO link.

Rayleigh distribution has been employed for some time to represent fading, the

Nakagami-m distribution has recently become popular for wireless fading sim-

ulation e.g. Alouini et al. [9], Beaulieu and Cheng [12]. In 2007 Ritcey [84]

proposed the use of Copula theory to model multivariate fading distributions in

wireless communications. Ritcey illustrates the concept through the simulation

of a bivariate Rayleigh-Nakagami Copula with Nakagami marginal distributions

to represent amplitude fading effects in a wireless scenario. Song et al. [92] and

Zhang et al. [119, 117] derived correlated Nakagami fading models for wireless

communications, with an arbitrary covariance matrix and distinct real fading pa-

rameters. These methods implement only a single distribution for the dependence

and only consider amplitude fading. In 2005 Yacoub et al. [113] presented the

exact expression for the joint phase-envelope distribution for the Nakagami-m dis-

tribution. This was subsequently used by authors such as: Ma and Zhang [66, 67],

Santos Filho & Yacoub [85], to develop techniques for simulating a complex Nak-

agami fading channel with the correct amplitude and phase distributions.

16



2.6. BLIND SOURCE SEPARATION

2.6 Blind Source Separation

The problem of recovering signals that have been transformed through an un-

known mixing process, commonly known as blind source separation (BSS) is a

topic of wide interest in signal processing applications. The term blind refers

to the fact that no explicit knowledge of the source signals or mixing system

is available to an observer. Many approaches and algorithms have been devel-

oped, based on different statistical properties of the source signals. Higher Order

Statistics (HOS) based algorithms, such as JADE and Fast Independent Compo-

nent Analysis (FASTICA), are restricted to cases where only one of the sources may

be Gaussian. Mixtures of multiple Gaussian sources may be treated through the

use of Second Order Statistics (SOS) based methods and exploitation of different

temporal structure in the sources. Both the HOS and SOS approaches share a

common preprocessing step i.e. prewhitening of the observation data. This step

reduces the search space by transforming the subsequent mixing matrix estimation

step to a search for a unitary matrix.

Typical digital communication source signals, such as Phase Shift Keyed (PSK)

and Quadrature Amplitude Modulation (QAM), have a significant kurtosis value

and so are well suited to BSS approaches based on HOS. For this reason the

principle algorithms selected for use in this study are: FASTICA and JADE. Recog-

nising the potential for near Gaussian distributed sources, to reduce the intercept

capacity of an eavesdropper in a MIMO wireless scenario, some SOS based al-

ternatives are described here. However the implementation and analysis of these

SOS methods is outside the scope of the current study. These approaches are

discussed here simply to highlight the fact that alternatives to HOS do exist and

should be considered if they are appropriate for the problem under study.

2.6.1 BSS Based on Higher Order Statistics

HOS based algorithms do not exploit possible temporal structure of the sources,

relying instead on two primary assumptions: the source samples are identically

distributed and the sources are independent of each other i.e. source sequences

are i.i.d. and the different sources may have different distributions. Since Gaus-

sian distributed sources have SOS only, HOS based algorithms are unable to

separate mixtures of i.i.d. Gaussian sources. Statistical methods for perform-
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ing BSS, such as Comon’s 1994 description of Independent Component Analy-

sis (ICA) [25], have resulted in popular algorithms such as FASTICA [44, 43, 46,

16, 55] and Cardoso & Souloumiac’s 1993 JADE [19] method. Both algorithms

are available as Matlab code, which has undoubtedly aided their popularity. It

is also well known that there are ambiguities in the estimated sources that result

from BSS methods and this has been addressed by Hyvärinen [45] & Oja and by

Eriksson & Koivunen [32].

Abrudan et al. [2, 3, 4] have demonstrated how to incorporate the JADE cost

and gradient into alternative optimization algorithms. This is particularly useful

since the authors have developed a method for optimization under a unitary con-

straint which is ideally suited to the BSS problem. However the expression for the

gradient of the JADE cost function, that was presented in [2, 3], has been found to

be incorrect [50].

Tichavský et al. [99, 100] have derived estimation error performance bounds

for source and mixing matrix estimation for the noiseless linear mixing model

using real-valued source and real-valued mixing matrix variables. The authors

employed the GG distribution to provide a random source where the kurtosis of

the distribution could be continuously varied. This feature aids understanding of

source separability and provides a useful reference when considering separation

of digital sources with known kurtosis values. Similar source and channel estima-

tion error bounds for complex-valued source and complex-valued mixing matrix

variables have not been found in the literature.

In section 4.5 the derivation of the CRB for the mixing matrix is described.

In section 6.2 we compare the theoretical CRB with simulation results using the

complex variant of the FASTICA algorithm [55], in conjunction with an algorithm

for resolving the permutation problem [98] associated with BSS, for mixing matrix

estimation.

2.6.2 BSS Based on Second Order Statistics

After the prewhitening step, SOS based algorithms typically apply a separation

technique such as diagonalizing a covariance matrix [101], or by jointly diag-

onalizing a number of covariance matrices [13]. SOS approaches rely on the

presence of time structure in the sources and so, for cases where this condition
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is not satisfied, SOS alone may be insufficient for successful BSS. In particular, if

the each of the sources has an i.i.d. time structure, then SOS is only useful for

spatial whitening, after which a solution may be found using a HOS method. It

is clear and well-known that Gaussian i.i.d. sources cannot be separated by SOS,

HOS or even a combination of these approaches. However, when the sources do

have different temporal covariance structures, then SOS based approach may be

considered for BSS.

In the late 1980’s Agee et al. [6, 7] introduced the Self-Coherence Restoral (SCORE)

approach to blind adaptive signal extraction. In [6] an approach is presented that

addresses communication signals extraction, through blind adaptation of an an-

tenna array, in co-channel interference environments, using only known spectral

correlation properties of the signals.

At the end of the 1980’s Tong et al. [101] developed the Algorithm for Mul-

tiple Unknown Signals Extraction (AMUSE) which assumes temporally coloured

sources and relies on Exact Joint Diagonalization (EJD) of the observation corre-

lation matrix. Molgedey et al. [74] applied a similar method as in [101] using

time delayed correlations. In [13] Belouchrani et al. introduced the Second Or-

der Blind Identification (SOBI) algorithm. Unlike AMUSE, SOBI doesn’t perform

EJD of a matrix pair but derives the Approximate Joint Diagonalization (AJD) on

a set of more than two correlation matrices. In [13] a simulation example, where

the separation of two complex circular Gaussian source signals in the presence of

stationary complex white noise, is studied.

In the early 1990’s a Maximum Likelihood (ML) based technique was de-

veloped by Belouchrani and Cardoso in [14] for discrete source separation, with

known source probability distributions. ML approaches were also investigated

by: Harroy and Lacoume [41], Pearlmutter, Parra [79], Pham and Cardoso [81].

More recently, Yeredor [115] considered the separation of Gaussian sources ex-

hibiting general, arbitrary covariance structures and derived the ML estimate of

the separation matrix.

SOS techniques have also been proposed based on the Canonical Correlation

Analysis (CCA) approach [36, 17, 116]. In this approach, the demixing matrix is

found by maximizing the autocorrelation of each of the recovered signals. This

approach relies on the idea that the sum of any uncorrelated signals has an au-

tocorrelation whose value is less or equal to the maximum value of individual
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signals, as proved in [17]. Liu et al. [62] generalised the CCA approach to address

the source separation problem for noisy mixtures.

2.7 Blind Separation of Space-Time Encoded Sources

One of the main aims in this study is to quantify the information rate available to a

passive eavesdropper intercepting a MIMO wireless digital communications trans-

mission. Previous work in the literature has addressed aspects of this problem. In

1998 Grellier & Comon [40, 39] considered the problem and performance of the

blind separation of discrete sources, in particular for PSK sources. In [39] Grellier

& Comon derive some performance bounds for Binary Phase Shift Keyed (BPSK)

and 4-PSK, utilising error probability functions for these signal types. Kurtosis, de-

fined in Appendix C, has been found to be a very useful parameter for comparing

different digital modulation schemes. In his 2001 paper Mathis [72], recognising

that the kurtosis of the source provides an indication of the separation difficulty

faced by BSS techniques, studied the effects of timing offsets on the kurtosis of

digitally modulated signals. Mathis was able to derive expressions that give the

output source kurtosis as a function of input kurtosis, timing offset and pulse shap-

ing.

In 2002 Swindlehurst [94] showed how knowledge of the structure of ST

block coded signals could be combined with the Algebraic Constant Modulus Al-

gorithm (ACMA) for blind source separation of Space-Time Block Coded (STBCD)

data using a modulation symbol set that has a constant modulus such as PSK.

Swindlehurst notes that his algorithm is unable to perform BSS when Alamouti

Space-Time Block Coding (STBCG) is employed.

In their 2003 paper Rinas & Kammeyer [82] describe a hybrid MIMO system

that uses the JADE algorithm for BSS and the Vertical Bell Labs Layered Space-

Time (VBLAST) algorithm for symbol detection. The authors utilise BSS to facilitate

channel estimation and then apply the VBLAST algorithm for improved symbol

detection with knowledge of the finite symbol set. Performance is demonstrated

by way of constellation plots showing the observed signals before BSS and the

estimated constellations, after BSS.

liu et al. [61], in 2005, described the use of two iterative algorithms to find the

source separating matrix, recognising that this is an orthogonal matrix when Or-
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thogonal Space-Time Block-Coding is being employed by the transmitter. BER per-

formance is assesed via simulations using the Alamouti code. However no com-

parison is made with direct application of the two well-known BSS algorithms:

FASTICA and JADE.

2.8 Summary

In this review the wireless Space-Time intercept channel is considered in a context

analogous the broadcast channel that evolved from the wire-tap channel model,

leading to the simplifying notion that communications information secrecy is a

function of the difference between mutual information for the intended chan-

nel and the mutual information for an eavesdropper’s channel. Techniques for

analysing this problem are drawn from the field of BSS. From the preceding sur-

vey of available literature, some deficiencies have become evident. These are

summarised as follows:

• A thorough theoretical analysis of the information rates achievable by a

MIMO eavesdropper, given different states of knowledge and for a complex-

valued source and complex-valued channel model, has not been under-

taken.

• A practical method for readily modelling dependence in a MIMO channel

does not appear to be available.

• An incorrect expression has been stated in the literature for the gradient

of the complex-valued JADE cost function, used in BSS optimization algo-

rithms.

• Adaptation of Space-Time Block-Coded signals to suit BSS algorithms such

as ICA or JADE has not been adequately addressed.
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Chapter 3

Information Theory for Eavesdroppers

In this chapter we are interested in differential entropy and mutual information

as they apply to wireless communication links employing antenna arrays at both

the transmission and receiving sites. Systems of this type are more commonly

known as MIMO wireless communication systems. MIMO wireless communi-

cation techniques are known to provide increased information transfer rates, or

channel capacities, over those obtainable using single transmit antenna to single

receive antenna links [97, 34]; however this extra capacity comes at the expense

of increased system complexity and additional processing for both the transmitter

and the receiver. To correctly receive and detect the transmitted message, the

receive system must know the channel, or mixing matrix, as well as the message

symbol set being used. The channel matrix may be estimated when a predeter-

mined, known message sequence is incorporated into the transmitted message

and the receiver knows where in the message this sequence occurs. However the

training sequence may not always be available and this presents a blind source

estimation problem where neither the message nor the channel matrix are known

to the receiver.

The following list defines the main system parameters that are considered in

this study:

Synchronization parameters: the parameter set P required for the receiver to cor-

rectly synchronize with the transmitted waveform e.g.: carrier frequency,

timing offset, symbol rate.

Unitary Transformation Matrix: a unitary pre-processing transformation R ap-
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plied by the transmitter.

Channel matrix: the complex channel matrix A ∈ Cm×p, where m is the number

of receive antennae and p is the number of transmit antennae.

Message set: the symbol set S, for discrete messages or the message covariance

in the continuous case. We assume a zero mean for the message set or

distribution.

Message: the message matrix X.

Interference Covariance Matrix: the covariance matrix Σw of the additive noise

or interference; assuming a zero mean distribution.

We may construct a set of receiver knowledge states as a function of the knowl-

edge state of the individual system parameters. Using the function t(θ) ∈ {0, 1}
to indicate if the parameter θ is unknown (t(θ) = 0) or known (t(θ) = 1) and

the function T (t(A), t(X), t(R), t(Σw), t(S)) ∈ {0, 1} to indicate if a set of pa-

rameter knowledge states is false (T (t(A), t(X), t(R), t(Σw), t(S)) = 0) or true

(T (t(A), t(X), t(R), t(Σw), t(S)) = 0), then we can define a truth table for the

states of the main system parameters and the combination of parameter states that

form the receiver knowledge states of interest. The parameter P is assumed to

be always known or knowable. To facilitate further analysis a number of receiver

knowledge states are defined as follows:

State-I: The channel between the transmitter and the receiver is known.

The message is known. Any unitary transformation applied by the

receiver is known. The noise covariance is known. The message set

or covariance is known but not necessary since the message is known.

t(A) = 1, t(X) = 1, t(R) = 1, t(Σw) = 1, t(S) = 1, T (1, 1, 1, 1, 1) =

1.

State-II: The channel between the transmitter and the receiver is known.

The message is unknown. Any unitary transformation applied by the

receiver is known. The noise covariance is known. The message set

or covariance is known. t(A) = 1, t(X) = 0, t(R) = 1, t(Σw = 1),

t(S) = 1, T (1, 0, 1, 1, 1) = 1.
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State-III: The channel between the transmitter and the receiver is unknown.

The message is known. Any unitary transformation applied by the

receiver is known. The noise covariance is known. The message set

or covariance is known but not necessary since the message is known.

t(A) = 0, t(X) = 1, t(R) = 1, t(Σw = 1), t(S) = 1, T (0, 1, 1, 1, 1) =

1.

State-IV: The channel between the transmitter and the receiver is unknown.

The message is unknown. Any unitary transformation applied by the

receiver is known. The noise covariance is known. The message set

or covariance is known. t(A) = 0, t(X) = 1, t(R) = 1, t(Σw = 1),

t(S) = 1, T (0, 0, 1, 1, 1) = 1.

State-V: The channel between the transmitter and the receiver is unknown.

The message is unknown. Any unitary transformation applied by the

receiver is unknown. The noise covariance is unknown. The message

set or covariance is unknown. t(A) = 0, t(X) = 0, t(R) = 0, t(Σw =

0), t(S) = 0, T (0, 0, 0, 0, 0) = 1.

State-VI: The channel between the transmitter and the receiver is known.

The message is unknown. Any unitary transformation applied by the

receiver is unknown. The noise covariance is known. The message

set or covariance is known. t(A) = 1, t(X) = 0, t(R) = 0, t(Σw = 1),

t(S) = 1, T (1, 0, 0, 1, 1) = 1.

The resulting truth table, and when combinations of parameter knowledge states

satisfy the receiver knowledge states I to V I, may be represented by the Karnaugh

map shown in Figure 3.1.

In the eavesdropping scenario we shall assume that the intended receiver is

in the fully informed state I. The eavesdropping receiver’s knowledge may be

in any of the above states but is generally assumed to be in one of the partial

knowledge states II to V I. States I to IV are used to derive MI expressions for

the eavesdropping scenario in section 3.2.

States IV and V I represent the assumptions of the hypersphere model for

mutual information derived later in this chapter. For standard communication

links information theoretic derivations, such as entropy and MI, typically assume

the fully informed state. In this study the partially informed states are of greater
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Figure 3.1: Karnaugh map showing when defined receiver knowledge states are
satisfied.

interest and so, in this chapter, entropy and MI derivations are presented to enable

further study and understanding of the consequences of reducing the knowledge

available to a passive eavesdropping receiver. When considered in the context

of information rates or channel capacity, the reduction in MI caused by reducing

the eavesdropping receiver’s state of knowledge, may be considered as a measure

of secrecy available to the intended communication link pair (Alice and Bob).

Secrecy capacity was discussed in Chapter 2 where it was found, for a wireless

broadcast channel, that it could be quantified in terms of the difference in MI

between two communication links i.e. the difference between the intended link

and an unintended link. Figure 3.2 shows a simple diagram that is commonly used

Figure 3.2: MIMO Wireless Intercept Model.
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in the literature to represent the MIMO wireless broadcast scenario. By a well-

known cryptographic convention, introduced by Maurer in [73], the transmission

source array is labelled A (for Alice), the intended cooperative receiver array is

labelled B (for Bob) and the unintended, passive intercept receiver is labelled E

(for Eve). Solid lines are used to represent paths of RF propagation from Alice’s

antennae to Bob’s antennae, dotted lines represent paths of RF propagation from

Alice’s antennae to Eve’s antennae. In the RF environment there are objects that

reflect or scatter the RF and these are represented by the squares and circles in the

figure. An important point to realise here is that the paths (channel AB) between

A and B are different to those between A and E (channel AE).

3.1 Model and Assumptions

As a mathematical representation of a single MIMO wireless communications

link, the following simple linear transformation

Y = AX + W (3.1)

is employed, where Y is the received signal matrix, X is the transmitted source

matrix, W is an additive receiver noise matrix and A is the channel gain or mix-

ing matrix between the transmitter and receiver. We make use of the following

notational conventions:

• When the vector y has a real multivariate normal distribution, written as

y ∼ N (µy,Σy), with mean µy and covariance matrix Σy, the pdf for y is

p(y) = |2πΣy|−1/2 exp
{
−[y − µy]TΣ−1

y [y − µy]
}
. (3.2)

• If the real-valued scalar y has a normal distribution, written as y ∼ N (µy, σ
2
y),

with mean µy and variance σ2
y, the pdf for y is

p(y) = (2πσ2
y)
−1/2 exp

{
− [y − µy]2

2σ2
y

}
. (3.3)

• When y is a proper complex Gaussian random vector, written as y ∼
CN (µy,Σy), with mean µy and Hermitian covariance matrix Σy, the pdf
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for y is

p(y) = |πΣy|−1 exp
{
−[y − µy]†Σ−1

y [y − µy]
}
. (3.4)

A proper complex random variable is uncorrelated with its complex conju-

gate.

• If the complex-valued scalar y has a proper complex normal distribution,

written as y ∼ CN (µy, 2σ
2
y), with mean µy and variance 2σ2

y i.e. the sum

of the variances in the real and imaginary parts of y, which are assumed to

both equal σ2
y. The pdf for y is

p(y) = (2πσ2
y)
−1 exp

{
−|y − µy|

2

2σ2
y

}
. (3.5)

The MIMO channel is commonly modelled using proper complex-valued ran-

dom variables for the channel components. For example Marzetta and Hochwald [70]

assume i.i.d., frequency-flat Rayleigh amplitude fading between the transmit and

receive antennae. Consequently the components ai,j of A are typically modelled

as i.i.d. proper complex Normal: ai,j ∼ CN (0, 2σ2
a). This model may be used to

represent either the intended link (between Alice and Bob) or the unintended link

(between Alice and Eve).

The following general assumptions are made:

• X ∈ Cp×n is an i.i.d. proper complex random source matrix with zero mean

and component variance var{xi,j} = 2σ2
x.

• W ∈ Cm×n is an i.i.d. proper complex random Gaussian noise matrix i.e. its

components are distributed as wi,j ∼ CN (0, 2σ2
w) and the ith column of W,

wi ∼ CN (0,Σw). W does not model spatially coherent interference with

a non unity covariance matrix. Σw is assumed known for all the receiver

knowledge states used in the MI derivations.

• Y ∈ Cm×n is an i.i.d. proper complex observation matrix which, since X

and W are zero mean, is also zero mean and its component variance is

var{yi,j} = 2σ2
y.

• The intended channel AB is known only to Bob. Alice therefore adopts a

simple transmission scheme where equal power is output from each antenna
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and the antenna outputs are mutually independent. If Alice knew channel

AB then she could preprocess the data via SVD and apply a waterfilling

technique, which is described by Tse and Viswanath in [102, Ch.7], for

channel power allocation to optimize channel capacity.

• Eve does not know the intercept channel AE or the intended channel.

• The channels AB = Ab ∈ Cmb×p and AE = Ae ∈ Cme×p vary slowly

with time and may be assumed constant for the observation block lengths

under consideration. Over a longer time period the components of Ab and

Ae are assumed to be i.i.d., have a zero mean and component variance

var{[Ab]i,j} = var{[Ae]i,j} = 2σ2
a.

3.2 Mutual Information

To proceed with the derivations of MI we first recall a few definitions from Cover

and Thomas [26, Chs.2,9]. The differential entropy h(Y ) of a continuous random

variable Y , with a probability density p(y) is defined as

h(Y ) , −
∫

Y
p(y) ln(p(y))dy = −E {ln(p(y))} , (3.6)

where Y is the support set of the random variable Y . Y may be a scalar, a vector

or a matrix and may be real or complex. When we have two random variables

Y,X with joint probability density p(y, x), the conditional differential entropy is

defined as

h(Y |X) , −
∫

Y,X
p(y, x) ln(p(y|x))dy dx, (3.7)

where X is the support set of the random variable X. X may be a scalar, a

vector or a matrix and may be real or complex. The MI between the two random

variables Y and X is defined as

I(Y ;X) ,
∫

Y,X
p(y, x) ln

p(y, x)

p(y)p(x)
dy dx

= h(Y )− h(Y |X) = h(X)− h(X|Y ), (3.8)

and represents the reduction in the uncertainty of the source variable X given

knowledge of the observed variable Y . The capacity C is then obtained by maxi-

30



3.2. MUTUAL INFORMATION

mizing the mutual information over all probability distributions for the source i.e.

over p(x):

C = sup
p(x)

I(Y ;X). (3.9)

It is well known, for example see Cover and Thomas [26], that a Gaussian source

distribution is an entropy maximizer (for a given variance) and is therefore com-

monly used to determine channel capacities.

Turning now to the MIMO link represented by equation 3.1, where Y ∈
Cm×n, A ∈ Cm×p, X ∈ Cp×n and W ∈ Cm×n, the MI for the legitimate user, Bob,

given knowledge of the channel matrix A, is

Ib = I(Y|A; X) = h(Y|A)− h(Y|A,X) (3.10)

and the mutual information for the eavesdropper, Eve, is

Ie = I(Y; X) = h(Y)− h(Y|X). (3.11)

In terms of the receiver knowledge states that were defined earlier

Ib = h(II)− h(I) (3.12)

and

Ie = h(IV )− h(III), (3.13)

where h(I), h(II), h(III) and h(IV ) are the entropies of being in states I-IV ,

respectively.

We wish to study how Ib and Ie are affected by different source distributions

and states of knowledge. To model the source distribution we shall make use of

the Generalised Gaussian (GG) distribution, described by Tichavský et al. in [99],

and also described in Appendix C for reference. The GG distribution is a family

of symmetric probability distributions with a parameter α > 0 that determines

the shape of the pdf. As α increases from zero to infinity, the shape of the pdf

varies from sharply peaked to uniform on a bounded interval. Special cases occur

when α = 1 and α = 2. In the first case the Laplace pdf is obtained and the

second case yields a normal distribution. The advantage of using the GG is that it

allows us to smoothly vary the shape of the distribution to represent a wide range

of source pdfs. Changing the shape of the pdf changes the source differential
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entropy, which is maximised when the distribution is normal; using a fixed source

variance for each α. Also, since we are particularly interested in BSS performance

for distributions that are close to Gaussian, the GG will yield a distribution that

may be approximated by a Gaussian. We shall show later how entropy power

may be substituted for the variance in the Gaussian approximation. Under the

assumptions stated in section 3.1 p(Y|X) and p(Y|A,X) are Gaussian. For small

array dimensions p(Y) is not Gaussian but, under the central limit theorem, p(Y)

becomes more Gaussian as m increases. We shall require the differential entropy

for a complex Gaussian random vector. Let y be an m × 1 complex Gaussian

random vector with y ∼ CN (0,Σy), where Σy is the covariance matrix for y. The

pdf for y is, for example see Kay [48] or Scharf [86],

p(y) = |πΣy|−1 exp
{
−y†Σ−1

y y
}
. (3.14)

The differential entropy for this distribution is found to be

h(y) = ln(|πeΣy|) nats, or h(y) = log2(|πeΣy|) bits. (3.15)

There are four different differential entropies and hence four different covari-

ance matrix estimates required in the expressions for the two mutual information

cases Ib and Ie. The GG distribution will be used to generate the real and imag-

inary parts of the message matrix X and we shall use the term Gaussianity as an

indication of how close the parameter α brings the GG distribution to a Gaus-

sian distribution. The Gaussianity of the message matrix X will be varied from

super-Gaussian (positive kurtosis) to sub-Gaussian (negative kurtosis) through ap-

plication of the GG distribution. We shall use the entropy power of the source dis-

tribution as a substitute for the Gaussian variance in our covariance calculations

because this allows us to treat the message as if it had a Gaussian distribution,

where the reduction in entropy is due to a reduction in the source variance. The

covariances that we require are: Σy|A,X, Σy|A, Σy|X and Σy.

In the derivations that follow we employ the vectorisation operator vec (·)
which stacks the columns of a matrix in a column vector, i.e., for an (m × n)

matrix Y = [y1 y2 . . . yn], where yi is the ith column of Y,

vec (Y) , [yT1 yT2 . . . yTn ]T . (3.16)
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The relationship

vec (AX) = (In ⊗A)vec (X) , (3.17)

which may be found in [63], for A (m × p) and X (p × n), is also required; In is

the n × n identity matrix and ⊗ is the Kronecker matrix product. We make the

following definitions

y , vec (Y) , (3.18)

a , vec (A) , (3.19)

x , vec (X) , (3.20)

w , vec (W) , (3.21)

Σy , E
{

[y − E {y}][y − E {y}]†
}

= 2σ2
yImn, (3.22)

Σa , E
{

[a− E {a}][a− E {a}]†
}

= 2σ2
aImp, (3.23)

Σx , E
{

[x− E {x}][x− E {x}]†
}

= 2σ2
xIpn, (3.24)

Σw , E
{

[w − E {w}][w − E {w}]†
}

= 2σ2
wImn, (3.25)

ΣA , E
{
AA†

}
= 2pσ2

aIm, (3.26)

where Imn is the q × q identity matrix, where q = m× n, Imp is the q × q identity

matrix, where q = m× p and Ipn is the q × q identity matrix, where q = p× n.

