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Abstract

T
HIS thesis presents secure and energy-efficient power allocation algorithms for

wireless sensor networks used in distributed estimation. We focus on power al-

location policies that minimize the distortion level or distortion outage probability at

a remote receiver when the network is under eavesdropping or active attacking. Var-

ious power allocation strategies are investigated and analysed under different channel

assumptions and wireless sensor network models.

We first look at power allocation for distributed estimation in a wireless sensor net-

work in the presence of an eavesdropper, where sensors send their observations to the

fusion center through orthogonal multi-access channels, which at the same time is over-

heard by the eavesdropper. Depending on the available channel state information (CSI)

at the fusion center and number of transmit antennas at sensors, we obtain optimal or

suboptimal power allocation schemes that minimize estimation distortion errors at the

fusion center subject to power constraint and secrecy constraints. Asymptotic expres-

sions are obtained for the long-term distortion at the fusion center as the number of sen-

sors or number of antennas becomes large.

We then focus on problems that require minimizing the distortion outage probabil-

ity at the fusion center for distributed estimation in a wireless sensor network when an

eavesdropper is present. Applying a rigorous probabilistic power allocation technique,

we obtain power allocation schemes for the full CSI case. We study suboptimal power

control policies to reduce the high computational cost for the case of a large number of

sensors or receive antennas. Artificial noise techniques are also considered to assist with

reducing the distortion outage probability at the fusion center. Simulation results show

significant performance improvements when artificial noise techniques are employed.
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Finally we look at the power transmission strategy of distributed estimation under

the denial-of-service (DoS) attack in a single sensor network, where an active attacker

jamming the communication channel attempts to reduce estimation quality at the fusion

center. We study a game theoretic approach to capture the conflicting nature of both

parties in DoS attacks for fading and non-fading scenarios, where the game is played si-

multaneously at both the sensor and attacker. Backwards induction and Nash Q-learning

techniques are investigated to derive a strategy pair at a Nash equilibrium. When fading

is present, apart from the full CSI, we also look at the partial CSI where type-contingent

power transmission strategies at a Bayesian Nash equilibrium is obtained.
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Chapter 1

Introduction

1.1 Motivation of the Thesis

S
ENSORS, which can sense, measure and gather information from the environment,

provide human beings different ways to ’see’ the world. Benefiting from Micro-

Electro-Mechanical-System technology, wireless communications and digital electronics,

sensors are now smaller in size and produced in a more economically friendly manner

[18, 22]. A wireless sensor network (WSN) is formed when a few sensors are deployed

in a geographical area. A typical WSN, shown in Figure 1.1, consists of some small,

inexpensive and low-cost sensors, which can be used to monitor temperature, humidity,

pressure, noise level, etc, and may communicate with a remote processor over wireless

links. Because of the wide range of applications, WSNs have gained world wide attention

and attracted much research interest.

Typically, sensors are equipped with a power source of limited power budget. If

sensor nodes are deployed in a hostile or inhabitable environment to monitor the phys-

ical phenomenon, recharging or changing the power source can be very difficult. Yet,

sensors need to have a lifetime long enough to fulfill the application requirements; in

fact, someday, we expect sensors to be cheap enough that they are discarded rather than

recharged. In general, the energy consumption in a sensor node mainly includes three

components: (1) a sensing subsystem or sensor transducer for local data acquisition from

the physical surrounding environment; (2) a radio communication subsystem for data

transmission; (3) a processing subsystem for data storage and processing. Among the

three parts, sensor transducer consumes the least amount of power. Although the en-

1



2 Introduction

ergy consumption in data processing is large, it is considerably less compared to data

transmission [37, 82, 84, 109]. In some cases, it is possible for sensors to scavenge energy

from the environment, such as by using a solar panel; however, in order to perform a

continuous and stable service a power supply, like batteries, is required [3].

Figure 1.1: A WSN topology with a central controller.

A WSN normally has little or no infrastructure and sensor nodes are randomly placed

into a field (in an ad hoc manner) to monitor a region to obtain data about the environ-

ment. As the performance of a sensor network application largely depends on the life-

time of the network, how to efficiently manage the power consumption of each sensor is

crucial for a wireless sensor network. Power control is a way to set transmission pow-

ers for the sensors in a WSN. Generally, there are two ways to conduct power control

in a wireless sensor network: centralized and distributed. In centralized power control,

a sensor node does not generate its own power schedules; instead, it executes sched-

ules generated and sent from a central controller. The node simply collects information

and then forwards them to the central controller using the power allocation schedule

it receives. Although centralized power management may suffer some vulnerabilities

such as heavy traffic loads as the remote processor collects channel information from

all the active sensors, it is more likely to achieve the global optimal power scheduling

if all collected information is properly taken into consideration. In a distributed power

control scheduling, each sensor node is autonomous. The power transmission scheme

is calculated by sensors based on the local information it collects from the surrounding
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environment1.

WSNs are a special type of network. It shares some commonalities with a typical com-

puter network, but also exhibits many unique characteristics. Unlike wired networks,

wireless sensors broadcast their message to the medium, which leaves WSNs open to

threats and risks ranging from passive eavesdropping to active interfering [107]. In pas-

sive eavesdropping, an adversary can easily retrieve valuable or private data from the

transmitted packets. For example, by ’listening’ to the water consumption and tempera-

ture reading of sensor networks inside a house, the tenants’ personal daily activities are

exposed. Traditional data encryption techniques can partially solve eavesdropping prob-

lems but suffer many vulnerabilities and are at a significant energy cost [12, 87]. First of

all, if the adversary has sufficiently large computational power, cryptographic schemes

with small key sizes may provide little secrecy. Apart from this, experiments in [37, 82]

have shown that the energy cost of each bit transmitted by sensors in WSNs consumes

about as much power as executing 800 to 1000 instructions. A high security level WSN

deploying cryptography techniques suffers huge energy cost for the message expansion

in the security mechanisms. Symmetric key cryptographic mechanisms are proposed to

reduce the computational intensity, in which it uses a single shared key between the sen-

sor nodes and the remote controller for both encryption and decryption. However, apart

from a big challenge in key management, in quantum computing, Grover’s algorithm al-

lows one to break a symmetric key of complexity O (N) in O
(√

N
)

time [31]. One could

foresee that in near future, cryptography techniques with small key size poses a security

threat to WSN.

Active external attacks disrupt network functionality by deploying denial-of-service

(DoS) attacks that diminish or attempt to reduce a network’s capacity to perform its ex-

pected functions [102]. DoS attacks can happen at the physical layer via radio jamming.

Even with less powerful jamming sources, an adversary is capable of disrupting the com-

munications in the WSN [13, 81, 87, 102]. Some attackers specially target sensors’ power

supplies by keeping their radio communication on at all times until the battery of sensors

1In a distributed sensor network, the sensors would reach an agreement regarding a certain quantity
of interest via consensus algorithm that specifies the information exchange between an agent and all of its
neighbour on the network [77].
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runs out or imposes an unnecessary working load. For example, a deceptive jammer may

simply transmit random signals at the same operation frequency as the sensor to increase

the packet dropping rate at the receiver side, the node hence needs to resend the same

packet to the central control until its power drains out. A common method to defend

against physical layer jamming is to deploy Spread-Spectrum communication; however,

the power limited characteristic of sensors prevents us from using such techniques in

WSNs. If sensors could identify a jamming attack, an ideal solution would be to simply

put the node into sleep mode to save energy. Nevertheless, either way, the adversary

causes degradation of performance in real-time applications.

Physical layer security explores the characteristic of wireless channel, such as fading

and noise, providing a new security paradigm for the improvement of the communica-

tion security. The aforementioned observations and facts motivate us to conduct a series

of studies on the joint issue of energy consumption and physical layer secrecy posed by

wireless sensor networks in distributed estimation.

1.2 Literature Review

Many works have considered the estimation problem in an energy-constrained wireless

sensor network. In a WSN, the sensors take measurements of a source independently

and then transmit the measurements to a fusion center (FC) over a wireless link. After

receiving the measurements from the sensors, the remote processor then attempts to re-

construct an estimate of the physical quantity the sensors observed. Many cross-layer

optimization schemes have been proposed to maximize the lifetime of WSNs or enhance

the estimation accuracy. In particular, the authors in [15] studied the optimal power al-

location strategies for minimizing estimation error under a total power constraint, and

minimizing total power subject to a distortion constraint, with orthogonal multiple ac-

cess channels (MACs) adopted between the sensors and the FC. With the assumption of

perfect synchronization between sensors and the FC, the authors in [105] adopted co-

herent MAC and derived the optimal power scheduling. However, these optimal power

schemes were obtained based on static channel environments which may not always
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meet a strict distortion constraint in the varying channel conditions. In [6], the block

fading channel was considered in WSNs where the authors solved the optimal power al-

location schemes that minimize the total transmission power while subject to estimation

distortion constraints. Under fading channel scenarios, due to the randomness of the fad-

ing channels, the distortion becomes a random variable as a function of the channel gains,

and one may not be able to satisfy the distortion constraint at all times. This leads to the

notion of estimation outage or distortion outage, which is defined as the probability that

the estimation distortion exceeds a certain threshold [15]. Applying similar techniques

as developed in [64], the authors in [99] investigated the distortion outage performance

for wireless sensor networks, and derived optimal power allocation schemes that min-

imize the distortion outage probability. They also showed that in Rayleigh fading and

with more than one sensor the outage probability could be made to zero with finite total

powers, and obtained an approximation for the minimum number of sensors needed.

However, because of the broadcast nature of wireless communication, security of in-

formation transfer via wireless networks remains a challenging issue. Eavesdropping

and jamming are two primary attacks at the physical layer of a wireless network. Gen-

erally, channel and code design, secure capacity, and the power and signal design ap-

proaches are the five major categories in the existing physical layer security techniques

[92]. The channel design approaches involve explore the channel characteristics

including radio frequency fingerprinting, randomization of multiple-input

multiple-output (MIMO) transmission coefficient and algebraic channel decomposition

multiplexing precoding. Error correction coding and spread spectrum coding are com-

mon techniques used to secure the transmission when code design approaches are con-

sidered. The notion of perfect secrecy, introduced by Shannon [90], provides a different

perspective on the data confidentiality. Under perfect secrecy, the signal received by an

eavesdropper does not provide any additional information about the transmitted mes-

sage. Later, in the 1970s, Wyner suggested that perfect secrecy is achievable as long as

the channels that are unknown to unauthorized users are more noisy than that of the

authorized users [103]. In other words, if the adversary’s channel is a degraded version

of the legitimate receiver’s, reliable information can be received at the legitimate user
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without the eavesdropper being aware of almost any useful information. The authors in

[30] considered the secure transmission over an ergodic fading channel in the presence of

an eavesdropper. In their setup, the transmitter is assumed to have access to the channel

gains of both the legitimate receiver and the eavesdropper. The secrecy capacity under

this full channel state information (CSI) assumption was derived and served as an upper

bound for the case when the transmitter only knows the CSI of the legitimate receiver. In

[59], the authors investigated the secrecy capacity region for the parallel Gaussian broad-

cast channel, where a sensor node transmits common message to two receivers with one

of which receiving confidential message from the sensor as well. The secret informa-

tion needs be kept confidential from the other receiver in the network. Assuming that

all parties are aware of the CSI, the authors obtained the secrecy capacity region and

the corresponding optimal power allocations achieving the boundary of the capacity re-

gion. The secrecy capacity of the MIMO wiretap channel is considered in [76], where the

number of antennas is arbitrary for both the transmitter and two receivers. The authors

proved that the perfect secrecy capacity is the difference of the capacity of the legitimate

user and the one of the eavesdropper.

The other two categories of physical layer security techniques are power and signal

design approaches which involve the employment of artificial noise injection and direc-

tional antennas. The authors in [27, 110] proposed artificial noise schemes to ensure per-

fectly secure communications. Depending on the number of antennas at the transmitter,

artificial noise is generated on the null space of the legitimate receiver’s channel using

either multiple antennas or collaboration among multiple sensor nodes. This approach

discriminates against the non-legitimate receiver’s channel while keeping the channel of

the authorized receiver unimpaired. It was also shown that secret communication can

be established even if the adversary has better channel conditions than the intended re-

ceiver.

It is known that the mutual information between the input and the output of a chan-

nel is at the core of information theory; given an input signal it measures the amount

of coded information that can be reliably transmitted through a channel. Some literature

above considered network security and privacy issues from an information-theoretic per-
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spective. Its counterpart, minimum mean square error (MMSE), is a fundamental quan-

tity in estimation theory, which indicates how accurately the input signal can be retrieved

from the channel output.

A fundamental connection between information theory and estimation theory was

discovered in [32]. The authors found that regardless of the input distribution, the deriva-

tive of the mutual information in nats w.r.t. SNR is equal to half the MMSE, as long as

the input signals are observed through an additive Gaussian noise channel. This funda-

mental relationship and its generalizations [80] have been shown to be useful to provide

insightful and simple proofs for deriving the capacity region of Gaussian multi-receiver

wiretap channel. The authors in [10] used such techniques to derive a closed-form ex-

pression for the secrecy capacity of the MIMO Gaussian wiretap channel under a power

constraint. The proof provides the missing intuition regarding the existence and con-

struction of an enhanced degraded channel that does not increase the secrecy capacity.

In [71], the Chief Executive Officer (CEO) problem is investigated in which a center con-

troller (or CEO) attempts to minimize the estimate distortion from the noisy observa-

tions of a random source it receives. The authors related the equivocation rate2 to the

normalized distortion at the eavesdropper in the CEO problem with additional secrecy

constraints, where they showed that the estimation error at the eavesdropper is an upper

bound of the equivocation rate.

These works motivate us to study estimation problems in an energy-constrained wire-

less sensor network, while looking at the physical layer secrecy from the signal estimation

viewpoint by employing MMSE as the security performance metric. To secure the trans-

mission in scenarios of passive eavesdropping, the signal processing side of transmission

schemes are widely explored in [4, 46, 52, 61, 67]. In particular, distributed detection with

censoring sensors was investigated in [67] where the authors used divergence as a secu-

rity metric and set it to zero at the adversary to guarantee that no information is leaked.

The authors in [61] focused on secret transmit beamforming approaches. To secure the

confidential transmission between the legitimate receiver and transmitter, the maximum

2The equivocation rate is defined as the conditional entropy of the confidential information given the
signal seen by the eavesdropper. It indicates the eavesdropper’s uncertainty about the confidential message
[76].
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allowable Signal-to-Interference-and-Noise Ratios (SINR) at the eavesdroppers was pro-

posed. In [52], the performance of a link adaptation and untrusted relay assignment

framework was investigated, where the authors used bit error rate to measure a reliable

transmission against untrusted relays.

In the additional to passive eavesdropping, an adversary could also actively inter-

feres the quality of message received by the remote processor. In the framework of DoS

attacks, both the attacker and defender behave selfishly, in which the defender intends

to protect against DoS attack and establish a reliable link for data delivery; whereas the

attacker has completely contradictory objectives. An effective defense strategy for the

sensor should not only depend on its own behaviors but also take into consideration the

actions of the opponent. Game theory provides a framework to capture and analyze the

conflicting nature of DoS attacks in WSNs. Instead of a static analysis focusing on only

one side transmitter or attacker, the game-theoretic approach is able to model the inter-

actions between two conflicting parties, perform tactical analysis of potential threats and

provide strategic suggestions against such threats.

In [57], jamming and anti-jamming in multi-channel wireless communication systems

were studied and modeled as a zero-sum stochastic game. The Nash equilibrium of the

game was analyzed in which a linear quadratic function is used as the payoff function

to be maximized/minimized by the sensor/jammer. From an information theoretic per-

spective, the authors in [47] considered a zero-sum mutual information game on MIMO

Gaussian Rayleigh fading channels. With the assumption that the jammer has access to

the channel input, the authors showed that at the Nash equilibrium the amount of dam-

age caused by the jammer to the communication is only as much as the one without the

extra channel information. A similar setup was investigated in [88] where the authors

studied a muli-user system under correlated jamming. Depending on the user’s channel

knowledge at the jammer, the Nash equilibrium may or may not be exist. More recently,

the authors in [58] investigated remote state estimation of cyber-physical systems under

SINR-based DoS attack. A Markov game framework is built to model the online inter-

active decision-making process. The authors then applied a modified Nash Q-learning

algorithm to solve the associated optimality (Bellman) equations. The aforementioned
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work is based on either complete channel information at the jammer or static channels

which do not take into account the characteristic of incomplete information for DoS at-

tacks.

1.3 Contributions and Overview of the Thesis

The focus of this thesis is to investigate energy-efficiency transmission power algorithms

for passive eavesdropping issues as well as active interfering issues in distributed esti-

mation of a wireless sensor network. In particular, we introduce the performance metric,

minimum mean square error, to measure how accurately an input signal can be retrieved

at the legitimate receiver and how distorted the signal would be seen at the passive eaves-

dropper. When the message is severely distorted at the receiver it is almost unlikely can

be recovered. Therefore, the minimum mean square error not only tells us the security

level of a wireless network by observing it at the eavesdropper side but also indicates

the estimation accuracy when it is considered at the FC side. Optimal and suboptimal

power allocation policies and transmitting strategies are studied and obtained for differ-

ent scenarios for a wireless sensor network. In the thesis, we start by discussing some

background and fundamentals of estimation in signal processing in Chapter 2. The con-

cept of game theory is also presented, which is used in the framework of DoS attacks.

Brief summaries of each remaining chapters in the thesis are presented below.

Chapter 3 In this chapter, we focus on the performance of distributed estimation in

a wireless sensor network with the presence of an eavesdropper. Under amplify-and-

forward transmission and orthogonal multi-access protocol, we obtain power transmis-

sion schemes that minimize estimation error at the remote processor while keeping the

information acquired by the adversary at an acceptable level. Depending on the sensors’

awareness about eavesdropper’s CSI or/and the number of antennas equipped on each

sensor, we investigate various power transmit policies that satisfy secrecy constraints in

every transmission time slot or over a few fading blocks. When a sensor has multiple

communication antennas we show that zero information leakage can be achieved if the

sensor knows the adversary’s channel; otherwise, the sensor could broadcast additional
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noise on its channel null space to distract the eavesdropper while keeping the legitimate

receiver unaffected. A similar concept is introduced in the multiple sensors scenario,

where some sensors serve as friendly relays to produce random signals that can be can-

celled off at the intended receiver. For a given power budget, we obtain the asymptotic

expression of the expected distortion at the FC and show that the distortion decreases

to a constant at the rate 1/Nt for the multiple antennas scenario and at a rate of 1/K

for the multiple sensors scenario, where Nt and K stand for the number of antennas and

sensors respectively. Numerical results show that given the same total number of trans-

mitting antennas, the multiple-antenna sensor network is superior to the performance of

the multiple-sensor single antenna network.

Chapter 4 In this chapter, we formulate a distortion outage minimization problem for

a wireless sensor network with multiple receive antennas at both the eavesdropper and

the legitimate receiver. We investigate power allocation algorithms that minimize distor-

tion outage probability at the FC, where sensors apply amplify-and-forward techniques

to transmit their signals to the receiver via orthogonal multi-access channels. After con-

sidering the full CSI case we extend the problem and study a more practical scenario

where only the adversary’s statistical channel information is available. To compensate

for the high computational complexity caused by large numbers of sensors or a large

number of antennas at the FC, we propose a sub-optimal scheme for implementation. In

the additional to single-antenna sensors, we also look at a multiple-antenna scenario. In

this case, the distortion outage at the FC can be dramatically reduced and in some cases

eliminated at the FC in both the full CSI and partial CSI cases.

Chapter 5 In this chapter, we study a game theoretic approach for the distributed

estimation in a wireless sensor network, where the single sensor is under DoS attacks.

We first look at an additive white Gaussian noise (AWGN) environment in which players

interact with each other only once. Next, a dynamic game is formulated. The idea is that

both players will interact with each other many times. Although the players are assumed

to be ignorant about the opponent’s actions, they could learn each other’s strategies from

the interactions. When a finite number of games is played, a two-person feedback game

is considered. In this scenario, we propose an algorithm to recursively derive behavioral
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strategies under a limited power budget. Multiple agents Q-learning is also studied to

derive a Nash equilibrium strategy for the infinite horizon scenario where players keep

playing the same static game. In discrete fading, apart from complete information game,

we study scenarios where players are unaware of the channel type of its opponent, i.e., in-

complete information game. Such games are modeled as Bayesian games, and the power

allocations are adjusted according to the player’s own channel information and the belief

it has on the statistical channel information of the other.

Chapter 6 This chapter provides concluding remarks of the thesis, and presents some

future research ideas related to the thesis.
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Chapter 2

Background and Fundamental
Concepts

This chapter discusses the background and fundamental concepts that will be referred to in the

thesis. We first introduce minimum mean square error (MMSE), which is often chosen to be as the

error criterion in signal estimation. The linear MMSE estimator is obtained when it is a fixed linear

function of the measured random variable. We then present the fundamental concepts of game theory

and three game theoretic models that are applied later in our work.

2.1 Signal Estimation

The primary goal of estimation theory is to extract information from noise-corrupted

observations or signal waveforms. One of the key procedures is the introduction of an

error criterion that measures the error between the desired quantity and its estimates [78].

Often this estimate is chosen to be the one with minimum mean square error (MMSE).

2.1.1 Minimum Mean Square Error Estimators

Suppose at time k we have a set of L observations about a parameter θ, represented by

the L−dimensional vector X = [x[1] . . . x[L]]T. Based on the knowledge of the PDF of

θ, we wish to obtain an estimate of this parameter, denoted as θ̂, so as to minimize the

mean square error between the actual value of θ and our estimate θ̂. Specifically, with

additional information in the form of observation vector X, we choose θ̂ to minimize

E

[

∥

∥θ − θ̂
∥

∥

2
∣

∣

∣X
]

.
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From probability theory it is well-known [91] that the mean squared error is minimized

by choosing the estimator be the conditional expected value of the parameter given the

observation, i.e.,

θ̂ = E [θ| X] .

The conditional expectation E [θ|X] would be easy to compute if one could determine

the conditional density fθ|X (θ|X). However, this may not be the case. In general, finding

fθ|X (θ| X) is difficult. A useful and widely used compromise is to restrict the estimates θ̂

to be a fixed linear function of each observation element.

2.1.2 Linear Minimum Mean Square Error Estimators

When we restrict the estimator to be a fixed linear function of the measured random

variable and choose the linear relationship so as to minimize the mean square error, we

obtain the linear minimum mean square error (LMMSE) estimator. To be more specific,

an estimator of the form [49]

θ̂ = a0 +
L

∑
l=1

alx[l]

and with weighting coefficients al’s to minimize the mean square error E
[

‖θ − θ̂‖2
]

is

the LMMSE estimator, where the expectation is with respect to the PDF f(X,θ) (X, θ).

The coefficient al of the LMMSE estimator can be found from the first two moments

of PDF f(X,θ) (X, θ). To minimize E
[

‖θ − θ̂‖2
]

, we differentiate it with respect to al for

l = 0, 1, . . . , L, and set each of the derivatives to zero. Let a = [a1, . . . , aL]
T, we have

a0 = E [θ]−
L

∑
l=1

alE [x[l]] ,

a = Σ−1
xx Σxθ .

Here Σxx is the L × L covariance matrix of X, and Σxθ is the 1× L cross-covariance vector.

Assuming the means of θ and X are zero, the LMMSE estimator is then ΣθxΣ−1
xx X and the
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associated mean squared error is

E
[

‖θ − θ̂‖2
]

= Σθθ − ΣθxΣ−1
xx Σxθ .

The theory of signal estimation has been widely used in many areas. In wireless com-

munications such as data transmission to a remote processor, estimation theory provides

a guide to the design of effective communication receivers and/or efficient transmis-

sion strategy at transmitters. Throughout the thesis, a remote fusion center is assumed

to apply the linear MMSE estimator to reconstruct an estimate of the physical quantity

observed. We then investigate the best power allocation schemes for a network under

different security issues.

2.2 Game Theory

Game theory is a collection of analytical tools helping decision makers to unlock the

insights of the ‘games’ they play. In social science, it entails to understand human be-

haviors such as bidders competing in an auction, firms fighting for business, and the

candidates competing for votes [79]. In engineering and computer science, it assists with

infrastructure planing such as limited resources allocation, traffic congestion control, and

pricing of the Internet service [65]. In economics and finance, it is used to deal with trade

and production, such as to analyze stock markets and exchange rates [20]. Game theory

provides comprehensive ways to capture and analyze the interactive decisions among

multiple decision makers, thus suggesting reasonable strategies.

A game describes strategic interaction of decision makers in a certain environment;

hence the basic entities in a game theoretic model are decision makers, called players (or

agents in some context). If the players behave individually in a non-cooperative manner

or players have their own interests which are conflicting with others’, we are in the realm

of noncooperative game theory [8]; if the individuals work as a group or in a collective move,

we then call it cooperative games. In a game, each player has its own interests or objectives

(called payoffs or costs), such as to reduce the bidding price in an auction, or to gain the

best interests in limited resource allocation. In order to achieve such objectives in a game,
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each player has a series of moves, called strategy, and based on which a player decides its

actions at a given situation.

The concept of optimality in multi-person decision making is not well-defined; how-

ever, the Nash equilibrium solution is generally considered as ‘optimal’, which defines

the best strategies for the players so that no players could do strictly better than currently

achievements by unilaterally adopting another strategy [8]. Below, we will only discuss

the following three game theoretic models for two-person zero-sum games1 that are applied

in Chapter 5. Details can be found in [8, 21, 79, 95] for a more comprehensive discussion.

2.2.1 Static Games of Complete Information

Depending on common knowledge among the players, a game can be classified as com-

plete information or incomplete information. A game of complete information [95] re-

quires players are perfectly informed of:

• All the possible actions of all the players.

• All the possible outcomes, including the effect on the outcomes from each combi-

nation of actions of all players.

• The preferences of each and every player over all outcomes.

Static games with complete information is the simplest game model describing situa-

tions when players simultaneously and independently choose a decision. In other words,

all players choose their actions at the same moment without any knowledge of the deci-

sions made by their counterparts2.

In general, there are two different representations for two-person games with finite

strategy sets: matrix form (also known as normal form) and extensive form. In matrix games,

e.g. Table 2.1 [95], each entry of the matrix is an outcome of the game corresponding to

a certain pair of strategies used by the two players, where M, F stand for the possible

1As the name suggests, a two-person zero-sum game involves only two players in a game with each
having the completely opposite interests of another. In such a game, the sum of the objective functions of
the two players is zero, or can be made to zero by positive scaling and/or translation that is independent of
the players’ actions [8].

