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Abstract

The focus of this work is deterministic parameter and state estimation of nonlinear sys-

tems with applications to neuroscience. Estimation in neuroscience typically involves

the reconstruction of unmeasured neural activity from measurements of the human

brain. We envisage that estimation plays a crucial role in neuroscience because of the

possibility of creating new avenues for neuroscientific studies and for the development of

diagnostic, management and treatment tools for diseases such as Epilepsy and Parkin-

sons disease. One of the most used measurements is the electroencephalogram (EEG).

To this end, we consider lumped-parameter nonlinear models with EEG as the output,

known as neural mass models.

Four observers are proposed in this thesis: (1) a nonlinear observer, (2) robust

circle criterion observers, (3) an adaptive observer and (4) the supervisory observer.

These observers are synthesised for classes of nonlinear systems, that cover some of

the commonly used neural mass models. Two state observers are shown and designed

respectively, in Part I, to be robust towards input and measurement noise, as well

as small perturbations in parameters. In the absence of noise and perturbations, the

estimates converge exponentially to the true values. The convergence of estimates to

their true values is with some error in the presence of noise and perturbations. Chapter

3 presents a nonlinear observer specific to the class of neural mass models considered.

In Chapter 4, we propose robust circle criterion observers for a class of systems, that

covers all our examples. We extended available results in the literature such that they

can be synthesised for the neural mass models. The robustness of the designed state

observers towards parameter uncertainty motivates the estimation of both parameters

and states in Part II.

In Chapter 5, we design an adaptive observer for a class of interconnected neural

mass models. The convergence of the estimates is asymptotic. Finally, in Chapter 6,

we present an alternative method using a multiple-model architecture, known in the

literature as the supervisory framework. Under non-restrictive conditions, we guarantee

the practical convergence of parameters and states.
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Chapter 1

Introduction

1.1 Motivation and scope

A
pproximately 50 million individuals in the world have fits or convulsions, known

as seizures caused by neurological disorders such as epilepsy and Parkinson’s dis-

ease [5]. These individuals face the uncertainty of uncontrolled seizures that restricts

their daily activities, such as swimming, cooking and driving. In some parts of the

world, they face social stigma and exclusion that ranges from misunderstanding, dis-

advantages in employment to serious consequences brought on by legislation. In fact,

up till 1956, 18 states in the United States of America provided eugenic sterilisation

of epileptic patients [3]. The number of individuals affected by epilepsy is even higher,

at around 200 million when taking into account the family members and friends of

the patient [4]. The cost of epilepsy is therefore not only physical, but also social and

psychological.

The goal of epilepsy treatment is prevention rather than cure. Fortunately, 70 %

of patients can become seizure free with proper medication. The remainder require

resective surgery or implantable devices for seizure control. Figure 1.1 shows some

implantable devices which have been approved for clinical research only in the United

States [1; 2]. The Deep Brain Stimulation (DBS) device by Medtronic Inc. is still

undergoing clinical trial [1]. Some of these devices monitor electrical brain activity in

a localised region for seizure related activity and delivers controlled electrical pulses to

the region believed to be the seizure foci. The algorithm that monitors brain activity

for abnormality is known in the literature as a seizure detection/prediction algorithm

and the measurement of electrical activity is the electroencephalogram (EEG). The

high false positive rates of these algorithms render these devices undesirable for clinical

1



1. Introduction

use and the quest for a successful device continues [137].

(a) An epileptic seizure
control device by
NeuroPace Inc., Moun-
tain View, California.
(Credit: NeuroPace
Inc.)

(b) A Deep Brain Stimulation (DBS)
device first developed for abnormal ac-
tivity caused by Parkinson’s disease
by Medtronic Inc., Minneapolis, Min-
nesota. (Credit: Medtronic Inc.)

Figure 1.1: Implantable devices

Seizure detection/prediction algorithms are predominantly non-model based, e.g.

[56; 93; 106; 107; 117]. Non-model based algorithms extract features from the EEG

which are used to classify neural phenomena into seizure and non-seizure activity.

Usual features are temporal, spectral or both. These methods are continuously un-

der development [109].

We believe that a model-based approach is needed to produce a successful seizure

detection/prediction algorithm. By model-based, we mean the usage of mathematical

models in estimating neural activity from measurements such as the electroencephalo-

gram (EEG). Model-based estimation has proved to be successful in many other ap-

plication areas such as marine engineering for the positioning of ships in the ocean,

robotics, ecology for the study of food-chain system and many more [113]. The model-

based approach is starting to gain ground in neuroscience [124]. We envisage that

estimation is essential for seizure detection/prediction due to seizure indicators that

differ from patient to patient. Since useful models that can capture seizure activity are

nonlinear, recent advances in nonlinear mathematical control theory may provide the

much needed backing in bridging this gap. This thesis is a step in this direction by rigor-

ously designing provable model-based estimation algorithms, also known as observers

tailored for this endeavour (Figure 1.2).

The human brain can be viewed as a system with inputs and outputs or measure-

2



1. Introduction
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Figure 1.2: Model-based estimation of neural activity (observers)

ments. Examples of measurements include the electroencephalogram (EEG), functional

magnetic resonance imaging (fMRI) and magnetoencephalogram (MEG), to name a

few. We focus on using the EEG as a measurement due to its cost-effectiveness and

portability such that it is usable in implantable devices. The EEG also has a very high

temporal resolution, in the order of milliseconds, a characteristic that is useful when

detecting high frequency oscillations (HFOs) with frequencies greater than 80 Hz which

are postulated to be an indication of seizure activity [136; 145; 164].

Due to limitations in technology, the EEG is unable to capture all neural activities of

interest. The estimation of unmeasured neural activities is therefore very appealing to

clinicians and neuroscientists. This is due to the possibility of opening up new avenues

for neuroscientific studies, diagnostics and the treatment of neurological disorders via

the development of monitoring or control strategies [69].

One of the primary advantages of estimation lies in reducing the number of sen-

sors/electrodes needed and thereby keeping surgical invasion to a minimum. This is

particularly useful for neurological events such as seizures caused by epilepsy or patho-

logical dynamics of Parkinson’s disease that are generated in deep brain structures such

as the hippocampus and the basal ganglia, respectively. Implanting the smallest re-

quired number of electrodes minimises risks such as infection and haemorrhage as well

as pain that results from implantation.

We provide several examples where an observer is used in the field of neuroscience.

• Neuroscientific studies

The observer serves to enhance neuroscientific studies. The estimation of unmea-
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sured neural activities in the setup shown in Figure 1.2 provides neuroscientists

with a basis for generating experimentally provable hypotheses on the underlying

mechanisms that govern a neurological event, such as seizures caused by epilepsy

or Parkinson’s disease. Works by Tokuda et al. in [143], Totoki et al. in [144],

Tyukin et al. in [148] and Mao et al. in [103] perform model-based estimation at

the single neuron level for various neuroscientific purposes. In [150], Ullah and

Schiff performed model-based estimation of the ion concentrations of hippocam-

pal neurons from membrane potential measurements of a neuron to study the

dynamics of ion concentrations during epileptic seizures. Advances in this area

will fuel the development of diagnosing, monitoring and treatment strategies for

neurological diseases as discussed in the sequel.

• A diagnostic system

Experimental studies have provided clinicians and neuroscientists clues to the

presence of certain indicators that suggest the possibility of epilepsy in patients

[136]. An observer would provide estimates of indicators from measurements.

For example, the synaptic gains of the pyramidal neurons, the excitatory and in-

hibitory populations in the CA1 region of the hippocampus have been identified

in [155] as parameters that are related to seizure and non-seizure activity. Clin-

icians may be aided by estimates provided by an observer to diagnose patients

whose parameter estimates consistently belong to the seizure-related range.

• A seizure warning system

This takes the form of using estimates of neural activity from an observer to dis-

cern seizure from non-seizure behaviour by the classifier in the seizure prediction

module (see Figure 1.3). To this end, key features of a seizure need to be known.

Work has been done in identifying parameters of models that are postulated to

be related to seizure activity [153]. We discuss this model in greater detail in

Chapter 2. It is the task of the classifier to raise a red flag when the parameters

fall within the range that have been predetermined to be seizure-related.

• Closed-loop seizure control system

The open-loop warning system can then initiate the administration of drugs or

electric stimulation to abate seizures, which we call a closed-loop control system,

see Figure 1.4. The observer provides estimates of neural activity such that a

control law may be formulated to trigger seizure suppression procedures. We

discuss the design of a control law (see Figure 1.4) in Chapter 7.1, where we

present future directions of this work.
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Figure 1.3: An open-loop warning system
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Figure 1.4: Closed-loop seizure control system

The design of observers in the examples mentioned above requires the use of math-

ematical models that appropriately describe the part of the brain concerned and the

measurement used. We briefly discuss our choice of neural models in the following

section.

1.2 Neural model

As mentioned earlier, the EEG is our measurement of choice. Here, we have used the

term EEG as the umbrella term that includes measurements obtained from the scalp
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or from the surface of the cortex, sometimes known in the literature as the electrocor-

ticography (ECoG) or intracranial EEG (iEEG). The sensors/electrodes used to obtain

the EEG are implanted on the scalp or surface of the brain. Each sensor provides a

single channel of EEG which is proportional to the electrical discharges of a population

of neurons in a localised volume perpendicular to the surface [115]. This volume of the

brain is known as a cortical column [111, Chapter 7], see Figure 1.5.

(1) 

(3) 

Human brain 

Output,  y Input, u 

A cortical  
column 

Figure 1.5: A cortical column. (Diagram credit: iStockphoto/Guido Vrola and
http://www.mada.org.il)

Within a cortical column, the neurons may be categorised by function into inhibitory

and excitatory neurons. They can be pyramidal and basket cells in the hippocampus

or pyramidal cells and thalamic interneurons in the cortico-thalamic system [127]. In

1973, Wilson and Cowan suggested a model for the interaction between inhibitory and

excitatory populations of neurons in [156]. This model forms the basis of many models,

including the neural mass models which we will discuss in greater detail in Chapter 2.

We view each cortical column as a dynamical system Σ (see Figure 1.6), with

measurements or outputs y and inputs u. Examples of an output from a cortical

column model are the average electrical activity of neural populations in the cortical

column or the EEG measurement. Examples of an input are the electrical activity from

neighbouring cortical columns or electrical pulses sent from an implantable device to

suppress seizures. Each system Σ has internal variables or states x and is parameterised

by p∗, which forms a family of parameterised systems (Figure 1.6).

In general, depending on the measurement y considered, the states x may capture

the membrane potential of a neuron (microscopic) or the mean membrane potential of

neuronal populations (mesoscopic) and the parameters p∗ may be the neural membrane

6
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Figure 1.6: A cortical column is a system whose dynamics are described by a mathe-
matical model.

capacitive current (microscopic) or the synaptic gain of populations (mesoscopic). The

states are physiologically relevant and often unmeasurable by conventional means. The

parameters p∗ are identified to vary as a result of different brain phenomena and hence

usually resides in a known, compact set Θ. For instance, in the case of a model of

epileptic activity in the hippocampus [153], the synaptic gains of the neuronal popula-

tions were identified to be the parameters that change when the brain transitions from

normal to epileptic activity. Hence, the possibility of detecting such changes and to

then develop seizure control strategies to mitigate seizures form great motivation for

the estimation of states x and parameters p∗.

In this thesis, our measurement of choice is the EEG, which is of the mesocopic

scale. Hence, we consider cortical column models that are lumped-parameter models,

also known in the literature as neural mass models, a term coined in [39]. These models

have the added advantage of being able to capture the desired neural phenomenon such

as seizures, while still being of a low enough dimension to be useful in the estimation

and control theoretic sense. This class of systems is represented by ordinary differential
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1. Introduction

equations and they can be written in state space form as follows:

Σ : ẋ = f(x, u, p∗)

y = h(x, p∗), (1.1)

where the state is x ∈ Rnx , the input is u ∈ Rnu , the parameter is p∗ ∈ Θ ⊂ Rnp ,
measurement/output is y ∈ Rny and nx, nu, np and ny are positive integers. Examples

of commonly used neural mass models considered in this thesis are: models for the

generation of alpha rhythms by Jansen and Rit as well as Stam et. al., respectively

in [74; 138] and a model of epileptic activity in the hippocampus by Wendling et. al.

in [155]. These models were based on the seminal work by Wilson and Cowan [156],

Freeman [50] and Lopes da Silva et. al. [99; 100]. We describe these models in greater

detail in Chapter 2.

1.3 The estimation problem

The objective is to estimate the states x and parameters p∗ of the model Σ. The dy-

namical system that computes these estimates is known as an ‘observer ’ or ‘estimator ’

or ‘filter ’ [12; 23]. In this thesis, we will use the term ‘observer’. When the parameter

p∗ is known, we design a state observer to reconstruct the states x of the model Σ.

The observer Σo takes in the available information (the input u and measurement y)

to provide state estimates x̂. When the parameter p∗ is unknown, Σo is called a state

and parameter observer, which provides estimates of both states x̂ and parameters

p̂. Figure 1.7 illustrates this setup.

The task of observer design can be approached in two ways: stochastic or determin-

istic. The stochastic approach to estimation is more popularly known in the literature as

‘filtering’ and the system is modelled by stochastic differential/difference equations [75].

Classical, statistical methods such as least-squares, maximum-likelihood and minimum

variance estimation were first applied to linear filtering problems and later extended

to nonlinear cases [83]. A popular point of view is Bayesian-based, i.e. the estimate of

the state can be constructed from the conditional probability density function of the

state, given the available measurements. See [75] for a unified treatment of bayesian-

based linear and nonlinear filtering. Popular stochastic observers include the Kalman

filter and its variants1. These filters are used in many applications, including neuro-

1The Kalman filter can also be formulated deterministically, where its design is reducible
by duality to a linear quadratic optimal control problem [132, Section 8.3].
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Figure 1.7: Observer setup

science [51; 52; 125; 150]. One popular usage of filters in neuroscience is a framework

known as Dynamic Causal Modelling [37; 88; 140], where estimates from the filters are

used to choose the best model that describes the measurements under some conditions.

Stochastic methods provide convergence of estimates with some probability. In other

words, the convergence of the estimates to the true values is not guaranteed for every

trajectory.

On the other hand, the deterministic approach guarantees convergence of estimates.

For the simpler problem of state estimation only, the case for linear systems is com-

pletely solved in the form of a Luenberger observer [101] and the deterministic Kalman

and Bucy filter [78]. This is not the case for nonlinear systems, where no general

solution exists. The design of nonlinear observers is done on a ‘case-by-case’ basis,

which is reliant on the mathematical structure of the model. Hence, it makes sense

to consider a class of systems that share the same mathematical structure and an

observer is designed for that class of systems. Due to the widespread applicability

of nonlinear observers, nonlinear state observer design has been extensively studied

[6; 7; 13; 15; 16; 17; 18; 19; 23; 26; 27; 28; 29; 40; 43; 44; 45; 47; 48; 53; 54; 55; 59; 60;

61; 70; 81; 82; 84; 87; 90; 91; 94; 97; 101; 102; 104; 108; 113; 119; 120; 121; 123; 126;

128; 129; 130; 142; 146; 147; 157; 158; 159; 161; 163]. Deterministic state observers can

generally be categorised into observers for special classes of nonlinearities (e.g. Lips-
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1. Introduction

chitz nonlinearities [54; 121], monotone nonlinearities [16; 158]) and high gain observers

[13; 87].

We contribute to this body of work with the design of two state observers in Chap-

ters 3 and 4 for a class of nonlinear systems which includes some of the neural models

introduced earlier: a Luenberger-like observer and a robust form of the circle criterion

observers, first introduced in [16]. The existence of a circle criterion observer is based

on the feasibility of a linear matrix inequality (LMI). Existing circle criterion observers

in [16; 17; 45; 158] do not yield LMIs that are feasible for the neural mass models we

consider. Hence, we combined several ideas from these papers including considering

globally Lipschitz nonlinearities and introducing a multiplier to obtain LMIs that are

feasible for our examples. We further improved the design by allowing the user to

specify attenuation factors towards noise.

Similarly for the case of parameter and state estimation. One common approach is

to augment the state vector with the parameters and employ a state observer to estimate

the augmented vector such that we obtain both state and parameter estimates. This

approach is not conducive even for the case of linear systems because doing so may turn

the augmented system highly nonlinear, where the synthesis of a nonlinear observer is

difficult.

An alternative is the design of adaptive observers [20; 22; 26; 32; 46; 57; 89; 104; 105;

122; 139; 149; 158; 160; 161]. An adaptive observer may be viewed as a state observer

with an adaptive law that provides parameter estimates jointly to obtain state esti-

mates. We will take this approach in Chapter 5 where we design an adaptive observer

for a class of nonlinear systems which includes the interesting case of interconnected

neural mass models. This adaptive observer drew inspiration from the design in [46]

which combines the high gain idea used in state observers [13; 87] with an adaptive

observer design for linear time varying systems by Zhang and Clavel in [162].

Another approach uses the multiple-model architecture (see [9] and references there-

in for an overview). This architecture employs a bank of state observers, where each

observer is designed for a particular nominal parameter value chosen from a known set,

to provide state and parameter estimates under some scheme. It has traditionally been

pursued using stochastic methods [12, Section 8.4] and has recently been studied in the

deterministic sense [10], [11]. Encouraged by recent results in supervisory control (see

[64; 152] for linear systems and [21] for nonlinear systems), which uses the multiple

model architecture for stabilisation, we adapted it for estimation purposes in Chapter

6. We call this adapted setup, a supervisory observer and guarantee the convergence

of states and parameter estimates in the deterministic sense under certain conditions.

10



1. Introduction

Two main issues arise in the estimation problem: Firstly, how ‘good’ are the esti-

mates x̂ and p̂? Secondly, how much modelling error, measurement and input noise can

the designed observers tolerate? We will be addressing these questions in this thesis.

1.4 Thesis contributions and outline

The focus of this thesis is the design of deterministic state and parameter ob-

servers for nonlinear systems tailored for applications in neuroscience. Nevertheless,

we stress that our results also apply to any other models in other applications that

fit the classes of systems we consider that satisfy our assumptions. The results of this

thesis have been published in several international peer-reviewed publications and the

references are listed in the Preface. We summarise our contributions:

• To the best of our knowledge, all the observers designed in this thesis are the first

for the class of neural mass models presented in Chapter 2. The deterministic

convergence of the estimates are rigorously proved using tools from nonlinear

stability theory.

• Estimation issues faced in neuroscientific studies are also taken into account in our

designs of the state observers, i.e. the presence of disturbances and uncertainties.

We analyse the robustness of the state observers with respect to parameter, model

and input uncertainty as well as measurement disturbance. One particular design

allows the user to attenuate the influence of these uncertainties and disturbances.

Several application scenarios are simulated to illustrate these properties.

• A framework for parameter and state estimation using state observers is adapted

from supervisory control and rigorously proven to provide practical convergence

of estimates for nonlinear systems with general structure under some conditions.

We show that these conditions are not restrictive by applying our general results

to linear systems and to a class of nonlinear systems that includes the neural

mass models considered in Chapter 2.

We now give a brief outline for the material that is developed in the subsequent chapters:

Chapter 2 introduces the class of neural mass models we consider. This class of models

shares the same mathematical structure that makes them highly amenable from an

estimation and control viewpoint. Three representative models are described, they are:

11
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(i) a model by Stam et. al. in [138] that described alpha rhythms seen in the EEG, (ii)

a model by Jansen and Rit in [74] that describes the generation of alpha rhythms in the

cerebral cortex and (iii) a model by Wendling et. al. in [153] that describes epileptic

activity in the hippocampus. We will provide a brief overview of the physiological in-

terpretation of these models and then present them in state space form, which is most

convenient for observer design.

This thesis can be read in two parts: Part I (Chapters 3-4): State estimation and

Part II (Chapters 5-6): Parameter and state estimation.

Part I: State estimation

Chapter 3 presents a nonlinear observer that is designed for this class of neural mass

models. Some highly desirable features of these models allow us to design an estimator

that has a state error system with a cascaded structure. This allows us to apply the

interesting result of ISS for cascaded systems in stability analysis [86, Lemma 4.7]. We

will also show that the designed observer has desirable robustness properties.

Chapter 4 introduces a robust circle criterion observer that we have designed. This

observer takes into account two main robustness issues encountered in neuroscientific

studies, that is input uncertainty and measurement noise. We allow the user to specify

attenuation factors towards these undesirables and should a derived LMI be solvable,

a robust circle criterion observer can be obtained.

The success of state estimation and the robustness of the designed observers toward

small perturbations in parameters motivated the next step towards achieving our goal,

that is parameter and state estimation in the following part.

Part II: Parameter and state estimation

Chapter 5 presents an adaptive observer for the class of neural mass models we con-

sider, which can be written as a linear part and a triangular nonlinear part that is

linearly parameterised. We exploited this structure to design an adaptive observer that

is applicable to a subset of the class of models considered and most interestingly, inter-

connected models in this subset.

Chapter 6 proposes using a multi-observer to provide state and parameter estimates

for general nonlinear systems under the supervisory framework. We call this setup the

12
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supervisory observer. The results obtained are applicable to general nonlinear systems

and we show that our main results can be applied to the class of neural mass models

considered in Chapter 2.

Finally, Chapter 7 concludes this thesis with some discussion for future work. Ap-

pendix A serves as a primer on the stability tools used in observer design and the

analysis of systems in this thesis. Appendix B contains all mathematical proofs of re-

sults and lastly, Appendix C lists standard values of the constants used in the considered

class of neural mass models.
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Chapter 2

Neural models

W
e first provide a definition of the basic neurophysiological terminology used in

the literature and in this thesis. The intention is not to be comprehensive, but

serves to set the stage for the types of neural models considered for observer design and

the physiological meaning of the states and parameters estimated. We then introduce

the class of neural models considered in this thesis and write these models in state

space form in state coordinates that are convenient for observer design.

2.1 Basic neurophysiological and electroencephalographi-

cal terminology

The respective definitions of the neurophysiologically related terminology below can be

found in [38; 79; 127] and electroencephalography related terminology can be found in

[115]. Here, we present a glossary of basic terms used.

• Neurons are cells that are found in the brain. There is an estimate of more than

1011 neurons in the human brain.

• A neuron consists of a cell body or soma, dendrites and axon. See Figure 2.1.

• Action potentials or impulses or spikes are generated by neurons and they are the

communication signal between neurons. These signals are received by dendrites,

processed in the soma and the neuron outputs signals to other neurons via its

axon.

• The neuronal response to stimuli is often a sequence of action potentials which

can be characterised through their timing. The firing rate captures the average
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Figure 2.1: A neuron. (Diagram credit: Crystal Chong)

number of spikes (action potentials) in a time interval.

• The synapse is the junction between the dendrite of one neuron and the axon of

another neuron. There are electrical and chemical synapses.

• Electrical synapses are direct, electrically conductive junctions.

• Chemical synapses transmit signals from the pre-synaptic cells to the post-synaptic

cells that are separated by the synaptic cleft. When an action potential is re-

ceived by an axon, chemical and electrical reactions are triggered which causes

the release of neurotransmitters into the synaptic cleft. They diffuse across the

synaptic cleft and react with the transmitter-gated ion channels (i.e. receptors)

on the postsynaptic cell, causing a change in the postsynaptic potential (PSP).

• The postsynaptic potential (PSP) is in the milli-Volts (mV ) range.

• The synaptic gain or strength of a single synapse is quantified by the gain in

the amplitude of the PSP as a result of a pre-synaptic action potential. The

synaptic gain of a single synapse is proportional to the amount of neurotransmitter

released and the number of postsynaptic receptors. The total synaptic gain from

the presynaptic cell to the postsynaptic cell is proportional to the number of

connections from the presynaptic cell to the postsynaptic cell.
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2. A class of neural mass models

• A neuron can either be excitatory or inhibitory. An excitatory neuron transmits

action potentials to a receiving neuron causing an increase in PSP in the receiving

neuron. This event is known as depolarisation and is amenable to the generation

of action potentials. On the other hand, a neuron that causes a decrease in PSP

or hyperpolarisation is an inhibitory neuron. This decreases the likelihood of

action potential generation. Excitation and inhibition are mediated by multiple

neurotransmitters. An example of a major neurotransmitter is the γ-aminobutyric

acid (GABA), which is commonly found in the hippocampus.

• The hippocampus is one of the most well-studied parts of the mammalian brain.

Most epileptic patients have seizures that involve the hippocampus. The principal

neurons in the hippocampus are the pyramidal neurons. Depending on their size

and appearance, the pyramidal cell layer is divided into three regions labelled

CA1, CA2 and CA3. A member of the class of neural mass models considered

(the model by Wendling et. al. in [155]) models the CA1 region.

• Intrinsic neurons or interneurons are a type of neuron with a locally restricted

axon plexus that lack spines and release γ-aminobutyric acid (GABA). There are

two types of GABA dynamics in the CA1 pyramidal neurons: a fast response

near the soma and a slow response near the dendrites. These populations are

included in the model by Wendling et. al. in [155].

• A neural population refers to a group of neurons characterised by location (e.g.

cortex, hippocampus) or by type (e.g. excitatory, inhibitory, pyramidal). Com-

mon nomenclatures include a cortical column, excitatory population or inhibitory

population. The mean PSP or membrane potential of a neural population is the

average potential of all the neurons in that population.

• A cortical column is a group of neurons in the cortex that reside in a column of

300−500µm in diameter perpendicular to the surface of the cortex [111, Chapter

7].

• The electroencephalogram (EEG) measures the electrical activity of neural pop-

ulations [115]. It is said to reflect the mean PSP or mean membrane potential

of neural populations. The sensors used to measure EEG are electrodes that can

be placed on the scalp and the measurement is known as ‘scalp EEG ’ or near the

surface of the brain to measure ‘intracranial EEG (I-EEG)’, ‘electrocorticography

(ECoG)’ or ‘subdural EEG (SD-EEG)’. Often in epilepsy studies, depth electrodes
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are inserted in brain structures such as the hippocampus to capture the focus of

the seizure, that is otherwise poorly localised in the scalp EEG.

• Alpha rhythms are oscillations of 9− 11 Hz observed in the EEG. These patterns

are often recorded when the subject’s eyes are closed in a relaxed, awake state.

2.2 Neural models

Mathematical models in neuroscience can be largely classified into comprehensive mod-

els and heuristic models. Comprehensive models are constructed by taking into account

all known neurophysiological facts and data. An example is the Nobel-prize winning

model of the initiation and propagation of action potentials in a single neuron by

Hodgkin and Huxley [68]. As the facts and data considered increases (e.g. modelling

a population of neurons as opposed to a single neuron), so does the complexity of the

model increase. Since neuroscience is a largely evolving field, we are still far from

painting a complete picture even when considering all known facts. Moreover, the high

complexity of these models often makes them not amenable for analysis. Therefore, this

motivates the construction of heuristic models that are less complex, but still capture

the essential features of a neurological event.

Heuristic models are constructed by including assumed relevant facts to describe a

neurological phenomenon of interest via a dynamical system. Since there is no universal

agreement over which facts are relevant to a particular phenomenon, the literature for

such models is large (see [39] for a review) and more work needs to be done to integrate

theoretical neuroscience with experimental work to assess the realism of these models.

Neural modelling of this type is therefore more of an art. As our measurement of

choice is the electroencephalogram (EEG), which best measures the behaviour of a

population of neurons, we consider models that capture the temporal dynamics of

neural populations. These are coined in [39] as neural mass models and are governed

by ordinary differential equations.

Our motivation lies in anticipating the occurrence of epileptic seizures from the

EEG, which is a phenomenon captured by a member of a class of neural mass models

that share the same mathematical structure. Other members of this class describe

neurological events that include but are not limited to the generation of alpha rhythms

and the generation of evoked potentials due to a visual input in the cerebral cortex.

