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Abstract

A NETWORK is called gradient-constrained if the absolute value of the instantaneous
gradient at each differentiable point on the edges in the network is no more than

a given positive constant [13]. A �ow-dependent network is a network in which �ow de-
mands are assigned between given pairs of vertices, and the cost per unit length of an
edge in the network is a function of the total �ow through the edge [34].

An application of gradient-constrained �ow-dependent networks is to underground
mine design. In an underground mining operation, ore is extracted from �xed under-
ground points, called draw points, and transported to a common facility, such as the base
of a vertical hoisting shaft or a �xed portal at the surface. The set of tunnels intercon-
necting the draw points and the facility can be modelled by a mathematical network,
where the draw points correspond to �xed vertices and the tunnels correspond to edges.
The gradient constraint ensures that a tunnel is navigable by haulage trucks, since the
maximum grade at which these vehicles can operate is typically 1:7.

Fundamental properties of length-minimising gradient-constrained networks have been
well-studied [13]. Properties of �ow-dependent networks subject to the gradient constraint
are, however, less well understood, and in this work we provide a thorough treatment of
such networks. Two problems are considered: the Fermat-Weber problem, which asks for a
point minimising the sum of weighted distances to a set of given points, and the Gilbert
arborescence problem, which asks for a minimum-cost �ow-dependent network intercon-
necting given sources and a unique sink.

Initially, we investigate �ow-dependent networks in two settings without the gra-
dient constraint. First, we examine networks in Euclidean space. Euclidean networks
provide valuable insights into gradient-constrained networks, and are applicable to un-
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derground mining in their own right. Second, we explore �ow-dependent networks
in Minkowski spaces, which are real �nite-dimensional normed spaces. The importance
of studying networks in Minkowski spaces is made apparent by the connection that a
gradient-constrained network is a special example of a network in a Minkowski space.

We demonstrate the application of �ow-dependent networks to underground mining
via an industry case study, in which aspects from the Fermat-Weber problem and the
Gilbert arborescence problem are used to mathematically determine an optimum location
and depth of a vertical hoisting shaft in the Callie underground mine.
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Chapter 1

Introduction

M INING is a signi�cant industry worldwide. Reducing the cost of mining oper-
ations is an important issue for mining companies in an extremely competitive

marketplace. For many years there have been well-developed methods for modelling
and optimising the operation of open-cut mines. Commercial optimisation mine plan-
ning software packages have been developed based on a technique developed in 1965 by
Lerchs and Grossmann [57]. These packages have revolutionised the design of open-pit
mines, allowing mining engineers and planners to manipulate and visualise data associ-
ated with optimal designs.

Until recently, a comprehensive optimisation tool for the design and planning of un-
derground mining operations had not been available to the mining industry. The de-
sign process is typically facilitated by planning software packages (see, for example, Vul-
can [59]) which require high levels of user intuition and experience. The usefulness of
these programs lies in their ability to ef�ciently generate a range of potential designs,
from which the `best' feasible solution can be selected and re�ned. However, since these
programs do not harness the bene�ts of optimisation, there is no guarantee that the �nal
solution is in fact the best possible one.

The Network Research Group, based at the University of Melbourne, is in the process
of designing and developing an optimisation tool for the design of underground mines,
called Decline Optimisation Tool (DOT). Currently at Version 4.1, with Version 4.2 in devel-
opment, the application ef�ciently determines an optimal (least-cost) or near-optimal un-
derground mining network servicing a given set of points associated with an ore body [7].

Several constraints are imposed on the geometry of the tunnels in the network, to

1



2 Introduction

ensure that the tunnels are navigable by haulage trucks. One such constraint is that the
slope (steepness or grade) of a tunnel cannot be too large, since the maximum grade at
which haulage vehicles can operate is typically 1:7. A network satisfying this constraint
is called gradient-constrained.

Gradient-constrained networks were introduced by the Network Research Group,
who initially studied them in a vertical plane [17], and later in three dimensions [13].
An algorithm for computing least-cost gradient-constrained networks was implemented
into a second software product [10], called Underground Network Optimiser (UNO). Al-
though this application does not account for other practical constraints, such as truck
turning circle navigability, UNO is especially useful for ef�ciently determining optimal
layouts for large-scale mining networks where the effects of constraints other than the
gradient constraint on the optimal layout of the mine are not signi�cant.

Until recently, research on gradient-constrained networks has focused on networks
which minimise length. While length-minimising networks optimise the total develop-
ment (or infrastructure) cost associated with an underground mine, they do not account
for the effects of haulage on the optimal design of the mine. Haulage costs can have a
signi�cant impact on the structure and layout of an underground mine, and considerable
savings can be achieved by including both cost components in the objective function. A
network facilitating �ows between given pairs of vertices in the network is called a �ow-
dependent network. In the mining context, these networks incorporate both development
and haulage costs in the objective function.

The principal aim of this research is to obtain a comprehensive understanding of
minimum-cost gradient-constrained �ow-dependent networks. In particular, we are in-
terested in the geometric structures possible in such networks. These properties can play
a crucial role in improving the ef�ciency of heuristic algorithms for computing gradient-
constrained networks. Such improvements would be of great bene�t to programs like
DOT and UNO which, for large complex networks, have huge computational demands.
Before formally introducing this research, we provide some background on the use of
mathematical networks to model underground mines.
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1.1 Underground mining networks

This background is taken primarily from [2]. An underground mine consists of a series
of interconnecting tunnels, ore passes (near-vertical chutes down which ore is dropped)
and vertical shafts (used to hoist ore up to the surface). Its purpose is to allow extraction
of ore containing valuable minerals (such as gold, silver, lead, zinc and copper) from
underground locations to a predetermined surface portal (or breakout point), from where
it is transported to a processing mill.

Ore zones (or stopes) are identi�ed by geological tests such as surface and in�ll drilling.
From this information, mining engineers can determine suitable draw points, which are
the locations on the boundary of each stope from which the ore is accessed. The ore is
then excavated using a number of mining methods (such as stoping, caving, room and
pillar, etc.) and is transported to the surface via large haulage trucks.

Given that these laden trucks must be able to traverse the ramps, the following im-
portant constraints must be imposed on the mine:

• Ramps must have absolute gradient not greater than some constant m. This con-
stant is typically in the range 1:9 to 1:7 depending on equipment speci�cations.

• Ramps must satisfy a minimum turning radius (typically in the range 15-30 m), so
that they are navigable by the trucks.

• Ramps must avoid certain no-go regions such as the interior of an ore body or other
ramps in the mine.

A set of tunnels satisfying these constraints and interconnecting the draw points and a
point at the surface can be modelled by a mathematical network T, where the draw points
correspond to �xed vertices and the tunnels correspond to edges. The cost C associated
with a network with a set E of edges is typically modelled by a function of the form

C(T) = ∑
e∈E

(d + hte)le

where d is a development cost rate (typically $3000/m), h is a haulage cost rate (typically
$0.75/t.km), te is the total quantity of ore to be transported along an edge e over the life of
the mine, and le is the length of e. We can view the �rst term ∑ dle as the total development
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cost of the mine, and the second component ∑ htele as the total haulage cost associated
with the mine over its life. If h is set to zero, then the cost of the network is proportional
to its length, and a network with this objective function is a length-minimising network.

1.1.1 Networks applied to underground mine design

Until recently, only a few papers had investigated the use of network theory in under-
ground mine design. Lizotte and Elbrond [58] reported an early application of network
theory to some underground mine layout problems, but limited their work to network
techniques in a horizontal plane. Brimberg [21] considered a network model to minimise
the cost of an underground mine with a vertical hoisting shaft connected to ore deposits
by a series of horizontal tunnels.

By far the most signi�cant contribution to the use of network theory in underground
mine design is by the Network Research Group. Their investigation of underground min-
ing networks began in the late 1990s, although Lee [55] �rst raised the problem of setting
up and optimising a three-dimensional network modelling the infrastructure costs of an
underground mine layout in 1989. Since then, a signi�cant body of research has been de-
veloped and implemented into the aforementioned software products, UNO and DOT.
The following is a summary of this research to date.

• [2], [8], [9], [15], [18] A network optimisation model for minimising development
and haulage costs in underground mines was �rst proposed. The possibility of
modelling the haulage cost of an edge as a function of the slope of the edge was
also facilitated in the cost function, and conditions under which the cost function
is convex were discussed. Application of the model was demonstrated via a pro-
totype network interconnecting draw points and a vertical hoisting shaft, and sev-
eral case studies in which the model was applied to mines at Pajingo and Kanowna
Belle.

• [17] The gradient-constrained Steiner problem (in a vertical plane) was introduced.
The problem asks for a shortest network interconnecting a set of points, called ter-
minals, in a vertical plane such that no part of the network has absolute gradient
greater than a given positive constant m satisfying m ≤ 1. Geometric structures
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of these networks were used construct a �nite algorithm for solving the problem
which, when suitably discretised, was shown to be NP-complete.

• [13] The study of the gradient-constrained Steiner problem was extended to three
dimensions. The gradient metric was introduced to measure the lengths of edges in
gradient-constrained networks, and the terms �at, maximum and bent were intro-
duced to label edges whose respective gradients are less than, equal to or greater
than m. It was shown that a Steiner point, which is a vertex in the network not
among the given set of terminals, has either three or four incident edges, and
Steiner points were classi�ed in terms of the labellings of their incident edges. The
UNO software product was concurrently developed with this work.

• [16], [76] The terms labelled-minimal and locally-minimal were introduced to describe
Steiner points for which a label-preserving perturbation and, respectively, any per-
turbation of the Steiner point, cannot shorten the length of the network. Properties
of labelled-minimal Steiner points were studied, and necessary and suf�cient con-
ditions for Steiner points to be locally-minimal were obtained. A formula for com-
puting labelled-minimal degree-three Steiner points was derived, and an algorithm
for computing locally minimal Steiner points was developed.

• [63], [64] The Steiner ratio for gradient-constrained networks connecting three points
in three dimensions was investigated. The Steiner ratio is the smallest ratio of the
length of a Steiner tree to the length of a minimum spanning tree when the two
networks interconnect the same set of given points. It was shown that this mini-
mum ratio for gradient-constrained networks tends to 0.75 as the value of m tends
to zero.

• [7], [10], [11], [74] A method for optimising declines in underground mines was
developed, a decline being a gradient-constrained, turning-circle-constrained path
connecting level access points to a surface portal while avoiding certain no-go re-
gions. A procedure for �nding an optimal decline was implemented into the DOT
software product, which was applied to several case studies including a decline
servicing the Jandam gold mine at Pajingo, and an access decline at Olympic Dam.
The software was further developed to handle networks of declines.
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The future direction of this expanding body of research focuses on integrating the use of
network models, and the DOT software product, into the context of a complete mining
operation, so that interactions with other aspects of the operation are modelled. This
forms part of an AMIRA International research project called Planning and Rapid Integrated
Mine Optimisation (PRIMO), in which the expertise of key researchers is pooled to develop
complete integrated solutions to large mining projects with complex infrastructure.

1.1.2 Motivation for studying �ow-dependent networks

While work undertaken by the Network Research Group has continued to progress with
great success, there are aspects of the research that, until recently, had not received de-
tailed attention. One area that was not well understood was the effect of weighted
edges on the optimal design of gradient-constrained networks. Indeed, work under-
taken in [13], [16], [17], [63], [64] and [76] has focused exclusively on length-minimising
gradient-constrained networks, and other references have not addressed weighted net-
works speci�cally.

While UNO and DOT handle the effects of edge weights induced by �ows, their un-
derlying algorithms are based on properties of unweighted networks. It is expected that
implementing properties of weighted networks into the algorithms will improve their
computational performance, and this becomes an increasingly important consideration
as the problem becomes more complex.

In this work our goal is to gain a comprehensive understanding of gradient-constrained
�ow-dependent networks. We do not consider the turning-circle constraint, or any of the
other constraints incorporated into DOT. However, it is expected that results uncovered
here can be implemented into the algorithms independently.

In our investigation of gradient-constrained �ow-dependent networks, we consider
two related problems. The �rst is the Fermat-Weber problem, which asks for a point min-
imising the sum of weighted distances to a set of given points. The second is the Gilbert
arborescence problem, which asks for a minimum-cost �ow-dependent network intercon-
necting given sources and a unique sink.

Initially, we investigate �ow-dependent networks in two settings without the gra-
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dient constraint. First, we examine networks in Euclidean space. Euclidean networks
provide valuable insights into gradient-constrained networks, and are applicable to un-
derground mining in their own right.

Second, we explore �ow-dependent networks in Minkowski spaces, which are real
�nite-dimensional normed spaces. The importance of studying networks in Minkowski
spaces is made apparent by the connection that a gradient-constrained network is a spe-
cial example of a network in a Minkowski space. Moreover, by studying networks in
Minkowski spaces, we introduce an approach not previously utilised in the study of
gradient-constrained networks, since results to date have been obtained using the varia-
tional argument [67] and geometric techniques.

We now discuss each of the two problems in turn.

1.2 The Fermat-Weber problem

Part I of this thesis is dedicated to a famous problem of mathematics called the Fermat-
Weber problem (FW problem). The problem asks for a point, called a Fermat-Weber point
(FW point), minimising the sum of weighted distances to a set of given points. We intro-
duce the gradient-constrained FW problem, which is the FW problem in which distance is
measured by the gradient metric. The problem is formulated as follows:

• GIVEN: A set N = {p1, . . . , pk} of points in Euclidean space with respective posi-
tive weights w1, . . . , wk, and a gradient bound m satisfying 0 < m ≤ 1.

• FIND: A point x0 minimising the sum of weighted distances from x0 to the points
in N such that each distance is the minimum length of a piecewise-smooth curve
whose gradient at each differentiable point is no more than m.

In the mining context, p1, . . . , pk represent draw points with associated tonnages t1, . . . , tk.
Material is hauled from the draw points via independent paths to the FW point, x0, which
might represent, for instance, the base of a vertical hoisting shaft. The total cost of the
mine can be minimised by positioning the facility at an optimal location.

The weight on the path from pi to x0 is given by wi = d + hti, where d and h are
development and haulage cost rates respectively. Since the ti can take on any value, there
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are no restrictions on the values of the weights associated with the points in N. This is
in contrast to the Gilbert arborescence problem described shortly, in which edge weights
in the network satisfy certain implicit conditions resulting from the �ow structure in the
network.

Initially in Chapter 2, we examine the problem in Euclidean space. We provide a
brief history of the problem, from its origin in the 17th century to the present, and state a
known geometric characterisation of FW points [53], the characterisation being in terms
of weighted unit vectors to the given points. We use this result to derive a geometric
construction [85] for solving the three-point problem. We identify special instances of the
FW problem that can be solved with very little computational effort, and present new
results for the case where the given points form the vertices of a convex polygon and
certain pairs of weights are equal.

We state Weiszfeld's famous algorithm [86] for solving the FW problem iteratively,
and demonstrate its use via an example. We introduce a variation of the FW problem in
the plane whereby one of the given points is allowed to lie anywhere on a straight line
in the plane, and show how Weiszfeld's algorithm can be amended to suit this case. We
demonstrate the application of this new problem to underground mining by using it to
solve a subproblem of an industry case study presented in Chapter 9.

In Chapter 3, we investigate the FW problem in n-dimensional real normed spaces, or
Minkowski spaces. Martini et al. [60] provided a minitheory of this problem for the case
where all the weights equal one, and established a range of geometric results. Our main
goal is to generalise some of these results to the weighted case. We provide background
relating to Minkowski spaces and functional analysis, including a method for construct-
ing the dual ball for a given unit ball. We state a known geometric characterisation of FW
points in Minkowski spaces [31], the characterisation being in terms of weighted norming
functionals associated with the given points.

We then provide several properties of the set of solutions to the FW problem, and
identify special instances of the problem that can be solved exactly with very little com-
putational effort. The notions of double-clusters, ρ-concurrent ρ-segments, collinear and
cogeodesic sets are generalised to the weighted case, and corresponding theorems and
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proofs are provided. Finally, we generalise a geometric result originally posed in [22] for
the three-point unweighted problem, to the weighted case.

In Chapter 4, we formally introduce the gradient-constrained FW problem. We con-
centrate on two- and three-dimensional spaces, which are natural contexts for under-
ground mining problems. We begin by outlining the gradient metric, deriving its unit
ball and dual ball in two and three dimensions, and demonstrating how to compute the
set of norming functionals associated with a point in gradient-constrained space. We
then present an iterative scheme for solving the gradient-constrained FW problem nu-
merically, and prove convergence for the two- and three-dimensional cases. Finally, we
demonstrate the application of the problem to the optimal design of underground mines
by using it to solve a simpli�ed version of the case study presented in Chapter 9.

1.3 The Gilbert arborescence problem

Part II of this thesis is dedicated to the Gilbert arborescence problem, which asks for a
minimum-cost �ow-dependent network interconnecting given sources and a unique sink.
The gradient-constrained version of the problem in three-space is formulated as follows:

• GIVEN: A set of points N = {p1, . . . , pk} in Euclidean three-space, where
p1, . . . , pk−1 are sources with respective positive �ows t1, . . . , tk−1, and pk is a unique
sink, a gradient bound satisfying 0 < m ≤ 1, and positive constants d and h.

• FIND: A minimum-cost network T interconnecting N which provides �ow paths
from the sources to the sink, such that the cost of an edge e in T is given by (d +

hte)le, where te is the total �ow through e, and le is the length of e under the gradient
metric.

A network satisfying the above conditions is called a minimum Gilbert arborescence (MGA).
Vertices in T not in N are called Steiner points and, as we will show, a Steiner point is an
FW point with respect to its adjacent vertices in T. A key difference between the two
problems is that a Steiner point s in a Gilbert arborescence has source edges, which are
directed into s, and a unique sink edge, directed outward from s, whereas all incident
paths connected to an FW point are directed toward that point.
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As for the FW problem, we initially investigate the Gilbert arborescence problem in
two settings without the gradient constraint. First, in Chapter 5, we examine the problem
in Euclidean space. This problem has applications to drainage [56] and gas pipeline [4]
networks. We present many new properties of MGAs, and provide a characterisation
of the local structure of their Steiner points, generalising a known result for unweighted
networks. We use this characterisation to investigate the maximum degree of Steiner
points in MGAs in the Euclidean plane and in Euclidean three-space. We then brie�y
discuss how some known algorithms can be applied to the problem. In particular, we
look at a generalised Melzak algorithm which provides exact solutions, and an angle-
splitting heuristic for obtaining approximate solutions.

In Chapter 6, we study the Gilbert arborescence problem in Minkowski spaces. A
geometric characterisation of Steiner points and terminals in MGAs in Minkowski spaces
is established, generalising a result for Steiner minimum trees in such spaces [73]. We use
these characterisations to derive additional geometric properties of MGAs in Minkowski
spaces.

In Chapters 7 and 8, we study gradient-constrained MGAs in a vertical plane and in
three dimensions. We provide many new geometric properties of gradient-constrained
MGAs in a vertical plane and in three dimensions, and use these properties to provide
a classi�cation of Steiner points, extending work done in [13] for gradient-constrained
SMTs. The classi�cation of a Steiner point is in terms of the labels of its incident edges, a
label indicating whether the absolute value of the gradient of the Euclidean straight line
between the endpoints of an edge is less than, equal to, or greater than m. We show that
the degree of a Steiner point in MGA in a vertical plane is either three or four, and we
conjecture that there is no upper bound on the degree of a Steiner point in an MGA in
three-space.

We conclude the thesis in Part III (Chapter 9) with an industry case study that draws
on material presented in Parts I and II. In the case study, we examine the Callie under-
ground mine, which is located in the Tanami Desert in the Northern Territory. It includes
two parallel declines accessing a large orebody extending some two kilometres below the
surface. As part of the strategic mine planning, it was proposed to incorporate a vertical
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hoisting shaft and an ore pass as an alternative to trucking material to the surface along
the declines.

We use network optimisation techniques developed in Parts I and II to investigate
the feasibility of the proposed system, and to mathematically determine the optimum
positions and geometry of the shaft, ore pass and surrounding infrastructure. We propose
a modelling procedure taking aspects from the FW and Gilbert arborescence problems,
and describe the implementation of the procedure into a computer program for solving
the problem exactly. We present results over a range of infrastructure and haulage costs,
decline gradients and life-of-mine schedules, and analyse the effects of changing various
parameters on the optimal design of the mine.

We conclude the thesis in Chapter 10 by summarising the new contributions we have
made to �ow-dependent networks in Euclidean, Minkowski and gradient-constrained
spaces. We also suggest some possible extensions of this work which would make good
topics for future research.

In Appendix A we provide a list of mathematical symbols used throughout this thesis,
and in Appendix B we provide some useful trigonometric identities relating maximum
gradients and angles.

1.4 Summary of new contributions

In this section we list the new contributions of this thesis. Contributions are listed in
order of appearance, with section numbers indicating where the point is �rst discussed
in the thesis. Published, submitted and forthcoming papers are shown in parentheses.

1.4.1 The Fermat-Weber problem

Euclidean space

1. A new characterisation of Fermat-Weber points for collinear sets of given points is
developed (Section 2.3).
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2. New results are derived for the case where the given points form the vertices of a
convex polygon, and certain pairs of weights are equal (Section 2.5).

3. A previously unstudied variant of the Fermat-Weber problem in the plane is intro-
duced, whereby one of the given points is allowed to lie anywhere on an in�nite
line in the plane. The problem is applied to a subproblem of the Callie shaft loca-
tion study (Section 2.7).

Minkowski spaces [84]

1. Practical methods are developed for determining the dual ball for a given unit ball
(Section 3.2.1).

2. The term balanced double cluster is introduced to depict weighted sets of given
points satisfying special properties. It is shown that if a Fermat-Weber point for a
set N of given points lies outside the convex hull of N, then N is a balanced double
cluster (Section 3.4.2).

3. The term balanced concurrent segments is introduced to depict weighted sets of
given points satisfying special properties. It is shown that if a set N of given points
can be matched up to form balanced concurrent segments, then the intersection of
these segments is the set of Fermat-Weber points for N (Section 3.5.1).

4. The study of the Fermat-Weber problem for a given set of weighted cogeodesic
points is initiated. A new characterisation of Fermat-Weber points for weighted
collinear and cogeodesic sets is developed (Section 3.5.2).

5. A new geometric property of the solution to the weighted three-point problem in
the plane is discovered (Section 3.6).

Gradient-constrained space [14], [84]

1. The gradient-constrained Fermat-Weber problem is introduced (Section 4.1).
2. For the �rst time, gradient-constrained space is treated as a Minkowski space. The

unit ball, dual ball and dual norm are derived, and a practical method for deter-
mining sets of norming functionals is developed (Section 4.2).
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3. A new gradient descent algorithm is developed for solving the problem iteratively.
The algorithm is implemented into a software product (Section 4.3).

4. Convergence is proved for the two- and three-dimensional cases (Section 4.4).
5. The problem is applied to a simpli�ed version of the Callie shaft location study

(Section 4.5).

1.4.2 The Gilbert arborescence problem

Euclidean space [81]

1. A new title, the Gilbert arborescence problem, is given to the special case of the Gilbert
network problem in which �ows are from given sources to a unique sink. At
present, this problem has been studied only in a handful of papers (Section 5.1).

2. It is shown that a minimum Gilbert arborescence has a tree topology, i.e. it has no
cycles or crossing edges (Section 5.3).

3. Necessary and suf�cient conditions for a Steiner point to be locally minimal with
respect to its adjacent vertices are established (Section 5.4).

4. It is shown that the degree of all Steiner points in minimum Gilbert arborescences
in the Euclidean plane is three (Section 5.5).

5. Good progress is made on proving the conjecture that the degree of Steiner points
in minimum Gilbert arborescences in Euclidean three-space is three (Section 5.6).

6. Expressions for the optimum angles between edges incident to a Steiner point
are determined. The notions of critical and absorbing angles are generalised to the
Gilbert arborescence problem (Section 5.7).

7. Exact and approximate algorithms for solving the Gilbert arborescence problem in
Euclidean space are discussed (Section 5.8).

Minkowski spaces [80]

1. The study of the Gilbert arborescence problem is in Minkowski spaces is initiated.
(Section 6.1).
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2. Concepts of parenthesisations, abstract Steiner trees and reduced Minkowski ad-
dition are generalised to the weighted case (Section 6.3).

3. Necessary and suf�cient conditions for a terminal to be locally minimal with re-
spect to its adjacent vertices are established (Section 6.4).

4. Necessary and suf�cient conditions for a Steiner point to be locally minimal with
respect to its adjacent vertices are established (Section 6.5).

Gradient-constrained vertical plane [82]

1. The gradient-constrained Gilbert arborescence problem (in a vertical plane) is intro-
duced (Section 7.1).

2. A range of fundamental properties of gradient-constrained minimum Gilbert ar-
borescences (in a vertical plane) is established. In particular, it is shown that the
degree of Steiner points is either three or four (Section 7.3).

3. It is shown that a degree-three Steiner point has seven feasibly optimal labellings:
(fff), (ffm), (ffb), (fmm), (fmb), (mmm) and (mmb) (Section 7.4).

4. It is shown that a degree-four Steiner point has three feasibly optimal labellings:
(ffmm), (fmmm) and (mmmm) (Section 7.5).

5. The reduced hull of a set N of terminals is de�ned. It is shown that all Steiner points
lie in the reduced hull of N (Section 7.6).

Gradient-constrained three-space [82]

1. The gradient-constrained Gilbert arborescence problem (in three-space) is introduced
(Section 8.1).

2. A range of fundamental properties of gradient-constrained minimum Gilbert ar-
borescences (in three-space) is established (Section 8.3).

3. It is shown that a degree-three Steiner point has seven feasibly optimal labellings:
(fff), (ffm), (ffb), (fmm), (fmb), (mmm) and (mmb) (Section 8.4).

4. It is shown that a degree-four Steiner point has four feasibly optimal labellings:
(fffm), (ffmm), (fmmm) and (mmmm) (Section 8.5).
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5. It is shown that there is no upper bound on the degree of Steiner points (Sec-
tion 8.6).

1.4.3 Callie shaft location study [83]

1. Aspects from the Fermat-Weber problem and the Gilbert arborescence problem are
used to develop a network model for the Callie underground mine (Section 9.1).

2. An algorithm is developed to mathematically determine an optimum location and
depth of a vertical hoisting shaft in the Callie underground mine. The algorithm
is implemented into a software product. (Section 9.3).

3. Results are analysed over a range of infrastructure and haulage costs, decline gra-
dients and life-of-mine schedules (Section 9.5).
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Introduction to Part I

IN Part I of this thesis we investigate the Fermat-Weber problem in three settings.
First, in Chapter 2, we study the problem in its classical environment, Euclidean

space. This is a good starting point as the Euclidean problem provides insight into the
problem in other spaces. In particular, there exists a geometric characterisation of Fermat-
Weber points that has a natural physical interpretation in terms of weighted vectors from
the Fermat-Weber point to the given points. Moreover, the Euclidean problem is applica-
ble to underground mining in its own right.

Next, in Chapter 3, we study the Fermat-Weber problem in Minkowski spaces, which
are real �nite-dimensional vector spaces. We show that the characterisation of Steiner
points for the Euclidean case generalises to Minkowski spaces, where now the orienta-
tions and lengths of the vectors associated with the given points are determined by the
unit ball and the dual ball associated with the space.

Finally, in Chapter 4, we introduce the gradient-constrained Fermat-Weber problem, which
is the Fermat-Weber problem where distance is measured by the gradient metric. This met-
ric ensures that the distance between two points is the minimum length of a piecewise
smooth curve connecting the points such that the absolute value of the instantaneous
gradient at each differentiable point on the curve is no more than a given upper bound.
We show that the vectors associated with given points depend on the gradient of the
line from the minimum point to the given point, and devise a numerical procedure for
solving the problem iteratively.





Chapter 2

The Fermat-Weber Problem in
Euclidean Space

In this chapter we investigate the Fermat-Weber problem, which asks for a point, called a Fermat-
Weber point, minimising the sum of weighted distances to a set of given points in Euclidean space.
We provide a brief history of the problem, from its origin in the 17th century to the present. We state a
known geometric characterisation of Fermat-Weber points [53], the characterisation being in terms of
weighted unit vectors to the given points. We use this result to derive a geometric construction [85]
for solving the three-point problem. We identify special instances of the Fermat-Weber problem that
can be solved with very little computational effort, and present new results for the case where the given
points form the vertices of a convex polygon and certain pairs of weights are equal.

We state Weiszfeld's famous algorithm [86] for solving the Fermat-Weber problem iteratively, and
demonstrate its use via an example. We introduce a variation of the Fermat-Weber problem in the
plane whereby one of the given points is allowed to lie anywhere on a straight line in the plane, and
show how Weiszfeld's algorithm can be amended to suit this case. We demonstrate the application of
this new problem to underground mining by using it to solve a subproblem of an industry case study
presented in Chapter 9.

2.1 Introduction

LET N = {p1, . . . , pk} be a set of given points in Euclidean n-space, and suppose that
each point pi ∈ N has a given weight wi > 0. Consider the following problem: �nd

a point, x0 ∈ Rn, that minimises

f (x) =
k

∑
i=1

wi|pi − x| (2.1)

21
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where | · | denotes the Euclidean norm. Although this problem has many variants and
names, when used in the context of location theory it is often called the Fermat-Weber
problem (FW problem)1, and x0 is called a Fermat-Weber point (FW point). The �rst name
is that of Pierre de Fermat (1601-1665), who is thought to have �rst posed the problem in
the 17th century [51] for the case where k = 3, n = 2 and w1 = w2 = w3 = 1. The second
name is that of Alfred Weber (1868-1958), who applied the problem to locate industries
to minimise transportation costs [85].

The importance of the FW problem lies not only in the mathematical challenges it
presents, but also in its application to practical problems in engineering, location theory
and economics. One such application is to underground mining. Suppose we are given
a number of �xed underground points, called draw points, from which ore is to be ex-
tracted. Mined material is to be trucked via tunnels from each draw point to a common
underground facility, such as the base of a vertical shaft, before being hoisted to the sur-
face. The development and haulage costs associated with the mine can be minimised by
positioning the facility at an FW point.

While in practice additional constraints are required for the mining problem (most
notably the gradient constraint, which will be discussed in detail in Chapter 4), the Eu-
clidean problem is applicable in its own right, as demonstrated in Section 2.7. Moreover,
properties of FW points are extremely important in Chapter 5, where we examine the
more complex Gilbert arborescence problem in Euclidean space.

The structure of this chapter is as follows. In Section 2.2, we provide a brief history
of the FW problem, from its origin in the 17th century to the present. Then in Section 2.3,
we state a known geometric characterisation of FW points [53], the characterisation being
in terms of weighted unit vectors to the given points. We use this result in Section 2.4 to
derive a geometric construction [85] for solving the three-point problem. In Section 2.5
we identify special instances of the FW problem that can be solved with very little com-
putational effort, and present new results for the case where the given points form the
vertices of a convex polygon and certain pairs of weights are equal.

In Section 2.6 we state Weiszfeld's famous algorithm [86] for solving the FW prob-
1In a purely mathematical setting, the problem is often called the Fermat-Torricelli problem for the un-

weighted case, and the generalised Fermat-Torricelli problem for the weighted case [53].
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lem iteratively, and demonstrate its use via an example. We introduce a variation of the
FW problem in the plane in Section 2.7, whereby one of the given points is allowed to
lie anywhere on a straight line in the plane. We show how Weiszfeld's algorithm can
be amended to suit this case. Finally, we demonstrate the application of this new prob-
lem to underground mining by using it to solve a subproblem of an industry case study
presented in Chapter 9.

2.2 Historical background

The following is a brief history of the FW problem, based largely on a historical exposition
by Kuhn [51]. A more detailed account is given by Kupitz and Martini [53], and another
good general reference is [28].

Early in the 17th century, Fermat posed the following problem: given three points in
the plane, �nd a fourth point such that the sum of its distances to the three given points
is a minimum. Torricelli proposed a geometric solution to the problem (Figure 2.1). He
asserted that the three circles circumscribing the equilateral triangles constructed on the
sides of, and outside the triangle 4p1 p2 p3 with vertices at the given points p1, p2, p3,
intersect at the required point x0. Cavalieri showed that the three lines from x0 to p1, p2, p3

make angles of 120◦ with each other. Simpson then showed that the three lines joining the
outside vertices of the equilateral triangles to the opposite vertices of the given triangle
intersect at x0. The three lines, shown dashed in Figure 2.1, are called Simpson lines.
Heinen proved that the lengths of the three Simpson lines are each equal to the sum
of distances from x0 to p1, p2, p3. He also proved that, if one of the angles in 4p1 p2 p3

is at least 120◦, then x0 coincides with the vertex of that angle. Fasbender proved that
the perpendiculars to the Simpson lines through p1, p2, p3 form the sides of the largest
equilateral triangle circumscribing these points. He also proved that the altitude of this
triangle equals the sum of distances from x0 to p1, p2, p3.

In 1909, Weber used a weighted three-point version of the problem to depict industrial
location minimising transportation costs. A mathematical appendix to Weber's book [85],
written by Georg Pick, gives a geometrical construction procedure similar to the one
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Figure 2.1: Torricelli's geometric solution to Fermat's original (unweighted) three-point
problem.

shown in Figure 2.1 (we will derive this weighted construction in Section 2.4).

Fagnano discovered a solution for the four-point (unweighted) problem: if the convex
hull of the four given points forms a convex quadrilateral, then x0 is the intersection of
the diagonals of that quadrilateral. Otherwise, x0 coincides with the unique given point
inside the convex hull of the four points.

Recently, Bajaj [3] discovered that if n > 4, no general construction of x0 with compass
and ruler exists. As a result, much of the research on this problem has focused on numeri-
cal techniques. The �rst and most famous iterative procedure for solving the FW problem
was given by Andre Weiszfeld [86] in 1937. We discuss this algorithm in Section 2.6.

More recently, the FW problem has been studied in n-dimensional real normed spaces
or Minkowski spaces (see, for example, [22], [31], [60]). We discuss this generalised problem
in the next chapter.
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2.3 Characterisation of Fermat-Weber points

The following theorem, which provides a characterisation of FW points in Euclidean n-
space, is from [53]. It is noted in [53] that statements from the theorem were proved
in [48], [49], [51], [86] and [87], and that its content was known to other authors as early
as the 19th century.

Theorem 2.1. Let N = {p1, . . . , pk} be a set of points in Rn with respective positive weights
w1, . . . , wk. Let ui denote the unit vector from a point x0 ∈ Rn to pi, i = 1, . . . , k.

1. If x0 6= p1, . . . , pk, then x0 is an FW point for N if and only if

k
∑
i=1

wiui = 0. (2.2)

2. If x0 = pj for some j ∈ {1, . . . , k} then x0 is an FW point for N if and only if

∣∣∣∣∣
k

∑
i=1,i 6=j

wiui

∣∣∣∣∣ ≤ wj. (2.3)

Proof. Refer to [53], pages 75-76.

The characterisation in Theorem 2.1 has a natural interpretation, and can be demon-
strated by a mechanical device (Figure 2.2) which, according to [85], was invented by
Varignon to demonstrate the parallelogram of forces. In the �gure, which depicts the
three-point case, masses are attached to strings which are tied together in a knot at one
end. The strings run over rollers which are �xed to the edge of a horizontal disc. When
the masses are released, the knot moves to the FW point x0 for given points at the roller
positions, and weights proportional to the masses.

If one of the masses is large enough, x0 will collapse onto the respective roller position.
This corresponds to condition (2.3) which, throughout this work, we will refer to as the
collapse condition. Otherwise, x0 will settle at the location where the three forces induced
by the masses are balanced. This corresponds to condition (2.2), which we will refer to
as the equilibrium condition. In the next chapter, we generalise these conditions to char-
acterise FW points in Minkowski spaces. Looking ahead, in Chapters 5 and 6, we show
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Figure 2.2: Mechanical device demonstrating the solution to the (weighted) three-point
FW problem [85].

that the equilibrium condition is necessary for Steiner points in Gilbert arborescences to
be locally minimal.

From Theorem 2.1 it is clear that, for noncollinear N, if x0 6= p1, . . . , pk, then the FW
point must lie in int(conv(N)), the interior of the convex hull of N, since otherwise the
weighted unit vectors could not balance. Further to this, it was observed in [53] that, for
each point x ∈ int(conv(N)) ∪ N, there exists a set of weights such that x is an FW point
for N.

Because u1, . . . , uk do not depend on the actual distances between p1, . . . , pk and x0,
we have the following corollary to Theorem 2.1.

Corollary 2.1. If x0 is an FW point for p1, . . . , pk, then it is also an FW point for any points
p′1, . . . , p′k lying on the rays from x0 through p1, . . . , pk respectively.

We conclude this section with some remarks about the case where the points in N are
collinear. It is known [53] that, for noncollinear N, the FW point is unique. For collinear
N, this is not always true. The following corollary to Theorem 2.1, which appears to be
absent from the literature, characterises FW points for collinear N.
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Corollary 2.2. Let N = {p1, . . . , pk} be a set of collinear points in Rn, ordered by increasing
index, with respective positive weights w1, . . . , wk.

1. If there exists some j ∈ {1, . . . , k− 1} such that

j

∑
i=1

wi =
k

∑
i=j+1

wi, (2.4)

then all points on the line segment between pj and pj+1, including the endpoints, are FW
points for N.