2As players have complete information and move simultaneously, this type of game is also known as a
game of complete but imperfect information.
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actions at P1 and m, f represent actions at P2. Equivalently, applying a tree structure, ex-

tensive form uses nodes and branches to provide a more explicit representation about the

interactive behaviors of the players, including the playing orders and available informa-

tion to each player in the decision process [8]. Figure 2.1 is the extensive form of the same

game as shown in Table 2.1, where the dotted circle indicates the available information

at players (known as the information set) at the time of his play. In Figure 2.1 it says P2 is

not clear about which branches he is in, and this implies both players act simultaneously.

P2

m f

P1
M 4, 4 -1, 5

F 5, -1 1, 1

Table 2.1: Prisoner’s Dilemma Game in matrix form.

Figure 2.1: Prisoner’s Dilemma Game in extensive form.

2.2.2 Multi-Stage Games

A multi-stage game is defined as a finite sequence of normal-form stage-games, in which

players are allowed to act more than once [95]. At each stage, the game is an independent

and well-defined complete but imperfect game that is played by the same group of play-
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ers. The total payoff of the game is evaluated by the sum or discounted sum of outcomes

at each stage. In a multi-stage game, it is generally assumed that all players are able to

observe the outcome of the game played at each stage; in other words, at the time of ac-

tion, each player has perfect information regarding the payoffs of previous stage. This is

also known as multi-act feedback games in [8], where the two-person zero-sum game is

discussed.

P2

l r

P1
L 0, 0 -4, -1

R -1, -4 -3, -3

Table 2.2: Revenge Game in matrix form.

An example is provided. Suppose that after completing the Prisoner’s Dilemma

Game, the same two players in Section 2.2.1 play a different game with possible actions

L, R at P1 and l, r at P2, as shown in Table 2.2 [95]. The extensive form of this multi-stage

game is given in Figure 2.2, which explicitly captures the information set to each player

at the time of his decision. After completing the Prisoner’s Dilemma Game at stage-one,

players receive feedback on the outcomes of the game they played. Thus, at stage-two,

the information sets of P1 are singletons; and the information sets of P2 do not include

nodes corresponding to branches coming from two or more different information sets of

P1.

A special case of multistage games is repeated games, where the same game is played at

every stage [95]. For instance, instead of playing the Revenge Game game at the second

stage, the same two players in Section 2.2.1 keep playing the Prisoner’s Dilemma Game.

Repeated games capture the idea of continuous interaction between parties in a rarely

changing environment. This game model can be applied to many realistic settings. For

example, bidders compete over a few rounds in an auction, firms fight over time in the

same market, etc.
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Figure 2.2: Prisoner-Revenge Game in extensive form.

2.2.3 Bayesian Games of Incomplete Information

In a game model, especially for a noncooperative game, it may be more reasonable to

assume that players have some ideas about their opponents’ characteristics, but not the

complete knowledge. For instance, in a two-person game, one player may find out all

the possible actions of his opponent’s, but he may not be able to be exactly aware of the

other’s objective (or payoff functions). Incomplete information captures the players’ uncer-

tainty about some important characteristics of the game situation [35]. The concept of

type is then introduced as a player’s private information that is not common knowledge

to others but is relevant to the player’s decision making. The framework of incomplete

information game suggested by Harsanyi is as follows:

• Nature3 draws a type for each player from a well-defined probability distribution

which is common knowledge.

3Nature can be thought as someone who is able to choose a game from a probability distribution over
players’ types [95]. It can also be viewed as a game with an additional player named ‘nature’ who has a
fixed mixed strategy [8].
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• Nature reveals the type to each corresponding player but not to any other players.

• The players simultaneously choose their type-contingent moves from their action

set.

Bayesian games are widely used to model a game of incomplete information. In eco-

nomics and finance, a player’s payoff not only depends on his own actions and the ac-

tions of others, but also some unknown economic fundamentals. In engineering and

computer science, a player may be uncertain about network parameters such as number

of nodes in the network, Quality-of-Service (QoS) requirement, operating bandwidth,

etc. In Chapter 5, where the fusion center is under DoS attack, the system is modeled

as a Bayesian game when the sensor and attacker only have partial channel information

regarding the other. In this scenario, a type is the player’s instantaneous channel infor-

mation, as it is a private information only known to the player itself.



Chapter 3

Estimation in Wireless Sensor
Networks with Security Constraints

In this chapter, we investigate the performance of distributed estimation schemes in a wireless

sensor network (WSN) in the presence of an eavesdropper. The sensor(s) transmit observations to the

fusion center (FC), which at the same time is overheard by the eavesdropper. Both the FC and the

eavesdropper reconstruct a minimum mean square error (MMSE) estimate of the physical quantity

observed. We address the problem of transmit power allocation for system performance optimization

subject to a total average power constraint on the sensor(s), and a security/secrecy constraint on the

eavesdropper for two scenarios : 1) a single sensor with multiple transmit antennas and 2) multiple

sensors with each sensor having a single transmit antenna. Asymptotic expressions are derived for

the long-term distortion at the FC as the number of sensors or the number of antennas becomes large.

3.1 Introduction

W
IRELESS Sensor Networks (WSNs) are networks consisting of some small, in-

expensive, and low-power sensors, which are deployed over a region and may

communicate with a remote processor over wireless links. Due to their low cost, robust-

ness, and high flexibility, WSNs are widely employed in many military and civilian appli-

cations such as environmental monitoring, traffic control, battlefield surveillance etc. [2].

In distributed estimation, sensors independently collect data about some phenomenons

and send the measurements to a fusion center (FC) which then attempts to reconstruct

the phenomenon.

One crucial issue in WSNs is the limited battery life of the sensors. As sensors are

normally geographically widespread, replacing batteries can be costly. The problem of

21
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power allocation for distributed estimation has been well-studied. In [14, 106], a digi-

tal approach was considered where the analog observations are digitised into bits and

then modulated and transmitted. In [15], the authors considered the problems of min-

imizing transmit power under distortion (or mean squared error) constraints and min-

imizing distortion under power constraints for an orthogonal multiple access channel

(MAC). Employing a universal decentralized quantization/estimation scheme and an

uncoded quadrature amplitude modulated transmission strategy, the authors in [104]

studied the optimal power scheduling problem in an inhomogeneous sensor network;

while the power allocation policies for a vector source were investigated in [105]. In

[6], the authors investigated the energy-efficient distributed estimation problem for spa-

tially correlated observations in WSNs. The diversity order of decentralized estimation

in terms of increasing numbers of sensors has also been explored in [15, 56].

Due to the broadcast nature of wireless communications, security and privacy issues

have become one of the biggest challenges in WSNs. The traditional encryption schemes

or cryptography might be vulnerable because of problems such as secret key distribution

and management. In addition, if an eavesdropper has sufficiently large computational

power, cryptographic schemes with small key size may provide little secrecy. As an al-

ternative, the notion of perfect secrecy1, introduced by Shannon [90], provides a different

perspective on the data confidentiality. Later, in 1970s, Wyner introduced the concept

of wiretap channel [103], and showed that if the adversary’s channel is a degraded ver-

sion of the legitimate receiver’s, reliable information can be received at the legitimate

receiver without the eavesdropper being able to extract almost any useful information.

From an information theoretic perspective, the authors in [30, 51, 60] studied the secrecy

capacity in the case of full channel state information (CSI) or partial CSI, and investi-

gated MIMO channels in [10,50,62]. Multiterminal source coding or CEO problems with

secrecy constraints were also considered in [5, 17, 71, 96]. In particular, in [96], the au-

thors investigated secure lossy source coding in the presence of an eavesdropper who is

1Perfect secrecy was first introduced in 1949 by Shannon. In this model it is assumed that the confidential
message W is encrypted and then transmitted over a noiseless channel [90]. In information theory, perfect
secrecy requires that I (W; Z) = 0; it indicates that the signal Z received by the eavesdropper does not
provide any additional information about the transmitted message W. A weaker definition was given in
[103], which requires the mutual information rate 1

n I (W; Z) goes to zero, as n, the number of bits in Z goes
to infinity.
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able to observe the coded information bits and has access to correlated side information.

Under these assumptions, the authors derived inner and outer bounds on the achievable

rate region. The authors in [48] considered a different scenario where the eavesdropper

can obtain the size of the packets, thus parsing the bit stream into separate encrypted

messages. Bounds on coding rate and key rate are derived for perfect zero-delay secrecy.

However, although such secure source coding techniques enable one to gain information-

theoretic insights, it does not provide a closed form expression for distortion achievable

via multi-sensor estimation over fading channels. Thus motivated, we investigate the

secure estimation problem from a signal processing viewpoint where sensors employ

simple uncoded analog-forwarding techniques [23] to transmit their observations to the

FC. In this way, a direct expression for the distortion over fading channels can be ob-

tained, which is more desirable for deriving analytical results. In fact, various secrecy

schemes from a ‘signal processing’ rather than information theoretic point of view have

also been studied in [52,61,67,93], where different performance metrics, such as bit-error-

rate, signal-interference-to-noise ratio, Ali-Silvey distances or error probability were used

to measure secrecy in a system. Related techniques based on cooperating relays, artifi-

cial noise generation or beamforming were also implemented in [16,26,27,61] to secure a

system.

Moreover, it is known that the mutual information between the input and the out-

put of a channel is at the core of information theory; given an input signal it measures

the amount of coded information that can be reliably transmitted through a channel. Its

counterpart, minimum mean-square error (MMSE), is a fundamental quantity in estima-

tion theory, which indicates how accurately the input signal can be retrieved from the

channel output. In [32], the authors discovered that regardless of the input distribution

the derivative of the mutual information in nats w.r.t. SNR is equal to half the MMSE,

as long as the input signals are observed through an additive Gaussian noise channel. In

[71], the authors related the equivocation rate to the normalized distortion at the eaves-

dropper in the CEO problem with additional secrecy constraints, where they showed that

the estimation error at the eavesdropper is an upper bound of the equivocation rate.

Therefore, in favour of a closed form distortion expression for multi-sensor estimation
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over fading channels and close relationship between MMSE and mutual information, we

consider analog uncoded transmission at the sensors and introduce the MMSE as security

metric to secure the system at the physical layer.

In this chapter, we consider the estimation of a single point Gaussian source by a sen-

sor network in the presence of an eavesdropper, where the analog amplify and forward

technique over a slow-fading orthogonal MAC2 is used. We assume the same observed

signal passes through another orthogonal MAC before reaching the eavesdropper, and

both the FC and the eavesdropper attempt to reconstruct a MMSE estimation of the ob-

servations. The main contributions of the chapter are:

• We consider power allocation problems that minimize the distortion at the FC sub-

ject to a total transmit power constraint at the sensor(s) and a security/secrecy con-

straint at the eavesdropper.

• In the multiple-antenna single sensor system, we can achieve zero information leak-

age in the full CSI case by transmitting the signal onto the eavesdropper’s channel

null space, and also enhance the system performance dramatically by employing

the technique of artificial noise for the partial CSI case. We give theoretical analysis

on the long-term distortion for a power allocation scheme where a beamforming

vector is aligned with the FC’s channel direction. We also study the asymptotic dis-

tortion at the FC under the secrecy constraints when the number of antennas grows

large.

• In the multiple-sensor scenario, we consider a short-term power allocation prob-

lem in the full CSI case, and long-term power allocation problems in both the full

CSI and partial CSI cases. The asymptotic behaviour of the long-term distortion at

the FC is also studied under the equal power allocation scheme as the number of

sensors increases.

This chapter is organized as follows. In Section 3.2 we give the general problem for-

mulation of the decentralized estimation for a system with a multiple-antenna single sen-

2When orthogonal MAC, such as TDMA and FDMA, is employed, only pairwise synchronization be-
tween each sensor and the FC is sufficient; whereas in the case of coherent MAC, synchronization between
all sensors and the FC are required [15].
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sor, and study the optimal power scheduling. We also explore other techniques that can

be utilized in the multiple-antenna scenario. In Section 3.3, we explore a multiple-sensor

single-antenna network and solve the power allocation problems for different scenarios.

In Section 3.4, we consider a multiple-sensor-multiple-antenna network. Simulation re-

sults are given in Section 3.5, followed by concluding remarks in Section 3.6.

3.2 Multiple Antennas Scenario

Consider a wireless network with one sensor equipped with Nt transmit antennas ob-

serving a single point independent and identically distributed (i.i.d.) Gaussian source,

denoted by θ[t], t = 0, 1, 2, . . . , which has zero mean and variance σ2
θ . The measurement

received by the sensor at time t is given as,

x[t] = θ[t] + ω[t], (3.1)

where we assume ω[t] is i.i.d. Gaussian noise over time t, with zero mean and variance

σ2
ω.

The analog amplify and forward techniques [24, 25] are employed, where the sensor

transmits over fading channels a scaled version of the analog measurements to the fusion

center (FC). It has been shown in [7, 25] that this technique is asymptotically optimal,

and exactly optimal in [24] under certain situations for Gaussian source estimation in

the coherent MAC. In our model, the sensor amplifies the signal with a beamforming

vector β[t] ∈ CNt×1 before transmitting it to the FC in the presence of an eavesdropper,

as illustrated in Figure 3.1. We assume both channels experience block fading, where

the channels remain constant during each coherence time interval, and are i.i.d. over

different time intervals [11]. We further assume that full channel state information (CSI)

of the FC is available, while the eavesdropper’s CSI may or may not be available to the

FC. The FC designs the optimal power allocation strategy based on the available CSI, and

then sends β[t] back to the sensor via a public feedback link3. Note that CSI at the FC can

3In this case, it can be seen later in (3.3b) that the minimum distortion level at the eavesdropper is
achieved by implementing the linear MMSE estimator. When the feedback link is secure, the estimation
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be obtained by employing pilot training signals transmitted from the sensor.

Figure 3.1: Diagram of a multiple-antenna single sensor system with the presence of an
eavesdropper.

The signals received by the FC and the eavesdropper are given by, respectively

y[t] = h[t]β[t]θ[t] + h[t]β[t]ω[t] + z[t], (3.2a)

ye[t] = he[t]β[t]θ[t] + he[t]β[t]ω[t] + ze[t], (3.2b)

where both z[t] and ze[t] are i.i.d. zero mean complex Gaussian channel

noise at the FC and the eavesdropper with variance σ2
n and σ2

e respectively, and h[t] =

[h1[t], . . . , hn[t], . . . , hNt [t]] and he[t] = [he1[t], . . . , hen[t], . . . , heNt
[t]] are respectively the

channels from the sensor to the FC and to the eavesdropper. We assume that {hn[t]} are

i.i.d. complex Gaussian with zero mean and variance σ2
h , and the elements in he[t] are

also i.i.d. complex Gaussian, with zero mean and variance σ2
he

.

The linear minimum mean square error (MMSE) estimator is well known to be the

optimal4 estimator for θ under the model (3.2) [49]. At time t the mean squared error

(MSE) or distortion at the FC and the eavesdropper can be shown to be, respectively5,

D[t] = σ2
θ −

σ4
θ (h[t]β[t])

H
h[t]β[t]

σ2
n +

(

σ2
θ + σ2

ω

)

(h[t]β[t])H
h[t]β[t]

, (3.3a)

distortion seen by the eavesdropper will be even larger than De[t] given in (3.3b), due to the lack of β[t].
4It is also the best linear estimator for non-Gaussian distributions for the source and noise.
5The notation xH refers to the conjugate transpose of x .
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De[t] = σ2
θ −

σ4
θ (he[t]β[t])

H
he[t]β[t]

σ2
e +
(

σ2
θ +σ2

ω

)

(he[t]β[t])
H

he[t]β[t]
. (3.3b)

For a limited transmission power budget Ptot, we would like to minimize the distor-

tion at the FC by adapting the sensor’s transmit power β[t]Hβ[t], while maintaining a

certain level of security of the transmission. In information theoretic security, the secrecy

capacity is defined as the maximum transmission rate at which the mutual information

between the confidential message and the signal received by the eavesdropper is less

than a threshold [30]. Motivated by this idea, plus a close relation between MMSE and

the mutual information of the channel input and output [32, 71], we consider a notion

of secrecy in estimation from a non-information theoretic viewpoint by requiring the dis-

tortion at the eavesdropper to be greater than a threshold De. In this way, some level

of confidentiality can be achieved at the FC. We will refer to the minimum distortion

threshold De as the secrecy threshold in the following.

Due to the assumption of system independence over time t, we will drop the time

index t for the rest of the chapter.

3.2.1 Full CSI

In the case of full CSI, where we assume the FC can also acquire the channel information

between the sensor and the eavesdropper, the power control policies can be derived such

that the sensor is able to adjust the antenna transmission power depending on both the

FC’s and the eavesdropper’s channel information. Clearly, the requirement of full CSI

of the eavesdropper channels is infeasible in practice. However, the optimal distortion

performance with this assumption is instructive as well as useful as a benchmark for the

distortion performance with partial CSI of the eavesdropper channels, to be analysed

subsequently.

Long-Term Optimal Power Allocation

In long-term power allocation, we assume that the crucial information lies in the long-

term behaviour of the estimates, such as long-term trends in the physical process ob-
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served, hence the FC would be more interested in the estimation over multiple fading

blocks. We would like to minimize the long-term average distortion at the FC by adapt-

ing β, where the average is across coherence time intervals, while keeping the long-term

average sum of sensor transmission powers, defined as

E

[

βHβE
[

x2
k

]

]

= E

[

βHβ(σ2
θ + σ2

ωk)
]

to be less than the power budget Ptot. We also seek to maintain the average distortion at

the eavesdropper to be greater than the threshold De, i.e. E[De] ≥ De, to ensure some

level of confidentiality can be achieved at the FC over the long-term.

Furthermore, an additional constraint ensuring the average estimation quality being

better at the FC is considered for more meaningful solutions. Therefore, the power con-

trol problem can be formulated as

min
β

E [D]

s.t. E

[

(

σ2
θ + σ2

ω

)

βHβ
]

≤ Ptot,

E [De] ≥ De,

E [De] ≥ E [D] . (3.4)

Remark: A necessary existence condition for above problem is 0 ≤ De ≤ E

[

De

(

β̂
∗)]

,

where β̂
∗

is the optimal solution of minβ̂ E

[

De

(

β̂
)]

, s.t. E

[

(

σ2
θ + σ2

ω

)

β̂
H

β̂
]

≤ Ptot.

First of all, we know that the constraint E [De] ≥ E [D] is always feasible for the given

power budget unless all the eavesdropper’s channel realizations are all better than that

of the FC, which has zero probability. Next, this choice of De guarantees E [De (β)] ≥ De

for any β satisfies E

[

(

σ2
θ + σ2

ω

)

βHβ
]

≤ Ptot.

Given the distortion expressions in (3.3), we can simplify problem (3.4) and rewrite it

as

min
β

E

[

(

α + (hβ)H hβ
)−1

]

s.t. E

[

βHβ
]

≤ Ptot

σ2
θ + σ2

ω

, (3.5a)



3.2 Multiple Antennas Scenario 29

E

[

(

αe + (heβ)H heβ
)−1

]

≥ Dma_L, (3.5b)

E

[

αe

αe+(heβ)H heβ

]

≥ E

[

α

α+(hβ)H hβ

]

, (3.5c)

where Dma_L =





De

σ2
θ

σ2
ω

σ2
θ
+σ2

ω

− 1





/

σ2
e σ2

θ

(σ2
θ +σ2

ω)σ2
ω

, α = σ2
n

σ2
θ +σ2

ω
and αe =

σ2
e

σ2
θ +σ2

ω
.

To solve problem (3.5), we apply the technique of Lagrange multipliers. The dual

problem of (3.5) is defined as

max
λ, ν, τ

g(λ, ν, τ), (3.6)

where λ, ν and τ are nonnegative Lagrange multipliers, and the dual function g(λ, ν, τ)

associated with problem (3.5) is

g(λ, ν, τ)

= min
βn(h,he), ∀n

∫

h

∫

he

l ({βn(h, he)} , λ, ν, τ) fh fhe
dh dhe + νDma_L − λ

Ptot

σ2
θ + σ2

ω

, (3.7)

where [β1(h, he), . . . , βNt(h, he)]
T = β(h, he) are complex gains allocated on each an-

tenna, fh = ∏
Nt
n=1 f (hn) and fhe

= ∏
Nt
n=1 f (hen), with f (·) denoting the probability density

function. Also l ({βn(h, he)} , λ, ν, τ) =
1+ τσ2

n/σ2
e

α+(hβ)Hhβ
+ λβHβ − τ+ν

αe+(he β)Hhe β
.

It is not difficult to show that problem (3.5) is non-convex. We can obtain a locally

optimal solution from the following necessary Karush-Kuhn-Tucker (KKT) conditions

[9] from the Lagrangian formulation for the optimal point:

−hH
n (hβ)H

[

α + (hβ)H hβ
]2

+
he

H
n (heβ)H (ν + τ)

(

1 + τσ2
n

/

σ2
e

)

[

αe + (heβ)H heβ
]2

+
λ

1 + τσ2
n

/

σ2
e

βH
n = 0, ∀n (3.8a)

λ

(

E

[

βHβ
]

− Ptot

σθ
2 + σω

2

)

= 0, (3.8b)

ν

(

Dma_L − E

[

(

αe + (heβ)H heβ
)−1

])

= 0, (3.8c)

τ

(

σ2
n

σ2
e

E

[

(

α+(hβ)H hβ
)−1

]

−E

[

(

αe+(heβ)H heβ
)−1

])

= 0. (3.8d)
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To be more specific, we first assign arbitrary initial values to λ, ν and τ, then itera-

tively apply the following Step 1 and Step 2 until (3.8b), (3.8c) and (3.8d) are satisfied.

Step 1: With fixed τ(i), λ(i) and ν(i), find the optimal solution β∗ of the Lagrange dual

function (3.7), which can be obtained by solving the equations in (3.8a).

Step 2: With the resulting allocated power, apply the subgradient method to update

the Lagrange multipliers, i.e.,

λ(i+1)=

[

λ(i)+ǫ

(

E

[

β∗Hβ∗
]

− Ptot

σθ
2 + σω

2

)]+

,

ν(i+1)=

[

ν(i)+κ

(

Dma_L−E

[

(

αe+(heβ∗)H
heβ∗

)−1
] )]+

,

τ(i+1)=

[

τ(i)+υ

(

σ2
n

σ2
e

E

[

(

α+(hβ∗)H
hβ∗

)−1
]

− E

[

(

αe+(heβ∗)H
heβ∗

)−1
])]+

, (3.9)

where υ, κ and ǫ are sufficiently small step-sizes for updating τ, ν and λ respectively.

Zero Information Leakage

Other than diversity gain, another advantage with multiple transmit antennas is that we

can employ techniques to hide the observation data from the eavesdropper by transmit-

ting it onto the null space of the eavesdropper’s channel. As a result, the eavesdropper is

unable to detect any information about x.

Let the singular value decomposition of he be he = USVH. The null space of the

eavesdropper’s channel can be represented by the span of the orthonormal column vec-

tors of Ṽ, where Ṽ is the last Nt − 1 columns of V. Then we can express the eavesdrop-

per’s channel null space as ṼṼH [108].

Next, we define a precoding matrix

W = ṼṼH,

where W ∈ CNt . The sensor sends Wβx. The signal received by the FC and the eaves-
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dropper are given by, respectively

y = hWβx + z = hWβθ + hWβω + z, (3.10a)

ye = heWβx + ze = ze, (3.10b)

and the transmission power can be computed as
(

(Wβ)H Wβ
)

(σ2
θ + σ2

ω). Since the

eavesdropper receives only noise, the distortion at the eavesdropper reaches its high-

est level of σ2
θ , and hence we can remove constraints (3.5b) and (3.5c) in problem (3.5). In

addition, we know that the beamforming vector should line-up with hW to minimize the

distortion at the FC; thus, β =
√

p0
(hW)H

‖hW‖ with p0 being real-valued6. Therefore, problem

(3.5) can be then simplified and rewritten as

min
p0≥0

E

[

(

α + p0hWhH
)−1

]

s.t. p0 ≤ Ptot

σ2
θ + σ2

ω

. (3.11)

It can be seen that when p0 = Ptot

σ2
θ +σ2

ω
the long-term distortion at the FC reaches its

minimum.

Remark: The signal is transmitted on the eavesdropper’s null space via the precoding

matrix W. Therefore, we have the effective FC channel hW, which is the projection of h

on the null space of he.

Short-Term Optimal Power Allocation

We can formulate a power allocation problem that minimizes the distortion at the FC,

while satisfying a secrecy constraint at the eavesdropper and meeting the total power

budget in every transmission time slot. We refer this as short-term power allocation. Note

that for short-term optimal power allocation we cannot guarantee that the estimation

quality is better at the FC at all times. Keeping this in mind, the optimal power allocation

6The notation ‖x‖ refers the Euclidean norm of the vector x.
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problem for a given set of channels can be cast as

min
β

D = min
β

σ2
θ −

ασ4
θ

σ2
n

[

1 − α

α + (hβ)H hβ

]

s.t. βHβ ≤ Ptot

σ2
θ + σ2

ω

,

σ2
θ −

αeσ
4
θ

σ2
e

[

1− αe

αe+(heβ)H heβ

]

≥De, (3.12)

where De and Ptot are respectively the distortion threshold at the eavesdropper and the

total transmission power budget.

We aim to find an optimal beamforming vector β which meets the constraints in every

fading block. The Lagrange multiplier technique is applied to solve this non-convex

optimization problem, and the details are omitted to avoid repetition.

3.2.2 Partial CSI

Due to the difficulties of perfectly acquiring the eavesdropper’s CSI in practical setups,

in this subsection we assume that the FC only has statistical knowledge of the eavesdrop-

per’s channel information. As it is not practical to consider short-term constraints that

need to be satisfied at every time instance, we only look at the long-term scenario for

the partial CSI case. We first explore the power allocation problem that minimizes the

long-term distortion at the FC via the Lagrange multiplier technique. Next, we study the

technique of artificial noise, where the artificial interference is transmitted to confuse the

eavesdropper. We also analyse the asymptotic behaviour of the distortion at the FC when

equal power allocation is employed.

The power allocation problem is formulated similar to (3.4) but now with β being a

function of h, rather than a function of h and he as in the full CSI case. As the problem is

again non-convex, a locally optimal solution can be obtained as follows. Similar to (3.7),

we define the Lagrange dual function as

g(λ, ν, τ) = min
βn(h), ∀n

∫

h
l ({βn(h)} , λ, ν, τ) fh dh + νDma_L − λ

Ptot

σ2
θ + σ2

ω

,
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with l ({βn(h)} , λ, ν, τ) expressed as

l ({βn(h)} , λ, ν, τ) =
1 + τσ2

n

/

σ2
e

α+(heβ)H heβ
+λβHβ−

∫

he

τ + ν

αe+(heβ)H heβ
fhe

dhe. (3.13)

For any set of channels h, the optimal transmission power of the sensor is determined

by the stationary points (or KKT points). We can then adapt similar methods as described

in Section 3.2.1. In Step 1 the power policies β∗(h) can be derived by applying Algorithm

1 below. For fixed τ(i), λ(i) and ν(i), Algorithm 1 sequentially updates the transmit power

on each antenna by minimizing the function given in (3.13), until a locally optimal solu-

tion is found. In Step 2 we update the Lagrange multipliers via the subgradient method.