We describe them in greater detail in Section 2.3.
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2. A class of neural mass models

2.3 A class of neural mass models

In this section, we present the class of neural mass models we consider, which includes

the following models that share the same mathematical structure in their dynamics:

(i) The model by Wendling et. al. in [155] that captures epileptic activity in the

hippocampus, (ii) The model by Jansen and Rit in [74] on the generation of evoked

potentials due to visual stimulation, and (iii) The model by Stam et. al. in [138] for the

generation of alpha rhythms. These models have their origins in cortical column models

by Wilson and Cowan [156], Freeman [50] and Lopes da Silva et. al. [99; 100]. In the

proceeding sections, the class of neural mass models are presented with decreasing level

of complexity. The functional connections between the neural populations for each of

the models and their corresponding more detailed block diagrams are shown in Figure

2.2-2.7.

2.3.1 Neural mass model by Wendling et. al.

Wendling et. al. built upon the Jansen and Rit model described in the Section 2.3.2.

Four neural populations (with one population being a subset of another) are included

in this model as shown in Figure 2.2.
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Figure 2.2: Functional relationship between neural populations for the model by
Wendling et. al..

The populations are the pyramidal neurons, the excitatory population (included in

the pyramidal neurons), the slow and fast inhibitory populations. The fast somatic

projection of the inhibitory interneurons is introduced in this model because it is hy-

pothesised to play a role in the fast oscillatory pattern seen in the EEG at the onset of

an epileptic seizure. Wendling et. al. identified three parameters, namely the synaptic

gains of the excitatory, slow inhibitory and fast inhibitory interneurons to result in the
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2. A class of neural mass models

model producing EEG patterns that are known to be related to neurological events,

from normal background activity to epileptic seizures. This provides great motivation

for estimating these parameters.

Figure 2.3 describes the interaction between populations of neurons in greater detail,

which consists of postsynaptic membrane potential (PSP) kernels he, hi and hg, sigmoid

functions S : R→ R and connectivity constants C1 to C7.
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Figure 2.3: Detailed block diagram of the Wendling et al. model. Reproduced from
Figure 4 in [155].

The firing rate of the afferent population is converted into an excitatory, slow or

fast inhibitory postsynaptic membrane potential via the following kernels, for t ≥ 0:

• The excitatory population:

he(t) = θAat exp(−at). (2.1)

• The slow inhibitory population:

hi(t) = θBbt exp(−bt). (2.2)

• The fast inhibitory population:

hg(t) = θGgt exp(−gt). (2.3)

Parameters θA, θB and θG in (2.1)-(2.3) correspond to the synaptic gains of the excita-

tory, slow and fast inhibitory populations respectively. These parameters characterise
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2. A class of neural mass models

the observed pattern in the EEG. For example, the values of θA, θB and θG that dis-

tinguish between seizure and non-seizure activities have been identified in [155].

Internal variables x11, . . . , x71 are introduced as shown in Figure 2.3. They describe

the membrane potential contribution from one population to another. For example,

referring to Figure 2.3, the mean membrane potential of the pyramidal neurons is

x11−x21−x31, which reflects the membrane potential contribution from the excitatory,

slow and fast inhibitory populations, respectively. The mean membrane potential of a

population is converted into the average firing rate of all the neurons in that population

using a sigmoid function S:

S(z) =
α2

1 + exp
(
− r2(z − V2)

) , for z ∈ R, (2.4)

where α2 is the maximum firing rate of the population, r2 is the slope of the sigmoid

and V2 is the threshold of the population’s mean membrane potential.

The neural populations are connected with connectivity strengths C1 to C7, which

represents the average number of synaptic contacts between the neural populations

concerned.

2.3.2 Neural mass model by Jansen and Rit

The interactions between the pyramidal neurons, excitatory and inhibitory populations

(Figure 2.4) are described in this model to investigate the generation of evoked poten-

tials in the cerebral cortex. A detailed block diagram is provided in Figure 2.5. As this

model was extended upon by Wendling et. al. (whose model is presented in Section

2.3.1), each component of the block diagram: the PSP kernels he and hi and sigmoidal

function S are as described in Section 2.3.1.

2.3.3 Neural mass model by Stam et. al.

The model by Stam et. al. includes an excitatory and inhibitory population (Figure 2.6)

to replicate the alpha rhythms in the EEG. This event is related to the human subject

being in a relaxed state with the eyes closed. Hence, the estimation of the unmeasured

postsynaptic potential (PSP) of neural populations may better our understanding of

the visual pathway while in an idle state.

Figure 2.7 shows a detailed block diagram of the model. This model differs from

the models by Wendling et. al. and Jansen and Rit in the sense that the firing rate

of a population is converted to a postsynaptic potential via different kernels from (2.1)
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2. A class of neural mass models
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Figure 2.4: Functional relationship between neural populations for the model by Jansen
and Rit.
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Figure 2.7: Detailed block diagram of the Stam et. al. model.

and (2.2), for t ≥ 0:

• Excitatory population:

he(t) = θA[exp(−a1t)− exp(−a2t)]. (2.5)

• Inhibitory population:

hi(t) = θB[exp(−b1t)− exp(−b2t)]. (2.6)

Also, the sigmoid function that converts the postsynaptic potential to the firing

rate of the population differs from (2.4) for the models by Wendling et al. and Jansen

and Rit, as follows:

S1(z) =

{
α1 exp

(
r1(z − V1)

)
z ≤ V1,

α1

(
2− exp

(
− r1(z − V1)

))
z > V1,

(2.7)

where α1 is the maximum firing rate of the population, r1 is the slope of the sigmoid

and V1 is the threshold of the population’s mean membrane potential.

2.4 Neural mass models in state space form

Our observer design is most conveniently carried out using the state space form of the

neural mass models. However, some of the neural mass models of interest presented

in Section 2.3 were in block diagram form (e.g. Figure 2.3, 2.5 and 2.7) in the given

references [74; 138; 155]. In [74] and [155], state space forms were provided but not in

the convenient state coordinates where the techniques we use for proving convergence
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2. A class of neural mass models

of estimates can be applied. Therefore, we illustrate how this can be done for the model

by Wendling et al., whose detailed block diagram can be found in Figure 2.3. The other

models considered are special cases of the model by Wendling et al. and hence, can

easily be obtained from the derivation below.

We will show that all neural mass models from Section 2.3 can be written in the

following state space form:

ẋ = Ax+G(p?)γ(Hx) + σ(u,Cx, p?), (2.8)

and the output of the model is:

y = Cx, (2.9)

where the state vector is x ∈ Rnx , input is u ∈ R, output/EEG measurement is y ∈ R,

parameter vector is p? ∈ Rnp , G : Rnp → Rnx×m, nonlinearity γ = (γ1, . . . , γm) with

γi : R→ R for i ∈ {1, . . . ,m} and nonlinearity σ = (σ1, . . . , σn) with σi : R×R×Rm →
R for i ∈ {1, . . . , n}. The number of states nx, number of parameters np and number

of scalar nonlinear functions m differs for each model. These are defined in Sections

2.4.2-2.4.4.

2.4.1 Physiological interpretation

Physiologically, the first term in (2.8) implements the postsynaptic potential (PSP)

kernels from (2.1), (2.2) and (2.3). This is effectively a convolution of the pre-synaptic

firing rates arriving from other populations with the appropriate PSP response func-

tions. These firing rates are modelled in the second and third term in (2.8) that

incorporates the sigmoid firing rate function of the depolarisation of contributing pop-

ulations. The second term, G(p)γ(Hx), reflects the influence of all states except the

membrane potential of pyramidal population Cx. While the third term, σ(u,Cx, p),

reflects the influence of the mean membrane potential of the pyramidal cells Cx and

the exogenous input u. Neurobiologically, G(p)γ(Hx) + σ(u,Cx, p) correspond to the

effects of intrinsic and extrinsic connections. In other words, when coupling different

neural mass models, one has to consider the (intrinsic) influence of populations within

a neural mass model and (extrinsic) contributions from other neural mass models. The

extrinsic contributions are usually mediated through pyramidal cell populations.

In the following sections, we present the state space form for each model for ease

of observer design. Detailed derivations are first shown for the model by Wendling et
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2. A class of neural mass models

al., as it is the most complex model and then the subtle differences in derivations are

described for the other models.

2.4.2 State space form for the model by Wendling et al.

We write the Wendling et al. model in state space form by introducing the state vari-

ables xi1 for i ∈ {1, . . . , 7} as the membrane potential contribution from one population

to another and xi2 for i ∈ {1, . . . , 7} as its derivative. The states xi1 are introduced

at the outputs of all the impulse responses he, hi and hg blocks as shown in Figure

2.3. Recalling that the Laplace transform of the impulse responses he, hi and hg (as

described by (2.1), (2.2) and (2.3)) are second-order transfer functions, by performing

the inverse Laplace transform, each transfer function is represented by a second-order

ordinary differential equation (ODE). We show this transformation for he from (2.1)

as an example. Let the input to the he block be ū and output be ȳ. We denote the

Laplace transform of signal v as L(v). Hence, the Laplace transform of he with zero

initial conditions is:

L(he(t)) = L(θAat exp(−at)) =
θAa

(s+ a)2
. (2.10)

Recalling that L(he) = L(ȳ)
L(ū) , we obtain:

L(ȳ)s2 + 2aL(ȳ)s+ a2L(ȳ) = θAaL(ū). (2.11)

By taking the inverse Laplace transform, we obtain a second-order ODE as follows:

¨̄y + 2a ˙̄y + a2ȳ = θAaū. (2.12)

The xi2 states are defined as xi2 = ẋi1 for i ∈ {1, . . . , 7} to rewrite the second-order

ODEs as two first-order ODEs for each impulse response block.

We illustrate this for the he(t) block in the fast inhibitory population, then the

output of that block is ȳ = x51 and the input is ū = C3S(x11 − x21 − x31). Taking

x52 = ẋ51, (2.12) can be written as two first-order ODE as follows:

ẋ51 = x52

ẋ52 = −2ax52 − a2x51 + θAaC3S(x11 − x21 − x31).

Hence, each impulse response he, hi and hg will each introduce a first-order ODE
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2. A class of neural mass models

in the following general state space form by taking xi = (xi1, xi2) for i ∈ {1, . . . , 7}:

ẋi = Aixi + (0, ϑiS(µi) + ϕi) , (2.13)

where µi is the input to the respective sigmoid functions,

Ai =

[
0 1

−ki1ki2 −(ki1 + ki2)

]
, for i = {1, . . . , 7} with k11 = k41 = k51 = k61 = a,

k12 = k42 = k52 = k62 = a, k21 = k71 = b, k22 = k72 = b, k31 = g and k32 = g. ϑi

and ϕi are defined as such ϑ1 = θAaC2, ϑ2 = θBbC4, ϑ3 = θGgC7, ϑ7 = θBbC6, ϑ4 =

ϑ5 = ϑ6 = 0 and ϕ1 = θAau, ϕ2 = ϕ3 = ϕ7 = 0, ϕ4 = θAaC1S(y), ϕ5 = θAaC3S(y),

ϕ6 = θAaC5S(y). Constants a, b and g are strictly positive. S is a sigmoid function

described by (2.4). All constants discussed in this section are summarised in B.12.

The subsystems defined in (2.13) are put together to be written compactly in state

space form (2.8)-(2.9) for ease of observer design.

We take the state vector in (2.8) and (2.9) to be x = (x1, . . . , x7) where xi for

i = {1, . . . , 7} satisfy (2.13). The states x1, x2 and x3 capture the membrane potential

contribution and its derivative of the excitatory, slow and fast inhibitory populations to

the pyramidal neurons, respectively. The states x4, x5 and x6 capture the membrane

potential contribution and its derivative of the pyramidal neurons to the excitatory,

slow and fast inhibitory populations, respectively. The output is y = x11 − x21 − x31.

The specific matrices in (2.8) and (2.9) are denoted as:

• The parameter vector is p? = (θA, θB, θG),

• The matrix A = diag(A1, . . . , A7),

• γ = (S, S, S), where S is defined in (2.4),

• σ = (0, θAau, 0, 0, 0, 0, 0, θAaC1S(y), 0, θAaC3S(y), 0, θAaC5S(y), 0, 0), where S is

described by (2.4),

• C = [ 1 0 −1 0 −1 0 0 0 0 0 0 0 0 0 ],

25



2. A class of neural mass models

• G =



0 0 0

θAaC2 0 0

0 0 0

0 θBbC4 0

0 0 0

0 0 θGgC7

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 θBbC6 0



,

• H =

 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 −1 0

.

2.4.3 State space form for the model by Jansen and Rit

We write the model in state space form by taking the state vector in (2.8) to be

x = (x1, x2, x4, x5), where xi for i = {1, 2, 4, 5} satisfy (2.13). States x1 and x2 are

the membrane potential contribution and its derivative of the excitatory and inhibitory

populations to the pyramidal neurons, respectively. States x4 and x5 capture the

membrane potential contribution and its derivative of the pyramidal neurons to the

excitatory and inhibitory populations, respectively. The output is y = x11 − x21. The

specific matrices in (2.8) and (2.9) are denoted as:

• The parameter vector is p? = (θA, θB, C1, C2, C3, C4),

• A = diag(A1, A2, A4, A5),

• γ = (S, S) where S is defined in (2.4),

• σ = (0, θAau, 0, 0, 0, θAaC1S(y), 0, θAaC3S(y)),

• C = [ 1 0 −1 0 0 0 0 0 ],
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• G =



0 0

θAaC2 0

0 0

0 θBbC4

0 0

0 0

0 0

0 0


,

• H =

[
0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

]
.

2.4.4 State space form for the model by Stam et al.

The model is written in state space form by taking the state vector in (2.8) as x =

(x1, x2, x5) where xi for i = {1, 2, 5} satisfy (2.13). State x1 = (x11, x12) represents

the mean membrane potential of the excitatory population’s activity to itself and its

derivative, respectively. States x2 = (x21, x22) and x5 = (x51, x52) represent the mean

membrane potential and its derivative of the inhibitory population to the excitatory

population and vice versa, respectively. The output is y = x11 − x21.

As mentioned in Section 2.3.3, the PSP kernels he and hi differ from the ones in the

models by Wendling and Jansen et. al.. Nevertheless, rewriting (2.5)-(2.7) into state

space form does not differ from the derivation presented in Section 2.4. By following

the procedure described in Section 2.4.2, i.e. by taking Laplace transformations of

(2.5) and (2.6) and taking the inverse Laplace transform, the kernels can be written as

second-order ODEs. They can then be rewritten as two first-order ODEs by introducing

extra state variables, xi2 for i ∈ {1, 2, 5}, in a similar fashion as in Section 2.4.2. The

specific matrices in (2.8) are denoted as:

• The parameter vector is p? = (C3, C4),

• A = diag(A1, A2, A5),

• γ = S1 where S is from (2.7),

• σ = (0, θA(a2 − a1)u, 0, 0, 0, θA(a2 − a1)C3S1(y)),

• C = [ 1 0 −1 0 0 0 ],

• G = (0, 0, 0, θB(b2 − b1)C4, 0, 0),
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• H = [ 0 0 0 0 1 0 ].

2.5 Summary

Three examples from a class of neural mass models are presented in this chapter. They

are the models by Wendling et. al., Jansen and Rit as well as Stam et. al. respectively.

A distinct feature of the neural mass models considered in this chapter is that they are

parameterised models, where the parameters dictate the type of output that is known

to represent certain brain activities, such as alpha rhythms in the visual system and

epileptic activity. It is known that the brain transitions into different activities in time,

such as from non-seizure to seizure conditions. Hence, a more accurate representation

would involve assigning dynamics to parameters, where the dynamics are likely to

involve the states. One such model was done by Suffczynski et. al. [141] to explain the

generation of generalised absence seizures, a form of whole-brain epilepsy. We did not

consider such models in this thesis.

The models discussed in this chapter are cortical column models. Cortical columns

are repeated all over cortical brain surfaces, such as in the cerebral cortex or the

hippocampus. Therefore, cortical column models can be used to describe an arbitrary

volume of the brain, a feature useful for describing localised neurological events. Often,

neurological events also have spatial dynamics, such as the spread of seizures from a

foci. These events have dynamics that are governed by partial differential equations and

are known as neural field models [39]. These models are not in the scope of this thesis.

Another way of capturing the spatial activity of a neurological event is to interconnect

the single cortical column models to characterise the phenomenon in a cortical area,

such as the primary visual cortex or even across a larger brain volume. We take this

approach in Chapter 5 where we design an adaptive observer that can estimate the

mean membrane potential (states) as well as the synaptic gains (parameters) of the

neural populations for each of the interconnected single cortical column models.

In Section 2.4 of this chapter, we write each of these example models in a form

that is most amenable for the design of state observers in Part I as well as state and

parameter observers in Part II of this thesis.
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Part I: State estimation

I
n this part, the estimation of states under the assumption that the parameter is

known is performed using the setup illustrated in Figure 2.8. The dynamical system

that computes an estimate of the state x of the system Σ is called a state observer.

uModel input, yModel output, 

State observer 
x̂

State 
estimate, 

Neural model 

px,

:

:
o



Figure 2.8: State observer setup

As mentioned in the introduction, two important issues need to be addressed in

state observer design, which are also applicable to state and parameter observer design.

Firstly, do the state estimates x̂ (similarly, parameter estimates p̂) converge to their

true values? Secondly, how do the observers perform in the presence of modelling error,

measurement and input noise?

In response to the first set of questions, recall that the neural model (or system) as

stated in (1.1) in Chapter 1 takes the following form

Σ : ẋ = f(x, u, p∗)

y = h(x, p∗), (2.14)

where the state is x ∈ Rnx , the input is u ∈ Rnu , the parameter is p∗ ∈ Θ ⊂ Rnp ,
measurement/output is y ∈ Rny and nx, nu, np and ny are positive integers.

A state observer for the model (2.14) takes the following form

˙̂x = f̂(x̂, u, p∗, y)

ŷ = h(x̂, p∗), (2.15)

29



Part I: State estimation

where the state estimate is x̂ ∈ Rnx , the input is u ∈ Rnu and the output estimate is

ŷ ∈ Rny . Our task is to design f̂ such that the state estimate converges to its true

value.

To achieve this objective, we consider the state estimation error system (similarly,

the parameter estimation error system. However, we concentrate only on state estima-

tion in this part.). Denoting the state error as x̃ := x̂−x, we obtain the following state

error system from (2.14) and (2.15):

˙̃x = f̂(x̃+ x, u, p∗, y)− f(x, u, p∗). (2.16)

We define two types of observers based on the convergence properties of their es-

timates via the stability of the equilibrium point of the state estimation error system

(2.16).

Definition 1. If the origin of the state error system (2.16) x̃ = 0 is:

• exponentially stable1, the observer (2.15) is termed exponentially convergent. If

the conditions hold for all x̃(0) ∈ Rnx, the observer (2.15) is called globally

exponentially convergent.

• asymptotically stable1, the observer (2.15) is termed asymptotically convergent

and if the conditions stated are satisfied for all x̃(0) ∈ Rnx, the observer (2.15) is

globally asymptotically convergent.

Given general nonlinear systems, the design of convergent observers are reliant on

the specific structures of the systems considered. The simplest case being error systems

that are linear. For example, consider the nonlinear system ẋ = Ax + γ(y), y = Cx,

where γ is a nonlinear function. An observer ˙̂x = Ax̂+γ(y)+L(Cx̂−y) can be designed

and the resulting error system ˙̃x = (A + LC)x̃ is linear. Given that the pair (A,C) is

detectable, the observer matrix L can be chosen such that the matrix A+LC is Hurwitz,

which ensures that the designed observer is exponentially convergent. In cases where

a general nonlinear system is considered and suppose some coordinate transformation

exists such that the resultant state error is linear, then a convergent observer can also

be achieved [72, Chapter 4.9], [90; 91].

Another well-known nonlinear observer is the high-gain type, which extends the

aforementioned idea of linear error systems by using a high gain to compensate for the

nonlinear part such that the resulting error system is ‘almost’ linear [13; 29; 54; 123].

1see Definition 2 in Appendix A
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As with all other observer designs for nonlinear systems, the high gain observer is only

applicable to a class of nonlinear systems with special structures. Consider for example

the nonlinear system [23, Chapter 2.2.2]:

ẋ = Ax+ γ(u, x),

y = Cx, (2.17)

where γ is globally Lipschitz, C =
[

1 0 . . . 0
]
, A =


0 1 0
...

. . .

1

0 . . . 0

 and

γ(u, x) =


γ1(x1, u)

γ2(x1, x2, u)
...

γn(x, u)

 (triangular form).

The high gain observer takes the form ˙̂x = Ax̂ + γ(u, x̂) + ∆K(Cx̂ − y), where

∆ = diag(d, d2, . . . , dn), with the parameter d > 0 to be chosen and the observer

matrix K to be designed. By considering a scaled state error, x̄ := ∆−1x̃, the resulting

scaled error system is ˙̄x = d(A+KC)x̄+ ∆−1(γ(u, x̂)− γ(u, x)). The parameter d > 0

can then be chosen sufficiently large such that the origin of the scaled error system is

exponentially stable [23, Chapter 2.2.2]. Such ideas have also been employed in the

design of adaptive observers [25; 26; 46], of which we will be adapting to suit the class

of neural mass models we consider in Chapter 5.

Two notable drawbacks of the high gain design are that it relies heavily on the global

Lipschitzness and the triangular structure of the nonlinearity γ. The circle criterion

observer introduced by Arcak and Kokotović [16] removes these restrictions. Consider

now a class of nonlinear systems ẋ = Ax + Gγ(Hx) + σ(y, u) and the proposed circle

criterion observer takes the form ˙̂x = Ax̂+Gγ(Hx̂+K(Cx̂−y))+L(Cx̂−y)+σ(y, u).

The error system is viewed as Lure’s system (Figure 2.9) and two restrictions are placed

on the error system in order to satisfy the well-known multi-variable circle criterion [86,

Theorem 7.1]. The two restrictions are that the linear part of the error system H(s)

is strictly positive real (SPR) and the nonlinearity γ is monotonically increasing. The

satisfaction of the SPR condition is implied by the feasibility of a linear matrix in-

equality (LMI). Several relaxations on the system have been performed to obtain a less

conservative LMI, including introducing a multiplier [45] or by considering a globally

Lipschitz nonlinearity γ [17; 158]. For the class of neural mass models considered, the
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Part I: State estimation

original circle criterion observer introduced in [16] resulted in an LMI that is infeasible.

So, in Chapter 4, we have combined these methods to obtain a state observer that is

applicable to our class of models.
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Linear'System'
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Figure 2.9: Circle criterion observer: error system

The second pertinent issue that arises in the estimation problem is the robustness

property of the observer towards modelling error, as well as noise in input and mea-

surements. In the case of the state observer for a family of parameterised systems such

as the class of neural mass models we consider, where the parameters are assumed to

be slowly-varying such that it can be considered constant for the observation period,

modelling error takes the form of the error between the assumed parameter and the

real parameter. The robustness of the observer towards perturbations in parameter is

the basis that motivates the next step, that is to jointly estimate the parameters as

well.

For the practical implementation of observers in the context of estimating neural

activity using the EEG, robustness towards measurement noise is a highly desirable

property. The measured EEG is recorded using scalp or intracranial electrodes, which

usually contains artefacts from the physical movement of the sensor or interference

from other electrical sources such as the mains. Hence, in the design of our observers,

we will take these issues into account by either showing a posteriori robustness or by

incorporating tuneable design parameters to improve robustness. An important concept

that is applied to show or improve robustness is the notion of input-to-state stability

(ISS), first introduced by Sontag [131] (see [133] for overview of recent results). In fact,

an interesting application of this concept is also employed in the design of a nonlinear

estimator for the class of neural mass models in Chapter 2.
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Part I: State estimation

Overview of Part I

The next two chapters focus on estimating the states of the class of systems presented

in Chapter 2 using a setup as shown in Figure 2.8. Recall from (2.8) that we consider

the following class of systems:

ẋ = Ax+G(p∗)γ(Hx) + σ(u, y, p∗)

y = Cx, (2.18)

where the state vector is x ∈ Rnx , the input is u ∈ Rnu , the measurement is y ∈ Rny ,
γ = (γ1, . . . , γm) : Rnm → Rnm and σ = (σ1, . . . , σn) : Rnu × Rny × Rnp → Rnx .

Assuming that the parameters p∗ are known, the nonlinear state observers designed

in this part take the following form:

˙̂x = Ax̂+G(p∗)γ(Hx̂+K(Cx̂− y)) + L(Cx̂− y) + σ(u, y, p∗), (2.19)

where x̂ ∈ Rn is the state estimate and observer matrices K ∈ Rm, L ∈ Rn are in-

troduced via linear output injection terms K(Cx̂− y) and L(Cx̂− y). This structure,

in particular the output injection term K(Cx̂ − y), was first proposed in the design

of circle criterion observers in [16]. We adopted this observer structure in our designs

proposed in Chapters 3 and 4, where the observer matrices K and L are designed via

different methodologies.

We first propose a class of nonlinear observers that are designed specifically for the

class of neural mass models presented in Chapter 2. By noting that the observation

error systems of this class of neural mass models has a cascade property, we use an in-

teresting application of the concept of ISS in the stability analysis of a cascade system

to show that the designed observers are globally exponentially convergent. This class

of nonlinear observers is presented in Chapter 3.

Next, we extend the circle criterion observer first designed by Arcak and Kokotović

in [16] such that it can be applied to the class of neural mass models we consider. We

also allow the user to tune the attenuation factors of measurement noise and input

uncertainty with the feasibility of the observer as a tradeoff. We call this a robust circle

criterion observer. The circle criterion observers proposed in Chapter 4 are applicable

to any system in this class (2.18) and are not limited to neural mass models.

33



Chapter 3

A nonlinear observer

W
e propose a nonlinear observer for the class of neural mass models considered

in Chapter 2 by first considering the idealised conditions stated in Assumptions

1-4. The proposed observer is considered to be of the extended Luenberger type due to

the introduction of two linear output injection terms in the dynamics of the observer.

The novelty lies in the linear output injection term that appears in the nonlinearity,

a concept first introduced for circle criterion observers in [16]. The nonlinear observer

presented in this chapter differs from circle criterion observers in that the observer

matrices are designed differently, via a methodology that relies heavily on the mathe-

matical properties of the neural mass models considered, i.e. a linear part that is stable,

nonlinearities that are globally Lipschitz and a state estimation error system that can

be decomposed into subsystems with a cascade structure.

The idealised assumptions are later relaxed and we investigate the robustness of

the proposed observer against disturbances and uncertainties. Simulation results are

provided to illustrate the convergence of the state estimates and the robustness of the

designed observer.

Recall from Chapter 2.4 that the neural mass models of interest can be written in

the form:

ẋ = Ax+G(p?)γ(Hx) + σ(u,Cx, p?),

y = Cx. (3.1)

We assume the following about (3.1):

Assumption 1. The synaptic gain of each neuronal population θA, θB, θG and the

connectivity strengths C1, C2, C3, C4 are parameters that are constant and known.
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3. A nonlinear observer

These parameters are typically slowly-varying during a particular brain activity,

such that they can be considered constant over the time period observed. When the

brain transitions from one activity to another however, the parameter p? = (C3, C4) for

the model by Stam et al. in [138], parameter p? = (θA, θB, C1, C2, C3, C4) for the model

by Jansen and Rit in [74] and parameters p? = (θA, θB, θG) for the model by Wendling

et al. in [155] will vary. If the goal is solely to estimate the parameters, system identifi-

cation methods such as least-squares estimation [98] or genetic algorithms [73] may be

used. However, it remains a hard problem due to the nonlinearity of these models. In

Part II of this thesis, we propose two parameter and state estimation methods. In this

chapter, we only consider the case where the brain is in one particular brain activity

and that the parameters are known, that is for the case where the parameters have

been identified a priori.

