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Chapter 1

Introduction

1.1 Overview

THE subject of this thesis is target tracking and fusion under communication con-

straints for multi sensor surveillance systems. We estimate the state of the target

observed by a sensor by designing a filter best capable of handling uncertainties asso-

ciated with the dynamics of the target as well as uncertainties associated with sensor

measurements. The processing of the collected measurements is carried out at each sen-

sor platform and track state information is transmitted to a fusion center for maintenance

of the global track state. The communication channels between sensor platforms and the

global processing unit can be wired or wireless. In the literature, this form of tracking

is widely referred as distributed tracking. We study distributed tracking where we have

restrictions on communication bandwidth availability. In other words, we minimise the

communication load while ensuring the tracking efficiency is not degraded below a spec-

ified level. The communication between a sensor platform and the fusion center can be

two way (in the form of feedback from the fusion center) or just one way (from sensor

to the fusion center). Two way communication requires more communication channels

leading to increased bandwidth usage. In this work, we consider only one way commu-

nication, i.e., sensor transmits only.

The structure of a typical multi sensor network with one central processing unit is

as follows: Consider M sensors connected to a fusion center with forward link commu-

nications, i.e., sensor platform equipped with transmitter only while receiver resides at

the fusion center. In classical centralised tracking, every sensor sends its collected mea-

1



2 Introduction

surements to the fusion center on a dedicated communication channel and all tracking

is performed at the fusion center. The benefit of centralised tracking includes optimality,

however it consumes huge bandwidth and also demands highly reliable communication

channels. On the other hand, local tracking is performed at the sensor platform in dis-

tributed tracking. Each sensor is equipped with capabilities to maintain its local track and

can send information regarding track state to the fusion center. One of the major benefits

of distributed tracking is that local tracking remains intact even if communication links

are disrupted. Moreover, distributed tracking also helps to reduce the communication

load by providing the choice to transmit less bandwidth demanding data to the fusion

center. We adopt a distributed tracking approach to solve the problem of tracking under

bandwidth constrained situations.

In this thesis, we study parameter estimation and single target tracking both with and

without clutter. The communication requirement increases dramatically in centralised

tracking when we need to transmit target as well as clutter measurements to the fu-

sion center. Also, increasing clutter measurement density increases the communication

load. By adopting distributed tracking, we have control on what to transmit. Also in

distributed tracking, we can choose what track state information to send to the fusion

center. The transmission of estimated track state, equivalent innovations and tracklets

have been discussed in the literature.

The first contribution to the thesis is distributed tracking when we transmit equiva-

lent measurements (also known as tracklets) to the fusion center. The benefit of transmis-

sion of equivalent measurements over equivalent innovations is avoiding random walk

phenomenon. We are able to reduce communication load by reducing the dimensionality

of equivalent measurements. The compression of equivalent measurements is achieved

by a scaling matrix and a compression matrix. We also propose that rather than send-

ing equivalent measurements on every scan, we send them after 2, 3 or NS scans. This

results in a small performance loss when adaptive transmission of equivalent measure-

ments is used. This procedure helps in reducing communication requirements at the cost

of a minor loss in tracking performance. This approach is also applicable when clutter is

present.
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The second part of this thesis discusses distributed tracking in clutter. We assume the

tracking environment is heavily cluttered and the sensor collects object detections along

with clutter measurements. It is expensive to transmit all received measurements to the

fusion center, so we process these measurements at the sensor platform. The standard

Probabilistic Data Association Filter (PDAF) is used at the sensor platform. We calcu-

late the scaled sum of all received measurements falling inside the local PDAF gate and

transmit the resultant measurement to the fusion center. We propose a Compressed Filter

(CF) which operates on the received compressed measurements at the fusion center. Our

results show that the tracking performance of the Compressed Filter is promising. By

applying the proposed compression at the sensor node and using the proposed CF, we

are able to reduce the communication bandwidth while maintaining reasonable tracking

performance at the fusion center.

The third part of the thesis is a novel approach to distributed estimation and tracking.

We transmit only one (random) sample or particle of the local track posterior distribu-

tion at each time stamp to the fusion center. These samples are drawn independently. At

the far end, we update the weight of every received particle upto time k and the most

recent received particle exhibits highest weight. As we progress in time, the number of

received particles grows and our estimate increasingly improves. This idea is similar to

importance sampling however the target distribution for each received sample is differ-

ent at each time. The estimate is a weighted sum of all received samples upto the current

time. The bulk of computations at the far end are devoted to updating the weight of each

received sample. We study consistency of the above proposed estimator. We show that

this estimate is unbiased and the variance of the estimate is bounded.

We cover three distributed estimation/tracking methods and include simulations to

support the results.

1.2 Outline of Thesis

In this thesis, we mainly discuss distributed tracking under communication constraints.

We cover three distributed estimation/tracking methods and provide analysis and sim-
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ulations to support the results. Chapter 2 presents an overview of existing tracking al-

gorithms. We start with linear Bayesian tracking and proceed to non-linear trackers. We

discuss non-linear particle filters and certain variants. We also study target tracking al-

gorithms for cluttered environments. Finally, we discuss the use of adaptive importance

methods for tracking and parameter estimation.

A detailed discussion on use of equivalent measurements and scaled equivalent mea-

surements is presented in Chapter 3. We overview equivalent innovations and tracklets.

We include our proposed new method of dimensionality reduction for equivalent mea-

surement and show optimality via analysis and simulation.

We propose the Compressed Filter for distributed tracking in Chapter 4. We consider

tracking in a cluttered environment. The weighted sum of the measurements falling in-

side a local Probabilistic Data Association (PDA) tracker gate is transmitted to the fusion

center and the Compressed Filter is used to extract measurement information from the

received information. This work has been published [55].

Chapter 5 proposes a novel distributed tracking algorithm based on transmitting in-

dependently drawn samples/particles from the local posterior distribution to the fusion

center.

Convergence properties of the proposed estimator and sample weights are discussed

in Chapter 6. We also include simulations for the proposed particle based distributed

algorithm.

Conclusions and discussions of findings are outlined in Chapter 7. This chapter also

includes possible future extensions of the ideas presented in this thesis.

1.3 Major Contributions

We discuss distributed tracking and include three major contributions when low com-

munication bandwidth between a sensor platform and the central processing unit is im-

portant.

1. Transmission of compressed/scaled equivalent measurements is studied. Adap-

tive transmission of this information is explored in order to reduce communication
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load. We study several types of compression technique discussed in the literature.

We show that when we use the output matrix H as a compression matrix, we

achieve optimal tracking results at the fusion center.

2. The second major contribution is to propose and study a Compressed Filter for

tracking in clutter. A novel filter is proposed which operates on compressed re-

ceived measurement information. We compress received measurements at the

sensor platform by forming a weighted sum of target and clutter measurements

falling inside the tracking gate. We transmit the resultant compressed measure-

ment along with associated weights to the fusion center.

3. The third major contribution is the development of the new distributed estimation

algorithm based on transmission of random samples of the local posterior distri-

bution from a sensor platform to the fusion center. We transmit only one sample

of the local posterior distribution from the local sensor platform at every scan time

and update the weighting of all received samples at the fusion center. We show

that the proposed estimator is unbiased and variance of the estimator is bounded.

Furthermore, we study the properties of the weights and the estimator. We ex-

plore the concept of an adaptive importance density. Our results are developed

for a single sensor platform. These results can easily be extended to the multi

sensor case where each sensor transmits only one sample from its local posterior

probability distribution function to the fusion center. The global tracking is main-

tained at the fusion center using all samples received at time k and previous times

from all sensors in the network.





Chapter 2

Overview of Tracking

This chapter overviews both centralized tracking and distributed tracking. We also discuss tracking

with and without clutter. We formulate the problem of tracking and discuss linear and non-linear

tracking filters. The traditional Kalman filter and some of its variants for non-linear problems are

discussed first. Also, we include recent developments on particle filter type estimation and tracking.

2.1 Introduction

TARGET tracking has been widely studied in the literature including applications

in defence, video, vehicle tracking, robot movement tracking, civil aviation and

many more. In target tracking, we receive measurements from sensors and estimate pa-

rameters of interest based on the received measurements. Received measurements are

always noisy and tracking algorithms must mitigate the effect of measurement noise and

process uncertainty.

A target tracking system consists of three main subsystems. The first subsystem is the

sensor which makes measurements of the surveillance region. There are various kinds

of sensors to perform the sensing work. One of the most commonly deployed sensors is

Radio Detection and Ranging (RADAR).

A traditional RADAR transmits electromagnetic waves of a certain frequency and

beam shape and then records the reflected waves from the surveillance region. Sig-

nal processing techniques are then used to find any target detection information em-

bedded in the received wave. The sensor and signal processing constitute the sensing

unit in the target tracking system. The second part of a generalised tracking system is

a tracker/estimator. The sensing unit provides measurement information to the tracker.

7



8 Overview of Tracking

The job of the tracker is to process these measurements and estimate the state of any tar-

get. The state of the target can be defined by attributes of the target such as its kinematics,

shape and even type of the target. The performance of the estimator is defined by some

objective functions with the aim to keep tracking errors as small as possible. The subsys-

tem which performs appropriate control actions based on the tracker output is the third

part of a tracking system. An operator observing the target state initiates commands to

control the surveillance environment. For example, in civil aviation, the flight controller

observes the target tracking results and instructs the targets to behave in a prescribed

manner.

The focus of this thesis is to study the second part of a target tracking system, i.e.,

designing trackers or estimators which process noisy sensor measurements. In 1960, R. E.

Kalman introduced modern tracking based on the state space models through his pioneer

work on recursive filtering [38].

2.2 Bayesian Tracking Problem Formulation

In this section, we formulate the problem of tracking in a state space framework and

provide solutions based on Bayesian statistical inference. We start with a mathematical

description of the stochastic filtering problem and then reduce this to the special linear

Gaussian case. Consider the following dynamic system and observation equation

ẋt = f (xt, ut, νt, t)

yt = h(xt, ut, wt, t)
(2.1)

where xt represents the state vector of the system with dimension n, yt represents the

measurement vector with dimension p , ut is the system input, νt is the process noise

entering the system, wt is the measurement noise encountered due to sensor imperfec-

tions and t is time. The functions f and h are state transition and measurement functions

defined as f : Rn 7→ Rn and h : Rn 7→ Rp respectively.

The dynamical system defined above in equation (2.1) contains the state evolution

equation and the measurement equation in continuous time. For implementation of so-
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lutions we need to look at the discrete time form of above system,

xk+1 = f (xk, uk, νk, k)

yk = h(xk, wk, k)
(2.2)

where νk and wk are discrete time process and measurement noises respectively and can

be considered as white noise sequences. Also, in most of the tracking problems we con-

sider the state equation without input, i.e., uk = 0.

We adopt a Bayesian approach to the development of an estimator for the system de-

scribed in equation (2.2) as discussed in [32]. The essence of all Bayesian filtering is to

update the prior distribution of the state with new measurement information resulting

in the posterior distribution of the state. The posterior distribution is proportional to the

product of the likelihood of the current measurement and the prior distribution of the

state (Bayes rule). The posterior distribution calculated at time k − 1 becomes the prior

distribution at time k and is propagated forward using the target dynamics. The param-

eters of the posterior distribution such as mean and covariances tell us the performance

of our estimator when compared with true parameters. The basic mathematical structure

of the Bayesian solution can be written as below.

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

C
(2.3)

where p(xk|Yk) is the posterior distribution of state x utilising all the measurements re-

ceived until time k, p(yk|xk) is the likelihood of measurement yk, p(xk|Yk−1) is the pre-

dicted probability distribution function of state x and C is a normalisation constant.

We denote the prior distribution of x at time k− 1 conditioned on the measurement

set Yk−1 received upto time k− 1 as p(xk−1|Yk−1). The predicted state density p(xk|Yk−1)

can be calculated by the Chapman-Kolmogrove equation

p(xk|Yk−1) =
∫

xk−1

p(xk|xk−1)p(xk−1|Yk−1)dxk−1 (2.4)

where p(xk|xk−1) is state transition density and it depends on the mapping function f .
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The normalization constant C in equation (2.3) is calculated using

C = p(yk|Yk−1) =
∫

xk

p(yk|xk)p(xk|Yk−1)dxk (2.5)

where p(yk|Yk−1) is called the predicted measurement distribution. The posterior distri-

bution of state xk becomes

p(xk|Yk) =
p(yk|xk)

p(yk|Yk−1)

∫
xk−1

p(xk|xk−1)p(xk−1|Yk−1)dxk−1 (2.6)

Finding the optimal solution of equation (2.6) is intractable in general. However in

certain cases we can develop useful recursive algorithms. The first major assumption

is that we consider additive process and measurement noises. The discrete state space

model described in equation (2.2) with no input, i.e., uk = 0 can be written as

xk+1 = f (xk) + νk

yk = h(xk) + wk

(2.7)

In this case, the transition density p(xk|xk−1) and likelihood of measurement yk can be

written as

p(xk|xk−1) = pνk( f−1(xk, xk−1))| 5xk f−1(xk, xk−1)| = pνk(xk − f (xk−1))

p(yk|xk) = pwk(h
−1(yk, xk))| 5yk h−1(yk, xk)| = pwk(yk − h(xk))

(2.8)

The posterior density of the additive noise model defined in equation (2.7), after sub-

stitution of the transition density and likelihood from equation (2.8) in equation (2.6)

respectively, becomes

p(xk|Yk) =
pwk(yk − h(xk))

∫
xk−1

pνk(xk − f (xk−1))p(xk−1|Yk−1)dxk−1∫
xk

pwk(yk − h(xk))p(xk|Yk−1)dxk
(2.9)

The Bayesian equation (2.9) is the foundation for many tracking algorithms because

in most practical tracking scenarios the disturbances are additive. Until now, we have

not made any assumptions about the distributions of the plant and sensor disturbances
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and have not discussed the nature (linearity or non-linearity) of the mapping functions.

The closed form solution of equation (2.9) ( also known as Kalman filter) can be de-

rived by assuming Gaussian noise models and linear mappings f and h. The first as-

sumption is that the object dynamics and measurement equations are linear and can be

written as:

xk+1 = Fkxk + νk

yk = Hkxk + wk

(2.10)

where Fk is the state transition matrix and Hk is the measurement output matrix with

appropriate dimensions. When these matrices are static (not changing with time), we

simply drop the subscript k. The second assumption is that the process and measure-

ment noises νk and wk are white Gaussian sequences with means 0 and covariances Qk

and Rk respectively. We also assume the process noise sequence νk is uncorrelated with

the measurement noise sequence wk. The density of the state x is Gaussian at every time

and can be fully described by two parameters, i.e., mean and covariance matrices. The

closed form solution of the dynamic model defined in equation (2.10) with linear Gaus-

sian assumptions is the well known Kalman Filter (KF) presented in Algorithm 1. At

time k− 1, the prior probability distribution function (pdf) of the state xk can be written

as p(xk−1|Yk−1) = N(xk−1; Hx̂k−1|k−1, Pk−1|k−1).

The Kalman filter is optimal (Minimum Means Square Error and Maximum a Pos-

teriori) under linear Gaussian assumptions and is also the minimum variance estimator.

There are various forms of the Kalman filter such as the Covariance filter, the Information

filter and the Square Root filter as discussed in [2] , [30] and [36].

2.2.1 Non-Linear Bayesian Filtering

In practical target tracking, linear Gaussian assumptions do not always hold and the

Kalman filter results are not optimal and the target tracking problem becomes more com-

plex. However, the general Bayesian approach is still applicable and approximations can

be developed.
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Algorithm 1 : Recursion Cycle of Kalman Filter

1: Prediction Step

x̂k|k−1 = Fx̂k−1|k−1

Pk|k−1 = FPk−1|k−1FT + Q

2: Compute Kalman gain Kk, predicted measurement ŷk|k−1 and covariance of innova-
tions

Kk = Pk|k−1HTS−1
k

ŷk|k−1 = Hx̂k|k−1

Sk = HPk|k−1HT + R

3: Update Step with measurement yk

x̂k|k = x̂k|k−1 + Kk(yk − Hx̂k|k−1)

Pk|k = (I − Kk H)Pk|k−1(I − Kk H)T + KkRKT
k

4: Resulted posterior pdf p(xk|Yk) = N(xk; Hx̂k|k, Pk|k)

Two important approaches for solving non-linear target tracking problems are now

discussed. The first is linearisation of the non-linear functions f and h as defined in equa-

tion (2.7). This linearisation is usually performed using a Taylor series expansion. After

performing the linearisation, the Kalman filter equations are used to update the prior

pdf. The extended Kalman filter is an example of a linearisation filter using Taylor series

expansions. The second approach is to find the moments of the non-linearly transformed

random variables. A further method called the Unscented Kalman filter is also described

below.

2.2.2 Extended Kalman Filter

The Extended Kalman Filter (EKF) uses a Taylor series approximation to the non-linear

functions f (.) and h(.). The distribution of disturbances and state are still considered

Gaussian. The propagation and update steps follows the Kalman filter equations. The

details of derivations of EKF can be found in [36], [14] and [2].
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Linear Approximation of f and h

In this subsection, we review the process of linearisation of non-linear functions f and h

defined in equation (2.7). Full details of the complete derivation of EKF can be found in

[14].

First we write the Taylor series expansion of f (xk−1) at x̂k−1|k−1

f (xk−1) = x̂k−1|k−1 +
∞

∑
j=1

1
j!
(⊗j

i=1)OxT f (x)|x=x̂k−1|k−1(⊗
j
i=1(xk−1 − x̂k−1|k−1))

where, for a vector a = [a1, a2, ..., an], Oa = [∂/∂a1, ∂/∂a2, ..., ∂/∂an] and ⊗ denotes the

Kronecker product. The classical EKF assumes that the first two terms of the Taylor ex-

pansion defined above are sufficient and we can neglect the higher order terms. Therefore

f (xk−1) can be written as

f (xk−1) ≈ f̂ (xk−1) = x̂k−1|k−1 + Fk(xk−1 − x̂k−1|k−1)

where Fk = OxT f (x)|x=x̂k−1|k−1

Similarly, we can find the Taylor series expansion of h(xk−1) at x̂k−1|k−1 as

h(xk) = x̂k|k−1 +
∞

∑
j=1

1
j!
(⊗j

i=1)OxT h(x)|x=x̂k|k−1(⊗
j
i=1(xk−1 − x̂k|k−1))

Ignoring the higher order terms, we can write h(xk) as

h(xk) ≈ ĥ(xk) = x̂k|k−1 + Hk(xk−1 − x̂k|k−1)

where Hk = OxT h(x)|x=x̂k|k−1

The EKF is one of the most popular choices for non-linear tracking problems. How-

ever the Gaussian approximations used by the EKF are often a poor approximation result-

ing in unacceptable performance. In such situations, the EKF gives misleading tracking

results and therefore we need to look for other solutions. One cycle of EKF is summarised

in Algorithm 2.
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Algorithm 2 : Recursion Cycle of Extended Kalman Filter

1: Compute the linearisation of f at x̂k−1|k−1:

Fk = OxT f (x)|x=x̂k−1|k−1

2: Prediction Step

x̂k|k−1 = f (x̂k−1|k−1)

Pk|k−1 = FkPk−1|k−1FT
k + Qk

3: Compute the linearisation of h at x̂k|k−1:

Hk = OxT h(x)|x=x̂k|k−1

4: Compute Kalman gain Kk, predicted measurement ŷk|k−1 and covariance of the inno-
vations

Kk = Pk|k−1HT
k S−1

k

ŷk|k−1 = h(x̂k|k−1)

Sk = HkPk|k−1HT
k + Rk

5: Update Step with measurement yk

x̂k|k = x̂k|k−1 + Kk(yk − Hx̂k|k−1)

Pk|k = (I − Kk Hk)Pk|k−1(I − Kk Hk)
T + KkRkKT

k

6: Resulted posterior pdf p(xk|Yk) = N(xk; Hx̂k|k, Pk|k)

2.2.3 Unscented Kalman Filter

Julier and Uhlmann [35] proposed a new filter the Unscented Kalman Filter (UKF) us-

ing a novel unscented transformation which overcomes some of the limitations of the

EKF. The unscented Kalman filter assumes a Gaussian distribution for the state however

the Gaussian distribution is approximated using deterministic sampling techniques. The

difference between the Monte Carlo approximation of a distribution and the UKF ap-

proximation is in the random and deterministic selection of samples, respectively. These

samples are called sigma points in the UKF approximations and a selection procedure

was firstly proposed in [35].
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Algorithm 3 : Recursion Cycle of Unscented Kalman Filter

1: Set the sigma points χ1
k−1, χ2

k−1, ..., χs
k−1, with associated weights w1

k−1, w2
k−1, ..., ws

k−1
to match mean x̂k−1|k−1 and covariance Pk−1|k−1 at time k− 1

2: Perform transformation of sigma points using true non-linear function of state

χi
k|k−1 = f (χi

k−1)

where i = 1, 2, ..., s is index of all sigma points, s = 2n + 1 is number of sigma points
and n is dimension of state vector.

3: Prediction Step

x̂k|k−1 =
s

∑
i=1

wi
k−1χi

k|k−1

Pk|k−1 =
s

∑
i=1

wi
k−1(χ

i
k|k−1 − x̂k|k−1)(χ

i
k|k−1 − x̂k|k−1)

T + Qk

4: Update sigma points χ1
k , χ2

k , ..., χs
k, with associated weights w1

k , w2
k , ..., ws

k to match
mean x̂k|k−1 and covariance Pk|k−1 at time k

5: Perform transformation of sigma points using true non-linear function h of measure-
ment

κi
k = h(χi

k)

6: Compute Kalman gain Kk, predicted measurement ŷk|k−1 and covariance of innova-
tions

ŷk|k−1 =
s

∑
i=1

wi
kκ

i
k

Sk =
s

∑
i=1

wi
k(κ

i
k|k−1 − ŷk|k−1)(κi

k|k−1 − ŷk|k−1)
T + Rk

Kk =
s

∑
i=1

wi
k(χ

i
k − x̂k|k−1)(κi

k|k−1 − ŷk|k−1)
T

7: Update Step with measurement yk

x̂k|k = x̂k|k−1 + KkS−1
k (yk − Hx̂k|k−1)

Pk|k = Pk|k−1 − KkS−1
k KT

k

8: Resulted posterior pdf p(xk|Yk) = N(xk; x̂k|k, Pk|k)
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In the unscented Kalman filter, sigma points are chosen carefully and their respective

weights are calculated. The propagation of these sigma points uses the non-linear state

functions and all sigma points are updated using the traditional Kalman filter update

procedure. The unscented Kalman filter is outline in Algorithm 3.

Both the EKF and UKF are non-linear filters incorporating a linearisation procedure

for the state transition function and measurement output function. Both filters use the

same Gaussian distribution for the state and therefore the standard Kalman filter update

procedure can be used to find the parameters of the posterior pdf of the state under an

additive noise assumption. However, the Gaussian assumption of the state pdf no longer

holds in most of the practical problems whose true state is bimodal or heavily skewed.

Therefore, the system becomes non-linear and non-Gaussian and the Kalman type equa-

tions no longer hold. In order to solve non-linear and non-Gaussian tracking problems,

we adopt procedures for approximating a general pdf. Approximate grid based methods

are widely used for approximating a pdf using weighted samples.

2.2.4 Approximate Grid Based Methods

In this subsection, approximate grid based methods are discussed for non-linear and non-

Gaussian dynamical systems. The measurement and process disturbances are no longer

considered Gaussian distributed. The idea is to deal with real problems by relaxing the

assumptions made for the previously discussed tracking algorithms.