Algorithm 1

1: Initialize the iteration index q = 0, choose an arbitrary initial value for
{

βn(h)(q)
}Nt

n=1
,

and obtain l(q) = l
({

βn(h)(q)
}

, λ, ν, τ
)

from (3.13).

2: repeat

3: for j = 1 : Nt

1. Find the complex gain β′
j(h) on antenna j such that

l

({

{

βn(h)(q)
}

n 6=j
, β′

j(h)

}

, λ, ν, τ

)

is minimized.

2. Update the transmission power of antenna j by
[

β1(h)
(q), . . . , β′

j(h)
(q), . . . , βNt(h)

(q)
]

.

4: update l(q+1) = l
({

β′
n(h)

(q)
}

, λ, ν, τ
)

, and q = q + 1.

5: until convergence:
(

l(q+1) − l(q)
)

/
(

l(q+1)
)

< ζ; set {β∗
n(h)} =

{

β′
n(h)

(q)
}

.

Remark: In Step 1, τ(i), λ(i) and ν(i) are fixed, hence we drop the iteration number i in

Algorithm 1; and ζ is a pre-specified convergence criterion. Additionally, Algorithm 1

only gives a locally optimal solution, as the different initial values of β(h)(0) may lead l in

(3.13) to converge to a different minimum. Thus, in practice, the FC begins with several

different initial points, and chooses the best resulting powers and forwards them to the

sensor.
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Artificial Noise

To enhance the system performance, we can use the technique of artificial noise to de-

grade the eavesdropper’s channel. The artificial noise is generated by the transmitter

(the sensor) in a way that the additional noise lies in the null space of the intended re-

ceiver’s (the FC’s) channel; as a result, the noise would not cause any damage towards

the message received by the FC but would degrade the eavesdropper’s channel [27, 74].

To be more specific, let the column vectors of ŴH = [w1W2] be an orthonormal basis

of CNt , with wT
1 ∈ C1×Nt representing the signal space of h. The sensor then transmits

w1
√

psx + W2v, (3.14)

where W2v is the artificial noise, which is chosen to be a random vector in the null

space of h to reduce the possibility of small ’noise’ seen by the eavesdropper. Here

v ∈ C(Nt−1)×1 has Nt − 1 i.i.d. complex Gaussian entries with each having zero mean and

variance pa. Hence the transmit power in each fading block is given as ps

(

σ2
θ + σ2

ω

)

+

pa (Nt − 1). The signal received by the FC and the eavesdropper are respectively

y = hŴH
[√

psx, vT
]T

+ z = hw1
√

psx + hW2v + z

= hw1
√

psx + z,

ye = heŴ
H
[√

psx, vT
]T
+ze = hew1

√
psx + heW2v+ze.

Remark: As he has i.i.d. entries and Ŵ is a unitary matrix, we know that heŴ
H also has

i.i.d. elements. This indicates that hew1 is independent of heW2. As a result, the effective

noise at the eavesdropper becomes heW2v + ze.

Our objective is to derive the power used to produce artificial noise and to forward

the observation signal so that the long-term distortion at the FC is minimized, while sat-

isfying the three long-term constraints as described in Section 3.2.1. Assuming both the

FC and the eavesdropper use the optimal MMSE estimator, the functional optimization
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problem can be written as (3.15) below.

min
ps(h), pa(h)

E

[

(

1

σ2
θ

+
ps(h)hhH

σ2
n + ps(h)hhHσ2

ω

)−1
]

s.t. (σ2
θ + σ2

ω)E [ps(h)]+(Nt − 1)E [pa(h)] ≤ Ptot

E

[

(

1

σ2
θ

+
ps(h)|hew1|2

σ2
e + ps(h)|hew1|2σ2

ω+heW2WH
2 hH

e pa(h)

)−1
]

≥De

E

[

(

1

σ2
θ

+
ps(h)|hew1|2

σ2
e + ps(h)|hew1|2σ2

ω+heW2WH
2 hH

e pa(h)

)−1
]

≥

E

[

(

1

σ2
θ

+
ps(h)hhH

σ2
n + ps(h)hhHσ2

ω

)−1
]

(3.15)

To solve problem (3.15), we apply the technique of Lagrange multipliers and use two

steps similar to those described in Section 3.2.1, where in Step 1, with fixed Lagrange

multipliers, we need to sequentially find the ps(h) and pa(h).

Asymptotic Analysis

In this subsection, we are interested in seeing how the long-term distortion decays at

the FC as the number of antennas Nt increases, under both the power constraint and the

secrecy constraints.

Notation: For two functions f1(·) and f2(·), we use the standard asymptotic notation

and say that f1 ∼ f2 as t → t0, if f1(t)/ f2(t) → 1 as t → t0 [101].

We consider the case where the beamforming vector is chosen to be lined up with the

FC’s channel in order to minimize the distortion at the FC, i.e.,

β =

√
p0hH

‖h‖ , (3.16)

where p0 = min

[

1−αeDma_L

σ2
he

Dma_L
, Ptot

σ2
θ +σ2

ω

]

. This choice of p0 guarantees that the three long-term

constraints are satisfied. To see this, we first rewrite E

[

(

αe + (heβ)H heβ
)−1

]

as

E

[

(

αe + (heβ)H heβ
)−1

]
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=E

[

(

αe + p0
hhH

e heh
H

‖h‖2

)−1
]

=E

[

(

αe + p0

(

‖he‖
∣

∣

∣
h̃h̃H

e

∣

∣

∣

)2
)−1

]

, (3.17)

where h̃ = h
‖h‖ and h̃e = he

‖he‖ , which are two independent isotropic vectors on the Nt-

dimensional unit sphere.

The first thing to be noticed from (3.17) is that ‖he‖ ·
∣

∣h̃h̃H
e

∣

∣ can be thought of as the

magnitude of the vector he projected onto the vector space of h, as the second term can

be written as
∣

∣h̃h̃H
e

∣

∣ =
∣

∣cos
(

∠
(

h̃, h̃e

))∣

∣
7. This also indicates that

∣

∣h̃h̃H
e

∣

∣ is only related to

the difference in the two channel directions. Therefore, by exploiting the independence

of channel norm and channel direction [45], we can simplify (3.17) as

E

[

(αe + p0XY)−1
]

, (3.18)

where X = ‖he‖2 and Y =
∣

∣h̃h̃H
e

∣

∣

2
are two independent random variables, with X being

Gamma distributed as

X ∼ Γ
(

Nt, σ2
he

)

, fX (x) =
xNt−1e− x/σ2

he

σ2Nt

he
(Nt − 1)!

.

In addition, as h̃ and h̃e are independent isotropic vectors, we have Y being Beta dis-

tributed with parameters 1 and Nt − 1:

Y ∼ Beta (1, Nt − 1) , fY (y) = (Nt − 1) (1 − y)Nt−2 .

Since (3.18) is convex with respect to XY, applying Jensen’s inequality and using the

fact that E [X] = σ2
he

Nt, E [Y] = 1
Nt

, we obtain a lower bound of (3.18) as:

E

[

(αe + p0XY)−1
]

≥ (αe + p0E [X]E [Y])−1

7∠ (x, y) is the angle between two vectors x and y, and |cos (∠ (x, y))| = |xHy|
‖x‖·‖y‖ .



3.2 Multiple Antennas Scenario 37

=
(

αe + p0σ2
he

)−1
, (3.19)

from which we can obtain a lower bound of the long-term distortion at the eavesdropper

given as

E [De] ≥
σ2

θ σ2
ω

σ2
θ + σ2

ω

+
σ4

θ

/ (

σ2
θ + σ2

ω

)

1 + σ2
he

p0 /αe
, (3.20)

which is independent of the number of transmit antennas, and decreases to
σ2

θ σ2
ω

σ2
θ +σ2

ω
when

the total transmit power is increased to infinity (as the long-term transmit power is
(

σ2
θ + σ2

ω

)

E

(

βHβ
)

=
(

σ2
θ + σ2

ω

)

p0). Hence, we can set
σ2

θ σ2
ω

σ2
θ +σ2

ω
+

σ4
θ /(σ2

θ +σ2
ω)

1+ σ2
he

p0

/

αe

≥ De to

guarantee that the secrecy constraint at the eavesdropper is satisfied, i.e., p0 ≤ 1−αeDma_L

σ2
he

Dma_L
.

Therefore, given a total transmit power budget Ptot, we see that the long-term power

constraint as well as the secrecy constraint are met when p0 = min

[

1−αeDma_L

σ2
he

Dma_L
, Ptot

σ2
θ +σ2

ω

]

.

Furthermore, using the beamforming vector (3.16) gives us the long-term distortion

at the FC:

E [D] =
σ2

θ σ2
ω

σ2
θ + σ2

ω

+
σ4

θ α2

σ2
n

E

[

(

α + p0‖h‖2
)−1
]

(3.21a)

=
σ2

θ σ2
ω

σ2
θ + σ2

ω

+
σ4

θ α2

σ2
n

E





(

α + p0

Nt

∑
n=1

|hn|2
)−1



 (3.21b)

(a)∼ σ2
θ σ2

ω

σ2
θ + σ2

ω

+
σ4

θ α2

σ2
n

(

α + p0Ntσ
2
h

)−1
(3.21c)

∼ σ2
θ σ2

ω

σ2
θ + σ2

ω

+
σ4

θ α2

σ2
nσ2

h p0

1

Nt
, (3.21d)

which is asymptotically equal to the constant
σ2

θ σ2
ω

σ2
θ +σ2

ω
plus a term that decays to zero at the

rate 1/Nt, where (a) holds providing the expectation E

[

|h1|2
]

exists (which in this case

is σ2
h ) and applying the strong law of large numbers.

From (3.21d), we notice that if the beamforming vector has the form β =
√

p0hH

‖h‖ , the

long-term distortion at the FC decreases as we increase Nt, whereas the lower bound

of the distortion at the eavesdropper, as shown in (3.20), is dependent on the transmis-

sion power. Therefore, we conclude that, given a limited transmit power budget, the
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long-term distortion at the FC is always smaller than the distortion at the eavesdropper

when the number of transmission antennas is large; in other words, all three long-term

constraints can be satisfied when β =
√

p0hH

‖h‖ with p0 = min

[

1−αeDma_L

σ2
he

Dma_L
, Ptot

σ2
θ +σ2

ω

]

.

3.3 Multiple Sensors Scenario

For the single point source estimation, if applying multiple antennas is not an option,

an alternative way to improve the estimation accuracy at the FC is to employ multiple

sensors. Therefore, in this section, we investigate the behaviour of a multiple-sensor

signal antenna system, followed by multi-antenna multi-sensor systems in Section 3.4. In

both cases we assume that the FC and eavesdropper have a single receive antenna.

A schematic diagram of the wireless system model is shown in Figure 3.2. We assume

that the same single point Gaussian source θ as defined in Section 3.2 is observed by K

sensors. The measurement received by the kth sensor is corrupted with noise ωk and

given as,

xk = θ + ωk, (3.22)

where we assume ωk is i.i.d. Gaussian noise over time, with zero mean and variance

σ2
ωk. We assume pairwise synchronization between each sensor and the FC. The sensors

employ the analog amplify and forward technique [24,25] to scale the signal with βk ∈ C

before sending it to the FC via a set of orthogonal channels [h1, . . . , hK]. The observa-

tion {xk} is also listened to by the eavesdropper via another set of orthogonal channels

[he1, . . . , heK].

The signals received by the FC and the eavesdropper from the kth sensor are given

by, respectively,

yk = hkβkθ + hkβkωk + zk, (3.23a)

yek = hekβkθ + hekβkωk + zek, (3.23b)

where both hk and hek are zero mean i.i.d. complex Gaussian channels (Rayleigh fading)
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Figure 3.2: Diagram of a wireless sensor network using orthogonal MAC scheme with
the presence of an eavesdropper.

from sensor k to the FC and the eavesdropper with variances σ2
hk

and σ2
hek respectively,

and zk and zek represent i.i.d. complex Gaussian noise with zero mean and variances σ2
nk

at the FC and σ2
e k at the eavesdropper respectively.

The optimal MMSE estimator is used at both the FC and the eavesdropper to mea-

sure θ. At each channel instance, the mean squared error or distortion at the FC and the

eavesdropper can be shown to be, respectively,

D =

(

1

σ2
θ

+
K

∑
k=1

(hkβk)
H hkβk

(hkβk)
H hkβkσ2

ωk + σ2
nk

)−1

=

(

1

σ2
θ

+
K

∑
k=1

gk pk

gk pkσ2
ωk + σ2

nk

)−1

, (3.24a)

De =

(

1

σ2
θ

+
K

∑
k=1

(hekβk)
H hekβk

(hekβk)
H hekβkσ2

ωk + σ2
e k

)−1

=

(

1

σ2
θ

+
K

∑
k=1

gek pk

gek pkσ2
ωk + σ2

e k

)−1

, (3.24b)

where gk = hH
k hk ∈ R and gek = he

H
k hek ∈ R are respectively the channel power gains

from sensor k to the FC and the eavesdropper, and pk = βH
k βk ∈ R is the power allocated
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on the kth sensor. This means that for a given set of {pk}, any {βk} satisfying βH
k βk =

pk, ∀k would result in the same distortion, which implies βk does not necessarily need

to line-up with sensor k’s channel direction; hence we mainly focus on {pk} in multiple-

sensor scenarios.

In the following, we first look at the optimal power allocation, where the optimal

power policies are designed by the FC based on the available CSI, and then sends {pk}
back to the sensors via a public channel. Applying a similar idea as in Section 3.2.2 of in-

creasing the interference seen by the adversary in such a way that the channel is degraded

while the channel of the legitimate is not, we then consider a scenario where some of the

sensors are employed to broadcast artificial interference which can be canceled off at the

FC, but will in general degrade the eavesdropper’s channel. The asymptotic behaviour

is also studied for the partial CSI case at the end of this section.

3.3.1 Full CSI - Optimal Power Allocation

In order to extend sensors’ lifespan meanwhile maintaining a certain level of security for

the network, we would like to minimize the distortion at the FC by adapting the sensors’

transmit powers while satisfying the same three constraints as considered in multiple-

antenna scenarios. With full knowledge of the eavesdropper’s channel information, the

power control problem can be formulated as:

min
pk(gk ,gek)≥0, ∀k

E





(

1

σ2
θ

+
K

∑
k=1

gk pk

gk pkσ2
ωk + σ2

nk

)−1




s.t. E

[

K

∑
k=1

(

σ2
θ + σ2

ωk

)

pk

]

≤ Ptot

E





(

1

σ2
θ

+
K

∑
k=1

gek pk

gek pkσ2
ωk + σ2

e k

)−1


≥De

E





(

1

σ2
θ

+
K

∑
k=1

gek pk

gek pkσ2
ωk + σ2

e k

)−1


 ≥E





(

1

σ2
θ

+
K

∑
k=1

gk pk

gk pkσ2
ωk+σ2

nk

)−1


 .

(3.25)



3.3 Multiple Sensors Scenario 41

Similar setups have been considered in [33], where a minimum distortion threshold

is set at the eavesdropper to ensure that the estimation error at the eavesdropper is no

smaller than the requirement. In (3.25), an additional constraint guaranteeing a larger

error always occurs at the eavesdropper is considered, hence one would expect no bet-

ter performance being achieved at the FC compared with the results in [33] because of

a smaller feasible region. Despite this, one can use the same methods as described in

Section 3.2.1 by applying KKT condition and then numerically obtain locally optimal so-

lutions for problem (3.25). Simulation results are given in Section 3.5.

Next, we explore the short-term distortion performance at the FC while satisfying a

secrecy constraint at the eavesdropper and a total power constraint at the sensors in every

transmission instant. As for the short-term optimal power allocation we cannot guarantee

the distortion to be smaller at the legitimate receiver than the distortion at the eaves-

dropper for every fading block. For example, if the instantaneous channel SNR of the

eavesdropper is greater than the channel SNR of the FC (
gek

σ2
e k

>
gk

σ2
n k

, ∀k), all sensors will

have to stop transmitting, which is not so interesting. Therefore, the power allocation

problem in short-term scenario is only considered in the case of full CSI. We can formu-

late the optimization problem and rewrite it as

min
pk≥0, ∀k

K

∑
k=1

−gk pk

gk pkσ2
ωk + σ2

nk

s.t.
K

∑
k=1

(

σ2
θ + σ2

ωk

)

pk ≤ Ptot, (3.26a)

K

∑
k=1

gek pk

gek pkσ2
ωk + σ2

e k

≤ Ims, (3.26b)

where Ims =
1

De
− 1

σ2
θ

. As similar techniques depicted in Section 3.2.1 can be used to find

a locally optimal solution, we omit details to avoid repetition.

Remark: Once the Lagrange dual functions are written for problem (3.25) and prob-

lem (3.26), one could notice that in the short-term scenario the power on the kth sensor

depends only on its own channel conditions; whereas in the long-term scenario the trans-

mission power of sensor k is a function of all sensors’ channel information.
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3.3.2 Partial CSI

Optimal Power Allocation

The optimal power allocation in partial CSI case is considered when the FC knows its

channel full CSI but only has statistical knowledge of the eavesdropper. In this scenario,

the problem is formulated similarly as problem (3.25) with the power scheme {pk} only

being a function of the FC’s channel information. A locally optimal solution can be then

derived by applying similar techniques as used in [33] and Section 3.2.2; thus details

regarding the optimal power allocation in partial CSI case are omitted. The simulation

results are given in Section 3.5 for comparison.

Partial CSI - Artificial Noise with Relays

In a multiple-sensor network with only the FC’s channel information, artificial noise can

be produced when the observation information is crucial or there is a high security re-

quirement. Different from Section 3.2.2, the concept of artificial noise in the multiple-

sensor scenario is to transmit some interfering signals from a few sensors which can

be cancelled off at the intended receiver (the FC), but would significantly degrade the

eavesdropper’s channel [27]. Instead of forwarding the observation signal to the FC,

some sensors broadcast artificial noise to confuse the eavesdropper in the network. In

this subsection, we assume that a total number of M sensors estimate the source θ and

then transmit the observation information {xm}M
m=1 to the FC, while the remaining K − M

sensors work as relays aiming to boost the secret transmission of the information {xm}.

This extends the setup of [27] in which there is one transmitter and K − 1 relays.

The transmission is completed in two stages. Let hsm F, hsme, and hsmrk
be the channels

from sensor m to the FC, the eavesdropper and relay k respectively. Denote hFe and hFrk

as the channels from the FC to the eavesdropper and relay k respectively. At the first

stage, as shown in Figure 3.3, sensor m and the FC transmit nshsm F and nF respectively,
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Figure 3.3: Diagram of stage one transmission in the artificial noise with relays.

and the eavesdropper and relay k receive, respectively,

ye,1 =ns

M

∑
m=1

hsm Fhsme + hFenF + ze,1,

yrk ,1 =ns

M

∑
m=1

hsm Fhsmrk
+ hFrk

nF + zk,1,

where ze,1 and zk,1 are zero mean i.i.d. complex Gaussian channel noises at the eaves-

dropper and at the kth relay with variances σ2
e and σ2

r respectively. ns and nF are artificial

noises with variances σ2
ns and σ2

nF respectively.

At the second stage, sensor m forwards to the FC the amplified observation signal

xmβm, and it also utilizes the public weight sequences {γ̄k}, which is a publicly avail-

able sequence of weights that are known to every participant (may also be seen by the

eavesdropper) in the network, to transmit −ns ∑
K−M
k=1 γ̄khsmrk

hrk F. We assume all the pub-

lic sequences {γ̄k} are i.i.d. zero mean complex Gaussian random variables with variance

σ2
γ̄, thus {γ̄k} varies at each transmission to reduce the probability of the artificial noise

being nulled at the eavesdropper. On the other hand, relay k transmits γ̄kyrk ,1. Therefore,
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at the second stage the eavesdropper and the FC receive respectively,

ye,2 =
M

∑
m=1

xmhsmeβm + ns

K−M

∑
k=1

γ̄k

M

∑
m=1

hsmrk
(hsm Fhrke − hrk Fhsme)

+ nF

K−M

∑
k=1

γ̄khFrk
hrke+

K−M

∑
k=1

γ̄khrkezk,1 + ze,2, (3.27)

y =
M

∑
m=1

xmhsFβm +
K−M

∑
k=1

γ̄khrk F (hFrk
nF + zk,1) + z

(b)
=⇒

M

∑
m=1

xmhsm Fβm +
K−M

∑
k=1

γ̄kzk,1hrk F + z, (3.28)

where ze,2 and z are zero mean i.i.d. complex Gaussian channel noises at the eavesdrop-

per and the FC respectively with variances σ2
e and σ2

n . In (3.28), (b) holds as nF is known

to the FC which can be cancelled off. Note that we assume synchronization between all

sensors and the FC is available in this part of work, and the two-stage transmission can be

completed in one fading block, as a result all the channels remain the same at the second

stage transmission.

Remark: It is clear that the second term of (3.27) corresponds to the artificial noise

generated from the M sensors at the first stage of transmission, which vanishes at the

second stage as it reaches the FC (as can be seen in (3.28)). In channel conditions where

hsm Fhrke is close to hrk Fhsme, instead of increasing the transmit power at both the first and

the second stage transmissions to boost noise level, we expect to use the third term of

(3.27) to increase the noise level at the eavesdropper with little power consumption.

Combining the two-stage transmission, we have that the signal received by the eaves-

dropper given as

ye =

[

0,
M

∑
m=1

hsmeβm (θ+ωm)

]T

+Hre [ns, nF]
T + ze, (3.29)
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where ze =
[

ze,1, ∑
K−M
k=1 γ̄khrkezk,1 + ze,2

]T
and Hre is expressed in (3.30).

Hre =





∑
M
m=1 hsm Fhsme hFe

∑
K−M
k=1 γ̄k ∑

M
m=1 hsmrk

(hsm Fhrke − hrk Fhsme) ∑
K−M
k=1 γ̄khFrk

hrke



 (3.30)

Hence, the total power consumption Pstages for the two-stage transmission can be also

derived as

Pstages =σ2
ns

(

M

∑
m=1

|hsm F|2+σ2
γ̄

M

∑
m=1

|hsm F|2
K−M

∑
k=1

|hsmrk
|2 + σ2

γ̄

M

∑
m=1

K−M

∑
k=1

|hsmrk
|2|hrk F|2

)

+ σ2
γ̄ (K−M) σ2

r + σ2
nFσ2

γ̄

K−M

∑
k=1

|hFrk
|2+

M

∑
m=1

|βm|2
(

σ2
ωm+σ2

ω

)

. (3.31)

Let Ke be the covariance matrix of
[

0, ∑
M
m=1 hsmeβmωm

]T
+ Hre [ns, nF]

T + ze. As ns,

nF, ze,1, ze,2, {zk,1} and {ωm} are all independent random noises, Ke can be computed as

Ke =





σ2
ns ∑

M
m=1 |hsm F|2|hsme|2+σ2

nF|hFe|2+σ2
e 0

0 ke22



 ,

where ke22 is given as:

ke22 =σ2
γ̄σ2

ns

K−M

∑
k=1

M

∑
m=1

|hsmrk
|2 |hsm Fhrke−hrk Fhsme|2 + σ2

γ̄σ2
nF

K−M

∑
k=1

|hFrk
|2|hrke|2

+ σ2
γ̄σ2

r

K−M

∑
k=1

|hrke|2 +
M

∑
m=1

|βmhsme|2σ2
ωm + σ2

e . (3.32)

Using the optimal MMSE estimator [49], from (3.28), (3.29) and (3.32) we can express

the distortion D at the FC and the distortion De at the eavesdropper as

D=







1

σ2
θ

+

∣

∣

∣∑
M
m=1 βmhsm F

∣

∣

∣

2

∑
M
m=1 |hsm Fβm|2σ2

ωm+σ2
γ̄σ2

r ∑
K−M
k=1 |hrk F|2+σ2

n







−1

(3.33)
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De = σ2
θ






1−

σ2
θ

∣

∣

∣∑
M
m=1 hsmeβm

∣

∣

∣

2

ke22+σ2
θ

∣

∣

∣∑
M
m=1 hsmeβm

∣

∣

∣

2






. (3.34)

In the partial CSI scenario, the FC is able to obtain the channel information of {hsm F},

{hFrk
}, {hsmrk

} and {hrk F} at each fading block, thus it can develop an intelligent transmis-

sion strategy such that the {βm}, the variance of the public sequences σ2
γ̄ and the artificial

noise powers σ2
ns, σ2

nF can be adapted in different fading blocks, while satisfying the long-

term constraints as described in Section 3.3.1. Let G = [{hsm F} , {hFrk
} , {hsmrk

} , {hrk F}].
The functional optimization problem can be then formulated as

min
{βm(G)}, σ2

γ̄(G), σ2
ns(G), σ2

nF(G)
E [D]

s.t. E
[

Pstages

]

≤ Ptot,

E [De] ≥ De,

E [De] ≥ E [D] , (3.35)

where Pstages, D and De are expressed in (3.31), (3.33) and (3.34), which are functions of

{βm}, σ2
γ̄, σ2

ns, and σ2
nF. We can then employ the same Lagrange multiplier technique

as described in Section 3.2.2 to solve problem (3.35), where in Algorithm 1, we need

to sequentially find {βm (G)}, σ2
γ̄ (G), σ2

ns (G), and σ2
nF (G). The details are omitted for

brevity.

Partial CSI - Asymptotic Analysis

In order to see how the system performs as the number of sensors increases, in this sec-

tion, we explore the asymptotic long-term distortion at the FC in the case of partial CSI.

For analytical tractability, we consider a homogeneous wireless sensor network where all

the measurement noise and fading distributions are i.i.d.. As a consequence, we denote
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σ2
ωk = σ2

ω, E [gk] = σ2
h , E [gek] = σ2

he
, σ2

nk = σ2
n and σ2

e k = σ2
e , ∀k8. We also assume that

the channel conditions of the FC and the eavesdropper satisfy
σ2

h

σ2
n
≥ σ2

he

σ2
e

, as a result the FC

always has better estimation quality than that of the eavesdropper when the number of

sensors is sufficiently large. In addition, if the secrecy constraint and the transmit power

constraint are satisfied at every transmission, the long-term power constraint as well as

the long-term secrecy constraint can also be met.