The elements of Y are i.i.d. so that, for the purpose of differential entropy

calculation, we can form the single column vector y, derive the covariance matrix

Σy and use equation 3.15. In vector form Y becomes

y = (In ⊗A)x + w. (3.27)

It will assist the derivations to consider the meanM and error E terms for each of

the random variables, with

Y =MY + EY = (MA + EA)(MX + EX) + (MW + EW), (3.28)
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where the following definitions are employed:

MY , E {Y} , (3.29)

MA , E {A} , (3.30)

MX , E {X} , (3.31)

MW , E {W} , (3.32)

EY , Y −MY, (3.33)

EA , A−MA, (3.34)

EX , X−MX, (3.35)

EW , W −MW. (3.36)

With the preceding definitions we may now derive the covariance matrix for y in

the four different receiver knowledge states.

State-I: When A and X are known, i.e. EA = EX = 0 and, with W ∼
CN (0,Σw), we have

Y = MY + EY = AX + EW,

E {Y} = AX (3.37)

and we find that

E {y(A,X)} = (In ⊗A)x, (3.38)

Σy(A,X) = 2σ2
wImn. (3.39)

State-II: If A is known but X is unknown then, with EA = 0, we have

Y = MY + EY = A(MX + EX) + (MW + EW)

= A(MX + EX) + EW, (3.40)

which leads to

E {y(A)} = (In ⊗A)vec (MX) ,

Σy(A) = (In ⊗A)Σx(In ⊗A)† + Σw. (3.41)
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The elements of X are i.i.d. so that Σx = 2σ2
xIpn allowing us to write

Σy(A) = 2σ2
x(In⊗A)(In⊗A)†+ Σw = 2σ2

x(In⊗AA†) + Σw. (3.42)

If the channel matrix varies between observations then the expected

value of Σy(A) over A will be given by

EA

{
Σy(A)

}
= 2σ2

x(In⊗E
{
AA†

}
)+Σw = [4pσ2

aσ
2
x+2σ2

w]Imn. (3.43)

State-III: If X is known but A is unknown then it is straightforward to show

that

E {y(X)} = (XT ⊗ Im)vec (MA) (3.44)

Σy(X) = (XT ⊗ Im)Σa(XT ⊗ Im)† + Σw, (3.45)

since MA = 0. Further, if estimation of the channel is performed to

obtain Â or â and it is known that Σâ = 2σ2
âImp, then

Σy(X) = 2σ2
â(X

T ⊗ Im)(XT ⊗ Im)† + Σw = 2σ2
â(X

TX∗ ⊗ Im) + Σw.

(3.46)

The message matrix varies between observations and the expected

value of Σy(X) over X becomes

EX

{
Σy(X)

}
= 2σ2

â(E
{
XTX∗

}
⊗Im)+Σw = [4pσ2

âσ
2
x+σ

2
w]Imn, (3.47)

since X has i.i.d. components with zero mean and variance σ2
x and

Σw = σ2
wImn.

State-IV: When neither A nor X are known then X,A,W are treated as

zero-mean, random matrices hence

E {y} = 0. (3.48)

Σy = EA,X

{
yy†
}

= [4pσ2
aσ

2
x + 2σ2

w]Imn.

(3.49)

In deriving these covariance expressions we have assumed a Gaussian distri-

bution for the source matrix. However, in practice, message source distributions
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are usually not Gaussian. Since the covariance expressions will be used to es-

timate differential entropies, we may substitute the variance σ2
x with the source

entropy power Px, a description of entropy power and some related proofs can be

found in Rioul [83], i.e.

Px =
exp{2h(x)}

2πe
, (3.50)

where h(x) is the differential entropy for one of the components of X, and then

substitute PxIpn for Σx. In effect we substitute a Gaussian pdf, which has the same

differential entropy as the actual pdf. This will allow us to vary the Gaussianity of

the source distribution and study the effect on the MI as a function of covariance

for an equivalent Gaussian source.

The MI for the legitimate and eavesdropper channels may now be written as

Ib = ln




det
(

2σ2
x(In ⊗AbA

†
b) + Σw

)

det (Σw)


 (3.51)

and

Ie = ln

(
det ([4pσ2

aσ
2
x + 2σ2

w]Imen)

det (2σ2
â[X

TX∗ ⊗ Ime ] + Σw)

)
. (3.52)

When we consider that the channel and message matrices vary with time i.e.

between observation blocks, the time averaged mutual information becomes

Îb = EA,X {Ib} = ln

(
det
(
EA

{
Σy(A)

})

det (Σw)

)
= mbn ln

(
[2pσ2

aσ
2
x + σ2

w]

σ2
w

)
(3.53)

and

Îe = EA,X {Ie} = ln

(
det (Σy)

det
(
EX

{
Σy(X)

})
)

= men ln

(
[2pσ2

aσ
2
x + σ2

w]

[2pσ2
âσ

2
x + σ2

w]

)
. (3.54)

In this case it is assumed that both X and A are random variables that are inde-

pendent between observation blocks.

It is clear, from the above that, when me = mb, Îe → Îb as σ2
â → 0. Since one

of our assumptions is that the elements of X are i.i.d. then Σx is a multiple of the

identity, Σx = 2σ2
xIpn. Similarly Σw = 2σ2

wImn. We have also assumed that both

channels Ab and Ae are full rank. If the rank of Bob’s channel, rk(Ab), reduces

then Îb will decrease, which may give Eve an advantage if she can maintain a full
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channel rank, rk(Ae). If Eve finds that rk(Ae) is insufficient then she may be able

take steps to improve her channel e.g. relocate her antennae.

In Chapter 4 we shall derive a lower variance bound for the covariance ma-

trix of the estimated, complex mixing matrix when performing joint source and

channel estimation. This value will be used to obtain an approximation for σ2
â.

3.3 Mutual Information Gradient

In studying the linear vector Gaussian channel y = Ax + w, Palomar and Verdú

in [77] have derived expressions that relate the gradient of mutual information,

as a function of a variety of system parameters, to the error covariance matrix E

of the estimate of the input x given the output y. This will be used to give an

indication as to how rapidly the information rate, to an eavesdropper, increases

as the source pdf becomes less Gaussian. We shall make use the following result

in [77, eqn.25]

([77, eqn.25]) ∇ΣxI(x; HBx + n) = B†H†Σ−1
n HBEΣ−1

x , (3.55)

where H is the channel matrix, B is a linear precoding matrix and n is Gaussian

noise. This allows us to write the gradient of MI with respect to (w.r.t.) Σx as

∇ΣxI(x; Ax + w) = A†Σ−1
w AEΣ−1

x , (3.56)

where Σx and Σw are, respectively, the input and noise covariance matrices. The

Minimum Mean Squared Error (MMSE) matrix E is defined as

E , E
{

[x− E {x|y}][x− E {x|y}]†
}
. (3.57)

For the block data case, Y = AX+W, that we are considering we may write

y = vec (Y) = (In ⊗A)x + w = Bx + w, (3.58)

where B = (In ⊗A), so that the MI gradient is

∇ΣxI(x; Bx + w) = B†Σ−1
w BEΣ−1

x . (3.59)
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Definition 1 (Fully Informed Mutual Information Gradient). The MI gradient for

the fully informed receiver Bob is defined as

MIGb , B†bΣ
−1
w BbEbΣ

−1
x , (3.60)

where Eb is the fully informed receiver’s source estimation error covariance matrix

and Bb , (In ⊗ Ab). In terms of the receiver knowledge states defined earlier,

Bob’s mutual information is given by

Ib = h(II)− h(I). (3.61)

Definition 2 (Partially Informed Mutual Information Gradient). The MI gradient

for the partially informed receiver Eve is defined as

MIGe , B†eΣ
−1
w BeEeΣ

−1
x , (3.62)

where Ee is the eavesdropper’s source estimation error covariance matrix and

Be , (In ⊗Ae). In terms of the receiver knowledge states defined earlier, Eve’s

mutual information is given by

Ib = h(IV )− h(III). (3.63)

Definition 3 (Mutual Information Gradient Ratio). The partially informed to fully

informed MI gradient ratio is defined as

MIGR , tr
(
[MIGe] [MIGb]

−1) , (3.64)

= tr
([

EeE
−1
b

] [
B†bΣ

−1
w Bb

]−1 [
B†eΣ

−1
w Be

])
. (3.65)

Now, since the noise and source vectors are i.i.d. we have Σw = 2σ2
wImn and

Σx = 2σ2
xImn so that

MIGR = tr
([

EeE
−1
b

] [
B†bBb

]−1 [
B†eBe

])
, (3.66)

= tr
([

EeE
−1
b

] [
In ⊗A†bAb

]−1 [
In ⊗A†eAe

])
. (3.67)

If Bob and Eve’s receive antennae both experience a similar RF propagation envi-
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ronment: sufficient multipath , no strong direct RF propagation paths and similar

background noise statistics, then the channels Ab and Ae will have similar statis-

tics. As described in section 3.1 the channel may be modelled with components

ai,j ∼ CN (0, 2σ2
a). Let E

{
A†bAb

}
= 2mbσ

2
aIp and E

{
A†eAe

}
= 2meσ

2
aIp, where

the expectation is taken over a number of observation blocks.

Theorem 3.3.1 (MIGR Theorem). Consider the MIMO model given by equa-

tion 3.1, assumptions listed in section 3.1, [Ae]ij and [Ab]ij are both distributed

as CN (0, 2σ2
a), then the expected value of the ratio MIGR is a function of the

source estimation error covariance matrices and the receive array dimensions mb

and me.

Proof of MIGR Theorem. When [Ae]ij and [Ab]ij are both distributed as CN (0, 2σ2
a),

E
{

A†bAb

}
= 2mbσ

2
aIp and E

{
A†eAe

}
= 2meσ

2
aIp. From the model assumptions

we also have Σw = 2σ2
wImn, so that the expected value of MIGR, as given in

Definition 3, becomes

EA {MIGR} = tr
([

EeE
−1
b

]
E
{[

In ⊗A†bAb

]−1
}
E
{[

In ⊗A†eAe

]})
,(3.68)

= tr
([

EeE
−1
b

] [ 1

2mbσ2
a

Ipn

] [
2meσ

2
aIpn

])
, (3.69)

=
me

mb

tr
(
EeE

−1
b

)
. (3.70)

If the components of the source estimates are independent then Eb = 2σ2
x|y,AIpn

and Ee = 2σ2
x|yIpn. In this case the expected value of MIGR becomes

EA {MIGR} =
me

mb

pn
σ2
x|y

σ2
x|y,A

. (3.71)

We have also assumed that both channels Ab and Ae are full rank. If the rank

of Bob’s channel, rk(Ab), reduces then Îb will decrease, similarly if Eve finds that

rk(Ae) is reduced then Îe will decrease. However, since we are dealing with MI

gradients and gradient ratios here, the results for MIGb, MIGe and MIGR will be

unchanged.
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3.4 Unknown Unitary Transformation

Here we consider the situation where a communications receiving system has

prior knowledge of the message symbol set, the channel matrix between the trans-

mission system and the receiving system, is able to resolve the transmissions from

the, assumed independent, transmitter antennae but does not know the unitary

transformation that has been applied at the transmitter. The question then be-

comes: what is the mutual information available to the receiver when an unknown

unitary transformation matrix is employed by the transmitter?

In the following sections we derive expressions for differential entropy and

mutual information for a multi-element transmit array to multi-element receive

array system, where the transmitter and receiver have the same number N of

antennae, which we shall refer to as an N-Dimensional (N-D) system.

Pre-processing

Channel

Post-processing

x
x y

yV V UD U
~ ~y y

Figure 3.3: Converting a MIMO channel to a parallel channel via SVD.

The vector model that we shall base further derivations on is the simple linear

transformation

y = Ax + w (3.72)

where y ∈ CN×1 is the received signal vector, x ∈ CN×1 is the transmitted vector,

w ∈ CN×1 is additive receiver noise and A ∈ CN×N is the channel gain or mixing

matrix between the transmitter and receiver. A common MIMO channel model

was discussed earlier in Section 3.1.
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The channel matrix can be factorized using SVD as : A = UDV† and we can

then use, e.g. see Tse and Viswanath [102, Ch.7]:

U†y = DV†x + U†w (3.73)

or ỹ = Dx̃ + w̃, (3.74)

where U and V are unitary matrices. This allows us to view the MIMO system

as if it were composed of a set of parallel channels and the input data vector can

be designed with this in mind. Figure 3.3 shows how this channel, with pre and

post-processing, may be configured. For such an approach to work the transmitter

requires precise knowledge of the channel matrix and it is a simple matter for

the intended receiver to obtain the (scaled) message, since D is a real diagonal

matrix. However for an unintended receiver, with a different (known) channel

matrix, an unknown unitary transformation has been applied. In this case we

desire to know how the eavesdrop channel mutual information, is affected. We

make the following assumptions:

• y is a proper complex N × 1 observation vector.

• w is a proper complexN×1 random Gaussian noise vector, wi ∼ CN (0, 2σ2
w).

• x is a proper complex N×1 vector that defines a set of points on the surface

of an N-D hypersphere i.e. ‖x‖ =
√

x†x = r0 = constant. This definition

for x does not model general sources and it is assumed that σx is known.

• the intended channel Ab is known to both Alice and Bob.

• Eve knows the intercept channel Ae but not the intended channel.

Eve attempts to estimate the signal vector by applying the channel inverse as

x̂ = A−1
e ye = Vx̃ + A−1

e we. (3.75)

Eve is therefore unable to directly obtain x̃ due to the unknown unitary matrix

V. In applying the channel inverse, the noise vector has also been scaled and the

modified noise covariance term A−1
e ΣweA

−T
e shows that the intercept receiver

may be operating with a different snr to that of the intended receiver. This also

indicates that Eve could obtain better mutual information with a better channel.
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Optimal power allocation to the parallel channels between Alice and Bob

would typically be implemented via a technique called waterfilling, e.g. see Tse

and Viswanath [102, Ch.5] for a description, and hence lead to optimal system

capacity. We have not taken waterfilling into account in this study and simply

assume that equal power is assigned to each of the parallel channels. We could

proceed to derive the eavesdropper MI in a cartesian or a polar coordinate system.

Of course it does not matter which coordinate system we choose - we should get

the same answer. It is well known that differential entropy involves a Jacobian (J)

in the transformation of coordinates, e.g. see Papoulis [78], leading to a ln det(J)

term but this will cancel in the MI calculations because MI is a relative entropy i.e.

the difference between two entropies. For the purpose of the current analysis our

derivations will be based on a cartesian coordinate system. Since the channels

are assumed known we may consider y = x + w to represent the fully informed

(unitary transformation known) case and y = Vx + w to represent the partially

informed (unitary transformation unknown) case. We can write x = x
‖x‖‖x‖ to

obtain

y = V
x

‖x‖‖x‖+ w = vr0 + w (3.76)

where r0 = ‖x‖ and v = V x
‖x‖ is a unit vector for which we may or may not know

the rotations. For the random vectors y and x the mutual information for the fully

informed model is given by:

IF = h(y)− h(y|x,V), (3.77)

or in terms of the receiver knowledge states defined previously

IF = h(II)− h(I) (3.78)

and for the partially informed model the mutual information is obtained from:

IP = h(y)− h(y|r0) (3.79)

where the message amplitude r0 is known but not the unitary transformation. In

terms of the predefined receiver knowledge states

IP = h(II)− h(V I). (3.80)
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It is well known that an n×n unitary matrix V (with V†V = VV† = In) preserves

length i.e.

‖Vx‖ = ‖x‖ (3.81)

so that, if we know the magnitudes of the xi in y = Vx, then we know that the

Euclidean norm of x is unchanged by the unitary transformation

(Vx)†(Vx) = x†x = ‖x‖2 =
∑

i

|x|2i . (3.82)

There are two cases that we consider where such a unitary transformation affects

an eavesdropper. The first case occurs when a SVD has been applied by the

transmitter and this was described earlier, the second case occurs when BSS tech-

niques are implemented by an eavesdropper and this will be discussed later in

Chapter 4.

3.5 Hypersphere Model for Mutual Information

In this section we shall derive entropy and MI expressions, for the model described

in section 3.4, using the concept of a hypersphere to represent the pdfs. For the

simple model

y = Vx + w, (3.83)

In this section we treat all of y, x, and w as real-valued random variables and V as

a real orthogonal transformation matrix. The channel matrix A is also treated as

real-valued. The benefit of this approach will be to simplify the derivations whilst

recognising that, if their complex-valued counterparts are proper complex i.i.d.

random variables, then they could be treated as real by forming composite vectors

of their real and imaginary parts. We can construct the joint density function

beginning with

p(y|x) = (2πσ2
w)
−N

2 exp

{−[y − x]T [y − x]

2σ2
w

}
. (3.84)

To illustrate the consequence of not knowing the rotation imposed by a uni-

tary (orthogonal in the real-valued model) transformation V in the 2D real-valued

model, Figure 3.4 shows a message symbol set where each of the two transmitters
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Figure 3.4: 2D Transmitter message
symbol set.
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Figure 3.5: Received ring distribu-
tion caused by unknown rotation on
message symbol set.

can output one of four possible values. Thus a constellation containing 16 points

may be observed at the receiver and the density of these points is determined

by the additive noise. If the orthogonal transformation V or rotation is unknown

but the amplitude levels are known then the receiver might obtain a message that

looks something like Figure 3.5 where the density, or thickness, of the rings is

determined by the additive noise.

In this section we derive the general form for p(y|r0) thus allowing us to

obtain the MI for any dimension and snr. The derivation utilises a result by

Vesely [103] which shows how integration to obtain the probability over an N-

D spherical surface can be performed as an integral over a single sphere dimen-

sion. This result greatly simplifies the multidimensional integrals that we require

to solve. The surface area, SN(r0), of an N-D sphere, as a function of radius

r0 = ‖x‖, may be represented by

[103, eqn.3.15] SN(r0) =

∫ r0

−r0

r0SN−1(r2)

r2

dx1 (3.85)

where r2 =
√
r2

0 − x2
1. We can rewrite the above as

1 =

∫ r0

−r0

r0SN−1(r2)

r2SN(r0)
dx1 =

∫ r0

−r0
pN(x1)dx1 (3.86)
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so that, for points x = [x1 . . . xN ]T , which are homogeneously distributed on an

N-D spherical surface, a single xi occurs with probability pN(x1). Now

pN(x1) =
r0SN−1(r2)

r2SN(r0)
=

(N − 1)CN−1r
N−3
2

NCNr
N−2
0

=
(N − 1)CN−1

NCN

1

r0

[
1− x2

1

r2
0

]N−3
2

,

(3.87)

where

CN =
2πN/2

NΓ(N/2)
. (3.88)

The pdf in equation 3.84 may be written in the form

p(y|x) = (2πσ2
w)−N/2 exp

{−‖y‖2 − ‖x‖2

2σ2
w

}
exp

{∑N
i=1 xiyi
σ2
w

}

= (2πσ2
w)−N/2 exp

{−‖y‖2 − ‖x‖2

2σ2
w

}
exp

{
x � y
σ2
n

}
, (3.89)

from which we wish to obtain p(y| r0). Assuming now that ‖x‖ = r0 is given we

obtain p(y|r0) by integrating over x as follows

p(y|r0) =

∫

‖x‖=r0
p(y|x)p(x)dx

= (2πσ2
w)−N/2 exp

{−‖y‖2 − r2
0

2σ2
w

}∫

‖x‖=r0
exp

{
x � y
σ2
w

}
p(x)dx.

(3.90)

We proceed to calculate this integral by first noting that, since the points x are

uniformly distributed over the surface of an N-D sphere, we only need to perform

the integral along a single dimension, e.g. x1 and replace p(x) with pN(x1) using

equation 3.87 derived earlier. To better understand this, consider the dot product

x � y. The dot product will be unchanged if both vectors are operated on by

the same orthogonal transformation. Let the orthogonal transformation matrix be

R ∈ RN×N , then

(Rx) � (Ry) = (Rx)T (Ry) = xTRTRy = xTy = x � y, (3.91)

sinceRRT = RR−1 = I. So we are free to choose any orthogonal transformation
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matrix and the integral will be unaffected. Let us choose R such that Ry =

‖y‖[1, 0, . . . , 0]T = ‖y‖e, where e is a unit vector, i.e. the vector y is rotated to lie

along the y1 axis. Let x′ = (Rx) then we have

x′ � (Ry) = x′ � ‖y‖e = ‖y‖(x′)Te = ‖y‖x′1. (3.92)

Hence
∫

‖x‖=r0
exp

{
x � y
σ2
w

}
p(x)dx =

∫ r0

−r0
pN(x′1) exp

{‖y‖x′1
σ2
w

}
dx′1

=
(N − 1)CN−1

NCN

1

r0

∫ r0

−r0

[
1− x′21

r2
0

]N−3
2

exp

{‖y‖x′1
σ2
w

}
dx′1.

(3.93)

We may make a change of variable by letting z =
x′1
r0

to get

∫

‖x‖=r0
exp

{
x � y
σ2
w

}
p(x)dx =

(N − 1)CN−1

NCN

∫ 1

−1

[
1− z2

]N−3
2 exp

{‖y‖r0z

σ2
w

}
dz.

(3.94)

We make use of an integral form of the modified Bessel function of the first

kind [1]:

Iν(z) =

(
z
2

)ν

π1/2Γ(ν + 1/2)

∫ 1

−1

(
1− t2

)ν−1/2
e±ztdt, <(ν) >

−1

2
. (3.95)

So that

∫ 1

−1

[
1− z2

]N−3
2 exp

{‖y‖r0z

σ2
w

}
dz =

π1/2Γ
(
N−1

2

)
IN

2
−1(λ)

(
λ
2

)N
2
−1

, (3.96)

where λ = ‖y‖r0
σ2
w

and since

(N − 1)CN−1

NCN
=

Γ
(
N
2

)

Γ
(
N−1

2

)
π1/2

, (3.97)
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then equation 3.94 may be written as

∫

‖x‖=r0
exp

{
x � y
σ2
w

}
p(x)dx =

Γ
(
N
2

)
2
N
2
−1IN

2
−1(λ)

λ
N
2
−1

. (3.98)

The general form for the density, given r0, is therefore

p(y|r0) = (2πσ2
w)−

N
2 exp

{−r0
2 − ‖y‖2

2σ2
w

} Γ
(
N
2

)
2
N
2
−1IN

2
−1(λ)

λ
N
2
−1

. (3.99)

The entropy calculation involves a multidimensional integration over the compo-

nents in y:

h(y|r0) = −
∫

y

p(y|r0) ln p(y|r0)dy. (3.100)

It has not been possible to find a closed form solution for the integral in equa-

tion 3.100 and so it was necessary to calculate it numerically. h(y|r0) is the

entropy in the observed data given knowledge only of the source magnitudes and

is important because it is required for the calculation of eavesdropper MI in sec-

tion 3.6. Therefore a receiver, that has prior knowledge of the message symbol

set but is unable to resolve a unitary transformation that has been applied by the

transmitter, may be expected to reduce the uncertainty in their observations to

h(y|r0), at best. This situation also occurs when the receiver applies a BSS algo-

rithm, discussed later in Chapter 4, where ambiguity in the resolved sources takes

the form of a unitary transformation.

3.6 Numerical Calculations and

High SNR Approximation

Now that we have a general form for p(y|r0) we may proceed to derive the MI

for both the fully informed case and the partially informed (amplitude only) case.

For the orthogonal transformation model given by equation 3.83, the differential

entropies in the fully informed case are:

h(y|x) =
N

2
ln(2πeσ2

w),

h(y) =
N

2
ln(2πeσ2

y), (3.101)
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where σ2
y = σ2

x + σ2
w. Hence the the fully informed mutual information is

IF = h(y)− h(y|x) =
N

2
ln

(
σ2
y

σ2
w

)
=
N

2
ln (ρ+ 1) Nats s−1. (3.102)

Alternatively

IF =
N

2
log2 (ρ+ 1) Bits s−1. (3.103)

When only the signal amplitude is given, the partially informed MI is

IP = h(y)− h(y|r0), (3.104)

where h(y|r0) is given by equation 3.100.

At high snr ‖y‖ ≈ r0 so that λ ≈ r2
0

σ2
w

= ρ and, when ρ is sufficiently large

Iν(λ) ≈ eλ

(2πλ)
1
2

. (3.105)

So, at high snrs,

p(y|r0) ≈ (2πσ2
w)−

N
2 exp

{−r0
2 − ‖y‖2

2σ2
w

}
Γ
(
N
2

)
2
N−3

2 eλ

λ
N−1

2 π
1
2

(3.106)

= (2πσ2
w)−

1
2 exp

{−r0
2 − ‖y‖2 + 2r0‖y‖

2σ2
w

}
Γ
(
N
2

)

2π
N
2 rN−1

0

(3.107)

= (2πσ2
w)−

1
2 exp

{−(‖y‖ − r0)2

2σ2
w

}
Γ
(
N
2

)

2π
N
2 rN−1

0

. (3.108)

Now the surface area, SN(r0), of an N-dimensional sphere, with radius r0, is given

by Sommerville [91] as

SN(r0) =
2π

N
2 rN−1

0

Γ
(
N
2

) (3.109)

and we note that, at high snrs, p(y|r0) factors as the product of two distributions:

a normal distribution for the magnitude and a uniform distribution on the surface

of an N-sphere

p(y|r0) ≈ N (r0, σ
2
w)

(
1

SN(r0)

)
. (3.110)
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Imagining an N-D “fuzzy” shell, we might therefore interpret p(y|r0) as

p(y|r0) ≈ p(normal)p(surface), (3.111)

where p(normal) = probability of position normal to shell surface and p(surface) =

probability of position on shell surface. At high snr the differential entropy for the

distribution p(y|r0) is therefore approximately equal to the sum of the entropies

for the two factored distributions p(normal) and p(surface):

h(y|r0) ≈ ln

(
2π

N
2 rN−1

0

Γ
(
N
2

)
)

+
1

2
ln
(
2πeσ2

w

)
, (3.112)

The partially informed mutual information may now be approximated as

IP = h(y)− h(y|r0)

≈ ln

(
σNy

rN−1
0 σw

)
+

1

2
ln
(
π−12N−3eN−1

)
+ ln

(
Γ

(
N

2

))
Nats s−1.

