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Abstract

There are many real-life or man-made large scale systems comprise subsystems with overlapping

parts. In other words, the subsystems are strongly coupled in the overlapping (shared) parts but

weakly interconnected otherwise. Such systems are called to have overlapping structure. Feed-

back controller with the overlapping structure, which is consistent with structure of the system,

has been used widely to control such systems. The controller with overlapping structure com-

prises of local controllers which are fed by local information in addition to shared (overlapping)

information. The overlapping controller design is based on the mathematical framework called the

inclusion principle. The design procedure has three steps. First, the expanded system (includes

the original system) comprising interconnected subsystems is generated. Then, local controllers

are designed for interconnected subsystems of the expanded system. The local controllers form

a decentralised controller. Finally, the decentralised controller is contracted (transformed) to an

overlapping controller for implementation on the original system.

In this thesis, we will present a comprehensive study of the inclusion principle for linear systems.

First, a necessary and sufficient condition for stabilisability of linear time-invariant systems with

overlapping structure is presented. The conditions are related to minimality and the concept of

quotient fixed modes (QFMs). Meanwhile, an iterative algorithm is presented to guarantee the

contractibility of decentralised output feedback control law designed for the expanded system.

Also, stabilisability of overlapping uncertain linear systems by overlapping static output feedback

controllers is studied.

Furthermore, stabilisability of linear state-delay systems with overlapping structure is investigated.

An extension of the inclusion principle is presented to design robust overlapping output feedback

controllers for linear state-delay systems. Non-commensurate communication delays are assumed

to be constant and unknown but bounded by given values. First, the expanded system is gener-
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ated using the extended inclusion principle. Then, an iterative algorithm is suggested to design

robust local controllers for the interconnected subsystems. Finally, the designed decentralised

controller which is formed by local controllers, is contracted to an overlapping controller. It is

proven that stability and performance are preserved through the contraction process. From appli-

cation viewpoint, a two-area interconnected power system experiencing communication delay and

model uncertainties is studied. The power system is decomposed into two overlapping subsystems

with tie-lines being the overlapping parts. Afterwards, the proposed overlapping design approach

is used to design an overlapping Load Frequency Controller (LFC) for the case study. Simulation

results and a quantitative criterion clearly demonstrate the improved performance obtained by the

proposed overlapping LFC compared with existing ones under different scenarios for communi-

cation delays and uncertain parameters.

Motivated by the load frequency control problem in the presence of network delays, the inclusion

principle is used to design an overlapping output feedback controller for linear uncertain input-

delay system. The network delays are unknown and time-varying but with bounded size and rate

of change. Similar to before, the expanded system is generated at the first step. Then, robust local

controllers are designed for the interconnected subsystems using a proposed iterative algorithm.

The obtained decentralised control design is then contracted to an overlapping one for implemen-

tation on the original system. The preservation of stability and performance through contraction is

proven. As an application, the inclusion principle is used to design a robust overlapping LFC for

a three-area interconnected power system experiencing time-varying input delay. The simulation

results and quantitative criteria with the proposed overlapping LFC are compared with those of

existing decentralised LFCs.
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Chapter 1

Introduction

1.1 Motivations

Control of large-scale systems plays a vital role in different engineering disciplines, [1–3]. These

systems are comprised of interconnected subsystems, which are geographically distributed and

the information is exchanged among them through communication channels. Robotic vehicles

[1], Multi-area interconnected power systems [4], and network control systems [5] are examples

of such systems, to name a few.

For large scale systems, centralised control, where information is sent to a central station for con-

trol design purposes, may not be physically feasible, due to many reasons such as information

accessibility, highly cost of implementation and considerable computational effort as all infor-

mation has to be sent to a central controller. To overcome difficulties arising from centralised

controllers, structurally constrained controllers have been proposed. These types of controllers are

more feasible, easier to implement, require no information transfer to a central controller and de-

mand much less computational effort. A common type of structurally constrained controller is the

one with block-diagonal structure which is usually called a decentralised controller. The decen-

tralised controller is formed by local controllers, which are designed for local subsystems. Each

controller uses only information of a single subsystem to generate the control input for the same

subsystem. In other words, each subsystem is controlled separately. The problem of decentralised

control design has been studied for decades due to its significant applications in many real-life

systems [4, 6, 7].

However, an extensive number of natural or man-made large scale systems comprise of subsys-

tems with overlapping parts (see for example, power systems [8], platoon of vehicles [9, 10],

1



2 Introduction

mechanical systems [11], and large segmented telescope [12], to name a few). In these systems,

the subsystems are strongly coupled in the overlapping (shared) parts but weakly interconnected

otherwise. In other words, such systems are called to have overlapping structure. Recognizing the

overlapping structure is advantageous as a feedback controller with overlapping structure, which

is consistent with the structure of the system, can be implemented on it. A common approach

to the design of a controller with an overlapping structure is based on the expansion-contraction

process. In this process, a mathematical framework, called the inclusion principle, which pro-

vides the conditions for a system to include another lower dimensional system is used [13]. The

expansion-contraction process to design an overlapping controller comprises three steps (i) the

original interconnected overlapping system is expanded into a higher dimensional system (ex-

panded system) with disjointed subsystems. The expansion is carried out in such a way that the

properties of the original system are transferred to the expanded one [14], (ii) local controllers are

designed for each of the disjointed subsystems of the expanded system by using standard controller

design approaches [4, 6, 15], and (iii) the local controllers form a decentralised controller which

is then contracted (transformed) to an overlapping controller for implementation on the original

system. The main advantage of this approach is that the design of overlapping controller for the

original high-dimensional overlapping system is converted into the design of local controllers for

lower-dimensional subsystems, thus reducing the complexity of the design and associated compu-

tational cost.

Furthermore, in many real-life large scale systems, behaviour of system state depends on both

present and past states. This property of the systems is called a delay. Systems with this fea-

ture are called time-delay systems, and they have been extensively studied since 1963 due to their

importance and widespread observation. So, there have been many survey papers and books on

time-delay systems [16–18]. There are many motivations to study time-delay systems which can

be explained as follows to some extent.

• It is beneficial to model real-life systems with a high accuracy for engineering purposes such

that the the system’s behaviour can be obtained accurately through simulation. On the other

hand, internal dynamics of many real-life processes experience after-effect event. There are

chemical, biological, and engineering systems demonstrating this behaviour [19, 20]. So, it

is essential to consider this behaviour in the modelling stage to achieve high performance in
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feedback loops.

• There exist network delays which are originated from actuators, sensors and other essential

components of a feedback control system. Since these components are commonly used

in various areas such as communication and control domains [21] or robotics [22], taking

communication delays into consideration is crucial.

• On the other hand, it has been shown that injection of delays in many cases can be useful

for control purposes [23]. Many case studies, such as delayed resonators [24], time delay

controllers [25, 26], and limit cycle control in nonlinear systems [27], have been studied in

the open literature to investigate the advantages obtained through injection of delays.

• It is worth mentioning that delays are often source of poor performance and even instability

when classical controllers are implemented on the dynamical system. This happens due

to resilience of time-delays to existing control design approaches. It has to be noted that

although using finite-dimensional approximations instead of delays seems to be the simplest

approach to deal with time delay systems, it may lead to high degree of complexity and

disastrous behaviour in terms of oscillation and even stability.

A very fundamental issue in time-delay systems is stability which has been widely studied due

to its importance in dynamical systems [28, 29]. The study of stability was started by frequency

domain approaches [30] which is then followed by time-domain based approaches [31]. Time do-

main approaches are more common due to appearance of Matlab toolboxes such as linear matrix

inequalities (LMIs) [32] which can be used to construct appropriate Lyapunov-Krasovski func-

tion. Consequently, various stability criteria have been proposed in the literature [18]. They can

be categorized into two groups (i) delay-independent stability criteria: The stability analysis is

done disregarding nature and characteristics of delay. (ii) delay-dependent stability criteria: char-

acteristics of delay such as bounds on its size or rate of change, are considered in the stability

analysis. It is evident that since delay-independent approaches do not use any information on

delay in stability analysis, they lead to conservative results, especially in the presence of small

delays. On the other hand, the delay-dependent approaches provide more relaxed results as they

consider characteristics of delay in the stability analysis.

Finally, it is crucial to design a controller such that obtained closed loop system is robust to model’s
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uncertainties. The drawback of not accounting for uncertainties is that the designed controller may

not function according to the design specification when used in practice, as almost all industrial

models contain such uncertainties due to modelling error, approximations, and equipment aging.

Therefore, considerable attention has been given to design a robust controller such that perfor-

mance of the feedback control system is preserved regardless of changes in the plant’s parameters

[33–35].

Based on the above discussions, in the thesis, we are dealing with a system with overlapping

decomposition, which is experiencing disturbance (unknown input), network delays, and model

uncertainties. For such systems, this thesis designs a robust delay-dependent overlapping output

feedback controller based on the inclusion principle. The resultant closed loop system is robust to

both constant and time-varying communication delays and unknown energy bounded disturbance.

Finally, the load frequency controller (LFC) with overlapping structure is designed for multi-area

interconnected power systems to confirm the applicability of the thesis’s results.

1.1.1 Application

Load frequency control is essential for the successful operation of power systems, especially power

systems comprise of interconnected areas. Without it the frequency of power networks may not

be able to be controlled within the required limit band. The task of frequency control is primarily

achieved by the primary control loops through the governor droop control mechanism. However,

through governor control only, it is not possible to achieve zero steady state frequency deviation

and zero tie-line power transfer after changes in the loading condition. It is for this reason that

secondary LFC is required with aims of (i) achieving zero steady state errors in the frequency

deviations and zero tie-line power transfer, and (ii) damping out, as soon as possible, the transient

oscillations in the frequency and tie-line power deviations after changes in the load demand any-

where in the system.

Due to the major roles LFC plays, it has been a subject of much research over many decades. The

reader is suggested to read survey papers on LFC [36, 37]. In some research works, centralised

LFC design based on state feedback theory has been addressed [38–40]. The centralised LFC

refers to a central (global) controller which receives measurements from all states of a power sys-

tem to generate control inputs for all areas. In other words, there exists a central control station
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Figure 1.1: A centralised LFC scheme

where all calculations are done with access to all states of power system. The structure of a cen-

tralised LFC for a three-area longitudinal interconnected power system is shown in Fig. 1.1. Based

on Fig. 1.1, measured state of all areas xi; i = 1; 2; 3 are transferred to the centralised controller

to generate the control inputs ui; i = 1; 2; 3 for the areas.

However, there are three main practical drawbacks with the centralised LFC scheme of Fig. 1.1

as follows (i) a single fault in the central control station affects the control inputs of all areas, and

consequently, performances of all areas might be degraded. (ii) communication channels have

to be installed for information transfer from all areas to the central controller. Since power sys-

tems consist of interconnected areas, which are geographically distributed and separated by large

distances, extra communication channels add more complexity, delays, and probability of faults

occurring in the communication channels. (iii) measuring all states of a power system is costly

and complicated even if it is practically possible.

To overcome the above mentioned problems, decentralised LFC has been proposed, as an alter-

native and has been studied widely [41–46]. The decentralised LFC scheme consists of local

controllers such that each controller is responsible to generate the control input for each area us-

ing the area control error (ACE) measurement, which includes the frequency and tie-line power

exchanges, from the same area. In other words, each area is controlled separately in this LFC

scheme. Figure. 1.2 demonstrates the decentralised LFC scheme for a longitudinal three-are inter-

connected power system. As observed in Fig. 1.2, control input for each area is generated using

local ACE signal, which includes frequency deviation and tie-lines.

On the other hand, decentralised LFC which is obtained by elimination of information from other

areas, leads to loss of performance compared with centralised LFC [47]. In other words, there
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Figure 1.2: A decentralised LFC scheme

1u Area 1

Tie-line 

2u
Area 1

3u
Area 3

1ACE 2ACE 3ACE

Tie-line 

Area 2

Controller 1 Controller 2 Controller 3

Figure 1.3: An overlapping LFC scheme

exists a trade-off between performance and simplicity of LFC scheme. In order to improve per-

formance without a complex LFC scheme, overlapping LFC has been suggested [4, 8, 48]. In this

context, the multi-area interconnected power system is decomposed into overlapping areas such

that a tie-line between two neighbouring areas is the overlapping (shared) part between them. Once

the overlapping decomposition is determined, the overlapping LFC has to be designed. Based on

the overlapping decomposition where tie-lines are the overlapping parts, it is natural to add the

locally available overlapping (shared) tie-lines to the local controllers, in addition to local ACE

signals, to obtain enhanced performance. The scheme of overlapping decentralised control for a

longitudinal three-area interconnected power system is demonstrated in Fig. 1.3. It can be clearly

seen from Fig. 1.3 that overlapping LFC consists of local LFCs which are fed by local information

in addition to overlapping parts (tie-lines).

On the other hand, there exist time-delays in transferring measurements through communica-
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tion networks to governors and secondary controllers in real life [49], but have been neglected

in above cited approaches. It is worth recalling that time-delay can degrade LFC performance,

and may even cause instability in acute circumstances. This rather important theoretical and prac-

tical issue in the load frequency control problem has been addressed in some recent publications

[26, 50–52]. Centralised state feedback LFC considering constant communication delays are de-

signed in [26, 50]. However, It is usually not possible to directly measure the entire state vector.

So, decentralised output feedback LFC, which is robust to constant communication delays, is

suggested in [51] as alternative, which is easier to implement and more cost-effective than state

feedback LFC. A decentralised output feedback LFC robust to time-varying communication de-

lays is proposed in [52].

However, the above cited LFC design methods, though deal effectively with time-delays, they

cannot guarantee performance and stability against model’s uncertainties. So, this thesis aims

at designing an overlapping LFC, which is robust to communication delays (constant and time-

varying) and model’s uncertainties, to achieve (i) zero steady state deviation in frequency and tie-

line power deviations of each area (ii) better transient performance compared with existing LFCs.

To this end, an overlapping output feedback Proportional Integral (PI)-type LFC design approach

based on the inclusion principle is considered in this thesis. Two and three area interconnected

power systems experiencing constant and time-varying communication delays are considered in

Sections 3.5 and 4.5 respectively. In both case studied, extensive simulation results under different

scenarios demonstrate the advantage of robust overlapping LFC compared with existing LFCs.

1.2 Literature Review

Most of real-life systems are called large-scale either due do (i) their high dimensions which lead

to failure of traditional approaches for modelling or control in providing reasonable solutions,

(ii) they can be decomposed into lower-dimensional interconnected subsystems [53]. Control of

large-scale systems has become of a great interest over the past decades due to their applications

in various research areas, such as power systems [54], urban traffic network [55], and large space

structures [56]. To control such systems, centralised controller has been the first solution [57]. In

this context, all calculations are done in one central centre with access to all information of system.
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Figure 1.5: Decentralised feedback control system

The centralised control system is shown in Fig. 1.4, where u and y are control inputs and outputs

of large-scale system respectively.

However, as discussed in Section 1.1.1, there are some drawbacks, such as reliability or com-

plexity, with the centralised feedback structure. In order to overcome problems arising from the

centralised feedback structure, decentralised controller has been proposed. In this context, first,

large-scale systems are decomposed into lower-dimensional subsystems, which are interacting

with each other through interaction signals. Examples of such systems are electrical power sys-

tem which has several local stations, or highway system comprises of local traffic stations. Then,

a local controller is designed to control each area using measurements from the same area. In

other words, each area is controlled separately. A general structure of decentralised feedback

control system is shown in Fig. 1.5. As shown in Fig. 1.5, local control input ui for the ith

subsystem is generated using information yi. It is evident to see that as the large-scale system

is divided into lower-dimensional interconnected subsystems, computational cost decreases sig-

nificantly compared with centralised control. Finally, it has to be noted that the reliability of the
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Figure 1.6: Decomposition of three-area interconnected system with (a) longitudinal (b) loop (c)
radial

feedback control system increases considerably as the failure in one feedback loop does not affect

the overall closed loop system.

However, the simplicity of decentralised controller is obtained at the cost of performance loss. In

other words, there exists a trade-off between simplicity of feedback control system and the overall

performance. In order to improve the performance with preservation of controller’s simplicity, an

overlapping decentralised controller has been proposed [13, 58]. In this scheme, the large-scale

system is first decomposed into overlapping subsystems i.e. the subsystems with overlapping

(shared) parts. There are three main overlapping structures [59]: (i) longitudinal (chain) overlap-

ping structure (ii) loop (circle) overlapping structure (iii) radial (star) overlapping structure. These

overlapping structures for a system comprises of three-subsystems are shown in Fig. 1.6. In Fig.

1.6, three subsystems, where each one is determined by the coloured circle, have shared (overlap-

ping) parts. The shared parts have been coloured.

It is worth mentioning that comparing Fig. 1.6 with Fig. 1.5 illustrates the difference between
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Figure 1.7: Overlapping feedback control system

decentralised and overlapping decompositions. In the decentralised decomposition of Fig. 1.5,

subsystems are interconnected to each other. However, in overlapping decomposition of Fig. 1.6,

subsystems have overlapping (shared) parts.

Once the overlapping decomposition is determined, the overlapping output feedback controller has

to be designed, and implemented on the overlapping system shown in Fig. 1.6. The overlapping

controller comprises of local controllers, however, due to overlapping structure, it is advantageous

to add overlapping parts to local controllers to enhance the overall performance. Without loss of

generality but for simplification, the structure of overlapping controller for a system comprising N

subsystems in a longitudinal way is demonstrated in Fig. 1.7 In Fig. 1.7, yi; i = 1, 2, 3, . . . , N are

the control outputs which can be measured from the ith subsystem. The variable yoi denotes over-

lapping measured outputs between subsystems i and i + 1 i.e. these outputs are available in both

areas i and i + 1 to be measured. It is evident from Fig. 1.7 that overlapping controller comprises

of local controllers where each controller is fed by local measurements as well as all overlapping

parts.

The main idea to design an overlapping feedback control system is proposed by [13] based on the

inclusion principle, which is thoroughly explained in Section 1.3.1. In this context, overlapped
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Figure 1.8: The expansion-contraction process to design overlapping control system

spaces are first expanded to isolate the overlapped subsystems. Then, local control laws are de-

signed for disjoint subsystems. Finally, designed control laws are contracted (transformed) for

implementation on the original system. These steps have been illustrated in Figure. 1.8. As shown

in Fig. 1.8, first, the expanded system, which is determined by black dashed box, is generated
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by applying the expansion process to the original overlapping system determined by black dashed

box. In other words, the overlapping system is expanded such that overlapped parts between sub-

systems are duplicated, which leads to interconnected subsystems of the expanded system. Then,

local stabilising control laws ũi; i = 1, 2, 3, . . . , N are obtained for interconnected subsystems of

the expanded system through local design procedures. The aggregation of the designed control

laws leads to stabilising decentralised control law for the expanded system. Finally, through the

contraction process, the control laws ui; 1 = 2, 3, . . . , N are obtained and applied to the original

overlapping system. Under certain conditions, stability and performance of the overlapping sys-

tem with obtained control laws ui; 1 = 2, 3, . . . , N can be evaluated. The advantage of this idea

is that design of an overlapping controller for a large-scale system is formulated as design of local

controllers for interconnected subsystems of an expanded system and thus reducing complexity

and computational effort.

The inclusion principle, which provides mathematical framework for the expansion-contraction

process for linear time-invariant systems, is initially suggested in [13, 60]. It provides conditions

such that one large dynamical system (expanded system) includes another smaller dynamical sys-

tem (original system). Thus, all the information about the smaller one can be extracted from the

larger one. In the preliminary version of the inclusion principle presented in [13, 60], the state

space is only expanded i.e. it is assumed that subsystems have overlapping states while the sub-

systems have their own inputs and outputs. The extension of the inclusion principle to overlapping

states, inputs, and outputs is presented in [58]. In other words, subsystems have overlapping

inputs, states, and outputs in results of [58]. From application viewpoint, an overlapping state

feedback controller for a string of four moving vehicles has been designed based on the inclusion

principle [58]. Also, the expansion-contraction process, shown in Fig. 1.7, requires a selection

of sets of matrices, called complementary matrices. Set of necessary and sufficient conditions for

complementary matrices to satisfy is given in Theorem 2.17 of [13]. However, satisfying these

conditions is not practical especially for large-scale systems. Thus, two special cases of the in-

clusion principle, called aggregation and restriction, have been introduced in [13]. Using these

two concepts, sufficient conditions which complementary matrices should satisfy, are provided.

These conditions are more practical to satisfy and requiring less computation effort. However,

the results by [61] show that simultaneous transmission of controllability and observability from
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the original system to the expanded one is not possible through restriction and aggregation frame-

works. In other words, although the original overlapping system is minimal, the expanded system

has uncontrollable (with the restriction concept) and unobservable modes (with the aggregation

concept), which may lead to major issues in decentralised control design and achieving acceptable

performance. The transmission of controllability/observability properties from the original min-

imal system to the expanded one is the essential requirement as the decentralised control design

is done for the expanded system and then contracted for implementation on the original system.

To ensure simultaneous transmission of controllability/observability from the original system to

the expanded one, general structures of complementary matrices have been introduced in [62,63].

The proposed structures of complementary matrices provide more freedom in selection of comple-

mentary matrices than standard restriction and aggregation, and thus, minimal expanded system

can be obtained from the minimal original system [14, 64].

Of particular interest has been the problem of contractibility of stabilising decentralised control

laws designed for the linear expanded system to stabilising overlapping decentralised control laws

for the original systems. It has been demonstrated in [58] that any decentralised control law

designed for the expanded system cannot be contracted (transformed) to stabilising overlapping

control for implementation on the original system, and the designed decentralised control law has

to be modified to be contractible. However, the performance and even stability is not guaranteed

once the designed decentralised control law is modified, and these properties have to be inspected

again. To overcome this problem, the extension principle has been proposed in [65–67]. It has been

shown that if the extension principle is used to generate the expanded system, then any designed

decentralised static controller for the expanded system is contractible to overlapping controller for

implementation on the original system. However, the expanded system obtained by the extension

principle is not minimal, and consequently the expanded system may not be stabilisable. The

problem of contractibility has been extensively studied in [68] where it has been discussed that

observer (estimator) and feedback gains are contractible in the case of aggregation and restriction

respectively. Furthermore, many real-life systems such as chemical systems [69], electrical circuits

[70], and mechanical systems [71] have been represented by descriptor models (generalized state

space models). So, due to wide appearance of descriptor systems, [72] has presented the inclusion

principle framework for descriptor systems. The main objective is to determine conditions under
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which the solutions of a descriptor system can be reproduced with solutions of a larger descriptor

system. It has been shown that the inclusion principle framework for descriptor systems is more

sophisticated than those of linear time invariant systems. Finally, it is widely accepted that many

physical large-scale systems can be modelled as interaction of continuous and discrete systems

[73]. Such systems are called hybrid systems. The extension of the inclusion principle has been

given for hybrid systems [74], and its application has been illustrated in control of vehicle flight

formation control with hybrid model [75].

All the above cited approaches deal with linear time invariant systems. However, since large scale

systems with overlapping decomposition are likely to experience network delays and parametric

uncertainties, the inclusion principle should be extended to deal with control of overlapping un-

certain time-delay systems due to the importance of communication delays and uncertainties as

mentioned in Sections 1.1. The inclusion principle has been extended in [76] to design an over-

lapping state feedback controller for uncertain continuous-time state delay systems. Measuring

all states of large-scale systems, however, is costly and requires high computational cost even if

it is possible. Thus, an overlapping robust, output feedback controllers for uncertain discrete time

systems with constant communication delays is presented in [77]. However, there are two major

drawbacks with [76,77]. First, delay-independent design procedures of [76,77] are conservative as

no information on delay nature and its characteristics are involved in design procedures. Second,

the decentralised control design is done based on the bigger-dimensional of the expanded system,

thus, no benefits are taken from the decentralised structure of the expanded system.

The inclusion principle in all above mentioned research works have been applied to linear time-

invariant systems. The inclusion principle, however, for linear time-varying systems was first

introduced in [78, 79] where time-invariant transformations are used in the inclusion principle

concept. The conditions have been determined such that a time-varying linear system includes

smaller time-varying linear system. These results are then extended by [80] where time-varying

transformations are used in the inclusion principle definition. Finally, the extension of the in-

clusion principle to non-linear systems without inputs and outputs is presented in [81, 82]. The

sufficient conditions have been derived such that a non-linear system includes another smaller

non-linear system. Stability of Lotka-Volterra equations as a class of non-linear systems which

are used to model ecosystems [83], are investigated in [81, 82] The inclusion principle for heredi-
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tary dynamical systems, as another class of non-linear systems, has been introduced in [84].

1.3 Preliminaries

In this section, all preliminaries required to derive main results of this thesis are given.

1.3.1 The Inclusion Principle

The inclusion principle has been used extensively in the domain of large scale systems since the

early eighties. This principle provides the mathematical scheme such that a larger system contains

all the essential information about the smaller system. In other words, solutions of the larger

system include solutions of the smaller one. In this section, the summary of the inclusion principle

is given.