Assumption 2. The input u is measured.

The input from afferent populations is hard to quantify in practice, hence this

assumption is not justified in general. We will later relax this assumption by allowing

the input to be uncertain. We show that good estimates can still be obtained provided

that the L∞ norm of the difference between the true and assumed input is small. It is

important to note that it is not an easy task to guarantee exponential convergence of

the error estimates without assuming that the input is known exactly. Please refer to

[61] and references therein.

Assumption 3. The measured EEG, y is noise-free.

The measured EEG considered here can be recorded using both scalp or intracranial

electrodes (electrocorticography or ECoG). For best results, the observer is best applied

to ECoG, which has the highest signal-to-noise ratio such that it can be considered

noise-free. We will show later that the estimation error remains bounded despite noisy

measurements. We later relax our assumptions and show that the designed observer is

robust to measurement noise.

Assumption 4. The model dynamics are accurate.

We later allow for model uncertainty in Section 3.2 by introducing an additive dis-

turbance to the dynamics and show that the estimation error remains bounded with

bounded disturbance.

In Section 3.1, we first synthesise a nonlinear observer in an ideal setting (Assumptions
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3. A nonlinear observer

1-4). We relax these assumptions in Section 3.2 and show that the nonlinear observer

is robust towards uncertainties and disturbances. Finally, in Section 3.3, we provide

simulations under different scenarios to illustrate the results developed in Sections 3.1

and 3.2.

3.1 Observer design under the ideal scenario

The structure of the nonlinear observer proposed in this chapter shares the same form

as the circle criterion observer first proposed by Arcak and Kokotović in [16]. However,

the design of the observer in this chapter differs due to the particular structure of

the neural mass models discussed in Chapter 2. We will revisit the circle criterion

observers proposed in the literature later in Chapter 4 and adapt them such that they

are applicable to our examples. We propose the following nonlinear observer:

˙̂x = Ax̂+G(p?)γ(Hx̂+K(Cx̂− y)) + L(Cx̂− y) + σ(u, y, p?), (3.2)

where x̂ ∈ Rn is the state estimate and observer matrices K ∈ Rm, L ∈ Rn are

introduced via linear output injection terms K(Cx̂− y) and L(Cx̂− y).

The observer matrices L and K in (3.2) are the choice of the user. They are intro-

duced to provide flexibility over the convergence rate of the estimates. We establish in

Theorem 1 that for sufficiently small norms of matrices K and L, we obtain convergence

of the estimates to the true states in exponential time, for any initial conditions.

Theorem 1. Consider the model in general form (3.1) under Assumptions 1 to 4 and

observer matrices K and L for (3.2) are chosen such that:

ρ|K||G|+ |L| < ν
1

|C| , (3.3)

where ρ is the Lipschitz constant of γ, matrices G and C are from the model (3.1) and

ν > 0 is constructed in the proof.

Then, the observer (3.2) is a global exponential observer for the model (3.1), i.e.

for any u ∈ L∞ and denoting the estimation error as x̃ := x− x̂,

|x̃(t)| ≤ k exp(−λt)|x̃(0)| ∀t ≥ 0,∀x̃(0) ∈ Rn, (3.4)

where constants k, λ > 0.

Proof. The proof is given in Appendix B.1.
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Remark 1. Note that Theorem 1 applies to all neural mass models considered in Chap-

ter 2, where matrices G and C are different for each model considered. Consequently,

the obtained observer matrices K and L as well as ν from (3.3) and k, λ from (3.4)

differ for each model.

The exponential convergence property of the observer is desirable in practice be-

cause it means that the estimates are guaranteed to converge to the true states in

exponential time. Additionally, the validity of the convergence property for any initial

conditions is highly desirable because the initial conditions of the neuronal popula-

tions are usually unknown. Hence, the observer can be initialised with arbitrary initial

conditions.

Theorem 1 provides us with a condition (3.3) that gives a class of nonlinear observers

parameterised by matrices K and L. This condition (3.3) is conservatively obtained in

B.1. However, we see that the choice of L = 0 and K = 0 fulfils condition (3.3) and

therefore, admits an estimator for the model (2.8) [36]. The drawback of an estimator

lies in that the convergence speed of the state estimation error cannot be controlled by

the user. Nevertheless, it remains a useful observer provided that the error converges

sufficiently fast. In Section 3.3.1, we see in simulations that the estimator for the

model by Wendling et al. [155] provides estimates that converge to the true states in

a reasonable timeframe. Non-zero choices of K and L fulfilling condition (3.3) provide

tuneability of the estimation error’s convergence speed. However, condition (3.3) does

not provide a priori information about the convergence rate of the observer. In Section

3.3.1, we show in simulations that some choices of non-zero matrices K and L that

satisfy condition (3.3) can lead to faster convergence rate for the state estimation error.

Remark 2. The observer structure (3.2) shares the same mathematical structure as

other nonlinear observers in the literature, that is, the high gain [120] (with K =

0) and circle criterion observers [16]. These observers employ special techniques in

obtaining observer matrices L and K that are not satisfied by the model we consider

(2.8). Therefore, we prove the existence of K and L matrices using a different analysis

from that in [16; 120].

3.2 Robustness analysis

Assumptions 1-4 are strong, but they provide us with a good first step in proving the

convergence of state estimates. We can relax these assumptions and characterise their

effects on the convergence property of the state estimation error system. Figure 3.1
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summarises our relaxed assumptions and we restate them as follows:

Assumption 5 (Relaxation of Assumption 1). The parameters θA, θB, θG, C1, C2,

C3 and C4 of the model are known with error.

We characterise these uncertainties in parameters by introducing bounded, time-

varying signal εp(t) to the parameters of the model, so that the true parameter values

in the model become p? + εp.

Assumption 6 (Relaxation of Assumption 2). The input is uncertain.

We introduce bounded, time-varying disturbances εu(t) to the input available to

the observer. Thus, the real input is modelled by u + εu, whereas the observer is fed

by an assumed input u. The introduction of εu relaxes Assumption 2 by allowing the

real input to be unknown to the observer.

Assumption 7 (Relaxation of Assumption 3). The measured EEG is affected by mea-

surement noise.

Disturbance εy(t) is introduced to characterise measurement noise. The measure-

ment with noise is denoted as y + εy.

Assumption 8 (Relaxation of Assumption 4). The neural mass model is inaccurate.

Additive disturbance εsys(t) characterises the possible influence from other popula-

tions to the neuronal populations included in the model.

We show in Theorem 2 that under Assumptions 5-8, i.e. uncertainties in modelling,

parameters, measurement and input, the estimates provided are close to the true states,

where the ‘closeness’ is determined by the L∞ norm of the uncertainties εy, εp, εu

and εsys. The introduction of the uncertainties and disturbances to the ideal setup is

illustrated in Figure 3.1.

Therefore, we obtain the following perturbed systems (3.5) and (3.6) from (3.1) and

(3.2) as illustrated in Figure 3.1:

From (3.1):

ẋ = Ax+G(p? + εp)γ(Hx) + σ(u, Cx, p? + εp) + εsys,

y = Cx. (3.5)

From (3.2):

˙̂x = Ax̂+G(p?)γ
(
Hx̂+K(Cx̂− (y + εy))

)
+L(Cx̂− (y + εy)) + σ(u+ εu, y + εy, p

?). (3.6)
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Figure 3.1: Model and observer setup under relaxed assumptions.

Theorem 2. Consider the perturbed estimation error system (3.5) and (3.6) under

Assumptions 5 to 8. The observer (3.6) with matrices K and L are chosen such that

(3.3) is satisfied.

This guarantees that for all x̃(0) ∈ Rn, t ≥ 0 and for all u, εy, εp, εu and εsys ∈ L∞,

the error system satisfies the following:

|x̃(t)| ≤ k̃ exp(−λ̃t)|x̃(0)|+ γy(‖εy‖[0,t]) + γθ(‖εp‖[0,t])
+γu(‖εu‖[0,t]) + γsys(‖εsys‖[0,t]), (3.7)

where k̃, λ̃ > 0 and γy, γθ, γu, γsys : R→ R are continuous positive increasing functions

that are zero at the origin.

Proof. The proof for Theorem 2 is provided in Appendix B.2.

We see that with no uncertainties and disturbance, i.e. εu = 0, εp = 0 and εy = 0,

we recover the results of Theorem 1. Loosely speaking, Theorem 2 states that small

uncertainties and disturbance implies small estimation error.

Remark 3. By setting εu = −u, we have that the input to the observer (3.2) is 0,

that is we consider the proposed observer (3.2) as an unknown-input observer. The

estimation error of the proposed observer (3.2) converges with some error that depends

upon the L∞ norm of εu. This result is advantageous because the mean firing rate of the
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3. A nonlinear observer

afferent neuronal populations to a particular brain region is hard to measure in reality.

We will further demonstrate this observation in Section 3.3.3 via simulations.

3.3 Simulation

We illustrate the performance of our observers using simulations. First, we perform

simulations to show the convergence of the estimates under the ideal conditions stated

in Assumptions 1-4 and test the influence of the observation gains on the speed of

convergence of the estimation error. Next, we show the robustness of our observers

against uncertainties in modelling, parameters, input and measurement in Section 3.3.2.

We also show that our observers can provide estimates that are close to to the true states

when the input to the observer is unknown in Section 3.3.3. Note that estimating the

hidden states over multiple populations within our neural mass model is a non-trivial

endeavour, given just a single channel of data. The simulation results provided are

for the model of the hippocampus by Wendling et al. in [155]. Similar results can be

obtained for other models introduced in Chapter 2.

We select synaptic gains θA = 5, θB = 25 and θG = 10 that correspond to seizure

activity as identified in [155]. The initial condition of the model (2.8) is set to x(0) =

[6, 0.5, 6, 0.5, 6, 0.5, 6, 0.5, 6, 0.5, 6, 0.5, 6, 0.5]T . We initialise the observer (3.2) to x̂(0) =

0. This choice is arbitrary as we have shown that the convergence of the estimation

error is valid for all initial conditions in Theorems 1 and 2.

In this section, we denote the observer matrices as K = k × Ik and L = l × Il

where Ik = [1, 1, 1]T and Il = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T . We call k and l the

observer gains. For each of the scenarios in the following sections, the performance of

two observers are evaluated:

1. The estimator l = 0, k = 0.

2. The observer with observer gains k = 0.1 and l = −0.2.

All other constants used in simulation are as specified in Appendix B.12.

3.3.1 Simulations under Assumptions 1 to 4: ideal scenario

We consider the ideal case where the parameters are constant and known, input u and

measurement y are known and unperturbed as well as no modelling errors. Both model

(2.8) and observer (3.2) are supplied with the same Gaussian noise input with mean

90mV and variance 30mV used in [155].
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3. A nonlinear observer

As stated in Theorem 1 and illustrated in Figures 3.2 and 3.3, the state estimation

error e := x − x̂ converges to 0 asymptotically in exponential time. We observe in

simulations that for both observers, the convergence rate is in general faster than

the duration of a specific brain activity (see [155]): by t = 0.3s, all state estimation

errors have converged to 0. As seen in Figure 3.2, the plot of the error norm shows

a large overshoot initially (approximately 1200). However, the plots on Figures 3.3

show that the estimates of the membrane potential contributions from one population

to another x̂i1 are reasonably close to the true values xi1. The large initial error is due

to the estimation error in the other states, i.e. the error of the time derivative of the

membrane potential contribution |xi2 − x̂i2|, which are not the physical quantities of

concern in practice.

As discussed in Section 3.1, the choice of non-zero observer gains provides flexibility

over the convergence rate of the estimation error. Figure 3.2 shows that for a selection

of observer gains k and l, the norm of the estimation error converges faster than with

the case of k = l = 0 (estimator).
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Figure 3.2: Error norm |x̃(t)| for a selection of k and l.
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Figure 3.3: Membrane potential xi1 (grey solid line) and estimated membrane potential
contribution x̂i1 (red solid line: l = k = 0, black dashed line: k = 0.1, l = −0.5) under
the ideal scenario (Assumptions 1 to 4).
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3.3.2 Simulations under Assumptions 5 to 8: uncertainty in parame-

ters, input and measurement as well as additive disturbance.

Next, we test the performance of the observers under uncertainties in the parameters

θA, θB, and θG, disturbances in the input and output of the observer, as well as additive

disturbance.

We simulate the perturbed systems (3.5) and (3.6) with the perturbations: constant

parameter uncertainty εp = (0.5, 2.5, 1), Gaussian input uncertainty εu ∼ N(0, 0.32),

Gaussian measurement noise εy ∼ N(0, 0.12) and Gaussian model uncertainty εsys ∼
N(0, 12I). The performance of both observers are similar. Figures 3.4 and 3.5 show

that the estimation error converges to a neighbourhood of the origin. This observation

agrees with Theorem 2.

Figure 3.4 shows that the estimates for the states of interest xi1 do converge rea-

sonably close to the true states. It can be seen in Figure 3.5 that the relative error of

the states is quite low (under 10%).
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k = 0.1, l = −0.5) under the practical scenario (Assumptions 5 to 8).
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Figure 3.5: Relative state estimation error |xi−x̂i|
max(xi)−min(xi)

for i ∈ {1, . . . , 7} under the

practical scenario (Assumptions 5 to 8) for the estimator (grey solid line) and the
observer with k = 0.1, l = −0.5 (black dashed line).
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3.3.3 Simulations under Assumptions 1, 3, 4 and 6: uncertain-input

observer.

The input to the brain is usually hard to quantify under realistic conditions. To gauge

the performance of the observers under this condition, we perform another set of simula-

tions where the input is set to u = 0 for the observers with no uncertainty in parameters

and measurement noise. This case is formally stated in Remark 3.

For both observers, Figures 3.7 to 3.6 illustrate that the estimation error converges

to a neighbourhood of the origin as expected. In Figure 3.7, the estimation error for

subsystems (x21, x22), (x31, x32), (x41, x42), (x51, x52), (x61, x62) and (x71, x72) con-

verges to a reasonably small neighbourhood of the origin. However, the (x11, x12)

subsystem exhibits a much larger steady state estimation error than the other subsys-

tems due to the input u directly affecting it. Nevertheless, our simulations in Figure

3.8 show that the states can be reasonably reconstructed when the input is unknown.

In Figure 3.6, the estimator outperforms the observer with k = 0.1 and l = −0.5,

in the sense that the estimator converges to a smaller neighbourhood around the origin

x̃ = 0 (with |x̃| ≤ 35 for the estimator and |x̃| ≤ 85 for the observer with l = −0.5 and

k = 0.1). A decision regarding the tradeoff between the convergence speed of the state

estimation error and the accuracy of the estimates needs to be made when employing

these observers. In this simulation scenario, the error converges to a neighbourhood

in a reasonable timeframe (t = 0.2s) for both observers. Hence, the estimator is the

observer of choice due to the steady-state accuracy of its estimates.
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Figure 3.6: Norm of state estimation error |x̃| for the estimator (grey solid line) and
the observer with k = 0.1, l = −0.5 (black dashed line) under Assumptions 1, 3, 4 and
6.
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Figure 3.7: Absolute state estimation error |xi−x̂i|
max(xi)−min(xi)

for i ∈ {1, . . . , 7} for the

estimator (grey solid line) and the observer with k = 0.1, l = −0.5 (black dashed line)
under Assumptions 1, 3, 4 and 6.
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Figure 3.8: True membrane potential contribution xi1 (grey solid line) and estimated
membrane potential contribution x̂i1 (red solid line: k = l = 0, black dashed line:
k = 0.1, l = −0.5) under Assumptions 1, 3, 4 and 6.
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3.4 Summary

A nonlinear observer is proposed for the class of neural mass models described in

Chapter 2. The observer is a global exponential observer (see Definition 1 in Part I),

i.e. the state estimates converge to the true states for all initial conditions in exponential

time. We showed a posteriori that the proposed observer is robust towards disturbances

and uncertainties. Simulation results for the model by Wendling et. al. [155] confirm

our main results.

The reader is reminded that the nonlinear observer designed in this chapter is spe-

cific to the class of neural mass models, due to the cascade property of the observation

error systems that enables us to show the global exponentially convergent property of

the nonlinear observer. In the subsequent chapter, the circle criterion observers pre-

sented is not model specific, but applicable to systems that can be written in the desired

form (2.18), with a nonlinearity γ that satisfies certain assumptions.
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Chapter 4

A robust circle criterion observer

I
n this chapter, we propose to apply circle criterion observers which have been orig-

inally developed by Arcak and Kokotović in [16] and extended in [17; 45; 158].

Unfortunately, none of these designs apply to the neural mass models studied because

the required linear matrix inequality (LMI) condition is not feasible. Hence, we com-

bine the results for monotonic and globally Lipschitz nonlinearities [17; 158], as well as

introduce a multiplier [45] to obtain a less restrictive LMI that is feasible for the neural

mass models considered. This first result is presented in Section 4.1.

We also address two main issues faced in neuroscientific studies. Firstly, the in-

put is not always measurable. Secondly, the measurements obtained are corrupted by

noise. Hence, we improve the observer design in [35] by taking into account these two

implementation issues. The resulting design allows observer gain matrices L and K

to be obtained under the circle criterion, while taking the attenuation of input uncer-

tainty and measurement noise into account. Our design differs from [158] in that we

consider input uncertainty and we also introduce a multiplier M in the LMI, so that

the resulting observer is applicable to the class of neural mass models we consider. We

present this extension in Section 4.2

4.1 A circle criterion observer

This section presents the first extension of the circle criterion observers in [16; 17; 45;

158] such that they are applicable to the neural mass models considered in Chapter 2.

A posteriori analysis of the robustness of the extended circle criterion observer with

respect to uncertainty and disturbances is carried out in Section 4.1.1. We then show

how the observer can be applied to neural mass models in Section 4.1.2 and provide
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4. A circle criterion observer

simulations in Section 4.1.3 to illustrate our results.

Recall that we consider the class of nonlinear systems stated in (2.8) and reproduced

here

ẋ = Ax+G(p?)γ(Hx) + σ(u, y, p?)

y = Cx, (4.1)

where the state vector is x ∈ Rnx , the input is u ∈ Rnu , the measurement is y ∈ Rny ,
γ = (γ1, . . . , γm) : Rnm → Rnm and σ = (σ1, . . . , σn) : Rnu×Rny×Rnp → Rnx . Suppose

γ is both globally Lipschitz and monotonically increasing as follows

Assumption 9. For any i ∈ {1, . . . , nm}, there exists constants 0 ≤ ai ≤ bi < ∞, so

that the following holds:

ai ≤ γi(vi)−γi(wi)
vi−wi ≤ bi, ∀vi, wi ∈ R with vi 6= wi.

Assumption 9 is an extension of the slope restriction condition from [17, Equation

1] to vector nonlinearity γ = (γ1, . . . , γm). Constant bi is the Lipschitz constant of γi.

We consider the following type of observer originally proposed in [16]

˙̂x=Ax̂+G(p?)γ
(
Hx̂+K(Cx̂− y)

)
+L(Cx̂− y)+σ(u, y, p?), (4.2)

where x̂ is the state estimate and K, L are observer matrices to be designed.

Denoting the observation error as x̃ := x − x̂ and η := v − w where v := Hx and

w := Hx̂+K(Cx̂− y), the observation error system from (4.1) and (4.2) is

˙̃x = (A+ LC)x̃+G(p?)
(
γ(v)− γ(w)

)
.

Note that from Assumption 9, we know that for any i ∈ {1, . . . ,m}, there exists a

time-varying gain δi(t) taking values in the interval [0, bi] so that

γi(vi(t))− γi(wi(t)) = δi(t)(vi(t)− wi(t)), ∀vi, wi ∈ R. (4.3)

By (4.3), we obtain the observation error system as

˙̃x = (A+ LC)x̃+G(p?)δ(t)η, (4.4)

where δ(t) = diag(δ1(t), . . . , δm(t)).

We show in Theorem 3 that the origin of the observation error system (4.4) is
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globally exponentially stable (GES) under certain conditions.

Theorem 3. Suppose x(t) exists for all t ≥ 0. Under Assumptions 1-3 and 9, if there

exist a matrix P = P T > 0, a diagonal matrix Λ = diag(λ1, . . . , λm) with strictly

positive components and a constant ν > 0 such that[
(A+ LC)TP + P (A+ LC) + νI PG(p?) + (H +KC)TΛ

G(p?)TP + Λ(H +KC) −2Λdiag
(

1
b1
, . . . , 1

bm

) ]
≤ 0, (4.5)

then there exists k, β > 0 such that the following holds:

|x̃(t)| ≤ k exp(−βt)|x̃(0)|, ∀t ≥ 0,∀x̃(0) ∈ Rnx . (4.6)

2

Theorem 3 states that an observer of the form (4.2) can be designed for system

(4.1) if the observer matrices K and L can be found such that LMI (4.5) is satisfied.

As explained in [16] and later in Section 4.1.2, inequality (4.5) can be treated as an

LMI in P , PL, Λ, ΛK and ν. Hence, widely available software packages such as the

LMI Lab in MATLAB can be used to solve (4.5).

Existing circle criterion observer results [17; 45; 158] yield LMIs that are infeasible

for the neural models we consider in Chapter 2. Therefore, we tailored the results of

[45] to the case where vector nonlinearities γ are not only monotonically increasing but

also globally Lipschitz. In that way, the LMI condition (4.5) differs from the LMI in

(17) of [45], where element (2, 2) in (4.5) is non-zero which makes it less restrictive.

The LMI condition (4.5) also differs from (13) of [158], where the presence of multiplier

Λ in elements (1, 2), (2, 1) and (2, 2) of (4.5), gives us more flexibility. Hence, we are

able to design circle criterion observers for the neural models of interest.

4.1.1 Robustness analysis

The robustness of the observer towards uncertainties and disturbances is important

for its practicality in a realistic setting. Therefore, we introduce εy for measurement

noise (Assumption 5), εu for input uncertainty (Assumption 6) and εsys to characterise

modelling uncertainty (Assumption 8). Instead of (4.1) and (4.2), our model and
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observer are now restated as follows

ẋ = Ax+G(p?)γ(Hx) + σ(u, y, p?) + εsys

y = Cx, (4.7)

˙̂x = Ax̂+G(p?)γ
(
Hx̂+K

(
Cx̂− (y + εy)

))
+L
(
Cx̂− (y + εy)

)
+ σ(u+ εu, y + εy, p

?). (4.8)

We make the following additional assumption:

Assumption 10. Each component σi : Rnu × Rny × Rnp → R for i ∈ {1, . . . , nx} is

globally Lipschitz with constant b̃i.

Note that due to Assumption 9-10 and assuming that εsys ∈ L∞, the solution x(t)

exists for all time t ≥ 0 [85, Theorem 3.2]. The following theorem shows that the

observation error x̃ from (4.7) and (4.8) is input-to-state stable (ISS) [131] with respect

to disturbances εy, εu and uncertainty εsys.

Theorem 4. Consider the perturbed model (4.7) and observer (4.8). If Assumptions

9-10 hold and LMI (4.5) is feasible, then there exist k̃, β̃, γu, γy, γεsys > 0 such that

(4.9) holds for all t ≥ 0, x̃(0) ∈ Rnx and for all εu, εy, εsys ∈ L∞,

|x̃(t)| ≤ k̃ exp(−β̃t)|x̃(0)|+ γu‖εu‖[0,t] + γy‖εy‖[0,t] + γεsys‖εsys‖[0,t]. (4.9)

2

The ISS property guarantees that the observation error converges to a neighbour-

hood of the origin whose size depends on the norms of input uncertainty εu, modelling

uncertainty εsys and disturbance in the measurement εy. Note that we recover the

global exponential property of the observation error system in Theorem 3 when all the

uncertainties and disturbances are set to 0.

4.1.2 Application to the model by Jansen and Rit

In this section, we show how Theorem 4 can be applied to the class of neural mass

models introduced in Chapter 2. We consider the model by Jansen and Rit described

in Chapter 2.3.2 and written in the form of (4.1) in Chapter 2.4.3.

Under practical conditions, the parameters θA, θB, C1, C2, C3 and C4 are not

known and are time-varying (see Assumption 5 in Chapter 3.2). To characterise the
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uncertainty in the parameters, we introduce εp so that the true parameter of the system

(4.1) is p?+εp, where εp is bounded and unknown. Therefore, the model (4.1) becomes:

ẋ = Ax+G(p? + εp)γ(Hx) + σ̃(u, y, p? + εp),

y = Cx. (4.10)

Moreover, the EEG measurement y is not noise-free and the input u from afferent

populations is not quantifiable in practice. As performed in Section 4.1.1, we introduce

εy to characterise measurement noise such that the EEG measurement available to the

observer is now y + εy and the input u is allowed to be uncertain by introducing εu

such that the input available to the observer is u+ εu.

We consider the observer in the form of (4.8) as follows:

˙̂x = Ax̂+G(p?)γ
(
Hx̂+K(p?)

(
Cx̂− (y + εy)

))
+σ(u+ εu, y + εy, p

?) + L(p?)(Cx̂− (y + εy)), (4.11)

where K(p?) and L(p?) are obtained by solving LMI (4.5).

Note that as the LMI (4.5) is dependent on G(p?), verifying that (4.5) is satis-

fied for p? ∈ Θ := [θAmin , θAmax ] × [θBmin , θBmax ] × [C1min , C1max ] × [C2min , C2max ] ×
[C3min , C3max ] × [C4min , C4max ] will require infinite number of LMIs to be checked. To

avoid this, we proceed as follows. We note that G(p?) is:

G(p?) = (0, θ1a, 0, θ2b, 0, 0, 0, 0), (4.12)

where θ̃ := (θ1, θ2) = (θAC2, θBC4). Henceforth, we denote G(p?) as G(θ̃) with slight

abuse of notation. The tuple of parameters (θ1, θ2) takes values in the convex set

Θ̃ := [θ1, θ̄1]× [θ2, θ̄2], where θ̄1 = θAmaxC2max , θ1 = θAminC2min , θ̄2 = θBmaxC4max and

θ2 = θBminC4min . The vertices of Θ̃ are then:
θ?1 = (θ1, θ2)

θ?2 = (θ1, θ̄2)

θ?3 = (θ̄1, θ̄2)

θ?4 = (θ̄1, θ2).

(4.13)

We now show that if LMI (4.5) is solvable for each θ?i ∈ Θ̃, i ∈ {1, . . . , 4} with the same

positive definite matrix P = P T , then it is solvable for any p? ∈ Θ. In that way, only

four LMIs need to be verified to ensure the feasibility of (4.5). Due to the convexity of
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Θ̃, any point θ̃ = (θ1, θ2) ∈ Θ̃ can be written in the form of:

θ̃ =

4∑
i=1

λiθ
?
i (4.14)

where λi ≥ 0, i ∈ {1, . . . , 4} and
∑4

i=1 λi = 1. From (4.12), G(θ̃) is linear in θ̃, hence:

G(θ̃) =
4∑
i=1

λiG(θ?i ). (4.15)

Now, we convert the matrix inequality of Theorem 3 into the following LMI as explained

in [16]:

Mθ̃(P,R, S,Λ, ν) =[
ATP + PA+RC + CTRT + νI PG(p?) +HTΛ + CTST

G(p?)TP + ΛH + SC −2Λdiag(b−1
1 , . . . , b−1

m )

]
≤ 0

(4.16)

where R = PL and S = ΛK. Suppose that there exist positive definite matrix P = P T ,

matrices Ri and Si, positive definite diagonal matrix Λi and strictly positive constant

νi for i ∈ {1, . . . , 4} such that the following holds:

Mθ?i
(P,Ri, Si,Λi, νi) ≤ 0, (4.17)

for each vertex θ?i defined in (4.13). Consider θ̃ ∈ Θ̃, we know that there exist λi such

that (4.14) holds for all λi ≥ 0 and
∑4

i=1 λi = 1. Due to the linearity of Mθ(P,R, S,Λ, ν)

in its arguments and (4.15), the following is satisfied:

Mθ̃(P,R, S,Λ, ν) =
4∑
i=1

λiMθ?i
(P,Ri, Si,Λi, νi), (4.18)

where R =
∑4

i=1 λiRi, S =
∑4

i=1 λiSi, Λ =
∑4

i=1 λiΛi is a positive definite diagonal

matrix and ν =
∑4

i=1 λiνi > 0. Consequently, the feasibility of all the LMIs (4.17) for

all i ∈ {1, . . . , 4} with the same P implies that the LMI (4.5) (equivalently (4.16)) is

satisfied for all θ ∈ Θ. Note that the same P that satisfies LMI (4.16) also has to work

for all LMIs (4.17) for i ∈ {1, . . . , 4}, i.e. we have a simultaneous Lyapunov function for

all vertices [85, Section 10.1.3]. We have computationally verified that the LMIs (4.17)

are satisfied for the numerical values provided in [74, Section 2.3]. Therefore, we are

able to state the following result which guarantees the existence of observer matrices
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K(p?) and L(p?) for all p? ∈ Θ such that the state estimation error system x̃ is ISS

with respect to the input and parameter uncertainties εu, εp as well as measurement

noise εy.

