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Abstract

OVER the last 30 years, magnetic resonance imaging (MRI) has revolutionised
diagnostic radiology by producing anatomical images of remarkable qual-

ity. MRI is often considered the most flexible imaging technique compared to other
imaging modalities and as such, the technology has helped answer fundamental
questions about the structure and function of the body. Despite these advances,
the core technology was developed at time when computer performance was lim-
ited, necessitating signal approximations and clever acquisition strategies. The
dramatic increase in computer power available today means the full flexibility of
MRI can be explored.

This thesis adopts a statistical signal processing framework. From this perspec-
tive, accurate models of the underlying signal and noise processes are crucial to
extract the maximum information available in the measurements. This framework
is applied to the advancement of two emerging MRI technologies: quantitative
MRI and nonlinear spatial encoding.

Quantitative MRI aims to estimate the underlying parameters contributing to
a magnetic resonance signal. Unlike traditional imaging, based on contrast alone,
the estimation of physical parameters promises to enhance tissue classification,
disease detection and pathology. The present work examines the estimation of
transverse relaxation rates for two cases. Firstly, estimation in the presence of
distortion due to finite sampling bandwidth is considered. Secondly, estimation
of distributions of relaxation rates are considered to model voxels with multiple
components. Bayesian techniques are developed that incorporate accurate signal
models and result in state-of-the-art performance.

The recent advent of nonlinear encoding fields is testament to the flexibility
inherent in MRI. These magnetic encoding fields vary nonlinearly over the field-
of-view resulting in an image with spatially varying resolution. A new acquisition
strategy that exploits this property is developed to produce images with improved
resolution in a user-specified region of interest. This technique has many applica-
tions; for example, clinicians could acquire an image with high resolution detail
of a brain tumour, beyond that achievable with traditional techniques. The use of
nonlinear fields creates an additional spatial dependence on the image signal-to-
noise ratio and a computationally efficient metric is derived to quantity this effect.
Such performance metrics are required to design new acquisition schemes that
take advantage of all possible degrees of freedom.
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CHAPTER 1

Introduction

1.1 Introduction to MRI

MAGNETIC resonance imaging (MRI) has become an indispensable tool for
both clinical use and fundamental research. The utility of MRI is due to a

combination of factors. Firstly, MRI provides good contrast between different soft
tissues, which makes it an ideal modality for imaging the human body. Secondly,
it is very safe due to the use of non-ionizing radio frequency fields. Other ma-
jor imaging modalities such as nuclear medicine and X-ray use ionizing radiation,
which can be harmful if exposure is not limited. Another advantage of MRI lies in
its flexibility. Techniques such as structural imaging, quantitative MRI, functional
MRI, diffusion weighted imaging and MR angiography all provide complemen-
tary information about the structure and function of the body.

The major drawback of MRI is cost. Machines cost millions of dollars to pur-
chase and maintain. Figure 1.11.1 illustrates the costly components of an MRI scanner.
A large portion of the cost is due the superconducting magnetic that generates the
main magnetic field. Adding other components such gradient fields, shim coils,
and radio frequency systems, the cost increases further.

A further limitation of MRI is acquisition time. Depending on the application, a

Main magnet
Shim coils

Gradient coils
RF coils

Figure 1.1: Schematic of an MRI scanner illustrating the main components. Image
adapted from [11]
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2 Chapter 1. Introduction

scan can last over an hour. This time is limited both by the hardware and physical
constraints. The patient must lie still in a relatively confined space during the
acquisition period, which can be unpleasant. Additionally, patient throughput is a
priority for hospitals trying to maximise the benefit of a scanner. For these reasons,
decreasing the acquisition time is a topic of ongoing research.

1.2 Motivation

The fundamentals of MRI were developed during a time when computational per-
formance was often a limiting factor. Since the 1990s, a dramatic increase in com-
puting power has been achieved simultaneously with a large reduction in com-
puter cost. This new landscape paves the way for novel acquisition strategies and
advanced processing algorithms in the field of MRI.

An MRI machine consists of many subsystems that interact in complex ways to
produce the final output. Dependent on the application, several of these interac-
tions are approximated to simplify the system description and the required com-
putation. Whilst these approximations are often adequate to produce high quality
results, there is still room for improvement. This thesis describes new MRI strate-
gies with detailed physical models and advanced processing algorithms necessary
to extract the desired information.

The increased computation, requisite for improved modelling, potentially per-
mits two improvements. Firstly, the performance of current systems could be im-
proved with a negligible increase in cost. Secondly, and perhaps more promisingly,
the same level of performance might be achieved on cheaper systems. These sys-
tems could be cheaper for a number of reasons, including a reduced magnetic field
strength, reduced field homogeneity and/or nonlinear gradient fields. Recent ap-
plications of these types of systems include portable MRI or ultra-low field MRI
[22].

1.3 Overview of thesis

This thesis adopts a statistical signal processing framework. Through accurate
models of the signal and noise processes, this framework provides tools for anal-
ysis and allows the maximum amount of information to be extracted from the
measurements. The framework is applied to the emerging MRI technologies of
quantitative MRI and nonlinear spatial encoding. The contributions to these re-
search areas touch on a range of subcomponents of the MRI system and applica-
tions. Figure 1.21.2 displays a basic schematic for MRI highlighting the contributions
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Figure 1.2: Overview of MRI processes and the relevant chapters discussing each
component. Chapters coloured red indicate novel contributions.

made. The thesis is divided into three parts: background, quantitative MRI and
nonlinear spatial encoding. Part II contains two chapters that establish the neces-
sary background for the remainder of the thesis. Chapter 22 reviews the physics
underpinning magnetic resonance from both a classical and quantum perspective.
While not a strictly novel contribution, the chapter collates numerous sources in a
manner not traditionally accessible in MRI literature. Boltzmann statistics are dis-
cussed as the mechanism to generate macroscopic magnetisation. The Bloch equa-
tion and the Schrödinger equation are presented and are used to derive the spin
evolution during precession, excitation, and relaxation. The classical and quan-
tum descriptions are presented alongside each other to highlight the similarities
and provide a deeper understanding of the relevant physics. Chapter 33 presents
the fundamentals of MRI including signal detection, echo generation, spatial en-
coding and image reconstruction. The concept of k-space is introduced and used
to describe common acquisition sequences. Finally, some of the challenges specific
to MRI data are discussed from a signal processing perspective.

Part IIII of this thesis includes two novel contributions to quantitative MRI.
Chapter 44 examines the problem of relaxation time estimation in the presence of
localised spatial blurring. The blurring is due to the presence of relaxation dur-
ing data acquisition, described by a linear filter as in [33, 44]. This thesis extends
the model in [44] to include contributions from both transverse relaxation and field
inhomogeneity. The complete model is used to derive the statistical estimation
bias for commonly used estimators. To overcome the issue of bias, the estimation
problem is posed using the detailed signal model and a near optimal Bayesian es-
timator is developed. Chapter 55 discusses the problem of estimating a distribution
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of relaxation times from a single decay curve, first examined in [55]. This diffi-
cult problem is analysed from a statistical viewpoint using the Cramér-Rao lower
bound [66]. In light of the analysis, a novel algorithm based on the model proposed
in [77, 88] is presented to estimate the main features of the distribution.

Part IIIIII contributes to the emerging field of nonlinear spatial encoding [99, 1010,
1111]. Chapter 66 develops a new acquisition strategy that improves the image resolu-
tion in a region of interest. The technique uses the notion of local k-space described
in [1212] to exploit the position dependent resolution inherent in nonlinear encoding
fields. Chapter 77 provides a framework for image reconstruction with generalised
spatial encoding using the theory of frames [1313]. This framework is used to anal-
yse the reconstruction problem for the existing schemes of SENSE [1414], PatLoc [99]
and O-Space [1111] and a practical performance metric is developed based on the
variance of the reconstructed pixels.
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Physics of magnetic resonance
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2.1 Introduction

SPIN is the fundamental property of nuclei that makes MR imaging possible.
Understanding the physics describing the behaviour of spins is essential to

accurately model the behaviour of the MR signal. Thus a detailed description of
the physics describing systems of one or many spins is provided in this chapter.
The behaviour is examined from both a classical and quantum perspective to give
a deeper understanding of the topics covered. The chapter explores the basics of
spin systems with focus on spin-1/2 systems relevant to MRI. An introduction

7



8 Chapter 2. Physics of magnetic resonance

Table 2.1: Common notation used in Chapter 22

Symbol Quantity Units

Physical constants
KB Boltzmann constant, 1.3807× 10−23 J K−1

h̄ Reduced Planck’s constant, 1.0546× 10−34 J s
γ Gyromagnetic ratio, 2.6751× 108 (for 1H) rad/s/T

Classical physics
b Magnetic field T
m Magnetisation
T1, T2 Longitudinal and transverse relaxation times s
î, ĵ, k̂ Unit vectors along the x, y and z axes
p(ω) Distribution of isochromats
λ Width of Lorentzian distribution

Quantum physics
ψ(t) Quantum state
ρ Density matrix
|α〉, |β〉 Eigenstates
H Hamiltonian operator
Â Basis operators for Hamiltonian decomposition
F(t) Coefficients of Hamiltonian decomposition
J(ω) Spectral density functions
Îx, Îy, Îz Spin angular momentum operators
R̂ Rotation operator
Γ̂ Relaxation operator

to concepts such as thermal equilibrium, precession, RF pulses and relaxation is
provided.

2.1.1 Notation

Table 2.12.1 lists the important quantities and their associated notation used in this
chapter. Other notation not listed in this table will be introduced as it is required.

2.2 Atomic nuclei and spin

Matter is made up of atoms which in turn are made up of electrons and nuclei.
Nuclei consists of sub-atomic particles such as quarks and gluons. Nuclei have
four physical properties that arise from the properties of these sub-atomic parti-
cles: mass, electric charge, magnetic moment and spin. The magnetic moment, µ,
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is related to the spin, Ŝ, by a fundamental symmetry theorem[1515, page 26]. That is,

µ = γŜ (2.1)

where γ is the gyromagnetic ratio. This means that depending on the sign of γ, the
spin angular momentum is either aligned with the magnetic moment, or opposite
it. The gyromagnetic ratio is positive for most magnetic nuclei (including 1H) and
negative for electrons and a few atomic nuclei.

2.3 Spin dynamics

In this section we describe both classical and quantum descriptions of a spin sys-
tem. In both cases, the dynamics of the spins is governed by a differential equation:
the Bloch equation for a classical description and the Schrödinger equation (or Li-
ouville equation) for quantum states.

2.3.1 Classical description

Bulk magnetisation m is the sum of the individual proton’s magnetic moments
over a local volume V,

m(t) =
1
V ∑

i
µi(t) (2.2)

where µi is the magnetic moment of the ith proton.

In the presence of a magnetic field aligned along the z-axis, the motion of the
bulk magnetisation is governed by the Bloch equation [1616],

d
dt

m(t) = γm(t)× b− (mz −M0)k̂
T1

− mx î + my ĵ
T2

(2.3)

where m = [mx, my, mz]T is the vector of bulk magnetisation, b is the magnetic
field, M0 is the equilibrium magnetisation, T1 is the spin-lattice (longitudinal) re-
laxation time and T2 is the spin-spin (transverse) relaxation time. The notation
m× b denotes the vector cross product.

The notation in (2.32.3) is different from much of the literature, where capital
letters are used for the magnetisation and magnetic field. This deliberate choice
creates consistency with the remainder of the thesis where capital letters refer to
constants and bold capital letters refer to matrices.
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2.3.1.1 Rotating Frame of Reference

A common convention in MRI is to define the main magnetic field along the z-
direction such that

b = B0k̂ (2.4)

In this case, a useful tool for analysis is to transform the Bloch equation to a rotat-
ing frame of reference where the x-y plane rotates about the z axis at the Larmor
frequency ω0. The Bloch equation in the rotating frame of reference becomes

d
dt

m′(t) = γm′(t)× beff −
(mz′ −M0)k̂

′

T1
− mx′ î

′
+ my′ ĵ

′

T2
(2.5)

where beff = b′ + ωrot/γ is the effective field in the rotating frame. The vector
ωrot describes the speed and direction of the rotating frame and b′ and m′ are
the magnetic field and magnetisation transformed to the rotating frame. By con-
vention, ωrot = −ωk̂ so the reference frame rotates in the same direction as spin
precession. Often throughout this thesis the prime notation is used to indicate the
rotating frame of reference. To distinguish from the rotating frame of reference, we
refer to the static or non-rotating frame as the ‘laboratory’ frame of reference.

2.3.2 Quantum description

The state of a single quantum particle is described by a complex-valued wavefunc-
tion, ψ(x, t). In this thesis we consider stationary particles and drop the spatial
variable, x from the notation. For a spin-1/2 particle, there are two eigenstates of
angular momentum along the z-axis called Zeeman eigenstates,

|α〉 =
∣∣∣∣12,+

1
2

〉
; |β〉 =

∣∣∣∣12,−1
2

〉
(2.6)

where the notation, |I, M〉 specifies the eigenstate using two quantum numbers, I
and M. These eigenstates are useful since an arbitrary state can be described as
a linear combination (or superposition) of these basic states. The state |ψ〉 can be
written as |ψ〉 = cα|α〉+ cβ|β〉 or in vector form

|ψ〉 =
[

cα

cβ

]
(2.7)
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where the Zeeman eigenstates are written as

|α〉 =
[

1
0

]
; |β〉 =

[
0
1

]
(2.8)

The dynamics of the spin state, |ψ〉, is given by the time-dependent Schrödinger
equation. In natural units (scaled by h̄−1) the equation is

d
dt

ψ(t) = −jH ψ(t), (2.9)

where j =
√
−1. This equation completely describes the evolution of the quantum

states of the particle.

A magnetic resonance experiment is only capable of observing the average ef-
fect of all spins in an object. The average state of a spin ensemble is accurately
described using the density matrix. Formally, the density matrix can be defined by
considering the summation of Ns spins with states, |ψi〉, i = 1, . . . , Ns as follows
[1717],

ρ̂ =
1

Ns

Ns

∑
i=1
|ψi〉〈ψi| (2.10)

where 〈ψi| denotes the transpose of |ψi〉. Each state, |ψi〉 can be defined as in (2.72.7)
in terms of the Zeeman eigenstates, |α〉 and |β〉 denoting the low and high energy
states, respectively. Using this representation, the density matrix can be written as
follows,

ρ̂ =

[
cαc∗α cαc∗β
cβc∗α cβc∗β

]
=

[
ραα ραβ

ρβα ρββ

]
(2.11)

The overbar indicates an average over the ensemble. Diagonal terms (ραα and
ρββ) are called populations and off-diagonal terms (ραβ and ρβα) are called coherences.
They have the following relationships [1717],

ραβ = ρ∗βα (2.12)

ραα + ρββ = 1 (2.13)

A physical interpretation of these quantities is useful to develop some intuition.
The population difference represents the net polarisation along the external field
direction. Thus if ραα − ρββ > 0, the net polarisation is aligned with the external
field. The presence of non-zero coherences indicates transverse spin magnetisa-
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tion, that is a net polarisation perpendicular to the external field, B0.

The system dynamics are governed by the time-dependent Schrödinger equa-
tion (2.92.9) from which the Liouville equation for the density operator is derived [1818,
page 369]

d
dt

ρ(t) = −j[H , ρ(t)] (2.14)

where [Â, B̂] = ÂB̂− B̂Â is known as the commutator. Importantly, two operators
Â and B̂ are said to commute if and only if [Â, B̂] = 0.

2.3.2.1 Rotating Frame of Reference

Analogous to the classical rotating frame of reference, the Schrödinger equation
can be transformed to rotating coordinate system [1919]. This reference frame is often
referred to as the interaction frame. The system is transformed using the operator,
R̂z, representing a rotation around the z-axis,

R̂z(φ) =

[
exp{−j 1

2 φ} 0
0 exp{+j 1

2 φ}

]
(2.15)

Using this operator, a single spin state is transformed to the rotating frame of ref-
erence according to

|ψ̃〉(t) = R̂z(ωreft)|ψ〉(t) (2.16)

where ωref is the frequency of rotation and |ψ̃〉(t) is the state in the rotating frame
of reference. The Hamiltonian in the rotating frame is transformed according to

H̃ = R̂z(−ωreft)H R̂z(ωreft)−ωref Îz (2.17)

Finally, the Schrödinger equation in the interaction frame is

d
dt

ψ̃(t) = −jH̃ ψ̃(t) (2.18)

For an ensemble of spins, the density operator in the rotating-frame, ρ̃, is de-
fined as

ρ̃ = |ψ̃〉〈ψ̃| (2.19)

where ψ̃ is a single state in the rotating frame (defined in (2.162.16)) and the overbar de-
notes an ensemble average. Equivalently, the density operator can be transformed
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directly using

ρ̃(t) = R̂z(ωreft)ρ(t)R̂z(−ωreft) (2.20)

In this frame of reference the Liouville equation becomes

d
dt

ρ̃(t) = −j[H̃ , ρ̃(t)]. (2.21)

2.3.2.2 Observations

A key feature of quantum mechanics is that it only provides the probabilities of
observing particular results. Each observation is associated with a Hermitian op-
erator and the result of an experimental observation is an eigenvalue of that op-
erator. Specifically, the probability of observing the eigenvalue λn for observable
operator, Q̂, is

Pr(λn) = |〈ξn|ψ〉|2 (2.22)

where |ξn〉 is the eigenvector associated with the eigenvalue λn. Note that if the
state is initially an eigenvector the probability of observing the corresponding
eigenvalue is 1.

Although the result of a single observation is undefined prior to the actual
measurement, the expectation is well defined as

〈Q̂〉 = 〈ψ|Q̂|ψ〉 (2.23)

= Tr{|ψ〉〈ψ|Q̂} (2.24)

where Tr denotes the matrix trace.

The motivation for using the density operator lies in its ability to describe
macroscopic observations. The average outcome from measuring individual spins
of an ensemble is the sum of the expectation values.

Qobs = Tr{(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ · · · )Q̂} (2.25)

Substituting the density operator definition in (2.102.10) gives

Qobs = NsTr{ρ̂Q̂} (2.26)

From this viewpoint, the contribution of each spin to the macroscopic observation
is Tr{ρ̂Q̂}.
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B0

E

|α〉

|β〉
∆E = γh̄B0

E = 1
2 γh̄B0

E = − 1
2 γh̄B0

Figure 2.1: The energy levels of a spin-1/2 system in a magnetic field, illustrating
low energy states, |α〉, and high energy states, |β〉. The energy difference, ∆E,
between states increases linearly with field strength, B0.

The most useful measurement operators are the spin angular moment opera-
tors,

Îx =
1
2

[
0 1
1 0

]
; Îy =

1
2

[
0 −j
j 0

]
; Îz =

1
2

[
1 0
0 −1

]
. (2.27)

The notation of macroscopic observation can be used to relate the bulk mag-
netisation vector of the classical description, m = mx î + my ĵ + mzk̂, to the density
matrix using

mz = C Tr
(
ρ Îz
)
=

1
2

C(ραα − ρββ) (2.28a)

mx = C Tr
(
ρ Îx
)
= C Re(ρβα) (2.28b)

my = C Tr
(
ρ Îy
)
= C Im(ρβα) (2.28c)

where the constant, C, is dependent on the thermal equilibrium and the number
of spins, Ns. In Section 2.42.4 we will see how to define the constant in a meaningful
way.

2.4 Thermal equilibrium

At thermal equilibrium, in the presence of an external magnetic field in the z-
direction, the spins of a spin-1/2 system are observed in one of two possible ori-
entations, spin-up or spin-down.

Spins in different orientations have different energy, a phenomena known as
Zeeman splitting. The energy difference is ∆E = Eβ − Eα = γh̄B0. Figure 2.12.1 illus-
trates this phenomena and demonstrates that the energy difference is proportional
to the field strength, B0. Spins parallel to the B0 field are in lower energy state
than spins anti-parallel. This creates a population difference between the two spin



2.4. Thermal equilibrium 15

states that is related to the energy difference, ∆E, according to the Boltzmann dis-
tribution,

p(α) =
exp(−Eα/KBT)

exp(−Eα/KBT) + exp(−Eβ/KBT)
(2.29)

p(β) =
exp(−Eβ/KBT)

exp(−Eα/KBT) + exp(−Eβ/KBT)
(2.30)

Since ∆E� KBT the exponentials can be approximated to first order by

exp
(
− E

KBT

)
≈ 1− E

KBT
(2.31)

Noting that Eα = − 1
2 ∆E and Eβ = + 1

2 ∆E, the probabilities can be written as

p(α) ≈ 1 + B/2
2

; p(β) ≈ 1−B/2
2

(2.32)

where B denotes the Boltzmann factor, defined as

B ,
∆E
KBT

=
γh̄B0

KBT
. (2.33)

As an example we consider a typical MRI situation. An object is placed in a
3 T magnetic field at room temperature, T = 300 K. Substituting these values and
the known physical constants into (2.332.33) results in probabilities such that approx-
imately nine in one million protons contribute to the signal. Since the number of
protons in a typical object is many orders of magnitude greater than one million,
this tiny fraction is sufficient to provide high quality magnetic resonance data.

2.4.1 Semi-classical description

Thermal equilibrium can be described from a classical perspective by considering
the number of up spins, N↑, and the number of down spins, N↓. This is given by
the appropriate fraction of the total number of spins, Ns resulting in a population
difference of

N↑ − N↓ = Ns (p(α)− p(β)) ≈ Ns
B

2
(2.34)

The spin orientation of an individual proton directly defines the direction of
the magnetic moment vector according to according to the relation in (2.12.1). For
spin-1/2 systems, the magnetic moment of the ith proton is, µi = ± 1

2 γh̄k̂, where
the sign depends on the orientation of the proton’s spin. The bulk magnetisation
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is defined as the sum of magnetic moments (as in (2.22.2)) thus

m =
1
2
(N↑ − N↓)γh̄k̂ (2.35)

=
γ2h̄2B0Ns

4KBT
k̂ (2.36)

It is useful to denote the magnetisation vector in thermal equilibrium as m = M0k̂
where we have defined the magnetisation strength as

M0 ,
γ2h̄2B0Ns

4KBT
(2.37)

2.4.2 Quantum description

Thermal equilibrium can be equivalently defined using the density matrix formu-
lation. At thermal equilibrium the spin coherences are zero [1717]. That is, ραβ =

ρβα = 0 and the populations of energy states obey Boltzmann distribution. The high
temperature approximation in (2.312.31) is adopted to give a density matrix at thermal
equilibrium of

ρ̂0 =

[
1
2 +

1
4 B 0

0 1
2 − 1

4 B

]
(2.38)

These thermal equilibrium conditions provide an direct relationship between
the bulk magnetisation vector of the classical description, m and the density matrix
using the relationships in (2.282.28),

mz = γh̄Ns
1
2
(ραα − ρββ) (2.39a)

mx = γh̄Ns Re(ρβα) (2.39b)

my = γh̄Ns Im(ρβα) (2.39c)

The normalisation has been chosen such that m(0) = M0k̂ as defined in (2.372.37).

2.5 Free precession

In the absence of an external magnetic field the spins are completely isotropic (all
possible directions are equally represented). When a magnetic field is applied, the
spin polarisation rotates around the field with a constant angle between the spin
magnetic moment and the direction of the field. This is called precession. The
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frequency of precession is given by the Larmor frequency, ω0,

ω0 = γB0 (2.40)

where B0 is the magnetic field strength. This section examines this phenomena
using classical and quantum descriptions.

2.5.1 Classical description

The presence of a static magnetic field causes the magnetisation to rotate around
the direction of the field, a phenomenon known as precession. To see this, we solve
the Bloch equation for a magnetic field aligned with the z-axis, b = B0k̂. We ignore
relaxation effects by assuming t� T1, T2, which is realistic for short timescales. In
this case,

d
dt

m(t) = γm(t)× b. (2.41)

Given an arbitrary initial condition, m0 = mx(0)î + my(0) ĵ + mz(0)k̂, the solution
to (2.412.41) is

m(t) = Mxy(0) cos(ω0t + φ0)î + Mxy(0) sin(ω0t + φ0) ĵ + Mz(0)k̂ (2.42)

where Mxy(0) =
√

m2
x(0) + m2

y(0), ω0 = γB0 and φ0 = arctan(my(0)/mx(0)). It
is often instructive to consider the transverse magnetisation as a complex number,
i.e.,

mxy(t) = mx(t) + jmy(t) (2.43)

With this notation the solution can be written as

mxy(t) = Mxy(0)e−j(ω0t+φ0) (2.44a)

mz(t) = Mz(0) (2.44b)

This clearly shows the bulk magnetisation precesses around the external field at
the Larmor frequency ω0 = γB0.

Alternatively, we can use (2.52.5) to describe the magnetisation in a reference
frame rotating at the Larmor frequency. We have b = B0k̂ and ωrot = −γB0k̂
so beff = 0. Neglecting relaxation leads to the condition,

d
dt

m′(t) = 0. (2.45)
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As expected, the bulk magnetisation is stationary in the rotating frame.

2.5.2 Quantum description

The Hamiltonian in the presence of a static magnetic field B0 along the z-axis is
H = ω0 Îz. The Schrödinger equation describing the state evolution is

d
dt
|ψ〉(t) = −jω0 Îz|ψ〉(t) (2.46)

The solution to this equation is

|ψ〉(t) = exp{−jω0t Îz}|ψ〉(0) (2.47)

This can be recognised as a rotation about the z-axis and hence it can be described
with the rotation operator in (2.152.15),

|ψ〉(t) = R̂z(ω0t)|ψ〉(0) (2.48)

This means that in the absence of an RF field, the Schrödinger equation implies
that the spin rotates around the z-axis with frequency ω0.

The Liouville equation can be solved to determine the evolution of the density
matrix under a static magnetic field. Alternatively, we can use the evolution of a
single state given in (2.482.48) to build the density matrix according to the definition
in (2.102.10). In this case,

ρ(t) = R̂(ω0t)ρ(0)R̂(−ω0t) (2.49)

Computing the individual elements of the matrix gives the following set of equa-
tions

ραα(t) = ραα(0) (2.50a)

ρββ(t) = ρββ(0) (2.50b)

ραβ(t) = exp{−jω0t}ραβ(0) (2.50c)

ρβα(t) = exp{jω0t}ρβα(0) (2.50d)

Ignoring relaxation, we see that the populations of the states remains unchanged
and the coherences revolve around the complex plane at the resonant frequency
ω0.
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2.6 RF pulse

2.6.1 Classical description

When a rotating magnetic field B1(t) is applied perpendicular to the B0 field at the
Larmor frequency of the spin system, the effect is to tilt the bulk magnetisation
away from the z-axis. To see this consider a circularly polarised field,

b1(t) = B1(t)
{

sin(ωrft + φp)î + cos(ωrft + φp) ĵ
}

(2.51)

where B1(t) is the amplitude envelope, ωrf is the frequency of oscillation and φp is
the initial phase angle.

To analyse the effect of such a pulse, we make the reasonable assumption that
the RF pulse is short enough such that relaxation effects can be ignored for the
duration of the pulse. The rotating frame Bloch equation in (2.52.5) reduces to

∂

∂t
m′(t) = γm′(t)× beff (2.52)

where beff = b′ + ωrot/γ. Further, we assume the RF pulse has zero phase and
constant envelope, B1(t) = B1, 0 ≤ t ≤ Tp, The RF pulse in (2.512.51) can be trans-
formed to the rotating frame to give, b′1(t) = B1 î. When the resonance condition is
satisfied (i.e. ωrf = ω0), and we adopt the Larmor rotating frame (ωrot = −ω0k̂),
the effective magnetic field is

beff = B0k̂
′
+ B1 î′ − ω0

γ
k̂ = B1 î′ (2.53)

The Bloch equation can be easily solved for an initial condition of m′(0) = M0k̂′

to give

m′(t) = M0{sin(ω1t) ĵ′ + cos(ω1t)k̂
′} (2.54)

where ω1 = γB1 is known as the Rabi frequency and represents the rotation speed
of the bulk magnetisation away from the z-axis. This equation determines the
motion of the bulk magnetisation for the duration of the pulse. At t = Tp the bulk
magnetisation has been rotated about the x′-axis through a flip angle θ = ω1Tp.
For more complex envelopes the flip angle is given by

θ =
∫ Tp

0
γB1(τ)dτ. (2.55)
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This equation is valid for on-resonance excitation with a duration sufficiently short
compared to the relaxation times.

2.6.2 Quantum description

During an RF pulse the spin Hamiltonian is made up of the static Hamiltonian
H0 and RF Hamiltonian, Hrf(t). Ignoring any off-resonance effects, the complete
Hamiltonian is given in [2020] as

H (t) = H0 +Hrf (2.56)

= ω0 Îz − γB1{cos(ωrft + φp) Îx + sin(ωrft + φp) Îy} (2.57)

We transform the system to a reference frame rotating at ωrf about the z-axis.
The transformed Hamiltonian is computed using (2.172.17). Simplifying with the
“sandwich relationship”, the final Hamiltonian can be expressed as

H̃ = ωoff Îz + ωnut
(

Îx cos φp + Îy sin φp
)

(2.58)

where ωoff = ω0 − ωrf and ωnut = |γB1|. Note the Hamiltonian in the rotating
frame of reference is independent of time.

When the pulse is applied exactly on resonance (ωoff = 0), the solution to the
Schrödinger equation is

|ψ̃〉(t) = R̂φp(ωnutt)|ψ̃〉(0). (2.59)

This can be recognised as a rotation of the initial state using the general rotation
operator, R̂φp(θ) = R̂z(φp)R̂x(θ)R̂z(−φp).

Now consider an on-resonance ‘x-pulse’, where φp = 0. The rotating-frame
spin Hamiltonian is H̃ = ωnut Îx and the solution is a rotation about the x′-axis.
For example, suppose the initial state is the eigenstate |α〉; after time τp = π/(2ωnut)

the spin will be rotated through a flip angle of π/2 given by the equation

|ψ〉(τp) = R̂x(π/2)|α〉 (2.60)

The evolution of the density matrix can be derived by averaging the effect of
an RF pulse on individual states evolving according to (2.592.59). The evolution of the
density operator is

ρ̃(t) = R̂φp(ωnutt)ρ̃(0)R̂ωnutt(−ωnutt) (2.61)



2.7. Relaxation 21

After time τp the density matrix has been rotated by angle θ defined in (2.552.55). No-
tice that a π pulse inverts the population distribution while a π/2 pulse equalises
the spin state populations and generates coherences.

2.7 Relaxation

There are two types of relaxation processes in a spin system caused by different
physical mechanisms: spin-lattice relaxation and spin-spin relaxation.

Spin-lattice relaxation refers to the process by which the spin system exchanges
energy with its external surroundings (or lattice). This is associated with transi-
tions from high energy states to low energy states, which affects the population
difference of the spin states and ultimately the longitudinal magnetisation. The
time constant T1 is associated with the time required for the spin system to reach
thermal equilibrium. For these reasons spin-lattice relaxation is also known as T1

or longitudinal relaxation.

Spin-spin relaxation, on the other hand, involves the spins exchanging energy
among themselves. For example, one spin may cause a second spin to transition
from high to low energy states while the first spin transitions from low to high
energy. In this case, the population of states does not change and the longitudinal
magnetisation will not be affected. However, transitions of this type result in a loss
of coherence between spin states. This coherence loss manifests as a decrease in
transverse magnetisation related to the time constant, T2. This type of relaxation is
thus referred to as T2 or transverse relaxation.

This description illuminates the close relationship between the molecular struc-
ture of an object and relaxation. Images produced by MRI machines are strongly
dependent on the relaxation properties and therefore the underlying structure.
The difference between relaxation properties of normal and diseased tissues is of-
ten the basis for a diagnosis using MRI. Table 2.22.2 lists some typical values for T1, T2

and M0 for various healthy tissue types at 1.5 T [2121] although the values can vary
significantly depending on the particular experiment (see e.g. [2222]).

In the following section we examine these relaxation processes in more detail.
This is important to gain a deeper understanding of the relaxation parameters we
estimate in Chapters 44 and 55.

2.7.1 Classical description

Consider the evolution of the magnetisation after an RF pulse has been applied.
The main B0 magnetic field is still present along the z-direction. The Bloch equa-
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Table 2.2: Typical values of proton density and relaxation time constants, T1 and
T2 for biological tissue at 1.5 T. Sourced from [2121].

Tissue Type T1 (ms) T2 (ms) M0

CSF 2400 160 1.0
White matter 780 90
Gray Matter 900 100
Muscle 870 45
Liver 500 40
Fat 270 80 0.9
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Figure 2.2: Relaxation viewed in the laboratory frame of reference illustrating (a)(a)
the individual components of the magnetisation vector during relaxation and (b)(b)
the trajectory of the tip of the magnetisation vector.

tion can be solved in the rotating frame using (2.52.5). Adopting the complex notation
in (2.432.43) the solution is

mx′y′(t) = mx′y′(0)e−t/T2 (2.62a)

mz′(t) = M0(1− e−t/T1) + mz′(0)e−t/T1 (2.62b)

where mx′y′(0) and mz′(0) define the magnetisation immediately after the pulse.
This solution can easily be interpreted as a decaying transverse magnetisation with
time constant T2, and a recovering longitudinal magnetisation with time constant
T1. Figure 2.22.2 illustrates the evolution of the bulk magnetisation for T1 = 1 s and
T2 = 500 ms. To emphasise the general behaviour, the system was simulated with
a Larmor frequency many orders of magnitude below realistic values.

In addition to these two relaxation processes, spins in the object experience
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different local fields due to inhomogeneity and/or applied gradients. The local
field variation leads to spins with a distribution of different precession frequencies.
The term isochromat is used to define a group of spins with the same precession
frequency. In the laboratory frame of reference, the transverse magnetisation from
a single isochromat (with Larmor frequency ω) is

mxy(t, ω) = mxy(0)e−t/T2 ejωt (2.63)

The final signal observed is the integration of the relative contributions of all such
isochromats,

mxy(t) =
∫

mxy(t, ω)p(ω)dω (2.64)

where p(·) is the distribution of isochromats.

Some intuition can be gained by considering a Lorentzian distribution of the
Larmor frequencies,

p(ω) =
1
π

λ

λ2 + (ω−ω0)2 (2.65)

where ω0 is the centre of the distribution and λ is half-width at half-maximum
(HWHM) representing the distribution spread. It should be noted that, despite
its prevalence, there is no physical reason to adopt a Lorentzian distribution. It
is chosen for mathematical convenience. Nonetheless, it is useful to demonstrate
some general properties of the free induction decay. In this case, the integral in
(2.642.64) can be calculated in closed form using the Fourier transform, F , as follows.

mxy(t) =
∫

mxy(0)e−t/T2 ejωt p(ω)dω (2.66)

= mxy(0)e−t/T2

∫
ejωt p(ω)dω (2.67)

= mxy(0)e−t/T2(F p)(t) (2.68)

= mxy(0)e−t/T2 e−λte−jω0t (2.69)

This highlights the effect of the distribution on transverse relaxation. Specifically,
the frequency distribution adds an additional relaxation component dependent on
the spread of frequencies, λ. A very narrow distribution will result in an ideal T2

decay, while a wide distribution will result in a faster decay. This can also be un-
derstood using the notion of dephasing discussed in Chapter 33. For the Lorentzian
distribution, both relaxation processes can be aggregated into a single exponential



24 Chapter 2. Physics of magnetic resonance

decay,

mxy(t) = mxy(0)e−t/T∗2 e−jω0t (2.70)

where the time constant T∗2 consists of T2 and T′2 = 1/λ according to

1
T∗2

=
1
T2

+
1
T′2

(2.71)

2.7.2 Quantum description

At a quantum physics level, relaxation is mostly due to the following mechanisms:
1) dipole-dipole coupling, 2) chemical shift anisotropy, 3) spin-rotation interaction.
The order listed is the usual order of importance where chemical shift becomes
increasingly important at high field strengths and begins to compete with dipole-
dipole coupling.

2.7.2.1 Internal Spin Interactions

The spin angular momentum is affected by the magnetic and electric fields of in-
teracting particles in the sample. A single proton undergoes rapid movement and
electromagnetic interactions with neighbouring particles (protons, electrons etc),
each of which has its own magnetic moment. This causes tiny fluctuations in the
magnetic field experienced by a given proton. The physical interaction mecha-
nisms are described below:

Chemical Shift External magnetic field affects magnetism of electrons and they in
turn affect the nuclear spin.

Dipole-Dipole Coupling Direct magnetic interactions of nuclear spins with each
other.

J-Coupling Indirect magnetic interactions of nuclear spins, via interactions with
electrons.

Spin-Rotation Interaction Nuclear spins interacting with magnetic fields gener-
ated by the rotational motion of the molecules.

Quadrupolar Coupling (for spins > 1/2) Electric interactions of nuclei with sur-
rounding electric fields.

For spin-1/2 nuclei dipole-dipole and chemical shift interactions are the strongest
[1515]. All these interactions cause fluctuations in the local magnetic field and result
in the relaxation effects described below.
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The appropriate Hamiltonian describing these microscopic interactions can be
used to derive the evolution of the spin system towards thermal equilibrium, i.e.,
relaxation.

2.7.2.2 Integral Form

The complete system Hamiltonian is composed as follows,

H (t) = H0 +H1(t) (2.72)

where H0 is the static Hamiltonian and H1 is the interaction Hamiltonian.
The system dynamics are governed by Liouville equation in (2.142.14). To simplify

the calculations, we transform the system to the interaction frame using

ρ̃(t) = exp{+jH0t}ρ(t) exp{−jH0t} (2.73)

H̃1(t) = exp{+jH0t}H1(t) exp{−jH0t} (2.74)

The Liouville equation for the combined system in the interaction frame is

d
dt

ρ̃(t) = −j[H̃1(t), ρ̃(t)] (2.75)

Integrating this equation by successive approximations up to second order gives

ρ̃(t) ≈ ρ̃(0)− j
∫ t

0
[H̃1(t′), ρ̃(0)]dt′ −

∫ t

0
dt′
∫ t′

0
dt′′[H̃1(t′), [H̃1(t′′), ρ̃(0)]] (2.76)

Differentiating (2.762.76) with respect to time gives the ‘integrated to second order’
approximation [2323, page 276] and a change of variable (τ = t− t′) gives

d
dt

ρ̃(t) ≈ −j[H̃1(t), ρ̃(0)]−
∫ t

0
dτ[H̃1(t), [H̃1(t− τ), ρ̃(0)]] (2.77)

Since H̃1(t) is a random operator, (2.772.77) indicates that ρ̃(t) is also a random opera-
tor and the observable behaviour will be described by an average density operator
ρ̃ which is described by the above equation averaged over all the random Hamil-
tonians H̃1(t). The average equation is

d
dt

ρ̃(t) ≈ −j[H̃1(t), ρ̃(0)]−
∫ t

0
dτ[H̃1(t), [H̃1(t− τ), ρ̃(0)]] (2.78)

Now the following assumptions are made:

A2.1 H̃1(t) = 0. Otherwise, we can redefine H0 to include it.