With equal power allocation, i.e. pk = p ∀k, we can rewrite the short-term secrecy

constraint (3.26b) as

K

σ2
ω p

1

K

K

∑
k=1

1

gek +
σ2

e

σ2
ω p

≥ K − Imsσ2
ω

σ2
e

. (3.36)

It is straightforward to show that 1

gek+
σ2

e
σ2

ω p

is convex in gek ∀k. For large K, applying

Jensen’s inequality we have

K

σ2
ω p

1

K

K

∑
k=1

1

gek +
σ2

e

σ2
ω p

≥ K

σ2
ω p

1

∑
K
k=1 gek

K + σ2
e

σ2
ω p

∼ K

σ2
ω p

1

σ2
he
+ σ2

e

σ2
ω p

. (3.37)

Therefore, we can set K
σ2

ω p
1

σ2
he
+σ2

e /(σ2
ω p)

≥ K−Imsσ2
ω

σ2
e

to guarantee that the secrecy constraint

is met (for large K). Let re = σ2
he

/

σ2
e . Together with the short-term transmit power

constraint (3.26a), the transmission power is given as

p = min

[

Ptot

K
(

σ2
ω + σ2

θ

) ,
Ims

re (K − Imsσ2
ω)

]

. (3.38)

8As both channels of the FC and the eavesdropper are distributed as i.i.d. zero mean complex Gaussian
(Rayleigh fading) with variances σ2

h and σ2
he

respectively, we know that the channel power gains gk and gek

are exponentially distributed with means σ2
h and σ2

he
respectively.
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When p = Ims

re(K−Imsσ2
ω)

, from (3.24a) we have

D =





1

σ2
θ

+
1

σ2
ω

K

∑
k=1

gk

gk +
σ2

n

σ2
ω p





−1

=





1

σ2
θ

+
1

σ2
ω

K

∑
k=1

gk

gk +
σ2

nre

σ2
ω Ims

K − σ2
nre





−1

(c)∼





1

σ2
θ

+
K

σ2
ω

E





g1

g1 +
σ2

nre

σ2
ω Ims

K − σ2
nre









−1

, (3.39)

provided the expectation E

[

gk

gk+σ2
e /(σ2

ω p)

]

exists. (c) is the result of applying a strong law

of large numbers for triangular arrays [40]. Hence, the long-term distortion at the FC is

given as

E [D] ∼





1

σ2
θ

+
K

σ2
ω

E





g1

g1 +
σ2

nre

σ2
ω Ims

K − σ2
nre









−1

. (3.40)

As gk, ∀k is exponentially distributed with mean σ2
h , we have

E





g1

g1 +
σ2

nre

σ2
ω Ims

K − σ2
nre





=1 +
−σ2

nre

(

K−σ2
ω Ims

)

σ2
h σ2

ω Ims
e

σ2
nre(K−σ2

ω Ims)
σ2

h
σ2

ω Ims E1

[

σ2
nre

(

K−σ2
ω Ims

)

σ2
h σ2

ω Ims

]

∼ σ2
h σ2

ω Ims

σ2
nre (K − σ2

ω Ims)
− 2σ4

h σ4
ω I2

ms

σ4
nr2

e (K − σ2
ω I2

ms)
2

, (3.41)

where function E1[z] is related to the exponential integral Ei[z] through the expression

E1[z] = −Ei[−z] =
∫ ∞

z e−tt−1dt [42].

The case when p = Ptot

K(σ2
ω+σ2

θ )
has been explored in [56]. Therefore, combining the

results of (3.38), (3.40) and (3.41), we have the long-term distortion at the FC being written

as

E [D] ∼ σ2
θ σ4

n

σ4
n + σ2

h σ2
θ σ2

nψ − 2σ4
h σ2

ωσ2
θ ψ2

K
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∼ σ2
θ σ2

n

σ2
n + σ2

h σ2
θ ψ

+
2σ4

h σ2
ωψ2σ4

θ
(

σ2
n + σ2

h ψσ2
θ

)2
K

, (3.42)

where

ψ =











Ims
re(1−Ims)

, Ims <
PtotreK

K(σ2
θ +σ2

ω)+Ptotreσ2
ω

Ptot

σ2
θ +σ2

ω
, otherwise.

(3.43)

Remark: It can be noticed from (3.42) and (3.43), that when the channel conditions of

the FC and the eavesdropper satisfy
σ2

h

σ2
n
≥ σ2

he

σ2
e

, for any given total transmission power Ptot

and secrecy threshold at the eavesdropper De ( Ims = 1
De

− 1
σ2

θ

as defined in (3.26)), ψ is

fixed for all fading blocks. In addition, the distortion at the FC decays to
σ2

θ σ2
n

σ2
n+σ2

h σ2
θ ψ

(as the

number of sensors increases) at the rate 1/K.

3.4 Multiple Sensors Multiple Antennas Scenario

In this section, we want to explore the distortion performance for multiple sensors each

equipped with multiple transmit antennas but with a single receive antenna at the FC and

the eavesdropper. Let hk =
[

hk,1, . . . , hk,Nk

]

and hek =
[

hek,1, . . . , hek,Nk

]

be the channels

from the kth sensor to the FC and the eavesdropper respectively. We assume the entries of

both hk and hek are i.i.d. distributed zero mean complex Gaussian with variances
{

σ2
h k

}

and
{

σ2
he k

}

respectively. At each transmission, sensor k adopts the analog amplify and

forward techniques by scaling the measurement with a amplifying factor βk ∈ CNk×1.

The FC and the eavesdropper receive, respectively,

yk = hkβkθ + hkβkωk + zk, (3.44a)

yek = hekβkθ + hekβkωk + zek. (3.44b)
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As a result, by employing the MMSE estimator, the distortion D at the FC and the distor-

tion De at the eavesdropper can be written as

D =

(

1

σ2
θ

+
K

∑
k=1

(hkβk)
H hkβk

(hkβk)
H hkβkσ2

ωk + σ2
nk

)−1

, (3.45a)

De =

(

1

σ2
θ

+
K

∑
k=1

(hekβk)
H hekβk

(hekβk)
H hekβkσ2

ωk+σ2
e k

)−1

. (3.45b)

For short-term optimal power allocation, with a transmit power constraint at the sen-

sors and a secrecy constraint at the eavesdropper, the optimization problem can be for-

mulated as

min
βk ,∀k

K

∑
k=1

(

σ4
ωk

σ2
nk

(hkβk)
H hkβk + σ2

ωk

)−1

s.t.
K

∑
k=1

βH
k βk

(

σ2
ωk + σ2

θ

)

≤ Ptot,

K

∑
k=1

(

σ4
ωk

σ2
e k

(hekβk)
H hekβk+σ2

ωk

)−1

≥ Imsma, (3.46)

where Imsma = ∑
K
k=1 1/ σ2

ωk + 1/ σ2
θ − 1/ De.

In the long-term optimal power allocation, we have an additional constraint to ensure

that the FC has a better estimation quality than at the eavesdropper; thus, the functional

optimization problem can be expressed in (3.47).

min
βk ,∀k

E





(

1

σ2
θ

+
K

∑
k=1

(hkβk)
H hkβk

(hkβk)
H hkβkσ2

ωk + σ2
nk

)−1




s.t. E

[

K

∑
k=1

βH
k βk

(

σ2
ωk + σ2

θ

)

]

≤ Ptot,

E





(

1

σ2
θ

+
K

∑
k=1

(hekβk)
H hekβk

(hekβk)
H hekβkσ2

ωk+σ2
e k

)−1


 ≥ De,

E





(

1

σ2
θ

+
K

∑
k=1

(hekβk)
H hekβk

(hekβk)
H hekβkσ2

ωk + σ2
e k

)−1


 ≥
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E





(

1

σ2
θ

+
K

∑
k=1

(hkβk)
H hkβk

(hkβk)
H hkβkσ2

ωk+σ2
nk

)−1


 . (3.47)

We can apply the same techniques as previous sections to solve problems (3.46) and

(3.47). We omit the details to avoid repetition.

3.5 Numerical Results

In this section, we first show the performance of a multiple-antenna single sensor sys-

tem via numerical simulations. For simplicity, we consider the source θ to be Gaussian

distributed with zero mean and variance σ2
θ = 1 mW. The sensor measurement sensi-

tivity is set to σ2
ω = 10−3 mW. We assume the same noise level for both the FC and the

eavesdropper’s channel, where σ2
n = σ2

e = 10−8 mW. In the following simulation, the

secrecy threshold is chosen from the range 0.05 ≤ De ≤ 0.65. Furthermore, we consider

the pathloss of signal power at the FC and the eavesdropper following the free-space

pathloss model [29]

PL = 20 log10(Dist) + 20 log10( f )− 27.55, (3.48)

where Dist ∈ {d, de} is the distance between the sensor and the FC or the eavesdropper

in meters, and f is the signal frequency in megahertz (we assume the network uses oper-

ation frequency of 800MHz, and the sensor is closer to the FC than to the eavesdropper

with the distance from the sensor to the FC and to the eavesdropper being set to 127m

and 130m respectively). Thus, the channel power gain follows an exponential distribu-

tion with mean of 10−
PL
10 mW.

Figure 3.4 illustrates the distortion performance at the FC when zero information leak-

age is achieved with the number of transmit antennas Nt ∈ {2, 3, 4}, for a wide range of

transmission power budgets. With the eavesdropper’s full CSI, we can rotate and trans-

mit the information on the null space of the eavesdropper’s channel by sacrificing only a

proportion of the FC’s channel gain, and hence no information is leaked to the eavesdrop-

per. As Ptot increases, the distortion gradually approaches its lower bound σ2
θ − σ2

θ

σ2
θ +σ2

ω
,
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i.e., 9.99 × 10−4.
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Figure 3.4: Performance comparison when zero information leakage is achieved.

Figure 3.5 depicts the distortion performance at the FC versus the secrecy threshold

for a three-antenna single sensor system. For comparison, we plot the system perfor-

mance under four scenarios: long-term full CSI, partial CSI, partial CSI with artificial

noise and short-term full CSI. First, owing to the channel knowledge of both the FC and

the eavesdropper, it is not surprising to see that the performance of the full CSI scenario

is superior to the performance of partial CSI. Similar performance gains can be seen for

the full CSI short-term distortion. We also notice the superior performance of artificial

noise in the partial CSI case. This is because in the full CSI scenario, due to the full chan-

nel information of both FC and the eavesdropper, the direction of the beamformer can

be designed to benefit the FC with little information being leaked to the eavesdropper;

and in the case of artificial noise, a small amount of ’noise’ is deliberately generated to

degrade the eavesdropper’s channel, which indicates that the secrecy threshold can be

easily achieved without sacrificing much transmit power; whereas for the case of partial
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CSI without artificial noise, some antennas need to be switched off to achieve the secrecy

requirements, which is also the case for the short-term scenario9.
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Figure 3.5: Performance comparison between full CSI, partial CSI and artificial noise in a
multiple-antenna single sensor system.

We next present results for the asymptotic behaviour for the multiple-antenna single

sensor scenario, where the beamforming vector is aligned with the FC’s channel direc-

tion. In Figure 3.6, we can see that the asymptotic distortion performance of the results

given in (3.21d) matches closely to the distortion at the FC obtained through simula-

tions, and the gap gradually vanishes as Nt keeps increasing. Note that the asymptotic

behaviour in a multiple-sensor network, obtained by applying (3.42), can be plotted sim-

ilarly as Figure 3.6.

In the following, we study the distortion performance at the FC for a multiple-sensor

network, where we assume the total transmit power budget is 30mW and all sensors

share the same measurement sensitivity, i.e., σ2
ωk

= σ2
ω, ∀k. We apply the same pathloss

9Notice that the full CSI case is not completely overlapped with partial CSI artificial noise case, where the
difference can be observed when De = 0.65.
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Figure 3.6: Asymptotic behaviour of E [D] in a multiple-antenna system.

model (3.48) and we consider the same noise level for both the FC and the eavesdrop-

per’s channel, where σ2
n = σ2

e = 10−8 mW. From (3.24b) we notice that the distortion at

the eavesdropper De drops to its minimum value
σ2

θ σ2
ω

Kσ2
θ +σ2

ω
as all the transmission powers

approach infinity, and De would reach its maximum value σ2
θ when βk = 0, ∀k.

In Figure 3.7, the secrecy threshold is chosen from the range 0.05 ≤ De ≤ 0.25. In

the plot, the short-term distortion result is obtained by averaging over 10, 000 channel

realizations. Not surprisingly, we can see that long-term distortion performances are

superior to the performances of short-term power allocation problem due to a smaller

feasibility region for the latter, where the sensors are required to ensure that the power

constraint and the secrecy constraint are satisfied in every transmission slot.

In Figure 3.8, we study the system performance of a three-sensor network with two

sensors working as relays to generate artificial noise. The secrecy threshold is set to

0.05 ≤ De ≤ 0.8. All the sensors (including two relays) are 127m away from the FC

which is 3m closer than to the eavesdropper, and we also assume the distances from the
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Figure 3.7: Performance comparison in an eight-sensor network, with σ2
ω = 10−3 mW,

and the distance from each sensor to the FC and to the eavesdropper are 125m, 126m,
127m, 128m, 129m, 130m, 131m, 132m, and 139m, 138m, 137m, 136m, 135m, 131m, 130m,
129m respectively.

two relays to the sensor are 10m and 20m respectively. Due to diversity gains, it is clear

to see the superior performance of the three-sensor network. As for the one-sensor two-

relay network, it performs the same way as the one-sensor system when the distortion

threshold is small; however, as the secrecy requirement increases at the eavesdropper,

the performance gap grows. This is because the two relays are only activated when De is

relatively large, where a small portion of the total transmit power is used to produce arti-

ficial noise to reach the secrecy threshold; whereas in the other two systems, without the

eavesdropper’s channel information, the sensor(s) may need to reduce the transmission

power to achieve the high secrecy requirement.

In Figure 3.9, we compare the distortion performance of three different types of multiple-

sensor network with a fixed total number of transmitting antennas of eight. It is seen that

the distortion performance of the four-antenna two sensors network is followed by the
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Figure 3.8: A multiple-sensor network with relays, with σ2
ω = 10−3 mW.

performance of the two-antenna four-sensor network, which are both superior to the

single antenna eight-sensor scenario. This suggests that we can better utilize a multiple-

antenna system for a point source estimation to achieve a better performance at the FC

under the secrecy constraints.

3.6 Conclusion

In this chapter, we have considered the problem of transmit power allocation for distor-

tion minimization in multisensor estimation in the presence of an eavesdropper, where

the sensors can also have multiple transmit antennas. We studied the asymptotic be-

haviour for the long-term distortion at the FC under the equal power allocation for the

multiple-sensor scenario, and also for the multiple-antenna-single-sensor scenario, where

the transmit beamforming vector at the sensor is aligned with the direction of the FC.

In addition, in a multiple-sensor network, when the secrecy requirement is high, some
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Figure 3.9: Performance comparison among multiple-sensor networks with the total
number of transmitting antennas of eight.

sensors can be deployed to artificially produce noise to improve the transmission se-

curity. For the multiple-antenna-single-sensor system, depending on the availability of

the eavesdropper’s channel information, we can achieve zero information leakage or de-

grade the eavesdropper’s channel and enhance the system performance by exploiting

multiple-antenna techniques under the long-term power allocation scenario.





Chapter 4

Distortion Outage Minimization in
Distributed Estimation with

Estimation Secrecy Outage Constraints

Under fading channel assumptions, estimation error becomes a random variable as a function of

the channel gains; hence it may not be always possible to satisfy the secrecy constraints considered

in Chapter 3. In this chapter, we investigate the distortion outage minimization problem for a wire-

less sensor network (WSN) in the presence of an eavesdropper. Applying a rigorous probabilistic

power allocation technique, we derive power policies for the full channel state information (CSI) case.

Suboptimal power control policies are studied for the partial CSI case in order to reduce the high com-

putational cost associated with large numbers of sensors or receive antennas. In the case of multiple

transmit antennas, the distortion outage at the FC can be dramatically reduced and in some cases com-

pletely eliminated, by transmitting the observations on the null space of the eavesdropper’s channel or

deploying an artificial noise technique, in full CSI and partial CSI cases respectively.

4.1 Introduction

I
N last chapter we looked at the optimal power allocation for a decentralized estima-

tion problem in the presence of an eavesdropper. To secure the system, a minimum

distortion threshold is set for the eavesdropper to ensure that the estimation error at the

eavesdropper is no smaller than this threshold. However, due to the randomness of the

fading channels, the quality of the estimate at the FC becomes a random variable. This

might be detrimental to real-time applications when the distortion at the FC becomes

large for a particular fading realisation, or the distortion at the eavesdropper becomes

very small. Hence, for a delay constrained sensor network, instead of minimising a

59
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long-term average estimation error at the FC as in Chapter 3, it is more appropriate to

maintain a target distortion level throughout the fading process and minimise a distortion

outage probability1 at the FC and a secrecy outage constraint at the eavesdropper. This is

the subject of our work in this chapter.

In the context of communications and information theory, the idea of information out-

age probability minimization was introduced in [64] for block-fading channels, and has

been further extended in e.g. [64, 73]. A similar concept of estimation outage probabil-

ity for distributed estimation was introduced by the authors in [15], which is defined as

the probability that the estimation distortion exceeds a certain threshold. With full chan-

nel state information, the authors in [97] considered a clustered WSN and derived the

optimal power allocation for estimation outage minimization problem; the results were

extended to partial CSI with limited feedback in [98]. In [99], the authors explored the

diversity order for distortion outage minimization over coherent MACs. Optimal power

allocation for estimation outage probability minimization was also studied in [55] for

state estimation of linear dynamical systems.

Apart from the limited battery life of the sensors, another crucial issue in a wireless

sensor network is secrecy, as previously discussed in Chapter 3. Because of the open wire-

less media, maintaining a high level of secrecy in a wireless network is quite challenging.

Various secrecy schemes have been investigated from a signal processing [52, 61, 67, 93]

as well as from an information theoretic point of view [60, 62, 71, 96]. In favor of a closed

form distortion expression for the sensor estimation over fading channels, we investi-

gate the secure estimation problem from a signal processing viewpoint, which is more

desirable for us to derive analytical results. Therefore, instead of applying secure source

coding techniques we consider analog uncoded transmission at the sensors.

In this chapter, we look at a WSN where each sensor independently measures a sin-

gle point Gaussian source, and then transmits the noisy measurements to the FC using

an uncoded analog scheme over an orthogonal MAC in the presence of an eavesdropper

or adversary. Both the FC and the adversary attempt to reconstruct a minimum mean

1This is analogous to the situation in wireless communication where the ergodic capacity describes the
maximum achievable long term average rate without a delay constraint; however, in real-time applications
because of the delay constraint it is more suitable to adopt the notion of the outage capacity, which deter-
mines the maximum achievable rate with an outage probability less than ǫ [11].
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square error (MMSE) estimate of the observations. Under this setting, the main contri-

butions of the chapter are: 1) We consider power allocation problems that minimise the

distortion outage probability at the FC, subject to a long-term transmit power constraint

and a secrecy outage constraint at the eavesdropper, where an estimation secrecy outage

is defined as the event that the mean squared error (MSE) at the eavesdropper is below

a minimum acceptable distortion level. In this way, the entire network is guaranteed to

operate under a specified power constraint; while maintaining a certain level of confi-

dentiality. 2) We study the distortion outage probability at the FC that can be achieved by

adding multiple receive antennas in both the full CSI and partial CSI cases. In addition,

we propose suboptimal power allocation policies to alleviate the high computational cost

issues raised by computing for the locally optimal power policy in the partial CSI case. 3)

As an alternative to having multiple sensors in a network, the scenario of a single sensor

with multiple transmit antennas is investigated. Numerical studies illustrate that in both

the full CSI and partial CSI cases, zero outage can be achieved at the FC with a sufficiently

large power budget.

The rest of the chapter is organised as follows. In Section 4.2 we present the system

model for a multiple-sensor network and solve the outage minimization problem. In Sec-

tion 4.3 we investigate the secrecy outage problem for the multiple-antenna single sensor

scenario and study optimal power control policies for both the full and partial CSI cases.

In Section 4.4, alternative problems that can be solved by applying similar techniques

are formulated. Illustrative numerical results are provided in Section 4.5, followed by

concluding remarks in Section 4.6.

4.2 Multiple Sensors Scenario

A schematic diagram of the wireless sensor network model is shown in Figure 4.1, where

we have K sensors observing a single point i.i.d. (independent and identically distributed)

Gaussian source with zero mean and variance σ2
θ , denoted by θ[t], t = 0, 1, 2, . . . . The

measurement xk[t] received by the kth sensor at time t is corrupted with noise and is
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given by

xk[t] = θ[t] + ωk[t], (4.1)

where ωk[t] is the sensor measurement noise which is i.i.d. Gaussian with zero mean and

variance σ2
ωk.

Figure 4.1: Diagram of a wireless sensor network using orthogonal MAC schemes with
the presence of an eavesdropper.

The sensors are assumed to have a single transmit antenna, see Section 4.3 for the

case of multiple transmit antennas. Each sensor amplifies and forwards its measurement

to a Nr-antenna fusion center (FC) with amplification factor βk[t] ∈ C via a slow-fading

orthogonal multiple access channel (MAC), e.g. by using OFDMA or TDMA techniques.

The transmissions are overheard by an eavesdropper who is equipped with Ne receive

antennas. We assume that both the FC’s and the eavesdropper’s channels experience

block fading, where the channels remain constant during each coherence time interval,

and are i.i.d. over different time intervals [11]. The signals received by the FC and eaves-
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dropper from the kth sensor are then given by, respectively,

yk[t] = θ[t]βk[t]hk[t] + ωk[t]βk[t]hk[t] + zk[t], (4.2a)

yek[t] = θ[t]βk[t]hek[t] + ωk[t]βk[t]hek[t] + zek[t], (4.2b)

where yk[t] = [y1k[t], . . . , yNrk[t]]
T and yek[t] =

[

ye1k[t], . . . , yeNek[t]
]T

, the entries of hk[t]

and hek[t] are the instantaneous zero mean i.i.d. complex Gaussian channels from sensor

k to the FC and the eavesdropper with variances σ2
h k

and σ2
he k

respectively, and zk[t] =

[z1k[t], . . . , zNrk[t]]
T and zek[t] = [ze1k[t], . . . , zeNek[t]]

T represent i.i.d. additive Gaussian

noise with zero mean and covariances σ2
nkINr at the FC and σ2

e kINe at the eavesdropper

respectively2. The set of received signals at the FC from all sensors can be written as

Y[t] = [y1[t], . . . , yK[t]]
T

=θ[t] [β1[t]h1[t], . . . , βK[t]hK[t]]
T

+ [z1[t], . . . , zK[t]]
T + [ω1[t]β1[t]h1[t], . . . , ωK[t]βK[t]hK[t]]

T . (4.3)

Using the fact that each sensor transmits through an orthogonal MAC, the covariance of

the noise factor [ω1[t]β1[t]h1[t], . . . , ωK[t]βK[t]hK[t]]
T + [z1[t], . . . , zK[t]]

T can be derived

as a KNr × KNr matrix:

C[t] =











σ2
w1β2

1[t]h1[t]h
H
1 [t] + σ2

n1INr 0
. . .

0 σ2
wKβ2

K[t]hK[t]h
H
K [t] + σ2

nKINr











. (4.4)

The linear minimum mean square error (MMSE) estimator is well known to be the

optimal estimator for θ under the model (4.2) [49]. At time t the mean squared error

2The notation xT and xH refers to the transpose of x and conjugate transpose of x respectively.
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(MSE) or distortion at the FC using the MMSE estimator is

D[t] =













1

σ2
θ

+











β1[t]h1[t]
...

βK[t]hK[t]











H

C[t]−1











β1[t]h1[t]
...

βK[t]hK[t]























−1

(a)
=

[

1

σ2
θ

+
K

∑
k=1

βH
k [t]βk[t]

(

σn
−2
k hH

k [t]hk[t]− σn
−2
k hH

k [t]hk[t]
(

σw
−2
k β−2

k [t]

+ σn
−2
k hH

k [t]hk[t]
)−1

σn
−2
k hH

k [t]hk[t]

)]−1

=

(

1

σ2
θ

+
K

∑
k=1

gk[t]pk[t]

σ2
nk + gk[t]σw

2
k pk[t]

)−1

, (4.5)

where (a) results from applying the Matrix Inversion Lemma [34], pk[t] , βH
k [t]βk[t] is the

power allocated on the kth sensor, and gk[t] , hH
k [t]hk[t] = ∑

Nr
m=1 hH

mk[t]hmk[t] is the sum

of channel power gains from the kth sensor to the FC with hmk[t] being the channel gain

from sensor k to mth antenna at the FC. Note that for a given set of {pk[t]}, any {βk[t]}
satisfying βk[t]

Hβk[t] = pk[t], ∀k would result in the same distortion, hence our primary

focus is {pk[t]}. We assume the optimal power allocation strategy is designed by the

FC, and then {pk[t]} are wirelessly transmitted to the sensors via a public channel3. The

minimum distortion level at the eavesdropper is achieved by implementing the linear

MMSE estimator, shown as

De[t] =

(

1

σ2
θ

+
K

∑
k=1

gek[t]pk[t]

gek[t]pk[t]σ2
ωk + σ2

e k

)−1

, (4.6)

where gek[t] , hH
ek[t]hek[t] = ∑

Ne
n=1 he

H
nk[t]henk[t] is the sum of channel power gains from

the kth sensor to the eavesdropper and henk[t] is the channel gain from sensor k to nth

antenna at the eavesdropper. Due to the randomness of the fading channels, the instan-

taneous distortions at the FC and the eavesdropper, as shown in (4.5) and (4.6), change

over time.

3When the feedback link is secure, the estimation distortion seen by the eavesdropper will be even larger
than De[t] given in (4.6), due to the lack of {pk[t]}.
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Different from our work in Chapter 3 where we studied optimal power allocation for

an expected distortion minimization with security constraints at the eavesdropper, in this

chapter we focus on the distortion outage minimization problem. For a given maximum ac-

ceptable distortion level D at the FC, we define a distortion outage to be the event that the

instantaneous distortion D[t] exceeds D. The distortion outage probability at the FC is then

given as Proutage_FC , Pr [D[t] > D]. At the eavesdropper, for a given minimum accept-

able distortion level De, a secrecy outage event is declared if the instantaneous distortion

De[t] is less than De (which means that the eavesdropper has a good quality estimate),

and the secrecy outage probability is defined as Proutage_EVE , Pr [De[t] < De]. We assume

that the full channel state information (CSI) of the sensor-to-FC channels are available at

the FC, while eavesdropper’s channel information may or may not be available at the FC.

