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Abstract

Farming consumes a large amount of water usage and it is reported that large portion

of this water is wasted through inefficient water distribution from river to farms. More

efficient water distribution and preservation of environmental demands can be achieved

through better control and decision support systems. In order to design better control

and decision support systems, a river model is required. This model needs to be able to

capture the relevant river dynamics and easy to be used for control design.

Traditionally, the Saint Venant equations have been used to model river systems. These

equations are nonlinear hyperbolic partial differential equation (PDE) and are solved nu-

merically using Preissmann scheme. The simulated Saint Venant equations are compared

against operational data from the Broken River, and it is found that the Saint Venant

equations are accurate in representing the river systems. Through further study, it is

found that a single segmentation, i.e. treating the river as one long stretch with uniform

geometry is sufficiently accurate for representation of the river for the purpose of control

design. For the representation of meandering river, the Saint Venant equations are as ac-

curate a two-dimensional flow model. The nonlinearities in the Saint Venant equations are

also investigated. From the nonlinearity test, it is found that the Saint Venant equations

are approximately linear within an operating region.

The Saint Venant equations are difficult to use for control design. An alternative model

is therefore sought. Based on the operational data from the Broken River, simple time

delay model (TDM) and integrator delay model (IDM) are proposed and estimated using

system identification procedures. These models are found to be accurate in capturing

the relevant dynamics of the river system. Furthermore, they are easy to use for control

design. It is found that the time delay varies with the flow and hence controllers must be

robust to variations in the time delay. A comparison between both TDM and IDM and

the Saint Venant equations shows that they are as accurate as the Saint Venant equations
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within the operating range. The TDM and IDM are desirable as they are easier to be

used for control design and decision support system.

The TDM and IDM are used to design Model Predictive Control (MPC) to control

the river system. The choice of using MPC is motivated by the fact that MPC handles

constraints very well. Despite that, tuning the weights in the MPC cost function is not

trivial. The methods of reverse engineering are used to obtain these weights. Building on

the results of existing method of reverse engineering used in the literatures, two additional

methods are developed. In addition, the design of MPC from scratch is also considered.

A realistic year long simulations using both MPCs on the Broken River is carried out.

The MPCs are compared with the current manual operation and a decentralised control

configuration. The results show that with MPCs, significant water savings, improvement

of water delivery service to the irrigators and the environmental demands satisfaction are

achieved.
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Chapter 1

Introduction

The main motivation behind the research in this thesis is to improve the sustainability

of water resources. This is in line with the recent effort by the Australian government to

promote prudent use of water for future generations. One way of improving the sustain-

ability is to achieve better efficiency in water distribution in the river system such that

not only water wastage is minimised, the water delivery services to the irrigators can be

improved and the environment benefits can be achieved. To achieve better efficiency in

water distribution, proper control and management of the river system are needed. To

facilitate proper control and management, we need a river model. The river model must

be able to capture the relevant dynamics for control, and it should be easy to use for

control design. This forms one of the two main objectives considered in this thesis, i.e.

modelling of river systems with the focus on the following areas:

(i) Develop models of river systems useful for control design.

(ii) Develop models of river systems useful for simulation.

The idea behind the modelling approach of using system identification techniques consid-

ered in this thesis comes from its successful use in the modelling of irrigation channels

through the works of (Weyer, 2001) and (Ooi, 2003). Moreover, the implementation of the

controllers (see e.g. (Cantoni et al., 2007) and (Weyer, 2008)) designed using those mod-

els has shown improvement in water distribution efficiency from 70% to 90% (Mareels et

al., 2005). The substantial improvement motivates the second main objectives considered

in this thesis, i.e. controller design of river system, where the focus is on the following

1
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areas:

(i) Design the controller using the developed river model.

(ii) Assess the performance of the controllers through simulations study as the actual

implementation on the river itself is not feasible.

The Broken River in Victoria, Australia is used as a case study.

1.1 Main water issues and potential key solutions

Water is one of the most important natural elements in the world. The world population

relies on water not only for consumption but also for production of daily needs such as food,

clothing, etc. The increase in world population coupled with the growth of agricultural

sectors, create a surge in the demand for water worldwide, making water a scarce resource.

Recent reports from the United Nation indicate that the world will be running out of clean

water by the year 2020 ((IRIN, 2006) and (UNESCO, 2006)). As things stand, the world

will be facing serious water shortages if no action is taken to address this problem.

One of the main water users is the agricultural sector. It is estimated that 70% of

all water resources are used in the agricultural sector (UNESCO, 2006). The agricultural

sector in Australia is one of the major economic contributions to the nation. This coupled

with the fact that Australia is a dry continent, makes water a very precious resource.

Fortunately, in Australia, the supply of water to consumer has not been an issue yet.

The main issue of concern however, is the ability to utilise the available water supply in

the most efficient way, thus ensuring minimal water losses. As reported in (NRW, 2001),

the current water losses through inefficient water distribution (in Australia) are large, and

they are estimated to be about 30% of the supplied water. The bulk of losses are due to

oversupply in distribution of water in the agricultural sector. Other losses include leakage

and seepage.

With the expectation that the drought in Australia will continue to worsen rather than

improving, it has becoming increasingly important to explore new farming practices and

strategies for water management in preparation for a drier future. To deliver those strate-

gies, interdisciplinary approach, which includes agricultural science, engineering, ecology,

hydrology, etc is required. The above mentioned interdisciplinary approach is utilised
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in the Farms, Rivers and Markets (FRM) project, where this research is part of. The

FRM project was initiated by Uniwater, a joint research initiative by The University of

Melbourne and Monash University, Australia as a response to tackle the above challenges

(FRM, 2009). As the name suggests, the project comprises of a Farms, a Rivers and a

Markets component. The Farms component is looking at ways of using several sources of

water to make farming more robust to drier condition. The Rivers component is looking

at the development of systems to make the distribution of water between different users

in the most cooperative way. Lastly, the Markets component aims to create new water

products and services that are more suited to future demands. The research undertaken

in this thesis is part of the Rivers component, and the focus is on the development of good

control and management systems for managing water cooperatively between different end

users.

The control and management of a river system is a big challenge. The river is often

the source of water supply for farming, urban and industrial usages. The challenge comes

when the preservation of the environment is becoming more important, where a certain

amount of water need to be left in the river for habitat preservation while at the same time

ensuring adequate water supply to the designated users mentioned above. Modelling and

control system have vital roles to play in the Rivers component as a well designed control

system for rivers allows for a more efficient distribution of water to reduce operational

water losses, timely water delivery to the irrigators, improved water delivery services to

the irrigators and meeting the environmental demands. There is also a question on what

infrastructures, which are currently or potentially available that can be used to further

improve the efficiency of water distribution.

Broadly speaking, the aim of the control system is to improve water resource man-

agement and operation for the benefit of the consumptive users and the environment.

However, what specific control objectives should be is not fully understood as most likely

there will be a change in farming practices due to less available water in the future, which

would change the demand patterns for water from the irrigators. On the legislative side,

higher priorities have been given to environment in the Water Act 2007 (Water In Our

Environment, 2010) in order to ensure a sustainable water supply to protect and restore

environmental assets such as wetlands and streams. Part of the research in the Rivers

component is to investigate what constitute desirable flows and water levels from an en-

vironmental and ecological point of view, and how this will have an impact on the control

objectives. As an example, instead of keeping the water levels at the desired level, the
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control system may in the future aim to recreate more natural water level fluctuations.

There will also be a number of constraints on the operation of the river that the control

system must make sure are satisfied. This includes maximum and minimum allowable

flow rates, maximum allowable rates of change in flows at key areas in the river, rules and

water quality issues associated with ”re-starting the river” after periods of low or no flow,

maintenance of slack water in specific reaches at defined times, etc.

1.2 The Broken River

This research uses Broken River in Victoria, Australia as a case study. In this section, a

description of the Broken River is given. Figure 1.1 shows a top view of the Broken River.

Lima Creek

Lake Nillahcootie

Hollands CreekBroken Weir

Lake Benalla

Casey’s Weir
Gowangardie

Weir

Broken CreekIrrigation District

Moorngag

HS1

HS2

HS3

HS4

Measuring Station

Flow Direction

HS Hydraulic Structure

Poison Creek

Lake 
Mokoan

To Goulburn and 
Murray River

Figure 1.1: Top view of Broken River. Note: Figure is not to scale.
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The Broken basin covers 7,724km2 of catchment area, and rainfall varies from 1,000mm

per year in the upper catchment to less than 500mm per year in the lower catchment

(Victorian Water Resources, 2009). The primary entitlements for water shares, licences

and associated commitments in the Broken system are 17,929.8ML high-reliability water

shares and 3,338.3ML low-reliability water shares. The environment is protected with

minimum flow requirements ranging from the natural flow to 0.2894m3/s (25ML/day)

(Bulk Entitlements, 2010).

The river originates from Lake Nillahcootie, which stores 40GL of water. Typical

historical releases into the Broken River is about 0.1736m3/s (15ML/day) during winter

and in the range of 0.5787m3/s (50ML/day) to 0.6944m3/s (60ML/day) during summer.

These releases are expected to increase due to the decommissioning of an artificial lake,

Lake Mokoan, which also contributed to the flow in the lower parts of the river. The

length of the river from Lake Nillahcootie to Gowangardie Weir (HS4) is about 76km.1.

The two major streams that contribute flow into the Broken River are Lima and Hollands

Creeks as shown in Figure 1.1.

The Broken River is the main water supply for the irrigation activities and most of

the irrigation activities are concentrated in between Casey’s Weir and Gowangardie Weir.

The irrigators normally draw water from the river using pumps. An example of the pump

used to draw the water is shown in Figure 1.2.

Water is released from Lake Nillahcootie and flows through Lake Benalla, turning west

and eventually joined with Goulburn and Murray Rivers before ended up in the sea. Along

the river, there are three hydraulic structures labelled HS2 to HS4 in Figure 1.1. At Lake

Nillahcootie, the flow into Broken River is controlled using a fixed-cone valve gate, which

is also known as Howell-Bunger valve (see Figure 1.3). The fixed-cone valve gates have

movable gates in a shape of a cone where the water flow is controlled by the opening of

these gates.

Broken Weir is located approximately 26km downstream from Lake Nillahcootie. At

Broken Weir, the hydraulic structure used to regulate the flow is an undershot gate. An

example of the undershot gate is shown in Figure 1.4. The flow can be controlled through

the lifting of the gates.

Further downstream from Broken Weir (after passing through Lake Benalla), we have

1Obtained by approximating the rivers by straight lines between the hydraulic structures (HS) on the
map
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Figure 1.2: Picture of a pump used to draw water from the river.

Figure 1.3: Top: Picture of a fixed-cone valve. Bottom: Picture of water release from
Lake Nillahcootie.

two more hydraulic structures, i.e. at Casey’s Weir and Gowangardie Weir. Both these

weirs resemble a sharp-crested weir. An example of the sharp-crested weir is shown in

Figure 1.5. These weirs have fix weir height that is not adjustable and hence no control

of water release is possible.
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Figure 1.4: Top: Picture of an submerged undershot gate. Bottom: Picture of the sub-
merged undershot gate at Broken Weir.

1.2.1 Measurements of the Broken River

Referring to Figure 1.1, there are several locations (shown by the black dot), where the

water levels are measured. If the water levels are measured at the hydraulic structure, (e.g.

Broken Weir, Casey’s Weir and Gowangardie Weir) the associated flows are computed

based on the types of hydraulic structure used. Various examples of flow computation

across different types of hydraulic structures can be found in (Bos, 1978) and (Booij, 2002).

In the event, where the measured water levels are not collected at the hydraulic struc-

tures (e.g. Moorngag, Lima Creek, Poison Creek, Hollands Creek and Lake Benalla), then

the associated flows are computed using a rating curve. Most of the water levels are mea-

sured every 15 minutes and the unit is meter Australian Height Datum (mAHD), which

is referenced to sea level.

1.3 The need for models

The primary aim of the modelling work carried out in this thesis is for control design.

We need a model that captures the relevant dynamics of the system such that a good
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Figure 1.5: Top: Picture of a sharp crested weir. Middle: Picture of a sharp crested weir
at Casey’s Weir. Bottom: Picture of a sharp crested weir at Gowangardie Weir.

controller design can be achieved. If possible, linear models are preferred since the theory

of linear controller design is well understood.

The secondary aim of the modelling work is for simulations. There are several reasons

why we need model for simulations. Firstly, is the issue of limited access to perform

experiments, which necessitate the use of a simulation model. Secondly, we may want to

investigate what will happen if we put in new infrastructures such as regulation gates.

This can be done using simulation models without actually putting the infrastructures

in place. Thirdly, a simulation model can be used to generate useful data for system

identification. In the case where good data are unavailable, we may use data generated

from the simulation models to build and validate our model. And lastly, simulation models

are used for scenarios simulation for decision support systems. The simulation models built
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must satisfy both accuracy and computational requirements.

There are two approaches to modelling; physical modelling and empirical modelling.

In physical modelling, the model is derived from the laws of physics. For river systems,

the Saint Venant equations, which are derived from mass and momentum balance, are

widely used. In general, the derivation of a physical model is usually time consuming but

the model provides physical insight about the system. This approach needs the value of

physical quantities of the system. Quite often these quantities are unknown, and they

must be estimated from data.

On the other hand, empirical modelling does not require any physical quantities of the

system. Empirical modelling builds model from operational data using system identifi-

cation techniques. Hence, good operational data are required. It is usually simpler and

easier to build models from data but the models do not provide physical insight about the

system. Such models are known as black box models. When the model structure is chosen

based on some prior knowledge about the physical system, the models are known as grey

box model.

As mentioned above, good operational data are required for empirical modelling. Un-

fortunately, it is often absent in most river systems. Even if the data from rivers are

available, they are often subjected to issues of varying sampling interval and infrequent

data collection. The issue of varying sampling interval can be rectified by interpolation

techniques. In the case of infrequent data, there is nothing much that can be done about

it. In such cases, where good operational data are not available, we may use the Saint

Venant equations to simulate fictitious ”operational” data and then, use this data to build

a river model using system identification techniques (see e.g. (Ooi and Weyer, 2008)).

However, this approach is only valid if the accuracy of the Saint Venant equations for the

river can be determined.

Although the accuracy of the Saint Venant equations has been demonstrated in lab

scale experiments (Brutsaert, 1971) and for irrigation channels ((Ooi, 2003) and (Ooi et

al., 2005)), to author’s knowledge well documented studies on the accuracy of the Saint

Venant equations against real operational data from a river is very limited. Moreover, with

the geometry of the river varies considerably, then there is also the question on how to

represent river in the Saint Venant equations. Thus, part of the research aims at finding

ways to represent the river using the Saint Venant equations in a simpler yet accurate

manner and compare the Saint Venant equations against real data from the Broken River
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to analyse its accuracy.

These analyses are important because without knowing the accuracy of the Saint

Venant equations for the river systems, the simulated ”fictitious” operational data is not

valid, hence making the approach of building system identification models using data

obtained from the simulation of the Saint Venant equations questionable.

1.4 The need for control

The Broken River serves as main water supply to the irrigators along the river and most

of the irrigation areas are between Casey’s Weir and Gowangardie Weir. Under current

practice, the irrigators place water order four days in advance. Once the water order is

approved, the water authority would release the water and the irrigators would draw water

from the river using pump. Thus, it is important that the water would reach the irrigators

on time and at the same time the water level in the river needs to be high enough such

that the pump can be operated.

Water can only be supplied from Lake Nillahcootie, thus there is a long delay from

the points of supply to the points of demand. In view of this, under current operation

it is necessary for water authority to release water from the upstream end before it is

required. Because there is uncertainty in the time delay, the water needs to be released a

bit early in order to make sure that it reaches the location where the demand is on time. In

order to compensate for losses on the way and inaccurate measurements of the flows, more

water than necessary is released, which leads to water wastage. Furthermore, as higher

priorities have been given to the environment, there is now a minimum and maximum flow

requirement as well as the average daily flow variation has to be within a certain limit

for the benefit of habitat preservation of aquatic creatures need to be considered in the

Broken River.

Thus, the aim of the control system is to achieve a timely delivery of water to the

irrigators, at the same time aim at reducing the total amount of water released from Lake

Nillahcootie. The control system should also aims at improving water delivery services to

the irrigators, by reducing the advance order time for the irrigators. The control system

would also need to take into account the minimum and maximum allowable flows and

permitted daily flow variations in Broken River.
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To achieve those aims with a control system, then, there is a question on what type

of controller should be considered. The choice of the controller needs to take into account

issues such as ease of implementation, robust to uncertainties and ability to handle con-

straints well. From the description of the control problems mentioned above, the problem

can be viewed as the flows and water levels in the Broken River are subjected to various

constraints. Thus, the use of Model Predictive Control (MPC) is deemed a suitable con-

trol strategy due its ability to handle constraints well. However, finding the appropriate

weights matrices in MPC cost function is not easy. The method of ”reverse engineering”

provides systematic way of obtaining these weight matrices and it will be explored. To

measure how the designed controller would perform, the controller will be assessed through

simulations. It is expected that with control in place, we would achieve timely delivery of

water to satisfy the water demands from both the irrigators and the environment, minimise

water wastage, improve water delivery services to the irrigators and satisfy all constraints.

1.5 Thesis Overview

This thesis is organised as follows.

Chapter 2 presents a literature review on modelling of open channel systems for the

purpose of control design and simulation. A literature review on the control of open

channel systems focused on river systems is also included in this chapter. Works on

control of irrigation channels are briefly mentioned.

Chapter 3 focuses on physical modelling of river system. The model obtained is for

the purpose of simulation. Here, the Saint Venant equations are introduced and derived.

The numerical method for solving the Saint Venant equations is presented. The issue of

how to segment a river is presented. Two simple segmentation strategies for a river are

proposed and tested against real data from the Broken River and the Murray River. The

treatment of a meandering river is addressed next by comparing the use of one-dimensional

and two-dimensional flow models. The chapter concludes with nonlinearity tests of the

Saint Venant equations, where we investigate how nonlinear the Saint Venant equations

are by using several commonly used nonlinearity tests suggested in the literatures.

Chapter 4 focuses on empirical modelling of river systems with the purpose of obtain-

ing models to be used for control design. The system identification procedures and the

nonparametric and parametric methods for system identification are introduced. The use
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of the two identification methods to obtain the river model is presented and it is shown

that river reaches can be modelled using time delay models and integrator delay models.

The quality of the parameters estimates in the models is investigated using the covariance

matrix. The effect of varying flow conditions is investigated. A comparison between the

physical and empirical modelling approaches is also presented.

Chapter 5 focuses on Model Predictive Control (MPC) design via reverse engineering.

An introduction to MPC is first given, before presenting the details of reverse engineering.

The design of MPC via reverse engineering is considered since it is difficult and time

consuming to find the weight matrices in the MPC cost function from scratch. Thus,

systematic methods of obtaining these weight matrices such that the MPC reproduces an

existing controller are presented and illustrated with some examples.

Chapter 6 presents the control design for the Broken River. A detailed control prob-

lems, challenges and objectives for the Broken River is given. MPC is used to control

the Broken River where two MPC designs are considered, i.e. MPC designed via reverse

engineering and MPC designed from scratch. The performance of MPC are evaluated in

terms of water savings, timely water delivery, improved water delivery services to the ir-

rigators and improved environmental benefits compared to current manual operation and

decentralised control.

Chapter 7 presents the conclusions and future works.

1.6 Thesis Contributions

The main contributions of this thesis are summarised as below.

• Investigations into how the Saint Venant equations should be segmented for simula-

tions using the Preissmann scheme and how sensitive the simulation results are with

respect to various parameters (Chapters 3.1 to 3.3).

• Comparison of the accuracy of one-dimensional and two-dimensional flow models

(Chapter 3.3.2).

• Investigation of the nonlinearity in the Saint Venant equations using commonly used

nonlinearity tests (Chapter 3.4).
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• Using system identification procedures to obtain river models for the purpose of

control design. The identified models are the time delay and the integrator delay

models. These identified models are similar to the findings from literatures. The

accuracy of these river models is compared against operational data as well as the

Saint Venant equations (Chapters 4.3 to 4.5).

• Building on the works by (Maciejowski, 2007) and (Hartley and Maciejowski, 2009),

two systematic methods of obtaining appropriate weights in the cost function of

Model Predictive Control are developed (Chapter 5).

• Design of Model Predictive Control via reverse engineering and from scratch. These

controllers are assessed on the Broken River through simulations (Chapter 6).



Chapter 2

Literature Review

In this chapter, a literature review on modelling and control of open channel systems1 is

given. The works on modelling and control of open channel systems are numerous (see

(Malaterre and Baume, 1998) and (Zhuan et al., 2009) and the references therein). As it

is almost impossible to include all the works in this overview, only works that are directly

relevant to the objective of this thesis as stated in Sections 1.3 and 1.4 will be presented.

2.1 Review on modelling of open channel system

Open channel systems are system where the flow of water is having a free surface. Example

of open channel systems are rivers and irrigation channels, where water is delivered from a

source (e.g. dam, lake, reservoir, etc) to a sink (e.g. consumers, sea, ocean, etc). To model

an open channel system, the relation between the source (e.g. flow) and the sink (e.g. flow

or water level) needs to be established. As mentioned in Section 1.3, this thesis explores

modelling for control and modelling for simulation. The scope of the literature review on

modelling will be focused on those two aspects. The review will not cover (details on)

rainfall-runoff modelling, modelling of catchments, modelling for flood routing, etc.

The models of open channel systems used for control design can be obtained via two

approaches, i.e. the physical approach and the empirical approach. We shall first present

the literature reviews of models obtained via the physical approach, followed by models

1The term open channel systems is used here to include irrigation channels, river systems and other
open channel systems.

14
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obtained via the empirical approach.

2.1.1 Models for control

Physical models for control

To author’s knowledge, the earlier works (see (Malaterre and Baume, 1998) and the ref-

erences therein) on modelling of open channel system for control design have been based

on the physical approach. The main governing equations are the Saint Venant equations

derived in 1871 by Saint Venant (see e.g. (Cunge et al., 1980), (Chaudhry, 1993) or

(Akan, 2006)) based on the conservation of mass and momentum. The resultant model is

a pair of nonlinear hyperbolic Partial Differential Equations (PDE) and these equations

are not easy to use for control design. Nonetheless, the first attempt to design control

using the full nonlinear Saint Venant equations was investigated in (Coron et al., 1999).

Coron et al. assumed the effect of viscous friction to be negligible and no lateral flow

was considered, which simplified the momentum equation of the Saint Venant equations

greatly, which was then used to design controller via a Lyapunov method. Subsequently,

Bastin et al., extended the work by designing controller that handle open channel system

with a steeper bottom slope (Bastin et al., 2009a).

To use the Saint Venant equations directly for control design involve complex mathe-

matical tools. Hence, these nonlinear equations are usually linearised. In (Papageorgiou

and Messmer, 1985), assuming uniform flow, Papageorgiou and Messmer built a model

by integrating three components; the reservoir, the regulator gate and the sewer (con-

veyance) that were normally encountered in open channel system. Linearising the Saint

Venant equations around a steady flow, together with the gate equations and taking the

Laplace transform, two transfer functions that relates the gate position with the flow and

water level respectively were established. In the case of flow control, the resulting model

was an integrator with delay, while in the case of water level control, the resulting model

was a double integrator with delay. The model was not validated against any measured

data.

The assumption of uniform flow that was considered in (Papageorgiou and Mess-

mer, 1985) was not entirely valid as flow in open channel systems was seldom uniform.

The nonuniform flow is the result of the effect of backwater which was not considered in

(Papageorgiou and Messmer, 1985). The backwater effect arises when the flow of water is
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obstructed (normally by a hydraulic structure) and leads to the rise of water level upstream

of the obstructing structure. This effect was investigated in (Schuurmans et al., 1995) and

it was found that the dynamics of a reach consist of two parts, i.e. the part where the flow

is uniform and the part where the flow is affected by the backwater effect. The part of the

reach with uniform flow can be modelled by a pure time delay and the part affected by the

backwater can be modelled by a pure integrator. Combining these two models led to the

well known Integrator Delay Model (IDM), which is widely used as the model for control

design in open channel system (see e.g (Silvis et al., 1998), (van Overloop et al., 2005)).

The accuracy of the model was validated in (Schuurmans et al., 1999b) where Schuurmans

et al. compared the frequency response of IDM with the finite difference based model

which was obtained from the linearised Saint Venant equations as well as the measured

data from the WM Canal, Arizona, USA.

Litrico et al. have contributed vastly in obtaining models for control design either

through simplification or from linearisation of the Saint Venant equations. Interested

readers are referred to (Litrico and Fromion, 2009) for more details. In (Litrico and

Georges, 1997) and (Litrico and Georges, 1999), under the assumption of zero lateral flow

and negligible inertia term in the Saint Venant equations, the Saint Venant equations

were simplified to a diffusive wave equations. Linearising this diffusive wave equations

around a steady flow led to a linear Hayami model2. The Laplace Transform of the

linear Hayami model was irrational and using the moment matching method, Litrico and

Georges approximated the linear Hayami model with a second order system with time

delay that relates the upstream flow to the downstream flow. The accuracy of the model

was validated against measured data from the Bäıse River, France. As a side note, there

are works where the Hayami model is used directly for control design (see e.g. (Chentouf

et al., 2001)).

The Integrator Delay Zero (IDZ) model developed in (Litrico and Fromion, 2004a),

(Litrico and Fromion, 2004b)) attempts to address several issues raised by Litrico and

Fromion about how the IDM model in (Schuurmans et al., 1995) was obtained. Litrico

and Fromion pointed out that the integrator is always present in the linearised Saint

Venant equations, and that the use of a pure time delay for the uniform flow part of the

reach and the use of an integrator without delay in the modelling of the backwater effect

part of the reach were not clearly justifiable. Litrico and Fromion derived the complete

2The model was named after Shoitiro Hayami (Hayami, 1951) for obtaining a linear model for flood
waves propagation.
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relation between the upstream and downstream flow and the upstream and downstream

water level via the Saint Venant transfer matrices. The idea of obtaining the complete

relation between the upstream and downstream flows and water levels is not new. This

was first considered in (Baume et al., 1998) with the assumption of uniform flow in the

reach. Litrico and Fromion extended those ideas to the case of nonuniform flow. Through

the transfer matrix of the Saint Venant equations, Litrico and Fromion found that the IDZ

model is valid over a large frequency range. At the low frequency, where the integrator

and time delay is dominant, the behaviour of the reach is the IDM model structure.

At high frequency, the celerity3 term and the time delay becomes dominant, hence they

approximated the celerity (for simplicity) by a constant gain with the assumption that

this constant gain represents the static behaviour of the oscillation. The IDZ model was

validated against measured data from the experimental facilities of Hydraulics and Canal

Control Center (HCCC), University of Évora, Portugal. In the author’s opinion, since

the model is going to be used for control design, where the low frequency behaviour is of

more interest, the necessity of extend the modelling to the high frequency behaviour is

questionable.

In addition, Litrico et al. also considered the use of simplified nonlinear Saint Venant

equations for control design (Litrico and Pomet, 2003). Using moment matching method,

the linear Hayami model in (Litrico and Georges, 1999) can be approximated by a class

of linear Ordinary Differential Equations (ODE). Then, Litrico et al. obtained a single

nonlinear ODE from the class of these linear ODEs and used the nonlinear ODE for control

design. The work was extended in (Litrico et al., 2010) to take into consideration of varying

time delay due to variation in flow. In both those cases, Litrico et al. considered the case

where the cross section of the canal was rectangular, where the analytical derivation was

simpler. While this consideration is fairly valid for the case of irrigation canals4, it may

not be valid for the case of a river. Moreover, as pointed by Litrico et al. themselves,

the analytical derivation becomes more involved and complicated (see (Litrico, 2001) and

(Litrico and Pomet, 2003)). This model was validated against measured data from the

Jacui River, France.

3In hydraulics, celerity is the speed of propagation of any disturbance introduced to the still body of
water given by c =

√
gD, where g is the gravity constant and D is the water depth (Akan, 2006)

4Most of the time, the cross section of the irrigation channel is assumed to be trapezoidal.
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Empirical models for control

All the modelling works mentioned above are based on the physical modelling approach.

Models of open channel systems for control design can also be obtained based on the

empirical modelling approach. This modelling approach is used in this thesis to obtain

the model of the Broken River for control design. The choice of the model structure in

empirical modelling is a choice between black box models and grey box models (Ljung and

Glad, 1994). The black box models do not provide physical insight about the system and

are used to only describe the relationship between the input and output. On the other

hand, the grey box models use some prior knowledge about the physical system when

selecting the appropriate model structure.

To the author’s knowledge, the use of the system identification procedure to obtain

model of open channel systems for control design is fairly recent (see the references in

(Zhuan et al., 2009)). This approach gained its popularity after Weyer in (Weyer, 2001)

obtained a simple model of irrigation channel useful for control design using the system

identification procedures. Using a simplified mass balance equation and gate equations,

Weyer obtained a grey box model that relates the upstream head over the gate to the

downstream water level for irrigation channel and it turned out that this model was a

parameterised IDM, which is in agreement with the findings by (Schuurmans et al., 1995)

and (Litrico and Fromion, 2004b). The unknown parameters in the model were estimated

from data. The model was validated against measured data from Haughton Main Channel

(HMC), Australia and was shown to be accurate in capturing the relevant dynamics of

the irrigation channels. In (Eurén and Weyer, 2007), the work was extended to consider

different gate structures used in the irrigation channels. Again, the model was validated

against measured data from Coleambally Main Channel (CMC), Australia and it was

shown to be accurate to capture the relevant dynamics in the irrigation channel. The

controller designed based on this model had been successfully implemented in irrigation

channels in Australia (see e.g. (Weyer, 2008) and (Cantoni et al., 2007)), where the

efficiency of the water delivery system had improved significantly (Mareels et al., 2005).

The identification in (Weyer, 2001) was carried out in open loop. Open loop exper-

iments conducted on site normally cause substantial deviations from normal operating

conditions. In view of that, closed loop identification of irrigation channels was considered

in (Ooi and Weyer, 2001). The model obtained via closed loop identification had the same

model structure as the one obtained via open loop identification.
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A grey box model was also used in the work Sohlberg and Sernfält in (Sohlberg and

Sernfält, 2002) to model the Dalälven River in Sweden. The obtained model was also the

parameterised IDM, that relates the upstream flow over the turbine to the downstream

water level. On the other hand, the work of Maxwell and Warnick in (Maxwell and

Warnick, 2006) used a time delay model that relates the upstream flow to the downstream

flow to model the Sevier River in USA. Both the models mentioned above had been

validated against measured data. In addition, these two findings are useful to this thesis

as they provide a good intuition for the initial choice of model structure as part of the

system identification procedures.

The use of black box models was considered in (Rivas-Pérez et al., 2007) and (Rivas-

Pérez et al., 2008) to model irrigation channels. Rivas-Perez et al. pointed out that the

channel characteristic were time varying parameters due to the change of flow and this

would affect the robust specification of the controller. They considered a robust identifica-

tion using recursive least square to address this issue. They considered four types of model

structures and concluded that the Auto Regressive Moving Average with Exogenous Input

(ARMAX) model that relates the upstream gate position to the downstream water level

best describe the dynamics of the irrigation canal with validation against measured data

from Guira de Melena Irrigation Main Canal (GMIMC), Cuba. The varying parameters

mentioned by Rivas-Perez et al., did not include the time delay. It is the variation of time

delay due to varying flow conditions that is of more concern in the robust specification

of the controller as this limits the closed loop bandwidth of the controller (Litrico and

Fromion, 2004a). In the author’s opinion, it is the inappropriate choice of the input signal

in the model that led to the variability in the system dynamics. Instead of choosing the

upstream head over the gate as input signal like in the case of (Weyer, 2001) or flow over

the turbine in the case of (Sohlberg and Sernfält, 2002), they chose upstream gate position

instead.

In a similar work, Sepúlveda and Rodellar concluded that the Auto Regressive with

Exogenous Input (ARX) model that relates the upstream flow to the downstream water

level best describe the dynamic of the irrigation channels (Sepúlveda and Rodellar, 2005).

The author wishes to express some doubt regarding the validity of the choice of the model

they used. The reason is due to the data, which they used for identification were generated

from the Saint Venant equations, in which the accuracy of the Saint Venant equations

for the channel they were investigating was not validated. While it is common to use

the simulated data from the Saint Venant equations to do system identification, without
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the Saint Venant equations been validated against measured data, the accuracy of the

identified model could be questionable.

A nonlinear version of an ARX model that relates upstream flow to downstream flow

was considered in (Elfawal-Mansour et al., 2000). The motivation to use NARX model as

mentioned by Elfawal-Mansour et al. was that the dynamics of the river system is nonlinear

and no further detail justifications were given. Furthermore, they did not validate the

model against any measured data, but proceed straight away to illustrate the performance

of the designed controller.

Another different approach of empirical modelling was considered in (Bolea et al.,

2009). Bolea et al., considered Linear Parameter Varying (LPV) model for irrigation

channels. The motivation behind was to use this model to design a fractional controller

which was shown to give satisfactory performance for irrigation channels (see (Feliu-Batlle

et al., 2007)). From the series of step responses conducted by Bolea et al., they arrived at a

second order system with time delay that relates pump input voltage to downstream water

level. The model was validated against measured data from the test canal in the Automatic

Control Department, Polytechnic University of Catalunya (UPC), Spain. To design a

fractional controller, the second order model was then approximated by an equivalent

fractional model. As a side note, using similar approach, Bolea et al. also approximated

a fractional model from Hayami model (Bolea et al., 2010).

A summary of the different models used for control are given in Table 2.1.

Other models

There are works that model open channel systems for other purposes than control. Those

models are aimed at describing the relation between precipitations5 or unmeasured flow

and the main flow of the open channel systems. From this thesis point of view, these

models can be useful in estimating the precipitation or the unmeasured flow, which can

be used in ”feedforward” control of the river systems. As mentioned earlier, these works

will not be discussed in detail but a short summary is given below.

5In meteorology, one of the definition of precipitation is the interaction between water, atmosphere and
ground surface (Sumner, 1988). Thus precipitation includes rainfall and snow.
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Table 2.1: Summary of models used for control.

Reference Approach Model Input Output Model
Validated

Coron Physical Full Gate position Water level No
et al. (1999) Saint Venant

Papageorgiou & Physical Linearised Uniform (i) Flow (i) Flow No
Messmer (1985) Flow Saint Venant (ii) Flow (ii) Water level

Schuurman Physical IDM Flow Water level Yes
et al. (1995, 1999b) over gates WM Canal, USA

Litrico & Physical Approx. Linear Hayami Flow Flow Yes
Georges (1997, 1999) 2nd order with delay Bäıse River, France

Litrico & Physical IDZ Flow Water level Yes
Fromion (2004a, 2004b) HCCC, Portugal

Litrico & Physical Simplified Nonlinear Flow Water level Yes
Pomet (2003, 2010) Saint Venant Jacui River, France

Weyer Empirical Parameterised Head Water level Yes
et al. (2001, 2007) IDM over gates HMC, CMC, Australia

) Solhberg & Empirical Parameterised Flow Water level Yes
Sernfält (2002) IDM over turbines Dalälven River, Sweden

Maxwell & Empirical Time Delay Flow Flow Yes
Warnick (2006) Model Sevier River, USA

Rivas-Perez Empirical ARMAX Gate position Water level Yes
et al. (2007, 2008) GMIMC, Cuba

Sepúlveda & Empirical ARX Flow Water level No
Rodellar (2005)

Elfawal-Mansour Empirical NARX Flow Flow No
et al. (2000)

Bolea Empirical Fractional LPV Pump input Water level Yes
et al. (2009, 2010) 2nd order with delay voltage UPC, Spain
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Young and co-workers have done a lot of works on rainfall-runoff modelling (see e.g.

(Young and Chotai, 2001), (Young, 2003), (Young et al., 2009) and reference therein).

They used a Data Based Mechanistic (DBM) modelling approach in their attempt to model

the rainfall-runoff. The backbone of DBM was a black box model but with the attempt

to give a physical interpretation of the model through the observations of the measured

data. DBM was also used to model the effect of snowmelt on river flow (Castelletti et

al., 2009). In (Bastin et al., 2009b), Bastin et al., combined the use of grex box and black

box modes to model a reservoir subject to precipitation and the surface runoff.

For the modelling of open channel systems with unmeasured flow (e.g., unmeasured

creeks, unmeasured offtake to irrigations), Jacobsen et al. used a three-reservoir model to

describe the dynamics of the open channel systems (Jacobsen et al., 1997) subject to the

contribution of unmeasured sewer systems during rain. The work was extended to consider

the unmeasured flow from creeks (Jónsdóttir et al., 2001). Jónsdóttir et al. concluded

that a two-reservoir model best describe the system. The use of several reservoirs models

in series is not new. In fact, this model was first proposed by Nash et al. (see (Nash, 1957)

and (Nash, 1959)), and the comparison against measured data revealed that this simple

model describes the dynamics of open channel systems relatively well (see the three-part

paper (Nash and Sutcliffe, 1970), (O’Connell et al., 1970) and (Mandeville et al., 1970)).

2.1.2 Models for simulation

Simulation models for open channel system are important for two reasons. Firstly, due

to that access to carry out experiments on the real open channel systems is normally

restricted, the simulation model thus acts as a substitute for experimentation. The sim-

ulation model can also be used for generating useful data for system identification in the

absence of quality measured data. Secondly, it is used for quick simulation for scenarios

assessment. In this section, a literature review on models for simulation centered around

these two reasons will be given. However, the focus is on the use of these models from a

control point of view, i.e. to assess the performance of the controller. The controller is

normally designed using simple model as discussed in Section 2.1.1. To assess the perfor-

mance of the controller, the full Saint Venant equations are normally used as a simulation

model as they depict the ”real” open channel systems, which induces model mismatch

and varying time delay due to varying flow conditions. The review will cover very briefly

on some aspects on the accuracy of the Saint Venant equations. It will however, not
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cover the nuts and bolts of the methodologies used as it is a vast field of research on its

own. Interested readers can consult texts on open channel (e.g. (Cunge et al., 1980) or

(Akan, 2006)) for more details.

Simulation models for experimentation

The full Saint Venant equations are used extensively in the simulation of open chan-

nel systems. This is evident from the development of various commercial softwares (e.g.

InfoSys-CS, HEC-RAS, CONCEPT, SIC, MIKE11), which are based on the discretisation

of the Saint Venant equations. The reason for the discretisation is that the full Saint

Venant equations have no analytic solution available and they have to be solved numer-

ically. Generally, the Preissmann scheme, which is an implicit finite difference method,

is used to discretise the Saint Venant equations. A comprehensive list of commercial

hydrological softwares and other schemes used can be found in (Singh and Yadava, 2003).

In principal, the Saint Venant equations are valid for an arbitrary geometry. For open

channel systems, where the geometry does not vary much, for e.g. in irrigation channels,

solving the discretised Saint Venant equations numerically is relatively easy. However,

things get more involved and complicated in treating open channel systems with varying

geometry for e.g. in rivers. The general practice used in those commercial softwares

mentioned earlier is to do segmentation. Segmentation is where the river is approximated

with several segments of straight stretches, where the river geometry is constant. In each of

the segment, the river geometries are then assigned (see e.g. (Langendoen, 2000), (Baume

et al., 2005), (Brunner, 2008)).

In regards to the treatment of rivers that meander, the friction coefficient plays a cru-

cial role as it affects the flow resistance (Fread, 1991). Hence, by adjusting the friction

coefficient, one can represent the meandering river pretty well. This was investigated in

(Bleninger et al., 2006). Bleninger et al. compared the simulation results from CasCade6

with a simple discretised Saint Venant equations they developed. In CasCade, the friction

coefficients were adjusted to treat the meandering river. In their findings, they concluded

that the accuracy of their simplified Saint Venant equations was relatively good com-

pared to CasCade in representing meandering river by adjusting the friction coefficient.

6The CasCade software is an in house software developed by the German Federal Waterways Engineering
and Research Institute that model the Rhine River. The CasCade software have the details of the river
geometry of the river.
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Nonetheless, there was no comparison made against real data. An alternative is to use

a two-dimensional flow model to treat river meandering. This, however increases com-

putational complexity. Nonetheless, the literatures on two-dimensional flow will not be

discussed here as it is not the main scope of this thesis.

The Saint Venant equations are also normally used as the simulation models to gen-

erate data for system identification. To use the Saint Venant equations to generate these

fictitious data for system identification, the accuracy of the Saint Venant equations them-

selves have to be ascertained first. Although the accuracy of the Saint Venant equations

have been verified in lab scale experiments (Brutsaert, 1971), the accuracy of the Saint

Venant equations in large scale system remains an open question. To author’s knowledge,

other than the work by Brutsaert, there are only three works that validate the accuracy of

the Saint Venant equations for open channel systems. This section will cover those three

works that have compared the accuracy of the Saint Venant equations against measured

data.

In (Ooi et al., 2005), Ooi et al. compared the Saint Venant equations with the measured

data from Haughton Main Channel (HMC), Australia. In their findings, they showed

that the Saint Venant equations were accurate in capturing the relevant dynamics of the

irrigation channels. Subsequently, in (Ooi and Weyer, 2008), controllers were designed

from the model identified using the data generated from the Saint Venant equations.

The simplified nonlinear Saint Venant equations developed by Litrico et al. in (Litrico

et al., 2010) can be used to generate data for system identification. In fact that was one

of the three main purposes of developing this model as mentioned by Litrico et al. This

simplified Saint Venant equations had been validated against measured data from Jacui

River, France (see Table 2.1).

Shrestha and Nestmann made the comparison of the Saint Venant equations with

measured data from Rhine River, Germany (Shrestha and Nestmann, 2005). They went

a step further by comparing the Muskingum-Cunge7 model against the measured data

as well. They concluded that the accuracy of both the Saint Venant equations and the

Muskingum-Cunge models are similar.

7The Muskingum-Cunge model (Cunge, 1969) is a simplified Saint Venant equations in the momentum
equation, which is widely used by the hydrologic community for channel routing.



2.2. Review on control of open channel system 25

Simulation models for scenarios assessment

To author’s knowledge, almost all the literatures on control of open channel systems use

the full Saint Venant equations as the simulation model (unless they have access to do

experiment on site). However, there are some exceptions and they are highlighted here.

The use of the full Saint Venant equations tends to be computational heavy and this is not

preferred if we want to perform a quick simulations. In (Litrico et al., 2010), Litrico et al.

proposed a simplified Saint Venant equations where the simulation was computationally

less demanding. The idea was to reduce the Saint Venant equations to a simple nonlinear

Delay Differential Equations (DDE), by linearising around a steady flow. The varying time

delay due to varying flow condition was accounted for by deriving the nonlinear DDE that

coincides with the linear DDE for every flow. The derivation, however considered only

rectangular cross section for simplicity. For other cross sections, the derivations were more

complicated. Thus, this simulation model would be more appropriate for open channel

systems with minor variations in geometry.

In (Sohlberg and Sernfält, 2002), a parameterised IDM model was used for simulation

but with an addition of white noise. Although adding white noise to the model to simulate

the ”real” world is not uncommon, in author’s opinion, for river systems, this practice is

not appropriate as the dynamics of river systems are greatly affected by the time delay.

The Dalälven River that they considered had huge flow variations (up to 100m3/s) and

näıvely just adding white noise and not considering the variation of time delay could lead

to robustness issues for the designed controller, when implemented.

2.2 Review on control of open channel system

To properly classify the different control methodologies for open channel systems is a very

difficult task. Nonetheless, in this thesis, the author will focus on presenting works on

control methodologies for river systems, whereas the control methodologies for other open

channel systems in particular irrigation channels will be briefly highlighted. A compre-

hensive list of references on control methodologies for irrigation channels can be found

in (Malaterre, 1995), (Malaterre et al., 1998) and (Zhuan et al., 2009). The author will

categorise the review into control of single reach river and multi-reach river.
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2.2.1 Control of single reach river

One of the earlier works on control of river systems is (Papageorgiou and Messmer, 1989).

The control objectives considered in that paper were to ensure that the downstream flow

was maintained at two different setpoints over two different seasons. During the dry

season, the flow in the river need to be maintained at a minimum flow Qmin set by the

water authority. While, during the raining season, the flow in the river need to reach

the new setpoint Qhigh > Qmin as fast as possible. In other words, they wanted a fast

setpoint tracking when there was positive flow setpoint change (from Qmin to Qhigh) and

no undershoot during negative flow setpoint change (from Qhigh to Qmin). The control

variable was the upstream flow and the controlled variable was the downstream flow. Three

controllers were considered and designed using the model obtained in (Papageorgiou and

Messmer, 1985). The first one was a PI-controller. The second one was a switching

controller between feedforward and feedback controller, where during the positive flow

setpoint change, the feedforward would be used while during the negative flow setpoint

change, the PI-controller would be used. Conditions to ensure bumpless switch between

the two controllers were considered. In view of the large time delay in the river system,

a Smith Predictor was considered and tuned through several experimentations until a

satisfactory performance was achieved. The comparison between the three controllers was

made. All three controllers produced no undershoot during negative flow setpoint change.

For the positive flow setpoint change, the Smith Predictor performed the best in terms

of a small rise time and less overshoot. However, Papageorgiou and Messmer preferred

implementing the switching controller instead as the tuning of the Smith Predictor would

be difficult in the real implementation.

Litrico and Georges considered the LQG controller to control a dam-river system

(Litrico and Georges, 2001). Their control objectives were to ensure delivery of water

to farmers and to maintain the downstream flow at setpoint defined by environmental and

ecological needs. The control and controlled variables were the upstream flow and down-

stream flow respectively. The controller was designed using the linearised Hayami model

obtained in (Litrico and Georges, 1999). To ensure zero steady state error, the integral

state was augmented to the model. The flow setpoint errors, the control actions and the

integral states were included in the criterion to be minimised. The criterion weighting

matrices Q and R were tuned using the ”de Larminat method” where a tuning parameter

Nc and No were multiplied to the controllability and observability gramian of the system

respectively. The tuning of Nc and No were carried out through trial-and-error. As not all
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states were measured, an observer was designed. The controller showed good performance

in the simulation but it was not tested on the real river system.

An H-infinity controller was considered in (Litrico and Fromion, 2002) to control a two-

dam river system. The controller was also designed using the linearised Hayami model.

In the considered river system, there were two dams of different volume with the dam

nearer to the irrigation area had smaller volume capacity compared to the dam located at

the most upstream. Litrico and Fromion looked at how to determine appropriate releases

from the dams so that the smaller dam would not be emptied due to water withdrawal

by the farmers. The simulation results showed that the H-infinity controller was able to

release appropriately the water from both the dams without emptying the smaller dam in

the presence of offtakes to irrigation.

The use of Model Predictive Controller (MPC) has increased in popularity due to its

constraints handling capability. MPC was considered in (Sohlberg and Sernfält, 2002)

to control the Dalälven River. The flow in the Dalälven River was determined by the

amount of energy generated by the hydropower station according to demand, which led to

large variation of water levels along the river. The control objectives were to ensure the

variation of water levels at the three specific locations were within a tolerable range, to

achieve high efficiency of power generation from the hydropower station and to minimise

the rate of change of flow over the hydropower station. The water level setpoint errors

and the control actions were included in the criterion to be minimised subject to the

mentioned constraints. The performance of the MPC was compared with current control

configurations via simulation where MPC not only was able to keep water levels within

the specified range, but the water level variations were smaller compared to the current

control configuration. From a power generation point of view, this smaller variation was

preferred as that led to a high power generation efficiency.

2.2.2 Control of multi-reach river

In control of multi-reach river, broadly speaking, there are two main control configurations,

i.e. the centralised and the decentralised. For other variants of configurations, readers are

referred to (Malaterre, 1995) for more details. In the centralised configuration, all the

control actions in the river reach are governed by a central controller. In the decentralised

configuration, each reach is controlled by a local controller. The drawback of a centralised

controller is that the design phase can be time consuming due to the many required trials
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with the high computational demanding centralised controller. In the implementation, the

performance is susceptible to data communication failure. For the decentralised configu-

ration, the drawback lies in the disturbance amplification or error propagation (see e.g.

(Schuurmans et al., 1999a), (Li et al., 2005) or (Cantoni et al., 2007)). Most works used

MPC to control multi-reach river system. The choice of using MPC in river control is

not surprising considering its good constraints handling ability, which most river systems

are subjected to. In view of this, one can notice almost all of the works given below uses

MPC.

