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Abstract 
Quantum field theory predicts photons are created from the phase modulator when the 

optical field experiences a refractive index change, and hence energy are excited from 

a lossless phase modulator, an effect not included in classical field theory.  In high 

speed optical communication system, a phase modulator is used to impress data onto 

the phase of the optical field.  The phase modulation process requires a refractive 

index change within the modulating medium; therefore the process of photon 

excitation from the modulator will inevitably occur.   

The scope of this thesis is to develop a quantum field theory of a transverse 

phase modulator, based upon time dependent Bogoliubov transforms, that includes the 

phenomenon of photon/energy excitation from the modulator.  This model will be 

used for determining the properties of a phase modulated optical field, and investigate 

the impact from photon creation from the phase modulator on a range of optical 

communication systems. 

It is found that when an input coherent optical field is subject to phase 

modulation, it evolve from a coherent state to a two photon coherent squeeze state, for 

which the mean and variance of the photoelectron count observed by a detector are 

time dependent.  Furthermore, it is shown that the effect of photon creation improves 

the performance of the optical communication system, and this improvement 

increases exponentially with a linear increase in bit rate.  However, simulation results 

have shown this improvement is insignificant even when the optical system operates 

at a bit rate of terabits per second. Therefore the effect of photon creation has a 

negligible impact on the performance of a high speed optical communication system.    
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Preface  

This thesis presents most of the work that I have undertaken during my Masters 

candidature.  The work involve is to construct a quantum field model of a phase 

modulator in order to determine the quantum effect of photon creation from 

modulator in optical communication system, an issue which has not been addressed 

before.  Chapter 5 and Chapter 6 closely aligned with the papers of publication that I 

have co-authored during my candidature.  These research papers are listed in 

Appendix A of this thesis.  This thesis can be broadly divided into three parts. 

 Part 1 presents a background and the motivation of this work.  Chapter 2 and 

Chapter 3 introduce the background theories that are essential to understand the 

quantum analysis of an optical communication system presented in later Chapters. 

 Part 2 presents a theoretical quantum field model of a phase modulator that 

includes the effect of photon creation from the modulator.  The model will be used for 

determining the impact of photon creation in an optical communication system.  This 

will be given by the contents in Chapter 4 and Chapter 5. 

 Part 3 presents the important results that highlight the impact of photon 

creation from phase modulator on the properties of the modulated optical field and in 

a high speed optical communication system.  Simulation results that reveal the extent 

of the impact of this effect in an optical communication system will be presented in 

order to determine whether the quantum effect of photon creation from modulator is 

detectable.  These results will be shown in Chapter 6 and Chapter 7. 
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1. Introduction 

 

1.1  The Trend of Optical Communication System 
Over the past 20 years, optical communication system has become the primary 

method for long haul communication.  The key advantages of optical communication 

network over other communication technologies e.g. copper wire network, are its 

large bandwidth capacity, low attenuation, immunity to interference and high security 

[1].  Its success is heavily based on the invention of laser, optical fiber, optical 

receiver and optical modulator.   

Recent studies [2,3] have shown that data traffic is doubling every year in the 

communication network.  Optical communication engineers have came up with 

various solutions to sustain the rapid growth in traffic demand while maintaining a 

high quality of service.  One of the key solutions is to use a phase modulator to 

externally impress the transmit data onto the optical field [1].   

Amplitude shift keying (ASK), which is sometimes referred to intensity 

modulation, carries digital information by changing the amplitude of the optical field 

generated from the laser.  In ASK, the energy carried by a transmit ‘1’ bit is greater 

than that of a transmit ‘0’ bit.  Currently, ASK is widely used in optical links [1].  For 

ASK systems that operates at a speed higher than 2 Gb/s, external phase modulator is 

used to provide sufficient modulation bandwidth [4,5].  In this thesis, externally 

modulated systems will be considered. 

Another common type of modulation format is phase shift keyed (PSK) system 

that carries digital information by changing the phase of the optical field by the use of 

a phase modulator.  In a Binary PSK (BPSK) system, the phase carried by ‘1’ bit 
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experiences an 1800 phase offset with respect to ‘0’ bit.  As we shall see in Chapter 2, 

a PSK system has a higher signal to noise ratio (SNR) as compared with ASK system, 

and hence achieve a better system performance with the same transmit power.  New 

modulation format such as differential phase shift keying (DPSK), and Coherent 

Optical Orthogonal Frequency Division Modulation (CO-OFDM), are types of PSK 

systems that has been recently develop to improve the optical communication 

performance at high bit rate (> 40 Gbps) [6,7].  Consequently, the role of phase 

modulator is becoming more important in high speed communication systems.  

Further details on the properties of ASK and PSK systems will be presented in 

Chapter 2. 

Due to the advent in digital signal processing technology, coherent detection is 

becoming a popular optical detection scheme [ 8 ].  A coherent receiver has an 

additional laser source, which is refer to as the local oscillator (LO) that down-

converts the optical signal to a baseband electrical signal using heterodyne or 

homodyne detection.  The phase of LO field is controlled so that the signal amplitude 

between a ‘0’ bit and ‘1’ bit is maximized, and thus optimizes the systems 

performance [8].  Although the complexity of a coherent receiver is sophisticated as 

compared with other receiver i.e. direct detection receiver.  The configuration of 

coherent receiver provides signal gain as well as allowing the receiver to be shot noise 

limited, in which shot noise is the only dominant noise while other noise sources i.e. 

thermal noise, are effectively suppressed [1].  In this thesis, a coherent receiver will 

be considered.  Figure 1.1 is a block diagram showing the overall structure of the 

communication system considered in this thesis.   
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Figure 1.1:  Block diagram of high speed optical communication system. 

 

1.2  Historical Backgrounds of Particle Creation 
The theoretical concept of particle creation from vacuum has been studied extensively 

in the fields of Quantum Field Theory in Curved Space Time (QFT-CS) and Quantum 

Gravity (QG).  The process of particle creation from vacuum is different from the 

process of particle creation due to energy redistribution as a consequence of 

modulation i.e. energy at a certain frequency mode is removed and redistributed onto 

other frequencies as described by [9].  The former process excites energy from 

vacuum thus leads to an energy difference between the energy before and after the 

modulation process occurs, while the energy remains the same for the later process 

provided the modulator is lossless.  Particle creation from vacuum has continued to be 

a popular research area in devising methods to experimentally detect the existence of 

quantum particle production in the area of quantum physics.   

The concept of particle creation out of the vacuum was first introduced in 1939 

by Schrödinger [ 10 ], on the discussion of creating particles due to space-time 

curvature.  In the paper by Husumi in 1953 [11], the presented results show a 

quantum harmonic oscillator (QHO) with time dependent frequency subjected to a 

time varying force can excite particles from vacuum.  This result is of great 

importance because it was found that many models in QFT-CS and QG can be 

simplified down to the problem of time dependent QHO.  This has lead to many 

Laser Coherent Receiver External 
Modulator 
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interesting researches in particle creation from vacuum in the late 1960s to 1980s, 

where theoretical analyses have shown particle can be excited from vacuum by: 

1. Expansion of universe and non-static gravitational field [12] 

2. Cavity subjected to time varying boundary condition [13] 

3. Rotating and non-rotating black hole can emit quanta, which is refer to as 

Hawking’s radiation [14]. 

4. A constantly accelerating observer in a vacuum can register a bath of quanta 

that have a thermal spectrum, which is known as Unruh radiation. [15]. 

 

However, results from these analyses indicates the trace of particle creation is 

extremely weak and detection of these phenomena is beyond any practical possibility 

i.e. To observe Unruh radiation that corresponds to a temperature of 1 K requires a 

constant acceleration in the order of 1020 ms-2 [15].  However, it is later shown rapid 

changes in refractive index effectively corresponds to an acceleration in the order 

greater than 1020 ms-2 [16].  As a result, the effect of particle creation may be 

discovered under changes in refractive index.  Since then, there has been many 

publications [17, 18, 19, 20, 21] analyzing the number of particles being created due 

to the changes in refractive index, as well as devising possible ideas in which this 

effect can be determined experimentally. 

 In this thesis, we will consider the effect of photon creation subjected to rapid 

changes in refractive index.  This is because the process of phase modulation requires 

changes in refractive index as discussed in the subsequent section. 
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1.3  Motivations 
In Section 1.1, we have stated high speed optical communication system requires a 

phase modulator to modulate the optical field.  A phase change is established by 

altering the refractive index of the modulating medium of the phase modulator.  

Details of the process of phase modulation will be given in Chapter 2.  However in 

the context of  QFT, previous literatures [16 - 21] have revealed that changes in 

refractive index gives rise to the phenomenon of photon creation, as mentioned in 

Chapter 1.2.  As a result, the process of phase modulation excites photons from the 

modulating medium subjected changes in refractive index. 

However, traditional analysis of a phase modulated system [1, 22, 23, 24, 25] 

cannot address the effect of photon creation from modulator because the optical signal 

is treated as a classical field.  To include the effect of photon creation from phase 

modulator, the field must be quantized [26, 27].  The difference between classical 

field and quantum field will be revealed in Chapter 3.  Although the effect of photon 

creation due to changes in refractive index has been studied extensively in QFT, 

however this has not been considered in an optical communication system.  Although 

a quantum model of phase modulator, recently presented by [9], provides an adequate 

description on the frequency spectrum of the phase modulated field for which their 

result resembles to the result predicted by classical field theory [22 – 25], however 

they did not include the effect of photon creation from modulator.  Thus, the model 

from [9] gives an incomplete quantum description of a phase modulator. 

With the increasing popularity of the use of phase modulator in high speed 

optical communication systems, it is therefore important to give a full quantum field 

description of a phase modulated field.  In this thesis, two common types of 

modulation formats ASK and BPSK are considered.  We will use QFT to describe 
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these optical systems that will include the quantum effect of photon creation from the 

phase modulator.   

Similar to previous literatures [12, 16, 17, 18, 19, 26], we will mathematically 

describe the evolution of the phase modulated quantum field using Bogoliubov 

transformation.  However, to determine the effect of photon creation in an optical 

communication system, two extra constraints need to be considered and this will 

extend the analyses considered from the previous literatures [12, 16, 17, 18, 19, 26].  

Previous analyses consider the state of the quantum field is in a vacuum state for all 

frequency modes, while due to the presence of a single mode laser source in a 

communication system, there exist a mode in which the quantum field is described in 

a coherent state.  Besides, previous analyses considers the field is confined inside the 

time varying refractive index medium, while in a communication system, the optical 

field propagates out of the time varying medium.  The significance of these additional 

constraints is essential to describe the behavior of a phase modulated system.  The 

additional constraints considered in this thesis are summarized in Table 1.1. 

 

Previous photon creation analyses Analysis in this thesis 

Input field in vacuum state Input field in coherent state 

Field confined inside the time varying 

refractive index medium 

Field propagates out of the time varying 

medium 

Table 1.1:  Differences between our analysis and analyses given by previous 

literatures. 

 

Before we close this section, it is worthwhile to mention we specifically consider 

the effect of photon creation from modulator in this thesis instead of particle creation 

from modulator in general.  This is because in an optical system, the detector is 
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photosensitive; therefore it is only designed to detect photons and not other types of 

particle such as mesons and gravitons. 

 

1.4  Thesis Objectives 
From the description in Chapter 1.3, it has become clear that the process of phase 

modulation gives rise to the quantum phenomenon of photon creation.  However, the 

impact of photon creation in a communication system is unclear and the how this 

effect changes the properties of a phase modulated optical field remains an open 

question.  Therefore the objectives of this thesis are: 

1. To develop a quantum field model of optical phase modulator that includes 

the effect of photon creation from the modulator. 

2. Determine how the effect of photon creation from modulator changes the 

properties of the phase modulated optical field. 

3. Reveal possible factors that can influence the process of photon creation 

from modulator.  

4. Determine the impact of photon creation from modulator on the performance 

of an optical communication system. 

5. Give an order of estimate on the significance of the impact of photon creation 

from modulator and investigate whether this phenomenon is detectable in an 

optical communication system. 
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1.5  Thesis Outline 
This thesis can be broadly divided into three parts.  The first part reviews some of the 

basic theories of externally modulated system and QFT.  The next part involves in the 

development of a quantum field model of a phase modulator that includes the effect of 

photon creation from modulator.  The last part of the thesis uses the results from the 

quantum field model that we have constructed in order to determine the impact of 

photon creation from modulator on the state of the modulated field and in a high 

speed optical communication system. 

In Chapter 2 of this thesis, we will introduce the mechanisms involved in the 

process of phase modulation.  An overview of the operation of ASK and BPSK 

modulation systems will be presented.  Using classical field theory (CFT), we will 

derive the BER quantum limit that describes the potential performance of the system. 

Chapter 3 presents some of the theoretical background of QFT.  The properties 

of coherent state that describes a single mode optical field will be introduced.  We 

will compare the expression of the quantum field with the classical field 

representation.  This is useful for highlighting the shortfall of CFT.   

In Chapter 4, we will develop a quantum model of phase modulator with the use 

of the quantum theory presented in Chapter 3.  In this Chapter, we will determine the 

equation of motion of the field propagating in various media of the phase modulator. 

In Chapter 5, we will derive the quantum field representation of the modulated 

field based on the model presented in Chapter 4.  The effect of photon creation from 

modulator is included in this expression. 

In Chapter 6, we will determine the impact of photon creation on the properties 

of a phase modulated optical field.  This Chapter will reveal the factors that influence 
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the creation of photons.  Various numbers of plots will be generated to determine the 

significance of photon creation from modulator.     

In Chapter 7, we will determine the impact of photon creation from modulator on 

the performance of various optical communication systems.  Two main comparisons 

will be drawn in this Chapter.  Firstly, we determine the effect of bit transition on the 

systems performance by comparing the traditional results presented in Chapter 2 in 

which the effect of bit transition is neglected, with the results obtained where the 

effect of bit transition is included but with the effect of photon creation neglected.  

Subsequently, a comparison between the CFT and QFT will be made, in order to 

determine the impact of photon creation from modulator on the types of 

communication systems considered.   

The conclusion summarizes the results obtained from Chapter 6 and Chapter 7.  

Conclusions for the impact of photon creation from modulator on the properties of 

phase modulated field and various modulation systems considered will be stated.  

Possible future directions of this research project are also included. 
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2 Overview of Optical Communications 

In this Chapter we review some of the basic principles of phase modulation and 

optical communications.  We shall focus on high speed optical systems in which the 

optical carrier is modulated by external phase modulator (see Section 1.1).  This 

Chapter is organised as follows.  In Section 2.1, we provide a background of the 

mechanisms involve in the phase modulation process.  In Section 2.2, an overview of 

the operation of various types of modulation systems will be presented.  Two simple 

types of digital modulation formats, amplitude shift keying (ASK) and binary phase 

shift keying (BPSK), are considered.  The performance of optical systems based on 

these two modulation formats is determined using semi-classical field theory (SCFT), 

in which the field is expressed as mathematical function while the quantum 

mechanical nature of light is considered.  The potential performance for the optical 

systems considered can be determined from the bit error rate (BER) quantum limit.   

 

2.1  Phase Modulation Theory 
In external phase modulation, the continuous wave (CW) laser is operated in steady 

state and the phase of the optical carrier (optical field) is regulated by a control signal 

feeding into the phase modulator as shown in Figure 2.1.    

 

Figure 2.1:  Configuration of phase modulator.    

Phase 
Modulator 

 Control signal  

Input signal 
(unmodulated)  

 

Output signal 
(modulated)  
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The modulator shown in Figure 2.1 is a transverse phase modulator (TPM) in which 

the control signal propagates in a direction that is orthogonal to the optical signal.  

Another common type of modulator that is used in optical communication is 

travelling wave phase modulator (TWPM) in which the control signal propagates in 

the same direction as the optical field.  TWPM is generally more suitable for high 

speed optical communication [28], but for the simplicity of the analysis, TPM is 

considered throughout this thesis. 

In the modulator, the control signal and the optical field interacts to establish a 

phase offset for the optical field.  This interaction uses nonlinear polarization.  The 

polarization density p(t) of the non-dispersive medium in the modulator can be 

approximated by [29]  

 
           

   

2 32 3
0

0

2 4 ...M M M

M NL

p t E t E t E t

E t p t

   

 

   

 
 (2.1) 

where  is the linear susceptibility, (2) is the second order susceptibility, (3) is the 

third order susceptibility, and EM(t) is the electric field amplitude in the modulator.  

The terms second and higher order in EM(t) represent the non-linearity of the 

modulating medium.  Both second order and third order nonlinear mechanisms can be 

used to modulate the optical field.  The magnitude of the higher order susceptibilities 

i.e. (2), (3), are small as compared with the linear susceptibility .  Therefore the 

field strength in the modulator i.e. |EM(t)|, must be large for the nonlinear effect to 

become appreciable. 

 A TPM that uses optical control signal to control the phase of the input signal 

(optical carrier) can be used for high speed modulation system.  This type of 

modulator is known as all optical phase modulator (AOPM), and it will be considered 

in this thesis.  AOPM uses optical Kerr effect where the optical control signal is used 

to change the refractive index of the material so that the phase of the optical carrier is 
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modified.  This is a third order nonlinear process in which the third term in Equation 

(2.1) dominates, thus the nonlinear polarization density is  

      2 34NL Tp t E t  (2.2) 

[16 - 20] has reported a large change in refractive index can be induced by a 

femtosecond pulse laser by exciting the semiconductor media near the band-to-band 

transition with a response time in the order of femtosecond. 

In Figure 2.1, we can identify both optical and control field are fed into the 

modulator.  Thus, the field expression inside the modulator is [29], 

      M S CE t E t E t   (2.3) 

where ES(t) and EC(t) is the electric field of the optical carrier and the control signal, 

respectively.  For simplicity of the analysis, we assume the optical signal field has an 

optical angular frequency at S, and thus the expression of ES(t) is given by 

    cosS S S SE t A t    (2.4) 

where AS is the signal field strength and S is the initial phase angle of the signal field.  

Next, we consider the expression of the control field to be  

      cosC C C CE t A t t    (2.5) 

where AC(t) is the envelop function of the field strength, C is the initial phase angle 

of control signal field, and C is the angular frequency of the control signal.  In order 

to determine the phase change of the input signal, we shall determine pNL(t) at 

frequency S by using expression (2.4) and (2.5) in Equation (2.3), and substituting 

this into Equation (2.2), where after some algebraic manipulation we have 

 
       

     

3 2 2

3
0

, 3 2 cos

3 2 cos

NL S S C S S

S C S S

p t A A t A t

i i t A t

  

  

   

   
 (2.6) 
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In the second line of Equation (2.6), 0 is the intrinsic impedance of free space (0 = 

377), while iS = AS
2/0 and iC(t) = AC

2(t)/0, represent the intensity of the input field 

and control field respectively.  The first term in expression (2.6) represents the effect 

of self phase modulation (SPM) in which the polarization density is dependent on the 

intensity of the input signal ES(t).  In TPM, the intensity of the control signal iC(t) is 

much greater than the optical signal iS [5, 29] i.e. iC(t)MAX >> iS, therefore the effect of 

SPM (1st term in (2.6)) can be neglected.  Expression (2.6) can be expressed in the 

form 

 
     

   
0

0

,

cos
NL S S

S S

p t t E t

t A t

  

  

 

 
 (2.7) 

where  

  
 

 
3

0

0

6
Ct i t

n
 




   (2.8) 

0 is the free space permitivitty (0 = 8.85*10-12 V/m) and (t) is the time variation of 

the change in susceptibility.  The relation between the refractive index n and 

susceptibility is n2 = 1+.  By differentiating both sides, the time varying refractive 

index change n(t) can be expressed as 

    2n n t t    (2.9) 

By substituting expression (2.9) into Equation (2.8), the relation between n(t) and 

field amplitude of control signal is given by  

  
 

 
3

0
2

0

3
Cn t i t

n
 


   (2.10) 

A change in refractive index n(t) will create a phase offset of (t) to the optical 

signal, and their relation is given by 

    2

S

n t L
t







   (2.11) 
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where L is the modulator length, and S = 2c0/S is the wavelength of the input 

signal, in which c0 is the speed of light in vacuum (c0 = 3*108 ms-1).  By substituting 

expression (2.11) into Equation (2.10), the relation between (t)and iC(t) is 

  
 

 
3

0
2

0

6
C

S

Lt i t
n
 


 

   (2.12) 

Expression (2.12) is a mathematical description of cross phase modulation (CPM), 

where the phase of the optical input signal ES(t), is governed by the intensity of the 

control signal EC(t).   

 

2.2  Analysis of Optical Communication Systems 
In this subsection, we shall review some of the basic principles of phase shift keyed 

(PSK) and amplitude shift keyed (ASK) systems.  The analysis presented in this 

Chapter uses SCFT.  In SCFT, optical field is modelled as a stream of photons 

(particle) and each photon has an energy of ħS (joules), where ħ is the reduced 

Planck constant (ħ = 1.054*10-34 joules*second ), and S is the angular frequency of 

optical field.  The analysis in this section follow closely to the traditional optical 

communication analysis presented in textbooks [22 - 25] and journal articles [1, 30, 

31].   

 

2.2.1  Binary Phase Shift Keyed (BPSK) Systems 

In a BPSK system, the transmitted data is encoded onto the phase of the optical carrier 

by the use of phase modulator at the transmitter.  When a ‘1’ bit is transmitted, the 

phase of optical carrier is not modified by the modulating signal (control signal), 
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while if a ‘0’ bit is transmitted, the field experiences an additional phase shift of 1800.  

The characteristics of BPSK modulation is shown in Figure 2.2. 

 

Figure 2.2:  Characteristics of BPSK modulation. 

 

Tb in Figure 2.2 represents the bit-rate of the modulating signal.  A BPSK transmitter 

consists of a laser and a phase modulator as shown in Figure 2.2.  The laser generates 

an optical field, and is operating in steady state.  The phase of the optical field will be 

modulated by the phase modulator.  The phase change of the optical field is governed 

by the control signal.  From expression (2.12), we can identify the control field is 

turned on when a ‘0’ bit is transmitted to establish an additional phase shift of 1800, 

and turned off when a ‘1’ bit is transmitted.   

Tb 
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Figure 2.3:  Configuration of BPSK transmitter. 

 

 The transmitted data impressed into the BPSK modulated signal can be 

detected by a coherent receiver.  A balanced homodyne receiver is considered so that 

the input signal power can be fully exploited after being divided by the 3 dB coupler 

[1, 25, 30, 31].  A balanced detector uses two photodiodes for detection.  A block 

diagram of a balanced coherent receiver is shown in Figure 2.4. 

 

Figure 2.4:  Configuration of balanced coherent receiver.  
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Suppose the transmitter laser generates an optical field at frequency S, thus the field 

amplitude of the laser ES
IN(t) can be expressed in the form 

    2 cosIN
S S S SE t P t    (2.13) 

where S is the initial phase angle of the signal field which has been introduced in 

Equation (2.4), PS is the mean signal power.  In expression (2.13), the field amplitude 

is normalized so that the RMS expression gives the average power PS, i.e. 

  
2

0

1 T
IN

S SE t dt P
T

  (2.14) 

Within the bit interval 0 < t ≤ Tb, the modulated signal ES
OUT(t) has the form [1] 

    2 cosOUT
S S S SE t P t a      (2.15) 

where a = 0 for a transmit ‘1’, and a = 1 for a transmit ‘0’.  In the calculation of BER, 

we shall make the same assumption used in standard communication textbooks [1, 22 

- 25], for which the phase of the field is assumed to be in steady state within a bit 

period Tb, and thus the dynamical nature of modulation (effect of bit transition) is 

ignored. 

In coherent detection, a local oscillator (LO) at the receiver generates a strong 

optical field.  The field amplitude of the local oscillator ELO(t) is added onto the signal 

field amplitude ES(t) before it arrives at the detector [1].  The expression of the single 

frequency LO field is given by  

    2 cosLO L LO LOE t P t    (2.16) 

where PL is the mean power of the LO field and LO is the frequency of the LO field.  

LO is the phase of the LO field that is controlled by the phase locked loop (PLL) in 

order to optimize the systems performance (See Figure 2.4).  The addition operation 

between the ELO(t) and ES(t) is realized by the 3 dB coupler, a lossless network with 

two inputs and two outputs, as shown in Figure 2.4.  The coupler directs half of the 
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signal field power from port I1 to output port O1 and the other half to output port O2 

but with an additional 1800 phase shift.  At port I2, half of the LO field power will be 

coupled from port I2 to port O1, while the other half is directed towards port O2.  

Thus, the output field at port O1 is expressed as 

 
     

   

1 2
cos cos

OUT
S LO

S S S L LO LO

E t E t
E t

P t a P t    




    

 (2.17) 

while the field at port O2 is 

 
     

   

2 2
cos cos

OUT
S LO

S S S L LO LO

E t E t
E t

P t a P t    




    

 (2.18) 

within a bit period.  Each optical field arrives at a p-i-n photodiode, and each signal is 

converted from optical to electrical form.  The fraction of incident photons that 

contribute to the detector current is called quantum efficiency, denoted by .  The 

frequency of the incident optical signal generally has a spectral bandwidth in which 

is relatively constant and is close to its maximum value [25].  The mean 

photocurrent I(t), is related to the mean photon flux F(t) by 

    I t qF t  (2.19) 

The optical field strength |E(t)| is related to the mean photon flux F(t) by   

     2E t
F t





 (2.20) 

Using expression (2.19) and (2.20), we can relate detector current with the magnitude 

of the incident field by the following expression 

     2
I t R E t  (2.21) 
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where R is the photodiode’s responsitivity and is related to the quantum efficiency  

by R = q/ħamps/watt.  By substituting the expression of E1(t) from expression 

(2.17) into Equation (2.21), we obtained the expression of I1(t) during a bit period, 

    1 cos
2

S L
S L S LO S LO

P PI t R P P t a              
 (2.22) 

The irrelevant high frequency component S + LO, has been omitted in Equation 

(2.22) [25].  Similarly, by substituting the expression of E2(t) from expression (2.18) 

into Equation (2.21), we have  

    2 cos
2

S L
S L S LO S LO

P PI t R P P t a              
 (2.23) 

From the coherent receiver configuration shown in Figure 2.4, we can identify the 

signal current I(t) is determined by subtracting I1(t) in Equation (2.22) from I2(t) in 

Equation (2.23), in which we have 

 

     
 

 

1 2

2 cos

2 cos 0
S L S L S LO

S L IF S LO b

I t I t I t

R P P t a

I I t a t T

    

   

 

      

     

 (2.24) 

IF = S - LOis the intermediate frequency, while IS and IL represents the mean 

current contributed by the modulated signal and local oscillator power, respectively 

i.e. IS = RPS, IL = RPL. 

From Figure 2.4, we can identify the signal current is divided into two 

components, IPLL(t) and Id(t), where IPLL(t) = KeI(t) and Id(t) = (1-Ke)I(t) in which Ke 

is a proportional constant ranges between 0 and 1.  IPLL(t) represents the portion of the 

signal current being fed to the phase locked loop (PLL).  The magnitude of the current 

IPLL(t) is used for controlling the angle LO to a desired value of S i.e. LO = S.  

Provided (S + LO)Tb is small, where S and LO is the 3 dB spectral 

bandwidths of the signal and LO laser respectively, the current that is drawn from the 

PLL is small i.e. IPLL(t) ~ 0, and thus Ke is small [32].  For high speed modulation 
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systems, Tb is small, which implies the detected signal current Id(t) is roughly equals 

to the signal current I(t) i.e. Id(t) ≈ I(t).  Therefore the mean current detected can be 

expressed as  

 

   
 

 
2 cos

2 cos

d

S L IF

S L IF

I t I t

I I t a

q F F t a

 

  



 

 

 (2.25) 

In the last line of Equation (2.25), we have expressed the current IS and IL in terms of 

mean photon flux using the relation in Equation (2.19). 

The coherent receiver can be classified into two types, homodyne and heterodyne 

receiver.  For homodyne receiver, we have IF = 0 (S = LO), while in the case of 

heterodyne receiver, we have IF ≠ 0 (S ≠ LO).  The signal (t) in Figure 2.4 is 

different for homodyne and heterodyne receiver.  For homodyne receiver, we have [1] 

   1
HO

b

t
T

   (2.26) 

while for heterodyne receiver we have [1] 

    2 cosHE IF
b

t t
T

   (2.27) 

We can identify from Figure 2.4, that the detector current Id(t) is mixed with signal 

(t), and fed into the matched filter before the transmitted data is sampled.  A 

matched filter optimises the signal to noise ratio and hence the performance of the 

system.  Mathematical analysis from [22] show the matched filter can be realized by 

an integrate and dump block for BPSK systems, in which the signal current is 

accumulated within the bit period.  This electrical signal is sampled at time t = Tb and 

the accumulated signal strength Y is measured.  This signal strength is removed after 

time Tb in order to detect the next bit being sent.  The signal strength Y detected from 

the transmitted data at time t = Tb, is represented by  
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       
0

bT

dY I t t dt   (2.28) 

By substituting expressions (2.25) and (2.26) into Equation (2.28), the mean 

signal strength of the received data detected from the BPSK homodyne (BPSK-HO) 

system at time t = Tb is, 

 
 

 
0

1 2 cos

2 cos

bT

BPSK HO S L
b

S L b

Y q F F a dt
T

q F F T a

 

 

 



  (2.29) 

When a = 0, a ‘1’ bit is received within the bit interval in Equation (2.29), where we 

have 

  1 2BPSK HO S L bY q F F T   (2.30) 

YBPSK-HO[1] represents the mean signal strength detected for a ‘1’ bit.  If a = 1, a‘0’ bit 

is received during the bit interval in Equation (2.29), and we have 

  0 2BPSK HO S L bY q F F T    (2.31) 

where YBPSK-HO[0] represents the mean signal strength detected for a ‘0’ bit. 

Similarly, by substituting expressions (2.25) and (2.27) into Equation (2.28), the 

mean signal strength of the transmitted data detected from the BPSK heterodyne 

(BPSK-HE) system at time t = Tb is, 

 
   

 
0

2 2 cos cos

2 cos

bT

BPSK HE S L IF IF
b

S L b

Y q F F t a t dt
T

q F F T a

   

 

  



  (2.32) 

where the double frequency term 2IF is averaged out to 0 from the time integral 

given that IF >> 1/Tb.  When a ‘1’ bit is transmitted within a bit interval, a = 0 in 

Equation (2.32), and we get 

  1 2BPSK HE S L bY q F F T   (2.33) 
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where YBPSK-HE[1] represents the mean signal strength detected for a ‘1’ bit.  Else if a 

‘0’ bit is transmitted within a bit interval, a = 1 in Equation (2.32), and we have 

  0 2BPSK HE S L bY q F F T    (2.34) 

where YBPSK-HE[0] represents the mean signal strength detected for a ‘0’ bit.   

 

2.2.2  Amplitude Shift Keyed (ASK) Systems 

In this section, we shall determine the signal strength detected by the coherent 

receiver for a ASK system.  In an ASK system, the transmitted data is encoded onto 

the amplitude of the optical carrier.  When a ‘1’ bit is transmitted, the field strength of 

the optical carrier (signal) will be high and vice-versa when a ‘0’ bit is transmitted.  

The characteristics of ASK modulation is shown in Figure 2.5. 

 

Figure 2.5:  Characteristics of ASK modulation. 

 

The transmitted data can be encoded onto the optical carrier by operating the transmit 

laser at steady state and impressing the transmitted data onto the optical carrier 
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externally using Mach Zehnder interferometer (MZI).  In this thesis, external 

modulation is considered.  The configuration of a MZI is shown in Figure 2.6. 

 

Figure 2.6:  Configuration of ASK transmitter for which transmitted data is externally 

modulated.  

 

The MZI uses the interference between two phase offset components of the optical 

carrier.  In this device the optical field ES
IN(t) given by Equation (2.13), is equally 

divided into two component by the 50:50 beam splitter.  The magnitude of the 

transmission and reflection coefficient |R| and |T| for a 50:50 beam splitter is 1/√2 (|R| 

= |T| = 1/√2).  Thus half of the optical field power will travel in arm 1 while the other 

half will travel in arm 2.  The phase difference between the reflection coefficient R 

and the transmission coefficient T is /2 (R - T = /2) [33].  The optical field in 

arm 1 is represented by, 

      1 cosIN
S S S SE t RE t i P t     (2.35) 

while the optical field in arm 2 is  
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      2 cosIN IN
S S S SE t TE t P t     (2.36) 

where PS is the mean signal power, and i = √-1.  In this analysis, we have chosen the 

transmission coefficient phase angle T to be 0 for simplicity.  The phase modulator 

placed at arm 2 is used to control the interference process by regulating the phase 

delay between arm 1 and arm 2.  The modulator in arm 2 operates similarly to the 

BPSK system, for which the optical signal E2
OUT(t) will experience an additional 1800 

phase shift when a ‘0’ bit is transmitted and no phase shift when a ‘1’ bit transmitted.  

The field expression at the output of the modulator in arm 2 E2
OUT(t) in a bit interval 

Tb is given by, 

    2 cos 0OUT
S S S bE t P t a t T        (2.37) 

where a = 0 when a ‘0’ bit  is transmitted and a = 1 when a ‘1’ bit is transmitted. 

 The field components will recombine at the output of the second beam splitter, 

thus the optical signal transmitted ES
OUT(t) is given by  
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 (2.38) 

In the second line of (2.38), we can identify ES
OUT(t) = 0 for a = 1 and 

i(2PS)1/2cos(St + S) for a = 0.  Thus, a’ = 0 when a ‘0’ bit is sent and a’ = 1 when a 

‘1’ bit is sent.   