2. Otherwise, the FW point coincides with the unique point pj satisfying

∣∣∣∣∣
j−1
∑
i=1

wi −
k

∑
i=j+1

wi

∣∣∣∣∣ < wj. (2.5)

Proof. Without loss of generality, assume that p1, . . . , pk lie on a horizontal line, and are
ordered by increasing index from left to right. Let x0 be a point on the line segment
between pj and pj+1 for some j ∈ {1, . . . , k − 1}. Then u1 = . . . = uj := −u point to
the left and uj+1 = . . . = uk := u to the right. If x0 6= pj, pj+1, then by Theorem 2.1, x0

is an FW point if and only if u
(

∑k
i=j+1 wi −∑

j−1
i=1 wi

)
= 0, which reduces to (2.4). Now

suppose x0 = pj for some j ∈ {1, . . . , k}. By Theorem 2.1, x0 is an FW point if and only
if

∣∣∣∑k
i=j+1 wiu−∑

j−1
i=1 wiu

∣∣∣ ≤ wj, which reduces to (2.5). If the equality in this expression
holds, then assuming ∑

j−1
i=1 wi < ∑k

i=j+1 wi, we have ∑k
i=j+1 wi − ∑

j−1
i=1 wi = wj, which

rearranges to give (2.4). In this case every point on the line segment between pj and pj+1

is an FW point, including the endpoints.

2.4 Geometric solution to the three-point problem

We now discuss the special case of the FW problem where k = 3. This case, which has
been widely studied in the literature (see, for example, [36], [37], [38], [47] and [79]), is
interesting to study both as the smallest non-trivial instance of the FW problem, and
because of its usefulness for analysing locally minimal solutions for the Gilbert arbores-
cence problem studied in Chapter 5.
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Suppose �rstly that the given points N = {p1, p2, p3} are collinear. Corollary 2.2
can be used to show that the FW point x0 for N is distinguished by four cases: (i) if
max{w1, w2} ≤ w3 < w1 + w2, then x0 is the middle point of N; (ii) if w3 > w1 + w2,
then x0 = p3; (iii) if w3 = w1 + w2 and p3 is the middle point of N, then x0 = p3; (iv) if
w3 = w1 + w2 and p3 is not the middle point of N, then x0 lies anywhere on the closed
segment between p3 and the middle point.

Now suppose that p1, p2, p3 are not collinear. Let α, β, γ denote the angles opposite
the line segments p1x0, p2x0, p3x0 respectively (see Figure 2.3 (i)), and let α′ = π − α,
β′ = π − β, γ′ = π − γ. Let w1, w2, w3 denote the weights associated with p1, p2, p3,
respectively, and let u1, u2, u3 be the unit vectors from x0 to p1, p2, p3 respectively.

By Theorem 2.1, if x0 6= p1, p2, p3, then x0 is an FW point for N if and only if w1u1 +

w2u2 + w3u3 = 0. If the three weighted unit vectors are placed from head to tail, a closed
triangle is formed with edge lengths w1, w2, w3, and internal angles α′, β′, γ′ (Figure 2.3
(ii)). This is called the weight triangle [85]. Without loss of generality, assume that w3 ≥
max{w1, w2}. If w3 > w1 + w2, the weight triangle does not exist, and it is known [44]
that in this case x0 collapses onto p3. If w3 = w1 + w2, the weight triangle exists, but its
three vertices are collinear. Again x0 again collapses onto p3 in this case. Thus we assume
from this point on that w3 < w1 + w2.

Using the weight triangle, the optimum angles between the three edges can be com-
puted as functions of the three weights. Applying the cosine rule to the weight triangle,
and using the identity cos(π − A) = − cos A, the following expressions, which appear
frequently in the literature, can be derived:

cos α =
w2

1 − w2
2 − w2

3
2w2w3

, (2.6)

cos β =
w2

2 − w2
1 − w2

3
2w1w3

, (2.7)

cos γ =
w2

3 − w2
1 − w2

2
2w1w2

. (2.8)

Let ∠p2x0 p3, ∠p1x0 p3 and ∠p1x0 p2 denote the internal angles of the given triangle at
p1, p2, p3 respectively. It is known [44] that if α ≤ ∠p2x0 p3 or β ≤ ∠p1x0 p3 or γ ≤
∠p1x0 p2, then x0 will collapse onto p1 or p2 or p3 respectively. Otherwise, (2.6), (2.7) and
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Figure 2.3: Three-point FW problem. (i) Given points and angles. (ii) Weight triangle.
(iii) Generalised Torricelli construction.
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(2.8) can be used to construct a geometric con�guration for the three-point FW problem
(Figure 2.3 (iii)), similar to the one shown previously in Figure 2.1 for the unweighted
case.

According to [53], Engelbrecht proved in 1877 that if three directly similar trian-
gles with inner angles α′, β′, γ′ are erected externally on the sides of the given triangle
4p1 p2 p3, such that α′, β′, γ′ lie at p1, p2, p3 respectively, then the three lines joining the
outside vertices of the weight triangles to the opposite vertices of the given triangle in-
tersect at the FW point x0. The three lines, shown dashed in Figure 2.3 (iii), are called
generalised Simpson lines, and the length of a Simpson line multiplied by the weight asso-
ciated with the given point to which it is connected, equals the sum of the three weighted
distances to the minimum point [53]. Moreover, the circumcircles of the erected triangles
intersect at x0. The resulting geometric construction, shown in Figure 5.7 (iii), is referred
to in [53] as the generalised Torricelli con�guration. When all the weights are equal, we ob-
tain the special case where the weight triangle is equilateral, as was previously shown in
Figure 2.1.

2.5 Exact solutions for special cases

Juel and Love [46] noted that certain instances of the FW problem can be solved with
very little computational effort, if the weights satisfy certain conditions. For example, it
is known that if one of the weights is greater than or equal to the sum of the other weights,
then the FW point collapses onto the given point corresponding to that weight [53].

For the next example, suppose N = {p1, p2, p3, p4} are points in R2 with correspond-
ing weights w1 = w2 = w3 = w4 = 1. According to [24], Fagnano proved in 1775 that if
the four points form the vertices of a convex quadrilateral, then x0 is the intersection of
the diagonals of that quadrilateral. Otherwise, x0 coincides with the unique given point
inside conv(N).

In general, when the weights are not equal, the FW problem for k = 4 has no exact
geometric construction [53]. However, the following trivial observation is worth noting.
Let N = {p1, p2, p3, p4} form the vertices of a convex quadrilateral with diagonals p1 p3
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and p2 p4. If w1 = w3 and w2 = w4, then x0 = p1 p3 ∩ p2 p4. This is seen by noting that
pairs of weighted unit vectors are equal and opposite, thus satisfying the equilibrium
condition. The following lemma, due to [46], generalises this observation to an even
number of points in Rn.

Lemma 2.1. Let N be an even set of given points in Rn. Suppose that the given points can be
grouped into pairs such that the weights associated with the two points in a pair are equal, and
when a straight line is drawn between the two points in each and every pair, this set of lines
intersects at a single point x0. Then x0 is the unique FW point for N.

Proof. Since the weighted unit vectors associated with pi and pk+i are equal and oppo-
site, the equilibrium condition is satis�ed, and therefore by Theorem 2.1, x0 is an FW
point for N.

Some instances where Lemma 2.1 is applicable are shown in Figure 2.4 (i). Following on
from Lemma 2.1, we now propose the following conjecture.

Conjecture 2.1. Let N = {p1, . . . , p2k}, k ≥ 2, be given points at the vertices of a convex
polygon, labelled in order of index around the perimeter of the polygon. Let w1, . . . , w2k denote
their respective positive weights, and assume that wi = wk+i, i = 1, . . . , k. Let Di, i = 1, . . . , k
denote the diagonal line through pi and pk+i, and let R be the union of all �nite intersections of
half-planes determined by D1, . . . , Dk. Then x0 ∈ int(R).

An incomplete proof of the conjecture is as follows. Let x be a point in the region
between Dj, Dj+1, j ∈ {1, . . . , k} and outside R. Note that x lies at the intersection of
two ellipses for which the endpoints of Dj and Dj+1 are the respective foci. It is believed
that if x is perturbed by a small amount in some direction toward Dj ∩ Dj+1, then for
each i ∈ {1, . . . , k}, the weighted sum wi (|pi − x|+ |pk+i − x|) decreases, since x moves
inside each ellipse associated with Di, i = 1, . . . , k. Hence the sum of weighted distances
from x to p1, . . . , p2k would decrease.

An example demonstrating the conjecture is shown in Figure 2.4 (ii). Notice that,
for a problem satisfying the assumptions of the conjecture, x0 cannot coincide with a
given point. It can also be seen from the conjecture that if p1, . . . , p2k form the vertices
of a regular convex polygon with an even number of vertices (e.g. a hexagon, octagon,
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Figure 2.4: Special instances of the FW problem. (i) Three exactly obtainable solu-
tions [46]. (ii)�(iii) Solution regions for even and odd sets of given points at the vertices
of a convex polygon.
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decagon, etc.), then R is the intersection of the k diagonals and the FW point corresponds
to this intersection, as per Lemma 2.1. The following conjecture proposes a similar result
for the case where the convex polygon has an odd number of vertices, and all the weights
are equal.

Conjecture 2.2. Let N = {p1, . . . , pk}, k ∈ {3, 5, 7, . . .}, be given points at the vertices of a
convex polygon, labelled in order of index around the perimeter of the polygon. Let w1, . . . , wk

denote their respective positive weights, and assume that w1 = · · · = wk. Let D1i and D2i,
i = 1, . . . , k denote the diagonal lines between pi and its two opposite vertices, and let R be the
union of all �nite intersections of half-planes determined by all the diagonals. Then x0 ∈ int(R).

An example demonstrating the conjecture is shown in Figure 2.4 (iii). Notice that, in
contrast to the even case, for a problem satisfying the assumptions of the conjecture, x0

can coincide with a given point when the number of vertices is odd.

2.6 Weiszfeld's algorithm

Although special instances of the FW problem can be solved with simple geometric con-
structions, in general for k ≥ 4, the problem cannot be solved by exact methods [3]. Thus,
signi�cant research has been undertaken to develop numerical procedures for �nding
FW points. A famous iterative method for the FW problem (Algorithm 1) was posed in
1937 by Andre Weiszfeld [86]. This algorithm was independently discovered by Kuhn
and Kuenne [52] in 1962. The �rst step of the algorithm checks whether x0 coincides with
a given point. If not, x0 is determined iteratively.

The following example demonstrates the application of Weiszfeld's algorithm. Let
p1 = (0, 1), p2 = (2, 0) and p3 = (2, 2) be given points in the plane with respective
weights w1 = 1, w2 = 1 and w3 = 1.65. By testing the collapse condition, it can be shown
that x0 6= p1, p2, p3. Selecting ε = 0.001 and x(0) = (0.25, 1), the path of the iteration point
converges to x0, as shown in Figure 2.5.

Kuhn [50] proved that Weiszfeld's algorithm converges to the FW point, provided
none of the iterates coincide with one of the given points. He concluded that when-
ever the k points are not collinear, Weiszfeld's algorithm converges to the unique FW
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Algorithm 1 Weiszfeld's algorithm.
1. If there exists a point pj ∈ N such that

∣∣∣∣∣
k

∑
i=1,i 6=j

wiui

∣∣∣∣∣ ≤ wj,

then pj is an FW point; otherwise
2. Select an error estimate ε;
3. Select an initial point x(0) ∈ int(conv(N));
4. For κ = 0, 1, . . . do

x(κ+1) :=
∑pi∈N

wi pi
|pi−x(κ)|

∑pi∈N
wi

|pi−x(κ)|
;

5. Stop when
∣∣∣x(κ) − x(κ+1)

∣∣∣ ≤ ε.

point except when the initial point is in a denumerable set. In 1989, Chandrasekaran
and Tamir [23] demonstrated with counter-examples that these sets can be continuous
rather than denumerable. Then in 1995, Brimberg [20] proved that Weiszfeld's algorithm
converges to the unique optimal solution for all but a denumerable set of starting points
if and only if the convex hull of the given points is of dimension n. Thus, when using
Weiszfeld's algorithm, one must be careful that the iterate does not converge prematurely
to a given point.

In the next section, we show how Weiszfeld's algorithm can be amended to suit a
variation of the FW problem, where one of the terminals is not �xed, but rather is al-
lowed to lie anywhere on a straight line. In Chapter 4, we show that an amended version
of Weiszfeld's algorithm is not suitable for solving the FW problem in certain normed
spaces.

2.7 The Fermat-Weber problem for a given set of points and a
line

Consider the following variant of the FW problem: let p1, . . . , pk−1 be given points in the
Euclidean plane R2 with respective positive weights w1, . . . , wk−1, and suppose that l is
an in�nitely long straight line in the same plane. Let p be a point on l with respective
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Figure 2.5: Iterations of Weiszfeld's algorithm for a three-point FW problem.

positive weight wk. The amended problem is to �nd points x0 and pk that minimise the
function

f (x, p) =
k−1
∑
i=1

(wi|pi − x|) + wk|p− x|, x ∈ R2, p ∈ l. (2.9)

The following example, which forms a subproblem of the case study presented in Chap-
ter 9, demonstrates the application of this problem to mining. An underground mine con-
sists of two parallel declines, one primary and the other secondary, accessing adjacent ore
bodies with draw points at 40 m vertical intervals. Ore from the lower levels is trucked
up both declines to a level, L1, from where it is transported to the base of a vertical hoist-
ing shaft via a horizontal tunnel (Figure 2.6 (i)). Ore from the upper levels is trucked
down both declines to another level, L3, from which it is transported via a horizontal
tunnel to the top of an ore pass. It is dropped down the ore pass to L1 and transported
to the shaft base. Ore from levels between L1 and L3 on the secondary decline is either
trucked up to L3 or down to L1, whichever is closest. Ore from levels between L1 and L3
on the primary decline also has the option of being trucked to an intermediate level, L2,
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which is between the top and bottom of the ore pass. It is transported to an intermediate
tip point on the ore pass via a horizontal tunnel, dropped down the ore pass to L1, and
transported to the shaft base. The arrangement is shown in Figure 2.6 (i) and (ii).

Let p1, p2 be points on the two respective declines at L1, p3 the point on the main
decline at L2, and p4, p5 points on the two respective declines at L3. Assuming L1, L2
and L3 are predetermined, then p1, . . . , p5 are �xed points. Denote the plan location of
the ore pass by x, and that of the shaft by p. While the ore pass is allowed to be positioned
anywhere, the hoisting shaft must not be too close to the ore bodies. The boundary of
this orebody standoff zone is modelled by the straight line l (Figure 2.6 (ii)). Clearly, the
optimal position of p will be on l, rather than behind it, since in the latter case, |p− x| can
be reduced by moving p onto l. The system of tunnels can be modelled as a network T
with a star topology, where x is the centre of the star, p1, . . . , pk−1 are �xed, and p is free
to slide along l.

Suppose that t1, . . . , t5 tonnes of ore are to be transported from p1, . . . , p5 respectively.
Let d denote the cost per unit length of developing a tunnel, and h the cost per unit
length per unit quantity of ore of haulage. Then the sum of development and haulage
costs for the tunnel from pi, i = 1, . . . , 5, to x is (d + hti)|pi − x|; thus the associated
weight is wi := d + hti. Similarly, the weight associated with the tunnel from x to p is
w6 := d + h ∑5

i=1 ti, since that tunnel routes all the ore from the ore pass base to the shaft
base.

The problem of minimising the development and haulage costs associated with the
horizontal tunnels connecting the declines, ore pass and shaft, can be solved by projecting
everything onto a horizontal plane. Then the problem reduces to positioning x and p so
as to minimise (2.9). We can immediately state the following result.

Lemma 2.2. If x = x0 and p = pk minimise the cost function (2.9), then the line segment x0 pk

is perpendicular to l. Thus, the position of p is a function of the position of x.

Proof. If x0 pk is not perpendicular to l, then |pk − p0| can be reduced by moving pk along
l until it does.

By this lemma, we see that the unit vector, uk, associated with pk, always points from x
toward l in the direction perpendicular to l, irrespective of the position of x. As usual,
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Figure 2.6: Amended FW problem applied to the Callie underground mine. (i) Perspec-
tive view. (ii) Plan view.
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u1, . . . , uk−1 are unit vectors from x to p1, . . . , pk−1 respectively. Lemma 2.2 leads to the
following simple corollary.

Corollary 2.3. Let p′1, . . . , p′k−1 be the respective orthogonal projections of p1, . . . , pk−1 onto l.
Then pk lies on l between the two outermost elements of {p′1, . . . , p′k−1}.

In Figure 2.6, by the corollary, pk must lie on l somewhere between p′2 and p′4. Using
similar arguments, we see that the convex hull of p1, . . . , pk is the polygon with vertices
p1, p2, p′2, p′4, p4, p3.

Now a modi�ed Weiszfeld algorithm can be applied to this problem. If x does not
coincide with p1, . . . , pk−1 or l, select an initial point, x(0) in the convex hull described
above, and let p(0) be the orthogonal projection of x(0) onto l. For κ = 1, 2, . . . compute

x(κ+1) :=
∑k−1

i=1

(
wi pi

|pi−x(κ)|
)

+ wk p(κ)

|p(κ)−x(κ)|

∑k−1
i=1

(
wi

|pi−x(κ)|
)

+ wk
|p(κ)−x(κ)|

(2.10)

where p(κ) is the orthogonal projection of x(κ) onto l. The algorithm terminates when∣∣∣x(κ) − x(κ+1)
∣∣∣ ≤ ε, for some small ε > 0.

Although we do not prove convergence of this amended algorithm here, we note that
several numerical experiments have converged to the correct solution. As for the classical
problem, the algorithm should be used with caution when an iteration lands on a given
point.

We also note a complication with the initial step of the algorithm, where we are re-
quired to determine whether x collapses onto l, since the unit vectors can only be com-
puted from a particular point on l. To overcome this dif�culty, one might discretise l
into a �nite number of points and compute the weighted vectors to p1, . . . , pk−1 at each
point. If the collapse condition holds for any of these points, then x collapses onto l at
that point.



Chapter 3

The Fermat-Weber Problem in
Minkowski Spaces

In this chapter we investigate the Fermat-Weber problem in n-dimensional real normed spaces, or
Minkowski spaces. Martini et al. [60] provided a minitheory of this problem for the case where all the
weights equal one, and established a range of geometric results. Our main goal in this chapter is to
generalise some of these results to the weighted case. We provide background relating to Minkowski
spaces and functional analysis, including a method for constructing the dual ball for a given unit
ball. We state a known geometric characterisation of Fermat-Weber points in normed spaces [31], the
characterisation being in terms of weighted norming functionals associated with the given points. We
then provide several properties of the set of solutions to the Fermat-Weber problem, and identify special
instances of the problem that can be solved exactly with very little computational effort. The notions
of double-clusters, ρ-concurrent ρ-segments, and cogeodesic sets are generalised to the weighted case,
and corresponding theorems and proofs are provided. Finally, we generalise to the weighted case a
geometric result originally posed in [22] for the three-point unweighted problem.

3.1 Introduction

HAVING studied the Fermat-Weber (FW) problem n-dimensional Euclidean space,
we now consider the extension of this problem to n-dimensional real normed

spaces, which are also called Minkowski spaces. The norm ‖ · ‖ associated with a
Minkowski space provides a way of measuring distance. Euclidean space is itself an
example of a normed space where the Euclidean norm | · | is used.

Let N = {p1, . . . , pk} be a set of given points in a Minkowski space with the norm
‖ · ‖, where the points have respective positive weights w1, . . . , wk. The FW problem in

39
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Minkowski spaces asks for a point x0 minimising

f (x) =
k

∑
i=1

wi‖pi − x‖. (3.1)

The function is the same as (2.1) in Chapter 2, except that ‖ · ‖ is no longer restricted to
the Euclidean norm | · |. Geometric aspects of the unweighted version of the problem
have been studied in [22], [24] and [60]. In the last reference, Martini et al. established a
range of geometric results. Our main goal in this chapter is to generalise some of these
results to the weighted case.

In Section 3.2, we provide necessary background relating to Minkowski spaces and
functional analysis, including methods for constructing the dual ball for a given unit
ball. In Section 3.3, we state a known geometric characterisation of FW points in normed
spaces [31], the characterisation being in terms of weighted norming functionals associ-
ated with the given points. In Section 3.4, we then provide several properties of the set of
solutions to the FW problem. In Section 3.5, we identify special instances of the problem
that can be solved exactly with very little computational effort. The notions of double-
clusters, ρ-concurrent ρ-segments and cogeodesic sets are generalised to the weighted
case, and corresponding theorems and proofs are provided. Finally in Section 3.6, we
generalise to the weighted case a geometric result originally posed in [22] for the un-
weighted three-point problem.

3.2 Background

The following facts about normed spaces are from [77] and [60]. Let X be an n-dimensional
real linear space, and x = (x1, . . . , xn) a point in X. A norm on X is a mapping ‖ · ‖ from
X into R+ satisfying the following conditions: ‖x‖ ≥ 0 with equality if and only if x = o,
where o is the origin; ‖λx‖ = |λ| ‖x‖, ∀λ ∈ R; and ‖x + y‖ ≤ ‖x‖+ ‖y‖, the last con-
dition being the triangle inequality. Informally, a norm provides a way of measuring the
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lengths of vectors in X. A common norm is the `p norm

‖x‖p =

(
n
∑
i=1
|xi|p

) 1
p

where p ≥ 1 is a real number. For p = 2 we have the Euclidean norm, denoted by | · |,
which we used in Chapter 2, and for p = 1 we have the rectilinear norm, also called the
Manhattan, taxicab or `1 norm. A Minkowski space, also called a normed space, is a real
linear space X, equipped with norm ‖ · ‖, in which the dimension n of X is �nite.

3.2.1 The unit ball and dual ball

The unit ball in X is the set B = {x ∈ X : ‖x‖ ≤ 1}. It is a centrally symmetric, closed and
convex subset of X with origin o at its centre. A unit ball is called smooth if its boundary,
bd(B), has no sharp (nondifferentiable) points, and strictly convex if bd(B) has no straight
line segments. A supporting hyperplane of B is a hyperplane in X touching the boundary
of B such that the interior of B lies on one side of the supporting hyperplane. An exposed
face of B is the intersection of B with a supporting hyperplane.

The dual space of X, denoted by X∗, is the vector space of all linear functionals on X,
a linear functional being a mapping from X into R+. If we identify X and X∗ with the
n-dimensional space Rn, then the dual ball B∗ is the polar body of B, that is

B∗ = {y : 〈x, y〉 ≤ 1, ∀x ∈ B} (3.2)

where 〈·, ·〉 is the dot product. Figures 3.1 and 3.2 show, in two and three dimensions
respectively, the unit ball and and its dual ball for the Euclidean norm, the rectilinear
norm, and two norms occurring in [62] and [32] respectively. In (i), B and B∗ are smooth
and strictly convex; in (ii) and (iii), B and B∗ are neither smooth nor strictly convex; and
in (iv), B is smooth but not strictly convex, while B∗ is strictly convex but not smooth.
We de�ne B(w) and B∗(w) to be scaled copies of the unit ball and dual ball with radius
w > 0.

While the following three lemmas are standard results of convexity, they have been
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Figure 3.1: Unit ball (left) and dual ball (right) for norms in the plane. (i) Euclidean. (ii)
Rectilinear. (iii)�(iv) Norms occurring in [62] and [32] respectively.
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Figure 3.2: Unit ball (left) and dual ball (right) for norms in three-space. (i) Euclidean. (ii)
Rectilinear. (iii)�(iv) Norms occurring in [62] and [32] respectively.
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formulated and proved independently by the author. The �rst lemma provides a method
for constructing B∗ for a given B.

Lemma 3.1. Let X be a Minkowski space with unit ball B. For a point x ∈ X, let |x| denote the
Euclidean distance from the origin o to x, ~x the ray with origin o passing through x, W(x) the
hyperplane that is orthogonal to ~x and intersects ~x at the point x′ for which |x′| = 1

|x| and S(x)

the closed half-space de�ned by W(x) which contains o. Then

B∗ =
⋂

∀x∈bd(B)

S(x)

where bd(B) denotes the boundary of B.

Proof. Let y ∈ X and θ the angle between ~x and ~y. By the orthogonal projection of y
onto ~x, we see that |y| cos θ ≤ 1

|x| if and only if y ∈ S(x), with equality if and only if
y ∈ W(x). Thus, S(x) = {y : 〈x, y〉 ≤ 1}, and from the de�nition of the dual ball (3.2),
we have B∗ =

⋂
∀x∈B S(x). It is left to show that we need only consider S(x) for points x

on the boundary of B. Let �x be a point on ~x such that | �x| < |x|. Then clearly S(x) ⊂ S( �x),
and consequently we can ignore points in the interior of B when computing B∗ by this
method.

If B has straight line segments on its boundary, the construction of B∗ by the method
of Lemma 3.1 can be simpli�ed by the following result.

Lemma 3.2. Let X be a Minkowski space with unit ball B having a straight line segment l with
endpoints e1 and e2 on its boundary. Then

⋂

∀x∈l
S(x) ≡ S(e1) ∩ S(e2)

and it follows that points in the interior of l need not be considered in the construction of B∗ by
the method proposed in Lemma 3.1.

Proof. Refer to Figure 3.3. Let x be a point on l, and let ~x, x′, W(x) and S(x) be as de�ned
in Lemma 3.1. Let l⊥ be the line passing through o which is orthogonal to l, and ∆ the
distance from o to the intersection of l⊥ with the extension of l. It can be shown that the
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Figure 3.3: Straight line segment on the boundary of a unit ball.

set of x′ for all points x on l forms the arc of a circle, the circle having radius 1
2∆ and centre

at a distance 1
2∆ from o along l⊥. Let I be the second point (other than o) where this circle

intersects l⊥. Then the chord oI bisects the circle, and the angle ∠ox′ I is 90◦ for all x′ on
the arc of the circle. Hence, all the hyperplanes W(x), x ∈ l intersect at a common point
I, which lies on l⊥ at a distance 1

∆ from o. From the �gure it can be seen that ⋂
x∈l S(x)

reduces to the intersection of S(e1) and S(e2), which completes the proof.

From Lemma 3.2, we can see that it is relatively straightforward to construct the dual
ball if the corresponding unit ball is polyhedral, since B∗ is the intersection of a �nite
number of hyperplanes. For the rectilinear norm in Figure 3.1 (ii), we need only compute
S(x) for the four points at the corners of the diamond. Thus we obtain the square dual
ball shown in the �gure, which in fact corresponds to the `∞ norm in the plane given by
‖x‖∞ = max{|x1|, |x2|}.

We demonstrate the application of the preceding results by constructing B∗ for the
unit balls shown in Figure 3.1 (iii) and (iv) respectively. In the case of (iii), the circle arcs
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forming bd(B) in quadrants two and four correspond to equivalent boundary arcs for
B∗, since B is the same as the Euclidean ball in these quadrants. For quadrants one and
three, by Lemma 3.2 we need only compute S(x) at the two corner points of B. It is easy
to see that these half-planes are de�ned by lines W(x) with slope −1, passing through
(1, 0), (0, 1) and (−1, 0), (0,−1), and it follows that the dual ball has the form shown in
the �gure.

Now consider the unit ball of Figure 3.1 (iv). By Lemma 3.2, we may disregard
points in the interior of the two straight line segments. Using the construction method of
Lemma 3.1, we compute W(x) and S(x) at points where lines making respective angles
of 0, 15, 30, 45 degrees with the horizontal, and passing through o, intersect bd(B). Then
we obtain the approximate boundary of B∗ shown dashed in the �gure. This boundary
becomes smoother as we increase the number of hyperplanes computed.

This last example demonstrates why a smooth but not strictly convex unit ball has a
corresponding dual ball that is strictly convex but not smooth. In fact, by Lemma 3.2, we
see that a straight line segment on bd(B) corresponds to a non-smooth point on bd(B∗),
and a non-smooth point on bd(B) corresponds to a straight line segment on bd(B∗).
Moreover, a smooth and strictly convex B has corresponding smooth and strictly con-
vex B∗, while if B is neither smooth nor strictly convex, then B∗ is also neither smooth
nor strictly convex. It is also worth noting that the dual of the dual ball is the original
unit ball.

We conclude our discussion of the unit ball and dual ball with an important geometric
relationship between B and B∗.

Lemma 3.3. Let X be a Minkowski space with unit ball B and dual ball B∗. For a point x ∈
bd(B), let H(x) denote a supporting hyperplane of B at x, u(x) the outward unit normal vector
of H(x), δ(x) the distance from o to H(x), v(x) the point with position u(x)

δ(x) , and V(x) the set of
all v(x) for x. Then

bd(B∗) =
⋃

x∈bd(B)

V(x).

Proof. Refer to Figure 3.4 (ii). Let x ∈ bd(B), and let x′ and W(x) be as de�ned in
Lemma 3.1. Let φ ∈ {bd(B∗) ∩W(X)} (if x is a smooth boundary point, then this in-
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Figure 3.4: Unit ball and dual ball occurring in [32]. (i) Construction of the dual ball by
Lemma 3.1. (ii) Relationship between corresponding points on the boundaries of the unit
ball and dual ball.



48 The Fermat-Weber Problem in Minkowski Spaces

tersection is a unique point), and let ~φ denote the ray with origin o passing through φ.
Let φ′ be the intersection point of ~φ with the supporting hyperplane H(x) to B at x, for
which the hyperplane is orthogonal to ~φ. Then 4ox′φ and 4oxφ′ are similar triangles.
Therefore, we have

|φ|
1/|x| =

|x|
δ(x)

which gives |φ| = 1
δ(x) , as required.

The application of Lemma 3.3 to the dual ball of Figure 3.1 (iii) is demonstrated in Fig-
ure 3.5 (i). As shown in the �gure, Lemma 3.3 provides an alternative approach for con-
structing B∗ for a given B. Note that all the v(x) for x on a straight line segment are
equivalent; hence we need only compute one v(x) for each x on a straight line segment
when constructing B∗ by this method.

3.2.2 Subdifferential calculus

The following facts about subdifferential calculus, which we use in the proof of a theorem
in the next section, are taken from [73]. Let X be a Minkowski space with norm ‖ · ‖, unit
ball B and dual ball B∗, and let X∗ denote the dual space. A function, f : X → R, is convex
if, for all x, y ∈ X and 0 ≤ λ ≤ 1,

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y).

Convex functions on X are continuous on X. By the triangle inequality, every norm is
a convex function, and it is well-known [65] that a sum of convex functions is itself a
convex function. Thus f (x) = ∑k

i=1 wi‖pi − x‖ is convex, and is strictly convex if and
only if B is strictly convex.

A norming functional of x ∈ X is a φ ∈ X∗ such that ‖φ‖ = 1 and φ(x) = ‖x‖. The set of
norming functionals of x is denoted by ∂x. By the Hahn-Banach separation theorem [65],
each non-zero x ∈ X has an associated norming functional. Each ∂x corresponds to an
exposed face of B∗.
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Figure 3.5: Unit ball and dual ball occurring in [62]. (i) Construction of the dual ball by
Lemma 3.3. (ii) Norming functionals. (iii) Outward normal vectors.
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A functional φ ∈ X∗ is a subgradient of a convex function f at the point a if, for all
x ∈ X,

f (x)− f (a) ≥ φ(x− a).

In particular, o ∈ X∗ is a subgradient of f at a if and only if f attains its minimum value
at a. The subdifferential of f at a, denoted by ∂ f (a), is the set of all subgradients of f at
a. The subdifferential of f (x) = ∑k

i=1 ‖pi − x‖ at any x ∈ X is nonempty, compact and
convex [65].

The Minkowski sum of two sets A and B in Euclidean space is the result of adding
every element of A to every element of B, that is

A + B = {a + b : a ∈ A, b ∈ B}.

This de�nes a binary operation called Minkowski addition. Now we can state the following
basic property of subdifferentials.

Lemma 3.4. Let p1, . . . , pk be given points in a Minkowski space X with norm ‖ · ‖. Then for all
x ∈ X,

∂

(
k

∑
i=1

wi‖pi − x‖
)

=
k

∑
i=1

wi∂‖pi − x‖

where the sum on the right is Minkowski addition.

Proof. Refer to [65], Theorem 23.8.

We also have the following lemma.

Lemma 3.5. Let x be a point in a Minkowski space X with norm ‖ · ‖. Then the subdifferential
of the norm of x is given by

∂‖x‖ =





B∗, if x = o;
∂x, if x 6= o.

Proof. Refer to [65].

Using Lemma 3.3, for a given x ∈ X, we can compute ∂‖x‖ = ∂x as follows. Deter-
mine the unique point where the ray from o through x intersects bd(B). Compute the set
of outward norming vectors u at this point, and their corresponding Euclidean distances
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δ from o to their supporting hyperplanes. Then ∂x is the set of vectors u
h , which corre-

sponds to functionals on an exposed face of B∗. This is demonstrated in Figure 3.5 (ii)
and (iii).

3.3 Characterisation of Fermat-Weber points

The following theorem, which provides a characterisation of FW points in Minkowski
spaces is from [31]. It is a direct generalisation of Theorem 2.1. While reviewing this
theorem, it might be useful to refer to the diagrams in Figure 3.5 (ii)�(iii).

Theorem 3.1. Let N = {p1, . . . , pk} be a set of points in a Minkowski space X with norm ‖ · ‖
and unit ball B, where the points have respective positive weights w1, . . . , wk. For a point x0 ∈ X,
let ui denote the outward unit normal vector of the supporting hyperplane of x0 + B at the point
where the ray from x0 through pi ∈ N intersects the boundary of B, and δi the Euclidean distance
from x0 to this hyperplane.

1. If x0 6= p1, . . . , pk, then the following statements are equivalent:

• x0 is an FW point for N.
• Each pi − x0 has a norming functional φi such that

k
∑
i=1

wiφi = o. (3.3)

• Each pi − x0 has an outward normal unit vector ui such that

k
∑
i=1

wiui
δi

= 0. (3.4)

2. If x0 = xj for some j ∈ {1, . . . , k}, then the following statements are equivalent:

• x0 is an FW point for N.
• Each pi − x0, i 6= j, has a norming functional φi such that

∥∥∥∥∥
k

∑
i=1,i 6=j

wiφi

∥∥∥∥∥ ≤ wj. (3.5)
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• Each pi − x0, i 6= j, has an outward normal unit vector ui such that
∥∥∥∥∥

k
∑

i=1,i 6=j

wiui
δi

∥∥∥∥∥ ≤ wj. (3.6)

Proof. (Adapted from [60].) The equivalence of a norming functional φi and an outward
normal vector wiui

δi
is established in Lemma 3.3. The point x0 minimises the convex func-

tion f (x) = ∑k
i=1 wi‖pi − x‖ if and only if

o ∈ ∂

(
k

∑
i=1

wi‖pi − x‖
)

(3.7)

=
k

∑
i=1

wi∂‖pi − x‖ (3.8)

=
k

∑
i=1

wi∂(pi − x), (3.9)

where (3.8) is due to Lemma 3.4, and (3.9) is due to Lemma 3.5. This is equivalent to the
conditions stated since, by Lemma 3.5, we have

∂(pi − x) =




{φ : φ is a norming functional of (pi − x)}, if x 6= pi;
{φ : ‖φ‖ ≤ 1}, if x = pi.

3.4 Properties of the Fermat-Weber locus

3.4.1 The Fermat-Weber locus

In Chapter 2, we noted that in Euclidean space, the solution to the FW problem is unique
for all noncollinear N. This is not necessarily true in Minkowski spaces. Thus we require
the following de�nition, which is due to [60].

De�nition 3.1. Let N be a set of given points in a Minkowski space X. Then the set of FW points
for N is called the FW locus of N, and is denoted by fw(N).
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Now we can state the following lemma.

Theorem 3.2. Let X be a Minkowski space with unit ball B. Then the FW locus is a unique point
for all noncollinear sets N if and only if B is strictly convex.

Proof. Refer to Theorem 3.3 of [60]. The proof is easily adapted to the weighted case.

The following property of fw(N) can be stated immediately.

Lemma 3.6. The FW locus of any �nite set is always nonempty, compact and convex.

Proof. Refer to [60]. The proof is easily adapted to the weighted case.

For the case of a Minkowski plane, i.e. a Minkowski space of dimension two, we have the
following result.

Lemma 3.7. The FW locus of any �nite set in a Minkowski plane is a point, a line segment or a
convex polygon.

Proof. Refer to [24].

3.4.2 Location of the Fermat-Weber locus relative to the convex hull

Let conv(·) and int(·) denote, respectively, the convex hull and interior of a set (·). Recall
from Chapter 2 that, in Euclidean space, if x0 is an FW point for a set N of noncollinear
points, then x0 ∈ int(conv(N)) ∪ N. In Minkowski spaces this is not always true.

The relationship between fw(N) and conv(N) in a Minkowski plane can be examined
by introducing the notion of a balanced double cluster, which generalises the notion of a
double cluster proposed in [60] for the unweighted case. Recall that a proper exposed
face of a unit ball B is an intersection of B with some supporting hyperplane.

De�nition 3.2. Let N = {p1, . . . , pk, q1, . . . , ql} be a set of given points with respective positive
weights in a Minkowski plane with unit ball B, and let p̂iqj denote the vector from pi to qj. Then
N forms a double cluster if, for all i = 1, . . . , k and j = 1, . . . , l, p̂i − qj pass through the same
proper exposed face of B + pi. A double cluster is said to be balanced when the sum of weights
associated with p1, . . . , pk equals the sum of weights associated with q1, . . . , ql .
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A double cluster is a special case of a balanced double cluster where k = l and all
the weights are equal to one. Unlike a double cluster, a balanced double cluster can have
an odd number of points. The following result generalises Theorem 4.1 from [60] to the
weighted case.

Theorem 3.3. Let x0 be an FW point for a set of noncollinear terminals N with respective positive
weights in a Minkowski plane X such that x0 /∈ int(conv(N))∪N. Then N is a balanced double
cluster.

