
Computer-aided Diagnosis of Melanoma

Rahil Garnavi

Submitted in total fulfillment of the requirements

of the degree of

Doctor of Philosophy

August, 2011

Department of Electrical and Electronic Engineering

The University of Melbourne

Australia

Produced on archival quality paper





ABSTRACT

Malignant melanoma is one of the most common and the deadliest type of skin cancer.
In Australia, it represents 10% of all cancers and its incidence is four times higher than
in Canada, the UK and the US. The worldwide steady increase in incidence of melanoma
in recent years, its high mortality rate and the massive medical cost has made its early
diagnosis a continuing priority of public health. Melanoma survival rate depends highly
on its stage and thickness; advanced and thickened melanoma is still incurable, whereas
early detection of thin melanoma and immediate surgical excision of the lesion shows effec-
tive prognosis. However, early diagnosis of melanoma is not trivial even for experienced
dermatologists. Despite the use of advanced imaging technologies such as dermoscopy
and existing clinical diagnostic algorithms such as the ABCD rule of dermoscopy, clinical
diagnosis of melanoma is still challenging and its accuracy has been an issue of concern
(estimated to be about 75–85%) especially with equivocal pigmented lesions.

A computer-based melanoma diagnostic system is able to provide quantitative and
objective evaluation of the skin lesion versus the subjective clinical assessment. It allows
for reproducible diagnosis by diminishing the inter- and intra-observer variabilities found
in dermatologists’ examinations. It also automates the analysis, thereby mitigates the
amount of repetitive and tedious tasks to be done by physicians. Numerous groups have
developed automated and semi-automated computer-based methods to analyse skin lesions
and diagnose melanoma. However, the diversity of existing problems makes any further
contributions greatly appreciated. Moreover, it is widely acknowledged that much higher
accuracy is required for computer-based system to be considered reliable and trustworthy
enough by clinicians, therefore be adopted routinely in their diagnostic process. With
the aim of improving some of existing methods and developing new techniques to facili-
tate accurate, fast and reliable computer-based diagnosis of melanoma, this thesis makes
contributions in various stages of development of a computer-aided diagnostic system of
melanoma; namely, image segmentation or border detection, feature extraction, feature
selection, and classification.

One of the contributions of this thesis is to develop a fast and accurate border
detection method. Variegation of the colour within the lesion and the diversity found in
human skin colour makes border detection a challenging process. To tackle this challenge, a
comprehensive colour optimisation procedure is conducted in this thesis. It incorporates a
number of colour spaces and a variety of dermoscopy images with respect to colour, texture
and shape, and demonstrates that the X colour channel from the XYZ colour space, and
XoYoR, which integrates the X and Y colour channels (from the XYZ colour space) with
the R colour channel (from the RGB colour space), exhibit the most optimal separation
between the lesion and background skin. The above-mentioned process is the main building
block of our initial border detection method, called the Global method. The Global
method applies global histogram thresholding on the optimal colour channels derived



from the colour optimisation process. This is followed by mathematical morphology and
connected component analysis which results in automated border-detection of the lesions
with an accuracy of approximately 97%. Comparative study carried out in this thesis,
involving two other state-of-the-art automated border-detection methods, demonstrates
that with a proper choice of colour channels the proposed Global border detection method,
in spite of its simplicity, is highly competitive with well-known skin lesion segmentation
methods. Furthermore, our proposed method is potentially faster as it mainly involves
scalar processing as opposed to vector processing performed in those methods.

Considering the practical nature of melanoma diagnosis which calls for extreme cau-
tion when excluding portions of the image, in practice dermatologists choose the outmost
detectable pigment to minimise the risk of incorrect diagnosis. Accordingly, the Global
method is further improved in this thesis to emerge into the Hybrid border-detection
method, which is shown to reduce the discrepancy between the manual and automatic
borders. The Hybrid method is comprised of two stages; in the first stage the Global
method is applied on a given lesion to detect an initial boundary, in the second stage
the local colour information around the initial boundary is used to expand the border and
form the final segmentation result. The proposed method is designed to increase specificity
in the first stage (global thresholding) and sensitivity in the second stage (adaptive local
thresholding). The performance of the method is quantitatively analysed and shown to be
highly effective with an accuracy of 98% on a set of 85 high-resolution dermoscopy images.
Taking manual borders drawn by an experienced dermatologist as the ground truth, ex-
perimental results show that border drawn by the Hybrid method are more accurate than
borders drawn by a less-experienced dermatologist. Moreover, comparative study carried
out in this thesis, involving three other state-of-the-art border-detection methods, shows
that the proposed Hybrid method is superior than (with respect to some of the evaluation
metrics) or highly competitive with those methods (with respect to other metrics).

Another contribution of this thesis is to provide a customised and comprehensive
evaluation metric for border-detection method in dermoscopy images. This need arises
from the fact that no objective performance assessment of the border-detection meth-
ods in dermoscopy images, which can genuinely reflect dermatologists’ perspective in the
melanoma diagnosis process, has been thoroughly investigated in the literature. Moreover,
in using the standard metrics (e.g. sensitivity, specificity, border error, etc.), compara-
tive studies can yield in paradoxical results, i.e., a border detection method is superior
to other method with respect to some metrics but inferior with respect to the others.
A problem therefore arises in determining which border-detection method yields better
overall results. To tackle this problem, two quantitative metrics of Weighted Performance
Index (WPI) and Optimised Weighted Performance Index (OWPI) have been proposed in
this thesis. The two indices are useful means of assessing performance of a given border
detection method, which also facilitates comparison between different border detection
methods. They take into account the existing standard metrics and have been designed
such that they accommodate dermatologists’ trends in defining the borders of melanoma
lesions. WPI and OWPI, both are weighted average of six standard metrics of sensitivity,
specificity, accuracy, border error, similarity and precision, with weights being embedded



within the six metrics. The weights are attached to the parameters of True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN) that exist within the six
metrics. In WPI the weights are fixed and adjusted based on dermatologists’ perspective
and their emphasis on each of the TP, TN, FP and FN parameters. In OWPI, optimal
weights are determined by formulating a constrained nonlinear multivariable optimisation
problem, with constrains designed based on dermatologists’ perspective. The optimisation
is done in order to provide weights which genuinely reflect the importance of each parame-
ter (e.g. TP) and metric (e.g. sensitivity) in the evaluation process. The optimal weights
are calculated by applying trust-region and interior-point optimisation methods on five
recent border detection methods using a set of 55 high-resolution dermoscopy images, and
the union of four sets of dermatologist-drawn borders as the ground truth. The results
are also confirmed by a grid-search procedure which results in same set of weights to be
attached to the four parameters of TP, TN, FP and FN.

Furthermore, a novel, comprehensive and highly effective feature extraction method
is proposed in this thesis, which involves a guided generation of categorised features, ex-
tracted from wavelet-based texture analysis, geometrical measurements, and time-series
analysis. The texture-based features are extracted from a tree-structured wavelet trans-
form, which uses four-level decomposition as opposed to three-level decomposition used
in the existing wavelet-based methods. It also uses four colour channels of red, green,
blue and luminance as opposed to only luminance in existing texture-based studies and
applies various statistical measurements and ratios on all the nodes of the wavelet-tree.
The border-based features are extracted by applying some of the standard geometrical
measurements such as area and irregularity index, complemented by new ones proposed
in this thesis, drawn from discussions with expert dermatologists, to analyse the overall
shape of the lesion. Moreover, we have proposed a time-series model of the lesion border
and have analysed it in spatial and frequency domains, using histogram, wavelet and sta-
tistical analysis. Time-series has been widely applied in statistics, signal processing, data
mining, mathematical finance and economy. Yet, to the best of our knowledge it has not
been previously applied to the application of melanoma diagnosis.

The next step involves feature selection and optimal integration of features, wherein
the Gain Ratio feature selection method is applied. As a filter-based method, it is known
to be computationally efficient, which is a vital factor considering the high dimensional
feature vector constructed in the feature extraction phase of this study, and we have shown
its superiority over a sample set of well-known filter-based feature selectors. Gain Ratio
has been successfully applied in various applications, yet to the best of our knowledge,
it has not been applied in previous melanoma-diagnosis studies. This thesis establishes
that the Gain Ratio feature selection method can deliver substantial improvement to the
system performance compared to using raw data (the whole of the constructed feature
vector). It yields in 12% increment in the classification accuracy, as well as a considerable
reduction in feature space dimension (by a factor of 214) and computation time (50 times).

Classification is the final step in the diagnosis process, wherein the optimal feature
set determined in the feature selection process, are utilised to differentiate melanoma from



benign lesions. In this thesis, four advanced classes of classification techniques; namely,
Support Vector Machine, Random Forrest, Logistic Model Tree and Hidden Naive Bayes
are employed. Support Vector Machine has been very popular and shown to be effi-
cient in computer-based melanoma diagnosis studies in the literature. The other three
classifiers are applied to the melanoma classification problem for the first time, in this
thesis. All these classifiers and more particularly the Random Forest classifier are shown
to be highly effective in the classification of melanoma lesions. The proposed diagnostic
system, which combines border detection, feature extraction, feature selection and clas-
sification, is applied on a set of 289 images (114 malignant, 175 benign) partitioned into
train, validation and test image sets. The system achieves remarkable results of 93.21%
accuracy, 90.90% sensitivity and 94.92% specificity, which compare favorably with and
outperform most state-of-the-art melanoma diagnosis systems reported in the literature.
An important finding is the clear advantage gained in optimally complementing texture
with border and geometry features compared to using texture information only. Another
interesting finding of this study is that in the melanoma classification application texture
features play the dominant role and make much higher contribution than border-based
features. Among border features, which include geometry and time series features, the
latter has been shown to be more informative and obtains higher evaluation ranks (Gain
Ratio values) than geometry in the melanoma diagnosis application.
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Chapter 1

Introduction

1.1 Motivation

Malignant melanoma is the deadliest form of skin cancer. According to recent figures [4],
the American Cancer Society reported 68,130 new cases of melanoma in the United States
in 2010, with 8,700 melanoma deaths (compared to 8,420 estimated deaths in 2009). In
Australia, melanoma is the most common cancer in people aged 15–44 years. It represents
10% of all cancers and its per-capita incidence is four times higher than in Canada, the UK
and the US, with more than 10,000 cases diagnosed and around 1250 deaths annually [5, 6].
The worldwide steady increase in incidence of melanoma in recent years [7], its high
mortality rate and the massive respective medical cost has made its early diagnosis a
continuing priority of public health.

Early diagnosis of melanoma is particularly important for two reasons [8, 9, 10]:
First, the prognosis of melanoma patients depends highly on tumor thickness. If melanoma
is detected at an early stage, when the tumor thickness is less than 1 mm, it is highly
curable, with a 10-year survival rate between 90 and 97%. However, thickened melanoma
is lethal and diagnosis at more advanced stage decreases the five-year survival rate to
10–15%. Second, melanoma is a skin cancer that in a majority of cases is localised to
the skin and is therefore detectable by simple examination. However, it is more likely
to metastasise and spread to other organs compared to other skin tumours. It has been
shown [7] that early detection campaign may lead to mortality reduction more quickly than
sun protection efforts. Nevertheless, the early diagnosing of melanoma is not always trivial
even for experienced dermatologists and more particularly for primary care physicians and
less-experienced dermatologists [11, 12, 13].

Much effort has been made in the last two decades to improve the clinical diagnosis
of melanoma. These include alternative imaging technologies such as dermoscopy [11]
and several diagnostic algorithms such as pattern analysis [14], the ABCD rule of der-
moscopy [15], Menzies method [16], 7-point checklist [17], and the CASH algorithm [18].
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Meta-analysis of studies conducted before 2001 showed that using the mentioned di-
agnstic algorithms along with dermoscopy improves the diagnosis of melanoma compared
to simple naked-eye examination or traditional clinical examinations by 5–30%, depending
on the type of skin lesion and the experience of the dermatologist [7, 11]. However, it has
been demonstrated that dermoscopy can reduce the diagnostic accuracy in the hands of
inexperienced dermatologists [19] or sometimes make no improvements compared with clin-
ical examinations [7]. Furthermore, clinical diagnosis of melanoma is inherently subjective,
highly reliant on clinical experience and visual perception of individuals, and its accuracy
has been an issue of concern, especially with equivocal pigmented lesions [11]. Despite
the use of dermoscopy, the accuracy of expert dermatologists in diagnosing melanoma is
still estimated to be about 75–85% [20]. This issue highlights the demand for receiving a
non-invasive in vivo second opinion, which increases the accuracy of diagnosis as well as
decreasing the number of false excision of benign lesions. The former leads to saving more
lives and the latter lessons the financial and emotional costs imposed on patients.

Furthermore, it is highly desirable and advantageous for dermatologist to have a
diagnostic system which could provide quantitative and objective evaluation of the skin
lesion, versus the subjective clinical assessment. Such a system would allow for repro-
ducible diagnosis by diminishing the inter-observer and intra-observer variabilities that
could be found in dermatologists’ diagnosis of lesions, especially the equivocal ones. It
can also automate the analysis, and thereby reduces the amount of repetitive and tedious
tasks to be done by physicians.

1.2 Research Objectives

Due to enhancements in skin imaging technology and image processing techniques in
recent decades, there has been a significant increase in interest in the area of computer-
aided diagnosis of melanoma. The aim of such systems is to remove subjectivity and
uncertainty from the diagnostic process, provide a reliable second opinion to dermatologists
and overcome the low reproducibility [21] found in clinical diagnosis. Through digital
representation of dermoscopy images and in-depth mathematical and statistical analysis
of colour and intensity of the lesion, it is possible that a computer-based diagnostic system
recognises features not detectable by human eyes, and therefore improves the diagnostic
accuracy over even well trained and experienced clinicians [22].

Several studies have developed automated and semi-automated computer-based sys-
tems to analyse skin lesions and diagnose melanoma [12]. The potential benefits of the
computerised solution to melanoma application and a number of other medical problems
are incalculable. However, the difficulties involved are also very great, and new con-
tributions are thus greatly appreciated and eagerly sought [23]. Moreover, it is widely
acknowledged that much higher accuracy is required for computer-based systems to be
reliable and trustworthy enough to be adopted routinely in the diagnostic process by clin-
icians [24, 25, 26, 27, 28]. The research reported in this thesis is an attempt to improve
some of the existing algorithms and develop new techniques to facilitate accurate, fast and
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reliable computer-based diagnosis of melanoma.

A computer-aided diagnosis of melanoma generally comprises several components:
image acquisition, image segmentation or border detection, feature extraction, feature
selection, and classification, as illustrated in Figure 1.1.

Image acquisition is a basic yet vital component for a computer-aided diagnosis
system of melanoma. In order to develop a reliable computer-based diagnostic system, it is
required to establish a unified systematic protocol under which a reasonably large collection
of good quality and well-illuminated skin images is acquired. In this study, we have
engaged a group of dermatologists, with different levels of expertise, from Royal Melbourne
Hospital (RMH), Melbourne, Australia, to establish such a unified and consistent image
acquisition procedure. In this respect, every reasonable effort has been made to capture
images under unified zooming and lighting conditions so that the acquired images serve
as good-quality input data to our diagnosis system. In the early stages of this research,
high resolution dermoscopy images were taken by professional photographers from Medical
Illustration, Royal Melbourne Hospital, using a Canon EOS 450D camera. However, at
some later stages of the work, due to time limitation and lack of sufficient data, we sought
to obtain images from other sources [29], whose contributions are gratefully appreciated.
It is worth commenting that the collection of images from different sources has been
advantageous as training a diagnostic system with images collected from various sources
and obtaining highly accurate results is an indication that the proposed diagnosis system
provides a robust and reliable performance in real-world application. Our preference of
using dermoscopy images over clinical images stems from the well established facts that:
(i) dermoscopy imaging reveals the internal structure of the skin lesion which is not visible
through naked eye [7, 11, 20], (ii) using dermoscopy images improve the diagnostic accuracy
by dermatologists [30], and (iii) computer systems using dermoscopy images obtain higher
diagnostic accuracy than those using clinical images [31].

The purpose of the image segmentation or border detection component is to separate
the region covered by the lesion from the surrounding normal skin. The output of this
procedure is a binary image with lesion pixels in black and background pixels in white,
or alternatively a vector encompassing the coordinates of pixels along the boundary of
the lesion. The determined lesion is the region of interest (ROI) to be analysed in the
subsequent components of the diagnostic system. After design and development of the
border detection algorithm proposed in this study, and testing the method on a sufficiently
large set of dermoscopy images taken from RMH, another data acquisition challenge at
this stage is to obtain a gold standard. The gold standard is a reference segmented
image required to validate and assess the performance of the proposed border detection
method. It was obtained for each image by holding a number of meetings with experienced
dermatologists as well as dermatology registrars1 from the RMH and have them manually
draw borders for the set of acquired images, using a Wacom Intuos A4 size Tablet PC.

1A Specialist Registrar or SpR is a doctor in the United Kingdom, Republic of Ireland, and Aus-
tralia who is receiving advanced training in a specialist field of medicine in order eventually to become a
consultant. In surgery, it is also referred to as Higher Surgical Trainee or HST.
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Figure 1.1: Schematic diagram for a computer-aided diagnosis of melanoma.
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The role of the feature extraction component is to extract various features from the
image of a skin lesion. These features are later utilised in the classification component to
decide whether the lesion is malignant or benign. In most computer vision systems, an
intermediate step is embedded between feature extraction and classification; i.e., feature
selection. The purpose of feature selection is to select an optimal subset of features which
provides the highest discriminating power when employed by the classification component.
In order to train the system and examine the performance of the proposed methods, the
images used for these three steps are required to have histopathological results which are
determined by biopsy or excision.

In the development of a computer-aided diagnosis of melanoma, as we proceed
through each of the above-mentioned stages of the diagnostic system, the following is-
sues arise:

1. A dermoscopy image of the skin generally comprises two main regions; a mole (the
skin lesion) and the surrounding skin. Our region of interest (ROI) in this application
is the skin lesion, over which the subsequent components of the diagnostic system
would operate and analyse. The issue that arises here is what is the best technique
to extract the ROI from a given dermoscopy image? This issue is addressed in the
segmentation (border detection) component of the diagnostic system proposed in
this thesis.

2. Once the borders of the lesions are drawn by using the border-detection method
developed in the previous step, the question that remains is how can we objectively
and quantitatively assess the correctness of the determined borders in reference to a
given gold standard? The accuracy of the detected border is essential for accurate
implementation of the subsequent parts of the system, i.e., feature extraction and
classification.

3. After performing the segmentation and determining the region of interest (the lesion)
on each dermoscopy image of the skin and validating its correctness, we need to look
into the lesion and define the indicative features which best characterise the skin
lesion. These features, which are generally derived from clinical criteria used by
dermatologists in their diagnosis practice, then need to be translated into computer
language. In other words, we need to find mathematical (objective) measurements
that capture the visual cues physician adopt in their visual (subjective) assessments.
This issue is addressed in the feature extraction component of the diagnostic system
proposed in this study.

4. The diagnostic features determined in the previous step, although useful, can some-
times be redundant and have counter-effects when combined. In other words, it is
possible to reduce or eliminate redundancies to arrive at an optimal set of features
which produces the most accurate results. This issue is addressed in the feature
selection component of the diagnostic system proposed in this study.

5. After defining the optimal set of features for characterising skin lesions we need to
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find a classifier which can effectively classify the given lesions into malignant and
benign classes. Furthermore, we need to quantitatively assess the performance of
the classification scheme. This issue is addressed in the classification component of
the diagnostic system proposed in this thesis.

As outlined above, this thesis aims to develop a fast and accurate border detection
method which produces borders very close to gold standards (i.e., those drawn by der-
matologists). The ultimate goal is to provide a practical, simple and easily reproducible
solution to the problem of border detection in dermoscopy images, and avoid complica-
tions as far as possible. This may be achieved by benefiting from basic yet useful image
processing techniques and integrating them in a systematic way to obtain highly accurate
results. In doing so, we have proposed a thresholding-based segmentation algorithm and
have demonstrated that this approach, even though fairly straightforward, outperforms
three state-of-the-art border detection methods in dermoscopy image (issue 1). Moreover,
we have developed a systematic approach to quantify the value and usefulness of a detected
border by an automated border detection method. Such objective evaluation provides a
basis for quantitative comparison between different border detection methods (issue 2).

Furthermore, after extensive meetings with a number of dermatologists and observ-
ing their approach to clinical assessment of different lesions and diagnosing melanoma
lesions in various stages, we have generated guided lists of various features which can
capture as much information about the lesion as possible (issue 3). Other objectives of
this study include determining the optimal subset of features with the highest contribu-
tions in the recognition of melanoma (issue 4). This has been achieved by applying an
entropy-based feature selection scheme. Lastly, through the application of four advanced
classification techniques, this work achieves a highly accurate recognition of melanoma
lesions which can classify dermoscopy images with high measures of sensitivity and speci-
ficity (issue 5). In the next section, thesis structure, we provide an insight into how each
of the above issues has been implemented.

1.3 Thesis Structure

The rest of the thesis is organised as follows:

Chapter 2 - “Background and Literature Review” provides background informa-
tion about melanoma and its stages, dermoscopy technology and clinical algorithms using
which dermatologists make diagnose. This is followed by presenting a survey of exist-
ing computer-based melanoma diagnosis systems covering all main components of such
systems such as segmentation, feature extraction, feature selection and classification.

Chapter 3 - “Segmentation or Border Detection” presents two automated methods
for skin lesion segmentation (border detection) in dermoscopy images; Global and Hybrid
method, the latter being an enhancement of the former. As a perquisite for performing the
segmentation, this chapter applies colour-space analysis to determine the most effective
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and discriminative colour channels for detecting borders in dermoscopy images. The chap-
ter also includes comparative studies between each of the proposed segmentation methods
(Global and Hybrid) and the state-of-the-art border detection methods. Moreover, an
analytical framework including statistical analysis, optimisation and cross validation, is
provided in this chapter to determine the optimal parameters for the proposed Hybrid bor-
der detection method. The two proposed border detection methods; Global and Hybrid,
are then compared through a newly introduced evaluation metric, Performance Index.
The last two sections of the chapter explore the objective evaluation of the border detec-
tion results in dermoscopy image analysis, and provide a comprehensive evaluation metric
which reflects dermatologists’ perspective in the melanoma recognition process. This is
done by introducing two performance indices of Weighted Performance Index and Opti-
mised Weighted Performance Index; the former directly uses expert opinion, whereas the
latter formulate a constrained nonlinear multivariable optimisation problem embedding
the dermatologists perspective into constraints of optimisation.

Chapter 4 - “Feature Extraction, Selection and Classification” presents a new, com-
prehensive and highly effective feature extraction method which combines features derived
from textural, border and geometry properties of the melanoma lesion. The textural fea-
tures are derived from tree-structure wavelet-decomposition; the border features are de-
rived from constructing a time-series model of the lesion border and analysing it in spatial
and frequency domains; and the geometry features are derived from shape indices. The
chapter then discusses the process of feature optimisation through applying the computa-
tionally efficient Gain-Ratio feature selection method. Moreover, the application of four
different classes of techniques for classification of melanoma lesion is discussed; Random
Forest, Logistic Model Tree and Hidden Naive Bayes, which have not been previously used
in existing computer-based melanoma recognition systems, and the Support Vector Ma-
chine classifier, which is very popular in melanoma related studies. Lastly, various streams
of feature optimisation are conducted and the results are compared.

Chapter 5 - “Summary and Conclusion” concludes this thesis with a review of
our contributions along with considerations of future work in the area of computerised
melanoma recognition and dermoscopy image analysis.

1.4 Research Contributions

1. Colour-channel optimisation for border detection in dermoscopy images.

2. Fully automated Global border-detection method in dermoscopy images based on
colour-space analysis and global histogram thresholding which exhibits high perfor-
mance in detecting the borders of melanoma lesions.

3. Comparative study with two other state-of-the-art skin lesion segmentation methods
which shows the superiority of the proposed Global method.

4. Fully automated Hybrid border-detection method based on adaptive histogram thresh-
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olding which is demonstrated to be highly effective in detecting the border of lesions
in dermoscopy images. It improves the Global border-detection method as shown
via statistical analysis.

5. Analytical framework including statistical analysis, optimisation and cross valida-
tion, in order to determine the optimal parameters for the proposed Hybrid border
detection method.

6. Comparative study with three other state-of-the-art skin lesion segmentation meth-
ods which shows the superiority of the proposed Hybrid method.

7. Objective evaluation of border-detection methods in dermoscopy images by propos-
ing evaluation metrics of Performance Index, Weighted Performance Index and Op-
timised Weighted Performance Index.

8. Guided generation of ternary list of features based on texture, geometry and time-
series information extracted from the interior pattern, overall shape and boundary
of the lesion.

(a) The use of four-level wavelet decomposition, incorporating four colour channels
as well as applying various statistical measurement and ratios on all nodes of the
fully extended wavelet tree for texture-based feature extraction. The proposed
texture-based method is shown to overcome three other wavelet-based methods.

(b) The use of time-series analysis in spatial and frequency domains and new geo-
metrical measures for border-based feature extraction.

9. The use of the computationally efficient Gain Ratio method for feature selection.

10. The use of four different highly efficient classifiers; Random Forest, Logistic Model
Tree and Hidden Naive Bayes, which have not been previously used in existing
computer-based melanoma recognition systems, and the Support Vector Machine
classifier, which is very popular in melanoma related studies.

11. The use of various effective ways of optimising the feature vector.

12. The proposed system achieves remarkable results of 93.21% accuracy, 90.90% sensi-
tivity and 94.92% specificity, which compare favourably with and outperform most
state-of-the-art melanoma diagnosis systems as reported in the literature.



Chapter 2

Background and Literature
Review

In this chapter we provide a concise background about the skin structure, formation of
melanoma cancer and the clinical diagnostic approach taken by dermatologists to detect it.
This is followed by a synopsis of existing computer-aided diagnostic systems of melanoma,
including image processing and machine learning based methods used in those systems.

2.1 Skin Structure and Melanoma

Human skin comprises three principal layers; namely, stratum corneum, epidermis, and
dermis (including papillary dermis and reticular dermis, as shown in Figures 2.1 and 2.2).
Each layer has a particular function and optical properties; (i) Stratum corneum, the top
layer, is a protective layer of keratin-impregnated cells, and varies in thickness. This layer
is optically neutral and only has a scattering effect to the incident light on the skin. (ii) The
epidermis layer is composed of connective tissue. It also contains melanocytes in its basal
layer. Melanocytes produce the skin pigment, melanin, which provides the tan or brown
colour of the skin. Melanocytes act as a filter and protect the skin from harmful Ultra-
Violet (UV) sun rays by increasing the production of melanin. Hence, the epidermis layer
strongly absorbs blue and UV light, and the extent of absorption depends on concentration
of melanocytes. Within the epidermal layer there is very little scattering, with the small
amount that occurs being forward directed. The result is that all light not absorbed by
melanin can be considered to pass into the dermis. (iii) Dermis consists of collagen fibres,
sensors, receptors, blood vessels and nerve ends. It has two sub layers: papillary dermis
and reticular dermis. Papillary dermis with collagen fibres scatters backward any incident
light, and more particularly the red spectrum, toward the surface of the skin. As infrared
is not absorbed by melanin and blood, this part of the spectrum is best for assessing
the thickness of papillary dermis. In the reticular dermis, the large size of collagen fibres
causes forward scattering, and any light which gets to this layer is passed deeper into the

9
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skin and does not contribute to the spectrum remitted from the skin [12, 32].

Figure 2.1: Multi-layered skin model [32]

Figure 2.2: Normal skin lesions and main components [12]

Pigmented skin lesions appear as patches of darker colour on the skin, caused by ex-
cessive concentration of melanin. In benign lesions such as common nevi, melanin deposits
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are normally found in the Epidermis layer. Malignant change of melanocytes results in
cutaneous melanoma, wherein the melanocytes reproduce melanin at an abnormally high
rate (see Figure 2.3).

Melanoma is the deadliest type of skin cancer. Its incidence and mortality rates have
increased steadily worldwide over the past several decades [7, 33, 34]. The melanoma sur-
vival rate depends highly on its stage and thickness. If the abnormally produced melanin
remains in the epidermis, melanoma is called in-situ. At this stage, it is not life-threatening
and early detection with immediate surgical excision of the lesion result in a good prog-
nosis [11, 35]. However, the early diagnosis of melanoma is not very straightforward and
there are always equivocal cases; the optical and visual properties of in-situ melanoma
resemble to those of normal but highly pigmented skin. When malignant melanocytes
penetrate into the Dermis, they leave melanin deposits there, thus resulting in changes in
skin colouration. This leads to advanced and thickened melanoma which may be incurable.
Table 2.1 shows different stages of melanoma.

Figure 2.3: Melanocytes and Melanoma on skin [36]

According to microscopic characterisations, there are four main types of melanoma;
namely, Superficial spreading melanoma (SSM), Nodular melanoma (NM), Lentigo ma-
ligna/lentigo maligna melanoma (LM/LMM), and Acral lentiginous melanoma (ALM).
SSM, which occurs mostly in middle-aged people, is considered the most common type
of melanoma, and accounts for about 70% of diagnosed cases [33]. However, a recent
study challenged this notion and found lentigo maligna to be the most common subtype
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Table 2.1: Various stages of melanoma.
Stage Description Survival Rate

Stage 0 Cancer cells are found only in the epidermis,
the outer layer of the skin. virtually 100%

Stage I Cancer has spread to the top of the dermis,
but not to lymph nodes. The tumor is less

than 1.5 millimetres thick. over 90%

Stage II Cancer has spread to the bottom part
of the dermis, but not to tissue below

the skin or to lymph nodes. The tumor is
larger, with a Breslow thickness ranging
from 1.5 millimeters to 4 millimeters. about 80%

Stage III Cancer has spread to lymph nodes near
the tumor site. about 50%

Stage IV Cancer has spread beyond nearby lymph
nodes to internal organs. about 20%

of melanoma among the cases studied [37].

Although the presence of melanin in the dermis is the most significant sign of
melanoma, it cannot be used as the only diagnosis measure as in-situ melanomas have no
dermal melanin. Furthermore, some benign nevi have dermal deposits, although their spa-
tial patterns tend to be more regular than in melanoma. In clinical diagnosis of malignant
melanoma the configuration of gross morphologic features within the lesion is assessed.
These features include shape, size, colouration, border and symmetry of the pigmented
lesion. The initial pattern of all types of melanoma, except for nodular melanoma, is radial
growth. Melanomas are diagnosed mostly when the diameter exceed 10 mm, while the
ones with diameter less than 6 mm are less frequently diagnosed. The most suspicious sign
of melanoma is changes in size and colour of the lesion. Both darkening and lightening
(loss of pigmentation) are alarming signs. Moreover, itching, tenderness, bleeding, and
elevation are symptoms of a more advanced melanoma. Other signs, some of which can
be indicative of melanoma in-situ, are thickening of the collagen fibres in the Papillary
dermis (fibrosis), increased blood supply at the lesion periphery (erythematic reaction),
and lack of blood within the lesion in the areas destroyed by cancer. The colours asso-
ciated with skin, which has melanin deposits in the dermis, normally show characteristic
hues not found in any other skin conditions, which provides an important diagnostic cue
for clinicians. If the clinical visual examination indicates a suspicion of skin cancer, his-
tology is required to make precise diagnosis [12, 33, 38]. In traditional clinical practice,
dermatologists diagnose melanoma accurately in 65%–80% of cases [39, 40].
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2.2 Enhancement in clinical diagnosis of melanoma

Owing to the urgency and importance of early and accurate diagnosis of melanoma, a
lot of effort has been made to enhance the clinical diagnosis of melanoma in the last two
decades. In doing so, dermoscopy technique and digital monitoring, as well as several
clinical approaches such as such as pattern analysis [14], ABCD rule of dermoscopy [15],
Menzies method [16], 7-point checklist [17], and the CASH algorithm [18] have been in-
troduced. More details about dermoscopy and clinical algorithms are presented in the
following.

2.2.1 Dermoscopy

Dermoscopy (also known as epiluminescence microscopy or ELM, dermatoscopy, and sur-
face microscopy) introduced in 1987, is a non-invasive in vivo clinical examination method.
This useful technique allows for a magnified and clear visualisation of the morphological
structures of the skin not visible to the naked eye. It is based on application of a liquid,
i.e., gel or oil or alcohol, to the skin and analysing the pigmented lesion with a hand-held
device, called dermatoscope. The liquid reduces the light reflection and makes the epider-
mis transparent, rendering the underlying structures visible. In expert hands and trained
general practitioners, dermoscopy has been shown to improve both the sensitivity and
specificity1 for the diagnosis of melanoma, elevating the diagnostic accuracy by 5%–30%,
which is also reflected in lower benign melanoma excision ratios and decreased excision
rates [30]. The improvement rate in diagnosis depends on the type of skin lesion and the
experience of the dermatologist [11]. Due to evidence of misdiagnosis in naked-eye ex-
aminations, Menzies [30] suggests that dermoscopy should be considered as the minimum
requirement for general dermatologists to clinically assess pigmented skin lesions. Besides,
the meta-analysis of all studies conducted before 2001 shows that higher performance is
obtained by dermoscopy employed by expert physicians, compared with traditional clini-
cal examination. However, literature reveals that using dermoscopy is less common in the
USA compared with Europe and Australia [7, 11, 20, 30].

Applying dermoscopy discloses different characteristics of the lesion, which are not
detectable by the naked eye. colours, blood vessels and various dermoscopic structures
are among these characteristics. Dermoscopic structures include pigment network, dots,
globules, branched streaks, streaks, structureless areas, blotches, regression, blue-white
veil, milia-like cysts, comedo-like openings, fingerprint-like structures, moth-eaten border,
fissure ridges or brain or leaf-like areas, spoke-wheel-like structures, large blue-grey ovoid
nests, and multiple blue-grey globules [41]. Figures 2.4 and 2.5 illustrate some of these
dermoscopic patterns. According to the agreement of the Consensus Net Meeting on

1Sensitivity and specificity are statistical measures of the performance of a binary classification test.
Sensitivity (also called recall rate) measures the proportion of actual positives which are correctly identified
as such (e.g. the percentage of melanoma lesions which are correctly identified as being malignant).
Specificity measures the proportion of negatives which are correctly identified (e.g. the percentage of
benign lesions which are correctly identified as being normal). See equations 3.9 and 3.10.
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Dermoscopy [20], a two-step procedure was defined to classify pigmented skin lesions:

1. Distinguishing between melanocytic and non-melanocytic lesions.

2. For those labelled as melanocytic, deciding the benignity or malignancy of the lesion.

As the title of this thesis implies, the second step is of interest to this study. To differen-
tiate between malignant and benign lesions, there exist different dermoscopic algorithms;
namely, pattern analysis [14], the ABCD rule of dermoscopy [15], the Menzies method [16],
the 7-points checklist [17], and the CASH algorithm [18]. A brief outline of each is given
in the following.

2.2.2 Pattern Analysis

The pattern analysis method was reportedly established by Pehamberger et al. [14] in
1987. It differentiates between benign and malignant lesions by analysing the morpholog-
ical features within the lesion. These features include specific patterns, colours, pigmen-
tation intensity, configuration and regularity of both the margin and the surface of the
pigmented skin lesion. It qualitatively evaluates the defined dermoscopic criteria, and is
claimed to exhibit the highest diagnostic accuracy compared to other clinical algorithms
(such as ABCD rule of dermoscopy, Menzies method, 7-points checklist, and CASH algo-
rithm), when applied by experienced dermatologists [7, 43]. Over a virtual gathering of 40
experienced dermatologists analysing 108 pigmented skin lesions, the consensus diagnosis
(the diagnosis agreed upon by over 50% of observers) showed a sensitivity of 100% and a
specificity of 88% [20].

2.2.3 ABCD Rule of Dermoscopy

The ABCD rule of dermatoscopy [15] is a semi-quantitative scoring system which classifies
the pigmented skin lesions into benign, suspicious and malignant classes. To analyse the
lesion the four features; asymmetry (A), border (B), colour (C), and differential structure
(D) are assessed over the lesion. The features’ values are then multiplied by particular
weighting factors and finally summed up to result in the Total Dermatoscopy Score (TDS),
given in Equation 2.1. A TDS value of less than 4.75 represents a benign lesion, a value
between 4.75 and 5.45 indicates a suspicious lesion and a value greater than 5.45 is highly
suspicious for melanoma.

TDS = [(A× 1.3) + (B × 0.1) + (C × 0.5) + (D × 0.5)] (2.1)

Asymmetry

In the ABCD rules of dermatoscopy [21], to quantify the asymmetry, the lesion is bilaterally
segmented by two perpendicular axes positioned such that the resultant asymmetry score
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Figure 2.4: Dermoscopic structures: (a) Blotchy area, (b) Branched streaks, (c) Fissures,
(d) Globules, (e) Leaf-like structures, (f) Radial streaming, (g) Negative network, (h)
Pigmented network [42].

is minimum. The asymmetry score is calculated according to the contour (shape), colour
distribution and internal structure of the lesion on either side of each axis. The asymmetry
score is 2, if both axes show asymmetry. Asymmetry on only one axis results in score of
1 and if there is no asymmetry on either of the axes, the score is 0. Stolz et al. [21] note
that in their experiment 96% of malignant melanoma cases had an asymmetry score of
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Figure 2.5: Dermoscopic structures: (a) Black dots, (b) Brown dots, (c) Grey granules,
(d) Blue granules, (e) and (f) Comedone-like structures, (g) Milia-like cysts, (h) Pseu-
dopods [42].

2, whereas only 24.2% of benign melanocyte nevi had such score. Since equivocal lesions
have symmetrical shapes, incorporating colour and structural asymmetry is very crucial
when scoring the symmetry of a lesion.
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Border

Stolz et al. [21] evaluate the border score by investigating the sharpness of the lesion border.
To do this, the lesion is divided into eight sections. In each section, a sharp, abrupt cut-off
of pigment pattern at the periphery of the lesion yields a score of 1, whereas a gradual,
indistinct cut-off within gets a score of 0. Thus, the maximum border score is 8, and the
minimum score is 0. Experiments show that the border score in melanocytic nevi is very
low (0 in 60% and 4 only in 10%), whereas in malignant melanomas, it is preponderantly
between 3 and 8. However, Stolz et al. [21] recognise the low reproducibility of border
evaluation and notice the difficulty in determining whether the border cut-off is abrupt or
not.

Colour

With the use of a dermatoscope, a wider colour spectrum of melanocytic lesions is de-
tectable, than with the naked eye. According to the ABCD rules of dermatoscopy [21],
to determine the colour score, a total number of six different colours; namely, white, red,
light-brown, dark-brown, blue-grey, and black, are considered. White colour should be
selected only if the area is lighter than the neighbouring skin. With the presence of all
of these six colours, the maximum colour score is 6, while the minimum score is 1. Their
experiments show 56% of melanocytic nevi with 2 colours, 29% with 3 colours, and 10%
with more than 3 colours. On the other hand, malignant melanomas manifest 3 or more
colours in 85% of the cases and 5 or 6 colours 40% of the time.

Differential Structure

Five structural features have been nominated by Stolz et al. [21] to evaluate the differen-
tial structures (also known as dermoscopic structure): namely, a pigment network, struc-
tureless or homogeneous areas, streaks, dots, and globules. Presence of more structures
increases the probability of malignancy of the lesion. In more than 90% of melanocytic
nevi, 3 or fewer structural components were observed, while in more than 70% of malig-
nant melanomas, 4 or more of them were found. Structural components can be detected
via dermatoscope by expert dermatologist but rarely by the naked eye. To calculate the
D score in the ABCD rule, structureless or homogenous areas must be larger than 10%
of the lesion. Streaks and dots are considered only when more than two are observed.
Finally, globules have to be more than one to be counted as a structural component. Thus
the maximum and minimum values for D score are 5 and 1, respectively.

Stolz et al. [15] recognise several differences between their proposed ABCD rule and
Friedman’s ABCD rule [44]. For example, Friedman’s ABCD rule emphasises shape sym-
metry, while the main focus of Stolz’s algorithm is on colour and structure symmetry.
Moreover, Friedman investigates the border irregularity, while Stolz analyses the abrupt
pigment pattern at the border. Finally, while the D feature is differential structure in
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Stolz’s ABCD rule, it is diameter in Friedman’s method. There is also another interpre-
tation for D parameter of ABCD rules of dermatoscopy, which is diameter greater than 6
mm [45].

The ABCD algorithm showed consensus sensitivity and specificity of about 96% and
70% in the above-mentioned virtual consensus meeting [20]. The classic ABCD acronym
for diagnosis of melanoma has recently been revised (ABCDE [46]), where Evolving has
been added to the ABCD acronym. That is because changes of size, shape, shades of
colour, symptoms (itch, tenderness), and surface (e.g., bleeding, crusting, scaling) can
allow detection of smaller, nodular, and morphologically banal melanoma [30].

2.2.4 Menzies Method

In the Menzies method [16], two groups of negative and positive features are defined.
Negative features include presence of a single colour, as well as axial symmetry of pig-
mentation, which refers to symmetry of pattern around any axis through the center of
lesion. There are nine positive features; namely, blue-white veil, multiple brown dots,
pseudopods, radial streaming, scar-like depigmentation, peripheral black dots/globules,
multiple colours (five or six), multiple blue/grey dots, and broadened network. For diag-
nosing melanoma, both negative features must be missing and at least one positive feature
must be found. In this approach, colours identified within the lesion include black, grey,
blue, dark brown, tan and red. The Menzies method obtained 96% and 73% consensus
sensitivity and specificity [20].

2.2.5 7-point Checklist

In the 7-point checklist method [17], three major criteria (atypical pigment network, blue-
white veil, atypical vascular pattern), each with a score of 2 are employed. As well, four
minor criteria (irregular streaks, irregular pigmentation, irregular dots/globules, regression
structures), each with a score of 1, are identified. A minimum total score of 3 is required for
the lesion to be diagnosed as melanoma. The vascular pattern as a criterion to investigate
the malignancy of the lesion was reportedly suggested for the first time by the 7-point
checklist algorithm [41]. The consensus sensitivity and specificity for the 7-point checklist
were reported as 96% and 73%, respectively [20].