 The transmitted information modulated by ASK format can be detected by a 

coherent receiver.  The coherent receiver structure for ASK system is the same as 

BPSK system, as shown in Figure 2.4.  The only difference between ASK and BPSK 

analysis for coherent detection arises from the incident signal field, for which ES
OUT(t) 

for ASK system in Equation (2.38) is expressed differently from BPSK system in 

Equation (2.15).  By using the field expression in Equation (2.38) and following the 
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similar procedure Subsection 2.2.1, after some mathematical manipulation we can 

determine the detected current Id(t) for ASK system to be  
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 
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' 2 cos
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
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 (2.39) 

where the expression of the LO field ELO(t), is given by Equation (2.16), and IF is 

the intermediate frequency that represents the difference between signal field 

frequency and LO field frequency (IF = S  - LO).  The approximation in Equation 

(2.39) implies the amount of signal current drawn by the PLL is small, thus most of 

the signal current is fed to the matched filter, as shown in Figure 2.4. 

By substituting expressions (2.39) and (2.26) into Equation (2.28), the signal 

strength of the transmitted data detected from ASK homodyne system (ASK-HO) at 

time t = Tb is given by 
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where IF = 0 in (2.39) for homodyne detection.  For a’ = 1, a ‘1’ bit is transmitted, 

and the mean signal strength is  

  1 2ASK HO S L bY q F F T   (2.41) 

while for a’ = 0, a ‘0’ bit is transmitted, and the mean signal strength is 

  0 0ASK HOY    (2.42) 

Similarly, by substituting expressions (2.39) and (2.27) into Equation (2.28), the 

transmitted data detected from ASK heterodyne system (ASK-HE) at time t = Tb is, 
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where IF ≠ 0 in (2.39) for heterodyne detection.  For a’ = 1, a ‘1’ bit is transmitted, 

and the mean signal strength is  

  1 2ASK HE S L bY q F F T   (2.44) 

while for a’ = 0, a ‘0’ bit is transmitted, and the mean signal strength is 

  0 0ASK HEY    (2.45) 

 

2.2.3  Systems performance 

The bit error rate (BER), which measures the mean number of errors over an extended 

time interval (>>Tb), is commonly used to describe the performance of an optical 

system.  A lower BER indicates the system is less error prone.  In this subsection, we 

shall review the BER calculation of various optical communication systems (BPSK-

HO, BPSK-HE, ASK-HO, ASK-HE) using the signal strength expressions derived in 

Section 2.2.1 and Section 2.2.2. 

The transmitted signal is generally corrupted by the noise in the system.  In this 

subsection, we assume the communication channel and the receiver are lossless and 

noiseless.  However, even in the absence of extraneous noise, it is impossible to detect 

an optical signal with complete certainty.  In the SCFT model, this is attributed to the 

random nature of photon arrival.  In fact the output power of the laser yields the mean 

photon flux over a period of time, and does NOT give the actual photon flux at each 

time instant [25].  The number of photons that fall onto the detector in T seconds is 

represented by Poisson distribution [1, 25] 

      exp
|1

!

NFT FT
P N

N


  (2.46) 

where P(N|1) represents the photon number N detected given that a ‘1’ bit is 

transmitted, and F is the mean photon flux that falls onto the detector.  Since the 

photocurrent at the receiver is generated from the photon flux arriving at the detector, 
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therefore the statistics of photocurrent is also characterized by Poisson distribution.  

The noise statistics of photocurrent is known as shot noise. 

 The receiver will determine whether a ‘1’ bit  or a ‘0’  bit is received based on 

the received signal strength Y and the threshold Yth set by the decision device.  Figure 

2.7 shows when the received signal strength exceeds the threshold Yth, the receiver 

will consider a bit ‘1’ was received, while if the received signal strength is below Yth, 

it will consider a bit ‘0’ was received.  The probability density function P(Y|‘1’) in 

Figure 2.7 represents the received signal strength given that a ‘1’ bit is sent, while 

P(Y|‘0’) represents the received signal strength given that a ‘0’ bit is sent.  The 

received signal has a statistical deviation of [0] and [1], around the mean values 

Y[1] and Y[0] respectively, as the signal is corrupted by noise.  A detection error is 

made when the receiver considers a bit ‘1’ is received while a bit ‘0’ is transmitted, i.e. 

P[(Y < Yth)|‘1’], or when a bit ‘0’ is received while a bit ‘1’ is transmitted i.e. P[(Y > 

Yth)|‘0’].  The probability of an error is represented by the shaded area in Figure 2.7.    

 

Figure 2.7:  Probability density functions for Y, conditioned on ‘1’ and ‘0’. 

 

 
P(Y|0) P(Y|1) 

Y[0] Y[1] Yth 
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Because shot noise is the only noise sources included in this analysis, the probability 

distribution of P(Y|1) and P(Y|0) in Figure 2.7 are Poisson distributed.   

We shall determine the BER quantum limit for modulation systems that use a 

coherent receiver.  The quantum limit represents the relationship between the lower 

limit of the received power and BER in an optical communication system because 

only shot noise is considered, while other extraneous noise such as thermal noise, 

dark current noise etc. is neglected in the analysis.  With balanced coding, the 

probability of transmitting a ‘1’ bit and ‘0’ bit is equally probable, and the BER is 

given by [25] 

    1 | '0 ' | '1'
2

th thBER P Y Y P Y Y       (2.47) 

From mathematical statistics, it is well known that Poisson distribution can be well 

approximated by Gaussian distribution provided the mean photon flux of the field 

detected by the photodiode is large [ 34 ].  This condition applies to coherent 

detection because the photon flux of the LO field is large i.e. large FL.  As a result, 

P(Y|1) and P(Y|0) can be approximated by Gaussian distribution for coherent 

detection.  It is convenient to introduced the Q-function, which describes the 

normalized Gaussian tail probability, and is defined as [25] 

  
21 exp

22
Q d



 


  
  

 
  (2.48) 

Provided , we have an approximation of Q() [25]  

  
21 exp

22
Q 


 

 
  

 
 (2.49) 

For the modulation format considered in this thesis (BPSK-HO, BPSK-HE, ASK-HO, 

ASK-HE), the probability of transmitting a ‘1’ and ‘0’ is equally probable and that the 
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impact of mistaking a ‘0’ for a ‘1’ is the same as its converse [1].  Under this 

condition, the BER in Equation (2.47) can be re-expressed as [1] 

    
 

 
 

0 1
0 1

th thY Y Y Y
BER Q Q Q
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 (2.50) 

where Yth is the threshold, Y[1] and Y[0] is the signal strength detected for bit ‘1’ and 

bit ‘0’ respectively,  and  is the shot noise deviation for bit ‘1’ and bit ‘0’ 

respectively.  Using Equation (2.50), the threshold value Yth can be determined as 

        
   

0 1 1 0
0 1

th Y Y
Y

 
 





 (2.51) 

Yth is set so that the shaded area under the probability density function P(Y|1) and 

P(Y|0) are equal in Figure 2.7, and the error probability is minimized [25]. 

By substituting the threshold value expression in expression (2.51) into Equation 

(2.50), the BER for coherent detection can be expressed as 

      
   
1 0
1 0

Y Y
BER Q Q

 
 

    
 (2.52) 

where the parameter is defined by 

    
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 (2.53) 

2 can be identified as the signal to noise ratio SNR [1, 25].  Using the expression of 

the Q-function in Equation (2.49), we can identify the BER is exponentially related to 

the SNR.  This implies an increase in SNR will lead to an exponential decrease in 

BER, and hence the communication system performance improves significantly.   

For coherent receiver, the power spectral density (PSD) of shot noise for either a 

‘0’ bit or ‘1’ bit transmitted is given by [1] 

    2 2 21 0shot shot Lq F     (2.54) 
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where FL is the mean photon flux of the LO field.  The PSD of shot noise is the same 

regardless of whether transmitted signal is modulated via ASK or PSK, or whether the 

coherent receiver is homodyne or heterodyne.  Provided shot noise is the only noise 

considered, the BER expressions of various modulation systems can be determined by 

substituting expression (2.54), and the mean signal strength expression for the 

corresponding modulation systems derived in Subsection 2.2.2, into Equation (2.52), 

where we obtained the following  
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When  = 1 (maximum quantum efficiency), expressions (2.55) - (2.58) corresponds 

to the BER quantum limit of the modulation systems considered, and the systems 

performance is optimized. 

 Using expression of the Q function in Equation (2.49) and expressions (2.55) - 

(2.58), we can determine the required minimum photon number in a bit period to 

achieve a given BER.  This result is shown in Table 2.1. 
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Modulation 

format 

BER equation Quantum limit 

BER =10-9  

(ph/bit) 

Quantum limit  

BER = 10-15 

(ph/bit) 

BPSK-HO  4 S bQ F T  9 16 

BPSK-HE  2 S bQ F T  18 32 

ASK-HO  S bQ F T  36 64 

ASK-HE 

2
S bF TQ

 
 
 

 
72 128 

Table 2.1:  Quantum limit comparison between different modulation systems.  

 

From Table 2.1, we can identify the quantum limit of BPSK-HO is the smallest 

followed by BPSK-HE, ASK-HO and ASK-HE.  The smaller the quantum limit, the 

better the sensitivity of the receivers.  In addition, Table 2.1 shows achieving a lower 

BER requires more photons i.e. greater power is required from transmit laser.  This 

can be understood from the fact that increasing the transmit laser power increases the 

SNR (). By increasing the power by less than 2 times, the BER reduces by 6 orders 

of magnitude (10-9 to 10-15) due to the nonlinearity of Q function.    

  

2.3  Summary 
A transverse AOPM is considered in this thesis to modulate the optical field for high 

speed communication systems.  The process of phase modulation uses optical Kerr 

effect, a nonlinear mechanism in which the phase of the signal field is controlled by 

the intensity of the control signal by varying the refractive index of the modulator.  

The relation between the phase change and the intensity of the control signal in 
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Equation (2.12) will be used for the development of the quantum field model in 

Chapter 4.   

 The analysis of various optical systems that uses ASK and BPSK modulation 

format were considered in this Chapter using SCFT.  Similar to the traditional optical 

communication analysis [1, 22 - 25], the dynamical nature of modulation that includes 

the effect of bit transition delay has been ignored.  A summary of quantum limit 

giving the minimum photon number required to achieve a specific BER is presented 

in Table 2.1.  These results will be used to compare the BER quantum limit 

determined from quantum field theory (QFT) in Chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 33 

3 Introduction to Quantum Field Theory (QFT) 

In Chapter 2, the optical field has been treated semi-classically in which the field is 

expressed as algebraic function while the detector's response has been modelled as 

though the light consists of discrete quanta. In this Chapter, quantum field theory 

(QFT) is used to give a full and appropriate description of the quantum nature of light 

generated from the transmit laser.   In QFT the field is represented by a matrix 

operator that operates on quantum state vectors to describe observable quantities, e.g. 

power flow of optical field.  We begin by giving a summary of quantum 

representation for optical field propagating in vacuum.  We shall also discuss the 

properties of coherent state that describes the optical field generated from a laser.   

 

3.1  Quantum Field Operators in Vacuum 
In QFT the field is expressed as operators instead of algebraic function as in semi-

classical field theory (SCFT).  However similar to SCFT, the optical field operator in 

QFT is also governed by Maxwell’s equation [35] 
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 (3.1) 

where B  is the magnetic field density operator, Ê is the electric field operator, 0 = 

8.85*10-12V/m is the free space electric permittivity and 0 = 4*10-7H/m is the free 

space magnetic permeability,  is the differential gradient operator (= i/x + j/y 

+ k/z).  In this Chapter we consider the field propagating in vacuum, thus the extra 
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terms due to bound charges and current sources are omitted in Equation (3.1).  The 

optical field is assumed to be transverse electromagnetic (TEM) field propagating in 

the z direction, which satisfies the Coulomb gauge condition [35] 

  0A   (3.2) 

where Â is the magnetic vector potential operator.  Â is related to B  field operator by, 

  B X A   (3.3) 

while the relation between Â and Ê is 

  AE
t





 (3.4) 

From expression (3.2) and (3.4), it can be determined that 

  0E   (3.5) 

By introducing the curl operator ( X ) to both sides of the first equation in 

expression (3.1) (Faraday’s law), replacing  X B  on the right hand side of the 

equation by the 2nd equation in expression (3.1), and using the identity 

    2X X E E E      , we arrive at the wave equation 

  2
2

0 0 2
EE

t
  

  


 (3.6) 

To quantize the optical field propagating in the z direction, it is appropriate to 

assume the general expression of   ,E z t  has the form 

       , m m
m

E z t q t Z z  (3.7) 

where m is a mode index integer and represents the mode component of the field, and 

 mq t  is an operator denoted by the hat above it.  By substituting expression (3.7) 

into Equation (3.6), we arrived at the following differential equations that holds for 

each field mode component 

    2 2 0m m mZ z k Z z    (3.8) 
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  
2

2
2 0m

m m
q q t
t


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

   (3.9) 

where km is the propagation constant associated with the mode index m and can be 

expressed as km = m/(00)1/2.  It is obvious that the solution of spatial component 

Zm(z) in Equation (3.8) has the form of plane waves i.e. 

    expm mZ z ik z  (3.10) 

There is one complication however that in optical communication system, the 

field is not confined within a cavity.  Therefore, the mode summation in Equation (3.7) 

should instead be replaced by an integral [35].  In this Chapter, we shall simplify the 

problem by employing the concept of “box normalization”, in which space is covered 

by an infinite set of large finite size cubic boxes [33].  This configuration allows 

periodic boundary conditions to be imposed so that the field is assumed to be the 

same value at opposite sides of the box, thus only fields with wavelength 
2

mL   

exist [35].  As a result, the field solution can be represented by the summation in 

Equation (3.7) where the mode index is discrete (m is an integer).  We shall remove 

the unphysical limitation on the finite size boxes in Chapter 5 by allowing the field 

mode index to be continuous.   

It is well known that the solution of optical field propagating in the z direction 

  ,E z t  is [33, 35] 
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In this the temporal field component is 
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and the spatial component is 
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    expm mZ z ik z  (3.13) 

It is shown in Equation (3.11) that the optical field is a real vector field.  The 

propagation constant km is related to the length of the box cavity L by km = 2m/L, 

and is also related to the angular frequency of the field m by m = |km|c0.  âm and âm
+ 

are the annihilation and creation operator respectively.   

 We have the following relations when âm and âm
+ operate on the number state 

of the field |Nm> [33] 

 1m m m ma N N N   (3.14) 

 1 1m m m ma N N N


    (3.15) 

where Nm describes the number of photons from the field at mode m.  The photon 

number operator mN  which can be expressed as m m mN a a


   , gives the photon 

number of the field when operates on number state |Nm> 

 
m m mm m m mN N a a N N N


    (3.16) 

The annihilation and creation operator, âm
+ and âm, satisfies the commutation relation 

 ,m n m n n m mna a a a a a 
        

       (3.17) 

It is shown from [33, 35] that the commutation relation in expression (3.17) as well as 

the constant (ħ/20V)1/2 gives the corresponding field Hamiltonian (energy operator) 

of the form 

 
0

1
2

m mm
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H a a
 



   
 

    (3.18) 

Note that the first term in Equation (3.18) represents the energy density of the optical 

field, while the last term represents the energy density due to vacuum fluctuation.    

 In SCFT, the expression of the electric field strength of the optical field is [33] 
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By comparing the QFT expression in (3.11) with the SCFT expression in (3.19), we 

can identify the Fourier coefficients cm and its conjugate cm
* in Equation (3.19) is 

replaced by the annihilation and creation operator âm and âm
+.  An immediate 

consequence of treating the Fourier coefficients as complex numbers rather than 

operators is that the vacuum energy (last term in Equation (3.18)) does not appear in 

the energy density expression in SCFT [35]. 

 

3.2  Quantum State of Optical Field 
Recalling from Section 3.1, the field in QFT is treated as an operator that operates on 

a quantum state vector that characterizes the properties of the field.  The state that 

closely resemble to the property of optical field generated from the laser is known as 

the coherent state [33].  In this Section we shall discuss the properties of the coherent 

state generated by a single mode laser.   

 A single mode coherent state vector |m> corresponds to a linear superposition 

of the number states |Nm>  
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where m is a complex number.  We shall neglect the mode index (subscript m) that is 

attached to state vector |Nm> in the following expressions for simplicity.  It is easy to 

verify from Equation (3.20) that the ket state vector |> is normalized, i.e. 
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The coherent states are the right eigenstates of annihilation operator â, which can be 

verified using expression (3.14) and (3.20) 
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Similarly using expression (3.14) and (3.20), it is easy to verify the creation operator 

â+ satisfy the eigen-equation 

 *a  

  (3.23) 

However, the state |> is not a right eigenstate of the creation operator. 

 The mean photon number of the optical field in state |> is obtained by 

calculating the expectation value of the number operator N  with respect to state |>.  

Using Equation (3.22) and Equation (3.23) we have 

  2N a a N    


     (3.24) 

N represents the mean photon number optical field, thus Equation (3.24) shows the 

mean photon number of the optical field N can be represented by ||2.  The variance 

of photon number of the optical field is given by the following relation 

     222N N N    (3.25) 

The first term in Equation (3.25) is calculated by re-ordering the ââ+ term using the 

commutation relation in expression (3.17), 

 

 2

4 2

N a aa a

a a aa a a

 

 

 

 

  



 

 

  

      (3.26) 

Thus, using the result in Equation (3.26) and the definition of the variance of photon 

number arrival rate in Equation (3.25), we have  

    22 4 2 2 2N N          (3.27) 
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We see that one of the important property of the field prepared in coherent state is the 

mean photon number N is equal to its variance.  The fractional uncertainty in the 

photon number of coherent state is, 

 
1 1N

NN 


   (3.28) 

The fractional uncertainty decreases with increasing coherent state amplitude ||. 

 The probability distribution of detecting N photons in a single mode optical 

field is obtained from the definition 
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 

 

 


 (3.29) 

The final line in Equation (3.29) is a Poisson probability distribution.  This agrees 

with the photon arrival statistics derived from SCFT [1, 25].  In fact the mean photon 

number equal to its corresponding variance   2N N  , is a property of the Poisson 

distribution.   

 It is useful to introduce the in phase and quadrature operator 1X  and  2X  to 

describe the property of the coherent state, where it is defined as 

   1
1
2

X a a


    (3.30) 

   2
1
2

X a a
i


    (3.31) 

Using the commutation relation in expression (3.17) and the definition of variance in 

Equation (3.25), it follows that the quadrature variances are 

    2 2
1 2

1
4

X X     (3.32) 
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The coherent state is known as the minimum uncertainty state in which both in-phase 

and quadrature variance are minimized, where we have 

    2 2
1 2

1
16

X X    (3.33) 

Figure 3.1 is a state diagram showing the electric-field property of the 

coherent state.  The phasor characterizes the mean signal strength and the phase of the 

optical field.  The circle in Figure 3.1 is commonly referred to as the uncertainty 

contour.  It represents the uncertainty in which the phasor lies.  The uncertainty area’s 

circular symmetry shows that a field prepared in coherent state has equal uncertainty 

(i.e. variance) in the in-phase and quadrature component.  The amplitude contribution 

reproduces the result for the photon number variance [33] 

     
22 2

1/ 2 1/ 22 1 1
4 4

N N N N
             
     

 (3.34) 

 

 

Figure 3.1:  State diagram of optical field prepared in coherent state. 
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Note that there is also an uncertainty associated with the phase of the field.  Provided 

the amplitude (photon number) of the field is large (|| >> 1), the arc rule gives the 

approximate expression  

 
1 1

2 2 N



    (3.35) 

The product of photon-number and phase uncertainty is therefore 

 1
2

N     (3.36) 

From expression (3.35), we can identify the phase uncertainty of the field can be 

neglected as the photon number is large.  This has a similar property with the 

amplitude uncertainty given by Equation (3.28).   Figure 3.2 shows the amplitude and 

phase uncertainty spread resembles to that of a classical stable wave as photon 

number increases.   

 

Figure 3.2:  Amplitude and phase uncertainty spread of optical field with a) Low 

photon number  b)  Large photon number. 
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3.3  Summary 
In QFT the representation of optical field is promoted from mathematical function to 

an operator.  The mean and variance of the observed field amplitude is determined by 

calculating the “expectation value” of the state with respect to the number operator.  

The optical field generated from the laser is best described by coherent state.  The 

coherent state is an eigenstate of the annihilation operator as shown in Equation (3.22), 

where this will be used extensively in Chapter 5, Chapter 6 and Chapter 7.  The 

photon number statistics has a Poisson distribution in which the mean is equivalent 

to its variance for field prepared in coherent state.  It is a minimum uncertainty state 

in which the in-phase and quadrature variance are minimized.  The amplitude and 

phase uncertainty spread resembles to that of a classical stable wave as photon 

number increases.    
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4 Quantum Field Model of Phase Modulator 

 

4.1  Chapter Objectives 
In this Chapter, we will use the theory presented in Chapter 2 and Chapter 3 to 

determine the equation of motion of the modulated field in the modulator.  Although a 

quantum representation of a phase modulator has been presented in [9], their model 

did not include the effect of photon creation that arises from the time variation of 

refractive index indicated by [16 - 21].     

The objective of this Chapter is to develop a quantum model that describes the 

behavior of a phase modulated field which incorporates the phenomenon of photon 

creation.  The optical field is modulated by an all optical phase modulator (AOPM).  

As we have explained in Chapter 2, the phase of the modulated field is controlled by 

the intensity of the optical control signal.  A diagram of an AOPM is shown in Figure 

4.1.  The anti-reflective coatings (ARC) are added at the front and back end of the 

modulator to reduce signal losses due to reflection of optical signal.   

Figure 4.1:  Diagram of AO-TPM.    
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4.2  Quantum Model of Phase Modulator 
In this Section, a quantum field representation of the laser field propagating through 

the phase modulator is presented.  From Figure 4.1, we can identify the modulator 

consists of two different types of media; a modulating medium whose refractive index 

is dependent on the intensity of the control signal strength, and the ARC whose 

refractive index varies spatially along the propagating direction z.  In the following 

Subsections, we shall determine the corresponding equation of motion that describes 

the characteristics of the optical field propagating in each of these regions. 

 

4.2.1  Field in Modulating Medium 

In Chapter 2, we discussed an all optical phase modulator (AOPM) that uses cross 

phase modulation (XPM) so that the control optical field creates a time dependent 

dielectric medium (t), to impress phase encoded data onto the optical carrier.  In this 

Section, we determine the equation of motion that governs the field propagation in a 

modulating medium whose dielectric and hence refractive index n(t) is time 

dependent.  Similar to the analysis of field propagating in vacuum in Chapter 3, the 

field operator that describes the optical carrier propagating inside the time dependent 

modulating medium is governed by the Maxwell’s equation.  We will use the 

following assumptions to simplify the problem: 

1. The modulator lossless i.e. no loss in energy due to energy reflection and 

signal attenuation. 

2. The ARC and modulating medium are non-dispersive. 

3. The modulator has no bound charges or current source.  

4. The intensity of the optical carrier has negligible effect on the refractive 

index change.  
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5. The maximum rate of change of refractive index is much smaller than the 

carrier frequency of the optical field. 

6. The waveguide effects in the communication link are ignored.  

Based on these assumptions, we can write the Maxwell’s equation of the form, 
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0
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
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
    


   

 





 (4.1) 

where   ,E z t  is the electric field operator and   ,B z t  is the magnetic flux density 

operator of the optical signal, 0 is the free space magnetic permeability constant (= 

4*10-7 H/m [Henry/meter]),  is the differential gradient operator (= i/x + j/y 

+ k/z), and (t) is the time dependent electric permittivity.  The spatial and time 

dependence for   ,E z t  and   ,B z t  operators have been suppressed in Equation (4.1) 

for clarity. 

By introducing the curl operator ( X ) to both sides of the first equation in 

expression (4.1) (Faraday’s law), replacing X B  on the right hand side of the 

equation by the 2nd equation in (4.1), and using the identity 

    2X X E E E      , we arrive at the wave equation 

   
 2

2
0 2

( )t E
E E

t





    


  (4.2) 

Expression (4.2) is the equation of motion of the optical field inside the modulating 

medium.  From the third line in expression (4.1), we have •Ê = 0.  As a result, the 

first term in the left hand side of Equation (4.2) vanishes, for which we arrived at 
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 
 2

2
0 2

( )t E
E

t





 


 (4.3) 

Since the waveguide effect of the modulating medium is ignored, the optical field is 

characterized by transverse electromagnetic (TEM) wave [36, 37]. 

Similar to Chapter 3, the problem can be simplified by assuming the field 

propagate in the z direction, and thus the gradient operator can therefore be reduced to 

 → k/z.  For simplicity,   ,E z t  and   ,B z t  field vector operators are orientated 

along the x and y axes respectively as shown in Figure 4.2. 

     

Figure 4.2:  TEM wave propagating in z direction. 

 

Using the simplifications from above, expression (4.3) can be rewritten as 
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

 
 (4.4) 

The form of Equation (4.4) can be further simplified by working with the electric flux 

density operator   ,D z t , which is defined as  

        , ,D z t t E z t  (4.5) 

By expressing (4.5) in terms of   ,D z t , we have 

x 
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y 
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B  k 
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 22 2

2 2
0

( ) 0D n t D
z c t

  
    

 (4.6) 

where c0 is the speed of light in the free space (c0 = 1/[00]1/2 = 3*10-8 ms-1) and n(t) 

is the time dependent refractive index and is related to (t) by n(t) =[(t)/0]1/2.   

In general, the field operator   ,D z t  can be represented as a superposition of 

field modes which takes the form 

       ,
MM MM

m m
m

D z t q t Z z  (4.7) 

where the subscript m is an integer that denotes the mode of the field,  
MM

mq t  is the 

time dependent field operator and  MM
mZ z  is the spatial mode function of the 

  ,D z t  field.  By the use of ‘box normalization” introduced in Chapter 3, the field 

can be represented by a summation of field modes instead of an integral.   

By substituting (4.7) into the wave equation in (4.6) and using the method of 

separation of variables, Equation (4.6) can be reduced into two ordinary differential 

equations (ODEs).  One of the ODE governs the spatial component of the field mode 

 MM
mZ z  and is given by 

  
2

2
2 0
MM

MMm
m m

d Z k Z z
dz

   (4.8) 

where km represents the wave-number inside the modulating medium associated with 

the mode index m.  The mode index is related to the wave-number in the vacuum k0m 

by km = nk0m, where n is the refractive index of the media in the absence of the control 

signal.    From Chapter 3, we have shown the solution of  MM
mZ z  in Equation (4.8) 

has the form of plane waves, i.e.    expMM
m mZ z ik z .  Therefore, the general 

solution of field operator   ,D z t  can be rewritten as 
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       , exp
MM

m m
m

D z t q t ik z  (4.9) 

The other ODE that governs the time evolution of the field operator in the 

modulating medium is given by 

    
2

2
2 0
MM

MM
m

m m
d q t q t

dt
 

   (4.10) 

where m(t) = kmc0/n(t) is the time dependent angular frequency of the field.  

Expression (4.10) that governs the equation of motion of  
MM

mq t  is also known as 

the time dependent oscillator equation which has been studied extensively in the QFT 

literatures [11, 12].  The solution structure of  
MM

mq t , is more complicated as 

compared with the spatial dependence of the field  MM
mZ z , and will be discussed in 

more details in the following subsection. 

 

4.2.2  Hamiltonian Formalism in Modulating Medium 

The solution of  
MM

mq t  is governed by the structure of the field Hamiltonian 

operator.  The Hamiltonian operator Ĥ is an energy operator that enables the 

expectation value of the energy inside the modulating medium to be determined for 

energy state-vector |E>.  In this Section, we shall determine the identities that govern 

the solution structure of  
MM

mq t  based on the expression of the Hamiltonian.     

The Hamiltonian operator is derived by applying a quantization procedure in 

classical Hamiltonian mechanics.  The procedures of deriving the Hamiltonian 

operator are shown as follows [38]: 

1. Construct the corresponding Lagrangian operator from the equation of motion 

using field Euler-Lagrangian equation. 

2. Derive the Hamiltonian operator from the Lagrangian operator using Legendre 
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transforms. 

3. Apply quantization procedure by replacing canonical variables by noncommuting 

operators.   

 

A.  Expression of Field Lagrangian   

From Hamiltonian mechanics, the classical version of the equation of motion in (4.10) 

for which 
MM

mq  is replace with a classical variable MM
mq , can be constructed using 

the field Euler-Lagrange equation [38] 

 
   

0D D DL L L
t D t z D z D
                           

 (4.11) 

where DL  is the Lagrangian density.  Notice that the electric flux D in expression 

(4.11) is a classical variable whose expression is similar to that of Equation (4.9) 

except that it is now dependent on the classical variable MM
mq .  The field Lagrangian 

operator is related to the Lagrangian density operator by D
V

L L dV  .  In order to 

reproduce the classical version of the equation of motion in Equation (4.10) as well as 

satisfying the expression (4.11), the field Lagrangian L  is expressed as 

 
 

22 2
0 0

22 m V

D c DL dV
k t n t z
                 
  (4.12) 

Using Equation (4.12), we can determine the expression of the canonical conjugate 

momentum  ,W z t , where we have 

    
0
2, D

m

L DW z t
D k t

t

 
 

  
 (4.13) 

By substituting the general expression of  ,D z t  in Equation (4.9) into the definition 

of  ,W z t  in Equation (4.13), we arrive at 
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      , expMM
m m

m
W z t w t ik z  (4.14) 

where 

   0
2

MM
MM m

m
m

dqw t
k dt


  (4.15) 

From expression (4.14) and (4.15), it can be realized that the canonical conjugate 

momentum field  ,W z t  corresponds to the magnetic flux density  ,B z t .  When 

Equation (4.9) is substituted into Equation (4.12), using the relation (t)= n2(t) and 

km = -k-m, as well as applying the spatial integral expression, 

      ,exp m n m n
V

i k k z dV V                (4.16) 

where V is the volume of the modulating medium, it is easy to verify that L  can be re-

expressed in terms of the temporal component of the field 

    
 

0
22

MM MMMM MM
m mm m

m m

q t q tV q qL
k t t t



 

 
   (4.17) 

 

B.  Expression of Classical Hamiltonian 

The classical Hamiltonian H can be determined by performing the Legendre 

transformation on L  [35] 

      , ,
V

DH t W z t dV L z t
t


 

  (4.18) 

Using expressions (4.16) and (4.17), the classical Hamiltonian in the modulating 

medium  H t  can be expressed as 

      
 

0
22

MM MMMM MM
m mm m

m m

q t q tV q qH t
k t t t









 
 

   (4.19) 
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C.  Quantization of Hamiltonian systems 

In order to transit from classical field theory (CFT) to quantum field theory (QFT), we 

replace the canonical field  ,D z t ,  ,W z t  by noncommutating field operators 

  ,D z t ,   ,W z t  for which they satisfy the standard equal time commutation relation 

[38], 

            [ , , ', ] [ , , ', ] 0D z t D z t W z t W z t    (4.20) 

       , '[ , , ', ] z zD z t W z t i    (4.21) 

where the commutator bracket is defined as [A,B] = AB – BA.  In order to satisfy the 

commutation relation in expression (4.20) and (4.21), we find the corresponding 

commutation relations for the temporal component of the mode operators 

          [ , ] [ , ] 0
MM MMMM MM

m nm nq t q t w t w t
 

    (4.22) 

      ,[ , ]
MMMM

nm m n
iq t w t
V
 
  (4.23) 

By replacing the classical variable MM
mq  by the quantum operator 

MM

mq  in the 

classical Hamiltonian in Equation (4.19), and using the equation of motion in (4.10), 

the relations between the   ,D z t  and   ,E z t  from Equation (4.5), as well as the 

relation between   ,E z t  and   ,B z t  field operator in Equation (4.1), we can express 

the Hamiltonian field operator in the modulating media as 

           
2 21 , ,

2
H t t E z t B z t dV   (4.24) 

The expression of   H t  in Equation (4.19) can be used to determine the average total 

energy inside the volume of the modulating medium by calculating the expectation 

value   E H t E .  Unlike the scenario for the field propagating in a vacuum, the 

expression of the Hamiltonian for modulating medium is explicitly dependent on time.   
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In QFT, it is convenient to introduce the annihilation and creation operators of the 

phase modulated field,  m tb  and  m t


b , that can be expressed in terms  
MM

mq t
 

and   
MM

mw t  

               
1/ 2 1/ 2

2 2
MMMM

m mm
t t VVt q t i w t

t t
 

 
   

    
  

b 
 

 (4.25) 

               
1/ 2 1/ 2

2 2
MMMM

m mm
t t VVt q t i w t

t t
 

 




   
    

  
b 

 
 (4.26) 

Because the modulating medium has a time varying index, therefore the coefficient in 

front of  
MM

mq t  and   
MM

mw t  in Equation (4.25) and (4.26) are time dependent.  

Despite that  m tb  and  m t


b  are time dependent inside the modulating medium, 

they continue to satisfy the equal time commutation relations [12] 

        [ , ] [ , ] 0m n m nt t t t
   b b b b     (4.27) 

     ,[ , ]m n m nt t 


b b   (4.28) 

where the subscripts m and n, indicate different modes which the parameters are 

associated with.  Expression (4.27) and (4.28) can be verified from the commutation 

relation in (4.25) and (4.26).  By substituting (4.25) and (4.26) into (4.19), and using 

the commutation relation in (4.28), the Hamiltonian operator can re-expressed in 

terms of  m tb  and  m t


b  where it takes the form 

         
0

1
2

m mm
m

H t t t t
 



   
 

 b b   (4.29) 
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The field Hamiltonian in (4.29) is the same as the Hamiltonian for a time dependent 

harmonic oscillator presented by [39].  Using the Hamiltonian expression in (4.29), 

we can determine the general form of the field mode in the modulating medium.  