In approximate grid based methods, we discretize the state space. Consider the state

of the system described in equation (2.7). At time k − 1 the region is divided into n

sub-regions denoted as xi
k−1 for i = 1, 2, 3, ..., n with associated weight of wi

k−1, with

∑n
i=1 wi

k−1 = 1. Using approximate grid based method, the pdf of the state at time k− 1

is approximated by

p(xk−1|yk−1) ≈
n

∑
i=1

wi
k−1|k−1δ(xk−1 − xi

k−1) (2.11)

where δ(.) is Dirac delta function and xk−1 is the true state of the system at time k− 1.
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Algorithm 4 : Recursion Cycle of a Grid Based Approximate Filter

1: Approximate prior pdf of p(xk−1|yk−1)

p(xk|yk−1) ≈
n

∑
i=1

wi
k|k−1δ(xk − xi

k)

2: Select grid points at time k, x1
k , x2

k , ..., xn
k

3: Compute the predicted weights wi
k|k−1 for each i

4: for n = 1 to k do

5:

wi
k|k−1 =

n

∑
m=1

wi
k−1|k−1 pνk(xi

k − f (xm
k−1))

6: end for

7: The predicted pdf p(xk|yk−1) can be approximated by with predicted weights:

p(xk|yk−1) ≈
n

∑
i=1

wi
k|k−1δ(xk − xi

k)

8: Calculate updated weights wi
k|k for each i

9: for i = 1 to n do

10:

wi
k|k =

n

∑
m=1

wi
k|k−1 pwk(yk − h(xi

k))/
n

∑
m=1

wm
k|k−1 pwk(yk − h(xm

k ))

11: end for

12: The updated pdf p(xk|yk) can be approximated by with updated weights:

p(xk|yk) ≈
n

∑
i=1

wi
k|kδ(xk − xi

k)

13: State estimate can be computed as

x̂k|k =
n

∑
i=1

wi
k|kxi

k (2.12)
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A tracking filter based on approximate grid methods is also called as Point Mass Filter

(PMF) and its derivation using a Bayesian framework is included in [15]. Starting with

an approximate distribution of the state p(xk−1|yk−1) at time k − 1, the predicted and

updated approximate distributions are

p(xk|yk−1) ≈
n

∑
i=1

wi
k|k−1δ(xk − xi

k) (2.13)

p(xk|yk) ≈
n

∑
i=1

wi
k|kδ(xk − xi

k) (2.14)

One version of the grid based approximate filter is described in the Algorithm 4. The

approximation of the posterior pdf depends on the selection of the grid regions. A dense

grid will give better performance however the computation load will increase. The prob-

lem of selection of the grid, based on the prior distribution is discussed by Bucy et al in

[9]. Computational complexity is another major issue in implementing Algorithm 4. Due

to these computational issues, grid based methods have failed to attract practical use.

2.2.5 Sequential Monte Carlo Based Filters

In this subsection, we discuss various flavours of Sequential Monte Carlo (SMC) simula-

tion based filters also known as Particle Filters (PF). As discussed above Kalman filters

solve the filtering problem for linear-Gaussian systems optimally. However non-linear

systems with Gaussian state distributions are sub-optimally solved using methods such

as EKF and UKF following the same KF based framework. In subsection 2.2.4, we dis-

cussed the brute force grid based approaches to solve the non-linear and non-Gaussian

systems. We considered approximating the continuous state space by n discrete parti-

tions and then using an approximation of the posterior pdf of the state with n partitions.

This approximation comes with several drawbacks. The computational complexity is an

another major hurdle to real time applications in the object tracking.

In order to solve the filtering problem for non-linear and non-Gaussian systems, re-

searchers have exploited Sequential Monte Carlo simulation based methods. The Monte

Carlo approach is a simulation based method to approximate the posterior distribution
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(usually referred as a target distribution) by using random samples drawn from another

distribution also called the sampling distribution or proposal distribution. The weights

of the drawn samples are calculated by the ratio of the target and sampling distributions.

This procedure is widely known as Importance Sampling (IS) [58]. In a Bayesian esti-

mation scenario, our objective is to find the posterior pdf by having measurement and

prior information. Using Sequential Monte Carlo simulation methods, we approximate

the posterior pdf by drawing random samples from some sort of proposal distribution

and weights are updated using received measurements.

Pioneer work of introducing Sequential Monte Carlo simulation based methods for

solving non-linear and non-Gaussian filtering problems was carried out by Handschin

et al [29] in 1969. In [29], the authors proposed a novel approach of finding conditional

expectation of non-linear and non-Gaussian systems. In 1970, Handschin [28] proposed a

framework for recursive tracking using SMC simulation based methods. However, these

methods failed to attract widespread use until their re-birth by Gordon et al in 1993.

Monte Carlo approximation methods have received huge attention for target tracking

and estimation in recent decades due to their ability to handle non-linearities and their

computational practicability. Particle filters are the most famous among the Sequential

Monte Carlo methods. The basic structure of particle filters is covered in [12] and [1].

The core idea behind the theory of particle filters is approximating estimates by us-

ing a weighted sum of particles (samples) and the weights of the particles are calculated

by the ratio of the target and sampling distributions. Since the weight update process

depends on the target as well as sampling distributions the choice of the sampling distri-

bution is of critical importance. Some of the basic types of sampling densities also known

as importance functions are discussed in [1]. Simandle et al [63] discusses the use of var-

ious sampling densities and compares their tracking results. The concept of adaptive

importance sampling in a particle filter is discussed in [54], [20] and [17]. The limita-

tions of hardware implementation of particle based tracking algorithms are discussed in

[63] and are solved in [66] by taking into account the efficiency of the filter by estimat-

ing the parameters of the sampling density recursively. The consistency of Monte Carlo

approximation type algorithms is important and needs to be addressed for almost every
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algorithm based on this method. Heijden [31] discusses consistency checks for particle

type filters but not including consistency checks for adaptive importance sampling. The

most recent paper by Marin et al [43] discusses the consistency of adaptive multiple im-

portance sampling methods. In this approach, the number of the drawn samples per scan

is fixed but with time varying importance density.

There are several variants of the filters using Sequential Importance Sampling (SIS)

techniques. The bootstrap filter is one of the first SIS based filters proposed by Gordon

et al [27]. The algorithm of the basic SIS based filter is outlined in Algorithm 5 and a

derivation can be found in [15].

The performance of particle filters depends on the choice of proposal density as well

as the number of samples chosen and has been discussed extensively in the literature [1].

The derivations of various kinds of particle filters are included in [15]. Discussion of the

implementation of particle filters is given in [1] with pseudo-code of several variants of

the particle filters.

Algorithm 5 : Recursion Cycle of Bootstrap Filter

1: At time k− 1, we have xi
k−1, wi

k−1 for i = 1, 2, .., n
2: for i = 1 to n do
3: Re sampling : Find the mixture index pi using rule P[pi = t] = wt

k−1
4: Draw samples of process noise νi

k using its distribution
5: Propagate sample xi

k−1
xi

k = f (xpi
k−1) + νi

k

6: Calculate the update weight

qi
k = pwk(yk − h(xi

k)) (2.15)

7: end for
8: Update and normalize the weights of all samples

wi
k = wi

k−1qi
k/

n

∑
l=1

wl
k−1ql

k

9: State estimate can be computed as

x̂k|k =
n

∑
i=1

wi
kxi

k (2.16)
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2.3 Bayesian Target Tracking in Clutter

In this section, we discuss target tracking in clutter. So far, we have discussed single

target tracking with the following assumptions:

1. Targets are point targets

2. Targets are always detectable

3. Sensors receive only target detections

4. No clutter in the surveillance region

However, in practical target tracking problems, we have to deal with cluttered environ-

ments and uncertainty associated with the origin of measurements. Sensors receive a

set of the measurements including target measurements and clutter measurements. The

question of how these measurements contribute to optimal target tracking is answered

by data association algorithms. Each measurement plays a role in the update step of state

estimation related to its probability of being a target measurement.

Sensor(s) receives a set of detections and not all of these detections originate from

valid targets. Sittler introduced the concept of using a validation gate around the pre-

dicted state of the measurement in his pioneer work [64]. Only measurements falling

inside a validation gate are used to update a track. The gate is a volume of surveillance

space centered around the measurement prediction point. The size of the gate is set so

that target measurements are highly likely to be found in the gate. Even after applying

the gate, there can be zero or more than one measurement inside the gate. Each measure-

ment falling inside the gate can be one of the following three events. All these events are

mutually exclusive for the infinite resolution sensor case.

1. Target detection

2. Clutter detection

3. Measurement is from other target/track

In the literature [15], associating measurements to the above events is widely known

as the data association problem, i.e., to differentiate between the target and clutter mea-

surements. Following the pioneer work of Sittler, tracking filters based on data associa-

tion methods have been discussed extensively in the literature, for example [15], [62], [8]
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and [7].

Optimal target tracking algorithms based on data association requires all previous

scans of measurement informations however it is not possible to retain and process the

full history of scan data due to computational limitations. The algorithms discussed in

this chapter use both single scan data and multiple scan data for data associations. These

algorithms fall under the category of sub-optimal target trackers for cluttered environ-

ments.

The simplest data association methods using a validation gate is the nearest neigh-

bour method. In this method, we choose the nearest measurement to the predicted mea-

surement position and this selected measurement is used to update the track state. A

filter based on nearest neighbour data association typically uses the Kalman filter equa-

tions and is known as the Nearest Neighbour Filter (NNF) [62]. The version of the NNF

for multi-target tracking is called the Global NNF (GNN) and is covered in [8]. In the

GNN filter, one measurement is assigned to only one track based on minimising the sum

of the distances of the assigned measurements to the associated track. There are several

drawbacks of filters using nearest neighbour data association techniques including track

loss and poor tracking performance for manoeuvring targets.

In the nearest neighbour filter, we use only one measurement and discard other mea-

surements although they may be in close proximity of the predicted measurement posi-

tion. It is likely that we may not use the true target measurement for updating the track

state and instead use one of the clutter measurements. This idea suggests that every mea-

surement inside the track gate can be a target measurement with certain probability. Bar

Shalom et el [4] proposed a data association method utilising all measurements inside

the track gate. The Probabilistic Data Association Filter (PDAF) is based on evaluating

the probability of all measurement being target measurements. The update step of the

PDAF filter consists of updating the track state using all measurements inside the vali-

dation gate. The resulting conditional estimates are then combined to give one posterior

pdf of the state. The PDA filter outperforms NNF in terms of both track loss and track-

ing performance. The multi target tracking variant of the PDAF is called the Joint PDAF

(JPDAF) and was proposed by Bar Shalom in [62]. The JPDA filter discussed in [62] uses
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only current scan measurements for joint data associations. In 1993, Rocker proposed a

version of the multiple scan JPDA which not only uses the current scan measurements

but also previous scans measurements for joint data associations [60]. Both versions of

the JPDA filter are used for multiple target tracking however computational requirements

increase exponentially with the increase in the number of measurements and number of

the targets. Kirubarajan et al [39] presented an overview of the target tracking algorithms

using probabilistic data association methods for single as well multiple target tracking in

clutter.

Standard probabilistic data association methods (PDA, JPDA) do not include the un-

certainties associated with appearance and disappearance of targets in the surveillance

space. The existence of a target in a surveillance space is assumed to be certain. However

in the practical target tracking problems, targets can be lost, new targets can appear and

false tracks can be initialised with clutter measurements. The idea of including the proba-

bility of target existence in the probabilistic data association based target tracking systems

was introduced by Musicki et al [46]. The filter including the probability of target exis-

tence in its design is called the Integrated PDA (IPDA) filter. False track discrimination

can be performed in IPDA by examining the track existence statistics. At each scan, the

probability of target existence is updated along with the track filter update. The compu-

tational requirements for the IPDA filter are only slightly higher than conventional PDA.

Similar to the JPDA [62], the joint IPDA (JIPDA) has been developed for multiple target

tracking in clutter [45]. In JIPDA, each track is maintained using its probability of target

existence and tracks with very low probability of target existence are terminated. The

demanding computational requirements of JIPDA led to the development of computa-

tional efficient versions of multiple target tracking filters such as Linear JIPDA (LJIPDA)

and Linear multitarget IPDA [15].

All IPDA based algorithms discussed so far use only current scan of data. Musicki

et al proposed the Integrated Track splitting (ITS) filter for multiple target tracking [48] ,

[47]. ITS uses more than one scan of the measurement history for updating the probability

of track existence within an IPDA based framework. Finite set based target tracking

algorithms are also discussed in literature [15].
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2.4 Summary

In this chapter, we briefly overviewed target tracking algorithms. We examined the com-

monly used linear and non-linear filters. Particle filters are also discussed. We included

the basic algorithms for target tracking in cluttered environments. In the following chap-

ters, we will discuss distributed tracking and estimation with a focus on algorithms suit-

able for bandwidth constrained communication links between sensors and global track-

ing systems.



Chapter 3

Target Tracking Using Scaled
Equivalent Measurements

In this chapter, we consider distributed target tracking under communication constraints. This

work comprises the first major contribution of this thesis. Performance of tracking improves when

using distributed sensor fusion due to the availability of more information. However, we often face

bandwidth restrictions for transmission of measurements of locally tracked states to the fusion center.

This chapter describes the information fusion problem where we have such bandwidth constraints. We

propose that sending measurement components of the full state equivalent measurements at the sensor

node has advantages over sending the full state equivalent measurements or local estimates. Global

filtering improves when scaled inverse equivalent measurements are used rather than scaled equiv-

alent measurements. Coder operating characteristic curves for a fixed bandwidth channel, show the

optimal scan interval for sending the scaled equivalent measurements to the fusion center. Our simu-

lations also show that the optimal number of bits required to encode scaled equivalent measurements

is independent of the transmission frequency. We observe that transmitting scaled information with

lower encoding errors and lower frequency is better than transmitting with higher encoding errors

and higher frequency when there is a constraint on bandwidth.

3.1 Introduction to Distributed Tracking

TARGET tracking with spatially distributed sensors and with constraints on com-

munication resources such as bandwidth, is widely discussed in the literature. In

a traditional spatially distributed sensor network, sensors collect target measurements in

the surveillance area and transmit them to the fusion center where tracking is performed.

The fusion center fuses the received measurements and updates the track of the target be-

ing followed. It could be deduced from information theory that more information leads

25
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to better tracking. However sending the measurements to the fusion sensor can be expen-

sive in terms of bandwidth usage. Under constraints on bandwidth, instead of sending

whole measurements, we look for parts of measurements which carry useful information

and need less bandwidth to transmit.

When the primary objective is tracking performance in the mean square error sense,

the optimal architecture for tracking targets using spatially distributed sensors is a cen-

tralized architecture, where each node sends its measurements to the fusion center [8].

However, the centralized architecture comes with several drawbacks, consisting of high

bandwidth requirements, high vulnerability to attack, delay in transmission and recep-

tion, information received out of order etc [40].

Distributed or decentralized tracking overcomes some problems of the centralized

architecture. In distributed tracking each local sensor has the capability to perform local

tracking using its own measurement data and sends local state estimates to the fusion

center. Nonetheless, the problem becomes complex when received estimates from vari-

ous sensors are correlated with each other [41].

Transmitting local estimates in a decentralized architecture requires less bandwidth

when compared to a centralized structure. However, bandwidth requirements can be fur-

ther reduced by transmitting equivalent measurements and/or equivalent innovations

as discussed in [40] and [44]. Transmitting equivalent measurements effectively saves

bandwidth and proves to be a better approach as discussed in [6],[24], [21] and [22]. In

a decentralized architecture, degradations of tracking performance have been discussed

in [72] and [73]. In a centralized architecture, problems of bandwidth allocation are dis-

cussed in [65] and [61].

Although sending equivalent measurements instead of sensor measurements pro-

vides a significant decrease in bandwidth utilization, sending equivalent innovations

further saves bandwidth. However equivalent innovations transmission leads to random

walk phenomenon as discussed in [44] due to accumulation of encoding errors at the fu-

sion center. Transmitting equivalent measurements has advantages in the sense that we

send only useful information extracted from measurements. However all components

of the equivalent measurement (full state equivalent measurement) do not carry equally
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useful information. Therefore in our work, we propose to send only measurement com-

ponents of the equivalent measurements termed scaled equivalent measurements, which

further saves communication bandwidth.

The choice of filter at the fusion center is independent of the local filter. Global filter-

ing at the fusion center performs better when using inverse scaled equivalent measure-

ments as compared to scaled equivalent measurements. Therefore we use an information

filter update form at the fusion center using inverse scaled equivalent measurements.

We save bandwidth by reducing transmission frequency. We also propose that instead

of transmitting information every scan, we transmit after N scan intervals and observe

only a small performance degradation. Since full state equivalent measurement needs

more bits per scan to send as compared to scaled equivalent measurements, we can send

scaled equivalent measurements more frequently using the same bandwidth. We observe

that both full state and scaled equivalent measurements produce near optimal perfor-

mance when transmitting every scan with no bandwidth constraints. Our simulations

demonstrate that under bandwidth constraints sending scaled equivalent measurement

more frequently is better, when compared to sending full state equivalent measurements

less frequently .

The challenge in tracking using sensor networks is to utilize communication band-

width in an efficient way to keep tracking Root Mean Square Errors (RMSE) as small as

possible. However, we face larger errors than the optimal due to the loss of information

in encoding, transmission, and channel noise. We propose another algorithm to utilize

bandwidth efficiently. We incorporate a strategy of not transmitting the scaled equivalent

measurements on each scan but at some scan interval. Doing so, performance degrada-

tion is observed due to loss of information but it is small. This problem becomes more

interesting, when we are allocated fixed bandwidth channels to be used for each target

to be tracked for a certain time duration. We find that the performance of tracking de-

pends on the minimum number of bits used to encode data [40]. Therefore for a fixed

bandwidth budget, we allocate bits per scan based on the frequency of transmission. We

observe the optimal number of bits required to encode scaled equivalent measurements

is independent of the frequency of transmission. We use coder operating characteristics
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to find the optimal transmission scan interval for scaled equivalent measurements under

fixed bandwidth.

3.2 Problem Statement

A two dimensional surveillance space is considered. A single sensor scans the surveil-

lance space of area AS. The sensor under consideration performs local data processing,

i.e., local tracking. The sensor platform sends track data to the fusion center where global

tracks are maintained. We consider bandwidth constrained communication channel(s)

between the sensor and the fusion center. Figure 3.1 shows the structure of the system

under consideration. In the literature, this architecture falls under distributed or decen-

Sensor

Equivalent

Measurement

Generator

Encoder

Local

Estimator

(Kalman

Filter)

Sensors Platform

Transmission

Channel

Global TrackerDecoder

Fusion Center Platform

Figure 3.1: Overview of the decentralized tracking architecture

tralised tracking [41], and is useful under bandwidth constrained situations. Distributed

tracking provides flexibility over the choice between sending local estimates, equivalent

measurements or equivalent innovations.

We consider a track following the target trajectory described by

xk+1 = Fxk + νk (3.1)

where k represents sensor scan time, F is the target state transition matrix, and process

noise νk is a zero mean white Gaussian noise sequence with covariance matrix Q. The

sensor measurement model is

yk = Hxk + ωk (3.2)

where H denotes the measurement matrix and measurement noise ωk is a zero mean

white Gaussian noise sequence with covariance matrix R uncorrelated with process noise
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νk.

The traditional Kalman filter maintains local tracks at sensor nodes using sensor mea-

surements yk. For simplicity, we consider a single sensor and a single fusion center con-

nected via a bandwidth constrained communication channel. At each scan time k, the

sensor provides measurement yk and the local Kalman filter updates the track state ac-

cording to the standard Kalman filter recursion cycle given in equation (3.3).

x̂k|k−1 = Fx̂k−1|k−1

Pk|k−1 = FPk−1|k−1FT + Q

x̂k|k = x̂k|k−1 + Kk(yk − Hx̂k|k−1)

Pk|k = (I − Kk H)Pk|k−1(I − Kk H)T + KkRKT
k

(3.3)

where x̂k|k denotes the state estimate, Pk|k the state error covariance matrix, I is the iden-

tity matrix, (.)T is the transpose of a matrix and Kk is the Kalman gain, calculated by

Kk = Pk|k−1HT[HPk|k−1HT + R]−1

We calculate the equivalent measurements by employing an inverse filter at the out-

put of the Kalman filter and then convert this to scaled equivalent measurements at the

local sensor. We use expressions for equivalent measurements derived in [50] and modify

these to N-step equivalent measurements Zε,N and covariance matrix Rε,N , where N is a

positive non-zero integer. The frequency of transmission is 1
N . The local sensor transmits

N-step scaled equivalent measurements Zs
ε,N and covariance matrix Rs

ε,N to the fusion

center after compressing the information with a finite number of bits.

The fusion center receives encoded strings of Zs
ε,N and Rs

ε,N and decodes these into

Ẑs
ε,N and R̂s

ε,N . After decoding , we convert Ẑs
ε,N and R̂s

ε,N into the full state inverse equiv-

alent measurements, i.e., ŷε,N and covariance Matrix R̂−1
ε,N . The fusion center uses these

decoded inverse equivalent measurements to update the global information filter. The

next section explains fusion with the full state and scaled equivalent measurements.
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3.3 Fusion with Equivalent and Scaled Equivalent Measure-
ments

If we consider a Gaussian probability distribution function with error covariance matrix

Γ, then the uncertainty volume is proportional to the square root of the determinant of

the error covariance matrix, i.e.,
√
|Γ| as described in [44]. The number of bits required to

encode information with covariance matrix Γ is directly proportional to
√
|Γ|. Optimal

fusion uses a centralized architecture in which sensors transmit whole measurements

to the fusion center [8]. However due to bandwidth constraints, we transmit equivalent

measurements and scaled equivalent measurements. Therefore the global filter type does

not need to be the same as the local filter.

In this section, we further discuss fusion with full state and scaled equivalent mea-

surements. As already stated above, in a centralized configuration, transmission of sen-

sor measurements is expensive in terms of bandwidth. Furthermore in a distributed

architecture, transmitting local estimates x̂k|k and Pk|k not only requires a high number of

encoding bits but is also vulnerable to various forms of data loss [40]. On the other hand,

sending equivalent innovations requires relatively few bits as compared to the full state

equivalent measurements but errors accumulates at the fusion center as discussed in [44].

Therefore, we choose equivalent measurement information as a ’good choice’ candidate

for track state transmission.

We calculate the N-step equivalent measurements Zε,N and covariance matrix Rε,N as

follows [50],

R−1
ε,N = P−1

k|k − P−1
k|k−N

yε,N = P−1
k|k x̂k|k − P−1

k|k−N x̂k|k−N

Rε,N = (R−1
ε,N)

−1

Zε,N = Rε,Nyε,N

(3.4)

However, to reduce bandwidth utilization, we transmit only position components of the

equivalent measurement and achieve comparable tracking performance to that achieved

when full state equivalent measurement are transmitted. This requires less bandwidth
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and less transmission time. Instead of transmitting Zε,N and covariance matrix Rε,N , we

scale this information with the H matrix and transmit only those components of Zε,N and

Rε,N which correspond to the position components of the state. We calculate scaled Zs
ε,N

and covariance matrix Rs
ε,N as

R−1s
ε,N = HR−1

ε,N HT

ys
ε,N = Hyε,N

Rs
ε,N = (R−1s

ε,N )−1

Zs
ε,N = Rs

ε,Nys
ε,N

(3.5)

The sensor node encodes both the full state equivalent measurements and the scaled

equivalent measurements and transmits to the fusion center. The fusion center receives,

decodes and uses information as measurements to update the global tracker. We assume

that the transmission network is noiseless, reliable and there is no time delay for trans-

mission. We also assume that no out of order transmission occurs. We use the traditional

information filter [2] as a global tracker and update this filter using the full state decoded

equivalent measurements as follows.

P−1
k|k = P−1

k|k−N + (R̂ε,N)
−1

P−1
k|k x̂k|k = P−1

k|k−N x̂k|k−N + R̂−1
ε,N Ẑε,N

(3.6)

However, for the case of scaled equivalent measurements, the update-step of the Infor-

mation filter is modified as below.