Consider pair of linear time invariant systems as:

Σ : ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

Σ̃ : ˙̃x(t) = Ãx̃(t) + B̃ũ(t),

ỹ(t) = C̃x̃(t) (1.1)

with u(t), x(t), and y(t) are m, n, and l dimensional vectors of input, state, and output respec-

tively. Also, ũ(t) ∈ Rm̃, x̃(t) ∈ Rñ, and ỹ(t) ∈ Rl̃ are input, state, and output of system Σ̃

respectively where m̃ > m, ñ > n, l̃ > l. Let V, R, and T be full column rank matrices, and U,

Q, and S are full row rank matrices such that UV = In, QR = Im, ST = Il . Then, the following

definition describes the inclusion principle [58].

Definition 1.1. The System Σ̃ includes system Σ if there exists quadruple (U, V, R, S) such that for

any initial state x0 and any input u(t), choices x̃0 = Vx0 and ũ(t) = Ru(t) result in x(t; x0, u) =

Ux̃(t; x̃0, ũ) and y(t) = Sỹ(t) for all t ≥ 0.

The inclusion principle implies that all the essential information about the smaller system Σ,

e.g. stability or performance, can be extracted from the behavoiur of larger system Σ̃. This is the
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prime feature of the inclusion principle.

Remark: The choice of basis does not have any effect on the inclusion principle. To show this,

let Σ̃ includes Σ based on definition 1.1. Let change of basis in both systems Σ and Σ̃ be x̄ = Ex

and ˜̄x = Ẽ−1 x̃ respectively. Then, it can be easily seen that x̄(t; x̄0, u) = Ū ˜̄x(t; V̄x̄0, ũ) and

y(t) = Sỹ(t), where V̄ = Ẽ−1VE−1 and Ū = EUẼ.

The next step is to obtain straightforward relations between matrices of Σ and Σ̃. First, the follow-

ing expressions have been introduced [58].

Ã = VAU + M, B̃ = VBQ + N, C̃ = TCU + L (1.2)

where M, N, and L are complementary matrices with appropriate dimensions. A proper selection

of the complementary matrices M, N, L is required for Σ̃ to include Σ. This is addressed in the

following theorem based on definition 1.1 [58].

Theorem 1.1. The system Σ̃ is an expansion of Σ in (1.1) if and only if

UMiV = 0, UMi−1NR = 0 SLMi−1V = 0, SLMi−1NR = 0 (1.3)

for i = 1, 2, . . . , ñ.

However, choosing the complementary matrices based on the Theorem 1.1 is not trivial for

large ñ. To solve this problem, special cases of the inclusion principle called restriction and

aggregation have been presented in [58].

Definition 1.2. The dynamical system Σ̃ is restriction of Σ if there exist transformations V, R, T

such that for arbitrary x0 and u(t), choices x̃0 = Vx0 and ũ(t) = Ru(t) lead to x̃(t) = Vx(t)

and ỹ(t) = Ty(t) for all t ≥ 0.

Definition 1.3. The dynamical system Σ̃ is aggregation of Σ if there exist transformations U, Q, S

such that for arbitrary x0 and u(t), choices x0 = Ux̃0 and u(t) = Qũ(t) lead to x(t) = Ux̃(t)

and y(t) = Sỹ(t) for all t ≥ 0.

Based on definition 1.1, it can be clearly seen that since UV = I, ST = I, and QT = I, we

can say that the system Σ̃ includes Σ if definition 1.2 or 1.3 holds.
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Next, based on definitions 1.2-1.3, certain conditions which complementary conditions should

satisfy are given as follows [58].

Theorem 1.2. The system Σ̃ is restriction of Σ if and only if:

MV = 0, NR = 0, LV = 0 (1.4)

It is evident that conditions (1.3) hold if conditions of (1.4) hold. This is consistent with the

fact that if the system Σ̃ is restrcition of Σ, then Σ̃ includes Σ, however, the vice-versa is not true.

Theorem 1.3. The system Σ̃ is aggrgation of Σ if and only if:

UM = 0, UN = 0, SL = 0 (1.5)

Similarly, we can say that the system Σ̃ includes Σ if set of conditions (1.5) holds. It is worth

mentioning that advantages of the restriction and aggregation definitions are introducing more

straightforward conditions, (1.4)-(1.5), for selection of complementary matrices.

1.3.2 Overlapping Decentralised Control

In this section, application of the inclusion principle in overlapping decentralised control design is

introduced.

1.3.3 Overlapping Decomposition

In order to clarify the overlapping decomposition, consider the following overlapping structure for

the system Σ given in (1.1):


ẋ1(t)

ẋ2(t)

ẋ3(t)

 =


A11 A12 A13

A21 A22 A23

A31 A32 A33




x1(t)

x2(t)

x3(t)

+


B11 B12 B13

B21 B22 B23

B31 B32 B33




u1(t)

u2(t)

u3(t)

 ,


y1(t)

y2(t)

y3(t)

 =


C11 C12 C13

C21 C22 C23

C31 C32 C33




x1(t)

x2(t)

x3(t)

 (1.6)
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where Aij ∈ Rni×nj , Bij ∈ Rni×mj , and Cij ∈ Rli×nj with i, j = 1, 2, 3. The dashed lines

denote that this system is composed of two overlapping subsystems, Σ1 and Σ2 which are shown

in (1.7). Based on the overlapping decomposition, u2, x2, and y2 correspond to overlapping parts

of the input, state, and output spaces, respectively. This overlapping structure can be generalized

for any number of interconnected overlapping subsystems, but the structure with two overlapped

subsystems has been extensively used as a prototype in the literature [14, 62, 76, 85].

Σ1 :

 ẋ1(t)

ẋ2(t)

 =

 A11 A12

A21 A22

 x1(t)

x2(t)

+

 A13

A23

 x3(t)+

 B11 B12

B21 B22

 u1(t)

u2(t)

+

 B13

B23

 u3(t),

 y1(t)

y2(t)

 =

 C11 C12

C21 C22

 x1(t)

x2(t)

+

 C13

C23

 x3(t)

Σ2 :

 ẋ2(t)

ẋ3(t)

 =

 A22 A23

A32 A33

 x2(t)

x3(t)

+

 A21

A31

 x1(t)+

 B22 B23

B32 B33

 u2(t)

u3(t)

+

 B21

B31

 u1(t),

 y2(t)

y3(t)

 =

 C22 C23

C32 C33

 x2(t)

x3(t)

+

 C21

C31

 x1(t) (1.7)

The overlapping decentralised static output feedback controller, with the structure consistent with

the structure of the original system Σ, consists of two static controllers K1 and K2 given in (1.8).

K1 :

 u1(t)

u2(t)

 =

 k(1)11 k(1)12

k(1)21 k(1)22

 y1(t)

y2(t)


K2 :

 u2(t)

u3(t)

 =

 k(2)11 k(2)12

k(2)21 k(2)22

 y2(t)

y3(t)

 (1.8)
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Figure 1.9: Closed loop system with overlapping output feedback controller

The implementation of overlapping decentralised output feedback controller is shown in Fig.1.9.

Using (1.8), the overlapping output feedback controller K can be shown as follows:


u1(t)

u2(t)

u3(t)

 =


k(1)11 k(1)12 0

k(1)21 k(1)22 + k(2)11 k(2)12

0 k(2)21 k(2)22


︸ ︷︷ ︸

K


y1(t)

y2(t)

y3(t)

 (1.9)

In order to use the inclusion principle to design the overlapping controller K, first, the expanded

system which includes the original system Σ based on definition 1.1 has to be generated. To

this end, the singular transformations V, R, T have to be chosen appropriately. Based on the

overlapping decomposition of (1.6), the full column rank transformations are chosen as:

V =


In1 0 0

0 In2 0

0 In2 0

0 0 In3

 , R =


Im1 0 0

0 Im2 0

0 Im2 0

0 0 Im3

 , T =


Il1 0 0

0 Il2 0

0 Il2 0

0 0 Il3

 (1.10)

It has to be noted that the singular transformations are chosen such that the overlapping dynamics

are duplicated in the expanded space through ũ(t) = Ru(t), x̃(t) = Vx(t), and ỹ(t) = Ty(t).
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According to the singular transformations V, R, T, the full row rank transformations U, Q, S are:

U =


In1 0 0 0

0
1
2

In2

1
2

In2 0

0 0 0 In3

 , Q =


Im1 0 0 0

0
1
2

Im2

1
2

Im2 0

0 0 0 Im3

 ,

S =


Il1 0 0 0

0
1
2

Il2
1
2

Il2 0

0 0 0 Il3

 (1.11)

Now, the complementary matrices can be chosen using (1.4) or (1.5). In the sequel and without

loss of generality, structures of the complementary matrices using the set of conditions (1.4) are

shown.

M =


0 M12 −M12 0

0 M22 −M22 0

0 −M33 M33 0

0 M42 −M42 0

 , N =


0 N12 −N12 0

0 N22 −N22 0

0 −N33 N33 0

0 N42 −N42 0

 ,

L =


0 L12 −L12 0

0 L22 −L22 0

0 −L33 L33 0

0 L42 −L42 0

 , (1.12)

where Mij, Nij, Lij are arbitrary entries.

Since the idea of the inclusion principle is expansion of the original system Σ to comprise two

weakly interconnected subsystems, it is desired to provide maximum zero off-diagonal blocks in

the expanded system’s matrices [58]. To this end, the complementary matrices M, N, and L in
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(1.12) are chosen as follows.

M =



0 1
2 A12 − 1

2 A12 0

0 1
2 A22 − 1

2 A22 0

0 − 1
2 A22

1
2 A22 0

0 − 1
2 A32

1
2 A32 0


, N =



0 1
2 B12 − 1

2 B12 0

0 1
2 B22 − 1

2 B22 0

0 − 1
2 B22

1
2 B22 0

0 − 1
2 B32

1
2 B32 0


,

L =



0 1
2 C12 − 1

2 C12 0

0 1
2 C22 − 1

2 C22 0

0 − 1
2 C22

1
2 C22 0

0 − 1
2 C32

1
2 C32 0


, (1.13)

Finally, substituting the complementary matrices (1.13) and singular transformations (1.10)-(1.11)

into (1.2) leads to the expanded system Σ̃ given in (1.1) as follows:

 ˙̃x1(t)

˙̃x2(t)

 =



A11 A12 0 A13

A21 A22 0 A23

A21 0 A22 A23

A31 0 A32 A33


 x̃1(t)

x̃2(t)

+



B11 B12 0 B13

B21 B22 0 B23

B21 0 B22 B23

B31 0 B32 B33


 ũ1(t)

ũ2(t)

 ,

 ỹ1(t)

ỹ2(t)

 =



C11 C12 0 C13

C21 C22 0 C23

C21 0 C22 C23

C31 0 C32 C33


 x̃1(t)

x̃2(t)

 (1.14)

As shown by dashed lines in (1.14), the expanded system consists of two interconnected subsys-

tems Σ̃1 and Σ̃2 as shown below:

Σ̃1 : ˙̃x1(t) =

 A11 A12

A21 A22

 x̃1(t) +

 A13

A23

 x̃2(t) +

 B11 B12

B21 B22

 ũ1(t) +

 B13

B23

 ũ2(t),

ỹ1(t) =

 C12 C12

C21 C22

 ỹ1(t) +

 C13

C23

 ỹ1(t)
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Figure 1.10: Closed loop system with decentralised output feedback controller

Σ̃2 : ˙̃x2(t) =

 A22 A23

A32 A33

 x̃2(t) +

 A21

A31

 x̃1(t) +

 B22 B23

B32 B33

 ũ2(t) +

 B21

B31

 ũ1(t),

ỹ2(t) =

 C22 C23

C32 C33

 ỹ2(t) +

 C21

C31

 ỹ1(t)

where x̃T
1 = (xT

1 , xT
2 ), x̃T

2 = (xT
2 , xT

3 ), ỹT
1 = (yT

1 , yT
2 ), ỹT

2 = (yT
2 , yT

3 ), ũT
1 = (uT

1 , uT
2 ), ũT

2 =

(uT
2 , uT

3 ). The description of states show that the overlapping parts u2(t), x2(t), y2(t) have been

duplicated to disjoint the overlapping subsystems.

Afterwards, local static output feedback controllers K̃1 and K̃2 are designed for the interconnected

subsystems of the expanded system, as given in (1.15):

K̃1 :

 u1(t)

u2(t)

 =

 k̃(1)11 k̃(1)12

k̃(1)21 k̃(1)22

 y1(t)

y2(t)

 ,

K̃2 :

 u2(t)

u3(t)

 =

 k̃(2)11 k̃(2)12

k̃(2)21 k̃(2)22

 y2(t)

y3(t)

 (1.15)

The implementation of local feedback gains on the expanded system is demonstrated in Fig.

1.10. The designed local controllers are then used to form a decentralised controller K̃D =

Blkdiag{K̃1, K̃2}, where Blkdiag denotes Block-diagonal matrix. The decentralised gain K̃D is

then contracted to an overlapping controller for implementation on the original system as shown
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in Fig. 1.9. The definition of contractibility is given next [58]. diag

Definition 1.4. Let the system Σ̃ includes the system Σ by definition 1.1. Then, the designed decen-

tralised control law ũ(t) = K̃Dỹ(t) for the expanded system Σ̃ is contractible to an overlapping

control law u(t) = Ky(t) to be implemented on the original system Σ if for any initial state x0,

the choice x̃0 = Vx0 leads to RKy(t) = K̃Dỹ(t).

Definition 1.4 implies that if the decentralised controller K̃D is contractible to the overlapping

controller K, then the closed loop:

˙̃x(t) = (Ã + B̃K̃DC̃)x̃(t) (1.16)

includes (or is expansion of) the closed loop:

ẋ(t) = (A + BKC)x(t) (1.17)

Thus, all the essential information such as stability or performance corresponding to the original

closed loop system (1.17) can be extracted from the expanded closed loop system (1.16).

In the sequel, the necessary and sufficient condition for contractibility is given [58].

Theorem 1.4. Let the system Σ̃ includes the system Σ based on definition 1.1. Then, the controller

K̃D is contractible to the overlapping controller K if and only if

K̃DC̃ÃiV = RKCAi,

K̃DC̃Ãi B̃R = RKCAiB (1.18)

for i = 0, 1, 2, . . . , ñ− 1.

However, the contractibility conditions (1.18) are reduced to one simple condition when the

expansion is done through the restriction concept given in definition 1.2. [58]

Theorem 1.5. Let the system Σ̃ includes the system Σ by definition 1.2. Then, the controller K̃D

is contractible to the overlapping controller K if and only if K̃DT = RK.

If the contractibility condition of theorem 1.5 holds, then the overlapping controller K can be

obtained by K = QK̃DT. However, based on structures of K and K̃D and transformations R and T
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(1.10), it can be clearly seen that in order to satisfy the contractibility condition, the decentralised

controller K̃D has to be modified as follows [58]:

K̃D =



k̃(1)11 k̃(1)12 0 0

k̃(1)21
1
2
(k̃(1)22 + k̃(2)11 ) 0 k̃(2)12

k̃(1)21 0
1
2
(k̃(1)22 + k̃(2)11 ) k̃(2)12

0 0 k̃(2)21 k̃(2)22


(1.19)

Once this modification is done, the overlapping controller K can be calculated by K = QK̃DT:

K =


k̃(1)11 k̃(1)12 0

k̃(1)21
1
2
(k̃(1)22 + k̃(2)11 ) k̃(2)12

0 k̃(2)21 k̃(2)22

 (1.20)

On the other hand, if the system Σ̃ includes the system Σ by aggregation definition 1.3, then the

contractibility definition has become:

Definition 1.5. Let the system Σ̃ includes the system Σ by definition 1.3. Then, the designed decen-

tralised control law ũ(t) = K̃Dỹ(t) for the expanded system Σ̃ is contractible to an overlapping

control law u(t) = Ky(t) to be implemented on the original system Σ if for any initial state x0,

the choice x̃0 = Vx0 leads to Ky(t) = QK̃Dỹ(t).

The following theorem determines the contractibility condition based on definition 1.5:

Theorem 1.6. Let the system Σ̃ be expansion of Σ by definition 1.5. Then, the decentralised

control law ũ(t) = K̃Dỹ(t) is contractible to overlapping control law if and only if QK̃D = KS.

Similar to theorem 1.5, it can be shown that the decentralised control K̃D has to be modified

in order to satisfy the contractibility condition.

Once the overlapping controller K is obtained through the contraction process, it has to be im-

plemented on the original system Σ. Steps of designing the overlapping controller based on the

inclusion principle are demonstrated in Fig. 1.11.



1.3 Preliminaries 25



 DK

K

System 

expansion

Decentralised 

control design

Controller 

contraction

Controller 

implementation

Step 1:

Step 2:

Step 3:

Step 4:

Figure 1.11: Scheme of overlapping controller design

1.3.4 Controllability/Observability in The Inclusion Principle

One fundamental question in the inclusion principle is whether the properties of the original sys-

tem such as controllability/observability are transmitted to the expanded system through the ex-

pansion process. To ensure simultaneous transmission of controllability/observability from the

original system to the expanded one, first, general structures of complementary matrices intro-

duced in [62] are presented through the following theorem.

Theorem 1.7. The system Σ̃ includes Σ based on definition 1.1 if and only if:


M12

M23 + M33

M42

 [M22 + M33]
i−2 ×

[
M21 M22 + M23 M24

]
= 0,


M12

M23 + M33

M42

 [M22 + M33]
i−2 ×

[
N21 N22 + N23 N24

]
= 0,


L12

L23 + L33

L42

 [M22 + M33]
i−2 ×

[
M21 M22 + M23 M24

]
= 0,
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L12

L23 + L33

L42

 [M22 + M33]
j−2 ×

[
N21 N22 + N23 N24

]
= 0 (1.21)

for all i = 2, · · · , ñ and j = 2, · · · , ñ + 1, where:

M =


0 M12 −M12 0

M21 M22 M23 M24

−M21 −(M22 + M23 + M33) M33 −M24

0 M42 −M42 0

 (1.22)

and N and L have the same structure as the matrix M when substituting Mij by Nij and Lij

respectively.

It has to be mentioned that conditions (1.21) are more straightforward than those of theorem

1.1. The conditions of (1.21), however, can still be simplified by taking into consideration that

they can be satisfied in two ways. Either the right brackets in (1.21) are zero, i.e.

[
M21 M22 + M23 M24

]
=0,[

N21 N22 + N23 N24

]
= 0 (1.23)

Or the left brackets in (1.21) are zero, i.e.


M12

M23 + M33

M42

 =0,


L12

L23 + L33

L42

 = 0 (1.24)

Using the new conditions on complementary matrices, the following theorem has been given in

[14] regarding minimality of the expanded system.

Theorem 1.8. Let the expanded system Σ̃ be constructed from the minimal system Σ such that the

complementary matrices M, N, L satisfy either conditions (1.23) or (1.24). Then, the expanded

system Σ̃ is both controllable and observable.
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1.3.5 Overlapping Time-Delay Systems

As mentioned in Section 1.2, the inclusion principle has been extended for continuous [76] and

discrete time [77] large-scale systems, experiencing communication delays and model uncertain-

ties. In the sequel, some of the relevant results of [76] are given.

The following uncertain state-delayed system S is borrowed from [76]:

S : ẋ(t) = (A + ∆A)x(t) + (Ad + ∆Ad)x(t− d) + (B + ∆B)u(t) + B1w(t),

z(t) = Cx(t) + Du(t),

x (t0)= ϕ (t0) , −d ≤ t0 ≤ 0 (1.25)

where ϕ (t0) is the initial condition. w(t) ∈ Rq is an unknown input (disturbance), and z(t) ∈ Rp

is the controlled output. Definition of the other variables are the same as those of (1.1).

The norm bounded uncertainties ∆A, ∆Ad, ∆B are assumed to be expressed as follows:

[
∆A ∆Ad ∆B

]
=


HA 0 0

0 Hd 0

0 0 HB

 F


EA

Ed

EB

 (1.26)

where HA, Hd, HB, EA, Ed, EB are known matrices with appropriate dimensions, and F is an un-

known matrix with Lebesgue measurable entries such that FT F ≤ I.

Similar to (1.25), consider larger system S̃ as follows:

S̃ : ˙̃x(t) = (Ã + ∆Ã)x̃(t) + (Ãd + ∆Ãd)x̃(t− d) + (B̃ + ∆B̃)u(t) + B̃1w(t),

z̃(t) = C̃x̃(t) + Du(t),

x̃ (t0)= ϕ̃ (t0) , −d ≤ t0 ≤ 0 (1.27)

The uncertainties ∆Ã, ∆Ãd, ∆B̃ are assumed to be norm-bounded with the following structures:

[
∆Ã ∆Ãd ∆B̃

]
=


H̃A 0 0

0 H̃d 0

0 0 H̃B

 F


ẼA

Ẽd

ẼB

 (1.28)
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Now, let the following inequalities related to systems S and S̃ hold for any square integrable signal

w(t):

‖z (t)‖2 ≤ γ ‖w (t)‖2 ,

‖z̃ (t)‖2 ≤ γ̃ ‖w (t)‖2 (1.29)

It can be clearly seen that smaller values of H∞ performance indexes γ and γ̃ denote better perfor-

mance as they determine the effect of unknown input (disturbance) on the controller output vector.

Thus, the primary objective in robust control design is minimizing H∞ performance index.

In the sequel, a new definition of the inclusion principle considering H∞ performance index is

provided [76]:

Definition 1.6. A pair (S̃, γ̃) includes (or is expansion of) the pair (S, γ) if there exists a pair of

transformations (U, V) such that for any initial condition ϕ(t0), any input u(t) and any distur-

bance w(t), the choice ϕ̃(t0) = Vϕ(t0) leads to x(t) = Ux̃(t) and γ̃ = γ.

In order to derive relations between the system S and larger system S̃, consider the following

relations similar to (1.2):

Ã = VAU + M, ∆Ã = V∆AU, C̃ = TCU + L,

B̃ = VB + N, ∆B̃ = V∆B, Ãd = VAdU + Md,

B̃1 = VB1 + M1, ∆C̃ = CU + L, (1.30)

Based on the relations (1.30), necessary and sufficient conditions which complementary matrices

should satisfy are given by the following theorem:

Theorem 1.9. The pair (S̃, γ̃) includes the pair (S, γ) if and only if:

UMiV = 0, UMi−1MdV = 0, UMi−1N = 0,

UMi M1 = 0, LV = 0, (1.31)

for all i = 1, 2, . . . , ñ.

Once the expanded system is generated, the decentralised state feedback controller u(t) =
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K̃D x̃(t) has to be designed for the expanded system such that the closed loop S̃c:

S̃c : ˙̃x(t) = (Ã + ∆Ã + (B̃ + ∆B̃)K̃DC̃)x̃(t) + (Ãd + ∆Ãd)x̃(t− d) + B̃1w(t),

z̃(t) =
(
C̃ + DK̃D

)
x̃(t)

x̃ (t0)= ϕ̃ (t0) , −d ≤ t0 ≤ 0 (1.32)

is robustly quadratically stable with H∞ index γ̃ for all admissible uncertainties i.e. the closed

loop system S̃c is quadratically stable and the inequality ‖z̃(t)‖2 ≤ γ̃ ‖w(t)‖2 holds for zero

initial condition.

The following theorem can be used to design K̃D such that the closed loop (1.32) is robustly

quadratically stable [76].

Theorem 1.10. Let the expanded system be generated using (1.30)-(1.31). If for some positive

scalars ε1, ε2, there exist positive-definite matrices Q and Y such that the following matrix in-

equality holds: 
W1 QWT

2 YT ẼT
B

∗ −I 0

∗ ∗ −ε−1 I

 < 0 (1.33)

where

W1 = ÃQ + QÃT + B̃Y + YB̃T + Z + γ̃−2B̃1B̃T
1 ,

W2 =
[

ẼT
A ẼT

d I
]

,

Z = H̃AH̃T
A + H̃dH̃T

d + (1 +
1
ε1
)H̃BH̃T

B + Ãd ÃT
d (1.34)

then, there exists static state feedback controller K̃D = YQ−1 such that the resultant expanded

closed loop system (1.32) is robustly quadratically stable with H∞ performance index γ̃.

Remark: It is evident from theorem 1.10 that design procedure is in category of delay-independent

approaches as no information on delay is used in the design procedure. So, conservative results

may be obtained by solving (1.33).

Finally, the designed robust decentralised controller K̃D is contracted to an overlapping controller
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K to be implemented on the original system. The contraction is done as follows [76]:

K = K̃DV (1.35)

It has been proven in [76] that the closed loop system:

Sc : ẋ(t) = (A + ∆A + (B + ∆B)KC)x(t) + (Ad + ∆Ad)x(t− d) + B1w(t),

z(t) = (C + DK) ,

x (t0)= ϕ (t0) ,−d ≤ t0 ≤ 0 (1.36)

is quadratically stable with H∞ performance γ, where γ̃ = γ.

1.4 Summary

In this chapter, first, we provide the introduction to overlapping feedback control systems. To

motivate the application of such systems, a load frequency control problem is discussed. The in-

clusion principle as the mathematical framework is introduced to deal with overlapping feedback

control systems. This is then followed by surveying the existing research works on the inclusion

principle. The inclusion principle and its properties for linear systems are presented thoroughly.

Finally, designing an overlapping feedback controller for time-delay systems based on the inclu-

sion principle is investigated.