26 Chapter 2. Physics of magnetic resonance

A2.2 We can neglect the correlation between H̃1(t) and ρ̃(0) and average them
separately.

A2.3 We can replace ρ̃(0) by ρ̃(t) on the right hand side of (2.782.78).

A2.4 We can extend the upper limit of the integral to +∞.

A2.5 All unwritten higher-order terms can be neglected.

These assumptions, justified in [2323, page 282], result in the following evolution
equation,

d
dt

ρ̃(t) = −
∫ ∞

0
dτ[H̃1(t), [H̃1(t− τ), ρ̃(t)]]. (2.79)

For the sake of brevity, we use the notation ρ̃(t) to represent the density matrix
averaged over the ensemble. In general, the density matrix in (2.792.79) evolves to
zero, since the above theory does not model interactions with the lattice. In this
case, an adjustment needs to be made for the semi-classical theory where ρ̃(t) is
replaced by ρ̃(t)− ρ0 to ensure the system relaxes to the equilibrium state ρ0.

2.7.2.3 Operator Form

We decompose the interaction Hamiltonian, H1(t), as

H1(t) = ∑
q

Fq(t)Âq (2.80)

where Fq(t) are random functions of time representing classical stochastic forces
independent of spin. Aq are operators acting on the variables of the system (the
spins). Since Âq is not necessarily Hermitian and H1(t) is required to be Hermi-
tian, Â−q = Âq† and F−q(t) = Fq∗(t) by convention [2323]. Specific examples of
Hamiltonians are described later.

Additionally, the operators Âq are decomposed into basis operators

Âq = ∑
p

Âq
p (2.81)

where the following relationship is satisfied,

[H0, Âq
p] = ω

q
p Âq

p (2.82)

Here the eigenoperators Âq
p correspond to transitions between different energy

levels of the system, associated with a change in total magnetic quantum number
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q. The eigenfrequencies ω
q
p correspond to the energy dissipated into the lattice by

the spin transitions. [2424]

The basis operators in (2.802.80) are transformed to the interaction frame, which
gives them a time dependence.

Âq(t) = exp{+jH0t}Âq exp{−jH0t} (2.83)

= ∑
p

Âq
pejωq

pt (2.84)

The proof can be found in [2020, page 258]. Note that H̃1(t) now contains two
sources of time dependence: the fluctuating fields and the operators Âq(t) so the
transformed Hamiltonian can be written as

H̃1(t) = ∑
q

∑
p

Fq(t)Âq
pejωq

pt (2.85)

Substituting (2.852.85) into (2.792.79) gives

d
dt

ρ̃(t) = −∑
q,q′

∑
p,p′

ej(ωq
p+ω

q′
p′ )t[Âq′

p′ , [Â
q
p, ρ̃(t)− ρ0]]

∫ ∞

0
Fq(t)Fq′(t + τ)ejωq

pτdτ (2.86)

Note all the stochastic elements of the Hamiltonians are contained in the Fq(t)
functions and thus the ensemble average is taken over these.

With the assumption of stationarity, we define correlation functions,

gqq′(τ) = Fq(t)Fq′(t + τ) (2.87)

and spectral density functions,

Jqq′(ω) =
∫ ∞

−∞
gqq′(τ)e−jωtdτ (2.88)

The functions Fq(t) and Fq′(t) are assumed to be statistically independent such
that the ensemble average vanishes unless q′ = −q. Also noting that ω

−q
p′ = −ω

q
p′ ,

(2.862.86) becomes

d
dt

ρ̃(t) = −1
2 ∑

q
∑
p,p′

ej(ωq
p−ω

q
p′ )t[Â−q

p′ , [Âq
p, ρ̃(t)− ρ0]]Jqq(ω

q
p) (2.89)

The factor of 1
2 is introduced because of the Fourier transform limits. Also gqq′(τ)

is generally complex so the integral contains a complex part. This results in small
energy shifts and can be included in the unperturbed Hamiltonian H0.
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Terms in which |ωq
p − ω

q
p′ | � 0 are nonsecular, i.e., they do not affect the long-

time behaviour of the system because the rapidly oscillating factors ej(ωq
p−ω

q
p′ )t av-

erage to zero faster than relaxation occurs. If none of the eigenfrequencies are de-
generate (more than one eigenoperator associated with a single eigenfrequency),
only secular terms in which p = p′ are non-zero. This leads to

d
dt

ρ̃(t) = −∑
q

∑
p

Jqq(ω
q
p)[Â

−q
p , [Âq

p, ρ̃(t)− ρ0]] (2.90)

Converting (2.902.90) back to the laboratory frame yields the modified Liouville-von
Neuman equation for relaxation,

d
dt

ρ(t) = −j[H0, ρ(t)]− Γ̂ (ρ(t)− ρ0) (2.91)

where the relaxation operator is

Γ̂(ρ) = ∑
q

∑
p

Jqq(ω
q
p)[Â

−q
p , [Âq

p, ρ]] (2.92)

2.7.2.4 Example

We now consider an example where the spins are coupled to a randomly fluctuat-
ing lattice. Spin-spin coupling is not considered but a similar analysis could be per-
formed for Hamiltonians that model the interactions discussed in the beginning of
this section. This example serves to demonstrate how macroscopic relaxation rates
(T1 and T2) can be derived from the equations of motion with appropriate Hamil-
tonians. In our example a simple Hamiltonian is considered,

H1(t) = Fx(t) Îx + Fy(t) Îy + Fz(t) Îz (2.93)

which models random fluctuations of the angular moment operators. It is com-
mon to examine the relaxation of the density matrix by explicitly calculating the
elements as in [2525]; although, in this example, it is sufficient to following the pro-
cedure outlined in Section 2.7.2.32.7.2.3. Noting that Fx, Fy and Fz are statistically inde-
pendent we obtain the relaxation operator,

Γ̂(ρ) = Jxx(ω0)[ Îx, [ Îx, ρ]] + Jyy(ω0)[ Îy, [ Îy, ρ]] + Jzz(0)[ Îz, [ Îz, ρ]] (2.94)

We seek the evolution of the expected value of Îx and Îy representing the trans-
verse magnetisation components and Îz representing the longitudinal magnetisa-
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tion. The differential equation for the expectation of operator, Q̂, is

d
dt
〈Q̂〉 = d

dt
Tr
(
Q̂ρ
)
= Tr

(
d
dt

ρ(t)Q̂
)

(2.95)

Inserting the Liouville equation with relaxation derived in (2.912.91) gives,

d
dt
〈Q̂〉 = Tr

{(
−j[H0, ρ]− Γ̂(ρ)

)
Q̂
}

(2.96)

We begin with the longitudinal magnetisation and compute 〈 Îz〉. In this case
we use the fact that Tr([H0, ρ]Iz) = 0 to simplify the general equation above to,

d
dt
〈 Îz〉 = −Tr

(
Γ̂(ρ− ρ0) Îz

)
(2.97)

= −Jxx(ω0)Tr
(
[ Îx, [ Îx, ρ− ρ0]] Îz

)
− Jyy(ω0)Tr

(
[ Îy, [ Îy, ρ− ρ0]] Îz

)
− Jzz(0)Tr

(
[ Îz, [ Îz, ρ− ρ0]] Îz

) (2.98)

We let D̂ = ρ− ρ0 and calculate the trace of each term above,

Tr
(
[ Îx, [ Îx, D̂]] Îz

)
= Tr

(
( Î2

x D̂ + D̂ Î2
x − 2 ÎxD̂ Îx) Îz

)
(2.99)

=
1
2

Tr
(

D̂ Îz
)
− 2Tr

(
D̂ Îx Îz Îx

)
(2.100)

=
1
2

Tr
(

D̂ Îz
)
+

1
2

Tr
(

D̂ Îz
)

(2.101)

= 〈 Îz〉 − 〈 Îz〉0 (2.102)

where 〈 Îz〉0 is the expected value of the Îz operator at thermal equilibrium. The
computations above have exploited the cyclic property of trace, the commutativity
of Î2

x and Îz and the relation Îx Îz Îx = − Îz/4. Similarly for the second term we have

Tr
(
[ Îy, [ Îy, ρ− ρ0]] Îz

)
= 〈 Îz〉 − 〈 Îz〉0 (2.103)

The third term is 0 which can be seen by expanding the commutator similarly to
the first term above. Combining these results gives

d
dt
〈 Îz〉 = − (Jxx(ω0) + Jyy(ω0))

(
〈 Îz〉 − 〈 Îz〉0

)
(2.104)

This is related to the classical Bloch time constant, T1, by

1
T1

= Jxx(ω0) + Jyy(ω0) (2.105)
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Next we calculate the transverse magnetisation given by 〈 Îx〉 and 〈 Îy〉. Unlike
the longitudinal component Îx and Îy do not commute with H0 so the first term in
(2.962.96) is not zero.

Tr
{
−j[H0, ρ] Îx

}
= jω0Tr

(
[ Îz, ρ] Îx

)
(2.106)

= jω0Tr
(
[ Îx, Îz]ρ

)
(2.107)

= ω0Tr
(

Îyρ
)

(2.108)

= ω0〈 Îy〉 (2.109)

The relaxation operator is composed of three terms which are evaluated below,

Tr
(
[ Îx, [ Îx, ρ− ρ0]] Îx

)
= 0 (2.110)

Tr
(
[ Îy, [ Îy, ρ− ρ0]] Îx

)
= 〈 Îx〉 (2.111)

Tr
(
[ Îz, [ Îz, ρ− ρ0]] Îx

)
= 〈 Îx〉 (2.112)

where we assume 〈 Îx〉0 = 0. Combining the results gives a differential equation
for 〈 Îx〉,

d
dt
〈 Îx〉 = ω0〈 Îy〉+ (Jyy(ω0) + Jzz(0)) 〈 Îx〉 (2.113)

Similar computations for 〈 Îy〉 can be performed.

d
dt
〈 Îy〉 = −ω0〈 Îx〉+ (Jxx(ω0) + Jzz(0)) 〈 Îy〉 (2.114)

These coupled equations clearly represent precession and relaxation of the trans-
verse magnetisation. In this example we assume Jxx(ω0) = Jyy(ω0), which is rea-
sonable for microscopic interactions. The relaxation is related to the classical Bloch
time constant, T2, by

1
T2

= Jyy(ω0) + Jzz(0) (2.115)

The transverse relaxation time is made up of two terms which have different
physical meanings. The term Jyy(ω0) represents the non-secular contribution. This
involves state transitions that are induced due to random fluctuations in the lat-
tice. The frequency of this random fluctuation must match the energy difference
between states, hence the J(ω0) term. The second term Jzz(0) represents the sec-
ular contribution. This does not involve transitions with the lattice (also called
adiabatic relaxation). Instead, the random fluctuations in the z-direction, Fz(t),
superimpose on the static B0 field to slightly alter the Larmor frequency of each
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spin. This distribution of Larmor frequencies creates rapid dephasing. In MRI lit-
erature, the classical model is often modified by introducing different isochromats
and integrating over a Lorentzian distribution to create the so-called T∗2 . In quan-
tum mechanics, the spread is implicitly modelled by the stochastic nature of the
interaction Hamiltonian H1.

As mentioned at the start of this section, the previous analysis could be per-
formed for more complicated Hamiltonians to model actual relaxation effects such
as dipole-dipole coupling and chemical shift anisotropy (CSA) relaxation. One
would then expect physical parameters that define these Hamiltonians to appear
in the various differential equations describing the behaviour of the ensemble.
Such parameters may include the internuclear distance r, chemical shielding σ

or J-coupling J. We would also expect terms such as Jzz(2ω0) to appear, to model
double-quantum transitions. For example, [1515, page 537] states the transverse re-
laxation time-constant for dipole-dipole relaxation as

1
T2

=

(
µ0γ2h̄
4πr3

)2

{3J(0) + 5J(ω0) + 2J(2ω0)} (2.116)

We can interpret this to mean that T2 is parameterised by four parameters: r, J(0),
J(ω0), and J(2ω0), which directly represent the physical parameters of the molec-
ular environment.

This example demonstrates the underlying mechanisms of T1 and in particular
T2 relaxation time, which is estimated in subsequent chapters of this thesis.

2.8 Summary

The physics behind spin systems and the generation of magnetisation is funda-
mental to MRI. This chapter has presented a detailed description using both clas-
sical and quantum mechanical theories. Phenomena such as thermal equilibrium,
precession, control and relaxation have been described. In will be seen in the re-
maining chapters, that accurate models of the spin dynamics is essential for image
reconstruction and advanced parameter estimation.
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3.1 Introduction

A magnetic resonance scanner is composed of many components that work
together to produce the final image. Figure 3.13.1 illustrates the main compo-

nents of an MRI system. The scanner consists of a main magnet, spatial encoding
gradients, an RF pulse generator to control the transmit coils and signal detection
hardware including RF receive coils and analog-to-digital converters.

The main magnet is used to generate a large, static and homogeneous magnetic
field. In the presence of this magnetic field, the signal behaves according the phys-
ical principles discussed in Chapter 22. The physics of spin systems is fundamental
to the operation of the scanner.

All hardware components are controlled with an acquisition protocol known as
a ‘sequence’. The sequence contains a list of instructions and their precise timing;
it can be considered the main input into the system.

In general only the transverse magnetisation is detectable so the first step in
most MRI protocols is to excite the spin system to tip the magnetisation into the
transverse plane. As described in the previous chapter, this can be achieved using
an RF pulse tuned to the resonant frequency of the spin system. These pulses
are controlled with RF hardware consisting of a pulse generator, amplifier and
transmit coils.

Spatial information is encoded into the underlying signal using a set of mag-
netic fields known as gradients. These encoding gradients modulate the signal in
a spatially dependent manner, which is later used to resolve the observed signal to
form an image.

Acquisi'on	
  
Sequence	
  

MRI	
  System	
  

Spa'al	
  Encoding	
  
Gradients	
  

RF	
  Pulse	
  
Generator	
  

Signal	
  Detec'on	
   Image	
  
Reconstruc'on	
  Spin	
  Physics	
  

Main	
  Magnet	
  

Figure 3.1: Overview of the main components in an MRI machine. The machine
can be viewed as a system that inputs a list of precisely timed instructions (known
as a ‘sequence’) and outputs raw data, which is used to produce the final image.
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Table 3.1: Common notation used in Chapter 33

Symbol Quantity Units

Φ Magnetic flux Wb
c Coil sensitivity
m Magnetisation vector
V Induced voltage V
b z-Component of the magnetic field T
g Gradient vector T/m
Tp Duration of pulse s
τE Echo time s
Tacq Acquisition time (one readout) s
T Sampling period s
SNR Signal-to-noise ratio
BW Acquisition bandwidth Hz

Signal detection involves analog-to-digital conversion of the voltage received
on the RF coils. Receive RF coils are either volume coils or surface coils, depending
on the application. Transmit and receive coils can be separate coils or combined
into a single coil although there are two distinct roles: transmit coils excite the
spins and rotate the magnetisation vector and receive coils detect the transverse
magnetisation. Finally, the acquired signal is converted to an image, a process
known as image reconstruction.

This chapter introduces the main components and basic principles of MRI. Ad-
ditionally, the generation of echoes and the notion of k-space is introduced and
used to describe common sequences. Finally, image reconstruction is considered
from a general inverse problem perspective. The concepts outlined in this chapter
are the foundation of the novel contributions in subsequent chapters of this thesis.

3.1.1 Notation

Table 3.13.1 lists the important symbols used in this chapter. Although the list is not
exhaustive, it includes most quantities of interest.

3.2 Signal detection

Signal detection is the process of converting nuclear magnetisation into an electri-
cal signal. The voltage induced on an RF receive coil, V(t), is governed by Fara-



36 Chapter 3. Principles of magnetic resonance imaging

day’s law of induction:

V(t) = −dΦB(t)
dt

(3.1)

The magnetic flux through a coil is defined as

ΦB(t) =
∫

obj
m(x, t) · c(x)dx (3.2)

where m is the magnetisation and c is the coil sensitivity. Combining (3.13.1) and (3.23.2)
gives a received voltage of

V(t) = − ∂

∂t

∫
obj

m(x, t) · c(x)dx (3.3)

We adopt the common notation defined in (2.432.43) and let mxy(x, t) = mx(x, t) +
jmy(x, t). Since quadrature detection is used we can represent the coil sensitivity
vector as

c(x) = c(x)

 1
j
0

 (3.4)

The received voltage is demodulated to baseband to extract the underlying
signal of interest, s(t),

s(t) = V(t)ejω0t (3.5)

= −
(

∂

∂t

∫
obj

c(x)mxy(x, t)dx
)

ejω0t (3.6)

During detection, the transverse magnetisation, mxy, is undergoing precession
and relaxation as described in Chapter 22. The general form is

mxy(x, t) = M0(x)e−j(ω0t+φ0)ejφ(x,t)e−t/T∗2 (x). (3.7)

where M0 is the initial magnetisation strength, φ0 is the initial signal phase, φ(x, t)
is the spatial encoding phase and T∗2 is the free induction decay (FID) time. This
leads to the detected signal,

s(t) = −
(

∂

∂t

∫
obj

c(x)M0(x)e−j(ω0t+φ0)ejφ(x,t)e−t/T∗2 (x)dx
)

ejω0t (3.8)

Simplifications of this general form are possible by making a series of assump-
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tions. It is useful to invoke a different set of assumptions for different problems
addressed in this thesis.

A3.1 The magnetisation precession is much faster than any time-dependent spa-
tial encoding, inhomogeneity or relaxation processes. That is, we assume

ω0 �
∂φ(x, t)

∂t
, ω0 �

1
T∗2 (x)

. (3.9)

In this case,

s(t) ≈ jω0

∫
obj

c(x)M0(x)ejφ0 ejφ(x,t)e−t/T∗2 (x)dx (3.10)

Notice the rotating ω0 component is removed by the demodulation.

A3.2 The transverse magnetisation has zero phase initially. This corresponds to
an initial bulk magnetisation on the x-axis.

A3.3 The ω0 scaling factor can be considered constant across different experiments
and hence we can arbitrarily set it to unity. Additionally the multiplication
by j creates a global phase shift of π, which we ignore without loss of gener-
ality.

A3.4 Signal amplitude is constant during acquisition. In other words, the relax-
ation process occurs on a timescale much longer than the time of interest.
During acquisition we have

e−t/T∗2 (x) ≈ e−τE/T∗2 (x) (3.11)

Combining assumptions A3.1A3.1 to A3.4A3.4 the received signal can be written as

s(t) ≈
∫

obj
c(x)M0(x)e−τE/T∗2 (x)ejφ(x,t)dx (3.12)

A3.5 The coil sensitivity is uniform and hence set to unity, i.e., c(x) = 1. Neglect-
ing receiver phase, this is a reasonable assumption for a birdcage coil [2626].
Combining all previous assumptions, A3.1A3.1 to A3.5A3.5, yields,

s(t) ≈
∫

obj
m(x)ejφ(x,t)dx (3.13)

where

m(x) = M0(x)e−τE/T∗2 (x) (3.14)
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3.3 Signal echoes

Signal echoes are fundamental to some contrast mechanisms and form the basis
of many MR imaging techniques. Due to the local field inhomogeneities or an ap-
plied gradient field the imaged object consists of a broad range of isochromats. That
is, the spins are precessing at different frequencies centred about the resonance
frequency. The distribution of frequencies mean that spins dephase very quickly
relative to the intrinsic relaxation processes, resulting in rapid signal decay. It is
possible to reverse the dephasing due to inhomogeneity to partially recover the
signal, which is known as an ‘echo’. An echo can be generated in two ways:

Gradient echo The distribution of frequencies is flipped by reversing the applied
gradient field.

Spin echo The spins are rotated 180◦ using an RF pulse.

These echo generation mechanisms will be described in detail in the following
sections.

3.3.1 Spin echoes and CPMG echoes

The generation of a spin echo was first demonstrated in [2727] and since then, most
MR imaging was performed by generating an echo some time after the initial ex-
citation.

Figure 3.23.2 illustrates the generation of a spin echo. Figure 3.2a3.2a shows the bulk
magnetisation at time t = 0, just after a 90◦ RF pulse. The spins begin to precess
at slightly different speeds until τ seconds later when “faster” isochromats have a
larger phase as shown in Figure 3.2b3.2b. At time τ a 180◦ pulse is applied to flip the
vectors about the y-axis (Fig. 3.2c3.2c), causing the faster isochromats to lag the slower
ones. After another τ seconds, the faster spins will have caught the slower ones
and an echo is formed. The signal over the duration τE− Tacq/2 ≤ t ≤ τE + Tacq/2
is

s(t) =
∫

obj
M0(x)e−t/T2(x)e−|t−τE|/T′2(x)e−jk(t)·xdx (3.15)

where T′2 captures the width of the off-resonance distribution as described in Chap-
ter 22.

The process described by Figures 3.23.2 and 3.33.3 can be repeated by applying a
train of 180◦ RF pulses spaced 2τ apart. In this case successive echoes will be
generated at times, t = 2τ, 4τ, . . . , 2Neτ. This sequence was first introduced by
Carr and Purcell in [2828] and modified by Meiboom and Gill in [2929] and as such
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Figure 3.2: Formation of a spin echo illustrated by two vectors representing dif-
ferent isochromats. The ‘fast’ isochromat is indicated in blue and gains a positive
phase at time t = τ− relative to the ‘slow’ isochromat in red. After a 180◦ pulse at
time t = τ+ the fast isochromat lags the slow isochromat. An echo is formed when
the spins have the same phase again at t = 2τ.
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Figure 3.3: Timing diagram depicting the generation of a spin echo.
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Figure 3.4: Timing diagram illustrating a CPMG sequence.

it is known as the CPMG sequence. Figure 3.43.4 demonstrates the timing of the RF
pulses and subsequent echoes. The spin system undergoes spin-spin relaxation
which represents a loss of coherence that cannot be recovered. As such the echo
amplitudes are weighted by e−2τn/T2 . This weighting makes the CPMG sequence
very efficient for estimating the T2 relaxation time from a set of echo amplitudes.
The problem of T2 estimation is explored in detail in Chapters 44 and 55.

3.3.2 Gradient echoes

Gradient fields are crucial for spatial encoding and they typically generate signal
echoes as a consequence. During free induction decay (FID) the application of a
gradient field over the sample creates a distribution of isochromats precessing at
different frequencies. Analogous to the spin echo case, this distribution causes the
spins to dephase and the overall signal decays much faster than the FID relaxation.
This dephasing can be recovered by reversing the sign of the applied gradient field.
The spins will be rephased after the reversed gradient has been applied for the
same duration as the initial gradient, resulting in an echo. Figure 3.53.5 illustrates the
generation of a gradient echo.

It is important to note that a gradient echo cannot reverse any dephasing due
to underlying field inhomogeneity. As such, the echo amplitude will be weighted
by the signal strength of the FID without gradients. The gradient echo occurs at
time τE when the encoding phase φ = 0. Under assumptions A3.1A3.1 to A3.5A3.5, the
signal intensity during the echo is easily derived from (3.133.13) as

s(t) =
∫

obj
M0(x)e−τE/T∗2 (x)ejφ(x,t)dx, (3.16)

which highlights the dependance on T∗2 .
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Figure 3.5: Timing diagram depicting the generation of a gradient echo.

3.4 Spatial encoding

Spatial encoding is the process of encoding the positions of different magnetisa-
tion vectors in an object. This encoding enables image reconstruction and is fun-
damental to all MRI techniques. The received signal was derived in Section 3.23.2
under assumptions A3.1A3.1 to A3.5A3.5. In the general case, spatial encoding is achieved
by creating a phase distribution, φ, that is dependent on both time and space.

s(t) =
∫

obj
m(x)ejφ(x,t)dx (3.17)

The phase is related to the encoding magnetic field by

φ(x, t) = −γ
∫ t

0
b(x, τ)dτ. (3.18)

The encoding field is the superposition of the field generated by each gradient coil.
For three linear gradients shown in Figure 3.63.6 the total encoding field is

b(x, t) = gx(t)x + gy(t)y + gz(t)z (3.19)

For simplicity we let g(t) =
[
gx(t), gy(t), gz(t)

]T, thus the total field can be
written as

b(x, t) = g(t) · x, (3.20)

where a · b denotes the inner product. Substituting into (3.183.18) the encoding phase



42 Chapter 3. Principles of magnetic resonance imaging

(a) (b) (c)

Figure 3.6: Linear encoding gradients for the three imaging dimensions illustrating
the spatially-varying field offset imposed by each gradient. The maximum field of
each gradient is given by B = GL/2 where G is the gradient strength (T/m) and L
is the field of view (m).

is related to the gradient waveforms by

φ(x, t) = −γ
∫ t

0
g(τ)dτ · x. (3.21)

3.4.1 Slice selection

The first step in common two dimensional imaging sequences is to excite a thin
slice of the object. This can be achieved by applying a gradient field and frequency
selective RF pulse simultaneously. To select a slice in the x-y plane, the gradient
field b(z) = zGz is first applied. The precession frequency, ω, of spins within the
object becomes dependent on the z-coordinate,

ω(z) = ω0 + γGzz (3.22)

where ω0 is the Larmor frequency due to the main magnetic field, Gz is the mag-
nitude of the gradient change and z is the position along the z-axis.

After applying the gradient field the desired spins are excited using a bandlim-
ited RF pulse oscillating at the required Larmor frequency. For example, an RF
pulse resonating at ω(z1), with a bandwidth of ∆ω will excite a slice of the ob-
ject between z = z1 − ∆z/2 and z = z1 + ∆z/2 where ∆z is the slice thickness.
Ideally, only spins in this slice will be rotated into the transverse plane and con-
tribute to the received signal. In practice, however, the transverse magnetisation
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Figure 3.7: Slice selection diagram representing the spatially dependence fre-
quency and an example slice.

follows a smooth slice profile and some “leakage” will occur, dependent on the
RF pulse shape. Figure 3.73.7 illustrates the position dependent precession frequency
and an example slice excited from a frequency selective RF pulse. Notice that the
slice thickness is linearly related to the gradient strength (Gz) and bandwidth (∆w).
This procedure can be repeated for different slices to encode the slice dimension.
The remaining two dimensions can be encoded using a combination of frequency
and phase encoding discussed below.

3.4.2 Frequency encoding

Frequency encoding is achieved by applying constant gradient over the entire time
interval,

g(t) = gf, t > 0 (3.23)

The encoding phase in this case is

φ(x, t) = −γ
∫ t

0
g(τ)dτ · x (3.24)

= −γtgf · x (3.25)

The received signal becomes

s(t) =
∫

obj
m(x)e−jγtgf·xdx (3.26)

The signal can be interpreted as a 1D projection of the object, characterised by the
gradient gf. Intuitively, we can obtain different projections by altering the gradient
and acquiring the signal again.
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3.4.3 Phase encoding

Suppose a gradient field gp is briefly applied to the sample just after the RF pulse.

g(t) =

{
gp, 0 ≤ t ≤ Tp;

0, otherwise.
(3.27)

During the gradient duration (0 ≤ t ≤ Tp) the received signal is frequency
encoded as discussed above. For t > Tp the signal at every point returns to preces-
sion at ω0 but has acquired a spatially dependent phase offset of

φ(x) = −γTpgp · x. (3.28)

The acquired signal with phase encoding is

s(t) =
∫

obj
m(x)e−jγTpgp·xdx, t > Tp. (3.29)

Notice the right hand side of (3.293.29) is independent of time but the magnetisation
has been modulated with a phase characterised by the gradient, gp, and the dura-
tion, Tp.

3.4.4 k-space

Frequency and phase encoding discussed above can be described in a common
framework using the notion of k-space [3030, 3131]. The key point is to make the fol-
lowing substitution,

k(t) = γ̄
∫ t

0
g(τ)dτ (3.30)

where γ̄ = γ/2π. The encoding phase in (3.213.21) becomes linear in both k and x
with φ = −2πk · x and the signal is written as

s(k) =
∫

obj
m(x)e−j2πk·xdx (3.31)

This can be recognised as a multi-dimensional Fourier transform, where the spatial
frequency domain is referred to as k-space. The definition in (3.303.30) highlights the
important relationship between the applied gradient fields and the position in k-
space. We can interpret frequency encoding discussed above as moving through
k-space with a constant velocity whereas phase encoding can quickly move the k-
space position a short distance. Importantly, different gradient waveforms lead to
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different trajectories through k-space.

3.5 Basic sequences

In this section we examine some common sequences for two dimensional imag-
ing. Prior to encoding, a gradient is applied in the z direction in combination
with a frequency selective RF pulse to excite a slice of spins as described in Sec-
tion 3.4.13.4.1. Thus spatial encoding is performed over the remaining two dimensions
and k-space vectors are defined in R2. Sequences are defined by the timing of the
gradient systems, RF pulses and the analog-to-digital converter (ADC).

3.5.1 Cartesian

The most common sampling strategies are based on a Cartesian trajectory. This
type of trajectory starts with phase encoding using constant gradients for an initial
period, Tp,

g(t) =

[
Gx

Gy

]
, t < Tp (3.32)

Using (3.303.30) the k-space position after time Tp will be kA = γ̄Tp [Gx, Gx]
T. To

generate an echo a 180◦ pulse is applied, which inverts the phase of the signal.
In terms of k-space, this is equivalent to the position being reflected about the
origin so immediately after the pulse, kB = γ̄Tp [−Gx,−Gx]

T. Frequency encoding
is achieved by applying a constant gx gradient during readout. This moves the
trajectory along the kx dimension of k-space as displayed in Figure 3.8a3.8a. During
the readout period we have,

k(t) = γ̄

[
(t− τE)Gx

GyTp

]
, |t− τE| < Tacq/2 (3.33)

The ky gradient moment is set up during the initial phase encode and is constant
during readout. The readout gradient, Gx, is constant for all excitations causing
repetitive evolution of the kx coordinate. The process is repeated for different val-
ues of Gy to define different horizontal lines across the kx-ky plane as shown in
Figure 3.8b3.8b. Figure 3.93.9 displays a sequence diagram for the Cartesian trajectory,
which illustrates the timing and function of the different subsystems.

Cartesian trajectories are popular since they are relatively insensitivity to field
inhomogeneities and gradient nonlinearities [3232]. Further, images are easy to re-
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Figure 3.8: The k-space sampling pattern for a Cartesian spin echo trajectory illus-
trating (a)(a) a single line consisting of a phase encode, refocusing pulse and readout;
and (b)(b) the complete sampling pattern from multiple excitations.

90◦
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gy

180◦

τE
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RF

Figure 3.9: Sequence diagram for a Cartesian spin echo trajectory illustrating a
single excitation, phase encode, refocusing pulse and readout.
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construct using the discrete Fourier transform (DFT) as discussed in Section 3.63.6.

3.5.2 Radial

A simple radial trajectory begins much like the Cartesian trajectory described above.
Specifically, a phase encoding gradient is applied such that the k-space position af-
ter time Tp will be kA = γ̄Tp

[
Gx, Gy

]T as described above. A refocusing pulse
is applied to move k-space position to kB = −kA. Samples are collected when
the constant gradients are switched on again in the period τE − Tacq/2 ≤ t ≤
τE + Tacq/2. The main difference from a Cartesian trajectory is that both gradi-
ents (gx and gy) are applied during the readout. The k-space trajectory during this
period is

k(t) = kB + γ̄(t− (τE − Tacq/2))

[
Gx

Gy

]
, |t− τE| < Tacq/2 (3.34)

The phase encoding defining point kB is only dependent on Gx, Gy and Tp, not
time during the readout. This reveals the important property that phase encoding
only affects the starting point of the k-space trajectory.

With careful selection of the phase encoding duration such that Tp = Tacq/2,
we can reparameterise (3.343.34) as

k(t) = C(t− τE)

[
cos θ

sin θ

]
, |t− τE| < Tacq/2 (3.35)

where θ = arctan(Gy/Gx) is the angle of the trajectory and C = γ̄
√

G2
x + G2

y de-
fines the trajectory speed. This process is illustrated in Figure 3.10a3.10a. Sufficient sam-
pling of k-space is achieved by repeating the above process for different angles, θ,
by defining appropriate values of Gx and Gy. The complete sampling pattern in
shown in Figure 3.10b3.10b. Figure 3.113.11 displays a sequence diagram for the radial
trajectory, which illustrates the timing of the gradient, RF and ADC systems.

Radial sampling in MRI is a direct analog to standard x-ray imaging and conse-
quently it inherited a broad range of the prior knowledge concerning image recon-
struction. Indeed the first MR images were produced using radial projections [3333].
In general, however, the reconstruction algorithm is more complex than Fourier re-
construction of Cartesian samples. Another difficulty is that off-resonance effects
due to field inhomogeneities create blurring along the radial direction whereas
Fourier imaging is affected by shifts in the readout direction resulting in geomet-
ric distortion [3232, 3434, 3535]. Despite these shortcomings, radial imaging remains use-
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Figure 3.10: The k-space sampling pattern for a radial trajectory illustrating (a)(a) a
single spoke consisting of a phase encode, refocusing pulse and readout; and (b)(b)
the complete sampling pattern from multiple excitations.

90◦
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gy

180◦

τE
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Figure 3.11: Sequence diagram for a radial trajectory illustrating a single excitation,
phase encode, refocusing pulse and readout.
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kx

ky

Figure 3.12: The k-space sampling pattern for a Cartesian EPI trajectory illustrat-
ing the initial phase encode and rapid trajectory through k-space from a single
excitation.

ful for specialised applications. Since the readout can start immediately after the
slice select gradient, this technique is useful to image tissue with short T2 or T∗2 .
Another advantage of radial imaging is the relative insensitivity to subject motion
making it useful for dynamic imaging applications [3636].

3.5.3 EPI

Echo planar imaging (EPI) was first introduced in [3737] and later modified to pro-
duce Cartesian trajectories [3838, 3939]. Although the final sampling trajectory is sim-
ilar to the Cartesian spin echo in Figure 3.8b3.8b, the underlying mechanism is dif-
ferent. Firstly, the trajectory is acquired with a single excitation and belongs to
class of imaging techniques referred to as “single-shot”. Secondly, the echoes are
generated by switching the gradient polarity rather than a 180◦ refocusing pulse.

A simple EPI trajectory is shown in Figure 3.123.12, generated from the sequence
diagram in Figure 3.133.13. The trajectory begins by exciting a slice of the object to
rotate the magnetisation through a flip angle, α. As described above, prephasing
gradients are applied to move the trajectory from the centre to the edge of the sam-
pled k-space. Next, a series of echoes is generated by rapidly switching the polarity
of the readout gradient. This moves the k-space trajectory back and forth along the
horizontal direction. At the end of each line a brief phase encode gradient is ap-
plied to move the trajectory a small amount in the vertical direction in preparation
for the next readout line. The final result is a Cartesian k-space sampling pattern
acquired in under 50 ms, orders of magnitude faster than traditional spin echo
techniques [3939]. EPI imaging is insensitive to subject motion since the acquisition
occurs on a shorter time scale than typical motion [4040]. Disadvantages include an
increased risk of peripheral nerve stimulation due to the rapidly switching gra-



50 Chapter 3. Principles of magnetic resonance imaging

α

gz

gx

gy

ADC

RF

Figure 3.13: Sequence diagram for a Cartesian EPI trajectory illustrating the timing
of the single excitation pulse followed by phase encoding and readout gradients.

dients [4141, 4242] and sensitivity to magnetic field inhomogeneity and the associated
dephasing [4343].

The EPI trajectory will be important in Chapter 66 and is the basis of our trajec-
tory design for higher dimensional encoding schemes.

3.6 Image reconstruction

Image reconstruction is the process of generating an image from the measured MR
signal. In the simplest case, the image reconstruction problem can be described as
follows,

Find m(x)

Given s(ki) =
∫

obj
m(x)e−j2πki ·xdx, ki ∈ K

(3.36)

The difficulty of this problem is revealed when we consider the preceding discus-
sion regarding the inherent tradeoffs in MRI data.

The remainder of this section describes some commonly used reconstruction
algorithms.

3.6.1 Direct Fourier

We consider the reconstruction of a 1D function to illustrate the method, although
the theory is easily extended to 2D or 3D functions. Fourier reconstruction using
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the DFT is suitable when samples are collected at a finite number of regularly
spaced k-space locations [4444]. That is,

K = {i∆k, −N/2 ≤ i ≤ N/2− 1} (3.37)

Let s[i] = s(i∆k) denote the measurements. A common reconstruction is one
that satisfies the minimum-norm constraint. In this case the image is reconstructed
using a truncated Fourier series,

m̃(x) = ∆k
N/2−1

∑
i=−N/2

s[i]ej2πi∆kx, |x| < 1
∆k

(3.38)

The reconstructed image function, m̃(·), is inherently bandlimited due to the trun-
cation of its Fourier series. That is, (F m̃)(k) = 0 for |k| > (N/2)∆k. Nyquist
sampling criterion states that this image function can be uniquely recovered from
samples, m̃[n] = m̃(n∆x), provided the pixel size, ∆x, satisfies

∆x ≤ 1
N∆k

(3.39)

Sampling (3.383.38) at the Nyquist limit gives,

m̃[n] = ∆k
N/2−1

∑
i=−N/2

s[i]ej2πin/N (3.40)

This can be recognised as the DFT of the measurements and as such this technique
is called the direct DFT reconstruction.

3.6.2 Gridding

Gridding is used when the set K of k-space points are not regularly spaced in
Cartesian coordinates. A simple approach in this case is to interpolate the mea-
sured points into a regular grid and then perform the direct DFT reconstruction
described above. Let s̃(k) be a sum of delta functions weighted by the measure-
ments,

s̃(k) = ∑
ki∈K

s(ki)δ(k− ki) (3.41)
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These samples are convolved with an interpolation function, C, and sampled at
regularly spaced points defined in the set L,

s̄[i] = (s̃ ∗ C)(ki), ki ∈ L (3.42)

This sequence can now be reconstructed using a DFT.