Proposition 1. Consider the perturbed model (4.10) and observer (4.11). For any

p? ∈ Θ (where Θ is a compact set), there exist observer matrices L(p?) and K(p?)

that satisfy LMI (4.5) such that the observation error system x̃ satisfies for all t ≥ 0,

x̃(0) ∈ R8 and for all εu, εy, εp ∈ L∞,

|x̃(t)| ≤ k̄ exp(−β̄t)|x̃(0)|+ γ̄y‖εy‖[0,t] + γ̄u‖εu‖[0,t] + γ̄p‖εp‖[0,t], (4.19)

where k̄, β̄, γ̄y, γ̄u, γ̄p ≥ 0. 2

Similar results can be derived for the models by Stam et. al. [138] (described in

Chapter 2.3.3) and Wendling et. al .[155] (described in Chapter 2.3.1) respectively. We

have verified that the conditions of Theorem 4 and Proposition 1 are met.

4.1.3 Simulation results

We show the simulation results for the model (4.10) and observer (4.8). The simulations

are performed under two scenarios: (1) without disturbances and uncertainties, (2)

under the more practical condition with disturbances and uncertainties.

We initialise the model at x(0) = (6, 6, 6, 6, 6, 6, 6, 6) and the observer at x̂(0) =

(0, 0, 0, 0, 0, 0, 0, 0). The input to the model u as described in [74] is uniformly dis-

tributed between 120 and 320mV. The parameters were chosen to correspond to alpha-

like activity p? = (θA, θB, C1, C2, C3, C4) = (3.25, 22, 135,108, 33.75, 33.75) as identified

in [74]. All other constants used in simulation are as described in [74, Section 3.1].

By solving the LMI (4.5), we obtain the observer matrices L = 104 × (0.0053,

−2.2306, 0.0077, 5.3849, 0.0032,−0.1266,−0.0017, 0.0514) and K = (−0.0586,−0.1422).

Scenario 1: the ideal condition without disturbance and uncertainties

In the ideal scenario, Theorem 3 states that the observer provides estimates that con-

verge to the true states in exponential time. As illustrated in Figure 4.1(a), at t = 0.5s,

the absolute observation error is less than 0.01%.
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Scenario 2: robustness of the observer towards uncertainty in parameters,

input and measurement

We now introduce parameter uncertainty that is 10% of the actual values εp = 0.1 ×
(θA, θB, C1, C2, C3, C4) = (0.33, 2.2, 13.5, 10.8, 3.375, 3.375), input uncertainty

εu ∼ N(0, 102) and measurement noise εy ∼ N(0, 0.72), as shown in our perturbed model

(4.10) and observer (4.8). Our simulation results (Figure 4.1(b)) confirm the results

stated in Proposition 1, i.e. the norm of the observation error is small with small L∞

norm of the uncertainties. The absolute observation error relative to the amplitude of

the signal as shown in Figure 4.1(b) remains less than 25% for all states.
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(a) Scenario 1: the ideal condition without
disturbance and uncertainties.
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(b) Scenario 2: robustness of the observer to-
wards uncertainty in parameters, input and
measurement

Figure 4.1: Absolute observation error relative to the amplitude of the signal,
|x̃i|

|max(xi)−min(xi)| , for i ∈ {1, . . . , 4}.

4.2 A robust circle criterion observer

In the previous section, we analysed the robustness of the designed observer a posteriori

and showed that it is robust towards disturbances and uncertainty. In this section, we

improve the circle criterion observer designed in Section 4.1 such that it is a priori
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robust towards measurement noise and input uncertainty by providing the user with

the ability to attenuate the effect of noise and uncertainty. To this end, we take into

account measurement noise (Assumption 7) when considering the class of systems

ẋ = Ax+G(p?)γ(Hx) +Bu

y = Cx+Dw, (4.20)

where w ∈ Rnw is the measurement noise. We make the same assumptions about γ as

done previously in Section 4.1.

We consider the following type of observer [17]

˙̂x=Ax̂+Gγ
(
Hx̂+K(Cx̂− y)

)
+L(Cx̂− y)+B(u+ d), (4.21)

where x̂ is the state estimate, d ∈ Rnd is the input disturbance and K, L are the

observer matrices to be designed.

As done in [17], denoting the observation error as x̃ := x̂ − x, v := Hx and z :=

Hx̂ + K(Cx̂ − y), the observation error system from (4.20) and (4.21) is ˙̃x = (A +

LC)x̃−LDw+Bd+G
(
γ(z)− γ(v)

)
. By (4.3), we obtain the observation error system

as

˙̃x = (A+ LC)x̃− LDw +Bd+Gδ(t)η, (4.22)

where δ(t) = diag(δ1(t), . . . , δm(t)) and η := z − v.

Given the observation error system (4.22), our task is to find observer matrices K

and L such that a quadratic Lyapunov function V (x̃) satisfies the following along the

solutions of (4.22)

V̇ (x̃) ≤ −|x̃|2 + µw|w|2 + µd|d|2. (4.23)

We can then show that the observation error x̃ satisfies the following property1 for

all t ≥ 0

‖x̃(t)‖2 ≤ c̄|x̃(0)|+√µw‖w(t)‖2 +
√
µd‖d(t)‖2, (4.24)

where scalars c̄, µw, µd > 0. The disturbance gains from w and d to x̃ are
√
µw and

√
µd respectively.

1We can obtain (4.24) from (4.23) by following the same procedure as in the proof of
Theorem 5.2 in [86].
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4.2.1 Main result

In Theorem 5, we establish that the observation error system (4.22) satisfies property

(4.24) provided that a linear matrix inequality (LMI) is satisfied.

Theorem 5. Consider system (4.20) and observer (4.21). Under Assumption 9, if

there exist a real symmetric and positive definite matrix P , a diagonal and positive

definite matrix M = diag(m1, . . . ,mnm), and scalar constants µw, µd > 0, such that the

following is satisfied
A(P, PL) B(P,M,KTM) −PLD PB

? E(M) −MKD 0

? ? −µwI 0

? ? ? −µdI

 ≤ 0, (4.25)

where A(P, PL) = P (A+LC)+(A+LC)TP+I, B(P,M,KTM) = PG+(H+KC)TM

and E(M) = −2Mdiag
(

1
b1
, . . . , 1

bnm

)
, then the observation error system satisfies prop-

erty (4.24). 2

The proof of Theorem 5 is provided in Appendix B.6. Theorem 5 shows that if a K

and L can be found such that the LMI (4.25) is satisfied, then an observer (4.21) can

be designed for system (4.20). Note that condition (4.25) is considered an LMI in P ,

PL, MK, M , µw and µd. As such, (4.25) can be solved using efficient software tools

such as the LMI Lab in MATLAB.

By considering the system (4.20) under the ideal condition where there is no input

uncertainty and measurement error as done in Section 4.1, we obtain the condition

stated in Theorem 3. Current circle criterion results in [17], [45], [158] yield LMIs that

are not feasible for the class of neural models we consider. Therefore, we adapted [45] to

the case where the nonlinearity γ is globally Lipschitz and also monotonically increasing

with inspiration from [17]. This result is a special case of the system considered in

Theorem 5 as stated in Theorem 3 and was reported in [35]. In this section, we further

improve the circle criterion observer obtained in [35] by designing observer matrices

K and L under the circle criterion condition and taking input uncertainty d from

(4.21) and measurement noise w from (4.20) into account. The LMI (4.25) differs from

(13) obtained in [158] in the sense that we consider input uncertainty attenuation and

introduced a multiplier M in components (1, 2), (2, 2) and (2, 3) of (4.25). Without

introducing the multiplier M , the results obtained in [158] do not lead to feasible LMIs.

This simple extension allows circle criterion observers to be designed for the neural
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4. A circle criterion observer

models we consider, in addition to taking into account the realistic issues faced when

implementing these observers in the context of estimation for neuroscientific studies.

The constants µw and µd in (4.25) may be specified by the user and should the LMI

(4.25) be found to be solvable, we then have the estimation error satisfying property

(4.24) with estimates of the disturbance gains
√
µw and

√
µd. In some cases, we may

wish to minimise these constants and various methods are available to solve this multi-

objective optimisation problem (see [42]). A simple approach that we take in the next

section is to minimise the cost Jmax = max{µw, µd} subject to (4.25).

4.2.2 Application to the model by Jansen and Rit

In this section, we show how Theorem 5 can be applied to the model by Jansen and

Rit described in Chapter 2.3.2 and it can be written in the form of (4.20) with D = 1

and all other variables as defined in Chapter 2.4.3. We introduce input disturbance

d ∼ N(0, 0.12) and measurement noise w ∼ N(0, 0.72). The performance of (A) the

circle criterion observer obtained under the conditions of Theorem 3 that does not

consider the attenuation of input uncertainty and measurement noise is compared with

(B) the robust circle criterion observer derived in Theorem 5. We solved LMI (4.5)

to obtain observer matrices K, L for observer (A). For observer (B), we choose to

minimise µw and µd using the cost function Jmax subject to (4.25) to obtain K and

L. The resulting computed disturbance gains are
√
µw = 706 and

√
µd = 9.48. In the

simulation that follows, we initialise the model at x(0) = (6, 0.5, 6, 0.5, 6, 0.5, 6, 0.5) and

the observers at x̂(0) = 0. Figure 4.2 shows that the robust circle criterion observer

obtained in Theorem 5 (Observer (B)) outperforms the observer obtained in Theorem

3 (Observer (A)) in the presence of input uncertainty and measurement noise.
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Figure 4.2: Estimated states x̂ converge to a neighbourhood of the true states x.
Legend: Observer A (grey), Observer B (red) and Model (black).

4.3 Summary

We have designed a robust circle criterion observer that attenuates input uncertainty

and measurement noise. The synthesis of these observers relies on the feasibility of

an LMI (see Theorems 3 and 5). To the best of our knowledge, no other results in

the literature leads to feasible LMIs for the class of neural mass models we consider

in Chapter 2. We extend these results to obtain feasible LMIs for our examples. As

a result, we sacrifice the generality of the circle criterion observer first proposed by

Arcak and Kokotović in [16], where the globally Lipschitz property of the nonlinearity

γ in (4.1) is removed. The neural mass models contain a nonlinearity that is globally

Lipschitz, i.e. the sigmoid function defined in (2.4) and (2.7). This provides motivation

to impose a restriction on the nonlinearities (Assumption 9) as done in [17] such that

the LMIs are solvable.
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4. A circle criterion observer

The circle criterion observers are applicable to any system in the class (4.1) provided

the nonlinearity γ is slope-restricted. The extensions of the circle criterion observer in

the literature presented in this chapter were done such that we have a robust nonlinear

observer for the neural mass models. The robustness property of the circle criterion

observers inspired the usage of these observers in a supervisory setup, developed in

Chapter 6, that enables the estimation of parameters and states using state observers

only.
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Part II: Parameter and state estimation

I
n the previous part, we designed state observers under the assumption that the

parameters p∗ are known. For neuroscience applications, the assumption that the

parameters are known is too restrictive and only partially useful. For the purposes of

seizure monitoring and control, the parameters are unknown and need to be estimated.

Hence, in this part, we address the problem of parameter and state estimation

using the setup shown in Figure 4.3 via two methods: an adaptive observer and a

supervisory observer. In Chapter 5, we present an adaptive observer for a class of

systems that encompasses a subset of the class of neural mass models described in

Chapter 2. The parameters and states asymptotically converge to their true values

for all initial conditions. In Chapter 6, we present an alternative parameter and state

estimation method for general nonlinear systems using a multiple-model architecture

usually used for control, known in the literature as supervisory control. We adapt this

architecture for estimation and call it a supervisory observer. Under certain conditions,

we obtain practical convergence of parameters and states.

uModel input, 
Neural mass 

model 
yModel output, 

 
(EEG measurement) 

*, px

Adaptive observer/ 
Supervisory 

observer 

x̂
State 
estimate, 

p̂
Parameter 
estimate, 

Figure 4.3: Parameter and state estimation
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Chapter 5

An adaptive observer

T
his chapter presents an adaptive observer for a class of nonlinear systems that

includes a subset of the neural mass models presented in Chapter 2. We observe

that the models by Stam et al and Jansen et al described in Chapters 2.3.3 and 2.3.2

respectively admit the following general structure

ẋ0 = A0x0 + φ0(y)p?

ẋ1 = A1x1 + φ1(x0, u)p?

y = C1x1,

(5.1)

where x0 ∈ Rn0 , x1 ∈ Rn1 are the states, p? ∈ Rnp is a vector of constant and unknown

parameters, y ∈ Rny is the measurement and u ∈ Rnu is the input.

To the best of our knowledge, there is currently no adaptive observer in the literature

that can be used to estimate the parameters and states of system (5.1). Indeed, most

nonlinear adaptive observers apply to systems for which the nonlinearities depend on

known quantities, see [161] for instance. This is not the case for system (5.1) since φ1

depends on x0 which is not measured. Few designs have been proposed for systems

with state-dependent nonlinear terms, see [148] and the references therein. A notable

exception is the work in [46] which focuses on a class of systems that is very similar

to (5.1). While the nonlinearities in (5.1) satisfy some of the conditions stated in [46],

the problem arises in the linear part which is not of the same form as in [46]. As a

consequence, we need to modify the observer and the technical proof in [46]. This study

extends our previous works described in Chapter 3 [33] and Chapter 4 [34; 35] on the

state estimation of this class of neural mass models.
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5. An adaptive observer

5.1 Writing the models in the form of (5.1)

In this section, we first show how a single cortical column model of neuronal populations

by Jansen and Rit in [74] and described in Chapter 2.3.2 can be written in the form

of (5.1). We also show that n−interconnected single cortical column models can be

written in the form of (5.1). Note that the A matrix of the two models below do

not satisfy the form of the A matrix in the nonlinear system considered in [46]. This

reaffirms the need to design a new adaptive observer as proposed in this chapter. Our

result applies to any system that can be written in the form of (5.1) and is not limited

to the models described below. Nevertheless, the model by Wendling et al described

in Chapter 2.3.1 cannot be written in the required form (5.1). We will discuss possible

extensions of the result described in this chapter to include a more general class of

nonlinear systems.

5.1.1 A single cortical column model

We are interested in estimating the membrane potential contributions of the pyramidal

neurons, the excitatory and inhibitory interneurons respectively (states) and the synap-

tic gains of the excitatory and inhibitory interneurons (parameters). To do so, the model

can be written in state space form (5.1) by taking the states to be1 x0 = (x01, x02) ∈ R2

and x1 = (x11, . . . , x14) ∈ R4, where x01, x11, x13 are membrane potential contributions

of the pyramidal neurons, the excitatory and inhibitory interneurons respectively, and

x02, x12, x14 are their respective derivatives. The measured output (EEG) is y ∈ R,

u ∈ R is the excitatory input from neighbouring columns which is assumed to be

known and p? = (θA, θB) ∈ Θ ⊆ R2 is a vector of unknown parameters where θA and

θB represent the synaptic gains of the excitatory and inhibitory neuronal populations

respectively. The matrices in (5.1) are defined as

C1 =
(

1 0 −1 0
)
, A0 = Aa, A1 = diag(Aa, Ab),

where Aa =

(
0 1

−a2 −2a

)
, Ab =

(
0 1

−b2 −2b

)
.

1According to the notation of [74], x0 = (y0, y3) and x1 = (y1, y4, y2, y5).
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5. An adaptive observer

The parameters a, b ∈ R>0 are assumed to be known. It has to be noted that the

matrices A0 and A1 are Hurwitz. The nonlinear terms in (5.1) are given by

φ0(y) =

(
0 0

aS(y) 0

)
,

φ1(x0, u) =


0 0

ac2S(c1x01) + au 0

0 0

0 bc4S(c3x01)

 .

The parameters c1, c2, c3, c4 ∈ R≥0 are assumed to be known parameters and S denotes

the sigmoid function, for v ∈ R: S(v) = 2e0
1+er(v0−v)

with known constants e0, v0, r ∈ R>0.

For a detailed description about the model and its parameters, see [74] or Appendix

B.12.

5.1.2 Interconnected cortical column models

We now consider a model of n interconnected cortical columns presented in [154]. This

model is obtained by interconnecting n of the single cortical column models described

in Section 5.1.1, in the manner shown in Figure 5.1. Physiologically, the interactions

between cortical columns are the firing rates of each column S(yi). Hence, a physiolog-

ical interpretation of Figure 5.1 would include the sigmoid block S as part of the single

column model.

The study of the interconnected models has the potential of gaining a better under-

standing of the interactions between different regions, whereby each model represents

a part of the cortex [154]. The strength of their interaction is captured by the linear

gains Kji, for i, j ∈ {1, . . . , n} and i 6= j. The propagation dynamics of the interaction

between these regions is described by:

hd(t) = θAadt exp(−adt), ∀t ≥ 0, (5.2)

where θA, ad are positive constants defined in Table 1 of [154].

We assume that the synaptic gains of the populations θAi and θBi are unknown and

the coupling gains Kji for i, j ∈ {1, . . . , n} and i 6= j are known. The interconnected

models can then be written in the form of (5.1) by taking the states in (5.1) to be1 x0 =

(x1
01, x

1
02, x

1
03, x

1
04, . . . , x

n
01, x

n
02, x

n
03, x

n
04) and x1 = (x1

11, x
1
12, x

1
13, x

1
14, . . . , x

n
11, x

n
12, x

n
13, x

n
14),

1According to the notation of [154] as x0 = (y10 , y
1
3 , y

1
6 , y

1
7 , . . . , y

n
0 , y

n
3 , y

n
6 , y

n
7 ) and x1 =

(y11 , y
1
4 , y

1
2 , y

1
5 , . . . , y

n
1 , y

n
4 , y

n
2 , y

n
5 ).
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Figure 5.1: n−interconnected models, where i ∈ {2, . . . , n− 1}.

where integer n > 1. The input is u = (u1, . . . , un) and measurement y = (y1, . . . , yn).

The matrices are:
A0 = diag(A01, . . . , A0n),

A1 = diag(A11, . . . , A1n),

C1 =
(
C11 . . . C1n

)
,

(5.3)

where C1i =
(

1 0 −1 0
)

, A0i = diag(Aa, Ad) and A1i = diag(Aa, Ab) for i ∈

{1, . . . , n}, Aa and Ab are as defined in (5.2) and Ad =

(
0 1

−a2
d −2ad

)
. The nonlinear

terms in (5.1) are:

φ0(y) =
(
φ01, . . . , φ0n

)
,

φ1(x0, u) =
(
φ11, . . . , φ1n

)
,
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5. An adaptive observer

where for i ∈ {1, . . . , n},

φ0i =


0 0

aS(yi) 0

0 0

adS(yi) 0

 , φ1i =


0 0

aui + ac2S(c1x
i
01)

+
∑

j∈{1,...,n},j 6=iKjix
j
03 0

0 0

0 bc4S(c3x
i
01)

 .

5.2 Problem formulation

For ease of notation, we write (5.1) in the following form:

ẋ = Ax+ φ(y, u, x)p?

y = Cx,
(5.4)

where x = (x0, x1), A = diag(A0, A1), C = (0, C1) and φ = (φ0, φ1). The nonlinear

terms φ0 : R → Rn0 × Rp and φ1 : Rn0 × Rnu → Rn1 × Rp are globally Lipschitz and

bounded.

Our objective is to synthesise an adaptive observer to simultaneously estimate the

state x and parameter p? of (5.1) from the measured output y. We make the following

crucial assumptions in the design of the adaptive observer:

Assumption 11. The vector of unknown parameters θ is constant and is known to

reside in a compact set Θ.

This assumption is justified under the circumstances where the parameters are slowly-

varying for each type of cortical activity [74]. When a change in activity occurs, an

abrupt variation of p? is presumed which violates Assumption 11 for only a short time

as illustrated in simulations in Chapter 5.4. For the models described in Chapter 5.1,

the plant’s parameters p? were identified to lie in a compact set in Sections 3.1 and 3.2

of [74] respectively.

Assumption 12. The input u is known.

This is a limiting assumption in practice as the input is unknown/unmeasured. A

common assumption is to model the input as random white noise, see [74; 154].

Assumption 13. The measured output y is noise-free.

This assumption is more justified when electroencephalogram (EEG) recorded with

intracranial electrodes as opposed to EEG obtained from electrodes placed on the scalp.
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We investigate the robustness of our algorithm to measurement noise in simulations in

Chapter 5.4.

5.3 Main result: an adaptive observer

The adaptive observer synthesised in this chapter draws upon the design by Zhang in

[160] for linear systems and Farza et. al. in [46] for a class of systems that differs from

the class we consider (5.1) in its linear part. Hence, we modified the observer in [46]

and derive a design as presented in the following:

˙̂x =Ax̂+ φ(y, u, x̂)p̂+ Γ(y − ŷ)

ŷ = Cx̂
˙̂p = Γ̄(y − ŷ)

Υ̇ = AΥ + ∆φ(y, u, x̂) with Υ(0) = 0

Ṗ = dP − dPΥTCTCΥP with P (0) = P (0)T > 0,

(5.5)

where Γ = ∆−1ΥΓ̄, Γ̄ = PΥTCT and ∆ = diag(In0 ,
1
dIn1) with d > 0 a design param-

eter. The vector x̂ denotes the estimate of x and p̂ the estimate of p?. The variable

Υ ∈ R(n0+n1)×np is initialized to Υ(0) = 0 in order to simplify the technical statements.

Our result also applies when it is not the case. An essential assumption for our design

to work is the condition stated below.

Assumption 14. For any signals u, y, x̂ that belong to L∞, there exist a1, a2 ∈ R>0,

T ∈ R>0 such that the solution to:

Υ̇ = AΥ + ∆φ(y, u, x̂) with Υ(0) = 0, (5.6)

satisfies for all1 t ≥ 0:

a1Inp ≤
∫ t+T
t ΥT(τ)CTCΥ(τ) dτ ≤ a2Inp . (5.7)

2

The condition (5.7) is known as the persistency of excitation of the signal CΥ(t)

and is a well-known condition in identification and adaptive control literature (see [71]).

1A unique solution exists for all time, for all the ordinary differential equations in (5.4) and
(5.5). By Theorem 3.3 of [86], Ṗ = dP − dPΥTCTCΥP in (5.5) has a unique solution because
its right hand side is locally Lipschitz and piecewise continuous in t and all its solution are in
a compact set (by Lemma 1 of [162], P is bounded). The other ODEs in (5.4) and (5.5) have
unique solutions because the nonlinearity φ is globally Lipschitz.
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This is a sufficient condition for the identification of the parameter p? using the adaptive

observer proposed here and it is similar to the condition used in (A4) of [46] and (A3)

in [24]. Inequality (5.7) is hard to verify analytically in general. Nevertheless, we have

observed in simulations that this condition is satisfied for the model we consider under

the simulation conditions stated in Chapter 5.4.

The condition (5.7) is needed to ensure that the solution to Ṗ = dP−dPΥTCTCΥP

in (5.5) is symmetric and positive definite for all positive time and with lower and upper

bound which are independent of d, see Lemma 1 in [162]. This is a crucial property

because the matrix P will be used to construct a Lyapunov function in the proof.

We are now ready to state the main result which ensures the asymptotic convergence

of the estimated variables (x̂, p̂) to (x, p?). Its proof is given in the Appendix.

Theorem 6. Consider the system (5.4) and the observer (5.5) and suppose Assump-

tions 11-14 are satisfied. Then, there exists d? ≥ 1 such that for all d ≥ d?, the

estimates (x̂, p̂) asymptotically converge towards (x, p?) i.e. for any d ≥ d?, there exist

βd ∈ KL such that for any input u and any initial conditions P (0) = P (0)T > 0, x̃(0)

and p̃(0), the following holds :

|(x̃(t), p̃(t))| ≤ βd
(
|(x̃(0), p̃(0))| , t

)
∀t ≥ 0, (5.8)

where x̃ := x− x̂ and p̃ := p? − p̂. 2

Remark 4. The design parameter d is chosen such that d ≥ d? to obtain (5.8). An

estimate of d?, which we believe is subject to some conservatism is provided in the proof

of Theorem 6 (see (B.28) in the Appendix). Although the expression of d? depends on

|p?|, it is possible to estimate it by taking the maximum over the set Θ, where p? is

known to belong to according to Assumption 11.

5.4 Simulations

We have performed simulations for the single cortical column model described in Section

5.1.1 with the following initial conditions: x(0) = (0.6, 1, 0.6, 1, 0.6, 1), x̂(0) = 0, p? =

(θA, θB) = (3.25, 22), p̂(0) = 0, P (0) = I2, Υ(0) = 0. The other parameters take the

value given in [74] and the input is a Gaussian noise of mean 100 and variance 302.

Figures 5.2(a)-5.2(b) respectively show the state and parameter estimation error when

the design parameter d is equal to 2 and 10. They confirm the convergence properties

of the algorithm and show that larger d speeds up the rate of convergence.
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(a) State estimation error for d = 10.
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(b) Parameter estimates for d = 2 and 10.

As previously mentioned, Assumptions 11 and 13 (i.e parameters are constant and

noise-free measurement) are limiting assumptions in practice. In Figure 5.2(c), we sim-

ulate a change in parameters which might correspond to a change in cortical activity.

We see that the estimated parameters still converge to the true values after the tran-

sition has occurred. We also consider the scenario where the measured output (EEG)

is noisy by introducing a random noise that is drawn from a Gaussian distribution of

mean 0 and variance 0.42, which is approximately 20% of y at steady state. Figure

5.2(d) shows that despite the presence of measurement noise, the adaptive observer

still provides estimates that are close to the true values. In fact, the neighbourhood

in which the parameter error converges to is smaller with small d. This illustrates the

tradeoff between fast convergence rate and robustness towards measurement noise.

5.5 Summary

We have presented an algorithm to provide simultaneous estimates of the states and

parameters of a class neural mass models using the electroencephalogram (EEG) as the

measured output. This adaptive observer is based on the work in [46], where the class

of systems considered are different in the linear part. Consequently, modifications were

made in the adaptive observer and we provided a technical proof for the asymptotic
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ment for d = 2 and 10.

convergence of parameters and states. Simulations are provided for a single cortical

column model by [74] which confirm our results. As with the state observer designed in

Chapter 4, the adaptive observer synthesised in this chapter is applicable to any system

in the class considered (5.1) and not limited to the neural mass models in Chapter 2.

In reality, the parameters of the system varies as the brain transitions from one

event to another, e.g. non-seizure to seizure activity. The assumption we made in

our design (Assumption 11) is restrictive in that the parameters are assumed to be

constant. However, we expect our results to hold provided that the parameters are

slowly-varying, see Chapter 9.6 in [86] for a discussion on slowly varying systems.