1.5 Thesis Outline

Chapter 2: Stabilisability of Overlapping Linear Systems. In the first part of this chapter, a

necessary and sufficient condition for stabilisation of linear time invariant systems with overlap-

ping parts is presented. To this end, these systems are first expanded to decouple the overlapping

parts and then a necessary and sufficient condition, which relates to their algebraic properties,

is derived. The algebraic properties are characterised in terms of minimality (full controllability

and observability) and the concept of quotient fixed modes (QFMs) of the expanded systems. In

the second part of this chapter, stabilisability of overlapping uncertain linear systems with fixed
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modes by means of overlapping static output feedback controllers is studied. The expanded sys-

tem, where the overlapping parts appear as interconnected ones, is generated. An iterative linear

matrix inequality (ILMI) algorithm is proposed to find (i) maximum upper bounds on the induced

2-norm of the uncertainties such that the uncertain expanded system is robustly stabilisable with a

decentralised static output feedback control, and (ii) a robust decentralised guaranteed static out-

put feedback cost controller for the expanded system. Finally, the returned results of ILMI are

contracted (transformed) to a robust overlapping guaranteed cost controller and upper bounds on

the uncertainties of the original system. Illustrative examples are used to confirm the results of

this chapter.

Chapter 3: Stabilisation of Overlapping Time-Delay Systems. Stabilisability of overlapping

linear continuous-time uncertain systems with constant communication delays by robust overlap-

ping output feedback controllers is studied in this chapter. To this end, an extension of the inclusion

principle is presented, where the overlapping system is first expanded into a higher dimensional

system (expanded system). Then, robust local delay-dependent output feedback controllers, for

disjoint subsystems, are designed, using a proposed LMI based iterative algorithm. Finally, the

designed local controllers are contracted to an overlapping controller to be implemented on the

original system. The preservation of stability and performance through contraction is proven. The

robust, overlapping, LFC for an uncertain two-area interconnected power system, experiencing

communication delays and parametric uncertainties is designed to verify the results of this chap-

ter.

Chapter 4: Robust Controller Design for Overlapping Uncertain Systems with Time-varying

Measurement Delay. The inclusion principle is used to design a robust, overlapping, H∞ static,

output feedback controller for continuous input-delayed uncertain systems with overlapping de-

composition. The input delay is unknown but assumed to be time-varying with given upper bounds

on the size and derivative of delay. The system considered is comprising a number of overlapping

subsystems with structured, time-varying, and norm-bounded uncertainties. In this approach, the

original overlapping system is first expanded into a higher dimensional system. Then, an LMI

based delay-dependent iterative algorithm is proposed for the design of robust H∞ local output

feedback controllers for the each of the decoupled subsystems of the expanded system. Finally,

the designed decentralised controller is contracted to a robust overlapping controller for implemen-
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tation on the original system. The preservation of stability and performance through contraction is

proven. The validity of the proposed design approach is demonstrated by designing an overlapping

LFC for an uncertain 3-area interconnected power system experiencing measurement delay. Ex-

tensive simulation results provided under different scenarios verify the accuracy of the proposed

design approach.

Chapter 5: Conclusion. This chapter concludes the thesis and provides future research directions.
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Chapter 2

Stabilisability of Overlapping Linear
Systems

In this chapter, first, a necessary and sufficient condition for stabilisation of linear time invariant

systems with overlapping parts is presented. These systems are first expanded to decouple the overlap-

ping parts and then a necessary and sufficient condition, which relates to their algebraic properties, in

terms of minimality, is derived. An iterative algorithm is suggested to design stabilising decentralised

controller such that contractibility is guaranteed. A numerical example is used to verify the results of

this section.

Then, a sufficient condition for stabilisability of uncertain linear systems by overlapping static output

feedback controllers is presented. The overlapping system is first expanded based on the inclusion

principle. Then, an ILMI algorithm is proposed to find (i) the maximum upper bounds on the induced

2-norm of the uncertainties such that the uncertain expanded system is robustly stabilisable with a

decentralised static output feedback control, and (ii) a robust decentralised guaranteed static output

feedback cost controller for the expanded system. Finally, the obtained results by ILMI are contracted

to the original space. An illustrative example is provided to confirm the accuracy of results.

2.1 Introduction

A discussed in the preceding section, expansion-contraction process based on the inclusion prin-

ciple is the useful tool in dealing with large scale systems with overlapping decomposition. The

expansion-contraction process requires a judicial selection of matrices, referred to as complemen-

tary matrices. On the other hand, a key consideration in the expansion process is the desirable

requirement for the expanded system to preserve the controllability-observability (minimality)

properties of the original system. However, the transmission of minimality from the original sys-

tem to the expanded one is not guaranteed through the standard selection of complementary ma-

33
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trices, as shown in [61]. Therefore, standard complementary matrices may render the expanded

system to be centralised unstabilisable. On the other hand, as shown in [14], the choice of general

structure of complementary matrices proposed in [62] can ensure preservation of minimality in

the expanded system. However, centralised stabilisability by static output feedback control does

not directly translate to: (i) decentralised stabilisability of the expanded system, which is the key

theme of this section, or (ii) overlapping decentralised stabilisability of the original system by the

contracted overlapping decentralised controller.

On the other hand, as mentioned in Section 1.2, of particular interest has been the problem of

contractibility of stabilising decentralised control laws designed for the expanded system to stabil-

ising overlapping decentralised control laws for the original systems. To overcome this problem,

the extension principle, as the special case of inclusion principle, has been used to guarantee con-

tractibility of decentralised output controllers [66]. This approach, however, leads to non-minimal

expanded systems, and consequently the expanded system may not be stabilisable the contractibil-

ity. It is worth recalling that decentralised stabilisability of expanded systems can be assessed in

terms of existence of QFMs [86], which are fixed modes that cannot be removed by any type of

decentralised control. If any of the QFMs is unstable, then decentralised stabilisability will not be

possible by any type of controller.

In the first part of this chapter, a necessary and sufficient condition for stabilisability of linear

time invariant systems with overlapping parts by overlapping decentralised static output feedback

controllers is presented. The conditions relate to properties of expanded system matrices and

the concept of QFMs. Then, in order to overcome the problems arising from the contractibility

conditions, we introduce a procedure where stabilising decentralised static output feedback con-

trollers designed for the expanded systems can always be contracted to stabilising overlapping

decentralised controllers for the original systems.

2.2 Preliminaries

Consider linear time invariant system Σ given in (1.1) with the overlapping decomposition deter-

mined in (1.6). In order to generate the expanded system Σ̃, first, the complementary matrices

M, N, L are chosen by theorem 1.7 and relations 1.23, which ensure simultaneous transmission
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of controllability/observability from the original system to the expanded one as discussed in theo-

rem 1.8. Then, based on conditions (1.23) and matrix L as per theorem 1.7, we obtain following

structures for complementary matrices:

M =


0 M12 −M12 0

0 M22 −M22 0

0 −M33 M33 0

0 −M42 M42 0

 , N =


0 N12 −N12 0

0 N22 −N22 0

0 −N33 N33 0

0 −N42 N42 0

 ,

L =


0 L12 −L12 0

L21 L22 L23 L24

−L21 −(L22 + L23 + L33) L33 −L24

0 L42 −L42 0

 (2.1)

In order to provide the expanded system’s matrices with maximum zero off-diagonal blocks, the

standard complementary matrices given in [62] are chosen. Then, matrices Ã, B̃, and C̃ of the

expanded system Σ̃ given in (1.1) through relations 1.2 are obtained as follows:

Ã =



A11 A12 0 A13

A21 A22 0 A23

A21 0 A22 A23

A31 0 A32 A33


, B̃ =



B11 B12 0 B13

B21 B22 0 B23

B21 0 B22 B23

B31 0 B32 B33


,

C̃ =



C11 C12 0 C13

2C21 C22 0 0

0 0 C22 2C23

C31 0 C32 C33


(2.2)

Next, a decentralised static output feedback controller K̃D = Blkdiag{K̃1, K̃2} is designed where

K̃1 and K̃2 are shown in (1.15). Once the design is complete, K̃D should be contracted to an over-

lapping decentralised static output feedback control K (1.20) to be implemented on the original

system Σ.
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Now, suppose conventional partition for K̃D as K̃D = RKS + JK [87], where JK denotes com-

plementary matrix. Then, the following theorem determines equivalent conditions as those of

theorem 1.4 based on the complementary matrix Jk [87] .

Theorem 2.1. A controller K̃D for Σ̃ is contractible to K for Σ if and only if:

(I) JK LMi+1V = 0,

(I I) JK LMiNR = 0,

(I I I)JK(TC + LV) = 0 (2.3)

for all i = 0, 1, ..., ñ.

2.3 Problem Statement

Consider systems Σ and its expansion Σ̃ described in (1.1) such that the latter system includes the

former one by definition 1.1. The aims of this section are as follows:

• Deriving necessary and sufficient condition for stabilisability of Σ with overlapping decen-

tralised static output feedback K (1.20) through the inclusion principle.

• Designing stailisable and contractible decentralised static output feedback for the expanded

system.

2.4 Overlapping Decentralised Stabilisability

With the above preliminary materials, we now introduce main results of this section.

Theorem 2.2. Consider minimal system Σ with overlapping parts as shown in (1.6). Let the

minimal expanded system be constructed per theorem 1.7 with the complementary submatrices

satisfying (1.23). Then, original system Σ is stabilisable by an overlapping decentralised static

output feedback controller K if and only if the expanded system does not have any unstable QFM.

Proof. The sufficiency of the theorem is straightforward. If the minimal expanded system ob-

tained by choice of complementary matrices as per theorem 1.7, does not have any unstable QFM
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(stabilisable via decentralised static output feedback control), then the original system is stabil-

isable through contracted overlapping decentralised static output feedback controller as shown in

[4]. Therefore, we now need to prove the necessity of the theorem, that is the minimal expanded

system does not have any unstable QFM. In order to prove necessity of the theorem, we use con-

tradiction approach, where we assume that there exists an unstable λ̃ ∈ eig(Ã) in the minimal

expanded system which is a QFM i.e. as defined in [86]:

∩K̃D
eig(Ã + B̃K̃DC̃) 6= ∅→ det(λ̃I − Ã− B̃K̃DC̃) = 0, (2.4)

where det(.) stands for determinant, and ∩K̃eig(.) denotes any eigenvalue of (.) which is inde-

penedent of K̃D. Since expanded closed loop system Ã + B̃K̃DC̃ includes original closed loop

system A + BKC [4], we have:

Ã + B̃K̃DC̃ = V(A + BKC)U + Mcl , (2.5)

with Mcl is the complementary matrix for closed loop expansion satisfying the condition UMi
clV =

0 (i = 1, 2, ..., ñ), based on theorem 1.1. Let V̂ ∈ Rñ×(ñ−n) be any basis matrix formed from the

null space of U, i.e. V̂ for matrix U = (VTV)−1VT can be:

V̂ =
[

0 In2 −In2 0
]T

(2.6)

Then by constructing nonsingular matrix ζ = [V V̂] and using (2.5), we have:

ζ−1 (λ̃I − Ã− B̃K̃DC̃)ζ =

 λ̃I − A− BKC UMclV̂

ÛMclV λ̃I − ÛMclV̂

 , (2.7)

where ζ−1 =

 U

Û

 and Û ∈ R(ñ−n)×ñ is left inverse of V̂, can be denoted as:

Û =
1
2

[
0 In2 −In2 0

]
(2.8)

According to right hand side of (2.4) and using (2.7), if expanded system has unstable QFM, then
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for an arbitrary K̃D, we have:

det(λ̃I − Ã− B̃K̃DC̃) = 0→ det((λ̃I − A− BKC)(λ̃I − ÛMclV̂)−UMclV̂ÛMclV) = 0

(2.9)

It is easy to see that UMclV̂ÛMclV = 0 as (i) V̂Û = Iñ − VU concluded from ζζ−1 = Iñ and

(ii) UMi
clV = 0 (i = 1, 2, ..., ñ) concluded from theorem 1.1. So, (2.9) can be re-written as:

det(λ̃I − Ã− B̃K̃DC̃) = det(λ̃I − A− BKC)det(λ̃I − ÛMclV̂) = 0 (2.10)

On the other hand, pre- and post-multiplication of (2.5) to Û and V̂ respectively leads to:

ÛMclV̂ = Û(Ã + B̃K̃DC̃)V̂ (2.11)

Therefore, (2.10) becomes:

det(λ̃I − Ã− B̃K̃DC̃) = det(λ̃I − A− BKC)det(λ̃I − Û(Ã + B̃K̃DC̃)V̂) = 0 (2.12)

for arbitrary K̃D. In other words, (2.12) implies

det(λ̃I − Û(Ã + B̃K̃DC̃)V̂) = 0 (2.13)

According to the structure of Ã, B̃, C̃ (2.2), decentralised structure of K̃D = Blkdiag{K̃1, K̃2}

(1.15) and also using (2.6) and (2.8), we have:

λ̃I − Û(Ã + B̃K̃DC̃)V̂ = λ̃I − A22 −
1
2

B22


(k̃(1)21 )

T

(k̃(1)22 + k̃(2)11 )
T

(k̃(2)12 )
T


T 

C12

C22

C32

 (2.14)

Thus, if unstable λ̃ ∈ eig(Ã) is a QFM, then determinant of (2.14) should be zero for arbitrary

K̃D.
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On the other hand, minimality of the expanded system implies that:

∩K̃ eig(Ã + B̃K̃C̃) = ∅→ det(λ̃I − Ã− B̃K̃C̃) 6= 0 (2.15)

where K̃ has full centralized structure:

K̃ =


k̃11 k̃12 k̃13 k̃14

k̃21 k̃22 k̃23 k̃24

k̃31 k̃32 k̃33 k̃34

k̃41 k̃42 k̃43 k̃44

 (2.16)

Through same non-singular transformation ζ and same procedure as outlined above, (2.15) results

in:

det(λ̃I − Û(Ã + B̃K̃C̃)V̂) 6= 0 (2.17)

Similarly, based on the structures of Ã, B̃, C̃ and K̃ in (2.2) and (2.16) respectively, we have:

λ̃I − Û(Ã + B̃K̃C̃)V̂ = λ̃I − A22 −
1
2

B22


(k̃21 − k̃31)

T

(k̃22 − k̃23 + k̃33 − k̃32)T

(k̃34 − k̃24)
T


T 

C12

C22

C32

 (2.18)

So, minimality of the expanded system implies that determinant of (2.18) should be non-zero for

arbitrary K̃. However, compairing (2.14) with (2.18) reveals that det(λ̃I− Û(Ã+ B̃K̃DC̃)V̂) = 0

for arbitrary K̃D is in contradiction with det(λ̃I − Û(Ã + B̃K̃C̃)V̂) = 0 for arbitrary K̃. So,

minimal expanded system cannot have any unstable QFM. This completes proof of the Theorem.

2.4.1 Contractible and Decentralised Output Feedback Design

As shown in (1.19), the decentralised controller K̃D has to be modified for satisfaction of the

contractibility conditions. However, it is worth recalling that performance and even stability is not

guaranteed with the modified controller. Thus, it is essential to design a decentralised controller

which does not need any modification for contractibility. To overcome the contractibility issue,
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this section presents a design procedure such that any decentralised controller K̃D:

K̃D =


k̃(1)11 k̃(1)12 0 0

k̃(1)21 k̃(1)22 0 0

0 0 k̃(1)22 k̃(2)12

0 0 k̃(2)21 k̃(2)22

 (2.19)

is contractible to an overlapping controller K, shown below:

K =


k1 k2 0

k3 k4 k5

0 k6 k7

 (2.20)

To this end, we propose an LMI based iterative algorithm similar to [15]. The result of proposed al-

gorithm in this section is a stabilisable and contractible decentralised K̃D. First, the contractibility

conditions stated in theorem 2.1 are examined. Since selection of complementary matrix M with

(2.1) results in MV = 0, condition (I) of theorem 2.1 holds i.e. JK LMi+1V = JK LMi MV = 0.

Similarly, condition (II) of theorem 2.1 holds because selection of complementary matrix N as

(2.1) results in NR = 0. Thus, the following conditions only remain to be satisfied for an arbi-

trary K̃D:

JK(TC + LV) = 0, (2.21)

K̃D = RKS + JK (2.22)

where complementary matrix JK has a general structure:

JK =


J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44

 (2.23)
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The relation (2.22) with transformations R and S given in (1.10) and (1.11) respectively, and also

the overlapping controller K (2.20) leads to:

K̃D =



k1 + J11
k2
2 + J12

k2
2 + J13 J14

k3 + J21
k4
2 + J22

k4
2 + J23 k5 + J24

k3 + J31
k4
2 + J32

k4
2 + J33 k5 + J34

J41
k6
2 + J42

k6
2 + J43 k7 + J44


(2.24)

Comparing (2.24) with block diagonal K̃D (2.19) results in:

J12 = J13 + k̃(1)12 , J21 = J31 + k̃(1)21 , J22 = J23 + k̃(1)22 , J33 = J23 + k̃(2)22 ,

J34 = J24 + k̃(2)12 , J43 = J42 + k̃(2)21 , J14 = 0, J41 = 0 (2.25)

Finally, by (2.25), matrix T (1.10) and standard complementary matrix L given in [62], con-

tractibility condition (2.21) becomes:

JKC = 0 (2.26)

where

JK =


J11 J13 + k̃(1)12 J13 0

J31 + k̃(1)21 J23 + k̃(2)22 J23 J24

J31 J23 J23 + k̃(2)11 J24 + k̃(2)12

0 J42 J42 + k̃(2)21 J44

 ,

C =


C11 C12 C13

2C21 C22 0

0 C22 2C23

C31 C32 C33

 (2.27)

With the above development, we now introduce an algorithm based on LMI to provide a con-

tractible and stabilisable decentralised static output feedback control for the expanded system as

following (see [15] for details of ILMI algorithm). The algorithm comprises the following 4 steps.
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Step 1. Select Z > 0 and solve the Riccati equation for P:

ÃTP + PÃ− PB̃B̃TP + Z = 0 (2.28)

Set i = 1 and X1 = P.

Step2. Solve the following optimization problem (OP) for Pi, K̃D, αi and JK.

OP1: Minimize αi subject to the following LMI and equality constraint.

Pi = PT
i > 0, (2.29)


ÃTPi + Pi Ã− Xi B̃B̃TPi− (B̃TPi + K̃DC̃)T

Pi B̃B̃TXi + Xi B̃B̃TXi − αiPi

(
B̃TPi + K̃DC̃

)
−Iñ

 < 0, (2.30)

JkC = 0, (2.31)

Step 3. Let α∗i be the optimal value returned by the above optimization problem [88]. If α∗i ≤ 0,

K̃D is the decentralised stabilising and contractible static output feedback controller and the algo-

rithm stops. However, if α∗i > 0, then proceed to step 4.

Step 4. Solve the following optimization problem for K̃D and Pi.

OP2. Minimize trace(Pi) subject to LMI constraints (2.29)-(2.31) after setting αi = α∗i .

Denotes P∗i as the solution of OP2. Set i = i + 1 and Xi = P∗i−1, then go to Step 2.

Remark: Similar to [15], it can be shown that value of α̃ at each iteration is not larger than its

value at the preceding iteration. In other words, α̃ does not have increasing trend in the iterative

algorithm.
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2.5 Numerical Example

Consider system Σ with the following minimal (fully controllable and observable) representation:

Σ : ẋ(t) =


1 3 1

2 −2 2

−2 2 −2

 x(t) +


2 3 5

3 1 4

−3 −2 2

 u(t),

y(t) =


−2 −1 −3

1 −2 −1

0 1 1

 x(t) (2.32)

where the overlapping decomposition is determined by dashed lines.

The eigenvalues of the original system are {−4.7, 0, 1.7}, which show that the original system

is unstable. In the ensuing, we expand this system as per theorem 1.7 and show that the necessary

and sufficient parts of theorem 2.2 must hold to be able to stabilise the original system (2.32) by

an overlapping decentralised static output feedback control. To check the necessity condition, we

compute complementary matrices M, N, and L as follows:

M =


0 1.5 −1.5 0

0 −1 1 0

0 1 −1 0

0 −1 1 0

 , N =


0 1.5 −1.5 0

0 0.5 −0.5 0

0 −0.5 0.5 0

0 1 −1 0

 ,

L =


0 −0.5 0.5 0

1 −1 1 1

−1 1 −1 −1

0 −0.5 0.5 0

 (2.33)
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Then, via (1.2) and transformations (1.10), we obtain the following expanded system

Σ̃ : ˙̃x(t) =


1 3 0 1

2 −2 0 2

2 0 −2 2

−2 0 2 −2

 x̃(t) +


2 3 0 5

3 1 0 4

3 0 1 4

−3 0 −2 2

ũ(t),

ỹ(t) =


−2 −1 0 −3

2 −2 0 0

0 0 −2 −2

0 0 1 1

 x̃(t) (2.34)

Note that the resulting expanded system is fully controllable and observable, however, it is still un-

stable with eigenvalues {−4.7,−2, 0, 1.7}. Now we design a decentralised static output feedback

control K̃D (2.19). But, first, note that the expanded system Σ̃ does not have any QFMs, since:

det(λ̃I − Ã− B̃K̃DC̃) 6= 0 f or ∀λ̃ ∈ eig(Ã), (2.35)

To find decentralised stabilizing and contractible static output feedback controller, the proposed

iterative algorithm is used as outlined next. In Step 1, matrix Z = 20I4 is found to satisfy the

feasibility of the Riccati equation (2.28) and also provides fast convergence. After the first itera-

tion, the algorithm returns α∗ = −0.35. Then the following decentralised static output feedback

controller is obtained for the expanded system:

K̃D =


0.0053 −0.8177 0 0

0.1725 0.1725 0 0

0 0 0.2071 −0.1035

0 0 0.0378 −0.0757

 (2.36)

The controller (2.36) stabilises the closed loop system, as eig(Ã+ B̃K̃DC̃) = {−2.51,−0.67± j3.6,−0.39}.

Then, through Jk obtained by algorithm and K̃D in (2.36), the complementary matrix JK is com-
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puted as:

JK =


−0.32 −0.32 0.49 0

2.73 2.73 2.56 13.34

2.56 2.56 2.77 13.23

0 0 0.0378 0.0756

 (2.37)

Finally, by (2.37) and K̃D = RKS + JK, we obtain the following overlapping decentralised static

output control:

K =


0.33 −0.98 0

−2.56 −5.13 −13.34

0 0 −0.15

 (2.38)

where (2.38) results in eig(A + BKC) = {−0.67± j3.6,−0.39}. Stabilisability of the original

system with (2.38) is expected as expanded closed loop (Ã + B̃K̃DC̃) includes closed loop (A +

BKC). So, according to Theorem 2.2, it has been shown that necessary and sufficient condition

for stabilisability of the original system by the contracted overlappinng decentralised static output

feedback control K is that the minimal expanded system is stabilisable via decentralised static

output feedback control.
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2.6 Robust Overlapping Guaranteed Cost Control

The results reported in Section 2.1 deal with the linear systems which exhibit no parametric uncer-

tainties, whereas such uncertainties are inherent in most of real world engineering systems. The

feedback control system may not function properly if these uncertainties are not considered in the

design procedure. Now, let the uncertain expanded system be generated using the expansion of the

original overlapping uncertain linear system. To ascertain stabilisability of the expanded system,

which can be translated to stabilisability of the original overlapping system, the notion of Struc-

tured Decentralised Fixed Modes (SDFMs) was introduced in [89] to identify those modes that

always remain fixed no matter what the values of the nonzero entries of the system matrices are.

This was then followed by the introduction of Unstructured Decentralised Fixed Modes (UDFMs),

which are defined as those decentralised fixed modes (DFMs) that vanish when the nonzero pa-

rameters are changed arbitrarily [90].

This section deals with overlapping linear systems with parameter uncertainties arising from

changes to its physical components due to operating conditions. We consider the case where

such uncertainties render the system unstabilisable by structurally constrained controllers, i.e. by

controllers with overlapping structure. We then expand the system and formulate an LMI problem

to be solved iteratively to return (i) an upper bounds on the induced 2-norm of the uncertainties of

the expanded system such that the expanded system does not have any unstable fixed mode for ad-

missible uncertainties and (ii) a robust decentralised guaranteed cost controller for the expanded

system. Finally, the decentralised guaranteed cost controller and the bounds on the induced 2-

norm of the uncertainties are contracted (transformed) to the original space.

Consider uncertain continuous time systems Σ and Σ̃ with quadratic performance functions J and

J̃ respectively:

Σ : ẋ(t) = (A + ∆A(t))x(t) + (B + ∆B(t))u(t),

y(t) = Cx(t),

J(x0, u) =
∫ ∞

0
(xT(t)Qwx(t) + uT(t)Rwu(t))dt (2.39)
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and

Σ̃ : ˙̃x(t) = (Ã + ˜∆A(t))x̃(t) + (B̃ + ˜∆B(t))ũ(t),

ỹ(t) = C̃x̃(t),

J̃(x̃0, ũ) =
∫ ∞

0
(x̃T(t)Q̃w x̃(t) + ũT(t)R̃wũ(t))dt (2.40)

where Qw = QT
w ∈ Rn×n > 0, Q̃w = Q̃T

w ∈ Rñ×ñ > 0, Rw = RT
w ∈ Rm×m > 0 and

R̃w = R̃T
w ∈ Rm̃×m̃ > 0 are state and control weighting matrices, respectively. Then, an extension

of definition 1.2 by considering quadratic cost functions J and J̃ is presented next.