Using the definition of  m tb  and  m t


b  operator from expression (4.25) and 

(4.26) respectively in the modulating medium, the temporal component of the electric 

flux density operator  
MM

mq t  can be expressed as  

          
1/ 2

2
MM m

m mm
t t

q t t t
V

  


         
b b

    (4.30) 

From Equation (4.30), one can easily verified that  

    
*MM MM

m mq t q t   (4.31) 

By substituting the expression of  
MM

mq t  from Equation (4.30) into the expression 

of   ,D z t  in (4.9), we can rewrite   ,D z t  as 

               
1/ 2

, exp exp
2

m
m mm m

m

t t
D z t t ik z t ik z

V
  





          
 b b

    (4.32) 

We will now show that the time dependent annihilation and creation operators,  m tb  

and  m t


b , can be re-expressed in terms of the time independent operator 

(unmodulated) annihilation and creation operator introduced in Chapter 3 using  

    m m mt a f tb   (4.33) 

where  mf t  is a time dependent function yet to be determined.  In Chapter 3, we 

have shown the time independent annihilation and creation operator, âm and âm
+, 

satisfies the usual commutation relations 

 , , 0m n m na a a a
         

     (4.34) 
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 ,,m n m na a 
    

   (4.35) 

For simplicity, it is convenient to rewrite  
MM

mq t  as 

      *MM
m mm m mq t a u t a u t


     (4.36) 

where  mu t  is related to  mf t  by  

        
1/ 2

2
m

m m
t t

u t f t
V

  
  
 


 (4.37) 

Furthermore, by substituting expression (4.36) into the equation of motion for 

 
MM

mq t  in Equation (4.10), we can determine  mu t  is governed by the ODE 

 
   

2
2

0
2 0m m

m
d u k c u t
dt n t

 
  
 

 (4.38) 

Similarly, the general solution of the temporal component of the canonical 

conjugate momentum operator   
MM

mw t  can be determined by substituting Equation 

(4.36) into Equation (4.15) 

   
*

0
2

MM
m m

m m m

m

du duw t a a
k dt dt
 


 

  
 
   (4.39) 

where 0 = 4*10-7H/m is the free space magnetic permeability.  In order to satisfy 

the commutation relations between  
MM

mq t  and   
MM

nw t  in Equation (4.22) and 

Equation (4.23), the mode function  mu t  must obey the normalization condition 

    
* 2

* 0

0

m m m
m m

du du ku t u t i
dt dt V

 
  (4.40) 

where k0m is the propagation constant in free space .  The normalization condition in 

Equation (4.40) can be verified by substituting the expressions (4.39) and (4.36) into 

(4.21), as well as using the commutation relation of âm and âm
+ in expression (4.34) 
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and (4.35).  The expression on the left of Equation (4.40) is the Wronskian of two 

independent solutions  mu t  and  *
mu t , and hence it is time independent [40]. 

 

4.2.3  Bogoliubov Transformation of Field Mode 

In this Subsection, we shall determine the evolution of the field propagating in the 

modulating medium whose refractive index is time varying.  For simplicity, the 

refractive index profile n(t) is assumed to be changing dynamically between the time 

interval –T < t < T , while it is asymptotically static in the remote past (t < -T) and 

remote future (t > T) as shown in Figure 4.3.   

 

time

n1

n2

n(t)

|0in>

|0out>

time

n1

n2

n(t)

time

n1

n2

n(t)

|0in>

|0out>

 

Figure 4.3:  Time dependent refractive index profile of modulator. 

 

In Figure 4.3 there are two time regions in which the refractive index n(t) is constant.  

We shall call the static region in the remote past t < -T as the ‘in’ region while the 

static region in the remote future t > T as the ‘out’ region.  The ‘in’ region 

corresponds to the situation when the modulator is in steady state with refractive 

index n1.  Therefore the expression of field mode is governed by the ODE, 

- T T 

 

 

OUT IN 
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  
22

0
2

1

0
in

inm m
m

d u k c u t t T
dt n

 
   
 

 (4.41) 

where  in
mu t  represents the solution of the field mode in the ‘in’ region.  Similarly, 

in the ‘out’ region (t > T) the modulator is in steady state with refractive index n2.  

The field mode is governed by the ODE, 

  
22

0
2

2

0
out

outm m
m

d u k c u t t T
dt n

 
   
 

 (4.42) 

where  out
mu t  represents the solution of the field mode in the ‘out’ region.   

The solutions in Equation (4.43) and Equation (4.44) can be expressed in the 

form of simple complex exponential, 

    expin in in
m m mu t C i t   (4.43) 

    expout out out
m m mu t C i t   (4.44) 

where m
in = kmc0/n1 and m

out = kmc0/n2 are the angular frequency of the field at the 

remote past and remote future respectively.  The constant in front of expression (4.43) 

and (4.44) is to ensure the normalization condition in Equation (4.40) is satisfied. 

 During the time interval when the modulating medium is time dependent –T < 

t < T, the refractive index, n(t), is changing and the field mode solution  mu t  cannot 

be described in terms of simple complex exponential exp(it), but rather it evolves 

into some complicated form.  In Chapter 5, the representation of  mu t  inside the 

interval for which n(t) is time varying will be discussed in more detail.  In the ‘out’ 

region, the refractive index remains static at n2 and  mu t  can be re-expressed in 

terms of complex exponential.  However the expression of  out
mu t  (field mode 
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solution in the ‘out’ region) consist of positive and negative frequency components as 

a consequence of dynamic change in n(t) during the time period –T < t < T [26].  The 

field in the ‘out’ region is therefore given by 

 

     
   

   

*

1/ 2

2

exp exp

exp exp
2

out out
m m m m m

out out out
m m m m m

out
out outm

m m m m

u t T u t u t

C i t i t

i t i t
V

 

   

    


  

    

         



 (4.45) 

where mand mare the time independent Bogoliubov coefficients and Cm
out = 

(ħm
out/22V)1/2. 

By substituting expression (4.45) into (4.36),  
MM

mq t  in the ‘out’ region (t > T) 

can therefore be expressed as 

 
      

   

1/ 2

2

1/ 2

2

exp exp . .
2

exp exp
2

outMM out outm
mm m m m m

out
out outm

m mm m

q t T a i t i t H c
V

b i t b i t
V


   



  





           

          

 

  

 (4.46) 

where mb  and mb



  are the annihilation and creation operator in the ‘out’ region and 

H.c. is an abbreviation for Hermitian conjugate.  Thus, the general expression of the 

electric flux operator can therefore be expressed as  

     
1/ 2

2, exp . .
2

out
outm

m m m
m

D z t b ik z i t H c
V

  




         
    (4.47) 

The ‘out’ operators mb  are related to the ‘in’ operators âm through the expressions 

 *
m m mm mb a a 


     (4.48) 

 *
m m mm mb a a 
 

      (4.49) 

Likewise, one can reverse the transformation in expression (4.48) and (4.49) to obtain 

 * *
m m mm ma b b 


     (4.50) 
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 m m mm ma b b 
 

     (4.51) 

Equations (4.48) - (4.51) are known as the Bogoliubov transform.  Given that the 

spatial component is represented as plane waves i.e. exp(ikmz), the Bogoliubov 

coefficients are both diagonal and isotropic, thus the field modes inside the 

modulating medium, corresponding to different values of km, are independent of one 

another [26].  By substituting Equation (4.45) into Equation (4.40), it can be verified 

the Bogoliubov coefficients satisfy the identity 

2 2 1m m              (4.52) 

Using the identity in Equation (4.52), the commutation relation of the ‘in’ operators, 

âm and âm
+ in expression (4.34) and (4.35), and the relation in (4.50) and (4.51), we 

can verified the operators mb  and mb
  satisfied the commutation relations as âm and 

âm
+, where we have 

 [ , ] [ , ] 0m n m nb b b b
 

      (4.53) 

 ,[ , ]m n m nb b 

   (4.54) 

In Chapter 3.2, we have shown the Hamiltonian operator Ĥ for the field in the 

vacuum is time independent.  This implies the ‘in’ vacuum state vector |0in> is an 

eigenstate of the ‘in’ operator âm for all time t (i.e. âm|0in> = 0).  This condition is 

satisfied when the Bogoliubov coefficient is given by [40], 

 1 0m m    (4.55) 

and the field mode  mu t  can be expressed in terms of simple complex exponentials 

i.e. exp(-it), at all time. 

However in a modulating medium whose refractive index is time varying, the 

expression of the Hamiltonian becomes time dependent as shown in Equation (4.29).  
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An immediate consequence of this is the ‘in’ vacuum state vector |0in> is not in an 

eigenstate of the out annihilation operator mb  [26, 40].  This can be verified from 

Equation (4.48), where  mb  is dependent on âm
+ when m coefficient is non-zero, and 

since |0in> is not an eigenstate of âm
+, thus |0in> is not an eigenstate of mb .  Therefore 

|0in> is not an energy eigenstate for the modulated field and thus this results in the 

quantum phenomenon of photon creation from modulator as shown in Chapter 6. 

 

4.2.4.  Field in Anti-Reflective Coating (ARC) 

In Figure 4.1 we have shown ARCs are added at the front and back end of the 

modulator and the detector to reduce signal losses due to reflection of optical signal 

being transmitted.  This is achieved by varying the dielectric permittivity smoothly in 

the propagation direction [41].  Therefore the ARC is an inhomogeneous medium, 

whose dielectric permittivity is spatially dependent.  In this Subsection, we shall 

determine the equation of motion that governs the propagation of the optical field 

inside the ARC.  In order to simplify the problem, we shall assume the optical field 

strength of the control signal decays rapidly at the boundary of the modulating 

medium and the ARC so that it does not alter the refractive index of the ARC.  As a 

result, it is appropriate to assume the refractive index and hence the electric 

permittivity of ARC is time independent.  The quantum Maxwell’s equations that 

governs the characteristics of optical field propagating inside the ARC is expressed as 

 

 








0

( )

( ) 0

0

BX E
t

z E
X B

t
z E

B







  
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



 (4.56) 
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Since the field propagates in the z direction, therefore by following a similar 

procedure as in Section 4.2, the Maxwell’s equation can be reduced to a wave 

equation, 

 
 22 2

2 2
0

( ) 0E n z E
z c t

  
    

 (4.57) 

where the z dependent dielectric permittivity is related to the refractive index by 

n(z)=[(z)/0]1/2.  The electric field   ,E z t  is polarized along the x direction and 

propagates along the z direction as shown in Figure 4.2. 

We assume the general solution of the   ,E z t  field can be written as the product 

of the temporal component and spatial component, where we have  

       ,
ARC ARC

m m
m

E z t q t Z z  (4.58) 

 
ARC

mq t  is the temporal component of the   ,E z t  field, while  ARC
mZ z  is the 

spatial component of the field inside the ARC, and the subscript m denotes the mode 

that the field are associated with.  Using the method of separation of variables, we 

obtain the ODE that governs the temporal component of the   ,E z t  field 

  
2

2
2 0
ARC

ARC
m

m m
d q q t

dt
 

   (4.59) 

where m = k0mc0 is the angular frequency of the field.  The equation of motion for 

 
ARC

mq t  in Equation (4.59) is identical to the equation that governs the field 

propagating in the vacuum presented in Chapter 3, which is expressed in terms of 

complex exponential, i.e. 

       
1/ 2

0

exp exp
2

ARC
m

m mm m mq t a i t a i t
V

  





          

              (4.60) 

Thus, the field representation can be expressed in the general form 
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          
1/ 2

0 0

, exp exp
2

ARC ARCm
m mm m m m

m

E z t a i t Z z a i t Z z
V
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

 
 



          
     (4.61) 

By substituting the first term in Equation (4.61) into the wave equation in Equation 

(4.57), we obtain the ODE for  ARC
mZ z  

      
2

2
2 0

ARC
ARCm

m m
d Z z

k z Z z
dz

   (4.62) 

where the z dependent wave-number is define as km(z) = n(z)m/c0 = n(z)km0.  

Equation (4.62) agrees with the theory of field propagation inside an inhomogeneous 

medium presented by [41].  It is sufficient to consider the first term in Equation (4.61) 

when deriving (4.62) because substituting the second term would yield similar result, 

but with  ARC
mZ z  replaced with  ARC

mZ z , and thus the solution of the second term 

is merely a complex conjugate of the first term.  Expression (4.59) and (4.62) are the 

equation of motions that governs the time evolution and spatial dependence of the 

optical field as it propagates through the ARC.  However, the solution structure of the 

spatial component  ARC
mZ z  governed by Equation (4.62) is more complicated, and 

will be discussed in detail in Chapter 5. 

 

4.3  Conclusions 
A quantum field description of optical field propagating through the modulator has 

been developed.  The AOPM consists of two media, a modulating medium for which 

refractive index changes when a control optical field is applied, and ARCs at the front 

and backend of the modulator to minimize reflection losses by having a spatially 

varying index profile.  The equations of motion of the field operator inside these 

media are derived from the Maxwell’s equations.   
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It is shown that inside the modulating medium, the time evolution of the optical 

field modes can be describe by an oscillator whose angular frequency (t) is time 

dependent, while the spatial component can be represented by plane wave exp(ikz).  

We have derived the Hamiltonian operator inside the modulating medium in order to 

determine the conditions that the field mode solution must satisfy.  From this, we have 

shown the structure of the annihilation and creation operator represented by âm and 

âm
+ within the ‘in’ region (before the modulator is turned on) evolves to mb  and mb

  

in the ‘out’ region.  The ‘in’ field operator âm and âm
+ is related to the ‘out’ operator 

mb  and mb
  through the Bogoliubov transform. 

In the ARC, the temporal component of the optical field is represented by 

complex exponential exp(it), while the spatial component is represented in a 

complicated form.  The solution of the spatial component in the ARC will be 

presented in Chapter 5. 
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5 Quantum Representation of Phase Modulated 

Field 

 

5.1  Chapter Objectives 
This Chapter presents a detail calculation on the quantum field representation of a 

phase modulated optical field based on the model specified in Chapter 4.  In Chapter 4, 

we showed the modulator consists of two types of media, a modulating medium 

whose refractive index is time dependent and anti-reflective coating (ARC) whose 

refractive index changes with distance.   

The rest of this Chapter is organized as follows.  In Section 5.2, we derived the 

field operator that describes the field propagating in the modulating medium.  In 

Section 5.3, we derived the field operator that describes the field propagating in the 

ARC.  In Section 5.4, we remove the simplification of box normalization introduced 

in Chapter 3, to give a travelling wave representation of an optical field.  In Section 

5.5, we will use the results in Section 5.2, Section 5.3 and Section 5.4 to derive an 

expression of a phase modulated optical field.  We shall work in Heisenberg picture 

throughout this Chapter in which the state of phase modulated field remains in a 

coherent state at all time while the field operator evolves in time.   

 

5.2  Field Mode Solution in Modulating Medium 
In this Section, we shall derive the quantum field representation inside the modulating 

medium whose refractive index changes when a control signal is applied, as discussed 

in Chapter 4.  In Chapter 4, we have shown the electric flux operator propagating in 

the modulating medium in the z direction, can be represented by plane waves i.e. 
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       , exp
MM

m m
m

D z t q t ik z




    (5.1) 

where the subscript m is the mode index.  The time component  
MM

mq t  is governed 

by the equation of motion, 
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m
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 

  
 

   (5.2) 

Provided the refractive index profile changes dynamically within some time interval 

with a static ‘in’ and static ‘out’ region, as revealed in Figure 5.1 (or Figure 4.3), we 

have shown in Chapter 4 the expression of  
MM

mq t  can be written in the general 

form, 

      *MM
m mm m m

m
q t a u t a u t

 




     (5.3) 

 

Figure 5.1:  Refractive index profile of modulating medium. 

 

In Chapter 4, we have seen the field mode in the ‘out’ region (t > T) is expressed as 

      exp expout out out
m m m m m mu t T C i t i t          (5.4) 

where m and m are the Bogoliubov coefficients, and Cm
out = (ħm

out/22V)1/2.  Thus 

in the ‘out’ region,  
MM

mq t  can be re-expressed as  

 

 

IN OUT 
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outMM out outm
m mm m m

m

q t T b i t b i t
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 





           
     (5.5) 

The modulated field annihilation and creation operator, mb  and mb



 , is related to the 

unmodulated field operator, âm and âm
+, via the Bogoliubov transformation i.e. 

 *
m m mm mb a a 


     (5.6) 

 *
m m mm mb a a 
 

     (5.7) 

By substituting expression (5.3) into the equation of motion in (5.2), we can identify 

the mode function um(t) is governed by the ODE, 
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2 0m m

m
d u k c u t
dt n t

 
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 

 (5.8) 

In this Section, we shall determine the closed form expression of the Bogoliubov 

coefficients, and hence the representation of the quantum field operator of a phase 

modulated optical field.  In the following subsection, an analogy between the field 

propagating in the modulating medium and the quantum mechanical scattering will be 

drawn.  The expression of the scattering coefficients will be determined from this 

analogy, and by relating the scattering coefficients with the Bogoliubov coefficients, 

the expression of the Bogoliubov coefficients can be determined. 

 

5.2.1  The Quantum Mechanical Scattering Analogy 

The equation of motion for  mu t  in Equation (5.8) can be realized as the same type 

of equation as the one-dimensional potential Schrödinger equation which takes the 

form 

   
2

2 0d E V z
dz


    (5.9) 
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where V(z) is the barrier potential in the z direction, E is the energy of the particle and 

 is the probability amplitude of the particle.  It can be shown that by replacing the 

spatial co-ordinate z by time t, and the energy potential function E - V(z) by 2(t), 

Equation (5.9) coincides with Equation (5.8).  The similarities between Equation (5.8) 

and Equation (5.9) allow us to construct a mathematical analogy between the 

problems of particle creation due to time dependent refractive index, with the one-

dimensional scattering problem through a potential barrier. 

In this thesis, we will adopt the quantum scattering method proposed by [39] to 

identify the relation between the scattering coefficients and the Bogoliubov 

coefficients so that the field mode solution  mu t  can be determined. 

Similar to the analogy of scattering problem in quantum mechanics, because of 

the presence of time dependent barrier subjected to the transitions of n(t) during the 

period –T < t <T, we admit two asymptotic solutions to the field mode in Equation 

(5.8).  One solution describes the incident field propagating forward in time which has 

some probability of scattering backward in time, as shown in Figure 5.2. 
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Figure 5.2:  Propagation of forward incident field in a time varying n(t) profile. 

 

We can express the forward propagating solution  f t  as 

exp(-im
int) 

Rbexp(im
int) 

Tfexp(-im
outt) 

- T T 

IN OUT 
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

     

    
 (5.10) 

where Rb is the scattering coefficient that governs the probability of the incident field 

reflected backward in time and Tf represents the probability of the field transmitted 

forward in time.  m is the phase offset due to transition of refractive index from n1 to 

n2.  The other solution  b t  corresponds to the incident field propagating backward 

in time with some probability scattered forward in time, as shown in Figure 5.3.  
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Figure 5.3:  Propagation of backward incident field in a time varying n(t) profile  

 

The backward propagating solution  b t  takes the form 

 
   

   
exp  

exp exp

in in
b m b m m
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m m f m

t C T i t i t T
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 

 

   

     
 (5.11) 

where Tb governs the probability of transmitting the incident field backward in time 

and Rf represents the reflection coefficient that reflects the field forward in time.  

Similar to the field mode solutions  mu t , the asymptotic solutions,  f t  and  b t  

satisfy the time dependent ODE in Equation (5.8).  In the remote past and remote 

future,  f t  and  b t  in Equation (5.10) and Equation (5.11), is expressed as 

Tbexp(im
outt) exp(im

int) 

Rfexp(-im
int) - T T 

 

 

IN OUT 
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simple complex exponential exp(it), because in these regions the refractive index is 

time invariant.  When the refractive index is changing from n1 to n2 during the period 

–T < t < T,  f t  and  b t  cannot be described as simple complex exponential. 

The four complex scattering coefficients in Equation (5.10) and Equation (5.11) 

can be used to construct a scattering matrix which is defined as 

 b f

b f

R T
S

T R
 

  
 

 (5.12) 

Various relations between the scattering coefficients can be obtained by entering a 

pair of asymptotic solutions into the Wronskian operator.  The Wronskian operator is 

defined as [42] 

   2 1
1 2 1 2, d dW constant

dt dt
 

       (5.13) 

By computing the following Wronskians at t = -T and t = T, and equating these 

results [39] leads to the following relations  

 
2 2*, : 1f f f bW T R       (5.14) 

 
22*, : 1b b b fW T R       (5.15) 

 * * *, :f b b b f fW R T T R       (5.16) 

 * * *, :f b b b f fW R T T R       (5.17) 

 , :f b b fW T T      (5.18) 

Equations (5.14) - (5.18) shows that the S matrix is a symmetrical and unitary matrix 

i.e. 

 1S S   (5.19) 

 Although the asymptotic solutions,  f t  and  b t , as well as the field 

mode representation,  mu t  is governed by the ODE in Equation (5.8), there is a 
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subtle difference between them.  Initial condition that governs the behavior of the 

field mode solution at certain point in time is not specified in the asymptotic solutions 

in Equation (5.10) and Equation (5.11).  In contrast to the asymptotic solutions, the 

field mode solution  mu t  requires initial condition to determine its expression.  

Therefore, the field mode representation can be derived from the asymptotic solution 

once the initial condition is specified [39].   

In the ‘IN’ region in Figure 5.2, the field has not experience changes in refractive 

index, thus it is appropriate to consider the field mode obeys the initial condition 

      * expin in b
m m m

b

t
u t C i t t T

T


    (5.20) 

Hence in the ‘out’ region, t > T, where changes of refractive index has taken place, 

we can use the relation in Equation (5.11) to deduce the expression of the field mode, 

where we have 

      * 1 exp expfout out out
m m m m

b b

R
u t C i t i t t T

T T
 

 
    

 
 (5.21) 

By comparing Equation (5.21) with the Bogoliubov transform in expression (5.4), we 

have finally established the relation between the scattering coefficients and the 

Bogoliubov coefficients, where we have 

 *

1
m

bT
   (5.22) 

 
*

*
f

m
b

R
T

   (5.23) 

Expression (5.23) shows the m coefficient is non-zero because the transition in 

refractive index effectively acts as a potential barrier that reflects a portion of the field 

backward in time, thus gives rise to a non-zero Rf.  As we shall see in Chapter 6, a 

non-zero m represents the quantum phenomenon of photon creation from modulator.   
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5.2.2  Field Operator Representation 

In this Subsection, the expression of the scattering coefficients, Rf and Tb, will be 

derived.  Using the relation between the scattering coefficients and the Bogoliubov 

coefficients in Equation (5.22) and Equation (5.23), the field operator representation 

in the modulating medium can be determined.  By using the initial condition in 

Equation (5.20), the expression of the field mode  mu t  for general time can be found 

by solving the ODE in Equation (5.8), where we shall reproduce this for convenience  

 
   

2
2
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2 0m m

m
d u k c u t
dt n t

 
  
 

 (5.24) 

All the parameters in expression (5.24) take its usual meaning defined earlier.  This 

equation has been studied extensively in quantum field theory (QFT), where if 

m(t)=kmc0/n(t) exhibits a linear profile i.e. m(t) = A + Bt, the field solution can be 

expressed in terms of Bessel function [41], while if m(t) has the form of 

monotonically increasing step function m(t) = A + Btanh(pt), the field solution is 

represented by hypergeometric series [43, 44].  Despite of the extensive investigations 

of Equation (5.24), it cannot be exactly solved for all arbitrary expressions of m(t) 

[41].   

In quantum mechanics, Wentzel-Kramers-Briullouin (WKB) approximation 

method is a commonly used technique to give an approximate closed form solution 

for the equation of motion in (5.24), such that an approximate representation of the 

field can be determined from some arbitrary function of m(t) for whom the exact 

solution might be unknown.  Similar to the approach used in [41], but with the spatial 

co-ordinate z replace with time t, the equation of motion in (5.24) will be solved by 

representing the exact solution as an infinite power series expansion of WKB 

approximation solution i.e.  
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      , 0
0 0

1 exp ( )
j

m m j m
j m

u t b t ik c t
k c






 
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 
  (5.25) 

where bm,j(t) is the jth order time dependent coefficients, (t) is a time dependent 

function that appears at the phase component of the field.  We shall now omit the 

mode index m in Equation (5.25) temporarily for clarity.  The time dependent 

parameters bj(t) and (t) can be solved by substituting expression (5.25) into Equation 

(5.24), where we will obtain an equation of the type 

    
2

2
0 0

0 0

1 1( ) ( ) ( ) ( ) ( ) ... 0A t B t C t kc D t kc E tkc kc
           
   

 (5.26) 

where the time dependent coefficients i.e. A(t), B(t), C(t)…, are expressions that 

involves time dependent function bj(t) and (t)To equate the LHS to RHS we 

require A(t) = B(t) = C(t)…= 0.  This equating process gives rise to a series of 1st 

order differential equations where we have 

 
    2
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 

00 ''
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b t tdb
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

   (5.28) 

    
   

2
1 01

2
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2 ' 2 '

b t t d bdb
dt t i dt t


 

   (5.29) 

and more… for higher order jth term 

where ’(t) and ’’(t) denotes the first and second order time derivatives of (t) 

respectively.  The differential equations in (5.27), (5.28) and (5.29) can be derived 

from the condition by equating A(t) = 0, B(t) = 0, and C(t) = 0, respectively.  These 

differential equations allow the unknown parameter bj(t) and (t) to be solved 

recursively.  Solving Equation (5.27) determines the expression of (t) in terms of 

(t), then use this to solve for b0(t) from Equation (5.28).  After that, these 
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expressions are used in Equation (5.29) to determine b1(t), and similarly, the higher 

order bj(t) term (i.e. for j > 1) can be determined from the recursive relation 

 
   

   

2
1

2

'' 1 1
2 ' 2 '
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 

   (5.30) 

By solving the differential equations in (5.27), (5.28) and (5.29) recursively, we get 
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    0b t C n t  (5.32) 
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  (5.33) 

where C is a constant parameter.  Note that C is dependent on the mode index m as 

shown later in this Section.  Furthermore, the time integral in expression (5.31) and 

(5.33) range from -∞ to time t, implies the field is confined inside the modulating 

medium n(t).  Analysis of field propagation through a finite size modulating medium 

will be presented later in Chapter 5.5.   

From now on, we shall invoke the mode index subscript m once again.  By 

substituting the expressions (5.31), (5.32) and (5.33) into Equation (5.25), a 1st order 

approximate expression of the field mode that propagates forward in time, as denoted 

by the + subscript  mu t , can be determined for some arbitrary form of m(t) where 

we have 
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 
  (5.34) 

where the relation m(t)=kmc0/n(t) has been used to replace all n(t) terms with m(t). 

In order to reproduce the time dependent factor (ħm(t)(t)/2V)1/2 in Equation (5.34), 

the constant parameter Cm is given by Cm=(ħkmc00/2V)1/2.  The approximation is 
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only valid provided the higher order terms in expression (5.25) and (5.26) are 

negligible.  The necessary condition which governs the validity of the approximate 

solution for all time t in Equation (5.26) is given by [41]  

 
 2
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1d dt
t




 
 

 
 (5.35) 

Equation (5.35) is known as the adiabatic condition, which states under the condition 

when the ratio of the maximum rate of change of angular frequency ddtis much 

smaller than the square of the optical field frequency 2(t), it is appropriate to 

approximate the exact solution as WKB power series expansion in expression (5.26).  

In standard optical communication system, the maximum modulation rate is much 

smaller than its carrier frequency, and hence ddt << 2(t) [22 - 24].  Therefore, we 

can conclude the approximate expression in (5.34) is sufficient to represent the optical 

field mode in the context of optical communication system. 

 By considering the refractive index profile in Figure 5.1, the refractive index 

remains constant at n2 in the ‘out’ region (t > T).  Therefore for t > T, the time 

dependent factor (ħm(t)(t)/2V)1/2 in (5.34) is constant.  Consequentially in the ‘out’ 

region (t > T), expression (5.34) becomes 
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 
  (5.36) 

The time integral in (5.36) now spans from –T to T, the refractive index is constant in 

the ‘in’ and ‘out’, thus the integral vanishes in those two regions.  By comparing the 

conjugate of Equation (5.36) with the forward time propagating component i.e 1st 

term in Equation (5.21), and using the relation in (5.22), we have obtained the 

expression of the Bogoliubov coefficient m 
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By comparing the expression in (5.36) with (5.21), the value of the constant Cm
out in 

(5.21) is found to be  
1/ 2

2 exp2
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m
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    
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 .  

 Equation (5.23) show the expression of Bogoliubov coefficient m, is derived 

from the reflection coefficient Rf.  Consider the conjugate field mode solution 

represented by the zeroth order WKB (i.e. b0 is the only term considered in (5.25)), 

we have  
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 (5.38) 

The second subscript ‘0’ in Equation (5.38) denotes the field mode is approximated to 

zeroth order.  The zeroth order WKB solution is known as a reflectionless solution for 

which the reflection of field mode inside an inhomogenous medium is neglected [45].  

The 1st order approximate expression for Rf is determined by introducing a reflection 

term in Equation (5.38) i.e., 
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By substituting Equation (5.39) into the ODE in Equation (5.24), we arrived at the 

differential equation  
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The second order derivative term d2Rf/dt2 has been neglected in Equation (5.40), 

which is appropriate provided the adiabatic condition in Equation (5.35) is satisfied 

for all time.  By solving the ODE in Equation (5.40), the representation of the 1st 

order approximation of Rf is  



 75 

        
1/ 2

3/ 2

1 / exp 2
4

t
m

f m
m m

d d dR t i i d d
d

     
     

     
      

    
   (5.41) 

In the ‘in’ and ‘out’ region, Rf in Equation (5.41) reduces to a constant because the 

refractive index does not vary in time, and hence the integral vanishes for t < 0 and t 

> T.  Since the adiabatic condition in Equation (5.35) is satisfied, therefore 1/Tb ~ 1, 

and thus we have the expression of m from Equation (5.23), 
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From the expression of Bogoliubov coefficients in (5.37) and (5.42), one can verify 

they approximately satisfy the Bogoliubov identity introduced in Chapter 4, 

 2 2 1m m    (5.43) 

The identity in Equation (5.43) is exactly satisfied if the solution is approximated to 

an infinite order [26], and provided the adiabatic condition in Equation (5.35) holds, 

the differences between the 1st order approximation and the exact solution of the 

Bogoliubov coefficients becomes negligible.   

 However, if the refractive index of the modulating medium changes abruptly 

where d/dt >> 2(t) (i.e. condition (5.35) is not satisfied), the Bogoliubov 

coefficients, m and m, cannot be expressed in terms of Equation (5.37) and (5.42), 

respectively.  In fact, if the refractive index of the modulating medium changes 

instantaneously from n1 to n2, the magnitude of the scattering coefficients, Rf and Tb, 

is represented by the Fresnels equation, 
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n n



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 (5.44) 

 1 2

1 2

2
b

n n
T

n n



 (5.45) 
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Using the relation in (5.22) and (5.23), the corresponding magnitude of the 

Bogoliubov coefficients for an instantaneous change in refractive index is  

 1 2

1 22m
n n

n n
 

  (5.46) 

 1 2

1 22m
n n

n n
 

  (5.47) 

In Chapter 6, we show that the photon creation is governed by m, thus Equation (5.47) 

gives the upper bound for photon creation when the adiabatic condition in Equation 

(5.35) is not satisfied, i.e. d/dt >> 2(t). 

 After the expression of m and m Bogoliubov coefficients is determined in 

(5.37) and (5.42), the electric flux density operator   ,D z t  can be determined using 

expression (5.1), (5.3) and (5.4), where we have 
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 (5.48) 

The expression of modulated field annihilation and creation operator, mb  and mb
  in 

Equation (5.48) is defined in expression (5.6) and (5.7) respectively, while H.c. is an 

abbreviation for Hermitian conjugate.  Thus, the electric field operator   ,E z t  in the 

modulating medium can be derived from   ,D z t  using the relation 
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The field operator   ,E z t  in Equation (5.49) will be used to derive the phase 

modulated field operator in Section 5.5. 

 

5.3 Field Mode Solution in ARC 

In this Section, we shall derive the quantum field representation inside an ARC whose 

refractive index gradually varies with position in order to reduce the reflection loss 

from the modulator.  Figure 5.4 shows an ARC with a refractive index profile that 

monotonically increases from n1 and n2. 

 

Figure 5.4:  Refractive index profile of ARC. 

 

In Chapter 4, we have shown the general solution of the electric field operator 

  ,E z t  is represented by 

          
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0 0

, exp exp
2

ARC ARCm
m mm m m m
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

 


 
 



          
     (5.50) 

The spatial component of the electric field operator  ARC
mZ z , is governed by the 

ODE,  
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    
2

2 0
ARC

ARCm
m m

d Z k z Z z
dz

   (5.51) 

where km(z) is the spatially varying propagation constant that is related to the 

refractive index n(z) by km(z) = n(z)m/c0.  By comparing expression (5.51) with 

Equation (5.24), we can identify these ODEs are of the same type where the former is 

dependent on z while the latter is dependent on t.  Therefore, the spatial component 

can be approximated by WKB approximation given that the refractive index is 

varying slowly with respect to the optical wavelength.  Expressing this in 

mathematical form we have [41] 

 
2

max 0

2dn n
dz




=  (5.52) 

where λ0 is the optical wavelength in free space.  By following a similar procedure in 

Subsection 5.2.2, the zeroth order WKB solution of  ARC
mZ z  is, 
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    
      

     
   (5.53) 

where Tf(z) represents the amplitude transmission coefficient that determines the 

portion of the incoming signal being transmitted, and Rb(z) determines the reflection 

losses of the incoming signal.  The second subscript ‘0’ in Equation (5.53) denotes the 

spatial dependence of the optical field is approximated by the zeroth order WKB 

solution.  In an optical communication system, the ARC is designed to ensure the 

condition in Equation (5.52) is satisfied, so that a reflection loss is minimized.  As a 

result, we assume Tf(z) ≈ 1 and Rb(z) ≈ 0, where there is effectively no reflection loss 

in the optical system.  By substituting Equation (5.53) into Equation (5.50), the 

approximate solution of the electric field operator   ,E z t  is given by 
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 (5.54) 

where the constant Km in Equation (5.53) is chosen to be Km = (m/c0)1/2, so that 

Km/√km(z) = 1/√n(z), and H.c. is the Hermitian conjugate.  By comparing the 

expression of   ,E z t  in Equation (5.54) at z > z2 (refractive index is static at n2), with 

the field propagating in free space where n(z) = 1, we can identify the electric field 

operator has been reduced by a factor of √n2 for field propagating in the ARC.  