In this chapter, we wish to minimise the distortion outage probability at the FC by

adapting the transmit powers of the sensors at each channel instance, while keeping

the secrecy outage probability under a certain threshold, i.e., Proutage_EVE ≤ δ, and the

long-term average sum of sensor transmission powers, defined as E

[

∑
K
k=1 pkE

[

x2
k [t]
]

]

=

E

[

∑
K
k=1 pk(σ

2
θ + σ2

ωk)
]

, to be less than a power budget Ptot.

Due to the assumption of system independence over time t, we will drop the time

index t for the rest of the chapter.

4.2.1 Full CSI

In this section, we assume the FC can also acquire the channel information between the

sensors and the eavesdropper. As a result, the power control policies can be derived

such that sensors are able to adjust the transmission powers depending on both the FC’s

and the eavesdropper’s channel information. Clearly, the requirement of full CSI of the

eavesdropper channels is infeasible in practice. However, the optimal performance with

this assumption is instructive as well as useful as a benchmark for the performance with

partial CSI of the eavesdropper channels, to be analysed subsequently.

Let the channel states at the FC and the eavesdropper be denoted by g = [g1, . . . , gK]
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and ge = [ge1, . . . , geK] respectively. The outage minimization problem is

min
P(G)

Pr [D (G, P (G)) > D]

s.t. Pr [De (G, P (G)) < De] ≤ δ, (4.7a)

EG,p [〈P (G)〉] ≤ Ptot, (4.7b)

where G = [g; ge] and 〈p (G)〉 , ∑
K
k=1

(

σ2
θ + σ2

ωk

)

pk (G) is the total power consump-

tion. P (G) is a vector of random variables with conditional probability density function

f P|G (p|G), where p is one of the deterministic schemes and p = [p1, . . . , pK] are the

powers allocated across the sensors.

Notice that, from the expression of De in (4.6), when zero power is allocated to the

sensors we obtain De|p=0 = σ2
θ , giving the largest possible distortion at the eavesdropper,

while if the transmit power on each sensor approaches infinity we have the smallest

possible distortion at the eavesdropper De →
(

1
σ2

θ

+ ∑
K
k=1

1
σ2

ω k

)−1
. Therefore, in order to

produce a meaningful solution to problem (4.7), De should satisfy
(

1
σ2

θ

+ ∑
K
k=1

1
σ2

ω k

)−1
<

κ < De < σ2
θ , where κ is a nonnegative threshold to ensure constraint (4.7a) is achievable

for a given transmit power budget Ptot and a secrecy outage probability threshold δ.

In communications theory, it was shown in [11, 64] that for information outage mini-

mization problems the optimal power allocation policy is in general a probabilistic policy,

in particular this is often the case for discrete channel distributions. Motivated by these

results, we start with a probabilistic power allocation P (G).

Denote the indicator function by 1(x), where 1(x) = 1 if x is true; otherwise 1(x) = 0.

With the assumption on the fading channels and perfect CSI at the FC, the distortion

outage probability at the FC and the secrecy outage probability at the eavesdropper can

be expressed as, respectively,

Pr [D (G, P) > D]

=
∫ ∫

1 {D (G, p) > D} f P|G (p|G) dp (G) dF (G) , (4.8)

Pr [De (G, P) < De]
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=
∫∫

1 {De (G, p)<De} f P|G (p|G) dp (G) dF (G) . (4.9)

We outline the strategy involved in solving problem (4.7), which are similar to tech-

niques used in [64]. We first show that for an arbitrary feasible probabilistic power al-

location P (G), which can be divided into four non-overlapping power regions, we can

always construct another feasible probabilistic power allocation P̂ (G) that contains three

power regions, with the powers in one of the regions all equal to zero, and such that P̂ (G)

gives no worse performance than P (G). Next, based on P̂ (G) we construct another feasi-

ble power scheme P′ (G) which is randomised among three deterministic power schemes

{pi (G)} , i = 1, 2, 3 with corresponding weighting factors {ωi (G)}. Furthermore, we

show that P′ (G) performs at least as well as P̂ (G).

First, given a feasible probabilistic power scheme P (G), we partition the powers into

four non-overlapping power regions as given in (4.10).

A1 (D, De, G)={p (G) : D (G, p (G))≤D, De (G, p (G))≥De|G}

A2 (D, De, G)={p (G) : D (G, p (G))≤D, De (G, p (G))<De|G}

A3 (D, De, G)={p (G) : D (G, p (G))>D, De (G, p (G))≥De|G}

A4 (D, De, G)={p (G) : D (G, p (G))>D, De (G, p (G))<De|G} (4.10)

The objective is to minimise the distortion outage probability at the FC with the se-

crecy outage probability at the eavesdropper being less than δ. As A3 (D, De, G) and

A4 (D, De, G) are power regions where outage occurs at the FC, and both D (G, p (G))

and De (G, p (G)) are convex functions over p (G), we can replace the power regions

A3 (D, De, G) and A4 (D, De, G) by a region where all the powers are set to 0, which

saves transmit power and does not violate the constraints (4.7a) and (4.7b), We denote

this new feasible probabilistic power scheme as P̂ (G), which has three non-overlapping

power regions for a given G, namely,

B1 (D, De, G) = A1 (D, De, G) ,

B2 (D, De, G) = A2 (D, De, G) ,
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B3 (D, De, G) = {0} (4.11)

with all powers in B3 (D, De, G) equal to zero.

Any optimal probabilistic power scheme can always be divided into the four non-

overlapping regions as defined in (4.10). As A3 (D, De, G) and A4 (D, De, G) are two sets

of powers that result in outage at the FC, replacing these two regions with B3 (D, De, G)

would not change the distortion outage probability at the FC, but maintains or even re-

duces the secrecy outage probability at the eavesdropper. Therefore, we conclude that if

a probabilistic power allocation policy is the optimal solution of problem (4.7), it can be

transformed into the same form as P̂ (G).

Next, we construct from P̂ (G) another probabilistic power scheme P′ (G) which ran-

domises among three deterministic power allocations {pi (G)} with time-sharing factors

{ωi (G)}, i.e.,

P′ (G) =
3

∑
i=1

pi (G) 1 (X (G) = i) , (4.12)

where X (G) is defined as

X (G) =



















1, with probability ω1 (G) ,

2, with probability ω2 (G) ,

3, with probability ω3 (G) .

(4.13)

The deterministic power schemes {pi (G)} are defined by averaging the powers in each

of the regions (4.11), i.e.,

p1 (G) = E
[

P̂ (G)
∣

∣p (G) ∈ B1 (D, De, G) , G
]

,

p2 (G) = E
[

P̂ (G)
∣

∣p (G) ∈ B2 (D, De, G) , G
]

,

p3 (G) = E
[

P̂ (G)
∣

∣p (G) ∈ B3 (D, De, G) , G
]

= 0. (4.14)

The corresponding weighting functions {ωi (G)} are defined as the probability of using
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each deterministic power strategy {pi (G)}, i.e.,

ω1 (G) =Pr [p (G) ∈ B1 (D, De, G)|G] ,

ω2 (G) =Pr [p (G) ∈ B2 (D, De, G)|G] ,

ω3 (G) =Pr [p (G) ∈ B3 (D, De, G)|G] . (4.15)

Remark: From the definition of the power regions given in (4.11), we know that

B1 (D, De, G) is a set of transmit powers resulting in non-outage at both the FC and

eavesdropper, while B2 (D, De, G) is the region resulting in outage at the eavesdropper

and non-outage at the FC. In addition, B3 (D, De, G) represents the power region leading

to outage at the FC and non-outage at the eavesdropper. Given the fact that all powers

in B3 (D, De, G) are zero, we know that in this case the distortion at both the FC and

the eavesdropper has the largest possible value of σ2
θ . Furthermore, for a given channel

state G, if B1 (D, De, G) = ∅, then we must have ω1 (G) = 0, as there are no powers in

B1 (D, De, G) satisfying D (G, p (G)) ≤ D and De (G, p (G)) ≥ De simultaneously.

Lemma 1: There exists an optimal solution to problem (4.7) of the form P∗ (G) =

∑
3
i=1 pi (G) 1 (X (G) = i), where {pi (G)} and X (G) are respectively defined in (4.14)

and (4.13), and

• ω1 (G) De (G, p1 (G)) + ω3 (G) De (G, p3 (G))− (ω1 (G) + ω3 (G))De ≥ 0,

• ω1 (G) D (G, p1 (G)) + ω2 (G) D (G, p2 (G))− (ω1 (G) + ω2 (G))D ≤ 0,

• ∑
3
i=1 ωi (G) = 1,

• E [ω2 (G)] ≤ δ,

• E

[〈

∑
3
i=1 ωi (G)pi (G)

〉]

≤ Ptot.

The proof is given in Appendix 4.7.1.

Applying Lemma 1, problem (4.7) can be reformulated into another optimization prob-
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lem, shown as:

min
{ωj(G)},{pj(G)}

1 − E [ω1 (G) + ω2 (G)]

s.t. E [ω2 (G)] ≤ δ, (4.16a)

E [〈ω1 (G)p1 (G)〉+ 〈ω2 (G)p2 (G)〉] ≤ Ptot, (4.16b)

ω1 (G) De (G, p1 (G))− ω1 (G) σ2
θ + ω2 (G)

(

De − σ2
θ

)

≥ De − σ2
θ , (4.16c)

ω1 (G) D (G, p1 (G)) + ω2 (G) D (G, p2 (G))− (ω1 (G) + ω2 (G))D ≤ 0, (4.16d)

ω1 (G) + ω2 (G) ≤ 1, (4.16e)

0 ≤ ωj (G) ≤ 1, j = 1, 2. (4.16f)

The functional optimization problem (4.16) is in general non-convex. Let γ, λ, νe (G),

ν (G), and s (G) denote the nonnegative Lagrange multipliers for the constraints (4.16a)-

(4.16e) respectively. The generalised Karush-Kuhn-Tucker (KKT) conditions [63] are:

∂l (. . . )

∂p∗jk (G)







= 0, p∗jk (G) > 0

≥ 0, p∗jk (G) = 0
k = 1, . . . , K (4.17)

∂l (. . . )

∂ω∗
j (G)



















= 0, 0 < ω∗
j (G) < 1

≥ 0, ω∗
j (G) = 0

≤ 0, ω∗
j (G) = 1

(4.18)

γ∗ (E [ω∗
2 (G)− δ]) = 0, γ∗ ≥ 0, (4.19)

λ∗
(

E

[〈

2

∑
j=1

ω∗
j (G)p∗

j (G)

〉]

−Ptot

)

= 0, λ∗ ≥ 0, (4.20)

ν∗e (G)
[(

De − σ2
θ

)

(1 − ω∗
2 (G))− ω∗

1 (G) De (G, p∗
1 (G)) + ω∗

1 (G) σ2
θ

]

= 0,

ν∗e (G) ≥ 0, (4.21)

ν∗ (G) [ω∗
1 (G) D (G, p∗

1 (G)) + ω∗
2 (G) D (G, p∗

2 (G))− (ω∗
1 (G) + ω∗

2 (G))D] = 0,

ν∗ (G) ≥ 0, (4.22)

s∗ (G) [ω∗
1 (G) + ω∗

2 (G)− 1] = 0, s∗ (G) ≥ 0. (4.23)

where γ∗, λ∗, ν∗e (G), ν∗ (G), s∗ (G) are the optimal Lagrange multipliers,
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and
{

p∗
j (G)

} {

ω∗
j (G)

}

are the optimal primal variables, and

l
(

γ, λ, νe (G) , ν (G) , s (G) ,
{

pj (G)
}

,
{

ωj (G)
}

)

is defined as

l
(

γ, λ, νe (G) , ν (G) , s (G) ,
{

pj (G)
}

,
{

ωj (G)
}

)

=−
2

∑
j=1

ωj (G) + γω2 (G) + λ

〈

2

∑
j=1

ωj (G)pj (G)

〉

+ νe (G)
[

ω1 (G) σ2
θ −ω1 (G) De (G, p1 (G))−ω2 (G)

(

De−σ2
θ

)]

+ ν (G) [ω1 (G) D (G, p1 (G)) + ω2 (G) D (G, p2 (G))− (ω1 (G)+ω2 (G))D]

+ s (G) [ω1 (G)+ω2 (G)] . (4.24)

From (4.17), we know that for any nonnegative p∗1k (G) and p∗2k (G), they must satisfy,

respectively,

λ∗ω∗
1 (G)

(

σ2
ωk + σ2

θ

)

− ν∗e (G)ω∗
1 (G)

∂De (G, p∗
1 (G))

∂p∗1k (G)
+ν∗ (G)ω∗

1 (G)
∂D (G, p∗

1 (G))

∂p∗1k (G)
= 0,

k = 1, . . . , K, (4.25)

and

λ∗ω∗
2 (G)

(

σ2
ωk+σ2

θ

)

−ν∗ (G)ω∗
2 (G)

∂D (G, p∗
2 (G))

∂p∗2k (G)
=0, k = 1, . . . , K. (4.26)

Furthermore, from (4.21)-(4.24) we can obtain the Lagrangian at the optimal points

for each channel state G as

l
(

γ∗, λ∗, ν∗e (G) , s∗ (G) ,
{

p∗
j (G)

}

,
{

ω∗
j (G)

})

=−
2

∑
j=1

ω∗
j (G) + γ∗ω∗

2 (G) + λ∗
〈

2

∑
j=1

ω∗
j (G)p∗

j (G)

〉

− ν∗e (G)
(

De − σ2
θ

)

+ s∗ (G) ,

(4.27)

from which we can obtain

∂l (. . . )

∂ω∗
1 (G)

= −1 + λ∗ 〈p∗
1 (G)〉 , (4.28)
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and

∂l (. . . )

∂ω∗
2 (G)

= −1 + λ∗ 〈p∗
2 (G)〉+ γ∗. (4.29)

Note that if the channel distributions of both the eavesdropper and the FC are continuous,

then the events λ∗ 〈p∗
1 (G)〉 = 1 or λ∗ 〈p∗

2 (G)〉 = 1−γ∗ have zero probability. Thus, from

condition (4.18) and (4.28)-(4.29) we obtain the following result:

ω∗
j (G) =











1,
∂l(... )

∂ω∗
j (G)

≤ 0,

0,
∂l(... )

∂ω∗
j (G)

> 0.
j = 1, 2. (4.30)

Remark: From the structure of the power allocation in (4.12) and (4.30), we see that

for continuous fading channel distributions, the optimal power allocation policies are

deterministic.

Theorem 4.1. Consider the following optimization problems (4.31) and (4.32):

min
p

〈p (G)〉

s.t. De (G, p (G)) ≥ De,

D (G, p (G)) ≤ D, (4.31)

and

min
p

〈p (G)〉

s.t. D (G, p (G)) = D, (4.32)

with optimal solutions p∗
a (G) and p∗

b (G) respectively. Then a locally optimal solution to problem

(4.16) is given by:

P∗ (G) =



















p∗
a (G) , if ω∗

1 (G) = 1

p∗
b (G) , if ω∗

2 (G) = 1 and De

(

G, p∗
b (G)

)

< De

0, otherwise.

(4.33)
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The proof is given in Appendix 4.7.2.

Remark: We may have no feasible solutions for problem (4.31), which corresponds

to the channel conditions where there are no power allocations satisfying non-outage

at both the FC and the eavesdropper, i.e., B1 (D, De, G) = ∅. In this case, we have

ω∗
1 (G) = 0.

Consider the channel states where problem (4.31) has solution p∗
a (G), and p∗

b (G) sat-

isfying De

(

G, p∗
b (G)

)

< De. As both D (G, p (G)) and De (G, p (G)) are convex over

p (G), we obtain D (G, p∗
a (G, )) = D and De (G, p∗

a (G)) = De, and 〈p∗
a (G)〉 ≥

〈

p∗
b (G)

〉

since problem (4.31) has a smaller feasible region than problem (4.32). As a consequence,

there is a trade off between choosing p∗
a (G) or p∗

b (G) to transmit at each channel in-

stance; p∗
a (G) leads to non-outage at both the FC and the eavesdropper, whereas p∗

b (G)

results in outage at the eavesdropper but consumes less power.

Define a non-negative transmit power difference pdiff (G) = 〈p∗
a (G)〉 −

〈

p∗
b (G)

〉

.

We may then further categorise the power transmission policy into two different types,

depending on the given secrecy outage probability threshold δ and power budget Ptot.

• When λ∗pdiff (G) ≥ γ∗, we obtain either P∗ (G) = p∗
b (G) or P∗ (G) = 0. In these

channel states, the transmission policies are chosen to use less transmit power by

sacrificing either an outage at the eavesdropper, i.e., to use p∗
b (G), or not transmit

leading to an outage at the FC. By doing this, transmit power can be saved for future

’higher potential’ channel states where outage occurs neither at the FC nor at the

eavesdropper. Furthermore, when γ∗ = 0, from (4.18) we have E [ω∗
2 (G)] ≤ δ,

which indicates that we either have a small total power budget or a loose security

requirement at the eavesdropper, i.e., a large δ. Intuitively, the optimal transmit

policy under such circumstances should be more energy conservative and aim to

meet the maximum acceptable distortion level D at the FC.

• When λ∗pdiff (G) < γ∗, which implies that either 〈p∗
a (G)〉 is fairly close to

〈

p∗
b (G)

〉

or we have a relatively small λ∗, we should have P∗ (G) = p∗
a (G) or P∗ (G) =

0. When pdiff (G) is small or the transmit power budget is large, instead of using

p∗
b (G), which would result in outage at the eavesdropper, using p∗

a (G) guarantees

non-outage at both the FC and the eavesdropper. If the incremental power pdiff (G)
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is too large, the sensors will stop transmitting to save power.

4.2.2 Partial CSI

Due to the practical difficulties in obtaining the full channel information of the eaves-

dropper, in this subsection we will assume that the FC only has statistical knowledge

of the eavesdropper. We first explore the power allocation problem that minimises the

distortion outage probability at the FC via the Lagrange multiplier technique. To reduce

computational cost we then consider suboptimal power allocation policies.

From the analysis in Section 4.2.1 we notice that the optimal transmit power policies

are deterministic if both the FC’s and eavesdropper’s fading channels have continuous

distributions, based on which, in this part of the work we aim to develop deterministic

transmit power policies with full knowledge of only the sensor-to-FC channels. Using a

similar setup as problem (4.7), the Lagrangian in the partial CSI case can be constructed

as

l(g, ν, λ) =
∫

g

[

1 {D (g, p (g)) > D}+ λ 〈p (g)〉

+ ν
∫

ge

1 {De (ge, p (g))<De} dF (ge)
]

dF (g) , (4.34)

where λ and ν are non-negative Lagrange multipliers satisfying the following equations

at the optimal point:

λ∗ (Ptot − E [〈p∗ (g)〉]) = 0,

ν∗ (δ − Pr [De (ge, p∗(g)) < De]) = 0. (4.35)

To minimise the Lagrangian given in (4.34), we need to find the optimal power al-

location for each channel state at the FC such that 1 {D (g, p (g)) > D} + λ 〈p (g)〉 +
ν
∫

ge
1 {De (ge, p (g)) < De} dF (ge) is minimised.

Lemma 2: Let ξ (p (g)) = λ 〈p (g)〉 + ν
∫

ge
1 {De (ge, p (g)) < De} dF (ge). Then the

optimal p∗ (g) must satisfy 0 ≤ 1 {D (g, p∗ (g))>D}+ξ (p∗ (g))≤1.

The proof is given in Appendix 4.7.3.
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In order to minimise 1 {D (g, p (g)) > D}+ ξ (p (g)), we either obtain D (g, p∗ (g)) >

D where we declare an outage at the FC, or the distortion at the FC is no larger than D

and so 1 {D (g, p∗ (g)) > D} = 0. To be more specific,

• When D (g, p∗ (g)) > D, we see that 1 {D (g, p∗ (g)) > D} = 1 indicates an outage

at the FC. Furthermore, we must have the optimal power allocation at this channel

instance being equal to zero for all sensors, since a non-zero power would result

in a nonnegative value of λ 〈p∗ (g)〉+ ν
∫

1 {De (ge, p∗ (g)) < De} f (ge) dge. Intu-

itively, knowing that an outage will happen at the FC, the sensors would stop trans-

mitting to save power and to reduce the possibility of information being leaked to

the eavesdropper.

• When D (g, p∗ (g)) ≤ D, which implies non-outage at the FC. In this situation,

either the FC has relatively good channel conditions that a small amount of power

would secure non-outage at the FC, or the constraints are quite loose (i.e. a large

power budget and/or a loose security requirement at the eavesdropper).

Therefore, for a given channel state at the FC, the sensors either choose to forward

the information to the FC (with non-outage at the FC achieved) or keep silent. Hence, by

applying Lemma 2 we obtain that the optimal power allocation p∗ (g) has the form

p∗ (g) =







p̂ (g) , if ξ (p̂ (g)) < 1

0, otherwise,
(4.36)

where p̂ (g) is a locally optimal solution of the following problem:

min
p(g)

λ 〈p (g)〉+ ν
∫

1 {De (ge, p (g)) < De} f (ge) dge

s.t. D (g, p (g)) ≤ D. (4.37)

Partial CSI Suboptimal Solution

Due to the difficulties of explicitly expressing
∫

1 {De (ge, p (g)) < De} f (ge) dge and deriving a locally optimal solution to problem
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(4.37), which has high computational costs, in this part we will look at a suboptimal

power allocation scheme based on sensor scheduling.

In a multiple-sensor system, instead of activating all the sensors, we can selectively

choose one sensor to forward its measurement to the FC. This may be useful in scenarios

where bandwidth is at a premium or there are very strict interference constraints. Let

gm = max (g1, . . . , gK) where m corresponds to the index of the sensor with the largest

channel gain, and gem be the corresponding channel power gain from sensor m to the

eavesdropper. One possible sensor scheduling policy4 is that only the sensor with the

best channel transmits. The distortion at the FC and the eavesdropper then become:

D =

(

1

σ2
θ

+
gm pm

gm pmσ2
ωm + σ2

nm

)−1

, (4.38a)

De =

(

1

σ2
θ

+
gem pm

gem pmσ2
ωm + σ2

e m

)−1

. (4.38b)

To explicitly illustrate the power policies in this scheme, we will assume that the chan-

nel power gains are exponentially distributed at both the FC and the eavesdropper with

means λ̂ and λ̂e respectively. We can then obtain the probability density function of gm

as K
λ̂

(

1 − e−
gm
λ̂

)K−1
e−

gm
λ̂ .

Following similar techniques as in Section 4.2.2, problem (4.37) is then reduced to

min
p(gm)

λ 〈p (gm)〉+ν
∫

1 {De (gem, p (gm))<De} dF (gem)

s.t. D (gm, p (gm)) ≤ D, (4.39)

from which we can then compute the optimal solution as

p̂ (gm) =
σ2

nm

(

σ2
θ − D

)

D
(

σ2
θ + σ2

ωm

)

− σ2
θ σ2

ωm

1

gm
. (4.40)

Knowing that the eavesdropper’s channel is exponentially distributed, we can derive the

4From the distortion expression at equation (4.5), it would be more intuitive to pick the sensor with the
best measurement sensitivity and best channel SNR at the FC; however, in order derive analytical results,
only the sensor with the best channel condition is chosen to transmit.
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outage probability at the eavesdropper for a given FC channel state as

Pr [De (gem, p̂ (gm)) < De| gm]

=1 − Pr

[

gem ≤ σ2
e m

(

σ2
θ − De

)

Deσ2
ωm − σ2

θ (σ
2
ωm − De)

1

p̂ (gm)

∣

∣

∣

∣

∣

gm

]

=e
− Dth

λ̂e
gm , (4.41)

where Dth =
σ2

e m

σ2
n m

(σ2
θ −De)[D(σ2

θ +σ2
ω m)−σ2

θ σ2
ω m]

(σ2
θ −D)[De(σ2

θ +σ2
ω m)−σ2

θ σ2
ω m]

.

Combining the results of (4.36), (4.40) and (4.41) we obtain the transmit power policy:

p∗ (gm) =











σ2
n m(σ2

θ −D)
D(σ2

θ +σ2
ω m)−σ2

θ σ2
ω m

1
gm

, if gm > gm_th,

0, otherwise,
(4.42)

where gm_th satisfies ν∗e
− Dth

λ̂e
gm_th + Ptλ

∗
gm_th

= 1, with Pt =
σ2

n m(σ2
θ −D)

D− σ2
θ

σ2
ω m

σ2
θ
+σ2

ω m

, and with λ∗ and ν∗

being the optimal Lagrange multipliers chosen to satisfy the power constraint and secrecy

outage constraint at the eavesdropper.

Notice that as gm is continuous and ν∗e
− Dth

λ̂e
gm + Ptλ

∗
gm

is monotonic decreasing with gm,

we obtain the ‘on-off’ transmit power policy in (4.42), where if gm > gm_th the sensor uses

p̂ (gm) to transmit with non-outage at the FC achieved, and the sensor does not transmit

when gm ≤ gm_th which leads to an outage to occur at the FC. In addition, the overall

outage probability at the FC can be expressed as

Pr [D (gm, p∗ (gm)) > D]

=
K

λ̂

∫ gm_th

0

(

1 − e−
gm
λ̂

)K−1
e−

gm
λ̂ dgm

=
(

1 − e−
gm_th

λ̂

)K

. (4.43)

From (4.41) and (4.42), which are two monotonic decreasing functions with respect

to gm, we obtain that gm_th (λ
∗, ν∗) must satisfy either

∫ ∞

gm_th(λ∗,ν∗) e
− Dth

λ̂e
gm f (gm)dgm = δ or

σ2
n m(σ2

θ −D)
D(σ2

θ +σ2
ω m)−σ2

θ σ2
ω m

∫ ∞

gm_th(λ∗,ν∗)
1

gm
f (gm)dgm = Ptot, where f (gm) = K

λ̂

(

1 − e−
gm
λ̂

)K−1
e−

gm
λ̂ .

This is because for a given total power budget and outage probability threshold at the
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eavesdropper, there is zero probability of finding a gm_th to meet both constraints with

equality. From the KKT conditions for the optimal points we then derive that either

Pt

∫ ∞

Ptλ∗

1

gm
f (gm)dgm = Ptot, ν∗ = 0, (4.44)

or

∫ ∞

λe logν∗
Dth

e
− Dth

λ̂e
gm f (gm)dgm = δ, λ∗ = 0. (4.45)

4.3 Single Sensor with Multiple Antennas Scenario

In order to compare with the multiple-sensor scenario as well as for analytical tractability,

in this part of work we consider a situation where only one sensor with multiple-antenna

is in the network observing the source.5 In this scenario, similar performance gains as

in having multiple sensors can be achieved. In fact, with multiple antennas additional

techniques can be used to further enhance the system performance.