Definition 2.1. The pair (Σ̃, J̃) includes the pair (Σ, J) (The pair (Σ̃, J̃) is an expansion of pair

(Σ, J)) if there exists triple (V, R, T) such that for any initial state x0 and any input u(t), choices

x̃0 = Vx0 and ũ(t) = Ru(t) result in x̃(t; x̃0, ũ) = Vx(t; x0, u), ỹ(t) = Ty(t), and J̃(x̃0, ũ) =

J(x0, u) for all t ≥ 0.

Similar to relations (1.2), the following expressions can be used to determine relations between

matrices of Σ̃ and Σ.

Ã = VAU + M, B̃ = VBQ + N, C̃ = TCU + L,

R̃w = QTRwQ + H, Q̃w = UTQwU + F,

˜∆A(t) = V∆A(t)U, ˜∆B(t) = V∆B(t)Q (2.41)

where M, N, L, H, and F are called complementary matrices with appropriate dimensions.

Based on definition 2.1, the conditions which complementary matrices should satisfy are given as

follows:

MV = 0, NR = 0, LV = 0, RT HR = 0, VT FV = 0, (2.42)

After generating an expanded system by the set of relationships and conditions given in (2.41)

and (2.42) respectively, a decentralised static output robust guaranteed cost controller K̃D has to

be designed for the expanded system. Robust static output feedback guaranteed cost control is

defined in [91] as follows:
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Definition 2.2. Consider the uncertain linear system Σ̃ given in (2.40). A static decentralised

output feedback controller K̃D is a robust guaranteed cost controller for the expanded system if

the closed loop:

˙̃x(t) = (Ã + ∆Ã + (B̃ + ∆B̃)K̃DC̃)x̃(t) (2.43)

is stable, and its cost function satisfies the following criterion:

J̃ =
∫ ∞

0
(x̃T(t)Q̃w x̃(t) + (K̃DC̃)T R̃wK̃DC̃)dt ≤ x̃0P̃x̃0 (2.44)

for all admissible uncertainties, with x̃0 being the initial condition of the expanded system and

P̃ = P̃T > 0 is an associated cost matrix.

Once the design is complete, the control law ũ(t) = K̃Dỹ(t) is contracted to a robust over-

lapping guaranteed static output cost feedback control law u = Ky. Based on theorem 1.5, the

contraction process is done as follows:

K̃DT = RK (2.45)

Note that the contractibility condition (2.45) leads to K = QK̃DT only when K̃DT = RQK̃DT.

In other words, the decentralised controller K̃D is contractible to overlapping controller K when

(I − RQ)K̃DT = 0.

2.7 Problem Formulation

Given uncertain linear systems (2.39)-(2.40) such that (Σ̃, J̃) includes (Σ, J) by definition 2.1.

This section looks into the stabilisability of dynamical system (2.39) by overlapping static output

feedback controllers. In this respect, the following contributions are made:

• An ILMI algorithm is proposed to find the maximum positive scalars µ̃A, µ̃B, and associated

static output feedback controller K̃D (2.19) such that for all admissible uncertainties, i.e.∥∥∆Ã
∥∥2

2 ≤ µ̃A and
∥∥∆B̃

∥∥2
2 ≤ µ̃B, the closed loop:

˙̃x(t) = (Ã + ∆Ã + (B̃ + ∆B̃)K̃DC̃)x̃(t) (2.46)
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is stable, and its cost function satisfies:

J̃ =
∫ ∞

0
(x̃T(t)Q̃w x̃(t) + (K̃DC̃)T R̃wK̃DC̃)dt ≤ J̃0 (2.47)

for a given J̃0.

• The inclusion principle and proper contraction are used to obtain (i) maximum upper bounds

on the induced 2-norm of uncertainties in the original system Σ (2.39), and (ii) a correspond-

ing robust guaranteed static output cost feedback control with overlapping structure.

2.8 The Inclusion Principle and Unstructured Decentralised Fixed
Modes

Theorem 2.3. Consider an uncertain linear system Σ with overlapping parts and its expansion Σ̃

constructed by (2.41) through the complementary matrices satisfying (2.42). Then, the expanded

system Σ̃ has UDFM(s) if the original system Σ is unstabilisable w.r.t overlapping controller K for

some admissible uncertainties.

Proof. Let Σ be unstabilisable w.r.t overlapping K for some admissible uncertainty ∆A and ∆B

i.e. for arbitrary K, there exists an unstable fixed mode λ ∈ eig(A) such that:

λ ∈ ∩Keig(A + ∆A + (B + ∆B)KC)→ det(λIn − A− ∆A− (B + ∆B)KC) = 0 (2.48)

Now, consider expanded system Σ̃ (2.40) with contractible decentralised controller K̃D. Since

expanded closed loop Ã + ∆Ã + (B̃ + ∆B̃)K̃DC̃ includes original closed loop A + ∆A + (B +

∆B)KC [4], we have:

Ã + ∆Ã + (B̃ + ∆B̃)K̃DC̃ = V(A + ∆A + (B + ∆B)KC)U + Mcl (2.49)

where Mcl is the complementary matrix for the closed loop expansion with MclV = 0 based on

(2.42).
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Pre-post multiply (2.49) by ζ−1 and ζ where ζ = [V V̂] with V̂ given in (2.6), we get:

ξ−1(λIñ − Ã− ∆Ã− (B̃ + ∆B̃)K̃DC̃)ξ = λIn − A− ∆A− (B + ∆B)KC −UMclV̂

0 λIn2 − ÛMclV̂

 (2.50)

Substitute the right side of (2.48) in determinant of (2.50) to obtain:

det(λIñ − Ã− ∆Ã− (B̃ + ∆B̃)K̃DC̃) =

det(λIn − A− ∆A− (B + ∆B)KC)det(λIn2 −UMclV̂) = 0 (2.51)

Equation (2.51) implies that λ ∈ ∩K̃D
eig(Ã + ∆Ã + (B̃ + ∆B̃)K̃DC̃) for arbitrary K̃D for some

admissible uncertainties ∆Ã and ∆B̃. That is the unstable mode λ in the expanded system is a

DFM for some admissible uncertainties and hence λ is a UDFM in the expanded system. This

completes the proof.

2.8.1 Decentralised Control Design with LMIs

In the following, the results in [15] will be generalized to include parametric uncertainties in the

system matrices. An iterative algorithm based on LMI is proposed to find upper bounds µ̃A, µ̃B on

the induced 2-norm of the uncertainties and an associated decentralised guaranteed cost controller

K̃D for the expanded system. Then, an overlapping guaranteed cost control is obtained through

proper contraction. But, first we introduce a well-known lemma to be used in the LMI problem

formulation.

Lemma 2.1. For any matrices X and Y of appropriate dimensions, the following inequality holds

for an arbitrary ε > 0:

XTY + YTX ≤ εXTX +
1
ε

YTY (2.52)

Now, consider the expanded system Σ̃ and the corresponding cost function (2.40). If there

exist P̃ = P̃T > 0, a decentralised controller K̃D, and a scalar α̃ < 0 such that for all admissible
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uncertainties
∥∥∆Ã

∥∥2
2 ≤ µ̃A and

∥∥∆B̃
∥∥2

2 ≤ µ̃B, the following inequality holds:

(Ã + ∆Ã + (B̃ + ∆B̃)K̃DC̃)T P̃ + P̃(Ã + ∆Ã + (B̃ + ∆B̃)K̃DC̃)

+Q̃w + C̃TK̃T
DR̃wK̃DC̃− α̃P̃ < 0 (2.53)

then, the closed loop Ã + ∆Ã + (B̃ + ∆B̃)K̃DC̃ is stable with all of its eigenvalues placed to the

left of the line
α̃

2
in the complex plane. In addition, the closed loop cost function will satisfy the

condition J̃(x̃0, K̃Dỹ) ≤ x̃T
0 P̃x̃0.

Now, using Lemma 2.1, we have:

(i) P̃∆B̃K̃DC̃ + C̃TK̃T
D(∆B̃)T P̃ ≤ P̃∆B̃(∆B̃)T P̃ + C̃TK̃T

DK̃DC̃,

(ii) (∆Ã)T P̃ + P̃(∆Ã) ≤ ε(∆Ã)T∆Ã + P̃ε−1P̃ (2.54)

Then, based on (2.54), the matrix inequality (2.53) holds if the following is true:

ÃT P̃ + P̃Ã + P̃B̃K̃DC̃ + C̃TK̃T
D B̃T P̃ + P̃∆B̃(∆B̃)T P̃ + C̃TK̃T

DK̃DC̃ + ε(∆Ã)T∆Ã + P̃ε−1P̃

+Q̃w + C̃TK̃T
DR̃wK̃DC̃− α̃P̃ < 0 (2.55)

Using the induced 2-norm matrix definition, the inequalities
∥∥∆Ã

∥∥2
2 ≤ µ̃A and

∥∥∆B̃
∥∥2

2 ≤ µ̃B lead

to ∆Ã(∆Ã)T ≤ µ̃A Iñ and ∆B̃(∆B̃)T ≤ µ̃B Iñ. Using these latter inequalities, it is easy to see that

(2.55) is satisfied if the following matrix inequality holds:

ÃT P̃ + P̃Ã + P̃B̃K̃DC̃ + C̃TK̃T
D B̃T P̃ + P̃µ̃B IñP̃ + C̃TK̃T

DK̃DC̃ + εµ̃A Iñ + P̃ε−1P̃

+Q̃w + C̃TK̃T
DR̃wK̃DC̃− α̃P̃ < 0 (2.56)

Using (2.56), the following corollary, which provides a new sufficient condition for K̃D to be a

robust guaranteed cost controller is obtained.

Corollary 2.1. The decentralised static output feedback controller K̃D is a robust guaranteed cost

controller for the uncertain expanded system Σ̃ (2.40) if there exist a matrix P̃ = P̃T > 0, a

scalar α̃ < 0 and scalar ε > 0 such that for all admissible uncertainties
∥∥∆Ã

∥∥2
2 ≤ µ̃A and
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∥∥∆B̃
∥∥2

2 ≤ µ̃B, the following symmetric matrix inequality holds:



Φ11 Φ12 Φ13 Φ14 Φ15

∗ Φ22 0 0 0

∗ ∗ Φ33 0 0

∗ ∗ ∗ Φ44 0

∗ ∗ ∗ ∗ Φ55


< 0 (2.57)

where ∗ denotes the symmetric part, and

Φ11 = ÃT P̃ + P̃Ã− P̃B̃B̃T P̃ + Q̃w − α̃P̃ + εµ̃A Iñ,

Φ12 = P̃, Φ13 = P̃, Φ14 = C̃TK̃T
D,

Φ15 = (B̃T P̃ + K̃DC̃)T, Φ22 = −εI ˜̃n,

Φ33 = −µ̃−1
B Iñ, Φ44 = −R̃−1

w , Φ55 = −Im̃ (2.58)

Proof. It is easy to see that (2.56) can be written as follows:

ÃT P̃ + P̃Ã− P̃B̃B̃T P̃ + (B̃T P̃ + K̃DC̃)T(B̃T P̃ + K̃DC̃)

+P̃µ̃B IñP̃ + Q̃w + εµ̃A Iñ + P̃ε−1P̃ + C̃TK̃T
DR̃wK̃DC̃− α̃P̃ < 0 (2.59)

Then, by applying Schur complement on (2.59), we obtain (2.57) with entries shown in (2.58).

However, due to the existence of the term −P̃B̃B̃T P̃, (2.57) is not a standard LMI in P̃. In

order to transform (2.57) into a standard LMI form, which can be solved efficiently, a procedure

similar to [15] is used. To achieve this, we introduce an arbitrary matrix X̃ = X̃T > 0 for which

the following inequality always holds:

X̃B̃B̃TX̃− X̃B̃B̃T P̃− P̃B̃B̃TX̃ ≥ −P̃B̃B̃T P̃ (2.60)

Then, through (2.60) and schur complement, we can say that (2.59) holds if there exists a negative
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scalar α̃ such that:

Ψ̃ =



ÃT P̃ + P̃Ã + X̃B̃B̃TX̃− X̃B̃B̃T P̃− P̃ P̃ C̃TK̃T
D (B̃T P̃ + K̃DC̃)T

P̃B̃B̃TX̃ + Q̃w − α̃P̃ + εµ̃A Iñ

∗ −εIñ 0 0 0

∗ ∗ −µ̃−1
B Iñ 0 0

∗ ∗ ∗ −R̃−1
w 0

∗ ∗ ∗ ∗ −Im̃



< 0

(2.61)

The above matrix inequality is linear in P̃, K̃D, and ε for fixed µ̃A, µ̃B, and X̃. The following

iterative algorithm summarises the LMI formulation and design problem.

Step 1) Calculate P̃ by solving the Riccati equation for nominal part of Σ̃ (2.40):

ÃT P̃ + P̃Ã− P̃B̃R̃−1
w B̃T P̃ + Q̃w = 0 (2.62)

Set X̃ = P̃ and choose the bounds µ̃A and µ̃B.

Step 2) Solve the following generalized eigenvalue minimization problem (GEVP) for P̃, K̃D, ε,

α̃:

OP1: Minimize α̃ subject to the following LMI and equality constraints:

Ψ̃ < 0, P̃ = P̃T > 0,

x̃T
0 P̃x̃0 < J̃0, (I − RQ)K̃DT = 0 (2.63)

Based on Definition 2, where J̃(x̃0, K̃Dỹ) ≤ x̃T
0 P̃x̃0, the constraint x̃T

0 P̃x̃0 < J̃0 guarantees

J̃(x̃0, K̃Dỹ) ≤ J̃0 for a given J̃0.

Step 3) Let α̃∗ be the outcome of OP1. If α̃∗ < 0, then the decentralised static output feedback

controller K̃D is a contractible robust guaranteed cost controller with the upper bounds on induced

2-norm of uncertainties being µ̃A and µ̃B. If so, then stop. Else, go to step 4.

Step 4) Solve the following optimization problem for P̃, K̃D and ε with α̃ = α̃∗.
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OP2: Minimize trace(P̃) subject to constraints (2.63). Denote P̃∗ as the solution of OP2.

Step 5) If a predetermined tolerance is achieved
∥∥X̃− P̃∗

∥∥ < δ, then go to step 6. Else, set

X̃ = P̃∗ and go to step 2.

Step 6) The expanded system may not be robustly stabilisable for the chosen bounds µ̃A and µ̃B.

If so, then decrease µ̃A and µ̃B and go to step 2.

Remark: The convergence of the algorithm is similar to [15].

Remark: The largest chosen values for µ̃A and µ̃B such that the proposed iterative algorithm re-

turns negative α̃∗j in step 3, are considered as the maximum robustness bounds of the expanded

system.

After obtaining the upper bounds and the associated robust guaranteed cost controller for the ex-

panded system, they have to be contracted for implementation on the original system.

Theorem 2.4. Consider overlapping linear system Σ, and its expanded system Σ̃. Let a robust

decentralised guaranteed static output cost feedback controller K̃D for the expanded system Σ̃

(2.40) be obtained through the proposed algorithm with admissible uncertainties
∥∥∆Ã

∥∥2
2 ≤ µ̃A

and
∥∥∆B̃

∥∥2
2 ≤ µ̃B. Then, contraction of the robust decentralised guaranteed cost control K̃D will

lead to a robust guaranteed cost control with overlapping structure K for Σ with the admissible

uncertainties satisfying ‖∆A‖2
2 ≤ 2µ̃A and ‖∆B‖2

2 ≤ 2µ̃B.

Proof. If the decentralised control K̃D is a robust guaranteed cost control for the expanded system

Σ̃ (2.40) with
∥∥∆Ã

∥∥2
2 ≤ µ̃A and

∥∥∆B̃
∥∥2

2 ≤ µ̃B, then there exists P̃ = P̃T > 0 such that for all

admissible uncertainties, we have:

P̃(Ã + ∆Ã + (B̃ + ∆B̃)K̃DC̃) + (Ã + ∆Ã + (B̃ + ∆B̃)K̃DC̃)T P̃

+Q̃w + C̃TK̃T
DR̃wK̃DC̃ < 0 (2.64)

Now, pre-post multiply (2.64) by VT and V, and using (2.41), (2.42) and (2.45) we obtain:

P(A + ∆A + (B + ∆B)KC) + (A + ∆A + (B + ∆B)KC)TP

+Qw + CTKTRwKC < 0 (2.65)

with P = VT P̃V > 0 as V is the full column rank matrix. So, (2.65) is implying that an overlap-
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ping static output feedback control K obtained by contraction of K̃D is the robust guaranteed cost

control for uncertain original system Σ with admissible uncertainties ∆A(t) and ∆B(t).

In order to get upper bounds on 2-norm of uncertainties ∆A(t) and ∆B(t), first of all using (2.41)

and the facts that UV = In and QR = Im, it is easy to see that:

∆A(t) = U∆Ã(t)V,

∆B(t) = U∆B̃(t)R (2.66)

Then, from induced 2-norm definition i.e.
∥∥∆B̃(t)

∥∥2
2 ≤ µ̃B implying ∆B̃(t)(∆B̃(t))T ≤ µ̃B Iñ,

and structures of R (1.10) and U which lead to RRT ≤ 2Im̃ and UUT ≤ In respectively, we have:

∆B(∆B)T = U∆B̃RRT(∆B̃)TUT ≤ (U∆B̃)2Im̃(∆B̃)TUT

≤ 2µ̃BUUT ≤ 2µ̃B In (2.67)

Similarly, we have:

∆A(∆A)T = U∆ÃVVT(∆Ã)TUT ≤ (U∆Ã)2Iñ(∆Ã)TUT ≤ 2µ̃AUUT ≤ 2µ̃A In (2.68)

Thus, the obtained overlapping output feedback control K through contraction is a robust overlap-

ping guaranteed cost control for the original system (2.39) with admissible uncertainties satisfying

‖∆A‖2
2 ≤ 2µ̃A and ‖∆B‖2

2 ≤ 2µ̃B. This completes the theorem’s proof.

2.9 Numerical Example

Consider an uncertain linear system Σ with the unstable nominal system described by the follow-

ing state and output equations:

ẋ(t) =


0.9 + q1(t) 0 0.01 + q2(t) 0

0 0.9 + q3(t) 0 0.1 + q4(t)

0.1 + q5(t) 0 −0.9 + q6(t) 0

−0.1 + q7(t) 0 0.1 + q8(t) −3 + q9(t)

 x(t)+
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0 0 1 + r1(t)

0 2 + r2(t) 0

0.9 + r3(t) 0 0.75 + r4(t)

−0.5 + r5(t) 1 + r6(t) 0

 u(t),

y(t) =


0 1 0 0

0 0 1 1

1 0.5 2 0

 x(t) (2.69)

where x(t) = (xT
1 (t), xT

2 (t), xT
3 (t), xT

4 (t))
T,u(t) = (uT

1 (t), uT
2 (t), uT

3 (t))
T, and y = (yT

1 (t), yT
2 (t), yT

3 (t))
T

are state, input, and output vectors, respectively.

The system as determined by dashed lines in (2.69), is comprised of two overlapping subsystems

where u2(t), (xT
2 (t), xT

3 (t))
T, and y2(t) are the overlapping components of the input, state, and

output vectors, respectively.

Let (i) the weighting matrices in the quadratic cost function J in (2.39) be chosen as Qw =

diag(1, 2, 2, 1) and Rw = diag(1, 2, 1), (ii) the system uncertainty matrix ∆A(t) and the uncer-

tainty ∆B(t) are denoted by qi(t) and ri(t) respectively. The goal is to use the inclusion principle

to find:

• Maximum upper bounds on the induced 2-norm of the uncertainties ∆A(t) and ∆B(t) such

that for all admissible uncertainties, the uncertain system (2.69) with overlapping decompo-

sition is stabilisable by structurally constrained controller K.

• A robust overlapping guaranteed static output cost controller for the linear system (2.69).

To generate the expanded system of (2.69), first the complementary matrices satisfying (2.42)

have to be chosen [62]. Then using (2.41), the expanded system Σ̃ (2.40) is obtained with state

and control weighting matrices in the associated cost function J̃ in (2.40) as Q̃w = I6 and R̃w = I4.

Next, the proposed iterative algorithm is used to determine (i) the bounds on the induced 2-norm

of the uncertainties such that the expanded system does not have any DFM for all admissible

uncertainties, and (ii) a stabilising robust decentralised output feedback controller. We found that

the choice of J̃0 = 200, x̃T
0 = [1 1 1 1 1 1], µ̃A = 0.01, µ̃B = 0.01 ensured feasibility of

the LMI problem where
∥∥∆Ã

∥∥
2 ≤
√

µ̃A = 0.1 and
∥∥∆B̃

∥∥
2 ≤
√

µ̃B = 0.1. After 211 iterations,



2.9 Numerical Example 57

the ILMI algorithm returned α = −0.0022 and the following robust guaranteed cost decentralised

static output feedback controller:

K̃D =


12.8 −20.1 0 0

0 −4.1 0 0

0 0 −4.1 0

0 0 2.5 −0.99

 (2.70)

Contraction of (2.70) leads to the following robust overlapping guaranteed static output cost con-

troller:

K =


12.8 −20.1 0

0 −4.1 0

0 2.5 −0.99

 (2.71)

Theorem 2.4 will confirm that the controller (2.71) is a robust guaranteed cost controller for the

original uncertain system (2.69) for all of the uncertainties within the induced 2-norm bounds

‖∆A‖2 ≤
√

2× 0.01 = 0.14 and ‖∆B‖2 ≤
√

2× 0.01 = 0.14. This can be easily verified

through the following simulation:

Let the norm bounded uncertainties ∆A(t) and ∆B(t) in the original system satisfying ‖∆A(t)‖2 =

0.13 < 0.14 and ‖∆B(t)‖2 = 0.11 < 0.14 for t ≥ 0. Using the robust overlapping guaranteed

cost control (2.71) on the original uncertain system (2.69) leads to a stable closed loop system

with the the state responses shown in Fig. 2.1, where the original system (2.69) is assumed to have

the initial condition x̃T
0 = [1 1 1 1]. The closed loop quadratic cost function is computed

as J ∼= 60 < J̃0 = 200. The uncertain system (2.69), however, is not robustly stabilisable with

respect to K (2.71) for uncertainties outside of the regions ‖∆A‖ ≤ 0.14 and ‖∆B‖ ≤ 0.14. Let

the following system parametric uncertainties be:

∆A =


0.1 0 −0.01 0

0 0.1 0 −0.1

−0.1 0 −0.1 0

0.1 0 −0.1 0

 , ∆B =


0 0 0

0 0 0

−0.4 0 0.25

−0.5 0 0

 (2.72)
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Figure 2.1: Closed loop responses with robust overlapping guaranteed cost control (2.71).

The induced 2-norms of the above uncertainties are ‖∆A‖ = 0.17 and ‖∆B‖ = 0.66, which are

outside the stability bounds determined above, i.e. ‖∆A‖ = 0.17 > 0.14 and ‖∆B‖ = 0.66 >

0.14. Incorporating (2.72) into the open-loop system Σ (2.69) yields:

ẋ(t) =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

 x(t) +


0 0 1

0 2 0

0.5 0 1

−1 1 0

 u(t),

y(t) =


0 1 0 0

0 0 1 1

1 0.5 2 0

 x(t) (2.73)

The system (2.73) is not stabilisable by any overlapping static output controller, due to the presence

of a fixed mode at λ = 1. For example, the controller (2.71) results in the closed loop system

eigenvalues being {−4.1± 0.4j, 1, 10.9}.
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2.10 Summary

In this chapter, first, necessary and sufficient condition for stabilisation of linear time invariant sys-

tems with overlapping parts has been provided via the expansion-contraction process. It is proven

that there exists an overlapping decentralised static output feedback control for the original sys-

tem if and only if the minimal expanded system is stabilisable by a decentralised output feedback

control (there exists no decentralised QFMs in the expanded system). In this case, the contracted

controller stabilises the original system. Also, an iterative algorithm is proposed to design decen-

tralised static output feedback controller which is simultaneously stabilisable and contractible. A

numerical example is used to confirm results of this section.

In the second section, new results on robust stabilisability of uncertain linear systems with over-

lapping static output feedback control have been presented. The results show that if the induced

2-norms of the uncertainties are inside a bounded region, then it is possible to design a robust guar-

anteed static output cost controller with overlapping structure. A new iterative algorithm based on

LMI is applied to the expanded system to find a stabilising robust decentralised static output con-

troller and the maximum upper bounds on the induced 2-norm of the uncertainties. Finally, by

using proper contraction, the robust overlapping output controller and the upper bounds on the

induced 2-norm of the uncertainties are both contracted to the original uncertain system with an

overlapping decomposition. A numerical example has been presented to verify main results of this

section.
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Chapter 3

Stabilisation of Overlapping Time-Delay
Systems

In this chapter, a sufficient delay-dependent condition for the stabilisation of overlapping linear

continuous-time uncertain systems with multiple constant delays by robust overlapping output feed-

back controllers is given. The overlapping system is first expanded into a higher dimensional system

(expanded system) where the overlapping subsystems appear as disjointed from each other. Then,

robust local delay-dependent output feedback controllers, for disjoint subsystems, are designed, us-

ing an LMI based iterative algorithm. Finally, the designed local controllers are contracted to an

overlapping controller to be implemented on the original system. The preservation of stability and

performance through contraction is proven. The design approach is used to design an overlapping

LFC of an uncertain, state-delayed, 2-area interconnected power system with overlapping parts.