3.6.3 Iterative

An alternative approach to image reconstruction is to formulate the problem as a
matrix inversion. The signal equation is written as

s = Em (3.43)

where s is a vector of measurements, E is the encoding matrix and m is a vector of
unknown magnetisations. This formulation allows us to specify an arbitrary en-
coding scheme, which may incorporate multiple receive coils, non-Cartesian tra-
jectories or field inhomogeneity correction. Including these features into a Fourier
reconstruction is not straightforward.

Reconstruction of a 256× 256 image using fully sampled data from a 32 channel
receive coil array has an encoding matrix with ∼1011 complex-valued elements.
For double precision this would require approximately 2200 GB of memory. In
addition to practical issues concerning memory, a direct inverse requires O(N3)

computations where N = 256× 256. Even with the dramatic increase in comput-
ing power of modern computers, a direct matrix inversion of (3.433.43) is infeasible
for clinical applications. For these reasons we consider two iterative algorithms to
solve (3.433.43). Both methods only require a single row of the encoding matrix at any
given time and therefore avoid storing entire matrix in memory.

The first algorithm examined is the Kaczmarz iterative projection algorithm
[4545] otherwise known as the Algebraic Reconstruction Technique (ART) [4646]. The
algorithm is described in Algorithm 3.13.1. This method has been proven to converge
to the minimum norm least squares solution for sufficiently small step sizes [4747].
Further, it is relatively simple to include prior information into the reconstruction
algorithm. In the case of Gaussian prior and noise distributions, the Kaczmarz al-
gorithm converges to a regularised solution equivalent to the Bayesian maximum
a posteriori (MAP) estimate [4747].

Another iterative method is the conjugate gradient (CG) algorithm [4848]. This al-
gorithm was used in [4949] for reconstruction of parallel imaging data with arbitrary
trajectories. Instead of solving (3.433.43) directly the CG algorithm solves E′s = E′Em.
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Algorithm 3.1: Algebraic Reconstruction Technique
Input: s – signal, E – encoding matrix, N – number

of measurements, P – number of iterations
Params: λ – step size
Output: m̂ – estimate

1 for n← 0, . . . , P do
2 for i← 1, . . . , N do
3 Assign the ith row of E to ai
4

m̂n+1 ← m̂n + λ
si − 〈ai, m̂n〉
‖ai‖2 a∗i

5 Return estimate: m̂← m̂P

The algorithm is described in Algorithm 3.23.2. The algorithm only requires a sin-
gle row of the encoding matrix at a time and has been proven to converge to the
pseudo-inverse solution in a finite number of iterations [5050].

Both the conjugate gradient algorithm and algebraic reconstruction technique
are used extensively to reconstruct data resulting from the nonlinear encoding
schemes examined in Chapters 77 and 66.

3.7 Properties of MRI signals

The reconstruction algorithms in Section 3.63.6 were developed without considering
measurement noise. In reality, measurements are corrupted with thermal noise,
which ultimately limits the imaging performance. Indeed the term ‘reconstruction’
should perhaps be replaced with ‘estimation’, since we can only extract informa-
tion from the measurements up to the level of noise. This section explores some of
the ramifications of the stochastic nature of the measurements.

3.7.1 Signal-to-noise ratio

The thermal noise variance, σ2
thermal, in an imaging experiment is given by the fol-

lowing relationship, first observed by Johnson [5151] and explained by Nyquist [5252],

σ2
thermal = 4KB Ts RBW (3.44)

where KB is Boltzmann’s constant, Ts is the system temperature, R is the resistance
and BW is the acquisition bandwidth.
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Algorithm 3.2: Conjugate Gradient Reconstruction
Input: s – signal, E – encoding matrix, P – number

of iterations
Output: m̂ – estimate

1 m̂0 ← 0
2 p← Es
3 r0 ← Es
4 for n← 0, . . . , P do
5

q← E′Ep

m̂n+1 ← m̂n +
r∗nrn

p∗q
p

rn+1 ← rn −
r∗nrn

p∗q
q

p← rn+1 +
r∗n+1rn+1

r∗nrn
p

6 Return estimate: m̂← m̂P

The signal strength, s, is proportional to the square of the main magnetic field
strength, i.e., s ∝ B2

0. However, it has been found that the resistance in (3.443.44) is
frequency dependent, which results in the relation, R ∝ B0 [5353]. Thus the signal-
to-noise ratio (SNR), defined as SNR = s/σthermal, has the following relationship to
field strength [5454],

SNR ∝ B0 (3.45)

The relationships in (3.443.44) and (3.453.45) mean the SNR for Fourier imaging is in-
trinsically linked to the acquisition parameters [5353]. In particular,

SNR/voxel ∝
B0 ∆x∆y∆z

√
Navg√

BW
Nx Ny Nz

(3.46)

where ∆x, ∆y and ∆z define the voxel dimensions, Nx, Ny and Nz are the number
of voxels in each dimension and Navg is the number of signal averages. Since
BW = 1/Tacq the SNR has the following relationship to the readout parameters,

SNR/voxel ∝ B0 ∆x

√
Tacq. (3.47)

The final SNR of an image is further influenced by physiological noise, systematic
errors and reconstruction algorithm.
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3.7.2 Signal processing challenges

The difficulty of many MRI problems is revealed when we consider the ideal so-
lution from a users perspective. For both image reconstruction and parameter
estimation problems, the user wants:

• fast acquisition times

• high resolution

• high SNR

• no image artifacts or bias

These are conflicting requirements for MRI data. For example, a fast acquisition
time is often achieved by obtaining fewer measurements. On one hand, acquisition
is limited by the signal relaxation, on other, gradient switching constraints are im-
posed due to hardware limitations and safety concerns regarding peripheral nerve
stimulation. These constraints limit the amount of k-space that can be covered in
a fixed time; conversely, reducing the imaging time is achieved with fewer k-space
measurements.

Increasing the resolution of the reconstruction is equivalent to seeking a higher
dimensional approximation of the underlying function. Processing a very high
dimensional signal is difficult, even with the increase in modern computing power.
When the number of measurements is limited, this reconstruction requires some
form of prior knowledge for stable signal recovery in the presence of noise.

Prior knowledge is used to constrain the reconstruction, which is the basis of
many state-of-the-art techniques, such as high resolution MR angiography [5555]
and dynamic cardiac imaging [5656]. Although helpful, too much emphasis on prior
knowledge leads to reconstruction artifacts or bias.

Tradeoffs are pervasive and cannot be avoided. Some typical tradeoffs and are
summarised below:

↑ resolution ⇔ ↑ signal dimension
↓ acquisition time ⇔ ↓ number of measurements

↑ SNR ⇔ ↓ resolution
↓ bias ⇔ ↓ reconstruction constraints

With this in mind, the ideal requirements above translate to the following sig-
nal processing problem: Reconstruct a very large dimensional function from a small
number of noisy measurements without any prior knowledge about the function. Clearly,
no solution will be adequate for a realistic class of functions. We are forced find a
compromise between requirements that is suitable for a particular application.



56 Chapter 3. Principles of magnetic resonance imaging

The difficulty of the problem necessitates the need for accurate signal mod-
els that capture the deterministic effects on the measurements. Only with pre-
cise models can the desired quantities be distinguished from random noise. This
estimation-theoretic perspective is adopted for the remainder of this thesis and we
will see that it leads to new techniques that push the boundaries of current MRI
technology.



Part II

Quantitative MRI

57





CHAPTER 4

Estimation of relaxation rates in
the presence of image distortion
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4.1 Introduction

TRADITIONAL MRI generates image contrast dependent on a number of pa-
rameters, which may include the longitudinal relaxation time T1, transverse

relaxation time T2, free induction decay time T∗2 or the initial magnetisation M0.
In quantitative MRI, the aim is to estimate the values of these parameters at every
point in the object. The parameter values are useful to determine the underlying
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structure of the object being imaged, which might not be evident using contrast
alone.

In this chapter, we look at estimation of the spin-spin relaxation time, denoted
T2. Accurate estimation of T2 values has been important for tissue classification,
disease detection and pathology [5757]. The underlying T2 values of brain tissue
are of particular interest to study white matter diseases such as multiple sclerosis
[5858]. Similar analyses of T∗2 values is used to quantify iron content within tissue to
study many neurological conditions including Parkinson’s disease and Hunting-
ton’s disease (see [5959] for a complete review).

Traditionally, a series of images is acquired after the initial excitation using a
multi-echo spin-echo sequence suitable for T2 estimation. A common spin-echo
sequence for T2 estimation was introduced by Carr and Purcell [2828] and later mod-
ified by Meiboom and Gill [2929]. The aptly named CPMG sequence is considered
the gold standard for T2 estimation.

The T2 relaxation rate for each pixel is conventionally determined by a least
squares fit of an exponential decay to the image intensities. A simple estimator
such as this assumes that the intensity of each pixel depends only on the param-
eters at that pixel, and estimates its relaxation time separately [44]. However, the
acquisition process used to generate MR images violates this assumption. Signal
decay occurs while samples are being acquired, leading to spatial distortion (blur-
ring) of the image across pixels [33]. This distortion leads to statistical bias of the
traditional estimator that can be minimised by acquiring data samples over a small
acquisition period. However, this comes at the expense of increased noise, creating
a trade-off between SNR and bias. In this chapter, we investigate the statistical bias
of the traditional estimator and propose a Bayesian estimation algorithm derived
by including the distortion in the signal model.

The chapter is organised as follows: Section 4.24.2 analyses the image distortion
due to signal decay. Section 4.34.3 presents a complete measurement model for relax-
ation time estimation incorporating signal distortion. Section 4.44.4 investigates the
bias associated with naïve estimators. Section 4.54.5 presents the proposed estimation
algorithm and Section 4.64.6 applies the algorithm to simulated data.

4.1.1 Notation

The important quantities and associated notation used in this chapter are list in
Table 4.14.1. Additional notation will be introduced as required.
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Table 4.1: Important quantities and notation used in Chapter 44

Symbol Quantity

v, e Noise
f (k, x) Relaxation terms
h(x, z) Spatial kernel
q, i Excitation and time index (k-space)
n Echo index
r, p Pixel index
m Initial magnetisation
ζ1, . . . , ζG Posterior grid points
w1, . . . , wG Weights of gridded posterior
∆G Grid spacing
Σ, Λ Noise covariance and prior covariance

4.2 Image distortion due to relaxation

The acquired signal including relaxation (in the absence of measurement noise)
was derived in Section 3.33.3 and can be written as

s(k) =
∫

m(x) f (k, x)ejk·xdx (4.1)

where k and x denote the k-space and position coordinates, respectively. The quan-
tity f (k, x) represents the relaxation component and is a function of both position
and k-space location. For a spin echo sequence it can be written as

f (k(t), x) = e−t/T2(x)e−|t−τE|/T′2(x) (4.2)

The dependence of the k-space trajectory on time has been made explicit by the
notation k(t). As described in Chapter 22, it is useful to define the free induction
decay time, T∗2 , to describe the aggregate effect of different relaxation processes,

1
T∗2

=
1
T2

+
1
T′2

(4.3)

The relevant decay curves and the measurement samples are illustrated in Fig-
ure 4.14.1. Notice that measurements are collected as the signal undergoes relaxation.

The image used for subsequent estimation is typically reconstructed using the
discrete Fourier transform (DFT). This yields an image, m̃(·), which, in general, is
not equivalent to the desired image. To analyse this in detail we first derive the
Discrete Time Fourier Transform (DTFT) of the received signal and later sample
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Figure 4.1: Signal amplitude of the bulk magnetisation during data acquisition for
a spin echo sequence.

it to obtain the image reconstructed from the DFT. Note that ‘time’ in our case is
actually a spatial variable.

m̃(z) = ∑
i

s(ki)e−jki ·z (4.4)

We include the expression for s(k) in (4.14.1) to give,

m̃(z) = ∑
i

∫
m(x) f (ki, x)ejki ·xe−jki ·zdx (4.5)

=
∫

m(x)∑
i

f (k, x)ejki ·(x−z)dx (4.6)

In the equations above x and z represent spatial variables while ki, i = 1, . . . , N
are the spatial frequency or k-space samples.

4.2.1 Spatial filter interpretation

We can write (4.64.6) as a filter as follows,

m̃(z) =
∫

m(x)h(x, z)dx (4.7)

where the filter kernel h(x, z) is defined as

h(x, z) = ∑
i

f (ki, x)ejki ·(x−z) (4.8)

In this framework, the image is interpreted as a filtered version of the initial
magnetisation m(z) with the linear space-varying filter defined by h(x, z). An
analysis of the kernel expression in (4.84.8) reveals the close links to the well-known
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(a) (b)

Figure 4.2: The 2D continuous kernel function for a single point with T2 = 100 ms
and T′2 = 20 ms for an acquisition time of (a)(a) Tacq = 1 ms and (b)(b) Tacq = 25 ms. The
x and y axes are in arbitrary units.

Dirichlet kernel common in Fourier theory. Appendix 4.A4.A provides an introduc-
tion to the Dirichlet kernel and its properties. In Appendix 4.B4.B we derive a closed
form expression for the summation in (4.84.8), which greatly reduces the computation
time in the proposed estimation algorithm. The general form is

h(x, z) = e−τE/T2(x)D̃N(uy) [g1(ux) + g2(ux)] (4.9)

where ux and uy are the x and y coordinates of the difference, x− z, D̃N is a modi-
fied Dirichlet kernel and g1 and g2 are functions dependent on the readout param-
eters and relaxation parameters.

The closed-form kernel expression contains the multiplication of two decou-
pled components corresponding to each spatial dimension: a Dirichlet kernel in
the phase encode direction, and a relaxation-dependent kernel in the readout di-
rection.

Neglecting relaxation effects contained in f the kernel reduces to the Dirichlet
kernel for both the readout and phase dimensions. The reconstructed function, m̃
is then the Nth degree Fourier series approximation to the underlying image, m.

Examples of the two dimensional kernel are shown in Figure 4.24.2. For short
acquisition times, the kernel exhibits a strong peak and therefore minimal image
distortion. Conversely, when the acquisition time is relatively long compared to
the effective relaxation time, the kernel is attenuated and broader, which results in
considerable image blurring.

Since the phase encoding does not depend on relaxation, the effect of the kernel
on this dimension is shift invariant and independent of the relaxation parameters.
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Figure 4.3: Analysis of the filter kernel for different acquisition times displaying
(a)(a) the continuous filter kernel and (b)(b) the corresponding frequency response. A
slice along the readout direction is displayed for T2 = 100 ms and T′2 = 20 ms.

The filter in this direction is a Dirichlet kernel and its effect is well characterised by
Fourier theory. Conversely the filter kernel along the readout direction is depen-
dent on relaxation and creates an additional distortion. The purpose of this section
is to investigate such a distortion. It is therefore constructive to focus our analysis
on a 1D slice of the kernel along the readout direction.

We analyse the full kernel expression from a filtering perspective by calculating
the frequency response of the windowed kernel at a location with T2 = 100 ms
and T′2 = 20 ms for different sampling rates. Figure 4.34.3 presents the spatial kernel
and the corresponding frequency response for different acquisition times. The low
pass nature of the filter is clear whereby the high frequency content is increasingly
attenuated for larger acquisition times. In the spatial domain, attenuation of high
frequencies corresponds to image blurring.

We investigate the low-pass characteristics of the filter by simulating the ac-
quisition and reconstruction of a Shepp-Logan numerical phantom [6060]. As the
acquisition and sampling time decrease, f (k, x) → e−τE/T2(x), and the image is a
weighted M0(·) as in (4.134.13). The effect of a non-zero sampling interval on recon-
structed images is investigated in the Figure 4.44.4. To quantify the level of distortion,
the mean square error (MSE) between the output image and the true image is plot-
ted for different acquisition times as shown in Figure 4.54.5.
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(a) Weighted image (b) Tacq = 5ms (c) Tacq = 15ms (d) Tacq = 25ms

Figure 4.4: Reconstructed images (top) and a region-of-interest (bottom) from sim-
ulated data using the linear filter model for increasing acquisition times. For long
acquisition times considerable image blurring is present.

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

Echo sampling time (ms)

M
S
E

(×
10

−
4
)

Figure 4.5: The mean squared error (MSE) of a reconstructed phantom as a func-
tion of acquisition time.
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4.2.2 Filter kernel approximation

A simple approximation to the kernel function is obtained by introducing two as-
sumptions:

A4.1 No relaxation occurs during the sampling of the observations, s(k). This is
valid for Tacq much smaller than the effective decay time. In this case t ≈ τE

and only the peak of the echo is sampled or in terms of the filter kernel,
f (k(t), x) ≈ f (k(τE), x).

A4.2 The number of measurements is large such that the Dirichlet kernel approaches
a delta function, DN(x) ≈ δ(x).

For spin echo, these two assumptions result in a kernel

h(x, z) = e−τE/T2(z)δ(x− z) (4.10)

Substituting this into the signal model gives,

m̃(z) =
∫

m(x)h(x, z)dx (4.11)

=
∫

m(x)e−τE/T2(x)δ(x− z)dx (4.12)

= m(z)e−τE/T2(z) (4.13)

Therefore, with this approximation we reconstruct a spatially weighted version
of the initial magnetisation.

4.3 Measurement model for relaxation time estimation

A reasonable assumption for biological tissues (where T1 > T2) using acquisi-
tion sequences with long repetition times, is that the effect of T1 relaxation is
negligible. The unknown parameters depend on the specific imaging paradigm.
For spin echo sequences the relevant parameters at the pth object position are
θp = [T2(xp), T′2(xp), M0(xp)]T where xp is a point on a Nx × Ny grid over the
object. The vector of all important parameters is

θ = [θT
1 , . . . , θT

N ]
T, N = Nx × Ny. (4.14)

Estimation of the relaxation parameters is performed by first acquiring a se-
quence of M images at different echo times. As discussed in Chapter 33 the CPMG
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sequence generates multiple echoes from a single excitation, which allows such
data to be collected efficiently.

We wish to consider inversion of the signal model in (4.74.7). For this purpose it
is useful to approximate the underlying signal by a sum of delta functions,

m(x) ≈∑
p

m(xp)δ(x− xp) (4.15)

We also recognise that the DFT used for image reconstruction produces discrete
samples of the function, m̃(·), on the reconstruction grid, z1 . . . , zN . The signal
model now becomes

m̃(zr) = ∑
p

m(xp)h(xp, zr) (4.16)

The combination of the DFT and basis decomposition of the underlying signal
leads to a sampling of the continuous kernel, h(·, ·), at the Fourier frequencies.

We denote the k-space observations corresponding to the nth echo as sn(ki)

where ki is a grid point in 2-D k-space. The measurements can be expressed as,

sn(ki) =
N

∑
p=1

m(xp) f n
θ (ki, xp)ejki ·xp + vn,i. (4.17)

The sequence {vn,i} is white complex Gaussian noise with variance σ2 and f n
θ (k, x)

is the relaxation function, representing the acquisition and relaxation components.

As described in Section 4.24.2, these observations are collected in 2D frequency
space and distortions occur in image space due to relaxation. We approximate
the integral in (4.14.1) by a summation over the grid used for the parameter vector.
Other modifications here are the superscript n denoting the image index and the
notation f n

θ to acknowledge the dependence of the unknown parameters on the
imaging kernel. The additive noise has also been explicitly included highlighting
the stochastic nature of the measurements.

The relaxation function takes the form of (4.24.2) with the echo time now depen-
dent on the image index, n. Specifically,

f n
θ (ki, x) = e−τn/T2(x)e−|ti−τn|/T′2(x) (4.18)

where τn is the echo time and ti is the time after excitation. Figure 4.64.6 shows the
acquisition parameters and signal amplitude for a spin echo sequence.

The standard method used to reconstruct the image, m̃n, is the inverse discrete
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Fourier transform:

m̃n(zr) =
N

∑
p=1

m(xp)hn
θ(xp, zr) + en,r (4.19)

where zr is a grid point in the output image, and the filter kernel, hn
θ(x, z), is de-

fined as

hn
θ(x, z) =

N

∑
i=1

f n
θ (ki, x)ejki ·(x−z). (4.20)

The noise in image domain, {en,r}, is approximately white complex Gaussian for
a sufficiently large N. A closed form for (4.204.20) has been found to simplify cal-
culations. In this framework, the reconstructed image is interpreted as a filtered
version of the initial magnetisation, M0(x), with the linear space-varying filter de-
fined by the kernel, hn

θ(x, z). This kernel models the spatial distortion in an image
and provides an opportunity to reverse such distortion. Importantly, the kernel
is dependent on both the acquisition parameters, (T, Tacq, τn), and the unknown
relaxation parameters, θ. The properties of this kernel and its effect on relaxation
time estimation are examined in detail in subsequent sections of this chapter.

Let yn,r = m̃n(zr) and denote yn = [yn,1, . . . , yn,N ]
T. The observations from

each echo image form a complete measurement vector, y = [yT
1 , . . . yT

M]T. The
measurements are complex, y ∈ CNM, and the parameters are positive and real,
θ ∈ [0, ∞)2N . The goal is to find an estimator for T∗2 and as such, M0 is a nuisance
parameter so we find an estimator θ̂ : CNM 7→ [0, ∞)2N .
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4.4 Existing estimation method

The widespread approximation described in Section 4.2.24.2.2 is also used for the pur-
poses of relaxation rate estimation. The filter kernel in (4.204.20) is approximated by,

hn
θ(x, z) ≈ e−τn/T2(x)δ(x− z) (4.21)

This reduces the measurement model in (4.194.19) to the well known forms [5353],

m̃n(zr) = m(zr)e−τn/T2(zr) + er (4.22)

These ubiquitous and somewhat naïve approximations assume that the signal
amplitude is constant during data acquisition. In practice, relaxation and gradient
dephasing occur during sampling, as shown in Figure 4.64.6, which compromises the
Fourier encoding in (4.174.17), leading to distortion of the images. Figure 4.74.7 demon-
strates the kernel arising from a simulated 15× 15 object consisting of a constant
T∗2 of 50 ms. Although the kernel approaches the 2-D weighted Kronecker delta
function in (4.214.21) as Tacq → 0, the non-zero sidelobes cause image blurring. That
is, the signal from a given pixel is affected by the signal of neighbouring pixels.
For a spin echo sequence, the distortion only occurs in the readout (x) direction,
where relaxation occurs during sampling. Conversely, the phase (y) direction is
encoded with separate excitations so no distortion occurs in this direction.

The approximation implicit in (4.224.22) is traditionally used for T2 and T∗2 estima-
tion. The advantage of this approximation is that it decouples the measurement at
position zr from the parameters of neighbouring locations, allowing θr to be esti-
mated independently using only M measurements, {m̃1(zr), m̃2(zr), . . . , m̃M(zr)}.



70 Chapter 4. Estimation of relaxation rates in the presence of image distortion

80

85

90

95

100

T
2
E
s
ti
m
a
te

(m
s
)

 

 

True

Empirical

Theoretical

1 2 3 4 5 6 7 8

−4

−2

0

2

4

B
ia
s
(m

s)

Pixel index

Figure 4.8: The theoretical and empirical estimation bias for a simulated 8 pixel
object consisting of a T2 spike of 100 ms in a background of T2 = 80 ms.

Thus the estimation problem is reduced to N smaller problems of estimating two
parameters from M complex measurements. Estimation using this simple model
is performed using a least squares algorithm to fit a decaying exponential to the
data. As will be shown in the following section, assuming a delta function kernel
produces statistically biased estimates.

4.4.1 Analysis of estimation bias

In Appendix 4.C4.C we perform a theoretical analysis of the least squares estimator
using the assumed signal model in (4.224.22) when the actual data is generated from
full signal model in (4.194.19). The analysis is based on a Taylor series expansion and
gives a reasonably accurate indication of the expected bias for given experimental
conditions. Figure 4.84.8 presents an example of the approximate bias and the true
bias of the naive least squares estimator, simulated from 100 Monte Carlo trials
of a simple object consisting of a T2 spike of 100 ms in a background of 80 ms. A
large bias is located around the sharp edge in the T2 map. This is expected since
the acquisition kernel blurs edges of an image, which affects the relaxation decay
curve leading to increased estimation bias.

As noted previously, the measurement kernel is dependent on the acquisition
parameters, and the unknown relaxation parameters, T2, T′2 and M0. Consequently
the estimation bias is strongly dependent on these parameters. To quantify the bias
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Figure 4.9: Estimation bias generated from (a)(a) theoretical analysis and (b)(b) 100
Monte Carlo trials as a function of the acquisition time Tacq and the effective re-
laxation time T∗2 . The simulated 8 pixel object consists of a T2 spike of 100 ms in a
background of T2 = 80 ms.

over a range of situations, we repeat the experiment above for different pairs of
Tacq and T∗2 . For each set of parameters we calculate the approximate bias and the
empirical bias from 1000 Monte Carlo trials. Figure 4.94.9 shows the resultant bias as
a function of Tacq and T∗2 and demonstrates the close match between our analytical
bias and the true bias over a broad range of parameters. Note that some regions
of the aggregate parameter space show near zero bias whereas other regions show
significant bias. The regions with minimal bias are when Tacq � T∗2 , validating
the assumption made in (4.224.22). However, it will be shown in the next section, that,
improved estimates are achievable by acquiring samples with increased SNR and
accounting for the image distortion.

4.5 Proposed estimation method

We propose estimation of relaxation times using the full measurement model in
(4.194.19). In contrast to the pixel-independent estimation problems using (4.224.22), in
this case, all the parameters, θ, must be estimated jointly. The joint estimation
problem is substantially more difficult due to the large number of parameters and
a simple non-linear least squares algorithm performs poorly and struggles to con-
verge to the global minimum. Thus, we propose a Bayesian estimation algorithm.



72 Chapter 4. Estimation of relaxation rates in the presence of image distortion

4.5.1 Algorithm

In Bayesian estimation we aim to find the posterior probability density, π(θ|y).
With this density, the minimum mean-squared-error estimate, θ̂, can be obtained
by evaluating the conditional expectation, θ̂ = Eπ[θ|y]. We cannot compute this
expectation in closed form so we use Monte Carlo samples from π(θ|y). The prob-
lem setup lends itself to a Gibbs sampler [6161] for drawing the posterior samples.
A Gibbs sampler is a Markov chain constructed by drawing from conditional dis-
tributions such that its invariant distribution is π(θ|y) [6262]. The conditional distri-
butions have the form π(θj|θ[¬j], y) where θ[¬j] are the elements in θ excluding the
jth element. Bayes’ rules states that

π(θj|y, θ[¬j]) ∝ `(y|θj, θ[¬j])π0(θj|θ[¬j]). (4.23)

We adopt a Gaussian prior for π0(θj|θ[¬j]) defined by π0(θ) = N (θ; θ̃, Λ), where
θ̃ is the least squares estimate and Λ is a diagonal covariance matrix. In this work,
we define Λ with variances of 502 ms for the relaxation times and 0.42 for the initial
magnetisation, noting that the naive least squares estimator will provide a reason-
able initial estimate. The signal model in (4.194.19) defines the expected signal as

µn,r(θ) =
N

∑
p=1

m(xp)hn
θ(xp, zr). (4.24)

For µ(θ) = [µ1,1(θ), µ1,2(θ), . . . , µM,N(θ)]
T, the likelihood is

`(y|θj, θ[¬j]) = N (y; µ(θj; θ[¬j]), Σ) (4.25)

We assume the measurement noise is white Gaussian and independent, thus Σ =

diag(σ2, . . . , σ2).
To draw samples, we approximate π(θj|y, θ[¬j]) by a piecewise uniform dis-

tribution [6363], constructed by evaluating the posterior on an adaptive set of grid
points, ζ1, . . . , ζG, to obtain weights w1, . . . , wG. Each grid point, ζi, defines a uni-
form distribution on the interval [ζi−∆G/2, ζi +∆G/2], denoted U[ζi−∆G/2,ζi+∆G/2],
creating a piece-wise continuous distribution across the grid. The grid is adaptive
since it is redefined every iteration. The first point of the grid is chosen to be the
current estimate and successive grid points are added in each direction until the
calculated weights are close to zero. Furthermore, the grid spacing, ∆G, is adjusted
from one iteration to the next to keep the grid size close to a nominal value, de-
noted G0.

The algorithm is run for P iterations and samples are collected after P0 itera-
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tions to allow the Markov chain to converge [6464]. These samples, θ(t), t = P0, . . . , P,
are used to calculate the point estimate, θ̂ = 1

P−P0
∑P

t=P0
θ(t). The complete algo-

rithm is listed in Algorithm 4.14.1.

Algorithm 4.1: Bayesian Estimation Algorithm
Input: y – observations
Output: θ̂ – estimate
Params: Σ – noise covariance, Λ – prior covariance, P – number of samples,

P0 – Markov chain “burn in”, G0 – desired grid size, ∆0 – initial grid
spacing

1 Calculate least squares estimates θ̃1, . . . , θ̃N .
2 θ← [θ̃1, . . . , θ̃N ]
3 ∆G ← ∆0
4 for t← 1, . . . , P do
5 for j← 1, . . . , 2N do
6 Set k← 1, ζk ← θ̂j

7 Set wmax = 0
8 repeat
9 Compose: ϑ ← [ζk, θ[¬j]]

10 Calculate: µ(ϑ) from (4.244.24)
11 Calculate: wk ← N (y; µ(ϑ), Λ)π0(ζk|θ[¬j])

12 Assign: wmax ← wk if wk > wmax
13 Pick next grid point, ζk+1; k← k + 1
14 until wk < 0.01wmax
15 Normalise weights: wk ← w̃k/ ∑i w̃i

16 Sample θ
(t)
j ∼ ∑

g
k=1 wkU[ζk−∆/2,ζk+∆/2]

17 Adjust grid spacing, ∆G ← (1 + (G− G0)/G0)∆G

18 Return estimate: θ̂← 1
P−P0

∑P
t=P0

θ(t)

4.5.2 Properties of the Bayesian estimation algorithm

As explained in Section 3.7.13.7.1, the noise variance, σ2, in an MRI experiment is pro-
portional to the receiver bandwidth, BW = 1/Tacq. The signal-to-noise ratio of the
imaging system is defined as SNR = s/σ where s is the signal amplitude, which
we assume to be constant. Thus

SNR ∝
√

Tacq. (4.26)

As Figure 4.94.9 illustrates, in many practical cases the distortion introduced by
the finite sampling bandwidth (or non-zero acquisition time) is negligible. How-
ever, even in these cases, it is possible to obtain a smaller estimation error by se-
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lecting a longer acquisition time and using the proposed estimator to account for
the increased distortion. The increase in Tacq improves the SNR which decreases
the estimation variance.

4.6 Simulations

The estimation algorithm developed in the previous sections is demonstrated us-
ing a CPMG sequence with multiple echoes. We simulate the spin echo sequence
with echo times defined by τn = (4.5 + 3.5(n− 1))ms for n = 1, . . . , M. We use
M = 16, and a relatively long Tacq = 5.12 ms, for a numerical object defined in Fig-
ure 4.104.10, with T2 features typical of a human brain [6565] and M0 = 1 representing a
constant proton density. The naïve estimator using non-linear least squares on the
simple measurement model in (4.224.22) is compared with the proposed algorithm us-
ing the complete model in (4.194.19). The algorithm was run using P = 1100, P0 = 100,
Λ = diag(2.5× 10−5, 10−2, . . . , 2.5× 10−5, 10−2). The estimation was repeated for
100 realisations of noise.

The results are shown in Figure 4.104.10 where the rate, R2 = 1/T2 is displayed
following the convention in MRI literature. The Bayesian algorithm has a smaller
mean-square-error and successfully compensates for the distortion. Figure 4.114.11
demonstrates that the estimation error can always be decreased by increasing Tacq

and reaping the benefits of improved SNR whilst counteracting the increase in
distortion using the proposed estimator. Conversely, the performance of any algo-
rithm that fails to account for the distortion, will degrade as Tacq increases.
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used for Figure 4.104.10.

An important implication of these results is revealed by considering the SNR
dependencies discussed in Section 3.7.13.7.1. The SNR increases linearly with field
strength and the MSE decreases with increasing SNR. Consequently, the same level
of accuracy of current systems can be achieved with a much weaker field strength
and an improved signal model.

Figure 4.124.12 displays the bias and variance of both estimators. This highlights
that although the variance of the naive estimator deceases with increased SNR due
to longer Tacq, the bias is the dominant source of error. Thus for the naive estimator,
the potential improvement from increased SNR is outweighed by the increase in
estimation bias.

4.7 Discussion and conclusion

In this chapter, the image distortion introduced by signal relaxation during sam-
pling was investigated and modelled with a linear filter. The filter kernel was
examined in detail, both analytically and through simulation. In the context of
MRI relaxation rate estimation, it was revealed that this distortion leads to statisti-
cal bias when the commonly accepted signal model is used. Due to the acquisition
noise properties, such estimators incur a tradeoff between bias and SNR. We have
presented an algorithm suitable to estimate the transverse relaxation rate from spin
echo sequences. The proposed estimator overcomes this tradeoff by accounting for
the distortion in reconstructed images, resulting in improved estimates.
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An important issue not considered in this work is the constraints between the
acquisition time and inter-echo spacing. From an estimation point of view we
want the maximum number of echoes at the highest possible SNR. Unfortunately,
the acquisition process creates a tradeoff between the number of echoes and the
SNR. It may be better to acquire fewer echoes at higher SNR and use the proposed
estimator to account for the distortion although further analysis is required to de-
termine the optimal tradeoff.

Although our estimator provides a smaller estimation error than traditional
estimators, it is relatively complex and very computationally demanding. For ex-
ample, the results presented in this chapter took over 10 hours to produce using
a typical desktop computer. Simplifications of the estimator and an optimised
implementation are expected to greatly reduce the computation time, a topic for
future work. For current clinical scanners the improvement in SNR may not be
worth the extra complexity. It is expected that this technique will be most valu-
able for systems intrinsically limited in SNR, such as ultra low field or portable
MRI systems [22] as discussed in Chapter 11. The technique could also be used for
high-field systems to reduce the acquisition time (at the expense of SNR) with no
loss in overall performance. The tradeoff between cost and SNR also suggest that
similar estimation accuracy may be achieved on cheaper systems. For example the
increased complexity may be justified if the same level of accuracy of a 3 T machine
can be achieved on 1.5 T system, a cost saving in the order of a million dollars [6666].
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Appendices

4.A Introduction to the Dirichlet kernel

The Dirichlet kernel is defined as

DN(x) :=

N−1
2

∑
k=− N−1

2

ejkx. (4.27)

which assumes symmetric sampling of k. That is, N is odd and k is summed from
−N−1

2 to N−1
2 . In reality, traditional use of the Fast Fourier Transform (FFT) favours

an even number of samples. Furthermore, it is desirable to sample the point k = 0
and thus, as pointed out in [5353, Page 240], MRI samples are typically collected from
sampling from −N

2 to N
2 − 1 for even N. In this case we have the relationship,

D̃N(x) = DN−1(x) + e−jN/2x (4.28)

This subtle discrepancy in the definition does not effect the general behaviour of
the function; it merely adds a linear phase term, consistent our understanding of
the Fourier sampling in MRI. Fig. 4.134.13 demonstrates the behaviour of DN(x) for
increasing number of measurements. We see that the period is 2π regardless of the
number of measurements and as N → ∞, the Dirichlet kernel approaches a Dirac
comb. For application in MRI, the period of the Dirichlet kernel is modified by
scaling the argument by the sampling properties. In (7.417.41), the argument is scaled
by Rx∆xWx when x = (nWx, mWy).
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Figure 4.13: The Dirichlet kernel for three measurement sample sizes. (a) demon-
strates the fixed period of the kernel while (b) indicates that the kernel approaches
a Dirac comb for N → ∞.
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The main use of the Dirichlet kernel has been in Fourier series analysis. We see
that, the convolution of DN(x) with a periodic function f with period 2π is the
nth-order Fourier series approximation to f where n = (N − 1)/2. That is,

(DN ∗ f )(x) =
N−1

2

∑
k=− N−1

2

f̂ (k)ejkx. (4.29)

where f̂ (k) is the kth Fourier coefficient. It follows naturally, that convergence
properties of the Fourier series can be analysed by studying the properties of the
Dirichlet kernel [6767].

4.B Closed form expression for filter kernel

The time variable considered in this work evolves between excitations. As such,
it is suitable to describe the evolution of the trajectory for a single readout line. In
particular,

ti = iT + τE, i = −K, . . . , K− 1 (4.30)

The relaxation function, f (k(t), x) can be rewritten as

f (k(ti), x) = e−(iT+τE)/T2(x)e−|iT|/T′2(x) (4.31)

The k-space sampling occurs according to

kq,i := kq(ti) = (∆xi, ∆yq), i, q = −K, . . . , K− 1 (4.32)

where i and q are the column and row indices of the 2D Fourier acquisition grid,
respectively. The acquisition size is defined by K = N/2. For brevity we let u =

x− z and analyse the expression below,

h(x, u) = ∑
k

f (k, x)ejk·u (4.33)

= ∑
i

∑
q

e−(iT+τE)/T2(x)e−|iT|/T′2(x)ej(kq,i ·u) (4.34)

= e−τE/T2(x) ∑
q

ejq∆yuy ∑
i

e−iT/T2(x)e−|iT|/T′2(x)eji∆xux (4.35)



4.B. Closed form expression for filter kernel 79

We first examine the summation over the phase-encode coordinate of k-space. We
denote the summation as, D̃N ,

D̃N(uy) =
K−1

∑
q=−K

ejq∆yuy (4.36)

= DK−1(∆yuy) + e−jK∆yuy (4.37)

where DK−1 is the regular (K− 1)th degree Dirichlet kernel described in Appendix 4.A4.A.