R̂−1s
ε,N = (R̂s

ε,N)
−1ŷs

ε,N = R̂−1s
ε,N Ẑs

ε,N (3.7)

P−1
k|k = P−1

k|k−N + HT R̂−1s
ε,N H (3.8)

P−1
k|k x̂k|k = P−1

k|k−N x̂k|k−N + HT ŷs
ε,N (3.9)

Fusion with the scaled equivalent measurements and full state equivalent measure-

ments achieves the same tracking performance as that observed with no bandwidth con-
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straints. We convert the received scaled equivalent measurements into the inverse full

state equivalent measurements and use the above information filter. We observe per-

formance degradation when using received scaled equivalent measurements in the tra-

ditional Kalman filter as the global filter. Figure 3.2 shows near optimal performance

of fusion with the equivalent measurements and scaled equivalent measurements when

transmitting on every scan.

3.4 Is it Better to Use Equivalent or Scaled Equivalent Measure-
ments

A fusion with both equivalent measurements and scaled equivalent measurements is

near optimal (as we discussed in previous section) under no bandwidth constraint. How-

ever, the transmission of the equivalent measurements is still more bandwidth expensive

when compared with the scaled equivalent measurements. So, under bandwidth con-

straints a fusion with the scaled equivalent measurements could be a better choice.

For example using a four dimensional state vector, transmission of Zε,N and Rε,N re-

quires fourteen integers, however transmission of Zs
ε,N and Rs

ε,N requires only five inte-

gers. Therefore we roughly observe that the full state equivalent information requires

three times bandwidth as compared to its scaled version. We can send the scaled equiv-

alent measurements every scan or the full state every third scan utilizing the same band-

width. Simulation results of transmitting full state and scaled equivalent measurements

at every scan is given in Fig. 3.2. Figure 3.3 shows that transmitting Zs
ε,N and Rs

ε,N every

scan, i.e., with N = 1 is better than transmitting Zε,N and Rε,N every third scan, i.e., with

N = 3. Similarly, sending scaled equivalent measurements with N = 3 outperforms

sending the full state equivalent measurements with N = 9 as shown in Fig. 3.4. For a

fixed bandwidth budget, the transmission frequency of the scaled equivalent measure-

ments is higher than the full state equivalent measurements.

Furthermore, bandwidth can be reduced by transmitting the scaled equivalent mea-

surements after N scan intervals. We also discuss the performance comparison of the

algorithms transmitting N-step scaled equivalent measurements with a different number
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of encoding bits. Coder operating characteristics give us the optimal value of N for a

given bandwidth budget. In distributed tracking, there exists a minimum data rate to

achieve tracking performance at a certain level of accuracy [40]. Also we observe that

this minimum data rate is independent of the frequency of transmission.

We attempt to achieve the best tracking performance with the minimum number of

encoding bits for Zs
ε,N and Rs

ε,N . Consider a case when we are allocated a bandwidth

budget W bits for C seconds of tracking. We define B as the number of encoding bits per

scan proportional to the value of N as

B = N × W
C

We achieve near optimal tracking performance by sending the scaled equivalent mea-

surements every scan, i.e., with N = 1 and under no bandwidth constraint. The tracking

performance degrades as N increases in spite of using infinite bandwidth. However un-

der bandwidth constraints, performance depends on the number of encoding bits. We try

to find the optimal value of N for given W bits of bandwidth for C seconds of tracking

time.

More frequent transmission with lower encoding bits produces poor tracking perfor-

mance mainly due to higher encoding errors when compared to the case of sending less

often with higher number of encoding bits. Therefore for each value of N, there exists a

lower limit of bits to achieve acceptable performance and also an upper limit. We also

observe that the optimal value of the number of encoding bits does not depend on the

frequency of transmission. Simulation results support these claims. This scheme is use-

ful when there is a trade-off between tracking performance and bandwidth. Instead of

sending more often with large encoding errors, it is better to send less often with lower

encoding errors. This scheme can be easy extended for multi sensor fusion and expected

to perform extremely well under bandwidth constraints.
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Figure 3.2: Fusion with the equivalent and scaled equivalent measurements when trans-
mitting every scan
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Figure 3.3: Fusion with the equivalent and scaled equivalent measurements

3.5 Simulation Results

Each experiment discussed in this section assumes an identical simulation environment.

One target is moving in a straight line in a two dimensional surveillance space. The

target is moving with uniform velocity of 5 m/s parallel to the Cartesian x axis. This

surveillance space is observed with one sensor with scan interval of T = 1s. Sensor

measurement noise is assumed to be Gaussian, white and independent of process noise,

with covariance matrix R equals to 25I2 m2 where I2 represents two dimensional identity

matrix. The sensor node is connected to the fusion center via a digital communication
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Figure 3.4: Fusion with the equivalent and scaled equivalent measurements using differ-
ent N

channel with an assumption that the network is ideal with no transmission errors and no

out of sequence records.

We use the traditional Kalman filter as a local tracker while the Information filter as

a global tracker [2]. Both estimators use Gaussian, white plant noise νk with covariance

matrix Q defined as defined below

Q = 2×


1
3 T3 1

2 T2 0 0
1
2 T2 T 0 0

0 0 1
3 T3 1

2 T2

0 0 1
2 T2 T

 (3.10)

where T is the scan interval time between the previous update step and the current sim-

ulated time.

In this section each simulation consists of 1000 simulation runs and each run simulates

200s of the surveillance time. Initialization of the local tracker is carried using one point

initialization [49], while initialization of the global tracker is carried out in the same way

by transmitting the initialized local track to the fusion center at the start of the tracking

time. By doing so, we ensure the same initial conditions for both local and global trackers.

This initialization of the local and the global trackers is independent for each simulation

run. The tracking performance of the local tracker is considered optimal in the mean
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square sense and defined as below.

RMSE =

√√√√ 1
nRuns

×
nRuns

∑
i=1

(x̂i − x)2 (3.11)

where RMSE is the position root mean square error, nRuns is the number of runs for

simulation, x̂ is the estimated position and x is the true position.

We present two sets of simulation experiments. The first set compares the perfor-

mance of transmitting the full state equivalent measurements and the scaled equivalent

measurements. The second set helps us in finding the optimal value of scan interval N

for a given bandwidth budget by transmitting the scaled equivalent measurements.

Full State and Scaled Equivalent Measurements

In this subsection, simulation results show that sending the scaled equivalent measure-

ment with a higher frequency has advantages over sending the full state equivalent mea-

surement with a lower frequency using the same bandwidth. The results provided in this

section assume that encoded data is received with no errors . We compare results on the

basis of RMSE performance criteria defined in equation (3.11). As stated earlier, we re-

quire four digits for Zε,N and ten digits for Rε,N . In total, we need fourteen digits to send

the equivalent measurement per scan. On the other hand, We require two digits for Zs
ε,N

and three digits for Rs
ε,N and total of five digits to send the scaled equivalent measure-

ment per scan. Based on the above statistics, the scaled equivalent measurement requires

three times less bandwidth as compared to the transmission of the full state equivalent

measurement. This calculation helps us to send the scaled equivalent measurements with

three times higher frequency than that of the full state equivalent measurements using

the same bandwidth.

We observe that the tracking performance of transmitting the full state equivalent

measurements and the scaled equivalent measurements on every scan (i.e., with N = 1)

is equal to the local tracker performance as shown in Fig. 3.2. Figure 3.2 shows all three

performance curves for the local filter, the full state equivalent measurements and the

scaled equivalent measurements. These curves overlap. Figure 3.2 also shows that send-
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Figure 3.5: Fusion with the N-step scaled equivalent measurements
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Figure 3.6: Fusion with the scaled equivalent measurements and W = 1600 bits

ing the scaled equivalent information carries the same measurement information and

uses less bandwidth when compared with the full state equivalent measurements. Fig-

ure 3.3 compares the performance of sending the full state equivalent measurements on

every third scan and the scaled equivalent measurements on every scan. Also sending

scaled measurements on every third scan outperforms sending full state on every ninth

scan as shown in Fig. 3.4. These results lead us to the conclusion that we reduce band-

width usage by transmitting the scaled equivalent measurements and further reduce it

by incorporating a strategy of controlling transmission frequency at the cost of minor

performance loss.
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Sending Scaled Equivalent Measurements and Fixed Bandwidth

Decreasing the frequency of transmission degrades tracking performance, however the

bandwidth requirement also reduces. Therefore for fixed bandwidth, transmitting scaled

equivalent measurements, which needs less bandwidth, performs better because we can

send more frequently. In this subsection, simulation results show the optimal value of

N which provides a reasonable trade-off between bandwidth utilization and tracking

performance under bandwidth constraints.

Figure 3.5 compares tracking performance using the scaled equivalent measurements

with different values of N without encoding. We observe that as N increases, perfor-

mance degrades to a certain degree. This is because we loose some information when

sending with higher scan interval.

In the next set of simulation experiments, we transmit the encoded scaled equivalent

measurements, decode them at the fusion center and use them for the global tracker up-

date. We compare algorithms that send scaled equivalent measurements with N = 1,

N = 2, N = 3 and N = 4 using B encoding bits calculated by equation (3.4), where

N denotes transmission scan interval and B is the number of bits per scan. We encode

all the above four cases with the same bandwidth budget W for C seconds of tracking,

hence each algorithm uses N × W
C bits to encode scaled equivalent measurements. We

use a floating point encoding scheme using two bits for each exponent of Zs
ε,N and Rs

ε,N ,

while the mantissa bits for Zs
ε,N and Rs

ε,N are allocated based on available bandwidth W.

The maximum value used to encode Zs
ε,N and Rs

ε,N is 1100 and 25 respectively. We per-

form several experiments with a variable bandwidth budget W and find the best transmit

interval N by looking at the coder operating characteristic curve for each W.

We use a bandwidth budget as shown in Table 3.1 for the above four experiments.

Figure 3.6 compares the tracking performance of all four algorithms. For this experiment

we use a total of W = 1600 mantissa bits for C = 200 seconds and distributed according to

Table 3.1. The performance curve of the algorithm using N = 1 diverges due to the very

small number of bits used and it improves with an increasing number of bits as shown in

the subsequent figures. Similarly Figures 3.7, 3.8 and 3.9 show the tracking performance

with W = 2400, W = 3200 and W = 6400 bits respectively. It is observed that for a lower
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Figure 3.7: Fusion with the scaled equivalent measurements and W = 2400 bits
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Figure 3.8: Fusion with the scaled equivalent measurements and W = 3200 bits

bandwidth budget, sending with a greater N step is better. At this point we see that a

trade-off exists between tracking performance and bandwidth constraint. For each value

of N, there exists a lower bandwidth limit for acceptable performance. After analysing

our results we find the optimal number of encoding bits is between 30 ∼ 35 per scan for

achieving reasonable performance for each N. Also this optimal number is independent

to the frequency of transmission. Sending less information but with fewer encoded errors

is better than sending more information with higher encoding errors.

We also present coder operating characteristics curve which tells us that with an in-

creasing bandwidth budget, performance of the algorithm with lower N increases as



40 Target Tracking Using Scaled Equivalent Measurements

20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

Time/Frame Number

P
o
s
it
io

n
 R

M
S

E

 

 

Optimal RMSE

N = 1 & Mant.Bits/s = 32

N = 2 & Mant.Bits/s = 64

N = 3 & Mant.Bits/s = 96

N = 4 & Mant.Bits/s = 128

Figure 3.9: Fusion with the scaled equivalent measurements and W = 6400 bits

Table 3.1: The value of N and number of bits used for encoding transmitted data under
given bandwidth budget

N BW=1600 BW=2400 BW=3200 BW=6400

1 8 12 16 32

2 16 24 32 64

3 24 36 48 96

4 32 48 64 128

shown in Fig. 3.10. This is because encoding errors are reduced. Figure 3.10 gives the

optimal value of N to be used for a given bandwidth budget W for C = 200 seconds

tracking of the target. For example if we have W = 3200 bits then the best algorithm uses

N = 2. We calculate the ‘sweet spot‘ for the trade-off between bandwidth and tracking

performance and select the optimal value of N under a given bandwidth budget.

3.6 Summary

In this chapter, we presented a scheme for track state transmission in a distributed track-

ing architecture. This scheme proved to be helpful in transmitting information with low

data rates. We showed that sending the scaled equivalent measurements required a lower

number of bits as compared to the full state equivalent measurement transmission while
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Figure 3.10: Coder operating characteristics under bandwidth constraints

maintaining similar tracking performance. We can send the scaled equivalent measure-

ment with higher transmission frequency rather than send the full state equivalent mea-

surements and we can achieve better performance. We also observed that the global fil-

ter performed better when updating is performed using the inverse reduced equivalent

measurements.

Under bandwidth constrained situations, it is better to send less often with a higher

number of the encoding bits rather than sending more often with a lower number of the

encoding bits. We proposed sending information with an N-step scan interval rather than

on every scan. By doing so, we distributed the bandwidth to encode the scaled equivalent

measurements based on the frequency of transmission. The algorithm using a lower N-

step used a lower number of encoding bits per scan and the algorithm using a higher

N-step used a higher number of encoding bits per scan. We also discussed the trade-off

between tracking performance and bandwidth. We determined the optimal value of N

for an allocated bandwidth using the coder operating characteristics. Our simulations

also showed that B = 30 ∼ 35 is the optimal number of bits per scan and is independent

of the frequency of the transmission.

Future work is to devise the schemes for the adaptive selection of N based on the

information contribution of the equivalent measurements.





Chapter 4

Target Tracking in Clutter Using
Compressed Measurement

In distributed tracking, communication bandwidth is one of the most expensive resources when

we are required to send measurements to multiple locations for processing. Furthermore, bandwidth

requirement increases when tracking in clutter is considered due to transmission of target as well as

clutter measurements. This chapter describes tracking in clutter under bandwidth constraints. The

main idea is that instead of sending all target and clutter measurements we combine them into a

weighted sum and transmit the resultant measurement. A novel Bayesian filter is proposed utilising

the received measurement information. We observe some small loss of performance as compared to the

local tracker.

4.1 Introduction

TARGET tracking without clutter , with spatially distributed sensors and with con-

straints on communication resources such as bandwidth, is discussed in the previ-

ous chapter. In this chapter, we study distributed target tracking in clutter under band-

width constraints. In a traditional spatially distributed sensor network, sensors collect

target as wells as clutter measurements in the surveillance area and transmit them to the

fusion center for global target tracking. The fusion center receives all target and clutter

measurements and obtains the global state of the track. The clutter measurements are

false alarms, i.e., we perceive detections from non-target objects. Instead of only one

target detection, we receive multiple target detections at each scan. Under a constraint

on bandwidth, instead of sending target and clutter measurements, we propose combin-

ing of target and clutter measurements into a weighted sum and transmit this resultant

43



44 Target Tracking in Clutter Using Compressed Measurement

Figure 4.1: Multisensor distributed tracking in clutter

measurement information to the fusion center.

The performance of distributed multitarget tracking in clutter can be studied in terms

of the quality of tracks and false track discrimination. In this study, we consider track-

ing performance as the primary objective and false track discrimination as a secondary

objective.

The typical distributed tracking system in clutter is shown in Fig. 4.1. The colored

objects in surveillance represent clutter/false targets. We assume the radar is able to de-

tect these objects as targets with probability of target existence is equals to 1. We combine

received measurements at the local node using a weighted sum of target and clutter mea-

surements. The weights are calculated based on the likelihood of each measurement.

This resultant compressed measurement contains information on clutter and target mea-

surements. We transmit this compressed measurement to the Fusion Center (FC). We

propose a novel Bayesian filter which extracts useful information from the compressed

measurement at the FC. The proposed filter requires the computation of intractable inte-

grals which are solved with help of Monte Carlo simulations.

The major contribution of this chapter consists of the derivation of the novel Bayesian

filter which operates on a weighted sum of target and clutter measurements. By adopt-

ing this approach we save communication bandwidth and are able to effectively send

both target and clutter measurement information. We show that the loss in tracking per-

formance is almost negligible for our proposed filter when compared to optimal local

Probabilistic Data Association Filter (PDAF). The proposed filter uses the compressed
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measurement to update track state and hence we call it the Compressed Filter (CF).

4.2 Target Tracking Using Compressed Measurement

We consider distributed tracking where we use local processing of measurements to

maintain local tracks and a global track is maintained by receiving measurement infor-

mation from the local processing units. We consider tracking of a single target moving

in a linear trajectory in a one dimension surveillance space in a cluttered environment as

follows:

xk+1 = Fxk + νk (4.1)

where k represents sensor scan time, F is the target state transition matrix and the process

noise νk is a zero mean white Gaussian noise sequence with covariance matrix Q. The

sensor measurement model is

yk = Hxk + ωk (4.2)

where H denotes the measurement matrix and the measurement noise ωk is a zero mean

white Gaussian noise sequence with covariance matrix R. The measurement noise is un-

correlated with process noise. The target under observation is detectable with probability

of detection equal to one. The clutter is uniformly distributed in the surveillance space.

Due to clutter, we receive Mk measurements with at least one target measurement at each

scan. The number of clutter measurements per scan follows a Poisson distribution with

clutter measurement density ρ. We use the classical probabilistic data association filter

proposed in [5] to maintain the local track. The set of validated measurements using a

gating procedure is

Yk = {yk,i}mk
i=1 (4.3)

Rather than use a bandwidth to transmit all of the above measurements to the global

processing unit, we combine these measurements into one measurement.

y̆k =
mk

∑
i

αiyk,i (4.4)
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where αi are scalar weights whose values are calculated based on the likelihood of each

measurement falling inside the gate. We transmit y̆k along with the associated weights αi

on every scan to the FC.

4.3 The Compressed Filter

In this section, we derive a filter which uses the combined measurement y̆k defined in

equation (4.4) as a measurement information. We use standard Bayesian procedures to

derive this filter as outlined in [14] and call it the Compressed Filter.

The conditional density of xk given measurement set Y̆k = y̆k, y̆k−1, ..., y̆1 (in our case

combined measurement) up to time k is denoted as p(xk|Y̆k) and defined using Bayesian

rule,

p(xk|Y̆k) =
p(y̆k|xk)p(xk|Y̆k−1)

p(y̆k|Y̆k−1)
(4.5)

Since p(y̆k|Y̆k−1) is a constant, we have

p(xk|Y̆k) ∝ p(y̆k|xk)p(xk|Y̆k−1) (4.6)

From equation (4.4), y̆k is a combination of mk measurements, hence the conditional den-

sity can be written to show this explicitly as

p(xk|Y̆k, mk) ∝ p(y̆k, mk|xk)p(xk|Y̆k−1, mk−1) (4.7)

The prediction density in the above equation is given by the Chapman Kolmogorov equa-

tion

p(xk|Y̆k−1, mk−1) =
∫

p(xk|xk−1)p(xk−1|Y̆k−1, mk−1)dxk−1 (4.8)

The dynamical equation (4.1) is linear and assuming a Gaussian prior probability den-

sity function, we can write p(xk|Yk−1, mk−1) = N(xk; x̂k|k−1, Pk|k−1) where the parameters
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x̂k|k−1 and Pk|k−1 are defined as

x̂k|k−1 = Fx̂k−1|k−1

Pk|k−1 = FPk−1|k−1FT + Q

Now we need to derive the likelihood part of the Bayesian formula in equation (4.7)

for the fusion center. At time k, we receive mk validated measurements at the sensor

node and we assume only one measurement is the target measurement while the rest are

clutter measurements. We need data association to calculate probabilities for the origin

of each received measurement. There are two possible origins of each measurement, i.e.,

target and clutter. The clutter measurements are false alarms because sensor (radar) indi-

cate the presence of a target at clutter locations. We define association events θk(i) such

that measurement i is a target originated measurement with some probability p(θk(i))

where i = 1, 2..., mk. All these association events are mutually exclusive and exhaus-

tive events for each time k. These assumptions are consistent with standard PDA filter

assumptions [4]. We utilize the same assumptions for our compressed measurement y̆k

which is the weighted sum of clutter and target measurements. Therefore the likelihood

function p(y̆k|xk) becomes

p(y̆k|xk) =
mk

∑
i=1

p(y̆k|xk, θk(i))p(θk(i))

p(y̆k|xk, θk(i)) =
∫

...
∫

p(y̆k, yk(j)|xk, θk(i))dyj...dymk−1

(4.9)

where j is from the set of mk validated measurements excluding the ith measurement. The

above integral evaluates the likelihood of y̆k considering the ith measurement in equa-

tion (4.4) to be target originated while considering all other measurements to be clutter

originated measurements. According to the measurement equation and considering the

Gaussian measurement noise assumption, the above equation can be written as

p(y̆k|xk, θk(i)) =
∫

...
∫

N(y̆k; αi Hxk +
m−k

∑
j=1,j 6=i

αjyj, α2
i R)dyj...dymk−1 (4.10)

Now the likelihood function can be determined by replacing p(y̆k|xk, θk(i)) from equation



48 Target Tracking in Clutter Using Compressed Measurement

(4.10) in equation (4.9) and can be written as

p(y̆k|xk) =
mk

∑
i=0

∫
...
∫

N(y̆k; αi Hxk +
mk

∑
j=1,j 6=i

αjyj, α2
i R)dyj...dymk−1 p(θk(i)) (4.11)

The formula in equation (4.7) can be written as

p(xk|Y̆k) ∝ p(y̆k|xk)p(xk|Y̆k−1)

p(xk|Y̆k) ∝ p(y̆k|xk)N(xk; x̂k|k−1, Pk|k−1)

p(xk|Y̆k) ∝
mk

∑
i=1

∫
...
∫

N(y̆k; αi Hxk +
mk

∑
j=1,j 6=i

αjyj, α2
i R)

dyj...dymk−1 p(θk(i))N(xk; x̂k|k−1, Pk|k−1)

p(xk|Y̆k) ∝
mk

∑
i=1

∫
...
∫

N(y̆k; αi Hxk +
mk

∑
j=1,j 6=i

αjyj, α2
i R)

× N(xk; x̂k|k−1, Pk|k−1)p(θk(i))dyj...dymk−1

(4.12)

Since, we assume Gaussian prior and likelihood distributions, we need to solve for the

product of two Gaussian distributions as can be seen in equation (4.12).

We can solve product of two Gaussian N(y̆k; αi Hxk +

∑mk
j=1,j 6=i αjyj, α2

i R)N(xk; x̂k|k−1, Pk|k−1) in above equations using the Gaussian prod-

uct formula given in [14] which can be written as below using standard Kalman filter

notation.