A schematic diagram is shown in Figure 4.2. We assume that the same single point

Gaussian source θ as defined in Section 4.2 is observed by a sensor with Nt transmit an-

tennas, which employs the analog amplify and forward technique to scale the observed

signal with a complex vector β ∈ CNt×1, before sending it to the FC via a set of complex

fading channels H ∈ CNr×Nt. The observed signal x is also listened to by the eavesdrop-

per after passing through another set of channels He ∈ CNe×Nt, where we assume that

the FC and the eavesdropper are equipped with Nr and Ne receive antennas respectively.

The signals received by the FC and the eavesdropper are, respectively,

y =Hβθ + Hβω + z, (4.46a)

ye =Heβθ + Heβω + ze, (4.46b)

where both z ∈ CNr×1 and ze ∈ CNe×1 are complex Gaussian channel noise at the FC and

5Multiple-sensor-multiple-antenna (MSMA) is not studied in the work due to its complexity involving
non-convex optimization problems and will be investigated in future work. However, techniques that are
explored in the partial CSI case of this section can be also implemented in MSMA case.
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Figure 4.2: Diagram of a multiple-antenna single sensor scenario with the presence of an
eavesdropper.

the eavesdropper with covariance σ2
nINr and σ2

e INe respectively.

The optimal linear minimum mean square error estimator, is used at both the FC and

the adversary to measure θ. For a given channel instance, the distortion D at the FC can

be obtained as

D =

(

1

σ2
θ

+ (Hβ)H
Σ−1Hβ

)−1

,

(b)
=σ2

θ

(

1 − (Hβ)H
[

Hβ (Hβ)H (σ2
θ + σ2

ω

)

+ σ2
nINr

]−1
Hβσ2

θ

)

,

(c)
=σ2

θ

[

1 − σ2
θ

σ2
θ + σ2

ω

(

1 − α

α + (Hβ)H Hβ

)]

, (4.47)

where Σ , Hβ (Hβ)H σ2
ω + σ2

nINr is the covariance matrix of Hβω + z, α ,
σ2

n

σ2
ω+σ2

θ

, and (b)-

(c) result from applying the Matrix Inversion Lemma [34]. Similarly, the mean squared

error or distortion at the eavesdropper is given as

De =σ2
θ

[

1− σ2
θ

σ2
θ +σ2

ω

(

1− αe

αe+(Heβ)H Heβ

)]

, (4.48)

where αe ,
σ2

e

σ2
ω+σ2

θ

.

We set a maximum acceptable distortion level D at the FC and define the distortion
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outage probability as

Proutage_FC = Pr [D > D] = Pr

[

1

(Hβ)H Hβ
> S

]

, (4.49)

where S ,
σ2

ω+σ2
θ

σ2
n

[

σ4
n

σ4
n−D(σ2

ω+σ2
θ )+σ2

ωσ2
θ

− 1

]

. We also set a minimum acceptable distortion

level De at the eavesdropper and assume that if De < De the measurement information

at this channel instance can be successfully retrieved by the eavesdropper leading to a

security breach. Letting Se ,
σ2

ω+σ2
θ

σ2
e

[

σ4
e

σ4
e −De(σ2

ω+σ2
θ )+σ2

ωσ2
θ

− 1

]

, the secrecy outage probability

at the eavesdropper can be expressed as

Proutage_EVE=Pr [De <De]=Pr

[

1

(Heβ)H Heβ
<Se

]

.

With a given power budget at the sensor, our objective is to minimise the distortion

outage probability at the FC, while keeping the secrecy outage probability at the eaves-

dropper below δ. Hence the optimization problem can be cast as:

min
β

Pr

[

1

(Hβ)H Hβ
> S

]

s.t. Pr

[

1

(Heβ)H Heβ
< Se

]

≤ δ, E

[

βHβ
]

≤ Ptot

σ2
θ + σ2

ω

. (4.50)

In the following, we focus on the full CSI scenario where both the FC and eavesdrop-

per’s channel information are available, and the partial CSI scenario where we assume

only the FC’s channel states are perfectly known. In both scenarios, we first focus on find-

ing the best β that minimises the objective while satisfying all the constraints. We then

consider other techniques that can be used in the multiple-antenna systems to further

enhance the performance.

4.3.1 Full CSI

With full knowledge of the eavesdropper’s channel information, problem (4.50) can be

solved using similar techniques as in Section 4.2.1, where we start from an arbitrary fea-
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sible probabilistic power allocation scheme, from which it can be used to construct an-

other feasible power allocation scheme that provides no worse performance, and based

on which we construct three deterministic schemes β1, β2, and β3 = 0. We then show that

the optimal β∗, which is a function of H and He, can be found by considering a proba-

bilistic power allocation scheme that randomises among the three deterministic schemes

β1, β2, and β3 with corresponding weighting factors {ωi}3
i=1. The problem (4.50) then

becomes

min
{βj(H,He)}, {ωj(H,He)}

1 − E [ω1 + ω2]

s.t. E [ω2] ≤ δ, (4.51a)

E

[

2

∑
j=1

ωjβ
H
j βj

]

≤ Ptot

σ2
θ + σ2

ω

, (4.51b)

ω1

(Heβ1)
H Heβ1

≥ (1 − ω2) Se, (4.51c)

ω1

(Hβ1)
H Hβ1

+
ω2

(Hβ2)
H Hβ2

≤ (ω1+ω2) S, (4.51d)

0 ≤ ω1 + ω2 ≤ 1, 0 ≤ ω1, ω2 ≤ 1, (4.51e)

where the derivation is similar to that of problem (4.16) and is thus omitted to avoid rep-

etition. As problem (4.51) is again a non-convex problem the result we derive is a locally

optimal solution. With the assumption that both H and He are continuously distributed,

the solution of problem (4.50) in the case of full CSI is given as

β∗ (H, He) =



















β∗
1 (H, He) , if λ∗β∗H

1 β∗
1 ≤ 1,

β∗
2 (H, He) , if λ∗β∗H

2 β∗
2 ≤1−γ∗ and (Heβ∗

2)
H

Heβ∗
2 > S−1

e ,

0, otherwise,

(4.52)

where λ∗ and γ∗ (H, He) are the optimal Lagrange multipliers chosen to satisfy the con-

straints E

[

∑
2
j=1 ω∗

j βH∗
j β∗

j

]

≤ Ptot

σ2
θ +σ2

ω
and E [ω∗

2 ] ≤ δ respectively; and β∗
1 and β∗

2 are re-
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spectively the optimal solutions of the following two problems:

min
β1(H, He)

βH
1 β1

s.t. (Hβ1)
H Hβ1 ≥ S

−1,

(Heβ1)
H Heβ1 ≤ S

−1
e ; (4.53)

and

min
β2(H)

βH
2 β2

s.t. (Hβ2)
H Hβ2 ≥ S

−1. (4.54)

Note that as all the constraints and objective functions in problem (4.51), (4.53), (4.54)

are real-valued over the complex field, we need to consider both the real and imaginary

parts when applying the KKT conditions for the optimal points [70, 94]. Furthermore,

because problem (4.53) is a non-convex optimization problem, while (4.54) is a convex

problem; we obtain β∗
1 being a locally optimal solution of the problem (4.53) and β∗

2 being

the globally optimal solution of the problem (4.54).

Zero Outage Probability at the Eavesdropper

If the sensor has more transmit antennas than the number of receive antennas at the

eavesdropper, i.e., Nt > Ne, then it can transmit the observation signal x onto the null

space of the eavesdropper’s channel, thus leaking no useful information to the eaves-

dropper. To be more specific, let the singular value decomposition of He be He = USVH.

Then we can express the eavesdropper’s channel null space as ṼṼ
H

, where Ṽ contains

the last Nt − Ne columns of V [108]. Define a precoding matrix W = ṼṼ
H ∈ CNt . The

signals received by the FC and the eavesdropper are then given by, respectively,

y = HWβθ + HWβω + z, (4.55)

ye = HeWβθ + HeWβω + ze = ze. (4.56)
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On the eavesdropper side, as no information about x is received, we obtain the secrecy

outage probability Proutage_EVE = 0.

The outage minimization problem can then be given as

min
β(H)

Pr

[

1

(HWβ)H HWβ
>S

]

s.t. E

[

βHβ
]

≤ Ptot

σ2
θ +σ2

ω

. (4.57)

Similar techniques as used in Section 4.2.1 can be employed to solve problem (4.57), and

it can be shown that the globally optimal β∗ is constructed by randomizing among two

deterministic power schemes β1 and β2 = 0 with corresponding weighting factors ω and

1 − ω. Furthermore, problem (4.57) can be reformulated into the following problem:

min
β1(H), ω(H)

1 − E [ω]

s.t. E

[

ωβH
1 β1

]

≤ Ptot

σ2
θ + σ2

ω

(4.58a)

(HWβ1)
H HWβ1 ≥ S

−1. (4.58b)

The solution is given as

β∗ (H) =







β∗
1 (H) , if λ∗ (σ2

θ + σ2
ω

)

βH
1

∗
β∗

1 < 1

0, otherwise,
(4.59)

where λ∗ is the optimal Lagrange multiplier associated with the power constraint (4.58a)

which is obtained numerically, and β∗
1 is the globally optimal solution of the problem:

min
β1(H)

(

σ2
θ +σ2

ω

)

βH
1 β1,

s.t. (HWβ1)
H HWβ1≤S

−1.

Remark: With this scheme, the FC’s effective channel is HW, which is the projection

of H onto the null space of He via the precoding matrix W. Moreover, if the FC has

only one receive antenna, i.e., Nr = 1, we obtain the beamforming vector β∗
1 (H) =
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√

S−1

(HW)HHW

(HW)H

‖HW‖ (where the notation ‖x‖ refers to the Euclidean norm of the vector x),

which lines up with the effective channel HW while satisfying the power constraint.6

4.3.2 Partial CSI

In this part of the work, we consider a case where the FC can acquire its channel infor-

mation but only has statistical knowledge of the eavesdropper’s. From the full CSI case,

we know that a deterministic power allocation is optimal for continuously distributed

fading channels. Therefore, applying the results derived in Section 4.2.2, we can obtain a

locally optimal β∗ at each FC channel instance as:

β∗ (H) =











β̂ (H) , if ν (H)
∫

He
1

{

(

He β̂
)H

He β̂>
1
Se

}

dF (He) + λβ̂
H

β̂ < 1

0, otherwise,

where β̂ is a locally optimal solution to the problem:

min
β(H)

λβHβ + ν (H)
∫

He

1
{

(Heβ)H Heβ > S
−1
e

}

dF (He)

s.t. (Hβ)H Hβ ≥ S
−1, (4.60)

with λ and ν (H) being nonnegative Lagrange multipliers corresponding to respectively

the power constraint and the secrecy outage constraint at the eavesdropper.

Artificial Noise

Assuming that the sensor is equipped with more transmit antennas than the number of

receive antennas at the FC, we can employ the technique of artificial noise [27, 74] to

enhance the system performance. The idea is to increase the noise level seen by the ad-

versary in a way that its channel is degraded while the channel of the legitimate receiver

is not. With this method, the artificial noise is generated by the sensor and transmitted

onto the null space of the FC, thus it does not impact the message received by the FC but

6One could also use the techniques in [64] to solve the problem, which will give the same result.
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increase the noise level at the eavesdropper.

Let [W1, W2] be an orthonormal basis of CNt with W1 ∈ CNt×Nr and W2 ∈ CNt×(Nt−Nr)

representing respectively the signal space and the null space of H. The signals received

by the FC and the eavesdropper are, respectively,

y = HW1βx+HW2v+z

= HW1βθ+HW1βω+z, (4.61a)

ye = HeW1βx + HeW2v + ze

= HeW1βθ + HeW1ω + HeW2v + ze. (4.61b)

where the artificial noise v ∈ C(Nt−Nr)×1 has Nt − Nr i.i.d. complex Gaussian elements

with zero mean and variance pa.

It can be seen from (4.61) that the sensor transmits observation information W1βx

plus a ’noise’ term W2v, which is chosen to be a random vector in the null space of H,

to reduce the possibility of small noise being seen by the eavesdropper. As [W1, W2] is a

unitary matrix, we obtain that HeW1 is independent of HeW2, giving the effective noise

at the eavesdropper as HeW2v + ze. The transmit power in each fading block is given as
(

σ2
θ + σ2

ω

)

βHβ + (Nt − Nr) pa.

We want to minimise the distortion outage probability at the FC, by finding the best

β∗ (H) and p∗a (H) to meet the long-term power constraint and the secrecy outage con-

straint at the eavesdropper. Assuming that both the FC and the eavesdropper use the

MMSE estimator, the optimization problem can be written as

min
pa(H), β(H)

Pr
[

(HW1β)H HW1β < S
−1
]

s.t. Pr
[

(HeW1β)H
(

(

σ2
θ +σ2

ω

)

HeW1β (HeW1β)H

+σ2
e INe paHeW2 (HeW2)

H
)−1

HeW1β>
σ2−De

σ4

]

≤ δ,

E

[

(

σ2
θ + σ2

ω

)

βHβ + (Nt − Nr) pa

]

≤ Ptot. (4.62)

In order to solve problem (4.62), we can employ similar techniques as described in
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Section 4.2.2, which are omitted for brevity. For the special case of a single receive antenna

at both the FC and the eavesdropper, the problem is reduced to finding p and pa, where

p , βHβ ∈ R. Let p̂a be the solution of

p̂a (H) = arg min
p̂a≥0

λ (Nt − 1) p̂a + νd (H, p̂a) , (4.63)

where λ and ν are the corresponding Lagrange multipliers for the long-term

power constraint and secrecy outage constraint of problem (4.62), and d (H, p̂a)

=
∫

He
1

{

p̂a <
S−1|HeW1|2

|HW1|2|HeW2|2
De(σ2

θ+σ2
ω)−σ2

ωσ2
θ

σ2
θ −De

− σ2
e

|HeW2|2

}

dF (He). We then derive the locally

optimal p∗ (H) and p∗a (H) as







p∗ (H) = S−1

|HW1|2
, p∗a (H) = p̂a (H) ; if

λ(σ2
θ +σ2

ω)S−1

|HW1|2
+νd (H, p̂a)+λ (Nt−1) p̂a (H) < 1

p∗ (H) = p∗a (H) = 0, otherwise.

4.4 Alternative Formulations

In Section 4.2 and Section 4.3 we considered problems that minimise the distortion outage

probability at the FC while maintaining the secrecy outage probability at the eavesdrop-

per and overall power consumption to be below certain thresholds. Alternative problems

can also be formulated. For instance, we can minimise the secrecy outage probability at

the eavesdropper, with a distortion outage constraint at the FC and a long-term power

constraint among sensors, given as

min
P(G)

Pr [De (G, P (G)) < De]

s.t. Pr [D (G, P (G)) > D] ≤ φ,

E [〈P (G)〉] ≤ Ptot, (4.64)

where φ is the distortion outage probability threshold at the FC. Another potential prob-

lem would be to minimise the long-term expected estimation error at the FC subject to a

secrecy outage constraint at the eavesdropper and a long-term power constraint among
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the sensors, written as

min
P(G)

E [D (G, P (G))]

s.t. Pr [De (G, P (G))<De] ≤ δ,

E [〈P (G)〉]≤Ptot. (4.65)

For both problems, we could consider the full CSI and the partial CSI cases, which can

both be solved using similar techniques as in Section 4.2. Note that problems (4.64), (4.65)

are formulated for the multiple-sensor scenario. Similar problem formulations could also

be constructed for a multiple-antenna scenario.

4.5 Numerical Results

We first consider a situation with three sensors. For simplicity, we consider the source σ2
θ

to be distributed as N (0, 1), and all three sensors share the same measurement sensitivity

of σ2
ωk = 10−3, ∀k. We assume that the distances from each sensor to the eavesdropper are

125m, 127m and 129m, whereas it is 125m, 130m and 135m to the FC respectively. Fur-

thermore, we consider the path-loss of the signal power at the FC and the eavesdropper

as following the free-space path-loss model [29]

PL = 20 log10(d) + 20 log10( f )− 27.55, (4.66)

where d ∈ {dk, dek} is the distance between sensor k and the FC or the eavesdropper

in meters, and f is the signal frequency in megahertz (we assume the network uses an

operation frequency of 800MHz). Then, the channel power gain follows an exponential

distribution with mean 10−
PL
10 mW. In addition, the total power budget range is set to 1

mW ≤ Ptot ≤ 11 mW, to ensure that the secrecy outage probability requirement at the

eavesdropper is achievable. The maximum acceptable distortion level D at the FC is set

to 0.007 while the required minimum distortion level De at the eavesdropper is 0.01.

Figure 4.3 shows the distortion outage probability at the FC with two antennas at the
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Figure 4.3: Performance comparison in a three-sensor network with Ne = 2 and full CSI
of both the FC and the eavesdropper.

eavesdropper, under different secrecy outage probability requirements at the eavesdrop-

per, namely 0.1 and 0.2. When the number of receive antennas at the FC is fixed, it is seen

that for both sets (i.e., Nr = 2 and Nr = 3) the outage probability at the FC behaves sim-

ilarly for the two different outage requirements at the eavesdropper when Ptot is small.

As we increase the total power budget, they start to decrease until saturation. This is

because when Ptot is small, the sensors are more likely to choose small power consump-

tion policies that only guarantee non-outage at the FC, or the sensors would simply stop

transmitting to save power. As the transmission power budget increases, sensors begin

to transmit in channel states where outage happens neither at the FC nor at the eaves-

dropper, until a point where more incremental power would lead to the secrecy outage

probability at the eavesdropper being greater than the security requirement δ, at which

the distortion outage probability at the FC saturates.

In Figure 4.4, we compare the distortion outage probability at the FC with the sensor
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Figure 4.4: Performance comparison in a three-sensor network with Ne = 2 and δ = 0.2.

scheduling scheme, partial CSI, and full CSI schemes in a three-sensor network, with

the FC having two or three antennas. As we can see, similar to Figure 4.3, the outage

probability at the FC is smaller when the FC is equipped with more antennas for all three

cases. In addition, the performance of sensor scheduling follows closely the partial CSI

case, and it even has similar performance as the full CSI case when the transmit power

budget is small.

The distortion outage probability at the FC versus different transmit power budgets

is plotted in Figure 4.5, where we compare the performance of sensor scheduling to the

partial CSI case with the secrecy outage probability constraint at the eavesdropper set

to 0.14, 0.18 and 0.22. The first thing to be noticed is the close performance of sensor-

scheduling and partial CSI power allocation in all three scenarios (i.e, δ = 0.14, δ = 0.18

and δ = 0.22) when the power budget Ptot is relatively small. In addition, the results

stated in (4.44) and (4.45) can be easily verified from the behaviour of sensor-scheduling.

When we have a small power budget, Proutage_FC performs the same for all scenarios re-
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Figure 4.5: Performance comparison in a three-sensor network with Nr = 3 and Ne = 2.

gardless of the different secrecy outage requirements at the eavesdropper, which implies

that the total power constraint satisfies equality at the optimal points, whereas the se-

crecy outage constraint is loose. As we keep increasing the power budget, Proutage_FC

settles down to a point at which the secrecy outage constraint is satisfied with equality

but the power constraint is loose, since any power increment makes no improvement.

Next, we study the distortion outage probability at the FC for the multiple-antenna

single sensor scenario, where we assume that the sensor is 127m away from the FC, and

130m away from the eavesdropper. For simplicity, we assume that the sensor is equipped

with three antennas, whereas there is only one antenna at the FC and one or two antennas

at the eavesdropper. We consider the minimum required distortion level De at the eaves-

dropper being set to 0.013, which is twice as large as the maximum acceptable distortion

level D at the FC. We assume the same noise level for both the FC and the eavesdropper,

where σ2
n = σ2

e = 10−8 mW.

In Figure 4.6, the distortion outage probability at the FC versus the long-term power



4.5 Numerical Results 91

P
tot

0 5 10 15 20

Pr
ou

ta
ge

-F
C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Partial CSI, δ = 0.1
Full CSI, Pr

outage-EVE
=0

Full CSI, δ = 0.1
Partial CSI - Artificial Noise, δ = 0.1

Figure 4.6: Performance comparison for a single sensor multiple-antenna scenario with
Nr = Ne = 1 and δ = 0.1.

budget is plotted for full CSI, full CSI with Proutage_EVE = 0, partial CSI and partial CSI-

Artificial Noise schemes. As we can see, the full CSI case outperforms the partial CSI

case, and in both cases the distortion outage probability at the FC saturates. By contrast,

the full CSI with Proutage_EVE = 0 and partial CSI-Artificial Noise schemes perform better

when we have a relatively large transmit power budget, where Proutage_FC keeps decreas-

ing as Ptot increases. More interestingly, it is seen from that the full CSI Proutage_EVE = 0

scheme performs no better than the partial CSI-Artificial Noise scheme across the entire

power range. This is owing to the fact that the effective channel gains of the FC are largely

reduced when projecting it onto the eavesdropper’s channel null space, whereas in the

case of partial CSI-Artificial Noise, only a small portion of the transmit power is used to

generate ’noise’.

To closely observe the performance of Proutage_FC using artificial noise, in Figure 4.7

we look at scenarios where the eavesdropper has more receive antennas than the FC, and
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Figure 4.7: Performance comparison for a single sensor multiple-antenna scenario with
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we also plot the full CSI and partial CSI cases for comparison. It is noticeable that when

the eavesdropper has more antennas, Proutage_FC in the partial CSI case quickly saturates

which is then followed by the full CSI case, as at certain channel states the sensor has

to stop transmitting in order to maintain the required secrecy outage probability at the

eavesdropper. Whereas in the case of partial CSI-Artificial Noise, because the sensor can

intentionally generate noise to degrade the eavesdropper’s channel, it can explore more

channel states to transmit the observation signals to the FC. Similar behaviour is seen

when the eavesdropper has the same number of antennas as the FC, where the partial

CSI-Artificial Noise gives better performance, as less ’noise’ needs to be produced which

means more power can be used to forward the observations. Therefore, the simulation

results in Figure 4.6 and Figure 4.7 indicate that injecting artificial noise into the eaves-

dropper’s channel appears to be a better solution for the single sensor multiple-antenna

scenario.

4.6 Conclusion

In this chapter, we have considered the problem of transmit power allocation for distor-

tion outage probability minimization in the presence of an eavesdropper. We studied

the distortion outage probability performance for both full CSI and partial CSI under

two different scenarios: multiple-sensor single antenna scenario and multiple-antenna

single sensor scenario. We proposed a suboptimal solution (for the partial CSI case) to

overcome the high computational cost in the multiple-sensor scenario. With multiple

transmit antennas at the sensor, we investigated techniques that can achieve zero outage

at the eavesdropper. Simulation results showed that better performance can be achieved

with additional receive antennas at the FC for the multiple-sensor scenario, and in the

multiple-antenna single sensor scenario the distortion outage probability at the FC can

be reduced to zero if the transmit power budget is sufficiently large.
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4.7 Appendix

4.7.1 Proof of Lemma 1

We will show that the power allocation policy given in (4.12) is feasible, i.e., P′ (G) satis-

fies the secrecy outage constraint at the eavesdropper (4.7a) and the total transmit power

constraint (4.7b); and that P′ (G) performs at least as well as P̂ (G).

Since P̂ (G) is feasible, P̂ (G) must satisfy all the constraints, i.e.,

Pr
[

De

(

G, P̂ (G)
)

< De

]

=EG

[

Pr
[

De

(

G, P̂ (G)
)

< De

∣

∣G
]]

=EG [ω2 (G)] ≤ δ,

and

EG,p

[〈

P̂ (G)
〉]

=EG

[〈

3

∑
i=1

Ep

(

P̂ (G)
∣

∣p (G) ∈ Bi (D, De, G) , G
)

Pr [p (G) ∈ Bi (D, De, G)|G]

〉]

=EG

[〈

3

∑
i=1

pi (G)ωi (G)

〉]

≤ Ptot. (4.67)

Remark: As P̂ (G) has three non-overlapping regions as defined in (4.11), with all pow-

ers in B3 (D, De, G) being zero, we know that the only power region leading to outage

at the eavesdropper is B2 (D, De, G). In addition, the probability of choosing a power

in B2 (D, De, G) is given as Pr [p (G) ∈ B2 (D, De, G)|G], which is the same as the time-

sharing factor ω2 (G) defined in (4.15).

As the new probabilistic power allocation P′ (G) is randomised among the three de-

terministic power policies given in (4.14), we can find the long-term average power con-

sumption of P′ (G) as

E [〈p (G)〉] =EG

[〈

Ep [p (G)|G]
〉]
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=EG

[〈

3

∑
i=1

pi (G)ωi (G)

〉]

, (4.68)

and hence P′ (G) satisfies the power constraint (4.7b).

In addition, as both D (G, p (G)) and De (G, p (G)) are continuous and convex over

p (G), by the Mean Value Theorem (MVT) for integration [41], we know that, for a

given channel realization G, there exists a p̂1 (G) ∈ B1 (D, De, G) such that p̂1 (G) =

E
[

P̂ (G)
∣

∣p (G) ∈ B1 (D, De, G) , G
]

. Together with the definition of p1 (G) in (4.14), we

know that D (G, p1 (G)) ≤ D and De (G, p1 (G)) ≥ De. Similarly, only when P′ (G) =

p2 (G) does outage occur at the eavesdropper. Therefore, we can compute the secrecy

outage probability at the eavesdropper when using the probabilistic power policy P′ (G)

as

Pr
[

De

(

G, P′ (G)
)

< De

]

=EG

[

Pr
[

P′ (G) = p2 (G)
∣

∣G
]]

=EG [ω2 (G)] ≤ δ. (4.69)

Remark: Note that for the channel states where B1 (D, De, G) = ∅, the result given in

(4.69) can be also established, since for those channel states we have ω1 (G) = 0. By

following the above arguments and applying the MVT, we see that outage occurs at the

eavesdropper only when P′ (G) = p2 (G).