In (Glanzmann et al., 2005), a centralised MPC was designed using the linearised Saint

Venant equations to control a four-reach river in Aare River, Switzerland. The flow dis-

charge through the turbine at the most upstream end of the river was used to generate

power. The effect of this flow discharge led to large water level variations along the river,

which was not desirable due to environmental considerations. Thus, their control objec-

tives were to ensure the deviation of water levels from setpoints were within a tolerable

range and to reduce the damping effect of the flow discharge variation. The criterion to

be minimised included water level setpoint errors and the control actions. The weight

matrices Q and R were tuned through trial-and-error and the Kalman filter was used

for states estimation. Glanzmann et al. compared the performance of MPC against the

PI-controller with feedforward through simulation. As expected, due to the constraints

handling capability in MPC, the performance of MPC was better compared to the PI-

controllers as the effect of damping was reduced and the variations in the water levels

were kept small.

An extension of the work by Glanzmann et al. was carried out in (Setz et al., 2008),

where an additional control problem of making the river navigable was considered. When

the Aare River was used for navigation, locks were used for the vessels to by-pass the

hydropower station. The use of locks not only greatly affected the flow discharge through

the turbine, which may lead to turbine wear, it also introduced large water level variations

in the river. Thus, on top of the control objectives mentioned in (Glanzmann et al.,

2005), effort to reduce the mechanical wear of the turbine was also considered. Instead of

designing the centralised MPC using the linearised Saint Venant equations, they designed

the controller using IDM. Setz et al. further divided the tolerable range of water levels

to two zones i.e. the ”preferred zone” and the ”emergency zone”. With this, the control

effort will be on damping the flow discharge variation, when the water levels were in the

preferred zone and to get out of the emergency zone (as soon as possible) when the water
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levels enters the emergency zone. Since these constraints on water levels were considered

as soft constraints, slack variables were included in the criterion. To limit the number

of movements of the actuator to reduce mechanical wear, a dead band was considered in

the optimisation problem. However, no specific details on how the weights they used in

the criterion function were given. The controllers in (Setz et al., 2008) were compared

via simulation with the PI-controller with feedforward and their findings shows that the

centralised MPC controller outperformed the PI-controller with feedforward in terms of

keeping the deviation of water levels within the tolerable operating range. None of the

MPC controllers used in (Glanzmann et al., 2005) and (Setz et al., 2008) were tested on

the real river.

Due to the large computational effort in using centralised MPC, Şahin and Morari

considered a decentralised MPC to control a 35-reach river (Sahin and Morari, 2010) with

the same control objectives as in (Setz et al., 2008). The controller was also designed

using IDM and augmented with integrating disturbance states to ensure zero steady state

error. The unmeasured states were estimated using the Kalman filter. Şahin and Morari

introduced a third operating zones, i.e. ”forbidden zone” which resulted in an additional

slack variable introduced in the criterion. Large weight were given to the slack variable of

the forbidden zone to ensure water levels will avoid this zone if possible at the same time

ensuring feasibility in the optimisation problem. In view of the disturbance amplification

or error propagation of using the decentralised configuration, they included a feedforward

of information between adjacent local MPC controllers. The information between the

local controllers was one way from upstream to the downstream local controllers. The

performance between the two setups (with and without feedfoward) of decentralised MPC

was compared via simulation and as expected the decentralised MPC with feedforward

performs better than the one without using the feedforward. In addition, the computation

time between the centralised and the decentralised control were compared, and showed a

smaller computation time when using the decentralised control. No test was carried out

on the real river.

The centralised MPC was used in (van Overloop et al., 2010) to control the North Sea

and the Amsterdam-Rhine Canals in the The Netherlands. For a navigable river, pumps

were used to minimise the variations of water level. Thus, the control objectives considered

were minimal energy consumption through the use of flow pump and to ensure a navigable

river. The IDM model was used to design the MPC. Through on-site experimentation,

van Overloop et al. showed that with MPC, significant energy savings were achieved
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(with a more efficient pumping operation) compared to the current operation while at

the same time ensuring a navigable river. van Overloop et al. planned to extend the

implementation of MPC to the whole Dutch water system. Due to the size of the system,

the use of centralised MPC would incur a large computational burden. They proposed a

distributed MPC configuration based on the work of (Negenborn et al., 2009b) but the

implementation of the controller had not been carried out yet.

In (Evans et al., 2011), the centralised MPC and LQ controller were considered to

control a network of reaches in the Murray River, Australia. The intention of the paper

is not meant for comparison of performance between the two controllers but rather to

explore the use of optimal control theory to control a river. The operations in the Murray

River are divided into three modes, i.e. supplying mode, storing mode and spilling model

where it is possible that different reaches in the river are operating in different mode. In

the supplying mode, the river is used to supply water according to demand in particular

during irrigation season. In the storing mode, the excess flow of the water not used to

satisfy the demands are stored within the river and in the spilling mode, the flow in the

river exceeds the capacity due to the effect of rain. Putting all these modes together,

their control objectives were to meet the water demands from respective users, maintain

the storage levels at setpoints and maintain water levels at the designated location of

interest at setpoints. In addition, the secondary control objectives considered were to

reduce the effort of the gates movement and keep the rise and fall rate of the flow within a

reasonable limit to reduce the activity of river bank slumping. For the LQ controller, the

criterion to be minimised included the water level setpoint errors, control actions and gate

movements, while for the MPC controller, the criterion to be minimised included the water

level setpoint errors and the rate of change of the control actions were included instead.

The weights in the criterion function were tuned through trial-and-error. Simulation

results showed both controllers performed well.

In (Puig et al., 2009), a centralised MPC was considered to control a three-reach Arrêt-

Darré/Arros system, which is a dam river system in France. Their control objectives were

to maintain the flow at the downstream end of the river at setpoint while ensuring the flow

at the intermediate points in the river stayed above the defined minimum ecological flow.

The criterion to be minimised included the flow setpoint errors and the rate of change of

the control actions. The weights in the criterion function were tuned through trial-and-

error. The MPC was designed using the ARX model, which they had identified for each

of the reaches, using the measured data from the river. Three simulation scenarios were
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considered; downstream flow setpoint tracking, disturbance rejection subject to rainfall

and disturbance rejection subject to offtakes to farms. In all cases, the MPC was able

to maintain the downstream flow at setpoint and ensured the flow at the intermediate

points in the river did not breach the defined minimum ecological flow. In addition, the

MPC was compared with the decentralised PID-controller. As expected, while the PID-

controller was able to maintain the downstream flow at setpoint, the PID-controller could

not maintain the flow at the intermediate point of the river to stay above the defined

minimum ecological flow.

Centralised MPC was considered in (Wagenpfeil et al., 2010) to control a four-reach

Elbe River, Germany. The Elbe River serves as the transport route for the shipping

industry. Under normal operation, the water level in the river was often low, which was

unsafe for shipping navigation, thus necessitated the use of pumps to channel the water

into the river. The use of pump led to high electrical power consumption. The control

objectives were to maintain water at levels deemed safe for navigation and to minimise

the pumping cost. Hence, the electrical energy tariffs were included in the criterion to be

minimised. The MPC was designed using the linearised Saint Venant equations and the

Kalman filter was used for state estimation. Simulation results showed that water level

variations were kept minimal taking into account the pump cost in the criterion.

A similar work was considered in (Linke, 2010) to control a three-reach Moselle River,

Germany. Along the Moselle River, instead of locks (used in Aare River), barrages were

used for shipping navigation. The opening and closing of the barrages create variation in

water levels and the coordination between different barrages are vital so that these water

level variations do not pose danger to the river navigation. The river also have hydropower

stations for power generation. Therefore, the control objectives were to achieve a navigable

river and to maximise hydropower output. Linke proposed a two-layer control configura-

tion. In the lower layer control, the decentralised PI-controller was used to maintain the

water level in each reach at setpoint. These setpoints were determined by the MPC, which

was the higher layer control. Like (Wagenpfeil et al., 2010), the controllers were designed

using linearised Saint Venant equations. The criterion to be minimised included water

level setpoint errors and control actions with more effort to attaining good flow discharge

such that maximum power generation was achieved. Simulation results showed that as

more effort was given in attaining good flow discharge for maximum power generation,

simulation results also showed an increase of hydropower output compared to the current

existing controller configuration.
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A centralised MPC was used in flood regulation in (Barjas Blanco et al., 2008) and

(Barjas Blanco et al., 2010). The Demer River in Belgium is flood prone and the cur-

rent controller configuration, although it helped in reducing the risk of flood, it failed

to avoid the big flood in 1998 due to a large amount of rainfall. In the MPC problem

formulation, Barjas Blanco et al. constrained the water level to avoid river bank spilling

and incorporated the rainfall measurements into the prediction horizon. The MPC was

designed using a simplified reservoir model (see (Nash, 1957) or (Jacobsen et al., 1997)).

Simulations using the data from the 1998 flood showed that MPC was able to avoid river

bank spilling, which suggests that the flood risk could potentially have been reduced with

the use of MPC.

Similar works on flood mitigation using MPC was investigated in (Kearney et al.,

2011b) with the Wivenhoe Dam along the Brisbane River, Australia used as a case study.

The Wivenhoe Dam, which was built to safeguard the city from flood was not able to

prevent the 2011 huge flood event. Two MPC strategies were considered with the difference

between the two was that one of the MPC utilised the measured flow in the prediction

model over the horizon, while the other MPC utilised the predicted flow in the prediction

model over the horizon. These MPCs were designed using the combination of a time delay

and a reservoir model. Simulation results using the data from the 2011 flood event showed

that with MPC, the huge flow released by the dam that led to the flood was reduced

significantly. This suggests that the potential damage incurred by the flood could have

been reduced with the use of MPC.

MPC was also considered in (Romera et al., 2011) for flood mitigation in the Ebro

River, Spain. There were several ”flooding areas” along the river where in the event of

high flow in the river, gates could be regulated to route the high flow to these flooding

areas. Thus, the control objective considered were flow routing in the event when the flow

in the river goes above a defined maximum safety value. The MPC was designed using

the IDZ model proposed in (Litrico and Fromion, 2004a). Simulation results showed that

MPC was able to regulate the gate to route the flow to the flooding areas when the flow

in the river went above a defined maximum safety value.

A hybrid MPC was considered in (van Ekeren et al., 2011), where the MPC was used to

control the opening of different barriers, which were used to protect the area against flood.

The term hybrid was used due to the opening and closing of these barriers were designed

to operate in discrete manner while the water levels and flows are operating in continuous

manner. The Rhine-Meuse Delta in the Netherlands was considered as their case study
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and van Ekeren et al., proposed the so-called time-instant optimisation (TIO) MPC to

reduce the computational load, which were often incurred when solving MPC optimisation

that involve a mixture of continuous and discrete dynamics. The idea behind TIO MPC

was to optimise the time instants of when the control action should take place. The control

objectives considered were to achieve a good performance trade-off between minimising

the cost of using these barriers and keeping the water levels within a safety level. The

cost of using the barrier and the amount of water levels exceeding the defined safety

reference level were included in the criterion. However, no details were given on how the

weights used in the criterion were selected. The MPC was designed using the IDM. The

performance of MPC was compared with the current control systems via simulation and

the results showed that with MPC, significant reduction in the cost of using the barriers

was achieved while maintaining the water levels within the defined safety level.

2.2.3 Control of irrigation channels

In this section, a brief review on control of irrigation channels are given. The PI-controller,

which was first properly implemented in (Schuurmans, 1997) is now commonly used and

was considered in many works (see e.g. (Baume et al., 1999), (Chentouf et al., 2001),

(Litrico et al., 2003) and (Aguilar et al., 2009)). While those works focused on control of

single irrigation channel, the decentralised PI-controller of multiple irrigation channels was

considered in (Schuurmans et al., 1999a), (van Overloop et al., 2005), (Weyer, 2002) and

(Ooi and Weyer, 2008). The PI-controller is normally used with the combination of low

pass filter and feedforward of current measurements for wave attenuation and improved

performance respectively. However, in scenarios where farmers may cancel or withdraw

the water earlier or later than the scheduled time, no significant improvement is observed

when the feedforward of scheduled offtakes is used (Weyer, 2002).

In (Malaterre, 1998), the LQ controller with feedforward was designed using the lin-

earised Saint Venant equations to control two different eight-pool irrigation channels. To

achieve zero steady state error, an integral state was included in the state space model.

The water level setpoint errors, the control actions and the integral states were included

in the criterion to be minimised. The weighting matrices Q and R were tuned through

trial-and-error. In addition, due to unknown disturbance and as not all the states were

measured, the Kalman filter was used for states estimation. The controller showed good

performance in simulations but was not tested in real operation irrigation channels.
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The LQ controller was also considered in (Weyer, 2003) to control a three-pool irriga-

tion channels in HMC, Australia. Instead of using the linearised Saint Venant equations

or Hayami equation, the controller was designed using the parameterised IDM obtained in

(Weyer, 2001). The state space model was augmented with integral states and high pass

filter states to ensure zero steady state error and avoiding excitation of wave frequencies re-

spectively. The criterion to be minimised included water level and head over gate setpoint

errors, the control actions, the integral states and the high pass filter states. As all the

states were measured, no observer was designed. As a note, the criterion involved a cross

term matrix due to one of the control objectives was to ensure minimal gate movement.

The tuning matrices Q, R and N were tuned through trial-and-error. The controller was

tested on HMC (Weyer, 2008) and compared with the decentralised PI-controller with

feedforward designed in (Weyer, 2002). Although the performance of LQ controller was

better compared to the decentralised PI-controller with feedforward, Weyer pointed that

more design effort was needed for the centralised LQ controller and whether the better

performance justified the design effort was case dependent.

The centralised H-infinity loop shaping controller was considered in (Li et al., 2004)

to control a three-pool irrigation channels in HMC, Australia. The were two steps to

the design procedure using H-infinity loop shaping. The first step was to shape the loop

gain of the plant to the desired loop gain shape. Then, the controller was synthesized to

achieve the desired performance by minimising the H-infinity norm of the shaped loop gain.

Li et al. compared the performance of the centralised H-infinity loop shaping controller

with the decentralised PI-controller with feedforward designed in (Weyer, 2002) and the

centralised LQ controller designed in (Weyer, 2003) via simulation and found that the

H-infinity loop shaping controller had the best performance in terms of setpoints tracking

and disturbances rejection. The advantage of H-infinity loop shaping controller lied in the

ease of tuning compared to the LQ controller. The distributed controller configuration was

later considered in (Li and Cantoni, 2008). The main difference between this configuration

and the centralised configuration in (Li et al., 2004) was that the loop shaping weights and

the structure of the controller imposed ensures information was exchanged unidirectional

between local adjacent controllers from downstream to upstream. The performance of

the centralised and distributed H-infinity loop shaping controller was compared with the

decentralised PI-controller with feedforward. The error propagation was lesser when the

H-infinity loop shaping controller was used compared to the decentralised PI-controller

with feedforward. Secondly, a properly fine tuned distributed H-infinity loop shaping
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controller performed as well as the centralised H-infinity loop shaping controller.

The use of MPC controller in the control of irrigation channels can be found in many

works (see e.g. (Ruiz and Ramirez, 1998), (Begovich et al., 2007), (Wahlin, 2007), (van

Overloop, 2006)). Most of those works mentioned considered centralised MPC configura-

tion with the control objective of maintaining water level at setpoints. The criterion to

be minimised include water level setpoint errors and rate of change of the control actions

and most of the weights in the criterion function were tuned through trial-and-error. A

decentralised version were considered in (Sawadogo et al., 1998) and (Gómez et al., 2002).

A distributed version of MPC was considered in the following two papers (Negenborn et

al., 2009b) and (Negenborn et al., 2009a) to control a seven-pool irrigation channels. The

main difference between the two works, lied in the way the information was exchanged

between the local MPC controllers. In the former work, information exchange between the

adjacent local MPC was bidirectional where each local controller would strive to achieve

the best performance. Negenborn et al. termed this as iterative schemes. The drawback of

this scheme was heavy computation time and the optimal solution may not be computed

fast enough (within a control cycle). A non-iterative scheme was proposed in the later

work, where a hierarchy was given to the local MPC controller where the controller in the

higher hierarchy could enforce the decision it made on the local MPC of lower hierarchy.

In other words, the information exchange became unidirectional from the higher hierarchy

controller to the lower one. Although this scheme was faster, the drawback of this scheme

was that the higher hierarchy controller will not know what was going on with the lower

hierarchy controller. The performance of the two schemes was compared and Negenborn

et al. concluded that the use of which schemes was case dependant. A similar variant of

non-iterative distributed MPC was considered in (Kearney et al., 2011a).

There are also work that designed open loop controller via model inversion (Liu et

al., 1994), open loop controller designed using differential flatness (Rabbani et al., 2010)

and nonlinear controller designed using Lyapunov method (Coron et al., 1999) and (Bastin

et al., 2009b) to control irrigation channels.
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Physical modelling

In this chapter, the physical modelling approach for river systems is presented. The

dynamics of one-dimensional flow of the river systems are modelled by a set of nonlinear

partial differential equations, which are also known as the Saint Venant equations derived

by Adhémar Jean Claude Barré de Saint-Venant in 1871. Despite the wide usage in

the field of hydrology, there are very few well documented studies on the accuracy of

the Saint Venant equations validated against measured data (see e.g. (Brutsaert, 1971),

(Ooi et al., 2005) for some works in this direction). In this chapter, the main aim is to

determine the accuracy of the Saint Venant equations for the river systems. This problem

is investigated by comparing the Saint Venant equations against measured data from a

river. In addition, we further investigate how to represent a river using the Saint Venant

equations given that the geometries of the river can vary considerably and river meanders.

Through simulation studies, we found that a simple representation of the river can be

achieved with good accuracy. The findings are validated using operational data from

two rivers in Australia. Moreover, our studies also reveal that simple adjustment of the

friction coefficient suffices in treatment of meandering river without the need to use a

two-dimensional flow model. Lastly, we investigate through several nonlinearity detection

tests on how nonlinear the Saint Venant equations are.

In Section 3.1, we will derive the Saint Venant equations from the conservation of mass

and momentum. Then, the Preissmann scheme, which is the most common numerical

method for solving the Saint Venant equations is presented. Section 3.2 addresses the

issue of segmentation where we look at how the river should be represented in the Saint

36
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Venant equations in order to obtain an accurate representation of the dynamics of the river

system. The segmentation approaches are compared against real data from the Broken and

Murray Rivers. The discussion of meandering river and whether a two-dimensional flow

model is required to treat a meandering river is presented in Section 3.3. The penultimate

section investigates the nonlinearities in the Saint Venant equations and a summary is

given in Section 3.5.

3.1 Derivation of the Saint Venant equations

The Saint Venant equations (assuming no lateral flow contribution) are given by

∂Q

∂x
+
∂A

∂t
= 0

∂Q

∂t
+

∂

∂x

(

Q2

A

)

+ gA
∂y

∂x
+ gA(Sf − S0) = 0

where Q = V A is the flow, V is the velocity, A is the wetted cross sectional area of the

channel, y is the water depth, g is the gravity constant, S0 is the bottom slope and Sf is the

friction slope. These equations are derived from the conservation of mass and momentum

under the following assumptions.

(i) The flow is one-dimensional.

(ii) The distribution of pressure is hydrostatic.

(iii) The velocity is uniform over a channel section.

(iv) The average channel bed slope is small. This implies that the angle (θ in Figure 3.2)

formed between the channel bed and reference datum is very small. This means the

measured flow depth in vertical direction is considered equal to the measured flow

depth perpendicular to the channel bottom.

(v) The flow is incompressible.

A simplified derivation of the Saint Venant equations will be presented here. More de-

tailed derivations can be found in standard open channel textbook (e.g. (Akan, 2006),

(Chaudhry, 1993) or (Cunge et al., 1980)). We begin by considering the conservation of

mass.
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3.1.1 Mass equation

Consider a volume element as shown in Figure 3.1 (Akan, 2006), where ρ is the density

of the fluid (water), A is the wetted cross sectional area of the channel, Q is the flow,

the subscript U and D denote the upstream and downstream end respectively, ∆x is the

distance between the upstream and downstream end and the flow direction is along the

x-axis.

A

x

QU

QD

Channel bottom

Upstream

Downstream

x

Figure 3.1: Sketch for the derivation of the conservation of mass equation.
(Akan, 2006)

The conservation of mass states that

Net rate of mass entering/leaving the volume element

=

Rate of change of mass in the volume element

(3.1)

From Figure 3.1, the mass of the water is given by ρA∆x. The water enters the volume

element at the rate of ρQU and leaves the volume element at the rate of ρQD over a finite

time, ∆t. Equating both sides of the conservation of mass yields,

ρQU − ρQD =
∆(ρA∆x)

∆t
(3.2)

Generally, water is considered an incompressible fluid. This implies that the density, ρ is
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constant. Then, Equation (3.2) is rewritten as

QU −QD =
∆(A∆x)

∆t
QU −QD

∆x
=

∆A

∆t
QD −QU

∆x
+

∆A

∆t
= 0

∆Q

∆x
+

∆A

∆t
= 0 (3.3)

where ∆Q = QD −QU . As ∆x and ∆t approach zero, Equation (3.3) becomes

∂Q

∂x
+
∂A

∂t
= 0 (3.4)

where t and x are the time and displacement in the main flow direction (i.e. x-direction

in our case). Equation (3.4) is known as the continuity equation.

3.1.2 Momentum equation

Here, the second Saint Venant equations is derived from the conservation of momentum.

Consider the volume element as shown in Figure 3.2. where ρ, Q, A, ∆x and subscript U

and D have the same meaning as before (Figure 3.1). ȳ is water depth of the centroid1

(see Figure 3.2), V is the velocity, Fp is the pressure force, Ff is the friction force and W

is the force due to the weight of the water. According to the conservation of momentum,

Rate of change of momentum within the volume element

=

Net rate of momentum transfer into the volume element

+

Sum of all forces that acts on the volume element

(3.5)

The left hand side of the conservation of momentum is given by

∆(ρ∆xAV )

∆t
(3.6)

1The center of the trapezoidal wetted cross sectional area.
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Figure 3.2: Sketch of the derivation of the conservation of momentum equation.
(Akan, 2006)

The first term on the right hand side is given by

ρQUVU − ρQDVD (3.7)

The second term on the right hand side comprises of the pressure force, the friction force

and the force due to the weight of the water along the direction of the flow i.e. along the

x-direction. The pressure force is denoted by

Fp,U − Fp,D = ρgAU ȳU − ρgAD ȳD (3.8)

The friction force Ff is given by

Ff = −ρgA∆xSf (3.9)

where Sf is the friction slope and the negative sign is due to the force acting in the opposite

direction of the flow (see Figure 3.2). Using the Manning’s friction coefficient, Sf can be
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expressed as n2Q2

A2R4/3 , where n is the Manning friction coefficient and R = A/P , P is the

wetted perimeter2. The force due to the weight of the water is given by

W = ρgA∆xS0 (3.10)

where S0 = sin(θ). Putting all these terms together yield

∆(ρ∆xAV )

∆t
= (ρQUVU − ρQDVD) + (ρgAU ȳU − ρgAD ȳD) + ρgA∆xS0 − ρgA∆xSf

(3.11)

Again, ρ is constant as the water is assumed incompressible. Dividing Equation (3.11) by

∆x leads to
∆(AV )

∆t
+

∆(QV )

∆x
+ g

∆(Aȳ)

∆x
+ gASf − gAS0 = 0 (3.12)

where ∆QV = QDVD − QUVU and ∆(Aȳ) = ADȳD − AU ȳU . As ∆x and ∆t approach

zero, then, Equation (3.12) becomes

∂Q

∂t
+

∂

∂x

(

Q2

A

)

+ gA
∂y

∂x
+ gASf − gAS0 = 0 (3.13)

In arriving with Equation (3.13), we used the following approximation ∆(Aȳ)
∆x ≈ A∂y

∂x (see

(Akan, 2006) and (Chow et al., 1988) for the derivation). Equation (3.13) is also known

as the dynamic equation. Equations (3.4) and (3.13) form the Saint Venant equations.

3.1.3 Finite difference method

When solving a nonlinear PDE such as the Saint Venant equations, we normally have to

resort to numerical methods due to the absence of a closed form solution. Finite Difference

Methods (FDM) are usually used to discretise the PDE. The FDMs discretise the PDE

in space and in time, where the partial derivatives are approximated using Taylor series

expansion. The discretised equations are then solved on a computational grid (see Figure

3.3).

From Figure 3.3, the horizontal grid lines represent the discrete time k, while the

vertical grid lines represent the discrete space i. The time and spatial increments are

denoted by ∆t and ∆x respectively. In the case of the Saint Venant equations, each

vertical grid line represents a spatial point of a river reach with the left most vertical

2The perimeter of the assumed cross sectional area minus the surface.
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Figure 3.3: Computation grid.

grid line represents the upstream end and the right most vertical grid line represents the

downstream end. We use a superscript to denote time while a subscript is used to denote

space. For example, by Qk
i , we are referring to the flow Q at spatial grid point i and time

grid point k.

The FDM scheme can either be explicit or implicit. In an explicit scheme, the approx-

imations based on the Taylor series expansions are expressed in variables at the current

time, while in the implicit scheme, the approximation based on the Taylor series expansions

is expressed in variables at future times.

3.1.4 Courant-Frederichs-Lewy (CFL) condition

When using Taylor series approximation for approximating the PDE, only a few terms

of the series are retained. This leads to truncation errors. The truncation errors need to

be treated with care as the accumulation of the truncation errors can lead to numerical

instability. Courant, Frederichs and Lewy investigated the numerical instability in relation

to the truncation error for PDEs in 1928 (Courant et al., 1967)3.

For the Saint Venant equations, which are hyperbolic PDEs, in order to avoid numerical

instability, the following condition, called the CFL condition has to be satisfied (Cunge et

3This article was originally published in German in 1928. The English version was from 1967.
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al., 1980).
∣

∣

∣

∣

∣

c0
∆t

∆x

∣

∣

∣

∣

∣

≤ 1 (3.14)

where c0 =
√
gy, g and y are the gravitational constant and the water depth respectively.

In the explicit schemes, when solving the Saint Venant equations, the CFL condition may

not be satisfied. To illustrate the CFL condition, we use an example given in (Cunge et

al., 1980).

In the example, the Saint Venant equations are solved for a river with water depth

y = 3 m using a spatial increment of ∆x = 1000 m. Equation (3.14) gives

∆t <
1000

(9.81 × 3)1/2
≃ 180s

This means, that to ensure numerical stability using an explicit finite difference method,

we can only solve the Saint Venant equations for a computational time step of at most 3

minutes. We can increase ∆x to obtain a larger computational time step, but increasing

∆x reduces the spatial resolution, which may result in poor accuracy of the obtained

solution.

On the other hand, in the implicit finite difference schemes there are no problems with

the CFL condition. This can be shown through a stability analysis procedure called the

von Neumann analysis procedure (see (Lyn and Goodwin, 1987) and (Julien, 2002)). For

this reason, implicit schemes are widely used when solving PDEs like the Saint Venant

equations.

3.1.5 Preissmann scheme

As explained in the previous section, explicit schemes are not preferred as they may suffer

from numerical instability (see e.g. (Vreugdenhil, 1994), (Beam and Warming, 1976),

(Lyn and Goodwin, 1987) or (Julien, 2002)). The implicit schemes, on the other hand, do

not suffer from numerical instability, and are hence preferred. There are several implicit

schemes that can be used (see e.g. (Chaudhry, 1993) and the reference therein) when

discretising the Saint Venant equations. The most widely used scheme is the Preissmann

scheme4 (see e.g. (Cunge et al., 1980), (Chaudhry, 1993) or (Akan, 2006)), and it will also

be used in this thesis. We will briefly explain the scheme here.

4The Preissmann scheme is also known as the 4-point implicit scheme
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To recapitulate, the Saint Venant equations are given by,

∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

(

Q2

A

)

+ gA
∂y

∂x
+ gA(Sf − S0) = 0

which can be rewritten in conservational matrix form,

∂U

∂t
+
∂F

∂x
+ S = 0 (3.15)

where

U =

[

A

Q

]

F =

[

Q
Q2

A + gAy

]

S =

[

0

gA(Sf − S0)

]

(3.16)

By approximating the variables (Q and A) and their partial derivatives by

∂f

∂t
=

(fk+1
i + fk+1

i+1 )− (fki + fki+1)

2∆t

∂f

∂x
=
α(fk+1

i+1 − fk+1
i ) + (1− α)(fki+1 − fki )

∆x

f =
1

2
α(fk+1

i+1 + fk+1
i ) +

1

2
(1− α)(fki+1 + fki )

where f = A or Q. α is a weighting coefficient, Equation (3.15) can be rewritten as

(Uk+1
i +Uk+1

i+1 )− (Uk
i +Uk

i+1) +
2∆t

∆x

[

α(Fk+1
i+1 − Fk+1

i ) + (1− α)(Fk
i+1 − Fk

i )

]

+∆t

[

α(Sk+1
i+1 + Sk+1

i ) + (1 − α)(Sk
i+1 + Sk

i )

]

= 0 (3.17)

For 0.5 ≤ α ≤ 1.0, the Preissmann scheme is unconditionally stable (see e.g. (Chaudhry,

1993) or (Akan, 2006)). The Preissmann scheme is an implicit scheme since the approxi-

mation for the partial derivatives involved the future time point k+1. Equation (3.17) is

a set of nonlinear algebraic equations that must be solved simultaneously.
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Trapezoidal approximation

Here we approximate the wetted cross sectional area with a trapezoid (see Figure 3.4).

Expressing A in terms of y (i.e. A = (b+sy)y, where b is the bottom width and s is the side

slope), Equation (3.17) consists of two nonlinear algebraic equations with four unknowns

(i.e. yk+1
i , Qk+1

i , yk+1
i+1 and Qk+1

i+1 ), and i = 1, . . . , N where N is the number of spatial grid

lines. In this case, Equation (3.17) yields 2(N −1) equations and 2N unknowns. Thus, we

need boundary conditions at the upstream and the downstream end to uniquely determine

all the unknowns.

Top Width, T

1

Side slope, s

Bottom width, b

Wetted

Cross-Sectional

Area, A

Wetted

Perimeter, P

Figure 3.4: Trapezoidal approximation of the wetted cross section of a river reach.

Boundary conditions

The boundary conditions can be obtained as follow. At the upstream end, the boundary

condition is given by

Qk+1
i=1 = Qk+1

up (3.18)

where Qk+1
up is a given in-flow. At the downstream end, we will assume there is a weir.

Using the flow over weir relationship (i.e. Q(t) = ch3/2(t) (Bos, 1978)), where c is the weir

constant and h is the height of the water above the weir), the boundary condition can be

expressed as

Qk+1
i=N = 0 if hk+1

N < 0

Qk+1
i=N = cweir(h

k+1
N )3/2 otherwise (3.19)
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where Qk+1
i=N is the flow at the last spatial grid line and hk+1

down is the downstream head over

weir given by yk+1
N −pweir, where yN and pweir are the downstream water depth and height

of the weir respectively. If a rating curve is used, then the downstream boundary conditions

can be expressed as Qk+1
i=N = f(yk+1

i=N ). If there is an undershot gate at the downstream

end, the boundary condition can be expressed as Qk+1
i=N = cuspus

√

yk+1
1,i=N − yk+1

2,i=N , where

pus is the gate opening, y1 and y2 are the water depth upstream and downstream of the

undershot gate respectively.

Initial conditions

To start the numerical solution, we need the initial conditions, which are the initial flow

and water depth at time point k = 1. The initial values can be obtained by solving

the Saint Venant equations in steady state with the last spatial grid line being a given

downstream water depth. Under steady state condition, all the time derivatives are set to

zero. Equation (3.4) becomes
∂Q

∂x
= 0 (3.20)

Equation (3.20) implies that the flow is constant at each spatial increment ∆x. Thus, the

initial flow for all ∆x is the constant upstream flow at time point k = 1. As the wetted

cross sectional area is assumed trapezoidal, we have that A = (b+ sy)y. Since the bottom

width and side slope are varying with x, we have

∂A

∂x
= (b+ 2sy)

∂y

∂x
+ y

∂b

∂x
+ y2

∂s

∂x

Let T = b+ 2sy. Using Equation (3.20), Equation (3.13) becomes

gA(S0 − Sf ) =
∂

∂x

(

Q2

A

)

+ gA
∂y

∂x

gA(S0 − Sf ) =

(

1

A

∂Q2

∂x

)

−
(

Q2

A2

∂A

∂x

)

+ gA
∂y

∂x

gA(S0 − Sf ) =

(

−Q
2

A2

)

∂A

∂x
+ gA

∂y

∂x

gA(S0 − Sf ) =

(

−Q
2

A2

)(

T
∂y

∂x
+ y

∂b

∂x
+ y2

∂s

∂x

)

+ gA
∂y

∂x
(3.21)
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Rearranging Equation (3.21) into differential form we get

dy

dx
=
gA(S0 − Sf )
(

gA− Q2T
A2

) +

(

Q2y
A2

∂b
∂x

)

(

gA− Q2T
A2

) +

(

Q2y2

A2

∂s
∂x

)

(

gA− Q2T
A2

) (3.22)

Equation (3.22) is an Ordinary Differential Equation (ODE) and the solution of this

ODE is a continuous function of water depths in x and it is used as the initial condition

for the numerical solution of the Preissmann scheme.

Solution procedure

Equations (3.17), (3.18) and (3.19) constitute a set of 2N nonlinear algebraic equations

with 2N unknowns, which can be solved using iterative technique. The most commonly

used technique is the Newton-Raphson method (see e.g. (Kreyzig, 1988) or (Akan, 2006))

and it is also used in this thesis.

The solution procedure presented here follows (Akan, 2006) closely. The unknown

quantities in Equation (3.17) are the Qk+1
i and yk+1

i for all spatial grid lines. The wetted

cross-sectional area A and the friction slope Sf can be expressed in terms of those unknown

quantities as well. Using the initial condition or the solution from the previous time step,

we can obtain the solution for the next time step. Writing the continuity, dynamic, and

boundary equations for all spatial grid lines, yield

Bup(Q
k+1
1 , yk+1

1 ) = 0

C1(Q
k+1
1 , yk+1

i , Qk+1
2 , yk+1

2 ) = 0

D1(Q
k+1
1 , yk+1

1 , Qk+1
2 , yk+1

2 ) = 0

C2(Q
k+1
2 , yk+1

2 , Qk+1
3 , yk+1

3 ) = 0

D2(Q
k+1
2 , yk+1

2 , Qk+1
3 , yk+1

3 ) = 0

...

CN−1(Q
k+1
N−1, y

k+1
i , Qk+1

N , yk+1
N ) = 0

DN−1(Q
k+1
N−1, y

k+1
N−1, Q

k+1
N , yk+1

N ) = 0

Bdown(Q
k+1
N , yk+1

N ) = 0 (3.23)
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In order to use Netwon-Raphson iteration method, we need to compute the partial

derivatives of Equations (3.17), (3.18) and (3.19) with respect to Qk+1
i , yk+1

i , Qk+1
i+1 and

yk+1
i+1 . The iteration method commences by assigning the initial condition to Qk+1

i and

yk+1
i for all spatial grid lines to the left hand side of Equation (3.23).

There could be residuals in Equation (3.23). Thus, the new values of Qk+1
i and yk+1

i

for all spatial grid lines for the next iteration are estimated such that these residuals

approach to zero. To do so, we need to calculate the correction factor ∆Qi and ∆yi to

Qk+1
i and yk+1

i for all spatial grid lines such that partial derivatives of Equations (3.17),

(3.18) and (3.19) with respect to Qk+1
i , yk+1

i , Qk+1
i+1 and yk+1

i+1 are equal to the negative of

the residuals.

Mathematically,

∂Bup

∂Qk+1
1

∆Q1 +
∂Bup

∂yk+1
1

∆y1 = −residual from Bup

∂C1

∂Qk+1
1

∆Q1 +
∂C1

∂yk+1
1

∆y1 +
∂C1

∂Qk+1
2

∆Q2 +
∂C1

∂yk+1
2

∆y2 = −residual from C1

∂D1

∂Qk+1
1

∆Q1 +
∂D1

∂yk+1
1

∆y1 +
∂D1

∂Qk+1
2

∆Q2 +
∂D1

∂yk+1
2

∆y2 = −residual from D1

∂C2

∂Qk+1
2

∆Q2 +
∂C2

∂yk+1
2

∆y2 +
∂C2

∂Qk+1
3

∆Q3 +
∂C2

∂yk+1
3

∆y3 = −residual from C2

∂D2

∂Qk+1
2

∆Q2 +
∂D2

∂yk+1
2

∆y2 +
∂D2

∂Qk+1
3

∆Q3 +
∂D2

∂yk+1
3

∆y3 = −residual from D2

...

∂CN−1

∂Qk+1
N−1

∆QN−1 +
∂CN−1

∂yk+1
N−1

∆yN−1 +
∂CN−1

∂Qk+1
N

∆QN +
∂CN−1

∂yk+1
N

∆yN = −residual from CN−1

∂DN−1

∂Qk+1
N−1

∆QN−1 +
∂DN−1

∂yk+1
N−1

∆yN−1 +
∂DN−1

∂Qk+1
N

∆QN +
∂DN−1

∂yk+1
N

∆yN = −residual from DN−1

∂Bdown

∂Qk+1
N

∆QN +
∂Bdown

∂yk+1
N

∆yN = −residual from Bdown

(3.24)

Equation (3.24) can be written in the matrix form of

Ax = b
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where A, x and b are the big matrices consisting of all the partial derivatives, the cor-

rection factors and the residuals respectively. Here, any matrix inversion method (such as

Gaussian elimination, LU Decomposition, etc) can be used to obtain the correction factor

∆Qi and ∆yi for all spatial grid lines. Then, we substitute these correction factors into

(Qk+1
i )l+1 = (Qk+1

i )l + (∆Qi)l

(yk+1
i )l+1 = (yk+1

i )l + (∆yi)l (3.25)

where l and l+1 denote the iteration steps. This procedure is repeated until the difference

between the left hand side and the first term on the right hand side is reduced below a

tolerance value ǫ.

3.2 Segmentation analysis of river systems

The Saint Venant equations are widely used for modelling of river systems for scenario

simulations, flow prediction, control design, etc. In order to represent a river using the

Saint Venant equations, the river is usually divided into segments which are stretches

where the river geometry and the friction are assumed constant. This lead to the question

of how a river should be segmented, considering that the geometries of a river can vary

considerably along a reach. In this section, we investigate the segmentation of rivers using

the Saint Venant equations.

3.2.1 Geometrical segmentation

For our analysis, we focus on the reach from Casey’s Weir to Gowangardie Weir in the

Broken River (see Figure 1.1). For simplicity, we call this reach, Reach CG. Based on the

on-site survey carried out by the Goulburn-Broken Catchment Management Authority

(GBCMA) (GBCMA, 2009) and the Hydrologic Engineering Center - River Analysis Sys-

tem (HEC-RAS) model obtained from (Cottingham et al., 2001), the approximate river

parameters for Reach CG are summarised in Table 3.1. Both Casey’s and Gowangardie

Weirs are sharp crested weirs where the flow can be approximated by (Bos, 1978)

Q(t) ≈ cweirh(t)
3/2 = cweir[y(t)− p]3/2 (3.26)
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p is the height of the weir. cweir ≈ 0.6
√
gbweir (Boiten, 2002) is the weir constant where g

is the gravity constant and bweir is the width of the weir. The width of the weir at Casey’s

and Gowangardie Weirs are approximately 30m and 6m respectively.

Table 3.1: Summary of river parameters for Reach CG.

Parameters Reach CG

Reach length, LCG 26.7km

Bottom width, bCG 9.0-12.0m

Side slope, sCG 2.0-3.0

Bottom slope, S0,CG 0.0008-0.0020

Manning friction coefficient, nCG 0.060-0.085

In an attempt to get a close approximations of the river geometry for Reach CG,

it is divided into segments, which are stretches where the river geometries are assumed

constant. Thus, Reach CG was segmented using 20 segments as shown in Figure 3.5, with

parameter values5 given in Table 3.2.

Figure 3.5: Geometrical segmentation of Reach CG. Source: Google Earth.

We called this way of segmentation, Geometrical segmentation. The setup time (i.e.

the time it takes to find all parameters and implement the simulation model) for a Ge-

ometrical segmentation is large and the more a river meanders, the more segments are

required for an accurate geometrical approximations. Sometimes we might only be inter-

5Values shown in Table 3.2 are obtained from GBCMA and the HEC-RAS model used in (Cottingham
et al., 2001). As there are no detailed surveyed data available for the whole of Reach CG, some of those
values are just best guesses based on the observation using Google Earth.
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ested in the flows or water levels at certain locations, e.g. the locations G8, G14 and D

indicated by the circles in Figure 3.5. The question then arises; if we are only interested

in the accuracy of the simulated flows and water levels at a few locations can we use a

simplified description of the river with fewer segments? Next, two segmentation methods

with less segments are suggested.

3.2.2 Single segmentation

We start with the simplest choice, i.e. we treat the whole river reach as one segment. We

call this ”Single segmentation”. In Single segmentation, we treat the whole river reach

as one segment with constant geometry such that the length is 26.7km, (i.e. the length

of the reach) and b, s, S0 and n are the average values from Table 3.1. S0 is computed

as (161.04 − 137.04)/26700 ≈ 9.00× 10−4, where 161.04mAHD and 137.04mAHD are the

elevations at Casey’s and Gowangardie Weirs measured in meter Australian Height Datum

(mAHD), which is relative to sea level. Figure 3.6 and Table 3.2 summarise the Single

segmentation for Reach CG.

Figure 3.6: Single segmentation of Reach CG. Source: Google Earth.
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Table 3.2: Summary of segmentation methods. The letter ’G’, ’S’ & ’M’ denote Geomet-
rical, Single and M-segment segmentation respectively.

Segment Geometry Segment Geometry

G1 b = 10.50m, s = 2.00 G11 b = 12.00m, s = 2.85
S0 = 8.00 × 10−4, n = 0.070 S0 = 9.00 × 10−4, n = 0.080

G2 b = 10.38m, s = 2.05 G12 b = 11.49m, s = 3.00
S0 = 9.00 × 10−4, n = 0.075 S0 = 11.00 × 10−4, n = 0.085

G3 b = 10.65m, s = 2.25 G13 b = 12.00m, s = 2.85
S0 = 7.25 × 10−4, n = 0.060 S0 = 9.00 × 10−4, n = 0.080

G4 b = 10.46m, s = 2.00 G14 b = 10.97m, s = 2.00
S0 = 8.00 × 10−4, n = 0.072 S0 = 18.00 × 10−4, n = 0.070

G5 b = 9.97m, s = 2.05 G15 b = 11.26m, s = 2.45
S0 = 10.00 × 10−4, n = 0.077 S0 = 15.00 × 10−4, n = 0.073

G6 b = 10.47m, s = 2.50 G16 b = 9.68m, s = 2.08
S0 = 8.15 × 10−4, n = 0.068 S0 = 10.00 × 10−4, n = 0.080

G7 b = 10.27m, s = 2.35 G17 b = 10.80m, s = 2.35
S0 = 8.75 × 10−4, n = 0.070 S0 = 10.65 × 10−4, n = 0.079

G8 b = 9.50m, s = 2.00 G18 b = 11.00m, s = 2.50
S0 = 20.00 × 10−4, n = 0.078 S0 = 9.00 × 10−4, n = 0.073

G9 b = 11.50m, s = 3.00 G19 b = 10.50m, s = 2.60
S0 = 10.00 × 10−4, n = 0.085 S0 = 12.55 × 10−4, n = 0.069

G10 b = 10.00m, s = 2.15 G20 b = 11.96m, s = 2.65
S0 = 9.44 × 10−4, n = 0.071 S0 = 10.00 × 10−4, n = 0.060

S1 b = 10.50m, s = 2.50
S0 = 9.00 × 10−4, n = 0.073

M1 b = 10.39m, s = 2.23 M3 b = 11.10m, s = 2.47
S0 = 8.41 × 10−4, n = 0.070 S0 = 11.20 × 10−4, n = 0.071

M2 b = 11.32m, s = 2.69
S0 = 11.87 × 10−4, n = 0.080

3.2.3 M-segment segmentation

For M-segment segmentation, we segment the reach according to the locations of interest.

M is the number of locations of interest along the river reach. In this example, we have

M = 3 segments and the average value of the river parameters are used for the segments

’U-G8’, ’G8-G14’ and ’G14-D’ (see Figure 3.7 and Table 3.2). As a note, instead of using

average values based on surveys for the river parameters, they can also be estimated from
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Figure 3.7: M-segment segmentation of Reach CG. Source: Google Earth.

measured data (see e.g. (Wu et al., 2007)).

3.2.4 Illustrative examples

In this simulation, ∆t = 1 minute and nsec = 100, ∆x = L/nsec = 26700/100 = 267m are

used. For the boundary flow condition at the upstream end we use a pseudorandom binary

signal6 with period 250 minutes and levels of 1.25m3/s and 2.75m3/s as shown in Figure

3.8. The downstream boundary condition is the flow given by Equation (3.26) using the

simulated water level and pG = 137.33mAHD. For the width of the weir, bweir,G = 6m.

The water levels at the three locations of interest are compared. For the three different

segmentation methods, the simulated water levels are shown in Figure 3.9. The simulations

ran from t = 0 minutes to t = 6000 minutes but for a clearer presentation, we only show

the results from time 3000 to 5000 minutes. As a quantitative measure, the Mean Square

Difference (MSD) is calculated i.e.,

MSD =
1

N

N
∑

t=1

[ygeo(t)− yq(t)]
2 (3.27)

where N = 6000 is the number of data points and ygeo and yq are the simulated water level

obtained using Geometrical segmentation and q = Single or q = M-segment respectively.

Remarks: The accuracy of the river parameters shown in Table 3.2 is not important

as the comparison are made between simulated data. However, the accuracy of the river

6A pseudorandom binary signal is a two-level periodic and deterministic signal, which has the properties
similar to a white noise. This allow excitation of multi harmonics in a single measurement.
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parameters become more important when comparison are made against measured data.

We address this in more detail in Sections 3.2.6.
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Figure 3.8: Input flow.

The values of the MSD are shown in Table 3.3.

Table 3.3: Values of MSD.

Location MSD (10−4m2) MSD (10−4m2)
(Geo. vs. Single) (Geo. vs. M-segment)

G8 28.868 10.196

G14 118.391 30.694

D 0.604 0.112

From Figure 3.9 it is clear that all segmentations produce qualitatively similar sim-

ulated water levels with an offset between them. The difference in water level between

different segmentations is small at the downstream end. If the water level at the down-

stream is all we are interested in, the results indicate that the Single segmentation is

sufficient. At the other locations, M-segment segmentation is closer to the Geometrical
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Figure 3.9: Water levels at the three locations.

segmentation than the Single segmentation. These findings are encouraging as it suggests

that we do not loose much in accuracy by using fewer segments, particularly if we are only

interested in the water level at the downstream end.

3.2.5 Validation against operational data

Single segmentation

Figure 3.10 shows the measurements of the flows and water levels at Casey’s and Gowan-

gardie Weir. The flows at Casey’s Weir are not physically measured but computed from

the water levels based on a water level-to-flow conversion table used by the water author-

ity. Since the comparison of measurements can be made only at the downstream end and

based on the results in Section 3.2.4, we use a Single segmentation to represent Reach CG.

The upstream boundary condition is given by the measured flows at Casey’s Weir, and

the downstream boundary condition is obtained using Equation (3.26) with the simulated

water level and pG = 137.33mAHD, where the subscript ’G’ denotes Gowangardie Weir.

cweir,G and nCG are calibrated from data using data from April to June 2001 (Figure 3.10)
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Figure 3.10: Top: Measured flows for Reach CG. Bottom: Measured water levels for Reach
CG.

and the criterion

θ̂p,CG = argmin
θp,CG

1

N

N
∑

t=1

[ymea,G(t)− ŷsim,G(t, θp,CG)]
2 (3.28)

where N = 8640 is the number of data points (the sampling period is 15 minutes), θp,CG =

[cweir,G, nCG]
T , ymea,G is the measured water level and ŷsim is the simulated water level

using the Saint Venant equations. The estimation procedure is a nonlinear least square

problem and the Levenberg-Marquardt method is used to solve the problem iteratively,

using the MATLABr routine lsqnonlin.

The calibrated values are cweir,G = 10.10m3/2/s and nCG = 0.1459. The calibrated

cweir,G indicates that the width of the weir bweir,G = 5.4m, which is close to the actual

width of the weir. The calibrated n is higher than the values given in Table 3.1. Those

values correspond to a particular section of the river reach and do not include the effect of

meandering. The meandering leads to a larger estimated value of nCG (see e.g. (Arcement

and Schneider, 1989)). Using the calibrated values, we validate our simulations on data

sets not used for calibration. The data sets are from October to December 2001 and April
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to June 2002 (see Figure 3.11) which roughly correspond to the Australian spring and

autumn respectively. In the simulation, we used nsec = 100 and ∆t = 15 minutes. As a

quantitative measure, the Mean Square Error (MSE) is calculated as

MSE =
1

N

N
∑

t=1

[ymea,G(t)− ŷsim(t, θp,CG)]
2 (3.29)

The MSE values are shown in Table 3.4.
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Figure 3.11: Top: Spring period (Start of irrigation season). Bottom: Autumn period
(End of irrigation season).