Theorem 4.1. (Gaussian Product Theorem) For two Gaussian with parameters,xk, x̂k|k−1 ∈

Rd1 , H ∈ Rd2∗d1 , xk ∈ Rd2 and positive definite matrices R, Pk|k−1

N(y̆k : Hx1, R)N(xk; x̂k|k−1, Pk|k−1) = N(y̆k; Hx̂k|k−1, Sk)N(xk; x̂k|k, Pk|k)
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where

Sk = HPk|k−1H′ + R

x̂k|k = x̂k|k−1 + K(y̆k − Hx̂k|k−1)

Pk|k = Pk|k−1 − KHPk|k−1

K = Pk|k−1H′S−1
k

Using Theorem 4.1, the product of two Gaussian i = N(y̆k; αi Hxk +

∑mk
j=1,j 6=i αjyj, α2

i R)× N(xk; x̂k|k−1, Pk|k−1) in above equations becomes

i = N(y̆k −
mk

∑
j=1,j 6=i

αjyj; αi Hxk, α2
i R)× N(xk; x̂k|k−1, Pk|k−1)

= N(y̆k −
mk

∑
j=1,j 6=i

αjyj; ˆ̆yk, Ŝk)× N(xk; ˆxk|k, Pk|K)

= N(y̆k; ˆ̆yk +
mk

∑
j=1,j 6=i

αjyj, Ŝk)× N(xk; x̂k|k, Pk|k)

The parameters of the above Gaussians are calculated using the following equations:

ˆ̆yk = αi Hx̂k|k−1

Ŝk = α2
i (HPk|k−1H′ + R)

x̂k|k = x̂k|k−1 + K(y̆k − αi Hx̂k|k −
mk

∑
j=1,j 6=i

αjy̆j)

Pk|k = Pk|k−1 − αiKHPk|k−1

where K = αiPk|k−1H′Ŝk
−1

is the gain of the filter. The posterior probability density

function can be written as

p(xk|Yk) ∝
mk

∑
i=1

∫
...
∫

N(y̆k; ˆ̆yk +
mk

∑
j=1,j 6=i

αjyj, Ŝk)× N(xk; x̂k|k, Pk|k)

p(θk(i))dyj...dymk−1

(4.13)
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4.3.1 Compressed Filter Algorithm

A closed form solution of equation (4.13) is intractable. However, in the literature there

exist techniques to solve complex integrals either numerically or using Monte Carlo sim-

ulations. We adopt Monte Carlo simulation methods to solve equation (4.13). By adopt-

ing a Monte Carlo simulation procedure to find an approximate solution to equation

(4.13), we need to simulate mk − 1 variables for each i. When mk − 1 becomes large, the

growing computations make this procedure less attractive. We propose another simple

approach to handle this computational problem. The summation term ∑mk
j=1,j 6=i αjyj is

the sum of mk − 1 clutter measurements. Assuming that the distribution of clutter is uni-

form in the surveillance region, this summation term is actually the sum of uniformly but

non-identically distributed random variables. The distribution of the sum of n uniformly

distributed random variables over intervals [ai, bi] can be found in [10] and expressed in

equation (4.14) as

fn(s) =
1

An(n− 1)!
{(s+)n−1 +

n

∑
v=1

(−1)v
n

∑
j1=1

n

∑
j2=j1+1

...

n

∑
jv=jv−1+1

{[s− (aj1 + aj2 + ... + ajv)]
+}n−1}

(4.14)

However, in our case we have the sum of non-identical but uniformally distributed

random variables as written in equation (4.15).

Sn =
n

∑
j=1

αjyj =
n

∑
j=1

Xj (4.15)

The distribution of the new random variable Sn is the convolution of the individual distri-

butions of Xj. Equation (4.16) contains the expression for distribution of resultant random

variable Sn however we do not have a closed form solution for this convolution.

Sn = X1 + X2 + ... + Xn

pSn(s) = pX1(x1) ? pX2(x2) ? ... ? pXn(xn)

FS(s) =
∫ s

−∞
pS(u)du

(4.16)
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Equation (4.13) can be re-written by replacing ∑mk
j=1,j 6=i αjyj with another random vari-

able Sn defined above. Now the resultant equation contains one integral and can be easily

solved using Monte Carlo integration.

p(xk|y̆k) ∝
mk

∑
i=1

∫
N(y̆k; ˆ̆yk + Sn, Ŝk)p(Sn)× N(xk; x̂k|k, Pk|k)p(θk(i))dSn (4.17)

The parameters of N(y̆k; ŷk + Sn, Ŝk)N(xk; x̂k|k, Pk|k) are given as.

ˆ̆yk = αi Hx̂k|k−1

Ŝk = α2
i (HPk|k−1H′ + R)

x̂k|k = x̂k|k−1 + K(y̆k − αi Hx̂k|k − Sn)

Pk|k = Pk|k−1 − αiKHPk|k−1

where K is the gain of the filter.

The simulation of the algorithm is based on a mixture of Gaussians. We initialize

with nG Gaussians and weight and predict each Gaussian using standard prediction as

described in equation (4.3). To update each predicted Gaussian and its associated weight,

we need to implement equation (4.17). The integral in equation (4.17) is solved by sim-

ulating Sn as defined in equation (4.15). Each predicted Gaussian is updated with every

sample of Sn and for all data association hypotheses. Then we update the weight of

each resultant Gaussian. The number of Gaussians in this mixture grows exponentially

with time, however we maintain only the high weighted Gaussians and discard the low

weighted Gaussians. The algorithm is summarized in Algorithm 6.

4.4 Simulation Results

Each experiment discussed in this section assumes an identical simulation environment.

One target is moving in a straight line in a one dimensional surveillance space. The

target is moving with uniform velocity of 2 m/s parallel to the Cartesian x axis. This

surveillance space is observed with one sensor with a scan interval of T = 1s. Sensor

measurement noise is assumed to be Gaussian, white and independent of process noise,
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Algorithm 6 : The Compressed Filter one Iteration

1: Initialize← [wl
k−1|k−1, N(x; x̂l

k−1|k−1, Pl
k−1|k−1)]

nG
l=1

2: Recursion Starts
3: for l = 1 to nG do
4: Prediction← N(x; x̂l

k|k−1, Pl
k|k−1)

5: for i = 1 to mk do
6: Draw nS Samples of Sn as in (4.15)
7: for j = 1 to nS do
8: Update← N(x; x̂l,i,j

k|k (Sn(j)), Pl,j,i
k|k )

9: wl,i,j
k|k = wl

k−1|k−1N(yk; αi Hx̂l
k|k−1 + Sn(j), α2

i Sl
k|k−1)

10: end for
11: end for
12: end for
13: Discard Gaussians with low weights
14: Weighted Sum← x̂k|k = ∑G

i=1 wG
k|k x̂G

k|k
15: Recursion Ends
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Figure 4.2: The simulations comparison of RMSE of local PDAF filter and proposed global
Compressed Filter with very high clutter measurement density of ρ = 0.1.

with covariance R = 4. The clutter measurement is 0.1/scan/m2. The local filter used

is a classical probabilistic data association filter [4]. The sensor node is connected to the

fusion center via a digital communication channel with an assumption that the network

is ideal with no transmission errors and no out of sequence records. The measurements

falling inside the PDAF gate are combined into one measurement and the weights are
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calculated based on the likelihood of each measurement. The resultant measurements

along with the associated scaling factors are sent to the global processing facility. The

Compressed Filter utilizes received information to track the target in the surveillance

space. Figure 4.2, shows the root mean square error comparison of local PDA filter and

the Compressed Filter. The time averaged RMSE values for the local PDA and the CF

are 1.6044 and 1.7236 respectively. We see that tracking performance of the CF is slightly

worse than PDA but with greatly reduced transmission bandwidth.

4.5 Summary

In this chapter, we proposed a scheme for measurement information transmission in a

distributed tracking architecture when clutter is present. This scheme proved to be help-

ful in transmitting information at low data rates. We combined received measurements

at a local node into a single measurement with associated weights, calculated using the

likelihood of each measurement. The resultant combined measurement is transmitted to

the global processing unit. We proposed a Bayesian recursive filter which operates on

the combined measurements. We implemented a Monte carol simulation based method

to update the predicted conditional densities. The implementation is based on a Gaus-

sian mixture with associated weights. To limit the number of Gaussians in the mixture,

we keep high weighted Gaussians and discard low weighted Gaussians. The simulation

results show that tracking performance is slightly reduced but good tracking is main-

tained. Our approach requires lower communication bandwidth and maintains the track

and its quality. It is worth to note that the encoding of data with prior distribution re-

quires lower number of bits as compared to data encoding with no prior distribution.

This is preliminary work and further work is needed to study practical tracking limita-

tions such as missing measurements, probability of detection is less than 1, incorporating

encoding and higher dimension cases.





Chapter 5

Particle Based Distributed Estimation

This chapter describes a novel idea for distributed estimation and tracking based on transmitting

samples of the local posterior distribution to the fusion center. The local sensor node performs track-

ing/estimation and updates the posterior probability distribution function of the state with every new

received sensor measurement. The local node is connected to the fusion center via a low data rate com-

munication channel. In the proposed method, we transmit only one random sample or particle of the

local posterior probability density function to the fusion center. At the fusion center, the particles are

used to develop a global posterior probability distribution function (pdf). We calculate the weight of the

most recent particle and update the weights of previously received particles using adaptive importance

sampling techniques. The most recent samples will have higher weights due to the closely matched

target and sampling distributions when compared with older samples. As we progress in time, the

number of the received particles grows and the estimates improve. We use the concept of adaptive

importance sampling because the received samples upto time k have different importance sampling

distributions and their target distribution keeps changing with time. We study the statistical proper-

ties of the weights of the samples such as mean and variances of the weights and their contribution to

the convergence of the estimate. Most of the computations at the fusion center are required to update

the weight of the samples received, however following the iterative weight update procedure, these can

be reduced. This chapter focuses on the simplest case of parameter estimation, however this idea can

be easily generalised to the dynamic case of target tracking and multiple sensors.

5.1 Introduction

IN Chapter 3, we discussed transmitting scaled equivalent measurements with low

data rates using distributed tracking methods without considering clutter in the

surveillance region. The Compressed Filter based on using a weighted sum of clutter

and target measurements as a virtual measurement is proposed in Chapter 4. In both

55
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contributions, we transmit forms of measurements or processed measurements to the

fusion center. In practice many distributed tracking systems transmit the moments of

the local posterior distribution. For example in the case of Kalman filtering, transmitting

only the first two moments of the posterior distribution to the fusion center represents the

complete distribution because of Gaussianity. In the case of non-linear estimation trans-

mitting the first two moments is not enough to reproduce the optimal global posterior

distribution. The proposed approach is based on sampling theory of distributions, i.e., if

we have enough samples of one distribution then we can sub-optimally reproduce the the

original distribution [58]. Importance Sampling (IS) is the technique used to approximate

the target distribution when samples are drawn from another distribution [58].

Monte Carlo approximation methods have received significant attention in target

tracking and estimation due to their ability to handle non-linear systems and because

they are computationally practical. Particle filters are the most famous among sequential

Monte Carlo methods and have been in the spot-light for tracking following the pioneer-

ing work of Gordon et al. in 1993 [27]. We have discussed the background to Monte Carlo

simulation based tracking algorithms in Chapter 2. Thinking along the same lines, in this

chapter we propose a distributed estimator employing Monte Carlo simulation.

We consider distributed estimation/tracking based on particles transmission and pro-

pose a global estimator which requires only one sample drawn from the local posterior

distribution at each time. We consider that tracking is being performed both locally (sen-

sor node) and remotely (fusion center). The local tracker uses sensor measurements and

maintains the local track state. We draw random samples from the local track state pos-

terior distribution and transmit them to the fusion center (remote location). At the fusion

center, we treat these samples as virtual measurement information and update the track

state using these samples. We utilize the concept of importance sampling and calculate

the weight of each received sample. The weights of previously received samples are up-

dated using new information. In the proposed method, we transmit only one sample to

the fusion center. The process is explained below in detail.

At time k the central node has received k samples randomly drawn from the local

posterior distributions of time 1 to time k. The target distribution is πk(x) = p(xk|Yk)
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and the sampling distributions of the samples X1, X2, X3, ..., Xk are π1(x), π2(x), π3(x),

..., πk(x) respectively. Now using importance sampling the weights of each sample can

be calculated by the ratio of its target and sampling distributions. So, we can easily see

that every sample has a different sampling distribution while having the same target dis-

tribution. Therefore, this problem can be viewed as adaptive importance sampling [66].

As time progresses, the target density changes, the number of samples increases by one

and the weight of each sample needs to be modified. We can update the weights of the

received samples iteratively using adaptive importance sampling techniques since the

target distribution is changing with time k and every sample has its own sampling distri-

bution. Given k samples and their respective weights we can approximate the expected

value of the posterior distribution at the fusion center by finding the weighted sum of

all received samples. In this chapter, we restrict ourselves to the static parameter esti-

mation problem in order to develop convergence results but this work can be extended

in a straight forward manner to the more general dynamic case. In order to study the

efficiency of any estimator, estimation error and consistency are very important factors

to study. Convergence is studied in the next chapter.

The rest of this chapter discusses the proposed Particle Based Distributed Filter

(PBDF). Section 2 formulates the problem of parameter estimation. We discuss the pro-

posed filter in section 3 and its properties in section 4. We also discuss the properties of

the weights of the samples and the mean and variance of the proposed estimator in sec-

tion 4. Simulation results and aspects of convergence are studied in section 5. A rigorous

convergence result will be covered in the next chapter.

5.2 Problem Formulation

As a simple case, we wish to estimate a time invariant parameter x using noisy measure-

ments. The measurement model is defined by

yk = x + ωk (5.1)
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where ωk is measurement noise which is zero mean white Gaussian noise with variance

R. The Bayesian estimate of the parameter x can be written as

p(x|Yk) =
p(yk|x)p(x|Yk−1)∫
p(yk|x)p(x|Yk−1)dx

(5.2)

where Yk is the set of all measurements received upto time k.

We consider a single sensor node which is connected to a central processing unit via a

forward only communication link. We wish to find the global posterior pdf by receiving

information extracted from the local posterior pdf.

We aim to solve the distributed estimation problem by randomly drawing one sam-

ple at each time step from the local posterior distribution, and sending it to the fusion

center. At the fusion center, we calculate or update weights for all received particles upto

the current time and our global estimator is defined as a weighted sum of the received

samples. All the derivations are based on the static parameter estimation case and the

dynamic case is left for future work.

5.3 Proposed Distributed Estimator

We draw sample Xk from the local posterior pdf pL(x|Yk) at each time k and transmit it to

the fusion center. At the fusion center, we receive this sample and calculate its weight wk

and update the weights for all previously received samples. We reconstruct the posterior

pdf conditioned on received samples and measurements at the fusion center p(x|Xk, Yk)

with the help of received samples and their associated updated weights.

The calculation of the weights of the samples uses importance sampling concepts

found in [59]. As time increases, the number of received samples increases leading to

increasingly better estimates of the parameter. The posterior density based on previously

received samples changes with time therefore we need to update the weight of every

received sample at the current time. Let πk(x) = pL(x|Yk) denotes the local posterior

pdf at time k. We derive the proposed estimator and include the procedure to update the

sample weights as below.

Our estimator is a weighted sum of the received samples but the major question is
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how these weights are calculated and what is their role in the convergence of the estima-

tor. The mechanism used for calculation of the weights of a sample is adaptive impor-

tance sampling which means that all received samples have different importance sam-

pling distributions. Also, as time progresses the target density will change. Due to this

two way adaptive importance sampling, the study of the convergence of the proposed

filter is challenging.

We derive the PBDF in the conventional way using adaptive importance sampling

and an induction procedure. The samples are denoted by Xτ where τ represents the time

of drawing and/or transmitting while the weights are denoted as wo
τ where τ denotes

the time at which sample is drawn and o denotes the time of the update.

Starting with time 1, we have just one sample and w1 = 1 since the target and impor-

tance densities are the same,

X1 ∼ π1(x)

w1
1 ∝ 1

(5.3)

For k = 2, there are two samples X1 and X2 whose weights are updated as below,

X2 ∼ π2(x)

w2
2 ∝ 1

(5.4)

The weight of the previously received sample X1 is updated considering π2(x) as the

target density and π1(x) as the sampling density.

w2
1 =

π2(X1)

π1(X1)

=
l2(X1)l1(X1)π0(X1)∫

l2(X1)l1(X1)π0(X1)dX1

∫
l1(X1)π0(X1)dX1

l1(X1)π0(X1)

=
l2(X1)∫

l2(X1)l1(X1)π0(X1)dX1

∫
l1(X1)π0(X1)dX1

1

= l2(X1)

∫
l1(X1)π0(X1)dX1∫

l2(X1)l1(X1)π0(X1)dX1

= l2(X1)
C1

1

C2
1

(5.5)
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where l2(X1) = p(y2|X1), is the likelihood of measurement y2 with respect to the sample

X1, C1
1 =

∫
l1(X1)π0(X1)dX1 and C2

1 =
∫

l2(X1)l1(X1)π0(X1)dX1. The proposed estima-

tor using two available samples can be written as

∆2 =
w2

1X1 + w2
2X2

2
(5.6)

For k = 3, there are three samples X1, X2 and X3 drawn from π1(x), π2(x) and π3(x)

respectively and all have the same target density π3(x). The associated weights of the

currently available samples are calculated using

X3 ∼ π3(x)

w3
3 ∝ 1

(5.7)

The weight of the sample received at k = 1 is updated below. For sample X1, the impor-

tance density is π1(x) and target density is π3(x).

w3
1 =

π3(X1)

π1(X1)

=
l3(X1)l2(X1)l1(X1)π0(X1)∫

l3(X1)l2(X1)l1(X1)π0(X1)dX1

∫
l1(X1)π0(X1)dX1

l1(X1)π0(X1)

=
l3(X1)l2(X1)∫

l3(X1)l2(X1)l1(X1)π0(X1)dX1

∫
l1(X1)π0(X1)dX1

1

= l3(X1)l2(X1)

∫
l1(X1)π0(X1)dX1∫

l3(X1)l2(X1)l1(X1)π0(X1)dX1

= l3(X1)l2(X1)
C1

1

C3
1

(5.8)

Using the equation (5.5), we can write the expression for w3
1 as a function of w2

1 as

w3
1 = l3(X1)w2

1
C2

1

C3
1

(5.9)

where l3(X1) = p(y3|X1), C2
1 =

∫
l2(X1)l1(X1)π0(X1)dX1 and C3

1 =∫
l3(X1)l2(X1)l1(X1)π0(X1)dX1. The weight of the sample received at time k = 2

is updated using equation (5.10). For the sample X2, the importance density is π2(x) and
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the target density is π3(x)

w3
2 =

π3(X2)

π2(X2)

=
l3(X2)l2(X2)l1(X2)π0(X2)∫

l3(X2)l2(X2)l1(X2)π0(X2)dX2

×
∫

l2(X2)l1(X2)π0(X2)dX2

l2(X2)l1(X2)π0(X2)

= l3(X2)

∫
l2(X2)l1(X2)π0(X2)dX2∫

l3(X2)l2(X2)l1(X2)π0(X2)dX2

= l3(X2)
C2

2

C3
2

= l3(X2)w2
2

C2
2

C3
2

(5.10)

where l3(X2) = p(y3|X2), C2
2 =

∫
l2(X2)l1(X2)π0(X2)dX2 and C3

2 =∫
l3(X2)l2(X2)l1(X2)π0(X2)dX2. Using three samples the estimate becomes

∆3 =
w3

1X1 + w3
2X2 + w3

3X3

3
(5.11)

Following the above procedure for weight updates, we can write expressions for

weight update of Xk
1, Xk

2, ..., Xk
k as .

wk
1 = lk(X1)wk−1

1
Ck−1

1

Ck
1

wk
2 = lk(X2)wk−1

2
Ck−1

2

Ck
2

wk
3 = lk(X3)wk−1

3
Ck−1

3

Ck
3

.

.

.

wk
k−1 = lk(Xk−1)wk−1

k−1

Ck−1
k−1

Ck
k−1

wk
k ∝ 1

(5.12)
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where lk(Xn) = p(yk|Xn), Ck
n =

∫
lk(Xn)lk−1(Xn)...l1(Xn)π0(Xn)dXn and n = 1, 2, ..., k.

The above results are derived using target density πk(x) and respective importance

densities of each sample. Generally, a sample is drawn at time n with importance

density πn(x) and target density πk(x) then its weight wk
n is calculated using the ratio

πk(x)/πn(x). The general form of the estimator at time k using k available samples is

∆k =
wk

1X1 + wk
2X2 + wk

3X3 + ... + wk
kXk

k
(5.13)

Equation (5.13) is the expected value of the parameter of interest calculated at the

fusion center while the weights are defined in equation (5.12). From equation (5.12), we

can observe that the most recent samples have higher weights while the old samples

carry low weights. This is supported by the fact that the most recent samples have lower

distances in their target and importance densities. For a very large k, the posterior pdf of

the parameter does not change much and we call this the steady state distribution. Based

on this intuitive argument, if we have sample drawn from πk−1(x) then the weight wk
k−1

of sample Xk−1 approaches 1.

The PBDF algorithm is straightforward to implement and does not depend on the

type of the local estimator being implemented at the sensor node. The only information

we need from the local end is a sample of the posterior pdf. The local end posterior pdf

can be of any shape and the local tracker can be linear or non-linear. The sample is drawn

randomly from the local posterior pdf and transmitted to the fusion center. The PBDF is

outlined in Algorithm 7. For the sake of simplicity, we use a classical Kalman filter at the

local end.

In order to study the performance of PBDF, we need to look at the estimation error

and consistency. The Root Mean Square Error (RMSE) is compared with the optimal local

Kalman filter in the simulation section of this chapter. In order to study consistency, we

examine the asymptotic behavior of the expected value of ∆k and the variance of ∆k. As

a necessary condition for convergence, we need to show that the mean and variance of

the proposed estimator remain bounded for large k. From the weighted sum equation,

we see that the statistics of the proposed PBDF depend on the calculation of the weights.

In other words, if our weights stay bounded and do not keep increasing with time then
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the proposed estimator stays bounded. Therefore in order to study the statistics of the

proposed estimator, we study the dynamic behavior of the weights associated with the

samples. In the next section, we study the properties of the proposed PBDF including

statistics of weight samples.

5.4 Properties of the Proposed Estimator

We defined the proposed estimator at the fusion center which operates on using received

samples one at a time from the sensor node. The weight of each received sample is up-

dated and the proposed estimator is defined by a weighted sum of all received samples

until time k. The formula of this estimator is written in equation (5.13) and clearly shows

its dependence on the weights of the samples. In this section, we study the properties of

both the proposed estimator and the weights of the received samples. We derive expres-

sions for estimator variance as a function of mean and variance of the weights. Since,

mean and variance of the proposed estimator depend on the mean and variance of the

weights, we study the weights statistics first.

5.4.1 Weights Statistics

In this subsection, we derive and discuss the mean and variance of the weights of the

samples at time k. The weights of each sample can be considered as a random quantity

and we want to know the asymptotic behavior of the weights. Intuitively, we expect

the most recent samples will have larger weights (on average) as compared to the older

samples. This argument makes sense in that as time passes we have more and more

measurements at the local end which leads to a better estimation. Therefore, the posterior

pdf tends towards a steady state value and samples taken from most recent local posterior

pdf contain more information. Since, we are dealing with randomly drawn samples the

results should be averaged when compared. Let φ̂k
n = E[wk

n|Yk] denotes the conditional

mean of the weight of sample drawn at time n and updated at time k. Similarly, the

variance of the weight of the sample drawn at time n and updated at time k is denoted as

Ψk
n. The mean of wk

1 is calculated using
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Algorithm 7 : The Particle Based Distributed Filter

1: Local End
2: for n = 1 to k do
3: Prediction Step

x̂n|n−1 = x̂n−1|n−1

Pn|n−1 = Pn−1|n−1

4: Compute Kalman gain Kn and predicted measurement ŷn|n−1 and covariance of
innovations

Kn = Pn|n−1HTS−1
n

ŷn|n−1 = Hx̂n|n−1

Sn = HPn|n−1HT + R

5: Update step with measurement yk

x̂n|n = x̂n|n−1 + Kk(yn − Hx̂n|n−1)

Pn|n = (I − KnH)Pn|n−1(I − KnH)T + KnRKT
n

6: Resulted posterior pdf p(xn|Yn) = N(xn; Hx̂n|n, Pn|n)
7: Draw random sample Xn from posterior pdf N(xn; Hx̂n|n, Pn|n)
8: Transmit Xn to the fusion center
9: end for

10: At the Fusion Center
11: for n = 1 to k do
12: Receive sample Xn every time
13: Calculate the weight of the most recent sample Xn using equation (5.12)
14: Update the weights of the previously received samples using equation (5.12)
15: The expected value of the PBDF at the fusion center is calculated using below equa-

tion

∆n =
n

∑
i=1

wn
i Xi

n

16: end for
17: Return the expected value of global estimator as ∆n
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φ̂k
1 = E

[
πk(X1)

π1(X1)

]
=
∫

πk(X1)

π1(X1)
p(X1)dX1

(5.14)

Since the distribution of X1 is π1(x) the above expression can be written as

φ̂k
1 =

∫
πk(X1)

π1(X1)
p(X1)dX1

=
∫

πk(X1)

π1(X1)
π1(X1)dX1

=
∫

πk(X1)dX1

= 1

(5.15)

Similarly, we can derive a general expression for φ̂k
n, where n = 1, 2, 3, ..., k and is given

in below set of equations.

