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Abstract

The multi target tracking (MTT) problem is essentially that of estimating the presence and

associated time trajectories of moving objects based on measurements from a variety of

sensors. Tracking a large number of unknown targets which move close and cross each other

such as biological cells becomes difficult. The targets being tracked may randomly appear and

disappear from the field of view, they may be temporarily obscured by other objects, may merge

and split, may spawn other targets, and may cross or travel very close to each other for exten-

ded periods of time. Sensor measurements also present a number of challenging characteristics,

such as noise which introduces location errors and may cause missed detection of targets, false

measurements which do not belong to a valid target of interest, ghosting, misidentification etc.

A new approach to this problem is proposed by first formulating the problem in a random

set finite framework and then using the Particle Markov Chain Monte Carlo (PMCMC) method

for solving the problem. Under the random finite set (RFS) framework originally proposed by

Mahler, a multi-target posterior distribution is propagated recursively via a Bayesian framework.

The intractability of the posterior distribution is computed by using the PMCMC method that uses

the sequential Monte Carlo outputs for the Markov Chain Monte Carlo (MCMC) method.

A RFS is a finite-set valued random variable. Alternatively, RFS can be interpreted as a ran-

dom variable that is random in number of elements and in the values of these elements themselves

and that the order of its elements is irrelevant. As a result, the RFS framework is a mathemat-

ically rigorous tool for capturing all uncertainties of its elements and its cardinality. With the

uncertain properties of the MTT problem, the RFS framework is naturally used to formulate the

MTT problem to capture the essence of MTT problem and then allows the multi-target posterior

distribution to be propagated via a Bayesian framework. The first contribution of this dissertation

is to derive the posterior distribution for the trajectories of the targets that is the special case for

the multi-target posterior distribution. The multi-target posterior distribution is intractable so an

approximation method such as PMCMC is required. PMCMC methods proposed by [4] use the

Sequential Monte Carlo (SMC) algorithm to design an efficient high dimensional proposal dis-

tribution for the Markov Chain Monte Carlo (MCMC) method. The premise of this method is to

sample from any distribution which has no closed form solution and which applying the traditional

MCMC method or SMC method fails to give a reliable solution or is unfeasible on its own. The

second contribution is to derive a RFS based PMCMC algorithm and implement this algorithm

for the multi-target tracking problem when targets move close and/or cross each other in a dense

environment and the number of targets is unknown.
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Chapter 1

Introduction

T arget tracking is the process of extracting information about one or more targets of interest

based on the data or measurements collected from one or more sensors. Target tracking

is challenging for one or more of the following reasons: 1) the origin of the measurements is

unknown; 2) a measurement generated from a target is corrupted by noise; 3) the sensor(s) may

not detect the target(s); and 4) the number of targets is unknown. The difficulty increases in direct

proportion to the number of these conditions which apply. The successive estimates of target states

conditional on all available measurements give a trajectory of the target which is called a track.

Some typical applications of target tracking are military applications such as surveillance, air-to-

air defence, battle field intelligence and defence; and non-military application such as robotics,

image processing, automatic control and medicine [8, 17, 22, 65].

1.1 Motivation and scope

Assume that sensors have collected a large number of measurements at time steps 1, 2 and 3 which

are represented as planes Z1, Z2 and Z3 respectively in Figure 1.1. We consider the two following

scenarios

(P.1) Only one target moves in the region of interest in a noisy and cluttered environment and

the sensor(s) may not reliably detect the target in Figure 1.2 . This problems is called

single target tracking in clutter.

(P.2) More than one target move in the region of interest in a noisy and highly dense cluttered

environment. This problem is called multi target tracking (MTT) and is considered

more challenging than single target tracking. Consider Figure 1.3, where the tracks

in the region are represented by different colors. The problem becomes even more

difficult when a large unknown number of targets move close to each other, may also

cross each other. In addition, they may spawn other targets or die unpredictable which

increases the difficulty of the problem. Such problems occur in medicine when tracking

the biological cell movement which plays an important role for understanding the cell

development and helps in detecting cancer cells.

There are many existing techniques in the literature for handling problems (P.1) which take the

uncertainty of measurement origin and missed detections into account including the nearest neigh-

1
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Figure 1.1: Set of measurements collected from the sensors at time step 1, 2, and 3.

Figure 1.2: A possible underlying trajectory of
target where the target at time 2 is not detected
by the sensors.

Figure 1.3: Possible underlying trajectories of
the targets where tracks are represented by lines
of different colors.

bor standard filter [8], probabilistic density association filter (PDAF) [8,11] and their variants; and

RFS-based technique [172, 182].
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For problem (P.2), many conventional techniques, which combine data association methods

and Bayesian filtering, were derived to track multiple targets provided that the number of targets

is moderate and targets do not move too close to each other. If the number of targets is known and

moderate, the global nearest neighbor filter [8, 14, 17], Joint PDAF [8, 17] or their variants can be

applied. If the number of targets is unknown and moderate, the multiple hypothesis tracking can

be used [16,145,160]. In the last decade, new techniques were derived to deal with MTT problems

based on random finite set (RFS) theory which deals with finite-set-valued random variable with

the properties that its number and values are random and the order of its elements is not important

[60, 101]. Modeling the MTT problem in the RFS framework not only captures the uncertainty

caused by the four above-mentioned difficulties but also allows the full multi-target Bayesian filter

to be propagated in a similar way as the single-target Bayesian filter. The advantage of these

techniques compared to conventional techniques is that the number of targets can be estimated

in an optimal manner along with their states. For the problem described in (P.2), the existing

techniques break down when there is a large unknown number of targets and when tracks are

closely-spaced and crossing each other. Even the current RFS-based techniques break down under

these conditions.

This thesis addresses and proposes a solution for the tracking problem under such conditions.

The proposed method is based on the use of the batch processing to estimate a set of tracks (the tra-

jectories of targets) from the multi-target posterior distribution obtained from a Bayesian recursive

framework. The complicated Bayesian recursion, which results from multiple integrals of a se-

quence of sets, can be solved by sampling methods in order to find a sample which maximizes the

multi-target posterior distribution. This method involves three issues: 1) Formulate the posterior

distribution of trajectories of targets conditional on all measurements available which captures all

information about target states and their labels. This distribution is also the distribution of a se-

quence of multi-target states; 2) Find independent samples from this posterior distribution where

each sample is a sequence of multi-target states over all time scans; and 3) Find the optimal estim-

ator which can deal with a set of tracks where the number of track is random and the number of

states in each track is also random.

In this thesis, the first two issues are addressed while the last issue is briefly considered as a

question for further research. The first two issues are solved by the development of a Bayesian

multi-target batch processing algorithm based on RFS modeling and a Particle Markov Chain

Monte Carlo (PMCMC) numerical approximation with a Gaussian Mixture Probability Hypo-

thesis Density (GM-PHD) initialization. This algorithm is capable of tracking a large number of

unknown targets in very high density situations and in a highly dense cluttered environment. This

contribution has been published in Fusion 2011 [185].

1.2 Organization

This dissertation is organized as follows
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Chapter 2 presents single-target Bayesian filtering. Bayesian filtering is the foundation for

most of the approaches for single target tracking. At each time when measurements are received,

the new estimate of the target state is obtained by combining the new information from the meas-

urements with the current estimate. The two most popular approaches to estimate the target states,

Minimum Mean Square Error Estimation (MMSE) and Maximum A Posterior (MAP) Estimation,

are also introduced. Some special cases and approximations of the Bayes filter such as the Kalman

filter and the particle filter are presented.

Chapter 3 summarizes the random finite set (RFS) theory. Concepts like the transition density

and likelihood functions for multi-target tracking are introduced leading to the formulation of

Bayesian multi-target filtering in the RFS framework [3].

Chapter 4 describes Particle Markov Chain Monte Carlo (PMCMC) methods [4, 70], a nu-

merical approximation which combines the Markov Chain Monte Carlo (MCMC) and sequential

Monte Carlo (SMC) methods by utilizing the strength of each of these methods. The approach of

PMCMC is to use the SMC algorithm to design efficient high dimensional proposal distributions

for MCMC algorithms when these high dimensional proposal distributions cannot be satisfactorily

sampled using either SMC or MCMC on its own.

Chapter 5 reviews the target tracking in clutter. It discusses the traditional techniques which

deal with single-target tracking [8, 10, 14, 17, 116, 121] and multi-target tracking [8, 118, 123] in

clutter by applying data association techniques and filtering algorithms. Data association problem

in multi-target tracking problem assigns each measurement to a target and then this measurement

is used to update the target state through filtering technique so that the trajectories of each tar-

get can be estimated recursively. A new approach for target tracking based on random finite set

(RFS) framework is introduced Section 5.2. Random finite set based single target tracking filtering

[182] is introduced in Subsection 5.2.1. This Subsection also describe the mathematically rigor-

ous Bayes’ recursion for tracking a target that generates multiple measurements in the presence of

clutter. Subsection 5.2.2 presents the multi-target tracking algorithms based on RFS. One of the

most popular approach, e.g. the PHD filter derived by Mahler [96] which is an approximation of

the full multi-target Bayesian filtering, is presented. A closed form solution, the Gaussian mixture

PHD filter (GM-PHD) recursion is also presented in this Subsection.

Chapter 6, which contains the main contribution of this thesis, proposes a new technique for

multi-target tracking under high target density and clutter. Section 6.2 formulates the problem in

a RFS framework, and derives the Bayesian recursion for propagating the posterior distribution

of the target trajectories. This posterior distribution is computationally demanding as all possible

pairings of measurement and targets must be considered. The complexity of the problem is re-

duced by the introduction of an auxiliary variable which is expressed as a relationship between

target labels and measurement indices at a time instance. Section 6.3 proposes a viable solution

for estimating this posterior distribution which has no closed form expression by using Particle

Marginal Metropolis-Hastings Algorithm (PMMH) which is an PMCMC method.

Chapter 7 illustrates the PMMH algorithm for RFS based Multi-target tracking described in

Chapter 6 on a simulation example and evaluates its performance. Some discussion and perform-

ance evaluation are presented in this Chapter.
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Chapter 8 summarizes the dissertation. Future research direction for tracking closely spaced

and crossing targets at low computational cost are outlined.

1.3 Contributions

This thesis presents a number of contributions to the area of multi-target tracking. Four minor but

important contributions are presented in Chapters 2-5. These contributions serve as a foundation

to the development of the three major contributions of this thesis, related to Bayesian multi-target

batch processing. The proposed method is based on RFS modeling and PMCMC numerical ap-

proximation with the Gaussian Mixture Probability Hypothesis Density (GM-PHD) initialization

and it is capable of tracking a large number of unknown targets in very high density situations and

in a highly dense clutter environment. Chapters 6 and 7 contain the three major contributions. The

contributions are summarized as follows

1. The first minor contribution is a comprehensive overview of Bayesian filtering for single

target tracking and estimation presented in Chapter 2. This representation of Bayesian

filtering is the foundation for most of the tracking techniques such as the conventional

target tracking techniques found in Chapter 5 and the derivation of Bayesian filtering for

multi-target tracking found in Chapter 3.2.

2. The second minor contribution of this thesis is an overview of random finite set theory

presented in Chapter 3.1. This overview and the Bayesian filtering in Chapter 2 lead to the

modeling of multi-target tracking problems and the derivation of the multi-target Bayesian

recursions found in Chapter 3.2. The multi-target Bayesian recursion is a fundamental tool

for deriving all the RFS-based techniques presented in Chapter 5.2.

3. The third minor contribution is a focussed overview of the various simulations and sampling

methods presented in Chapter 2.3.3 and Chapter 4. In this overview, new sampling meth-

ods, particle Markov Chain Monte Carlo (PMCMC) methods which use the output of the

Sequential Monte Carlo (SMC) method as the Markov Chain Monte Carlo (MCMC) up-

date, are presented. They are important techniques which are able to sample from a com-

plicated distributions and the main contributions of this thesis are based upon these tech-

niques.

4. The final minor contribution of this thesis is a concise summary of target tracking tech-

niques found in the literature presented in Chapter 5. This summary shows the develop-

ment of existing techniques as they attempted to address increasingly complicated prob-

lems arising over time. This includes conventional techniques existing for the past 50 years

and the RFS-based techniques existing for a decade or so. These two kinds of techniques

are still under development (especially the RFS-based techniques) to give better solutions

to the multi-target tracking problem. As a result, this summary has shown that there is no

existing technique which can handle the problem where a large number of dense targets

move and cross each other in noisy and cluttered environment.
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5. The first major contribution of the thesis is the RFS-based formulation of the MTT prob-

lem where a large number of dense targets move close and cross each other and can be

found in Chapter 6.2. In this chapter, the posterior distribution of a track set (trajectories

of the targets) is derived based on the Bayesian recursion. By formulating an augmented

multi-target state as an extension of the multi-target state, conditional on all available meas-

urements the posterior distribution of a set track is a posterior distribution of a sequence of

the augmented multi-target states. The posterior of the track set is computationally intract-

able when there exists a large number of dense and crossing targets in densely cluttered

environment and in highly dense clutter and the introduction of augmented auxiliary vari-

able is needed. Conditional on all available measurements, a posterior distribution of track

set and a sequence of the augmented auxiliary variables is derived.

6. The second major contribution is the derivation of an Algorithm using PMCMC method

for sampling from the posterior distribution of a track set and a sequence of augmented

auxiliary variables. This algorithm can be found in Chapter 6.3. In this chapter, the discus-

sion of the disadvantages of using two powerful sampling techniques such as the MCMC

and SMC on their own leads to the idea of choosing the approximation methods which

combine the strength of these techniques to generate sample from this distribution such as

the Particle MCMC (PMCMC) methods derived in [4]. A well known property of MCMC

as well as PMCMC is that the rate of convergence depends on the initial distribution. Thus

an estimate from a popular filtering technique such as GM-PHD filter is used as the initial

state of a Markov chain in order to reduce the computational cost of PMCMC.

7. The last major contribution of this thesis is the simulation and associated discussion found

in Chapter 7. The simulation illustrates the performance of the algorithm which show that

the algorithm is capable of tracking a large unknown number of dense targets in a highly

dense cluttered environment.

The publications based on this thesis are

Conference:

- A.-T. Vu, B.-N. Vo, and R. Evans, "Particle Markov Chain Monte Carlo for Bayesian

Multi-target Tracking," Proc. 14th Annual Conf. Information Fusion, Chicago, USA,

2011. (Best Student Paper Award Finalist).

Journal:
- A.-T. Vu, B.-N. Vo, and R. Evans, "Particle Marginal Metropolis-Hastings Algorithm

for Bayesian Multi-target Tracking". In preparation



Chapter 2

Bayesian Filtering

The purpose of tracking is to extract information about the targets from the available meas-

urements. The target tracking is usually deemed successful when the useful properties of

the targets are efficiently obtained from the observations. In practice, tracking aims to estimate

the trajectories of the targets observed in the area of interest. This chapter provides an overview

of Bayesian filtering for single target, which is based on general Bayesian filtering [3, 21, 44] or

[9, 22] (Bayesian filtering for target tracking).

The outline of the chapter is as follows. Section 2.1 introduces a common model for single

target tracking. Section 2.2 describes the Bayes approach which is the central foundation for

most target tracking techniques. Section 2.2.2 introduces the two most common estimators for

target tracking. Section 2.3 is devoted to presenting the Bayes filter and its application to target

tracking.

2.1 Single Target System Model

The target which is tracked can be an air-craft, a person, a weather balloon, a biological cell etc.

The target states and target behavior are normally unknown. Depending on the type of the target

and the (noisy) environment, the target behavior can be modeled systematically with or without the

presence of the noise. The measurements obtained from the target can be e.g. radar measurements

or video images. Based on the type of the measurements, the measurements can also be modeled

systematically in order to establish the relationship between target states and the measurements.

In practice, the target states are hidden and only partially observed in the observation space or

can only be measured with error. In general, the available measurements are noisy and are not

the same as target states (see Figure 2.1). Furthermore, the measurements are received at regular

time interval therefore the target dynamic system or measurement system can be modeled as the

discrete time system as follows.

At each time t, the target state is represented by the vector xt taking values in a state spaceX ⊂
Rnx , and is indirectly observed via a noisy measurement vector zt taking value in a measurement

7
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zt−1

zt
Observation space

State spacext−1

xt

Figure 2.1: Based on [97]. When a target moves, it generates target states xt−1 and xt on the state
space. The target motion and the target states xt−1, xt are only known through the measurements
zt−1, zt generated from the target states respectively on the measurement space.

space Z ⊂ Rnz . The time evolution of target state is described by

xt =

{
Ft−1xt−1 +Btut + vt, for linear system ;

ft−1(xt−1,ut) + vt, for non-linear system .
(2.1)

where

• Ft−1 is the state transition matrix of the linear system model at time t− 1,

• ft−1(·) is the transition function for non-linear system at time t− 1,

• Bt is the control-input matrix which is pre-multiplied with the control vector ut,

• vt is the process noise which is assumed to be drawn from a zero mean multivariate normal

distribution with covariance Qt, vt ∼ N (vt; 0,Qt).
(2.1) specifies the transformation of any given target state xt−1 at time t− 1 to a new state xt,

taking vector noise vt into account.

The target state xt is observed by the noisy measurement

zt =

{
Htxt +wt, for linear system;

ht(xt) +wt, for non-linear system.
(2.2)

where

• Ht is the observation matrix which maps the true state vector into the measurement space

at time t,

• ht(·) is the known observation function at time t,

• wt is the observation noise which is assumed to be drawn from a zero mean multivariate

Gaussian white noise with covariance Rt, wt ∼ N (wt; 0,Rt).
Let T be the duration of surveillance and let T = {1, . . . ,T} be the set of time indices. The

initial state x1, and the noise vectors at each time step v2, . . . , vT ,w1, . . . ,wT are all assumed to

be mutually independent. By this assumption and the form of (2.1), the sequence of target state

{xt : t ∈ T } follows a first order Markov process1. Given the probability distribution p0(x1)

1see definition of the first order Markov process in A.17
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of the initial state x1, the time evolution of the target state is alternatively described by a Markov

transition density f̄t|t−1(·|·) (t > 1) where

f̄t|t−1(xt|xt−1) (2.3)

is the probability density of the target state xt at time t given the target state xt−1 at time t− 1 i.e.

it describes how the target state at time t− 1 moves to a new target state at time t.

Similarly, the measurement vector at time t is alternatively modeled by the likelihood function

ḡt(·|·) where

ḡt(zt|xt) (2.4)

describes at time t how likely it is that the target state xt generates the measurement zt.

2.2 Bayes Approach

The Bayesian approach is widely used in statistical inference, and in many areas of science and

engineering. In target tracking, it is the standard approach to modeling and the development of

target tracking algorithms. When new measurements are collected from the sensor(s), the current

estimate of the target state is updated by combining the new information in the new measurements

with the previous estimate of the target state. This update process can be implemented recursively

in time, and it is formalized using the Bayes’s theorem which was first developed by Thomas

Bayes [12]. The material can be found in many mathematical books such as [3, 21] or in target

tracking literature e.g.[22].

2.2.1 Bayes Theorem

Bayesian estimation consider the problem of estimating a random variable x based on measure-

ments of another random variable z. In such estimation problems the conditional density p(x|z)
plays an important role. It is also called the posterior distribution since it describes the distribution

of x after having obtained the measurement z.

Bayes theorem relates p(x|z) to p(z|x) and p(x) and states that

p(x|z) = p(z|x)p(x)∫
p(z|x)p(x)dx

.

In target tracking x is usually a target state at a specific time or a sequence of the target states.

Similarly, z is a measurement at a specific time or a sequence of the measurements.

2.2.2 Bayes Estimators

Let x̂(z) be an estimator of x given measurement z and let L(x, x̂(z)) be the loss function or

cost function e.g. squared error. The Bayes risk of x̂(z) is defined as Ex,z [L(x, x̂(z))] where
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the expectation is taken over the joint distribution of x and z. This defines the risk function as a

function of x̂(·). An estimator x̂(z) is said to be a Bayes estimator if it minimizes the Bayes risk.

The estimator which minimizes the posterior expected loss Ex|z [L(x, x̂(z))|z] for each z where

the expectation is with respect to the conditional distribution of x given z also minimizes the Bayes

risk and therefore is a Bayes estimator. The most frequent Bayes estimators are the Minimum Mean

Square error (MMSE) and the maximum a posterior probability (MAP) estimators.

2.2.2.1 Minimum Mean Square Error (MMSE) Estimator

MMSE uses the mean square error (MSE) as the risk function. Thus the Bayes risk is called the

squared error risk and defined as

MSE(x̂(z)) = Ex,z [(x̂(z)− x)2] (2.5)

where the expectation is taken with respect to the joint distribution of x and z. This can be also

written as

MSE(x̂(z)) = Ex,z [(x̂(z)− x)2] = Ez(Ex|z [(x̂(z)− x)2|z]) (2.6)

where the expectation Ex|z is with respect to the conditional distribution of x given z, and Ez is

the expectation with respect to the distribution of z. Hence the Bayes estimator

x̂(z) = argmin
x̂(z)

Ex,z [(x̂(z)− x)2] = argmin
x̂(z)

Ez(Ex|z [(x̂(z)− x)2|z])

= argmin
x̂(z)

Ex|z [(x̂(z)− x)2|z] (2.7)

That is the MMSE estimator is the x̂(z) such that Ex|z [(x̂(z)− x)2|z] is minimum. Equivalently,

setting the derivative of Ex|z [(x̂(z)− x)2|z] to zero, we have

d

dx̂(z)
Ex|z [(x̂(z)− x)2|z] = Ex|z [2(x̂(z)− x)|z] = 2(x̂(z)−E(x|z)) = 0. (2.8)

Therefore, the MMSE estimate x̂(z) of the x is simply the mean of a posterior distribution

x̂(z) = E[x|z] =
∫
xp(x|z)dx (2.9)

and it is also called the Expected A Posteriori (EAP) estimator [101, p.63]

2.2.2.2 Maximum A Posteriori (MAP) Estimator

Maximum a posteriori (MAP) estimator maximizes the posterior probability distribution

x̂(z) = argmax
x

p(x|z) = argmax
x

p(z|x)p(x). (2.10)
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2.3 Bayes Filter and Its Implementations

Estimating the target states from noisy observations is an important problem in engineering and

it can be found in many text books [3, 9, 75]. In the context of target tracking, the Bayes filter

is the standard approach to recursive state estimation. The main algorithm development in this

thesis Chapter 6 is utilizing the posterior distribution as derived in the Bayes filter. Given the

measurement history z1:l = (z1, . . . , zl), the (discrete) estimation problem involves computing an

estimate of the state xt. The problem is called (discrete) smoothing if t < l, (discrete) filtering if

t = l and (discrete) prediction if t > l. Filtering and prediction are used in real time operation to

estimate the current and future states given the measurement or data up to time l. The accuracy of

the estimate can be improved by smoothing when more observations are accumulated. Since the

probability density of the state xt given the state history x1:t−1 = (x1, . . . ,xt−1) is modeled as

pt|t−1(xt|x1:t−1) (pt|t−1(xt|x1:t−1) = f t|t−1(xt|xt−1) for the model given in (2.3)) with initial

density p0(x1) and that the probability density of the observation p1:t(z1:t|x1:t) is given, Bayes

rule allows one to calculate the posterior probability density p1:t(x1:t|z1:t). The posterior density

p1:t(x1:t|z1:t) is of importance for estimation problem because it encapsulate all the information

about the state trajectories available from the measurements and prior information. In the fol-

lowing, a summary of the Bayes filter is given as well as some of its applications to linear and

non-linear system models. The reader is referred to [45, 69, 147] for further details.

2.3.1 Bayes Filter

The Bayes filter for target tracking computes the posterior density of the target state given the

history of measurements and the initial density. The posterior distribution encapsulate all the in-

formation about the target states and depends on the likelihood function and the prior distribution.

Here the prior distribution is determined by the dynamic system model for the target and the prior

distribution; and the likelihood function can be found from the measurement model.

Given an initial distribution p0. Let x1:t = (x1, . . . ,xt) and z1:t = (z1, . . . , zt). Applying

Bayes rule, the posterior distribution of the target state up to time t is given by

p1:t(x1:t|z1:t) =
p(z1:t|x1:t)p(x1:t)

p(z1:t)
(2.11)

where p(z1:t) =
∫
p(z1:t|x1:t)p(x1:t)dx1:t is a normalizing constant, p(x1:t) is the prior density,

and p(z1:t|x1:t) is the likelihood. The likelihood is calculated as follows

p(z1:t|x1:t) = p(zt|x1:t, z1:t−1)p(zt−1|x1:t, z1:t−2) . . . p(z1|x1:t)

(a)
= ḡt(zt|xt)ḡt−1(zt−1|xt−1) . . . ḡ1(z1|x1)
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where (a) holds because of the measurement model in (2.2). We have

p(z1:t+1) =
∫
p(z1:t+1|x1:t+1)p(x1:t+1)dx1:t+1

=
∫
p(zt+1|x1:t+1, z1:t)p(z1:t|x1:t+1)p(x1:t+1)dx1:t+1

=
∫
p(zt+1|x1:t+1, z1:t)p(z1:t,x1:t+1)dx1:t+1

=
∫
p(zt+1|x1:t+1, z1:t)p(xt+1|z1:t,x1:t)p(z1:t,x1:t)dx1:t+1

=
∫
ḡ(zt+1|xt+1)pt+1|t(xt+1|z1:t)dxt+1

∫
p(z1:t,x1:t)dx1:t

= p(zt+1|z1:t)p(z1:t) (2.12)

Using Bayes recursion, the posterior distribution at time t+ 1 is

p1:t+1(x1:t+1|z1:t+1) =
p(z1:t+1|x1:t+1)p(x1:t+1)

p(z1:t+!)

=
p(zt+1|x1:t+1, z1:t)p(z1:t|x1:t+1)p(xt+1|x1:t)p(x1:t)

p(zt+1|z1:t)p(z1:t)

(a)
=

p(z1:t|x1:t)p(x1:t)

p(z1:t)

ḡt+1(zt+1|xt+1)p(xt+1|x1:t)

p(zt+1|z1:t)

(b)
= p1:t(x1:t|z1:t)

ḡt+1(zt+1|xt+1)f̄t+1|t(xt+1|xt)
p(zt+1|z1:t)

(2.13)

where p(zt+1|z1:t) =
∫
ḡt+1(zt+1|xt+1)pt+1|t(xt+1|z1:t)dx1+t by (2.12); (a) holds because of

because of the measurement model in (2.2); and (b) holds because the dynamic system is a hid-

den Markov process i.e. f̄t+1|t(xt+1|xt) = p(xt+1|x1:t). By (2.13), filtering recursion is also

calculated

pt+1(xt+1|z1:t+1) =
∫
p1:t+1(x1:t+1|z1:t+1)dx1:t

=
ḡt+1(zt+1|xt+1)

p(zt+1|z1:t)

∫
f̄t+1|t(xt+1|xt)p1:t(x1:t|z1:t)dx1:t

(a)
=

ḡt+1(zt+1|xt+1)

p(zt+1|z1:t)

∫
f̄t+1|t(xt+1|xt)pt(xt|z1:t)dxt (2.14)

where (a) holds because pt(xt|z1:t) =
∫
p1:t(x1:t|z1:t)dx1:t−1. Thus given initial distribution p0

and the dynamic model and the measurement model, the Bayes filter can be computed in three

steps

Initialization: Given an initial distribution p0 which is usually to be an independently and

identically distributed distribution or a Poisson distribution. The calculation of (2.14) can be

divided in 2−step procedure: predict and update step

Predict:

pt+1|t(xt+1|z1:t) =
∫
f̄t+1|t(xt+1|xt)pt(xt|z1:t)dxt. (2.15)
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Update:

pt+1(xt+1|z1:t+1) =
ḡt+1(zt+1|xt+1)pt+1|t(xt+1|z1:t)

p(zt+1|z1:t)
. (2.16)

The propagation of the posterior distribution pt+1, t ≥ 0 over time is illustrated in Figure 2.22.

Figure 2.2: Illustration of the propagation of probability density function over time

Due to the multiple integral on the right hand side in the posterior density (2.16), the full

implementation of the Bayes filter is generally intractable in practice.

Given the posterior distribution pt(xt|z1:t) at time t, an optimal estimate of the state vector at

time t given the history of measurements z1:t can be obtained using the estimators described in

(2.9) and (2.10) as follows

x̂EAPt (z1:t) = x̂MMSE(z1:t) = E[xt|z1:t] =
∫
xtpt(xt|z1:t)dxt

x̂MAP
t (z1:t) = arg sup

xt
pt(xt|z1:t)

The following sections will discuss some approximations of the Bayes filter for single target track-

ing. In a linear system with Gaussian noise and Gaussian initial distribution, all posterior distribu-

tions in the Bayes recursions are Gaussian and hence completely determined by their mean values

and covariance matrices. The Kalman filter (KF) propagates their means and covariance matrices

and is described in Section 2.3.2.1. For Gaussian linear system with Gaussian noise, Bayes filter

is KF. Approximations based on the KF for non-linear systems are described in Sections 2.3.2.2

and 2.3.2.3. Another approximation of Bayes filter is the Particle filter (PF) which is presented in

Subsection 2.3.3. Figure 2.33 shows the relationship between KF and PF.

2This figure is based on [175].
3This graph is based on the graph [96].
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Bayes Filter:

Kalman Filter:

Particle Filter: · · · {w(i)
t−1,x(i)t−1}Ni=1 {w(i)

t|t−1,x(i)t|t−1}
N
i=1 {w(i)

t ,x(i)t }Ni=1 · · ·

· · · pt−1(·|z1:t−1) pt|t−1(·|z1:t−1) pt(·|z1:t) · · ·

· · · N (·; x̂t−1,Pt−1) N (·; x̂t|t−1,Pt|t−1) N (·; x̂t,Pt) · · ·

Prediction Update

Figure 2.3: Single-target Bayes Filter and two of its implementations

2.3.2 The Kalman Filter and Its Variants

This section presents the Kalman filter (KF) which is the optimal Bayes filter for linear Gaussian

systems and is described in Subsection 2.3.2.1. An approximation for non-linear system is to

linearize the non-linear systems along the state trajectories and applying the KF to the linearized

systems. This approach is called the extended Kalman filter (EKF), and it is described in Subsec-

tion 2.3.2.2. When the system is too skewed 4, the Unscented Kalman filter (UKF) was derived to

improve the performance of the EKF and is presented in Subsection 2.3.2.3. The material in this

section can be found in books on tracking e.g. [101, 147] or in books in general filtering e.g. [3]

2.3.2.1 The Kalman Filter

Kalman filter (KF) was first developed by Kalman [81] and applied ubiquitously in many areas

such as control system, tracking etc. KF is popular because it is easy to implement and it provides

the closed form solution of the Bayes filter for Gaussian linear system. This section sketches its

derivation.

The KF assumes a linear system given by

xt = Ft−1xt−1 +Btut + vt (2.17)

zt = Htxt +wt (2.18)

The initial state, and the noise vectors at each step x1, v2, . . . , vT ,w1, . . . ,wT are all assumed to

be mutually independent where vt,wt are zero mean vector valued Gaussian random variable with

covariance matricesQt andRt respectively. The initial state is a Gaussian vector with meanE[x1]

and covariance cov(x1). The KF is represented by two variables for t > 1:

• x̂t, state estimate at time t given observations up to time t (t > 1),

• Pt, the error covariance matrix where the error is defined as xt − x̂t.

The state vector x̂t contains information about the target at time t based on the measurement

collected up to time t and the error covariance matrix Pt describes the uncertainty in x̂t.

4Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable, e.g when
the distribution is symmetric then there is zero skewness.
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Denote x̂1 = E[x1] and P1 = cov(x1). At time t− 1, t > 1, the state estimate x̂t−1 and the

associated covariance Pt−1 are given. Then at time t, the state estimate x̂t and covariance estimate

Pt are constructed in two steps: Prediction and Update; as summarized in Figure 2.4.

System model
(time t)

Estimates
(time t− 1)

Predict
(time t)

Update
(time t)

ut
Covariance

Pt−1

Covariance
Pt|t−1 =

Ft−1Pt−1F
T
t−1 +Qt

Covariance
Pt = (I −WtHt)Pt|t−1

Bt
State
x̂t−1

Measurement
ẑt|t−1 = Htx̂t|t−1

νt = zt − ẑt|t−1
St = HtPt|t−1H

T
t +Rt

Wt = Pt|t−1H
T
t S
−1
t

State at time t
xt = Ft−1xt−1
+Btut + vt

Predicted state
x̂t|t−1 = Ft−1x̂t−1

+Btut

Updated state
x̂t = x̂t|t−1
+Wtνt

Ht vt

zt = Htxt +wt wt

Figure 2.4: One cycle in the Kalman filter equation for a linear system

Prediction:

By the assumption of Gaussian process noise with E[vt] = 0 for t > 0; the independence

of the noise vector vt and the state xt−1; and x1 is Gaussian distribution, the predicted density

pt|t−1(xt|z1:t−1) in (2.15) is the following Gaussian density

pt|t−1(xt|z1:t−1) = N (xt; x̂t|t−1, Pt|t−1)

where x̂t|t−1 and Pt|t−1 are given by

x̂t|t−1 = E[xt|t−1] = E[xt|z1:t−1] = E[Ft−1xt−1 +Btut + vt|z1:t−1]

(a)
= Ft−1E[xt−1] +E[Btut] +E[vt] = Ft−1x̂t−1 +Btut (2.19)

Pt|t−1 = E[(xt|t−1 − x̂t|t−1)(xt|t−1 − x̂t|t−1)
Tr] = E[(xt − x̂t|t−1)(xt − x̂t|t−1)

Tr|z1:t−1]

(b)
= E[(Ft−1xt−1 − Ft−1x̂t−1 + vt)(Ft−1xt−1 − Ft−1x̂t−1 + vt)

Tr|z1:t−1]
c
= Ft−1Pt−1F

Tr
t−1 +Qt (2.20)



16 Bayesian Filtering

where F Tr denotes the transpose of F ; (a) holds since ut, and vt are statistically independent of

z1:t−1 and E(vt) = 0; and (b) holds because of system model in (2.1) and (2.19) and (c) because

vt is statistically independent of xt−1.

Update:
Having extrapolated the target state x̂t|t−1 at time t from x̂t−1, the KF updates the predicted

state x̂t|t−1 using zt, the measurement collected at time t, theorem 3.2 and theorem 3.3 in [6, 219-

220] as follows

x̂t = E[xt|z1:t] = x̂t|t−1 +Wtνt (2.21)

where the matrix Wt is the Kalman gain and the difference νt = zt−Htx̂t|t−1 between the actual

measurement zt and the predicted measurement Htx̂t|t−1 in (2.21) is called the measurement

innovation or the residual. The matrix Wt in (2.21) is the gain that minimizes the a posteriori error

covariance

Pt = cov[xt − x̂t]. (2.22)

By the assumption of Gaussian measurement noise withE[wt] = 0 and covariance matrix cov[wt] =

Rt; the independence of noise vector vt and the state xt−1; and the linear system model sin (2.17)

and (2.18), the covariance Pt in (2.22) becomes

Pt = cov[xt − x̂t] = cov[xt − (x̂t|t−1 +Wtνt)] = cov[xt − (x̂t|t−1 +Wt(zt −Htx̂t|t−1))]

= cov[xt − x̂t|t−1 −Wt(Htxt +wt −Htx̂t|t−1)]

= (I −WtHt)cov[xt − x̂t|t−1](I −WtHt)
Tr +Wtcov[wt]W

Tr
t

= (I −WtHt)Pt|t−1(I −WtHt)
Tr +WtRtW

Tr
t . (2.23)

Since d2

dW 2
t
Pt = Rt ≥ 0, Pt in (2.23) is minimum when d

dWt
Pt = 0. It follows that

Wt = Pt|t−1H
Tr
t (HtPt|t−1H

Tr
t +Rt)

−1. (2.24)

The covariance of the measurement innovation zt −Htx̂t|t−1 can be computed as follows

St = HtPt|t−1H
Tr
t +Rt. (2.25)

Substitute (2.24) and (2.25) into (2.23), the covariance matrix Pt can be rewritten as follows

Pt = Pt|t−1 −WtS
−1
t W Tr

t . (2.26)

Thus the posterior density at time t is a Gaussian of the form [69, p.335-336]

pt|1:t(xt|z1:t) = N (xt; x̂t, Pt)

where x̂t is given in (2.21) and Pt is given in (2.26).
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It can also be shown that when the Gaussian assumption of x1, vm,m ≥ 2 and wn,n ≥ 1 are

dropped, the KF is the best linear estimator which produces an estimate minimizing a mean square

error [3, p.46]. For further details, the reader is referred to [3, p.46-49].

As shown when the system is a Gaussian linear system, the KF is the optimal Bayes filter.

However, when the process is non-linear, other methods must be sought. In the next section, the

Extended KF is presented as an approximation method.

2.3.2.2 The extended Kalman Filter (EKF)

In the EKF, the non-linear state transition and measurement models are linearized and the KF

is applied to the linearized equations [3, p.195-205], [147, p.19-22]. The state transition and

measurement models are given by

xt = ft−1(xt−1,ut) + vt (2.27)

zt = ht(xt) +wt (2.28)

where vt, wt are process noise and measurement noise with covariance Qt and Rt respectively.

The EKF assumes that initial distribution is Gaussian with mean x̂1 and covariance P1 and is

constructed in two steps: Prediction and Update

Prediction:

At each time step t, the process model (2.27) is linearized around the previous estimate x̂t−1

using a first order Taylor series expansion,

xt ≈ ft−1(x̂t−1,ut) + Ft−1(xt−1 − x̂t−1) + vt (2.29)

where Ft−1 = ∂ft−1
∂x (x̂t−1,ut). with the gradient derivative ∂ft−1

∂x (x̂t−1,ut). The expansion (2.29)

ignores the high order terms because xt−1 is assumed to be close to the x̂t−1. Applying the linear

KF prediction formula, the predicted state x̂t|t−1 and predicted estimate covariance Pt|t−1 are

x̂t|t−1 = Ft−1x̂t−1 + ft−1(x̂t−1,ut)− Ft−1x̂t−1 = ft−1(x̂t−1,ut) (2.30)

Pt|t−1 = Ft−1Pt−1F
>
t−1 +Qt−1. (2.31)

Hence the predicted distribution pt|t−1(xt|z1:t) is approximated by a Gaussian with mean x̂t|t−1

and covariance Pt|t−1.

Update:

At each time step t, the measurement model (2.28) is linearized around the estimate x̂t|t−1

using a first order Taylor series expansion,

zt ≈ ht(x̂t|t−1) +Ht(xt − x̂t|t−1) +wt (2.32)

where Ht = ∂ht
∂x (x̂t|t−1). The high order terms are ignored in the expansion (2.32) because

xt is assumed to be close to the x̂t|t−1. Applying the linear KF update formula, the predicted
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measurement, the update state estimate x̂t and update estimate covariance Pt are

zt|t−1 = Htx̂
T
t|t−1 + ht(x̂t|t−1)−Htx̂

T
t|t−1 = ht(x̂t|t−1)

x̂t = x̂t|t−1 +Wtνt = x̂t|t−1 +Wt(zt − zt|t−1) (2.33)

Pt = Pt|t−1 −WtS
−1
t W Tr

t (2.34)

where Wt and St are given as for the KF in (2.24) and (2.26) respectively.

At each time t ≥ 1, the EKF approximates the posterior distribution pt(xt|z1:t) with a Gaus-

sian with mean x̂t and covariance Pt by linearizing ft(·) and ht(·) in the non-linear system models

(2.27) and (2.28) respectively. If the system models are severely non-linear, the Gaussian property

of the posterior distribution is violated. In these cases, the performance of EKF will be unreliable

(see example in [147, p. 21-22]. Unlike its linear counterpart, Julier [80] shows that the extended

Kalman filter in general is not an optimal estimator because it linearizes all non-linear system so

that the KF can be applied. This linearization causes two well-know drawbacks:

1. The state estimate is unreliable if the assumption of local linearity is incorrect.

2. The derivation of the gradient derivatives ∂ht
∂x (x̂t|t−1) and/or ∂ft

∂x (x̂t−1,ut) is complicated

and difficult in most application.

In addition, if the initial estimate of the state is wrong, or if the process is modeled incorrectly,

the filter may quickly diverge. Another problem with the EKF is that the estimated covariance

matrix tends to underestimate the true covariance matrix and therefore risks becoming inconsist-

ent in the statistical sense without the addition of "stabilizing noise". Attempts to improve the

extended Kalman filter led to the development of the Unscented Kalman filter (UKF) which was

derived by Julier [79, 80] and detailed in the next subsection.

2.3.2.3 Unscented Kalman filter (UKF)

The assumed initial distribution is the same as for the EKF, that is an nx dimensional Gaussian

with mean x̂1 and covariance P1. At each time t− 1, t > 2 instead of linearizing the function

ft and ht, the UKF assumes that the posterior distribution pt−1(xt−1|z1:t−1) is approximately by

Gaussian with mean x̂t−1 and covariance Pt−1 i.e. pt−1(xt−1|z1:t−1) ≈ N (xt−1; x̂t−1, Pt−1).

The UKF is constructed to propagate the mean and covariance to time t through the nonlinear

system (2.27) and (2.28) as follows

1. 2nx + 1 points are chosen to capture the true mean x̂t−1 and covariance Pt−1 to represent

N (xt−1; x̂t−1, Pt−1) by x̄it−1 = x̂t−1 + σi for i = 0, . . . , 2nx where

- W0 = κu/(nx + κu),Wi = 1/2(nx + κu) are the weight associated with the

ith point,

- σ0 = 0,σj = ±
(√

(nx + κu)Pt−1
)
j

where
(√

(nx + κu)Pt−1
)
j

is the jth

row of the matrix square root of (nx + κu)Pt−1, j = 1, . . . ,nx.

2. Each point is predicted as x̂it|t−1 = ft−1(x̄it−1,ut),
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3. The predicted state x̂t|t−1 and its covariance Pt|t−1 are calculated

x̂t|t−1 =
2nx∑
i=0

Wix̄
i
t|t−1 (2.35)

Pt|t−1 =
2nx∑
i=0

Wi(x̂
i
t|t−1 − x̂t|t−1)(x̂

i
t|t−1 − x̂t|t−1,ut)Tr +Qt (2.36)

4. The update state x̂t and its covariance Pt are calculated as

x̂t = x̂t|t−1 +Wtνt, (2.37)

Pt = Pt|t−1 −WtPzz
t|t−1W

Tr
t (2.38)

where the innovation νt, the innovation covariance Pzz
t|t−1 and the cross-correlation matrix

Pxz
t|t−1 and Unscented Kalman gain Wt are calculated as

νt = zt − zt|t−1, zt|t−1 =
2nx∑
i=1

Wiz̄
i
t|t−1, z̄it|t−1 = ht(x̂

i
t|t−1),

Pzz
t|t−1 =

2nx∑
i=0

Wi(z̄
i
t|t−1 − zt|t−1)(z̄

i
t|t−1 − zt|t−1)

Tr +Rt

Pxz
t|t−1 =

2nx∑
i=0

Wi(z̄
i
t|t−1 − zt|t−1)(x̄

i
t|t−1 − x̂t|t−1)

Tr

Wt = Pxz
t|t−1(P

zz
t|t−1)

−1

The UKF outperforms the EKF for nonlinear system when the probability distributions are mono-

modal or not heavily skewed. A more general filter, Particle filter, is derived to deal with systems

with heavily skewed (asymmetric) and/or multimodal probability density function. The general

idea behind the particle filter is to represent the posterior distribution by a set of random samples

with associated weights. The advantage of this filter is that when the number of samples is very

large, these samples represent the posterior distribution very well. Estimates of mean and cov-

ariance of the states or any function of the states are easily compute from these samples, and the

accuracy of the estimates will improve as the number of samples increases.

2.3.3 Particle Filter

The particle filter is an approach derived to deal with non-linear non-Gaussian system where the

conventional techniques fail. Since its first appearance in 1993 [61], the particle filter has become

a useful approach for finding numerical solutions to estimation problem when there is no general

analytic (closed form) expression for the probability distribution in (2.16). This section is based

on the tutorial and overview articles in [5, 20, 46]. The particle filer is a suboptimal filter and

it performs sequential Monte Carlo (SMC) estimation based on random samples or point mass
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approximations to the posterior distributions in the Bayes filter [147]. A summary of the basic

idea is presented in the following.

Let lt : X t = X × . . .×X 7→ Rnlt be a function of the parameters to be estimated. lt is

assumed to be integrable with respect to p1:t(x1:t|z1:t) given in (2.13). We would like to compute

I(lt) = E(lt(x1:t)) =
∫
lt(x1:t)p1:t(x1:t|z1:t)dx1:t. (2.39)

For example, if we want to estimate the mean of target state x1:t up to time t, then we use the func-

tion lt(x1:t) = x1:t. The computation of (2.39) is infeasible when there is no analytic solution to

integration. One can resort to Monte carlo methods by sampling the target probability distribution

p1:t(x1:t|z1:t). Denote

p1:t(x1:t|z1:t) =
πt(x1:t, z1:t)

Zt
(2.40)

where the normalizing constant

Zt =
∫
πt(x1:t, z1:t)dx1:t (2.41)

may be unknown.

The perfect Monte Carlo sampling which is used to approximate any probability distribution is

summarized in Subsection 2.3.3.1. When it is difficult to sample from the probability distribution

or it is only known up to a normalizing constant, then important sampling is often used and it is

described in Subsection 2.3.3.2. Sequential Monte Carlo is used to reduce the computations by

applying Monte Carlo sampling to the posterior distribution p1:t(x1:t|z1:t) utilizing the previously

drawn samples {xn1:t−1,n = 1, . . . ,N}. It is presented in Subsection 2.3.3.3 .

2.3.3.1 Perfect Monte Carlo Sampling

If p1:t(x1:t|z1:t) can be sampled, then Monte Carlo sampling is carried out by drawing N inde-

pendent and identically distributed samples {xn1:t}Nn=1 from the distribution p1:t(x1:t|z1:t). Based

on the samples the distribution p1:t(·|z1:t) can be approximated by

1
N

N∑
n=1

δ(xn1:t − x1:t)

where δ(·) is the Dirac delta function. The expectation of a function lt : X t = X × . . .×X 7→
Rnlt given by

I =
∫
lt(x1:t)p1:t(x1:t|z1:t)dx1:t (2.42)
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can be estimated by 1
N

∑N
n=1 lt(x

n
1:t). By the law of large numbers, 1

N

∑N
n=1 lt(x

n
1:t) will under

natural conditions almost surely converge to I [43], i.e.

1
N

N∑
n=1

lt(x
n
1:t)

a.s−−−→
n→∞

I.

Moveover, the rate of convergence is only dependent on the number of samples N but it is not

dependent on the dimension of x1:t.

Often the distribution is only known up to a proportionally constant. This is for example the

case for the posterior distribution p1:t(x1:t|z1:t) in Bayes filter. A possible solution for this type of

distributions is to use important sampling which is described next.

2.3.3.2 Importance sampling

Consider now the case when it is difficult to sample from the distribution p1:t(x1:t|z1:t) in (2.40).