Table 3.4: The MSE values (10−3m2).

Data Period MSE MSE MSE
(Single) (M-segment) (Geometrical)

Spring 2001 5.38 5.03 5.41

Autumn 2002 0.52 0.52 0.57
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In addition, we calculated the MSE for the same data using M-segment and Geomet-

rical segmentation. For M-segment and Geometrical segmentation, we calibrated cweir,G

and nCG for each segment. We can see from the values of the MSE that the Single

segmentation is as accurate as the other segmentation methods.

Figure 3.11 shows that the Saint Venant equations after calibration using Single seg-

mentation are accurate when compared to measured data. It picks up the trends in the

water levels very well. Irrigation off-takes, rainfall and in-flows from creeks are not mod-

elled, and further improved accuracy could possibly be achieved by taking those effects

into consideration. Nonetheless, the results obtained are encouraging as they show that

Single segmentation represents real river data well.

M-segment segmentation

In the Broken River, there is no available measurements where the method M-segment

segmentation can be validated against data. In view of this, we validated this method

against measurements from the Murray River in Australia.

For the Murray River, we study the reach between Doctor’s Point and Yarrawonga

Weir, and we call this reach, Reach DY. This reach is about 115km long and has a

width between 40 and 60m making it larger than the Broken River. There are also two

unmodelled creeks flowing into this reach. Along this reach, there is a measuring station

at Corowa, which is located 63.1km downstream of Doctor’s Point. There is no hydraulic

structure at Corowa. Yarrawonga Weir is a sharp crested weir where the flow and water

level relationship can be described using

Q(t) ≈ ch(t)3/2 = c[y(t)− p]3/2 (3.30)

where p is the height of the weir. c ≈ 0.6
√
gbw (Boiten, 2002) where g is the gravity

constant and bw is the width of the weir. From a hydrological survey carried out by

Victorian Water Resources (Victorian Water Resources, 2009) and Department of Primary

Industries (Department of Primary Industries, 2009), Victoria, Australia, the (range of

the) river parameters for Reach Doctor-Yarrawonga are summarised in Table 3.5.

For this reach, we are mainly interested in the flows and water depths at two locations,

Yarrawonga Weir and Corowa. We only have measurements of flows and water levels at

Doctor’s Point and Corowa. In view of the absence of measurements at Yarrawonga Weir,
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Table 3.5: Summary of river parameters.

Parameters Reach Doctor-Yarrawonga

Reach length, L 115.0km

Bottom width, b 40.0-60.0m

Side slope, s 3.0-5.0

Bottom slope, S0 0.002-0.003

Manning friction coefficient, n 0.07-0.09

comparisons can only be made at Corowa. As boundary conditions can only be obtained

at Yarrawonga Weir, the reach is segmented using M = 2 segments as shown in Figure 3.13

with parameter values given in Table 3.6. The upstream boundary condition is the flow at

Table 3.6: Summary of M-segment segmentation.

Segment Geometry

DY1 b = 50.0m, s = 4.0
S0 = 0.00244, n = 0.1176

MU2 b = 55.0m, s = 5.0
S0 = 0.00233, n = 0.0684

Doctor’s Point, and the downstream boundary condition is given by Equation (3.30) using

the simulated water level. For Yarrawonga Weir, the height of the weir pY and the weir

coefficient cY are unknown and they are estimated together with the friction coefficients

on each segment, which we denote by nDY,1 and nDY,2 respectively. The criterion used is

θ̂p,DY = argmin
θ

1

N

N
∑

t=1

[ymea,Cr(t)− ysim,Cr(t, θp,DY )]
2 (3.31)

where N = 365, θp,DY = [cY , pY , nDY,1, nDY,2]
T , ymea,Cr and ysim,Cr are the measured and

simulated water levels at Corowa. As for the remaining river parameters (i.e. b, s and

S0), the average values from Doctor’s Point to Corowa and from Corowa to Yarrawonga

Weir are used. The measurements for the year 2000 shown in Figure 3.12 are used for

calibration.

The sampling interval is 1 day. The calibrated values are cY = 77.76m3/2/s, pY =
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Figure 3.12: Measured flows and water levels at Corowa for year 2000. Top: Flow. Bottom:
Water level.

Figure 3.13: M-segment segmentation of Reach DY. Source: Google Earth.

2.41m, nDY,1 = 0.1176 and nMU2 = 0.0684. Using these calibrated parameters, we validate

our models on data from 2001 (see Figure 3.14) which are not used for calibration. In the

simulations, nsec = 100 and ∆t = 1 day. We also use Single and Geometrical Segmentation

to represent the reach and calculated the MSEs. They are given in Table 3.7. From Figure

3.14, we see that the simulated water level picks up the trends in the measured water level

very well. As expected, from the MSE in Table 3.7, we see that the accuracy of using Single
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Table 3.7: The MSE values for Reach DY.

Data Period MSE MSE MSE
(Single) m2 (M-segment) m2 (Geometrical) m2

2001 0.080 0.038 0.032

segmentation is not as good as the Geometrical segmentation, while the accuracy of the

M-segment segmentation is as good compared to the Geometrical segmentation. As before,

in- and outflows from the creeks, rainfall, etc are not taken into account. These results

are again encouraging as they illustrate that the M-segment segmentation represents real

river data well.
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Figure 3.14: Measured and simulated water depths at Corowa using different segmenta-
tions.

3.2.6 Sensitivity analysis

Variations in river parameters

In Section 3.2.5, we used Single segmentation to represent Reach CG where the average

values of each of the river parameters are used. As these values are only approximate, we

study the effect of uncertainty in the parameters in this section.

We use the measured data from April to June 2002 for Reach Casey-Gowangardie.

The MSE found in Section 3.2.5 is used as the nominal MSE and it is denoted by MSE0.

We vary each of the four river parameters (i.e. bottom width, side slope, bottom slope

and Manning friction coefficient), one at a time from ±5% to ±40% and calculate the
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respective MSE. For comparison, the relative MSE is calculated as

Relative MSE =
MSEj −MSE0

MSE0
(3.32)

where MSEj represents the MSE obtained for each of the varied parameters, j = bCG, sCG, S0,CG, nCG.

From Figure 3.15 (top), we observe that the variation in bCG and sCG do not affect the
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Figure 3.15: Top: Relative MSE versus percentage variation of the river parameters.
Bottom: Relative MSE versus percentage variation in cweir,G.

accuracy much. For S0,CG, the accuracy decreases with 10% when the variation is more

than -20%, and n affects the accuracy greatly. However, S0,CG which is the average bot-

tom slope, can be relatively accurate measured and will not change much due to human

or natural activities. Thus, realistically the simulations will only be sensitive to the vari-

ations in nCG. This finding is in agreement with the common practice of calibrating nCG

against data (see e.g. (Lebosse, 1989)). In addition, we also investigate the sensitivity

of cweir,G. From Figure 3.15 (bottom), we notice that variation of cweir,G also affects the

accuracy significantly with very large relative MSE. Thus, it is of importance to calibrate

cweir,G as well.
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Changing ∆x and ∆t

In Section 3.2.5, ∆t = 15 minutes and ∆x = 267m, corresponding to nsec = 100 are used

and yield a simulation time of 205 seconds. In this section, we analyse how much the time

and spatial resolution can be allowed to increase before the accuracy drops significantly.

∆t and ∆x are varied each at a time, while fixing the river parameters to those used in
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Figure 3.16: Relative MSE and simulation time as a function of nsec (top) and ∆t (bottom).

Section 3.2.5. ∆x is varied by varying nsec such that ∆x is given by ∆x = L/nsec. We

then compute the relative MSE and the simulation time. All the simulations are carried

out in MATLABr on the same computer7. The simulation time is calculated using the

tic and toc functions in MATLABr. The results are shown in Figure 3.16.

From Figure 3.16, we observe the following. As expected, the accuracy of the simulation

improves as nsec increases but at the expense of longer simulation time. On the other hand,

as ∆t increases, we get similar accuracy but it gets worse when ∆t is greater than 200

minutes but we get a shorter simulation time. ∆t = 240 minutes (i.e. data sampled

every 4 hours) and ∆x = 1068m (i.e. nsec = 25) both give an increase of 0.01 in relative

MSE. We therefore expect a relative increase of about 0.02 if we use ∆t = 240 minutes

7Intel Core 2 CPU 1.73GHz processor with 2GB RAM
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and ∆x = 1068m. Next we used these values and compared with the measured data

and the results from Section 3.2.5 with ∆x = 267m and ∆t = 15 minutes. The results
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Figure 3.17: Measured and simulated water level using ∆t = 240 minutes and ∆x =
1068m.

are shown in Figure 3.17. Note that the two simulated water levels are nearly identical

and therefore difficult to distinguish. The simulation time is 1.35 seconds, which is a

substantial reduction compared to 205 seconds for ∆t = 15 minutes and nsec = 100, while

the calculated MSE increased from 0.52 (10−3m2) to 0.53 (10−3m2), which is in agreement

with our expectations. These findings show that we do not loose much accuracy by using

a lower spatial and time resolutions, at the same time reduces the simulation time.

3.3 Treatment of meandering river

In our analyses thus far, we have accounted the effect of meandering river by adjusting

the friction coefficient. This way of treating a meandering river is not uncommon (see

e.g. (Fread, 1991) or (Langendoen, 2000)). Here, we present the illustration used in

(Langendoen, 2000) on how the hydraulic software, CONCEPT handles a meandering

river (see Figure 3.18).
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Meandering regions e.g. between number 6-7 or 9-10 in Figure 3.18 will be assigned a

larger friction coefficient, i.e. a larger Manning’s friction coefficient n. This is because a

meandering region create resistance to the flow of the water. This method is sensible and

commonly employed in practice.

Another alternative for treating a meandering river is to use a two-dimensional flow

model. This lead us to the question of how accurate is a one-dimensional flow model with

an adjusted friction coefficient compared to a two-dimensional flow model? This question

is discussed in the next section.

Figure 3.18: A meandering river. Source: (Langendoen, 2000)

3.3.1 The Navier Stoke equations

The Saint Venant equations which are derived in Section 3.1 are a special case of the

Navier-Stoke equations for one-dimensional flow. Here, we will just present the Navier-

Stoke equations. For a detailed derivation of the Navier-Stoke equations, see Appendix

A.

The Navier-Stokes equations are given by,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.33)

ρ

[

∂(u)

∂t
+ u

∂(u)

∂x
+ v

∂(u)

∂y
+ w

∂(u)

∂z

]

− gxρ+
∂p

∂x
− µ∇2u = 0 (3.34)
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ρ

[

∂(v)

∂t
+ u

∂(v)

∂x
+ v

∂(u)

∂y
+ w

∂(v)

∂z

]

− gyρ+
∂p

∂y
− µ∇2v = 0 (3.35)

ρ

[

∂(w)

∂t
+ u

∂(w)

∂x
+ v

∂(w)

∂y
+ w

∂(w)

∂z

]

− gzρ+
∂p

∂z
− µ∇2w = 0 (3.36)

where u, v, w are the velocity in the x, y, z direction respectively, ρ is the density of the

water, g is the gravitational constant, p is pressure, ∇2 is the Laplacian operator given by
∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
and µ is a constant related to the stress in the fluid. Equation (3.33) is the

continuity equation, while Equations (3.34), (3.35) and (3.36) are the dynamic equations.

The Navier-Stokes equations describe three-dimensional flow. To describe a two-

dimensional flow, we need to integrate the continuity and the dynamic equations over

water depth. After some algebraic manipulation (see Appendix A), the continuity and

dynamic equations for a two-dimensional flow are given by,

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0 (3.37)

∂uh

∂t
+

∂

∂x

(

u2h+
1

2
gh2
)

+
∂(uvh)

∂y
= gh(S0x − Sfx) (3.38)

∂vh

∂t
+
∂(uvh)

∂x
+

∂

∂y

(

v2h+
1

2
gh2
)

= gh(S0y − Sfy) (3.39)

where h is the water depth, S0 is the channel bottom slope, Sf is the friction slope and

subscripts x and y indicate the direction of the slope. Using Manning’s friction coefficient,

Sfx and Sfy are given by un2
√
u2 + v2/h4/3 and vn2

√
u2 + v2/h4/3 respectively.

The continuity and dynamic equations can be expressed in conservation form i.e.

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+ S+T = 0 (3.40)

where
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

h
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S =




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0
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
(3.42)
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Note here that the terms uh and vh have the SI unit of m2/s, which is the flow per unit

distance.

Numerical method for two-dimensional flow

Like the one-dimensional model, implicit finite difference schemes are more attractive since

the explicit schemes suffers from issue with numerical instability. There are several types

of implicit schemes that can be used for solving the two-dimensional PDE. These schemes

include the Preismann scheme for two-dimensional flow (Holly and Preismann, 1977) as

well as Beam and Warming schemes (Beam and Warming, 1976). The Preismann scheme

for two-dimensional flow has shown to be stable in (Venutelli, 2002) and (Venutelli, 2007).

For that reason, the Preismann scheme is also used here.

When using implicit schemes for solving two-dimensional unsteady flow, one has to

deal with a large system of nonlinear algebraic equations at each time step. To reduce

the computational burden while maintaining the advantages of the implicit schemes, Al-

ternate Direction Implicit (ADI) method is utilised (Vreugdenhil, 1994). ADI was first

introduced by Holland for solving Maxwell’s equations (Holland, 1984). The ADI method

is particularly useful for solving multi-dimensional problem as one solve the system in

one particular dimension followed by the next dimension until the problem is solved in

all dimensions. Each solution in a particular dimension will be used as the initial so-

lution for the next dimension. Venutelli in (Venutelli, 2007) illustrated how the ADI is

used with Preissmann scheme for solving the two-dimensional flow equations. In view of

the high computational cost in solving the full Preissmann scheme, the scheme used in

(Venutelli, 2007) will be used here with the difference that the solution of the nonlinear

algebraic equations is solved using Newton-Raphson method instead of the double sweep

method, used in (Venutelli, 2007).

3.3.2 Illustrative examples

Here, we will consider (i) a single bend and (ii) multiple bends, as illustrated in Figure

3.19. The solid arrow represents the direction of the flow per unit distance along the

x-axis while the dashed arrow represents the direction of the flow per unit distance along

y-axis. The higher (lighter color) area represents the permanent structure (e.g. river side

bank), and the lower (darker color) area represents the wetted area. To account for these
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permanent structures, we set the velocity at these permanent structures to zero, since

there is no flow per unit distance at these structures (Venutelli, 2007).

8m

8m
20m

2000m

7.5m

20m

2000m

Figure 3.19: Illustration of multiple bends (top) and single bend (bottom).
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Despite Figure 3.19 showing only a portion of the meandering river, intuitively the

results should hold when considering the whole river reach as most of the meandering in

river can be represented by Figure 3.19. Before proceeding, the simulation setup is first

explained.

Figure 3.20: Top: Treating single bend as a segment. Bottom: Treating multiple bends
as a segment. Flow direction is from left to right.

We consider the bend(s) as a segment (see Figure 3.20). The length of the segment with

bend(s) is 2 km with ∆x = 50m. The bottom width is b = 20m with ∆y = 0.5m. Thus,

we have the both nsec,x = nsec,y = 40. The bottom slope in the x-direction, S0x = 0.001,
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bottom slope in y-direction, S0y = 0 and Manning’s friction coefficient is n = 0.04. The

characteristic of the bend(s) are shown in Figure 3.19.

The same input at the upstream end will be applied to both the one- and two-

dimensional flow models. The flow per unit distance at these bend(s) for the one- and

two-dimensional flow models will be compared in terms of Mean Square Error (MSE) given

by

MSE =
1

N

N
∑

t=1

[q1d(t)− q2d(t)]
2 (3.43)

where N = 160, q1d
8 and q2d are the flow per unit distance for one- and two-dimensional

flow models respectively. For the two-dimensional flow, as we have several flows per unit

distance across the y-direction, we use the average flow per unit distance computed along

the y-axis.

We shall then estimate the friction coefficient for the one-dimensional flow model from

the two-dimensional flow model. The friction coefficient, θ2d = n is estimated using the

quadratic criterion, i.e.

θ̂2d = argmin
θ2d

1

N

N
∑

t=1

[q2d(t)− q̂1d(t, θ2d)]
2 (3.44)

where N is the number of data points, q̂1d, q2d are the output flows per unit distance

with estimated friction coefficient using the one-dimensional flow model and the output

flow per unit distance using the two-dimensional flow model respectively. The plots of the

input and the output flow per unit distance are shown in Figure 3.21.

The estimated friction coefficient and the values of the MSE are shown in Table 3.8.

From the plots, we can see that output flow per unit distance of the one-dimensional

flow model with the estimated friction coefficient is as accurate as the two-dimensional

flow model. This is reflected in the values of MSE. The values of the estimated friction

coefficient are larger than 0.04, which makes sense considering that the meandering region

creates larger flow resistance, hence larger friction coefficient.

The results presented here show that by tweaking the friction coefficient of the one-

dimensional flow model, we can get a fairly accurate representation of a meandering river

as compared to using a two-dimensional flow model. This suggests that there is no need

8For the one-dimensional case, the unit for input and the output flows are in m3/s. To get the unit of
flow per unit distance, m2/s, we divided them by ∆x.
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Figure 3.21: Flow per unit distance. Top: Single bend, Bottom: Multiple bends.

to use a two-dimensional flow model for a meandering river. Note however that, in more

complex situations such as simulations of dam-break waves, coastal flows, tsunamis, etc,
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Table 3.8: Estimated friction coefficients and the values of MSE.

Structure Estimated Friction MSE (without MSE (with
Coefficient n̂ estimated parameter) estimated parameter)

(×10−5 (m2/s)2) (×10−5 (m2/s)2)

(i) n̂ = 0.0541 12.330 2.564

(ii) n̂ = 0.0526 10.984 2.069

the two-dimensional model becomes important.

3.4 Nonlinearities in the Saint Venant equations

The Saint Venant equations, are two nonlinear PDEs. Thus, there is an interest to deter-

mine ”how nonlinear” the Saint Venant equations are and we investigate this question in

this section. In Section 3.4.1, a brief literature review of the existing techniques on non-

linearity detection for arbitrary systems is presented. The application of these techniques

to river systems and the obtained result are discussed in Section 3.4.2.

3.4.1 Review on nonlinearity detection

An extensive list of works on nonlinearity detection can be found in (Natke et al., 1988).

The more prominent works are by Haber (Haber, 1985), (Haber and Keviczky, 1999),

Billings (Billings and Voon, 1983) and more recently Pintelon and Schoukens (Pintelon

and Schoukens, 2001).

There are several nonlinearity tests. They include time domain tests, coherence tests,

nonlinear cross-correlation tests, higher order autocorrelation tests, etc. An extensive list

can be found in (Haber and Keviczky, 1999). We will discuss some of the more commonly

used tests and highlight some of the advantages and disadvantages of these tests.

The simplest and the most popular test is the time domain test (Pintelon and Schoukens,

2001). In this test, the input signal u1(t) is scaled by a factor α1 (i.e. u1(t) is replaced by

α1u1(t) = u2(t)). If the system is linear, the output will be scaled by the same factor, i.e.

y2(t)/y1(t) = α2(t) = α1. Although this test is simple, it is not widely used in practice

as at least two experiments must be carried out. The choice of α1 may be limited by
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process constraints. If a small value of α1 is applied, the effect of noise is more significant,

jeopardising the overall test.

Coherence test or the linear spectral density test (Haber, 1985) is another test used in

nonlinear detection. The idea was originally developed by Sir Francis Galton and further

developed by Karl Pearson (Rodgers and Nicewander, 1988). The coherence between two

signals, x(t) and y(t) is given by

γ2xy(e
jω) =

|Sxy(ejω)|2
Sxx(ejω)Syy(ejω)

(3.45)

where Sxy(e
jω) = X(ejω)Y ∗(ejω). X(ejω) and Y (ejω) are the Discrete Time Fourier Trans-

form (DTFT) of x(t) and y(t) respectively. The notation ∗ denotes the complex conjugate.

For linear system, the values of γ2xy(e
jω) is close to unity. A drawback with this method

is that the separation between noise and a nonlinearity cannot be made ((Haber, 1985),

(McCormack et al., 1994) and (Pintelon and Schoukens, 2001)).

A test called nonlinear cross-correlation test was introduced in (Haber, 1979). In this

test, the input signal is a nonzero mean white Gaussian noise or a pseudorandom signal.

This signal is symmetrically distributed around the mean and have zero odd order moment

and nonzero even order moment (Haber and Keviczky, 1999). Introducing the term called

multiplier, i.e.,

x(t) =
ū2(t)− E{ū2(t)}

σ(ū2(t))
(3.46)

where σ(.) denotes the standard deviation and ū2(t) = [u2(t) − E{u2(t)}]/σ(u2(t)). The

cross-correlation,

Rxȳ(τ) = E{x(t− τ)ȳ(t)} (3.47)

is computed, where

ȳ(t) =
y(t)− E{y(t)}

σ(y(t))
(3.48)

If the system is linear, the cross-correlation, Rxȳ(τ) = 0 for all τ . If the system is nonlinear,

then Rxȳ(τ) 6= 0. In (Haber and Keviczky, 1999), it was claimed that this method is robust

against noise.

The higher order autocorrelation test in (Billings and Voon, 1983) is another nonlin-

earity test. Using a similar input signal as the nonlinear cross-correlation test but this
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time with zero mean, the autocorrelation given by,

Rȳ2ȳ(τ) = E{ȳ2(t− τ)ȳ(t)} (3.49)

is computed, where ȳ2(t) = [y2(t)−E{y2(t)}]/σ(y2(t)) and ȳ(t) = [y(t)−E{y(t)}]/σ(y(t)).
Rȳ2ȳ(τ) is zero for all τ for linear system. This test method becomes very popular as it is

simple and easy to apply (Várlaki et al., 1985). Despite its popularity, this test method

do raise some questions (Korenberg and Hunter, 1990) since while the zero value for the

autocorrelation Ry2y(τ) for all τ is necessary, it is not sufficient, and the test method fails

for a simple cubic relationship (i.e. y(t) = x3(t)).

A more recent nonlinearity test suggested in (Pintelon and Schoukens, 2001) is based

on using a broadband periodic excitation input signal. The idea originated from (Evans

et al., 1994). The method involves choosing a signal that only contain certain harmonic.

One example of such signal is the odd-odd multisines signal. The frequencies that are

excited by the odd-odd multisines signal are (4k + 1)f0, k = 0, 1, . . . , F , where F is

the number of frequencies and f0 is the fundamental frequency. If the system is linear,

only the frequencies at (4k + 1)f0 will appear in the output. If the system is nonlinear,

the nonlinearity plus noise would excite the non-excited harmonics i.e. at frequencies,

(4k+2)f0, (4k+3)f0 and (4k+4)f0. This technique can serve as an qualitative indication

of a nonlinearity but not a quantitative measure (Pintelon and Schoukens, 2001).

3.4.2 Nonlinearity tests for river systems

In this section, all the nonlinearity tests mentioned in Section 3.4.1 will be utilised to

determine ”how nonlinear” the Saint Venant equations are. We applied the tests to the

calibrated Saint Venant equations for Reach CG using Single segmentation (see Section

3.2.5).
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Time domain test

The input signal u1(t) is applied to the system and the corresponding output y1(t) is

obtained. The experiment is then repeated with the input scaled with a constant term,

i.e. u2(t) = α1u1(t) and the output y2(t) is obtained. The ratio of y1(t) and y2(t) is then

computed, i.e. y2(t)
y1(t)

= α2(t). If the system is linear, α2(t) = α1. The time domain test

is the simplest test for nonlinearity. This method do however, possesses some drawbacks

as highlighted in (Pintelon and Schoukens, 2001). These drawbacks mainly deal with

practicality issues when applying this method to the real systems. Since we are not

applying this method to a real river, these issues do not arise here.

Sinusoids with different offsets and amplitudes are used as input signals. They are given

by uLF (t) = 0.1 sin(ωt) + 0.35 m3/s, uMF (t) = 0.75 sin(ωt) + 3.00 m3/s and uHF (t) =

0.5 sin(ωt) + 7.50 m3/s, where the subscript ”LF”, ”MF” and ”HF” denotes Low Flow,

Medium Flow and High Flow respectively. The frequencies ω used are 0.001, 0.002, 0.004,

0.008, 0.01, 0.02, 0.04 and 0.08 rad/min. These frequencies are in the frequency range

that we are interested in for control. We use α1 = 0.25, 0.75, 1.25, 1.75, 2.25 and 3.00.

For illustration, only the results for ω = 0.004 rad/min are presented. Similar results

are observed for the other frequencies. In addition, a ±5% tolerance bound is included.

Figure 3.22 shows the plot of α2(t) = y2(t)/y1(t) for different values of α1. From Figure

3.22, we observe that α2(t) almost always stay within the ±5% tolerance bound except

for the case when α1 = 0.25 under LF condition. For this case, α2(t) exceeds the bound

at time 500 minutes and quite often stay close to the bound.

To ensure more frequencies are excited, we can use a broadband excitation signal. The

choice of broadband excitation signal is advocated in (Pintelon and Schoukens, 2001) as

this input signal can excite a broad range of the spectrum enabling collection of all the

required information from a single measurement (Pintelon and Schoukens, 2001). Pseudo-

random binary signal (PRBS) is an example of a broadband excitation signal. Figure 3.23

shows the PRBS signal applied to the Saint Venant equations. The period of the signal is

300 minutes. We repeat the time domain test with the PRBS using the same α1 values.

The value of α2(t) = y2(t)/y1(t) is plotted and shown in Figure 3.24.
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Figure 3.22: Plots of y2(t)/y1(t) = α2(t) for different flow conditions. Input frequency: ω
= 0.004 rad/min. Bold dashed line: ±5% tolerance bound. Dotted line: α1. Solid line:
LF. Dashed line: MF. Dash dotted line: HF.
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Figure 3.23: Pseudorandom binary signal (PRBS). Signal period = 300 minutes.

Again, we can see that under LF condition with α1 = 0.25, α2(t) are not within the

±5% tolerance bound. For the rest of the plots, α2(t) stays within the tolerance bound.

In addition, the results are consistent with the results using a sinusoidal input flow. Other

than for LF condition, α2(t) stay within the ±5% tolerance bound. The reason that the

LF condition show larger deviations is that the resonances tends to occur more clearly at

low flow. Based on the results from time domain test, we can say that the Saint Venant

equations are approximately linear within an operating region.

Coherence test

The coherence test is not a suitable nonlinearity test in our case as we are simulating the

Saint Venant equations in a ”noise-free” environment. McCormack et al. pointed that

for a noise free input and output signal, the coherence will always be unity regardless of

whether the output y is obtained through a linear or a nonlinear function. Moreover, if

only input u is noise free, the coherence can be computed without the effect from input

signal, which suggests the poor ability of coherence function to detect nonlinearity given

the input and output relationship, thus it not a good test for nonlinearity detection in our
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case.
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Figure 3.24: Plots of y2(t)/y1(t) = α2(t) for different flow conditions. Input signal: PRBS
with period = 300 minutes. Bold dashed line: ±5% tolerance bound. Dotted line: α1.
Solid line: LF. Dashed line: MF. Dash dotted line: HF.
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Nonlinear cross-correlation test

In this test, the input signal is Gaussian or PRBS with nonzero mean. We use the PRBS

for the three different flow conditons, LF, MF and HF as input signal and compute the

cross-correlation in Equation (3.47). The cross-correlation plot is shown in Figure 3.25.
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Figure 3.25: Nonlinear cross-correlation test plot. Top: LF condition, Middle: MF condi-
tion, Bottom: HF condition.

From the plot, we see that Rxȳ(τ) is small for all values of τ . Using the threshold value

2/
√
N given in (Haber, 1985)9 we see that, the cross-correlation stays within the threshold

for almost all τ . There are some instances where the cross-correlation just exceeds the

threshold (e.g. around τ = 1000 for LF condition). Based on the results from this test, we

can conclude that the Saint Venant equations are approximately linear within an operating

region.

9For large N , the standard deviation of the correlation estimate is 1/
√
N . The 95% confidence limit is

approximately 2/
√
N (Billings and Voon, 1983).
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Higher order autocorrelation test

This test is similar to the nonlinear cross-correlation test. The differences are the input

signal is zero mean and we compute the autocorrelation using Equation (3.49). If the

system is linear the autocorrelation is zero for all τ .

Note that a zero mean input signal means that, we are dealing with negative flows,

which is not physically feasible. Thus, we apply an input signal to the Saint Venant

equations and remove the mean at the output of the Saint Venant equations. In our

simulation, only the MF condition is considered. The reason we only consider one flow

condition is that due to the removal of the mean from the output, we observe that the

computed autocorrelation plot are very similar for all other flow conditions. The plot is

shown in Figure 3.26. From the plot, we see that Rȳ2ȳ(τ) is small for all values of τ .
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Figure 3.26: Higher order autocorrelation test plot.

Using the threshold value, 2/
√
N given in (Haber, 1985), we see that, the autocorrelation

just stays within the threshold for almost all τ . There are some instances where the

autocorrelation just exceeds the threshold (e.g. around τ = 4000). Based on the results

from this test, we can again conclude that the Saint Venant equations are approximately

linear within an operating region.
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Broadband periodic excitation

The odd-odd multisines signal is given by

u(t) =

F
∑

t=1

[A sin(ω0i(k)t+ φk)] +B (3.50)

where A is the amplitude, B is a constant offset to ensure positive flow, F is the number of

frequencies, i(k) = 4k+1, with i = 0, 1, ... and φk = −k(k−1)π/F . φk is called Schroeder
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Figure 3.27: Top: Spectrum of odd-odd multisines signal. Bottom: Time domain plot of
odd-odd multisines signal.

phase (Schroeder, 1970) and they are constructed such that the peak to peak amplitude

of the sum of the sinusoid signals is minimised. The odd-odd multisines is applied as the

input to the Saint Venant equations, with F = 10, A = 0.75 and B = 1.75. As we are

interested in the low frequency region, we chose ω0 = 0.001 rad/min. The simulation

result is shown in Figure 3.27.

In the frequency region of ω = 0.001 to 0.02 rad/min, we observe that the spectrum

of the output signal is similar to the spectrum of the input signal. The amplitude at the

excited frequencies for the output signal is similar to the amplitude of the input signal
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at the excited frequencies. Although the other harmonics are also excited for the output

signal, the amplitude is small compared to the amplitude of the excited frequencies. In

the high frequency region, e.g. ω > 0.02 rad/min, we see that the amplitude at the non

excited frequencies is larger compared to the low frequency region. This test indicates

that the Saint Venant equations are linear within the low frequency region.

3.5 Summary

In this chapter, we have investigated the segmentation of a river using the Saint Venant

equations. From the segmentation analysis, it has been shown that a few segments are

often sufficient for obtaining an accurate representation of a river. The findings are val-

idated using real data from two rivers in Australia, the reach between Casey’s Weir and

Gowangardie Weir in the Broken River, and the reach between Doctor’s Point and Yarra-

wonga Weir in the Murray River. Through the analysis, we also validate the accuracy of

the Saint Venant equations against real data. From the sensitivity analysis with respect

to the river parameters, we find that the variations in the Manning friction coefficient

and the weir constant have the biggest influence on the simulation results. Hence, they

should be calibrated against data. Moreover, it has been shown that the simulation time

can be reduced significantly by using lower spatial and time resolutions. In regards to

the treatment of a meandering river, our findings suggest that by adjusting the friction

coefficient of the one-dimensional flow model, one can get a fairly accurate representation

of a meandering river as compared to the use of a two-dimensional model. In the analysis

of nonlinearity detection of the Saint Venant equations, based on the results of several

nonlinearity tests, we can say that the Saint Venant equations are close to being linear

within an operating region.
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Empirical modelling

In Chapter 3, we have introduced the Saint Venant equations, and being partial differential

equations, they are not easy to use for control design. Thus, we seek a simpler alternative

model. In this chapter, the main aim is to build a model of a river for control design

using the system identification procedures and to determine the accuracy of the model.

The accuracy of the system identification models is investigated by comparing the model

against the measured data from a river. In addition, we want to determine the accuracy of

the system identification models against the Saint Venant equations. This is investigated

by comparing the two models against each other. Through experimentation validation,

the system identification model are found to capture the important dynamics of the river

useful for control design and are found to be of a similar accuracy as the Saint Venant

equations. The effect of different flow conditions that lead to varying time delays is

investigated as this factor affects robustness specifications for the controller, given that

the system identification models are going to be used for control design. The accuracy

of the estimate of the parameters in the system identification models are then analysed

using the theory of asymptotic distribution of parameter estimates.

The outlines of Chapter 4 is as follow. In Section 4.1, we present an overview of

the system identification procedures. Then, we derive model using nonparametric and

parametric identification methods in Sections 4.2 and 4.3 respectively. The effect of varying

flow conditions are analysed in Section 4.4. Section 4.5 looks at further modelling of river

reaches when the downstream flow can be regulated and when there is a storage in the

river. The accuracy of the estimated parameters for the empirical models is analysed using

83



84 Chapter 4. Empirical modelling

the covariance matrix of the estimate and this is discussed in Section 4.6. A summary is

presented at the end of the chapter.

4.1 System identification procedures

The general procedures for system identification are shown in Figure 4.1 ((Ljung, 1999)

and (Söderström and Stoica, 1988)). There are four main steps; experiment design, model

structure selection, parameter estimation and model validation.

Figure 4.1: General system identification procedures.

Experiment design: The operational data should be as informative as possible.

The best way is to conduct a dedicated experiment to collect data. In performing the

experiment, we need to ensure that the data we collect are of good quality and capture in-

formation about the relevant dynamics. The quality of the data depends on several factors
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such as sampling interval, signal-to-noise ratio, input signal shape, etc. Post treatment of

data such as pre-filtering, checking for drift, outlier, etc is also done in this stage. In cases

where experiments cannot be conducted, we just have to use whatever operational data

that is available.

Model structure selection: In this stage, the selection of the model structure is to

be made. A model structure is a class of models in which we are looking for a good one

to describe the system. There is a choice between parametric or nonparametric model

structures. Parametric models are models of the system that are described by a finite

dimensional parameters vector. Nonparametric models have the feature that the models

are curves or functions. There is also a choice between the ”ready-made models” and

the ”tailor-made model” (Ljung and Glad, 1994). The ready-made models are a set of

model with general applicability while the tailor-made models are constructed from basic

physical principles. In addition, for the ready-made models, this stage also involve choice

of model order, linear or nonlinear model, etc.

Parameter estimation: The selected model structure has parameters, which need to

be estimated from the operational data. There are several methods available to estimate

these parameters. These methods include prediction error method, maximum likelihood

method, instrumental variable method, etc.

Model validation: A good model is a model which is useful for its purpose. The

model needs to be able to reproduce the system behaviour given a new set of data. If the

model fails the validation stage, the modeller needs to make modifications by repeating

parts of the system identification procedure until an acceptable model is obtained. Model

validation tools include crossvalidation (i.e. simulating the model on a data set not used

for estimation), residual analysis, checking the value of the cost function, etc (Pintelon

and Schoukens, 2001).

4.1.1 Identification methods

System identification methods can be classified as nonparametric or parametric. Nonpara-

metric identification methods often have the feature that the resulting model are curves or

functions (Söderström and Stoica, 1988). They are not described by a finite dimensional

parameter vector (Ljung, 1999). Often we use nonparametric identification when we are

interested in conducting a simple experiment to gain insight in how the variables influence
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one another.

In parametric identification, the model of the system is described by a finite dimen-

sional parameter vector. Generally, θ is used to denote this parameter vector. The main

focus is to determine the value of θ such that the ”best” model in the model structures is

found (Ljung, 1999).

We shall apply both these identification methods to the Broken River. We first present

nonparametric identification method followed by the parametric identification method.

4.2 Nonparametric identification

Initially, the modeller may have little knowledge about the important dynamics of a sys-

tem. To gain insight into the behaviour of the system, a simple experiment can be con-

ducted. This simple experiment (e.g. step test or frequency analysis) is not aimed at col-

lecting quality operational data for parameter estimation, but rather to give the modeller

some knowledge about the system dynamics (e.g. how the variables affect each other, the

important time constant, etc). Two commonly used nonparametric identification methods

are step response analysis and frequency analysis1.

Since performing experiments such as step tests and sine sweeping tests on a river is

in most cases not practical due to economical, environmental and operational reasons, we

will simulate the step test and the sine sweeping test using the calibrated Saint Venant

equations instead. The step test can give us information regarding the time constant and

the time delay of the system. The frequency analysis can provide us with information

regarding the order of the system and also the suitable frequency range for control design.

We focus on the reach from Casey’s Weir to Gowangardie Weir. As in Chapter 3, we call

this reach, Reach CG. The calibrated Saint Venant equations using the Single segmentation

as in Section 3.2.5 will be used for simulations.

1This is also known as sine sweeping test (Pintelon and Schoukens, 2001).
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4.2.1 Step response analysis

In step response analysis, the input is a step. A step response is a good way to obtain a

rough model (Söderström and Stoica, 1988). A step function is defined by

u(t) =

{

A+A0 t ≥ 0

A0 t < 0
(4.1)

A0 is the nominal amplitude and A is the size of the step.

From a visual inspection of the measured flow in Reach CG (see Figure 3.10), the

flow ranges from about 0.7m3/s (≈ 61ML/day) to 3.0m3/s (≈ 260ML/day). Thus, a step

input flow from 0.8 m3/s (≈ 70ML/day) to 2.5 m3/s (≈ 216 ML/day) is given to the Saint

Venant equations to obtain the step response. Moreover, this flow are also the expected

flow in the Broken River during the irrigation season with the control system is operating.

Figure 4.2 shows the step response of Reach CG. At the downstream end, we converted

the water level to flow using the flow over weir relationship so that a comparison between

in-flow and out-flow can be made, i.e. QG(t) = cweir,G[yG(t)− pG]
3/2 where Q is the flow

and y is the water level where the subscript ”G” denotes Gowangardie Weir. The weir

constant cweir,G = 10.10 m3/2/s which has been calibrated against measured data (see

Section 3.2.5) and pG = 137.33 mAHD is the height of the weir.

From the step response in Figure 4.2, we see that the time delay is large compared to

the time constant of the system. The time constant Tc is the time for the output response

to reach 63% of the final value. The time constant Tc,CG ≈ 300 minutes. As a remark,

if the time constant is estimated based on the output response reaches steady state after

5 time constants, a smaller time constants of approximately 200 minutes is obtained. In

this thesis, the definition of the time constant based on output response reaching 63% of

the final value will be used. The time delay is found to be τCG ≈ 1600 minutes. The gain

of the system KCG = 1 as the steady state value for both input and output the system is

the same. As the delay of the system is much larger than the time constant, it indicates

that the system can be modelled as a pure time delay system, i.e.

QG(s)

QC(s)
= exp(−sτCG) (4.2)
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or in time domain representation,

QG(t) = QC(t− τCG) (4.3)

where Q is the flow, τCG, is the time delay, subscript ”C” and ”G” denote the Casey’s

Weir and Gowangardie Weir respectively. Moreover, the measured data (see Figures 3.10

or 4.6) also indicated that the system can be modelled as a time delay system.
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Figure 4.2: Step response.

4.2.2 Frequency response analysis

Frequency analysis is the analysis of the system in steady state when the system is sub-

jected to a sinusoidal input signal. By varying the frequency of the input signal over a

range of frequencies, the obtained output response can be analysed. The advantage of

frequency response analysis is that the Bode plot of the system can be easily obtained.

The disadvantage of this method is that in practice, many processes do not allow the

sinusoidal input during normal operation. Moreover, the experiment time is also long as

the experiment need to be repeated over the different frequencies of interest.
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In our case, it is not sensible to conduct field experiments using sinusoidal signals as

input to the river to obtain the Bode plot. However, given that we have calibrated the

Saint Venant equations for Reach CG, we can carry out the frequency response analysis

by performing sine sweeping experiment throughs simulation. We emphasize that the

purpose of frequency response analysis is to gain some rough idea about what the Bode

plot of the river system looks like, it is not meant as a practical method, which can be

applied in practice.

Consider a sinusoidal input,

u(t) = A sin(ω0t) (4.4)

where A is the amplitude and ω0 is the frequency.

If the system is linear and time invariant, the output would be a sinusoidal signal with

the same frequency, a scaled amplitude, and a phase shift. In a real system, the output

y(t) to the sinusoidal input also comprises of transient effects, effect of nonlinearities and

disturbances (e.g., noise).

y(t) = B sin(ω0t+ φ) +D(t) + transient + nonlinearities (4.5)

where B = A|G(jω0)|, φ = ∠G(jω0) = tan−1 Im[G(jω0)]

Re[G(jω0)]
, D(t) is the disturbance and

G(jω) is the transfer function relating the input and the output.

Here, we assume that the linear contribution dominates the nonlinearities (see Chapter

3.4). The effect of D(t) can be reduced by using a correlation method (Ljung, 1999)2. The

transient effect can be reduced by not considering the initial parts of the data. The idea

behind the correlation method is to correlate the output signal y(t) with a sine and cosine

of the same frequency ω0 as the input signal, and then average over the length of the data,

N (Ljung, 1999) (see Figure 4.3).

From Figure 4.3, the following equation can be obtained.

Mc(N) =
1

N

N
∑

t=1

y(t) cos(ω0t) (4.6)

and

Ms(N) =
1

N

N
∑

t=1

y(t) sin(ω0t) (4.7)

2This is also known as improved frequency method (Söderström and Stoica, 1988)
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Figure 4.3: Improved frequency method.
(Söderström and Stoica, 1988)

Substituting Equation (4.5) into both Equations (4.6) and (4.7) and assuming that the

effect of the transient is negligible, yields the following expression,

Mc(N) =
1

N

N
∑

t=1

y(t) cos(ω0t)

=
1

N

N
∑

t=1

(B sin(ω0t+ φ) +D(t)) cos(ω0t)

=
1

N

N
∑

t=1

(A|G(jω0)| sin(ω0t+ φ) cos(ω0t) +D(t) cos(ω0t))

=
1

N

N
∑

t=1

A|G(jω0)|
sin(2ω0t+ φ) + sin(φ)

2
+

1

N

N
∑

t=1

D(t) cos(ω0t)

=
A

2
|G(jω0)| sin(φ) +

A

2
|G(jω0)|

1

N

N
∑

t=1

sin(2ω0t+ φ)

+
1

N

N
∑

t=1

D(t) cos(ω0t) (4.8)

For large N , the average of the sinusoidal signal tends to zero and hence, the second

term will go to zero when N → ∞. Assuming that D(t) is a stationary stochastic process
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with covariance function RD(ℓ) such that

∞
∑

ℓ=0

ℓ|RD(ℓ)| <∞

then, the decay rate of the variance of the third term will be 1
N . Thus, as N → ∞, the

third term will go to zero as well. For a detailed proof, see (Ljung, 1999).

Doing the similar calculations for Ms(N) we get,

Ms(N) =
A

2
|G(jω0)| cos(φ)−

A

2
|G(jω0t)|

1

N

N
∑

t=1

cos(2ω0t+ φ)

+
1

N

N
∑

t=1

D(t) sin(ω0t) (4.9)

From Equations (4.8) and (4.9), |G(jω0)| and φ = ∠G(jω0) can be estimated as

|Ĝ(jω0)| =
2
√

M2
c (N) +M2

s (N)

A
(4.10)

and

φ̂ = tan−1 Mc(N)

Ms(N)
(4.11)

Having derived the expression for the magnitude and the phase of the transfer function,

we shall now apply frequency response analysis to Reach CG. The sinusoidal input flow

u(t) = 0.75 sin(ω0t)+3.0 m3/s is applied to the Saint Venant equations for Reach CG, and

the experiment is repeated for several frequencies ω0 in the frequency range of interest. The

input and output flow (i.e. the flow over Casey’s Weir and Gowangardie Weir respectively)

are shown in Figure 4.4.

By visual inspection of Figure 4.4, the output looks like a sinusoid with the same

frequency, and no harmonic or subharmonic is observed in the output. This suggests

that the Saint Venant equations are almost linear in a small operating region, and the

nonlinearity tests we carried out in Section 3.4, do reveal that the Saint Venant equations

are close to linear in an operating region. By repeating the sine sweeping test over different

frequencies and obtaining the magnitude and phase at each frequency, a Bode plot can be
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Figure 4.4: Input and output flow given sinusoidal input at frequency ω0 = 0.001 rad/min.

constructed.

The Bode plot for Reach CG obtained from the sine sweeping test is plotted in Figure

4.5. From the step response, the time delay is approximately 1600 minutes and the time

constant is approximately 300 minutes. The inverse of the time constant corresponds to

the corner frequency, i.e. ωcorner = 1/Tc,CG = 1/300 = 0.0033 rad/min. The corner

frequency is where the ”bend” occurs in the magnitude plot. From the theory of linear

time invariant system in the frequency domain, for a first order system without time delay,

the magnitude and the phase at the corner frequency are -3dB and -45◦ respectively, and

the roll-off is -20dB/dec.

From the zoomed in Bode plot, i.e. Figure 4.5 (bottom), we can see that in the

frequency range relevant for control the frequency response is similar to the frequency

response of a pure time delay system. The 3dB bandwidth of the system is approximately

0.0032 rad/min, but we note that the phase shift is already more than −180◦ at 0.0023

rad/min indicating a dominant time delay. In regards to the roll-off of the magnitude

plot, the roll-off is -20dB/dec at ωcorner but it becomes approximately -60dB/dec at the

frequency of 0.02 rad/min (see Figure 4.5 (top)), due to the unmodelled dynamics and
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nonlinearities not captured by a first order model.

4.2.3 Summary of nonparametric identification method

The step response analysis gives us information about the time constant and time delay of

the river reach. From the step response, we observe that the response can be approximated

by a pure time delay model. The results from the frequency response analysis concur with

the findings of the step response in the low frequency range. We shall use this information

to determine the appropriate model structure for the parametric identification method.

4.3 Parametric identification

Parametric models can be classified into the ”ready-made models” and the ”tailor-made

models” (Ljung and Glad, 1994). These models are also commonly known as black box

models and grey box models respectively. In the ready-made models (black box), a model

structure, which in general provides no physical interpretation of the system is used. Its

function is mainly to describe the input-output relationships of the system. These models

are useful if the physical laws governing the system are poorly known. On the other hand,

a tailor-made model (grey box) is built with some insights of the physical system and the

parameter θ represents the unknown values of the system parameters. θ would in this case

have some physical interpretation. For river system, the ”tailor-made” models are used

as initial model selection considering that we know from physics that for incompressible

flow, the sum of all in-flows and out-flows is equal to zero and the volumes and flows of

water obey mass and momentum balance equation.

Remarks on notation: In the system identification literature, the variable θ is used

to represent the unknown parameters. In order not to create a confusion, we use different

subscripts, i.e. θx,y,z to distinguish between different θs associated with different models

used in this thesis. The first subscript x = p, e where ”p” stands for physical approach to

modelling while ”e” stands for the empirical approach to modelling. The second subscript

y = CG,LBC, etc is used to represent the associated river reach, while the third subscript

z = 1, 2, . . . is used for numbering the unknown parameters. For example, θe,CG,1 means

this θ represents the first unknown parameter in a model of Reach CG obtained using

empirical modelling.



4.3. Parametric identification 95

4.3.1 Model structure selection

The same measurements of flows and water levels at Casey’s and Gowangardie Weir as

used in Section 3.2.5 are shown again in Figure 4.6. From Figure 4.6, we observe that the
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Figure 4.6: Top: Measured flows for Reach CG. Bottom: Measured water levels for Reach
Casey-Gowangardie.

flow measurements show a lag between Casey’s and Gowangardie Weirs and this indicates

that the system can be modelled as a time delay system. The simulations of the step

response and frequency response in Section 4.2 are in agreement with this finding as well.

By modelling this reach as a time delay system we get,

QG(t) = QC(t− τCG) (4.12)

where τCG is the time delay and the subscripts ’C’ and ’G’ denotes the Casey’s and

Gowangardie weirs respectively.

Both Casey’s and Gowangardie Weirs resemble a sharp crested weir (see Figure 4.7).

There is a well established relationship between water levels and flows for sharp crested

weirs, which can be found in most open channel text book, (see e.g. (Chaudhry, 1993),
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Figure 4.7: Sharp-crested weir structure.