However by using Faraday’s law  BX E
t


  


, it can be verified that the magnetic 

flux density operator   ,B z t  of the field propagating in ARC, has been increased by 

a factor of √n2 at z > z2 as compared with the field propagating in free space.   

We shall determine the power flow of an optical field in an ARC at z > z2, and 

compare this with the field propagating in free space.  For simplicity, we assumed the 

field propagates in the vacuum for z < z1 i.e. n1 = 1.  The power flow of the field is 

characterized by the Poynting vector operator Ŝ(z,t), which is defined as [33] 

              2
0 0, , , , ,S z t c A E z t X B z t B z t X E z t

       
  (5.55) 

The minus superscript in Equation (5.55) denotes the field components are associated 

with âm, while the positive superscript denotes the field components are associated 

with âm
+.  By setting n(z) = 1 of field operator   ,E z t  in expression (5.54), using the 

Faraday’s law to determine   ,B z t  from   ,E z t , and substituting the results into 

Equation (5.55), the Poynting vector in free space (i.e. at z = z1) is [33] 

        1 0 0 1 1, 2 , ,S z t c AE z t E z t
 

  (5.56) 
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Using the result in Equation (5.54), it is evident that      2 1
2

1, ,E z t E z t
n

  and 

     2 2 1, ,B z t n B z t .  Using Equation (5.55), the Poynting vector at z = z2 is 

expressed as, 
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 (5.57) 

The result in Equation (5.57) shows the Poynting vector, and hence the power flow of 

the optical field is the same regardless of the refractive index of the material.  

Therefore we can conclude although the electric field amplitude   ,E z t  and magnetic 

flux density   ,B z t  are different for media with different refractive index, the power 

flow of the field are the same i.e. independent of the refractive index of the material.    

 

5.4  Continuum Operators and States 
The optical field expression developed so far uses “box normalization”, for which the 

field is assumed to be confined inside a cavity enclosing by a volume V in order to 

simplify the results.  The existence of the cavity gives rise to a sum of discrete set of 

modes, and this is known as the standing wave representation [35].  However in an 

optical communication system, no identifiable cavity is present (see Figure 4.1).  In 

this section, we shall remove the unphysical limitation of optical field confined inside 

cavity, and follow the approach in [46] in developing a field operator that gives a 

travelling wave representation for field propagating in free space. 
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 Using the definition of the propagation constant km = 2m/L, the mode 

spacing k can be expressed as 

 1
2

m mk k k
L


     (5.58) 

It is often more convenient to describe the field in terms of frequency.  Therefore 

translating the mode spacing in terms of angular frequency we have 

 02 c
L


   (5.59) 

The mode becomes continuous in the limit of L → ∞ and hence Δ→ 0.  The 

conversion from sum to integral in the field expression (i.e. Equation (5.1)) is 
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1
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L dk d
 

 

 
    (5.60) 

The continuous mode annihilation operators, designated as â() is related to its 

discrete counterpart âm by  

    1/ 2
ma a     (5.61) 

The discrete Kronecker delta is related to the continuous Dirac delta function by 

  'mn       (5.62) 

Using expression (5.61) and (5.62), the continuous annihilation and creation operator 

satisfy the commutation relation 

      , ' 'a a    
     

   (5.63) 

In Chapter 3, we have shown by using the electric field operator that 

characterizes field propagation in free space with the use of ‘box normalization’ 

employed, is expressed as 
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By applying the expression in (5.60), (5.61) and (5.62) into Equation (5.64), the 

discrete electric field mode operator can be converted into the continuous mode 

electric field operator, where we have 
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 (5.65) 

Similarly by using expressions (5.60), (5.61) and (5.62) as well as the result in 

Equation (5.49), the continuous mode electric field operator in the modulating 

medium is expressed as 
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where the Bogoliubov coefficients in continuous mode form, () and (), can be 

expressed as 
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While if we apply the above procedure to the ARC field expression in Equation (5.54), 

we obtain the continuous mode electric field operator of the form 
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Similar to its discrete counterpart, the continuum coherent state is expressed as 

[46] 
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where the vacuum state has the usual property 

   0 0a    (5.71) 

Using the identity in Equation (5.71) and the definition of      in Equation 

(5.70), it can be verified the continuum coherent state is an eigenstate of the 

annihilation operator, 

          a         (5.72) 

Therefore, the mean total number of photon flux associated with the continuum 

coherent state is  

              2

0 0
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
     (5.73) 

In this Section, we have shown the presence of the cavity can be effectively 

removed by introducing an artificial cavity with an infinite length in the z direction.  

The mode spacing k therefore becomes infinitely small, and hence gives rise to a 

continuous representation of the mode in the z direction.  As a result, continuous field 

mode operator and continuum state are employed to give a travelling wave 

representation of an optical field. 

 

5.5  Phase Modulated Field Operator 
As we have previously mentioned, the modulator consist of two types of media, the 

ARC and a modulating medium.  In Section 5.2, we have derived the field operator 

that characterizes an optical field propagating in the modulating medium, while in 

Section 5.3, the field operator that describes field propagation in ARC has been 
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derived.  In this Section, we shall use these results together with the theory of 

continuum mode analysis in Section 5.4 to give a travelling wave representation of the 

phase modulated field operator.   

Figure 5.5 shows the refractive index profile dependence in spatial direction z at 

the transmitter of an all optical phase modulated system.  The refractive index profile 

of the modulator material in a phase modulated system shown in Figure 5.5 can be 

divided into 5 regions of interest.  In region 1 and 5, the optical field is propagating in 

free space, while in region 2 and 4, the field propagates in the ARC.  Region 3 

represents the modulating medium of the modulator whose refractive index is 

governed by the time varying control signal; therefore the value of refractive index 

changes with time.  In this derivation, we shall assume the ARC in Region 2 and 4 are 

ideal so that all optical power from the incoming signal is transmitted through the 

media.  In addition, we shall simplify the problem by assuming the control signal has 

negligible impact on the ARCs, as a result the refractive index of the ARC is assumed 

to be time independent.  Since photons are excited from the modulating medium 

subjected to changes in refractive index n(t) [16], therefore the above assumption 

neglects the effect of photon creation in the ARC.  Furthermore, by making the 

assumption of no bound charges and current sources at the modulator, the field 

expression needs to be matched at the boundary between different regions [36] i.e. at z 

= z1, z = z2, z = z3, z = z4 and z = z5.    
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Figure 5.5:  Refractive index against distance for a phase modulated system. 

 

Region 1: 

In region 1, the field propagates in free space, for which the travelling wave 

representation of electric field operator   1 ,E z t  is given by Equation (5.65), where 

the subscript ‘1’ denotes the field expression in region 1.  We begin by considering 

the field expression at the boundary of region 1 and region 2 at z = z1.  With the use of 

Equation (5.65), we have the field expression at z = z1 and time t’ = t + Tf1 
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where Tf1 is the flight time of the field propagating from the laser at z = 0 to the 

boundary of ARC at z = z1 which can be expressed as Tf1 = z1/c0.   
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Region 2: 

In region 2, the field propagates in the ARC whose refractive index is gradually 

increasing over the z direction as shown in Figure 5.5.  By employing expression 

(5.69) derived in Section 5.4, which characterizes the field propagation in the ARC, 

the field expression in region 2 is given by 
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where K2 is a constant.  Note that the lower limit of the phase integral in Equation 

(5.75) is chosen to be z1 instead of -∞ as in Equation (5.69), because the field 

description in expression (5.75) holds only when the spatial distance z is in between z1 

and z2.   

By matching the boundary at z = z1 and time t’ = t + Tf1 i.e.      1 21 1, ' , 'E z t E z t , 

the value of K2 is evaluated to be  

  2 1expK i  (5.76) 

where 1 0 1k z    By using Equation (5.75) and Equation (5.76), the field expression at 

z = z2 and time t’’ = t + Tf1 + Tf2, is given by  
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where Tf2 is the photon flight time in region 2, the propagation phase delay in ARC 2 

is  
2

1

2

z

z

k d    , and n is the refractive index at z2. 

 

Region 3: 

In region 3, the field propagates in the modulating medium whose refractive index is 

time dependent.  In Section 5.4, the travelling wave representation for an optical field 

propagating in the modulating medium is introduced in Equation (5.66).  However, 
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the representation in Equation (5.66) applies to the time interval when the refractive 

index becomes static after some dynamical changes i.e. t > T in Figure 5.1.  In this 

Section, we considered the situation that is more general for which the refractive 

index may not necessary have a static region.  By using the result in Equation (5.66), 

and the expression of the field mode in Equation (5.34), the travelling wave 

representation of the field operator in the modulating medium is expressed as  
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 (5.78) 

where from Equation (5.34) and (5.41), we can verify the time dependent Bogoliubov 

coefficients is expressed as 
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Assume there is a time interval t < T, for which no changes in refractive index has 

taken place in the modulating medium i.e. similar to the ‘in’ region in Figure 5.1.  

Using expression (5.79) and (5.80) we have (,t) = 1 and (,t) = 0, within that 

time interval as d/dt = 0 for t < T.  Consider there is a forward propagating optical 

field at t < T.  For t ≥ T, changes in refractive index takes place and the forward 

propagating field is decomposed into two field components as shown in Equation 

(5.78).  The field component that is dependent on (,t), propagates in the +z 

direction, as shown by the red arrow in Figure 5.6, while the other component that is 

dependent on (,t), propagates in the –z direction, as illustrated by the blue arrow in 

Figure 5.6. 
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Figure 5.6:  Field decomposition of forward traveling wave in modulating medium. 

 

Similarly, when we consider an optical field propagating in the –z direction 

(backward propagating) for t < -T, it decomposes into a field component that is 

dependent on (,t) propagating in the –z direction, as shown by the blue arrow in 

Figure 5.7, and another component that is dependent on (,t) propagating in the +z 

direction, as shown by the red arrow in Figure 5.7. 

 

Figure 5.7:  Field decomposition of backward propagating wave in modulating 

medium. 

  

n(t) 

t < T t ≥ T 

n(t) 

â()exp(ikz-it) â()(t)exp([ikz-i(t)] 

â()()exp[-ikz-i(t)] 

n(t) 

t < T t ≥ T 

n(t) 

â()exp(ikz-it) â()(t)exp([ikz-i(t)] 

â()()exp[-ikz-i(t)] 
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Only the field component that propagates in the +z direction will be considered 

in the phase modulated field expression because they propagate towards the detector.  

i.e. red arrow in Figure 5.6 and Figure 5.7.  Thus, the general expression of the 

electric field operator that propagates towards the detector (+z direction) in region 3 is  
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 (5.81) 

where K3 is a constant.  The second line in Equation (5.81) is obtained by grouping 

the complex exponential terms  
''

exp
t

t

ikz i d  
 

 
 

 .   From Equation (5.86), we can 

identify the modulated field annihilation operator  ,b t , is related to unmodulated 

field annihilation and creation operator, â() and â+(), by the time dependent 

Bogoliubov transformation 

          , , ,b t t a t a      


     (5.82) 

Similarly the modulated field creation operator  ,b t
 , buried in the Hermitian 

conjugate (H.c.) term in Equation (5.81), is expressed as  

          * *, , ,b t t a t a      
 

     (5.83) 

Notice that the lower limit of the phase integral is selected to be time t’’ in Equation 

(5.81), where t’’ = t + Tf1 + Tf2, because we have assumed the optical field enters the 

modulating medium at t’’.  By using Equation (5.81), the field operator for region 3 is 

given by 
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By comparing expression (5.84) with Equation (5.81), we can identify the Bogoliubov 

coefficients has the value (,t) = 1 and (,t) = 0 in Equation (5.84) at time t’’.  

This is because the lower limit of the integral in Equation (5.79) and Equation (5.80) 

are set to t’’, which describes the optical field has not experience any time variation in 

refractive index before it enters the modulating medium. 

By matching the boundary condition at z = z2 i.e.      2 32 2, '' , ''E z t E z t , with 

the use of expression (5.77) and (5.81), and the relation (t’’)/0 = n2(t’’) and (t’’) = 

kc0/n(t’’), the constant K3 is evaluated to be 
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 (5.85) 

In the last line of expression (5.85), we have assume n(t’’) ≈ n.  Notice that K3 is 

proportional to n3/2(t’’) and thus it is time dependent as a consequence of assuming 

the refractive of the ARC is time independent.  By using the expression of K3 in 

Equation (5.85) and expression (5.81), the field at the boundary z = z3 and time t’’’, 

where t’’’ = t + Tf1 + Tf2 + Tf3, is expressed as 
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where Tf3 is the photon flight time in region 3 and 3 is the propagation delay and is 

expressed as  3 3 2k z z   .  By assuming the temporal change in refractive index 

n, is much smaller than the refractive index of the material n i.e. n << n, we can 

assume Tf3 as a constant, with the expression Tf3 = nL/c0, where L is the length of the 

modulating medium.   
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Region 4: 

In region 4, the optical field propagates in the ARC.  Unlike the ARC in region 2, the 

refractive index in region 4 is monotonically decreasing from n to 1 with respect to 

distance z, as shown in Figure 5.5.  By assuming the refractive index of ARC is time 

independent, and with the use of expression (5.69), the field operator in region 4 is 

expressed as 
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where K4 is a constant.  Because the field has been modulated before it propagates in 

region 4 at time t’’’, therefore the modulated field annihilation operator  , '''b t , is 

used in expression (5.87).  The field expression at boundary z = z3, is 
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By matching the boundary condition at z = z3 i.e.      3 43 3, ''' , '''E z t E z t , with the 

use of expression (5.87) and (5.88), K4 is evaluated to be 
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Using Equation (5.87) and Equation (5.89), the general expression of an optical field 

propagating in region 4 is  
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Thus, the field expression at z = z4 and at time t’’’’ = t + Tf1 + Tf2 + Tf3 + Tf4, is given 

by 
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where the propagation phase delay 4 is  
4

3

4

z

z

k d     and n(z4) = 1. 

 

Region 5: 

In region 5, the optical field leaves the modulator and propagates in free space.  The 

general expression in region 5 is represented by 

       
1/2

5 5 0 4
0 00

, , ''' exp . .
4

E z t d K b t ik z i t H c z z
c A
  



  
    

 


   (5.92) 

where K5 is a constant.  Since the field enters region 5 at time t’’’’, thus using 

Equation (5.92), the field expression at the boundary z = z4 is  
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By matching the boundary condition at z = z4 i.e.      4 54 4, '''' , ''''E z t E z t , with the 

use of expression (5.91) and (5.93), K5 is evaluated to be 
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Using Equation (5.91) and Equation (5.94), the general expression of an optical field 

propagating in region 5 is  
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 The field operator in region 5   5 ,E z t  represents the phase modulated field at 

the output of the modulator   ,outE z t .  For the purpose of convenience, we shall 

translate the time scale from t’’’’ in Equation (5.93) to t i.e. t’’’’ = t + Tf1 + Tf2 + Tf3 
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+ Tf4 → t.  Furthermore, we assume the photon flight time between the laser and the 

modulator as well as in the ARCs is small so that Tf1 ≈ Tf2 ≈ Tf4 ≈ 0.   Thus, the field 

operator for a phase modulated optical field is can be expressed as 
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where out is the propagation phase delay from the transmit laser to the output of the 

modulator which has the expression 1 2 3 4out        , and W(,t) is the time 

varying modulated phase angle and is expressed as 

    ,
f

t

f
t T

W t t T d     

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Tf represents the photon flight time in the modulator and is equivalent to Tf3 defined 

earlier in the section. 

 

5.6  Conclusions 
In this Chapter, we have derived the phase modulated field operator in Equation 

(5.96), which characterizes an optical field propagating through a modulator.  The 

field operator is derived by matching the boundary condition of the general solutions 

between two dissimilar media.  The quantum field representation will be used 

extensively in Chapter 6 to examine how the properties of modulated optical field are 

altered as a consequence of photon creation from modulator.  It is also useful in 

deducing the impact of photon creation on various types of communication systems 

studied in Chapter 7. 
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6  Properties of Phase Modulated Field 
 

6.1  Chapter Objectives 
The quantum field expression of modulated field has been derived in Chapter 5.  It is 

shown that the field expression is dependent on the time dependent Bogoliubov 

coefficients (,t) and (,t).  The objective of this Chapter is to use the phase 

modulated field expression in Chapter 5 to investigate the quantum statistical 

properties of phase modulated field that includes the quantum effect of photon 

creation from modulator.  This will assist in the understanding of why photon creation 

occurs in the modulation process, as well as realizing the impact of photon creation in 

an optical system.   

 The rest of this Chapter is organized as follows.  In Section 6.2, we analyze 

the power flow of the optical field at the input and output of the phase modulator in 

order to explain why photon/energy is excited during the modulation process.  In 

Section 6.3, the difference between the detector response of unmodulated field and 

modulated field is resolved so that the change in statistical property as a result of 

photon creation can be determined.  In Section 6.4, we investigate how the state of the 

field is modified due to the effect of photon creation.  In Section 6.5, we examine the 

extent of the effect of photon creation in an optical system from numerical simulation, 

and to identify the parameters that influences this process.  In Section 6.6, we 

determine the power spectral density (PSD) of a sinusoidal phase modulated field by 

including the effect of photon creation.   
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6.2  Power Flow of Phase Modulated Field 
In this Section, we shall determine the power flow differences between the input and 

output of the phase modulator.  This enables us to realize the impact of photon 

creation due to phase modulation as well as understand the mechanisms involved for 

triggering this process.  

Throughout this Chapter, a single mode laser will be considered.  In Chapter 5, 

we have discussed the state of the optical field is generally represented by continuum 

coherent state |{in()}> which can be expressed as [46] 
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 (6.1) 

where D  is the displacement operator which is represented by  
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â() and â+() in expression (6.1) and (6.2) is the annihilation and creation operator 

associated with angular frequency , and they satisfy the usual commutation relation 
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   (6.3) 

in() in Equation (6.1) is the normalized amplitude wavepacket function that 

characterizes a single mode laser which can be expressed as [46] 

        1/ 22 expin S S SF i         (6.4) 

where FS is the mean photon flux at signal frequency S, Sis the initial phase angle 

of the field, S is the frequency of the optical field.  The Dirac delta function in 

Equation (6.4) implies all the power of the optical field is concentrated at frequency 
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S.  The continuum coherent state is an eigenstate annihilation operator â() which 

satisfies the eigen-equation 

 
         
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      



 


 (6.5) 

The wavepacket function presented in Equation (6.4) assumes the bandwidth of 

the laser is infinitely narrow as indicated by the Dirac delta function.  However for a 

practical laser, the frequency spectrum of the optical field is distributed at signal 

frequency S and has a Lorentzian lineshape [1].  This is a consequence of 

spontaneous emission inside the active region of the laser medium.  For a distributed 

feedback (DFB) laser that outputs a 1500 nm optical field, the 3 dB linewidth of the 

Lorentzian lineshape  is approximately 50 MHz [1].  Figure 6.1 illustrates the 

power spectral density (PSD) of unmodulated optical field that is corrupted by laser 

phase noise. 

 

Figure 6.1:  PSD of unmodulated optical field corrupted by laser phase noise. 
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The spread in the frequency spectrum results from laser phase noise SN(,t).  

SN(,t) is a random variable, and using the laser phase noise model from [1, 47, 48, 

49], the phase noise is commonly characterized by the Wiener process  

  ,
t

SN
SN t d

  





  (6.6) 

The time derivative of phase noise dSN/dt can be modelled as a zero-mean white 

Gaussian process with a power spectral density (PSD) that is related to the 3 dB 

linewidth by 

 2
SN tS        (6.7) 

In order to incorporate the laser phase noise into the analysis, we shall introduce the 

phase noise annihilation operator â(,t) 

       , exp ,SNa t a i t       (6.8) 

It is easy to verify that the phase noise annihilation and creation operator, â,t and 

â,t, satisfies the equal time commutation relation,where we have 

          , , ', ' , 'a t a t a a       
            

     (6.9) 

Expression (6.9) shows the equal time commutation relation between â,t and 

â,tis identical to the commutation relation of â() and â().  The continuous 

field mode operator of the optical field   ,E z t  can be expressed in terms of â(,t) 

and â+(,t) as 
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 
 (6.10) 

where k0 is the free space propagation constant, 0 is the free space dielectric 

permittivity (0 = 8.85*10-12 V/m), and c0 is the speed of light in free space (c0 = 
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3*108 ms-1), A is the cross section area that the field propagates through, and H.c.is an 

abbreviation for Hermitian conjugate. 

In order to determine the power flow of the phase modulated field, we shall 

consider an optical phase modulator located at some fixed distance D from the laser, 

as shown in Figure 6.2.   

 

Figure 6.2:  Configuration of optical system. 

 

The expression of the field operator at the input terminal of the modulator Êin(t) is 

given by  
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 (6.11) 

where in = k0D, and êin
+(,t) is expressed as 
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Notice that expression (6.11) is very similar to Equation (6.10), except that the phase 

offset due to field propagation i.e. k0z, is replaced by a constant phase in.  This is 

because the distance between the modulator and the laser does not vary. 

Laser Phase 

Modulator 

 Control signal field 

Êout(t) Êin(t) 

|{in()}> 
|{in()}> 

D 
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 At the output terminal of the optical modulator, the optical field is phase 

modulated.  The phase offset due to modulation is dependent on the control signal 

feeding into the control terminal of phase modulator.  In this analysis, we shall adopt 

the Heisenberg picture in which the field operator changes from Êin(t) to Êout(t) due to 

modulation, but the state of the field remains unchanged at |{in()}>, as shown in 

Figure 6.1.  Hence the state of the phase modulated field continues to be described by 

a continuum coherent state with a wavepacket function given by Equation (6.4).  The 

expression of the phase modulated field at the output of the modulator has been 

derived in Chapter 5, and it is represented by 
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 (6.13) 

where  ,b t  is the annihilation operator of the phase modulated field, and W(,t) is 

the modulated phase angle.  By comparing the first line with the second line of 

Equation (6.13), it is shown that êout
+(,t) can be expressed as 

        
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   (6.14) 

In expression (6.13), we have assumed the modulator is lossless and no field energy is 

reflected back to the laser from the modulator.  The time varying modulated phase 

angle W(,t) is represented by  

    ,
f

t

f
t T

W t t T d     


     (6.15) 

where Tf is the photon flight time in the modulator.  The instantaneous angular 

frequency (), that is inside the integral of expression (6.15) is expressed as 
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    
nt

n t
   (6.16) 

where n is the material refractive index of the modulating medium, n(t) is the time 

varying index due to the excitation of the modulating medium from the control signal 

field in Figure 6.2, and  is the frequency of the field prior to modulation i.e. 

frequency of the unmodulated field.  We can relate the modulated field annihilation 

operator  ,b t  with the unmodulated phase noise annihilation and creation operator, 

â(,t) and â+(,t), by the Bogoliubov transform introduced in Chapter 5, where we 

have 

          *, , , , ,b t t a t t a t       


     (6.17) 

(,t) and (,t) are the time dependent Bogoliubov coefficients.  In Chapter 5.2, we 

have derived their approximate expression to 1st order to be 
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where d/dt is the rate of change of instantaneous frequency and using expression 

(6.16), it can be verified that  

 
 2

d dn
dt dt n t
 
  (6.20) 

As we have explained in Section 5.2, the approximation in expression (6.18) and 

(6.19) is accurate provided the adiabatic condition is satisfied i.e. 

 2

max
S

d
dt
   (6.21) 

In fact the condition in Equation (6.21) applies to most phase modulated system [22- 

24], thus expression (6.18) and (6.19) gives an accurate result.  The modulated field 
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annihilation operator must satisfy the same commutation relation as the unmodulated 

field operator in Equation (6.3) [12].  Thus we have, 
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where (,t) and (,t) satisfies the identity 

    2 2
, , 1t t      (6.23) 

 The mean optical field power flowing through the input terminal is described 

by the energy flux operator.  The energy flux operator Ŝ(t) is defined as [33] 

        0 02S t c AE t E t
 

  (6.24) 

The signal power flowing into the input terminal of the modulator Pin(t) can be 

calculated from the expectation value of the ‘in’ energy flux operator Ŝin(t)   
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 (6.25) 

By using the expression in (6.4), (6.5), and the commutation relation in Equation (6.3), 

and performing the double integration over frequency, expression (6.25) can be 

simplified to 

  in S SP t F   (6.26) 

Similarly, the signal power that leaves the output terminal of the modulator can be 

calculated from the expectation value of the ‘out’ energy flux operator Ŝout(t), where 

we have    
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By using the expressions in (6.5), (6.17), the commutation relation in Equation (6.22), 

and performing the double integration over frequency, the expression of the power 

flow at the output of the modulator in Equation (6.27) can be simplified to 
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where A(S,t) and B(S,t) is the phase of Bogoliubov coefficients, (S,t) and (S,t), 

respectively, and is dependent on the signal frequency S.  In this, we have used the 

Bogoliubov identity in Equation (6.23) to express |(S,t)| in terms of |(S,t)|. 

By comparing the expression in Equation (6.28) with Equation (6.25), we see 

that the first term in Equation (6.28) corresponds to the average power flow at the 

input of the modulator.  Therefore the remaining terms associated with (,t), 

corresponds to the power difference between the input field and the output field.  It is 

obvious the average power flow of the optical field at the modulator input is NOT the 

same as the modulator output (Pin ≠ Pout), even if we have assumed the modulator is 

lossless and no energy is reflected from the modulator.  Thus, we can conclude that 

energy is added to the field during the modulation process if the (,t) dependent 

terms are positive.  If the (,t) dependent terms are negative, energy is removed 

from the modulated field during the modulation process.   

This differs from the SCFT analysis (field represented by function instead of 

operator) presented in many optical systems literature [1, 22 - 24, 29], where the 

power of the field at the input and the output of the modulator is the same (Pin = Pout) 
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provided the modulator is lossless.  Figure 6.3 is a diagram showing the power flow 

of the optical field at the modulator using SCFT. 

 

Figure 6.3:  Power flow of optical field at the modulator (SCFT). 

 

where Pc in Figure 6.3 represents the power flow of the control signal.  The result 

obtained from SCFT is different from QFT because SCFT does not include the effect 

of photon creation from modulator.  

 At the first glance in Equation (6.28), it appears that when the output power 

flow is greater than the input power flow (i.e. Poui > Pin) due to (,t) > 0, this seems 

to violates the principle of energy conservation.  According to [26], the mismatch in 

power flow can be accounted for by noting that an external agent alters the refractive 

index of the modulator.  Therefore, it is the energy coupling between the control field 

and the input field that accounts for the energy difference between the input and the 

output of modulator by either creating photons from the excited modulating medium 

or removing photons from the signal field by the excited modulating medium. 

By analyzing the(,t) terms in Equation (6.28), we can identify the last term in 

Equation (6.28) corresponds to an increase in power due to photon creation out of the 

modulator.  This is because this term is positive and the number of photons created is 
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Pin(t) = Pout(t) 
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governed by |(,t)|2 (magnitude of the Bogoliubov coefficient) which is independent 

on photon flux of the optical field FS, thus in the absence of the signal field i.e. FS = 0, 

this term does not vanish.  In order to distinguish from other (,t) terms in Equation 

(6.28), we shall name this process as the spontaneous emission out of the modulator.  

In general similar to the spontaneous emission of the laser, the photons created in this 

process do not necessary radiate along the direction of propagation of the optical field 

(z direction), but can radiate in all directions as shown in Figure 6.4.  This is because 

for vacuum fields which enter the modulator at different directions, i.e. different 

angles of incidence, also consists of the last term in Equation (6.28) [19].   

 

Figure 6.4:  Illustration of spontaneous emission out of the modulator.  

 

Furthermore, the frequency integral in Equation (6.28) implies this process is not 

constrained to the optical frequency S, but applies to all frequencies.  Although the 

limits of the frequency integral ranges from 0 to ∞, the integral is convergent as (,t) 

decays more rapidly as compared with the linear increase in frequency see Figure 

6.24 in Section 6.5 The expression of (,t) in Equation (6.19) shows it is non-zero 

at the instant when d/dt ≠ 0, when the instantaneous frequency of the field operator 

is varying with time.  Since (t) = kc0/n(t), therefore d/dt is non-zero when the 

refractive index of the modulator n(t) is time varying, thus photons are created during 
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Modulator 

Pc(t) 
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the transitions of n(t).  Since the refractive index profile is governed by the field 

strength of the control signal, the phenomenon of spontaneous emission out of the 

modulator requires work to be done by the external (modulating) agent to change the 

refractive index of the modulator via. the control signal.  The process of photon 

creation is similar to the operation of electrical transformer, in which a voltage is 

induced in the secondary circuit in order to oppose the change in magnetic flux due to 

a voltage change at the primary circuit.  The change in magnetic flux is an analogue to 

the change in refractive index i.e.  dn/dt → d/dt, because a voltage induced from 

d/dt is similar to photon flux induced from dn/dt.  Therefore the modulator behaves 

as an inductor.  As shown in Figure 6.5, diode rectifier is placed in between the 

transformer and the load at the secondary circuit so that a positive voltage is always 

established across the secondary load irrespective to an increase or decrease in 

magnetic flux.  This is analogous to spontaneous emission from the modulator i.e. 

|(S,t)|2 > 0, regardless to an increase or a decrease in refractive index change. 

Therefore, a transformer circuit is a reasonable electrical analogy for the effect of 

spontaneous emission out of the modulator.  Table 6.1 translates the physical process 

of photon creation out of the modulator into the transformer analogy. 

   

Photon Creation Transformer Analogy 

Control signal power Pc Primary voltage source V1 

Change in refractive index dn/dt Change in magnetic flux d/dt 

Photon flux created ∫|(,t)|2d Voltage across secondary load VL 

Table 6.1:  Translation between the phenomenon of spontaneous emission out of the 

modulator into transformer analogy. 
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Figure 6.5:  Equivalent circuit of transformer analogy. 

 

The phenomenon of spontaneous emission out of the modulator is in fact due to the 

excitation of the field vacuum state during the transition of the modulator, and this has 

been widely studied in QFT literature [12, 16 - 21, 44].  

The second term in Equation (6.28) is always positive.  It describes the process 

of photon creation stimulated out of the modulator by the optical field, because it is 

equivalent to the last term of Equation (6.28) being multiplied by the optical field 

photon flux F, at the optical frequency S.  The photons generated from this process 

replicate the photons from the optical field, as it has the same photon energy and 

travel in the same direction as the seed photons, as shown in Figure 6.6.   

 

Figure 6.6:  Illustration of stimulating photons out of the modulator. 

Primary cct. 

Rectifier 

Secondary cct. 

VL 

Phase Modulator 

Pc(t) 

Laser 

Input field Output field 

Seed photon from 

transmit laser 

Key: 

Photon stimulated 

from the modulator 



 107 

 

The electric analog of the stimulated process can be represented by transformer circuit 

shown in Figure 6.7.  An amplifier is added in between the diode rectifier and the 

secondary load in to describe photons are stimulated from the modulator by the 

optical field. 

 

Figure 6.7:  Equivalent circuit of the transformer analogy. 

 

We see that when (S,t) > 0, the cosine term (third term) in (6.28) can be either 

positive or negative depending on the phase angle 2S + A(S,t) + B(S,t).  This term 

represents an energy exchange between the optical field and the modulator, which can 

result in both Pout > Pin as well as Pout < Pin.  At times when the phase angle is -/2 < 

2[S + SN(t)] + A(S,t) + B(S,t) < /2, the mean photon flux increases.  At other 

times the mean photon flux decreases.  The photons created from the energy exchange 

process have the same frequency and propagate in the same direction as the input field 

as it is dependent on FS.  From the results shown in Section 6.5, we shall see the 

instantaneous magnitude of the energy exchange term dominates over the second term 

and the last term in Equation (6.28).  Therefore, the sign of the energy exchange term 
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primarily determines whether the power flow at the output of the modulator is greater 

or less than the modulator input at a particular instant.  When the energy exchange 

term is positive, we have Pin < Pout, and the modulating agent (i.e. control signal) 

provides additional energy to the output field via the excited modulating medium as 

explained by [26].  In the case when the energy exchange term is negative, we have 

Pin > Pout, and some of the input field energy is removed by the excited modulating 

medium.  An excited modulating medium excites and removes energy from the input 

optical field because the vacuum state of the field is being excited via the refractive 

index change.  This is illustrated in Figure 6.8 and Figure 6.9, where Figure 6.8 

illustrates the power flow of the field at the modulator when the energy exchange term 

is positive, while Figure 6.9 is a power flow diagram of the field at the modulator 

given that the energy exchange term is negative. 

 

Figure 6.8:  Power flow of optical field at the modulator (Energy exchange term 

positive). 
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Figure 6.9:  Power flow of the optical field at the modulator (Energy exchange term 

negative). 

 

The interaction between the control signal and the optical field in the modulator is 

characterized by the purple arrow in Figure 6.8 and Figure 6.9, in which a small 

portion of the power from the control signal, PV, excites the vacuum state of the field 

via. the modulator which then gives rise to the power flow difference, P between the 

input and the output of the modulator.  The oscillating nature of the energy exchange 

term means that there are repeating cycles of energy storage into and release from the 

modulating medium, driven by the control signal.  This is analogous to energy storage 

and release by a driven LC circuit in which the energy in the system oscillates 

between the inductor (L) and capacitor (C), as shown in Figure 6.10.  S 

 

Figure 6.10:  LC Circuit analogy. 
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6.3  Detection of Optical Field 
In this Section, we shall consider the direct detection response for unmodulated and 

modulated optical field.  The detector response will be determined from the 

expression of signal mean and noise variance of the detected field.  By comparing the 

detector response of unmodulated and modulated field, the impact of photon creation 

from modulator due to phase modulation can be determined.  In order to identify this 

impact and simplify the problem, we have made the following assumptions: 

1. The receiver is shot noise limited.  Other noises such as dark current noise, 

relative intensity noise and thermal noise are neglected in this analysis. 

2. The modulator is lossless. 

3. The photodiode is ideal in which the conversion between photons and 

photoelectrons is maximized within the passband of the photodiode. 