The distribution p1:t(x1:t|z1:t) is general of the non-standard form such as a non-linear non-

Gaussian model, a mixture model or the product of non-linear non-Gaussian models/mixture mod-

els. Computing this distribution in closed-form may be intractable so resorting to the numerical

methods to sample from this distribution is an option. The idea behind importance sampling

(IS) methods is to sample from a distribution is q1:t(x1:t|z1:t) instead of p1:t(x1:t|z1:t) where the

support5 of q1:t(x1:t|z1:t) contains the support of p1:t(x1:t|z1:t) [43]. q1:t(x1:t|z1:t) is called an

importance distribution. We have that

I(lt) = E(lt(x1:t)) =
∫
l(x1:t)p1:t(x1:t|z1:t)dx1:t =

∫
l(x1:t)πt(x1:t, z1:t)dx1:t∫

πt(x1:t, z1:t)dx1:t

=

∫
l(x1:t)wt(x1:t)q1:t(x1:t|z1:t)dx1:t∫

wt(x1:t)q1:t(x1:t|z1:t)dx1:t
(2.43)

where wt(x1:t) is known as the importance weight and is given by

wt(x1:t) =
πt(x1:t, z1:t)

q1:t(x1:t|z1:t)
, (2.44)

and by (2.41),

Eq1:t [wt(x1:t)] =
∫
wt(x1:t)q1:t(x1:t)dx1:t = Zt. (2.45)

An approximation of Zt is

Ẑt(N) =
1
N

N∑
n=1

wt(x
n
1:t). (2.46)

5the support of a function is the set of domain where the function is not zero.
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Therefore, if N weighted particles {xn1:t,wt(xn1:t)}Nn=1 are i.i.d. samples from the importance

distribution q1:t(x1:t|z1:t), then the distribution πt(x1:t, z1:t) can be approximated by

1
N

N∑
n=1

wt(x
n
1:t)δ(x1:t − xn1:t).

By a weighted particle {xn1:t,wt(xn1:t)}Nn=1 we understand that xn1:t are sampled from the import-

ance distribution q1:t(x1:t|z1:t) and wt(xn1:t) are computed according to (2.44). Since by (2.40) the

posterior distribution p1:t(x1:t|z1:t) is proportional to πt(x1:t, z1:t), the distribution p1:t(x1:t|z1:t)

can be approximated by

PN (x1:t|z1:t) =
∑N
n=1wt(x

n
1:t)δ(x1:t − xn1:t) (2.47)

where the normalized importance weights wt(xn1:t) are

wt(x
n
1:t) =

wt(xn1:t)∑N
i=1wt(x

i
1:t)

(2.48)

Thus, an estimate of I(lt) is

IN (lt) =
∫
lt(x1:t)PN (x1:t|z1:t)dx1:t =

N∑
n=1

lt(x
n
1:t)wt(x

n
1:t) (2.49)

If the mean and variance of lt(x1:t) satisfy I(lt) < ∞,σ2
lt
= var[lt(x1:t)] < ∞ then from the

strong law of large numbers, IN (lt) converges almost surely to I(lt), that is [57, theorem 1]

IN (lt)
N→∞−−−−→
a.s

I(lt). (2.50)

Moreover, under these conditions the central limit theorem says that
√
N [IN (lt) − I(lt)] will

converge in distribution to the standard normal distribution N (0,σ2
lt
) as n approaches infinity

[57, theorem 2], i.e.

√
N [IN (lt)− I(lt)]

N→∞−−−−→ N (0,σ2
lt). (2.51)

where σ2
lt

is given by [57]

σ2
lt =

∫
[lt(x1:t)− I(lt)]2

p2(x1:t|z1:t)

qt(x1:t|z1:t)
dx1:t (2.52)

From (2.51), the convergence rate of this estimate does not depend on the dimension of the integ-

rand. It only depends on the sample size N . In order to reduce the number of computations, the

IS is modified to compute an estimate PN (x1:t|z1:t) of p1:t(x1:t|z1:t) by reusing the past samples

{xn1:t−1,n = 1, . . . ,N}. This modification called Sequential Importance Sampling (SIS) uses an
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importance distribution of the following form

q1:t(x1:t|z1:t) = q1:t−1(x1:t−1|z1:t−1)qt(xt|x1:t−1, z1:t) (2.53)

= q1(x1)
t∏
i=2

qi(xi|x1:i−1, zi) (2.54)

since conditionally on x1:t−1, xt is statistically independent of z1:t−1.

2.3.3.3 Sequential importance sampling

A sample x1:t can be generated recursively in time by a sample xt ∼ qt(xt|x1:t−1, zt) at present

time t and then use (2.53). The importance weight wt(x1:t) is calculated recursively

wt(x1:t) =
πt(x1:t, z1:t)

q1:t(x1:t|z1:t)
=

πt−1(x1:t−1, z1:t−1)

q1:t−1(x1:t−1|z1:t−1)

πt(x1:t, z1:t)q1:t−1(x1:t−1|z1:t−1)

πt−1(x1:t−1, z1:t−1)q1:t(x1:t|z1:t)

(a)
= wt−1(x1:t−1)

pt(xt, zt|x1:t−1, z1:t−1)

qt(xt|x1:t−1, zt)

= w1(x1)
t∏
i=2

pi(xi, zi|x1:i−1, z1:i−1)

qi(xi|x1:i−1, zi)
(2.55)

where (a) holds because of (2.53) and

πt(x1:t, z1:t) = pt(zt,xt|x1:t−1, z1:t−1)πt−1(x1:t−1, z1:t−1)

The SIS algorithm is summarized below where each time t, xnt ,n = 1 . . . ,N samples are gener-

ated.

Algorithm 1 : Sequential Importance Sampling
• At time t = 1: draw the samples xn1 ∼ q1(x1), n = 1, . . . ,N and compute the weight

w1(x
n
1 ) =

p(xn1 )

q1(x1)
(2.56)

and the normalized weights wn1 =
w1(xn1 )∑N

n=1 w1(xn1 )
.

• At time t = 2, . . . ,T : draw the samples xnt ∼ qt(xt|xn1:t−1), n = 1, . . . ,N and the weights
are calculated as in (2.55).

wt(x
n
1:t) = wt−1(x

n
1:t−1)

pt(xt, zt|x1:t−1, z1:t−1)

qt(xnt |xn1:t−1, z1:t)
(2.57)

and the normalized weights

wnt =
wt(xn1:t)∑N
n=1wt(x

n
1:t)

(2.58)

Degeneracy problem
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Let αt(x1:t) =
pt(xt, zt|x1:t−1, z1:t−1)

qt(xt|x1:t−1, zt)
, (2.55) can be written as follows

wt(x1:t) = w1(x1)
t∏
i=2

αi(x1:i). (2.59)

Then the variance of Ẑt(N) is

V ar[Ẑt(N)] = E[(Ẑt(N)−E[Ẑt(N)])2]

= E[(
1
N

N∑
n=1

wt(x
n
1:t)−N

1
N
Zt)

2] =
1
N2E[(

N∑
n=1

(wt(x
n
1:t)−Zt))2]

=
1
N2

N∑
n=1

V ar[wt(x
n
1:t)] =

1
N
V ar[(wt(x1:t))]

=
1
N

(
E[w2

t (x1:t)]−Z2
t

)
(2.60)

Then the ratio between the variance of Ẑt(N) and Z2
t is

V ar[Ẑt(N)]

Z2
t

=
1
N

( 1
Z2
t

E[w2
t (x1:t)]− 1

)
. (2.61)

Hence, we have

V ar[Ẑt+1(N)]

Z2
t+1

=
1
N

(
1

Z2
t+1

E[w2
t+1(x1:t+1)]− 1

)
=

1
N

(
E[w2

t (x1:t)α2
t+1(x1:t+1)]

Z2
t α̂

2
t+1(x1:t+1)

− 1
)

=
1
N

(
E[w2

t (x1:t)]

Z2
t

E[α2
t+1(x1:t+1)]

α̂2
t+1(x1:t+1)

− 1
)

(2.62)

where α̂t+1(x1:t+1) = Eq[αt+1(x1:t+1)] =
∫
αt+1(x1:t+1)qt+1(xt+1|x1:t, zt+1)dxt+1.

By V ar[αt+1(x1:t+1)] = E[α2
t+1(x1:t+1)]− α̂2

t+1(x1:t+1) > 0,
and E[α2

t+1(x1:t+1)], α̂2
t+1(x1:t+1) > 0, the following is true

E[αt+1(x1:t+1)]

α̂2
t+1(x1:t+1)

> 1. (2.63)

Therefore,

V ar[Ẑt+1(N)]

Z2
t+1

=
1
N

(
E[w2

t (x1:t)]

Z2
t

E[α2
t+1(x1:t+1)]

α̂2
t+1(x1:t+1)

− 1
)

=
E[α2

t+1(x1:t+1)]

α̂2
t+1(x1:t+1)

1
N

(
E[w2

t (x1:t)]

Z2
t

− 1
)
+

1
N

(
E[α2

t+1(x1:t+1)]

α̂2
t+1(x1:t+1)

− 1
)

=
E[α2

t+1(x1:t+1)]

α̂2
t+1(x1:t+1)

V ar[Ẑt(N)]

Z2
t

+
1
N

(
E[α2

t+1(x1:t+1)]

α̂2
t+1(x1:t+1)

− 1
)

>
V ar[Ẑt(N)]

Z2
t

. (2.64)
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From (2.64), it follows that the variance of resulting estimates increases exponentially over time t.

As a result, after some iterations only one particle survives. Thus resampling technique addresses

this problem and is introduced in the next section.

2.3.3.4 Resampling

Resampling is a technique which helps to solve the degeneracy problem by eliminating the low

weighted samples and multiplying the high weighted samples. Consider PN (x1:t|z1:t) given in

(2.47) which is the IS approximation of the distribution p1:t(x1:t|z1:t). This IS approximation is

based on the weighted samples which are drawn from the important sampling qt(x1:t|z1:t) and may

not be a good approximation of p1:t(x1:t|z1:t). As a result, the degeneracy problem can arise as

shown earlier. To obtain samples which are approximately distributed according to the distribution

p1:t(x1:t|z1:t), resampling method is applied by simply drawing new samples based on the IS

approximation PN (x1:t|z1:t) given in (2.47) and use these resampled valued in the approximation

of the distribution p1:t(x1:t|z1:t). There are many resampling methods in statistics. Four popular

approaches in the literature are

• Stratified resampling [52]

• Systematic resampling [83]

• Residual resampling [87]

• Multinomial resampling [77, p.31-92], [13, p.441-448]

The comparison between the resampling techniques is discussed in [42]. Some version of particle

filters are derived from SIS by choosing an appropriate choice of sampling distribution and/or

modifying the resampling step in order to overcome the degeneracy problem. Examples are

Bootstrap filter [61], Regularized Particle filter [124], auxiliary resampling importance resampling

[139], and local linearization particle filter [45, 167].





Chapter 3

Random Finite Set (RFS) for Filtering

R andom finite sets play a crucial role in the generalization of the single target Bayes filter

to the multi-target Bayes filter which is used in multi-target tracking. A Random finite set

(RFS) is a finite-set-valued random variable. An RFS is different from a random vector in two

important aspects: 1) the number of elements in an RFS is random while the number of entries in

a vector is fixed, 2) the order of the elements are irrelevant for an RFS, but the order of the entries

in a vector is important. Another property which distinguishes an RFS from a random vector is

that the elements constituting the random vector may be the same but all the elements in an RFS

are different.

The purpose of this section is twofold. Firstly, some key concepts in the theory of RFSs are

introduced in Subsection 3.1. Then Subsection 3.2 models the multi-target tracking problem in

an RFS framework, and it also introduces multi-target Bayes filtering and estimation in an RFS

framework. Definitions of the mathematical concepts used in this Chapter are given in Appendix

A.1. Most of the material in this Chapter is based on [60], [101], and [40, p.111-156]

3.1 Background on Random Finite Set

This section briefly provides the basic concepts of the RFS which are used in the formulation of

the multi-target tracking problem. A random set is introduced by generalizing the notion of a

random vector to a random set.

3.1.1 Mathematical Preliminaries

Let (Ω,σ(Ω),P) be a probability space and (U ,U) be an abstract measurable space. Typically

U will be the Borel σ−algebra generated by the open sets of U , i.e. the smallest σ−algebra

containing all open sets of U . A random element is defined as a measurable mapping Σ : Ω→ U .

Since the mapping is measurable, Σ−1(A) ∈ σ(Ω) for any A ∈ U . The probability measure on

U induced by Σ is PΣ = P ◦ Σ−1 : U → [0, 1] where PΣ(A) = P ◦ Σ−1(A) = P(Σ−1(A)) =

P({ω ∈ Ω : Σ(ω) ∈ A}) for A ∈ U . It is common to use P(Σ ∈ A) = P({ω ∈ Ω : Σ(ω) ∈
A}). Different spaces U give different random elements.

27
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• When U = R (resp. Rd), the random element is called a random variable (resp. a random

vector)

• When U is a class of subsets of some space X (e.g. X ⊂ Rd, d ∈ {1, 2, . . .}), the random

element Σ is called a random set. When U is a collection of finite sets of a topological space

(X , T(X )), Σ is called an RFS.

An RFS can be defined mathematically as follows

Definition 3.1: A random finite set Σ is a measurable mapping from Ω to F(X )

Σ : Ω→ F(X )

whereF(X ) is the space of all finite subsets ofX equipped with the myope topology1 [109, p.3-5].

In multi-target tracking problem, we often deal with a space which is the product of continu-

ous space (e.g. the state space in tracking) and a discrete space (e.g. the space of target labels in

tracking). Such a space is called a hybrid space. In the single target tracking problem, the dis-

crete space reduces to a singleton set and hence the hybrid space reduces to the state space. The

following section deals with hybrid space in general.

3.1.1.1 Hybrid Space

A hybrid space is the Cartesian product of X and a finite discrete space K i.e X = X × K.

An element s = (x, k) ∈ X consists of an Euclidean part x ∈ X ⊆ Rd and a discrete part

k ∈ K. Let S ⊆ X. Then for any k ∈ K, we define S(k) = {x ∈ X : (x, k) ∈ S} so

S =
⋃
k∈K S(k)×{k}. Here S(k1)×{k1} and S(k2)×{k2} are disjoint if k1 6= k2. In general,

for any S ⊆ Xn = X× . . .×X, S(k1, . . . , kn) is defined as S(k1, . . . , kn) = {(x1, . . . ,xn) ∈
X n : ((x1, k1), . . . , (xn, kn)) ∈ S} so S =

⋃
(k1,...,kn)∈Kn S(k1, . . . , kn)× {(k1, . . . , kn)}.

The RFS on the hybrid space is defined in the obvious fashion by extending Definition 3.1

from the state space to the hybrid space as follows.

Definition 3.2: A random finite set Σ on a hybrid space is a measurable mapping from Ω toF(X)

Σ : Ω→ F(X)

where F(X) is the space of all finite subsets ofX equipped with the myope topology on the hybrid

spaceX [60, p.137].

Denote by CX the collection of all closed subsets of X, by KX the collection of all compact

subsets of X and by GX the collection of all open subsets of X. The myope topology is defined

as follows. For any open subset G ⊆ X and any compact subset K ⊆ X, define the collections of

1Intuitive explanation of this topology can be found in [60, p.94], [101, p.712] or [168, p.47].
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closed subsets hitting G and missing K as

AG ={S ∈ CX : S ∩G 6= ∅} (3.1)

AK ={S ∈ CX : S ∩K = ∅} (3.2)

respectively. The myope topology has the base2

BK
G ={AK ∩AG1 ∩ . . .∩AGn : n ≥ 0, K ∈ KX,Gi ∈ GX}. (3.3)

This is called the hit-or-miss topology.

Denote by Fn(X) the collection of all finite subsets ofX which contain exactly n elements. If

n = 0, then Fn(X) = {∅}. It can be shown [60, p.132] that Fn(X) ∈ σ(CX) and hence Fn(X)

is measurable with respect to σ(CX).

The closed (resp. open, compact) subsets of Xn are those S ⊆ Xn such that S(k1, . . . , kn)
are closed (resp. open, compact) for all (k1 . . . , kn) ∈ Kn [60, p.135]. The hybrid space has a

topology which is the product topology of the Euclidean on X and the discrete topology on K.

This means that for any open subset S ⊆ X, S(k) is open for all k ∈ K.

Definition 3.3: The product measure λ̄ = λ× c̄ on the space X is referred to as the (unit) hybrid

Lebesgue measure where λ is the (unit) Lebesgue measure on X and c̄ is the counting measure on

K. We say that a set S ⊆ X is measurable if S(k) is Lebesgue-measurable for every k ∈ K. Then

the hybrid measure is defined by

λ̄(S) =
∑
k∈K

λ(S(k)) (3.4)

Generally, S ⊆ Xn is measurable if S(k1, . . . , kn) is measurable and

λ̄n(S) =
∑

(k1,...,kn)∈Kn
λn(S(k1, . . . , kn)) (3.5)

where λ̄1(S) = λ̄(S) for S ⊆ X.

Suppose that volume in the space X is measured in units of Kx, then λ(∆x) is the volume

Lebesgue measure of a neighborhood of ∆x of x in units of Kx, and λ̄(∆x × {k}) is the volume

hybrid Lebesgue measure of a neighborhood of ∆x × {k} of (x, k) in units of Kx.

In an obvious way, the concept of Lebesgue integral is extended to the hybrid space [60,

p.136],[168, p.50]

Definition 3.4: a) f : Xn → Rm is an integrable function if and only if the functions

fk1,...,kn : X n → Rm defined by fk1,...,kn(x1, . . . ,xn) = f((x1, k1), . . . , (xn, kn))
are Lebesgue-integrable for every (k1, . . . , kn) ∈ Kn

2The definition of a base in Appendix A.2.
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b) Let S ⊂ Xn be measurable and ξi = (xi, ki) for i = 1, . . . ,n. Then for each integ-

rable f , the hybrid integral of f on S is∫
S
f(ξ1, . . . , ξn)λ̄(dξ1) . . . λ̄(dξn)

=
∑

(k1,...,kn)∈Kn

∫
S(k1,...,kn)

fk1,...,kn(x1, . . . ,xn)λ(dx1) . . . λ(dxn)

The concept of a probability measure is also extended to the hybrid space [60, Definition 6, p.

136]

Definition 3.5: A set function P defined on the measurable subsets S ofX is a probability measure

if it has the form P(S) = P({ω ∈ Ω : ξ(ω) ∈ S}) where ξ = (x, k) is a random variable on

X. Then the set functions Pk(U) = P(U × {k}) = P(x ∈ U , k ∈ {k}) are measures3 on X
for any measurable subset U of X and for any k ∈ K. Since S =

⊎
k∈K S(k)× {k}, we have

P(S) =
∑
k∈KPk(S(k)) where

⊎
denotes the disjoin union operator.

This definition allows us to transform between the probability measure on the hybrid space and

the measure on X . A set derivative also exists on the hybrid space if P is absolutely continuous

with respect to the hybrid measure

Proposition 3.1: Let P be a probability measure as defined in Definition 3.5. If P is absolutely

continuous with respect to the hybrid measure λ̄, then there exists an almost everywhere integrable

unique function f onX such that for any measurable subset S ⊆ X

P(S) =
∫
S
f(ξ)λ̄(dξ) (3.6)

3.1.2 Measure and Integral of RFSs

This section aims to outline the construction of the measure and the integral of RFSs which are

based on the conventional probability. This section is based on [171] and [101, p.711-716].

Let Σ be a measurable mapping from Ω to F(X) as in Definition 3.2. Σ induces a probability

measure PΣ onX which is defined for any Borel subset O of F(X)

PΣ(O) = P(Σ−1(O)) = P({ω ∈ Ω : Σ(ω) ∈ O}). (3.7)

Denote χ :
⊎∞
n=0X

n → F(X) as the mapping of vectors to finite sets defined for each n by

χ(ξ1, . . . , ξn) = {ξ1, . . . , ξn} whereX0 = {∅}. Then for any Borel set O ⊆ F(X), the measure

µ is defined as

µ(O) =
∞∑
n=0

λ̄n
(
χ−1(O) ∩Xn

)
n!Kn

x

(3.8)

3This is not a probability measure as mentioned in [60, Definition 6, p. 136] otherwise P cannot be a probability
measure
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Note that the term Kn
x in each sum will cancel out with Kn

x of the hybrid measure

λ̄n
(
χ−1(O) ∩Xn

)
.

Assume that the probability measure PΣ induced by the RFS Σ is absolutely continuous with

respect to the measure µ. By the Radon Nikodým theorem there exist an almost everywhere

unique integrable function gΣ : F(X)→ [0,∞) such that

PΣ(O) =
∫
O
gΣ(Z)µ(dZ) (3.9)

By the definition of the measure µ in (3.8), (3.9) can be rewritten as

∫
O
gΣ(Z)µ(dZ) =

∞∑
n=0

∫
O∩Fn(X)

gΣ(Z)µ(dZ) (3.10)

=
1
n!

∞∑
n=0

∫
χ−1(O)∩Xn

gΣ({ξ1, . . . , ξn})K−nx λ̄n(dξ1 . . . ξn) (3.11)

for any Borel set O ⊆ F(X). Note that the sum of the right hand side in (3.11) holds because

each term of the sum is unitless. This is because gΣ is unitless and λ̄n has unit ofKn
x . In the sequel

a particular kind of integrable finite set function is our interest and it is defined in the following

Definition

Definition 3.6 (Global density): A global density (function) is a non-negative, integrable finite set

function whose total set integral is unity.

By this Definition, non-negative, integrable finite set function gΣ is a global density because∫
F(X)

gΣ(Z)µ(Z) = PΣ(F(X)) = 1.

The non-negative, integrable finite set function gΣ in (3.9) is a global density because∫
F(X)

gΣ(Z)µ(Z) = PΣ(F(X)) = 1.

3.1.3 Finite Set Statistic (FISST)

This section summarizes the construction of key concepts such as set derivative, set integral in the

finite set statistics (FISST) formulation of the multi-target tracking problem. The global density in

Definition 3.6 is a particular set derivative which is of main interest for multi-target tracking. The

concepts set derivative and set integral are not normal as the normal concepts in ordinary calculus.

Their definitions requires a suitable transformation between the product space Xn,n = 1, 2, . . .
and the space F(X) (i.e. the collection of finite subsets ofX).
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Denote by F≤n(X) the collection of all finite subsets of X which contain no more than n

elements. Define a mapping which transforms a set of elements in the spaceXn, n > 0 to a finite

set ofX in the space F≤n(X) as follows

χn : Xn → F≤n(X) (3.12)

ξ = (ξ1, . . . , ξn) 7→ χ(x) = {ξ1, . . . , ξn},

This mapping is many-to-one. In order to make the mapping between Xn and Fn(X) bijective,

we define the lexicographic ordering denoted by ≺ between two elements ξ, ζ ∈ X where ξ =

(x, k1), ζ = (y, k2), x = (x1, . . . ,xd) and y = (y1, . . . , yd) as follows. ξ ≺ ζ if one of the

following statements is true

• k1 < k2

• k1 = k2 and x1 < y1

• k1 = k2, x1 = y1 and x2 < y2

• k1 = k2, xi = yi, for i = 1, . . . , k < d and xk+1 < yk+1

Let [X]n = {(ξ1, . . . , ξn) ∈ Xn : ξ1 ≺ ξ2 ≺ . . . ≺ ξn}. Then by [60, Proposition 2, p.133], the

mapping χ
n

: [X]n → Fn(X), which is the restriction of the map χn to [X]n, is a homeomorph-

ism (equivalence of topological spaces) between the two spaces [X]n and Fn(X).

Let f : Xn → Rr (r ≥ 1) be completely symmetric function4. Define f∗ : Fn(X) → Rr

by f∗({ξ1, . . . , ξn}) = f(ξ1, . . . , ξn). By (3.12), the composite function f∗ ◦ χn = f almost

everywhere where ◦ denotes the composite symbol. Inversely let F : Fn(X) → Rr. Define

F ∗ : Xn → Rr by F ∗(ξ1, . . . , ξn) = F ({ξ1, . . . , ξn}) for all distinct ξ1, . . . , ξn (note that F ∗ is

undefined on a set of measure zero).

The correspondences of f → f∗ and F → F ∗ set up a one-to-one correspondence between

the measurable (resp. continuous) almost everywhere defined symmetric functions onXn and the

measurable (resp. continuous) functions on Fn(X) [60, Proposition 3, p.135].

3.1.3.1 Set Derivative and Its Properties

Like ordinary calculus in which an inverse operation of the Lebesgue integral is the derivative,

the set integral also has an inverse operation which is called a set derivative which is defined in

Definition 3.7 below. We also summarize some basics properties of the set derivative and set

integral which involves the belief measure [60, p.150-170]. These properties is useful for deriving

the multi-target system model which is introduced in Section 3.2.

The following set derivative is base on [60, Definition 12, p.145-146] and [171, 4.5].

Definition 3.7 (Set Derivative): Let Φ : CX → [0,∞) be a set function5 on X and let ξ =

(x,u) ∈ X. If it exists, for any closed subset S ofX the set derivative of Φ at ξ is the set function

4f(x1,x2, . . . ,xn) is called symmetric or totally symmetric if and only if it is invariant under any permutation of
variables.

5A set function is a function whose input is a set.
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defined by

δΦ
δξ

(S) = lim
j→∞

lim
i→∞

Φ((S − (Bx,j × {k})) ∪ (Bx,i × k))−Φ(S − (Bx,j × {k}))
λ(Bx,i)

(3.13)

where Bx,j is a sequence of closed balls converging to {x}; and where Bx,i is a sequence of open

balls whose closures converge to {x}.
If ξ /∈ S, (3.13) can be written as follows

δΦ
δξ

(S) = lim
j→∞

lim
i→∞

Φ(S ∪ (Bx,i × k))−Φ(S)

λ(Bx,i)
(3.14)

Note that δΦ
δξ (S) has unit of K−1

x because the denominator λ(Bx,i) in (3.13) and (3.14) has

unit of Kx.

It has been shown in [60, p.147-148] that the set derivative of a set function is also a set

function and thus we can iterate the process by the following definition.

Definition 3.8: For any closed subset S ⊆ X. The iterated set derivative of order n is defined as

δn+1Φ
δξn+1 . . . δξ1

(S) =
δΦ
δξn+1

δnΦ
δξn . . . δξ1

(S) (3.15)

where ξ1, . . . , ξn+1 ∈ X.

When the set derivative of order n,n > 0 is well defined, the order of differentiation does not

matter. The concept of iterated set derivative is defined as follows

Definition 3.9: Let Φ be a set function. Let n ≥ 1 and let Z = {ξ1, . . . ξn} ⊆ X be a finite subset

with n distinct elements. Assume that all iterated set derivative of Φ exist. Then for any closed

subset S ofX, the set derivative of Φ is defined as

δΦ
δZ

(S) =
δnΦ

δξ1 . . . δξn
(S) (3.16)

δΦ
δ∅

(S) = Φ(S) (3.17)

δ0Φ
δZ

(S) =
δ0Φ
δ∅

(S) = Φ(S) (3.18)

The following proposition generalizes the sum and the product rules for the derivatives to the

case of set derivatives

Proposition 3.2: Let Φ and Ψ be the set functions and let a, b ∈ R be scalars. Assume that the

set derivatives of Φ and Ψ exist. Then the set derivatives of aΦ + bΨ and ΦΨ also exist and are

given by

δ(aΦ + bΨ)

δZ
(S) = a

δΦ
δZ

(S) + b
Ψ
δZ

(S) (3.19)

δ(ΦΨ)

δZ
(S) =

∑
Y⊆Z

δΦ
δY

(S)
δΨ

δ(Z − Y )
(S) (3.20)
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for all S ⊆ X. If Y ,Z ⊆ X are finite subset with Y ∩Z = ∅. Then

δ

δY

δ(Φ)

δZ
(S) =

δΦ
δ(Y ∪Z)

(S)

for all S ⊆ X.

The set integral is naturally given by the following definition.

Definition 3.10: Let Φ : F(X) → [0,∞) be a set function. Let f be the function defined by

f (Z) = δΦ
δZ (∅) for any finite subset Z ∈ F(X) and let S be closed subset of X. Then the set

integral of f concentrated at S is

∫
S

f (Z)δ(Z) =
∞∑
n=0

1
n!

∫
Sn

f ({ξ1, . . . , ξn})λ̄(dξ1) . . . λ̄(dξn) (3.21)

where Sn = S × . . .× S denotes the Cartesian product of S taken n times, and we assume the

convention that S0 = {∅} and
∫
∅ f ({∅})λ̄(d∅) = f ({∅}). LetO be any measurable subset of CX

(i.e O ∈ σ(CX)). The set integral of f concentrated on O is defined as∫
O

f (Z)δ(Z) =
∫
O∩
⋃∞
n=0 Fn(X)

f (Z)δ(Z)

=
∞∑
n=0

1
n!

∫
χ−1
n (O∩Fn(X))

f ({ξ1, . . . , ξn})λ̄(dξ1) . . . λ̄(dξn) (3.22)

where χn : Xn → Fn(X) is the function defined in (3.12) by χn(ξ1, . . . , ξn) = {ξ1, . . . , ξn} with

the added condition that ξi 6= ξj , i 6= j so χ−1
n (O ∩Fn(X)) is a measurable subset ofXn.

It can be shown that (3.21) is the special case of (3.22). Indeed, for any O ∈ σ(CX), by the

myope topology particularly by (3.1) there exists a closed set S such that

O = (ASc)c = {C ∈ CX : C ∩ Sc 6= ∅}c = {C ∈ CX : C ∩ Sc = ∅}

= {C ∈ CX : C ⊆ S} (3.23)

where Sc denotes the complement of S so Sc is open. Then for n = 0, 1, . . .

χ−1
n (O ∩Fn(X)) = Sn. (3.24)

By convention, denote χ−1
0 (O ∩F0(X)) = S0.

3.1.3.2 Belief Functional and Global Density

This section introduces a method for construction of the global density function of an absolutely

continuous RFS. A direct construction from the probability measure is impractical in most cases.

However, it can also be derived from the belief functional defined below. The relationship between
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the belief functional and the global density function is derived by applying the set derivative in

Definition 3.7.

Definition 3.11: The belief functional of an RFS Σ is defined as

βΣ(S) = P(Σ ⊆ S) = P({ω ∈ Ω : Σ(ω) ⊆ S}) (3.25)

for any closed S ⊆ X .

By (3.23),

PΣ(O) = PΣ({C ∈ CX : C ⊆ S}) = P(Σ ⊆ S) = βΣ(S).

for some closed S ⊆ X. Since βΣ(S) is a restriction of PΣ(O) to a smaller class of measurable

subsets of F(X), by [109, p.30] and [101, p.713] it has been shown that PΣ(O) is equivalent to

βΣ(S).

Applying the properties of the RFS Σ, the belief functional βΣ(S) can be expanded as shown

in the following theorem for any closed subset S ⊆ X.

Theorem 3.1: Let Σ be an RFS with belief functional

βΣ(S) = P(Σ ⊆ S) = P({ω ∈ Ω : Σ(ω) ⊆ S}) (3.26)

for any closed subset S ⊆ X. Then βΣ(S) can be factorized as follows

βΣ(S) =
∞∑
i=0

pΣ(i)qΣ,i(S
i) (3.27)

where

pΣ(i) = P(|Σ| = i) ≥ 0 (3.28)

as a discrete probability distribution which gives the number of elements in Σ and qΣ,i(·) is the

probability measure onXi

qΣ,i(S
i) = P(Σ(ω) ⊆ S||Σ| = i) (3.29)

with qΣ,i(S
0) = 1.

The following definition shows the relationship between the absolute continuity of qΣ,i and the

absolute continuity of an RFS Σ.

Definition 3.12: Let Σ be an RFS. Then Σ is absolutely continuous if the probability measures qΣ,i

are absolutely continuous with respect to the product hybrid measure onXi for every i = 1, 2, . . .
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If qΣ,i(S
i) is absolutely continuous with respect to hybrid measure, then by Proposition 3.1 it

follows that

qΣ,i(S
i) =

∫
Si
f (i)(ξ1, . . . , ξi)λ̄(dξ1) . . . λ̄(dξi)

for some density function f (i) which, without loss of generality, assumed to be completely sym-

metric. Then by Definition 3.12, Σ is absolutely continuous. Then applying Definition 3.8, the

following holds for j,n > 0 [60, p.159-160]

δnqΣ,j
δξ1 . . . δξn

(∅) =
{
j!f (j)(ξ1 . . . ξj), if j = n;

0, if j 6= n.
(3.30)

Then from Theorem 3.1, we find that

δnβΣ
δξ1 . . . δξn

(∅) = pΣ(n)
δnqΣ,n

δξ1 . . . δξn
(∅) (3.31)

= n!pΣ(n)f
n(ξ1, . . . , ξn) (3.32)

Therefore the belief functional of RFS Σ for any closed set S ⊆ X is

βΣ(S) =
δ0βΣ
δ∅

(∅) +
∞∑
n=1

1
n!

∫
Sn

δnβΣ
δξ1 . . . δξn

(∅)λ̄(dξ1) . . . λ̄(dξn) (3.33)

(1a)
=
∫
S

δβΣ

δZ
(∅)δ(dZ) (3.34)

where δ0βΣ
δ∅ (∅) = βΣ(∅) = pΣ(0) and (1a) holds by (3.21).

By (3.23) for any O ∈ σ(CX) and absolutely continuous Σ, we have

P(Σ ∈ O) = P(Σ ⊆ S) = βΣ(S) (3.35)

for some closed subset S ofX. Thus, by (3.24) we also have

P(Σ ∈ O) = δ0βΣ

δ∅
(∅) +

∞∑
n=1

1
n!

∫
χ−1
n (O∩Fn(X))

δnβΣ

δξ1 . . . δξn
(∅)λ̄(dξ1) . . . λ̄(dξn) (3.36)

(1b)
=
∫
O

δβΣ
δZ

(∅)δ(dZ) (3.37)

where (1b) holds by (3.22).

It is easy to see that δβΣ
δZ (∅) is also a global density function since

∫
X

δβΣ

δZ
(∅)δ(dZ) (1a)

= βΣ(X) = P(Σ ⊆ X) = 1

where (1a) holds by (3.33) and (3.34).
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Denote by

fΣ(Z) =
δβΣ
δZ

(∅) (3.38)

for all finite subset Z ⊆ F(X), then fΣ is a global density. In particular,

fΣ({ξ1, . . . , ξn}) =
δnβΣ

δξ1 . . . δξn
(∅).

Then (3.34) and (3.37) can be rewritten compactly and respectively as follows

βΣ(S) =
∫
S

fΣ(Z)δ(dZ) (3.39)

P(Σ ∈ O) =
∫
O

fΣ(Z)δ(dZ). (3.40)

Denote the cardinality distribution of RFS Σ by fΣ(n). Then taking integral on Xn both side of

(3.31) with respect to λ̄n, we have

fΣ(n) = p(|Σ| = n) =
1
n!

∫
Xn

δnβΣ

δξ1 . . . δξn
(∅)λ̄(dξ1) . . . λ̄(dξn) (3.41)

=
1
n!

∫
Xn

fΣ({ξ1, . . . , ξn})λ̄(dξ1) . . . λ̄(dξn) (3.42)

Then it is easy to see
∑∞
n=0 fΣ(n) = 1.

If there are m RFS Σ1, . . .Σm, (3.38) can be generalized as in the following definition.

Definition 3.13: Let Σ1, . . . , Σm be absolutely continuous finite random subsets of X. For closed

sets S1, . . . ,Sm ⊆ X, their joint belief functional is

βΣ1,...,Σm(S1, . . . ,Sm) = P(Σ1 ⊆ S1, . . . , Σm ⊆ Sm) (3.43)

The joint global density of these random finite sets is the multi-variable set function

fΣ1,...,Σm(Z1, . . . ,Zm) =
δmβΣ1,...,Σm(S1, . . . ,Sm)

δ1Z1 . . . δmZm
(∅, . . . , ∅).

In practice, the joint global densities of RFS is assumed to be statistically independent. The

following proposition gives the joint densities of such random sets

Proposition 3.3: Let Σ1, . . . , Σm be statistically independent, absolutely continuous finite random

subsets ofX. Their joint density exists and is given by

fΣ1,...,Σm(Z1, . . . ,Zm) =
m∏
i=1

fΣi(Zi)

for all finite sets Z1, . . . ,Zm ⊆ X.
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3.1.4 Probability Theory and FISST

This section shows the relationship between integral defined as finite set statistics (FISST) in

Section 3.1.3 and the integral defined as the conventional probability theory in Section 3.1.2. This

section is based on [171, p.6] and [101, Appendix F, p.711-716].

As shown in [171, Proposition 1,p.6] that for any close subset S ofX, we have

PΣ(χ(
∞⊎
i=0

Si)) =
∫
χ(
⊎∞
i=0 S

i)
gΣ(Z)µ(dZ) (3.44)

=
∞∑
n=0

1
n!

∫
Si
K−nx gΣ({ξ1, . . . , ξn})λ̄(dξ1) . . . λ̄ξn) (3.45)

=
∫
S
K−|Z|x gΣ(Z)δ(Z) (3.46)

Note that λ̄(ξi), i = 1, . . . ,n have unit of Kx. Furthermore, by definition of the belief functional,

βΣ(S) = PΣ(
∞⊎
i=0

Si). (3.47)

Then by (3.34) and (3.46), we have δPΣ
dµ (Z) = K |Z| δβΣ

δZ (∅). This shows that the density function

gΣ in (3.9) can be calculated through the belief functional by the following proposition.

Proposition 3.4: Let gΣ : F(X) → [0,∞) be an integrable function such that (3.9) holds. For

any finite set Z ∈ F(X) then

gΣ(Z) = K |Z|x

δβΣ

δZ
(∅). (3.48)

Note that gΣ(Z) is unitless density because δβΣ
δZ (∅) have units of K−|Z|x . Then p(|Σ| = n) the

cardinality distribution of RFS Σ in (3.41) is

p(|Σ| = n) = pΣ(n) =
1
n!

∫
Sn
K−nx gΣ({ξ1, . . . , ξn})λ̄(dξ1) . . . λ̄(dξn) (3.49)

3.1.5 Some Important Multi-target Probability Distribution

In this section, some important multi-target probability densities are introduced such as independ-

ent identically distributed (i.i.d) cluster processes and multi-target Poison processes [101, p.343-

375].

By (3.48) and (3.32), the global density gΣ(Z) for any finite subset Z = {ξ1, . . . , ξn} ⊆ X is

gΣ(Z) = K |Z|x

δβΣ
δZ

(∅) = K |Z|x

δβΣ
δξ1 . . . δξn

(∅) = K |Z|x pΣ(n)n!f (n)(ξ1, . . . , ξn) (3.50)

Note that f (n)(ξ1, . . . , ξn) has unit of K−nx .
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3.1.5.1 Independent Identically Distributed Cluster Processes

When ξi, i = 1 . . . ,n are i.i.d random elements on X, f (n)(ξ1, . . . , ξn) =
∏n
i=1 f(ξi). Note that

f (n)(·) denote the joint density whereas f(·) denotes the density on X . Note that f(·) has unit of

K−1
x . Hence the global density gΣ(Z) in (3.50) for i.i.d cluster processes is

gΣ(Z) = K |Z|x n!pΣ(n)f(ξ1) . . . f(ξn) = K |Z|x |Z|!pΣ(|Z|)
∏
ξ∈Z

f(ξ) (3.51)

3.1.5.2 Multi-target Poison Processes

If the discrete probability distribution pΣ(n) is the Poisson distribution with mean η, and ξi, i =
1 . . . ,n are i.i.d random elements onX then (3.51) is written as

gΣ(Z) = K |Z|x |Z|!
e−ηη|Z|

|Z|!
∏
ξ∈Z

f(ξ) = K |Z|x e−ηη|Z|
∏
ξ∈Z

f(ξ) (3.52)

which is called a multi-dimensional Poisson distribution. For any finite subset Z ⊆ X, any RFS

Σ having gΣ(Z) as its distribution is a multi-target Poisson process. The function

γ(ξ) = ηf(ξ) (3.53)

is called intensity density of the Poisson process and has unit of K−1
x . Thus (3.52) is alternatively

written in terms of the intensityγ(·) as

gΣ(Z) = K |Z|x e−〈γ,1〉 ∏
ξ∈Z

γ(ξ) (3.54)

where 〈γ, 1〉 =
∫
X γ(ξ)λ̄(dξ) = η.

3.1.5.3 Multi-Bernoulli Processes

This section adopts some formulas from [172, p.29-30] and [101, p.368-370]

Bernoulli:

Similar to a Bernoulli trial, a Bernoulli RFS Σ on X is empty with probability 1− r, r > 0,

singleton with probability r where the element is distributed according to the probability distribu-

tion p, and zero otherwise. Thus the Bernoulli RFS Σ is completely determined by {r, p} and its

probability density πΣ(X) is

πΣ(X) =


1− r, X = ∅;
Kxrp(ξ), X = {ξ};
0, otherwise.

(3.55)
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Alternatively, (3.55) can be rewritten as

πΣ(X) = K |X|x (1− r)1−|X| (rpΣ(X))|X| (3.56)

where pΣ(X) = p(ξ) if X = {ξ}, pΣ(X) = 1 if X = ∅ and pΣ(X) = 0 otherwise.

Multi-Bernoulli:

Assume that Σ is the union of m independent Bernoulli RFS Σi, i = 1, . . . ,m with a probab-

ility of existence ri and probability density pi respectively, i.e.

Σ =
m⋃
i=1

Σi. (3.57)

Then Σ is called a multi-Bernoulli RFS and its probability density πΣ(X) is written as follows

πΣ(X) =



∏m
i=1(1− ri), X = ∅;

Kn
x

∑
{j1,...,jn}⊆{1,...,n}

ji 6=jr,i 6=r

n∏
k=1

rjkpjk(ξk)
∏

l∈{1,...,m}−{j1,...,jn}
(1− rl), |X| = n ≤ m;

0, |X| = n > m.
(3.58)

In (3.58), the first product of the second line is the distribution of n independent Bernoulli RFSs

Σjk , k = 1, . . . ,n which each of them is a singleton while the second product is the distribution

of m− n independent Bernoulli RFSs Σl, l /∈ {j1, . . . , jn} which each of them is empty.

Alternatively, (3.58) can be rewritten in the compressed form as follows

πΣ(X) = K |X|x

m∏
i=1

(1− ri)
∑

{j1,...,jn}⊆{1,...,n}
ji 6=jr,i 6=r

n∏
k=1

rjk

1− rjk p
jk(ξk) (3.59)

By (3.49), the corresponding cardinality distribution of (3.59) is

p(n) =
1
n!

∫
|X|=n

K−nx πΣ({ξ1 . . . ξn})λ̄(dξ1) . . . λ̄(dξn)

=
1
n!

m∏
i=1

(1− ri)
∑

{j1,...,jn}⊆{1,...,n}
ji 6=jr,i 6=r

n∏
k=1

rjk

1− rjk
n∏
k=1

rjk

1− rjk

∫
pjk(ξk)λ̄(dξk)

=
1
n!

m∏
i=1

(1− ri)
∑

{j1,...,jn}⊆{1,...,n}
ji 6=jr,i 6=r

n∏
k=1

rjk

1− rjk =
1
n!

m∏
i=1

(1− ri)n!
∑

1≤j1<...<jn≤n

n∏
k=1

rjk

1− rjk

=
m∏
i=1

(1− ri)
∑

1≤j1<...<jn≤n

n∏
k=1

rjk

1− rjk (3.60)
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3.1.5.4 Binomial independent and identical distributed (i.i.d.) cluster Processes

If ri = r and pi = p for all i = 1, . . . ,n then (3.59) reduces to i.i.d. cluster process and the

cardinality in (3.59) reduces to

p(n) =

(
m

n

)
(1− r)m−nrn. (3.61)

Moreover, the probability density (3.59) reduces to the following simple form

πΣ({ξ1, . . . , ξn}) = Kn
xn!p(n)

n∏
i=1

p(ξi). (3.62)

3.1.5.5 Probability-generating functionals

This subsection is also based on [40, p.111-156] and [96]. The probability-generating functionals

can often transform difficult mathematical problems into simpler ones. Let h(ξ) be a non-negative

real-valued function of ξ ∈ X that has no unit measurement. Let Z be finite subset of X, i.e.

Z ∈ F(X), define the power of h with respect to Z to be

hZ =

{
1, if Z = ∅;∏
ξ∈Z h(ξ), otherwise.

(3.63)

In similar to the definition of probability-generating function, the probability generating functional

(p.g.fl.) GΣ of an RFS Σ onX

GΣ[h] = E[hΣ] = E
[
E[hΣ||Σ| = n]

]
=
∞∑
n=0

p(n)E[hΣ||Σ| = n] (3.64)

where

E[hΣ||Σ| = n] =
∫
Xn

h{ξ1,...,ξn}Pn(dξ1, . . . , dξn) (3.65)

where Pn(·) is the joint probability distribution onXn. By (3.26), (3.28) and (3.29) , we have

P({ξ1, . . . , ξn} ⊂
n⋃
i=1

dξi) = p(n)Pn(dξ1, . . . , dξn) (3.66)

where Pn(·) is given in (3.65). On the other hand, we have

P({ξ1, . . . , ξn} ⊂
n⋃
i=1

dξi)
(a)
= P({ξ1, . . . , ξn} ∈ {

n⋃
i=1

dξi}) (3.67)

(b)
=

1
n!

δnβΣ

δξ1 . . . δξn
(∅)λ̄(dξ1) . . . λ̄(dξn) (3.68)
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where (a) hold by (3.35) and (b) hold by (3.36). Thus, (3.64) becomes

GΣ[h] =
∞∑
n=0

∫
Xn

h{ξ1,...,ξn}p(n)P (dξ1, . . . , dξn) (3.69)

(a)
=
∞∑
n=0

∫
Xn

h{ξ1,...,ξn}P({ξ1, . . . , ξn} ∈ {
n⋃
i=1

dξi}) (3.70)

(b)
=
∞∑
n=0

∫
Xn

h{ξ1,...,ξn} 1
n!

δnβΣ
δξ1 . . . δξn

(∅)λ̄(dξ1) . . . λ̄(dξn)
(c)
=
∫
X
hZ
βΣ

δZ
(∅)δZ (3.71)

where (a) holds by (3.66) and (3.67), (b) holds by (3.68) and (c) holds by (3.21).

By (3.44), (3.46), (3.48), (3.70) and (3.71), we also have

GΣ[h] =
∫
χ(
⊎∞
i=0 S

i)
hZgΣ(Z)µ(dZ) =

∫
F(X)

hZgΣ(Z)µ(dZ) (3.72)

where µ is given in (3.8). The probability-generating functionals have the following properties

Relation to probability-generating function of the random number

If h(ξ) = c is a constant nonnegative real number for all ξ ∈ X. Then by (3.72) we have

GΣ[h] =
∫
F(X)

hZgΣ(Z)µ(dZ)

= pΣ(0) +
∞∑
n=1

cn

n!