(3.113)

In Figure 3.6 some high snr estimates for h(y|r0) are compared with their

numerically calculated equivalents, showing an improving fit as the snr increases.

In all cases the error improves as the snr increases. As the dimensionality increases

the estimate requires a higher snr to achieve a smaller error.

The fully informed MI, equation 3.102, for dimensions two to five has been

calculated and the results are presented in Figure 3.7. snr is shown as 10 log10 (ρ)

and MI values have been converted to log2 values using log2(x) = log2(e) loge(x).

As a result MI is shown in Bits s−1. Increasing the snr increases IF with the log-

arithm of snr and increasing the dimensionality N of the signal vector scales IF
by N for any value of snr. Furthermore, since a Gaussian source distribution has

been used, these results represent the Shannon capacity limits for this model.

Similarly, for the partially informed case, the MI in equation 3.104, for dimen-

sions two to five has been calculated numerically and the results are presented in

Figure 3.8 as a function of 10 log10 (ρ). Again, increasing the snr increases IP with

the logarithm of snr. However the slope of IP is significantly less than the cor-

responding slope for IF . This means that increasing the snr is more beneficial to

the intended receiver when the eavesdropper is only able to observe amplitude
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values. We note that this is the case when both Bob and Eve observe the same

snr. In practice Eve may be be able to reduce the difference IS = IF − IP for ex-

ample by improving her channel or array gain and effectively operate at a higher

snr. However this really only leads to a better estimate of signal amplitude levels.

Increasing the dimensionality N of the signal vector scales IP for any value of snr

but the scaling relationship is more complicated in this case.

3.7 Summary

Expressions for fully and partially informed MI have been derived employing sim-

plifying approximations to enable tractability. These expressions allow a compar-

ison between the intended link MI and the MI available to an eavesdropper.

A relationship between the MI gradients for Bob and Eve has been investi-

gated allowing a comparison of the rate of change of MI as the Gaussianity of the

source distribution is varied or as the source estimation error changes.

The problem of determining the intercept MI, available to a receiving sys-

tem which knows its channel matrix but has no prior knowledge of an orthogonal

transformation that has been applied at the transmitter, has been analysed. Entropy

derivations were performed giving some insight to the general multidimensional,

high snr case. The exact MI for the N-D case has been obtained but requires

numerical integration to derive the differential entropy for the partially informed

case. The fully informed MI may be likened to the difference in entropy between

two N-D probability spheres: the larger sphere, representing the distribution of

the signal plus noise vector, and the smaller sphere, representing the distribution

of the noise vector. At high snr, the partially informed MI was found to be equal

to the difference in entropy between an N-D probability sphere, representing the

distribution of the signal plus noise vector, and an N-D probability shell, repre-

senting the distribution of the amplitude plus noise vector.
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Figure 3.6: h(y|r0) Vs SNR. Comparing high snr approximation with numerically
integrated values.
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Figure 3.7: Mutual Information Vs SNR for fully informed case.
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Figure 3.8: Mutual Information Vs SNR for amplitude informed case.
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Chapter 4

Source and Channel Estimation

This chapter is concerned with determining the performance limits for MIMO

channel and transmitter source estimation. These are the two variables of most

interest to a MIMO eavesdropper. Clearly the primary objective, for the eaves-

dropper, is to obtain the source message and so it might seem that source estima-

tion is the only variable of interest. However, in practice, both are required as the

channel coefficients may vary due to a changing RF propagation environment and

channel tracking becomes an important part of the source estimation procedure.

We begin with MLE source estimation in section 4.1 and MLE channel estimation

in section 4.2. Derivations of this kind may be found in the literature. e.g. ex-

pressions for channel estimation, assuming that the noise covariance matrix is an

identity matrix, are provided by Larsson & Stoica in [57, Ch.9], Scharf [86, Ch.6]

derives the parameter estimate and FIM for a real-valued multivariate linear model

and Kay [48, Ch.15] provides MLE derivations for complex data. The derivations

given here address the complex-valued linear normal model, are for complete-

ness, and are used for subsequent comparisons with BSS performance results. An

approach described by Villares [104] has been adapted to obtain some insight

to the problem of jointly estimating the source and channel matrices using MLE

techniques.

We utilise the block complex data model of equation 3.1 and described in

Section 3.1. A channel estimator for this model may be derived from the likeli-

hood function:

f(Y|X,A) =
1

|πΣw|n
exp{−tr

(
[Y −AX]†Σ−1

w [Y −AX]
)
}, (4.1)
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where Σw is the covariance matrix for one column of W. Let the score function,

for estimating the complex valued A, be defined as

sA(Y; A) ,
∂ ln f(Y; A)

∂A∗
, (4.2)

then the FIM may be obtained from one of two possible forms:

JA , EY;A

{
sA(Y; A)s†A(Y; A)

}
(4.3)

or

JA , EY;A

{
∂sA(Y; A)

∂A

}
= EY;A

{
∂2 ln f(Y; A)

∂A∂A∗

}
(4.4)

and the CRB is given by the inverse of the FIM.

The Modified Cramér-Rao Bound (MCRB), described by Gini et al. in [37],

may be used in cases where we are dealing with unknown nuisance parameters,

such as the parameter X here, and is obtained from the modified FIM defined by

Villares as [104]

JA , −EXEY|X

{
∂2fY|X(Y|X; A)

∂A∂A∗

}
. (4.5)

4.1 Source Estimation, Channel Known

When the channel A is already known and X is an unknown constant, the likeli-

hood function for the observed Y is

f(Y|A; X) =
1

|πΣw|n
exp{−tr

(
[Y −AX]†Σ−1

w [Y −AX]
)
}. (4.6)

If we define T , [Y −AX]†Σ−1
w [Y −AX] then the log likelihood function L is

LY|A;X = −n ln(|πΣw|)− tr (T) . (4.7)

We shall also use the definition, given by Lütkepohl [63] and Magnus and Neudecker [68],

DX∗(Z) =
∂vec (Z)

∂vecT (X∗)
, (4.8)

54



4.1. SOURCE ESTIMATION, CHANNEL KNOWN

which is the complex derivative of the complex matrix Z w.r.t. the complex matrix

X∗. The derivative w.r.t. the complex conjugate is necessary to obtain the correct

Hessian matrix. Now, making use of the following matrix relationships, which

can be found in [63]:

∂tr
(
AXTB

)

∂X
= BA, (4.9)

∂tr
(
XTA

)

∂X
=

∂tr
(
AXT

)

∂X
= A, (4.10)

∂tr (AXB)

∂X
= ATBT , (4.11)

vec (ABC) =
(
CT ⊗A

)
vec (B) , (4.12)

we obtain

DX∗(LY|A;X) = A†Σ−1
w Y −A†Σ−1

w AX. (4.13)

The MLE for the source is obtained when DX∗(LY|A;X) = 0, resulting in:

X̂ML =
(
A†Σ−1

w A
)−1

A†Σ−1
w Y. (4.14)

The FIM is given by

JX|A = −DXDX∗(LY|A;X) = DX

(
A†Σ−1

w AX
)

= DX

(
A†Σ−1

w AXIn
)

= In ⊗A†Σ−1
w A. (4.15)

Therefore the CRB for the source estimate is found to be:

CRB(X|A) = In ⊗A−1ΣwA−†. (4.16)

The modified CRB may be employed to derive an estimate of the source CRB

when only the channel covariance is known. The modified CRB is described and

derived by Villares in [104]. Thus, with Σw = σ2
wIm,

MCRB(X) = In ⊗ σ2
w(E

{
A†A

}
)−1 (4.17)
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which becomes, with ΣA , E
{
A†A

}
,

MCRB(X) = In ⊗ σ2
wΣ−1

A , (4.18)

provided that Σ−1
A is invertible. Since ΣA = mσ2

aIp in our model we obtain

MCRB(X) =
σ2
w

mσ2
a

Ipn. (4.19)

4.2 Channel Estimation, Source known

If we are given the source symbols, the likelihood function for the observed Y is

f(Y|X; A) =
1

|πΣw|n
exp{−tr

(
[Y −AX]†Σ−1

w [Y −AX]
)
}. (4.20)

The derivation in section 4.1 can be conveniently reused here to obtain the chan-

nel estimator and CRB by considering YT = XTAT + WT . Let Y1 = YT ,

W1 = WT , B = XT and C = AT , then we have

f(Y1|B; C) =
1

|πΣw1|m
exp{−tr

(
[Y1 −BC]†Σ−1

w1
[Y1 −BC]

)
}. (4.21)

Defining T , [Y1 −BC]†Σ−1
w1

[Y1 −BC] then the log likelihood function is

LY1|B;C = −m ln(|πΣw1 |)− tr (T) (4.22)

and we find that

DC∗(LY1|B;C) = B†Σ−1
w1

Y1 −B†Σ−1
w1

BC, (4.23)

which is zero when

C =
(
B†Σ−1

w1
B
)−1

B†Σ−1
w1

Y1, (4.24)

or when

ÂML = YΣ−1
w1

X†
(
XΣ−1

w1
X†
)−1

. (4.25)
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The FIM for C is

−DCDC∗(LY1|B;C) = DC

(
B†Σ−1

w1
BC

)

= DC

(
B†Σ−1

w1
BCIm

)

= Im ⊗B†Σ−1
w1

B. (4.26)

This is the FIM for AT but, since A is i.i.d., it is also the FIM for A. So we may

write

JA|X = Im ⊗
(
XΣ−1

w1
X†
)T
, (4.27)

and inverting JA|X gives the CRB for the channel estimate:

CRB(A|X) = Im ⊗
(
XΣ−1

w1
X†
)−T

. (4.28)

The MCRB may be employed to derive an estimate of the channel CRB when

only the source covariance is known, Villares [104]. Thus, with Σw1 = σ2
wIn,

MCRB(A) = Im ⊗ σ2
w(E

{
X∗XT

}
)−1, (4.29)

which becomes, with ΣX , E
{
X∗XT

}
= E

{
XX†

}
,

MCRB(A) = Im ⊗ σ2
wΣ−1

X . (4.30)

Given ΣX = nσ2
xIp, then

MCRB(A) =
σ2
w

nσ2
x

Imp. (4.31)

For the model considered, the two modified bounds result in similar forms

i.e. MCRB(X) is a diagonal matrix with entries σ2
w

mσ2
a

= 1
mρa

and MCRB(A) is

diagonal with entries σ2
w

nσ2
x

= 1
nρx

. As we might have expected, the bounds are

inversely proportional to the channel-to-noise or signal-to-noise power ratios ρa
and ρx respectively. Increasing the dimension m of the channel improves the

source estimate and increasing the length n of the source matrix improves the

channel estimate.

57



CHAPTER 4. SOURCE AND CHANNEL ESTIMATION

4.3 Channel and Source Unknown

It is difficult to derive a CRB for arbitrary source distributions in the noisy linear

model and here we shall only consider the case where the source has a Gaussian

distribution and follow the derivation of the unconditional CRB given by Villares

in [104] to obtain the FIM for channel or source estimation. If we treat the channel

matrix as fixed for an m × n block of observed data then we need only consider

the likelihood function for a single observed m × 1 vector y since we know that

the CRB is additive in this case, and hence the total CRB will be given by n · CRB

for n consecutive and independent observed vectors. The likelihood function for

the observed y = Ax + w is

f(y; Θ) =
1

|πΣy|
exp{−y†Σ−1

y y}, (4.32)

where Σy = AΣxA†+ Σw, Σx is the covariance matrix for the transmitted vector

x, Σw is the covariance matrix for the noise vector w and where Θ may be either

A or x. The log likelihood function, for the parameter Θ, is

Ly;Θ = − ln(|πΣy|)− tr
(
Σ−1

y yy†
)
. (4.33)

Using the following relationships and since y†Σ−1
y y = tr

(
y†Σ−1

y y
)

= tr
(
Σ−1

y yy†
)

(see also Appendix G):

∂

∂θ∗k
ln |Σy| = tr

(
Σ−1

y

∂Σy

∂θ∗k

)
,

∂

∂θ∗k
tr
(
Σ−1

y yy†
)

= −tr
(

Σ−1
y

∂Σy

∂θ∗k
Σ−1

y yy†
)
, (4.34)

where θ∗k is the kth scalar component of Θ∗, then the score function for the pa-

rameter θ∗k is
∂Ly;Θ

∂θ∗k
= tr

(
Σ−1

y

∂Σy

∂θ∗k
Σ−1

y [yy† −Σy]

)
. (4.35)

Applying the trace relationship given by equation G.26 we get

∂Ly;Θ

∂θ∗k
= vecT

([
yy† −Σy

]T) (
Σ−1

y ⊗Σ−1
y

)
vec

(
∂Σy

∂θ∗k

)

=
[
vec

(
y∗yT

)
− vec (Σy)

]T (
Σ−1

y ⊗Σ−1
y

)
vec

(
∂Σy

∂θ∗k

)
, (4.36)
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then by defining

Dθ∗k
(Σy) , vec

(
∂Σy

∂θ∗k

)
,

r̂ , vec
(
y∗yT

)
,

r , vec (Σy) , (4.37)

we find that
∂Ly;Θ

∂θ∗k
= [(r̂− r]T [Σy ⊗Σy]−1Dθ∗k

(Σy) . (4.38)

Villares [104] defines [DR(Θ)]p , vec
(
∂R(Θ)
∂θp

)
as the pth column of DR(Θ)

where θp is the pth scalar component of Θ. This means that DR(Θ) ≡ DΘ∗(R)

though Villares does not appear to have identified DR(Θ) as the derivative of

R(Θ) w.r.t. the matrix Θ. Now we may write

DΘ∗ (Ly;Θ) = [r̂− r]T [Σy ⊗Σy]−1DΘ∗ (Σy) (4.39)

and the score function sΘ∗ for the matrix parameter Θ∗ is

sΘ∗ = DT
Θ∗ (Σy) [Σy ⊗Σy]−1 [r̂− r] . (4.40)

Hence the FIM, defined as

JΘ , Ey

{
sΘ∗s

†
Θ∗

}
, (4.41)

becomes

JΘ = DT
Θ∗(Σy)[Σy ⊗Σy]−1DΘ∗(Σy), (4.42)

where we have used

Ey

{
(r̂− r)(r̂− r)†

}
= Σy ⊗Σy. (4.43)

For channel estimation we require

DA∗(Σy) =
∂vec

(
AΣxA† + Σw

)

∂vecT (A∗)
(4.44)

= Kmm [AΣx ⊗ Im] ,
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where K is a (pq × pq) commutation matrix (K is also described in [63]) such

that (s.t.) Kpqvec (B) = vec
(
BT
)
, for any (p × q) matrix B. The CRB is then

found from the inverse of JA as

JA = [AΣx ⊗ Im]T KT
mm [Σy ⊗Σy]−1 Kmm [AΣx ⊗ Im]∗ . (4.45)

The covariance matrices for this model are: Σx = σ2
xIp, Σy = σ2

yIm =

(pσ2
xσ

2
a + σ2

w)Im and ΣA = mσ2
aIp, so

JA =
σ4
x

σ4
y

[
ATA∗ ⊗ Im

]
, (4.46)

which clearly depends on a particular value for A. Using the MCRB method we

can then obtain MCRBA as the average value for CRBA over A:

MCRBA =
σ4
y

mσ4
xσ

2
a

Imp. (4.47)

For an m× n data block then

MCRBA =
nσ4

y

mσ4
xσ

2
a

Imp. (4.48)

In a similar manner we may also derive a CRB for blind estimation of the

sources. In this case

Dx∗(Σy) =
∂vec

(
Axx†A†

)

∂vecT (x∗)
(4.49)

= [A∗ ⊗Ax] ,

so that the FIM for estimating x is

Jx = [A∗ ⊗Ax]T [Σy ⊗Σy]−1 [A∗ ⊗Ax]∗ (4.50)

and the resulting CRB, averaged over A and x, is

MCRBx =
nσ4

y

m2pσ4
aσ

2
x

Ip. (4.51)
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When the noise power is small i.e. σ2
w ≈ 0, then

MCRBA =
np2

m
σ2
aImp (4.52)

MCRBx =
np

m2
σ2
xIp. (4.53)

These last two expressions highlight the fact that, when neither the source nor

the channel are known, the uncertainty, or entropy, in the estimate is directly

proportional to the variance in the parameter itself and employing a larger array

dimension or observing longer data sequences will only increase the variance in

the estimate.

4.4 Blind Source Separation

The problem of recovering signals that have been transformed through an un-

known mixing process, more commonly known as BSS, arises in a broad range

of signal processing applications. The term blind refers to the fact that no explicit

knowledge of the source signals or the mixing system is available to an observer.

Statistical methods for performing BSS, such as ICA, described by Comon in [25],

have resulted in popular algorithms such as FASTICA developed by Hyvärinen et

al. in [44, 16].

We have assumed that the signals from each source transmitter are complex-

valued, statistically independent, and the observed data is a linear combination

of the source waveforms with Additive White Gaussian Noise (AWGN). As stated

previously this is a model that has been studied in the field of ICA and what

we now require is a suitable algorithm for estimating both the complex-valued

channel matrix and the complex-valued sources. Such an algorithm is described

in [16], though we do note however that the FASTICA algorithm was intended

for use with the standard linear model: Y = AX, not the noisy linear model:

Y = AX + W.

The question arises as to the applicability of CRB analysis for the blind esti-

mation problem described here. Our problem involves trying to simultaneously

estimate two unknown subspaces: source matrix and mixing matrix. The es-

timation problem of Y = AX + W is invariant to the transformations: A 7→
AU, X 7→ U−1X, Σx 7→ U−1ΣxU

−†, where U is a unitary matrix. The only
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invariant of A 7→ AU is the column span of A and the Hermitian structure of

Σx 7→ U−1ΣxU
−† is also invariant. Therefore only the column span of A and

the covariance matrix of Y may be measured. Consider the QR decomposition

A = QR, where Q is a unitary matrix and R is upper triangular then the invariant

part of A is seen to be given by R. The ambiguity in the product AX results in a

singularity in the FIM and the CRB is therefore not defined.

Problems of this nature have been addressed by Smith in [90] and Xavier and

Barroso in [112] and form a part of the rapidly evolving and increasingly popular

area of information geometry e.g. Amari et al. [10, 11]. Information geometry

assigns families of probability distributions to a differentiable manifold, where

properties of the family are represented by geometric relations such as distance

(Kullback-Leibler divergence) and curvature (Fisher information).

Ambiguities that result through the use of ICA techniques, discussed by Davies

in [28] : scale, phase and permutation, do not necessarily represent a serious prob-

lem for discrete communication signal types. Permutation means that we may

have to keep track of the individual sources and phase rotations for PSK or QAM

signals can be estimated and corrected. Scaling issues are avoided by normalising

the observed signal powers to unity. Restrictions usually applied in this method

are: 1) at most one of the source signals has a Gaussian distribution 2) the mixing

matrix A should be full rank. The first restriction does not present a problem for

MIMO wireless communications as the pdfs of the digital modulation schemes

that are employed are not Gaussian. The FASTICA algorithm employs a measure

of kurtosis for its contrast function and this is known to be appropriate for digital

modulation schemes. Therefore, after successful BSS processing, all that remains

is to deduce the correct ordering of the separated sources and correct any phase

rotation that might have occurred.

4.5 Derivation of Mixing Matrix CRB

The performance of the FASTICA algorithm, for real-valued signals and a real-

valued mixing matrix, has been studied by Tichavský et al. in [99, 100]. Whereas

Tichavský et al. [99] derived the CRB for the real-valued linear ICA model, our

purpose here is to derive the CRB for linear ICA, with complex-valued signals,

a complex-valued mixing matrix and for a general source distribution. In this
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section we make use of a result by Brandwood that simplifies the calculation of

complex gradients. Brandwood proved the following theorem [18, Thm.1]:

Theorem 4.5.1 (Brandwood). Let g : C × C → C be a function of a complex

number z and it’s conjugate z∗, and let g be analytic w.r.t. each variable (z and

z∗) independently. Let f : R × R → C be the function of the real variables x

and y s.t. g(z, z∗) = f(x, y), where z = x + jy. Then the partial derivative ∂g
∂z

,

treating z∗ as a constant in g, gives the same result as 1
2

(
∂f
∂x
− j ∂f

∂y

)
. Similarly, ∂g

∂z∗

is equivalent to 1
2

(
∂f
∂x

+ j ∂f
∂y

)
.

If g is analytic on z∗, when considering z as a constant, then we say that g sat-

isfies Brandwood’s analyticity condition. Similarly, if g is analytic on z, when con-

sidering z∗ as a constant, then we also say that g satisfies Brandwood’s analyticity

condition. This result also applies to vector and matrix expressions. Brandwood’s

Theorem allows us to directly calculate derivatives w.r.t. a complex argument,

which may be simpler than calculating the gradients for the real-valued compo-

nents that form the complex argument.

For the noiseless ICA model Y = AX a lower bound for ΣA may be obtained

as the inverse of the FIM FA of the complex-valued mixing matrix e.g. Carvalho

et al. [29]:

FA = E

{(
∂ ln p(Y|A)

∂A∗

)(
∂ ln p(Y|A)

∂A∗

)†}
, (4.54)

where the complex derivative, defined by Brandwood in [18], is defined as ∂
∂A∗
,

1
2

[
∂

∂Ar
+ j ∂

∂Ai

]
and Ar, Ai are, respectively, the real and imaginary parts of A.

Since X is i.i.d. Y is composed of n independent observations of a random vector

with the same distribution. Because of this FA is n times the FIM obtained from

using a single column of Y and X. The pdf for the column vector y = Ax is

py(y) = | det(AA∗)|−1px(A−1y), (4.55)

where we have used the Jacobian for a complex linear transformation J = | det(AA∗)|,
as proved by Mathai in [71]. The derivative of the log-likelihood, or score function

is

L =
∂ ln px(A−1y)

∂A∗
− ∂ ln | det(AA∗)|

∂A∗
. (4.56)

Letting u = (ur + jui) = A−1y and assuming that a function f(·, ·) exists s.t.

px(ur,ui) = f(u,u∗) and satisfies the Brandwood analyticity condition, then we

63



CHAPTER 4. SOURCE AND CHANNEL ESTIMATION

may write
∂ ln f(u,u∗)

∂A∗
= −A−†

∂ ln f(u,u∗)

∂u∗
u† = A−†φ(u)u†, (4.57)

where φ(u) , −∂ ln f(u,u∗)
∂u∗

. The score function is therefore

L = A−†φ(u)u† −A−† = A−†[φ(u)u† − Im] = A−†F(u), (4.58)

since ∂ ln |det(AA∗)|
∂A∗

= A−† and defining F(u) , φ(u)u†− Im. To calculate the FIM

for A we must first convert L to vector form. We vectorise L by using vec (AB) =

(Ip ⊗ A)vec (B), where A : m × n and B : n × p, this definition can be found

in [63], so that

vec (L) = [Im ⊗A−†]vec (F(u)) . (4.59)

The FIM becomes

FA = [Im ⊗A−†]FI[Im ⊗A−1], (4.60)

where FI = E
{

vec (F(u)) vec (F(u))†
}

and the covariance matrix is lower

bounded by F−1
A as

Σa > (Im ⊗A)F−1
I (Im ⊗A†). (4.61)

We find that elements of the matrix FI are given by

[FI]ij,kl = E
{

[φiu
∗
j − δij][φ∗kul − δkl]

}

= δijδkl − δijE {φ∗kul} − δklE
{
φiu

∗
j

}
+ E

{
φiu

∗
jφ
∗
kul
}
. (4.62)

The complex score function may be written [5, 18]

φ(u) , −∂ ln f(u,u∗)

∂u
= −1

2

[
∂ ln px(ur,ui)

∂ur
+ j

∂ ln px(ur,ui)

∂ui

]
, (4.63)

where ur is the real part of u and ui is the imaginary part of u. Since we treat

the real and imaginary parts of the sources as independent then px(ur,ui) =

px(ur)px(ui) and so

φ(u) = −1

2

[
∂ ln px(ur)

∂ur
+ j

∂ ln px(ui)

∂ui

]
= −1

2

[
φr + jφi

]
, (4.64)

where φr is the real part of φ(u) and φi is the imaginary part of φ(u). Thus the

derivations for the complex FIM can be performed using the real source distribu-

tion results from [99, 114] in the real and imaginary parts of φ(u) = −1
2

[φr + jφi]
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and u = [ur + jui]. The following assumptions and definitions are used:

1. A ∈ Cm×m is nonsingular.

2. The source signals xi are mutually independent and identically distributed.

3. E {xri} = E {xii} = 0. The real and imaginary components of x are i.i.d.

with zero mean.

4. E {uri} = E {uii} = 0. The real and imaginary components of u are i.i.d.

with zero mean, when the previous three conditions are satisfied.

5. E {φri} = E {φii} = 0, when u has a zero mean and a symmetric pdf.

6. E {(uri )2} = E {(uii)2} = 1.

7. κ , E {(φri )2} = E {(φii)2}.

8. η , E {(φriuri )2} = E {(φiiuii)2}.