φ̂k
n = E

[
πk(Xn)

πn(Xn)

]
=
∫

πk(Xn)

πn(Xn)
p(Xn)dXn

(5.16)

Since the distribution of Xn is πn(x) the above expression can be written as

φ̂k
n =

∫
πk(Xn)

πn(Xn)
p(Xn)dXn

=
∫

πk(Xn)

πn(Xn)
πn(Xn)dXn

=
∫

πk(Xn)dXn

= 1

(5.17)

The expected values of conditional weights wk
1, wk

2, wk
3...., wk

k−1 are all equal to 1 and it

is straightforward to see that the mean of the weights remains bounded and is always

equal to one. The respective variances of the weights can be calculated using generalized

expressions below. The detailed derivation of the variance of the weights is given in
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Appendix A.2.

Ψk
1 =

1

(4πR)
k−1

2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

k

∏
i=3

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si−1)
− 1

Ψk
2 =

1

(4πR)
k−2

2

N(y3; Hx̂2|2, S2 − R/2)
N2(y3; Hx̂2|2, S2)

k

∏
i=4

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si−1)
− 1

Ψk
3 =

1

(4πR)
k−3

2

N(y4; Hx̂3|3, S3 − R/2)
N2(y4; Hx̂3|3, S3)

k

∏
i=5

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si−1)
− 1

.

.

.

Ψk
k−1 =

1

(4πR)
1
2

N(yk; Hx̂k−1|k−1, Sk−1 − R/2)
N2(yk; Hx̂k−1|k−1, Sk−1)

− 1

Using the above expressions, the general form of the variance of the weights can be cal-

culated using induction

Ψk
n =

1
k−n
√

4πR

N(yn+1; Hx̂n|n, Sn − R/2)
N2(yn+1; Hx̂n|n, Sn)

×
k

∏
i=n+2

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)
− 1

(5.18)

Where Sk−1 = HPk|k−1H′ + R, S̄i−1 = HP̄i|i−1H′ + R/2 and n 6 k represents the time at

which samples were drawn and k is current time index.

In summary, the expected value of the weight of the sample drawn at time n and

updated at time k is 1 and variance is written in equation (5.18).

The general expression for Ψk
n is complex and it is difficult to explain the meaning of

this expression. In order to make intuitive arguments about the variance of the weights,

we write the recursive form of Ψk
n. The set of equations below denotes Ψk

n as a function of

Ψk−1
n . We include the derivation for the variance of the weights Var(wk

1|Yk) in recursive
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form and then write the general form using the same procedure.

Ψ2
1 =

1√
4πR

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

− 1

=

√
4πS1

4πR
N(y2; Hx̂1|1, S1 − R/2)

N(y2; Hx̂1|1, S1/2)
− 1

=

√
S1

R
N(y2; Hx̂1|1, S1 − R/2)

N(y2; Hx̂1|1, S1/2)
− 1

(5.19)

The recursive expression for Ψ3
1 can be written as

Ψ3
1 =

√
1

4πR

√
S1

R
N(y2; Hx̂1|1, S1 − R/2)

N(y2; Hx̂1|1, S1/2)

×
N(y3; Hx̄2|2, HP̄2|2H′ + R/2)

N2(y3; Hx̂2|2, S2)
− 1

=

√
4πS2

4πR

√
S1

R
N(y2; Hx̂1|1, S1 − R/2)

N(y2; Hx̂1|1, S1/2)

×
N(y3; Hx̄2|2, HP̄2|2H′ + R/2)

N(y3; Hx̂2|2, S2/2)
− 1

=

√
S2

R
N(y3; Hx̄2|2, HP̄2|2H′ + R/2)

N(y3; Hx̂2|2, S2/2)
×
[
Ψ2

1 + 1
]
− 1

(5.20)

Using the above procedure, we can easily write the recursive form of Ψk
n as.

Ψk
1 =

√
Sk−1

R
N(yk; Hx̄k−1|k−1, HP̄k−1|k−1H′ + R/2)

N(yk; Hx̂k−1|k−1, Sk−1/2)

×
{

Ψk−1
1 + 1

}
− 1

=
√

T1(k)T2(k){Ψk−1
1 + 1} − 1

= Tk{Ψk−1
1 + 1} − 1

(5.21)

where T1(k) = Sk−1/R and T2(k) = N(yk; Hx̄k−1|k−1, HP̄k−1|k−1H′ +

R/2)/N(y3; Hx̂k−1|k−1, Sk−1/2). Similarly, we derive the recursive form of the variance
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of wk
n.

Ψk
n =

√
Sk−1

R
N(yk; Hx̄k−1|k−1, S̄k−1)

N(yk; Hx̂k−1|k−1, Sk−1/2)
×
{

Ψk−1
n + 1

}
− 1

=
√

T1(k)T2(k){Ψk−1
n + 1} − 1

= Tk{Ψk−1
n + 1} − 1

(5.22)

The parameters involved in above set of equations are

x̂k|k = x̂k|k−1 + Kk(yk − Hx̂k|k−1)

Pk|k = Pk|k−1 − Kk HPk|k−1

x̄k|k = x̄k|k−1 + K̄k(yk − Hx̄k|k−1)

P̄k|k = P̄k|k−1 − K̄k HP̄k|k−1

(5.23)

where Kk = Pk|k−1H′S−1
k−1 and K̄k = P̄k|k−1H′S̄−1

k−1 are the gains for different measurement

noise variances.

The recursive form of the variance of the weights is given in equation (5.22). An

intuitive argument about the convergence of the sequence Ψk
n can be easily drawn using

equation (5.22) for all instances of n. The term Tk plays a very important role in the

convergence of the sequence Ψk
n and it has to converge to 1. From the expression for Tk,

the parameters of the Gaussians in the numerator and denominator converge to the same

value by utilizing knowledge of Kalman filter convergence and hence this ratio goes to

one asymptotically. The value of Sk−1 converges to R and hence
√

Sk−1/R converges

to 1. Based on this brief explanation, we can expect the value of Tk to converge to 1

and therefore the sequence Ψk
n converges for all values of n as shown by simulations. A

rigorous and complete proof of convergence is presented in the next chapter.

5.4.2 Statistics of the Proposed Estimator

In this subsection, we study the mean and variance statistics of the proposed estimator

as defined in equation (5.13). As a necessary condition for the estimator to be consistent,

the mean and variance of the proposed estimator must be bounded and variance tends
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to zero. We assume that samples are drawn independently. As a first step, we derive

expressions for the conditional mean of the proposed PBDF and then we include vari-

ance expressions. We let θ̂k
n = E[wk

nXn|Yk] and Θk
n the conditional mean and variance

of the estimator. The subscript n denotes the sampling time while superscript k denotes

the updating time of the samples in the weight expressions. The expected value of the

proposed estimator defined in equation (5.13) is

E[∆k] = E

[
wk

1X1 + wk
2X2 + wk

3X3 + ... + wk
kXk

k

]

=
1
k

{
E
[
wk

1X1 + wk
2X2 + wk

3X3 + ... + wk
kXk

]}
=

1
k

{
E[wk

1X1] + E[wk
2X2] + E[wk

3X3] + ... + E[wk
kXk]

}
=

1
k

{ ∫
X1πk(X1)dX1 +

∫
X2πk(X2)dX2

+
∫

X3πk(X3)dX3 + ... +
∫

Xkπk(Xk)dXk

}
= x̂k|k

(5.24)

According to the above equation the expected value of the proposed estimator is ex-

actly the same as the expected value of the local optimal estimator however the variance

needs to be studied before making any claims about the consistency of the proposed

method. The variance of the estimator defined in equation (5.13) is

Var[∆k] = Var

[
wk

1X1 + wk
2X2 + wk

3X3 + ... + wk
kXk

k

]
(5.25)

By using the theorem on the variance of the sum of independent random variables given

in [70], we can write

Var[∆k] =
1
k2

[
Θk

1 + Θk
2 + Θk

3 + ... + Θk
k−1 + Θk

k

]
=

1
k2

k

∑
n=1

Θk
n

(5.26)

Analytical expressions for the variances of wk
nXn from n = 1 to n = k are given be-

low. A detailed derivation of these expressions is included in Appendix A.5. We include
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results of Var(wk
1X1|Yk) in below set of equations and similarly we can write general

expressions for Var(wk
nXn|Yk) using an induction afterwards.

Θ2
1 =

1√
4πR

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

×
{

P̄2|2 + x̄2
2|2

}
− x̂2

2|2

Θ3
1 =

1
4πR

N(y3; Hx̄2|2, HP̄2|2H′ + R/2)
N2(y3; Hx̂2|2, S2)

×
N(y2; Hx̂1|1, S1 − R/2)

N2(y2; Hx̂1|1, S1)

{
P̄3|3 + x̄2

3|3

}
− x̂2

3|3

Θ4
1 =

1
3
√

4πR

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

×
4

∏
i=3

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

{
P̄4|4 + x̄2

4|4

}
− x̂2

4|4

(5.27)

Similarly, following the above expression, we can write an expression for Θk−1
1 as below.

Θk−1
1 =

1
k−2
√

4πR

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

×
k−1

∏
i=3

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

{
P̄k−1|k−1 + x̄2

k−1|k−1

}
− x̂2

k−1|k−1

Θk
1 =

1
k−1
√

4πR

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

×
k

∏
i=3

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

{
P̄k|k + x̄2

k|k

}
− x̂2

k|k

(5.28)

The general expression of Var(wk
nXn|Yk) is

Θk
n =

1
k−2
√

4πR

N(yn+1; Hx̂n|n, Sn − R/2)
N2(yn+1; Hx̂n|n, Sn)

k

∏
i=n+2

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

×
{

P̄k|k + x̄2
k|k

}
− x̂2

k|k

(5.29)

As a computational load, the above equation involves k − n − 1 products of Gaussian

divisions. We can write Θk
n in recursive form as a function of Θk−1

n . The derivation of the
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expression in equation (5.30) is given in Appendix A.6.

Θk
n =

√
Sk−1

R
N(yk; Hx̄k−1|k−1, HP̄k−1|k−1H′ + R/2))

N(yk; Hx̂k−1|k−1, Sk−1/2)

{ Θk−1
n + x̂2

k−1|k−1

P̄k−1|k−1 + x̄2
k−1|k−1

}
×
{

P̄k|k + x̄2
k|k

}
− x̂2

k|k

(5.30)

The general expression for the variance of the proposed estimator is

Var[∆k] =
1
k2

k

∑
n=1

Θk
n

=
1
k2

k

∑
n=1

1
(4πR)k−n/2

N(yn+1; Hx̂n|n, Sn − R/2)
N2(yn+1; Hx̂n|n, Sn)

k

∏
i=n+2

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

×
{

P̄k|k + x̄2
k|k

}
− x̂2

k|k

(5.31)

The expression in equation (5.31) represents the variance of the proposed estimator

and it is difficult to comment on its convergence. However, one obvious aspect is that if

the individual variances Θk
n for all n = 1, 2, ..., k converge then their sum also converges.

Also, this variance depends on the variance of the weights and its convergence depends

on the convergence of the weight variances. A detailed analysis of the variance of the

proposed estimator is included in the next chapter.

5.4.3 Simulations of the Statistics of the Weights

In this subsection, we simulate the variance of the weights and discuss these results. In

our expressions of the the variance of the weights, we made an intuitive argument that if

Tk converges to 1 then the variance of our weights converges. Therefore we include the

simulations of Tk defined in equation (5.22). The term Tk can be written in terms of two

sub-terms T1(k) and T2(k). We simulate the first of these sub-terms T1(k) and T2(k) and

then their complete product T.

Figure 5.4 shows simulations of the term Tk for k = 15000 and it is evident from the

figure that the value converges to 1. For higher value of n, this convergence is more rapid

and is consistent with our theoretical results. Based on this result, we can say that the
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term Tk involved in equation (5.22) converges to 1 for all values of n and large k.
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Figure 5.1: Simulation results of the convergence of the individual variance of the the
weights with n = 1000, 3000, 5000, 7000, 10000, 14000 and k = 15000. The vertical axis
shows the logarithmic values of the individual variances.

Now, we include simulation of the individual variance of the weights Ψk
n for n =

1000, 3000, 5000, 7000, 10000, 14000 and k = 15000. Figure 5.1 represents the variance of
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the weights for different values of n and it is shown from these sub-figures that the vari-

ance converges to some steady state value however the converges rate is slow. The x-axes

are in linear scale while log scale is used for y-axes to make representation obvious. These

are the individual sequences of the variance of the weights of the samples drawn at pre-

vious times and updated gradually with the increase of the time. We also observe very

small change of the weight variance as k gets larger. The convergence of the weight vari-

ance depends only on large value of k and is independent of the value of n. We can have

similar convergence results for all n starting from 1 to the value of k.

Simulation results presented in this section suggest the convergence of the sequence

of the weights variance and hence contribute to the convergence of the proposed PBDF

with a low convergence rate. In the next section, we discuss the individual variances of

Θk
n.

5.4.4 Simulations of the Statistics of the PBDF

In this subsection, simulations of the individual variances of the proposed estimator are

included. We simulate each Θk
n for n = 1000, 3000, 5000, 7000, 10000 and k = 15000 and

include our results. Again, the x-axis is in linear scale while the y-axes is represented in

log-scale.

From the Figure 5.2, it is shown that the term Θk
n for n converges to some value and

in-fact this is true for all values of n. Therefore, all the the terms in equation (5.31) inside

the summation converge and therefore the Var[∆k] converges.

5.5 Simulations of the Proposed PBDF

In this subsection, we summarize the simulation results of variances of the weights and

estimator along with simulation of the proposed estimator. A standard Kalman filter pro-

cesses the sensor data and every time we transmit only one random sample drawn from

the local posterior pdf to the fusion center and apply the PBDF at the fusion center. We

have also carried out simulations for variance of wk
n defined in equation (5.22) and shown

in Fig. 5.3, together for all samples of n but with better visualization. We have done this
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Figure 5.2: Simulation results of the individual variance of Θk
n = wk

nXn with k = 15000
and n = 1000, 3000, 5000, 7000, 10000. The vertical axis shows the logrithmic values of the
individual variances.

for k = 15000 scans and n varying and shown on a semi log scale. We observe that when

k is large enough the variance of wk
n approaches a steady state value. We have plotted the

simulation results of the terms T,
√

T1(k) and T2(k) involved in equation (5.22) in Fig.
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5.4, and it is clear that these terms approach to one as required for convergence of the

weights. We also include simulation results for variance of wk
nXn with different values of

n as shown in Fig. 5.5. It is clear that the variance of wk
nXn depends on the variance of

wk
n. When the variance of wk

n approaches zero, the variance of wk
nXn approaches a steady

state value and this is consistent in simulations if we put wk
n = 0.
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Figure 5.3: Convergence results of variance of weight wk
n where k = 15000. The y-axis is

on log scale while x-axis is on linear scale
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Figure 5.4: Convergence of T,
√

T1(k) and T2(k) to 1 for n = 1000

The root mean square errors for both filters are compared in Fig. 5.6 averaged over
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Figure 5.5: Convergence results of the variance of weight wk
nXn where k = 15000. The

y-axis is on log scale while x-axis is on linear scale

100 simulation runs. The time averaged RMSE values for local KF and the PBDF are

0.1296 and 0.1817 respectively. Since the loss of performance is small we can say PBDF

is reliable in this problem. Figure 5.7 shows the asymptotic behavior of the variance of

the weights of the samples drawn upto the current time. It is obvious that most recent

samples have lower variances which is indication of the convergence. Similarly, variance

of the product of weights and samples is shown in Fig. 5.8. By observing these results,

we can say the variance of the PBDF converges.

Simulation results included in this section show that the PBDF has comparable perfor-

mance with local optimal or centralized estimator and also convergence of the variance

of the estimator as well as the weights. The mean of the proposed estimator is very close

to the conditional mean of the optimal estimator.

5.6 Summary

In this chapter, we proposed a method of distributed tracking or estimation under com-

munication constraints. In the proposed approach, we transmit only one particle or sam-

ple drawn from the local posterior pdf of state/parameter and transmit to the fusion

center. At the fusion center, we calculate/update the weight of every received particle
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Figure 5.6: Performance comparison of local KF and proposed global Distributed particle
type filter
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Figure 5.7: Asympotatic behaviour of the updated variances of the weights of the samples
drawn upto the current time k

and our estimator is defined by a weighted sum of the samples. The calculation of the

weights of samples is based on adaptive importance sampling techniques. At time k, we

have a different importance density for all samples but the same target density. Since,

we assume our samples are drawn independently but with non-identical distributions

the conventional central limit theorem does not hold. Also convergence of the proposed

estimator directly depends on convergence of the weights and is discussed in the next

chapter. We have also included simulation results of variances of wk
n and wk

nXn and it can

be seen that these variances show asymptotic convergence to some static value.
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Figure 5.8: Asympotatic behaviour of the updated variances of the product of weights
and samples drawn upto the current time k

We are working to extend this idea to the dynamic case where we assume moving

targets. We hypothesize that samples received before the current time should follow

target dynamics and then update their weights with current measurement information.

Other possible future work is to use the proposed method for the multisensor case both

for parameter estimation as well as for moving targets.



Chapter 6

Convergence of Particle Based
Distributed Estimator

This chapter examines the performance of the particle based distributed estimator. Specifically,

we derive convergence properties of the Particle Based Distributed Filter (PBDF) proposed in the

previous chapter. We show that the mean and variance of the proposed estimator are bounded and

these sequences converge. Since the variance of the estimator depends on the variance of the weights

we study the variance of the weights as a first step. Also, we show that individual variance sequences

of the product of weight and sample converge asymptotically.

6.1 Introduction

BOTH consistency and efficiency are considered critically important in the design

of an estimator. The performance of the PBDF estimator is studied and compared

with centralized estimator in the Chapter 5. Generally, consistency describes the behavior

of an estimator for an infinite number of observations. For a non-random parameter x

with true value x0 and measurement set Yk, an estimator x̂k is consistent if the estimate

of the parameter (which is a random variable) converges to the true value under some

criteria [2]. The definition of a consistent estimator using a mean square criterion is given

by

lim
k→∞

E
[
(x̂k − x0)

2] = 0 (6.1)

For a random parameter x, the definition of a consistent estimator slightly differs because

we do not have true value and can be expressed as

lim
k→∞

E
[
(x̂k − x)2] = 0 (6.2)

79
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where the expectation is taken over both the measurement set Yk and the random quan-

tity x.

In this chapter, we discuss the convergence of the estimator defined in equation (5.13).

We prove that the first two moments of this estimator are asymptotically convergent. The

convergence of the variance of the proposed estimator depends on the variance of the

weights. We prove convergence of the variance of the weights Ψk
n and convergence of the

variance of the product of the weights and samples Θk
n defined in equations (5.22) and

(5.29).

The expected value of PBDF estimates converges to the local conditional mean es-

timate and from the basic Kalman filter consistency theory, the mean of the traditional

Kalman filter converges. Therefore, the mean of PBDF converges. In this chapter we

study the convergence of the variance of the proposed distributed filter. In the simula-

tions discussed in the previous chapter, we observed that the variance of the proposed

estimator appears to converge. We also observed that convergence of the variance was

dependent on convergence of the variance of the weights. Moreover, simulation results

showed that the variance of the weights of the samples Ψk
n converges for all instances of

n. In this chapter, we prove convergence of variance of the weights and the PBDF.

Problem formulation and techniques to prove the convergence of the variance se-

quence is explained in section 2. In section 3, we include the results of the convergence of

the variance sequence of the weights of the samples. Section 4 presents the convergence

results of PBDF.

6.2 Problem Formulation

In order to prove convergence of the proposed estimator, we need to derive the conver-

gence of its mean and variance. The proposed estimator with its associated parameters

derived in the previous chapter are

∆k =
wk

1X1 + wk
2X2 + wk

3X3 + ... + wk
kXk

k
(6.3)
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with the mean and variance of the weights wk
n

φ̂k
n = 1

Ψk
n =

1
k−n
√

4πR

N(yn+1; Hx̂n|n, Sn − R/2)
N2(yn+1; Hx̂n|n, Sn)

×
k

∏
i=n+2

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)
− 1

(6.4)

The expected value of the proposed estimator defined in equation (5.13) is given in equa-

tion (6.5) where the expectation has taken over all the samples. The expected value of the

proposed estimator is equal to the local Kalman filter estimate as shown in equation (6.5).

E[∆k] = x̂k|k (6.5)

The variance of the PBDF is given as

Var[∆k] =
1
k2

k

∑
n=1

Θk
n

=
1
k2

k

∑
n=1

1
(4πR)k−n/2

N(yn+1; Hx̂n|n, Sn − R/2)
N2(yn+1; Hx̂n|n, Sn)

×
k

∏
i=n+2

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

{
P̄k|k + x̄2

k|k

}
− x̂2

k|k

(6.6)

The parameters involved in above set of equations are rewritten as

x̂k|k = x̂k|k−1 + Kk(yk − Hx̂k|k−1)

Pk|k = Pk|k−1 − Kk HPk|k−1

x̄k|k = x̄k|k−1 + K̄k(yk − Hx̄k|k−1)

P̄k|k = P̄k|k−1 − K̄k HP̄k|k−1

where Kk = Pk|k−1H′S−1
k−1 and K̄k = P̄k|k−1H′S̄−1

k−1 are the gains for different measurement

noise variances.

By observing equation (6.5), the mean of the proposed estimator is equal to the local

estimator conditional mean which is the result of the standard Kalman filter equation.
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The unconditional mean of the parameter is convergent to the true value when integrated

over all measurements [2] as shown in Appendix A.4. We need to prove that the variance

of the proposed estimator is bounded and finite for some large value of k. Firstly, we

derive expressions for Θk
n in terms of Ψk

n. Secondly, we study the convergence properties

of the sequence Θk
n for all values of n and large k. The expression for Θk

n in terms of the

variance of the weights in equation (6.7) is (Appendix B.1),

Θk
n =

[
Ψk

n + 1
]
×
[

P̄k|k + x̄2
k|k

]
− x̂2

k|k (6.7)

Equation (6.7) shows the significance of weight variance for the calculation of vari-

ance of the proposed estimator. We first show that the sequences Θk
n and Ψk

n are Cauchy

Sequences (CS). We start discussing the properties of the Ψk
n sequence and prove it as a

CS and then we prove that Θk
n is also a CS. By observing equation (6.7), it is clear that Θk

n

is convergent sequence if Ψk
n is convergent.

6.3 Convergence of the Variance of the Weights

In this section, we discuss convergence properties of the variance sequence of sample

weights wk
n. Our main focus is to show that the sequence of the variance of the weights

Ψk
n is convergent for every n = 1, 2, 3, ..k where k > n and n is large positive integer as

defined earlier. In this section, we prove that the sequences Ψk
n are bounded and conver-

gent.