∫
Xn

K−nx gΣ({ξ1, . . . , ξn})λ̄(dξ1) . . . λ̄(dξn)

(a)
= pΣ(0) + cpΣ(1) + c2pΣ(2) . . . = G|Σ|(h)

where (a) holds by (3.49) and G|Σ|(h) is the probability-generating functional of the random

nonnegative integer |Σ|.

Relation to Belief functional

The probability-generating functional is related to the Belief function by this relationship

GΣ[1S ] =
∫
F(X)

1ZS gΣ(Z)µ(dZ)
(a)
=
∫
X

1ZSK−|Z|x gΣ(Z)δ(dZ) =
∫
S
K−|Z|x gΣ(Z)δ(dZ)

(b)
=
∫
S

δβΣ

δZ
(∅)δ(dZ) = βΣ(S)

where 1S is the indicator function, (a) holds by (3.44)-(3.46) and (b) holds by (3.48). Thus, it

shares the following useful property with the belief functional.

Unions of statistically independent RFSs

Let Σ = Σ1∪ . . .∪Σn, and letGΣ1 [h], . . . ,GΣn [h] be the corresponding probability-generating

functionals where Σi, i = 1, . . . , Σn are statistically independent. Then for all h, we have

GΣ[h] = GΣ1 [h] . . . GΣn [h]

Examples of some probability generating functionals
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Based on the definition of the probability-generating functional, the processes introduced

earlier have the following p.g.fls

• p.g.fl of Poisson process is GΣ[h] = eη
∫
h(ξ)f̄ (ξ)λ̄(dξ)−η

• p.g.fl of an i.i.d. cluster processes is GΣ[h] = G(
∫
h(ξ)f̄(ξ)λ̄(dξ))

• p.g.fl of Bernoulli process is GΣ[h] = (1− r+ r
∫
h(ξ)f̄(ξ)λ̄(dξ))

• p.g.fl of multi-Bernoulli process is GΣ[h] =
∏m
i=1

(
1− ri + ri

∫
h(ξ)f̄(ξ)λ̄(dξ)

)

3.2 RFS Model for Multi-target Tracking

In this section, the multi-target system model for tracking an unknown number of targets is presen-

ted in the RFS framework whose theoretical background was covered in the previous section. In

the multi-target system, the number of targets is unknown and varies with time due to the ap-

pearance and disappearance of the single targets in the surveillance area. Similarly the unknown

number of measurement also changes with time due to imperfect sensors and spurious measure-

ments not coming from targets. Furthermore, the origins of the measurements are unknown. The

multi-target tracking problem can be naturally modeled in a very flexible manner using random

finite sets. Modeling the target states and measurements at each time instant as RFSs captures the

unknown and varying number of targets and measurements; and the fact that the order of the target

states or measurement is irrelevant. The model of the multi-target tracking problem in RFS frame-

work can be found in many places from the more theoretical and mathematical oriented sources

[60, p219-256] to the more engineering oriented sources in [106],[92, Chapter 9,11-12]. The

specific application of the underlying RFS model for the multi-object dynamics and multi-object

measurements can be found in [96, 171].

This section is organized as follows. First, the underlying multi-target states will be modeled

to capture the randomness of general multi-target tracking problems in Subsection 3.2.1. This

underlying multi-target states are observed by the measurements which give information about the

targets. These measurements are modeled in Subsection 3.2.2. In this section, the single target

system model from Chapter 2.1 is used to build the multi-target model.

3.2.1 Multi-target Dynamical Model

In multi-target tracking (MTT), the single targets are usually assumed to move independently in

the region of interest and the number of targets changes over time due to the spontaneous birth,

death or spawning of the new targets from existing targets (e.g. rocket). This makes the problem

more challenging than the single target tracking problem. In the following subsections, some

common approaches to constructing the multi-target state model and its Markov transition density

are discussed. In practice the common single state space is usually the hybrid space is discussed

in the previous section. However the hybrid state space will not be used until Chapter 6.2.
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3.2.1.1 Multi-target State

Given a multi-target state Xt−1 = {x′1, . . . ,x′m} at time t− 1, each state x′ ∈ Xt−1 is assumed

to follow a Markov process in the following sense. The single target which is given in (2.1) either

continues to exist at time t ∈ T , t > 1 with probability pSt(x
′) and moves to the new state x

according to the probability density f̄t|t−1(x|x′) in (2.3) or dies with probability 1− pSt(x′) and

takes on the value ∅. Thus, given a single state x′ ∈ Xt−1 at time t− 1, its behavior at time t is

modeled by the Bernoulli RFS

St|t−1(x
′)

that is either {x} when the target survives or ∅ when the target dies.

Denote by βSt|t−1
(·|x′) the belief functional of an RFS St|t−1(x

′). Then for any closed subset

S of X and by Theorem 3.1, we have

βSt|t−1
(S|x′) = P(St|t−1(x

′) ⊆ S|x′) = pΣ(0) + pΣ(1)qΣ,1(S)

= 1− pSt(x′) + pSt(x
′)
∫
f̄t|t−1(x|x′)λ(dx) =

∫
S
fSt|t−1(Y |x

′)δY

where µs is the dominating measure of the form (3.8) on the Borel subsets of F(X ) where the

state space X is used in place of the hybrid spaceX as follows

µs(O) =
∞∑
n=0

λn
(
χ−1(O) ∩X n

)
n!Kn

x

(3.73)

for any Borel setO ⊆ F(X ). Note that Kx is the unit of volume on X Thus βΣ(S) is completely

described by the distribution of a target x′

fSt|t−1(St|t−1(x
′)|x′) =


1− pSt(x′), if St|t−1(x

′) = ∅;
KxpSt(x

′)f̄t|t−1(x|x′), if St|t−1(x
′) = {x}

0, otherwise.

(3.74)

The survival or death of all existing target from time t− 1 to time t is hence modeled by the RFS

St|t−1(Xt−1) =
⋃

x′∈Xt−1

St|t−1(x
′). (3.75)

Let Xt = St|t−1(Xt−1) = {x1, . . . ,xn} and |Xt−1| = m. Conditional on Xt−1, the RFSs on the

right hand side of (3.75) are assumed to be mutual independent. So by (3.43) in Definition 3.13,
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the belief functional βSt|t−1
of an RFS St|t−1(Xt−1) for the model (3.75) is for any S ⊆ X

βSt|t−1
(S|Xt−1) = P(St|t−1(Xt−1) ⊆ S)

=
∑⊎

x′∈Xt−1
St|t−1(x′)=Xt

∏
x′∈Xt−1

P(St|t−1(x
′) ∈ S)

=
∑⊎

x′∈Xt−1
St|t−1(x′)=Xt

∏
x′∈Xt−1

px′,St|t−1(x′)
(S).

where

px′,St|t−1(x′)
(S) =


1− pSt(x′), St|t−1(x

′) = ∅,
pSt(x

′)
∫
S f̄(x|x′)dx, |St|t−1(x

′)| = 1,
0, otherwise.

(3.76)

and by the product rule in (3.20) of Proposition 3.2., the global density πS,t|t−1(Xt|Xt−1) of the

RFS Xt By the product rule in (3.20) of Proposition 3.2 and

By (3.48) the global density πSt|t−1(Xt|Xt−1) of the RFS St|t−1(Xt−1) is

πSt|t−1(Xt|Xt−1) = K |Xt|x

δβSt|t−1

δXt
(∅|Xt−1). (3.77)

By the product rule in (3.20) and (3.19) of Proposition 3.2, (3.77) becomes

πSt|t−1(Xt|Xt−1) = K |Xt|x

∑(⊎|Xt−1|
i=1 ui

)
=Xt

ui=∅ or ui={x}⊆Xt

∏
x′

δpx′,ui
δui

(∅)

where
⊎

denotes the disjoint union and Kx is the unit of volume on space X . Note that |Xt| ≤
|Xt−1|. By the discussion in Section 3.1.4, πSt|t−1(Xt|Xt−1) is unitless and each

δβSt|t−1
δx (∅|x′),

x′ ∈ Xt−1,x ∈ Xt has unit of Kx. From equation (3.16), (3.17) and (3.76), we have

δpx′,ui
δui

(∅) =


px′,∅(∅) = 1− pSt(x′), if ui = ∅;
δpx′,ui
δx (∅) (a)

= pSt(x
′)f̄t|t−1(x|x′), if ui = {x};

0, if |ui| > 1.

where (a) holds by (3.31) and (3.30). To express the probability density πS,t|t−1(·|Xt−1) of the

RFS St|t−1(Xt−1) in a general form, we introduce the following notation.

Let T(U ,V ) denote the set of all one-to-one functions taking a finite set U to a finite set V .

The set of all 1-1 function T(U ,V ) = ∅ if |U | > |V | and we use the convention that the sum over

the empty set is zero. A one-to-one function α ∈ T(Xt,Xt−1) is used to associate the targets at

time t with the targets at time t− 1. Specifically, x′ = α(x) means that the target state x′ at time

t− 1 has evolved to the state x at time t (i.e. α(x) represents the previous state at time t− 1 of

the target state x). A target state x′ at time t− 1 not associated with any target state state at time
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t is dead. With this notation, it follows that the transitional probability density πSt|t−1(·|Xt−1) of

the RFS St|t−1(Xt−1) is

πSt|t−1(Xt|Xt−1) =K
|Xt|
x

∑
α∈T(Xt,Xt−1)

∏
x′∈Xt−1−α(Xt)

(1− pSt(x′))

×
∏
x∈Xt

pS,t(α(x))f̄t|t−1(x|α(x)) (3.78)

where Xt−1 −α(Xt) means set difference and the sum is
∏
x′∈Xt−1(1− pSt(x

′)) if Xt = ∅. The

form in (3.78) is originally used in [172, section 2.3.2, p. 33]

A new target at time t may result from either the spontaneous birth (independent of the surviv-

ing targets) which is modeled by an RFS of spontaneous births Γt or spawning from a target state

x′ at time t− 1 which is modeled by an RFS of spawning Bt|t−1(x
′). Thus the multi-target state

at time t is the union of the surviving targets, the spawned targets and the spontaneous births

Σt(Xt−1) = St|t−1(Xt−1) ∪Bt|t−1(Xt−1) ∪ Γt (3.79)

where Bt|t−1(Xt−1) =
⋃
x′∈Xt−1 Bt|t−1(x

′). (3.79) describes how the multi-target state may

change from Xt−1 at time step t− 1 to Σt(Xt−1) at time step t.

3.2.1.2 Markov Transition Density

Assuming the three RFSs on the right hand side of (3.79) are mutually independent conditional

on Xt−1, the RFS transition density in (3.79) can be described in the form of the multi-target

transition density ft|t−1(·|Xt−1) describing the probability of the multi-target state moving from

Xt−1 at time t− 1 to Σt(Xt−1) at time t. Assume that Xt = Σt(Xt−1). By (3.43) in Definition

3.13, the belief functional βΣt of an RFS Σt(Xt−1) for the model (3.79) is for any S ⊆ X

βΣt(S|Xt−1) =P(Σt(Xt−1) ⊆ S)

=P(St|t−1(Xt−1) ⊆ S)P(Bt|t−1(Xt−1) ⊆ S)P(Γt ⊆ S)

=βSt|t−1|Xt−1(S|Xt−1)βBt|t−1
(S|Xt−1)βΓt(S)
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where by (3.25), βBt|t−1
(·|Xt−1) is the belief functional of an RFS Bt|t−1(Xt−1); and βΓt as the

belief functional of the RFS Γt. Then by the product rule in (3.20), we have

ft|t−1(Xt|Xt−1) = K |Xt|x

δβΣt
δXt

(∅|Xt−1)

= K |Xt|x

∑⊎3
i=1 Ui=Xt

δβSt|t−1

δU1
(∅|Xt−1)

δβBt|t−1

δU2
(∅|Xt−1)

δβΓt
δU3

(∅)

=
∑⊎3

i=1 Ui=Xt

K |U1|
x

δβSt|t−1

δU1
(∅|Xt−1)K

|U2|
x

δβBt|t−1

δU2
(∅|Xt−1)K

|U3|
x

δβΓt
δU3

(∅)

=
∑⊎3

i=1 Ui=Xt

πSt|t−1(U1|Xt−1)πB,t|t−1(U2|Xt−1)πΓ,t(U3) (3.80)

where

• πSt|t−1(U1|Xt−1) is given in (3.78).

• πB,t|t−1(U2|Xt−1) = K
|U2|
x

δβBt|t−1

δU2
(∅|Xt−1) is the probability density of the RFS of

spawning target from Xt−1.

• πΓ,t(U3) = K
|U3|
x

δβΓt
δU1

(∅) is the spontaneous birth Γt.

Note that πB,t|t−1(·|Xt−1) and πΓ,t are unitless from the discussion in Section 3.1.4. Xt in (3.80)

also considers the new spontaneous birth and spawning target compared to only surviving targets

in Xt given in (3.78). (3.79) describes the time evolution of the multi-target state and incorporates

the model of target motion, spontaneous birth and spawning which are captured in the multi-target

transition density (3.80).

Assuming that Γt is a multi-target Poisson process (or Poisson RFS) with intensity function

γt(·) and that Bt|t−1(x
′) is a Poisson RFS with intensity function βt|t−1(·|x′) (see multi-target

Poisson process in Subsection 3.1.5.2), we have

πΓ,t(Xt) = K |Xt|x e−〈γt,1〉
∏
x∈Xt

γt(x),

πB,t|t−1(Xt|Xt−1) = K |Xt|x e
−
∑

x′∈Xt−1
〈βt|t−1(·|x′),1〉 ∏

x∈Xt

∑
x′∈Xt−1

βt|t−1(x|x′)

where 〈γt, 1〉 is the expected number of spontaneously generated new targets and 〈βt|t−1(·|x), 1〉
is the expected number of new targets spawned from the target state x.

Then the transition density ft|t−1(Xt|Xt−1) in (3.80) simplifies to

ft|t−1(Xt|Xt−1) =K
|Xt|
x

∑
W⊆Xt

∑
α∈T(W ,Xt−1)

e−µf (Xt−1)
∏

x̄∈Xt−W
b(x̄|Xt−1)×

∏
x′∈Xt−1−α(W )

(1− pSt(x′))
∏
x∈W

pSt(α(x))f̄t|t−1(x|α(x)) (3.81)
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where

µf (Xt−1) = 〈γt, 1〉+
∑

x′∈Xt−1

〈βt|t−1(·|x′), 1〉,

b(x|Xt−1) = γt(x) +
∑

x′∈Xt−1

βt|t−1(x|x′).

Here µf (Xt−1) is the expected number of new targets (spontaneous birth and spawning) and

b(·|Xt−1) is the intensity function of a new target state given Xt−1. Each W ⊂ Xt is the set of

surviving targets which is evolved from the previous state at time t− 1 and the second sum is

e−µf (Xt−1)
∏
x̄∈Xt

b(x̄|Xt−1)
∏

x′∈Xt−1

(1− pSt(x′)) if W = ∅.

3.2.2 Multi-target Measurement Model

In multi-target tracking, the dynamical system is a hidden system so the only known information

is the measurements. However, the measurements not only consist of target generated measure-

ments but also include clutter which are measurements generated by other objects which are not

the targets of interest. In addition, sensors may not observe the present targets due to sensor

imperfection. This subsection will construct the multi-target measurement model.

3.2.2.1 Multi-target Measurement

At time t, each single-target state x ∈ Xt, is either detected with probability pDt(x) and generates

an observation z with likelihood ḡt(z|x), or it is missed with probability 1− pDt(x). Thus, at

time t, each single-target state x ∈ Xt generates an RFS Dt(x) that can take either the value {z}
when the target is observed by a sensor or ∅ when the target is not detected. The detection and

generation of measurements for all targets at time t is hence given by the RFS

Dt(Xt) =
⋃
x∈Xt

Dt(x). (3.82)

Assuming that, conditional on the multi-target state Xt, the measurements at time index t are

independent of the states at all other time indices and that the RFSs on the right hand side of (3.82)

are mutually independent. The independence conditional on target states is a common assumption

in tracking algorithms. The probability density of the RFS Zt = Dt(Xt) is calculated similarly to

the RFS of the surviving targets which gives

πD,t(Zt|Xt) = K |Zt|z

∑
α∈T(Zt,Xt)

∏
x/∈α(Zt)

(1− pDt(x))
∏
z∈Zt

pDt(α(z))ḡt(z|α(z)) (3.83)
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where Kz is the unit of volume on Z and ḡt(z|α(z)) is given (2.4). The explanation of Kz is

similar to that of Kx in the previous section which shows that the density πD,t(Zt|Xt) is unitless.

If Zt = ∅ the sum is
∏
x∈Xt(1− pDt(x)).

Apart from target-originated measurements, the sensor also receives a set of false/spurious

measurements or clutter which is modeled by an RFS Λt. Consequently, at time t, the multi-target

measurement Zt is the union of target-generated measurements and clutter,

Zt = Dt(Xt) ∪Λt. (3.84)

3.2.2.2 Likelihood Function

Assuming that the two RFSs on the right hand side of (3.84) are mutually independent, the RFS

multi-target measurement can be expressed in the form of the multi-target likelihood gt|t−1(·|Xt).

Let πΛ,t(·|·) be the density of the RFS Λt, the multi-target likelihood function gt(Zt|Xt) is con-

structed similarly to the Markov transition density and is given by

gt(Zt|Xt) =
∑
W⊆Zt
|W |≤|Xt|

πD,t(W |Xt)πΛ,t(Zt −W |Xt) (3.85)

When Λt is a Poisson RFS with intensity κt, .

πΛ,t(Z) = e−〈κt,1〉K |Z|z

∏
z∈Z

κt(z),

the multi-target likelihood function gt(Zt|Xt) in (3.85) has the following form

gt(Zt|Xt) = K |Zt|z

∑
W⊆Zt

∑
α∈T(W ,Xt)

e−〈κt,1〉
∏

z′∈Zt−W
κt(z

′)
∏

x∈Xt−α(W )

(1− pDt(x))

∏
z∈W

pDt(α(z))ḡ(z|α(z)). (3.86)

where the second sum is e−〈κt,1〉
∏
z′∈Zt κt(z

′)
∏
x∈Xt(1− pDt(x)) if W = ∅. The formula in

(3.86) is originally used in [172, p.35]. The terms in the second sum have the following meanings:

the first two terms describe the clutter, the third term (the second product) expresses the missed

detections and the last product describe the target-generated measurements.

3.2.3 Multi-target Bayes Filter

Multi-target Bayesian filtering and multi-target estimation in RFS framework is presented in this

section. Applying the RFS framework to multi-target tracking was pioneered by Mahler [106] by

using random finite sets instead of random vectors. The objective of multi-target Bayes filter is

to jointly estimate the number of targets and their states. This filter which generalize the single-

target Bayes filter is the theoretical foundation for multi-target fusion, detection, tracking and
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identification [101, p.483-537]. This filter can be found in many sources such as [60,92,101,107]

upon which this section is based.

3.2.3.1 Multi-target Bayes Filter

This section presents the Multi-target Bayes filter for the multi-target system model described

in the previous subsections. Like the single-target Bayes filter, the multi-target Bayes filter also

consists of three steps: Initialization, Predictor and Update.

Initialization: The initial step reflect the knowledge of target states before receiving measure-

ments. However, if there is limited information about the target states, the multi-target Poisson

process in section 3.1.5.2 are used with a large mean/variance η and a very high-variance spatial

distribution f(x) e.g. uniform distribution

p0(X1) = K |X1|
x e−ηηn

∏
x∈X1

f(x). (3.87)

The density f(x) can be uniform distribution over some known region or the whole region if there

is no prior knowledge. Note that density f(x) has unit of K−1
x . Then the posterior distribution

p1(X1|Z1) is given by

p1(X1|Z1) =


g1(Z1|X1)p0(X1)∫

X g1(Z1|X1)p0(X1)µs(dX1)
, there exist measurements Z1;

p0(X1), otherwise.
(3.88)

where µs is the dominating measure given in (3.73) and g1(Z1|X1) is multi-target likelihood

function given in (3.86). Note that g1(Z1|X1) and p0(X1) are unitless.

Predictor: Given the history of measurements up to time t i.e Z1:t = (Z1, . . . ,Zt). The

predictor for multi-target Bayes filter is the analog of (2.15) with the set integral in (3.10)

pt+1|t(Xt+1|Z1:t) =
∫
X
ft+1|t(Xt+1|Xt)pt(Xt|Z1:t)µs(dXt) (3.89)

where ft+1|t(Xt+1|Xt) is given in (3.81) and is unitless. Then (3.89) is explicitly written as

follows

pt+1|t(Xt+1|Z1:t)

=
∞∑
n=0

K−nx
n!

∫
X
ft+1|t(Xt|{x1, . . . ,xn})pt({x1, . . . ,xn}|Z1:t)λ

n(dx1 . . . dxn)

=
∞∑
n=0

K−nx
n!

∫
ft+1|t(Xt|{x1, . . . ,xn})pt({x1, . . . ,xn}|Z1:t)λ(dx1) . . . λ(dxn) (3.90)

where λn is the nth product (unit) Lebesgue measure on X and defined in Section (3.1.2). Some

examples illustrating this formula can be found in [101, p.487-490].
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Update: The update for multi-target Bayes filter is the analog of (2.16)

pt+1(Xt+1|Z1:t+1) =
gt(Zt+1|Xt+1)pt+1|t(Xt+1|Z1:t)

p(Zt+1|Z1:t)
(3.91)

where pt+1|t(Xt+1|Z1:t) is given in (3.90) and the normalizing factor p(Zt+1|Z1:t) is

p(Zt+1|Z1:t) =
∫
X
gt(Zt+1|Xt+1)pt+1|t(Xt+1|Z1:t)µs(Xt+1).

Note that all the integrals are set integrals as defined in (3.10). Examples of this update are given

in [60, p.186-187] and [101, p.491-492].

The multi-target posterior distribution can be alternatively propagated via Bayes recursion as

follows. Given the initial distribution p0 and p1 is calculated in (3.88). Assume that that the

posterior distribution p1:t−1(X1:t|Z1:t−1) up to time t− 1 is calculated, the posterior distribution

p1:t(X1:t|Z1:t) at time t can be calculated using the Bayesian recursion

p1:t(X1:t|Z1:t) = p1:t−1(X1:t−1|Z1:t−1)
ft|t−1(Xt|Xt−1)gt(Zt|Xt)

p(Zt|Z1:t−1)
.

Denote f1|0(X1|X0) = p0(X1), the posterior distribution p1:T (X1:T |Z1:T ) can be written as

follows

p1:T (X1:T |Z1:T ) =

∏T
t=1 ft|t−1(Xt|Xt−1)gt(Zt|Xt)

p(Z1:T )
. (3.92)

3.2.3.2 Multi-target Bayes Estimation

Unlike the single-target Bayes estimation, multi-target state estimation poses unexpected diffi-

culties due to the set integral in the posterior distribution. Traditional estimation methods such

as EAP and MAP estimators described in Section 2.2.2 do not apply to the multi-target posterior

distribution (3.91). This was shown in [101, Section 14.5.1.p.494-497]. Hence Mahler introduced

two new Bayes-optimal multi-target state estimators [101, p.494-505]. These estimators are the

marginal multitarget (MaM) estimator and the joint multitarget (JoM) estimators.

Failure of Traditional Estimators: Let pt(Xt|Z1:t) denote the posterior distribution at time

t. The set integral for EAP estimator is written

X̂EAP (Z1:t) =
∫
Xtpt(Xt|Z1:t)µs(dXt) (3.93)

The right hand side of the equation is not defined since Xt is a set and the integral of set is not

defined.

The MAP estimator is ambiguous as shown next. We consider the example 78 in [101, p.494-

495] where the targets move in one dimensional interval [0, 2], the probability of the target being

present or absent is equally 0.5 and the distance is measured in meters, the multi-target posterior
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distribution is

pt(Xt|Z1:t) =


.5, if Xt = ∅;
.25, if Xt = {x} and 0 ≤ x ≤ 2;

0, otherwise.

(3.94)

The MAP estimator is given by

X̂MAP (Z1:t) = argmax
Xt

pt(Xt|Z1:t). (3.95)

Therefore X̂MAP (Z1:t) = ∅ because pt(∅|Z1:t) = 0.5 is maximum value. However, when we

change the unit of measurements from meter to kilometer the multitarget posterior distribution

pt(Xt|Z1:t) is

pt(Xt|Z1:t) =


.5, if Xt = ∅;
250, if Xt = {x} and 0 ≤ x ≤ 0.002;

0, otherwise.

(3.96)

Note that pt(Xt|Z1:t) is unitless because we multiply the traditional multi-target state and tradi-

tional multi-target measurement with m|Xt| in (3.81) and (3.86). Therefore, when we change the

unit of measurements, the value of posterior distribution also changes. In this case X̂MAP (Z1:t) =

{x} where x ∈ [0, 0.002].

Marginal Multi-target (MaM) Estimator: The MaM estimator consists of two steps:

• The first step is the computation of the MAP estimate of the target number

n̂ = arg sup
n
p(n|Z1:t)

where p(n|Z1:t) = 1
n!
∫
Xn pt({x1, . . . ,xn}|Z1:t)K−nx λ(dx1) . . . λ(dxn) from (3.49)and

pt(·|·) is given (3.91)

• The second step is computation of a MAP estimate of the states of the individual target

given that n = n̂

X̂MaM (Z1:t) = arg sup
x1,...,xn

pt({x1, . . . ,xn}|Z1:t)

The MaM estimator is Bayes-optimal with respect to the risk function defined in [60, 192-194] but

it is unknown whether it is statistically consistent [101, p.497-500] (See examples in [101, Section

14.5.3, p.501-503]).

Joint Multi-target (JoM) Estimator: The JoM estimator is defined as

X̂JoM (Z1:t) = arg sup
Xt

pt(Xt|Z1:t)
c|Xt|

|Xt|!
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where c is a fixed dimensionless constant. Note that c in [101, Section 14.5.2, p.498] is a fixed

constant having the same units of measurement as the single target state x. The difference between

c in this thesis and the one given in [101, Section 14.5.2, p.498] is due to the fact that the posterior

distribution pt(Xt|Z1:t) in this thesis is unitless. The JoM also can be estimated in two steps

1. First, determine the MAP estimate for each n ≥ 0

X̂n(Z1:t) = arg sup
x1,...,xn

pt({x1, . . . ,xn}|Z1:t)

2. Then

X̂JoM (Z1:t) = X̂n̂(Z1:t) where n̂ = arg sup
n
pt(X̂n(Z1:t)|Z1:t)

cn

n!
.

The JoM is Bayes optimal and will converge to the true solution provided that there is enough

data [101, p. 498]. The value c determines the accuracy of the target state estimate and the rate of

convergence. A smaller value of c gives a more accurate target state estimate but a slower rate of

convergence [101, Section 14.5.3, p. 498-500].

3.2.4 Multi-target Moment Densities

The multi-target moment density is defined as follows [60, 169] and [104, p.8]

Definition 3.14 (Multi-target Moment Densities): For any finite set X ∈ F(X ), the multi mo-

ment density is

Dt(X|Z1:t) =
∫
K−|X|x pt(X ∪W |Z1:t)µs(dW )

=
∞∑
n=0

∫
K−|X|+nx pt(X ∪ {x1, . . . ,xn}|Z1:t)λ(dx1) . . . λ(dxn)

where µs is given in (3.73) and pt(Xt|Z1:t) given in (3.91).

Notice that Dt(∅|Z1:t) = 1 because

Dt(∅|Z1:t) =
∫
pt(W |Z1:t)µs(dW ) = 1. (3.97)

If |X| = n then Dt(X|Z1:t) is called nth multi-target moment density. Note that pt(X ∩
W |Z1:t)µs(dW ) is unitless because µs is a unitless measure and pt(X ∩W ) is unitless density

by (3.81) so Dt(X|Z1:t) has K−|X|x units. In [104, p.8], author claims that "for any multi-target

state X = {x1, . . . ,xn}, Dt({x1, . . . ,xn}|Z1:t) is the marginal-posterior likelihood, that is, no

matter many targets may be in the multi-target system, exactly n of them have states x1, . . . ,xn".

When X = {x}, Dt(x|Z1:t) = Dt({x}|Z1:t) and it is called the first-order multi-target moment

density, probability hypothesis density (PHD).
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3.3 Conclusion

RFS framework has been presented for general space such as a hybrid space which is the product

of the state space and a discrete space. The background of RFS and some operations involving

RFS such as set integration and set derivative have been introduced. The construction of global

densities using two different approaches was presented. The first one used conventional probability

and the second approach employed the belief functional. A comparison between the two global

densities showed that they were related by the derivative of belief functional at empty set (i.e.

∅). Some common probability distributions of RFS were also introduced. The global densities

were applied to the multi-target tracking problem in order to formulate the transition densities and

likelihood functions. Due to RFS framework, the multi-target Bayes filter was derived and then

the multi-target Bayes estimation was derived to accommodate the RFS framework. Finally, the

multi-target moment densities were presented.



Chapter 4

Particle Markov Chain Monte Carlo
(PMCMC) Methods

M arkov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) methods are the

two main methods for sampling from complicated probability distributions such as the

multi-target posterior distribution in (3.91) or (3.92). MCMC and SMC rely on the use of other

distributions to explore the state space of interest and if these distributions are poorly chosen

or if highly correlated variables of interest are updated independently, the performance of these

methods is unreliable. This leads to the derivation of the Particle Markov Chain Monte Carlo

(PMCMC) [4] which combines these two methods by taking the advantages of their respective

strengths.

Section 4.1 introduces Markov Chain Monte Carlo methods such as the Metropolis-Hastings

(MH) algorithm and Gibbs sampler which are used to construct a Markov chain (MC) that con-

verges to the target distribution. Section 4.2 summarizes some PMCMC methods such as the

Particle Independent Metropolis-Hastings (PIMH) algorithm, the Particle Marginal Metropolis-

Hastings (PMMH) algorithm and the Particle Gibbs algorithm which can be thought of as a natural

approximation to the standard MCMC method. They use SMC approach to design efficient high

dimensional proposal distributions for MCMC.

4.1 Markov Chain Monte Carlo

Suppose we want to draw samples {Xn}Nn=1 from a distribution π(X|Z). In most cases, it is

difficult to sample independently from this distribution because the normalizing constant p(Z) =∫
X π(X,Z)dX is general unknown and complicated except in a few cases where the state spaceX

is linear Gaussian and hidden finite. In our scope, we only consider the space of X is countable1

so the MCMC which is introduced here is to limit to the countable state space. MCMC method is

an algorithm which allows to draw samples from π(θ|Z) which are slightly dependent by using a

Markov chain. This section will review general MCMC methods based on [150, p.206-214], [58]

and [151].

1A state space S is countable if S is discrete, with a finite or countable number of elements, and with S the σ-field
of all subsets of S.

55
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MCMC approaches are so-named because they rely on constructing a Markov chain (MC)

which has the desired target distribution π as its equilibrium distribution. In MCMC, an MC is

constructed from transition kernel K(·, ·) defined on X ×B(X ) such that K(x, ·) is a probability

measure and K(·,A) is measurable for all A ∈ σ(X ) where σ(X ) is a σ−algebra of X ⊆ Rd

[150]. When X is discrete, the transition kernel simply is a transition matrix2 with elements

P(Xn = z|Xn−1 = x).

In the continuous case, the kernel also denotes the conditional density K(x,x′) of the transition

K(x, ·), that is

P(X ∈ A|x) =
∫
A

K(x,x′)dx′

The following section will describe a Markov chain and its properties.

4.1.1 Markov chains

The purpose of this section is to briefly provide the foundations of a Markov chain (MC) and its

properties which are used in MCMC. For further details, the reader is referred to the books which

the material in this section are mainly based on [19, 63, 64, 110, 152, 153, 156, 157]. Classification

of MC states and their properties are introduced. the MC describes how states evolve over time.

In this section we will classify the states and describes their properties. The long term behavior of

an MC is characterized by the stationary or equilibrium distribution which is of major importance.

Background material for this section is given in Appendix A and Appendix A.4. We start this

section by the definition of a Markov chain.

Let (X0,X1, . . .) be a sequence of measurable random variables on a space S equipped with

σ−algebra. A MC is defined as follows

Definition 4.1: A sequence X = (X0,X1, . . .),X0,X1, . . . ∈ S is called a (discrete-time) Markov
chain if it satisfies the Markov condition:

P(Xn|X0,X1, . . . ,Xn−1) = P(Xn|Xn−1), ∀n ≥ 1, ∀X0, . . . ,Xn ∈ S. (4.1)

Markov chains X = (X0,X1, . . .) on a countable state space3 S are explored in the remaining

of this section.

4.1.1.1 Initial distribution and Transition Matrix

Denote by Ω =
∏∞
n=0 Sn the sample space on which the Markov chain X lives where Sn is a

copy of S. Ω is equipped with the σ-algebra F =
⋃∞
n=1 Sn where Sn is a copy of S [110, p.53].

2A transition matrix is a matrix used to describe the transitions of a Markov chain.
3See in Appendix A.4.
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Chains are determined by the probability space (Ω,F ,P) and by the different initial distributions.

Let υ be an initial distribution on S, pυ is the probability distribution with initial distribution υ as

on F and is constructed as follows for any A ∈ F

pυ(X ∈ A) =
∑
i∈S

υ(i)P(X ∈ A|X0 = i)

where

P(X ∈ A|X0 = i) =
∑
i∈S

pi(X ∈ A), (4.2)

pi(X ∈ A) is the probability distribution on F which is obtained when the initial distribution is

the Dirac measure4 δi at i. From the definition 4.1 of the MC, the MC on the countable state space

with initial distribution ν can be defined as follows.

Definition 4.2 (Countable State Space MC): A sequence X = (X0,X1,X2, . . .) taking values

on the probability space (Ω,F ,P) is a MC if for every n, any initial distribution υ of a chain (i.e.

X0 is distributed from υ) and any sequence of state {i0, i1, . . . in}, then

pυ(X0 = i0,X1 = i1, . . . Xn = in) = υ(i0)
n∏
t=1
P(Xt = it|Xt−1 = it−1). (4.3)

In general the transition probability that the MC visits state j from state i after one time step

i.e. P(X1 = j|X0 = i) and that the chain visits state j at the (n + 1)th step from state i at

the nth step, i.e. P(Xn+1 = j|Xn = i) are not necessary the same. In order to eliminate

this complication of a general MC, the MC here is restricted to the homogeneous case where the

transition probabilities only depend on the value of the states in S but not on the time step n.

Definition 4.3: The chain is called homogeneous if

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i) for all n ≥ 1; i, j ∈ S.

From equation (4.2) and the homogenous property of a MC, equation (4.3) can be written as

pυ(X0 = i0,X1 = i1, . . . Xn = in) = υ(i0)
n∏
t=1
P(X1 = it|X0 = it−1). (4.4)

The transition matrix P = (pij) is the |S| × |S| matrix where transition probabilities are pij =

P(X1 = j|X0 = i). When a MC is homogeneous, from (4.3) and formula of conditional probab-

ility, the conditional probabilities of the process X can be induced as follows

pυ(Xn+1 = j|Xn = i,Xn−1 = ln−1, . . . ,X0 = l0) = P(Xn+1 = j|Xn = i). (4.5)

4See definition in Appendix A.1.
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The transition matrix P describes the evolution of X one time step ahead. Similarly the nth

step transition matrix describes the evolution of X n step ahead and is defined in the following

definition.

Definition 4.4: The nth step transition matrix Pn = {pij(n) : i, j ∈ S} is the matrix of n-step

transition probabilities pij(n) = P(Xn = j|X0 = i).

Pn can be expressed using the Chapman-Kolmogorov equation as given in the next theorem.

Theorem 4.1: For any i, j ∈ S,

pij(n) =
∑
k∈S

pik(m)pkj(n−m), 0 ≤ m ≤ n. (4.6)

Therefore, Pn = PmPn−m the nth power of P. (4.6) is called the Chapman-Kolmogorov.

Let µ(n)i = P(Xn = i) be the mass function of Xn, and let µ(n) for the row vector with

entries (µ(n)i : i ∈ S),n ≥ 0. The relationship between the mass functions at different time steps

is shown in the next lemma.

Lemma 4.1:µ(n) = µ(0)Pn and hence µ(m+n) = µ(m)Pn.

4.1.1.2 Stopping times and strong Markov property

The evolution of MCs will be explored in this subsection. It describes the strong Markov property

that is used for evaluating conditional probabilities given certain ’random times’, called stopping
times. We start with some fundamental material on stopping times.

Definition 4.5: A random variables T : Ω → N is a stopping time for a MC X (with respect to a

filtration5 Fn,n = 1, 2, . . .) if for any initial distribution υ the event {ω ∈ Ω : T(ω) = n} ∈ Fn.

The natural filtration Fn,n = 0, 1, . . . is the σ−algebra generated by (X0, . . . ,Xn) and a

stopping time has the property that it can be determined at time n if T(ω) = n.

Important examples of stopping times are hitting times. Define the hitting time of a subset

A ⊂ S by T = min{n ≥ 1 : Xn ∈ A}.

Theorem 4.2 (Strong Markov property): Suppose that T is a finite-valued stopping time for a

MC X on S. Then, for any i ∈ S and i1, i2, . . . , j1, . . . , jm ∈ S and m ≥ 1,

P(XT+1 = j1, . . . ,XT+m = jm|X0 = i0, . . . ,XT−1 = iT−1,XT = i)

= P(X1 = j1, . . . ,Xm = jm|X0 = i). (4.7)

Remark: The strong Markov property in (4.7) is stated m steps to the future, but it also holds

for the entire future of the chain. For any i ∈ S and B ⊂ S∞,

P{(XT+1,XT+2,. . .)∈ B|X0, . . .,XT−1,XT= i}=P{(X1,X2, . . .) ∈ B|X0= i}. (4.8)

5See filtration in Appendix A.1.



4.1 Markov Chain Monte Carlo 59

Another equivalent statement is that, for any bounded function f : S∞ → R+,

E(f(XT+1,XT+2,. . .)|X0, . . .,XT−1,XT= i}=E(f(X1,X2, . . .)|X0= i). (4.9)

Loosely speaking, the strong Markov property means that a MC regenerates or starts anew at the

stopping time.

4.1.1.3 Classification of states

Definition 4.6 (Recurrent and Transient state): A state i is called recurrent if

P(Xn = i for some n ≥ 1|X0 = i) = 1

which is to say that the probability of eventual return to i, having started from i, is 1. If this

probability is strictly less than 1, the state is called transient (see Figure 4.1).

i1 i2 i3 i4 i5 i6

1/3

2/3

1/2

1 1/5

1/2
3/5

1/5

1
1

Figure 4.1: States i4, i5 and i6 are transient whereas states i1, i2 and i3 are recurrent.

As a result of Definition 4.6, a recurrent state will be revisited several times and a transient

state may be revisited several times. One also interested in the probability of the state i ever being

visited.

Let fij(n) = P(Xl 6= j, 0 ≤ l < n,Xn = j|X0 = i) be the probability that the first visit
to the state j occurs the nth time stepstarts from state i at time 0. Define fij =

∑∞
n=1 fij(n)

to be the probability that the chain ever visits to the state j, starting from state i. The state j is

recurrent if fjj = 1.

We interest in the average time the state i is visited. Let Tj = min{n ≥ 1 : Xn = j} be the

time the chain first visit state j, with the convention that Tj = ∞ if the chain never visits state j.
Tj is the hitting time (example of stopping time).

Definition 4.7: The mean recurrence time µi of a state i is defined as

µi = E(Ti|X0 = i) =

{ ∑
n nfii(n), if i is recurrent,;

∞, if i is transient.

Definition 4.8: A recurrent state i is called null if µi =∞ and positive (or non-null) if µi <∞.

The return times of a state of a MC which plays important role for the convergence of a MC is

described next
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Definition 4.9: Let d(i) = gcd{n : pii(n) > 0} be the greatest common divisor of the times at

which a return to state i is possible. State i is called periodic with period d(i) if d(i) > 1 and

aperiodic if d(i) = 1.

Definition 4.10: A state i is called ergodic if it is positive recurrent and aperiodic.

The properties of a state of the MC is summarized in Figure 4.2 Apart from the property of the

state i

Recurrent Transient

Null recurrent Positive recurrent Aperiodic

Ergodic

fii = 1 fii < 1, pii(n)
n→∞−−−→ 0

pii(n)
n→∞−−−→ 0 pii(n)

n→∞−−−→ c, 0 < c ≤ 1

Figure 4.2: Classification of a state of a MC in term of pii(n).

states of MC, the correlation between the states also plays crucial part to the convergence of the

MC. Thus, this relationship is described in the next section.

4.1.1.4 Classification of chains

This section presents the relationship between states of a Markov chain (MC) using the material

of the previous subsections.

Definition 4.11: A state i is said to communicate with state j, written i→ j, if the chain may ever

visit state j with positive probability, having started from i. That is, i→ j if pij(m) > 0 for some

m ≥ 0. A state i and j are said to intercommunicate if i→ j and j → i, in which case we write

i↔ j. For completeness, define pij(0) =
{

1, if i = j;

0, if i 6= j.

It follows that if i 6= j, then i→ j if and only if fij > 0. In Figure 4.2, state i6 communicates

with state ij , j = 1, . . . , 5; state i5 communicates with state ij , j = 1, . . . , 3 and intercommunic-

ates with state i4; and state ij , j = 1, . . . , 3 intercommunicates with each other.

The intercommunication property results in the connection between transient, recurrent states

which is represented next.

Theorem 4.3: If i↔ j then:
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1. i and j have the same period,

2. i is transient if and only if j is transient,

3. i is null recurrent if and only if j is null recurrent.

i1 i2 i3 i4 i5

1/3

2/3

1/2

1
1/4

1/4
4/5

1/5

1

Figure 4.3: All states of a MC are intercommunicate. State i is recurrent so by theorem 4.3, all
states are recurrent

TC
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Figure 4.4: The state of the MC in Figure 4.2 are grouped in two sets: a set of recurrent states C
and a set of transient sates T .

Definition 4.12: A set C of states is called:

1. closed if pij = 0 for all i ∈ C, j /∈ C,
2. irreducible if i↔ j for all i, j ∈ C

By this definition, set C in Figure 4.4 is closed. Once a chain takes a value in a closed set

C then it never leaves C subsequently. A closed set containing exactly one state is called an

absorbing state, then this state is absorbing. The equivalence class ↔ is obviously irreducible.

An irreducible set C is said to be aperiodic (or recurrent, null recurrent, positive recurrent, and so

on) if all states in C have this property.

Theorem 4.4 (Decomposition theorem): The state space S can be partitioned uniquely as

S = T ∪C1 ∪C2 ∪ . . .
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where T is the set of transient states, and the Ci are irreducible closed sets of recurrent states.

The transient matrix has the form (if S = T ∪ C1 ∪ C2 ∪ · · · ∪ Cn)

P =



P1 0 0 · · · 0
0 P2 0 · · · 0
...

...
...

...
...

0 0 · · · Pn 0
Q1 Q2 · · · Qn Q


(4.10)

where Pk = {pij : i, j ∈ Ck}, Qk = {pij : i ∈ T , j ∈ Ck}, Q = {pij : i, j ∈ T}, k ∈
{1, 2, · · · n}.

This theorem is illustrated in Figures 4.5. The example in Figure 4.5 has the transition matrix

T :trasient setC1:irreducible closed set C2:irreducible closed set

0
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Figure 4.5: Set of states of a Markov chain is categorized into transient set and irreducible sets

4.10 where n = 2, and the probabilities are P1 = {pij : i, j ∈ {0, 1, 2, 3}}, P2 = {pij : i, j ∈
{6, 7, 8, 9}}, Q1 = {pij : i ∈ {4, 5}, j ∈ {0, 1, 2, 3}}, Q2 = {pij : i ∈ {4, 5}, j ∈ {6, 7, 8, 9}},
and Q = {pij : i, j ∈ {4, 5}}.

The classification of MCs ends this section with few more important and popular terms.

• Two states that intercommunicate each other are said to be in the same class.

• The MC is irreducible if there is only one class - that is, all states intercommunicate each

other by Definition 4.12. In this case, by theorems 4.4 and 4.3 all states of the chain are

either positive recurrent, null recurrent or transient; and its states have the same period

• The MC is called ergodic if it is irreducible and its states have positive recurrent and aperi-

odic.

When the state space is finite, the following theorem and lemma are useful in practice [157, The-

orem 2,p.581]

Theorem 4.5: If a finite MC is irreducible and aperiodic then it is positive recurrent.

Theorem 4.6: If an irreducible MC is aperiodic and positive recurrent then it is ergodic.
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4.1.1.5 Stationary distribution and the limit theorem

A MC X is more interesting in the long term running than in the short term. The MC may behave

randomly in general, but under some condition, the MC converges into some distribution. The

distributions in which the MC converges are called stationary distributions. This section will

discuss stationary distribution and the limit theorem.

Stationary distribution

Definition 4.13: A Markov chain with transition matrix P has a stationary distribution π if

π = πP. (4.11)

If X0 has distribution π, then from Lemma 4.1 Xn has distribution π for all n.

Theorem 4.7: Suppose a MC on a state space S with transition matrix P satisfies lim
n→∞

pij(n) =

πj ≥ 0, ∀ i, j ∈ S. If
∑
j πj = 1, then π = (π1,π2, . . .) is the unique stationary distribution.

The following theorem shows that under some condition a MC eventually visits its particular

state.

Theorem 4.8: For any aperiodic state j of a MC, pjj(n)
n→∞−−−→ µ−1

j . Furthermore, if i is any

other state then pij(n)
n→∞−−−→ fij

µj
.

The stationary distribution is an important property of a MC, the following theorem shows

under which condition the MC has stationary distribution. and if it has stationary distribution,

what its stationary distribution is.

Theorem 4.9: All states of an irreducible aperiodic chain C have the same period and belong to

one of the following for all i, j ∈ C:

(i) Either the states are all transient or all null recurrent. In this case pij(n)
n→∞−−−→ 0 and

there exists no stationary distribution

(ii) Or else, all states are positive recurrent, that is, pij(n)
n→∞−−−→ 1

µj
> 0. In this case

{ 1
µj

: µj > 0, j ∈ C}

{ 1
µj

: µj = lim
n→∞

pij(n) > 0, j ∈ C} (4.12)

is a unique stationary distribution where µj is the mean recurrence time of state j.

The proof can be found in [153, p.175-177].

This theorem leads to the following criteria for ergodicity that is very important and useful for

applications.

Corollary 4.1: An irreducible aperiodic Markov chain C is ergodic if and only if it has a station-

ary distribution given in (4.12).
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Limiting Distribution
In this subsection, the relationship between the limiting distribution, i.e. pij(n) as n → ∞

and the existence of a stationary distribution is further explored.

Theorem 4.10: Let C be an irreducible aperiodic MC, pij(n)
n→∞−−−→ µ−1

j for all i, j ∈ C.

Theorem 4.11 (Limit distribution): A MC has a limit distribution if and only if the set S of its

states has exactly one aperiodic positive recurrent class C such that fij = 1, ∀ j ∈ C and i ∈ S.

Theorem 4.12: For an irreducible, aperiodic MC, the following statements are equivalent.

1. The chain is ergodic.

2. The chain has a stationary distribution.

3. The chain has a limiting distribution.

When these statements hold, the limiting distribution and the stationary distribution are the same,

and they are positive.