Alternatively using a geometric progression we obtain,

D̃N(uy) =
K−1

∑
q=−K

ejq∆yuy (4.38)

= e−jK∆yuy
2K−1

∑
q=0

ejq∆yuy (4.39)

= e−jK∆yuy
1− ej2K∆yuy

1− ej∆yuy
(4.40)

=
e−jK∆yuy − ejK∆yuy

1− ej∆yuy
(4.41)

=
−2j sin(K∆yuy)

1− ej∆yuy
(4.42)

Multiplying numerator and denominator by e−j∆yuy/2 yields

D̃N(uy) =
−2j sin(K∆yuy)

1− ej∆yuy
(4.43)

=
−2j sin(K∆yuy)e−j∆yuy/2

e−j∆yuy/2 − ej∆yuy/2 (4.44)

=
−2j sin(K∆yuy)e−j∆yuy/2

−2j sin(∆yuy/2)
(4.45)

=
sin(K∆yuy)e−j∆yuy/2

sin(∆yuy/2)
(4.46)

The expressions in (4.374.37) and (4.464.46) are equivalent.

The singularity at uy = 0 is easily handled by l’Hôptial’s rule [6868] resulting in
the full expression,

D̃N(uy) =

 2K uy = 0
sin(K∆yuy)e−j∆yuy/2

sin(∆yuy/2) otherwise
(4.47)

Returning to the filter kernel expression, we now consider the summation over
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the readout coordinate,

g(ux) =
K−1

∑
i=−K

e−iT/T2(x)e−|iT|/T′2(x)eji∆xux (4.48)

=
−1

∑
i=−K

e−iT/T2(x)eiT/T′2(x)eji∆xux +
K−1

∑
i=0

e−iT/T2(x)e−iT/T′2(x)eji∆xux (4.49)

Now define

1
T∗2 (x)

=
1

T2(x)
+

1
T′2(x)

(4.50)

1
T−2 (x)

=
1

T2(x)
− 1

T′2(x)
(4.51)

such that g(ux) can be written as

g(ux) =
−1

∑
i=−K

e−iT/T−2 (x)eji∆xux +
K−1

∑
i=0

e−iT/T∗2 (x)eji∆xux (4.52)

Consider the first term, which we denote g1,

g1(ux) =
−1

∑
i=−K

ei(−T/T−2 (x)+j∆xux) (4.53)

= e−K(−T/T−2 (x)+j∆xux)
K−1

∑
i=0

ei(−T/T−2 (x)+j∆xux) (4.54)

= e−K(−T/T−2 (x)+j∆xux) 1− eK(−T/T−2 (x)+j∆xux)

1− e(−T/T−2 (x)+j∆xux)
(4.55)

=
−1 + e−K(−T/T−2 (x)+j∆xux)

1− e(−T/T−2 (x)+j∆xux)
(4.56)

Similarly for the second term, g2, we get

g2(ux) =
K−1

∑
i=0

ei(−T/T∗2 (x)+j∆xux) (4.57)

=
1− eK(−T/T∗2 (x)+j∆xux)

1− e(−T/T∗2 (x)+j∆xux)
(4.58)

We can now write the expression for the filter kernel that does not involve any
summations. That is,

h(x, z) = e−τE/T2(x)D̃N(uy) [g1(ux) + g2(ux)] (4.59)



4.C. Analysis of estimation bias 81

where ux and uy are the x and y coordinates of the difference, x− z.

4.C Analysis of estimation bias

The least squares estimator minimises the following cost function

f (θ) =
M

∑
i=1

(yi − gi(θ))
2 (4.60)

where gi = me−ti/T2 .

The derivative of the cost function at the least squares estimate will be zero.
That is,

J(θ̂) = ∇θ f (θ)|θ=θ̂ = 0 (4.61)

where∇θ = [∂/∂m, ∂/∂T2]T. Taking the first order Taylor series expansion around
the true parameter θ? yields

J(θ̂) = 0 ≈ J(θ?) + H(θ?)(θ̂− θ?) (4.62)

where H(θ̃) = ∇θ∇T
θ f (θ)|θ=θ̃. The bias is then approximated by

bias = E
[
θ̂− θ?

]
≈ −E

[
H−1(θ?)J(θ?)

]
(4.63)

In our case,

J(θ) =
[

∂ f
∂M

∂ f
∂T

]T
(4.64)

H(θ) =

[
∂2 f
∂M2

∂2 f
∂MT

∂2 f
∂TM

∂2 f
∂T2

]
(4.65)

For the sake of brevity we let f ′T = ∂ f
∂T , f ′M = ∂ f

∂M , f ′TT = ∂2 f
∂T2 , f ′MM = ∂ f

∂M2 ,
f ′TM = ∂ f

∂TM . The inverse of the 2× 2 matrix H can be computed explicitly as

H−1(θ) =
1

f ′TT(θ) f ′MM(θ)− f ′TM(θ) f ′MT(θ)

[
f ′TT(θ) − f ′TM(θ)

− f ′MT(θ) f ′MM(θ)

]
(4.66)

The relevant derivatives are

f ′V(θ) = −2
M

∑
i=1

(yi − gi(θ))g′i,V(θ) (4.67)
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= −2
M

∑
i=1

(µt(θ
?)− gi(θ))g′i,V(θ)− 2

M

∑
i=1

vig′i,V(θ) (4.68)

and

f ′VW(θ) = −2
M

∑
i=1

[
(yi − gi(θ))g′′i,VW(θ)− g′i,W(θ)g′i,V(θ)

]
(4.69)

= −2
M

∑
i=1

[
(µt(θ

?)− gi(θ))g′′i,VW(θ)− g′i,W(θ)g′i,V(θ)
]
− 2

M

∑
i=1

vig′′i,VW(θ)

(4.70)

where V and W can be different combinations of the variables T and M. The indi-
vidual derivatives of g(θ) are

gi(θ) = me−ti/T2 (4.71)

g′i,T(θ) =
mti

T2
2

e−ti/T2 (4.72)

g′i,M(θ) = e−ti/T2 (4.73)

The second derivatives are

g′′i,TT(θ) =
−2mti

T3
2

e−ti/T2 +
mt2

i

T4
2

e−ti/T2 (4.74)

g′′i,MM(θ) = 0 (4.75)

g′′i,TM(θ) = g′′i,MT(θ) =
ti

T2
2

e−ti/T2 (4.76)

The two elements of the matrix multiplication in (4.634.63) are obtained by

biasM = E

[
f ′M(θ) f ′TT(θ)− fT(θ) f ′TM(θ)

f ′TT(θ) f ′MM(θ)− f ′TM(θ) f ′MT(θ)

]
(4.77)

biasT = E

[
fT(θ) f ′MM(θ)− fM(θ) f ′MT(θ)

f ′TT(θ) f ′MM(θ)− f ′TM(θ) f ′MT(θ)

]
(4.78)

Each f ′ factor above is a scalar that can be written in the form αT β + ξv, where α,
β, and ξ are deterministic and v is the stochastic noise. Multiplication of two such
factors gives a quadratic form in v. The desired bias is given by the expectation of
the ratio of two such forms. The relevant expectation can be written as

E
[η

δ

]
= E

[
a + bTv + vT Av
c + dTv + vTBv

]
(4.79)
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To analyse the expression in (4.794.79), we consider the order of growth of each
term. For stochastic terms, we use the order in probability, denoted Op. By defini-
tion a random variable Xn is said to be Op(bn) if, for each ε > 0, there exists N(ε)

and B(ε) such that, if n ≥ N(ε),

Pr(|Xn/bn| < B(ε)) ≥ 1− ε. (4.80)

We consider the stochastic term,

XM = bTv =
M

∑
i=1

bivi. (4.81)

The mean of XM is zero and since bi is bounded for i = 1, . . . , M there is a k and
N(k) such that var(XM) ≤ kM for M ≥ N(k). Chebyshev’s inequality can be used
to prove,

Pr(|XM| ≤ a) ≥ 1− var(XM)/a2. (4.82)

For M ≥ N(k),

Pr(|XM| ≤ a) ≥ 1− kM/a2 (4.83)

Pr(|XM/
√

M| ≤ α) ≥ 1− k/α2 (4.84)

Pr(|XM/
√

M| ≤
√

k/ε) ≥ 1− ε. (4.85)

It follows that bTv = Op(
√

M). An identical argument can be used to prove that
dTv = Op(

√
M).

We now consider the order of the quadratic term,

YM = vT Av =
M

∑
i,j=1

Ai,jvivj. (4.86)

Since the noise is white, we can show that there exists constants c and N(c) such
that E [YM] < cM for M ≥ N(c). Since YM is positive, we use Markov’s inequality
to prove that for M ≥ N(c),

Pr(YM ≤ a) ≥ 1− kM/a (4.87)

Pr(YM/M ≤ α) ≥ 1− k/α (4.88)

Pr(YM/M ≤ k/ε) ≥ 1− ε. (4.89)

Therefore, vT Av = Op(M). Similarly for the other quadratic term, vTBv = Op(M).



84 Chapter 4. Estimation of relaxation rates in the presence of image distortion

The deterministic terms grow quadratically. That is,

a = O(M2) (4.90)

c = O(M2) (4.91)

To analyse the expectation in (4.794.79) we consider the stochastic parts as error
terms. According to the above analysis, the numerator can be written as η =

a(1 + Op(M−1)) and the denominator can be written as δ = c(1 + Op(M−1)).
The inverse of the denominator is analysed by a Taylor series expansion resulting
in,

δ−1 =
(

c(1 +Op(M−1))
)−1

(4.92)

=
1
c

(
1 +Op(M−1)

)
. (4.93)

The expectation in (4.794.79) can now be approximated as

E
[η

δ

]
≈ a

c
+O(M−1). (4.94)

This approximation is used to compute the estimation bias for the initial magneti-
sation, M0, and the relaxation time, T2, when the least squares estimator is used
with the simplified signal model.
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5.1 Introduction

IN an ideal environment, spin-spin relaxation can be modelled by a decaying
exponential with a characteristic time constant, T2. The previous chapter ex-

amined the accurate estimation of these time constants in the presence of distortion
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due to finite sampling bandwidth. The signal model used there cannot always be
applied in practice. Firstly, it was assumed that only a single exponential decay
was present in each voxel. In reality, different spins within a single voxel can in-
teract with vastly different molecular environments, leading to a signal decay that
arises from a distribution of T2 values [6969]. Secondly, deviations in the refocusing
flip angle due to B1 field inhomogeneity, off-resonance effects or non-uniform slice
profiles were ignored. These deviations lead to secondary and stimulated echoes
which modulate the pure exponential decay and result in biased estimation of the
underlying T2 values [7070]. In this chapter, T2 estimation is considered for a signal
model which incorporates both of these extensions.

Relaxation data for T2 estimation is traditionally acquired using a multi-echo
spin echo acquisition based on the CPMG sequence described in Section 3.33.3. This
sequence relies on a train of 180◦ RF pulses to refocus the transverse magnetisa-
tion and produce an echo that is weighted by the T2 components. In practice, the
refocusing flip angle can deviate considerably from 180◦. The echo amplitudes re-
sulting from non-ideal refocusing pulses can be derived from the extended phase
graph (EPG) algorithm [7171, 7272]. The EPG algorithm tracks the multiple coherence
pathways of spins after consecutive periods that model precession, relaxation and
refocusing. In this way, the problematic stimulated echoes can be accounted for
using the improved signal model of the EPG algorithm.

Previous works to estimate T2 distributions can be categorised into two differ-
ent approaches, based on the underlying model for distribution. The first approach
attempts to model a general continuous distribution. The method of Whittall and
MacKay proposed in [55] is to approximate the distribution with a large number
of delta functions at fixed locations and solve the resulting optimisation using the
non-negative least squares (NNLS) algorithm. This technique has been used ex-
tensively for T2 distribution estimation, e.g. [7373, 7474, 7575, 7676]. The recent work in [7777]
extended the NNLS algorithm to compensate for stimulated echoes arising from
non-ideal flip angles.

The second approach taken in the literature is to assume the distribution con-
sists of a small number of discrete components at unknown locations. A para-
metric model for a discrete distribution consisting of three pools was proposed
and tested in [77] and [88], respectively. Estimation of the multiple discrete compo-
nents was performed using a gradient based optimisation algorithm, equivalent
to finding the maximum likelihood estimate (MLE) for additive Gaussian noise.
However, in that simulation study, the algorithm was initialised to the true values.
In general, the discrete model has proved unreliable when initialised away from
ground truth [7878]. Stimulated echo correction for non-ideal refocusing flip angles
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has been applied in [7979] for single component relaxation analysis. In that work a
gradient based optimisation algorithm was used to jointly estimate the flip angle
and T2 value.

This chapter makes two novel contributions. Firstly, we propose a third ap-
proach for the modelling of multi-component T2 distributions that is both para-
metric and continuous and use it calculate the expected accuracy of the estimated
distributions. To this end, we demonstrate that it is not feasible to reliably estimate
the width of the distribution, albeit we can expect some accuracy in the estimated
locations of the distribution mass.

In light of this analysis, the second contribution of this work is to extend the
discrete distribution model in [88] to include stimulated echo compensation using
the EPG algorithm, analogous to [7979] for the single component case. To overcome
problems of the MLE associated with low SNR and algorithm initialisation, we
develop a Bayesian algorithm to jointly estimate the parameters of the B1 field and
the weights and locations of the discrete T2 components. A simplified version of
this algorithm was proposed in [8080] for the case of ideal 180◦ refocusing pulses.

The chapter is organised as follows. In Section 5.25.2 we present the general signal
equation for T2 distribution estimation. In Section 5.35.3 we review the existing ap-
proaches to T2 estimation to date and show how all signal expressions derive from
the same basic equation. We emphasise the inherent assumptions of each model.
In Section 5.45.4 we propose a parametric continuous model and in Section 5.55.5 we
use it to calculate bounds on the estimation performance and discuss the limited
information available in the measurement. In Section 5.65.6 we present an improved
estimation algorithm for the discrete model and apply it to simulated and experi-
mental data. Finally, in Section 5.75.7, we discuss optimising the CPMG sequence for
T2 distribution estimation.

5.1.1 Notation

Table 5.15.1 lists the important symbols used in this chapter. The list is not exhaustive,
and additional notation will be introduced as it is required.

5.2 Theory

The distribution of relaxation times is observed through the amplitudes of the ac-
quired echo signals. In Chapter 44, the focus was on distortion due to finite sam-
pling bandwidth, which resulted in pixel blurring modelled with a linear filter.
In this chapter, we assume the readout acquisition times are sufficiently small to
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Table 5.1: Common notation used in Chapter 55

Symbol Quantity

f (·) Distribution of relaxation times
gn(·) Relaxation function
M Number of echoes
tn Echo time
N Number of distribution components
wi Weight of the ith component
τi Relaxation time of the ith component
L NNLS grid size
A Linear measurement operator
C NNLS regularisation constraints
λ Regularisation weight
α, β Gamma distribution parameters
ν, ρ2 Mean and variance of gamma distribution
F Fisher information matrix
J Jacobian matrix
γ1, . . . , γP Correction weights
µ0, Ψ0 Mean and covariance of prior
K Kalman gain
Σ Covariance of noise
χ2 Misfit metric
α Flip angle
Fk Transverse coherence state
Zk Longitudinal coherence state
x Vector of coherence states
P Relaxation and precession operator
T Excitation operator
E Evolution operator
c Output selection vector
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justify the delta function kernel as described in Section 4.2.24.2.2. In this case, the mea-
surements from a pixel are independent and depend only on the properties of that
pixel. The measured MRI signal for a single pixel at the nth echo is described by the
integration of the decaying signals from each contribution within the pixel. That
is,

sn =
∫

f (τ)gn(τ)ejφdτ (5.1)

where f is the unknown distribution of relaxation times, gn is a function describing
the signal amplitude for a given relaxation rate and φ is the signal phase. Notice
the complex nature of the signal, sn ∈ C.

The measurements are noisy samples of the signal described by (5.15.1),

yn = sn + vn, n = 1, . . . , M (5.2)

where vn is complex Gaussian additive noise and M is the number of echoes. This
noise model may not be suitable for advanced reconstruction algorithms such as
those used in undersampled parallel imaging. We can derive all existing signal
models and T2 estimation algorithms from this general form in (5.15.1) and (5.25.2), with
different assumptions placed on f , gn and vn.

Traditionally the signal from a single T2 component, measured with a spin echo
sequence, is described by a decaying exponential. That is,

gn(τ) = e−tn/τ (5.3)

where tn is the echo time and τ is the T2 time constant.

We also consider the effect of B1 inhomogeneity on the signal model. The
repeated application of RF pulses at flip angles other than the ideal 180◦ causes
secondary and stimulated echoes that contribute to the observed signal strength.
These echoes can be tracked using the extended phase graph (EPG) algorithm
[7171, 7272]. In this case, the signal decay function, gn, includes additional parame-
ters for spin-lattice relaxation, T1, and the actual flip angle, α. The distribution
of different phase states at the nth echo are stored in a vector, xn. The EPG algo-
rithm describes the evolution of this vector via a linear recursive relation, from
which the echo amplitudes can be extracted. The algorithm, described in detail in
Appendix 5.B5.B, can be summarised as,

xn = E(τ, T1, α)xn−1 (5.4a)

gn = cTxn. (5.4b)
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where the vectors c and xn and the matrix E are defined in Appendix 5.B5.B and the
superscript T denotes matrix transpose. Non-uniform slice profiles (such as those
in [7979]) can be considered under the same formalism by defining the appropriate
function gn.

The next section describes different approaches to distribution estimation re-
sulting from a chosen form of gn together with a model for the distribution, f .

5.3 Existing approaches

5.3.1 Pseudo-continuous model

The first approach considered is to represent a continuous distribution by values
on a grid over the parameter space. In this case, a large but known sequence of re-
laxation times is defined, τ̂1, . . . , τ̂L, covering a physically plausible range of times.
This approximation and subsequent non-negative least squares (NNLS) algorithm
was proposed in [55]. It has been applied extensively for the case of ideal flip an-
gles by defining gn as shown in (5.35.3), e.g. [7373, 7474, 7575, 7676]. Mathematically, the
distribution is made up of L delta functions,

f (τ) =
L

∑
i=1

wiδ(τ − τ̂i). (5.5)

This pseudo-continuous model is considered to be non-parametric due to the min-
imal assumptions about the distribution shape.

An extension was proposed in [7777] to account for stimulated echoes arising
from non-ideal flip angles. In this case, gn is defined by the EPG algorithm in (5.45.4).

All these works take the magnitude of the measurements and implicitly model
the phase, φ, as zero. The Rician noise can be approximated as Gaussian for suf-
ficiently high SNR [8181]. Alternatively, an unknown offset can be included in the
signal equation in an attempt to correct for any discrepancy [7676].

The signal equation for the pseudo-continuous model is obtained by combin-
ing (5.15.1), (5.25.2), (5.45.4) and (5.55.5) to give

yn =
L

∑
i=1

wign(τ̂i, T̂1, α̂) + vn. (5.6)

Given values of T̂1 and α̂, the EPG algorithm gives the expected signal contri-
bution at a grid point τ̂i. A vector of the measurements, y = [y1, . . . , yM]T and
weights, w = [w1, . . . , wL]

T can be constructed and (5.65.6) can be rewritten as the
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matrix equation,

y = Aw + v (5.7)

where A is an M × L matrix with elements, An,i = gn(τ̂i, T̂1, α̂). The problem of
estimating the distribution is reduced to estimating the vector of weights, w. The
number of measurements is often considerably smaller than the number of weights
to estimate (M < L) and the system is underdetermined. Consequently, a least
squares estimator that solves (5.75.7) will have poor noise performance. The solution
proposed in [55] is to regularise the optimisation and solve,

minimise ‖y− Aw‖2
2 + λ‖Cw‖2

2

subject to w > 0
(5.8)

where C contains additional constraints (such as smoothness), weighted by the
regularisation parameter, λ. This problem can be solved efficiently using the non-
negative least squares (NNLS) algorithm and often the term NNLS is used to refer
to the discrete grid model in (5.55.5) together with the optimisation in (5.85.8). In this
chapter, the regularisation parameter, λ, is selected to give a χ2 misfit approxi-
mately 1% greater than the minimum misfit (when λ = 0) as in [8282].

It is not practical to estimate T1 directly from the echo data since the signal is
only weakly dependent on the T1 value. For example, a typical two component
decay curve changes by less than 1% for T1 values above 100 ms. Thus one can
confidently fix T̂1 = 1 s (as in [7777]) or T̂1 = ∞ (as in [7979]) with minimal effect on
the estimation results. All results in this chapter assume T̂1 = 1 s.

The flip angle α̂ is estimated in a separate optimisation stage, which minimises
the sum of squared errors between the measured and predicted signals, as in [7777].

5.3.2 Discrete model with unknown locations

The approach proposed in [77] assumes the distribution is made up of a small num-
ber of discrete components. This assumption is motivated by the nature of bio-
logical tissue, which can consist of myelinated water, inter/extra-cellular water
and cerebrospinal fluid (CSF) each with a different relaxation time. Consequently,
the distribution is modelled by a small number of weighted delta functions with
unknown weights and locations,

f (τ) =
N

∑
i=1

wiδ(τ − τi). (5.9)
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Two signal equations can be derived depending on whether or not the assumed
decay function gn includes stimulated echoes. The case of ideal 180◦ pulses yields
an exponential decay function for each T2 value. The corresponding integral in
(5.15.1) becomes

yn = ejφ
N

∑
i=1

wie−tn/τi + vn. (5.10)

To include stimulated echo compensation, the EPG algorithm is employed. The
signal can still be described by a weighted sum of the decay functions but in this
case the flip angle must be estimated along with the weights, locations and phase.

yn = ejφ
N

∑
i=1

wign(τi, T̂1, α) + vn (5.11)

This equation is fundamentally different from the non-parametric form in (5.65.6),
since the times τi are unknown and must be estimated along with the weights. In
this case, the estimation problem is nonlinear, unlike the linear problem in (5.65.6).
Accurate estimation with this nonlinear signal model is only viable when the dis-
tribution has a small number of modes, i.e., N � M. Although the equation in
(5.115.11) is a natural extension of [88] and [7979], it has not yet been formally proposed
in the literature for T2 distribution estimation.

Typical solutions to the estimation problems above attempt to find the max-
imum likelihood estimate (MLE) [66]. Magnitude data is commonly used, which
is modelled by assigning φ = 0, although the idea can be extended to the signal
equations in (5.105.10) and (5.115.11). For Gaussian noise with known variance, maximis-
ing the likelihood is equivalent to the following optimisation problem,

arg min
θ

M

∑
n=1

(
yn −

N

∑
i=1

wign(θ)

)2

(5.12)

where θ is a vector of unknown parameters, depending on the chosen decay func-
tion. We will see that even for a simple signal equation, a naive MLE optimisation
algorithm provides unreliable results. Instead, we develop a Bayesian algorithm
that produces near-optimal estimates.

Table 5.25.2 summarises the different signal equations presented in this chapter.
It demonstrates that all signal equations are derived from the integral equation in
(5.15.1), with different assumptions on the distribution, f and the decay function, gn.
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5.4 A novel parametric and continuous model

Neither of the models presented in the previous section can represent a realistic
distribution in a parsimonious way. The discrete grid (NNLS) can model an ar-
bitrary continuous distribution given a sufficiently large number of grid points,
however a grid does not represent smoothness in a parsimonious way. Although
smoothness can be enforced using regularisation, many of the grid points will be-
come superfluous. On the other hand, the discrete model with a small number
of unknown locations is a simple parametric model but it cannot model the con-
tinuous nature of realistic distributions. In this section we present a third model
for T2 distributions that is both parametric and continuous. We then analyse the
estimation performance of the various models.

The alternative model considered in this chapter is the estimation of a mixture
of parametric distributions. We assume the distribution consists of a small number
of modes, each with an inverse-gamma distribution. The inverse-gamma distribu-
tion is particularly well-suited to our problem since: it can approximate a wide
range of distributions by appropriate selection of the parameters; it has positive
support, which is suitable for relaxation times; and it leads to a tractable integra-
tion in (5.15.1), important for analysis and the development of efficient estimation
algorithms [66]. The inverse-gamma mixture is given by

f (τ) =
N

∑
i=1

wi
βαi

i
Γ(αi)

τ−αi−1e−βi/τ. (5.13)

The three parameters, wi, αi, βi, characterise the weight, location and scale of the
ith mode, respectively. Figure 5.15.1 illustrates the shape of the inverse-gamma distri-
bution for different values of α and β. Importantly, both parameters are required
to uniquely specify the centre and width of the distribution.

We assume the ideal exponential decay function for gn given in (5.35.3), and to-
gether with the inverse-gamma model, this leads to a closed-form signal model.
Substituting the parametric form (5.135.13) into the signal model (5.15.1) gives,

yn = ejφ
N

∑
i=1

wi

(
βi

tn + βi

)αi

+ vn. (5.14)

See Appendix 5.A5.A for the proof of (5.145.14). Although the ideal exponential decay is
used for our analysis, this result can be extended to the EPG algorithm.

Analogous to the discrete model, imposing the inverse-gamma mixture on the
distribution shape reduces the estimation problem to finding 3N parameters. As
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Figure 5.1: Examples of inverse-gamma distributions for different values of the
location parameter, α, and scale parameter, β.

Table 5.2: List of signal models and corresponding assumptions

Name Distribution Model, f gn sn Ref.

NNLSα grid EPG R [7777]
Discrete180◦ discrete exp R [77, 88]
Discreteα discrete EPG R/C [7979]
Gamma inv gamma mixture exp C

such, this model can be seen as a parametric alternative to NNLS. It is instructive
to consider an alternative parameterisation of each mode in the mixture, specified
by the mean and variance of the inverse-gamma distribution, given by

νj =
βi

αi − 1
; ρ2

j =
β2

i
(αi − 1)2(αi − 2)

. (5.15)

This parametrisation is useful to analyse the fundamental ability to estimate the
location and spread of the relaxation times.

5.5 Estimation of continuous distributions

5.5.1 CRLB analysis

The minimum variance of an unbiased estimator is given by the Cramér-Rao lower
bound (CRLB) [66]. This bound is often used as a benchmark to assess suboptimal
estimation algorithms. In this section, we use the bound more directly to anal-
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yse the intrinsic uncertainty in the estimation problems for different distribution
models. The CRLB reveals the theoretical limit on variance of estimated model pa-
rameters for a given experimental setup. Specifically the following bound applies
to the covariance of an unbiased estimator,

cov θ̂ ≥ F−1(θ) (5.16)

where θ̂ denotes an estimator and F is the Fisher information matrix (FIM). The
FIM has elements given by

Fi,j(θ) = E

[(
∂

∂θi
log `(θ|y)

)(
∂

∂θj
log `(θ|y)

)]
. (5.17)

where ` is the likelihood function for the given the signal model.

In this work we calculate the CRLB for three different models: the inverse-
gamma model in (5.145.14) with unknown location and width parameters; a con-
strained inverse gamma model with unknown location and known width; and
the discrete distribution model in (5.105.10). These models are representative of the
different approaches to distribution estimation.

The inverse-gamma mixture is ideal to consider the estimation performance in
terms of the location and width of the unknown distribution components, since it
is the only parametric model to incorporate width. To this end, we use the rela-
tionships in (5.155.15) to transform the FIM for this model (initially in terms of αi and
βi) according to

F(ν, ρ) = JT F(α, β)J (5.18)

where J is the Jacobian matrix of the mapping associated with (5.155.15).

We evaluate the CRLB for an inverse gamma mixture distribution consisting
of two modes defined using (5.155.15): a slow mode with location ν1 = 100 ms and
width ρ1 = 10 ms and a fast mode with location ν2 = 20 ms and width ρ2 = 10 ms.
The CRLB for the discrete model signal in (5.105.10) was calculated for two modes
with equivalent locations, τ1 = 100 ms and τ2 = 20 ms. Both models had weights,
w1 = 0.7 and w2 = 0.3 for the slow and fast modes, respectively. These values
were chosen to emulate a voxel with a dominant intra/extra cellular component
and a small myelin water component. The simulated MRI sequence is a multi-echo
sequence consisting of M = 32 spin echoes with echo times spaced 12 ms apart,
i.e. tn = (12n)ms, n = 1, . . . , 32.

Fig. 5.25.2 displays the CRLB for the parameters of the first mode of the multicom-
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Figure 5.2: The estimation bounds for different parametric distributions. The
CRLB for the slow mode parameters is displayed for the width (blue solid line) and
location (red dashed line) of the inverse gamma model. For comparison, the CRLB
of the location parameter of a fixed-width inverse gamma model (green solid line)
and discrete model (blue dotted line) are displayed.

ponent distribution using different models. The plot demonstrates that the width
parameter of the inverse gamma model is exceedingly difficult to estimate. For an
SNR of 100, the width of the slow mode can only be estimated with a standard
deviation of ∼100 ms, five times greater than the true width parameter. These re-
sults also highlight that estimating the location is much harder when the width is
unknown.

To achieve useful estimates of the weight, location and width parameters of the
distribution, the SNR would need to be >1000, beyond that achievable in a clinical
setting. Alternatively we would need to collect in the order of 104 echoes, which is
completely impractical. Similar plots for the second mode or different parameter
values yield the same conclusions: it is not possible to reliably estimate the width
of the relaxation time distribution. The next section provides empirical evidence
that this result is not specific to an inverse-gamma distribution and holds for the
pseudo-continuous model used in NNLS.

5.5.2 NNLS and distribution width

The inability of the available data to provide information about distribution width
is a fundamental property which also affects NNLS. To investigate this further, a
signal was simulated from a single component Gaussian distribution with mean
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Figure 5.3: Demonstration of the ability of NNLS to estimate distribution width
of a single component. The (a)(a) root mean squared error (RMSE) of the width es-
timates extracted from NNLS distributions for SNR of 50, 100 and 200, and (b)(b)
the true (solid line) and three example distributions (dashed line) estimated from
different noise realisations for SNR of 100.

T2 = 100 ms and five different distribution widths evenly spaced from 2 ms to
20 ms. For each signal, independent noise was added and NNLS was performed.
The distribution width was extracted by fitting a Gaussian to the generated pseudo-
continuous NNLS distributions. This was repeated for 1000 independent noise tri-
als to calculate the mean squared error. Fig. 5.3a5.3a displays the root mean squared
error (RMSE) of the width estimates, which demonstrate the NNLS distributions
do not accurately represent the true distribution width. Three example NNLS dis-
tributions are shown in Fig. 5.3b5.3b for a width of 10 ms and SNR of 100. These results
were produced for a single component distribution and even weaker results are
obtained for multicomponent distributions. Although estimation performance im-
proves considerably as the SNR increases, the width estimates are not sufficiently
reliable for typical data.

The reason for such poor estimation performance is that a large number of
distributions will produce very similar measurements. For reasonable noise lev-
els, the differences are indistinguishable and we cannot discern the correct model
width. For example, Fig. 5.45.4 displays the signal on a log-scale from two-component
gamma distributions with locations, τ1 = 20 ms, τ2 = 100 ms and width parame-
ters of 10 ms, 30 ms and the limiting case of a discrete distribution. This figure high-
lights the small difference between signals generated from vastly different width
parameters.

Since the measurements do not contain sufficient information to estimate the
distribution width, we must constrain the width estimates or adopt a discrete dis-
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Figure 5.4: The noiseless signal (log-scale) generated from a two-component dis-
crete distribution and a gamma distribution with widths of 10 ms and 30 ms. There
is minimal difference between the discrete distribution (solid) and a continuous
distribution with width of 10 ms (dotted). A notable difference is present when
the width increases threefold to 30 ms (dashed).

tribution model that doesn’t model it. We adopt the latter approach since the CRLB
results in Figure 5.25.2 suggest adverse performance of location estimation when the
width is unknown. We will see that the discrete distribution is suitable for estimat-
ing the main contributions to the signal. Existing estimation techniques using the
discrete distribution model are based on the MLE and have not demonstrated sat-
isfactory performance. This motivated the development of a Bayesian algorithm.

5.6 Proposed estimation algorithm for the discrete model

The multicomponent signal model in (5.115.11) does not lend itself well to a simple
estimation algorithm despite the seeming simplicity of the model. The nonlinear
relationship between the parameters and the signal creates a poorly behaved MLE
cost function, with local minima and large regions in parameter space where the
cost function is essentially flat. These features are problematic for a naive gradient-
based optimisation algorithm.

We adopt a Bayesian framework that leads to a numerically robust algorithm
and allows us to incorporate prior information about the biological tissue. The
cornerstone equation is Bayes’ rule,

π(θ|y) = `(θ|y)π0(θ)

π(y)
(5.19)

where y is a vector of measurements, θ is a vector of unknown parameters, `(·)
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is the likelihood and π0(·) is the prior distribution. The discrete complex model
has two parameters for each distribution component in addition to a phase and
flip angle. Although we ultimately require estimates in terms of the relaxation
time constants, τ, our implementation estimates the relaxation rates, r = 1/τ.
This is particularly useful to avoid the large signal discontinuity about τ = 0,
which can be problematic when estimating small time constants from noisy data.
Consequently, the unknown parameters are

θ = [w1, r1, . . . , wN , rN , φ, α]T. (5.20)

It is not possible to compute an exact, finite-dimensional representation of the
posterior (5.195.19) so approximations must be sought. Finding an accurate but low-
dimensional approximation is complicated by the relatively wide prior, π0, and
narrow likelihood, `. Progressive correction is used to overcome this difficulty
[8383]. Although we do not use a Monte Carlo approximation, we apply the same
principle of ‘flattening’ the likelihood and iteratively correcting our estimate of
the posterior. This approach is very computationally efficient compared to Monte
Carlo techniques and demonstrates improved accuracy compared to simple lin-
earisation schemes. We define a schedule of P corrections, γ1, . . . , γP, with the
intermediate posterior at the jth correction step given by

πj(θ|y) =
`γj(θ)πj−1(θ|y)

ηj
(5.21)

where ηj is a normalising constant. When ∑j γj = 1, the final posterior πP is the
required one defined in (5.195.19).

For small γj, it is much easier to accurately approximate (5.215.21) than (5.195.19). In
particular, a Gaussian approximation, obtained by linearising the likelihood, can
be used. This approximation would not be accurate using (5.195.19) directly. The
approximate likelihood is obtained by linearising the nonlinear function that de-
scribes the EPG signal. Recall the signal in (5.115.11) is,

sn(θ) = ejφ
N

∑
i=1

wign(τi, T̂1, α). (5.22)

Importantly, we use the raw complex-valued data to jointly estimate the phase
and relaxation times. This has the advantage of the noise remaining Gaussian
instead of Rician as is the case when magnitude data is used [8181], provided there is
minimal phase artefacts from physiological noise and reconstruction. The Jacobian
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for the signal in (5.225.22) is

J(θ) =


∂s1
∂w1

∂s1
∂r1

· · · ∂s1
∂wN

∂s1
∂rN

∂s1
∂φ

∂s1
∂α

...
...

. . .
...

...
...

...
∂sM
∂w1

∂sM
∂r1

· · · ∂sM
∂wN

∂sM
∂rN

∂sM
∂φ

∂sM
∂α

 (5.23)

The partial derivatives can be calculated efficiently using a set of recursive rela-
tionships set out in Appendix 5.C5.C.

We adopt a Gaussian prior with mean, µ0, and covariance Ψ0. Further, πj−1 is
assumed to be Gaussian with mean µj−1 and covariance matrix Ψj−1. The approx-
imate likelihood is

ˆ̀γj(θ) = N
(

y; s(µj−1) + J(µj−1)(θ− µj−1), Σ/γj

)
(5.24)

where J is the Jacobian in (5.235.23) andN (µ, Σ) denotes a multivariate Gaussian PDF
with mean µ and covariance Σ. In this case, the prior and likelihood are linear
and Gaussian at each step. This is the same situation as a Kalman filter and thus
the posterior approximation is a Gaussian with mean and variance given by the
Kalman filter update equations,

µj = µj−1 + K j(y− s(µj−1)), (5.25a)

Ψj = (I − K j J)Ψj−1 (5.25b)

where I is the identity matrix and K j is the gain at the jth iteration defined as

K j = Ψj−1 J′(JΨj−1 J′ + Σ/γj)
−1. (5.26)

Initially, the linearisation will be inaccurate but the likelihood will be wide due
do severe flattening, so the approximation of πj remains accurate. As the algo-
rithm progresses, the approximate posterior approaches the true posterior and the
linearisation becomes more accurate. This process is very similar to simulated
annealing [8484] and we will see that the resulting algorithm is very robust to local
minima, particularly at low SNR. The final algorithm is described in Algorithm 5.15.1.
The algorithm is computationally efficient as matrix inversions can exploit the di-
agonal nature of the measurement covariance.
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Algorithm 5.1: Estimation Algorithm

Input: Data, y; Covariance, Σ = σ2 I; Prior, µ0, Ψ0; Correction schedule,
γ1, . . . , γP

Output: Estimate, µP

1 for j← 1 . . . P do
2 Calculate Jacobian, J ← J(µj−1)

3 Calculate gain, K j ← Ψj−1 J′(JΨj−1 J′ + Σ/γj)
−1

4 Update mean, µj ← µj−1 + K j(y− s(µj−1))

5 Update covariance, Ψj ← (I − K j J)Ψj−1

5.6.1 Demonstration of algorithm

The operation of this algorithm is demonstrated with an example consisting a sin-
gle discrete component with weight, w = 0.7, and relaxation time, τ = 100 ms. The
aim is to estimate these two values from 32 echo measurements spaced 12 ms apart.
The prior distribution is relatively wide reflecting minimal knowledge about the
true parameter values. We test two correction schedules: firstly we perform a sin-
gle correction (γ1 = 1, P = 1) equivalent to Bayesian estimation using the standard
Extended Kalman Filter equations. The second schedule consists of P = 30 correc-
tions, logarithmically spaced between 10−6 and 1, i.e., γi = 106i/29−6, i = 0, . . . , 29
and normalised such that ∑j γj = 1. The logarithmic spacing ensures that small
corrections are made initially, when the linearised approximation can be poor, and
progressively larger corrections are performed as the estimates becomes more ac-
curate.