 

6.3.1  Direct Detection of Unmodulated Field 

In this Subsection, the direct detection response for unmodulated field will be 

determined.  A direct detection system is considered because it is one of the simplest 

detection schemes.  The configuration of a back-to-back direct detection system is 

shown in Figure 6.11, in which the optical field generated from the transmit laser, is 

directly fed into the receiver.  We use the term ‘back-to-back’ to name the 

configuration with the receiver located immediately next to the transmitter, thus the 

distance between transmit laser and direct detection receiver is negligible i.e. d ≈ 0 m 

in Figure 6.11.   
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Figure 6.11:  Direct detection setup for the detection of unmodulated optical field. 

 

The configuration of the direct detection receiver is shown in Figure 6.12. 

 

Figure 6.12:  Configuration of the direct detection receiver. 

 

The direct detection receiver consists of three important components, a photodiode, an 

integrator and a sampler.  The photodiode converts the incoming photons from the 

optical field into photoelectrons, and thus the power of optical field gives rise to an 

electrical current.  The integrator accumulates the photoelectrons over some time 

interval, while the sampler samples the photoelectrons accumulated during the 

measurement/detection time interval. 

A photodiode behaves as a band-pass filter (BPF) which has a lower and upper 

cutoff frequency.  This implies the photoelectric process i.e. conversion of photons to 

electrons, will take place only over a finite range of photon energies [25].  Throughout 

this chapter, an InGaAs photodiode is considered, where the lower limit 3 dB 

frequency is L = 1.1*1015 rad s-1, while the upper limit 3 dB frequency is U = 

1.88*1015 rad s-1 [25].  Therefore, the passband (3 dB bandwidth) of the photodiode is 
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BU - L = 7.8*1014 rad s-1.  In order to simplify the analysis, we assume the 

InGaAs photodiode has an ideal BPF response.  Thus, the frequency response () is 

1 within the passband of the photodiode, and 0 outside the photodiode passband.  The 

signal frequency S lies within the passband of the photodiode so that the field can be 

detected at maximum efficiency.  A plot of the frequency response for an ideal 

InGaAs photodiode is shown in Figure 6.13. 

 

Figure 6.13:  Frequency response of the ideal InGaAs photodiode. 

 

For an ideal photodiode, the photocurrent operator associated with the detection of 

unmodulated field Îin(t) is defined as [33] 
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where R() is the responsitivity of a perfect photodiode and has the expression R() 

= ()q/ħwhere q is the charge of the electron and has the value q = 1.6*10-19 C.  

By expressing êin
+(,t) and êin

-(,t)  in terms of unmodulated annihilation and 

creation operator â() and â+(), using Equation (6.12) and Equation (6.8), 

respectively, and applying â() and â+() onto the bra-ket state vector |{in()}> and 
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<{in()}|, we find with the help of eigen-equation (6.5) that the expectation value of 

the photocurrent <Îin(t)> from the detector is  
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As the photocurrent enters the integrator, photoelectrons will be accumulated.  

After some measuring time period TM, the number of photoelectrons accumulated will 

be sampled.  After the sampling process, the photoelectrons stored in the device will 

be discharged.  We shall introduce a detection operator Ŷin to characterize the number 

of photoelectrons accumulated, where we have  
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where TS is the start time of a measurement, and TM is the duration of the 

measurement time.  By expressing Îin(t) in terms of â() and â+() from Equation 

(6.30), and operating the associated operator onto the continuum coherent state vector 

in Equation (6.5), the mean of photoelectron count detected by the receiver from an 

unmodulated optical field over the measurement/detection time TM is given by 
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where FS is the mean photon flux.  <Ŷin(TS,TM)> represents the mean signal strength 

of unmodulated field and expression (6.32) shows <Ŷin(TS,TM)> corresponds to the 

mean photon number count in time interval TM. 

In quantum optics, the noise variance of the number of photoelectrons in the 

detector current due to an unmodulated optical field can be readily obtained from the 

expression [33] 
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By employing the definition of   ,in S MY T T  in Equation (6.31) and expressing it in 

terms of â() and â+() using expression (6.29), (6.12) and (6.8), making use of the 

commutation relation in Equation (6.9) and the eigen-equation in Equation (6.5), as 

well as performing the frequency integration, we obtain after some laborious algebraic 

manipulation,  
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 (6.34) 

The noise variance calculation in (6.34) is obtained by using the approximation 
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This approximation is reasonable as the bandwidth of the single mode laser is 

generally much smaller than the signal frequency S [1, 33, 35] i.e. 2 << S, as 

shown in Figure 6.1.  The Dirac delta function in Equation (6.35) implies the statistics 

of phase noise variance is roughly time independent i.e. variance at time t1 is 

independent on the variance at time t2.  By substituting expression (6.31) into 

Equation (6.34), the noise variance detected from unmodulated field is given by  
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Notice that the mean number of photoelectrons detected in Equation (6.32) is equal to 

the variance of the photoelectron count given in Equation (6.36).  In Chapter 3, we 

have stated if the field is prepared in coherent state, the mean photon number and the 
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photon number variance are equal.  Since each photoelectron is generated as a 

consequence of the incoming photon, thus we can conclude the state of the 

unmodulated field is characterized by continuum coherent state.  In addition, the mean 

and variance in Equation (6.32) and Equation (6.36) is independent on the time TS 

when the measurement is taken, which implies the arrival of photoelectron is a 

stationary random process [22].   

 According to [33, 35], the SNR of the unmodulated field is defined as 
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As a result, by substituting expression (6.32) and (6.36) into Equation (6.37), the SNR 

of the unmodulated field is given by 

   inin S MSNR F T Y t   (6.38) 

Expression (6.38) shows the SNR of the unmodulated field corresponds to the mean 

number of photoelectrons detected. 

 

6.3.2  Direct Detection of Modulated Field  

In this Subsection, the direct detection response for modulated field will be 

determined.  Figure 6.14 shows an optical system for the detection of a modulated 

optical field, in which the receiver is located immediately next to the transmitter (back 

to back). 
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Figure 6.14:  Direct detection setup for the detection of modulated optical field. 

 

Notice that the configuration in Figure 6.14 is very similar to Figure 6.12, except that 

a phase modulator is placed in between the transmit laser and the direct detection 

receiver so that the optical field is phase modulated before it reaches the detector.  If 

extra photons are created, an additional number of photoelectrons will be detected at 

the receiver, and likewise the photoelectron count will reduce if photons are removed 

from the incoming signal.  For an ideal photodiode, the photocurrent operator 

associated to the detection of phase modulated field Îout(t) is [33] 
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where êout
+(,t) is related to the modulated field annihilation operator  ,b t$ , as 

indicated in expression (6.14).  By expressing êout
+(,t) in terms of unmodulated 

annihilation and creation operator â() and â+(), from expression (6.14) and (6.17), 

using the commutation relation in expression (6.3), and finally applying â() and 

â+() onto the state vector |{in()}> and <{in()}|  with the help of eigen-equation 

(6.5), the expectation value of the photocurrent <Îout(t)> is 
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The expression in (6.40) is almost identical to the expression of the power flow for 

modulated optical field in Equation (6.28).  However, there is one subtle difference 

between the last term of expression (6.40) and (6.28).  The integration limits of the 

spontaneous emission term (last term) in Equation (6.28) ranges from frequency -∞ to 

∞.  In contrast, integration limits of expression (6.40) ranges from L to U because 

the photodiode is bandwidth limited, as shown in Figure 6.13. 

 Similar to the unmodulated field detection analysis in Subsection 6.3.1, we 

introduce a detection operator Ŷout(TS,TM) to characterize the number of 

photoelectrons detected from the phase modulated field, which is defined as 
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where TS is the start time of a measurement.  By expressing Îout(t) in terms of â() and 

â+() using expressions (6.39), (6.14), (6.17) and (6.8), and applying â() and â+() 

onto the bra-ket continuum coherent state vector, <{in()}| and |{in()}> 

respectively, the expectation value of the number of photoelectrons detected by the 

receiver is given by 
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The first term in Equation (6.42) corresponds to the photoelectrons detected from the 

unmodulated optical field.  As a result, the remaining terms that is dependent on the 
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Bogoliubov coefficients (,t), appears as a consequence of photon 

creation/annihilation from the modulator during the modulation process.   

The effect of photon creation from modulator in optical detection can be clarified 

by computing the difference between mean photoelectrons resulting from modulated 

and input unmodulated fields.  The difference can be expressed as 
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 (6.43) 

From Equation (6.43), we can identify the difference in mean photoelectron count is 

governed by |(,t)| and the photon flux of the optical field FS.  By comparing Y in 

Equation (6.43) with the (,t) components from the power flow expression in 

Equation (6.28), we can identify the first term in Equation (6.43) corresponds to the 

effect of stimulated emission out of the modulator as the spontaneous process |(,t)|2 

increases by a factor of FS at an input frequency of S.  The second term in Equation 

(6.43) is associated with the energy exchange between the optical field and the 

modulator as its magnitude is dependent on the phase of the Bogoliubov coefficients.  

The last term in Equation (6.43) corresponds to the phenomenon of spontaneous 

emission out of the modulator because it is independent on FS, which implies the 

process is not limited to the input frequency of the optical field S.   

The noise variance of the number of photoelectrons detected from the modulated 

can be readily obtain from the expression [33, 35] 
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By employing the definition of   ,out S MY T T  in Equation (6.42) and expressing it in 

terms of â() and â+() using expressions (6.41), (6.14) and (6.8), making use of the 

commutation relation in (6.9) and the eigen-equation in (6.5), as well as performing 
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the frequency integration, we obtain the expression of noise variance after some 

laborious algebraic manipulation,  
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 (6.45) 

where expression (6.45) is obtained by using the approximation 

           
0

exp , , ' , , ' 2 'SN SNiW t iW t i t t d t t       


        (6.46) 

This approximation is reasonable when the frequency bandwidth of W(,t), denoted 

by M, and the bandwidth of the laser phase noise 2v, is much smaller than the 

signal frequency (center frequency) i.e. S >> M + 2v  [1, 22 - 24].   

The expression of signal amplitude <Ŷout(TS,TM)>, in Equation (6.42), is no 

longer equivalent to the noise variance [Ŷout(TS,TM)>]2, in Equation (6.45).  As a 

result, the state of modulated field cannot be characterized as a coherent state since its 

statistical nature is different from the unmodulated field.  In fact as we shall see in 

Section 6.4, the statistical nature expressed in Equation (6.42) and (6.45) can be 

described by field prepared in a two-photon coherent state [50].  The difference 

between the mean photoelectron number and the variance of photoelectron is 

     

             

 

2

2 2 3 2

2
2

, ,

4 2 , 1 , 8 , 1 , cos 2 , , ,

12 ,
2

S M

S

S M U

S L

outout S M S M

T T

S S S S S S SN S S S
T

T T

T

Y T T Y T T

F t t t t t A t B t

dt t d




            

  






 

               

 
   
 



 

 (6.47) 

Unlike the statistical nature of the unmodulated field, the mean and variance in 

Equation (6.42) and (6.45) depends on the start time of measurement i.e. TS dependent, 
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which implies the arrival of photoelectron is a non-stationary random process when a 

modulated field is detected [22].   

The mean signal amplitude detected expressed in Equation (6.42) and the noise 

variance detected from the modulated field, in Equation (6.45), consist of terms that 

are phase dependent.  Furthermore, this phase component is dependent on random 

variable SN(,t).  The coherence time tc is a measure of the rate of phase drift due to 

the phase noise.  The transmit laser coherence time is related to the 3 dB laser 

linewidth by [1, 33] 

     1
ct  



             (6.48) 

Provided the measurement time TM is much greater than the coherence time in (6.48) 

(i.e. TM >> tc), we can assume the probability density function (PDF) of SN(S,t) is 

uniformly distributed between 0 and 2 for which we have, 

   1 0 2
2SN SN SNp   


    (6.49) 

where 

  
2

0

1
SN SN SNp d



     (6.50) 

Because the cosine component in expressions (6.42) and (6.45) are dependent on 

SN(S,t), thus it is also a random variable.  We shall define the random variable U as 

       cos 2 , , ,S SN S S SU t A t B t           (6.51) 

By using the expression of  
SN SNp   in Equation (6.49), the PDF of random variable 

U is expressed as [34], 

  
2

2 1
1

Up U U
U

 


 (6.52) 

in which,  
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  
1

1

1Up U dU


  (6.53) 

The time averaged value of U(t) is evaluated as [34] 

    
1

1

0UU t U p U dU


   (6.54) 

where the overbar denotes the long time average.   

As we shall see later in Section 6.5, the product, |(S,t)|FS >> max[(,t)]B, 

thus the terms that is independent of FS can be neglected from the mean expression in 

(6.42) and the variance expression in (6.45).  Therefore, by using the result in 

Equation (6.54), we can simplify the expression of long time averaged signal and the 

noise amplitude in expression (6.42) and (6.45) into 
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where the overbar denotes long time averaged since TM >> tc.  Expression (6.55) and 

(6.56) shows the effect of photon creation out of the modulator increases both signal 

and noise variance as |(S,t)|2 > 0.  Using expression (6.42) and (6.45) the 

approximate SNR expression for modulated field can be deduced as 
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In the last line of Equation (6.57), we have used the result in Equation (6.54), neglect 

the terms that are of higher order to |(S,t)|2 given that |(S,t)| << 1 (see Section 

6.5), as well as using the first order Taylor series approximation.  Using expression 

(6.57) and (6.38), the differences between the SNR of the modulated field and the 

unmodulated field is  

 
  22 , ' '

M

in out
t T

S
M t

SNR SNR SNR

t dt
T

 


  

 
 (6.58) 

A positive value of SNR difference in (6.58) implies the SNR of unmodulated field 

is greater than the SNR of modulated field.  This implies the increase in noise 

power is greater than the increase in signal power due to the effect of photon creation 

from modulator. 

 

6.4  State Evolution of Modulated Field 
In Section 6.3, we have shown the effect of photon creation increases both noise 

variance and the mean photoelectron number in the detection process.  In fact the 

Equation (6.47) shows the variance of the photoelectron count is greater than the 

mean of the photoelectron count.  As a result, the modulated field cannot be 

characterized by coherent state during the period when photons are created out of the 

modulator i.e. (,t) ≠ 0.  This is different to the result presented by [9], which claims 

the modulated field is described by a tensor product of coherent states.  This 

difference appears because their model did not include the effect of photon creation 

from modulator.  In this Section, we shall determine the time evolution of the state of 

modulated field by including the effect of photon creation from the modulator.    
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 By considering the commutation relation between â(,t) and â+(,t) of the 

input field in Equation (6.3), we can identify it is equivalent to that of  ,b t  and 

 ,b t
  in expression (6.22).  Therefore the Bogoliubov transformation in expression 

(6.17) is a linear canonical transformation [50].  For simplicity of the analysis, we 

neglect the effect of phase noise so that â(,t) reduces to â() using Equation (6.8).  

According to a theorem from Von Neumann, every canonical transformation 

involving finitely many particle labels can be represented as a unitary transformation, 

in which â() and â+(), is related to  ,b t  and  ,b t
 , by [51, 52] 

           , exp , , ,b t iA t s t a s t      


       
     (6.59) 

           , exp , , ,b t iA t s t a s t      
  

        
     (6.60) 

where A(,t) is the phase of (,t) expressed in (6.18), ŝ[(,t)] is the continuum 

squeezed operator.  (,t) is the squeezed wavepacket function that can be expressed 

as [33, 46] 

      , , exp ,t z t i t         (6.61) 

The magnitude and phase of the squeeze parameter,  ,z t  and  , t  , is related to 

the Bogoliubov coefficients by [33] 

    sinh , ,z t t      (6.62) 

      , , ,t B t A t      (6.63) 

where B(,t) is the phase of (,t).  In Chapter 4.2, we have shown the Bogliubov 

coefficients are diagonal and isotropic, therefore the continuum squeezed operator 

ŝ[(,t)] defined in [33, 46, 53] can be expressed as 

           
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    (6.64) 
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Equation (6.64) shows the squeezed operator is an unitary operator where ŝ(,t)ŝ+(,t) 

= ŝ+(,t)ŝ(,t) = 1.  From expression (6.61), (6.62) and (6.64), we can see that when 

(,t) = 0, we have ŝ[(,t)] = 1.     

Assume the modulator is initially in a steady state with n(t = 0) = n1, so that the 

optical field is unmodulated at t = 0.  The state of unmodulated field is characterized 

by the wavepacket function in() (defined in Equation (6.5)), where the Dirac delta 

function in expression (6.5) implies the photon flux is associated with the carrier 

frequency S.    In order to determine the mean photon flux of the unmodulated field, 

it is useful to introduce the continuous mode photon flux operator, which is defined as 

[33, 46] 

     
0 0

1 ' '
2

inF a a d d   


 


     (6.65) 

The field is modulated for t > 0.  The modulated phase angle for t > 0 is governed by 

 ,W t  that is expressed in Equation (6.15), while the annihilation operator evolves 

from    ,a b t   .  As a result, the photon flux operator for modulated field can 

be represented by 
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where 
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The time evolution of the state of modulated field can be determined by using the 

Schrödinger picture.  Schrödinger picture is a direct contrast to the Heisenberg picture 

in which the state of the field evolves with time while the field operator is time 

independent.  The benefit of adopting Schrödinger picture is the probability 
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distribution that describes the photon arrival statistics can be determined, which is not 

as clearly shown when Heisenberg picture is adopted.  The same answer should be 

obtained regardless of whether Heisenberg picture or Schrödinger picture is employed.  

Thus, we have the relation 

                , ,out inin in out outF t t F t          (6.68) 

where |out(,t)> is the state vector of the phase modulated field, |{in()}> is the 

state vector of unmodulated field (coherent state vector),  inF  and   outF t  are the 

photon flux operator for unmodulated and modulated field, respectively.  The left 

hand side of Equation (6.68) is the Heisenberg picture representation in which the 

time evolution of the field is entirely encapsulated by the operator, while the left hand 

side of Equation (6.68) is the Schrödinger picture representation in which the time 

evolution of the field is completely encapsulated by the state vector.   

For clarity, we shall divide the derivation of the state of modulated field into two 

steps.  The first step only considers the time evolution of modulated phase angle in 

which the effect of photon creation is suppressed i.e.    ,a b t   .  We shall 

include the effect of photon creation in the second step.  By neglecting the effect of 

photon creation,   outF t  can be expressed as  
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The mean photon flux can therefore be expressed as,  
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 (6.70) 
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By comparing the second line and third line of Equation (6.70), we can deduce the 

state of modulated field |{out(,t)}>, with the effect of photon creation suppressed, is 

related to the state of unmodulated field |{in()}> by 
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 (6.71) 

In the second line of Equation (6.71), we have expanded |{in()}> using expression 

(6.1) and (6.5).  Notice that in the second line of expression (6.71), the frequency 

argument of the modulated phase angle W(,t) and the annihilation and creation 

operator is associated with signal frequency S.  By representing exp[-iW(S,t)] as an 

integral of complex exponential, we have 

      
0

exp , , ' exp ' 'S SiW t i t d    


       (6.72) 

(S,’) is the normalized classical spectral amplitude for a single frequency phase 

modulated optical field, which can be determined by computing the Fourier transform 

of exp[iW(S,t)].  (S,’), consist of two frequency arguments, S and ’.  The first 

argument represents the input carrier field frequency, and the second argument 

represents the frequency profile around the carrier.  (S,’) is a normalized function 

because exp[-iW(wS,t)]*exp[iW(wS,t)] = 1, therefore by expressing exp[iW(S,t)] in 

terms of (S,’) from Equation (6.72), we have the normalization condition 

      2

0

, ' 1S d  


               (6.73) 

 The output state vector in Equation (6.71) can be rewritten into the standard 

form 
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where the time dependent displacement operator in the last line of Equation  (6.74) is 

expressed as 

           *
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From expression (6.72) and (6.75), the time dependent wavepacket function of 

modulated field out(,t), can be written in the form [46] 
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 (6.76) 

where ( - S) represent the spectral amplitude (,S) is distributed over a range 

of frequencies around frequency S.  This corresponds to the result presented by [9]. 

 We now include the effect of photon creation in order to give a complete 

representation of the state of modulated field.  With the effect of photon creation 

included in the analysis, the annihilation and creation operator, â() and â+(), in 

expression (6.71) is replaced with  ,b t  and  ,b t
 , respectively.  By expressing 

 ,b t  and  ,b t
  in terms of â() and â+() from expression (6.59) and (6.60), 

and after some algebraic manipulation, the state of modulated field that includes the 

effect of photon creation can be represented by 
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(6.77) 

where the time dependent displacement operator   ,outD t      is given by (6.75), 

while the squeeze function is given by,  

      
0

' , , St t d       


   (6.78) 
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The final line in expression (6.77) shows the modulated field state corresponds to the 

definition of the continuum two photon coherent squeeze state [50, 54]. An evidence 

of this is shown from the detection of phase modulated field where the mean and 

variance photoelectron count in Equation (6.42) and Equation (6.45), corresponds to 

the statistical description of a two photon coherent state [54].  We can conclude that 

when photon is created from the modulator as a consequence of phase modulation, we 

get (,t) ≠ 0, and thus using Equation (6.61) - (6.64) we get ŝ[(,t)] ≠ 1 even at the 

lowest order approximation for (,t) shown in Equation (6.19), and the state of the 

optical field evolves from continuum coherent input state |{in()}> to continuum 

two photon coherent output state |{out(,t)}>, a quantum effect not included by [9].   

 We shall now investigate the properties of the two photon coherent state, 

which will be useful in the description of photon arrival statistics for the modulated 

field.  From the expression of the squeeze function in Equation (6.78), we can identify 

|{out(,t)}> is an eigenstate of â() except at  = S in which ŝ[(,t)] ≠ 1.  The 

two photon coherent state is an eigenstate of the modulated field annihilation operator 

 ,b t  at frequency S.  This can be verified by operating  ,b t  onto the output 

state |{out(,t)}>.  Using expression (6.59), (6.77) and (6.78), we obtained 
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   (6.79) 

where the eigenfunction out(,t) is defined in Equation (6.76), and A(S,t) is the 

phase of (S,t) in expression (6.18).  The two photon coherent state is a squeezed 

state for which the uncertainty in one direction in phase space is reduced while the 

uncertainty in the orthogonal direction increases.  In order to describe the effect of 
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squeezing, it is useful to introduce two mutual orthogonal operators   1X   and 

  2X  .  In Schrodinger picture,   1X   and   2X   is defined as 

       1
1

2 2
X a a  


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   (6.80) 
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   (6.81) 

In Heisenberg representation, the expression of modulated field operator is 

represented by Equation (6.13).  Because in Schrödinger representation, the time 

evolution of the field is characterized by the field state, the modulated field operator is 

obtained by setting t = 0 in Equation (6.13).  Thus we have, 
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   (6.82) 

where the superscript ‘s’ in Equation (6.82) denotes the field represented in 

Schrodinger representation and out is the propagation phase delay.  By expressing 

â() and â+() in terms of   1X   and   2X   in Equation (6.80) and Equation 

(6.81), we have 
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  (6.83) 

In expression (6.83), it is evident that   1X   and   2X   describes the field 

amplitude of the in phase and quadrature component of the optical field.  Because 

 ,b t  is an eigenstate of |out(,t)> at frequency S, therefore it is convenient to 

express â() in terms of  ,b t .  Using expression (6.17), and the identity in (6.23) 

we have 

          * *, , , ,a t b t t b t      


     (6.84) 
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By employing the relation in Equation (6.84), the eigen-equation in (6.79), and the 

expression of the modulated field wavepacket function in expression (6.76), the 

expectation value of the in phase component and the quadrature component 

respectively, are 

            
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The variance of the in phase   2
1X     and quadrature component   2

2X     at carrier 

frequency S are expressed as 
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Equations (6.85) - (6.88) is an approximate expressions because the phase angle 

A(S,t) is small and thus can be neglected as explained earlier.  The variance product 

between Equation (6.87) and Equation (6.88) is  
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From Equation (6.89), we can identify the variance product is minimized i.e. 

   2 2
1 2

1
16S SX X          , when (S,t) and (S,t) are real.  For other values of 

(S,t) and (S,t) (i.e. (S,t) and (S,t) are imaginary), the uncertainty product of 

two photon coherent state are greater than 1/16.  A coherent state is a minimum 
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uncertainty state because the variance product is minimized to 1/16 at all time [33].  

As a result, we can conclude the two photon coherent state is generally NOT a 

minimum uncertainty state.   

 For simplicity of the analysis, we assume (S,t) to be real because the 

imaginary component of (,t) is small for d/dt << S
2, as shown in expression 

(6.18).  Therefore, the product variance is governed by the phase of (S,t) denoted 

by B(S,t).  A plot of variance product in Equation (6.89) with respect to phase B(S,t) 

is shown in Figure 6.15 

 

Figure 6.15:  Variance product X1(S)]2XSagainst phase B(S,t). 

 

From expression (6.87) and (6.88), we can identify the variance of the in phase and 

quadrature component are not equivalent, therefore the two photon coherent state is a 

squeezed state [50].  A plot of   2
1 SX     and   2

2 SX     with respect to B(S,t) is 

shown in Figure 6.16(a) and (b) 
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Figure 6.16:  Variance against phase B(S,t) (a) In phase component  (b) Quadrature. 

 

In Figure 6.16(a) and (b), we can identify when the variance of a quadrature 

components increases beyond 1/4 at some angle B(S,t), the other component is 

reduced below 1/4 i.e. if   2
1

1
4SX      then   2

2
1
4SX      and vice-versa.  When the 

modulated field is at minimum uncertainty state i.e. B(S,t) = m, this corresponds to 

the extrema of   2
1 SX     and   2

2 SX    .   

 Neglecting the effect of photon creation by setting |(S,t)| = 0 in expression 

(6.87) and (6.88), we find the phase modulated field is described by coherent state.  In 

other words, the two photon coherent state |{out(,t)}> reduces to the standard 

coherent state |{out(,t)}> when photon creation is neglected in the analysis.  The 

influence of photon creation on the state of the field is shown in the Argand diagrams 

of Figure 6.17 and Figure 6.18.  These Figures illustrate the mean and the variance of 
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the two quadrature components of modulated field described by coherent state 

|{out(,t)}> and two photon coherent state |{out(,,t)}>, respectively. 

 

Figure 6.17:  The signal strengths of modulated field and their fluctuations in phase 

space at t = T, in continuum coherent state representation.  

 

Figure 6.17 is a snapshot of the field state in phase space at t = T with |(S,t)|2 set to 

zero.  It shows the displacement operator   ,outD T      translates the vacuum 

fluctuation contour centered at the origin (0,0) to the position 
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1/2sin[W(S,T)-]) while the shape of vacuum fluctuation 
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Figure 6.18(a) is a phase-space representation of modulated field with the effect 

of photon creation included (i.e. |(S,t)| > 0) in which the angle B(S,T) is assumed 

to be 0.   

 

Figure 6.18:  The signal strength of modulated field and their fluctuations in phase 

space at t = T, in two photon coherent state representation (a) B(S,T) = 0.  (b) B(S,T) 

≠ 0. 

 

From Figure 6.18(a), it can be identified that the wavepacket squeezed operator 

ŝ[(,t)] changes the shape of the uncertainty contour into an ellipse as well as 

displaces the center of the uncertainty contour.   The major axis and minor axis of the 

uncertainty contour is given by       2 1 , ,2S S SX t t           
 and       1 1 , ,2S S SX t t           

, 

respectively.  The center of the ellipse is positioned at      1 2,S SX X  
 
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ellipse inclined at an angle of B(S,t)/2 [54] i.e major and minor axes of ellipse are 

not aligned along the   1X   and   2X   axes respectively.  In Figure 6.18, the time 

is fixed at t = T.  In general as time progresses, the mean amplitude,   1X   and 

  2X  , and the inclination angle B(S,t)/2, varies.  As a result, the state vector will 

rotate around the origin at rate given by W(S,t) with its magnitude changing during 

the rotation, while the uncertainty contour will be changing in shape and size. 

 In order to deduce the photon arrival statistics of the modulated field, we need 

to express the two photon coherent state |{out(,t)}> in the photon number state 

representation.  The two photon coherent state |{out(,t)}> can be represented by an 

infinite sum of number states [54] 

        
0

, ,out N
N

t C t N   




  (6.90) 

where CN(,t) is the PDF of photon flux distribution for the phase modulated field 

and is time dependent because the state of the field evolves in time.    N   is the 

continuum photon number state that is defined as [33] 
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where () is the spectral amplitude of the input (unmodulated) field.  The input field 

is monochromatic with frequency  = S, therefore () = ( - S).  By operating 

 ,b t  onto |{out(,t)}>, using the relation          1 1a N N N   
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and          1a N N N     , we have 
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where the frequency dependence is suppressed in Equation (6.92) for clarity.  The 

expression on the left hand side is obtained by expressing  ,b t  in terms of â() 

using Equation (6.17) and |{out(,t)}> in terms of |{N()}> in Equation (6.90).  The 

right hand side of the expression is determined from Equation (6.79).  By applying the 

orthogonal property of number state MNM N   [33], and equating terms with the 

same photon number state, we obtained the recurrence formula of the probability 

amplitude CN(t) 
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The photon number distribution function |CN(t)|2 can be determined by taking the 

variable transformation in the last line of Equation (6.93) [54] 
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where AN(t) is the transform variable.  After some algebraic manipulation shown in 

[54], |CN(t)|2 can be solved giving 
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 (6.95) 

where HN(z) is the Hermite polynomial defined as [55] 
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Notice that the photon number arrival rate for modulated field is no longer 

characterized by Poisson distribution that corresponds to a coherent state.  After some 

laborious algebraic manipulation, we can show the mean and variance of the photon 

flux distribution in Equation (6.95) reproduces the results in Equation (6.43) and 
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Equation (6.45).  It can be verified that if the effect of photon creation is neglected i.e. 

(S,t) = 0 and (S,t) = 1, Equation (6.95) reduces to a Poisson distribution [50].   

 

6.5  Photon Creation in Phase Modulation  
From Equation (6.43) in Section 6.3, we have shown the only difference between 

classical [1, 22 - 24] and quantum optical detection response is due to photon creation 

out of the modulator.  The effect of photon creation from modulator can be classified 

into three different processes, namely spontaneous emission, stimulated emission and 

the energy exchange process between the optical field and the modulator (‘energy 

exchange process’ for short).   

To elucidate the extent of the impact from each of these photon creation 

processes, we shall introduce the parameters V,  and to represent the 

photoelectron count detected from the spontaneous emission, stimulated emission, 

and the energy exchange process of photon creation.  Using Equation (6.43), the 

expression of V,  and  , are given by 
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where U and L are the frequency cutoff of the photo-detector.  In expression (6.97), 

(6.98) and (6.99), we have shown the effect of photon creation from modulator is 

described by the Bogoliubov coefficient(,t).  From Equation (6.19), we can 

identify (,t) is governed by the rate of change of instantaneous frequency d/dt, 

which is in turn dependent on the temporal profile of the control signal.  Therefore, 
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the temporal profile of photon creation is dependent on the characteristics of the 

control signal.   

In this Section, the control signal has a rectangular pulse profile, a common 

modulating/control signal in optical communication system [22 - 24].  The control 

signal exhibits a rectangular pulse profile that is an ongoing alternating pattern, in 

which the refractive index alternates between n and n + n (see Figure 6.19).  We 

used this pattern because it simplifies the calculation as compared with a pseudo-

random pattern.  As we shall see in this Subsection, (,t) is non-zero at each 

transition of the control signal.  Therefore, an alternating rectangular pulse pattern 

maximizes the photoelectron difference in Equation (6.43) because the number of 

transitions of the control signal is maximized.  The simulation parameters used in this 

analysis is given by Table 6.2. 

Parameters Notations Value 

Transmit laser power Pin 1 mW 

Optical carrier wavelength  λS 1550 nm 

Refractive index (unmodulated) n 3.5 

Nonlinear refractive index change Δn 0.05 

10 - 90% bit transition rate  1.8*1014 s-1 

Pulse duration Tp 1 ps 

Photon flight time in modulator Tf 0.3*Tb = 0.3 ps 

Measurement start time S 0 s 

Measurement time TM 1 s 

Upper limit of photodiode passband U 1.88*1015 rad s-1 

Lower limit of photodiode passband L 1.1*1015 rad s-1 

Modulator Type  All optical 

Table 6.2:  Parameters used in rectangular pulse modulation. 
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A semiconductor all optical transverse phase modulator (AOPM) is considered in this 

analysis.  This is because it has a fast response time so that a rectangular pulse with a 

pulse duration Tp in the order of pico-seconds and a transition rate  in the order of 

femto-seconds could be generated [19].  An ultrafast (~Tbps) modulating signal can 

be generated from an optical pulse of the femtosecond control laser that excites the 

semiconductor modulating media near the band-to-band transition, so that large 

change in refractive index n with a transition rate in the order of femtosecond can be 

achieved [16, 19].  For an AOPM, the change in refractive index is induced by the 

optical Kerr effect, in which the refractive index profile n(t) of the phase modulator 

follows the intensity profile of the control signal iC(t).  In Chapter 2.2, we have shown 

the refractive index change n(t) is related to the intensity profile of the control field 

iC(t) by 
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3

0
2

0

3
Cn t i t

n
 

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where n is the refractive index of the semiconductor material in the absence of the 

control field,  is the free space permittivity (0 = 8.85*10-12 V/m), (3) is the third 

order susceptibility coefficient of the material, and  is the intrinsic impedance in 

free space Given that the intensity of the control laser ic is ~ 10 

MW/cm2, the semiconductor media of the modulator will have a n of 0.5 [19].  

Therefore by using Equation (6.100), in order to induce a n of 0.05, the required iC is 

~ 1 MW/cm2.  The additional phase delay  due to a change in refractive index n is 

given by  

 2

S

nL



   (6.101) 

where L is the length of the modulator and S is the optical carrier wavelength.  