4.1.1.6 Reversibility

Let X = {Xn : 0 ≤ n ≤ N} be an irreducible positive recurrent MC with transition matrix P
and stationary distribution π. Suppose that Xn has distribution π for every n. Define the ’reverse

chain’ Y = {Yn : Yn = XN−n, 0 ≤ n ≤ N}. Y is a MC by the following theorem.

Theorem 4.13: The sequence Y is a Markov chain with P(Yn = j|Yn = i) =
πj
πi
pji.

The chain Y = {Yn : 0 ≤ n ≤ N} is called the time-reversal of the chain X.

Definition 4.14: Let X = {Xn : 0 ≤ n ≤ N} be an irreducible MC such that Xn has the

stationary distribution π for all n. The chain is called reversible if the transition matrices of X
and its time-reversal are the same, that is

πipij = πjpji for all i, j. (4.13)

The equations (4.13) is called the detail balance equations and is pivotal to the study of revers-

ible chains. An irreducible MC having a stationary distribution π is called reversible in equilib-

rium if its transition matrix P = {pij , for all i, j} is in detailed balance with π

Theorem 4.14: Let P be the transition matrix of an irreducible MC X and suppose that there

exists a distribution π such that πipij = πjpji for all i, j ∈ S. Then π is a stationary distribution

of the chain. Furthermore, X is reversible in equilibrium.

4.1.1.7 Limit Theorem via coupling

Theorem 4.15: Suppose X and Y are independent, irreducible, aperiodic recurrent MCs on S

with arbitrary initial distributions, but with the same transition probabilities. Then

sup
i
[P(Xn = i)−P(Yn = i)]

n→∞−−−→ 0.
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Theorem 4.16 (Limiting distributions): If X is an ergodic MC with stationary distribution π

then

sup
i
[P(Xn = i)− πi]

n→∞−−−→ 0.

Hence π = (πi : i ∈ S) is the limiting distribution of X.

MC is summarized in the Figure 4.6
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In order to construct a MC which converges to the target distribution π, the following proper-

ties must be satisfied

1. The MC satisfies a the detailed balance condition given in Definition 4.13

2. The MC is ergodic.

An irreducible aperiodic MC can be constructed by first defining the starting distribution υ, and

then constructing the transition matrix P given in Definition 4.4 such that the MC finally will

reach the target distribution π as the stationary distribution. By Theorem 4.1, it can be written as

π = υ0 lim
n→∞

Pn.

At each iteration n, xn is sampled from the distribution υ0Pn for n = 0, 1, . . .. The time a MC

starts from initial distribution υ until it reaches the stationary distributions π is called the burn-in

time.

Strictly speaking, it may never reach the stationary distribution exactly with a finite number

of steps and the burn-in period is then the period before it is sufficiently close to the stationary

distribution. Hence if the initial is close the stationary distribution, the MC converges quickly

to the stationary distribution. The two most general and very popular MCMC methods such as

Metropolis-Hastings algorithm and Gibbs sampler are designed to construct an ergodic MC which

converge to the stationary distribution π.

4.1.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm [149] is a Markov Chain Monte Carlo method for ob-

taining a sequence of random samples from a probability distribution from which direct sampling

is difficult. The MH algorithm can draw samples from any distribution π̃. This distribution is

only known up to a proportionality constant. In Bayesian applications, the normalization factor is

often computationally intractable, so the ability to generate a sample without knowing this con-

stant of proportionality is a major virtue of the algorithm. The algorithm uses a proposal density

q(·|x),x ∈ X to generate a MC. The MH algorithm associated with target density π and the

proposal distribution q produces the MC x(n) ∈ X , n = 0, 1, . . . given in Algorithm 2.

Algorithm 2 : Metropolis-Hastings (MH) Algorithm
At iteration n = 0: initialize arbitrarily x(0)
At iteration n = 1, . . . ,N :

• Sample y ∼ q(·|x(n− 1))
• Compute the acceptance rate

α(x(n− 1, y)) = min
{

1, π̃(y)

π̃(x(n− 1))
q(x(n− 1)|y)
q(y|x(n− 1))

}
(4.14)

• If α(x(n − 1), y) ≥ u where u is sampled from the uniform distribution on [0, 1], set
x(n) = y otherwise set x(n) = x(n− 1).
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Algorithm 2 only depends on the ratios

π̃(y)

π̃(x(n− 1)) , q(x(n− 1)|y)
q(y|x(n− 1))

and it is therefore independent of normalizing constants. Thus q(·|x(n− 1)) is assumed to be

known up to a constant that is independent of x(n − 1). The MC starts with x(0) such that

π̃(x(0)) > 0. As a convention, α(y,x(n− 1)) is 0 if both π̃(x(n− 1)) = 0 and π̃(y) = 0. Ac-

cording to [149], the MC generated from MH Algorithm 2 converges to its stationary distribution

π if the followings hold

• supp(π) ⊂
⋃
x∈supp(π) supp(q(·|x)),

• π is bounded and positive on every compact set of its support,

• there exists positive numbers ε and δ such that

q(y|x) > ε if |x− y| < δ

This rationale behind this is that the proposal distribution q(y|x) allows moves in a neigh-

borhood of x with diameter δ.

Assume that N0 is the burn-in time of the MC generated by Algorithm 2, the distribution π can be

approximated as follows

π(x) ≈
N∑

n=N0+1
δ(x(n)− x)

4.1.3 Gibbs Sampler

Gibbs Sampler is a special case of Metropolis-Hastings sampling wherein the random value is

always accepted (i.e. α(x(i− 1), y) = 1 where α(x(i− 1), y) is given in (4.14)). This sampling

is used to update each components of a state x(n) = X = (X1, . . . ,Xd) ∈ Rd where Xi is the i

component of X . Denote the full conditional distribution by

π(Xi|Xj , j 6= i) =
π({Xj , j 6= i},Xi)∫
π({Xj , j 6= i},Xi)dXi

which is the distribution of the ith component of X conditional on the other components. The

Gibbs sampler is

Algorithm 3 : Gibbs Algorithm
At iteration n = 0: initialize arbitrarily x(0)
At iteration n > 0: for i = 1, . . . , d, where x(n) = (x1, . . . ,xd) ∈ X ⊆ Rd

• sample xi(n) ∼ π(·|x1:i−1(n),xi+1:d(n− 1))

The Gibbs sampling is useful whenever the conditional distribution of each variable is feasible

to sample while the joint distribution is unknown or difficult to sample from. If joint distribution of
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all variables and the conditional distribution of any variable are difficult to sample from, the Gibbs

sampling can be replaced by the MH algorithm. Similar to the MH algorithm, if N0 is the burn-in

time of the MC generated by Algorithm 3, the distribution π can be approximated as follows

π(x) ≈
N∑

n=N0+1
δ(x(n)− x)

4.2 Particle Markov Chain Monte Carlo methods

Particle Markov Chain Monte Carlo (PMCMC) methods are algorithms which uses the particles

sampling from SMC also known as particle filter described in Chapter 2.3.3 as proposal distri-

bution for MCMC [4]. PMCMC methods actually explore the strengths of SMC and MCMC

approaches by combining these algorithms to sample from a high dimension probability distri-

bution that cannot be satisfactorily sampled using either SMC or MCMC on its own. In this

section, we will present three PMCMC methods, the Particle Independent Metropolis Hastings

Sampler (PIMH), the Particle Marginal Metropolis Hastings (PMMH) sampler and the Particle

Gibbs Sampler.

Consider the scenario where we are interested in sampling from the posterior distribution

p(θ,X1:t,Z1:t), t = 1, . . . ,T where X1:t = (X1, . . . ,Xt), Z1:t = (Z1, . . . ,Zt) and the random

variables Xt ∈ X ⊆ Rd follows the Markov process with initial density X1 ∼ p0(X1) and

transition density f(·|Xt−1, θ), i.e.

Xt ∼ f(·|Xt−1, θ)

for some static parameter θ ∈ Θ which may be multidimensional. Xt is observed indirectly by the

measurement Zt with the likelihood function g(Zt|Xt, θ) i.e.

Zt ∼ g(·|Xt, θ).

Given the history of measurements Z1:t = (Z1, . . . ,Zt), the aim is to perform Bayesian inference.

When θ is a known parameter, Bayesian inference relies on the posterior distribution

p(X1:t|Z1:t, θ) ∝ p(X1:t,Z1:t|θ) =
t∏
i=1

f(Xi|Xi−1, θ)g(Zi|Xi, θ) (4.15)

where f(X1|X0, θ) = p0(X1, θ). If θ is unknown, the prior density p(θ) is ascribed to θ. Then

Bayesian inference relies on the posterior distribution

p(X1:t, θ|Z1:t) ∝ p(X1:t,Z1:t|θ)p(θ) =
t∏
i=1

f(Xt|Xt−1, θ)g(Zt|Xt, θ)p(θ) (4.16)

When the system is non-linear or non-Gaussian, p(X1:t, θ|Z1:t) and p(X1:t|Z1:t, θ) do not admit

closed form expression. This makes the inference difficult in practice. PMCMC methods are
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approximations which provide flexible frameworks to carry out the inference. PMCMC refers

to MCMC algorithm target the distribution p(X1:t, θ|Z1:t) or p(X1:t|Z1:t, θ) which relies on the

output of an SMC algorithm targeting p(X1:t|Z1:t, θ), using N � 1 particles as a proposal dis-

tribution for a Metropolis Hastings (MH) update. Targeting the p(X1:t, θ|Z1:t) or p(X1:t|Z1:t, θ),
PMCMC algorithms are in fact ’exact approximations’ to the standard MCMC algorithms in the

sense that for any fixed number N � 1 of particles their transition kernels leave the target density

invariant. The next subsection will present the construction of the SMC targeting the distribution

p(X1:t|Z1:t, θ).

4.2.1 Sequential Monte Carlo Algorithm

The general sequential Monte Carlo (SMC) Algorithm can be found in Chapter 2.3.3. In this

section, we will presents SMC with a particular proposal distribution to draw samples which are

used for the MH update in a MCMC algorithm. In sequential Monte Carlo algorithms, for any

given θ ∈ Θ the posterior densities {p(X1:t|Z1:t, θ), t ≥ 1} are sequentially approximated by the

weighted samples {Xn
1:t,Wn

t }Nn=1

p̂(X1:t|Z1:t, θ) ≈
N∑
n=1

Wn
t δ(X

n
1:t −X1:t).

Specifically, these methods first approximate p(X1|Z1, θ) using a proposal density q(X1|Z1, θ)
to generate N particles Xn

1 and use the discrepancy between these two densities q(Xn
1 |Z1, θ)

and p(Xn
1 |Z1, θ) as the normalizing weight Wn

1 . To produce N ′ ≤ N particles approximately

distributed from p(X1|Z1, θ),N ′ samples are drawn from the importance sampling approximation

p̂(X1|Z1, θ) of p(X1|Z1, θ). For notational simplicity, we denote pθ(A|B) = p(A|B, θ). At time

t > 1,

pθ(X1:t|Z1:t) ∝ pθ(X1:t,Z1:t) = pθ(X1:t−1|Z1:t−1)fθ(Xt|Xt−1)gθ(Zt|Xt). (4.17)

This identity allows the use of samples {Xn
1:t−1,wnt−1(X

n
1:t−1)}Nn=1 obtained from the previous

time step as a source of samples approximately distributed by pθ(X1:t−1|Z1:t−1) and extends each

such particles through the proposal density qθ(Xt|Zt,Xt−1) to generate the samples distributed

approximately by pθ(X1:t−1|Z1:t−1)fθ(Xt|Xt−1)gθ(Zt|Xt). This means the proposal density is

chosen as

qθ(X1:t|Z1:t) = pθ(X1:t−1,Z1:t−1)qθ(Xt|Xt−1,Zt).

Our aim is to perform Bayesian inference, conditional upon some observation Z1:T for some

T ≥ 1, based on the posterior density pθ(X1:T |Z1:T ) ∝ pθ(X1:T ,Z1:T ). From (4.15), we have

pθ(X1:T ,Z1:T ) = pθ(X1)
T∏
t=2

fθ(Xt|Xt−1)
T∏
t=1

gθ(Zt|Xt). (4.18)
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If θ ∈ Θ is unknown, one ascribes a prior density p(θ) to θ and Bayesian reference is based on the

joint density pθ(X1:T ,Z1:T ) = p(X1:T ,Z1:T |θ) We use the notation Wt := (W 1
t , . . . ,WN

t ) for

the normalized importance weights at time t and P(·|Wt) for the discrete probability distribution

on the set {1, . . . ,N}. That is P(n|Wt) = Wn
t where the parameter Wt with Wn

t ≥ 0,n ∈
{1, . . . ,N} and

∑N
n=1W

n
t = 1.

Denote At = (A1
t , . . . ,ANt ) where the variable Ant−1 represent the index of the ’parent’ at

time t− 1 of particle Xn
1:t for t ∈ T \{1}. The children particles at time t choose their parent

particles at time t−1 according to the distribution r(At−1|Wt−1) =
∏N
n=1 P(Ant−1|Wt−1) using

the standard multinomial resampling procedure. The introduction of these variables is useful for

finding the genealogy of the particles and is necessary for the description of the Particle Gibbs

sampler later in Section 4.2.4.

Therefore a pseudo code of the SMC algorithm is provided below (see [4]) to obtain samples

from pθ(X1:T |Z1:T ) with initial time t0.

Algorithm 4 : SMC Algorithm
Input: θ, Z1:T and number of samples N , initial time t0. In general t0 = 1
Output: {Xn

1:t,wnt (Xn
1:t),Wn

t ,An1:t−1}Nn=1
At time t = t0: for n = 1, . . . ,N ,

- sample Xn
t0 ∼ qθ(·|Zt0),

- compute and normalize the weights

wt0(X
n
t0) : =

pθ(X
n
t0 ,Zt0)

qθ(Xn
t0 |Zt0)

, (4.19)

Wn
t0 : =

wt0(X
n
t0)

N∑
m=1

wt0(X
m
t0 )

, (4.20)

- assign W1 := (W 1
1 , . . . ,WN

1 ).

At time t = t0 + 1, . . . ,T : for n = 1, . . . ,N ,

− sample Ant−1 ∼ P(·|Wt−1)

− sample Xn
t ∼ qθ(·|Zt,X

Ant−1
t−1 ), set Xn

1:t = (X
Ant−1
1:t−1,Xn

t ),

− compute and normalize the weights

wt(X
n
1:t) :=

pθ(X
n
1:t,Z1:t)

pθ(X
Ant−1
t−1 ,Z1:t−1)qθ(Xn

t |Zt,X
Ant−1
t−1 )

=
fθ(X

n
t |X

Ant−1
t−1 )gθ(Zt|Xn

t )

qθ(Xn
t |Zt,X

Ant−1
t−1 )

, (4.21)

Wn
t :=

wt(Xn
1:t)

N∑
m=1

wt(X
m
1:t)

,

− assign Wt := (W 1
t , . . . ,WN

t ).
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In this description, for n = 1, . . . ,N and t ∈ T we introduce Bn
t the index of the ancestor

particle of Xn
t at generation t. More formally for n = 1, . . . ,N we define Bn

T = n and for

t ∈ T \{T} we have the following backward recursion relation Bn
t := A

Bnt+1
t . As a result for

any n = 1, . . . ,N we have Xn
1:T = (X

Bn1
1 ,XBn2

2 , . . . ,XBnT−1
T−1 ,XBnT

T ) with the ancestral lineage

Bn
1:T = (Bn

1 ,Bn
2 , . . . ,Bn

T = n). Let Omt =
∑N
n=1 I(A

n
t = m) be the number of offsprings of

the particle m at time t and s(·|Wt) the corresponding distribution of O = (O1
t , . . . ,ONt ).

Once sample particles are collected, an approximation of the target distribution pθ(X1:T |Z1:T )

is given by

p̂θ(X1:T |Z1:T ) =
N∑
n=1

Wn
T δ(X1:T −Xn

1:T ) (4.22)

Furthermore this SMC algorithm provides us with an estimate of the marginal likelihood of

pθ(Z1:T ) given by

p̂θ(Z1:T ) := p̂θ(Z1)
T∏
t=2

p̂θ(Zt|Z1:t−1) (4.23)

where an estimate p̂θ(Zt|Z1:t−1)6 of pθ(Zt|Z1:t−1) is

p̂θ(Zt|Z1:t−1) =
1
N

N∑
n=1

wt(X
n
t−1:t). (4.24)

with convention that p̂θ(Z1|Z0) = p̂θ(Z1) and pθ(Z1|Z0) = pθ(Z1).

The Algorithm 4, (4.22) and (4.24) will be used in Sections 4.2.2-4.2.4.

In order to derive conditions for the proposal distribution qθ(Xt|X1:t−1)pθ(X1:t−1|Z1:t−1) to

approximate pθ(X1:t|Z1:t) , we define, for t = 1, . . . ,T [4]

Sθ = {X1:t ∈ X t : pθ(X1:t|Z1:t) > 0}, (4.25)

Qθ = {X1:t ∈ X t : qθ(Xt|X1:t−1,Zt)pθ(X1:t−1|Z1:t−1) > 0} (4.26)

with the convention pθ(X1:0|Z1:0) := 1 and qθ(X1|X1:0,Z1) = qθ(X1|Z1). Note that Sθ andQθ

are indeed the supports of pθ(X1:t|Z1:t) and the proposal distribution

qθ(Xt|X1:t−1,Zt)pθ(X1:t−1|Z1:t−1)

respectively. The proposal distribution or importance distribution are used interchangeably through-

out the thesis

The following standard minimal assumptions is sufficient to establish the convergence of PM-

CMC algorithms

(AP1) For any θ we have Sθ ⊆ Qθ for t = 1, . . . ,T .

6See the proof in Appendix B.
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(AP2) For n = 1, . . . ,N and t = 1, . . . ,T the re-sampling scheme satisfies

E[Omt |Wt] = NWm
t , (4.27)

and r(Amt = n|Wt) = Wn
t . (4.28)

Assumption (AP1) shows that sampling from importance density

qθ(Xt|X1:t−1,Zt)pθ(X1:t−1|Z1:t−1)

will cover the support of pθ(X1:t|Z1:t). Assumption (AP2) is related to the re-sampling scheme.

The unbiased condition in (4.27) ensures that Algorithm 4 will propagate the most promising

particles and approximates consistently the distribution {pθ(X1:t|Z1:t), t = 1, . . . ,T} and the

normalizing constant {pθ(Z1:t), t = 1, . . . ,T}. The condition in (4.28) is not usually satisfied

in practice, for computational efficiency, O is often constructed first according to distribution

s(·|Wt) such that (4.27) holds (i.e. without explicit reference to At). Please see [4] for more

details on the construction of O.

(AP3) There exists a sequence of constants {ct : t = 1, . . . ,T} such that for any X1:t ∈ X̃ t,

w(X1:t) ≤ ct (4.29)

(AP4) There exists a probability υ(·) on X and 0 < wm,wM , εm, εM <∞ such that for any

t = 1, . . . ,T and any X1:t ∈ X t,

wm ≤ wn(X1:t) ≤ wM and

εmυ(Xt) ≤ qθ(Xt|X1:t−1,Zt) ≤ εMυ(Xt) (4.30)

As discussed in [4], assumption (AP3) aids rapid convergence of SMC and assumption (AP4)

mitigates the propagation of errors. The impact of these assumptions on the performance of a

particular PMCMC algorithms will be addressed below.

4.2.2 Particle Independent Metropolis Hastings Sampler

Assume that θ is known. In the standard independent Metropolis-Hastings (IMH) algorithm, the

acceptance rate can be written as follows

α = min
{

1, pθ(X
∗
1:T |Z1:T )

pθ(X1:T |Z1:T )

qθ(X1:T |Z1:T )

qθ(X∗1:T |Z1:T )

}
(4.31)

The optimal choice for proposal distribution qθ(X1:T |Z1:T ) is pθ(X1:T |Z1:T ) but in may applic-

ations this choice is impossible. The Particle Independent Metropolis Hastings Sampler (PIMH)

explores the idea of using SMC approximation of pθ(X1:T |Z1:T ) as a proposal distribution for

MH update and is described in Algorithm 5.
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Algorithm 5 : Particle Independent Metropolis-Hastings Sampler
Input: Z1:T , number of samples L and initial time t0. In general t0 = 1.
Output: X1:T (l)
At iteration l = 0:

- Run a SMC algorithm targeting pθ(X1:T |Z1:T ), sample X1:T (0) ∼ p̂θ(·|Z1:T ) and denote
by p̂(0)θ (Z1:T ) the marginal likelihood estimate.

At iteration l = 1, . . . ,L:
- Run a SMC algorithm targeting pθ(X1:T |Z1:T ), sample X∗1:T ∼ p̂θ(·|Z1:T ), and

α = min

1, p̂θ(Z1:T )

p̂
(l−1)
θ (Z1:T )

 . (4.32)

- If α ≥ u where u is sampled from uniform distribution on [0, 1], set X1:T (l) = X∗1:T ,
p̂
(l)
θ (Z1:T ) = p̂θ(Z1:T ) otherwise X1:T (l) = X1:T (l− 1), p̂(l)θ (Z1:T ) = p̂

(l−1)
θ (Z1:T )

Using the following extremely simple form with p̂θ(Z1:T ) as in (4.23), the acceptance rate
p̂∗θ(Z1:T )

p̂
(l−1)
θ

(Z1:T )
is shown to lead to the target distribution pθ(X1:T |Z1:T ) as the stationary distribution

[4] and under weak assumption (AP2) theorem 2 in [4, p.292] showed that the PIMH sampler is

ergodic.

When θ is unknown, the PMMH is presented in the following section to deal with this situ-

ation.

4.2.3 Particle Marginal Metropolis-Hastings (PMMH) Sampler

When θ is unknown and is part of the estimation problem, which in a Bayesian setting relies on

the joint posterior density

p(θ,X1:T |Z1:T ) ∝ pθ(X1:T ,Z1:T )p(θ). (4.33)

The Particle Marginal Metropolis-Hastings (PMMH) algorithm offers the possibility of designing

a good algorithm when θ and X1:T are highly correlated [4]. Assume that sampling from the

conditional density pθ(X1:T |Z1:T ) for any θ ∈ Θ is feasible and

p(θ,X1:T |Z1:T ) = p(θ|Z1:T )pθ(X1:T |Z1:T ).

Thus the proposal density qm(θ∗,X∗1:T |θ,X1:T ) from (X1:T , θ) to (X∗1:T , θ∗) for an Metropolis-

Hastings (MH) update is suggested naturally in the following form

qm(θ
∗,X∗1:T |θ,X1:T ,Z1:T ) = q(θ∗|θ)pθ∗(X∗1:T |Z1:T ). (4.34)

This form shows that X∗1:T is sampled based on the proposed θ∗ and we only need to sample θ∗

from q(θ∗|θ). This proposal distribution allows us to sample θ∗ on the smaller space Θ (for which
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the proposal distribution is easier to design) instead of sampling θ∗,X∗1:T on the product space

Θ×X T .

From (4.34), the MH acceptance ratio is given by

p(θ∗,X∗1:T |Z1:T )qm(θ,X1:T |θ∗,X∗1:T ,Z1:T )

p(θ,X1:T |Z1:T )qm(θ∗,X∗1:T |θ,X1:T ,Z1:T )

=
pθ∗(Z1:T )q(θ|θ∗)p(θ∗)
pθ(Z1:T )q(θ∗|θ)p(θ)

. (4.35)

PMMH is proposed naturally whenever samples from pθ(X1:T |Z1:T ) and the expression for the

marginal likelihood pθ(Z1:T ) are needed [4, pp.295] by using p̂θ(X1:T |Z1:T ) and p̂θ(Z1:T ) in

place of p(X1:T |Z1:T , θ) and pθ(Z1:T ) respectively in the MMH update on the right hand side of

(4.35). The PMMH sampler is given in algorithm 6 for l = 1, . . . ,L. The following assumption

Algorithm 6 : Particle Marginal Metropolis-Hastings Sampler
Input: Z1:T , number of samples L and initial time t0. In general t0 = 1.
Output: {X1:T (l), θ(l)}Ll=1
At iteration l = 0:

- Set θ(0) arbitrarily,
- run a SMC algorithm targeting pθ(0)(X1:T |Z1:T ), sample X1:T (0) ∼ p̂θ(0)(·|Z1:T ) and

denote by p̂θ(0)(Z1:T ) the marginal likelihood estimate.
At iteration l = 1, . . . ,L:

- Sample θ∗ ∼ q(·|θ(l− 1)),
- run a SMC algorithm targeting pθ∗(X1:T |Z1:T ), denote by p̂θ∗(Z1:T ) the marginal likeli-

hood estimate, and
- calculate the acceptance rate

α = min
{

1, p̂θ∗(Z1:T )p(θ∗)q(θ(l− 1)|θ∗)
p̂θ(l−1)(Z1:T )p(θ(l− 1))q(θ∗|θ(l− 1))

}
. (4.36)

If α ≥ u where u is sampled from uniform distribution on [0, 1], set X1:T (l) ∼
p̂θ∗(·|Z1:T ), θ(l) = θ∗, and p̂θ(l)(Z1:T ) = p̂θ∗(Z1:T ) otherwise X1:T (l) = X1:T (l −
1), θ(l) = θ(l− 1) and p̂θ(l)(Z1:T ) = p̂θ(l−1)(Z1:T ).

are needed to guarantee the convergence of PMMH [4]

(AP5) The MH sampler of density pθ(Z1:T )p(θ) and proposal density q(θ∗|θ) is irreducible

and aperiodic (and hence converges for pθ(·|Z1:T ) almost all starting points).

The assumptions (AP1), (AP2) and (AP5) ensure that the sequence {(θ(l),X1:T (l))} generated

by the PMMH sampler will have p(θ,X1:T |Z1:T ) as its limiting distribution (see [4, Theorem 4]).

4.2.4 Modified Particle Gibbs Sampler

An alternative to the MMH algorithm to sample from p(θ,X1:T |Z1:T ) consists of using the Gibbs

sampler which samples iteratively from p(θ|X1:T ,Z1:T ) and pθ(X1:T |Z1:T ). If the potential te-

dious design of a proposal density for θ can be bypassed by sampling from p(θ|X1:T ,Z1:T ),
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Particle Gibbs sampler is an option. Moveover sampling from pθ(X1:T |Z1:T ) is typically im-

possible so the possibility of using a particle approximation to this sampler is suggested. To re-

place samples from an SMC approximation p̂θ(X1:T |Z1:T ) by samples from pθ(X1:T |Z1:T ) does

not admit pθ(X1:T |Z1:T ) as stationary distribution since the prespecified path sample X1:T used

as the condition for sampling θ is ignorable. In order to assure that approximation p̂θ(X1:T |Z1:T )

admits pθ(X1:T |Z1:T ) as a stationary distribution, the special type of PMCMC update is proposed

and is called Conditional SMC algorithm. This algorithm is similar to SMC but the prespecified

path X1:T with its ancestral lineage B1:T is ensured to survive all the resampling steps.

4.2.4.1 Conditional SMC Algorithm

At each time step t, this algorithm generatesN −1 particles in the standard way with the remaining

particles ascribed to a given particle and guaranteed to survive in the re-sampling step. Given a

particle Xn∗
1:T , we denote Bn∗

1:T its ancestral lineage. The conditional SMC algorithm proceeds as

follows.

Algorithm 7 : Conditional SMC algorithm
Input: Z1:T ; number of samples N ; initial time t0; and X∗1:T and its ancestral lineage Bn∗

1:T . In
general t0 = 1
Output: Xn

1:t,wnt (Xn
1:t),Wn

t ,An1:t−1 for n = 1, . . . ,N , n 6= Bn∗
t for t = 1, . . . ,T

At time t = t0:
• For n 6= Bn∗

t , sample Xn
t ∼ qθt(·|Zt)

• Compute wt(Xn
t ) using (4.19) and normalize the weights Wn

t ∝ wt(Xn
t ).

At time t = t0 + 1, . . . ,T
• For n 6= Bn∗

t , sample Ant−1 ∼ F(·|Wt−1).

• For n 6= Bn∗
t , sample Xn

t ∼ qθ(·|Zt,X
Ant−1
t−1 )

• compute wt(Xn
1:t) using Eq.(4.21) and normalize the weights Wn

t ∝ wt(Xn
1:t)

Intuitively, this SMC algorithm is understood as updating N − 1 particles while keeping one

particle fixed together with its weight. Another advantage of the Conditional SMC algorithm is

that updating the sub-blocks Xa:b one-at-a time is possible. For any c, d : 1 ≤ c < d ≤ T , a

rejection-free-way to update this sub-block proceeds in Algorithm 8

Algorithm 8 : Sub-block Update using Conditional SMC algorithm

• Sample an ancestral lineage Bc:d uniformly in {1, . . . ,N}d−c+1

• Run a conditional SMC algorithm targeting pθ(Xc:d|X1:c−1,Xd+1:T ,Z) conditional on

Xc:d and Bc:d
• Sample Xc:d ∼ p̂θ(Xc:d|X1:c−1,Xd+1:T ,Z)

Thus the following Particle Gibbs Sampler algorithm which always accept a new sample is

presented as follows



4.3 Conclusion 77

Algorithm 9 : Particle Gibbs Algorithm
Input: Z1:T , number of samples L and initial time t0. In general t0 = 1.
Output: {X1:T (l), θ(l)}Ll=1.
At iteration l = 0: sample θ(0),X1:T (0),B1:T (0) arbitrarily
At iteration l = 1, . . . ,L

- Sample θ(l) ∼ p(θ|X1:T (l− 1),Z1:T );
- run a Conditional SMC algorithm targeting pθ(l)(X1:T |Z1:T ) conditional on X1:T (l − 1)

and its ancestral lineage B1:T (l− 1); and
- sample X1:T (l) ∼ p̂θ(l)(·|Z1:T ) and hence B1:T (l) is also implicitly sampled

(AP6) The Gibbs sampler that defined by the conditionals p(θ|X1:T ,Z1:T ) and pθ(X1:T |Z1:T )

is irreducible and aperiodic (and hence converges for p(θ,X1:T |z1:T ) almost all starting

point).

The theorem 5 in [4] shows that this algorithm admits p(θ,X1:T |Z1:T ) as stationary distribution

and is ergodic under mild assumptions (AP1), (AP2), (AP5) and (AP6).

4.3 Conclusion

PMCMC methods have been presented and can be thought of as natural approximations to MCMC

when they can not be implemented in the original form. These methods combine the strengths of

SMC and MCMC. This combination is useful for sampling from high dimensional and/or com-

plicated probability distributions that cannot be satisfactorily sampled using either SMC method

or MCMC method on its own. PMCMC methods uses the particles from SMC algorithm as the

proposal distribution for MCMC method. Different approaches to sample from complicated target

distributions by suggesting different proposal distributions have been described leading to different

PMCMC methods. The PIMH sampler was first described, and it samples from p(X1:T |Z1:T , θ)
where θ is known. This approach uses a very simple form for MH update by using the SMC ap-

proximation of marginal distribution pθ(Z1:T ). When θ is unknown, PMMH sampler and Particle

Gibbs sampler were described to deal with distributions p(θ,X1:T |Z1:T ) with highly correlated

parameter X1:T and θ.





Chapter 5

Literature Review in Target Tracking

ASurvey of technical papers in the area of target tracking is presented. Section 5.1 covers the

development of conventional target tracking techniques which have been around for the last

five decades. The last decades have witnessed development of new target tracking methods which

are based on random finite set (RFS) theory, and they are discussed in Section 5.2.

5.1 Conventional Target Tracking Techniques

In this section, a survey of conventional target tracking techniques is presented [7, 8, 10, 14,

17]. These conventional techniques apply data association methods along with the single-target

Bayesian filtering to solve the target tracking problem. There are two kinds of target tracking

problems, single-target tracking and multiple target tracking problems. The single-target tracking

problem requires less effort to find the solution because there is at most only one target in the re-

gion of interest. Especially, when there is no clutter, the traditional Bayesian filtering described in

Chapter 2.3.1 is employed to estimate the target states from the available measurements collected

from sensors. When the motion of a target is governed by a linear system, the Kalman filter (KF),

which was first proposed by Kalman [81] in 1960, can be applied to estimate the target states.

If the linear system is Gaussian, the KF is an optimal Bayesian filter [3]. When the target mo-

tion is governed by a non-linear system, the Extended Kalman filter [3], Unscented Kalman filter

[79,80] or particle filter [5,20,46,61] can be employed. In the case where there are measurements

which do not come from the target of interest or the target may generate many measurements, the

single target tracking problem is called single target tracking in clutter and more difficult because

the origin of the measurements is unknown. Each measurement may be either a target-generated

measurement or a false alarm. Hence the single-target Bayesian filtering is not directly applicable

and many studies [8, 10, 11, 14, 17] are devoted to the particular problem where a target generates

at most one measurement. The conventional solutions [8] such as nearest neighbourhood stand-

ard filter (NNSF) and the probability data association filter (PDA) have addressed this problem

by cleverly combining the data association problem with conventional Bayesian filtering and are

described in Subsection 5.1.1. For the multi-target tracking problem, much more effort is required

in order to solve the problem, and it is discussed in Subsection 5.1.2.

79
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5.1.1 Single-target Tracking in Clutter

This section addresses the data association for single target tracking in a cluttered environment

with random distributed clutter. The model of the dynamic system is assumed known and the

target motion is assumed to follow the hidden Markov system model given in (2.17) in Chapter

2.3. The target state is observed indirectly through the system given in (2.18). Although the linear

system model is used here, the techniques to be discussed can be also used for the nonlinear system

models by carrying out linearization as in the EKF filter. The simplest approach for tracking

a target in clutter is known as the nearest-neighbor standard filter (NNSF) and is described in

Subsection 5.1.1.2. Another approach is known as Probability Data Association filter (PDAF)

and is described in Subsection 5.1.1.3. Both techniques require the definition of a validation gate

described in 5.1.1.1. The objective of a validation gate is to limit the region where a target may

generate a measurement. The measurements outside this validation gate are unlikely to originate

from the target because they are too far from the expected measurement.

The following notations are used throughout this section. Let η be the expected number of

false alarms per unit per volume, and let V be the hypervolume of the surveillance region. Thus

ηV is the expected number of false measurements in the surveillance region. The number of

false measurements (the measurements not having originated from any targets) follows a Poisson

process with parameter ηV

πΛ,t(n) = e−ηV
(ηV )n

n!
,n = 0, 1, . . .

The locations of false measurements are modeled as independently and identical distributed

(i.d.d.) random variables with uniform probability density function V −1.

5.1.1.1 Validation of Measurement

In this section which is based on [8] we introduce the validation gate. Assume the linear model

(2.17) and (2.18) for the target motion and the target generated measurements. In a clutter en-

vironment, the sensors also observe false measurements which are not coming from the targets

of interest such as thermal noise, terrain reflections, clouds etc. Assume that the predicted target

state at time t is given by x̂t|t−1 in (2.19). Then the predicted measurement is Htx̂t|t−1 and the

associated measurement covariance St is given in (2.25). The target-generated measurements at

time t conditional on the history of measurement Z1:t−1 is normally distributed

p(zt|Z1:t−1) = N (zt;Htx̂t|t−1,St). (5.1)

It is impractical to consider all measurements available when updating the state estimate because

of the cluttered environment. In order to only consider the measurements zt at time t which has

a high probability (given in (5.1)) of being generated from a target with predicted state x̂t|t−1, a
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validation gate (region) is defined as follows

V t(γ) = {z ∈ Zt : [z −Htx̂t|t−1]
TrS−1

t [z −Htx̂t|t−1] ≤ γ} (5.2)

where γ is a parameter obtained from the chi-square distribution (see [8, Appendix C, p. 315-

319]) and Zt is the set of measurements at time t. The volume of the validation gate V t(γ) is

given by

Vt = cnzγ
nz/2|St|1/2 (5.3)

where |St| is the determinant of St and nz is the dimension of the measurement vector. The

parameter γ is chosen such that the probability

PG = P({z ∈ V t(γ)}) (5.4)

that the true target-generated measurement falls in the validation gate is sufficiently high. The

target may not be detected and hence no target-generated measurement may exist in the validation

gate. This uncertainty is captured in the detection probability

pDt = P({ The true measurement is detected}). (5.5)

The set of validated measurements at time t which may be originated from target states xt is

denoted by

Zγt = V t(γ) = {z1, . . . , z|V t(γ)|} (5.6)

where |V t(γ)| is the number of elements in V t(γ). The set of all validated measurements up to

time t is denoted by

Zγ1:t = (Zγ1 , . . . ,Zγt ). (5.7)

Assigning each measurement with the appropriate target is the crux of the data association

technique which is discussed in the next sections.

5.1.1.2 Nearest-Neighbour Standard Filter

The nearest neighbor standard filter (NNSF) in [8] is the simplest technique for solving the single-

target tracking in clutter by selecting the measurement in the validated measurement closest to

the predicted measurement and using it as the target-generated measurement. The technique is

summarized as follows.

At time t, the validated measurement nearest to the predicted measurement is chosen

ẑt = min
z∈V t(γ)

[z −Htx̂t|t−1]
TrS−1

t [z −Htx̂t|t−1].
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where V t(γ) is given (5.2). Then ẑt is used for updating the state of the target in the same manner

as in the Kalman filter.

The problems with this approach is that the closest measurement to the predicted target state

may not originate from the target being tracked, and error covariance matrix calculated in the filter

equations does not account for the possibility of processing an incorrect measurement. When

false measurements occur frequently, NNSF performs poorly because of its high probability of

track loss. The PDAF was first proposed in [11] to overcome this limitation of NNSF and is

described in the next section.

5.1.1.3 Probability Data Association Filter

The PDAF method considers all measurements in the validation region at current time for update

when updating the state estimate. It is a suboptimal Bayesian algorithm and is summarized as

follows.

Assume that at time t− 1 the mean and covariance of the posterior distribution is x̂t−1 and

Pt−1. Then PDAF uses the predicted mean x̂t|t−1, predicted covariance Pt|t−1 and Kalman gain

Wt in Kalman filter given in (2.19), (2.20) and (2.24) respectively to predict the state estimate at

time t as follows.

Define by θt,i the event that the measurement zi ∈ Zγt is target-generated and θt,0 the event

that none of the measurement in the set of validated measurement is target-generated.

Let βt,i, i = 1, . . . , |Zγt | and βt,0 be the corresponding probabilities of θt,i and θt,0 respectively

where |Zγt | is the number of measurements in Zγt . Then

βt,i = P(θt,i|Zγ1:t) =
N (zi;Htx̂t|t−1,St)

ξ
1−pDtPG

PG
+
∑
z∈Zγ

t
N (z;Htx̂t|t−1,St)

(5.8)

βt,0 = P(θt,0|Zγ1:t) =
ξ

1−pDtPG
PG

ξ
1−pDtPG

PG
+
∑
z∈Zγ

t
N (z;Htx̂t|t−1,St)

(5.9)

where pDt is given in (5.5), PG is given in (5.4), and ξ =
|Zγ
t |
Vt

with Vt given in (5.3). It follows

that

βt,0 +
∑
zi∈Zγ

t

βt,i = 1.

Then the updated state at time t is

x̂t = E[xt|Zγ1:t] = E[xt|θt,0,Zγ1:t]P(θt,0|Z
γ
1:t) +

∑
zi∈Zγ

t

E[xt|θt,i,Zγ1:t]P(θt,i|Z
γ
1:t). (5.10)

E[xt|θt,i,Zγ1:t] is the expectation of the updated target state at time t given that zi is the target

generated measurements and E[xt|θt,0,Zγ1:t] is the expectation of the predicted target state (=
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updated target state when there is no measurement). These expectations are given by the KF

E[xt|θt,0,Zγ1:t] = x̂t|t−1, E[xt|θt,i,Zγ1:t] = x̂t|t−1 +Wtνt(zi), i = 1, . . . , |Zγt |

where νt(z) = z −Htx̂t|t−1. Therefore, x̂t in (5.10) can be written as follows

x̂t = x̂t|t−1βt,0 +
∑
zi∈Zt

(x̂t|t−1 +Wtνt(zi))βt,z

= x̂t|t−1 +Wt

∑
zi∈Zt

βt,iνt(zi). (5.11)

The covariance associated with the updated target state estimate is [8, Eq. (6.27), p. 165]

Pt = E
[
[xt − x̂t][xt − x̂t]Tr|Zγ1:t

]
= βt,0Pt|t−1 + (1− βt,0)P̂t + P̃t (5.12)

where

P̂t = [I −WtHt]Pt|t−1

P̃t = Wt

 ∑
zi∈Zγ

t

βt,iνt(zi)(νt(zi))
Tr −

∑
zi∈Zγ

t

βt,iνt(zi)
∑
zi∈Zγ

t

βt,i(νt(zi))
Tr

W Tr
t .

Note that
(∑

zi∈Zγ
t
βt,iνt(zi)

)Tr
=
∑
zi∈Zγ

t
βt,i(νt(zi))Tr. PDA neither accounts for the ini-

tiation of the track on false sensor returns nor for the termination of the target track [36]. An

improvement of PDAF is introduced in [120–122, 142, 154] or combination of nearest neighbours

and PDA filter is proposed in [2,35]. Multiple models used with PDA to track the single maneuv-

ering target in clutter [1, 73].

5.1.2 Multiple Target Tracking (MTT) Techniques

In the multi-target tracking (MTT) problem, the model of the dynamic system is assumed known

and the target motions are assumed to follow a hidden Markov system model i.e. each target is

considered to follow the single target system model given in (2.17) in Chapter 2.3. Each target is

assumed to move independently and generates a measurement which may be observed by sensors.

The targets may be not detected by the sensors. These measurements generated by targets are as

before called target-generated measurements and are modeled in (2.18) in Chapter 2.3. The sensors

may detect false measurements which are not generated by any targets. The false measurements

are usually assumed to follow Poisson distribution as fir the single target tracking problem.

The multi-target tracking (MTT) problem is significantly more complicated than the single-

target tracking problem even in the case where there is no clutter i.e. the sensor do not receive

any false measurements. The added complexity comes from the uncertainty of the origins of the

measurements which need to be used for the update step. Similarly to the single target case,

many conventional techniques address this problem by employing general data association meth-
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ods [8, 15, 17] and traditional Bayesian filtering to track multiple targets. For example, the global

nearest neighbor filter (GNNF) [8, 14, 17] is a simple approach because it only considers the most

likely data association at current time by minimizing the total summed distance function which

is the sum of distances between the measurements and the predicted measurements or by max-

imizing the total summed likelihood. The KF is then employed to update tracks using this data

association. The GNNF reduces to the NNSF filter for the single target problem and hence the

GNNF also suffers from the same drawback as NNSF. Some researchers have attempted to alle-

viate this limitation by using data from consecutive scans to defer difficult association decisions

[14, 47, 161]. The Joint probability data association filter (JPDAF) was proposed as an improve-

ment to the GNN filter restricted to problems with known and fixed number of targets [8,17]. This

technique is the extension of PDAF to MTT problem and it is used in many tracking applications

with imaging sensors see [17] and the reference herein. The JPDAF [8, p.222-228] requires much

more computation than PDAF because the association between measurements and multiple targets

is more complex and a measurement could have originated from more than one target. The JPDA

is presented next.

5.1.2.1 Joint Probability Data Association Filter

This section present briefly the extension of PDA given in Section 5.1.1.3 to the Joint Probability

Data Association (JPDA). The JPDA filter propagates individual states the same way as done in

the PDA filter except for the computation of the joint probabilities. The probability of a data

association event between measurement and target is marginalized out from the joint probability.

Assume that there are a fixed number K of targets to be tracked. The dynamic system model

and measurement model for each target are given in (2.17) and (2.18) respectively.

The JPDA filter does not consider different validation regions for each target. The entire sur-

veillance region is the validation region for any target when deriving the joint probability. How-

ever, the validation region for each target are used for the selection of "feasible joint events".

Denote by Zt the set of measurements at time t. For k = 1, . . . ,K and i ∈ {1, . . . , |Zt|}, let

θkt,i = (k, i) denote the event that the measurement zi ∈ Zt has been generated from target k at

time t. Moreover, let θkt,0 = (k, 0) denote the event that the target k was undetected at time t, and

θ0
t,i = (0, i) the event that the measurement zi was not generated by any target.

For i0 ∈ {0, 1, . . . , |Zt|} and j ∈ {0, . . . ,K}, let %τ (θkt,i) = k, %M (θkt,i) = i. Let θt(i0, j) be

a set of θkt,i, k ∈ {0, . . . ,K}, i ∈ {0, . . . , |Zt|} with the following properties

(1) θjt,i0 ∈ θt(i0, j);
(2) |{θkt,i ∈ θt(i0, j) : i > 0}| = |Zt|;
(3) if k 6= k′, then %M (θkt,i) 6= %M (θk

′
t,i′) or %M (θkt,i) = %M (θk

′
t,i′) = 0;

(4) if i 6= i′, then %τ (θkt,i) 6= %τ (θk
′
t,i′) or %τ (θkt,i) = %τ (θk

′
t,i′) = 0.

Then θt(i0, j) is one of many possible joint associations between target measurement in-

dices and target indices at time t which associates measurement i0 with target j (property (1)).

Moreover, all measurements at time t are either target generated or clutter (property (2)). No two
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targets generate the same measurements (property (3)) and a measurement can not be associated

with more than one target (property (4)).

Denote by

Ωi0,j
t = {θt(i0, j) : θt(i0, j) satisfies properties (1)− (4)}.

the set of associations between detected targets and measurements (i.e. excluding clutter and

undetected targets).

The key of the JPDA algorithm is the conditional probabilities of the joint association θt(i0, j)
at time t

P(θt(i0, j)|Z1:t) =
1
c
λ|Zt|−|%

M (α(θt(i0,j)))| ∏
k∈{1,...,K}−%τ (α(θt(i0,j)))

(1− pkDt)

×
∏

u∈α(θt(i0,j))
N (z%M (u);Htx̂

%τ (u)
t|t−1 ,S%

τ (u)
t )p

%τ (u)
Dt

. (5.13)

where pkDt is the probability of detecting the target k at time t, x̂kt|t−1 is the predicted target state of

target k at time t , c is a normalizing constant and θt(i0, j) is a set with the properties (1)− (4).

There are many sets which satisfy properties (1)− (4). Let Ωi0,j
t denote the collection of all

sets which satisfy (1)− (4), i.e.

Ωi0,j
t = {θt(i0, j) : θt(i0, j) satisfies properties (1)− (4)}.

Let βkt,i, i ∈ {0, 1, . . . , |Zt|}, k ∈ {1, . . . ,K} be the marginal association probability of the

event θkt,i. It is given by

βkt,i = P(θkt,i|Z1:t) =
∑

θt(i,k)∈Ωi,k
t

P(θt(i, k)|Z1:t) (5.14)

where P(θt(i, k)|Z1:t) given in (5.13).