Figure 5.5a5.5a displays error ellipses for the prior and the approximate posterior
derived using the linearised likelihood and a single correction step. The linearisa-
tion occurs about the prior mean, which, in this case, is too far from the true pa-
rameters to provide an accurate likelihood approximation. The resulting posterior
approximation is poor and not representative of the true parameters. Figure 5.5b5.5b
illustrates the progressive corrections from the prior (at 0%) to the posterior (at
100%). In this case, the flattening of the likelihood results in small updates to the
posterior approximation indicated by the evolution of the error ellipse. The al-
gorithm mitigates the difficulties of using a wide prior with a narrow likelihood
function and the final posterior approximation is very close to the true parameters.
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Figure 5.5: Error ellipses for the prior and posterior distributions demonstrating
the proposed algorithm using (a)(a) a single correction and (b)(b) a schedule of 30 cor-
rections. The true parameters are marked with a × and the distribution mean is
indicated by a •. The colours reflects the number of corrections performed where
0% gives the prior and 100% gives the posterior approximation.

5.6.2 Simulations

In this work we define a Gaussian prior for two components with mean

µ0 = [0.7 0.1−1 0.3 0.02−1 0 2π/3]T, (5.27)

and covariance

Ψ0 =



12

1002

0.22

1002

352

352


. (5.28)

Recall the parameter vector in (5.205.20) is composed of weights, relaxation rates, a
phase angle and a flip angle. The prior is relatively wide such that the estimation
bias is negligible. A similar prior can be created for three or more components.
The correction schedule is the same as above and consists of 30 corrections, loga-
rithmically spaced between 10−6 and 1 and normalised such that ∑j γj = 1.

To examine the accuracy of different estimation algorithms for varying levels
of SNR, a decay curve was generated from a multicomponent distribution consist-
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ing of two discrete modes: a slow component with weight 0.7 and T2 of 100 ms,
and a fast component with weight 0.3 and T2 of 20 ms. These general features are
typical of white matter tissue in the cortex. A flip angle of 160◦ was simulated to
represent a non-ideal B1 field. The signal was calculated from the extended phase
graph (EPG) algorithm to model secondary and stimulated echoes as described
by (5.115.11) and (5.45.4). Simulations consisted of 2000 independent trials where i.i.d.
complex noise was added. The phase angle in (5.115.11) was randomly selected each
trial from a uniform distribution between −π and π to demonstrate that the al-
gorithm is insensitive to phase. The relaxation modes were estimated using three
approaches: a discrete grid model with NNLS including stimulated echo com-
pensation, as in [7777]; a discrete model with a gradient based MLE optimisation
similar to [7979] extended to multiple components; and the discrete model using the
proposed Bayesian algorithm. The iterative MLE algorithm was initialised at the
prior mean in (5.275.27). To compare the continuous NNLS distributions, component
locations were extracted using the geometric mean between 0 ms and 40 ms for the
fast component and 40 ms and 200 ms for the slow component [7575]. The MSE was
calculated and the process was repeated for 30 SNR values logarithmically spaced
between 10 and 1000. Average execution times for the three algorithms were cal-
culated from all trials.

The ability to estimate a wide range of flip angles was examined by another
simulation of 2000 trials with an SNR of 300 (as in [7777]) for 30 flip angles evenly
spaced between 60◦ and 180◦. The MSE was calculated at each flip angle for
the three algorithms. Fig. 5.65.6 displays the performance of the NNLS algorithm,
a gradient based MLE algorithm and the proposed Bayesian algorithm. This plot
demonstrates that the MLE optimisation algorithm achieves the same performance
as the Bayesian algorithm for sufficiently high SNR. This is expected for a suffi-
ciently wide prior, when the MLE and MAP estimates converge. However, the
MLE algorithm fails to produce reliable estimates at low SNR values, due to an
optimisation cost function that is poorly behaved (it is relatively flat with local
minima). NNLS exhibits suboptimal performance, although it achieves reasonable
results across a range of SNR values.

Both the proposed algorithm and NNLS are reasonably robust to flip angle
variations. Fig. 5.75.7 illustrates that the error in the estimated flip angle increases
with the true flip angle. This can be understood by noting that the derivative of the
signal tends to zero as the flip angle approaches 180◦. The 8-point NNLS algorithm
as implemented in [7777] exhibits elevated error around 80◦ and 160◦. This is due to
the algorithm testing only 8 flip angles and using spline interpolation to extract
the minimum sum of squares error. A smooth curve using 64 test angles displays
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Figure 5.6: The root mean squared error (RMSE) of the estimated T2 components
calculated at different SNR values for the Bayesian algorithm (solid line), the gra-
dient based MLE (dotted line) and NNLS (dashed line).
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Figure 5.7: The RMSE of flip angles estimated from multiecho data with an SNR
of 300. The error is plotted against different values of the true flip angle for the
Bayesian algorithm (solid line) and the NNLS algorithm with 8 (dotted line) and
64 (dashed line) interpolation points.
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only slightly degraded performance compared to the proposed algorithm. This
modest gain in performance, however, increases the computation time of NNLS
by an order of magnitude.

The Bayesian algorithm proposed above had an average execution time of
0.022 s per voxel compared to NNLS with 8-point stimulated echo correction, which
averaged 0.17 s per voxel. This represents an almost eight-fold improvement.

5.6.3 Optic nerve experiments

All experiments were performed on a 4.7 T Bruker BioSpec small bore MRI scanner
fitted with a high performance gradient set. A cryogenically cooled surface coil
was used to improve SNR. A multi-echo CPMG sequence with 24 echoes was run
with a first echo time of 12 ms and an echo spacing of 12 ms. The slice thickness
was 1 mm for all experiments.

A sample was constructed consisting of agar gel with a sheep optic nerve fixed
parallel to the transverse plane. The TR = 2500 ms, FOV = 6.4 mm × 12.8 mm
with a matrix size of 64× 128. B1 field mapping was performed by processing two
spin echo images acquired with different excitation flip angles as in [8585]. Data was
processed with the proposed algorithm using both the exponential model, which
assumes ideal 180◦ flip angles; and the EPG model, which jointly estimates the
T2 components, weights and B1 map. The algorithms were run for both a single
component distribution and a two component distribution.

The B1 maps for the optic nerve sample are displayed in Fig. 5.85.8. The B1 map
generated from the proposed estimation algorithm is consistent with that gener-
ated from a low resolution B1 field mapping protocol. The estimated maps are very
similar for a single component distribution and a two component distribution. The
nature of the surface coil creates a dramatic flip angle inhomogeneity throughout
the sample, with only a small region exhibiting a flip angle close to the prescribed
180◦. Note that regions above the 180◦ arc experience a flip angle greater than 180◦

but are reflected about 180◦ as this is equivalent in the signal model.

Fig. 5.95.9 presents the single component T2 maps generated with different sig-
nal models. Fig. 5.9a5.9a displays the single T2 value estimated using the EPG algo-
rithm, which models stimulated echoes resulting from nonideal flip angles. The
estimated T2 value is similar along the length of the optic nerve, despite the large
flip angle variation demonstrated in Fig. 5.85.8. Conversely, Fig. 5.9b5.9b shows the re-
sults of an exponential decay model that neglects flip angle inhomogeneity. The T2

maps in this case are overestimated by an increasing amount as the flip angle de-
viates from the ideal 180◦. Figure 5.9c5.9c displays the T2 profiles along a line through
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Figure 5.8: The B1 map (left) estimated using a single component model, (middle)
estimated using a multi-component model and (right) measured from separate
spin echo images.
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Figure 5.9: The single component T2 maps (ms) of an optic nerve sample estimated
from (a)(a) the extended phase graph (EPG) model and (b)(b) the exponential decay
model (EXP). Profiles along the dashed lines of the T2 estimates are shown in (c)(c).
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the optic nerve. This demonstrates the close match between estimates when the
flip angle is close to 180◦ and the overestimation as the flip angle decreases. This
result is consistent with those previously reported in [7777, 7979].

Fig. 5.105.10 presents the multicomponent T2 maps generated with different signal
models. Fig. 5.10a5.10a displays the two components estimated using the EPG algo-
rithm. The estimated T2 values are similar along the length of the optic nerve,
despite the large flip angle variation. Conversely, Fig. 5.10b5.10b displays the T2 com-
ponents from an exponential decay model that neglects flip angle inhomogeneity.
The T2 maps in this case exhibit a large variation along the nerve, with the fast
component fitted in an attempt fix the disparity of the first few echo amplitudes
resulting from stimulated echoes. T2 profiles along the nerve from both algorithms
is displayed in Figure 5.10c5.10c. As expected the estimates are similar in regions cor-
responding to flip angles close to 180◦. In other regions, however, the model mis-
match causes large variation dependent more on the flip angle than the underlying
structure.

5.6.4 Mouse brain experiments

An ex-vivo mouse brain was scanned with the same 24 echo sequence with TR =

2500 ms, FOV = 15 mm× 15 mm and a matrix size of 192× 192 for an in-plane
resolution of 78.1 µm. A single mid-axial slice of 1 mm was acquired. This data
was processed with the proposed algorithm using the EPG model and the NNLS
modification in [7777]. Both algorithms attempt to estimate multicomponent distri-
butions and account for stimulated echoes by estimating both the T2 distribution
and the B1 map. As described above, T2 values were extracted from the NNLS
distribution using the geometric mean to obtain location estimates of the fast and
slow components as in [7575].

To further investigate the reliability of the gradient based MLE algorithm, com-
plex noise was added to the mouse data to yield an SNR of 200. This data was
then processed with the proposed algorithm and a gradient based MLE algorithm.
Fig. 5.11a5.11a displays boxplots of the T2 value of the first component for the two al-
gorithms. The plots depict the median, first and third quartiles, and values con-
sidered outliers. The estimates from the MLE optimisation and the Bayesian algo-
rithm are similar, as shown by similar medians and first and third quartiles. How-
ever, approximately 6% of the MLE estimates can be considered outliers, many
of which are far away from the true value. These outliers manifest as erroneous
speckled values in the T2 map, as illustrated in Fig. 5.11b5.11b.

Estimation results from the mouse brain data are displayed in Fig. 5.125.12. Estimated
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Figure 5.10: The multicomponent T2 maps (ms) of an optic nerve sample esti-
mated from (a)(a) the extended phase graph (EPG) model and (b)(b) the exponential
decay model (EXP). The left and right sides display the slow and fast components,
respectively. Profiles along the dashed lines of the T2 estimates for the different
components are shown in (c)(c).
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Figure 5.11: Analysis of outliers from a gradient based optimisation algorithm.
(a)(a) displays a summary of the different estimates in the region of interest for the
Bayesian algorithm and the gradient based MLE algorithm. (b)(b) displays the region
of interest of the mouse brain estimates for the (top) Bayesian and (bottom) MLE
algorithms.

values from the proposed algorithm are shown in the top image of each figure part,
while the bottom image displays values extracted from the NNLS distribution. The
weights and times of the slow component (calculated using the geometric mean
between 40 ms and 200 ms) are displayed in Figs. 5.12a5.12a and 5.12b5.12b, respectively.
The Bayesian and NNLS algorithms produce similar T2 maps for this component.
Figs. 5.12c5.12c and 5.12d5.12d display the fast component and demonstrate an essential
difference between the two algorithms. The maps produced by the proposed al-
gorithm contain anatomical features such as a decreased T2 below the ventricles,
consistent with the presence of white matter. Fast components above 40 ms are
not displayed. NNLS fast T2 maps were calculated between 0 ms and 40 ms and
exhibit a relatively constant T2 value. NNLS appears to represent the white matter
by increasing the weighting of the relatively constant T2. This is due to the regu-
larisation of the NNLS algorithm which decreases the estimation variance at the
expense of increased bias. On the other hand, the proposed algorithm produces
a fast component with both an increased weight and a decreased time constant in
the white matter region. It is worthwhile to mention that both algorithms often
produce fast component weights close to zero as shown in Fig. 5.12c5.12c. In this case,
the T2 estimates of the corresponding voxels are unlikely to be reliable since they
have minimal contribution to the fitted signal.
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Figure 5.12: The weights (w1, w2) and mean T2 (τ1, τ2) of the two distribution com-
ponents estimated from experimental data of a mouse brain. Each image contains
results from the proposed estimation algorithm (top) and NNLS (bottom).
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5.6.5 Model selection

The algorithm proposed above assumes the number of distribution components is
known. Fitting too few or too many components will result in degraded perfor-
mance and this could be considered the main disadvantage of the discrete distri-
bution model. For example, the weights of the fast T2 component were estimated
close to zero in the agar gel region of the optic nerve sample. This is due to the
fact that the relaxation curve of the gel is described accurately by a single decaying
component. It would be preferable to only fit a single component in this case, as
the second component is simply fit to the noise and has minimal contribution to
the signal. There are many model selection techniques that choose the appropriate
model order automatically based on a statistical metric, see e.g. [8686, 8787]. A simple
measure known as the Bayesian Information Criteria (BIC) [8888] is defined as

BIC(M) = −2 ln(`M) + kM ln(M) (5.29)

where `M is maximum value of the likelihood function for model M, kM is the
number of parameters to fit and M is the number of measurements.

Although this criteria is based on the maximum likelihood estimate (MLE) of
each candidate model, we use the proposed Bayesian algorithm. Under certain
non-restrictive conditions, the Bayesian estimate asymptotically converges to the
MLE [8989]. This justifies the use of the Bayesian estimate in place of the MLE, and
the reliability it provides. We evaluate the BIC at each pixel in the optic nerve data
for two models: a single component model and a two-component model, both
with stimulated echo correction using the EPG algorithm. In general, the model
with smallest BIC is preferred as it provides a good tradeoff between model com-
plexity and model fit. The BIC difference between the models gives a quantitative
measure of support for the two models.

Figure 5.135.13 displays the BIC difference between the one and two component
models. In the agar gel region of the sample, there is minimal difference between
the models suggesting that the data is accurately represented by a single compo-
nent. Conversely, the optic nerve displays a large negative difference between the
one component and two component model. This provides strong support for a two
component model. As the signal strength decreases further away from the surface
coil, the strength of support for a two component model decreases as the criteria
cannot discern between the model and noise. Nonetheless, these results suggest
that automatic model selection techniques such as the BIC may prove useful for
the estimation of multi-component T2 distributions.
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Figure 5.13: (left) Magnitude image of the optic nerve sample acquired with a sur-
face coil and (right) the difference between Bayesian Information Criteria metrics
between the two component model and the one component model. Large negative
values indicate strong evidence for the two component model.

5.7 Optimal experiment design

This section addresses an often overlooked question: how to optimise the acqui-
sition sequence for T2 estimation. Previous work in [9090] considered the joint esti-
mation of T1, T2 and M0 and optimised sequence parameters to give the minimum
estimation variance. The study was limited to a single component per pixel. In
this work, we consider sequence optimisation in the context of multicomponent
T2 distribution estimation using a CPMG sequence.

The CPMG sequence parameters we can control are the first echo time, t1, echo
spacing, ∆t, and number of echoes, M. Unfortunately, the optimal selection of
these parameters depends on the unknown T2 components we wish to estimate.
The Cramér-Rao lower bound (CRLB) was calculated in Section 5.5.15.5.1 to analyse
the estimation variance for multicomponent T2 distributions. In this section, we
employ the CRLB to select the sequence parameters that give the lowest possible
variance.

The CRLB is defined by the inverse of the Fisher information matrix (FIM). In
general, the inverse FIM can be written as a function of the unknown T2 compo-
nents, θ, and the experimental design parameters, ϑ, denoted F−1(θ; ϑ). Various
optimisation problems can be defined to find the optimal sequence parameters, ϑ̃.
For example, we may wish to minimise the worst case sum of variances over a
range of T2 components. That is,

ϑ̃ = arg min
ϑ

(
max
θ∈Θ

Tr
{

F−1(θ; ϑ)
})

(5.30)
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Figure 5.14: (a)(a) The CRLB displaying a monotonic performance improvement for
increasing number of echoes and (b)(b) a cost function consisting of CRLB and a linear
penalty term for number of echoes. The coloured curves represent different T2
values.

where Θ is the set of T2 components that we expect to encounter and Tr denotes the
matrix trace (equivalent to the sum of variances). For the present study, we con-
sider a simpler problem and aim to determine the optimal sequence for a given
T2 distribution. This problem is equivalent to (5.305.30) when Θ contains a single ele-
ment.

The first question we consider is how many echoes to acquire. For this prob-
lem we fix the first echo time and inter-echo spacing at 10 ms and optimise over
the number of echoes. We consider a single component distribution with data ac-
quired with an SNR of 100. Figure 5.14a5.14a displays the CRLB as a function of the
number of echoes. The notion that acquiring echoes in the “noise floor” can de-
grade T2 estimation is only applicable when magnitude data is used. The perfor-
mance of the full model using complex measurements is monotonic in the num-
ber of echoes. Although the estimation performance never degrades with extra
echoes, the increase in performance tends to zero as the signal becomes noise. Fig-
ure 5.14b5.14b illustrates a cost function consisting of the CRLB and a linear penalty
term for the number of echoes. This penalty term could model practical factors
such as an increase in the RF power deposition for additional echoes. In this case,
the optimal number of echoes is finite and increases as the T2 value increases. For
example, with our chosen penalty, 10 echoes is optimal to estimate a single compo-
nent with T2 = 200 ms while 22 echoes may be preferred to estimate a component
with T2 = 500 ms. Results will vary strongly depending on the choice of penalty
so care must be taken in selecting an appropriate penalty for a given application.

The second sequence parameter we optimise is the echo spacing. We assume
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Figure 5.15: (a)(a) The CRLB for different echo spacings for a two component distri-
bution with τ1 = 20 ms and τ2 = 100 ms. The optimal spacing is marked with a
circle. (b)(b) displays the optimal echo spacing as a function of the two components.
A linear fit to this function is displayed as a grid overlay.

the number of echoes is fixed at 32, and we aim to determine the optimal echo
spacing for different T2 distributions. In this case, we adopt a brute force approach
and calculate the optimal spacing for all pairs of T2 components. Figure 5.15a5.15a
illustrates this optimisation for a single pair representing a two component distri-
bution with τ1 = 20 ms and τ2 = 100 ms. The optimal echo spacing in this case
must trade the estimation accuracy between fast and slow components. The min-
imum estimation variance is obtained when the echo spacing is ∼8 ms. We the
repeat this optimisation for all practical values of the fast and slow components
of a multi-component distribution. Figure 5.15b5.15b depicts the optimal echo spacing
as a function of the two distribution components. This function is reasonably well
approximated by a plane shown as a grid overlay. The least squares fitting of this
plane to the optimal function gives the following approximate relationship,

(∆t)opt ≈ 0.1(τ1 + τ2) (5.31)

This relationship is useful to determine the optimal echo spacing (given a total of
32 echoes) for accurate estimation of two given T2 components. A similar analysis
could be performed for non-uniform echo spacing although this increases size of
the parameter space to optimise.

This section has explored two examples of optimal experiment design using the
Cramér-Rao lower bound as a cost function. This demonstrates that experiment
design should be considered jointly with the problem of T2 distribution estimation.
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5.8 Discussion and conclusion

The estimation of T2 distributions from CPMG data is a challenging problem. In
this chapter, we have developed a parametric and continuous model for multi-
component T2 distribution analysis and used it to show that it is infeasible to accu-
rately estimate the width of a continuous distribution. Instead we have considered
a discrete distribution together with the extended phase graph (EPG) algorithm to
account for nonideal flip angles and the resulting stimulated echoes. We have
demonstrated that a simple gradient-based MLE algorithm is unsuitable in this
case and developed a Bayesian alternative that exhibits near-optimal performance
even at very low SNR. The proposed algorithm jointly estimates the weights and
locations of the T2 components as well as the signal phase and refocusing flip an-
gle.

It is commonly thought that the regularisation in NNLS produces ‘more real-
istic’ distributions, primarily due to the smooth and continuous nature of the re-
sulting curves [7777]. In this work, however, we have shown that one cannot reliably
estimate the distribution width, thus a regularised distribution, although continu-
ous, is not necessarily closer to the true distribution than a discrete counterpart.

The distributions resulting from the NNLS algorithm have been most useful to
date by extracting summary statistics, such as the mean intra/extra-cellular peak
and the myelin water fraction [7575]. These measures integrate the distribution and
consequently are only weakly dependent on the estimated width. Our analysis
justifies the use of these statistics, as these features can be reasonably well esti-
mated, despite minimal knowledge of the distribution width. However, we have
shown that regularisation can bias the distribution shape of the fast components,
leading to a lack of anatomical information in the T2 maps.

One drawback of the discrete multicomponent T2 model is the need to know a
priori the number of components. For example, the weights of the fast T2 compo-
nent were estimated close to zero in the agar gel region of the optic nerve sample
(results not shown). This is due to the fact that the relaxation curve of the gel is
described accurately by a single decaying component. It would be preferable to
only fit a single component in this case, as the second component is simply fit to
the noise and has minimal contribution to the signal. Many model order selection
techniques exist, such as the Akaike or Bayesian information criteria, that choose
an appropriate model order based on a statistical metric, see e.g. [8787]. These crite-
ria are applicable to MRI signal decay data although this is beyond the scope this
thesis.

In the presence of non-ideal flip angles, the estimated T2 components for a
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discrete distribution with an exponential decay function exhibit more complicated
behaviour than the single component counterpart. For a single component, the
T2 value was increasingly overestimated as the flip angle deviated from 180◦ as
reported in [7979]. In the case when a two component distribution was used, the
second component is estimated to compensate for the stimulated echoes. This
results in a large variation of the second component and relatively small variation
of the first component.

The advantage of the discrete distribution model is that the associated estima-
tion problem is inherently better conditioned than the NNLS pseudo-continuous
grid model. This reduces the need for regularisation and potentially minimises the
estimation bias. The minimal regularisation is apparent in our Bayesian approach
since the prior distribution for the unknown parameters is relatively wide. Addi-
tionally, the proposed algorithm requires substantially less computation compared
to both gradient-based optimisation and the NNLS algorithm.

The EPG signal model together with the proposed estimation algorithm makes
quantitative multicomponent T2 analysis viable in the presence of large B1 inho-
mogeneity, such as those produced from a transceive surface coil.
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Appendices

5.A Signal model for inverse-gamma mixture

The measured signal from a distribution consisting of an inverse-gamma mixture
is derived from the general measurement equation,

yn = ejφ
∫ ∞

0
f (τ)e−t/τdτ (5.32)

Substituting the inverse gamma mixture gives,

yn = ejφ
∫ ∞

0

N

∑
i=1

wi
βαi

i
Γ(αi)

τ−αi−1e−βi/τe−t/τdτ (5.33)

= ejφ
N

∑
i=1

wi
βαi

i
Γ(αi)

∫ ∞

0
τ−αi−1e−(t+βi)/τdτ (5.34)

Let u = (t + βi)/τ. Taking derivatives gives,

dτ = − (t + βi)

u2 du (5.35)

Changing the variable of integration, and noting the new limits of −∞ to 0, gives,

yn = ejφ
N

∑
i=1

wi
βαi

i
Γ(αi)

∫ 0

−∞

(
t + βi

u

)−αi−1

e−u−(t + βi)

u2 du (5.36)

= ejφ
N

∑
i=1

wi
βαi

i
Γ(αi)

(t + βi)
−αi−1(t + βi)

∫ ∞

0
uαi−1e−udu (5.37)

= ejφ
N

∑
i=1

wi
βαi

i Γ(αi)

(t + βi)αi Γ(αi)
(5.38)

= ejφ
N

∑
i=1

wi

(
βi

t + βi

)αi

(5.39)

5.B The extended phase graph algorithm

The extended phase graph algorithm is a recursive algorithm that tracks the evo-
lution of the phase coherence pathways [7272]. It describes the spin system at a
given time by a distribution over different phase states. There are three types of
states, F(n)

k (dephasing), F(n)
−k (rephasing) and Z(n)

k (longitudinal) for each coher-
ence level, k, and echo number, n. After the initial excitation pulse, all the mag-
netisation is assumed to be coherent and on the transverse plane so F(0)

0 = 1 and
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Figure 5.16: Graphical illustration of the extended phase graph (EPG) algorithm
for the CPMG sequence. An RF pulse mixes coherence states into (blue) longitu-
dinal and (red) transverse components. Echoes occur when the coherence level of
the transverse magnetisation is zero.

F(0)
k = F(0)

−k = Z(0)
k = 0 for k = 1, . . . , M. The evolution around subsequent re-

focusing pulses is modelled by three periods of relaxation/precession, excitation,
followed by relaxation/precession again. Figure 5.165.16 illustrates the basic princi-
ples of the algorithm. Precession causes the initial transverse magnetisation, F0,
to dephase, which is modelled with a transition to F1. The first refocusing pulse
mixes this magnetisation into four components: transverse states, F1 and F−1, de-
picted in red and longitudinal states, Z1, Z−1 = −Z1, depicted in blue. During the
next period, the F−1 component is rephased to form the first echo, g1. The other
components precess and relax during this period until the next refocusing pulse,
which then mixes the components to determine the amplitude of the second echo.
The process is repeated for all RF pulses to obtain a sequence of echo amplitudes.

Formally, the relaxation and precession periods are modelled by the recursive
relation,

F(n)′
k = F(n)

k−1e−τ/T2 (5.40a)

Z(n)′
k = Z(n)

k e−τ/T1 (5.40b)

where the prime notation indicates the new state. We define a vector containing
all the states at the nth echo as xn = [F(n)

0 , F(n)
1 , F(n)

−1 , Z(n)
1 , . . . , F(n)

M , F(n)
−M, Z(n)

M ]T. The
relation in (5.405.40) can be described by a single matrix, P, consisting of relaxation
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and coherence level shifts,

P =


e−τ/T2

R0

R0
. . .

 S (5.41)

where R0 = diag
(
e−τ/T2 , e−τ/T2 , e−τ/T1

)
and S is a permutation of the identity

matrix that shifts the transverse states up a coherence level.

An RF pulse of flip angle α mixes states of equal coherence level described by,
F(n)′

k

F(n)′
−k

Z(n)′
k

 =

 cos2(α/2) sin2(α/2) sin α

sin2(α/2) cos2(α/2) − sin α

− 1
2 sin α 1

2 sin α cos α


︸ ︷︷ ︸

T0


F(n)

k

F(n)
−k

Z(n)
k

 (5.42)

The mixing in (5.425.42) can also be applied to all states simultaneously using a block
diagonal matrix, T ,

T =


1

T0

T0
. . .

 (5.43)

where T0 is the matrix defined in (5.425.42).

Combining these operators the evolution of the entire state vector between
echoes is described as

xn = PTP︸︷︷︸
E

xn−1. (5.44)

The echo amplitude is given by F(n)
0 at each time, n. That is,

gn = cTxn (5.45)

where c = [1, 0, . . . , 0]T.
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5.C Partial derivatives

The derivative of the echo amplitude with respect to the unknown parameters
is useful for a number of applications including CRLB analysis, gradient descent
optimisation and approximations of the likelihood. As such, an efficient means to
compute the partial derivatives is included here.

The recursion in (5.445.44) is linear in the state vector thus the partial derivatives
can also be calculated in a recursive manner. First notice that both xn and E depend
on the parameter of interest, θ, so the product rule must be applied,

∂xn

∂θ
=

∂E
∂θ

xn−1 + E
∂xn−1

∂θ
. (5.46)

Next we use the decomposition P = P(r1, r2) and T = T(α). The partial derivative
of the matrix elements in E = PTP are

∂E
∂α

= P
∂T
∂α

P, (5.47)

∂E
∂r2

=
∂P
∂r2

TP + PT
∂P
∂r2

. (5.48)

For convenience we define additional intermediate states x(r)n , x(α)n , z(r)i and z(α)i

to calculate the different terms in (5.465.46)–(5.485.48). We also let P′ = ∂P
∂r2

and T ′ = ∂T
∂α .

The recursive algorithm is shown in Algorithm 5.25.2. Note that the operators P, P′,
T and T ′ can be executed very efficiently using the inherent structure described in
(5.405.40) and (5.425.42). The derivatives of the EPG signal are simply the first element of
the derivatives of the state vector, ∂xn/∂r2 and ∂xn/∂α.
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Algorithm 5.2: Recursive algorithm for EPG derivatives
Input: Relaxation parameters, r1 = 1/T1, r2 = 1/T2; Flip angle, α
Output: Partial derivatives, ∂xn

∂r2
and ∂xn

∂α for n = 1, . . . , M
1 Calculate matrices, P and T using (5.415.41) and (5.435.43)
2 Calculate derivatives, P′ = ∂P

∂r2
and T ′ = ∂T

∂α

3 for n← 1 . . . M do
// Calculate first term of product rule

4 z(r)n ← PTP′xn−1

5 z(α)n ← PT ′Pxn−1
// Calculate second term of product rule

6 x(r)n ← PTP ∂xn−1
∂r2

7 x(α)n ← PTP ∂xn−1
∂α

// Combine terms for the derivatives

8 ∂xn
∂r2
← 2z(r)n + x(r)n

9 ∂xn
∂α ← z(α)n + x(α)n
// Calculate state evolution

10 xn ← PTPxn−1
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CHAPTER 6

Region-specific trajectory design
using nonlinear encoding fields
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6.1 Introduction

SPATIAL encoding in MRI is traditionally achieved using magnetic fields with
linear gradients, applied to each of the three spatial dimensions. The linear

gradient fields in these schemes are typically setup to acquire samples of the object
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in the Fourier domain, or k-space, as described in Chapter 33. Image reconstruc-
tion for this approach is straightforward and based on the inverse discrete Fourier
transform (DFT). This supports one’s intuition regarding the relationship between
sampling parameters and image properties such as SNR and resolution. Impor-
tantly, the trade-off between SNR and resolution can be characterised precisely.

Recently, magnetic fields that vary nonlinearly across the field-of-view have
been proposed to improve on the linear gradient approaches. The concept of
PatLoc (Parallel Imaging Technique using Localized Gradients) uses higher order
non-bijective encoding fields with the potential to overcome safety limits associ-
ated with peripheral nerve stimulation [99]. Similar to conventional SENSE imag-
ing, the encoding inherent in the receiver coils is crucial to resolving the ambigu-
ity associated with non-bijectivity. For a Cartesian PatLoc acquisition, the use of
ambiguous encoding fields together with multiple RF coils provides an attractive
alternative for acquisition acceleration compared to traditional undersampling in
parallel imaging [1010]. In both cases reduced imaging time is achieved since the
non-bijective encoding leads to a reduced field-of-view, which requires fewer sam-
ples for the same resolution. An important feature of a Cartesian PatLoc trajectory
is the spatially varying resolution. Since the quadrupolar fields have a large gra-
dient at the periphery of the field-of-view, this region has improved resolution.
Conversely, the quadrupolar fields provide no spatial encoding at the centre of the
field-of-view (where the gradient is zero) and the resolution is severely degraded,
resulting in pronounced blurring.

O-Space imaging [1111] and Null Space Imaging [9191] use nonlinear fields with
the aim to provide spatial encoding that complements the spatial encoding pro-
vided by multiple RF coil sensitivities. O-Space imaging uses a quadratic encod-
ing field in conjunction with traditional linear fields. The linear fields translate the
quadratic encoding function after each excitation. Consequently, projections are
acquired along rings evolving outward from each centre point [1111]. It is purported
that the improved encoding along the radial direction complements the inherent
encoding provided by the receive coils along the azimuthal direction, allowing for
much faster imaging times. Null Space Imaging searches for the optimal encod-
ing shapes using a singular value decomposition of the coil sensitivity matrix. In
general the optimal encoding shapes cannot be realised with the available hard-
ware, so a least square fit is performed to determine the closest achievable encod-
ing shapes to use for projection imaging [9191]. This scheme promises to accelerate
image acquisition even further.

4D-RIO is a new PatLoc encoding strategy that uses linear and nonlinear fields
simultaneously [1212]. Two out-of-phase radial trajectories are implemented on the
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linear and quadrupolar pairs such that the linear gradient is maximum when the
nonlinear gradient is minimum and vise versa. The reconstructed images exhibit
relatively uniform resolution compared to a Cartesian PatLoc trajectory without
linear fields.

This chapter develops a novel acquisition strategy that improves the resolution
in a region of interest. The technique uses nonlinear encoding fields; however,
in contrast to existing techniques, this is the first method to design the acquisi-
tion around the desired resolution. The trajectory design is posed as an optimisa-
tion problem, which can be solved numerically, to produce a customised trajectory
based on the specified region of interest.

The chapter is organised as follows. Section 6.26.2 presents the theory of spatial
encoding using multiple encoding fields with arbitrary shapes. The theory can
be considered a generalisation of that presented in Section 3.43.4. Section 6.36.3 exam-
ines the existing nonlinear encoding strategies of Cartesian PatLoc, O-Space, and
4D-RIO. This serves to highlight some basic properties of nonlinear spatial encod-
ing. Section 6.46.4 develops a novel acquisition strategy that uses nonlinear encoding
fields to enhance the resolution in a user-specified region and Section 6.56.5 verifies
the technique through simulation and experiments.

6.1.1 Notation

Table 6.16.1 lists the important symbols used in this chapter. Although the list is not
exhaustive, it includes most quantities of interest. Notice that the individual ele-
ments of some vector quantities can have different units depending if they describe
a linear or nonlinear encoding field.

6.2 Theory

We assume the availability of Nc receive coils. Neglecting relaxation effects, the
magnetic resonance signal for the lth RF coil, sl , was derived in Section 3.23.2,

sl(t) =
∫

m(x)cl(x)ejφ(x,t)dx (6.1)

where m(x) is the magnetisation at position x, cl is the sensitivity of coil l and φ is
the spatially dependent encoding phase. The encoding phase is given by

φ(x, t) = −γ
∫ t

0
b(x, τ)dτ, (6.2)
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Table 6.1: Common notation used in Chapter 66

Units

Symbol Quantity Linear Quadratic

m Magnetisation (image)
cl Sensitivity of the lth coil
φ Encoding phase rad rad
g Gradients T/m T/m2

κ Gradient moments rad/m rad/m2

ψ Field shapes m m2

k Local k-space rad/m rad/m
k̃ Concatenated k-space trajectories rad/m rad/m
k̃tar Concatenated target k-space trajectories rad/m rad/m
∇ Vector differential operator
J Transpose of the Jacobian of ψ m
A Local k-space operator
B, C Optimisation constraints
S Selection matrix
U Up-sampling matrix
f Holomorphic function describing fields

where γ is the gyromagnetic ratio, b(x, t) is the encoding magnetic field, and t = 0
denotes the time the excitation pulse is applied. The encoding field is generated by
the contribution of different gradient channels. The case of three linear gradients
described in Section 3.43.4 can be generalised to Ng encoding channels,

b(x, t) =
Ng

∑
i=1

gi(t)ψi(x) (6.3)

where gi(t) is the gradient waveform proportional to the current applied through
the coil and ψi(x) is the shape of the encoding field at position x. At a hardware
level, the imaging system is controlled by applying a time-varying gradient. In
general, the shape of each field given by ψi is fixed and determined by the coil
geometry. The gradients and field shapes for all channels can be written as vectors
g(t) = [g1(t), . . . , gNg(t)]

T and ψ(x) = [ψ1(x), . . . , ψNg(x)]T. In this notation, the
encoding fields is

b(x, t) = g(t) ·ψ(x), (6.4)

where a · b denotes the inner product of two vectors. Notice for the linear case
g(t) = [gx(t), gy(t), gz(t)]T, ψ(x) = [x, y, z]T and (6.46.4) reduces to the linear form in
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(3.203.20). The encoding phase is calculated by integration,

φ(x, t) = −γ
∫ t

0
g(τ)dτ ·ψ(x) (6.5)

Analogous to the formulation of k-space in Section 3.4.43.4.4, we define the gradient
moments as

κ(t) = γ
∫ t

0
g(τ)dτ (6.6)

In this case, the encoding phase can be decomposed as [1010],

φ(x, t) = −κ(t) ·ψ(x) (6.7)

The vector κ(t) has a dimension equal to the number of encoding gradients, Ng.
Thus in the general case, we refer to κ as a multidimensional trajectory. The gradi-
ent moments correspond to traditional k-space for the special case of linear imag-
ing (ψ(x) = x). For more general encoding schemes the concept of k-space can be
generalised to the notion of “local k-space”.

6.2.1 Local k-space

It has been shown in [1212, 9292] that the concept of local k-space can be defined in a
way that is consistent with the traditional notions of k-space for linear imaging.
The local k-space at position x is defined as

k(x, t) := −∇φ(x, t). (6.8)

From this perspective, k-space is given by the spatial derivative of the accumulated
phase, which, in the general case, can vary over the image space. Combining (6.76.7)
and (6.86.8), the local k-vector field can be written as a linear transformation of the
gradient moments, k(x, t) = J(x)κ(t). In this notation, J is defined as the trans-
pose of the Jacobian of ψ. For slice-selective imaging where x = (x, y) defines a
position in two dimensions, J(·) is a tensor field defining a 2× Ng matrix at each
point. The concept can be easily generalised to three dimensional imaging.

In the special case of linear encoding, the derivative is spatially independent
and k(x, t) reduces to the gradient moments, κ(t). This is explained by considering
the encoding function ψ(x) = [x, y]T which gives J(x) = I2×2 (with I the identity
matrix) and k(t) = κ(t). This highlights the equivalence of the gradient moments
and the conventional k-space trajectory for linear encoding. For nonlinear encod-
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(a) (b) (c)

Figure 6.1: Example field shapes used for nonlinear spatial encoding. (a)(a) and (b)(b)
depict two orthogonal quadrupolar fields and (c)(c) illustrates a quadratic rotation-
ally symmetric field.

ing the derivative of the phase is spatially dependent and the gradient moments
alone are insufficient to represent the k-space trajectory.

We denote the concatenation of gradient moments as κ̄ = [κT(t1), . . . , κT(tn)]T

and the corresponding k-space points as k̄(x) = [kT(x, t1), . . . , kT(x, tn)]T. The
entire k-space trajectory at a location x can be written simply as

k̄(x) = A(x)κ̄ (6.9)

where A(x) = diag(J(x), . . . , J(x)). This linear matrix form is well suited to auto-
mated trajectory design, as we will see Section 6.46.4.

6.3 Existing nonlinear encoding techniques

The first application of nonlinear encoding considered curvilinear multipolar fields
as a replacement for traditional linear fields [99, 1010]. Combinations of traditional
linear gradients together with these curvilinear multipolar fields was considered
in [1212]. Linear fields together with quadratic rotation-symmetric fields was pro-
posed in [1111]. The analysis presented in the previous section is applicable to all
these schemes, where each encoding field is used to specify the analytical form of
an element in ψ.