Expression (6.101) shows having a large n can produce a large phase offset even 
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when the photon flight time is small.  As we shall see in Chapter 7, the modulator 

length L is small for a Tbps optical communication system, therefore having a large 

n is particularly useful because a sufficient phase delay can be produced over a short 

propagation distance.  

 Since the refractive index profile n(t) follows the intensity of the control signal 

iC(t), as indicated by Equation (6.100), therefore n(t) is expected to have an alternating 

rectangular pulse profile.  A convenient form of n(t) that describes an alternating 

rectangular pulse profile is given by  
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  (6.102) 

where j is an integer, and the remaining parameters takes its usual meaning as in 

Table 6.2.  By using the simulation parameters in Table 6.2, a plot of refractive index 

profile n(t) is shown in Figure 6.19. 

 

Figure 6.19:  Refractive index profile induced from alternating rectangular pulse 

modulation. 
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(6.97), (6.98) and (6.99) (i.e. spontaneous emission V, stimulated emission  and 

energy exchange from modulator ), as well as determining the extent for each of 

these impacts in the following Subsections. 

 

6.5.1  Spontaneous Emission from Modulator 

In this Subsection, we shall determine the photoelectron count accumulated from the 

process of spontaneous emission out of the modulator V.  Since the instantaneous 

frequency (t) is related to the refractive index profile n(t) by Equation (6.16), thus 

using Equation (6.19), we can identify |(S,t)|2 is governed by n(t) profile in Figure 

6.19.  A plot of the temporal profile of |(,t)|2 for  = S, which is derived from the 

refractive index profile n(t) in Equation (6.102), is shown in Figure 6.20.  

 

 

Figure 6.20:  Temporal profile of |(,t)|2 with  = S for alternating rectangular 

pulse modulation. 
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By comparing Figure 6.20 with Figure 6.19, it is evident that |(S,t)|2 is non-zero at 

each transition of the refractive index n(t).  As we have explained previously, a non-

zero value of |(S,t)|2 signifies photons are created at time t given that the frequency 

of the input field is at S.  The |(S,t)|2 > 0 value persists for approximately the 

photon flight time period inside the modulator Tf.  This can be understood from 

expression (6.19), where the difference of the upper and lower limit of the integral is 

Tf, thus any variation of n(t) within this period will have a cumulative effect resulting 

in a non-zero |(S,t)|2.  Furthermore, each transition of n(t) produces a series of 

identical pulses of |(S,t)|2 photon flux.  This justifies the claim in [19], who uses 

heuristic reasoning to determine that when the refractive index of a material, n(t), has 

a rectangular pulse profile, two pulses of photons will be emitted from the modulator 

for a duration of Tf at the transition of n(t).  From Figure 6.20, we see that each pulse 

begins with a large spike at the start of the transition, then reaches a non-zero steady 

state for sometime, followed by another transient spike that is similar to the previous 

spike, and then returns back to 0.  The claim from [19] overlooks the detail of the 

photon creation pulse as it does not capture the overshoot feature at the start of the 

transition.  In Section 6.4, we have shown the state of modulated field is characterized 

by continuum coherent state when (S,t) = 0, and is described by two photon 

coherent state when (S,t) > 0.  Thus, the temporal profile of (S,t) in Figure 6.20, 

shows there are some time intervals in which the state of the modulated field can be 

characterized by continuum coherent state, while there are some time intervals where 

the field quantum state is described by two photon coherent state.  

In order to understand the shape of the profile, we shall divide a photon creation 

pulse into 5 different time intervals to explain one of its features separately, as shown 

in Figure 6.21. 
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Figure 6.21:  A photon creation pulse of |(S,t)|2 due to a transition in n(t). 
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Figure 6.22:  Refractive index profile seen by the field during its time of flight inside 

the modulating medium within (a) time interval A (b) time interval B (c) time interval 

C (d) time interval D (e) time interval E. 
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During time interval A, |(S,t)|2 = 0, thus the state of the field is characterized 

by coherent state.  This can be explained by considering the period in which the field 

enters the modulating medium at time TA - Tf and leaves the modulator at TA, Figure 

6.22(a).  In this period, the field experiences a static refractive index profile during its 

time of flight inside the modulating medium, as shown in red in Figure 6.22(a).  

Because the instantaneous frequency S(t) is related to n(t) by Equation (6.16), a 

static n(t) profile gives dS/dt = 0.  Therefore, from Equation (6.103) we see 

|(S,TA)|2 = 0, as shown in Figure 6.21.  

 In time interval B, a large transient spike occurs as shown in Figure 6.21 and 

the state of the field is characterized by two photon coherent state.  This is a 

consequence of the field entering the modulating medium at time when n(t) is static at 
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n, such as TB - Tf in Figure 6.22(b), and leaves the medium when n(t) is time varying 

at TB.  The change in n(t) experienced by the field within this period is shown by the 

red line in Figure 6.22(b).  During this time period, |(S,TB)|2 is non-zero because 

d/dt is non-zero just before the field leaves the modulating medium.  Furthermore, 

inside the time interval B, |(S,t)|2 is time varying.  We see this by considering the 

field component that enters the modulator at a later time t = TB + T, in which the n(t) 

profile experience by the field is shown by the blue dotted line in Figure 6.22(b).  This 

profile is different from the red profile in Figure 6.22(b), thus|(S,TB+T)|2 ≠ 

|(S,TB)|2, as shown in Figure 6.21.  The spike is due to the significant variation of 

d/dt during the flight time Tf as the field leaves the time dependent medium.  In fact, 

[17] has shown that a (t) profile in which d/dt changes rapidly creates many more 

photons than profiles without rapid changes in (t).  The phase angle of (S,t), i.e. 

B(S,t), is also changing rapidly in this time interval (see Figure 6.27).  This means 

the inclination angle of uncertainty contour in Figure 6.18 is changing with respect to 

time, and thus the uncertainty contour is rotating about its center point as time 

progresses.   

 In time interval C, a constant non-zero value of |(S,t)|2 value is seen.  

Within this time interval the state of the field is characterized by two photon coherent 

state.  This corresponds to a time t = TC - Tf, when the optical field enters the 

modulating medium when n(t) is relatively static at n, and leaves the medium at t = TC 

when n(t) is relatively static at n + n, as shown in red from the n(t) profile in Figure 

6.22(c).  During this time of flight Tf, the field experiences a step transition of n(t) 

from n to n + n, thus |(S,TC)|2 is non-zero.  In time interval C, |(S,t)|2 has a 

steady state value.  We see this by noting the field entering the modulator at a later 

time t = TC - Tf + T, will also experience a step transition of n(t) as shown by the 

blue dotted line.  Since the step profile for n(t), shown by the blue dotted line is the 
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same as the red solid line in Figure 6.22(c), therefore |(S,TC+T)|2 = |(S,TC)|2 as 

shown in Figure 6.21.  The steady state |(S,t)|2 value agrees with the analytical 

result given by [19] for a step profile of n(t).  In addition, a steady value of |(S,t)|2 

suggests the phase angle of (S,t) i.e. B(S,t), is time invariant and hence the 

inclination angle of uncertainty contour in Figure 6.18 remains unchanged for the 

time period C. 

 During time interval D, another spike in |(S,t)|2, which is similar to the one 

in time interval B, is generated and the field state is described by two photon coherent 

state.  This is a consequence of the field entering the modulating medium when n(t) is 

time varying, such as TD - Tf, and leaves the medium at TD when n(t) is relatively 

stable at n + n, as shown by the red line in Figure 6.22(d).  At the time in which the 

field enters the modulating medium, d/dt is rapidly changing, with d/dt = 0 just 

before the field enters the medium, and d/dt ≠ 0 just after it enters the modulator.  

Similar to time interval B, |(S,t)|2 is time varying during time interval D.  This is 

because the field experiences a different refractive index change if it enters the 

modulator at some T time later, as shown by the blue dotted line in Figure 6.22(d).  

As a result, |(S,TD+T)|2 ≠ |(S,TD)|2, as shown in Figure 6.21. 

 In time interval E, the field experiences a static n(t) profile at n + Δn during its 

time of flight inside the modulating medium, as shown by the red line in Figure 

6.22(e).  As a result, dS/dt = 0, which leads to |(S,t)|2 = 0, and the field is 

described by coherent state until the next transition occurs at the trailing edge of the 

pulse.  Referring to Figure 6.20, we see that a leading edge transition in n(t) produces 

a pair of spikes in |(S,t)|2, and another pair of spikes is produced at the trailing edge 

transition in n(t).  The profile of |(S,t)|2 due to a trailing edge transition can be 

understood by following a similar explanation for a leading edge transition in the 

paragraphs above.  Furthermore, Figure 6.20 shows a trailing edge transition of n(t) 
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produces a similar |(S,t)|2 pulse as the leading edge transition.  A summary for the 

above descriptions of Figure 6.22 is shown in Table 6.3. 

 

Time interval |(S,t)|2 

characteristics 

Field state Comment 

A Zero Coherent state Field enters and leaves the 

medium when n(t) = n.   

B Non-zero 

transient spike 

Two photon 

coherent state 

Field entering the medium when 

n(t) is static and leaves the 

medium when n(t) is changing. 

C Non-zero steady 

state value 

Two photon 

coherent state 

Field enters and leaves the 

medium when n(t) is static, BUT 

experienced a transition from 

n(t) = n to n(t) = n + n during 

its flight inside the medium. 

D Non-zero 

transient spike 

Two photon 

coherent state 

Field entering the medium when 

n(t) is changing and leaves the 

medium when n(t) is static. 

E Zero Coherent state Field enters and leaves the 

medium when n(t) = n + n. 

Table 6.3:  Summary for the descriptions of |(S,t)|2 profile. 

 

The |(S,t)|2 profile in Figure 6.21 can be used to determine the photoelectrons 

accumulated at the measurement time in the detector TM, generated by photon creation 

due to an alternating rectangular pulse pattern.   

 The frequency integral in Equation (6.97) shows the number of photoelectrons 

accumulated due to spontaneous emission from the modulator V, is contributed by the 

optical frequency S as well as other frequencies that is within the passband of the 

photo-detector.  The lower limit of the photo-detector passband is represented by L, 
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while the upper limit is represented by U, where the value of these parameters is 

given by Table 6.2.  Therefore the profile of |(,t)|2 within the photo-detector 

passband needs to be known for V to be determined.  A plot of (,t)|2 at the lower 

limit of the detector passband (i.e. (L,t)|2), against time t is shown in Figure 6.23. 

 

Figure 6.23:  Temporal profile of |(,t)|2 with  = L for an alternating rectangular 

pulse pattern. 

 

From Figure 6.23, it can be seen that the shape of |(L,t)|2 profile is very similar to 

|(S,t)|2 in Figure 6.20.  Each photon pulse persists for duration of Tf.  The 

differences between |(L,t)|2 and |(S,t)|2 are the amplitude of the overshoot and the 

non-zero steady state value.  In the steady state (region C in Figure 6.21) |(S,t)|2 < 

|(L,t)|2.  A plot of accumulated photoelectron count for one second, due to the effect 

of spontaneous emission out of the modulator, against frequency that lies within the 

passband of the photodiode, L to U, is shown in Figure 6.24. 
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Figure 6.24:  Photoelectron accumulated per second against frequency. 

 

The plot is generated by performing the time integration from a number of |(,t)|2 

profiles for a set of values of  over time interval TS = 0 s to TS + TM = 1 s, where TM 

is the measurement time.  The area under the curve in Figure 6.24 divided by 2 is the 

photoelectron count over one second due to spontaneous emission out of the 

modulator V, as indicated by Equation (6.97).  Thus, the value of V is calculated to be 

 48.4*10V electrons  (6.104) 

This corresponds to an average current <IV> of 1513.4*10V
M

VqI Amps
T

  .  The 

results in Figure 6.24 shows |(,t)|2 decays at a faster rate than 1/, and is bounded 

by an upper limit of  
 

2

4
n

n n n


   for  → 0 (see Equation (5.47)).  Therefore 

the frequency integral in Equation (6.97) is finite even if the frequency limit of the 

integral is taken from 0 to ∞.  As a result, the process of spontaneous emission out of 

the modulator requires a finite amount of excitation energy from the external agent. 
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6.5.2  Stimulated Emission from Modulator 

In this Subsection, we shall determine the photoelectron count accumulated from the 

process of stimulated emission out of the modulator .  In Table 6.2, we have 

considered a CW single mode transmit laser that generates an optical field at a 

wavelength S of 1550nm (S=1.2*1015 rad s-1) with an output power of Pin = 1mW.  

The mean photon flux FS of the optical field before modulation is calculated to be  

 15/ 7.8*10 /S in SF P photons s   (6.105) 

For an ideal photodiode (i.e. quantum efficiency () = 1 within photodiode 

passband), the photoelectron flux F(t) generated from the process of stimulated 

emission can be expressed as 

     2
2 ,S SF t t F    (6.106) 

where the subscript  signifies the contribution from stimulated emission process.  

The relation between photoelectron flux F(t) and the photoelectron count 

accumulated , is given by 

  
S M

S

T T

T

F t dt


   (6.107) 

Expression (6.106) can be realized as dividing the power flow of the stimulated 

emission out of the modulator (second term in Equation (6.28)) by photon energy ħS.  

A plot of the temporal profile of photoelectron flux contributed from stimulated 

emission from the modulator F(t), is shown in Figure 6.25. 
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Figure 6.25:  Temporal profile of photoelectron flux contributed from stimulated 

emission out of the modulator F(t). 

 

Notice that the shape of the profile from Figure 6.25 is nearly identical to Figure 6.20, 

where a photon creation pulse of duration of Tf occurs at every transition of n(t), 

except that Figure 6.25 has been scaled by a factor of 2FS.   

  Using the value of FS in Equation (6.105) and (6.107), the photoelectrons 

accumulated per second from the stimulated emission process is calculated to be 

  
1

7

0

1.0*10F t dt electrons    (6.108) 

By comparing expression (6.108) with (6.104), we can identify the photoelectrons 

accumulated due to the stimulated process is roughly 2 orders of magnitude greater 

than the spontaneous process, thus we can neglect the spontaneous contribution in the 

calculation.    
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6.5.3  Energy Exchange between Signal Field and Modulator 

In this Subsection, we shall determine the number of photoelectrons accumulated due 

to the energy exchange process between optical field and the modulator .  For clarity, 

we shall temporarily neglect the laser phase noise SN(,t).  The photoelectron flux 

F(t) generated from the energy exchange process can be expressed as 

          2
2 1 , , cos 2 , ,S S S S S SF t F t t A t B t              (6.109) 

where the subscript  denotes the contribution from the energy exchange process, S 

is the mean initial phase angle of the optical field, A(S,t) and B(S,t) are the phase 

(S,t) and (S,t).   

 The relation between photoelectron flux F(t) and the photoelectron count 

accumulated , is given by 

  
S M

S

T T

T

F t dt


    (6.110) 

The temporal profile of the photoelectron flux contributed from the energy exchange 

process is shown in Figure 6.26. 

 
Figure 6.26:  Temporal profile of photoelectron flux contributed from the process of 

energy exchange between optical field and modulator F(t). 
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Figure 6.26 is generated by setting the mean initial phase angle to zero i.e. S = 0.  By 

comparing Figure 6.26 with Figure 6.25, we can identify the magnitude of the 

photoelectron pulse contributed from the process of energy exchange is roughly 5 

orders of magnitude greater than the stimulated process.  As a result, we have |F(t)| 

>> F(t).   

 The total mean photoelectron flux contributed from the interaction between 

the optical field and the modulator is given by 

        T VF t F t F t F t     (6.111) 

where FV(t) is the time varying mean photon flux created from the process of 

spontaneous emission out of the modulator.  FV(t) can be determined by computing 

the frequency integral in Equation (6.97) i.e. 

     21 ,
2

U

L

VF t t d




  


   (6.112) 

From expression (6.112), we see FV(t) ≥ 0.  Since  >> V (see expressions (6.104) 

and (6.108)), and both FV(t) and F(t) are always positive, we can therefore conclude 

F(t) >> FV(t).  Since |F(t)| >> F(t) >> FV(t), thus the mean total photon flux 

created at a given time is mainly governed by the energy exchange process i.e. FT(t) ≈ 

F(t).  Therefore we simplify Equation (6.111) into  

 
   

       2
2 1 , , cos 2 , ,

T

S S S S S S

F t F t

F t t A t B t      



     
 (6.113) 

Due to the dominance of the energy exchange process, the temporal profile of FT(t) 

will follow F(t) profile in Figure 6.26.   

However, the steady state amplitude of each photon creation pulse (time interval 

C in Figure 6.21) is different and can be negative.  This implies different number of 
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photons will be created at different transitions.  This is due to the dependence on the 

phase angle 2S + A(S,t) + B(S,t).  The mean input field phase angle is constant at 

S.  From Equation (6.18), the phase of A(S,t) is the same for every transition.  From 

Equation (6.19), the dependence of (,t) on the complex exponential term inside the 

time integral indicates B(S,t) varies from 0 to 2 for every transition.  A plot of the 

variation of B(S,t) against time is shown in Figure 6.27. 

 

Figure 6.27:  B(S,t) against time. 

 

By comparing Figure 6.27 with the refractive index n(t) profile in Figure 6.19, we can 

identify the phase variation of B(S,t) is non-zero when there is a transition in n(t), 

where ‘R’ represents a rise transition in n(t), while ‘F’ represents a fall transition in 

n(t).  For each transition of n(t) the non-zero constant value of B(S,t) persists for 

roughly for a duration of Tf before it returns back to zero.  At every transition, the 

phase of B(S,t) is different, which is responsible for the difference in the steady state 

amplitude of F(t) as shown in Figure 6.26.  Furthermore, Figure 6.27 shows B(S,t) 
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changes by an amount of for every second transition, which implies B(S,t) will 

change by an angle of for every rise/fall transition.  The phase drift of B(S,t) in 

Figure 6.27 signifies the non-zero steady state value of F(t) oscillates in between 

|F(t)| and -|F(t)| in the order 20 pico-seconds (i.e. 2/ ~ 20ps).  As a result, the 

positive values of F(t) will cancel out with the negative values of F(t) within the 

measurement interval TM >> tc.  Although the photo-electron count generated from 

the energy exchange process F(t) is in general much greater than the stimulated 

process F(t), the average number of photoelectrons accumulated due to the energy 

exchange process will be small due to this cancellation.  Thus we have 

    (6.114) 

Short term effects of particle creation or annihilation by field-modulator energy 

exchange could be large but at the current time there are no known practical situations 

where such short time scales are relevant.  Expression (6.114) show in the time scale 

of optical detection, the number of photoelectrons accumulated from the energy 

exchange process can be neglected as it is much smaller than stimulated emission 

process 

If the impact of phase noise SN(S,t) is considered, it will give the same result as 

in Equation (6.114).  This is because the measurement time TM is much greater than 

the transmit laser coherence time tc, thus the PDF of F(t) is represented by expression 

(6.52).  Using the result in Equation (6.54), it is shown that averages out to 0 over 

time when the effect of phase noise is included.   

Using the expression (6.43), and the result in Equation (6.108), the total mean 

photoelectron count accumulated in 1 second due to the quantum effect of photon 

creation from modulator, is given by 
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71.0*10

Y V

photoelectrons

 


   




 (6.115) 

In order to determine the effect of photon creation, we shall define the quantum ratio 

 as 

 


 in

Y

Y


   (6.116) 

where <Ŷin> is the mean photoelectron count detected from the unmodulated field.  

The bigger the value of  the effect of photon creation will become more dominant.  

By using the result of Y in Equation (6.116), and the expression of <Ŷin> in Equation 

(6.32), is calculated to be 

 

 
7

9
15

1.0*10 1.3*10
7.8*10

    (6.117) 

From (6.117), we can determine the photon creation has an effect of 1 part to the 109 

(1/), hence the effect of photon creation is small. 

 

6.5.4  Dependence of Photon Creation Process 

In this Subsection we shall determine the factors that govern the process of photon 

creation out of the modulator.  From the power flow expression (6.28) in Section 6.2, 

it is shown that the process of photon creation is dependent on the Bogoliubov 

coefficients (,t) and (,t).  From expression (6.18) and (6.19), it is shown that 

(,t) and (,t) is dependent on the field frequency (t), the photon flight time of 

the modulator Tf, and the rate of change of instantaneous frequency d/dt of the field 

subjected to modulation.  In previous Subsections, we have shown the temporal 

profile of the field frequency (t) is governed by the refractive index profile n(t).  The 

features that govern the profile of n(t) include the transition rate  and change in 
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refractive index Δn.  As a result, these factors also have influence on the process of 

photon creation.  In summary, the factors that govern the process of photon creation 

are 

1. The frequency of input optical field (unmodulated) S. 

2. Photon flight time in the modulator Tf. 

3. 10 – 90% bit transition rate. 

4. Magnitude of the change in nonlinear refractive index Δn. 

An alternating rectangular pulse refractive index profile given in Equation (6.102) is 

considered, and the simulation parameters in Table 6.2 will be used to generate the 

numerical results presented in this Subsection.  We shall investigate how the process 

of photon creation will be influenced by changing the dependent parameters from 

above one at a time. 

 Equation (6.43) represents the difference in mean photoelectron count detected 

between the modulated and unmodulated field, as a consequence of the effect of 

photon creation from modulator.  In Equation (6.115), we have shown this difference 

is primarily due to the process of stimulated emission out of the modulator We 

shall begin by determining how the process of photon creation gets affected by 

changing the optical frequency of the input (unmodulated) field S, while other 

parameters in Table 6.2 are kept fixed.  A plot of the photoelectron count accumulated 

within the measurement time interval of TM = 1 s due to photon creation from the 

modulator, against frequency of input unmodulated field, is shown in Figure 6.28. 
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Figure 6.28:  Photoelectron difference between modulated field and input field Y for 

TM = 1 s against input field frequency S. 

 

Figure 6.28 shows the difference in photoelectron flux detected between the output 

(modulated) and input (unmodulated) field decreases exponentially with an increase 

of the input field frequency.  This is because S is inversely related to (,t), as 

shown in expression (6.19).  This makes physical sense because photons associated 

with higher frequency modes have more energy.   

 We shall now determine the effect of photon creation with respect to the 

photon flight time in the modulator Tf.  A plot of the mean photoelectron difference 

detected between the modulated output and the unmodulated input field for TM = 1 s, 

against photon flight time in the modulator, is shown in Figure 6.29.   
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Figure 6.29:  Relation between photoelectron difference of modulated and 

unmodulated optical field Y and photon flight time in modulator Tf.  

 

From Figure 6.29, it is shown that for Tf < Tp i.e. Tp = 1 ps, the mean photoelectron 

difference increases linearly with respect to Tf.  This is because an increase in Tf 

implies an increase in the length of the modulator.  As a result, the interaction length 

between the modulator and the control signal increases, thus more photons will be 

created from the modulator.    
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Figure 6.30:  Photoelectron difference of modulated and unmodulated field Y for TM 

= 1 s against magnitude of nonlinear refractive index n.  

 

Figure 6.30 shows the photon number created from the modulator increases 

exponentially with respect to an increase in nonlinear refractive index.  This trend can 

be shown from the mathematical expression in Equation (6.102), for which the 

refractive index profile n(t) is linearly proportional to the nonlinear refractive index 

n.  Therefore increasing n will lead to an increase in the rate of change in refractive 

index dn/dt.  Since the rate of change in frequency d/dt, is related to dn/dt, as 

indicated by Equation (6.20), therefore using Equation (6.19), we find an increase in 

dn/dt will lead to an exponential increase in |(S,t)|2, and thus Y increases 

exponentially according to expression (6.115).   

 Finally, we shall determine how changes in bit transition rate will alter the 

process of photon creation.  The relation between the mean photoelectron difference 

and the bit transition rate is shown in Figure 6.31.    
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Figure 6.31:  Photoelectron difference of modulated and unmodulated optical field Y 

for TM = 1 s against bit transition rate . 

 

Figure 6.31 shows the mean photoelectron difference detected due to photon creation, 

increases exponentially with respect to an increase in bit transition rate .  This is 

because dn/dt is dependent on  which can be verified from Equation (6.102).  Using 

Equation (6.19) and Equation (6.20), we can identify an increase dn/dt will lead to an 

exponential increase in |(S,t)|2, and thus Y increases exponentially according to 

Equation (6.115).  An exponential increase in photon number from Figure 6.31 is 

valid provided the adiabatic condition in Equation (6.21) is satisfied.   
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phase modulated field with the effect of photon creation from modulator included in 

the analysis. 

The simulation parameters used in this analysis is given by Table 6.4 from below. 

 

Parameters Notations Value 

Transmit laser power Pin 1 mW 

Optical carrier wavelength  λS 1550 nm 

Refractive index (unmodulated) n 3.5 

Nonlinear refractive index change Δn 0.05 

Control signal frequency  1012 s -1 

Photon flight time in modulator Tf /2 = 0.25 ps 

Table 6.4:  Parameters used in sinusoidal modulation. 

As we have discussed in previous Subsections, n(t) follows the intensity profile 

of the control signal iC(t).  Therefore, a convenient form of sinusoidal refractive index 

profile can be expressed as 

    1 sin 2
2
nn t n t

      (6.118) 

where the parameters in Equation (6.118) is defined in Table 6.4.  By using the 

simulation parameters in Table 6.4, a plot of n(t) is shown in Figure 6.32. 

 

Figure 6.32:  Refractive index profile induced from sinusoidal control signal. 
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By using the expression of n(t) in (6.118), as well as relating n(t) and (t) by 

Equation (6.16), S(t) can be expressed as  

 

 
 
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1 1 sin 2
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 
       


    

 (6.119) 

In the second line of Equation (6.119), the first order Taylor series approximation has 

been used because n << n.  S is the frequency of the unmodulated optical field.  

 is the maximum frequency deviation and is defined as  = Sn/n.  By 

substituting expression (6.119) into Equation (6.15), the modulated phase angle is 

given by  
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 (6.120) 

By choosing the photon flight time inside the modulating medium to be Tf = 1/2the 

phase offset induced from the modulator is a sinusoid [5], in which W(S,t) in 

Equation (6.120) can be re-expressed as

    cos 2
,

2S S

t
W t t

 
  




     (6.121) 

where Tf. 

 From the theory of signal processing, the PSD denoted by P(), is expressed 

as [56]  

     2
P   S  (6.122) 



 164 

where S() is the spectral amplitude, and can be determined from the Fourier 

Transform of the time varying signal amplitude s(t) 

      exps t i t dt 




 S  (6.123) 

The time varying signal amplitude s(t) is related with the power flow of the signal 

field via. the expression [56] 

     2
P t s t  (6.124) 

In QFT, the s(t) can be approximated as  

     0 02 outs t c A E t


  (6.125) 

where the modulated field component   outE t


 is related to  ,oute t
  in Equation 

(6.14) by 
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 The time varying signal amplitude can be determined by using the expression 

of the modulated field operator in Equation (6.13), the relations in (6.28), and the 

approximation in (6.125), where we arrived at  
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 (6.127) 

where W(,t) is the modulated phase angle given by Equation (6.15) and S is the 

mean initial phase angle of the signal field.  It can be verified that the magnitude 

squared of the signal amplitude in Equation (6.127) does not include the last term in 

Equation (6.28) (i.e. spontaneous emission from modulator), therefore Equation 

(6.125) is an approximate expression because it does not exactly satisfy the condition 

in Equation (6.124).  Given that the power of the transmit laser is in the order of 1 mW, 

the photoelectron flux contributed from the process of spontaneous emission from 
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modulator V is much smaller than the other photon creation process, as discussed in 

previous Subsections.  Therefore the s(t) is well approximated by Equation (6.127).   

By substituting the phase expression in Equation (6.121) into the signal 

amplitude expression in Equation (6.127), we have 

        * cos 2
, , exp

2
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  
       

  
  (6.128) 

where out is the propagation phase delay due to field propagation, and can be 

expressed as out in + .  The sinusoidal component inside the complex 

exponential term in Equation (6.128) can be expressed as [22, 55] 

      exp cos 2 exp 2m
m

K t J K i m t  




      (6.129) 

Jm(K) is the mth order Bessel function of the first kind, and is given by [22, 55] 

    1 exp sin
2mJ K i K x mx dx



 

     (6.130) 

where m is an integer.  By using Equation (6.130) to re-express the signal amplitude 

sSIN(t) from Equation (6.128) in terms of Bessel function Jm(K), we have  
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If the effect of photon creation is neglected, (S,t) = 1 and (S,t) = 0, the signal 

amplitude of the modulated field is expressed as 
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By using Equation (6.132), (6.123) and (6.122), the PSD of the modulated field for 

which the effect of photon is neglected, is expressed as 
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  (6.133) 

The expression in (6.133) resembles to the quantum result presented by [9], as well as 

the results from classical field theory (CFT) [22 - 24].  This shows our analysis 
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reproduces the standard results if the effect of photon creation is neglected.  Once 

again, this signifies the model presented by [9], does not give a complete quantum 

representation of the phase modulation process as it does not include the effect of 

photon creation from modulator.   

A comparison between the PSD determined from QFT (effect of photon creation 

included), with the standard PSD obtained from CFT, is shown in Figure 6.33. 

 

Figure 6.33:  Comparison of PSD between QFT (photon creation included) and SCFT 

(photon creation not included) for sinusoidal modulation. 

 

The red dotted line in Figure 6.33 is a plot of expression (6.133).  It shows the 

spectrum of a phase modulated field contains a carrier frequency component S and 

an infinite set of sidebands, i.e. side frequencies, located symmetrically on either side 

of S.  Each sideband is equally separated from one another by an angular frequency 

of 2.  The amplitude for each sideband is roughly governed by the square of the 

absolute value of Bessel function i.e. |Jm(/2)|2.  The blue solid line represents 
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PSD determined from QFT.  From Figure 6.33, we can identify the blue dotted line is 

almost an overlap of the solid red line, because the effect of photon creation is small, 

as indicated from expression (6.117). 

 

6.7  Conclusions 
In this Chapter, we have investigated the key properties of the phase modulated field 

by accounting for the effect of photon creation from the modulator in the analysis.  

We identify there is a power flow mismatch at the input and output of a lossless 

modulator during the modulation process.  The mismatch in power flow is accounted 

for by noting that an external agent alters the refractive index of the modulator which 

excites the vacuum state of the field so that photons are created or removed from the 

optical field during the modulation process.  It is shown the process of photon 

creation affects the mean and variance of photoelectron arrival statistics observed by 

the detector.  If the detection time is relatively long as compared with the repetition 

rate of the control signal, the effect of photon creation increases the mean and 

variance of photoelectron arrival statistics.  However, the increase in variance is 

greater than the mean, thus photon creation degrades the SNR of phase modulated 

field.    

The process of photon creation also alters the state of the modulated field.  If the 

effect of photon creation is neglected, the modulated field can be described by 

continuum coherent state.  However, if the effect of photon creation is included in the 

analysis, the modulated field should be described by two photon coherent state and 

the photon arrival statistics is no longer Poissonian.  

The phenomenon of photon creation can be classified into three independent 

processes, spontaneous emission and stimulated emission from modulator as well as 
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energy exchange between the optical field and the modulator.  Simulation results in 

Section 6.5 shows although the mean photon flux created from the modulator is 

dominated by the energy exchange process , however the total mean photoelectron 

count detected is governed by the process of stimulated emission from modulator.  

This is because the energy exchange process will average out to zero due to the 

presence of phase noise and the time varying phase angle of Bogoliubov coefficients.  

Numerical results also show the phenomenon of photon creation has an effect in the 

order of 1 part to 109 for tera-bit per second (Tbps) rectangular pulse modulation, and 

thus this implies the effect of photon creation has an insignificant impact to a phase 

modulated optical system.  The effect of photon creation on optical detection can be 

enhanced by decreasing the frequency of the input optical field S, as well as 

increasing the photon flight time of the modulator Tf, the change in nonlinear 

refractive index n and the bit transition rate.   

Finally, we have shown if the effect of photon creation from modulator is 

neglected, the PSD of a sinusoidal phase modulated field given by our model 

reproduces the Bessel function profile determined from CFT [22 - 24].  Furthermore, 

even if the effect of photon creation is included, the PSD for a THz sinusoidal phase 

modulated field closely resembles to the CFT results (Bessel function profile), which 

once again suggests that the impact of photon creation is small.   
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7 Quantum Modelling of Communication 

Systems 

 

7.1  Chapter Objectives 

In this Chapter, quantum field models of the commonly used modulation formats in 

optical communication systems are presented.  These modulation formats include 

homodyne and heterodyne binary phase shift keyed system (BPSK-HO, BPSK-HE), 

as well as homodyne and heterodyne amplitude shift keyed system (ASK-HO, ASK-

HE).  The quantum field expression of the phase modulated signal, derived in Chapter 

5, will be used in these models.   

This Chapter is organized as follows.  In Section 7.2, the signal amplitude and 

the noise detected from the BPSK-HO and BPSK-HE systems are derived from the 

quantum field analysis.  Similarly in Section 7.3, the signal amplitude and the noise 

detected from the ASK-HO and ASK-HE systems are derived.  The expressions 

obtained in these two Sections reveal the differences between the results given by 

semi-classical field theory (SCFT) [1, 25] and quantum field theory (QFT).   

In Section 7.4, the optical detection theory presented in Chapter 2, is used to 

determine the bit error rate (BER) quantum limit and the signal to noise ratio (SNR) 

of the modulation systems considered, operating at a bit-rate of 2 Tbps.  Furthermore, 

this Section reveals the effect of bit transition on quantum limit by considering a 

continuous alternating bit pattern, for which a bit transition occurs in every bit period 

‘1010..’.  A comparison is drawn between the results obtain from SCFT and QFT for 
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this bit pattern.  The effect of photon creation and its relative impact to the 

communication system is distinguished from these comparisons.   

In Section 7.5, the dependence between the BER quantum limit and the bit-rate 

will be shown from the simulation results.   

 

7.2   Quantum Field model of BPSK System 

In a BPSK system, the transmitted data is encoded onto the phase of the optical field 

by the use of an external phase modulator at the transmitter.  The optical field is 

generated from the transmit laser operating in steady state.  A coherent receiver is 

used to detect the encoded data in order to determine the information being sent.  In 

this Section, a quantum field model for the BPSK system is developed in order to 

consider the impact of photon creation on the system, an effect that cannot be 

incorporated using semi-classical field theory (SCFT).    