Proof. We adapt the proof provided in [60] to the weighted case. Since x0 is an FW point
for N, by Theorem 3.1, for each pi ∈ N, there exist ui and δi such that ∑k

i=1
wiui

δi
= 0. Since

x /∈ conv(N), all the ui must be contained in a closed half plane bounded by a line L
through it. Since the sum of the wiui

δi
is zero, all the ui must lie on L and consequently the

δi are equal. Hence N has two subsets, p1, . . . , pj and pj+1, . . . , pk, such that the sum of
weights associated with each subset are equal.

We demonstrate the notion of a balanced double cluster by way of an example. Let X
be a Minkowski plane with the unit ball B shown in Figure 3.6 (i). Let N = {p1, p2, p3, p4},
where {p1 = (0, 0), p2 = (2, 0)}, p3 = (2, 3), p4 = (0, 3) and the four points have
respective weights 1, 4, 2, 3. Then conv(N) is the rectangle having p1, p2, p3, p4 as its ver-
tices. It can be shown (refer to the next section) that fw(N) is the parallelogram with
vertices {(1.0, 0.6), (2.6, 1.5), (1.0, 2.4), (−0.6, 1.5)} (the shaded region in Figure 3.6 (i)).
Hence part of fw(N) is outside conv(N). Therefore, by Theorem 3.1, N must be a bal-
anced double cluster. To show that this is the case, suppose B is centred on p1. Then
p̂3 − p1 and p̂4 − p1 pass through the straight line segment on the boundary of B. Simi-
larly if B is centred on p4, then p̂1 − p4 and p̂2 − p4 pass through the same segment. Since
w1 + w2 = w3 + w4, we have that N is a balanced double cluster with sets {p1, p2} and
{p3, p4}.

3.5 Exact solutions for special cases

As for the Euclidean case, there are certain instances of the FW problem which can be
solved with very little computational effort. One such instance is when the given points
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Figure 3.6: Special instances of the FW problem. (i) A balanced double cluster. (ii) Exam-
ple of ρ-concurrent ρ-segments.
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form ρ-concurrent ρ-segments, as described below.

3.5.1 Balanced ρ-concurrent ρ-segments

The de�nition of ρ-concurrent ρ-segments, due to [60], is provided below. We extend this
de�nition to the weighted case.

De�nition 3.3. Let pi, pj be given points with respective positive weights wi, wj in a Minkowski
space X with norm ‖ · ‖ giving rise to a metric ρ(x, y) := ‖x− y‖. The ρ-segment between pi

and pj, denoted by [pi, pj]ρ is

[pi, pj]ρ = {x ∈ X : ‖pi − x‖+ ‖x− pj‖ = ‖pi − pj‖}.

The ρ-segment is said to be balanced if wi = wj. Two ρ-segments are said to be ρ-concurrent if
their intersection is nonempty. Three or more ρ-segments are said to be ρ-concurrent if every pair
is ρ-concurrent.

We now adapt Corollary 3.3 from [60] to the weighted case.

Lemma 3.8. If given points N = {p1, . . . , p2k} can be matched up to form k balanced ρ-segments
[pi, pk+i]ρ, i = 1, . . . , k that are ρ-concurrent, then

fw(N) =
k⋂

i=1
[pi, pk+i]ρ.

Proof. Consider a point x ∈ ⋂k
i=1[pi, pk+i]ρ. Since x ∈ [pj, pk+j]ρ for each ρ-segment

[pj, pk+j]ρ, i = 1, . . . , k, there exist norming functionals such that wjφj + wk+jφk+j = o
and, by Theorem 3.1, x is an FW point for N.

To demonstrate this concept, consider the set of given points and the unit ball of the
previous example, illustrated in Figure 3.6 (i). It can be shown (see [60], Proposition 3.3)
that the ρ-segment [p1, p3]ρ is the parallelogram shown in Figure 3.6 (ii), while the ρ-
segment [p2, p4]ρ is constructed in the same way. By Lemma 3.8, if w1 = w3 and w2 = w4,
then fw(P) is the intersection of the two ρ-segments (the shaded region in Figure 3.6 (ii)).
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Suppose now that we increase one of the weights, say w1 by an arbitrarily small amount.
Then, the weighted functionals are no longer balanced. It can be shown that the FW point
degenerates to the unique point at the base of the dark shaded region.

3.5.2 Collinear and cogeodesic sets

In Euclidean space, a �nite set of distinct points N = {p1, . . . , pk} is collinear if all the pi

lie on the same straight Euclidean line. The following de�nition extends the concept of
collinear points to Minkowski spaces.

De�nition 3.4. A set of points, N = {p1, . . . , pk}, in a Minkowski space with norm ‖ · ‖ is
ρ-collinear if all the pi ∈ N, i = 1, . . . , k lie on the same Euclidean metric line.

A further extension of collinear points to Minkowski spaces was posed in [60].

De�nition 3.5. A set of points N = {p1, . . . , pk}, in a Minkowski space with norm ‖ · ‖ is
ρ-cogeodesic if all the pi lie on a single geodesic in X between two of the points in N.

Note that in [60], a ρ-cogeodesic set is called a ρ-collinear set. In this work, we reserve
the term ρ-collinear for points lying on a Euclidean straight line (De�nition 3.4).

Examples of ρ-collinear and ρ-cogeodesic sets for the rectilinear norm in the plane are
shown in Figure 3.7 (i) and (ii) respectively. Every ρ-collinear set is ρ-cogeodesic, but not
all ρ-cogeodesic sets are ρ-collinear. Also, every ρ-cogeodesic set forms a double cluster,
but not every double cluster is a ρ-cogeodesic set. The solution to the FW problem for
unweighted ρ-cogeodesic sets in Minkowski spaces is given by Corollaries 3.5 and 3.6
of [60]. Here we generalise to the weighted case. The following result solves the FW
problem.

Lemma 3.9. Suppose N = {p1, . . . , pk} is a ρ-cogeodesic set of points, and each point pi ∈
N has an associated positive weight wi. Then one of the following conditions holds for some
j: fw(N) = [pj, pj+1]ρ if and only if ∑

j
i=1 wi = ∑k

i=j+1 wi; or fw(N) = pj if and only if∣∣∣∑j−1
i=1 wi −∑k

i=j+1 wi
∣∣∣ < wj.

Proof. For any pj ∈ N, the rays from pj through pi for i < j all pass through the same
exposed face of pj + B, and the rays from pj through pi for i > j all pass through the op-
posite exposed face of pj + B. Let L be any line through pj that is orthogonal to these two
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Figure 3.7: Colinear and cogeodesic sets in the rectilinear norm in the plane. (i) Set of six
ρ-collinear points. (ii) Set of seven ρ-cogeodesic points.

exposed faces (note that L does not necessarily correspond to the metric line containing
the given points). Suppose that a point x lies on the line segment between pj and pj+1,
j = 1, . . . , k− 1. The optimality condition for x is ∑k

i=1(wi/δi)ui = 0. Since the points in
N are ρ-cogeodesic, there exist unit vectors ui associated with each pi that are all parallel
to L, with the ui, i = 1, . . . , j being in the opposite direction to the ui i = j + 1, . . . , k. It
is also clear that all δi, i = 1, . . . , k are equal. If x is optimal, then the above equation
reduces to

(
∑

j
i=1 wi −∑k

i=j+1 wi
)

= 0 ⇒ ∑
j
i=1 wi = ∑k

i=j+1 wi. Now suppose pj is an FW
point. The optimality condition is

∣∣∣∑k
i=1,i 6=j(wi/δi)ui

∣∣∣ ≤ wj. Since the points in N are ρ-
cogeodesic, there exist unit vectors associated with each pi, i 6= j that all lie on L, with the
ui, i = 1, . . . , j− 1 being in the opposite direction to the ui, i = j + 1, . . . , k. If x is optimal,
then the above equation reduces to

∣∣∣∑j−1
i=1 wi −∑k

i=j+1 wi
∣∣∣ ≤ wj. Similar reasoning can be

used to show that in each case the reverse implication is true.

The following simple corollary is observed from Theorem 3.9.

Corollary 3.1. For any ρ-cogeodesic set of points in a Minkowski space, |fw(N)
⋂ N| ∈ {1, 2}.
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3.6 Geometric property of the solution to the three-point prob-
lem

In this section we study the FW problem in two-dimensional Minkowski spaces for the
case where there are three given points. This case is interesting to study both as the
smallest nontrivial case of the FW problem, and because of its application to �nding lo-
cally minimal solutions to the Gilbert arborescence problem in Minkowski spaces studied
in Chapter 6, since many Steiner points in Gilbert arborescences have degree three. The
following is a twofold generalisation of Theorem 4 in [22]. The theorem was originally
posed for the unweighted problem where the given points are at the vertices of an n-
dimensional simplex in Minkowski spaces with smooth and strictly convex unit balls.
We provide the generalised result for the two-dimensional case. The theorem is illus-
trated in Figure 3.8, in which the unit ball shown is that of the gradient metric, discussed
in more detail in the following chapter.

Theorem 3.4. Let N = {p1, p2, p3} be a given set of non-cogeodesic points not forming a bal-
anced double cluster in a Minkowski space X with norm ‖ · ‖ and unit ball B, and let w1, w2, w3

be the respective weights. Let x be a variable point in X. Let H1, H2, H3 be supporting lines of
x + B at the points where the rays from x through pi intersect the boundary of x + B, and let
D be the triangle formed by these supporting lines. Let ai be the vertex of D opposite Hi, with
corresponding weight, wi (see Figure 3.8). Then x0 is an FW point for N if and only if there exists
a choice of supporting lines H1, H2, H3 for x0 such that x0 is the centre-of-gravity of the weights
of the vertices of D, that is

x0 =
w1a1 + w2a2 + w3a3

w1 + w2 + w3
.

Proof. We adapt the proof from [22] to the weighted case. Refer to Figure 3.8. Let ui be
an outward unit normal vector to Hi, and δi the Euclidean distance from x to Hi. Let bi

be the vector form x to ai. Then, for i 6= j, we have

(bi · uj) = δj. (3.10)

The optimality condition for x is ∑3
i=1(wi/δi)ui = 0. Hence, for any j ∈ {1, 2, 3}, we have
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Figure 3.8: Geometric property of the solution to the three-point FW problem.

bj · ∑3
i=1(wi/δi)ui = 0 and therefore ∑3

i=1(wi/δi)(bj · ui) = 0. From (3.10), for i 6= j, we
can replace the (bj ·ui) with δi, giving ∑3

i 6=j, i=1 wi +(wj/δj)(bj ·uj) = 0, where the second
term is for the case where i = j. Again from (3.10), for i 6= j, we can multiply the wi terms
by (bi ·uj)/δj = 1, giving ∑3

i 6=j, i=1(wi/δj)(bi ·uj)+ (wj/δj)(bj ·uj) = 0. All the terms can
be combined to form ∑3

i=1(wi/δj)(bi · uj) = 0. Rearranging gives ∑3
i=1 wibi · (uj/δj) = 0,

which implies that ∑3
i=1 wibi = 0. So x is optimal when ∑3

i=1 wibi = 0, which can be
rewritten ∑3

i=1 wi · âi − x = 0, where âi − x denotes the vector from x to ai. Solving for x
gives x =

(
∑3

i=1 wiai
)

/
(

∑3
i=1 wi

)
.

Note that if N is a balanced double cluster, then the rays from x through pi, i = 1, 2, 3
all pass through the same pair of opposite exposed faces of B. Hence, H1, H2, H3 are all
parallel, and do not form a triangle.



Chapter 4

The Gradient-Constrained
Fermat-Weber Problem

In this chapter we introduce the gradient-constrained Fermat-Weber (FW) problem, an instance
of the FW problem in Minkowski spaces where distance is measured by a special metric, called the
gradient metric [13]. Under this metric, the distance between two points is the minimum length
of a piecewise smooth curve connecting the points such that the absolute value of the instantaneous
gradient at each differentiable point on the curve is no more than a given upper bound m > 0. Such
curves can be used to model tunnels in underground mines, where m is the maximum grade at which
haulage vehicles can operate. We concentrate on two- and three-dimensional spaces, which are natural
contexts for underground mining problems.

We begin by outlining the gradient metric, deriving its unit ball and dual ball in two and three
dimensions, and demonstrating how to compute the set of norming functionals associated with a
point in gradient-constrained space. We then present an iterative scheme for solving the gradient-
constrained FW problem numerically, and prove convergence for the two- and three-dimensional cases.
Finally, we demonstrate the application of the problem to the optimal design of underground mines by
using it to solve a simpli�ed version of the case study presented in Chapter 9.

4.1 Introduction

SO far in this work we have studied, in Chapters 2 and 3 respectively, the
n-dimensional Fermat-Weber (FW) problem in Euclidean space and in real �nite-

dimensional normed spaces, or Minkowski spaces. We have discussed how an FW point
x0 in Euclidean space has a characterisation with a natural physical interpretation; namely,
if x0 does not coincide with a given point, then it is located such that the weighted unit
vectors from x0 to the given points are balanced. We showed that this characterisation

61
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generalises to Minkowski spaces, where the orientations and lengths of the vectors asso-
ciated with the given points correspond to norming functionals, and are determined by
the geometry of the unit ball and the dual ball of the space. We have presented a wide
range of geometric properties of the FW problem in Euclidean and Minkowski spaces,
discussed special instances where the problems can be solved exactly with very little
computational effort, and stated a known algorithm for solving the Euclidean problem
numerically.

In this chapter we introduce the gradient-constrained FW problem, an instance of the FW
problem in Minkowski spaces where distance is measured by a special metric, called the
gradient metric [13]. Under this metric, the distance between two points is the minimum
length of a piecewise smooth curve connecting the points such that the absolute value
of the instantaneous gradient at each differentiable point on the curve is no more than a
given upper bound m > 0. Such curves can be used to model tunnels in underground
mines, where m is the maximum grade at which haulage vehicles can operate. While
many of the results in this chapter generalise to higher dimensions, we concentrate on
two- and three-dimensional spaces, which are natural contexts for underground mining
problems.

We begin in Section 4.2 by presenting background from [13] on the gradient metric.
Using results from Section 3.2 in Chapter 3, we derive the unit ball Bg and dual ball B∗g in
two and three dimensions. For a point x in gradient-constrained space, we demonstrate
how to compute its associated set of norming functionals ∂x and their analogous vectors.
We show that ∂x is a unique point on the boundary of B∗ unless x lies on a straight line
through the origin such that the absolute value of the gradient of the line is exactly m, in
which case ∂x is a line segment on the boundary of B∗, in two and three dimensions.

In Section 4.3, we propose an iterative scheme for solving the gradient-constrained
FW problem numerically, based on a modi�cation of the subgradient method [69] for
nondifferentiable convex functions. The algorithm incorporates exact directional min-
imisation instead of predetermined step sizes, and provides an alternative search direc-
tion when the iterative point is in some neighborhood of a nondifferentiable region. In
Section 4.4, we provide convergence results for the two- and three-dimensional cases.
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Finally in Section 4.5, we demonstrate the application of the gradient-constrained FW
problem to the optimal design of underground mines, by using it to solve a simpli�ed
version of the case study presented in Chapter 9. The simpli�ed problem, which ignores
some of the constraints dealt with in the detailed study, involves determining the opti-
mum location of the base of a vertical hoisting shaft in the Callie underground mine.

4.2 The gradient constraint

The following account of the gradient constraint, gradient-constrained networks and the
gradient metric, is taken primarily from [13].

4.2.1 The gradient metric

Let p = (xp, yp, zp) and q = (xq, yq, zq) be points in Euclidean three-space, where the
z-axis is vertical. Let pq denote a minimum-length piecewise smooth curve connecting
p and q. We de�ne the gradient of pq, denoted by g(pq), to be the absolute value of the
slope of the Euclidean straight line segment connecting p and q, that is

g(pq) =
|zq − zp|√

(xq − xp)2 + (yq − yp)2
.

Let m > 0 be a maximum allowable gradient. Under the gradient constraint, the absolute
value of the instantaneous gradient at each differentiable point on pq must not exceed
m. A curve satisfying this condition is called gradient-constrained. If g(pq) ≤ m, then
pq is a Euclidean straight line segment connecting p and q, and is called straight. On
the other hand, if g(pq) > m, then pq cannot be represented by a straight line segment
without violating the gradient constraint. It can, however, be represented by a zigzag
line connecting p and q, each segment of the zigzag having gradient m. Such a curve
is called bent. It is easily seen that such zigzag lines are geodesics under the gradient
constraint. In general, there are many other ways of embedding a bent edge, for example,
by a helical arc. In the mining context such embeddings can overcome the haulage vehicle
navigability problems associated with zigzag lines.
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The distance between two points p and q in gradient-constrained space can be mea-
sured with respect to the positions of p and q in a special metric, called the gradient metric.
De�ne the vertical metric of the distance between p and q to be |q− p|v = c|zq − zp|, where
c is a given constant. Then the gradient metric can be de�ned in terms of the Euclidean
metric | · | and the vertical metric | · |v. For a given m, the distance between p and q in the
gradient metric is de�ned to be

|q− p|g =




|q− p| =

√
(xq − xp)2 + (yq − yp)2 + (zq − zp)2, if g(pq) ≤ m;

|q− p|v =
√

1 + m−2|zq − zp|, if g(pq) ≥ m.

It is easily checked that this de�nes a metric. Note that |q− p| ≤ |q− p|g, and that the
gradient metric is convex, although it is not strictly convex.

A curve pq is de�ned to be an f-edge, m-edge or b-edge if the gradient of pq is less than,
equal to, or greater than m, respectively. The label of an f-edge, m-edge or b-edge is `f'
(meaning �at), `m' (meaning maximum), or `b' (meaning bent), respectively. The label of
pq can be thought of as indicating which metric is `active' for that edge, with an `m' label
indicating that both metrics hold simultaneously. Throughout this work we let α denote
the acute angle between an m-edge and a horizontal plane; thus m = tan α. Also note
that

√
1 + m−2 = 1

sin α . Further identities relating m and α are provided in Appendix B.

Let N = {p1, . . . , pk} be given points in three-dimensional space with respective pos-
itive weights w1, . . . , wk, and let m be a maximum gradient satisfying 0 < m ≤ 1. The
gradient-constrained FW problem asks for a point x0 minimising

f (x) =
k

∑
i=1

wi|pi − x|g

where | · |g is the gradient metric. As per Chapter 3, x0 is called an FW point, and the set
of all FW points for a given N, denoted by fw(N), is called the FW locus.

It should be noted that the study of the gradient-constrained Fermat-Weber problem
was initiated by Hyam Rubinstein in an unpublished research note [66]. Some early work
on the problem was presented at the 18th National Conference of the Australian Society
for Operations Research [14].



4.2 The gradient constraint 65

4.2.2 The unit ball and dual ball

For the remainder of this section, most of the material presented is new to the literature
on gradient-constrained networks.

It is easily checked that R3 equipped with | · | is an example of a Minkowski space.
Therefore, we can apply the principles of Chapter 3 to the gradient-constrained FW prob-
lem. The unit ball Bg and dual ball B∗g in three-dimensional gradient-constrained space
are shown in Figure 4.1, for the case where m = 1√

3 .

The unit ball is constructed by noting that points x ∈ Bg for which g(ox) ≤ m cor-
respond to points in the Euclidean unit ball, which is a sphere in R3. Points x ∈ Bg for
which g(ox) > m have |ox|g =

√
1 + m−2|z|, where z is the vertical component of x.

Since this distance does not depend on horizontal components, points on a horizontal
plane have the same distance from o. Thus, the top and bottom �at faces correspond to
the set of points x for which z = 1√

1+m−2 . Note that a diagonal line passing through o and
connecting opposite non-smooth points on the boundary of Bg has gradient m.

The dual ball is constructed as per Lemmas 3.1 and 3.2 in Chapter 3, by constructing
hyperplanes for each point on the boundary of Bg, excluding points on straight line seg-
ments. Thus B∗g is the union of Bg and right circular cones whose bases coincide with the
�at faces of Bg, such that a line from the base perimeter to the cone vertex has gradient
1
m .

Note that the unit ball is neither smooth nor strictly convex, and the same is true for
the dual ball. The lack of strict convexity implies that the FW locus is not a unique point
for all given point sets. The lack of smoothness implies that the set of norming functionals
of an arbitrary point x is not unique for all x.

4.2.3 Norming functionals

Recall from Chapter 3 that the set of norming functionals ∂x of a point x corresponds to
an exposed face of the dual ball, and that a norming functional is equivalent to a vector
u
δ , where u is an outward unit vector normal to the hyperplane supporting Bg at the
point where the ray from o through x intersects Bg, and δ is the distance from x to this
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hyperplane.
For a given point set N = {p1, . . . , pk}, we can characterise the ui and δi for the gradi-

ent metric according to the gradient of the Euclidean straight line segment connecting x
and pi. For each point pi ∈ N, it is suf�cient to consider only the vertical plane containing
o and pi. Refer to Figure 4.2. Suppose op1 is an f-edge. Then u1 points directly from o
to p1 and δ1 = 1. Now suppose op2 is a b-edge. Then u2 points vertically up or down,
if p2 is above or below o respectively, and δ2 = 1/

√
1 + m−2. Now let op3 be an m-edge.

Then there is a continuum of possible supporting hyperplanes at the non-smooth point
on the boundary of Bg. The resulting normal unit vectors all lie in a vertical plane and
have all possible directions between an m-edge and a vertical edge. If, in a vertical plane,
a given u3 forms an angle ψ with the m-edge, then the corresponding δ3 = cos ψ. Note
that the set of all possible u3/δ3 associated with an m-edge forms a right-angled triangle
corresponding to a subset of B∗.

4.2.4 The dual norm in the gradient-constrained dual space

The dual norm is de�ned as

‖φ‖∗ = max{φ(x) : ‖x‖ = 1}. (4.1)

Given the coordinates of a functional in the gradient-constrained dual space, we can com-
pute ‖φ‖∗ by consideration of the dual ball, as per the following lemma.

Lemma 4.1. Let φ = (φ1, φ2, φ3) be a functional in the three-dimensional gradient-constrained
dual space. If m > 0 is a maximum allowable gradient, then the dual norm of φ is

|φ|∗g =





√
φ2

1 + φ2
2 + φ2

3, if g(φ) ≤ m;√
φ2

1 + φ2
2 cos α + |φ3| sin α, if g(φ) ≥ m.

(4.2)

where g(φ) is the gradient of the Euclidean straight line connecting o and φ, and α = tan−1 m.

Proof. Consider the dual ball B∗ in the gradient-constrained dual space. If g(φ) ≤ m,
then clearly the dual norm of φ in the gradient metric is the same as the Euclidean norm.
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Figure 4.1: Unit ball and dual ball in three-dimensional gradient-constrained space.
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Figure 4.2: Norming functionals and outward normal vectors for f-, m- and b-edges.
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Now suppose that g(φ) > m (Figure 4.3). Imagine we construct a scaled copy of the dual
ball with radius |φ|∗g centred on the origin o. Then φ lies on the boundary of B∗(|φ|∗g).
Moreover, since g(φ) > m, it must lie on a straight segment of the dual ball. The dual
norm of φ in the gradient metric is the projection of φ onto the m-edge in the same ver-
tical plane (Cross-section A-A in Figure 4.3). From the �gure, it is easily seen that this
projection has Euclidean length

√
φ2

1 + φ2
2 cos α + |φ3| sin α.

4.2.5 Planar versus three-dimensional problems

We brie�y comment on the difference between two- and three-dimensional versions of
the gradient-constrained FW problem. Suppose N = {p1, . . . , pk} are given points lying
on an inclined plane P passing through o and making an angle of θ with a horizontal
plane. By taking the intersection of the three-dimensional unit ball Bg and P , we obtain
a new unit ball B′g lying on P . Now there are two cases: (1) if θ < α, then B′g is the
Euclidean ball in R2 (see Figure 4.4 (i)), and the problem can be solved using Weiszfeld's
algorithm as per Chapter 2. However, if θ ≥ α, then B′g looks similar to Bg in a vertical
plane for m = tan θ. We cannot simply solve the problem assuming this unit ball though,
because the unit vectors associated with m- and b-edges do not necessarily lie on P (see
Figure 4.4 (ii)). Therefore, unless P is a vertical plane, this latter case must be treated as a
genuine three-dimensional problem.

4.3 A descent algorithm

In Euclidean space, the FW problem can be solved using the Weiszfeld algorithm [86]
stated in Chapter 2, Section 2.6. However, numerical tests have shown that this method
does not lend itself well to the gradient-constrained problem. In this section, we propose
a new iterative scheme for �nding a point x0 minimising

f (x) =
k

∑
i=1
|pi − x|g.
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Figure 4.3: Length of a vector in the gradient-constrained dual space.
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Figure 4.4: The gradient-constrained FW problem in a plane. The gradient of the plane is
(i) less than, and (ii) greater than or equal to the maximum.
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Recall from Lemmas 3.4 and 3.5 in Chapter 3 that the subdifferential of f (x) is given by

∂ f (x) =
k

∑
i=1

wi∂(pi − x)

where ∂(pi − x) is the set of norming functionals of pi − x. If pix is an f-edge, ∂(pi − x)

can be treated as a vector vi from x to pi with length wi, while if pix is a b-edge, ∂(pi − x)

can be treated as a vector vi pointing from x vertically up or down, if pi is above or below
x respectively, with length wi

√
1 + m−2. If pix is an m-edge, vi is continuum of vectors

lying in the vertical plane containing x and pi, the vectors having all possible directions
between the m-edge and a vertical edge. By selecting any vector from this continuum,
we can compute a subgradient of f . Thus a simple gradient descent procedure [5] seems
suitable for solving the gradient-constrained FW problem, as a subgradient is easily com-
puted as the sum of vectors associated with the given points. However, problems can
arise due to the fact that f (x) is not everywhere differentiable.

Let S denote the set of points x in R3 for which pjx is an m-edge for any pj ∈ N. Then
f is differentiable everywhere except in the set S, since the vector associated with an m-
edge, and consequently the gradient, is not unique. The problem for nondifferentiable
convex functions can be solved by the subgradient method [69], [6], which minimises f (x)

using the iteration
x(κ+1) = x(κ) + sκv(κ) (4.3)

where x(κ) is the κth iterate, v(κ) is any subgradient of f at x(κ) and sκ is the κth step size.
For guaranteed convergence, the step sizes, sκ, i = 1, 2, . . ., must satisfy certain rules,
otherwise the iteration may convergence to a nonstationary point. For constant step size,
sκ = ∆, the subgradient method is guaranteed to converge to within some range of the
optimal value [69]. For diminishing step sizes satisfying limκ→∞ sκ = 0, ∑∞

κ=1 = ∞, the
algorithm is guaranteed to converge to the optimal value. The convergence proof is based
on the Euclidean distance to the optimal set decreasing at each iteration. Note that the
subgradient method is not a descent method; the function can, and often does, increase
over consecutive iterations.

In some circumstances, use of the subgradient method is problematic. Convergence
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can be extremely slow due to the gradient being almost perpendicular to the direction
towards the minimum. This problem is demonstrated by the following example.

We are given three points in a vertical plane; p1 = [0 1], p2 = [2 0] and p3 = [2 2].
The three points have respective weights w1 = 1, w2 = 1 and w3 = 1.94. The maximum
allowable gradient is m = 1. Let x0 ∈ fw(N). The exact solution, which can in this case
be determined exactly by simple calculus, is x0 = [1.9 1.9]. Starting at x(0) = [0.1 1]

and using an initial step size s0 = 0.345 we execute the subgradient method where step
sizes diminish at each iterate κ according to sκ = s0/√κ. The iterative path, shown in
Figure 4.5, shows that convergence is very slow due to extreme oscillation about the line
through p3 with gradient m. At each iteration, the gradient is almost perpendicular to
the direction towards the minimum. In fact, after 50,000 iterations, x(κ) is still noticeably
distant from x0. If sκ is chosen to minimise f (x(κ) + sκv(κ)) (i.e. an exact line search is
adopted), then x(κ) converges to the nonstationary point [1.3385 1.3385] after one itera-
tion, due to the optimum step size diminishing to zero too early.

A notable extension of the subgradient method involves the concept of space dila-
tion [69]. The method aims to reduce at subsequent iterations the components of the gra-
dient that are parallel to the latest gradient, by applying a linear nonorthogonal space
transformation. The space is dilated in the direction of the gradient (the SDG algo-
rithms) or alternatively in the direction of the difference of two successive gradients (the
r-algorithms). Numerical tests have shown that convergence can be signi�cantly accel-
erated, but the oscillation problem demonstrated in the example is not completely erad-
icated. Moreover the method needs to store the space dilation matrix and update it at
every iteration, leading to signi�cant computational effort.

We propose a new method that overcomes these problems by exploiting the fact that
f is differentiable everywhere except in the set S. The idea is to use exact directional min-
imisation at each iteration, and to consider a second search direction when x(κ) converges
to a point in some neighborhood of S. Let ε be small and positive. De�ne Sε to be the
set of points x for which the Euclidean distance between x and S is at most ε. Suppose at
the κth iteration we have arrived at a point, x(κ), such that x(κ) ∈ Sε. If exact directional
minimisation results in a step size that is very small, then x(κ) may have converged to a
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Figure 4.5: Iterations of the subgradient method with diminishing step sizes for a three-
point gradient-constrained FW problem.
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Figure 4.6: Iterations of a new descent method for a three-point gradient-constrained FW
problem.
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nonstationary point. If so, we hope to be able to `escape' from this nonstationary point
by searching in the direction of an m-edge close to x(κ). We denote such a direction by vg.
The notion of searching in an m-edge direction was �rst employed in an algorithm for
�nding gradient-constrained minimum Steiner trees [10]. This was implemented into the
UNO software product (refer to Chapter 1). The procedure for the gradient-constrained
FW problem is outlined in Algorithm 2.

Algorithm 2 Algorithm for solving the gradient-constrained Fermat-Weber problem
Let η be small and positive, and let conv(N) denote the convex hull of N.
given a starting point x(0) ∈ conv(N)
repeat
1. v := ∑k

i=1(wi/hi)ui
2. Line search. Choose step size, s, via exact line search
3. if s > η
Update. x := x + sv
Return to 1.
else
if x ∈ Sε

(a) compute vg (vector in m-edge direction)
(b) Line search. Choose step size, sg, via exact line search
(c) if sg > η
Update x := x + sgvg
Return to 1.
else stop.
else stop.

Applying Algorithm 2 to the previous example results in the sequence converging to
the exact solution in two iterations, {(0.1, 1), (1.3385, 1.3385), (1.9, 1.9)} (Figure 4.6). It is
believed that Algorithm 1 is applicable to the FW problem in general Minkowski spaces.
This will be investigated in future research.

4.4 Convergence analysis

One of the main differences between Algorithm 2 and the subgradient method is that
Algorithm 2 employs an exact line search in a gradient direction at each iteration. The
sole problem with exact directional minimisation is that it may cause convergence to a
nonstationary point, due to the discontinuity of the gradient at that point. To obtain a
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Figure 4.7: Gradient-constrained FW problem in a vertical plane. Descent directions at a
point on an m-edge containing an FW point.

convergence proof for Algorithm 1, we must show that whenever the iteration converges
to a nonstationary point, it can escape by stepping in the direction of an m-edge passing
through a terminal and the nonstationary point. In other words, we must show that
stepping in the m-edge direction gives a �nite reduction in the cost function.

We begin by analysing the two-dimensional case where N lies in a vertical plane.
Refer to Figure 4.7. Let L be a line with absolute gradient m passing through a terminal
pj ∈ N. Let x be a second point in the vertical plane that is arbitrarily close to L, so that
g(pjx) ≈ m, and let L⊥ be the line passing through x that is perpendicular to L.

De�ne vf to be the resultant of all the vectors associated with the points in N, assum-
ing that pjx is an f-edge. Similarly de�ne vb to be the resultant assuming that pjx is a
b-edge. Theoretically, if pjx has gradient exactly equal to m, then the subdifferential of
f at x is the set of all directions between these two vectors. We now state the following
simple lemma.
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Lemma 4.2. The two vectors, vf and vb, lie on the same side of (but not on) L⊥.

Proof. From the convergence proof for the subgradient method [69], moving by a pre-
determined amount in either direction vf or vb must move x(κ) closer to a minimum.
Therefore, the angle between vf and vb cannot be 180◦, and hence the vectors cannot both
lie on L⊥. Without loss of generality, assume that one of the vectors, say vb, lies on the
same side of L⊥ as pj, as in Figure 4.7. We can obtain vf by subtracting the vertical vector,
uj/δj, associated with pjx (assuming it is a b-edge so that δj = 1/

√
1 + m−2) from vb,

and adding the vector, uj/δj, with absolute gradient m pointing from x to pj (the vector
associated with pjx assuming it is an f-edge so that δj = 1). We know that the triangle,
T, formed by this process (shown in Figure 4.7) is right-angled (this triangle corresponds
to a subset of the dual ball B∗g for the gradient metric). Therefore the line connecting the
tips of vf and vb is necessarily parallel to L⊥. Hence the two vectors will always lie on
the same side of L⊥.

Note that the above proof also works if vb lies on the opposite side of L⊥ from pj. For
smooth convex functions, a search direction is a descent direction (meaning the cost func-
tion decreases by stepping in that direction) if and only if it makes an acute angle with
the gradient, i.e. the angle is less than 90◦. Hence, for smooth convex functions, the set of
descent directions forms an unbounded half-plane.

If x has an incident m-edge, the descent direction must make an acute angle with all
the vectors in the continuum bounded by vf and vb. De�ne Cfb to be the pointed cone
with apex x and boundary de�ned by rays that are perpendicular to, and on the same
side of L⊥ as vf and vb. Let int denote the interior of a set. It is easily shown that all rays
in int(Cfb) make acute angles with every vector in the continuum of directions bounded
by vf and vb, and hence int(Cfb) is the set of all descent directions. We now state the
following lemma and corollary.

Lemma 4.3. Refer to Figure 4.7. Let θfb be the angle between the two vectors vf and vb. Then x
converges to a nonstationary point if and only if θfb ≥ 90◦ at that point.

Proof. It is easily seen from the construction of Cfb that if θfb = 90◦, then the two vectors
lie on the boundary of Cfb and are therefore not descent directions. If θfb > 90◦ then
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the cone bounded by one of the vectors, say vb, and its perpendicular, will not contain
the other vector vf. If x has converged to a nonstationary point, then the two vectors vf

and vb at x must both lie outside int(Cfb), since otherwise stepping in either of the two
directions would result in a �nite reduction in the cost function, and x would not have
actually converged. Since vf and vb are outside Cfb if and only if θfb ≥ 90◦, the theorem
is proved.

Corollary 4.1. If x converges to a nonstationary point, then int(Cfb) always contains L.

Proof. From Lemma 4.3, if x converges to a nonstationary point, then θfb ≥ 90◦. Also
from Lemma 4.2 both vectors, vf and vb, are on the same side of L⊥. As a result, both
vectors necessarily lie on opposite sides of L, and consequently so too do their perpen-
diculars. Hence L is always inside int(Cfb).

It follows from the corollary that if x converges to a nonstationary point on L, then L
will always be contained in Cfb, and x can always escape from the nonstationary point by
stepping in the direction of L.

We now turn our attention to the more dif�cult three-dimensional case. Like the
two-dimensional case, we have two vectors vf and vb associated with pj, but they do
not necessarily lie in the same vertical plane as x and pj. Moreover, the set of descent
directions will be a wedge, which we denote by Wfb (Figure 4.8).

We can analyse this case by considering the vertical plane containing x and pj. The
arrangement is similar to Figure 4.7 except that now the vectors vf and vb may have
components orthogonal to the vertical plane though x and pj.

The direction along the line where the two planes de�ning Wfb intersect is perpendic-
ular to both vectors vf and vb, and hence it can be computed by their vector cross-product
vf × vb. By consideration of this cross-product, the following lemma is evident.

Lemma 4.4. The orthogonal projection of the vector cross-product vf × vb onto the vertical plane
containing x and pj lies on L.

Proof. Let vf = [xf, yf, zf] and vb = [xb, yb, zb], where z is vertical and x is in the
horizontal direction of the plane containing x and pj. The vector cross-product is given
by vf × vb = [yfzb − ybzf, −(xfzb − xbzf), xfyb − xbyf]. From Figure 4.7, the triangle
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Figure 4.8: Gradient-constrained FW problem in three-space. Descent directions at a
point on an m-edge containing an FW point.

T is contained in a vertical plane that is parallel to the vertical plane through x and pj,
and so the y components of the two vectors vf and vb are equal. Letting yf = yb =

yfb we have vf × vb = yfb [zb − zf, −(xfzb − xbzf)/yfb, xf − xb]. It is easily seen that
(xf − xb)/(zb − zf) = m, and hence the lemma is proved.

Using similar arguments as for the two-dimensional case, it follows that if x converges
to a nonstationary point on L, then L will always be contained in Wfb, and x can always
escape from the nonstationary point by stepping in the direction of L.

4.5 A simpli�ed case study

In this section we demonstrate the importance of the gradient-constrained FW problem
to underground mining by applying it to a simpli�ed version of the case study presented
in Chapter 9. The case study, which was introduced in Chapter 2, Section 2.7, involves
determining the cost-optimal position for a vertical hoisting shaft in the Callie under-
ground mine. The mine includes parallel declines accessing an orebody which plunges
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Figure 4.9: Conceptual long section of the Callie underground mine.

at 45 degrees to the horizontal, and roughly lies in a vertical plane (Figure 4.9). The re-
duced level (RL) at the surface is roughly 1400 m, and by 2011 the orebody will have been
mined to an approximate depth of 1100 m (390 m RL) below the surface.

The primary decline, called the Callie decline, is to be mined from 340 m RL down
to -660 m RL, with draw points on the decline at 40 m vertical increments (26 points in
total). The secondary decline, called the Wilson drill decline (WDD), is to be mined from
390 m RL down to 70 m RL, also with draw points at 40 m vertical intervals (nine points
in total). To account for uncertainty in production forecasting, three haulage schedules
have been proposed. These are base, probable and best, having low, average and high rates
respectively. Haul point levels and tonnages are summarised in Tables 4.1 and 4.2 for
Callie and WDD respectively.