The updated state estimate x̂kt|t and the covariance Pk
t|t of the target k, k ∈ {1, . . . ,K} corres-

ponding to (5.11) and (5.12) are as follows

x̂kt|t = x̂kt|t−1 +W k
t

∑
zi∈Zt

βkt,iν
k
t (zi)

Pk
t = βkt,0Pk

t|t−1 + (1− βkt,0)P̂k
t + P̃k

t
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where νkt (zi) = zi−Htx
k
t|t−1 is the innovation of target k with respect to measurement zi, W k

t is

Kalman gain of target k and

P̂k
t = [I −W k

t Ht]Pk
t|t−1

P̃k
t = W k

t

 ∑
zi∈Zt

βkt,iν
k
t (zi)(ν

k
t (zi))

Tr −
∑
zi∈Zt

βkt,iν
k
t (zi)

∑
zi∈Zt

βkt,i(ν
k
t (zi))

Tr

 (W k)Trt

W k
t = Pk

t|t−1H
Tr
t [Skt ]

−1

and where Pk
t|t−1 is the predicted covariance of target k and Skt is the innovation covariance of

target k.

Some extensions and modifications of JPDA are proposed to reduce the computational cost

[51, 117], to deal with track coalescence for closely spaced targets [14, 17, 18, 53, 54], to im-

plement the JPDA in a multiprocessor system [201], or to track targets which share the same

measurement [119]. For nonlinear systems or a system with non-Gaussian noise, a method based

on the JPDA and Monte Carlo methods was used to jointly estimate the target state vectors and

association probabilities [55,74,82]. Since the JPDA filter and its variants only handle a fixed and

known number of targets and lacks track initiation, a more general technique which can handle an

unknown number of targets was proposed in [160]. This technique is called Multiple Hypothesis

tracking (MHT), and it searches all hypotheses, maintains these hypotheses and defer the decision

in order to solve the uncertainty at the current time [16, 145]. Here a hypothesis is a joint data

association which assigns measurements to tracks such that each measurement is associated with

either a single track or a false alarm. Blackman [16] demonstrated the advantages of MHT over

the conventional single hypothesis approaches such as GNNF and JPDA filter. The next section

presents the MHT and its variants.

5.1.2.2 Multiple Hypothesis Tracking (MHT)

Multiple Hypothesis tracking (MHT) was first derived in [160] and it is described systematically

in [145]. Using Bayes rule the hypotheses are updated by assigning each of the latest meas-

urements to a false alarm, an existing hypothesis or a new track [14, 16, 17]. With this assign-

ment, MHT obviously can initialize a new track or terminate the current track, and hence can

deal with an unknown and time-varying number of targets. However it is impractical because the

computational complexity grows exponentially with the number of targets and/or the number of

measurements. Furthermore, this assignment also causes the number of hypotheses to increase

exponentially over time when more measurements are collected. Many studies have been car-

ried out with the aim of reducing the complexity by pruning and gating in order to only keeping

the high probability hypotheses for propagation [37, 38, 125]. These hypothesis-oriented MHT

method can be improved by track-oriented MHT [23,24,41,84]. The track-oriented MHT method

forms track hypotheses which are the collection of hypotheses generating from the same target

while the hypothesis-oriented MHT method forms hypotheses from scan to scan. The differences



5.1 Conventional Target Tracking Techniques 87

between the hypothesis-oriented MHT method and the track-oriented MHT method are: 1) the

high probability hypotheses remains from scan to scan in hypothesis-oriented MHT method and

deletes the low probability hypotheses while the track-oriented MHT method keeps high probabil-

ity tracks and discards the low probability tracks 2) Current hypotheses spawn new hypotheses

for hypothesis-oriented MHT method while hypotheses are formed after tracks formed in the

track-oriented MHT method. This pruning and gating may however also eliminate the correct

association [56]. The probabilistic MHT (PMHT), a batch algorithm, was proposed to reduce the

complexity by assuming the association variables to be statistically independent [56, 163, 164].

For a linear system model, [144] showed that PMHT outperforms JPDA in terms of track loss

and mean square estimation error under a two-target scenario. A thorough review on various

approaches is discussed in [14, 16, 17] some references herein.

An advanced and completely different batch approach, the Markov Chain Monte Carlo data

association (MCMCDA) for multi-target tracking, was recently proposed to handle the problem

where a large number of targets moves close to each other with a low probability of detection and

high probability of false alarm [126, 127]. This technique employs a Reversible Jump Markov

Chain Monte Carlo (RJMCMC) method on the space of data associations to sample from the

posterior distribution. Such approximation not only inherit the advantages of RJMCMC method

such as sampling from the complicated posterior distribution with high dimensional parameters;

but also circumvent the ad hoc of reduction of number of hypotheses by pruning and gating. The

following summary of track-oriented MHT in [126, 127] is presented as follows

Markov Chain Monte Carlo Data Association
Let mt be the number of measurements available at time t i.e. mt = |Zt|. Define by

It = {(t, 1), . . . , (t,mt)},mt > 0 a set of augmented measurement indices at time t where

(t, i) denotes an measurement index i at time t and It = ∅ if mt = 0. Denote by IU1:t =
⋃t
i=1 Ii

be a set of augmented measurement indices up to time t. Let τk, k > 0 be the set of augmented in-

dices of measurements which are generated from a target k and τ0 be the set of augmented indices

of measurements which are generated from clutter.

Let ω be a partition of IU1:t, then the following conditions must hold

• ω = {τ0, τ1, . . . , τK} for some K

•
⋃K
k=0 τk = IU1:t and τk ∩ τj = ∅ for k 6= j.

• |τk ∩ Ij | ≤ 1 for any k = 1, . . . ,K and j = 1, . . . , t.
• |τk| > 1 for k > 0.

The first condition shows that each partition ω represents a hypothesis whose τk, k > 0 represents

the list of indices of augmented measurements generated from the target k. The first two require-

ments imply that all of the measurements must be assigned as a target or clutter and imply that no

two tracks can share any measurements at any time. The second last condition implies that each

track has at most one measurement at each time. The last condition says that each track has at

least one measurement otherwise it is considered as clutter.

With this definition, any partition ω represent a hypothesis up to time t. Denote mZ
1:t =

(m1, . . . ,mt) as a sequence of measurement numbers up to time t and ΩmZ1:t be a collection of all

partitions ω given mZ
1:t. Denote by Ω1:t = {ω ∈ ΩmZ1:t : mZ

1:t ∈ Nt
∗} a collection of all partitions
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of all possible mZ
1:t ∈ Nt

∗ and Nt
∗ is the product of N∗ (note that N∗ = {0, 1, . . .}). Let T be

the duration of the scan time. By Bayes rule the posterior distribution of ω can be computed as

follows

p(ω|Z1:T ) =
p(ω,Z1:T )∫
p(ω,Z1:T )dω

=
p(Z1:T |ω)p(ω)

p(Z1:T )
(5.15)

where p(ω) is the prior distribution and p(Z1:T |ω) is the likelihood of Z1:T given ω.

We only present the multi-scan Markov Chain Monte Carlo Data Association (MCMCDA)

[127] to find a partition ω which maximizes the distribution p(ω|Z1:T ), i.e.

ω̂ = arg max
ω∈Ω1:T

p(ω|Z1:T ). (5.16)

The state of target k at time t can be estimated by using MMSE as follows

x̂kt =
∑

ω∈Ω1:T :τk∈ω

∫
xkt p(dx

k
t |ω,Z1:T )p(ω|Z1:T ). (5.17)

This considers all ω that contain a target with label k.

By using the property of reversible jump MCMC (RJMCMC), a powerful computational tool

for analysis of complex posterior distribution on spaces of varying dimensions to handle the un-

known number of targets, the main objective of MCMCDA algorithm is to construct the proposal

distribution q(ω′|ω) on the space Ω1:T for MH update. The construction of a Markov chain is

proposed given the state of a MC ω. The proposal distribution consists of eight moves grouped in

five groups:

• birth/death,

• split/merge,

• extension/reduction,

• update,

• switch.

Each group of the first three groups consists two moves where each move of the group is the

reverse of the other. Each group of the last two groups only has one move so a move and its

reverse move are the same. With this construction, the MC on space Ω1:T is reversible. The

MCMCDA algorithm uses the acceptance rate

α =
p(ω∗|Z1:T )q(ω|ω∗)
p(ω|Z1:T )q(ω∗|ω)

=
p(ω∗|Z1:T )

p(ω|Z1:T )

where p(ω|Z1:T ) is given in (5.15). Then the MCMCDA algorithm is described as follows With

the construction of the proposal move, the switch move and the death move may make a track

labeled k in a partition ω and a track labeled k in the proposed partition ω′ totally different tracks

but which in the estimation (5.17) is considered as being the same track. Thus it may lead to

unreliable estimates of the target states.
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Algorithm 10 : Multi-scan MCMC DA Algorithm
Input: ω0, Z1:T and number of samples L
Output: ω̂
At iteration l = 0:

- Set ω = ω0, ω̂ = ω0

For l=1,. . . , L:
- Sample ω∗ ∼ q(·|ω),
- Compute the acceptance rate

α =
p(ω∗|Z1:T )

p(ω|Z1:T )
(5.18)

Set ω = ω∗ if α > u where u is sampled from the uniform distribution on [0, 1],
Set ω̂ = ω if p(ω|Z1:T )

p(ω̂|Z1:T )
> 1

Remark 1: In general, the conventional techniques are able to deal with multi-target tracking

well in the moderate scenarios. In the severe scenarios where the density of targets is high and

the number of false measurements is large, these techniques do not give the reliable solution.

Furthermore, these techniques do not estimate the number of existing targets, the probability of

detection and the clutter rate at each time step. The new tracking algorithms based on RFS

framework are able to estimates these parameters along with the target state [100, 102]. The

based RFS techniques are briefly summarized in the following section.

5.2 RFS-based Target Tracking Techniques

The Random finite set (RFS) approach to data fusion was first pioneered by Mahler [91,106], and

later it was developed as the theory of finite set statistic (FISST) [60]. An RFS is a finite-set valued

random variable in the sense that it is random in number of elements and in the values of these

elements. Moreover, the order of the elements is irrelevant. As a result, the RFS framework is

a mathematically rigorous tool for capturing uncertainties in its elements and its cardinality [62].

In MTT problem, the number of target states and measurements at each time index are random

and the order of them is not important. The RFS captures these properties and is a natural way to

represent target states and measurements. Modeling the targets and measurements as RFS allows

a Bayesian problem formulation by treating the target set and the measurement set as a single

meta-target and a single meta-measurement respectively, and hence the multi-target Bayes filter is

the analogue of the single-target Bayesian filtering with the provision of the mathematical tools in

FISST [92, 93, 95, 171].

5.2.1 Single-target Tracking

Considering the single target Bayesian filtering as a special case of multi-target Bayesian filtering,

[172, 182] addresses the more difficult problem of single target filtering with multiple measure-
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ments generated by the target, non-uniform sensor field of view, and clutter as discussed in Section

5.1. A Bayes’ recursion technique for this problem is proposed using the random finite set (RFS)

framework. In this technique, the single target model is in (2.3) and (2.4). A summary of this

technique is given in the next section (for details, see [172, 182])

5.2.1.1 RFS measurement model

Given target state x, an RFS of measurements at time t is modeled as the union of Dt(x) the

RFS of target-generated measurement at time t, Et(x) the RFS of extraneous target-generated

measurements at time t and Ξt the RFS of clutter at time t, i.e.

Zt = Dt(x) ∪Et(x) ∪ Ξt. (5.19)

The RFS Et(x) represents that a target may generate more than one measurement. Conditional on

x,Dt(x), Et(x) and Ξt are assumed to be independent. The RFSDt(x) is modeled as a Bernoulli

RFS with probability density given by

πDt(Z|x) =


1− pDt(x), if Z = ∅;
KzpDt(x)ḡt(z|x), if Z = {z}
0, otherwise.

(5.20)

where Kz is the unit of volume on space Z , pDt(x) is the probability of detection and ḡt(z|x) is

the likelihood function.

The RFSs of extraneous measurements and clutterEt(x) and Ξt in (5.19) are modeled as Pois-

son RFS with intensities ςEt(·|x) and ςΞt respectively. For simple notation, these two independent

RFSs are grouped together as an RFS Λt

Λt(x) = Et(x) ∪ Ξt. (5.21)

Since two independent RFSs Et(x) and Ξt are Poisson RFSs, their union Λt is also Poisson RFs

with intensity

κt(z|x) = ςEt(z|x) + ςΞt(z). (5.22)

5.2.1.2 Measurement likelihood

If an RFS Zt is given in (5.19), the likelihood function ĝt(Zt|x) is [172, Proposition 3.1, p.45]

ĝt(Zt|x) = K |Zt|z

1− pDt(x)
e〈κt(·|x),1〉

∏
z∈Zt

κt(z|x) +K |Zt|z

pDt(x)

e〈κt(·|x),1〉

∑
z∗∈Zt

ḡt(z
∗|x)

∏
z∈Zt−{z∗}

κt(z|x).(5.23)

The first term corresponds to a missed detection while the second term refers to a target detection.
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The probability of κt(x) having exactly nt elements is

ρt(nt|x) =
〈κt(·|x), 1〉nte−〈κt(·|x),1〉

nt!
. (5.24)

Each measurement z ∈ Zt is independent and identically distributed according to the probability

density

ct(z|x) =
κ(z|x)
〈κt(·|x), 1〉 . (5.25)

(5.23) can be alternatively rewritten in the following form

ĝt(Zt|x) =K |Zt|z |Zt|!(1− pDt(x))ρt(|Zt||x)
∏
z∈Zt

ct(z|x)+

K |Zt|z (|Zt| − 1)!pDt(x)ρt(|Zt| − 1|x)
∑
z∗∈Zt

ḡt(z
∗|x)

∏
z∈Zt−{z∗}

ct(z|x). (5.26)

The likelihood function ĝt(Zt|x) in (5.26) reduces to the conventional single measurement likeli-

hood ḡt(z|x) when |Zt| = 1 and pDt(x) = 1.

5.2.1.3 RFS Single-target Bayes recursion

The Bayes recursion in (2.15) and (2.16) can be generalized to accommodate the multiple meas-

urements generated by a target, non-uniform field of view, and clutter with the likelihood function

given in (5.23) or (5.26)

pt+1|t(xt+1|Z1:t) =
∫
f̄t+1|t(xt+1|xt)pt(xt|Z1:t)dxt (Prediction step)

pt+1(xt+1|Z1:t+1) =
ĝt+1(Zt+1|xt+1)pt+1|t(xt+1|Z1:t)∫
ĝt+1(Zt+1|xt+1)pt+1|t(xt+1|Z1:t)

(Update step).

5.2.1.4 Closed form Solution for Linear Gaussian model

The target is assumed to follow a linear Gaussian transition and the measurements are a linear

combination of the states in Gaussian noise

f̄t+1|t(x|ζ) = N (x;Ft−1ζ,Qt)

ḡt+1|t(z|x) = N (z;Htx,Rt).

The probability of detection is assumed to be constant, i.e. pDt(x) = pDt and the intensity of

extraneous target-generated measurements is linear Gaussian i.e.

ςEt(z|x) = η1
t c

1
t (z|x) (5.27)

c1
t (z|x) = N (z;Otx+ ot, Qt) (5.28)
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where η1
t is the expected number of extraneous object-generated measurements, and c1

t (·|·) is

the likelihood of individual extraneous observation at time t, Ot is the extraneous measurement

matrix, ot is a constant vector, and Qt is the extraneous covariance at time t. The clutter has

intensity

ςΞt(z) = η0
t c

0
t (z)

where η0
t is the mean clutter, and c0

t (·) is the density of clutter at time t. Then Λt(x) in (5.21) is

a Poisson RFS with intensity κt(z|x) given in (5.22) and the cardinality distribution of Λt(x) is

Poisson with rate η0
t + η1

t and individual elements of Λt(x) are i.i.d. according to the probability

density

ct(z|x) = w0
ct,tc

0
t (z) +w1

ctN (z;Otx+ ot, Qt) (5.29)

where wict = η0
t /(η0

t + η1
t ) for i = 0, 1.

Assume that the posterior distribution pt−1 is a Gaussian mixture of the form

pt−1(x|Z1:t−1) =
Jt−1∑
i=1

wit−1N (x;mi
t−1,P it−1). (5.30)

The prediction and update steps are given as follows

Prediction:

pt|t−1(x|Z1:t−1) =

Jt|t−1∑
i=1

wit|t−1N (x;mi
t|t−1,P it|t−1). (5.31)

where

mi
t|t−1 = Ft−1m

i
t−1, P it|t−1 = Ft−1P

i
t−1F

Tr
t−1 +Qt.

Update: Assume that the predicted density is of the form in (5.31) then ĝt(Zt|x) has the form

in [172, Eq 3.39, p.50]. Consequently the posterior distribution pt(x|Z1:t) at time t is also a

Gaussian mixture of the form

pt(x|Z1:t) =
Jt∑
i=1

witN (x;mi
t,P it ) (5.32)

where wit =
wit∑Jt
i=1 w

i
t

,
∑Jt
i=1w

i
t is the normalizing constant in the RFS single-target Bayes recur-

sion and

ĝt(Zt|x)pt|t−1(x|Z1:t−1) =
Jt∑
i=1

witN (x;mi
t,P it ). (5.33)
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If the density in (5.27) is Gaussian mixture, p0 is Gaussian mixture, then all the predicted

pt|t−1 and pt are also Gaussian mixtures.

Later in 2011 [181] proposed a forward-backward smoother to improve the performance of

this method.

5.2.2 Multi-target Tracking

Unlike conventional multi-target techniques, the formulation of the multi-target tracking problem

in RFS framework allows the multi-target posterior distribution to be propagated using the Bayes

recursion as done in the single-target Bayes filter. As discussed in Chapter 3, the definitions of

the set derivative, set integral and the global density make the computation of the multi-target

posterior distribution possible. Unlike the conventional multi-target tracking approach, the num-

ber of targets can be estimated along with their target states because the multi-target posterior

distribution of set-valued parameters also capture the uncertainty in target numbers. Due to the

computational intractability of the full multitarget Bayesian filter in practice, some researchers use

sequential Monte Carlo (SMC) approximation of the full multitarget Bayes filter to track a small

number of targets in simple application such as tracking three vehicles in terrain without clutter

[159], tracking pedestrians with laser range scanners [146]; and locating the small unknown, time-

varying number of active speakers and the voice activity interval for each speaker based on the

time-difference-of interval measurements [89,178]. At the same time, a more general approxima-

tion of a full multi-target Bayesian filter is proposed by [112].

In most applications, the full multitarget Bayes filter is computationally intractable so a drastic

but principled approximation was derived as a probability hypothesis density (PHD) filter in 2000

by Mahler [96, 104]. The PHD filter was derived under the assumption that the clutter is a Pois-

son process and the predicted multi-target distribution is approximately a Poisson distribution.

The PHD filter recursively propagates the first-order multi-target moment density or intensity and

provides the number of targets in the region by integration over the region. The estimates of the

target states are the peaks in the PHD. The advantage of the PHD filter is that the computational

complexity is at order O(mn) where n is the number of targets and m is the number of measure-

ments and it does not require data association like the traditional techniques. Furthermore, at each

time step an estimate of the target number, which cannot achieved in the traditional techniques, is

computed directly from data. Section 5.2.2.1 summarize the derivation of PHD.

5.2.2.1 Probability Hypothesis Density (PHD) Filter

The Probability Hypothesis Density (PHD) is the first-order multi-target moment density Dt which

is an approximation and is developed to overcome the computational intractability of the multi-

target Bayes filter. Instead of propagating the posterior distribution as in multi-target Bayes filter,
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The PHD filter only propagate the posterior intensity, a first order statistical moment. This strategy

propagates the first moment (mean) of the single target state and is illustrated in Figure 5.11

Bayes Filter:

PHD filter:

· · · pt−1(X|Z1:t−1) pt|t−1(X|Z1:t−1) pt(X|Z1:t) · · ·

· · · Dt−1(x|Z1:t−1) Dt|t−1(x|Z1:t−1) Dt(x|Z1:t) · · ·

Prediction Update

Figure 5.1: Multi-target Bayes Filter and its first-order multi-target moment Dt

For a RFS X on X with pt(Xt|Z1:t) is given in (3.91), the definition of PHD [96, p.1154] or

intensity [39, 162] is

Definition 5.1 (Probability Hypothesis Density (PHD)): The PHD is the density Dt(x|Z1:t)

whose integral ∫
S

Dt(x|Z1:t)dx (5.34)

on any region S of state space is the expected number of targets contained in S

Nt(S) =
∫
|X ∩ S|pt(Xt|Z1:t)µs(dX). (5.35)

where µs is given in (3.73).

By definition Dt(x|Z1:t)dx is the expected number of targets in an infinitesimally small region

dx of x i.e. Dt(x|Z1:t) is the intensity (or expected target density) at x. The PHD recursive filter

is derived in the following.

PHD Filter Equations:
Given the PHD update Dt−1(x|Z1:t−1) at time t− 1, by Definition 3.14, at time t the PHD

prediction Dt|t−1(x|Z1:t−1) and the PHD update Dt(x|Z1:t) are given by

Dt|t−1(x|Z1:t−1) =
∫
K−1
x pt|t−1({x} ∪W |Z1:t−1)µs(dW ) (5.36)

Dt(x|Z1:t) =
∫
K−1
x pt({x} ∪W |Z1:t)µs(dW ) (5.37)

where pt|t−1(Xt|Z1:t−1) and pt(Xt|Z1:t) are given by (3.89) and (3.91) respectively. The assump-

tions made are analogous to the assumption given in Chapter 3.2 as follows

• Each target evolves and generates measurements independently of one another.

• Clutter is Poisson distributed with intensity κt at time t and independent of target-originated

measurements.

• Spawned targets, existing targets and new born targets are statistically independent when

conditioned on the previous states.

• The predicted multi-target RFS is Poisson.
1This figure is based on [96, p.1154]
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The first three assumptions are common in multi-target tracking [8, 14]. The last assumption is

made to simplify the complicated formula for updating the density pt(Xt|Z1:t) by approximating

pt(Xt|Z1:t) with a Poisson distribution having intensity Dt|t−1(x|Z1:t−1) such that the mean is

N t =
∫

Dt|t−1(x|Z1:t−1). [96] showed that Dt|t−1(x|Z1:t) in (5.36) and Dt(x|Z1:t+1) in (5.37)

can be expanded as follows

Dt|t−1(x|Z1:t−1) =
∫
pSt(ζ)f̄t|t−1(x|ζ)Dt−1(ζ|Z1:t−1)dζ+∫
βt|t−1(x|ζ)Dt−1(ζ|Z1:t−1)dζ + γt(x) (5.38)

Dt(x|Z1:t) ∼=(1− pDt(x))Dt|t−1(x|Z1:t−1)+∑
z∈Zt+1

pDt(x)ḡt(z|x)Dt|t−1(x|Z1:t−1)

κt(z) +
∫
pDt(ζ)ḡt(z|ζ)Dt|t−1(ζ|Z1:t−1)dζ

(5.39)

Note that

• f̄t|t−1(x|ζ) is the probability density that the target state ζ at time t− 1 moves to the target

state at time t with surviving probability pSt(ζ).

• βt|t−1(·|ζ) is the intensity of the RFS Bt|t−1(ζ) spawned at time t from target ζ at time

t− 1
• γt(x) is intensity of the birth RFS Γt at time t

• κt is the intensity of the clutter RFS Λt

Although the PHD recursion requires less computation and is simpler than the multi-target Bayes

filter, it also involves multiple integral which has no closed form expression in general and hence

it is difficult to implement. Some approximation of the PHD filter are derived [158, 177, 198]

by using particle filter. Sidenbladh [158] implements the PHD filter by using particle filter to

track multiple vehicles in terrain and compared the results with [159]. [158] shows that SMC

implementation of the PHD filter is much cheaper computationally than the SMC approximation

of the full multi-target Bayes filter, and it performs as well as SMC implementation of the full

multi-target Bayes filter in term of target locations. However, the target number error is high

under low signal to noise ratio (SNR).

At the same time, the relationship between conventional probability theory and FISST was

established and led to the development of a principled Sequential importance resampling (SIS)

implementation of the PHD filter (SMC-PHD) under a moderate level of measurement noise and

false alarm rates [171]. This technique is more general than techniques in [158, 198]. Later the

convergence of the SMC implementation of the PHD Filter was established [32, 76, 76]. More re-

cently, another SMC implementation of the PHD filter was proposed by using an auxiliary particle

filter with the point process model [190, 191].

Under the assumption of a linear Gaussian system model, the closed form solution of the

PHD filter, namely Gaussian mixture PHD (GM-PHD) filter, was established in [169, 170]. The

closed form solution overcomes not only the problem with a large number of particles but also the

unreliability of clustering techniques for extracting state estimates which is the main drawbacks

of the particle filter implementation of the PHD filter. The GM-PHD is presented next
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5.2.2.2 Gaussian Mixture PHD Filter

In order to obtain the closed form solution for the PHD filter, the following assumptions are made

1. The system model are linear given by (2.17) and (2.18), i.e.

f̄t|t−1(x|x′) = N (x;Ft−1x
′,Qt) (5.40)

ḡt(z|x) = N (z;Htx,Rt). (5.41)

2. The survival and detection probabilities are both state independent, i.e for all x ∈ X and

for all t = 1, 2, . . .

pSt = pSt(x) (5.42)

pDt = pDt(x) (5.43)

3. The intensities of spontaneous birth and spawned RFSs are both Gaussian mixtures of the

form

γt(x) =

Jγt∑
i=1

wiγtN (x;mi
γt ,P

i
γt) (5.44)

βt|t−1(x|x′) =
Jβt∑
j=1

wjβ,tN (x;F jβ,t−1x
′ + djβ,t−1,Qjβ,t−1) (5.45)

where Jγt ,wiγt ,m
i
γt and P iγt for i = 1, . . . , Jγt are given model parameters that determine

the shape of the spontaneous birth intensity; and similarly Jβt ,w
j
β,t,F

j
β,t−1, djβ,t−1 and

Qjβ,t−1 for j = 1, . . . , Jβt determine the shape of the spawning intensity of a target with

previous state x′.

Detailed explanations of these assumptions can be found in [169]. Under these assumptions, the

GM-PHD filter expands the PHD filter as follows

Assume that the posterior PHD at time t− 1 is a Gaussian mixture of the form

Dt−1(x|Z1:t−1) =
Jt−1∑
i=1

wit−1N (x;mi
t−1,P it−1). (5.46)

The prediction and update steps are given as follows

Prediction:

Dt|t−1(x|Z1:t−1) = DS,t|t−1(x|Z1:t−1) + Dβ,t|t−1(x|Z1:t−1) + Dγ,t|t−1(x|Z1:t−1) (5.47)

where the spontaneous birth is given in (5.44), the surviving PHD DS,t|t−1(x|Z1:t−1) is

DS,t|t−1(x|Z1:t−1) = pSt

Jt−1∑
i=1

wit−1N (x;mi
S,t|t−1,P iS,t|t−1) (5.48)
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and where

mi
S,t|t−1 = Ft−1m

i
t−1, P iS,t|t−1 = Ft−1P

i
t−1F

Tr
t−1 +Qt;

the spawning PHD Dβ,t|t−1(x|Z1:t−1) is

Dβ,t|t−1(x|Z1:t−1) =
Jt−1∑
i=1

Jβt∑
j=1

wit−1w
j
β,tN (x;mi,j

β,t|t−1,P i,jβ,t|t−1) (5.49)

and where

mi,j
β,t|t−1 = F jβ,t−1m

i
t−1 + djβ,t−1, P i,jβ,t|t−1 = F jβ,t−1P

j
β,t−1(F

j
β,t−1)

Tr +Qjβ,t−1;

Update: Assume that the predicted PHD is of the form

Dt|t−1(x|Z1:t−1) =

Jt|t−1∑
i=1

wit|t−1N (x;mi
t|t−1,P it|t−1). (5.50)

Then the posterior PHD Dt(x|Z1:t) at time t is

Dt(x|Z1:t) = (1− pDt)Dt|t−1(x|Z1:t−1) +
∑
z∈Zt

DD,t(x; z) (5.51)

where

DD,t(x; z) =
Jt|t−1∑
i=1

wit(z)N (x;mi
t|t(z),P

i
t|t) (5.52)

and where

wit(z) =
pDtw

i
t|t−1q

i
t(z)

κt(z) + pDt
∑Jt|t−1
l=1 wlt|t−1q

l
t(z)

,

qit(z) = N (z;Htm
i
t|t−1,Rt +HtP

i
t|t−1H

Tr
t ),

mi
t|t(z) = mi

t|t−1 +Ki
t(z −Htm

i
t|t−1),

P it|t = (I −Ki
tHt)P

i
t|t−1,

Ki
t = P it|t−1H

Tr
t (HtP

i
t|t−1H

Tr
t +Rt)

−1

Given that the initial PHD D0(x) at time t = 0 is a Gaussian mixture, the posterior density

Dt(x|Z1:t) is also Gaussian mixture PHD (GM-PHD) from which the individual target states can

be extracted. The expected number of target N̂t|t−1 and N̂t associated with Dt|t−1(x|Z1:t−1) and
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Dt(x|Z1:t) respectively are obtained by summing the appropriate mixture weights as follows

N̂t|t−1 = N̂t−1(pSt +

Jβt∑
i=1

wiβ,t) +

Jγt∑
i=1

wiγt (5.53)

N̂t = N̂t|t−1(1− pDt) +
∑
z∈Zt

Jt|t−1∑
i=1

wit(z) (5.54)

The number of Gaussian components increases exponentially so a pruning procedure ([169, p.7])

was proposed to reduce the number of Gaussian components which are propagated to the next

time step. The multi-target states are extracted from the means of the Gaussian component with

weights larger than some weight threshold. The GM-PHD filter is simple and effective under linear

assumptions [67]. A technique for multi-sensor multi-object tracking, a more challenging prob-

lem than a single-sensor multi-object problem, employing GM-PHD filter is proposed in [137].

Another implementation of the PHD filter for the class of conditionally linear/Gaussian models

was proposed [111]. numerical approximation with exact computation.

At each time step, GM-PHD filter only provides the state estimates of individual targets that

may be in the surveillance region, but does not gives the target identities or labels. Thus the

GM-PHD tracker [129] was proposed by partitioning the outputs of the GM-PHD filter into the

tracks by performing track-to-estimate association or using the GM-PHD filter as a clutter filter

to eliminate some of the clutter from the measurement set before applying the data association

technique. In general, the PHD filter and its variants GM-PHD and SMC-PHD do not provide

information about the target label (or identity). In order to track multiple targets, the target labels

are added to the target states. The target labels make it possible to distinguish between tracks

(trajectories of targets). Another possibility is to associate target labels directly with each Gaussian

in GM-PHD. Yet another possibility is to propagate the target labels with the target states. Thus

the trajectories of targets can be obtained [26, 31, 33, 34, 49, 71, 86, 128–131, 188, 200]. The GM-

PHD filter is applied in many fields such as tracking motion cells [78] where the cells neither move

close nor cross each other, tracking obstacles in forward-looking sonar data [27], tracking sonar

images [26, 28, 30], tracking multiple objects in a large video surveillance dataset [192], tracking

with video data [90, 135, 138], tracking vehicles in terrain [158], tracking with acoustic sensors

[193], tracking multiple groups of targets [25,186,187] and tracking a variable number of humans

[68,137]. Other applications of MTT problem have been surveyed and analyzed in [100,101,103].

PHD filter or one of its implementations is explored to track multiple manoeuvring targets

in clutter by using multiple model methods in [132, 134, 143, 176]. The filter in [132, 134] is a

generalized version of the GM-PHD filter in [169,170] and is extended to deal with a broader class

of problems using linear fractional transformations [133]. The PHD filter and its implementation

such as GM-PHD and SMC-PHD are being investigated by many researchers in order to improve

the performance of multi-target tracking algorithms [148, 194]. Another type of performance

improvement is to estimate unknown clutter intensity for PHD Filter in [85]. The GM-PHD filter is

used to derive the PHD-SLAM filter for the feature-based simultaneous localization and mapping
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(SLAM) problem [113–115] and is applied to automotive imagery sensor data for constructing a

map of stationary objects which is essential for autonomous vehicles [88].

A generalization of the PHD filter called the group PHD filter was derived by Mahler [94,105]

for detecting and tracking group objects such as squads, platoons, and brigades. For tracking

in high target density, tracking closely spaced targets and detecting targets of interest in a dense

multi-target background, the Gaussian mixture PHD filter is applied to group the targets according

the a certain attributes [25, 59]. So far not many applications of the group PHD filter have been

reported in the literature .

As mentioned in [49, 158], the estimate of target numbers is inconsistent in the presence of

false alarms and/or missed detection. In 2006 Mahler derived a new approximation, called the

cardinality PHD (CPHD) filter which propagates not only the PHD but also the entire cardinality

distribution [98–101]. The CPHD, the second order moment, is a generalization of the PHD in

the sense that the false alarms can be a general identically independent distributed cluster process

rather than a Poisson process. However, the spawned targets cannot be modeled in the CPHD filter.

Similar to the PHD filter, the CPHD filter avoids the data association. The advantage of the CPHD

compared to the PHD filter is that it reliable estimates the number of targets directly from data.

The disadvantages of the CPHD filter are that the computational complexity is at order O(m3n)

compared to O(mn) for the PHD filter, and that it does not take into account spawning targets.

Similar to the PHD filter, the CPHD filter is inherently computational intractable in general so the

Gaussian mixture CPHD (GM-CPHD) filter, which is a closed form expression for the CPHD filter

under linear Gaussian multi-target models, is proposed by [173]. The GM-CPHD filter for tracking

a fixed number of targets outperforms the standard JPDA filter in simulations [174]. Furthermore,

the GM-CPHD filter performs accurately and shows a dramatic reduction in the variance of the

estimated number of targets compared to the GM-PHD filter [173]. Similar to the GM-PHD,

the GM-CPHD filter is also suitable for mildly nonlinear system model as shown by simulations

in [173]. The GM-CPHD filter is applied to track ground moving targets in [166] and to track

multiple speakers in [136, 140]. The GM-CPHD is more responsive to changes in target number

compared to the MHT algorithm [165]. A new GM-CPHD filter for passive bearings-only tracking

was derived in [199]. A labeled version of the GM-CPHD was proposed in [141]. Similarly to the

PHD filter and its variants, the CPHD filter and its variant GM-CPHD filter have been explored

and applied to various problems in [50, 136, 140, 166].

The multi-target multi-Bernoulli (MeMBer) filter was derived by Mahler 2007 [101] based

on the assumption that every multitarget posterior is the probability law of a multi-target multi-

Bernoulli process. The MeMBer filter has advantages such as easy implementation of the birth

model provided it is not too dense, a formal Poisson false alarm model, the number of targets which

is estimated directly rather than inferred and no measurement-to-track association. Furthermore it

is more accurate than a PHD or CPHD filter albeit more computationally demanding [101]. Similar

to the CPHD filter, the MeMBer filter does not have spawning model. A new MeMBer filter,

namely the cardinality balanced MeMBer (CBMeMBer) filter, was derived in [172,183] to reduce

the cardinality bias from the MeMBer filter which overestimates the target number. The advantage

of the CBMeMBer filter is that it has smaller computational complexity than the CPHD filter and a
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similar computational complexity to the PHD while the MeMBer filter has a higher computational

complexity than the CPHD filter. The authors of [172, 183] implement the CBMeMBer filter

by using SMC and Gaussian mixture under low clutter and high probability of detection with

the following results: The Gaussian mixture implementation of CBMeMBer (GM-CMMeMBer)

filter is superior for linear system and mild non-linearities. If the non-linearity is severe, the SMC

implementation of the CBMeMBer (SMC-CBMeMBer) filter outperforms the CPHD and the PHD

filter. The CBMeMBer is applied to address the mobile multiple target tracking problem in [189].

The CBMeMBer is employed to track speakers in three audio-visual sequences in [72]. Since

the development of the CBMeMBer filter, many studies have been devoted to approximating it by

particle filters such as the Gaussian particle MeMBer (GP-MeMBer) filter proposed to handle a

non-linear system with Gaussian noises [195, 197], a new multi-target filtering solution proposed

in [184] to accommodate non-linear target model and unknown nonhomogeneous clutter intensity

and sensor field-of-view and a polynomial predictive particle MeMBer filter derived in [196] to

deal with situation where the target dynamics are not modeled accurately. An overview of the

approximations of the full multi-target Bayesian filter is given in Figure 5.2. The original paper

and some important papers are listed under each filter.
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Figure 5.2: Overview of the approximations of the multi-target Bayes filter and their development
together with the original works and some important papers which contributed to the development
of the filters
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5.3 Conclusion and Discussion

In this chapter, An overview of the development of target tracking techniques were discussed.

Both conventional techniques and RFS-based techniques were covered. These two techniques

can be applied to both single target tracking and multiple target tracking, and they are still under

development especially the RFS-based techniques. When a large number of unknown targets move

close together and cross each other or spawn other targets in a highly dense environment such as

biological cells, the existing filtering techniques do not give reliable results [22, p.191-228] or

[101, chapter 10 and 16]. Only if the SNR is high then the PHD filter and its variants estimate the

states of the targets quite well but are unreliable when estimating the number of targets. Neither

the CPHD filter nor the MeMBer filter is suitable for this problem because none of them consider

spawning targets in its model. A solution for this problem is to use the batch processing to estimate

a set of tracks (the trajectories of targets) from the multi-target posterior distribution obtained from

Bayesian recursive framework.



Chapter 6

PMCMC Method for RFS based
Multi-target Tracking

6.1 Introduction

The cell tracking problem described in Chapter 1.1 is characterized by high target density and

high clutter. For the problems with these features, techniques such as Multiple Hypothesis

Tracking (MHT), Joint Probabilistic Data Association (JPDA), Joint Integrated Probabilistic Data

Association - JIPDA do not give reliable solution for the reasons given in Chapter 1.1. It is

however possible to use PMMH technique. In order to apply such technique, we must derive the

posterior distribution for a set of the tracks (the trajectories of targets) since it is used in the MH

algorithm. The main purpose of this chapter is to derive the posterior distribution for a sequence of

augmented multi-target states that is equivalent to the posterior distribution for a set of tracks. The

second objective of this chapter is to derive the Particle Marginal Metropolis-Hastings (PMMH)

algorithm for an RFS based Multi-target tracking.

In the multi-target tracking problem, the number of targets and the number of measurements

are variable and unknown. Moreover, the order of the target states and the measurements is irrel-

evant, e.g. the measurements (z1, z2) contains the same information as the measurements (z2, z1).

There is also the possibility that there is no measurement or target state at a time instance. Due to

these features of the multi-target state and the multi-target measurement, RFSs are a natural way to

represent the collection of target states and measurements at a time instance. This representation

allows the multi-target tracking problem to be formulated in a Bayesian framework.

The first key contribution of this chapter is the formulation of the problem in the RFS frame-

work in Chapter 6.2. A possible set of different tracks (trajectories of targets) with the property

that no two different tracks share any state at any time is defined as a track hypothesis. There is

a one-to-one correspondence between the track hypothesis and the sequence of augmented multi-

target states. Thus conditional on a sequence of noisy multi-target measurements, the posterior

distribution for a track hypothesis is equivalent to the posterior distribution for the corresponding

sequence of augmented multi-target states.

Due to the complicated nature of the posterior distribution, the only viable option in order to

compute it, is to use numerical methods such as Markov Chain Monte Carlo (MCMC). However,

applying MCMC method directly is impractical because the computation of the likelihood function

103
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in the posterior distribution involves considering all possible combinations of target states and

noisy multi-target measurements. For problems such as cell tracking problem this is intractable.

In order to reduce the number of possible combinations of multi-target states and multi-target

measurements such that the problem becomes computationally tractable, at each instance time,

an auxiliary variable will be introduced to represent the relationship between target labels and

measurements indices. Furthermore, an augmented auxiliary variable is constructed to represent

the relationship between the augmented multi-target states and the multi-target measurements.

For the duration of the time scans, a sequence of augmented auxiliary variables represents the

relationship between a sequence of augmented multi-target states and a sequence of multi-target

measurements. Computation of the joint distribution is tractable using sampling techniques such

as the PMMH algorithm which is described in Section 6.3.1.

The second contribution of this chapter is the derivation in Section 6.3 of a new algorithm,

namely the PMMH algorithm for RFS based Multi-target tracking, for sampling from the joint

distribution given the sequence of ordered multi-target measurements. This new algorithm com-

bines the PMMH algorithm in Section 6.3.1 with the proposal moves (based on [127]) which are

designed to consider all possibilities of a sequence of augmented auxiliary variables.

Section 6.2 formulates the problem in RFS framework and then derives the posterior distribu-

tion using Bayes recursion. Section 6.3.1 derives the new PMMH algorithm to solve the problem

formulated in Section 6.2.

6.2 Formulation of the MTT problem in an RFS framework

6.2.1 Multi-target System Model in Random Finite Set Framework

The multi-target system model in Chapter 3.2 is reproduced for convenience. At time t, a multi-

target state and a multi-target measurement are respectively represented as finite sets Xt and Zt.

If nt targets are present at time t, the multi-target state Xt = {x1,x2, . . . ,xnt} ⊂ X where

X ⊆ Rnx is the single-target state space and nx is the dimension of a single target state. Similarly,

if there aremt observations at time t, the multi-target observation Zt = {z1, . . . , zmt} ⊂ Z where

Z ⊆ Rnz is the measurement space and nz is the dimension of a single-target measurement.

6.2.1.1 Multi-target State

Let T be the number of measurement scans. Then T = {1, . . . ,T} is the set of time indices. Each

state x′ ∈ Xt−1 is assumed to follow a Markov process in the following sense. The target either

continues to exist at time t ∈ T , t > 1 with probability pSt(x
′) and moves to the new state x

according to the probability density f̄t|t−1(x|x′) or dies with probability 1− pSt(x′) and takes on

the value ∅ . Thus, given a single state x′ ∈ Xt−1 at time t− 1, its behavior at time t is modeled

by the Bernoulli RFS

St|t−1(x
′)
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that is either {x} when the target survives or ∅ when the target dies. The survival or death of all

existing target from time t− 1 to time t is hence modeled by

St|t−1(Xt−1) =
⋃

x′∈Xt−1

St|t−1(x
′).

In order to express the probability density πS,t|t−1(·|Xt−1) of the RFS St|t−1(Xt−1) we introduce

the following notation. Let T(U ,V ) denote the set of all one-to-one functions taking a finite

set U to a finite set V . The set of all 1-1 function T(U ,V ) = ∅ if |U | > |V | and we use the

convention that the sum over the empty set is zero (|A| denotes the cardinality of the set A). A

1-1 function α ∈ T(Xt,Xt−1) is used to associate the targets at time t with the targets at time

t− 1. Specifically, x′ = α(x) means that the target state x′ at time t− 1 has evolved to the state

x at time t (i.e. α(x) represents the previous state at time t− 1 of the target state x). A target

state x′ at time t− 1 not associated with any target state at time t is dead. With this notation,

πS,t|t−1(·|Xt−1) can be expressed as

πS,t|t−1(Xt|Xt−1) = K
|Xt|
x

∑
α∈T(Xt,Xt−1)

∏
x′∈Xt−1−α(Xt)(1− pSt(x

′))

×
∏
x∈Xt pS,t(α(x))f̄t|t−1(x|α(x)) (6.1)

where Xt−1 − α(Xt) means set difference, Kx is the unit volume on space X and the sum is∏
x′∈Xt−1(1− pSt(x

′)) if Xt = ∅.

A new target at time t may result from either the spontaneous birth (independent of the surviv-

ing targets) which is modeled by an RFS of spontaneous births Γt or spawning from a target state

x′ at time t− 1 which is modeled by an RFS of spawning Bt|t−1(x
′). Thus the multi-target state

at time t is the union of the surviving targets, the spawned targets and the spontaneous births

Xt = St|t−1(Xt−1) ∪Bt|t−1(Xt−1) ∪ Γt (6.2)

where Bt|t−1(Xt−1) =
⋃
x′∈Xt−1 Bt|t−1(x

′). The actual forms of Bt|t−1 and Γt are problem

dependent. Assume that Γt is a Poisson RFS with intensity function γt and that Bt|t−1 is a Poisson

RFS with intensity function βt|t−1(·|x′) spawned by the target state x′ at time t− 1, then we have

that

πΓ,t(Xt) = e−〈γt,1〉K |Xt|x

∏
x∈Xt

γt(x),

πB,t|t−1(Xt|Xt−1) = e
−
∑

x′∈Xt−1
〈βt|t−1(·|x′),1〉

K |Xt|x

∏
x∈Xt

∑
x′∈Xt−1

βt|t−1(x|x′)

where 〈u, v〉 =
∫
u(x)v(x)dx, 〈γt, 1〉 is the expected number of spontaneously generated new

targets, 〈βt|t−1(·|x), 1〉 is the expected number of new targets spawned from the target state x.

Assuming the three RFSs on the right hand side of (6.2) are mutually independent conditional on

Xt−1, the RFS transition density of (6.2) can be described in the form of the multi-target transition

density ft|t−1(·|Xt−1) which gives the probability density that the multi-target state moves from
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Xt−1 at time t− 1 to Xt at time t. Let πB,t|t−1(·|Xt−1) and πΓ,t be the probability densities of

the RFS of spawning from Xt−1 and spontaneous birth Γt respectively, the multi-target transition

density (3.80) is rewritten as

ft|t−1(Xt|Xt−1) =
∑⊎3

i=1 Ui=Xt

πSt|t−1(U1|Xt−1)πB,t|t−1(U2|Xt−1)πΓ,t(U3) (6.3)

Note that Xt in (6.3) considers the new spontaneous birth and spawning compared to surviving

targets only in (6.1). (6.2) describes the time evolution of the multi-target state and incorporates

the model of target motion, spontaneous birth and spawning which are captured in the multi-target

transition density (6.3).

The transition density ft|t−1(Xt|Xt−1) in (6.3) can be expanded as follows.

ft|t−1(Xt|Xt−1) =
∑

W⊆Xt

∑
α∈T(W ,Xt−1)

e−µf (Xt−1)
∏

x̄∈Xt−W
b(x̄|Xt−1)×

∏
x′∈Xt−1−α(W )

(1− pSt(x′))
∏
x∈W

pSt(α(x))f̄t|t−1(x|α(x)) (6.4)

where α is given in Section 3.2.1.1 and

µf (Xt−1) = 〈γt, 1〉+
∑

x′∈Xt−1

〈βt|t−1(·|x′), 1〉,

b(x|Xt−1) = γt(x) +
∑

x′∈Xt−1

βt|t−1(x|x′).

Here given Xt−1, µf (Xt−1) is the expected number of new targets (spontaneous birth or spawn-

ing) and b(·|Xt−1) is intensity function of a new target state. Each W ⊂ Xt is the set of

surviving targets which is evolved from the previous state at time t− 1 and the second sum is

e−µf (Xt−1)
∏
x̄∈Xt b(x̄|Xt−1)

∏
x′∈Xt−1(1− pSt(x

′)) if W = ∅.

6.2.1.2 Multi-target Measurement

At time t, each single-target state x ∈ Xt, is either detected with probability pDt(x) and generates

an observation z with likelihood ḡt(z|x), or missed with probability 1− pDt(x). Thus, at time t,

each single-target state x ∈ Xt generates an RFS Dt(x) that can take either the value {z} when

the target is observed by a sensor or ∅when the target is not detected. The detection and generation

of measurements for all targets at time t is hence given by the RFS

Dt(Xt) =
⋃
x∈Xt

Dt(x).