 

7.2.1 Analysis of BPSK Transmitter  

A BPSK transmitter consists of a laser and a phase modulator as shown in Figure 7.1.  

The laser generates an optical field typically at a wavelength of 1500 nm.  The phase 

of the optical field will be modulated by the phase modulator.  The phase change of 

the optical field is governed by the control signal.  When a bit ‘1’ is sent the phase of 

the optical field is unchanged, and when a bit ‘0’ is sent, the phase of the field will 

experience an 1800 phase shift.  The phase modulated optical field will then propagate 

to the receiver.   
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Figure 7.1:  Configuration of BPSK transmitter. 

 

In this Chapter, we shall represent the optical field in terms of quantum field 

operator instead of mathematical function as in SCFT presented in Chapter 2.  The 

effect of laser phase noise SN(,t) will be considered in this analysis.  We shall use 

the Heisenberg picture in which the field operator changes as a consequence of 

modulation, but the state of the field remains unchanged.  In Chapter 5.5, we have 

shown the phase modulated signal field operator ÊS(t) after propagating through the 

phase modulator can be expressed as 
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 (7.1) 

where  is the angular frequency,  ,Sb t  is the annihilator of the phase modulated 

field, W(,t) represents the time varying phase as a consequence of modulation,  is 

the propagation phase delay, and H.c. is an abbreviation for Hermitian conjugate.  By 

comparing the second line and the last line of Equation (7.1), it can be identified that 

the expression of êS
+(,t) takes the form 

Laser Phase 

Modulator 

Digital binary data sequence 

(Control signal field) 

ÊS(t) 

L 
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The time varying phase due to modulation can be expressed as 

    ,
f

t

f
t T

W t t T d     

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where Tf is the photon flight time inside the modulating medium.   

In Chapter 6, we have shown the annihilation operator of phase modulated field 

 ,Sb t  is related to the phase noise input unmodulated field annihilation and 

creation operator, âS(,t) and âS
+(,t), by the time and frequency dependent 

Bogoliubov transform 
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where (,t) and (,t) are the time dependent Bogoliubov coefficients.  In Chapter 

5.2, we have derived their approximate expression to 1st order to be 
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where the Bogoliubov coefficients satisfy the identity, 

    2 2
, , 1t t      (7.7) 

Using the transformation in Equation (7.4), the Bogoliubov identity in Equation (7.7), 

and the equal time commutation relation for âS(,t) and âS
+(,t) introduced in 

Chapter 6.2 i.e., 
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the commutation relation of phase modulated field annihilator  ,Sb t  and creator 

 ',Sb t
  is determined to be 

      , , ', 'S Sb t b t    
     

   (7.9) 

In Chapter 6, we have shown the phase noise annihilation operator âS(,t)is related 

to the input annihilation operator â() (without phase noise) by 

      , expS S SNa t a i t      
   (7.10) 

 In an optical communication system, a single mode laser is generally 

employed to avoid signal degradation as a result of modal dispersion [25].  The 

optical field generated from the single mode laser can be represented by a continuous-

mode coherent state |{S()}> with the wavepacket function S() expressed as [33, 

46] 

        1/ 22 expS S S SF i         (7.11) 

where FS is the time independent mean photon flux, S is the mean of initial phase, 

and S is the frequency of the optical field.   By operating the input annihilation 

operator âS() on the continuous-mode coherent state we have 
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Since the Heisenberg picture is adopted, the state of the modulated field is unaffected 

by the modulation process so that Equation (7.11) will also characterize the 

wavepacket function of the modulated field. 

 

7.2.2 Analysis of BPSK Homodyne Receiver 

In this Subsection, we consider the modulated field is detected by a balanced 

homodyne receiver, as shown in Figure 7.2. 
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Figure 7.2:  Balanced homodyne receiver structure. 

 

Before we proceed with the quantum analysis of optical detection, we shall make 

the following assumptions: 

1. The two photodiodes of the balanced receiver are identical. 

2. The dynamics of the PLL is fast enough to track the phase variation of the signal 

and LO field. 

3. The state of polarization (SOP) of the LO optical field is identical to the received 

signal. 

4. The optical and electronic devices of the coherent receiver are lossless. 

The operation of a BPSK receiver has been discussed in Chapter 2.2.  It consists 

of a local oscillator (LO) laser at the receiving end so that the receiver is shot noise 

limited.  The phase of the LO field is controlled by the phase locked loop (PLL) to 

optimize the SNR [22 - 25]. 

Similarly to the transmit laser, the LO laser is a single mode laser, and thus the 

wavepacket function of the LO field state L() can be expressed as 
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where FL is the time independent mean photon flux, S is the mean initial phase angle, 

and LO is the frequency of the optical field.  In homodyne detection, the LO field 

frequency is the same as the signal frequency of the transmit laser (LO = S).  The 

power of the LO field is an order of magnitude greater than the power of the signal 

field, therefore FL >> FS.  

The LO field is corrupted by laser phase noise due to spontaneous emission in 

the laser cavity.  The LO field operator that includes the presence of phase noise is 

expressed as 
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where LO(t) is the phase controlled by the PLL and êLO
+(,t) is expressed as 
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Using the approach in [33], the annihilation operator that incorporates the phase noise 

of the LO field,  ,La t  , can be expressed as 

      , exp ,L L LNa t a i t       
   (7.16) 

where LN(,t) is the phase noise of the LO field and âL() is the annihilation 

operator of the LO field (phase noise neglected).  By operating âL() onto the state of 

the LO field in Equation (7.13), we have 
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 176 

where we have used the property LO = S for homodyne detection.  The 

commutation relation between âL(,t) and âL
+(’,t), and âL() and âL

+(,t), is  

          , , ', , ' 'L L L La t a t a a       
            

     (7.18) 

Because the LO field and signal field is generated from two different lasers, therefore 

the signal annihilator âS() does not operate on the LO field state |{L()}>, and 

vice-versa.  The commutation relation between âS() and âL
+() is [33, 35] 

    , ' 0S La a 
    

   (7.19) 

and therefore 

        , , ', , , ', 0S L S Lb t a t a t a t     
           

     (7.20) 

For simplicity of the analysis, the effect of photon creation as a consequence of 

controlling the phase of the LO field has been ignored.  This is because the phase drift 

of L(t) is small as compared with the bit transition rate [1], therefore (,t) ≈ 0 for 

LO field operator. 

The signal field enters into an input port (I1) of 3 dB optical coupler while the LO 

field enters into the other input port (I2), as shown in Figure 7.2.  The field at the 

couplers output port O1, can be expressed as 
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while the field at output port O2 is 
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where  
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            1
1, , exp , , exp
2

S L LOb t b t i W t t a t i t                
    (7.23) 

            2
1, , exp , , exp
2

S L LOb t b t i W t t a t i t                
    (7.24) 

Using the commutation relations in Equations (7.9), (7.18) and (7.20) it can be verify 

that 

          1 1 2 2, , ', , , ', 'b t b t b t b t      
            

     (7.25) 

A practical p-i-n photodiode is imperfect; therefore it does not achieve complete 

conversion of incident photons to electric current.  The fraction of incident photons 

that on average generate a photoelectric current is called quantum efficiency, denoted 

by .  The losses in photoelectric process due to an inefficient photodiode can be 

represented as a beam splitter followed by an ideal photodiode [33], as shown in 

Figure 7.3. 

 

Figure 7.3:  Beam splitter representation of inefficient photodiode. 

 

The beam splitter in Figure 7.3 has a transmission coefficient, T = ()and 

reflection coefficient, R = i[1-()] ÊV(t) in Figure 7.3, is the vacuum field 

operator.By assuming the photodiode 1 and 2 are identical, the quantum efficiencies 

for photodiode 1 and 2 are both represented by .  The detected field operator at 

photodiode 1 and 2, ÊD1(t) and ÊD2(t), can therefore be expressed as

Ê(t) 

ÊV(t) 

ÊD1(t) 

T = ()1/2 , R = i(1-())1/2  Ideal photodiode (()=1)  
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where  
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and 

          1/ 21/ 2
1 1 1, , 1D Vb t b t i a          

    (7.30) 

          1/ 21/ 2
2 2 2, , 1D Vb t b t i a          

    (7.31) 

The expression of vacuum field operator, ÊV1(t) and ÊV2(t), is given by 
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where the annihilation operator âV1() and âV2() satisfies the commutation relation  

          1 1 2 2, ' , ' 'V V V Va a a a      
            

     (7.34) 

ÊV1(t) and ÊV2(t) are denoted as the vacuum field operator, because they operate on a 

vacuum state |0V1> and |0V2>, respectively.  It should be noted âV1(t) does not operate 
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on vacuum state |0V2> and likewise âV2(t) does not operate on state |0V1>.  

Furthermore, both âV1() and âV2() does not operate on state |{S()}> and 

|{L()}> because they are independent to the signal and LO field [33].  The vacuum 

field operator ÊV1(t) and ÊV2(t), are introduced to preserve the commutation relation so 

that 

          1 1 1 1, ' , ' 'D Da a a a      
            

     (7.35) 

and  

          2 2 2 2, ' , ' 'D Da a a a      
            

     (7.36) 

For simplicity of the analysis, we assume the photodiode has a simple frequency 

profile, as shown in Figure 7.4. 

 

Figure 7.4:  Frequency profile of an imperfect photodiode. 

 

L is the lower cutoff frequency while U is the upper cutoff frequency.  The input 

signal frequency S, and LO frequency LO, lies well within the passband of 

photodiode i.e L < S < U.   

Using the frequency profile of () in Figure 7.4, the photocurrent operator, Î1(t) 

and Î2(t), that describes the photocurrent generated from the photoelectric process at 

photodiode 1 and 2, respectively, can be expressed as [33] 

L  U 
0 





(rad s-1) 

B  
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The parameter R() is the responsitivity for an ideal photodiode and is expressed as  

R() = ()q/ħwhere q is the charge of an electron (q = 1.6*10-19 C) and ħ is the 

reduced Planck constant (ħ =1.054*10-34 Js).  Figure 7.2 shows the current generated 

from photodiode 1 is subtracted from photodiode 2.  The resultant current operator is 

therefore expressed as  
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 (7.39) 

In the last line of Equation (7.39), we have expressed êD1(t) and êD2(t) in terms of 

êS(t) and êLO(t) using expressions (7.21), (7.22), (7.26) and (7.27), where the 

expression of êS(t) and êLO(t) is given by Equation (7.2) and (7.15).  Using the 

expression in (7.39), and expressing êS
+(t) and êLO

+(t) in terms of âL(,t) and 

âS(,t) from (7.2), (7.7) and (7.15), the expectation value of the photocurrent in the 

BPSK homodyne (BPSK-HO) receiver <ÎBPSK-HO(t)> is expressed as 
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 (7.40) 

where |v>=|{S()},{L()},0V1,0V2>.  Notice that the expression in Equation (7.40) 

is independent on the vacuum field parameter because âV1()|0 V1> = âV2()|0 V2> = 

0.  By applying the annihilation operator âL(,t) and âS(,t) onto the state |v> and 

<v| in Equation (7.40) and then used the expression in (7.17) and (7.12), Equation 

(7.40) can be simplified to 

           
            

2 1 , cos , , ,

, cos , , , ,

BPSK HO S L S S S out LO LN S SN S S LO

S S S out LO LN S SN S S LO S

I t q F F t W t t t t t

t W t t t t t B t

            

            

           

          

  (7.41) 

where B(S,t) is the phase angle of (S,t).  In this equation, we have use the identity 

in Equation (7.7) to express |(S,t)|2 in terms of |(S,t)|2.  Furthermore we have 

assumed A(S,t) = 0 in Equation (7.41), because from the expression of (S,t) in 

Equation (7.5), we can identify the imaginary term is small when the frequency 

changes adiabatically with respect to the carrier frequency (i.e. dS/dt << S
2).  The 

dependence on the Bogoliubov coefficient |(S,t)| in Equation (7.41) represents the 

effect of photon creation from modulator as a result of phase modulation. 

From Figure 7.2, we see a portion of the photocurrent is directed to the PLL to 

control the phase of the LO.  This is related to current operator  I t  by 

   PLL eI t K I t   where Ke is the proportionality constant.  In an optical system Ke is 

generally small [32], and for simplicity of the analysis, we neglect the current flowing 

to the PLL i.e.   0PLLI t   and    DI t I t  .  The PLL attempts to control the phase 

of the LO field LO(t) so that the magnitude of the signal current  BPSK HOI t
  is 
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maximized for all time.  Using expression (7.41), it can be verified that the controlled 

phase angle LO(t) that yields a maximum value of <ÎBPSK-HO(t)> is  
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 (7.42) 

where the approximation in the second line of Equation (7.42) is valid when |(S,t)| 

<< 1.   

In this analysis, we assume all the signal current Î(t) is fed into a matched filter 

as   0PLLI t  .  The matched filter for BPSK system can be realized by an integrator 

[1, 22 - 25].  The resulting output is sampled at every bit period Tb.  The signal (t), 

that gets multiply by the current operator ÎD(t) takes the form [1]  

    = 1HO bt t T    (7.43) 

The homodyne detection operator ŶHO(t) can be represented as 
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By expressing Î(t) in terms of êS(,t) and êLO(,t) from Equation (7.39), using the 

field expression êS(,t) and êLO(,t) in Equation (7.2) and (7.15), as well as the 

relation between  ,Sb t  and âS(,t) and âS
+(,t) in Equation (7.4), the mean 

signal amplitude detected from the homodyne BPSK system <ŶBPSK-HO(t)>, can be 

expressed as 
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where the state |v> = |{S()},{L()},0V1,0V2>.  Similarly to the calculation of 

<ÎBPSK-HO(t)>, by applying the annihilation operator onto the field state |v> as well as 

substituting the expression of the controlled phase angle LO(t) in Equation (7.42), the 

signal amplitude detected from homodyne detection <ŶBPSK-HO(t)> can be simplified 

to 
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The detected signal amplitude in Equation (7.46) shows the effect of photon creation 

as a consequence of phase modulation gives rise to two extra non-zero |(S,t)| terms.  

The last term is dependent on the phase angle, and when the phase angle is 0 < 2S + 

2SN(S,t) + B(S,t) < /2 within Tb, the process of photon creation will increase the 

signal amplitude on average, else the average signal amplitude will decrease.  In fact, 

the last term in Equation (7.46) represents the energy exchange between the optical 

field and the modulator, as discussed in Chapter 6.3.   

By definition, the shot noise variance (signal amplitude variance) that influences 

the homodyne detection is given by [33] 
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 (7.47) 

After some laborious algebra, it can be verified that êD1
+(,t) and êD1

-(,t) satisfies 

the commutation relation [33] 
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By expressing êD1(,t) and êD2(,t) in Equation (7.47), in terms of êS(,t) and êLO(,t) 

from Equation (7.21), (7.22), (7.26) and (7.27), employing the commutation relation 

in Equation (7.48), and expressing êS(,t)and êLO(,t) in terms of  ,Sb t  and 

 ,Sb t
  using Equation (7.1) and Equation (7.14), the shot noise variance of a 

BPSK-HO system is given by  
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 (7.49) 

[YBPSK-HO(t)]2 represents the effect of shot noise when photon creation is included in 

the analysis.  If the effect of photon creation from modulator is neglected, i.e. |(S,t)| 

= 0, Equation (7.49) reduces to the result in SCFT [1, 25].  Similar to SCFT, an 

increase in signal and LO field power will increase the amount of shot noise entering 

the system [1, 25].  Notice that in Equation (7.49), |(S,t)| is not associated with FL, 

because we have neglected the effect photon creation of the LO field for simplicity.  

The frequency integral in the last term of Equation (7.49) is an effect of spontaneous 

emission from modulator.   The integral limits have a lower and upper cutoff 

frequency, L to U respectively, because the photodiode is bandwidth limited (see 

Figure 7.3).  This effect changes the noise variance at frequencies nearby S. 

The homodyne receiver is shot noise limited, which requires the LO field power 

to be much greater than the signal field power i.e. FL >> FS [1].  As a result, the time 
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averaged noise current of the BPSK-HO system in Equation (7.49) can be well 

approximated as 

   2 2
BPSK HO LY t q F     (7.50) 

The approximation in Equation (7.50) corresponds to the shot noise variance 

expression in traditional communication system literatures [1, 25].  This implies the 

influence of photon creation on the noise statistics is suppressed when the power of 

the LO field is large.  Therefore, the shot noise determined from QFT converges to 

the results in SCFT [1, 25].    

 

7.2.3 Analysis of BPSK Heterodyne Receiver 

As we have explained in Chapter 2, the configuration of the heterodyne receiver is 

very similar to the homodyne receiver except that the optical frequency of the LO 

laser is not the same as the laser frequency at the transmitter (LO  ≠ S) for a 

heterodyne receiver.  The LO field and the signal field operator, ÊLO(t) and ÊS(t), for 

heterodyne receiver is the same as the homodyne receiver and is expressed in (7.14) 

and (7.1) respectively.  It is the state of the LO field that distinguishes the frequency 

mismatch between the LO field and the modulated signal field.  In heterodyne 

receiver, the LO field state is expressed using  

        1/ 22 expL L LO LOF i         (7.51) 

where the last line in Equation (7.13) does not apply to heterodyne receiver as (LO ≠ 

S).  The mixed signal for heterodyne receiver HE(t) that is being multiplied with the 

detector current Î(t), is different from the homodyne detector HO(t) expressed in 

Equation (7.43).  This is a consequence of the frequency difference between the LO 

laser and the transmit laser.  The multiplied signal is expressed as [1] 
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      2 cosHE IF
b

t t t
T

     (7.52) 

where IF is the intermediate frequency and is the frequency difference between the 

LO laser and the laser at the transmitter (IF = S - LO).  The homodyne receiver can 

be considered as a special case where IF = 0.  In general, IF is roughly an order of 

magnitude greater than the bit rate of the communication system [25].   

Since the heterodyne receiver configuration is identical to the homodyne receiver 

before the matched filter, therefore the current operator Î(t) continue to be represented 

by Equation (7.39).  The mean of the photocurrent in the BPSK-HE receiver 

 BPSK HEI t
  can be determined by operating Î(t) onto bra-ket state vector, |v> and 

<v|, where we have 
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 (7.53) 

The state vector |v> is |v> = |{S()},{L()},0V1,0V2>.  In this equation, the phase of 

(S,t) denoted as A(S,t), has been neglected.  The mean signal current expression 

for BPSK-HE receiver in Equation (7.53) is similar to the expression of BPSK-HO 

receiver in Equation (7.41), except that there is a frequency offset of IF for the 

heterodyne receiver.  By following a similar procedure in the calculation of the phase 

controlled by the PLL, we find that LO(t) for a BPSK-HE system is very similar to 

that of BPSK-HO in Equation (7.42), but with the frequency argument S replaced by 

LO in the LN term in expression (7.42).   

From Figure 7.5, we can represent the detection heterodyne operator ŶHE(t) as 



 187 

 

      

   

' ' '

2 ' cos ' '

b

b

t T

HE HE
t

t T

IF
b t

Y t I t t dt

I t t dt
T




















 (7.54) 

By operating Î(t) onto the state vector |v> = |{S()},{L()},0V1,0V2>, with |{L()}> 

now represented by Equation (7.51) for heterodyne receiver, and using the expression 

of LO(t) in Equation (7.42), the mean signal amplitude detected from the BPSK-HE 

system is 
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The high frequency term cos(W(S,t) - St + 2IFt) has been omitted in expression 

(7.55) as it averages out to zero in a time duration of a bit period Tb.  By comparing 

signal amplitude detected from the BPSK-HE   BPSK HEY t  in Equation (7.55) with 

the BPSK-HO receiver   BPSK HOY t  in Equation (7.46), we can identify 

     2BPSK HO BPSK HEY t Y t  .   

Similar to the definition of the homodyne noise variance in Equation (7.47), the 

shot noise variance (signal amplitude variance) of the heterodyne receiver is defined 

as 
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 (7.56) 

Using the relation in Equation (7.48), the shot noise variance that influences the 

detection of the BPSK-HE system can be expressed as 
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The high frequency term cos(2IFt) inside the time integral of Equation (7.57) will get 

averaged out to zero in a duration of one bit period Tb.  When the intermediate 

frequency IF term is omitted, and the annihilation and creation operator operates 

onto the field state |v> in expression (7.57), [YBPSK-HE(t)]2 can be re-expressed as 
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 (7.58) 

Notice that the expression of [YBPSK-HE(t)]2 in Equation (7.58) is equivalent to the 

expression of [YBPSK-HO(t)]2 in Equation (7.49), therefore the shot noise variance for 

the heterodyne detector is the same as the homodyne detector.  Similarly, by using the 

fact FL >> FS, and the spontaneous contribution (last term of (7.58)) is small, the shot 

noise variance for BPSK-HE can be simplified into  

    2 2 2
BPSK HE BPSK HO LY t Y t q F            (7.59) 

 

7.3  Quantum Field Model of ASK System  

In an ASK system, the transmitted data is encoded onto the amplitude of the optical 

field.   In Chapter 2.2, we show this can be realized by the use of external phase 

modulator for which the optical signal generated from the steady state laser at the 

transmitter interferes constructively or destructively, depending on the control signal 

(transmitted data).  Similarly to the BPSK system, the ASK system can be detected 

using homodyne and heterodyne receiver.  In this Section, a quantum field model for 

the ASK-HO and ASK-HE system using external phase modulator will be presented.   
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7.3.1 Analysis of ASK Transmitter 

In an externally modulated system, the ASK transmitter consists of a laser, and a 

Mach Zehnder interferometer (MZI) as shown in Figure 7.5.   

 

 

Figure 7.5:  Block diagram of ASK Transmitter. 

 

The field operator of the transmit laser Êin(t) is given by 
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 (7.60) 

where âS(,t)is the annihilation operator that includes the effect of laser phase noise 

and is defined in Equation (7.10).   

The power of the optical field will be divided equally by the 50:50 beam splitter 

at the input of the MZI, and thus the magnitude of the amplitude reflection coefficient 

is |R|, and transmission coefficient |T|, of the beam splitter is, |R| = |T| = 1/√2.  The 
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phase difference between the reflection coefficient R and the transmission coefficient 

T is /2 (R - T = /2) [33].  The optical field at arm 1 is represented as 

 
        

      
1

1
2

V

V

E t RE t T E t

iE t E t

 

 
 (7.61) 

while the optical field at arm 2 is  
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 (7.62) 

In Equation (7.61) and (7.62), the transmission coefficient phase angle T has been 

chosen to be 0 to simplify the analysis.  The vacuum field ÊV is introduced so that the 

commutation relation so that                  1 1 2 2, , ,
in in

E t E t E t E t E t E t
                     

.  

The vacuum field operator is expressed as 
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where the vacuum field annihilation and creation operator, âV() and âV
+(), satisfies 

the usual commutation relation 

      , ' 'V Va a    
     

   (7.64) 

The state of the vacuum field is described by a vacuum number state |0V>.  The phase 

modulator placed at arm 2 is to control the interference process and hence the 

amplitude of the optical field.  The field operator at arm 2 after propagating through 

the phase modulator is represented by (see Equation (7.1)) 
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where  is the propagation phase delay, W(,t) is the modulated phase angle and is 

defined in Equation (7.3).   ,Sb t  and  ,Vb t  are the modulated annihilation 
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operator for the signal and vacuum field, respectively, and are related to  ,Sa t   

and âV(), by the Bogoliubov transformation in Equation (7.4).   

The signal field at the output of the second 50:50 beam splitter (output of the 

MZI) is related to the field at arm 1 and arm 2 by 
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 (7.66) 

where 
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 (7.67) 

In the absence of field modulation, the optical path length at arm 1 and arm 2 are 

identical to one another.  Therefore, the complex exponential component associated 

with the unmodulated field annihilator âS(,t) is the same as the complex exponential 

associated with the modulated field annihilator  ,Sb t  i.e. W(,t) –  = t + .  In 

this situation, the field at arm 1 will constructively interfere with the field at arm 2 

after they recombine at the output of the second beam splitter.  This corresponds to a 

bit ‘1’ being transmitted.  In contrast, when a bit ‘0’ is transmitted, a field is applied at 

the control terminal of the modulator in order to create a phase delay at arm 2.  Thus 

the phase of the complex exponential associated with âS(,t) leads the corresponding 

phase angle of  ,Sb t  by i.e. W(,t) –  = t + +In this situation, the field 

from arm 1 will destructively interfere with the field from arm 2 at the output of the 
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MZI, hence the transmitted optical signal is effectively switched off (optical signal 

power ~ 0) at this instant. 

 Using the Bogoliubov identity in expression (7.7) and the commutation 

relation in expression (7.64), the following commutation can be verified 

      , , ', 'V Vb t b t    
     

   (7.68) 

 

7.3.2 Analysis of ASK Homodyne Receiver  

The configuration of balanced homodyne receiver for ASK system is the same as 

BPSK system shown in Figure 7.2.  Therefore, the detector current Î(t) can be 

represented by expression (7.39).  Using Equation (7.39), and expressing êS
+(,t) and 

êLO
+(,t) in terms of annihilation and creation operator in expression (7.67) and (7.15) 

respectively, the mean photocurrent for the ASK homodyne system (ASK-HO) <ÎASK-

HO(t)> is expressed as 
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 (7.69) 

where |v’> = |{S()},{L()},0V,0V1,0V2>. The vacuum field operators i.e.  ,Vb t  

and âV(), is not included in Equation (7.69) because they give a null result once they 

operate on the state vector |v’> or <v’|.  We shall simplify expression (7.69) by 

operating âS(,t) and  ,Sb t  onto the state |v’> where we have 
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 (7.70) 

where B(S,t) is the phase of (S,t).  In this Equation, we have neglected the phase 

of A(S,t).  Although the current operator Î(t) for both ASK and BPSK system is 

given by Equation (7.39), the expression for the mean signal current detected by the 

ASK-HO receiver <ÎASK-HO(t)> in Equation (7.70), is different from the current of the 

BPSK receiver <ÎBPSK-HO(t)> in Equation (7.40).   

Similarly to the BPSK analysis, we shall simplify the problem by neglecting the 

current flowing to the PLL, thus ÎPLL(t) = 0 and Î(t) = ÎD(t).  The controlled LO phase 

angle LO(t), that maximizes |<ÎASK-HO(t)>| is given by 
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 (7.71) 

where (t) = LN(S,t) - SN(S,t) + LO - S –  – /2 and ’(t) = LN(S,t) + 

SN(S,t) + LO + S –  + B(S,t) – /2.  In the second line approximation of 

Equation (7.71), we have omitted the |(S,t)| term because |(S,t)|<<1.   

Since the receiver structure is represented by Figure 7.2, therefore the homodyne 

operator of ASK receiver ŶASK-HO(t), is given by Equation (7.44).  By substituting the 

signal and LO field operator, êS(,t) and êLO(,t), from Equation (7.66) and (7.14) 

respectively, into expression (7.39), applying them onto the state vector |v’>, and 
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finally using the expression of LO(t) in Equation (7.71), the mean signal amplitude 

detected by the ASK-HO receiver is 
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 (7.72) 

From (7.72), we can identify the effect of photon creation gives rise to 2 extra 

|(S,t)| terms.  The presence of these two extra terms causes the mean signal 

amplitude detected when a bit ‘0’ is sent (i.e.  , ' 'S SW t t    ) to be non-zero.  

This is a consequence of the field component Ê1(t) and Ê2
out(t), cannot be completely 

cancelled out at the output of the MZI in Figure 7.5.  This is because the signal field 

amplitude at arm 2 is no longer equivalent to that in arm 1 due to phenomenon of 

photon creation during the process of phase modulation.   

 We shall now determine the impact of shot noise that influences the outcome 

of the detection process.  By using the mathematical definition of variance in 

Equation (7.47), the commutation relation in Equation (7.48), expressing êS(,t) and 

êLO(,t) in terms of annihilation and creation operator in Equation (7.67) and 

Equation (7.15) respectively, the shot noise variance of ASK system is expressed as 
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 (7.73) 

By operating the annihilation and creation operator onto state vector |v’> and <v’|, 

the shot noise variance expression in Equation (7.73) can be simplified to 
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 (7.74) 

The first and second term in Equation (7.74) corresponds to the shot noise variance 

presented by traditional communication literatures [1, 25] using SCFT.  The quantum 

effect of photon creation gives rise to the remaining |(S,t)| terms.  However, the 

ASK-HO noise variance [YASK-HO(t)]2 in Equation (7.74) is expressed differently to 

the noise variance of BPSK-HO system [YBPSK-HO(t)]2 in (7.49).  This is because only 

half of the transmitted laser power is fed into the modulator for the ASK system, 

while for the BPSK system, all the laser power is injected into the modulator.  As a 

result, different photon numbers are stimulated out of the modulator during the phase 

modulation process between these two systems, and hence lead to a different impact 

on the shot noise variance.    

Because FL >> FS for a shot noise limited receiver, therefore the first term in 

(7.74) dominates over all the other terms and thus Equation (7.74) can be 

approximated as 

   2 2
ASK HO LY t q F     (7.75) 

Similar to the BPSK system, the effect of photon creation on the shot noise variance is 

suppressed when the power of the LO field is large.  Once the quantum effect is 

omitted, the noise variance of BPSK and ASK system becomes identical i.e. 

   2 2
BPSK HO ASK HOY t Y t        .  This agrees with the results from SCFT [1, 25].  
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7.3.3  ASK Heterodyne Receiver Analysis 

The configuration of the ASK heterodyne (ASK-HE) receiver is the same as the 

BPSK-HE receiver, therefore the current operator Î(t) can be expressed in the general 

form in Equation (7.39).  The LO field and the signal field operator, ÊLO(t) and ÊS(t), 

for ASK-HE receiver is the same as the ASK-HO receiver and is expressed as (7.14) 

and (7.66), respectively.  Since LO ≠ S, the wavepacket function of the signal and 

LO field, S() and L(), is given by Equation (7.11) and (7.51), respectively.  By 

expressing Î(t) from Equation (7.39), in terms of annihilation and creation operators 

using Equation (7.67) and (7.15), and then operated onto bra-ket state vector |v’> and 

<v’| defined in Equation (7.69) (|v’> = |{S()},{L()},0V,0V1,0V2>), we have 
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(7.76) 

The expression of the mean heterodyne current in Equation (7.76) corresponds to the 

mean homodyne current in Equation (7.70) with an additional IF frequency offset.  It 

can be verified that the phase angle controlled by the PLL is similar to Equation 

(7.71), but with S replaced with LO in the LN term. 

 The heterodyne receiver operator ŶHE(t) is defined in Equation (7.54), where 

the expression of the mixing signal HE(t) is given by (7.52).  By operating ŶHE(t) 

onto the field state |v’> = |{S()},{L()},0V,0V1,0V2>, with |{L()}> now given by 

Equation (7.51) for heterodyne detection, and using the approximate expression of 

LO(t) in (7.71), the mean signal amplitude detected from the ASK-HE system 

  ASK HEY t  can be expressed as 
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where the high frequency terms associated with the intermediate frequency IF has 

been omitted in Equation (7.55) as it averages out to zero within the time duration of a 

bit period Tb.  Similar to BPSK detection, the mean signal current detected by the 

heterodyne receiver is a factor of √2 smaller than the homodyne receiver in the ASK 

system i.e.       2ASK HO ASK HEY t Y t  . 

The shot noise variance detected by the ASK-HE receiver is defined in Equation 

(7.56).   Therefore, by using the definition in Equation (7.56), the commutation 

relation in (7.48), and after some laborious algebraic manipulation, we have  
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 (7.78) 

where the terms associated with the intermediate frequency IF averaged out to 0 

within the bit period Tb, and are neglected in the expression.  Note that the shot noise 

expression for ASK-HO and ASK-HE are the same i.e. 

   2 2
ASK HO ASK HEY t Y t          .  Using the fact that FL >> FS, the expression for 

[YASK-HE(t)]2 can be approximated as 

        2 2 2 22
ASK HE ASK HO L BPSK HE BPSK HOY t Y t q F Y t Y t                          (7.79) 

From Equation (7.79), we see that the shot noise variance is the same for ASK and 

BPSK coherent system.  In fact, Equation (7.79) corresponds to the results given by 

SCFT [1, 25].   
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7.4  BER Quantum Limit of Communication Systems 
The BER quantum limit dictates the minimum signal power required to achieve a 

given BER.  In the analysis presented in Chapter 2.2, we have derived the quantum 

limits for BPSK-HO, BPSK-HE, ASK-HO, ASK-HE systems using SCFT with the 

effect of bit transition neglected.  In this Section, we shall determine the impact of bit 

transition and photon creation from modulator on the BER quantum limit using the 

quantum field models developed for the modulation systems considered in Section 7.2 

and Section 7.3.  A continuous alternating bit pattern is considered i.e. ‘1010…’, in 

which a bit transition occurs in every bit period so that the effect of bit transition is 

maximized.  Two important comparisons will be drawn in this analysis.  Firstly, we 

compare the traditional results (results from Chapter 2 OR [1, 25]) in which the effect 

of bit transition is neglected, with the results obtained from an alternating bit pattern 

where the effect of bit transition is included but the effect of photon creation is 

neglected i.e. |(,t)| = 0.  Subsequently, a comparison between the SCFT and QFT 

will be made, in order to determine the impact of photon creation from modulator on 

the types of communication systems considered.  Note that, the impact of photon 

creation is also maximized for an alternating bit pattern because a pulse of photon flux 

is excited from the modulator at every bit transition (see simulation results in Chapter 

6.5).        