(Cunge et al., 1980), (Bos, 1978)). The flow over a sharp crested weir can be approximated

by (Bos, 1978)

Q(t) = cweirh
3/2(t) = cweir[y(t)− p]3/2 (4.13)

where cweir is the weir constant, h = y(t)− p is the head over weir and p is the height of

the weir. The weir constant is (Boiten, 2002)

cweir ≈ 0.6
√
gbweir (4.14)

where g is the gravitational constant and bweir is the width of the weir. Substituting

Equation (4.13) into Equation (4.12), we get

cweir,Gh
3/2
G (t) = cweir,Ch

3/2
C (t− τCG)

⇓
cweir,G[yG(t)− pG]

3/2 = cweir,C [yC(t− τCG)− pC ]
3/2 (4.15)

⇓
yG(t) = θe,CG,1yC(t− τCG) + θe,CG,2 (4.16)

where θe,CG,1 = (cweir,C/cweir,G)
2/3 and θe,CG,2 = pG− (cweir,C/cweir,G)

2/3pC are unknown

constants, which are estimated from the observed data together with the time delay. The

associated predictor for (4.16) is given by

ŷG(t, θe,CG, τCG) = θe,CG,1yC(t− τCG) + θe,CG,2 (4.17)
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where ŷ is the predicted water level. Note that, the use of a time delay model to model

a river is in agreement with the findings by (Maxwell and Warnick, 2006). Maxwell and

Warnick consider the parameterised time delay model QG(t) = αQC(t− τ). Nonetheless,

this leads to the same predictor, Equation (4.17) but with different expressions for θe,CG,1

and θe,CG,2. However, this is of no importance as θe,CG,1 and θe,CG,2 are estimated from

data, and hence Equation (4.16) is the same as the parameterised time delay model from

(Maxwell and Warnick, 2006).

Remarks: Although Equation (4.12) contains no parameter apart from τCG, the

flow is rarely measured, but obtained from rating curves or based on Equations (4.13) to

(4.14). There are often large uncertainties in these rating curves and hence the necessity

of estimating the parameters in the model given by Equation (4.17).

4.3.2 Parameter estimation

The time delay model has three unknown parameters θe,CG,1, θe,CG,2 and τCG. As in

(Maxwell and Warnick, 2006), the time delay τCG is obtained from the cross-correlation be-

tween the measurements at the upstream and the downstream ends. The cross-correlation

function is given by

RQ′

GQ′

C
(τ) =

1

N

N
∑

n=1

Q′

G(n)Q
′

C(n− τ) τ = 0,±1, . . . (4.18)

whereN = 8640 (the sampling interval is 15 minutes), Q′(n) = 1
σ(Q(n))

[

Q(n)− 1
N

∑N
j=1Q(j)

]

and σ is standard deviation. RQ′

GQ′

C
is shown in Figure 4.8. The estimate of τCG is given
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Figure 4.8: Cross-correlation coefficient.
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by τ̂ = argmaxτ RQ′

GQ′

C
(τ).

The parameter θe,CG = [θe,CG,1, θe,CG,2]
T is estimated using least squares, i.e.

θ̂e,CG =

[

N
∑

t=1

ϕ(t)ϕT (t)

]−1 [ N
∑

t=1

ϕ(t)yG(t)

]

(4.19)

where ϕ(t) = [yC(t− τ̂CG), 1]
T and yG is the measured water level. The data set shown in

Figure 4.6 is used for estimation and the estimated values are θ̂e,CG,1 = 2.711, θ̂e,CG,2 =

−300.05mAHD and τ̂CG = 1650 minutes.

4.3.3 Accuracy of the model

Having selected the model structure and estimated the parameters, following the system

identification procedures, the model needs to be validated. In this section, we include the

results from Section 3.2.5 such that the time delay model and the Saint Venant equations

can be evaluated together and compared.

Time domain analysis

The accuracy of the Saint Venant equations for Reach CG using Single segmentation and

the time delay model are compared on data sets not used for estimation. These data

sets are from summer 2001 and winter 2002. Figure 4.9 shows the measured water levels,

predicted water levels using the time delay model and the simulated water levels from the

calibrated Saint Venant equations.

Table 4.1: Values of MSE.

Data Period Time Delay Model Saint Venant equations
(10−3m2) (10−3m2)

Summer 2001 2.25 5.38

Winter 2002 0.72 0.52

For quantitative comparison, the mean square errors, (MSE) between the predicted

and simulated water levels and the measured water levels are calculated. The MSE is
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given by

MSE =
1

N

N
∑

t=1

[yG(t)− ŷG(t, θe,CG, τCG)]
2 (4.20)

and given in Table 4.1. From Figure 4.9 (bottom), it can be seen that the Saint Venant

equations after calibration are accurate when compared to data during the winter period.

It picks up the trends in the measured water levels very well. We also included the result

from the summer period (see Figure 4.9 (top)) when larger water volumes are taken from

the river for irrigation. We can see that the water levels simulated using the calibrated

Saint Venant equations are higher than the measured water levels. This is expected as

the irrigation off-takes are not taken into account in the simulation model. The results

show that the calibrated Saint Venant equations are accurate in describing the relevant

dynamics of the river systems.

There is also good agreement between the time delay model and the measured data.

The time delay model has a similar accuracy in terms of the MSE as the Saint Venant

equations. In general, the MSE values are small and the time delay model follows the main

trends in the water level very well. Compared to the Saint Venant equations, the time
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delay model is much simpler, and it is preferred for control design. Both the Saint Venant

equations and the time delay model could be further improved by taking the effects of

irrigation off-takes, rainfall, etc into consideration.

Frequency domain analysis

The Saint Venant equations and the time delay model show similar behaviour when com-

pared against time domain data. As mentioned before, as many control design methods
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Figure 4.10: Bode plot for the reach between Casey’s Weir and Gowangardie Weir.

are based on frequency domain considerations, and it is therefore of interest to compare

the frequency domain properties of the two models. The Bode plot of the Saint Venant

equations and the time delay model are shown in Figure 4.10. In the frequency range

relevant for control the frequency response of the Saint Venant equations is similar to the

frequency response of the time delay model. The 3dB bandwidth of the Saint Venant

equations model is approximately 0.0032rad/min, but we notice that the phase shift is

already more than -180◦ at 0.0023rad/min, indicating a dominant time delay.
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4.4 Effect of varying flow condition

It is known (see e.g. (Litrico and Pomet, 2003), (Thomassin et al., 2009)) that the flow

conditions affect the time delay in a river, which will affect the robustness margins of

a control system. In view of that, further investigations on the effect of varying flow

condition are carried out.

From the available data, sets with different flows are found. The time delays for those

data sets are estimated using cross-correlation analysis as in Section 4.3.2. In addition,

we also include the cross-correlation between the upstream flow measurements at Casey’s

Weir and the simulated downstream flow at Gowangardie Weir obtained from the Saint

Venant equations. The estimated time delays are shown in Figure 4.11, and as expected

the estimated time delay decreases with higher flows. In addition, there is good agreement

between the cross-correlations obtained using the measured data and those obtained using

the Saint Venant equations, reconfirming the accuracy of the Saint Venant equations.

The varying time delay must be taken into account in the robustness specification of the

controllers.
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Figure 4.12: Step responses for LF, MF and HF condition.
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In addition, we repeat both the step response and frequency response analysis. We

simulated three different flow conditions, 0.25-0.45 m3/s (≈ 22-39 ML/Day), 2.25-3.75

m3/s (≈ 195-324 ML/Day) and 7.00-8.00 m3/s (605-692 ML/Day). We call these three

flow conditions, Low Flow (LF), Medium Flow (MF) and High Flow (HF) condition re-

spectively. We performed three new step tests where the flow is stepped from 0.25 m3/s

to 0.45 m3/s for LF condition, from 2.25 m3/s to 3.75 m3/s for MF condition and from

7.00 m3/s to 8.00 m3/s for HF condition. These step responses are shown in Figure 4.12.

From Figure 4.12, we see that the time delay changes substantially with the flow

conditions. A larger time delay is obtained for lower flow condition and a smaller time delay

is obtained for the higher flow condition. The time delay for LF, MF and HF conditions

are τLF ≈ 1800 minutes, τMF ≈ 800 minutes and τHF ≈ 500 minutes respectively. This

trend is in agreement with the findings from the cross-correlation analysis. The time

constant, on the other hand, does not change much for the three flow conditions, i.e.

between 200 − 300 minutes. Again, we note that if the definition of time constant where

the output response reaches its steady state value in 5 time constants is used, the time

constants seems to be larger as flow condition increases. Nonetheless, as the time delay

is larger than the time constant, a time delay model is still the suitable model structure,

thus the effect of the time constant can be neglected.

We repeat the sine sweeping test using these three flow conditions. The Bode plots are

plotted in Figure 4.13. The respective corner frequencies for all the three flow conditions

(marked by the intersection with the -3dB line) indicate that the time constant for all three

flow conditions are within 200-300 minutes, which is in agreement with the step response

obtained above. As for the phase plot, a large time delay for LF conditions contributes to

the phase dropping below -180◦ much sooner as compared to the MF and HF conditions.

As for the MF and HF conditions, the frequencies where the phase drops below -180◦ is

quite close. As a note, resonance peaks are observed at high frequencies but as control

design is the main interest, the behaviour at lower frequencies are more of interest.

The Bode plots suggest that the low flow condition is the most challenging due to the

drop in phase. Note that the gains in Figure 4.13 are never more than -3dB apart so a

modest gain margin will be sufficient. So essentially any robust controller designed for low

flow condition should work for medium and high flow conditions.
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Figure 4.13: Top: Bode plot for LF, MF and HF condition. Bottom: Zoomed in version.
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4.4.1 Discussion of the models

Undermodelling

A number of factors such as in-flows and out-flows from creeks, rainfall, water withdrawals

for irrigation, evaporation and surface-water/ground-water interactions have been ignored

in the models. Here, we briefly discuss the influence of these factors taking into account

that the models are going to be used for control design.

Surface-water/ground-water interactions: Some stretches of the Broken River

are gaining water from the ground water, while others are loosing. The reach between

Casey’s Weir and Gowangardie Weir is a loosing reach (Adams and Western, 2010).

However, the surface-water/ground-water dynamics is slow, and it is not considered im-

portant for control. Moreover, if the surface-water/ground-water interaction is mod-

elled as a constant in- or out-flow QSW/GW , then Equation (4.12) becomes QG(t) =

QC(t − τCG) − QSW/GW , and we will still end up with the model structure, Equation

(4.16), but with a different expression for θe,CG,2. This is however of no importance as

θe,CG,2 is estimated from data. Furthermore a controller with integral action will reject

constant unmodelled in- or out-flows.

Evaporation: The rate of evaporation is dependent on temperature, solar radiation,

wind speed, atmospheric pressure, area of water surface, etc (Deodhar, 2009). In (Young,

1998), temperature is included as an input variable in a rainfall-flow model, and the

flow shows a long term dependence on temperature which could account for the effect

of evaporation. As with the surface-water/ground-water interactions, the loss due to

evaporation from the river is a disturbance and its effect on the levels and flows is of lesser

importance for control. Evaporation from storages may be significant (Craig et al., 2007),

and this may influence how the storages are operated and hence also the control objectives.

In such case, it would be of interest to obtain models that relates the surface area of the

storage and the evaporation and use this model to as part of feedforward control for the

in- and out-flow of the storage.

Water withdrawal from the river for irrigation: The withdrawals can be large

and they can have a big impact on the predictive accuracy of the models. From a con-

trol point of view the withdrawals are load disturbances which should be rejected. The

irrigators order their water some days in advance, and better control can be achieved

by releasing water early using feedforward action to match the amount of ordered water.
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However, as water withdrawals act as disturbances the transfer function from the in-flow

(that we can manipulate) to the water level or flow (that we want to control) remains the

same. That is, the transfer function on which a feedback control design is based remains

the same, although the estimate of it may become more uncertain if there are large water

withdrawals which have not been taken into account.

In- and out-flows from creeks and rainfall: If measured, the in- and out-flows from

creeks can easily be included in the models (see Section 4.5), and they can also be accounted

for in the controller by e.g. regarding them as part of the flow to be released by the

controller. When the flows in the creeks are not measured, rainfall-runoff models (see e.g.

(Bastin et al., 2009b), (Young, 1998), (Young and Chotai, 2001), (Young, 2002), (Young,

2003) and the references therein) are useful for estimating the additional contributions

from creeks and rain. Even when the flows and water levels in creeks are measured, it

may be of interest to predict flows into the future if the time delays associated with the

flows in the creeks are much smaller than the time delays of the flows commanded by the

control system. The information about the predicted flows can then be used as part of

feedforward control.

Use of the time delay model for control

Although the time delay model gives a good representation of a river reach in the time and

frequency domain as illustrated in the previous sections, some care needs to be exercised

when using it for control design. One key aspect in the previous sections is that the

downstream flow could not be manipulated, and the downstream flow is simply modelled

as the delayed upstream flow, i.e. QD(t) = QU (t − τ). However, if the downstream flow

QD can be set independently of the upstream flow QU (e.g. by regulation gates or valves),

the time delay model is obviously not going to be a good model. This point must be kept

in mind if hydraulic structures are changed, e.g. if fixed weirs are replaced by regulation

gates.

The time delay model also assumes that there is little storage capabilities in the river

reach in the sense that the volume of water in the reach is nearly constant. This may not

be a valid assumption, particularly if the river flows through a lake as the Broken River

does at Lake Benalla. In both the above cases, an integrator delay model of the type

V̇ (t) = QU (t− τ)−QD(t)
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seems more appropriate where V is the volume of water in (a part of) the reach. This

model structure will be discussed in the next section.

4.5 Further modelling

As mentioned in the previous section, the time delay model is only valid when the flow

at the downstream end cannot be regulated or when there is little storage capabilities in

the river reach. Here, we explore different model structures for cases where the time delay

model may no longer be appropriate. To be consistent with the presentation of the results

in Section 4.3.3, we include the results using the Saint Venant equations as well. Only the

results from the time domain analysis are presented.

4.5.1 Modelling of river reach with regulation of downstream flow

Reach Lake Nillahcootie to Broken Weir

Physical modelling:

We consider the reach from Lake Nillahcootie to Broken Weir. For simplicity, we call

this reach, Reach LNB. For this reach, there is in-flow from a creek called Lima Creek.

Based on the on-site survey carried out by Goulburn-Broken Catchment Management

Authority (GBCMA) (GBCMA, 2009), the approximate river parameters for this reach

are summarised in Table 4.2. The measured flows and water levels for Lake Nillahcootie

Table 4.2: Summary of river parameters for Reach LNB.

Parameters Values

Reach Length, LLNB 25.9km

Bottom width, bLNB 10-12m

Side slope, sLNB 2.5-3

Bottom slope, S0,LNB 0.002-0.003

Manning friction coefficient, nLNB 0.07-0.10

and Broken Weir are shown in Figure 4.14. As there is no information about the elevation
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at Lima Creek, the water depths3 are shown instead. The data is sampled every 3 hours

(180 minutes). The elevations at Lake Nillahcootie and Broken Weir are 249.26mAHD and

173.00mAHD respectively. In view of the poor quality of the data (there is missing data),

only the data from the period from April to July for both 2007 and 2008 are considered

(see Figure 4.14).
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Figure 4.14: Flows, water depths and water levels measurements for Reach LNB.

We aim to validate the Saint Venant equations for Reach LNB against measured data.

As the values in Table 4.2 are only approximate, the Saint Venant equations are calibrated

against the measured data. The input to the Saint Venant equations is the flow at Lake

Nillahcootie. As for the flow at Lima Creek, as we do not have any information regarding

the flow, we make the assumption that the flow at Lima Creek can be modelled using a

local linear relationship QLC ≈ aLCyLC +∆LC . aLC is chosen based on visual inspection

of the data on how the dynamics of Lima Creek would affect the water level at Broken

Weir and we choose aLC = 4 and ∆LC = 0. This flow is treated as a lateral in-flow to the

Saint Venant equations.

3Water depth is measured from the surface of the river to the bottom of the river. It is not reference
to datum, i.e. the sea level.
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For the Broken Weir, we want to point out that Broken Weir is actually a submerged

undershot gate (see Section 1.2) and to model the flow over an undershot gate, two mea-

surements of water level are required, i.e. the water levels upstream and downstream of

the gate. Given that we only have measurements of water level upstream of the gate at

Broken Weir, obviously the model of the submerged undershot gate cannot be used and

we need to seek an alternative model. With the manual regulation gate at Broken Weir

is in the process of being replaced by an overshot gate, thus we assume that the flow over

Broken Weir can be modelled by a sharp crested weir4 and the flow over Broken Weir is

approximated using

QBW (t) ≈ cweir,BWh
3/2
BW (t) = cweir,BW [yBW (t)− pBW ]3/2 (4.21)

where pBW = 173.1mAHD is the height of the weir, cweir,BW ≈ 0.6
√
gbweir,BW is the weir

constant, with g is the gravity constant and bweir,BW is the width of the weir.

From the segmentation and sensitivity analysis carried out in Section 3.2, we use Single

segmentation to represent this reach. The value of bLNB = 9.5m and sLNB = 2.5, which

are the average values of the bottom width and the side slope respectively are used. Using

the elevations, the average bottom slope S0,LNB is given by (249.26-173.00)mAHD/25900

≈ 0.003. The weir constant cweir,BW and the Manning friction coefficient nLNB will be

estimated from the data.

Table 4.3: Estimated parameters for Reach LNB.

Estimation Set ĉBW n̂LNB

Apr-Jul 2007 3.76m3/2/s 0.1489

Apr-Jul 2008 4.13m3/2/s 0.1501

The data set on the left of Figure 4.14 (April to July 2007) is used for estimation and

validation will be made on the data set on the right of Figure 4.14. In addition, we also use

the data set on the right of Figure 4.14 (April to July 2008) for estimation and validate it

on the data set on the left of Figure 4.14. These parameters are estimated using prediction

4An overshot gate behaves approximately like a sharp crested weir (Bos, 1978)
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error method with quadratic criterion, i.e.

θ̂p,LNB = argmin
θp,LNB

1

N

N
∑

t=1

[ymea,BW (t)− ŷsim,BW (t, θp,LNB)]
2 (4.22)

where N = 800 is the length of the data used for estimation, θp,LNB = [cweir,BW , nLNB]
T .

ymea,BW and ŷsim,C are the measured and simulated water level using the Saint Venant

equations at Broken Weir respectively. The estimated parameters are shown in Table 4.3

and the estimated parameters between the two data sets are quite similar. The results are

discussed on page 113 together with the results from empirical modelling.

Empirical modelling:

As mentioned, the manual regulation gate at Broken Weir is in the process of being

replaced by a fully automated regulation gate. With this infrastructure upgrade, the flow

at Broken Weir can be regulated independently of the upstream flow. Thus, the time

delay model is no longer suitable and we consider the integrator delay model to model this

reach. Using the mass balance equations, we have

V̇BW (t) = QLN (t− τLN ) +QLC(t− τLC)−QBW (t) (4.23)

where V is the volume, Qi with i = LN (Lake Nillahcootie), LC (Lima Creek) and BW

(Broken Weir) are the flows and τLN and τLC are the time delays. Normally, a rating

curve would be used to relate the water depth to flow. In the absence of a reliable rating

curve at Lima Creek, we use a local linear relationship, which is given by

QLC ≈ aLC y̆LC +∆LC (4.24)

where aLC and ∆LC are constants. We use the notation y̆ to denote water depth to avoid

any confusion.

Substituting Equations (4.21) and (4.24) into (4.23), assuming that the water level is

proportional to the volume and using an Euler approximation for the derivative, we arrive
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at

yBW (k + 1) = yBW (k) +

(

Ts
A

)

QLN (k − τLB)

+

(

Ts
A

)

aLC y̆LC(k − τLC)−
(

Ts
A

)

cBW [yBW (k)− pBW ]3/2 +

(

Ts
A

)

∆LC

(4.25)

where k denotes the discrete time. Ts is the sampling interval, A is the surface area and

pBW = 173.10 mAHD.

The associated ”Output Error” (OE) predictor for Equation (4.25) is

ŷBW (k + 1, θe,LNB , τLN ) = ŷBW (k, θe,LNB , τLB) + θe,LNB,1QLB(k − τLB)

+ θe,LNB,2y̆LC(k − τLC) + θe,LNB,3[ŷBW (k, θe,LNB , τLN )− pBW ]3/2

+ θe,LNB,4 (4.26)

θe,LNB = [θe,LNB,1, θe,LNB,2, θe,LNB,3, θe,LNB,4]
T = [

(

Ts
A

)

,
(

TsaLC
A

)

,
(

TscBW
A

)

,
(

Ts∆LC
A

)

]T .

An OE model is used here as it usually gives a good description of a system in the low

frequency range (see e.g. (Ljung, 1999)), which is of most interest for control design.

Notice that this predictor makes use of only the initial values of the water level and makes

prediction using the previously predicted water levels.

As in Section 4.3.2, the time delays τLN and τLC are estimated from the cross-

correlation between the measurements at Lake Nillahcootie and Broken Weir and Lima

Creek and Broken Weir. The cross-correlation coefficient plots are shown in Figure 4.15

and the estimated time delays are τLN = 3060 minutes and τLC = 1620 minutes. We

note that there is a lot uncertainty in the cross-correlation coefficient plot as shown by the

almost flat curve near the maximum value of the plot.

The parameter θe,LNB is estimated using a prediction error method with quadratic

criterion, i.e.,

θ̂e,LNB,τLN
= argmin

θe,LNB,τLN

1

N

N
∑

k=1

[yBW (k)− ŷBW (k, θe,LNB, τLN )]2 (4.27)

where N = 800, yBW is the measured water level and ŷBW is the predicted water level

using Equation (4.26). As in the physical modelling approach, the data set on the left of
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Figure 4.15: Cross-correlation coefficients and estimated time delays for Reach LNB.

Figure 4.14 are used for estimation and validated on the data set on the right of Figure

4.14. We also use the data set on the right of Figure 4.14 for estimation and validate

on the data set on the left of Figure 4.14. The estimated parameters are given in Table

4.4. From Table 4.4, we can see that the values of θ̂e,LNB,1 and θ̂e,LNB,2 are positive,

Table 4.4: Parameter estimates for Reach LNB.

Estimation Set θ̂e,LNB,1 θ̂e,LNB,2 θ̂e,LNB,3 θ̂e,LNB,4

Apr-Jul 2007 0.048 0.117 -0.108 0.028

Apr-Jul 2008 0.335 0.754 -0.691 0.180

which is in agreement with the interpretation of in-flow and the negative value of θ̂e,LNB,3

is in agreement with the interpretation of out-flow. We also notice that these estimated

parameters are very different between the two years with larger values observed for the

data from April to July 2008. The difference of the estimated parameter between the two

data set is approximately with a factor of 7. An inspection on the data (Figure 4.14),

we noticed that the flows at Lake Nillahcootie and the water depths at Lima Creek in
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2008 data set are smaller than the flows and water depths in 2007 data despite having

the almost similar water levels at Broken Weir. This difference of flow conditions may

have led to the large difference in the estimated parameters between the two years. The

decommissioning of Lake Mokoan in middle of 2008 ((Mokoan Wetlands, 2006)) is another

source of uncertainty. Another possible reason is the local linear assumption for Lima

Creek, which may not be a suitable to model the flow and water depth relationship. The

assumption where Broken Weir can be modelled as a sharp crested weir also add to the

uncertainty. The asymptotic covariance of the parameter estimates is further investigated

in Section 4.6.

Discussion:

One thing we want to highlight is that the estimated parameters in the Saint Venant

equations are similar between the two data sets but large variations is observed for the

integrator delay model between the two data sets. As there is a lot of assumption made

and uncertainties present, we do not want to make any further conclusion but merely point

out this matter.

Using the values of the estimated parameter in Tables 4.2 and 4.4, we simulate the

water level using the Saint Venant equations and Equation (4.26) on the data set not

used for estimation to validate our model. Figure 4.16 shows the measured water levels,

the predicted water levels using the integrator delay model and the simulated water levels

using the Saint Venant equations.

Table 4.5: Values of MSE.

Validation Set Predictor (4.26) Saint Venant
MSE MSE

Apr-Jul 2007 3.71 (10−3m2) 5.81 (10−3m2)

Apr-Jul 2008 1.36 (10−3m2) 1.30 (10−3m2)

For quantitative comparison, the MSEs are calculated using Equation (4.28) and they

are given in Table 4.5.

MSE =
1

N

N
∑

k=1

[ymea,BW (k)− ŷBW (k, θx,LNB , τLNB)]
2 (4.28)
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where the subscript x = p, e, ymea,BW is the measured water levels and ŷBW is either the

simulated water levels from Saint Venant equations or the predicted water levels using

Equation (4.26) at Broken Weir.

From Figure 4.16, it is observed that in general, both the integrator delay model and

the Saint Venant equations pick up the general trend of the water level well. Although

the simulated water levels do not pick up some of the peaks and dips well, the difference is

small, i.e. within ±5cm. In view of the effect of rainfall and offtakes to irrigation are not

considered in the model, the assumption of a local linear relationship at Lima Creek and

the assumption of the flow at Broken Weir can be modelled using a sharp crested weir,

we do not want to draw any strong conclusion. However, what is encouraging is that the

integrator delay model picks up the general trends well and it is as accurate as the Saint

Venant equations.
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Figure 4.16: Measured and simulated water levels. Top: April to July 2007. Bottom:
April to July 2008.
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4.5.2 Modelling of river reach with storage capabilities

Reach Lake Benalla to Casey’s Weir

Physical modelling:

We consider the reach from Lake Benalla to Casey’s Weir. For simplicity, we call this reach,

Reach LBC. For this reach, there is a weir pool at Casey’s Weir. There is also an out-flow

to Broken Creek just upstream of Casey’s Weir. Based on the on-site survey carried out by

GBCMA (GBCMA, 2009), the approximate river parameters for this reach are summarised

in Table 4.6. Notice that the range of values shown in Table 4.6 are rather big as it

Table 4.6: Summary of river parameters for Reach LBC.

Parameters Values

Reach Length, LLBC 12260m

Bottom width, bLBC 15-150m

Side slope, sLBC 2.5-10

Bottom slope, S0,LBC 0.0003-0.0010

Manning friction coefficient, nLBC 0.08-0.20

includes Lake Benalla. The measurements at Lake Benalla, are obtained approximately

400m upstream of the weir at Lake Benalla. The measured data are shown in Figure 4.17,

which are taken from October 2010 to April 2011. The sampling interval is 3 hours (180

minutes). There is no measurement of flow available at Lake Benalla. In addition, the

flows at Casey’s Weir and Broken Creek shown in Figure 4.17 are not physically measured

but computed from the water level based on a water level-to-flow conversion table used

by the water authority. The elevation at Lake Benalla is 167.62mAHD while for Casey’s

Weir and Broken Creek, the elevation is 161.07mAHD.

Like before, we aim to validate the Saint Venant equations for Reach LBC by calibrat-

ing it against the measured data. The input to the Saint Venant equations is the flow out

of Lake Benalla. The hydraulic structure at Lake Benalla can be approximated by a sharp

crested weir using

QLB(t) ≈ c̄weir,LBh
3/2
LB(t) = c̄LB [yLB(t)− pLB]

3/2 (4.29)
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Figure 4.17: Flow and Water level for Reach LBC. Right: Water level. Left: Flow. NOTE:
There is no flow measurement available at Lake Benalla.

where pLB = 169.12mAHD is the height of the weir and c̄weir,LB is the ”modified” weir

constant. We use the term ”modified” weir constant here, as we make the assumption

that the water levels are almost constant from the location where the measurements are

obtained (i.e. the middle of the lake) to the weir at Lake Benalla. Thus, we use c̄weir,LB

to denote the ”modified” weir constant to avoid any confusion with the interpretation of

weir constant used throughout the thesis. The use of Equation (4.29) to relate the flow

and water level at Lake Benalla may not be a suitable choice, and ideally a rating curve

should be used. However, in the absence of a rating curve, we have used Equation (4.29).

At the downstream, Casey’s Weir resembles a sharp crested weir where the flow can

be approximated by

QC(t) ≈ cweir,Ch
3/2
C (t) = cweir,C [yC(t)− pC ]

3/2 (4.30)

where pC = 161.37mAHD is the height of the weir. cweir,C ≈ 0.6
√
gbweir,C is the weir

constant for Casey’s Weir.

Again, we use Single segmentation for this reach, where the average bottom width
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bLBC = 20.9m and side slope sLBC = 3.5 after the lake is used. Using the elevations,

the average bottom slope is (167.62-161.07)mAHD/9260 ≈ 0.0007. The weir constant

cweir,C and the Manning friction coefficient nLBC will be estimated from the data. In

addition, considering that the measurements are not obtained near the weir c̄weir,LB will

also be estimated from data. We use the data set in the solid rectangular box (October

to December 2010) for estimation and validate the model on the data set in the dotted

rectangular box (January to April 2011). We also use the data set in the dotted rectangular

box for estimation and validate the model on the data set in the solid rectangular box.

The data set outside both the rectangular boxes (i.e. late December 2010 to early January

2011) are not used due to the abnormal high flows. These parameters are estimated using

prediction error method with quadratic criterion, i.e.

θ̂p,LBC = argmin
θp,LBC

1

N

N
∑

t=1

[ymea,C(t)− ŷsim,C(t, θp,LBC)]
2 (4.31)

where N is the length of data used for estimation (i.e. N = 530 (October to December

2010) and N = 795 (January to April 2011)), θp,LBC = [c̄weir,LB, cweir,C , nLBC ]
T . ymea,C

and ŷsim,C are the measured and simulated water level using the Saint Venant equations at

Casey’s Weir respectively. The estimated parameters are shown in Table 4.7. We simulate

the Saint Venant equations using the estimated parameters on the data set not used for

estimation and the results are shown in Figure 4.19, where we observe that the estimated

parameters between the two data sets are similar. The results are discussed in page 120

together with the result using empirical modelling.

Table 4.7: Estimated parameters for Reach LBC.

Estimation Set ˆ̄cweir,LB ĉweir,C n̂LBC

Oct-Dec 2010 131.55m3/2/s 84.49m3/2/s 0.1372

Jan-Apr 2011 133.42m3/2/s 83.04m3/2/s 0.1503



118 Chapter 4. Empirical modelling

Empirical modelling:

In view of the weir pool at Casey’s Weir, which acts as a storage, we consider the integrator

delay model to model this reach. Using the mass balance equations, we have

V̇C(t) = QLB(t− τLB)−QC(t)−QBC(t) (4.32)

where V is the volume, Qi with i = LB (Lake Benalla), C (Casey’s Weir) and BC (Broken

Creek) are flows and τLB is the time delay.

Substituting Equations (4.29) and (4.30) into (4.32), assuming that the water level is

proportional to the volume and using an Euler approximation for the derivative, we arrive

at

yC(k + 1) = yC(k) +

(

Ts
A

)

c̄weir,LB[yLB(k − τLB)− pLB ]
3/2

−
(

Ts
A

)

cweir,C [yC(k)− pC ]
3/2 −

(

Ts
A

)

QBC(k) (4.33)

where k is the discrete time index. Ts is the sampling interval, A is the surface area. The

associated OE predictor for Equation (6.9) is

ŷC(k + 1, θe,LBC , τLB) = ŷC(k, θe,LBC , τLB) + θe,LBC,1[yLB(k − τLB)− pLB]
3/2

+ θe,LBC,2[ŷC(k, θe,LBC , τLB)− pC ]
3/2 + θe,LBC,3QBC(k) (4.34)

where θe,LBC = [θe,LBC,1, θe,LBC,2, θe,LBC,3]
T = [

(

Ts
A

)

c̄weir,LB,
(

Ts
A

)

cweir,C ,
(

Ts
A

)

]T .

The time delay τLB = 540 minutes is estimated from the cross-correlation between the

measurements at Lake Benalla and Casey’s Weir as shown in Figure 4.18. The parameter

θe,LBC is estimated using prediction error method with a quadratic criterion, i.e.

θ̂e,LBC,τLB
= argmin

θe,LBC,τLB

1

N

N
∑

k=1

[yC(k)− ŷC(k, θe,LBC , τLB)]
2 (4.35)

where N is the length of the data set used for estimation (i.e. N = 530 (October to

December 2010) and N = 795 (January to April 2011)), yC is the measured water levels

and ŷC is the predicted water levels using Equation (4.34). The data set in the solid

rectangular box (October to December 2010) shown in Figure 4.17 is used for estimation

and validated against the data set in the dotted rectangular box (January to April 2011).
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Figure 4.18: Cross-correlations and estimated time delays for Reach LBC. Right-axis:
Casey’s Weir, Left-axis: Lake Benalla

We also use the data set in the dotted rectangular box (January to April 2011) for esti-

mation and validate the model against the data set in the solid rectangular box (October

to December 2010). The data set outside the rectangular boxes are not used due to the

abnormal high flows. Furthermore, these abnormal flow is beyond the operating range of

the controller. The estimated parameters are given in Table 4.8. From Table 4.8, we can

Table 4.8: Parameter estimates for Reach LBC.

Estimation Set θ̂e,LBC,1 θ̂e,LBC,2 θ̂e,LBC,3

Oct-Dec 2010 2.200 -1.394 -0.226

Jan-Apr 2011 2.069 -1.316 -0.098

see that the values of θ̂e,LBC,1 are positive which is in agreement with an in-flow and the

values of θ̂e,LBC,2 and θ̂e,LBC,3 are negative which is in agreement with an out-flow. The

estimated parameters are very similar between the two data sets with the exception of

θ̂e,LBC,3. The asymptotic covariance matrices are computed in Section 4.6.
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Discussion:

Using the values of the estimated parameter in Tables 4.6 and 4.8, we simulate the water

level using the Saint Venant equations and Equation (4.34) on the validation data set in

order to validate our model. For quantitative comparison, the MSE is calculated using

Equation (4.36) and the values are given in Table 4.9.

MSE =
1

N

N
∑

k=1

[ymea,C(k)− ŷC(k, θx,LBC , τLB)]
2 (4.36)

Here, the subscript x = p, e, ymea,C is the measured water levels at Casey’s Weir and ŷC is

either the simulated water level using the Saint Venant equations or the predicted water

levels using Equation (4.34).

Figure 4.19 shows the measured water levels, and predicted water levels using the

integrator delay model and simulated water levels the Saint Venant equations. The values

of MSE are shown in Table 4.9 From Figure 4.19, it is observed both the integrator delay

Oct Nov Dec
161.4

161.6

161.8

162

162.2

162.4

2010

m
AH

D

Water level at Casey’s Weir

 

 

Feb Mar Apr
161.4

161.6

161.8

162

162.2

162.4

2011

m
AH

D

 

 
Measured data
Integrator Delay Model
Saint Venant (calibrated)

Figure 4.19: Measured and simulated water levels. Top: October to December 2010.
Bottom: January to April 2011.

model and the Saint Venant equations are able to pick up the general trend of the water
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Table 4.9: Values of MSE.

Validation Set Predictor (4.34) Saint Venant
MSE MSE

Oct-Dec 2010 2.65 (10−3m2) 0.96 (10−3m2)

Jan-Apr 2011 2.82 (10−3m2) 0.83 (10−3m2)

level very well. The predictive capabilities of the integrator delay model is very good,

bearing in mind that the predictor only make use of the initial value of the water level to

make predictions. In terms of MSE, the integrator delay model has a slightly larger MSE

compared to the Saint Venant equations but in general the MSE is small. Since the aim

is to obtain a model to be used for control design, the integrator delay model is preferred

as it is simpler compared to the Saint Venant equations.

Reach Poison Creek to Lake Benalla

Physical modelling:

We consider the reach from Poison Creek to Lake Benalla and we call this reach, Reach

PLB. Ideally, we would like to build the river model from Broken Weir5 to Lake Benalla.

However, due to the absence of data at Broken Weir, the data from Poison Creek are used

instead. Despite the name, the data is not collected at Poison Creek but in the Broken

River itself. Poison Creek is located approximately 2km upstream of Broken Weir. This

reach includes Lake Benalla, which acts as a storage. There is in-flow from a creek called

Hollands Creek. Based on the on-site survey carried out by GBCMA (GBCMA, 2009),

the approximate river parameters for this reach are summarised in Table 4.10. The large

range of values for the bottom width and the side slope is due to Lake Benalla. The mea-

surements at Lake Benalla are obtained approximately 400m upstream of the weir at Lake

Benalla. The measured water levels are shown in Figure 4.20. These measurements are

from October to November 2010 and are taken every 3 hours (180 minutes). The elevation

at Poison Creek, Hollands Creek and Lake Benalla are 177.81mAHD, 181.63mAHD and

167.62mAHD respectively. The elevation at the in-let of Lake Benalla is 168.09mAHD.

5The data for Broken Weir is only available for the period from 2007-2008 and no data is available at
Lake Benalla for the same time period.
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Table 4.10: Summary of river parameters for Reach PLB.

Parameters Values

Reach Length, LPLB 13.4km

Bottom width, bPLB 10-150m

Side slope, sPLB 2.5-10

Bottom slope, S0,PLB 0.00072-0.00075

Manning friction coefficient, nPLB 0.07-0.10
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Figure 4.20: Water levels measurements for Reach PLB.

The input to the Saint Venant equations is the flow at Poison Creek. The in-flow from

Hollands Creek is treated as a lateral flow to the Saint Venant equations. As there is

no flow measurements available at these two locations, we use a rating curve. Note that,

water depth is normally used instead of water level in rating curves. The water depth y̆

is obtained from the water level y by subtracting the elevation, i.e. y = y̆ + elevation.

The flow for Poison Creek and Hollands Creek can be computed from the water depth

using

QPC ≈ mPC y̆
kPC
PC (4.37)
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QHC ≈ mHC y̆
kHC
HC (4.38)

where mPC = 1.8, mHC = 2.4, kPC = 1.2 and kHC = 3.1. The rating curve for Hollands

Creek is obtained from Victorian Water Resources Data Warehouse (Victorian Water

Resources, 2009) while the rating curve for Poison Creek is obtained from (Costelloe, 2010).

The hydraulic structure at Lake Benalla resembles a sharp crested weir, where the flow

can be approximated using

QLB(t) ≈ cweir,LBh
3/2
LB(t) = cweir,LB[y̆LB(t)− pLB]

3/2 (4.39)

where pLB = 1.5m is the height of the weir, cweir,LB ≈ 0.6
√
gbweir,LB. Note that cweir,LB

is used here to denote the conventional weir as opposed to c̄weir,LB used in Reach LBC.

For this reach, we use M-segment segmentation (see Section 3.2) with M = 2. One

segment is from Poison Creek to the start of Lake Benalla and a separate segment for

Lake Benalla. The average bottom widths bPLB,1 = 13.2m and bPLB,2 = 112.0m and the

average side slopes sPLB,1 = 2.9 and sPLB,2 = 7.8 are used for the two segments. Using

the given elevations, the average bottom slopes are given by (177.81-168.09)mAHD/12400

≈ 0.0008 and (168.09-167.62)mAHD/1000 ≈ 0.0005. The Manning friction coefficients for

the two segments, i.e. nPLB,1 and nPLB,2 will be estimated from the data together with

the weir constant cweir,LB.

The data set shown in the rectangular box is used for estimation while the data set

outside the rectangular box is used for validation. We also use the data set outside the

rectangular box for estimation and validate it on the data set in the rectangular box. The

parameters are estimated using a prediction error method with quadratic criterion, i.e.

θ̂p,PLB = argmin
θp,PLB

1

N

N
∑

t=1

[y̆mea,LB(t)− ˆ̆ysim,LB(t, θp,PLB)]
2 (4.40)

where N is the length of the data used for estimation (i.e. N = 170 (October 2010) and

N = 280 (November 2010)), θp,PLB = [cLB , nPLB,1, nPLB,2]
T . y̆mea,PC and ˆ̆ysim,PC are the

measured and simulated water depths using the Saint Venant equations at Lake Benalla.

The estimated parameters are shown in Table 4.11.

From Table 4.11, one would notice that the estimated value for ĉweir,LB is different

compared to the value of ˆ̄cweir,LB obtained in Table 4.7. The reason for this is that the

estimated value of ˆ̄cweir,LB in Reach LBC is inferring that the width of the weir is similar
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Table 4.11: Estimated parameters for Reach PLB.

Estimation Set ĉweir,LB n̂PLB,1 n̂PLB,2

Oct 2010 20.67m3/2/s 0.08 0.10

Nov 2010 22.55m3/2/s 0.09 0.09

to the width of the lake, which make sense considering the width of the lake is much larger

than the width of an actual weir. On the other hand, the estimated value of ĉweir,LB in

Reach PLB is referring to the actual weir itself, thus resulting in the difference between

the two values.

Using the values of the estimated parameter, we simulate the Saint Venant equations

and the results are shown in Figure 4.22. The estimated parameters between the two data

sets again is similar. Again, the discussion of the results are given in page 126 together

with the empirical modelling.

Empirical modelling:

As Lake Benalla acts as a storage, we again consider the integrator delay model to model

this reach. Using the mass balance equations, we have

V̇LB(t) = QPC(t− τPC) +QHC(t− τHC)−QLB(t) (4.41)

where V is the volume, Qi and τi with i = PC (Poison Creek) and HC (Hollands Creek)

are the flows and time delays respectively. As we are using the rating curve to compute

the flows at Poison Creek and Hollands Creek, we need to work with water depth instead

of water level. Substituting Equations (4.37), (4.38) and (4.39) into (4.41), assuming that

the water depth is proportional to the volume and using an Euler approximation for the

derivative, we arrive at

y̆LB(k + 1) = y̆LB(k) +

(

Ts
A

)

mPC y̆
kPC
PC (k − τPC) +

(

Ts
A

)

mHC y̆
kHC
HC (k − τHC)

−
(

Ts
A

)

cLB [y̆LB(k)− pLB ]
3/2 (4.42)

where k is the discrete time. Ts is the sampling interval, A is the surface area.
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The associated OE predictor for Equation (4.42) is

ˆ̆yLB(k + 1, θe,PLB, τPC) = ˆ̆yLB(k, θe,PLB , τPC) + θe,PLB,1y̆
1.2
PC(k − τPC)

+ θe,PLB,2y̆
3.1
HC(k − τHC) + θe,PLB,3[ˆ̆yLB(k, θe,PLB, τPC)− pLB]

3/2

(4.43)

where θe,PLB = [θe,PLB,1, θe,PLB,2, θe,PLB,3]
T = [

(

Ts
A

)

mPC ,
(

Ts
A

)

mHC ,
(

Ts
A

)

cLB ]
T and τ =

[τPC , τHC ].

The time delays τPC = 540 minutes and τHC = 540 minutes are estimated from the

cross-correlations between Poison Creek and Lake Benalla and Hollands Creek and Lake

Benalla and they are shown in Figure 4.21. The estimated τPC and τHC are the same

as the distance of the measuring station at Hollands Creek to the measuring station at

Lake Benalla is similar to the distance from the measuring station at Poison Creek to the

measuring station at Lake Benalla.
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Figure 4.21: Cross-correlation coefficients and estimated time delays for Reach PLB. Water
level plots: Right-axis: Lake Benalla, Left-axis: Poison Creek (top left) and Holland Creek
(top right)

The parameter θe,PLB is estimated using a prediction error method with a quadratic
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criterion, i.e.

θ̂e,PLB,τPC
= argmin

θe,PLB,τPC

1

N

N
∑

k=1

[y̆LB(k)− ˆ̆yLB(k, θe,PLB, τPC)]
2 (4.44)

where N is the length of the data set used for estimation (i.e. N = 170 (October 2010) and

N = 280 (November 2010)), y̆LB is the measured water depth and ˆ̆yLB is the predicted

water depth using Equation (4.43). The estimated parameters are given in Table 4.12.

From Table 4.12, we can see that the values of θ̂e,PLB,1 and θ̂e,PLB,2 are positive which is in

Estimation Set θ̂e,PLB,1 θ̂e,PLB,2 θ̂e,PLB,3

Oct 2010 0.173 0.022 -1.906

Nov 2010 0.163 0.021 -1.837

Table 4.12: Parameter estimates for Reach PLB.

agreement with an in-flow and the value of θ̂e,PLB,3 is negative which is in agreement with

an out-flow. The estimated parameters for the two data sets are similar. The asymptotic

covariance are computed in Section 4.6.

Discussion:

Using the estimated parameters shown in Tables 4.10 and 4.12, we simulate the Saint

Venant equations and Equation (4.43) using the data sets which are not used for estimation

to validate our model. The MSE are calculated using

MSE =
1

N

N
∑

k=1

[y̆mea,LB(k)− ˆ̆yLB(k, θx,PLB, τPC)]
2 (4.45)

where the subscript x = p, e, y̆mea,LB is the measured water levels at Lake Benalla and
ˆ̆yLB is either the simulated water level using the Saint Venant equations or the predicted

water level using Equation (4.43). When we plot the results, we add the elevation back to

the water depth to obtain the water level. Figure 4.22 shows the measured and simulated

water levels using Equation (4.43) and the Saint Venant equations, and the values of MSE

are shown in Table 4.13.

From Figure 4.22, it is observed that in general both the models are able to pick up the

general trend of the water level very well. The integrator delay model has good prediction
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capability, bearing in mind again that it makes prediction using only the initial values of

the water level. From the values of MSE, the integrator delay model is as accurate as the

Saint Venant equations.
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Figure 4.22: Measured and simulated water levels. Top: October 2010. Bottom: Novem-
ber 2010.

Validation Sets Predictor (4.43) Saint Venant
MSE MSE

Oct 2010 1.21 (10−3m2) 0.80 (10−3m2)

Nov 2010 0.59 (10−3m2) 0.45 (10−3m2)

Table 4.13: Values of MSE.

4.6 Asymptotic distribution of parameter estimates

In the previous section, we have used the time delay and the integrator delay models to

describe the dynamics of a river. The unknown parameters in those models are estimated

using prediction error methods. An important question is how accurate is the estimate of
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the parameters in the model. A measure of the quality of the estimate of the parameters

in the model is given by the covariance matrix of the estimate.

4.6.1 Expression of the covariance matrix

We present a simplified version of the derivation of the expression for the covariance

matrix. For more details see (Ljung, 1999) or (Söderström and Stoica, 1988). The unknown

parameters are estimated using a prediction error method with quadratic criterion (e.g.

Equation (4.27))

θ̂N = argmin
θ

JN (t, θ)

= argmin
θ

1

N

N
∑

t=1

e(t, θ)2 (4.46)

where e(t, θ) = y(t)− ŷ(t, θ). The minimum can be found by differentiating JN (t, θ) with

respect to θ and set this to zero, i.e.

J ′

N (t, θ̂N ) = 0 (4.47)

where ′ is used to represent the derivative. We will drop the variable t to avoid overloading

of variables. Let θ∗ be the true parameters (assuming they exists). Assume that θ̂ is located

close to θ∗ and that N is large enough. Expanding Equation (4.47) into a Taylor series

around θ∗ using the first two terms, we get

J ′

N (θ̂N ) ≈ J ′

N (θ∗) + J ′′

N (θ∗)(θ̂ − θ∗) = 0 (4.48)

Provided J ′′

N (θ∗) is invertible, we get

(θ̂ − θ∗) ≈ −[J ′′

N (θ∗)]−1J ′

N (θ∗) (4.49)

J ′

N (θ∗) and J ′′

N (θ∗) are given by

J ′

N (θ∗) =
2

N

N
∑

t=1

− d

dθ∗
ŷ(t, θ)

∣

∣

∣

∣

∣

θ=θ∗

[y(t)− ŷ(t, θ∗)] (4.50)
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J ′′

N (θ∗) =
2

N

N
∑

t=1

(

d

dθ∗
ŷ(t, θ)

∣

∣

∣

∣

∣

θ=θ∗

)(

d

dθ∗
ŷ(t, θ)

∣

∣

∣

∣

∣

θ=θ∗

)T

+
2

N

N
∑

t=1

(

d2

dθ∗2
ŷ(t, θ)

∣

∣

∣

∣

∣

θ=θ∗

)

[y(t)− ŷ(t, θ∗)] (4.51)

The term d2

dθ∗2 ŷ(t, θ
∗) is small and thus can be neglected. Introducing ψ(t, θ) = d

dθ ŷ(t, θ),

then Equations (4.50) and (4.51) becomes,

J ′

N (θ∗) = − 2

N

N
∑

t=1

ψ(t, θ∗)e(t, θ∗) (4.52)

J ′′

N (θ∗) =
2

N

N
∑

t=1

ψ(t, θ∗)ψ(t, θ∗)T (4.53)

For N large enough, Equation (4.53) is close to its expected value, i.e.