2.2.6 CASH Algorithm

CASH is a simplified version of the pattern analysis algorithm and is aimed to be suitable
for less experienced examiners. It provides a scoring system, similar to that of ABCD,
which semi-quantitatively evaluates colour (C), architecture (A), symmetry (S) and ho-
mogeneity (H) of the skin lesion. Its accuracy is considered to be comparable to that of
other algorithms in distinguishing melanoma from benign lesion [18].
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2.3 Computer-based Diagnosis of Melanoma

Even with the use of technologies such as dermoscopy and applying the above-mentioned
algorithms, clinical diagnosis is still challenging and its accuracy is considered to be lim-
ited, especially with equivocal pigmented lesions [11]. Despite the use of dermoscopy, the
accuracy of expert dermatologists in diagnosing melanoma is estimated to be about 75-
84% [20]. Moreover, clinical diagnosis of melanoma is inherently subjective and suffers
from inter- and intra-observer variabilities. This issue highlights the demand for receiv-
ing an in vivo second opinion, which (i) increases the accuracy of diagnosis, thus saving
more lives, (ii) decreases the number of false excision of benign lesions, hence reducing
the medical and emotional costs imposed on individuals by unnecessary surgeries. Image
processing and computer vision techniques have been applied in an attempt to solve this
problem since 1985. A computer-aided diagnosis of melanoma provides quantitative and
objective evaluation of the skin lesion, versus the subjective clinical assessment. It allows
for reproducible diagnosis by diminishing the inter-observer and intra-observer variabili-
ties that could be found in dermatologists’ examinations. It also automates the analysis,
and thereby reduces the amount of repetitive and tedious tasks to be done by clinicians.

Due to enhancements in skin imaging technology and image processing techniques
in the recent years, and owing to the repetitive patterns in skin lesions, which makes it an
intriguing problem to work on, there has been a significant increase in interest in devel-
opment of computer-based diagnostic systems for melanoma. Various groups around the
world have been trying to develop effective systems and devices to assist in the evaluation
of pigmented skin lesions, some of which include:

SolarScan [47] developed by Polartechnics Ltd, Sydney, Australia, analyses der-
moscopy images of the pigmented skin lesion according to 103 variables based on colour,
pattern, and geometry of the lesion. The system was tested [48] on an image set of 2430
lesions, among which 382 were melanomas with median Breslow thickness of 0.36 mm.
Seven specialist referral centres and two general practice skin cancer clinics from three
continents were engaged in the study and the SolarScan diagnosis results were compared
with those of 13 clinicians, including three dermoscopy experts, four dermatologists, three
trainee dermatologists, and three general practitioners. Applying statistical analysis and
calculating the AUC (area under the ROC2 curve), the system obtained a sensitivity of
86%–96% and specificity of 64%-72%.

DermoGenius-Ultra [49], wherein the ABC features were calculated to approximate
the A, B and C parameters of the ABCD clinical algorithm, was developed by LINOS Pho-
tonics Inc. Instead of the D parameter in the ABCD rule of dermoscopy which identifies
the dermoscopic structures, in this system D was to approximate the degree of heterogene-
ity in the lesion. The system was tested on 187 patients at risk for melanoma, resulted
in identifying 52 lesions to be removed, which were labelled as unsuspicious in the clin-
ical examination by physicians. Biopsy of these lesions showed that nine of them were
potentially dangerous and the removal was required.

2Receiver Operator Characteristic
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The DBDermo-MIPS system [50], developed at the University of Siena, Italy, anal-
ysed 147 pigmented skin lesions (selected from an archive of more than 10,350 images
collected between 1991 and 2000, with 3220 of them being excised). The clinical criteria
for inclusion of lesions in the study were asymmetrical, pigmented, impalpable lesions with
variegated colour, with diameter of 0.4±1 cm. Using an Artificial Neural Networks (ANN)
classifier the obtained diagnostic accuracy was about 93%.

The DANAOS expert system [51] also applied ANN, and the system was tested
during a multi-centre study in 13 dermatology centres in nine European countries in 1997.
The resulting performance of the system on 2218 skin lesions was shown to be similar to
that of dermatologists as published in the literature, which was dependent on the size and
quality of the images.

While the above-mentioned systems used dermoscopy images, Melafind [52, 53, 54]
(developed by Electro-Optical Sciences Inc., Irvington, New York) and SIA3scope [55]
(developed by Astron Clinica, Cambridge, U.K.) have applied a different technology to
capture skin images, using multi-spectral narrow bands ranging from 400 to 1000 nm.
Because of the multi-layered structure of skin (as previously explained in Section 2.1 of
the thesis) light of different wave-lengths penetrates the skin to different depths. MelaFind
takes 10 images of each lesion using 10 different narrow spectral bands from 430 to 950
nm. Eight of these 10 images were used for each lesion, and wavelet analysis along with a
linear classifier was applied. The classification accuracy on a difficult image set, including
dysplastic and congenital nevi, was reported to be 89% [52].

SIAscope produced eight narrow-band spectrally filtered images of the skin with
radiation ranging from 400 to 1000 nm. The purpose of the analysis was to identify the
amount, distribution, and depth of certain critical features including collagen, melanin,
and haemoglobin within the epidermis and papillary dermis layers of skin. Over an image
set of 348 pigmented lesions with lesions greater than 6 mm, the system obtained sensitivity
and specificity of about 83% and 80%, respectively [55].

Some other computerised image analysis systems available in the market or under
development include [56]: MoleMax II developed by Derma Instruments L. P., MicroDerm
developed by VisioMED, NevusScan by Romedix, FotoFinder by Derma Edge Systems
Corp., and VideoCap100 by DS Medica. It is acknowledged that [31] the cost efficiency of
the existing digital imaging systems (computer-aided diagnosis systems of melanoma) is
still an issue of concern. Some of these devices are undergoing clinical trials before final
approval, and are not for sale.

A computer-aided diagnosis of melanoma generally comprises five main components;
namely, image acquisition, image segmentation (or border detection), feature extraction,
feature selection, and classification. A summary of the methods applied to implement each
of these components in some of the studies is provided in the remainder of this chapter.

3Spectrophotometric Intracutaneous Analysis
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2.3.1 Image Acquisition

The first step in a computer-based diagnostic system of melanoma is the acquisition of
the digital image of the lesion. The main techniques used for this purpose in the literature
include [12]: digitised colour slides which were used in early melanoma analysis studies [57],
acquisition of clinical images using still or video cameras, ELM (or dermoscopy previously
discussed in Section 2.2.1) which captures detailed information about the surface of the
lesion and has been widely utilised in the literature [12, 24, 51, 58, 59, 60, 61], transmission
electron microscopy or TEM [62] which is useful for studying growth and inhibition of
melanoma. Nevoscope [63, 64, 65], introduced by Dhawan in 1985, is a non-invasive
trans-illumination based imaging modality for analysis and diagnosis of melanoma. It
involves three modes of illumination: (i) surface illumination which is achieved by directing
light perpendicular to the skin surface through fiber optic cables, (ii) trans-illumination
performed by directing light into the skin at 45 degree through a ring light source, (iii) epi-
illumination obtained from the combination of surface illumination and trans-illumination.
The main advantage of trans-illumination is its sensitivity to imaging increased blood flow
and vascularisation and also to viewing the subsurface pigmentation in a nevus.

Confocal Scanning Laser Microscopy (CSLM) [66, 56] is a non-invasive imaging tech-
nology used for the in vivo examination of skin. It uses laser light to focus on a specific
spot within the tissue and captures high-resolution images of cellular structures of skin
lesions which are comparable to detailed histologic images. The imaging depth is limited
by the condition of the stratum corneum and the wavelength of the laser. Currently, the
maximum depth of imaging is 200-300 µm at the level of papillary dermis. Confocal im-
ages obtained from melanomas are clearly different from those of melanocytic nevi [66]. In
addition to exhibiting the morphologic differences between melanoma and melanocytic
nevi, CSLM technology has been applied to determining the border of melanoma le-
sions [67]. Currently, application of the CSLM to the diagnosis of melanoma is in the
research stage [30, 56].

Ultrasound is also applied to clinical dermatology, more in Europe but less in the
United States [56]. The technology works based on the acoustic properties of skin tis-
sue. There are three modes of ultrasound scan [56]: (i) A-mode is one-dimensional and
shows the amplitude of the intensity at different levels in the skin tissue, (ii) B-mode,
commonly used in clinical settings, creates two-dimensional images from the brightness
level of multiple A-mode scans (iii) C-mode, which is still at an experimental stage, creates
a three-dimensional display using computer assistance. The image resolution and tissue
penetration are largely dependent on the frequency of the scanner, i.e., an ultrasound
scanner with a high frequency has a short wavelength, and has less tissue penetration but
higher image resolution. Even though ultrasound alone cannot provide a reliable means
of differentiating between melanomas and common melanocytic nevi [68], it is shown to
be potentially useful for differentiating melanoma from seborrheic keratosis [69]. More-
over, an important application of the ultrasound technology is the in vivo assessment
of melanoma thickness [68, 70]. Other imaging modalities used for dermoscopy image
analysis include computed tomography (CT) [71], positron emission tomography (PET)
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employing fluorodeoxyglucose [72] which has shown high sensitivity and specificity in di-
agnosing the staging of melanoma, MRI [73], multifrequency electrical impedance [74] and
Raman spectra [75].

As outlined previously, image acquisition is a basic yet vital component for a com-
puter aided diagnosis system of melanoma. Development of a reliable computer-based
diagnostic system, requires establishing a unified systematic protocol under which a rea-
sonably large collection of good quality and well-illuminated skin images is acquired. In
this study, we have applied high-resolution dermoscopy images obtained from Royal Mel-
bourne Hospital, Melbourne, Australia, taken by professional photographers using a Canon
EOS 450D camera. At some later stages of the work, we have also applied images from
other resources [29], whose contributions are gratefully acknowledged.

2.3.2 Segmentation or Border Detection

Image segmentation is the process of dividing an image into disjoint and homogeneous
partitions with respect to some characteristics such as colour, texture, etc. [76]. Alter-
natively, it is the process of locating the boundaries between the regions, called border
detection [77]. Segmentation is a prerequisite in the development of any computer vision
system. Similarly, it is the first step towards the automated analysis and evaluation of
medical images in a computer-aided diagnostic system. The accuracy of the segmentation
result is of high importance due to the bias it can impose on the subsequent steps of the
diagnostic system, i.e., in the feature extraction and the ultimate classification result. In
computer-aided diagnosis of melanoma the purpose of segmentation is to detect the bor-
der of the lesion, in order to separate the lesion, the region of interest (ROI), from the
background skin. The accuracy of the detected border is crucial as exclusion of any part of
the lesion my lead to loss of dermoscopic patterns, colour, and texture-based information
that can be extracted from the interior of the lesion. Moreover, the geometric shape of
the lesion and structural properties of the border have diagnostic importance, all of which
depends on the detected border (the segmentation results). Low contrast between the
lesion and the background skin, irregularity and blurriness of the lesion border, image ar-
tifacts such as black frames, skin lines, blood vessels, hairs, and air bubbles, and scars, as
well as presence of various colours within the lesion, make border detection a challenging
task [78].

Different image features such as shape, colour, texture, and brightness can be em-
ployed to perform skin lesion segmentation. Accordingly, numerous methods have been
developed for automated border detection in dermoscopy images in recent decades. As
suggested by Celebi et al. [78] segmentation methods can be categorised into the following
class of techniques: (1) Histogram thresholding, which involves the determination of one or
more threshold values that separate the ROI from the background, used in [26, 79, 80, 81]
(2) colour-clustering methods which partition the colour space into homogeneous regions
using unsupervised clustering algorithms, applied by [82, 83, 84, 85, 86, 87, 88, 89], (3)
Edge-based methods which apply edge operators to determine the edges between the
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background and foreground regions applied by [90], (4) Region-based methods which
use region-merging and region-splitting algorithms to group the pixels into homogeneous
regions [91, 92, 93, 94, 95, 96] (5) Morphological methods which start from predeter-
mined seeds and apply the watershed transform in order to detect the contours of the
object [31, 97], (6) Model-based methods which model the image as random fields and
apply optimisation to determine the parameters of the model [92], (7) Active-contour
methods such as snakes which use curve evolution techniques to determine the contours of
the shape, as applied in [98, 99, 100], and (8) Soft-computing methods which classify pix-
els using soft-computing techniques such as neural networks, fuzzy logic, and evolutionary
computation [101].

Some previous studies have combined the results of different border-detection meth-
ods to come up with the final ROI. For example, Pagadala [102] developed a skin segmen-
tation method combining the segmentation results of three thresholding-based methods
independently applied on red, green and blue colour channels of the dermoscopy image.
We have established in this thesis that there exist a variety of colour channels from other
colour spaces which can be taken into account and provide discriminatory power in sep-
arating the lesion pixels from surrounding skin pixels. Also, careful consideration needs
to be taken while combining the results. Ganster et al. [58] also used a fusion process
(logical OR operation on resultant binary segmented images) and combined three basic
segmentation algorithms, to detect the border of lesions in dermoscopy images. The three
basic segmentation methods involved global thresholding, dynamic thresholding, and a
method based on 3-D colour clustering concept adopted from [103]. The experimental
results demonstrated that [58] thresholding with the blue channels of the RGB and CIE
L*a*b colour spaces along with 3D colour clustering on the X, Y, and Z channels of the
CIE XYZ colour channel produced the best segmentation results. Using an image set of
40 skin lesions, the thresholding algorithms achieved a good segmentation result in about
80% of the images. The 3D-clustering approach, although it had poor performance in
general (about 8%), performed reasonably well in cases where the other two methods were
not successful [58]. Unfortunately the details of the three segmentation methods used are
not provided in the article.

Based on the accepted assumption of colour uniformity in the skin, unsupervised
colour-clustering techniques have been frequently used in applications of skin lesion seg-
mentation. Colour clustering is used to reduce the number of colours such that they are
quantised to the most representative colours. Melli et al. [87] combined an unsupervised
clustering component with a supervised classification module to automatically extract the
boundary of the skin lesion. In the clustering phase, they employed and compared four
major clustering algorithms; namely, median-cut, k -means, fuzzy c-means, and mean-shift
(each will be explained in the following paragraph). The clusters obtained by these clus-
tering processes were then merged and classified into two classes of skin and lesion. It
was assumed that the lesion would occupy the central part of the skin image and the
image’s corners would belong to the skin class. The corner pixels were used as the skin
training set to train the classifier and the clusters obtained from the clustering module
were merged and classified as skin class if they contained a particular number of pixels
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whose colours have been trained as skin colour. After completion of classification and
merging procedures, the major object within the image was identified as the lesion and
the lesion boundary was detected. Over a set of 117 dermoscopy images, the resultant
lesion boundaries were compared with the results obtained from dermatologists’ manually
drawn borders. The comparison, which was performed in terms of sensitivity, specificity
and the average of these two parameters, revealed that the best results were obtained from
the mean-shift algorithm. Furthermore, they proposed a web-based test platform wherein
all four segmentation algorithms were applied to a set of 5616 skin lesions. Dermatologists
voted for the best segmentation results in each four-image set, and the overall verification
test indicated that the mean-shift algorithm was the best. However, for those images that
are corrupted and have no identifiable corners (which is sometimes the case in practice),
this technique may not be applicable.

To clarify the above-mentioned clustering process, a brief definition of each method
is presented as follows: Median-cut [104] is a popular algorithm for colour quantisation
which divides the colour space based on the distribution of colours in the original image.
The main concept behind this algorithm is to have each colour in the synthesised colour
map represent the same number of pixels in the original image. It repeatedly subdivides
colour space into smaller and smaller boxes, such that each colour in the new image
represents the average of one of these boxes. K -means [105] is one of the simplest
unsupervised clustering algorithms which is designed to cluster n objects into k partitions
(k < n) based on attributes or feature vectors. It starts with defining random k centroids,
one for each cluster, and continues with inserting new objects into clusters such that an
error function is minimised. The error function is defined as the sum of the Euclidian
distances between the k-clusters’ centroids and the objects within each cluster. Fuzzy
c-means [106] provides a fuzzy clustering method in which each point has a degree of
belonging to clusters, as in fuzzy logic, rather than totally belonging to a single cluster.
Mean-shift, first introduced in 1975 [107], and later in 1997 was employed for colour image
segmentation [108]. Mean shift is a simple non-parametric algorithm which approximates
the density gradients. For each pixel of an image having a spatial location and a particular
colour, the set of neighbouring pixels, within a given spatial radius and a defined colour
distance, is determined. For this set of neighbour pixels, the new spatial center (spatial
mean) and the new colour mean value are calculated. These calculated mean values will
serve as the new center for the next iteration. The procedure is iterated until the spatial
and the colour or grey-scale mean stops changing. At the end of the iteration, the final
mean colour is assigned to the starting point of that iteration.

Hance et al. [82] compared the accuracy of six different colour segmentation tech-
niques and investigated their effectiveness in skin border extraction; namely, adaptive
thresholding, fuzzy c-means, spherical-coordinate transform/center split, principal-component
transform/median cut, split and merge, and multi-resolution. For the spherical-transform
segmentation method, by algorithmic definition, the number of colours for segmentation
was set to four, while for other algorithms it was kept constant at three. They showed that
the principal-component transform/median cut and adaptive thresholding algorithms pro-
vide the lowest average error. They also proposed a combined method of these six methods,
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which resulted in further improvement in the number of correctly identified tumor borders.
Schmid [83] also proposed a colour-based segmentation algorithm in L*u*v colour space.
They applied a modified version of fuzzy c-means, wherein the number of clusters depends
on the number of maxima in the histogram information of the three colour components.

In the dermatologist-like tumor extraction (DTEA) method [26], the histogram
thresholding technique based on Otsu method [109] was applied to the blue colour channel.
This was followed by labelling the components, and merging the regions smaller than a
predefined size. The region that met some heuristic criteria based on size, intensity and
distance to the margin of the image (defined in [26]) was taken as the initial lesion area.
Lastly, the detected border was expanded by an iterative region-growing method to obtain
the final border detection result.

Other recent methods include: The KPP4 method [89] uses spatial constraints in
the pigmented lesions and applies a two-stage clustering, based on k-mean++ algorithm,
to merge the homogeneous regions. The JSEG method [95], which is an unsupervised
approach to border detection, is a modified version of an earlier JSEG algorithm [110]. In
this method a colour class map of the image is first formed during a colour quantisation
step. Then, in a spatial segmentation step, similar regions are merged based on similarity
in the CIE L*u*v colour space. The method was tested on a set of 100 dermoscopy im-
ages, using manually determined borders from a dermatologist as the ground truth. The
results were compared with three other automated methods (discussed above) proposed
by Pagadala [102], the DTEA method [26] and the KPP segmentation method [89], and
were shown to be highly comparable with those. The authors acknowledge that the JSEG
method may not, in certain circumstances, perform well on lesions with a lot of hair, and
have suggested the use of a hair-removal method such as DullRazor [111] might improve
the results for such cases. Moreover, as acknowledged by the author, using a single der-
matologist as the ground-truth might not be reliable enough to validate the segmentation
results.

Celebi et al. [78] outlined several issues to be considered when choosing a segmen-
tation method: (i) Scalar versus vector processing, the former is preferred to avoid ex-
cessive computational time requirements and the difficulty of choosing an appropriate
colour space, (ii) Automatic versus semi-automatic, the latter (e.g. active contour mod-
els) requires human interaction, and the former is preferred if we aim to develop a fully
automated computer-based diagnosis system, (iii) Number of parameters: the more the
number of parameters, the harder the model selection. Parametric methods involve a
process of determination of the optimal parameter values.

In Chapter 3 of this thesis we propose a fast accurate border detection method
which produces borders fairly close to those drawn by dermatologists. Our goal is to
provide a practical, simple and easily re-producible solution to the problem of border
detection in dermoscopy images, and avoiding complications as far as possible. This is
achieved by benefiting from the basic yet useful image processing technique of histogram
thresholding. The Otsu method [109] which has been successfully applied by some of the

4K Plus Plus (kmean++)



26 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

previous studies such as [99, 26] is adopted for determining the threshold in our proposed
method. Despite the critics of Melli et al. [87] about low performance of thresholding-
based methods we have demonstrated that with a proper choice of colour channel, a
thresholding-based approach can produce borders highly accordant with those manually
drawn by expert dermatologists, and even outperforms colour-clustering and region-based
border detection methods. In Chapter 3 we show that the proposed border detection
method, even though fairly straightforward, outperforms three of the above-mentioned
state-of-the-art border detection methods in dermoscopy images. Another reason behind
the choice of thresholding-based technique is the simplicity and low computational cost of
scalar processing involved in the proposed method.

2.3.3 Feature Extraction

Feature extraction is the process of extracting certain characteristic attributes and gener-
ating a set of meaningful descriptors from an image. The purpose of the feature extrac-
tion component in a computer-aided diagnosis systems of melanoma is to extract various
features from a given skin image which best characterises a given lesion as benign or ma-
lignant. The feature extraction methodology of many computerised melanoma detection
systems has been generally based on the conventional clinical ABCD-rule of dermoscopy
due to its effectiveness and simplicity of implementation. Its effectiveness stems from the
fact that it incorporates the main features of a melanoma lesion such as asymmetry, border
irregularity, colour and diameter (or differential structures), that are measurable and com-
putable by computer. The features employed by the classification system must provide
high sensitivity (high correlation of the feature with malignancy, resulting in high true
positive response) and high specificity (to produce high true negative response). Although
in the typical classification paradigm both factors of sensitivity and specificity are consid-
ered important (the trade-off is determined by maximising the AUC value), in the case of
malignant melanoma detection or probably most cancer detection applications, obtaining
a high true positive rate or alternatively suppression of false negatives is desired [12]. This
section addresses some of the features employed by previous computer-based melanoma
recognition studies.

Asymmetry

According to the ABCD rule of dermatoscopy, symmetry is given the highest weight among
the four features [15]. Asymmetry is also evaluated in the Menzies and CASH methods.
Moreover, in the Consensus Net Meeting on Dermoscopy [20], asymmetry, along with a
few other criteria, was highlighted as a feature strongly associated with melanoma. As
previously mentioned, in the ABCD rule of dermatoscopy [21], to quantify the asymmetry,
the lesion is bilaterally segmented by two perpendicular axes positioned such that the
resultant asymmetry score is minimised. The asymmetry score is calculated according to
the contour (shape), colour distribution and internal structure of the lesion on either side
of each axis. The asymmetry score is 2 if both axes show asymmetry. Asymmetry on only
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one axis results in a score of 1 and if there is no asymmetry on either axis, the score is 0.
Stolz et al. [21] note that in their experiment 96% of malignant melanoma cases had an
asymmetry score of 2, whereas only 24.2% of benign melanocyte nevi had such a score.

Numerous approaches have been proposed to quantify the asymmetry in skin le-
sions. Some of the methods try to imitate the ABCD rule of dermatoscopy and inves-
tigate lesion asymmetry with respect to a symmetry-axis passing through the lesion. In
these approaches, the symmetry axis is determined in a variety of ways, such as principal
axis [112, 113, 114], major axis of the best-fit ellipse [115, 116], Fourier transform [117],
longest or shortest diameter [118], etc. Then, the difference between the area on both
sides of the axis is calculated. In another technique, symmetry determination is based on
geometrical measurements on the whole lesion, such as circularity [119, 120, 118]. Some
others, quantify the homogeneity of the lesion, wherein for certain patches the overall inter-
nal structure or colouration of the lesion is evaluated [114, 115, 121, 122, 123]. According
to Stolz et al. [21], due to the fact that some equivocal lesions have symmetrical shapes,
incorporating colour and structural asymmetry is very crucial to scoring the symmetry of
the lesion. In the following we provide a summary of existing methods in evaluating the
symmetry measure in dermoscopy images, categorised in (i) Shape Asymmetry and (ii)
colour and Pattern Asymmetry.

(i) Shape Asymmetry:

In numerous studies, a circularity index (also known as compactness, thinness or round-
ness index) has been applied and claimed to be a proper indication of symmetry in skin
lesion [118, 119, 120, 124] or at least introduced as a useful geometry variable in quanti-
fying the skin lesions [122]. This index is calculated according to the following equation
and returns the value of one for the perfect symmetrical shape, i.e., a circle:

Circularity =
4Aπ

P 2
(2.2)

In this equation A and P refer to the area and perimeter of the shape, respectively. This
metric is scale-independent, which makes it a handy tool for measuring the symmetry.
However, it does not show enough efficacy in lesions with fuzzy and irregular borders. In
such cases, the segmented region generally has a thick border, but a small internal area.
Thus, the circularity index value attains a very small value, which does not reflect the
actual circularity of the lesion. Therefore, the significance of this method tightly depends
on the segmentation precision.

The symmetry distance (SD) measure is another concept applied to skin images in
order to quantify the symmetry of the lesion. Symmetry was treated as a continuous
measure by Zabrodsky et al. [125, 126] firstly in 1992. They proposed the idea that in the
real-world, analysing the symmetry feature as a discrete value (Yes for symmetrical shapes
and No for asymmetrical shapes), is not sufficient to characterise symmetry phenomenon
in nature, e.g. the face and human body as inexact symmetrical shapes. Accordingly, the
continuous symmetry measure (CSM) was defined as a metric to calculate the amount of
symmetry of the shape, using which one can compare the symmetry properties between
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different shapes, as well as quantifying the degree of symmetry for a single shape. Ac-
cording to Zabrodsky et al. [125] CSM is defined as “The continuous symmetry measure
quantifies the minimal distance movement that the points of an object have to undergo
in order to be transformed into a shape of the desired symmetry.” Later on, in 1995
they proposed [127] SD as “quantifier of the minimum effort required to transform a given
shape into a symmetric shape”. Formally, for any two shapes P and Q represented by a
sequence of n points, the distance between these two is defined as:

d(P,Q) =
1

n

n
∑

i=1

‖Pi −Qi‖2 (2.3)

The symmetry transform (ST) of the shape P is defined as the symmetrical shape P̂ with
the minimum distance d(P, P̂ ) to the asymmetrical or nearly symmetrical shape P . The
distance between P̂ and P is called the symmetry distance and it is formulated as follows:

SD =
1

n

n
∑

i=1

∥

∥

∥
Pi − P̂i

∥

∥

∥

2
(2.4)

According to the definition of SD, each shape is represented through a sequence
of points. The point-selection procedure highly impacts the resultant SD value [127],
and three methods were suggested to pick out a successive set of points to express a
shape; (1) selection of points at equal distance in terms of curve length, which turned
out to be not very efficient for noisy, fuzzy, irregular and occluded cases, and particularly
for objects with extensions [118], (2) selecting points on a smoothed version of the shape
boundary and projecting those selected points to the primary shape. Smoothing is done by
averaging the points’ neighbours on the boundary and moving the point to the centroid of
the neighbourhood. The larger the size of the neighbourhood, the smoother the resultant
contour, and in the ultimate case it would convert to a circle. In this case, the third
method is used, (3) selecting the points at equal angles on the contour [127].

Ng et al. [118, 120] later applied the SD measure to investigate the symmetry prop-
erty in skin lesions. They initiated their study in 1994 to collect data of three types of
melanocytic lesions; benign nevi, dysplastic nevi and malignant melanoma. The purpose
was to improve the performance of their system over their previous work, wherein the
circularity index was applied. They used the third method (mentioned above for selecting
the point to represent the contour) and established an adaptive symmetry distance (ASD)
measure. Since the number of required representative points varies against the border’s
fuzziness and irregularity, it was not possible to have a predefined number of points as
it is in SD. ASD calculates successive SDs by using an incremental number of boundary
points, until the difference between two successive SDs hits a predefined threshold. How-
ever, due to inefficiency found in ASD when dealing with irregular and fuzzy borders, the
adaptive fuzzy symmetry distance (AFSD) was proposed. AFSD involves a fuzzy factor f
which represents the segmentation accuracy and implies that for any boundary point Pi,
its actual location can be any point within a circle with Pi as centre and ‖Pi − C‖ × f as
radius. In order to test the efficacy of the proposed symmetry measurements in [120], i.e.,
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SD, ASD, AFSD and circularity (CIRC), these measures were applied on 84 skin images
of non-hairy melanocytic lesions. Each lesion was also labelled as either symmetrical or
asymmetrical by a dermatologist. They used the Student t-test5 to compare the mean
values obtained from each of the symmetry measures. Among all the methods, CIRC had
a reasonably good performance, the SD method had the worst differential ability, whereas
AFSD has the best performance among all. They also recognised the fact that during
their tests on lesions with irregular or fuzzy borders, the circularity calculation yielded a
very high value which failed to reflect the actual measurement’s goals.

Introducing the fuzzy concept to the problem reflects the fact that in fuzzy SD
measurements, need no exact definition for the contour and an approximate definition
is sufficient to measure the SD value. Yet, since different segmented lesions yield differ-
ent SDs, they tend to differentiate SD values which correspond to either symmetrical or
asymmetrical shapes. Thus, the main concern in their next study [118] was to broaden
the numeric range of SDs, so that one can easily label a lesion as either symmetrical or
asymmetrical by looking at its SD value. To extend their previous adaptive fuzzy symme-
try distance algorithm in [120], they proposed a new adaptive fuzzy symmetry distance
in [118], wherein the previous fuzzy algorithm was enhanced by redefining the fuzzy factor
f as the border width W . Moreover, in the new adaptive fuzzy algorithm, only unrep-
resentative points with W greater than the average of neighbouring points are moved,
whereas in the previous algorithm all points may move inward or outward. Since the de-
gree of fuzziness is not similar in all the points along the boundary, the authors suggested
an algorithm to calculate a new parameter, called the reliability factor, to measure the
fuzziness of a sample point in the border. This measure increases as the fuzziness of the
border decreases.

Another difference between these two works of Ng et al. [118, 120] is that in the lat-
ter they applied both mirror and rotational symmetry, whereas only rotational symmetry
was used in the former. Hence they [118] also propose the idea of finding the best axis
of symmetry, because in mirror-symmetry ST the transformation is based on the position
of the symmetry axis. The authors noted that [118] the optimal axes would yield the
smallest SD value. In order to find the smallest SD value, three axes were investigated:
the longest axis of the lesion, the principal axis of the lesion, and the axis with small-
est length difference. They tested these three methods on an image set of 30 lesions, 15
symmetrical and 15 asymmetrical images, and calculated the mirror symmetry distance
(MSD) value for each. The results showed the minimum value for MSD in case of using the
axis with smallest length difference. In order to test the efficacy of each algorithm, they
selected 120 images, 60 symmetric and 60 asymmetric, and ran all the algorithms on each
image, i.e., circularity index (CIRC), mirror-symmetry distance (MSD), fuzzy symmetry
distance (FSD), adaptive fuzzy approach in mirror-symmetry distance (AFMSD), adap-
tive fuzzy approach in rotational symmetry distance (AFRSD), AFMSD with reliability
factor, and AFRSD with the reliability factor. The t-test results demonstrated that both

5A statistical method which assesses whether the means of two groups are statistically different from
each other. It is applied when the population is assumed to be normally distributed, generally with sample
sizes of less than 30 cases.
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adaptive fuzzy approaches, i.e., AFMSD and AFRSD, are more powerful than MSD and
FSD in discriminating SD values. With reliability factor applied, AFMSD works even
better, whereas AFRSD failed to give good results. Moreover the authors reported that
for moderate skin lesions some false positive results may arise, because SD does not dif-
ferentiate symmetrical lesions from asymmetrical ones. Ng et al. [118] also implemented a
back-propagation neural network to enhance the classification of skin lesions as symmetric
or asymmetric, according to their SD values. For this purpose, they applied the most
accurate SD measures from the previous experiments, i.e., AFMSD with reliability factor
and AFRSD, along with the average fuzzy border width as the inputs to the neural net-
work. Conducting several trials, they finally decided to use a 3-8-1 network architecture,
which led to the overall accuracy of 80% in classification of symmetry/asymmetry skin
lesions.

Bulkiness concept was applied by Claridge et al. [128] in order to investigate the
asymmetry of the lesion in terms of closeness to the equivalent ellipse, using the following
formula:

Bulkiness =
area of equivalent ellipse

area of the original shape
(2.5)

The equivalent ellipse has the same center of gravity and similar moment of inertia to that
of the lesion. The Bulkiness value of a regular shape is close to 1, while the value is higher
for irregular lesions.

Stoecker et al. [112] proposed an objective definition for asymmetry. They recognised
the fact that there was no agreement on what percentage of asymmetry is needed in a
shape to be assumed as asymmetric. They also estimated that dermatologists dissent in
5–10% of cases when labelling pigmented lesions as asymmetric. The authors dismissed
the existing algorithms for their complexity and low performance, thus suggested a new
algorithm based on principal-axis theory. Taking for granted that for a symmetric shape,
at least one principal axis is in accord with the symmetry axis, they assumed that for an
almost symmetrical contour, the principal axis can be considered as a good approximation
of the axis of symmetry. They propose the following set of equations to determine the axis
of symmetry.

Angle θm of principal axis with respect to the x axis is given by:

tan 2θm = −2× Pxy

Ix − Iy
(2.6)

A binary shape is represented by a function b(x, y) such that:

b(x, y) =

{

1 if pixel (x,y) is inside the shape

0 if pixel (x,y) is outside the shape and belongs to the background
(2.7)

The area A is given by:

A =

∫ ∫

I
b(x, y)dxdy (2.8)
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Moment of inertia with respect to x axis:

Ix =

∫

I
y2dA (2.9)

Moment of inertia with respect to y axis:

Iy =

∫

I
x2dA (2.10)

Product of inertia:

Pxy =

∫

I
xydA (2.11)

To quantify the asymmetry they propose an asymmetry index. To calculate this measure
they fold the lesion along the principal axis and subtract the region on one side of the axis
from the reflected region on the other side.

Asymmetry Index =
∆Amin

A
× 100 (2.12)

To investigate the accuracy of the method, dermatologists classified 86 lesions as symmetric
or asymmetric. The same lesions were tested by the proposed method and the results
showed agreement in about 93% of cases. This approach has been also applied in other
studies such as [113, 114, 129] to investigate the asymmetry of skin lesions.

Lastly, Clawson et al. [117] proposed a method based on Fourier descriptors to deter-
mine the optimal axes to quantify lesion symmetry. The authors argued that the location
of the symmetry axis strongly affects the accuracy of the ABCD diagnostic algorithm.
The authors used the Fourier descriptors with complex coefficients and assumed that for a
symmetrical contour along the vertical axis with starting point on that axis, the real part
of all Fourier coefficients equals zero. Likewise, for a horizontally symmetric contour the
imaginary part of each Fourier descriptor is zero. Consequently, for a symmetric shape on
both vertical and horizontal axes all even Fourier coefficients are zero.

a(u) =
1

N

N−1
∑

k=0

s(k)e−i2πuk/N ; u = 0, 1, ..., N − 1 (2.13)

Taking the above properties as given, they used the closeness to zero of real parts of Fourier
descriptors to find the position of optimal symmetry axes in an asymmetrical contour.
Summation of the real parts of Fourier coefficients is used as the symmetry measure and
they propose the following formulas for the start point and rotation normalisation:

ap(u) = a(u)e
−j2ku/N

; u, k = 0, 1, ..., N − 1 (2.14)

ar(u) = ap(u)
ejθ ; 0 < θ < π (2.15)

The minimum sum of absolute real values across all normalisations subsequently
shows the location of the principal symmetry axis and its inclination from the vertical
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axis. Due to the fact that, as minimum asymmetry corresponds to minimum value of
the absolute sum of real coefficients, the proposed method is claimed to be able to rank
potential axes of symmetry.

Clawson et al. [117] applied the proposed method, which consists of producing
Fourier descriptors and finding the optimal principal axis by equalising the coefficients
to zero, on a test set of 30 images. Two groups of dermatologists subjectively determined
the best axis of asymmetry for the test set which results in 60% of consistency (±15 de-
grees) and 30% of variability, with a mean difference of 33 degrees in angle inclination.
Comparing Fourier-based symmetry-axis identification with those achieved by dermatol-
ogists, they converge in 68% of cases considering all the experts as the whole, whereas
60% matching is found with one group of dermatologists and 76.6% with the other one,
when investigated separately (±15 degrees). Using the algorithm as a ranking method for
the potential symmetry axis of the lesion leads to a matching score of 92% (±15 degrees)
between algorithm results and dermatologists’ opinion. Individual investigations result in
93.3% matching with one group and 90% with the other. In 77% of cases, the best two
unique axes identified by Fourier method were orthogonal to each other (±15 degrees).
According to their report derived from the literature, the maximum diagnostic accuracy
of automated asymmetry quantification was 86.6%, whereas they claim the matching of
92.2% of cases between their method and dermatologist scoring. However, they have not
applied other symmetry measurement techniques on the same image set in order to provide
a valid comparison. We also believe that other methods such as circularity index or asym-
metry index using principal axis are more easily reproducible and have less complications
in the implementation, since they invlove evaluation of simple mathematical expressions
(Equations 2.2 and 2.6).

(ii) colour and Pattern Asymmetry:

This section provides a summary of some of the existing methods which measure the tex-
ture and colour asymmetry of the skin lesion. Change et al. [115] proposed a symmetry
feature, called solid pigment asymmetry index. The pigment network beneath the epi-
dermis is dominant in some parts of the lesion, producing a dark colour termed as solid
pigment. Asymmetric solid pigment is considered as an indication for the presence of
melanoma. The authors applied the histogram-based thresholding technique on the lumi-
nance image to detect solid pigment areas inside the lesion, and quantified the asymmetry
of the position of solid pigmented areas within the lesion via a pigment asymmetry index.
In order to calculate this index, they proposed a multi-step algorithm: the principal axis
of the segmented lesion was calculated, using which the lesion was partitioned into four
quadrants. Then, for each quadrant (i = 1, ..., 4), the area (AL

i ) and centroid location
(x̄Li ,ȳ

L
i ) are estimated. Afterwards, the area (AP

i ) and centroid location (x̄Pi ,ȳ
P
i ) of the

pigment region within each quadrant were calculated. Next, they computed the distance
between the centroid of the lesion in each quadrant and the centroid of the whole lesion
(DL

i ), and also the distance from centroid of the pigment region in that quadrant to the
centroid of the entire lesion (DP

i ). The pigment asymmetry index for each quadrant was
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then calculated according to the following formula:

λi =
AP

i D
P
i

AL
i D

L
i

, i = 1, 2, 3, 4 (2.16)

Finally, they defined the pigment asymmetry index of the entire lesion as the variance of
pigment asymmetry indices calculated for the quadrants:

α =

∑N
i=1(λi − µi)

2

N
(2.17)

where µ is the mean pigment asymmetry index over four quadrants (N = 4). The au-
thors noted that this approach is computed by quadrants, which implies that the two-axis
symmetry is more meaningful than merely computing the distance between pigment le-
sion and centroids. They stressed that this implementation is coherent with asymmetry
measurements in melanoma, which is based on two-axis symmetry rather than one-axis.
A possible issue of contention in this approach is the assumption that there is only one
solid pigment area within each quadrant, which may not be always correct.

Clawson et al. [121] proposed a technique to detect colour asymmetry. The method
analysed the pigment distribution along radial paths connecting the center of the lesion
to each of the boundary points. The proposed method started with converting the colour
lesion image to greyscale image. Then for each radial path the mean greyscale value was
estimated by:

Avi =

∑Ni
k=1 rik
Ni

(2.18)

where rik is the greyscale value of the kth pixel along the radial path connecting the
centroid to the ith boundary point, and Ni is the number of pixels along this radial path.
Next, for each lesion AL was defined as a metric indicating the greyscale distribution over
the whole lesion, given by:

AL =

∑N
i=1Avi
N

(2.19)

where N is the number of lesion boundary points. Finally, for each boundary point a
Normalised colour Distance (NCD) was defined as:

NCDi = Avi ×
(

100

AL

)

(2.20)

The measured NCD values were used to draw a new boundary for the lesion, i.e., each NCD
value showing the radial path length between centroid and the corresponding boundary
point. As equation (2.20) implies, if all NCD values are equal to 100, the new contours will
be a circle. The authors stressed that hyper-pigmentation areas lead to larger NCD, while
regression areas result in small NCD values. In order to quantify the colour asymmetry,
they defined a mismatch metric, by which the generated contour (CL) was compared with
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the circle (Cs), which is the symbol of perfect symmetry of pigment distribution. The
mismatch metric was given by:

mismatch =

(

Ax

At

)

× 100 (2.21)

where Ax is estimated by applying the XOR function between CL and Cs, and At is the
area of CL. They also calculate the circularity of the lesion.

Moreover, they analysed NCD values and their deviation from 100 as the reference
value, to extract some parameters: namely, number of peaks (values greater than 100),
number of troughs (values smaller than 100), largest peak area (LPA) showing the area
of hyper-pigmentation within the lesion, largest trough area (LTA) presenting the area
of regression inside the lesion, area/width of the largest peak (LPA/LPW) quantifying
the darkness of the largest area of hyper-pigmentation, area/width of the largest trough
(LTA/LTW) quantifying the lightness of the largest area of regression, the largest value of
area/width across all peaks (LPS) corresponding to the darkest region within the lesion;
and the largest value of area/width across all troughs (LTS) corresponding to the lightest
region within the lesion. An image set of 30 lesions with different degrees of colour sym-
metry were segmented manually; for each, 64 boundary points were selected. The above
nine metrics were measured on each image. Moreover, the Classification and Regression
algorithm and decision tree (C5) and also a neural network were used to investigate the
classification rules, according to which, each lesion could be classified as either symmet-
rical or asymmetrical. Across all classification methods, the most significant parameter
was LTA/LTW, quantifying the largest area inside the lesion where colour is lighter than
average, in relation to the arc length of this region. When applying the neural network,
two other important parameters were identified which were also related to possible areas
of regression within the lesion: namely, LTS and LTA.

Seidenari et al. [130] proposed a method to objectively evaluate pigment distribution
in three types of skin lesions; namely, early melanoma (MM), atypical nevi (AN) and
benign nevi (BN). The aim was to investigate the efficacy of measured pigment distribution
parameters in differentiating malignant lesions from normal ones. The authors noted that a
big difference among the values of the distribution parameters indicates non-homogeneity
within the lesion. The pigment distribution assessment consists of three steps: First,
the lesion is simplified into colour blocks by removing the colour details. To attain this,
they select a desired block size, i.e., level of detail, and subdivided the image with a
grid of the selected block size. In the next step, the average colour within each block is
calculated. In the last step, the mathematical colour difference parameters between blocks,
i.e., mean (PIXMED), variance (PIXVAR), and maximum colour differences (PIXMAX)
are computed, using Euclidean distance in RGB colour space. For each lesion, a set of
three parameters, in two levels of detail are obtained, e.g. PIXVAR1, PIXVAR2, etc.
Thus, they obtained six measurements per lesion, i.e., three parameters for each detail
level of 1% and 2%.