The variance of the weights wk
n can be re-written as

Ψk
n =

√
Sk−1

R
N(yk; Hx̄k−1|k−1, HP̄k−1|k−1H′ + R/2)

N(yk; Hx̂k−1|k−1, Sk−1|k−1/2)

[
Ψk−1

n + 1
]
− 1

Ψk
n = Tk

[
Ψk−1

n + 1
]
− 1

Ψk
n = Tk

[
Ψk−1

n + 1
]
− 1

Ψk
n = TkΨk−1

n + Tk − 1

(6.8)
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where

Tk =

√
Sk−1

R
N(yk; Hx̄k−1|k−1, HP̄k−1|k−1H′ + R/2)

N(yk; Hx̂k−1|k−1, Sk−1|k−1/2)
(6.9)

The above recursion can be written in terms of Ψ0
n by backward substitution as follows

Ψk
n = TkΨk−1

n + Tk − 1

Ψk
n = Tk[Tk−1Ψk−2

n + Tk−1 − 1] + Tk − 1

Ψk
n = TkTk−1Ψk−2

n + TkTk−1 − Tk + Tk − 1

Ψk
n = TkTk−1Ψk−2

n + TkTk−1 − 1

(6.10)

Now substituting the recursive form of Ψk−2
n , we obtain

Ψk
n = TkTk−1Ψk−2

n + TkTk−1 − 1

Ψk
n = TkTk−1[Tk−2Ψk−3

n + Tk−2 − 1] + TkTk−1 − 1

Ψk
n = TkTk−1Tk−2Ψk−3

n + TkTk−1Tk−2 − TkTk−1 + TkTk−1 − 1

Ψk
n = TkTk−1Tk−2Ψk−3

n + TkTk−1Tk−2 − 1

(6.11)

Similarly, substituting Ψk−3
n , Ψk−4

n to Ψ1
n, we obtain

Ψk
n =

k

∏
i=1

TiΨ0
n +

k

∏
i=1

Ti − 1

=
k

∏
i=1

Ti(Ψ0
n + 1)− 1

(6.12)

In order to prove convergence of the sequence of Ψk
n over time, we examine the

asymptotic behavior of the product term ∏k
i=1 Ti.

Lemma 6.1. Let Tk 6= 0, for all k = 1, 2, 3, ... then ∏∞
k=1 Tk converges to a nonzero limit iff the

series ak = ∑∞
k=1 log(Tk) converges.

Proof. Proof is given in Chapter 6 [57].
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6.3.1 The Series ak is Convergent

In this subsection, we study the convergence property of the series ak = ∑∞
k=1 log(Tk)

which is sequence of the sums. Let bk = log(Tk), then ak = ∑∞
k=1 bk.

Suppose, we have a series ak = ∑k
i=1 log(Tk) and we wish to prove convergence of

the partial sums ak. The series ak converges if and only if the partial sums a1, a2, a3, ..., ak

converge. Also for all instances of k, the series ak is convergent series if the Cauchy

property holds, i.e., for every m, n > N, |am − an| 6 ε. As a first step, we find the

logarithm of Tk defined in equation (6.9) bk = log(Tk). Hence

Tk =

√
Sk−1

R
N(yk; Hx̄k−1|k−1, S̄k−1)

N(yk; Hx̂k−1|k−1, Sk−1/2)

bk = log(Tk) = log

(√
Sk−1

R
N(yk; Hx̄k−1|k−1, S̄k−1)

N(yk; Hx̂k−1|k−1, Sk−1/2)

) (6.13)

Thus

bk =
1
2

{
log(Sk−1)− log(R)− log(S̄k−1) + log(Sk/2)−

(yk − Hx̄k−1|k−1)
2

S̄k−1

+
(yk − Hx̂k−1|k−1)

2

Sk−1/2

}
=

1
2

{
2 log(Sk−1)− log(R)− log(S̄k−1)− log(2)−

(
yk − Hx̄k−1|k−1

)2

S̄k−1

+
2(yk − Hx̂k−1|k−1)

2

Sk−1

}
=

1
2
[

Jk − Q̄k + Q̂k
]

(6.14)

where Jk = 2 log(Sk−1)− log(R)− log(S̄k−1)− log(2), Q̄k =
(
yk − Hx̄k−1|k−1

)2 /S̄k−1 and

Q̂k = 2(yk − Hx̂k−1|k−1)
2/Sk−1

We can further simplify the above expressions for Jk, Q̄k and Q̂k by substituting S̄k−1,

Sk−1, x̄k−1|k−1 and x̂k−1|k−1 as derived in Appendix B.2,
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Jk+1 = 2 log(Sk)− log(R)− log(S̄k) + log(2)

= 2 log
(

kPoR + R2

(k− 1)P0 + R

)
− log(R)− log

(
2kPoR + R2

2[2(k− 1)P0 + R]

)
− log(2)

= 2 log(kPoR + R2)− 2 log((k− 1)P0 + R)− log(R)− log(2kPoR + R2)

+ log(2[2(k− 1)P0 + R])− log(2)

(6.15)

Further simplifying we obtain

Jk+1 = 2 log(kPo + R) + 2 log(R)− 2 log((k− 1)P0 + R)− log(R)− log(2kPo + R)

− log(R) + log(2(k− 1)P0 + R) + log(2)− log(2)

= 2 log(kPo + R)− 2 log((k− 1)P0 + R)− log(2kP0 + R) + log(2(k− 1)P0 + R)

= 2 log
(

kPo + R
(k− 1)P0 + R

)
− log

(
2kP0 + R

2(k− 1)P0 + R

)
= 2 Ĵk+1 − J̄k+1

where Ĵk+1 = log(kPo + R/(k− 1)P0 + R) and Ĵk+1 = log(2kP0 + R/2(k− 1)P0 + R)

Q̄k+1 =
(yk − x̄k|k)

2

S̄k

=
2[2(k− 1)P0 + R]

2kP0R + R2 (yk − x̄k|k)
2

=
2[2kP0 − 2P0 + R]

(2kP0 + R)R
(yk − x̄k|k)

2

(6.16)

Multiplying and dividing by k.

Q̄k+1 =
2[2P0 − 2P0/k + R/k]

(2P0 + R/k)R
(yk − x̄k|k)

2

For very large k, the fractions 2P0/k and R/k approach zero, thus

Q̄k+1 →
2
R
(yk − x̄k|k)

2 (6.17)
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substituting Sk in the formula of Q̂k+1 we obtain

Q̂k+1 =
2(yk − x̂k|k)

2

Sk

=
(k− 1)P0 + R

kP0R + R2 2(yk − x̂k|k)
2

=
kP0 − P0 + R]
(kP0 + R)R

2(yk − x̂k|k)
2

Multiplying and dividing by k.

Q̂k+1 =
P0 − P0/k + R/k
(P0 + R/k)R

2(yk − x̂k|k)
2

For very large k, the fractions P0/k and R/k approach zero, thus

Q̂k+1 →
2
R
(yk − x̂k|k)

2 (6.18)

Lemma 6.2. limk→∞ |x̂k|k − x̄k|k| = 0

Proof. The expressions for x̄k|k and x̂k|k from Appendix (B.2) are

x̄k|k =
R

2kP0 + R
x0 +

2P0

2kP0 + R

k

∑
i=1

yi

x̂k|k =
R

kP0 + R
x0 +

P0

kP0 + R

k

∑
i=1

yi

2kP0 >> R and kP0 >> R hence ignoring R from denominators of the above expressions.

x̄k|k '
R

2kP0
x0 +

P0

kP0

k

∑
i=1

yi

x̂k|k '
R

kP0
x0 +

P0

kP0

k

∑
i=1

yi

R/2kP0 ≈ R/kP0 hence x̄k|k − x̂k|k ' Rx0
2P0

1
k thus

lim
k→∞
|x̂k|k − x̄k|k| = 0 (6.19)
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Lemma 6.3. limm→∞ |Q̂m+1 − Q̄m+1| → 0

Proof. Using the the results of (6.18) and (6.17).

Q̄k+1 →
2
R
(yk − x̄k|k)

2

→ 2
R

(
y2

k + x̄2
k|k − 2yk x̄k|k

) (6.20)

Substituting the expression of x̄k|k in above equation, we obtain

Q̄k+1 →
2
R

y2
k +

(
R

2kP0
x0 +

P0

kP0

k

∑
i=1

yi

)2

− 2yk

(
R

2kP0
x0 +

P0

kP0

k

∑
i=1

yi

)
→ 2

R
[
y2

k + ε̄k
]

→ 2
R
[µ + ε̄k]

(6.21)

Similarly, we can write the expression for Q̂k+1

Q̂k+1 →
2
R
(yk − x̂k|k)

2

→ 2
R

(
y2

k + x̂2
k|k − 2yk x̂k|k

) (6.22)

Substituting the expression of x̂k|k in above equation, we obtain

Q̂k+1 →
2
R

y2
k +

(
R

kP0
x0 +

P0

kP0

k

∑
i=1

yi

)2

− 2yk

(
R

2kP0
x0 +

P0

kP0

k

∑
i=1

yi

)
→ 2

R
[
y2

k + ε̂k
]

→ 2
R
[µ + ε̂k]

(6.23)

For a large k, both ε̂k and ε̂k approach 0, hence

Q̄k+1 →
2
R

µ

Q̂k+1 →
2
R

µ

(6.24)
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Based on the above working, expression for
∣∣Q̂k+1 − Q̄k+1

∣∣ becomes

∣∣Q̂k+1 − Q̄k+1
∣∣→ 2

|R| |µ + ε̂k − µ− ε̄k|

→ 2
|R| |ε̂k − ε̄k|

By applying limits, we can write

lim
m→∞

|Q̂k+1 − Q̄k+1| → 0 (6.25)

Lemma 6.4. limm,n→∞ |L(m, n)−M(m, n)| → 0

Proof. We can write the expressions for L(m, n) using reduced forms of ∑n
i=m+1 Ĵi and

∑n
i=m+1 Ĵi derived in Appendix B.3.

L(m, n) =
n

∑
i=m+1

Ĵi − 1/2
n

∑
i=m+1

J̄i

= log
(

nPo + R
mP0 + R

)
− 1/2 log

(
2nPo + R
2mP0 + R

)
= log

(
nPo + R
mP0 + R

)
− log

(√
2nPo + R
2mP0 + R

)

= log

(
nPo + R
mP0 + R

√
2mPo + R
2nP0 + R

)

Using the argument, for very large values of m and n, we can say that nP0 >> R and
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mP0 >> R, therefore we can ignore R and simplify the expressions as

L(m, n) =
n

∑
i=m+1

Ĵi − 1/2
n

∑
i=m+1

J̄i

= log

(
nPo

mP0

√
2mP0

2nP0

)

= log
(√

n
m

)
= 1/2 log

( n
m

)
(6.26)

As we know that m >> 0 and n >> 0, therefore log(n/m) → 0. Using this argument,

the term L(m, n) defined above approaches to 0.

L(m, n) =
n

∑
i=m+1

Ĵi − 1/2
n

∑
i=m+1

J̄i

→ 0

(6.27)

From equation (6.31),

2M(m, n) =
n

∑
i=m+1

(
Q̂i − Q̄i

)
=
(
Q̂m+1 − Q̄m+1

)
+
(
Q̂m+2 − Q̄m+2

)
+ ...+(

Q̂n−1 − Q̄n−1
)
+
(
Q̂n − Q̄n

)
(6.28)

Using the lemma 6.3, we can rewrite the limiting value of 2M as

2M(m, n) =
n

∑
i=m+1

(
Q̂i − Q̄i

)
2M(m, n)→ 0

M(m, n)→ 0

(6.29)

Using the convergence of results of L(m, n) and M(m, n) in equations (6.27) and (6.29)
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we can write the equation in limiting case as

lim |L(m, n) + M(m, n)| → 0 (6.30)

Theorem 6.1. For k > N the sequence ak is a Cauchy Sequence where ak = ∑k
i=1 bi and ∏k

i=1 Ti

converges.

Proof. We can write ak = ∑k
i=1 bi. For m, n > N and n > m, we can write

|am − an| = |
m

∑
i=1

bi −
n

∑
i=1

bi|

= |
n

∑
i=m+1

bi|

= |1
2

n

∑
i=m+1

(
Ji − Q̄i + Q̂i

)
|

= |1
2

n

∑
i=m+1

Ji +
1
2

n

∑
i=m+1

(
Q̂i − Q̄i

)
|

= |1
2
(

n

∑
i=m+1

[
2 Ĵi − J̄i

]
+

1
2

n

∑
i=m+1

(
Q̂i − Q̄i

)
|

= |
n

∑
i=m+1

Ĵi −
1
2

n

∑
i=m+1

J̄i +
1
2

n

∑
i=m+1

(
Q̂i − Q̄i

)
|

= |L(m, n) + M(m, n)|

(6.31)

where L(m, n) = ∑n
i=m+1 Ĵi − 1

2 ∑n
i=m+1 J̄i and M(m, n) = 1

2 ∑n
i=m+1

(
Q̂i − Q̄i

)
.

Using the results of lemma 6.4, it is clear that of |L(m, n) + M(m, n)| → 0. Therefore,

it is proven that the partial sum sequence ak is a Cauchy sequence.

We proved the convergence of partial sums of ak based on the fact that ak is Cauchy

Sequence and any CS is an a convergent sequence. Using lemma 6.1, it is evident that the

product term ∏k
i=1 Ti is convergent.

Theorem 6.2. Convergence of the variance of the weights For k > N, the sequence Ψk
n is a

convergent sequence for every n = 1, 2, 3, ..., k. where Ψk
n = var(wk

n|Yk) is the variance of the
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weights.

Proof. We recall the expression of Ψk
n as function of initial conditions and re-write the

equation below:

Ψk
n =

k

∏
i=1

TiΨ0
n +

k

∏
i=1

Ti − 1

= Υ×
(
Ψ0

n + 1
)
− 1

(6.32)

By observing the recursive equation of Ψk
n in equation (6.32), if Υ converges then the

sequence Ψk
n also converges since Ψ0

n and 1 are constant. Using theorem 6.1, the sequence

of the product term Υ = ∏k
i=1 Ti is convergent sequence. Hence the variance of the weight

sequences Ψk
n are convergent for all n.

6.4 Convergence of the Variance of the PBDF

In order to prove the convergence of the variance of proposed estimator defined in equa-

tion (5.13), we need to examine the convergence of individual variances of the random

variables Gi which are the product of the weights and samples.

∆k =
wk

1X1 + wk
2X2 + wk

3X3 + ... + wk
kXk

k

=
Gk

1 + Gk
2 + Gk

3 + ... + Gk
k

k

(6.33)

As defined earlier, the variance of the proposed estimator is

Var[∆k] =
1
k2

[
Var(Gk

1) + Var(Gk
2) + Var(Gk

3) + ... + Var(Gk
k)
]

=
1
k2

[
Θk

1 + Θk
2 + Θk

3 + ... + Θk
k−1 + Θk

k

]
=

1
k2

k

∑
i=1

Θk
i

(6.34)

Theorem 6.3. Convergence of variance of Gk
n: For k > N , the sequence of variances of the
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random variables Gk
n denoted by Θk

n is convergent sequence where Θk
n = Var(wk

nXn|Yk) for

n = 1, 2, 3..., k. This implies the convergence of Var(∆k).

Proof. The proof of this theorem is based on the convergence of variance of the weights.

Consider the sequence

Θk
n =

[
Ψk

n + 1
]
×
[

P̄k|k + x̄2
k|k

]
− x̂2

k|k (6.35)

The sequence Θk
n is convergent if the terms Ψk

n, P̄k|k , x̄2
k|k and x̂2

k|k approach to steady

state values. We discuss the convergence of each term. The first term Ψk
n is the variance of

weights and plays vital role in the convergence of estimator variance. The convergence

of Ψk
n is already proved in Theorem 6.2 discussed in previous section. The other param-

eters P̄k|k , x̄2
k|k and x̂2

k|k are the variance and estimates resulted from a Kalman filter and

consistency of the Kalman filter is well studied in the literature [2].

To conclude, all the four terms involved in expression of Θk
n are convergent and hence

the sequence itself is convergent. This result leads to convergence of variance of the

proposed estimator.

6.5 Summary

In this chapter, we discussed the convergence of the PBDF. We show that the asymptotic

value of the mean of the weights is 1 while the asymptotic value of the conditional mean

of the proposed estimator is equal to the optimal conditional mean of the local estimator.

We have also seen that the unconditional mean approaches the true value of the param-

eter. We derived equations for the variance of the proposed estimator in terms of the

variance of the weights. We proved that the sequence of the variance of the weight is a

Cauchy sequence. This result leads us to the conclusion that the sequence of the variances

of the proposed estimator is also convergent.



Chapter 7

Conclusion

This chapter concludes the thesis and also includes discussion on the possible future work.

IN this thesis, distributed estimation or tracking under communication constraints

was explored. We considered tracking both in cluttered and non-cluttered surveil-

lance environments. We made three major contributions

• Distributed tracking using scaled equivalent measurements

• Distributed tracking using compressed measurements in cluttered environments

• Distributed tracking using particle transmission to the fusion center

We considered a single sensor node capable of performing local tracking which is

connected to the fusion center. The communication link between the sensor node and the

fusion center is assumed to be ideal, i.e., there is no loss of information. However, com-

munication channels come with data rate limitations. We explored various distributed

tracking algorithms by studying the effect of minimal measurement information across

these communication links to the fusion center. We studied the trade-off between the

available bandwidth and the tracking performance. The objective of this study was to

analyze the communication constraints in the distributed architecture of a target tracking

problem.

We commenced by introducing the problem in Chapter 1. A review of target track-

ing methods was covered in Chapter 2. In Chapter 3, we discussed the transmission of

equivalent measurements (tracklets) as measurement information in a distributed track-

ing architecture when using low data rate communication. We observed that sending

scaled equivalent measurements is similar to the transmission of the full state equivalent

measurements in terms of tracking performance. The bandwidth required to transmit

93
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the scaled equivalent measurements per scan is almost half of that required to transmit

the full state equivalent measurements. Therefore, we can send scaled equivalent mea-

surements more often using the same bandwidth as compared to the full state equivalent

measurement which can be advantageous under certain circumstances. We also studied

the encoding effect on the tracking performance. We observed that it is relatively better

to send less often with a higher number of encoding bits rather than sending more of-

ten with a lower number of encoding bits. We proposed that sending information with

an N-step scan interval rather than every scan is a good choice for optimizing available

bandwidth. By doing so, we distributed the bandwidth to encode the scaled equiva-

lent measurements based on the frequency of transmission. We discussed the idea of

transmission of scaled equivalent measurements with a given budget of encoding bits

for transmission. We compared the tracking performance of N step transmission with

smaller and larger N values while keeping the same bandwidth budget for a fixed time

of tracking a target. Future work in this direction could incorporate an adaptive N based

on the information contribution of the equivalent measurements.

In the Chapter 4, we studied distributed tracking in the presence of a clutter envi-

ronment. The objective was again maintaining reasonable tracking performance in the

presence of constraints on the channel bandwidth. The structure of the tracking system

was similar to the one used in Chapter 3 except we dealt with clutter measurements. We

proposed the transmission of a weighted sum of clutter and target measurements to the

fusion center. By doing so, we only need to transmit one weighted sum containing both

clutter and target measurement information. The scaling factor of each measurement

(target or clutter) comes from the likelihood of standard Probabilistic Data Association

filter. We used the standard PDA filter at the sensor node and proposed a recursive

Bayesian Compressed Filter at the fusion center. The proposed Compressed Filter uses

the compressed measurement and extracts clutter as well as target information to update

the global track. The Compressed Filter is a recursive filter and its implementation is

based on Monte Carlo integration. In fact, we compute various intractable integrals us-

ing the Monte Carlo integration and by substituting clutter measurement integrals with

new random variables resulting from the sum of clutter measurements. The implemen-
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tation of this Compressed Filter is carried out using a Gaussian mixture. We commenced

with one prior Gaussian and the number of Gaussians increases with the time . The

estimated value of the state was the weighted sum of Gaussians. We retained only signif-

icant weighted Gaussians by discarding the low weighted Gaussians. We compared our

proposed Compressed Filter with the local PDA filter and performance was comparable

to the sub-optimal PDA. Keeping in mind that we transmit only one weighted measure-

ment to the fusion center and the loss of the performance in presence of communication

constraint was negligible.

The preliminary work in the Chapter 4 was only implemented for one dimensional

tracking in which target dynamics were simple, i.e., one target was considered moving on

a straight line with constant velocity. As a future work, this can be extended to tracking

in higher dimensions. It would be interesting to look at the performance of our proposed

filter with target maneuvers. Also, this work can be extended to take into account the

probability of target existence and multiple targets.

The third major contribution of this thesis was presented in the Chapter 5. We pro-

posed a novel idea of distributed tracking based on transmission of particles to the fusion

center. At the fusion center, we proposed a particle based distributed filter which uses

the received particles along with previously received particles to estimate the parameter

of interest. Our proposed PBDF does not depend on the type of filter used at the sensor

node. The only information it needs is samples (particles) of the local posterior probabil-

ity distribution function. The proposed filter updates the weights of all received samples

and calculates the weight for a recently received sample. The estimated value of the pa-

rameter is then the weighted sum of all received samples. The calculation of the weights

is a challenging step because as time progresses, every sample has a different sampling

or proposal distribution and a changing target distribution. Therefore, the conventional

importance sampling techniques cannot be used. We used adaptive importance sampling

techniques to calculate the weights of the samples and derived expressions in recursive

forms so that computations can be reduced. In simulations, we compared the tracking

performance with local/optimal standard Kalman filter and results are promising for the

simplest case of parameter estimation. To make confident comments about our proposed
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method, we studied the convergence of the estimator using simulations in Chapter 5. The

expressions of the variance of the proposed methods strongly suggested its dependence

on the weight statistics. Using simulations and intuitive arguments, we proved that our

estimator is stable.

Study of the consistency of the PBDF was the topic of Chapter 6. We proved that the

mean and variance of our proposed PBDF were bounded and hence converged to some

steady state values. Based on the expressions of the mean and variances of the proposed

estimator, we started work on the convergence of the proposed PBDF. The mean value of

the proposed estimator asymptotically matches with local conditional mean while vari-

ance depends on the variance of the weights. Firstly, we proved the convergence of the

variance of the weights and then proved the convergence of the proposed PBDF. We used

knowledge of the Kalman filter consistency to prove the results in Chapter 6. Simulation

results were included in the Chapter 5 were consistent with the mathematical derived

results in Chapter 6.

The distributed estimation/filtering based on the particle transmission can be ex-

tended in many directions. An important extension to this work is for the dynamical

case of target tracking. A second extension to the topic can be studying this approach for

the multi sensor case. Also, we can study the trad-off between transmitting more than

one particles at a time and the tracking performance. We have not studied the rate of

convergence and of course this is an important future topic.



Appendix A

Derivations for the PBDF

A.1 Important Formulae List

The product of two Gaussian distributions with the same parameters is given by :

N2(y2; HX1, R) =
1√

4πR
N (y2; HX1, R/2) (A.1)

The division of two Gaussian densities having same mean and different variance is given

by

N(y2; Hx̂1|1, S1 − R/2)
N(y2; Hx̂1|1, S1)

=

√
4πS2

1
R

N
(

y2; Hx̂1|1, 2
(S1 − R/2)S1

R

)
= N(y2; Hx̂1|1, 2S̃1S1/R)

(A.2)

where S̃1 = S1 − R/2

A.2 The Statistic of Weights (Section 5.4.1 )

In this appendix, we derive the variances of wk
n for each n = 1, 2, 3, ..., n. The variance of

w1
1 is zero as this weight is 1, i.e., a constant. At k = 2: We have two samples with weights

w2
1 and w2

2. The variance of w2
2 is zero. The conditional variance of [w2

1|Y2] is derived as
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below.

Var(w2
1|Y2) = E

[
(w2

1|Y2)2]− (E[w2
1|Y2])2

=
∫ (

w2
1
)2

N(X1; x̂1|1, P1|1)dX1 − 1

=
∫ N2(y2; HX1, R)

N2(y2; Hx̂1|1, S1)
N(X1; x̂1|1, P1|1)dX1 − 1

=
1√

4πR

∫ N(y2; HX1, R/2)
N2(y2; Hx̂1|1, S1)

N(X1; x̂1|1, P1|1)dX1 − 1

=
1√

4πR

∫ N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

N(X1; x̄2|2, P̄2|2)dX1 − 1

=
1√

4πR

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

− 1

(A.3)

The unconditional variance of w2
1 is

E[(w2
1)

2] =
∫ ∫ ∫

(w2
1)

2N(X1; x̂1|1, P1|1)N(y2; Hx̂1|1, S1)N(y1; Hx̂0|0, S0)dX1dy2dy1

=
∫ ∫ ∫ N2(y2; HX1, R)

N2(y2; Hx̂1|1, S1)
N(X1; x̂1|1, P1|1)N(y2; Hx̂1|1, S1)

× N(y1; Hx̂0|0, S0)dX1dy2dy1

=
∫ ∫ ∫ N2(y2; HX1, R)

N(y2; Hx̂1|1, S1)
N(X1; x̂1|1, P1|1)N(y1; Hx̂0|0, S0)dX1dy2dy1

We can solve the square of Gaussian distribution N2(y2; HX1, R) using equation (A.1)

and obtain expression.