Figure 6.16.1 illustrates the encoding shapes used for nonlinear spatial encoding
fields to date. Figures 6.1a6.1a and 6.1b6.1b depicts two quadrupolar fields in the shape of a
hyperbolic paraboloid or “saddle”. The saddle shapes are rotated 45◦ with respect
to each other making them orthogonal. Figure 6.1c6.1c depicts a circular paraboloid or
“bowl” shaped field.
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6.3.1 Cartesian PatLoc

Perhaps the simplest application of nonlinear spatial encoding is known as Carte-
sian PatLoc. In this technique, the linear phase encoding and readout gradients
of a simple Cartesian trajectory are replaced with the quadrupolar fields in Fig-
ures 6.1a6.1a and 6.1b6.1b. In the ideal case, these fields can be described by scaling the
spherical harmonics. Specifically,

ψa(x) = x2 − y2; ψb(x) = 2xy (6.10)

The vector of field shapes is

ψ(x) =

[
x2 − y2

2xy

]
(6.11)

Since the gradients of the fields are orthogonal at all points (∇ψa · ∇ψb = 0), the
two fields can be used for frequency and phase encoding, analogous to encod-
ing with linear fields. Specifically, the trajectory, κ(t), is given by the Cartesian
sequence diagram described in Section 3.5.13.5.1. A detailed analysis of this imaging
strategy will be provided in Chapter 77. In the present discussion we look at some
of the basic properties of this scheme.

Simulated data was generated from a checkerboard phantom using a Carte-
sian trajectory with 64 phase encode and 64 readout points. Reconstruction was
performed using the conjugate gradient algorithm described in Section 3.63.6. Two
schemes were simulated: a traditional setup using two linear gradients and the
PatLoc setup with orthogonal quadrupolar fields replacing the phase encode and
readout gradients. To visualise the spatial dependence of the encoding, the local
k-space trajectory was calculated at points on a 5× 5 grid over the field of view.

Figure 6.26.2 displays the local k-space plots alongside the reconstruction results.
Figure 6.2a6.2a displays the local k-space trajectory when linear encoding gradients
are used. In this case, the local k-space reduces to traditional notion of k-space
and the square sampling pattern characteristic of a Cartesian trajectory is shown
everywhere. Figure 6.2b6.2b displays the corresponding reconstruction demonstrating
uniform resolution. Figure 6.2c6.2c depicts the local k-space for a Cartesian trajectory
using the quadrupolar fields in (6.106.10). The spatial dependence of the local k-space
is evident with a singularity in the center where the gradient of the fields is zero
and extended coverage at the periphery where the gradient is larger than the linear
fields. Figure 6.2d6.2d display the corresponding image reconstruction which demon-
strates spatially varying resolution. In the center, the resolution is poor with pro-
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(a) (b)

(c) (d)

Figure 6.2: Example of a Cartesian trajectory with nonlinear encoding fields. The
local k-space is depicted in (a)(a) for linear fields and (c)(c) for quadrupolar PatLoc
fields. Reconstructions of a simulated checkerboard phantom are shown in (b)(b)
and (d)(d).
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nounced blurring and in the periphery the resolution is improved compared to
linear encoding. Importantly, this demonstrates that the behaviour of the local k-
space trajectories is indicative of the spatially varying resolution characteristic of
nonlinear encoding fields. This relationship is exploited in Section 6.46.4 to design
novel encoding strategies with improved resolution in a region of interest.

In addition to the spatially varying resolution, another important feature of
nonlinear fields is that the encoding is non-bijective. That is, two points on op-
posite sides of the image will be encoded with identical phase. This ambiguity
is resolved using multiple receive coils since each coil modulates the signal by its
complex-valued sensitivity. The measurements from each coil provide a different
view of the object, which can be used to successfully reconstruct the image. This
is similar to undersampling with linear gradients where aliasing is resolved us-
ing multiple receive coils [1414]. In Chapter 77 we will analyse this problem in more
detail.

6.3.2 O-Space

O-Space is a technique that combines linear fields with a quadratic “bowl shaped”
field and a constant B0 field offset. The quadratic field as shown in Figure 6.1c6.1c is
described by

ψc(x) = x2 + y2 (6.12)

The constant field can be represented with ψd(x) = 1. Including the linear gradi-
ents, the entire vector of field shapes for O-space imaging is

ψ(x) =


x
y

x2 + y2

1

 (6.13)

In addition to this particular combination of fields, O-space is specified by a
unique trajectory with gradients given by

gx(t) = 2Grx (6.14)

gy(t) = 2Gry (6.15)

gc(t) = −G (6.16)

gd(t) = −G(r2
x + r2

y) (6.17)
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where rx and ry parameterise the projection11. Different projections are acquired by
altering the values of rx and ry. The entire acquisition can be specified by a set of
vectors, rq = (r(q)x , r(q)y ) for q = 1, . . . , Ne. In this case, the encoding field in (6.46.4)
becomes

b(x, t) = G‖x− rq‖2 (6.18)

It is evident that the role of the two linear gradients and the B0 offset is to shift
the centre of the quadratic field. With this field shape, projections of the object
are obtained along rings expanding outward from the centre point, rq. Indeed, the
term ‘O-space’ was motivated by the circular isocontours of the encoding field. By
translating the centre point each projection, all regions obtain some spatial encod-
ing and the central singularity in Cartesian PatLoc is avoided.

6.3.3 4D-RIO

Another technique, termed 4D-RIO, simultaneously employs two linear and two
quadrupolar fields for spatial encoding. The fields are specified by the vector,

ψ(x) =


x
y

x2 − y2

2xy

 (6.19)

The trajectory for this technique is based on two standard radial trajectories used
to drive the linear and quadratic coils. The trajectories are out-of-phase such that
the gradient waveforms for the nonlinear channels are maximum at times when
the linear gradients are minimum and vice versa.

6.4 Region specific trajectory design

As demonstrated above, an important consequence of nonlinear encoding fields
is that the image resolution is spatially varying. The combination of linear and
nonlinear encoding fields was examined in [1212] and it was demonstrated that dif-
ferent trajectories produce different regions of improved and degraded resolution.
A simple forward analysis was presented based on the concept of local k-space,
where the resolution can be predicted for a given trajectory. We propose the op-
posite; we design a multidimensional trajectory given the required resolution. In

1This is similar to angle parameterising a radial trajectory as discussed in Section 3.5.23.5.2.
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this way, it is possible to design trajectories with improved resolution in a region
of interest.

We define an optimisation problem based on the local k-space trajectory at dif-
ferent points within the region of interest. Numerical optimisation of gradient
waveforms has been previously proposed for linear encoding in a range of works,
e.g. [9393] and references therein. In our case, the addition of nonlinear encoding
means that no solution exists that implements our target trajectory at all locations
within the desired region. Instead, we seek to minimise the difference between
the local k-space trajectories and the target trajectory. To increase the clarity of the
proposed technique, our target trajectory is based on a simple EPI scheme with no
ramp-sampling, although more complex trajectories are possible.

To date, nonlinear spatial encoding has only been applied to projection imaging
with multiple excitation pulses. In addition to trajectory design, we demonstrate
the first application of nonlinear encoding fields for single-shot imaging. Single-
shot imaging is particularly well suited to multidimensional trajectories, where
the additional encoding gradient channels can overcome the limitations associated
with fast switching.

6.4.1 Trajectory optimisation

Similar to the global k-space trajectory for linear encoding, the sampling trajectory
of local k-space contains valuable information on properties of the reconstructed
image. In this work, we focus on resolution, as we aim to improve the resolution in
a localised region. The global image resolution for linear encoding is determined
by the width of the main lobe of the point spread function, which is inversely pro-
portional to the extent of the traditional k-space trajectory. Likewise, for nonlinear
encoding, the resolution at a given position is determined by the extent of the local
k-space trajectory at that position.

Based on k-space intuition, a trajectory that covers twice the maximum spatial
frequency will produce images with a two-fold improvement in resolution. Ad-
ditionally, the trajectory should cover k-space with sufficient uniformity to ensure
the reconstruction is reasonably well conditioned. The assumption here is that
any undersampling resulting from an increased distance between k-space points
can be resolved using multiple RF coils and the information from the associated
sensitivity maps.

This has close links to traditional parallel imaging where, for a fixed number
of measurements, k-space is undersampled so the maximum spatial frequency is
greater than that achievable by satisfying Nyquist limit. It is well known that this
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undersampling leads to aliasing which can be resolved using information from the
coil sensitivity profiles [1414, 9494]. In our case, a similar situation exists except that
we aim to control the region where undersampling occurs.

We use the notion of local k-space to define an optimisation problem for tra-
jectory design. Specifically, we define a target k-space trajectory for points inside
the region of interest and try to find the gradient moments to achieve this. For
a fixed readout time, conventional single-shot trajectories (such as EPI or spiral)
using only linear gradients cover a maximum spatial frequency that is limited by
gradient performance and safety considerations. As such, good candidates for
the target trajectory are single-shot trajectories that cover an increased spatial fre-
quency. The aim is that additional nonlinear encoding channels can be used to
extend the coverage of local k-space (at the expense of undersampling) to improve
the resolution in the desired region.

It is impractical to calculate the local k-space trajectory at every pixel in the re-
gion of interest. Instead we calculate the trajectory at a set of control points within
the region. Since the encoding fields are smooth, the local k-space trajectory will
vary smoothly over the imaging region. Thus it is sufficient to specify the desired
trajectory at a small number of points and find the gradient waveforms that ap-
proximately achieve this while satisfying the physical constraints of the scanner
hardware. It will be demonstrated in this work that the addition of nonlinear en-
coding fields allows the calculation of gradient waveforms that steer the areas of
improved resolution to the region of interest.

To formulate an optimisation problem we define the target k-space trajectory,
k̃tar, as the concatenation of the target trajectories at each control point. Denoting
the set of control points by {zi}i=1,...,p, the concatenation of the local trajectories at
each point is represented by the single matrix equation,

k̃ = Ãκ̄ (6.20)

where

k̃ =


k̄(z1)

...
k̄(zp)

 , Ã =


A(z1)

...
A(zp)

 . (6.21)

Ideally, we wish to find a set of gradient moments, κ̄, such that k̃tar = Ãκ̄.
In the general case, this is not always realisable due to the limited shapes of the
encoding fields in ψ and the constraints imposed by safety considerations and
hardware performance. Instead we seek to minimise the difference between the
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desired trajectory and the actual trajectory, ‖k̃tar − Ãκ̄‖, measured with a suitable
norm.

The physical constraints fall under two categories: equality constraints and
inequality constraints. The equality constraints concern the initial and final states
of the gradient system. Specifically, the gradient waveforms must be zero at the
start and end of the sequence. It is also assumed that the system is in a resting state
prior to imaging, i.e. g(t) = 0 for t < 0, which means the initial gradient moment
is also zero. The equality constraints are summarised as

g(t1) = 0, (6.22a)

g(tn) = 0, (6.22b)

κ(t1) = 0. (6.22c)

The inequality constraints deal with safety and hardware limitations concerning
the maximum gradient amplitude and the gradient slew rate. Constraints of this
form already exist in clinical scanners for linear gradients and the same constraints
should be applied to additional nonlinear gradients. The gradient amplitude is
limited by gmax and the slew rate by smax. These constraints can be written as

|g(t)| ≤ gmax , (6.23a)∣∣∣∣∂g(t)
∂t

∣∣∣∣ ≤ smax . (6.23b)

The constraints in (6.226.22) and (6.236.23) are simple linear constraints and using finite
difference approximations for the time derivative, we can write them as Bκ̄ = 0
and Cκ̄ ≤ b, respectively. In this work, we only constrain the switching rates of
individual channels. In future work we plan to adapt the framework to consider
the effect of all channels simultaneously.

We can now define the optimisation as

minimise ‖k̃tar − Ãκ̄‖
subject to Bκ̄ = 0

Cκ̄ ≤ b.

(6.24)

Once the achievable gradient moments are found, the optimal gradient wave-
forms are computed using finite differences to generate a waveform suitable for
implementation on the scanner.

Although the optimisation problem in (6.246.24) forms the basis of our trajectory
design it is not directly applicable for our hardware. The scanner used in this study
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(see “experimental setup” below) requires a gradient waveform sampled every
10 µs, known as the gradient raster time. However the ADC can acquire samples
faster. In our phantom experiments, we set the ADC sampling time to 2.5 µs, so
four data samples are acquired for each gradient raster. Consequently, four local
k-space points are also defined every gradient sample. To apply the optimisation,
the gradient waveform (or gradient moment) must be related to the local k-space,
which is achieved using an up-sampling matrix, U. We define U based on linear
interpolation. For example, an up-sampling matrix by a factor of two is,

U =



0.5
1

0.5 0.5
1

0.5
. . .


⊗ Iq (6.25)

where ⊗ is the Kronecker product and Iq is the q× q identity matrix representing
the q encoding channels that require up-sampling.

Another consideration for EPI-based trajectories is the end-of-line transition
time. This extra time after each acquisition line allows the gradient system to
change polarity. Our goal is to design a gradient waveform, g(t), for the entire
trajectory, ensuring the constraints are satisfied at each time point. However, our
objective is to match only the appropriate portion of the trajectory to the target
k-space. We solve these differing requirements by seeking a complete trajectory
using a cost function dependent only on the ‘central’ portion. This is implemented
using a rectangular selection matrix, S, which reduces the entire trajectory to the
central part relevant for optimisation. Specifically,

S =


0 Irow 0 0 0 0
0 0 0 Irow 0 0
0 0 0 0 0 Irow

. . .

⊗ Iq (6.26)

where Irow is an identity matrix selecting a single row of the trajectory, the first
column of zeros discards the prephase and subsequent zero columns discard the
end-of-line transitions. Figure 6.36.3 illustrates the various waveform vectors and the
matrices relating them.

Inclusion of the up-sampling and selection matrices defined in (6.256.25) and (6.266.26),
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κ (raster time)

g (raster time)
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Figure 6.3: The waveform vectors used for trajectory design and the transforma-
tion matrices relating each vector. The gradient waveforms, g, are computed from
finite differences of the gradient moments, κ, via the matrix D. The matrix U
up-samples the gradient moments to the ADC rate and the matrix S extracts the
central portion of the trajectory. The local k-space, k, is computed using A, which
contains the spatial derivatives of the encoding fields.

respectively, allows us to specify the complete optimisation problem.

minimise ‖k̃tar − ÃSUκ̄‖
subject to Bκ̄ = 0

Cκ̄ ≤ b.

(6.27)

where Ã is defined in (6.216.21), and B and C implement the constraints in (6.226.22) and
(6.236.23), respectively.

The optimisation problem in (6.276.27) is equivalent to optimising the square of the
norm. In this work we use the L2 norm since the minimisation can then be writ-
ten as a quadratic program which can be solved using computationally efficient
algorithms [9595].

Once the optimal gradient moments are found, the corresponding gradient
waveform is computed using finite differences and a constant scale factor specified
by the matrix D. A major advantage of solving for the optimal gradient moments
instead of the gradient waveforms directly is that the corresponding transforma-
tion matrix is extremely sparse, which greatly reduces the computation time. The
optimisation problem above was solved using the MATLAB algorithm quadprog,
which implements an interior point method capable of handling sparse matrices.

6.4.2 Encoding fields and target regions

We consider three different quadratic fields for additional spatial encoding. Two
quadrupolar encoding fields, used in PatLoc imaging to date, are specified using
a holomorphic function to define two orthogonal hyperbolic paraboloids (or “sad-
dle” shapes) that closely approximate the fields created from the available hard-
ware [9696]. Specifically,

ψa(x) = Re f (x), ψb(x) = Im f (x) (6.28)
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Figure 6.4: Field-of-view (FOV), region of interest (ROI) and control points (z1,
z2) for (a)(a) the 3-component trajectory and (b)(b) the 4-component trajectory. The lo-
cal k-space trajectory at the control points is optimised with respect to the target
trajectory in (c)(c).

where f (x) = (x + iy)2e−iπ/4. The e−iπ/4 factor represents a 22.5◦ rotation from
the main axis, consistent with the location of the physical coils. The third quadratic
field is a circular paraboloid (or “bowl” shaped), currently used in O-space imag-
ing [1111], represented by the function

ψc(x) = x2 + y2. (6.29)

Although our site does not have hardware to generate this nonlinear encoding
field, other sites have reported on its performance, and therefore this field is stud-
ied to demonstrate the generality and broader applicability of the present ap-
proach.

With these analytical forms the multidimensional function, ψ, can by specified
for any combination of linear and nonlinear fields. Importantly, all physically-
realisable fields satisfy Laplace’s equation thus the spatial derivatives are well-
defined and the matrix J can be specified. We can then select the control points and
target trajectory and solve the optimisation problem to generate the appropriate
gradient waveforms. In this work we consider two regimes illustrated in Fig. 6.46.4:

3-component: Linear & Circular Paraboloid, Right-Sided Enhancement In this setup
we use a combination of two linear gradients and a circular paraboloid field
to enhance the resolution on the right side of the image. As illustrated in
Fig. 6.4a6.4a, the region of interest is defined using the control points,

z1 = (L/4, 0), z2 = (L/2, 0) (6.30)
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where L is the field-of-view in both the x and y directions. The encoding
function and its spatial derivative are

ψ(x) =
[

x y x2 + y2
]T

, J(x) =

[
1 0 2x
0 1 2y

]
. (6.31)

4-component: Linear & Hyperbolic Paraboloid, Top-Left Enhancement In this regime
we use the two linear gradients and the two PatLoc quadrupolar fields to
target the top-left region of the image. The control points for this regime are
shown in Fig. 6.4b6.4b. Specifically,

z1 = ((L/2) cos 140◦, (L/2) sin 140◦), z2 = ((L/4) cos 140◦, (L/4) sin 140◦).
(6.32)

A 140◦ line of focus is selected to demonstrate the flexibility of the target
region, beyond the regions naturally selected by the field geometry. The en-
coding function and spatial derivative in this case are

ψ(x) =
[

x y Re f (x) Im f (x)
]T

, (6.33)

J(x) =

[
1 0 Re ∂ f

∂x (x) Im ∂ f
∂x (x)

0 1 Re ∂ f
∂y (y) Im ∂ f

∂y (x)

]
(6.34)

where ∂ f
∂x (x) = 2xe−iπ/4 and ∂ f

∂y (x) = 2ye−iπ/4.

In both regimes the target trajectory is a Cartesian EPI illustrated in Fig. 6.4c6.4c.
For a fixed acquisition time, the maximum k-space position of a standard linear-
gradient EPI, klin

max, is limited by the gradient and slew constraints. To improve
the resolution, we define the target trajectory to cover twice the maximum spatial
frequency of the linear-only EPI. That is, kmax = 2klin

max. This was chosen to obtain
approximately a two-fold improvement in resolution, based on k-space intuition.
We consider slice-selective imaging, where the linear z-gradient is used to excite a
slice and the remaining fields are used to encode the 2D image. Thus the trajectory
names ‘3-component’ and ‘4-component’ refer to the number of encoding channels
used to encode two spatial dimensions.

Each regime above specified the region of interest using two control points. A
single control point creates a simpler optimisation problem although this results in
resolution with a larger variation across the region of interest. On the other hand, it
is possible to specify more than two control points; however, it was found that this
did not greatly change the resulting trajectories, due to the fact that the encoding
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fields vary relatively slowly across space.
In both cases the target trajectory consisted of 64 lines with 64 samples each

line. For safety considerations the maximum gradient, gmax, for the linear chan-
nels was set to a conservative 22 mT/m. This is the minimum strength required
to implement a standard EPI in the given time. The maximum gradient for the
nonlinear channels was set to 115 mT/m2, which was conservatively chosen to be
15% below the limits of our current hardware. The maximum slew rate, smax, was
set to 170 T/m/s for the linear channels and 772 T/m2/s for the nonlinear chan-
nels, which leads to equivalent dB/dt at the edge of the field-of-view. To meet
the slew rate constraints, extra time must be allocated to allow the gradients to
safely change polarity after each line. We refer to this time as the ‘end-of-line tran-
sition’. Additionally, a prephase time is needed to initially move the trajectory
from the centre of k-space to the corner of the acquisition grid. In these exper-
iments a prephase time of 640 µs and end-of-line transition time of 360 µs was
allocated. These relatively long transition times were chosen to prevent ramp-
sampling, which simplifies the presentation of our method. The total duration of
the single-shot trajectories was 44.16 ms.

6.4.3 Simulations

All simulations were conducted using MATLAB (The Mathworks, Natick, MA).
Given the trajectory, κ̄opt, resulting from the optimisation, the corresponding local
k-space at the point xi was computed using

k̄(xi) = A(xi)SUκ̄opt. (6.35)

To visualise the local k-space over the entire field-of-view, a 5× 5 grid of locations
was defined and the local k-space of each location is plotted on an equivalent grid.

The local resolution of each trajectory was determined by calculating the width
of the point spread function (PSF). The PSF was approximated by back-projecting
measurements simulated from a single source pixel (similar to calculating a row of
E′E where E is the encoding matrix). The accuracy of this approach was verified
at eight points around the field of view by calculating the full PSF using conju-
gate gradient reconstruction. Good quantitative agreement was found between
our approximation and the full PSF. The width of the 2D PSF was quantified in the
x and y directions by integrating the absolute value of the PSF along a horizontal
or vertical line centred at the source pixel. Since the height of the PSF is indepen-
dent of pixel location (neglecting coil sensitivities), the sum provides a measure
of width. The maximum width over both directions was chosen as a measure of
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resolution. This was repeated for each pixel to build a quantitative map of the
resolution.

Simulated measurements were created from the designed trajectories using a
discrete approximation of the signal model in (6.16.1). The coil sensitivities of eight
RF coils were simulated in the magnetostatic approximation of the Biot-Savart law
for single coil loops arranged concentrically around the field-of-view. The encod-
ing phase, φ, was calculated using the optimal trajectory and the encoding func-
tion ψ defined analytically as the appropriate combination of linear fields (x, y)
and quadratic fields (ψa, ψb, ψc given by (6.286.28) and (6.296.29)).

The magnetisation, m, was defined by a numerical phantom, which consisted
of a checkerboard pattern multiplied by a circular mask and filtered using a Ham-
ming window to remove the very high spatial frequencies. This phantom was
generated at a significantly higher resolution (512 × 512) compared to the final
reconstructed images (128× 128), to increase the accuracy of the discrete approx-
imation used to simulate the integral in (6.16.1). Finally, independent complex noise
was added with zero mean and a standard deviation equal to 5% of the mean sig-
nal intensity, identical to previous studies [1212]. Images were reconstructed using
the iterative conjugate-gradient method described in Section 3.63.6.

6.4.4 Experiments

In vivo and phantom experiments were conducted on a 3 T clinical imaging sys-
tem (MAGNETOM, Trio Tim, Siemens Healthcare, Erlangen, Germany) fitted with
a custom-built gradient insert-coil. The insert-coil generates two fields which ap-
proximate a hyperbolic paraboloid where one field is rotated 45◦ with respect to
the other to create two orthogonal encoding fields. These encoding fields have
been previously described in [9797].

The coils for each quadrupolar field can be driven with currents up to 80 A
using additional high-performance gradient amplifiers. The scanner architecture
was modified to control both the linear gradient coils and the PatLoc gradient coils,
which allows us to simultaneously and independently drive the five encoding gra-
dients. A Siemens head coil, used in the PET-MR scanner, was fitted inside the gra-
dient insert and contained a single RF coil used for excitation and an eight channel
coil array for receiving.

This hardware cannot generate a circular paraboloid shaped field so only the 4-
component regime is tested experimentally. Thus after the slice selection gradient,
the remaining two linear and two quadrupolar fields are driven simultaneously to
encode the two dimensional slice. To achieve this, an existing MRI sequence for
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single-shot three-dimensional encoding was modified for our purposes. Impor-
tantly, the sequence allows us to specify arbitrary gradient waveforms for each of
the five encoding channels.

The phantom used in experiments is a 190 mm diameter plastic cylinder con-
taining approximately 130 thin Plexiglas tubes (with diameter ∼4 mm) parallel to
the longitudinal axis of the cylinder. The cylinder and tubes were filled with water
doped with nickel sulfate and sodium chloride to give suitable contrast.

All acquisitions had a field-of-view of 220 mm and images were reconstructed
to a 128× 128 grid using the conjugate gradient algorithm described in Section 3.63.6.
The trajectories had an effective TE ≈ 21.8 ms, which is half the readout duration.
A single ADC event was used throughout the single-shot readout, all samples of
which were included in the image reconstruction. The data were sampled with
an ADC dwell time of 2.5 µs and 5 µs for the phantom and in vivo experiments,
respectively. The ADC sampling rate must be high enough to capture the largest
possible phase change between consecutive readout points. If the sampling rate is
too low, the local frequency may be outside the acquisition bandwidth and the sig-
nal from these regions will be attenuated by the scanner’s anti-aliasing filter. The
slice thickness was 2 mm for phantom experiments and 3 mm for in vivo experi-
ments. Thin slices were chosen to minimise signal dropouts due to through-plane
dephasing [9898].

6.4.5 Calibration

As the single-shot trajectories become shorter and the hardware limits of the gra-
dient coils are approached, the actual trajectory can deviate significantly from the
desired trajectory [9999]. These deviations originate from many sources including
eddy currents, thermal drifts, hardware delays and concomitant fields. Without
adequate correction, these inaccuracies can cause blurring, geometric distortions
or ghosting in reconstructed images [100100]. The problems have been partially ad-
dressed by characterising the eddy-currents [101101], measuring the k-space trajectory
[9999] and by correcting for distortions due to concomitant fields [102102]. In recent
years, the magnetic field has been monitored by measuring the signal from field
probes [103103, 104104, 105105, 106106, 107107, 108108] and fitting the signal phase to a model of the
field evolution. This paradigm was used to successfully reconstruct images from
e.g. spiral trajectories [104104, 106106] or echo-planar imaging [106106] in the presence of
undesirable field perturbations. In [108108], the field evolution was modelled by real
solid harmonics up to third order to account for higher order field perturbations
in diffusion imaging. In this work where a custom-built nonlinear gradient coil
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insert is used, the problem of gradient field deviations is even more pronounced.
In order to calibrate the simultaneously applied gradient waveforms from the lin-
ear and the nonlinear gradient coils, a field camera with 16 field probes is used
[105105, 108108, 109109].

Reconstruction of the experimental data requires accurate estimates of the RF
sensitivity maps cl(·), trajectory κ(·) and gradient shapes ψ(·). In this work we
measure the effective trajectories using a ‘field camera’ constructed with 16 1H
field probes [105105, 106106, 108108]. The field probes were placed approximately equidis-
tant around the surface of a sphere with a radius of 9 cm. The probes were excited
using a separate transmit chain, similar to [110110], consisting of a signal generator
(N5181A, Agilent, Santa Clara, CA, USA), a power amplifier (75A400, Amplifier
Research, Souderton, PA, USA) and a power splitter (MITEQ-ESTONIA, Estonia).
The separate transmit chain was controlled via the optical trigger from the scan-
ner. The inserted RF coil and the eight channel head coil array were kept in the
gradient coil and connected to a coil test-bench for detuning and grounding dur-
ing the trajectory calibration measurements. The field probes were excited with a
rectangular RF pulse of 5 µs duration and the resulting signal was sampled with
an ADC dwell time of 2.5 µs. This setup is based on work in [105105, 108108, 110110] and has
been previously used in [109109] to characterise the PatLoc gradients.

The encoding phase evolution was modelled with 16 real valued spherical har-
monics up to 3rd order. The 16 basis functions define the vector of field shapes
ψ. The 16 corresponding coefficients were fit to the probe measurements using a
standard least squares algorithm [106106] to define the trajectory κ (referred to as the
‘measured trajectory’). In this way we obtain a very accurate estimate of the actual
encoding phase at each time point. With our current hardware setup we measured
the trajectory in a separate scan.

For comparison purposes, we also reconstructed images using the ‘nominal
trajectory’ and encoding field shapes obtained using data from a custom 8 echo
GRE sequence (128× 128, 5 mm slice thickness, 220 mm field-of-view, 4 ms echo
spacing) used previously in [111111]. The field mapping was performed on the im-
aged object immediately prior to acquisition. The nominal trajectory was obtained
by adding a 0.6 µs delay to the linear channels and a 5.3 µs delay to the nonlinear
channels of the optimised trajectory. The time delays were estimated empirically
in order to reconstruct the best possible image. For both the measured and nomi-
nal reconstructions, the RF sensitivities were estimated using an adaptive method
based on a stochastic formulation of the matched filter, as in [112112], with data from
the first echo of the field mapping sequence.
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6.4.6 Safety considerations

In vivo experiments were performed on a healthy volunteer after suitable IRB ap-
proval was obtained. Since this was the first application of single-shot imaging
using linear and nonlinear fields simultaneously, it was important to address po-
tential safety issues. The safety of the gradient-insert coil for traditional PatLoc
imaging has been described in [113113]. The implementation of single-shot imaging
brings an increased risk of peripheral nerve stimulation (PNS) due to the rapidly
switching linear and nonlinear gradients. To mitigate the risk the gradient wave-
forms were initially implemented at 40% of the desired strength, which reduces
the slew rates by the same factor [114114]. This ensured the maximum magnitude of
dB/dt was below 20 T/s throughout the region covering the subject’s body. The
amplitudes were then increased in 10% increments, each time confirming with the
volunteer that no PNS was experienced.

A further safety consideration was the elevated acoustic noise generated from
the custom gradient-insert. Previous experiments in [113113, 114114] reported a sound
pressure level (SPL) above regulatory guidelines for a gradient switching frequency
between 480–650 Hz. A Fourier analysis of the optimised trajectories in this chap-
ter indicated a dominant frequency of ∼750 Hz, well above the problematic fre-
quencies. After measuring the SPL of the sequence with a calibrated microphone,
the risk of auditory damage was deemed negligible with the use of suitable earplugs.

6.5 Results

6.5.1 Trajectory optimisation and simulations

The gradient waveforms for the 3-component and 4-component encoding schemes
were calculated from the optimisation procedure described above. Figure 6.56.5 dis-
plays the 3-component and 4-component gradient waveforms necessary to en-
hance the desired regions of the image. Since the target trajectory is an under-
sampled EPI trajectory (Fig. 6.4c6.4c), the waveforms are similar to a conventional EPI
sequence. Most noticeable are the constant gradients during readout lines and
blips of gy between lines.

The local k-space trajectories for the linear, 3-component and 4-component en-
coding regimes are plotted in Fig. 6.66.6, together with the simulation results. The
local k-space trajectories in Figs. 6.6d6.6d and 6.6g6.6g appear ‘skewed’ and are not exactly
equal to the target trajectory in the desired regions due to the gradient constraints
and nonlinear encoding fields. However, the optimised local k-space trajectories
retain the desired features: the samples are regularly spaced and have increased
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Figure 6.5: The gradient waveforms using (a)(a) 3-component encoding with two
linear and one quadratic and (b)(b) 4-component encoding using two linear and two
quadrupolar fields. The linear waveforms (gx, gy) are in units of mT/m whereas
the nonlinear waveforms (ga, gb, gc) are in units of mT/m2 reflecting the quadratic
nature of the corresponding fields over the spatial dimension. The plots display
the first few milliseconds after the pre-phasing.

coverage. The fine details of the checkerboard phantom are completely blurred
out for conventional linear encoding as shown in Fig. 6.6c6.6c. The blurring occurs be-
cause the hardware and safety constraints imposed for single-shot imaging limit
the k-space extent achievable in a fixed acquisition time. The addition of extra
nonlinear encoding channels allows us to increase the boundaries of the local k-
space trajectory in the regions we are interested in, effectively increasing the reso-
lution in those parts of the image. This is demonstrated in the simulation results
of Figs. 6.6f6.6f and 6.6i6.6i where the checkerboard details can be shown in the desired
regions, i.e., the right side for the 3-component encoding and top-left corner for
the 4-component encoding scheme.

Some intuition about the gradient waveforms resulting from the optimisation
can be gained by considering the local k-space equation. For example, the k-space
for the 3-component trajectory is given by,

k(x, t) =

[
kx(x, t)
ky(x, t)

]
=

[
κx(t) + κc(t)x
κy(t) + κc(t)y

]
. (6.36)

During a readout line we must move the x-coordinate of the local k-space trajec-
tory from −kmax to kmax in a relatively short time. Once the linear channel, κx(t),
is at maximum strength the additional term of κc(t)x is crucial. The right side of
the image is represented by x > 0, thus to enhance the k-space coverage in this re-
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Figure 6.6: The (left) local k-space, (middle) estimated PSF width and (right) simu-
lated reconstructions of a numerical checkerboard phantom for different gradient
waveforms. The linear, 3-component and 4-component encoding schemes are pre-
sented in the top, middle and bottom rows, respectively.
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gion we require positive values of κc(t) during a left-to-right readout and negative
values during a right-to-left readout line. This explains why the corresponding
gradient waveform gc(t) follows the waveform of the x-coordinate, gx(t). This
analysis also suggests that to enhance the left side of the image, we can simply flip
the quadratic channel waveform by applying −gc(t) instead.

More subtle behaviour is observed in the y-coordinate, ky(x, t). In this case, we
are interested in the transition between readout lines and the appropriate gradient
waveforms to increment the trajectory by a small amount. The gradient waveform
between the end of readout line, τ1 and the beginning of the next, τ2 is symmetric
about the time axis, so the corresponding gradient moment after this period is
zero,

κc(t) =
∫ τ2

τ1

gc(τ)dτ = 0. (6.37)

Thus ky(x, t) = κy(t) is only dependent on the y-gradient, which is not limited
by amplitude or switching constraints for our simple target trajectory. Similarly,
the local k-space extent in the y direction is not a function of position, unlike the
x direction described above.

Another interpretation of the results is available by noting that during the read-
out the gradient waveforms of the additional channels are proportional to the lin-
ear readout gradient. This means the ‘readout’ encoding fields (all fields except ψy)
can be replaced by an effective field, which is a linear combination of the encoding
fields. To elucidate this point we consider the 4-component gradient waveforms
in Fig. 6.5b6.5b. During the readout periods the gradient moments are related by con-
stants λ and η such that κa(t) = λκx(t) and κb(t) = ηκx(t). According to (6.76.7), the
phase can be written as

φ(x, t) = κx(t) (ψx(x) + λψa(x) + ηψb(x))︸ ︷︷ ︸
ψeff(x)

+κy(t)ψy(x). (6.38)

We see that, in this case, the 4-component encoding is equivalent to traditional
2D encoding with a different readout field given by the effective encoding field
ψeff(x). Figure 6.76.7 illustrates the two effective encoding fields of the 4-component
trajectory in Fig. 6.5b6.5b. The effective readout field in Fig. 6.7a6.7a has maximum gra-
dient in the region of interest demonstrated by a narrow distance of neighbouring
contours and length of the arrows representing the spatial gradient. The gradient
is also maximally orthogonal to the phase encoding gradient in Fig. 6.7b6.7b in the
region of interest.
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Figure 6.7: The two ‘effective’ encoding fields of the 4-component trajectory (mea-
sured in meters). (a)(a) the readout encoding field exhibiting a spatially varying gra-
dient and (b)(b) the phase encoding field equivalent to traditional linear imaging.
The coloured lines are the contours of the field and the arrows represent the spa-
tial gradient.

This analysis gives an explanation of why the waveforms in Fig. 6.56.5 produce
the results in Fig. 6.66.6, yet it is not intended as a design tool. Instead, the wave-
forms are obtained from the optimisation algorithm. The optimisation finds the
gradients such that the local k-space trajectories are as close as possible to the tar-
get trajectory, given the gradient constraints and the available encoding fields.

6.5.2 Experiments

Figure 6.86.8 presents the reconstructed images from an EPI trajectory using two lin-
ear encoding fields and the optimised 4-component single-shot trajectory using
two linear and two quadrupolar fields. The trajectory was measured directly using
a field camera as described above. The spatially varying resolution characteristic
of nonlinear encoding is evident in Fig. 6.8b6.8b with improved resolution in the top-
left corner at the expense of pronounced blurring in other regions of the image.
There are some small geometric distortions present in Fig. 6.8b6.8b; however, prelimi-
narily investigations suggest these may be resolvable using an improved basis for
fitting the field camera data. Figures 6.8c6.8c and 6.8d6.8d show the target region for the
linear and 4-component reconstructions, respectively. This demonstrates the de-
sired resolution improvement attainable using both linear and nonlinear encoding
fields and an optimally designed trajectory.

During the in vivo acquisitions, no PNS was reported by the subject from either
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(a) (b)

(c) (d)

Figure 6.8: Reconstructions of a phantom experiment from (a)(a) the linear EPI trajec-
tory and (b)(b) the optimised 4-component single-shot trajectory. The 4-component
trajectory has been designed to provide improved resolution in the top-left region
of the image. The target region is magnified in (c)(c) and (d)(d).
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the linear-only or 4-component trajectories. Figure 6.96.9 displays the in vivo images,
acquired using linear EPI and the optimised 4-component trajectory. The recon-
structed image from the 4-component trajectory has a spatially varying resolution
as predicted by the simulation results. As with the phantom images, the resolu-
tion is visibly enhanced in the desired region (Fig. 6.9d6.9d) compared to a standard
EPI using only linear gradients (Fig. 6.9c6.9c). All the in vivo and phantom images
have little geometric distortion or ghosting due to accurate knowledge of the tra-
jectories, which were measured using the field monitoring device. However, there
is a small checkerboard-like artifact present in the in-vivo image. This may be due
to small residual errors in the calibration data. The images acquired using the 4-
component trajectory also exhibit an elevated noise level within the target region,
which reflects the usual trade-off between resolution and SNR.

Figure 6.106.10 demonstrates the importance of using the field monitoring device
to measure the trajectory. Figure 6.10a6.10a displays the 16 spherical harmonic coef-
ficients used to define the encoding phase during the first 30 ms of the optimised
single-shot trajectory. For a comparable display, the coefficients are scaled to repre-
sent the accumulated phase from each component at the edge of the field-of-view.
As expected, the dominant components are the first order components x and y (κ1

and κ2, respectively) describing the linear gradients and the second order com-
ponents xy and x2 − y2 (κ4 and κ8, respectively) representing the two hyperbolic
paraboloid encoding fields. To illustrate an example of the differences between
the nominal 4-component and the measured 16-component trajectories, Fig. 6.10b6.10b
shows the initial rows of the resulting local k-space trajectories calculated at the
first optimisation control point, ( L

2 cos 140◦, L
2 sin 140◦). The higher-order terms of

the 16-component trajectory lead to a significant difference between the measured
and nominal local k-space trajectories. In particular, the drift in the vertical direc-
tion is visible after only 8 rows of the trajectory, and is significantly worse by the
end of the readout. Figure 6.10c6.10c displays a reconstructed image from the in vivo
data using the nominal 4-component trajectory. The difference between the nom-
inal and actual trajectories leads to significant artifacts and geometric distortion
compared to Fig. 6.9b6.9b, which was reconstructed using the measured trajectories.