The method was applied on a set of 459 images (76 AN, 288 BN and 95 MM).
SPSS statistical software was used to statistically analyse the results, in which mean and
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standard deviation of PIXMED, PIXVAR and PIXMAX values were computed for MM,
AN and BN lesions. The results showed that distribution values for MM were higher than
those of both AN and BN, signifying complex and non-homogeneous structure and colour
variation. Furthermore, the obtained values for AN were higher than those of BN. This
ordering of values for MM, AN and BN reflects the corresponding histology of these lesions.
In order to test the discrimination power of proposed statistical parameters and identify
the more distinctive variables, discriminant analysis was conducted on a training set of
229 lesions, which is half of the initial image set in each lesion category. Moreover, ROC
analysis was performed to calculate the sensitivity and specificity and also the diagnostic
accuracy of the classification of the lesions in the test set, which are the remaining 230
images. The authors found that discriminant analysis method indicates that PIXMAX1,
PIXMED2, PIXVAR2 and PIXMAX2 variables can be used as differentiators of MMs from
others in the training set. On the test set the values for accuracy, sensitivity and specificity
are reported as 86.6%, 87.5% and 85.7%, respectively. By this approach, the authors tried
to resolve the problem of symmetry axis identification, since each block is compared with
every other block in the image, rather than only with its symmetrical pair. However, this
may require a high number of comparisons, i.e., n(n− 1)/2 for n-block lesion, which can
be computationally expensive. A benefit of this algorithm is that applying different levels
of detail, i.e., different degrees of subdividing, ameliorates the image-resizing issue.

In a similar study, Seidenari et al. [114] performed a numerical assessment of asym-
metry based on comparison of CIE L*a*b6 colour components within the lesion colour
blocks. After finding the boundary, centroid and principal axes of the lesion, the lesion
was rotated along the principal axes, so that the major axis was aligned with horizontal
axis and the minor axis with the vertical one. Then, the image was subdivided in a similar
way to that explained above. They provide four block sizes corresponding to resizing of
the image to 1%, 2%, 5% and 8%. They presumed that colours were distributed as a
multivariate distribution in each colour block, so that they can be described via mean CIE
L*a*b* vector and its corresponding covariance matrix. In the last step, they investigated
the colour asymmetry by finding the distance between each block and its symmetric pair
with respect to the major and minor axes. This distance is measured by the Bhattacharyya
equation given by:

B(a, b) =
1

8
× (ma −mb)

T

[

Σa +Σb

2

]−1
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2
log

∣
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2

∣

∣

∣

√

|Σa| |Σb|
(2.22)

where ma and mb are mean vectors, and Σa and Σb are the covariance matrices of the
distribution of two colour blocks. They average the calculated distance over all blocks to
obtain the total distance. They measure a total number of eight parameters, i.e.,, a set of
two parameters for each of the axes, for each block size.

Manousaki et al. [122] suggested the fractal dimension of lesion surface (FDMB) to
calculate the pigment distribution irregularity on the surface of the lesion. They applied

6CIE L*a*b* is the most complete colour space specified by the International Commission on Illumina-
tion. It describes all the colours visible to the human eye and was created to serve as a device-independent
model to be used as a reference.
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Minkowski-Boulingand algorithm, also known as box-counting, to estimate FDMB. They
also proposed a colour texture feature of heterogeneity, which refers to uncompleted space
filling within the lesion. The parameter, called grey-scale lacunarity of lesion (Lac grey),
shows the number and size of colour voids inside the lesion. Holmstrom [123] stated
that certain hue7 values indicate malignancy. The areas containing these specific hue
values were identified and their centroids calculated. The distance between these centroids
and the center of gravity of the whole lesion was also estimated. Comparison between
the acquired distance values was performed to reveal the colour symmetry/asymmetry
property of the lesion.

Border

Holmstrom [123] breaks down the border-feature problem into two separated problems of
(i) border blurriness and (ii) border irregularity. In the following we summarise some of
the existing methods in quantifying each.

(i) Border Blurriness:

Day [131] investigated the blurriness of the lesion boundary by measuring the lightness
gradient of the lesion along its border. Similarly to the clinical ABCD technique for
measuring B feature, the lesion was divided into eight segments, and in each segment five
equally-distant boundary points are chosen. The author defined the sharp pigment cut-off
at each segment, as a major difference between lightness values of skin and lesion in that
segment. The L value from CIE L*a*b colour space was used as the lightness measure.
To evaluate the lightness rate at each boundary point Pi, the lightness value of 30 pixels
inside the border and 30 pixels outside the border were measured. These points were
located along the line connecting Pi to the centroid of the lesion. Thus, for each of the five
boundary points at each of the eight segments, 60 lightness values are recorded. Then, at
each boundary point Pi, the slope of the lightness values is measured by using the method
of least squares. For every segment, five lightness rates are obtained, the maximum of
which was selected as the B score for that segment. These scores were compared with
a given threshold to decide whether each segment has a sharp border (Bscore = 1) or
a blurry one (Bscore = 0). The results were correlated with dermatologists’ ratings,
upon which a threshold value could be tuned to acquire a better scoring. The author
acknowledged the shortcoming of the proposed method that in comparison between the
scores obtained from the algorithm and those found by the dermatologists, only the total
B score was applied, meaning that the algorithm and dermatologists might have marked
different segments as sharp cut-off. Manousaki et al. [122] measured the sharpness of
the border by calculating the standard deviation (Std) of grey intensity on the border of
lesion. Moreover, they computed the coefficient of variation of Std of grey intensity. The
authors noted that these values indicate the degree of distinction of the lesion form the

7Hue is is the dominant wavelength of a colour and is considered as one of the main properties of a
colour described with names such as red or blue. Hue is also one of the three dimensions in some colour
spaces such as HSV or HSL along with saturation and value/lightness.
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surrounding normal skin and that higher values correspond to sharper borders.

(ii) Border Irregularity:

Different techniques have been introduced to measure the border irregularity of the skin
lesions, some of which are discussed as follows. Claridge et al. [128] identified two types
of irregularities on the border of the lesion and called them textural irregularity and
structural irregularity. The former refers to small variations along the border of the lesion,
which are sensitive to segmentation noise. The latter denotes the global indentations
and protrusions on the whole shape, which show high correlations with malignancy of
the lesion. Lee et al. [132, 133, 134] introduced a new shape descriptor which measures
and locates structural irregularities along the border of the skin lesion. To analyse the
indentations and protrusions, the lesion border was parameterised as a planar curve L0,
defined as follows:

L0 = (x(t), y(t)) ; 0 ≤ t ≤ 1 (2.23)

where t is the path length variable along the planar curve, and L0 (x(0), y(0)) = L0 (x(1), y(1)).
Curvature was used to measure the irregularities. For a curve L0 (x(t), y(t)), the curvature
function K(t) is given by [135]:

K(t) =
dx
dt

d2y
dt2

− dy
dt
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+ (dydt )

2
)2/3

(2.24)

Convex areas are associated with positive curvature values (K > 0), whereas negative
values show concavity. Local extrema of curvature show the peaks of concave and convex
segments, which can be found by zero-crossings of the first deviation of K(t). Accordingly,
the lesion border was divided into curve segments composed of three consecutive local
curvature extrema [t1, t2, t3], where t2 shows the segment peak and its type. Terms t1 and
t3 have the same sign, yet opposite from t2. Indentations and protrusions were defined as
follows:

indentation = (K(t1) > 0,K(t2) < 0,K(t3) > 0)

protrusion = (K(t1) < 0,K(t2) > 0,K(t3) < 0) (2.25)

Or, similarly:

indentation = (convex,concave,convex)

protrusion = (concave,convex,concave) (2.26)

The border’s curvature function was then scanned to find the triples of consecutive cur-
vature extrema with alternating signs, so that the lesion border can be described as a set
of indentation/protrusion segments.

To find the location of convex and concave curvature extrema, and consequently pin-
point indentations and protrusions, Lee et al. [132, 133, 134] proposed an algorithm called
extended curvature scale-space filtering, which modified the classic curvature scale-space
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filtering. The classic scale-space filtering technique, which is useful in object-recognition
systems, represents the shape contour by locating the zero curvature locations. This pro-
cess is done by convolving the original border function L0 (x(t), y(t)) with a Gaussian
kernel g(t, σ) to extract the global features of the shape.

L(t, σ) = L0 (x(t), y(t))⊗ g(t, σ)

= (X(t, σ), Y (t, σ)) (2.27)

where L(t, σ) is the smoothed border, ⊗ refers to the convolution operator and the Gaus-
sian function is given by:

g(t, σ) =
1

σ
√
2π

e−t2/2σ2

(2.28)

The Gaussian standard deviation σ shows the degree of smoothing and the lesion contour
is iteratively convolved by the Gaussian kernel with an increasing σ. This smoothing
process is continued until all border cavities are eliminated, and at each smoothing level,
zero curvature locations are recorded in a binary 2D scale-space image. This approach
was extended [134] so that it can be used to investigate the structural irregularities, i.e.,
analysing the indentation and protrusion segments and locating their positions along the
lesion border. In order to do this, at each smoothing scale σ, the curvature function of
the smoothed curve was calculated and the zero-crossings of the first derivative of the
curvature function were determined. Moreover, their location and concavity/convexity
attributes were recorded. Herein, the binary image of the classic approach was required
to be extended to a three-valued image so that it could represent the new requirements,
i.e., locations of the curvature extrema along with their concavity/convexity attribute.
Lee et al. [132] introduced a new descriptor to indicate the overall ruggedness of the
border. The descriptor, called sigma-ratio (SR), measures the structural irregularities
along the lesion border. It was defined as the normalised minimum σ required to remove
all the indentations and protrusions on the border. The normalisation is done by dividing
the final σ value by the length of the lesion, so that the measure is scale-invariant and
independent of the size of the lesion.

Lee et al. [132, 133] acknowledged that the sigma-ratio descriptor is sensitive to
long and narrow indentations, e.g. presence of a dark hair on the lesion image. Such
a case would lead to a very high value for the sigma-ratio, which is a false positive.
Hence, preprocessing of the image and removing the hairs before applying sigma-ratio
operator is necessary. Also, due to the non-linearity of the Gaussian filter, the sigma-ratio
is a non-linear smoothing process. However, SR was demonstrated to be more sensitive
to structural irregularities than other measures such as compactness index (CI), fractal
dimension (FD) and structural fractal dimension (SFD). They extended [133, 134] the SR
measure and proposed new area-based measurements, called irregularity index (II). During
the process, indentation or protrusion areas under the smoothing operation are either filled
or removed. The size of the filled/removed area, also known as irregularity area, was used
to specify the irregularity index. The index needed to be normalised to be compared with
the II of other lesions. Thus, the irregularity area was divided by a smoothed border at
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the corresponding smoothing level σ. The II of an indentation/protrusion segment U ,
referred to as IU , was defined by:

IU =
∆U

RU
× 100% (2.29)

where ∆U denotes the irregularity area of the segment U , and RU is the area of the
smoothed shape at σ level. By scanning the entire border, a set of irregularity indices
(I1, I2, ..., In) was obtained, each of which could be used as a border descriptor measuring
the structural irregularities along the border of the lesion. Lee et al. [133, 134] suggested
two of these descriptors: namely, the most significant irregularity index (MSII) and the
overall irregularity index (OII), defined by the following equations:

MSII = max{I1, I2, ..., In} (2.30)

OII =

n
∑

j=1

Ij (2.31)

To test the proposed measures, the performance of MSII and OII with that of CI, FD
and SFD was compared. The experiment was carried out on an image set of 40 lesion
borders, and the results were correlated with the clinical results obtained by 14 dermatol-
ogists. The authors demonstrated that the new area-based measures presented the highest
correlations with dermatologists’ evaluations, and the suggested indices properly reflected
the structural irregularities along the borders of the lesion. Lee et al. [136] conducted
another study to investigate the predictive power of the irregularity index on malignant
melanoma by employing statistical analysis. They suggested the four following parameters
to characterise the lesion of the border:

• Indentation Irregularity Index (III): the sum of Irregularity Indices for all structural
indentation segments.

• Protrusion Irregularity Index (PII): the sum of Irregularity Indices for all structural
protrusion segments.

• Maximum Indentation Irregularity Index (MIII): the largest III’s.

• Maximum Protrusion Irregularity Index (MPII): the largest PII’s.

To analyse the predictive power of the proposed indices, three statistical methods were
applied: namely, Student’s t-test, linear discriminant analysis, and ROC analysis. In
Student’s t-test the mean and standard deviation of the four parameters derived from
benign and malignant image sets were compared. For discriminant analysis, the following
linear model was proposed:

D = B0 +B1 × III +B2 × PII +B3 ×MIII +B4 ×MPII (2.32)

The goal was to find the best coefficients Bi which provide the best separation between
malignant and benign lesions. A thresholding was applied on D to classify the lesions;
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values higher than D show irregular borders and malignancy, while values smaller than D
indicate smooth border and benignancy. The rate of successful classification is determined
by:

Classification Rate =
number of true positives + number of true negatives

number of all cases
(2.33)

The ROC analysis was performed both on irregularity indices and discriminant score D
to evaluate the sensitivity and specificity of all possible cut-off points. The area under
ROC curve was also measured to investigate the predictive power of the classification
methods. Moreover, the odds ratio (OR) was calculated to approximate the likelihood of
a melanoma with irregular border over the probability of a benign lesion with irregular
border. OR is given by:

OR =
melanomas with irregular border× benign lesions with smooth border

melanomas with smooth border× benign lesions with irregular border
(2.34)

where OR > 1 implies the chance of associating melanoma with irregular border. The
results of Student’s t-test demonstrated that all four irregularity indices could be used to
predict malignancy of the lesion. Discriminant analysis shows the coefficients for III has
the largest magnitude. Moreover, ROC analysis indicated that the III have the largest
area under ROC curve. These results implied that the prediction power of the indentations
is greater. The authors justified these findings by the fact that the regression, which is a
major index of malignancy, generally causes indentations along the border of the lesion.

Besides the asymmetry measurement described in 2.3.3, circularity or compactness
index (CI) has been also used to investigate the border irregularity of lesions [129, 113,
116, 137]. Holmstrom [123] recognises two disadvantages of using this method: First, this
index is too sensitive to noise and any error in calculating the perimeter of the shape
will be squared (according to the compactness formula defined in equation 4.14). Second,
while the method effectively responds to textural irregularities, it fails to recognise struc-
tural irregularities, which have higher correlation with melanoma [133, 123]. Lee [138]
also notices that the same compactness index can be obtained from lesions with different
boundary shapes. Maglogiannis [139] terms this index thinness ratio. The author also
introduces two other border irregularity features as follows:

Irregularity A =
Perimeter

Area
(2.35)

Irregularity B =
Perimeter

Greatest Diameter
(2.36)

Bono et al. [124] used smoothness to measure the border irregularity of the skin
lesion. They defined this measure as the ratio of the perimeter of the lesion’s convex hull
to the perimeter of the lesion.

Ng et al. [140] applied fractal dimension (FD) to measure border irregularity along
the border of the lesion. To this end, they use a box-counting algorithm which counts the
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number of boxes of size r required to cover the lesion border. The relationship between
number of boxes N(r) and fractal dimension D is given by [128, 140, 134]:

N(r) = λr−D (2.37)

Therefore,

log
1

N(r)
= D × log r − log λ (2.38)

where λ is a constant related to the scale. Thus, D is the slope of equation (2.38) and log
D is the intercept of the line. To calculate the fractal dimension D a line-fitting algorithm,
e.g. least squares method, can be applied on the plot of log 1

N(r) versus log r. For some
lesions, the resultant plot is made up of two line segments, having a breakpoint in the line’s
slope. Herein, Claridge et al. [128] consider two types of fractal dimensions: the textural
fractal dimension delineating the global irregularities on the contour, and the structural
fractal dimension (SFD) defining the fine irregularities along the border of the lesion.
The above-mentioned breakpoint is where these two fractals (textural and structural) fall
apart. Figure 2.6 [128] shows an example of plots and fractal dimensions for malignant
and benign lesions. The vertical dashed line shows the breakpoint between structural and
textural fractal dimension.

Figure 2.6: Structural and textural fractal dimension [128]

Change et al. [115] used Best-fit Ellipse and the following equation to quantify the
border irregularity along the border of the skin lesion:

I =
ab

2π(a2 + b2)
× P 2

A
(2.39)

where a and b are the lengths of the major and minor axes of the best-fit ellipse, and P
and A are the perimeter and area of the lesion, respectively.

Aribisala et al. [141] proposed a measure of border irregularity based on conditional
entropy. The authors defined entropy as the level of uncertainty or unpredictability of



42 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

a sequence or system. They have associated this concept to border irregularity, and
concluded that the more irregular the border of the lesion, the more unpredictable the
sequence of contour points. Conditional entropy is given by:

H(Y |X) = −
∑

x∈X

∑

y∈Y

Pr(x, y) log2 Pr(y|x) (2.40)

where X and Y are sequences of random variables of finite dimensions and Pr(x, y) is the
joint probability of X and Y for particular values of x and y, respectively. Pr(y|x) is the
conditional probability of Y , given X. Aribisala et al. [141] recognised two weaknesses
of entropy and consequently any entropy-based measures (such as conditional entropy);
First, it does not depend on the relative position of the elements in a sequence. Second,
it rigorously depends on the bin size. To solve these problems, conditional entropy was
extended into a new measure called element-based conditional entropy (EBCE). EBCE,
denoted He(X), which is defined as “the overall conditional entropy of the successive
elements of X based on the preceding elements” given by:

He(X) = −
t=n
∑

t=m

Pr(xt, (xt−1, ..., xt−m+1)) logPr(xt|(xt−1, xt−2, ..., xt−m+1)) (2.41)

where X = x1, x2, ..., xn is a random sequence of length n and m is the length of different
subsequences of X. Due to the importance of having proper values for m and useful
definition for the conditionally variable qt, the following notions were carefully chosen:

qt = Pr(xt|(xt−1, xt−2, ..., xt−m+1)) = (xt − xt−m+1) (2.42)

Considering a dynamic range for m, i.e., 2 ≤ m ≤ n, S, defined as the set of all subse-
quences of X each of length m, is given by:

S =
i=n−m+1

∐

i=1

{xi, xi+1, ..., xi−m+1} (2.43)

To apply the method on the lesion, the sequence of points on the lesion border is presented
in polar coordinates, centred at the centroid of the lesion. Two groups of data were
analysed; simulated and real data. For the simulated data, a Sine function in polar
coordinates, equivalent to an ellipse corresponding to a benign lesion, was considered.
Then, different amounts of Gaussian noise were introduced to the original signal, to make
different noisy signals representing lesions with different degree of irregularities. The
authors demonstrated that for both simulated and real data, EBCE increases exponentially
with the increment of m.

Colour

Colour is another indicative feature in the classification of skin lesions, which is carefully
considered in clinical practices such as the ABCD rule of dermatoscopy [15], Menzies
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method [16] and the CASH algorithm [18]. We observed three different trends in assessing
the colour feature in computer-aided diagnosis systems of melanoma: (i) developing a
colour palette which comprises certain defined colour groups and associating different
areas within each skin image with these colour groups, (ii) evaluating the relative colour
histogram to define melanoma colours, and (iii) extracting statistical parameters from
different colour channels. We present a more detailed review of each of these approaches
in the following.

(i) colour Palette:

Seidenari et al. [142] established an approach to imitate the human perception of colours in
skin lesions. In an interactive process incorporating dermatologists’ opinions, they created
a colour palette constituting of six colour groups (i.e., black, dark brown, light brown, red,
white and blue-grey). The palette involved different numbers of colour patches for each
colour group, e.g. the light brown group comprises 28 different light brown patches, all
being perceived as light brown by human observers. To test the method and detect the
colour regions within the lesions, each pixel of the lesion was attributed to its corresponding
colour patch. This correspondence was obtained by finding the colour patch with minimum
Euclidean distance of RGB value to the pixel. After assigning all the pixels to the most
relevant colour patch, those pertaining to the same group were connected to form the
unified segment of that particular colour. Thus, for each lesion the number and type
of the colours were investigated and the results compared with clinical data by using
statistical analysis. They also applied discriminant analysis to investigate the accuracy of
the proposed method in diagnosis of melanoma. The results revealed a high correlation
between computer results and dermatologists’ opinions, i.e., both methods found that the
black, white and blue-grey colours occurred more frequently in melanoma cases.

(ii) Relative colour Histogram Analysis:

Faziloglu et al. [143] presented a three-dimensional relative colour histogram analysis
method to specify the colour characteristics pertaining to melanoma, termed as melanoma
colours. Using relative colours in melanoma image analysis was first suggested by Um-
baugh et al. [144] and has been widely used afterwards [115, 137, 143, 145, 146, 147]. The
relative colour, in which the surrounding skin colour is subtracted from the lesion colour,
aims to handle the colour distortion in the image acquisition. colour distortion occurs for
several reasons; namely, variations in film type, camera settings and lighting condition,
different colour skin and pigmentations, and also the Tyndall effect8 for different patients.
Faziloglu’s method [143] was comprised of seven steps: first, a training set of melanoma
and benign lesion images was obtained and the lesion boundary of each image was ex-
tracted. Then, they determined a representative colour value for the surrounding skin.
This representative colour value was obtained by averaging the pixel values over a defined
circular region surrounding the lesion, centred at the lesion’s centroid, and defined by the
following equation:

AC = AL +AS (2.44)

8The Tyndall effect is the visible scattering of light along the path of a beam of light as it passes through
a system containing discontinuities.
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where AC is the circular area including lesion area AL and the surrounding normal skin
area AS , given by:

AS =











4AL if AL < 4700

3AL if 4700 ≤ AL < 10000

20000 if 10000 ≤ AL

(2.45)

The radius of the circular region was determined by:

rc =

√

AC

π
(2.46)

The next step in Faziloglu’s method is building the relative-colour histogram and analysing
it to determine the melanoma colours. The relative colour was obtained by:

~R =





rrel
grel
brel



 = ~Cles − ~Cskin =





rles − rskin
gles − gskin
bles − bskin



 (2.47)

where ~Cles is the lesion colour value, i.e., ~Cles = Col.(rles, gles, bles), ~Cskin is the sur-
rounding skin colour and ~Crel denotes the relative colour, bounded by −255 ≤ rrel ≤ 255,
−255 ≤ grel ≤ 255 and −255 ≤ brel ≤ 255. The resulting relative colour values were trans-
lated to be in the range of 0–510 by subtracting the minimum possible relative value of
-255 from each pixel value. To produce the histogram the following bin value was selected:

bin = truncate(
rrel + 255

4
) (2.48)

This division by four for the three components combines 64 bins of the original relative
colour histogram into a single bin, yielding a 128×128×128 histogram. This quantisation
was done to avoid having a sparsely populated histogram. At this stage, the histogram
was populated using the training image set. For a bin to be populated, they considered
the criterion of K = 0.00125AL; showing the minimum number of pixel voting into that
particular bin. By applying this strategy, all populated bins for melanoma images are
found. Afterward, for each histogram bin the total number of images populating that bin
was counted. This counting process was done for benign lesions and melanoma images of
the training set, separately and then combined for labelling the bins as follows. Assume ~B
being the set of all relative histogram bins (i.e. 1283), each bin ~Bk ∈ ~B maintains a benign
colour bin probability P ( ~Bk|benign) and a melanoma colour bin probability P ( ~Bk|mel),
which is defined as the number of benign/melanoma images populating ~Bk. Accordingly,
the following mapping was defined:

C( ~Bk) =























unpopulated for P ( ~Bk|mel) = P ( ~Bk|benign) = 0

melanoma for P ( ~Bk|mel) > P ( ~Bk|benign)
uncertain for P ( ~Bk|mel) = P ( ~Bk|benign) 6= 0

bening for P ( ~Bk|mel) < P ( ~Bk|benign)

(2.49)
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According to the melanoma colour mapping in the above equation, depending on melanoma
and benign probabilities, each bin was labeled as melanoma, benign, uncertain or unpop-
ulated. The uncertain and unpopulated bins underwent a relabelling process using an
iterative region growing technique. The colour feature called percent melanoma feature
was then defined as the percentage of melanoma-coloured pixels, given by:

C =
100M

AL
(2.50)

where M is the total number of pixels within the lesion falling into a melanoma-labelled
bin in the relative colour histogram, and AL denotes the lesion area. The last step of the
algorithm was to calculate this feature for all the training images and an automated clas-
sification schema performed, out of which the classification threshold CT was determined.
This threshold was selected such that; true positives = true negatives. The proposed
technique was applied on an image set of 256 lesion images, resulting in an average rate
of 84.6% correct melanoma diagnosis and 83% correct diagnosis of benign lesion. The au-
thors [143] acknowledged that in spite of acquiring reasonably good classification results,
colour features have to be combined with other features to decrease the false negative and
false positive rates.

Chen et al. [145] extended the relative-colour-histogram analysis to evaluate lesion
classification based on colour feature computation in different regions of the skin lesion.
To this end, beside percent melanoma colour proposed in the previous related study [143],
they introduced the colour clustering ratio, which provides a measure of what percent-
age of the lesion pixels are melanoma-coloured. Similar to Faziloglu’s method [143], the
training set was obtained, the lesion boundary was determined, and the relative-colour his-
togram was generated, using which the colour characteristics of melanoma were identified.
Two features; percent melanoma colour and colour clustering ratio were calculated over
different regions of the skin lesion. They defined two regions within the lesion; boundary-
area percentage (the lesion region from the boundary towards its centroid which holds
a certain percentage of the lesion area) and offset boundary-area percentage (the lesion
region from the boundary towards outside which holds a certain percentage of the lesion
area). The authors calculated the percent melanoma colour feature via Equation 2.50
noting that this feature does not consider the spatial distribution of the colour, whereas
the colour-clustering ratio provides information about the grouping of melanoma colours
within the lesion. Experiments were performed on an image set comprising 129 malig-
nant and 129 benign cases. Percent melanoma colour and colour-ratio clustering features
were computed for different values of boundary-area percentage and offset boundary-area
percentage. The results showed that regions close to the boundary of the lesion contain
the most useful colour feature information. Moreover, the percent melanoma colour fea-
ture produced higher classification results than the colour-clustering ratio feature, across
different regions of the skin lesion.

Chang et al. [115] also applied the percent melanoma colour, percent non-melanoma
colour and colour-clustering ratio features in their melanoma diagnosis system. The
relative-colour histogram analysis done by [115, 143, 145, 146] were all applied on clinical
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images, whereas Stanley et al. [147] applied the relative-colour histogram to dermoscopy
images. A similar process to that performed in [115] was applied in [147]. However, differ-
ing results were obtained: i.e., the colour clustering ratio (structured colour information)
revealed a higher discriminant power than that yielded from the percent melanoma colour
feature (unstructured colour information). The study also showed that the interior re-
gions of the dermoscopy images contained important colour information, while peripheral
regions were identified as the crucial areas of the clinical images.

(iii) Statistical Parameters:

In order to quantify the colour features of the skin lesion, various statistical parameters of
different colour spaces have been used. Celebi et al. [60] measured mean and standard de-
viation statistical parameters over the three channels of six different colour spaces; namely,
RGB, rgb (normalised RGB), HSV, I1/I2/I3 (Ohta space), L1/2/3 and CIEL∗u∗v∗. The
mean parameter represents the average colour and the standard deviation shows the colour
variegation over each channel. A total number of 108 colour features were calculated:
(6 colour spaces) × (3 channels in each colour space) × (2 parameters: mean and std) ×
(3 regions: lesion, inner periphery, outer periphery). Furthermore, the differences and ra-
tios of the two parameters (mean and std) over the three defined regions (lesion, inner
periphery, outer periphery) were computed: (outer/inner), (outer/lesion), (inner/lesion),
(outer/inner), (outer/lesion), and (inner-lesion). These relative parameters revealed signif-
icant information: e.g. a big difference between inner and outer periphery might indicate
malignancy of the lesion.

Sboner et al. [81] analysed the colour features of the image in RGB and HSV colour
space and calculated the mean and standard deviation of hue and saturation components.
They also computed the fractal dimension of blue, green, hue and saturation channels.
Moreover, they measured the distances between the centroids of red, green, blue, hue,
saturation and value channels and the lesion centroid, average distance from the centroid
of the RGB and HSV channels from the lesion centroid, and also the difference, mean
and standard deviation of hue and saturation channels over the lesion border. The au-
tomated diagnosis was made based on a voting schema integrating the outputs of three
classifiers; namely, discriminant analysis, k-nearest neighbourhood and decision tree. The
system was trained and validated on a set of 152 skin images and the results obtained
from the system were compared with the diagnosis obtained from a group of eight expert
dermatologists. Experimental result showed that the proposed system performs as well as
the eight dermatologists with respect to sensitivity. Regarding the specificity, the system
performed better than at least one of the physicians. Furthermore, the systems never
exhibited poor performance with respect to both sensitivity and specificity, compared to
any of the dermatologists.

In another study [148] the average and variance of pixels in three colour spaces;
RGB, HIS (Hue, Intensity, Saturation) and spherical coordinates CIE L*a*b were mea-
sured. The two latter colour spaces are obtained from RGB colour space by the following
equations:
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I =
R+G+B
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and
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√
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AngleA = Cos−1[
B

L
]

AngleB = Cos−1[
R

L× Sin(AngleA)
] (2.52)

She et al. [116] defined the colour variegation as the normalised standard deviation of red,
green and blue colour channels by the following equations:

Cr =
σr
Mr

Cg =
σg
Mg

Cb =
σb
Mb

(2.53)

where σi and Mi are the standard deviation and maximum value of the i colour channel
(i: red, green, blue), respectively. The authors put great emphasis on the normalisation
process due to fact that in skins with higher pigmentation of surrounding normal skin,
the lesion also exhibits higher pigmentation values. The above-mentioned colour-based
features were combined with features of asymmetry, border irregularity, diameter, as well
as measuring the skin line direction and intensity, resulted in area under ROC curve of
approximately 0.94.

Furthermore, several colour parameters were suggested by Manousaki et al. [122];
namely, minimum, maximum, mean and standard deviation values of grey, red, green
and blue intensities. They also measured the skewness from Gaussian curve over each
colour channel, i.e., the deviation of the histograms of the grey, red, green and blue
colour channels from the normal (Gaussian) distribution curve. These colour features
were combined with geometry, border and texture measures resulting in a total of 43
variables, from which five was selected through a feature-selection process based on logistic
regression. The system resulted in 60.9% sensitivity and 95.4% specificity.
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Cheng et al. [137] also applied a pattern recognition software toolkit to classify
clinical skin lesions using relative colour features. They extracted different histogram
statistical features; namely, mean (for image brightness in red, blue and green colour
channels), standard deviation (for image contrast in red, blue and green colour channels),
skewness (indicating the asymmetry about the mean in intensity level distribution in red,
blue and green colour channels), energy (indicating the distribution of the intensity level
in red, blue and green colour channels) and entropy (indicating the number of bits required
to code image data in red, blue and green colour channels). The best results were obtained
using a multi-layer perceptron neural network model, resulting in 79% accuracy.

Differential Structure

In this section we briefly review the existing methods on analysing differential structures
in dermoscopy images.

Grana et al. [149] proposed a method based on Gaussian-derivative kernels and
Fisher linear-discriminant analysis to detect and localise network patterns. An experi-
ment was conducted on a set of 60 skin images which had been categorised into three
classes of: no network pattern, partial network pattern and complete network pattern by
dermatologists. The results revealed no false positives, five false negatives on the partial
network class and two on the complete network class, with overall accuracy of 88.3% for
network pattern recognition. Fischer et al. [150] proposed a multi-step approach con-
sisting of transforming RGB colour space by the Karhunen-Loeve transform [151] and
applying colour segmentation on the new colour components, with histogram equalisation
and greyscale morphology to enhance and filter pigment network patterns. Another al-
gorithm was suggested by Fleming et al. [152], which aimed to analyse pigment networks
and also measure the network lines’ width and network holes’ size. Murali et al. [153]
developed a texture-based algorithm to detect blotchy areas. They also aimed to deter-
mine the degree of importance of this feature in differentiating between malignant and
benign lesions. The proposed technique involved calculating the neighbouring grey-level
dependence matrix (NGLDM) and was tested on 37 dermatoscopy images. Celebi et
al. [154] provided a machine-learning approach to detect blue-white areas in dermoscopy
images. The approach was comprised of several steps; preprocessing (determining the
background skin colour and selecting the training and test sets), colour-feature extrac-
tion (absolute and relative colour features), pixel classification (decision-tree induction),
rule application, and postprocessing. The algorithm was tested on 224 images and the
results visually assessed by dermatologists as satisfactory. Stoecker et al. [155] analysed
areas of granularity (or multiple blue-grey dots defined as accumulation of tiny, bluegrey
granules in dermoscopy images) to discriminate granularity in melanoma from visually
similar areas in non-melanoma skin lesions. The granular areas in dermoscopy images
of 88 malignant (including 14 melanomas in-situ and 74 invasive melanoma) were manu-
ally selected. For 200 non-melanoma dermoscopy images, those areas which most closely
matched granularity, in terms of size, colour and texture were similarly selected. The
texture measures, including the average and range of energy, inertia, correlation, inverse
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difference, and entropy (based on co-occurrence matrix), and colour measures, including
absolute and relative RGB averages, absolute and relative RGB chromaticity averages, ab-
solute and relative G/B averages, CIE X, Y, Z, X/Y, X/Z and Y/Z averages, R variance,
and luminance were measured for each granular area of the melanomas and similar areas
in the non-melanoma images. ROC analysis revealed that the best classification result is
obtained by using a combination of six texture and five relative-colour measures, resulting
in an accuracy of 96.4%.

In chapter 4 of this thesis we propose a novel, comprehensive and highly effective
feature extraction method which combines different types of features; novel ones and a few
adopted from the above-mentioned studies. In the proposed method texture and border
(including geometry and time-series) features are extracted and optimally combined.

2.3.4 Feature Selection

Feature selection is an important component in data preprocessing/analysis in various
applications such as computer vision, data mining, image mining, etc. It reduces the
number of features by removing irrelevant, redundant, or noisy data, and has an immediate
effect on application by accelerating the classification, clustering or data mining algorithm,
as well as improving performance [3]. A typical feature selection process consists of four
basic steps [156] (shown in Figure 2.7), namely, subset generation, subset evaluation,
stopping criterion, and result validation. Subset generation is a search procedure which
produces candidate feature subsets based on a certain search strategy [157, 158]. Each
candidate subset is then evaluated and, based on a certain evaluation criterion, is compared
with the previous best subset. If the new subset defeats the previous one, the old subset is
replaced by the new one. The process of producing and evaluation the subsets is repeated
until a given stopping criterion is satisfied. Ultimately, the selected best subset will be
validated and testified by prior knowledge or different tests using simulated or real-world
data [3].

Figure 2.7: Basic steps of a typical feature selection process [3].
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Feature selection algorithms can be categorised into three classes [3]: (i) the filter
model [159], which uses the general characteristics of the data to evaluate the features and
selects the optimal feature subset(s) with no classification or learning algorithm, such as
methods based on correlation [160, 161], entropy, mutual information, etc. (ii) the wrapper
model [162], which uses a learning algorithm and searches for features which improves the
learning performance, such as methods based on greedy or genetic algorithms [163, 164,
165], (iii) the hybrid model which combines the two approaches [166, 167, 168]. Filter
model feature selectors are less computationally expensive than wrapper-based approaches.

Some existing computer-based melanoma diagnosis systems have applied feature se-
lection in their study; for example, Principal component analysis was used by Walvick et
al. [169] to obtain an optimal set of four features from an initial set of eleven features.
Roβ et al [170] performed feature selection by applying the sequential forward selection
(SFS) method, reducing the feature set from 87 to five features. Nimunkar et al. [171]
applied a statistical feature selection approach (unpaired t-test for normally distributed
features and Wilcoxon rank-sum test for non-normally distributed features), to cut down
the feature vector from 34 to five optimal features. In [80] a neural network was applied and
node pruning was used to reduce the set size from 21 features to six. Ganster et al. [58]
started with 122 features and used three statistical approaches of Sequential Floating
Forward Selection (SFFS), Sequential Floating Backward Selection (SFBS), and Leave
One Out (LOO) to reduce the number of the selected features to 21. Zagrouba and
Barhoumi [94] also applied SFFS and SFBS obtaining an optimal set of five features (from
an initial 14), with which they obtained an accuracy of 77.7% with half of the computa-
tional time compared to using all 14 features. Iyatomi et al. [172] developed an automated
method to detect the dermoscopic criteria for diagnosing melanomas, based on two diag-
nostic algorithms of the ABCD rule and the 7-point checklist. A total of 356 features were
extracted from a set of 105 dermoscopy images and their dermoscopic findings determined
by four dermatologists were used as the gold standard. They applied correlation-based
feature selection to reduce the feature space to 163 features and built multiple-regression
models for the 15 clinical findings defined by the two diagnostic algorithms. The model
reportedly provides results comparable to dermatologists in recognising almost all of the
dermoscopic criteria.

In Chapter 4 of this thesis we discuss the application of a feature selection scheme
from the filter-based family. The rationale behind this choice is the high-dimensional
feature space and the necessity of applying a low-computational feature selection method.

2.3.5 Classification

Classification is the process of distributing items into classes or categories of similar type.
In a computer vision system, similarity is defined in terms of the features which have
been extracted in the feature extraction module. This section provides a brief review
of the most popular classification methods which have been applied to computer-based
melanoma diagnostic systems.
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Discriminant Analysis

Discriminant analysis has been employed to classify pigmented skin lesions in [171, 81,
113, 139, 173, 174, 175]. The main aim of discriminant analysis [176] is to classify a
set of observations into predefined classes, based on the values of certain measurements,
known as predictors. The discriminant analysis discovers the combination of these pre-
dictor variables which best characterises the interclass differences. The coefficients are
calculated and the obtained discriminant functions can be used to predict the class of a
new observation with unknown class. For a k-class problem k discriminant functions are
constructed. Given a new observation, all k discriminant functions are evaluated and the
observation is assigned to class i if the i − th (i=1,2,...,k) discriminant function has the
highest value. Another application of this technique is to find out the most discriminating
predictor, which is either done by successively eliminating those predictor variables that
do not contribute significantly to the discrimination between classes, or by successively
identifying the predictor variables that have a major contribution. The Likelihood func-
tion and Fisher’s Linear discriminant function are two common discriminant rules which
are employed in this technique.

Artificial Neural Network

The Artificial Neural Network (ANN) approach has been applied to classify skin-lesion
images in [169, 59, 94, 113, 139, 170, 177]. Neural networks are non-linear statistical data
modeling tools which can be used to model complex relationships between inputs and
outputs or to find patterns in data. The methodology of neural networks involves mapping
a large number of inputs into a small number of outputs; therefore it is frequently applied
to classification problems [178]. The artificial neural network or neural network (NN) [179]
is a mathematical or computational model which calculates posterior class membership
probabilities by minimising a cross-entropy error function. Based on biological neural
networks, ANNs consist of highly interconnected processing units called artificial neurons.
Information is propagated between neurons positioned in different layers and stored as
connection weights between neurons. A minimisation process is implemented as a rule
which updates the weights in the network. An ANN is generally an adaptive system
that changes its structure based on external or internal information (feedback) that flows
through the network during the learning phase.

K-Nearest Neighbourhood

The k-nearest-neighbourhood (K-NN) algorithm has been used to classify pigmented skin
lesions in [58, 59, 81, 170, 175]. The k-NN algorithm [180] is a popular density-estimation
algorithm for numerical data. It classifies objects based on closest training examples
in the feature space. This algorithm uses the elements of the training set to estimate
the density distribution of the data by applying a distance measure such as Euclidean
distance. For a given distance measure, the only parameter of the algorithm is k, the
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number of neighbours, which determines the smoothness of the density estimation; larger
values consider more neighbours, and therefore smooth over local characteristics. Smaller
values consider only limited neighbourhoods.

Support Vector Machine

The support vector machine has been applied to skin lesion classification in [12, 59, 60,
113, 148, 181, 182, 65]. The support vector machine (SVM) [183] is a popular classification
algorithm based on statistical learning theory. Considering input data as two sets of vectors
(support vectors) in an n-dimensional space, SVM calculates a separating hyperplane in
that space, which maximises the distance (margin) between the two data sets. Celebi et
al. [60] recognised several advantages of SVM over other classification algorithms such as
neural networks. The advantage arises from the logic that since the training phase of
SVM involves optimisation of a convex cost function, there is no risk of local minima to
complicate the learning process as in the case of backpropagation neural networks.

Decision Trees

Decision trees have been used to classify skin lesion images in [12, 59, 81, 184, 185]. The
decision tree as described in [186, 187] provides a classification schema by dividing the
data set into smaller and more uniform groups, based on a measure of disparity (usually
entropy). To achieve this separation, a variable and a corresponding threshold in the
domain of this variable are identified, which can be used to divide the data set into two
groups. The best choice of variable and threshold is that which minimises the disparity
measures in the resulting groups. In these tree structures, leaves represent class labels and
branches represent conjunctions of features that lead to those classifications.

Comparison of Different Machine Learning Methods

Dreiseitl et al. [59] utilised five machine learning (classification) techniques; namely, k-
nearest neighbourhood, logistic regression, artificial neural network, decision tree, and
support vector machine, to classifying pigmented skin lesions as common nevi, dysplastic
nevi, or melanoma. Regarding the experimental results, the authors recognised that the
decision tree paradigm was not a good option to apply on skin lesion classification, since
most of the variables (features) basically have continuous values in such applications.
However, k-NN performed well, and logistic regression, ANN and SVM claimed to exhibit
very good performance over the given image set. Another comparison between different
classification methods was performed by Burroni et al. [175], where the performance of
two statistical classifiers, linear discriminant analysis and k-nearest neighbourhood, was
evaluated. The experiments were conducted on an image set containing 391 melanoma and
449 melanocytic nevi images. Using independent test sets of lesions, the results achieved by
the linear classifier and the K-nearest neighbourhood classifier revealed a mean sensitivity
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of 95% and 98% and a mean specificity of 78% and of 79%, respectively.