The Callie Decline and WDD have respective gradients 1:8 and 1:7 or, alternatively,
1:7 and 1:6. The shaft development cost is $25,000/m, $50,000/m or $75,000/m. The ore
pass development cost is $1210/m. Haulage up and down a decline is $0.75/(t.km) and
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Level Base Probable Best
340 59,253 59,253 59,253
300 296,746 500,000 700,000
260 194,808 500,000 700,000
220 298,691 750,000 700,000
180 200,000 750,000 1,050,000
140 551,408 1,000,000 1,050,000
100 736,412 1,125,000 1,400,000
60 418,845 1,125,000 1,575,000
20 500,000 1,000,000 1,225,000
-20 500,000 1,375,000 1,575,000
-60 600,000 1,125,000 1,225,000

-100 800,000 1,375,000 1,400,000
-140 600,000 1,125,000 1,575,000
-180 600,000 1,125,000 1,225,000
-220 700,000 875,000 1,575,000
-260 500,000 875,000 1,225,000
-300 400,000 875,000 1,400,000
-340 500,000 875,000 1,575,000
-380 300,000 625,000 1,225,000
-420 200,000 750,000 1,225,000
-460 300,000 250,000 1,125,000
-500 100,000 - 1,050,000
-540 - - 1,225,000
-580 - - 875,000
-620 - - 1,050,000
-660 - - 350,000

Table 4.1: Callie Decline draw point levels and tonnages.

Level Base Probable Best
390 110,000 150,000 150,000
350 230,000 325,000 325,000
310 240,000 500,000 500,000
270 230,000 500,000 500,000
230 230,000 500,000 500,000
190 240,000 350,000 500,000
150 120,000 175,000 500,000
110 - - 350,000
70 - - 175,000

Table 4.2: Wilson Drill Decline draw point levels and tonnages.
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$0.85/(t.km) respectively or, alternatively, $1.05/(t.km) and $1.20/(t.km) respectively.
An alternative to trucking ore down the ramp from a given level is to tip the ore down

an ore pass, a near-vertical tunnel, to a horizontal main haulage drive at the same level
as the base of the shaft. The pass services all levels above a speci�ed level.

In Chapter 2, we discussed how to optimise the network of tunnels interconnecting
the declines, ore pass and shaft, using a variation of the FW problem in the Euclidean
plane where one of the given points (representing the shaft) is allowed to exist anywhere
on a straight line in the plane. The costs associated with these elements can be considered
to be `horizontal'.

In this chapter, we optimise the three principal `vertical' cost components of the mine
� shaft development, decline haulage and ore pass development � by placing the shaft
base at an optimum level. The techniques of Chapter 2 can then be used to �nd an opti-
mum horizontal network interconnecting the declines, ore pass and shaft. In Chapter 9,
we re�ne our approach so as to minimise the horizontal and vertical cost components
simultaneously, resulting in a globally-optimal solution.

4.5.1 Solution procedure

We model the mine as a weighted network and treat the shaft base as an FW point. The
collective set of 35 access points on the two declines is treated as a set of given points.

We begin by placing the shaft base at an initial level z(0). This could be the median
level or, alternatively, the level closest to the centre of gravity (with respect to tonnages) of
the draw points. The shaft can be thought of as a b-edge extending from z(0) up to a point
on the surface. However, since the length of the shaft is Euclidean, it is not subjected to
the gradient constraint. Thus, we assign to the shaft an upwards vertical vector vs with
length 25,000, 50,000 or 75,000, depending on the case considered.

Consider a draw point pi with tonnage ti at a level zi which is above z(0). Material is
trucked from pi down to z(0) along a gradient-constrained path at a haulage cost rate of
hd. Hence, we assign to pi an upwards vertical vector vi, with length

√
1 + m−2

C hdti(zi −
z(0)) if pi is on the Callie decline whose gradient is mC, or

√
1 + m−2

W hdti(zi − z(0)) if pi

is on the Wilson decline whose gradient is mW . Similarly, if pi is at a level zi below z(0),
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then we assign it a downwards vertical vector with length
√

1 + m−2
C huti(zi − z(0)) or√

1 + m−2
W huti(zi − z(0)) if pi is on Callie or WDD respectively, and hu is the cost rate of

upwards haulage.
When an ore pass is modelled, it is assigned an upwards vertical vector having length

dop = 1210. However, for all levels above the speci�ed lowest level from which ore is
transported to the top of the ore pass, the cost of haulage does is independent of the
position of the shaft base. Thus it can be treated as a �xed cost, and consequently these
levels are assigned a zero vector.

Taking the sum of vectors associated with the 35 access points, the shaft and the ore
pass (if applicable), we obtain a resultant vertical vector. If the vector points upward,
then we select z(1) to be the level immediately above z(0); otherwise, it is the level im-
mediately below z(0). We repeat the process until the iterate z(κ) oscillates between two
levels. Which of these two levels is the optimal solution, denoted by z∗, is determined by
computing the costs at each level, and selecting the one with the lower cost.

4.5.2 Results and analysis

Results are summarised in Table 4.3. In the tests, we have assumed for the base, probable
and best cases that the top of ore pass is at levels 300, 220 and 180 respectively, and the
ore pass facilitates ore from levels above and including 220, 140 and 100 respectively.
The total cost C includes shaft development, decline haulage, ore pass development and,
if applicable, ore pass �tout ($1M �xed). From the table, we make the following brief
observations. A detailed discussion is provided in Chapter 9.

• The shaft development cost has the greatest impact on the optimal position of the
shaft base. Increasing the cost from $25,000/m to $75,000/m causes the base to
move up by three to six levels.

• The decline gradients and haulage costs have a relatively small impact on the opti-
mal position of the shaft base. Changing parameters causes the shaft base to move
one level at most.

• For the $25,000/m shaft development, including an ore pass causes the shaft base
to move down by two to three levels. In all cases where the shaft development
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is $25,000/m, it is more economical to include an ore pass (the $50,000/m and
$75,000/m cases are considered in Chapter 9).

• Over all the cases considered, the shaft base ranges from -140 m RL to 390 m RL,
spanning a vertical distance of 530 m.

In Chapter 9, we provide a thorough treatment of the case study, where the vertical
and horizontal components of the mine are optimised simultaneously, and additional
constraints are imposed to account for orebody standoff requirements, faults and surface
geology boundaries. The ore pass is included for the $50,000/m and $75,000/m shaft
development cost scenarios, and the impact of including a second tipping point between
the top and bottom of the ore pass is investigated. The top level of the ore pass and lowest
level hauling to the top of the ore pass (or to the second tipping point) are included as
variables in the optimisation.
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No ore pass Ore pass
Case ds hu hd mC mW z∗ C z∗ C
Base $25,000 $0.75 $1.05 1:8 1:7 140 $47.6M 60 $46.5M
Base $25,000 $0.75 $1.05 1:7 1:6 140 $45.6M 100 $45.0M
Base $25,000 $0.85 $1.20 1:8 1:7 140 $49.8M 60 $48.1M
Base $25,000 $0.85 $1.20 1:7 1:6 140 $47.6M 60 $46.5M
Base $50,000 $0.75 $1.05 1:8 1:7 270 $77.6M - -
Base $50,000 $0.75 $1.05 1:7 1:6 310 $74.8M - -
Base $50,000 $0.85 $1.20 1:8 1:7 230 $80.3M - -
Base $50,000 $0.85 $1.20 1:7 1:6 270 $77.4M - -
Base $75,000 $0.75 $1.05 1:8 1:7 390 $104M - -
Base $75,000 $0.75 $1.05 1:7 1:6 390 $100M - -
Base $75,000 $0.85 $1.20 1:8 1:7 390 $107M - -
Base $75,000 $0.85 $1.20 1:7 1:6 390 $103M - -

Probable $25,000 $0.75 $1.05 1:8 1:7 100 $60.2M 20 $56.9M
Probable $25,000 $0.75 $1.05 1:7 1:6 100 $56.7M 20 $54.3M
Probable $25,000 $0.85 $1.20 1:8 1:7 60 $63.9M 20 $59.7M
Probable $25,000 $0.85 $1.20 1:7 1:6 100 $60.0M 20 $56.8M
Probable $50,000 $0.75 $1.05 1:8 1:7 140 $92.3M - -
Probable $50,000 $0.75 $1.05 1:7 1:6 180 $88.5M - -
Probable $50,000 $0.85 $1.20 1:8 1:7 140 $96.2M - -
Probable $50,000 $0.85 $1.20 1:7 1:6 140 $92.1M - -
Probable $75,000 $0.75 $1.05 1:8 1:7 220 $123M - -
Probable $75,000 $0.75 $1.05 1:7 1:6 230 $118M - -
Probable $75,000 $0.85 $1.20 1:8 1:7 180 $127M - -
Probable $75,000 $0.85 $1.20 1:7 1:6 220 $123M - -

Best $25,000 $0.75 $1.05 1:8 1:7 -20 $89.5M -140 $74.0M
Best $25,000 $0.75 $1.05 1:7 1:6 -20 $82.8M -140 $69.7M
Best $25,000 $0.85 $1.20 1:8 1:7 -20 $96.9M -140 $78.6M
Best $25,000 $0.85 $1.20 1:7 1:6 -20 $89.2M -140 $74.9M
Best $50,000 $0.75 $1.05 1:8 1:7 60 $124M - -
Best $50,000 $0.75 $1.05 1:7 1:6 60 $117M - -
Best $50,000 $0.85 $1.20 1:8 1:7 20 $132M - -
Best $50,000 $0.85 $1.20 1:7 1:6 60 $124M - -
Best $75,000 $0.75 $1.05 1:8 1:7 100 $157M - -
Best $75,000 $0.75 $1.05 1:7 1:6 100 $150M - -
Best $75,000 $0.85 $1.20 1:8 1:7 60 $165M - -
Best $75,000 $0.85 $1.20 1:7 1:6 100 $157M - -

Table 4.3: Simpli�ed case study results.
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Introduction to Part II

PART II of this thesis is devoted to the Gilbert arborescence problem, which asks for
a minimum-cost �ow-dependent network interconnecting given sources and a

unique sink. We begin Chapter 5 by studying the problem in the classical environ-
ment for Gilbert networks, Euclidean space. Euclidean networks provide valuable in-
sights into gradient-constrained networks, and have applications to drainage [56] and
gas pipeline [4] networks.

In Chapter 6, we study the Gilbert arborescence problem in Minkowski spaces. Our
main goal is to provide a geometric characterisation of vertices in minimum Gilbert ar-
borescences in Minkowski spaces, generalising a result for Steiner minimum trees in
Minkowski spaces [73].

In Chapters 7 and 8, we study gradient-constrained minimum Gilbert arborescences
in a vertical plane and in three dimensions respectively, assuming a linear cost function
w(t) = d + ht, where d and h are strictly positive, and m ≤ 1. We investigate geometric
properties of gradient-constrained minimum Gilbert arborescences, and use these prop-
erties to provide a classi�cation of Steiner points, extending work done in [17] and [13].





Chapter 5

Minimum Gilbert Arborescences in
Euclidean Space

We introduce the Gilbert arborescence problem, which is a special case of the Gilbert network
problem [34] where the k terminals consist of k − 1 sources and a unique sink, and �ow is routed
from the sources to the sink via directed paths. This problem has applications to drainage [56], gas
pipeline [4] and underground mining [8] networks. We present some useful properties of minimum
Gilbert arborescences (MGAs), and provide a characterisation of the local structure of their Steiner
points, generalising a known result for unweighted networks. We use this characterisation to inves-
tigate the maximum degree of Steiner points in MGAs. We then brie�y discuss how some known
algorithms can be applied to the problem. In particular, we look at a generalised Melzak algorithm
which provides exact solutions, and an angle-splitting heuristic for obtaining approximate solutions.
Finally, we investigate the Gilbert arborescence problem in Euclidean 3-space.

5.1 Introduction

THE Euclidean Steiner problem (ESP) asks for a shortest network spanning a given
set of points, called terminals, in the Euclidean plane. It differs from the minimum

spanning tree problem in that additional points, called Steiner points, are permitted to
create a spanning network that is shorter than would otherwise be possible.

Gilbert [34] proposed a generalisation of the ESP whereby non-negative �ows are as-
signed between each pair of terminals. The cost of an edge is its length multiplied by
a non-negative weight. The weight is determined by a given function of the total �ow
being routed through that edge, where the function satis�es a number of conditions. The
Gilbert network problem (GNP) asks for a minimum-cost network spanning a given set of

91
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terminals with given �ow demands and a given cost function.

A special case of the GNP is when the k terminals consist of k− 1 sources and a unique
sink (or, equivalently, k− 1 sinks and a unique source), and all �ows not between a source
and the sink are zero. This problem has applications to drainage [56], gas pipeline [4],
and underground mining [8] networks.

As we will show, the resulting minimum network has a tree topology, and provides
a directed path from each source to the sink (or from the source to each sink). Such
a network is called an arborescence, and we refer to this special case of the GNP as the
Gilbert arborescence problem (GAP). Traditionally, the term `arborescence' has been used to
describe a rooted tree providing directed paths from the root (source) to k− 1 sinks. Here
we are interested in the case where the �ow directions are reversed, i.e. �ow is from k− 1
sources to a unique sink. Since the two problems are clearly equivalent, we will continue
to use the term `arborescence' for the latter case. A minimum Gilbert arborescence (MGA) is
a (global) minimum-cost arborescence for a given set of terminals and �ows, and a given
cost function.

In this chapter we investigate geometric properties of MGAs, and discuss how some
known algorithms can be used to solve the problem exactly and approximately. In Sec-
tion 5.2, we give some background on the ESP and the GNP. Then in Section 5.3, we
provide some useful properties of MGAs. In Section 5.4, we present a characterisation
of MGAs, generalising a known result for unweighted networks. The characterisation is
in terms of weighted unit vectors from a Steiner point to its adjacent vertices. We use
this characterisation in Sections 5.5 and 5.6 to investigate the maximum degree of Steiner
points in MGAs in the Euclidean plane, and in Euclidean three-space respectively.

In Section 5.7, we examine properties of angles between edges incident with a degree-
three Steiner point in an MGA. Finally, in Section 5.8, we brie�y discuss how some known
algorithms can be applied to the problem. In particular, we look at a generalised Melzak
algorithm which provides exact solutions, and a heuristic which returns approximate
solutions.
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5.2 Background

It is useful to begin by discussing some aspects of the ESP, since the ESP is a special
case of the GNP. The following material on the ESP is generally taken from [42]. Let T
be a network interconnecting a set N = {p1, . . . , pk} of points, called terminals, lying in
a Euclidean plane. A vertex in T which is not a terminal is called a Steiner point. Let
G(T) denote the topology of T, i.e. G(T) represents the graph structure of T but not the
embedding of the Steiner points. Then G(T) for a shortest network T is necessarily a
tree, since if a cycle exists, the length of T can be reduced by deleting an edge in the cycle.
A network with a tree topology is called a tree, its links are called edges, and its nodes
are called vertices. An edge connecting two vertices a, b in T is denoted by ab, and its
(Euclidean) length by |ab|.

The shrinking of an edge in T is the operation of deleting an edge and collapsing its
two endpoints to a single point. The splitting of a vertex is the operation of disconnecting
two edges av, bv from a vertex v and connecting a, b, v to a newly created Steiner point. A
degeneracy of a topology G(T) is another topology that can be obtained by shrinking edges
of G(T). Though the positions of terminals are �xed, Steiner points can be subjected to
small movements provided the resulting network is still connected. Such movements
are called perturbations, and are useful for examining whether the length of a network is
minimal.

A Steiner tree (ST) is a tree whose length cannot be shortened by a small perturbation
of its Steiner points, even when splitting is allowed. By convexity, an ST is a minimum-
length tree for its given topology. A Steiner minimum tree (SMT) is a shortest tree among
all STs. It is well-known that every Steiner point in an ST has degree three, and the three
incident edges at a Steiner point make angles of 120◦ with each other.

Given a set N of terminals, the Steiner problem (or Steiner tree problem) asks for an SMT
spanning the terminals. This problem was introduced in 1934 by Járnik and Kössler [45],
and interest in the problem began to spread following publication of the famous 1941
book, What is Mathematics? by Courant and Robbins [26].

Gilbert, who studied Steiner trees in [35], proposed the following generalisation of
the ESP [34]. Let T be an undirected network interconnecting a set N = {p1, . . . , pk} of
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k terminals in the Euclidean plane. For each pair pi, pj, i 6= j of terminals, a bilateral
non-negative �ow tij = tji is assigned between the pair of terminals. The cost of an edge
e in T is w(te)le, where le is the Euclidean length of e, te is the sum of �ows being routed
through e, and w(·) is a cost function satisfying

w(t) ≥ 0 and w(t) > 0 if t > 0 (non− negative) (5.1)

w(t1 + t2) ≥ w(t1) for all t2 > 0 (nondecreasing) (5.2)

w(t1 + t2) ≤ w(t1) + w(t2) for any t1, t2 > 0 (triangular) (5.3)

In [27], condition (5.3), which we call the triangular condition, was incorrectly interpreted
as concavity of the cost function. In [75] it was shown that this is not correct, as demon-
strated by the following counterexample from N. C. Wormald. Let the cost function be

w(t) =





√
t, if 0 ≤ t ≤ 1;

1 + 1
4(t− 1)2, if 1 ≤ t ≤ 3;

2, if t ≥ 3.

This function satis�es (5.1), (5.2) and (5.3), but it is not concave.

The total cost of T is the sum of all edge costs, i.e.

C(T) = ∑
e∈E

w(te)le

where E is the set of all edges in T. A network satisfying the above conditions is called a
Gilbert network. For a given edge e in T, w(te) is called the weight of e, and is also denoted
simply by we.

A Gilbert network T is a minimum Gilbert network (MGN), if T has the minimum cost
of all Gilbert networks spanning the same point set N, with the same �ow demands tij

and the same cost function w(·). The Gilbert network problem (GNP) is to �nd an MGN for
a given terminal set N, �ows tij and cost function w(·). Since its inception in [34], various
aspects of the GNP have been studied, although the emphasis has been on discovering
geometric properties of MGNs (see [27], [75], [78]).
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As for the ESP, additional vertices are permitted to create a weighted network whose
cost is less than would otherwise be possible, and these additional points are still called
Steiner points. A Steiner point s in T is called locally minimal if a perturbation of s does not
reduce the cost of T. A Gilbert network is called locally minimal if no perturbation of the
Steiner points reduces the cost of T.

One can also study a directed version of the GNP, where �ows tij are de�ned for every
ordered pair (i, j) (see [42], page 80). Each Steiner point in the network satis�es Kirch-
hoff's conservation of �ow rule (i.e. the net incoming and outgoing �ows at the Steiner
point are equal). A special case of this model is when the k terminals N = {p1, . . . , pk}
consist of k− 1 sources, p1, . . . , pk−1, and a unique sink pk. Then tij is zero except when i is
a source and j is the sink. To simplify notation, we let ti denote the �ow between a source
pi and the sink pk. We refer to the problem with this �ow structure as the Gilbert arbores-
cence problem (GAP), and an MGN with this �ow structure is called a minimum Gilbert
arborescence (MGA).

Traditionally, the term `arborescence' has been used to describe a rooted tree provid-
ing directed paths from the root (source) to k − 1 sinks. Here we are interested in the
case where the �ow directions are reversed, i.e. �ow is from k − 1 sources to a unique
sink. It is clear, however, that the resulting weights for the two problems are equivalent,
hence we will continue to use the term `arborescence' for the latter case. Moreover, if we
take the sum of these two cases, and rescale the �ows (dividing �ows in each direction
by two), then again the weights for the total �ow on each edge are the same as in the
previous two cases. This justi�es our claim that the GAP can be treated as a special case
of the GNP. It will be convenient, however, to think of arborescences as networks with a
unique sink.

We point out that there is a problem similar to the GAP in the literature, called the
grade of service Steiner minimum tree (GOSST) problem [88], which we do not discuss here.

5.3 Fundamental properties of minimum Gilbert arborescences

We now establish some fundamental properties of MGAs.
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Figure 5.1: Cycles and crossing edges in a Gilbert arborescence.

5.3.1 Cycles and crossing edges

In contrast to SMTs, an MGN is not necessarily a tree, i.e. it may contain cycles. Moreover,
edges in an MGN can cross each other in such a way that the bilateral �ows do not change
direction. In the following lemma, we show that neither of these phenomena can occur
in an MGA.

Lemma 5.1. An MGA has a tree topology, i.e. it contains no cycles or crossing edges.

Proof. Suppose that vi and vj are vertices in an MGA T, such that there exist two paths
P1, P2 routing respective �ows t1 and t2 from vi to vj, where the two paths have no shared
edges (Figure 5.1). Thus T has a cycle T′, in the sense that the underlying undirected
network has a cycle. Let E1 and E2 denote the sets of edges used by the two respective
�ow paths. Then

C(T′) = ∑
e∈E1

w(te)le + ∑
e∈E2

w(te)le.

where te is the total �ow through edge e, and le is the length of e. Without loss of gen-
erality, suppose that ∑e∈E1 le ≤ ∑e∈E2 le, i.e. the total length of P1 is no greater than the
total length of P2. Now suppose we route all �ow exiting vi through P1. Then for the new
subtree T′′, we have

C(T′′) = ∑
e∈E1

w(te + t2)le + ∑
e∈E2

w(te − t2)le
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≤ ∑
e∈E1

(w(te) + w(t2))le + ∑
e∈E2

(w(te)− w(t2))le (5.4)

= ∑
e∈E1

w(te)le + ∑
e∈E1

w(t2)le + ∑
e∈E2

w(te)le − ∑
e∈E2

w(t2))le

≤ ∑
e∈E1

w(te)le + ∑
e∈E2

w(te)le

= C(T′)

where (5.4) results from the triangular condition (5.3). The cost of T′′ is further reduced
by deleting the �rst edge on P2, which now facilitates zero �ow. Thus T′′ is not a cycle,
and C(T′′) < C(T′).

If T contains a crossing edge, a Steiner point can be created at the point where the two
edges cross without affecting the network. But then T contains a cycle, and the cost of T
can be reduced by the above procedure.

Note that Lemma 5.1 does not hold for a general MGN. This is because in an MGN
bilateral �ows are assigned between pairs of terminals. Hence the paths P1 and P2 may
both be justi�ed if there are large �ows assigned between v (assuming v is a terminal)
and additional terminals on P1 and P2.

5.3.2 Minimum degree of Steiner points

The degree of a Steiner point s is the number of edges incident with s. The following
lemma places a lower bound on the degree of Steiner points in MGAs.

Lemma 5.2. Let T be an MGA and let s be a Steiner point in T. Then the degree of s is at least
three.

Proof. Suppose s is a degree-one Steiner point (Figure 5.2 (i)). Since s is neither a source
nor a sink, no �ow be routed through s. Thus s can be deleted along with its incident
edge to reduce the cost of the network.

Now suppose s is a degree-two Steiner point with adjacent vertices p1, p2 (Figure 5.2
(i)). Assume that �ow is routed from p1 to p2 via s. The weights on p1s and sp2 must
be the same since, by the law of conservation of �ow, �ow entering s is the same as �ow
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Figure 5.2: Minimum degree of Steiner points. (i) Degree-one Steiner point. (ii) Degree-
two Steiner point.

exiting s. Therefore the cost of the network can be reduced by deleting s and its two
incident edges and constructing a single edge between p1 and p2.

5.3.3 Properties of weights

Let s be a degree-k Steiner point in a minimum Gilbert arborescence T. The subtree of T
composed of s, its incident edges and neighbouring vertices has a star topology. We say
that s has incident source edges p1s, . . . , pk−1s directed into s, and an incident sink edge spk

directed away from s. Denote the weight on edge spi, i = 1, . . . , k by wi.

Given a cost function w(·) satisfying the conditions for Gilbert networks, the weights
on the edges are computed as follows:

wi = w(ti), i = 1, . . . , k− 1, (5.5)

wk = w
(

k−1
∑
i=1

ti

)
. (5.6)

Since w(·) is a nondecreasing function, it follows that the weight on the sink edge is
strictly greater than any of the weights on the source edges, i.e.

wk > wi, i = 1, . . . , k− 1. (5.7)
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Moreover, if we assume that the cost function is of the form w(t) = d + ht, where d > 0
and h ≥ 0, the weight on the sink edge is strictly less than the sum of the weights on the
source edges, i.e.

wk <
k−1
∑
i=1

wi. (5.8)

For the case where w(t) = ht, h > 0, we have wk = ∑k−1
i=1 wi, i.e. the weight on the sink

edge is equal to the sum of the weights on the source edges. In such a case it is easy to see
that the subtree is minimal when s collapses onto pk, i.e. all �ows are routed via straight
edges from the sources to the sink.

5.3.4 Linear cost function

The linear cost function w(t) = d + ht, where d, h are non-negative constants, is of partic-
ular interest, because it provides a realistic basis for modelling development and haulage
costs in underground mines. In this case the weights on the edges localised around a
degree-k Steiner point are

wi = d + hti, i = 1, . . . , k− 1 (5.9)

wk = d + h
k−1
∑
i=1

ti. (5.10)

For any d > 0, if we set h = 0, then the MGA reduces to the (unweighted) SMT. On the
other hand, if h > 0 and d = 0, then the weighted SMT consists of a star con�guration
connecting each source directly to the sink. In this work we assume that the values of d
and h are strictly positive, and hence the MGAs obtained usually lie somewhere between
these two extremes.

A useful intuitive result is that increasing the weight we on an edge e while keeping
the other weights �xed tends to cause the network to distort so as to reduce the length
of e. Moreover, increasing some tj, j ∈ {1, . . . , k− 1} tends to cause the path between pj

and the sink pk to shorten. Assuming the other ti, i ∈ {1, . . . , k − 1}, i 6= j are �xed at
�nite values, then as tj → ∞, the path between pj and pk approaches a straight line.
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5.3.5 Collinear terminals

Suppose N = {p1, . . . , pk} is a set of terminals lying on a Euclidean straight line, where
p1, . . . , pk−1 are sources with respective positive �ows t1, . . . , tk−1, and pk is the sink. Then
the minimum Gilbert arborescence for N is trivial; it simply consists of an edge between
each pair of adjacent terminals, and the edges are directed towards pk. From this point
on, we will assume that the terminals in N are not collinear.

5.4 Characterisation of Steiner points

Recall from Chapter 2 that an FW point x0 for a given set of points N = {p1, . . . , pk} in
Euclidean space can be characterised in terms of the weighted unit vectors from x0 to the
points in N (Theorem 2.1). That is, if x0 does not coincide with a point in N, then x0 is an
FW point for N if and only if

k
∑
i=1

wiui = 0, (5.11)

where ui is the unit vector from x0 to pi and wi > 0 is the weight assigned to pi. Other-
wise, if x0 does coincide with a point pj ∈ N, then x0 = pj is an FW point for N if and
only if ∣∣∣∣∣

k
∑

i=1,i 6=j
wiui

∣∣∣∣∣ ≤ wj, (5.12)

where ui is the unit vector from pj to pi.

We are interested in this characterisation because the FW problem is the local version
of the Gilbert arborescence problem. That is, each Steiner point in a Gilbert arborescence
T is an FW point with respect to its adjacent vertices in T. Therefore, if s is a Steiner point
in T, then the weighted unit vectors from s to its adjacent vertices must sum to zero.
Moreover, if (5.11) holds for some x0 not equal to any pi, then (5.12) will automatically
not hold, since the FW point is unique (assuming that the pi are noncollinear).

Although condition (5.11) is necessary for s to be a Steiner point in T, in general it is
not suf�cient. It ensures that s is locally minimal with respect to its adjacent vertices, but
does not guarantee that the star T is of lesser cost compared to any other minimal graph
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Figure 5.3: Splitting a degree-four Steiner point.

with a different topology.

Take for example the unweighted problem shown in Figure 5.3, i.e. all the weights are
equal to one. A Steiner point s has adjacent vertices p1, p2, p3, p4 lying at the corners of a
rectangle two units long by one unit wide. If s lies at the intersection of the two diagonals
p1 p3 and p2 p4, then clearly the unit vectors from s to p1, p2, p2, p4 sum to zero, since the
two vectors on a diagonal are equal and opposite. The length of the resulting subtree is
2
√

5 ≈ 4.47.

If we replace s with two Steiner points s1 and s2, and position the new points such that
all meeting edges make angles of 120◦ with each other, then the length of the new subtree
(shown dashed in Figure 5.3) is 2 +

√
3 ≈ 3.73, which is shorter than the previously

computed subtree.

Lawlor and Morgan [54] gave necessary and suf�cient conditions for a tree with a star
topology to be an SMT in Euclidean space. Here we generalise this result to the GAP.

Theorem 5.1. Let N = {p1, . . . , pk} be a set of terminals in Euclidean space, where p1, . . . , pk−1

are sources with respective positive �ows t1, . . . , tk−1, and pk is the sink. Let T be an arborescence
with a star topology joining an additional point s /∈ N to each pi, i ∈ {1, . . . , k}, so that �ows
are routed from the sources to the sink via s. Let w(·) be a cost function satisfying the conditions
for Gilbert networks, so that the weight on pis, i = 1, . . . , k− 1 is wi = w(ti) and the weight on
spk is wk = w

(
∑k−1

i=1 ti
)

. Let ui denote the unit vector from s to pi. Then T is an MGA on N if
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and only if
k

∑
i=1

wiui = 0, (5.13)

and, for each I ⊆ {1, . . . , k}, ∣∣∣∣∣∑i∈I
wiui

∣∣∣∣∣ ≤ wI , (5.14)

where wI is computed as follows: If k /∈ I, then wI = w (∑i∈I ti); otherwise, if k ∈ I, then
wI = w (∑i∈I′ ti), where I ′ = {1, . . . , k}\I.

Proof. (⇒) Assume that T is an MGA on N for the given �ows and the given cost func-
tion. Then s is a Fermat-Weber point for N and, since s /∈ N, condition (5.13) must be
satis�ed.

Now consider an arbitrary set I ⊆ {1, . . . , k− 1}, i.e. I does not contain k. Let N′ =

{pi : i ∈ I} ∪ s. Construct an arborescence T′ connecting a new point s′ with each point
in N′, where {pi : i ∈ I} are sources with �ows ti, and s is the sink. Thus the weight on
pis′, i ∈ I, is w(ti), and the weight on s′s is w (∑i∈I ti). Since T is an MGA by assumption,
s′ must collapse onto s, otherwise the cost of T could be reduced by replacing {pis : i ∈ I}
with T′, leaving the remaining parts of T unchanged. This implies that condition (5.14)
must be satis�ed for any I ⊆ {1, . . . , k− 1}.

Now suppose that k ∈ I. De�ning N′ as in the previous paragraph, we again con-
struct an arborescence connecting s′ with each point in N′, but now the sources are
{pi : i ∈ I, i 6= k} and s, while the sink is pk. The weight on pis′, i ∈ I, i 6= k is
w(ti), the weight on s′pk is w

(
∑k

i=1 ti
)

, and the weight on ss′ is w (∑i∈I′ ti). Since T is an
MGA by assumption, s′ collapses onto s, and therefore condition (5.14) must be satis�ed
for any I ⊆ {1, . . . , k− 1} ∪ k.

(⇐) Suppose that conditions (5.13) and (5.14) are satis�ed. Condition (5.13) implies that
T is locally minimal for its (star) topology. Thus a perturbation of s will increase the cost
of T. Now suppose we split s into s1 and s2, such that s1 is connected to {pi : i ∈ I} ∪ s2

and s2 is connected to {pi : i ∈ I ′} ∪ s1. By condition (5.14), any perturbation of s1 or s2

will increase the cost of T. Thus T is an MGA on N, which completes the proof.
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5.5 Maximum degree of Steiner points in the plane

A major difference between Euclidean Steiner trees and Gilbert networks is that the de-
gree of a Steiner point in a Euclidean Steiner tree is always three, whereas the degree
of a Steiner point in an MGN can be arbitrarily large [27]. In this section we show that,
for MGAs in the Euclidean plane with a linear cost function, the degree of all Steiner
points is three. For the remainder of this section we will assume a linear cost function
w(t) = d + ht, where d and h are positive constants.

We begin by looking at the four-terminal case. Let N = {p1, p2, p3, p4} be a set of
terminals in the Euclidean plane, where p1, p2, p3 are sources with respective positive
�ows t1, t2, t3, and p4 is the sink. Let T be the star joining an additional point s /∈ N to
each pi, i = 1, . . . , 4, so that �ow is from the sources to the sink via s (Figure 5.4 (i)).

Since we are assuming a linear cost function w(t) = d + ht, the weights wi on edges
pis, i = 1, 2, 3, are given by wi = d + hti, while the weight on sp4 is w4 = d + h(t1 + t2 +

t3).
Let ui, i = 1, . . . , 4, denote the unit vectors from s to pi, and let vi = wiui denote the

weighted unit vectors. By Theorem 5.1, T is an MGN on N for the given �ows and the
given cost function if and only if the following conditions are all satis�ed:

v1 + v2 + v3 + v4 = 0 (5.15)

|v1 + v2| ≤ d + h(t1 + t2) (5.16)

|v1 + v3| ≤ d + h(t1 + t3) (5.17)

|v2 + v3| ≤ d + h(t2 + t3) (5.18)

(Note that we have ignored trivial cases where |I| = 1, 3, 4. It is easy to see that such
trivial inequalities are always satis�ed if (5.15) is satis�ed.) Denote |v1 + v2|, |v1 + v3|
and |v2 + v3| by D12, D13 and D23, respectively. Adding pairs of equations (5.16), (5.17)
and (5.18) together, we have

D12 + D13 ≤ d + h(t1 + t2) + d + h(t1 + t3) = w1 + w4 (5.19)

D12 + D23 ≤ d + h(t1 + t2) + d + h(t2 + t3) = w2 + w4 (5.20)
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Figure 5.4: Degree-four Steiner point in a Gilbert arborescence in the Euclidean plane. (i)
Gilbert arborescence. (ii)�(iii) Convex quadrilateral (polygon) with edges corresponding
to weighted unit vectors.
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D23 + D13 ≤ d + h(t2 + t3) + d + h(t1 + t3) = w3 + w4. (5.21)

Thus, to prove that a degree-four Steiner point cannot exist in an MGA in the Euclidean
plane (assuming a linear cost function), we need only show that condition (5.15) implies
that at least one of (5.19), (5.20), (5.21) is always broken. This idea is the basis for the
proof of the following lemma.

Lemma 5.3. Let T be an MGA in the Euclidean plane, and let s be a Steiner point in T. Then the
degree of s is not four.

Proof. Assume that (5.15) is satis�ed. Therefore, if the vectors v1, v2, v3, v4 are positioned
`head to tail' in order of index, they form a convex quadrilateral with sides of length
w1, w2, w3, w4 (Figure 5.4 (ii)). From the triangle inequality, we have

D12 + D23 > w2 + w4,

which contradicts condition (5.20). Thus s cannot have degree four.

The previous lemma can be extended to Steiner points with arbitrary degree. Sup-
pose s is a degree-k Steiner point in T with adjacent edges sp1, . . . , spk having respective
positive weights w1, . . . , wk. Again, assume that the edges are arranged in order of in-
dex around s. If s is a Steiner point, then ∑k

i=1 vi = 0, and if the vectors are positioned
head to tail in order of index, the result is a convex polygon whose sides have lengths
corresponding to the edge weights (Figure 5.4 (iii)).

We now choose an arbitrary side of the polygon corresponding to some weight wj, j 6=
k, so that the sides corresponding to wj and wk form the opposite sides of a convex quadri-
lateral (shown shaded in Figure 5.4 (iii)). Applying the triangle inequality to the polygon,
we have ∣∣∣∣∣

j

∑
i=1

vi

∣∣∣∣∣ +

∣∣∣∣∣
k−1
∑
i=j

vi

∣∣∣∣∣ > wj + wk (5.22)

But from Theorem 5.1, for s to be a Steiner point, we require
∣∣∣∣∣

j

∑
i=1

vi

∣∣∣∣∣ +

∣∣∣∣∣
k−1
∑
i=j

vi

∣∣∣∣∣ ≤ w
( j

∑
i=1

ti

)
+ w

(
k−1
∑
i=j

ti

)
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= w
(

tj +
k−1
∑
i=1

ti

)

< wj + wk

which contradicts (5.22). This leads to the following theorem.

Theorem 5.2. Let T be an MGA in the Euclidean plane with a linear cost function, and let s be
a Steiner point in T. Then s has degree three.

5.6 Maximum degree of Steiner points in three-space

In this section we consider MGAs in Euclidean three-space. Starting with the four-
terminal problem, the situation is as shown in Figure 5.4 (i), except that the edges are
no longer con�ned to the plane. We now state the following conjecture.

Conjecture 5.1. Let T be an MGA with a linear cost function in Euclidean three-space, and let s
be a Steiner point in T. Then s has degree three.

The following discussion provides a partially-complete proof of the conjecture. Suppose
we position the vectors v1, v2 and v3 emanating from the same point. We can consider
the three vectors to de�ne the sides of a parallelepiped with edge lengths w1, w2, w3 (Fig-
ure 5.5 (i)). Then D12, D23, D13 are the lengths of the three face diagonals of the paral-
lelepiped (shown �ne dashed in Figure 5.5 (i)).

We will refer to the diagonal from the tail of the three vectors to the opposite corner
of the parallelepiped as the main diagonal (the dashed line in Figure 5.5 (i)). Assume that
condition (5.15) is satis�ed, i.e. the vectors are in equilibrium. Then it is easy to see that
the length of the main diagonal must be w4.