We also employ the constant parameter assumption in the next chapter, where we

provide an alternative estimation method for states and parameters using the supervi-

sory architecture.
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Chapter 6

Supervisory observer

I
n this chapter, we present a parameter and state estimation algorithm for general

nonlinear systems, which we call a supervisory observer. We adopt an architecture

known as the supervisory framework used in [95, Chapter 6] that is used for control (see

[64; 66; 110; 152] for linear systems and [21] for nonlinear systems). In these works, the

objective is to steer the plant’s state to the origin and no guarantee is provided on the

parameter and state estimates. Since our objective is to estimate and not to control,

we adopt the supervisory setup without the multi-controller and adapt the available

results, so that it is applicable for estimation.

The plant’s parameters are assumed to be constant and they belong to a known,

compact parameter set. We sample the parameter set to form a finite set of nominal pa-

rameter values. The distribution of these sampled parameters can be done based upon

prior knowledge of the plant’s unknown parameters. An observer with a robustness

property is designed for each of the parameter values, which forms a bank of observers

known as the multi-observer. The supervisory unit chooses an observer from the multi-

observer based on a criterion using a logical decision rule that generates a piecewise

constant signal that is the index of the chosen observer at every instant of time. We

use the scale-independent hysteresis switching logic introduced in [64]. The selected

observer at each time provides us with a state estimate and its corresponding parameter

estimate. In this chapter, we assume that the solution of the plant’s state is uniformly

bounded and all the output estimation errors of the multi-observer satisfy a persistency

of excitation (PE) property. The parameter and state estimation error are guaranteed

to converge to the origin with some margin of error, provided that the sampling of the

parameter set is sufficiently large such that the distance from the plant’s parameter to

the sampled parameter set is small enough.
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6. Supervisory observer

We believe that the advantages of supervisory control discussed in [65] translate

well to the problem of state and parameter estimation. Firstly, it is not necessary to

construct an adaptive observer, which is a challenging problem for nonlinear systems. In

fact, very few provable designs exist, especially for nonlinearly parameterised systems

(see [46] and the references there-in). Secondly, the supervisory framework has the

advantage of modularity. Each of the components: the switching logic, the monitoring

signals and the multi-observer can be designed independently to satisfy the respective

properties required to meet our objective. This allows for the usage of readily available

state observers for the additional purpose of parameter estimation. In Section 6.4, we

design Luenberger observers for linear systems and a robust form of circle criterion

observers [34] (Chapter 4.2) for a class of nonlinear systems. Finally, in Section 6.5, we

show that this setup can be applied to the neural mass models in Chapter 2.

6.1 Problem formulation

We consider the following class of nonlinear systems

ẋ = f(x, p?, u)

y = h(x, p?), (6.1)

where the state vector is x ∈ Rnx , the output is y ∈ Rny , the input is u ∈ Rnu and

the unknown parameter vector p? ∈ Θ ⊂ Rnp is constant, where Θ is a known compact

set. For any initial condition x(0) and input u ∈ M∆u , where ∆u > 0, system (6.1)

admits a unique solution x(·, x(0), u[0,t], p
?) that is defined for all positive time. The

short hand notation x(·) will often be used instead when there is no ambiguity from

the context. The following additional assumptions are made on the plant.

Assumption 15. The function h : Rnx ×Rnp → Rny is continuously differentiable. 2

Assumption 16. The solutions of system (6.1) are uniformly bounded, i.e for all ∆x,

∆u ≥ 0, there exists a constant Kx = Kx(∆x,∆u) > 0 such that for all (x(0), u) ∈
B∆x ×M∆u

|x(t)| ≤ Kx, ∀t ≥ 0. (6.2)

2

At this stage, it is important to note that the neural mass models discussed in

Chapter 2 satisfy this assumption. We will show how to apply the general results to

the model by Jansen and Rit later in Section 6.5.

74



6. Supervisory observer

Remark 5. Contrary to the problem of supervisory control in [151] and [152], we do

not require the system (6.1) to be stabilisable. Since our purpose is to estimate, we only

require the solutions of system (6.1) to be uniformly bounded.

The main objective of this paper is to estimate the parameters p? and the states x

of system (6.1) when only the input u and the output y of system (6.1) is measured,

using the supervisory observer which is described in the next section.

6.2 Supervisory observer

Based on the supervisory framework used for control in [152], the proposed methodology

consists of two basic units: a bank of observers (multi-observer) which generates state

estimates and the supervisor (monitoring signals and switching logic) which chooses

one observer as shown in Figure 6.1. The estimated parameters and states are derived

from the choice the supervisor makes.

Plant 
 
 
 
*),(

)*,,(

pxhy

upxfx





 
 
 
 

),ˆ(ˆ

),,,ˆ(ˆˆ

111

111

pxhy

yupxfx





),ˆ(ˆ

),,,ˆ(ˆˆ

NNN

NNN

pxhy

yupxfx





Sw
it

ch
in

g 
Lo

gi
c 

Es
ti

m
at

o
r 

Multi-observer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)(ˆ
1
ty

)(ˆ ty
N

Supervisor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)(t
)(ˆ tx

)(ˆ tp

)(tu )(ty

 
 
 
 

Figure 6.1: Supervisory observer.

6.2.1 Sampling of the parameter set Θ

We choose N distinct parameter values from the known, compact parameter set Θ.

Thus, they form a sampled parameter set denoted Θo := {p1, . . . , pN} ⊂ Θ. We denote

the induced parameter error set as Θ̃ := {pi − p? : p? ∈ Θ, pi ∈ Θo, i ∈ {1, . . . , N}}.
The distribution of the sampled parameters can be logarithmic as shown in Figure

6.2, where more pi’s are chosen in regions where the plant’s parameter p? is expected to

75



6. Supervisory observer

be. On the same vein, the sampling may also be done according to a known probability

distribution of the plant’s parameters, where more samples are taken in regions of the

parameter set with the higher probability. In cases where no prior information on the

plant’s parameter p? is known, uniform sampling may be implemented, where each pi’s

are placed equidistance apart as shown in Figure 6.2.

(a) Uniform (b) Logarithmic

Figure 6.2: Sampling of the parameter set Θ ⊂ R2. Dots represent the selected param-
eter pi.

6.2.2 Multi-observer

For each parameter pi, i ∈ {1, . . . , N}, a state observer is designed

˙̂xi = f̂(x̂i, pi, u, y)

ŷi = h(x̂i, pi), (6.3)

where x̂i ∈ Rnx is the state estimate. The solutions of (6.3) are assumed to be unique

and defined for all time for all initial conditions x̂i(0), any input u, plant’s output y

and parameter pi ∈ Θo. Denoting the state estimation error as x̃i := x̂i−x, the output

error as ỹi := ŷi − y and the parameter error as p̃i := pi − p?, we obtain the following

state estimation error systems

˙̃xi = f̂(x̃i + x, p̃i + p?, u, y)− f(x, p?, u) =: Fi(x̃i, p̃i, p
?, u, x)

ỹi = h(x̃i + x, p̃i + p?)− h(x, p?) =: H(x̃i, x, p̃i, p
?). (6.4)

We assume the observers (6.3) are designed such that the following property holds.

Assumption 17. Consider the state estimation error system (6.4) for
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6. Supervisory observer

i ∈ {1, . . . , N}. There exists a continuously differentiable function Vi : Rnx → R≥0,

a continuous positive function γ̃ : Θ̃ × Rnx × Rnu → R≥0 where γ̃(0, z, z̄) = 0 for all

z ∈ Rnx, z̄ ∈ Rnu, and constants a1, a2, λ0 > 0, µν ≥ 1 such that the following holds

for all p̃i ∈ Θ̃, for all u ∈ Rnu, x̃i ∈ Rnx, x ∈ Rnx

a1|x̃i|2 ≤ Vi(x̃i) ≤ a2|x̃i|2, (6.5)

∂Vi
∂x̃i

Fi(x̃i, p̃i, p
?, u, x) ≤ −λ0Vi(x̃i) + γ̃(p̃i, x, u). (6.6)

2

Assumption 17 implies that the origin of the state estimation error system (6.4) is

globally exponentially stable when pi = p?, i.e. when we know the value of the plant’s

parameters p?. When this is not the case, condition (6.6) needs to be satisfied, which is

a robustness property of system (6.4) with respect to p̃i. It is noted that Assumption

17 is satisfied when system (6.4) is input-to-state exponentially stable [58, Equation

(5)] with respect to p̃i. In Section 6.4, we will show that Luenberger observers and

circle criterion observers satisfy Assumption 17.

Following the terminology used in [152], we call the bank of observers in (6.3) a

multi-observer.

Remark 6. If the function γ̃ in (6.6) is dependant only on p̃i and u, Assumption

16 can be relaxed in the sense that the solutions of (6.1) do not have to be uniformly

bounded. In this case, for all u ∈M∆u, the system (6.4) is locally input-to-state stable

(ISS) [85, Theorem 5.2] with respect to p̃i.

Remark 7. The Lyapunov-based conditions (6.5)-(6.6) stated in Assumption 17 differ

from the conditions stated in [152, Equations (10a) and (10b)] and [151, Theorem 4.3

(iii)] because our objective is the estimation of the parameters and states of (6.1),

whereas the available results in the literature consider the problem of stabilisation of an

equilibrium point without parameter estimation. Moreover, in the literature, the state

of the stabilised plant converges to zero, whereas in our case, the state of the plant does

not necessarily converge to zero.
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6.2.3 Monitoring signal

As used in [152, Equation 6], the monitoring signal associated with each observer is the

exponentially weighted L2 norm [71] of the output error ỹi defined as

µi(t) =

∫ t

0
exp(−λ(t− s))|ỹi(s)|2ds+ cµ, ∀t ≥ 0, (6.7)

where constants λ and cµ > 0 are design parameters. The signal µi can be implemented

with cµ added to the output of a linear filter

π̇i = −λπi + |ỹi|2, (6.8)

with πi(0) = 0. We assume that the output error of each of the observers ỹi satisfies

the following property.

Assumption 18. Consider the state error system (6.4) for all i ∈ {1, . . . , N}. For

all ∆x̃, ∆x, ∆u > 0, there exist a constant Tf = Tf (∆x̃,∆x,∆u) > 0 and a class K

function αỹ(∆x̃,∆x,∆u) such that for all x̃i(0) ∈ B∆x̃, x(0) ∈ B∆x, for some u ∈M∆u,

and for all p̃i ∈ Θ̃, the corresponding solution to (6.4) satisfies∫ t

t−Tf
|ỹi(τ)|2dτ ≥ αỹ(|p̃i|), ∀t ≥ Tf . (6.9)

2

The inequality (6.9) is known as a persistency of excitation (PE) condition that

appears in identification and adaptive literature [71]. It differs from the classical PE

definition1 in that we consider here a family of systems parameterised with p̃i, where

the lower bound (excitation level) in (6.9) depends on p̃i. In particular, if p̃i = 0, we do

not necessarily have PE in the classical sense. In addition, the excitation level grows

with the norm of the parameter error p̃i. Hence, the integral term in (6.9) provides

some quantitative information about the parameter estimation error. Assumption 18

holds when the output errors ỹi, for i ∈ {1, . . . , N} satisfy the classical PE condition

(6.10) according to the proposition below.

1A vector signal φ : R≥0 → Rn is said to be persistently exciting (PE) with excitation level
α > 0 if there exists a constant T > 0 such that for all t ≥ T∫ t

t−T
φ(s)φ(s)T ds ≥ αI. (6.10)
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Proposition 2. Consider the state error system (6.4) for i ∈ {1, . . . , N}. Suppose that

the following holds.

1. Assumption 15 is satisfied.

2. The function f : Rn × Rnp × Rnu → Rn is continuously differentiable.

3. For all ∆x̃, ∆x, ∆u > 0 and for all p̃i 6= 0 with p̃i ∈ Θ̃, there exist constants Tf =

Tf (∆x̃,∆x,∆u, p̃i), ᾱi = ᾱi(∆x̃,∆x,∆u, p̃i) > 0 such that for all x̃i(0) ∈ B∆x̃,

x(0) ∈ B∆x and for some u ∈ M∆u, the corresponding solution to (6.4) satisfies

the following ∫ t
t−Tf |ỹi(τ)|2dτ ≥ ᾱi, ∀t ≥ Tf . (6.11)

Then (6.9) holds. 2

Proposition 2 indicates that tools to verify the classical PE condition (6.11) (see

[112, Chapter 6] for linear systems and [118] for nonlinear systems) can be applied to

ensure that Assumption 18 is satisfied.

6.2.4 Switching logic

The switching logic σ : [0,∞) → {1, . . . , N} produces a piecewise constant signal

which chooses an observer from the bank of N observers at every instant of time. We

implement the scale-independent hysteresis switching logic [64]

σ(t) :=

 arg min
i∈{1,...,N}

µi(t), ∃j ∈ {1, . . . , N} such that (1 + h)µj(t) ≤ µσ(t−s )(t)

σ(t−s ), otherwise,

(6.12)

where ts denotes the latest switching time of σ before t. On the occasion where

arg minµi is non-unique, the switching logic σ(t) selects the smallest index i ∈ {1, . . . , N}
which satisfies arg minµi. The hysteresis constant h > 0 is a design parameter.

The switching signal σ implemented with the monitoring signals defined in (6.7)

has an average dwell-time (see [95, Section 3.2.2]), i.e. there exist τa, N0 > 0 such

that the number of discontinuities (number of switchings) on an arbitrary time interval

[t0, t) denoted by Nσ(t, t0) satisfies the following

Nσ(t, t0) ≤ N0 +
t− t0
τa

. (6.13)
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This means that there is a finite number of switches in every finite interval, thereby

no Zeno behaviour can occur. The following lemma is shown along the same lines as

[63; 151].

Lemma 1. Consider the plant (6.1), the multi-observer (6.3), the monitoring signal

(6.7) and the switching logic (6.12) under Assumptions 15-18. The number of switchings

of the switching logic σ satisfies (6.13) with

τa := ln(1+h)
λN , N0 ≥ 1, (6.14)

where h > 0 is the hysteresis constant from (6.12), λ > 0 is from the monitoring signal

(6.7) and N ≥ 1 is the number of observers in the multi-observer (6.3). 2

6.2.5 Parameter and state estimates

Based on the signal generated by the switching logic σ from (6.12), the estimated

parameters p̂ : [0,∞)→ {p1, . . . , pN} and estimated states x̂ : [0,∞)→ Rn are

p̂(t) := pσ(t), (6.15)

x̂(t) := x̂σ(t)(t), ∀t ≥ 0. (6.16)

The state estimate x̂ is picked from the solutions of a family of observer systems (6.3),

for i ∈ {1, . . . , N}. The chosen state estimate x̂(t) = x̂σ(t)(t) as defined in (6.16)

is discontinuous in general, which is caused by the switching between different state

estimates that are in general different at the switching instant ts.

Remark 8. Choosing a solution from a family of systems
˙̂x1 = f̂(x̂1, p1, u, y)
...

...
˙̂xN = f̂(x̂N , pN , u, y),

(6.17)

in the way the estimated state x̂σ(t) is chosen differs from a switched system with state

jumps, in that we switch among a family of observer systems (6.3) whose solutions do

not get affected by the switching. To be precise, let x̂i

(
t; x̂i(0)

)
, for i ∈ {1, . . . , N}

denote the solution of the observer system (6.3) for any x̂i(0) ∈ B∆x and u ∈ M∆u,

where we have omitted the dependance on u, y and pi. Consider the switching logic

σ with a switching sequence {t1, t2}, where t2 > t1 > 0 and σ(0) = 1, σ(t1) = 2 and
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σ(t2) = 1. Our estimated state x̂σ(t)(t) for all t ≥ 0 is

x̂σ(t)(t) =


x̂1

(
t; x̂1(0)

)
, t ∈ [0, t1)

x̂2

(
t; x̂2(0)

)
, t ∈ [t1, t2)

x̂1

(
t; x̂1(0)

)
, t ∈ [t2,∞).

(6.18)

This is different from a switched system with state jumps where its solution for all t ≥ 0

is

x̂σ(t)(t) =


x̂1

(
t; x̂1(0)

)
, t ∈ [0, t1)

x̂2

(
t;ϕ
(
x̂1(t1)

))
, t ∈ [t1, t2)

x̂1

(
t;ϕ
(
x̂2(t2)

))
, t ∈ [t2,∞),

(6.19)

where ϕ is some jump map.

This distinction is crucial because provided that σ is a piecewise continuous signal,

x̂σ(t) in (6.18) retains the behaviour of the individual systems (6.3), whereas the solu-

tions of a switched system with state jumps in (6.19) may exhibit a different behaviour

as discussed in Part II of [95]. 2

6.3 Main result

Before stating our main result, we first provide some intuition behind our result. Guide-

lines for the user are then provided to assist in implementing the supervisory observer.

Recall that N distinct parameters pi ∈ Θo for i ∈ {1, . . . , N} are chosen from the

known parameter set Θ and they form the sampled parameter set Θo ⊂ Θ. Let the

point-to-set distance of the plant’s parameter p? to the set of sampled parameters Θo

be

d(p?,Θo) := min
pi∈Θo for i∈{1,...,N}

|p? − pi|. (6.20)

We are interested in the scenario where the selected parameters pi’s are distributed in

Θ in a manner that d(p?,Θo) decreases as we increase the number of observers N . Most

notably, as N →∞, d(p?,Θo)→ 0, which forms the main intuition behind Theorem 7

whose proof can be found in Appendix B.10.

Theorem 7. Consider the plant (6.1), the multi-observer (6.3), the monitoring signals

(6.7), the switching logic (6.12), the parameter estimate (6.15) and the state estimate

(6.16). Suppose Assumptions 15-18 hold. For any ∆x̃, ∆x, ∆u > 0, for all νx̃, νp̃ > 0,

for all λ, cµ > 0 (as in (6.7)), there exist constants K̄x̃, δ? and h? > 0, such that for
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all h ∈ (0, h?], for any Θo with d(p?,Θo) ≤ δ?, there exists a constant T > 0, such that

for all (x(0), x̃σ(0)(0)) ∈ B∆x × B∆x̃ and for any u ∈ M∆u that satisfies Assumption

18, the following holds

|p̃σ(t)| ≤ νp̃, ∀t ≥ T, lim supt→∞ |x̃σ(t)(t)| ≤ νx̃, |x̃σ(t)(t)| ≤ K̄x̃, ∀t ≥ 0.

(6.21)

where p̃σ(t) := p̂(t)− p? is the parameter estimation error and x̃σ(t) := x̂(t)−x(t) is the

state estimation error. 2

Theorem 7 shows that the parameter and state estimates converge to the true

values with desired accuracy νp̃ and νx̃ respectively, provided that the parameter set Θ

is sampled sufficiently, i.e. the number of observers N is sufficiently large. Moreover,

the state estimation error x̃σ is guaranteed to be bounded.

We provide some guidelines for the user to implement the algorithm below.

1. The system (6.1) is first verified to satisfy Assumptions 15-16.

2. Selection of parameter values pi: a finite number of parameter values are selected

from the parameter set Θ. Our result hinges upon taking a sufficiently large

sampling of the parameter set in the way that d(p?,Θo) becomes small enough

such that the conclusions of Theorem 7 hold (d(p?,Θo) ≤ d? in Theorem 7). This

may require high computing resources in practice, however the sampling of the

parameter set can be done in efficient ways as discussed earlier in Section 6.2.1.

3. Design of the multi-observer : For each of the sampled parameter values, we

design a state observer (6.3) such that Assumption 17 holds. The synthesis of a

nonlinear state observer is a difficult problem in general. Nevertheless, various

designs are available in the literature for specific classes of systems [23]. Examples

are provided in Section 6.4. Typically, an observer is first designed under the

assumption that the plant’s parameter is known such that the equilibrium of the

state estimation error system is globally exponentially stable. We then either

verify or design each observer such that it satisfies the robustness property (6.6).

4. Satisfaction of the PE condition (6.9) : Assumption 18 may be satisfied with the

aid of Proposition 2. The reader is referred to [112, Chapter 6] and [118] for prop-

erties of PE signals of linear and nonlinear systems respectively to obtain a priori

checkable conditions. Otherwise, Assumption 18 may be checked in simulation

a posteriori since we have access to ỹi online as illustrated by an example from

neuroscience in Section 6.5.
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5. Choice of design parameters h, λ and cµ : The parameters λ and cµ relates di-

rectly to the properties of the switching signal σ. In Lemma 1, it is shown that

the average dwell time of the switching logic σ is τa := ln(1+h)
λN . Hence, increasing

λ and choosing a small enough hysteresis constant h (from (6.12)) speeds up the

convergence rate of the parameters.

Consequently, the estimated parameter converges to a ball of a given margin νp̃ centered

at the true parameter p? in finite time and the state estimation error also converges

to a ball of a given margin νx̃ as t → ∞. Additionally, the state estimation error is

bounded.

6.4 Applications

In this section, we investigate two case studies: (i) linear systems, for which Luenberger

observers are designed and (ii) a class of nonlinear systems, for which robust circle

criterion observers (first introduced in [17] and a robust version introduced in [34]) are

synthesised.

6.4.1 Linear systems

We consider a linear plant

ẋ = A(p?)x+B(p?)u

y = C(p?)x, (6.22)

where x ∈ Rnx , u ∈ Rnu , p? ∈ Θ ⊂ Rnp and A(p) is assumed to be Hurwitz, for all

p ∈ Θ. We notice that Assumption 15-16 hold. Note that, although system (6.22) is

linear, it is nonlinearly parameterised. We also assume the following.

Assumption 19. The matrices A(p), B(p) are continuous in p ∈ Θ.

Each observer in the multi-observer is designed as follows for i ∈ {1, . . . , N}

˙̂xi = A(pi)x̂i +B(pi)u+ Li(pi)(C(pi)x̂i − C(p?)x)

ŷi = C(pi)x̂i, (6.23)

where Li(pi) is such that A(pi) + Li(pi)C(pi) is Hurwitz (this is always possible since

A(pi) is Hurwitz, for all pi ∈ Θo, where i ∈ {1, . . . , N}). Denoting the state estimation
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error as x̃i := x̂i − x and the parameter error as p̃i := pi − p? as in Section 6.2, we

obtain the following state estimation error system

˙̃xi =
(
A(pi) + Li(pi)C(pi)

)
x̂i −

(
A(p?) + Li(pi)C(p?)

)
x+

(
B(pi)−B(p?)

)
u

=
(
A(pi) + Li(pi)C(pi)

)
x̃i +

(
Ã(pi, p

?) + Li(pi)C̃(pi, p
?)
)
x

+B̃(pi, p
?)u, (6.24)

where we denote Ã(pi, p
?) := A(pi)−A(p?), B̃(pi, p

?) := B(pi)−B(p?) and C̃(pi, p
?) :=

C(pi)− C(p?). Proposition 3 shows that Assumption 17 is satisfied.

Proposition 3. Consider the linear system (6.22), the multi-observer (6.23) and sup-

pose Assumption 19 is satisfied. If there exist Pi = P Ti > 0 and scalar constants νi,

µi > 0 such that the following holds[
Pi (A(pi) + Li(pi)C(pi)) + (A(pi) + Li(pi)C(pi))

T Pi + νiI Pi

Pi −µiI

]
≤ 0. (6.25)

Then Assumption 17 is satisfied. 2

As explained earlier, if the classical PE condition (6.11) is guaranteed, Assumption

18 is satisfied according to Proposition 2. There exist results in the literature (see

Chapter 6 in [112]) which provide sufficient conditions to verify (6.11) for linear systems.

They can be used, for instance, to design an input to the system (6.22) such that the

inequality (6.11) is satisfied. Lastly, since all the conditions of Theorem 7 are satisfied,

we derive the following result.

Proposition 4. Consider the linear system (6.22), the multi-observer (6.23) for i ∈
{1, . . . , N}, the monitoring signals (6.7), the switching logic (6.12). Suppose that As-

sumptions 18 and 19 are satisfied, then the conclusions of Theorem 7 hold. 2

Proposition 4 extends the results in [89] from single-input single-output (SISO) to

multi-input multi-output (MIMO) systems.

6.4.2 A class of nonlinear systems

We consider the following class of nonlinear systems first studied in [16] for the design

of circle criterion observers

ẋ = A(p?)x+G(p?)γ(Hx) +B(p?)σ(u, y)

y = C(p?)x, (6.26)
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where γ : Rnp → Rnγ and σ : Rnu ×Rny → Rnσ . We assume that Assumption 16 holds

and also make the following assumptions.

Assumption 20. The matrices A(p), G(p) and B(p) are continuous in p ∈ Θ.

Assumption 21. For any k ∈ {1, . . . , nγ}, there exist constants aγk , bγk > 0 such that

the following holds

−∞ < aγk ≤
∂γk(vk)

∂vk
≤ bγk <∞, ∀vk ∈ R, (6.27)

where γ = (γ1, . . . , γnγ ). 2

By Assumption 21, γ includes nonlinearities that are globally Lipschitz, with bγk =

−aγk . This assumption was used in [158] and is a special case of the assumption in

[17, Equation (1)] and [34, Assumption 1] for differentiable nonlinearities γ. Moreover,

since system (6.26) is assumed to be bounded, there is no loss in generality in assuming

that γ is globally Lipschitz (see for example Section 2 in [46]).

For each pi ∈ Θo, i ∈ {1, . . . , N}, the following observer [17; 34; 158] is designed

˙̂xi = A(pi)x̂i +G(pi)γ(Hx̂i +Ki(Cx̂i − y)) +B(pi)σ(u, y) + Li(C(pi)x̂i − y)

ŷi = C(pi)x̂i, (6.28)

where Ki and Li are observer matrices designed using the ideas in [34], i.e. such that

a quadratic function Vi : Rnx → R≥0 satisfies the conditions stated in Assumption 17.

Proposition 5. Consider system (6.26) and multi-observer (6.28), for all

(x(0), x̃i(0)) ∈ B∆x × Rnx and u ∈ M∆u. Under Assumptions 16, 20 and 21, if there

exist matrices Pi = P Ti > 0, Mi = diag(mi1, . . . ,minp) > 0 and scalar constants νi,

µi > 0 such that the following holds A(Pi, Li, νi) B(Pi,Mi,K
T
i Mi) Pi

? E(Mi) 0

? ? −µiI

 ≤ 0, (6.29)

where A(Pi, Li, νi) = Pi
(
A+ Li(pi)C(pi)

)
+
(
A+ Li(pi)C(pi)

)T
Pi + νiI,

B(Pi,Mi,K
T
i Mi) = PiG(pi) +

(
H +Ki(pi)C(pi)

)T
Mi and

E(Mi) = −2Midiag
(

1
bγ1
, . . . , 1

bγnp

)
, then Assumption 17 is satisfied. 2

We assume that the PE condition stated in Assumption 18 is satisfied. PE prop-

erties for nonlinear systems are studied in [118] and may be used in conjunction with
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Proposition 2 to obtain checkable PE conditions for some classes of systems. Finally,

we obtain the following result since all the conditions of Theorem 7 hold.

Proposition 6. Consider the nonlinear system (6.26), the multi-observer (6.23), the

monitoring signals (6.7), the switching logic (6.12) and suppose the following hold.

1. Assumptions 16, 18, 20 and 21 hold.

2. Condition (6.29) is feasible.

Then the conclusions of Theorem 7 hold. 2

Proposition 6 extends the results of [45, Theorem 3], [158] and [46], where adaptive

observers are designed, in the sense that we consider a more general class of nonlinearly

parameterised nonlinear systems.