Sboner et al. [81] used a voting schema integrating the outputs of three different
classifiers of discriminant analysis, k-nearest neighbour and decision tree, applied to a set
of 152 skin images. The authors claimed that the voting scheme increases the diagnostic
sensitivity and specificity over applying each individual classifier.

Maglogiannis and Doukas [12] presented a survey on existing computer vision sys-
tems for characterisation of skin lesions in 2007 (published in 2009). They also utilised a
fairly large set of 3707 images, extracted 31 features of colour, border and texture from
those, and applied three feature selection methods based on correlation, principal com-
ponent analysis and GSFS (generalised sequential feature selection), aiming to (i) detect
melanoma from nevus, (ii) classify dysplastic (nevus) versus nondysplastic skin lesions,
(iii) classify the three classes of melanoma, dysplastic, and nondysplastic. A group of clas-
sifiers were applied, e.g. Bayes networks, SVM, CART (classification and regression trees),
multinomial logistic regression (MLR), locally weighted learning (LWL), neural network
(multilayer perceptron), etc. The result showed that regarding the first aim, MLR had the
best performance followed by SVM, LWL, and CART. For the second aim, all classifiers
achieve lower accuracy, indicating the difficulty of differentiation between dysplastic and
nondysplastic nevi. Among all the three classifiers of multilayer perceptron, SVM and
Bayes networks had the best performance. In the last experiment the majority of the
examined classifiers performed satisfactorily with accuracy ranges from 68.70% (Bayes
networks) to 77.06% (SVM). The authors emphasised the overall superior performance of
SVM, followed by regression and Bayes networks.

Table 2.2 shows the classification results of some of the existing computer-based
melanoma diagnosis systems. Obviously the results obtained from those studies with
a reasonable number of images (e.g. at least 100), with balanced distribution between
classes of benign and malignant, and with separated image sets for training and testing
the classifier, provide more validity and reliability.

In Chapter 4 of this thesis we explain the classification methods applied in our
proposed diagnostic system, where we have applied four different classes of classification
techniques; namely, Random Forest (RF) [188], Logistic Model Tree (LMT) [189], Hidden
Naive Bayes (HNB) [1], and Support Vector Machine (SVM). To the best of our knowledge,
the first three classifiers (RF, HNB and LMT) have not been utilised in melanoma diagnosis
applications before.

2.4 Summary

In this chapter we provided an overview of the problem in hand; skin structure and its
cellular distortion which leads to melanoma. Moreover, we looked into existing solutions
for early diagnosis of this skin cancer, including imaging technology and medical diagnos-
tic algorithms. This was followed by surveying the existing computer-based melanoma
diagnostic systems which have been previously developed in order to assist dermatologists
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Table 2.2: Classifier performance results from existing systems.
Classifier Performance Results Nom. of Images Reference

Discriminant Analysis TP 93% , FP 0–21% 28 [171]
SNS 65% , SPC 83% 152 [81]
SNS 93% , SPC 100% 34 [113]
ACC 71% 70 [173]
SNS 100%, SPC 86% 29 [174]
SNS 95% , SPC 78% 821 [175]

Artifical Neural Network TP 100% , FP 23.5% 60 [169]
SNS 91% , SPC 94% 1619 [59]
ACC 77.7% - [94]
SNS 93% , SPC 100% 34 [113]
ACC 87% - [170]
ACC 85–89% 250 [177]

K-Nearest Neighbourhood SNS 87% , SPC 92% 5393 [58]
SNS 85% , SPC 90% 1619 [59]
SNS 35–68% , SPC 90–97% 152 [81]
ACC 93% - [170]
SNS 98% , SPC 79% 821 [175]

Support Vector Machine SNS 92% , SPC 95% 1619 [59]
SNS 93% , SPC 92% 564 [60]
SNS 86% , SPC 100% 34 [113]
ACC 82.5% 4277 [181]
SNS 100% , SPC 63.5% 977 [182]
SNS 92& , SPC 93% 60 [65]

Decision Trees SNS 80% , SPC 90% 1619 [59]
SNS 64% , SPC 84% 152 [81]
ACC 70% 251 [184]

and clinicians and facilitate the early accurate diagnosis of the disease. We also reviewed
some of the methods applied in those studies in order to develop an automated diagnos-
tic system. In the next two chapters we propose and detail various components of our
computer-aided diagnostic system for melanoma.



Chapter 3

Segmentation or Border Detection

Segmentation or border detection is a fundamental step towards development of a computer-
aided diagnosis of melanoma. It involves separating the lesion from the background skin.
The accuracy of the detected border is essential for accurate implementation of the sub-
sequent parts of the system, i.e., feature extraction and classification, since diagnostic
features such as asymmetry and border irregularity are highly dependent on the border
detection result. In addition, the lesion inside the detected border reveals information
about homogeneity, dermoscopic patterns and lesion colour, and excluding any portion of
the lesion may result in significant information overlooked and possible false diagnosis.

Detecting the boundary of the lesion in dermoscopy images is challenging [78] due to
(1) the low contrast between the lesion and the background skin, (2) presence of unwanted
artifacts within the image such as hairs, skin lines, blood vessels, air bubbles, black frames,
camera scale and blue or purple surgical markings, (3) fuzziness of the border and (4) the
colour variegation within the lesion.

Various image features such as shape, colour, texture, and luminance have been
employed to perform skin lesion segmentation. Numerous border detection methods have
been proposed in the literature [78] including histogram thresholding [190, 80], colour
clustering [87, 82, 83], JSEG algorithm based on colour quantisation and spatial segmen-
tation [95], statistical region merging [96], two-stage k -means++ clustering followed by
region merging [89], etc. Melli et al. [87] criticised adaptive thresholding methods for inac-
curacy due to the lack of sharp bimodal luminance distribution between the surrounding
skin and the lesion. However, in this study we demonstrate that with a proper choice of
colour channel, a thresholding-based approach can produce borders highly accordant with
those manually drawn by expert dermatologists. The rationale behind this choice is the
simplicity and low computational cost of scalar processing as described in the following
sections.

In Section 3.1 of this chapter, a novel border detection method based on colour-
space analysis and clustering-based histogram thresholding is proposed. The method first
determines the most effective and discriminative colour channels in dermoscopy applica-
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tion, then applies global thresholding followed by a set of pixel-based computations and
morphological operations to detect the boundary of the lesion.

In Section 3.2, the proposed border detection method is improved by proposing
the Hybrid border detection method which integrates local information around the initial
borders detected by the global thresholding method to expand the initial boundary towards
the background skin. Both global and local histogram thresholding are applied to the
optimised colour channels investigated in first part of the chapter.

The Section 3.3 involves a comparative study between the Global and Hybrid ap-
proaches proposed in the first two sections of the chapter. The purpose is to evaluate the
necessity of integrating local pixel information into the segmentation process and demon-
strate the superiority of the Hybrid thresholding approach over the Global method through
a newly introduced evaluation metric, Performance Index.

The next two sections (Sections 3.4 and 3.5), present a comprehensive objective
evaluation of border-detection results. Two quantitative metrics of Weighted Performance
Index and Optimised Weighted Performance Index are proposed as useful means for as-
sessing performance of the border detection methods as well as comparing between the
different border detection methods. Section 3.6 provides a summary and conclusion of the
chapter.

3.1 Global Thresholding on Optimised Colour Channels

This section proposes a novel automatic segmentation algorithm based on colour-space
analysis and clustering-based histogram thresholding. It determines the most effective
and discriminative colour channel for melanoma application. Different colour channels
from various colour spaces have been incorporated to maximise the discrimination be-
tween two clusters of pixels within the image, lesion versus normal skin pixels, to obtain a
more accurate histogram analysis. Each colour channel undergoes preprocessing such as
intensity adjustment and noise removal by the use of a pill-box low-pass filter. Clustering-
based thresholding is applied, and a set of pixel-based computations and morphological
operators is utilised to obtain the segmented lesion. Producing 24 different channel images
from each initial RGB skin image, we have determined the colour space and the corre-
sponding channel that outperforms others in detecting the lesion borders. The proposed
border detection method consists of several steps, as shown in Figure 3.1, described in the
following.

3.1.1 Hair Removal

Lesions occluded with dark thick hairs can cause problems in the segmentation process.
In such cases, our proposed method starts with a hair-removal procedure, consisting of the
following steps [111]: (1) localising dark hairs using a morphological closing operation in
the vertical, horizontal and diagonal directions, (2) interpolating the removed hair pixels
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Figure 3.1: Global thresholding method for border detection in dermoscopy images en-
compassing colour optimisation process.

using nearby non-hair pixels, and (3) smoothing the final result using a median filter to
eliminate remaining thin lines.

3.1.2 Colour-Space Transformation

Colour information plays a significant role in dermoscopy image analysis. This step incor-
porates colour information in a dermoscopy image into the segmentation process, where
the original RGB image is transformed into various colour spaces, and the corresponding
colour channels are extracted. Despite the existence of numerous colour spaces in the
literature, the choice of optimal colour space is application-dependent [191]. In this study
we investigated various colour spaces [192]; namely, RGB, HSV, HSI, CIE-XYZ and CIE-
LAB. The original RGB dermoscopy image is transformed into a set of 24 colour channel
images from the above-mentioned colour spaces. The selection of these 24 colour channels
was made after analysing visually all possible combinations. As shown in Table 3.1, these
images include single colour channel images such as R from the RGB colour space and X
from the XYZ colour space, as well as combinations of them such as XoYoR, where “o”
stands for logical OR, which combines the results from X and Y colour channels from the
XYZ colour space with those from the R colour channel from the RGB colour space. For
instance, to build the RoGoB segmentation result the R, G and B colour channels are
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extracted and each undergoes the segmentation process illustrated in Figure 3.1. Finally,
the three binary segmentation results are combined through the OR operation. The RGB
colour channel in Table 3.1 is calculated by forming a weighted sum of the R, G, and
B components (expressed in Equation 3.1, adopted from Matlab) and converting RGB
values to greyscale values. Figure 3.2 shows a dermoscopy image before and after colour-
space transformation. In the following a brief explanation about colour spaces and the
corresponding colour channels is provided.

RGB = 0.2989×R+ 0.5870×G+ 0.1140×B (3.1)

Table 3.1: Colour channels used in colour-space transformation.
Channel No. Colour Channel(s) Colour Space

1-12 R, G, B, RGB, RoB, GoB, RoG, RoGoB, RGB
RGBoR, RGBoG, RGBoB, RGBoRoGoB

13 I HSI

14 V HSV

15 L LAB

16-22 X, Y, Z, XoY, XoZ, YoZ, XoYoZ XYZ

23-24 XoYoR, XoYoZoR XYZ and RGB

Figure 3.2: Colour-space transformation for a sample dermoscopy image: (a) original RGB
image (b) channeled image.

Colour Spaces and Colour Channels:

The most frequently used colour presentation in image processing is the RGB colour space
where colours are represented by their red, green, and blue spectral wavelength responses in
an orthogonal Cartesian space. Consequently, each pixel has a 3D vector with component
values ranging from 0 to 255. To overcome the limitation of the RGB colour space in
high level processing, other colour spaces have been developed based on mathematical
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transformation of the original RGB colour channels. HSV and HSI colour spaces are
common cylindrical-coordinate representations of points in an RGB colour model, which
rearrange the geometry of RGB in an attempt to be more perceptually relevant than the
Cartesian representation, mimicking the human visual perception of colour in terms of
hue, saturation and intensity (in HSI) and hue, saturation and value (in HSV). The hue
component is proportional to the average wavelength of the colour, saturation indicates
the amount of white in the colour and intensity represents the brightness or the amount
of energy in the colour.

The I colour channel from the HSI colour space, and V from the HSV colour space,
which are used in this study (13 and 14th colour channels in Table 3.1) are define as follow:

I =
R+G+B

3
(3.2)

V = max{R,G,B} (3.3)

However, the colour spaces outlined above do not provide perceptual uniformity; i.e.,
colour vectors with a particular distance in colour space are placed in the same distance
when perceived by human visual system. To meet the uniformity requirement the CIE-
LAB colour space was proposed. CIE-XYZ (Equation (3.4) and (3.5)) [192] colour space,
which is one of the first mathematically defined colour spaces created by the International
Commission on Illumination (CIE) [193] in 1931, is another colour space investigated
in this study. The transformation from RGB colour space to XYZ colour space can be
achieved through the following relationship:





X
Y
Z



 = T ×





R
G
B



 (3.4)

where T is a 3×3 constant matrix, the parameters of which may differ from one application
to another according to the reference white value. In our study we have chosen the
following parameters, for the illuminant D65:

T =





0.4125 0.3576 0.1804
0.2127 0.7152 0.0722
0.0193 0.1192 0.9502



 (3.5)

The L colour channel from the LAB colour space, used in this study (15th colour channel
in Table 3.1) is given by:

L = 100

√

Y

Yn
(3.6)

where Yn = 100.00 and Y is the CIE value 3.5.

3.1.3 Noise Filtering

To enhance the accuracy of segmentation and save computational time, it is useful to
eliminate the artifacts that might be present in the image. In dermoscopy images, external
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artifacts include skin lines, air bubbles or other random noise caused by the imaging
process. In this study, the dermoscopy images are smoothed using a circular averaging low-
pass filter with a radius of 5, using the pill-box point spread function shown in Figure 3.3.
The result of applying this filter on the dermoscopy image of Figure 3.2 is shown in
Figure 3.4.

Figure 3.3: Pill-box point spread function

Figure 3.4: Result of applying noise filtering step on the dermoscopy image of Figure 3.2.

3.1.4 Intensity Adjustment

This step is essentially an enhancement process in which the dynamic range of pixel
values in the image is mapped into a new range. The purpose is to smooth and stretch
the image histogram and increase the contrast of the image in order to determine a more
accurate threshold value in the thresholding step. Intensity adjustment works by rescaling
the intensity values in the original image to cover the entire dynamic range. Figure 3.5
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illustrates the result of applying this intensity adjustment step on the dermoscopy image
of Figure 3.4.

Figure 3.5: Result of applying intensity adjustment step on the dermoscopy image of
Figure 3.4.

3.1.5 Clustering-based Histogram Thresholding

Thresholding is the process of classifying the pixels of a greyscale image into two classes, so
that the image can be converted to binary by assigning each pixel either a 0 or 1, depending
on its grey level. The thresholding procedure used in this paper is based on the well-known
Otsu’s thresholding method [109]. The basic premise of this method is the assumption
that an image contains two clusters of pixels, e.g. foreground and background, which,
in our case, correspond to the lesion and its surrounding skin, respectively. To identify
these two clusters accurately, an algorithm is used to search for an optimal threshold
level using discriminant analysis, where zero-th and first-order cumulative moments of the
histogram are calculated and used to define a measure of separability between the two
clusters. An optimal threshold level separating the two clusters is obtained by minimising
the within-cluster variance (σ2

ω), which is defined as a weighted sum of variances of the
two clusters:

σ2
ω(t) = ω1(t)σ

2
1(t) + ω2(t)σ

2
2(t) (3.7)

where weights ωi are the probabilities of the two clusters separated by a threshold t and σ2
i

denotes the variances of these clusters. It can be shown that minimising the within-cluster
variance (σ2

ω) is equivalent to maximising between-cluster variance. The between-cluster
variance (σ2

b ) is recalculated in the Otsu method [109] as the following:

σ2
b (t) = σ2 − σ2

ω(t) = ω1(t)ω2(t)[µ1(t)− µ2(t)]
2 (3.8)

where µi are the mean values of the two clusters. Starting from an initial threshold value
of t = 1, ωi and σ2

i are updated iteratively and in each iteration σ2
b (t) is calculated. The

optimal threshold corresponds to the maximum value of σ2
b (t). The output binary image

has values of 1 for all pixels in the input image with luminance greater than the threshold
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level and 0 for the remaining pixels. The result of applying the thresholding step on the
dermoscopy image of Figure 3.5 is given in Figure 3.6.

Figure 3.6: Result of applying thresholding step on the dermoscopy image of Figure 3.5.

3.1.6 Connected Component Analysis

In some of the dermoscopy images, extra objects appear in the surrounding skin area,
such as blue marks made by dermatologists when examining the patient’s skin. These
objects, which have not been eliminated in the noise removal step, appear with intensity
values similar to that of the lesion and may be misclassified as lesion. The purpose
of this step is to exclude these objects from the segmentation output. To this end, the
number of connected objects within the image is determined using the run-length encoding
technique [194] and the connected objects are labeled. Finally, the two largest areas (i.e.,
lesion and surrounding skin) are kept and all other components are discarded. Figure 3.7
shows the result of applying this step on the dermoscopy image of Figure 3.6.

Figure 3.7: Result of connected component analysis on the dermoscopy image of Figure 3.6.
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3.1.7 Lesion Formation

In order to obtain the final lesion object, the holes inside the boundary are filled by
performing morphological filling on the binary image. Figure 3.8 shows the final segmen-
tation result. Figure 3.10 shows the segmentation sequence on another dermoscopy image.
Figure 3.9 shows more samples of the detected border by the proposed algorithm.

Figure 3.8: Applying morphological operator on the dermoscopy image of Figure 3.7 to
form the final segmentation result.

Figure 3.9: Sample border detection results using Global thresholding method

3.1.8 Experimental Results: Determining The Optimal Colour Channel

In order to determine the optimal colour channels for border detection, we conducted
a pilot study on a set of 30 high-resolution dermoscopy images provided by the Royal
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Figure 3.10: Global thresholding method: (a) Original image, (b) Colour space trans-
formation, (c) Noise removal, (d) Intensity adjustment, (e) Thresholding, (f) Connected
component analysis, (g) Morphological filling.

Melbourne Hospital, Australia. As shown in Figure 3.9, the image set contains a variety
of dermoscopy images in terms of colour, texture and shape, which provides a strong basis
for the experiment to make the algorithm generic and applicable to real-world applications.

As ground truth, for each dermoscopy image, four manual borders were indepen-
dently drawn by four experts (two experienced dermatologists and two dermatology reg-
istrars). Figure 3.11 shows the borders drawn by dermatologists for a sample image. To
perform a comparison between the automatic borders (generated by the proposed bor-
der detection method) and the manual borders (drawn by the dermatologists), in order
to evaluate the goodness of the detected borders, various metrics have been used in the
existing dermoscopy applications [78]. Here three of those metrics are used; namely, sensi-
tivity (3.9), specificity (3.10), accuracy (3.11). Sensitivity shows the percentage of actual
lesion that has been truly detected. Specificity shows the percentage of actual background
skin that has been truly detected. Accuracy shows the degree of closeness of the detected
border to the actual border, which takes both background skin and lesion pixels into
account.

Sensitivity =
TP

TP + FN
× 100% (3.9)

Specificity =
TN

TN + FP
× 100% (3.10)

Accuracy =
TP + TN

TP + FP + FN + TN
× 100% (3.11)

where TP, TN, FP, and FN refer to true positive, true negative, false positive and false
negative, respectively. TP and TN represent the number of pixels which are classified
correctly as part of the lesion and background skin in both the manual and automatic
borders, respectively. FP represents the number of pixels which are classified as part of
the lesion in the automatic border, but are labeled as part of the background skin in the
manual border. Finally, FN represents the number of pixels which are classified as part of
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Figure 3.11: Manual borders of the same lesion drawn by four dermatologists; E1 and E2:
experienced dermatologists, R1 and R2: dermatology registrars.

the background skin in the automatic border, but are labeled as part of the lesion in the
manual border.

In the above three metrics, the manual borders are taken as the ground truth and the
calculated measures are used to quantify the discrepancy between the automatic borders
and the manual ones. However, another perspective in the analysis is to evaluate the inter-
observer variabilities among the four dermatologists, as demonstrated in Figure 3.11. To
achieve this, a fourth metric, i.e., (Sorensen) similarity index [195], is used to quantify the
degree of similarity between any two borders, without taking either of them as the ground
truth. This metric (Equations 3.12 or 3.13) has been used in a variety of domains, yet it
has not been used in dermoscopy.

Similarity =
2A1 ∩ 2

A1 +A2
(3.12)

where Ai is the areas of any two segmented images and A1 ∩ 2 is the number of pixels
the two images share (intersection of the two images). The similarity metric can also be
expressed in terms of TP, TN, FP, and FN, given by:

Similarity =
2TP

2TP + FN + FP
× 100% (3.13)

Table 3.2 shows the mean and standard deviation values of similarity among the
borders drawn by the four dermatologists. The similarity values indicate that there are
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higher similarities between the two experienced dermatologists and two dermatology regis-
trars, although differences are all less than the standard deviations. The overall similarity
index is high which indicates the reliability of the ground truth. We have also used the
similarity metric to investigate which automatic border is closest to the gold standard
(manual border).

Table 3.2: Mean ± standard deviation for similarity (%) between dermatologists; E1 and
E2: experienced dermatologists, R1 and R2: dermatology registrars.

E1 E2 R1 R2

E1 - 95.92 ±1.76 95.09 ±1.75 94.78 ±2.25
E2 - - 94.68 ±1.73 94.78 ±2.22
R1 - - - 95.86 ±1.25

As mentioned earlier, the main purpose of this analysis is to determine the colour
channels that lead to the most accurate borders. To achieve this aim, 24 different colour
channels listed in Table 3.1 are extracted from the 30 images, resulting in 24 different
borders per image. Each border (out of 24×30), is then separately compared to each of the
four manual borders using the above-mentioned four metrics. The 30 values of each metric
are then averaged, resulting in 24 average metrics of sensitivity, specificity, accuracy and
similarity. The maximum values of each of these metrics and their corresponding colour
channels are then identified, resulting in four colour channels for each metric, as shown in
Table 3.3. As shown in Table 3.3, using the average values, the initial 24 colour channels
are narrowed down to the four colour channels of X, XoYoR, XoYoZoR and R. The R
colour channel produces short borders (small segmented lesions), thus small FP and large
TN values, and accordingly results in the highest specificity values. Borders obtained by
using XoYoRoZ colour channel, which is the result of integrating the X, Y, Z, and R colour
channels via OR operation, produce a larger border, thus small FN value. Consequently,
they result in high sensitivity.

Table 3.3: Colour channels with the largest mean for four ground truths; E1 and E2:
experienced dermatologists, R1 and R2: dermatology registrars.

Expertise Accuracy Similarity Sensitivity Specificity

E1 XoYoR (96.03) X (91.45) XoYoZoR (93.52) R (99.96)
E2 XoYoR (96.01) X (91.55) XoYoZoR (94.33) R (99.92)
R1 XoYoR (95.14) XoYoZoR (90.61) XoYoZoR (90.60) R (99.99)
R2 XoYoR (94.89) XoYoZoR (90.56) XoYoZoR (90.37) R (99.99)

The results presented in Table 3.3 are calculated using each manual border as the
ground truth, hence there are four sets of results. Another useful analysis is obtained
when a single ground truth for each image is used. This ground truth is obtained by
finding the intersection of the areas within the four manual borders (in the ensuing, we
will refer to these as common manual borders). Then the common manual border is used
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as the ground truth and compared to the four colour channels shown in Table 3.3 for the
image set. The result of the four metrics are shown in Table 3.4. Here, we report means
and 95% confidence intervals. An observed sample mean provides the best estimate of
the true population value; the confidence interval describes a range of values for the true
population mean that are consistent with the data that was observed. We report these
results as x̄ ± me, where x̄ is the sample mean and me is the margin of error; a 95%
confidence interval ranges from x̄−me to x̄+me [196].

To precisely analyse the sensitivity and specificity metrics, the AUC (Area Under
ROC Curve1) is obtained by drawing the ROC graph and calculating the corresponding
AUC value for R, X, XoYoZ and XoYoRoZ colour channels. Table 3.4 suggests that in
terms of the accuracy metric and AUC values, colour channels X and XoYoR provide the
highest scores. With respect to similarity, X and XoYoR colour channels give the highest
average. Figure 3.12 shows the ROC curves for the four colour channel X, R, XoYoY and
XoYoZoR. Table 3.5 shows the performance ranking of the colour channels according to
different evaluation metrics, which shows that colour channels X and XoYoR provide the
best overall results. Figures 3.13 and 3.14 show the accuracy and similarity percentage of
these two colour channels over the image set of 30 dermoscopy images, taking the common
manual border as the ground truth.

It is well known that XYZ is a standard colour space defined by CIE. However,
in the domain of skin lesion segmentation, we have shown the appropriateness of XYZ
colour space and more specifically the X and Y colour channels when combined with the
R channel.

Table 3.4: Segmentation results (mean ±margin of error) for optimal colour channels, the
common manual borders as ground truth.

Colour Channel Accuracy Sensitivity Specificity Similarity

X 96.80 ±0.01 90.49 ±0.03 99.02 ±0.00 93.18 ±1.82
XoYoR 96.94 ±0.01 92.86 ±0.02 98.51 ±0.00 92.89 ±3.15
XoYoZoR 95.15 ±0.03 96.80 ±0.01 94.47 ±0.05 91.63 ±5.15
R 92.42 ±0.03 73.40 ±0.07 99.90 ±0.00 82.91 ±5.45

Table 3.5: Performance ranking of the colour channels.
Rank Accuracy AUC Similarity

1 XoYoR X, XoYoR X
2 X XoYoZoR XoYoR
3 XoYoZoR R XoYoZoR
4 R R

1Receiver operating characteristic (or ROC) curve is a graphical plot of the sensitivity versus (1–
specificity).
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Figure 3.12: ROC curves for four colour channels X, R, XoYoR and XoYoZoR.

3.1.9 Comparison with Other Automated Methods

The proposed method is compared with two state-of-the-art skin lesion segmentation meth-
ods, namely; statistical region merging [96] and the JSEG method [95]. Table 3.6 shows the
segmentation evaluation result obtained by SRM (statistical region merging) and JSEG,
and our proposed Global thresholding method when applied to the X and XoYoR colour
channels. The results demonstrate that the proposed thresholding-based method, in spite
of its simplicity, with a proper choice of suggested colour channels is highly competitive
with other well-known skin lesion segmentation methods. X channel outperforms other
automated methods with respect to specificity and along with the JSEG method, it ob-
tains the best performance in terms of similarity, while XoYoR follows them closely. The
proposed method in both colour channels gains the highest AUC value, while JSEG fol-
lows them closely, and SRM comes last. XoYoR colour channel gain the highest sensitivity
and accuracy on average, followed closely by others methods. In addition, our method is
potentially faster since it mainly involves scalar processing as opposed to the SRM and
JSEG methods, which are based on vector processing.
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Figure 3.13: Accuracy of the optimal colour channels, X and XoYoR, over the image set.
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Figure 3.14: Similarity of the optimal colour channels, X and XoYoR, over the image set.

3.1.10 Conclusion

This section presented an accurate automatic segmentation method based on colour space
analysis and clustering-based histogram thresholding which determines the most effective
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Table 3.6: Segmentation evaluation results (mean ±margin of error): comparative study.
Rank Accuracy Similarity Sensitivity Specificity AUC

SRM 96.27 ±0.01 91.55 ±2.32 92.45 ±0.03 97.43 ±0.01 0.990
JSEG 96.70 ±0.01 93.23 ±3.14 92.05 ±0.04 98.35 ±0.01 0.997
X 96.80 ±0.01 93.18 ±1.82 90.49 ±0.03 99.02 ±0.00 0.998
XoYoR 96.94 ±0.01 92.89 ±3.15 92.86 ±0.02 98.51 ±0.00 0.998

and discriminative colour channel for detecting the borders in dermoscopy images. Various
colour channels from different colour spaces were incorporated to maximise the discrimi-
nation between two clusters of pixels within the image, lesion and surrounding skin pixels,
to obtain more accurate histogram analysis, and consequently to detect more accurate
borders. Each colour channel underwent preprocessing steps, clustering-based histogram
thresholding and a set of pixel-based computations and morphological operations to even-
tually identify the border of the lesion.

Segmentation results were quantitatively evaluated by comparing automated results
to manual borders independently drawn by four dermatologists. The comparison was
done with respect to four different metrics of accuracy, sensitivity, specificity and simi-
larity, incorporating ROC analysis. Experimental results indicated that X and XoYoR
colour channels obtain the highest overall performance with an accuracy of approximately
97%. The results were also compared with two state-of-the-art automated methods, which
demonstrate that the proposed thresholding-based method, in spite of its simplicity, with a
proper choice of suggested colour channels is highly competitive with the well-known skin
lesion segmentation methods, and outperforms them with respect to accuracy, specificity,
and AUC metrics. Furthermore, the proposed method is potentially faster since it mainly
involves scalar processing as opposed to vector processing performed in those methods.

3.2 Hybrid Thresholding on Optimised Colour Channels

Our experience with dermatologists has consistently shown that manual borders tend to be
larger than the corresponding automatic borders. This fact, which has also been reported
in several studies [78], is illustrated in the dermoscopy images shown in Figure 3.15, where
three areas are identified; namely, core-lesion, edge-lesion and background skin. The width
of the edge-lesion area can be quite variable depending on the skin colour, lesion colour,
sharpness or fuzziness of the border, and the lesion pattern. Automated border detection
methods can easily identify the core-lesion area by finding the sharpest pigment change.
However, they often fail to precisely detect the edge-lesion area and thus exclude it from the
segmentation result. In contrast, experienced dermatologists prefer to choose the outmost
detectable pigment to minimise the risk of incorrect diagnosis. In several studies the
discrepancy between the manual and automatic borders has been reduced by expanding the
automatic borders using various methods including morphological filtering [96], Euclidean
distance transform [96], iterative region growing [26], and gradient information [197]. In
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Figure 3.15: Three areas appears in dermoscopy images: core-lesion, edge-lesion and
background skin.

this study, we introduce a novel border detection method to decrease such discrepancy
and improve the results obtained from our first method, reported in the previous section.

The newly proposed method, called Hybrid thresholding, is comprised of two stages;
in the first stage, we identify the core-lesion using our Global method (explained in Sec-
tion 3.1). In the second stage, the edge-lesion area is identified by integrating local
colour information around the edge-lesion’s boundary, and applying an adaptive histogram
thresholding method on the optimal colour channels determined in the previous section.
These two stages are detailed next.

3.2.1 Global Thresholding: Forming the Core-Lesion

The core-lesion area is detected by applying the Global method proposed in Section 3.1;
applying the global clustering-based histogram thresholding method on the optimal colour
channels of XoYoR obtained in the colour optimisation procedure (Figure 3.1). As de-
scribed previously, this step includes the pre-processing operations of hair removal, noise
filtering and intensity adjustment. This is followed by application of Otsu’s histogram
thresholding algorithm to the XoYoR colour channel, and performing connected com-
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ponent analysis and morphological operations to obtain the initial border and form the
so-called core-lesion area. The histogram analysis procedure is quite fast, since it per-
forms one-dimensional clustering and the results of each X and Y and R colour channel
are integrated using the logical OR operation.

In this process we have made a new choice for the noise removal filter. In the
proposed Global method, the averaging pillbox filter was used, whereas we have observed
that using a Gaussian low-pass filter [198] (Equation 3.14) results in less blurred images
and retains more of the important details that can improve the border detection accuracy.
The Gaussian filter utilised a 11× 11 kernel with a standard deviation (σ) value of 0.5.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3.14)

3.2.2 Local Thresholding: Forming the Edge-Lesion

To expand or shrink the core-lesion boundary to the edge-lesion boundary, we have applied
a local clustering-based thresholding technique based on Otsu’s method explained in Sec-
tion 3.1.5. After performing noise removal (using a Gaussian filter with similar parameter
settings as above) and intensity adjustment on the image, the histogram thresholding is
applied to the X colour channel which was determined as optimal in the colour optimisa-
tion procedure, as part of the Global method described in the previous section , Figure 3.1.

Figure 3.16: Shrinkage and expansion is done radially with respect to the centroid of the
lesion.

Starting from an arbitrary point on the initial core-lesion boundary, the local thresh-
old is calculated over a window (using the Otsu method on the X colour channel). Let us
define Ws to be a window of size s× s, which is a square window centered on a core-lesion
border pixel. If the local threshold value is less than a predefined threshold called Texpand

the boundary is expanded by one pixel. If it is greater than a predefined threshold called
Tshrink the boundary is shrunk. Otherwise, we are in the state of No Change. This implies
that based on the previous moves, we should make a decision to either laterally move to
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the adjacent pixel, or to expand or shrink the boundary. As shown in Figure 3.16 the
inward and outward moves (shrinkage and expansion) are done radially (along the line
connecting the centroid of the lesion to the pixel on the core-lesion boundary). The lesion
centroid is calculated by using Equation (3.15).

(xc, yc) =

(∑n
i=1 xi
n

,

∑n
i=1 yi
n

)

(3.15)

where n is the number of pixels inside the lesion, and (xi, yi) are the coordinates of the
i -th lesion pixel.

To define the threshold values for shrinkage and expansion, a bandwidth is calcu-
lated based on background skin value and core-lesion value. We have applied the same
thresholding method to the background skin area and core-lesion area to obtain estimates
of these values. The bandwidth is calculated by Equation (3.16). Both core-lesion and
background skin are taken into account when calculating the bandwidth. In this way
the Bandwidth is normalised, so that variations in the colour of different lesions on the
same person can be accounted for. Without this normalisation process the lesion bor-
der will only expand regardless of the difference between the background skin colour and
the core-lesion colour. The threshold values for expansion and shrinkage are given by
Equations (3.17 and 3.18), respectively.

Bandwidth = %B × (Tskin − Tcore−lesion) (3.16)

where B, the bandwidth factor, is the percentage we wish to expand from the core-lesion
towards the background skin. Tskin and Tcore−lesion refer to estimates of the background
skin and core-lesion area, respectively.

Texpand = Tskin −Bandwidth (3.17)

Tshrink = Tskin +Bandwidth (3.18)










Expand (move outward) if Tlocal ≤ Texpand

Shrink (move inward) if Tlocal ≥ Tshrink

No Change if Texpand < Tlocal < Tshrink

(3.19)

The local threshold is calculated for each and every window centered on successive pix-
els along the core-lesion boundary and the process is stopped when a pixel is revisited.
Figure 3.17 shows samples of the detected borders by the proposed method.

3.2.3 Experimental Results: Optimising B and W Parameters

The proposed border detection method outlined above has been tested on a set of 85
high-resolution dermoscopy images obtained from Melbourne Royal Hospital. The images
are taken by professional photographers using a Canon EOS 450D camera under unified
zooming and lighting conditions. They are 24-bit RGB colour images with dimensions of
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Figure 3.17: Sample border detection results using hybrid thresholding on optimised colour
channels.

2000 × 1334 pixels. Manual borders are drawn by an experienced dermatologist using a
Wacom Intuos A4 size Tablet PC. These borders are then used as ground truth for the
evaluation of the automatic borders. We have also compared the automated borders with
a second ground truth, manually drawn by a less-experienced dermatologist (a first-year
dermatology registrar).

The purpose is to (i) determine the optimal values for W (window size) and B
(bandwidth factor) parameters2, discussed in Section 3.2.2, via two different approaches;
automated borders versus experienced dermatologist, and automated borders versus less-
experienced dermatologist, and investigate their consistency, (ii) determine which of the
two borders; the automated borders drawn by our method, and the less experienced der-
matologist’ borders, is closer to the borders drawn by the experienced dermatologist.

A comprehensive experiment is performed on the set of 85 dermoscopy images, with
W ranging from 30 to 70 and B ranging from 10% to 90% (steps of 10). Initially, windows
of sizes from 10 × 10 to 90 × 90 are investigated and the result showed that those below
30 × 30 and above 70 × 70 are insignificant, therefore not included in the analysis. As
shown in Figure 3.18 different borders can be obtained by using different values of W and
B. Consequently, 45 borders are obtained for each dermoscopy image.

In order to quantitatively compare the automatic borders to the manual borders,
the three evaluation metrics of sensitivity, specificity, and accuracy used in the previous

2W is the window size for calculating the local threshold, and B is the extent to which the core-lesion
area is expanded towards the background skin depends.
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Figure 3.18: Different borders produced by different values of W and B parameters.

section (Equations 3.9, 3.10 and 3.11), are applied, as well as the two metrics of precision
and border error. Precision or positive predictive value (Equation 3.20) is basically an
index of reproducibility which shows the degree to which further experiments will show
the same results. In this application, the precision metric shows what percentage of the
detected border is the true lesion. Border error or XOR metric (Equation 3.21 or 3.22)
measures the discrepancy between automatic and manual borders.

Precision =
TP

TP + FP
× 100% (3.20)

Border Error =
Area(A⊗M)

Area(M)
× 100% (3.21)

where M is the manually segmented image, A⊗M represents the differential segmentation
obtained by the manual and automatic borders using XOR operation, and Area(.) denotes
the number of pixels in the binary images of M and A⊗M . The border error metric can
also be expressed in terms of TP, TN, FP, and FN, given by:

Border Error =
FP + FN

TP + FN
× 100% (3.22)

3.2.4 Comparison with Experienced Dermatologist (First Ground Truth)

Figure 3.19 shows the mean and standard deviation values for accuracy and precision
metrics for different B and W parameters over the image set, using the experienced der-
matologist’s borders as the ground truth. As illustrated in the graphs, mean accuracy and
precision increase with decreasing window size. The variability around mean (measured by
standard deviation) is smaller for smaller W (W=30) in most of the cases. With respect to
the accuracy metric, both mean and std graphs suggest that the Bandwidth factor (B) is
optimal in the medium range of [40..60]%. Precision shows an incremental trend in mean
value, along with a decreasing trend of std as B grows, which suggests a value of larger
than 50% for B may be optimal.
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Figure 3.20 shows the mean value for sensitivity and specificity metrics, along with
the corresponding AUC value, and also the proportion of images with border error smaller
than 20%, for different B and W parameters over the image set, taking the experienced
dermatologist’s borders as the ground truth. The graphs indicate that the highest AUC
value is obtained by a smaller W and larger B which is in agreement with the results ob-
tained from the accuracy and precision metrics. Overall, the value of 30 for W and 60% for
B seems to be a reasonable trade-off considering all the metrics. Table 3.6 gives the mean
and margin of error for each metric for the proposed method when using the optimised
parameters (W30B60). High mean values (over 93%) are observed for all metrics, except
for sensitivity which is close to 90%.
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Figure 3.19: Mean and standard deviation values for accuracy and precision metrics for
different B and W over the image set compared to experienced dermatologist.
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Figure 3.20: Mean sensitivity and specificity, the corresponding AUC, the proportion of
images with border error ≤ 20%, for different B and W over the image set, compared to
experienced dermatologist.

3.2.5 Comparison with Dermatology Registrar (Second Ground Truth)

Figure 3.21 shows the mean value for accuracy and precision metrics, the AUC calculated
from sensitivity and specificity metrics and also the proportion of images with border
error smaller than 20%, for different B and W parameters over the image set, using the
dermatology registrar’s borders as the ground truth. The trend is similar to that observed
in Figures 3.19 and 3.20 with the experienced dermatologist as the ground truth. Large W
values are ruled out, and similarly, W=30 appears to be optimal across the range examined.
However, for accuracy and border error smaller B values tend to obtain better results than
large B values. Considering precision and AUC it can be seen that an intermediate value
for B in the range of [30..50]% is more likely to produce results that are consistent with
the dermatology registrar.
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Figure 3.21: Mean accuracy and precision, AUC, proportion of images with border error
≤ 20%, for different B and W over the image set, compared to dermatology registrar.

3.2.6 Comparison between Automated Borders and Less-experienced
Dermatologist’s Borders

As mentioned previously, we have taken the borders drawn by the experienced dermatol-
ogist as the ground truth and compared the results of our method (W30B60) to those of
the dermatology registrar’s. Figure 3.22 shows a comparison between our results and der-
matology registrar’s with respect to different evaluation metrics. From the figure it can be
seen that our method yields either equivalent or closer results to those of the experienced
dermatologist’s than the dermatology registrar’s to the experienced dermatologist’s. For
example, taking the experienced dermatologist as ground truth, the mean precision for our
algorithm is 5.3% higher than for the dermatology registrar. The margin of error was 1.9,
giving a 95% confidence interval of 3.4% to 7.2%. We can be reasonably confident that
our method is, on average, between 3.4% and 7.2% better than the dermatology registrar,
which implies that our method is more effective than the dermatology registrar.
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Figure 3.22: Comparison between the border detected by our method to manual border
drawn by dermatology registrar, using the experienced dermatologist’s manual borders as
the ground truth (B∗ = Border Error).

3.2.7 Comparison with Other Automated Methods

The proposed method with optimised parameters (W30B60) is compared with three state-
of-the-art lesion border detection methods; namely, JSEG [95], DTEA [26] and KPP [89].
Tables 3.7 and 3.8 show the segmentation evaluation results obtained by JSEG, DTEA,
KPP and the proposed thresholding method using XoYoR colour channel, in forming core-
lesion boundary, and X colour channel, in forming edge-lesion boundary, with window size
of 30 and bandwidth factor of 60, considering the borders drawn by the experienced
dermatologist as the ground truth.

Table 3.7 shows that the proposed method performs better on average in terms of
sensitivity and AUC metrics, whereas it is highly competitive with the JSEG method
with respect to the accuracy and specificity. With respect to the accuracy and sensitivity,
DTEA comes third, followed by KPP and these two also yield fairly competitive results
in terms of specificity and AUC. However, KPP exhibits the highest precision, followed
by DTEA, JSEG and W30B60, respectively. Table 3.8 shows the number of images with
percentage border error less than 10%, 15%, 20%, 30% and 40% for different automated
methods, which reflects the same trend as the similarity metric. Table 3.8 indicates that
the proposed method achieves the best scores among the automated methods, while JSEG
follows it closely, and DTEA and KPP come next.

Table 3.9 provides estimates and margin of error for the mean differences between
W30B60 and the alternative methods. The mean differences between W30B60 and JSEG
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Table 3.7: Comparing automated methods in terms of accuracy, precision, sensitivity,
specificity (mean ±margin of error) and AUC, using the experienced dermatologist’s man-
ual borders as the ground truth.

Accuracy Precision Sensitivity Specificity AUC

W30B60 98.01 ±0.35 93.91 ±1.43 89.64 ±1.90 99.43 ±0.13 99.86
JSEG 98.11 ±0.35 95.39 ±1.36 88.57 ±2.46 99.40 ±0.20 99.78
DTEA 97.63 ±0.49 96.92 ±0.77 83.84 ±2.68 99.70 ±0.07 99.80
KPP 97.52 ±0.38 97.10 ±1.32 80.95 ±2.97 99.63 ±0.16 99.68

Table 3.8: Comparing different border detection methods: Distribution of border error
percentage, using the experienced dermatologist’s manual borders as the ground truth.