We assume that

(A.1) No two different targets share the same measurement at any time.
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Assumption (A.1) can be interpreted as follows: if more than two targets generate the same meas-

urement, then this measurement will be arbitrarily associated with one of the targets and the other

target will be considered as not detected. Similar to the RFS of the surviving targets, the probab-

ility density of the RFS Dt(Xt) is given by

πD,t(Zt|Xt) = K |Zt|z

∑
α∈T(Zt,Xt)

∏
x/∈α(Zt)

(1− pDt(x))
∏
z∈Zt

pDt(α(z))ḡt(z|α(z)) (6.5)

where Kz is the unit volume on Z . Assumption (A.1) allows us to consider 1-1 function between

Zt and Xt. If Zt = ∅ the sum is
∏
x∈Xt(1− pDt(x))

Apart from target-originated measurements, the sensor also receives a set of false/spurious

measurements or clutter which is modeled by an RFS Λt. Consequently, at time t, the multi-target

measurement Zt is the union of target-generated measurements and clutter,

Zt = Dt(Xt) ∪Λt. (6.6)

By (3.80), the multi-target likelihood function gt(Zt|Xt) is given by

gt(Zt|Xt) =
∑
U⊆Zt

πD,t(U |Xt)πΛ,t(Zt −U). (6.7)

When Λt is a Poisson RFS with intensity κt,

πΛ,t(Z) = e−〈κt,1〉K |Z|z

∏
z∈Z

κt(z),

and the multi-target likelihood function gt(Zt|Xt) in (6.7) has the following form [172]

gt(Zt|Xt) = K |Z|z

∑
W⊆Zt

∑
α∈T(W ,Xt)

e−〈κt,1〉
∏

z′∈Zt−W
κt(z

′)
∏

x∈Xt−α(W )

(1− pDt(x))

∏
z∈W

pDt(α(z))ḡt(z|α(z)). (6.8)

where the second sun is e−〈κt,1〉
∏
z′∈Zt κt(z

′)
∏
x∈Xt(1 − pDt(x)) if W = ∅. The terms in

the second sum have their following meanings: the first two terms describe the clutter, the third

term (the second product) expresses the missed detections and the last product describe the target-

generated measurements. The multi-target measurement in (6.6) incorporates not only target gen-

erated measurements but also clutter which are captured in the multi-target likelihood function

(6.8).

6.2.2 Track Hypothesis in RFS Framework

The purpose of this section is to define the track hypothesis which is a set of the trajectories of

the target states. We begin by defining a track (trajectory of single target states) which is a path

of a target over time. In terms of the states, a track is a collection of at least m∗ single states on



108 PMCMC Method for RFS based Multi-target Tracking

consecutive times with the same label where m∗ is called a track gate. Denote T = {1, 2, . . . ,T}
as the set of time indices; and K = {1, 2, . . . ,K} as the set of target labels where T is the

number of measurement scans, and K denotes the maximum number of target for the duration T .

Mathematically, a track is defined as follows

Definition 6.1 (Track): Given a track gate m∗, a track τ is an array of the form

τ = (k, t,x0, . . . ,xm), m ≥ m∗ − 1 (6.9)

where k ∈ K is the track label or identity, t ∈ T is the initial time of the track, xi ∈ X is state of

the track at time t+ i for i = 0, . . . ,m. For the track τ in (6.9), we denote the instances of the

track existence, the initial time of the track, the last existing time of the track, and the track label

respectively by

T(τ ) = {t, t+ 1, . . . , t+m},

T0(τ ) = t, Tf (τ ) = t+m

L(τ ) = k.

For t′ ∈ T(τ ), we denote the state at time t′ by

xt′(τ ) = xt′−t.

A collection of tracks in which no two tracks share the same state at any time is called a track

hypothesis.

Definition 6.2 (Track hypothesis): A track hypothesis ω is a set of tracks such that no two tracks

share the same label and no two tracks share the same state at any time i.e. for all τ , τ ′ ∈ ω such

that τ 6= τ ′

1. L(τ ) 6= L(τ ′) and

2. xt(τ ) 6= xt(τ ′) for any t ∈ T(τ ) ∩T(τ ′).

For a track hypothesis ω, we denote the multi-target state at time t by

Xt(ω) = {xt(τ ) : τ ∈ ω}.

Each element xt(τ ) is the state of the target label L(τ ) at time t. In order to capture the

label of the target state, each single state is augmented with the target label. Thus the augmented

single-target state space is a hybrid space

X̃ = X ×K (6.10)



6.2 Formulation of the MTT problem in an RFS framework 109

Figure 6.1: The augmented single-target states x̃ live in an augmented multi-target state X̃t at
time t = 1, 2, 3. The augmented single-target states at different time steps which are connected
by a line represents a track. The augmented single-target states at time step t = 3 which do not
connect to other augmented single-target states at the previous time steps t = 1, 2 are new single
augmented target states.

Hereafter, if there is no ambiguity the state space and augmented state space are used inter-

changeably when referring to X̃ . At time t, we denote the augmented multi-target state by X̃t

(note that X̃t ∈ F(X̃ )) where F(A) denotes the collection of all finite subsets of the set A. Let τ

be given in (6.9). Denote the augmented single-target state (illustrated in Figure 6.1) of track τ at

time t ∈ T(τ ) by

x̃t(τ ) = (xt(τ ), k)

and the augmented multi-target state of track hypothesis ω at time t by

X̃t(ω) = {x̃t(τ ) : τ ∈ ω}. (6.11)

Let x̃ = (x, k). We denote the single target state of x̃ and the label of x̃ respectively by

x(x̃) = x, L(x̃) = k.

Furthermore, the set of the labels of an augmented multi-target state X̃t is denoted by

L(X̃t) = {L(x̃) : x̃ ∈ X̃t}.
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6.2.3 Posterior Distribution

Our goal is to estimate the tracks from a sequence of noisy multi-target measurements. We are

therefore interested in the posterior distribution p(ω|Z1:T ). In this section we derive the expres-

sions for the posterior distribution p(ω|Z1:T ) given by

p(ω|Z1:T ) = p1:T (X̃1:T |Z1:T )

where X̃1:T = X̃1:T (ω) = (X̃1, . . . , X̃T ) and X̃t = X̃t(ω) for t = 1, . . . ,T . We will propagate

the posterior distribution p1:T (X̃1:T |Z1:T ) via Bayes recursion as follows.

Assume that we have calculated the posterior distribution up to time t− 1. p1:t(X̃1:t|Z1:t) the

posterior distribution at time t can be calculated using the Bayesian recursion

p1:t(X̃1:t|Z1:t) = p1:t−1(X̃1:t−1|Z1:t−1)
ft|t−1(X̃t|X̃t−1)gt(Zt|X̃t)

p(Zt|Z1:t−1)
.

starting with p1(X̃1|Z1) = p0(X̃1)g1(Z1|X̃1)/p(Z1) where p0 is the prior distribution of X̃1.

Denote f1|0(X̃1|X̃0) = p0(X̃1), the posterior distribution p1:T (X̃1:T |Z1:T ) can be written as

follows

p1:T (X̃1:T |Z1:T ) =

∏T
t=1 ft|t−1(X̃t|X̃t−1)gt(Zt|X̃t)

p(Z1:T )
. (6.12)

The augmented multi-target transition density ft|t−1(X̃t|X̃t−1) and the likelihood function

gt(Zt|X̃t) will be discussed next.

The multi-target transition density ft|t−1(Xt|Xt−1) has already been defined in (6.4). We are

now considering the augmented multi-target states which also include the target labels and hence

contains the information about the tracks. This simplifies the expression for the transition density.

Given Xt and Xt−1 (t > 1), and the multi-target transition density ft|t−1(Xt|Xt−1) in (6.4), the

relationship between X̃t−1 and X̃t can be expressed as follows: At time t the set of surviving

targets from the previous time step t− 1 is denoted by W ∗ = {x̃ ∈ X̃t : L(x̃) ∈ L(X̃t−1)},
then α in (6.4) is the 1-1 mapping α∗ from W ∗ ⊆ X̃t to X̃t−1 with the property α∗(x̃) = x̃′ if

L(x̃) = L(x̃′) for x̃ ∈ X̃t. X̃t −W ∗ is the set of targets which are either born spontaneously or

spawned from a previous state x̃′ ∈ X̃t−1. Intuitively, the augmented target state x̃′ ∈ X̃t−1 dies

if its label does not belong to the set of target labels at time t; or it survives and moves to the state

x̃ ∈ X̃t if x̃ and x̃′ have the same label. Furthermore, the target state x̃ ∈ X̃t is a new target if

its label does not belong to a set of target labels at time t− 1. Thus for ft|t−1(X̃t|X̃t−1) the first

two sum in (6.4) reduces to a single term corresponding to W = W ∗ and α = α∗ and (6.4) can

be written as follows

ft|t−1(X̃t|X̃t−1) =e
−µf (X̃t−1)

∏
x̃∈X̃t−W ∗

b(x̃|X̃t−1)
∏

x̃′∈X̃t−1−α∗(W ∗)

(1− pSt(x̃′))×

( ∏
x̃∈W ∗

pSt(α
∗(x̃))f̄t|t−1(x̃|α∗(x̃))

)
(6.13)
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where b(x̃|X̃t−1) = b(x(x̃)|Xt−1) is the intensity of a new target x̃ (spontaneous birth or spawn-

ing), pSt(x̃
′) = pSt(x(x̃′)) is the surviving probability of x̃′ ∈ X̃t−1 and µf (X̃t−1) = µf (Xt−1)

is the expected number of new targets. As in (6.4) the first term and the first product on the right

hand side of (6.13) describes the presence of the new targets, the second product explains the dead

targets and the last product explains the surviving targets.

gt(Zt|X̃t), t ≥ 1 is the likelihood that a set of measurements Zt will be collected given the set

of augmented target states X̃t at time t which is independent of the target labels so gt(Zt|X̃t) =

gt(Zt|Xt). For intuitive notation, we denote pDt(x̃) = pDt(x(x̃)), ḡt(z|x̃) = ḡt(z|x(x̃)). (6.8)

can therefore be written as

gt(Zt|X̃t) =
∑
W⊆Zt

e−〈κt,1〉
∏

z∈Zt−W
κt(z)× ∑

α∈T(W ,X̃t)

∏
x̃∈X̃t−α(W )

(1− pDt(x̃))
∏
z∈W

pDt(α(z))ḡt(z|α(z))

 (6.14)

where the second sum is
∏
x̃∈X̃t

(1− pDt(x̃)) ifW = ∅. The posterior distribution given by (6.12)

has no closed-form expression so numerical methods such as MCMC must be used. However, dir-

ect application of MCMC to the above form of the posterior distribution is intractable when the set

of measurements and/or the number of target states at time t is large because computation of the

likelihood function gt(Zt|X̃t) in (6.12) which is given by (6.14) involves sum over all combina-

tions of elements of Zt and elements of X̃t. To overcome this problem, at each time instance we

introduce an auxiliary variable which describes a possible relationship between target labels and

the measurements. The likelihood function given in (6.14) can be rewritten as an alternative form

of the multi-target likelihood given in [101]

gt(Zt|X̃t) =
∑
θt

e−〈κt,1〉
∏

j:j/∈θt(L(X̃t))

κt(zj)
∏

x̃′∈X̃t :θt(L(x̃′))=0

(1− pDt(x̃′))×

∏
x̃∈X̃t :θt(L(x̃))>0

pDt(x̃)ḡt(zθt(L(x̃))|x̃) (6.15)

where θt is a mapping from L(X̃t) to {0, 1, . . . , |Zt|} with the following property: θt(k) =

θt(k′) > 0 implies k = k′ that is, no two targets share the same measurement at any time (as-

sumption [A.1]) and θt = ∅ if X̃t = ∅. θt assigns the target labels to the measurement indices

if the targets are detected, and θt assigns 0 if the measurement is not coming from a target. θt in

(6.15) plays an auxiliary role for calculating the likelihood and therefore θt is called an auxiliary

variable of X̃t. (6.15) is the sum of all possible relations between collected measurements and

augmented single target states and each possibility is represented by a particular auxiliary variable

θt. The measurements zj ∈ Zt on the right hand side of (6.15) are arranged in an particular order
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so we denote Z̃t = z1:|Zt| = (z1, . . . , z|Zt|) and denote

gt(Z̃t|X̃t, θt) =
∏
j:j/∈θt

κt(zj)

〈κt, 1〉
∏
x̃∈X̃t :

θt(L(x̃))=0

(1− pDt(x̃))
∏
x̃∈X̃t :

θt(L(x̃))>0

pDt(x̃)ḡt(zθt(L(x̃))|x̃) (6.16)

where κt(zj)
〈κt,1〉 is the density of clutter, g(Z̃t|X̃t, θt) in (6.16) is 1 if Zt = ∅ (i.e. all targets are

undetected if X̃t 6= ∅) or
∏
z∈Zt

κt(z)
〈κt,1〉 if X̃t = ∅ (i.e. all measurements are clutter if Zt 6= ∅). Let

w(θt) = e−〈κt,1〉〈κt, 1〉|{1,...,|Zt|}−{j:j∈θt(L(X̃t))}|

where w(θt) = e−〈κt,1〉〈κt, 1〉|Zt| if X̃t = ∅. Conditional on X̃t and θt, target-generated measure-

ments and clutter in Zt are known, then gt(Z̃t|X̃t, θt) is the product of the density of clutter, the

densities of target-generated measurements and the probabilities of undetected target states. Then

(6.15) can be rewritten as

gt(Zt|X̃t) =
∑
θt

gt(Z̃t|X̃t, θt)w(θt). (6.17)

We extend θt to an augmented auxiliary variable θ̃t by adding the target label

θ̃t(k) = (θt(k), k) (6.18)

where k ∈ L(X̃t) if θt 6= ∅ or ∅ if θt = ∅. Hence (6.17) can be rewritten in terms of θ̃t as follows

gt(Zt|X̃t) =
∑
θ̃t

gt(Z̃t|X̃t, θ̃t)w(θ̃t). (6.19)

The posterior distribution p1:T (X̃1:T |Z1:T ) in (6.12) can now be rewritten using (6.19) as

follows: Given µ0(X̃1), at time t = 1, denote f1|0(X̃1|X̃0) = µ0(X̃1) and by (6.19) we have

p1(X̃1|Z1) =

∑
θ̃1
f1|0(X̃1|X̃0)g1(Z̃1|X̃1, θ̃1)w(θ̃1)

p(Z1)
. (6.20)

Denote θ̃1:t = (θ̃1, . . . , θ̃t) (t > 1). Assume that p1:t−1(X̃1:t−1|Z1:t−1) is calculated in term of

θ̃1:t−1 and given by

p1:t−1(X̃1:t−1|Z1:t−1) =

∑
θ̃1:t−1

∏t−1
i=1 fi|i−1(X̃i|X̃i−1)gi(Z̃i|X̃i, θ̃i)w(θ̃i)

p(Z1:t−1)
,
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then p1:t(X̃1:t|Z1:t) is recursively propagated as follows

p1:t(X̃1:t|Z1:t) = p1:t−1(X̃1:t−1|Z1:t−1)
ft|t−1(X̃t|X̃t−1)gt(Z̃t|X̃t−1)

p(Zt|Z1:t−1)

=

∑
θ̃1:t−1

∏t−1
i=1 fi|i−1(X̃i|X̃i−1)gi(Z̃i|X̃i, θ̃i)w(θ̃i)

p(Z1:t−1)
×∑

θ̃t
ft|t−1(X̃t|X̃t−1)gt(Z̃t|X̃t, θ̃t)w(θ̃t)

p(Zt|Z1:t−1)

=

∑
θ̃1:t

∏t
i=1 fi|i−1(X̃i|X̃i−1)gi(Z̃i|X̃i, θ̃i)w(θ̃i)

p(Z1:t)
.

Denote w(θ̃1:T ) =
∏T
t=1w(θ̃t). Then p1:T (X̃1:T |Z1:T ) can be written as

p1:T (X̃1:T |Z1:T ) =

∑
θ̃1:T

∏T
t=1 ft|t−1(X̃t|X̃t−1)gt(Z̃t|X̃t, θ̃t)w(θ̃t)

p(Z1:T )

=
∑
θ̃1:T

(
T∏
t=1

w(θ̃t)

) ∏t
t=1 ft|t−1(X̃t|X̃t−1)gt(Z̃t|X̃t, θ̃t)

p(Z1:T )

=

∑
θ̃1:T

w(θ̃1:T )
∏T
t=1 ft|t−1(X̃t|X̃t−1)gt(Z̃t|X̃t, θ̃t)

p(Z1:T )
(6.21)

Hereafter, we denote Z̃1:t = (Z̃1, . . . , Z̃t). Bayes recursion also give us

p1:T (X̃1:T |Z̃1:T , θ̃1:T ) =

∏T
t=1 ft|t−1(X̃t|X̃t−1)gt(Z̃t|X̃t, θ̃t)

p(Z̃1:T |θ̃1:T )
. (6.22)

Then (6.21) can be rewritten as

p1:T (X̃1:T |Z1:T ) =

∑
θ̃1:T

w(θ̃1:T )p1:T (X̃1:T |Z̃1:T , θ̃1:T )p(Z̃1:T |θ̃1:T )

p(Z1:T )
(6.23)

θ̃1:T is not random, but for the algorithmic development in the next section it is useful to treat θ̃1:T

as random, and the probability of θ̃1:T can be defined as follows

p1:T (θ̃1:T ) =
w(θ̃1:T )∑
θ̃1:T

w(θ̃1:T )
. (6.24)

Then

w(θ̃1:T )∑
θ̃1:T

w(θ̃1:T )
p(Z̃1:T |θ̃1:T ) = p(θ̃1:T |Z̃1:T )p(Z̃1:T )

or

p(θ̃1:T |Z̃1:T ) =
p(Z̃1:T |θ̃1:T )w(θ̃1:T )

p(Z̃1:T )
∑
θ̃1:T

w(θ̃1:T )
(6.25)

p(θ̃1:T |Z̃1:T ) ∝ w(θ̃1:T )p(Z̃1:T |θ̃1:T ) (6.26)
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so (6.23) becomes

p1:T (X̃1:T |Z1:T ) =
∑
θ̃1:T

p1:T (X̃1:T |Z̃1:T , θ̃1:T )p(θ̃1:T |Z̃1:T )
p(Z̃1:T )

p(Z1:T )

∑
θ̃1:T

w(θ̃1:T )

∝
∑
θ̃1:T

p1:T (X̃1:T |Z̃1:T , θ̃1:T )p(θ̃1:T |Z̃1:T ) (6.27)

∝
∑
θ̃1:T

p1:T (X̃1:T , θ̃1:T |Z̃1:T ). (6.28)

Hereafter, we denote Z̃1:t as (z1:|Z1|, . . . , z1:|Zt|). For notational simplicity Z, Z̃, X̃, θ̃ and

p(X̃1:T |Z1:T ) are used in place of Z1:T , Z̃1:T , X̃1:T , θ̃1:T and p1:T (X̃1:T |Z1:T ) respectively if

there is no ambiguity.

The variable θ̃ is in essence a nuisance variable being marginalized out. Our aim is to sample

θ̃, X̃ from p(X̃, θ̃|Z̃). The right hand side of (6.27)suggests that we can use MC methods as fol-

lows. For each MC iteration we first sample θ̃ conditional on Z̃ and then we sample X̃ conditional

on θ̃ and Z̃. This approach is called Marginal Metropolis-Hastings (MMH) sampling. The Particle

Marginal - Metropolis Hastings (PMMH) sampler [4] is an improvement of MMH by using SMC

approximation as a proposal distribution for the Metropolis-Hastings (MH) sampler.

6.3 PMMH Algorithm for RFS-based Multi-target Tracking

The method which combines MCMC method to sample θ̃ from p(·|Z̃) and SMC method to sample

X̃ from p(X̃|Z̃, θ̃) to get a sample (θ̃, X̃) from p(X̃, θ̃|Z̃) is called PMMH and was described in

Chapter 4.2.3. Using MCMC to sample directly from p(θ̃|Z̃) is difficult because the denominator

in (6.25) is extremely difficult to compute. However, the Metropolis-Hastings (MH) algorithm is

able to generate a sample without knowing this constant of proportionality. The MH algorithm

generates a MC by using a proposal distribution in which each new proposed sample only depends

on the current sample. The construction of the proposal distribution is described in detail with

illustrated figures in Subsection 6.3.2. In Subsection 6.3.3 the PMMH Algorithm for RFS based

Multi-target tracking is derived by combining the PMMH sampler described in 6.3.1 and the pro-

posal distribution described in Subsection 6.3.2 to generate samples from the posterior distribution

p(X̃, θ̃|Z̃).

6.3.1 PMMH Algorithm

The PMMH given in Chapter 4.2.3 is partly reproduced for convenience. An augmented multi-

target state X̃ and ordered multi-target measurement Z̃ are used in place of X and Z respectively.

Given θ̃ and Z̃, the SMC algorithm propagates the particle {X̃n
1:t} and updates the weights

{Wn
1:t} for n = 1, . . . ,N and t = 1, . . . ,T as follows:

At time t = 1: Importance sampling (IS) is used to approximate p(X̃1|Z̃1, θ̃1) by using an

importance density q(X̃1|Z̃1, θ̃1) as follows: N particles {X̃n
1 } are sampled from q(X̃1|Z̃1, θ̃1)
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and assigned importance weight {Wn
1 } which represents the discrepancy between the two densit-

ies. Then a resampling step is used to sample N times from the IS approximation p̂(X̃1|Z̃1, θ̃1)

of p(X̃1|Z̃1, θ̃1). The N particles {X̃n
(1)}

N
n=1 which are obtained from the resampling step are

approximately distributed according to p(X̃1|Z̃1, θ̃1).

At time t = 2, . . . ,T : The posterior distribution

p(X̃1:t|Z̃1:t, θ̃1:t) ∝ p(X̃1:t−1|Z̃1:t−1, θ̃1:t−1)f(X̃t|X̃t−1)g(Z̃t|X̃t, θ̃t), (6.29)

suggests that the samples at the previous time t− 1 which approximate the posterior distribution

p(X̃1:t−1|Z̃1:t−1, θ̃1:t−1)

can be used at time step t by extending each of these particles through the IS distribution

q(X̃t|Z̃t, X̃t−1, θ̃t)

to produce samples approximately distributed according to p(X̃1:t−1|Z̃1:t−1, θ̃1:t−1)q(X̃t|X̃t−1, θ̃t)
where q(X̃t|Z̃t, X̃t−1, θ̃t) is an IS distribution for f(X̃t|X̃t−1)gt(Z̃t|X̃t, θ̃t). The pseudocode for

the SMC algorithm is given in Algorithm 11 below. Wt = (W 1
t , . . . ,WN

t ) is the array of nor-

malized importance weights at time t and defines a probability distribution on {1, . . . ,N} denoted

by F(·|Wt).

Algorithm 11 : SMC Algorithm
Input: Given Z̃, θ̃, pSt , pDt , κt, the birth intensity γt, for t = 1, . . . ,T and sample number N .
Output: X̃n

1:T ,Wn
T , and wt(X̃n

1:t) for n = 1, . . . ,N such that
∑N
n=1W

n
T δ(X̃

n
1:T − X̃1:T ) approx-

imate p(X̃|θ̃, Z̃)
At time t = 1:

- sample X̃n
1 ∼ q(·|Z̃1, θ̃1) (resampling step). Then compute

w1(X̃
n
1 ) =

p(X̃n
1 , Z̃1|θ̃1)

q(X̃n
1 |Z̃1, θ̃1)

=
p0(X̃n

1 )g(Z̃1|X̃n
1 , θ̃1)

q(X̃n
1 |Z̃1, θ̃1)

(6.30)

and normalize Wn
1 = w1(X̃n

1 )/
∑N
m=1w1(X̃m

1 ).
At t = 2, . . . ,T :

- sample Ant−1 ∼ F(·|Wt−1) (resampling step), then X̃n
t ∼ q(·|X̃Ant−1

t−1 , Z̃t, θ̃t) and set X̃n
1:t =

(X̃
Ant−1
1:t−1, X̃n

t ). Then compute

wt(X̃
n
1:t) =

p(X̃n
1:t, Z̃1:t|θ̃1:t)

p(X̃
Ant−1
1:t−1, Z̃1:t−1|θ̃1:t−1)q(X̃n

t |X̃
Ant−1
t−1 , Z̃t, θ̃t)

=
f(X̃n

t |X̃
Ant−1
t−1 )g(Z̃t|θ̃t, X̃n

t )

q(X̃n
t |X̃

Ant−1
t−1 , Z̃t, θ̃t)

(6.31)

and normalize Wn
t = wt(X̃n

1:t)/
∑N
m=1wt(X̃

m
1:t).
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In Algorithm 11, for n = 1, . . . ,N the variable Ant−1 is the index of the ’parent’ at time t− 1
of particle X̃n

1:t for t = 2, . . . ,T . The variables Bn
1:T is introduced as the ancestral lineage of

the particle X̃n
1:t such that Bn

T = n and Bn
t = A

Bnt+1
t for t = T − 1, . . . , 1. Therefore, particle

X̃n
1:T = (X̃

Bn1
1 , . . . , X̃BnT

T ) for n = 1, . . . ,N .

The SMC algorithm provides us an approximation of the posterior distribution p(X̃|Z̃, θ̃) as

follows (recall that X̃n = X̃n
1:T )

p̂(X̃|Z̃, θ̃) =
N∑
n=1

Wn
T δ(X̃ − X̃n)

where δ(·) is the dirac delta function. In addition, the estimate of the marginal likelihood p(Z̃|θ̃)
is

p̂(Z̃|θ̃) =
T∏
t=1

p̂(Z̃t|Z̃1:t−1, θ̃1:t)

where p̂(Z̃1|Z̃0, θ̃1) = p̂(Z̃1|θ̃1) and

p̂(Z̃t|Z̃1:t−1, θ̃1:t) =
1
N

N∑
n=1

wt(X̃
n
1:t)

is an estimate at time t of

p(Z̃t|Z̃1:t−1, θ̃1:t) =
∫
wt(X̃1:t)q(X̃t|Z̃t, X̃t−1, θ̃t)p(X̃1:t−1|Z̃1:t−1, θ̃1:t−1)dX̃1:t. (6.32)

(6.32) can be explained as follows

p(Z̃t|Z̃1:t−1, θ̃1:t) =
∫
p(Z̃t|Z̃1:t−1, θ̃1:t, X̃1:t)p(X̃1:t|Z̃1:t−1, θ̃1:t)dX̃1:t

=
∫
p(Z̃t|X̃t, θ̃t)p(X̃t|X̃t−1)p(X̃1:t−1|Z̃1:t−1, θ̃1:t−1)dX̃1:t

=
∫
wt(X̃1:t)q(X̃t|Z̃t, X̃t−1, θ̃t)p(X̃1:t−1|Z̃1:t−1, θ̃1:t−1)dX̃1:t (by (6.31)).

As X̃n
1:t ∼ q(X̃t|Z̃t, X̃t−1, θ̃t)p(X̃1:t−1|Z̃1:t−1, θ̃1:t−1), then

p(Z̃t|Z̃1:t−1, θ̃1:t) ≈
1
N

N∑
n=1

wnt (X̃
n
1:t)

When θ̃ is unknown, estimating both X̃ and the unknown θ̃ from the posterior distribution

p(θ̃, X̃|Z̃) is required. The MH algorithm is employed with a proposal distribution of the follow-

ing form

q(X̃∗, θ̃∗|X̃, θ̃, Z̃) = q(θ̃∗|θ̃, Z̃)p(X̃∗|Z̃, θ̃∗). (6.33)
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This leads to an MMH algorithm with acceptance rate

p(X̃∗, θ̃∗|Z̃)q(X̃, θ̃|X̃∗, θ̃∗, Z̃)
p(X̃, θ̃|Z̃)q(X̃∗, θ̃∗|X̃, θ̃, Z̃)

=
p(Z̃|θ̃∗)w(θ̃∗)q(θ̃|θ̃∗, Z̃)
p(Z̃|θ̃)w(θ̃)q(θ̃∗|θ̃, Z̃)

. (6.34)

By using p̂(X̃|Z̃, θ̃) and p̂(Z̃|θ̃) in place of p(X̃|Z̃, θ̃) and p(Z̃|θ̃) respectively in the MMH

update on the right hand side of (6.34), the PMMH sampler is given in Algorithm 12 for l =

1, . . . ,L.

Algorithm 12 : PMMH Algorithm
Input: Given Z̃, pSt , pDt , κt, the birth intensity γt for t = 1, . . . ,T and sample number L.
Output: SX(l),Sθ̃(l), and γθ(l) for l = 1, . . . ,L.
At iteration l = 1

- Set θ̃ arbitrarily. Denote Sθ̃(l) = θ̃, then
- run an SMC algorithm targeting p(·|Z̃, θ̃), sample X̃ ∼ p̂(·|Z̃, θ̃) and calculate p̂(Z̃|θ̃).

Assign SX(l) = X̃ and γθ(l) = p̂(Z̃|θ̃).
At iteration l > 1

- Propose θ̃∗ ∼ q(·|Sθ̃(l− 1), Z̃),
- run an SMC algorithm targeting p(·|Z̃, θ̃∗), sample X̃∗ ∼ p̂(·|Z̃, θ̃∗) and calculate p̂(Z̃|θ̃∗).
- calculate an acceptance rate

α = min
{

1, p̂(Z̃|θ̃∗)w(θ̃∗)q(Sθ̃(l− 1)|θ̃∗, Z̃)
γθ(l− 1)w(Sθ̃(l− 1))q(θ̃∗|Sθ̃(l− 1), Z̃)

}

- if α ≥ u, set SX(l) = X̃∗, γθ(l) = p̂(Z̃|θ̃∗) and Sθ̃(l) = θ̃∗. Otherwise SX(l) =
SX(l− 1),Sθ̃(l) = Sθ̃(l− 1), γθ(l) =γθ(l− 1) where u ∼ Unif [0, 1].

In order to apply the PMMH, we need to construct the proposal distribution q(·|θ̃, Z̃) in (6.34)

which is discussed in the next Subsection.

6.3.2 Design and Construction of Proposal Distribution

(6.27) suggests us to sample θ̃ from the conditional probability distribution p(·|Z̃). Here each

sample θ̃1:T from p(·|Z̃1:T ) is a sequence of auxiliary variables associated with a track hypothesis.

Let Θ be the collection of all sequences of auxiliary variables θ̃ where each sequence correspond to

a track hypothesis. Then a sample from the distribution p(·|Z̃) is an element of Θ. Since sampling

from this distribution is difficult because the denominator in (6.25) is extremely difficult to com-

pute, an alternative is to use the Metropolis Hastings algorithm with the proposal distribution of

the form in (6.33) to generate an MC with p(θ̃|Z̃) as its stationary distribution. Constructing the

proposal distribution which makes the MC converges quickly to its stationary distribution p(θ̃|Z̃)
is the main goal of this subsection. Instead of constructing the MC on the space Θ, we construct

it on an equivalent space.
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6.3.2.1 Track Hypothesis Auxiliary Variable

The space containing the track information can be constructed as follows. For a given θ̃ ∈ Θ, a

track auxiliary variable θ̃τ is defined as follows

θ̃τ = (k, t, j0, . . . , jm) (6.35)

where k = L(τ ), t = T0(τ ) and θ̃t+i(k) = (ji, k) for i = 0, . . . ,m. Hence, the track auxiliary

variable θ̃τ contains information about the measurements associated with a track τ . θ̃τ inherits

the following properties from track τ : 1) label i.e. L(θ̃τ ) = L(τ ), 2) the instances of the track

existence i.e. T(θ̃τ ) = T(τ ), 3) the initial time of appearance T0(θ̃τ ) = T0(τ ) and 4) the last

time of existence Tf (θ̃τ ) = Tf (τ ). We denote the measurement index of θ̃τ at time t′ ∈ T(θ̃τ )

by

It′(θ̃τ ) = jt′−t.

Hence the target (labeled) L(τ ) is undetected at time t′ if It′(θ̃τ ) = 0 or it generates the measure-

ment zIt′ (θ̃τ ) if It′(θ̃τ ) > 0. We also define the track hypothesis auxiliary variable

θ̃ω =
{
θ̃τ : τ ∈ ω

}
. (6.36)

θ̃ω and θ̃ are equivalent representations of the association between tracks and measurements. Given

θ̃ω, for t = 1, . . . ,T , θ̃t is defined by ∅ if t /∈
⋃
θ̃τ∈θ̃ω T(θ̃τ ) otherwise

θ̃t(L(θ̃τ )) = (It(θ̃τ ),L(θ̃τ )), θ̃τ ∈ θ̃ω (6.37)

Thus constructing an MC on the space of θ̃ is equivalent to constructing an MC on the space of

θ̃ω denoted by Θω. Denote the probability going from θ̃ω to θ̃ω∗ given Z̃ by q(θ̃ω∗ |Z̃, θ̃ω), then

q(θ̃∗|Z̃, θ̃) = q(θ̃ω∗ |Z̃, θ̃ω).

6.3.2.2 Proposal Distribution Construction

First we make the following assumptions which are reasonable for MTT.

(A.2) The maximum speed of any target is v̄.

(A.3) The maximum number of consecutive missed detection for any track is d̄, (d̄ ≥ 1).

d̄ in Assumption (A.3) can e.g. be chosen such that the probability of d̄ consecutive missed

detections is below an acceptable threshold.

Given a track hypothesis ω, at time t we denote the clutter associated with track hypothesis ω

by

Λt(ω) =

{
zj ∈ Zt : j /∈

⋃
τ∈ω
{It(θ̃τ )}

}
. (6.38)
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The proposal distribution q(θ̃ω∗ |Z̃, θ̃ω) is constructed using fourteen moves called move m, m =

1, . . . , 14 (see Figure 6.2) which are classified into eleven groups

List of Proposal Moves

Group Type m

I
Birth (B) 1

Death (D) 12

II
Split (S) 7

Merge 5

III
Extension (E) 2

Reduction (R) 8

IV
Extension Merge (EM) 4

Birth Merge (BM) 14

V Switch (Sw) 6

VI
Extension Merge (EM) 4

Delete Split (DS) 13

VII
Extension Merge (EM) 4

Delete Split (DS) 13

VIII Extension Merge (EM) 4

IX Birth Merge (BM) 14

X Update (Up) 10

XI Point Update (PUp) 11

The moves in groups I, II, III, V, and X are from [127] while the moves of the remaining

groups are derived to speed up the convergence of the MC on the space of θ̃ω. If a group consists

of two moves, then one move is the reverse move of the other. If a group includes only one

move, the move and its reverse move are the same. Now we will build the proposal distribution

q(θ̃ω∗ |Z̃, θ̃ω). Let P(Z̃, θ̃ω,m) be the set of all possible new track hypothesis auxiliary variables

which are constructed from move m, m = 1, . . . , 14. Specifically,

• If θ̃ω = ∅, only a Birth move is proposed i.e. P(Z̃, θ̃ω,m) = ∅ for m 6= 1.

• If |θ̃ω| = 1, neither Merge, Extension Merge nor Switch move occurs i.e. P(Z̃, θ̃ω,m) = ∅
for m = 4, 5, 6.

Based on this construction θ̃ω∗ is chosen uniformly at random (u.a.r) from
⋃14
m=1 P(Z̃, θ̃ω,m).

Let NP be the number of new possible track hypothesis auxiliary variables in
⋃14
m=1 P(Z̃, θ̃ω,m).

Then the proposal distribution is

q(θ̃ω∗ |Z̃, θ̃ω) =
{ 1

NP
, if θ̃ω∗ ∈

⋃14
m=1 P(Z̃, θ̃ω,m);

0, otherwise.
(6.39)

One θ̃ω∗ is chosen u.a.r from
⋃14
m=1 P(Z̃, θ̃ω,m), θ̃∗ is found by (6.37).
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θ̃τ = (k1, t1, 8, 1, 2, 3)
θ̃τ ′ = (k2, t2, 9, 1, 2)
θ̃τ• = (k3, t3, 1, 2, 4, 5)

θ̃τ = (k1, t1, 8, 1, 2, 3)
θ̃τ ′ = (k2, t′2, 6, 9, 1, 2)
θ̃τ• = (k3, t3, 1, 2, 4, 5)

θ̃τ = (k1, t1, 8, 1, 2, 3, 9, 1, 2)
θ̃τ• = (k3, t3, 1, 2, 4, 5)

θ̃τ = (k1, t1, 8, 1, 2)
θ̃τ ′ = (k2, t2, 9, 1, 2)
θ̃τ• = (k3, t3, 1, 2, 4, 5)

θ̃τ = (k1, t1, 8, 1, 2, 3)
θ̃τ ′ = (k2, t2, 9, 4, 5)
θ̃τ• = (k3, t3, 1, 2, 1, 2)

θ̃τ = (k1, t1, 8, 1, 2, 3)
θ̃τ ′ = (k2, t2, 9, 4, 5)
θ̃τ• = (k3, t3, 1, 7, 6, 3)

θ̃τ = (k1, t1, 8, 1, 2, 3, 8, 9, 3)
θ̃τ ′ = (k2, t2, 9, 4, 5)
θ̃τ• = (k3, t3, 1, 7, 6)

θ̃τ = (k1, t1, 8, 1, 2, 4)
θ̃τ ′ = (k2, t2, 9, 1, 2)
θ̃τ• = (k3, t3, 1, 2, 4, 5)

θ̃τ = (k1, t1, 8, 1, 2, 4)
θ̃τ ′ = (k2, t2, 9, 1, 2)i

h
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b d
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f
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Figure 6.2: Fourteen moves of the MC on the space of θ̃ω with track gatem∗ = 3 and d̄ = 2 where
t3 = t1 + 3, t2 = t3 + 1 and t′2 = t2 − 1. Each move proposes a new track hypothesis auxiliary
variable θ̃ω∗ that modifies the current track hypothesis auxiliary variable θ̃ω. The Birth (B) move
(i → h) adds θ̃τ• which is constructed from the set of clutter

⋃
t∈T Λt(ω) to node (i) while the

Death (D) move (h → i) removes θ̃τ• at node (h) where Λt(ω) is given in (6.38). The Split (S)
move (c→ a) splits θ̃τ at node (c) while the Merge (M) move (a→ c) combines θ̃τ and θ̃τ ′ at node
(a). The Extension (E) move (d→ a) adds measurement index 3 after the last measurement index
of θ̃τ at node (d) while the Reduction (R) move (a → d) removes the last measurement index 3
from θ̃τ at node (a). Similarly, the Backward Extension (BE) move (a → b) adds measurement
index 6 before the first measurement index of θ̃τ ′ at node (a) while the Backward Reduction (BR)
move (b → a) removes the first measurement index 6 from θ̃τ ′ at node (b). The Switch (Sw)
move (a ↔ e) exchanges measurement indices between θ̃τ ′ and θ̃τ• . The Extension Merge (EM)
move (b→ c) merges θ̃τ and θ̃τ ′ at node (b) but removes the first measurement index at θ̃τ ′ while
the Birth Merge (BM) move (c → b) adds θ̃τ ′ at node (b) starting at measurement index 6 then
merging to θ̃τ at node (c) starting from measurement index 9. The Extension Merge (EM) move
(d → c) applies to θ̃τ and θ̃τ ′ at node (d) while Delete Split (DS) move (c → d) applies to θ̃τ at
node (c). The Extension Merge (EM) move (f ↔ g) applies to θ̃τ and θ̃τ• . The Update (Up) move
(e↔ f ) applies θ̃τ• while the Point Update (PUp) move (a↔ h) applies to θ̃τ .
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By the construction of this proposal distribution, θ̃ω∗ specifies some track hypothesis ω∗ and

hence θ̃∗ is the sequence of augmented auxiliary variables of X̃1:T (ω∗). Hence whenever X̃ ∼
q(·|Z̃, θ̃∗), there exists a track hypothesis ω∗ such that X̃ = X̃1:T (ω∗).

In order to sample from the proposal distribution q(θ̃ω∗ |Z̃, θ̃ω), knowing that a measurement

is clutter or potentially target-generated measurement will reduce the computation. The next sub-

section will explain this idea in more detail.

6.3.2.3 Neighborhoods of measurements

In multi-target tracking, the association between the states at scans are of importance to determine

the trajectories of targets. However, the states are hidden Markov and are only observed indirectly

through the noisy measurements. This association can be transformed equally into the association

of measurements at different time scans which can be found in neighborhoods of measurements.

This subsection will introduce a set which contains all measurements potentially generated from

the same target. Note that the introduction of this set will reduce number of possible track auxiliary

variable associated with one of the fourteen proposal moves but it does not affect the estimate of

target number as well as the RFS concept.

From now on, time scan or time index are used interchangeably. Given a measurement z

at time t, a measurement z′ at time t+ d, d ∈ d where d = {1, 2, . . . , d̄+ 1}. z′ is called a

d−neighbor of z (neighbor at time scan t+ d of z) if |z′ − z| ≤ dv̄. A set of these elements is

called d−neighborhood of z (or neighborhood at time scan t+ d of z ) and is denoted by Ld(z, t).
i.e.

Ld(z, t) =
{
z′ ∈ Zt+d : ‖z′ − z‖ ≤ dv̄

}
, d ∈ d. (6.40)

where ‖ · ‖ is the Euclidean norm on Rnz . This explains the idea that if a measurement z is

generated from a target labeled i at time t then z′ ∈ Ld(z, t) is a possible measurement generated

by target i at time time t+ d.

The introduction of Ld(z, t) reduces the computation of the proposal distribution by choosing

only neighbors of z as the potential target-generated measurements from the same target which

generates the measurement z. Consider a z ∈ Zt if Ld(z, t) = ∅ for all d ∈ d then z may be the

last measurement generated from a target if z is a d′−neighbor of any measurement z′ ∈ Zt−d′
where d′ ∈ d, t− d′ > 0 (i.e. z ∈ Ld′(z′, t− d′) otherwise z is a clutter. If there exist d ∈ d such

that Ld(z, t) 6= ∅, the target which generated measurement z potentially survives at time t+ d.

The union of all Ld(z, t), d ∈ d is called neighborhood of z and denoted by L(z, t). Math-

ematically

L(z, t) =
⋃
d∈d

Ld(z, t).

An element of L(z, t) is called a neighbor of z. If L(z, t) = ∅, z may be the last measurement

generated from a target if z is a neighbor of any measurement in the previous d time scan otherwise
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z is a clutter. If L(z, t) 6= ∅, the target which generated measurement z potentially survives in the

next time scan.

Figure 6.3: Given z ∈ Zt,the neighborhood of z at the next consecutive time scan is L1(z, 2) and
Neighborhood of z at the second consecutive time scan is L2(z, 2) where d̄ = 1.

Similarly, denote by LBd (t) the set of measurements at time t which neighborhood at time

t+ d is not empty i.e.

LBd (t) = {z ∈ Zt : Ld(z, t) 6= ∅} ; (6.41)

LB(t) is the set of all possible target-generated measurement at time t which survives in the future

i.e.

LB(t) =
{
z ∈ LBd (t) : d ∈ d

}
; (6.42)

At time t if LB(t) = ∅, all measurements are clutter or the last measurement of a track, otherwise

any element of LB(t) is a potential target-generated measurement. In particular, any measurement

of a non-empty LBd (t) and a neighbor at time scan t+ d may be generated from a target. For

example, in Figure 6.3, z6 at time t = 2 and any element of L(z6, 2) = L1(z6, 2) ∪ L2(z6, 2)
may be generated from a target where d̄ = 2.

The next Subsection will detail how proposal distribution associated with the fourteen proposal

moves is constructed using the neighborhoods.

6.3.2.4 Proposal Moves

In this Subsection, we will discuss the construction of the moves (in groups) with illustrated fig-

ures.

The following notations will be used throughout.
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Denote by %j(Z̃t), t ∈ T the projection mapping that takes an element Z̃t = (z1, . . . , zn) to

the value %j(Z̃t) = zj .

The measurement of a target is denoted by either the symbol � if the target is not detected

by a sensor or by z if the target generate measurement z. The first is called empty measurement

and the latter is called target-generated measurement. Furthermore, given θ̃τ , τz is the sequence

of measurements (empty measurement or target-generated measurement) of target L(θ̃τ ) and is

called the track measurement of target L(θ̃τ ). For example given θ̃τ = (k, t, j0 . . . , jm), then

τz = (y0, . . . , ym) where

yi =

{
�, if ji = 0;

zji ∈ Zt+i, if ji > 0

for i = 0, . . . ,m.

As discussed in Subsection 6.3.2, the properties (label, initial time, the last time and the dura-

tion of existence) of θ̃τ and τ are the same apart from the properties of the track states in τ . Thus,

the track and the track auxiliary variable are used interchangeably for the properties other than the

states of the track. In order to construct the fourteen moves in detail, we first explain the purpose

of proposing these fourteen moves for solving the problem and describe briefly the characteristic

of these fourteen moves with illustrated figures.
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Sketch of Proposal moves

1. Birth and death moves:
The purpose of the Birth move and the Death move is to deal with unknown number of

targets [127]. These moves are illustrated in Figure 6.4. The track hypothesis ω reduces

the number of tracks by one for the Death move and increases the number of tracks by one

for the Birth move.

Figure 6.4: A Birth move is proposed from θ̃ω to θ̃ω∗ by adding a track auxiliary variable θ̃τ∗ with
its track measurement τ∗z = (y∗0, . . . , y∗4) to θ̃ω and its reverse move, a Death move is proposed
from θ̃ω∗ to θ̃ω by removing the track auxiliary variable θ̃τ∗ .

2. Split and Merge moves:
When θ̃ω 6= ∅, Split and Merge moves [127] are a reversible pair of moves. This pair

of moves also change the number of tracks. In a split move a track auxiliary variable

θ̃τ∗ with |T(θ̃τ∗)| ≥ 2m∗ is split into two track auxiliary variables θ̃τ and θ̃τ ′ where

T0(θ̃τ ′) = Tf (θ̃τ ) + 1. If T0(θ̃τ ′) > Tf (θ̃τ ) + 1 this move become the Delete Split

move which is discussed later in point 5 of this subsection. The reverse, a Merge move is

applied to any two track auxiliary variables θ̃τ , θ̃τ ′ ∈ θ̃ω in which the first target-generated

measurement of the target L(θ̃τ ′) is in the d−neighborhood (d = 1) of the last target-

generated measurement of the target L(θ̃τ ). If d > 1 the move is called an Extension

Merge move discussed later in point 5 of this section. The Split and Merge moves are

sketched in Figure 6.5.

Figure 6.5: The Split move divides track auxiliary variable θ̃τ∗ ∈ ω with τ∗z = (y∗0, y∗1, . . . , y∗5)
into two new track auxiliary variables θ̃τ and θ̃τ ′ with τz = (y∗0, y∗1, y∗2) and τ ′z = (y∗3, y∗4, y∗5)
respectively. Its reverse move, the Merge move, is applied to the track auxiliary variables θ̃τ ′
and θ̃τ to form a proposed track auxiliary variable θ̃τ∗ . For the merge move it is required that
y∗3 ∈ L1(y∗2,Tf (θ̃τ )).
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3. Extension and Reduction move:
The objective of the Extension move [127] is to extend the duration of a track by one or

more time scans. The Reduction move [127] reduces the duration with one or more time

scans but not below m∗. These moves are sketched in Figure 6.6.