3.1 Introduction

In Chapter 2, stabilisability of overlapping linear systems has been studied, where the inclusion

principle is used to design an overlapping static output feedback controller for the system. Al-

though the results of Chapter 2 can be used for both certain and uncertain linear systems, their ap-

plication in the presence of communication delays is of practical concern. The importance of net-

work delays in stability analysis of complex systems has been discussed in Section 1.1. However,

so far, with the exception of [76, 77], communication delays and inherit parametric uncertainty

have not received sufficient level of consideration in the design of overlapping controllers. This

is despite the fact that communication delays can degrade the system performance, and may even

cause instability. In [77], the authors designed a delay-independent, output-feedback controller

with overlapping structure for uncertain, single state-delayed, discrete-time systems. An exten-

61
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sion of the inclusion principle is used in [76] to design robust, delay-independent, state-feedback

controllers with overlapping structures for uncertain, single state-delayed, continuous-time sys-

tems. However, the above results can be improved significantly as explained next: (i) in [76, 77],

the decentralised controller design is carried out using the whole higher-dimensional, expanded

system, and therefore the decentralised structure of the expanded system is not taken advantage

of; (ii) it is well known that state-feedback implementation may only be realizable, from physical

viewpoint, if state accessibility is possible and the cost of implementation is not prohibitively high;

and (iii) delay-independent approaches are, in general, more conservative than delay-dependent

approaches, for the fact that the characteristics of the delay are not used in the design procedure.

In order to address the above mentioned issues, this chapter presents an extension of the inclusion

principle, such that it is suitable for overlapping, linear, continuous-time, uncertain systems expe-

riencing constant, but unknown, non-commensurate delays. We establish a sufficient condition for

the expansion process and use LMI approach to design local delay-dependent, uncertain, multiple

state-delayed controllers for each subsystem. Then, we contract the local controllers to an over-

lapping controller to be implemented on the original system such that stability and performance

are preserved. The effectiveness of the proposed approach is demonstrated through the design of

an overlapping, robust LFC for an uncertain 2-area interconnected power system with constant

communication delays. Simulation results and quantitative comparison criterion clearly show that

an improved performance is obtained by our controller in compared with others.

3.2 Preliminaries

Let the uncertain, continuous-time system, Σ, comprising N overlapping subsystems with m non-

commensurate delays, be presented as:

ẋ (t) = (A + ∆A (t)) x (t) +
m

∑
k=1

A(k)
d x (t− dk) + Bu (t) + Bww (t) ,

y (t) = Cx (t) ,

z (t) = Czx (t) ,

x (t0) = ϕ (t0) , −max(dk) ≤ t0 ≤ 0 (3.1)
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Figure 3.1: The overlapping decomposition of dynamical system (3.1)

where u(t) ∈ Rr, x(t) ∈ Rn, and y(t) ∈ Rl are input, state, and measured output vectors

respectively. w(t) ∈ Rp is the norm bounded disturbance, z(t) ∈ Rq is the controlled output

vector, and φ(t0) is the state initial condition. The pointwise delays are assumed to be unknown,

but bounded by given constants hk, i.e. 0 < dk ≤ hk. Matrices A, B, A(k)
d , Bw, C, Cz are known

with appropriate dimensions. The structured time-varying, norm bounded uncertainty matrix,

denoted by ∆A(t), is assumed to satisfy the following matching condition:

∆A (t) = GFA (t) E (3.2)

with G, E are known matrices. Matrix FA(t) is an unknown satisfying the inequality condition

FT
A FA ≤ I.

The system (3.1) has N overlapping subsystems, where every two adjacent subsystems share over-

lapping states and outputs. This structure has been demonstrated in Fig. 1.7. Thus, each of the

matrices A + ∆A(t), A(k)
d , and C can be decomposed into overlapping blocks as illustrated in

Fig. 3.1. In Fig. 3.1, the state and output variables defined by xi ∈ Rni , xj ∈ Rnj , xk ∈ Rnk

and yi ∈ Rli , yj ∈ Rlj , yk ∈ Rlk , respectively, are the overlapping parts of two neighboring

subsystems. The decomposition of Fig. 3.1 reflects many real-life, large scale plants, such as

interconnected power systems, as detailed in Section 3.5.
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The state equation (3.1) has a unique solution described by:

x (t; ϕ (0) , u (t) , w (t)) = Φ (t, 0) ϕ (0) +
t∫

0

Φ (t, s)
m

∑
k=1

A(k)
d x (s− dk) ds

+

t∫
0

Φ (t, s) (Bu (s) + Bww (s)) ds

(3.3)

where Φ(t, s) is the transition matrix of the matrix A + ∆A(t), which can be expressed through

Peano-Baker series as:

Φ (t, s) = In +

t∫
s

(A + ∆A (σ1)) dσ1 +

t∫
s

(A + ∆A (σ1))

σ1∫
s

(A + ∆A (σ2)) dσ2dσ1 + · · ·

(3.4)

The first step in the inclusion principle is to generate an expanded system where the overlapping

subsystems of Fig. 3.1 appear as disjointed from each other. To this end, the singular transfor-

mations V : Rn → Rñ and T : Rl → Rl̃ must be chosen to transfer the original space to an

expanded one through x̃(t) = Vx(t) and ỹ(t) = Ty(t). The variables x̃ (t) ∈ Rñ and ỹ (t) ∈ Rl̃

are state and measured output vectors of the expanded system, respectively. Following the over-

lapping decomposition of Fig. 3.1, the full column rank matrices V and T that can duplicate the

shared variables are selected as:

V =



. . . 0 0 0 · · · 0 0

0 Ini 0 0 · · · 0 0

0 Ini 0 0 · · · 0 0

0 0
. . . 0 · · · 0 0

0 0 0 Inj · · · 0 0

0 0 0 Inj · · · 0 0

0 0 0 0
. . . 0 0

...
...

...
... · · · Ink 0

0 0 0 0 0 Ink 0
...

...
...

...
...

...
. . .



, T =



. . . 0 0 0 · · · 0 0

0 Ili 0 0 · · · 0 0

0 Ili 0 0 · · · 0 0

0 0
. . . 0 · · · 0 0

0 0 0 Ilj · · · 0 0

0 0 0 Ilj · · · 0 0

0 0 0 0
. . . 0 0

...
...

...
... · · · Ilk 0

0 0 0 0 0 Ilk 0
...

...
...

...
...

...
. . .



(3.5)
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Let U and S be full row rank matrices satisfying the conditions UV = In and ST = Il . Then,

using these conditions and the transformation matrices in (3.5), the expanded system Σ̃ can be

described as:

˙̃x (t) =
(

Ã + ∆Ã (t)
)

x̃ (t) +
m

∑
i=1

Ã(k)
d x̃ (t− dk) + B̃u (t) + B̃ww (t) ,

ỹ (t) = C̃x̃ (t) ,

z (t) = C̃z x̃ (t) ,

x̃ (t0) = ϕ̃ (t0) ,−max(dk) ≤ t0 ≤ 0 (3.6)

In (3.6), the system matrices can be expressed as:

Ã = VAU + M, Ã(k)
d = VA(k)

d U + Mdk, ∆Ã (t) = V∆A (t)U,

B̃ = VB + N, B̃w = VBw + Nw, C̃ = TCU + H,

C̃z = CzU + L (3.7)

where M, Mdk, N, Nw, H, L for k = 1, . . . , m are complementary matrices with appropriate di-

mensions.

The solution and transition matrix corresponding to the expanded system (3.6) are similar to (3.3)

and (3.4), respectively, but with the symbol (∼) added.

To state the problem addressed in this chapter, we need to introduce an extension of the classic

definition of the inclusion principle. To do so, let us consider performance levels γ and γ̃ for the

original and expanded systems Σ and Σ̃ respectively such that:

‖z (t)‖2 ≤ γ ‖w (t)‖2 , ‖z (t)‖2 ≤ γ̃ ‖w (t)‖2 (3.8)

Then, an extension of the inclusion principle definition 1.6 is presented next.

Definition 3.1. The pair (Σ̃, γ̃) expressed in (3.6) and (3.8) includes, or is an expansion of, the

pair (Σ, γ), expressed in (3.1) and (3.8), if there exist transformations (U, V, S), such that for any

initial state φ(t0), any given input u(t), and any disturbance input w(t), the state transforma-

tion φ̃(t0) = Vφ(t0) results in x (t; ϕ (t0) , u (t) , w (t)) = Ux̃ (t; ϕ̃ (t0) , u (t) , w (t)) , y (t) =
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Sỹ (t) and γ̃ = γ for all t ≥ 0.

3.3 Problem Statement

Consider the overlapping, static output-feedback controller u(t) = Ky(t), where the structure of

K is given as:

K =



. . .

∗ . . . ∗

∗ . . . ∗ 0
. . .

∗ . . . ∗

∗ . . . ∗

0
. . .

∗ . . . ∗

∗ . . . ∗
. . .



(3.9)

where (∗) stands for a design parameter. The overlapping structure of the static, output-feedback

gain, K, is reflecting the overlapping decomposition of the original system demonstrated in Fig.

3.1. Applying the control law u(t) = Ky(t) to the original system (3.1) leads to the following

closed-loop system:

ẋ (t) = (A + ∆A (t) + BKC) x (t) +
m
∑

k=1
A(k)

d x (t− dk) + Bww (t) ,

z (t) = Czx (t) ,

x (t0) = ϕ (t0), −max(dk) ≤ t0 ≤ 0

(3.10)

In the following, we use the inclusion principle of definition 3.1 to derive a sufficient condition

for the existence of structurally constrained controller (3.9) such that for all admissible delays and

uncertainties (i) the closed- loop system (3.10) is stable for w(t) = 0; and (ii) the H∞ inequality

‖z (t)‖2 ≤ γ ‖w (t)‖2, is satisfied by the closed- loop system (3.10) with a minimal value of γ.
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3.4 Main Results

3.4.1 An Extension of The Inclusion Principle

In order to generate the expanded system, given in (3.6), the complementary matrices of (3.7)

have to be chosen. Theorem 3.1 below states the conditions to be satisfied by the complementary

matrices.

Theorem 3.1. The pair (Σ̃, γ̃) given in (3.6) and (3.8) is an expansion of the pair (Σ, γ) described

in (3.1) and (3.8) if and only if:

UMiV = 0, UMi−1MdkV = 0, UMi−1N = 0, UMi−1Nw = 0, (3.11)

SHMi−1V = 0, SHMi−1MdkV = 0, SHMi−1N = 0, SHMi−1Nw = 0, (3.12)

LMi−1V = 0, LMi−1MdkV = 0, LMi−1N = 0, LMi−1Nw = 0, (3.13)

for i = 1, . . . , ñ and k = 1, . . . , m.

Proof. The proof of conditions (3.11) is given in [76]. In order to prove (3.12), we use (3.7) into

descriptions of x(t) and x̃(t). Then, we substitute the resultants into the relation y(t) = Sỹ(t) of

definition 3.1. It can then be clearly seen that the relation y(t) = Sỹ(t) holds if and only if we

have SHΦ̃ (t, 0)V = 0, SHΦ̃ (t, s) MdkV = 0, SHΦ̃ (t, s) N = 0, and SHΦ̃ (t, s) Nd = 0 for

t, s ≥ 0 and k = 1, . . . , m. Then, using expression of transition matrix Φ̃(t, s) by Peano-Baker se-

ries and (3.7), it can be shown that the relation SHΦ̃ (t, 0)V = 0 is equivalent to SHMi−1V = 0

for i = 1, . . . , ñ. Similarly, it can be demonstrated that conditions SHΦ̃ (t, s) MdkV = 0 , SHΦ̃ (t, s) N = 0,

and SHΦ̃ (t, s) Nw = 0 are equivalent to SHMi−1MdkV = 0, SHMi−1N = 0, and SHMi−1Nw = 0,

respectively. Analogously, the set of conditions (3.13) can be proven by the relation C̃z x̃(t) =

Czx(t) originated from the same controlled output vector z(t) in (3.1) and (3.6).

Remark: It is worth recalling that conditions (3.11) are the same as those given in [76]. How-

ever, the extension of the inclusion principle to an overlapping output-feedback controller requires,

in addition to those in [76], conditions (3.12)-(3.13) of theorem 3.1 to be satisfied simultaneously.

Choosing the complementary matrices based on the theorem 3.1 is not trivial for large ñ. How-

ever, it is easy to see that conditions of (3.11)-(3.13) hold if the complementary matrices satisfy
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the following conditions:

MV = 0, MdkV = 0, N = 0, Nw = 0, HV = 0, LV = 0 (3.14)

Substituting the singular transformations (3.5), and the complementary matrices satisfying (3.14)

into the relations (3.7) yield the expanded system (3.6), comprising the disjoint subsystems given

in (3.15):

˙̃xi (t)=
(

Ãii + ∆Ãii (t)
)

x̃i (t) +
N

∑
j=1
j 6=i

(
Ãij + ∆Ãij (t)

)
x̃j (t) +

m

∑
k=1

Ã(k)
dii x̃i (t− dk)+

B̃iiui (t) + B̃wiwi (t) ,

ỹi (t)= C̃ii x̃i (t),

zi (t)= C̃zi x̃i (t),

x̃i (t0)= ϕ̃i (t0) , −max(dk) ≤ t0 ≤ 0, (3.15)

Consider the local, output-feedback control laws:

ui (t) = k̃iỹi (t) , i = 1, ..., N (3.16)

Applying these local controllers to subsystems of (3.15) leads to the following closed-loop sub-

systems:

˙̃xi (t)=
(

Ãii + ∆Ãii (t) + B̃ii k̃iC̃ii
)

x̃i (t) +
N

∑
j=1
j 6=i

(
Ãij + ∆Ãij (t)

)
x̃j (t) +

m

∑
k=1

Ã(k)
dii x̃i (t− dk)+

B̃wiwi (t) ,

zi (t)= C̃zi x̃i (t) (3.17)

The problem then is to design local robust controllers k̃i such that closed-loop subsystems (3.17)

are stable with disturbance rejection level γ̃ i.e.
N
∑

i=1
‖zi (t)‖2

2 ≤ γ̃2
N
∑

i=1
‖wi (t)‖2

2 for all admissible

delays and uncertainties. The design procedure is given next.
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3.4.2 Robust Decentralised Control Design and LMI

Before addressing the design problem, note that the following relationship is always true:

N

∑
i=1

(N − 1) x̃T
i (t) x̃i (t)−

N

∑
j=1
j 6=i

x̃T
j (t) x̃j (t)

 = 0 (3.18)

Also, the uncertainties of the original system ∆A can be translated to uncertainties ∆Ãii and ∆Ãij

of (3.15). To this end, substitution of (3.2) into (3.7) leads to:

∆Ã (t) = G̃FA (t) Ẽ (3.19)

where

G̃ = VG, Ẽ = EU (3.20)

The uncertainty (3.20) can then be decomposed into lower dimensional sub-matrices as follows:

∆Ãii (t) = G̃iiFA (t) Ẽii, ∆Ãij (t) = G̃ijFA (t) Ẽij, (3.21)

Now, we can proceed to the design problem by constructing the Lyapunov-Krasovskii function as

follows:

V (x, t)=
N

∑
i=1

x̃T
i (t) P̃i x̃i (t) +

m

∑
k=1

∫ t

t−dk

x̃T
i (s) J̃ik x̃i (s) ds+

∫ 0

−dk

∫ t

t+θ
x̃T

i (s) R̃ik x̃i (s)dsdθ (3.22)

where P̃i, R̃ik, J̃ik are symmetric positive-definite matrices. Let the derivative of V(x, t) in (3.22)

be taken with respect to the closed loop description (3.17). Adding the term (3.18) to the resultant

V̇(x, t) and using the delay upper bounds, hk, we obtain the following upper bound on V̇(x, t).

V̇ (x, t)≤
N

∑
i=1

γ̃2wT
i (t)wi (t)− x̃T

i (t) C̃T
ziC̃zi x̃i (t) +ζ̃T

i (t) Ξ̃i ζ̃i (t)−
m

∑
k=1

∫ t

t−dk

x̃T
i (s) R̃ik x̃i (s) ds

(3.23)
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where

ζ̃i (t) =
[

x̃T
i (t) x̃T

i (t− d1) . . . x̃T
i (t− dm)

x̃T
1 (t) . . . x̃T

i−1 (t) x̃T
i+1 (t) x̃T

N (t) wT
i (t)

]T
(3.24)

Ξ̃i =


φ̃i P̃i ÃdHi P̃i

(
ÃHi + ∆ÃHi

)
P̃i B̃wi

∗ −Blkdiag
{

J̃ik

}
0 0

∗ ∗ −I 0

∗ ∗ ∗ −γ̃2 I

 (3.25)

In (3.25), (∗) denotes symmetric part, and

φ̃i=
(

Ãii + ∆Ãii
)T P̃i + P̃i

(
Ãii + ∆Ãii

)
− P̃i B̃ii B̃T

ii P̃i + C̃T
ziC̃zi+(

B̃T
ii P̃i + k̃iC̃ii

)T (
B̃T

ii P̃i + k̃iC̃ii

)
+ (N − 1) I +

m

∑
k=1

J̃ik + hkR̃ik

ÃHi=
[

Ãi1 . . . Ãi(i−1) Ãi(i+1) . . . ÃiN

]
∆ÃHi=

[
∆Ãi1 . . . ∆Ãi(i−1) ∆Ãi(i+1) . . . ∆ÃiN

]
ÃdHi=

[
Ã(1)

dii . . . Ã(m)
dii

]
, (3.26)

Now, let the matrix inequality Ξ̃i < 0 holds for all admissible delays and uncertainties. Then, we

obtain from (3.23):

V̇ (x, t) <
N

∑
i=1

γ̃2wT
i (t)wi (t)− x̃T

i (t) C̃T
ziC̃zi x̃i (t) (3.27)

where (3.27) leads to the following conclusions:

(i) V̇(x, t) < 0 when wi(t) = 0, i.e., the closed loop system (3.17) is stable.

(ii) For zero initial condition, V(0) = 0, taking integrals of both sides of (3.27) yields:

∫ ∞

0

N

∑
i=1
−γ̃2wT

i (t)wi (t) + zT
i (t) zi (t)dt < −V (∞) < 0 (3.28)
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From (3.28), it is easy to show that the H∞ performance level γ̃ can be obtained through the in-

equality
N
∑

i=1
‖zi (t)‖2

2 ≤ γ̃2
N
∑

i=1
‖wi (t)‖2

2.

In the sequel, we will show how to formulate the condition Ξ̃i < 0 into an LMI, which can

then be used for control design purposes. To this end, a new variable X̃i = X̃T
i > 0 is in-

troduced to deal with the negative term −P̃i B̃ii B̃T
ii P̃i in (3.26). It follows that the inequality(

X̃i − P̃
)

B̃ii B̃T
ii
(
X̃i − P̃

)
≥ 0, which always holds, can be expressed as:

X̃i B̃ii B̃T
ii X̃i − X̃i B̃ii B̃T

ii P̃i − P̃i B̃ii B̃T
ii X̃i ≥ −P̃i B̃ii B̃T

ii P̃i (3.29)

Through Lemma 2 [92], expression of uncertainties (3.21), Schur complement, and the inequality

(3.29), it can be shown that Ξ̃i < 0 holds if there exist symmetric, positive-definite matrices

P̃i, X̃i, R̃ik, J̃ik, and positive scalars ε1i, ε2i, hk, γ̃ such that the matrix inequality Υ̃i < 0 shown in

(3.31) holds.

Υ̃i =



Ψ̃i P̃i ÃdHi P̃i ÃHi P̃i B̃wi P̃iG̃ii P̃iG̃Hi
(

B̃T
ii P̃i + k̃iC̃ii

)T

∗ Blkdiag
{
− J̃ki

}
0 0 0 0 0

∗ ∗ −I + ẼHi
Tε2iẼHi 0 0 0 0

∗ ∗ ∗ −γ̃2 I 0 0 0

∗ ∗ ∗ ∗ −ε1i I 0 0

∗ ∗ ∗ ∗ ∗ −ε2i I 0

∗ ∗ ∗ ∗ ∗ ∗ −I


< 0

Ψ̃i = ÃT
ii P̃i + P̃i Ãii + X̃i B̃ii B̃T

ii X̃i − X̃i B̃ii B̃T
ii P̃i − P̃i B̃ii B̃T

ii X̃i +
m

∑
k=1

J̃ik + hkR̃ik+

(N − 1) I + C̃T
ziC̃zi + ẼT

ii ε1iẼii, (3.30)

ẼHi = Blkdiag
{

Ẽi1, . . . , Ẽi(i−1), Ẽi(i+1), ..., ẼiN

}
,

G̃Hi =
[

G̃i1 . . . G̃i(i−1) G̃i(i+1) . . . G̃iN

] (3.31)

The matrix inequality (3.31) is a quadratic matrix inequality (QMI), which can be converted to

a standard LMI with specified X̃i, hk, and γ̃. However, the LMI with fixed parameters is known to

be conservative, and it may even be infeasible. A more relaxed LMI formulation can be obtained
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by solving (3.32), where α̃i is a new scalar variable.

Υ̃i <


α̃i P̃i 0 . . . 0

0 0 . . . 0
...

...
...

...

0 0 . . . 0

 (3.32)

Since P̃i > 0, (3.31) holds if there exists α̃i ≤ 0 such that (3.32) holds. So, we solve the robust,

output-feedback control problem by using the iterative algorithm shown in Fig. 3.2 to achieve

α̃i ≤ 0. In addition, the binary search (half-interval search) technique is used to minimize the

parameter γ̃ in (3.32) in order to obtain adequate control performance. The iterative algorithm

of Fig. 3.2 comprises three major steps. The first step, identified by green dotted box, is the

initialization of the algorithm. The second step, identified by red dashed box, is to find the robust

gain k̃i with an H∞ performance level γ̃. Finally, the third step, identified by the blue dash-dotted

box, performs binary search to minimize the parameter γ̃ of (3.32).

Remark: In the red dashed box, the Optimization Problem 1 (OP1) is the GEVP. Similar to [15], it

can be shown that at any two consecutive steps, p and p + 1, the OP1 ensures that the values of α̃i

are such that α̃
(p+1)
i ≤ α̃

(p)
i . This implies that the iterative algorithm ensures convergence as long

as the LMI problem posed in (3.32) is feasible at the first step p = 1.

Remark: Note that the feasibility of the problem depends on the initialisation step, where the

delay margins, hk, and the H∞ performance level search interval [γstart, γend] are set. It might be

necessary to adjust these margins to ensure feasibility.

Once a decentralised controller K̃D = Blkdiag{k̃i} is obtained through the iterative algorithm of

Fig. 3.2, it is then contracted (transformed) to an overlapping controller K (3.9) for implementation

on the original overlapping system (3.1). Due to (3.14), and similar to [68], the transformation

back to the original system is done by using T of (3.5):

K = K̃DT (3.33)

With the above material presented, we can now state the main results of this chapter, stated in the-

orem 3.2 below, provides a sufficient condition for robust stabilisability of the original overlapping
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Figure 3.2: The iterative algorithm to design robust k̃i

system (3.1).

Theorem 3.2. Contraction of a decentralised controller K̃D = Blkdiag{k̃i} formed out of the ro-

bust, local, output-feedback controllers k̃i with disturbance rejection level γ̃ leads to a stabilizing,

robust, overlapping, output-feedback controller K for the original system (3.1) with a disturbance

rejection level γ, where γ = γ̃.
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Proof. From the constructed Lyapunov-Krasovskii function (3.22) and design procedure of robust

gains k̃i, we know:

N

∑
i=1

ζ̃T
i (t) Ξ̃i ζ̃i (t) < 0 (3.34)

where ζ̃i (t) and Ξ̃i are given in (3.24) and (3.25) respectively.

Using, the inequality C̃T
ii k̃T

i k̃iC̃ii ≥ 0 , equality (3.18), and descriptions of ζ̃i and Ξ̃i, the matrix

inequality (3.34) results in ξ̃T (t) Ω̃ξ̃ (t) < 0 where:

ξ̃ (t)=
[

x̃T (t) x̃T (t− d1) . . . x̃T (t− dm) wT (t)
]T

(3.35)

Ω̃=



Θ̃ P̃D Ã(1)
d . . . P̃D Ã(m)

d P̃D B̃w

∗ − J̃D1 0 0 0

∗ ∗ . . . 0
...

∗ ∗ ∗ − J̃Dm 0

∗ ∗ ∗ ∗ −γ̃2 I


Θ̃ = P̃D

(
Ã + ∆Ã + B̃K̃DC̃

)
+
(

Ã + ∆Ã + B̃K̃DC̃
)T P̃D+C̃T

z C̃z +
m

∑
k=1

J̃Dk + hkR̃Dk (3.36)

In (3.36), P̃D, J̃Dk, R̃Dk are symmetric-positive definite matrices defined as below:

P̃D = Blkdiag
{

P̃i
}

, J̃Dk = Blkdiag
{

J̃ik
}

, R̃Dk = Blkdiag
{

R̃ik
}

(3.37)

for i = 1, . . . , N.