Border Error ≤ 10 ≤ 15 ≤ 20 ≤ 30 ≤ 40

W30B60 16.25 55.00 72.50 92.50 98.75
JSEG 27.50 51.25 73.75 90.00 95.00
DTEA 7.50 47.50 67.50 88.75 93.75
KPP 13.75 28.75 50.00 78.75 88.75

are generally small and are unlikely to be important. The mean differences between
(W30B60, DTEA) and (W30B60, KPP) for sensitivity and border error are relatively
large, supporting our contention that W30B60 performs better. Moreover, the proposed
method is potentially faster since it mainly involves scalar processing as opposed to vector
processing.

3.2.8 Conclusion

This section presented a novel automatic border detection method based on colour-space
analysis and clustering-based histogram thresholding. The method first applied the Global
method on the optimal colour channel of XoYoR to detect an initial boundary, then applied
the Hybrid method to expand the boundary and form the final segmentation result. The
hybrid border detection method is tested on a set of 85 high-resolution dermoscopy images
and the automatic borders are compared to borders drawn by two dermatologists using
various evaluation metrics including accuracy, precision, sensitivity, specificity, and border
error.

The proposed method, which is comprised of two stages, is designed to increase speci-
ficity in the first stage and sensitivity in the second stage. The proposed hybrid method is
also compared to three state-of-the-art border detection methods and found to perform as
well or better in terms of accuracy, sensitivity, specificity, AUC, and border error. In addi-
tion, our method is potentially faster since it mainly involves scalar processing as opposed
to vector processing performed in the other methods. Taking the borders drawn by the
experienced dermatologist as ground truth, and comparing the automatic borders with
those drawn by the dermatology registrar, we have also shown that our method functions
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Table 3.9: Mean ±margin of error for comparisons of automated methods, using the ex-
perienced dermatologist’s manual borders as the ground truth.

W30B60–JSEG W30B60–DTEA W30B60–KPP

Accuracy -0.09 ±0.23 0.37 ±0.18 0.49 ±0.24
Precision -1.47 ±1.37 -3.00 ±1.17 -3.18 ±1.63
Sensitivity 1.07 ±1.95 5.80 ±1.36 8.69 ±2.78
Specificity 0.03 ±0.17 -0.26 ±0.09 -0.19 ±0.16
Border Error -0.50 ±1.90 2.10 ±1.70 5.30 ±2.30

closer to the experienced dermatologist than the dermatology registrar. This implies that
the proposed Hybrid method is more effective than the dermatology registrar.

3.3 Global versus Hybrid Thresholding

In this section we demonstrate the superiority of the automated Hybrid thresholding ap-
proach to border detection in dermoscopy images, discussed in Section 3.1, over the Global
thresholding method, explained in Section 3.2, through a newly introduced evaluation met-
ric: Performance Index.

In the previous section, we proposed the Hybrid thresholding method, which com-
bines global and adaptive local thresholding and uses a colour optimisation process to
detect the lesion borders, and demonstrated its superiority over other state-of-the-art
skin lesion segmentation algorithms. Here, we provide a new analytical and experimental
framework to justify the necessity of integrating the local pixel information into the seg-
mentation process in the border detection process. Moreover, the statistical analysis and
optimisation procedure are shown to be convergent in determining the optimal parameters
for the local thresholding procedure in order to obtain the most accurate borders.

3.3.1 Image Set and Gold Standard

The proposed method is tested on a set of 55 high-resolution dermoscopy images taken
by a Canon EOS 450D camera in Royal Melbourne Hospital (24-bit RGB colour images,
2000× 1334, TIFF).

To validate the borders produced by our methods, manual borders were indepen-
dently drawn by three expert dermatologists using a Wacom Intuos A4 size Tablet PC.
We are aware that different approaches can be used to determine a single ground truth,
such as voting, averaging, etc. However, after discussion with dermatologists and con-
sidering the practical nature of the melanoma diagnosis, which calls for extreme caution
when excluding portions of the image, and taking into account the inter-observer and
intra-observer variability in borders drawn by dermatologists, we calculated the union of
the four manually drawn borders for each image and considered that as the final ground
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truth.

Figure 3.23 shows the various dermatologist-drawn borders and the corresponding
obtained union border for two sample dermoscopy images. As shown in Figure 3.23 borders
are close enough to each other, therefore there would be no adverse effect for the way the
ground truth is calculated.

Figure 3.23: Gold standard for two sample dermoscopy images; different dermatologists-
drawn borders and the corresponding union borders.

3.3.2 Standardisation of the Images

The lesion inside a dermoscopy image generally appears in different sizes and locations.
Two metrics of accuracy and specificity include the TN factor which refers to the number
of pixels of the surrounding background skin which are truly detected by the automated
method. However, the TN factor strongly depends on the size of the lesion and its ratio
to the whole image, thus the value of accuracy and specificity metrics can be biased in
images with small lesions. To the best of our knowledge, this issue has not been addressed
in previously published studies. To balance the effect of large TN and normalise the
accuracy and specificity metrics, we set a frame of background skin around the lesion,
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such that the area of the rectangular image frame is twice as big in area as that of an
imaginary rectangular encompassing the lesion. This has the effect that the number of
background pixel and lesion pixels is roughly the same. Figure 3.24 shows the segmentation
result of a dermoscopy image before and after standardisation.

Figure 3.24: Segmentation result (a) before and (b) after standardisation.

3.3.3 Optimal Choice of Window and Bandwidth

As previously mentioned, the two parameters involved in the proposed Hybrid method are
window size (W) and the bandwidth factor (B). Here we provide a new analytical frame-
work in order to determine the optimal value for these two parameters. A comprehensive
set of experiments is performed on the set of 55 dermoscopy images, with W ranging from
30 to 70 and B ranging from 10% to 90% (steps of 10). Different borders can be obtained
by using different values of W and B. Consequently, 45 borders are obtained for each der-
moscopy image. To evaluate the results, each border is compared with the ground truth
in terms of the five previously defined evaluation metrics of sensitivity (Equation 3.9),
specificity(Equation 3.10), accuracy(Equation 3.11), similarity(Equation 3.13) and border
error (Equation 3.22).

Statistical Analysis:

Figures 3.25–3.27 show the mean value and 95% confidence interval (CI) for metrics of
sensitivity, specificity, accuracy, similarity and border error for different values of W and B
parameters, respectively. We set levels of acceptability to the lower bound of the confidence
interval. Due to the importance of sensitivity, we start the analysis from this metric. As
shown in Figure 3.25, given the level of acceptability of 87% for sensitivity, 22 sets of W and
B, out of 45, are selected. These are marked by filled circles in the graph. With the level
of acceptability of 93% for specificity, nine sets from the previous 22 sets are nominated
as illustrated in Figure 3.25. Having 93.5% level of acceptability for accuracy, as shown
in Figure 3.26, the set is narrowed down to six sets of W and B, i.e., (30,10), (30,20),
(40,20), (30,30), (40,30) and (40,40). Having these six sets, two metrics of similarity and
border error are studied to make the final decision about the optimal value for B and W.
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As shown in Figure 3.27 according to both of these metrics the pair of (30,30) gains the
best results.

We acknowledge the difference between the optimal setting for W and B found in
our previous experiment (Section 3.2.3) and what is determined here. The difference is
attributed to our new choice of ground truth. After extensive discussions with experienced
dermatologists we decided to use in this experiment the union of the four manual borders
drawn by the dermatologists. The implication here is that the outmost detectable border
is used as the ground truth and therefore as the reference for optimising our method. This
rational behind this choice is to minimise the risk of excluding any part of the lesion from
the final segmentation result.

Performance Index:

It is often the case that different methods provide different results when calculating the
five evaluation metrics. The problem is which method provides the best result when all of
the five metrics are considered simultaneously. To answer this, we introduce the following
procedure. First, we define a metric called Performance Index (PI):

PI =
Sns+ Spc+Acc+ Sml +BErr

5
(3.23)

where Sns, Spc, Acc, Sml and BErr refer to sensitivity, specificity, accuracy, similarity and
100%-borderError, respectively. Second, the index is calculated for different sizes of W
and B over the image set of 55 dermoscopy images, using the mean value of the metrics.
Third, for each W, a family of PIs versus B is plotted, as shown in Figure 3.28. Fourth,
we choose the maximum PI point which reveals the optimal combination of W and B.

As shown in Figure 3.28, the maximum value of PI is obtained for (W=30, B=30).
This result is in accordance with the results we obtained from the statistical analysis above.
We have chosen (W30, B30) to proceed with. However, there are other combinations for
which PI is very similar, e.g. (W30, B20) or (W30, B10). As these combinations provide
better sensitivity, they would also be reasonable options to be considered.

Cross Validation:

In order to provide a stronger proof for the optimal B and W identified through the
statistical analysis and the proposed performance index, we also perform a 11-fold cross-
validation process [199], wherein the data set of 55 images is iteratively partitioned into a
50-image train subset and a 5-image test subset, resulting in 11 sets with unique combi-
nations of test and train data. For each of the test sets, a family of PI curves for different
W and B is plotted, as illustrated in Figure 3.29, which shows that all train sets converge
to the value of (30,30) for B and W, except for set 6, where the optimal PI occurs when
W=30 and B=20, which is close to the PI value for (W=30, B=30). Table 3.10 shows the
resultant PI for images and the corresponding mean and standard deviation for each test
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Figure 3.25: Mean and 95% confidence interval of sensitivity and specificity metrics for
various W and B values over the image set.
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Figure 3.26: Mean and 95% confidence interval of accuracy metrics for different values of
B and W over the image set.

set using the optimal setting of (W=30, B=30), which demonstrates the acceptability of
the identified setting.

3.3.4 Comparison between Global and Hybrid

Figure 3.30 shows the automatic borders obtained by the global and the hybrid approach
and also the corresponding ground-truth border drawn by dermatologists (the union of the
three manual borders) for a sample lesion. It shows that the hybrid approach produces a
border much closer to the ground truth, compared to the border produced by the global
thresholding method. In order to objectively show the extent of improvement by evaluation
metrics, when the lesion border is expanded from the core-lesion area (the result of the
Global thresholding method) to the edge-lesion area (the result of the Hybrid thresholding
method with the optimal values of B=30 and W=30), the mean difference between these
two methods is calculated.

Table 3.11 gives the 95% confidence intervals for the mean for each metric, for global
and hybrid (W30, B30) methods, and also the results of mean difference between these two
approaches. In the Hybrid column, it is shown that the average values for each metric are
clearly in an acceptable range. The mean specificity is 97.4; the 95% confidence interval
is 96.9 to 98.1, and we can be confident that sensitivity will be high when the parameters
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Figure 3.27: Mean and 95% confidence interval of similarity and border error metrics for
various W and B values over the image set.
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Figure 3.28: Performance Index for different values of B and W over the image set.

(W=30, B=30) are used.

Table 3.11 also demonstrates that with respect to all metrics there is a significant
improvement, over the Global method, when the Hybrid thresholding method is applied,
though specificity is almost the same. It is worth pointing out that specificity is of a less
importance than accuracy and sensitivity in the opinion of experienced dermatologists.
That is mainly due to the fact that they are more concerned not to leave out any part of the
lesion, than erroneously including some part of the surrounding skin in the segmentation
result. Moreover, the mean level of specificity is very high in both approaches (Global
and Hybrid). As shown in Table 3.11 sensitivity, similarity and accuracy are increased
by 16.17%, 8% and 3.95%, respectively and border error is reduced by 11.84% which
demonstrate the significant superiority of the hybrid approach. The Performance Index
is also elevated by 5.6% which proves the better performance of the hybrid thresholding
method.

3.3.5 Conclusion

In this section we provided a new analytical framework, including statistical analysis, op-
timisation and cross validation, for determining the optimal parameters for the proposed
Hybrid border detection method. We also compared the two proposed border detection
methods; Global and Hybrid, and demonstrated the superiority of the latter. The com-
parison was performed through a newly introduced evaluation metric: Performance Index,
which is composed of standard metrics of sensitivity, specificity, accuracy, similarity, and
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Figure 3.29: 11-fold cross validation using Performance Index evaluation metric.

border error. The experiment was performed on 55 high-resolution dermoscopy images
which clearly showed the significant advantages of the proposed Hybrid method over the
Global thresholding approach.

3.4 Objective Evaluation: Weighted Performance Index

Objective evaluation of border detection methods has not been explored in depth [78]. Ex-
isting evaluation methods are either through visual assessment of the detected borders by
dermatologists, which suffers from subjectivity, or through an objective evaluation, where
the closeness of an automatic border produced by the border detection method is com-
pared with that manually drawn by dermatologists. With respect to objective evaluation
methods, different metrics have been used; namely, sensitivity, specificity, accuracy, border
error, similarity and precision, which have been applied in the previous sections of this
chapter, as well as pixel misclassification probability [200] and normalised probabilistic
rand index [201].

There exist two problems in the evaluation of border detection methods: first, the
above-mentioned metrics are generic and have been widely applied in different domains.
However, in application to border detection in dermoscopy images of melanoma lesions, it
is crucial that dermatologists’ perspectives are taken into account, which raises the need
to customise the standard metrics to reflect their respective practical importance in the
evaluation process. Second, it is often the case that a border detection method provides
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Figure 3.30: The Global and Hybrid borders produced by the automated methods and
the manual border drawn by dermatologists.

a superior result according to one evaluation metric, yet is defeated by other methods
with respect to another metric(s). In other words, there is no comprehensive metric for
comparing different automated methods. Thus, comparison between border detection
methods is not easy.

In the previous section, we proposed a Performance Index (PI) integrating the five
standard metrics of sensitivity, specificity, accuracy, similarity, and border error. In this
section we revise the index to incorporate the precision metric. Moreover, in order to
provide evaluation metrics that are meaningful in the context of melanoma application,
we introduce specific weightings into the six standard metrics and propose a new com-
prehensive metric called Weighted Performance Index for objective evaluation of border
detection results in dermoscopy images.

3.4.1 Revised Performance Index

The PI metric previously defined is revised here to incorporate the precision metric as
follows:

PI =
Sns+ Spc+Acc+ Sml +BErr + Prc

6
(3.24)

where Sns, Spc, Acc, Sml, Prc and BErr refer to sensitivity, specificity, accuracy, similarity,
100%-borderError and precision, respectively.



3.4. OBJECTIVE EVALUATION: WEIGHTED PERFORMANCE INDEX 91

Table 3.10: Performance Index for different images in each test set.
PI Image 1 Image 2 Image 3 Image 4 Image 5 Mean Std.

Set 1 90.59 89.62 92.01 91.41 91.63 91.05 0.95
Set 2 91.47 93.80 91.43 92.58 91.40 92.14 1.05
Set 3 95.27 94.41 92.26 87.99 91.17 92.22 2.87
Set 4 94.91 92.58 91.36 95.28 91.12 93.05 1.94
Set 5 89.53 91.47 91.81 89.37 96.28 91.69 2.79
Set 6 92.81 90.90 80.83 85.82 92.22 88.51 5.10
Set 7 92.43 90.53 94.14 85.06 96.67 91.77 4.37
Set 8 92.96 95.35 92.59 94.19 89.28 92.87 2.28
Set 9 90.08 96.48 83.89 94.00 83.24 89.54 5.91
Set 10 93.50 89.52 92.57 90.91 94.95 92.29 2.13
Set 11 94.99 94.44 86.89 94.35 95.87 93.31 3.63

Table 3.11: Evaluation metrics (mean ±margin of error) for Global and Hybrid thresh-
olding methods and the difference between them.

Global Hybrid Improvement

Accuracy 90.90 ±0.7 94.85 ±0.5 3.95 ±0.7
Sensitivity 73.35 ±2.6 89.52 ±1.9 16.17 ±1.5
Specificity 99.68 ±0.1 97.44 ±0.7 -2.23 ±0.6
Similarity 83.94 ±1.8 91.97 ±0.9 8.02 ±1.4
Border Error 27.24 ± 2.4 15.4 ±1.5 11.84 ±2.0
Performance Index 84.12 ±1.5 91.67 ±0.9 5.6 ±1.0

3.4.2 Weighted Evaluation Metrics

Objective evaluation of melanoma lesion border detection methods requires metrics reflect-
ing the particular characteristics of the melanoma diagnosis application. Our experience
with dermatologists has consistently shown TP to have highest importance compared with
the other three parameters of TN, FP and FN, since dermatologists want the entire lesion
to be included in the automatic border. On the other hand, FP (the areas included by the
automated method, yet excluded by the gold standard) has a minor degree of importance
compared with FN (the areas excluded by the automated method, yet included by the
gold standard). Accordingly, after extensive consultation with dermatologists, we attach
a weighting of 1.5 to TP to reflect its overall importance. Furthermore, to emphasise the
importance of FN over FP, in those metrics which include both FN and FP, we assign a
factor of 0.5 to FP. As a result, the new set of equations is given by:

WSensitivity =
1.5TP

1.5TP + FN
× 100% (3.25)

WAccuracy =
1.5TP + TN

1.5TP + 0.5FP + FN + TN
× 100% (3.26)
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WSimilarity =
3TP

3TP + FN + 0.5FP
× 100% (3.27)

WBorderError =
0.5FP + FN

1.5TP + FN
× 100% (3.28)

WPrecision =
1.5TP

1.5TP + FP
× 100% (3.29)

where WSensitivity, for instance, stands for weighted sensitivity. The specificity metric
does not contain TP factor. Also, FP and FN do not appear simultaneously in this metric.
Accordingly it remains unchanged as in Equation 3.10.

3.4.3 Weighted Performance Index

The performance of existing border detection methods have been commonly evaluated by
using either a single metric (e.g. border error) or a pair of metrics (e.g. sensitivity and
specificity). As each of the metrics has its specific meanings and implications, it becomes
difficult to interpret the results objectively. This problem is compounded when a particular
border detection method yields superior results with respect to one evaluation metric but is
defeated by other methods according to other metrics. Thus, the question of which method
provides the best possible result when all metrics are considered simultaneously has not
been previously resolved. To address this a comprehensive metric, Weighted Performance
Index (WPI), is defined to objectively evaluate border detection methods for dermoscopy
images. The index takes into account the weighted metrics defined in Equations 3.10
and 3.25–3.29. WPI is in fact a weighted average, where the weights are imbedded within
each metric.

WPI =
WSns+ Spc+WAcc+WSml +WBErr +WPrc

6
(3.30)

where WSns, Spc, WAcc, WSml, WBErr and WPrc refer to WSensitivity, specificity,
WAccuracy, WSimilarity, 100%-WBorderError and WPrecision, respectively.

3.4.4 Image Set and Gold Standard

To assess the effectiveness of the proposed evaluation indices, they are tested on the
same set of 55 high-resolution dermoscopy images used in the previous section. In this
experiment, however, we had an additional experienced dermatologist draw the manual
borders for us. Thus, to validate the borders produced by existing methods, manual
borders are independently drawn by four expert dermatologists using Wacom Intuos A4
size Tablet PC, and the union of those borders is taken as the ground truth. The choice
of union for integrating the manual borders, is in line with the emphasis we put on the
TP factor in the proposed evaluation metrics.

Furthermore, we have applied the image standardisation procedure discussed in
Section 3.3.2 to balance the effect of large TN parameter and normalise the accuracy and
specificity metrics.
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3.4.5 Optimisation of the Parameters

The proposed metrics of PI and WPI can be used to optimise automated border detection
methods by tuning their parameters. For instance, in the Hybrid thresholding method
(Section 3.2) the two parameters of window size (W) and bandwidth factor (B) are deter-
mined.

To optimise settings of (W, B) for the method, we perform a set of experiments on
the image set of 55 high-resolution dermoscopy images, with W varying from 20 to 70 and
B ranging from 10% to 90% (steps of 10), which results in 54 borders for each image. Each
resultant border is then compared with the ground truth and the standard and weighted
metrics of sensitivity, specificity, accuracy, similarity, border error and precision, and the
corresponding performance index and weighted performance index are calculated. In the
ensuing the optimal pairs of B and W are obtained.

Performance Index and Weighted Performance Index:

Performance index and weighted performance index are calculated for various W and B
values over the image set using the value of the standard and weighted metrics of sensitivity,
specificity, accuracy, similarity, border error and precision according to Equations 3.24–
3.30 and are averaged over 55 images.

For each W, the family of mean PIs and mean WPIs versus B is plotted, as shown
in Figures 3.31 and 3.32. The two graphs of PI and WPI metrics are coherent and both
reveal the optimal setting of (30, 30) for B and W, as shown in Figures 3.31 and 3.32.

However, there is a distinction between the two analyses, i.e., standard vs. weighted
metrics. The performance index, which is based on standard metrics, yields a lower result
than weighted performance index, which is based on proposed weighted metrics. For
example for W30B30, the mean value of PI is 92.30, whereas the mean value of WPI
is 94.90. Thus, the weighted metrics, which are defined to reflect the dermatologists’
perspectives, show a higher degree of agreement between automatic and manual borders,
compared with standard metrics.

Statistical Analysis:

Figures 3.33–3.35 show the mean value and 95% confidence interval (CI) for metrics of
weighted sensitivity, specificity, weighted accuracy, weighted similarity, weighted border
error and the weighted precision for various values of W and B parameters, respectively.
We set levels of acceptability for the lower bound of the confidence interval. The levels
are arbitrary but reasonable, and are a helpful guide for identifying acceptable parameter
values across a range of metrics.

Due to the importance of sensitivity, we start the analysis from this metric. As
shown in Figure 3.33, given the level of acceptability of 90% for weighted sensitivity, 26
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Figure 3.31: Performance Index for various W and B values over the image set

sets of W and B, out of 54, are selected which are marked by filled circles in the graph.
Having the level of acceptability of 94% for specificity, 9 sets from the previous 26 sets are
nominated as illustrated in Figure 3.33.

For the level of acceptability of 95.5% for weighted accuracy, as shown in Figure 3.34,
seven pairs of W and B meet the criteria. As illustrated in Figures 3.34 with the level
of acceptability of 94.5% for weighted similarity, these seven pairs are further narrowed
down to 5 sets of (20,20), (30,20), (40,20), (30,30), (40,30).

Having these five sets, the weighted border error metric is studied and as shown
in Figure 3.35 the above-mentioned 5 pairs are highly competitive where their respective
95% confidence of mean are very similar. To make the final decision about the optimal
value for B and W, weighted precision metric is investigated. As shown in Figures 3.35
the pair of (30,30) gains the best result, followed by (20,20). This result is in accordance
with the results obtained from the performance index and weighted performance index in
the previous section.

Cross Validation:

In order to provide a stronger proof for the optimal B and W identified through the
statistical analysis and the proposed Weighted Performance Index, we also perform a 11-
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Figure 3.32: Weighted Performance Index for various W and B values over the image set

fold cross-validation process, wherein the data set of 55 images is iteratively partitioned
into a 50-image train subset and a 5-image test subset, resulting in 11 sets with unique
combinations of test and train data. For each of the test sets, a family of WPI curves for
different W and B is plotted, as illustrated in Figure 3.36, which shows that all training
sets converge to the value of (30,30) for B and W, except for set 6. According to set 6, the
optimal WPI is (W=30, B=20), yet its resulting WPI is almost similar to the WPI value
for (W=30, B=30). Table 3.12 shows the resultant WPI for images and the corresponding
mean and standard deviation for each test set using the optimal setting of (W=30, B=30),
which demonstrates the acceptability of the identified setting.

3.4.6 Comparison between Automated Methods

The proposed WPI metric has been used to evaluate five recent border detection methods
applied to the image set of 55 dermoscopy images. These methods are dermatologist-like
tumor extraction algorithm (DTEA) [26], JSEG [95], KPP [89], the Global method on
optimised colour channel of XoYoR (Section 3.1), and the Hybrid method (Section 3.2)
with optimal parameters of (W=30,B=30).

Table 3.13 gives the 95% confidence intervals for the mean of the proposed metrics.
As shown, a method may perform better than others with respect to some of the metrics,
yet yields lower results with respect to others, e.g. the DTEA method gains the highest
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Figure 3.33: Mean and 95% confidence interval of weighted sensitivity and weighted speci-
ficity metrics for various W and B values over the image set.
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Figure 3.34: Mean and 95% confidence interval of weighted accuracy and weighted simi-
larity metrics for various W and B values over the image set.
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Figure 3.35: Mean and 95% confidence interval of weighted border error and weighted
precision metrics for various W and B values over the image set.
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Figure 3.36: 11-fold cross validation using Weighted Performance Index evaluation metric

specificity and weighted-precision, yet it is overcome by the Hybrid method with respect
to weighted metrics of sensitivity, accuracy, similarity and border error. For these reasons
it has not hitherto been easy to provide an overall objective judgment as to which of
the five methods is more suited for border detection of dermoscopy images. However,
the use of the proposed weighted performance index, as shown in the bottom row of
Table 3.13, facilitates such a judgment, which can easily be made by comparing values
of the calculated WPI’s. According to the obtained WPI, the Hybrid method provides
the best segmentation result, followed by JSEG, DTEA, Global thresholding and KPP
methods.

Table 3.14 gives the degree of superiority of each method over other methods, e.g.
the second row and third column shows that Hybrid method overcomes JSEG (+2.8) such
that we can be 95% confident that the true difference is between 1.80 and 3.80. The fourth
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Table 3.12: Weighted Performance Index for different images in each test set.
WPI Image 1 Image 2 Image 3 Image 4 Image 5 Mean Std.

Set 1 94.29 93.49 95.22 94.63 94.80 94.49 0.64
Set 2 94.78 96.09 94.80 95.36 94.78 95.16 0.57
Set 3 97.13 96.59 95.29 92.43 94.51 95.19 1.85
Set 4 96.95 95.49 94.78 97.04 94.58 95.77 1.17
Set 5 93.50 94.79 95.10 93.56 97.66 94.92 1.69
Set 6 95.55 94.52 87.83 91.05 95.10 92.81 3.30
Set 7 95.34 94.30 96.42 90.75 98.02 94.96 2.73
Set 8 95.67 97.20 95.32 96.50 93.49 95.64 1.40
Set 9 93.91 97.87 89.95 96.36 89.51 93.52 3.74
Set 10 95.91 93.61 96.62 94.52 97.15 95.56 1.47
Set 11 96.95 96.70 91.97 96.45 97.39 95.89 2.22

Table 3.13: Evaluation metrics (mean ±margin of error) for five border detection methods;
Hybrid, JSEG, DTEA, Global, KPP

Hybrid JSEG DTEA Global KPP

Weighted Accuracy 96.27 ±0.4 93.73 ±0.9 92.49 ±1.0 92.29 ±0.7 91.28 ±1.3

Weighted Sensitivity 92.62 ±1.4 84.48 ±2.5 81.16 ±2.6 80.89 ±2.1 78.13 ±3.7

Specificity 97.56 ±0.7 99.59 ±0.2 99.79 ±0.1 99.63 ±0.2 99.17 ±0.6

Weighted Precision 96.72 ±0.8 99.43 ±0.3 99.70 ±0.1 99.45 ±0.2 98.99 ±0.7

Weighted Similarity 95.26 ±0.7 91.14 ±1.6 89.20 ±1.6 89.08 ±1.4 86.76 ±2.4

Weighted BorderError 9.04 ±1.2 15.79 ±2.5 18.98 ±2.5 19.35 ±2.1 22.39 ±3.5

WPI 94.90 ±0.5 92.09 ±1.2 90.56 ±1.2 90.33 ±1.0 88.65 ±1.7

PI 92.30 ±0.7 89.32 ±1.4 87.44 ±1.5 87.03 ±1.2 85.10 ±1.9

row and third column shows DTEA is defeated by JSEG (-1.53) with true mean difference
between 0.43 and 2.63.

3.4.7 Conclusion

This section presented a novel approach for objective evaluation of border detection meth-
ods in dermoscopy images. In order to provide evaluation metrics meaningful in the con-
text of melanoma application, we introduced specific weightings into the standard metrics
of sensitivity, specificity, accuracy, border error, similarity and precision. Moreover, a
comprehensive metric, Weighted Performance Index (WPI), was proposed to facilitate
comparison between different methods. The proposed WPI has also been used for the
optimisation of the Hybrid border detection method proposed in Section 3.2. The effec-
tiveness of the proposed evaluation approach was demonstrated by applying five recent
border detection methods on a set of 55 high-resolution dermoscopy images using the
union of four sets of dermatologist-drawn borders as the ground truth. It was also shown
that the weighted metrics, which are defined to reflect the dermatologists’ perspectives,
show a higher degree of agreement between automatic and manual borders, compared with
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Table 3.14: Mean ±margin of error of Weighted Performance Index for comparisons of
automated methods

Hybrid JSEG DTEA Global KPP

Hybrid 0 2.80 ±1.0 4.34 ±1.0 4.57 ±0.8 6.24 ±1.5

JSEG -2.80 ±1.0 0 1.53 ±1.1 1.76 ±1.1 3.43 ±1.5

DTEA -4.34 ±1.0 -1.53 ±1.1 0 0.22 ±1.0 1.90 ±1.3

Global -4.57 ±0.8 -1.76 ±1.1 -0.22 ±1.0 0 1.67 ±1.5

KPP -6.24 ±1.5 -3.43 ±1.5 -1.90 ±1.3 -1.67 ±1.5 0

standard metrics.

3.5 Objective Evaluation: Optimised Weighted Performance
Index

Prior to our reported results, no systematic evaluation procedure for the performance
assessment of the border-detection methods in dermoscopy images, which could reflect
dermatologists’ perspective in the melanoma recognition process, had been thoroughly
investigated in the literature. Quantitative evaluation of border detection methods is
currently performed by using different statistical metrics of sensitivity, specificity, accuracy,
border error, similarity, precision, etc. In the previous section, we addressed two issues
with respect to current evaluation methodologies; (1) using various metrics is inherently
problematic due to different characteristics of each metric, i.e., a border detection method
might overcome another method in terms of one metric, yet this effect can be reversed using
a different metric, (2) the existing metrics are standard and do not reflect the particular
specifications of melanoma diagnosis application.

We addressed these issues in the previous section by introducing two indices; namely,
Performance Index and Weighted Performance Index. Those two indices, although having
their own merits, can be improved upon by using the method proposed in this section.
This is accomplished by formulating a constrained nonlinear multivariable optimisation
problem and solving it by using the trust-region solver. A solution to the optimisation
problem yields a set of weights to be introduced into the six standard evaluation metrics.
The weights reflect the importance of each metric in the evaluation process, thus provid-
ing a basis for comparison with other methods. To demonstrate the effectiveness of the
optimised index, it is used to evaluate five border detection methods applied on a set of
55 high-resolution dermoscopy images.

3.5.1 Proposed Evaluation Index

As discussed in Section 3.4, in order to customise the metrics to be meaningful for der-
moscopy image analysis, and following consultation with expert dermatologists, the TP
parameter was assigned the highest importance compared with the other three parameters
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TN, FP and FN. On the other hand, FP (the areas included by the automated method,
yet excluded by the gold standard) was deemed less important than FN (the area excluded
by the automated method, yet included by the gold standard). So, a weight of 1.5 was
assigned to TP to reflect its overall importance. Also, in those metrics which include
both FN and FP, a factor of 0.5 was assigned to FP, to emphasise the importance of FN
over FP. Consequently, we defined a weighted version of each of the six standard metrics
of sensitivity, specificity, accuracy, border error, similarity and precision, and integrated
them into the WPI metric (Equations 3.30) as a weighted average of those.

Obviously, the introduction of the above weights, even though based on expert
opinion, is subjective and may not be the best possible way of reflecting the importance
of such measures in the performance evaluation index. In this section we introduce a
novel procedure based on constrained nonlinear optimisation to calculate these weights.
In doing so, we attach specific weights to each of the TP, TN, FP and FN measures to
result in the following set of weighted metrics (Equations 3.25–3.28). Then, we formulate
and solve the optimisation problem to calculate an optimal set of weights as shown in the
next section.

WSensitivity =
αTP

αTP + σFN
× 100% (3.31)

WSpecificity =
δTN

δTN + βFP
× 100% (3.32)

WAccuracy =
αTP + δTN

αTP + βFP + σFN + δTN
× 100% (3.33)

WPrecision =
αTP

αTP + βFP
× 100% (3.34)

WSimilarity =
2αTP

2αTP + σFN + βFP
× 100% (3.35)

WBorderError =
βFP + σFN

αTP + σFN
× 100% (3.36)

where α, β, σ and δ refer to weights of TP, FP, FN and TN, respectively.

Incorporating the weighted metrics defined above a comprehensive metric, Opti-
mised Weighted Performance Index (OWPI), is defined to objectively evaluate border
detection methods in dermoscopy Images. OWPI is in fact a weighted average, which
takes into account the weighted metrics defined in Equations 3.31–3.36. The weights
which are imbedded within each metric, would reflect the importance of each metric in
the evaluation process.

OWPI =
WSns+WSpc+WAcc+WPrc+WSml +WBErr

6
(3.37)

where WSns, WSpc, WAcc, WPrc, WSml and WBErr refer to WSensitivity, WSpeci-
ficity, WAccuracy, WPrecision, WSimilarity and 100%-WBorderError, respectively. By
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substitution of the above-mentioned formula for each metric, OWPI is given by:

OWPI =
1

6
(

αTP

αTP + σFN
+

δTN

δTN + βFP

+
αTP + δTN

αTP + βFP + σFN + δTN

+
αTP

αTP + βFP
+

2αTP

2αTP + σFN + βFP

+
αTP − βFP

αTP + σFN
)× 100% (3.38)

3.5.2 Determining the Weights

In order to determine the optimal weights for TP, FP, TN and FN in the proposed per-
formance index, three methods have been applied, which are explained in the following.

Optimisation of OWPI:

In this method the optimal weights are computed by formulating a constrained nonlinear
multivariable optimisation problem based on the trust-region approach [202] explained in
the following section (Section 3.5.3). The solution to the optimisation problem finds the
optimal set of weights that maximises the OWPI (Equation 3.38), taking into account
certain constraints. The constraints are designed such that the dermatologists’ require-
ments as discussed in Section 3.4.2 are met. A generalisation of the constraints used in
the WPI problem in the previous section (Section 3.4), is made through the following set
of inequalities:

α+ ε1 ≥ β , α+ ε2 ≥ σ , α+ ε3 ≥ δ , σ + ε4 ≥ β (3.39)

These inequalities make sure that the right emphases and therefore weight is placed on the
individual measure of TP, TN, FP, and FP, as recommended by the expert dermatologists.
This set of inequalities can be expressed in a more compact way by the following matrix-
vector inequalities:
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−1 0 0 1
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(3.40)

The choice of the εi; i = 1, 2, 3, 4 is a design consideration, where small values reflect less
emphases on the importance of TP compared to large values. In this study it is set to 0.1.
The optimisation problem may now be stated as follows:

maxx∈R4{OWPI(x)} (3.41)

Subject to the constraints
Cx < ε (3.42)
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where

C =









−1 1 0 0
−1 0 1 0
−1 0 0 1
0 1 −1 0









, x = [α β σ δ]T , ε = [ε1 ε2 ε3 ε4]
T (3.43)

System of Nonlinear Equations:

The second approach is to determine the optimal weights of α, β, σ and δ, by solving
the system of nonlinear Equations 3.44–3.47. These equations are derived by finding the
maximum performance index with respect to each of TP, FP, FN and TN.

∂OWPI

∂TP
=

2ασFN + αβFP

(αTP + σFN)2
+

αβFP

(αTP + βFP )2

+
α(βFP + σFN)

(αTP + βFP + σFN + δTN)2

+
2α(σFN + βFP )

(2αTP + σFN + βFP )2
(3.44)

∂OWPI

∂FP
= − βδTN

(δTN + βFP )2

− β(αTP + δTN)

(αTP + βFP + σFN + δTN)2

− 2βαTP

(2αTP + σFN + βFP )2

− β

(αTP + σFN)2
− αβTP

(αTP + βFP )2
(3.45)

∂OWPI

∂FN
= −2ασTP − σβFP

(αTP + σFN)2

− σ(αFP + δTN)

(αTP + βFP + σFN + δTN)2

− 2ασTP

(2αTP + σFN ++βFP )2
(3.46)

∂OWPI

∂TN
=

δβFP

(δTN + βFP )2

+
δ(βFP + σFN)

(αTP + βFP + σFN + δTN)2
(3.47)
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As a maximum occurs when each derivative is set to zero, the optimisation problem
becomes that of solving the system of nonlinear equations given in Equation 3.48, where
the unknowns are the optimal weights.



















































∂OWPI
∂TP = 0

∂OWPI
∂FP = 0

∂OWPI
∂FN = 0

∂OWPI
∂TN = 0

⇒ α, β, σ, δ =? (3.48)

To solve this system of nonlinear equations, the SSE (Sum of Squares Error) as defined
by Equation 3.49 is solved, subject to the constraints given in Equation 3.39, by using the
interior point method [203] explained in the following section (Section 3.5.3).

SSE =

(

∂OWPI

∂TP

)2

+

(

∂OWPI

∂FP

)2

+

(

∂OWPI

∂FN

)2

+

(

∂OWPI

∂TN

)2

(3.49)

The optimisation problem may now be stated as follows, subject to the constraints ex-
pressed in Equations 3.42 and 3.43:

minx∈R4{SSE(x)} (3.50)

Grid Search:

Since the OWPI cost function has periodic behaviour (multiple local maxima), we have
also applied a grid search to find the weights which lead to the maximum value of OWPI.
The grid search is performed by the following steps:
(1) All possible combinations of α, δ, β, σ within the range of [0.1,2] with the step of 0.1
and applying the constraints given in Equation 3.39, are produced.
(2) The OWPI for each combination of the weights for each image is calculated and
averaged over the image set, to obtain an estimate of the population of the given samples
(images).
(3) The maximum OWPI is determined and the respective weights are identified.

3.5.3 Optimisation Background

For completeness, in this section a summary of the optimisation algorithms used (trust-
region and interior-point) is provided:
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Trust-Region Methods (Un-constrained Optimisation)

Trust-region methods are an important class of iterative algorithms aimed at solving non-
linear constrained optimisation problems. They are reliable, efficient, and free of ad-hoc
decisions. In addition they exhibit strong convergence characteristics and are easy to
implement in software. A distinguishing feature of trust-region methods is robust global
behaviour, where mathematical assurance exists that starting from an arbitrary initial
point the algorithms will converge to a stationary point. This is achieved by adjusting the
size of the steps taken at each iteration, based on how well the local quadratic models are
predicting decrease in the value of the function to be minimised, after each iteration. Let
us consider the nonlinear function:

y = f(x) (3.51)

We would like to find the vector arguments x ∈ Rn so that

minx∈Rnf(x) (3.52)

Suppose that we are at the kth iteration at which the vector argument is x(k) and we want
to move x(k) to x(k + 1) so that

f(x(k + 1)) < f(x(k)) (3.53)

The trust-region algorithm insures inequality condition Equation 3.53 as follows. The
function f(x) is approximated by the first two terms of its Taylor approximation at the
point x(k), resulting in the a linear quadratic function g(x). This function is then evaluated
in a region R called the trust-region around (in the neighbourhood of) point x. If a trial
point, say point q, in this region is tested and found to minimise the function

minq∈Rnf(q) (3.54)

then x(k) is updated to this point and x(k + 1) = x(k) + q, and the process continues.
Otherwise the region is shrunk and the trial continues until a new point is found or the
region collapses to null (a stationary point, which is the minima, is reached).

In mathematical terms the trust-region optimisation problem becomes

min|D|<|q|{
1

2
qTHq + αg} (3.55)

where g is the gradient of f(x) at the current point x, H is a symmetric matrix whose
elements are the second derivative of f(x), D is a scaling matrix, and |.| is the Euclidean
norm.

Although algorithms that solve the optimisation problem Equation 3.55 exist, the
time required may be too prohibitive for large scale (dimensional) problems. This problem
can be overcome if the trust region is restricted to a two-dimensional space Q. Once this
space is found, the solution to the optimisation problem Equation 3.55 can be approxi-
mated and easily found. The common approach to finding Q is to define it as a linear
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space spanned by vectors q1 and q2. Vector q1 is in the direction of the gradient g, and
vector q2 is obtained from:

H.q2 = −g (Approximate Newton direction) (3.56)

or
qT2 .H.q2 < 0 (Negative curvature direction) (3.57)

The linear space Q above will force global convergence via the steepest decent direction
or negative curvature direction.

Summary of algorithm:

1. Formulate the 2-dimensional trust region problem.

2. Solve Equation 3.55 to determine the trial step q.

3. If Equation 3.53 is satisfied then x = x+ q.

4. Otherwise adjust D.

Trust-Region Methods (Constrained Optimisation)

Constrained nonlinear optimisation problems involve finding the points of minima subject
to the following constraints:

Ci(x) ≤ 0 i = 1, 2, ...,m (3.58)

The most efficient available optimisation method, which is implemented in the Matlab
function fmincon-active set, is based on the solution of the Karush-Kuhn-Tucker (KKT)
equations. These equations state the necessary (and sufficient for convex functions) con-
ditions for optimality of nonlinear constrained optimisation problems, i.e., existence of
global solution point. Therefore the problem involves the solution to the following set
equations and inequalities.

∇f(x) +
m
∑

i=1

λi∇Ci(x) = 0 ; λi∇Ci(x) ≤ 0 ; λi ≥ 0 (3.59)

where ∇ is the gradient and λi are the Lagrange multipliers. There are a number of
programming methods that can solve the set of Equations 3.59, among the most efficient
and proven algorithm is the Sequential Quadratic (SQ), which allows for the problem to be
solved in the same manner as unconstrained optimisation. This achieved by formulating
SQ sub-problems where the nonlinear constraints are linearised. The SQ sub-problem is
stated as follows:

mind∈Rn{1
2
dTHkd+∇f(xk)

Td}

∇gi(xk)
Td+ gi(xk) = 0 ; i = 1, 2, ...,m (3.60)

where d is the line search direction.
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This problem can be solved using any QP algorithm, where the solution forms the
basis for a new iteration

x(k + 1) = x(k) + αkdk (3.61)

Another method for solving the constrained optimisation problem Equation 3.55 is by for-
mulating the problem to include a so called barrier function. This method is implemented
in the Matlab function fmincon-interior point, which solves a sequence of approximate
minimisation problems, formulated as follows. Given the minimisation problem (Equa-
tion 3.52) subject to the set of constraints (Equation 3.58) for each µ solve the following
problem:

minx,qfµ(x, q) = minx,qfx− µ
∑

i

ln(qi) (3.62)

subject to

g(x) ≤ 0 ; g(x) = −q (3.63)

where µ
∑

i ln(qi) is the barrier function. Inequality in Equation 3.63 implies that qi > 0
and therefore ln(qi) > 0. As µ decreases, fµ(x, q) approaches minimum of f(x) (see
Equation 3.62). At each iteration the algorithm decreases the following function:

fµ(x, q) + β|g(x) + q| (3.64)

The parameter β is adjusted at each iteration to force the solution to feasibility.