For the three given positive weights w1, w2, w3, we can also de�ne a corresponding
cuboid, which is a rectangular parallelepiped (or rectangular prism), i.e. a parallelepiped
in which all angles are right angles (Figure 5.5 (ii)). For a cuboid, we have

D12 =
√

w2
1 + w2

2 (5.23)

D23 =
√

w2
2 + w2

3 (5.24)
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D13 =
√

w2
1 + w2

3 (5.25)

w4 =
√

w2
1 + w2

2 + w2
3. (5.26)

The following lemma regarding cuboids is useful.

Lemma 5.4. For w1, w2, w3 > 0, we have

√
w2

1 + w2
2 +

√
w2

1 + w2
3 > w1 +

√
w2

1 + w2
2 + w2

3 (5.27)
√

w2
1 + w2

2 +
√

w2
2 + w2

3 > w2 +
√

w2
1 + w2

2 + w2
3 (5.28)

√
w2

1 + w2
3 +

√
w2

2 + w2
3 > w3 +

√
w2

1 + w2
2 + w2

3. (5.29)

Proof. First observe that, for any positive numbers A, B, C, if A > C, we have

√
A +

√
B + C >

√
A + B +

√
C.

Now, set A = w2
1 + w2

2, B = w2
3 and C = w2

1. Since A > C, condition (5.27) follows. The
other two conditions are proved similarly.

The parallelepiped corresponding to the original vectors v1, v2, v3 can be obtained
from the cuboid with edge lengths w1, w2, w3, by applying an edge-length-preserving distor-
tion until the required parallelepiped is obtained. An edge-length-preserving distortion
can be considered to have three components, where the vector de�ning each component
lies in the plane of one of the orthogonal faces of the rectangular parallelepiped. Each
component is applied separately to one corner of the corresponding face, and the oppo-
site corner is �xed. The effect is to distort the corresponding face, leaving the shapes of
the other faces unchanged. Examples of the three perturbation components are shown in
Figure 5.6 (i)�(iii) respectively.

Suppose that the lengths of all three face diagonals increase under the perturbation
or that two face diagonals decrease and one increases under. Since the length of any of
the face diagonals increases faster than the length of the main diagonal, the sum of the
lengths of any pair of face diagonals increases faster than the length of the main diagonal.
Now suppose that two of the face diagonals increase, and the other decreases. Then the
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Figure 5.5: Degree-four Steiner point in a Gilbert arborescence in Euclidean three-space.
(i) Parallelepiped with edges corresponding to weighted unit vectors. (ii) Cuboid with
edge lengths corresponding to source weights.

Figure 5.6: Cuboid subjected to an edge-length-preserving distortion with three orthog-
onal components (i)�(iii).
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sum of the two increasing face diagonals increases faster than the main diagonal.

Assume that the lengths of all three face diagonals do not increase under the pertur-
bation. We now require the variational argument, which is discussed in detail in Chapter 7
Section 7.2.3 and brie�y described here. Let �D denote the directional derivative of the
length of D. If one end b of D is perturbed while the other a end remains �xed, such that
b moves to b′, then �D = − cos(∠abb′) (see [67]). Thus, under the assumption that all three
face diagonals do not increase under a perturbation of the cuboid, we have−1 ≤ �D12 ≤ 0,
−1 ≤ �D23 ≤ 0, and −1 ≤ �D13 ≤ 0. Without loss of generality, assume that

�D12 ≤ �D23 ≤ �D13. (5.30)

Noting that for a cuboid we have

D12
w4

+
D23
w4

+
D13
w4

> 2, (5.31)

the directional derivative of the length of the main diagonal, denoted by �w4, is given by

�w4 =
D12
w4

�D12 +
D23
w4

�D23 +
D13
w4

�D13

≤
( D12

w4
+

D23
w4

)
�D23 +

D13
w4

�D13 (5.32)

<

(
2− D13

w4

)
�D23 +

D13
w4

�D13 (5.33)

= 2 �D23 − D13
w4

�D23 +
D13
w4

�D13

= 2 �D23 +
D13
w4

( �D13 − �D23
)

< 2 �D23 +
( �D13 − �D23

)
(5.34)

= �D23 + �D13

where (5.32) follows from (5.30), (5.33) follows from (5.31), and (5.34) follows from the
fact that D13

w4
< 1. Therefore, under an edge-length-preserving distortion of a cuboid with

edge lengths w1, w2, w3, under which the lengths of at least two of the diagonals decrease,
the length of the main diagonal decreases more quickly than the sum of the lengths of at
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least one pair of face diagonals.

We have shown in Theorem 5.2 that, if we continue to distort the parallelepiped until
it is completely �at (i.e. it lies in a plane), then the sum of the lengths of at least one pair
of diagonals exceeds wi + w4, where wi is the weight common to both diagonals. To com-
plete the proof of the conjecture, we need to show that the length of the main diagonal
decreases more quickly than the sum of the lengths of a pair of face diagonals for per-
turbations of all parallelepipeds between the cuboid and the �attened quadrilateral. The
result could then be generalised to higher-degree Steiner points using a similar argument
to the one used in the proof on Theorem 5.2.

5.7 Angles between edges incident to a Steiner point

We have shown that, assuming a linear cost function, the degree of all Steiner points
in MGAs in the Euclidean plane is three, and there is strong evidence to suggest that
this is so for MGAs in three-space. Hence it is useful to analyse the optimum angles
between edges incident to a degree-three Steiner point. Such knowledge can be useful
for developing techniques for solving the Gilbert arborescence problem.

Let N = {p1, p2, p3} be a set of terminals in the Euclidean plane, where p1, p2 are
sources with respective positive �ows t1, t2, and p3 is the sink (Figure 5.7 (i)). Let T
be the star connecting a variable point s to each terminal in N. Let α, β, γ denote the
angles opposite sp1, sp2, sp3 respectively. Hence α and β are angles between a source
edge and the sink edge, and γ is the angle between the two source edges. Let α′ = π− α,
β′ = π− β, γ′ = π−γ. De�ne w(·) to be a cost function satisfying (5.1), (5.2) and (5.3), so
that the weights on sp1, sp2, sp3 are w1 = w(t1), w2 = w(t2), w3 = w(t1 + t2), respectively.

Let u1, u2, u3 be the unit vectors from s to p1, p2, p3, respectively, and let vi = wiui, i =

1, 2, 3. Assuming s does not optimally coincide with a terminal, then by Theorem 2.1 in
Chapter 2, s is an FW point for N (and hence, by Theorem 5.1, T is a MGA for N for
the three-point case), if and only if v1 + v2 + v3 = 0. This vector sum forms a triangle,
called the weight triangle (Figure 5.7 (ii)), with edge lengths w1, w2, w3, and internal angles
α′, β′, γ′. From the weight triangle, we can compute the optimum angles between the
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Figure 5.7: Three-terminal Gilbert arborescence problem. (i) Terminals and angles. (ii)
Weight triangle.

three edges as functions of the three weights. Applying the cosine rule to the weight
triangle, and using the identity cos(π − A) = − cos A, we have

cos α =
w2(t1)− w2(t2)− w2(t1 + t2)

2w(t2)w(t1 + t2)
, (5.35)

cos β =
w2(t2)− w2(t1)− w2(t1 + t2)

2w(t1)w(t1 + t2)
, (5.36)

cos γ =
w2(t1 + t2)− w2(t1)− w2(t2)

2w(t1)w(t2)
. (5.37)

From these expressions we can �nd upper and lower bounds for the angle γ between two
source edges incident with a degree-three Steiner point and the angle α (or β) between a
source and a sink edge incident with a degree-three Steiner point.

From (5.35), it is clear that cos α < 0, since w2(t1) − w2(t1 + t2) < 0. Thus α > π
2

and, similarly, β > π
2 . To examine the maximum angle between a source and a sink edge,

consider Equation (5.35). To maximise α, we need to minimise cos α. To do this, note that,
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from condition (5.3), as t1, t2 → ∞, we have w(t1 + t2) → w(t1) + w(t2). Then we have

cos α → w2(t1)− w2(t2)− (w(t1) + w(t2))2

2w(t2)(w(t1) + w(t2))

=
−2w2(t2)− 2w(t1)w(t2)
2w(t1)w(t2) + 2w2(t2)

= −1.

Therefore α → π. To examine the maximum angle between two source edges, again
assume that t1

t2
is large. Then w(t1 + t2) ≈ w(t1). From (5.37), we have

cos γ ≈ −1
2

w(t2)
w(t1)

≥ −1
2.

Thus γ ≈ 2π
3 . For the minimum angle between two source edges, let t1, t2 → ∞. Then

w(t1 + t2) → w(t1) + w(t2), and we have

cos γ → (w(t1) + w(t2))2 − w2(t1)− w2(t2)
2w(t1)w(t2)

=
2w(t1)w(t2)
2w(t1)w(t2)

= 1.

Therefore γ → 0. The upper and lower bounds are summarised in the following lemma.

Lemma 5.5. Let s be a degree-three Steiner point in an MGA. Then:

• The angle between a source edge and a sink edge is strictly greater than π
2 , and strictly less

than π.
• The angle between two source edges is strictly greater than zero, and strictly less than 2π

3 .

The following known result provides a condition which guarantees that the angle be-
tween any two adjacent edges incident with a Steiner point is greater than π

2 .

Lemma 5.6. [78] If the cost function satis�es the condition

w2(t1) + w2(t2) > w2(t1 + t2), ∀t1, t2 > 0, (5.38)
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then the angle between any two adjacent edges incident with a Steiner point is greater than π
2 .

Proof. From (5.37), if (5.38) is satis�ed, then cos γ < 0, which implies that γ > π
2 .

Thus, if this condition holds, the minimum angle between two source edges is in-
creased from zero to π/2. We can also make the following observation about the optimal
angles α, β, γ.

Lemma 5.7. The angle γ between the two source edges is always less than or equal to the angle
between a source edge and a sink edge.

Proof. Applying the sine rule to the weight triangle, we have:

w(t1 + t2)
w(t1)

=
sin γ′

sin α′
≥ 1 (5.39)

Thus sin γ′ ≥ sin α′, which implies that sin γ ≥ sin α, and therefore γ ≤ α.

5.7.1 Critical and absorbing angles

When the points in N lie in a Euclidean plane, necessary conditions for a vertex to be a
Steiner point in an MGA can be stated in terms of so-called critical and absorbing angles.
Critical and absorbing angles were posed in [72] and [71] for SMTs in Minkowski planes.

An angle ∠p1sp2 between two edges p1s and p2s is critical if there exists a point p3 6= s
such that s is an FW point for the set N = {p1, p2, p3}, where the given points have respec-
tive positive weights w1, w2, w3. Critical angles are a direct generalisation of Euclidean
120◦ angles in SMTs. The angle ∠p1sp2 is absorbing if s is an FW point for N = {p1, p2, s}.

In the following lemma we generalise the de�nitions of critical and absorbing angles
provided in [72] to the weighted case.

Lemma 5.8. Let ∠p1sp2 be an angle between two edges p1s and p2s with respective positive
weights w1 and w2. Let w3 > 0 be an additional given weight. Denote the unit vectors from s to
pi, i = 1, 2 by ui. Then

1. ∠p1sp2 is a critical angle if and only if |w1u1 + w2u2| = w3 if and only if

cos ∠p1sp2 =
w2

3 − w2
1 − w2

2
2w1w2

.
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Figure 5.8: Absorbing angles. (i) Source edges. (ii) Source and sink edges.

2. ∠p1sp2 is an absorbing angle if and only if |w1u1 + w2u2| ≤ w3 if and only if

cos ∠p1sp2 ≤ w2
3 − w2

1 − w2
2

2w1w2
.

Proof. Follows directly from the proof in [72] and identities (5.35), (5.36) and (5.37).

Thus a critical angle is also an absorbing angle, but an absorbing angle is, in general, not
a critical angle. It was noted in [72] that all angles between edges incident with a Steiner
point in an SMT are absorbing.

If an angle ∠p1sp2 is not absorbing, then clearly the cost of the arborescence can be
reduced by splitting s into s and s′. This is shown in Figure 5.8 where (i) p1s, p2s are
source edges and (ii) p1s is a source edge and sp2 is a sink edge.

We now state necessary conditions for a vertex to be a Steiner point in an MGA in the
Euclidean plane.

Theorem 5.3. Let N = {p1, . . . , pk} be a set of terminals in the Euclidean plane, where
p1, . . . , pk−1 are sources with respective positive �ows t1, . . . , tk−1, and pk is the sink. Let T be an
arborescence with a star topology joining an additional point s /∈ N to each pi, i ∈ {1, . . . , k}, so
that �ows are routed from the sources to the sink via s. Let w(·) be a cost function satisfying the



5.8 Exact and approximate algorithms 115

conditions for Gilbert networks, so that the weight on an edge e with total �ow te is w(te). Let ui

denote the unit vector from s to pi. If T is an MGA on N, then

1. The sum of the weighted unit vectors from s to each pi i ∈ {1, . . . , k} is zero; and
2. All angles in the star con�guration are absorbing.

Proof. Follows from Theorem 5.1.

5.8 Exact and approximate algorithms

To conclude this chapter, we brie�y discuss two known algorithms which can be adopted
to provide exact or approximate solutions to the Gilbert arborescence problem. We be-
gin by looking at a generalisation of the well-known Melzak algorithm for (unweighted)
Euclidean Steiner trees in the plane; an algorithm which provides exact solutions but is
computationally inef�cient for large numbers of terminals. We then discuss a heuristic
proposed by Thomas and Weng [75], and suggest some possible improvements to this
procedure.

5.8.1 The Melzak algorithm

The Melzak algorithm [61] was the �rst �nite algorithm for �nding (unweighted) Eu-
clidean Steiner trees in the plane. This and other algorithms for the ESP are also discussed
in [40], [41] and [43].

The Melzak algorithm �nds a (locally) minimal tree for every topology on N, and
selects the shortest one as an SMT. The algorithm consists of a merging stage and a recon-
struction stage. At each step of the merging stage, two arbitrary siblings a and b adjacent
to a Steiner point s are replaced by a new point, called an e-point. Points a and b and their
edges to s are deleted, and s is then treated as a terminal. The merging stage ends when
only two terminals remain.

The reconstruction stage starts by connecting the two remaining terminals by a straight
line, called a Simpson line. At each step of the reconstruction stage, an edge connected to
an e-point is replaced by a Steiner point and its three edges, where the Steiner point lies



116 Minimum Gilbert Arborescences in Euclidean Space

at the intersection of the Simpson line and the circle circumscribing the three points asso-
ciated with the e-point.

In 1967, Gilbert [34] identi�ed that a generalisation of Melzak's algorithm can be used
for �nding minimum Gilbert networks, provided every Steiner point in the Gilbert net-
work has degree three. It uses the same geometric construction procedure except the
angles in the triangles are altered to account for edge weights. This generalised Melzak
algorithm is discussed in a working paper [12]. We now apply the main result of this to
the Gilbert arborescence problem.

Theorem 5.4. A minimal Gilbert arborescence T for a given topology can be constructed in O(2n)

time by using a Melzak-type algorithm, where n is the number of terminals.

Once the minimal Gilbert arborescence has been found for every topology on N,
global optimisation techniques, such as simulated annealing, can be used to �nd an opti-
mal or suboptimal solution.

As noted in [24], the Melzak algorithm cannot be extended to higher-dimensional
spaces. The reason is that for two given points, there is an in�nite number of e-points.
Since all known exact methods for �nding SMTs use the Melzak algorithm as a subrou-
tine, or determine the e-point directly, these methods cannot be applied in higher dimen-
sions. Hence, other tools are required for solving the Gilbert arborescence problem in
higher dimensions.

5.8.2 Angle-splitting heuristic

The ESP is known to be NP-hard, and since the ESP is a special case of the Gilbert network
problem, we immediately conclude that the Gilbert network problem is also NP-hard.
Moreover, since the Gilbert arborescence problem is a special case of the Gilbert network
problem, it too is NP-hard. As a result, it is important to derive effective heuristics for
constructing good approximate solutions in linear time.

There exists a number of heuristics in the literature on minimum Gilbert networks.
Here we discuss one such heuristic, and suggest some possible improvements when ap-
plying the heuristic to the special case of the Gilbert arborescence problem.
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Thomas and Weng [75] proposed three heuristics for constructing minimum Gilbert
networks. The one we are interested in is the so-called angle-splitting heuristic. It starts
with the complete network, i.e. the network having edges between every pair of termi-
nals. At each iteration, a new tree is constructed by splitting an angle not satisfying a
required angle condition. It terminates when all angles in the network satisfy the angle
condition.

During the process, if a degree-two Steiner point occurs as a result of edge splitting,
the Steiner point is deleted, its incident edges are deleted, and a single edge is installed
between the two remaining vertices.

To apply the angle-splitting heuristic to the Gilbert arborescence problem, the algo-
rithm can be re�ned by implementing a number of changes to suit the characteristics of
arborescences.

First, rather than starting with the complete graph on N, we instead have as our initial
network the set of edges pi pk, i = 1, . . . , k− 1 connecting each source pi with the sink pk

(we can call this a complete arborescence). This seems logical since the �ow between two
arbitrary sources is zero, and hence the cost of the complete network is greater than that
of the complete arborescence.

One aspect of the angle-splitting heuristic that is not made clear in [75] is the order
in which angles are split. Since an order is not stated, it is assumed that an angle is
chosen somewhat arbitrarily. One idea to potentially improve the algorithm is to check
every angle at each iteration, and split the angle that is furthest from satisfying the angle
condition. Moreover, multiple angles in different subtrees could be split simultaneously
to improve ef�ciency.

Another idea is to start with the star topology obtained by solving the FW problem
for N, rather than starting with the complete arborescence. These ideas may be further
explored in future work.





Chapter 6

Minimum Gilbert Arborescences in
Minkowski Spaces

We study the Gilbert arborescence problem in Minkowski spaces. We provide a geometric charac-
terisation of Steiner points and terminals in minimum Gilbert arborescences in Minkowski spaces,
generalising a result for Steiner minimum trees [73].

6.1 Introduction

IN the previous chapter, we introduced the Gilbert arborescence problem (GAP) in Eu-
clidean space, a special case of the Gilbert network problem [34] where the k terminals

consist of k− 1 sources and a unique sink. For a given set N of terminals, a given set of
�ows t1, . . . , tk−1 and a given cost function w(·) satisfying conditions (5.1), (5.2) and (5.3),
we de�ned a minimum Gilbert arborescence (MGA) to be a network having the minimum
cost among all networks spanning N, with the same �ows and the same cost function.
In this chapter, we extend our study of MGAs from the Euclidean setting to Minkowski
spaces, which are �nite-dimensional real normed spaces.

Although Euclidean Steiner trees have been widely studied since their inception in
1934 [45], the study of Steiner trees in Minkowski spaces is relatively new. Hanan [39]
initiated the study of Steiner trees in rectilinear space. In 1967, Cockayne [25] initiated the
study of the Steiner problem in Minkowski planes (two-dimensional Minkowski spaces)
and obtained some results for three-terminal SMTs. Du et al. [29] investigated further
properties of SMTs in Minkowski planes. They showed that if the unit disk is differen-
tiable and strictly convex, then every full SMT consists of three sets of parallel segments.

119
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Alfaro et al. [1] showed that for Steiner trees in Minkowski planes, Steiner points have
degree three if the norm is smooth, and degree three or four if the norm is not smooth.

Du and Hwang [30] studied Steiner trees in Minkowski spaces where the unit ball
is a n-dimensional symmetric polytope with 2n extreme points. They proved that there
always exists an SMT such that the coordinates of the Steiner points are taken from the
set of coordinates of the terminals. Brazil and Zachariasen [19] studied Steiner trees in
Minkowski planes where the unit ball is a polygon, providing a linear-time algorithm for
computing an SMT for a given full Steiner topology.

Lawlor and Morgan [54] derived upper bounds for the degrees of Steiner points in
SMTs in Minkowski spaces, with emphasis on the `p norm. They showed that the de-
gree of Steiner points in smooth n-dimensional Minkowski spaces is at least three, and
no greater than n + 1. Swanepoel [70] strengthened this result by showing that the upper
bound also holds for terminals. He then studied the local structure of vertices in SMTs in
arbitrary Minkowski planes, providing a geometric characterisation of all Steiner points
and terminals in terms of the so-called absorbing angles [72]. This characterisation pro-
vides necessary and suf�cient conditions for a set of edges emanating from a point to be
in the neighbourhood of a vertex in an SMT. In a later paper [73], Swanepoel extended
this work by providing necessary and suf�cient conditions for certain star con�gurations
in n-dimensional Minkowski spaces to be SMTs. It is this last paper which forms a basis
for the material in this chapter.

Recall that in Chapter 3 we studied a similar but simpler problem, called the Fermat-
Weber problem, which asks for a point, called a Fermat-Weber point, minimising the sum
of weighted distances to k given points in a Minkowski space. Many of the results for
Fermat-Weber points are applicable to Steiner points in MGAs, since a Steiner point is
a Fermat-Weber point with respect to its adjacent vertices. However, as noted in the
previous chapter, the added complexity for MGAs stems from the fact that the cost of a
Gilbert arborescence can often be reduced by splitting Steiner points to produce a network
with a new topology.

Although the literature on Steiner trees in Minkowski spaces is growing steadily, it
appears to contain very little, if anything, relating to Gilbert networks. Here we extend
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some of the work done on Steiner minimum trees (SMTs) in Minkowski spaces to MGAs
in Minkowski spaces. We are particularly interested in generalising a geometric char-
acterisation of vertices in SMTs [73] to MGAs. This characterisation will be useful in
Chapters 7 and 8, where we study gradient-constrained MGAs in a vertical plane and
in three dimensions. Moreover, the generalisation of these results to the Gilbert network
problem in Minkowski spaces seems to be straightforward, and such a problem has a
potentially vast range of applications.

In Section 6.2, we provide necessary background relating to Minkowski spaces, func-
tional analysis and subdifferential calculus. In Section 6.3 we generalise an important
operation called reduced Minkowski addition [73] so that it is applicable to the Gilbert ar-
borescence problem. In Section 6.4, we present the geometric characterisation of termi-
nals and Steiner points in MGAs in Minkowski spaces and demonstrate their application
by examples.

6.2 Background

6.2.1 Minkowski spaces and the unit ball

For the necessary background relating to Minkowski spaces, we refer the reader to Sec-
tion 3.2, in particular, Lemmas 3.1, 3.2 and 3.3 in Section 3.2.1, which provide results
relating to the dual and unit ball.

6.2.2 Subdifferential calculus

Section 3.2.2 contains the necessary background relating to subdifferential calculus and
convex analysis. In particular, Lemmas 3.4 and 3.5 are very important, and are used in
the proof of the main theorem in this chapter. De�nitions are required for the Minkowski
sum of two sets, and Minkowski addition.

The following additional results about subdifferential calculus, which are required
for the proof of the main theorems in this chapter, were collected from various sources
and summarised in [73]. Here we simply restate the results, without proof (for details,
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refer to [73] and its source references).

Lemma 6.1. [89] Let fi : Xi → R, i = 1, . . . , k be convex, and de�ne f : X1 × · · · × Xk → R

by f (x1, . . . , xk) = ∑k
i=1 fi(xi). Then the subdifferential of the convex function f at (a1, . . . , ak)

is the Cartesian product

∂ f (a1, . . . , ak) =
k

∏
i=1

∂ fi(ai).

The next lemma is as follows.

Lemma 6.2. [73] Let X be a Minkowski space with norm ‖ · ‖ and corresponding dual space X∗.
For any x, y ∈ X, we have

∂‖x− y‖ = {(φ,−φ) : φ ∈ ∂(x− y) ⊆ X∗ × X∗}.

By Lemma 6.2, if e is an edge in a Gilbert arborescence in a Minkowski space X such that
its endpoints are Steiner points, then the subdifferential of the length of e corresponds to
two opposite exposed faces of the dual ball B∗.

6.3 Generalised theory for �ow-dependent networks

In this section we generalise some concepts presented in [73] so that they are applicable
to the Gilbert arborescence problem in Minkowski spaces. These concepts are required
in the proof of the main theorems.

Parenthesisations and abstract Steiner trees

Consider a �nite nonempty family Σ = {Ai : i ∈ I} of operands, where I ⊆ {1, . . . , k} is
called the support of Σ, and each Ai is a closed convex subset of B∗. A parenthesisation of
Σ, denoted by 〈Σ〉, is a parenthesisation, in the usual sense, of some ordering

Aj(1) ¢ · · ·¢ Aj(|I|)
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Figure 6.1: Examples of rooted abstract trees for a set of three elements. (i) Rooted abstract
Steiner tree. (ii) Rooted abstract Gilbert arborescence.

of Σ, where j : [|I|] → I is some bijection. For example, suppose Σ = {A1, A2, A3}. Then

〈Σ〉1 = A1 ¢ (A2 ¢ A3)

〈Σ〉2 = A2 ¢ (A1 ¢ A3)

〈Σ〉3 = A3 ¢ (A1 ¢ A2)

are all parenthesisations of Σ. Two parenthesisations are equivalent if they can be trans-
formed into each other using the commutative law on any subexpression. For example,
A1 ¢ (A2 ¢ A3) is equivalent to (A3 ¢ A2) ¢ A1.

The collection of equivalence classes of parenthesisations of a set Σ with support I
corresponds bijectively with the collection of abstract trees with |I| + 1 leaves labelled
by the elements of {0} ∪ I, and with |I| − 1 internal vertices of degree three. Such a
tree is called a rooted abstract Steiner tree on I. The node 0 is the root of the tree, node
i corresponds to Ai for each i ∈ I, and each internal vertex corresponds to an instance
of ¢ in the parenthesisation corresponding to the tree. The rooted abstract Steiner tree
associated with 〈Σ〉 is denoted by T0〈Σ〉. For example, a rooted abstract Steiner tree
corresponding to the parenthesisation (A1 ¢ A2) ¢ A3 is shown in Figure 6.1 (i). An
abstract Steiner tree on I is a tree with set of leaves I, and with |I| − 2 internal vertices of
degree 3.

It is easy to see that two parenthesisations are equivalent if and only if their associated
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rooted abstract Steiner trees are equal. The number of equivalence classes of parenthe-
sisations with support {1, . . . , k}, denoted by ak, is the product of the �rst k − 1 odd
numbers, i.e.

ak =
k−1
∏
i=1

(2i− 1).

For example, a3 = 3, a4 = 15, etc.

We de�ne a rooted abstract Gilbert arborescence on I (still denoted by T0〈Σ〉) to be a
rooted abstract Steiner tree whose edges are directed from |I| sources to a designated
sink, where |I| denotes the number of elements in the support set I. For example, a
rooted abstract Gilbert arborescence corresponding to the parenthesisation (A1 ¢ A2) ¢
A3, where node 3 is the sink, is shown in Figure 6.1 (ii). Note that the sink need not
coincide with the root.

Weighted reduced Minkowski addition

Recall from Chapter 3 that the Minkowski sum of two sets A and B in Euclidean space is
given by

A + B = {a + b : a ∈ A, b ∈ B}.

The reduced Minkowski sum of two closed, convex subsets C and D of the dual ball B∗ is
de�ned by [73]

A ¢ B = {a + b : a ∈ A, b ∈ B, ‖a + b‖∗ ≤ 1},

i.e. A ¢ B is the intersection of the usual Minkowski sum with the dual ball.

We now introduce a generalisation of reduced Minkowski addition. Let B∗(w) denote
a scaled copy of the dual ball B∗ with radius w, i.e. B∗(w) = {φ ∈ X∗ : ‖φ‖∗ ≤ w}. Let pis
and pjs be two source edges in a Gilbert arborescence. Suppose that the two edges route
�ows ti and tj from pi and pj to s, so that the weights on the two edges are w(ti) and w(tj)

respectively, where w(·) is a cost function satisfying the conditions for Gilbert networks.
Let Ai = wi∂(pi − s) and Aj = wj∂(pj − s). We de�ne the weighted reduced Minkowski
addition Ai ¢ Aj associated with two source edges as the usual Minkowski sum Ai + Aj

intersected by B∗(w(ti + tj)).
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Figure 6.2: Weighted Minkowski addition of (i) source edges and (ii) source and sink
edges.

Now suppose that spj is a source edge and spk is a sink edge, where the �ow routed
through spj is tj, and all the other �ow exiting s not from pj is denoted by �t. Thus the
weights on spj and spk are w(tj) and w(tj + �t) respectively. If Aj = wj∂(pj − s) and Ak =

wk∂(pk − s), then the weighted reduced Minkowski addition Aj ¢ Ak associated with a
source edge and a sink edge is the intersection of the usual Minkowski sum Aj + Ak with
B∗(w(�t)).

We demonstrate the concept of weighted reduced Minkowski addition by an exam-
ple. Suppose X is the plane equipped with the `∞ norm. Then the dual ball B∗ is the same
as the unit ball B for the rectilinear norm. Let the cost function be given by w(t) = 1 + t.
Suppose spi, spj are source edges with respective positive �ows ti = 3 and tj = 1. Then
the weights on the two edges are wi = 4 and wj = 2, and B∗(w(ti + tj)) = B∗(5). Let Ai

and Aj be points on the boundaries of B∗(4) and B∗(2), as shown in Figure 6.2 (i). Then
Ai + Aj is outside B∗(w(ti + tj)), and hence Ai ¢ Aj = ∅.

Now suppose that pjs is a source edge routing �ow tj = 1 and spk is a sink edge
routing �ow tk = 5. Then the �ow exiting s not from pj is �t = 4. The weights are
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therefore wj = 2, wk = 6 and w(�t) = 5. Let Aj and Ak be points on the boundaries of
B∗(2) and B∗(6), as shown in Figure 6.2 (ii). Then Aj + Ak is inside B∗(w(�t)), and hence
Aj ¢ Ak = Aj + Ak.

6.4 Characterisation of terminals

A characterisation of vertices (Steiner points and terminals) in Steiner trees in
n-dimensional Minkowski spaces was given in [73]. The characterisation is in terms
of reduced Minkowski addition de�ned on sets of subdifferentials associated with the
terminals.

In this section we generalise the characterisation to Steiner points and terminals in
MGAs in Minkowski spaces. The proofs for the main results follow closely with the
proofs provided in [73]. We begin with the characterisation of terminals.

Theorem 6.1. Let N = {p0, . . . , pk} be a set of terminals in a Minkowski space X, where
p0, . . . , pk−1 are sources with respective positive �ows t0, . . . , tk−1, and pk is the sink. Let T be an
arborescence with a star topology joining p0 to each pi, i ∈ {1, . . . , k}. Let w(·) be a cost function
satisfying the conditions for Gilbert networks. Then T is an MGA on N for the given �ows and
cost function if and only if 〈Σ〉 6= ∅ for each parenthesisation 〈Σ〉 of Σ = {wi∂(pi − p0) : i ∈
{1, . . . , k}}.

Proof. (Adapted from [73]) (⇒) Consider any parenthesisation 〈Σ〉 of Σ and its corre-
sponding rooted abstract Gilbert arborescence T0〈Σ〉. Turn this tree into a Gilbert ar-
borescence in X by associating leaf i with pi for each i ∈ {0, . . . , k}, and associating each
of the k− 1 internal vertices with a Steiner point si ∈ X, i ∈ {1, . . . , k− 1}. In doing this
we have constructed an arborescence with a full topology spanning the terminals in X,
where the topology is determined by the parenthesisation being considered, the Steiner
points are free to move, and �ows are directed from the sources to the sink. The Steiner
points si in T0〈Σ〉(s1, . . . , sk−1) may in fact coincide, resulting in the arborescence having
a degenerate topology.
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Denote this arborescence in X by T0〈Σ〉(s1, . . . , sk−1). Its cost is given by

C(s1, . . . , sk−1) = ∑
e∈E(T0〈Σ〉)

weρe(s1, . . . , sk−1),

where E(T0〈Σ〉) is the set of edges in T0〈Σ〉, we = w(te) is the weight on edge e which is a
function of the total �ow te routed through e, and ρe(s1, . . . , sk−1) = ‖a− b‖, where a and
b are the two endpoints of e. Thus C : X × · · · × X → R is a convex function since it is a
sum of convex functions.

Since T0〈Σ〉(p0, . . . , p0) is an arborescence with a star topology joining p0 to all pi, i ∈
{1, . . . , k}, which is an MGA by assumption, C attains its minimum at (p0, . . . , p0). Thus

o ∈ ∂C(p0, . . . , p0) = ∑
e∈E(T0〈Σ〉)

we∂ρe(p0, . . . , p0)

by Lemma 3.4 in Chapter 3. By Lemmas 6.1, 3.5 (Chapter 3) and 6.2, if e = sisj (i.e. both
endpoints of e are Steiner points), then

∂ρe(p0, . . . , p0) = {(o, . . . , o, φ, o, . . . , o,−φ, o, . . . , o) : φ ∈ B∗}

while if e = pisj (i.e. one endpoint of e is a terminal and the other is a Steiner point), then

∂ρe(p0, . . . , p0) = {(o, . . . , o, φ, o, . . . , o) : φ ∈ ∂(pi − p0)}.

By considering each coordinate i ∈ {1, . . . , k− 1} of ∂C (each coordinate corresponding
to a Steiner point in T0〈Σ〉(s1, . . . , sk−1)), we obtain a weighted functional weφe ∈ X∗ for
each edge e ∈ E(T0〈Σ〉) such that

weφe ∈




B∗(we), if e = sisj or e = p0si;
we∂(pi − p0), if e = pisj, i 6= 0,

and for each Steiner point si,
weφe = w f φ f + wgφg,

where e is the incoming edge and f , g are the two outgoing edges of si, when the tree is di-
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rected away from the root p0 (these directions may be different to the �ow directions). By
induction on the de�nition of T0〈Σ〉 (which is equivalent to induction on subexpressions
of 〈Σ〉), we obtain weφe ∈ 〈Σ〉, where e = p0si is the root edge. This gives 〈Σ〉 6= ∅.

(⇐) Consider any Gilbert arborescence in X spanning N = {p0, . . . , pk}. By splitting
Steiner points if necessary, we obtain a tree with leaves {p0, . . . , pk} and with k− 1 Steiner
points si of degree three, some of them possibly coinciding with each other or with the
pi. This tree is the rooted abstract Gilbert arborescence of some parenthesisation 〈Σ〉 of
Σ. As in the (⇒) argument, we obtain 〈Σ〉 6= ∅ which implies that o ∈ ∂C(p0, . . . , p0), i.e.
C attains its minimum at (p0, . . . , p0), which occurs when the tree is T0〈Σ〉(p0, . . . , p0), an
arborescence with a star topology joining p0 to the other pi.

6.4.1 An example

We demonstrate the application of Theorem 6.1 by the following example. Let X be a
Euclidean (x, z)-plane, where x is horizontal and z is vertical, equipped with the gradient-
constrained norm introduced in Chapter 4, i.e.

|op|g =





√
x2p + z2p, if g(op) ≤ m;

√
1 + m−2|zp|, if g(op) ≥ m

where o is the origin, p = (xp, zp) is a point in X, m > 0 is a constant and g(op) denotes
the absolute value of the gradient of the straight line segment between o and p. Setting
m = 1√

3 , the unit ball and dual ball are as shown in Figure 4.2 in Chapter 4.

Let N = {p0, p1, p2, p3} be a set of terminals in the plane, where p0, p1, p2 are sources
with respective positive �ows t0 = 1, t1 = 1, t2 = 2, and p3 is the sink. Let T denote
the arborescence connecting p0 to each pi, i = 1, 2, 3. Assuming a linear cost function
w(t) = 1 + t, the weights on p1s, p2s, sp3 are w1 = 2, w2 = 3 and w3 = 5 respectively. Let
p0 = (0, 0) p1 = (−1, 0), p2 = (

√
3

2 ,− 1
2), p3 = (

√
3

2 , 1
2 ) (Figure 6.3 (i)). Thus p2 p0 and p0 p3

have absolute gradient m and p1 p0 has absolute gradient less than m.

Let Σ = {A1, A2, A3}, where Ai = wi∂(pi − s), i = 1, 2, 3. Then the Ai are as shown
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in Figure 6.4 (i). The three parenthesisations for Σ are shown shaded in Figure 6.4 (i)�(iii)
respectively. Since all three parenthesisations are not empty, we conclude that T is an
MGA for N = {p0, p1, p2, p3} for the given �ows and the given cost function.

6.5 Characterisation of Steiner points

We now generalise the characterisation for Steiner points in MGAs in Minkowski spaces.

Theorem 6.2. Let N = {p1, . . . , pk} be a set of terminals in a Minkowski space X, where
p1, . . . , pk−1 are sources with respective positive �ows t1, . . . , tk−1, and pk is the sink. Let T be
an arborescence with a star topology joining an additional point s to each pi, i ∈ {1, . . . , k}. Let
w(·) be a cost function satisfying the conditions for Gilbert networks. Then T is an MGA on N
for the given �ows and the given cost function if and only if o ∈ 〈Σ〉 for each parenthesisation
〈Σ〉 of Σ = {wi∂(pi − s) : i ∈ {1, . . . , k}}.

Proof. (⇒) Consider any parenthesisation 〈Σ〉 of Σ. Turn its associated rooted abstract
Gilbert arborescence T0〈Σ〉 into an abstract Gilbert arborescence T〈Σ〉 by deleting the
root 0 and its incident edge, and replacing the remaining degree-two Steiner point and
its incident edges with a single edge spanning the two endpoints opposite the degree-two
Steiner point.

Denote the (new) edge into which the root was contracted by ē, and give it both di-
rections, denoting the two directed edges by e+ and e−. Give all other edges of T〈Σ〉 a
single direction away from ē (these directions may differ from the �ow directions).

Turn T〈Σ〉 into a Gilbert arborescence in X as follows. Associate leaf i with pi for
each i ∈ {1, . . . , k}, and associate each of the k− 2 internal vertices with a variable point
si, i ∈ {1, . . . , k− 2}. Denote this Gilbert arborescence by T〈Σ〉(s1, . . . , sk−2), and its cost
by C(s1, . . . , sk−2).