9. E {φriuri} = E {φiiuii} = δij. See Appendix G.

10. E
{
φriu

i
j

}
= E

{
φiiu

r
j

}
= 0, i 6= j.

We can now derive the terms in [FI]ij,kl as follows:

E {φ∗kul} = E
{

1

2
[φrk − jφik][url + juil]

}
=

1

2
[δkl + δkl − jδkl + jδkl] = δkl,

E
{
φiu

∗
j

}
= E

{
1

2
[φri + jφii][u

r
j − juij]

}
=

1

2
[δij + δij − jδij + jδij] = δij.

(4.65)

E
{
φiu

∗
jφ
∗
kul
}

is non-zero when:

1. i = j = k = l, or E {φiu∗iφ∗iui} = 1
2
[η + κ]δijkl,

2. i = l, j = k, i 6= j, or E
{
φiuiφ

∗
ju
∗
j

}
= δilδjk − δijkl,

3. i = j, k = l, i 6= k, or E {φiu∗iφ∗kuk} = δijδkl − δijkl,

4. i = k, j = l, i 6= j, or E
{
φiφ

∗
iuju

∗
j

}
= κ[δikδjl − δijkl].
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Hence the general form for the entries in FI is given by

[FI]ij,kl = δilδjk +
1

2
[η − κ− 4]δijkl + κδikδjl, (4.66)

where δijkl is defined as

δijkl ,





1 if i = j = k = l,

0 otherwise.
(4.67)

We may rewrite this to obtain the mnth element of FI as

[FI]m,n = δilδjk +

[
1

2
(η − κ)− 2

]
δijkl + κδikδjl, (4.68)

where m = (i− 1)d+ j and n = (k − 1)d+ l.

In the real case, Tichavský et al. [99] found that

[FI]m,n = δilδjk + [η − κ− 2] δijkl + κδikδjl, (4.69)

where m and n are as defined here. The difference between the real and complex

FI is therefore 1
2
(η − κ)δijkl. In Appendix E we provide a proof showing that

η = α + 1 for the Generalised Gaussian distribution.

To obtain Σa, equation 4.61, it is necessary to first invert FI; the derivation

of F−1
I is provided in Appendix D. As discussed by Tichavský et al. in [99], F−1

I

can be used to obtain the CRB for source estimation since FI represents the gain

matrix G, which is independent of the mixing matrix i.e. the CRB for G is found

as

Σg =
[
F−1

I

]
mm

, (4.70)

where m = (i− 1)d+ j and i 6= j and, in Appendix D, we find that

[F−1
I ]mm =

κ

κ2 − 1
, (4.71)

which is the same as for the real-valued case derived in [99].

In the simulation studies that follow we require the mean value of Σa taken

over a number of repetitions, where A is randomly generated at each simula-

tion instance. With the components ai,j ∼ CN (0, 2σ2
a), the diagonal elements of
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E {Σa} are

[E {Σa}]ii = 2σ2
atr
(
F−1

I

)
. (4.72)

Since we have assumed a noiseless model, this Σa is only valid, in prac-

tice, for a high snr. The resulting F−1
A has some non-zero, off-diagonal elements

and the diagonal elements are not all the same. A useful simplification may be

achieved by assuming that Σa = 2σ2
aImm; substituting 2σ2

a as the mean of the di-

agonal elements of F−1
A i.e. 2σ2

a ≈ 1
m

tr
(
F−1

A

)
. We have calculated Σa for the GG

distribution since this gives us a means to continuously vary the source Gaussian-

ity. This result will provide a useful comparison for the digital source distributions

especially since the parameter α may be converted to a kurtosis value as shown

in Appendix C.

4.6 Simulation Results

The FASTICA algorithm, described and developed by Koldovský and Tichavský

in [55] and available as Matlab code, was employed to perform blind source sep-

aration and obtain estimates of the source and mixing matrices. Pseudocode for

the FASTICA algorithm is listed in Appendix M. As can be seen the algorithm first

performs a whitening of the observation data, which is common to many BSS

methods. The prewhitening has the effect of reducing the mixing matrix search

space, for contrast function optimization, to a search for an optimal unitary matrix.

The core of the FASTICA algorithm is the fixed-point ICA stage, where a unitary

matrix is found that optimizes a contrast function. This amounts to maximizing

the resultant kurtosis in the separated source estimates. Finally the algorithm re-

turns the source and channel estimates, taking account of the initial whitening that

was applied. However the algorithm returns a mixing matrix estimate which has

an unknown scale and permutation. To compare the mixing matrix estimates with

the original matrix we must first determine what the permutation is and adjust the

mixing matrix accordingly. We use the optimal pairing technique described by

Tichavský and Koldovský in [98] which finds the nearest matrix (in the Frobenius

norm sense) to the original matrix with the same rows (up to the signs and order).

Rescaling occurs in FASTICA when the observed data Y matrix is whitened as

Y = QY, where Q is obtained from the diagonal matrix of eigenvalues D and the

matrix of eigenvectors V of the covariance matrix of Y as Q = [D−1]
1
2 V†. Thus to
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correctly estimate the resulting Mean Squared Error (MSE) results we need to scale

by tr (|Q|2). Hence the results represent the best that could be achieved using the

FASTICA algorithm. As described previously, HOS approaches such as FASTICA are

constrained to BSS cases where at most one of the sources has a Gaussian distri-

bution i.e. zero kurtosis. However they would appear to be entirely suitable for

BSS of digital communications waveforms which have significant kurtosis values.

Our simulations and analysis of results were implemented using the free Matlab

alternative: GNU Octave, for numerical computations.

4.6.1 BSS of Discrete sources

Simulations were performed by generating a complex random pulse stream, one

for each of four source transmitters, with Quadrature Phase Shift Keyed (QPSK)

modulation and square root, raised-cosine pulse shaping. The pulse streams were

linearly transformed by a complex-valued random mixing matrix (zero-mean, unit

variance; ai,j ∼ CN (0, 1)) and AWGN noise, for a range of snrs, added to the

resulting matrix. Both the phase rotation and the separated signal ordering were

corrected by correlating each original source signal with all of the separated sig-

nals. The highest correlation magnitude indicates which separated signal is the

best estimate for each source and the phase is simply found as the mean phase

value of the complex cross correlation.

Figure 4.1 shows the input symbols for each QPSK source, prior to mixing

and without noise. This may be compared with the FASTICA output (for a random

channel and 10decibel (dB) snr), shown in Figure 4.2, after the phase rotation has

been corrected. It is interesting to note that each output constellation appears to

have a different snr which is a result of the way in which the FASTICA algorithm

operates, e.g. see Bingham and Hyvärinen [16].

Figure 4.3 shows the simulation results for estimating the Symbol Error Rate (SER),

where each symbol stream consisted of 1000 symbols. In this case the closest

symbols were found for each separated symbol stream and the number of errors

counted. The symbol error rate is shown compared with the modified CRB for

separation error MCRBx, equation 4.51, which has been scaled by
√

1000 to ac-

count for the number of symbols used.

Figure 4.4 shows the MSE between the source waveforms and the BSS esti-
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mated waveforms. This is compared with the modified CRB for source separation

error MCRBx, equation 4.51, derived in section 4.3. The simulation results appear

to match quite well with the theoretical values even though the theory assumed

a Gaussian distribution for the sources and the sources generated here are not

Gaussian distributed.

Figure 4.5 compares the channel estimation error power, obtained from the

simulations and is compared with the modified CRB for channel estimation MCRBa,

equation 4.47 , derived earlier in section 4.3. The two plots are similar in trend

with the FASTICA simulation results being greater than the theoretical values. This

is, to some extent, due to the Gaussian assumption for the source distribution used

in the theoretical derivations.

The theoretical CRB plots shown in figures 4.4 and 4.5 are the same because

we used σ2
a = 1

2
and σ2

x = 1
2

leading to the same values for MCRBx and MCRBa as

a function of snr.

4.6.2 BSS of Generalised Gaussian Sources

The Generalised Gaussian distribution (Appendix C) was used to generate ran-

dom instances of the source matrix X. The Gaussianity or Kullback-Liebler (KL)

divergence, of this distribution can be controlled through the parameter α. The

real and imaginary parts of X were generated independently with the same value

for α. For each parameter set: {Gaussianity (α), source block length (n), number

of sources (2)}, up to 1000 repetitions were performed, the MSE in the mixing

matrix estimates were calculated at each iteration and the mean of those results

taken. For each repetition a different complex-valued mixing matrix, with ele-

ments ai,j ∼ CN (0, 1), was randomly generated. In each of the figures that follow,

the theoretical CRB has a large peak at α = 2, highlighting the fact that Gaussian

sources cannot be blindly separated using a HOS based technique such as FAS-

TICA. The FIM provides a measure of the information that the random vector y

carries about the unknown A so the theoretical CRB plots indicate that the Fisher

Information is zero when the sources have a Gaussian distribution.

Figure 4.6 shows the results for MSE in the mixing matrix and the theoretical

values given by equation 4.72, with FI calculated for the GG distribution, as α

is varied, for block length n = 100. This is a short block length and the FASTICA

69



CHAPTER 4. SOURCE AND CHANNEL ESTIMATION

algorithm does not perform well, returning an estimation error variance that does

not achieve the theoretical CRB.

When the block length is increased to 1000, the FASTICA estimation error

improves for values of α that are far from Gaussian i.e. |α− 2| > 0.5, as shown in

Figure 4.7. As n increases the simulation results provide a increasingly better fit

with the theoretical CRB, as can be expected in Figures 4.8 and 4.9.

Figures 4.6 to 4.9 highlight the fact that HOS based BSS is not possible when

the sources have a Gaussian distribution. This suggests the possibility of con-

structing a Gaussian based source signal, with hidden structure, that would deny

separability to an eavesdropper whilst allowing the intended receiver to still be

able to perform source separation.

4.7 Summary

In this chapter we derived theoretical variance bounds for a MIMO link repre-

sented mathematically as a linear block complex data model. Using a ML ap-

proach and assuming a Gaussian distributed source, a CRB for source estimation,

given knowledge of the channel was derived. Similarly a ML CRB for channel

estimation, given knowledge of the source was derived. In the case where both

the source and channel are unknown, modified CRB estimates were derived.

Simulations were developed and performed with a non Gaussian distributed

source to compare the performance of a popular BSS algorithm with the modified

CRB bounds for source and channel estimation. The simulation results show that

the separation performance and channel estimation performance (scale, phase

and permutation accounted for) can be usefully compared with these bounds.

We also derived analytic CRB expressions for the noiseless complex linear

ICA model and a general source distribution. The CRB for source estimation

was found to be the same as for the real-valued case and the CRB for estimation

of the complex-valued mixing matrix was found to be similar to its real-valued

counterpart. Simulations produced results that indicate good agreement between

the performance of the FASTICA algorithm and the theoretical CRB for complex-

valued mixing matrix estimation. The theoretical variance bounds developed in

this chapter may be applied in entropy calculations leading to MI estimates such
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as those derived in Chapter 3.
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Figure 4.1: QPSK Input Symbols, no
mixing or additive noise.
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Figure 4.2: Estimated Output Symbols
after BSS and phase correction.
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Figure 4.3: Symbol Error Rate Vs MCRB for source separation error.
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Figure 4.4: Mean Square Separation Error Vs MCRB for source separation error.
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Figure 4.5: Mean Square Channel Error Vs MCRB for channel estimation.
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Figure 4.6: Mean squared error in mixing matrix estimate Â, as a function of α
and data block length n = 100.
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Figure 4.7: Mean squared error in mixing matrix estimate Â, as a function of α
and data block length n = 1000.
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Figure 4.8: Mean squared error in mixing matrix estimate Â, as a function of α
and data block length n = 10000.
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Figure 4.9: Mean squared error in mixing matrix estimate Â, as a function of α
and data block length n = 100000.
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Chapter 5

Copula Techniques for Modelling
Channel Dependence

5.1 Introduction

The theory of copulas was originally developed as a means of incorporating de-

pendence between random variables in the field of finance and there are many

useful introductory texts on the subject; for example see Nelsen [76]. Two MIMO

wireless communications challenges are suggested in this chapter as potential can-

didates for the application of copula techniques: modelling signal correlation and

propagation effects, separation of mixed sources. The ability to model correlation

and propagation effects in the MIMO wireless scenario will facilitate an analysis

and understanding of these effects so that BSS approaches might be developed to

overcome them.

The Rayleigh distribution has been a long-term standard for modelling RF

propagation fading effects in wireless communications scenarios, however, thanks

to its wide versatility and analytic tractability, the Nakagami–m distribution has re-

cently become popular for modelling fading effects, e.g. see Alouini et al. [9] and

Beaulieu and Cheng [12]. Modelling data correlation in the MIMO wireless prop-

agation scenario is a complicated and computationally demanding problem and

so a simple, intuitive approach is desirable. In this chapter we develop a complex

Nakagami distribution for inclusion in a correlated fading channel model, which

is implemented using the copula method.
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There are several HOS based algorithms that have been developed for the

purpose of separating mixtures of independent sources and for many of these

algorithms to be successful, the original independent sources must have non-

Gaussian marginal probability densities. One of these algorithms, the FASTICA

algorithm, has already been discussed in Chapter 4 where it was found to perform

well for the model and assumptions used. Copula methods also appear to offer an

alternative approach to BSS that does not depend on the source distributions but

which instead exploits the structure of the dependence between the sources. This

suggests that some of the limitations in ICA techniques may be overcome through

the use of copulas. For example a copula based approach may be able to separate

mixtures of Gaussian sources, which HOS based BSS methods fail to.

In this chapter copula techniques are adapted to simplify the modelling of

signal dependence for MIMO wireless communication simulation purposes and

hence enable a study of the effects of dependence on information rates. The suit-

ability of copula methods for BSS in MIMO applications is also briefly discussed.

5.2 Copula theory

A copula can be briefly described as a function that connects one-dimensional

marginal probability distributions through a single multivariate probability dis-

tribution and may therefore be used as a means for deriving multivariate dis-

tributions with any desired dependence incorporated. There are several well-

known copula function families which are described in the literature, for ex-

ample see Nelsen [76]. The basis for the theory of copulas stems from Sklar’s

Theorem [76] which states that an m-dimensional copula is a function C from

the unit m-cube [0, 1]m to the unit interval [0, 1] and satisfies certain conditions.

In other words, an m-copula is an m-dimensional cumulative distribution func-

tion (cdf) where all m marginal distributions are uniform. To understand the re-

lationship between distribution functions and copulas, consider a continuous,

real-valued, m-variate distribution function F (y) = F (y1, . . . , ym) with univari-

ate marginal distributions F1(y1), ..., Fm(ym) and inverse functions F−1
1 , . . . , F−1

m .

Then y1 = F−1
1 (u1) ∼ F1, . . . , ym = F−1

m (um) ∼ Fm where u1, . . . , um are uni-
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formly distributed variates. Hence

F (y) = F (F−1
1 (u1), . . . , F−1

m (um))

= Pr[U1 ≤ u1, . . . , Um ≤ um]

= C(u1, . . . , um)

= C(u) (5.1)

is the copula associated with the distribution function. That is, if y ∼ F , and F is

continuous then

(F1(y1), . . . , Fm(ym)) ∼ C, (5.2)

and if u ∼ C, then

(F−1
1 (u1), . . . , F−1

m (um)) ∼ F. (5.3)

The copula function is frequently written as C(F1(y1), . . . , Fm(ym); θ), where θ is

a parameter of the copula called the dependence parameter and measures depen-

dence between the marginal distributions. One of the advantages of using copulas

is that the marginal distributions can be from different distribution families. We

may therefore treat marginal distributions and dependence separately. In short

the copula method involves specifying the marginal distributions of each random

variable together with a function that links them together and a parameter that

controls the level of dependence between the marginals. We shall make use of

two copulas in this study: multivariate Gaussian for modelling dependence and

the independent (or product copula) for BSS purposes.

The product copula, also known as the independent copula, has no depen-

dence between variates. Its density function is unity everywhere. For independent

random variables y1, . . . , ym the cdf is

F (y1, . . . , ym) = Πm
k=1Fk(yk) (5.4)

and the product copula is

C(u1, . . . , um) = Πm
k=1uk. (5.5)
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The real-valued, multivariate Gaussian copula takes the form

C(u; Θ) = ΦG(Φ−1(u1),Φ−1(u2), . . . ,Φ−1(um)); Θ),

=

∫ Φ−1(u1)

−∞
· · ·
∫ Φ−1(um)

−∞

1

(2π)n/2|Θ|1/2 × exp

{
−1

2
yTΘ−1y

}
dy1 . . . dym,

(5.6)

where ΦG is the real-valued, multivariate Gaussian distribution with correlation

matrix Θ. Θ is a symmetric, positive definite matrix with all ones on the main

diagonal. If the marginals are standard real-valued, normal distributions then

the Gaussian copula generates the standard real-valued, joint normal distribution

function. The corresponding density is

c(Φ(y1),Φ(y2), . . . ,Φ(ym); Θ) =

1
(2π)m/2|Θ|1/2 exp

{
−1

2
yTΘ−1y

}

∏m
k=1

(
1√
2π

exp
{
−1

2
y2
k

}) . (5.7)

Let uk = Φ(yk), so that yk = Φ−1(uk), then the density may be written as [21]

c(u1, u2, . . . , um) =
1

|Θ|1/2 exp

{
−1

2
ΨT (Θ−1 − I)Ψ

}
, (5.8)

where Ψ = [Φ−1(u1),Φ−1(u2), . . . ,Φ−1(um)]T .

5.3 Correlated fading

In this section we develop the MIMO wireless propagation model and show how

a copula may be employed to account for dependence or correlation in the propa-

gation channel. In wireless communications, fading is the attenuation that a signal

experiences when passing through a propagation medium and is often modelled

as a random process. Reflectors in the environment surrounding a transmitter and

receiver create multiple paths that a transmitted signal may follow. As a result, a

receiver sees the superposition of multiple copies of the transmitted signal. Each

copy will experience differences in attenuation, delay and phase shift. The most

commonly employed probability distributions for modelling such multipath fad-

ing effects are:

Rayleigh fading. The Rayleigh fading model is used when there is no line of sight
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signal. This model assumes that the magnitude of the signal varies randomly

according to a Rayleigh distribution, i.e. the magnitude of the sum of two

uncorrelated Gaussian random variables. Rayleigh fading has been used to

model the effect of urban environments on radio signals when there is no

dominant line of sight propagation between the transmitter and receiver.

Rician fading. Rician fading is used to model the case where there is a dominant

propagation path. The signal arrives at the receiver via different paths and

the signal from one of the paths, usually the line of sight path, is much

stronger than the others.

Nakagami fading. The sum of multiple i.i.d. Rayleigh fading signals have a Nak-

agami distributed signal amplitude. Nakagami fading occurs for multipath

scattering with large time delay spreads, with different groups of scattered

signals. Within any one group, the phases of individual scattered signals

are random but the time delays are approximately equal for all signals. The

magnitude of the sum of signals in a group is Rayleigh distributed. The

average time delay is assumed to be significantly different between groups.

The MIMO wireless RF scenario was presented earlier in Section 2.5 and

a mathematical model commonly employed for MIMO wireless simulation pur-

poses was described in Section 3.1. To include dependence, or correlation, we

may write

Y = f(A)X + W, (5.9)

where f(A) is a function that imposes dependence on the channel matrix. For

example, in a spatially correlated wireless channel, we might have

f(A) = R1/2AT1/2, (5.10)

where R and T are, respectively, an m × m receive correlation matrix and an

m ×m transmit correlation matrix. Dependence may be introduced at the trans-

mitter array, the receiver array, within the propagation channel or any combination

of these. Alternatively we may introduce dependence in the channel matrix by

treating the matrix as a vector of i.i.d. components and then applying the copula

technique for multivariate dependence. This provides a flexible approach which

allows us to use channel coefficients with different distributions, if required, and
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introduce dependence between these coefficients using one of the many multi-

variate copula distribution functions that are available. To obtain a sequence of

random fading channel coefficients that are dependent we may take the following

approach

• Let a = vec (A) that is a is anm2×1 vector with elements a1, a2, . . . , am2 that

are independent random variables distributed according to whatever fading

type we require; this could be a mix of Rayleigh, Rician or Nakagami-m

random variables.

• Let ai ∼ Pi(ai) that is ai is distributed with distribution function Pi(ai) and

let the desired joint distribution for a be P (a) = P (a1, a2, . . . , am2). The cop-

ula is defined for P (a) as C(u) = P (a), where ui = Pi(ai) or, alternatively,

ai = P−1
i (ui) and the ui are uniformly distributed variates.

• The inverse functions of the marginal distributions are P−1
1 , . . . , P−1

m2 so that

a1 = P−1
1 (u1), a2 = P−1

2 (u2), . . . , am2 = P−1
m2 (um2), where u1, . . . , um2 are

uniformly distributed variates. Hence we have

P (a) = P (P−1
1 (u1), . . . , P−1

m2 (um2)) = C(u1, . . . , um2) = C(u), (5.11)

where C(u) is the copula that must be chosen to link the marginals.

In short the procedure for generating a channel matrix sequence, with depen-

dence, is as follows

1. Choose an appropriate multivariate copula and generate a matrix, which is

m2 × n, of dependent uniformly distributed random variables, where each

row corresponds to one of the channel matrix coefficients.

2. Choose a fading distribution for each of the elements (rows) of the matrix

and apply the inverse function so that a matrix of dependent random vari-

ables with the desired distributions is obtained.

3. Convert the matrix to a sequence of m×m matrices using the inverse of the

vec (·) operation for each column of the m2 × n matrix.

To obtain a complex-valued mixing matrix we assume that the real compo-

nents are independent of the imaginary components and repeat the above proce-

dure to obtain two real matrices. This procedure yields the correct random matrix
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for the fading amplitude, however we need to also consider the distribution of

the phase of the coefficients. Let AR and AI represent, respectively, the real and

imaginary parts of A, obtained from two repetitions of the above procedure, then

we obtain the correct phase distribution (for the Nakagami distribution [113]) in

forming the complex mixing matrix A as

A = AR � sign(BR) + jAI � sign(BI), (5.12)

where BR and BI are two matrices with i.i.d. normally distributed components

and which are the same size as AR and AI repectively. Complex values are

formed using the imaginary unit j =
√
−1 and � is the Hadamard or elementwise

product. A similar method is described by Ma & Zhang [66], who generated two

independent random Gaussian input sequences, transformed these into Nakagami

sequences, multiplied each by the sign of its original Gaussian input sequence

then combined as a single complex sequence. Here we have simply multiplied the

Nakagami sequences, representing the real and imaginary parts of the complex

sequence, by the signs of two independent Gaussian sequences.

5.4 Blind source separation

Many BSS techniques have been developed that attempt to separate a multivariate

signal into subcomponents that are mutually independent. BSS techniques typi-

cally rely on objective function tests for non-Gaussianity in the estimated compo-

nents and the independent components are identifiable only up to a permutation

and scaling of the sources. Copula based approaches have been previously pro-

posed by Chen et al. [20] and Ma and Sun [64], which have preprocessing steps in

common with the ICA algorithms. In the case of a multivariate Gaussian copula

the copula parameter is the correlation matrix so that the sources will have been

resolved when there is zero correlation between separated components. Alterna-

tive tests for independence include Kendall’s τ , described by Christensen in [23],

the Robust, Accurate, Direct, ICA, aLgorithm (RADICAL) algorithm, developed by

Learned-Miller and Fisher in [58] and correlation between marginals. A pseu-

docode listing for RADICAL is provided in Appendix M. RADICAL first whitens the

observation data and then proceeds to optimize the spacings entropy (a measure

of MI) of the estimated sources, by a brute-force testing over all possible Jacobi
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rotation angles. Once the optimal Orthogonal (rotation in 2-D) matrix has been

found the algorithm returns the source and channel estimates; taking into account

the prewhitening. RADICAL estimates the entropy of the marginals, and hence

dependence, as a function of the order statistics of the marginals. This contrasts

with FASTICA which uses a cumulant (kurtosis) based method. Kendall’s τ [23]

or the Kendall rank correlation coefficient is a statistic that measures the associa-

tion between pairs of random sequences. All of the algorithms proceed with the

following steps

• Center the observed data - subtract the mean and normalise (unit power) the

observed mixture power.

• Whiten observations - via Eigenvalue Decomposition (EVD). This procedure

converts the observation covariance matrix to an identity matrix and reduces

the channel search space to a search for a unitary transformation.

• Find a unitary (complex data) or orthogonal (real data) transformation that

minimises an objective function : kurtosis, negentropy, correlation, copula

parameter.

5.5 Simulation Results

5.5.1 Correlated Fading

A GNU Octave implementation for dependent fading channel generation, in the

complex-valued model, i.e. A,X,Y,W are all complex-valued, has been de-

veloped and is listed in Appendix L for reference. The code allows for marginal

channel distributions to be chosen from either the Rayleigh or Nakagami-m dis-

tributions. The multivariate channel copula may be selected from the Normal,

Student-t, Clayton, Frank or Gumbel distributions. The Nakagami-m distribution

can be obtained in two different ways: inverse distribution approximation, e.g.

see Beaulieu and Cheng [12] or inverse gamma distribution, e.g. see Zhang [118]

then take the square root of the result. The latter method is attractive since the

inverse function for the gamma distribution already exists in Octave and Matlab.

The first method is based on calculating coefficients for particular function val-
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ues and its use requires a look up table, with interpolation to obtain points not

previously calculated.

Simulations have been performed to demonstrate the utility of this method

and the results are shown in Figures 5.1 and 5.2. In the simulations two elements

of a channel matrix are studied. A sequence of 1000 instances of the pair of el-

ements is generated where the elements follow a Nakagami-m distribution and a

Gaussian copula is utilised, with a correlation matrix where the cross-correlation

terms = 0.9, i.e. they are highly dependent. The true phase and amplitude ex-

pressions for the Nakagami-m distribution were obtained from Yacoub et al. [113]

and are used in the simulations for comparison.