3.5.4 Experimental Results: Determining the Weights

In order to determine the weights, the three different approaches explained in Section 3.5.2
are implemented using the results of five recent border detection methods; namely, Hybrid
(W30B30) [204], DTEA [26], JSEG [95], KPP [89], and Global thresholding on XoYoR
colour channel [205], on the image set of 55 dermoscopy images. For each of the five
border detection methods, the border is detected for every image, the segmented image
is formed and the four parameters of TP, FP, FN and TN are calculated by comparing
the segmented image with the corresponding gold standard (ground truth). The obtained
results for each approach are explained in the following.

Image Set and Gold Standard:

The proposed evaluation metric is tested on the same set of 55 high-resolution dermoscopy
images applied in the previous section, with four sets of manual borders independently
drawn by expert dermatologists from Royal Melbourne Hospital. As before, the union
of those borders is taken as the ground truth. The choice of union for integrating the
manual borders, is in line with the emphasis on the TP factor, reflected in the inequality
constraints as expressed by Equations 3.39 and 3.40. The image standardisation procedure
discussed in Section 3.3.2 has been also applied to balance the effect of large TN values
and normalise the accuracy and specificity metrics.
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Optimisation of OWPI:

After calculating the four parameters of TP, FP, FN and TN for each of the five border
detection methods, for every image, 20 trials with different initial conditions are conducted
and the weights (α, δ, β and σ) resulting in the highest OWPI value were obtained through
the constrained nonlinear multivariable optimisation algorithm. The initial conditions
used in trials were in the range of [0.1,2] with steps of 0.1, equally given to the four
weights, i.e., starting from α = 0.1, δ = 0.1, β = 0.1, σ = 0.1 and ending with α = 2, δ =
2, β = 2, σ = 2.

Experimental results show that for all 20 trials, for all five methods, the optimal
weights for TP, FP and FN are 2, 0.1 and 0.2, respectively. For TN’s weight, however,
different values were returned by the optimisation algorithm, implying that the cost func-
tion has multiple local maxima. In order to determine the optimal weight for TN, the
frequency of each of the suggested weights in different trials over the entire image set has
been calculated, as shown in Tables 3.15–3.19 for the Hybrid, JSEG, DTEA, Global and
KPP methods, respectively. The tables show that for all border detection methods in
the majority of cases (56%, 61%, 68%, 75%, and 75%) the optimal value for TN’s weight
is 1.9. Figure 3.37 shows value frequencies of TN’s weight obtained by the optimisation
procedure on the 20 trials run over the entire image set, for the five border detection
methods. As illustrated in the figure, for all methods the most frequent weight returned
by the optimisation procedure for the TN parameter is 1.9, demonstrating the consistency
of the optimal weights for all methods.

Solving the System of Nonlinear Equations:

To reconfirm the optimal weights α, β, σ and δ, we have also solved the system of nonlinear
equations defined by Equation 3.48, subject to the constraints given in Equation 3.39,
for the Hybrid method. Solving these equations was done by performing a constrained
nonlinear optimisation procedure that minimises the defined SSE (Equation 3.49).

For each image in the set of 55 high-resolution dermoscopy images, 20 trials with
different initial conditions were conducted. Starting from initial conditions of (α = 0.1,
β = 0.1, σ = 0.1, δ = 0.1) and ending with (α = 2, β = 2, σ = 2, δ = 2), with steps
of 0.1, the constrained optimisation procedure was applied. Using the optimal weights
resulting from the optimisation, the OPWI was calculated. To check the accuracy of the
optimal solution, the resultant weights (α, β, σ, δ) and the corresponding TP, FP, FN,
and TN values were substituted in the four derivatives defined by Equations 3.44–3.47.
The outcome was compatible with that obtained by the solution obtained in first method
explained above.

Similar to the results obtained in the previous section (optimisation of OWPI),
consistent weights of α = 2, β = 0.1, σ = 0.2 were observed. For δ, it was observed that
when δ’s bounds were narrowed down from [0.1,2] to [1.9,2], the resultant OWPI increased
and the derivative values decreased or remained the same. Table 3.20 shows the obtained
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Figure 3.37: Frequencies of obtained values for TN’s weight in 20 trials of optimisation
over the entire image set, using the five border detection methods.

optimal weights and the corresponding OWPI values for a sample image, demonstrating
that in the majority of cases the optimal value for TN’s weight (δ) is 1.9. The same
pattern was observed over the whole image set, consistent with the results obtained by
optimisation of OWPI (the first approach of the previous section).

Figure 3.38 shows the increasing trend in OWPI value for the same image, as δ’s
bounds are narrowed down. Figure 3.39 shows the decreasing trend in the value of ∂OWPI

∂TP
(Equation 3.44) for the same image, as δ’s bounds are narrowed down from bound1=[0.1,2]
to bound6=[1.9,2].

Grid Search:

A grid search, as explained in Section 3.5.2, is also applied on the Hybrid method to find
the weights yielding to maximum OWPI. . Figure 3.40 shows the mean OWPI values over
the image set, using all different combinations of α, β, σ and δ within the range of [0.1,2],
subject to the constraints given in Equation 3.39. As the result of the grid search, the
same optimal weights as those found by the optimisation processes, i.e., (α = 2, β = 0.1,
σ = 0.2, δ = 1.9).
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Figure 3.38: The increasing trend in OWPI value for a sample image, as δ’s bounds are
narrowed down from bound1=[0.1,2] to bound6=[1.9,2].

0 2 4 6 8 10 12 14 16 18 20
1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85
x 10

−8

Trials

d 
O

W
P

I /
 d

 T
P

 

 

Bound1
Bound2
Bound3
Bound4
Bound5
Bound6

Figure 3.39: The decreasing trend in ∂OWPI
∂TP value for a sample image, as the δ’s bound

is narrowed down from bound1=[0.1,2] to bound6=[1.9,2].

Acceptability of the Obtained Weights Over the Entire Image Set:

Figure 3.41 shows the OWPI value using optimised weights of α = 2, δ = 1.9, β = 0.1, σ =
0.2, for our set of 55 dermoscopy images, using the Hybrid method. To make sure the
applied weights are generic for different images we have considered 6 images as control
samples and have produced their respective OWPI for different trials of the optimisation.
The control images are those which produce the lowest OWPI. Thus, by calculating their
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Figure 3.40: Mean OWPI values over the image set, using the constrained combinations
of α, β, σ and δ within the range of [0.1,2].

OWI for different trials of optimisation we have shown that the obtained OWPI is still
quite hight. These values are marked with O in Figure 3.41, demonstrating the small
variability in the resultant OWPI values and the consistency of the obtained weights.
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Figure 3.41: Optimised Weighted Performance Index for the set of 55 dermoscopy images
using the Hybrid border detection method.
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3.5.5 Applying OWPI for Comparison of Automated Methods

Figure 3.42 shows the five different borders resulting from applying the above-mentioned
five border detection methods (DTEA [26], JSEG [95], KPP [89], global thresholding on
XoYoR colour channel [205], and Hybrid [204]) on two sample dermoscopy images. Op-
timised Weighted Performance Index can be used as a mean to compare the effectiveness
of these borders. The proposed Optimised Weighted Performance Index with the deter-

Figure 3.42: Different automatic borders for two sample dermoscopy images.

mined optimal weights is used to evaluate and compare the performance of the five border
detection methods applied to the set of 55 high-resolution dermoscopy images.

Table 3.21 gives the mean and standard deviation of the metrics of weighted ac-
curacy, weighted sensitivity, weighted specificity, weighted precision, weighted similarity,
weighted border error and Optimised Weighted Performance Index. As shown, one method
may perform better than others with respect to some of the metrics, yet yields lower results
with respect to others, e.g. the DTEA method gains the highest weighted specificity and
weighted precision, yet is bested by the Hybrid method with respect to weighted sensitiv-
ity, weighted accuracy, weighted similarity and weighted border error metrics. Therefore
it has not been easy in the past to provide an overall objective judgment as to which of the
five methods is more suited for border detection of dermoscopy images. However, the use
of the proposed OWPI –since it incorporates all the metrics- facilitates such a judgment,
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which can easily be made by comparing values of the calculated OWPI’s (as shown in the
last row of Table 3.21).

Table 3.21 demonstrates that the Hybrid (W30B30) method yields the highest per-
formance with the average OWPI of 99.28%, followed by the JSEG method with average
OWPI of 98.64%, the DTEA and Global methods with the average OWPI of 98.3%, and
finally the KPP method with the average OWPI of 97.86%

Figure 3.43 shows different automatic borders drawn by the five border detection
methods for a sample dermoscopy image and the ground truth drawn by dermatologists.
As shown in the figure, the border produced by the Hybrid method is the closest to the
ground truth.

Ground
Truth

Hybrid
Method

Figure 3.43: Different automatic borders for a sample dermoscopy image and the ground
truth drawn by dermatologists. The border produced by the Hybrid method is the closest
to the ground truth.

3.5.6 Extending the Optimisation Bounds

To study the effect of extending the bounds of the optimisation procedure, the range is
extended to [0.05,2.1] and the process described in Section 3.5.2 is repeated for the all five
border detection methods. Similar to the previous experiment with the initial bounds, the
optimal weights for TP, FP and FN are constant for all 20 trials and for all five methods,
as α = 2.1, β = 0.05 and σ = 0.15.

Similarly, the optimisation procedure suggest various values for δ in the range of
[0.5,2]. To determine the most consistent value for δ, the frequencies of various values
obtained by the optimisation procedure on the 20 trials run over the entire image set are
calculated for each of the five border detection methods, as shown in Figure 3.44. As
illustrated in the figure, for all the methods the most frequent weight value chosen by the
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optimisation procedure for the TN parameter is 2, which demonstrates the consistency of
the optimal weights for all the five methods.

To confirm the new weights, the grid-search procedure explained in Section 3.5.2
is applied on the Hybrid method’s results, using the extended bound of [0.05,1], which
converged to the same weight values of α = 2.1, β = 0.05, σ = 0.15 and δ = 2.0 yielded
by the optimisation procedure above.

0.50.60.70.80.9 1 1.11.21.31.41.51.61.71.81.9 2
0

10

20

30

40

50

60

TN’s weight

F
re

qu
en

cy
 (

%
)

 

 

Hybrid
JSEG
DTEA
Global
KPP

Figure 3.44: Frequencies of obtained values for δ in 20 trials of optimisation over the entire
image set, for the five border detection methods using the extended bound of [0.05,2.1].

Figure 3.45 shows the average optimised weighted performance index over the image
set, using α = 2.1, β = 0.05, σ = 0.15 and various values of δ, for the five border detection
methods. As illustrated in the figure, the trend is similar for all the five methods. Also,
similar to the results observed in Table 3.21, the Hybrid border detection method provides
the best performance, followed by JSEG, DTEA, Global and KPP methods, showing that
although the obtained optimal weights for different bounds differs, the relative performance
is stable which provides a sustained basis for the comparison of the border detection
methods. Moreover, in extending the bounds it was observed that for the more relax
bounds of [0.05,2.1] as shown in Figure 3.44, the distributions of weights flattens compare
to the initial bounds of [0.1,2] as illustrated in Figure 3.37, thus the larger bound yields
less consistency and sustainability in the obtained weights over the image set.

In this study, our optimisation process used constraints based on subjective concerns
of dermatologists with respect to the application of melanoma diagnosis. The positive
lower limit of 0.1 (or any positive number) reflects a desire to ensure nontrivial inclusion
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Figure 3.45: Average Optimised Weighted Performance Index over the image set, using
α = 2.1, β = 0.05, σ = 0.15 and various values of δ, for the five border detection methods.

of all four parameters FP, TP, FN, and TN in the metric. On the other hand, the upper
limit of 2.0 (or any positive number), is a formal constraint needed to avoid unbounded
weights, which does not in fact limit the form of the solution, since rescaling all weights
by the same factor leaves the metric as given by Equation 3.38 unchanged.

3.5.7 Comparison between Fixed and Optimised Weights

Figure 3.46 shows the comparison of the three evaluation metrics of OWPI, WPI and
PI for the five border detection methods, i.e., Hybrid, JSEG, DTEA, Global and KPP,
over the image set. Comparison between PI, WPI and OWPI shows the advantage of
the latter. OWPI yields higher performance values for each of the five border detection
methods, followed by WPI and PI comes last. Moreover, OWPI with optimal weights
tailored to be meaningful in the melanoma application yields smaller differences between
the border detection methods, implying the actual performance differences among the
various methods are in fact smaller than those predicted by WPI and PI.

3.5.8 Conclusion

This section presented a new approach for evaluation of border detection methods in der-
moscopy images. To provide evaluation metrics meaningful in the context of dermoscopy
image analysis, we introduced specific weights into standard metrics of sensitivity, speci-
ficity, accuracy, border error, similarity and precision. The weights were determined by
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Figure 3.46: Comparison of the three evaluation indices of OWPI, WPI and PI for the
five border detection methods: Hybrid, JSEG, DTEA, Global and KPP.

applying a constrained nonlinear multivariable optimisation method with trust-region ap-
proach, and the result was confirmed by a grid-search procedure. Moreover, a compre-
hensive metric, Optimised Weighted Performance Index, was proposed to facilitate com-
parison between different methods. The effectiveness of the proposed evaluation approach
was demonstrated by applying five recent border detection methods on a set of 55 high-
resolution dermoscopy images, using the union of four sets of dermatologist-drawn borders
as the ground truth.

3.6 Concluding Remarks

The fist stage in development of a fully automated computer-based system for detecting
melanoma is segmentation or border detection. This chapter presented two automated
methods for detecting the borders in dermoscopy images; Global and Hybrid method,
the latter being an enhancement of the former. The Global method applies colour space
analysis and clustering-based histogram thresholding and determines X and XoYoR colour
channels as the most effective and discriminative colour channels for detecting the borders
in dermoscopy images, with an accuracy of approximately 97%. Quantitative evaluation
is performed by comparing automated results to manual borders independently drawn by
four dermatologists, with respect to four different metrics of accuracy, sensitivity, speci-
ficity and similarity, incorporating ROC analysis. Comparative study involving two state-
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of-the-art automated methods demonstrated that with a proper choice of colour channels
the proposed thresholding-based method, in spite of its simplicity, is highly competitive
with well-known skin lesion segmentation methods, and outperforms them with respect to
accuracy, specificity, and AUC metrics. Furthermore, the proposed method is potentially
faster since it mainly involves scalar processing as opposed to vector processing performed
in those methods. The Global border-detection method is published in [206, 205].

Considering the practical nature of the melanoma diagnosis, which calls for extreme
caution when excluding portions of the image, and for the fact that dermatologists prefer
to choose the outmost detectable pigment to minimise the risk of incorrect diagnosis, we
improved the Global method with the goal of reducing the discrepancy between the manual
and automatic borders by proposing the Hybrid border detection method. The method
first applies the Global method on the optimal colour channel of XoYoR to detect an initial
boundary, then integrates the local colour information around the initial boundary to
expand the border and form the final segmentation result. 85 high-resolution dermoscopy
images were analysed and the automatic borders were compared to borders drawn by two
dermatologists using various evaluation metrics including accuracy, precision, sensitivity,
specificity, and border error. The Hybrid method, which is comprised of two stages, is
designed to increase specificity in the first stage (global thresholding) and sensitivity in
the second stage (adaptive local thresholding). The proposed hybrid method was also
compared to three state-of-the-art border detection methods and found to perform as well
or better in terms of sensitivity, AUC, and border error. Furthermore, it was shown that
the Hybrid method functions closer to the experienced dermatologist than the dermatology
registrar. The Hybrid border-detection method is published in [204].

We then provided an analytical framework, including statistical analysis, optimisa-
tion and cross validation, to determine the optimal parameters for the proposed Hybrid
border detection method. Moreover, the two proposed border detection methods; Global
and Hybrid, were compared with each other and the superiority of the Hybrid method
was demonstrated through a newly introduced evaluation metric, Performance Index, com-
posed of standard metrics of sensitivity, specificity, accuracy, similarity, and border error.
The comparison between the two methods, Global and Hybrid, is published in [207].

The last two sections of the chapter explore the objective evaluation of the border
detection results in dermoscopy image analysis. The goal was to provide a comprehensive
evaluation metric which reflects dermatologists’ perspective in the melanoma recognition
process. In doing so, specific weights are attached to the standard metrics of sensitivity,
specificity, accuracy, border error, similarity and precision, and the Weighted Performance
Index is defined as a weighted average of those. However, as the introduced weights were
fixed and based on expert opinion only, and in order to provide weights which genuinely
reflect the importance of each metric in the evaluation process we proposed a new metric;
Optimised Weighted Performance Index. The Optimised Weighted Performance Index is
also an average of the weighted metrics of sensitivity, specificity, accuracy, border error,
similarity and precision, where the weights are obtained by formulating a constrained
nonlinear multivariable optimisation problem. Comparison between Performance Index,
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Weighted Performance Index and Optimised Weighted Performance Index shows the ad-
vantage of the latter. OWPI yields higher performance values for each of the five border
detection methods, followed by WPI and PI comes last. Moreover, OWPI with optimal
weights which are tailored to be meaningful in the melanoma application, yields smaller
differences between the border detection methods, implying the actual performance differ-
ences among the various border detection methods are in fact smaller than those predicted
by WPI and PI. Objective evaluation of border detection methods in dermoscopy images
via Weighted Performance Index and Optimised Weighted Performance Index are pub-
lished in Skin Research and Technology journal [208] and submitted to IEEE Transactions
on Information Technology in Biomedicine [209], respectively.
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Table 3.15: Frequencies of different suggested values for TN’s weight (δ) in 20 trials of
optimisation over the entire image set, using Hybrid border detection method.

δ 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Trial.1 0 0 1 3 5 5 3 1 0 3 3 1 1 29

Trial.2 4 2 0 0 1 1 0 0 0 0 0 0 0 47

Trial.3 5 2 0 1 2 0 0 0 0 0 0 0 0 45

Trial.4 6 3 0 0 0 0 0 0 0 0 0 0 0 46

Trial.5 0 10 0 0 0 0 0 0 0 0 0 0 0 45

Trial.6 0 8 4 0 0 0 0 0 0 0 0 0 0 43

Trial.7 0 0 15 0 0 0 0 0 0 0 0 0 0 40

Trial.8 0 0 0 19 1 1 0 0 0 0 0 0 0 34

Trial.9 0 0 0 0 28 2 1 0 0 0 0 0 0 24

Trial.10 0 0 0 0 0 36 5 1 0 1 0 0 0 12

Trial.11 0 0 0 0 0 0 37 4 2 0 0 1 0 11

Trial.12 0 0 0 0 0 0 1 37 6 2 0 1 0 8

Trial.13 0 0 0 0 0 0 0 0 29 21 0 1 0 4

Trial.14 0 0 0 0 0 0 0 0 0 17 28 4 1 5

Trial.15 0 0 0 0 0 0 0 0 0 0 4 38 5 8

Trial.16 0 0 0 0 0 0 0 0 0 0 0 1 31 23

Trial.17 0 0 0 0 0 0 0 0 0 0 1 3 2 49

Trial.18 0 0 0 0 0 0 0 0 0 0 0 0 0 55

Trial.19 0 0 0 0 0 0 0 0 0 0 0 0 5 50

Trial.20 0 0 0 5 10 1 1 0 0 0 0 0 0 38

Frequency 15 25 20 28 47 46 48 43 37 44 36 50 45 616

Percentage(%) 1 2 2 3 4 4 4 3 3 4 3 5 4 56

Table 3.16: Frequency of different suggested values for TN’s weight (δ) in different trials
of optimisation over the entire image set using JSEG border detection method.
δ 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Trial.1 0 0 3 2 3 1 0 1 0 0 2 0 1 0 42

Trial.2 0 4 1 0 0 1 0 1 0 0 0 0 0 0 48

Trial.3 1 2 1 0 0 0 0 0 0 0 0 0 0 0 51

Trial.4 0 2 8 0 0 0 0 0 0 0 0 0 0 0 45

Trial.5 0 1 11 0 0 0 0 0 0 0 0 0 0 0 43

Trial.6 0 0 11 1 0 0 0 0 0 0 0 0 0 0 43

Trial.7 0 0 0 12 0 0 0 0 0 0 0 0 0 0 43

Trial.8 0 0 0 1 15 0 1 0 0 0 0 0 0 0 38

Trial.9 0 0 0 0 1 25 0 1 0 0 0 0 0 0 28

Trial.10 0 0 0 0 0 1 34 1 0 1 0 0 0 0 18

Trial.11 0 0 0 0 0 0 0 36 1 0 1 0 0 0 17

Trial.12 0 0 0 0 0 0 0 0 38 1 0 1 0 0 15

Trial.13 0 0 0 0 0 0 0 0 0 38 4 0 1 0 12

Trial.14 0 0 0 0 0 0 0 0 0 0 41 2 2 0 10

Trial.15 0 0 0 0 0 0 0 0 0 0 0 19 28 1 7

Trial.16 0 0 0 0 0 0 0 0 0 0 0 0 3 41 11

Trial.17 0 0 0 0 0 0 0 0 0 0 0 0 1 2 52

Trial.18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 54

Trial.19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 54

Trial.20 0 0 0 1 10 1 1 0 1 0 0 0 0 0 41

Frequency 1 9 35 17 29 29 36 40 40 40 48 22 36 46 672

Percentage(%) 0.1 0.8 3.2 1.6 2.7 2.7 3.3 3.7 3.7 3.7 4.4 2 3.3 4.2 61.1
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Table 3.17: Frequency of different suggested values for TN’s weight (δ) in different trials
of optimisation over the entire image set using DTEA border detection method.

δ 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Trial.1 0 0 3 0 2 1 1 0 0 0 0 0 0 48

Trial.2 1 3 1 0 0 0 0 0 0 0 0 0 0 50

Trial.3 2 3 0 0 0 0 0 0 0 0 0 0 0 50

Trial.4 3 3 0 0 0 0 0 0 0 0 0 0 0 49

Trial.5 0 6 0 0 0 0 0 0 0 0 0 0 0 49

Trial.6 0 4 3 0 0 0 0 0 0 0 0 0 0 48

Trial.7 0 0 11 0 0 0 0 0 0 0 0 0 0 44

Trial.8 0 0 1 11 0 0 0 0 0 0 0 0 0 43

Trial.9 0 0 0 1 16 0 0 0 0 0 0 0 0 38

Trial.10 0 0 0 0 1 28 0 1 0 0 0 0 0 25

Trial.11 0 0 0 0 0 1 29 1 0 0 0 0 0 24

Trial.12 0 0 0 0 0 0 1 30 0 0 0 0 0 24

Trial.13 0 0 0 0 0 0 0 0 30 5 0 0 0 20

Trial.14 0 0 0 0 0 0 0 0 0 34 5 0 0 16

Trial.15 0 0 0 0 0 0 0 0 0 0 15 31 2 7

Trial.16 0 0 0 0 0 0 0 0 0 0 0 2 39 14

Trial.17 0 0 0 0 0 0 0 0 0 0 0 0 2 53

Trial.18 0 0 0 0 0 0 0 0 0 0 0 0 1 54

Trial.19 0 0 0 0 0 0 0 0 0 0 0 0 1 54

Trial.20 0 0 1 5 5 0 0 0 0 0 0 0 0 44

Frequency 6 19 20 17 24 30 31 32 30 39 20 33 45 754

Percentage(%) 0.6 1.8 1.8 1.6 2.2 2.8 2.8 2.9 2.7 3.6 1.8 3 4 68.6

Table 3.18: Frequency of different suggested values for TN’s weight (δ) in different trials
of optimisation over the entire image set using Global border detection method.

δ 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Trial.1 0 0 1 0 0 0 1 0 0 0 0 0 0 53

Trial.2 0 0 0 0 0 0 0 0 0 0 0 0 0 55

Trial.3 0 0 0 0 0 0 0 0 0 0 0 0 0 55

Trial.4 0 0 0 0 0 0 0 0 0 0 0 0 0 55

Trial.5 1 0 0 0 0 0 0 0 0 0 0 0 0 54

Trial.6 0 1 0 0 0 0 0 0 0 0 0 0 0 54

Trial.7 0 0 2 0 0 0 0 0 0 0 0 0 0 53

Trial.8 0 0 1 3 0 0 0 0 0 0 0 0 0 51

Trial.9 0 0 0 1 6 0 0 0 0 0 0 0 0 48

Trial.10 0 0 0 0 1 21 0 0 0 0 1 0 0 32

Trial.11 0 0 0 0 0 1 23 1 0 0 0 0 0 30

Trial.12 0 0 0 0 0 0 1 32 0 0 0 0 0 22

Trial.13 0 0 0 0 0 0 0 0 31 2 0 0 0 22

Trial.14 0 0 0 0 0 0 0 0 0 30 8 0 0 17

Trial.15 0 0 0 0 0 0 0 0 0 0 7 43 0 5

Trial.16 0 0 0 0 0 0 0 0 0 0 0 2 47 6

Trial.17 0 0 0 0 0 0 0 0 0 0 1 1 2 51

Trial.18 0 0 0 0 0 0 0 0 0 0 0 0 1 54

Trial.19 0 0 0 0 0 0 0 0 0 0 0 0 2 53

Trial.20 0 0 1 1 0 0 0 0 0 0 0 0 0 53

Frequency 1 1 5 5 7 22 25 33 31 32 17 46 52 823

Percentage(%) 0.1 0.1 0.5 0.5 0.6 2 2.3 3 2.8 2.9 1.6 4.2 4.7 74.8
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Table 3.19: Frequency of different suggested values for TN’s weight (δ) in different trials
of optimisation over the entire image set using KPP border detection method.

δ 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Trial.1 0 1 3 1 0 1 0 1 0 1 1 1 0 45

Trial.2 2 1 0 0 0 0 0 0 0 0 0 0 0 52

Trial.3 2 1 0 0 0 0 0 0 0 0 0 0 0 52

Trial.4 2 2 0 0 0 0 0 0 0 0 0 0 0 51

Trial.5 2 5 0 0 0 0 0 0 0 0 0 0 0 48

Trial.6 0 7 0 0 0 0 0 0 0 0 0 0 0 48

Trial.7 0 0 7 0 0 0 0 0 0 0 0 0 0 48

Trial.8 0 0 1 7 0 0 0 0 0 0 0 0 0 47

Trial.9 0 0 0 1 9 0 1 0 0 0 0 0 0 44

Trial.10 0 0 0 0 1 14 1 1 0 0 0 0 0 38

Trial.11 0 0 0 0 0 2 15 2 1 0 0 0 0 35

Trial.12 0 0 0 0 0 0 1 20 4 1 0 1 0 28

Trial.13 0 0 0 0 0 0 0 0 20 5 1 0 0 29

Trial.14 0 0 0 0 0 0 0 0 0 26 10 1 0 18

Trial.15 0 0 0 0 0 0 0 0 0 0 8 34 2 11

Trial.16 0 0 0 0 0 0 0 0 0 0 0 1 36 18

Trial.17 0 0 0 0 0 0 0 0 0 0 0 0 1 54

Trial.18 0 0 0 0 0 0 0 0 0 0 0 0 1 54

Trial.19 0 0 0 0 0 0 0 0 0 0 0 0 1 54

Trial.20 0 0 1 5 2 0 0 0 0 0 0 0 0 47

Frequency 8 17 12 14 12 17 18 24 25 33 20 38 41 821

Percentage(%) 0.7 1.6 1.1 1.3 1.1 1.6 1.6 2.2 2.3 3 1.8 3.4 3.7 74.6
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Table 3.20: Optimal weights obtained in different trials and the corresponding OWPI
value for a sample image.

Trial α β σ δ OWPI

1 1.99 0.1 0.2 1.9 99.73

2 1.99 0.1 0.2 1.9 99.73

3 1.99 0.1 0.2 1.9 99.73

4 1.99 0.1 0.2 1.9 99.73

5 1.99 0.1 0.2 1.9 99.73

6 1.99 0.1 0.2 1.9 99.73

7 1.99 0.1 0.2 1.9 99.73

8 1.99 0.1 0.2 1.9 99.73

9 1.99 0.1 0.2 1.9 99.73

10 1.99 0.1 0.2 1.9 99.73

11 1.99 0.1 0.2 1.9 99.73

12 1.99 0.1 0.2 1.9 99.73

13 1.99 0.1 0.2 1.9 99.73

14 1.99 0.1 0.2 1.9 99.73

15 1.99 0.1 0.2 1.9 99.73

16 1.99 0.1 0.2 1.9 99.73

17 1.99 0.1 0.2 1.9 99.73

18 1.99 0.1 0.2 1.9 99.73

19 1.99 0.1 0.2 1.8 99.72

20 1.99 0.1 0.2 1.9 99.73

Table 3.21: Evaluation metrics (mean ±standard deviation) for five recent border detec-
tion methods.

Hybrid JSEG DTEA Global KPP

WAccuracy 99.54 ±0.2 99.20 ±0.4 99.04 ±0.5 99.02 ±0.3 98.87 ±0.6
WSensitivity 98.77 ±0.9 97.11 ±2.2 96.42 ±2.2 96.42 ±2.0 95.45 ±3.7
WSpecifcity 99.87 ±0.1 99.98 ±0.1 99.99 ±0.0 99.98 ±0.0 99.95 ±0.1
WPrecision 99.74 ±0.2 99.96 ±0.1 99.98 ±0.0 99.96 ±0.1 99.92 ±0.2
WSimilarity 99.25 ±0.4 98.50 ±1.1 98.15 ±1.1 98.14 ±1.0 97.59 ±2.0
WBorderError 1.49 ±0.8 2.93 ±2.2 3.61 ±2.2 3.63 ±2.0 4.63 ±3.6

OWPI 99.28 ±0.3 98.64 ±1.0 98.33 ±1.0 98.31 ±0.9 97.86 ±1.6





Chapter 4

Feature Extraction, Selection and
Classification

As mentioned in the first chapter, due to the enhancements in skin imaging technology
and image processing techniques in the recent years, there has been a significant increase
in interest in the computer-aided diagnosis of melanoma, aiming to remove subjectivity
and uncertainty from the diagnostic process and provide a reliable second opinion to
dermatologists. However, it is widely acknowledged that much higher accuracy is required
for computer-based algorithms to be adopted routinely in the diagnostic process [24, 25].

A computer-aided diagnosis of melanoma generally comprises several components;
image acquisition, segmentation or border detection (which was discussed in the previous
chapter), feature extraction, feature selection, and classification; the latter three are the
main focus of this chapter.

Feature extraction is used to extract the features; similar to those visually detected
by dermatologists, that accurately characterises a melanoma lesion. The feature extraction
methodology of many computerised melanoma detection systems has been largely based
on the conventional clinical algorithm of ABCD-rule of dermoscopy due to its effectiveness
and simplicity of implementation. Its effectiveness stems from the fact that it incorporates
the main features of a melanoma lesion such as asymmetry, border irregularity, colour
and diameter (or differential structures), where quantitative measures can be computed.
Different image processing techniques have been used to extract such features, see for
example [12, 60].

In this study we propose a new, comprehensive and highly effective feature extraction
method which combines different types of features; novel ones and a few adopted from
existing studies. In the proposed method texture and border (including geometry and
time-series) features are extracted and combined.

The texture-based feature extraction method employs tree-structured wavelet de-
composition. The previous studies [171, 169, 210] have used three-level decomposition

125



126 CHAPTER 4. FEATURE EXTRACTION, SELECTION AND CLASSIFICATION

without further decomposition. In this study, we have elected to use a four-level wavelet
tree in order to assess the richness of information content in another decomposition level.
Moreover, we have incorporated colour information from different colour channels of Red,
Green, Blue and Luminance into the texture analysis, as opposed to only luminance in the
existing studies. This is done in order to investigate the textural information embedded in
each colour channel independently as we suspect considering the Luminance channel only
may disregard some of the content. We have also applied various statistical measurements
and ratios on all the nodes of the wavelet-tree.

The border-based feature extraction method uses a variety of statistical measures.
This is achieved via two distinctive processes: (i) various geometry-based features (stan-
dard and newly designed based on expert opinion of dermatologists) are defined to evaluate
the properties of the overall shape of the lesion, and (ii) a time series model of the border
is constructed and analysed in both spatial and frequency domains to extract main char-
acteristics of the lesion boundary. To the best of our knowledge, the time-series analysis of
process (ii) and some of the measures used in process (i) have not been previously applied
on dermoscopy images.

Feature selection is an intermediate process that lies between the two steps of feature
extraction and classification. In this process irrelevant, redundant, or noisy features are
excluded from the initial feature vector constructed in the feature extraction step. Some of
the prominent feature selection methods that have been used in existing computer-based
melanoma recognition systems include sequential forward floating selection and sequential
backward floating selection [58], genetic algorithms [211], ReliefF, mutual information and
correlation-based methods used in [60], principal component analysis used in [169], statis-
tical analysis used in [171, 210], etc. However, in this study the Gain Ratio-based Feature
Selection (GRFS) method is employed for the following reasons: (i) the method is known
to be computationally efficient, which is a vital factor because of the high dimensionality of
the initial feature vector constructed in the feature extraction phase; (ii) It outperforms a
sample of well-known filter-based feature selectors such as Information Gain, Chi-squared
and ReliefF [212], as shown in this chapter. Due to computational efficiency, filter-based
feature selection methods have been chosen over the wrapper-based models, and for this
reason wrapper-based methods have not been considered in this study. With the use of
GRFS, a 12% increment in the classification accuracy is obtained compared to using raw
data (the whole of the constructed feature vector), as well as a considerable reduction in
feature space dimension and computation time. To the best of our knowledge this method
has not been applied in previous melanoma studies.

Moreover, in our initial investigations, we have integrated the GRFS method with
a Correlation-based Feature Selection method (CFS) [213] and have proposed a two-stage
feature selection scheme. The proposed scheme uses the GRFS method at the first stage,
then applies the CFS method on the subset obtained from the first stage, at the sec-
ond stage. However, experimental results (as will be discussed in detail in Experiment
1, Section 4.6.1 of this chapter) show that adding the CFS method does not provide a
noticeable improvement to the classification performance over that obtained by using the
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GRFS method only. Hence, the GRFS method was shown to be sufficient for the optimal
and efficient feature selection. For this reason we have elected to use GRFS only as the
feature selection method, for the rest of the experiments (Experiments 2 and 3).

Classification is the final step in the diagnosis process, where the extracted features
are utilised to ascertain whether the lesion is cancerous or normal. The most common
classification methods that have been applied in computer-based melanoma recognition
systems [12] include Discriminate Analysis [171, 81, 113, 139, 173, 174, 175], Artificial
Neural Networks [169, 59, 94, 113, 139, 177], K-nearest Neighbourhood [58, 59, 175],
Support Vector Machine [12, 59, 60, 65, 113, 148, 181, 182], Decision Trees [12, 59, 81,
184, 185], Bayes Networks [12] and Logistic Regression [59, 172]. However some enhanced
versions of these classifiers have been reported in literature. These include Random Forest
(RF) [188], Logistic Model Tree (LMT) [189], and Hidden Naive Bayes (HNB) [1], which
have been utilised in melanoma diagnosis for the first time, in this study. We have also
applied the Support Vector Machine (SVM) classifier which turns out to be a very popular
classifier in existing melanoma diagnosis applications according to the literature [12].

To evaluate the accuracy of our diagnosis system, which is comprised of the three
phases of feature extraction, feature selection and classification, we have conducted a set
of four experiments; a flowchart of which is shown in Figures 4.8 and 4.9. As shown in
Experiment 3 (Section 4.6.5), the system is able to achieve the remarkable high result
of 93.21% accuracy, 90.90% sensitivity and 94.92% specificity and Area Under Curve
(AUC) of the Receiver Operating Characteristic (ROC) of 0.946. We have shown that the
proposed system as presented in Experiment 3 is among the best and in some cases superior
to other melanoma diagnosis systems that have been reported so far in the literature [12].
The proposed system encompasses most of the existing features proposed by other studies,
blends them with novel ones carefully extracted to best reflect the property of the lesion,
and outputs an optimal set of features which can accurately characterise any given lesion.
In summary, the main contributions of this chapter are summarised as follows:

1. The use of four level of wavelet decomposition, incorporating four colour channels,
as well as applying various statistical measurements and ratios on all the nodes of
the fully extended wavelet tree for texture-based feature extraction.

2. The use of time-series analysis in spatial and frequency domains and new geometrical
measures for border feature extraction.

3. Establishing that the Gain Ratio feature selection method can deliver substantial
improvement in the accuracy of the system.

4. Combining different types of features in an optimal way to achieve higher perfor-
mance for the diagnostic system.

The rest of the chapter is organised as follows. An overview of previous wavelet-based
texture analysis methods in dermoscopy images and the proposed texture-based feature
extraction method are provided in Section 5.1. The proposed geometry-based features
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and time series-based features are detailed in Sections 5.2 and 5.3, respectively. Section
5.4 details the proposed feature selection method. The applied classification algorithms
are discussed in Section 5.5. Experimental results and discussions are presented in Section
5.6. Section 5.7 provides a summary and concluding remarks.

4.1 Wavelet-based Texture Analysis in Dermoscopy Images

In clinical diagnostic approaches (e.g. ABCD rule of dermoscopy and pattern analysis)
dermatologists look into the visual differences within the lesion and also changes in the ap-
pearance of the lesion over the time. These visual characteristics can be captured through
texture analysis. Wavelet-based texture analysis provides a multiresolution analytical plat-
form which enables us to characterise a signal (an image) in multiple spatial/frequency
spaces. The multi-scale characteristics of wavelets can be very useful since dermoscopy
images are taken under different circumstances such as various image acquisition set-ups
(lighting, optical zooming, etc) and various skin colours.

The 2D wavelet transform has been widely applied in image processing-based biomed-
ical applications. Mellat discussed the application of wavelets in image coding, texture
discrimination and fractal analysis [214]. There exists two wavelet structures: (1) Recur-
sive or pyramid-structured wavelet transform [214] which decomposes a signal into a set
of frequency channels with narrower bandwidths in lower frequency channels, useful for
signals whose important information lies in low frequency components, (2) Tree-structured
wavelet analysis [215] which provides low, middle and high frequency decompositions which
is done by decomposing both approximate (low-frequency) and detail (high-frequency) co-
efficients as shown in Figure 4.1. In dermoscopy image analysis, the lower frequency
components reveal information about the general properties (shape) of the lesion, which is
clinically important, and the higher frequency decomposition provides information about
the textural detail and internal patterns of the lesion which is also significant in the di-
agnosis. Thus, the decomposition of all frequency channels are useful in this application,
and the tree-structured wavelet analysis can be more informative for classification of skin
lesions.

Figure 4.1: Tree-structured wavelet decomposition.
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Some applications of wavelet transform to melanoma classification have been re-
ported in the literature. Nimunkar et al. [171] applied the pyramid-structured wavelet
transform in order to differentiate melanoma from dysplastic nevi on a set of 28 images.
The luminance colour channel was decomposed into three levels and various ratios of the
energy, entropy, mean and variance of the wavelet coefficients, plus the mean and standard
deviation of the image intensity were measured to build up a vector of 34 features. Using
a statistical feature selection approach (unpaired t-test for normally distributed features
and Wilcoxon rank-sum test for non-normally distributed features), the feature vector
was ultimately narrowed down to five optimal features. The classification was done by
calculating the Mahanalobis distance between each feature for each image and the mean
of the melanoma data (which is the mean value of features of images that fall within the
melanoma class) and plotting the 2D scatter plot of the Mahanalobis distance values for
each pair of features. This led to calculate ten discrimination functions and generate the
respective ROC curves. Seven out of ten of the discrimination functions provided a true
positive of 93% with false positives between 0–21%.

The drawback observed in their analysis is having multiple discrimination functions,
each based on only two features, and lack of a discrimination function which takes into
account all the features simultaneously. Moreover, despite the interesting approach in
calculating various ratios of wavelet coefficients (which measures the spatial/frequency
differences within the lesion) proposed in the study, we believe that including only the
lower frequency components leads to missing significant diagnostic information which are
stored in the higher frequency channels.

Inspired by Chang and Ku’s method [215] with the tree-structured wavelet trans-
form for image classification, Patwardhan et al. [210] proposed an adaptive wavelet-based
tree-structured method to classify skin images. While Chang and Ku [215] utilised a fixed
threshold for the average energy ratio as the stopping criterion for the tree decomposi-
tion, Patwardhan et al. [210] applied the three ratios of average energy, maximum energy
and fractional energy ratios of the luminance image, to build up an initial feature vec-
tor of 231 features (three-level full tree decomposition). They, then applied a statistical
analysis where the mean, variance, histogram of the feature values for each of the target
classes (melanoma and dysplastic nevus) were used to select those features with bimodal
distribution. For the features with bimodal distribution (using population mode), energy
ratio thresholds were obtained for maximum separation between the two classes. These
thresholds were then used to generate wavelet-based tree-structured models, or so-called
signatures, for melanoma and dysplastic nevus. In the classification phase, images from a
test set were semantically compared to the two built models of the two classes, resulting
in a sensitivity of 90% and specificity of 90%. The training phase used 15 melanoma and
15 dysplastic nevus images, and test sets included 10 melanoma and 20 dysplastic cases
which we believe may not be statistically sufficient for such a model-based approach.

The two feature sets proposed in [171] and [210] were later combined by Walvick et
al. [169] and optimised using principal component analysis (over 33 images) to obtain an
optimal set of four features. The classification was performed on a set of 27 images using a
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back-propagation neural network, leading to a true positive rate of 100% and false positive
rate of 23.53% which was shown to be higher than each individual feature set reported
in [171] and [210]. We believe that the wavelet-based features proposed by Nimunkar et
al. [171] and Patwardhan et al. [210] can be combined in a more effective way than what
proposed by Walvick et al. [169]. As outlined in the following section, benefiting from
ideas of the both studies [171, 210], we incorporate various colour channels, statistical
measures and ratios to introduce a novel wavelet-based feature extraction approach that
yields higher classification accuracy than those reported in [171], [210] and [169].