Note that the Steiner points si in T〈Σ〉(s1, . . . , sk−2) may coincide, and then the tree is
a degeneracy of T〈Σ〉. Since T〈Σ〉(s, . . . , s) is the star joining s to all pi, i ∈ {1, . . . , k},
which is an SMT by assumption, C attains its minimum at (s, . . . , s). Calculating the sub-
differential coordinatewise, we obtain a weighted functional w~eφ~e ∈ X∗ for each directed
edge of E(T〈Σ〉) such that
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Figure 6.3: Characterisation of terminals. (i) Gilbert arborescence with a degree-three
terminal. (ii)�(iv) Rooted abstract Gilbert arborescences.
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Figure 6.4: Parenthesisations (shaded) for a Gilbert arborescence with a degree-three ter-
minal.

w~eφ~e ∈




B∗(w~e), if~e is incident with two Steiner points,
w~e∂(pi − s), if~e is incident with pi,

φe+ = −φe− ,

and for each Steiner point si, we have w~eφ~e = w~f φ~f + w~gφ~g, where~e is the incoming edge
and ~f ,~g are the two outgoing edges of si, with the convention that we ignore the outgoing
e+ or e− if si is incident with ē.

Write 〈Σ〉 = 〈Σ+〉¢ 〈Σ−〉, where e± points to the subtree associated with 〈Σ±〉. Let
I± be the support of 〈Σ±〉, and for each i ∈ {1, . . . , k} let φi = φ~e, where ~e is incident
with si. By induction on subexpressions we obtain we±φe± = ∑i∈I± wiφi ∈ 〈Σ±〉. From
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φe+ = −φe− it follows that o ∈ 〈Σ〉.
(⇐) Similar to the corresponding direction in the proof of Theorem 6.1.

6.5.1 An example

We demonstrate the application of Theorem 6.2 by the following example. Suppose we
are given the same problem provided in Section 6.4.1, except that the terminal p0 is re-
placed by a Steiner point s, and the source �ows are t1 = 1, t2 = 2, t3 = 3. Let T denote
the arborescence connecting s to each pi, i = 1, 2, 3. Assuming a linear cost function
w(t) = 1 + t, the weights on p1s, p2s, sp3 are w1 = 2, w2 = 3 and w3 = 4 respectively.

Let Σ = {A1, A2, A3}, where Ai = wi∂(pi − s), i = 1, 2, 3. Then the Ai are as shown
in Figure 6.5 (i). The three parenthesisations for Σ are shown shaded in Figure 6.5 (i), (ii)
and (iii). Since all three parenthesisations contain o, we conclude that T is an MGA on
N = {p1, p2, p3} for the given �ows and the given cost function.

Theorems 6.1 and 6.2 can be used to determine whether an arborescence with a star
topology is an MGA for given sets of terminals and �ows, and a given cost function.
Here we derive additional results as corollaries to the main theorems. These results are
particularly useful for quickly identifying when a given arborescence is not an MGA.

Corollary 6.1. Let T be an MGA with a star topology connecting a Steiner point s with a given
set of terminals N. Then

o ∈
k

∑
i=1

wi∂(pi − s). (6.1)

where the sum on the right is Minkowski addition.

Proof. Since T is an MGA on N, we have o ∈ 〈Σ〉 for all parenthesisations of Σ =

{wi∂(pi − s) : i ∈ {1, . . . , k}}. Since 〈Σ〉 ⊆ ∑k
i=1 wi∂(pi − s), the result is proved. Al-

ternatively, the corollary can be proved by noting that (6.1) is a necessary and suf�cient
condition for s to be a Fermat-Weber point for N, and a Steiner point is a Fermat-Weber
point with respect to its adjacent vertices.

Thus if condition (6.1) is not satis�ed, we can immediately conclude that T is not an
MGA on N for the given �ows and given cost function. We now state a second corollary.
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Figure 6.5: Parenthesisations (shaded) for a Gilbert arborescence with a degree-three
Steiner point.

Corollary 6.2. Let T be an MGA with a star topology connecting a Steiner point s with a given
set of k terminals N. Then for each I ⊆ {1, . . . , k}, we have

∑
i∈I

wi∂(pi − s) ∩ B∗(wI) 6= ∅,

where wI is computed as follows: If k /∈ I, then wI = w (∑i∈I ti); otherwise, if k ∈ I, then
wI = w (∑i∈I′ ti), where I ′ = {1, . . . , k}\I.

Proof. The proof follows directly from Theorems 6.1 and 6.2.





Chapter 7
Gradient-Constrained Gilbert

Arborescences in a Vertical Plane

We study gradient-constrained minimum Gilbert arborescences (MGAs) in a vertical plane, as-
suming a linear cost function w(t) = d + ht, where d and h are strictly positive, and the maximum
gradient satis�es m ≤ 1. We establish a range of fundamental properties of gradient-constrained
MGAs in a vertical plane. In particular, we show that a Steiner point in a gradient-constrained MGA
in a vertical plane has degree three or four. We provide a classi�cation of degree-three and four Steiner
points, extending results in [17] for gradient-constrained Steiner minimum trees in a vertical plane.
The classi�cation of a Steiner point is in terms of the labels of its incident edges, where a label indi-
cates whether the absolute value of the gradient of the Euclidean straight line connecting the endpoints
of an edge is less than, equal to or greater than m. We show that there are seven feasibly optimal la-
bellings for degree-three Steiner points, and three feasibly optimal labellings for degree-four Steiner
points. We conclude with a discussion of hulls in a gradient-constrained vertical plane.

7.1 Introduction

HAVING studied the Gilbert arborescence problem in the Euclidean setting in
Chapter 5, and its generalisation to n-dimensional Minkowski spaces in Chap-

ter 6, we are now ready to introduce the gradient-constrained Gilbert arborescence problem.
As was initially discussed in Chapter 1, an application of the Gilbert arborescence

problem is to the underground mining industry. Suppose we are given a set
N = {p1, . . . , pk} of points, called terminals, in Euclidean space. The points pi, i =

1, . . . , k− 1 represent �xed underground locations, called draw points, from which ti tonnes
of ore is to be extracted. The remaining point, pk, called the breakout point, is a �xed point
at the surface to which all mined material is transported.

135
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An underground mine is required to provide access to the draw points and to allow
excavated ore to be transported to the surface. While underground mines may include
different types of infrastructure components (such as a vertical hoisting shaft, ore passes,
etc.), in this chapter we focus on mines comprised entirely of tunnels. The set of inter-
connected tunnels can be modelled as a Gilbert arborescence T, where draw points cor-
respond to sources whose associated tonnages correspond to �ows, the breakout point
corresponds to the sink, tunnels correspond to edges, and the junctions not in N at which
three or more tunnels intersect correspond to Steiner points.

There are two principal costs associated with a tunnel over the life of the mine. The
�rst is the development cost associated with building the tunnel. The second is the haulage
cost associated with transporting mined material across the tunnel. The total cost of an
edge, e, can be formulated as C(e) = w(te)le where w(·) is a cost function satisfying the
conditions for Gilbert networks, le is the length of e and te is the quantity of ore to be
hauled along e over the life of the mine. A simple but suf�ciently realistic cost function
used regularly in mining applications is the linear function

w(t) = d + ht (7.1)

where d is the cost per unit length of developing a tunnel and h is the cost per unit length
of hauling a unit quantity of ore through the tunnel. Typical values for these constants are
d = $3000/m and h = $0.75/(t.km). In this chapter we will consider only the linear cost
function (7.1). Furthermore, we will assume that the constants d and h, and the tonnages
ti, i = 1, . . . , k− 1, are strictly positive.

Because of navigability requirements of haulage trucks, a tunnel cannot be very steep.
A typical maximum grade at which haulage trucks can operate is 1:7. A network is called
gradient-constrained if the absolute value of the instantaneous gradient at any differen-
tiable point on the edges in the network is no more than a given value, m > 0. In this
work we assume that m ≤ 1. This condition is easily satis�ed in real mining networks.

Fundamental properties of gradient-constrained Steiner minimum trees (SMTs) were
studied for the case where the terminals lie in a vertical plane [17], and in three dimen-
sions [13]. These properties have played a valuable role in improving the ef�ciency of
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a heuristic algorithm for solving the gradient-constrained Steiner tree problem. The
algorithm has been implemented into the UNO software product (refer to Chapter 1),
which has been successfully applied to several industry case studies [10]. The fundamen-
tal properties of gradient-constrained MGAs have, up until now, not been investigated.
The goal of this and the following chapter is to establish the fundamental properties for
gradient-constrained MGAs in two and three dimensions respectively.

We begin by considering a two-dimensional version of the gradient-constrained
Gilbert arborescence problem where the terminals lie in a vertical plane P . This pla-
nar problem is of interest not only as a speci�c case of the three-dimensional problem but
also because of its application to underground mining in its own right. For example, it is
not unusual for an orebody (and its draw points) to lie approximately in a vertical plane.
In such a case, the mining network servicing the orebody can realistically be modelled by
the vertical plane problem.

In Section 7.2, we restate background from Chapter 4 relating to the gradient metric,
in the context of the Gilbert arborescence problem. Then, in Section 7.3, we establish a
range of fundamental properties of gradient-constrained MGAs in a vertical plane. In
particular, we show that the degree of a Steiner point in a gradient-constrained MGA in
a vertical plane is either three or four.

A classi�cation of degree-three and degree-four Steiner points in gradient-constrained
MGAs in a vertical plane is presented in Sections 7.4 and 7.5 respectively. The classi�ca-
tion of a Steiner point is in terms of the labels of its incident edges, where a label indicates
whether the absolute value of the gradient of the Euclidean straight line connecting the
endpoints of an edge is less than, equal to, or greater than m. We show that there are seven
feasibly optimal labellings for degree-three Steiner points, and three feasibly optimal la-
bellings for degree-four Steiner points. We conclude in Section 7.6 with a discussion of
hulls in a gradient-constrained vertical plane.

7.2 Background

In this section we provide background and notation required in this chapter.
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7.2.1 The gradient metric

Although we have already introduced the gradient metric in Chapter 4, we restate its
background here in the context of the Gilbert arborescence problem. The following ac-
count is taken primarily from [13].

A network T is called gradient-constrained if the absolute value of the instantaneous
gradient at any differentiable point on the edges in T is no more than a given positive
constant m. Let p = (xp, zp) and q = (xq, zq) be two points in a vertical plane P , and
assume that the z-axis is vertical. Denote the Euclidean straight line segment connecting
p and q by pq. We de�ne the gradient, g, of pq to be the absolute value of the gradient of
pq, that is

g(pq) =
∣∣∣∣

zq − zp
xq − xp

∣∣∣∣ .

Suppose pq is an edge in a gradient-constrained network T embedded in a vertical
Euclidean plane P . If g(pq) ≤ m, then pq is a straight line segment connecting p and q,
and is called a straight edge. If g(pq) > m, then pq cannot be represented as a straight line
without violating the gradient constraint. It can, however, be represented by a zigzag line
joining p and q, with each segment of the zigzag having gradient equal to m. Such edges
are called bent edges, and are geodesics (shortest paths) under the gradient metric. It is not
dif�cult to show that the union of all geodesics between p and q forms a parallelogram
whose sides have gradient m (Figure 7.1). One can select any zigzag contained in this par-
allelogram, provided each segment of the zigzag has gradient m. An example is shown
in the �gure. The points where the zigzag changes direction are called corner points. If
r1, r2 are the corner points for the two geodesics on the boundary of the parallelogram,
then the geodesics pr1q and pr2q can be interchanged by the process of �ipping.

The length of an edge pq in a gradient-constrained network can be measured in a
special metric, called the gradient metric. De�ne the vertical metric of pq to be |pq|v =

c|zp − zq| where c is a given constant. Then the gradient metric can be de�ned in terms
of the Euclidean and vertical metrics as

|pq|g =




|pq| =

√
(xq − xp)2 + (zq − zp)2, if g(pq) ≤ m;

|pq|v =
√

1 + m−2|zq − zp|, if g(pq) ≥ m.
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Figure 7.1: Parallelogram formed by the union of gradient-constrained geodesics be-
tween the endpoints of a line with gradient greater than the maximum.

Note that |pq| ≤ |pq|g, and the gradient metric is convex although it is not strictly convex.
We de�ne pq to be an f-edge, m-edge or b-edge if g(pq) < m, g(pq) = m or g(pq) > m,
respectively. The label of an f-edge, m-edge or b-edge is `f' (meaning �at), `m' (meaning
maximum) or `b' (meaning bent), respectively. The label of an edge can be viewed as an
indication of which metric is `active' for that edge, with an `m' label indicating that both
metrics hold simultaneously.

7.2.2 Edge vectors

Euclidean space equipped with the norm associated with the gradient metric is an exam-
ple of a Minkowski space (see Chapter 6). In a gradient-constrained vertical plane, the
unit ball Bg and dual ball B∗g are as shown in Figure 7.2 (i)�(ii). Note that the diagonal
lines (shown dashed) have gradient m, and that the shapes of the unit ball and dual ball
depend on the value of m.

Recall from Chapter 3 that the set of norming functionals ∂(p − s) associated with
an edge ps with �xed p and variable s corresponds to an exposed face of the dual ball.
Also, a norming functional is equivalent to a vector u

δ , where u is an outward unit vector
normal to the hyperplane supporting s + Bg at the point where the ray from s through p
intersects Bg, and δ is the distance from s to this hyperplane. We will refer to these vectors
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Figure 7.2: Edge vectors and outward normal vectors for f-, m- and b-edges in the gradi-
ent metric. (i) The unit ball. (ii) The dual ball.
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as edge vectors.
In the gradient metric, we can characterise vectors for edges connecting a �xed point

and a Steiner point by the following lemma (refer to Figure 7.2).

Lemma 7.1. Let ps be an edge with an associated weight w in a gradient-constrained MGA
connecting a terminal p and a Steiner point s. Then an edge vector v corresponding to an element
of w∂|p− s|g = w∂(p− s) is computed as follows:

• If sp is an f-edge, v points from s to p and has length w.
• If sp is a b-edge, then v points vertically up or down, if p is above or below s respectively,

and has length w
√

1 + m−2.
• If sp is an m-edge, then any v can be selected from the continuum of vectors having all

possible directions between an m-edge and a vertical edge. The length of v is given by
w/ cos ψ, where ψ is the angle that v makes with the m-edge.

Note that the set of all possible v associated with an m-edge all point to one of the straight
line segments on the boundary of B∗, and forms a right-angled triangle.

7.2.3 The variational argument

The variational argument is a powerful tool that is widely applicable in the study of Eu-
clidean Steiner trees [67] and gradient-constrained SMTs [13]. The following de�nition of
the variational argument applied to gradient-constrained networks is taken from [13].

Lemma 7.2. For a minimum-cost arborescence T, the directional derivative of the cost of T,
denoted by �T, is greater than or equal to zero when its Steiner points are perturbed in any direction.

The following lemma provides a method for computing the variation of f-, m- and b-
edges (refer to Figure 7.3) under an arbitrarily small movement, called a perturbation, of
an endpoint.

Lemma 7.3. Suppose e = ps is an edge in T with weight w, and let s be a Steiner point which is
perturbed to s′ in direction r. Let �er (or simply �e if r is known) denote the directional derivative of
the length of e.

• If e is an f-edge, then �er = −w cos(∠pss′).
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Figure 7.3: Variational argument applied to (i) an f-edge, (ii) a b-edge, (iii) an m-edge
which becomes an f-edge and (iv) an m-edge which becomes a b-edge.

• If e is a b-edge, then �er = −w
√

1 + m−2 cos(∠zss′), where z is a point on the vertical line
through s such that ∠psz ≤ π

2 .
• If e is an m-edge, then �er is equal to either −w cos(∠ass′) or −w

√
1 + m−2 cos(∠zss′),

depending on whether g(ps′) ≤ m or g(ps′) > m.

7.3 Fundamental properties of gradient-constrained MGAs in a
vertical plane

In this section, we conduct a rigorous study of the fundamental properties of gradient-
constrained MGAs in a vertical plane, with emphasis on the local structure at Steiner
points. The main tools used are the variational argument (Lemma 7.2), and the properties
of edge vectors (Lemma 7.1). We begin with a known [13] basic property of optimal
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Steiner points, which follows from the equilibrium of edge vectors.

Lemma 7.4. If a Steiner point s is optimal with respect to its adjacent points p1, . . . , pk, then s
is also optimal with respect to any points p′1, . . . , p′k lying on the rays from s through p1, . . . , pk

respectively.

Since an optimal Steiner point s in a gradient-constrained MGA is necessarily a Fermat-
Weber point with respect to its adjacent points p1, . . . , pk, we have the following result,
which follows from Theorem 3.1 in Chapter 3.

Lemma 7.5. Let T be a gradient-constrained MGA and let s be a Steiner point in T with inci-
dent edges p1s, . . . , pk−1s, spk having respective weights w1, . . . , wk. If s is locally minimal with
respect to its adjacent vertices, then there exist edge vectors v1, . . . , vk, computed by Lemma 7.1,
for which

k
∑
i=1

vi = 0 (7.2)

which we again refer to as the equilibrium condition. Note that the equilibrium condition is
necessary but not suf�cient for s to be locally minimal with respect to its adjacent vertices.
This is in contrast to Fermat-Weber points in the gradient-constrained problem, for which
the equilibrium condition is both necessary and suf�cient.

We now show that, for terminals lying in a vertical plane P , there must be a gradient-
constrained MGA spanning N on P . It has been shown in [17] that, for the gradient-
constrained Steiner tree problem, if all the terminals lie in a vertical plane P , then there
exists a gradient-constrained SMT in P . We now show that this result also applies to
gradient-constrained MGAs in a vertical plane.

Lemma 7.6. If N is a set of points lying in a vertical plane P , then there exists a gradient-
constrained MGA for N lying in P .

Proof. (Adapted from [17].) Refer to Figure 7.4. Suppose T is a gradient-constrained
MGA for N, with T not lying in P . Let p1 = (x1, y1, z1) and p2 = (x2, y2, z2) be the
endpoints of an edge of T. Let T′ be the (orthogonal) projection of T on P , and let p′1 =

(x′1, y′1, z′1) and p′2 = (x′2, y′2, z′2) be the images of p1 and p2 under this projection. Note
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Figure 7.4: Projections of edges onto a vertical plane, where the projected edge is (i) an
f-edge, (ii) an m-edge and (iii) a b-edge.

that z′1 = z1 and z′2 = z2, since P is a vertical plane. We now transform T′ into a gradient-
constrained tree as follows. For each edge p′1 p′2 leave it unchanged if g(p′1 p′2) ≤ m or
replace it by a bent edge on P with the same endpoints if g(p′1 p′2) > m. In the former
case w|p′1 p′2| ≤ w|p1 p2| since the component of p′1 p′2 orthogonal to P is zero and the other
two components are unchanged. In the latter case w|p′1 p′2| = w|p1 p2| because z′1 = z1 and
z′2 = z2. Hence the cost of T′ is not greater than the cost of T, and T′ is also a weighted
gradient-constrained MGA for N.

Hence, for the remainder of this section, we will assume that T lies on P .
For the next result, we require the following de�nition.

De�nition 7.1. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then the horizontal and vertical lines passing through s are denoted by Hs and Vs
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respectively.

Two edges incident with s are said to lie on the same side of Hs if they lie in the same
closed half-plane determined by Hs; i.e. this includes the possibility that one or both
edges lie on Hs. Two edges are said to be on different sides of Hs only if their interiors
lie in different open half-spaces (determined by Hs). Clearly, if T is an MGA in a vertical
plane, a Steiner point s in T can have at most two incident m-edges on the same side of
Hs. The following lemma provides a result for m- and b-edges on the same side of Hs.

Lemma 7.7. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner point
in T. If s has an incident b-edge, then there are no other m- or b-edges on the side ofHs containing
the b-edge.

Proof. Let p1s be a b-edge and let p2s be an m- or b-edge such that the two edges lie on
the same side of Hs. Let Gi, i = 1, 2 denote the union of geodesics between pi and s
under the gradient metric. Then G1 is a parallelogram in P whose edges have gradient
m. If s has two incident b-edges or an incident m-edge and an incident b-edge (Figure 7.5
(i)�(ii)), then the cost of T can be reduced by creating a new Steiner point s′ at the point
in G1 ∩ Gs with the lowest z-coordinate. In both cases the total length of the network is
decreased, while the total �ow component remains �xed, since the paths from sources to
the sink are geodesics under the gradient metric.

In the following lemma, we examine feasible orientations for f-edges relative to the
sink edge.

Lemma 7.8. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner point
in T with incident sink edge spk. If spk is labelled `f' or `m', then s has no incident f-edges on the
side of Vs containing spk except, possibly, for spk itself. If spk is a b-edge, then s has no incident
f-edges.

Proof. Refer to Figure 7.6, in which s has an incident f-edge sp1 on the same side of Vs as
spk, where spk is an f-, m- and b-edge in (i), (iii) and (v) respectively. Suppose we create a
new Steiner point s1 at the same position as s such that s1 is connected to p1, s, pk while s
is connected to s1 (initially, ss1 has zero length).
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Figure 7.5: Steiner point with incident m- and b-edges. (i) m- and b-edges on the same
side of the horizontal plane through the Steiner point (ii) Two b-edges on the same side
of the horizontal plane through the Steiner point.
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Figure 7.6: Steiner point with an incident f-edge on the same side of the vertical line
through the Steiner point as the sink edge, where the sink edge is (i)�(ii) an f-edge, (iii)�
(iv) an m-edge and (v)�(vi) a b-edge.
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Figure 7.7: Steiner point with an incident b-edge on the same side of the horizontal line
through the Steiner point as the sink edge, which is an f-edge.

Suppose spk is labelled `f' or `m'. If we perturb s1 from s toward pk (Figure 7.6 (ii),
(iv)) then, under the assumption that m ≤ 1, the cost of p1s1 decreases, and the total cost
of the other edges remains �xed. This perturbation can continue until either sp1 has label
`m' or s1 collapses onto pk (whichever occurs �rst).

Now suppose spk is a b-edge. If we perturb s1 from s toward the corner point r (Fig-
ure 7.6 (vi)), then the cost of p1s1 decreases, and the total cost of the other edges remains
�xed. This perturbation can continue until either sp1 has label `m' or s1 collapses onto r
(which ever occurs �rst). If s has an incident f-edge on the other side of Vs, then the above
argument can be applied by �ipping the b-edge so that its corner point is on the opposite
side of the line connecting s and pk. Therefore if spk is a b-edge, then s has no incident
f-edges.

In the following lemma we examine feasible orientations for b-edges relative to the
sink edge.

Lemma 7.9. Let T be a gradient-constrained MGA and let s be a Steiner point in T with sink
edge spk. Then there are no b-edges on the side ofHs containing spk except, possibly, for spk itself.

Proof. Let sp1 be a b-edge. If spk is an m-edge or a b-edge, then sp1 cannot lie on the
same side of Hs as spk by Lemma 7.7. Now suppose spk is an f-edge (Figure 7.7 (i)). Then
the argument is similar to the argument posed in Lemma 7.8. Suppose we create a new
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Steiner point s1 at the same position as s such that s1 is connected to p1, s, pk while s is
connected to s1 (initially, ss1 has zero length). If we perturb s1 from s toward pk (Figure 7.7
(ii)), then under the assumption that m ≤ 1, the cost of p1s1 decreases while the total cost
of the other edges remains �xed. This perturbation can continue until either sp1 has label
`m' or s1 collapses onto pk (which ever occurs �rst). This argument is still valid if spk is
perfectly �at (in this case only the �ow component of p1s1 decreases under the move.

Suppose P is partitioned into quadrants by Hs and Vs. Then we have the following
result.

Lemma 7.10. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T with incident sink edge spk. If P is partitioned into quadrants by Hs and Vs, then spk

is the sole edge incident to s in the quadrant containing spk. Moreover, if spk is an f-edge that is
horizontal, then it is the sole edge on its side of Vs.

Proof. Let Qk denote the quadrant containing spk. Suppose spk is labelled `m' or `b'. It is
obvious that there can be no other m- or b-edges incident to s inQk, and by Lemma 7.8,Qk

contains no f-edges incident to s. Now suppose that spk is an f-edge. Again by Lemma 7.8,
there are no other f-edges incident to s inQk. Let spk be an m- or b-edge inQk. By a similar
variational argument to that in the proof of Lemma 7.8, it can be shown that the cost of
T can be reduced by connecting pj, pk and s to a new Steiner point, s′, and perturbing s′

from s toward pk until s′pj has gradient m or s′ = pk (whichever occurs �rst). If spk is
horizontal, then the variation described above applies to edges above and below spk, and
therefore spk must be the only edge on its side of Vs.

The following theorem, which establishes the unique local structure at a Steiner point
whose incident sink edge is a b-edge, follows directly from Lemma 7.8.

Theorem 7.1. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T with incident sink edge spk. If spk is a b-edge, then the degree of s is three, and the two
source edges are m-edges on the opposite side of Hs to spk.

Proof. By Lemma 7.8, s has no incident f-edges. By Lemma 7.7, there cannot be any other
m- or b-edges on the same side of Hs as the sink; hence spk is the sole edge on its side of
Hs. Suppose s has an incident source b-edge on the opposite side ofHs to spk. Since there
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cannot be any other m- or b-edges on the same side of Hs (Lemma 7.7), the degree of s
must be two, contradicting Lemma 5.2 in Chapter 5 (which easily generalises to gradient-
constrained networks). All that is left is to have m-edges on the opposite side of Hs to
spk. Since the degree of s is at least three, s must have two incident source m-edges.

The following theorem establishes fundamental properties of the local structure at
Steiner points in gradient-constrained MGAs in a vertical plane when the incident sink
edge is either an f-edge or an m-edge.

Theorem 7.2. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T with incident sink edge spk, where spk is not a b-edge. Let L denote the in�nite line
passing through s, pk and let H+, H− denote the two open half-planes into which L divides the
vertical plane, such that H+ is the upper half-plane if and only if the slope of L is positive. Then:

1. The Steiner point has at most one incident edge in H+, and this edge is either an f-edge or
an m-edge on the opposite side of Vs to spk.

2. If spk is an f-edge, s has no incident edges on L and either one or two incident edges in L−.
In the latter case, one of the two edges must be an m-edge on the same side of Vs as spk,
and the other must be either an f-edge or an m-edge on the opposite side of Vs.

3. If spk is an m-edge, s has at most one incident edge on L, which is necessarily an m-edge,
at most one incident edge in L−, which is necessarily an m-edge on the same side of Vs as
spk, and at most one incident edge in L+, which is either an f-edge or an m-edge.

Proof. Consider the subtree T in Figure 7.8 (i) in which p1, p2 are sources with respective
�ows t1, t2 and pk is the sink, and the points are connected to a Steiner point s such that the
three edges are in H+ (which lies above L since L is positively-sloped). Suppose the sink
edge spk is an f-edge and p1s, p2s are source edges labelled `f' and `m' respectively. Let
the angles between p1s, p2s and p2s, spk be denoted by γ and β respectively, and observe
that β + γ < π.

Suppose we create a new Steiner point s1 at the same position as s such that s1 is
connected to p1, s, and s is connected to s1, p2, pk (initially, ss1 has zero length). If we
perturb s1 from s toward p2 (Figure 7.8 (ii)), the variation in the cost of T, denoted by �T1,
is

�T1 = −(d + ht1) cos γ + ht1.
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Figure 7.8: Network with f- and m-edges in an open half-plane bounded by the line
through the sink edge. (i) Subtree. (ii)�(iii) Perturbations of two newly created Steiner
points.
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Now suppose we create a third Steiner point s2 at the same location as s, such that s2

is connected to s, pk and s1 is connected to p1, p2, s2 (initially, ss2 has zero length). If we
perturb s2 from s toward pk (Figure 7.8 (iii)), the variation in the cost of T, denoted by �T2,
is

�T2 = −(d + ht1 + ht2) cos β− (ht1 + ht2).

Note that the costs of any other edges connected to s are unaffected by the above varia-
tions, since the �ow path from s to pk does not change. The total variation, denoted by T,
is

�T = −(cos β + cos γ)(d + ht1)− (1 + cos β)ht2.

It is easily checked that cos β + cos γ ≥ 0 for all β, γ satisfying β + γ ≤ π. Therefore
�T < 0 and, by the variational argument (Lemma 7.2), T is not of minimum cost. The

above argument is still valid if p2s is an f-edge, and if spk is an m-edge. The argument
also demonstrates when there cannot be a source f-edge on L in the case where spk is an
f-edge. The proof of the �rst statement is completed by noted that there are no f-edges
on the side of Vs containing spk (Lemma 7.8), and there are no b-edges on the side of Hs

containing spk (Lemma 7.9).
Now consider H−. Note that the above variation is still valid for p1s, p2s in H−, if the

two edges have labels (f,f), (f,b) or (f,m) provided the m-edge is on the opposite side of
Vs to spk. If it is on the same side of Vs as spk, then there is no incident b-edge in H−

(Lemma 7.7), and at most one additional edge, with label `f' or `m' in H−.

From Theorem 7.2, we can deduce the following results.

Corollary 7.1. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then s has at most one incident b-edge.

Proof. If the sink edge spk is a b-edge then s has degree three and the other two edges
are m-edges (Lemma 7.1). Otherwise, there are no b-edges on the side of Hs containing
spk (Lemma 7.9), and it follows from Theorem 7.2 that s has at most one incident edge on
the opposite side of Hs to spk.
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Proof. This is easily seen from Theorem 7.2.

A second corollary to Theorem 7.2 is as follows.

Corollary 7.2. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T whose incident sink edge is an m-edge. Then s has at most one incident f-edge.

Proof. This is easily seen from Theorem 7.2.

The preceding results lead up to the following theorem.

Theorem 7.3. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then the degree of s is either three or four.

Proof. If the sink edge spk is a b-edge, then the degree of s is three by Theorem 7.1. If
spk is an f-edge, then s has at most one incident edge on L, at most one incident edge in
L+, and at most two incident edges in L− (Theorem 7.2), totalling four edges. If spk is an
m-edge, then s has at most one incident edge in L−, at most one incident edge in L+, and
either one or two incident edges on L (Theorem 7.2), again totalling four edges.

Having determined that the degree of a Steiner point in a gradient-constrained MGA
in a vertical plane is either three or four, we now study speci�c properties of degree-three
and four Steiner points.

7.4 A classi�cation of degree-three Steiner points

Let T be a gradient-constrained MGA in a vertical plane, and let s be a degree-three
Steiner point in T, with incident edges p1s, p2s, sp3, where p1s, p2s are source edges with
positive �ows t1, t2, and sp3 is the sink edge. Assuming a linear cost function, p1s, p2s, sp3

have respective weights w1 = d + ht1, w2 = d + ht2 and w3 = d + h(t1 + t2).
Let g1, g2, g3 denote the respective labels of p1s, p2s, sp3. Then we say the labelling of s is

(gigjgk), where i, j, k ∈ {1, 2, 3}. In [13], a ′/′ sign was used to distinguish between edges
lying above and below the horizontal plane Hs through a Steiner point s in a gradient-
constrained SMT. For example, if p1s, p2s are two incident edges lying on one side of Hs,
and the third edge p3s lies on the other, then the labelling of s was denoted by (g1g2/g3).
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The situation is more complex for gradient-constrained MGAs, and distinguishing be-
tween edges above and below Hs becomes less useful. Hence in this work, we will drop
the ′/′ sign in the labelling. Moreover, we adopt the notation that the edge labels are
stated in order of increasing gradient, i.e. `f' followed by `m' followed by `b'.

Since each gi ∈ {f, m, b}, there are 10 possible labellings of s to examine:

(fff) (ffm) (ffb)
(fmm) (fmb) (fbb)

(mmm) (mmb) (mbb)
(bbb)

A labelling that can occur in a gradient-constrained MGA is called feasibly optimal. Our
aim in this section is to determine which of the 10 labellings above are feasibly optimal.
Note that for gradient-constrained SMTs in a vertical plane, only three of these labellings
are feasibly optimal [17]. They are (fmm), (mmm) and (mmb). As we will show, addi-
tional labellings are possible for gradient-constrained MGAs. We begin by eliminating
three labellings that are not feasibly optimal.

Lemma 7.11. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then the labelling of s is not (fbb), (mbb) or (bbb).

Proof. By Corollary 7.1, s has at most one incident b-edge.

Before examining the remaining labellings, we state a lemma which follows from
Theorem 6.2 in Chapter 6.

Lemma 7.12. Let T be a gradient-constrained MGA and let s be a degree-three Steiner point in
T. Then s is locally minimal with respect to its adjacent vertices if and only if there exist edge
vectors v1, v2, v3 (Lemma 7.1) associated with the three incident edges for which

v1 + v2 + v3 = 0.

Hence, the equilibrium condition is necessary and suf�cient for s to be locally minimal,



7.4 A classi�cation of degree-three Steiner points 155

because splitting is not an issue for degree-three Steiner points. The following remark is
also useful in this section.

Remark: For given positive weights w1, w2, w3 satisfying max{w1, w2} < w3 < w1 +

w2, there exist �ows t1, t2 and positive constants d and h such that w1 = d + ht1, w2 =

d + ht2 and w3 = d + h(t1 + t2).
Proof. (By construction.) Suppose we are given positive weights w1, w2, w3. Let d :=
w1 + w2 − w3, which is strictly positive since w3 < w1 + w2, and let h be any positive
constant. Now let

t1 := w1 − d
h =

w1 − (w1 + w2 − w3)
h =

w3 − w2
h

t2 := w2 − d
h =

w2 − (w1 + w2 − w3)
h =

w3 − w1
h .

It follows from w3 > max{w1, w2} that t1, t2 > 0, which completes the proof.

This remark is useful in that it allows us to forget about �ows and undertake analysis
using only positive weights satisfying the above condition on w3, which corresponds to
the weight on the sink edge. We now examine the labelling (fff).

Lemma 7.13. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then the labelling (fff) is feasibly optimal.

Proof. If all three edges have label `f', then the problem reduces to the Euclidean problem
studied in Chapter 5. From the analysis of the optimum angles between edges incident
with a degree-three Steiner point in an MGA in the Euclidean plane (refer Section 5.7),
the angle between two source edges can be arbitrarily small, while the angle between a
source edge and a sink edge can become arbitrarily close to π. If, for example, the sink
edge is horizontal, it is easy to see that the labelling (fff) is feasibly optimal for arbitrarily
small m.

It is worth noting that the sink edge must be on the opposite side of Vs to the two source
edges by Lemma 7.8. We now examine the labellings (ffm) and (ffb).

Lemma 7.14. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then the labellings (ffm) and (ffb) are feasibly optimal provided the sink edge is an
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Figure 7.9: Weight triangle for a Steiner point with labelling (ffm).

f-edge.

Proof. By Corollary 7.2, the sink edge cannot have label `m', since s has two incident
f-edges, and by Theorem 7.1, the sink edge cannot have label `b'. Hence the sink must
be one of the f-edges, and by Lemma 7.8, the two f-edges must then be on opposite sides
of Vs. Consider the labelling (ffm), and assume that p1s, p2s, sp3 have labels `f', `m' and
`f' respectively (Figure 7.9 (i)). Let v1, v2, v3 be corresponding edge vectors, such that v2

makes an angle of ψ with p2s. If the equilibrium condition is satis�ed, then v1 + v2 + v3

form the edges of a triangle (Figure 7.9 (ii)). Clearly there exist weights such that this
triangle exists; thus (ffm) is feasibly optimal by Lemma 7.12. Since (ffb) is a special case
of the above where ψ = π

2 − α (recall that α = tan−1(m)), the labelling (ffb) is also feasibly
optimal.

We now examine the labelling (fmm). For Steiner points in gradient-constrained SMTs
in a vertical plane, (fmm) is feasibly optimal provided the two m-edges are on one side
of Vs, and the f-edge is on the other. For the weighted case, it is not immediately obvious
whether this labelling is feasibly optimal, since the three �ow-induced edge weights are
never exactly equal, and it is conceivable that variations in edge weights could force the
Steiner point labelling to change. In the following lemma, we show that this is not the
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case.

Lemma 7.15. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then the labelling (fmm) is feasibly optimal in two cases:

• The two m-edges are on one side of Vs and the f-edge is on the other, in which case any of
the edges can feasibly be the sink edge.

• The two m-edges are collinear, in which case one of the m-edges must be the sink edge.

Proof. If the two m-edges lie on one side of Hs, then it is easily observed that the equi-
librium condition cannot be satis�ed.

Now consider the case where the two m-edges are not collinear. Assume initially that
w1 = w2 = w3. Let the edges be arranged as per Figure 7.10 (i). Let Ai = ∂(pi − s), i =

1, 2, 3. Thus A1 corresponds to a unique vector v1 from s to p1 with length one, while A2

and A3 correspond to sets of vectors from s to the straight segments on the boundary of
B∗. It can be shown that the Minkowski sum (see Chapter 3, Section 3.2.2) A2 + A3 forms
a parallelogram with sides having gradient 1/m (see the shaded region in Figure 7.10
(ii)). It follows from the equilibrium condition that s is locally minimal if and only if
the Minkowski sum A1 + A2 + A3 contains the origin o. This is satis�ed when v1 is
directed from a point in the parallelogram to o. It is easily seen that this is true when the
weights are equal, and that small changes in the weights do not affect the equilibrium of
the vectors. From this we can also see that the largest weight can be on any of the three
edges. Thus (fmm) for this con�guration is feasibly optimal.