Figure 5.1 shows a scatter plot of the correlated amplitudes of the two ele-

ments. The associated histogram plots compare the amplitude distributions with

the theoretical Nakagami amplitude distribution and show a good agreement be-

tween simulation results (shown in blue) and theory (shown as green curves).

Figure 5.2 shows the correlated phases of the two elements. The associated

histogram plots compare the phase distributions with the theoretical Nakagami

phase distribution and show a good agreement between simulation results (shown

in blue) and theory (shown as green curves).

5.5.2 BSS, Real Model

In this section we compare the BSS performance of: MLE, FASTICA, copula using

Kendall’s τ [23], copula using cross correlation, RADICAL [58]. We only consider a

real-valued model here, i.e. A,X,Y,W are all real-valued, because the RADICAL

algorithm has only been implemented for real-valued data. We have simulated

the MIMO scenario where there is a transmitter array with two elements and

a receiver array with two elements so that the channel A is represented by a

2 × 2 matrix. Random message blocks X, of size 2 × 500, were generated under

the assumption that the channel matrix remained constant for this block length.

The distribution of the independent sources was controlled by employing the GG

distribution, described in Appendix C, parameterised by α, where the distribution

is Gaussian when α = 2. When α < 2 the distribution has a positive kurtosis

and when α > 2 the distribution has a negative kurtosis. For each value of α,

100 instances of the 2 × 500 message block and the 2 × 2 channel matrix were
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generated. A Gaussian noise matrix W was added so that the input snr was 10 dB.

The performance of the separation algorithms, for each repetition, was calculated

as

output snr = 10 log10

( ∑
i,j |xij|2∑

i,j |xij − x̂ij|2

)
. (5.13)

The average performance of the separation algorithms was then calculated as the

mean output snr over the 100 repetitions. Ambiguities in scale and permutation

have also been taken into account in the simulations. In the real-valued channel

and real-valued data case, after prewhitening, the algorithms must find an orthog-

onal 2 × 2 matrix that maximises the estimated source independence. This is

equivalent to finding the optimum angle for a 2D rotation matrix.

Figure 5.3 compares the simulation results for the real-valued channel and

real-valued data case. The MLE assumes that the mixing matrix is known a priori

and therefore performs better than the other algorithms. The MLE results are

also seen to be independent of the source distribution. The FASTICA results have

a minimum when the GG distribution parameter α = 2, confirming the well-

known fact that this algorithm has difficulty in separating a mixture of Gaussian

sources. However, as |α − 2| increases, FASTICA is better able to separate the

sources. Results from the RADICAL algorithm are similar to those from FASTICA for

α < 2 but degrade when α > 2. Results from the copula-based approach using

Kendall’s τ and correlation, are poor but are clearly independent of the source

distribution. These last two methods appear to be no better than the poorest

results from FASTICA. This seems to indicate that copula-based techniques for BSS

may not be useful for practical separation of digital communication waveforms

that typically have a non-Gaussian distribution.

5.5.3 BSS, Complex Model

We have simulated the complex-valued MIMO scenario, i.e. A,X,Y,W are

all complex-valued, where there is a transmitter array with two elements and a

receiver array with two elements so that the channel A is represented by a 2 ×
2 matrix. Random message blocks X, of size 2 × 500, were generated under

the assumption that the channel matrix remained constant for this block length.

The distribution of the independent sources was controlled by employing the

GG distribution. The real and imaginary parts of X were generated using the
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same value of α. For each value of α, 100 instances of the 2 × 500 message

block and the 2 × 2 channel matrix were generated. A Gaussian noise matrix W

was added so that the input snr was 10 dB. The performance of the separation

algorithms, for each repetition, was calculated using equation 5.13. The average

performance of the separation algorithms was then calculated as the mean output

snr over the 100 repetitions. Ambiguities in scale and permutation have also been

taken into account in the simulations. After observation data prewhitening, the

algorithms must find a unitary 2 × 2 matrix that maximises the estimated source

independence. In the 2D complex-valued channel and complex-valued data case,

the unitary matrix is formed from a rotation angle and three phases and so there

are four degrees of freedom that must be optimized, as described by Dita in [30].

Figure 5.4 compares the results for the complex-valued channel and complex-

valued data case. As for the real-valued case the FASTICA results have a minimum

when α = 2. Results from the Kendall’s τ and correlation algorithms are poor but

again are independent of the source distribution. We note that, even when the

sources are close to Gaussian, the Kendall’s τ and correlation algorithms seem to

perform no better than FASTICA.

5.5.4 BSS, Correlated Complex Channel

In the following simulations the copula technique described in section 5.3 is em-

ployed to introduce channel correlations into the point-to-point MIMO model,

i.e. we do not attempt copula-based BSS in these simulations. A 2 × 2 wire-

less link is envisaged where the source distribution is controlled via the param-

eter α in the GG distribution. The complex model is assumed here, i.e. all of

A,X,Y,W are complex-valued. The values of α were converted to kurtosis (see

Appendix C) for future comparison with digital source kurtosis values. Theoretical

MI values, IB-Theory, for a channel-informed receiver (Bob) were calculated using

equation 3.53 and theoretical MI estimates, IE-Theory, for an uninformed receiver

(Eve), were calculated using equation 3.54. Eve’s ability to estimate the channel

is reflected in the variance σ2
â(κ), equation 4.72, which is a function of source

kurtosis and is included in IE-Theory. ML estimation was used to obtain IB-MLE

and the FASTICA algorithm [55] was employed to obtain estimates of IE-ICA. Both

IB and IE were scaled by 1
mn

so that the units are shown as Bits sec−1 ant−1.
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For each parameter set: {kurtosis (κ), correlation (ρ), simulation iteration}, a

sequence of complex-valued channel matrices was generated. The components

ai,j of the channel matrices had a Nakagami fading distribution and correlation be-

tween the components was introduced using the method described in Section 5.3.

In all cases the blocklength is N = 1000 and the snr is 20dB.

Figure 5.5 shows the results for the case where ρ = 0, i.e. the channel

components are i.i.d.. The IB-Theory and IB-MLE plots follow each other quite

closely. A notable feature of these two plots is the peak when κ = 0, i.e. Gaussian

sources. At this point IB is maximised and hence determines the channel capacity.

The IB plot shows the reduction in channel capacity as a result of decreasing

the source Gaussianity. The plot for IE-Theory shows a sharp dip when κ =

0, highlighting the inability of BSS techniques to separate Gaussian distributed

sources. The results for IE-ICA provide a reasonable match to IE-Theory except

that the width of the dip for IE-ICA is much wider than that for IE-Theory and

does not reduce as much at κ = 0.

In Figure 5.6 some channel correlation has been introduced, i.e. ρ = 0.3. The

only differences between the ρ = 0.3 and ρ = 0 results seem to occur for large

positive values of kurtosis κ > 3. For these values of kurtosis both the IB-MLE and

IE-ICA plots appear to noticeably fall below their respective theoretical plots.

In Figure 5.7 the channel correlation is ρ = 0.6 with the same features as for

ρ = 0.3 but now the simulation results for IB-MLE and IE-ICA more noticeably

fall below their theoretical counterparts.

In Figure 5.8 the channel correlation is ρ = 0.9. Now the gap between IB-

MLE and IB-Theory has increased but is still less than 1 Bit sec−1 ant−1.

The results above clearly demonstrate that a reduction in IB occurs as the

source kurtosis departs from zero. A further reduction in IB is incurred as the

channel coefficients becomes more correlated. However the situation for Eve is

quite different. As the source kurtosis departs from zero Eve is better able to sep-

arate the mixed sources using ICA. Increasing the channel correlation degrades

IE at high values of kurtosis. As the sources distributions approach zero kurtosis,

or as they become more Gaussian, the difference between IB and IE increases,

reaching its maximum at zero-kurtosis. This clearly indicates that maximum se-

crecy capacity, which was stated earlier in section 2.3 as CS = CM − CMW or, in

this case IS = IB−IE, is attained using Gaussian sources and for an eavesdropper
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employing a HOS based method for BSS.

5.6 Summary

A method has been developed to combine RF propagation fading effects with

channel dependence for modelling complex-valued MIMO wireless channel sce-

narios. This has been made possible through the use of copula theory and has

resulted in a practical approach which has proved useful in the study of channel

dependence effects. A MIMO wireless channel simulator, with channel depen-

dence, has been implemented and allows for a selection of the fading distribu-

tion as well as the level of dependence required. Simulations were performed

to demonstrate a Nakagami fading channel with various degrees of correlation

between the channel coefficients.

The performance of a selection of BSS techniques was evaluated, for both

real-valued and complex-valued models, with no channel dependence. Simu-

lation results provided a comparison of these techniques and showed that the

FASTICA algorithm performed better than the copula-based techniques for BSS.

However we note that the i.i.d. GG distribution, used to generate the sources

in these simulations, had no temporal structure. The copula-based methods may

perform better with sources that have some temporal structure.

A simulation exercise was performed to study how MI is affected by both

source kurtosis and channel correlation. For this exercise the FASTICA algorithm

was employed. A number of observations were made regarding the degradation

of MI attainable by a channel-informed receiver or an uninformed receiver. In

short using a Gaussian distributed source (zero kurtosis) is optimal for a channel-

informed link both for maximising channel capacity and for minimising the ability

of an eavesdropper, who is using a HOS based BSS technique, to resolve the

sources.
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Figure 5.1: Amplitude distributions, Nakagami fading, Gaussian copula.
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Figure 5.2: Phase distributions, Nakagami fading, Gaussian copula.
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Figure 5.5: MI Vs Kurtosis, SNR=20dB, N=1000, Array=2, corr.=0.
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Figure 5.6: MI Vs Kurtosis, SNR=20dB, N=1000, Array=2, corr.=0.3.
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Figure 5.7: MI Vs Kurtosis, SNR=20dB, N=1000, Array=2, corr.=0.6.
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Figure 5.8: MI Vs Kurtosis, SNR=20dB, N=1000, Array=2, corr.=0.9.
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Discrete Source Recovery
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Chapter 6

Source Recovery Versus System
Parameters

6.1 Introduction

In Part II performance measures for MLE and BSS techniques were derived, result-

ing in MLE expressions for source and channel estimation and approximate covari-

ance bounds for estimating these parameters. The performance of BSS techniques

was established in the form of CRB expressions for joint source and channel es-

timation. These measures provide performance bounds that may be compared

with the results of Monte Carlo computer simulations of a MIMO wireless com-

munications link or eavesdrop scenario.

In this chapter we examine the results of a set of simulation exercises which

were designed to test source estimation performance as the source distribution is

smoothly varied in terms of Gaussianity, or more appropriately for digital com-

munication signals, in terms of source kurtosis. This is achieved by employing

the GG to represent the pdf of the sources. The GG and the relationship between

kurtosis and the GG parameter α is described in Appendix C. Whereas the simula-

tion exercise carried out in section 5.5 studied the effects of channel dependence,

the analysis presented in this chapter compares MI performance across a range of

snrs, blocklengths and array sizes.

The underlying MIMO wireless communications model and assumptions that

have been used here are the same as those listed in section 3.1. The simulations
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in this chapter represent the complex MIMO model, where A,W,X,Y are all

complex-valued.

When using the FASTICA or JADE algorithms for BSS, scale and permutation

issues are the same as described in Section 4.6.

A number of parameters are studied in this chapter and are defined here for

reference

Definition 4 (Ab). The channel matrix, between Alice and Bob.

Definition 5 (Ae). The channel matrix, between Alice and Eve.

Definition 6 (IB). Bob’s mutual information

Definition 7 (IE). Eve’s mutual information

Definition 8 (IB-Theory). Theoretical value for the mutual information attainable

by Bob, where the channel Ab is assumed known. This is obtained from equa-

tion 3.53.

Definition 9 (IB-MLE). Simulation value for the mutual information obtained by

Bob, using knowledge of the channel Ab. This is obtained from maximum like-

lihood estimation of the source and the mutual information expression given by

equation 3.53.

Definition 10 (IE-Theory). Theoretical value for the mutual information attain-

able by Eve, where the channel Ae is unknown. This is obtained from theoretical

values for the channel estimation variance, equation 4.72, and the mutual infor-

mation expression given by equation 3.54.

Definition 11 (IE-ICA). Simulation value for the mutual information obtained by

Eve. This is obtained from the source and channel estimation errors using the

FASTICA algorithm substituted into the mutual information expression given by

equation 3.54.

Definition 12 (IE-JADE). Simulation value for the mutual information obtained

by Eve. This is obtained from the source and channel estimation errors using

the JADE algorithm substituted into the mutual information expression given by

equation 3.54.

Definition 13 (Amle). Maximum likelihood estimator of channel matrix Ae, where

the source is given.
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Definition 14 (Aica). Blind estimation of the channel matrix Ae, using the FASTICA

algorithm.

Definition 15 (Xmle). Maximum likelihood estimator of source matrix X, where

the channel is given.

Definition 16 (Xica). Blind estimation of the source matrix X, using the FASTICA

algorithm.

6.2 Generalised Gaussian Simulation Analysis

The following Monte Carlo computer simulation studies were designed to com-

pare previously derived theoretical expressions with the performance of the FAS-

TICA algorithm for blind source estimation, allowing us to compare the informa-

tion rate reduction in the legitimate system with the information rate increase in

the eavesdropper channel.

The matrix dimensions for the channel A are m × p. For the cases where

the channel matrix is square, the FASTICA algorithm was used. However, for the

overdetermined cases, i.e. where m > p, the JADE algorithm was used. This was

necessary because the FASTICA algorithm assumes the same observation matrix

size as the source matrix, i.e. size(Y) = p × n =size(X), which means that

the size of A must be p × p. The JADE algorithm finds the p most significant

eigenmatrices in its calculations and so only assumes that m ≥ p. For the source

signals that have been used here, no discernible difference in BSS performance

between FASTICA and JADE was noted in square channel simulations; otherwise it

would have been necessary to compare results obtained from both algorithms.

A pseudocode listing for the JADE algorithm is given in Appendix M. The JADE

algorithm first performs a whitening operation on the observed data. Next a set

of cumulant matrices is calculated from the whitened observations and the most

significant set of eigenpairs (corresponding to the number of sources) is identified.

The cumulant matrix set is jointly diagonalized by finding the optimal Jacobi rota-

tions. A unitary unmixing matrix is found as the product of all the Jacobi rotations

performed. The source and channel matrix estimates are returned, taking into

account the prewhitening.

The parameter α in the generalised Gaussian distribution has been converted
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to the kurtosis equivalent value, as described by Cichocki and Amari in [24]. In the

simulations a different channel realisation was generated for each of the legitimate

and eavesdropper channels: Ab and Ae respectively, with the same distribution

for each i.e. [A]ij ∼ CN (0, 1). For each parameter set: {kurtosis, snr, block

length, channel dimensions}, 100 repetitions were performed and the mean of

those results taken.

Figure 6.1 compares the simulation results for Bob’s MI, IB-MLE, and Eve’s

MI, IE-ICA, with their theoretically predicted values, IB-Theory (equation 3.53)

and IE-Theory (equation 3.54), derived earlier in Chapter 3. The parameter set

used to obtain these results is: {snr(dB), blocklength (n), channel dimensions

(m × p) } = {10, 100, 2× 2}. For this small blocklength and low snr, IB for both

theory and MLE match closely but IE-ICA only indicates a broad dip around zero

kurtosis. Otherwise the IE-Theory results lie approximately 1 Bit below the theo-

retical results.

Figure 6.2 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {20, 100, 2× 2}. The increase in

snr clearly raises the IB values by approximately 3dB. The increase in IE is not as

great.

Figure 6.3 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {30, 100, 2× 2}. Once again the

IB results have increased by approximately another 3dB. However the increase in

snr has had little effect on the IE results.

Figure 6.4 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {10, 1000, 2× 2}. Increasing the

blocklength at this snr has brought the results for IB and IE closer together, with

only the dip at κ = 0 evident for IE.

Figure 6.5 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {20, 1000, 2× 2}. For this block-

length, increasing the snr, has led to an increase in the IB and IE results.

Figure 6.6 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {30, 1000, 2× 2}. Further in-

creasing the snr has increased the IB results but the increase in the IE results is

not as great. However IE in this case is higher than IE when the blocklength was

100.
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Figure 6.7 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {10, 1000, 4× 4}. In this case the

array size was increased and, after normalising by the number of antennae, are

similar to those obtained for an array size of 2. The width of the dip in IE-ICA is

perhaps broader than for the two antenna case.

Figure 6.8 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {20, 1000, 4× 4}. Increasing the

snr increases the IB results and the IE results though not as much as in the 2-

antenna case.

Figure 6.9 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {30, 1000, 4× 4}. Further in-

creasing the snr to 30dB again increases IB but the gap between IB and IE has

increased. This gap is greater than the gap for the 2-antenna case.

Figure 6.10 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {10, 3000, 2× 2}. The IB and IE
results are indistinguishable for this snr and blocklength, except for the small dip

at κ = 0 for IE.

Figure 6.11 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {20, 3000, 2× 2}. Raising the snr

to 20dB increases both IB and IE and these are still quite close together except for

the dip in IE at κ = 0.

Figure 6.12 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {30, 3000, 2× 2}. Further increas-

ing the snr to 30dB raises both IB and IE with a small gap between the two sets

of results. This gap is noticeably smaller than when the blocklength was 1000.

Figure 6.13 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {20, 1000, 4× 2}. The is no ob-

vious difference between this plot and the 2 × 2 channel case with the other

parameters the same.

Figure 6.14 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {10, 3000, 8× 2}. Comparing this

plot with the 2 × 2 channel case. We now observe that Eve’s MI is reducing for

the non-zero kurtosis values.
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Figure 6.15 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {20, 3000, 16× 2}. Comparing

this plot with the 2× 2 channel case. We observe that Eve’s MI further reduces as

the source for all kurtosis values.

Figure 6.16 compares the simulation results for MI with the theoretically pre-

dicted values using the simulation parameter set {20, 3000, 16× 4}. Clearly, as the

receiver array dimension increases, the eavesdropper’s performance decreases.

This is a consequence of having to estimate a larger mixing matrix, where the

errors in the estimate become larger.

In all of these figures there is a dip in eavesdropper MI (IE-Theory and IE-ICA)

at zero kurtosis (Gaussian source), for the eavesdroppper using ICA, which is zero

in theory. However the eavesdropper MI IE rises rapidly as the source distribution

departs from Gaussianity and approaches the MI (IB theory and MLE) obtained

via MLE for the legitimate receiver.

Some other features to note are:

• As the block length increases, the width of the dip in IE-ICA reduces.

• As the block length increases, IE improves.

• As the snr increases the gap between IB and IE increases.

• As the number of antennae is increased the width of the dip in IE-Theory

increases.
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Figure 6.1: MI Vs Kurtosis, SNR=10dB, N=100, channel=2× 2.
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Figure 6.2: MI Vs Kurtosis, SNR=20dB, N=100, channel=2× 2.
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Figure 6.3: MI Vs Kurtosis, SNR=30dB, N=100, channel=2× 2.
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Figure 6.4: MI Vs Kurtosis, SNR=10dB, N=1000, channel=2× 2.
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Figure 6.5: MI Vs Kurtosis, SNR=20dB, N=1000, channel=2× 2.
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Figure 6.6: MI Vs Kurtosis, SNR=30dB, N=1000, channel=2× 2.

102



6.2. GENERALISED GAUSSIAN SIMULATION ANALYSIS

−2 −1 0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

15

Kurtosis

M
I
(B

it
s/

se
c
/a

n
t)

IB Theory
IB MLE
IE Theory
IE ICA

Figure 6.7: MI Vs Kurtosis, SNR=10dB, N=1000, channel=4× 4.
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Figure 6.8: MI Vs Kurtosis, SNR=20dB, N=1000, channel=4× 4.
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Figure 6.9: MI Vs Kurtosis, SNR=30dB, N=1000, channel=4× 4.
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Figure 6.10: MI Vs Kurtosis, SNR=10dB, N=3000, channel=2× 2.
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Figure 6.11: MI Vs Kurtosis, SNR=20dB, N=3000, channel=2× 2.
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Figure 6.12: MI Vs Kurtosis, SNR=30dB, N=3000, channel=2× 2.
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Figure 6.13: MI Vs Kurtosis, SNR=20dB, N=1000, channel=4× 2.
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Figure 6.14: MI Vs Kurtosis, SNR=20dB, N=1000, channel=8× 2.
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Figure 6.15: MI Vs Kurtosis, SNR=20dB, N=1000, channel=16× 2.
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Figure 6.16: MI Vs Kurtosis, SNR=20dB, N=1000, channel=16× 4.
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6.3 Summary

The expressions that were derived in chapter 3, for mutual information, allow us

to compare the information rates achievable by a channel-informed receiver with

the information rates obtainable by a passive eavesdropping receiver. The simula-

tion exercise carried out in this chapter enabled an analysis of the effect of varying

a range of system parameters: snr, blocklength, array size, source kurtosis. These

results indicate that practical communication waveforms, which have high kurto-

sis values, may be vulnerable to blind interception and provide an eavesdropper

with a useable information rate.

Once again we note that as the sources distributions approach zero kurtosis,

or as they become more Gaussian, the difference between IB and IE increases,

reaching its maximum at zero-kurtosis. This clearly indicates that maximum se-

crecy capacity: IS = IB− IE, is attained using Gaussian sources and for an eaves-

dropper employing a HOS based method for BSS, regardless of channel dimen-

sions and variation in the other system parameters. To maximise communications

secrecy, Alice and Bob could employ the following strategies:

• Use short data block lengths. The simulations have shown that the BSS

algorithms do not perform well for short observation block lengths.

• Use more transmit and receive antennae. This requires an arbitrarily rich

multipath environment. There may also be physical constraints on the space

available for more antennae and reducing the antenna spacing will intro-

duce dependence between them and reduce the channel rank. Channel de-

pendence will be caused by antenna cross-coupling and, for closely spaced

antennae, the independent background noise assumption is no longer valid.

• Minimise the magnitude of the source kurtosis, i.e. manipulate the source

distributions so that they become proper complex-Gaussian. Simulation re-

sults have shown that creates the worst possible problem for an eavesdrop-

per employing HOS methods for BSS. However this will also affect other

receivers so that the manipulation must occur in a manner that can be un-

done by the intended receiver.

How the above may be achieved is outside the scope of the current study but may

be suitable for future research.
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Chapter 7

Symbol Stream Recovery for OSTBC

7.1 Introduction

This chapter addresses the problem of resolving the symbol streams transmitted

from the antennae of a MIMO wireless digital communications array. This sce-

nario may be posed as a BSS problem thereby invoking the use of BSS techniques

which have been under development since the 1990’s. The principle assumption,

in this model, is that the sources are statistically independent and that a linear

mixture of the sources can therefore be separated via an optimization method

that utilises a cost function which estimates the dependence between the un-

mixed source estimates. Independence may be determined as the MI between

the resolved source estimates and is known to be attained when the joint source

density function is equal to the product of the marginal source densities. To avoid

confusion with the channel MI derived earlier as the entropy reduction between

observed data entropy and estimated source entropy, we shall refer to the MI

between the resolved source estimates as MIBS. Although this would seem to pro-

vide the best measure of independence, HOS algorithms for BSS typically rely on

methods that lead to an approximation for mutual information such as kurtosis

(4th order cumulants) e.g. JADE, developed by Cardoso and Souloumiac in [19],

to simplify the algorithms and reduce computation times.

There are several BSS algorithms e.g. FASTICA, JADE (described in sections 4.6

and 6.2 respectively) that we could employ at this stage but we shall make use of

the popular JADE algorithm [19]. The FASTICA and JADE algorithms are known to
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perform similarly for blind separation of the type of signal studied here but JADE

was chosen due to the apparent availablity of both the cost and gradient functions

that are required for incorporation in a more general optimization framework to-

gether with its ability to handle overdetermined observation data. However the

complex gradient of the JADE cost function stated, without proof, by Abrudan et

al. in [2] and [3] appears to be incorrect; necessitating the derivation provided in

Appendix H.

Recent research into steepest descent and conjugate gradient techniques [2,

3, 4] has provided a means for readily estimating the demixing matrix, with a

unitary matrix constraint. These techniques are desirable because they provide

a generic optimization algorithm ideally suited to the BSS problem and which

allow us to change the cost function to suit the problem or take advantage of

known properties of the sources. In Appendix J we provide the Matlab code for

the optimization algorithm that was used in the simulation exercises.

A method for estimating MIBS based on estimating Shannon entropy was de-

veloped by Kraskov et al. in [56] and Stögbauer et al. in [93]. To use MIBS in an

optimization algorithm we also require the gradient as a function of the demixing

matrix and this is derived in Appendix I.

The mathematical model and associated assumptions are the same as those

described in Section 3.1 , with the exception that the source distribution is now

discrete; resulting from the use of complex signalling constellations such as PSK or

QAM, and the receiver is able to synchronize correctly with the observed signals.

A MIMO system employing space-time block-coding techniques is not ideally

suited to BSS; the assumption of mutual source independence may be violated.

However, as we shall find in section 7.5, direct application of the BSS algorithms

can still provide useful results. The purpose of this chapter is to develop a method

that exploits knowledge of the STBC scheme, in particular the OSTBC scheme,

that a MIMO link may be using.

7.2 Space-Time Block Codes

We now consider the generation of linear space-time block-codes and how we

might exploit knowledge of their properties as an aid to the source separation
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problem. Various authors e.g. Swindlehurst and Leus [95], Ma [65] and Choqueuse

et al. [22], have given general representations for a linear Space-Time Block En-

coder (STBE), where a vector of ns symbols s = [s1s2 . . . sns ]
T is encoded as a

space-time block for transmission over nt parallel signal streams of length nb.