J ′′

N (θ∗) ≈ 2Eψ(t, θ∗)ψ(t, θ∗)T := 2R (4.54)

Equation (4.52) is zero by definition (see Equation (4.47)) and if ψ(t, θ∗) is independent

from e(t, θ∗), by central limit theorem −
√
NJ ′

N (θ∗) converges to a normal distribution

with zero mean and variance given by

ENJ ′

N (θ∗)JN (θ∗)T =
4

N

N
∑

t=1

N
∑

s=1

Eψ(t, θ∗)ψ(s, θ∗)Ee(s, θ∗)E(t, θ∗) = 4λR (4.55)

where we have assumed that Ee(s, θ∗)e(t, θ∗) = δt−sλ. Putting together Equations (4.49),

(4.54) and (4.55), we obtain

√
N(θ̂N − θ∗) → N (0, P ) (4.56)

whereN (0, P ) denotes normal distribution with zero mean and covariance matrix P , which

is given by

P = (2R)−1[4λR](2R)−1 = λR−1 (4.57)



130 Chapter 4. Empirical modelling

In practice, P and λ can be approximated by using

P̂N = λ̂N

[

1

N

N
∑

t=1

ψ(t, θ̂N )ψ(t, θ̂N )T

]−1

= λ̂N R̂
−1
N (4.58)

with

λ̂N =
1

N

N
∑

t=1

e(t, θ̂N ) =
1

N

N
∑

t=1

[(y(t)− ŷ(t, θ̂N )]2 (4.59)

which is the MSE value. The value of P̂N , is an approximation of P , which is the covariance

matrix of the asymptotic distribution. The covariance of θ̂N is given by

Covθ̂N ≈ 1

N
P̂N (4.60)

Covθ̂N is proportional to λ̂N and inversely proportional to the number of data point N ,

which make sense as the smaller the value of MSE and the more data point we have, the

smaller the value of Covθ̂N . Covθ̂N is also inversely proportional to ψ(t, θ̂N ), which is the

gradient of the prediction with respect to θ̂N . Again this make sense, since the prediction

error is most sensitive to changes in the direction of the gradient.

From the material presented above, to compute P̂N , we need to compute the gradi-

ent ψ(t, θ̂N ). For the least square estimate, the gradient is the regressor ϕ(t). For the

nonlinear least square estimate, the gradient is normally computed in the minimisation

algorithm. In MATLABr, the gradient can be computed using the function lsqnonlin in

the minimisation of the prediction error. The value of P̂N also tells use how each of the

elements of θ̂N are correlated. Thus, we can use this to compute the confidence intervals

or ellipsoids to measure the quality of the estimates. As θ̂N − θ∗ → N (0, PN ), using the

definition of χ2-distribution, we have (Ljung, 1999)

(θ̂N − θ∗)TP−1
N (θ̂N − θ∗) ∈ χ2(d) (4.61)

and the probability that

|θ̂N − θ∗|2
P−1

N
= (θ̂N − θ∗)TP−1

N (θ̂N − θ∗) ≥ α (4.62)

is given by χ2(d)-distribution, where d is the degree of freedom and α is the level of χ2(d)-

distribution. Equation (4.62) is an ellipsoid. The direction of the ellipsoid is determined by

the eigenvectors of PN while the ”size” of the principal axes of the ellipsoid is determined
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by the eigenvalues of PN .

4.6.2 Quality estimate of models

We compute the covariance matrices for the models of the reaches in Broken River. In

addition, we construct the 95% confidence ellipsoid.

Notational remarks: In order to be consistent with the material presented in Section

4.57, the time index t is used to denote the discrete time index instead of k.

Reach Casey’s Weir to Gowangardie Weir

The predictor for of the time delay model is given by

ŷG(t, θe,CG, τCG) = θe,CG,1yC(t− τCG) + θe,CG,2 (4.63)

with θe,CG,1 = 2.711 and θe,CG,2 = −300.05. The associated covariance matrix is given by

P̂CG,N (θ̂e,CG,N) =

[

0.00005 −0.00770

−0.00770 1.24296

]

(4.64)

From Equation (4.64), the variances, given by the diagonal entries of Equation (4.64)

for both θe,CG,1 and θe,CG,1 are small relative to the estimated parameters. The correlation

between the two parameters are given by the off-diagonal entries of Equation (4.64). In

constructing the confidence ellipsoid, we make use of Equations (4.61) and (4.62). As we

have two parameters, χ2-distribution with 2 degrees of freedom is the relevant distribution

and the value of α = 5.99 corresponds to a 95% confidence ellipsoid. The ellipsoid for the

parameter estimates for Reach CG is shown in Figure 4.23.

The eigenvalues of P̂−1
CG,N are given by λCG,1 = 0.805 and λCG,2 = 4.349 × 105. The

larger eigenvalue is the principal major axes of the ellipsoid while the smaller eigenvalue

is the principal minor axes of the ellipsoid. The orientation of the ellipsoid is determined

by the eigenvectors. The largest eigenvalue in the direction defined by its eigenvector

represents the largest uncertainties of the parameter estimate.

The two parameters are negatively correlated. This means that if the uncertainty

increases in the direction of θe,CG,1 and the value of θe,CG,2 decreases with it, the accuracy
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Figure 4.23: Ellipsoid for θe,CG. ’*’ denotes the estimated values.

of the prediction made using Equation (4.63) is not affected much by the uncertainty. As

an example, the water level at Casey’s Weir yC is always positive. Due to the uncertainty,

we have an increase in θe,CG,1 to θe,CG,1,new = 2.72. The accuracy of the prediction model,

i.e. Equation (4.63) will not be affected much if the offset value, θe,CG,2 decreases to

θe,CG,2,new = −301, and still within the ellipsoid.

Reach Lake Nillahcootie to Broken Weir

The integrator delay model is used to model this reach. The associated predictor is given

by

ŷBW (t+ 1, θe,LNB, τLN ) = ŷBW (t, θe,LNB, τLB) + θe,LNB,1QLB(t− τLB)

+ θe,LNB,2y̆LC(t− τLC) + θe,LNB,3[ŷBW (t, θe,LNB , τLN )− pBW ]3/2

+ θe,LNB,4 (4.65)

with θe,LNB,1 = 0.048, θe,LNB,2 = 0.117, θe,LNB,3 = −0.108 and θe,LNB,4 = 0.028 esti-

mated from data set from April to July 2007 and θe,LNB,1 = 0.335, θe,LNB,2 = 0.754,



4.6. Asymptotic distribution of parameter estimates 133

θe,LNB,3 = −0.691 and θe,LNB,4 = 0.180 estimated from data set from April to July 2008.

The associated covariance matrices for the two estimates are given by

P̂LNB,N (θ̂e,LNB,N )
∣

∣

∣

Apr-Jul,2007
=













0.1292 0.2858 −0.2901 0.0820

0.2858 0.7250 −0.6383 0.1577

−0.2901 −0.6383 0.6982 −0.2167

0.0820 0.1577 −0.2167 0.0804













× 10−4

P̂LNB,N (θ̂e,LNB,N )
∣

∣

∣

Apr-Jul,2008
=













0.00120 0.00261 −0.00243 0.00063

0.00261 0.00611 −0.00531 0.00129

−0.00243 −0.00531 0.00510 −0.00140

0.00063 0.00129 −0.00140 0.00044













(4.66)

From Equation (4.66), we can see that the correlations between the parameters are

large as some of the off-diagonal entries are larger than the diagonal entry. Looking at

the diagonal entries, which are the variances of the parameters estimate, we observe that

the variance for θe,LNB,2 and θe,LNB,3 is larger compared to the variance of θe,LNB,1 and

θe,LNB,4. The large variance for θe,LNB,2 could suggest that the local linear assumption

for the rating curve at Lima Creek is not valid, while the large variance for θe,LNB,3 could

suggest that the assumption of the flow over Broken Weir can be modelled using a sharp

crested weir is not a good approximation.

θe,LNB,1 is positively correlated with θe,LNB,2 and θe,LNB,4. Likewise, θe,LNB,2 is also

positively correlated with θe,LNB,4. On the other hand, θe,LNB,3 is negatively correlated to

θe,LNB,1, θe,LNB,2 and θe,LNB,4. This means, if any uncertainty that lead to the increase

of θe,LNB,1, the values of θe,LNB,2 and θe,LNB,4 would also increase, while the value of

θe,LNB,3 would decrease and this would not affect the accuracy of the prediction made

using Equation (4.65). In terms of physical interpretation, the accuracy of the predicted

water level yBW will not be affected much if there is the presence of uncertainties lead to

an increase in the flow at Lake Benalla and Lima Creek, an increase in the offset value

and a decrease in the flow at Broken Weir.

As we have 4 parameters, the degree of freedom for χ2-distribution is 4 and for a 95%

confidence ellipsoid, we need α = 9.49. The eigenvalues of P̂−1
LNB,N for both the data sets

are shown in Table 4.14.
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For both the data sets, we observe that the uncertainty is the largest in the direction

of θe,LNB,4.

Data set λLNB,1 λLNB,2 λLNB,3 λLNB,4

April to July 2007 6.551 × 103 1.003 × 105 1.615 × 106 2.264 × 107

April to July 2008 80.404 2.691 × 103 3.057 × 104 4.285 × 105

Table 4.14: Eigenvalues of P̂−1
LNB,N .

Since it is difficult to visualise a 4-dimensional ellipsoid, we consider three parameters

at a time and the ellipsoids for the two data sets are plotted in Figures 4.24 and 4.25. In

both figures, we can see the largest uncertainties are in the direction of θe,LNB,3 for the

figures on the left and in the direction of θe,LNB,4 for the figures on the right as indicated

by the eigenvalues shown in Table 4.14. Nonetheless, any uncertainties in the parameters

within the ellipsoid do not affect much the accuracy of the prediction made using Equation

(4.65).
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Figure 4.24: Ellipsoid for θe,LNB I. ’*’ denotes the estimated values using data set from
April to July 2007. Left: Plots of θe,LNB,1 to θe,LNB,3. Right: Plots of θe,LNB,2 to θe,LNB,4.
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Figure 4.25: Ellipsoid for θe,LNB II. ’*’ denotes the estimated values using data set from
April to July 2008. Left: Plots of θe,LNB,1 to θe,LNB,3. Right: Plots of θe,LNB,2 to θe,LNB,4.

Reach Poison Creek to Lake Benalla

The integrator delay model is used to model this reach and the associated predictor is

given by

ˆ̆yLB(t+ 1, θe,PLB , τPC) = ˆ̆yLB(t, θe,PLB, τPC) + θe,PLB,1y̆
1.2
PC(t− τPC)

+ θe,PLB,2y̆
3.1
HC(t− τHC) + θe,PLB,3[ˆ̆yLB(t, θe,PLB, τPC)− pLB]

3/2

(4.67)

with θe,PLB,1 = 0.173, θe,PLB,2 = 0.022 and θe,PLB,3 = −1.906 when estimated using the

data set from October 2010 and θe,PLB,1 = 0.163, θe,PLB,2 = 0.021 and θe,PLB,3 = −1.837

when estimated using the data set from November 2010.
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The associated covariance matrices for the two data sets are given by

P̂PLB,N (θ̂e,PLB,N)
∣

∣

∣

Oct,2010
=







0.00037 0.00003 −0.00367

0.00003 0.00001 −0.00039

−0.00367 −0.00039 0.03958







P̂PLB,N (θ̂e,PLB,N)
∣

∣

∣

Nov,2010
=







0.00081 0.00008 −0.00865

0.00008 0.00002 −0.00093

−0.00865 −0.00093 0.09509






(4.68)

From the covariance matrices, we observe that there are some correlations between

the parameters indicated by the large values in the off-diagonal entries in the covariance

matrices. Looking at the variances of the estimated parameters, which are the diagonal

entries of the covariance matrix, we observe that the largest variance is for θe,PLB,3. As

θe,PLB,3 is related to the weir at Lake Benalla, the large variance suggests that with the

measurement of Lake Benalla is obtained in the middle of the lake, modelling the flow out

of Lake Benalla with a sharp crested weir equations, may not be a good approximation.

θe,PLB,1 and θe,PLB,2 are positively correlated and both of them are negatively correlated

with θe,PLB,3. Thus, any uncertainty that lead to the increase in θe,PLB,1 would increase

the value of θe,PLB,2 and decrease the value of θe,PLB,3. Again, in terms of physical

interpretation, the predicted water level at Lake Benalla yLB would not be greatly affected

by any uncertainties that lead to an increase in the flow at Poison Creek and Hollands

Creek and the decrease in the flow at Lake Benalla.

As we have 3 parameters, the degree of freedom for χ2-distribution is 3 and for a

95% confidence ellipsoid, α = 7.81. The eigenvalues of P̂−1
PLB,N for both the data sets

are given in Table 4.15. From Table 4.15, the largest uncertainties is in the direction of

θe,PLB,3 for both the data sets. From Figure 4.26, the largest uncertainties are in the

Data set λPLB,1 λPLB,2 λPLB,3

October 2010 25.045 3.427 × 104 3.819 × 105

November 2010 10.428 3.409 × 104 3.786 × 105

Table 4.15: Eigenvalues of P̂−1
PLB,N .

direction of θe,PLB,3 for both the plots as indicated by the eigenvalues given in Table 4.15.

Nonetheless, any uncertainties to the parameters that is within the ellipsoid do not affect

much the accuracy of the prediction made using Equation (4.67).
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Figure 4.26: Ellipsoid for θe,PLB. ’*’ denotes the estimated values. Left: Estimated using
data set October 2010. Right: Estimated using data set November 2010.

Reach Lake Benalla to Casey’s Weir

This reach is modelled using integrator delay model and the associated predictor is given

by

ŷC(t+ 1, θe,LBC , τLB) = ŷC(t, θe,LBC , τLB) + θe,LBC,1[yLB(t− τLB)− pLB]
3/2

+ θe,LBC,2[ŷC(t, θe,LBC , τLB)− pC ]
3/2 + θe,LBC,3QBC(t) (4.69)

with θe,LBC,1 = 2.200, θe,LBC,1 = −1.394 and θe,LBC,1 = −0.226 estimated using data set

from October to December 2010 and θe,LBC,1 = 2.069, θe,LBC,1 = −1.316 and θe,LBC,1 =

−0.098 estimated using data set from January to April 2011.

The associated covariance matrices are given by

P̂LBC,N (θ̂e,LBC,N )
∣

∣

∣

Oct-Dec,2010
=







0.00381 −0.00217 −0.00058

−0.00217 0.00146 0.00017

−0.00058 0.00017 0.00048







P̂LBC,N (θ̂e,LBC,N )
∣

∣

∣

Jan-Apr,2011
=







0.01273 −0.00784 −0.00090

−0.00784 0.00510 0.00027

−0.00090 0.00027 0.00070






(4.70)
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From the covariance matrices, we observe that correlation between the parameters is

small suggesting there is little correlation between the parameters. Likewise, the variances

of the estimated parameters are also small relative to the estimated parameters. θe,LBC,2

and θe,LBC,3 are positively correlated and both of these two parameters are negatively

correlated with θe,LBC,1. Any uncertainty that in lead to the increase of θe,LBC,1 would

decrease the value of θe,LBC,2 and θe,LBC,3 and this would not affect much the prediction

made using Equation (4.69). Physically, this can be interpreted as the accuracy of the

predicted water level at Casey’s Weir would be affected much by the uncertainties that

lead to an increase of flow at Lake Benalla and the decrease of flows at Broken Creek and

Casey’s Weir. The eigenvalues of P̂−1
LBC,N for the two data sets are given in Table 4.16.
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Figure 4.27: Ellipsoid for θe,LBC . ’*’ denotes the estimated values. Left: Estimated using
data set October to December 2010. Right: Estimated using data set January to April
2011.

From Table 4.16, we observe that the largest uncertainty is in the direction of θe,LBC,3 for

both the data sets. The ellipsoids shown in Figure 4.27 show that the uncertainties are

Data set λLBC,1 λLBC,2 λLBC,3

October to December 2010 1.931 × 102 2.069 × 103 1.126 × 104

January to April 2011 56.55 1.321 × 103 1.141 × 104

Table 4.16: Eigenvalues of P̂−1
LBC,N .

largest in the direction of θe,LBC,3 as indicated by the eigenvalues shown in Table 4.16.
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Nonetheless, any uncertainties in the parameters within the ellipsoid do not affect much

the accuracy of the prediction made using Equation (4.69).

4.7 Summary

In this chapter, we have used system identification procedures to obtain models for the

reaches in the Broken River. Both nonparametric and parametric identification methods

are explored. The step response and frequency response analysis for Reach CG reveals that

the reach is a time delay dominant system. Based on this information and observation

from data, we select the time delay model as our model structure in our parametric

identification method. The validation of the time delay model shows that the model is

accurate in capturing the relevant dynamics of the river and it is as accurate as the Saint

Venant equations. From a control design point of view, the time delay model is preferred as

it is simpler. The effect of varying time delay due to varying flow condition is investigated

and this needs to be considered in the robustness specifications for the controller.

We further explore the use of the integrator delay model and the simulation results

from Reach LBC and Reach PLB show that the integrator delay model is accurate in

capturing the relevant dynamics of the reaches. For these two reaches, the integrator

delay models are as accurate as the Saint Venant equations and they are preferred for

control design. For Reach LNB, the integrator delay model seem to be a promising model

candidate but in view of the poor quality of the data and the absence of a reliable rating

curve, we do not want to draw any further conclusion. The analyses of the covariance

matrix reveal that the parameter estimate for Reach CG and Reach LBC is good. For the

other reaches, the absence of a good flow to water level relationship lead to the parameter

estimates with a larger uncertainty.



Chapter 5

Model Predictive Control (MPC)

design via reverse engineering

In Chapters 3 and 4 we have looked at modelling of river systems, where the purpose of

the model is for control design. In the next two chapters, using the obtained models, we

will look at the design of controllers, which will later be simulated on the Broken River.

As the operation of the Broken River is subjected to various constraints, Model Predictive

Control (MPC) is deemed the appropriate controller and will be explored in this thesis.

In this chapter, we focus on the design of MPC via reverse engineering, i.e. we let MPC

reproduces an existing controller. In the next chapter, we apply the reverse engineered

MPC to control the Broken River.

The motivation behind the design of MPC via reverse engineering is as follow. The

ability to take constraints explicitly into account in the formulation of the optimisation

problem has made MPC a popular control strategy. However, finding the weights in the

MPC optimisation criterion is often non-trivial and requires a fair bit of trial-and-error.

Conventional controllers such as PI-controllers, on the other hand are relatively easy to

tune and they often achieve satisfactory performance in the absence of constraints. In this

chapter, we present three systematic methods of designing an MPC such that it reproduces

the conventional controller when the constraints are not active. The first approach is from

existing literature, where a full order observer is used for reverse engineering. The second

and third approach proposed here use a reduced order observer and state augmentation

respectively. The obtained controller can also serve as an initial MPC tuning weights,

140
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which can be further fine tuned and constraints can later be added to evaluate any potential

benefit of using MPC compared to the conventional controller.

This chapter is organised as follows. An introduction to MPC is first given in Section

5.1. This is followed by the motivation and a brief review of the concept of inverse

optimal control, which is the main idea behind reverse engineering in Section 5.2 and 5.3

respectively. Methods for reverse engineering are discussed in Section 5.5. Illustrative

examples are given in Section 5.6. Some remarks on reverse engineering are addressed in

Section 5.7 and a summary is given in Section 5.8.

5.1 Introduction to MPC

Before going into a detail discussion of the methods of reverse engineering, a brief dis-

cussion on MPC is first given. For a more in depth discussion, see ((Maciejowski, 2002),

(Rossiter, 2005), (Rawlings and Mayne, 2009) or (Wang, 2009)).

5.1.1 Basic idea

MPC is an online optimal controller, where the controller generates a sequence of control

input based on the predicted behaviour of the plant, which is described by the plant model,

over a finite prediction horizon1 Np, by solving an optimisation criterion2, i.e.

u = argmin
u(k),u(k+1),...,u(k+Np−1)

J(x, u, k,Np)

subject to: x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) (5.1)

where u is the control input, x is the state of the plant and y is the output of the plant.

A, B and C are matrices that describe the dynamics of the plant. Here, we assume that

we have measurements for all the states in steady states. The main attractive feature

of MPC is its capability to handle constraints in the optimisation problem. Because of

this feature, MPC has now becomes the standard choice of controller when dealing with

1Some works consider a control horizon Nu, which is different from the prediction horizon Np and
normally Nu ≤ Np. In this chapter, we consider only the case where Nu = Np.

2This is also known as a cost function.
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systems that are subjected to constraints.

Typically, the criterion J(x, u, k,Np) is a quadratic criterion and thus, the optimisation

problem can be formulated as a quadratic programming3 problem and the constraints are

usually expressed in terms of linear equalities or linear inequalities.

Remarks: The plant model used in Equation (5.1) assumes that we have the full knowl-

edge of the steady state values of the states x(k) and the input u(k), which are often not

available in practical implementation. Thus, an alternate equivalent plant model that is

often used in practical implementation of MPC takes the form of (Wang, 2009).

[

∆x(k + 1)

y(k + 1)

]

=

[

A 0

CA 1

][

∆x(k)

y(k)

]

+

[

B

CB

]

∆u(k)

y(k) =
[

0 1
]

[

∆x(k)

y(k)

]

(5.2)

where ∆x(k) = x(k) − x(k − 1) and ∆u(k) = u(k) − u(k − 1). In this form, the model

depends on the current and previous values of the states and the inputs. Moreover, ∆u(k),

represents the change of the input, which physically, represents the rate of the opening of

the valve, change of gate position, etc. Note that, Equation (5.2) also involves augmen-

tation of the states to include an integrator, which is one the many ways of introducing

an integrator4 into the system (see (Maciejowski, 2002) and reference therein.). In this

thesis, we will stick to the model used in Equation (5.1) as the materials related to the

reverse engineering in the later section of this chapter use Equation (5.1).

5.1.2 Principle operation

The principle operation of MPC is illustrated as follows (see Figure 5.1). Suppose we want

the output y to track a given setpoint. At time k, MPC obtains measurements (shown by

the black dot) and updates the estimate of the states of the plant such that it reflects the

current condition of the plant. Then, it generates a set of control input u, by optimising

the predicted future behaviour of the plant over the prediction horizon Np with respect

to the input. Only the first control input is applied to the plant. At time k + 1, the new

measurements (shown by the grey dot), which reflects the effect of previous control are

3A quadratic programming solves the problem that is formulated in the form of minx
1

2
xTQx + pTx

subject to Ax ≤ b (inequality constraint) and/or Cx = d (equality constraint).
4In this thesis, the integrator is also introduced but in a slightly different manner, see Section 6.4.2.



5.1. Introduction to MPC 143

obtained and the whole process is repeated until the output reaches the desired setpoint.

The concept of prediction made over the finite horizon Np is also known as ”receding

horizon” as the length of the prediction horizon remains the same as the initial time point

shifts from time k (dotted black window) to k + 1 (dotted grey window).

Figure 5.1: The basic working principle of MPC.

5.1.3 Constraints handling

As mentioned, the main attractive feature of MPC is its capability to handle constraints

in the optimisation problem. Constraints can be included explicitly in the optimisation

problem where Equation (5.1) becomes

u = argmin
u(k),u(k+1),...,u(k+Np−1)

J(x, u, k,Np)

subject to: x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

x ∈ X , u ∈ U , y ∈ Y (5.3)
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where X , U and Y are some defined constraints sets. A typical form of J(x, u, k,Np) is

given by

J(x, u, k,Np) = xT (Np)Px(Np) +

Np−1
∑

k=1

xT (k)Qx(k) + uT (k)Ru(k)

+ sTL(k)Qs,LsL(k) + sH(k)TQs,HsH(k) (5.4)

where x and u are the state variables and the control input respectively. P , Q and R are

weighting matrices where P and Q are positive definite matrices, while R is a positive

semi definite weighting matrix. There are two types of constraints; the hard and the

soft constraints. The hard constraints are constraints that cannot be violated at all. An

example of a hard constraint is the opening of a gate to regulate flow that cannot go

beyond its opening and closing limit. On the other hand, soft constraints are constraints

that can be violated for a short period of time without causing any major consequences

to the system.

The inclusion of the soft constraints is usually done to avoid the optimisation problem

becoming infeasible. By infeasible, we mean that the optimiser is unable to find a solution

that satisfies all the constraints simultaneously. One way to soften the constraints is to

introduce the ”slack variables” and include them in the criterion. These slack variables are

defined in such a way that they will be non zero when constraint violation happens. Then,

these variables are penalised with large weights in the criterion in order for the optimiser

to maintain these slack variables at zero if possible. As an example, suppose the output

y(k) is constrained to be less than a value α and y(k) is made a soft constraint with the

slack variable sL(k). Rewriting in terms of linear inequalities, we have

y(k) + sL(k) ≤ α (5.5)

From Equation (5.5), we can see that sL(k) = 0 when the constraints are inactive and

sL(k) > 0 when the constraints are active. With sL(k) penalised heavily in the criterion,

Equation (5.4) will be very large if constraints violation occurs. Then, the optimiser will

have the urge to keep sL(k) at zero if possible. In Equation (5.4), sL(k) and sH(k) are

the slack variables that are associated with the minimum and the maximum values of the

defined constraints. Qs,L and Qs,H are the weights matrices to penalise the slack variables

sL(k) and sH(k) respectively.
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5.1.4 Unmeasured states

So far, our discussions have assumed that we have measurements for all the states of

the plant. In practice, quite often not all states are measured and in such scenario, an

observer is required to estimate the states of the plant. MPC will then use this estimated

states, which we denote as x̂ in the place of the true states x for prediction of the future

behaviour of the plant in order to determine the optimal sequence of the control inputs.

That is the estimated states are used as the initial states to predict the future states within

the controller.

5.1.5 Dealing with disturbances

Unmeasured or unknown disturbances

In practice, there are disturbances acting on the plant. Very often these disturbances are

not measured or unknown and the controller needs to reject these disturbances such that

a zero steady state error can be achieved. One standard way to deal with disturbance is

to augment the plant with the model of the disturbance, use the observer to estimate this

disturbance and use this estimated disturbance to cancel the effect of the actual distur-

bance (see e.g. (Franklin et al., 1998) or (Rossiter, 2005)). If we assume the disturbance

is constant, the disturbance model is given by

dUMD(k + 1) = dUMD(k) (5.6)

where the subscript ”UMD” is used to denote the unmeasured disturbances. Depending

on where the disturbances enter the plant (from the input or the output side), the state

space model can be written as

x(k + 1) = Ax(k) +Bu(k) +BUMDdUMD(k)

y(k) = Cx(k) (5.7)

if the disturbances enter from the input side, and

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) + dUMD(k) (5.8)
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if the disturbances enter from the output side. In both cases, we can use the observer to

estimate these disturbances, the observer is designed based on the augmented plant with

the disturbance model, which yields the following plant matrices,

Adin,aug =

[

A BUMD

0 I

]

Bdin,aug =

[

B

0

]

Cdin,aug =
[

C 0
]

(5.9)

if the disturbances enter from the input side, or

Adout,aug =

[

A 0

0 I

]

Bdout,aug =

[

B

0

]

Cdout,aug =
[

C I
]

(5.10)

if the disturbances enter from the output side with with xdUMD ,aug = [xT (k), dTUMD(k)]
T

Measured or known disturbances

The measured or known disturbances can be either known at current time (e.g. the

current measured value) or the known at future time (e.g. advanced order from the

irrigators). In both cases, these disturbances can be used as ”feedforward control” in

MPC. The feedforward can be easily incorporated into MPC by including the disturbances

directly into the prediction model over the prediction horizon (Maciejowski, 2002). When

solving the optimisation problem, the control input signal is computed with the measured

disturbances taken into account. To include the measured disturbances in our prediction

model, Equation (5.3) is rewritten as

u = argmin
u(k),u(k+1),...,u(k+Np−1)

J(x, u, k,Np)

subject to: x(k + 1) = Ax(k) +Bu(k) +BMDdMD(k)

y(k) = Cx(k)

x ∈ X , u ∈ U , y ∈ Y (5.11)

where dMD is the measured disturbance.
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5.2 Motivation behind reverse engineering

Having briefly introduced the idea of MPC, we now present the motivation behind MPC

design via reverse engineering. Conventional controllers such as the PI-controllers are

widely used because they are easy to tune, and they often achieve satisfactory performance

in the absence of constraints. However, when constraints are active, these controllers often

have to be de-tuned to avoid violating the constraints or be augmented with constraints

handling mechanisms (e.g. anti windup), which in both cases may result in a reduced

performance (Goodwin et al., 2001).

MPC on the other hand, is known for its constraints handling capability since the

constraints are directly included in the problem formulation. MPC uses the model of the

plant to predict the behaviour of the plant over a finite prediction horizon and determine

the best possible control action to be taken at each time step by solving an optimisation

problem. Despite this attractive feature, finding good weights in the optimisation criterion

for MPC is often non-trivial. As a rule of thumb, Bryson’s Rule is often used for selecting

the initial weights (Franklin et al., 2006). Bryson’s Rule requires knowledge of the largest

possible value of the state of the plant and the control action.

Suppose the MPC criterion is given by

J(u, x, k,Np) =

Np
∑

k=1

x(k)TQx(k) + uT (k)Ru(k) (5.12)

Based on Bryson’s Rule, the initial weight matrices of Q and R in Equation (5.12) can be

chosen to be a diagonal matrices with the following values

Qii = 1/maximum acceptable values of x2i

Rjj = 1/maximum acceptable values of u2i (5.13)

where i = 1, . . . , n with n is the number of states and j = 1, . . . , p with p is the num-

ber of input. Then, these weight matrices are modified accordingly until an acceptable

performance is obtained.

In this chapter, we present methods for finding the weights in an MPC criterion such

that the obtained MPC controller reproduces an existing conventional controller when

there are no constraints (see Figure 5.2). In other words, we reverse engineer these existing
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conventional controller, for MPC. The benefit of doing this is that we ensure that the

performance of the existing controller (which can be very good) is maintained, and we

may potentially obtain the constraints handling capability of MPC as an added feature to

the existing control configuration. This benefit may lead to a much wider acceptance of

using MPC over different range of applications by the industry.

Existing
Controller Plant

PlantMPC

Figure 5.2: Block diagram for reverse engineering.

5.3 Brief review on reverse engineering

The idea of ”reverse engineering” was first addressed in (Kalman, 1964), when Kalman

addressed the question, ”When is a linear control system optimal?” In other words, Kalman

was interested in finding the performance indices such that the given control law is optimal.

This led to a great interest in the inverse regulator problem (see e.g. (Kreindler and

Jameson, 1972), (Molinari, 1973) and (Fujii, 1987)).

One approach to reverse engineering is to use an observer-based compensator. This

was considered in (Bender and Fowell, 1985) and it is the key idea used throughout this

chapter. Bender and Fowler utilised a state feedback/observer controller to reproduce the

existing controller and they considered the case where the order of the plant is equal to

the order of the controller. In (Alazard and Apkarian, 1999) and (Delmond et al., 2006),

the authors generalised the work of (Bender and Fowell, 1985) by considering different

types of controllers and the order of the controller and the plant do not have to be equal.

The work in (Maciejowski, 2007) and subsequently, (Hartley and Maciejowski, 2009)
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extended the idea of reverse engineering using the observer-based compensator to MPC.

There are alternative methods for reverse engineering for MPC, which do not make use

of an observer and they can be found in (Di Cairano and Bemporad, 2010). However,

the methods in (Di Cairano and Bemporad, 2010) had some drawbacks such as large

computational time and no guarantee of feasibility.

In this chapter, we build on the work in (Hartley and Maciejowski, 2009), and consider

two additional reverse engineering procedures using a reduced order observer and state

augmentation. The emphasis is on reproducing controllers with integral action (e.g. PI or

I-controller), motivated by the widespread use of such controllers.

5.4 MPC implementation for reverse engineering

Given a state feedback controller, u(k) = −Kx(k), a zero value infinite horizon cost

function with this controller as its minimiser is given by (Kreindler and Jameson, 1972)

J =

∞
∑

k=0

[u(k) +Kx(k)]T [u(k) +Kx(k)] =

∞
∑

k=0

[

x(k)

u(k)

]T [

KTK KT

K I

][

x(k)

u(k)

]

(5.14)

Equation (5.14) is an LQR cost function with cross terms. In MPC, the optimisation

is carried out over a finite horizon Np. An equivalent MPC formulation is given by

JMPC =

Np−1
∑

k=0

[

x(k)

u(k)

]T [

KTK KT

K I

][

x(k)

u(k)

]

+ xT (Np)Px(Np) (5.15)

where P is a solution to a Discrete Algebraic Riccati Equation, (DARE). Since Equation

(5.14) has a zero value cost for u(k) = −Kx(k), the terminal weight P is zero (Hartley

and Maciejowski, 2009). This reduces Equation (5.15) to

JMPC =

Np−1
∑

k=0

[

x(k)

u(k)

]T [

KTK KT

K I

][

x(k)

u(k)

]

(5.16)
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Rewriting Equation (5.16) in standard form

JMPC =

Np−1
∑

k=0

x(k)TQx(k) + u(k)TRu(k)

+ x(k)TSu(k) + uT (k)STx(k) (5.17)

we observe that Q = KTK, R = I and S = KT , where I denotes identity matrix. These

weights are dependent on K. In the event, where not all states are measured, the control

law is then given by u = −Kx̂, where x̂ is the output of an observer. The goal here, which

will be further illustrated in the subsequent sections is to find a feedback gain K and an

observer gain such that the controller u = −Kx̂ reproduces the existing controller when

there are no constraints.

5.5 Methods for reverse engineering

We now present three methods for designing MPC such that it reproduces the conventional

controller when there are no constraints. The first method where a full order observer is

used in the reverse engineering is from the work of (Maciejowski, 2007) and (Hartley and

Maciejowski, 2009). We build on those works and proposed two more reverse engineering

methods, which use a reduced order observer and state augmentation.

5.5.1 Using full order observer

In this section, the method of reverse engineering, which uses a full order observer is

presented. We use the notation Kfav to denote the existing ”favourite” controller that the

MPC should reproduce.

Consider the plant and the favourite controller,

Plant

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) (5.18)
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Controller

xK(k + 1) = AKxK(k) +BKy(k)

u(k) = CKxK(k) +DKy(k) (5.19)

where A ∈ R
n×n, B ∈ R

n×p, C ∈ R
m×n, AK ∈ R

nK×nK , BK ∈ R
nK×m, CK ∈ R

p×nK and

DK ∈ R
p×m. n, p, m and nK are the order of the plant, input of the plant, output of

the plant and the controller respectively and nK ≤ n. Next, we represent Kfav as a state

feedback controller. This is achieved by using an observer where the controller states are

mapped to the observer states (see Figure 5.3). For simplicity of analysis, we have made

Figure 5.3: Reverse engineering using full order observer.

the assumption that there are no feed-through terms in the plant and the controller (i.e.

D = 0 and DK = 0). In the case where DK 6= 0 (e.g. PI-controller), some extra steps

(either by introducing a unit delay or by loop shifting) can be taken to obtain a problem

formulation where the controller is strictly proper (see (Hartley and Maciejowski, 2009)).

For the method of adding a unit delay, some care has to be taken prior reverse en-

gineering. A unit delay introduces additional phase shift, which would change the phase

margin of the loop transfer function. Thus, the controller that we want to reproduce has

to be robust against such a scenario.

As for the method of loop shifting, following the procedure in (Zhou et al., 1996) the

DK term is moved to the plant (see Figure 5.4). The loop shifting results in the modified

plant having the following new A matrix, which we denote Ā = (A+BDKC), while the B

and C matrices remain the same. This method preserves the original closed loop transfer

function. In this chapter, whenever we are dealing with DK 6= 0, loop shifting is used

instead of adding a unit delay (see Section 5.6).
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Figure 5.4: Loop shifting.

We proceed with showing the simplified derivation on how the full order observer is

used for reverse engineering. We follow the derivation from (Bender and Fowell, 1985)

and (Hartley and Maciejowski, 2009) closely. The A matrix of the closed loop system of

Equation (5.18) and (5.19) is given by

ACL =

[

A BCK

BKC AK

]

(5.20)

The idea is to map the states of Kfav to the full order observer such that the dynamics of

the closed loop system of the plant and the full order observer is similar to ACL.

A full order observer is given by

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− Cx̂(k)) (5.21)

and the control input is expressed as

u(k) = −Kx̂(k) (5.22)

where x̂ denotes the estimate of the state of the plant. K and L are the state feedback gain

and the observer gain respectively. Substituting Equation (5.22) into Equation (5.21), we
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get

x̂(k + 1) = (A− LC −BK)x̂(k) + Ly(k)

u(k) = −Kx̂(k) (5.23)

The closed loop system given by Equations (5.18) and (5.23) is

[

x(k + 1)

x̂(k + 1)

]

=

[

A −BK
LC A− LC −BK

][

x(k)

x̂(k)

]

=: Ă

[

x(k)

x̂(k)

]

(5.24)

We need to find K and L such that the closed loop dynamics between the plant and the

full order observer contains the closed loop dynamics of the plant and Kfav .

In order to map the states of the controller to the states of the observer, the relationship

xK(k) = T x̂(k) (5.25)

is imposed where T is a full row rank matrix. This idea was used in (Bender and Fowell,

1985), where they considered the case where nK = n. With nK = n, T is a square matrix

and nonsingular (as T is a full row rank matrix). Thus, substituting Equation (5.25) into

Equation (5.19) with DK = 0, we have

T x̂(k + 1) = AKT x̂(k) +BKy(k)

u(k) = CKT x̂(k) (5.26)

Pre-multiply by T−1 on both sides for the first equation, we get

x̂(k + 1) = T−1AKT x̂(k) + T−1BKy(k)

u(k) = CKT x̂(k)

(5.27)

Comparing Equations (5.23) and (5.26) term by term, we get

T−1AKT = A− LC −BK

T−1BK = L

CKT = −K (5.28)
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Substituting Equation (5.28) into Equation (5.24), pre-multiply and post-multiply Ă with
[

I 0

0 T

]

and

[

I 0

0 T−1

]

respectively, we get

[

x(k + 1)

x̂(k + 1)

]

=

[

I 0

0 T

][

A −BK
LC A− LC −BK

][

I 0

0 T−1

][

x(k)

x̂(k)

]

=

[

A BCK

BKC AK

] [

x(k)

x̂(k)

]

(5.29)

It is clear from Equation (5.29) that the closed loop dynamics of the plant and the full

order observer is the same as the closed loop dynamics of the plant and Kfav . T is a

solution to the non-symmetric algebraic Riccati equation,

[

−T I
]

ACL

[

I

T

]

= 0

[

−T I
]

[

A BCK

BKC AK

][

I

T

]

= 0

−TA− TBCKT +BKC +AKT = 0 (5.30)

We will discuss the method to find T later in this section.

For the case when nK ≤ n, T ∈ R
nK×n is now a wide rectangular matrix. Hence, the

left inverse of T does not necessarily exists and the steps in Equations (5.26) and (5.27)

cannot be used to obtain K and L. We need an alternate derivation. It turns out that

the state feedback gain K and the observer gains L are given by

K = −CKT (5.31)

and

L = T#BK (5.32)

where T−1 is replaced by T#, a right inverse of T , i.e. TT# = I. In the following, we

show that with Equations (5.31) and (5.32), we can get the closed loop dynamics between

the plant and the full order observer to be similar with the closed loop dynamics between

the plant and Kfav .

Before that, some notations associated with T are first introduced. As stated before,
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T# is the right inverse of T . Let T⊥ be a matrix whose column form an orthonormal basis

for the nullspace of T (i.e. TT⊥ = 0) and let T+ be the Moore-Penrose pseudoinverse5 of

T .

Substituting Equations (5.31) and (5.32) into Equation (5.24), we get

[

x(k + 1)

x̂(k + 1)

]

=

[

A BCKT

T#BKC A+BCKT − T#BKC

][

x(k)

x̂(k)

]

(5.33)

Using a similarity transformation to decompose x̂ into components belonging to the rows-

pace and null space of T , we get x̂ = xRS +xNS where xRS ∈ Row(T ) and xNS ∈ Null(T ).

Equation (5.33) becomes







x(k + 1)

xRS(k + 1)

xNS(k + 1)






=







I 0

0 T

0 T⊥T







[

A BCKT

T#BKC A+BCKT − T#BKC

][

I 0 0

0 T+ T⊥

]







x(k)

xRS(k)

xNS(k)







(5.34)

Expanding Ă =







I 0

0 T

0 T⊥T







[

A BCKT

T#BKC A+BCKT − T#BKC

][

I 0 0

0 T+ T⊥

]

, we get







A BCKTT
# BCKTT

⊥

TT#BKC (TA−BKC + TBCKT )T
+ (TA−BKC + TBCKT )T

⊥

T⊥T
T#BKC T⊥T

(A+BCKT − T#BKC)T+ T⊥T
(A+BCKT − T#BKC)T⊥







(5.35)

To simplify Equation (5.35), from Equation (5.30) we have

TA−BKC + TBCKT = AKT (5.36)

Moreover TT# = I and TT⊥ = 0, and substituting these equations into Equation (5.35),

we then have Equation (5.34) becomes,







x(k + 1)

xRS(k + 1)

xNS(k + 1)






=







A BCK 0

BKC AK 0

ANS1 ANS2 ANS3













x(k)

xRS(k)

xNS(k)






(5.37)

where ANS1 = T⊥T
T#BKC, ANS2 = T⊥T

(A + BCKT − T#BKC)T+ and ANS3 =

5A pseudoinverse is a generalised inverse for any matrix and the matrix need not be a square matrix.
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T⊥T
(A + BCKT − T#BKC)T⊥. By identifying xRS with xK , it is clear that Equation

(5.37) contains the dynamics of ACL. The dynamics of x and xRS are not affected by the

dynamics of xNS due to the zero appearing at the (1,3) and (2,3) element of the matrix

in Equation (5.37).

With the expression for K and L found for the case of nK ≤ n, the problem now boils

down to finding T . There are many solutions for T , which can be found using an invariant

subspace method (Laub, 1979). One possibility is to use the eigenvalues6 decomposition

of ACL such that

U−1ACLU = Λ (5.38)

where U ∈ R
(nK+n)×(nK+n), and its columns are the eigenvectors of ACL. Λ is a diagonal

matrix with the eigenvalues of ACL on the diagonal. The matrix U can be partitioned as

U =

[

U11 U12

U21 U22

]

(5.39)

where the partitioned left column of U consists of the first n eigenvectors of ACL. T can be

chosen as T = U21U
−1
11 . The choice of this column also determines the eigenvalues which

will be assigned to the dynamics of the state feedback and which will be assigned to the

observer with the constraints that a pair of complex conjugate eigenvalues cannot be split,

the uncontrollable poles and the unobservable poles must be assigned to the state feedback

controller and the full order observer dynamic respectively. The choice of the eigenvalue

assignment does not affect the closed loop transfer function in the absence of constraints,

but it affects the rate of convergence of the dynamics of the observer. Guidelines for

choosing the appropriate eigenvalues are given in (Bender, 1985).

Because nK ≤ n, the system with the full order observer will be a non-minimal reali-

sation of Kfav . The closed loop system of Equations (5.18) and (5.21) will have n − nK

extra eigenvalues which are not present in ACL. The designer can choose any of these

extra eigenvalues through the choice of T#, which is used to compute the gain of the full

order observer, i.e. L = T#BK . To compute T#, the following method, which derivation

is based entirely on (Delmond et al., 2006) is used. Any right invertible matrix can be

written in the following form (Brookes, 2005),

T# = T+ + T⊥X (5.40)

6Another possibility is to use Schur decomposition.
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where X ∈ R
(n−nK)×nK is an arbitrary matrix and it is through the matrix X, that the

designer can select these extra n− nK eigenvalues.

Let Aob := A − LC = A − T#BKC. Note that, eig(Aob) consist of the eigenvalues

of the full order observer, which contains the eigenvalues of ACL assigned to the full

order observer by solving for T and the extra n − nK eigenvalues. Performing similarity

transformation by pre-multiplying Aob with
[

T T⊥
T
]T

and post-multiplying Aob with
[

T+ T⊥

]

leads to

[

T

T⊥
T

]

Aob

[

T+ T⊥

]

=

[

AK − TBCK AKTT
⊥ − TBCKTT

⊥

T⊥T
(A− T#BKC)T+ T⊥T

(A− T#BKC)T⊥

]

=

[

AK − TBKC 0

T⊥T
(A− T#BKC)T+ T⊥T

(A− T#BKC)T⊥

]

(5.41)

The eigenvalues of AK − TBCK are the eigenvalues of ACL which is assigned to the

full order observer by solving for T . The extra n − nK eigenvalues are the eigenvalues

of T⊥T
(A − T#BKC)T⊥. Substituting Equation (5.40) to T⊥T

(A − T#BKC)T⊥ and

after some algebraic rearrangement, yields T⊥T
AT⊥ −XBKCT

⊥. XT can be computed

using standard pole placement techniques with its canonical matrix given by the pair of

((T⊥T
AT⊥)T , (BKCT

⊥)T ). Using the obtained value of X, T# can then be computed

using Equation (5.40).

With T found, the weights in the MPC cost function are

Q = KTK = (−CKT )
T (−CKT )

R = I

S = KT = (−CKT )
T (5.42)

For MPC to reproduce Kfav , the MPC implementation must be based on the feedback of

the states estimated by the full order observer with the observer gain must be chosen as

L = T#BK as illustrated in Figure 5.3.
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5.5.2 Using reduced order observer

In this section, we explore the use of a reduced order observer for reverse engineering. We

will first briefly introduce the reduced order observer before showing how it can be used for

reverse engineering. The introductory material follows the derivation in (Vaccaro, 1995)

closely.

As some of the states are measured, the states of the plant can be partitioned into

measured and non-measured states (here we use the subscript ”M” and ”NM” to denote

”measured” and ”not measured” respectively), i.e.

x(k) =

[

xM (k)

xNM (k)

]

}m
}(n−m)

(5.43)

The partition of x(k) leads to the following partition of the plant matrices,

A =

[

m n−m

A11 A12

A21 A22

]

}m
}n −m

B =

[

B1

B2

]

}m
}n−m

C =
[

m n−m

C1 0
]

(5.44)

where m is the number of measured states and n is the order of the plant. It follows that,

xM (k + 1) = A11xM(k) +A12xNM (k) +B1u(k)

xNM (k + 1) = A21xM(k) +A22xNM (k) +B2u(k) (5.45)

The reduced order observer will estimate xNM given by

x̂NM (k + 1) = A22x̂NM (k) +B2u(k) +A21C
−1
1 y(k) (5.46)

where we have used xM (k) = C−1
1 y(k). For simplicity, C1 is assumed to be invertible. In

general, the matrix C can be any rank m matrix (see (Vaccaro, 1995) for details). One

can observe the eigenvalues of A22, cannot be chosen as A22 is the partitioned matrix from

the plant. Equation (5.46) must be modified if A22 has eigenvalues outside the unit circle,
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and it may also be desirable to modify Equation (5.46) if the eigenvalues are inside, but

close to the unit circle. We first rename the variables in Equation (5.46) and rewrite them

in a more general form as,

xNMG(k + 1) = AroxNMG(k) +Bro1u(k) +Bro2y(k)

x̂NM (k) = xNMG(k) + Lroy(k)

u(k) = −KNM x̂NM (k)−KMC
−1
1 y(k) (5.47)

where Aro ∈ R
(n−m)×(n−m), Bro1 ∈ R

(n−m)×p, Bro2 ∈ R
(n−m)×m and Lro ∈ R

(n−m)×m.

The second equation in Equation (5.47) is the update equation based on the measure-

ment y(k) and Lro is the reduced order observer gain. Note that, we can get back Equation

(5.46) from Equation (5.47) if we set Aro = A22, Bro1 = B2, Bro2 = A21C
−1
1 and Lro = 0.

We are interested in the dynamics of the error between the true states and the estimated

states and would like the error dynamics to follow an equation of the form

eNM (k + 1) = AroeNM (k) (5.48)

where eNM (k) := xNM (k)− x̂NM (k) and Aro has the desired eigenvalues that ensure the

error goes to zero asymptotically. We proceed to show how we arrive at Equation (5.48).