Now assume that sp2, sp3 are collinear m-edges with p2 located at the bottom-left of
the line connecting p2, p3, with p3 at the top-right (Figure 7.10 (iii)). Assume that the
weights can take on any values, and let Ai = wi∂(pi − s), i = 1, 2, 3. This time the
Minkowski sum A2 + A3 results in a straight line segment with gradient 1/m (Figure 7.10
(iv)). To satisfy the equilibrium condition, the f-edge vector must be directed from a
point on this line back to the origin. Clearly this is possible, and thus (fmm) for this
con�guration is feasibly optimal.

We now examine the labelling (fmb).

Lemma 7.16. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
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Figure 7.10: Steiner points with labelling (fmm) and corresponding Minkowski sums.
(i)�(ii) Noncollinear m-edges. (iii)�(iv) Collinear m-edges.
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Figure 7.11: Steiner point with labelling (fmm). (i) Perturbation off an m-edge. (ii) Per-
turbation along an m-edge.

point in T. Then the labelling (fmb) is feasibly optimal provided the sink edge is an m-edge.

Proof. Consider the network in Figure 7.11, in which s has labelling (fmm). Suppose we
perturb s in direction r1, as shown in Figure 7.11 (i). Using Lemma 7.2, it can be shown
that the variation �T is minimised for θ = 0 when

w1
w2

≤ 1
m sin β

.

The implication is that the Steiner point will never move off the line sp3 provided w2 is
suf�ciently large. Now consider the perturbation r2 in Figure 7.11 (ii). It can be shown
that the variation is strictly less than zero when

w3 > w2 − w1 cos β.

Hence, if the two conditions above are satis�ed, and provided w3 is not too large, a new
Steiner point s′ is optimally located on the m-edge between s and p3, and has labelling
(fmb).

We now examine the labellings (mmm) and (mmb), both of which are feasibly optimal
in gradient-constrained SMTs in a vertical plane.

Lemma 7.17. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
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point in T. Then the labellings (mmm) and (mmb) are feasibly optimal.

Proof. Refer to Figure 7.12 (i)�(ii), in which the three edges have weights equal to one.
Let Ai = ∂(pi − s), i = 1, 2, 3. The Minkowski sum A1 + A2 + A3 forms a parallelogram
whose edges have gradient 1/m. Since the origin is an element of this parallelogram, it
follows that the equilibrium condition is satis�ed, and s is locally minimal. It is easily
seen that small changes in the weights do not affect the equilibrium of the vectors, and
so the largest weight can be on any of the three edges. Moreover, it is clear that the
largest weight can be on any of the m-edges. Hence (mmm) is feasibly optimal. The
proof for (mmb) is similar to the proof for (mmm), except that A3 is now a vertical vector
(Figure 7.12 (iii)�(iv)).

We now state the main result of this section.

Theorem 7.4. Let T be a gradient-constrained MGA in a vertical plane and let s be a degree-three
Steiner point in T. Then s has seven feasibly optimal labellings: (fff), (ffm), (ffb), (fmm), (fmb),
(mmm) and (mmb).

The labelling (ffm) has two feasibly optimal geometries and hence there are eight
possible con�gurations for s, as shown in Figure 7.13. In the �gure, edges which can
feasibly be sink edges are indicated by arrows.

It is worth noting that, of the eight possible geometries for degree-three Steiner points
in gradient-constrained MGAs in a vertical plane, the three con�gurations (iv), (vii) and
(viii) are the only labellings in which any edge can feasibly be the sink edge. Also note
that these are the only three feasibly optimal labellings for Steiner points in gradient-
constrained SMTs in a vertical plane.

7.5 A classi�cation of degree-four Steiner points

Suppose s is a degree-four Steiner point in a gradient-constrained MGA T in a vertical
plane with four edges p1s, p2s, p3s, sp4, where p1s, p2s, p3s are source edges with respec-
tive positive �ows t1, t2, t3 and sp4 is the sink edge. Let g1, g2, g3, g4 be the respective
labels of these edges. Then the labelling of s is denoted by (g1g2g3g4). Our aim in this
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Figure 7.12: Steiner points with labellings (mmm) and (mmb) and unweighted
Minkowski sums. (i)�(ii) Labelling (mmm). (iii)�(iv) Labelling (mmb).
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Figure 7.13: Feasibly optimal labellings for degree-three Steiner points.
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section is to determine the set of feasibly optimal labellings of s. There are 15 potential
labellings to examine:

(ffff) (fffm) (fffb)
(ffmm) (ffmb) (ffbb)

(fmmm) (fmmb) (fmbb)
(fbbb) (mmmm) (mmmb)

(mmbb) (mbbb) (bbbb)

For gradient-constrained SMTs in a vertical plane, only one of these labellings is feasibly
optimal [17]; namely, (mmmm), which forms a cross (therefore, a gradient-constrained
vertical plane is an example of an X-plane discussed in [72]). As we will show, additional
labellings are possible for gradient-constrained MGAs in a vertical plane. We begin by
eliminating six labellings that are not feasibly optimal.

Lemma 7.18. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then the labelling of s is not (ffbb), (fmbb), (fbbb), (mmbb), (mbbb) or (bbbb).

Proof. By Corollary 7.1, s has at most one incident b-edge.

We now eliminate the labelling (mmmb).

Lemma 7.19. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then the labelling of s is not (mmmb).

Proof. By Lemma 7.7, s cannot have two incident edges with labels `m' and `b' on the
same side of Hs.

We now eliminate the labelling (ffff).

Lemma 7.20. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then the labelling of s is not (ffff).

Proof. By Theorem 5.2 in Chapter 5, a Steiner point whose incident edges all have label
`f' has degree at most three.

We now show that the labellings (fffb), (ffmb) and (fmmb) are not possible in gradient-
constrained MGAs in a vertical plane.
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Lemma 7.21. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then the labelling of s is not (fffb), (ffmb) or (fmmb).

Proof. Consider the labellings (fffb) and (ffmb). By Corollary 7.2 and Theorem 7.1, the
sink edge cannot be an m-edge or a b-edge. Remaining f-edges must be on the opposite
side of Vs to sp4 (Lemma 7.8) and, in the case of (fffb), the b-edge must be on the opposite
side of Hs to the sink edge (Lemma 7.9). But now there is either an f-edge and a b-edge
in H−, or two f-edges (or an f-edge and an m-edge) in H+, which is not possible by
Theorem 7.2.

Now consider the labelling (fmmb). By Lemma 7.7, the two m-edges must be on the
opposite side of Hs to the b-edge which, by Theorem 7.1, cannot be the sink edge. It
follows that the f-edge cannot be the sink edge, since it necessarily shares a quadrant
with either an m-edge or a b-edge, which is not possible by Lemma 7.10. Therefore, sp4

must be an m-edge. But now there is either an f-edge and a b-edge in H−, or an f-edge
and an m-edge in H+, which is not possible by Theorem 7.2.

We now state the main result of this section.

Theorem 7.5. Let T be a gradient-constrained MGA in a vertical plane and let s be a degree-four
Steiner point in T. Then s has three feasibly optimal labellings: (ffmm), (fmmm) and (mmmm).

Proof. Steiner points with these labellings were obtained by a Matlab program which
generates random arborescences with degree-four Steiner points, and tests whether these
are MGAs by checking whether the necessary and suf�cient conditions of Theorem 6.2 in
Chapter 6 are satis�ed. The optimal networks generated by this program were double-
checked using the UNO software product.

Feasible con�gurations for degree-four Steiner points are shown in Figure 7.14. In the
�gure, edges which can feasibly be sink edges are indicated by arrows. Whether or not
the labelling (fffm) is feasibly optimal remains open to question, although we can say that
if the labelling is feasible, then one of the f-edges is the sink edge sp4, the m-edge is on
the same side of Vs as sp4 (and on the opposite side of Hs to sp4) and the two remaining
f-edges are on the opposite side of Vs to sp4.
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Figure 7.14: Feasibly optimal labellings for degree-four Steiner points. Edges which can
feasibly be sink edges are indicated by arrows.
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We now provide a brief discussion of the labelling (ffmm). Ignoring trivial cases,
there are �ve ways in which the four edges can be arranged around s (Figure 7.15). The
arrangement in (i) is feasibly optimal by Theorem 7.5, provided one of the f-edges is
the sink edge. All four edges must be in their own quadrants, and the edges must be
arranged so as to avoid an f-edge and an m-edge lying in H+.

Now consider cases (ii)�(iii). By Lemma 7.8, one of the m-edges must be the sink in
both cases. But now there are two edges in H+, which is not possible by Theorem 7.2. In
case (iv), the sole f-edge on its side of Hs must be the sink edge by Lemma 7.8, but now
there is an f-edge and an m-edge in H− or H+, which is not possible by Theorem 7.2.
Whether the structure shown in (v) is feasibly optimal remains open to question.

We conclude this section with a brief discussion of the labelling (fmmm), beginning
with the following de�nition.

De�nition 7.2. Let T be a gradient-constrained MGA and let s be a Steiner point in T. Then the
labelling of s is said to be unstable if an arbitrarily small change in one of the edge weights causes
the labelling to change.

We can now state the following result about the labelling (fmmm).

Lemma 7.22. Let T be a gradient-constrained MGA in a vertical plane and let s be a Steiner
point in T. Then the labelling (fmmm) is unstable.

Proof. Refer to Figure 7.16. Perturbing s in direction r1, then the variation is greater than
or equal to zero when

t1 ≤ d
h

cos γ

1− cos γ
.

Perturbing s in direction r2, then the variation is greater than or equal to zero when

t1 ≥ d
h

cos γ

1− cos γ
.

Therefore, for the variation to be greater than or equal to zero, it must be exactly zero,
and this can only occur when

t1 =
d
h

cos γ

1− cos γ
.

An arbitrarily small change in t1 will cause the labelling of s to change.
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Figure 7.15: (i)�(v) Possible con�gurations for a Steiner point with labelling (ffmm).
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Figure 7.16: Steiner point with labelling (fmmm).

Finally, we note that the question of whether the sink edge can be the f-edge is still
open. Numerical tests indicate, however, that the f-edge cannot be the sink edge for a
Steiner point with the labelling (fmmm).

7.6 Hulls in a gradient-constrained plane

We conclude this chapter by investigating the regions in which Steiner points can opti-
mally exist. We begin with some de�nitions of hulls. The (Euclidean) convex hull of a set
of terminals N, denoted by conv(N), is the minimal set for which N is in conv(N) and, if
p and q are two points in conv(N), then all points on the Euclidean line segment joining
p and q are in conv(N). The hull of N in the gradient-constrained metric, denoted by
hullg(N), was de�ned in [13] to be the minimal set such that N is in hullg(N) and, if p
and q are two points in hullg(N), then all points on all shortest paths joining p and q are in
hullg(N). It was shown in [13] that, if T is an SMT on N, then all Steiner points of T lie in
hullg(N). In fact, this result can be strengthened in the vertical plane case. We de�ne the
reduced hull of N in the gradient metric as follows.

De�nition 7.3. Let Vp denote the vertical line through a point, p, in a vertical plane P . Let N be
a set of terminals in P , and let int(conv(N)) denote the interior of the (Euclidean) convex hull
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of N. Then the reduced hull of N in the gradient metric is

hull′g(N) := {p ∈ int(conv(N)) : ∃pi, pj ∈ N such that g(ppi) ≤ m and g(ppj) ≤ m},

where pi and pj are on opposite sides of Vp.

In other words, hull′g(N) is the interior of the convex hull of N excluding points p with
the property that Euclidean line segments connecting p and all terminals lying on one
side (or both sides) of Vp have gradients strictly greater than m. For example, suppose p
and q are adjacent points on the boundary of conv(N), such that g(pq) > m (Figure 7.17
(i)). If prq is a zigzag geodesic between p and q, such that r `points toward' conv(N), and
there are no additional terminals in the interior of the triangle 4prq, then hull′g(N) does
not include the interior of 4prq, but it does include segments pr and rq.

Now suppose there exist additional terminals in the interior of4prq (Figure 7.17 (ii)).
Then hull′g(N) does not include the region to the right of the dashed line shown in the
�gure. In the following lemma, we show that all Steiner points in an MGA in P must lie
in hull′g(N).

Lemma 7.23. Let T be a gradient-constrained MGA in a vertical plane, and let s be a Steiner
point in T. Then s ∈ hull′g(N).

Proof. Suppose that s /∈ hull′g(N). Let N′ ⊆ N be the subset of terminals lying on one
side of Vs, and assume that g(spi) > m ∀pi ∈ N′. Then all edges incident with s on one
side of Vs are b-edges, unless there exist other Steiner points on that side. If other Steiner
points exist, there must be at least one Steiner point s′ such that there are no Steiner points
on one side of Vs′ . It is easily seen that all the vectors lie in a closed half plane on one side
of Vs, and thus the equilibrium condition cannot be satis�ed. Hence s′ is not a Steiner
point, which completes the proof.

We illustrate these ideas using two examples. In the �rst example, N = {p1, p2, p3, p4}
form the corners of a rectangle, as shown in Figure 7.18 (i). Then conv(N) is the closed
rectangle with vertices at p1, p2, p3, p4, hullg(N) is the closed convex body with vertices
p1, r′1, p2, p3, r′2, p4 and hull′g(N) is the union of the interior of the non-convex body with
vertices p1, r1, p2, p3, r2, p4 and the m-edge boundary segments p1r1, r1 p2, p3r2, r2 p4.
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Figure 7.17: Reduced hull of terminals in a gradient-constrained vertical plane.

In the second example (Figure 7.18 (ii)), conv(N) is the closed rectangle with ver-
tices p1, p2, p3, p4, hullg(N) is the closed convex body with vertices p1, r′1, p2, p3, r′2, p4 and
hull′g(N) is the union of the interiors of the two disjoint triangles with respective vertices
p1s2 p4 and p2 p3s1, and the m-edge segments p1s2, s2 p4, p2s1, s1 p3.
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Figure 7.18: (i)�(ii) Reduced hull of terminals at the vertices of two rectangles in a vertical
plane.





Chapter 8
Gradient-Constrained Gilbert

Arborescences in Three Dimensions

We study gradient-constrained minimum Gilbert arborescences (MGAs) in three dimensions, as-
suming a linear cost function w(t) = d + ht, where d and h are strictly positive, and the maximum
gradient satis�es m ≤ 1. We establish a range of fundamental properties of gradient-constrained
MGAs in three dimensions. We provide a classi�cation of degree-three and four Steiner points, ex-
tending results in [13] for gradient-constrained Steiner minimum trees in three dimensions. The
classi�cation of a Steiner point is in terms of the labels of its incident edges, where a label indicates
whether the absolute value of the gradient of the Euclidean straight line connecting the endpoints of an
edge is less than, equal to, or greater than m. We show that there are seven feasibly optimal labellings
for degree-three Steiner points, and four feasibly optimal labellings for degree-four Steiner points. We
then show that there is no upper bound on the degree of a Steiner point in a gradient-constrained MGA
in three dimensions. We conclude with a discussion of hulls in gradient-constrained three-space.

8.1 Introduction

IN the previous chapter we introduced the gradient-constrained Gilbert arborescence
problem, and investigated gradient-constrained minimum Gilbert arborescences

(MGAs) lying in a vertical plane. While the vertical plane problem is potentially ap-
plicable for underground mines accessing ore bodies that roughly lie in a vertical plane,
most mining networks are three-dimensional. Properties of gradient-constrained Steiner
minimum trees (SMTs) were studied in [13]. The goal of this chapter is to establish these
fundamental properties for gradient-constrained MGAs in three dimensions.

In Section 8.2, we restate selected aspects from Chapters 4 and 7 relating to the gradi-
ent metric, in the context of the Gilbert arborescence problem in three dimensions. Then,

173
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in Section 8.3, we establish a range of fundamental properties of gradient-constrained
MGAs in three-space.

A classi�cation of degree-three and degree-four Steiner points in gradient-constrained
MGAs in three-space is presented in Sections 8.4 and 8.5 respectively. The classi�cation
of a Steiner point is in terms of the labels of its incident edges, where a label indicates
whether the absolute value of the gradient of the Euclidean straight line connecting the
endpoints of an edge is less than, equal to, or greater than m. We show that there are
seven feasibly optimal labellings for degree-three Steiner points, and four feasibly op-
timal labellings for degree-four Steiner points. In Section 8.6, we show that there is no
upper bound on the degree of a Steiner point in a gradient-constrained MGA in three di-
mensions. We conclude in Section 8.7 with a discussion of hulls in a gradient-constrained
three-space.

8.2 Background

In this section we provide background and notation required in this chapter.

8.2.1 The gradient metric

Background relating to the gradient metric was provided in Chapters 4 and 7. Here we
restate relevant material in the context of three-dimensional gradient-constrained net-
works. This material is primarily from [13].

Let p = (xp, yp, zp) and q = (xq, yq, zq) be two points in R3, and assume that the z-
axis is vertical. Denote the Euclidean straight line segment between p and q by pq. We
de�ne the gradient, g, of pq to be the absolute value of the Euclidean straight line segment
between p and q, i.e.

g(pq) =
|zq − zp|√

(xq − xp)2 + (yq − yp)2
.

Recall that an edge, pq, is a bent edge if g(pq) > m. In vertically-planar networks, a bent
edge is represented by a zigzag line joining p and q, where each segment of the zigzag
has gradient m. It is easily seen that such zigzag lines are geodesics under the gradient
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Figure 8.1: Cones generated by rotating a line with maximum gradient about a vertical
line. (i) An m-cone cone. (ii) Intersection of two m-cones.

constraint. In three dimensions there are many other ways of embedding a bent edge, for
example by a helical arc.

Let Cp denote the right circular cone generated by taking a line through p with gradi-
ent m and rotating it 360◦ about the vertical line through p (Figure 8.1 (i)). We will refer
to these cones as m-cones. Assuming g(pq) > m and zq > zp, the boundary of the union
of all shortest paths between p and q is the intersection of Cp and Cq between horizontal
planes Hp and Hq through p and q respectively (Figure 8.1 (ii)). Thus any b-edge can
exist within this region, provided each differentiable point on the edge has instantaneous
gradient m.

In three dimensions, the gradient metric is de�ned as

|pq|g =




|pq| =

√
(xq − xp)2 + (yq − yp)2 + (zq − zp)2, if g(pq) ≤ m;

|pq|v =
√

1 + m−2|zq − zp|, if g(pq) ≥ m.
(8.1)

In gradient-constrained three-space, the unit ball Bg and its dual B∗g are as shown in Fig-
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ures 8.2 and 8.3 respectively, for m = 0.14, 0.58, 1.
In three-space, edge vectors corresponding to norming functionals are computed in

exactly the same manner as for the vertical plane problem, i.e. by Lemma 7.1. Note that in
three-space, the set of m-edge vectors is still a line segment on the boundary of B∗ (rather
than, say, a face of B∗, as one might expect as we move from two to three dimensions),
and these vectors all lie in the vertical plane containing the edge.

8.3 Fundamental properties of gradient-constrained MGAs in three-
space

In this section, we conduct a rigorous study of the fundamental properties of gradient-
constrained MGAs in a vertical plane, with emphasis on the local structure at Steiner
points. The main tools used here, introduced in Chapter 7, are the variational argument
(Lemma 7.2), and the properties of edge vectors (Lemma 7.1).

Recall from Chapter 7 thatHs and Vs denoted the horizontal and vertical lines passing
through a Steiner point s. The following de�nition generalises these lines to planes in
three-space.

De�nition 8.1. Let T be a gradient-constrained MGA in three-space and let s be a Steiner point
in T with incident sink edge spk. Then Hs denotes the horizontal plane passing through s, while
Vs denotes the unique vertical plane that is orthogonal to the projection of spk onto Hs.

The planes Hs and Vs are orthogonal, and partition three-space into quadrants, as
shown in Figure 8.4.

We now generalise Lemma 7.7 in Chapter 7 to the three-dimensional case.

Lemma 8.1. Let T be a gradient-constrained MGA in three-space and let s be a Steiner point
in T. If s has an incident b-edge, then it has no other incident b or m-edges on the side of Hs

containing the b-edge.

Proof. Refer to the proof of Lemma 7.7. The main difference in three-space is that sets of
geodesics are now intersections of up-cones and down-cones (Figure 8.1 (ii)) rather than
a parallelogram. The proof is demonstrated in Figure 8.5.
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Figure 8.2: Unit ball in gradient-constrained three-space for selected maximum gradients.



178 Gradient-Constrained Gilbert Arborescences in Three Dimensions

Figure 8.3: Dual ball in gradient-constrained three-space for selected maximum gradi-
ents.
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Figure 8.4: Partitioning of three-space into quadrants.

Lemma 8.2. Let T be a gradient-constrained MGA in three-space and let s be a Steiner point in
T with incident sink edge spk. If spk is labelled `f' or `m', then s has no incident f-edges on the
side of Vs containing spk except, possibly, for spk itself. If spk is a b-edge, then s has no incident
f-edges.

Proof. Refer to the proof of Lemma 7.8.

The following lemma generalises Lemma 7.9 to three-space.

Lemma 8.3. Let T be a gradient-constrained MGA and let s be a Steiner point in T with sink
edge spk. Then there are no b-edges on the side ofHs containing spk except, possibly, for spk itself.

Proof. Refer to the proof for Lemma 7.9, and note that in three-space, a b-edge with two
zigzags can be constructed in the vertical plane containing the f-edge, such that the corner
point of the zigzag points towards the f-edge.

The next result generalises Lemma 7.10 to three-space.

Lemma 8.4. Let T be a gradient-constrained MGA in three-space and let s be a Steiner point in
T with incident sink edge spk. If three-space is partitioned into quadrants byHs and Vs, then spk
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Figure 8.5: Steiner point with (i) incident m- and b-edges, and (ii) incident b-edges on the
same side of the horizontal plane through the Steiner point.

is the sole edge incident to s in the quadrant containing spk. Moreover, if spk is an f-edge that is
horizontal, then it is the sole edge on its side of Vs.

Proof. Refer to the proof for Lemma 7.10.

8.4 A classi�cation of degree-three Steiner points

In [13] it was shown that there are �ve feasibly optimal labellings for degree-three Steiner
points in gradient-constrained SMTs in R3. They are (fff), (ffm), (fmm), (mmm) and
(mmb). Additional labellings are possible for gradient-constrained MGAs in three-space.

By Theorem 8.1, the labellings (fff), (ffm), (ffb), (fmm), (fmb), (mmm) and (mmb)
are feasibly optimal for gradient-constrained MGAs in a vertical plane. Since the verti-
cal plane case is a special case of the three-dimensional case, these seven labellings are
also feasibly optimal in gradient-constrained MGAs in three-space. The remaining la-
bellings are (fbb), (mbb) and (bbb). Labellings (mbb) and (bbb) are not feasibly optimal
by Lemma 8.1, since two edges with respective labels m,b or b,b cannot co-exist on the
same side ofHs. The labelling (fbb) is not feasibly optimal by noting that there is no hori-
zontal vector component to counterbalance that of the f-edge vector (since the two b-edge
vectors are vertical). Hence the equilibrium condition cannot be satis�ed. Therefore we
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have the following theorem.

Theorem 8.1. Let T be a gradient-constrained MGA in three-space and let s be a degree-three
Steiner point in T. Then s has seven feasibly optimal labellings: (fff), (ffm), (ffb), (fmm), (fmb),
(mmm) and (mmb).

Steiner points with these labellings are shown in Figure 8.6, where the m-cones associ-
ated with the Steiner point are included to distinguish between f-, m- and b-edges in
three-space. We note that in three-space, for the labellings (fff), (ffm), (fmm), (mmm)
and (mmb), any of the three edges can potentially be the sink edge. However, for the
labellings (ffb) and (fmb), the sink edge must be labelled `f' and `m' respectively.

8.5 A classi�cation of degree-four Steiner points

We now discuss degree-four Steiner points in MGAs in three-space. In [13] it was shown
that the labelling (mmmm) is the only feasibly optimal labelling for degree-four Steiner
points in gradient-constrained SMTs in three-space. For this labelling, two of the m-edges
must lie above Hs, and the other two below. Moreover, the four edges incident to s are
bi-vertically coplanar, meaning the two m-edges above Hs lie in the same vertical plane,
and the two m-edges below Hs lie in the same vertical plane (Figure 8.7). When the
two planes align to form a single vertical plane, then the four m-edges form a cross, a
structure that is feasibly optimal for gradient-constrained MGAs in a vertical plane (refer
to Chapter 7 for details).

As we will demonstrate, additional labellings are possible for degree-four Steiner
points in gradient-constrained MGAs in three-space. In Chapter 5 we conjectured that
all Steiner points in Euclidean MGAs in three-space have degree three. If this is true, the
labelling (ffff) is not feasibly optimal. We now examine the remaining labellings, starting
with (ffbb).

Lemma 8.5. Let T be a gradient-constrained MGA in three-space and let s be a Steiner point in
T. Then the labelling of s is not (ffbb).

Proof. By Lemma 8.2, the sink edge cannot be a b-edge, since s has incident f-edges.
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Figure 8.6: Feasibly optimal labellings for degree-three Steiner points in three-space.
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Figure 8.7: Steiner point with bi-vertically coplanar incident edges.

Therefore, the sink edge must be an f-edge. By Lemma 8.1, the two b-edges must be on
opposite sides of Hs. Consequently, at least one of the b-edges must be on the same side
of Hs as the sink edge, which is not possible by Lemma 8.3.

We now eliminate �ve more labellings.

Lemma 8.6. Let T be a gradient-constrained MGA in three-space and let s be a Steiner point in
T. Then the labelling of s is not (fmbb), (fbbb), (mmbb), (mbbb) or (bbbb).

Proof. In each of the �ve cases, there must be either an m-edge and a b-edge, or two
b-edges, on the same side of Hs, which is not possible by Lemma 8.1.

In the next lemma, we examine the labelling (mmmb).

Lemma 8.7. Let T be a gradient-constrained MGA in three-space and let s be a Steiner point in
T with incident sink edge sp4. If sp4 is a b-edge, then the labelling of s is not (mmmb).

Proof. By Lemma 8.1, the three m-edges must be on the opposite side of Hs to the b-
edge. (Figure 8.8 (i)). Denote the m-edges by p1s, p2s, p3s and their respective m-cones by
C1, C2, C3. We can assume without loss of generality that p1, p2, p3 lie on a unit circle in the
horizontal plane at a vertical distance m below s, since by Lemma 7.4, the optimality of
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Figure 8.8: Steiner point with labelling (mmmb), where the b-edge is the sink edge. (i)
Gilbert arborescence. (ii)�(iii) Hyperbola at the intersection of source m-cones, viewed
from below, and along a line orthogonal to the vertical plane containing the hyperbola.
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s depends only on the angles between edges, not the edge lengths. We also assume that
the angle between the projections of p1s and p2s onto a horizontal plane is at most 120◦.

The intersection of C1 and C2 is a hyperbola lying in a vertical plane through s (Fig-
ure 8.8 (ii) and (iii)). Let s1 be a point on this hyperbola. Then p1s1 and p2s1 are m-edges,
since s1 lies on C1 and C2. Let s2 be a second point in the vertical plane containing the
hyperbola, such that s1s2 and ss2 are m-edges, and s2 is above s (Figure 8.8 (iii)).

Thus, T1 := p1s ∪ p2s ∪ p3s and T2 := p1s1 ∪ p2s1 ∪ p3s ∪ s1s2 ∪ ss2 are arborescences
connecting p1, p2, p3, p4 and, since each path from pi, i = 1, 2, 3 to p4 is a geodesic under
the gradient metric, the �ow cost component cannot be improved, and is the same for
both arborescences. Hence, the arborescence with the shorter length will have the lesser
cost.

Denoting the vertical distance between s and p4 by z4, the length L1 of T1 is given
by L1 =

√
1 + m2 (

3 + z4
m

)
. Denoting the distance between p1 and p2 by 2a, and the

horizontal distance from the line through p1, p2 to s1 by x, the length L2 of T2 as a function
of x is

L2(x) =
√

1 + m2
(3

2
√

x2 + a2 +
1
2
√

1− a2 − 1
2 x +

3
2 +

z4
m

)
.

The �rst derivative is

L′2(x) =
√

1 + m2
(3

2
x√

x2 + a2 −
1
2

)
.

Setting L′2(x) = 0, it is easy to show that L2(x) is minimised when x = a√
8 , giving

L2

( a√
8

)
=

√
1 + m2

(√
2a +

1
2
√

1− a2 +
3
2 +

z4
m

)

≤
√

1 + m2
(

3 +
z4
m

)
.

Since the length of T2 is less than the length of T1, and the �ow components are the same,
we conclude that T2 is not minimal, and therefore the labelling (mmmb) is not feasibly
optimal if the sink edge is a b-edge.

We now state the main result in this section.

Theorem 8.2. Let T be a gradient-constrained MGA in three-space and let s be a Steiner point
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in T. Then the labellings (fffm), (ffmm), (fmmm) and (mmmm) are feasibly optimal.

Proof. Steiner points with these labellings were obtained by a Matlab program which
generates random arborescences with degree-four Steiner points, and tests whether these
are MGAs by checking whether the necessary and suf�cient conditions of Theorem 6.2 in
Chapter 6 are satis�ed. The optimal networks generated by this program were double-
checked using the UNO software product.

Feasible con�gurations for degree-four Steiner points are shown in Figure 8.9. Three
different con�gurations for Steiner points with the labelling (ffmm) are shown. In all
cases, the sink edge is indicated by arrows. The m-cones are shown to distinguish be-
tween f-, m- and b-edges. We note that the sink edge can be any of the four edges, except
for the labelling (fffm), in which case the sink edge must be an f-edge.

The labellings not accounted for in this section are (fffb), (ffmb), (fmmb) and (mmmb),
the last case having only been proved not feasible for the case where the b-edge is the
sink edge. The following conjecture, if true, would prove that these four labellings are
not feasibly optimal.

Conjecture 8.1. Let T be a gradient-constrained MGA in three-space and let s be a Steiner point
in T. If the degree of s is greater than three, then s has no incident b-edges.

There is strong evidence to suggest that this conjecture is true. The main support for this
belief is that, in three-space, a b-edge path from a source to a sink can be embedded in
many different ways. Numerical experiments indicate that this path tends to be embed-
ded using at least three zigzag components, rather than two. In this way, edges can attach
to different corner points on the zigzag so as to reduce the cost of the network.

To demonstrate this, consider the following example. Let p1 = (−0.707, 0.707, 0),
p2 = (−0.707,−0.707, 0), p3 = (1, 0,−0.5) be sources with respective �ows t1 = 1, t2 = 1,
t3 = 100, and let p4 = (1, 0, 0.5) be the sink. The cost parameters are d = h = 1 and the
maximum gradient is m = 0.5. It can be veri�ed that the network shown in Figure 8.10,
in which the Steiner point s has labelling (ffmm), is a gradient-constrained MGA.

If we perturb p3 by ε in the negative x-direction, we notice that the topology suddenly
changes to the one shown in Figure 8.11, in which ε = 0.1. The path from p3 to p4 now has
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Figure 8.9: Feasibly optimal labellings for degree-four Steiner points in three-space.



188 Gradient-Constrained Gilbert Arborescences in Three Dimensions

the freedom to be embedded in three-space such that it has three zigzags instead of two.
Consequently, the edges incident to p1 and p2 can connect to different corner points on
the path to reduce the cost of the network. This behaviour has been frequently observed
when attempting to construct MGAs with the above labellings.

8.6 Maximum degree of Steiner points

The degree of a Steiner point in a gradient-constrained Steiner minimum tree (SMT) in
three dimensions is either three or four [13], subject to some constraints on m. In general
there is no upper bound on the degree of a Steiner point in a minimum Gilbert network
(MGN) [27]. The Steiner problem is a special case of the Gilbert arborescence problem,
which is itself a special case of the Gilbert network problem. What then can we say about
the degree of Steiner points in gradient-constrained MGAs in three dimensions? Is the
degree limited to three or four as for gradient-constrained SMTs, is it unbounded as for
general MGNs, or is it bounded from above by some �nite integer value greater than
four?

This has proved to be an exceedingly dif�cult question to answer. For some time,
we conjectured that the degree is unbounded, by consideration of the arborescence in
Figure 8.12 (i), in which the Steiner point s has k − 1 incident source m-edges, where
k is arbitrarily large, and the sink edge is a b-edge. In this network, each path from
pi, i = 1, . . . , k− 1 to pk is a geodesic under the gradient metric. Therefore, the �ow cost
component cannot be improved.

The discovery of Lemma 8.7, however, revealed that the �xed cost can be improved.
By placing a new Steiner point s1 at an optimal location on the hyperbola at the inter-
section of two of the source m-cones, and a second Steiner point s2 at a strategic location
above s, the �xed cost is reduced while �ow cost is unaffected. If ss2 is a b-edge, the
procedure can be repeated for another pair of source m-edges. From this we can state the
following important result.

Theorem 8.3. Let T be a gradient-constrained MGA in R3 and let s be a Steiner point in T with
incident sink edge spk. If spk is a b-edge, then s has degree three, and the two source edges are
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Figure 8.10: Steiner point with labelling (ffmm).
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Figure 8.12: Large-degree Steiner points, where the sink edge is (i) a b-edge, and (ii) an
m-edge.
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vertically coplanar m-edges on the opposite side of Hs to the sink edge.

Proof. By Lemma 8.2, s has no incident f-edges, because the sink edge is a b-edge. There-
fore all source edges are m-edges. By repeated application of Lemma 8.7 we see that,
provided the sink edge preserves its labelling, s has at most two incident source m-edges.
By Lemma 8.1, these edges must be on the opposite side of Hs to the sink edge. If the
m-edges do not lie in a vertical plane, then their associated vectors must be vertical, oth-
erwise the three vectors cannot balance. But now for the vectors to balance, the sum of
the two weights on the source edges must equal the weight on the sink edge which, un-
der the assumption that d > 0, is not possible in a Gilbert arborescence with a linear cost
function w(t) = d + ht. Hence the two m-edges must be vertically co-planar.

From this result, we see that the network in Figure 8.12 (i) is not an MGA. Suppose,
however, that we change the sink edge so that it is now an m-edge instead of a b-edge
(Figure 8.12 (ii)). The proof of Lemma 8.7 relies on the sink edge being a b-edge, and is
therefore no longer applicable. The paths from pi, i = 1, . . . , k− 1 to pk are still geodesics
under the gradient metric, so the �ow cost cannot be improved.

Can the development cost be improved? To answer this, consider the arborescence
T = p1s ∪ p2s ∪ sp3 in Figure 8.13 (i), where p1, p2 are sources with very large associated
�ows t1, t2, p3 is the sink, s is a Steiner point, and the three edges are m-edges. Let
C1, C2, C3, Cs denote the m-cones associated with p1, p2, p3, s respectively. Then, as in the
proof of Lemma 8.7, C1 ∩ C2 is a hyperbola.

Now there are two cases. Suppose that p1, p2 are placed on Cs such that the hyperbola
does not intersect C3 belowHs (Figure 8.13 (ii)). If p1, p2 lie on the same horizontal plane,
the hyperbola associated with the two m-cones lies in a vertical plane. If this vertical
plane makes an angle greater than 90◦ with the vertical plane containing the sink edge,
then the hyperbola does not intersect C3 below Hs. Now if s is replaced with a Steiner
point s1 on the hyperbola, s1 has labelling (fmm), and the paths from p1, p2 to p3 are no
longer geodesics. If the �ow cost is very large, this new network is not minimal. Hence,
in this case the length of T cannot be shortened without disrupting the geodesic paths
between the sources and the sink.

Now suppose that p1, p2 are placed on Cs such that the hyperbola at C1 ∩ C2 intersects
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C3 below Hs. A new Steiner point s1 on the hyperbola has labelling (mmb), and since
s1 is lower than s, the length of the new network is less than T, while the �ow cost is
unchanged. Thus in this case T is not minimal.

Therefore, if a Steiner point has k − 1 source m-edges on one side of Hs and an m-
edge sink on the other, such that the �ow costs are very large compared to the �xed cost,
and such that none of the hyperbolae associated with pairs of source m-cones intersect
Ck below Hs, then the network has the shortest length among all networks connecting
p1, . . . , pk for which the paths from the sources to the sink are geodesics. This leads us to
the following result.

Theorem 8.4. There is no upper bound on the degree of a Steiner point in a gradient-constrained
MGA in three dimensions.

Using the UNO software product, many high-degree Steiner points satisfying the prop-
erties described above were found.

We conclude this discussion with some additional observations about networks gen-
erated in UNO for which large-degree Steiner points were achieved:

• A large-degree Steiner point can have at least two source m-edges above Hs, pro-
vided m is suf�ciently small, and the �ows associated with these edges are not too
large.

• If three m-edges are arranged aroundHs such that one pair of adjacent m-cones in-
tersects Ck and the other pair of adjacent m-cones does not, then the above discus-
sion about hyperbola is valid only for the pair of m-edges subtending the smaller
angle.

• From the above comment, a large-degree Steiner point can have at most one inci-
dent m-edge below Hs on the side of Vs containing the sink edge.

8.7 Hulls in gradient-constrained three-space

We conclude this chapter by brie�y discussing hulls in gradient-constrained three-space.
Recall from Chapter 7 that, for a set N of terminals in a vertical plane P , there exists
an MGA, T, for N lying on P (Lemma 7.6). Moreover, all Steiner points in T are in the
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reduced hull of N, which is the interior of the convex hull of N excluding points p having
the property that the Euclidean straight line segments connecting p and all terminals on
at least one side of Vs have gradient strictly greater than m, where Vs is the vertical line
through s (De�nition 7.3, Lemma 8.8).

In three dimensions, the situation is more dif�cult. One complication stems from
the fact that a Steiner point does not necessarily lie in the convex hull of its adjacent
vertices. To see this, let m = 1, p1 = (−1,−1), p2 = (1,−1), p3 = (0, 1), s = (0, 0), and
T = p1s ∪ p2s ∪ sp3. Perturbing p3 horizontally out of the (x, z) plane, the cost of T is
unchanged. The position of s is unchanged, but now it lies outside the plane of its three
adjacent vertices.