6.5 Illustrative example: A neural mass model by Jansen

and Rit

In this section, we apply the results of Section 6.4.2 to estimate the parameters and the

states of the neural mass model in [74] and described in Chapter 2.3.2. It describes the

dynamics of a single column model by capturing the interactions between the pyramidal

neurons, the excitatory and the inhibitory interneurons in a localised region of the

cortex. The model has been shown to realistically reproduce various patterns, such as

alpha rhythms, seen in the electroencephalogram, also known as EEG (the measured

output). Moreover, the model may be used to capture more complex phenomena as

shown in [155]. The objective in this section is to estimate the mean membrane potential

of neural populations (states x) and the synaptic gains of each of the populations

(parameters p?).

The model can be written in the form (6.26) as shown in Chapter 2.4.3. It also has

uniformly bounded solutions for all initial conditions x(0) and bounded input u ∈M∆u ,

because the matrix A is Hurwitz, the nonlinearity S in γ and σ is bounded. Therefore,

the model satisfies Assumption 16. Furthermore, by the definition of the matrices A,

G, B and the nonlinearity S, Assumptions 20 and 21 are satisfied.

We sample the parameter space non-uniformly by sampling p2 more densely in the

range of 20− 30 (p?2 = 25) and p1 is distributed uniformly. The observers are designed

as proposed in Section 6.4.2. Figure 6.3(d) shows that the classical PE condition (6.11)

seems to be satisfied for when N = 10, 100 and 130. Hence, by Proposition 2, Assump-

tion 18 may be satisfied. Therefore, the conclusions of Theorem 7 hold according to
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Proposition 6. We implement the supervisory setup with hysteresis constant h = 0.5,

the design parameters from the monitoring signal (6.7) are λ = 0.005 and cµ = 2. Ta-

ble 6.5 summarises the results for increasing N in such a way that d(p?,Θo) decreases.

Figure 6.3 compares the performance of the algorithm for N = 10, 100 and 130.

N 10 50 100 120 130

d(p?,Θo) 2.2361 1.1180 1.0244 1.0164 1.0035
lim sup
t→∞

|p̂(t)− p?| 5.385 5.385 5.204 5.233 1.537

lim sup
t→∞

|x̂(t)−x(t)|
|maxt x(t)−mint x(t)| 0.033 0.033 0.031 0.031 0.0898

Table 6.1: Numerical results for increasing N values such that d(p?,Θo) decreases.
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(b) Relative state estimation error
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(c) Relative state estimation error
|x̂(t)−x(t)|

|maxt x(t)−mint x(t)| , for 0.3 ≤ t ≤ 1.0s.
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(d) Checking the PE condition in Assumption
18.

Figure 6.3: Simulation results.
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From the simulation results, we see that the parameter estimation error converges to

a neighbourhood of the origin whose size decreases with d(p?,Θo). The state estimation

error also converges with some error, but it is interesting to see that the ultimate

bound does not necessarily decrease with d(p?,Θo). This can be explained as follows.

Although each observer satisfies Assumption 17, they do not have the same robustness

properties with respect to the parameter error p̃i. To be precise, γ̄x̃ of the individual

state estimation error systems (B.35) are in general different. Thus, the decrease of

|p̃i| induced by increasing N may be compensated by larger γ̄x̃ . It will therefore be

interesting to develop observers which minimise γ̄x̃ in future work.

The other neural mass models discussed in Chapter 2 also satisfy Assumptions 16,

20 and 21 as required and may satisfy Assumption 18 as discussed in the example.

Hence, Proposition 5 may also be applicable to these models.

6.6 Summary

The main contribution of this chapter is the design of an algorithm for parameter and

state estimation of general continuous-time nonlinear systems with uniformly bounded

states and constant parameters that belong to a known, compact set. We use the scale-

independent hysteresis switching logic to choose an observer from the multi-observer

with robust properties. Provided that a PE condition is satisfied, we can guarantee the

finite time practical convergence of the parameters and consequently, the asymptotic

practical convergence of the states. We then investigate two case studies by applying

our main result to linear systems and to a class of nonlinear systems. To illustrate our

result, we consider the neural mass model by Jansen and Rit described in Chapter 2.3.2.

Our proposed setup achieves asymptotic state estimation and finite-time parameter

estimation within a margin of error that tends to 0 as the parameter set Θ is sampled

sufficiently in an efficient way.

This chapter illustrates the potential of casting the problem of estimation of states

and parameters in the hybrid systems setting. While hybrid tools have proved efficient

for the control of continuous-time systems, few works have investigated it for estima-

tion, see [62], [8] (parameter estimation only) and [80] (state estimation only). To the

best of our knowledge, this is the first result that addresses both challenges from this

perspective.
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Chapter 7

Conclusions and future directions

E
stimation is a long-standing problem in control theory. This thesis presents state

observers as well as state and parameter observers for nonlinear systems with a

particular motivation of estimating neural activity from the EEG. For this purpose,

we consider a class of neural mass models that includes models that replicate alpha

rhythms in the cerebral cortex and also a model that captures seizure dynamics, to

name a few.

In Part I: Chapters 3 and 4, we designed global exponential state observers for a

class of nonlinear systems. We synthesised a globally exponential nonlinear estimator

that is a posteriori robust towards disturbances and uncertainties in Chapter 3. This

design is improved upon in Chapter 4 where we extended the circle criterion observer so

that it is applicable to the class of systems we consider. Furthermore, we also took into

account measurement disturbances and input uncertainties by redesigning the circle

criterion observer such that their effects can be attenuated a priori by the user. The

robustness property of these state observers is exploited later in Chapter 6.

Part II presents an adaptive observer in Chapter 5 and a supervisory observer in

Chapter 6. The adaptive observer is designed for a class of nonlinear systems that is

a subset of the class of neural mass models considered. We guarantee the asymptotic

convergence of states and parameters to their true values. We present a parameter

and state estimation methodology for general nonlinear systems in Chapter 6, which

we call the supervisory observer. The supervisory observer uses readily available state

observers such as the ones designed in Part I in a particular setup. Under certain

conditions, we have finite-time practical convergence of parameters and asymptotic

practical convergence of states to their true values.

The motivation behind this work stems from the exciting frontier of intersecting

control theory and neuroscience for the prospect of developing new methodologies for
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understanding neural phenomena and addressing neurological diseases such as epilepsy

and Parkinson’s disease. This thesis serves to provide mathematically proved estimation

algorithms with tailored applications in the field of neuroscience, such as the study of

alpha rhythm generation in the cortex and the anticipation of epileptic seizures. We

stress that the observers designed in this thesis are also widely applicable to systems

outside neuroscience that belong to the class of nonlinear systems considered. We

summarise the limitations of this thesis and discuss future directions for research in

neuroscience and nonlinear observer design in the sections that follow.

• This thesis considers only continuous-time systems. Evidently, the results pre-

sented are valid for discrete-time systems using discrete design tools. However,

such designs and analyses are not included in this thesis.

• We deal only with systems represented by ordinary differential equations. These

systems describe local behaviour such as neurons or cortical columns. An impor-

tant extension of these models is the dynamics of neural activity on a spatially

extended cortical sheet. This may be modelled by coupled cortical column mod-

els, where the coupling represents the strength of connectivity between different

regions captured by each cortical column model. We considered interconnected

cortical column models in Chapter 5, where we design an adaptive observer to

estimate the states and parameters of each cortical column model under the as-

sumption that the coupling between columns are known. Alternatively, the spatial

dynamics of neural activity may be described by partial differential equations and

they are known as neural field models (see [39]). Examples of such models include

the models by Nunez [114] and Jirsa and Haken [77]. Observer designs for partial

differential equations are available, see [92, Chapter 5] for an introduction, but is

beyond the scope of this thesis.

• While this thesis provides mathematical proof of all designs and analysis of the

observers presented, experimental verification on real EEG data remains to be

done to validate the class of neural mass models considered.
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7.1 Future directions in the applicability of model-based

estimation in neuroscience

The implementation of the estimation algorithms on EEG data remains to verify the

usability of this class of neural mass models for their respective purposes. Should

this venture prove successful, then it forms the basis in achieving the long term goal of

transforming theory to useful diagnosis, management and treatment tools in the clinical

setting. In Part II of this thesis, we assumed that some of the parameters of the class

of models considered (listed in Appendix C) are known and the model parameters that

have been identified by their respective authors to be most relevant to the dynamics

of the phenomenon of interest to be unknown. Our state and parameter observers

presented in Part II are designed to estimate these unknown parameters. In practice,

the known parameters may differ from one individual’s brain to the other. Hence,

these parameters would also need to be estimated. Considering these parameters to

be unknown as well would result in a different class of systems compared to the ones

considered in thesis. New observer designs would need to be devised to address them.

One of the many prospective outcomes of this work is the detection of epileptic

seizures and eventually, the abatement of seizures. This is highly useful in the case

of patients with highly localised seizures and who have pharmaco-resistant epilepsy

or who are not candidates for resective surgery. Experimental works have been done

in investigating the abatement of seizures by electrical stimulation (see for instance

[49; 116]). However, these works often employ open-loop control, which is usually

non-robust towards model uncertainty and measurement disturbances.

Closed-loop control addresses these issues. Works by [30; 31] use coupled neural

mass models (a modified version of the model by Jansen and Rit [74] described in

Chapter 2.3.2 is used in [31]) with the correlation between coupled model outputs as a

measure of epileptic behaviour, ρ : R≥0 → [0, 1]. A proportional-integral (PI) controller

is designed to regulate the coupling gain between two neural mass models via output

feedback such that the correlation factor ρ is below an acceptable level where non-

epileptic activity is exhibited.

A drawback of these studies is not exploiting the richness of behaviour this class of

neural mass models is able to generate by varying their parameters. For instance, the

model by Wendling et. al. [155] described in Chapter 2.3.1 is capable of generating EEG

patterns that are usually seen during epileptic seizures via its parameters. Consider for
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instance the model by Wendling et. al. written in the following form

Σ : ẋ = f(x, u, p∗)

y = h(x), (7.1)

where the state is x ∈ Rnx , the input is u ∈ Rnu , the parameter is p∗ ∈ Θ ⊂ Rnp ,
measurement/output is y ∈ Rny and nx, nu, np and ny are positive integers. As

mentioned in Chapter 2.3.1 and done in [155], the parameter set can be considered

to be composed of non-seizure and seizure related parameters or more precisely, Θ :=

ΘS ∪ ΘN , where ΘS is the seizure related parameter set and ΘN is the non-seizure

related parameter set.

A plausible problem formulation would be the design of the control input u such

that the measurement y cease to exhibit seizure-like EEG patterns when p? ∈ Θs.

The statement ‘the measurement y cease to exhibit seizure-like EEG patterns’ may be

interpreted as ensuring y tracks a particular set of trajectories that are known as non-

epileptic behaviour. The control objective may be formulated as a problem of tracking

or the stabilisation of the system with respect to a set. This setup is illustrated in

Figure 7.1. Using the adaptive observer or supervisory observer already designed in

this thesis (Chapters 5 and 6) to provide an estimate of the parameter p̂, a switched

control scheme outputs a control signal uc = 0 when p̂ ∈ ΘN and outputs a control

signal uc to be designed when p̂ ∈ ΘS . With this two-step approach of first designing

the observer, then designing the control law, we need to ensure that the separation

property holds in this context. Nonlinear control design tools are available to address

such problems.

7.2 Future directions in nonlinear state and parameter

observer design

In the direction of state and parameter estimation of nonlinear systems, many exciting

further work will be pursued for the greater generality of these results. We address the

extensions for the adaptive observer (Chapter 5) and the supervisory observer (Chapter

6) separately in the subsections that follow.
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Figure 7.1: Proposed adaptive controller design for seizure abatement

7.2.1 Adaptive observer

We will work on extending the adaptive observer designed in Chapter 5 for the class of

nonlinear systems (5.1) to the following more general class of nonlinear systems

ẋ0 = A0x0 + φ0(y)p?

ẋ1 = A1x1 + φ1(x0, u)p?

ẋ2 = A2x2 + φ2(x0, x1, u)p?

...

ẋn = Anxn + φn(x0, x1, . . . , xn−1, u)p?

y = C1x1 + C2x2 + · · ·+ Cnxn, (7.2)

where the states are xi ∈ Rni for i ∈ {0, . . . , n}, the parameter vector is p? ∈ Rnp , the

measurement is y ∈ Rny and the input is u ∈ Rnu . The nonlinear terms φ0 : R →
Rn0 ×Rnp and φi : Rn0 × · · ·×Rni−1 ×Rnu → Rni ×Rnp , for i ∈ {1, . . . , n} are globally

Lipschitz. The matrices A0, . . . , An are Hurwitz.

This extension widens the class of systems considered by also including the model

by Wendling et al [155] described in Chapter 2.3.1. The available work in [46] applies

to a class of systems very similar to (7.2), but the issue arises in the linear part and

the output that is not of the same form as (7.2). Hence, future work entails addressing
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this problem.

Another aspect that needs to be addressed is the robustness of the adaptive ob-

servers with respect to disturbances and uncertainties. We may perform a posteriori

analysis or re-design the observer such that the desired robustness properties are ob-

tained. This is essential for its practical applicability in realistic scenarios.

7.2.2 Supervisory observer

There is scope for much future research in supervisory estimation. In the results pre-

sented in Chapter 6, we have limited ourselves to considering constant plant parameters

p?. The conclusions of Theorem 7 may also be modified to for the case of slowly-varying

parameters p? using results for slowly-varying systems (see [86, Chapter 9.6]).

The robustness of the setup with respect to unmodelled dynamics and disturbances

in measured output y and input u remains to be investigated. This robustness prop-

erty is useful for the implementation of the supervisory observer in a practical setting

and will also form the basis for investigating other forms of disturbances in measured

output y, for example sampled and quantised measurements. This will have practical

applications, for instance when y is acquired by a digital device, such as in the case of

an implanted seizure control device or when y is transmitted over a limited capacity

channel.

Further work will also be done in obtaining conditions where the Assumption 18

(PE) is guaranteed. Under certain conditions, an input u may be designed with the

properties in [112, Chapter 6] for linear systems and [118] for nonlinear systems such

that Assumption 18 holds.

One drawback of the supervisory observer is the potentially high computation

needed for estimation as a result of the high number of parameter set sampling required

to obtain desirable ultimate bounds of the state and parameter estimation errors. This

is prohibitive when implemented with a high dimensional model, such as in the scale

of the full brain, instead of a local region of the cerebral cortex. Furthermore, if the

computations are to be executed by an implantable device, the high power consump-

tion due to the large number of computations is undesirable. Nevertheless, if prior

information about the plant’s parameter is available (e.g. the probability distribution

of the plant’s parameter in the set), then computational complexity may be reduced

by sampling efficiently according to the information available.
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7.3 Concluding remarks: E tenebris in lucem

Control theoretic approaches to answering questions in neuroscience are still in its in-

fancy. This thesis presents some methodologies for estimating neural activity from

measurements such as the EEG. We hope that this endeavour will aid in better under-

standing of the human brain that eventually translates to useful medical solutions in

anticipating and controlling seizures caused by neurological disorders.
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Appendix A: Mathematical

preliminaries

This appendix provides important tools used in the design of nonlinear observers and

for analysing the stability of systems in this thesis. A variety of references were used

to compile this appendix, the most important one is the textbook by H. Khalil [86].

Consider the following ordinary differential equation

ẋ = f(x, t), (A.3)

where the vector x(t) ∈ Rnx is the state for every t ≥ t0 ≥ 0. The solution of (A.3)

with initial condition x(t0) is denoted x(t, x(t0)). The short hand notation x(t) will be

used instead where there is no ambiguity.

A model of a physical system such as a region of the human brain can only make

sense if x(t) exists, for all t ≥ t0 ≥ 0. This system is said to be forward complete [96].

For this to be true and for x(t) to be unique for all t ≥ t0 ≥ 0, f is assumed to satisfy

the following properties, for all initial conditions x(t0) ∈ B∆x ⊂ Rnx :

• there exists L > 0 such that

|f(t, x)− f(t, y)| ≤ L|x− y|, ∀(x, y, t) ∈ B∆x ×B∆x × R≥0. (A.4)

• f(t, x) is piecewise continuous in t and continuous in x.

The first condition is known as the Lipschitz property of the function f with Lipschitz

constant L.

An equilibrium point xe ∈ Rn of (A.3) is obtained by solving f(t, xe) = 0, for all
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t ≥ t0. A non-zero equilibrium point can always be translated to the origin, which gives

the following stability notions in terms of the origin xe = 0 as the equilibrium point:

Definition 2 (Stability notions). The origin xe = 0 of (A.3) is

• stable if, for each ε > 0, there is a δ = δ(ε, t0) > 0 such that

|x(t0)| ≤ δ =⇒ |x(t)| < ε, ∀t ≥ t0 ≥ 0. (A.5)

• uniformly stable (US) if, for each ε > 0, there is a δ = δ(ε) > 0 independent of

t0, such that (A.5) is satisfied.

• unstable if it is not stable.

• asymptotically stable if it is stable and there is a positive constant c = c(t0) such

that x(t)→ 0 as t→∞, for all |x(t0)| < c.

• uniformly asymptotically stable (UAS) if it is US and there is a positive constant

c independent of t0, such that for each η > 0, there is a T = T (η) > 0 such that

|x(t)| < η,∀t ≥ t0 + T (η), ∀|x(t0)| < c. (A.6)

• globally uniformly asymptotically stable (UGAS) if it is US, δ(ε) satisfies

limt→∞ δ(ε) =∞ and for η, c > 0, there is a T = T (η, c) > 0 such that

|x(t)| < η, ∀t ≥ t0 + T (η, c), ∀|x(t0)| < c. (A.7)

The ε−δ definition of different stability notions can be made more transparent using

comparison functions, i.e. class K functions and class KL functions in the following

lemma. We state this for the definitions of US and UAS as well as a special case of

UAS.
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Lemma 2 (Lemma 4.5 and Definition 4.5 in [86]). The equilibrium point xe = 0 of

(A.3) is

• US if and only if there is a class K function α and a positive constant c indepen-

dent of t0 such that

|x(t)| ≤ α(|x(t0)|), ∀t ≥ t0 ≥ 0, ∀|x(t0)| < c. (A.8)

• UAS if and only if there is a class KL function β and a positive constant c,

independent of t0 such that

|x(t)| ≤ β(|x(t0)|, t− t0), ∀t ≥ t0 ≥ 0, ∀|x(t0)| < c. (A.9)

• globally UAS (GUAS) if and only if inequality (A.9) is satisfied for any initial

state x(t0).

• exponentially stable if there exists a positive constant k such that the class KL

function β in (A.9) takes the form β(r, s) = kr exp(−λs).
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B.1 Proof of Theorem 1

We will do all proofs for the model by Wendling et al. described in Section 2.3.1,

which is the most general model that encompasses the models by Stam et al. and

Jansen et al. described in Sections 2.3.3 and 2.3.2 respectively. The proof for all other

models can be done by first identifying the cascade structure of the observation error

system, then showing that the subsystems satisfy certain properties to conclude the

global exponential stability of the whole observation error system. This is performed

in a similar fashion in the proof for the Wendling et al. model that follows.

From (3.1), (3.2), the dynamics of the state estimation error x̃ := x− x̂ is:

˙̃x = Ax̃+G(γ(Hx)− γ(Hx̂+KCx̃)) + LCx̃. (B.10)

The main idea is to consider the estimation error system (B.10) as the nominal error

system (B.10) with L = 0 and K = 0 perturbed by the terms Gγ(Hx̂) − Gγ(Hx̂ +

K(Cx̂ − y)) + LCx̃. As such, in Lemma 3, we build a Lyapunov function W for the

nominal error system. Next, using W as a candidate Lyapunov function for (B.10), we

obtain a bound for observer matrices K and L such that x̃ = 0 is global exponential

stable (GES) [85, Definition 4.5].

Lemma 3. Consider the system (B.10). There exists a continuously differentiable

W : Rn → R such that the following holds, for all x̃ ∈ Rn:

k1|x̃|2 ≤ W (x̃) ≤ k2|x̃|2,∣∣∣∂W (x̃)
∂x̃

∣∣∣ ≤ k4|x̃|,
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and along solutions to system (B.10) with L = 0 and K = 0:

Ẇ (x̃) ≤ −k3|x̃|2, (B.11)

where k1, k2, k3 and k4 are strictly positive constants.

Proof. The nominal estimation error system (B.10) with L = 0 and K = 0 is

˙̃x = Ax̃+G(γ(Hx)− γ(Hx̂)). (B.12)

First note that system (3.1) has solutions that are defined for all time due to the

global Lipschitz property of function S and the fact that input u ∈ L∞ [85, Theorem

3.2]. In view of the same arguments, the solutions of system (3.2) (with y and u from

system (3.1)) are also well-defined and exist for all time. Consequently, we have that

(B.12) have solutions that are defined for all time.

We can decompose system (B.12) into 7 subsystems Σe1 to Σe7:

Σe1 : ˙̃x1 = A1x̃1 + φ1(x41)− φ1(x̂41)

Σe2 : ˙̃x2 = A2x̃2 + φ2(x51)− φ2(x̂51)

Σe3 : ˙̃x3 = A3x̃3 + φ3(x61, x71)− φ3(x̂61, x̂71)

Σe4 : ˙̃x4 = A4x̃4

Σe5 : ˙̃x5 = A5x̃5

Σe6 : ˙̃x6 = A6x̃6

Σe7 : ˙̃x7 = A7x̃7 + φ7(x51)− φ7(x̂51),

(B.13)

where x̃i := ( x̃i1, x̃i2 ) = ( xi1 − x̂i1, xi2 − x̂i2 ) ∈ R2 for i = {1, . . . , 7}. φ1(x41) =(
0, θAaC2S2(x41)

)
, φ2(x51) =

(
0, θBbC4S2(x51)

)
, φ3(x61, x71) =

(
0, θGgC7S2(x61 −

x71)
)
, φ7(x51) = (0, θBbC6S2(x51)). Matrices A1, . . . A7 are as defined in Section 2.4
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and have eigenvalues with strictly negative real parts.

We note that subsystem Σe1 is in cascade with Σe4, subsystems Σe2 and Σe7 are in

cascade with subsystem Σe5, and subsystem Σe3 is in cascade with Σe6 and Σe7. Using

this cascade structure, we show that the overall system (B.12) is GES by constructing

the desired Lyapunov function W from the Lyapunov functions of each subsystems Vi.

We consider Lyapunov functions V1, . . . , V7 for each subsystem Σe1 to Σe7 of the

form:

Vi = x̃Ti Pix̃i for i ∈ {1, . . . , 7},

where P Ti = Pi > 0 satisfies the Lyapunov equation PiAi + ATi Pi = −I. This is

always possible as the eigenvalues of Ai have strictly negative real parts, in view of

[85, Theorem 4.6]. We will show that each subsystem Σei is input-to-state stable (ISS)

using Vi [135].

For subsystems Σe4, Σe5 and Σe6, taking the derivative of Vi = x̃Ti Pix̃i along solu-

tions of Σei for i ∈ {4, 5, 6}, we obtain:

V̇i ≤ −|x̃i|2 ≤ −
1

2
|x̃i|2.

Next, we show that V1 is an ISS-Lyapunov function [135] for subsystem Σe1 w.r.t

e4. Taking the derivative of V1 = x̃T1 P1x̃1 along the solutions of Σe1, we obtain:

V̇1 = x̃T1 (P1A1 +AT1 P1)x̃1 + 2x̃T1 P1(φ1(x41)− φ1(x̂41)).

Since the function S2 is globally Lipschitz with constant ρ2 from (2.4), we have that:

|φ1(x41)− φ1(x̂41)| ≤ θAaC2ρ2|x41 − x̂41| ≤ ρe1|x̃4|,
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where ρe1 = θAaC2ρ2. Therefore,

V̇1 ≤ −|x̃1|2 + 2|x̃1||P1|ρe1|x̃4|.

Recalling that ξχ ≤ 1
2ξ

2 + 1
2χ

2, for any ξ, χ ∈ R and letting ξ = 2|P1|ρe1|x̃4| and

χ = |x̃1|, we obtain the following:

V̇1 ≤ −|x̃1|2 +
1

2
|x̃1|2 + 2|P1|2ρ2

e1|x̃4|2

≤ −1

2
|x̃1|2 + 2|P1|2ρ2

e1|x̃4|2.

With similar arguments for the remaining systems, along the solutions of Σei, for

i ∈ {2, 3, 7}:

V̇i ≤ −1

2
|x̃i|2 + γi|µi|2,

where µ1 = x̃4, µ2 = x̃5, µ3 = (x̃6, x̃7), µ7 = x̃5 and γi = 2|Pi|2ρ2
ei where ρe2 = θBbC4ρ2,

ρe3 = θGgC7ρ2 and ρe7 = θBbC6ρ2.

The composite Lyapunov function for the overall system (B.13) W is constructed

using the Lyapunov function for each subsystem Vi [134]. We consider the candidate

Lyapunov function that is positive definite and radially unbounded:

W = a1V1 + a2V2 + a3V3 + V4 + V5 + V6 + a7V7, (B.14)

for a1, a2, a3, a7 > 0, which are determined below.
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The derivative of (B.14) along the solution of the overall error system (B.13) is

Ẇ ≤ −a1
1

2
|x̃1|2 + a1γ1|x̃4|2 − a2

1

2
|x̃2|2

+a2γ2|x̃5|2 − a3
1

2
|x̃3|2 + a3γ3(|x̃6|2 + |x̃7|2)

−1

2
|x̃4|2 −

1

2
|x̃5|2 −

1

2
|x̃6|2 − a7

1

2
|x̃7|2 + a7γ7|x̃5|2.

By taking 0 < a1 <
1

2γ1
, 0 < a2 <

1
γ2

(
1
2 − a7γ7

)
, 0 < a3 <

1
2γ3

and a7 > 2a3γ3, we

obtain

Ẇ ≤ − 1

8γ1
|x̃1|2 −

1

2γ2

(
1

2
− γ7

)
|x̃2|2 −

1

8γ3
|x̃3|2

−1

2
|x̃4|2 −

1

2
|x̃5|2 −

1

2
|x̃6|2 −

1

4
|x̃7|2. (B.15)

By letting P̃ = diag(a1P1, a2P2, a3P3, P4, P5, P6, a7P7) as well as denoting λmin(P̃ )

and λmax(P̃ ) as the maximum and minimum eigenvalues of P̃ respectively, we have

shown that (B.11) is fulfilled with k1 = λmin(P̃ ) > 0, k2 = λmax(P̃ ) > 0, k3 =

min{ 1
8γ1
, 1

2γ2

(
1
2 − γ7

)
, 1

8γ3
, 1

4} > 0 and k4 = 2|P̃ | > 0.

The derivative of W along the solutions to (B.10) is:

Ẇ =
∂W

∂x̃

(
Ax̃+G

(
γ(Hx)− γ(Hx̂+KCx̃)

)
+ LCx̃

)
,

=
∂W

∂x̃

(
Ax̃+Gγ(Hx)−Gγ(Hx̂)︸ ︷︷ ︸

nominal estimation error system (B.12)

+Gγ(Hx̂)−Gγ(Hx̂+KCx̃) + LCx̃︸ ︷︷ ︸
perturbation terms

)

From Lemma 3:

Ẇ ≤ −k3|x̃|2 +
∂W

∂x̃
G(γ(Hx̂)− γ(Hx̂+KCx̃)) +

∂W

∂x̃
LCx̃.

As γ is globally Lipschitz, |γ(Hx̂)− γ(Hx̂+KCx̃)| ≤ ρ|KCx̃| ≤ ρ|K||C||x̃|. From
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(B.11):

Ẇ ≤ −k3|x̃|2 +

∣∣∣∣∂W∂x̃
∣∣∣∣ |G|ρ|K||C||x̃|+ ∣∣∣∣∂W∂x̃

∣∣∣∣ |L||C||x̃|
≤ −k3|x̃|2 + k4|C||x̃|2(ρ|G||K|+ |L|),

where k3 and k4 are constructed in Lemma 3.