E[(w2
1)

2] =
1√

4πR

∫ ∫ ∫ N(y2; HX1, R/2)
N(y2; Hx̂1|1, S1)

N(X1; x̂1|1, P1|1)N(y1; Hx̂0|0, S0)dX1dy2dy1

E[(w2
1)

2] =
1√

4πR

∫ ∫ ∫ N(y2; Hx̂1|1, S1 − R/2)
N(y2; Hx̂1|1, S1)

N(X1; x̂2|2, P2|2)N(y1; Hx̂0|0, S0)dX1dy2dy1

Now, using equation (A.2) yields

E[(w2
1)

2] =
1√

4πR

√
4πS2

1
R

∫ ∫ ∫
N(y2; Hx̂1|1, 2

S̃1S1

R
)N(X1; x̂2|2, P2|2)

× N(y1; Hx̂0|0, S0)dX1dy2dy1
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Solving further and integrating over variable y2, y1 and X1, we get

E[(w2
1)

2] =
S1

R

∫ ∫ ∫
N(X1; x̂2|2, P2|2)N(y2; Hx̂1|1, 2

S̃1S1

R
)N(y1; Hx̂0|0, S0)dX1dy2dy1

=
S1

R

∫ ∫
N(X1; x̂2|2, P2|2)N(y2; Hx̂1|1, 2

S̃1S1

R
)dX1dy2

=
S1

R

∫
N(X1; x̂2|2, P2|2)dX1

=
S1

R

where integration of
∫

N(y1; Hx̂0|0, S0)dy1,
∫

N(y2; Hx̂1|1, 2 S̃1S1
R )dy2 and∫

N(X1; x̂2|2, P2|2)dX1 is equal to 1 in each case. Hence, we can write the simplified

expression of the unconditional variance of w2
1 as follows.

Var(w2
1) = E[(w2

1)
2]− (E[w2

1])
2

=
S1

R
− 1;

(A.4)

At k = 3, we have three samples with weights w3
1, w3

2 and w3
3. The variance of w3

3 is

simply zero while the variance of w3
1 and w3

2 are derived below. The conditional variance

of w3
1 is given first.

Var(w3
1|Y3) = E[(w3

1|Y3)2]− (E[w3
1|Y2])2

=
∫
(w3

1)
2N(X1; x̂1|1, P1|1)dX1 − 1

=
∫ N2(y3; HX1, R)

N2(y3; Hx̂2|2, S2)

N2(y2; HX1, R)
N2(y2; Hx̂1|1, S1)

N(X1; x̂1|1, P1|1)dX1 − 1

=
1

4πR

∫ N(y3; HX1, R/2)
N2(y3; Hx̂2|2, S2)

N(y2; HX1, R/2)
N2(y2; Hx̂1|1, S1)

N(X1; x̂1|1, P1|1)dX1 − 1

=
1

4πR

∫ N(y3; HX1, R/2)
N2(y3; Hx̂2|2, S2)

N(X1; x̄2|2, P̄2|2)
N(y2; Hx̂1|1, S1 − R/2)

N2(y2; Hx̂1|1, S1)
dX1 − 1

=
1

4πR

∫ N(y3; Hx̄2|2, HP̄2|2H′ + R/2)
N2(y3; Hx̂2|2, S2)

N(X1; x̄3|3, P̄3|3)

×
N(y2; Hx̂1|1, S1 − R/2)

N2(y2; Hx̂1|1, S1)
dX1 − 1

(A.5)
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Now integrating over variable X1, we obtain

Var(w3
1|Y3) =

1
4πR

N(y3; Hx̄2|2, HP̄2|2H′ + R/2)
N2(y3; Hx̂2|2, S2)

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

− 1 (A.6)

The unconditional variance of w3
1 becomes

Var(w3
1) =

1
4πR

∫∫∫ N(y3; Hx̄2|2, HP̄2|2H′ + R/2)
N2(y3; Hx̂2|2, S2)

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

× N(y3; Hx̂2|2, S2)N(y2; Hx̂1|1, S1)N(y1; Hx̂0|0, S0)dy3dy2dy1 − 1

=
1

4πR

∫∫∫ N(y3; Hx̄2|2, HP̄2|2H′ + R/2)
N(y3; Hx̂2|2, S2)

N(y2; Hx̂1|1, S1 − R/2)
N(y2; Hx̂1|1, S1)

× N(y1; Hx̂0|0, S0)dy3dy2dy1 − 1

=
S1

R
√

4πR

∫∫∫ N(y3; Hx̄2|2, HP̄2|2H′ + R/2)
N(y3; Hx̂2|2, S2)

N(y2; Hx̂1|1, 2 (S1−R/2)S1
R )

× N(y1; Hx̂0|0, S0)dy3dy2dy1 − 1

(A.7)

Now solving ratio of Gaussian densities in variable y3 with different parameters, the

above equation can be further simplified

Var(w3
1) =

S1S2

R
√

2R∆2

∫∫∫
N(y3; Hx̄2|2 − A2δ2, S2∆−1

2 S̄2) exp(−δ2
2

2
(A2

2(S̄
−1
2 − S−1

2 )− S−1
2 )

× N(y2; Hx̂1|1, 2 (S1−R/2)S1
R )N(y1; Hx̂0|0, S0)dy3dy2dy1 − 1

=
S1S2

R
√

2R∆2

∫∫
exp(−δ2

2
2
((A2

2(S̄
−1
2 − S−1

2 )− S−1
2 )N(y2; Hx̂1|1, 2 (S1−R/2)S1

R )

× N(y1; Hx̂0|0, S0)dy2dy1 − 1

=
S1S2

2

√
2π(S̄−1

2 − S−1
2 )

R
√

2|Rζ2H2(k1 − k̄1)2(2− S2S̄−1
2 )|

∫∫
N(y2; Hx̂1|1, 2

(S1 − R/2)S1

R
)

× N(y2; Hx̂1|1,
(S̄−1

2 − S−1
2 )S2

2

H2(k1 − k̄1)2(2− S2S̄−1
2 )

)N(y1; Hx̂0|0, S0)dy2dy1 − 1

(A.8)
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Solving further, we obtain the simplified expression for Var(w3
1) as

Var(w3
1) =

S1S2
2

√
2π(S̄−1

2 − S−1
2 )

R
√

2|Rζ2H2(k1 − k̄1)2(2− S2S̄−1
2 )|

∫∫
N(y2; Hx̂1|1, Υ1)N(y2; Hx̂1|1, Υ2)

× N(y1; Hx̂0|0, S0)dy2dy1 − 1

=
S1S2

2

√
2π(S̄−1

2 − S−1
2 )

R
√

2|Rζ2H2(k1 − k̄1)2(2− S2S̄−1
2 )2π(Υ1 + Υ2)|

∫∫
N(y2; Hx̂1|1,

Υ1Υ2

Υ1 + Υ2
)

× N(y1; Hx̂0|0, S0)dy2dy1 − 1

=
S1S2

2

√
2π(S̄−1

2 − S−1
2 )

R
√

2|Rζ2H2(k1 − k̄1)2(2− S2S̄−1
2 )2π(Υ1 + Υ2)|

− 1

(A.9)

where the parameters used are calculated below. These parameters result from solving

the ratio of two Gaussian densities with different parameters.

ζ2 = S2 − S̄2

δ2 = Hx̂2|2 − Hx̄2|2

A2 = (S̄−1
2 − S−1

2 )−1S−1
2

Υ1 = 2
(S1 − R/2)S1

R

Υ2 =
(S̄−1

2 − S−1
2 )S2

2

H2(k1 − k̄1)2(2− S2S̄−1
2 )

(A.10)

We find the the condition variance of [w3
2|Y3] as below.

Var(w3
2|Y3) = E[(w3

2|Y3)2]− (E[w3
2|Y3])2

=
∫
(w3

2)
2N(X2; x̂2|2, P2|2)dX2 − 1

=
∫ N2(y3; HX2, R)

N2(y3; Hx̂2|2, S2)
N(X2; x̂2|2, P2|2)dX2 − 1

(A.11)
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Further solving, we obtain

Var(w3
2|Y3) =

1√
4πR

∫ N(y3; HX3, R/2)
N2(y3; Hx̂2|2, S2)

N(X2; x̂2|2, P2|2)dX2 − 1

=
1√

4πR

∫ N(y3; Hx̂2|2, S2 − R/2)
N2(y3; Hx̂2|2, S2)

N(X2; x̄3|3, P̄3|3)dX2 − 1

=
1√

4πR

N(y3; Hx̂2|2, S2 − R/2)
N2(y3; Hx̂2|2, S2)

− 1

(A.12)

At k = 4, we have four samples with weights w4
1, w4

2 w4
3 and w4

4. The variance of w4
4 is

zero while variance of w4
1, w4

2 and w4
3 are derived below. The conditional variance of w4

1

is given first.

Var(w4
1|Y3) = E[(w4

1|Y4)2]− (E[w4
1|Y4])2

=
∫
(w4

1)
2N(X1; x̂1|1, P1|1)dX1 − 1

=
∫ N2(y4; HX1, R)

N2(y4; Hx̂3|3, S3)

N2(y3; HX1, R)
N2(y3; Hx̂2|2, S2)

N2(y2; HX1, R)
N2(y2; Hx̂1|1, S1)

× N(X1; x̂1|1, P1|1)dX1 − 1

(A.13)

Solving the square of Guassians and further simplifying, we get

Var(w4
1|Y3) =

1

(4πR)
3
2

∫ N(y4; HX1, R/2)
N2(y4; Hx̂3|3, S3)

N(y3; HX1, R/2)
N2(y3; Hx̂2|2, S2)

N(y2; HX1, R/2)
N2(y2; Hx̂1|1, S1)

× N(X1; x̂1|1, P1|1)dX1 − 1

=
1

(4πR)
3
2

∫ N(y4; HX1, R/2)
N2(y4; Hx̂3|3, S3)

N(y3; HX1, R/2)
N2(y3; Hx̂2|2, S2)

N(X1; x̄2|2, P̄2|2)

×
N(y2; Hx̂1|1, S1 − R/2)

N2(y2; Hx̂1|1, S1)
dX1 − 1

=
1

(4πR)
3
2

∫ N(y4; HX1, R/2)
N2(y4; Hx̂3|3, S3)

N(X1; x̄3|3, P̄3|3)
N(y3; Hx̄2|2, HP̄2|2H′ + R/2)

N2(y3; Hx̂2|2, S2)

×
N(y2; Hx̂1|1, S1 − R/2)

N2(y2; Hx̂1|1, S1)
dX1 − 1

(A.14)
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Further minimising the above expression, we obtain

=
1

(4πR)
3
2

∫ N(y4; Hx̄3|3, HP̄3|3H′ + R/2)
N2(y4; Hx̂3|3, S3)

N(X1; x̄4|4, P̄4|4)

×
N(y3; Hx̄2|2, HP̄2|2H′ + R/2)

N2(y3; Hx̂2|2, S2)

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

dX1 − 1

=
1

(4πR)
3
2

N(y4; Hx̄3|3, HP̄3|3H′ + R/2)
N2(y4; Hx̂3|3, S3)

N(y3; Hx̄2|2, HP̄2|2H′ + R/2)
N2(y3; Hx̂2|2, S2)

×
N(y2; Hx̂1|1, S1 − R/2)

N2(y2; Hx̂1|1, S1)
− 1

=
1

(4πR)
3
2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

4

∏
i=3

N(yi; Hx̄i−1|i−1, HP̄i−1|i−1H′ + R/2)
N2(yi; Hx̂i−1|i−1, Si)

− 1

(A.15)

The conditional variance of w4
2 for a sample drawn at k = 2 and updated at k = 4 is

derived in below set of equations. Using the formula of variance of a random variable in

terms of expected value, we write

Var(w4
2|Y4) = E[(w4

2|Y4)2]− (E[w4
2|Y4])2

=
∫
(w4

2)
2N(X2; x̂2|2, P2|2)dX2 − 1

Substituting the expression of w4
2, the above expression becomes

Var(w4
2|Y4) =

∫ N2(y4; HX2, R)
N2(y4; Hx̂3|3, S3)

N2(y3; HX3, R)
N2(y3; Hx̂2|2, S2)

N(X2; x̂2|2, P2|2)dX2 − 1

Solving the product of Gaussian, Var(w4
2|Y4) can be expressed as

Var(w4
2|Y4) =

1
4πR

∫ N(y4; HX2, R/2)
N2(y4; Hx̂3|3, S3)

N(y3; HX2, R/2)
N2(y3; Hx̂2|2, S2)

N(X2; x̂2|2, P2|2)dX2 − 1

=
1

4πR

∫ N(y4; HX2, R/2)
N2(y4; Hx̂3|3, S3)

N(X2; x̄3|3, P̄3|3)
N(y3; Hx̂2|2, S2 − R/2)

N2(y2; Hx̂2|2, S2)
dX2− 1

=
1

4πR

∫ N(y4; Hx̄3|3, HP̄3|3H′ + R/2)
N2(y4; Hx̂3|3, S3)

N(X2; x̄4|4, P̄4|4)

×
N(y3; Hx̂2|2, S2 − R/2)

N2(y3; Hx̂2|2, S2)
dX2 − 1
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Integrating over variable X2, we get the below simplified form of Var(w4
2|Y4)

=
1

4πR
N(y4; Hx̄3|3, HP̄3|3H′ + R/2)

N2(y4; Hx̂3|3, S3)

N(y3; Hx̂2|2, S2 − R/2)
N2(y3; Hx̂2|2, S2)

− 1 (A.16)

Now, we find the the condition variance of [w4
3|Y4] as

Var(w4
3|Y4) = E[(w4

3|Y4)2]− (E[w4
3|Y4])2

=
∫
(w4

3)
2N(X3; x̂3|3, P3|3)dX3 − 1

=
∫ N2(y4; HX3, R)

N2(y4; Hx̂3|3, S3)
N(X3; x̂3|3, P3|3)dX3 − 1

=
1√

4πR

∫ N(y4; HX3, R/2)
N2(y4; Hx̂3|3, S3)

N(X3; x̂3|3, P3|3)dX3 − 1

=
1√

4πR

∫ N(y4; Hx̂3|3, S3 − R/2)
N2(y4; Hx̂3|3, S3)

N(X2; x̄3|3, P̄3|3)dX2

=
1√

4πR

N(y4; Hx̂3|3, S3 − R/2)
N2(y4; Hx̂3|3, S3)

(A.17)

At time k, we have k samples with weights wk
1, wk

2 ,wk
3, upto wk

k. Using induction and

the above results, we can write the conditional variance of the above weights as

Υk
1 =

1

(4πR)
k−1

2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

k

∏
i=3

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si−1)
− 1

Υk
2 =

1

(4πR)
k−2

2

N(y3; Hx̂2|2, S2 − R/2)
N2(y3; Hx̂2|2, S2)

k

∏
i=4

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si−1)
− 1

Ψk
3 =

1

(4πR)
k−3

2

N(y4; Hx̂3|3, S3 − R/2)
N2(y4; Hx̂3|3, S3)

k

∏
i=5

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si−1)
− 1

.

.

Ψk
k−1 =

1

(4πR)
1
2

N(yk; Hx̂k−1|k−1, Sk−1 − R/2)
N2(yk; Hx̂k−1|k−1, Sk−1)

− 1
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Using the above expressions, the general form becomes.

Ψk
n =

1
k−n
√

4πR

N(yn+1; Hx̂n|n, Sn − R/2)
N2(yn+1; Hx̂n|n, Sn)

×
k

∏
i=n+2

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)
− 1

(A.18)

Where Ψk
n is conditional variance of weight wk

n|Yk , Sk−1 = HPk|k−1H′ + R, S̄i−1 =

HP̄i|i−1H′ + R/2 and n 6 k represents the time at which samples were drawn and k

is current time index.

A.3 Conditional Expected Value of the Estimate (Section 5.4.2)

In this appendix, we derive closed form expressions for the expected values of our pro-

posed estimates conditional on measurements. We use induction for its derivations. At

time k = 2,

E[∆2] = E
[

w2
1X1 + w2

2X2

2

]
=

1
2

E
[
w2

1X1 + w2
2X2

]
=

1
2
[
E[w2

1X1] + E[w2
2X2]

]
=

1
2

[
E[l2(X1)

C1
1

C2
1

X1] + E[X2

]
=

1
2

[∫
l2(X1)

C1
1

C2
1

X1
l1(X1)π0(X1)

C1
1

dX1 +
∫

X2π2(X2)dX2

]
=

1
2

[∫
X1

l2(X1)l1(X1)π0(X1)

C2
1

dX1 +
∫

X2π2(X2)dX2

]
=

1
2

[∫
X1π2(X1)dX1 +

∫
X2π2(X2)dX2

]
=

1
2
[
x̂2|2 + x̂2|2

]
= x̂2|2

(A.19)

At time k = 3,
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E[∆3] = E
[

w3
1X1 + w3

2X2 + w3
3X3

3

]
=

1
3

{
E[w3

1X1] + E[w3
2X2] + E[w3

3X3]
}

=
1
3

{ ∫
l3(X1)w2

1
C2

1

C3
1

X1
l1(X1)π0(X1)

C1
1

dX1 +
∫

l3(X2)w2
2

C2
2

C3
2

X2
l2(X2)l1(X2)π0(X2)

C2
2

)dX2

+
∫

X3π3(X3)dX3

}
=

1
3

{ ∫
l3(X1)l2(X1)

C1
1

C2
1

C2
1

C3
1

X1
l1(X1)π0(X1)

C1
1

dX1

+
∫

l3(X2)w2
2

C2
2

C3
2

X2
l2(X2)l1(X2)π0(X2)

C2
2

)dX2 +
∫

X3π3(X3)dX3

}
=

1
3

{ ∫
X1

l3(X1)l2(X1)l1(X1)π0(X1)

C3
1

dX1 +
∫

X2
l3(X2)l2(X2)l1(X2)π0(X2)

C3
2

dX2

+
∫

X3π3(X3)dX3

}
=

1
3

{ ∫
X1π3(X1)dX1 +

∫
X2π2(X2)dX2 +

∫
X3π3(X3)dX3

}
= x̂3|3

(A.20)

At time k = 4

E[∆4] = E
[

w4
1X1 + w4

2X2 + w4
3X3 + w4

4X4

4

]
=

1
4

{
E[l4(X1)w3

1
C3

1

C4
1

X1] + E[l4(X2)w3
2

C3
2

C4
2

X2] + E[l4(X3)w4
3

C3
3

C4
3

X3] + E[X4]
}

=
1
4

{ ∫
X1

l4(X1)l3(X1)l2(X1)l1(X1)π0(X1)

C4
1

dX1 +
∫

X2
l4(X2)l3(X2)l2(X2)l1(X2)π0(X2)

C4
2

dX2 +
∫

X3
l4(X3)l3(X3)l2(X3)l1(X3)π0(X3)

C4
3

dX3 +
∫

X4π4(X4)dX4

}
=

1
4

{ ∫
X1π4(X1)dX1 +

∫
X2π4(X2)dX2] +

∫
X3π4(X3)dX3 +

∫
X4π4(X4)dX4

}
= x̂4|4

(A.21)
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At time k, using induction, we derive results for E[∆k]

E[∆k] = E

[
wk

1X1 + wk
2X2 + wk

3X3 + ... + wk
kXk

k

]

=
1
k

{
E
[
wk

1X1 + wk
2X2 + wk

3X3 + ... + wk
kXk

]}
=

1
k

{
E[wk

1X1] + E[wk
2X2] + E[wk

3X3] + ... + E[wk
kXk]

}
=

1
k

{ ∫
X1πk(X1)dX1 +

∫
X2πk(X2)dX2 +

∫
X3πk(X3)dX3 + ... +

∫
Xkπk(Xk)dXk

}
(A.22)

Evaluating the individual expectation of the terms in above equation, we can write the

expression for E[∆k] as

E[∆k] =
1
k
[
x̂k|k + x̂k|k + ... + x̂k|k

]
= x̂k|k

(A.23)

A.4 Unconditional Expected Value of the Estimator

We include the derivations of unconditional expected values of the proposed estimator.

Again, we use induction to derive the general formulae. At time k = 2, we solve for the

expectation over x, y1, y2 for k = 2 and obtain

E[∆2] = E
[

w2
1X1 + w2

2X2

2

]
=

1
2

E[w2
1X1 + w2

2X2]

=
1
2
{E[w2

1X1] + E[w2
2X2]}

We derive the closed form solution of E[w2
1X1] and E[w2

2X2] separately and then we com-

bine them for the final result.

E[w2
1X1] =

∫ ∫ ∫
w2

1X1 p(X1, y2, y1)dX1dy2dy1
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Considering everything linear and Gaussian, the joint distribution p(X1, y2, y1) is given

as below using a Kalman filter framework.

p(X1, y2, y1) = N(X1; x̂1|1, P1|1)N(y2; Hx̂1|1, S1)N(y1; Hx̂0|0, S0)

S1 = HP1|1H′ + R

C1 = N(y1; Hx̂0|0, S0)

C2 = N(y2; Hx̂1|1, S1)N(y1; x̂0|0, S0)

w2
1 =

N(y2; Hx1, R)
N(y2; Hx̂1|1, S1)

Putting these terms back we get

E[w2
1X1] =

∫ ∫ ∫
X1

N(y2; HX1, R)
N(y2; Hx̂1|1, S1)

N(X1; x̂1|1, P1|1)N(y2; Hx̂1|1, S1)

× N(y1; Hx̂0|0, S0)dX1dy2dy1

=
∫ ∫ ∫

X1
N(y2; Hx̂1|1, S1)

N(y2; Hx̂1|1, S1)
N(X1; x̂2|2, P2|2)N(y2; Hx̂1|1, S1)

× N(y1; Hx̂0|0, S0)dX1dy2dy1

=
∫ ∫ ∫

X1N(X1; x̂2|2, P2|2)N(y2; Hx̂1|1, S1)

× N(y1; Hx̂0|0, S0)dX1dy2dy1

=
∫ ∫

x̂2|2N(y2; Hx̂1|1, S1)N(y1; Hx̂0|0, S0)dy2dy1

=
∫ ∫

(x̂1|1 + K1y2 − K1Hx̂1|1)N(y2; Hx̂1|1, S1)N(y1; Hx̂0|0, S0)dy2dy1

Putting x̂2|2 = x̂1|1 + K1y2 − K1Hx̂1|1 and integrating first over y2.

E[w2
1X1] =

∫ ∫
(x̂1|1 + K1y2 − K1Hx̂1|1)N(y2; Hx̂1|1, S1)N(y1; Hx̂0|0, S0)dy2dy1

=
∫ ∫

x̂1|1N(y1; Hx̂0|0, S0)dy1
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Putting x̂1|1 = x̂0|0 + K0y1 − K0Hx̂0|0 and integrating first over variable y2.

=
∫
(x̂0|0 + K0y1 − K0Hx̂0|0)N(y1; Hx̂0|0, S0)dy1

= x̂0|0

Similarly, E[w2
2X2] when w2

2 = 1 can be derived as below.

E[w2
2X2] =

∫ ∫ ∫
X2N(X2; x̂2|2, P2|2)N(y2; Hx̂1|1, S1)N(y1; Hx̂0|0, S0)dX2dy2dy1

=
∫ ∫ ∫

X2N(X2; x̂2|2, P2|2)N(y2; Hx̂1|1, S1)N(y1; Hx̂0|0, S0)dX2dy2dy1

=
∫ ∫

x̂2|2N(y2; Hx̂1|1, S1)N(y1; Hx̂0|0, S0)dy2dy1

=
∫ ∫

(x̂1|1 + K1y2 − K1Hx̂1|1)N(y2; Hx̂1|1, S1)N(y1; Hx̂0|0, S0)dy2dy1

Putting x̂2|2 = x̂1|1 + K1y2 − K1Hx̂1|1 and integrating first over y2.