It was also shown in [13] that all Steiner points in gradient-constrained SMTs lie in
hullg(N), the hull of N in the gradient metric. The following generalises the de�nition of
the reduced hull of a set of terminals to the three-dimensional case.

De�nition 8.2. Let N be a set of terminals in R3, and let conv(N) denote the (Euclidean) convex
hull of N. Then the reduced hull of N in the gradient metric is

hullg′(N) := conv(N)− N − {p ∈ int(conv(N)) : ∃Pp

such that ∀q ∈ N on one side of Pp, g(pq) > m},

where Pp is a vertical plane through p, and a point q ∈ Pp is assumed to lie on both sides of Pp.

In other words, the reduced hull of N is the (Euclidean) convex hull of N with a region
subtracted from it, the region consisting of points in N and points p for which there exists
a vertical plane P through p such that edges from p to every terminal on one side of P
are b-edges.

To demonstrate this concept, suppose that N consists of the eight points at the vertices
of a 1× 2× 1 cuboid, and suppose that m = 1. The convex hull, gradient hull, reduced
hull and region removed from the convex hull to achieve the reduced hull are shown in
Figure 8.14 (i)�(iv) respectively. From the �gure it seems unlikely that Steiner points can
exist outside the reduced hull.

In the second example (Figure 8.15), the cuboid is turned on its side so that the longer
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dimension is vertical. The convex hull, gradient hull, reduced hull and region removed
from the convex hull to achieve the reduced hull are shown in Figure 8.15 (i)�(iv) respec-
tively. Using the UNO software product we have attempted to construct examples where
Steiner points lie outside the reduced hull, without success. Since we have not yet found
a rigorous proof, we cannot state that all Steiner points lie in the reduced hull, and resort
to the following result.

Lemma 8.8. Let T be a gradient-constrained MGA in a vertical plane, and let s be a Steiner point
in T. Then s ∈ hullg(N).

It is worth noting that, in three dimensions, Steiner points can exist on the boundary of
the (Euclidean) convex hull of N, and this is not possible for Steiner points in gradient-
constrained MGAs in a vertical plane.
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Figure 8.14: Hulls of a set of terminals at the vertices of a cuboid. (i) Convex hull. (ii)
Gradient-constrained hull. (iii) Reduced hull. (iv) Region removed from convex hull to
obtain reduced hull.
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Figure 8.15: Hulls of a set of terminals at the vertices of a cuboid. (i) Convex hull. (ii)
Gradient-constrained hull. (iii) Reduced hull. (iv) Region removed from convex hull to
obtain reduced hull.
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Introduction to Part III

THE Callie underground mine, located in the Tanami Desert in the Northern Terri-
tory, includes two parallel declines accessing a large orebody extending some two

kilometres below the surface. As part of the strategic mine planning, it was proposed to
incorporate a vertical hoisting shaft and an ore pass as an alternative to trucking material
to the surface along the declines. In this work, we use network optimisation techniques
to investigate the feasibility of the proposed system, and to mathematically determine the
optimum positions and geometry of the shaft, ore pass and surrounding infrastructure.
We propose a modelling procedure taking aspects from the Fermat-Weber problem and
the Gilbert arborescence problem. We describe the implementation of the procedure into
a computer program for solving the problem iteratively, and present results over a range
of infrastructure and haulage costs, decline gradients and life-of-mine schedules.





Chapter 9

Callie Shaft Location Study

9.1 Introduction

9.1.1 The Tanami operations

LOCATED in the Tanami desert in the Northern Territory, 550 km north-west of Al-
ice Springs (Figure 9.1), the Tanami operations comprise a processing facility at

the Granites, two open pits and the Callie underground mine at Dead Bullock Soak, the
Groundrush open pit and the Tanami mill.

Gold was discovered at Tanami in 1900, and modern mining began in 1983 follow-
ing an agreement with traditional landowners. Initial production came from the open
pit mines at the Granites, while current production comes from the high-grade Callie
underground mine at Dead Bullock Soak.

9.1.2 Orebody

The Callie underground mine services a large orebody running approximately in an east-
west direction, plunging into the ground at an angle of about 45◦ towards the east (Fig-
ure 9.2). The orebody is divided into two major veins (Figure 9.3).

9.1.3 Underground mine

To date, the orebody has been accessed by a single decline, called the Callie decline, with
material having been mined to a depth of about 1000 m below the surface. Rock is ex-

203
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Figure 9.1: Location of the Tanami operations.

tracted from the orebody in primary stopes, which are replaced with �ll material to allow
adjacent secondary stopes to be subsequently extracted. Once loaded onto trucks, ore is
hauled along crosscuts (horizontal tunnels) to the decline. Levels are at 40 m vertical
intervals.

In addition to the planned extension of the Callie decline, a secondary decline, called
the Wilson Drill decline (WDD), is to branch out from the Callie decline about 950 m below
the surface (Figure 9.4). Both declines are to have �xed gradients. Levels servicing the
WDD are also at 40 m vertical intervals, however they are offset from the Callie levels.
The Callie decline services the Wilson shoot, while the WDD is to service the Federation
shoot.

9.1.4 Hoisting shaft

As part of the strategic mine planning, it was proposed to incorporate a vertical hoisting
shaft as an alternative to trucking material to the surface along the declines. Using this
system, ore is hauled to a common tipping level, called the haul level, where it is crushed,
loaded into a skip and hoisted to the surface via the shaft. This method can provide sig-
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Figure 9.2: Simpli�ed surface geology map.

Figure 9.3: Typical cross-section through orebody (looking west).
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Figure 9.4: Conceptual long section.

ni�cant reductions in operating costs, although it requires a large capital cost associated
with a hoisting shaft. A conceptual shaft loading arrangement is shown in Figure 9.5.

9.1.5 Ore pass

In addition to the shaft, it was proposed to include an ore pass into the mine. An ore pass
is a near-vertical chute down which ore from upper levels is dropped to the haul (three
levels above the shaft base, see Figure 9.5), and transported to the shaft in one of several
ways:

• Ore is loaded into a truck (such as the one in Figure 9.6) by a load-haul-dump
vehicle (Figure 9.7) at the bottom of an ore pass. It is then trucked from the bottom
of the ore pass to the shaft.

• A load-haul-dump vehicle (Figure 9.7) trams ore directly from the base of the ore
pass to the shaft.

• If the horizontal distance between the ore pass and the shaft is greater than say 300
m, a loading chute may be installed at the base of the ore pass, allowing trucks to
be loaded automatically before transporting ore to the shaft.
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Figure 9.5: Conceptual shaft loading arrangement.

For operational reasons the ore pass is assumed to be constrained to the northing
9250N, which is about halfway between the two declines.

9.1.6 Problem description

The primary goal of this investigation is to mathematically determine:

1. the position (depth and plan coordinates) of the hoisting shaft;
2. the position (top, bottom and plan coordinates) of the ore pass and identi�cation

of the levels which access the ore pass; and
3. the geometry of the main haulage drive network at the tipping level and shaft

haulage level.
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Figure 9.6: AD55 Caterpillar truck being loaded underground.

Figure 9.7: Cat R2900 load-haul-dump vehicle working underground.
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9.2 Problem data

The following data, provided by Newmont Limited, is based on their 2006 ore reserves
work.

9.2.1 Mine costs

Mine costs are summarised in Table 9.1.

Type Mine component Cost
Development Decline $4020/m

Level / main drive $3265/m
Ore pass $1,210/m

Shaft $25,000 or $50,000 or $75,000/m
Haulage Decline (up) / level / main drive $0.75 or $1.05/t.km

Decline (down) $0.85 or $1.20/t.km
Ore handling Truck loading $2.09/t

Crush and hoist to surface $2.00/t
Other General mine services $16.07/t

Ore pass �t-out $1,000,000

Table 9.1: Mine costs.

9.2.2 Decline gradients

Decline gradients are shown in Table 9.2.

Decline Gradients: case 1 Gradients: case 2
Callie 1:8 1:7
WDD 1:7 1:6

Table 9.2: Decline gradients.

At the time this study was undertaken, the Callie and Wilson Drill declines were designed
to about 0 RL (1400 m below the surface) with gradients 1:8 and 1:7 respectively. It is
assumed that both declines will continue downwards in the same manner as the current
design.
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9.2.3 Access points

Access points are locations where the nominal crosscuts intersect the declines. Each access
point is designated a nominal level corresponding to its approximate reduced level (RL).
The surface is at approximately 1400 m RL, and access points on the Callie decline extend
from 340 m RL to -660 m RL at 40 m vertical intervals (26 points), while access points on
the WDD extend from 390 m RL to 70 m RL, also in 40 m vertical increments (nine points).
Hence in total there are 35 access points. Their associated declines, (X,Y,Z) coordinates
and nominal levels are provided in columns 1-5 of Table 9.3.

9.2.4 Schedules

Three life-of-mine (LOM) production schedules for the Callie underground mine were
provided by Nadine Wetzel of Newmont. They are base, probable and best. The schedules
were determined by Newmont as outlined in the report `Schedule for shaft model.doc'.
Details of the three schedules are provided in Table 9.4.
The predicted tonnages to be extracted from each access point, for the three cases, are
provided in columns 6-8 of Table 9.3.

9.2.5 No-go zones

To avoid disruption to the shaft over the life of the mine, it must avoid impinging on the
following no-go regions:

1. Orebody standoff: The shaft must not be too close to the orebody. The Vulcan
�le `no go geol.dxf', provided by Newmont, provides a 'barrier' around the Wil-
son and Federation orebodies. Polygons digitised around the boundaries of the
ore bodies were expanded 200 m in any direction (the two boundaries shown in
Figures 9.8, 9.9 and 9.10).

2. Faults: The shaft is required to avoid faults by at least 50 m. The Vulcan �le
`all faults.dxf' provided the underground fault locations (see Figure 9.11). The
main haulage drive is allowed to pass through a fault so long as it does not travel
along (parallel) to it for any great length, say, no more than 15 metres at a time.
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Nominal Base Probable Best
Orebody X Y Z Level tonnes tonnes tonnes

WIL 60256 9375 339 340 59253 59253 59253
WIL 60296 9371 299 300 296746 500000 700000
WIL 60336 9368 259 260 194808 500000 700000
WIL 60376 9364 219 220 298691 750000 700000
WIL 60415 9361 179 180 200000 750000 1050000
WIL 60455 9357 139 140 551408 1000000 1050000
WIL 60495 9354 99 100 736412 1125000 1400000
WIL 60535 9350 59 60 418845 1125000 1575000
WIL 60575 9347 19 20 500000 1000000 1225000
WIL 60615 9343 -21 -20 500000 1375000 1575000
WIL 60655 9340 -61 -60 600000 1125000 1225000
WIL 60694 9336 -101 -100 800000 1375000 1400000
WIL 60734 9333 -141 -140 600000 1125000 1575000
WIL 60774 9329 -181 -180 600000 1125000 1225000
WIL 60814 9326 -221 -220 700000 875000 1575000
WIL 60854 9322 -261 -260 500000 875000 1225000
WIL 60894 9319 -301 -300 400000 875000 1400000
WIL 60933 9315 -341 -340 500000 875000 1575000
WIL 60973 9312 -381 -380 300000 625000 1225000
WIL 61013 9308 -421 -420 200000 750000 1225000
WIL 61053 9305 -461 -460 300000 250000 1125000
WIL 61093 9301 -501 -500 100000 - 1050000
WIL 61133 9298 -541 -540 - - 1225000
WIL 61173 9294 -581 -580 - - 875000
WIL 61212 9291 -621 -620 - - 1050000
WIL 61252 9287 -661 -660 - - 350000
FED 60497 9103 398 390 110000 150000 150000
FED 60537 9103 358 350 230000 325000 325000
FED 60577 9103 318 310 240000 500000 500000
FED 60617 9103 278 270 230000 500000 500000
FED 60657 9103 238 230 230000 500000 500000
FED 60697 9103 198 190 240000 350000 500000
FED 60737 9103 158 150 120000 175000 500000
FED 60777 9103 117 110 - - 350000
FED 60817 9103 77 70 - - 175000

Table 9.3: Access points, nominal levels and tonnages.
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Wilson shoot Federation shoot
Name Rate (Mtpa) Quantity (Mt) End Rate (Mtpa) Quantity (Mt) End
Base 2 10 2015 0.35 1.4 2014

Probable 2.5 17.5 2018 0.5 2.5 2015
Best 3.5 30 2019 0.5 3.5 2017

Table 9.4: Base, probable and best life-of-mine schedules.

3. Surface infrastructure: The preferred area for the shaft collar is in a region south
of the main entrance road. The Vulcan �le `go surf.dxf' (the boundary shown in
Figure 9.8) represents this bounded region.

Declines, haul points, `no go geol.dxf' and `go surf.dxf' regions are shown in Figure 9.8
(plan), Figure 9.9 (section looking north) and Figure 9.10 (section looking west). Faults
are shown in Figure 9.11.

9.3 Problem formulation and solution procedure

In Chapter 4, Section 4.5, we proposed a simpli�ed procedure for determining the po-
sitions, lengths and orientations of the shaft, ore pass and main haulage drive. By this
procedure, the problem was broken down into two subproblems. First, the optimum
shaft depth was computed based on `vertical' costs � decline haulage, shaft development
and ore pass development � using the gradient-constrained Fermat-Weber problem. Sec-
ond, a minimum-cost �ow-dependent network interconnecting the declines, ore pass and
shaft was constructed at the level determined by the �rst subproblem. The optimum net-
work was computed based on `horizontal' costs � haul drive development and haulage
� using the Fermat-Weber problem in the Euclidean plane. In Chapter 2, Section 2.7, we
showed how to �nd an optimum network when the shaft is allowed to lie anywhere on
a straight line which, in this case, represents the boundary of the no-go region.

Although the simpli�ed procedure seems to obtain good intuitive solutions, it does
not guarantee an optimal solution for a given problem. Suppose the haul level is placed
at 100 m RL based on vertical costs. Numerical tests have shown that moving the haul
level to 140 m RL can reduce the cost of the network of tunnels. If the reduction in
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Figure 9.8: Plan view of underground mine.

Figure 9.9: Section looking north.
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Figure 9.10: Section looking west.
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Figure 9.11: Faults (looking approximately west-south-west).
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horizontal costs outweighs the increase in vertical costs, then the solution determined by
the simpli�ed procedure is not optimal.

In this chapter we propose a rigorous procedure which guarantees an optimal solu-
tion for a given problem. Refer to Figure 9.12. Placing the haulage drive at each of the
35 levels (on both declines collectively) from -660 m RL up to 390 m RL (see Figure 9.12),
the vertical costs can be computed. If an ore pass is used, it is tested at every level above
the haulage drive, and if an intermediate tipping point is added to the ore pass, it is also
tested at every level between the haulage drive and the top of the ore pass. For each
combination of haul and ore pass levels, a minimum-cost network interconnecting the
declines, ore pass and shaft is computed (Figure 9.13).

Once the cost for every mine layout has been computed, the arrangement giving the
lowest cost is selected as the globally optimal solution.

9.4 Results

Thirty-six tests were undertaken for each of three cases � no ore pass, one ore pass and
one ore pass with two tipping points (108 tests in total). The parameters used in each case
are summarised in Table 9.5. Results for the three cases are summarised in Tables 9.6, 9.7
and 9.8.

9.5 Analysis

Optimum haul levels and costs for the three ore pass con�gurations are compared in
Table 9.9. A cost comparison chart is provided in Figure 9.14.

9.5.1 Shaft depth

A visual comparison of optimum haul levels is provided in Figure 9.15.

• The optimum haul level ranges from 390 m RL to -340 m RL (1010 m to 1740 m
below the surface).
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Figure 9.12: Schematic elevation of shaft and surrounding infrastructure.
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Figure 9.13: Callie underground mine. (i) Perspective view. (ii) Plan view showing hori-
zontal network.
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Cost rates Decline
Shaft Haulage Haulage gradients

Case development up down
ID Schedule $/m $/(t.km) $/(t.km) Callie WDD

BA01 Base 25,000 0.75 0.85 1:8 1:7
BA02 Base 25,000 0.75 0.85 1:7 1:6
BA03 Base 25,000 1.05 1.20 1:8 1:7
BA04 Base 25,000 1.05 1.20 1:7 1:6
BA05 Base 50,000 0.75 0.85 1:8 1:7
BA06 Base 50,000 0.75 0.85 1:7 1:6
BA07 Base 50,000 1.05 1.20 1:8 1:7
BA08 Base 50,000 1.05 1.20 1:7 1:6
BA09 Base 75,000 0.75 0.85 1:8 1:7
BA10 Base 75,000 0.75 0.85 1:7 1:6
BA11 Base 75,000 1.05 1.20 1:8 1:7
BA12 Base 75,000 1.05 1.20 1:7 1:6
PR01 Probable 25,000 0.75 0.85 1:8 1:7
PR02 Probable 25,000 0.75 0.85 1:7 1:6
PR03 Probable 25,000 1.05 1.20 1:8 1:7
PR04 Probable 25,000 1.05 1.20 1:7 1:6
PR05 Probable 50,000 0.75 0.85 1:8 1:7
PR06 Probable 50,000 0.75 0.85 1:7 1:6
PR07 Probable 50,000 1.05 1.20 1:8 1:7
PR08 Probable 50,000 1.05 1.20 1:7 1:6
PR09 Probable 75,000 0.75 0.85 1:8 1:7
PR10 Probable 75,000 0.75 0.85 1:7 1:6
PR11 Probable 75,000 1.05 1.20 1:8 1:7
PR12 Probable 75,000 1.05 1.20 1:7 1:6
BE01 Best 25,000 0.75 0.85 1:8 1:7
BE02 Best 25,000 0.75 0.85 1:7 1:6
BE03 Best 25,000 1.05 1.20 1:8 1:7
BE04 Best 25,000 1.05 1.20 1:7 1:6
BE05 Best 50,000 0.75 0.85 1:8 1:7
BE06 Best 50,000 0.75 0.85 1:7 1:6
BE07 Best 50,000 1.05 1.20 1:8 1:7
BE08 Best 50,000 1.05 1.20 1:7 1:6
BE09 Best 75,000 0.75 0.85 1:8 1:7
BE10 Best 75,000 0.75 0.85 1:7 1:6
BE11 Best 75,000 1.05 1.20 1:8 1:7
BE12 Best 75,000 1.05 1.20 1:7 1:6

Table 9.5: Test cases.
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No Ore pass with Ore pass with
ore pass one tipping point two tipping points

Haul Cost Haul Cost Haul Cost Best
Case level $M level $M level $M option
BA01 158 53.4 19 53.0 -21 52.6 ore pass with two tipping points
BA02 158 51.4 19 51.8 -21 51.6 no ore pass
BA03 99 60.8 -21 58.8 -101 57.7 ore pass with two tipping points
BA04 99 58.3 -21 57.3 -21 56.5 ore pass with two tipping points
BA05 299 83.1 219 85.3 219 85.2 no ore pass
BA06 299 80.3 278 82.8 259 82.8 no ore pass
BA07 219 92.1 99 92.8 99 92.8 no ore pass
BA08 219 88.9 99 90.6 99 90.6 no ore pass
BA09 398 109.2 358 112.6 318 113.2 no ore pass
BA10 398 105.7 358 109.3 318 110.2 no ore pass
BA11 299 121.0 278 123.7 259 123.7 no ore pass
BA12 398 116.9 278 120.0 259 120.2 no ore pass
PR01 59 68.6 -21 64.6 -101 63.0 ore pass with two tipping points
PR02 99 65.4 -21 62.6 -101 61.5 ore pass with two tipping points
PR03 59 81.6 -101 74.5 -101 71.6 ore pass with two tipping points
PR04 59 77.2 -21 71.9 -101 69.6 ore pass with two tipping points
PR05 158 100.9 19 99.8 -21 99.0 ore pass with two tipping points
PR06 158 97.3 99 97.3 19 97.1 ore pass with two tipping points
PR07 99 114.7 -21 110.3 -21 108.8 ore pass with two tipping points
PR08 99 110.1 -21 107.5 -21 106.2 ore pass with two tipping points
PR09 219 131.1 99 132.7 99 132.6 no ore pass
PR10 219 126.9 179 129.5 158 129.4 no ore pass
PR11 158 146.5 59 145.1 -21 144.3 ore pass with two tipping points
PR12 158 141.4 99 141.3 99 141.2 ore pass with two tipping points
BE01 -21 100.6 -221 89.2 -261 85.3 ore pass with two tipping points
BE02 -21 94.3 -181 85.7 -261 82.6 ore pass with two tipping points
BE03 -61 125.6 -221 107.1 -341 101.0 ore pass with two tipping points
BE04 -21 116.8 -221 102.3 -261 97.4 ore pass with two tipping points
BE05 19 135.7 -141 128.3 -141 126.5 ore pass with two tipping points
BE06 59 129.1 -101 124.2 -141 122.8 ore pass with two tipping points
BE07 -21 161.2 -181 147.3 -261 142.8 ore pass with two tipping points
BE08 19 152.3 -141 141.9 -181 138.9 ore pass with two tipping points
BE09 77 169.5 -101 166.0 -61 164.7 ore pass with two tipping points
BE10 139 162.3 -21 161.1 -21 160.2 ore pass with two tipping points
BE11 19 195.9 -141 185.9 -181 183.1 ore pass with two tipping points
BE12 59 186.5 -101 179.9 -141 178.2 ore pass with two tipping points

Table 9.9: Summary and comparison.



224 Callie Shaft Location Study

B
A

01
B

A
03

B
A

05
B

A
07

B
A

09
B

A
11

P
R

01
P

R
03

P
R

05
P

R
07

P
R

09
P

R
11

B
E

01
B

E
03

B
E

05
B

E
07

B
E

09
B

E
11

02040608010
0

12
0

14
0

16
0

18
0

20
0

C
as

e 
ID

Cost $M

no
 o

re
 p

as
s

or
e 

pa
ss

 1
or

e 
pa

ss
 2

Fi
gu

re
9.1

4:
Co

st
co

m
pa

ris
on

ch
ar

tf
or

op
tim

um
so

lu
tio

ns
.



9.5 Analysis 225

• For the `base' schedule, the optimum haul level ranges from 390 m RL to -60 m RL,
over 450 vertical metres.

• For the `probable' schedule, the optimum haul level ranges from 350 m RL to -220
m RL, over 570 vertical metres.

• For the `best' schedule, the optimum haul level ranges from 310 m RL to -340 m RL,
over 650 vertical metres.

9.5.2 Ore pass vs no ore pass

• If an ore pass is justi�ed, it is always economical for it to have two tipping points.
• For the `base' schedule, an ore pass is not justi�ed, except if the shaft development

is $25, 000/m, in which case it is generally more economical to include an ore pass
with two tipping points.

• For the `probable' schedule, an ore pass with two tipping points is justi�ed in all
cases except PR08 and PR09 ($75, 000/m shaft development, $0.75/(t.km) haulage
up, $0.85/(t.km) haulage down). In these latter cases an ore pass is not justi�ed.

• For the `best' schedule, an ore pass with two tipping points is always justi�ed.

9.5.3 Shaft and ore pass optimum plan locations

A visual comparison of optimum shaft and ore pass plan locations is provided in Fig-
ure 9.16.

• The shaft optimally lies on the orebody standoff boundary between points (60097,
9043) and (60667, 8900), over 588 metres.

• The ore pass optimally lies on 9250N between 60250E and 60755E, over 505 metres.

9.5.4 Breakdown of costs

A breakdown of costs, averaged over all 108 tests, is provided in Figure 9.17. The pie
chart shows that shaft development is by far the most signi�cant cost component, fol-
lowed by decline haulage. This explains why varying the shaft development from
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No ore pass Ore pass 1 Ore pass 2
−400

−300

−200

−100

0

100

200

300

400

500

R
L

Figure 9.15: Optimum haul levels.
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Figure 9.16: Optimum shaft and ore pass locations.
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26%
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< 1%
2%
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decline haulage
shaft development
ore pass development
haul drive development
haul drive haulage

Figure 9.17: Breakdown of costs.

$25,000/m to $50,000/m to $75,000/m has such a signi�cant impact on the shaft depth
and the total cost of the mine.

9.5.5 Effects of parameters

We now discuss the effects of changing various parameters on the output of the model.

Shaft development

Table 9.10 summarises optimum haul levels based on shaft development. From the table
we make the following observations:

• On average, increasing the shaft development from $25,000/m to $50,000/m causes
the optimum haul level to move up by three 40 m levels.

• On average, increasing the shaft development from $50,000/m to $75,000/m causes
the optimum haul level to move up by one 40 m level.
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Optimum haul level range
Ore pass Schedule $25,000/m $50,000/m $75,000/m

Base 100 to 150 220 to 300 300 to 390
No ore pass Probable 60 to 100 100 to 150 150 to 200

Best 60 to 100 100 to 150 150 to 200
Base -20 to 20 100 to 270 270 to 350

Ore pass 1 Probable -100 to -20 -20 to 100 60 to 180
Best -220 to -180 -180 to -100 -180 to -100
Base -100 to -20 100 to 260 260-310

Ore pass 2 Probable -100 -20 to 20 -20 to 150
Best -340 to -260 -260 to -140 -180 to -20

Table 9.10: Optimum haul levels based on shaft development costs.

Thus, increasing the shaft development causes a signi�cant decrease in the shaft depth,
because the resulting increase in decline haulage is outweighed by the decrease in shaft
development.

Ore pass

The following effects of including an ore pass in the model can also be seen from Ta-
ble 9.10:

• On average, including an ore pass with one tipping point causes the optimum haul
level to move down by three levels.

• On average, including an ore pass with two tipping points causes the optimum
haul level to move down by seven levels.

• Including an ore pass provides additional savings by reducing decline haulage.
• Provision of a second tipping point introduces further savings.

Providing an ore pass causes the optimum haul level to become lower. This is because
decline haulage is �xed for levels serviced by the ore pass, i.e. the cost of decline haulage
for these levels is independent of the shaft depth, and is ignored in the model. Hence
the shaft tipping level must be lowered to account for the unbalanced haulage, shaft and
ore pass vectors. Including additional tipping points causes the shaft depth to increase
further. The more ore is dropped down the ore pass, the deeper the shaft will be.
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Gradients

The effect of increasing the Callie and WDD gradients from 1:7 and 1:6 to 1:8 and 1:7
respectively is to increase decline haulage costs. If decline haulage costs were very large
compared to shaft development, the ore pass and shaft tipping levels would tend to space
themselves out over the depth of the mine, so as to minimise the average haulage dis-
tance. Consequently the shaft depth would increase. In this study, shaft development is
very large compared to decline haulage, and the effect of increasing gradients has little
or no effect.

The following observations were noted when the model was run with decline gradi-
ents set to zero:

• No ore pass: optimum haul level is 180 m RL.
• Ore pass with one tipping point: optimum haul level is -460 m RL; top of ore pass

is 180 m RL; haul up from -180 m RL.
• Ore pass with two tipping points: optimum haul level is -160 m RL; top of ore pass

is 180 m RL (haul up from -20 m RL); second tipping point is at -180 m RL (haul up
from -300 m RL).

It can be veri�ed that, in all three cases, the haul and ore pass levels have positioned
themselves so as to minimise the total haulage cost.

Haulage costs

On average, increasing the decline haulage costs from $0.75/t.km and $0.85/t.km for
upwards and downwards haulage to $1.05/t.km and $1.20/t.km respectively has the
effect of lowering the optimum haul level by one 40 m level. The reasons are similar to
the reasons for the gradient effects.

9.6 Recommendation

9.6.1 Recommended solutions

Recommended solutions are provided in Table 9.11.
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9.6.2 Possible improvements to the model

The provision of more than two tipping points could potentially result in further savings,
although the additional cost of developing tunnels from the declines to the ore pass must
be considered. Moreover, experiments have indicated that having two ore passes, one for
each decline, reduces haulage and development costs associated with the haulage drive
which, on average, account for about 12% of the total variable cost of the mine.

Con�ning the ore pass to be �xed on the northing between the two declines has the
effect of increasing the main haulage drive development and haulage costs. The increase,
however, is not signi�cant.





Chapter 10

Conclusion

10.1 Overview

GRADIENT-CONSTRAINED �ow-dependent networks and their application to
underground mining were studied. Two problems were considered: the Fermat-

Weber problem, which asks for a point minimising the sum of weighted distances to a set
of given points, and the Gilbert arborescence problem, which asks for a minimum-cost
�ow-dependent network interconnecting given sources and a unique sink. The prob-
lems were studied in three settings: Euclidean space, Minkowski spaces and gradient-
constrained space. Aspects from both problems were used to mathematically determine
an optimum location and depth of a vertical hoisting shaft in the Callie underground
mine.

10.2 Summary of new contributions

In this section we repeat the list of the new contributions of this thesis. This list was
originally presented in Chapter 1. Contributions are listed in order of appearance, with
section numbers indicating where the point is �rst discussed in the thesis. Published,
submitted and forthcoming papers are shown in parentheses.
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10.2.1 The Fermat-Weber problem

Euclidean space

1. A new characterisation of Fermat-Weber points for collinear sets of given points
was developed (Section 2.3).

2. New results were derived for the case where the given points form the vertices of
a convex polygon, and certain pairs of weights are equal (Section 2.5).

3. A previously unstudied variant of the Fermat-Weber problem in the plane was
introduced, whereby one of the given points is allowed to lie anywhere on an
in�nite line in the plane. The problem was applied to a subproblem of the Callie
shaft location study (Section 2.7).

Minkowski spaces [84]

1. Practical methods were developed for determining the dual ball for a given unit
ball (Section 3.2.1).

2. The term balanced double cluster was introduced to depict weighted sets of given
points satisfying special properties. It was shown that if a Fermat-Weber point
for a set N of given points lies outside the convex hull of N, then N is a balanced
double cluster (Section 3.4.2).

3. The term balanced concurrent segments was introduced to depict weighted sets of
given points satisfying special properties. It was shown that if a set N of given
points can be matched up to form balanced concurrent segments, then the inter-
section of these segments is the set of Fermat-Weber points for N (Section 3.5.1).

4. The study of the Fermat-Weber problem for a given set of weighted cogeodesic
points was initiated. A new characterisation of Fermat-Weber points for weighted
collinear and cogeodesic sets was developed (Section 3.5.2).

5. A new geometric property of the solution to the weighted three-point problem in
the plane was discovered (Section 3.6).
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Gradient-constrained space [14], [84]

1. The gradient-constrained Fermat-Weber problem was introduced (Section 4.1).
2. For the �rst time, gradient-constrained space was treated as a Minkowski space.

The unit ball, dual ball and dual norm were derived, and a practical method for
determining sets of norming functionals was developed (Section 4.2).

3. A new gradient descent algorithm was developed for solving the problem itera-
tively. The algorithm was implemented into a software product (Section 4.3).

4. Convergence was proved for the two- and three-dimensional cases (Section 4.4).
5. The problem was applied to a simpli�ed version of the Callie shaft location study

(Section 4.5).

10.2.2 The Gilbert arborescence problem

Euclidean space [81]

1. A new title, the Gilbert arborescence problem, was given to the special case of the
Gilbert network problem in which �ows are from given sources to a unique sink.
At present, this problem has been studied only in a handful of papers (Section 5.1).

2. It was shown that a minimum Gilbert arborescence has a tree topology, i.e. it has
no cycles or crossing edges (Section 5.3).

3. Necessary and suf�cient conditions for a Steiner point to be locally minimal with
respect to its adjacent vertices were established (Section 5.4).

4. It was shown that the degree of all Steiner points in minimum Gilbert arbores-
cences in the Euclidean plane is three (Section 5.5).

5. Good progress was made on proving the conjecture that the degree of Steiner
points in minimum Gilbert arborescences in Euclidean three-space is three (Sec-
tion 5.6).

6. Expressions for the optimum angles between edges incident to a Steiner point
were determined. The notions of critical and absorbing angles were generalised to
the Gilbert arborescence problem (Section 5.7).

7. Exact and approximate algorithms for solving the Gilbert arborescence problem in
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Euclidean space were discussed (Section 5.8).

Minkowski spaces [80]

1. The study of the Gilbert arborescence problem in Minkowski spaces was initiated.
(Section 6.1).

2. Concepts of parenthesisations, abstract Steiner trees and reduced Minkowski ad-
dition were generalised to the weighted case (Section 6.3).

3. Necessary and suf�cient conditions for a terminal to be locally minimal with re-
spect to its adjacent vertices were established (Section 6.4).

4. Necessary and suf�cient conditions for a Steiner point to be locally minimal with
respect to its adjacent vertices were established (Section 6.5).

Gradient-constrained vertical plane [82]

1. The gradient-constrained Gilbert arborescence problem (in a vertical plane) was intro-
duced (Section 7.1).

2. A range of fundamental properties of gradient-constrained minimum Gilbert ar-
borescences (in a vertical plane) was established. In particular, it was shown that
the degree of Steiner points is either three or four (Section 7.3).

3. It was shown that a degree-three Steiner point has seven feasibly optimal labellings:
(fff), (ffm), (ffb), (fmm), (fmb), (mmm) and (mmb) (Section 7.4).

4. It was shown that a degree-four Steiner point has three feasibly optimal labellings:
(ffmm), (fmmm) and (mmmm) (Section 7.5).

5. The reduced hull of a set N of terminals was de�ned. It was shown that all Steiner
points lie in the reduced hull of N (Section 7.6).

Gradient-constrained three-space [82]

1. The gradient-constrained Gilbert arborescence problem (in three-space) was introduced
(Section 8.1).
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2. A range of fundamental properties of gradient-constrained minimum Gilbert ar-
borescences (in three-space) was established (Section 8.3).

3. It was shown that a degree-three Steiner point has seven feasibly optimal labellings:
(fff), (ffm), (ffb), (fmm), (fmb), (mmm) and (mmb) (Section 8.4).

4. It was shown that a degree-four Steiner point has four feasibly optimal labellings:
(fffm), (ffmm), (fmmm) and (mmmm) (Section 8.5).

5. It was shown that there is no upper bound on the degree of Steiner points (Sec-
tion 8.6).

10.2.3 Callie shaft location study [83]

1. Aspects from the Fermat-Weber problem and the Gilbert arborescence problem
were used to develop a network model for the Callie underground mine (Sec-
tion 9.1).

2. An algorithm was developed to mathematically determine an optimum location
and depth of a vertical hoisting shaft in the Callie underground mine. The algo-
rithm was implemented into a software product (Section 9.3).

3. Results were analysed over a range of infrastructure and haulage costs, decline
gradients and life-of-mine schedules (Section 9.5).

10.3 Future research

Some ideas for further research relating to material presented in this thesis are provided
below.

10.3.1 Gradient-constrained problems for m > 1

Many of the fundamental properties of gradient-constrained networks established in this
thesis have been obtained under the assumption that m ≤ 1. The properties of gradient-
constrained networks for m > 1 are quite different. We have already made some progress
on this topic. We have shown that the labellings (ffb) and (ffm) are feasibly optimal for
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degree-three Steiner points in gradient-constrained Steiner minimum trees, even for trees
in the vertical plane. Also, it seems that for m >

√
3 the labelling (fmm) is no longer

feasibly optimal.

10.3.2 Flow-dependent networks with general cost functions

Throughout our work on �ow-dependent networks we have assumed that the cost of
an edge is a function of �ow, where the function satis�es several stated conditions for
Gilbert networks. It would be interesting to investigate �ow-dependent networks whose
cost functions do not satisfy these conditions, such as networks with the function w(t) =

d + ht2. It seems likely that the fundamental properties of �ow-dependent networks with
these cost functions would be markedly different to the properties of networks whose
cost functions satisfy the conditions for Gilbert networks.



Appendix A

Mathematical Symbols

d development cost per unit length, typically in $/m
e an edge in a network

f (·) the Fermat-Weber function
g(·) the absolute value of the gradient of an edge or line

h haulage cost per unit mass per unit length, typically in $/(t.km)
k the number of given points or terminals
l the length of an edge, line or geodesic

m maximum gradient
n the dimension of a space
o the origin

p, q given points or terminals
s a Steiner point
t a quantity of ore, typically in tonnes

u a unit normal vector
v a weighted scaled unit normal vector

w(·) a cost function satisfying the conditions for Gilbert networks
x, y, z Catersian coordinate system, where the z-axis is vertical
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240 Mathematical Symbols

A a set of norming functionals
B a unit ball

B∗ a dual ball
C(·) the cost of a network

D a diagonal line
E the set of edges in a network
H a hyperplane
L a line

N a set of given points or terminals
S a half-space
T a network with a tree topology
C a cone whose generating lines have maximum gradient
Hs the horizontal plane through a Steiner point s
Vs a special vertical plane through a Steiner point s
P an arbitrary vertical plane

α, β, γ angles, where α is typically tan−1(m)

δ the distance from o to a supporting hyperplane of B
ε a precision

ρ(·, ·) a metric
φ a norming functional
ψ the acute angle between an m-edge and an m-edge vector
Σ a set of operands

〈Σ〉 a parenthesisation of Σ

Rn n-dimensional Euclidean space
‖ · ‖ a norm
| · | Euclidean distance
| · |g the norm from which the gradient metric is derived



Appendix B
Useful Identities

Let m be a maximum allowable gradient satisfying 0 < m ≤ 1, and let α = tan−1(m). The
following relationships between m and α are easily obtainable using simple trigonometry.

Identities involving α:

sin α =
m√

1 + m2 =
1√

1 + m−2 (B.1)

cos α =
1√

1 + m2 =
1

m
√

1 + m−2 (B.2)

tan α = m (B.3)

Identities involving 2α:

sin(2α) =
2m

1 + m2 =
2

m(1 + m−2)
(B.4)

cos(2α) =
1−m2

1 + m2 =
m−2 − 1
1 + m−2 (B.5)

tan(2α) =
2m

1−m2 =
2

m−2 − 1 (B.6)
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