4.1.1 Proposed Texture-based Features

In this study, we propose a new, comprehensive and highly effective feature extraction
method which combines different types of features; novel ones and a few adopted from
existing studies [171, 210, 169]. The texture-based feature extraction method employs
tree-structured wavelet decomposition. The novelty here lies in (i) the use of four-level
decompositions as opposed to three level used in the existing wavelet-based methods [171,
169, 210], (ii) the use of four colour channels of red, green, blue and luminance as opposed
to only luminance in existing studies, (iii) Applying various statistical measurements and
ratios on all the nodes of the wavelet-tree. It is worth mentioning as far as we can ascertain
no method has previously combined all three together as we have done in this study.

Figure 4.2: Schematic 4-level wavelet tree with nodes in circle.

The measures include energy (E), mean (M), standard deviation (Std), entropy (H),
average-energy (AvgE), skewness (S), kurtosis (K), and norm (N), expressed in Equa-
tions 4.1–4.8. Figure 4.2 displays a schematic illustration of a wavelet tree with nodes
marked by circles. For each colour channel, the measures are applied on the original im-
age (called level 0) and also on wavelet coefficients of each node (sub-image) of the wavelet
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tree. The wavelet tree has 340 nodes in total (4 nodes in the first level, 16 nodes in the
second level, 64 nodes in the third level and 256 nodes in the fourth level). The eight
measures therefore yield a total of 8× 341 features, per colour channel.
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where i = 0, 1, ..., 340 is an index of wavelet tree nodes starting sequentially from node n0

of colour channel 1 and ending at node n4.4.4.4 of colour channel 4 (colour channels: Red
= 1, Green = 2, Blue = 3, Luminance = 4 ). Xi is a Ji ×Ki matrix of the i-th node, X ′

i

is its transpose, xjk is its jk-th element, and eig(Xi) are its eigenvalues.

The ratios used in this study are maximum ratio (Rm), fractional ratio (Rf ) and
sub-level ratio (Rs), defined in Equations 4.9–4.11, respectively for a sample node n2.3. As
each decomposition sub-tree has four nodes (as illustrated in Figure 4.2), the maximum
ratio divides each node by the maximum node among the four. The fractional ratio divides
each node by the summation of the other three nodes. The sub-level ratio divides each
node of the tree by its parent node. These ratios are calculated for each of the above-
mentioned 8 measures, which will produce a total of 6120 = 8×765 (340 maximum ratios,
340 fractional ratios, 85 sub-level ratios) features.

Rm(n2.3) =
m(n2.3)

max(m(n2.1),m(n2.2),m(n2.3),m(n2.4))
(4.9)

Rf (n2.3) =
m(n2.3)

m(n2.1) +m(n2.2) +m(n2.3) +m(n2.4)
(4.10)
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Rs(n2.3) =
m(n2.3)

m(n2)
(4.11)

where n2.3 refers to node 2.3 and m(n2.1) refers to the measure (energy, entropy, etc.)
applied on the node.

Moreover, the feature ln(std+1) suggested by [171] and [169] has also been used. All
of these features were calculated for four colour channels of red, green, blue and luminance
(Equation 4.12) and a set of 35396 features is obtained.

luminance = (0.29×R) + (0.59×G) + (0.11×B) (4.12)

where R, G and B represent red, green and blue colour channels, respectively.

As outlined in the introduction this is the first time four colour channels with four
levels of wavelet decomposition have been used in melanoma application.

The features proposed in this section also account for colour information of the
lesion (in addition to the textural properties). The colour features, which include the
eight measures of energy, mean, standard deviation, entropy, average-energy, skewness,
kurtosis, and norm of the four colour channels red, green, blue and luminance of the
image, are measured by employing these eight measures on the node-0 (parent node) of
the wavelet tree, i.e., the original image.

4.2 Geometry-based Features in Dermoscopy Images

Border formation and geometric properties of the shape of the lesion provide significant
diagnostic information in the detection of melanoma. The main prerequisite for extracting
border features is the segmentation or border detection step, where the lesion is separated
from the surrounding normal skin. The output of the segmentation step is the segmen-
tation plane, which is a black-white image. In this study, after forming the lesion pixels
into a 2D matrix and the corresponding boundary pixels into a vector, the following set
of 11 geometry-based features are extracted from each dermoscopy image:

Area (A): Number of pixels of the lesion.

Perimeter (P): Number of pixels along the detected boundary.

Greatest Diameter (GD): The length of the line which connects the two farthest
boundary points and passes across the lesion centroid (C), which is given by:

(xc, yc) =

(∑n
i=1 xi
n

,

∑n
i=1 yi
n

)

(4.13)

where n is the number of pixels inside the lesion, and (xi, yi) are the coordinates of the
i-th lesion pixel.
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Shortest Diameter (SD): The length of the line connecting the two closest boundary
points and passes across the lesion centroid.

Circularity Index (CRC): It explains the shape uniformity.

CRC =
4Aπ

P 2
(4.14)

Irregularity Index A (IrA):

IrA =
P

A
(4.15)

Irregularity Index B (IrB):

IrB =
P

GD
(4.16)

Irregularity Index C (IrC):

IrC = P × (
1

SD
− 1

GD
) (4.17)

Irregularity Index D (IrD):

IrD = GD − SD (4.18)

Major and Minor Asymmetry Indices: These indices are defined as the area differ-
ence between the two halves of the lesion, taken the principal axes (obtained by Equa-
tion 4.19) as the major symmetry axis, and its 90 degree rotation as the minor axes of the
symmetry.

tan 2θ =
2
∑n

i=1 xiyi
∑n

i=1 x
2
i −

∑n
i=1 y

2
i

(4.19)

where θ is the orientation of the principal axis. Figure 4.3 shows a sample dermoscopy
image with obtained principal axes (major and minor axes of symmetry). After calculating
the major and minor symmetry axes, the lesion is folded along the axes and the differences
between the two halves of the lesion are calculated by applying the XOR operation on the
binary segmentation plane. The asymmetry index is measured by:

Asymmetry Index =
AD

A
× 100 (4.20)

where AD denotes the difference between the two halves. Figure 4.4 shows a dermoscopy
image with the obtained major principal axes (symmetry axes), and the process of calcu-
lating the major asymmetry index.
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Figure 4.3: Major and minor symmetry axes for sample dermoscopy images.

Figure 4.4: Calculating the major symmetry index: (a) major symmetry axis, (b) upper
half, (c) lower half, (d) folded upper half, (e) difference.

4.3 Time-Series Analysis in Dermoscopy Images

A time-series is an ordered sequence of values or observations x that are measured and
recorded at successive equally spaced time intervals t [216]. Time-series has been widely
applied in statistics, signal processing, data mining, mathematical finance and economy.
To the best of our knowledge they have not been previously applied to the application of
melanoma recognition. In this study, we propose to build the time series by traversing
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Figure 4.5: Time-series for sample dermoscopy images.

the boundary of the lesion (starting from an arbitrary pixel on the lesion boundary1),
and calculating the distance between each border pixel and the centroid of the lesion, as
expressed by Equation 4.21.

TS = d1, d2, ..., dP (4.21)

where P is the number of pixels along the boundary (previously defined as perimeter of
the lesion) and

dj =
√

(xj − xc)2 + (yj − yc)2 (4.22)

where (xj , yj) and (xc, yc) are the coordinates of the j -th boundary pixel and lesion cen-
troid, respectively. Figure 4.5 shows two dermoscopy images and the corresponding time-
series curve.

1The choice of the starting point is not our concern because the measures applied on the resultant
time-series, including histogram and wavelet analysis, are rotation invariant.
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4.3.1 Proposed Time-series Features

The obtained time series is analysed in both spatial and frequency domains. The former is
done by calculating the histogram of the time series (using 10 bins), and the latter is per-
formed via applying pyramid-structured wavelet decomposition, where the signal (the time
series) is decomposed into an approximate (low-frequency) and a detail (high-frequency)
component, and as in the pyramid-structured wavelet transform, the approximate compo-
nent is used for the next level of decomposition. The wavelet decomposition was performed
up to the third level, after which the time-series loses its time dependency and does not
carry useful information regarding the border, for the image set under study. A set of six
statistical measures of Energy, Mean, Standard deviation, Skewness, Kurtosis and Norm
(defined by Equations 4.1–4.8) is then applied on the resultant eight signals of time series;
histogram of time series, and the three pairs of approximate and detail components of the
wavelet transform, to produce a vector of 48 features.

4.4 Feature Selection

Feature selection is the process of finding an optimal subset of features which provides the
highest discriminating power when employed by the classifier. Exclusion of less significant
features in the problem space can help the classifier by removing the noisy evidence in the
training stage. Feature selection can also reduce the number of features to be considered
in the problem space, thus reducing computational cost.

Feature selection algorithms can be categorised into three classes [3]: (1) the filter
model, which uses the general characteristics of the data to evaluate the features and
selects the optimal feature subset(s) without using any classification/learning algorithm,
(2) the wrapper model, which uses a predetermined learning algorithm and searches for
features which improve the learning performance, (3) the hybrid model which combines
the two approaches. The filter model feature selectors are less computationally expensive
than wrapper-based approaches. In this study, due to the high dimension of the feature
vector, we have adopted the filter-based model, using the two measures of Gain Ratio and
Correlation, which are described in the following.

4.4.1 Gain Ratio-based Feature Selection

To perform feature selection, we have used the Gain Ratio-based feature selection method.
It is an entropy-based feature valuator which assesses the worth of an attribute (feature)
by measuring its Gain Ratio (GR) with respect to the class (Equation 4.23). The GR is
a measure of goodness of the feature and illustrates how precisely the feature predicts the
class label. The Ranker search method [217] is used to rank and sort features according
to their individual evaluated Gain Ratio. In GRFS, feature selection is done by specifying
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a cut-off threshold of the GR, below which features are discarded by the Ranker.

Gain−Ratio(C,A) =
H(C)−H(C|A)

H(A)
(4.23)

where A is the attribute or feature, C is the class label, and H specifies the entropy.

4.4.2 Correlation-based Feature Selection

We have also used CFS method which evaluates the worth of a subset of features by consid-
ering the individual predictive ability of each feature along with the degree of redundancy
between them. This feature evaluator aims to select the subset of features that are highly
correlated with the class while having low inter-correlation. The correlation between the
two attribute (features) A and B are calculated using the Symmetric Uncertainty mea-
sure [217]:

Uncertainty(A,B) = 2× H(A) +H(B)−H(A,B)

H(A) +H(B)
(4.24)

where H (entropy) is regarded as a measure of uncertainty about a random variable.
H(A,B) is the joint entropy. It is worth to mention that the joint entropy of a set of
variables is greater than or equal to all of the individual entropies of the variables in the
set 4.25. Also, the joint entropy of a set of variables is less than or equal to the sum of
the individual entropies of the variables in the set 4.26.

H(A,B) ≥ max{H(A), H(B)} (4.25)

H(A,B) ≤ H(A) +H(B) (4.26)

The Best First method [218] has been applied to search for the best correlated features. It
searches the feature space using a greedy hill-climbing algorithm with backtracking, which
can either start with the empty set of features (forward direction), or with the full set of
features (backward direction), or at any point, and search in both directions.

In our initial investigations (see Section 4.6.1 for details), we have proposed a two-
stage feature selection scheme, which uses the GRFS method in the first stage, and applies
the CFS method on the subset obtained from the first stage, in the second stage. However,
experimental results show that adding the CFS method does not provide a noticeable
improvement to the classification performance over that obtained by using the GRFS
method alone. Therefore, we have elected to use GRFS only as the feature selection
method for all experiments conducted in this study, except for the first experiment as
explained above.

Our choice of the GRFS over other compatible filter-based methods2 is vindicated
by a comparison study where its performance is compared with three others; namely,
Information Gain, Chi-squared and ReliefF [212]. In this comparison study the entire

2Due to computation efficiency, filter-based feature selection methods were chosen and the wrapper-
based model has not been considered in this study.
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feature vector comprising 35455 features (including 35396 texture, 11 geometry, and 48
time-series features) is ranked individually by the four feature selectors. Then the first
100 highest ranked features by each selector are fed individually into the Random Forest
classifier and the accuracy is computed. For all four feature selectors the optimal number
of trees of the Random Forest is determined as 6. The results are shown in Figure 4.6,
which demonstrates the superiority of the GRFS over the other three.
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Figure 4.6: Comparying various filter-based feature selection methods.

In the experimental results (Section 4.6.5) we have shown that applying the GRFS
method results in significant improvement in the system performance, and a great reduc-
tion in the dimension of the feature vector as well as the required time for classification.

4.5 Classification

In this study four different classes of classifier are applied: Support Vector Machine [219]
with SMO implementation [220], Random Forest [188], Logistic Model Tree [189] and
Hidden Naive Bayes [1]. A brief introduction about each classifier is provided in the
following.
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4.5.1 Support Vector Machine

Due to its strong theoretical foundation and splendid practical performance, Support Vec-
tor Machines have recently drawn a great attention in the machine learning community [60]
and have been applied to a versatile range of biomedical applications and computer-based
recognition systems of various diseases [221]; namely, oral cancer in optical images, polyps
in CT colonography, microclassification detection in mammograms, and more particularly
melanoma detection in dermoscopy images [12, 60]. We have also adopted this classifier
in our study.

SVMs as proposed by Vapnik are a machine learning paradigm based on statistical
learning theory [219]. SVMs perform classification by constructing a set of N-dimensional
hyper-planes that optimally separate the given data into classes, using the largest possible
margin. Margin is the distance between optimal hyperplane and the nearest training data
points of any class, and the larger the margin the lower the generalisation error of the
classifier.

The original optimal hyperplane algorithm suggested by Vapnik in 1963 was a linear
classifier. For solving linearly non-separable problems, Boser, Guyon and Vapnik in 1992
proposed an approach to create nonlinear classifiers by applying kernel functions [222],
which allows the algorithm to fit the maximum-margin hyperplane in a transformed fea-
ture space. Some common kernels include Linear, Polynomial, Gaussian or Radial Basis
Function (RBF), and Sigmoid. In this study, the RBF kernel is adopted for several rea-
sons [60]: (i) the Linear kernel is not able to handle nonlinearly separable classification
problems, and it is in fact a special form of the RBF kernel [223]; (ii) computation of the
RBF kernel is more stable than that of the Polynomial kernel, which may return values of
zero or infinity in certain cases; (iii) the Sigmoid kernel is only valid (i.e., satisfies Mercer’s
conditions [224]) for certain parameters; (iv) the RBF kernel (Equation 4.39) has fewer
parameters (γ) to be calculated when compared to the Polynomial (γ,r,d) and Sigmoid
kernels (γ,r).

Training a support vector machine requires the solution of a very large Quadratic
Programming (QP) optimisation problem. We apply the Sequential Minimal Optimisation
(SMO) algorithm [220] for solving this optimisation problem. SMO breaks this large
QP problem into a series of smallest possible QP problems. These small QP problems
are solved analytically, consuming less time, and the amount of memory required scales
linearly, which allows SMO to handle very large training sets.

SVM Theoretical Background [224, 220]:

Consider a given set D of n training data points:

D =
{

(xi, yi)|xi ∈ <d, yi ∈ {−1,+1}, i = 1, 2, ..., n
}

(4.27)

where xi indicates a point in d -dimensional space (d -dimensional vector), and yi refers to
a two-class label. Suppose we have a hyperplane that separates the positive examples from
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the negative ones. The points x on such hyperplane would satisfy the following condition:

w.x+ b = 0 (4.28)

where w is the normal vector to the hyperplane and dot(.) is the dot products of the two

vectors. The parameter |b|
||w|| is the perpendicular distance (offset) from the hyperplane

to the origin along the normal vector (||w|| is the Euclidean norm of w). If we take two
such hyperplanes between the positive and negative samples, the SVM task is to maximise
the distance (margin) between them. Assuming d+ and d− to be the shortest distance
from the hyperplanes to the closest positive and negative samples, the margin is defined
as d+ + d−. For a linearly separable set of samples, the training data would satisfy the
following constraints:

xi.w + b ≥ +1 for yi = +1 (4.29)

xi.w + b ≤ −1 for yi = −1 (4.30)

which can be combined to yield:

yi(xi.w + b)− 1 ≥ 0 ∀i (4.31)

The samples satisfying Equation 4.29 lie on the hyperplane H1 : xi.w+b = 1 with distance
|1−b|
||w|| from the origin, and those satisfying Equation 4.29 are a member of hyperplane

H2 : xi.w + b = −1 with distance |−1−b|
||w|| . Thus, d+ = d− = 1

||w|| and the margin is 2
||w|| .

In order to find the pair of hyperplanes with the maximum margin, ||w||2 is minimised,
subject to constraints given in Equation 4.31 (the optimisation problem). The training
samples satisfying those are called support vectors.

Using the following Lagrangian formulation, the optimisation problem is converted
into a dual form which is a QP problem:

Llinear =
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

yiyjαiαjxixj (4.32)

subject to the inequality constraints:

αi ≥ 0 ∀i (4.33)

and one linear equality constraint:

n
∑

i=1

αiyi = 0 (4.34)

For non-linear separable data, positive slack variables ξi, (i = 1, 2, ..., n) are added to the
constraints. Also the user chosen parameter C may be placed as an upper bound on the
parameter α to act as a penalty parameter associated with classification errors. A larger
C value corresponding to a higher penalty for errors (0 ≤ αi ≤ C).

yi(xi.w + b) ≥ 1− ξi , ξ ≥ 0∀i (4.35)
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Moreover, a general kernel function K replaces the dot products:

Lkernel =
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

yiyjαiαjK(xi, xj) (4.36)

subject to

0 ≤ αi ≤ C (4.37)

and
n
∑

i=1

αiyi = 0 (4.38)

The RBF kernel is given by:

K(xi, xj) = e
−γ||xi−xj ||

2

2σ2 , γ > 0 (4.39)

Detailed explanation of the algorithm can be found in [224, 220].

4.5.2 Random Forest

Random forest is an ensemble classifier which grows a number of decision trees. To classify
an unknown object (image, in our application), the constructed feature vector is sent down
every tree in the forest. Each individual tree independently classifies the given feature
vector (each tree votes for a class) and the forest chooses the classification result with the
most votes, over all the trees in the forest. Thus, the RF’s output is the class label which
is the statistical mode of the class’s output by individual trees [188].

Random Forest is an appealing choice for applications with noisy data, datasets
containing many missing values, when some of the attributes are categorical or semi-
continuous, and also for high-dimensional feature vectors with highly correlated features
(the situation which often occurs in bioinformatics and medical diagnosis applications [225]).
RF is very robust with respect to noise, runs efficiently on large data bases and can handle
thousands of input variables [188]. Each tree is grown as follows [188]:

(1) A random sample is taken from the data set (including N observations) with
replacement. This process is called bagging. Some observations will be selected more than
once, and others will not be selected. On average, about 2/3 of the data will be selected
by the sampling. The remaining 1/3 of the data are called the Out Of Bag (OOB). A new
random selection of data is performed for each tree constructed.

(2) Using the data selected in step 1, a decision tree is constructed. The tree is built
to the maximum size, with no pruning. As the tree is built, only a subset of the total set
of predictor variables (features) are considered as possible splitters for each node; i.e., if
there are M features, a number m < M is specified such that at each node, m features
are selected at random out of the M and the best split on these m features is used to split
the node. The value of m is held constant during the forest growing.
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(3) Steps 1 and 2 are repeated for a large number of times to construct a forest of
trees.

(4) In order to score a given data, the data is run through each tree in the forest
and the predicted class label (i.e., terminal node) that the data ends up in, is recorded.
For a regression analysis, the average score predicted by all of the trees is calculated. For
a classification analysis, the predicted class for each tree is considered as votes, and the
class with the most votes is used as the predicted class label for the data.

Random forests involve two stochastic (randomising) elements: the selection of data
used as input for each tree, and the set of predictor variables (features) considered as
candidates for each node split. A remarkable property of RF is that they always converge
so that overfitting is not a problem [188]. Overfitting is a problem in large, single-tree
models where the model begins to fit noise in the data. When such a model is applied
to data not used to build the model, the model does not perform well (i.e., it does not
generalise well). To avoid this problem, single-tree models must be pruned to the optimal
size. In nearly all cases, decision tree forests do not have a problem with overfitting, and
there is no need to prune the trees in the forest. Generally, the more trees in the forest,
the better the fit. More information of the method can be found in [188].

4.5.3 Logistic Model Tree

Logistic Model Trees combine logistic regression and tree induction to perform supervised
learning. LMTs are classification trees with logistic regression functions at the leaves.
Landwehr et al. [189] proposed this approach for building logistic models, using a CART-
based algorithm [226] for pruning the tree. It is shown [189] that LMT is more accurate
than C4.5 decision trees3 [227] and standalone logistic regression on real-world datasets,
and even competitive with boosted C4.5 trees.

As mentioned, a Logistic Model Tree basically consists of a standard decision tree
structure with logistic regression functions at the leaves. Hence, similar to ordinary deci-
sion trees, a test on one of the attributes (features) is associated with every inner node.
For a nominal attribute with k values, the node has k child nodes, and instances are
sorted down one of the k branches depending on their value of the attribute. For numeric
attributes, the node has two child nodes and the test consists of comparing the attribute
value to a threshold: an instance is sorted down the left branch if its value for that at-
tribute is smaller than the threshold and sorted down the right branch otherwise. LMT
consists of a tree structure that is made up of a set of inner or non-terminal nodes N and
a set of leaves or terminal nodes T . Suppose S denotes the whole instance space, spanned
by all attributes that are present in the data. Then the tree structure gives a disjoint
subdivision of S into regions St, and every region is represented by a leaf in the tree:

S =
⋃

t∈T

St , St ∩ St′ = φ for t 6= t′ (4.40)

3C4.5, developed by Ross Quinlan, is an algorithm used to generate a decision tree. It is an extension
of Quinlan’s earlier ID3 algorithm which can be used for classification [227].
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Unlike in ordinary decision trees, the leaves t ∈ T have an associated logistic regression
function ft instead of just a class label. If V is the subset of all attributes present in
the data, then the regression function ft is a subset of V, i.e., the regression function ft,
Vt ⊆ V (where we assume that nominal attributes have been binarised for the purpose of
regression), and models the class membership probabilities as:

Pr(G = j|X = x) =
eFj(x)

∑J
k=1 e

Fk(x)
(4.41)

where

Fj(x) = αj
0 +

∑

v∈Vt

αj
v.v (4.42)

or, equivalently,

Fj(x) = αj
0 +

m
∑

k=1

αj
vk.vk (4.43)

If αj
vk = 0 for vk /∈ Vt. Model represented by LMT is then given by:

f(x) =
∑

t∈T

ft(x).I (x ∈ St) (4.44)

where

I (x ∈ St) =

{

1 if x ∈ St

0 otherwise
(4.45)

It is worth to remember that both standalone logistic regression and ordinary decision
trees are special cases of LMT, the first is a logistic model tree pruned back to the root,
the second a tree in which Vt = φ for all t ∈ T . Further details of the method may be
found in [189].

4.5.4 Hidden Naive Bayes [1, 2]

Hidden Naive Bayes is a promising attempt to improve the performance of Naive Bayes
method. The conditional independence assumption of Naive Bayes, which ignores at-
tribute dependencies, is rarely true in real-world applications. On the other hand, al-
though a Bayesian network can represent arbitrary attribute dependencies, learning an
optimal structure of a Bayesian network classifier is an NP4-hard problem [228] and ex-
tremely time-consuming. Restricting the structures of Bayesian networks, similar to what
is done in TAN (extended Tree-like Naive Bayes) [229], results in acceptable computa-
tional complexity and a significant improvement over naive Bayes. However, the main
issue in learning TAN is that only one attribute parent is allowed for each attribute and
the method disregards influences from other attributes. In addition, in a TAN learning

4non-deterministic polynomial-time
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Figure 4.7: The structure of HNB [2].

algorithm, structure learning still exists. Yet, HNB aims to represent attribute dependen-
cies to some proper degree, without structure learning. This is done by creating a hidden
parent for each feature (attribute), which combines the influences of all other features
using conditional mutual information. The conditional mutual information is defined as:

IP (X;Y |Z) =
∑

x,y,z

P (x, y, z)log
P (x, y|z)

P (x|z)P (y|z) (4.46)

where x, y and z are the values of variables X, Y and Z respectively.

Figure 4.7 illustrates the structure of an HNB [2], where C, the class node, is the
parent of all attribute nodes. Each attribute Ai has a hidden parent Ahpi (i = 1, 2, ..., n)
shown by a dashed circle. The joint distribution represented by an HNB is defined as:

P (A1, A2, ..., An, C) = P (C)
n
∏

i=1

P (Ai|Ahpi , C) (4.47)

where

P (Ai|Ahpi , C) =
n
∑

j=1,j 6=i

Wij × P (Ai|Aj , C) (4.48)

The HNB classifier on an example E = (a1, ..., an) is given by:

c(E) = argmax
c∈C

P (c)
n
∏

i=1

P (ai|ahpi , c) (4.49)

where

P (ai|ahpi , c) =
n
∑

j=1,j 6=i

Wij × P (ai|aj , c) (4.50)
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The hidden parent Ahpi for Ai is in fact a mixture of the weighted influences from all
other attributes. In order to determine the weights, the conditional mutual information
between two attributes Ai and Aj is considered, defined as follows:

Wij =
IP (Ai;Aj |C)

∑n
j=1,j 6=i IP (Aj ;Aj |C)

(4.51)

where IP (Aj ;Aj |C) is the conditional mutual information given by:

IP (Ai;Aj |C) =
∑

ai,aj ,c

P (ai, aj , c) log
P (ai, aj |c)

p(ai|c)P (aj |c)
(4.52)

Further details of the method may be found in [2].

4.6 Experimental Results

In this section, a series of six different experiments is carried out to evaluate the optimal
set of features, the most effective feature selection approach and the best classification
method for classification of dermoscopy images. Three image sets have been used in this
study; Image-set1 is used in the first experiment, Image-set2 is utilised in the next three
experiments (Experiments 2a, 2b and 2c), and Image-set3 is used in last two Experiments
(3a and 3b). Table 4.1 shows the distribution of images in each image set.

Table 4.1: Image sets used in the study; M : Malignant, B : Benign.
Train set Validation set Test set Experiment

Image-set1: 96 M, 109 B 48 M, 55 B - 48 M, 54 B 1

Image-set2: 88 M, 109 B 48 M, 55 B - 40 M, 54 B 2a, 2b, 2c

Image-set3: 114 M, 175 B 40 M, 59 B 30 M, 57 B 44 M, 59 B 3a, 3b

The first experiment (Experiment 1) is designed to investigate the effectiveness of
(i) the proposed wavelet-based texture features, (ii) two-stage feature selection method
based on Gain Ration and Correlation, (iii) the four classifiers SVM, RF, LMT and HNB,
(iv) the optimal texture features as opposed to some existing texture features utilised in
melanoma diagnosis applications.

The purpose of next three experiments (Experiments 2a, 2b and 2c) is to compare
the classification performance resulting from the three sets of features extracted from
(i) texture analysis, (ii) texture and geometrical measurements analysis, and (iii) texture,
geometrical and time-series. Figure 4.8 illustrates the flowchart of these three experiments.

The last two experiments (Experiment 4a and 4b as labelled in Figure 4.9) involve
two streams of feature optimisation to assess the performance of the developed diagnostic
system in an unbiased way.
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Figure 4.8: Experiments flowchart: investigating the effectiveness of three sets of features
extracted from: texture analysis (Experiment 2a), texture and geometrical measurements
analysis (Experiment 2b), and (iii) texture, geometrical and time-series (Experiment 2c).

Figure 4.9: Experiments flowchart: Performance evaluation of the proposed computer-
aided Diagnosis of melanoma including the two streams of optimisation.
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4.6.1 Experiment 1: Analysing Texture Features

The purpose of this experiment is to study the effectiveness of the texture-based features
proposed in Section 4.1.1 in the classification of melanoma. An image set of 205 digital
dermoscopy images (Image-Set1 from Table 4.1) obtained from the Interactive Atlas of
Dermoscopy [29], is applied in this experiment. These were JPEG images with a resolution
of 768 × 512 pixels. The diagnosis distribution include 96 melanoma and 109 benign (65
Clark nevi, 14 blue nevi, 30 Reed/Spitz nevi), where the histopathological results have
been determined by biopsy or excision.

Preprocessing

In this experiment, the lesion borders are obtained manually, according to practice used
by dermatologists. Moreover, a rectangle frame enclosing the lesion with horizontal and
vertical sides is set around the lesion and the rest is cropped. Also, within this frame,
pixels not belonging to the lesion are set to black. This process is done to minimise the
impact of background skin on the analysis and maximise the focus on lesion pixels.

Feature Extraction and Feature Selection

In order to determine the most significant colour and texture features for classification of
melanoma, we have designated half of the images as train set (the first row of Table 4.1)
to apply the feature selection. The texture-based feature extraction method (explained
in Section 4.1.1) is applied to images of the train set and the corresponding feature vec-
tors are constructed. MATLAB Daubechies-3 wavelet function is used for the wavelet
decomposition.

For selecting the optimal features a two-stage approach is used; at the first stage,
the GRFS method is applied on the constructed feature vectors, resulting in various Gain
Ratio values or evaluation rank. We consider these values as threshold; each corresponds
to a certain subset of texture features. Figure 4.10 shows the number of features selected
by the Gain-ratio feature selection method, at different feature evaluation ranks (thresh-
olds). Figure 4.11 shows the obtained accuracy and the required time for building the
classification model at different feature evaluation ranks (set as threshold for the Ranker
search method) using the SVM classifier with RBF kernel (gamma=0.1). As illustrated in
the figure, by reducing the number of features the accuracy is increased and then decreased
after a certain threshold; the so-called peak phenomenon [230]. Therefore, the process of
feature selection or optimisation is to find the optimal threshold. As expected and also
shown in Figure 4.11 the time required for performing classification is proportional to the
dimension of the optimal feature vector and thus decreases considerably as a result of the
feature selection process.

By visual inspection, we have chosen eight thresholds and the eight resultant feature
subsets, as shown in Table 4.3. At the second stage of feature selection correlation-based
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Figure 4.10: Number of features selected by Gain Ratio feature selection method at dif-
ferent thresholds.

feature evaluation along with best-first search method in forward and backward directions
(explained in Section 4.4.2) are applied on the eight subsets resulted from the first stage,
yielding 16 feature configurations, shown in Table 4.4.

Classification

To test the effectiveness of the feature subsets selected in the previous step, we have
applied the four classifiers of SVM, RF, MLT and HNB described in Section 4.5, using the
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Figure 4.11: Obtained accuracy and required time for building the classification model for
different thresholds using SVM classifier with RBF kernel.

corresponding parameter range shown in Table 4.2, on the test set (See the first row of
Table 4.1); parameters outside the indicated regions did not produce useful results. In the
classification experiments, the highest accuracy obtained by each classifier is used as the
measure of its performance. The Weka data mining toolkit [217, 231] has been utilised in
this study. Having the two independent image sets for feature selection and classification
removes any bias from the feature subsets used for classification.

Table 4.2: Parameters setting for the classifiers
Classifier Parameter range

Support Vector Machine (RBF) Gamma = [0.001, 0.5]

Random Forest number of trees = [2, 200]

Logistic Model Tree weightTrimBeta = [0, 0.9]

Hidden Naive Bayes No parameters

Table 4.3 shows the 10-fold cross validation [199] of performance (accuracy and
AUC value) of different classifiers on the test set, using the eight feature configurations
resulting from the first stage of feature selection on the train set. The “T” column shows
the ranking threshold (Gain Ratio value) for including the features in the subset and
column “N” shows the number of features. Table 4.4 shows the 10-fold cross validation
of performance (accuracy and AUC value) of the four classifiers on the test set, using the
16 feature configurations resulting from the second stage of feature selection on the train
set. The “D” column refers to the direction of the best-first method, and F and B show
the forward and backward directions, respectively. According to Tables 4.3 and 4.4,
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Table 4.3: 10-fold cross validation of performance (accuracy and ROC area) of different
classifiers on the test set, using the 8 feature configurations resulting from the first stage
of feature selection on the train set.

Conf. T N SVM RF LMT HNB

1 0.30 451 86.27, 0.862 86.27, 0.917 88.24, 0.918 86.27 , 0.896

2 0.31 299 86.27, 0.862 86.27, 0.922 82.35, 0.886 86.27 , 0.892

3 0.32 217 86.27, 0.862 85.29, 0.923 86.27, 0.908 84.31 , 0.91

4 0.33 151 86.27, 0.862 85.29, 0.917 83.33, 0.902 85.91,0.907

5 0.34 93 85.29, 0.853 86.27, 0.921 87.25, 0.917 86.27, 0.921

6 0.35 48 85.29, 0.852 85.29, 0.901 86.27, 0.871 85.29, 0.885

7 0.36 25 84.31, 0.843 85.29, 0.897 83.33, 0.865 86.27, 0.878

8 0.37 13 86.27, 0.862 87.25, 0.893 84.31, 0.891 82.35 , 0.87

Table 4.4: 10-fold cross validation of performance (accuracy and ROC area) of different
classifiers on the test set, using the 16 feature configurations resulting from the second
stage of feature selection on train set.
Conf. Thrsh D N SVM RF LMT HNB

9 0.30 F 28 85.29 , 0.852 81.37 , 0.894 81.37 , 0.88 85.29, 0.899

10 0.30 B 27 85.29 , 0.852 82.35 , 0.897 81.37 , 0.877 83.33 , 0.888

11 0.31 F 33 85.29 , 0.852 82.35 , 0.893 80.39 , 0.843 85.29 , 0.893

12 0.31 B 25 84.31 , 0.843 80.39 , 0.875 82.35 , 0.89 84.31 , 0.883

13 0.32 F 29 84.31 , 0.844 82.35 , 0.896 82.35 , 0.877 86.27 , 0.896

14 0.32 B 29 85.29 , 0.854 83.33 , 0.902 80.39 , 0.878 84.31 , 0.898

15 0.33 F 29 84.31 , 0.843 85.29 , 0.906 84.31 , 0.892 84.31 , 0.9

16 0.33 B 29 85.29 , 0.853 85.29 , 0.898 81.37 , 0.88 84.31 , 0.901

17 0.34 F 17 82.35 , 0.822 84.31 , 0.9 82.35 , 0.866 83.33 , 0.907

18 0.34 B 23 85.29 , 0.853 85.29 , 0.914 82.35 , 0.868 83.33 , 0.907

19 0.35 F 21 84.31 , 0.844 86.27 , 0.895 85.29 , 0.907 82.35 , 0.881

20 0.35 B 20 85.29 , 0.854 85.29 , 0.891 86.27 , 0.906 81.37 , 0.876

21 0.36 F 8 86.27 , 0.863 86.27, 0.903 83.33 , 0.885 82.35 , 0.874

22 0.36 B 8 86.27 , 0.863 86.27 , 0.894 81.37, 0.87 82.35 , 0.875

23 0.37 F 6 80.39 , 0.803 83.33 , 0.893 85.29 , 0.887 82.35 , 0.87

24 0.37 B 6 80.39 , 0.803 83.33 , 0.902 85.29 , 0.881 82.35 , 0.87

the highest accuracy (88.24%) and AUC value (0.918) are obtained by the first feature
configuration, i.e., applying the GRFS method at the threshold of 0.3 which results in 451
features, when classified by LMT. This is followed by 5-th and 8-th configurations, where
the GRFS method was used with thresholds of 0.34 (using the LMT classifier) and 0.37
(using the RF classifier) resulting in 93 and 13 optimal features. Both feature sets obtain
an accuracy of 87.25%. However, the AUC value for 93-element subset is 0.917, and 0.893
for 13-element feature set.
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Multiple feature configurations; e.g. 2, 3, 4, 6, 7, 19, 20, 21 and 22 exhibit an
accuracy of 86.27%, among which 21 and 22 have the smallest number of features, i.e.,
eight optimal features. The decision of which configuration is best to use is a trade-
off between having a more accurate classification decision and the expense of increased
complexity and computational cost.

Table 4.5 shows the 13 optimal features selected by the 8-th feature configuration,
which resulted in the accuracy of 87.25%. As indicated in Table 4.5, certain measures and
nodes appear more frequently in the optimal feature subset suggested by this configuration,
such as the kurtosis and average-energy measures, and 4.3.4.4 and 4.1.4 nodes of the
wavelet tree. Moreover, 60% of the optimal features happen to lie in the fourth level of
the wavelet decomposition. In this feature configuration, the Luminance channel is the
dominant one, following by Red. Blue and Green each have two occurrences.

Table 4.5: The 13 optimal features selected by the 8-th feature configuration, resulted in
the accuracy of 87.25%.

Measure colour Channel Tree Node

Kurtosis Red 4.3.4.4

Kurtosis Red 2.4.1

Kurtosis Luminance 4.3.4.4

Kurtosis Green 4.3.4.4

Kurtosis Blue 4.1.4

Average-energy Luminance 3.2.1.3

Kurtosis Green 2.2.4

Average-energy Luminance 4.1.4

Average-energy Luminance 4.1.4.4

Average-energy Red 4.1.4

Average-energy Blue 4.1.4.4

Standard deviation Luminance 4.2.4.1

Engergy Luminance 4.2.4.1

Comparison with others methods

The proposed feature extraction method has been compared with three other wavelet-
based melanoma classification methods proposed by Nimukar et al. [171], Patwardhan et
al. [210] and Walvick et al. [169]. In order to make this comparison we have applied the
suggested feature sets by [171], [210] and [169] on our test set of 102 images (the first row
of Table 4.1). Table 4.6 shows the classification accuracy and obtained AUC value of our
best three feature configurations along with the result obtained by the above-mentioned
methods. The parameters of the classifiers have been tuned in a way that the highest
performance for the given feature set is gained. According to the table, our proposed
method (with three different feature configurations) outperforms the other three wavelet-
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based methods. However, the best performance among the three other methods is obtained
by Walvick et al. [169] with the accuracy of 86.27% and AUC value of 0.901 when the
RF classifier is used. It is followed by Nimukar et al. [171] with the highest accuracy of
85.29% and Patwardhan [210] ’s methods come last.

Table 4.6: Comparative study: 10-fold cross validation of performance (accuracy and AUC
value) of different classifiers on test set, using features proposed by [171], [210] and [169],
and our best three feature configurations.
Method N SVM RF LMT HNB

configuration 1 451 86.27, 0.862 86.27, 0.917 88.24, 0.918 86.27 , 0.896

configuration 5 93 85.29, 0.853 86.27, 0.921 87.25, 0.917 86.27, 0. 921

configuration 8 13 86.27, 0.862 87.25, 0.893 84.31, 0.891 82.35 , 0.87

Nimukar [171] 5 83.33, 0.834 85.29 , 0.91 85.29 , 0.879 82.35 , 0.81

Patwardhan [210] 5 52.94, 0.5 62.74, 0.623 62.74, 0.692 52.94, 0.507

Walvick [169] 4 82.35, 0.822 86.27, 0.901 82.35, 0.904 79.41, 0.759
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Figure 4.12: Accuracy of various feature configurations proposed by the proposed
texture-based feature configurations as opposed to three other feature extraction methods
by [171], [210] and [169].

Figure 4.12 shows the obtained accuracies of various feature configurations pro-
posed by our method as opposed to other three feature extraction methods by [171], [210]
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and [169]. These accuracies are the highest of all four classifiers (SVM, HNB, LMT and
RF) for each feature extraction/selection method. As shown in the figure, our method
outperforms the other three wavelet-based methods.

In the following we further extend the feature vector and evaluate the usefulness
of border-based features for classification of melanoma. As illustrated in Figure 4.8, the
purpose of next three experiments (Experiments 2a, 2b and 2c) is to compare the classi-
fication performance resulting from the three sets of features extracted from (i) texture
analysis, (ii) texture and geometrical measurements analysis, and (iii) texture, geometrical
and time-series. According to the experimental results obtained in Experiment 1, adding
the CFS method does not provide a noticeable improvement to the classification perfor-
mance over that obtained by using the GRFS method only. Hence, we will use a one-stage
feature selection method and will apply the Gain Ration feature selection method in the
following experiments of this chapter.

4.6.2 Experiment 2a: Optimal Texture Features

This experiment which investigates the effect of texture-based features on classification of
melanoma, is in fact a replication of the previous experiment (Experiment 1), but using
the new image set of 197 dermoscopy images (Image-set2 from Table 4.1). This repetition
is done in order to make a valid comparison between the result of this experiment and the
two following experiments; Experiment 2b and 2c. The difference in the two image sets
emanates from excluding eight lesions, whose poor quality made it impossible to perform
accurate border-based measurements. Similar to the previous experiment, the following
initial steps are conducted:

(i) Dermoscopy images undergo pre-processing in order to minimise the impact of
background skin in the analysis, wherein the lesion borders are obtained manually by using
dermatologists’ expertise. Then, an enclosing rectangle frame is set around the lesion, the
rest is cropped and the non-lesion pixel is set to black. This pre-processing step will be
used in all of the four experiments of this chapter.

(ii) Using the MATLAB Daubechies-3 wavelet function, the texture-based features
(explained in Section 4.1 of this chapter) are extracted from half of the Image-Set2 desig-
nated as the train image set (See the second row of table 4.1).

(iii) The GRFS method is applied on the constructed feature vectors, resulting in
various Gain Ratio values or evaluation rank. We consider these values as threshold; each
corresponding to a certain subset of texture features.

(iv) By visual inspection, eleven of these thresholds are empirically chosen in the
range of [0.27 , 0.37] and the corresponding texture features are extracted from the second
half of the dermoscopy images designated as the test set (the second row of table 4.1).
The four classifiers of SVM, FR, LMT and HNB are then employed. This has resulted in
the classification accuracy shown in Table 4.7, which indicates that the best classification
result (accuracy of 87.23% and AUC value of 0.882) is obtained by applying the Random
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Forest classifier using the 9-th configuration with 48 texture-based features. The “T”
column shows the ranking threshold (Gain Ratio value) for including the features in the
subset and column “N” shows the number of features.