The feasibility of P′ (G) has thus been proved. In order to see that the probabilistic

power policy P′ (G) performs no worse than P̂ (G), we first show that for each channel

realisation, the distortion outage probability at the FC when using P′ (G) is at least as

small as when using P̂ (G). We then conclude that for a fixed maximum acceptable dis-

tortion level D at the FC, P′ (G) would result in the same or smaller outage probability

at the FC. Given the channel realisation G, the distortion outage probability at the FC is:

Pr
[

D
(

G, P̂ (G)
)

> D
∣

∣G
]

=
3

∑
i=1

Pr
[

D
(

G, P̂ (G)
)

>D
∣

∣p (G)∈Bi, G
]

Pr [p (G) ∈ Bi|G]

(a)
=

3

∑
i=1

Ep

[

1
{

D
(

G, P̂ (G)
)

> D
∣

∣p (G) ∈ Bi, G
}]

ωi (G)
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(b)

≥
3

∑
i=1

1
{

D
(

G, Ep

[

P̂ (G)
∣

∣p (G) ∈ Bi, G
])

> D
}

ωi (G)

=Pr
[

D
(

G, P′ (G)
)

> D
∣

∣G
]

, (4.70)

where (a) follows from the definition of {ωi (G)} given in (4.15) and (b) follows from

Jensen’s inequality, since D (G, p (G)) is a convex function over p (G), and the last equal-

ity follows from (4.12). Therefore, the resulting distortion outage probability at the FC

from using P′ (G) is no worse than using P̂ (G), i.e.,

Pr
[

D
(

G, P′ (G)
)

> D
]

≤ Pr
[

D
(

G, P̂ (G)
)

> D
]

. (4.71)

Combining (4.68), (4.69) and (4.71), we conclude that a probabilistic power allocation

scheme P′ (G) with the form (4.12) is feasible and gives the same or smaller outage prob-

ability at the FC compared to an arbitrary probabilistic power allocation. Furthermore,

from the definition of {pi (G)} given in (4.14), we have the following:

De ≤Ep

[

De

(

G, P′ (G)
)∣

∣De (G, p (G)) ≥ De, G
]

(c)
=

ω3 (G) σ2
θ

ω1 (G) + ω3 (G)
+

ω1 (G) De (G, p1 (G))

ω1 (G) + ω3 (G)
(4.72)

D ≥Ep

[

D
(

G, P′ (G)
)∣

∣D (G, p (G)) ≤ D, G
]

(d)
=

ω1 (G) D (G, p1 (G))

ω1 (G) + ω2 (G)
+

ω2 (G) D (G, p2 (G))

ω1 (G) + ω2 (G)
, (4.73)

where (c) and (d) are obtained by applying conditional expectations.

4.7.2 Proof of Theorem 4.1

We will consider the case ω∗
j (G) = 1, as when ω∗

j (G) = 0, the solution of p∗
j (G) has no

impact on the optimization problem.

(1) When ν∗ (G) = 0: From the KKT condition (4.22), we need to have

ω∗
1 (G) D (G, p∗

1 (G)) + ω∗
2 (G) D (G, p∗

2 (G))− (ω∗
1 (G) + ω∗

2 (G))D = 0. If ω∗
1 (G) = 1,
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we must have ω∗
2 (G) = 0, and so D (G, p∗

1 (G)) = D. However, we also know that

∂l(... )
∂p∗1k(G)

= λ∗ω∗
1 (G)

(

σ2
ωk + σ2

θ

)

− ν∗e (G)ω∗
1 (G)

∂De(G,p∗
1(G))

∂p∗1k(G)
≥ 0. Combining with (4.17)

we see that p∗
1 (G) = 0, which contradicts the requirement that D (G, p∗

1 (G)) = D.

Similar arguments apply for the case when ω∗
2 (G) = 1. Therefore, we conclude that if

ν∗ (G) = 0 we must have ω∗
1 (G) = ω∗

2 (G) = 0.

(2) When ν∗ (G) > 0 and ν∗e (G) = 0: Here, one should have

ω∗
1 (G)

[

De (G, p∗
1 (G))− σ2

θ

]

+ ω∗
2 (G)

(

De − σ2
θ

)

≥ De − σ2
θ and ω∗

1 (G) D (G, p∗
1 (G)) +

ω∗
2 (G) D (G, p∗

2 (G))− (ω∗
1 (G) + ω∗

2 (G))D = 0. If ω∗
1 (G) = 1, we obtain ω∗

2 (G) = 0,

D (G, p∗
1 (G)) = D and De (G, p∗

1 (G)) ≥ De. In addition, from (4.25) we see that

p∗1k (G) satisfies
(

σ2
ωk + σ2

θ

)

− ν∗(G)
λ∗

∂D(G,p∗
1(G))

∂p∗1k(G)
= 0. For problem (4.31), from the KKT

conditions, we know that the optimal solution p∗
a (G) must satisfy D (G, p∗

a (G)) = D,

De (G, p∗
a (G)) ≥ De, and

(

σ2
ωk + σ2

θ

)

− ν̂∗ (G)
∂D(G,p∗

a (G))
∂p∗ak(G)

= 0, ∀k, which shares the same

form as p∗
1 (G), where ν̂∗ (G) is the optimal Lagrange multiplier corresponding to the dis-

tortion constraint at the FC for problem (4.31). Therefore, if ω∗
1 (G) = 1 we have p∗

1 (G) =

p∗
a (G). Similarly, for ω∗

2 (G) = 1, we obtain p∗
2 (G)=p∗

b (G) if De

(

G, p∗
b (G)

)

< De.

(3) When ν∗ (G) > 0 and ν∗e (G) > 0: The same results can be derived by using

similar arguments as for case (2).

4.7.3 Proof of Lemma 2

First, from (4.34) we know that the optimal power p∗ (G) should minimise

1 {D (g, p∗ (g)) > D}+ ξ (p∗ (g)) at each channel instance. When p (G) = 0, we obtain

ξ (p (g)) = 0 and 1 {D (g, p (g)) > D} + ξ (p (g)) = 1, which indicates that

1 {D (g, p∗ (g)) > D} + ξ (p∗ (g)) is upper bounded by 1. If p∗ (G) is a nonzero vec-

tor, we must have ξ (p∗ (g)) > 0. Furthermore, as 1 {D (g, p∗ (g)) > D}+ ξ (p∗ (g)) ≤ 1,

we obtain ξ (p∗ (g)) ≤ 1 and 1 {D (g, p∗ (g)) > D} = 0.

0





Chapter 5

A Game-Theoretic Approach to DoS
Attacks in Distributed Estimation

This chapter investigates the counter-attacking strategies of distributed estimation under the

denial-of-service (DoS) attack in a single sensor network. The sensor transmits observations to the

fusion center (FC), which then reconstructs a minimum mean square error (MMSE) estimate of the

physical quantity observed. Meanwhile, the attacker transmits a jamming signal to disrupt the signal

received by the FC. We first consider a zero-sum repeated game in non-fading scenarios, where the

same static game is played over time. To find a strategy pair in a Nash equilibrium, modified back-

ward induction and Nash Q-learning techniques are applied. In fading channels, we look at both full

channel state information (CSI) and partial CSI cases, where Bayesian games are explored. Based

on the knowledge of the player’s own channel information and the belief of the opponent’s channel

distribution, we study the type-contingent power allocation strategy at a Bayesian Nash equilibrium.

Numerical examples are provided to demonstrate the ‘optimality’ of the strategy pair.

5.1 Introduction

I
N previous chapters, we looked at secure power allocation algorithms where a sensor

network is under passive eavesdropping. Various transmission policies are consid-

ered to either minimize the estimate distortion level at the fusion center (FC) or to reduce

distortion outage probability for different wireless sensor network (WSN) models. In

this chapter, we shift our focus to denial-of-service (DoS) attacks1 in distributed estima-

tion, where an adversary attempts to diminish the quality of the estimates at the FC by

injecting noise to the communication channels.

1A DoS attack is defined as an event that attempts to reduce a network’s capability to operate as expected
[102].
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In DoS attacks, an adversary, even with small jamming power, is capable of disrupt-

ing the legitimate signal reception by broadcasting an interference signal2. Frequency

hopping and spread-spectrum are two standard defense techniques against DoS attacks;

however, these techniques largely reduce the sensors’ battery life and are more likely to

limit the WSN to single-frequency use [102]. Ideally, in DoS attacks, a sensor should not

only take into consideration its own situation, but also the possible jamming signals from

the attacker. Therefore, instead of only looking at the sensor’s power allocation strategy, a

system model capturing the interactions between two conflicting parties is more suitable

for DoS attacks.

Game theory, which describes the conflict or cooperation between intelligent rational

decision-makers, is generally employed to model the interactive behavior of multiple

parties in a ‘game’ with limited resources or conflicting interests. Resource allocation in

fading multiple access channels (MACs) is studied within a game-theoretic framework in

[53]. Assuming that all users are selfish and rational, the authors obtained the maximum

sum-rate point on the boundary of the MAC capacity region. With each player only

having ‘incomplete information’ about others, the authors in [1,36] considered the power

allocation problems in Bayesian games, where a player is aware of its own channel gain,

but does not know the channel gains of others. The zero-sum mutual information game in

correlated jamming is studied in [47,69,89], where the jammer may correlate its signal to

that of the legitimate user. More recently, in DoS attacks, a game-theoretic framework is

developed in [58] to analyze SINR-based DoS attacks on remote state estimation, where

the players are assumed to be rational and limited by average power constraints. The

authors build a Markov game to model the interactive decision-making process and used

a modified Nash Q-learning algorithm to obtain the strategies at a Nash equilibrium.

In addition to DoS attacks, the sensors typically have limited energy resources and

are geographically widespread, hence replacing batteries is considered costly. Many

works have considered and studied cross-layer optimization to enhance the energy ef-

ficient transmission from the sensors to the FC. Applying analog amplify-and-forward

technique, which is shown to be asymptotically optimal in estimating a Gaussian source

2A more severe type of attacks is called Byzantine attack, where the adversary may capture and subvert
a limited number of sensors; the compromised sensors are said to suffer a Byzantine fault [66, 85].
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for a coherent MAC [7,25] and exactly optimal in [24] under certain situations, the authors

in [104] studied the optimal power scheduling problem in an inhomogeneous sensor net-

work. The same group of authors extended the results to a vector source and investigated

the optimal power allocation policies in [105].

In this chapter, we study a game theoretic approach for distributed estimation in a

single sensor network under DoS attacks. The sensor measures a single point Gaussian

source, and then transmits the noisy measurements to the FC using an uncoded analog

scheme. At the same time, the attack broadcasts a jamming signal attempting to inter-

fere with signals received by the FC, who then attempts to reconstruct a minimum mean

square error (MMSE) estimate of the observations. We assume that both the sensor and

attacker are operating under a limited power budget. Hence, the sensor wants to reduce

the estimate distortion at the FC while satisfying an overall power constraint. The at-

tacker, on the other hand, is seeking to degrade the estimation quality at the FC. In this

chapter, we aim to study the optimal power allocation strategies for both the sensor and

attacker such that no one gains more benefits by unilateral deviation. The main contribu-

tions of the chapter are:

• We consider the interactive behavior between the transmission policies at the sensor

and the jamming powers at the attacker in both non-fading and fading scenarios,

where the game is played simultaneously. We also study the existence of a Nash

equilibrium for different cases.

• In non-fading channels, we look at dynamic games where both players can ‘inter-

act’ with each other many times hence learning the opponent’s strategies and up-

dating its own actions3. For a finitely repeated game, a power allocation algorithm

is proposed to recursively find the optimal strategy pairs while meeting the power

constraints at each player. The Nash Q-learning technique [38] is employed for the

case of infinitely repeated games to obtain a stationary Nash equilibrium strategy

pair.

• When fading is present, apart from the full CSI scenario we consider the partial

3Learning is a technique used to find the ‘optimal’ strategies. Techniques like backwards induction or
Nash Q-learning is implemented by each player in an offline manner.



102 A Game-Theoretic Approach to DoS Attacks in Distributed Estimation

CSI case or incomplete information games, where each player has perfect knowl-

edge about its own channel gains and only a belief about the opponent’s statistical

channel information. Under this setting, we study the Bayesian Nash equilibrium,

where the ‘optimal’ transmission schemes at each player depend only on its own

channel information4.

The rest of the chapter is organised as follows. In Section 5.2, we present the system

model, where the FC reconstructs MMSE estimates of the physical quantity observed

while the network is under DoS attacks. In Section 5.3, we investigate transmission

strategies at a Nash equilibrium in non-fading channel scenarios, in which two differ-

ent repeated games are discussed. Fading channel scenarios are explored in Section 5.4,

where we consider Bayesian games when only partial CSI is available at the players. Il-

lustrative numerical results are provided in Section 5.6, followed by concluding remarks

in Section 5.7.

5.2 System Model

We consider a wireless network with one sensor, one adversary and a FC as shown in

Figure 5.1. The sensor is observing a single point Gaussian source, denoted by θ, which

has zero mean and variance σ2
θ . Applying analog amplify and forward techniques [24,25]

with amplifying factor βS[t], at time t the sensor transmits the measurement

x[t] , θ[t] + ω[t],

which is the corrupted source with ω being i.i.d. zero mean variance σ2
ω complex Gaus-

sian noise, to the FC over a noisy channel. The malicious node attempts to attack the

transmitted observations reaching at the FC with a jamming signal βA.

To model fading in the received power, we consider hS and hA as complex fading

4‘optimality’ and ‘optimal’ are written within quotes in this chapter. This is because unlike one-player
games which the optimality has an unambiguous meaning; the optimality in multi-person decision making
is a not well-defined concept; therefore, the Nash equilibrium solution is considered as a specific form of
‘optimality’ [8].



5.2 System Model 103

random variables. Therefore, the signal received by the FC at time t is modeled as [89]

y = hS[t]βS[t]x[t] + hA[t]βA[t] + z[t], (5.1)

where z[t] is independent and identically distributed (i.i.d.) complex Gaussian noise with

zero mean and variance σ2
n . All fading random variables are assumed to be i.i.d. in time.

The sensor node and the adversary are power constrained by the average power bud-

get PS_avg and PA_avg respectively, this indicates that the power consumption averaged

across all transmission slots should be no greater than PS_avg for the sensor and PA_avg

for the attacker.

Figure 5.1: Diagram of a wireless sensor network with the presence of an attacker.

At the FC, it reconstructs a minimum mean square error (MMSE) estimate of the phys-

ical quantity observed. Hence the mean squared error (MSE) or distortion at the FC is

derived as

D[t] =

(

1

σ2
θ

+
gS[t]pS[t]

gS[t]pS[t]σ2
ω + gA[t]pA[t] + σ2

n

)−1

, (5.2)

where gS[t] , hS[t]
HhS[t] ∈ R and gA[t] , hA[t]

HhA[t] ∈ R are respectively the channel

power gains from the sensor and the attacker to the FC, and pS[t] , βS[t]
HβS[t] ∈ R is the

power scaling factors at the sensor and pA[t] , βA[t]
HβA[t] ∈ R is the jamming signal

power from the attacker5.

Remark: Notice that pS[t] and pA[t] are real valued, which means that for a given

pS[t], any βS[t] satisfying βS[t]
HβS[t] = pS[t] would result in the same distortion (similar

5As the sensor forwards the observation signal x with amplify factor β, the transmit power at time t is
(

σ2
θ + σ2

ω

)

pS[t]; whereas it is pA[t] for the attacker.
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results applied to the attacker that any βA[t] satisfying βA[t]
HβA[t] = pA[t] lead to the

same effects). Therefore, we mainly focus on pS[t] and pA[t] in the rest of the work.

Depending on the channel knowledge at each player, we study how to use game

theory to analyze the transmission strategy at the sensor and the attacker in a Nash equi-

librium, where each player’s choices are the best response to the other player’s choices.

We assume both players are rational, meaning they will always choose the action that of-

fers them the highest expected payoff. Therefore, throughout this chapter, our objective

is to obtain the ‘optimal’ strategies for both players such that no one gains more benefits

by unilateral deviation. Before proceeding further, we define the following terms:

• Players: The players are the sensor node and the attacker.

• Action sets: The action sets are a collection of power levels that can be used to

transmit, which are denoted by PS for the sensor and PA for the attacker. If there

are infinitely many elements in an action set, it is called infinite action set; otherwise

it is a finite action set.

• Strategies: A strategy is defined as a plan of actions intended to complete a spe-

cific goal, which are the power control policies in our case. A pure strategy for a

player is a deterministic plan of action and is denoted by pS for the sensor and pA

for the attacker; and we use πS and πA to indicate mixed strategies for the sensor

and attacker, which are defined as a set of probability distributions over the cor-

responding pure strategies [95]. For a single-act game, a pure strategy consists of

only one element from the action set. Whereas in repeated games, pS is collection

of actions for each stage of the game defined as pS , [pS0, . . . , pST] where T is the

time horizon and pSt ∈ PA. As for the mixed strategy, πS , [πS0, . . . , πST] with

πSt being a probability distribution over the action set PS and interpreted as the

decision rules at time t. Similar definitions apply to the attacker.

• Payoffs: A payoff or reward is the objective of the players. If the sum of players’

payoffs is zero, we have a zero-sum game.
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5.3 AWGN Channels

In this part of the work, we look at additive white Gaussian noise (AWGN) channels

where the channel states of both the sensor and attacker are time invariant. In such en-

vironments, the channel states depend only on the distance between the transmitter and

the receiver; hence it does not suffer from fading or shadowing. The AWGN channel

models accurately describe deep space communication links and satellite sensing chan-

nels [68]. In such environments, we consider repeated games, where the same static

game is played many times. In our setup, we consider both parties having imperfect in-

formation of each other, meaning that the players play simultaneously and they do not

know the opponent’s action until the game is completed, but they can observe the other’s

immediate payoffs and actions taken previously. We assume that the players are sophis-

ticated enough that, instead of simply repeating the same static strategy, they are able to

link their behavior in a given game to the outcomes of previous games. The idea is that

each player may learn the opponent’s strategies, hence to update its own strategies to

counteract the actions of its opponent6.

We first investigate finitely repeated games where the same static game is repeated

over a finite number of periods. In this game, the payoff function is defined by looking

at the overall system performance across the whole time horizon. For infinitely repeated

games, in order to quantify the performance over an infinite time-horizon, we employ

the discounted sum of rewards as payoff functions.

5.3.1 Finitely Repeated Games with Infinite Action Sets

First, we look at scenarios where both players’ action sets comprise an infinite number of

elements. We consider the repeated game with both the attacker and the sensor having

an average power constraint over a finite time horizon. For the sensor, the goal is to

minimize the overall distortion at the FC within a power budget PS_avg; whereas the

attacker wants to find the best attacking strategy without violating an average power

constraint PA_avg.

6Learning techniques used in this section such as backward induction and Nash Q-learning are imple-
mented by each player offline.
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As both the sensor and the attacker act simultaneously at each time, for the sensor

and the attacker the optimization problems are

Sensor’s Game :

min
{pSt}

max
{pAt}

T

∑
t=0

D (pSt, pAt)

s.t.
1

T

T

∑
t=1

pSt =
PS_avg

σ2
ω + σ2

θ

,

1

T

T

∑
t=1

pAt = PA_avg, (5.3)

Attacker’s Game :

max
{pAt}

min
{pSt}

T

∑
t=0

D (pSt, pAt)

s.t.
1

T

T

∑
t=1

pSt =
PS_avg

σ2
ω + σ2

θ

,

1

T

T

∑
t=1

pAt = PA_avg. (5.4)

Remark: It is noticeable, from (5.2), that the distortion level at the FC is a convex func-

tion over pS that gradually decreases to the minimum value of
σ2

ωσ2
θ

σ2
ω+σ2

θ

as the power pS

approaches infinity, and that it reaches the maximum distortion σ2
θ when the sensor stops

transmitting. Similar features can be found for D w.r.t. pA. The sensor intends to have

high quality estimates at the FC (or a small MSE); whereas, the attacker attempts to lower

the quality of the estimates, with both sides having a transmission power budget.

It is straightforward to verify that the objective functions are continuous for the game

framework described in (5.3) and (5.4). Because pS is compact and convex over the fea-

sible region defined in (5.3) and ∑
T
t=1 D (pSt, pAt) is convex in pS (similar results can be

observed for (5.4) regarding pA), we conclude that the game defined in (5.3) and (5.4) has
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a pure-strategy Nash equilibrium, i.e.,

min
{pSt}

max
{pAt}

T

∑
t=1

D (pSt, pAt) = max
{pAt}

min
{pSt}

T

∑
t=1

D (pSt, pAt) .

Let {pS
∗
t } be the optimal solution of problem (5.3), and {pA

∗
t } the optimal solution of

problem (5.4). A pure strategy pair
{

p∗
S, p∗

A

}

at a Nash equilibrium results in

T

∑
t=0

D
(

pS
∗
t , p′At

)

≤
T

∑
t=0

D (pS
∗
t , pA

∗
t ) ≤

T

∑
t=1

D
(

p′St, pA
∗
t

)

,

for all p′
S ∈

{

pS : 1
T ∑

T
t=0 pSt =

PS_avg

σ2
ω+σ2

θ

}

and p′
A ∈

{

pA : 1
T ∑

T
t=0 pAt = PA_avg

}

.

To obtain
{

p∗
S, p∗

A

}

, that is to solve the constrained nonlinear minimax problems, al-

gorithms proposed in [44] or primal-dual interior-point method [75] can be used; how-

ever, a high computational cost is generally involved in deriving the results. Further-

more, in the power control architectures of wireless communication, it is more common

to employ quantized power levels to the mobile terminals. Therefore, in favor of the low

complexity and being easy to implement in real setups, for the rest of this section, we

assume that both the sensor and the attacker only have a finite number of power levels

(instead of an infinite amount of power levels) to adapt their power transmission strategy

at each time slot.

5.3.2 Finitely Repeated Games with Finite Action Sets

In cases where players have finitely many actions from which to choose, if the action size

is small, the game may not admit a Nash equilibrium solution in pure strategies. One

way to obtain an equilibrium solution is to enlarge the strategy space [8]. This leads to

mixed strategies, which are probability distributions over the finite pure strategy sets.

In finitely repeated games, we also assume that both the sensor and the attacker move

simultaneously at each time point, and both of them are able to observe the outcome from

the last time step before acting. In other words, at each time, each player has information

concerning the current time of play, and each player knows the state of the game (i.e. the

outcomes from last move) at every time of play.
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Recall that πSt and πAt stand for the decision rules for the sensor and the attacker

at time t respectively, from which the corresponding actions at time t can be determined

and denoted by p1
πS t

∈ PS and p2
πA t

∈ PA respectively. Our goal is to find a mixed

strategy pair
{

π∗
S, π∗

A

}

at a Nash equilibrium, where π∗
S =

[

π∗
S0, . . . , π∗

ST

]

and π∗
A =

[

π∗
A0, . . . , π∗

AT

]

, such that after playing the game T times, the overall estimation distortion

is minimized at the sensor; while it is maximized at the attacker with the average power

consumption being less than the budget at both the sensor and the attacker, given as

1
T ∑

T
t=0 E

[

p1
π∗

S t

]

≤ PS_avg

σ2
θ +σ2

ω
and 1

T ∑
T
t=0 E

[

p2
π∗

A t

]

≤ PA_avg
7.

To address the problem, we introduce a reward function for the sensor, given as

RS (πS, πA) =
T

∑
t=0

E

[

−D
(

p1
πS t

, p2
πA t

)

− λp1
πS t

+ νp2
πA t

]

. (5.5)

Alternatively, it can be expressed as

RS (πS, πA) =
T

∑
t=0

(

∑
p1∈PS

∑
p2∈PA

[−D (p1, p2)− λp1 + νp2]πSt (p1)πAt (p2)

)

, (5.6)

where λ and ν control the average power consumption for the sensor and the attacker

respectively. The payoff function at the attacker is defined as RA , −RS for the zero-

sum game we consider. The following algorithm is applied to derive a best strategy pair
{

π∗
S, π∗

A

}

at a Nash equilibrium point that satisfies the power constraints.

7The expectation is taking across all the power realizations produced according to
{

π∗
St

, π∗
At

}

at time

t. E

[

D
(

p1
π∗

S t
, p2

π∗
A t

)]

can be expressed as E

[

D
(

p1
π∗

S t
, p2

π∗
A t

)]

= ∑p1∈PS
∑p2∈PA

D (p1, p2)π∗
St (p1)π∗

At (p2).

Similar expressions can be derived for 1
T ∑

T
t=0 E

[

p1
π∗

S t

]

and 1
T ∑

T
t=0 E

[

p2
π∗

A t

]

.
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Algorithm 2 Zero-Sum Game with Power Constraint

1: Initialize λ.

2: repeat

3: Initialize ν.

4: repeat

5: Recursively obtain a mixed strategy pair
{

π∗
S (λ, ν) , π∗

A (λ, ν)
}

.

6: Apply bisection method to update ν.

7: until convergence: Average power consumption at the attacker is close to PA_avg.

8: Apply bisection method to update λ.

9: until convergence: Average power consumption at the sensor is close to PS_avg.

To be more specific about the recursive procedure8 [8] in Step 5 of Algorithm 2 above,

we first start at the last stage of play, T, solve each single-act game and derive the ‘opti-

mal’ power policies corresponding to each outcome from T − 1. This results in a mixed

Nash equilibrium strategy pair {πS
∗
T (λ, ν) , πA

∗
T (λ, ν)}. Next, cross out the Tth level of

play, and consider the resulting T − 1 level games and find the strategy pair
{

πS
∗
T−1 (λ, ν) , πA

∗
T−1 (λ, ν)

}

. Repeat the same procedure until we reach t = 0, to obtain

{πS
∗
0 (λ, ν) , πA

∗
0 (λ, ν)}. Then, we could say that given λ and ν, the zero-sum feedback

game in extensive form admits a saddle-point solution
{

π∗
S (λ, ν) , π∗

A (λ, ν)
}

.

Remark: The entities in {πS
∗
t (λ, ν) , πA

∗
t (λ, ν)} depend on the path from stage 0 to

stage t; hence, at t, there are a total number of (|PS| × |PA|)t matrix games, where |PS|
and |PA| are the size of action spaces of PS and PA. Therefore, by walking through all

the matrix games on level t we are able to find {πS
∗
t (λ, ν) , πA

∗
t (λ, ν)}.

5.3.3 Infinitely Repeated Games with Finite Action Sets

In this subsection, we focus on scenarios where the same game is repeatedly played over

an infinite time horizon. Different from the games considered previously, we look at an

optimal stationary strategy for infinitely repeated games, meaning the best decision rules

are fixed over time, i.e., πSt = πS and πAt = πA for all t. This allows players to update

8This optimization procedure is also know as dynamic programming or backward induction.
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their strategy based on its own information and the information collected from the last

time step, until the optimal one is found. To simplify the notation, we replace the strategy

pair {πS, πA} by {πS, πA} for a stationary game.

We use a similar setup as in Section 5.3.2. Assuming that both players move simul-

taneously and are capable of observing the payoffs from last step, we first set up the

game framework. Next, we reach a Nash equilibrium based on the ‘interaction’ between

the sensor and attacker in infinite time horizon, and obtain stationary strategies for both

players.