6.6 Discussion

We have developed a method for automated design of multidimensional single-
shot trajectories that improves the imaging resolution in a region of interest. The
use of additional encoding fields allowed us to overcome physical constraints con-
cerning the rapid switching necessary for single-shot imaging.
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(a) (b)

(c) (d)

Figure 6.9: Reconstructions of a healthy brain from (a)(a) the linear EPI trajectory
and (b)(b) the optimised 4-component single-shot trajectory. The region of interest is
magnified in (c)(c) and (d)(d).
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Figure 6.10: A comparison of the nominal and measured trajectories. (a)(a) the 16
measured spherical harmonic coefficients, converted to the phase contributions (in
radians) at a radius of L/2 from the centre; (b)(b) the first 8 rows of the local k-space
trajectory at the first optimisation control point, z1, derived using the nominal
4-component trajectory and the measured 16-component trajectory; (c)(c) the recon-
struction of the in vivo data using the nominal 4-component trajectory, for com-
parison with the measured trajectory reconstruction in Fig. 6.9b6.9b.
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The reconstructed images in this chapter have similarities to those presented in
previous PatLoc literature. Images from a traditional Cartesian PatLoc trajectory
using two orthogonal quadrupolar fields exhibit improved resolution at the pe-
riphery at the expense of pronounced blurring in the central region, where the lo-
cal encoding gradient tends to zero [1010]. The “Dual Cartesian” trajectory presented
in [1212] shifts the blurred region by simultaneously applying linear and nonlinear
gradients. As required, the images presented in this chapter also exhibit regions
with improved and degraded resolution; however, their locations are chosen prior
to trajectory design. It is important to note that the region of improved resolution
can be steered to other areas of the field-of-view, beyond what was demonstrated
above. In general, improvement can be expected for any region towards the pe-
riphery, where these particular nonlinear fields are known to provide resolution
enhancement.

The target trajectory used in this study was a simple EPI trajectory with a gen-
erous end-of-line transition time. This produced simple waveforms and allowed
an analytical analysis of the results. However, the optimisation technique could
also be applied to an EPI trajectory with ramp-sampling, allowing for a much
shorter end-of-line transition [4040]. In this case, the optimisation will trade off
between increasing local k-space extent and compensating for the non-uniform
sampling under the ramp. Additionally, the phase encode blips are often slew-
rate limited and thus, analogous to the readout, the optimisation would include
gradient moments from the nonlinear channels during the blip. This is a topic of
follow-up studies.

A 16-channel field camera was used to measure the actual encoding trajectory,
including higher order terms, in order to account for hardware imperfections, con-
comitant fields and eddy currents. A similar 16-channel field camera based on the
same field sensors was used in [108108] to minimise geometric distortion in diffusion-
weighted images. In this work, where fast-switching trajectories drive both linear
and nonlinear gradients, the field camera was necessary to prevent severe artifacts
in the reconstructed images.

The design framework, based on the definition of local k-space, is applicable to
any set of encoding fields. For example, the method can be applied when the an-
alytical form of the encoding field shapes is not known or difficult to characterise,
such as [115115]. In this general case, it is sufficient to find a suitable set of basis func-
tions that can accurately approximate the field shapes. Once this basis is chosen,
the spatial derivatives can be computed and the appropriate optimisation problem
can be defined.

The general trajectory design method proposed in this chapter is also applica-
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ble to imaging with multiple excitations. The simplest modification would be to
alter the slew rate constraints such that they only apply during each readout pe-
riod. Since there is sufficient time between echoes, we can build up the necessary
gradient moment prior to the next readout. Another technique is to parameterise
the k-space trajectory to restrict the possible gradient moments, e.g. by the angle
defining a spoke in a radial trajectory. This can be included in the optimisation so
that we solve for the set of parameters instead of the trajectory directly.

An important problem is the likelihood of peripheral nerve stimulation (PNS)
of the designed trajectories. In principle, a global resolution improvement is possi-
ble using a linear gradient coil insert and each channel could be switched indepen-
dently to overcome the hardware constraints, as demonstrated in [116116]. However,
large rapid field changes would be present across the entire volume, increasing
the risk of PNS [117117]. On the other hand, an optimised nonlinear field trajectory
would only apply large field changes over local regions, which may reduce the
risk of nerve stimulation. Although we can prove that the time derivative of the
Bz field is reduced, a complete investigation of this proposition would require a
computational model for PNS risk including the influence of other switched field
components (Bx, By) on the entire body [4242]. The optimisation framework could
be adapted to include such a model though this is beyond the scope of this thesis.
Analysing this risk, however, will become increasingly important as the maximum
gradient and slew rates are increased beyond the conservative values used in this
work.

The spatially varying resolution characteristic of nonlinear encoding fields leads
to an additional spatial dependence on the SNR and a trade-off exists between the
two quantities. Indeed, the reconstructed images exhibited an increased noise level
in regions with improved local resolution. It may be desirable in future work to
include a noise metric, e.g. [118118], into the optimisation algorithm such that a trajec-
tory could be designed satisfying both resolution and SNR requirements, although
the computational requirements may become prohibitive in this case.

The inherent resolution/SNR trade-off suggests the current framework is most
useful for acquisition schemes limited primarily by resolution, such as single-shot
imaging. As such, this technique is readily applicable to functional MRI studies
concerning a particular anatomical region of the brain.

6.7 Conclusion

In this chapter, we have developed an automated procedure to create single-shot
multidimensional trajectories that improve the resolution in a region of interest.
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The use of linear and nonlinear encoding fields creates an additional degree of
freedom that is used to steer the local resolution improvement. We have validated
our technique in simulations as well as phantom and in vivo experiments for a
hardware configuration consisting of two linear and two quadrupolar fields. A
custom-built field camera was used to measure the actual trajectories, which was
necessary to minimise artifacts in the reconstructed images.
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7.1 Introduction

NONLINEAR spatial encoding has the potential to improve current imaging
technologies by removing the linearity constraint on the gradient coils. These

novel schemes require a characterisation of the imaging performance using quan-
titative metrics for resolution and noise. The previous chapter focused on the spa-
tially varying resolution inherent in encoding with nonlinear fields. In this chapter,

159
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we examine the noise properties of images reconstructed from nonlinear spatial
encoding schemes.

In principle, analysis of the linear reconstruction employed by nonlinear en-
coding schemes is straightforward and the pixel covariance matrix is easily de-
fined. The difficulty lies in computing this covariance for the large matrices asso-
ciated with practical image resolutions. Fourier imaging and its variations possess
a structure that can be exploited to simplify the computation. For example, the
noise performance for traditional parallel imaging techniques such as SENSE [1414]
and GRAPPA [9494] has been well quantified, using the familiar g-factor [1414, 119119]. In
[1010], it was shown that PatLoc is a generalisation of SENSE for nonlinear fields and
thus inherits the analytical results concerning the SNR and g-factor, with a correc-
tion for the nonlinear field. However, the computation is intractable for arbitrary
encoding schemes, such as O-space, 4D-RIO, Null Space Imaging, and the opti-
mised schemes of Chapter 66. This motivates the development of an approximate
metric. As the tractability of SENSE and PatLoc is due to the inherent structure
of the encoding schemes, we categorise these schemes as “block-structured encod-
ing schemes”. Although the term PatLoc can refer to class of imaging schemes (as
in [1212]), in this chapter we use the term exclusively for the PatLoc scheme with a
Cartesian trajectory described in Section 6.3.16.3.1.

In this chapter, we present a natural unification of block-structured and arbi-
trary encoding schemes by considering frames in the object space. Frame theory
has primarily been used to analyse the windowed Fourier transform and wavelets.
See [1313, 120120] for an introduction to this field. In the context of MRI, frames have
been used to derive an SNR expression for schemes that use RF pulse encoding
techniques in conjunction with linear encoding gradients [121121]. Additionally, the
“generalised point spread function” in [122122] is described by a frame operator, al-
though this was not explicitly mentioned in the paper, using it to assess different
RF excitation schemes.

In this work, we apply the theory of frames to develop an analysis framework
applicable to any MRI encoding scheme. Imaging performance is often measured
by the image SNR, which ultimately depends on the variance of the reconstructed
pixels. We derive an expression for the variance, which includes the previous
results for SENSE and PatLoc while offering a novel understanding. Further-
more, we provide a viable means to analyse the performance of general encoding
schemes which we demonstrate using O-space as a case study.

The chapter is organised as follows. In Section 7.27.2 we review frame theory in
the MRI context. In Section 7.37.3 we derive an expression for the pixel variance and
apply it to the block-structured encoding schemes of SENSE and PatLoc to gain
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a novel perspective on these techniques. In Section 7.47.4 we use our framework to
derive an approximation for the variance of the reconstructed pixels and apply it
to O-space imaging. Finally, in Section 7.57.5 we demonstrate the wide applicability
of our metric and present a quantitative comparison of PatLoc and O-space.

7.1.1 Notation

Table 7.17.1 lists the important symbols used in this chapter. Although the list is
not exhaustive, it includes the majority of quantities. Additional notation will be
introduced as it is required.

Table 7.1: Common notation used in Chapter 77

Symbol Quantity

Measurements
m Magnetisation
yl,q,i Measurements indexed by coil, echo and time sample
Nc, Ne, Nt Number of coils, excitations, time samples
cl Coil sensitivity
φq,i Encoding phase distribution
ψ Vector of field shapes
βl,q,i Encoding function
b(x, t) Encoding magnetic field

Frame theory
f Function to reconstruct
Φj, Φ̃j Frame elements, dual frame elements
A, B Frame bounds
T, T Analysis operator (continuous and discrete)
T∗, T ′ Synthesis operator (continuous and discrete)
S, S Frame operator (continuous and discrete)
F, F Reconstruction operator (continuous and discrete)
χ, ξ, ζ Pixel bases

Analysis
DN Dirichlet kernel
Γ Weight matrix to whiten noise
Σ Measurement covariance
d̃ Volumetric correction factor
D Diagonal matrix of correction factors
C Coil sensitivity matrix
F Fourier transform
κ, κ̃ Coil kernels
h(u, u′) Block structure kernel
X̂n Variance approximation
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7.2 Image reconstruction using frame theory

As described in Section 6.26.2, the general form of an acquired MRI signal is an in-
tegral transform of the underlying magnetisation. Ignoring relaxation effects the
signal equation is

sl(t) =
∫

m(x)cl(x)e−jφ(x,t)dx. (7.1)

where cl is the coil sensitivity of the lth coil, φ is the accumulated phase distribution
and m is unknown magnetisation.

In general, the signal is acquired over a number of RF excitations, each of which
resets the phase distribution. Additionally, measurements are collected at discrete
time points, denoted ti. We introduce the notation φq,i(x) which represents the
phase distribution for the qth excitation and ith time point. The discrete measure-
ments, denoted yl,q,i, can be viewed as inner products on the space of functions,

yl,q,i = 〈m, βl,q,i〉, (7.2)

where there is an index for each coil, l, echo, q, and time, i. The encoding functions,
βl,q,i are given by

βl,q,i(x) = cl(x)ejφq,i(x). (7.3)

The reconstruction problem is to estimate the object, m(·), from a set of pro-
jections {yl,q,i}. From this perspective, the reconstruction problem lends itself to a
frame theoretic formulation. Frame theory provides a performance analysis and
optimal reconstruction algorithm for a function observed through a sequence of
projections, exactly the situation constructed in MRI. This formulation underscores
the idea that the MRI reconstruction problem exists within a broader mathemat-
ical context. Such abstraction may lead to further advances in the field of image
reconstruction.

7.2.1 Review of frame theory

We proceed with a brief introduction to frame theory followed by a matrix formu-
lation that is readily applied to the discretised objects used for MRI reconstruction.
For a more rigourous and detailed account consult, for example, [1313].

Frame theory is concerned with functions, f , belonging to a Hilbert space, V .
In the context of MRI, f is the unknown magnetisation and V is the space of phys-
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ically plausible magnetisation distributions.

By definition, a set of functions, {Φj}j∈I , in a space, V , defined over a countable
set, I , is a frame if there exists constants, 0 < A ≤ B < ∞ such that for all f ∈ V ,

A‖ f ‖2 ≤ ∑
j∈I
|〈 f , Φj〉|2 ≤ B‖ f ‖2 (7.4)

where A and B are the lower and upper frame bounds, respectively. We refer to the
functions {Φj}j∈I as frame elements. The frame bounds reflect the robustness of
the frame elements to perturbations, e.g. additive random noise on the projections.
If A = B = 1 and ‖Φj‖ = 1, ∀j ∈ I , then {Φj}j∈I is an orthonormal basis. In
this sense, the frame elements can be thought of as a generalised basis. The set
I can be infinite for theoretical analysis although it is typically finite for practical
applications.

In most applications, we obtain measurements (or frame coefficients) of an un-
known function via the analysis operator, T : V → CM where M is the number of
frame elements. The operator is defined as

T f = {〈 f , Φj〉}j∈I . (7.5)

Similarly, we define the synthesis operator T∗ : CM → V as

T∗{yj}j∈I = ∑
j∈I

yjΦj(x), (7.6)

which transforms the sequence of coefficients, {yj}j∈I , into a function in V . Notice
that T∗ is the adjoint of T. The frame operator S : V → V is the composition,
S = T∗ ◦ T or

(S f )(x) = ∑
j∈I
〈 f , Φj〉Φj. (7.7)

If the functions, {Φj}j∈I , form a frame by satisfying the frame condition in
(7.47.4), we can reconstruct any function from a sequence of noiseless transform coef-
ficients as

f = ∑
j∈I
〈 f , Φj〉Φ̃j = ∑

j∈I
〈 f , Φ̃j〉Φj, (7.8)

where {Φ̃j}j∈I is the dual frame with the functions given by

Φ̃j = S−1Φj. (7.9)
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The relationship in (7.87.8) is exact and valid as long as (7.47.4) is satisfied. Note the
duality in (7.87.8) in the sense that either Φj or Φ̃j can be used for decomposition
with the other used for reconstruction. Adopting the convention of measuring
with the frame elements, {Φj}j∈I , and reconstructing with the dual, we can use
(7.87.8) to define the reconstruction operator, F : CM → V as the composition,

F = S−1 ◦ T∗. (7.10)

In MRI the unknown function is the object’s magnetisation, i.e. f = m and
the operator in (7.107.10) would be used to reconstruct the magnetisation, m, from a
sequence of measurements, {yl,q,i}. The theory informs us that if the frame el-
ements satisfy the frame condition in (7.47.4) then reconstruction is possible using
the dual frame. Hence, it is desirable to find a frame in the two or three di-
mensional object space using encoding functions realisable in the magnetic reso-
nance setting. For MRI it is useful to consider frame elements Φl,q,i indexed by
coil, echo, and time sample. The results above are readily applicable to these
frame elements by considering indices from the set of tuples, I = {(l, q, i) ∈
[1, . . . , Nc]× [1, . . . , Ne]× [1, . . . , Nt]}, where Nc, Ne and Nt denote the number of
coils, echoes and time samples, respectively.

In practice, we can only acquire a finite number of measurements so recon-
struction of an arbitrary continuous function is impossible. Consequently, we are
forced to restrict the space of functions by discretising the unknown functions into
pixels. For this purpose we select a pixel basis, {χn(x)}N

n=1, so the object can be
represented by a linear combination of the functions, χn(x). For example, images
can be represented using a rectangular basis where χn(x) = rectW(x− xn) for pixel
width W. Mathematically, the basis is used to define a subspace, U , representing
the space of allowable functions,

U =

{
f ∈ V : f (x) =

N

∑
n=1

fnχn(x)

}
. (7.11)

In this space, the problem of reconstructing an arbitrary object is transformed to
the problem of estimating a set of coefficients, { fn}.

Since a function f ∈ U is entirely described by the coefficients, f1, . . . , fN , the
subspace U is isomorphic to CN . Therefore the analysis operator, T, acting on
functions in U can be considered as a mapping from CN to CM and thus admits a
matrix representation, T . The corresponding matrix has elements given by

T(l,q,i),n = 〈χn, Φl,q,i〉. (7.12)
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The synthesis operator in this subspace, T∗ : CM → U , also has a matrix represen-
tation,

T∗n,(l,q,i) = 〈Φl,q,i, χn〉. (7.13)

This can be represented as T ′, where T ′ is the conjugate transpose of the T defined
by (7.127.12).

The frame operator in the discrete subspace is S : U → U , defined by the
composition S = T∗ ◦ T. Equivalently this operator is represented as a matrix,
called the frame matrix, defined by the equation,

S = T ′T (7.14)

A common example is when T is a full-rank matrix with orthonormal columns
(such as a DFT matrix). In this case, the inverse is given by T ′ and the frame
matrix S is equal to the identity matrix.

The reconstruction operator using the dual frame in (7.107.10) simplifies to the
Moore-Penrose pseudoinverse of the discrete analysis operator, T ,

F = S−1T ′ = (T ′T)−1T ′. (7.15)

When we select the frame elements to be the encoding functions used in MRI,
Φl,q,i = βl,q,i, the analysis matrix in (7.127.12) becomes the standard encoding matrix
[1414],

E(l,q,i),n = 〈χn, βl,q,i〉 (7.16)

In this case the measurements yl,q,i correspond to the frame coefficients.

An interesting question, given little attention in the literature, is how to choose
the pixel basis, {χn}N

n=1. The pixel basis must satisfy two conflicting requirements;
firstly, the basis should lead to simple computation of the frame matrix and its
inverse, and secondly the basis should be able to accurately approximate the true
functions. The Dirac delta distribution is ubiquitous since it satisfies the require-
ment of simple computation. A rectangular basis potentially better represents the
functions. Appendix 7.A7.A compares the two choices and shows that the difference
in the final reconstructions for Fourier encoding is O(N−5/2) where N is the num-
ber of pixels. This confirms the common notion that Dirac distributions sufficiently
approximate the functions if the pixel grid is fine enough.
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7.3 Analysis of block-structured encoding schemes

The impact of stochastic noise in the measurements must be considered for prac-
tical applications of the presented theory. In the frame literature, reconstruction
using the dual frame has been shown to give the minimum mean-square error
(MMSE) estimate, with global performance given by the lower frame bound [120120].
However, exact quantification in terms of the variance of each pixel is desirable
for MRI applications. In this section we relate the pixel-wise variance to the frame
operator and apply the theory to the block-structured encoding schemes of SENSE
and PatLoc.

7.3.1 Reconstruction variance

The signal model in (7.27.2) is modified to include additive noise,

yl,q,i = 〈m, βl,q,i〉+ vl,q,i. (7.17)

A discretised object can be represented by the vector, f = [ f1, . . . , fN ]
T, where the

elements are fn = 〈χn, m〉. We construct the vectors, y = [y1,1,1, . . . , yNc,Ne,Nt ]
T and

v = [v1,1,1, . . . , vNc,Ne,Nt ]
T so (7.177.17) can be written as the matrix equation,

y = E f + v. (7.18)

The noise is complex Gaussian distributed, v ∼ N (0, Σ) for a general covariance
matrix Σ. The size of Σ is NcNeNt × NcNeNt.

We desire a frame operator that adequately models the covariance so we con-
sider the general case where the frame elements are a linear combination of encod-
ing functions,

Φl,q,i = ∑
l′,q′,i′

Γ(l,q,i),(l′,q′,i′)βl′,q′,i′ . (7.19)

This leads to frame coefficients that are a linear combination of the MRI measure-
ments. Let Γ be a matrix of weights with elements Γ(l,q,i),(l′,q′,i′); the coefficients can
be defined by the matrix equation, η = Γy, with

η ∼ N (ΓE f , ΓΣΓ′). (7.20)

The analysis operator is T = ΓE and recall the frame matrix is S = T ′T . The
reconstructed function coefficients are given by f̂ = Fη, where F is the reconstruc-
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tion operator in (7.157.15). The covariance, X, of the reconstructed coefficients is

X = FΓΣΓ′F ′ (7.21)

= (T ′T)−1T ′ΓΣΓ′T(T ′T)−1 (7.22)

Since Σ is a covariance matrix, it is conjugate symmetric and thus the following
decomposition is well defined, Σ−1 = Σ−1/2Σ−1/2. The main result of this section
is that selecting the set of weights to be

Γ(l,q,i),(l′,q′,i′) = [Σ−1/2](l,q,i),(l′,q′,i′) (7.23)

yields

X = S−1 (7.24)

This equation reveals the close link between the frame elements, frame operator,
and the resulting covariance. Importantly, the relationship is applicable for any
noise covariance, by the appropriate selection of the weighting matrix.

When the condition in (7.237.23) is satisfied, the frame matrix can be written in
terms of the discretised encoding functions as

S = E′Σ−1E (7.25)

In terms of the matrix elements we have,

Sn,m = ∑
l,q,i

∑
l′,q′,i′
〈βl,q,i, χn〉Σ−1

(l,q,i),(l′,q′,i′)〈χm, βl′,q′,i′〉. (7.26)

This process of transforming the measurements is the same as ‘noise whitening’ in
linear estimation theory [66].

For white noise, Σ = σ2I, and the pixel variance is a scalar multiple of that
obtained by adopting an identity weighting matrix. In this case, the frame ele-
ments are simply the MRI encoding functions. For correlated noise, the selection
of transformation weights, ensures the frame operator captures the properties of
the reconstruction covariance. This is useful to analyse the noise performance of
existing parallel imaging schemes, where noise is correlated between receive chan-
nels [1414].

In the remainder of this section we apply our analysis to the existing imaging
schemes of SENSE and PatLoc. The analysis of SENSE confirms the well-known
results concerning SNR and coil sensitivities. Our analysis of PatLoc demonstrates
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its relationship to SENSE as described in [1010]. For both techniques we present
the existing analysis reported in the literature and our analysis using frame the-
ory. The intention here is to provide a novel perspective on the workings of these
schemes.

7.3.2 SENSE imaging

SENSE imaging is a type of Fourier imaging and thus there is a linear relationship
between the phase and position, φq,i(x) = −2πkq,i · x as described in Section 3.4.43.4.4.
The main feature of SENSE is that the encoding functions include the sensitivities
from multiple coils,

βl,q,i(x) = cl(x)ej2πkq,i ·x. (7.27)

The quantity kq,i defines the position in spatial frequency space, k-space, as de-
scribed in Section 3.4.43.4.4. Measurements are collected for a set of k-space coordinates
(the trajectory), parameterised by time sample i and excitation number q. The gra-
dients are changed after each excitation, defining the direction of the line through
k-space, which is then traversed as time evolves.

For faster acquisition, one can undersample by integer factors Rx and Ry in
the x and y directions, respectively. This reduces the number of measurements
by a factor of R = RxRy. Practically, only undersampling in the phase direction
is useful to reduce imaging time since the sampling time in the readout direction
is negligible. Nonetheless, our analysis is kept general to cover the case of 3D
Fourier imaging with two phase encode directions [123123]. We collect Nk = NtNe

measurements per coil with Nt = Nx/Rx, Ne = Ny/Ry. Given a field-of-view
of Lx × Ly, the maximum frequency, kmax

x = Nx/Lx, kmax
y = Ny/Ly is unchanged

by the undersampling, indicating the fundamental resolution is not affected. The
measurements are collected at frequency points, kq,i = (i∆̃x, q∆̃y) where ∆̃x =

Rx∆x = Rx/Lx and likewise ∆̃y = Ry∆y.

7.3.2.1 Existing analysis of SENSE

The standard SENSE analysis originally presented in [1414] proceeds by adopting
the delta distribution as the pixel basis and analysing the corresponding matrix
equation for the measurement vector. Identical to (7.187.18) we have,

y = E f + v (7.28)
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where v ∼ N (0, Σ) and E(l,q,i),n = cl(xn)e−j2πkq,i ·xn . The optimal reconstruction
matrix was proved to be [1414]

F = (E′Σ−1E)−1E′Σ−1. (7.29)

It is observed that for a given pixel centred at xp = (xp, yp), the group of aliased
pixels due to undersampling is given by the set,

Pp =
{
(xp + nLx/Rx, yp + mLy/Ry) :

n ∈ [0, . . . , Rx − 1], m ∈ [0, . . . , Ry − 1]
} (7.30)

The problem of reconstruction is reduced to resolving this small set of pixels.
We denote the R× 1 vector of coefficients for the aliased pixels as f (p). After per-
forming an inverse DFT, this group of aliased pixels are related by

η = C(p) f (p) (7.31)

where C(p) is an Nc × R matrix with elements C(p)
ln = cl(xn). The folding matrix,

C(p), highlights the crucial role of the coil sensitivities in successfully estimating
the function coefficients. This structure is also revealed in the calculation of the
reconstruction covariance matrix,

X = FΣF ′ (7.32)

=
1

NtNe
(E′Σ−1E)−1 (7.33)

Exploiting the block structure of E and Σ [1414], the noise matrix can be defined for
each group of aliased pixels,

X(p) =
1

NtNe
(C(p)′Σ(p)−1

C(p))−1 (7.34)

which involves the inversion of a small R× R matrix. The well-known g-factor is
derived by considering the ratio of SNRs for the reduced and full acquisitions. A
pixel is now indexed as (r, p) indicating the pixel and aliased group, respectively.
For notational simplicity, the superscript (p) is dropped in the following g-factor
equations. For full acquisition the covariance is denoted X̄ and Nt = Nx, Ne = Ny.
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Assuming that the signal strength is constant,

SNRfull
r,p

SNRred
r,p

=

√
Xr,r√
X̄r,r

=
√

R

√
[(C′Σ−1C)−1]r,r√
[(C̄′Σ−1C̄)−1]r,r

(7.35)

The case of full Fourier encoding yields a C̄ that is an Nc × 1 column vector. In
this situation there is no aliasing so our blocks contain only a single pixel and C̄ is
identical to the nth column of the C matrix. Thus,

1
X̂r,r

= [C′Σ−1C]r,r (7.36)

Finally, the ratio of SNRs is expressed as

SNRfull
r,p

SNRred
r,p

=
√

R
√
[C′Σ−1C]r,r[(C′Σ−1C)−1]r,r (7.37)

From this, the g-factor is defined as

gr,p =
√
[C′Σ−1C]r,r[(C′Σ−1C)−1]r,r (7.38)

Recall C and Σ are indexed by the aliased block, p, and the pair (r, p) is needed to
index a pixel.

7.3.2.2 Frame analysis of SENSE

The g-factor analysis above emerges naturally from the frame matrix, which em-
phasises the source of the block structure. Central to this analysis is the periodic
sinc, also known as the Dirichlet kernel, DN(x), defined as

DN(x) :=
(N−1)/2

∑
k=−(N−1)/2

ejkx. (7.39)

This definition can be obtained by taking the Discrete Time Fourier Transform
(DTFT) of a rectangular window with length N. See Appendix 4.A4.A for a brief
introduction to the Dirichlet kernel and its properties. In this work, we will see
that the block structure in SENSE is revealed by evaluating the Dirichlet kernel.

The pixel covariance is calculated from the frame matrix as explained in Sec-
tion 7.3.17.3.1. As such, we select frame elements as a linear combination of the SENSE
encoding functions according to the ‘noise whitening’ condition in (7.237.23). In this
case, the frame matrix elements are given by (7.267.26). Additionally, the noise in a
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parallel MRI experiment is correlated between channels, not between frequency
samples or echoes, thus Σ−1

(l,q,i),(l′,q′,i′) = δq,q′δi,i′Σ−1
l,l′ . This reduces the matrix ele-

ments to

Sn,m = ∑
l,l′

c∗l (xn)Σ−1
l,l′ cl′(xm)∑

q,i
ej2πkq,i ·(xn−xm) (7.40)

= κ(xn, xm)DNt(2πRx∆x(xn − xm) · î)×
DNe(2πRy∆y(xn − xm) · ĵ)

(7.41)

where î = (1, 0), ĵ = (0, 1) and κ is the noise-adjusted coil kernel given by

κ(xn, xm) = ∑
l,l′

c∗l (xn)Σ−1
l,l′ cl′(xm). (7.42)

This coil kernel arises from the use of multiple receiver coils with spatially varying
sensitivities.

In our application, the undersampling means that the Dirichlet kernel in the x
and y directions will have a period of Lx/Rx and Ly/Ry, respectively, so R points
will not be resolved by Fourier encoding alone. The additional encoding comes
from the coil kernel, κ(x, x′), which resolves the ambiguity.

A key to SENSE imaging is the careful selection of the pixel size, Wx ×Wy, and
sampling spacing, ∆x, ∆y such that ∆xWx = 1/Nt and ∆yWy = 1/Ne. In this case,
the Dirichlet kernels evaluate to

DNt(2πRx∆x(xn − xm) · î) =
{

Nt, xn, xm ∈ P (x)
p ;

0, otherwise.
(7.43)

and

DNe(2πRy∆y(xn − xm) · ĵ) =
{

Ne, xn, xm ∈ P (y)
p ;

0, otherwise.
(7.44)

The sets P (x)
p and P (y)

p are all points aliased onto the point xp in the x and y direc-
tions, respectively, such that Pp = P (x)

p ∩ P (y)
p . Thus,

Sn,m =

{
NtNeκ(xn, xm), xn, xm ∈ Pp;
0, otherwise.

(7.45)

Furthermore, if the basis, {χn}N
n=1, is ordered according to the groups in Pp then S
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S =
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R

)
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p = N
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Figure 7.1: The block diagonal structure of the frame matrix, S. Each block repre-
sents a group of aliased pixels and depends on the number of measurements, the
coil sensitivities and the measurement noise covariance.

will have a block diagonal structure with blocks given by,

S(p) = NtNeC(p)′Σ(p)−1
C(p). (7.46)

The structure of the frame matrix given by (7.467.46) is illustrated in Fig. 7.17.1.

Inversion of the block diagonal frame operator is achieved by inversion of the
individual blocks. Thus,

X(p) =
1

NtNe
(C(p)′Σ(p)−1

C(p))−1, (7.47)

identical to (7.347.34). The expression for g-factor follows as in (7.387.38).

This perspective emphasises the role of the Dirichlet kernel in Fourier encod-
ing. The kernel explains the source of aliasing at its most fundamental level and
provides an intuition into the structure of the system. Evaluation of the kernels
reveals the block structure exactly as we expect with our prior understanding of
aliasing. In both the existing analysis and our frame-based analysis, the structure
of the system is exploited to derive the g-factor.

7.3.3 PatLoc imaging

Understanding of the PatLoc imaging technique described in Section 6.3.16.3.1 can also
benefit from analysis in terms of the frame matrix. In this section we again show
both the previously published analysis in [1010] and our frame-based approach. Pat-
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Loc employs nonlinear non-bijective fields, and similar to SENSE imaging, the
additional encoding provided by the receive coils is crucial to resolving the non-
bijectivity.

The phase function for general imaging schemes is described by (6.76.7). Introduc-
ing indices for the qth excitation and ith time point the accumulated phase can be
written as φq,i(x) = κq,i ·ψ(x), where ψ is the nonlinear and non-bijective mapping
associated with the spatial encoding magnetic fields. The corresponding encoding
functions are

βl,q,i(x) = cl(x)ejκq,i ·ψ(x). (7.48)

7.3.3.1 Existing analysis of PatLoc

The existing PatLoc analysis in [1010] showed that PatLoc can be thought of as an
extension of SENSE for nonlinear fields. Consequently, the noise analysis can be
performed identically to the SENSE analysis in [1414] discussed earlier and similar
results are reported concerning the SNR and g-factor. This is elaborated below.

The PatLoc analysis involves the selection of a pixel basis, {χn}, for the dis-
cretisation of the encoding operator according to (7.167.16).

E(l,q,i),n =
∫
V

χn(x)β∗l,q,i(x)dx (7.49)

=
∫
V

χn(x)cl(x)e−jκq,i ·ψ(x)dx (7.50)

The non-bijective nature of ψ is handled by splitting the imaging region into R
bijective regions V1, . . . ,VR such that V =

⋃R
r=1 Vr. Let ψk(x) = ψ|Vk , i.e. the

function restricted to the subregion Vk. A basis element, χr,p, is now indexed as
a pixel p within bijective region, r. This allows for a change of variable in the
integration u = ψ(x) and a new space, known as the encoding space,W = ψ(Vk),
is naturally defined. Specifically,

E(l,q,i),(r,p) =
R

∑
k=1

∫
Vk

χr,p(x)cl(x)e−jκq,i ·ψ(x)dx (7.51)

=
R

∑
k=1

∫
W

χ̃k
r,p(u)c̃

k
l (u)d̃

k(u)e−jκq,i ·udu (7.52)

where the transformed functions are

c̃k
l (u) = cl((ψ

k)−1(u)), (7.53)

χ̃k
r,p(u) = χr,p((ψ

k)−1(u)), (7.54)
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and the volumetric correction factor is

d̃k(u) = |det(Dψ)(z)|−1
z=(ψk)−1(u)

. (7.55)

Notice that the correction factor, d̃k, is the inverse of the Jacobian determinant for
the mapping to the curvilinear coordinate system.

With this change of variable, the basis χr,p(x) = δ(ψr(x)− up) is adopted so

χ̃k
r,p(u) = δ(ψr((ψk)−1(u))− up) (7.56)

= δk,sδ(u− up) (7.57)

which simplifies the analysis matrix to

E(l,q,i),(r,p) = c̃r
l (up)d̃r(up)e−jκq,i ·up . (7.58)

Further structure can be imposed on the analysis operator by selecting the pixel
grid, {up}, so the encoding functions form a Discrete Fourier Transform. That is,

E = F̃ C̃D̃, (7.59)

where F̃ = diag(F , . . . ,F ) contains Nc separate DFT blocks, C̃ contains the coil
sensitivities and D̃ is a diagonal matrix containing information on the field struc-
ture, d̃k(up).

The relationship to SENSE imaging is established by transforming the unknown
coefficients to “encoding space” using m = D̃ f . Denoting Ē = F̃ C̃, the measure-
ment model is written as,

y = Ēm + v (7.60)

which is identical to the SENSE model in (7.287.28). Hence, the optimal reconstruction
of m is obtained by applying the SENSE reconstruction matrix in (7.297.29) (with E re-
placed by Ē). Following this, the inverse transformation, f = D̃−1m, is applied to
give the final coefficients. The covariance matrix for f inherits the block-diagonal
structure from SENSE where the blocks are given by

X(p) =
1

NtNe
D−1(C′Σ−1C)−1D−1. (7.61)
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Considering the diagonal elements of a block, we obtain an SNR expression of

SNRPatLoc
r,p

SNRlinear
r,p

=
d̃r(up)√

R gr,p
(7.62)

where gr,p is the standard g-factor calculated for groups of ambiguous pixels.

It should also be noted that the ‘volumetric correction factor’ presented in this
analysis is very similar to the ‘density compensation factor’ in the field of nonuni-
form k-space sampling e.g. [124124]. Both cases are concerned with compensating
for nonuniform samples, the former involves non-uniform samples in the image
domain whereas the latter is concerned with nonuniform samples in the spatial
frequency domain.

The analysis above emphasises the role of the weights, d̃r(up), and correspond-
ing matrix, D, in calculating the reconstruction variance. The SENSE-like nature
of PatLoc is revealed in the expressions for covariance and SNR where d̃r(up) cap-
tures the non-linearity and appropriately modifies the existing SENSE equations.

7.3.3.2 Frame analysis of PatLoc

We derive the PatLoc SNR results using the frame matrix with emphasis on the
selection of the discretisation basis. We will see that a normalised basis is more ap-
propriate to reveal the inherent block structure of PatLoc. To achieve this we view
the problem of image reconstruction from a signal processing perspective, where
the role of the basis is explicit. Specifically, a basis {χn} is selected for discretisa-
tion and reconstruction; however, a different basis ζn(x) = rectWn(x− xn) is used
to display the discretised function. Notice in the general case the pixel width, Wn,
can vary between pixels.

Our aim is to display the function m̃(x), a piecewise constant approximation to
the true function, decomposed using {ζn(x)} as,

m(x) ≈ m̃(x) = ∑
n

mn rect
Wn

(x− xn). (7.63)

The reconstruction basis, χn(x), is used to decompose the function as

m(x) ≈ f (x) = ∑
n

fnχn(x). (7.64)

This basis reduces the measurement equation to a linear matrix equation in (7.187.18),
which can be solved numerically for the basis coefficients, { f1, . . . , fN}.

In general, there is a mismatch between the reconstructed coefficients, { fn},
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and the desired pixel values, {mn}. To compensate for this mismatch we consider
the area of the nth basis function, defined as

an :=
∫

χn(x)dx. (7.65)

Since the coefficient, fn, represents the weight of the nth pixel basis, the quantity
fnan is the weight of a pixel basis scaled to unit area. Finally, to convert from a
weighted pixel with unit area, to the function height, mn, we divide by the pixel
width. Thus,

mn =
an

Wn
fn. (7.66)

We now apply this result to PatLoc reconstruction. Contrary to the existing
analysis, we use a normalised basis, which is standard convention in signal pro-
cessing literature. Normalised in this context means the integral of a basis element
is unity. The chosen basis naturally separates the SENSE-like structure from the
nonlinear effects.

As described above we can partition the object space into its bijective regions
and define a reconstruction basis indexed by region, r, and pixel position, p. A
normalised, non-uniform basis that elicits a desirable structure in the frame matrix
is

ξr,p(x) =
1

d̃r(up)
δ(ψr(x)− up). (7.67)

In this case, the area of the basis functions is unity i.e. ar,p = 1. We apply this basis
to the calculation of the frame matrix, S, and note that the covariance matrix for
parallel imaging has the structure, Σ−1

(l,q,i),(l′,q′,i′) = δq,q′δi,i′Σ−1
l,l′ , as described earlier.