E[w2
2X2] =

∫ ∫
(x̂1|1 + K1y2 − K1Hx̂1|1)N(y2; Hx̂1|1, S1)N(y1; Hx̂0|0, S0)dy2dy1

=
∫ ∫

x̂1|1N(y1; Hx̂0|0, S0)dy1

Putting x̂1|1 = x̂0|0 + K0y1 − K0Hx̂0|0 and integrating first over y1.

=
∫
(x̂0|0 + K0y1 − K0Hx̂0|0)N(y1; Hx̂0|0, S0)dy1

= x̂0|0

Substituting the above results back, yields

E[x̂2] = E
[

w2
1X1 + w2

2X2

2

]
=

1
2

E
[
w2

1X1 + w2
2X2

]
=

1
2

{
E[w2

1X1] + E[w2
2X2]

}
=

1
2

{
x̂0|0 + x̂0|0

}
= x̂0|0



110 Derivations for the PBDF

A.5 Conditional Variance of the proposed PBDF (Section 5.4.2)

In this appendix, we derive the variance of the proposed estimator expressed as

Var[∆k] =
1
k2 ∑k

n=1 Θk
n. We first derive the closed form expressions for the conditional

variance of the product of sample and weights wk
nXn expressed as Θk

n. The general form

of the Θk
n in terms of expected value can be written as

Θk
n = E[(wk

nXn|Yk)2]− (E[wk
nXn|Yk])2 (A.24)

The expected value of wk
1X1 conditional on all measurements received upto time k is

x̂k|k and the conditional variance of wk
1X1 is being derived as below by using the induction

procedure. We start the exploring the expressions of Θ2
1, Θ3

1, Θ4
1 and the derive the general

expression Θk
1 The variance of the wk

1X1 when k = 2

Θ2
1 = E[(w2

1X1|Y2)2]− (E[w2
1X1|Y2])2

=
∫
(w2

1)
2X2

1 N(X1; x̂1|1, P1|1)dX1 − x̂2
2|2

=
∫

X2
1

N2(y2; HX1, R)
N2(y2; Hx̂1|1, S1)

N(X1; x̂1|1, P1|1)dX1 − x̂2
2|2

=
1√

4πR

∫
X2

1
N(y2; HX1, R/2)
N2(y2; Hx̂1|1, S1)

N(X1; x̂1|1, P1|1)dX1 − x̂2
2|2

=
1√

4πR

∫ N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

X2
1 N(X1; x̄2|2, P̄2|2)dX1 − x̂2

2|2

=
1√

4πR

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

∫
X2

1 N(X1; x̄2|2, P̄2|2)dX1 − x̂2
2|2

=
1√

4πR

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

{P̄2|2 + x̄2
2|2} − x̂2

2|2

(A.25)

The variance of the wk
1X1 when k = 3

Θ3
1 = E[(w3

1X1|Y3)2]− (E[w3
1X1|Y2])2

=
∫
(w3

1)
2X2

1 N(X1; x̂1|1, P1|1)dX1 − x̂2
3|3

=
∫ N2(y3; HX1, R)

N2(y3; Hx̂2|2, S2)

N2(y2; HX1, R)
N2(y2; Hx̂1|1, S1)

X2
1 N(X1; x̂1|1, P1|1)dX1 − x̂2

3|3

(A.26)
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Rearranging and solving the products of the Gaussian, we further solve as below.

Θ3
1 =

1
4πR

∫ N(y3; HX1, R/2)
N2(y3; Hx̂2|2, S2)

N(y2; HX1, R/2)
N2(y2; Hx̂1|1, S1)

X2
1 N(X1; x̂1|1, P1|1)dX1 − x̂2

3|3

=
1

4πR

∫ N(y3; HX1, R/2)
N2(y3; Hx̂2|2, S2)

X2
1 N(X1; x̄2|2, P̄2|2)

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

dX1 − x̂2
3|3

=
1

4πR

∫ N(y3; Hx̄2|2, HP̄2|2H′ + R/2)
N2(y3; Hx̂2|2, S2)

X2
1 N(X1; x̄3|3, P̄3|3)

×
N(y2; Hx̂1|1, S1 − R/2)

N2(y2; Hx̂1|1, S1)
dX1 − x̂2

3|3

=
1

4πR
N(y3; Hx̄2|2, HP̄2|2H′ + R/2)

N2(y3; Hx̂2|2, S2)

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

×
∫

X2
1 N(X1; x̄3|3, P̄3|3)dX1 − x̂2

3|3

=
1

4πR
N(y3; Hx̄2|2, HP̄2|2H′ + R/2)

N2(y3; Hx̂2|2, S2)

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

{P̄3|3 + x̄2
3|3} − x̂2

3|3

(A.27)

The variance of the wk
1X1 when k = 4

Θ4
1 = E[(w4

1X1|Y4)2]− (E[w4
1X1|Y4])2

=
∫
(w4

1)
2X2

1 N(X1; x̂1|1, P1|1)dX1 − x̂2
4|4

(A.28)

Replacing the the expression for w4
1, we solve further as

=
∫ N2(y4; HX1, R)

N2(y4; Hx̂3|3, S3)

N2(y3; HX1, R)
N2(y3; Hx̂2|2, S2)

N2(y2; HX1, R)
N2(y2; Hx̂1|1, S1)

× X2
1 N(X1; x̂1|1, P1|1)dX1 − x̂2

4|4

=
1

(4πR)
3
2

∫ N2(y4; HX1, R/2)
N2(y4; Hx̂3|3, S3)

N2(y3; HX1, R/2)
N2(y3; Hx̂2|2, S2)

× N2(y2; HX1, R/2)
N2(y2; Hx̂1|1, S1)

X2
1 N(X1; x̂1|1, P1|1)dX1 − x̂2

4|4

(A.29)

Using the Gaussian product theorem and solving the above expressions further, we go as

below.
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Θ4
1 =

1

(4πR)
3
2

∫ N(y4; HX1, R/2)
N2(y4; Hx̂3|3, S3)

N(y3; HX1, R/2)
N2(y3; Hx̂2|2, S2)

X2
1 N(X1; x̄2|2, P̄2|2)

×
N(y2; Hx̂1|1, S1 − R/2)

N2(y2; Hx̂1|1, S1)
dX1 − x̂2

4|4

=
1

(4πR)
3
2

∫ N(y4; Hx̄3|3, HP̄3|3H′ + R/2)
N2(y4; Hx̂3|3, S3)

X2
1 N(X1; x̄4|4, P̄4|4)

N(y3; Hx̄2|2, HP̄2|2H′ + R/2)
N2(y3; Hx̂2|2, S2)

×
N(y2; Hx̂1|1, S1 − R/2)

N2(y2; Hx̂1|1, S1)
dX1 − x̂2

4|4

=
1

(4πR)
3
2

N(y4; Hx̄3|3, HP̄3|3H′ + R/2)
N2(y4; Hx̂3|3, S3)

N(y3; Hx̄2|2, HP̄2|2H′ + R/2)
N2(y3; Hx̂2|2, S2)

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

×
∫

X2
1 N(X1; x̄4|4, P̄4|4)dX1 − x̂2

4|4

=
1

(4πR)
3
2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

4

∏
i=3

N(yi; Hx̄i−1|i−1, HP̄i−1|i−1H′ + R/2)
N2(yi; Hx̂i−1|i−1, Si)

{P̄4|4 + x̄2
4|4} − x̂2

4|4

(A.30)

Similarly, the variance of the wk
1X1 at time k− 1 is written by using induction procedure

as below.

Θk−2
1 =

1

(4πR)
k−3

2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

k−2

∏
i=3

N(yi; Hx̄i−1|i−1, HP̄i−1|i−1H′ + R/2)
N2(yi; Hx̂i−1|i−1, Si)

×
{

P̄k−2|k−2 + x̄2
k−2|k−2

}
− x̂2

k−2|k−2

Θk−1
1 =

1

(4πR)
k−2

2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

k−1

∏
i=3

N(yi; Hx̄i−1|i−1, HP̄i−1|i−1H′ + R/2)
N2(yi; Hx̂i−1|i−1, Si)

×
{

P̄k−1|k−1 + x̄2
k−1|k−1

}
− x̂2

k−1|k−1

Θk
1 =

1

(4πR)
k−1

2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

k

∏
i=3

N(yi; Hx̄i−1|i−1, HP̄i−1|i−1H′ + R/2)
N2(yi; Hx̂i−1|i−1, Si)

×
{

P̄k|k + x̄2
k|k

}
− x̂2

k|k

(A.31)

Now, We generalise the results for samples drawn at time n and their respective weights

are updated at time k where n < k.
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Θk
1 =

1

(4πR)
k−1

2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

k

∏
i=3

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

{
P̄k|k + x̄2

k|k

}
− x̂2

k|k

Θk
2 =

1

(4πR)
k−2

2

N(y3; Hx̂2|2, S2 − R/2)
N2(y3; Hx̂2|2, S2)

k

∏
i=4

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

{
P̄k|k + x̄2

k|k

}
− x̂2

k|k

Θk
3 =

1

(4πR)
k−3

2

N(y4; Hx̂3|3, S3 − R/2)
N2(y4; Hx̂3|3, S3)

k

∏
i=5

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

{
P̄k|k + x̄2

k|k

}
− x̂2

k|k

.

.

.

Θk
k−1 =

1

(4πR)
1
2

N(yk; Hx̂k−1|k−1, Sk−1 − R/2)
N2(yk; Hx̂k−1|k−1, Sk−1)

{
P̄k|k + x̄2

k|k

}
− x̂2

k|k

(A.32)

Using above expressions, the general form is as below.

Θk
n = E[(wk

nXn|Yk)2]− (E[wk
nXn|Yk])2

Θk
n =

1

(4πR)
k−n

2

N(yn+1; Hx̂n|n, Sn − R/2)
N2(yn+1; Hx̂n|n, Sn)

k

∏
i=n+2

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

×
{

P̄k|k + x̄2
k|k

}
− x̂2

k|k

(A.33)

The above equation is complex and to understand we write the recursive form of the

above equation in the next section.

A.6 Recursive form of Θk
n

In this Appendix, we write the recursion form of Θk
n. Firstly, we derive the recursive

expression for Θk
1 and then generalise the expression to the case of Θk

n.Now using the

above expressions, we can derive Var(wk
1|Yk) as below.
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Θk
1 =

1

(4πR)
k−1

2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

k

∏
i=3

N(yi; Hx̄i−1|i−1, HP̄i−1|i−1H′ + R/2)
N2(yi; Hx̂i−1|i−1, Si)

×
{

P̄k|k + x̄2
k|k

}
− x̂2

k|k

=
1

(4πR)k−2/2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

k−1

∏
i=3

N(yi; Hx̄i−1|i−1, HP̄i−1|i−1H′ + R/2)
N2(yi; Hx̂i−1|i−1, Si)

1

(4πR)
1
2

N(yk; Hx̄k−1|k−1, HP̄k−1|k−1H′ + R/2))
N2(yk; Hx̂k−1|k−1, Sk−1)

{
P̄k|k + x̄2

k|k

}
− x̂2

k|k

(A.34)

Re-arranging the expression for Θk−1
1 , we get below form to replace in above equation.

Θk−1
1 =

1

(4πR)
k−2

2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

k−1

∏
i=3

N(yi; Hx̄i−1|i−1, HP̄i−1|i−1H′ + R/2)
N2(yi; Hx̂i−1|i−1, Si)

×
{

P̄k|k + x̄2
k|k

}
− x̂2

k−1|k−1

Θk−1
1 + x̂2

k−1|k−1 =
1

(4πR)
k−2

2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

k−1

∏
i=3

N(yi; Hx̄i−1|i−1, HP̄i−1|i−1H′ + R/2)
N2(yi; Hx̂i−1|i−1, Si)

×
{

P̄k|k + x̄2
k|k

}
Θk−1

1 + x̂2
k−1|k−1

P̄k−1|k−1 + x̄2
k−1|k−1

=
1

(4πR)
k−2

2

N(y2; Hx̂1|1, S1 − R/2)
N2(y2; Hx̂1|1, S1)

k−1

∏
i=3

N(yi; Hx̄i−1|i−1, HP̄i−1|i−1H′ + R/2)
N2(yi; Hx̂i−1|i−1, Si)

(A.35)

Using Equations (A.35), we get below recursion form for Θk
1

Θk
1 =

1

(4πR)
1
2

N(yk; Hx̄k−1|k−1, HP̄k−1|k−1H′ + R/2))
N2(yk; Hx̂k−1|k−1, Sk−1)

{ Θk−1
1 + x̂2

k−1|k−1

P̄k−1|k−1 + x̄2
k−1|k−1

}
×
{

P̄k|k + x̄2
k|k

}
− x̂2

k|k

=

√
Sk−1

R
N(yk; Hx̄k−1|k−1, HP̄k−1|k−1H′ + R/2))

N(yk; Hx̂k−1|k−1, Sk−1
2 )

{ Θk−1
1 + x̂2

k−1|k−1

P̄k−1|k−1 + x̄2
k−1|k−1

}
×
{

P̄k|k + x̄2
k|k

}
− x̂2

k|k

(A.36)
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Using the above procedure, we can write recursive forms for Θk
2, Θk

3 and generalise it to

the expression of Θk
n as below.

Θk
n =

√
Sk−1

R
N(yk; Hx̄k−1|k−1, HP̄i−1|i−1H′ + R/2))

N(yk; Hx̂k−1|k−1, Sk−1
2 )

{ Θk−1
n + x̂2

k−1|k−1

P̄k−1|k−1 + x̄2
k−1|k−1

}
×
{

P̄k|k + x̄2
k|k

}
− x̂2

k|k

(A.37)





Appendix B

Convergence of the Proposed
Estimator

B.1 Variance of Estimator in Terms of Weight Variance

In this part of Appendix, we derive an expression for Θk
n as a function of Ψk

n which implies

the dependence of the estimator variance on the variance of the weights.

Θk
n =

1

(4πR)
k−n

2

N(yn+1; Hx̂n|n, Sn − R/2)
N2(yn+1; Hx̂n|n, Sn)

k

∏
i=n+2

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

× {P̄k|k + x̄2
k|k} − x̂2

k|k

(B.1)

The re-arrangement of variance of sample weights is done as below.

Ψk
n =

1

(4πR)
k−n

2

N(yn+1; Hx̂n|n, Sn − R/2)
N2(yn+1; Hx̂n|n, Sn)

k

∏
i=n+2

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)
− 1

Ψk
n + 1 =

1

(4πR)
k−n

2

N(yn+1; Hx̂n|n, Sn − R/2)
N2(yn+1; Hx̂n|n, Sn)

k

∏
i=n+2

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)

(B.2)

By replacing above expression in equation (B.1), we get the form of Θk
n as a function of

Ψk
n.

Θk
n =

1

(4πR)
k−n

2

N(yn+1; Hx̂n|n, Sn − R/2)
N2(yn+1; Hx̂n|n, Sn)

k

∏
i=n+2

N(yi; Hx̄i−1|i−1, S̄i−1)

N2(yi; Hx̂i−1|i−1, Si)
{P̄k|k + x̄2

k|k} − x̂2
k|k

= {Ψk
n + 1}{P̄k|k + x̄2

k|k} − x̂2
k|k

117



118 Convergence of the Proposed Estimator

B.2 Kalman Filter Expressions

In this appendix, we derive expressions for the terms Sk, S̄k, Pk and P̄k as functions of time

index k and initial values of x0 and P0. We assume the simple case of linear Gaussian pa-

rameter estimation with H = 1, and only deal with one dimension, i.e., scalar parameter

and measurements.

P1 = P0 − K1P0 = P0 −
P2

0
P0 + R

=
P2

0 + P0R− P2
0

P0 + R

P1 =
P0R

P0 + R

P2 = P1 − K2P1 = P1 −
P2

1
P1 + R

=
P2

1 + P1R− P2
1

P1 + R

P2 =
P1R

P1 + R

Now putting expression of P1, we get the following form of P2

P2 =

P0R2

P0+R
P0R

P0+R + R
=

PoR
2P0 + R

Similarly, we can write general expression using induction procedure as above.

Pk =
PoR

kP0 + R (B.3)

We derive the Sk, P̄k and S̄k using above induction procedure and results are written
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in below set of equations.

Sk =
kPoR + R2

(k− 1)P0 + R

P̄k =
PoR

2kP0 + R

S̄k =
2kPoR + R2

2[(k− 1)P0 + R]

(B.4)

Equations (B.5) and (B.6) represent the Kalman gains as a function of initial values

and with different measurement noise variances.

Kk =
Pk−1

Pk−1 + R
=

P0

kP0 + R
(B.5)

K̄k =
P̄k−1

P̄k−1 + R
=

2P0

2kP0 + R
(B.6)

Now, we write x̂k|k and x̄k|k as function of time index k for parameter estimation case

when H = 1.

x̂1|1 = x0 + K1(y1 − x0)

Putting the value of K1 from equation (B.5)

x̂1|1 = x0 +
P0

P0 + R
(y1 − x0)

= x0 +
P0R

P0 + R
y1 −

P0

P0 + R
y1x0

=
R

P0 + R
y1x0 +

P0

P0 + R
y1

=
1

P0 + R
(Rx0 + P0y1)
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Now, we find expression of x̂2|2

x̂2|2 = x̂1|1 + K2(y2 − x̂1|1)

Putting the value of K2 from equation (B.5)

x̂2|2 = x̂1|1 +
P0

2P0 + R
(y2 − x̂1|1)

= x̂1|1 −
P0

2P0 + R
x̂1|1 +

P0

2P0 + R
y2

=
P0 + R

2P0 + R
x̂1|1 +

P0

2P0 + R
y2

Putting the value of x̂1|1 from above equation

x̂2|2 =
P0 + R

2P0 + R
(

1
P0 + R

(Rx0 + P0y1)) +
P0

2P0 + R
y2

=
R

2P0 + R
x0 +

P0

2P0 + R
(y1 + y2)

Now, we derive the expression for x̂3|3 in below set of equations.

x̂3|3 = x̂2|2 + K3(y3 − x̂2|2)

Putting the value of K3 from equation (B.5)

x̂3|3 = x̂2|2 +
P0

3P0 + R
(y3 − x̂2|2)

= x̂2|2 −
P0

3P0 + R
x̂2|2 +

P0

3P0 + R
y3

=
2P0 + R
3P0 + R

x̂2|2 +
P0

3P0 + R
y3

Putting the value of x̂2|2 from above equation

x̂3|3 =
2P0 + R
3P0 + R

(
R

2P0 + R
x0 +

P0

2P0 + R
(y1 + y2)

)
+

P0

3P0 + R
y3

=
R

3P0 + R
x0 +

P0

3P0 + R
(y1 + y2 + y3)
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Using the induction procedure, we can write the expression of x̂k|k in terms of k, x0 and

P0 as below:

x̂k|k =
R

kP0 + R
x0 +

P0

kP0 + R

k

∑
i=1

yi (B.7)

Now, we write the expression of x̄k|k in terms of k, x0 and P0. We write the general

expression using an induction as before and using the Kalman gain expressed in equation

(B.6).

x̄k|k =
R

2kP0 + R
x0 +

2P0

2kP0 + R

k

∑
i=1

yi (B.8)

B.3 Reduction of L(m, n) (Section 6.3.1)

We work on the expression of ∑n
i=m+1 Ĵi to write it in reduced form.

n

∑
i=m+1

Ĵi = log
(
(m + 1)Po + R

mP0 + R

)
+ log

(
(m + 2)Po + R
(m + 1)P0 + R

)
+ ... + log

(
(n− 1)Po + R
(n− 2)P0 + R

)
+ log

(
nPo + R

(n− 1)P0 + R

)

Using the basic formula of log(A/B) = log(A)− log(B), we get below set of expressions.

n

∑
i=m+1

Ĵi = log((m + 1)Po + R)− log(mP0 + R) + log((m + 2)Po + R)− log((m + 1)P0 + R)

+ ... + log((n− 1)Po + R)− log((n− 2)P0 + R) + log(nPo + R)− log((n− 1)P0 + R)

Cancelling the same terms we get:

n

∑
i=m+1

Ĵi = − log(mP0 + R) + log(nPo + R)

= log
(

nPo + R
mP0 + R

) (B.9)
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Similarly, we can calculate ∑n
i=m+1 J̄i using above induction procedure.

n

∑
i=m+1

J̄i = log
(

2(m + 1)Po + R
2mP0 + R

)
+ log

(
2(m + 2)Po + R
2(m + 1)P0 + R

)
+ ... + log

(
2(n− 1)Po + R
2(n− 2)P0 + R

)
+ log

(
2nPo + R

2(n− 1)P0 + R

)

Using the basic formula of log(A/B) = log(A)− log(B), we get below set of expressions.

n

∑
i=m+1

J̄i = log(2(m + 1)Po + R)− log(2mP0 + R) + log(2(m + 2)Po + R)

− log(2(m + 1)P0 + R) + ... + log(2(n− 1)Po + R)− log(2(n− 2)P0 + R)

+ log(2nPo + R)− log(2(n− 1)P0 + R)

Cancelling the same terms we get:

n

∑
i=m+1

J̄i = − log(2mP0 + R) + log(2nPo + R)

= log
(

2nPo + R
2mP0 + R

) (B.10)

B.4 Divergence Test of Sequence ak

In this Appendix, we start looking on the divergence of the sequence ak which is defined

as partial sums ak = ∑k
i=1 bi = log(Tk)

If the value of bk = 0 when k → ∞ then the series ak is not divergent but it does not

tell about its convergence. In order to prove its convergence we need more information.

bk =
1
2
(

Jk + Q̂k − Q̄k
)

lim
k→∞

bk = lim
k→∞

1
2
(

Jk + Q̂k − Q̄k
) (B.11)
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We evaluate the limiting value of Jk when k = ∞ first as below.

Jk+1 = 2 log
(

kP0 + R
(k− 1)P0 + R

)
− log

(
2kP0 + R

2(k− 1)P0 + R

)
= 2 log

(
kP0 + R

kP0 − P0 + R

)
− log

(
2kP0 + R

2kP0 − 2P0 + R

)
= 2 log

(
P0 + R/k

P0 − P0/k + R/k

)
− log

(
P0 + R/2k

P0 − 2P0/2k + R/2k

)

Evaluating the above expression by putting k→ ∞ in above simplified expression

lim
k→∞

Jk = 2 log
(

P0 + R/∞
P0 − P0/∞ + R/∞

)
− log

(
P0 + R/∞

P0 − 2P0/∞ + R/∞

)
= 2 log (P0/P0)− log (P0/P0)

= 2 log(1)− log(1)

= 0

The limiting value of the term Jk approaches to zero. Now, we can evaluate the limiting

values of Q̄k and x̂k when k→ ∞.

lim
k→∞

Q̄k = lim
k→∞

2
R
(yk − Hx̄k)

2

lim
k→∞

Q̂k =
2
R
(yk − Hx̂k)

2

As we have proved earlier in lemma 6.2 that for large k → ∞, the value of x̄k|k is

equal to value of x̂k|k therefore observing above equation, it is clear that limk→∞ Q̄k =

limk→∞ Q̂k.

lim
k→∞

b∞ = lim
k→∞

1
2
(Jk + Q̂k − Q̄k)

=
1
2
( lim

k→∞
Jk + lim

k→∞
Q̂k − lim

k→∞
Q̄k)

(B.12)
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Using the above worked results, we can write the limiting value of bk as below.

lim
k→∞

b∞ → 0 (B.13)

We have shown that when k → ∞ the value of bk also approaches to 0, therefore the

partial sum sequence ak is not divergent.
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