 In Chapter 2.2.3, we have shown the receiver will determine whether a bit ‘1’ 

or bit ‘0’ is sent based on the received signal and the threshold set by the decision 

device X.  For the modulation formats considered in this thesis (BPSK-HO, BPSK-HE, 

ASK-HO, ASK-HE), the probability of transmitting a ‘1’ and ‘0’ for an alternating bit 

pattern is equally probable and that the impact of mistaking a ‘0’ for a ‘1’ is the same 
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as its converse [22 - 25].  Under these conditions, the optimum threshold can be 

expressed as [1] 

 
           

     
0 1 1 0

0 1

Y Y Y Y
X

Y Y

  


  
 (7.80) 

where <Ŷ[0]> and <Ŷ[1]> are the mean signal amplitude detected from a ‘1’ bit and 

‘0’ bit respectively, and (Y[0]) and (Y[1]) is the standard deviation for a received 

‘1’ bit and a received ‘0’ bit respectively.  In Chapter 2.2.3, we have shown provided 

the photon flux for the signal field and LO field is large i.e. FS and FL >> 1, the 

probability density function (PDF) for a received ‘0’ bit and a received ‘1’ bit can be 

approximated as a Gaussian distribution.   A decision error is made when the signal 

amplitude detected is greater than X given that a ‘0’ bit is sent (i.e. P(Y|0) > X) OR 

when the signal amplitude detected is smaller than X given that a ‘1’ bit is sent (i.e. 

P(Y|1) < X), as shown in the shaded area of Figure 7.6.    

 

Figure 7.6:  Probability density functions for Y, conditioned on ‘1’ and ‘0’. 

 

It is shown in Chapter 2.2.3 that the relation between the decision threshold X and the 

BER is given by  

 
P(Y|0) P(Y|1) 

Y[0] Y[1] X 

Probability 

Y[1]) Y[0]) 
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where the Q function represents the tail probability of a Gaussian PDF and can be 

expressed as [25] 
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The approximation in the second line of Equation (7.82) is valid provided  > 3 [25].  

By substituting the expression of X in Equation (7.80) into Equation (7.81), the BER 

can be re-expressed as 
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 (7.83) 

where the parameter is defined by 
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2 can be identified as the SNR [1, 25].  Using the expression of the Q-function in 

Equation (7.82), we can identify the BER is exponentially related to the SNR 2.   

When the bit pattern is alternating, the refractive index of the modulating 

medium fluctuates periodically between n and n + n with respect to time t.  A 

refractive index profile n(t) that describes this situation is given by  

         
0

1 tanh 2.2 2 tanh 2.2 2 1
2 b b

j

nn t n t jT t j T
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

              
  (7.85) 

where j is an integer.  The simulation parameters used in this analysis is given by 

Table 7.1. 
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Parameters Symbol Value 

Wavelength S 1500 nm 

Bit rate  1/Tb  2 Tbps 

Photon flight time in modulator Tf 0.15 ps (0.3*Tb) 

10 – 90 % bit transition rate  1.5*1014 s-1 (75*1/Tb) 

Modulator refractive index  n 3.5 

Change in refractive index n 0.059 

Laser spectral width  50 MHz 

Table 7.1:  List of simulation parameters. 

 

By using the simulation parameter given in Table 7.1, a plot of alternating bit 

pattern with its corresponding refractive index profile of the modulating medium is 

shown in Figure 7.7.   

 

Figure 7.7:  Refractive index profile for alternating bit pattern. 

 

The photon flight time in the modulator Tf and the change in refractive index n are 

chosen so that there will be an additional phase delay of  when a ‘0’ bit is 

transmitted in both BPSK and ASK systems.  If a ‘1’ bit is transmitted; there will be 

0.5 1.0 

3.559 
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no additional phase shift.  The additional phase delay  due to modulation is 

expressed as 

 2

S

nL



   (7.86) 

where L is the length of the modulator, and is related to the flight time Tf by 

 0
f

cL T
n n


 

 (7.87) 

n is the refractive index of the modulator, and c0 is the speed of light in vacuum.  

Since must be set to ()in order to satisfy the design specification, and by 

substituting Equation (7.87) into Equation (7.88), we arrive at 
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By setting the photon flight time Tf to be 0.3 of the bit period (Tf = 0.3*Tb = 0.15 ps) 

in Table 7.1, and solving for n in Equation (7.89), we found that n must satisfy the 

condition 

 0
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 (7.90) 

to give an additional phase delay of   

 Using Equation (7.46), (7.55), (7.72) and (7.77), the mean signal amplitude of 

BPSK-HO, BPSK-HE, ASK-HO and ASK-HE systems can be rewritten as 
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where we have used the 1st order Taylor series approximation in the last line of 

Equation (7.91) - (7.94), because |(S,t)|2 << 1.  The modulation factor M in the 

above Equations is defined as 
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where W(S,t) is the modulated phase angle, defined in Equation (7.3), and P(t) is 

given by 

    cos ,S SP t W t t      (7.96) 

From Equation (7.95), we can identify the modulation factor |M| is bounded between 

-1 and 1.  In the case of an alternating bit pattern, M becomes time dependent.  This is 

because the phase of P(t), is varying between 0 and  during the bit transition.  A plot 

of the phase of P(t), defined in Equation (7.96), is shown in Figure 7.8, while the 

modulation factor defined in Equation (7.95) is plotted in Figure 7.9. 

 

Figure 7.8:  Phase of P(t) against time. 
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Figure 7.9:  Modulation factor M against time. 

 

Notice that when the bit pattern is alternating, the absolute value of the modulation 

factor never reaches 1, as shown in Figure 7.9.  This is because it requires some time 

for the phase to transit from 0 to  due to the finite Tf of the modulator.  The data is 

sampled at the extrema of M, as shown in Figure 7.9.  This gives the maximum 

difference between the mean signal amplitude of bit ‘1’ and bit ‘0’ , i.e. the numerator 

in Equation (7.84) is maximized, and hence minimizes the BER.  The maximum and 

the minimum M value are separated by 1 bit period for an alternating bit sequence.  

The maximum value of M represents the sampling time of ‘1’ bit, this value is 

  1 0.89M   (7.97) 

Conversely, the minimum value of M represents the sampling time of ‘0’ bit, its value 

is 

  0 0.89M    (7.98) 

in which    1 0M M  .  The magnitude of M[1] and M[0] are the same (i.e. |M[1]| 

= |M[0]|) because the profile of leading edge transition is symmetrical to the falling 

edge transition.  The value of M in Equation (7.97) and Equation (7.98) was 
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determined from the results plotted in Figure 7.9.  Referring to Table 7.1, the value of 

M in Equation (7.97) and (7.98) corresponds to a photon flight time of Tf = 0.15 ps.   

 The |(S,t)| term is non-zero in the case of alternating bit pattern for the 

signal amplitude expressions in Equation (7.91) - (7.94).  This is because during the 

bit transition, n(t) varies with time, thus dS/dt is non-zero, giving |(S,t)| also non-

zero, as indicated by Equation (7.6).  The simulation result of |(S,t)| against time 

for alternating bit pattern is shown in Figure 7.10. 

 

Figure 7.10:  |(S,t)| against time for alternating bit pattern. 

 

In the case of alternating bit pattern, |(S,t)| is non-zero for some periods of time as 

shown in Figure 7.10.  We see that |(S,t)| becomes non-zero at the time when bit 

transition occurs. This non-zero value persists for approximately the photon flight 

time period inside the modulator Tf because the field will experience a change in 

refractive index (i.e. d/dt ≠ 0) over its time of flight inside the modulator, giving a 

(S,t) > 0 as indicated in Equation (7.6).  A detailed explanation for the pulse shape 

of (S,t) is given in Chapter 6.3. 

Tb = 0.5ps 

0 0.5 1.0 1.5 2.0 

Tf = 0.15ps |(s,t)| 

1.4*10-6 

6.25*10-5 

‘0’ ‘0’ ‘1’ ‘1’ 

Time (ps) 



 206 

The BER is experimentally determined from a large number of bit samples, thus 

the time for a BER measurement normally greatly exceeds the coherence time of the 

transmit laser.  Therefore, the phase noise SN(S,t) can be represented as a random 

variable with a uniform distribution, as discussed in Chapter 6.3.  Using the result in 

Equation (6.54), we can determine the last term in Equation (7.91) - (7.94) averages 

out to zero over the period of a BER measurement.  The long time averaged detected 

signal amplitude for the modulation systems considered can therefore be expressed as 
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where the overbar represents the long time averaging quantities.  The long time 

averaged detected signal amplitude for ‘1’ bit of the modulation formats can be 

determined by replacing M  by  1M  in Equations (7.99) - (7.102), where we 

obtained 
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where TS1 is the sampling time of ‘1’ bit.  Similarly, the long time averaged detected 

signal amplitude for ‘0’ bit for the modulation formats considered can be determined 

by replacing M  with  0M  in Equation (7.99) - (7.102), where we have 
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where TS0 is the sampling time of ‘0’ bit. 

Because the LO field power is much greater than the signal field power FL >> FS, 

the dependence between the noise variance and |(S,t)| for the modulation formats 

considered in Equations (7.49), (7.58), (7.74), (7.78) is suppressed and can be 

represented by Equation (7.79).  By substituting the expressions from (7.103) - (7.110) 

into Equation (7.80), the optimum decision threshold for the modulation systems 

considered for an alternating ‘1010…’ transmit bit pattern with the effect of photon 

creation included is 
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From expression (7.115) - (7.118), we see that the thresholds of the modulation 

formats considered is dependent on the effect of photon creation |(S,t)|.  

Furthermore, the thresholds are governed by the modulation factor M and the phase 

transition of the optical field P(t).  From Figure 7.8, Figure 7.9 and Figure 7.10, we 

can identify M, P(t), and (S,t) are all dependent on the shape of the refractive index 

profile, as shown in Figure 7.7.  Because the |(S,t)| profile for a leading edge 

transition (bit ‘0’ to bit ‘1') is symmetrical to that for a falling edge transition (‘1' to 

‘0’), therefore the phase transition P(t) and the modulation factor M for ‘0’ bit, is 

negative to ‘1’ bit, as shown in Figure 7.8.  As a result, M[1] = -M[0] and the integral 
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 .  

Using these relations, the expressions in (7.111) - (7.114) can be simplified to  

BPSK HO S L bX q F F T            (7.115) 

 
2

S L b
BPSK HE

F F TX q   (7.116) 

 ASK HO S L bX q F F T   (7.117) 

 
2

S L b
ASK HE

F F TX q   (7.118) 

The decision thresholds for an alternating bit pattern, expressed in Equation (7.115) - 

(7.118), is the same as the traditional results [25] in which the effect of bit transition 

and photon creation is neglected.  This is due to the symmetry of the leading edge 

transition and the falling edge transition of the control signal profile.  

By substituting the expressions of the optimum decision thresholds in Equations 

(7.115) - (7.118) into Equation (7.81), the BER expressions of the modulation systems 

considered for an alternating bit pattern transmitted is given by 
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In these expressions, we have used the properties    
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    and M[1] = -M[0].  By using the expressions in (7.119) - 

(7.122) and the definition of SNR in Equation (7.84), the SNR of the considered 

modulation formats for an alternate bit pattern transmitted is 
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The terms that are dependent on |(S,t)| from the BER and SNR expressions in 

Equations (7.119) - (7.122), and Equations (7.123) - (7.126), respectively, 

characterizes the effect of photon creation from modulator during the modulation 
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process.  The terms that are dependent on the modulation factor M[1], describes the 

effect of bit transition on the performance of the communication systems.  If a steady 

state bit pattern ‘1111…’ (i.e. no bit transition) is transmitted, we can verify from 

Equation (7.6) and Equation (7.95) that |(S,t)|2 = 0 and M[1] = 1, respectively.  

Therefore, the BER equations in (7.119) - (7.122) reduces to the traditional results 

given by [1, 25], if a steady state bit pattern is transmitted because there is no 

transition in refractive index i.e.  n(t) = n.      

The reduction in M is due to a finite propagation time inside the modulator and 

finite bit transition time.  Because this is not a consequence of the non-zero 

commutation relation between quantum field operators i.e. â() and â+(), therefore 

this is not a quantum effect and can be predicted by SCFT.   

However, the presence of |(S,t)| term is a quantum effect because the 

Bogoliubov coefficients are required in order for the modulated annihilation and 

creation operator,  ,b t  and  ,b t
 , to satisfy the usual commutation relations 

given in Equation (7.9). (See Chapter 5.5 for further details).  When |(S,t)| is non-

zero, the SNR will increase and the BER will decrease.   

The only difference between the results from SCFT and QFT is the |(S,t)| 

terms are not included in the SCFT analysis.  Therefore, setting |(S,t)| to zero in 

(7.119) – (7.122) would yield the SCFT results for the BER expressions for an 

alternate bit pattern, where we have 

   2 1SCFT
BPSK HO S bBER Q M F T   (7.127) 

   1 2SCFT
BPSK HE S bBER Q M F T   (7.128) 

  1SCFT
ASK HO S bBER Q M F T

     (7.129) 
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Using the expression of the Q-function in Equation (7.82), a BER of 10-9 (error/bit) is 

achieved when  ≈ 6 ( is square root of SNR), while to achieve a BER of 10-15, 

≈The parameters FSTb in Equations (7.127) - (7.130) represents the photon 

number required in a bit period i.e. N = FSTb.  Using the simulation parameters in 

Table 7.1, as well as substituting the value of M[1] and M[0] from Equation (7.97) 

and Equation (7.98) respectively into expressions (7.127) - (7.130), SCFT shows the 

number of photons required in a bit period, to achieve a BER quantum limit of 10-9 

for the modulation formats considered, are given by  
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 910 22.72SCFT
BPSK HE BERN photons per bit period 

  (7.132) 

 910 45.45SCFT
ASK HO BERN photons per bit period 

  (7.133) 

 910 90.88SCFT
ASK HE BERN photons per bit period 

  (7.134) 

where the quantum efficiency  is assumed to be 1 in the calculation.  Similarly using 

SCFT, the number of photons required in a bit period to achieve a BER quantum limit 

of 10-15 ( = 8) of the modulation formats considered are  
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 1510 40.4SCFT
BPSK HE BERN photons per bit period 

  (7.136) 

 1510 80.8SCFT
BPSK HE BERN photons per bit period 

  (7.137) 

 1510 161.6SCFT
BPSK HE BERN photons per bit period 

  (7.138) 
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Table 7.2 summarizes the differences between traditional (effect of bit transition not 

included), SCFT (effect of) and QFT results for the BER quantum limit for an 

alternating bit pattern. 

 

Modulation 

Format 

Quantum 

limit 10-9 

(ph/bit) 

(traditional) 

Quantum 

limit 10-15 

(ph/bit) 

(traditional) 

Quantum 

limit 10-9 

(ph/bit) 

(SCFT) 

Quantum 

limit 10-15 

(ph/bit) 

(SCFT) 

Quantum 

limit 10-9 

(ph/bit) 

(QFT) 

Quantum 

limit 10-9 

(ph/bit) 

(QFT) 

BPSK-HO 9 16 11.36 20.2 1.136*101    

- 2.8*10-10 

2.02*101     

- 3.8*10-10 

BPSK-HE 18 32 22.72 40.4 2.272*101         

- 2.8*10-10 

4.04*101     

- 3.8*10-10 

ASK-HO 36 64 45.45 80.8 4.545*101  

- 2.8*10-10 

8.08*101     

- 3.8*10-10 

ASK-HE 72 128 90.88 161.2 9.088*101  

- 2.8*10-10 

1.612*102   

- 3.8*10-10 

Table 7.2:  Quantum limit comparisons between traditional, SCFT (effect of bit 

transition included) and QFT analysis for alternating bit pattern. 

 

Table 7.2 shows the quantum limit to achieve a BER of 10-15 is greater than 10-9 

because the performance of the system improves by increasing the power of the 

transmit laser.  The quantum limit relation between different modulation systems in 

Table 7.2 continue to hold by including the effect of bit transition i.e. 

SCFT
BPSK HON  = / 2SCFT

BPSK HEN  = / 4SCFT
ASK HON  = /8SCFT

ASK HEN  .  From this relation we see that the 

BPSK-HO receiver is twice as sensitive as BPSK-HE, 4 times as sensitive as ASK-

HO, and 8 times more sensitive than ASK-HE receiver.  The results in Table 7.2 also 

show by including the effect of bit transition in SCFT analysis, the number of photon 

per bit period required to achieve the same BER is greater than the traditional analysis.  
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This is because traditional analysis [1, 25] assume M[1] = 1, while including the 

effect of bit transition gives M[1] < 1 in Equation (7.97).  Therefore we can conclude 

the effect of bit transition degrades the systems performance.  Using the simulation 

parameters in Table 7.1, results in Table 7.2 shows the additional photon number 

required to achieve a given BER is over 10%, thus the degradation due to bit 

transition is noticeable.  The degradation is illustrated in the signal space diagram in 

Figure 7.11 where the signal point distance between ‘1’ bit and ‘0’ bit decreases.   

 

Figure 7.11:  Signal space diagram for alternate bit pattern from SCFT, with variable 

S L bZ q F F T .   
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by decreasing the photon flight time Tf i.e. Reducing the size of the modulator.  

However, the trade off is an increase in the control field power that is required to 

provide a greater change in refractive index n, as suggested by Equation (7.87).  The 

increase in M will eventually be limited by damaging the material of the modulator 
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due to an intense control field.   Another option to improve M is to use a traveling 

wave modulator in which the impact of energy-size tradeoff can be reduced [5, 28]. 

 The |(S,t)| term is now considered in order to determine the impact of 

photon creation from modulator on the communication system.  Using the results in 

Equations (7.127) - (7.130) and the QFT BER relation in Equation (7.119) - (7.122) of 

the modulation formats considered, we can verify the photon number differences 

between the QFT and SCFT results to achieve a BER of 10-9 ( = 6) is given by  
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Similarly, using the results from Equation (7.135) - (7.138) and the expressions in 

(7.119) - (7.122), the photon number difference between the SCFT and QFT results to 

achieve a BER of 10-15 ( = 8) can be expressed as 
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 (7.140) 

A positive N in expression (7.139) and (7.140) suggests the number of photons 

required in a bit period given by the QFT results are less than the SCFT result, which 

implies the BER is improved.  This improvement is due to the process of photon 

creation from modulator, where these excited photons are added onto the signal 

strength of the modulated optical field.  As a result, the amplitude differences between 
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a ‘1’ bit and ‘0’ bit increases, as shown in Figure 7.12,  which leads to a decrease in 

BER, and hence improves the system performance.   

 

 

Figure 7.12:  Signal space diagram for alternate bit pattern (quantum analysis), with 

variable S L bZ q F F T  and    
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From Figure 7.12, we see that the photons created from a ‘0’ to ‘1’ transition has an 
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photon number difference between SCFT and QFT detection is the same for all of the 
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of N for systems with a BER of 10-15 is greater than systems with a BER of 10-9.  

This is because to achieve a BER of 10-15, more photons is required in a bit period, as 
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a result the signal photon flux is greater, and hence more photons are stimulated from 

the modulator.   

Similar to Chapter 6, we introduce the quantum ratio  to give a measure for the 

impact of photon creation on the communication systems.  The quantum ratio  is 

defined as  

 SCFT
N

N


   (7.141) 

A large  signifies the effect of photon creation from modulator is large.  Using the 

expressions in (7.139) and (7.140), the value of for various modulation formats at a 

bit-rate of 2 Tbps is given by  
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The expressions in (7.142) - (7.145) shows the effect of photon creation is 

independent on the systems BER.  This is because N in expression (7.139) and 

(7.140) increases by the same factor as NSCFT in (7.135) - (7.138), and the trend 

applies to other BER.  However the value of is different for different modulation 

format and follows the trend of the receiver sensitivity.  The effect of photon creation 

is the greatest for BPSK-HO system and the smallest for ASK-HE system.  Note 

that is maximized when an alternate bit pattern is transmitted because there is a bit 

transition in every bit period Tb, thus |(S,t)| is non-zero in every Tb as indicated in 

expression (7.6), and hence the process of photon creation from modulator has an 

effect for every bit.  In contrast, is minimized for a steady state bit pattern as 

refractive index is static, where we have  At a bit rate of 2 Tbps, the quantum 
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effect of photon creation is very small (ranging from 1 part in 3.2*1010 for ASK-HE – 

1 part in 4*1010 for BPSK-HO) for the optical communication systems considered. 

The issue on whether the effect of photon creation can be observed in an optical 

communication system can be clarified by determining the BER differences between 

the QFT and SCFT model.  Using the expression in (7.119) - (7.122) and (7.127) - 

(7.130), the BER difference of various modulation formats for an alternating bit 

pattern is expressed as 
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By substituting the corresponding value of NSCFT from (7.131) - (7.134) and N from 

(7.139) into (7.146) - (7.149), the BER difference between the QFT and SCFT model 

for the modulation systems that has a SCFT BER of 10-9 i.e. 910SCFT
BPSK HOBER 

  , is  
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A logarithm unit in dB is used for the purpose of convenience of a small BER 

difference.  Similarly using the value of NSCFT and expression and N from (7.140), 

the BER difference between the QFT and SCFT model for the modulation systems 

that has a SCFT BER of 10-15 i.e. 1510SCFTBER  , is  
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Notice that the BER difference is independent on the modulation systems considered.  

This is because the photon number difference N due to the effect of photon creation 
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for the modulation systems considered is the same, as indicated in Equation (7.139) 

and (7.140).  A positive value of BER suggests the BER from the QFT result is 

smaller than the SCFT result, and hence the BER difference corresponds to the BER 

improvement.  Once again, this reveals the fact that the effect of photon creation 

improves the performance of the system.  We shall use the terminology of BER 

difference and BER improvement interchangeably.  However, the improvement is 

extremely small and is in the order of -176 dB for systems with 910SCFTBER  , and 

234  dB for systems with 1510SCFTBER   at 2 Tbps.  This resolution of accuracy is 

difficult to observe using standard optical communication system equipment.  

Furthermore, for systems with a BER of 10-15, the BER improvement due to the effect 

of photon creation from modulator is roughly 6 orders of magnitude (60 dB) smaller 

than systems with a BER of 10-9.  This is because the rate of change of the Q function 

in Equation (7.82) exponentially decreases with an increase in photon number per bit.  

This implies the BER improvement due to the effect of photon creation will become 

insignificant as the transmit laser power increases.  The relation between the BER 

difference and the transmitted laser power, for BPSK-HO, BPSK-HE, ASK-HO and 

ASK-HE systems operating at 2 Tbps, is shown in Figure 7.13 (a), (b), (c) and (d) 

respectively. 
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Figure 7.13:  Relation between BER improvement and transmitted laser power for the 

modulation systems considered at 2 Tbps.  (a) BPSK-HO system (b) BPSK-HE 

system (c) ASK-HO system (d) ASK-HE system. 

 

-27 
-320 

-300 

-280 

-260 

-240 

-220 

-200 

-180 

-160 

-140 

-26 -25 -24 -23 -22 -21 

Power (dBm) Power (dBm) 

-24 -23 -22 -21 -20 -19 

(a) (b) 

-18 
-320 

-300 

-280 

-260 

-240 

-220 

-200 

-180 

-160 

-140 
BER = 10-9 

BERBPSK-HE 

(dB)  BER = 10-15 BER = 10-9 BER = 10-15 

-21 
-320 

-300 

-280 

-260 

-240 

-220 

-200 

-180 

-160 

-140 

-20 -19 -18 -17 -16 -15 

Power (dBm) Power (dBm) 

BERASK-HE 

(dB) 

-18 
-320 

-300 

-280 

-260 

-240 

-220 

-200 

-180 

-160 

-140 

-17 -16 -15 -14 -13 -12 

(c) (d) 

BER = 10-9 BER = 10-15 BER = 10-9 BER = 10-15 

BERBPSK-HO 

(dB) 

BERASK-HO 

(dB) 



 220 

Figure 7.13 shows the BER improvement rapidly decays as the optical power of the 

transmit laser increases.  The plots show BPSK-HO system requires the least transmit 

power to achieve the same BER improvement and the same BER.  This is because 

BPSK-HO system has the lowest quantum limit to achieve a given BER as shown in 

Table 7.2.  In addition, the plots show BPSK-HE, ASK-HO and ASK-HE systems 

require 3 dBm, 6 dBm, and 9 dBm more transmit power, respectively to achieve the 

same BER and BER.  This is because BPSK-HO receiver is twice as sensitive as 

BPSK-HE, 4 times as sensitive as ASK-HO, and 8 times more sensitive than ASK-HE 

receiver i.e. SCFT
BPSK HON  = / 2SCFT

BPSK HEN  = / 4SCFT
ASK HON  = /8SCFT

ASK HEN  .   

 

7.5  BER Quantum Limit and Bit rate Relation 
In this Section, we reveal the relation between BER quantum limit and bit-rate of the 

communication system.  When an alternating bit pattern ‘1010..’ is transmitted, the 

modulation factor M is not necessarily bit-rate independent because M is dependent 

on Tb as indicated in Equation (7.95).  However, M could become bit-rate independent 

if all of the following conditions are satisfied: 

1. Bit transition rate (in Table 7.1 changes by the same proportion as bit-rate 

1/Tb. 

2. Optical wavelength of the transmitted laserS remains the same. 

3. Photon flight time inside the modulator Tf changes by the same proportion as 

the bit period. 

The above conditions can be verified from the relation in Equation (7.3).  Therefore, 

by referring to Table 7.1, if the transition rate remains at a fixed multiple (75) of times 

greater than the bit-rate, the ratio of Tf and Tb stays at 0.3, and the optical wavelength 

remains at 1500 nm, the value of M[1] and M[0] in expression (7.97) and (7.98) is 
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applicable for systems operating at any bit-rate.  The plot in Figure 7.14 shows the 

transition rate is linearly related to the bit-rate 1/ Tb and the gradient of the line is 

75.   

 

Figure 7.14:  Bit transition rate against bit rate. 
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introduced in Chapter 5.2, applies at these transition rates.  The Bogoliubov 

coefficients may not be well approximated by Equation (7.5) and (7.6) when the 

systems bit rate is above 3 Tbps, as the ratio in expression (7.152) approaches 1.  The 

inverse relation between the photon flight time Tf and the bit-rate, is shown in Figure 

7.15.   

Using the relation in Equation (7.87), the corresponding modulator length L 

against bit-rate is plotted in Figure 7.16.  The length of the modulator for systems 

operating in the order of Tbps is in the order of 10 m. 
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Figure 7.15:  Photon flight time in the modulator against bit rate. 

 

Figure 7.16:  Modulator length against bit rate. 
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in systems bit-rate.  A plot of Equation (7.90) in Figure 7.17 shows the bit rate 1/Tb is 

linearly related to the refractive index change n. 
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Figure 7.17:  Refractive index change against bit rate. 

 

 The SCFT results in Equation (7.127) - (7.130) shows BER becomes bit-rate 
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modulation factor M is independent of bit-rate.  However, the results obtained 

from QFT disagree with this.  This is because the extra |(S,t)| in (7.119) - (7.122), 

which governs the number of photons created during the modulation process is bit-

rate dependent, as (S,t) is governed by d/dt, which is related to transition rate 

and the change in refractive index n.  As a result, the BER is dependent on bit-

rate even though M is bit-rate independent.  Therefore, the effect of photon 

creation from modulator inevitably leads to a difference between SCFT and QFT 

result on the BER quantum limit.   

In Section 7.4, we have introduced the quantum ratio in Equation (7.141) as 

a measure of the effect of photon creation from modulator.  The semi-log plot of the 

quantum ratio against bit-rate is shown in Figure 7.18. 
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Figure 7.18:  Semi-log plot of quantum ratio against bit-rate for modulation systems 
considered. 
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is irrelevant ( < 10-35).  At a bit rate of 3 Tbps, Figure 7.18 shows the difference is 

still very small (~ 1 part in 109 for BPSK-HO system).  This implies the quantum 

limit predicted by the SCFT is adequate even at very high bit rates.  Therefore we can 

conclude the quantum effect of photon creation from modulator has negligible 

impact on high bit rate optical communication system, thus no extra design 

consideration is required to incorporate this effect into account.  This is because 

there are many external factors, such as imperfection of devices and temperature 

variation, which could obscure the effect of photon creation during the time in which 

the BER measured.  Therefore, we can conclude it is difficult to detect the impact of 

photon creation from modulator for high bit-rate (Tbps) optical communication 

systems.   

Detecting the effect of photon creation from modulator requires the phase 

modulated optical system to be extremely stable so that it is almost independent of 

external disturbances.  Furthermore, the system must have high precision and 

sensitive measurement devices.  An example of a stable phase modulated optical 

system that utilizes high precision measurement is an optical clock, which could 

measure down to an accuracy of 1 part in 1018 [57].  The femtosecond pulses that 

produce periodic event or “clock ticks” at a repetition rate in the order of GHz have a 

high optical intensity, where this leads to the effect of self phase modulation [57], and 

hence the effect of photon creation from phase modulation may be observed in an 

atomic clock system owing to its high precision. 
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7.6  Conclusions 
This Chapter presents a quantum field analysis of BPSK-HO, BPSK-HE, ASK-HO, 

ASK-HE optical communication systems.  These analyses show the difference 

between SCFT and QFT results is due to the phenomenon of photon creation during 

the phase modulation process.  The effect of photon creation increases both signal 

amplitude and the shot noise of the system.  However, the change in shot noise 

statistics is suppressed and can be neglected given that the power of the LO field is 

much greater than the signal field.   

The optical detection theory presented in this Chapter shows the BER quantum 

limit is dependent on bit pattern transmitted.  This is because the effect of bit 

transition reduces the modulation factor, and hence degrades the system’s 

performance.  Furthermore photons are created from modulator at every bit transition 

which leads to the difference between QFT and SCFT results.  Analysis shows the 

effect of photon creation from modulator improves the performance of the modulation 

system considered.    For modulation systems operating at a bit-rate of 2 Tbps, the 

difference in the number of photons required in a bit period between SCFT and QFT 

results to achieve a BER of 10-9, is 2.8*10-10, and for systems with a BER of 10-15, it 

is 3.8*10-10.  This difference is the same for the modulation formats considered.  The 

photon number difference due to photon creation gives rise to a BER difference 

between the SCFT and QFT results.   

The effect of photon creation from modulator can be measured by the quantum 

ratio .  It is shown that the quantum ratio is bit-rate dependent as the transition rate 

and the refractive index change increases by the same proportion to maintain the same 

modulation factor.   is the greatest for BPSK-HO followed by BPSK-HE, ASK-HO 

and ASK-HE, and is independent to systems BER.  The results show for modulation 
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systems operating at 1 – 3 Tbps, the quantum ratio exponentially increases roughly by 

30 dB (i.e. from ~10-12 - ~10-9 for BPSK-HO system, and from ~10-14 - ~ 10-11 for 

ASK-HE system).  Based on this resolution, we can conclude the effect of photon 

creation from modulator has negligible impact on high bit rate optical 

communication system, and it is difficult to detect the BER difference as a result 

of photon creation.  However, the effect of photon creation maybe observed for high 

precision phase modulated systems such as atomic clock [57].  
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8 Conclusion 

8.1  Summary 

We have developed a quantum field model of a phase modulated optical field that 

includes the quantum effect of photon creation from modulator.  In this thesis, we 

considered the field is modulated by an all optical transverse phase modulator (AO-

TPM) operating in the order of Tbps.  The equations of motion that governs 

propagation of the optical field in the modulating medium and anti-reflective coating 

(ARC) of the phase modulator were derived.  By matching the boundary conditions of 

the general solutions between these different media in the modulator, the quantum 

field representation for a phase modulated optical field was derived.  

 Using the expression for the phase modulated field derived from our quantum 

model, we identified a power flow mismatch between the input and output of a 

lossless modulator during the modulation process.  The mismatch in power flow is 

accounted for by noting that the modulating agent alters the refractive index of the 

modulator and exciting the vacuum state of the field.  Depending on the initial phase 

angle, phase noise, and the phase of the Bogoliubov coefficients ( and ), the power 

of the input field can be added or removed by the modulator, which gives rise to the 

power flow difference between the input and the output of the modulator. We have 

shown the process of photon creation changes the state of the input optical field from 

a coherent state to a two photon coherent state, for which the mean and variance of 

the photoelectron arrival statistics observed by the detector for a modulated field is 

different to that of an unmodulated field.  Simulation results have shown photons are 
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excited from the modulator during the transition of the modulating medium’s 

refractive index.   

The effect of photon creation from modulator can be enhanced by decreasing the 

frequency of the input optical field S, or increasing the photon flight time of the 

modulator Tf, the nonlinear refractive index n, or the bit transition rate.   

From the expression for the phase modulated field, we see the effect of bit 

transition reduces the modulation factor, which leads to a noticeable degradation in 

the system’s performance.  However, the effect of photon creation improves the 

performance of the modulation systems considered (BPSK-HO, BPSK-HE, ASK-HO 

and ASK-HE systems) because the energy excited from modulator are added onto the 

signal field, while the effect of photon creation on the power of the shot noise is 

suppressed by the strong LO field.  By maintaining the modulation factor while 

increasing the bit rate of the system, simulation results have shown the influence of 

photon creation from modulator on the optical communication system is exponentially 

increasing with a linear increase in bit rate.  However, it is shown that for optical 

communication systems operating in the order of Tbps, the effect of photon creation 

from modulator has an insignificant impact to the systems performance.  Therefore 

we conclude the effect of photon creation is unlikely to be detected in high speed 

optical communication systems. 

 

8.2  Future works 

In this thesis, the quantum model that we have constructed describes the operation of 

a transverse phase modulator.  The model presented here is not applicable to the 

description of a traveling wave phase modulator, another common type of phase 

modulator in which the control field co-propagates with the signal field.  The 
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refractive index change of a traveling wave phase modulator is time and spatially 

dependent while in this thesis the refractive index change is only dependent on time 

for a transverse phase modulator.  This work can be extended by developing a 

quantum model that describes the operation of a traveling wave phase modulator so 

that the extent of the impact of photon/energy excitation from the travelling wave 

modulator could be deduced. 

 Another possible future direction for this work is to consider the impact of 

photon creation in ultra-high speed clock systems such as proposed by [57].  The 

system uses femto-second pulses within a high precision phase modulated system that 

can measure down to the accuracy of 1 part to 1018, thus the effect of photon creation 

may be detectable.  
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