Swindlehurst and Leus [95] give a general form for the encoded symbol sequence

transmitted from individual antennae and in a similar vein we shall consider how

the columns of the STBC are formed. In the following derivations we assume that

nt = nr, where nt, nr are the number of transmit antennae and the number of

receiver antennae, respectively. Let B be an nt × nb STBC formed from an input

data sequence of ns symbols, or B ∈ STBC(nt, ns, nb), and where the symbols are

taken from a vector symbol set S of size nss. Assuming perfect synchronization,

the kth observed signal block is given by

Yk = ABk + Wk. (7.1)

We can apply a complex-to-real conversion to equation 7.1 by stacking the real

and imaginary parts as follows:

[
<(Yk)

=(Yk)

]
=

[
<(A) −=(A)

=(A) <(A)

][
<(Bk)

=(Bk)

]
+

[
<(Wk)

=(Wk)

]
. (7.2)

Letting Ψk =
[
<(YT

k )=(YT
k )
]T

, Θk =
[
<(BT

k )=(BT
k )
]T

, Ωk =
[
<(WT

k )=(WT
k )
]T

and

Λ =

[
<(A) −=(A)

=(A) <(A)

]
, (7.3)

then we may write Ψk = ΛΘk + Ωk. (7.4)

Vectorising the kth observed block gives

ψk = [Inb ⊗Λ]θk + ωk, (7.5)

where ψk = vec (Ψk), θk = vec (Θk) and ωk = vec (Ωk).

With σ =
[
<(sT )=(sT )

]T
, the formation of the columns ci of Θ, by the STBE,

may be represented by

ci = Uiσ, (7.6)

where the Ui are orthogonal permutation and sign change matrices. In this
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representation the block code is given by Θ = [U1σ U2σ . . . Unbσ] and

θ = Uσ̃, where we have made the following definitions: U = diag(U1 , . . . ,Unb),

σ̃ = [σσ . . . σ]T . The kth observed signal vector may now be written as

ψk = [Inb ⊗Λ] Uσ̃k + ωk. (7.7)

If we apply the decoding operation to the observed signal vectors, assuming per-

fect synchronization, then this is represented by

φk = UTψk = UT [Inb ⊗Λ] Uσ̃k + UTωk. (7.8)

If we ignore the noise term then φk may be written as

φk = diag
(
UT

1 ΛU1σk, . . . , UT
nb

ΛUnbσk
)

(7.9)

and we make the observation that summing across the rows of Φk, where φk =

vec (Φk), is equivalent to forming the sum

Σk =

nb∑

i

UT
i ΛUiσk = Hσk, (7.10)

where H =

[
<(H) −=(H)

=(H) <(H)

]
. (7.11)

H is the new effective channel for the transmitted symbol vector sk i.e. we have

converted the observed signal block Yk = ABk into the vector gk = Hsk, where

Σk =
[
<(gTk )=(gTk )

]T
. For the orthogonal space-time block codes that we con-

sider here we find that the coding has the effect of making H unitary. This shows

that, given an appropriate array configuration, the observation matrix Y resulting

from an OSTBC and channel A may be reconstructed as the product of a unitary

matrix H, which is now effectively the channel matrix, and the transmitted sym-

bol vectors sk. Reforming the observed data in this fashion has a two-fold benefit

in terms of BSS: the effective channel matrix is already unitary which simplifies

the optimization process and the symbol stream is now independent i.e. the re-

dundancy in the code has been removed. To illustrate the above derivations we

shall now consider two examples of OSTBC schemes.
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7.2.1 OSTBC(2,2,2)

A single block using the Alamouti code, developed by Alamouti in [8], which is

an OSTBC(2, 2, 2) code, is given by

BA =

[
s1 −s∗2
s2 s∗1

]
(7.12)

and uses

U1 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, U2 =




0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0




(7.13)

and s = [s1s2]T . Suppose we have a receive array with two antennae (the Alamouti

STC is designed for a 2× 1 link) then, when this block is transmitted via a channel

represented by the complex matrix A the observed (noiseless) matrix Y is

Y = ABA =

[
(a11s1 + a12s2) (−a11s

∗
2 + a12s

∗
1)

(a21s1 + a22s2) (a22s
∗
1 − a21s

∗
2)

]
. (7.14)

Now if we decode Y to obtain the matrix ψ, sum to get Σ,

then g =

[
(a11 + a∗22)s1 + (a12 − a∗21)s2

(a21 − a∗12)s1 + (a∗11 + a22)s2

]
(7.15)

or g =

[
h11 h12

h21 h22

][
s1

s2

]
= Hs. (7.16)

7.2.2 OSTBC(4,4,8)

Another example, taken from Tarokh et al [96], is the 1
2
-rate Orthogonal Space-

Time Block-Code OSTBC(4, 4, 8) designed for 4 transmit antennae:

BT =




s1 −s2 −s3 −s4 s∗1 −s∗2 −s∗3 −s∗4
s2 s1 s4 −s3 s∗2 s∗1 s∗4 −s∗3
s3 −s4 s1 s2 s∗3 −s∗4 s∗1 s∗2
s4 s3 −s2 s1 s∗4 s∗3 −s∗2 s∗1



. (7.17)
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Let

A1 = I4, A2 =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0



,

A3 =




0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0



,A4 =




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0



,

(7.18)

so that Ui =





[
Ai 04

04 Ai

]
, i=1. . . 4;

[
Ai−4 04

04 −Ai−4

]
, i=5. . . 8.

(7.19)

and the columns of Θ are formed using equation (7.6). Proceeding as before

to decode blocks of observed data, we again obtain the representation g = Hs,

where H is a 4 × 4 orthogonal matrix and s = [s1s2s3s4]T . In this case 4 × 8

blocks of observed data are reconstructed as 4 × 1 vectors g and the effective

channel is a real orthogonal matrix. From the BSS perspective this leads to a

reduction of 8 : 1 in the length of the observed data which could lead to difficulties

in separating very small data lengths. However, as previously noted, the BSS

algorithms benefit from the effective channel matrix being already unitary and the

effective symbol streams are now independent, assuming the original message

symbol streams input to the STBE were independent.

For this technique to be applied to source separation, synchronization and

knowledge of block starting times are clearly essential.

7.3 OSTBC Complex Representation

An alternative and perhaps more elegant representation for OSTBC, which avoids

the complex-to-real conversion in the previous section, is described here. Let the
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augmented input symbol vector be σ̃ =
[
sT s†

]T
, then vectorising the code block

Bk may be written as

bk = Uσ̃k, (7.20)

where U is a scaled, orthogonal permutation and sign change matrix, i.e. UTU =

cI, for some constant c. Letting ψk be the vectorised kth observed block, then

ψk = [Inb ⊗A] Uσ̃k + ωk. (7.21)

If we apply the decoding operation then

φk = UTψk = UT [Inb ⊗A] Uσ̃k + UTωk. (7.22)

If we ignore the noise term then φk may be written as

φk = Mσ̃k, (7.23)

where the matrix M takes the form

M =

[
M11 M12

M21 M22

]
. (7.24)

Let φ̃k represent the matrix formed from the vector φk when the lower half of φk
is conjugated, i.e.

φ̃k =




φk1

φk2

...

φkns

φ∗k1

φ∗k2

...

φ∗kns




=

[
M11 M∗

12

M21 M∗
22

][
sk

sk

]
. (7.25)
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Finally we obtain the vector gk as follows

gk = [Ins Ins] φ̃k

= [M11 + M∗
12 + M21 + M∗

22] s

= Hs, (7.26)

where H is the effective channel matrix for the transmitted symbol vector sk.

To illustrate the above derivations we shall now consider some examples of

OSTBC schemes.

7.3.1 OSTBC(2,2,2)

A single block using the Alamouti code [8], which is an OSTBC(2, 2, 2) code, is

given by equation 7.12 and uses

U =




1 0 0 0

0 1 0 0

0 0 0 −1

0 0 1 0




(7.27)

and σ̃ = [s1 s2 s
∗
1 s
∗
2]T . Suppose we have a receive array with two antennae then,

when this block is transmitted via a channel represented by the complex matrix

A the observed (noiseless) matrix Y is

Y = ABA =

[
(a11s1 + a12s2) (−a11s

∗
2 + a12s

∗
1)

(a21s1 + a22s2) (a22s
∗
1 − a21s

∗
2)

]
. (7.28)

Now if we decode Y to obtain the matrix ψ, sum to get Σ, then

g =

[
(a11 + a∗22)s1 + (a12 − a∗21)s2

(a21 − a∗12)s1 + (a∗11 + a22)s2

]
(7.29)

or

g =

[
h11 h12

h21 h22

][
s1

s2

]
= Hs. (7.30)
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7.3.2 OSTBC(3,4,8)

Another example, taken from Tarokh et al [96], is the 1
2
-rate OSTBC(3, 4, 8) de-

signed for 3 transmit antennae:

BT =



s1 −s2 −s3 −s4 s∗1 −s∗2 −s∗3 −s∗4
s2 s1 s4 −s3 s∗2 s∗1 s∗4 −s∗3
s3 −s4 s1 s2 s∗3 −s∗4 s∗1 s∗2


 . (7.31)

U1 =




1 0 0 0

0 1 0 0

0 0 1 0


 , (7.32)

U2 =




0 −1 0 0

1 0 0 0

0 0 0 −1


 , (7.33)

U3 =




0 0 −1 0

0 0 0 1

1 0 0 0


 , (7.34)

U4 =




0 0 0 −1

0 0 −1 0

0 1 0 0


 , (7.35)

so that

U =




U1 0

U2 0

U3 0

U4 0

0 U1

0 U2

0 U3

0 U4




, (7.36)

which leads to

φ̃k =

[
M11 0

0 M∗
11

][
sk

sk

]
(7.37)
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and

gk = 2<{M11}sk. (7.38)

The effective channel, in this case, is almost orthogonal.

7.3.3 OSTBC(4,4,8)

Another example, taken from Tarokh et al [96], is the 1
2
-rate OSTBC(4, 4, 8) de-

signed for 4 transmit antennae as shown in equation 7.17. Let U1 = I4,

U2 =




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0



, (7.39)

U3 =




0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0



, (7.40)

U4 =




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0



, (7.41)

so that

U =




U1 0

U2 0

U3 0

U4 0

0 U1

0 U2

0 U3

0 U4




, (7.42)

which leads to

φ̃k =

[
M11 0

0 M∗
11

][
sk

sk

]
(7.43)
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and

gk = 2<{M11}sk. (7.44)

7.4 Demixing Matrix Estimation

Abrudan, Eriksson and Koivunen [2, 3, 4] have recently developed efficient algo-

rithms for optimization under unitary matrix constraint. These algorithms provide

us with a means for implementing a variety of cost functions in order to obtain

demixing matrix estimates. Given a real cost function which is a function of a

complex parameter (the demixing matrix in this case) we also require the asso-

ciated complex gradient. We derive the gradient for the JADE cost function in

Appendix H and implement this in a conjugate gradient optimization algorithm

based on the algorithm described in [2]. In section 7.5 we refer to the conjugate

gradient algorithm with the JADE cost function as simply the JADE algorithm. Mat-

lab code for the conjugate gradient optimization algorithm, with the JADE cost

and gradient functions, is provided in Appendix J.

Next we consider the MIBS cost and derive the complex gradient as a func-

tion of the demixing matrix. The derivation of the MIBS gradient is provided in

Appendix I. In section 7.5 we refer to the conjugate gradient algorithm with the

MIBS cost function as simply the MIBS algorithm. The MIBS algorithm also requires

estimates of the source score function and we have employed a method similar to

that described by Vlassis and Motomura in [105] that uses data histogramming and

Gaussian Mixture (GM) modelling to estimate both the source pdf p(x) and the

source score function −∂ log p(x)
∂x

. We have found however that similar results may

be achieved by smoothing the data histogram and simply taking the derivative

of its logarithm. Matlab code for the conjugate gradient optimization algorithm

using the MIBS cost and gradient functions is provided in Appendix K.

To find the unitary demixing matrix for the BSS problem we have chosen to

utilise the Conjugate Gradient (CG) optimization algorithm described by Abrudan

et al. in [4, Table 3], where step 4 is implemented using steps 5-7 from Abrudan

et al. in [3, Table 2].

The main benefit of this approach is in the flexibility that it allows: the cost

function costf(W,Y) and complex gradient gradf(W,Y) may be for JADE, MIBS or any

other suitable cost and gradient pair.
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7.4.1 JADE Cost and Gradient

Defining Φ ,W†M̂iW, where W is unitary, then the JADE algorithm minimises

the sum of the squared magnitudes of the off-diagonal elements of Φ. Alterna-

tively JADE minimises the following cost function [3]

CJADE =
m∑

i=1

tr
{
ΦΦ† −Φ�Φ†

}
. (7.45)

The eigenmatrices M̂i are estimated from the fourth order cumulants of the whitened

observations and these are described by Cardoso and Souloumiac in [19]. The

cost function is therefore used to diagonalize the eigenmatrices, with respect to

W∗.

The Euclidean gradient of the JADE cost function, w.r.t. W∗, obtained from

GJADE = 2
∂CJADE
∂W∗ , (7.46)

is derived in Appendix H, where it is shown that

GJADE = 2
m∑

i

{M̂iM̂
†
iW−M̂iW[I�W†M̂†

iW]−M̂†
iW[I�W†M̂iW]}. (7.47)

In [3] it is stated, without proof, that the gradient of the JADE cost function is

ΓW = 2
m∑

i

M̂iW
[
W†M̂iW − I�W†M̂iW

]

= 2
m∑

i

M̂iM̂iW − M̂iW
[
I�W†M̂iW

]
. (7.48)

Clearly ΓW 6= GJADE. The consequences of using the incorrect gradient are

demonstrated by the simulation results shown in Figure 7.7. In this example a

QAM source symbol set and Alamouti coding was implemented, the observation

block size is 1000, the transmitter and receiver array size is 2 and the snr is 10dB.

Results using the incorrect gradient are labelled JADEinc, results using the correct

gradient are labelled JADEcor and, for comparison, maximum likelihood source es-

timation (channel assumed known) results are labelled ML. The results show that

frequent large errors occur when using the incorrect gradient expression; indicat-
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ing the failure of the optimization algorithm to find a suitable demixing matrix.

When the correct gradient expression was applied no such failures occurred in

the simulation examples.

7.4.2 Mutual Information Cost and Gradient

For an m-dimensional random vector u, the MIBS of its components is defined as

I(u) , E
{

log
p(u)∏m
i=1 p(ui)

}
. (7.49)

The MIBS can also be written in terms of entropy

I(u) =
m∑

i=1

H(ui)−H(u), (7.50)

where H(u) = −E {log p(u)}. The source separation problem may be solved by

minimising the MIBS, acting as the cost function in an optimization algorithm. In

Appendix I we show that the gradient, w.r.t. W∗, of this cost function is

∂I(u)

∂W∗ =
[
ψ(u,u∗)u† − I

]
W. (7.51)

7.5 Simulation Results

Application of the theory developed in this chapter is demonstrated by way of

Monte Carlo simulations implemented in Matlab. The following subsections com-

pare source separation performance in two ways: quality of estimated constella-

tion and equivalent channel capacity as a function of snr. The decoding process

mentioned here refers to equations 7.8 and 7.22, either of which may be applied.

7.5.1 Example Constellation Results

A 4 × 4 MIMO passive intercept scenario is envisaged where the complex OS-

TBC(4, 4, 8) coding scheme described in Section 7.2 forms the signal of interest.

The symbol set used is the QAM constellation, with four complex-valued symbols.
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A number of blocks (500) were generated, forming the 4 × 4000 complex-valued

matrix X, linearly mixed by a randomly generated 4× 4 complex-valued channel

matrix A and the observation matrix formed as Y = AX + W, where W is a

4 × 4000 AWGN noise matrix. The snr power ratio for each row of Y, i.e. each

receive antenna input, is 10dB.

Figure 7.1 shows the effect of channel mixing, for an OSTBC, applied to the

four transmitter QAM sources. The figure shows each of the four receive antenna

inputs which are linear mixtures of the four transmitter outputs. The channel

mixing has obscured the original sources.

Direct application of the JADE algorithm to the mixed data, without pre-

processing with the decoding procedure described previously, yields separated

source results such as those shown in Figure 7.2. This algorithm can usually ob-

tain a channel estimate, via optimized unitary matrix estimation, that is close to

the true channel. However some rotational ambiguities clearly remain. There

is also a scale ambiguity but the observed data is normalised so that it has unit

power and all the sources are assumed to have the same power.

Figure 7.3 shows results typically obtained by the MIBS algorithm, without

any prior decoding. However, for the MIBS algorithm to successfully converge

to the global minimum, it was found necessary to preprocess the observed data

with the JADE algorithm. So this is effectively a hybrid algorithm. The figure

shows that the MIBS algorithm was able to obtain a slightly better estimate of the

mixing matrix by successfully derotating the sources in this particular example;

this was not observed to occur in every simulation case. The MIBS algorithm has

the advantage of knowing the source pdfs and is therefore better able to minimise

the mutual information between the separated sources. Implementing the MIBS

method proved to be computationally demanding, particularly in the calculation

of mutual information at each iteration of the optimization process.

In Figure 7.4 the decoding procedure has been applied directly to the mixed

data to demonstrate that it provides no obvious benefit to do so.

Figure 7.5 provides an example of applying the decoding procedure to the

mixed data then applying JADE to estimate the sources. It is clear that the symbol

constellations are better aligned with the plot axes and are slightly less noisy than

those shown in Figure 7.2.

In Figure 7.6 decoding followed by the JADE/MIBS combination has been ap-
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plied. The results do not appear to be significantly different to those obtained in

Figure 7.5 so it becomes questionable as to whether the small gains offered by the

MIBS stage are worth the high computional overhead.

7.5.2 Equivalent Channel Capacity

To study performance as a function of snr we utilise Slimane’s symmetric capac-

ity [89], also described in Appendix F. In the simulations that follow the source

estimation error for: MLE, JADE without decoding, JADE with decoding, is con-

verted to a received snr and then fed, along with the symbol constellation points,

to Slimane’s symmetric capacity estimation calculation. The resulting capacity

estimates are compared with the estimate based on the original snr.

In the first example a QAM source symbol set and Alamouti coding was

implemented. The observation block size was 1000, the transmitter and receiver

array size was 2. The results in Figure 7.8 show that the capacity estimate for MLE

closely follows the ideal symmetric capacity curve. The capacity estimates for

both JADE with and without decoding are very similar. In the region 0 to 10dB the

JADE capacities are a little less than the MLE values. At high snrs all the capacity

estimates converge to the maximum value of 2 Bits/sec/antenna.

In the second example a QAM source symbol set and OSTBC3 coding was

implemented. The observation block size was 1000, the transmitter and receiver

array size was 3. Once again the results in Figure 7.9 show that the capacity

estimate for MLE closely follows the ideal symmetric capacity curve. The results

for JADE with and without decoding are very similar but the decoding appears to

have provided a small improvement. The JADE results fall short of the ideal values,

except at high snr, where they converge.

A third simulation example represented a system using a QAM source symbol

set and OSTBC4 coding. The observation block size was 1000, the transmitter and

receiver array size was 4. In Figure 7.10 the ideal and MLE results closely match.

The JADE results are poorer than the ideal estimates and the decoding appears to

have had a more significant benefit than that demonstrated in Figure 7.9.
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7.6 Summary

We have developed an optimization algorithm for source separation where the

cost function can be easily changed to suit the problem. This has been demon-

strated by the implementation of two different cost functions: JADE and MIBS.

STBC signals are not ideally suited for BSS techniques because of the dependence

introduced by the coding process. Despite this the JADE algorithm produces rea-

sonable results which may be corrected by post processing with the MIBS algo-

rithm. The MIBS based method makes use of prior knowledge of the source pdfs

and can minimise the mutual information, between source estimates, better than

JADE. However MIBS is less able to find a global minimum and is computationally

demanding.

Using knowledge of the OSTBC encoding scheme an eavesdropper can de-

code the observed data to improve the performance of their BSS algorithm and,

in turn, increase the mutual information IE. This means that the channel secrecy

capacity IS = IB − IE is effectively reduced. Simulation results showing equiva-

lent channel capacity demonstrate the potential gain from exploiting knowledge

of the OSTBC encoding scheme and also show the relative capacities IB and IE.

The approach described in this chapter simplifies the source separation prob-

lem since the effective linear mixing matrix is unitary and the effective symbol

streams are independent, assuming the symbol sequence input to the STBE is in-

dependent to begin with. A source separation algorithm such as JADE provides a

means for blind channel estimation when there is no prior knowledge of either

the channel or the sources and the sources are not Gaussian distributed. If the

source distributions are known then the MIBS method may be employed to further

improve the quality of the separation but comes with an increased computation

cost.
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Figure 7.1: 4 × 4 Tx/Rx simulation using STBC with a QAM symbol set. Four
sources are linearly mixed by the channel matrix. No processing has been ap-
plied. Each graph shows one of the receiver input streams.
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Figure 7.2: 4 × 4 Tx/Rx simulation using STBC with a QAM symbol set. Four
sources are linearly mixed by the channel matrix. JADE has been applied to esti-
mate the sources. Each graph shows one of the estimated source symbol streams.
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Figure 7.3: 4 × 4 Tx/Rx simulation using STBC with a QAM symbol set. Four
sources are linearly mixed by the channel matrix. JADE/MIBS has been applied
to estimate the sources. Each graph shows one of the estimated source symbol
streams.
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Figure 7.4: 4 × 4 Tx/Rx simulation using STBC with a QAM symbol set. Four
sources are linearly mixed by the channel matrix. A decoding process has been
applied. Each graph shows one of the estimated source symbol streams.

−2 −1 0 1 2
−2

−1

0

1

2

Real(S1)

Im
ag
(S

1
)

−2 −1 0 1 2
−2

−1

0

1

2

Real(S2)

Im
ag
(S

2
)

−2 −1 0 1 2
−2

−1

0

1

2

Real(S3)

Im
ag
(S

3
)

−2 −1 0 1 2
−2

−1

0

1

2

Real(S4)

Im
ag
(S

4
)

Figure 7.5: 4 × 4 Tx/Rx simulation using STBC with a QAM symbol set. Four
sources are linearly mixed by the channel matrix. Decoding has been applied,
followed by JADE to estimate the sources. Each graph shows one of the estimated
source symbol streams.
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Figure 7.6: 4 × 4 Tx/Rx simulation using STBC with a QAM symbol set. Four
sources are linearly mixed by the channel matrix. Decoding has been applied,
followed by JADE/MIBS to estimate the sources. Each graph shows one of the
estimated source symbol streams.
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Figure 7.7: JADE source estimation error. Comparing use of incorrect gradient
expression (JADEinc) with correct gradient expression (JADEcor).
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Figure 7.9: Symmetric Capacity using Decode/JADE for QAM/OSTBC3.
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Figure 7.10: Symmetric Capacity using Decode/JADE for QAM/OSTBC4.
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Chapter 8

Conclusions

This project set out to advance the field of communications surveillance theory

and techniques. A particular focus was established for the problem of MIMO

wireless communications eavesdropping, with a view to determining the informa-

tion rates that might be achievable by a passive eavesdropping receiver. A number

of original contributions, in the form of mathematical tools and techniques that

enable the study and analysis of the eavesdropping problem, have been presented

and several of these have resulted in the publications listed in the front matter of

this thesis.

The thesis has been presented in a number of parts. In Part I Preliminaries,

preliminary material was presented to provide a context for the remainder of the

thesis, to highlight relevant previous literature and identify areas of deficiency

that are addressed in subsequent chapters. Chapter 1 Introduction and Chapter 2

Literature Review together form Part I.

Part II Theory and Techniques, comprising Chapters 3 Information Theory

for Eavesdroppers, 4 Source and Channel Estimation and 5 Copula Techniques

for Modelling Channel Dependence, concerned the development of the theory

required for undestanding and analysing MIMO wireless communications eaves-

dropping information rates.

In Chapter 3 expressions for MI are derived, with some simplifying assump-

tions, so that a comparison between the MI available to an intended receiver may

be compared to the MI available to an unintended receiver or eavesdropper who,

it is generally assumed, has less prior information available. The case where there
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has been an unknown unitary precoding, such as for SVD processing, or through

the use of a BSS technique, such as ICA, was also considered in Chapter 3. An

alternative model for analysing the unknown unitary transformation problem was

described in Chapter 3. This model employed the concept of a hypershere and

the resulting expressions provided some insight into the relationship between the

partially informed (eavesdropper) receiver and the fully informed (intended) re-

ceiver, for a general array dimension. Chapter 4 considered the set of fundamental

states of knowledge for an eavesdropping system and derived MLE expressions for

source and channel estimation and performance bounds in the form of a Cramér-

Rao Lower Variance Bound (CRLVB) for parameter estimation. A CRLVB for joint

complex-valued source and complex-valued channel estimation, using BSS tech-

niques and the GG pdf, was also derived in Chapter 4. The results of Part II are

used in subsequent chapters to provide theoretical performance curves for com-

parison with Monte Carlo simulation results.

Copula techniques were introduced in Chapter 5 as a technique for mod-

elling source dependence introduced by the propagation channel or through

cross-coupling inherent in the transmit or receive antenna arrays. A method was

described for modelling a complex-valued source and channel MIMO link where

the sources could experience a range of different fading distributions e.g. Nak-

agami fading and the structure of the dependence could be modelled as a chosen

multivariate pdf e.g. multivariate Normal. Monte Carlo simulations were designed

and performed to analyse the performance of BSS, representing an eavesdropping

receiver, as the channel dependence is increased. As expected, the information

rate obtained was found to reduce as the channel correlation increased.