(a) a ∈ L1(y2,Tf (θ̃τ )) ∩ΛTf (θ̃τ )+1(ω) and b ∈ L1(a,Tf (θ̃τ ) + 1) ∩ΛTf (θ̃τ )+2(ω)

(b) b ∈ L2(y2,Tf (θ̃τ )) ∩ΛT0(θ̃τ )+2(ω)

Figure 6.6: The Extension move extends the track auxiliary variable θ̃τ with τz = (y0, y1, y2)
by adding a, b to τz where a, b are shown in Figure 6.6a and Figure 6.6b to form a track auxiliary
variable θ̃τ∗ with τ∗z = (y0, y1, y2, a, b). In reverse, the reduction move is applied to track auxiliary
variable θ̃τ∗ by removing a and b from θ̃τ∗ to form a track auxiliary variable θ̃τ .

4. Switch move:
This move [127] considers the possibility that the measurements from two targets moving

close to each other may be switched. This move is self-reversible. The switch move

is to exchange some measurements between targets L(θ̃τ ) and L(θ̃τ ′) while keeping the

measurements from all other targets as before (see Figure 6.7).

5. Extension Merge move/Birth Merge move and Extension Merge move/Delete Split
move:
The purpose of the Extension Merge move is to allow the track measurement of a current

target to be extended before merging it with other track. The Extension Merge move is

a combination of the Extension move and the Merge move. This move is proposed to

increase the probability of proposing the Extension move and then the merge move. It

may be self-reversible (see Figure 6.8). In the reverse of the Extension Merge move there

is a possibility that a track measurement from a new born target may merge with track

measurement from the current targets. This possibility is called a Birth Merge move and

is a combination of a Birth move and a Merge move (see Figure 6.9). The Birth Merge

move may not change the number of tracks and it may be self-reversible (see Figure 6.10).
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(a) y3 ∈ L1(y
′
1,T0(θ̃τ ′ ) + 1) and y′2 ∈ L1(y2,T0(θ̃τ ) + 2)

(b) y3 ∈ L1(y
′
1,T0(θ̃τ ′ ) + 1) and y′4 ∈ L3(y2,T0(θ̃τ ) + 2)

Figure 6.7: Given θ̃τ with track measurement τz = (y0, . . . , y4) and θ̃τ ′ with track measurement
τ ′z = (y′0, . . . , y′5) where T0(θ̃τ ′) = T0(θ̃τ ) + 1. A Switch move exchanges the measurements
(y3, y4) from the target L(τ ) with the measurement (y′2, . . . , y′5) from the target L(τ ′). Thus
θ̃τ∗ and θ̃τ ′∗ are formed with the sequences of measurements τ∗z = (y0, y1, y2, y′2, . . . , y′5) and
τ ′∗z = (y′0, y′1, y3, y4) respectively.

Another reverse of the Extension Merge move is the Delete Split move (see point 2 above)

in which a track measurement from a current target is split into two track measurement

after deleting some measurements (see Figure 6.11).

6. Backward Extension move and Backward Reduction move:
Backward Extension move and Backward Reduction move are proposed by first applying

the Death move, and then the Birth move. Thus Backward Extension move and Backward

Reduction move are derived in this thesis to increase the probability of proposing the com-

bination of Birth move and Death move. A Backward Extension considers the possibility

that the target L(θ̃τ ) may appear earlier by adding new measurements to the beginning of

the track measurement of θ̃τ when the target L(θ̃τ ) does not appear at the first time scans

of the sensor. Its reverse is a Backward Reduction move. This move considers that the

target may appear later. Equivalently, this move considers the first few measurements in a

track as false alarms which are deleted to form a new track auxiliary variable (see Figure

6.12).

7. Update move and Point Update move:
The Update move and the Point Update move are proposed to deal with dense targets

and dense measurements by considering different possibilities for a target L(θ̃τ ) whose

target-generated measurements have many neighbors. Particularly, the Update move [127]

modifies the measurements since time t0 of the track auxiliary variable θ̃τ ∈ θ̃ω where t0 is
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Figure 6.8: Given θ̃τ with τz = (y0, y1, y2) and θ̃τ ′ with τ ′z = (y′0, . . . , y′4) where T0(θ̃τ ) =
T0(θ̃τ ′). The Extension Merge move is proposed by merging y2 to y′3 of the track measure-
ment from target L(τ ′) where y′3 ∈ L1(y2,Tf (θ̃τ )). Thus track auxiliary variable θ̃τ∗ with
τ∗z = (y0, y1, y2, y′3, y′4) and θ̃τ ′∗ with τ∗z = (y′0, y′1, y′2) are formed. Its reverse move, an Ex-
tension Merge move, is applied to the track auxiliary variables θ̃τ ′∗ and θ̃τ∗ to form track auxiliary
variables θ̃τ and θ̃τ ′ .

(a)

(b)

Figure 6.9: An Extension Merge move is proposed for track auxiliary variables θ̃τ and θ̃τ ′ with
Tf (θ̃τ ) = T0(θ̃τ ′) + 1 and y′2 ∈ L1(y2,Tf (θ̃τ )) to form track auxiliary variables θ̃τ∗ . Its reverse
move, a Birth Merge move starts at time T0(θ̃τ∗)+ 1 with the measurement y′0 ∈ ΛT0(θ̃τ∗ )+1(ω

∗),
add the next measurement y′1 ∈ L1(y′0,T0(θ̃τ∗) + 1) and then merges to (y′2, y′3) where y′2 ∈
L1(y′1,T0(θ̃τ∗) + 2) to form two track auxiliary variables θ̃τ and θ̃τ ′ with τz = (y0, y1, y2) and
τ ′z = (y′0, . . . , y′3) respectively where m∗ = 3. Note that ω∗ is a track hypothesis of θ̃ω∗ .
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Figure 6.10: A Birth Merge move is proposed for track auxiliary variable θ̃τ with τz =
(y0, . . . , y3) to form a track auxiliary variable θ̃τ∗ with θ̃τ∗ = (a, b, y1, . . . , y3) where a ∈
ΛT0(θ̃τ )−1(ω) b ∈ L1(a,T0(θ̃τ )− 1) ∩ΛT0(θ̃τ )

(ω) and y1 ∈ L1(b,T0(θ̃τ )). Its reverse move is
also a Birth Merge move.

(a) a ∈ L1(y2,Tf (θ̃τ )) ∩ΛTf (θ̃τ )+1(ω) and y′0 ∈ L1(a,Tf (θ̃τ ) + 1)

(b) y′0 ∈ L2(y2,Tf (θ̃τ ))

Figure 6.11: An Extension Merge move is proposed for track auxiliary variables θ̃τ with τz =
(y0, y1, y2) and θ̃τ ′ with τ ′z = (y′0, . . . , y′3) where T0(θ̃τ ′) = Tf (θ̃τ ) + 2 to form a track auxiliary
variable θ̃τ∗ with τ∗z = (y0, y1, y2, a, y′0, . . . , y′3). Its reverse move, a Split Delete move, is applied
to the track auxiliary variable θ̃τ∗ to form the track auxiliary variables θ̃τ and θ̃τ ′ .
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Figure 6.12: The Extension Backward move is applied to the track auxiliary variable θ̃τ with τz =
(y0, y1, y2) by adding two more measurement a1 ∈ ΛT0(θ̃τ )−2(ω), a2 ∈ L1(a1,T0(θ̃τ )− 2) ∩
ΛT0(θ̃τ )−1(ω), y0 ∈ L1(a2,T0(θ̃τ )− 1) (in this example T0(θ̃τ ) > 2) to form the track auxiliary
variable θ̃τ∗ with τ∗z = (a1, a2, y0, y1, y2). Its reverse move, the Backward Reduction move, is
applied to the track auxiliary variable θ̃τ∗ to form a track auxiliary variable θ̃τ by removing the
measurements al ∈ τ∗z , l = 1, 2.

not the first existing time of the target L(θ̃τ ) (see Figure 6.13) while a Point Update move

modifies a single measurement of a track measurement (see Figures 6.14, 6.15, 6.16 and

6.17). This Point Update move is derived in this thesis to deal with problems where targets

move close and/or cross each other.

(a) a1 ∈ L1(y1,T0(θ̃τ ) + 1) ∩ΛT0(θ̃τ )+2(ω), a3 ∈ L2(a1,T0(θ̃τ ) + 2) ∩ΛT0(θ̃τ )+4(ω)

(b) a1 ∈ L1(y1,T0(θ̃τ ) + 1) ∩ΛT0(θ̃τ )+2(ω), ai ∈ L1(ai−1,T0(θ̃τ ) + i) ∩ΛT0(θ̃τ )+i+1(ω) where i = 2, 3

Figure 6.13: The Update move is proposed for track auxiliary variables θ̃τ with τz = (y0, . . . , y5)
from time T0(θ̃τ )+ 2 by deleting measurement yl, l = 2, . . . , 5 and adding the new measurements
ar, r = 1, . . . , 3 where ar shown in Figure 6.13a and 6.13b to the track measurement τz to form
the track auxiliary variable θ̃τ∗ with τ∗z = (y0, y1, a1, a2, a3). Its reverse, the Update move is
applied to the track auxiliary variable θ̃τ∗ .

After having introduced the purpose of these fourteen moves, the next subsection will describe the

construction of these fourteen moves.
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(a) a1 ∈ L1(y1,T0(θ̃τ ) + 1) ∩ΛT0(θ̃τ )+2(ω) and y3 ∈ L1(a1,T0(θ̃τ ) + 2)

(b) y3 ∈ L2(y1,T0(θ̃τ ) + 1)

Figure 6.14: A Point Update move is proposed for track auxiliary variables θ̃τ with τz =
(y0, . . . , y4) at time T0(θ̃τ ) + 2 by exchanging the measurement y2 by the measurement a1
given in Figure 6.14a or Figure 6.14b to form the track auxiliary variable θ̃τ∗ with τ∗z =
(y0, y1, a1, y3, y4). Its reverse the Point Update move is applied to the track auxiliary variable
θ̃τ∗ .

(a) a1 ∈ ΛT0(θ̃τ )
(ω) and y2 ∈ L2(a1,T0(θ̃τ ))

(b) a1 ∈ ΛT0(θ̃τ )−1(ω) and y1 ∈ L1(a1,T0(θ̃τ )

Figure 6.15: A Point Update move is proposed for track auxiliary variables θ̃τ with τz =
(y0, . . . , y3) at the first existing time scan T0(θ̃τ ) by replacing y0 by a1 shown in Figure 6.15a or
6.15b to form the track auxiliary variable θ̃τ∗ with τ∗z = (a1, y1, y2, y3). Its reverse Point Update
move is applied to the track auxiliary variable θ̃τ∗ .
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(a) a1 ∈ L2(y1,T0(θ̃τ ) + 1) ∩ΛTf (θ̃τ )
(ω)

(b) a1 ∈ L1(y2,T0(θ̃τ ) + 2) ∩ΛTf (θ̃τ )
(ω)

Figure 6.16: A Point Update move is proposed for track auxiliary variable θ̃τ with τz =
(y0, . . . , y3) at the last existence time scan Tf (θ̃τ ) of track τ by replacing y3 by a1 shown in
Figure 6.16a or 6.16b to form the track auxiliary variable θ̃τ∗ with τ∗z = (y0, y1, y2, a1). Its
reverse Point update move is applied to the track auxiliary variable θ̃τ∗ .

(a) y2 ∈ L1(y
′
1,T0(θ̃τ ′ ) + 1), y′3 ∈ L1(y2,T0(θ̃τ ) + 2), y′2 ∈ L1(y1,T0(θ̃τ ) + 1) and y3 ∈ L1(y

′
2,T0(θ̃τ ′ ) + 2)

(b) y3 ∈ L2(y1,T0(θ̃τ ) + 1), y2 ∈ L1(y
′
1,T0(θ̃τ ′ ) + 1) and y′3 ∈ L1(y2,T0(θ̃τ ′ ) + 2)

Figure 6.17: A Point Update move is proposed for track auxiliary variables θ̃τ with τz =
(y0, . . . , y3) and θ̃τ ′ with τ ′z = (y′0, . . . , y′4) at the time scan T0(θ̃τ ) + 2 to form the track auxili-
ary variables θ̃τ∗ and θ̃τ ′∗ with τ∗z = (y0, y1, y′2, y3) and τ ′

∗
z = (y′0, y′1, y2, y′3, y′4) respectively. Its

reverse the Point update move is applied to the track auxiliary variables θ̃τ∗ and θ̃τ ′∗ .
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(a) y1 ∈ L1(y
′
0,T0(θ̃τ ′ )) and y′1 ∈ L1(y0,T0(θ̃τ ))

(b) y1 ∈ L1(y
′
0,T0(θ̃τ ′ )) and y′2 ∈ L2(y0,T0(θ̃τ ))

Figure 6.18: A Point Update move is proposed for track auxiliary variables θ̃τ with τz =
(y0, . . . , y3) and θ̃τ ′ with τ ′z = (y′0, . . . , y′4) at the time scan T0(θ̃τ ) to form the track auxili-
ary variables θ̃τ∗ and θ̃τ ′∗ with τ∗z = (y′0, y1, y2, y3) and τ ′

∗
z = (y0, y′1, . . . , y′4) respectively. Its

reverse, the Point update move is applied to the track auxiliary variables θ̃τ∗ and θ̃τ ′∗ .

(a) y3 ∈ L1(y
′
3,Tf (θ̃τ ′ )− 1) and y′4 ∈ L1(y2,Tf (θ̃τ )− 1)

(b) y3 ∈ L2(y
′
2,Tf (θ̃τ ′ )− 2) and y′4 ∈ L1(y2,Tf (θ̃τ )− 1)

Figure 6.19: A Point Update move is proposed for track auxiliary variables θ̃τ with τz =
(y0, . . . , y3) and θ̃τ ′ with τ ′z = (y′0, . . . , y′4) at the time scan Tf (θ̃τ ) = Tf (θ̃τ ′) to form the
track auxiliary variables θ̃τ∗ and θ̃τ ′∗ with τ∗z = (y0, y1, y2, y′4) and τ ′

∗
z = (y′0, . . . , y′3, y3) re-

spectively. Its reverse, the Point update move is applied to the track auxiliary variables θ̃τ∗ and
θ̃τ ′∗ .
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Construction of Proposal moves: Let Kω∗ = maxτ∈ω L(τ ) + 1 be the target label of the

new target for the moves which increase the number of tracks in the track hypothesis ω.

1. Birth and death moves:
Birth move:
A Birth move adds a new track auxiliary variable θ̃τ∗ such that |T(θ̃τ∗)| ≥ m∗ to the

track hypothesis auxiliary variable θ̃ω while keeping all other track auxiliary variables as

before, forming a proposed track hypothesis auxiliary variable θ̃ω∗ = θ̃ω ∪ {θ̃τ∗}. The

track auxiliary variable θ̃τ∗ is constructed as follows

Before constructing the Birth move, we introduce the following notations.

At time t and for any z′ ∈ LB(t) ∩Λt(ω) (i.e. the measurement z′ has not been assigned

to any existing tracks), we denote by

Lω(z
′, t) = {(z, d) ∈ (Z, d) : z ∈ Ld(z′, t) ∩Λt+d(ω)} (6.43)

the set of (z, d), z is d−neighbors of z′, d ∈ d. If Lω(z′, t) 6= ∅, then there exist at least a

measurement z ∈ Zt+d which is d−neighbor of an element z′. We also denote by

Zt(ω) = {z ∈ LB(t) ∩Λt(ω) : (z′, d′) ∈ Lω(z, t),

Ld(z
′, t+ d′) ∩Λt+d+d′(ω) 6= ∅, d ∈ d} (6.44)

the set of elements at time t for which the element z and two other measurements z′ ∈
Ld(z, t), z• ∈ Ld′(z′, t+ d+ d′) are not assigned to any existing tracks at time t, t+ d

and t+ d+ d′ respectively where d, d′ ∈ d. We choose at least three consecutive target-

generated measurements because any measurement and its d−neigbor are always possibly

generated from the same target. By this notation, any element in this set can potentially

be the initial target-generated measurement of a new target. Then we denote by TB(ω)

the set of the time scans at which a new target may appear conditional on the current track

hypothesis ω as follows

TB(ω) =
{
t ∈ {1, . . . ,T −m∗ + 1} : Zt(ω) 6= ∅

}
. (6.45)

A possible new target Kω∗ may enter at any time scan t0 ∈ TB(ω). Next we will describe

how to construct

Pt0(Z̃, θ̃ω) ={(Kω∗ , t0, j0, . . . , jm) : j0, jm > 0; ji = 0 or zji ∈ Zt0+i ∩Λt0+i(ω),

for i = 1, . . . ,m;m ≥ m∗ − 1}

which is a set of new track auxiliary variables starting at time index t0 as follows

• Initiation: Denote Pt0(Z̃, θ̃ω, 1) = ∅ as a set of new track hypothesis auxiliary vari-

ables starting at time index t0 An initial time of a new target t0 is chosen from TB(ω)

given in (6.45). At initial time t0, track auxiliary variables is assigned to a measure-

ment index jn0 > 0, for n = 1, . . . , |Zt0(ω)|. Then denote the set of the new track
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auxiliary variables at time t0 by

St0 = {(Kω∗ , t0, jn0 ) : zjn0 ∈ Zt0(ω),n = 1, . . . , |Zt0(ω)|}.

We must extend each element of St0 with more measurement indices.

• Existence:

(E.1) At time t = t0 + 1: For each (Kω∗ , t0, jn0 ) ∈ St0 , n = 1, . . . |St0 |. We extend

this track auxiliary variable as follows.

The neighborhood at time t of zjn0 which is not assigned to any existing tracks is

Nω
1 (zjn0 , t0) = Ld(zjn0 , t0) ∩Λt(ω). Assign

Snt0 :t0+1 ={(Kω∗ , t0, jn0 , jsn1 ) : sn = 0, . . . , |Nω
1 (zjn0 , t0)|,

j0
1 = 0, zji1 ∈ Nω

1 (zjn0 , t0), i 6= 0}. (6.46)

(E.2) At time t > t0 + 1: Denote St0 :t−1 =
⋃|St0 :t−2|
n=1 Snt0 :t−1 as the set of the new

track auxiliary variables up to time t− 1. If St0 :t−1 6= ∅, we consider three steps as

follows

Step 1: For each θ̃nτ∗ = (Kω∗ , t0, jn0 , . . . , jnk ) ∈ St0 :t−1, n = 1, . . . , |St0:t−1|. We

want to extend one more measurement by finding the last time t0 + l where the

target is detected i.e. l = max{i : jni > 0, i = 0, . . . , k}. We need to look for a

new measurement in the d−neighborhood of the last measurement zjn
l

where d =

k− l+ 1 and d is always less than or equal to d̄+ 1. Its neighborhood at time twhich

is not assigned to any existing tracks at time t is Nω
d (zjnl , t0 + l) = Ld(zjnl , t0 + l)∩

Λt(ω). Then assign

Snt0 :t ={(Kω∗ , t0, jn0 , . . . , jnk , jsnk+1) : sn = 0, . . . , |Nω
d (zjnl , t0 + l)|,

j0
k+1 = 0, zji

k+1
∈ Nω

d (zjnl , t0 + l), i 6= 0}.

Step 2: Denote St0 :t =
⋃|St0 :t−1|
n=1 Snt0:t as the set of the new track auxiliary variables

up to time t. If St0 :t 6= ∅ and t ≤ max TB(ω), we consider an element θ̃τ∗ =

(Kω∗ , t0, j∗0 , . . . , j∗t−t0) ∈ St0:t (note that t− t0 = k + 1). If θ̃τ∗ has more than

d̄ consecutive zeros (i.e. j∗i = 0 for i ≥ t− t0 − d̄− 1), remove θ̃τ∗ from St0:t.

Otherwise if zj∗t−t0 is the last measurement generated by the target and the duration

time of the target is larger than or equal to m∗ (i.e. j∗t−t0 > 0 and t− t0 ≥ m∗ − 1),

then assign θ̃ω ∪ {θ̃τ∗} to Pt0(Z̃, θ̃ω) and keep θ̃τ∗ for further extension.

Step 3: repeat (E.2) until max TB(ω).

Then the set of all proposed track hypothesis auxiliary variables for a Birth move (m = 1)

is

P(θ̃ω, Z̃, 1) =
∏

t∈TB(ω)

Pt(Z̃, θ̃ω) (6.47)
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Note that a possible Birth move could also been formed backwards in time starting with

the final time tf and finishing with the initial time t0. Such constructions are useful if we

would like to construct a feasible association which ends at a particular measurement (e.g.

Birth Merge move and Backward extension moves). In practice, when there are a large

possible new track hypotheses in the set P(θ̃ω, Z̃, 1), the computation is very expensive.

The culling is required to reduce the size of the set.

Culling:
Culling is an implementation issue when dealing with a large number of a set. This culling

is done recursively in time as the measurement association is being built up. The cull-

ing is based on the likelihood of the measurements associated with a track. As these are

calculated in terms of the transition density f̄t|t−1, we will mainly consider forward con-

structions of the set of the measurement association. The exceptions are the cases when the

set of possible new track-measurement associations is so small that no culling is needed.

In those cases, either a forward or a backward in time construction can be used.

We introduce the following notations

• Let r(z′j0 , zj , d) denote a suitable function to estimate the initial target state from the

measurement z′j0 and its neighbor zj . In this thesis, we assume our measurements

are the position measurements of the targets. However, this formula can be extend

to other type of measurements. For example, when x = [ξ, ζ, vξ, vζ ]Tr where (ξ, ζ)
denotes the true target position in the two dimensional Cartesian plane, (vξ, vζ) is its

velocity and z = [ξ′, ζ ′]Tr = [ξ, ζ]Tr + vnoise the position of the target observed by

a sensor with a two dimensional vector noise vnoise. Note that yTr is the transpose

of y. Then a possible function is r(z′j0 , zj , d) = [z′j0 , (zj − z′j0)/d]
Tr.

There are many possibilities for constructing a new track hypothesis auxiliary variable

starting with a measurement zj0 ∈ Zt0(ω) because the number of elements in the set

Lω(zj0 , t0) may be larger than 1 and in general the d−neighborhood of zj0 or its neigh-

bors is large. The Birth move is reconstructed as follows with a given measurement gate

threshold gz .

Denote Pt0(Z̃, θ̃ω, zj0) as a set of samples starting from measurement zj0 ∈ Zt0(ω) at

time t0 ∈ TB(ω).

• Initiation: We denote a collection of the sets which consists of the track auxiliary

variable and sequence of states starting from the initial measurement zj0 ∈ Zt0(ω)
at time t0 ∈ TB(ω) by

St0(zj0) =
{
{θ̃nτ∗ ,xnt0} : θ̃nτ∗ = (Kω∗ , t0, j0),xnt0 = r(zj0 , zjn , dn),

(zjn , dn) ∈ Lω(zj0 , t0)}

where θ̃nτ∗ = (Kω∗ , t0, j0) are the same for all n = 1, . . . , |Lω(zj0 , t0)| but the

initial states xnt0 are different in velocity, acceleration or etc. Next we will find the

next measurements which generate from this new target starting from zj0
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• Existence: Similar to the previous construction for this step, we consider two cases

as follows.

(F.1) At time t = t0 + 1: We construct the next single target states of xnt0 where

{θ̃nτ∗ ,xnt0} ∈ St0(zj0) for n = 1, . . . , |St0(zj0)|. We consider two steps as follows.

Similar to the previous construction, for each xnt0 , a collection of new sets up to time

t is

Snt0 :t(zj0) =
{
{θ̃inτ∗ ,x

in
t0 :t} : θ̃inτ∗ = (Kω∗ , t0, j0, jin1 ); in = 0, . . . , |L1(zj0 , t0)|;

xint0 :t−1 = xnt0 :t−1; j0
1 = 0, zjin1 ∈ L1(zj0 , t0), in 6= 0;

xint ∼ ft|t−1(·|xnt−1); ḡt(zjin1 |x
in) ≥ gz

}
where a measurement gate threshold gz is given to make this set Snt0 :t(zj0) smaller

than the set in (6.46) by select the samples {(Kω∗ , t0, j0, jin1 ),xin1:t} which have the

most likely chance to occur (ḡt(zjin1
|xin) ≥ gz).

(F.2) At time t > t0 + 1: Let St0:t−1(zj0) =
⋃|St0 :t−2(zj0 )|
n=1 Snt0 :t−1(zj0).

If Snt0 :t−1(zj0) 6= ∅, we consider three steps similar to the ones in the previous con-

struction as follows.

Step 1: Similar to the previous construction, we want to extend one more measure-

ment by finding the last time t0 + l where the target is detected i.e. l = max{i : jni >
0, i = 0, . . . , k}. We need to look for a new measurement in the set d−neighborhood

of the last measurement zjn
l

where d = k− l+ 1. Its neighborhood at time t which

is not assigned to any existing tracks at time t is Nω
d (zjnl , t0 + l) = Ld(zjnl , t0 + l)∩

Λt(ω). Then assign

Snt0 :t(zj0) =
{
{θ̃inω∗ ,x

in
t0 :t} : θ̃nτ∗ = (Kω∗ , t0, jn0 . . . , jnk , jink+1), j

0
k+1 = 0,

zjin
k+1
∈ Nω

d (zjnl , t0 + l), in 6= 0,xint0 :t−1 = xnt0 :t−1,

xint ∼ ft|t−1(·|xnt−1), ḡt(zjin
k+1
|xint ) ≥ gz

}
.

Step 2: Let St0 :t(zj0) =
⋃|St0 :t−1(zj0 )|
n=1 Snt0 :t(zj0).

If St0 :t(zj0) 6= ∅ and t ≤ max TB(ω), we consider an element

θ̃τ∗ = (Kω∗ , t0, j∗0 , . . . , j∗t−t0)

where {θ̃τ∗ ,x∗t0 :t} ∈ St0 :t(zj0) (note that t− t0 = k + 1). If θ̃τ∗ has more than d̄

consecutive zeros (i.e. j∗i = 0 for i ≥ t− t0 − d̄− 1), remove {θ̃τ∗ ,x∗t0 :t} from

St0 :t(zj0). Otherwise if zj∗t−t0 is the last measurement generated by the target and

duration time of the target is larger than or equal to m∗ (i.e. j∗t−t0 > 0 and t− t0 ≥
m∗ − 1). Then assign θ̃ω ∪ {θ̃τ∗} to Pt0(Z̃, θ̃ω, zj0). The element θ̃τ∗ still keeps for

further extension.

Step 3: repeat (F.2) until max TB(ω).
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With this new construction, the set P(θ̃ω, Z̃, 1) in (6.47) can be reduced in size and is

rewritten as follows

P(θ̃ω, Z̃, 1) =
∏

t∈TB(ω)

∏
z∈Zt(ω)

Pt(Z̃, θ̃ω, z).

Death move
A death move is the reverse of a birth move. The death move is constructed so that it

may revert to the initial track hypothesis auxiliary variable after a birth move (see Figure

6.4). A track auxiliary variable θ̃τ∗ is removing from θ̃ω while keeping all other track

auxiliary variables as before, forming a proposed track hypothesis auxiliary variable θ̃ω∗ =

θ̃ω − {θ̃τ∗}. Then the set of all proposed track hypothesis auxiliary variables for a Death

move (m = 12) is

P(θ̃ω, Z̃, 12) = {θ̃ω∗ : θ̃ω∗ = θ̃ω − {θ̃τ∗}, θ̃τ∗ ∈ θ̃ω}.

2. Split and Merge moves:
Split move:
The Split move is proposed for a track auxiliary variable θ̃τ∗ by dividing θ̃τ∗ into two track

auxiliary variables θ̃τ and θ̃τ ′ if the duration time of the target L(θ̃τ∗) is larger than or

equal to 2m∗ i.e. |T(θ̃τ∗)| ≥ 2m∗ and the following conditions hold:

(SP1) The last existing time scan of the proposed target L(θ̃τ ) and the first existing

time scan of the proposed target L(θ̃τ ′) are chosen such that the target L(θ̃τ∗) is

detected at those time scans.

(SP2) The duration of existence for proposed targets L(θ̃τ ) and L(θ̃τ ′) are larger than

or equal to m∗.

Denote by t1 and t2 the last existing time scan of the proposed target L(θ̃τ ) and the first

existing time scan of the proposed target L(θ̃τ ′) respectively (i.e. t1 = Tf (θ̃τ ) and t2 =

T0(θ̃τ ′)). Mathematically, (SP1) and (SP2) can be written as follows.

• ∃t1 ∈ {T0(θ̃τ∗) +m∗ − 1, . . . ,Tf (θ̃τ∗)−m∗}, such that It1(θ̃τ∗) > 0 and

• ∃t2 ∈ {t1 + 1, . . . ,Tf (θ̃τ∗)−m∗ + 1} such that It2(θ̃τ∗) > 0.

If t2 ∈ {t1 + 2, . . . ,Tf (θ̃τ∗)−m∗ + 1}, the move is called a Delete Split move.

The Split/Delete Split move is applied to the track auxiliary θ̃τ∗ = (k, t, j0, . . . , jm) to

propose two new track auxiliary variables θ̃τ and θ̃τ ′ as follows

θ̃τ = (k, t, j0, . . . , jt1−t)

θ̃τ ′ = (Kω∗ , t2, jt2−t, . . . , jm).
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The set of all proposed track hypothesis auxiliary variables for the Split move (m = 7) is

P(θ̃ω, Z̃, 7) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ∗}) ∪ {θ̃τ , θ̃τ ′}; θ̃τ∗ = (k, t, j0, . . . , jm) ∈ θ̃ω,

m ≥ 2m∗ − 1; θ̃τ = (k, t, j0, . . . , jt1−t), θ̃τ ′ = (Kω∗ , t2, jt2−t, . . . , jm),

t1 ∈ {t+m∗ − 1, . . . , t+m−m∗}, jt1−t > 0,

t2 ∈ {t1 + 1, . . . ,Tf (θ̃τ∗)−m∗ + 1}, jt2−t > 0}.

Merge move:
The Merge move is the reverse of the Split move. When Kω > 1, the merge move can take

place if there exists a pair of track auxiliary variables θ̃τ and θ̃τ ′ such that the first target-

generated measurement from the target L(τ ′) is a neighbor of the last target-generated

measurement from the target L(τ ) i.e. zj′ ∈ Ld(zj ,Tf (θ̃τ )) where zj′ ∈ ZT0(θ̃τ ′ )
and

zj ∈ ZTf (θ̃τ )
for d ∈ d. Mathematically, the following set of possible merge move pairs is

given by

M =
{
(θ̃τ , θ̃τ ′) ∈ (θ̃ω, θ̃ω) : d = T0(θ̃τ ′)−Tf (θ̃τ ), d ∈ d,

IT0(θ̃τ ′ )
(θ̃τ ′) = j′ > 0, ITf (θ̃τ )(θ̃τ ) = j > 0, zj′ ∈ Ld(zj ,Tf (θ̃τ ))

}
.

where d = T0(θ̃τ ′) − Tf (θ̃τ ) is the distance between the first time index of the target

L(θ̃τ ′) and the last time index of the target L(θ̃τ ). This distance must be positive. zj′ ∈
Ld(zj ,Tf (θ̃τ )) means that the first target-generated measurement of target L(θ̃τ ′) must

be in the d−neighbor of the last target-generated measurement of target L(θ̃τ ). Note that

the order of (θ̃τ , θ̃τ ′) ∈ M means that the track auxiliary variable θ̃τ merges to the track

auxiliary variable θ̃τ ′ .

For any pair (θ̃τ , θ̃τ ′) ∈ M, the Merge move is constructed by combining two track aux-

iliary variables θ̃τ = (k, t, j0, . . . , jm) and θ̃τ ′ = (k′, t′, j′0, . . . , j′n) to form a single track

auxiliary variable

θ̃τ∗ =(k, t, j0, . . . , jm, 0, . . . , 0︸ ︷︷ ︸
d−1

, j′0, . . . , j′n), d = t′ − t−m ∈ d.

Then the set of all proposed track hypothesis auxiliary variables for the Merge move (m =

5) is

P(θ̃ω, Z̃, 5) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ , θ̃τ ′}) ∪ {θ̃τ∗}, (θ̃τ , θ̃τ ′) ∈M,

θ̃τ = (k, t, j0, . . . , jm), θ̃τ ′ = (k′, t′, j′0, . . . , j′n), d = t′ − t−m ∈ d,

θ̃τ∗ = (k, t, j0, . . . , jm, 0, . . . , 0︸ ︷︷ ︸
d−1

, j′0, . . . , j′n)}.
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3. Extension and Reduction move:
Extension: The Extension move is proposed for θ̃τ = (k, t, j0, . . . , jm) ∈ θ̃ω where the

last existing time scan of the target L(θ̃τ ) is less than the last scan T i.e. Tf (θ̃τ ) < T . A

sequence (j∗1 , . . . , j∗n) is added to θ̃τ to form the proposed track auxiliary variable

θ̃τ∗ = (k, t, j0, . . . , jm, j∗1 , . . . , j∗n)

where j∗n ∈ Λt+m+n(ω), j∗i = 0 or j∗i ∈ Λt+m+i(ω) for i = 1, . . . ,n− 1; and A∗ =

(k, t+m, jm, j∗1 , . . . , j∗n) is constructed in the same as in the Birth move where the initial

measurement of the new target in the Birth move is the last measurement generated by the

target L(θ̃τ ) at time Tf (θ̃τ ) = t+m. The set of all proposed track hypothesis auxiliary

variables for the Extension move (m = 2) is

P(θ̃ω, Z̃, 2) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ}) ∪ {θ̃τ∗}; θ̃τ = (k, t, j0, . . . , jm), t+m < T ;

θ̃τ∗ = (k, t, j0, . . . , jm, j∗1 , . . . , j∗n); j∗n ∈ Λt+m+n(ω);

j∗i = 0 or j∗i ∈ Λt+m+i, i = 1, . . . ,n− 1}.

Reduction: The Reduction move is proposed for θ̃τ∗ = (k, t, j0, . . . , jm) ∈ θ̃ω ifm > m∗

by deleting the index measurement jt0−t+1, . . . , jm where t0 is chosen from {T0(θ̃τ∗) +

m∗ − 1, . . . ,Tf (θ̃τ∗)− 1} such that It0(θ̃τ∗) > 0. The new track auxiliary variable θ̃τ is

θ̃τ = (k, t, j0, . . . , jt0−t).

The set of all proposed track hypothesis auxiliary variables for the Reduction move (m =

8) is

P(θ̃ω, Z̃, 8) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ∗}) ∪ {θ̃τ}; θ̃τ∗ = (k, t, j0, . . . , jm) ∈ θ̃ω,m ≥ m∗;

θ̃τ = (k, t, j0, . . . , jt0−t), t0 − t ≥ m∗ − 1}.

4. Switch move:
The switch move is proposed to exchange some measurement indices between targets

L(θ̃τ ) and L(θ̃τ ′) while keeping all other the measurement indices from other targets fixed

(see Figure 6.7) as follows.

Firstly, we define a set Ms which collects all pairs of measurement indices and their time

indices which can be switched between two track auxiliary variables

Ms ={(θ̃τ , t0, θ̃τ ′ , t′0) : It0(θ̃τ ), It′0(θ̃τ ′) > 0; θ̃τ , θ̃τ ′ ∈ θ̃ω;

It0+d(L(θ̃τ )) = j′d > 0 and It0+l(L(θ̃τ )) = 0, l = 1, . . . , d− 1, d ≥ 1;

It′0+d′(L(θ̃τ ′)) = jd′ > 0 and It′0+s(L(θ̃τ ′)) = 0, s = 1, . . . , d′ − 1; d′ ≥ 1

zj′
d
∈ Ld(zj′ , t′0); zjd′ ∈ Ld′(zj , t0)

}
. (6.48)
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where zj ∈ Zt0 , zj′ ∈ Zt′0 , zj′
d
∈ Zt′0+d′ , zjd′ ∈ Zt0+d. The time scan t0 + d is the first

time after t0 for which the target L(θ̃τ ) is detected and t′0 + d′ is the first time after t′0 for

which the target L(θ̃τ ′) is detected. For example, in Figure 6.7, t0 = T0(θ̃τ ) + 2 = t′0 =

T0(θ̃τ ′) + 1. In Figure 6.7a, d = d′ = 1 while in Figure 6.7b d = 1, d′ = 3. The Switch

move is applied to the two track auxiliary variables θ̃τ = (k, t, j0, . . . , jm) and θ̃τ ′ =

(k′, t′, j′0, . . . , j′n) at time scans t0 + d′ and t′0 + d respectively where (θ̃τ , t0, θ̃τ ′ , t′0) ∈Ms

to form new track auxiliary variables θ̃τ∗ and θ̃τ ′ (see Figure 6.7) as follows

θ̃τ∗ =(k, t, j0, . . . , jt0−t,
d′−1︷ ︸︸ ︷

0, . . . , 0, j′t′0−t′+d′ , . . . , j
′
n)

θ̃τ ′∗ =(k′, t′, j′0, . . . , j′t′0−t′ , 0 . . . , 0︸ ︷︷ ︸
d−1

, jt0−t+d, . . . , jm).

The set of all proposed track hypothesis auxiliary variables for the Switch move (m = 6)

is

P(θ̃ω, Z̃, 6) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ , θ̃τ ′}) ∪ {θ̃τ∗ , θ̃τ ′∗};

|T(θ̃τ∗)|, |T(θ̃τ ′∗ )| ≥ m∗; (θ̃τ , t0, θ̃τ ′ , t′0) ∈Ms}.

5. Extension Merge move/Birth Merge move and Extension Merge move/Delete Split
move:
Extension Merge move: If |θ̃ω| > 1, two track auxiliary variables θ̃τ = (k, t, j0, . . . , jm)
and θ̃τ ′ = (k′, t′, j′0, . . . , j′n) ∈ θ̃ω are used in the Extension Merge move as follows.

Firstly, the track auxiliary variable θ̃τ is extended in the same way as for an Extension

move up to time t+m′ to form

θ̃τ• = (k, t, j0, . . . , jm, jm+1, . . . , jm′), jm′ > 0 and m′ > m.

where ji = 0 or zji ∈ Λt+i(ω) for i = m + 1, . . . ,m′ − 1 and zjm′ ∈ Λt+m′(ω).

Secondly, if at time t0 = t+m′ + d ∈ T(θ̃τ ′), d ∈ d, the target-generated measurement

of target L(θ̃τ ′) is in the d−neighborhood of the last target-generated measurement of

track L(θ̃τ•) (i.e. zj′
t0−t′

∈ Ld(zjm′ , t+m′) where zj′
t0−t′

∈ Zt0 , It0(θ̃τ ′) = j′t0−t′), then

θ̃τ• and θ̃τ are merged measurements as follows. Here, we consider two situations for d.

Case 1: When d > 1 (see Figure 6.11 for illustration)

θ̃τ∗ = (k, t, j0, . . . , jm, . . . , jm′ , 0, . . . , 0︸ ︷︷ ︸
d−1

, j′t0−t′ , . . . , j
′
n).

Case 2: When d = 1 (see Figures 6.9 and 6.8 for illustration)

θ̃τ∗ = (k, t, j0, . . . , jm, jm+1, . . . , jm′ , j′t0−t′ , . . . , j
′
n).
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The construction of this Extension Merge move leaves us with the remaining elements of

θ̃τ ′ which are not merged into θ̃τ i.e.

θ̃τ ′∗ = (k′, t′, j′0, . . . , j′t1−t′) (6.49)

where t1 is the latest time before t0 at which the target L(θ̃τ ′) is observed by a sensor. For

example, when m∗ = 3, in Figure 6.11, t0 = t and there is no measurement left; in Figure

6.9b, there are two measurements j′0 and j′1 left, i.e. θ̃τ ′∗ = (k′, t′, j′0, j′1}; in Figure 6.9a,

there are one measurement j′0 left, i.e. θ̃τ ′∗ = (k′, t′, j′0); and in Figure 6.8, there are three

measurements j′0, j′1 and j′2 left i.e. θ̃τ ′∗ = (k′, t′, j′0, . . . , y′2). If |T(θ̃τ ′∗ )| ≥ m∗, the

proposed track hypothesis auxiliary variable is θ̃ω∗ = (θ̃ω − {θ̃τ , θ̃τ ′}) ∪ {θ̃τ∗ , θ̃τ ′∗} (see

Figure 6.8). In this case, the set of proposed track hypothesis auxiliary variables for the

Extension Merge move (m = 4) is

E1(θ̃ω, Z̃) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ , θ̃τ ′}) ∪ {θ̃τ∗ , θ̃τ ′∗}; θ̃τ = (k, t, j0, . . . , jm),

θ̃τ ′ = (k′, t′, j′0, . . . , j′n) ∈ θ̃ω; θ̃τ ′∗ = (k′, t′, j′0, . . . , j′t1−t′),

θ̃τ∗ = (k, t, j0, . . . , jm′ , 0, . . . , 0︸ ︷︷ ︸
d−1

, j′t0−t′ , . . . , j
′
n), d ≥ 1,m′ > m;

zjm′ ∈ Λt+m′(ω); ji = 0 or zji ∈ Λt+i(ω) for i = m+ 1, . . . ,m′ − 1;

t1 = max{i : i < t0, ji−t′ > 0}, t1 − t′ ≥ m∗ − 1}.

Otherwise, the proposed track hypothesis auxiliary variable θ̃ω∗ = (θ̃ω − {θ̃τ , θ̃τ ′}) ∪
{θ̃τ∗} (see Figures 6.11 and 6.9). In this case, the set of proposed track hypothesis auxiliary

variables for the Extension Merge move (m = 4) is

E2(θ̃ω, Z̃) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ , θ̃τ ′}) ∪ {θ̃τ∗}; θ̃τ = (k, t, j0, . . . , jm),

θ̃τ ′ = (k′, t′, j′0, . . . , j′n) ∈ θ̃ω;

θ̃τ∗ = (k, t, j0, . . . , jm′ , 0, . . . , 0︸ ︷︷ ︸
d−1

, j′t0−t′ , . . . , j
′
n), d ≥ 1,m′ > m;

zjm′ ∈ Λt+m′(ω); ji = 0 or zji ∈ Λt+i(ω), i = m+ 1, . . . ,m′ − 1}.

The set of all proposed track hypothesis auxiliary variables for the Extension Merge move

(m = 4) is

P(θ̃ω, Z̃, 4) = E1(θ̃ω, Z̃) ∪E2(θ̃ω, Z̃).

Birth Merge move:
A Birth Merge move is a combination of a Birth move and a Merge move. Thus, this move

is divided in two steps. The first step is a Birth move to propose θ̃τ• = (Kω∗ , t•, j•0 , . . . , j•n)
with j•n > 0 (n ≥ 0). If a d−neighbor of j•n is assigned to a existing track τ , the second

step is to merge θ̃τ• to the existing track auxiliary variable θ̃τ = (k, t, j0, . . . , jm) ∈ θ̃ω at
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time t0 = t• + n+ d > t as done in the Extension Merge move. If t0 = t, the move is

called Extension Backward move which is discussed later. Similar to the Extension Merge

move, this construction also leaves us with the remaining elements of θ̃τ which are not

merged into θ̃τ• i.e

θ̃τ ′∗ = (k, t, j0, . . . , jt1−t) (6.50)

where t1 is the latest time before t0 at which the target L(θ̃τ ) is observed by the sensor.

There are 2 cases:

Case 1: If |T(θ̃τ ′∗ )| < m∗ (see Figure 6.10), then

θ̃τ∗ = (k, t•, j•0 , . . . , j•n, 0, . . . , 0︸ ︷︷ ︸
d−1

, jt0−t, . . . , jm).

Thus the track hypothesis auxiliary variable is θ̃ω∗ = (θ̃ω − {θ̃τ}) ∪ {θ̃τ∗}. The set of all

proposed track hypothesis auxiliary variables for the Birth Merge move (m = 14) in this

case is then

BM1 ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ}) ∪ {θ̃τ∗}; θ̃τ = (k, t, j0, . . . , jm) ∈ θ̃ω, t0 > 1,

θ̃τ∗ = (k, t•, j•0 , . . . , j•n, 0, . . . , 0︸ ︷︷ ︸
d−1

, jt0−t, . . . , jm), d ≥ 1, zj•0 ∈ Λt•(ω),

zj•
l
∈ Λt•+l(ω) or j•l = 0, l = 1, . . . ,n; max{i : ji > 0, i < t0 − t} < m∗ − 1}.

Case 2: If |T(θ̃τ ′∗ )| ≥ m∗ (see Figure 6.8), then

θ̃τ∗ = (Kω∗ , t•, j•0 , . . . , j•n, jt0−t, . . . , jm).

Thus the track hypothesis auxiliary variable θ̃ω∗ = (θ̃ω − {θ̃τ}) ∪ {θ̃τ∗ , θ̃τ ′∗}, and the set

of all proposed track hypothesis auxiliary variables for the Birth Merge move (m = 14) in

this case is

BM2 ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ}) ∪ {θ̃τ∗ , θ̃τ ′∗}; θ̃τ = (k, t, j0, . . . , jm) ∈ θ̃ω,

θ̃τ∗ = (k, t•, j•0 , . . . , j•n, jt0−t, . . . , jm), θ̃τ ′∗ = (k, t, j0, . . . , jt1−t)

zj•0 ∈ Λt•(ω), zj•
l
∈ Λt•+l(ω) or j•l = 0, l = 1, . . . ,n;

t1 = max{i : ji−t > 0}, t1 − t ≥ m∗ − 1}.

The set of all proposed track hypothesis auxiliary variables for the Birth Merge move

(m = 14) is

P(θ̃ω, Z̃, 14) = BM1 ∪BM2.
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Delete Split move:
As mentioned in point 2 of this Subsection, the Delete Split move delete some measure-

ment indices of a track auxiliary variable θ̃τ∗ before dividing it into two track auxiliary

variables θ̃τ and θ̃τ ′ if the duration time of the target L(θ̃τ∗) is larger than 2m∗ with the

same conditions as for Split move. Thus the set of all proposed track hypothesis auxiliary

variables for the Delete Split move (m = 13) is

P(θ̃ω, Z̃, 13) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ∗}) ∪ {θ̃τ , θ̃τ ′}; θ̃τ∗ = (k, t, j0, . . . , jm) ∈ θ̃ω,

m ≥ 2m∗ − 1; θ̃τ = (k, t, j0, . . . , jt1−t), θ̃τ ′ = (Kω∗ , t2, jt2−t, . . . , jm),

t1 ∈ {t+m∗ − 1, . . . , t+m−m∗}, jt1−t > 0,

t2 ∈ {t1 + 2, . . . ,Tf (θ̃τ∗)−m∗ + 1, jt2−t > 0}}.

6. Backward Extension move and Backward Reduction move:
Backward Extension move: The Backward Extension move is proposed for a track aux-

iliary variable θ̃τ = (k, t, j0, . . . , jm) ∈ θ̃ω where the first existing time scan of the

target L(θ̃τ ) is not the first scan of the sensor (i.e. T0(θ̃τ ) > 1) and the first measure-

ment generated from the target L(θ̃τ ) is in the neighborhood of a measurement z′j′ ∈
ZT0(θ̃τ )−d −ZT0(θ̃τ )−d(ω) at time scan T0(θ̃τ )− d ≥ 1, d ∈ d.