Now, construct the full column rank matrix Π = Blkdiag

V, V, ..., V︸ ︷︷ ︸
m

, I

 using matrix V given

in (3.5). Then, by pre-post multiplying Ω̃ (3.36) to ΠT and Π, it can be clearly seen through

relations (3.7), conditions on complementary matrices (3.14), and contraction expression (3.33),
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the matrix inequality ΠTΩ̃Π < 0 is equivalent to (3.38) where γ = γ̃.

Φ̃=



ψ̃ VT P̃DVA(1)
d . . . VT P̃DVA(m)

d VT P̃DVBw

∗ −VT J̃D1V 0 0 0

∗ ∗ . . .
...

...

∗ ∗ ∗ −VT J̃DmV 0

∗ ∗ ∗ ∗ −γ2 I


< 0

ψ̃= VT P̃DV (A + ∆A + BKC) + (A + ∆A + BKC)VT P̃DV+

VT

(
m

∑
k=1

J̃Dk + hkR̃Dk

)
V + CT

z Cz (3.38)

In the following, it will be shown that the matrix inequality (3.38) is implying the robust stability of

the closed loop (3.10) for all admissible delays and uncertainties. To this end, construct following

positive definite Lyapunov-Krasovskii function using P̃D, J̃Dk and R̃Dk of (3.37):

VL (x, t) = xT (t)VT P̃DVx (t) +
m

∑
k=1

∫ t

t−dk

xT (s)VT ( J̃Dk
)

Vx (s) ds

+
∫ 0

−dk

∫ t

t+θ
xT (s)VT R̃DkVx (s)dsdθ

(3.39)

Let the derivative of VL(x, t) (3.39) be taken respect to (3.10). Then, the following upper bound

on V̇L(x, t) can be obtained:

V̇L (x, t) < ξT(t)Φ̃ξ(t) + γ2wT (t)w (t)− xT (t)CT
z Czx (t)−

m

∑
k=1

∫ t

t−dk

xT (s)VT R̃DkVx (s) ds (3.40)

with Φ̃ given in (3.38), and

ξ(t) =
[

xT(t) xT(t− d1) . . . xT(t− dm) wT(t)
]

(3.41)

Similar to (3.23), the inequality (3.40) through Φ̃ < 0 is implying the robust stability of the closed

loop system (3.10) with disturbance rejection γ for all admissible delays and uncertainties. So,

the theorem is proven.
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Table 3.1: Parameters of 2-area interconnected power system

βi(p.u.MW/Hz) Frequency bias Ki Integral gain
Kpi(Hz/p.u.MW) Power system gain Tpi (sec) Power system time constant
Tgi (sec) Governor time constant Tchi (sec) Turbine time constant
Ri(Hz/p.u.MW) Speed droop T(p.u.MW/Hz) Tie-line coefficient

3.5 Application: Load Frequency Control

Load frequency control is crucial in the operation of power systems to maintain the frequency

and the power exchange between the areas as close as possible to the scheduled values when load

demand exceeds generation. Due to the central roles LFC plays, it has been a subject of much

research over many decades as mentioned in Section 1.1.1.

In this section, the proposed robust overlapping delay-dependent design procedure is used for LFC

design for a two-area interconnected power system, and the simulation results are compared with

those of [26, 50]. The simulation results clearly demonstrate that proposed robust overlapping

LFC leads to enhanced performance compared with LFCs of [26, 50] despite the fact that less

information is used for feedback with the proposed robust overlapping controller. The reason

behind the improved performance is using delay information in the proposed design procedure,

while LFCs of [26, 50] are independent of delay’s characteristics.

3.5.1 Power System Description

A model of a 2-area interconnected power system is shown in Fig. 3.3 [26]. Table 3.1 shows the

system physical parameters, which in real life are not fixed, i.e. they are uncertain, as they may

undergo changes due to variation in the operating conditions and also due to age related factors,

such wear and tear. The LFC design problem of this section deals with the presence of commu-

nication time-delays and parametric uncertainties simultaneously, captured by the following state

space model:

ẋ (t) = (A + ∆A) x (t) + A(1)
d x (t− d1) + A(2)

d x (t− d2) + Bu (t) + Bdw (t) ,

y (t) = Cx (t) ,

z (t) = Czx (t)

(3.42)
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Figure 3.3: A time-delayed 2-area interconnected power system
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where the state, input, measured output, controlled output, disturbance variables and system pa-

rameter matrices are defined as follows:

The state vector:

x (t) =
[
∆ f1 (t) , ∆pm1 (t) , ∆pv1 (t) ,

∫
ACE1, ∆ptie−12 (t) , ∆ f2 (t) , ∆pm2 (t) , ∆pv2 (t) ,

∫
ACE2

]
;

The input vector: u (t) = [u1 (t) , u2 (t)]; The disturbance vector: w (t) = [∆Pd1 (t) , ∆Pd2 (t)];

The measured output vector: y (t) =
[
∆pm1 (t) , ACE1,

∫
ACE1, ∆ptie−12 (t) , ∆pm2 (t) , ACE2,

∫
ACE2

]
;

The controlled output vector: z (t) = [∆ f1 (t) , ∆ptie−12 (t) , ∆ f2 (t)] with ∆ fi being the fre-

quency deviation in Hz, ∆Ptie−12 is the tie-line power deviation in p.u.MW, ACEi is the area

control error in p.u.MW, ∆pmi is the mechanical power output of the generator in p.u.MW, ∆pvi

is the governor valve position in p.u.MW, and ∆pdi is the load demand change in p.u.MW for the

ith area. The system matrices A, A(1)
d , A(2)

d , B, Bd, C, Cz are given below where the overlapping

decomposition is determined by dashed lines.

A=



− 1
Tp1

Kp1

Tp1
0 0 −

Kp1

Tp1
0 0 0 0

0 − 1
Tch1

1
Tch1

0 0 0 0 0 0

− 1
R1Tg1

0 − 1
Tg1

0 0 0 0 0 0

K1β1 0 0 0 K1 0 0 0 0

2πT 0 0 0 0 −2πT 0 0 0

0 0 0 0
Kp2

Tp2
− 1

Tp2

Kp2

Tp2
0 0

0 0 0 0 0 0 − 1
Tch2

1
Tch2

0

0 0 0 0 0 − 1
R2Tg2

0 − 1
Tg2

0

0 0 0 0 −K2 K2β2 0 0 0
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A(1)
d =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 − 1
Tg1

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



, A(2)
d =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − 1
Tg2

0 0 0 0 0 0 0 0 0



B=



0 0

0 0
1

Tg1
0

0 0

0 0

0 0

0 0

0 1
Tg2

0 0



, Bd =



−
Kp1

Tp1
0

0 0

0 0

0 0

0 0

0 −
Kp2

Tp2

0 0

0 0

0 0



, C =



0 1 0 0 0 0 0 0 0

K1β1 0 0 0 K1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 −K2 K2β2 0 0 0

0 0 0 0 0 0 0 0 1



Cz =


1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

 (3.43)

and ∆A is the norm bounded uncertainty with structure shown in (3.2).

Statement of the problem: For the case where (a) the communication time delays d1 and d2 are

assumed to be constant, unknown, but upper bounded by τi, i.e. 0 < di ≤ τi, i = 1, 2 , and

(b) the system parameters are uncertain, design an overlapping PI-type LFC that would achieve

the following performance objectives in response to changes in the load demands: (i) zero steady

state deviation in the frequency of each area; (ii) zero tie-line power exchange in the steady state;

and (iii) acceptable transient performance. This PI-design problem can be reformatted as a static

output feedback control problem by defining the ACE signal and its integral as state variables [41].
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As a result, the feedback control law with an overlapping structure becomes

 u1 (t)

u2 (t)

 =

 k1 k2 k3 k4 0 0 0

0 0 0 k5 k6 k7 k8


︸ ︷︷ ︸

K



∆Pm1 (t) dt

ACE1 (t)∫
ACE1 (t)

∆ptie−12 (t)

∆Pm2 (t) dt

ACE2 (t)∫
ACE2 (t)


(3.44)

Applying (3.44) to (3.42) results in the following closed loop system:

ẋ (t) = (A + ∆A + BKC) x (t) + A(1)
d x (t− d1) + A(2)

d x (t− d2) + Bdw (t) ,

z (t) = Czx (t)
(3.45)

Now, let induced 2-norm of the controlled outputs z(t) be bounded by the following function:

‖z (t)‖2
2 ≤ γ2‖w (t)‖2

2 (3.46)

where w(t) is the load variation and γ is the H∞ performance index. It is well-known that since

γ determines the effect of load variation on controlled outputs, smaller value of γ indicates better

performance.

The problem then is to design a static output feedback controller K of the structure shown in (3.44)

such that the closed loop (3.45) is stable with minimal H∞ performance index γ for all admissible

uncertainties and delays.

3.5.2 Case Study

In order to show the effectiveness of the proposed fixed structure LFC design, the 2-area intercon-

nected power system shown in Fig. 3.3 is studied. As reported in [26], area 1 is represented by a

generator which is equivalent to two generators and area 2 is represented by a generator which is

equivalent to four generators The aim of this exercise is to design an LFC based on the overlapping

decomposition principle to (i) provide robustness to parametric uncertainties, (ii) account for the
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Table 3.2: Nominal Values of Parameters

Tch (sec) Tg (sec) R(Hz/p.u.MW) Tp (sec) Kp(Hz/p.u.MW) β(p.u.MW/Hz) T(p.u.MW/Hz) Ki
Area 1 0.3 0.1 0.05 10 1 41 3 0.5
Area 2 0.17 0.4 0.05 8 0.66 81.5 3 0.5

Table 3.3: Uncertain Parameters

Physical Quantity Minimum Maximum
T(p.u.MW/Hz) 1 5
R1(Hz/p.u.MW) 0.03 0.09
R2(Hz/p.u.MW) 0.03 0.09

communication time-delays, and (iii) achieve superior performance compared to the traditional

PI-controller acting on ACE signals. In order to compare the results of our approach with that of

[26], the parameters in the primary control loop are chosen to be the same as used in [26] and

given in Table 3.2. As the approach in [26] does not consider parameteric uncertainties, we will

use the nominal parameter values for the comparison. We will also demonstrate the robustness of

the design method to changes in the system parameters by using both upper and lower bounds.

The bounded uncertainty in the example is due to tie-line synchronising coefficient, T, and the

droop characteristic, Ri, in both areas as given in the Table 3.3.
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3.5.3 Robust Delay Dependent LFC Design

Using the expansion process explained in Section 3.4.1, the expanded system, containing the two

completely disjointed subsystems Σ̃1 and Σ̃2, is obtained where the first subsystem Σ̃1 is:

Σ̃1 :

˙̃x1(t) =





−0.1 0.1 0 0 −0.1

0 −3.3 3.3 0 0

−200 0 −10 0 0

20.5 0 0 0 0.5

18.84 0 0 0 0


+ ∆Ã11


x̃1 (t)

+



0 0 0 0 0

0 0 0 0 0

0 0 0 −10 0

0 0 0 0 0

0 0 0 0 0


x̃1 (t− d1) +





0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −18.84 0 0 0


+ ∆Ã12


x̃2 (t) +



0

0

10

0

0


u1 (t) +



−0.1

0

0

0

0


w1 (t) ,

ỹ1 (t) =


0 1 0 0 0

20.5 0 0 0 0.5

0 0 0 1 0

0 0 0 0 1

 x̃1 (t) , z1 (t) =

 1 0 0 0 0

0 0 0 0 1

 x̃1 (t)



3.5 Application: Load Frequency Control 83

and the second subsystem Σ̃2 is:

Σ̃2 :

˙̃x2(t) =





−0.5 −18.84 0 0 0

0.083 −0.083 0.083 0 0

0 0 −5.88 5.88 0

0 −200 0 −10 0

−0.5 40.5 0 0 0


+ ∆Ã22


x̃2 (t) +



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −10

0 0 0 0 0


x̃2 (t− d2) +





18.84 0 0 0 0.5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


+ ∆Ã21


x̃1 (t) +



0

0

0

10

0


u2 (t) +



0

−0.083

0

0

0


w2 (t) ,

ỹ2 (t) =


1 0 0 0 0

0 0 1 0 0

−0.5 40.5 0 0 0

0 0 0 0 1

 x̃2 (t) , z2 (t) =

 1 0 0 0 0

0 1 0 0 0

 x̃2 (t)

Step 2) Setting γstart = 1, γend = 10, ∆γ = 0.5, Q̃w1 = R̃w1 = 0.1I5, Q̃w1 = R̃w1 = 0.01I5

and τ1 = τ2 = 1s (delay bounds in both areas) in the iterative algorithm given in Fig. 3.2, the

following local output controllers are obtained for the interconnected areas Σ̃1 and Σ̃2 with H∞

performance γ̃ = 3:

k̃1 =
[
−1.63 −2.54 −5.78 3.39

]
k̃2 =

[
−4.39 −1.68 −2.42 −5.9

] (3.47)
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Therefore, from (3.47) the decentralised LFC for the expanded system, denoted by K̃D, is ex-

pressed as:

K̃D =

 −1.63 −2.54 −5.78 3.39 0 0 0 0

0 0 0 0 −4.39 −1.68 −2.42 −5.9

 (3.48)

Contraction of (3.48) by (3.33), yields the following overlapping robust H∞ static output feedback

LFC:

K =

 −1.63 −2.54 −5.78 3.39 0 0 0

0 0 0 −4.39 −1.68 −2.42 −5.9

 (3.49)

The output feedback LFC has the same overlapping structure as described in (3.44). Based on

theorem 3.2, the overlapping controller (3.49) is a robust LFC with γ = 3 for the original two-

area interconnected power system.

3.5.4 Simulation Study

In the following, the LFC given in (3.49) is tested, through computer simulation, on the 2-area

system of Fig. 3.3, and the simulation results are compared with one-term full state feedback LFC

([26], Section 4.1.1) and two-terms state feedback LFC ([26], Section 4.1.3). In the first study, let

load demand change be 0.01p.u step change in load demand in area 1 at t = 0 sec followed by

0.01p.u step change in load demand in area 2 at t = 20 sec. In the second study, the random load

demand change as shown in Fig. 3.4 is considered. In each study, three scenarios are considered.

In scenario 1, we use the nominal values of the parameters given in Table 3.2. In scenario 2, we use

the lower limits of the uncertainties as given in Table 3.3. Finally, in scenario 3, we use the upper

limits on the uncertainties as given in Table 3.3. In all the simulation studies, the communication

delays are set (as in [26]) to d1 = 0.1 sec and d2 = 0.6 sec.
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Figure 3.4: Random load demand changes applied to areas 1 and 2

Study 1. Step Load Demand Change:

Let the load demand change be 0.01p.u in area 1 at t = 0 sec followed by 0.01p.u step change in

load demand in area 2 at t = 20 sec. In the sequel, the simulation results for different values of

uncertain parameters are provided.

Scenario 1: In this scenario, the Matlab Toolbox DDE-BIFTOOL [93] shows that the closed

loop system is unstable with the right-most pair being {0.06± 1.53j}. It has been confirmed by

simulation study ([26], Fig. 3). However, the closed loop system with the proposed overlapping

LFC is stable, as expected, with the rightmost pole at {−0.86}. The responses of the closed-loop

control system for the nominal values are shown in Fig. 3.5a-3.5c, where the responses reported

in [26] for the same conditions have been superimposed for clarity of comparison.
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Figure 3.5: Scenario 1 (nominal parameters). Solid blue line (Proposed overlapping PI-type LFC),
dotted black line (One term state feedback Controller [26]), dashed red line (Two terms state
feedback Controller [26])

Figure. 3.5a shows the tie-line power exchange between the two areas. Initially, during tran-

sient, the part of the load increase in area 1 is met by importing power from area 2, which then

will reduce to zero in the steady state. This signifies the fact that in the steady state all of the local

power demand is met locally. A careful examination of the responses shown in the Fig. 3.5a, how-

ever, demonstrates clearly the much improved response of the proposed robust output feedback

controller designed over that designed in [26]. This is despite the fact that the controller in [26]

is state feedback. The improved performance is reflected by the overshoot, settling time and the

virtually nonexistence of oscillations.

The responses of the frequency deviations in areas 1 and 2 are shown in Fig. 3.5b. Here again

our controller performs significantly better than the one term controller and slightly better than the
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two terms controller, especially to responses in load demand changes in area 2, which contains

4 rather than the 2 generators in area 1. Figure. 3.5b shows clearly the improved overshoot and

settling time response to area 2 load demand change compared with the two terms state feedback

controller of [26].

Figure 3.5c shows the control signals, u1, u2 generated by the three controllers. It is clear that

much less control effort (energy injection) is needed to damp out the oscillations and bring the

system to a steady state than that required by the other two controllers. This is in addition to much

less settling time and overshoot.

Scenario 2: Here we repeat the simulation study carried out in scenario 1 but with the nominal

values of the system parameters replaced by the lower limits shown in Table 3.3. In this scenario,

the open loop system is stable, with the rightmost pole placed at {−0.2± 1.5j}. The overlap-

ping LFC leads to stable closed loop system with the rightmost pole at {−0.25}. The closed-loop

system performances under the three controllers are shown in Fig. 3.6a-3.6c.
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Figure 3.6: Scenario 2 (lower bound). Solid blue line (Proposed overlapping PI-type LFC), dotted
black line (One term state feedback Controller [26]), dashed red line (Two terms state feedback
Controller [26])

The tie-line power responses to initial change in the area 1 load demand then area 2 load

demand after 20 seconds are shown in Fig. 3.6a. It is clear that the response of the tie-line power

exchange under our controller exhibits fewer oscillations and settles quicker than the other two

controllers reported in [26].

Fig. 3.6b illustrates the responses of the frequency deviations in the two areas to the same load

demand changes. Here again the same superior performance is exhibited by our controller in terms

of overshoot and settling time.

The same analysis can be made with respect to the control signals generated by the three controllers

shown in Fig. 3.6c. It is evident from the graphs of the control signals that our controller requires

less effort (movement) to accomplish the task of achieving zero steady state error in the tie-line

power and frequency and at the same time damping out oscillations in response to load demand
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changes.

Scenario 3: Here again we repeat the simulation study carried out in scenario 1 but with the

nominal values of the system parameters replaced by the upper limits shown in Table 3.3. The

open-loop system is unstable with two complex-conjugate pairs placed in the right-hand s-plane

at {0.26 ± 1.4j} and {0.01± 2.52j} in this case. The right-most pole, however, in the closed

loop system with the proposed overlapping LFC is placed at {−0.67± 2.24j}. The closed-loop

system performances under the three controllers are shown in Fig. 3.7a-3.7c. The tie-line power

responses to initial change in the area 1 load demand then area 2 load demand after 20 seconds are

shown in Fig. 3.7a. It is clear that the response of the tie-line power exchange under our controller

exhibits far superior response than the one term controller and better performance than the two

terms controller reported in [26], in terms of fewer oscillations and quicker settling time. The

same conclusions hold with respect to the responses of the frequency deviations in the two areas

and the fact that our controller requires less effort to eliminate the steady state error in the tie-line

power and frequency in both areas more quickly and efficiently than the other two controllers.
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Figure 3.7: Scenario 3 (upper bound). Solid blue line (Proposed overlapping PI-type LFC), dotted
black line (One term state feedback Controller [26]), dashed red line (Two terms state feedback
Controller [26])

Study 2. Random Load Demand Change

Let the random load demand change shown in Fig. 3.4 be applied to areas 1 and 2. In the sequel,

the simulation results compared with those of [26] for various values of uncertain parameters,

which are given in Table 3.3, are provided.

Scenario 1: The closed loop responses with the nominal parameters of uncertain parameters are

given in Fig. 3.8a-3.8c.:
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Figure 3.8: Scenario 1 (Nominal parameters). Solid blue line (Proposed overlapping PI-type
LFC), dotted black line (One term state feedback Controller [26]), dashed red line (Two terms
state feedback Controller [26])

Scenario 2: Here, the lower bound of uncertain parameters given in Table 3.3 are considered

in the simulation studies. The closed loop responses are demonstrated in Fig. 3.9a-3.9c, where the

responses of [26] have been superimposed for the sake of comparison.
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Figure 3.9: Scenario 2 (lower bound). Solid blue line (Proposed overlapping PI-type LFC), dotted
black line (One term state feedback Controller [26]), dashed red line (Two terms state feedback
Controller [26])

Scenario 3: Finally, let the nominal values of uncertain parameters be replaced with the max-

imum values of Table 3.3. The closed loop responses to random load demand changes are demon-

strated in Fig. 3.10a-3.10c:
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Figure 3.10: Scenario 3 (lower bound). Solid blue line (Proposed overlapping PI-type LFC), dotted
black line (One term state feedback Controller [26]), dashed red line (Two terms state feedback
Controller [26])

The discussions on simulation results are the same as before. But, it is still worth mentioning

that based on the simulation results, performance of proposed overlapping output feedback LFC

is better than state feedback LFCs of [26]. It has been confirmed through quantitative criterion in

Section 3.5.5.

3.5.5 Performance Comparison

In order to provide a quantitative comparison of the performances of our controller design ap-

proach and those reported in [26], the Integral Absolute Error (IAE) criterion of form expressed in

(3.50) below is used. The index J reflects the amount of energy required to bring the transients to

steady-state, measured by the total absolute value of area under the ACE curve. In this application,
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the energy is the amount of steam input to the turbine regulated by the governor action.

J =
∫ t f

0
{|ACE1 (t)|+ |ACE2 (t)|} dt (3.50)

where t f in study 1 (step load demand change) is 60 sec and study 2 (random load demand change)

is 200 sec.

The result of the performance index J of each of the three designs is given in Tables. 3.4-3.5.

Table 3.4: Values of assessment criterion (unit step load demand change)

Type of Controller Nominal Parameters Lower bound of uncertain parameters Upper bound of uncertain parameters

Proposed overlapping PI-type LFC 0.01 0.01 0.02

One term state feedback LFC [26] 0.06 0.03 0.17

Two terms state feedback LFC [26] 0.03 0.03 0.03

Table 3.5: Values of assessment criterion (random step load demand change)

Type of Controller Nominal Parameters Lower bound of uncertain parameters Upper bound of uncertain parameters

Proposed overlapping PI-type LFC 9.79 9.02 12.8

One term state feedback LFC [26] 30.24 18.31 76.03

Two terms state feedback LFC [26] 15.08 16.72 15.02

It is clear from Table 3.4-3.5 that the proposed overlapping robust LFC provides better per-

formance index than the full state feedback LFCs in [26]. This outcome vindicates the results of

the simulation studies carried out in the three scenarios in Section 3.5.4. As well as the superior

performance, our controller uses local output measurements only, as opposed to the state feedback

LFC of [26] that required availability of the entire state variables in both areas to generate the local

control signals. The practical implication is that implementation of the LFCs in [26] requires extra

communication channels to be installed for information transfer and thus adds more complex-

ity, delays, computational requirements and probability of faults occurring in the communication

channels.

3.6 Summary

This chapter provides new results on stabilisability of overlapping, time-delay, continuous-time,

uncertain systems, by overlapping static output-feedback controllers. The overlapping subsys-
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tem is first expanded such that the overlapping subsystems have become disjointed. Sufficient and

necessary conditions for the expansion process are given. Then, local stabilising controllers are de-

signed for disjoint subsystems, using a LMI based iterative algorithm. A stabilising decentralised

controller is then formed out of the local controllers, and contracted to a stabilising overlapping

controller for implementation on the original system. Preservation of stability and disturbance

rejection level through contraction process is proven. The two-area interconnected power system

experiencing communication delays and parametric uncertainties is used as the case study. The

simulation results, under various scenarios, show that the proposed overlapping LFC provides a

better robust performance than the full state feedback LFCs of [26], although it uses local out-

put measurements only. This is vindicated by a quantitative assessment of the performance made

in terms of the amount of energy required to damp out the oscillation after a change in the load

demand.
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Chapter 4

Robust Controller Design for Overlapping
Uncertain Systems With Time-varying

Measurement Delay

An extension of the inclusion principle is presented in this chapter to design a robust, overlapping,

H∞ static, output feedback controller for continuous input-delayed uncertain systems with overlap-

ping decomposition. The input delay is unknown but assumed to be time-varying with given upper

bounds on the size and derivative of delay. The system considered is linear comprising a number

of overlapping subsystems with structured, time-varying, and norm-bounded uncertainties. In this

approach, the original overlapping system is first expanded into a higher dimensional system where

the overlapping subsystems are completely decoupled. Then, a delay-dependent iterative algorithm

based on LMI is proposed to design robust H∞ local output feedback controllers for the each of the

decoupled subsystems. Finally, the local controllers form a decentralised controller which is then con-

tracted (transformed) to a robust overlapping controller for implementation on the original system.

The preservation of stability and performance through contraction is proven. The validity of the pro-

posed design approach is demonstrated by designing an LFC for an uncertain 3-area interconnected

power system experiencing time-varying measurement delays.