With

eNM (k + 1) = xNM (k + 1) − x̂NM (k + 1) (5.49)

and substituting xNM (k + 1) from the second equation of Equation (5.45) together with

x̂NM (k + 1) from the second equation of Equation (5.47) into Equation (5.49), we have

eNM (k+ 1) = [A21xM (k) +A22xNM (k) +B2u(k)]− [xNMG(k + 1) +Lroy(k+ 1)] (5.50)

From Equation (5.47), the expression xNMG(k + 1) can be written as

xNMG(k + 1) = AroxNMG(k) +Bro1u(k) +Bro2y(k)

= Aro[x̂NM (k)− Lroy(k)] +Bro1u(k) +Bro2y(k)

= Aro[xNM (k)− eNM (k)− Lroy(k)] +Bro1u(k) +Bro2y(k)

= Aro[xNM (k)− eNM (k)] +Bro1u(k) + [Bro2C1 −AroLroC1]xM (k) (5.51)

where we have used eNM (k) = xNM (k) − x̂NM (k) and y(k) = C1xM (k) to get the third
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and last line of Equation (5.51) respectively. y(k + 1), can be written as

y(k + 1) = C1xM (k + 1)

= C1[A11xM (k) +A12xNM (k) +B1u(k)] (5.52)

where we have used the first line of Equation (5.45) for xM (k + 1). Substituting both

Equations (5.51) and (5.52) into Equation (5.50), we arrive at the following equations,

eNM (k + 1) = AroeNM (k) + (A21 +AroLroC1 −Bro2C1 − LroC1A11)xM (k)

+ (A22 −Aro − LroC1A12)xNMG(k)

+ (B2 −Bro1 − LroC1B1)u(k) (5.53)

To obtain Equations (5.48) from (5.53), we set the terms (A21 +AroLroC1 −Bro2C1 −
LroC1A11), (A22 − Aro − LroC1A12) and (B2 − Bro1 − LroC1B1) to zero. In the process,

we obtain the design equations for the reduced order observer itself. The design equations

for the reduced order observer are thus given by (see (Vaccaro, 1995), Chapter 7),

Aro = A22 − LroC1A12 (5.54)

Bro1 = B2 − LroC1B1 (5.55)

Bro2 = (A21 − LroC1A11)C
−1
1 +AroLro (5.56)

From Equation (5.54), we observe that if the designer places the desired poles in Aro

to achieve a certain performance, the reduced order observer gain matrix Lro can be found

provide C1A12 is invertible. Then, Bro1 and Bro2 can subsequently be found by solving

Equations (5.55) and (5.56).

The use of those design equations and how Lro can be computed depends on the

relationship between n and m. In the case where m ≥ n
2 and rank(A12) = (n −m), the

designer can place the desired eigenvalues into Aro = diag(λ1, λ2, . . .) and solve for Lro,

Bro1 and Bro2. Lro is computed using minimum norm solution, which is given by

Lro = (A22 −Aro)(A
T
12C

T
1 C1A12)

−1AT
12C

T
1 (5.57)

As we have rank(A12) = (n−m) (i.e. full rank) and C1 is nonsingular, (AT
12C

T
1 C1A12)

−1

is nonsingular.
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For the case where m = 1, we are no longer able to place the poles as the diagonal

entries in Aro since by doing so, we would end up with an overdetermined system of

equations. Moreover, when m = 1, AT
12C

T
1 C1A12 in Equation (5.57) is not invertible as

A12 ∈ R
1×(n−m). Thus, we need to use a pole placement formula (e.g. Ackermann’s

formula) instead, which is given by

Lro =













C1A12

C1A12A22

...

C1A12A
n−2
22













−1 











B2

A22B2

...

An−2
22 B2

























λD,1 − λA,1

λD,2 − λA,2

...

λD,n−1 − λA,n−1













(5.58)

where λD and λA are our desired poles and the poles of A22 respectively. Note that

Equation (5.58) is only valid for the case m = 1.

For the case where neither the two conditions above fits (e.g. n = 5 and m = 2 or

rank(A21) 6= (n −m)), the method of multivariable pole placement need to be used (see

(Vaccaro, 1995), Chapter 9 for details).

Having introduced the design method for reduced order observer, next, we show how

the reduced order observer is used for reverse engineering. The idea is similar to the use

full order observer (see Figure 5.5 and compare it with Figure 5.3). The idea is to make

use of the gain KM and KNM (these terms are introduced later in the next paragraph)

to assign the relevant eigenvalues to the state feedback controller and then use the design

equations for reduced order observer to assign the remaining eigenvalues to the reduced

order observer.

Figure 5.5: Reverse engineering using reduced order observer.

In the method of using the full order observer, we have computed K = −CKT and with
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this K, some eigenvalues of ACL have been assigned to the dynamics of the state feedback

controller. We can make us of this K to ensure that when we combine the state feedback

controller with the reduced order observer, we have also assigned some eigenvalues of ACL

to the dynamics of the state feedback controller. This can be done in the following manner.

As the states of the plant have been partitioned, we can also partition the state feedback

vector K = [KM |KNM ], where KM acts on the measured states and KNM acts on the

estimated states from the reduced order observer.

The control law can then be written as

u(k) = −KMxM (k)−KNM x̂NM (k) (5.59)

Substituting Equation (5.59) into Equation (5.18), we get

x(k + 1) = Ax(k) −BKMxM (k)−BKNM x̂NM (k) (5.60)

From eNM (k) = xNM (k)−x̂NM (k), we have x̂NM (k) = xNM (k)−eNM (k) and substituting

it into Equation (5.60), we get,

x(k + 1) = Ax(k)−BKMxM (k)−BKNMxNM (k) +BKNMeNM (k)

= Ax(k)−BKx(k) +BKNMeNM (k)

= (A−BK)x(k) +BKNMeNM (k) (5.61)

where BKMxM (k)+BKNMxNM (k) = BKx(k) as xM and xNM are the true states of the

plant (see Equation (5.43)). We now need an equation in terms of eNM (k) such that we

can formulate the closed loop system between the plant and the reduced order observer

using the states [x(k), eNM (k)]T . In fact we already have the equation for eNM (k) i.e.

Equation (5.48). With that the closed loop between the plant and the reduced order

observer using the state vector [x(k), eNM (k)]T is given by

[

x(k + 1)

eNM (k + 1)

]

=

[

A−BK BKNM

0 Aro

] [

x(k)

eNM (k)

]

(5.62)

Equation (5.62) tells us that the eigenvalues of this closed loop system is given by

eig(A − BK) ∪ eig(Aro). Here, in order for the closed loop system using the reduced

order observer to reproduce Kfav , the eigenvalues of A − BK and Aro must include the
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eigenvalues of ACL. As we have used the sameK = −CKT , from the full order observer, we

have already assigned the eigenvalues to the dynamics of the state feedback controller and

what is left is to assign the remaining eigenvalues of ACL to the dynamics of the reduced

order observer, i.e. to Aro using the design equations presented above (i.e. Equations

(5.54) to (5.56)) subject to the relationship between n and m. In the case where there

are an extra of (n− nK −m) eigenvalues, these can be chosen arbitrarily by the designer

and be assigned to Aro. The above procedure guarantees that the eigenvalues of Equation

(5.62) are the same as that of ACL in the absence of constraint. The eigenvectors may

be different, however no adverse effect of this has been observed so far in the reverse

engineering.

For MPC to reproduce Kfav, the MPC implementation must be based on the feedback

of the n−m states by the reduced order observer and m measured states as illustrated in

Figure 5.5.

5.5.3 Using state augmentation

We now present the third method of reverse engineering via state augmentation. A stan-

dard way to achieve integral action with a state feedback controller is to augment the

plant with an integrator (Franklin et al., 2006). This can be taken one step further. For

an arbitrary controller in the form of Equation (5.19), we augment the plant with the

controller such that,

Aaug =

[

A 0

BKC AK

]

Baug =

[

B

0

]

Caug =
[

C 0
]

(5.63)

with the new state xaug(k) = [xT (k), xTK(k)]T . As u(k) = CKxK(k), we have

K = [0,−CK ] (5.64)

Note that if we choose Aro = AK , Bro2 = BK , Knm = −CK , Bro1 = 0, Km = 0 and

Lro = 0 in Equation (5.47), then the reduced order observer approach is the same as the

state augmentation approach.

Remark: One thing worth mentioning here is that for the method of state augmentation,



164 Chapter 5. Model Predictive Control (MPC) design via reverse engineering

we actually do not require that DK 6= 0. With y(k) = Cx(k) and the augmented states

are [xT (k), xTK(k)], we can write u(k) = CKxK(k) + DKy(k) = CKxK(k) + DKCx(k).

Equation (5.64) then becomes

K = [−DKC,−CK ] (5.65)

5.6 Illustrative examples

We apply the three methods for reverse engineering to two examples. In the first example,

we apply the method to a reach of the Broken River between Casey’s and Gowangardie

Weirs, i.e. Reach CG. This reach is controlled by a simple I-controller. The second

example is a third order system controlled by a PI-controller, where we illustrate the use

of loop shifting method to ensure a strictly proper controller prior to reverse engineering.

For both the examples, the formulation of the quadratic programming problem is done

in MATLABr using YALMIP (Löfberg, 2004). The commercial package CPLEX 12.2

(IBM, 2009) is used to solve the optimisation problem.

5.6.1 Reach between Casey’s and Gowangardie Weir

Figure 5.6 shows the control configuration.

Casey’s Weir Gowangardie

Weir

Datum

Flow direction

QG, setpoint+

-
C(z)

QC

I-Controller

QG

Figure 5.6: Control configuration of Reach Casey’s Weir to Gowangardie Weir.

Farmers will pump water from the river and these offtakes act as disturbances. The I-
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controller is used to reject these disturbances. We treat these disturbances as unmeasured

disturbances. Hence, the control objective is for the I-controller to maintain the flow at

Gowangardie Weir at setpoint in the presence of these offtakes.

In Section 5.1.5, we have presented ways to deal with disturbances whether they are

either measured or unmeasured. As MPC is to reproduce the I-controller, and with the

integral action reproduced by MPC, there is no necessity to augment the plant with the

disturbance model, as the integral action reproduced by MPC will reject these unmeasured

disturbances.

The reach between Casey’s and Gowangardie Weir can be modelled as a simple time

delay system (see Chapter 4),

QG(k) = QC(k − τ) (5.66)

where QC and QG are the flows over Casey’s and Gowangardie Weirs respectively. The

time delay for this reach is 1800 minutes. With a sampling interval of Ts = 360 minutes,

τ = 5.

Rewriting Equation (5.66) as a state space model, we obtain,

A =

















0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

















B =

















0

0

0

0

1

















C =
[

1 0 0 0 0
]

(5.67)

The I-controller C(z) = KI
z−1 = 0.0529

z−1 is chosen as Kfav where the matrices are given by

AK = 1, BK = KI and CK = 1.

Using Full Order Observer

For this system, n = 5 and nK = 1. The eigenvalues of ACL (Equation (5.20)) are

λCL = 0.9194, 0.7133, 0.1122± j0.5398,−0.4285± j0.2862. We need to assign five poles to

the state feedback controller. As the pairs of complex conjugate poles cannot be split and

we prefer the fastest real pole to be placed at the observer dynamics (i.e., λ = 0.7133), we

assigned λ = 0.9194, 0.1122 ± j0.5398,−0.4285 ± j0.2862 to the state feedback dynamics.



166 Chapter 5. Model Predictive Control (MPC) design via reverse engineering

The extra n − nK eigenvalues were also chosen to be ”fast”, thus we arbitrary choose

0.1, 0.2, -0.3 and -0.4. Solving the Riccati Equation (Equation (5.30)) using an invariant

subspace method, we obtained

T = [0.0742, 0.1041, 0.1459, 0.2045, 0.2867]

T# = [5.9179, 6.7116,−0.5276,−0.3418, 0.0323]T

L = [−0.3133,−0.3553, 0.0279, 0.0181,−0.0017]T

K = [−0.0742,−0.1041,−0.1459,−0.2045,−0.2867]

Substituting these values together with Equations (5.31) and (5.32) into Equation (5.21)

and rewriting in terms of transfer function, we obtained Cfull(z) = 0.0529
z−1 which is the

I-controller.

Using Reduced Order Observer

The eigenvalues of ACL should be contained in eig(A − BK) ∪ eig(Aro). In the full

order observer, we have assigned n eigenvalues of ACL using Equation (5.31). Using

the same K, we partitioned it as K = [KM |KNM ] with KM = −0.0742 and KNM =

[−0.1041,−0.1459,−0.2045,−0.2867]. The final control law is given by Equation (5.59).

Thus, we are left with assigning the remaining nK eigenvalues by placing them into Aro.

With this choice of K, we are left to assign λ = 0.7133 to the observer dynamic.

As Aro ∈ R
4×4, we have an extra three poles that need to be assigned to the observer

dynamic. We can again arbitrary choose any ”fast” eigenvalues and we chose λ = 0.4, 0.5

and 0.6 to the reduced order observer. Placing the poles into Aro using Equation (5.58)

and solving for Equations (5.54) to (5.56), we obtain the following values,

Lro = [−2.2133, 1.8100,−0.6478, 0.0856]T

Aro =













2.2133 1 0 0 0

−1.8100 0 1 0 0

0.6478 0 0 1 0

−0.0856 0 0 0 1













Bro1 = [0, 0, 0, 1]T

Bro2 = [−3.0888, 3.3581,−1.3483, 0.1895]T (5.68)
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Note that the eigenvalues of Aro are exactly the four eigenvalues we assigned to the reduced

order observer. Substituting these values into Equation (5.47) and rewriting Equation

(5.47) transfer function form, we obtain Cred(z) =
0.0529
z−1 , which is again the I-controller.

Using State Augmentation

The derivation is straight forward. From Equations (5.63) and (5.64) we have

u(k) = −Kxaug(k) = CKxK(k) = xK(k)

= KICxaug(k − 1) + xK(k − 1)

= KIy(k − 1) + u(k − 1) (5.69)

Rewriting Equation (5.69) in transfer function form, we obtain Csa(z) = U(z)
Y (z) = KI

z−1 =
0.0529
z−1 , which is the I-controller.

Simulation results

In the simulation, a constant offtake occurs at time 7200 minutes. The flow setpoint at

Gowangardie Weir is 0.5787 m3/s (50ML/day). The offtakes will cause the flow at Gowan-

gardie Weir to be less than the desired setpoint and the controller will make appropriate

flow adjustment at Casey’s Weir to maintain the flow at Gowangardie Weir at setpoint.

Figures 5.7 to 5.9 show the simulation results. The MPC prediction horizon is Np =

10Ts. From Figure 5.7, we can see that the three reverse engineered MPC reproduce the

I-controller very well as the plots are on top of each other making them indistinguishable.

In addition, we plot the difference between the three methods compared to the I-controller

in Figure 5.8 where we can see that the difference between all the three methods are small.

We now explore the potential benefit of using MPC in the presence of constraints.

Although we have treated these offtakes as unmeasured disturbance, in practice, these

offtakes to farm are usually known in advanced as farmers need to place the water orders

with the water authority. In view of that, these offtakes are now treated as measured

disturbances and we can include them in MPC as part of ”feedforward” control as discussed

in Section 5.1.5. In the following simulation, we constrain QG to be larger than 0.4m3/s

(34.5ML/Day) and we let this flow be a soft constraint. In practice, there are situations

where a minimum flow is required in the river for environmental purposes (e.g. habitat
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Figure 5.7: Reverse engineering using the three methods.
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Figure 5.8: Difference between the three methods.
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Figure 5.9: Constraints on QG.

preservation for aquatic creatures). From Figure 5.9 we can see that due to the prediction

of future states, for all three methods, the MPC controller releases the flow earlier in order

to avoid violating the constraints.

The simulations shown in Figures 5.7 to 5.9 are simulated on the time delay model,

which is used for control design. To illustrate the effect of model mismatch and uncertain-

ties in the system, the simulation is next carried out using the calibrated Saint Venant

equations for Reach CG (see Chapter 3). The above simulations are repeated and the

results are shown in Figures 5.10 to 5.12. From Figure 5.10, we can see that due to model

mismatch the plots are no longer on top of each other. The plots in Figure 5.11 shows that

the differences between the three methods are now larger. In terms of constraints handling

capability (Figure 5.12), we do notice that there is violation of the constraints. This is

due to model mismatch as the model used for control design is different from the model

used for simulation. With the flow being a soft constraints, the violation of constraints

occurs for a short period of time. Nonetheless, all three methods behave similarly to the

case when the simulations are carried out using the time delay model.
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Figure 5.10: Reverse engineered MPC controllers simulated using Saint Venant Equations.
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Figure 5.11: Difference between the three methods.
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Figure 5.12: Constraints on QG.

5.6.2 Third order system

In this section, we illustrate the reverse engineering of Kfav when DK 6= 0. The system we

want to control is a cascade of three first order system with their transfer function given

by G1(z) =
1

z−0.1 , G2(z) =
1

z−0.3 and G3(z) =
1

z−0.5 . The controller Kfav that we want to

reproduce is a PI-controller given by C(z) = KP + KI
z−1 = 0.01 + 0.02

z−1 .

Rewriting the plant in state space representation, we get the following dynamic ma-

trices, i.e.

A =







0.1 1 0

0 0.3 1

0 0 0.5






B =







0

0

1






C =

[

1 0 0
]

(5.70)

For the PI-controller, the state space representation is given by

xK(k + 1) = xK +KIy(k)

u(k) = xK +KP y(k) (5.71)
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with AK = 1, BK = KI = 0.02, C = 1 and DK = KP = 0.01.

Using Full Order Observer

For this system, n = 3 and nK = 1. Using the loop shifting method, the new A matrix

for the plant is given by,

Ā = A+BDKC =







0.1 1 0

0 0.3 1

0.01 0 0.5







The eigenvalues of ACL (Equation (5.20) but now with the (1,1) element equal Ā) are

λCL = 0.9020, 0.7373, 0.1303±j0.1435. We need to assign three poles to the state feedback

controller. Again, we have a pair of complex conjugate poles that cannot be split, and we

prefer the fastest real pole to be placed at the observer dynamics (i.e., λ = 0.7373), we

assigned λ = 0.9020, 0.1303 ± j0.1435 to the state feedback dynamics. The extra n− nK

poles were chosen to be 0.03 and 0.04.

Solving the Riccati Equation (Equation (5.30)) using an invariant subspace method,

we obtained

T = [0.0273, 0.0623, 0.2627]

T# = [−4.6352, 5.1513, 3.0652]T

L = [0.0927,−0.1030,−0.0613]T

K = [−0.0273,−0.0623,−0.2627]

Substituting these values together with Equations (5.31) and (5.32) into Equation (5.21)

and rewriting in terms of transfer function, we obtained Cfull(z) = 0.01 + 0.02
z−1 which is

the PI-controller.

Using Reduced Order Observer

Repeating the same procedure as before, we partitioned the K matrix into KM = −0.0273

and KNM = [−0.0623,−0.2627]. We are left with assigning λ = 0.7373 to the observer

dynamic. As Aro ∈ R
2×2, we have one pole extra that needs to be assigned to the observer

dynamic and we arbitrary chose λ = 0.03, which is a fast eigenvalue to the reduced order
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observer. Placing the poles into Aro using Equation (5.58) and solving for Equations (5.54)

to (5.56), we obtain the following values,

Lro = [0.0327,−0.1115]T

Aro =

[

0.2673 1

0.1115 0.5

]

Bro1 = [0, 1]T

Bro2 = [−0.1061,−0.0510]T

Again, note that the eigenvalues of Aro are exactly the two eigenvalues we had assigned to

the reduced order observer. Substituting these values into Equation (5.47) and rewriting

in terms of transfer function, we obtained Cred(z) = 0.01 + 0.02
z−1 , which is again the PI-

controller.

Using State Augmentation

From Equation (5.65), we have

u(k) = −Kxaug(k) = CKxK(k) +DKCx(k) = xK(k) +KP y(k)

= xK(k − 1) +KIy(k − 1) +KP y(k)

= u(k − 1)−KP y(k − 1) +KIy(k − 1) +KPy(k)

Here, we used u(k−1) = xK(k−1)+KP y(k−1), such that xK(k−1) = u(k−1)−KP y(k−1)

to get the third line of the equation above. Again, rewriting them in transfer function

form, we obtain Csa(z) =
U(z)
Y (z) = 0.01 + 0.02

z−1 , which is the PI-controller.

Simulation results

At time k = 5, the setpoint is changed to 0.3. At time k = 100, the output is corrupted by

a constant disturbance of 0.2. Like in the previous example, in the absence of constraints,

the disturbance is initially treated as unmeasured disturbances for all the controllers as

the goal is for MPC to reproduce Kfav . When the constraints are active, we then treat

these disturbances as a measured disturbance and use it as part of ”feedforward” control

in MPC, and at the same time explore the benefit of constraint handling in MPC. The
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simulation results using the three reverse engineering methods are shown in Figure 5.13.

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

u(
k)

k (samples)

 

 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

y(
k)

k (samples)

 

 

K
fav

 (PI−controller)

Full Order Observer
Reduced Order Observer
State Augmentation

Figure 5.13: Reverse engineering of PI-controller using the three methods.

We plot the difference between each of the methods and the favourite PI-controller and

as expected the differences are very small (see Figure 5.14). In addition, we constrained

the output to be less than 0.4. From Figure 5.15, as the disturbance of 0.3 enters at time

k = 100, it causes the output to reach 0.5 before the controller rejects it. As we have

constrained the output to be less than 0.4, we can see that due to the prediction horizon,

both the reverse engineering methods using the observers do not even reach the constraints

and return to the setpoint at time k = 130. For the method of state augmentation, the

output stays at the constraint for about 20 samples before returning to setpoint.

The simulation results show that the three method reverse engineered the PI-controller

well and constraints are also handled well. The results also show that in the event of

DK 6= 0, we first do a loop shifting method before proceeding with the methods of reverse

engineering.
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Figure 5.14: Difference between the three methods.
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5.7 Remarks on reverse engineering

5.7.1 The choice of cost function

The cost function, Equation (5.16) constructed using u = −Kx is required in order for

MPC to reproduce Kfav . Thus, when solving the optimisation problem, the computed

optimal control input could potentially drive the system to satisfy the control law, u =

−Kx rather than to a desirable region. The effect of this phenomena is observed when we

reverse engineer Kfav using the method of state augmentation.

Going back to the simulation of reach Casey’s Weir to Gowangardie Weir, where in the

simulation scenario, the flow over Gowangardie Weir is constrained QG ≥ 0.4m3/s with

the prediction horizon NP = 10Ts (see Figure 5.9). As the time delay for this reach is

1800 minutes, and offtakes occurred at time 7200 minutes, we expect the MPC controller

to release the flow at Casey’s Weir early as we have included the information about the

offtakes as part of the ”feedforward control”. The MPC controller reverse engineered using

the method of state augmentation does release the flow early at time 5400 minutes, which

is exactly 1800 minutes (the time delay of this reach) early before the commencement of

the offtakes. We also observe that the early release at time 5400 minutes resembles a step

input.

In the next simulation scenario, we increase the prediction horizon to NP = 15Ts,

hoping to obtain a better performance with a larger prediction horizon. With a larger

prediction horizon, we expect the MPC controller to release the flow much earlier than

5400 minutes. However, as shown in Figure 5.16, instead of releasing the flow earlier, the

MPC controller reduces the flow earlier at time 2100 minutes. At time 5400 minutes, the

MPC controller releases the required flow like the case when Np = 10Ts is used. As we

increase the prediction horizon to Np = 20Ts, the flow is reduced much earlier, at time 400

minutes and again the required flow is released at time 5400 minutes (see Figure 5.16).

The reason for this phenomena is attributed to the computed optimal control input aims

to satisfy the control law u = −Kx than to drive the system to a desirable region. To

be more specific, it is the cross term in the criterion function, (i.e. K or KT term in

Equation (5.16)) that create such behaviour. To illustrate the point that the cross term

in the criterion function create that behaviour, we repeat the same simulation but this

time, the cross term is removed from the criterion. The simulation results are shown in

Figure 5.17. With a larger prediction horizon, i.e. Np = 15Ts and Np = 20Ts, the flows at
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Figure 5.16: Reverse engineering using state augmentation with different NP in the pres-
ence of constrain using the criterion with cross term.

Casey’s Weir are released earlier at time 2600 minutes and 800 minutes respectively and

no reduction of flow is observed. We note that the performance of the controller without

the cross term is poor. Nonetheless, as the point we want to illustrate here is the effect

of the cross term and not so much of the performance of the controller (other than the

stability).

The reason behind this is the MPC controller, which reproduces the I-controller, upon

”seeing” this offtakes earlier due to the larger prediction horizon starts to make the integral

of the setpoint error more negative in order for the controller to be able to deliver the

flow at time 5400 minutes. As u = −Kx = KIxK , for the integral of the setpoint error to

become more negative means the control input u has to be reduced, leading to the early

reduction of flow at Casey’s Weir as shown in Figure 5.16. With the cross term becoming

more negative, the controller in some sense is ”storing” the effort to deliver the large flow

at time 5400 minutes.

In the following simulation, we constrain the rate of change of flow at Casey’s Weir,

i.e. |∆QC | < 0.01m3/s. The reason for constraining ∆QC is to ensure that the MPC
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Figure 5.17: Reverse engineering using state augmentation with different NP in the pres-
ence of constraint using the criterion without cross term.

controller will not be able to release the large flow and with that we would expect that

the controller has no choice but to release the flow earlier. Furthermore, we also included

a terminal cost P . Usually P is obtained as the solution of the Discrete Algebraic Ric-

cati Equation (DARE), but as this value is zero (see Section 5.4), an alternative way of

obtaining P is needed. As the controller state, which is also the state of the integrator

has been augmented to the plant, we penalise this state with a weight of 20. As for the

remaining states are just the delayed version of the control input, they are not penalise.

Thus, the terminal cost P only has one weight at the diagonal entry that penalises the

integrator state. We repeat the simulation using Np = 20Ts for both the cases of having

constraint on ∆QC and using the terminal cost and the results are shown in Figure 5.18.

By constraining ∆QC , the MPC controller is no longer able to deliver the large flow at

time 5400 minutes. Thus, the MPC controller now starts releasing the flow earlier at

time 1080 minutes. Similar behaviour is observed for the case where the terminal cost

is included. The inclusion of terminal cost means that the system is no longer satisfying

u = −Kx, thus resulting in the plot in Figure 5.18. With the terminal cost included, we

also observe that the output goes back to the setpoint quicker. The findings presented
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Figure 5.18: Comparison with constraint on rate of change of flow and terminal cost for
Np = 20Ts.

here, illustrated well that the computed control input would drive the system to satisfy

the control law u = −Kx, rather than to the desirable region.

5.7.2 The role of the observer

In the method of reverse engineering that uses the full order and the reduced order ob-

server, the main role of those observers is to reproduce the state of Kfav rather than

estimating the states of the plant. We shall attempt to illustrate this point using the

example of the third order system. The aim here is to show that these observers designed

using the standard pole placement method would reproduce the states of the plant while

the observers designed for reverse engineering would reproduce the states of Kfav . We use

the term ”conventional” observers to denote the observers designed using the pole place-

ment method. We retain the same simulation settings used in Section 5.6.2, except that

we redesign the gain for the state feedback controller and the gain for the conventional

observers using the pole placement method.

For this simulation, we give an unmeasured input disturbance to the plant. Because
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the gain of the state feedback and the conventional observer are chosen using the pole

placement method, the integral action from the PI-controller is no longer reproduced by

MPC. Thus, it is necessary for the plant to be augmented with the disturbance model

as in Equation (5.7) in order to reject this disturbance. The observers are then designed

using this augmented plant (i.e Equation (5.9)).

For the conventional full order observer, with the augmented plant (see Equation (5.9)),

we have four poles that need to be assigned to the full order observer and we choose them

to be 0.11, 0.13, 0.15 and 0.17. The gain of the full order observer is calculated using

the place command in MATLABr, and is given by, Lfo,con = [1.340, 1.399, 1.059, 0.546]T .

By augmenting the plant with the disturbance model means we have uncontrollable state.

Thus the state feedback controller needs to be design using the original plant model and

thus we have three poles that need to be assigned to the state feedback controller. We

choose them to be 0.35, 0.36 and 0.37. Again, using the place command in MATLABr,

the state feedback gain is given by Kfo,con = [−0.018, 0.087,−0.180].

For the conventional reduced order observer, with the augmented plant, we have three

poles that need to be assigned to the reduced order observer. We choose them to be 0.13,

0.15 and 0.17. The gain of the reduced order observer is calculated using Equation (5.58)

and it is given by, Lro,con = [1.350, 1.142, 0.614]T . As for the gain for the state feedback

controller, the same poles used in the conventional full order observer are chosen leading

to the same state feedback gain, i.e. Kro,con = Kfo,con = [−0.018, 0.087,−0.180].

In this simulation, at time k = 25, the disturbance of 0.5 enters at the input side

of the plant. As Kfav is the PI-controller, the MPC is able to reject this disturbance

due to the integral action inherited from the PI-controller. For the controller using the

”conventional” observers, since we have augmented the plant with the disturbance model,

the estimation of the disturbance made by the observers is able to cancel the effect of this

disturbance, thus achieving a zero steady state error (see Figure 5.19). What is of more

interest to us is the behaviour of the true states of the plant and the estimated states by

the observers. The plots of the true states and the estimated states by the full order and

reduced order observer are shown respectively in Figures 5.20 and 5.21.

From Figure 5.20 (left), when the conventional full order observer is used, we observe

that the estimated states resemble the true states of the plant, which is expected given

the role of the conventional observer is to estimate the states of the plant. On the other

hand, in Figure 5.20 (right), the estimated states by the full order observer used for reverse
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Figure 5.19: Third order system subject to input disturbance.

engineering is behaving very differently compared to the true states of the plant. This is

because the role of the full order observer used for reverse engineering now is to reproduce

Kfav than to estimate the states of the plant.

The true and estimated states when the reduced order observer is used is shown in

Figure 5.21. Similar behaviours as when the full order observer is used are observed. The

only thing we want to highlight is that for x1, the true state and the estimated state

are the same as this is the measured state, which is not estimated by the reduced order

observer.

The illustrations from Figures 5.20 and 5.21 show that the main role of the observers

used in reverse engineering is to reproduce Kfav and not for estimating the states of

the plant. As the states of the observer are used as initial states to predict the future

states within the controller, the dual role of the observer could potentially lead to a poor

accuracy in the prediction (and hence, a poor control performance or even state constraint

violation) due to this incorrect values of the initial states. This point has to be taken into

account whenever the observer is used for reverse engineering especially when dealing with

constraints.
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Figure 5.20: Comparison of the true and estimated states using the full order observer.
Left: Conventional full order observer. Right: Reverse engineering using full order ob-
server.
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Figure 5.21: Comparison of the true and estimated states using the reduced order observer.
Left: Conventional reduced order observer. Right: Reverse engineering using reduced
order observer.
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5.8 Summary

In this chapter, we have presented methods for reproducing an existing controller as an

MPC controller. In the case where an observer is used, either a full order or a reduced order

observer formulation can be used for reverse engineering. Alternatively, the method of

state augmentation of the plant with the controller can be used. The methods are applied

to two examples. From the simulation results, all the methods are able to reproduce the

existing controller well and constraints are also handled well. We have illustrated that

with the choice of u = −Kx as the MPC criterion, the controller could actually drive the

system to satisfy the control law rather than to the desirable region, when the constraints

are active. Furthermore, the role of the observers in reverse engineering is mainly to

reproduce the favourite controller, and not to estimate the states of the plant.



Chapter 6

Control of Broken River

In the previous chapter, the Model Predictive Controller (MPC) is introduced and methods

for designing MPC via reverse engineering are presented. In this chapter, we apply MPC

to control the Broken River. The objectives of the control system for the Broken River

are to reduce water wastage, improve water delivery service to irrigators and meet the

environmental demands. To ensure minimal water wastage, the control system need to

ensure the releases from Lake Nillahcootie, which is the water supply for the Broken River

are as small as possible. For improving water delivery service, we aim at reducing the

advance water order time by the irrigators which can lead to improved farm planning and

increased productivity. In order to meet the environmental demands, the control system

has to ensure there is a minimum flow in the river and that there are suitable conditions

for the creation of slack water pockets at certain times of the year.

Based on the objectives mentioned above, we can view the control problem as a problem

where the flows and water levels in the Broken River are subjected to constraints. Thus,

the use of MPC is deemed a suitable control strategy due to its capability to handle

such constraints explicitly when solving the optimisation problem. Two MPC designs are

considered in this chapter. The first design is based on reverse engineering, using the

materials introduced in Chapter 5. The second design is the design of MPC from scratch,

i.e, we obtain the tuning matrices of MPC based on the control objectives.

A year long realistic simulation of the Broken River with the demand from the irri-

gators, demand from the environments and in-flows from creeks based on historical data

and realistic assumptions is carried out. The performance of the two MPC designs are

184
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evaluated against current manual operation and a decentralised control strategy. The

evaluation of the performance is based on the number of days in breach at the flow or

water level constraints, and the amount of water released from Lake Nillahcootie.

We first present the control problems and the objectives associated with the Broken

River in Section 6.1. The control configurations used for the Broken River are then

discussed in Section 6.2. In Section 6.3, the state space representation of the river models

of the Broken River used for control design are presented and this is followed by the MPC

design in Section 6.4. Discussion of the simulation settings and the performance of the

controllers are given in Sections 6.5 and 6.6 respectively and a summary is given at the

end of the chapter.

6.1 Control problems, challenges and objectives

6.1.1 Control problems

In a wider perspective, the main control problem is to improve water resource management

and operation for the benefit of the irrigators and the environment in the Broken River. To

be more specific, we would like to ensure that there are minimal operational water wastage

when supplying water to the irrigators and at the same time ensure that enough water is

delivered to them. In order to define a quantitative measure for evaluating the performance

of the controller, we used the term excess water to gauge the amount of operational water

wastage. Excess water is defined as the amount of water leaving the study area that is

not needed to satisfy all the required demands from the irrigators and the environments.

As a note, the amount excess water leaving our study area is not deemed as wasted water,

as it can be used to supply the demands for the irrigators further downstream from our

study area. The strategies for how the water should be distributed between our study area

and the downstream of our study area is dependent on the decision made by the water

authorities.

We would also like to aim at improving water delivery service to the irrigators. Under

current practice, the irrigators need to order their water four days in advance. There

would be some potential benefits if the irrigators can order water on a shorter notice as

this would allow more timely applications of water to pastures, crops, horticultural trees

and viticulture vines, which may lead to improved productivity for the irrigators.
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Apart from the demands from the irrigators, there are also the environmental demands

that need to be satisfied. There is the need to ensure a minimum flow in the river for

habitat preservation of aquatic life. There is also the need to maintain slack water pocket

in the river for breeding of fish, shrimp, plankton, etc (see e.g. (Bowen et al., 2003) and

(Richardson et al., 2004)). Slack water is understood as small, shallow areas of still water,

which exhibits little or no discernible current and it is commonly formed by sand bars,

boulders, woods, etc. From an ecological point of view, it is desirable that the variation

in average daily flow is within certain limits. Furthermore, there is a need to ensure the

water level variation in Lake Benalla is kept to a minimum since it is used for recreational

activities.

In summary, the control problem in the Broken River is not just merely about de-

livery of water to the irrigators but there are a number of constraints imposed by the

environment, which make the control problem challenging. There are a number of works

on control of rivers using MPC but their focus is on optimising the hydroelectric opera-

tion, cost of pumping, ensuring a navigable river or satisfying ecological flow constraints

(see Chapter 2). As far as the author is aware of, this is the first example of control of

a river using MPC with the combined purpose of improving the efficiency, accuracy, and

timeliness of water deliveries to the irrigators as well as the environment.

6.1.2 Main challenges

To have a better idea of what the main challenges are in the control of the Broken River,

a description of the river is first given. Figure 6.1 shows a map of the Broken River. The

area we consider begins from Lake Nillahcootie and ends at Gowangardie Weir. In the

Broken River, the release of water from Lake Nillahcooties takes about four to six days to

reach downstream locations between Casey’s Weir and Gowangardie Weir, where most of

the water demands are. This means that there are long time delays between the points of

supply to the points of demand. Moreoever, these time delays vary with flow conditions

as shown in Section 4.4.

What makes the control problem even more challenging is that there are very few points

in the river where the flow can be regulated. At the time of writing, only the flow at Lake

Nillahcootie and Broken Weir can be regulated. The benefit of having more regulation

points is that the time delays between the points of supply and points of demand can

be reduced. For example, if we can regulate flow at Casey’s Weir, the demand between
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Figure 6.1: Top view of Broken River. Note: Figure is not to scale.

Casey’s Weir and Gowangardie Weir can be supplied from Casey’s Weir rather than all

the way from Lake Nillahcootie. With a shorter time delay, a more accurate delivery of

water can be achieved and the uncertainty in the time delays is also smaller. This can also

help to reduce water wastage caused by releasing water too early or releasing too much

water.

In some sense, the amount of water that need to be released from Lake Nillahcootie

is actually still the same. This is because we are ”borrowing” water from Casey’s Weir

while waiting for the water from Lake Nillahcootie to arrive. As we are ”borrowing” the

water from Casey’s Weir, it is therefore essential to have storage near the regulation point

and typical example of such storages are weir pools, lakes or an off-stream storage. This

poses another challenge in the Broken River as there are also limited opportunities to store
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water in-stream along the Broken River. There are identified potential in-stream storages,

at the weir pool at Casey’s Weir and Lake Benalla.

In order to increase the storage capacity along the river, two off-stream storages are

considered. One of the storages is located in the upper part of the river (labelled Storage

1 in Figure 6.1) and one small off-stream storage along the reach between Casey’s Weir

and Gowangardie Weir (labelled Storage 2 in Figure 6.1). Storage 1 is the former in-let

channel from Broken River via Hollands Creek to the now decommissioned Lake Mokoan.

The out-flow from this storage is through Hollands Creek. At this point of writing, Storage

1 is currently being built. Billabong located in between Casey’s and Gowangardie Weir

is used as Storage 2. A billabong is a small pool of water, adjacent to the river. The

billabong is the dead end pool of water created by a previous river path as a new river

path is formed in the river.

In order to satisfy the water demands from the irrigators and the environment, it

would be advantageous to have more regulated points close to the demands in the river.

With more regulation points, the time delays from the points of supply to the points of

demand can be shortened. Thus, we assume that on top of the available regulation points

at Lake Nillahcootie and Broken Weir, the flow at Lake Benalla and Casey’s Weir can also

be regulated. We also assume that the in- and out-let of Storage 1 and Storage 2 can be

regulated. As a note, the capacity for Storages 1 and 2 are 300ML and 6ML respectively.

To have the regulation point at Lake Benalla, Casey’s Weir and both the storages, an

infrastructure upgrade is required.

6.1.3 Control objectives

Having taking into account the control problems, the encountered challenges and the

defined constraints in the Broken River, the control objectives for the Broken River are

summarised as follows:

• Ensure the timely delivery of water to the irrigators.

• Ensure minimum environmental flow at Lake Benalla, Gowangardie, Casey’s and

Broken Weirs. The minimum environmental flow requirements are 25ML/day for

Gowangardie Weir and 22ML/day for Lake Benalla, Broken and Casey’s Weirs.
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• Maintain the flow over Gowangardie Weir at flow setpoint such that the demand

downstream of Gowangardie Weir and the minimum environmental flow are satisfied.

• The release from Lake Nillahcootie should be as small as possible.

• Maintain the water levels at Broken Weir, Lake Benalla and Casey’s Weir at set-

points. The water level setpoints are 2.15m, 2.25m and 2.00m respectively. However,

there is an allowable limit of deviation for these water levels from their setpoints (see

below).

• Ensure the mean daily flow in the river be between 0.76 and 1.5 of the flow from the

previous day.

• Ensure the maximum flow released by the controller is less than 190ML/day to

maintain slack water.

• Maintain Storages 1 and 2 at 50% and 80% full respectively.

As the irrigators draw water from the river (using pumps), there is a limit on how far

down the water levels in the river can be drawn and the assumed limit in this chapter

is 15cm. For Lake Benalla, which is used for recreational purposes, it is important to

maintain the water level within a reasonable range, and it is also assumed to be 15cm

from setpoint in this thesis.

Under the current practices for water ordering by the irrigators, once the water order

is approved by the water authority, the irrigators can draw the water at the agreed time

regardless of the flows and water levels condition in the river (assuming the water level in

the river is high enough for the pump to operate). Also, with the water order approved,

the water will be delivered and failure to release sufficient water will manifest itself through

the drop in water levels in the in-stream storages associated with the regulation points,

which could lead to violation of the limits on the water levels.

6.2 Control configuration for Broken River

The two most common control configurations for interconnected systems like the Broken

River are the centralised and the decentralised control configurations. In the centralised

configuration, all the control actions in the river reach are governed by a central controller.
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This configuration is preferred when the number of reaches to be controlled are small as

this configuration often lead to good performance due to that the interaction between

all control actions are taken into account. Nonetheless, the drawback of a centralised

controller, is high computational load in the design if the number of reaches is large. In

addition, it is also computational heavy if a controller based on online optimisation such

as MPC is used. In the implementation, the performance is susceptible to sensors and

actuators communication failure.

On the other hand, in the decentralised configuration, each reach is controlled by

a local controller. Thus, the implementation and the design of the local controller is

simpler. It is more robust to data communication failure as there is minimal transmission

of measurements and control actions between the controllers between neighbouring reaches.

Nonetheless, because there is minimal transmission of measurements and control actions

between the controllers between neighbouring reaches, the performance will not be as good

as the centralised configuration.

In this chapter, two centralised MPC designs are considered. The first MPC design is

based on reverse engineering of the decentralised controllers from (Ooi et al., 2010). The

second MPC design is an MPC design from scratch. Since the first MPC design is reverse

engineered from the decentralised controllers in (Ooi et al., 2010), these controllers are

introduced in the next section.

6.2.1 Decentralised control configuration

In (Ooi et al., 2010), there are four types of decentralised configurations used in the Broken

River. The need for the different configurations arises from the different infrastructures

and requirements along the Broken River. The first configuration is the distant down-

stream configuration. This configuration is used for the reach between Lake Benalla and

Casey’s Weir, the reach between Storage 1 and Lake Benalla and the reach between Lake

Nillahcootie and Storage 1. The second configuration is the distant downstream control

with storage, which is the configuration used for the reach between Casey’s Weir and

Gowangardie Weir. The third configuration is the upstream level control, which is the

configuration at the in-let to Storage 1 and lastly, the fourth configuration is the flow

mode configuration, which is used at Broken Weir. Due to the large time delays from

the points of supply to the points of demand, feedforward of known future water order1

1As mentioned in Section 6.1.3, farmers need to order water four days in advance.
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is included in the control configuration. The feedforward controller releases water earlier

based on the time delays in each of the reaches such that the water arrive at the points of

demand at the required time. The description of the four control configurations are given

next.

Distant downstream configuration

Figure 6.2 shows the distant downstream control configuration. This configuration uses the

upstream gate to control the flow or water level at the downstream end. The feedforward

controller will release water based on the known future water orders and the required

environmental flow Qi,FF . The flow is released early such that it arrives when needed by

the irrigators.

hi

hj

+ +

Qi,FF
Known future orders

(or yj, setpoint)
(or yj)

Qi

Fi(s)

Gate i Gate j

yi

pi

yj

pj

Flow direction

Qj

Qj, setpoint+

-
Ci(s)

Qi,FB

Feedforward

Figure 6.2: Distant downstream control configuration with early release.

In the event of model or time delay mismatch, which would lead to the water level

deviating from the setpoint, the controller Ci(s) upon measuring this deviation, will com-

pute the required flow Qi,FB to bring the flow or water level back to the desired setpoint.

The sum of these two flows Qi constitute the flow at the upstream end of the reach.



192 Chapter 6. Control of Broken River

Distant downstream configuration with storage

A variant of the distant downstream configuration is shown Figure 6.3 where a storage is

included. The principle is similar to the case without storage. The controller C1(s) upon

knowing the deviation of flow or water level from the setpoint, computes the required

flow QFB and this flow is added to the feedforward of known future order and required

environmental flow QFF . The sum of these two flows Q = QFB + QFF constitutes the

required flow at the storage. The flow required at the upstream end is the sum of the flow

Q and the flow QU computed by the controller C2(s) when the water level (or volume) of

the storage deviates from its setpoint. The in- and out-flow of the storage QS is determined

based on the difference between the flow in the river Q and the delayed version Q(t− τ ′),

which is the flow that is expected to arrive at the storage after τ ′ minutes when the flow

Q is required. τ ′ is the delay time from upstream gate to the storage.
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+
+

QFF

QFB +

-
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Qj

(or yj)

Flow direction
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-
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e
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(or Vs, setpoint)

(or Vs)

Figure 6.3: Distant downstream control with storage configuration with early release.

Upstream level control configuration

Figure 6.4 shows the upstream level configuration. The gate is regulated to control the

water level immediately upstream of the gate. The response of this configuration is faster
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as there is no delay involved. This configuration is suitable in scenarios where there is

a need to control the water level within a narrow range. The controller C(s) takes the

h

y

p

Gate

Flow direction

ysp +

y -

C(s)

QFB

Figure 6.4: Upstream level control configuration.

difference between the controlled variable and its setpoint and adjust the gate accordingly

and the effect is almost immediate. As the effect is almost immediate, it essentially just

passes through any flow that is coming from the upstream end.

Flow mode configuration

Figure 6.5 shows the flow mode configuration. In this configuration, the flow is kept at

h

y

p

Gate

Flow direction

Qsp
C(s)

p
y

Figure 6.5: Flow mode configuration.

the desired setpoint and any adjustment is made to the gate based on the current water

level upstream of the gate.
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The decentralised control configuration used in (Ooi et al., 2010) is shown in Figure 6.6.

C1(s) to C3(s) are the distant downstream PI-controllers. C4(s) is a distant downstream

I-controller, C5(s) is a P-controller and C6(s) is an upstream level PI-controller. F1(s)

to F4(s) are the feedforward controllers. Each of the feedforward controllers releases

the required flow according to the known future order and the environment flow of its

respectively reaches earlier such that the water arrives at the time the irrigators require the

water. eQ,y,V are the differences of the flows, water levels or volumes from their respective

setpoints. For reverse engineering, MPC will reproduce this control configuration as shown

by the dotted box on top of Figure 6.6. As Broken Weir is in flow mode, it is treated as

a known disturbance and thus it is not considered in the reverse engineering. Note that

MPC only reproduces all the C(s) blocks and not the F (s) blocks. For the MPC control

configuration designed from scratch, the configuration is shown in Figure 6.7.

6.3 Models of Broken River for control design

6.3.1 Models of reaches in the Broken River

In Chapter 4, we have shown that the time delay and the integrator delay models are

accurate in describing the dynamics of the reaches in the Broken River. In Section 6.1.3,

the regulation points considered in the Broken River are at Lake Nillahcootie, Broken Weir,

in- and out-let of Storage 1, Lake Benalla and Casey’s Weir. Based on the configuration

shown in Figure 6.6, the reaches from Lake Nillahcootie to Broken Weir, from in-let to

out-let of Storage 1, from out-let of Storage 1 to Lake Benalla and from Lake Benalla to

Casey’s Weir are modelled using integrator delay models. The integrator delay models are

used here because all the downstream flows of those reaches can be regulated independently

of the upstream flows. Moreover, the weir pool at Casey’s Weir and Lake Benalla, acts as

storages.

The flow at Gowangardie Weir cannot be regulated at present and it is not likely that

it will be upgraded with regulation gates due to the costs involved. Thus, it will remain

a free overfall weir. Hence, the reach from Casey’s Weir to Gowangardie Weir is modelled

using a time delay model.
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Figure 6.6: Decentralised control configuration for the Broken River in (Ooi et al., 2011)
for reverse engineering.
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Figure 6.7: Centralised control configuration for the Broken River.
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In addition, we will assume that overshot gates are used as regulation gates. The flow

over these gates can be approximated by

Q(t) = ch3/2(t) = c[y(t)− p(t)]3/2 (6.1)

where Q is the flow, c is a constant, y is the water level and p is the height of the gate.

Note that, although the models for some of the reaches in the Broken River have been

discussed in Chapter 4, we shall present a brief discussion on these model here. The reason

is because based on the control configuration shown in Figure 6.6, we have additional new

reaches.

Reach Lake Nillahcootie to Broken Weir (Reach LNB)

Reach LNB can be modelled as

V̇B(t) = c1,BQLN (t− τLNB)− c2,B [yB(t)− pB(t)]
3/2 − c3,BQSin1(t) (6.2)

where the subscripts ”LN”, ”B” and ”Sin1” represent Lake Nillahcootie, Broken Weir and

in-let to Storage 1 respectively. τLNB is the time delay from Lake Nillahcootie to Broken

Weir. Note that the upstream level control configuration is used here where the flow at

in-let to Storage 1 QSin1 is used to control water level at Broken Weir yB. With the

in-let to Storage 1 is located close to Broken Weir, the time delay is negligible. Using an

Euler approximation for the derivative and assuming the water level is proportional to the

volume, we get

yB(k) = yB(k − 1) +

(

Tsc1,B
A

)

QLN (k − τLNB − 1)−
(

Tsc2,B
A

)

[yB(k − 1)− pB(k − 1)]3/2

−
(

Tsc3,B
A

)

QSin1(k − 1) (6.3)

where k is the discrete time index, Ts is the sampling interval and A is the surface area.