In Part III Discrete Source Recovery, the theory developed in Part II was put

to use in analysing the performance of a receiving system intercepting MIMO

wireless digital communication signals. Whereas in previous chapters the sources

were modelled using the GG distribution, this chapter considered the more real-

istic scenario where the sources were streams of symbols taken from discrete con-

stellation sets such as those used for PSK and QAM modulations. For the purpose

of comparison and analysis Monte Carlo simulations were performed covering a

range of snrs and source data block lengths as a function of source kurtosis.

In chapter 7 a specific type of digital communications signal was studied i.e.

the OSTBC signal, a coding scheme commonly described in the literature, for
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CHAPTER 8. CONCLUSIONS

application in MIMO communication systems. It was shown how knowledge of

the structure of this signal could be exploited so that a properly configured receiv-

ing system could process the observed data to provide a suitable input to a BSS

algorithm and hence improve the eavesdropper’s source recovery performance.

In short this thesis has combined theory and techniques to provide a toolbox

for analysing the MIMO wireless communications eavesdrop problem.
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Chapter 9

Further Work

Throughout the work for this thesis some ideas were considered, explored and

then either rejected as being too difficult, required too much time to develop or

perhaps unlikely to contribute directly to the direction that the thesis seemed to be

taking at the time. Here we briefly summarise those problems or ideas considered

worthy of further analysis and proposals for potentially interesting future research.

• Information geometry has recently become a topic of some interest for sig-

nal processing applications. A particularly relevant example is described by

Zheng and Tse in [120], where a geometric interpretation for multi-antenna

channel capacities was described. If time had permitted then this model

would have been explored further as an alternative method for deriving

eavesdropper information rates.

• Copula theory was introduced in Chapter 5 primarily as a means for mod-

elling channel dependence. It was also briefly considered as an alterna-

tive to the BSS algorithms that have been studied. However some draw-

backs were discovered in implementing this approach: the independence

tests were inefficient and no more successful than second order tests e.g.

correlation. A study using sources that have some temporal structure or

dependence is required to establish if the copula based approach is more

appropriate for source signals of this type.

• Some consideration of the design of Gaussian sources with hidden structure

could lead to waveforms or distributions that provide enhanced secrecy.
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CHAPTER 9. FURTHER WORK

• Complex variants of the copula families do not appear to be available. Cop-

ulas for complex-valued data could prove to be useful in a range of applica-

tions.

• The present study has focussed on the application of HOS based approaches

for solving the BSS problem. However these approaches are unable to sep-

arate mixtures of Gaussian sources. An investigation into the application

of SOS based methods is warranted and, most importantly, could provide a

means for separating Gaussian sources.

• In Chapter 7 a method for preprocessing the observed signals was developed

for the specific case of OSTBC signals. While this is considered to be the

type of coding most amenable to such a technique, some benefit might be

gained by examining other STC schemes.

• The implications for an eavesdropper when the intended users employ se-

crecy techniques in a MIMO wireless communications link, have not been

addressed here. Examples of such secrecy techniques have been described

by Negi & Goel [75], Li & Ratazzi [60]. This might form a substantial project

in its own right.
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Appendix A

The Wire-Tap Channel

Figure A.1: Wyner’s achievable (R,d) region.

Wyner showed that is possible to encode data in such a way that the wire-

tapper’s level of confusion will be as high as possible and characterised the set

of achievable transmission rate / wire-tapper equivocation pairs (R, d) as shown

in figure A.1. He defines the equivocation ∆ = 1
K
H(SK |ZN) and proves the

following theorems:

Wyner Theorem: For the set R of achievable (R, d) pairs is equal to

R̄ , {(R, d) : 0 5 R 5 CM , 0 5 d 5 HS, Rd 5 HSΓ(R)} (A.1)

Wyner’s WTC has subsequently been recognised as a form of degraded broad-
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A.1. SIMPLIFIED EXPLANATION OF THE WTC

cast channel (Leung-Yan-Cheong & Hellman [59]), the difference being that one

information rate is to be maximised and the other minimised. (Leung-Yan-Cheong

& Hellman) Wyner determined that the achievable (R, d) region when both chan-

nels are DMC.

A.1 Simplified Explanation of the WTC

Figure A.2: Three Random Variables

Figure A.2 shows the most general representation for three random variables.

We first note that the WTC is a Markov process: X → Y → Z and its Venn

diagram representation is shown in figures A.3 and A.4.

Figure A.3: MC/WTC - 3 variables. Figure A.4: MC/WTC - 4 variables.

Using the figures we may make the following observation: for a large enough
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APPENDIX A. THE WIRE-TAP CHANNEL

value of N (yet to be determined) we may say that:

H(S|Z) 6 NI(X;Y |Z), (A.2)

which may be written as:

K

(
1

K
H(S|Z)

)
6 NI(X;Y |Z) (A.3)

(
HSK

N

)(
1

K
H(S|Z)

)
6 HsI(X;Y |Z) (A.4)

R∆ 6 HSI(X;Y |Z). (A.5)

This very nearly equates to the result obtained by Wyner with the differences

being ∆ in place of d and I(X;Y |Z) in place of Γ(R). However we may now

interpret the theorem as follows: it is possible, by choosing N large enough, to

communicate reliably and ensure that the wire-tapper’s equivocation is close to

HS.

Another way to understand the wire-tap channel (and perhaps the more gen-

eral case) is given in figure A.5. Consider the following:

Figure A.5: Wire-Tap Channel - Capacity Diagram.

• The main channel input rate can take any value up to the main channel
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A.1. SIMPLIFIED EXPLANATION OF THE WTC

capacity CM with zero equivocation i.e. error free.

• If the input rate to the main channel is CM the input rate to the wire-tap

channel will also be CM but the equivocation at the WTC output will be

CM − CMW . At an input rate of CM the main channel has no freedom for

further coding to increase the WTC equivocation.

• If the input rate is decreased then the main channel will have some freedom

to code the message such that the WTC equivocation is increased.

• when the input rate is reduced to CM − CMW it is possible to code the

message such that the WTC equivocation is increased to the source entropy

HS or, if the channel was initially matched to the source, CM .

Hence the bold curve obtained helps to understand Wyner’s rate/equivocation

region.
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Appendix B

Rotation Entropy

The FastICA algorithm returns a channel matrix estimate which has an unknown

scale and permutation. To compare the source estimates with the original sources

we must first determine what the scale and permutation is and adjust the mixing

matrix accordingly. We employ the "nearest2.m" algorithm provided by Tichavsky

and Koldovsky [98] which finds the nearest matrix (in the Frobenius norm sense)

to the original matrix with the same rows (up to the signs and order). Of course

we have not yet factored in the uncertainty due to the unknown rotation (unitary

transformation) incurred by the ICA technique. This uncertainty, or entropy, leads

to a further decrease in the blind information. In [120] the authors show that the

entropy for an unknown unitary matrix U ∈ CM×T , where the row vectors span

the same subspace, can be determined from the logarithm of the volume of a

Grassmann manifold as

h(U) = log |G(T,M)| (B.1)

and where

|G(T,M)| = |S(T,M)|
S(M,M)

=

T∏
i=T−M+1

2πi

(i−1)!

M∏
i=1

2πi

(i−1)!

. (B.2)

S(T,M) is the stiefel manifold, defined as the set of all unitaryM×T matrices

i.e.

S(T,M) =
{
Q ∈ CM×T : QQ† = IM

}
(B.3)
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Appendix C

The Generalised Gaussian
Distribution

In many of the simulations that have been performed the sources were obtained

from the GG distribution, with zero-mean, unit variance, and parameterised by

α. For a scalar random variable which takes values x ∈ R, the GG distribution is

given by:

fα(x) =
αβ

2Γ
(

1
α

) exp {−[β|x|]α} , (C.1)

where

β =

√
Γ
(

3
α

)

Γ
(

1
α

) (C.2)

and α > 0 determines the Gaussianity of the distribution. When α = 2

the distribution is Gaussian, α = 1 produces a Laplacian distribution and when

α → ∞ the distribution becomes uniform. The kth absolute moment for the

distribution is given by

E
{
|x|k
}
α

=

∫ ∞

−∞
fα(x)dx =

1

βk
Γ
(
k+1
α

)

Γ
(

1
α

) (C.3)

and the score function for the distribution is

φα(x) =
|x|α−1sign(x)

E {|x|α} . (C.4)

153



APPENDIX C. THE GENERALISED GAUSSIAN DISTRIBUTION

Thus we find that

κα = E
{
φ2
α(x)

}
=

E {|x|2α−2}
[E {|x|α}]2

=





Γ(2− 1
α)Γ( 3

α)
[Γ(1+ 1

α)]
2 α > 1

2
,

+∞ otherwise.
(C.5)

With some further calculation it is possible to also show that ηα = α + 1. We

employ the cumulant-based definition of kurtosis where it is defined as the nor-

malised (by the square of the second cumulant κ2) fourth cumulant κ4 [69]:

kurtosis ,
κ4

κ2
2

. (C.6)

For a distribution with a zero-mean this becomes

kurtosis =
m4

m2
2

− 3, (C.7)

where m4, m2 are the 4th and 2nd–order moments respectively. The conversion

from α to kurtosis is derived from the moments of the distribution [24]:

kurtosis =
Γ
(

5
α

)
Γ
(

1
α

)

Γ2
(

3
α

) − 3. (C.8)

Figure C.1 shows a plot of kurtosis versus α, where we note that the kurtosis

is positive for α < 2 and the kurtosis is negative when α > 2. Figure C.2 shows

|kurtosis| versus α on a log scale to emphasize the negative kurtosis values.
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Appendix D

Inverse of FIM

The elements of FI were found to be given by

[FI]ij,kl = δilδjk +

[
1

2
(η − κ)− 2

]
δijkl + κδikδjl. (D.1)

FI is therefore a square matrix of dimension d2 × d2 with entries that take one of

four values:

[FI]m,n =





1
2
(η + κ− 2) if i = j = k = l,

κ if i = k, j = l, i 6= j,

1 if i = l, j = k, i 6= j,

0 otherwise.

(D.2)

The first two values: 1
2
(η + κ− 2) and κ occur on the main diagonal of FI. Since

FI is a real, symmetric square matrix it may be written as an eigendecomposition

i.e.

FI = QΛQT , (D.3)

where Λ is a diagonal matrix with entries ∈ {1
2
(η + κ − 2), κ − 1, κ + 1}, Λ =

diag{1
2
(η+κ−2), 1

2
(η+κ−2), . . . , κ−1, κ−1, . . . , κ+ 1, κ+ 1, . . .} i.e. the first d

entries are 1
2
(η+κ−2), the next n =

∑d
k=1 k entries are κ−1 and the last n entries

are κ+ 1. Q is a real square orthonormal matrix with entries ∈ {1,−1, 1√
2
,− 1√

2
}.

Each row of Q contains a 1 or −1 and a further two entries taken from { 1√
2
,− 1√

2
}.

The effect of Q is to permute the values 1
2
(η+κ−2) on the main diagonal and take
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sums and differences of κ − 1 and κ + 1 to obtain entries, with the value κ, also

on the main diagonal and off-diagonal entries with the value 1. The determinant

of FI is

det FI = det QΛQT = det Λ =
d2∏

k=1

λkk = 2−d(η + κ− 2)d(κ2 − 1)n, (D.4)

where n =
∑d

k=1 k. The inverse of FI is given by

F−1
I = QΛ−1QT (D.5)

where [Λ−1]kk = 1
λkk

. We find that the diagonal entries for F−1
I are given by

[F−1
I ]ii =





2
η+κ−2

for 1 + (i− 1)(d+ 1), i = 1, 2, . . . , d,

κ
κ2−1

otherwise.
(D.6)

Off-diagonal entries for F−1
I are ∈ {0, 1

κ2−1
}.
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Appendix E

Useful Result for GG Distribution

For the GG distribution we show that η = α+1. For real or imaginary components

η is defined as

η , E
{

(φu)2
}
, (E.1)

where

φ ,
−1

f(x)

∂f(x)

∂x
. (E.2)

η =

∫

R

t2φ2(t)f(t)dt. (E.3)

For the GG distribution η is found from

η =

∫

R

t2
[ |t|α−1sign(t)

E2
α {|t|α}

]2

f(t)dt =
1

E2
α {|t|α}

∫
|t|2αdt

= 2

[
βαΓ

(
1
α

)

Γ
(
1 + 1

α

)
]2 ∫ ∞

0

t2αf(t)dt

= 2 [αβα]2
∫ ∞

0

t2α

(
αβ

2Γ
(

1
α

) exp {−βα|t|α}
)
dt

=
α3β2α+1

Γ
(

1
α

)
∫ ∞

0

t2α exp {−βαtα} dt

=
α3β2α+1

Γ
(

1
α

) Γ
(
2 + 1

α

)

α
β−(2α+1) = α + 1. (E.4)
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Appendix F

Symmetric Capacity

Symmetric channel capacity is defined as having a channel probability transition

matrix whose rows are permutations of each other and the columns are permu-

tations of each other [26, chapt.8]. Slimane [89] has derived an expression that

provides an approximation for the symmetric capacity, for a single fading channel

and finite input alphabet. Slimane eqn(12) :

C∗(a) ≈ −1

q

q∑

i=1

log

(
1

q

q∑

j=1

e−a
2|∆ij |2

)
− 1

q

q∑

i=1

q∑

j=1

(
e−a

2|∆ij |2 1−α
2−α−e

−a2|∆ij |
2
)

∑q
l=1 e

−a2|∆il|2(1−α)
,

(F.1)

where :

q is the number of levels or points in the signal constellation.

a is the fading amplitude,

α = a2γo
2(1+a2γo)

,

γo is the average received snr per transmitted symbol, γo = Es
No

,

No is the noise power spectral density,

Es is the average energy per symbol,

∆ij ,
si−sj√
No

,

si is a transmitted symbol.
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APPENDIX F. SYMMETRIC CAPACITY

For the AWGN model used in the present study, a = 1 and we obtain the approx-

imate symmetric capacity values shown in figures F.1 and F.2, for PSK and QAM

modulation constellation types respectively.

We may use the symmetric capacity C(a) approximation to obtain an estimate

for the source entropy, for the case y = ax+ w, as

h(x) ≈ C(a) + h(x|y, a), (F.2)

where a is the fading amplitude and h(x|y, a) is derived from the covariance

matrix of the MLE for x given y and a. If the fading amplitude a = 1 then

h(x|y, a) = h(w) and h(w) = log2(πeσ2
w) bits. C(a) indicates the capacity or

information rate that we can expect for the timing offset simulations that we per-

form, where we study 16QAM and 16PSK source types with AWGN and varying

data lengths.

160



−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

SNR (dB)

C
ap

ac
ity

(b
its

/s
ym

bo
l)

2PSK
4PSK
8PSK
16PSK
Shannon Limit

Figure F.1: Symmetric Capacity for PSK Signals.
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Figure F.2: Symmetric Capacity for QAM Signals.
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Appendix G

Matrix Relationships

Several matrix relationships are required in this thesis. These relationships have

been gathered from the Matrix Cookbook [80], the Handbook of Matrices [63] and

Matrix Differential Calculus with Applications in Statistics and Economics [68].

G.1 Matrix Derivatives

a (1× 1) and B (n× p):

∂a

∂B
=




∂a
∂b1,1

∂a
∂b1,2

· · · ∂a
∂b1,p

∂a
∂b2,1

∂a
∂b2,2

· · · ∂a
∂b2,p

...
... . . . ...

∂a
∂bn,1

∂a
∂bn,2

· · · ∂a
∂bn,p



. (G.1)

a (m× 1) and B (n× p):

∂a

∂B
≡ ∂vec (a)

∂vecT (B)
=




∂a1,1

∂b1,1

∂a1,1

∂b2,1
· · · ∂a1,1

∂bn,p
∂a2,1

∂b1,1

∂a2,1

∂b2,1
· · · ∂a2,1

∂bn,p
...

... . . . ...
∂am,1
∂b1,1

∂am,1
∂b2,1

· · · ∂am,1
∂bn,p



. (G.2)

162



G.1. MATRIX DERIVATIVES

A (m× n) and B (n× p):

∂A

∂B
≡ ∂vec (A)

∂vecT (B)
=




∂a1,1

∂b1,1

∂a1,1

∂b2,1
· · · ∂a1,1

∂bn,p
∂a2,1

∂b1,1

∂a2,1

∂b2,1
· · · ∂a2,1

∂bn,p
...

... . . . ...
∂am,n
∂b1,1

∂am,n
∂b2,1

· · · ∂am,n
∂bn,p



. (G.3)

∂(XY) = (∂X)Y + X(∂Y) (G.4)

∂(ln(det(X))) = tr
(
X−1∂X

)
(G.5)

∂(tr (X)) = tr (∂X) (G.6)

∂(X−1) = −X−1(∂X)X−1 (G.7)

∂(tr
(
X−1

)
) = −tr

(
X−1(∂X)X−1

)
. (G.8)

X (m× n), A (p× n) and B (m× p):

∂tr
(
AXTB

)

∂X
= BA . (G.9)

X (m× n), A (p×m) and B (n× p):

∂tr (AXB)

∂X
= ATBT . (G.10)

X (m× n), A (m× n):

∂tr
(
XTA

)

∂X
=
∂tr
(
AXT

)

∂X
= A . (G.11)

X (m× n), A (m× n):
∂tr
(
X†A

)

∂X∗
= A . (G.12)

X (m× n), A (n×m):

∂tr (AX)

∂X
=
∂tr (XA)

∂X
= AT . (G.13)
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X (m×m):
∂tr (X)

∂X
=
∂tr
(
XT
)

∂X
= Im . (G.14)

X (m× n), A (p×m) and B (n× q):

∂AXB

∂X
= BT ⊗A . (G.15)

A (m× n), B (m× n), C (m× n):

∂tr
(
ATB�ATC

)

∂A
= B[In �ATC] + C[In �ATB] . (G.16)

A (m× n), B (n×m), C (n×m):

∂tr (AB�AC)

∂A
= [Im �AC]BT + [Im �AB]CT . (G.17)

A (m× n), B (m× n), C (m× n):

∂tr
(
A†B�A†C

)

∂A∗
= B[In �A†C] + C[In �A†B] . (G.18)

G.2 Kronecker Products

A (m× n), B (p× q), C (n× r) and D (q × s):

(A⊗B)(C⊗D) = AC⊗BD . (G.19)

A (m× n), B (n× p) and C (p× q):

vec (ABC) = (CT ⊗A)vec (B) . (G.20)

A (m× n) and B (n× p):

vec (AB) = (Ip ⊗A)vec (B) (G.21)

= (BT ⊗ Im)vec (A) (G.22)

= (BT ⊗A)vec (In) . (G.23)
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G.3. MISCELLANEOUS

A (m×m) and B (n× n):

(A⊗B)−1 = A−1 ⊗B−1 . (G.24)

A (m× n) and B (p× q):

(A⊗B)T = AT ⊗BT . (G.25)

A (m× n), B (n× p), C (p× q) and D (q ×m):

tr (ABCD) = vec
(
DT
)T

(CT ⊗A)vec (B)

= vec (D)T (A⊗CT )vec
(
BT
)
. (G.26)

A (m× n) and B (n×m):

tr (AB) = tr (BA) , (G.27)

= vecT
(
AT
)

vec (B) , (G.28)

= vecT
(
BT
)
vec (A) . (G.29)

A (m×m) and B (n× n):

tr (A⊗B) = tr (A) tr (B) . (G.30)

G.3 Miscellaneous

A (m×m), c ∈ C:

det(cA) = cm det(A) . (G.31)

Im (m×m):

det(Im) = 1 . (G.32)

A (m×m) and B (n× n):

det(A⊗B) = det [det(A)]n [det(B)]m . (G.33)
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For an (m× n) matrix A, Kmn is an mn×mn commutation matrix such that

Kmnvec (A) = vec
(
AT
)
. (G.34)

In section 4.5 it is stated that

E {φriuri} = E
{
φiiu

i
i

}
= δij. (G.35)

This may be derived via integration by parts, as follows

E {φriuri} = −
∫
px(u

r
i )
∂ ln px(u

r
i )

∂uri
uridu

r
i

= −
∫
px(u

r
i )

1

px(uri )

∂px(u
r
i )

∂uri
uridu

r
i

= −
∫
∂px(u

r
i )

∂uri
uridu

r
i

= −px(uri )uri |∞−∞ +

∫ ∞

−∞
px(u

r
i )
∂uri
∂uri

duri

= −px(uri )uri |∞−∞ +

∫ ∞

−∞
px(u

r
i )du

r
i

= 0 + 1, (G.36)

assuming px(uri ) and uri are continuously differentiable and px(u
r
i ) vanishes

to zero at ±∞.
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Appendix H

Derivation of JADE Gradient

Defining Φ = W†M̂iW, where W is unitary i.e. W ∈ U(n), then the JADE

algorithm minimises the following cost function [3]

CJADE =
m∑

i=1

tr
(
ΦΦ† −Φ�Φ†

)
(H.1)

=
m∑

i=1

tr
(
ΦΦ†

)
−

m∑

i=1

tr
(
Φ�Φ†

)
, (H.2)

with respect to W∗. The eigenmatrices M̂i are estimated from the fourth order

cumulants of the whitened observations [19]. The cost function is then used to

diagonalize the eigenmatrices.

The Euclidean gradient of the JADE cost function, w.r.t. W∗, is obtained from

GJADE = 2
∂CJADE
∂W∗

= 2
m∑

i=1

∂tr
(
ΦΦ†

)

∂W∗ + 2
m∑

i=1

∂tr
(
Φ�Φ†

)

∂W∗

= 2
m∑

i=1

∂tr
(
W†M̂iM̂

†
iW
)

∂W∗ + 2
m∑

i=1

∂tr
(
W†M̂iW �W†M̂†

iW
)

∂W∗

(H.3)
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APPENDIX H. DERIVATION OF JADE GRADIENT

Making use of the matrix relationship:

∂tr
(
A†B

)

∂A∗
= B, (H.4)

the first term on the right hand side (RHS) of equation H.3 is

2
m∑

i=1

∂tr
(
W†M̂iM̂

†
iW
)

∂W∗ = 2
m∑

i=1

{
M̂iM̂

†
iW
}
. (H.5)

The second term on the RHS of equation H.3 is found, using the relationship

∂tr
(
A†B�A†C

)

∂A∗
= B[I�A†C] + C[I�A†B], (H.6)

which is derived in Section H.1 below. Hence

∂tr
(
W†M̂iW �W†M̂†

iW
)

∂W∗ =
{

M̂iW[I�W†M̂†
iW] + M̂†

iW[I�W†M̂iW]}
}
.

(H.7)

Therefore we find that

GJADE = 2
m∑

i=1

{
M̂iM̂

†
iW − M̂iW[I�W†M̂†

iW]− M̂†
iW[I�W†M̂iW]

}
.

(H.8)

H.1 Derivation of Equation I.6

The relationship shown in equation H.6 does not appear to exist in the open

literature and so a derivation is presented here. We proceed by finding

∂tr
(
ATB�ATC

)

∂am,n
≡
[
∂tr
(
ATB�ATC

)

∂A

]

m,n

. (H.9)

This allows us to use the known relationships

∂(tr (X))

∂z
= tr

(
∂X

∂z

)
(H.10)
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H.1. DERIVATION OF EQUATION I.6

and
∂(X�Y)

∂z
=
∂X

∂z
�Y + X� ∂Y

∂z
, (H.11)

where z is a scalar, so that

∂tr
(
ATB�ATC

)

∂am,n
= tr

(
∂(ATB)

∂am,n
�ATC + ATB� ∂(ATC)

∂am,n

)

= tr
(
∂(ATB)

∂am,n
�ATC

)
+ tr

(
ATB� ∂(ATC)

∂am,n

)
.

(H.12)

Now
∂[ATB]i,j
∂am,n

= δi,nbm,j, (H.13)

which yields a matrix, of the same dimensions as A, with all rows zero except

the nth row. The action of the trace operator then is to select the non-zero term in

position n, n of its matrix argument. Therefore

∂tr
(
ATB�ATC

)

∂am,n
= bm,n[ATC]n,n + cm,n[ATB]n,n, (H.14)

from which we deduce that

∂tr
(
ATB�ATC

)

∂A
= B[In �ATC] + C[In �ATB] , (H.15)

or
∂tr
(
A†B�A†C

)

∂A∗
= B[In �A†C] + C[In �A†B] . (H.16)
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Appendix I

Mutual Information Gradient

For an m-dimensional random vector u, the MI of its components is defined as

I(u) , E
{

log
p(u)∏m
i=1 p(ui)

}
. (I.1)

The MI can also be written in terms of entropy

I(u) =
m∑

i=1

H(ui)−H(u), (I.2)

where H(u) = −E {log p(u)}. The source separation problem may be obtained

by minimising the MI. We employ a gradient-based method which requires differ-

entiating I(Wy) w.r.t. W∗ and we find that this is a function of the score function.

So with

I(u) = E {log p(u)} −
m∑

i=1

E {log p(ui)} , (I.3)

the demixing process requires u = Wy for source estimation. Since

p(u) =
p(y)

| det WW∗| , (I.4)

then

I(u) = E {log p(y)} − log | det WW∗| −
∑

i

E {log p(ui)} . (I.5)
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The gradient of I(u) w.r.t. W∗ is

∂I(u)

∂W∗ = −∂ log | det WW∗|
∂W∗ −

∑

i

∂E {log p(ui)}
∂W∗ , (I.6)

since E {log p(y)} does not involve W∗. The first term on the RHS of the above

equation is
∂ log | det WW∗|

∂W∗ = W−†. (I.7)

The second term requires first rewriting p(u) as p(u,u∗), via the Brandwood ana-

lyticity condition [5], so that

∑

i

∂E {log p(ui)}
∂W∗ =

∑

i

∂E {log p(ui, u
∗
i )}

∂u∗i

∂u∗i
∂W∗

= −ψ(u,u∗)y†, (I.8)

where ψ(u,u∗) = 1
2

[
E{∂px(uR,uI)}

∂uR
+ j E{∂px(uR,uI)}

∂uI

]
is a vector of complex score

functions [33]. The score functions can be calculated if the source distributions

are known or estimated directly from observed data using a method such as that

described in [105]. The MI gradient may now be written as

∂I(u)

∂W∗ = ψ(u,u∗)y† −W−†. (I.9)

Since W is unitary, W†W = I, the matrix inversion can be avoided by writing:

∂I(u)

∂W∗ W†W =
[
ψ(u,u∗)u† − I

]
W, (I.10)

so that
∂I(u)

∂W∗ =
[
ψ(u,u∗)u† − I

]
W. (I.11)
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Appendix J

Source and Channel Estimation Code

Listed below is a Matlab implementation of the CG algorithm using the JADE cost

function and gradient derived in Chapter 7. The conjugate gradient optimization

algorithm is based on the algorithm described in [2].