4.1 Introduction

In Chapter 3, uncertain linear systems experiencing constant state-delays are studied. The inclu-

sion principle and design approach based on LMI are proposed to design robust overlapping output

feedback controllers. However, the assumption on network delays being constant might be con-

servative. They may appear due to temporary data unavailability because of physical failure of a

communication channel or cyber-attack on data packet. So, it is more relaxed to consider random

97
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or time-varying communication delays in the stability analysis. Furthermore, communication de-

lays are likely to rise in sending measurements from remote terminal units (RTUs) to control centre

and from the control centre to the system. These delay can be combined as a single delay and be

presented as input delay. Thus, to consider more relaxed and practical conditions, this chapter

studies overlapping systems experiencing time-varying input-delay. To this end, first the inclusion

principle presented in Chapter 3 is used to expand the overlapping system. Then, a relaxed LMI

based iterative algorithm is proposed to design local controllers, which are aggregated to form

a decentralised controller. It is then contracted to overlapping controller to be implemented on

the original overlapping system. This chapter shows that stability and performance are preserved

through the contraction process.

4.2 Preliminaries

In this chapter, we are dealing with uncertain input-delayed continuous system Σ described as:

Σ :

ẋ (t) = (A + ∆A(t)) x (t) + Bu (t− d(t)) + Bww (t) ,

y (t) = Cx (t) ,

z (t) = Czx (t) ,

x (0) = x0

(4.1)

Matrix ∆A(t) represents time-varying norm-bounded uncertainty with the following structure:

∆A(t) = GFA(t)E (4.2)

with G, E are known matrices with appropriate dimensions. FA(t) is unknown time-varying ma-

trix satisfying the condition FT
A(t)FA(t) ≤ I.

The unknown time-varying input-delay d(t) in (4.1) is assumed to have the following characteris-

tics:

0 < d(t) ≤ τ,

0 < ḋ(t) ≤ µ (4.3)
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where τ (delay margin) and µ (maximum rate of delay change) are determined from the physical

system.

Consider another larger dynamical system Σ̃ as follows:

Σ̃ :

˙̃x(t) =
(

Ã + ∆Ã (t)
)

x̃ (t) + B̃u (t− d(t)) + B̃ww (t) ,

ỹ (t) = C̃x̃ (t) ,

z̃ (t) = C̃z x̃ (t) ,

x (0) = x0

(4.4)

where ∆Ã(t) represents norm-bounded uncertainty with the following structure:

∆Ã(t) = G̃F̃A(t)Ẽ (4.5)

Let the controlled output of system Σ (4.1) and its expanded form Σ̃ (4.4) be bounded by the

following inequalities:

‖z (t)‖2 ≤ γ ‖w (t)‖2

‖z̃ (t)‖2 ≤ γ̃ ‖w (t)‖2

(4.6)

It can be shown similar to Chapter 3 that the larger dynamical system Σ̃ includes (or is expansion)

of the system Σ based on definition 3.1 if there exist complementary matrices M, N, Nw, H, L

satisfying conditions (3.14). Then, the matrices of the expanded system is related to those of the

original system Σ as given in (3.7).

4.3 Problem Setup

Let system (4.1) be comprised of N overlapping subsystems where each of the matrices A +

∆A(t) and C has overlapping blocks on its diagonal as illustrated in Fig. 3.1. The aim of this

chapter is to use the inclusion principle and the expanded system Σ̃ in order to design a robust,

structurally constrained controller, K (3.9), for system (4.1) with the overlapping decomposition

of Fig. (3.1), such that for all admissible uncertainties and delays:
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1. The closed loop:

ẋ (t) = (A + ∆A (t)) x (t) + BKCx (t− d(t)) + Bww (t) ,

z (t) = Czx (t) ,

x (0) = x0

(4.7)

is asymptotically stable when w(t) = 0.

2. The H∞ inequality ‖z (t)‖2 ≤ γ ‖w (t)‖2 is satisfied by the closed loop system (4.7) with

a minimal value of γ.

4.4 Main Results

Similar to Chapter 3, the generated expanded system Σ̃ (4.4) comprises of interconnected subsys-

tems can be represented as follows:

˙̃xi(t) =
(

Ãii + ∆Ãii (t)
)

x̃i (t) +
N
∑

j=1
j 6=i

(
Ãij + ∆Ãij (t)

)
x̃j (t) + +B̃iiui (t− d(t)) + B̃wiwi (t) ,

ỹi (t) = C̃ii x̃i (t) ,

z̃i (t) = C̃zi x̃i (t) ,

x (0) = x0; i = 1, ..., N
(4.8)

Applying the local static output feedback gains ui (t) = k̃iỹi (t) ; i = 1, 2, . . . , N to intercon-

nected subsystems of the expanded system (4.8) leads to the following closed loop system:

˙̃xi(t) =
(

Ãii + ∆Ãii (t)
)

x̃i (t) +
N
∑

j=1
j 6=i

(
Ãij + ∆Ãij (t)

)
x̃j (t) + B̃ii k̃iC̃ii x̃i(t− d(t)) + B̃wiwi (t) ,

z̃i (t) = C̃zi x̃i (t) ,

x (0) = x0; i = 1, ..., N
(4.9)

The problem is then to design local static gains k̃i such that closed system (4.9) is robustly stable

with H∞ disturbance attenuation γ̃i, i.e.
N
∑

i=1
‖z̃i(t)‖ ≤

N
∑

i=1
γ̃i‖w̃i(t)‖ for all admissible uncertain-

ties and delays. In the sequel, this problem is addressed by adapting the design approach of [15].
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But, first the following relations required in the design procedure, are presented

(i) It is easy to show that the following equality always holds:

N

∑
i=1

(N − 1)x̃T
i (t) x̃i (t)−

N

∑
j=1
j 6=i

x̃T
j (t) x̃j (t)

 = 0 (4.10)

(ii) Based on well-known Newton-Leibinz formula [94], the below equality holds for appropriate

dimensional matrices Ỹi and T̃i:

N

∑
i=1

2
(

x̃T
i (t) Ỹi + x̃T

i (t− d (t)) T̃i

)(
x̃i (t)− x̃i (t− d (t))−

∫ t

t−d(t)
˙̃xi(s)ds

)
= 0

(4.11)

(iii) For any semi-positive definite matrix X̃i =

 Z̃i Ũi

ŨT
i L̃i

, we have [94]:

N

∑
i=1

τ
[

x̃T
i (t) x̃T

i (t− d (t))
]  Z̃i Ũi

ŨT
i L̃i

 x̃i (t)

x̃i (t− d (t))

−
∫ t

t−d(t)

[
x̃T

i (t) x̃T
i (t− d (t))

]  Z̃i Ũi

ŨT
i L̃i

 x̃i (t)

x̃i (t− d (t))

 ds ≥ 0

(4.12)

(iv) Based on the closed loop description (4.9), the following relation holds for any appropriate

dimensional matrix G̃i, H̃i and J̃i = J̃T
i > 0:

N

∑
i=1

2
(
x̃T

i (t) G̃i + ˙̃xT
i (t)H̃i + x̃T

i (t− d (t)) J̃i
)
×− ˙̃xi(t) + (Ãii + ∆Ãii)x̃i (t) + B̃ii k̃iC̃ii x̃i (t− d (t)) +

N
∑

j=1
j 6=i

(Ãij + ∆Ãij)x̃j (t) + B̃wiwi (t)

 = 0

(4.13)
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Now, we can proceed to the design problem by considering the well-known Lyapunov-Krasovskii

function as follows:

V(x, t)=
N

∑
i=1

x̃T
i (t)P̃i x̃i(t) +

∫ 0

−d(t)

∫ t

t+θ

˙̃xT
i (s)R̃i ˙̃xi(s)dsdθ+

∫ t

t−d(t)
x̃T

i (σ)S̃i x̃i(σ)dσ (4.14)

where P̃i, R̃i, S̃i are symmetric positive-definite matrices. Let the derivative of V(x, t) be taken

respect to the closed loop description (4.9). Using (4.10)-(4.13), the following upper bound on

V̇(x, t) is obtained:

V̇ (x, t) ≤
N

∑
i=1

γ̃2
i wT

i (t)wi (t)− x̃T
i (t) C̃T

ziC̃zi x̃i (t) +ζ̃T
i (t) Ξ̃i ζ̃i (t)−

∫ t

t−d(t)
ρ̃T

i (t, s) Γ̃iρ̃i (t, s) ds

(4.15)

In (4.15), for i, j = 1, 2, . . . , N and j 6= i, we have:

ζ̃i (t) =
[

x̃T
i (t) x̃T

i (t− d (t)) ˙̃xT
i (t) wT

i (t) x̃1(t) . . . x̃i−1(t) x̃i+1(t) . . . x̃N(t)
]T

,

ρ̃i (t, s) =
[

x̃T
i (t) x̃T

i (t− d (t)) ˙̃xT
i (s)

]T
,

(4.16)

Γ̃i =


Z̃i Ũi Ỹi

∗ L̃i T̃i

∗ ∗ R̃i

 (4.17)

Ξ̃i =



Ω̃i Φ̃i −G̃i + (Ãii + ∆Ãii)
T H̃T

i
(
P̃i + G̃i

)
B̃wi

(
P̃i + G̃i

)
(ÃHi + ∆ÃHi)

∗ Λ̃i C̃T
ii k̃T

i B̃T
ii H̃T

i − J̃i J̃i B̃wi J̃i(ÃHi + ∆ÃHi)

∗ ∗ dR̃i − H̃T
i − H̃i H̃i B̃wi H̃i(ÃHi + ∆ÃHi)

∗ ∗ ∗ −γ̃2
i I 0

∗ ∗ ∗ ∗ −I


(4.18)



4.4 Main Results 103

In (4.16)-(4.18), (∗) denotes symmetric parts and:

Ω̃i= (N − 1)I + S̃i +
(
P̃i + G̃i

)
(Ãii + ∆Ãii) + (Ãii + ∆Ãii)

T(P̃i + G̃i
)T
+

Ỹi + ỸT
i + τZ̃i + C̃T

ziC̃zi,

Φ̃i=
(
P̃i + G̃i

)
B̃iik̃iC̃ii − Ỹ i + τŨ i + T̃T

i + (Ãii + ∆Ãii)
T J̃i,

Λ̃i= − (1− µ) S̃i − T̃ i − T̃T
i + τL̃i − J̃i B̃ii B̃T

ii J̃i+
(

B̃T
ii J̃i + k̃iC̃ii

)T (
B̃T

ii J̃i + k̃iC̃ii

)
,

ÃHi=
[
Ãij
]

,

∆ÃHi=
[
∆Ãij

]
(4.19)

The variables in (4.17)-(4.19) have been denoted by bold letters.

Now, let the matrix inequalities Ξ̃i < 0 and Γ̃i ≥ 0 hold for all admissible delays and uncertainties.

Then, we obtain from (4.15):

V̇ (x, t) <
N

∑
i=1

γ̃2
i wT

i (t)wi (t)− x̃T
i (t) C̃T

ziC̃zi x̃i (t) (4.20)

Expression (4.20) leads to the following conclusions:

(i) V̇(x, t) < 0 when wi(t) = 0 i.e. the closed loop system is stable.

(ii) By taking integrals from both sides of (4.20) and with zero initial condition, we get:

∫ ∞

0

N

∑
i=1
−γ̃2

i wT
i (t)wi (t) + z̃T

i (t) z̃i (t) dt < −V (∞) < 0 (4.21)

From (4.21), it can be clearly seen the inequality
N
∑

i=1
‖z̃i (t)‖2

2 ≤
N
∑

i=1
γ̃2

i ‖wi (t)‖2
2 holds.

Therefore, it has been shown so far that satisfaction of the matrix inequalities Ξ̃i < 0 and Γ̃i ≥ 0

imply robust stability of the closed-loop system (4.9). However, Ξ̃i < 0 in (4.18) is not expressed

in a standard LMI. To express it as LMI, Similar to Chapter 3, it can be shown that Ξ̃i < 0

holds if there exist positive matrices Q̃i, P̃i, R̃i, S̃i, L̃i, Z̃i, J̃i and appropriate dimensionally matrices

G̃i, H̃i, Ỹi, T̃i feedback gain k̃i and positive scalars εi1, εi2 such that the matrix inequality Υ̃i < 0,
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shown below, holds:

ψ̃i=



Ω̃i + ẼT
ii εi1Ẽii −Ỹ i + τŨ i + T̃T

i + ÃT
ii J̃i −G̃i + ÃT

ii H̃T
i

(
P̃i + G̃i

)
B̃wi

∗ − (1− µi) S̃i − T̃ i − T̃T
i + τL̃i + Q̃i B̃ii B̃T

ii Q̃i − Q̃i B̃ii B̃T
ii J̃i − J̃i B̃ii B̃T

ii Q̃i − J̃i J̃i B̃wi

∗ ∗ τR̃i − H̃T
i − H̃i H̃i B̃wi

∗ ∗ ∗ −γ̃2
i I

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗(
P̃i + G̃i

)
ÃHi

(
P̃i + G̃i

)
B̃ii 0 0 (P̃i + G̃i)G̃ii (P̃i + G̃i)G̃Hi

J̃i ÃHi 0 C̃T
ii k̃T

i
(

B̃T
ii J̃i + k̃iC̃ii

)T
J̃iG̃ii J̃iG̃Hi

H̃i ÃHi H̃i B̃ii 0 0 H̃iG̃ii H̃iG̃Hi

0 0 0 0 0 0

−I + ẼT
Hiεi2ẼHi 0 0 0 0 0

∗ −I 0 0 0 0

∗ ∗ −I 0 0 0

∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ −εi1 0

∗ ∗ ∗ ∗ ∗ −εi2



< 0

(4.22)

where G̃Hi =
[
G̃ij
]

with G̃ij of (3.21).

The matrix inequality (4.22) is QMI in Q̃i which can be converted to a standard LMI with fixed

Q̃i. However, the LMI with fixed matrix variable is known to be conservative, and it may be

infeasible. To provide a more relaxed condition and similar to Chapter 3, a new scalar variable α̃i
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is introduced. Since Q̃i > 0, it is evident that (4.22) holds, if there exists α̃i ≤ 0 such that:

ψ̃i <


0 0 . . . 0

0 α̃iQ̃i . . . 0
...

...
...

...

0 0 . . . 0

 (4.23)

Thus, we solve the robust, output feedback control problem by using the iterative algorithm shown

in Fig. 4.1 to achieve α̃i ≤ 0, in which feasibility of (4.23) with α̃i ≤ 0 implies feasibility of (4.22).

Moreover, the binary search (half-interval search) technique is used to minimize the parameter γ̃

to obtain adequate control performance.
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Figure 4.1: The iterative LMI algorithm to design robust local gains k̃i

The discussions on iterative algorithm of Fig. 4.1 is similar to those of Fig. 3.2 given in Chapter

3.

4.4.1 Contraction and Stability of The Original Overlapping System

Once robust local controllers k̃i are designed by the iterative algorithm of Fig. 4.1, the decen-

tralised (block-diagonal) controller K̃D = Blkdiag{k̃i} is formed. It is then contracted (trans-
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formed) to an overlapping controller K of (3.9) for implementation on the original system. The

contraction is done using (3.33).

Next, we prove that the overlapping controller K is also a robust stabilising controller for the

original system with H∞ performance γ, where γ = max{γ̃i}.

Theorem 4.1. Contraction of a decentralised controller K̃D formed out of the robust, local, output

feedback controllers k̃i leads to a stabilizing, robust, overlapping, output feedback controller K for

the original system (4.1) with a disturbance rejection level γ, where γ = max{γ̃i}.

Proof. From the constructed Lyapunov-Krasovskii function (4.14) and design procedure of robust

gains k̃i, we know

N
∑

i=1
ζ̃T

i (t) Ξ̃i ζ̃i (t) < 0, (4.24)

N

∑
i=1

∫ t

t−d(t)
ρ̃T

i (t, s)Γ̃iρ̃i(t, s) ≥ 0 (4.25)

where ζ̃i, Ξ̃i, ρ̃i, and Γ̃i are given in (4.16)-(4.18).

The inequalities (4.24) and (4.25) using (4.16)-(4.18), lead to (4.26) and (4.27) shown below

respectively:

ξ̃TΩ̃ξ̃ < 0, (4.26)∫ t

t−d(t)
η̃T(t, s)Ψ̃η̃(t, s) ≥ 0 (4.27)

where:

ξ̃ (t)=
[

x̃T
1 (t) . . . x̃T

N (t) x̃T
1 (t− d(t)) . . . x̃T

N(t− d(t)) ˙̃xT
1 (t) . . . ˙̃xT

N (t) wT
1 (t) . . . wT

N(t)
]T

,

η̃ (t)=
[

x̃T
1 (t) . . . x̃T

N (t) x̃T
1 (t− d(t)) . . . x̃T

N(t− d(t)) ˙̃xT
1 (t) . . . ˙̃xT

N (t)
]T

(4.28)
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Ω̃ =


Φ̃ Θ̃ −G̃D + ÃT H̃D (P̃D + G̃D)B̃d

∗ Λ̃ C̃TK̃T
D B̃T H̃T

D − J̃D J̃D B̃d

∗ ∗ τR̃D − H̃T
D − H̃D H̃D B̃d

∗ ∗ ∗ −γ̃2 I

 < 0, (4.29)

Ψ̃ =


Z̃D ŨD ỸD

∗ L̃D T̃D

∗ ∗ R̃D

 ≥ 0 (4.30)

and:

Φ̃ = S̃D + (P̃D + G̃D)(Ã + ∆Ã) + (Ã + ∆Ã)T(P̃D + G̃D) + ỸD + ỸT
D + τZ̃D + C̃T

z C̃z,

Θ̃ = (P̃D + G̃D)B̃K̃D − ỸD + τŨD + T̃T
D + (Ã + ∆Ã)T J̃D,

Λ̃ = −(1− µ)S̃D − T̃D − T̃T
D + τL̃D + J̃D B̃K̃DC̃ + ( J̃D B̃K̃DC̃)T,

P̃D = Blkdiag{P̃i}, S̃D = Blkdiag{S̃i, }, G̃D = Blkdiag{G̃i}, ỸD = Blkdiag{Ỹi}, Z̃D = Blkdiag{Z̃i},

ŨD = Blkdiag{Ũi}, T̃D = Blkdiag{T̃i}, L̃D = Blkdiag{L̃i}, J̃D = Blkdiag{ J̃i}

(4.31)

Then, from (4.29) and (4.30), we obtain:

Blkdiag{VT, VT, VT, I}Ω̃Blkdiag{V, V, V, I} < 0,

Blkdiag{VT, VT, VT}Ψ̃Blkdiag{V, V, V} > 0 (4.32)

where V is the full column rank matrix given in (3.5). Afterwards, it can be clearly seen through

(3.43), (3.14) and (3.33), the following inequalities can be concluded from (4.32):

Ψ =


Φ Θ −VTG̃DV + (A + ∆A)TVT H̃DV VT(P̃D + G̃D)VBd

∗ Λ CTKT
DBTVT H̃T

DV −VT J̃DV VT J̃DVBd

∗ ∗ τVT R̃DV −VT H̃T
DV −VT H̃DV VT H̃DVBd

∗ ∗ ∗ −γ2 I

 < 0,
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Π =


VTZ̃DV VTŨDV VTỸDV

∗ VT L̃DV VT T̃DV

∗ ∗ VT R̃DV

 ≥ 0,

Φ= VT S̃DV + VT(P̃D + G̃D)V(A + ∆A) + (A + ∆A)TVT(P̃D + G̃D)V + VTỸDV

+VTỸT
DV + τVTZ̃DV + CT

z Cz,

Θ = VT(P̃D + G̃D)VBK−VTỸDV + τVTŨDV + VT T̃T
DV + (A + ∆A)TVT J̃DV,

Λ = −(1− µ)VT S̃DV −VT T̃DV −VT T̃T
DV + τVT L̃DV + VT J̃DVBKC + CTKTBTVT J̃DV,

γ = max{γ̃i}; i = 1, 2, . . . , N (4.33)

In the sequel, it will be proven that the matrix inequalities (4.33) are implying the robust stability

of (4.7). To this end, construct the following positive definite Lyapunov-Krasovskii function:

VL(x, t)=
N

∑
i=1

xT(t)VT P̃DVx(t) +
∫ 0

−d(t)

∫ t

t+θ
ẋT(s)VT R̃DVẋ(s)dsdθ+

∫ t

t−d(t)
xT(σ)VT S̃DVx(σ)dσ

(4.34)

Let the derivative of VL(x, t) be taken respect to the closed loop (4.7). Then, the following upper

bound on derivative of VL(x, t) through the similar relations as (4.10)-(4.13) can be obtained:

V̇L (x, t) ≤ γ2wT (t)w (t)− xT (t)CT
z Czx (t) +ξT (t)Ψζ (t)−

∫ t

t−d(t)
ρT (t, s)Πρ (t, s) ds

(4.35)

where Ψ and Π are given in (4.33). Now, similar to (4.20), it can be clearly seen than the matrix

inequalities Ψ < 0 and Π ≥ 0 result in the robust stability of the closed loop system (4.7) with

disturbance rejection level γ = max{γ̃i} for all admissible delays and uncertainties.

4.5 Case Study: Three-Area Power System

In this section, load frequency problem is considered for a three-area interconnected power system

experiencing network delays and model’s uncertainties. First, a dynamical model of the ith; i =

1, 2, 3 area, comprising 3 generating units, is given in Fig. 4.2. Nominal parameters of generating
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Figure 4.2: Dynamic model of ith area

Table 4.1: Nominal parameters of three area interconnected power system

Generating unit number 1 2 3 4 5 6 7 8 9
D(pu/Hz) 0.015 0.014 0.015 0.016 0.014 0.014 0.015 0.016 0.015
TP(sec) 0.1667 0.12 0.2 0.2017 0.15 0.196 0.1247 0.1667 0.187
TT(sec) 0.4 0.36 0.42 0.44 0.32 0.4 0.3 0.4 0.41
TH(sec) 0.08 0.06 0.07 0.06 0.06 0.08 0.07 0.07 0.08
R(Hz/pu) 3 3 3.3 2.7273 2.6667 2.5 2.8235 3 2.9412
β(pu/Hz) 0.3483 0.3473 0.318 0.3827 0.389 0.414 0.3692 0.3493 0.355
α 0.4 0.4 0.2 0.6 0 0.4 0 0.5 0.5

units {1, 2, 3}, {4, 5, 6}, and {7, 8, 9} which are corresponding to areas 1,2, and 3 respectively, are

given in Table. 4.1 [51,52]. However, the droop characteristics (R) and turbine time-constant (TT)

are assumed to be uncertain with percentage uncertainty of ±10% around their nominal values as

given in Table. 4.2. Then, an uncertain state space model of the three-area interconnected power

system, where each area is depicted in Fig. 4.2, can be expressed as:

ẋ (t) = (A + ∆A)x (t) + Bu (t) + Bdw (t) ,

y (t) = Cx (t) ,

z (t) = Czx (t)

(4.36)
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Table 4.2: Uncertain Parameters

Physical Quantity Minimum Maximum Physical Quantity Minimum Maximum
R11 2.7 3.3 TT11 0.36 0.44
R12 2.7 3.3 TT12 0.32 0.39
R13 2.97 3.63 TT13 0.37 0.46
R21 2.43 2.97 TT21 0.39 0.48
R22 2.34 3.86 TT22 0.28 0.35
R23 2.25 2.75 TT23 0.36 0.44
R31 2.52 3.08 TT31 0.27 0.33
R32 2.7 3.3 TT32 0.36 0.44
R33 2.61 3.19 TT33 0.36 0.45

where

xT(t)=
[

xT
1 (t) ∆Ptie−12 (t) xT

2 (t) ∆Ptie−23 (t) xT
3 (t)

]
uT(t)=

[
∆Pc1 (t) ∆Pc2 (t) ∆Pc3 (t)

]
wT(t)=

[
∆Pd1 (t) ∆Pd2 (t) ∆Pd3 (t)

]
yT(t)=

[
yT

1 (t) ∆Ptie−12 (t) yT
2 (t) ∆Ptie−23 (t) yT

3 (t)
]

zT(t)=
[

∆ f1 (t) ∆ f2 (t) ∆ f3 (t)
]

(4.37)

and

xT
i (t)=

[
∆ fi (t)

∫
ACEi (t) ∆PTi1 ∆PVi1 . . . ∆PTin ∆PVin

]
yT

i (t)=
[

ACEi (t)
∫

ACEi (t)
]

i = 1, 2, 3 (4.38)

The matrices of state space representation (4.36) are given below where the overlapping decom-

position has been determined by dashed lines.:

A =



A11 A12 0 A14 0

A21 0 A23 0 0

0 A32 A33 A34 0

0 0 A43 0 A45

0 A52 0 A54 A55


, B =



B1 0 0

0 0 0

0 B2 0

0 0 0

0 0 B3


, Bd=



Bd1 0 0

0 0 0

0 Bd2 0

0 0 0

0 0 Bd3


,
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Cz =



Cz1 0 0 0 0

0 0 0 0 0

0 0 Cz2 0 0

0 0 0 0 0

0 0 0 0 Cz3

0 0 0 0 0


, C=



C11 C12 0 C14 0

0 1 0 0 0

0 C32 C33 C34 0

0 0 0 1 0

0 C52 0 C54 C55


, (4.39)

where

Aii=

 AREAi MPi

DROOPi TGi

 , MPi =


 1

Tpi
0

0 0

 . . .