Reach Lake Nillahcootie to out-let of Storage 1 (Reach LNSout1)

The change of volume in Storage 1 can be modelled as

V̇S1(t) = QSin1(t)−QSout1(t) (6.4)
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Instead of using the in-let to Storage 1, the release from Lake Nillahcootie is used to control

the volume of Storage 1. As the in-let to Storage 1 is controlled by a fast acting upstream

level controller, it will essentially passes the release from Lake Nillahcootie into Storage

1, while maintaining the water level at Broken Weir at setpoint. Therefore, QSin1(t) ≈
QLN (t − τLNSout1) − QB(t) is a reasonable approximation. As the in-let to Storage 1

is located near Broken Weir, the time delay from in-let to Storage 1 to Broken Weir is

assumed negligible. With that, Equation (6.4) can be rewritten as,

V̇S1(t) = QLN (t− τLNSout1)−QSout1(t)−QB(t) (6.5)

where the subscripts ”LN”, ”Sout1” and ”B” represent Lake Nillahcootie, out-let of Stor-

age 1 and Broken Weir respectively. We call this reach, Reach LNSout1. τLNSout1 is the

time delay from Lake Nillahcootie to the out-let of Storage 1. Using an Euler approxima-

tion for the derivative, we arrive at

VS1(k) = VS1(k − 1) + TsQLN (k − τLNSout1 − 1)− TsQSout1(k − 1)

− TsQB(k − 1) (6.6)

Reach out-let of Storage 1 to Lake Benalla (Reach Sout1LB)

For Reach Sout1LB, it is modelled as

V̇LB(t) = c1,LBQSout1(t− τSout1LB)− c2,LB[yLB(t)− pLB(t)]
3/2 + c3,LBQB(t− τB) (6.7)

where the subscripts ”Sout1”, ”LB” and ”B” represent out-let of Storage 1, Lake Benalla

and Broken Weir respectively. τSout1LB is the time delay from out-let of Storage 1 to Lake

Benalla and τB is the time delay from Broken Weir to Lake Benalla. Again using an Euler

approximation for the derivative, we get

yLB(k) = yLB(k − 1) +

(

Tsc1,LB
A

)

QSout1(k − τSout1LB − 1)

−
(

Tsc2,LB
A

)

[yLB(k − 1)− pLB(k − 1)]3/2 +

(

Tsc3,LB
A

)

QB(k − τB − 1) (6.8)
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Reach Lake Benalla to Casey’s Weir (Reach LBC)

Reach LBC is modelled as

V̇C(t) = c1,CQLB(t− τLBC)− c2,C [yC(t)− pC(t)]
3/2 (6.9)

where the subscripts ”LB” and ”C” represent Lake Benalla and Casey’s Weir respectively.

τLBC is the time delay from Lake Benalla to Casey’s Weir. Again, using an Euler approx-

imation for the derivative, we get

yC(k) = yC(k − 1) +

(

Tsc1,C
A

)

QLB(k− τLBC − 1)−
(

Tsc2,C
A

)

[yC(k− 1)− pC(k− 1)]3/2

(6.10)

Reach Casey’s Weir to Gowangardie Weir (Reach CG)

Reach CG is modelled with a time delay model (in discrete representation),

QG(k) = QC(k − τCG) +QS2(k − τS2G) (6.11)

where Q is the flow and τCG is the time delay from Casey’s Weir to Gowangardie Weir

while τS2G is the time delay from Storage 2 to Gowangardie Weir. The subscript, ”C”,

”G” and ”S2” denote Casey’s Weir, Gowangardie Weir and Storage 2 respectively. Storage

2 is modelled using an integrator, i.e.,

V̇S2(t) = −QS2(t) (6.12)

where V is the storage volume and QS2 is the storage flow and using an Euler approxima-

tion for the derivative, Equation (6.12) becomes

VS2(k) = VS2(k − 1) + TsQS2(k − 1) (6.13)

The unknown parameters and time delays in the models need to be estimated. The

parameters and the time delays identified in Chapter 4 cannot be used directly because

those parameters are identified under different flow conditions. Thus, it would be more

representative to re-identified the parameters in particular the time delays under the same

flow condition for all the reaches. As the typical flow condition in the Broken River is
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around 30ML/day, a step test of flow from 30ML/day to 60ML/day is simulated using

the calibrated Saint Venant equation (from Chapters 3 and 4) for all the reaches in the

Broken River except for Reach LNSout1 and Reach Sout1LB to obtain the time delays.

Another reason the flow of 30ML/day is considered is that this flow is considered ”low

flow” (see Section 4.4). The time delay under low flow condition is the largest, which leads

to large phase shift. Thus, a controller with the largest phase leads is then required to

ensure stability.

Reach LNSout1 and Reach Sout1LB, are ”new” reaches as a result of the control con-

figuration shown in Figure 6.6. However, the time delays for these two reaches can still

be estimated. For Reach LNSout1, given that the in-let to Storage 1 is located close to

Broken Weir, the time delay from Lake Nillahcootie to Broken Weir can be used. As

for Reach Sout1LB, the physical geometries (bottom width, side slope, bottom slope and

Manning friction coefficient) for this reach is obtained based on the best approximate

using the on-site survey carried out by Goulburn-Broken Catchment Management Au-

thority (GBCMA) (GBCMA, 2009) and observation using Google Earth. Using these

best approximated physical geometries, a Saint Venant equations model is built.

As we do not have any measurements to validate the Saint Venant equations for this

reach, we are left to treat the Saint Venant equations for this reach as an accurate rep-

resentation of the reach. Using this Saint Venant equations, the step test is simulated

to obtain the time delay from out-let of Storage 1 to Lake Benalla. The estimated time

delay for this reach as shown in Table 6.1 is reasonable based on the comparison with the

time delays obtained for other reaches in relative to the length of the reaches. As for the

estimation of the unknown parameters for each of the reaches, we repeat the parameter

estimation procedures discussed in Chapter 4, where we have used the simulated data from

the Saint Venant equations to estimate the unknown parameters. It is worth pointing out

that, the use of the Saint Venant equations for each of the reaches in the Broken River

for re-estimation of the parameters and the time delays are valid to certain extent. This

is because most of the Saint Venant equations have been calibrated against the data and

shown to be accurate in capturing the dynamics of the river reaches in Chapters 3 and 4.

We do note that the time delays change with flow conditions but as the estimated time

delays in Table 6.1 are obtained under low flow condition, which has the largest time de-

lays. By designing the controller based on this time delay, we could ensure the robustness

specification of the controller.
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Table 6.1: Reach lengths, estimated parameters and time delays.

Reach Length Estimated parameters Time delay

Reach LNB 22000m
(

Tsc1,B
A

)

= 0.009 τLNB = 2160 minutes
(

Tsc2,B
A

)

= 0.090
(

Tsc3,B
A

)

= 0.009

Reach LNSout1 22000m - τLNSout1 = 2160 minutes

Reach Sout1LB 7000m
(

Tsc1,LB

A

)

= 0.010 τSout1LB = 360 minutes
(

Tsc2,LB

A

)

= 0.112 τB = 720 minutes
(

Tsc3,LB

A

)

= 0.015

Reach LBC 12000m
(

Tsc1,C
A

)

= 0.006 τLBC = 1080 minutes
(

Tsc2,C
A

)

= 0.120

Reach CG 26700m - τCG = 1800 minutes
τS2G = 200 minutes

6.3.2 Remarks on the models

In this section, some discussions on the time delay and the integrator delay models obtained

in Chapter 4 and the one presented in Section 6.3.1 are given. As a consequence of

the control configuration introduced, three reaches in Chapter 4 are retained, while the

remaining reaches are ”new” reaches. These three reaches are Reach LNB, Reach LBC

and Reach CG. We shall highlight some remarks in regards to these three reaches.

Reach LNB

We compare the estimated parameters associated with Lake Nillahcootie and Broken Weir.

The estimated parameters (neglecting the sign) using the data set from April to July 2007

considered in Chapter 4 are θe,LNB,1 = 0.048, θe,LNB,2 = 0.108. This data set is selected

for comparison as the flow condition observed from the data is in the range of 30 to 50

ML/day (see Figure 4.14), which is similar to the flow of 30ML/day used in the step

test. From Table 6.1, we have
(

Tsc1,B
A

)

= 0.009 and
(

Tsc2,B
A

)

= 0.090. We observe that

the values of θe,LNB,2 and
(

Tsc2,B
A

)

are similar. As for θe,LNB,1 and
(

Tsc1,B
A

)

, there is

a big difference observed. This is primarily due to the fact that a parameterised flow

is used at Lake Nilllahcootie in this chapter. As for the time delay, the time delay of

3060 minutes was obtained in Chapter 4 and 2160 minutes from Table 6.1. As the flow
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condition is similar we expect the time delay to be similar. However, as the time delay

of 3060 minutes obtained using the cross-correlation analysis as shown in Figure 4.15 has

large uncertainty, we do not want to draw any further conclusion. In summary, although

a direct comparison cannot be made, the estimated parameters and time delays of the

models under different flow condition for this reach seems reasonable.

Reach LBC

For this reach, the estimated parameters (neglecting the sign) using the data set from

October to December 2010 from Chapter 4 are θe,LBC,1 = 2.200 and θe,LBC,2 = 1.394,

while from Table 6.1, we have
(

Tsc1,C
A

)

= 0.006 and
(

Tsc2,C
A

)

= 0.120. The flow condition

at Casey’s Weir observed from data is in the range of 400ML/day to 500ML/day with

several large flow peaks along the way (see Figure 4.17) . We observe that there is a big

difference between θe,LBC,2 and
(

Tsc2,C
A

)

. The larger value of θe,LBC,2 is due to the presence

of the several large flow peaks occurring in the measured data. For the parameters related

to Lake Benalla, again a direct comparison cannot be made given that the identification

exercise uses the measured data from Lake Benalla obtained in the middle of the lake

while in this chapter, the simulated measurements used for identification assumes that the

data is measured at the downstream of Lake Benalla. As for the time delay, as expected,

the higher flow condition results in a smaller time delay of 540 minutes compared to

the lower flow condition where we have time delay of 1080 minutes. In summary, the

estimated parameters and the time delays under the different flow conditions for this

reach is reasonable.

Reach CG

In this reach, we are interested in the estimated time delay as the flow model used are not

parameterised. The flow condition in Casey’s Weir observed from data is in the range of

50ML/day to 70ML/day (see Figure 4.6) and the estimated time delay is 1650 minutes.

From Table 6.1, the time delay is 1800 minutes obtained using a step test of 30ML/day.

The estimated time delays is in agreement with the fact that a larger flow leads to a

smaller time delay. In summary, the estimated time delay for this reach is reasonable.
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6.4 MPC design for Broken River

The principle operation of MPC has been introduced in Chapter 5. Here, the operation

is summarised as a quick review. MPC is an online optimal controller. At each time step,

the controller generates a sequence of control inputs (flow releases), based on the predicted

behaviour of the river (described using the river models obtained in Chapter 4) over a finite

the prediction horizon (several days ahead) by solving an optimisation criterion. Only the

first flow releases is applied to the river. At the next time step, the prediction horizon

is shifted by one step and the whole process is repeated over the same finite prediction

horizon. The control objectives are normally reflected in the criterion. Constraints such

as the limits on flows and water levels can be incorporated in the optimisation problem.

6.4.1 Design of MPC via reverse engineering

In Chapter 5, we introduce methods for obtaining the weights in the MPC cost function

through reverse engineering. In this section, we use the method of state augmentation

to reverse engineer the decentralised controller for MPC. This method is chosen as it is

simple, since we augment the plant with the state of the favourite controller and there is

no need to design an observer.

As the model used for prediction in MPC is generally in state space form, we need

to rewrite Equations (6.3), (6.6), (6.8), (6.10), (6.11) and (6.13) into a linear state space

representation. The control variables are flows at Lake Nillahcootie QLN , in-let to Storage

1 QSin1, out-let of Storage 1 QSout1, Lake Benalla QLB , Casey’s Weir QC and in- and out-

let of Storage 2 QS2. The controlled variables are the water level at Broken Weir yB ,

storage level at Storage 1 VS1, water level at Lake Benalla yLB, water level at Casey’s

Weir yC , storage level at Storage 2 VS2 and flow at Gowangardie Weir QG. Introducing

the state variable xe = a−asp, where a are the controlled variables and the subscript ”sp”

denotes their respective setpoints. The state variable xe is the deviation of the controlled

variable from their respective setpoint. In other words, we reformulate the problem by

looking at the deviation of each controlled variables from its setpoint.

Let uLN = QLN , uSin1 = QSin1, uSout1 = QSout1, uLB = QLB , uC = QC and uS2 =

QS2. Due to the time delays, we need a number of states to remember the past flows. We

introduce the states xj,i = uj(k− i), where j = LN, Sin1, Sout1, LB, C and S2. As Broken

Weir is in flow mode, and changes of the flow is according to the defined flow setpoint,
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we treat the flow at Broken Weir QB as a known disturbance. In view of the large time

delays (see Table 6.1), it would be impractical to choose a small sampling interval as

this will introduce a large number of states, which would lead to a heavy computational

burden. Thus, we chose Ts = 360 minutes (6 hours). This also allows ample time for online

optimisation used in MPC for computation of the optimal control input. The discrete time

delays, which we denote by δ := ⌈ τ
Ts
⌉, are δLNB = 6, δLNSout1 = 6, δSout1LB = 1, δB = 2,

δLBC = 3, δCG = 5 and δS2G = 1. Equipped with all these variables, we arrive with the

following state space model.

xSin1,1(k) = uSin1(k − 1)

xe,B(k) = xe,B(k − 1) +

(

Tsc1,B
A

)

xLN,6(k − 1)−
(

Tsc2,B
A

)

QB(k − 1)

−
(

Tsc3,B
A

)

uSin1(k − 1) + dLNB(k − 1)

xLN,1(k) = uLN (k − 1)

xLN,i+1(k) = xLN,i(k − 1) i = 1, . . . , 5

xe,S1(k) = xe,S1(k − 1) + TsxLN,6(k − 1)− TsuSout1(k − 1)− TsQB(k − 1)

xSout1,1(k) = uSout1(k − 1)

xe,LB(k) = xe,LB(k − 1) +

(

Tsc1,LB
A

)

xSout1,1(k − 1)−
(

Tsc2,LB
cLBA

)

uLB(k − 1)

+

(

Tsc3,LB
A

)

QB(k − δB − 1) + dSout1LB(k − 1)

xLB,1(k) = uLB(k − 1)

xLB,i+1(k) = xLB,i(k − 1) i = 1, . . . , 2

xe,C(k) = xe,C(k − 1) +

(

Tsc1,C
A

)

xLB,3(k − 1)−
(

Tsc2,C
cCA

)

uC(k − 1) + dLBC(k − 1)

xC,1(k) = uC(k − 1)

xC,i+1(k) = xC,i(k − 1) i = 1, . . . , 3

xe,G(k) = xC,4(k − 1) + uS2(k − 1) + dCG(k − 1)

xS2,1(k) = uS2(k − 1)

xe,S2(k) = xe,S2(k − 1)− TsuS2(k − 1) (6.14)

Here, cB = 10.00m3/2/s, cLB = 10.15m3/2/s and cC = 19.73m3/2/s are used to con-
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vert h
3/2
B , h

3/2
LB and h

3/2
C in Equations (6.3), (6.8) and (6.10) to flow respectively. dLNB ,

dSout1LB , dLBC and dCG denote the disturbances at each reach, which comprise of offtakes

to farm, flow from creeks and change of flow setpoint at Gowangardie Weir. Notice that

from Equation (6.14), we have accessed to all the states. These states are the flow com-

puted by the controller and its propagated delay. In addition, the controlled variables, i.e.

the flows, water levels and storage levels are also measured. As we have access to all the

states, hence there is no need to design an observer.

Equation (6.14) can be written in the form of

x(k + 1) = Ax(k) +Bu(k) +Bdd(k)

y(k) = Cx(k) (6.15)

where d(k) represents all the known disturbances and includes the offtakes, change of flow

setpoints at Gowangardie Weir, flows from creeks and flow at Broken Weir. The output of

the model, which is used for reverse engineering are all the xe states, which are the errors

between the controlled variable and its setpoints

The favourite controller Kfav that we would like to reverse engineer are the decen-

tralised controller designed in (Ooi et al., 2010). The decentralised controller is made up

of I-controllers, P-controllers and PI-controllers. The PI-controllers are used in all the

reaches except Reach CG and Storage 2. The controllers considered in (Ooi et al., 2010)

are in continuous form. Thus, these controllers are first discretised. The discrete transfer

function of the PI-controller is given by

U(z) =

(

KP +
KI

z − 1

)

Y (z) (6.16)

where KP is the proportional gain, KI is the integral gain, Y = eB , eS1, eLB and eC

are the deviations of the controlled variables from their respective setpoints. Then, U =

uSin1, uLN , uSout1 and uLB , are the control variables in Equation (6.16).

For Reach CG, the I-controller is used to control the flow at Gowangardie Weir, while

the P-controller is used to control the in-let and out-let of Storage 2. Based on the

configuration described in Figure 6.3, the discrete transfer function for these controllers
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are given by

uC(z) =

(

KI,CG

z − 1

)

eG(z) +KPSeS2(z)

uS2(z) =

(

KI,CG

z − 1

)

eG(s)− uC(z)z
−δ′ (6.17)

where eG and eS2 are the deviations of QG and QS2 from setpoints. δ′ = δCG − δS2G = 4.

All the controllers are tuned using frequency response techniques. As time delays vary

with flow, the controllers in (Ooi et al., 2010) are tuned conservatively. The proportional

gain for Storage 2 is KPS,CG = 0.0001. The controller parameters, phase margins, gain

margins and extra tolerable time delays are tabulated in Table 6.2.

Table 6.2: Controller parameters.

Reach KP KI Gain Phase Extra delay
Margin Margin tolerable

In-let Storage 1 1 0.0450 17.0 dB 65.8◦ 1860 minutes

Reach LNSout1 0.002 2.4× 10−5 14.5 dB 59.4◦ 7570 minutes

Reach Sout1LB 0.7 0.0252 19.1 dB 65.6◦ 2330 minutes

Reach LBC 0.5 0.0180 16.5 dB 40.8◦ 2860 minutes

Reach CG - 0.0529 10.9 dB 64.2◦ 4480 minutes

For reverse engineering, we need to rewrite Kfav into state space representation as

well. The state space representation for a PI-controller (Equation (6.16)) is given by

xK(k + 1) = xK(k) +KIe(k)

u(k) = xK(k) +KP e(k) (6.18)

where e is the error between the controlled variable and its setpoint. Thus, the PI-

controllers used in upstream level control at in-let to Storage 1, Reach LNSout1, Reach

Sout1LB and Reach LBC can be respectively written as

xK,LNB(k + 1) = xK,LNB(k) +KI,LNBeB(k)

uSin1(k) = xK,LNB(k) +KP,LNBeB(k) (6.19)
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xK,LNSout1(k + 1) = xK,LNSout1(k) +KI,LNSout1eS1(k)

uLNB(k) = xK,LNSout1(k) +KP,LNSout1eS1(k) (6.20)

xK,Sout1LB(k + 1) = xK,Sout1LB(k) +KI,Sout1LBeLB(k)

uSout1(k) = xK,Sout1LB(k) +KP,Sout1LBeLB(k) (6.21)

xK,LBC(k + 1) = xK,LBC(k) +KI,LBCeC(k)

uLB(k) = xK,LBC(k) +KP,LBCeC(k) (6.22)

For Reach CG, rewriting Equation (6.17) into state space, we get

xK,CG(k + 1) = xK,CG(k) +KI,CGeG(k)

uC,1(k) = xK,CG(k) +KPS,CGeS2(k)

uC,i+1(k) = uC,i(k − 1) i = 1, . . . , 4

uS2(k) = xK,CG(k)− uC,4(k) (6.23)

Equations (6.19), (6.20), (6.21), (6.22) and (6.23) can be written in the form of

xK(k + 1) = AKxK(k) +BKe(k)

u(k) = CKxK(k) +DKe(k) (6.24)

With the plant and Kfav in the form of Equations (6.15) and (6.24), we are in the

position to use the method of state augmentation for reverse engineering. Following the

procedures described in Section 5.5.3, the augmented plant with the states of the con-

trollers yield,

Aaug =

[

A 0

BKC AK

]

Baug =

[

B

0

]

Caug =
[

C 0
]

(6.25)

with the new state xaug(k) = [xT (k), xTK(k)]T . The control law is then given by u(k) =

DKCx(k) + CKxK(k), where we have

K = [−DKC,−CK ] (6.26)
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For reverse engineering, the criterion to be minimised by MPC is given by (see Chapter

5)

JMPC,RE =

Np−1
∑

k=0

[

x(k)

u(k)

]T [

KTK KT

K I

][

x(k)

u(k)

]

(6.27)

where NP is the prediction horizon. Rewriting it in standard form,

JMPC,RE =

Np−1
∑

t=0

x(k)TQREx(k) + u(k)TRREu(k)

+ x(k)TSREu(k) + uT (k)ST
REx(k) (6.28)

where QRE , RRE and SSE are weight matrices and these weights are given by QRE =

KTK, RRE = I and SRE = KT with K from Equation (6.26).

6.4.2 Design of MPC from scratch

The same model as in Equation (6.14) is used. In addition, to achieve a zero steady

state error in the presence of disturbances, we augment the plant with the integral of the

setpoint errors, i.e.

xint,i(k) = xint,i(k − 1) + Tsxe,i(k − 1) (6.29)

where i = B, S1, LB, C, and G. There is no integral of setpoint errors for Storage 2 as

there is no offtake to farms occurring between the in- and out-let of Storage 2. Equations

(6.14) and (6.29) can be written in the form of Equation (6.15) with

Aaug,DS =

[

A 0

C I

]

Baug,DS =

[

B

0

]

Caug,DS =
[

C 0
]

(6.30)

with the new state xaug,DS(k) = [xT (k), xTint(k)]
T . Again, since we have access to all

states, there is no need to design an observer.

For the design of MPC from scratch, the criterion to be minimised is given by

JMPC,DS = x(Np)
TPDSx(Np) +

Np−1
∑

k=0

x(k)TQDSx(k) + u(k)TRDSu(k) (6.31)

where QDS and PDS are positive definite matrices and RDS is a positive semi definite
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matrix. The matrix PDS , which is called terminal cost2 in the literature can be found

using the solution of the Discrete Algebraic Riccati Equation (DARE) (Rawlings and

Muske, 1993), i.e.

ATPDSA− PDS −ATPDSB(BTPDSB +RDS)
−1BTPDSA+QDS = 0 (6.32)

where A and B are the plant matrices (see Equation (6.15)). The matrices QDS and RDS

can be derived based on the control objectives outlined in Section 6.1.3 and we will discuss

them in the following paragraphs.

As one of the control objectives is to minimise the setpoint errors, thus (yB − yB,sp)
2,

(VS1 − VS1,sp)
2, (yLB − yLB,sp)

2, (yC − yC,sp)
2, (QG − QG,sp)

2 and (VS2 − VS2,sp)
2 need

to be penalised in the criterion. The associated weights for the setpoint errors are qe,B,

qe,S1, qe,LB, qe,C , qe,G and qe,S2. To ensure zero steady state error in the presence of

disturbances, the integral of setpoints errors need to be included in the criterion and the

associated weights for the integral of setpoint errors are assigned weights qint,B, qint,S1,

qint,LB, qint,C and qint,G. With all these weights, we can derive the matrix QDS .

With the control objective to ensure minimal release from Lake Nillahcootie, the control

variable uLN need to be penalised and it is assigned with weight rLN . For the other control

variables, they are all assigned the weight 1. With these weights, we can derive the RDS

matrix. In regards to the variations in flow, they are not penalised in the criterion but are

formulated as part of constraints, which will be discussed in the next section.

We would like to mention that, the choice of weights mentioned above are not trivial

and they required a fair amount of effort in selecting these weights such that a satisfactory

performance is achieved. These weights are shown in Table 6.3 in page 213 and are reported

together with the weights chosen to penalise the soft constraints, which are discussed next.

6.4.3 Dealing with constraints

In general, there are two types of constraints. The first is what we call hard constraints,

which cannot be violated. In the Broken River, the hard constraints are the physical

limit of the storages. The second type of constraint is what we call soft constraints. This

2Usually, the terminal cost is included for stability purposes (see e.g. (Maciejowski, 2002). As the open
channel systems are inherently semi-stable system; the inclusion of terminal cost for stability purposes may
not be relevant. Nonetheless, the author notices improved performance with the inclusion of the terminal
cost, thus retaining it in the cost function.
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type of constraints can be violated for a short period of time without causing serious

consequences. In the Broken River, the soft constraints are the water levels at Casey’s

Weir, Lake Benalla and Broken Weir and flow at Gowangardie Weir. The inclusion of

soft constraints rather than hard constraints increases the chances of finding a feasible

solution when solving the optimisation problem in MPC. By feasible solution, we mean

that while solving the optimisation problem, the optimiser can find a solution to satisfy

all the defined constraints simultaneously. To include the soft constraints in the criterion,

both Equations (6.28) and (6.31) becomes

JMPC,RE(x, u, k,Np) =

Np−1
∑

k=0

x(k)TQREx(k) + u(k)TRREu(k) + x(k)TSREu(k)

+ uT (k)ST
REx(k) + sTL(k)Qs,LsL(k) + sTH(k)Qs,HsH(k) (6.33)

and

JMPC,DS(x, u, k,Np) = x(Np)
TPDSx(Np) +

Np−1
∑

k=0

x(k)TQDSx(k) + u(k)TRDSu(k)

+ sTL(k)Qs,LsL(k) + sTH(k)Qs,HsH(k) (6.34)

where Qs,L and Qs,H are positive definite matrices of large weights. sL and sH are called

the slack variables with the subscripts ”L” and ”H” denote the slack variables for minimum

and maximum bound respectively. The slack variables are defined in a way that they are

zero when the constraints are not violated and non zero when the constraints are violated.

With the slack variables becoming non zero, they are penalised with large weights in the

criterion. This large penalty will make the optimiser try to maintain the slack variables

at zero if possible.

Referring to the control objectives outlined in Section 6.1.3, some of the control ob-

jectives can be formulated in terms of constraints. To include constraints in the MPC

optimisation problem, the constraints are normally expressed in the form of linear in-

equalities. The minimum flow over Gowangardie Weir is 25ML/day. Thus, in terms of

linear inequality, we have 25ML/day − sL,QG(k) ≤ QG(k). This flow is made a soft con-

straint and the slack variable sL,QG is used to represent the amount of flow going below

25ML/day and it is penalised with the weight qL,QG. For Casey’s Weir and Lake Benalla,

the minimum flow is 22ML/day and expressing it in terms of linear inequality, we have

22ML/day− sL,QC(k) ≤ QC(k) and 22ML/day− sL,QLB(k) ≤ QLB(k). We make the con-
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straints on both these flows, soft constraints and the slack variables sL,QC and sL,QLB are

used to represent the amount of these flows go below 22ML/day, and they are penalised

with the weights qL,QC and qL,QLB respectively. For the minimum flow at Broken Weir,

since it is in flow mode, we set the flow at Broken Weir to be 22ML/day.

For the water levels at Broken Weir yB, Lake Benalla yLB and Casey’s Weir yC , it is

preferred that they are within ±15cm of their setpoints. However, we defined a tighter

bound, where ±5cm is considered for the robustness against model mismatch. Expressing

them in terms of linear inequalities, we have 2.10m−sL,yB(k) ≤ yB(k) ≤ 2.20m+sH,yB(k),

2.20m − sL,yLB(k) ≤ yLB(k) ≤ 2.30m + sH,yLB(k) and 1.95m − sL,yC(k) ≤ yC(k) ≤
2.05m + sH,yC(k). These water levels constraints are also made soft constraints, where

the slack variables sL,yB, sL,yLB and sL,yC represent the amount of water level drop below

2.10m, 2.20m and 1.95m respectively. Similarly, the slack variables sH,yB, sH,yLB and

sH,yC represent the amount of water level rise above 2.20m, 2.30m and 2.05m respectively.

These slack variables are penalised with weights qL,yB , qL,yLB, qL,yC , qH,yB, qH,yLB and

qH,yC .

To maintain the slack water in the river, the flow released by the controller at Casey’s

Weir, Lake Benalla and Lake Nillahcootie should not exceed 190ML/day. Thus, the fol-

lowing linear inequalities are considered QC(k) ≤ 190ML/day + sH,QC(k), QLB(k) ≤
190ML/day + sH,QLB(k) and QLN (k) ≤ 190ML/day + sH,QLN(k). Again, all these flows

constraints are made soft constraints with the slack variables given by sH,QC , sH,QLB and

sH,QLN and they are penalised with weights qH,QC , qH,QLB and qH,QLN .

With all the penalty weights for the slack variables chosen, we can derive matrices Qs,L

and Qs,H . Note that these weights are normally chosen to be larger than the weights in

QDS as we want the period of violation of the soft constraints to be as short as possible.

The weights are shown in Table 6.3.

The capacity for Storages 1 and 2 are 300ML and 6ML respectively. Thus, the

constraints expressed in linear inequalities are given by 0ML ≤ VS1(k) ≤ 300ML and

0ML ≤ VS2(k) ≤ 6ML. The volume of the storages are hard constraints as they represent

the physical limit of the storage.

Lastly, in order to satisfy the control objective of ensuring the mean daily flow vari-

ations at the regulation point to be between 0.76 and 1.5 of the flow from previous day,

the following constraints are expressed in terms of linear inequalities, i.e.



212 Chapter 6. Control of Broken River

0.76[Qj(k)−∆Qj(k)] ≤ Qj(k) ≤ 1.5[Qj(k)−∆Qj(k)]

where ∆Qj(k) = Qj(k)−Qj(k − 1) and j = LN, Sin1, Sout1, LB and C.

Putting all the constraints together, the MPC optimisation problem is given by

u = argmin
u(t),u(t+1),...,u(t+Np−1)

J(x, u, t,Np)

subject to: x(t+ 1) = Ax(t) +Bu(t) +Bdd(t)

y(t) = Cx(t)

∆u(t) = u(t)− u(t− 1)

25ML/day − sL,QG(t) ≤ QG(t)

22ML/day − sL,QC(t) ≤ QC(t) ≤ 190ML/day + sH,QC(t)

22ML/day − sL,QLB(t) ≤ QLB(t) ≤ 190ML/day + sH,QLB(t)

QLN (t) ≤ 190ML/day + sH,QLN(t)

0ML ≤ VS1(t) ≤ 300ML

0ML ≤ VS2(t) ≤ 6ML

2.10m − sL,yB(t) ≤ yB(t) ≤ 2.20m + sH,yB(t)

2.20m − sL,yLB(t) ≤ yLB(t) ≤ 2.30m + sH,yLB(t)

1.95m − sL,yC(t) ≤ yC(t) ≤ 2.05m + sH,yC(t)

0.76[QLN (t)−∆QLN (t)] ≤ QLN (t) ≤ 1.5[QLN (t)−∆QLN (t)]

0.76[QSin1(t)−∆QSin1(t)] ≤ QSin1(t) ≤ 1.5[QSin1(t)−∆QSin1(t)]

0.76[QSout1(t)−∆QSout1(t)] ≤ QSout1(t) ≤ 1.5[QSout1(t)−∆QSout1(t)]

0.76[QLB(t)−∆QLB(t)] ≤ QLB(t) ≤ 1.5[QLB(t)−∆QLB(t)]

0.76[QC (t)−∆QC(t)] ≤ QC(t) ≤ 1.5[QC(t)−∆QC(t)]

sL,i(t), sH,i(t) ≥ 0 (6.35)

where i = QG, QC, QLB, yB, yLB or yC. J(x, u, k,Np) is either Equations (6.33)

(reverse engineering) or (6.34) (design from scratch). Note that instead of expressing all

the linear inequalities in x and u, which could lead to confusion, we use Q, y and V to

denote the variables explicitly. The prediction horizon, Np used in MPC is chosen to

be 4 days (5760 minutes) based on the advance order time by the irrigators is 4 days.
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The control problem is a quadratic programming3 problem in which we formulate using

YALMIP (Löfberg, 2004) in MATLABr and solved using the commercial package CPLEX

12.2 (IBM, 2009). The sampling interval used for the controller is 360 minutes.

Table 6.3: Weights used for MPC designed from scratch.

Setpoint errors Integral of setpoint errors Control actions Soft constraints

Parameter Value Parameter Value Parameter Value Parameter Value

qe,B 1× 10−7 qint,B 1× 10−6 rLN 2.5 qH,QLN 10

qe,S1 1× 10−7 qint,S1 5× 10−7 rSin1 1 qL,yB 10
qH,yB 10

qe,LB 1× 10−7 qint,LB 5× 10−6 rSout1 1 qL,QLB 10
qH,QLB 10
qL,yLB 10
qH,yLB 10

qe,C 1× 10−7 qint,C 5× 10−6 rLB 1 qL,QC 10
qH,QC 10
qL,yC 10
qH,yC 10

qe,G 1× 10−7 qint,G 2× 10−6 rC 1 qL,QG 10

qe,S2 3× 10−6 rS2 1

6.4.4 Measured and known disturbances

Under the current practice, the irrigators need to order water four days in advance when

they require water for their farms. As we have access to the known future orders from the

irrigators, we can include them as part of the ”feedforward control”. In MPC, this ”feed-

forward control” is easily handled by including this information directly in the prediction

model over the horizon (see (Maciejowski, 2002)).

In addition, the flow setpoints at Gowangardie and Broken Weirs are also known in

advance. Thus, they can also be included in the prediction model over the horizon. For

the flows from creeks, they can also be included directly in the prediction model over the

horizon. However, unlike the case of known future orders and the flow setpoints, we do

not know the flows in the creeks in advance. Thus, once we obtain the measurement, we

assume that the measurement is constant over the entire prediction horizon and use this

in the prediction model.

3A quadratic programming solves the problem that is formulated in the form of minx
1

2
xTQx + pTx

subject to Ax ≤ b (inequality constraint) and/or Cx = d (equality constraint).
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6.5 Simulation settings

In this section, the simulation settings to assess the performance of the control system is

explained. The simulations are a realistic year long simulations using the historical data of

offtakes to farm and flow contribution from creeks, which are adjusted according to a drier

future. As the geographical area we consider ends in Gowangardie Weir, all the demands

of water from both the irrigators and the environment downstream of Gowangardie Weir

are aggregated in the required flow over Gowangardie Weir. For flow contribution from

creeks, only the contribution from the two major creeks are considered and we assume

that all the unmeasured creeks can be aggregated into those two creeks. We also assume

that Lake Nillahcootie is always able to supply the required flow.

6.5.1 External input to the simulation

The external input to the simulation are the water orders from the irrigators, the environ-

mental flow requirements and the flow from creeks. We will discuss each of these external

inputs.

Water order from the irrigators

From the historical data of water orders from the irrigators obtained from the Goulburn

Murray Water, Victoria, Australia, we have identified that the water orders from July

2006 to June 2007 is most representative as the usage from this year is evenly distributed

across the months with the exception of the water orders from the Broken Creek and

the downstream of Gowangardie Weir, where the water orders from July 2007 to June

2008 are used for those two locations as they are considered more representative with the

anticipated drier future trends and the buyback of water in the Broken System (Water

Entitlements, 2010) taken into account. In addition, these water orders also create a bi-

modal demand patterns with large demand in spring and autumn instead would appear

(Langford, 2010).

The proposed monthly order volume for each of the reaches in the Broken River from

July 2006 to June 2007 is shown in Figure 6.8, while Figure 6.9 shows the water orders

by the irrigators used in the simulation. In both the figures, we have included the water

orders from the irrigators along the Broken Creek. Note that, we are not controlling the



6.5. Simulation settings 215

flow along the Broken Creek but we treat the flow (which include the water orders) into

Broken Creek as an out-flow.
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Figure 6.8: Proposed monthly order volume between the reaches in the Broken River. LN
- Lake Nillahcootie, BW - Broken Weir, LB - Lake Benalla, CW - Casey’s Weir, GW -
Gowangardie Weir, BC - Broken Creek.

In the Broken River, these offtakes occur physically at several different locations along

the river. However, in the simulation, a maximum of six offtakes are considered per reach.

In other words, the different offtake locations are aggregated into one offtake to make

up to a total of six offtakes per reach. All the demands for water (including minimum

environmental flow requirement) downstream of Gowangardie Weir is aggregated into a

desired flow over Gowangardie Weir. Similarly, for Broken Creek, the water orders at

Broken Creek are aggregated into a desired flow diverted to Broken Creek. Although the

demand patterns shown in Figure 6.9 is for the whole year, the controller only have the

information regarding these water orders four days in advance. We also assume that the

offtakes take place as ordered and hence, assume perfect prediction.
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Figure 6.9: Water orders between different reaches along the Broken River.

Environmental flow requirement

The minimum flow values defined in the Bulk Entitlement (Bulk Entitlements, 2010) are

used. The minimum environmental flow at Gowangardie Weir is 25ML/day, while at Lake
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Benalla, Broken and Casey’s Weirs, they are 22ML/day.

In-flows from creeks

Two creeks are considered. This first one is Lima Creek, which is located between Lake

Nillahcootie and Broken Weir. The second one is Hollands Creek, which is located between

Broken Weir and Lake Benalla. We assume that the contribution from other unmeasured

creeks can be aggregated into these two creeks. The data used are the historical measure-

ment data from June 2006 to July 2007 scaled down to represent a drier future. The flow

contribution from both creeks used in the simulation are shown in Figure 6.10
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Figure 6.10: Flow contribution from creeks.

6.5.2 Output of the simulation

The output of the simulations are all the control actions and the controlled variables.

The control actions are flows at Lake Nillahcootie QLN , in-let to Storage 1 QSin1, out-let

of Storage 1 QSout1, Lake Benalla QLB, and Casey’s Weir QC . The controlled variables

are water levels at Broken Weir yB , Lake Benalla yLB and Casey’s Weir yC , flow at



218 Chapter 6. Control of Broken River

Gowangardie Weir QG and volumes of Storages 1 and 2, VS1 and VS2. Although the

MPC controllers are designed using the models obtained through system identification

(i.e., the time delay and integrator delay models obtained in Chapter 4), the controllers

in the Broken River are simulated using the calibrated Saint Venant equations with the

sampling interval of 360 minutes.

6.6 Evaluation of the control system

To evaluate the performance of the control system, three different management objectives

are considered. A brief description of each of the management objectives is described

below.

Minimal release from Lake Nillahcootie

The emphasis of the control system is to ensure the release from Lake Nillahcootie to be as

small as possible and at the same, the demands from the irrigators and the environment

need to be satisfied. The excess water is calculated to measure the amount of wasted

water. Excess water is defined as the amount of water flowing out of our study area (i.e.

Gowangardie Weir), which is not needed to satisfy demands from the irrigators and the

environment. The number of days in breach over a year is used to measure the severity of

the controlled variables breaching their defined constraints.

Benefit of having more regulation points

In Section 6.1.3, we have assumed that the flow at Lake Nillahcootie, Broken Weir, Lake

Benalla, Casey’s Weir and the in-let and out-let of Storages 1 and 2 can be regulated.

The aim here is to evaluate the performance of the controllers in the case where we have

fewer regulation points in the Broken River. Two cases are considered; (i) No regulation

at Lake Benalla, (ii) No regulation at Casey’s Weir and Lake Benalla. For the assessment

of the controller, more emphasis is placed on the number of days in breach over a year of

the controlled variables breaching their defined constraints.
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Improve water delivery service to the irrigators

As of the current practice, the irrigators need to order water four days in advance. The aim

here is to investigate the possibility for the irrigators to order water on a shorter notice.

With a shorter notice of the water order, the irrigators can plan the application of water

to their crops, which may lead to increase in farming productivity. In this management

objectives, all the location of flows mentioned in Section 6.1.3 can be regulated.

6.6.1 Minimal release from Lake Nillahcootie

As one of the control objectives mentioned in Section 6.1.3 is to have the release from Lake

Nillahcootie to be as small as possible, the amount of excess water is evaluated. The excess

water is defined as the amount of water flowing out of Gowangardie Weir, which is not

needed to satisfy the demands from the irrigators and the environment. Excess water is

calculated by taking the sum of releases from Lake Nillahcootie and the flow contribution

from creeks minus the total water orders from the irrigators and the environment along

the Broken River both upstream and downstream of Gowangardie Weir.

It is desirable to have the flow at Lake Benalla, Gowangardie, Casey’s and Broken

Weirs to be above the minimum environmental flow. Thus, the number of days in breach

of the minimum flow requirements are calculated to measure the performance. Similarly,

the number of days in breach of the limits on the water levels at Broken Weir, Lake Benalla

and Casey’s Weir are also calculated.

Control options

To evaluate the performance of the MPCs, a comparison between the current manual

operation and the two different options of the decentralised control configurations design

used in (Ooi et al., 2010) is made. We denote the two different options for the decentralised

controllers as DCC-A and DCC-B. We would like to note that all the results of the manual

operation and the decentralised controllers used throughout this thesis are obtained from

(Ooi et al., 2010) (with permission) for the purpose of comparison the performance of the

different control options.

For the manual operation, the release from Lake Nillahcootie is made early according

to the known future orders and the time delays for the water to reach the points of demand
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such that the water would arrive at the time the water is required. On top of that, an

additional 20ML/day is added to account for any uncertainties in the actual released flow

and losses along the river. The manual operation is similar to the current control operation

at the Broken River (Bailey, 2010).

For both DCC-A and DCC-B, the configuration shown in Figure 6.6 is used. The

difference between these two options is that for DCC-B, an additional 10% is added to

flow setpoints at Gowangardie Weir and Broken Weir to improve satisfaction of demands.

For MPC, the MPC designed via reverse engineering and the MPC designed from

scratch are used. We denote the designs of the two MPCs as MPC RE and MPC DS. The

MPC RE reproduces the decentralised controller shown in Figure 6.6. The configuration

in Figure 6.7 is used for MPC DS.

Simulation results

A yearly long realistic simulations using both MPCs are carried out. For the clarity of

presentation, only the simulation results over the month of July to November 2006, (i.e.,

the end of winter to the start of irrigation period) will be presented here and we only

present plots of flow at Casey’s Weir QC , Gowangardie Weir QG, water level at Casey’s

Weir yC and Lake Benalla yLB . For the complete simulation plots, see Appendix B.

In Figure 6.11, the minimum flows and the ±5cm water levels bound, which we set as

the constraints are represented by the bold solid line. We see that, despite the constraints

are imposed in the MPC optimisation problem, constraint violations still occur due to the

model and the time delay mismatch as the model used to design MPC are the time delay

and integrator delay models, while the simulation model is the calibrated Saint Venant

equations. In addition, as we have imposed constraints on both input and output, the

optimisation can fail to produce meaningful results in the event when all these constraints

cannot be satisfied simultaneously. In fact, these constraint violations actually lead to

infeasible solution when solving the optimisation problem. As we have made the flow over

Gowangardie Weir, water levels at Casey’s Weir and Lake Benalla soft constraints, the

constraints are allowed to be violated for short period of time and this also ensure no issue

of infeasible solution in the optimisation.

Figure 6.12 shows water released from Lake Nillahcootie and the calculation of the

excess water for each of the control options, while Table 6.4 shows the yearly volume of
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Figure 6.11: Simulation results from July to November 2006.

water needed for irrigations and the flow contribution from the creeks. Table 6.5 tabulates

the number of days in breach (over a year) of the average daily flows and water levels from

the defined constraints. In Table 6.5, the inclusion of the measure of the amount of

Table 6.4: Yearly volumes of water.

Total volume of water required downstream 9600ML
of Gowangardie Weir (irrigation and environment)

Total volume diverted for irrigation 11000ML
(from Lake Nillahcootie to Gowangardie Weir)

Total flow from Lima and Hollands Creeks 1550ML

percentages the flow are 20%, 40% and 60% below the minimum flow requirements is to

illustrate the severity of the breach.

As for the water levels, we want to highlight that when yB, yLB and yC are below their

setpoints, this does not mean that the water demands are not satisfied. This basically

means the water has not yet been supplied from Lake Nillahcootie while the water has

been drawn by the irrigators to satisfy the water demand.
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Figure 6.12: Total water released from Lake Nillahcootie and excess water for all control
options.

Comparison between different control options

Under all the control options, 100% of satisfaction of water orders from the irrigators is

achieved. All the control options have smaller release at Lake Nillahcootie and also a

smaller amount of excess water compared to the manual operation. The various control

options release between 28% to 32% less water compared to the manual operation. The

excess water is reduced by between 83% to 94%. The results shown in Table 6.5 shows

that under the manual operation, the number of days in breach of QG < QG,min is smaller

compared to all the other control options. This is due to the extra 20ML/day that has

been added to the release at Lake Nillahcootie. These extra releases also lead to larger

number of days in breach of the limit of the water levels at Lake Benalla and Broken Weir.

Between all the control options, DCC-A achieves the smallest amount of excess water,

while the amount of excess water for DCC-B and the two MPCs are similar. If the control

objective is only to have minimal release from Lake Nillahcootie, then DCC-A has the best

performance. However, with all the control objectives mentioned in Section 6.1.3 are taken

in account, DCC-A is not the preferred option. This is because the number of days in
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Table 6.5: Performance measure.

Criteria Number of days in breach (over a year) in season 2006/2007

Manual DCC-A DCC-B MPC RE MPC DS

Gowangardie Weir

QG < QG,min 6 185 42 55 45
QG 20% < QG,min 0 26 12 7 14
QG 40% < QG,min 0 4 1 2 1
QG 60% < QG,min 0 0 0 0 0

Daily flow change ratios <0.76, >1.5 59 52 42 0 0

Casey’s Weir

yC ≥ 5cm above setpoint 11 0 0 0 0
yC ≥ 5cm below setpoint 0 0 2 0 0
yC ≥ 15cm above setpoint 0 0 0 0 0
yC ≥ 15cm below setpoint 0 0 0 0 0

QC < QC,min 0 4 0 0 0
QC 20% < QC,min 0 0 0 0 0
QC 40% < QC,min 0 0 0 0 0
QC 60% < QC,min 0 0 0 0 0

Daily flow change ratios <0.76, >1.5 16 47 42 0 0

Lake Benalla

yLB ≥ 5cm above setpoint 147 82 56 2 0
yLB ≥ 5cm below setpoint 0 52 54 0 0
yLB ≥ 15cm above setpoint 2 2 3 0 0
yLB ≥ 15cm below setpoint 0 3 0 0 0

QLB < QLB,min 0 0 0 0 0
Daily flow change ratios <0.76, >1.5 2 24 21 0 0

Broken Weir

yB ≥ 5cm above setpoint 162 0 0 26 0
yB ≥ 5cm below setpoint 0 0 0 0 0
yB ≥ 15cm above setpoint 2 0 0 0 0
yB ≥ 15cm below setpoint 0 0 0 0 0

QB < QB,min 0 175 0 0 0
Daily flow change ratios <0.76, >1.5 9 0 0 0 0

breach of QG < QG,min is the largest among all the control options. Similarly, the number

of days in breach of the limit of the water levels at Lake Benalla and Broken Weir is also

large. For all the control options, there is the occurrence of flow at Gowangardie Weir

below up to 40% the required minimum flow. However, such scenarios are rare and may be

tolerable depending on the purpose of the minimum flow. If the purpose of the minimum

flow is for habitat preservation, these violations may not be impacting. However, if the

purpose is to avoid stratification in the river, then the duration of the violation would be

of concern especially in summer, (Gawne, 2010). In comparing the performance between

the two MPCs and DCC-B, we observe that in general the performance of the two MPCs is

very good. Although the number of days in breach of QG < QG,min are similar compared

to DCC-B, for other locations, MPC have almost all zero number of days in breach. The

small number of breaches for MPC is due to the incorporation of constraint handling

capability into the optimisation problem.
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As MPC RE reproduces the decentralised controller, it is of interest to compare the

performance between these two control options. We make a comparison between MPC

RE and DCC-B. In terms of releases from Lake Nillahcootie, the excess water and the

number of days in breach of QG < QG,min, both control options have similar performance.

However, for other locations (except the water levels at Broken Weir and Lake Benalla),

MPC RE outperforms DCC-B, with zero number of days in breach for the remaining

criterias. For both the MPCs, similar performance between them is observed.