Table 4.7: 10-fold cross validation of performance (accuracy and AUC) of different classi-
fiers on the test set, using the 11 texture feature configurations resulting from the GRFS
method.
Configuration T N SVM (RBF) RF LMT HNB

1 0.27 1108 86.17, 0.854 86.17, 0.889 82.98, 0.886 86.17, 0.885

2 0.28 852 85.11, 0.841 84.04, 0.887 84.04, 0.836 88.30, 0.887

3 0.29 609 86.17, 0.854 86.17, 0.899 80.85, 0.825 87.23, 0.882

4 0.30 451 87.23, 0.866 85.11, 0.868 85.11, 0.871 86.17, 0.881

5 0.31 299 85.11, 0.844 85.11, 0.885 82.98, 0.855 85.11, 0.873

6 0.32 217 86.17, 0.854 82.98, 0.887 84.04, 0.870 86.17, 0.888

7 0.33 151 86.17, 0.857 85.11, 0.901 84.04, 0.881 86.17, 0.894

8 0.34 93 87.23, 0.869 86.17, 0.883 79.79, 0.842 84.04, 0.902

9 0.35 48 87.23, 0.869 87.23, 0.882 84.04 , 0.846 85.11, 0.880

10 0.36 25 86.17, 0.863 85.11, 0.856 82.98, 0.890 82.98, 0.855

11 0.37 13 86.17, 0.854 85.11, 0.859 84.04, 0.871 84.04, 0.852

In the next two experiments of this study, we expand the feature vector by aug-
menting the optimal texture features with geometry and time series features. We then
investigate the impact of such an expansion by comparing the classification results obtained
from (1) texture, (2) texture and geometry, and (3) texture, geometry and time-series fea-
tures. As mentioned earlier, test image set used in these experiments (40 melanoma and
55 benign, second row of Table 4.1) is slightly different from the test image set used in
Experiment 1 (48 melanoma and 55 benign, first row of Table 4.1).

4.6.3 Experiment 2b: Optimal Texture and Geometry Features

The purpose of this experiment as depicted in Figure 4.8 is to analyse the effect of in-
tegrating geometry with textural features and assess the classification performance. The
geometry features are extracted from the images in the test set of Image-set2 (See the
second row of Table 4.1). The optimal texture feature sets are obtained from applying the
GRFS method as per experiment 2a. The optimal texture feature sets are obtained from
applying the GRFS method as per experiment 1. Eleven optimal features sets are chosen
corresponding to the eleven thresholds shown in Table 4.7.

The whole appended feature vector (texture plus geometry) is then fed into the same
four classifiers to ascertain the status of the 103 lesions. Table 4.8 shows the 10-fold cross-
validation of classification performance where the highest accuracy for each of the classifier
is quoted. The “T” column shows the ranking threshold (Gain Ratio value) for including
the features in the subset and column “N” shows the number of features. Examination of
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Tables 4.7 and 4.8 shows that there is an overall improvement in the classification results
as a consequence of augmenting texture with geometry-based features; when using the
RF classifier, the maximum classification accuracy has increased from 87.23% (texture)
to 88.30% (texture and geometry). Figure 4.13 illustrates this effect more clearly on the
RF classifier, which shows that for most of the thresholds the classifier accuracy increases
when the geometry-based features are added.

Table 4.8: 10-fold cross validation of performance (accuracy and AUC) of different clas-
sifiers on the test set, using the 11 texture feature configurations resulting from the Gain
Ratio feature selection, combined with geometry features.
Configuration T N SVM (RBF) RF LMT HNB

12 0.27 1119 86.17, 0.854 86.17, 0.874 82.98, 0.886 86.17, 0.878

13 0.28 863 85.11, 0.841 87.23, 0.878 84.04, 0.836 88.30, 0.856

14 0.29 620 86.17, 0.854 85.11, 0.887 80.85, 0.825 86.17, 0.881

15 0.30 462 87.23, 0.866 84.04, 0.884 82.98, 0.863 86.17, 0.883

16 0.31 310 85.11, 0.844 85.11, 0.837 82.98, 0.855 85.11, 0.873

17 0.32 228 85.11, 0.844 85.11, 0.884 84.04, 0.858 86.17, 0.888

18 0.33 162 86.17, 0.857 86.17, 0.913 84.04, 0.882 86.17, 0.894

19 0.34 104 87.23, 0.869 86.17, 0.891 81.91, 0.875 84.04, 0.898

20 0.35 59 87.23, 0.869 87.23 , 0.881 82.98, 0.816 85.11, 0.879

21 0.36 36 85.11, 0.848 88.30, 0.887 82.98 , 0.853 84.04, 0.853

22 0.37 24 88.30, 0.882 86.17, 0.859 81.91, 0.889 85.11, 0.849

In the next experiment the feature vector is further extended to include the time
series-based features. Since the RF classifier exhibits the best overall results we proceed
with this classifier in the remaining experiments.

4.6.4 Experiment 2c: Texture, Geometry and Time-series Features

As shown in flowchart of Figure 4.8, the purpose of this experiment is to analyse the effect
of integrating border-based features (geometry and time-series) with texture features, and
to investigate the classification performance. This is done by appending the 59 border
features (the same 11 geometry features as per experiment 1 and 48 time series features,
Section 4.3.1) to the same 11 optimal texture feature subsets listed in Table 4.7 which were
previously used in Experiments 2a and 2b. The RF classifier is then applied on the test
set (the second row of Table 4.1), resulting in the classification accuracies for each of the
11 feature vectors shown in Figure 4.13. The figure also shows the results of the highest
accuracies obtained in Experiments 2a and 2b for easy comparison, where the highest
accuracy (91.49%) is obtained by choosing the feature vector corresponding to the 0.33
threshold (the feature vector for this threshold comprises 151 texture, 11 geometry and
48 time series features). The obtained AUC value for this feature configuration is 0.938.
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Figure 4.13: 10-fold cross validation of accuracy of texture, geometry and time series-
based features at various thresholds of the Gain Ratio feature selection method, using the
Random Forest classifier.

4.6.5 Experiment 3: Performance Evaluation of the Proposed Computer-
aided Diagnosis of Melanoma

For this experiment the Image-set3 from Table 4.1 is used. In order to assess in an unbiased
way the performance of the developed diagnostic system, we consider three independent
image sets; a train, a validation and a test set of 99, 87 and 103 dermoscopy images,
respectively (See the third row of Table 4.1). As these images are in different conditions,
the border detection step in two-thirds of them is done manually and the automated Hybrid
border-detection method (explained in Chapter 3, Section 3.2 of this thesis) is applied on
the remainder to separate the lesion from the surrounding skin. This is followed by the pre-
processing step explained in Section 4.6.1 to prepare the images for performance evaluation
of the diagnosis system. In order to evaluate the robustness of our system, we have elected
to use both manual and automated borders. Furthermore, in order to bias the experiment
towards the manual borders (worst case scenario) we have designated two-thirds of the
images to manual borders.

As illustrated in Figure 4.9, we use two streams of optimisation. The first employs



4.6. EXPERIMENTAL RESULTS 157

Global optimisation (labelled as experiment 3a in the flowchart) wherein the whole feature
vector, consisting of texture and border (geometry and time series) features is optimised.
The second uses individual optimisations (labelled as experiment 3b in the flowchart)
wherein the texture and border features are optimised individually and the resultant op-
timal features are appended. The details of these two streams are explained and the
outcomes are compared next.

Global Optimisation

In this experiment the whole feature vector, consisting of texture and border (geometry
and time series) is optimised, using the following three-step procedure.

(i) Feature selection: feature extraction is performed on images from the designated
train set (the third row of Table 4.1) and for each image a vector of 35455 features
are extracted, including 35396 wavelet-based texture features and 59 border features (11
geometry and 48 time series features). The extracted features are evaluated and ranked
by using the Gain Ratio method. This results in various evaluation ranks in the range of
[0, 0.6], each corresponding to a subset (a configuration) of features.

(ii) Parameter tuning: 26 various evaluation ranks, in the range of [0.35 , 0.6] with
step size of 0.1 are empirically chosen as thresholds and the corresponding feature subsets
are extracted from the images of the designated validation set (the third row of Table 4.1).
Then, the RF classifier is applied on each feature configuration to classify the images of the
validation set. In each classification process, various parameters of the classifier (number
of trees) are tested and the parameter which resulted in the highest classification accuracy
is selected.

Table 4.9 shows the number of features for various thresholds, the resultant 10-fold
cross-validation of the classification performance (accuracy and AUC) and the correspond-
ing classification parameter; number of trees of the RF classifier. Three feature configura-
tions at thresholds of 0.57 (10 features), 0.44 (91 features) and 0.4 (166 features) obtain
the highest accuracy of 87.23%. The best configuration out of these three is the feature
subset at the threshold 0.40 with AUC value of 0.913. This optimal feature set includes
166 features and the highest accuracy and AUC values are obtained using 15 trees in the
RF classifier.

(iii) Classification: the parameters (Gain Ratio, threshold and number of trees of
the RF) tuned in the previous step are then used to evaluate the overall performance of
the proposed diagnostic system. The optimal feature configuration at threshold of 0.4
with 166 features is extracted from the images designated as the test set (the third row
of Table 4.1). The RF classifier with 15 trees is then applied resulting in an accuracy
of 93.21% (using 10-fold cross-validation). Other performance measures of the proposed
method are listed in the first row of Table 4.10.
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Table 4.9: Number of features and the resultant 10-fold cross-validation of accuracy and
AUC value using Random Forest classifier at various thresholds of the Gain Ratio feature
selection method, applied on validation image set.

Threshold Feature No. No. of trees Accuracy AUC

0.60 2 10 66.67% 0.662

0.59 2 10 66.67% 0.662

0.58 8 50 64.37% 0.618

0.57 10 10 87.36% 0.827

0.56 12 5 86.21% 0.828

0.55 14 10 85.06% 0.829

0.54 18 5 86.21% 0.820

0.53 18 5 86.21% 0.820

0.52 23 2 86.21% 0.832

0.51 23 2 86.21% 0.832

0.50 29 10 85.06% 0.843

0.49 44 2 86.21% 0.83

0.48 51 3 86.21% 0.848

0.47 62 10 86.21% 0.872

0.46 67 90 85.06% 0.887

0.45 78 70 85.06% 0.823

0.44 91 5 87.36% 0.829

0.43 99 125 86.21% 0.891

0.42 122 55 83.91% 0.847

0.41 149 200 85.05% 0.900

0.40 166 15 87.36% 0.913

0.39 202 50 85.06% 0.887

0.38 225 220 85.06% 0.915

0.37 275 10 85.06% 0.883

0.36 302 5 86.21% 0.879

0.35 387 20 85.06% 0.886

Individual Optimisation

In this experiment the texture and border features are optimised individually and the
resultant optimal features are combined. In order to do that, the first two steps of the
procedure performed in the previous section (global Optimisation) are conducted inde-
pendently for each of the border and texture features. This involves performing feature
selection and parameter tuning using train and validation image sets (the third row of
Table 4.1) to determine the optimal border features and optimal texture features. The
optimal texture feature vector includes 379 features, and the optimal border feature vector
includes 8 features. Then, the two optimal sets are combined yielding a total 387 optimal
features, and the classifier parameter is tuned using the validation image set (number of
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trees = 35). Finally the RF classifier is applied on the test image set, using the optimal
feature set and the classification parameter tuned in the previous step. This results in an
accuracy of 88.35% (using 10-fold cross-validation). Other performance measures of the
proposed method are listed in the second row of Table 4.10.

Comparison and Observations

Table 4.10 shows the 10-fold cross-validation of performance (evaluated in terms of accu-
racy, sensitivity, specificity and the area under the ROC curve) of the proposed diagnostic
system for the two optimisation streams; global and individual. As indicated in the ta-
ble, the global optimisation performs better with respect to all of the measures. The
obtained performance of our system is in fact highly comparable with the state-of-the-art
melanoma diagnosis systems reported in the recent survey by Maglogiannis et al. [12] and
outperforms some of them.

Table 4.10: 10-fold cross-validation of performance of the proposed diagnostic system,
using train set of 99 images, validation set of 87 images and test set of 103 dermoscopy
images, applying the two optimisation streams.

Stream Feature No. Accuracy Sensitivity Specificity AUC

Global 166 93.21% 90.90% 94.92% 0.946

Individual 387 88.35% 88.64% 89.06% 0.939

An interesting observation of this experiment is the distribution of features in the
optimal feature vector, which shows that out of 166 selected features only eight (one is
geometry based and the rest are time series based) are border (4.82%) and the majority
are texture-based features. Table 4.11 shows the ranking of these border-based features.

Table 4.11: Rankings of the eight optimal border features appearing in the optimal feature
set.

Rank feature Description

9 Norm(TS) TS: Time-series
10 Norm(WA1(TS)) WAn:Wavelet approximation component
13 Norm(WA3(TS)) level n
14 Norm(WA2(TS))
31 Norm(Hist(TS)) Hist: Histogram
34 Eng(Hist(TS)) Eng: Energy

139 Perimeter belongs to the Geometry category

140 Mean(Hist(TS))

Figure 4.14 shows the Gain Ratio values of the features nominated as optimal.
We have estimated the contribution of the border features in the optimal feature set by
calculating the accumulative border features’ Gain Ratio divided by accumulative features’
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Gain Ratios (Equation 4.53). Considering the 35 highest-ranked features, which consists
of six border features and 29 texture features, the approximate contribution of border-
based features is 17% , however its overall contribution in the optimal set of 166 features
is only 5%.

Approximate Contribution =

∑

GainRatio(Border)
∑

GainRatio(All)
× 100 (4.53)
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Figure 4.14: The Gain Ratio values of the features in the optimal feature subset.

According to the estimated contribution, we suggest that texture-based features play
the dominant role in the classification of melanoma. This finding is in fact fully aligned
with the clinical knowledge we obtained from our meetings with experienced dermatologists
at the Royal Melbourne Hospital, Melbourne, Australia. We are informed that, when they
examine an image, they focus on the changes in the internal structure of the lesion while
its external attributes such as border and shape are considered secondary.

The 20 first-ranked texture-based features are listed in Table 4.12. The following
conclusions are derived from this table: (i) six out of 20 features belong to the nodes from
the forth level, which vindicates our use of four-level wavelet decomposition as opposed to
the three-level decomposition applied in the other studies, (ii) texture features extracted
from colour channels of Green and Blue are among the first 20 optimal texture features,
which justifies our decision to incorporate the independent colour channels of Red, Green,
Blue along with the Luminance, as opposed to other studies where Luminance only is
used, (iii) the optimal features are derived from both low and high frequencies which
justifies our choice of tree-structured decomposition over the pyramid-structured wavelet,
(iv) particular measures we proposed to apply in this diagnostic system (e.g. Kurtosis)
are prominent in the final optimal feature set.

Table 4.13 shows the advantages of applying the GRFS method in our system, which
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Table 4.12: The 20 first-ranked texture-based features.
Rank Measure colour Channel Level Tree-node

1 Average-energy Luminance 3 4.1.3
2 Average-energy Green 3 4.1.1
3 Kurtosis Blue 1 4
4 Average-energy Green 2 4.1
5 Average-energy Luminance 3 4.1.1
6 Energy Luminance 3 4.1.1
7 Standard deviation Luminance 3 4.1.1
8 Kurtosis Green 1 4
11 Average-energy Luminance 4 4.1.1.2
12 Average-energy Luminance 2 4.1
15 Kurtosis Blue 2 4.2
16 Standard deviation Luminance 4 1.1.1.3
17 Energy Luminance 4 1.1.1.3
18 Average-energy Luminance 4 2.3.1.1
19 Average-energy Luminance 3 4.1.2
20 Average-energy Luminance 2 4.2
21 Kurtosis Luminance 1 4
22 Sub-level ratio of Average-energy Blue 4 1.1.1.1
23 Average-energy Blue 4 4.1.1.1
24 Average-energy Luminance 3 4.4.4

is a significant reduction (by a factor of 214) in the dimension feature space and in the time
required for classification (50 times). Moreover, the classification accuracy is improved by
12%. Note that the figures listed in Table 4.13 are obtained by applying the RF classifier
on the test image set, using the classifier parameters tuned over the validation image set.

Table 4.13: Effect of Gain Ratio-based feature selection method.
Feature No. Accuracy Time (sec)

without feature selection 35455 81.55% 2.45

with feature selection 166 93.21% 0.05

4.7 Summary and Concluding Remarks

In this chapter we have presented a computer-aided diagnosis system for melanoma. The
system covers the main diagnosis components of segmentation, feature extraction, feature
selection and classification. The segmentation step was carried out both manually and
automatically in various experiments, using different image sets, to investigate the ability
of diagnostic system in both semi and fully automated manners.
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The feature extraction process involved a guided generation of categorised features,
extracted from (i) wavelet-based texture analysis, (ii) geometrical measurements, and (iii)
time-series analysis in spatial and frequency domains. The texture features were extracted
from application of four-level wavelet decomposition analysis on Red, Green, Blue and
Luminance colour channels in addition to employing a comprehensive set of statistical
measures on all the nodes of the wavelet-tree. The geometry measures were extracted
from indices that are commonly used in the literature as well as novel ones defined in this
study to reflect the expert opinion of dermatologists. Time-series analysis was applied
on dermoscopy images for the first time in this study, wherein features were extracted
by constructing a time-series model of the lesion border and analysing it in spatial and
frequency domains by applying histogram analysis and wavelet transform.

A computationally efficient feature selection method, based on Gain Ratio, is adopted
and demonstrated to outperform three other well-known feature selection methods, namely;
Information Gain, Chi-squared and ReliefF. Moreover, a two-stage feature selection scheme
was conducted which applied the Gain Ratio at first stage to reduce the feature space,
then used Correlation at the second stage, on feature vector optimised at the first stage.
However, experimental results showed that adding the CFS method does not provide a
noticeable improvement to the classification performance over that obtained by using the
GRFS method only, and the GRFS method was shown to be sufficient and efficient for
the optimal feature selection. It has been shown that the use of the GFRS method pro-
vides significant improvement in the classification performance (12% increment) as well
as a great reduction in the dimension of the feature vector (by a factor of 214), and the
required classification computational time (50 times).

Furthermore, four advanced classes of classification techniques; namely, Support
Vector Machine, Random Forest, Logistic Model Tree and Hidden Naive Bayes were em-
ployed in this study, among which the Random Forest classifier was shown to be highly
effective in the classification of melanoma lesions.

Comprehensive sets of experiments were conducted in this study to analyse the
effectiveness of applying various combinations of features in the classification of melanoma.

Firstly, we investigated the effectiveness of using texture-based feature extraction
method (explained in Section 4.1 of this chapter) in the classification of melanoma lesions.
The texture features were extracted from four-level Wavelet-decomposition in colour chan-
nels of red, green, blue and luminance. The feature selection was performed using the
Gain Ratio and correlation-based feature selection methods on a train set of 103 der-
moscopy images. Classification was conducted by the four classifiers of SVM, RF, HNB,
and LMT. When an optimal subset of texture features was extracted from a test set of
102 dermoscopy images, LMT was able to successfully differentiate between melanoma
and benign lesions with 88.24% accuracy, followed by the RF classifiers with an accuracy
of 87.25%. Moreover, the optimal subset of texture features outperformed three other
wavelet-based approaches [171, 210, 169].

Second, a ternary set of experiments were conducted wherein the effectiveness of
three sets of features extracted from (i) texture analysis, (ii) texture and geometrical
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measurements analysis, and (iii) texture, geometrical and time-series was investigated,
and the results were compared. These experiments were performed on the same image
set (197 dermoscopy images including 98 malignant and 109 benign lesions) in order to
provide a valid base for comparison. 103 of the images were designated as train set for
the purpose of feature selection and the remaining 94 images were designated as test set
to test the classification performance. Experimental results showed that the in the first
experiment where the texture-based features were analysed the resultant classification
accuracy was 87.23%. In other two experiments with the extended feature vectors, where
the geometry-based features and then the time series-based features were appended to the
optimal texture-based features, improvements in the classification accuracy (88.30% and
91.49%) were obtained. These results have demonstrated the superiority of incorporating
border (geometry and time-series) with texture features over using exclusively texture.

In the last experiment the overall performance of the proposed system was evaluated
by conducting two streams of optimisation on a set of 289 dermoscopy images (114 ma-
lignant and 175 benign) subdivided into three image sets; train, validation and test. Two
optimisation streams were studies: (i) the global optimisation, in which the whole feature
vector, consisting of texture and border features is optimised, (ii) Individual optimisa-
tion wherein the texture and border features are optimised individually and the resultant
optimal features are integrated. The experimental results showed that by applying the
Gain Ratio feature selection method and the Random Forest classifier, global optimisa-
tion outperforms individual optimisation, with 93.21% accuracy, 90.90% sensitivity and
94.92% specificity. Although the results cited above were obtained through experiments
conducted on a particular image set, they indicate that high diagnostic accuracy can be
achieved when existing features are optimally blended with novel ones. In fact these results
compare quite well with, and in most of the cases superior to the state-of-art melanoma
diagnosis systems reported in the literature [12].

An important finding is the clear advantage gained in optimally complementing
texture with border and geometry features compared to using texture information only.
Another interesting finding of this study is that in the melanoma classification application
texture features play the dominant role and make much higher contribution compared to
border-based features. Among border features, which include geometry and time series
features, the latter has been shown to be more informative and obtain higher evaluation
ranks (Gain Ratio values) than geometry in this application.

The proposed feature extraction and classification method in this chapter is pub-
lished in [232] and an extended version has been submitted to IEEE Transactions on
Information Technology in Biomedicine [233].





Chapter 5

Summary and Conclusion

Malignant melanoma is the deadliest form of skin cancer and its early diagnosis is of ex-
treme importance for public health and the basis for reduction of mortality rates. Despite
advancements in imaging technology such as dermoscopy, clinical diagnosis of melanoma is
challenging and suffers from inherent subjectivity, particularly for primary care physicians
– who are the initial contact points (gateway) for patients to the dermatology community.
As a result, computer-based melanoma diagnosis has become a major research area in
recent years with the aim of assisting physicians through the provision of quantitative
reproducible analysis of the skin lesion. Computer-based diagnosis systems for melanoma
have been acknowledged by physicians to play a useful role in producing quantitative
results, recording patient follow-ups, and monitoring remedial progress. However, their
adoption in daily practice is still a work in progress. For that to happen, physicians need
higher accuracy and reliability than what has so far been offered.

With the aim of improving some of existing methods and developing new techniques
to facilitate accurate, fast and reliable computer-based diagnosis of melanoma, this thesis
presented new and effective approaches to development of an integrated computer-aided
diagnostic system of melanoma. A computer-aided diagnosis of melanoma involves several
components including image acquisition, image segmentation or border detection, feature
extraction, feature selection, and classification. In this chapter we conclude the thesis by
explaining the contributions of this study with respect to each component of the computer-
based melanoma diagnostic system. This is followed by some discussions on possible
directions for future work on this topic.

5.1 Main Contributions

In the following a summary of the main contributions of this thesis in the area of computer-
based diagnostic system of melanoma is provided.
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5.1.1 Colour-channel optimisation for border-detection in dermoscopy
images.

Colour information plays a significant role in dermoscopy image analysis. Variegation of
colour within the lesion and the diversity found in human skin colour makes border de-
tection a challenging process. Although numerous skin lesion segmentation methods have
been developed, few studies have focused on determining the most effective colour space
and colour channel for melanoma application. In this study, we have proposed a com-
prehensive colour optimisation procedure, which (i) transforms dermoscopy images into
different colour channels from various colour spaces (as illustrated in Table 3.1), (ii) applies
histogram thresholding on the transformed image, (iii) uses mathematical morphology and
connected component analysis to detect the border of the lesion and separate the lesion
from background skin, (vi) performs a quantitative comparison between each resulting
border and the corresponding ground-truth drawn by four dermatologists. Applying sta-
tistical and ROC analysis on the resulting borders in this thesis, demonstrated that the
optimal colour channels for border-detection in dermoscopy images are X colour channel
from the XYZ colour space, and XoYoR which integrates the segmentation results from X
and Y colour channels (from the XYZ colour space) with the R colour channel (from the
RGB colour space). The optimal colour channel(s) determined via the above-mentioned
optimisation process are the main building block for the border-detection methods pro-
posed in this study, and provide a remarkable added value to the final segmentation result.

5.1.2 Automatic border detection in dermoscopy images: Global and
Hybrid methods.

Segmentation or border detection – which separates the lesion from the background skin
– is a fundamental step towards development of a computer-aided diagnosis of melanoma
and its accuracy is essential for accurate implementation of the subsequent steps. In this
thesis, we have proposed two automated methods for detecting the borders in dermoscopy
images; Global and Hybrid method, the latter being an enhancement of the former.

The proposed Global border-detection method applies Otsu’s global histogram thresh-
olding on the optimal colour channels derived from the above-mentioned colour optimi-
sation process. This is followed by application of connected component analysis and
morphological operation which resulted in automatic lesion borders with an accuracy of
approximately 97%. Comparative study involving two state-of-the-art automated meth-
ods demonstrated that with a proper choice of colour channels, the proposed thresholding-
based method in spite of its simplicity is highly competitive with well-known skin lesion
segmentation methods, and outperforms them with respect to accuracy, specificity, and
AUC metrics (as shown in Table 3.6). The proposed method is potentially faster since it
mainly involves scalar processing as opposed to vector processing performed in those meth-
ods. The proposed Global border-detection method along with the colour optimisation
process is published in [205, 206].
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Considering the practical nature of melanoma diagnosis which calls for extreme cau-
tion when excluding portions of the image, dermatologists prefer to choose the outmost
detectable pigment to minimise the risk of incorrect diagnosis. In contrast, existing border
detection methods generally fail to accurately detect the marginal areas of the lesion, which
are faded into the background skin, and mistakenly exclude it from the segmentation re-
sult. In order to address this issue, we have improved the above-mentioned Global method
into the Hybrid border-detection method and have shown that it reduces the discrepancy
between the manual and automatic borders to a great extent (Table 3.11). The Hybrid
method first applies the Global method on the optimal colour channel of XoYoR (derived
from the colour optimisation process) to detect an initial boundary for the lesion, then
integrates the local colour information around the initial boundary to expand the border
toward the background skin, and form the final segmentation result. 85 high-resolution
dermoscopy images were analysed and the automatic borders were compared to borders
drawn by two dermatologists using various quantitative evaluation metrics including ac-
curacy, precision, sensitivity, specificity, and border error. The proposed Hybrid method,
which is comprised of two stages, is designed to increase specificity in the first stage (global
thresholding) and sensitivity in the second stage (adaptive local thresholding). The pro-
posed method is shown to be highly effective in detecting the borders of the lesion with an
accuracy of 98%. Moreover, it is demonstrated that the Hybrid method is more effective
than a less-experienced dermatologist and functions closer to the experienced dermatol-
ogist (Figure 3.22). The proposed border detection method has been compared to three
state-of-the-art border detection methods and found to be superior than (with respect to
some of the evaluation metrics) or highly competitive with those methods (with respect
to other metrics) as shown in Tables 3.7 and 3.8. The proposed Hybrid border-detection
method is published in [204].

We have also provided an analytical framework, including statistical analysis (Fig-
ures 3.25– 3.27), optimisation (Figure 3.28), cross validation (Figure 3.29 and Table 3.10)
to determine the optimal parameters for the proposed Hybrid border detection method
and vindicated the results obtained by the Hybrid method. The optimisation is done
using a newly introduced evaluation metric; Performance Index (PI), which is composed
of standard metrics of sensitivity, specificity, accuracy, similarity, and border error. More-
over, the two proposed border detection methods, Global and Hybrid, were compared and
the superiority of the Hybrid method was demonstrated objectively through the proposed
PI (Table 3.11). The proposed systematic procedure for comparison between the two
proposed border-detection methods is published in [207].

5.1.3 Objective evaluation of border-detection method in dermoscopy
images.

Prior to our reported metrics, no systematic evaluation procedure for the performance
assessment of the border-detection methods in dermoscopy images, which could reflect
dermatologists’ perspective in the melanoma recognition process, had been thoroughly
investigated in the literature. Also, there is a need for a comprehensive and practical
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assessment procedure, because in using the standard metrics of sensitivity, specificity,
accuracy, border error, similarity, and precision, some border-detection methods show
superior results to other method with respect to some metrics but inferior with respect to
the other metrics. A problem therefore arises in determining which method yields better
overall results. In this thesis two quantitative metrics of Weighted Performance Index and
Optimised Weighted Performance Index have been proposed as useful means for assessing
performance of a given border detection method, and also facilitate comparison between
different border detection methods. The manner in which dermatologists expertise is
incorporated into the standard metrics is briefly outlined in the following.

All six standard metrics of sensitivity, specificity, accuracy, border error, similarity
and precision are functions of four measures of True Positive, False Positive, True Negative
and False Negative. In order to provide evaluation metrics meaningful in the context of
melanoma application and at the same time be easily computable, we introduced specific
weights, drawing from the expertise of the dermatologists, into the standard metrics by
attaching weights to these four measures. The Weighted Performance Index is defined as a
weighted average of the six metrics, wherein the weights are imbedded within each metric.
Therefore, the proposed evaluation index has two main objectives: (i) it is customised for
melanoma diagnosis application as it accommodates dermatologists’s diagnostic perspec-
tives, and (ii) it takes into account various evaluation metrics and provides a comprehensive
yet easy means for comparison between different border-detection methods.

The effectiveness of the proposed evaluation index was demonstrated by applying
five recent border detection methods on a set of 55 high-resolution dermoscopy images
using the union of four sets of dermatologist-drawn borders as the ground truth (shown
in Table 3.13). It was also shown that the weighted metrics, which are defined to reflect
the dermatologists’ perspectives, show a higher degree of agreement between automatic
and manual borders, compared with standard metrics . Objective evaluation of border
detection methods in dermoscopy images via Weighted Performance Index is published
in [208].

The proposed evaluation metric WPI is later improved by proposing Optimised
Weighted Performance Index. In contrast to WPI wherein the weights were fixed and
based on expert opinion only, in OWPI the optimal weight for each measure of TP, FP, TN
and FN was obtained by formulating a constrained nonlinear multivariable optimisation
problem. The optimisation is done in order to provide weights which genuinely reflect the
importance of each metric in the evaluation process. The optimal weights were calculated
by applying trust-region and interior-point optimisation methods on five recent border
detection methods on a set of 55 high resolution dermoscopy images, using the union of
four sets of dermatologist-drawn borders as the ground truth. The automated borders
drawn by all five border-detection methods have been used to eliminate any bias towards
any particular border-detection method and provide a fair basis for the comparison as done
in Table 3.21. Experimental results showed that the optimisation performed on all five
border-detection methods resulted in similar set of weights (Figure 3.37 and Tables 3.15–
3.19) which vindicates the robustness of our proposed procedure. Moreover, the resulting
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optimised weights were confirmed by a grid-search procedure.

Comparison between Performance Index, Weighted Performance Index and Opti-
mised Weighted Performance Index shows the advantage of the latter. OWPI yields higher
performance values for each of the five border detection methods, followed by WPI and
PI comes last (shown in Figure 3.46). Moreover, OWPI with optimal weights, tailored for
the melanoma application yields smaller differences between the border detection meth-
ods, implying the actual performance differences to be in fact smaller than those predicted
by WPI and PI. As shown in Figure 3.46 all three metrics of PI, WPI and OWPI coin-
cide with the superiority of the proposed Hybrid border-detection method over the four
other border-detection methods. Objective evaluation of border detection methods in der-
moscopy images via Optimised Weighted Performance Index has been submitted to IEEE
Transactions on Information Technology in Biomedicine in July 2010, has received very
good feedback from the review committee and the revision was submitted to the journal
in February 2011 [209].

5.1.4 Feature extraction in dermoscopy images using wavelet, geometry
and time-series analysis.

In a computer-based melanoma diagnosis system, feature extraction is applied to extract
the features that accurately characterise a melanoma lesion. These features, which are
extracted from the ROI determined through the segmentation (border-detection) process,
are similar to those visually detected by dermatologists in their clinical practice. As a
result of studying existing clinical diagnostic approaches such as the ABCD rule of der-
moscopy and pattern analysis as well as consultation with expert dermatologists from
Royal Melbourne Hospital, we have developed a novel, comprehensive, and highly effec-
tive feature extraction method which combines different types of features. The proposed
method captures (i) the changes in the internal texture of the lesion, and (ii) the external
attributes of the lesion such as border and shape, and combines the resulting features.

The multi-scale properties of wavelets, makes wavelet-based texture analysis a useful
technique for analysing dermoscopy images, as the dermoscopy images are often taken
under different circumstances, i.e., various image acquisition set-ups (lighting, optical
zooming, etc) and diverse skin and lesion colours of the population. Among the two wavelet
structures; Pyramid-structured and Tree-structured wavelet analysis, the latter was found
to be more informative for classification of melanoma images, as it can capture information
of both general/low-frequency (overall shape) and detail/high-frequency (internal texture)
of the lesion. For this reason, the proposed texture-based feature extraction method
employs tree-structured wavelet decomposition. The novelty of the texture-based feature
extraction method proposed in this study lies in (i) the use of four-level decompositions,
(ii) the use of four colour channels of Red, Green, Blue and Luminance, (iii) applying
various statistical measurements and ratios on all nodes of the wavelet-tree. It is worth
mentioning that the existing methods have used only one of the three (we will further
complement the feature extraction method by integrating border features to establish an
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umbrella feature extraction method).

Experimental results demonstrated that features contained in the fourth level of the
wavelet tree, those extracted from the Blue and Green colour channels, those derived from
the high frequency channels of the wavelet tree, as well as particular measures we proposed
to apply in this diagnostic system (e.g. Kurtosis) are prominent in the final optimal
feature set (see Table 4.12). These observations demonstrate the advantage of applying
the four-level wavelet decomposition as opposed to three levels used in existing wavelet-
based methods, incorporating various colour channels into the texture analysis as opposed
to only adopting the commonly used Luminance, applying tree-structures as opposed to
pyramid-structured in some of the studies, and applying various statistical measures and
ratios, for classification of melanoma. The effectiveness of the proposed texture-based
features and its superiority over three recent wavelet-based methods is published in [232].

In order to measure border-based features (i) we have applied geometrical measure-
ments, such as area, perimeter, circularity index, irregularity index, etc. to analyse the
overall shape of the lesion. In doing so, we have used standard geometry features exist-
ing in the literature complemented by other new ones, drawing from our discussions with
expert dermatologists, and (ii) we have constructed a time-series model of the border and
analysed it in both spatial and frequency domains. Time-series has been widely applied
in statistics, signal processing, data mining, mathematical finance and economy. To the
best of our knowledge it has not been previously applied to the application of melanoma
diagnosis. In this thesis we have applied histogram analysis and wavelet transform on
the time series constructed from the lesion boundary to extract the main characteristics
of the border of the lesion. Experimental results carried out in this thesis show that the
proposed time series-based features have higher contribution in classification of melanoma,
than the geometry-based features used in the previous computer-based melanoma studies
(see Table 4.11).

5.1.5 Selection and optimal integration of features and classification of
dermoscopy images.

Feature selection is the process of eliminating irrelevant, redundant, or noisy features
from the initial feature vector constructed in the feature extraction step. In this study
the Gain Ratio feature selection method, which is an entropy-based feature valuator,
is employed for the following reasons: (i) the method is known to be computationally
efficient, which is a vital factor because of the high dimensionality of the initial feature
vector constructed in the feature extraction phase; (ii) it outperforms a sample of well-
know filter-based feature selectors such as Information Gain, Chi-squared and ReliefF
(illustrated in Figure 4.6). Gain Ratio has been successfully applied in various applications,
yet to the best of our knowledge it has not been applied in previous melanoma-diagnosis
studies. This study establishes that the Gain Ratio feature selection method can deliver
substantial improvement to system performance compared to using raw data (the whole
of the constructed feature vector). As shown in Table 4.13, it yields a 12% increment in
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the classification accuracy, as well as a considerable reduction in feature space dimension
(by a factor of 214) and computation time (50 times).

Classification is the final step in the diagnosis process, wherein the extracted features
are utilised to ascertain whether the lesion is malignant or benign. In this study, four
advanced classes of classification techniques are employed; Support Vector Machine has
been very popular and shown to be efficient in computer-based melanoma diagnosis studies
in the literature. We have elected to complement this choice by the use of the three other
classifiers; namely, Random Forrest, Logistic Model Tree and Hidden Naive Bayes which
are applied to the melanoma classification problem for the first time in this thesis. All
these classifiers and more particularly the Random Forest classifier were shown to be highly
effective in the classification of melanoma lesions.

Comprehensive sets of experiments were conducted in this thesis to analyse the ef-
fectiveness of applying various combinations of features in the classification of melanoma.
These experiments cover the main diagnosis components of segmentation (border detec-
tion), feature extraction, feature selection and classification. In order to evaluate the
robustness of our system, we have elected to use both manual (under dermatologists’
guidance) and automated (by applying the Hybrid border-detection method proposed in
the first part of this thesis) borders.

First, we investigated the effectiveness of using wavelet-based texture features in the
classification of melanoma lesions. Feature extraction and a two-stage feature selection
method, based on Gain Ratio and Correlation, were applied to a train set of 103 images.
The resultant feature subsets were then fed into four different classifiers: SVM, RF, HNB,
LMT to classify melanoma in a test set of 102 images, which resulted in an accuracy
of 88.24% and AUC value of 0.918. Comparative study carried out in this thesis has
shown that the proposed feature extraction method outperforms three other wavelet-based
approaches (Table 4.6 and Figure 4.12).

Second, a ternary set of experiments were conducted (see Figure 4.8) wherein the
effectiveness of three sets of features extracted from (i) texture analysis, (ii) texture and
geometrical measurements analysis, and (iii) texture, geometrical and time-series were in-
vestigated, and the results were compared. These experiments were performed on the same
image set (197 dermoscopy images including 98 malignant and 109 benign lesions) in order
to provide a valid base for comparison. As illustrated in Figure 4.13, experimental results
showed improvement in classification performance upon extending the feature vector and
appending the border-based features to the optimal texture-based feature vector; from
87.23% (using texture only) to 88.30% (adding the geometry features) and 91.49% (ap-
pending the time-series features). These results demonstrate the clear advantage gained
in optimally complementing texture with border and geometry features compared to using
texture information only.

Finally, we evaluated the overall performance of the proposed system by proposing
two streams of optimisation and comparing the results of the two streams (Figure 4.9).
The experiment was carried out on a set of 289 dermoscopy images (114 malignant and
175 benign) subdivided into three sets; train, validation and test, in order to evaluate the
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system’s performance in an unbiased way. Two optimisation streams were studied: (i)
global optimisation, in which the whole feature vector, consisting of texture and border
features is optimised, (ii) individual optimisation wherein the texture and border features
are optimised individually and the resultant optimal features are integrated. The experi-
mental results showed that by applying the Gain Ratio feature selection method and the
Random Forrest classifier, global optimisation outperforms individual optimisation, with
93.21% accuracy, 90.90% sensitivity and 94.92% specificity (Table 4.10). Although the
results cited here were obtained through experiments conducted on a particular image
set, they indicate that high diagnostic accuracy can be achieved when existing features
are optimally blended with novel ones. In fact these results compare quite well with, and
in most cases are superior to state-of-art melanoma diagnosis systems reported in the
literature [12].

Another interesting finding of this study is that in the melanoma classification ap-
plication texture features play the dominant role and make much higher contribution than
border-based features. Among border features, which include geometry and time-series
features, the latter has been shown to be more informative and obtain higher evaluation
ranks (Gain Ratio values) than geometry in this application.

The proposed computer-based diagnostic system [233] has been submitted to IEEE
Transactions on Information Technology in Biomedicine.

5.2 Directions for Future Work

Throughout the thesis we have presented new ideas and approaches to address the key
components of a computer-based system for diagnosis of melanoma. We now canvass
several possible directions that can be pursued to further advance the state of this project.

In order to develop a fully automated computer-aided diagnosis system of melanoma,
which can reliably operate in real-world and be convincing enough for people (including
dermatologists and patients) to rely upon, it is required that the system be rigorously
tested on a large number of images with different conditions, i.e., on thousands of lesions
acquired from people with different skin colours, with images taken under various light-
ing conditions. This would necessitate a well-organised participation of various medical
institutes.

The automated melanoma diagnosis system should be tailored to suit the needs of:
(i) expert users, including experienced dermatologists, who may seek a quantitative anal-
ysis of the given lesion as a second opinion to their clinical diagnosis, and (ii) non-expert
users. including dermatology registrars or general practitioners, who need to improve the
accuracy of their diagnosis and gain more confidence. The diagnosis system should be
designed to serve as an educational tool for medical students during the course of their
studies. The ultimate target of this software is people/patients who should be able to
perform a preliminary analysis of their skin at home, and according to the results would
seek medical advice from medical centres for further investigations. This would be very
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useful for people who need regular follow-ups, thus saving time and cost of multiple travels,
particularly if they live in rural areas.

In order to accommodate certain requirements for each group of users, various user
interfaces need to be designed for the software system. For example, for an expert user
inter-active software is desirable, where the expert dermatologist can conduct the quan-
titative analysis for different input parameters (for example the window-size parameter
in the border detection method according to the lighting and colouring condition of the
lesion under assessment) and investigate the results. On the other hand, for non-expert
users fully-automated software with high sensitivity and reasonable specificity is required.

An extensive image-acquisition procedure should be established, wherein various
imaging modalities are used to generate multiple images of the same lesion, each conveying
certain aspect of the lesion (e.g. ultra sound to extract information about the depth of
melanoma, dermoscopy to provide detailed inspection of the surface of the lesion, etc.).
This information can be then combined in order to provide a more accurate computer-
based analysis of the given lesion. Moreover, for patients with suspicious lesions a series
of images can be taken over a period of time in order to provide a follow-up quantitative
analysis of the lesions. Furthermore, having a large set of images with diverse pathological
distribution of lesions can lead to “multi-level” or “multi-class” classification of the lesions,
where instead of classifying a lesion as either malignant or benign it is classified according
to its level of malignancy or its histopathology. This will allow us to (i) detect different
stages of melanoma (ii) differentiate between dysplastic nevi (which is often mistaken for
melanoma), benign nevi, and melanoma (iii) detect various types of benign lesions.

Further improvements along this line of research include extending the colour op-
timisation procedure by investigating other colour spaces and examining the impact on
the border detection results. Moreover, for objective evaluation of border-detection meth-
ods, other metrics can be incorporated in the performance index. The feature extraction
technique can also be further advanced by quantifying internal texture and colour symme-
try of the lesion, or applying supervised pattern recognition techniques to detect certain
differential structures such as globules, dots, radial streaming, etc.
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