Therefore, if K and L satisfy the following condition:

ρ|K||G|+ |L| <
k3

k4|C|
,

then

Ẇ ≤ −k̃3|x̃|2,

where k̃3 = k3 − k4|C|(ρ|G||K|+ |L|) > 0.

Therefore, the origin of the estimation error system (B.10) is GES according to [85,

Definition 4.5], i.e. for all t ≥ 0,

|x̃(t)| ≤ k exp(−λt)|x̃(0)| ∀x̃(0) ∈ Rn,

for k, λ > 0. 2

B.2 Proof of Theorem 2

The proof that follows is performed for the Wendling at. al. model, where the models

by Stam et al. as well as Jansen and Rit can be derived from. The proof for these

models can be performed in a similar fashion.

From (3.5) and (3.6), the perturbed error system is:

˙̃x = Ax̃+G(p? + εp)γ(Hx)−G(p?)γ
(
Hx̂+K

(
Cx̂− (y + εy)

))
−L(Cx̂− (y + εy)) + σ(u, y, p? + εp)− σ(u+ εu, y + εy, p

?) + εsys

= (A+ LC)x̃+ Ψ(x, x̂)︸ ︷︷ ︸
nominal system (B.10) from Theorem 1

+ Ψε(x, x̂, εy, εu, εp, εsys)︸ ︷︷ ︸
perturbation terms

, (B.16)
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where K = (κ1, . . . , κm),

Ψ =
(

0, θAaC2

(
S2(x41)− S2(x̂41 − κ1Cx̃)

)
, 0, θBbC4

(
S2(x51)− S2(x̂51 − κ2Cx̃

)
, 0,

θGgC7

(
S2(x61−x71)−S2(x̂61−x̂71−κ3Cx̃)

)
, 0, 0, 0, 0, 0, 0, 0, θBbC6

(
S2(x51)−S2(x̂51−

κ2Cx̃)
))

and

Ψε =
(

0, θAaC2

(
S2(x̂41 − κ1Cx̃) − S2(x̂41 − κ1Cx̃ − εy)

)
+ aC2S2(x41)εp + auεp +

θAaεu, 0, θBbC4

(
S2(x̂51 − κ2Cx̃)− S2(x̂51 − κ2Cx̃− εy)

)
+ bC4S2(x51)εp, 0,

θGgC7

(
S2(x̂61 − x̂71 − κ3Cx̃)− S2(x̂61 − x̂71 − κ3Cx̃− εy)

)
+ gC7S2(x61 − x71)εp, 0,

θAaC1

(
S2(y)− S2(y + εy)

)
+ aC1S2(y)εp, θAaC3

(
S2(y)− S2(y + εy)

)
+ aC3S2(y)εθ, 0,

θAaC5

(
S2(y)− S2(y+ εy)

)
+ aC5S2(y)εp, 0, θBbC6

(
S2(x̂51− κ2Cx̃)− S2(x̂51− κ2Cx̃−

εy)
)

+ bC6S2(x51)εp

)
+ εsys.

We will show that the solutions of the error system (B.16) is input-to-state stable

(ISS) [133] with respect to the uncertainties εy, εu, εp and εsys. For this purpose, we

use function W as defined in (B.14).

The derivative of W along the solutions of (B.16) is:

Ẇ =
∂W

∂x̃

(
(A+ LC)x̃+ Ψ(x, x̂)

)
+
∂W

∂x̃
Ψε(x, x̂, εy, εu, εp, εsys).

From Theorem 1, there exists k̃3, k̃4 > 0 such that:

Ẇ ≤ −k̃3|x̃|2 + k̃4|x̃||Ψε|.

Using the fact that the function S2 is globally Lipschitz with Lipschitz constant ρ2 and

S2(z) ≤ α2 for any z ∈ R as defined in (2.4), we obtain:

Ẇ ≤ −k̃3|x̃|2 + k̃4|x̃|
(
σy(|εy|) + σp(|εp|) + σu(|εu|) + |εsys|

)
where σy(|εy|) =

(
|(θAaC2ρ, θBbC4ρ, θGgC7ρ, θAaC1ρ, θAaC3ρ, θAaC5ρ, θBbC6ρ)| +

|L|
)
|εy|, σu(|εu|) = θAa|εu| and σp(|εp|) = |

(
(aC2α+ a‖u‖[0,t])|εp|, bC4α|εp|, gC7α|εp|,

aC1α|εp|, aC3α|εp|, aC5α|εp|, bC6α|εp|
)
|.

Therefore, if

|x̃| > 2k̃4

k̃3

(
σy(|εy|) + σu(|εu|) + σp(|εp|) + |εsys|

)
,
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then

Ẇ ≤ −1

2
k̃3|x̃|2. (B.17)

From (B.17), [85, (4.49) of Theorem 4.19] is fulfilled and [85, (4.48) of Theorem

4.19] is satisfied with α1 = k1 and α2 = k2, where k1 and k2 are from Lemma 3 in B.1.

Therefore, we can conclude that the error system (B.16) is ISS with respect to εy, εu,

εp and εsys with gains γy(s) = k2
k1

2k̃4
k̃3
σy(s), γθ(s) = k2

k1
2k̃4
k̃3
σp(s), γu(s) = k2

k1
2k̃4
k̃3
σu(s) and

γsys(s) = k2
k1

2k̃4
k̃3
.s, for s ≥ 0 and γy(0) = γθ(0) = γu(0) = γsys(0) = 0. Here, we have

shown it for the model by Wendling et al. [155], but similar arguments apply to all

other models considered in Chapter 2. 2

B.3 Proof of Theorem 3

Let V (x̃) = x̃TPx̃, its derivative along the solutions to (4.4) is:

V̇ =x̃T
(
P (A+ LC) + (A+ LC)TP

)
x̃+ 2x̃TPG(p?)δ(t)η

=

[
x̃

δ(t)η

]T [
(A+ LC)TP + P (A+ LC) PG(p?)

G(p?)TP 0

][
x̃

δ(t)η

]
.

According to (4.5),

V̇ ≤
[

x̃

δ(t)η

]T[ −νI −(H +KC)TΛ

−Λ(H +KC) 2Λdiag( 1
b1
, . . . , 1

bm
)

][
x̃

δ(t)η

]

= −νx̃T x̃− 2ηT δ(t)Λ(H +KC)x̃+ 2ηT δ(t)Λdiag

(
1

b1
, . . . ,

1

bm

)
δ(t)η.

Recall that η = v − w = (H + KC)x̃ and since Λ and δ are diagonal, Λ = ΛT ,

δ(t) = δ(t)T and Λδ(t) = δ(t)Λ,

V̇ ≤ −νx̃T x̃−2ηT δ(t)Λη+2ηT δ(t)Λdiag

(
1

b1
, . . . ,

1

bm

)
δ(t)η

= −νx̃T x̃−2ηT
(
δ(t)Λ−δ(t)Λdiag

(
1

b1
, . . . ,

1

bm

)
δ(t)

)
η.
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If we examine the last term component-wise, we obtain:

δi(t)λi − δi(t)λib−1
i δi(t) = δi(t)λi(1− b−1

i δi(t)).

From Assumption 9 and (4.3), we know that 1− b−1
i δi(t) > 0, hence,

(
δ(t)Λ− δ(t)Λdiag

(
1

b1
, . . . ,

1

bm

)
δ(t)

)
≥ 0.

We obtain V̇ ≤ −νx̃T x̃. By [85, Theorem 4.10], we deduce that (4.6) holds. 2

B.4 Proof of Theorem 4

From (4.7) and (4.8), the observation error system is as follows:

˙̃x = (A+ LC)x̃+ Lεy + σ(u, y)− σ(u+ εu, y + εy)

+Gγ(Hx)−Gγ
(
Hx̂+K

(
Cx̂−(y+εy)

))
+εsys. (B.18)

By introducing ±Gγ
(
Hx̂ + K

(
Cx̂ − y

))
to (B.18), we obtain an observation error

system that can be considered as the nominal system (4.4) perturbed by a term that

depends on εy, εu and εsys as shown below:

˙̃x = (A+ LC)x̃+G
(
γ(Hx)− γ(Hx̂+K

(
Cx̂− y)

))︸ ︷︷ ︸
nominal system (4.4)

+ Ψε(x, x̂, εy, εu, εsys)︸ ︷︷ ︸
perturbation terms

, (B.19)

where Ψε = Gγ
(
Hx̂ + K(Cx̂ − y)

)
− Gγ

(
Hx̂ + K

(
Cx̂ − (y + εy)

))
+ Lεy + σ(y, u) −

σ(u+ εu, y + εy) + εsys.

Let V (e) = x̃TPx̃, by following the same arguments as in the proof of Theorem 3,
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along solutions to (B.19), we obtain

V̇ ≤ −νx̃T x̃+ 2x̃TPΨε. (B.20)

The perturbation Ψε can be bounded as follows:

|Ψε| ≤ σy|εy|+ σu|εu|+ |εsys|, (B.21)

where σy = |G||diag(b1, . . . , bm)||K|+|L|+|diag(b̃1, . . . , b̃n)| and σu = |diag(b̃1, . . . , b̃n)|.
From (B.20) and the bound on the perturbation terms (B.21):

V̇ ≤ −ν|x̃|2 + 2|x̃||P |
(
σy|εy|+ σu|εu|+ |εsys|

)
.

Consequently, if |x̃| > 4|P |
ν (σy|εy| + σu|εu| + |εsys|

)
, then V̇ ≤ −ν

2 |x̃|2. By [85, Theo-

rem 4.19], (4.9) is satisfied with γy = λmax(P )
λmin(P )

4|P |
ν σy, γu = λmax(P )

λmin(P )
4|P |
ν σu and γεsys =

λmax(P )
λmin(P )

4|P |
ν . 2

B.5 Proof of Proposition 1

Let p? ∈ Θ, the perturbed model (4.10) has solutions for all t ≥ 0 as γ and σ̃ are

globally Lipschitz, the input u and the uncertainty εp are in L∞ [85, Theorem 3.2]. We

can write the perturbed model (4.10) in the form of (4.7) with εsys = G(p?+εp)γ(Hx)−
G(p?)γ(Hx)+ σ̃(u, y, p?+ εp)− σ̃(y, u, p?). As Assumptions 9-10 are satisfied, we apply

Theorem 4 and obtain the following:

|x̃(t)| ≤ k̄ exp(−β̄t)|x̃(0)|+ γ̄y‖εy‖[0,t] + γ̄u‖εu‖[0,t] + γεsys‖εsys‖[0,t]. (B.22)

Noting that the uncertainty is εsys = G(p? + εp)γ(Hx)−G(p?)γ(Hx) + σ̃(u, y, p? +

εp) − σ̃(u, y, p?), we use the fact that γ and σ̃ are globally Lipschitz and bounded to

show that εp satisfies the following

|εp| ≤ σp|εp|, (B.23)

where σp = |(aC2α, bC4α)|+|(a‖u‖[0,∞], aC3α, aC1α)|, recalling that ‖u‖[0,∞] ≤ 320mV
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[74, Section 3.1]. We deduce from (B.22) and (B.23) that (4.19) is satisfied with γ̄p =

σpγεsys . 2

B.6 Proof of Theorem 5

Firstly, x(t) exists for all t ≥ 0 by Theorem 3.2 of [86], because γ is globally Lipschitz

and u is a continuous function that is defined for all t ≥ 0. We now show that the obser-

vation error system satisfies property (4.24) by taking the derivative of the Lyapunov

function V (x̃) = x̃TPx̃ along the solutions of (4.22), where χ = (x̃, δ(t)η, w, d):

V̇ (x̃) = x̃T
(
P (A+ LC) + (A+ LC)TP

)
x̃+ 2x̃TPGδ(t)η

−2x̃TPLDw + 2x̃TPBd

= χT


P (A+ LC) + (A+ LC)TP PG −PLD PB

? 0 0 0

? ? 0 0

? ? ? 0

χ.

Applying (4.25), we obtain:

V̇ (x̃) ≤ χT


−I −(H +KC)TM 0 0

? −E(M) MKD 0

? ? µwI 0

? ? ? µdI

χ
= −|x̃|2 − 2x̃T (H +KC)TMδ(t)η + 2ηT δ(t)MKDw

−ηT δ(t)TE(M)δ(t)η + µw|w|2 + µd|d|2.

Recall that η := z−v = (H+KC)x̃−KDw, hence (H+KC)x̃ = η+KDw. Therefore,

V̇ (x̃) ≤ −|x̃|2 − 2(η +KDw)TMδ(t)η + 2ηT δ(t)MKDw

−ηT δ(t)TE(M)δ(t)η + µw|w|2 + µd|d|2.
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Noting that δ(t) = diag (δ1(t), . . . , δn(t)) = δ(t)T ,

V̇ (x̃) + |x̃|2 − µw|w|2 − µd|d|2

≤ −2ηT
(
Mδ(t)− δ(t)Mdiag

(
1

b1
, . . . ,

1

bm

)
δ(t)

)
η.

We examine Mδ(t)− δ(t)Mdiag
(

1
b1
, . . . , 1

bm

)
δ(t) component by component, i.e.

δi(t)mi − δi(t)2mibi
−1 = δi(t)mi

(
1− δi(t)bi−1

)
. As δi(t), mi > 0 and by Assumption

9, 1 − δi(t)bi
−1 ≥ 0, we obtain δ(t)M − δ(t)Mdiag

(
1
b1
, . . . , 1

bm

)
δ(t) ≥ 0. Hence,

V̇ (x̃) + |x̃|2 − µw|w|2 − µd|d|2 ≤ 0. As explained in Chapter 4.2, this implies that the

observation error system satisfies properties (4.24) as required. 2

B.7 Proof of Theorem 6

Before starting the proof of Theorem 6, we first state a technical lemma that is used.

Lemma 4. Consider system (5.5). There exist M ∈ R>0 such that for any d ≥ 1,

any L∞ signal x̂, y, u the solution of Υ̇ = AΥ + ∆φ(y, u, x̂) with Υ(0) = 0, satisfies

|Υ(t)| ≤M for all t ≥ 0. 2

Proof. Note that |∆φ(y, u, x̂)| ≤ |∆||φ(y, u, x̂)| ≤ |φ(y, u, x̂)| since d ≥ 1. Moreover, it

can be verified that φ is upper bounded by a constant (independent of d) in view of

Chapter 5.1. As a consequence, we can directly conclude that |Υ(t)| can be bounded

by a constant M independent of d for all time since the matrix A is Hurwitz and of the

initial condition Υ(0) as it was chosen to be Υ(0) = 0 in the algorithm (5.5).

We first consider the system in x̃ coordinate. According to (5.4) and (5.5), we have

˙̃x = Ax̃+
(
φ(y, u, x)− φ(y, u, x̂)

)
θ + φ(y, u, x̂)p̃− Γ(y − ŷ).
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We scale the error x̃ as such x̄ := ∆x̃. Noting that ∆A∆−1 = A:

˙̄x = Ax̄+ ∆
(
φ(y, u, x)− φ(y, u, x̂)

)
p? + ∆φ(y, u, x̂)p̃−∆Γ(y − ŷ). (B.24)

We now proceed to a dynamical change of coordinates by introducing η as follows

which was as proposed in [160]:

η := x̄−Υp̃.

Noting that C∆−1 = dC, the dynamics of variables η and p̃ are given by:

{
η̇ = Aη + ∆

(
φ(y, u, x)− φ(y, u, x̂)

)
p?

˙̃p = −dPΥTCTC(η + Υp̃).
(B.25)

We note that, contrary to [160], we have not obtained a nice cascade system since

the η-system also depends on x and x̂. In the following, we will invoke small-gain

type arguments to conclude the stability of system (B.25). We consider the Lyapunov-

type functions V1(η) = ηTSη and V2(p̃, P ) = p̃TP−1p̃ where S is a real symmetric

positive definitive matrix such that ATS + SA = −I (such a matrix always exists

according to Theorem 4.6 in [86] since A is Hurwitz). It can be noted that V2 satisfies

λ1|p̃|2 ≤ V2(p̃, P ) ≤ λ2|p̃|2 where λ1, λ2 are independent of d for d ≥ 1 according to

[162, Lemma 1], which will be useful for our purpose. We first consider V1. Along

solutions to (B.25), we have:

V̇1(t) = −|η|2 + 2ηTS∆
(
φ(y, u, x)− φ(y, u, x̂)

)
p?. (B.26)

Noting that φ(x, y, u) =
(
φ0(y), φ1(x0, u)

)
, so φ(x, y, u) − φ̂(x̂, y, u) = (0, φ1(x0, u) −

φ̂1(x̂0, u)). As a consequence,

∆(φ(y, u, x)− φ̂(y, u, x̂)) =
(
0, 1

d(φ1(x0, u)− φ̂1(x̂0, u))
)

from which we deduce in (B.26):

V̇1(t) ≤ −|η|2 + 2|η||S||p?||∆
(
φ(x0, u)− φ(x̂0, u)

)
|

≤ −|η|2 + 2|η||S||p?|
(

1
d |φ1(x0, u)− φ1(x̂0, u)|

)
.
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By assumption, φ1 is globally Lipschitz with a constant that we denote L1 > 0, thus

|φ1(x0, u) − φ1(x̂0, u)| ≤ L1|x̃0|. Note also that the scaling induced by the matrix ∆

does not affect the x̃0 part of the estimation error x̃, so that we have x̃0 = x̄0. As a

consequence,

V̇1(t) ≤ −|η|2 + 2
d |η||S||p?|L1|x̃0|

≤ −|η|2 + 2
d |η||S||p?|L1(|η|+ |Υp̃|)

= (−1 + 2
d |S||p?|L1)|η|2 + 2

d |η||S||p?|L1|Υp̃|.
(B.27)

We define

d? := max{1, 4L1|p?||S|}. (B.28)

Choose d such that d ≥ d?, so that −1 + 2
d |S||p?|L1 < −1

2 , in that way: V̇1(t) ≤
−1

2 |η|2 + 2
d |S|L1|p?||η||Υp̃|. According to Lemma 4, we always have |Υ| ≤M , therefore:

V̇1(t) ≤ −1
2 |η|2 + 2

d |S||θ|L1M |η||p̃|, from which we deduce, by invoking the fact that S

and P−1 are symmetric positive definite with lower and upper bounds independent of

d (see [162, Lemma 1]), that there exists σ1, σ2 ∈ R>0 independent of d such that:

V̇1(t) ≤ −σ1V1 + 1
dσ2

√
V1

√
V2

= −σ1
2 V1 − σ1

2 V1 + 1
dσ2

√
V1

√
V2,

(B.29)

as a consequence, noting that 1
dσ2

√
V1

√
V2 ≤ σ1

2 V1 can be written as 1
d2
σ2

2V2 ≤ σ2
1
4 V1:

(
σ
d2
V2 ≤ V1

)
⇒

(
V̇1(t) ≤ −σ1

2 V1

)
, (B.30)

with σ = 4
(
σ2
σ1

)2
. That is all we need so far concerning V1. Consider V2, along solutions

to (5.5) and (B.25), the following is satisfied (recall that V2(p̃, P ) = p̃TP−1p̃):

V̇2(t) = −p̃TP−1ṖP−1p̃+ 2p̃TP−1 ˙̃p

= −dV2 − dp̃TΥTCTCΥp̃− 2dp̃TΥTCTCη,

since p̃TΥTCTCΥp̃ ≥ 0, V̇2(t) ≤ −dV2 − 2dp̃TΥTCTCη. By invoking the same argu-

ments as after (B.29) and since Υ is bounded by M according to Lemma 4, there exists

γ ∈ R>0 independent of d such that |2dp̃TΥTCTCη| ≤ dγ√V1

√
V2 so that:

V̇2(t) ≤ −dV2 + γd
√
V1

√
V2

= −d
2V2 − d

2V2 + γd
√
V1

√
V2
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since γd
√
V1

√
V2 ≤ d

2V2 is equivalent to γ2V1 ≤ 1
4V2, we deduce that:

(
σ̄V1 ≤ V2

)
⇒

(
V̇2(t) ≤ −d

2V2

)
, (B.31)

with σ̄ = 4γ2. Following the proof of Theorem 3.1 in [76], we are going to define a

Lyapunov function for the system (B.25) based on V1 and V2. Let d be sufficiently large

such that σ
d2
< σ̄−1 (i.e. such that the small gain condition is satisifed) and take χ > 0

such that:
σ
d2
< χ < σ̄−1. (B.32)

We introduce the candidate Lyapunov function, V = max{V1, χV2}. Function V is the

maximum of two continuously differentiable functions, therefore it is locally Lipschitz

and so differentiable almost everywhere according to Rademacher’s theorem. Along

solutions to (B.25), when V = V1 that means V1 ≥ χV2 ≥ σ
d2
V2. (B.30) shows us

that V̇ (t) ≤ −σ1
2 V (t) almost everywhere. Similarly, when V = χV2 that means V2 ≥

χ−1V1 ≥ σ̄V1 so (B.31) shows us that V̇ (t) ≤ −d
2χV (t) almost everywhere. As a

consequence, we have that, almost everywhere: V̇ (t) ≤ −min{σ12 , d2χ}V . Taking d ≥
d? ≥ 1,

V̇ (t) ≤ −min{σ12 , d2χ}V ≤ −min{σ12 , 1
2χ}V =: −λV.

Using the comparison principle (see Lemma 3.4 in [86]) and the fact that V is positive

definite and radially unbounded, we obtain:

|(η(t), p̃(t))| ≤ β̄
(
|(η(0), p̃(0))|, t

)
∀t ≥ 0, (B.33)

where β̄ ∈ KL. By the definition of x̃,

|(x̃, p̃)| = |(∆−1η + ∆−1Υp̃, p̃)|
≤ d|(η + Υp̃, p̃)| ≤ d|η + Υp̃|+ d|p̃|
≤ d|η|+ d(1 +M)|p̃| ≤ d(1 +M)|(η, p̃)|.

From (B.33) and η(0) = ∆x̃(0)−Υ(0)p̃(0). As Υ(0) = 0 by initialisation, we have that

η(0) = ∆x̃(0). Recalling that |∆| ≤ 1 (since d ≥ 1), hence |η(0)| ≤ |∆||x̃(0)| ≤ |x̃(0)|
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and we obtain:

|(x̃(t), p̃(t))| ≤ d(1 +M)β̄
(
|(η(0), p̃(0))|, t

)
≤ d(1 +M)β̄

(
|(x̃(0), p̃(0))|, t

)
.

Therefore, we obtain the desired property (5.8) with βd(s, t) = d(1 +M)β̄(s, t). 2

B.8 Proof of Proposition 2

We write the state error system (6.4), for all i ∈ {1, . . . , N} in the following form

ξ̇ = Fi(ξ, %, p
?, u, x)

η = H(ξ, x, %, p?). (B.34)

where ξ ∈ Rnx , % ∈ Rnp and η ∈ Rny . We denote the solution of system (B.34) at time

t with parameter error % as ξ(t, %), where we have omitted its dependance on its initial

condition x(0) and on its input u. Similarly, we denote the output of (B.34) as η(t, %).

Let W (t, %) :=
∫ t
t−Tf |η(s, %)|2ds. We show that W is continuous in %. First, since

the function f is continuously differentiable, % ∈ Θ̃, p? ∈ Θ, u ∈ M∆u and x ∈ BKx
(by Assumption 16), Fi is locally Lipschitz in ξ, uniformly in %, p?, u and x by Lemma

2.3 of [85]. Hence, ξ(t, %) is continuous in t and % by Theorem 2.6 in [85]. As a

consequence, we deduce that η(t, %) is also continuous in % and t by using the fact

that H is continuous in view of Assumption 15. Thus, we have that ρ 7→ |η(t, ρ)| is

continuous in Θ̃. Moreover, |η(t, %)| ≤ φ(t), with φ(t) := max
%∈Θ̃
|η(t, %)|2 integrable on

[t−T, t] using the fact that Θ̃ is a compact set. Hence, we deduce that W is continuous

in % on Θ̃, by using the dominated convergence theorem [14, Theorem 10.27].

So far, for any fixed t, W (t, %) ≥ 0 for all % by definition and we have established

that W (t, %) is continuous in %. Hence, we can lower bound the function W by a

positive definite and continuous function W̃ in %. This allows us to apply Lemma

3.5 in [85] on W̃ to obtain a class K function αỹ such that W̃ (t, %) ≥ αỹ(|%|). Since,

W (t, %) ≥ W̃ (t, %), (6.9) holds as desired. 2
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B.9 Proof of Lemma 1

We first prove in Claims 1 and 2 desirable properties of the state error systems (6.4) and

the monitoring signals µi, where i ∈ {1, . . . , N}. In Claim 1, the state error system (6.4)

is shown to be locally ISS (see [85, Definition 5.2]) with respect to the parameter error

p̃i. This property, along with Assumption 18, are the key ingredients that allow us to

show in Claim 2 that the monitoring signals are lower and upper bounded by functions

of the parameter error p̃i that are strictly increasing with |p̃i|. These properties allow

us to conclude the proof of Lemma 1. Claims 1 and 2 are also later used in the proof

of Theorem 7.

Claim 1. Consider the state error system (6.3) for i ∈ {1, . . . , N} under Assumptions

15-17. There exist constants k̄, λ̄ > 0 such that for any ∆x̃, ∆x, ∆u > 0, there exists

a class K function γ̄x̃ such that for all (x̃i(0), x(0)) ∈ B∆x̃ × B∆x, for all p̃i ∈ Θ̃ and

for all u ∈M∆u, the corresponding solution satisfies

|x̃i(t)| ≤ k̄ exp(−λ̄t)|x̃i(0)|+ γ̄x̃(|p̃i|), ∀t ≥ 0. (B.35)

2

Proof of Claim 1. For i ∈ {1, . . . , N}, by Assumption 17, the following holds for all

x̃i ∈ Rnx , x ∈ Rnx , u ∈ Rnu , p? ∈ Θ and p̃i ∈ Θ̃

a1|x̃i|2 ≤ Vi(x̃i) ≤ a2|x̃i|2, (B.36)

∂Vi
∂x̃i

Fi(x̃i, p̃i, p
?, u, x) ≤ −λ0Vi(x̃i) + γ̃(p̃i, x, u). (B.37)

Given ∆x, ∆u > 0, letKx > 0 be generated by Assumption 16 such that |x(t)| ≤ Kx,

for all t ≥ 0 and u ∈ M∆u . Since γ̃ is a continuous function and γ̃(0, z, z̄) = 0, for all

z ∈ Rnx , z̄ ∈ Rnu , we have that

γ̃1(p̃i) := max|x|≤Kx,|u|≤∆u
γ̃(p̃i, x, u) is a continuous and positive definite function in
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p̃i. By Lemma 3.5 in [85], there exists a class K function γ̄ such that for p̃i ∈ Θ̃

γ̃1(p̃i) ≤ γ̄(|p̃i|), (B.38)

as Θ̃ is a compact set.

We use (B.36), (B.37) and (B.38) to obtain the following for all |x| ≤ Kx and

|u| ≤ ∆u

∂Vi
∂x̃i

Fi(x̃i, p̃i, p
?, u, x) ≤ −λ0Vi(x̃i) + γ̄(|p̃i|). (B.39)

By the comparison principle (Lemma 2.5 in [85]), for all (x(0), x̃i(0)) ∈ B∆x × B∆x̃ ,

u ∈M∆u , the corresponding solutions of (B.39) are

Vi(x̃i(t)) ≤ exp(−λ0t)Vi(x̃i(0)) +
1

λ0
γ̄(|p̃i|), (B.40)

for t ∈ [0, tmax), where tmax ∈ R≥0 ∪∞ is the solution’s maximal time of existence. We

use (B.36) and the fact that for any a, b > 0,
√
a+ b ≤

√
2a +

√
2b to obtain (B.35)

for all t ∈ [0, tmax) as desired with k̄ :=
√

2a2
a1

, λ̄ := λ0
2 and γ̄x̃(r) :=

√
2

a1λ0

√
γ̄(r). We

deduce from (B.40) that tmax =∞ by contradiction.