This move is a special situation of case 1 in a Birth Merge move when t• + n+ 1 = t

(see Figure 6.12). Specifically, a Birth Merge move is applied to a track auxiliary variable

θ̃τ = (k, t, j0, . . . , jm) to propose the track auxiliary variable

θ̃τ∗ = (k, t− d, j•0 , . . . , j•d−1, j0, . . . , jm)

where A = (k, t− d, j•0 , . . . , j•d−1, j0) is proposed in the same way as in the Birth move.

Then the track hypothesis auxiliary variable θ̃ω∗ = (θ̃ω − {θ̃τ}) ∪ {θ̃τ∗}. The set of all

proposed track hypothesis auxiliary variables for the Backward Extension move (m = 3)

is

P(θ̃ω, Z̃, 3) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ}) ∪ {θ̃τ∗}, θ̃τ = (k, t, j0, . . . , jm) ∈ θ̃ω, t > 1;

θ̃τ∗ = (k, t− d, j•0 , . . . , j•d−1, j0, . . . , jm), t− d ≥ 1,

zj•0 ∈ Λt−d(ω), zj•
l
∈ Λt−d+l(ω) or j•l = 0, l = 1, . . . , d− 1}.

Backward Reduction move: The backward reduction move is proposed for track auxili-

ary variables θ̃τ∗ whose duration of existence is larger than m∗ (|T(θ̃τ∗)| > m∗) to form

a track auxiliary variable θ̃τ with |T(θ̃τ )| ≥ m∗. The time index t0 for the Backward

Reduction is chosen in the set {T0(θ̃τ∗) + 1,Tf (θ̃τ∗)−m∗ + 1} such that It0(θ̃τ∗) > 0.

Then the track auxiliary variable θ̃τ∗ = (k, t, j0, . . . , jm) is shorten by removing the first

t0−T0(θ̃τ∗) measurement indices from track auxiliary variable θ̃τ∗ to form the track aux-
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iliary variable

θ̃τ = (k, t0, jt0−t, . . . , jm).

Thus the proposed track hypothesis auxiliary variable θ̃ω∗ = (θ̃ω − {θ̃τ∗}) ∪ {θ̃τ}. Then

the set of all proposed track hypothesis auxiliary variables for the Backward Reduction

move (m = 9) is

P(θ̃ω, Z̃, 9) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ∗}) ∪ {θ̃τ}; θ̃τ∗ = (k, t, j0, . . . , jm) ∈ θ̃ω,m ≥ m∗;

θ̃τ = (k, t0, jt0−t, . . . , jm),m− t0 − t ≥ m∗ − 1}.

7. Update move and Point Update move:
Update move: The Update move is applied to track auxiliary variable

θ̃τ = (k, t, j0, . . . , jm) ∈ θ̃ω

at the time index t0 ∈ T(θ̃τ ) to form a new track auxiliary variable

θ̃τ∗ = (k, t, j0, . . . , jt0−t−1, j•0 , . . . , j•n), if t0 > t

θ̃τ∗ = (k, t, j•0 , . . . , j•n), if t0 = t

where the update As = (k, t0 − 1, jt0−t−1, j•0 , . . . , j•n) is constructed the same as in the

Extension move if t0 > t or As = (k, t0, jt0−t−1, j•0 , . . . , j•n) is constructed the same

as in the Birth move if t0 = t. Thus the proposed track hypothesis auxiliary variable

is θ̃ω∗ = (θ̃ω − {θ̃τ}) ∪ {θ̃τ∗}. Then the set of all proposed track hypothesis auxiliary

variables for the Update move (m = 10) is

P(θ̃ω, Z̃, 10) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ}) ∪ {θ̃τ∗}, θ̃τ = (k, t, j0, . . . , jm) ∈ θ̃ω,

l ∈ {0, . . . ,m}, θ̃τ∗ = (k, t, j∗0 , . . . , j∗n); ∃s, l < s ≤ m : j∗s 6= js;

j∗0 > 0, j∗i = ji, i = 0, . . . , l, if l > 0,n ≥ m∗ − 1; j∗r = 0 or

zj∗r ∈ Λt+r(ω) ∪ {zIt+r(θ̃τ ) : It+r(θ̃τ ) > 0}, r = l+ 1, . . . ,n}.

Point Update move: The Point Update move is applied to the track auxiliary variable θ̃τ =

(k, t, j0, . . . , jm) ∈ θ̃ω at the time index t0 ∈ T(θ̃τ ) to form a new track auxiliary variable

θ̃τ∗ as follows.

If t0 is not the first existing time of the target L(θ̃τ ), let t1 be the latest time scan before

t0 at which the target L(θ̃τ ) is observed by the sensor i.e. t1 = max{i ∈ T(θ̃τ ) : i <
t0, jt0−i > 0}) and generates measurement zjt1−t ∈ Zt1 . Let d1 = t0 − t1. If t0 is not the

last existing time of the target L(θ̃τ ), then let t2 be the earliest time scan after t0 at which

the target L(θ̃τ ) is observed by the sensor i.e. t2 = min{i ∈ T(θ̃τ ) : i > t0, ji−t0 > 0}
and generates measurement zjt2−t ∈ Zt2 . Let d2 = t2 − t0 and d0 = t2 − t1.



6.3 PMMH Algorithm for RFS-based Multi-target Tracking 145

Thus, a proposed track auxiliary variable θ̃τ∗ is formed as follows

θ̃τ∗ = (k, t, j0, . . . , jt0−t−1, j•, jt0−t+1, . . . , jm)

where j• 6= jt0−t is chosen from one of the following situations.

• If t0 is not in the first scan (see Figure 6.14 for illustration), we choose either

– j• = 0 if t0 is not the last exiting time of the target L(θ̃τ ) and the next target-

generated measurement zjt2−t of target L(θ̃τ ) is in the d0−neighborhood of the

previous target-generated measurements zjt1−t (see Figure 6.14b) i.e. j• = 0 if

t0 < Tf (θ̃τ ) and zjt2−t ∈ Ld0(zjt1−t , t1), d0 ∈ d; or

– j• > 0 if the measurement zj• at time t0 is a d1−neighbor of the previous

target-generated measurement zjt1−t ∈ Zt1 and provided t0 is not the last exit-

ing time of the track L(θ̃τ ), the next target-generated measurement zjt2−t ∈ Zt2
is a d2−neighbor of measurement zj• ∈ Zt0 (see Figure 6.14a) i.e. j• > 0 if

zj• ∈ Ld1(zjt1−t , t1) and if t0 < Tf (θ̃τ ), zjt2−t ∈ Ld2(zj• , t0), d2 ∈ d.

• If t0 is in the first scan, j• > 0 is chosen such that the next target-generated measure-

ment zjt2−t is a d2−neighbor of the measurement zj• ∈ Zt0 i.e. zjt2−t ∈ Ld2(zj• , t0)
(see Figure 6.15 for illustration).

Then the track hypothesis θ̃ω∗ is proposed as follows.

At time t0, if j• is chosen either as zero or Λt0(ω) then θ̃ω∗ = (θ̃ω − {θ̃τ}) ∪ {θ̃τ∗}. The

set of proposed track hypothesis auxiliary variables for the Point Update move (m = 11)

in this case is

PU1(θ̃ω, Z̃) ={θ̃ω∗ : θ̃ω∗ = (θ̃ω − {θ̃τ}) ∪ {θ̃τ∗}; θ̃τ = (k, t, j0, . . . , jm) ∈ θ̃ω;

θ̃τ∗ = (k, t, j0, . . . , jt0−t−1, j•, jt0−t+1, . . . , jm), j• 6= jt0−t, t0 ∈ T(θ̃τ );

j• = 0 or j• ∈ Λt0(ω)}.

Otherwise j• has already been assigned to a track. Let θ̃τ ′ = (k′, t′, j′0, . . . , t′n) ∈ θ̃ω be

the track auxiliary variable such that It0(θ̃τ ′) = j• = j′t0−t′ . Then θ̃τ and θ̃τ ′ exchange

their measurement indices at time t0 as follows (see Figure 6.17).

If t0 is not the first existing time of the target L(θ̃τ ′), let t′1 be the latest time before

t0 at which the target L(θ̃τ ′) is observed by the sensor (i.e. jt′1−t′ > 0) and generates

measurement zjt′1−t′
. Let d′1 = t0− t′1. If t0 is not the last existing time of the targetL(θ̃τ ′)

(i.e. t0 < Tf (θ̃τ ′)), let t′2 be the earliest time after t0 at which the target L(θ̃τ ′) is observed

by the sensor and generates measurement zjt′2−t′
. Let d′2 = t′2 − t0 and d′0 = t′2 − t′1. The

measurement indices can be exchanged between the targets L(τ ) and L(τ ′) at time t0 to

form

θ̃τ∗ =(k, t, j0, . . . , jt0−t−1, j′t0−t′ , jt0−t+1, . . . , jm),

θ̃τ ′∗ =(k′, t′, j′0, . . . , j′t0−t′−1, jt0−t, j′t0−t′+1, . . . , j′n).
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(see Figures 6.17, 6.18 and 6.19) provided that one of the following conditions holds:

(a) The followings hold a) The targetL(θ̃τ ) is not observed by the sensor (jt0−t = 0); b)

the target L(θ̃τ ′) both exists before time index t0 (i.e. T0(θ̃τ ′) < t0) and after time

index t0 (i.e. t0 < Tf (θ̃τ ′)); and c) d′0 = t′2 − t′1 ∈ d and zj′
t′2−t

′
is a d′0−neighbor

of zj′
t′1−t

′
(i.e. zj′

t′2−t
′
∈ Ld′0(zj′t′1−t′

, j′1)) (see Figure 6.17b).

(b) The target L(θ̃τ ) is detected by the sensor (i.e. jt0−t > 0) and if the initial target of

L(θ̃τ ′) is equal to t0 (see Figure 6.18); and zj′
t′2−t

′
is a neighbor of zjt0−t at time t0

(i.e. zj′
t′2−t

′
∈ Ld′2(zjt0−t , t0)) (see Figure 6.18 for illustration).

(c) The target L(θ̃τ ) is detected by the sensor (i.e. jt0−t > 0) and if the final time of

the track L(τ ′) is equal to t0 and zjt0−t is a d′1−neighbor of zjt′1−t′
(i.e. zjt0−t ∈

Ld′1(zjt′1−t′
, t′1)) (see Figure 6.19 for illustration).

(d) The target L(θ̃τ ) is detected by the sensor (i.e. jt0−t > 0) and if the target L(θ̃τ ′)
both exists after time t0 (i.e. Tf (θ̃τ ′) = t0) and before time t0 (i.e. T0(θ̃τ ′) < t0);

zjt0−t at time t0 is a d′1−neighbor of zj′
t′1−t

′
(i.e. zjt0−t ∈ Ld′2(zj′t′1−t′

, t′1)); and

zj′
t′2−t

′
is a d′2−neighbor of zjt0−t (i.e. zj′

t′2−t
′
∈ Ld′2(zjt0−t , t0)) (see Figure 6.17a

for illustration).

Then the proposed track hypothesis auxiliary variable for updating the track auxiliary vari-

able θ̃τ and θ̃τ ′ is θ̃ω′∗ = (θ̃ω′∗ − {θ̃τ , θ̃τ ′}) ∪ {θ̃τ∗ , θ̃τ ′∗}.
The set of all proposed track hypothesis auxiliary variables for the Point Update move

(m = 11) for this case is

PU2(θ̃ω, Z̃) ={θ̃ω∗ : θ̃ω′∗ = (θ̃ω′∗ − {θ̃τ , θ̃τ ′}) ∪ {θ̃τ∗ , θ̃τ ′∗};

θ̃τ∗ =(k, t, j0, . . . , jt0−t−1, j•, jt0−t+1, . . . , jm),

θ̃τ ′∗ =(k′, t′, j′0, . . . , j′t0−t′−1, jt0−t, j′t0−t′+1, . . . , j′n).}. (6.51)

The set of all proposed track hypothesis auxiliary variables for Point Update move (m =

11) is

P(θ̃ω, Z̃, 11) =PU1(θ̃ω, Z̃) ∪PU2(θ̃ω, Z̃).

6.3.2.5 Property of the Markov chain

These fourteen proposal moves were constructed to generate samples conditional on Z̃ and θ̃ω. A

sample θ̃ω∗ ∼ q(·|θ̃ω, Z̃) is one of the proposal moves constructed in Section 6.3.2.4. After we

have obtained a track hypothesis auxiliary variable θ̃ω∗ using a MC constructed in the previous

section, a sequence of augmented auxiliary variables θ̃∗ corresponding to θ̃ω∗ can be obtained

using (6.37). We denote the corresponding distribution of θ̃∗ by q(·|θ̃, Z̃). By the construction

of the proposal moves, θ̃ω∗ specifies a track hypothesis ω∗ and θ̃∗ is the corresponding sequence

of auxiliary variables of X̃1:T (ω∗). Hence whenever X̃ ∼ q(·|Z̃, θ̃∗), there exist some track

hypothesis ω∗ such that X̃ = X̃1:T (ω∗).
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In practice, there are a large number of track hypothesis auxiliary variables and some of them

do not represent possible associations between measurements and true targets. Thus, reducing

the size of P(ω, Z̃) is very important and depends on the system model and the birth locations.

Another issue is that the computation of all track hypothesis auxiliary variables is very time con-

suming for the problems with dense clutter and targets, so reusing proposal moves not applied in

the previous time steps is an option for reducing the computations. Another option is to use culling

as described in Section 6.3.2.4 on page 135.

Proposition 6.1: Assume that the moves for the proposal distribution q(θ̃ω∗ |θ̃ω, Z̃) have been con-

structed as in Subsections 6.3.2.2 and 6.3.2.4 and that there exists an aperiodic state of a MC. Then

the MC generated from q(θ̃ω∗ |Z̃, θ̃ω) is ergodic.

Proof. The MC which is generated from the proposal moves is irreducible because any two states

can be connected through a series of birth and death moves. Thus starting from θ̃ω ∈ Θω the MC

can reach any θ̃ω∗ ∈ Θω.

By Theorem 4.3 and assumption that there exists an aperiodic state, the irreducible MC is

aperiodic.

Furthermore, the space Θω is finite so by Theorem 4.5, the irreducible and aperiodic MC on

the space Θω is positive recurrent and then by Theorem 4.6 the MC is ergodic.

The assumption that there exists an aperiodic state is very mild. It is easily satisfied as shown

in the following example in Figure 6.20.

The MC return to state a in 2 time steps with a Death move to a state c followed by a Birth

move back to state a. It can also return in 3 time steps with a Death move to state c followed by a

Birth move to state b and followed a Reduction move back to state a.

θ̃τ = (k1, t1, 8, 1, 2)

∅

θ̃τ = (k1, t1, 8, 1, 2, 4)
b

c

a

D

R

B

B
D

E

Figure 6.20: Example of aperiodic state

After a new track hypothesis auxiliary variable θ̃∗1:T has been obtained from the proposal dis-

tribution q(θ̃∗1:T |Z̃1:T , θ̃1:T ), X̃∗1:T can be sampled from p(·|Z̃1:T , θ̃∗1:T ) in (6.27) using the SMC

Algorithm 11. The PMMH algorithm for RFS based Multi-target Tracking is described in the

following subsection by combining these two sampling techniques.
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6.3.3 PMMH Algorithm for RFS based Multi-target tracking

Initializing θ̃ arbitrarily in Algorithm 12 makes the computation expensive. This can be allevi-

ated by using an estimate from the Gaussian Mixture Probability Hypothesis Density (GM-PHD)

tracker as the initial estimate. Using a good estimate from this popular technique may reduce the

computational cost significantly. We also keep the estimate X̃G from the GM-PHD tracker such

that the GM-PHD only need to sample N − 1 instead of N samples from q(·|Z̃, θ̃). The SMC

modified to suit this situation is called the conditional SMC [4].

The pseudocode for the SMC Algorithm 13 below provides us with the parametersBn
1:T as the

ancestral lineage of the particle X̃n
1:T . The SMC algorithm conditional on X̃k

1:T = (X̃
Bk1
1 , . . . , X̃BkT )

described in Algorithm 13 samples N − 1 particles.

Algorithm 13 : Conditional SMC Algorithm
At time t = 1:

- if n 6= Bk
1 , sample X̃n

1 ∼ q(·|Z̃1, θ̃1) and compute w1(X̃n
1 ) by using (6.30) and normalize

Wn
1 ∝ w1(X̃n

1 ).
At t = 2, . . . ,T :
- if n 6= Bk

t , sample Ant−1 ∼ F(·|Wt−1),

- then sample X̃n
t ∼ q(·|X̃

Ant−1
t−1 , Z̃t, θ̃t), set X̃n

1:t = (X̃
Ant−1
1:t−1, X̃n

t ) and
- compute wt(X̃n

1:t) by using (6.31) and normalize Wn
t ∝ wt(X̃n

1:t).

Based on the PMMH Algorithm 12, the algorithm of the PMMH for MTT is summarized in

Algorithm 14 below.

Algorithm 14 : PMMH Algorithm for MTT
Input: Given Z̃, pSt , pDt , κt, the birth intensity γt for t = 1, . . . ,T and sample number L.
Output: SX(l),Sθ̃(l), and γθ(l) for l = 1, . . . ,L.
At iteration l = 1

- Run GM-PHD tracker to obtain X̃G, then obtains θ̃(l) from X̃G and denote B1:T =
(1, . . . , 1︸ ︷︷ ︸

T

).

- Run a conditional SMC algorithm targeting p(X̃|Z̃, θ̃(l)) conditional on X̃G and B1:T .
Then sample X̃∗ ∼ p̂(·|Z̃, θ̃(l)) and calculate γθ(l) = p̂(Z̃, θ̃(l)). Then denote SX(l) =
X̃∗.

At iteration l > 1
- Propose θ̃∗ ∼ q(·|θ̃(l− 1), Z̃) (see Subsection 6.3.2.4)
- Run an SMC algorithm targeting p(X̃|Z̃, θ̃∗). Then sample X̃∗ ∼ p̂(·|Z̃, θ̃∗); calculate
p̂(Z̃, θ̃∗) and the probability

α = min
{

1, p̂(Z̃, θ̃∗)w(θ̃∗)q(θ̃(l− 1)|θ̃∗, Z̃)
γθ(l− 1)w(θ̃)q(θ̃∗|θ̃(l− 1), Z̃)

}

if α ≥ u, set SX(l) = X̃∗, γθ(l) = p̂(Z̃, θ̃∗). Otherwise SX(l) = SX(l − 1), θ̃(l) =
θ̃(l− 1), γθ(l) =γθ(l− 1) where u ∼ Unif [0, 1].
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6.4 Summary and Discussion

The MTT problem was formulated in a random finite set framework. Particularly, a track was

defined as a trajectory of target states equipped with a target label and the appearance time; a track

hypothesis was also defined as a set of different tracks such that no two different tracks share any

states at any time. Furthermore, augmented multi-target states were formulated as a collection of

augmented single target sates such that each augmented single target state is extended from single

target state by adding a target label. With the augmented multi-target states formulated in a RFS

framework, the posterior distribution of a sequence of augmented multi-target states was derived

via Bayes recursive framework. Furthermore, we also showed that conditional on a sequence of

noisy multi-target measurement, the posterior distribution of a track hypothesis is the same as the

posterior distribution of its corresponding sequence of augmented multi-target states.

There is no-closed form expression for the posterior distribution so numerical methods such as

MCMC are the only feasible option. However, directly applying this method is computationally

intractable when the number of targets and measurements are large because the likelihood function

in the posterior distribution considers all combinations between the target states and the measure-

ments at a time instance. An auxiliary variable at a time instance was introduced to overcome this

problem by mapping the target labels to the measurement indices. Any target label mapped to a

0 is undetected. Each auxiliary variable represents a combination between target states and meas-

urements. The augmented auxiliary variable was subsequently established to show the correlation

between the augmented target states and the measurements at a time instance. Thus, a sequence

of augmented auxiliary variables was derived to capture the relationship between the sequence of

augmented multi-target states and the sequence of the multi-target measurements.

A new algorithm, the PMMH algorithm for RFS based Multi-target Tracking which is a com-

bination of PMMH [4] and the proposal moves in Section 6.3.2.2, was derived to numerically solve

for the joint distribution p(X̃, θ̃|Z̃). In the next chapter we will illustrate the PMMH algorithm

for RFS based Multi-target Tracking in a simulation example.





Chapter 7

Simulation and Performance

The PMMH algorithm for RFS based Multi-target tracking is simulated and evaluated in this

chapter. The multi-object metric for evaluating the performance of the algorithm is discussed

in Section 7.1. This metric is called Optimal Subpattern Assignment (OSPA). Simulation results

and performance evaluation of the PMMH algorithm for RFS based Multi-target Tracking are

given in section 7.2. The results are discussed in Section 7.3

7.1 Multi-object Miss-distance

Let X and Y be two finite sets where X = {x1, ...,xm} and Y = {y1, ..., yn} and assume

that m < n. The set X with smaller cardinality is initially chosen as a reference. We want to

determine the assignment between the m points of X and the n points of Y that minimizes the

sum of distances, subject to the constraint that distances are capped at a preselected maximum

or cut-off value c. This minimum sum of distances can be interpreted as the total localization

error, which is assigned to the points in Y by giving the points in X as reference. All points which

remain unassigned are charged with c the maximum error value. These errors can be interpreted as

cardinality errors which are penalized at the maximum rate. The total error committed is then the

sum of the localization error and the cardinality error. Remarkably, the per target error obtained

by normalizing total error by n (the largest cardinality of the two given sets) is a proper metric

[155].

The OSPA metric d̄(c)p is defined as follows. Let d̄(c)(x, y) := min(c, ‖x− y‖) for x, y ∈ X ,

and Πk denotes the set of permutations on {1, 2, ..., k} for any positive integer k. Then, for

p ≥ 1, c > 0, and X = {x1, ...,xm} and Y = {y1, ..., yn},

• if m ≤ n:

d̄
(c)
p (X,Y ) :=

[
1
n

(
min
π∈Πn

n∑
i=1

d̄(c)(xi, yπ(i))p + cp(n−m)

)] 1
p

• if m > n: d̄(c)p (X,Y ) := d̄
(c)
p (Y ,X); and

• if m = n = 0: d̄(c)p (X,Y ) := d̄
(c)
p (Y ,X) = 0

The OSPA distance is interpreted as a p−th order per-target error, comprised of a p−th order per-

target localization error and a p−th order per-target cardinality error. Precisely, for p < ∞ these

components are given by
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• if m ≤ n:

ē
(c)
p,loc(X,Y ) :=

(
1
n minπ∈Πn

∑n
i=1 d̄

(c)(xi, yπ(i))p
) 1
p ē

(c)
p,card(X,Y ) :=

(
cp(n−m)

n

) 1
p

• if m > n:

ē
(c)
p,loc(X,Y ) = ē

(c)
p,loc(Y ,X), ē(c)p,card(X,Y ) = ē

(c)
p,card(Y ,X)

They can thus be interpreted as contributions due to localization only (within the optimal subpat-

tern assignment) and cardinality only (penalized at maximal distance). The decomposition of the

OSPA metric into separate components is usually not necessary for performance evaluation, but

may provide valuable additional information.

The order parameter p determines the sensitivity of the metric to outliers, and the cut-off para-

meter c determines the relative weighting of the penalties assigned to cardinality and localization

errors. When p = 1, the OSPA distance can interpreted exactly as the sum of the "per-target

localization error" and the "per -target cardinality error". For details see [155].

This metric is suitable for evaluating the multi-target tracking problem because at each time it

considers not only the error between the number of estimated targets and the number of true targets

but also the error between the position of estimated targets and the position of the true targets.

7.2 Simulation and Performance

In this section, we demonstrate the multi-target PMMH algorithm with a simulated sample and

evaluate its performance using the Optimal Sub-pattern Assignment distance (OSPA) [155]. In or-

der to apply the OSPA metric, we choose p = 2 and c = maxt∈T maxx∈Xt,x′∈Xtrue
t

d(x,x′)
where Xtrue

t is the set of true multi-target. The surveillance area is the square region R =

[−1000m, 1000m] × [−1000m, 1000m]. We use the surveillance duration of T = 50 scans

with sampling interval Ts = 1 second. We denote xTr as the transpose of x. The state vector

is xt = [ξt, ζt, vξt , vζt ]Tr where (ξt, ζt) denotes the target position on 2D Cartesian plane and

(vξt , vζt) is its velocity t = 1, . . . ,T . Linear state and measurement models are used

xt = Axt−1 + vt−1, zt = Cxt +wt (7.1)

where

A =


1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

 , C =


1 0
0 1
0 0
0 0


Tr

,

vt and wt are zero mean Gaussian process with covariance Q and R, respectively; where

Q = σ2
v


T 2
s
4 I2

Ts
2 I2

Ts
2 I2 I2

 , R = σ2
wI2
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σv is the standard deviation of the velocity process noise; σw is the standard deviation of the

measurement noise. The level of density was chosen to be moderate where the number of targets

varies from 1 to 50. The parameters were chosen according to general real tracking examples.

Targets move with initial speeds uniformly distributed between 30 and 150 meters per second so

the maximum speed is 150(m/s) and v̄ in (6.40) is 150, σv = 5m/s and σw = 10m. In order to

demonstrate the closely space track, the targets appear from J = 24 possible locations and can be

born at any time in these J possible locations (see Figure 7.1) with intensity

γt(x) =
J∑
i=1

1
J
N (x;m(i)

γ ,Pγ)

where Pγ = diag(Pu2
m), P = [100, 100, 25, 25] and u2

m = uTmum, um =
[
m,m, ms , ms

]
are

used to model spontaneous births in the vicinity of m(i)
γ , i = 1, . . . , J . Target spawning is not

considered in this example. The track is confirmed if a target exists at least 3 consecutive times

so m∗ = 3. The ground truth from 19 of these J birth locations is plotted together with false

alarms in Figure 7.2. These targets moves from top right to bottom left, or from the middle to

either top right or bottom left. Each target survives with probability PS = 0.99 and is detected

Figure 7.1: Location of the appearance of targets with mean m(i)
γ and P (i)

γ , i = 1, . . . , J

with probability PD = 0.8, and the maximum number of consecutive missed detections of any

track is chosen as d̄ = 2. The detected measurements are immersed in clutter that is modeled as a
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Figure 7.2: Ground truth tracks with appearance location plotted together with noisy measurements.

Poisson RFS Λt with intensity

λc = κtV u

where u is the uniform density over the surveillance region, V = 4 × 106m2, κt = 12.5 ×
10(−6)m−2 is the intensity function and λc is the average number of clutter returns per unit volume

(i.e. λc = 50 clutter returns per scan over the surveillance regionR). In this thesis, we modeled the

clutter as a Poisson process which is general form for unpredictable clutter. We haven’t simulate

the scenario in which the clutter is not Poisson process however the performance may be as good

as the same for other type of clutter model. In the case the clutter is unpredictable, the clutter can

be estimated at each time scan as in filtering algorithm [102]. In general, the parameters can be

chosen according to the underlying targets.

7.3 Numerical Result and Discussion

The problem of closely spaced and crossing targets cannot be solved reliably by popular filtering

techniques. MHT algorithm is known to break down with a large number of targets and a large

number of measurements. Our algorithm, PMMH for multi-target tracking, is designed to deal

with this problem. In the absence of a proper estimator we use the PMMH algorithm 13 and we
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stop when the last 50 accepted samples are associated with the Point Update move, indicating that

the algorithm has "settled" on a fixed number of targets. The tracks from our algorithm are plotted

against ground truth in Figure 7.3. The algorithm search and compare all possibilities of track

hypothesis with the general Poisson assumption for clutter. The variances for parameter can be

initiated large if there is uncertainty of new born target. The algorithm may not be sensitive with

the choice of parameters since the samples are drawn from the important sampling distribution

such that the support of this important sampling contains the support of posterior distribution.

Thus the performance may not be degrade much if the measurement followed slightly different

statistics to those assumed by the filter.

Figure 7.3: The true tracks and estimated tracks from PMMH for MTT a with GMPHD estimate as the
initial state of a Markov chain.

The performance of PMMH for MTT is evaluated using the OSPA metric in Figure 7.4. In

this figure, there are some large errors which occurred at six different time scan periods, more

specifically t = 1, 5, 39, and the time intervals 9− 10, 41− 42 and 47− 50. Figures 7.5 and 7.6

explain the origin of these errors. These errors result from the miss-detections of the targets when

targets first appear or before the targets disappear from the surveillance area. Figure 7.7 shows

the targets whose states were not tracked by our algorithm. The targets which are not tracked are

labeled and their trajectories are drawn in dashed line with cyan color. For examples, at time t = 1
the targets 3 and 4 are born but not observed by the sensor. The same happens for target 10 at time
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t = 5. At time t = 9 and t = 10, the sensor does not detect target 4 before the target disappears

from the surveillance area. This is also the case for the target 10 at time t = 39 and t = 40.

Figure 7.4: The error using estimates from a GM-PHD filter and using the estimates from PMMH
for MTT.

Figure 7.5: Multi-target estimation errors (cardinality error and localization error) for GMPHD
and the PMMH for MTT.

The PMMH algorithm 13 confirmed a false alarm before the true appearance time of target 30
as an initial state of the target. The "OSPA Loc" in Figure 7.5 also shows that whenever targets are

detected during their existence period the location error seem to be small. However, the "OSPA"

in Figure 7.4 shows that there is an error during the time period between 47 and the last scan time

T = 50. This happens because the target 33 only exists during time t = 47 to the last scan T = 50
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Figure 7.6: True cardinality (green line) shown versus estimated cardinality from GM-PHD filter
(red line), and PMMH for MTT (blue line).

but is only detected at every second time instant from time t = 48. Therefore the PMMH for MTT

algorithm does not have enough information to distinguish this target from clutter.

Figure 7.7: Ground truth tracks and their estimates. The states of labeled and cyan colored targets
were not detected by PMMH for MTT algorithm.

7.4 Conclusion

A batch formulation and solution based on random finite sets for the MTT problem in a cluttered

environment with low detection probabilities has been proposed. A simulation was successfully

carried out on a moderately difficult scenario with medium probability detection (PD = 0.8). The

trajectories of a variable number of targets were tracked successfully. Tracking performance was

reliable compared to standard filtering based MTT methods. However, the computational cost is

high for the batch method.





Chapter 8

Conclusion

This Chapter closes the dissertation by giving a summary and conclusion of the contributions, and

some suggestions for further researches.

8.1 Summary and Conclusion

T In this dissertation we have considered the multi target tracking problem where many targets

move close together, and may cross each other. This problem is motivated by the cell track-

ing problem in medicine where a large unknown number of cells move very close to each other,

and they may also cross each other. In addition, they may spawn other targets or die unpredictable.

The environment where the cell move may be noisy and may be heavily cluttered. Tracking the

trajectories of the targets (cells) in such environment is a most difficult problem. Conceptually this

problem can be formulated in a Bayesian setting, and the multi target Bayes filter can be used for

estimating the target states from the observed measurements. However, due to the large number

of targets and measurements the multi target Bayes filter is computationally intractable since all

possible combinations of targets and measurements must be considered, and hence computation-

ally feasible approximations must be required. Commonly used methods based on the Bayes filter

such as MHT, JPDA, JIPDA, PHD filter, GM-PHD etc, all fail to varying degrees on problems of

the type considered here.

In this thesis we have proposed a batch processing method for the MTT problem. The problem

has been approached using the RFS framework. This is a natural framework for this type of

problems since it can easily handle an unknown number of targets and measurements which in

addition also vary over time. The problem has been rigorously formulated in the RFS framework

and the MTT Bayes filter has been derived. In order to overcome the computational difficulties

with the MTT Bayes filter an auxiliary variable which associates target labels and measurements

indices at a time step has been introduced. In order to find this association between targets and

measurements we have constructed a Markov Chain based on 14 proposal moves. The Bayes filter

has then been approximated using a PMMH algorithm where an SMC method is combined with

an MCMC method. The reason for this choice is that the variables involved are strongly correlated

and SMC and MCMC on their own do not give reliable results in such cases. In the proposed

approach the samples of the target states are drawn conditionally on the auxiliary variable using
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an SMC algorithm. The PMMH algorithm has been implemented on a simulation example with

very promising results.

As illustrated by the simulation example the proposed method is a very promising batch

method for the MTT problem. The algorithm has several strengths: It is formulated in the RFS

framework which is a natural framework for dealing with an unknown and time varying number of

targets and measurements. Moreover the computational burden is greatly reduced by the introduc-

tion of the auxiliary variable without sacrificing accuracy. Finally the proposed PMMH algorithm

for approximating the posterior distribution combines the strengths of MCMC and SMC methods

thus enabling efficient sampling of strongly correlated variables. The computational cost of the

algorithm is still high and it is therefore important to choose good initial estimates and proposal

distributions in order to achieve fast convergence. In this thesis this has been achieved by initializ-

ing the algorithm using the estimate from the GM-PHD filter and constructing a MC based on 14

proposal moves for finding the association between targets and measurements.

Even though the results are very promising there are still many open questions and room for

improvements in the algorithms. The most important ones are briefly discussed next under topics

for further research.

8.2 Future Research

The main motivation for this work has been the cell tracking problem in medicine. It would

therefore be of great interest to apply the developed algorithm to real data. The data are given in

the form of cell images and therefore require image processing before measurements of the type

considered in this thesis can be obtained. In addition to the actual application to cell data it is also

of interest to develop image processing methods which takes into account that the processed data

will subsequently be used in a target tracking algorithm. The results from the target tracking could

also be fed back to the image processing algorithm, thus creating and integrated image processing

and tracking algorithm.

The computation cost is high and finding algorithm improvements which reduce the computa-

tional burden is an important practical problems. Improvements can e.g. be sought in the areas of

better initial estimates, better proposal distributions, or parallelizing the algorithm for implement-

ation on multi-core processors.

On a more fundamental level the development of a track estimator would be a significant

contribution to the field of multi-target tracking. This is a difficult problem as both the number of

targets and their trajectories need to be estimated. A cost function would have to include both the

errors in the number of targets and the errors in the target state.
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Background Mathematics

This Appendix presents some definitions and results of an probability, measures and integration.

The results are needed especially in this thesis. More details can be found in [19, 39, 48, 63]

A.1 Probability and measures

Definition A.1: The set of all possible outcomes of an experiment is called the sample space and

is denoted by Ω.

Definition A.2: A collection σ(Ω) of subsets of Ω is called a σ-algebra if it satisfies

(a) ∅ ∈ σ(Ω),

(b) if A1,A2, . . . ∈ σ(Ω) then ∪∞i=1Ai ∈ σ(Ω),

(c) if A ∈ σ(Ω) then Ac ∈ σ(Ω)

whereAc = Ω−A is the complement ofA where Ω−A denotes the difference operation between

the two sets Ω and A.

Definition A.3 (Filtration): A sequence of σ−fields F1, F2, . . . on Ω such that

F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ Fn+1 ⊂ . . .

is called a filtration.

Definition A.4: A measure µ on (Ω,σ(Ω)) is a function µ : σ(Ω)→ [0,∞) satisfying

(a) µ(A) ≥ 0 for all A ∈ σ(Ω), µ(∅) = 0,
(b) if A1,A2, . . . ∈ σ(Ω) and Ai ∩Aj = ∅ for all i 6= j then µ(∪∞i=1Ai) =

∑∞
i=1 µ(Ai)

The triple (Ω,σ(Ω),µ) is called a measure space. The pair (Ω,σ(Ω)) is called a measurable

space. An element A ∈ σ(Ω) is called a measurable set. A probability measure is a measure

with total measure one (i.e., µ(Ω) = 1); a probability space is a measure space with a probability

measure. Several further properties of a measure can be derived from the definition

• (Monotonicity) A measure is monotonic, i.e. if A1 ⊆ A2,A1,A2 ∈ σ(Ω) then µ(A1) ≤
µ(A2)

• (Measures of infinite unions of measurable sets)
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– A measure µ is countably subadditive: If A1,A2, . . . is a countable sequence of sets

in Ω, not necessarily disjoint, then

µ(
∞⋃
i=1

Ai) ≤
∞∑
i=1

µ(Ai)

– A measure µ is continuous from below: If A1,A2, . . . ∈ σ(Ω) and A1 ⊆ A2 ⊆ . . .,

then the union of the sets Ai is measurable, and

µ(
∞⋃
i=1

Ai) = lim
i→∞

µ(Ai)

• (Measures of infinite intersections of measurable sets): If A1,A2, . . . ∈ σ(Ω) and A1 ⊇
A2 ⊇ . . ., then the intersection of the sets Ai is measurable; furthermore, if at least one of

the Ai has finite measure, then

µ(
∞⋂
i=1

Ai) = lim
i→∞

µ(Ai)

If Ω = ∪∞i=0Ai for some countable sequence Ai ∈ σ(Ω) with µ(Ai) < ∞, then µ is said to

be σ−finite.

Definition A.5 (Measurable function): Let (X1,σ(X1)) and (X2,σ(X2)) be two measurable

spaces. A mapping f : X1 → X2 is said to be measurable if the inverse images of a measur-

able set is measurable i.e. f−1(A) = {x ∈ X1 : f(x) ∈ A} ∈ σ(X1) for A ∈ σ(X2).

Definition A.6: Let (Ω, σ(Ω), P) be a probability space and (S, S) be a measurable space.

Then a random variable is a measurable function X : Ω → S with the property that {ω ∈ Ω :
X(ω) ∈ B} ∈ σ(Ω) for any B ∈ S. Such a function is said to be σ(Ω)-measurable

Definition A.7: Let (S, S) be a measurable space. The distribution function of a random vari-

able X : Ω → S is the probability measure µ : S → [0, 1] given by µ(B) = (P ◦X−1)(B) =

P(X−1(B)) = P({ω ∈ Ω : X(ω) ∈ B}) for any B ∈ S

We denote the distribution function of a random variable X by PX .

Definition A.8: Let (X ,σ(X ),µ) be a measure space where µ is a (nonnegative, countably ad-

ditive) measure. A set A ∈ σ(X ) will be called an atom for µ [66, 168], if

1. µ(A) > 0 and

2. for any proper subset B of A i.e. B ⊂ A, µ(B) = 0.

We shall say that µ is purely atomic or simply atomic if every measurable set of positive measure

contains an atom. We shall say that µ is nonatomic (or atomless) if there are no atoms for µ.

A.2 Topology

Definition A.9: A topology T on Ω is a family of subsets of Ω such that
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• (conventions on empty set) ∅, Ω ∈ T

• (arbitrary union) if Ai ∈ T, i ∈ I then ∪i∈IAi ∈ T where I is an arbitrary set.

• (finite intersection) if A1,A2, . . . ,An ∈ T then ∩ni=1Ai ∈ T.

The pair (Ω, T) is called a topological space. The open sets in Ω are defined to be the members

of T). A subset of Ω is said to be closed if its complement is in T) (i.e., its complement is open).

A subset of Ω may be open, closed, both, or neither.

A Borel set is any set in a topological space that can be formed from open sets (or, equivalently,

from closed sets) through the operations of countable union, countable intersection, and relative

complement. For a topological space T on Ω, the collection of all Borel sets on Ω forms a σ−-

algebra, known as the Borel algebra or Borel σ−algebra B(Ω). The Borel algebra on Ω is the

smallest σ−algebra containing all open sets (or, equivalently, all closed sets).

Definition A.10: A collection of subset B ⊆ T is a base for the topological space if each non-

emptyset A ∈ T can be represented as a union of of a subfamily Bi of B, i.e. A =
⋃
C∈Bi

C

where Bi ⊆ B

Definition A.11: A topological space (X , T) is said to be a Hausdorff space if for any x, y ∈ X
x 6= y there are disjoint open set Ux,Uy containing x and y respectively.

Definition A.12: A topological space (X , T) is called compact if each of its open covers has a

finite subcover. Explicitly, this means that for every arbitrary collection {Ui ∈ T : i ∈ I} such

that X =
⋃
i∈I Ui, there is a finite subset J ⊂ I such that X =

⋃
i∈J Ui. A set A ⊂ X is compact

in X if each of its open covers has a finite subcover i.e. if A ⊂
⋃
i∈I Ui where {Ui ∈ T : i ∈ I} is

a collection of open sets, then there is a finite subset J ⊂ I such that A ⊂
⋃
i∈J Ui.

Definition A.13: A topological space (X , T) is called locally compact if for each x ∈ X there is

an open set U ∈ T that x ∈ U and the closure of U is compact. The closure of U is Cl(U) =

{x ∈ X : V ∩U 6= ∅ for each open set V containing x}

Definition A.14: In a topological space (X , T), a subset A of X is said to be a dense subset of X
if Cl(A) = X . A topological space (X , T) is separable if it contains a countable dense subset.

A.3 Integration of measurable function

Let (X ,σ(X )) be a measurable space. Let 1A be the indicator function of subset A ⊆ X , i.e

1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. Consider a measurable function f : X → R in

the following cases

• If f is a non-negative simple function i.e. f =
∑n
i=1 ci1Ai where {Ai} is a finite decom-

position of σ(X ), then the integral of f with respect to the measure µ is

∫
X
f(x)µ(dx) =

n∑
i=1

ciµ(Ai)
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• If f is a non-negative function i.e. f : X → [0,∞] and there exist a sequence of simple

function such that 0 ≤ fn < fn+1 < f for all n and limn→∞ fn = f , then the integral of

f with respect to µ is defined as the limit of the integral of simple functions∫
X
f(x)µ(dx) = lim

n→∞

∫
X
fn(x)µ(dx)

• The integral of a general measurable function f : X → [−∞,∞] with respect to µ is∫
X
f(x)µ(dx) =

∫
X
f+(x)µ(dx) +

∫
X
f−(x)µ(dx)

where the positive part of f is

f+(x) =

{
f(x), if 0 ≤ f(x) ≤ ∞;

0, if −∞ ≤ f(x) ≤ 0.

and the negative part of f is

f−(x) =

{
−f(x), if −∞ ≤ f(x) ≤ 0;

0, if 0 ≤ f(x) ≤ ∞.

The integral of f over any measurable set A ∈ σ(X ) is∫
A
f(x)µ(dx) =

∫
1A(x)f(x)µ(dx)

Definition A.15 (Absolutely continuous): Let µi, i = 1, 2 be σ−finite µ1 and µ2 on the same

measurable space (X ,σ(X )). µ1 is absolutely continuous with respect to a µ2, denoted µ1 � µ2

if µ2(A) = 0 implies that µ1(A) = 0 for A ∈ σ(X ).

The Radon-Nikodým theorem says that µ1 is absolutely continuous with respect to a µ2 if

there exist a measurable function f : X → [0,∞) such that

µ1(A) =
∫
A
f(x)µ2(dx).

Then f is called the Radon-Nikodým derivative or density of µ2 with respect to µ1 and is denoted

by g = dµ1/dµ2

A.4 Markov Chains

This section gives some definitions and basic results for Markov chains. More details can be found

in [39, 63].
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Kronecker Delta δij . If i, j ∈ N, the Kronecker Delta is given by

δij =

{
1, if i = j;

0, if i 6= j.

Dirac measure δx. Let x ∈ S, a Dirac measure δx on a set S (with any σ-algebra of subset of

S) is defined for any A ⊆ S

δx(A) =

{
0, if x /∈ A
1, if x ∈ A.

Definition A.16: A generating-function of a sequence a = {zi : i = 0, 1, . . .} of a real numbers

is the function Ga defined by

Ga(s) =
∞∑
i=0

ais
i for s ∈ R for which the sum converges.

The sequence ai may in principle be reconstructed from the function Ga by setting

ai =
G

(i)
a (0)
i!

where G(i) denotes the ith derivative of the function Ga. In many circumstances it is easier to

work with the generating function Ga than with the original sequence.

Definition A.17 (dth order Markov process): A hidden state sequence {Xt}t≥1 is a d order

Markov process when conditional distribution of Xk given the past values Xl with 1 ≤ l < k

depends on the d tuple Xk−d, . . . ,Xk−1 i.e.

P(Xk|X1, . . . ,Xk−1) = P(Xk|Xk−d, . . . ,Xk−1)

Definition A.18: [ (State space)]The state space S is called

(i) countable if S is discrete, with a finite or countable number of elements, and with S the

σ-field of all subsets of S.

(ii) general if it is equipped with a countably generated σ-field1 S

1Countably generated σ-field is a σ-algebra that can be generated by a countable collection of sets.
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Mathematical Proofs

Now we prove (4.24) for t ≥ 1

pθ(Zt|Z1:t) ≈
1
N

N∑
n=1

wt(X
n
t−1:t) (B.1)

with the convention that pθ(Z1|Z1:0) = pθ(Z1) and X0:1 = X1.

Let t = 2, we have

pθ(Z1:2) =
∫
pθ(X1:2,Z1:2)dX1:2 =

∫
pθ(X2,Z2|X1,Z1)pθ(X1,Z1)dX1:2∫

pθ(X1,Z1)dX1

∫
pθ(X2,Z2|X1,Z1)dX2 (B.2)

=
∫
gθ(Z2|X2)fθ(X2|X1)pθ(X1,Z1)dX1:2 by (4.17)

=
∫
gθ(Z2|X2)fθ(X2|X1)

(∫
w(X1)qθ(X1|Z1)dX1

)
dX2 (by (4.19))

=
∫
w(X1)qθ(X1|Z1)dX1

∫
gθ(Z2|X2)fθ(X2|X1)dX2

=
∫
w(X1)qθ(X1|Z1)dX1

∫
w(X1:2)qθ(X2|Z2,X1)dX2 (by (4.21)). (B.3)

From (B.2), we have

pθ(Z1:2) =
∫
pθ(X1,Z1)dX1

∫
pθ(X2,Z2|X1,Z1)dX2

= pθ(Z1)
∫
pθ(X2,Z2|X1,Z1)dX2 = pθ(Z1)pθ(Z2|X1,Z1)

(a)
= pθ(Z1)pθ(Z2|Z1) (B.4)

where (a) holds by Z2 are statistically independent of X1 conditional on Z1. Hence by (B.3) and

(B.4), we have

pθ(Z1) =
∫
w(X1)qθ(X1|Z1)dX1 (B.5)

pθ(Z2|Z1) =
∫
w(X1:2)qθ(X2|Z2,X1)dX2. (B.6)
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Let t = T , use the same argument for (B.3) and (B.4), we have

pθ(Z1:T ) = pθ(Z1)
T∏
i=1

pθ(Zi|Z1:i−1)

where pθ(Z1) is given in (B.5) and for t = 2, . . . ,T it follows from (B.6), we have

pθ(Zt|Z1:t−1) =
∫
w(X1:t)qθ(Xt|Zt,Xt−1)dXt.

From Algorithm 4 and for t = 1, . . . ,T , we have Xn
t ∼ qθ(Xt|Zt,Xt−1), n = 1, . . . ,N with

convention that qθ(X1|Z1,X0) = qθ(X1|Z1). Thus the approximation of pθ(Zt|Z1:t−1) is

p̂θ(Zt|Z1:t−1) =
1
N

N∑
n=1

wt(X
n
t−1:t)
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