 1
Tpi

0

0 0




︸ ︷︷ ︸
n blocks

, AREAi =

 −
Di

Tpi
0

βi 0

 ,

DROOPi =



 0 0

− 1
Ri1THi1

0


... 0 0

− 1
RinTHin

0




, TGi = Blkdiag


 −

1
TTi1

1
TTi1

0 − 1
THi1

 , . . . ,

 −
1

TTin

1
TTin

0 − 1
THin




(4.40)

The overlapping parts are ∆Ptie−12 and ∆Ptie−23. The variable ∆Ptie−12 is shared between areas 1

and 2, which is consistent with the fact it is accessible by both areas. Likewise, ∆Ptie−23 is shared

by areas 2 and 3, and thus is considered as the overlapping part between them. Note that since

∆Ptie−13 is a linear combination of ∆Ptie−12 and ∆Ptie−23 as shown in (4.41), it has been omitted

from the list of state variables defined in (4.37)-(4.38).

∆Ptie−13(t) =
T13

T12
∆Ptie−12(t) +

T13

T23
∆Ptie−23(t) (4.41)

4.5.1 Problem Statement

It is well-known that a change in load demand results in frequency and tie-line power deviations.

The aim of this section is to design an LFC to achieve the following performance objectives (i)
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Figure 4.3: Overlapping PI-type LFC in a time-delayed three-area power system

zero steady state frequency deviation in each area (ii) zero steady state tie-line power exchange

among the areas, and (iii) acceptable transient performance. In [51] and [52], LFC with decen-

tralised structures have been considered. In other words, each area is controlled separately using

a local LFC which uses the ACE signal from the same area (Fig. 1.2). In this chapter, however,

the overlapping decomposition shown in (4.39) is taken advantage of. Based on the overlapping

decomposition, the overlapping parts (tie-lines), which are locally available, can be added to lo-

cal controllers in addition to ACE signals to improve the overall performance. This will lead to

overlapping LFC. By taking time-varying measurement delays into account, the overlapping LFC

is shown in Fig. 4.3, where ki; i = 1, 2, . . . , 10 are feedback gains which have to be designed.
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Based on Fig. 4.3, the control law can expressed as:


∆PC1 (t)

∆PC2 (t)

∆PC3 (t)

 =


k1 k2 k3 0 0 0 0 0

0 0 k4 k5 k6 k7 0 0

0 0 0 0 0 k8 k9 k10


︸ ︷︷ ︸

K



ACE1 (t)∫
ACE1 (t)

∆Ptie−12 (t)

ACE2 (t)∫
ACE2 (t)

∆Ptie−23 (t)

ACE3 (t)∫
ACE3 (t)



(4.42)

It is worth mentioning that considering ACE and its integral as state variables allows us to formu-

late the PI control problem as a static output feedback problem [41, 46, 51].

Applying the control law (4.42) to the state space representation (4.36) results in the time-delayed

closed loop system being expressed by:

ẋ (t)= (A + ∆A)x (t) + BKCx (t− τ (t)) + Bdw (t) ,

z (t)= Czx (t) (4.43)

The aim of this section is designing an overlapping static output feedback controller K of the

structure given in (4.42) such that the closed loop system (4.43) is asymptotically stable with a

minimal H∞ performance level γ i.e. ‖z (t)‖2 ≤ γ ‖w (t)‖2 for all admissible delays and uncer-

tainties. The simulation results are also compared with decentralised PI and Proportional-Integral-

Derivative (PID) type LFCs proposed in [51] and [52] respectively. These two controllers are

given in Table. 4.3:
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Table 4.3: Reported decentralised controllers in [51] and [52]

Area
K1 [51] K2 [52]

Kp KI Kp KI KD

1 -0.2728 -0.2296 0.0669 -0.0615 -0.0311

2 -0.1475 -0.1773 0.0305 -0.0885 -0.0325

3 -0.2142 -0.2397 0.0704 -0.0688 -0.0302

4.5.2 Robust Overlapping LFC Design

In order to design a robust, overlapping LFC based on the results of this chapter, first, based on

the overlapping decomposition of under study power system, the singular transformations V and

T are chosen as:

V ∈ R28×26=



I8 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 I8 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 I8


, T ∈ R10×8=



I2 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 I2 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 I2


(4.44)

Afterwards, the complementary matrices satisfying (3.14) are selected, and consequently, the ex-

panded system can be generated using (3.7). Then, the iterative algorithm of Fig. 4.1 is used to

design local robust LFCs.

In order to provide a fair comparison with the reported controllers of [51, 52] given in Table. 4.3,

three studies are considered. In the first study, the delay margin d is chosen to be the same as

that used in [51] to obtain K1, i.e. d = 3 sec. In the second study, the delay margin d is chosen

to be 10 sec, which is the same delay margin used in [52] to obtain K2. In both studies 1 and 2,

the nominal values of parameters given in Table 4.1 are used. However, in the third study, the

designed controller of study 2 is used to provide simulation results based on different values of
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uncertain parameters given in Table. 4.2. In all studies, to start the iterative algorithm, the max-

imum number of iterations are chosen as lmax = 4 and pmax = 6. The search interval for H∞

criterion with ∆γ = 0.5 is chosen to be γstart = 2 and γend = 11 for area 1 and γstart = 1 and

γend = 10 for areas 2 and 3. The intervals, for the sake of comparison, are chosen such that they

include the minimal H∞ performance levels obtained in [51,52]. The upper bound on rate of delay

change µ is set 1. Also, setting Q̃wi = I, R̃wi = I, εi = 400; i = 1, 2, 3 has shown to provide fast

convergence in the iterative algorithm.

Study 1:

Let the delay margin be d = 3 sec, then using the design algorithm of Fig. 4.1, the following

robust output feedback gains k̃1, k̃2, and k̃3 with H∞ performance levels γ̃1 = 2.56, γ̃2 = 1.56,

and γ̃3 = 1.56 are obtained after 4 iterations.

k̃1=
[
−0.14 −0.24 0.83

]
, k̃2 =

[
−0.13 −0.46 −0.24 0.25

]
, k̃3=

[
−1.18 −0.2 −0.24

]
(4.45)

Using (4.45), the decentralised controller is obtained as:

K̃D =


−0.14 −0.24 0.83 0 0 0 0 0 0 0

0 0 0 −0.13 −0.46 −0.24 0.25 0 0 0

0 0 0 0 0 0 0 −1.18 −0.2 −0.24


(4.46)

Contraction of (4.46) using K = K̃DT leads to the following robust overlapping LFC gain K

(4.47):

K =


−0.14 −0.24 0.83 0 0 0 0 0

0 0 −0.13 −0.46 −0.24 0.25 0 0

0 0 0 0 0 −1.18 −0.2 −0.24

 (4.47)

It has to be mentioned that in order to consider the physical constraints in simulation studies, each

generator unit is modelled by the nonlinear model, as shown in Fig. 4.4, by taking generation rate

constraint (GRC) into account. The lower and upper limits of the saturation in Fig. 4.4 are chosen
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Figure 4.4: Nonlinear model of a generating unit

as 0.05pu/min and −0.2pu/min respectively, [51, 52]

Simulation study 1: The designed controller (4.47) is tested, by computer simulations, on the

three-area interconnected power system. For a constant communication delay τ = 2 sec, step

load demand changes 0.1p.u, 0.08p.u, and 0.05p.u are applied to areas 1, 2 and 3 at t = 0 sec,

respectively. The responses of three areas are shown in Fig. 4.5-4.7, where the responses of K1

[51] have been superimposed for comparison. Based on Fig. 4.5b, the frequency of area 1 ex-

periences a transient decrease immediately after load exceeds generation. After the transitional

period, the local PI control generates the control signal which allows more power to be generated

to meet the load demand change. As a result, the frequency deviation gets back to zero steady state

gain. With respect to power exchange of area 1, Fig. 4.5a demonstrates a transient dip showing

the import of power from the other two areas. This is expected as area 1 experiences the highest

load demand change compared with the other two areas. After a while, the governor responds

to the load demand change, and the generated power of area 1 increases. When the generated

power meets the demanded one, the tie-line power exchange of area 1 with other areas reaches

zero steady state gain. The improved performance respect to settling time (within 3% band of

total load demand change) and frequency of oscillation obtained through robust overlapping load

frequency controller (4.47) compared with robust decentralised K1 of [51] can be seen through

examination of Fig. 4.5. With respect to frequency response of area 2, Fig. 4.6b demonstrates

the transient undergo after load demand changes occur. After a short period of time, however,

local PI controller sends the control signal to allow the steam valve open more, and consequently

more power is generated. This provides zero frequency deviation after a while. Also, there is a

slight rise in tie-line power exchange suggesting the export of power from area 2, but, the power

exchange reaches zero steady state when load demand is met locally. Figure 4.6 clearly demon-

strates less oscillations with proposed overlapping controller compared with decentralised K1 of
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Figure 4.5: Study 1. Step change responses of area 1 (a) tie-line power deviation (b) frequency
deviation. (c) ACE signal (d) control input. Solid blue line (Proposed overlapping PI-type LFC),
dash-dotted red line (decentralised PI-type LFC [51])

[51]. The improved performance obtained with the proposed overlapping controller has been ver-

ified through quantitative criteria of (4.50).

Analogously, the frequency of area 3 undergoes a transient dip which disappeared after a short

time due to existence of PI controllers. However, there exists a rise in tie-line power deviation

after load demand increases. This means that area 3 is exporting power to other areas. It is note-

worthy that the rise in tie-line power exchange is more than that of area 2 given in Fig. 4.6a. This

is expected as the smallest load demand change occurs in area 3.

Careful examination of Fig. 4.5a-4.7d reveals that the proposed controller provides better re-

sponses in respect of settling time and oscillation compared with K1 [51] in all areas.
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Figure 4.6: Study 1. Step change responses of area 2 (a) tie-line power deviation (b) frequency
deviation. (c) ACE signal (d) control input. Solid blue line (Proposed overlapping PI-type LFC),
dash-dotted red line (decentralised PI-type LFC [51])

Study 2:

In this case, the delay margin d increases to 10 sec, which is the same as that used in [52] to

obtain K2. The following robust local output feedback controllers with H∞ performance levels

γ̃1 = 2.56, γ̃2 = 1.56, and γ̃3 = 1.56 are obtained:

k̃1=
[
−0.05 −0.09 0.31

]
, k̃2=

[
−0.02 −0.17 −0.09 0.06

]
, k̃3=

[
−0.47 −0.06 −0.09

]
(4.48)
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Figure 4.7: Study 1. Step change responses of area 3 (a) tie-line power deviation (b) frequency
deviation. (c) ACE signal (d) control input. Solid blue line (Proposed overlapping PI-type LFC),
dash-dotted red line (decentralised PI-type LFC [51]) .

The decentralised controller K̃D = Blkdiag
{

k̃1, k̃2, k̃3
}

is then contracted to the following over-

lapping structured controller:

K =


−0.05 −0.09 0.31 0 0 0 0 0

0 0 −0.02 −0.17 −0.09 0.06 0 0

0 0 0 0 0 −0.47 −0.06 −0.09

 (4.49)

Simulation study 2: The controller given in (4.49) is then applied to the same three-area inter-

connected power system under the same conditions as described in Scenario 1 except that the

network delay increases to 5 sec. The results are shown in Fig. 4.8-4.10, where the responses of

controller K2 [52] are superimposed. Based on Fig. 4.8b, the frequency drops down after load

demand increases. Due to communication delay exists in sending control input signals, the fre-
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Figure 4.8: Study 2 (constant communication delay 5 sec). Step change responses of area 1. Solid
blue line (Proposed overlapping PI-type LFC), dashed black line (decentralised PID-type LFC
[52]) .

quency deviation oscillates around non-zero value until t = 5 sec after which the PI controller’s

command signal is received. Then, more power is generated, and the frequency deviation settles

to zero steady state. Moreover, since area 1 has the highest load demand change compared with

other areas, it starts importing power from other areas initially. It has been shown in ∆Ptie−1 re-

sponse of Fig. 4.8a where there is an initial dip in the response. Similar to frequency deviation, the

tie-line power deviation starts moving towards zero steady state after 5 sec when the control signal

is received. As it is evident from Fig. 4.8, the responses of closed loop systems with overlapping

and decentralised controllers are the same until t = 5 sec. This is expected due to existence of

communication delays in sending control command signals from PI controllers. However, when

the command signals of PI controllers are received, the closed loop responses with overlapping

controller settle faster than decentralised PID of [52]. This enhanced performance has been con-
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Figure 4.9: Study 2 (constant communication delay 5 sec). Step change responses of area 2. Solid
blue line (Proposed overlapping PI-type LFC), dashed black line (decentralised PID-type LFC
[52])

firmed by quantitative criteria of (4.50). The improved performance with overlapping controller

is expected as the accessible tie-line power exchange (overlapping information) has been used in

addition to local ACE signals to generate control inputs. The discussion on frequency response

of Fig. 4.9b is the same as that of area 1. The frequency falls down initially. Then, due to com-

munication delay, it takes 5 sec for the PI controller to send the command signal for more power

generation. Then, the frequency moves towards zero steady state such that it settles down after

about 30 sec. On the other hand, area 2 exports power initially as shown through a small rise in

∆Ptie−2. When PI controllers are taken into the action after 5 sec, power exchange gets back to

zero steady state suggesting the local power demand is met locally. Fig. 4.9 suggests that over-

lapping controller provides slightly better responses than decentralised PID controller K2 as it has

been shown through quantitative criterion (4.50). The frequency response of area 3 has the similar
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Figure 4.10: Study 2 (constant communication delay 5 sec). Step change responses of area 3.
Solid blue line (Proposed overlapping PI-type LFC), dashed black line (decentralised PID-type
LFC [52]) .

behaviour as the other areas. But, there is a considerable rise in tie-line power deviation of area

3 compared with that of area 2 given in Fig. 4.10a. This is expected as area 3 experiences the

smallest load demand change. From the viewpoint of comparison, it is clear from Fig. 4.10 that

the proposed overlapping PI controller provides enhanced performance reflected by the reduction

in settling time compared with decentralised PID controller K2 [52].

Simulation study 3: Using the designed LFC in scenario 2, the overlapping frequency controller

K (4.49) is tested on the same three-area power system but with time-varying communication de-

lay τ(t) = 5+ 3sin(0.3t) which is in the range 2 < τ(t) < 8 sec with change rate τ̇(t) < 1. The

resultant closed loop responses compared with K2 [52] are given in Fig. 4.11-4.13. Discussions

on simulation results are the same as before.
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Figure 4.11: Study 2 (τ(t) ∈ [2, 8] sec). Step change responses of area 1. Solid blue line (Pro-
posed overlapping PI-type LFC), dashed black line (decentralised PID-type LFC [52]) .
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Figure 4.12: Study 2 (τ(t) ∈ [2, 8] sec). Step change responses of area 2. Solid blue line (Pro-
posed overlapping PI-type LFC), dashed black line (decentralised PID-type LFC [52]) .
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Figure 4.13: Study 2 (τ(t) ∈ [2, 8] sec). Step change responses of area 3. Solid blue line (Pro-
posed overlapping PI-type LFC), dashed black line (decentralised PID-type LFC [52]) .

Study 3:

In this study, the designed overlapping output feedback gain (4.49) is used to provide simulation

results for different values of uncertain parameters given in Table. 4.2. to this end, two scenarios

are examined. In the first scenario, the lower bound of uncertain parameters, given in Table. 4.2

are used. The upper bounds of uncertain parameters of Table. 4.2 are used in scenario 2. In all

scenarios, the time-varying communication delay is set as d(t) = 2 + 5(1 − e−0.2t), and step

load demand changes (disturbances) 0.1pu, 0.08pu, and 0.05pu are applied to areas 1,2, and 3, at

t = 0 sec respectively. The closed loop responses are demonstrated in Fig. 4.14-4.19.
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Figure 4.14: Study 3 (lower bound). Step change responses of area 1. Solid blue line (Proposed
overlapping PI-type LFC), dashed black line (decentralised PID-type LFC [52]).
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Figure 4.15: Study 3 (lower bound). Step change responses of area 2. Solid blue line (Proposed
overlapping PI-type LFC), dashed black line (decentralised PID-type LFC [52]).
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Figure 4.16: Study 3 (lower bound). Step change responses of area 3. Solid blue line (Proposed
overlapping PI-type LFC), dashed black line (decentralised PID-type LFC [52]).
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Figure 4.17: Study 3 (Upper bound). Step change responses of area 1. Solid blue line (Proposed
overlapping PI-type LFC), dashed black line (decentralised PID-type LFC [52]).
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Figure 4.18: Study 3 (Upper bound). Step change responses of area 2. Solid blue line (Proposed
overlapping PI-type LFC), dashed black line (decentralised PID-type LFC [52]).
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Figure 4.19: Study 3 (Upper bound). Step change responses of area 3. Solid blue line (Proposed
overlapping PI-type LFC), dashed black line (decentralised PID-type LFC [52]).
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4.5.3 Performance Comparison

In order to compare performance of the proposed overlapping LFC with decentralised LFCs of

[51, 52] quantitatively, the integral of time multiplied absolute value of the error (ITAE) in each

area, sum of the ITAE denoted by J, and the figure of demerit (FD) of forms expressed in (4.50)

below are used [52]:

ITAEi=
∫ t f

0
t |ACEi (t)|dt,

J=
3

∑
i=1

ITAEi,

FD=
3

∑
i=1

(OSi × 10)2 + (FUi × 4)2 + (TSi × 0.3)2 (4.50)

where OSi denotes overshoot, FUi denotes first undershoot, and TSi denotes settling time (within

3% band of total load demand change) in the frequency deviation response of the ith area. Also,

t f is 45 sec in studies 1 and 2 and 60 sec in study 3.

The performance index ITAE is used to penalize the long duration errors exist in ACE responses.

The performance index FD is used to penalize overshoot, undershoot, and long duration error

in frequency response. The values of TS, performance indexes and percentage performance im-

provements compared with [51, 52] in all studies are given in Tables. 4.4-4.9, for τa = 5 sec and

τb(t) ∈ [2, 8] sec.

Table 4.4: Study 1. Settling time (Sec) in frequency responses

Type of controller TS1 TS2 TS3

Proposed overlapping PI-type LFC 7.75 8.52 8.38

Decentralised PI-type LFC [51] 25.51 9.01 17.45

Percentage decrease (%) 69 5 51
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Table 4.5: Study 1. Performance indexes

Type of controller ITAE1 ITAE2 ITAE3 J FD

Proposed overlapping PI-type LFC 2.66 1.32 1.09 4.98 18.69

Decentralised PI-type LFC [51] 7.2 2.68 5.27 15.15 93.59

Percentage decrease (%) 63 50 79 67 80

Table. 4.4 confirms the simulation results obtained for frequency responses of three areas. The

frequency responses with the proposed overlapping LFC, especially in areas 1 and 3, settle faster

than those with decentralised PI-type LFC of [51]. Also, Table. 4.5 shows that performance in-

dexes with the proposed overlapping controller are smaller than those with decentralised controller

K1 of [51]. This vindicates the closed loop responses of ACE signals.

Table 4.6: Study 2. Settling time (Sec) in frequency responses

Type of controller TS1 (τa) TS2 (τa) TS3 (τa) TS1 (τb) TS2 (τb) TS3 (τb)

Proposed overlapping PI-type LFC 17.2 17.57 17.38 23.66 23.66 23.66

Decentralised PID-type LFC [52] 22.39 22.68 22.53 26.91 27.15 27.15

Percentage decrease (%) 23 22 22 13 13 13
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Table 4.7: Study 2. Performance indexes (τa = 5 sec)

Type of controller ITAE1(τa) ITAE2(τa) ITAE3(τa) J(τa) FD(τa)

Proposed overlapping PI-type LFC 8.47 6.59 3.81 18.87 82.01

Decentralised PID-type LFC [52] 15.68 7.55 6.48 29.71 137.51

Percentage decrease (%) 46 13 41 36 40

Table 4.8: Study 2. Performance indexes (τb(t) ∈ [2, 8] sec)

Type of controller ITAE1(τb) ITAE2(τb) ITAE3(τb) J(τb) FD(τb)

Proposed overlapping PI-type LFC 13.64 9.5 6.27 29.42 151.62

Decentralised PID-type LFC [52] 20.69 11.37 9.09 41.51 197.86

Percentage decrease (%) 34 16 31 29 23

Table 4.9: Study 3 (Uncertain Parameters): Values of performance index

Type of controller
Lower bound of uncertain parameters Upper bound of uncertain parameters

ITAE1 ITAE2 ITAE3 J ITAE1 ITAE2 ITAE3 J

Proposed overlapping PI-type LFC 13.01 5.34 4.71 23.07 16.39 6.51 7.1 30.02

Decentralised PID-type LFC [52] 16.69 9.92 7.82 34.44 17.71 17.38 10.79 45.9

Percentage decrease (%) 22 46 39 33 7.45 62 34 34
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4.6 Summary

In this chapter, the inclusion principle is used to design a robust, overlapping, static, output feed-

back controller for uncertain continuous input-delayed system with an overlapping decomposition.

The input delay is assumed to be unknown, time-varying, however, upper bounds on its magni-

tude and rate of change are available. The proposed overlapping, delay-dependent control design

approach comprises three steps (i) The original system with overlapping subsystems is expanded

into the one including disjoint subsystems (ii) robust delay-dependent decentralised controllers

with H∞ performance level γ̃i are designed for low-dimensional disjoint subsystems of the ex-

panded system using the proposed iterative LMI based algorithm, and (iii) the decentralised con-

trollers are transformed (contracted) to robust, overlapping, static output, feedback controller for

implementation on the original system. It is proven that overlapping controller obtained by con-

traction, is a robust, stabilising controller for the original system with H∞ performance level γ,

where γ = max{γ̃i}. The proposed LFC design approach is applied to the three-area intercon-

nected power system experiencing various communication delays and model’s uncertainties. The

simulation results and quantitative comparison criteria show that the proposed overlapping LFC

provides better performance than decentralised LFC of [51] and [52] under different scenarios.
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Chapter 5

Conclusion

5.1 Conclusions

Stabilisability of overlapping linear systems is considered in this thesis. For linear time-invariant

systems, Chapter 2 presents a necessary and sufficient condition for stabilisability of linear certain

systems with overlapping static output feedback controllers. Furthermore, it has been shown that

any decentralised control law designed for the expanded system is contractible to an overlapping

controller provided a contractibility condition is incorporated in the decentralised design proce-

dure. Stabilisability of uncertain linear systems is then studied. It has been discussed that there

exists an overlapping static output feedback gain provided that the induced 2-norm of uncertainties

are inside pre-determined bounds.

On the other hand, it has been widely well-known that time-delays have played a major role in sta-

bility and performance. Thus, Chapter 3 investigates stabilisability of linear state-delay systems.

The inclusion principle, as the mathematical tool to design overlapping control design, is extended

at first. Based on this extension, the expanded system is generated. Then, an iterative algorithm

based on LMIs is proposed to design local robust controllers for interconnected subsystems of

the expanded system. Once the decentralised controller is designed, it is then contracted (trans-

formed) to an overlapping controller to be implemented on the original system. Chapter 3 shows

that both stability and performance are preserved through the contraction process. As an applica-

tion, state-delay two-area interconnected power system is considered. The system is decomposed

to two overlapping subsystems, where tie-lines are the overlapping parts. The overlapping LFC is

designed using the proposed approach, and extensive simulation results under different conditions

are provided.
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Finally, Chapter 4 presents the overlapping output feedback design for linear uncertain system

with time-varying input delay. First, the inclusion principle is used to generate the expanded

system. Then, an iterative algorithm is suggested to design local controllers for interconnected

subsystems of the expanded system. The decentralised controller is formed from which an over-

lapping controller is obtained through the contraction process. The preservation of stability and

performance is proven through the contraction process. In this chapter, a three-area interconnected

power system experiencing time-varying input delay and model uncertainties is studied. The ro-

bust overlapping LFC is designed for the power system, and the extensive simulation results under

different scenarios compared with existing ones are provided.

5.2 Future work

In the research carried out by this thesis, the inclusion principle and design procedures are based

on linear time-invariant models. These models may not be accurate for some physical systems.

Many real-life systems may be time-varying or non-linear experiencing communication delays.

So, a future research direction can be extending the inclusion principle and all related design

procedures to time-delay, time-varying systems.

Another direction can be related to the application used in the thesis. The frequency control

in conventional power systems are studied. Recently, Microgrids (MGs) with renewable energy

resources have been suggested as a solution for economical harvesting of electrical energy with

attention to the environmental issues. Thus, great of interest has been devoted to control of MGs.

A future work can aim at controlling the frequency of MGs based on the design procedures of the

thesis.

Delay characteristics (upper bounds on its size and rate of change) are essential parameters used

in the design procedure. However, these parameters may not be available in real networks. In this

situation, delay estimators such as Smith predictor can be used for estimation. Upon estimation

of upper bounds, they can be used in the design algorithms. Another future direction related to

communication delays is associate to their types. In this thesis, network delays are assumed to

constant or time-varying. On the other hand, network delays can be stochastic in real network

environments. In this case, it is difficult to apply stability analysis of the thesis. An interesting
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direction for future work can be developing results of the thesis for linear systems experiencing

stochastic delays.

Finally, there has been a growing interest in type of systems called system of systems (SOS). These

systems are complex ones whose components are also complex. Mathematical models of SOS are

non-linear and high dimensional with communication delays. Thus, a future research direction

can be extending the inclusion principle for SOS.
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