Summary

From the simulation results, we can see that the performance of MPC in general is better

compared to the decentralised controllers in terms of similar or smaller number of days

in breach in particular the for environmental daily flow change ratio. This is largely

attributed to the ability of MPC to incorporate constraints handling in the optimisation

problem. As for the head-to-head comparison between the two MPCs, their performance

are very similar.

Contribution of Storage 2

The volume capacity for Storage 2 is about 6ML, which is very small relative to the volume

capacity of Storage 1, which is about 300ML. At the moment, there is no infrastructure

available to control the in- and out-flow at Storage 2. In this section, we investigate the

performance of both the MPCs without the contribution from Storage 2. The analysis

from this investigation would be useful for the water authority in deciding whether the

contribution from Storage 2 is sufficient to warrant the infrastructure upgrade. We repeat

the year long realistic simulations but without Storage 2. The plots of the simulations

are presented in Appendix B. The release from Lake Nillahcootie and the excess water

are shown in Figure 6.13 and the same performance measures used in previous section are

tabulated in Table 6.6.

Without Storage 2, the water demand is still satisfied. For the MPCs, as expected,

the number of days in breach of QG < QG,min is now higher as the flow now need to

be supplied from Casey’s Weir instead of Storage 2. For other reaches, no significant

difference in terms of number of days in breach is observed. On whether the improvement

in the number of days in breach of QG < QG,min is deemed significant to warrant the
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Figure 6.13: Total water released from Lake Nillahcootie and excess water with and with-
out Storage 2.

need for infrastructure upgrade remains an open question. For instance, one can reduce

the number of days in breach by increasing the flow setpoint at Gowangardie Weir by say

additional 10%. This of course would lead to more release from Lake Nillahcootie but the

release would still be much less compared to current manual operation, which means we

would still have water savings albeit smaller. Moreover, with the size of Storage 2 being

small, it would be difficult to get a good justification for infrastructure upgrade if the

suggested solution of increasing the flow setpoint at Gowangardie Weir can get the job

done. With that, it is reasonable for us to say that the contribution of Storage 2 may not

be significant enough to warrant an infrastructure upgrade. Therefore, the analyses from

this point onward will be carried out without the contribution from Storage 2.

6.6.2 Benefit of having more regulation points

To continue our analyses on the matter of infrastructure upgrade in the Broken River, in

this section, we study the effect of having fewer regulation points in the Broken River.

In all our simulations so far, we have assumed that the flow can be regulated at Lake
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Table 6.6: Performance measure with and without Storage 2.

Criteria Number of days in breach (over a year) in season 2006/2007

MPC RE MPC RE MPC DS MPC DS
(With S2) (No S2) (With S2) (No S2)

Gowangardie Weir

QG < QG,min 55 67 45 50
QG 20% < QG,min 7 25 14 31
QG 40% < QG,min 2 5 1 9
QG 60% < QG,min 0 1 0 4

Daily flow change ratios <0.76, >1.5 0 0 0 0

Casey’s Weir

yC ≥ 5cm above setpoint 0 0 0 0
yC ≥ 5cm below setpoint 0 0 0 0
yC ≥ 15cm above setpoint 0 0 0 0
yC ≥ 15cm below setpoint 0 0 0 0

QC < QC,min 0 0 0 0
QC 20% < QC,min 0 0 0 0
QC 40% < QC,min 0 0 0 0
QC 60% < QC,min 0 0 0 0

Daily flow change ratios <0.76, >1.5 0 0 0 0

Lake Benalla

yLB ≥ 5cm above setpoint 2 2 0 2
yLB ≥ 5cm below setpoint 0 0 0 0
yLB ≥ 15cm above setpoint 0 0 0 0
yLB ≥ 15cm below setpoint 0 0 0 0

QLB < QLB,min 0 0 0 0
Daily flow change ratios <0.76, >1.5 0 0 0 0

Broken Weir

yB ≥ 5cm above setpoint 26 33 0 0
yB ≥ 5cm below setpoint 0 0 0 0
yB ≥ 15cm above setpoint 0 0 0 0
yB ≥ 15cm below setpoint 0 0 0 0

QB < QB,min 0 0 0 0
Daily flow change ratios <0.76, >1.5 0 0 0 0

Nillahcootie, Broken Weir, Lake Benalla, Casey’s Weir and in-let and out-let of Storage 1.

Two scenarios are analysed here, where in the first scenario, we no longer have regulation

at Lake Benalla and in the second scenario, we have no regulation at Casey’s Weir and

Lake Benalla.

No regulation at Lake Benalla

We investigate the performance of both MPCs with no regulation at Lake Benalla. This

means that the water level at Casey’s Weir is now controlled by the out-let of Storage 1.

This also lead to changes in the model. We note that as there is no regulation at Lake

Benalla, the lake could damp the flow released from the out-let of Storage 1, which may
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result in the integrator delay model may no longer be a suitable model structure. As we

carried out the step test of flow from 30ML/day to 60ML/day using the calibrated Saint

Venant equations to obtain the time delay for this new reach, the step response shows

that the time delay is larger than the time constant. This finding suggests to us that the

effect of the lake does not damp the flow as much as we have expected. Based on this, the

integrator delay model is still used to model this reach.

The model for the reach from out-let of Storage 1 to Casey’s Weir (Reach Sout1C) is

given by

V̇C(t) = c1,C′QSout1(t− τSout1C)− c2,C′ [yC(t)− pC(t)]
3/2 + c3,C′QB(t− τBC) (6.36)

where the subscripts ”Sout1”, ”C” and ”B” represent out-let of Storage 1, Casey’s Weir

and Broken Weir respectively. τSout1C = 1440 minutes and τBC = 1800 minutes are the

time delays from out-let of Storage 1 and Broken Weir to Casey’s Weir respectively. Using

an Euler approximation for the derivative, Equation (6.36) can be written as

yC(k) = yC(k − 1)

(

Tsc1,C′

A

)

QSout1(k − τSout1C − 1)−
(

Tsc2,C′

A

)

[yC(k − 1)− pC(k − 1)]3/2

+

(

Tsc3,C′

A

)

QB(k − τBC − 1) (6.37)

The identified parameters using the simulated data from the calibrated Saint Venant

equations are
(

Tsc1,C′

A

)

= 0.001,
(

Tsc2,C′

A

)

= 0.076 and
(

Tsc3,C′

A

)

= 0.005. The MPC RE

and MPC DS are redesigned using this new model. For MPC RE, the tuned parameters

for the PI-controller is given by KP = 2.5, KI = 0.1125 with a gain margin of 19.1dB and

a phase margin of 37.3◦, which means that an additional time delay of 4490 minutes can

be tolerated.

For MPC DS, the following weights qe,B, qe,S1, qe,C and qe,G are all assigned with

weight 2×10−7 to penalise (yB −yB,sp)
2, (VS1−VS1,sp)2, (yC −yC,sp)

2 and (QG−QG,sp)
2.

For the penalty on the integral of setpoint errors, qint,B = 9 × 10−6, qint,S1 = 1 × 10−6,

qint,C = 1 × 10−5 and qint,G = 2 × 10−6 are used. For the control actions and the soft

constraints, the same weights (except rLB , rS2, qL,QLB, qH,QLB, qL,yLB and qH,yLB) shown

in Table 6.3 are used.

We repeat the yearly realistic simulation without Storage 2. The results are shown in

Figure 6.14 and Table 6.7.
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No regulation at Casey’s Weir and Lake Benalla

In this scenario, there is no regulation available at Casey’s Weir and Lake Benalla. This

configuration is equivalent to using the available existing infrastructures (except the use

of Storage 1, where the construction is on-going at the time of writing). With this con-

figuration, the flow at Gowangardie Weir QG is now controlled by the out-let of Storage

1. We again note that with no regulation at Casey’s Weir and Lake Benalla, the presence

of the weir pool and the lake would potentially damp the released flow from the out-let of

Storage 1. We apply the step test of flow from 30ML/day to 60ML/day to obtain the time

delay for this reach using the calibrated Saint Venant equations. We again notice from

the step response that the time delay is still larger than the time constant. This suggests

that the presence of the weir pool and the lake do not change the flow dynamics as much

as we have expected. With the flow at Gowangardie Weir cannot be regulated, we can use

a time delay model to model this reach.

Thus, the model for this reach (in discrete representation), i.e. from the out-let of

Storage 1 to Gowangardie Weir (Reach Sout1G) is given by

QG(k) = QSout1(k − τSout1G) +QB(k − τBG) (6.38)

where the subscript, ”Sout1”, ”G” and ”B” denote out-let of Storage 1, Gowangardie Weir

and Broken Weir respectively. τSout1G = 3240 minutes and τBG = 3600 minutes.

The I-controller parameter is KI = 0.045 with a gain margin of 11.8dB and a phase

margin of 66.8◦, which means additional tolerable time delay of 9330 minutes. Again, the

MPC RE and MPC DS are redesigned using this new model.

For MPC DS, the following weights qe,B, qe,S1 and qe,G are all now assigned with weight

2× 10−7 to penalise (yB − yB,sp)
2, (VS1 − VS1,sp)

2 and (QG −QG,sp)
2. For the penalty on

the integral of setpoint errors, the following weights qint,B = 1× 10−7, qint,S1 = 1× 10−7,

and qint,G = 5× 10−7 are used. The same weights to penalise the control actions and the

soft constraints used in Table 6.3 (except rC , rLB , rS2, qL,QLB, qH,QLB, qL,yLB, qH,yLB

qL,QC, qH,QC , qL,yC and qH,yC) are used.

We repeat again the yearly realistic simulations without Storage 2. The results are

shown in Figure 6.14 and Table 6.7. We included the results without Storage 2 from

Figure 6.13 and Table 6.6 such that we can have a comparison of the scenarios between

all regulation points available and fewer regulation points.
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Figure 6.14: Total water released from Lake Nillahcootie and excess water with fewer
regulation points.

Discussions of the results

From Figure 6.14, we can see that the release from Lake Nillahcootie and the amount of

excess water are similar between all considered scenarios. With fewer regulation, we still

achieve 100% demand satisfaction to the irrigators. From Table 6.7, we can see that the

performance of the controllers in terms of the number of days in breach becomes worse as

the number of regulation points decreases. This is mainly due to the increase in the time

delay from the points of supply to the points demand. With a larger time delay, the time

of delivery of water is now less accurate as the uncertainties in the time delays are now

larger.

With no regulation at Casey’s Weir and Lake Benalla, we see that the number of days

in breach (except the water level at Casey’s Weir) are generally higher compared to the

case where we do not have regulation at Lake Benalla. The smaller number of days in

breach of the water level at Casey’s Weir is due to no adjustment of gate to maintain the

water level at Casey’s Weir at setpoint and essentially the flow just pass through Casey’s

Weir.
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We also note that the numbers of day in breach for the water level 5 cm above setpoint

at Lake Benalla is larger. As there is no regulation to control the water level at Lake

Benalla at setpoint, the flow released from Broken Weir and the out-let from Storage 1

would naturally increased the water level at Lake Benalla, leading to a larger number of

days in breach. More importantly, the results obtained here indicate that the performance

of the control system can be improved significantly with more regulation points along the

Broken River, thus making a good case for infrastructure upgrade.

Table 6.7: Performance measure with lesser regulation points.

Criteria Number of days in breach (over a year) in season 2006/2007

MPC RE MPC RE MPC RE MPC DS MPC DS MPC DS
(all) (No reg. QLB) (No reg. QC , (QLB) (all) (No reg. QLB) (No reg .QC ,QLB)

Gowangardie Weir

QG < QG,min 67 87 89 50 75 80
QG 20% < QG,min 25 37 47 31 36 46
QG 40% < QG,min 5 14 28 9 16 24
QG 60% < QG,min 1 2 13 4 9 9

Daily flow change ratios <0.76, >1.5 0 0 0 0 0 0

Casey’s Weir

yC ≥ 5cm above setpoint 0 29 10 0 11 9
yC ≥ 5cm below setpoint 0 30 0 0 15 0
yC ≥ 15cm above setpoint 0 0 0 0 0 0
yC ≥ 15cm below setpoint 0 0 0 0 0 0

QC < QC,min 0 0 0 0 0 0
QC 20% < QC,min 0 0 0 0 0 0
QC 40% < QC,min 0 0 0 0 0 0
QC 60% < QC,min 0 0 0 0 0 0

Daily flow change ratios <0.76, >1.5 0 0 0 0 0 0

Lake Benalla

yLB ≥ 5cm above setpoint 2 76 90 2 108 128
yLB ≥ 5cm below setpoint 0 2 0 0 0 0
yLB ≥ 15cm above setpoint 0 0 1 0 0 2
yLB ≥ 15cm below setpoint 0 0 0 0 0 0

QLB < QLB,min 0 2 0 0 0 0
Daily flow change ratios <0.76, >1.5 0 0 0 0 0 0

Broken Weir

yB ≥ 5cm above setpoint 33 41 38 0 0 4
yB ≥ 5cm below setpoint 0 20 27 0 1 8
yB ≥ 15cm above setpoint 0 0 0 0 0 0
yB ≥ 15cm below setpoint 0 0 0 0 0 0

QB < QB,min 0 0 0 0 0 0
Daily flow change ratios <0.76, >1.5 0 0 0 0 0 0



6.6. Evaluation of the control system 231

Comparison between MPC RE and decentralised controller

In (Ooi et al., 2010), the decentralised controller (DCC) has also been tested for the two

cases with fewer regulation points mentioned above. For a better visual comparison, we

tabulate the number of days in breach between MPC RE and DCC, which the MPC RE

reproduces in Table 6.8. Again, we note that the results of DCC are obtained from (Ooi et

al., 2010) (with permission) for the purpose of comparison of the different control options.

The comparison shows that DCC has smaller number of days in breach for all the

criterias for Gowangardie Weir and Broken Weir, while MPC RE has smaller number

of days in breach for all the criterias for Casey’s Weir and Lake Benalla. As for the

criteria on daily flow change ratios, the MPC RE has zero number of days in breach in

all locations compared to the DCC. Nonetheless, the results for both the control options

are in agreement that with fewer regulation points, the number of days in breach of the

considered criterias are higher.

6.6.3 Improve water delivery service to the irrigators

In this section, we shift our attention to improve water delivery service to the irrigators. As

of the current practice, the irrigators need to order water four days in advance. We would

like to investigate the possibilities to improve the service to the irrigators by reducing

the advanced order time for the irrigators from four days down to possibly one day and

yet still able to satisfy the water demand. From Table 6.1, one could notice that the

maximum time delay of the reaches in the Broken River is 1.5 day (2160 minutes). Thus,

any demand satisfaction resulting from the shorter notice would be regarded as an improve

water delivery service to the irrigators.

We repeat the yearly realistic simulation using both the MPCs with the order time

reduced from four days in advance down to one day in advance. The results on the release

from Lake Nillahcootie and the amount of excess water for both MPCs are shown in Figure

6.15. For this management objective, the decentralised controller is not compared due to

the decentralised controller is unable to satisfy the water demand when the order time is

less than 2 days (see (Ooi et al., 2010)). The performance measure in terms of number of

days in breach for both MPCs are shown in Tables 6.9 and 6.10.
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Table 6.8: Performance measure between MPC RE and DCC.

Criteria Number of days in breach (over a year) in season 2006/2007

MPC RE DCC MPC RE DCC

(No reg. QLB) (No reg. QLB) (No reg. QC , QLB) (No reg. QC , QLB)

Gowangardie Weir

QG < QG,min 87 30 89 62
QG 20% < QG,min 37 2 47 30
QG 40% < QG,min 14 1 28 17
QG 60% < QG,min 2 0 13 8

Daily flow change ratios <0.76, >1.5 0 8 0 65

Casey’s Weir

yC ≥ 5cm above setpoint 29 65 10 32
yC ≥ 5cm below setpoint 30 51 0 0
yC ≥ 15cm above setpoint 0 3 0 0
yC ≥ 15cm below setpoint 0 0 0 0

QC < QC,min 0 0 0 4
QC 20% < QC,min 0 0 0 0
QC 40% < QC,min 0 0 0 0
QC 60% < QC,min 0 0 0 0

Daily flow change ratios <0.76, >1.5 0 32 0 23

Lake Benalla

yLB ≥ 5cm above setpoint 76 139 90 170
yLB ≥ 5cm below setpoint 2 0 0 0
yLB ≥ 15cm above setpoint 0 3 1 4
yLB ≥ 15cm below setpoint 0 0 0 0

QLB < QLB,min 0 0 0 0
Daily flow change ratios <0.76, >1.5 0 12 0 9

Broken Weir

yB ≥ 5cm above setpoint 41 0 38 0
yB ≥ 5cm below setpoint 20 0 27 0
yB ≥ 15cm above setpoint 0 0 0 0
yB ≥ 15cm below setpoint 0 0 0 0

QB < QB,min 0 0 0 0
Daily flow change ratios <0.76, >1.5 0 0 0 0

Discussion on the results

The results show that with both MPCs, the irrigators can order water on a shorter notice

and all the water demands are still satisfied. The fact that both MPCs are able to satisfy

the demands from the irrigators with one day advance order has shown its advantage

over the decentralised controller. Here, we would like to highlight an important point.

The one day advance order only applies to our study area, which ends in Gowangardie

Weir. This does not apply for the water orders downstream of Gowangardie Weir as

their orders have been aggregated into the desired flow at Gowangardie Weir, where this

desired flow is known to the controller in advance. Thus, the demand from the irrigators

further downstream needs to be known earlier, which is reflected in the desired flow at

Gowangardie Weir.

Looking at the results in Tables 6.9 and 6.10, with the irrigators order the water on a
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Figure 6.15: Total water released from QLN and excess for different order time. Top:
MPC RE. Bottom: MPC DS.

shorter notice, we observe that the general trend is that the number of days in breach at

Gowangardie Weir and Casey’s Weir is larger as the water has been drawn by the irrigators

but the released water has yet to arrive. However, at Lake Benalla and in particularly

Broken Weir, we see that the number of days in breach of the water level above the setpoint

are smaller. The reason for this is illustrated in Figure 6.16, where we show the simulation

results using MPC RE.

Figure 6.16 (top) shows the offtake at Reach LNB, (middle) the flow released by the

controller at Lake Nillahcootie and (bottom) the water level at Broken Weir from 1 October

2006 to 8 October 2006. We can see that, with the water order made four days in advance,

due to the prediction horizon, MPC RE can ”see” the order of about 3ML/day made on 4

October 2006 and the controller releases the flow early on the middle of 2 October 2006.

At the bottom of the figure shown by the solid line, we see that as this early release

arrives at Broken Weir, it causes yB to exceed the 5cm bound. As the irrigators draw that

required amount of water in the middle of 4 October 2006, this causes yB to drop below

the 5cm bound.
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Table 6.9: Performance measure for different order time using MPC RE.

Criteria Number of days in breach in season 2006/2007

4 days 3 days 2 days 1 day

Gowangardie Weir

QG < QG,min 67 64 65 64
QG 20% < QG,min 25 26 23 31
QG 40% < QG,min 5 7 7 15
QG 60% < QG,min 1 1 1 6

Daily flow change ratios <0.76, >1.5 0 0 0 0

Casey’s Weir

yC ≥ 5cm above setpoint 0 0 0 0
yC ≥ 5cm below setpoint 0 0 10 21
yC ≥ 15cm above setpoint 0 0 0 0
yC ≥ 15cm below setpoint 0 0 0 0

QC < QC,min 0 0 0 0
QC 20% < QC,min 0 0 0 0
QC 40% < QC,min 0 0 0 0
QC 60% < QC,min 0 0 0 0

Daily flow change ratios <0.76, >1.5 0 0 0 0

Lake Benalla

yLB ≥ 5cm above setpoint 2 2 2 1
yLB ≥ 5cm below setpoint 0 0 0 0
yLB ≥ 15cm above setpoint 0 0 0 0
yLB ≥ 15cm below setpoint 0 0 0 0

QLB < QLB,min 0 0 0 0
Daily flow change ratios <0.76, >1.5 0 0 0 0

Broken Weir

yB ≥ 5cm above setpoint 33 32 33 22
yB ≥ 5cm below setpoint 0 0 0 0
yB ≥ 15cm above setpoint 0 0 0 0
yB ≥ 15cm below setpoint 0 0 0 0

QB < QB,min 0 0 0 0
Daily flow change ratios <0.76, >1.5 0 0 0 0

In the case where the water order is made one day in advance, the release at Lake

Nillahcootie made by MPC RE is now later, i.e. at around mid day of 3 October 2006

(notice the small peak shown by the dotted line in the middle plot of Figure 6.16). As this

small peak of flow arrives at Broken Weir, it causes yB to exceed the 5cm bound but only

for a very short period of time (shown by the dashed line) before the occurrence of the

offtake cause yB to go below the 5cm bound. It is clear that between the two plots shown

in the bottom of Figure 6.16, the duration of yB exceeding the 5cm bound is longer with

four days advanced order compared to the one day advanced order.

Another point we want to highlight is that we observe that with a shorter notice of

water order, the number of days in breach of QG < QG,min are now larger. However, as

mentioned before, this large number may be tolerable depending on the purpose of this

minimum flow.
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Table 6.10: Performance measure for different order time using MPC DS.

Criteria Number of days in breach in season 2006/2007

4 days 3 days 2 days 1 day

Gowangardie Weir

QG < QG,min 50 51 54 64
QG 20% < QG,min 31 31 33 34
QG 40% < QG,min 9 9 10 16
QG 60% < QG,min 4 4 4 7

Daily flow change ratios <0.76, >1.5 0 0 1 0

Casey’s Weir

yC ≥ 5cm above setpoint 0 0 0 0
yC ≥ 5cm below setpoint 0 0 0 2
yC ≥ 15cm above setpoint 0 0 0 0
yC ≥ 15cm below setpoint 0 0 0 0

QC < QC,min 0 0 0 0
QC 20% < QC,min 0 0 0 0
QC 40% < QC,min 0 0 0 0
QC 60% < QC,min 0 0 0 0

Daily flow change ratios <0.76, >1.5 0 0 0 0

Lake Benalla

yLB ≥ 5cm above setpoint 2 2 2 0
yLB ≥ 5cm below setpoint 0 0 0 0
yLB ≥ 15cm above setpoint 0 0 0 0
yLB ≥ 15cm below setpoint 0 0 0 0

QLB < QLB,min 0 0 0 0
Daily flow change ratios <0.76, >1.5 0 0 0 0

Broken Weir

yB ≥ 5cm above setpoint 0 0 0 0
yB ≥ 5cm below setpoint 0 0 0 0
yB ≥ 15cm above setpoint 0 0 0 0
yB ≥ 15cm below setpoint 0 0 0 0

QB < QB,min 0 0 0 0
Daily flow change ratios <0.76, >1.5 0 0 0 0
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Figure 6.16: Illustration of effect of order time.

6.7 Summary

In this chapter, we have assessed the performance of MPC on the Broken River subject to

all the defined control objectives. From the results of the yearly realistic simulations for

different management objectives considered, we have shown that with the control system

in place, we save substantial amount of water compared to the current manual operation

with all the water demands are satisfied. This is evident from the amount of excess

water for all the different management objectives considered, are lesser than the excess

water when manual operation is used. The performance of the two MPCs seems to be

better compared to the use of the decentralised controllers in particular satisfying the

environmental demand. This is due to the constraint handling capability of MPC in the

optimisation problem.

We have also shown that better performance can be achieved with the control system

if we have more regulation points. Moreover, the improvement is significant to make a

case of infrastructures upgrade in the Broken River.

In terms of improving water delivery service to the irrigators, we have shown that with

the control system, the order time from the irrigators within our study area can be reduced
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to one day. With the order time reduced, the irrigators would benefit from a more timely

application of water to pastures, crops, etc that would lead to an increase of productivity.

Between MPC RE and the decentralised controller, we have illustrated the benefit of

constraint handling of using MPC. With constraint handling, the performance of MPC RE

in terms of number of days in breach for all the different management objectives considered

are similar if not smaller compared to the decentralised controller.

Between the two designs of MPC, the performance between them are similar. However,

the tuning of MPC DS is not trivial and requires a lot of effort in selecting the weights such

that a satisfactory performance is achieved. Further improved performance for MPC DS

can be expected if more extensive tuning attempts are made. Whether the improvement

in using MPC DS outweighs the tuning effort as compared to MPC RE is an open question

and this requires further investigation.
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Conclusions and future works

7.1 Conclusions

There are two main objectives considered in this thesis; modelling of river systems and

control of river systems. The aims of the modelling part are to develop models of river

systems useful for control design and to develop models of river system useful for simula-

tion. On the other hand, the aims of the control part are to design controller using the

developed model and assess the performance of the controllers through simulation.

In Chapter 3, the main objective is to develop models of river systems useful for

simulations. We investigated how the Saint Venant equations should be segmented using

the Preissmann scheme to represent a river. In addition, we also investigated how sensitive

the simulation results are to the variation of the parameters in the Saint Venant equations.

Through experimental validation, we had shown that a few segments are often sufficient

to obtain an accurate representation of a river and furthermore, the accuracy of the Saint

Venant equations have been validated against the measured data of a river.

The Saint Venant equations are not easy to use for control design as they are nonlinear

partial differential equations. In Chapter 4, the main objective is to develop river models

useful for control design. We built river models through system identification and had

shown that a simple time delay and integrator delay models were accurate in capturing

the relevant dynamics of a river useful for control design. We had validated the accuracy

of these models against measured data and moreover, they were as accurate as the Saint

Venant equations around the operating region.

238
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In Chapter 5, we presented three systematic methods of obtaining weights in the MPC

criterion through reverse engineering of our ”favourite” controller for MPC. Building on

the reverse engineering work from (Hartley and Maciejowski, 2009), which uses a full

order observer, two reverse engineering methods were developed in this chapter. These

two methods used a reduced order observer and augmenting the plant with the state of

the our ”favourite” controller. In addition, we had illustrated that the choice of u = −Kx
as the MPC criterion function would drive the system to satisfy the control law than

to the desirable region. The role of the observer used in reverse engineering had also

been illustrated to mainly reproduce the ”favourite” controller rather than to estimate the

states of the plant.

In Chapter 6, the main objectives are to design MPC controller using the time delay

and integrator delay models and to assess the performance of MPC through simulation.

Two MPC designs were considered; MPC design via reverse engineering and MPC design

from scratch. Through a realistic year long simulation, we had shown that with MPC, we

achieved significant water savings, improved water service delivery to the irrigators and

improved environmental benefits compared to current operation in the river.

7.2 Future works

There are several directions of further research following the above works.

• The effects of rainfall, evapotranspiration and ground water/surface water interac-

tion are not taken into account in the empirical modelling exercise. It would be of

interest to see how much improvement from a control point of view can be made by

incorporating all these factors into the model.

• In addition, modelling of rivers with intermediate measurements or with extra mea-

surements along the river is another interesting aspect to look at. This model can

be useful for control design that involves control of intermediate points along the

river. In a related problem, the optimal number and placement of sensors for control

is a research of interest. This can facilitate the appropriate number of sensors to be

installed, which is vital from economical reason point of view.

• For the reverse engineering of MPC from existing controller, it would be of interest

to provide a guideline on fine tuning the obtained weights when reproducing MPC
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from the existing controller. In addition, a robust MPC need to be considered, in

particularly when there is a model mismatch.

• One of the MPC designed to control the Broken River was reverse engineered from a

decentralised PI controller. As distributed control configuration with H-infinity loop

shaping controller achieves better performance compared to the decentralised control

configuration, it would be of interest to reverse engineer MPC from this controller

and explore the potential constraint handling benefits.

• The redesigning of MPC with the use of additional measurement sensors for the

control of Broken River is another aspect that can be investigated to evaluate any

potential benefit of having additional measurements in the control system.



Appendix A

Derivation Of The Navier-Stoke

Equations

Here, the simplified derivation of the Navier-Stoke equations will be derived from the

conservation of mass and the conservation of momentum under the assumption that the

fluid particle is continuum (i.e. the fluid is treated as a continuous substance). For a more

detailed derivation can be found in standard computational fluid dynamics textbook (e.g.

(Vreugdenhil, 1994), (Wu, 2008), (Zienkiewicz et al., 2006)).

A.1 Mass equation

Figure A.1: Sketch of the control volume.

241
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Consider a small volume of the fluid in the middle of the flow, called the control volume

(CV) as shown in Figure A.1. We shall first derive the continuity equation for Navier-Stoke

from the conservation of mass i.e.

Net rate of mass entering/leaving the volume element

=

Rate of change of mass in the volume element

(A.1)

Let us consider the left hand side of Equation (3.1). Looking at Figure A.1, the CV

has six sides indicating six possible ways the mass could enter or leave the CV. Consider

the sides along the x-axis. The mass flux entering and leaving through this side is given

by

Mass flux in along x-axis = ρu∆y∆z

Mass flux out along x-axis = −(ρ+∆ρ)(u+∆u)∆y∆z

Similarly, considering the sides along y- and z-axis,

Mass flux in along y-axis = ρv∆x∆z

Mass flux out along y-axis = −(ρ+∆ρ)(v +∆v)∆x∆z

Mass flux in along z-axis = ρw∆x∆y

Mass flux out along z-axis = −(ρ+∆ρ)(w +∆w)∆x∆y

On the right hand side of Equation (3.1), the rate of change of mass within the CV is

given by
(

∆ρ

∆t

)

∆x∆y∆z

Putting all the equations for the conservation of mass together gives us

(

∆ρ

∆t

)

∆x∆y∆z = ρu∆y∆z + ρv∆x∆z + ρw∆x∆y

−(ρ+∆ρ)(u+∆u)∆y∆z − (ρ+∆ρ)(v +∆v)∆x∆z − (ρ+∆ρ)(w +∆w)∆x∆y (A.2)
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Simplifying Equation (A.2) and neglecting higher order terms of ∆ρ∆x∆y∆z leads to

(

∆ρ

∆t

)

∆x∆y∆z = −(ρ∆u+ u∆ρ)∆y∆z − (ρ∆v + v∆ρ)∆x∆z − (ρ∆w + w∆ρ)∆x∆y

= −∆(ρu)∆y∆z −∆(ρv)∆x∆z −∆(ρw)∆x∆y (A.3)

Dividing the left hand side by ∆x∆y∆z,

(

∆ρ

∆t

)

+
∆(ρu)

∆x
+

∆(ρv)

∆y
+

∆(ρw)

∆z
= 0 (A.4)

As ∆x, ∆y, ∆z and ∆t approach zero, we arrive at

(

∂ρ

∂t

)

+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (A.5)

Equation (A.5) is the continuity equation. In the case of incompressible fluid, (e.g.

water in our case), the value of ρ is constant. This means ∂ρ/∂t = 0. We can then rewrite

Equation (A.5) as

ρ
∂(u)

∂x
+ ρ

∂(v)

∂y
+ ρ

∂(w)

∂z
= 0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (A.6)

A.2 Momentum equation

Let us now derive the momentum equation. Consider again the same CV as shown in

Figure A.1. From the conservation of momentum, i.e.

Rate of change of the momentum within the volume element

=

Net rate of momentum transfer into the volume element

+

Sum of all forces that acts on the volume element

(A.7)

∂(ρu)

∂t
∆x∆y∆z
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For the right hand side of Equation (A.7), there are six momentum fluxes along x-axis

to be considered. Momentum flux is the product of mass flux direction of momentum and

the surface area.

Momentum flux for surface A = ρuu∆y∆z

Momentum flux for surface B = −
(

ρuu+
∂

∂x
ρuu∆x

)

∆y∆z

Momentum flux for surface C = ρuv∆x∆z

Momentum flux for surface D = −
(

ρuv +
∂

∂y
ρuv∆y

)

∆x∆z

Momentum flux for surface E = ρuw∆x∆y

Momentum flux for surface F = −
(

ρuw +
∂

∂z
ρuw∆z

)

∆x∆y

Denote
∑

Fx be the sum of all forces acting on the CV along x-axis. The conservation

of momentum along x-axis becomes

∂(ρu)

∂t
∆x∆y∆z = ρuu∆y∆z + ρuv∆x∆z + ρuw∆x∆y

−
(

ρuu+
∂

∂x
ρuu∆x

)

∆y∆z −
(

ρuv +
∂

∂y
ρuv∆y

)

∆x∆z −
(

ρuw +
∂

∂z
ρuw∆z

)

∆x∆y

+
∑

Fx (A.8)

Simplifying Equation (A.8)

[

∂(ρu)

∂t
+
∂(ρuu)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z

]

∆x∆y∆z =
∑

Fx (A.9)

Using the product rule, Equation (A.9) can be rewritten as

[

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z

+u
∂ρ

∂t
+ u

∂ρu

∂x
+ u

∂ρv

∂y
+ u

∂ρw

∂z

]

∆x∆y∆z =
∑

Fx (A.10)

Notice that the last four terms of Equation (A.10) is actually the continuity equation

(Equation (A.6)) multiply with u. Since the continuity equation is zero for incompressible
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fluids, the last four terms of Equation (A.10) becomes zero. This lead to

[

ρ
∂(u)

∂t
+ ρu

∂(u)

∂x
+ ρv

∂(u)

∂y
+ ρw

∂(u)

∂z

]

∆x∆y∆z =
∑

Fx (A.11)

Doing the similar derivation along the y− and z− axis yield,

[

ρ
∂(v)

∂t
+ ρu

∂(v)

∂x
+ ρv

∂(v)

∂y
+ ρw

∂(v)

∂z

]

∆x∆y∆z =
∑

Fy (A.12)

[

ρ
∂(w)

∂t
+ ρu

∂(w)

∂x
+ ρv

∂(w)

∂y
+ ρw

∂(w)

∂z

]

∆x∆y∆z =
∑

Fz (A.13)

From Equations (A.11), (A.15) and (A.16), the only thing left to be derived are the

term
∑

Fx,y,z. Now, let us derive the external force. Here, we will consider the derivation

along the x-axis,
∑

Fx. Similar derivation can be carried out along y- and z-axis to obtain
∑

Fy and
∑

Fz.

There are two types of force that act on the CV. There are the body force and the

surface force. The body force, is the force due to the gravity acceleration. For the con-

sidered CV, the body force is the product of the gravity acceleration along x-axis and the

mass. This is given by

Body force = gx(ρ∆x∆y∆z) (A.14)

The surface force on the other hand is the force that acts on a particular surface,

which is also known as stress. The stress on the CV acts in the outward direction. Let us

denoted the stress term by Si,j. The first subscript, i represents the normal direction of

the surface on which the stress acts. The second subscript, j represents the direction of

the stress. For example, Sy,x means the stress acts upon the side normal to y-axis and in

the direction of the x-axis. The force due to stress is the product of the stress with the

area of the surface where the force acts on.

Consider again the CV shown in Figure A.1. Stating the force due to stress on all six
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surfaces, we get

Force due to stress on surface A, Fx,x = −Sx,x∆y∆z

Force due to stress on surface B, Fx,x =

(

Sx,x +
∂Sx,x
∂x

∆x

)

∆y∆z

Force due to stress on surface C, Fy,x = −Sy,x∆x∆z

Force due to stress on surface D, Fy,x =

(

Sy,x +
∂Sy,x
∂y

∆y

)

∆x∆z

Force due to stress on surface E, Fz,x = −Sz,x∆x∆y

Force due to stress on surface F, Fz,x =

(

Sz,x +
∂Sz,x
∂z

∆z

)

∆x∆y

Summing all the forces due to stress and doing some manipulation, yield

(

∂Sx,x
∂x

+
∂Sy,x
∂y

+
∂Sz,x
∂z

)

∆x∆y∆z (A.15)

The stress, Si,j comprises of pressure, p and normal viscous stress, τ . Since the deriva-

tion is along x-axis, only the pressure along the x-axis will be contributing and the con-

tribution is in the opposite direction. Therefore we have,

Sx,x = −p+ τx,x

Sy,x = τy,x

Sz,x = τz,x (A.16)

Substituting Equation (A.16) into Equation (A.15), we get

(

−∂p
∂x

+
∂τx,x
∂x

+
∂τy,x
∂y

+
∂τz,x
∂z

)

∆x∆y∆z (A.17)

Let us analyse further the normal viscous stress. The normal viscous stress depends

on whether the fluid is Newtonian or not. The majority of the fluids (including water)

are Newtonian. A Newtonian fluid is fluid for which the normal viscous stress is linearly

proportional to the rate of deformation of the fluid. µ is generally used to denote the

proportionality constant. For an incompressible fluid, the normal viscous stress are given
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by

τx,x = µ

(

∂u

∂x
+
∂u

∂x

)

= 2µ
∂u

∂x

τy,x = µ

(

∂v

∂x
+
∂u

∂y

)

τz,x = µ

(

∂w

∂x
+
∂u

∂z

)

(A.18)

Substituting Equation (A.18) into Equation (A.17),

[

−∂p
∂x

+
∂

∂x

(

µ
∂u

∂x
+ µ

∂u

∂x

)

+
∂

∂y

(

µ
∂v

∂x
+ µ

∂u

∂y

)

+
∂

∂z

(

µ
∂w

∂x
+ µ

∂u

∂z

)]

∆x∆y∆z

(A.19)

Simplifying Equation (A.19), we get

[

−∂p
∂x

+ µ

(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

+ µ
∂

∂x

(

∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]

∆x∆y∆z (A.20)

The last term of Equation (A.20) becomes zero from the continuity equation. Rewriting

Equation (A.20), we get

[

−∂p
∂x

+ µ

(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)]

∆x∆y∆z (A.21)

Now, we can write the complete equation for the term
∑

Fx. From Equations (A.14)

and (A.21), we get

∑

Fx =

[

gxρ−
∂p

∂x
+ µ

(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)]

∆x∆y∆z (A.22)

Rewriting the conservation of momentum along x-axis gives

ρ

[

∂(u)

∂t
+ u

∂(u)

∂x
+ v

∂(u)

∂y
+ w

∂(u)

∂z

]

− gxρ+
∂p

∂x
− µ

(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

= 0 (A.23)

Replacing the last terms with the Laplace operator, ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
in Equa-
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tion (A.23), we get

ρ

[

∂(u)

∂t
+ u

∂(u)

∂x
+ v

∂(u)

∂y
+ w

∂(u)

∂z

]

− gxρ+
∂p

∂x
− µ∇2u = 0 (A.24)

Similar derivations along the y- and z- axis give

ρ

[

∂(v)

∂t
+ u

∂(v)

∂x
+ v

∂(u)

∂y
+ w

∂(v)

∂z

]

− gyρ+
∂p

∂y
− µ∇2v = 0 (A.25)

ρ

[

∂(w)

∂t
+ u

∂(w)

∂x
+ v

∂(w)

∂y
+ w

∂(w)

∂z

]

− gzρ+
∂p

∂z
− µ∇2w = 0 (A.26)

Equations (A.24), (A.25) and (A.26) are the dynamic equations for Navier-Stoke equa-

tions.

A.3 The two-dimensional flow equations

The Navier-Stokes equations describe three-dimensional flow. To describe two-dimensional

flow, we need to integrate the continuity and the dynamic equations over flow depth. Here

we are interested in the two-dimensional flow along the x- and y− axis (see Figure A.1).

The derivation presented here is the simplified form. See (Chaudhry, 1993) or (Wu, 2008)

for the detailed version.

Integrating Equation (A.6) over the flow depth, we obtain

∫ Z

Zb

∂u

∂x
dz +

∫ Z

Zb

∂v

∂y
dz +

∫ Z

Zb

∂w

∂z
dz = 0 (A.27)

where Z is the z-coordinate of the water surface and Zb is the z-coordinate at the channel

bottom. Using Leibnitz Rule, we rewrite Equation (A.27) as

∂

∂x

∫ Z

Zb

udz − u(Z)
∂Z

∂x
+ u(Zb)

∂Zb

∂x
+

∂

∂y

∫ Z

Zb

vdz

− v(Z)
∂Z

∂y
+ v(Zb)

∂Zb

∂y
+ w(Z)− w(Zb) = 0 (A.28)
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Note that the channel bottom is rigid, hence we have

u(Zb) = v(Zb) = w(Zb) = 0 (A.29)

The surface however, moves freely. Therefore, w(Z) is expressed as the total derivative

with respect to t given by

w(Z) =
DZ

Dt
=
∂Z

∂t
+ u(Z)

∂Z

∂x
+ v(Z)

∂Z

∂y
(A.30)

Substituting Equations (A.29) and (A.30) into Equation (A.28) and let h = Z − Zb,

after some algebraic manipulation we get

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0 (A.31)

Let us now integrate the dynamic equations over the flow depth. Assuming that the

pressure is hydrostatic, we get

ρg +
∂p

∂z
= 0 (A.32)

Integrating Equation (A.32) over the flow depth and assuming atmospheric pressure

to be zero, we get

p = ρg(Z − Zb) (A.33)

Substituting Equation (A.33) into Equations (A.24) and (A.25) with some algebraic

manipulation, we get

∂u

∂t
+
∂u2

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
= gx + gz

∂Z

∂x
+
µ

ρ
∇2u (A.34)

∂v

∂t
+
∂(uv)

∂x
+
∂v2

∂y
+
∂(vw)

∂z
= gy + gz

∂Z

∂x
+
µ

ρ
∇2v (A.35)

Integrating Equations (A.34) and (A.35) over flow depth and let h = Z−Zb, we arrive

with
∂uh

∂t
+
∂u2h

∂x
+
∂(uvh)

∂y
=

(

gx + gz
∂h

∂x

)

h− τbx (A.36)
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∂vh

∂t
+
∂(uvh)

∂x
+
∂v2h

∂y
=

(

gy + gz
∂h

∂x

)

h− τby (A.37)

where the term τbx and τby are the shear stress term coming from integrating

∫ Z

Zb

µ

ρ
∇2udz

and

∫ Z

Zb

µ

ρ
∇2vdz respectively.

Note that the term gx, gy and gz are vector components of g. For small channel bottom

slope and after some manipulation (see (Chaudhry, 1993) and (Wu, 2008)), we can express

Equations (A.36) and (A.37) as

∂uh

∂t
+

∂

∂x

(

u2h+
1

2
gh2
)

+
∂(uvh)

∂y
= gh(S0x − Sfx) (A.38)

∂vh

∂t
+
∂(uvh)

∂x
+

∂

∂y

(

v2h+
1

2
gh2
)

= gh(S0y − Sfy) (A.39)

where S0 is the channel bottom slope, Sf is the friction slope and subscripts x and y

denote the direction of the slope.

Equations (A.31), (A.38) and (A.39) are the depth averaged equation for two-dimensional

flow.



Appendix B

Performance of the MPC

controllers

B.1 Yearly realistic simulation results

B.1.1 Simulation with Storage 2

The yearly realistic simulation results described in Section 6.6 using MPC RE and MPC

DS are shown in Figures B.1 to B.3. The simulation results look like ”noise” and this is

due to the many offtakes happening along the reaches in the Broken River. Nonetheless,

there is one thing we would like to highlight. Using MPC RE, we can see that there are

times when the Storage 2 is completely empty and also completely filled. On the other

hand, when using MPC DS, Storage 2 is not utilised as much. This is due to the difficulty

in obtaining the appropriate weight in penalising the deviation of Storage 2 from setpoint.

B.1.2 Simulation without Storage 2

The yearly realistic simulation results without the contribution from Storage 2, described

in Section 6.6.1 using MPC RE and MPC DS are shown in Figures B.4 to B.5. Comparing

this simulation results with the one with Storage 2, we can see that the only significant

difference in the flow at Casey’s and Gowangardie Weir is that the flow peak around

September 2006 is released from Casey’s Weir instead of Storage 2. Other than that, the

251
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rest of the plots are similar thus leading us to make the case that the contribution of

Storage 2 may not be significant to warrant the infrastructure upgrades.
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Figure B.1: Year long realistic simulation I.
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Jónsdóttir, H., J.L. Jacobsen and H. Madsen (2001). A grey-box model describing the

hydraulics in a creek. Environmetrics 12, 347–356.

Julien, P. Y. (2002). River mechanics. Cambridge University Press.

Kalman, R.E. (1964). When is a linear control system optimal?. Transactions of ASME,

Journal of Basic Engineering 86, 51–60.

Kearney, M., M. Cantoni and P.M. Dower (2011a). Non-iterative distributed mpc for large-

scale irrigation channels. Proceedings of Australian Control Conference, Melbourne,

Australia.

Kearney, M., P.M. Dower and M. Cantoni (2011b). Model predictive control for flood mit-

igation: A Wivenhoe Dam case study. Proceedings of Australian Control Conference,

Melbourne, Australia.

Korenberg, M. J. and I. W. Hunter (1990). The identification of nonlinear biological sys-

tems Wiener kernel approaches. Annals of Biomedical Engineering 18, 629–654.

Kreindler, E. and A. Jameson (1972). Optimality of linear control systems. IEEE Trans-

actions of Automatic Control 17(3), 349–351.

Kreyzig, E. (1988). Advanced Engineering Mathematics. 6th ed.. John Wiley & Sons, Inc.

Krutzen, M. P. M. (2000). Estimation of parameters in the St. Venant equations from

observed data: Developing a full simulation model for an irrigation channel. Inter-

nal report. Department of Electrical and Electronic Engineering, The University of

Melbourne, Australia.

Langendoen, E. J. (2000). Concepts: Conservational channel evolution and pollutant

transport system. Research Report 16. United States Department of Agriculture -

Agricultural Research Service National Sedimentation Laboratory.



264 Bibliography

Langford, J. (2010). Private communication with John Langford of Uniwater, The Uni-

versity of Melbourne, Farms, Rivers and Market Project Leader.

Laub, A.J. (1979). A Schur method for solving Riccati equations. IEEE Transactions of

Automatic Control 24(6), 913–921.

Lebosse, A. (1989). Estimation of the Manning-Strickler roughness. Proceedings of Inter-

national Conference on Channel Flow and Catchment Runoff, Charlottesville, USA.

Li, Y. and M. Cantoni (2008). Distributed controller designs for open water channels.

Proceedings of IFAC World Congress, Seoul, South Korea.

Li, Y., M. Cantoni and E. Weyer (2004). Design of a centralized controller for an irrigation

channel using loop-shaping. Proceedings of UKACC Control Conference, Bath, UK.

Li, Y., M. Cantoni and E. Weyer (2005). On water-level error propagation in controlled

irrigation channels. Proceedings of IEEE Conference on Decision and Control, Seville,

Spain.

Linke, H. (2010). A model-predictive controller for optimal hydro-power utilization of river

reservoirs. Proceedings of IEEE International Conference on Control Applications,

Yokohama, Japan.

Litrico, X. (2001). Nonlinear diffusive wave modeling and identification of open channels.

Journal of Hydraulic Engineering 127(4), 313–320.

Litrico, X. and D. Georges (1997). Nonlinear identification of an irrigation system. Pro-

ceedings of IEEE Conference on Decision and Control, San Diego, USA.

Litrico, X. and D. Georges (1999). Robust continuous-time and discrete-time flow control

of a dam-river system (I) Modelling. Applied Mathematical Modelling 23, 809–827.

Litrico, X. and D. Georges (2001). Robust LQG control of single input multiple outputs

dam-river systems. International Journal of Systems Science 32(6), 795–805.

Litrico, X. and J-B. Pomet (2003). Nonlinear modelling and control of a long river stretch.

Proceedings of European Control Conference, Cambridge, UK.

Litrico, X. and V. Fromion (2002). Real-time management of multi-reservoir hydraulic

systems using H∞ optimization. Proceedings of IFAC World Congress, Barcelona,

Spain.



Bibliography 265

Litrico, X. and V. Fromion (2004a). Analytical approximation of open-channel flow for

controller design. Applied Mathematical Modelling 28, 677–695.

Litrico, X. and V. Fromion (2004b). Simplified modeling of irrigation canals for controller

design. Journal of Irrigation and Drainage Engineering 130(5), 373–383.

Litrico, X. and V. Fromion (2009). Modeling and Control of Hydrosystems. Springer.

Litrico, X., J-B. Pomet and V. Guinot (2010). Simplified nonlinear modeling of river flow

routing. Advances in Water Resources 33, 1015–1026.

Litrico, X., V. Fromion, J-P. Baume and M. Rijo (2003). Modelling and PI control of an

irrigation channel. Proceedings of European Control Conference, Cambridge, UK.

Liu, F., J. Feyen and J. Berlamont (1994). Downstream control algorithm for irrigation

canals. Journal of Irrigation and Drainage Engineering 120(3), 468–483.

Ljung, L. (1999). System Identification: Theory for the user, 2nd edition. Englewood Cliffs,

NJ: Prentice-Hall.

Ljung, L. and T. Glad (1994). Modeling of Dynamic Systems. Upper Saddle River, NJ:

Prentice-Hall.
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Söderström, T. and P. Stoica (1988). System Identification. Englewood Cliffs, NJ: Prentice-

Hall.
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