The frame matrix in (7.267.26) simplifies to

S(r,p),(r′,p′) = κ̃(r,r′)(up′ , up)h(up′ , up). (7.68)

The coil kernel is

κ̃(r,r′)(up′ , up) = ∑
l,l′

c̃s′
l (up′)Σ−1

l,l′ c̃
r
l′(up) (7.69)

and

h(u, u′) = DNt(∆x(u− u′) · î)DNe(∆y(u− u′) · ĵ), (7.70)
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where DN(x) is the Dirichlet kernel defined in (7.397.39).

The chosen pixel basis suggests a natural ordering of the pixels so S is block-
diagonal. The matrix is indexed by p, the block of aliased pixels and r, the pixel
index within a block. The samples are acquired according to the pixel grid, up, so
the Fourier encoding is exact in the encoding space and

h(up′ , up) = NtNeδp,p′ . (7.71)

Thus a block of S is defined when p = p′,

S(p)
(r,r′) := S(r,p),(r′,p) = NtNeκ̃(r,r′)(up, up). (7.72)

Let x̄r,p = (ψr)−1(up) denote the non-uniform pixel positions. The elements of
the pth block are

S(p)
(r,r′) = NtNe ∑

l,l′
c∗l′(x̄r,p)Σ−1

l,l′ cl(x̄r′,p) (7.73)

In matrix notation, S(p) = (NtNe)C′Σ−1C. This frame matrix is identical to the
SENSE equivalent in (7.467.46).

The theory derived earlier shows that noise performance can be directly calcu-
lated from the frame matrix,

X(p) = S(p)−1
(7.74)

=
1

NtNe
(C′Σ−1C)−1 (7.75)

This covariance is identical to SENSE and contains no nonlinear adjustment, as
expected since PatLoc is a generalisation of SENSE.

The nonlinear effects enter into the system by relating the basis coefficients,
fr,p, with the pixel coefficients, mr,p. Recall the pixel area is ar,p = 1 and the pixel
width is Wr,p = d̃r(up)Wu where Wu is the pixel width in encoding space. Without
loss of generality, we set Wu = 1 and by virtue of (7.667.66),

mr,p =
fr,p

d̃r(up)
. (7.76)

As a result, the covariance of the pixel values, X̃(p), is related to the covariance of
the basis coefficients, X(p), by

X̃(p)
= D−1X(p)D−1 (7.77)
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=
1

NtNe
D−1(C′Σ−1C)−1D−1 (7.78)

which is identical to (7.617.61) and the resulting SNR ratio is identical to (7.627.62).

Here we gain a different perspective on the PatLoc reconstruction problem. On
one hand, we can adopt the unnormalised basis, which results in a variance expres-
sion that directly includes the nonlinearity. Alternatively, we can use a normalised
basis that provides the desired matrix structure with the nonlinearity entering the
equations in an intuitive way: a transformation between the reconstruction basis
and the display basis. The transformation given in (7.767.76) also reveals the trade-
off between resolution and SNR. Specifically, the variance is scaled by the inverse
square of the pixel size (given by d̃r).

It should also be noted that (7.617.61) or (7.787.78) is the variance of the nonuniform
pixel values and usually these are interpolated to a regular grid prior to display.
This interpolation modifies the variance of the final pixels and a rigourous noise
analysis should include the effect of this interpolation. Although this discrepancy
can be minimised by careful selection of the interpolation grid, this point has not
been highlighted in the PatLoc literature.

7.4 Analysis of arbitrary encoding schemes

As demonstrated above, there is an intrinsic relationship between resolution and
SNR. This relationship becomes increasingly difficult to characterise for arbitrary
nonlinear encoding schemes. Although a detailed investigation of the trade-off
between SNR and resolution is beyond the scope of this thesis, it is worthwhile
to note that the frame matrix can also be used to estimate the local resolution. In
Chapter 66 we approximated the point spread function by extracting rows of E′E,
equivalent to the frame matrix when the noise covariance is the identity matrix. We
adopted a similar approach in [125125] to define simple metric related to the width of
the point spread function. In this chapter, we restrict our attention to calculating
the variance from the frame matrix.

The analyses in the previous sections exploited inherent structure in the en-
coding schemes to simplify the calculation of SNR, which depends on the pixel
covariance. This may not be possible for arbitrary encoding schemes so we seek
an alternative metric. Consequently we require a performance metric that: 1) re-
flects the variance of the reconstructed pixels, 2) is valid for arbitrary encoding
fields, and 3) is computationally efficient in terms of time and memory.
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7.4.1 Approximate reconstruction variance

The pixel covariance is exactly specified by the inverse of the frame matrix, as
stated in (7.247.24). The pixel variance is obtained by extracting the diagonal elements
of the covariance matrix. This is not a feasible performance metric since the inverse
is difficult to compute in the general case. In this section, we propose a perfor-
mance metric using a series expansion of the matrix inverse. The resulting metric
is a second-order approximation to the variance, which is simple to compute.

To this end, we exploit the fact that, for most practical imaging schemes, the
frame matrix is approximately diagonal. For example, in standard Fourier imag-
ing the matrix is exactly diagonal and the only distortion is due to the truncation
effects associated with the projection operator. The approximate diagonal nature
of the frame matrix, S, suggests a decomposition of the matrix into its diagonal
part, Λ, and off-diagonal part, Z, such that Z = S− Λ. We take the Taylor series
of S−1 about the matrix S = Λ to obtain the expansion

S−1 =
∞

∑
n=0

(−Λ−1Z)nΛ−1. (7.79)

If ‖Λ−1Z‖ < 1 then the series will converge, where ‖ · ‖ denotes some matrix
norm, e.g. the induced L2 norm. The zeroth, first, and second order approxima-
tions are

S−1
0 = Λ−1 (7.80)

S−1
1 = Λ−1 −Λ−1ZΛ−1 (7.81)

S−1
2 = Λ−1 −Λ−1ZΛ−1 + Λ−1ZΛ−1ZΛ−1 (7.82)

By definition, Λ is diagonal so Λ−1 is easily computed by inverting the non-zero
diagonal elements. This leads to approximations that can be efficiently computed.
If we consider the diagonal elements of S−1 then we notice that

diag(Λ−1ZΛ−1) = 0 (7.83)

so we need to use the second order approximation in (7.827.82) for useful results.

The computation is further reduced since the diagonal components can be cal-
culated individually as follows. Let zn,m denote the elements of Z and zm denote
the mth column of Z. The diagonal elements of Λ−1 are λn, n = 1, . . . , N, which
only depend on the coil sensitivities and noise covariance. The final performance
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metric, X̂n, is obtained by extracting the diagonal elements of S−1
2 ,

X̂n := [S−1
2 ]nn (7.84)

= λn + λ2
nz′nΛ−1zn (7.85)

= λn

(
1 + λn

N

∑
m=1

z2
n,mλm

)
(7.86)

which can be calculated row by row, in O(N), without the need to calculate or
store the large matrix, S. Since there are N rows to calculate the overall cost is
O(N2).

When ‖Λ−1Z‖ > 1 the series will not converge so the approximation is no
longer suitable. This can happen for schemes with a wide point spread function
or very few echoes, causing a reduction in the diagonal dominance of the frame
matrix. In this case, we can take the Taylor series of S−1 about a different matrix,
Ω, such that the condition for convergence is satisfied, i.e., ‖Ω−1Y‖ < 1 with
Y = S − Ω. To retain the computational efficiency of the expansion, we must
choose an Ω that is easily inverted. For example, a tridiagonal, block-diagonal or
general sparse matrix has this property. This generalisation will be considered in
future work.

The metric defined by (7.867.86) satisfies all of our requirements; it is relatively
easy to compute, applicable to general encoding schemes and reflects the variance
of individual pixels.

We now apply our frame analysis to O-space [1111], a recent imaging technique
whose performance has not been rigourously analysed like SENSE or PatLoc. In
Section 7.57.5 we apply the approximate variance metric to an O-space imaging scheme
to produce a high resolution variance map. In this case, direct inversion of the
frame matrix is impractical and no alternative analysis exists.

7.4.2 O-Space imaging

O-Space imaging was described in Section 6.3.26.3.2. The technique uses a nonlinear
encoding field to achieve rapid imaging times [1111]. The encoding field for this
scheme has a quadratic shape with its centre translated after every echo. The en-
coding field for O-space is defined in (6.186.18) as

bq(x, t) = bq(x) = G‖x− rq‖2 (7.87)

where G is the field strength and rq is an echo-dependent centre point. The en-
coding field is constant during readout thus the phase functions are φq,i(x) =
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−γG‖x− rq‖2ti. The corresponding encoding functions are

βl,q,i(x) = cl(x)ejγG‖x−rq‖2ti . (7.88)

This is fundamentally different from PatLoc since a Jacobian (such as that in
(7.557.55)) cannot be defined for O-space imaging, since it is not a mapping between
two (Cartesian) coordinates and two (curvilinear) coordinates. This precludes an
analysis similar to that of the PatLoc paper [1010].

The global performance of O-space was previously examined for a numerical
phantom to determine the optimal placement of the centre points [126126]. In that
work, full reconstruction was performed and the reconstruction error was calcu-
lated. The analysis did not, however, capture the local properties of the reconstruc-
tion error. Furthermore, it is only valid for the single phantom considered. The
frame-oriented approach developed in this chapter overcomes these limitations.

7.4.2.1 Frame analysis of O-Space

We use the frame matrix to analyse the O-space imaging technique. The frame
matrix elements are given by (7.267.26) with a measurement covariance of the form,

Σ−1
(l,q,i),(l′,q′,i′) = δq,q′δi,i′Σ−1

l,l′ (7.89)

Furthermore, the result of Appendix 7.A7.A justifies the use of the ideal delta func-
tions, χi(x) = δ(x− xi), thus the elements of the frame matrix are

Sn,m = ∑
l,l′

c∗l′(xn)Σ−1
l,l′ cl(xm)∑

q,i
ejγ(bq(xn)−bq(xm))ti (7.90)

= κ(xn, xm)∑
q

DNt(γτs(bq(xn)− bq(xm))) (7.91)

where κ(xn, xm) is the coil kernel defined in (7.427.42) and bq is the O-space encoding
field defined in (7.877.87). We assume regular sampling during readout with sampling
period, τs, such that ti = iτs. This allows us to remove the temporal summation
in (7.907.90), resulting in the simplified expression (7.917.91). This simplification can be
applied whenever the encoding field is constant during readout and the time sam-
ples are regularly spaced. It could therefore be used to simplify the frame matrix
for other nonlinear schemes such as 4D-RIO [1212] or Null Space Imaging [9191].

For O-space, the points where the encoding Dirichlet kernel is maximum are
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given by bq(xn)− bq(xm) = 0 which implies that

‖xn − rm‖2 = ‖xp − rq‖2. (7.92)

This is the equation for a circle, centred at rq with radius ‖xn − rm‖. Thus the nth

row of the frame matrix, S, is approximately given by the sum of all circles passing
through the point xn, with centres rq, weighted by the coil kernel, κ(xn, xm). More
precisely, the circles will have ringing defined by the Dirichlet kernel in (7.917.91),
which depends on the readout sampling parameters, τs and Nt. Furthermore, for
non-symmetric sampling the circles will be complex-valued. This complicated ge-
ometry means the structure of the frame matrix S is difficult to exploit when cal-
culating the reconstruction covariance, leading to an impractical matrix inversion.

An interesting alternative is to exploit to the fact that the frame matrix contains
many small elements, particularly in the sidelobes of the circles defined above.
Thus a sparse approximation can be obtained by thresholding the frame matrix,
which could then be inverted using numerically efficient algorithms that take ad-
vantage of the sparsity. This is equivalent to [127127], where the encoding matrix was
replaced by a sparse approximation, by transforming it using a Discrete Fourier
Transform and then applying a threshold.

Since our goal is to quantify the reconstruction performance as accurately as
possible, we use the series expansion in (7.867.86) of the frame matrix given by (7.917.91) to
approximate the pixel variance. The results of Section 7.57.5 demonstrate the efficacy
of this approximation through simulation examples.

7.5 Simulations

The power of the proposed performance metric is demonstrated using O-space
imaging as a case study. As detailed above, O-space exhibits a structure that is dif-
ficult to handle unlike the schemes of SENSE and PatLoc. In the latter cases, pre-
cise and computationally efficient expressions for the variance of the reconstructed
pixels can be derived as explained in Section 7.37.3. No such expressions can be de-
rived for O-space imaging and the advantage of our performance metric becomes
apparent. In particular, the metric allows for the first quantitative comparison of
the local noise performance of O-space and PatLoc.

7.5.1 Methods

Three simulations were conducted to demonstrate the utility of the metric devel-
oped in Section 7.47.4. Firstly, the accuracy of the metric was verified for a low-
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resolution O-space imaging regime. The setup was comparable to the original
implementation of O-space, which utilises the shim coil to provide a quadratic en-
coding field [1111]. As such, the field gradient was limited to 600 Hz/cm2, which
is the maximum field produced by the Z2 shim coil of a 4.7 T Bruker small bore
scanner. The field-of-view was set to 4 cm. Eight coils were placed concentrically
around the field-of-view with sensitivities simulated by the magnetostatic limit of
the Biot-Savart equation. The acquisition consisted of 32 echoes, each generated
with a unique encoding field. The encoding fields for O-space are defined by their
centre points, which were arranged in concentric rings with radii 0.8 cm and 1.6 cm
as well as a single centre point at the origin. The arrangement is similar to [1111]. The
sampling parameters were Tacq = 50 ms, Nt = 64. The final image size was 32× 32.
The low resolution image means the true variance of the individual pixels can be
calculated by matrix inversion of the frame matrix as in (7.247.24). This was compared
to the metric in (7.867.86) and the percentage error was calculated to evaluate the ac-
curacy of the second order approximation. The metric was further validated by
calculating the empirical variance of each reconstructed pixel over 500 simulated
acquisitions. Each acquisition was simulated with O-space encoding of a uniform
disk phantom with different realisations of Gaussian noise added.

The second simulation compared the local performance of O-space and PatLoc
imaging schemes using the theory developed in Sections 7.37.3 and 7.47.4. The final im-
age for both schemes was 256× 256. Two PatLoc imaging schemes were examined
that consisted of orthogonal quadrupolar encoding fields with undersampling by
factors of 2 and 4 in the phase-encoding direction. This produces net acceleration
factors of 4 and 8 compared to traditional Fourier imaging. The sampling parame-
ters were chosen according to Nyquist criteria for combined PatLoc-SENSE acqui-
sition [1010]. The non-rectangular field-of-view was chosen to entirely encompass
the object. Two time-equivalent O-space schemes were defined consisting of 64
and 32 echoes representing “acceleration factors” of 4 and 8, respectively. Techni-
cally speaking, the acceleration factor for an O-space scheme is difficult to define
since any loss of resolution is not included. Nonetheless, we use the term to define
the number of echoes. The number of time samples was Nt = 512. The coil loca-
tions and all other parameters were identical to the low-resolution protocol above.
The variance of the reconstructed pixels for the PatLoc schemes were calculated
exactly by inverting small matrices as in (7.617.61). The O-space schemes do not pos-
sess an exploitable structure so matrix inversion is impractical; instead we use the
metric in (7.867.86) to approximate the variance.

Thirdly, nonlinear encoding was simulated using the PatLoc and O-space schemes
with acquisition parameters defined above. These nonlinear encoding schemes
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Figure 7.2: The numerical phantom used for simulations, taken from a T1 weighted
acquisition of a healthy brain.

were simulated using the numerical phantom in Fig. 7.27.2, which was obtained by
imaging a healthy cortex using a standard sequence with linear gradients. In these
simulations, the image intensity of the phantom is used to represent the object’s
magnetisation. Reconstructed images for O-space and PatLoc were generated from
this simulated data to provide concrete examples of our performance analysis. The
PatLoc image was reconstructed according to the Cartesian PatLoc reconstruction
algorithm described in [1010]. The O-space image was reconstructed using the Al-
gebraic Reconstruction Technique (or Kaczmarz algorithm [4545]) as in the original
O-space implementation [1111]. The images were reconstructed using data simu-
lated from the brain phantom.

7.5.2 Results

Figure 7.37.3 displays performance maps of the low-resolution O-space imaging regime.
The true variance is displayed in Fig. 7.3a7.3a and the second order approximation
metric in Fig. 7.3b7.3b. The absolute difference for each pixel between the two metrics
was calculated and the mean of this difference was ∼2%, which demonstrates the
close match between the proposed metric and the true variance. The empirical
variance of 500 reconstructions with independent noise realisations is presented
in Fig. 7.3c7.3c, which shows a variance map consistent with the theoretical analysis.
Figure 7.47.4 plots line profiles through the centre of the performance maps for the
low-resolution O-Space scheme in Fig. 7.37.3. Good quantitate agreement between
the variance measures is demonstrated, which reflects the usefulness of the pro-
posed approximate variance metric.

Fig. 7.57.5 displays the performance of PatLoc and O-space imaging schemes for
different acceleration factors. The PatLoc performance for four-fold and eight-fold
acceleration are shown in Figures 7.5a7.5a and 7.5b7.5b, respectively. The O-space perfor-
mance for equivalent acceleration factors is illustrated in Fig. 7.5c7.5c and 7.5d7.5d. The
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Figure 7.3: The (a)(a) actual, (b)(b) approximate and (c)(c) empirical variance of a low-
resolution O-space imaging scheme.
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Figure 7.4: Profiles along vertical lines through the centre of the performance maps
in Fig. 7.37.3. The actual (solid line), approximate (dashed line) and empirical (dotted
line) variance demonstrate good agreement.



186 Chapter 7. Noise performance for imaging with nonlinear encoding fields

 

 

0.5

1

1.5

2

2.5

x 10
−5

(a)
 

 

0

0.05

0.1

0.15

0.2

0.25

(b)

 

 

2

4

6

8

10
x 10

−4

(c)
 

 

0.5

1

1.5

2

2.5

3

x 10
−3

(d)

Figure 7.5: A high resolution variance map for PatLoc and O-space imaging
schemes. The PatLoc maps in (a)(a) and (b)(b) were calculated from the variance ob-
tained in Eq. (7.617.61) for accelerations factors of 4 and 8, respectively. The O-space
maps in (c)(c) and (d)(d) we calculated using our performance metric in Eq. (7.867.86) for
equivalent acceleration factors. Notice the different scales in each sub-figure.
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metric displayed is an approximation to the pixel variance as defined in (7.867.86).
Notice the different scales of each performance map. PatLoc imaging for modest
acceleration exhibits low reconstruction variance in the central region of the im-
age. This corresponds to the region where the resolution is poor indicated by a
large effective pixel size. The usual trade-off exists between resolution and SNR.
An acceleration factor of 8 leads to a large increase of the pixel variance, indicating
the transition from an overdetermined system to a square system of equations. In
this case the inversion in (7.757.75) becomes ill-conditioned, resulting in pixels with
large variance.The O-space scheme produces images with increased variance to-
wards the centre of the image, reflecting the loss of encoding provided by the coil
profiles. The performance of O-space imaging exhibits a gradual decline for in-
creasing acceleration factors. Although this was demonstrated though simulated
reconstructions in [1111], our metric quantifies the noise performance, based on a
theoretical analysis. Importantly, the metric is valid irrespective of the object being
imaged.

Fig. 7.67.6 presents the reconstruction results from PatLoc and O-space imaging
regimes with acceleration factors of R = 4 and R = 8. The PatLoc images in
Fig. 7.6a7.6a and 7.6b7.6b exhibit an obvious loss of resolution towards the centre. The
large effective pixel size in the centre blurs out both the object features and the
noise. Consequently, these regions have low variance as predicted by the metric
maps in Fig. 7.57.5. On the other hand, the O-space images in Fig. 7.6c7.6c and 7.6d7.6d have
noise spread across the image, with more uniform resolution. It should be noted,
however, that the resolution of O-space at the periphery is lower than PatLoc, and
it degrades significantly with increasing acceleration factor. This degradation of
resolution in O-space imaging is traded for only a modest increase in reconstruc-
tion variance from R = 4 to R = 8. The PatLoc examples maintain a fixed (but
spatially-varying) resolution for increasing acceleration, which results in a large
increase in pixel variance at R = 8. These results highlight that the developed
metric is useful to predict the noise performance of nonlinear imaging schemes.
However, noise performance alone is not sufficient to completely characterise the
imaging performance and the spatially-varying resolution must also be consid-
ered.

7.6 Discussion

In addition to deriving a suitable performance metric, the frame oriented approach
provides insight into a particular encoding scheme. We have demonstrated that
the frame operator for PatLoc elucidates the fundamental source of aliasing, de-
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(a) (b)

(c) (d)

Figure 7.6: Images reconstructed from simulated data with nonlinear encoding.
PatLoc images (a)(a) and (b)(b) are for acceleration factors of 4 and 8, respectively. O-
Space reconstructions (c)(c) and (d)(d) are for equivalent accelerations of 4 and 8, respec-
tively.
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fined by the Dirichlet kernel. PatLoc imposes a structure on the frame operator by
the careful selection of a nonuniformly spaced pixel basis. The structure allows for
an exact performance analysis and a simple reconstruction algorithm, which are
significant advantages of this scheme. The difficulty lies in displaying the nonuni-
form pixels and often the pixel values are interpolated to a regular grid. This inter-
polation reflects a loss in the fundamental resolution of the final pixels displayed.
Regions with low variance may have large bias due to interpolation, which results
in significant image blurring. On the other hand, O-space exhibits a relatively uni-
form variance map, but suffers from a loss of resolution for increasing acceleration.
Thus using variance as the sole metric will fail to capture the true imaging perfor-
mance. In other words, the variance is necessary but not sufficient to quantify the
performance of nonlinear encoding schemes. A complete characterisation of the
performance of nonlinear encoding schemes must jointly examine the SNR and
the spatially-dependent resolution. It is foreseeable that a hybrid of variance and
resolution metrics may prove the most useful for assessment. This is the direction
of our current work.

The metric presented in this chapter does not capture the tradeoff between
variance and resolution, and will be of limited use for encoding schemes with
large variation in resolution. These schemes require an appropriate pixel basis to
improve the conditioning of the reconstruction problem. This basis is naturally
defined for Cartesian PatLoc and is based on the Jacobian of the nonlinear map-
ping associated with the encoding fields. For arbitrary schemes such as those in
Chapter 66, no such Jacobian can be defined. In this case, a direct reconstruction of a
uniform pixel basis will amplify noise in regions with minimal encoding, since the
inherent pixel resolution is not compensated for. In reality, the reconstruction is
regularised and the proposed metric no longer valid. However, for schemes such
as O-space, which have a relatively constant resolution, the metric is an effective
measure of the reconstruction variance.

The development of nonlinear imaging schemes has revealed the need to con-
sider both the encoding fields and the coil sensitivities jointly in designing new
state-of-the-art imaging techniques. In additional to this encoding, spatial encod-
ing can be provided by tailored RF excitation profiles which excite a different sub-
set of spins every echo [122122]. In principle, the framework presented in this chapter
is readily applicable to the performance analysis of schemes that utilise a combi-
nation of nonlinear fields, multiple receive coils and tailored RF excitation.
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7.7 Conclusion

In this chapter, we have developed a framework to analyse the noise performance
of imaging schemes with general nonlinear encoding fields. Each scheme is uniquely
defined by the spatial encoding functions which have a contribution from the accu-
mulated phase function and the coil sensitivity. The encoding functions for a given
scheme define an associated frame operator, from which performance metrics are
derived. Highly structured schemes such as SENSE and PatLoc exhibit a structure
in the frame operator that can be exploited to provide the closed form performance
metrics reported in the literature. For arbitrary schemes such as O-space, the frame
operator can be used to define a tractable and intuitive noise metric based on the
covariance of the reconstructed pixels. We demonstrated the utility of this compu-
tationally efficient performance metric through simulation examples.

The continued advancement of MRI relies on the ability to quantitatively assess
new techniques as they are created. The development of suitable performance
metrics, such as those presented in this chapter, will help guide designers to find
optimised imaging schemes that utilise all possible degrees of freedom.
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Appendices

7.A Basis selection

The finite dimensional representation of the frame operator, described in Section 7.27.2,
was developed using a pixel basis. We now turn our attention to the precise defi-
nition of this basis. The basis should be capable of accurately representing the true
function while allowing efficient computation of the encoding matrix in (7.167.16).
Two common bases are the rectangular basis ζp(x) = 1

W rectW(x − xp) and the
Dirac delta basis χp(x) = δ(x− xp). The rectangular basis is more realistic while
the delta basis is better for computation. In this section we calculate the difference
between these two bases for simple linear encoding. We quantify the difference in
the reconstructed pixels between the delta basis and rectangular basis.

This investigation uses a one dimensional object with linear encoding to ex-
amine the differences between the bases although the analysis can be extended to
higher dimensions and more complicated encoding schemes. The phase function
we use for demonstration is

φi(x) = kix (7.93)

where ki is selected so the encoding functions, {Φq,i}, are the Fourier basis. Addi-
tionally, an ideal volume coil is assumed such that cl(x) = 1. The measurements
are given by

yi =
∫

m(x)e−jkixdx (7.94)

This equation is discretised with both χp and ζp. This is equivalent to making
one of the following approximations,

m(x) ≈ f (x) = ∑
j

f jχj(x) = ∑
j

f jδ(x− xj) (7.95)

m(x) ≈ g(x) = ∑
j

gjζ j(x) = ∑
j

gj
1

W rect
W

(x− xj) (7.96)

We denote the vector containing the coefficients of the delta basis approxima-
tion as f = [ f1, . . . , fN ]

′. Likewise, the coefficient vector for the rectangular basis
is g = [g1, . . . , gN ]

′ and the measurement vector is y = [y1, . . . , yNt ]
′. Applying the

approximations above the measurement equation can be written as two different
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matrix equations, depending on our choice of basis.

y = HE f (7.97)

y = GEg (7.98)

where Ei,n = e−jkixn is the Fourier matrix and the elements of the diagonal
weighting matrices, H and G, are calculated by

αn =
∫

χ(x)e−jknxdx (7.99)

which is the Fourier transform of the basis shape. This results in

H = diag(t1, . . . , tNt); ti = 1, i = 1, . . . , Nt (7.100)

G = diag(τ1, . . . , τNt); τi = sinc(Wki), i = 1, . . . , Nt (7.101)

We assume that both systems of equations can be inverted and note that E−1 =
1
n E′. Given the measurement vector, y, the reconstructed coefficients for both sys-
tems are

f = E−1H−1y (7.102)

g = E−1G−1y (7.103)

These coefficients are displayed as image pixels in the reconstructed image;
thus we are interested in the difference between both sets of coefficients. We cal-
culate ‖ f − g‖ and use the fact that, ‖E−1y‖ = 1√

n‖y‖,

f − g = E−1(H−1 −G−1)y (7.104)

‖ f − g‖ = 1√
n
‖(H−1 −G−1)y‖ (7.105)

We consider y with elements defined by the continuous integral in (7.947.94) and
assume that ki = (i − Nt/2)∆k where the frequency spacing, ∆k, is fixed (deter-
mined from the reciprocal of the FOV). Furthermore, we assume that the Fourier
transform of m(x) has support in the interval [−Ω/2, Ω/2]. Denote K = Ω

∆k
as the

number of non-zero measurements. Thus,

‖(H−1 −G−1)y‖2
2 = ‖ΥK(H−1 −G−1)y‖2

2 (7.106)

≤ ‖ΥK(H−1 −G−1)‖2
2 ‖y‖2

2 (7.107)
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where ΥK : CN×N → CN×K is a truncation operator that selects K columns of an
N × N matrix. We now consider ‖ΥK(H−1 − G−1)‖2

2 using the relation ‖C‖2 =√
λmax(C′C) where λmax(A) denotes the maximum eigenvalue of A. We compute

‖ΥK(H−1 −G−1)‖2 =

√
max

i∈[1,...,K]

(
t−1
i − τ−1

i

)2
(7.108)

= max
i∈[1,...,K]

∣∣∣t−1
i − τ−1

i

∣∣∣ (7.109)

= max
i∈[1,...,K]

∣∣∣∣1− 1
sinc(Wki)

∣∣∣∣ (7.110)

Recall for Fourier sampling ∆kW = 1
N so

‖ΥK(H−1 −G−1)‖2 = max
i∈[1,...,K]

∣∣∣∣1− 1
sinc(i/N)

∣∣∣∣ (7.111)

Since K ≤ N, the largest difference will occur at i = K so

‖ΥK(H−1 −G−1)‖2 =
1

sinc(K/N)
− 1 (7.112)

To analyse this we let x = πK
N and expand sin(x) in a Taylor series,

‖ΥK(H−1 −G−1)‖2 =
x

sin x
− 1 (7.113)

=
x− sin x

sin x
(7.114)

=
x− (x− x3

3! +O(x5))

(x− x3

3! +O(x5))
(7.115)

=
x3

3! +O(x5)

(x− x3

3! +O(x5))
(7.116)

= O(x2) (7.117)

Thus,

‖ f − g‖2 ≤
1√
N
‖ΥK(H−1 −G−1)‖2‖y‖2 (7.118)

‖ f − g‖2

‖y‖2
= O

(
N−

1
2

)
O
(

N−2) (7.119)

= O
(

N−
5
2

)
(7.120)

This analysis demonstrates that the difference between images reconstructed using
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a delta basis and rectangular basis decays rapidly for increasing N. In other words,
the difference between the delta basis and rectangular basis is negligible for a finely
spaced pixel grid. Although this is well accepted in the research community, a
rigourous analysis such as above has to the best of our knowledge, not appeared
in the literature.
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Conclusion

THE fundamental aim of MRI is to non-invasively determine the detailed struc-
ture and function of a human body. This information is used for the diagnosis

and treatment of patients as well as fundamental neuroscience and pathology. To
satisfy all these applications, ideally MRI would be able to classify tissue, detect
and localise diseases, and map different functions of the brain.

This ambitious goal is challenging for a multitude of reasons. The structure of
the body is made up of an enormous number of atoms. MRI is only sensitive to
atoms with a particular spin. Further, these spins are not directly observable; mea-
surements only represent the average behaviour of the relevant spins. To make
matters worse, the number of measurements is severely limited due to physical
constraints, hardware constraints and safety constraints. Reasonably, one can ex-
pect that limited information will be attainable from the measurements of such a
system.

The saving grace of MRI is also its main limitation – the ability to improve
one property of the system at the expense of another. These tradeoffs are either
inherent in the physical principles or imposed by the engineer.

The overarching conclusion of this thesis is the following. In order to maximise
the performance of MRI for a specific application, one must jointly consider accurate signal
models, algorithm design and acquisition strategies.

Although this statement is intuitive, the results in this thesis highlight several
areas where performance improvements can be made by following this principle.

8.1 Summary of original contributions

Chapter 44 examined the tradeoff in Fourier reconstruction between SNR (related
to sampling bandwidth) and image distortion. In the context of the estimation of
transverse relaxation times, this translates to a tradeoff between bias and variance.
A detailed analysis of the estimation problem revealed that the bias is often sub-
stantial when a simplified signal model is assumed. To overcome this, the estima-
tion problem was reposed using an accurate signal model, which incorporates the
image distortion. A Bayesian algorithm was developed using the improved signal

195
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model to overcome the bias/variance tradeoff. Improved results were demon-
strated at the expense of increased algorithm complexity and computation time.

Chapter 55 analysed the problem of estimating a distribution of relaxation times,
which is more representative of the underlying structure than the assumption of a
unique discrete component. However, it was shown that the accurate estimation
of some properties of this distribution is infeasible due to the spin averaging. It
was concluded from the results that although the location of the distribution com-
ponents can be accurately estimated, the distribution width cannot be determined
from typical measurements. Current state-of-the art techniques employ regularisa-
tion to improve the estimation results although this can unfavourably bias the dis-
tribution shape. This highlights the important point that one should not attempt
to extract more information than is available in the measurements. The alternative
proposed in this thesis is to estimate the locations of the distribution mass, assum-
ing a width of zero. This assumption is justified since the width has minimal effect
on the measurements; indeed this is the same reason the width cannot be esti-
mated. The resulting estimation problem was cast in a Bayesian framework, from
which a computationally efficient and reliable algorithm was developed. The algo-
rithm exhibits near-optimal performance and improves on the currently available
techniques.

Chapter 66 delved into the emerging field of nonlinear spatial encoding. A
unique property of these techniques is that, unlike linear encoding, the fundamen-
tal resolution is spatially varying. This create both challenges and opportunities.
A novel acquisition strategy was developed to improve the image resolution in a
user-specified region. The technique uses nonlinear encoding fields together with
the design of optimal gradient waveforms. In this way the spatially varying res-
olution inherent in nonlinear fields is exploited to improve the spatial encoding
in the region of interest. The result is an image with enhanced resolution in the
desired region at the expense of pronounced blurring in other regions. This direct
tradeoff is useful for applications that are only interested in a particular region.
This is often the case for brain imaging as practitioners may be focused on the re-
gion surrounding a brain tumour, or on the function of sub-cortical structures such
as the hippocampus. Another application is cardiac imaging where the acquisition
could be designed to optimally encode the heart region.

Chapter 77 revisited the basic image reconstruction problem applicable for en-
coding with nonlinear fields. The image reconstruction problem was recast using
frame theory to provide a novel perspective on the noise properties of existing
techniques. The source of aliasing and noise amplification for these techniques
was elucidated using the Dirichlet kernel. Additionally, a computationally effi-
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cient and intuitive noise metric was developed, based on an approximation of the
reconstructed pixel covariance. This novel metric is applicable to general encoding
schemes that use any combination of linear and nonlinear fields.

The work in this thesis underscores the importance of rigourously analysing
the signals obtained from MRI experiments. The accuracy of estimated biological
parameters was examined in Chapters 44 and 55. In both chapters, an initial analysis
lead to an improved signal model and estimation algorithm. The spatially varying
resolution inherent in nonlinear encoding fields was investigated in Chapter 66,
which lead to novel acquisition strategies. Finally, the noise variance associated
with image reconstruction of general encoding schemes was explored in Chapter 77,
which we anticipate will be useful to evaluate emerging new techniques.

8.2 Future work

Although impressive performance is achievable with modern MRI technology,
there are many opportunities for further enhancements. This thesis has demon-
strated several specific improvements that can be made to current state-of-the-art
techniques. Additionally, this work has confirmed that detailed signal analysis can
lead to new insights and the development of novel techniques. This paradigm can
also serve as a roadmap for future development.

8.2.1 Statistical estimation

The statistical estimation algorithms developed in this thesis are most useful for
situations with low SNR. In this case, improved signal models and computation-
ally demanding algorithms are required to extract the maximum amount of in-
formation available from the noisy measurements. Future research could apply
similar algorithms to the recent applications of portable MRI and ultra-low field
imaging, since these operate at inherently low SNR. The increased computation
and complexity is mitigated by the dramatic increasing in computing performance
in recent years. This, coupled with a reduction in hardware cost, makes the appli-
cation of advanced estimation algorithms feasible.

Further research can be conducted into the estimation algorithms developed
in this thesis. Improvements to the computational performance of the Gibbs sam-
pling algorithm of Chapter 44 is required to make this technique feasible in a clinical
setting. For example, the spatial variation of T2 could be modelled with a Markov
random field to capture the local similarities of biological tissue. This prior in-
formation would improve the sampling performance of the estimation algorithm.
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The progressive correction technique in Chapter 55 would benefit from a theoretical
analysis and proof that the posterior density approximation approaches the opti-
mal density. In principle, diffusion weighting could also be added to the CPMG
sequence and incorporated into the signal model, in order to distinguish the ex-
change component of the T2 model.

8.2.2 Nonlinear encoding

Nonlinear spatial encoding is still a relatively new idea and future research can
take a number of directions. Generalised encoding with multiple gradient chan-
nels incorporating linear and nonlinear fields adds degrees of freedom to the de-
sign of acquisition strategies. How to best utilise the extra degrees of freedom for
a given application remains an open question. The optimisation in Chapter 66 is
based on the single criteria of local k-space trajectories. Other factors such as noise
performance, receive coil geometries, and acquisition speed may be incorporated
into gradient waveform design.

A detailed investigation into peripheral nerve stimulation is required to verify
the hypothesis that nonlinear encoding can reduce the risk of nerve stimulation.
Although it is challenging to incorporate all factors that lead to peripheral nerve
stimulation, such a study will be necessary prior to the clinical adoption of nonlin-
ear encoding.

Chapter 77 analyses the SNR of general nonlinear encoding schemes. The per-
formance metric developed, although useful, is not perfect. The covariance ap-
proximation relies on a diagonally dominant frame matrix, which neglects the
structure of the off-diagonal terms. An ideal noise analysis would consider all the
nuances of the encoding scheme, without having to compute the entire covariance
matrix.

In addition to noise performance, further research is required into the resolu-
tion of nonlinear encoding schemes. Currently, resolution metrics are based on
the point spread function which depends on the reconstruction choice. A met-
ric that depends only on the encoding scheme would be useful to determine the
fundamental resolvability of neighbouring features in the presence of noise. Anal-
ogous to the Cramér-Rao lower bound, an ideal resolution metric would provide
a benchmark for reconstruction algorithms, not depend on them.

A complete characterisation of the imaging performance of nonlinear encod-
ing schemes requires a joint analysis of both noise and resolution. A metric that
combines both quantities would prove useful. The mean squared error naturally
combines the quantities of bias and variance into a single performance metric and
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is often used to benchmark different techniques. The prevalence of this error met-
ric suggests that researchers working on nonlinear encoding could benefit from an
analogous metric that combines SNR and resolution.

8.2.3 Signal modelling

There are signal dependencies other than those addressed in this thesis that are
often not modelled. These include magnetic susceptibility, diffusion, blood flow
and partial volume effects to name just a few. Simple assumptions about these
processes causes a mismatch between the assumed signal model and the actual
measurements. This is often referred to as ‘systematic error’ in MRI literature or
‘model uncertainty’ in signal processing literature. The mismatch is problematic
for image reconstruction and leads to non-convergent algorithms or ill-defined
artifacts. This problem could be alleviated by incorporating these effects into the
appropriate signal model and reconstruction algorithm.

Further research is needed to quantify the effect of model uncertainty on im-
age reconstruction and parameter estimation. As the boundaries of performance
are pushed and more information is extracted from noisy measurements, clini-
cians will need measures of certainty in order to completely trust the images and
parameter maps that are produce from an MRI scanner.
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