%=======================================

function [Ahat,Shat,W]=cgjade(Yo,m);

%=======================================

% Yo = mixed observed data

% N = number of sensors

% M = number of sources

% Ahat = estimated mixing matrix

% Shat = estimated sources

% W = estimated demixing matrix

n=m; N=length(X);

%=======================================

% Whitening

%=======================================

IWht=sqrtm((Yo*Yo')/N);

Wht=inv(IWht); Y=Wht*Yo;

%======================================

% Estimate Cumulants

%=======================================

Q=estcum(Y,m,N);

%=======================================

% Estimate Eigenmatrices
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%=======================================

Mhat=esteig(Q,m);

%=======================================

% Conjugate Gradient search

%=======================================

W=cgrad(Mhat,m);

Ahat=IWht*W;

Shat=W'*Y;

W=W'*Wht; return

%=======================================

%=======================================

function W=cgrad(Mhat,m)

%=======================================

% Based on algorithm described in

% abrudanmarch2009, abrudanmarch2008:

% Efficient Riemannian Algorithms for

% Optimization Under Unitary Matrix

% Constraint.

% Uses Armijo type step size from abrudanmarch2008:

% Steepest Descent Algorithms for Optimization

% Under Unitary Matrix Constraint

%=======================================

asmax=20;

kmax=100;

tol=1e-12;

gprod=1;

W=eye(m);

mu=0.1;

k=0;

while (k<kmax)&&(gprod>tol)

if (mod(k,m*m)==0)

gam=jadegrad(Mhat,W,m);

G=gam*W'-W*gam';

H=G;

end

gprod=gg(G,G);

if (gprod<tol)
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return;

else

P=expm(-mu*G);

Q=P*P;

as=0;

while (jc(W,Mhat,m)-jc(Q*W,Mhat,m)>=mu*gg(G,G))

P=Q;

Q=P*P;

mu=2*mu;

as=as+1;if (as>=asmax),return;end

end

as=0;

while (jc(W,Mhat,m)-jc(P*W,Mhat,m)<0.5*mu*gg(G,G))

P=expm(-mu*G);

mu=0.5*mu;

as=as+1;if (as>=asmax),return;end

end

W=P*W;

gam=jadegrad(Mhat,W,m);

G0=G;

G=gam*W'-W*gam';

prgam=gg(G-G0,G)/gg(G0,G0);

H=G+prgam*H;

if gg(H,G)<0

H=G;

end

end

k=k+1;

end; return

%=======================================

%=======================================

function g=gg(G1,G2)

%=======================================

g=0.5*real(trace(G1'*G2)); return

%=======================================

%=======================================
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function c=jc(W,Mhat,m)

%=======================================

c=0;

for k=1:m:m*m

Mh=Mhat(:,k:k+m-1);

F=abs(W'*Mh*W).^2;

f1=sum(sum(F));

f2=trace(F);

c=c+f1-f2;

end; return

%=======================================

%=======================================

function G=jadegrad(Mhat,W,m)

%=======================================

I=eye(m); G=zeros(m);

for k=1:m:m*m

Mh=Mhat(:,k:k+m-1);

g1=Mh*Mh'*W;

g2=Mh*W*(I.*(W'*Mh'*W));

g3=Mh'*W*(I.*(W'*Mh*W));

G=G+g1-g2-g3;

end

G=2*G; return

%=======================================

%=======================================

function Q=estcum(Y,m,N)

%=======================================

% From "jade.m" by J.F. Cardoso, Nov. 1997

%=======================================

R=(Y*Y')/N;

C=(Y*Y.')/N;

Yl=zeros(1,N);

Ykl=zeros(1,N);

Yjkl=zeros(1,N);

Q=zeros(m*m*m*m,1) ;

indx=1;
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for lx=1:m; Yl=Y(lx,:);

for kx=1:m; Ykl=Yl.*conj(Y(kx,:));

for jx=1:m; Yjkl=Ykl.*conj(Y(jx,:));

for ix=1:m;

q1=(Yjkl*Y(ix,:).')/N;

q2=R(ix,jx)*R(lx,kx);

q3=R(ix,kx)*R(lx,jx);

q4=C(ix,lx)*conj(C(jx,kx));

Q(indx)=q1-q2-q3-q4;

indx=indx+1;

end;end;end;end; return

%=======================================

%=======================================

function M=esteig(Q,m)

%=======================================

% From "jade.m" by J.F. Cardoso, Nov. 1997

%=======================================

[U,D]= eig(reshape(Q,m*m,m*m));

[la,K]=sort(abs(diag(D)));

M=zeros(m,m*m);

Z=zeros(m);

h=m*m;

for u=1:m:m*m,

Z(:)=U(:,K(h));

M(:,u:u+m-1)=la(h)*Z;

h=h-1;

end; return

%=======================================
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Appendix K

MI Source and Channel Estimation
Code

Listed below is a Matlab implementation of the CG algorithm using the MI cost

function and gradient. The conjugate gradient optimization algorithm is based on

the algorithm described in [2].

%================================================

function [pdfs,scores,SXS]=smf(X)

%================================================

% Est score function using Savitzky-Golay filter

%================================================

%

%================================================

dofigs=0;

i=sqrt(-1);

[m,n]=size(X);

if n>m

X=X.';

end

cmplx=0;

if ~isreal(X);

X=[real(X) imag(X)];

cmplx=1;

end

[m,n]=size(X);
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SXS=sort(X);

pdfs=zeros(m,n);

scores=zeros(m,n);

for kk=1:n

SX=SXS(:,kk);

%================================================

% histogram parameters

%================================================

k=300; a=min(SX); b=max(SX);

%================================================

% inter-bin distance

%================================================

d=(b-a)/(k-3);

%================================================

%

%================================================

M=zeros(k,1);

M=linspace(a-d,b+d,k)';

C=zeros(k,1);

C=histc(SX,M)/m;

%================================================

%

%================================================

pord=51;

ford=9;

sord=ford-3;;

pdf=savgol(C,pord,1,0);

score=savgol(log(pdf),ford,2,1)/d;

pdf=pdf(sord:end-sord);

score=score(sord:end-sord);

M=M(sord:end-sord);

%================================================

% interpolate for the density at points X

%================================================

probdens=zeros(m,1);

probdens=interp1(M,pdf,SX,'cubic','extrap');

scr=zeros(m,1);

scr=interp1(M,score,SX,'cubic','extrap');
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%================================================

%

%================================================

pdfs(:,kk)=probdens;

scores(:,kk)=scr;

end % kk

%================================================

%

%================================================

if cmplx

n=floor(n/2);

pdfs=pdfs(:,1:n)+i*pdfs(:,n+1:2*n);

scores=scores(:,1:n)+i*scores(:,n+1:2*n);

SXS=SXS(:,1:n)+i*SXS(:,n+1:2*n);

end

%================================================

return

%================================================

%================================================

function [Ahat,Shat]=cgmi(X,A,scores,scsupport);

%================================================

global scrs scsup

scrs=scores; scsup=scsupport;

[m,n]=size(X); i=sqrt(-1);

%================================================

% Whitening

%================================================

IWht=sqrtm((X*X')/n);

Wht=inv(IWht);

Y=Wht*X;

%================================================

% Conjugate Gradient search

%================================================

W=cgrad(Y);

Ahat=IWht*W;

Shat=W'*Y;

%================================================
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return

%================================================

%================================================

function g=gg(G1,G2)

%================================================

g=0.5*real(trace(G1'*G2));

%================================================

return

%================================================

%================================================

function c=micost(W,Y)

%================================================

Zr=real(W'*Y);

Zi=imag(W'*Y);

Z=[Zr;Zi];

%================================================

% Calls MIhigherdim.m by

% A. Kraskov, H. Stogbauer, and P. Grassberger,

% Estimating mutual information.

% Phys. Rev. E 69 (6) 066138, 2004

%================================================

c1=MIhigherdim(Z,1,1,1);

%================================================

c=max(0,c1);

%================================================

return

%================================================

%================================================

function G=migrad(W,Y)

%================================================

global scrs scsup

[m,n]=size(Y);

Z=W'*Y;

yscores=fitscore(Z,scrs,scsup);

G=-(yscores*Z'/n-eye(m))*W;

180



%================================================

return

%================================================

%================================================

function W=cgrad(Y)

%================================================

% Based on algorithm described in

% abrudanmarch2008:

% Efficient Riemannian Algorithms for Optimization

% Under Unitary Matrix Constraint.

% Uses Armijo type step size from abrudanmarch2008:

% Steepest Descent Algorithms for Optimization

% Under Unitary Matrix Constraint

%================================================

[m,n]=size(Y);

asmax=10;

tol=1e-12;

gprod=1;

W=eye(m);

mu=0.1;

%================================================

k=0;

while (gprod>tol)

if (mod(k,m*m)==0)

gam=migrad(W,Y);

G=gam*W'-W*gam';

H=G;

end

gprod=gg(G,G);

if (gprod<tol) return;

else

P=expm(-mu*G);

Q=P*P;

as=0;

while (micost(W,Y)-micost(Q*W,Y)>=mu*gg(G,G))

P=Q;

Q=P*P;
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mu=2*mu;

as=as+1;if (as>=asmax),return;end

end

as=0;

while (micost(W,Y)-micost(P*W,Y)<0.5*mu*gg(G,G))

P=expm(-mu*G);

mu=0.5*mu;

as=as+1;if (as>=asmax), return; end

end

W=P*W;

gam=migrad(W,Y);

G0=G;

G=gam*W'-W*gam';

prgam=gg(G-G0,G)/gg(G0,G0);

H=G+prgam*H;

if gg(H,G)<0,H=G;end

end % else

k=k+1;

end % while

%================================================

return

%================================================

%================================================

function [yscores,SX]=fitscore(X,xscores,xsupport);

%================================================

[m,n]=size(X);

if n>m

X=X.';

end

i=sqrt(-1);

cmplx=0;

if ~isreal(X);

X=[real(X) imag(X)];

xscores=[real(xscores) imag(xscores)];

xsupport=[real(xsupport) imag(xsupport)];

cmplx=1;

end
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[m,n]=size(X);

yscores=zeros(size(X));

SX=zeros(size(X));

for k=1:n

yscores(:,k)=interp1(xsupport(:,k),xscores(:,k),X(:,k),'linear','extrap');

end

if cmplx

n=floor(n/2);

yscores=0.5*(yscores(:,1:n)+i*yscores(:,n+1:2*n));

end

yscores=yscores.';

%================================================

return

%================================================
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Copula Correlated Channel Code

Listed below is an Octave implementation of the technique for generating a cor-

related fading channel, described in Chapter 5.

%========================================================

function u=GenCopMIMO

%========================================================

% John Kitchen 16/July/2009

%

% calls "mvcoprnd.m" by Robert Kopocinski,

% Master Thesis: "Simulating dependent random variables using copulas.

% Applications to Finance and Insurance".

% matlab code available in "copula_functions.zip" from MatlabCentral

% http://www.mathworks.com/matlabcentral/fileexchange/15449

%========================================================

msize=2; % figure marker size

lwidth=2; % figure linewidth

i=sqrt(-1);

alpha=0;

rho=0;

omega=1;

nbin=200;

%fading='n';

%========================================================

disp('========================================================');

disp(['Copula families available are :']);

184



disp(['Clayton(C), Frank(F), Gumbel(G), Normal(N), Student-t(T)']);

disp('========================================================');

disp(['Fading Distributions available are :']);

disp(['Rayleigh(R), Nakagami(N)']);

disp('========================================================');

%disp(['Gaussian(G), Rayleigh(R), Nakagami(N)']);

%========================================================

% Set Parameters

%========================================================

family = input('Choose Copula Family [N] : ','s');

if (isempty(family)) family='n'; end

fading = input('Choose Fading Distribution [N] : ','s');

if (isempty(fading)) fading='n'; end

N = input('Enter Number of Data Samples to Input [1e4] :');

if (isempty(N)) N=1e4; end

M = input('Enter Array Size [2] :');

if (isempty(M)) M=2; end

switch lower(family)

case 'c',

alpha = input('Enter value for alpha (alpha>=0) [0] :');

if (isempty(alpha)) alpha=0; end

case 'f',

alpha = input('Enter value for alpha (-infty<alpha<infty) [0] :');

if (isempty(alpha)) alpha=0; end

case 'g',

alpha = input('Enter value for alpha (alpha>=1) [1] :');

if (isempty(alpha)) alpha=1; end

case 'n',

rho = input('Enter rho [eye(M)] :');

if (isempty(rho)) rho=eye(M); end

case 't',

rho = input('Enter rho [eye(M)] :');

if (isempty(rho)) rho=eye(M); end

end

%========================================================

% Verify Chosen Parameters. Quit if not happy!

%========================================================

[msr,nsr]=size(rho);
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vr=reshape(rho,1,msr*nsr);

disp('========================');

disp('Your selection is : ');

disp(['Copula Family : ',family]);

disp(['Fading : ',fading]);

disp(['Number of samples : ',num2str(N)]);

disp(['Array size : ',num2str(M)]);

disp(['Alpha : ',num2str(alpha)]);

disp(['Rho : ',num2str(vr)]);

disp('========================');

proceed='y';

proceed = input('Do You Wish to Continue? [(y)/n] : ','s');

if (proceed~='y')& (proceed~='Y')

disp('No :-( ');

return;

else

disp('Yes! :-) ');

end

%========================================================

%========================================================

switch lower(family)

case 'n'

cname='Gaussian'

u1 = mvcoprnd(cname,rho,N,M);

u2 = mvcoprnd(cname,rho,N,M);

case 't'

cname='T';

dof=1;

u1 = mvcoprnd(cname,rho,N,M,dof);

u2 = mvcoprnd(cname,rho,N,M,dof);

case {'c', 'f', 'g'}

switch lower(family)

case 'c', cname='Clayton';

case 'f', cname='Frank';

case 'g', cname='Gumbel';

end

u1 = mvcoprnd(cname,alpha,N,M);

u2 = mvcoprnd(cname,alpha,N,M);
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otherwise

error('Unrecognized copula type: ''%s''',family);

end

%========================================================

%========================================================

switch lower(fading)

case 'n'

fname='Nakagami';

X1 = gaminv(u1,M/2,omega/M); X1=sqrt(X1);

X2 = gaminv(u2,M/2,omega/M); X2=sqrt(X2);

case 'r'

fname='Rayleigh';

X1 = raylinv(u1,omega/M);

X2 = raylinv(u2,omega/M);

end

corrcoef(X1,X1)

corrcoef(X2,X2)

corrcoef(X1,X2)

%========================================================

%========================================================

Y11=sign(randn(N,1)).*X1(:,1);

Y21=sign(randn(N,1)).*X2(:,1);

Y12=sign(randn(N,1)).*X1(:,2);

Y22=sign(randn(N,1)).*X2(:,2);

Ya=Y11+i*Y21;

Yb=Y12+i*Y22;

ANGYa=angle(Ya); AYa=abs(Ya);

ANGYb=angle(Yb); AYb=abs(Yb);

[naa,ctraa] = hist(ANGYa,nbin);

[nampa,ctrampa] = hist(AYa,nbin);

[nab,ctrab] = hist(ANGYb,nbin);

[nampb,ctrampb] = hist(AYb,nbin);

npa=nakphase(ctraa,M);

npb=nakphase(ctrab,M);

nakampa=nakpdf(ctrampa,M,omega);

nakampb=nakpdf(ctrampb,M,omega);

%========================================================

%========================================================
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[n1,ctr1] = hist(X1(:,1),nbin);

[n2,ctr2] = hist(X2(:,1),nbin);

n1max=max(n1); n1=n1/n1max;

n2max=max(n2); n2=n2/n2max;

x1max=max(X1(:,1));

x2max=max(X1(:,2));

x1min=min(X1(:,1));

x2min=min(X1(:,2));

[p1,nvar]=nakpdf(ctr1,M/2,omega/2); p1=p1/max(p1);

[p2,nvar]=nakpdf(ctr2,M/2,omega/2); p2=p2/max(p2);

%========================================================

%========================================================

switch lower(family)

case {'c', 'f', 'g'}

parext=['Alpha = ',num2str(alpha)];

case {'n','t'}

parext=['Rho = [',num2str(vr),']'];

end

titletext=['Copula=',cname,', Fading=',fname,', N=',num2str(N),' , ',parext];

%========================================================

%========================================================

figure;

subplot(2,2,2);

plot(X1(:,1),X2(:,1),'*','markersize',msize);

axis([x1min x1max x2min x2max]);

h1 = gca;

xlabel(['X1 : ',fname]);

ylabel(['X2 : ',fname]);

title(titletext);

subplot(2,2,4);

plot(ctr1,n1,'b','linewidth',lwidth); hold on;

plot(ctr1,p1,'g','linewidth',lwidth);

axis([x1min x1max 0 max(n1)*1.1]);

h2 = gca;

subplot(2,2,1);

plot(-n2,ctr2,'b','linewidth',lwidth); hold on;

plot(-p2,ctr2,'g','linewidth',lwidth);

axis([-max(n2)*1.1 0 x2min x2max]);
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h3 = gca;

set(h1,'Position',[0.35 0.35 0.55 0.55]);

set(h2,'Position',[.35 .05 .55 .15]);

set(h3,'Position',[.1 .35 .15 .55]);

colormap([.8 .8 1]);

%========================================================

%========================================================

[n1,ctr1] = hist(AYa,nbin);

[n2,ctr2] = hist(AYb,nbin);

n1max=max(n1); n1=n1/n1max;

n2max=max(n2); n2=n2/n2max;

x1max=max(AYa);

x2max=max(AYb);

x1min=min(AYa);

x2min=min(AYb);

p1=nakpdf(ctr1,M,omega);

p2=nakpdf(ctr2,M,omega);

p1=p1/max(p1);

p2=p2/max(p2);

%========================================================

%========================================================

figure;

subplot(2,2,2);

plot(AYa,AYb,'*','markersize',msize);

axis([x1min x1max x2min x2max]);

h1 = gca;

xlabel(['Abs(a) : ',fname]);

ylabel(['Abs(b) : ',fname]);

title(titletext);

subplot(2,2,4);

plot(ctr1,n1,'b','linewidth',lwidth); hold on;

plot(ctr1,p1,'g','linewidth',lwidth);

axis([x1min x1max 0 max(n1)*1.1]);

h2 = gca;

subplot(2,2,1);

plot(-n2,ctr2,'b','linewidth',lwidth); hold on;

plot(-p2,ctr2,'g','linewidth',lwidth);

axis([-max(n2)*1.1 0 x2min x2max]);
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h3 = gca;

set(h1,'Position',[0.35 0.35 0.55 0.55]);

set(h2,'Position',[.35 .05 .55 .15]);

set(h3,'Position',[.1 .35 .15 .55]);

colormap([.8 .8 1]);

%========================================================

%========================================================

[n1,ctr1] = hist(ANGYa,nbin);

[n2,ctr2] = hist(ANGYb,nbin);

n1max=max(n1); n1=n1/n1max;

n2max=max(n2); n2=n2/n2max;

x1max=max(ANGYa);

x2max=max(ANGYb);

x1min=min(ANGYa);

x2min=min(ANGYb);

p1=nakphase(ctr1,M);

p2=nakphase(ctr1,M);

p1=p1/max(p1);

p2=p2/max(p2);

%========================================================

%========================================================

figure;

subplot(2,2,2);

plot(ANGYa,ANGYb,'*','markersize',msize);

axis([x1min x1max x2min x2max]);

h1 = gca;

xlabel(['Angle(a) : ',fname]);

ylabel(['Angle(b) : ',fname]);

title(titletext);

subplot(2,2,4);

plot(ctr1,n1,'b','linewidth',lwidth); hold on;

plot(ctr1,p1,'g','linewidth',lwidth);

axis([x1min x1max 0 max(n1)*1.1]);

h2 = gca;

subplot(2,2,1);

plot(-n2,ctr2,'b','linewidth',lwidth); hold on;

plot(-p2,ctr2,'g','linewidth',lwidth);

axis([-max(n2)*1.1 0 x2min x2max]);
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h3 = gca;

set(h1,'Position',[0.35 0.35 0.55 0.55]);

set(h2,'Position',[.35 .05 .55 .15]);

set(h3,'Position',[.1 .35 .15 .55]);

colormap([.8 .8 1]);

%========================================================

%========================================================

%========================================================

function np=nakphase(theta,m)

%========================================================

% John Kitchen 26/June/2009

%========================================================

% see Yacoub et al "Nakagami-m phase-envelope

% joint distribution"

% IEE Electronics Letters, vol.41, pp.259-261, March 2005.

%========================================================

%========================================================

p1=gamma(m)*abs(sin(2*theta)).^(m-1);

p2=2^m*gamma(m/2)*gamma(m/2);

np=p1./p2;

%========================================================

return

%========================================================

191



Appendix M

Blind Source Separation Algorithms

192



Algorithm 1 RADICAL Algorithm

1: Pseudocode for RADICAL based on Learned-MIller and Fisher [58].
2: Robust, Accurate, Direct ICA aLgorithm (RADICAL)

Require: Y is the p× n observation matrix.
Model is Y = AX.
A is an unknown m× p full rank matrix.
X is a p× p source matrix.
For each k, components of X(:, k) are statistically independent.
For each i, X(i, :) is a zero-mean source signal.
s = spacing size.
a = determines angular resolution for Jacobi rotations.

3: procedure WHITENING(Y)
4: Whiten the observation data
5: Ry = 1

n
YY†

6: EVD: Ry = EDE†

7: Whitening matrix: Ω = D−1/2E†

8: Z = ΩY
9: end procedure

10: procedure JACOBI ROTATIONS(Z)
11: V = Ip
12: for all pairs (i, j) do
13: find 2−D Jacobi rotation for Z(i, :), Z(j, :)
14: s.t. θ∗ = arg min(spacings-entropy(θ))
15: V = V × 2-D-Rotation(θ∗)
16: end for
17: end procedure

18: procedure ESTIMATES(V,Ω,Y)
19: X̂ = V†ΩY
20: Â = Ω−1V†

21: end procedure
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Algorithm 2 JADE Algorithm

1: Pseudocode for JADE based on Cardoso and Souloumiac [19].

Require: Y is the m× n observation matrix
Model is Y = AX + W.
A is an unknown m× p full rank matrix.
X is a p× n source matrix.
For each k, components of X(:, k) are statistically independent.
For each i, X(i, :) is a zero-mean source signal.
At most one source has a vanishing 4th-order cumulant.
W is a m× n matrix of spatially white noise. Σw = σ2

wIm
2: procedure WHITENING(Y)
3: Whiten the observation data
4: Ry = 1

n
YY†

5: EVD: Ry = EDE†

6: Whitening matrix Ω = D−1/2E†

7: Z = ΩY
8: end procedure
9: procedure CUMULANTS(Z)

10: Estimate the set of cumulant matrices from the whitened observations
11: Qz = Cum

(
zi, z

∗
j , z
∗
k, zl

)

12: EVD: Qz = EDE†

13: find p most significant eigen pairs:
{
λ̂r, M̂r|1 ≤ r ≤ p

}

14: set N =
{
λ̂rM̂r|1 ≤ r ≤ p

}

15: end procedure
16: procedure DIAGONALIZATION(N )
17: Jointly diagonalize the set N by a unitary matrix V,
18: equivalent to finding V = arg min

∑
i Off

(
V†QziV

)

19: repeat
20: for each pair of rows i and j, i 6= j do

21:
Find the Jacobi rotation that will minimize the sum of the ij
and ji elements in all cumulant matrices

22: if the rotation angle is above some threshold then
23: perform the rotation
24: end if
25: end for
26: until no rotations or maximum iterations performed
27: The unmixing matrix is the product of all the Jacobi rotations performed
28: end procedure
29: procedure ESTIMATES(V,Ω,Y)
30: X̂ = V̂†ΩY
31: Â = Ω+V†

32: end procedure

194



Algorithm 3 FASTICA Algorithm

1: Pseudocode for FASTICA based on Bingham and Hyvärinen [16].

Require: Y is the p× n observation matrix
Model is Y = AX.
A is an unknown p× p full rank matrix.
X is a p× n source matrix.
For each k, components of X(:, k) are statistically independent.
For each i, X(i, :) is a zero-mean source signal.
At most one source has a vanishing 4th-order cumulant.

2: procedure WHITENING(Y)
3: Whiten the observation data
4: Ry = 1

n
YY†

5: EVD: Ry = EDE†

6: Whitening matrix Ω = D−1/2E†

7: Z = ΩY
8: end procedure

9: procedure FIXED POINT ICA(Z)
10: Initialise: V = I, count = 0
11: repeat
12: for k = 1 to p do
13: v = V(:, k)
14: b = v†z
15: V(:, k) = E {zb∗g(|b|2)} − E {g(|b|2) + |b|2g′(|b|2)}v
16: end for
17: V = V(V†V)−1/2 . Symmetric decorrelation
18: count=count+1
19: until (count>maxcount) or V converges
20: end procedure

21: procedure ESTIMATES(V,Ω,Y)
22: X̂ = V†ΩY
23: Â = Ω−1V†

24: end procedure
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