Claim 2. Consider the plant (6.1), the state error system (6.4) and the monitoring

signal (6.7), for i ∈ {1, . . . , N} under Assumptions 15-18. For any ∆x̃, ∆x, ∆u > 0,

there exist class K functions χ and χ̄ and for any ε > 0, there exists a constant T =

T (∆x̃,∆x,∆u, ε) > 0, such that the monitoring signal µi in (6.7) satisfy the following

for all (x(0), x̃i(0)) ∈ B∆x ×B∆x̃, for some u ∈M∆u that satisfies Assumption 18, for

any p? ∈ Θ and for all p̃i ∈ Θ̃

χ(|p̃i|) + cµ ≤ µi(t) ≤ χ̄(|p̃i|) + ε+ cµ, ∀t ≥ T. (B.41)

2
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Proof of Claim 2. Given ∆x̃, ∆x, ∆u, ε > 0, we first construct the following from

Assumptions 15-18.

• Let constants k̄, λ̄ > 0 and a class K function γ̄x̃ be generated from Claim 1. Given

that for i ∈ {1, . . . , N}, p̃i ∈ Θ̃, where Θ̃ is a compact set, there exists Kp̃ > 0

such that |p̃i| ≤ Kp̃. By Claim 1, the solutions of (6.4) satisfy the following for

all (x̃i(0), x(0)) ∈ B∆x̃ ×B∆x , for all (p?, p̃i) ∈ Θ× Θ̃, for all u ∈M∆u and for all

t ≥ 0

|x̃i(t)| ≤ k̄ exp(−λ̄t)|x̃i(0)|+ γ̄x̃(|p̃i|) ≤ k̄∆x̃ + γ̄x̃(Kp̃) =: Kx̃. (B.42)

• Since h is continuously differentiable in view of Assumption 15, h is locally Lips-

chitz. Therefore, there exist constants lx̃, lp̃ > 0 such that for x ∈ BKx , x̃i ∈ BKx̃ ,

and p̃i ∈ Θ̃, p? ∈ Θ, the following holds

|H(x̃i, x, p̃i, p
?)−H(0, x, 0, p?)| = |H(x̃i, x, p̃i, p

?)|

= |h(x̃i + x, p̃i + p?)− h(x, p?)|

≤ lx̃|x̃i|+ lp̃|p̃i|, (B.43)

where H(0, x, 0, p?) = 0 in view of the definition of H in (6.4).

• Let λ > 0 come from (6.7) and given ε > 0, we choose εx̃, εµ > 0 sufficiently small

such that

εµ +
4l2x̃ε

2
x̃

λ
= ε. (B.44)

Let Tx̃ > 0 be such that for all |x(0)| ≤ ∆x, |x̃i(0)| ≤ ∆x̃ and u ∈M∆u

k̄ exp(−λ̄t)|x̃i(0)| ≤ εx̃, ∀t ≥ Tx̃. (B.45)
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Let Tµ ≥ Tx̃ be such that

1

λ
exp(−λ(Tµ − Tx̃))(lx̃Kx̃ + lp̃Kp̃)

2 ≤ εµ. (B.46)

• Let the constant Tf > 0 and the class K function αỹ be generated by Assumption

18 given ∆x̃, ∆x and ∆u > 0 such that for all (x̃i(0), x(0)) ∈ B∆x̃×B∆x , for some

u ∈M∆u , for all p̃i ∈ Θ̃, the solution to (6.4) satisfies the following inequality

∫ t

t−Tf
|H(x̃i(s), x(s), p̃i, p

?)|2ds ≥ αỹ(|p̃i|), ∀t ≥ Tf . (B.47)

• With the functions and constants above, we define the following

T ≥ max{Tµ, Tx̃, Tf}, (B.48)

χ(r) := exp(−λTf )αỹ(r), (B.49)

χ̄(r) :=
4l2x̃
λ
γ̄2
x̃(r) +

2l2p̃
λ
r2. (B.50)

Note that the class K functions χ and χ̄ depend only on ∆x̃, ∆x, ∆u and not on ε. Let

t ≥ T where T is defined in (B.48). By definition of the monitoring signals in (6.7), for

i ∈ {1, . . . , N}

µi(t) =

∫ t

0
exp(−λ(t− s))|H(x̃i(s), x(s), p̃i, p

?)|2ds+ cµ. (B.51)

We first establish the lower bound for µi by considering the intervals [0, t − Tf ] and
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[t− Tf , t] to obtain

µi(t) =

∫ t−Tf

0
exp(−λ(t− s))|H(x̃i(s), x(s), p̃i, p

?)|2ds

+

∫ t

t−Tf
exp(−λ(t− s))|H(x̃i(s), x(s), p̃i, p

?)|2ds+ cµ

≥
∫ t

t−Tf
exp(−λ(t− s))|H(x̃i(s), x(s), p̃i, p

?)|2ds+ cµ. (B.52)

As s 7→ exp(λs) is strictly increasing, we obtain the following lower bound

µi(t) ≥ exp(−λTf )

∫ t

t−Tf
|H(x̃i(s), x(s), p̃i, p

?)|2ds+ cµ. (B.53)

From (B.47), (B.49) and our choice of T , since t ≥ T ≥ Tf

µi(t) ≥ exp(−λTf )αỹ(|p̃i|) + cµ = χ(|p̃i|) + cµ. (B.54)

We now obtain the upper bound of µi by considering the integration intervals [0, Tx̃]

and [Tx̃, t], since t ≥ T ≥ Tx̃.

µi(t) =

∫ Tx̃

0
exp(−λ(t− s))|H(x̃i(s), x(s), p̃i, p

?)|2ds

+

∫ t

Tx̃

exp(−λ(t− s))|H(x̃i(s), x(s), p̃i, p
?)|2ds+ cµ. (B.55)
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Using (B.43) and the fact that for any a, b ≥ 0, (a+ b)2 ≤ 2a2 + 2b2, we obtain

µi(t) ≤
1

λ
exp(−λ(t− Tx̃))

(
sup

s∈[0,Tx̃]
|H(x̃i(s), x(s), p̃i, p

?)|2
)

+

∫ t

Tx̃

exp(−λ(t− s))
(
lx̃|x̃i(s)|+ lp̃|p̃i|

)2
ds+ cµ

≤ 1

λ
exp(−λ(t− Tx̃))

(
sup

s∈[0,Tx̃]
|H(x̃i(s), x(s), p̃i, p

?)|2
)

+

∫ t

Tx̃

exp(−λ(t− s))
(

2l2x̃|x̃i(s)|2 + 2l2p̃|p̃i|2
)
ds+ cµ. (B.56)

We also have from Claim 1 and (B.45) that for all i ∈ {1, . . . , N}

|x̃i(t)| ≤ εx̃ + γx̃(|p̃i|), ∀t ≥ Tx̃, (B.57)

which implies that, using the fact that for any a, b > 0, (a+ b)2 ≤ 2a2 + 2b2

|x̃i(t)|2 ≤ 2ε2x̃ + 2γ2
x̃(|p̃i|), ∀t ≥ Tx̃. (B.58)

Also, by (B.42) and (B.43), we obtain

sup
s∈[0,Tx̃]

|H(x̃i(s), x(s), p̃i, p
?)|2 ≤ sup

s∈[0,Tx̃]
(lx̃|x̃i(s)|+ lp̃|p̃i|)2

= (lx̃Kx̃ + lp̃Kp̃)
2. (B.59)

Hence, from (B.56) and in view of (B.46), (B.58) and (B.59), we have the following for

t ≥ T ≥ Tµ ≥ Tx̃

µi(t) ≤ εµ + cµ +

∫ t

Tx̃

exp(−λ(t− s))
(

4l2x̃ε
2
x̃ + 4l2x̃γ

2
x̃(|p̃i|) + 2l2p̃|p̃i|2

)
ds

= εµ + cµ +

(∫ t

Tx̃

exp(−λ(t− s))ds
)(

4l2x̃ε
2
x̃ + 4l2x̃γ

2
x̃(|p̃i|) + 2l2p̃|p̃i|2

)
.

(B.60)
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Note that
∫ t
Tx̃

exp(−λ(t− s))ds = 1
λ

(
1− exp(−λ(t−Tx̃))

)
and for t ≥ Tx̃, we have that∫ t

Tx̃
exp(−λ(t− s))ds ≤ 1

λ . Therefore, from (B.60), for t ≥ Tx̃

µi(t) ≤ εµ + cµ +
4l2x̃ε

2
x̃

λ
+

4l2x̃
λ
γ2
x̃(|p̃i|) +

2l2p̃
λ
|p̃i|2. (B.61)

By the definition of ε and χ̄ in (B.44) and (B.50) respectively:

µi(t) ≤ ε+ χ̄(|p̃i|) + cµ. (B.62)

Therefore, from (B.54) and (B.62), we complete the proof.

We are now ready to prove Lemma 1. Given that the switching logic (6.12) is

scale-independent, the switching signal σ is not affected if the monitoring signal µi(t),

i ∈ {1, . . . , N} is replaced by its scaled version, for t ≥ 0

µ̄i(t) := exp(λt)µi(t) = exp(λt)cµ +

∫ t

0
exp(λs)|ỹi(s)|2ds. (B.63)

Note that the scaled monitoring signal µ̄i has the following properties

1. µ̄i(0) = cµ > 0.

2. µ̄i(t) is non-decreasing.

The scaled monitoring signal µ̄i is then used for analysis purposes in [67] and [95,

Chapter 6]. It has been shown in [151] that in the supervisory control of nonlinear

plants with disturbances, the scale independent hysteresis switching logic σ in (6.12)

satisfy dwell time conditions for bounded disturbances. We follow this approach in the

analysis that follows. By Lemma 4.2 in [151], we have that the number of switches in

the interval [0, t), Nσ(t, 0) satisfies the following

Nσ(t, 0) ≤ N +
N

ln(1 + h)
ln

(
µ̄l(t)

minq∈{1,...,N} µ̄q(0)

)
(B.64)

For an arbitrary ε, ∆x, ∆x̃, ∆u > 0, let a class K function χ̄ and a constant
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T = T (∆x,∆x̃,∆u, ε) > 0 be generated by Claim 2. From Claim 2, for all % ∈ Θ̃,

(x(0), ξ(0)) ∈ B∆x × B∆x̃ , for all u ∈ M∆u that satisfies Assumption 18 and for all

t ≥ T
µi(t) ≤ χ̄(|%|) + ε+ cµ. (B.65)

Hence, by definition (B.63)

µ̄i(t) ≤ exp(λt)
(
χ̄(|%|) + ε+ cµ

)
. (B.66)

From (B.64), (B.66) and µ̄i(0) = exp(λ0)cµ = cµ, we obtain the following for all t ≥ T

Nσ(t, 0) ≤ N +
N

ln(1 + h)
ln

exp(λt)
(
χ̄(|%|) + ε+ cµ

)
exp(λ0)cµ


= N +

N

ln(1 + h)
ln

(
χ̄(|%|) + ε

cµ
+ 1

)
+

t(
ln(1+h)
λN

) . (B.67)

Recall from (6.13) that a switching signal σ satisfies average dwell time conditions. It

holds that

Nσ(t, 0) ≤ N0 +
t

τa
. (B.68)

Therefore, comparing (B.67) and (B.68) yields

τa = ln(1+h)
λN , N0 = N + N

ln(1+h) ln
(
χ̄(|%|)+ε

cµ
+ 1
)
≥ 1. (B.69)

Hence, from (B.69), we have shown that σ has an average dwell time by obtaining

(6.14) as desired. 2

B.10 Proof of Theorem 7

The proof of Theorem 7 uses Claims 1-2 from the proof of Lemma 1 (Appendix B.9).

They show properties of the state error systems (6.4) and the monitoring signals (6.7)

which enable us to complete the proof. The state estimation error system (6.17)

switches between the individual state estimation error systems (6.4) in a manner that
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does not affect the individual systems (6.4) as explained in Remark 8. Therefore,

|x̃σ(t)(t)| ≤ max
i∈{1,...,N}

|x̃i(t)|, ∀t ≥ 0. (B.70)

By Claim 1, for i ∈ {1, . . . , N}, for all x̃i(0) ∈ B∆x̃ , p̃i ∈ Θ̃ and u ∈ M∆u , the

corresponding solution of (6.4) satisfies

|x̃i(t)| ≤ k̄ exp(−λ̄t)|x̃i(0)|+ γ̄x̃(|p̃i|). (B.71)

As p̃i ∈ Θ̃ for i ∈ {1, . . . , N}, where Θ̃ is a compact set, let the constant Kp̃ > 0 be

such that |p̃i| ≤ Kp̃. We have from (B.71) and (B.77) that

|x̃i(t)| ≤ k̄∆x̃ + γ̄x̃(Kp̃) =: K̄x̃, ∀t ≥ 0. (B.72)

Hence, we have that the solution of the switched state error system (6.17) satisfies

|x̃σ(t)(t)| ≤ K̄x̃, ∀t ≥ 0. (B.73)

Hence, x̃σ(t)(t) cannot escape to infinity in finite time. Moreover, we have proved in

Lemma 1 that the switching logic σ satisfies average dwell time conditions. Therefore,

no Zeno behaviour can occur. Hence, x̃σ(t)(t) is defined for all t ≥ 0.

We now construct the core elements for the rest of the proof.

• Given ∆x̃, ∆x, ∆u > 0, we generate constants k̄, λ̄ > 0 and a class K function γ̄x̃

from Claim 1. Let ν1 > 0 be such that

ν1 ≤ γ−1
x̃ (νx̃), (B.74)

where νx̃ > 0 is given.

• Let class K functions χ̄ and χ be generated by Claim 2. Choose ε, h? > 0

sufficiently small be such that

1

1 + h?
χ(min{νp̃, ν1})−

h?

1 + h?
cµ − ε > 0, (B.75)
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where νp̃ > 0 and cµ > 0 (from the monitoring signal (6.7)) are given and let

T > 0 be generated by Claim 2 given the chosen ε from (B.75). Let

δ? := χ̄−1

(
1

1 + h?
χ(min{νp̃, ν1})−

h?

1 + h?
cµ − ε

)
. (B.76)

Note that δ? > 0 due to (B.75).

• As p̃i ∈ Θ̃ for i ∈ {1, . . . , N}, where Θ̃ is a compact set, let the constant Kp̃ > 0

be such that |p̃i| ≤ Kp̃. We define

K̄x̃ := k̄∆x̃ + γ̄x̃(Kp̃). (B.77)

Let t ≥ 0. Recall that we denote the chosen monitoring signal at each time t as

µσ(t)(t). There are two possible scenarios: (i) µσ(t)(t) = minj∈{1,...,N} µj(t) and (ii)

µσ(t)(t) 6= minj∈{1,...,N} µj(t). We first consider case (ii), since case (i) immediately

follows as we will see. The switching condition of σ defined in (6.12) is not satisfied,

which means that for all q ∈ {1, . . . , N},

µq(t)(1 + h) ≥ µσ(t)(t). (B.78)

Consequently, by Claim 2, for all t ≥ T

(1 + h)
(
χ̄(|p̃q|) + ε+ cµ

)
≥ χ(|p̃σ(t)(t)|) + cµ. (B.79)

As h ∈ (0, h?], (1 + h?)
(
χ̄
(
minq∈{1,...,N} |p̃q|

)
+ ε+ cµ

)
− cµ ≥ χ(|p̃σ(t)(t)|).

Since minq∈{1,...,N} |p̃q| ≤ δ?,

(1 + h?)
(
χ̄ (δ?) + ε+ cµ

)
− cµ ≥ χ(|p̃σ(t)(t)|). (B.80)

By the definition of δ? in (B.76), we obtain the following from (B.80)

χ−1
(

(1 + h?)
(
χ̄(δ?) + ε+ cµ

)
− cµ

)
= χ−1

(
(1 + h?)

(
χ̄(δ?) + ε

)
+ h?cµ

)
≥ |p̃σ(t)(t)|.
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Hence,

|p̃σ(t)(t)| ≤ χ−1
(

(1 + h?)
(

1
1+h?χ(min{νp̃, ν1})− h?

1+h? cµ
)
− ε+ ε+ h?cµ

)
= min{ν1, νp̃}.

(B.81)

We now consider (i) where µσ(t)(t) = minj∈{1,...,N} µj(t). For all q ∈ {1, . . . , N}

µσ(t)(t) ≤ µq(t). (B.82)

Since h > 0, (B.82) implies (B.78) . Therefore, we conclude the following from (B.81)

|p̃σ(t)(t)| ≤ min{ν1, νp̃} ≤ νp̃, ∀t ≥ T. (B.83)

Returning to the chosen state estimation error x̃σ(t)(t), we have from (B.70) and (B.71)

that for all x̃σ(0)(0) ∈ B∆x̃

|x̃σ(t)(t)| ≤ max
i∈{1,...,N}

k̄ exp(−λ̄t)|x̃i(0)|+ γ̄x̃(|p̃i|), ∀t ≥ 0. (B.84)

Furthermore, we have from (B.83) that the parameter error p̃σ(t) converges to the ball

centered at 0 and of radius νp̃ in finite time, i.e. for all t ≥ T , σ(t) ∈ S, where

S := {i ∈ {1, . . . , N} : |p̃i| ≤ min{νp̃, ν1}}. Therefore, for all t ≥ T

|x̃σ(t)(t)| ≤ max
i∈S
|x̃i(t)|. (B.85)

Consequently, we have from (B.71) that

lim sup
t→∞

|x̃σ(t)(t)| ≤ lim sup
t→∞

max
i∈S
|x̃i(t)| ≤ max

i∈S
γ̄x̃(|p̃i|) (B.86)

≤ γ̄x̃(min{νp̃, ν1}) ≤ γ̄x̃(ν1). (B.87)

By (B.74), we obtain the following

lim sup
t→∞

|x̃σ(t)(t)| ≤ γ̄x̃ ◦ γ̄−1
x̃ (νx̃) ≤ νx̃. (B.88)

Finally, we have shown that (6.21) in view of (B.73), (B.83) and (B.88). 2
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B.11 Proof of Proposition 3

For i ∈ {1, . . . , N}, let Vi = x̃Ti Pix̃i, where Pi = P Ti > 0. Note that (6.5) is satisfied

with a1 := mini∈{1,...,N} λmin(Pi) and a2 := maxi∈{1,...,N} λmax(Pi). The derivative of Vi

along the solutions of (6.24) is

V̇i(x̃i) = x̃Ti

(
Pi
(
A(pi) + Li(pi)C(pi)

)
+
(
A(pi) + Li(pi)C(pi)

)T
Pi

)
x̃i

+2x̃Ti Pi

((
Ã(pi, p

?) + Li(pi)C̃(pi, p
?)
)
x+ B̃(pi, p

?)u
)
. (B.89)

Let w̄(pi, p
?, x, u) =

(
Ã(pi, p

?) + Li(pi)C̃(pi, p
?)
)
x+ B̃(pi, p

?)u,

V̇i(x̃i) =

[
x̃i

w̄

]T

×
[
Pi
(
A(pi) + Li(pi)C(pi)

)
+
(
A(pi) + Li(pi)C(pi)

)T
Pi Pi

Pi 0

][
x̃i

w̄

]
.

Applying (6.25), we obtain

V̇i(x̃i) ≤ −νi|x̃i|2 + µi|w̄|2. (B.90)

By Assumption 15, we have that there exists lc > 0 such that |C̃(pi, p
?)| ≤ lc|p̃i|. Also,

by Assumption 19, A(p) and B(p) are continuous in p on Θ and since Θ is a compact set,

A and B are uniformly continuous on Θ. Hence, A and B admit la : R≥0 → R≥0 and

lb : R≥0 → R≥0 as moduli of continuity respectively [41], i.e. |A(pi)− A(p?)| ≤ la(|p̃i|)
and |B(pi)−B(p?)| ≤ lb(|p̃i|), for all pi ∈ Θo and p? ∈ Θ. Consequently,

|w̄| ≤ w̃(p̃i, x, u), (B.91)

where w̃(p̃i, x, u) = la(|p̃i|)|x|+ lc|Li(pi)||p̃i||x|+ lb(|p̃i|)|u|. Therefore, from (B.90), in-

equality (6.6) is satisfied with λ0 := mini∈{1,...,N}
νi

maxi∈{1,...,N} λmax(Pi)
> 0 and γ̃(p̃i, x, u) :=

maxi∈{1,...,N} µiw̃(p̃i, x, u)2. Therefore, Assumption 17 holds. 2
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B.12 Proof of Proposition 5

Let i ∈ {1, . . . , N} and denote the state error x̃i := x̂i − x and parameter error p̃i =

pi − p? as in Section 6.2, we obtain the following state estimation error system from

(6.26) and (6.28)

˙̃xi =
(
A(pi) + Li(pi)C(pi)

)
x̃i +G(pi)

(
γ(wi)− γ(v)

)
+ G̃(pi, p

?)γ(v)

+
(
Ã(pi, p

?) + Li(pi)C̃(pi, p
?)
)
x+ B̃(pi, p

?)σ(u, y), (B.92)

where v := Hx, wi := Hx̂i+Ki(pi)(C(pi)x̂i−y), Ã(pi, p
?) := A(pi)−A(p?), B̃(pi, p

?) :=

B(pi)−B(p?), G̃(pi, p
?) := G(pi)−G(p?) and C̃(pi, p

?) := C(pi)− C(p?).

Since γk, k ∈ {1, . . . , nγ} is globally Lipschitz with Lipschitz constant bγk , there

exists a time-varying gain δ(t) = diag(δ1(t), . . . , δnγ (t)), where δk(t) take values in the

interval [0, bγk ] so that, for γ = (γ1, . . . , γnγ )

γ(wi)− γ(v) = δ(t)(wi − v), ∀wi, v ∈ Rnγ , i ∈ {1, . . . , N}. (B.93)

Therefore, (B.92) can be written as

˙̃xi = f̃(x̃i, pi, t) + g̃i(x, u, p̃i)

ỹi = Cx̃i, (B.94)

where f̃(x̃i, pi, t) :=
(
A(pi)+Li(pi)C(pi)

)
x̃i+G(pi)δ(t)

(
H+Ki(pi)C(pi)

)
x̃i, g̃i(x, u, p̃i) :=

Ki(pi)C̃(pi, p
?)x+ G̃(pi, p

?)γ(Hx) +
(
Ã(pi, p

?) + Li(pi)C̃(pi, p
?)
)
x+ B̃(pi, p

?)σ(u, y).

We choose a quadratic function Vi(x̃i) = x̃Ti Pix̃i, where Pi = P Ti > 0. Note that Vi

satisfies inequality (6.5) of Assumption 17 with a1 = λmin(Pi) and a2 = λmax(Pi).

By following the proof of Theorem 2 in [34] with the vector χi := (x̃i, δ(t)(H +

Ki(pi)C)x̃i, w̄), where w̄ = w̄(pi, p
?, x, u) := Ki(pi)C̃(pi, p

?)x+G̃(pi, p
?)γ(Hx)+

(
Ã(pi, p

?)+

Li(pi)C̃(pi, p
?)
)
x+ B̃(pi, p

?)σ(u, y), we obtain

V̇i(x̃i) ≤ −νi|x̃i|2 + µi|w̄|2. (B.95)

By Assumption 15, there exists lc > 0 such that for all p? ∈ Θ and pi ∈ Θo, we have

that |C̃(pi, p
?)| ≤ lc|p̃i|. Also, by Assumption 20, A(p), B(p) and G(p) are continuous

in p on Θ. Since Θ is a compact set, A, B and G are uniformly continuous on Θ. Hence,
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A, B and G admit la : R≥0 → R≥0, lb : R≥0 → R≥0 and lg : R≥0 → R≥0 as moduli

of continuity respectively [41], i.e. |A(pi)− A(p?)| ≤ la(|p̃i|), |B(pi)− B(p?)| ≤ lb(|p̃i|)
and |G(pi)−G(p?)| ≤ lg(|p̃i|), for all pi ∈ Θo and p? ∈ Θ. Therefore,

|w̄| ≤ w̃(p̃i, x, u), (B.96)

where w̃(p̃i, x, u) := lc|Ki(pi)||x||p̃i| + lg(|p̃i|)|γ(Hx)| +
(
la(|p̃i|) + |Li(pi)|lc|p̃i|

)
|x| +

lb(|p̃i|)|σ(u, y)|. By (B.95) and (B.96), inequality (6.6) of Assumption 17 is satisfied with

λ0 =
mini∈{1,...,N} νi

maxi∈{1,...,N} λmax(Pi)
and γ̃(z1, z2, z3) := maxi∈{1,...,N} µiw̃(z1, z2, z3)2. Therefore,

(6.6) holds. 2
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Appendix C: Values and

descriptions of standard

constants used in the models

Parameter Description Standard value
1
a1

, 1
a2

Average time constant in the
excitatory feedback loop

a1 = 55, a2 =
605 s−1

1
b1

, 1
b2

Average time constant in the
inhibitory feedback loop

b1 = 27.5, b2 =
55 s−1

V1, α1, r1 Parameters for the sigmoid
function. α1 is the maximum
firing rate. r1 is the slope
of the sigmoid and V1 is the
threshold of the population’s
mean membrane potential.

V1 = 6 mV,
α1 = 5 s−1,
r1 = 0.56 mV−1

C3, C4 Average number of synap-
tic contacts in the inhibitory
feedback loop

C3 = 32, C4 = 3

θA, θB Synaptic gain of the excita-
tory and inhibitory popula-
tions respectively

θA = 1.65, θB =
32

Table 1: Standard constants used in the model by Stam et al. in [138].
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Parameter Description Standard value
1
a Average time constant in the

excitatory feedback loop
a = 100 s−1

1
b Average time constant in the

slow inhibitory feedback loop
b = 50 s−1

V2, α2, r2 Parameters for the sigmoid
function. α2 is the maximum
firing rate. r2 is the slope
of the sigmoid and V2 is the
threshold of the population’s
mean membrane potential.

V2 = 6 mV,
α2 = 5 s−1,
r2 = 0.56 mV−1

C1, C2 Average number of synap-
tic contacts in the excitatory
feedback loop

With C = 135,
C1 = C and C2 =
0.8C

C3, C4 Average number of synaptic
contacts in the slow inhibitory
feedback loop

C3 = C4 = 0.25C

θA and θB Synaptic gain of the excita-
tory and inhibitory popula-
tions respectively

θA = 3.25 and
θB = 22

Table 2: Standard constants used in the model by Jansen and Rit in [74].

130



Appendix C

Parameter Description Standard value
1
a Average time constant in the

excitatory feedback loop
a = 100 s−1

1
b Average time constant in the

slow inhibitory feedback loop
b = 50 s−1

1
g Average time constant in the

fast inhibitory feedback loop
g = 500 s−1

V2, α2, r2 Parameters for the sigmoid
function. α2 is the maximum
firing rate. r2 is the slope
of the sigmoid and V2 is the
threshold of the population’s
mean membrane potential.

V2 = 6 mV,
α2 = 5 s−1,
r2 = 0.56 mV−1

C1, C2 Average number of synap-
tic contacts in the excitatory
feedback loop

With C = 135,
C1 = C and C2 =
0.8C

C3, C4 Average number of synaptic
contacts in the slow inhibitory
feedback loop

C3 = C4 = 0.25C

C5, C6 Average number of synaptic
contacts between the fast and
slow inhibitory feedback loop

C5 = 0.3C and
C6 = 0.1C

C7 Average number of synaptic
contacts in the fast inhibitory
feedback loop

C7 = 0.8C

θA, θB and θG Synaptic gain of the excita-
tory, fast inhibitory and slow
inhibitory populations respec-
tively

See [155] for val-
ues corresponding
to different brain
activity

Table 3: Standard constants used in the model by Wendling et al. in [155]
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