The Players are the sensor and the attacker, and the Action of each of the players is

the transmit power, which are denoted by pSt ∈ PS , [0, . . . , pSmax] and pAt ∈ PA ,

[0, . . . , pAmax] at time step t. In infinite horizon, we define the Payoff or Reward for the

sensor at the time step t as

Rt (pSt, pAt) = −D (pSt, pAt)− λpSt + νpAt, (5.7)

and it is −Rt (pSt, pAt) for the attacker, where λ and ν are non-negative weight parame-

ters as the sensor is seeking to minimize the estimate distortion at the FC by consuming

as little power as possible. By contrast, the attacker wants to reduce the estimation qual-

ity at the FC. At each time step t, the sensor and the attacker take actions simultaneously

and then respectively receive reward Rt and −Rt.

Next, we define a function JS for the sensor to quantify the estimation quality over an

infinite time-horizon as a discounted sum of rewards, namely

JS (πS, πA) ,
∞

∑
t=0

γtRt, (5.8)

where γ ∈ [0, 1) is the discount factor. JS (πS, πA) can be rewritten as

JS (πS, πA) = R
(

pSπS
, pAπA

)

+ γJS (πS, πA) , (5.9)

where pSπ ∈ PS and pAπA
∈ PA are determined by the decision rules πS and πA.

Remark: In order for the payoff function in (5.8) to be well defined, we should have
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the discount factor γ being less than 1; otherwise the JS (πS, πA) may approach infinity

[95]. The discount factor can be interpreted as the uncertainty towards the future, hence

players would weight more to the immediately rewards than payoffs in the future.

As both players are rational, the objective of the sensor is to maximize the discounted

sum of rewards JS (πS, πA); and the attacker also wants to maximize the discounted sum

of its rewards, defined as

JA (πS, πA) , −JS (πS, πA) . (5.10)

Definition 1 : In this zero-sum repeated game, a Nash equilibrium point is a pair of

strategies
{

π∗
S, π∗

A

}

such that

JS (π
∗
S, π∗

A) ≥ JS (πS, π∗
A) , ∀πS,

and

JA (π∗
S, π∗

A) ≥ JA (π∗
S, πA) , ∀πA.

In order to obtain the strategy pair
{

π∗
S, π∗

A

}

at the Nash equilibrium, we employ the

Nash Q-learning algorithm [38,39], which is one of the model-free reinforcement learning

algorithms. It enable players to interact with the environment in incomplete information

scenarios, such as when players are not aware of the opponent’s payoff functions, thus

obtaining the optimal policy at a Nash equilibrium. In our setup, players have complete

but imperfect information towards the others. Although algorithms developed in [19]

can be applied to obtain an Nash equilibrium strategy, we pick the Nash Q-learning al-

gorithm as it allows us to extend the work to the incomplete information cases in future.

We first define the optimal Q-value at the sensor as

Q∗
S (p1, p2)

,R (p1, p2) + γ max
πS

min
πA

∑
p′1∈PS

∑
p′2∈PA

QS

(

p′1, p′2
)

πS

(

p′1
)

πA

(

p′2
)

, (5.11)

where p1 ∈ PS, p2 ∈ PA, and πS (p′1), πA (p′2) are the probabilities of choosing the action
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p′1 in strategy πS at the sensor and choosing the action p′2 in strategy πA at the attacker

respectively. The Q-value at the attacker is exactly the opposite for the zero-sum game,

which is defined later in (5.12).

Q∗
S (p1, p2) can be seen as the expected reward for the sensor taking action p1 and

the attacker executing action p2, and then following the optimal policy thereafter. In

addition, when we know the optimal Q-values, the optimal policies π∗
S can be easily

found.

To obtain the optimal Q-values, the sensor needs to maintain and keep updating one

|PS| × |PA| size table9, with each element corresponding to a Q-value when adopting a

specific transmission power (p1, p2) at the players. This is possible since we assume the

sensor knows the attacker’s action set PA. Similarly, the attacker computes the optimal

Q-values by updating a |PS| by |PA| size table with each of the entries defined as

Q∗
A (p1, p2)

,− R (p1, p2)− γ max
πA

min
πS

∑
p′1∈PS

∑
p′2∈PA

QA

(

p′1, p′2
)

πS

(

p′1
)

πA

(

p′2
)

. (5.12)

Because we have a zero-sum game, it is not hard to see that QA = −QS. To simplify the

notation, we denote QS by Q for the rest of this subsection.

To be more specific about the Q-learning procedure, the players first initialize the

values of Q (p1, p2) for all p1 ∈ PS and p2 ∈ PA. At each iteration, an action is chosen, Rt

obtained, and the corresponding element in the table is updated based on the following

equation:

Qt+1 (p1, p2) = (1 − αt) Qt (p1, p2) + αt

[

Rt (p1, p2)

+ max
πS

min
πA

γ ∑
p′1∈PS

∑
p′2∈PA

Qt

(

p′1, p′2
)

πS

(

p′1
)

πA

(

p′2
)

]

, (5.13)

where αt ∈ [0, 1) is the learning rate that decays over time. The Q-learning algorithm

depicted in (5.13) is guaranteed to converge to the optimal Q-value as long as [38, 39]:

9This is true for zero-sum games, for a general-sum game each player needs to keep two tables for up-
dating, one for each player.
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• The learning rate αt satisfies ∑
∞
t=0 αt = +∞ and ∑

∞
t=0 α2

t < +∞.

• Every action has been visited infinitely often.

Hence, the ‘optimal’ stationary strategy pair
{

π∗
S, π∗

A

}

is found.

5.4 Continuous Fading Channels

Starting from this section, we investigate ‘optimal’ power allocation policies at a Nash

equilibrium in block fading channel scenarios, where the channel states of both the sen-

sor and the attacker may vary in different fading blocks. In this part of the work, we also

consider a non-cooperative game with each player having complete but imperfect infor-

mation; in order words, the channel state information is known everywhere but players

are unclear about its opponent’s strategies, thus the optimal power policies at a Nash

equilibrium depends largely on one’s guess toward the others. In the game, the strategy

of the sensor is the power control policy pS, and it is pA for the attacker. With complete

information at both players, pS and pA are dependent on G , [gS, gA]
T.

In the case of fading channels, we assume that the crucial information lies in the long-

term behavior of the estimates, thus it would be more meaningful to set −EG [D (pS, pA)]

as the payoff function that the sensor attempts to maximize, while the attacker wants to

enlarge its payoff function EG [D (pS, pA)].

It is clear that the payoff function of each player depends on the power policy pair

{pS, pA} with pS ∈ PS ,
{

pS :
(

σ2
ω + σ2

θ

)

EG [pS (G)] ≤ PS_avg, pS (G) ≥ 0
}

and pA ∈
PA ,

{

pA : EG [pA (G)] ≤ PA_avg, pA (G) ≥ 0
}

. Given a fixed power scheme of the at-

tacker, the sensor’s optimal strategy is derived by solving the following optimization

problem:

min
pS(G)

∫ ∫

G

(

1

σ2
θ

+
gS pS (G)

gS pS (G) σ2
ω + gA pA (G) + σ2

n

)−1

dF(gS)dF(gA)

s.t.
∫ ∫

G
pS (G) dF(gS)dF(gA) ≤

PS_avg

σ2
ω + σ2

θ

, pS (G) ≥ 0. (5.14)
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The solution is

pS (G) =







√

gS(σ2
n+pA(G)gA)

λ − σ2
n+pA(G)gA

σ2
θ

gS

(

σ2
ω

σ2
θ

+ 1
)







+

, (5.15)

in which (x)+ = max {x, 0} and λ is the power level satisfying the power constraint in

(5.14) with equality. When the sensor transmits, i.e., pS (G) > 0, we obtain
gS

σ2
n+pA(G)gA

>

λ2

σ4
θ

. Since the sensor treats the attacker’s signal as a part of the noise in the channel,

intuitively, this says that the sensor would start to transmit as long as its Signal-to-Noise

Ratio (SNR) lies beyond a threshold.

Given pS (G), the optimal strategy of the attacker pA (G) can be obtained in a similar

manner; given as

pA (G) =

(
√

gS pS (G) σ4
θ gA

νg2
A

− σ2
n + gS pS (G)

(

σ2
ω + σ2

θ

)

gA

)+

, (5.16)

where ν is the power level satisfying its average power constraint with equality. From

(5.16), we can see that pS (G) = 0 results in pA (G) = 0, which makes sense. It means

that when the sensor keeps silent or is not communicating with the FC, there is no need

for the attacker to jam the channel.

From the expression of the players’ best strategy, one can see that the optimal power

policy of one player is coupled with the other’s. This means that before determining

its own policy the sensor has to guess the attacker’s transmitting policy; and vice versa.

Before moving further, we have the Nash Equilibrium defined as follows.

Definition 2 [8]: A Nash Equilibrium point is a power policy pair
{

p∗S, p∗A
}

such that

E
[

D
(

p∗S, p′A
)]

≤ E [D (p∗S, p∗A)] ≤ E
[

D
(

p′S, p∗A
)]

(5.17)

with p∗S, p′S ∈ PS and p∗A, p′A ∈ PA.

At a Nash equilibrium, no player can benefit from moving away from the Nash equi-

librium point.

Theorem 1: There exists at least one Nash equilibrium for the static non-cooperative
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game with complete information.

The proof is not difficult. From (5.2), we see that the payoff function is continuous

in both pS and pA, and D (pS, pA) is convex in pS for any pA (same for D (pS, pA) with

respect to pA for any given pS). Together with the fact that the strategy spaces of both

players are convex, compact and nonempty, the existence is then proved [21].

5.5 Discrete Fading Channels with Finite Action Sets

Wireless communication channels are time-varying multiple-path channels, which have a

strong effect on the performance of digital radio communication systems. When a multi-

dimensional distribution, considering the number of multipath components, SNR values,

multipath delay, etc, is used to characterize the channel fading statistics, a high compu-

tational cost is required in simulation, as a large number of samples need to be drawn

in order to produce statistically matched channel gains [43]. To reduce the complexity,

finite-state channel in introduced, where the continuous channel gains are quantized into

a number of intervals or channel states with probability of being on each state determined

by the continuous fading distribution [86]. Such channel model was considered by Gold-

smith in [28] and Wolfowitz to derive the time-varying channel capacity in [100].

Therefore, in this section we assume that the sensor is only aware of discrete channel

states taking values on a finite set of discrete memoryless channels. We also assume

both the sensor and the attacker have a finite number of power levels to adapt their

transmission power. In fact, as stated in [83], a quantized power is more frequently used

in cellular networks or wireless networks than actual power values. Therefore, the power

sets are quantized into finite levels, and PS and PA consist of a finite number of elements.

As in previous sections, our objective in this part is to investigate the ‘best’ power

allocation policies for both players at a Nash equilibrium, where the sensor and attacker

are constrained to the limited power budget PS_avg and PA_avg respectively. We start

with an imperfect information scenario, where both parties move simultaneously. Next,

we look at the case of incomplete information, in which we assume players only have

perfect knowledge about its own channel conditions. For both cases, the optimal strategy
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pair
{

π∗
S, π∗

A

}

is discussed. Since both the sensor and attacker have finite action set, the

game may not admit a Nash equilibrium in pure strategies. Instead, we look for mixed

strategies, which always exists for any finite bimatrix games [72].

5.5.1 Complete Information

First, we consider a complete information scenario. In this case, the sensor and the at-

tacker adjust their strategies depending on the channel status of both players.

In a zero-sum game, as one player’s payoff is always negative of the other, we denote

R as the payoff function of the attacker, given as

R (pS, pA) = D (pS, pA) + λpS − νpA, (5.18)

where pS ∈ PS, pA ∈ PA, and λ and ν control average power consumption at the sensor

and the attacker respectively.

Let {πS, πA} be a mixed strategy pair. With complete information at the players, πS

and πA are functions of both players’ channel information; hence at each channel instance

the sensor uses πS (G) and the attacker employs πA (G) to adjust the transmission power.

Definition 3: A mixed strategy at the Nash equilibrium is a pair of
{

π∗
S, π∗

A

}

such that

EG

[

E
[

R
(

π∗
S (G) , π′

A (G)
)∣

∣G
]]

≤ EG [E [R (π∗
S (G) , π∗

A (G))| G]]

≤ EG

[

E
[

R
(

π′
S (G) , π∗

A (G)
)∣

∣G
]]

, (5.19)

where π′
S, π∗

S ∈
{

πS : EG

[

∑p1∈PS
p1πS (p1)

]

≤ PS_avg

σ2
θ +σ2

ω

}

; π′
A, π∗

A ∈
{

πA : EG

[

∑p2∈PA
p2πA (p2)

]

≤ PA_avg

}

and E [R (πS, πA)| G] ,

∑p1∈PS
∑p2∈PA

D (p1, p2)πS (p1)πA (p2) is the expected payoff at channel state G when

the sensor and the attacker adopt mixed strategies πS and πA respectively.

At a Nash equilibrium, the two power constraints are satisfied with equality. One

can employ the following iterative method to obtain
{

π∗
S, π∗

A

}

. First, initialize λ(1) and

then update ν(1) such that EG

[

∑p2∈PA
p2π

(1)
A (p2)

]

= PA_avg. This can be done by solv-

ing a series of matrix games via linear programming. Next, we adjust λ(2) to satisfy
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EG

[

∑p1∈PS
p1π

(2)
S (p1)

]

=
PS_avg

σ2
θ +σ2

ω
. Repeat this process until EG

[

∑p1∈PS
p1π

(n)
S (p1)

]

=
PS_avg

σ2
θ +σ2

ω
and EG

[

∑p2∈PA
p2π

(n)
A (p2)

]

= PA_avg are achieved simultaneously; this gives a

mixed strategy pair
{

π∗
S, π∗

A

}

at a Nash equilibrium.

Because each player has complete channel information, the whole approach of deriv-

ing
{

π∗
S, π∗

A

}

can be completed locally. When transmission starts at the sensor, depend-

ing on the channel state, both players would operate using
{

π∗
S, π∗

A

}

to obtain transmit

powers.

5.5.2 Incomplete Information - Bayesian Games

The assumption that both players have complete channel information is difficult to

achieve for real setups. Therefore, in this subsection, we model the DoS attack as a

Bayesian game, where both players have incomplete information, meaning that the sen-

sor knows its own channel gain gS, but does not know the channel gains of its opponent,

gA. Similar assumptions apply to the attacker. We further assume that the channel gains

are drawn from a fixed distribution that is common knowledge to both parties. Hence, in

order to obtain the optimal power allocation, the sensor or the attacker has to adjust its

power level based on its own channel gains, in other words its type. The type of a player

is any private information that is not common knowledge to others but is relevant to the

player’s decision marking [21].

The DoS attack Bayesian game consists of the following elements:

• A set of players: {S, A}, S represents the sensor and A denotes the attacker.

• A set of actions: {PS, PA}, PS for the sensor and PA for the attacker.

• A set of types: {GS, GA}, GS for the sensor and GA for the attacker, which are

defined as the different channel power gains for each player, i.e., gS ∈ GS and

gA ∈ GA.

• A set of probability functions: {PrS, PrA}, PrS is the attacker’s belief about the type

of the sensor; whereas PrA is the belief for the attacker’s type at the sensor.
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• Payoff functions: RS for the sensor and RA for the attacker, where RS = −RA for

the zero-sum game we consider.

In Bayesian games, a pure strategy for a player is a function, pS (gS) for the sensor

and pA (gA) for the attacker, mapping from its type set to the action set, which specifies

a pure action that the player will choose when a particular type is observed. In other

words, each player knows his type-contingent strategy before he learns his type and then

plays the game accordingly.

For player i, where i ∈ {S, A}, denote g−i as the type of its opponent and Pi as the

collection of functions pi : Gi → Pi.

Definition 4 [21]: Given a strategy pi (gi) and p′i (gi) ∈ Pi, the strategy profile
{

p∗i , p∗−i

}

is a pure-strategy Bayesian Nash equilibrium if, for each player i ∈ {S, A} and every

gi ∈ Gi,

p∗i (gi) = arg max
p′i∈Pi

∑
g−i

Ri

(

p′i, p∗−i (g−i)
∣

∣ gi, g−i

)

Pr (g−i| gi) . (5.20)

That is, regardless of the type realization, no player benefits from changing his strat-

egy p∗i (gi); in other words, a Bayesian Nash equilibrium is just a Nash equilibrium in a

Bayesian game [95]. The extension to a best mixed strategy pair
{

π∗
S, π∗

A

}

can be derived

by mapping types into probability distribution over the action set, given as

π∗
i (gi) = arg max

π′
i

∑
g−i

Ri

(

π′
i , π∗

−i (g−i)
∣

∣ gi, g−i

)

Pr (g−i| gi) ,

∀i ∈ {S, A} . (5.21)

In order to solve problem (5.21), we first derive the matrix form of the zero-sum

Bayesian game. More specifically, we find the expected payoff for every strategy of the

sensor’s against each opponent’s strategy. For a player with type of size |GS| and ac-

tion set size |PS|, the strategy space is made up of |GS||PS| entries, with each indicating

the power schemes to be used for different types of channels. The payoffs are calcu-

lated at both the sensor and the attacker using the joint probabilities together with both

players’ strategies. This leads to a matrix game of size |GS||PS| × |GA||PA| , which can
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be solved via linear programming10. The solution of the zero-sum matrix game is then

added across each type of both players giving strategies at the Bayesian Nash equilib-

rium,
{

π∗
S (gS) , π∗

A (gA)
}

.

To accommodate the average power constraints PS_avg for the sensor and PA_avg for

the attacker, we define the payoff function at the attacker as

RA (pS, pA) = D (pS, pA) + λpS − νpA, (5.22)

where pS ∈ PS and pA ∈ PA are the transmit powers at the sensor and attacker re-

spectively, and λ and ν are variables respectively guaranteeing EgS

[

∑p1∈PS
p1πS (p1)

]

≤
PS_avg

σ2
θ +σ2

ω
and EgA

[

∑p2∈PA
p2πA (p2)

]

≤ PA_avg, which can be solved numerically. More

specifically, we first fix λ(1) and adjust ν to ν̂ such that the resulting mixed strategy pair
{

π∗
S (gS) , π∗

A (gA)
}

derived from solving a zero-sum matrix game satisfies

EgA

[

∑p2∈PA
p2πA (p2)

]

= PA_avg; we then set ν(1) = ν̂ and find the best λ satisfying

EgS

[

∑p1∈PS
p1πS (p1)

]

=
PS_avg

σ2
θ +σ2

ω
. We keep repeating the same procedure until

EgS

[

∑p1∈PS
p1πS (p1)

]

=
PS_avg

σ2
ω+σ2

θ

and EgA

[

∑p2∈PA
p2πA (p2)

]

= PA_avg are satisfied si-

multaneously, and this gives the optimal strategies
{

π∗
S (gS) , π∗

A (gA)
}

at a Bayesian

Nash equilibrium.

5.6 Numerical Results

In this section, we provide some numerical examples. For simplicity, we consider the

source θ to be Gaussian distributed with zero mean and variance σ2
θ = 1 mW. The sensor

measurement sensitivity is set to σ2
ω = 10−3 mW. We assume the same noise level for

both the FC and the eavesdropper’s channel, where σ2
n = σ2

e = 10−8 mW.

We first look at finitely repeated games in non-fading scenarios where the same static

game is played four times with the channel power gains of the sensor and the attacker

being 9.2 × 10−9 and 9.7 × 10−8 respectively. Assume that the sensor and the attacker

have the same three transmission power levels, given as PS = PA = [0.0, 0.5, 1.0], and

the average power budget are 0.78mW and 1.56mW respectively. Interestingly, the mixed

10The Lemke-Howson algorithm [54] can be used to solve non-zero sum matrix games in mixed strategy.
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strategies at a Nash equilibrium for the sensor and the attacker remain the same for all

stage games. For instance, when t = 1 all nine elements11 in
{

π∗
S1, π∗

A1

}

are identical,

given in Table 5.1.

{

πi
S1, πi

A1

}

∈
{

π∗
S1, π∗

A1

}

, i = 1, . . . , 9

πi
S1

πi
A1

Pr(pS = 0.0) = 0.608 Pr(pA = 0.0) = 0.214

Pr(pS = 0.5) = 0.392 Pr(pA = 0.5) = 0.786

Pr(pS = 1.0) = 0.000 Pr(pA = 1.0) = 0.000

Table 5.1: Mixed strategies in a finitely repeated game at t = 1.

Unsurprisingly, similar simulation results are observed for infinitely repeated games,

where the action sets and channel power gains are the same as the previous finite re-

peated game. As shown in Table 5.2, the strategy pair does not update providing the

information collected from last step12. The simulation results for non-fading scenarios

indicate that no useful information can be acquired by playing the same static game mul-

tiple times; in other words, each player’s power allocation strategy remains unchanged.

One possible explanation is that the random source observed by the sensor is i.i.d. over

time, which implies that the static game played in one time slot is independent with other

games. Therefore, looking at the games played in the past does not help players to choose

the current power allocation strategies.

Iteration
Index

{πS, πA}

0 {[0.333 0.333 0.333], [0.333 0.333 0.333]}
1 {[0.000 0.146 0.854], [0.000 0.722 0.278]}
2 {[0.000 0.146 0.854], [0.000 0.722 0.278]}
. . . {. . . , . . . }
100 {[0.000 0.146 0.854], [0.000 0.722 0.278]}

Table 5.2: Mixed strategies in an infinitely repeated game.

Next, we look at continuous fading channel scenarios, where we assume the distances

from the sensor and attacker to the FC are 329m and 96m respectively. We also con-

11As both players have an action set of three elements, overall there are nine paths from t = 0 to t = 1
level of the game.

12The mixed strategy pair {πS, πA} at Iteration Index 0 is resulted from the initial value of Q (p1, p2) ∀p1 ∈
PS, ∀p2 ∈ PA.
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sider the path-loss of the signal power at the FC as the free-space path-loss model [29]:

PL = 20 log10(d) + 20 log10( f ) − 27.55, where d ∈ {dS, dA} is the distance between the

FC and the sensor or the attacker in meters, and f is the signal frequency in megahertz

(we assume the network uses an operation frequency of 800MHz). Then, the channel

power gain follows an exponential distribution with mean 10−
PL
10 mW. In Figure 5.2, we

plot the average estimate distortion at the FC in a Nash equilibrium, i.e. E [D (p∗S, p∗A)],

versus other two non-optimal cases. For the sake of comparison, we apply the same

channels at each testing point but vary the non-optimal strategy pairs, {pS(G), p∗A(G)}
and

{

p∗S(G), pA(G)
}

, with the power constraints satisfied. Clearly, from the Definition 2

in Section 5.4, we see that the power policy pair
{

p∗S(G), p∗A(G)
}

is in a Nash equilibrium.
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S
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A
)] with random strategy at the sensor

E[D(p
S
∗ , p∗

A
)] at a Nash equilibrium

E[D(p
S
∗ , p

A
)] with random strategy at the attacker

Figure 5.2: Performance comparison for zero-sum games in continuous fading channels
with complete channel information.

In discrete fading channels, we assume the attacker generally has better channel con-

ditions than the sensor, and it has a power budget of 0.76mW, which is twice as much
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as the sensor’s. Suppose both players have three channel types, and the sensor has four

power levels whereas the attacker has an action set of three, as given in Table 5.3.

GS PS GA PA

×10−8 mW ×10−7 mW
g1

S = 1.6 p1
S = 0.0 g1

A = 1.8 p1
A = 0.0

g2
S = 5.4 p1

S = 0.5 g2
A = 2.0 p2

A = 1.0
g3

S = 7.9 p1
S = 1.5 g3

A = 2.8 p3
A = 2.0

p1
S = 2.0

Table 5.3: Discrete channel gains and power levels at the sensor and the attacker.

In the case of full CSI, since players are aware of the channel gain of all parties, they

can adjust the transmission power based on (gS, gA) which consists of nine channel com-

binations. At the Nash equilibrium, the ‘optimal’ strategies of sensor and the attacker are

given in Figure 5.3 and Figure 5.4 respectively. For instance, when the channel combi-

nation index equals to 8 which corresponds to a channel power gain of 7.9 × 10−8 at the

sensor and 18 × 10−8 at the attacker, the sensor chooses not to transmit with probability

of 0.32 and uses power level 0.5mW to transmit with probability of 0.67; whereas the

jamming power at the attacker is 0.5mW with probability of 0.55 and it is 2.0mW with

probability of 0.41.

To verify the ‘optimal’ transmission strategies, in Figure 5.5 we plot the system per-

formance at the Nash equilibrium versus other two non-optimal scenarios. At each test-

ing point, mixed strategies πS (gS, gA) and πA (gS, gA) are randomly generated while

satisfying the power budget PS_avg and PA_avg respectively. E [R] is evaluated by av-

eraging over 1000000 times for three different mixed strategy pairs, namely, {πS, π∗
A},

{

π∗
S, π∗

A

}

and
{

π∗
S, πA

}

. From the definition of a Nash equilibrium point in (5.19) of

Section 5.5.1, that EG

[

E [R (π∗
S (G) , πA (G))

∣

∣G
]]

≤ EG

[

E [R (π∗
S (G) , π∗

A (G))
∣

∣G
]]

≤
EG [E [R (πS (G) , π∗

A (G))| G]], it is straightforward to tell that the optimal transmission

strategy pair is at a Nash equilibrium.

Next, we study the Bayesian Nash equilibrium in incomplete information games,

where a player only perfectly knows its own channel types. The power budget for both

player are assumed to be the same as the full CSI case, where PS_avg = 0.38 mW and

PA_avg = 0.76 mW. The channel gains and transmission power levels are given in Table
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Figure 5.3: Mixed strategies at the sensor.

5.3. Applying the results from Section 5.5.2, the mixed strategies π∗
S (gS) and π∗

A (gA) at

the Bayesian Nash equilibrium is respectively given in Table 5.4 and Table 5.5.

gi
S = g1

S gi
S = g2

S gi
S = g3

S

Pr(pS = p1
S|gi

S) 0.189 1.0 1.0
Pr(pS = p2

S|gi
S) 0.811 0.0 0.0

Pr(pS = p3
S|gi

S) 0.000 0.0 0.0
Pr(pS = p4

S|gi
S) 0.000 0.0 0.0

Table 5.4: The sensor’s strategy π∗
S (gS).

g
j
A = g1

A g
j
A = g2

A g
j
A = g3

A

Pr(pA = p1
A|g

j
A) 0.0 0.786 1.0

Pr(pA = p2
A|g

j
A) 1.0 0.214 0.0

Pr(pA = p3
A|g

j
A) 0.0 0.000 0.0

Table 5.5: The attacker’s strategy π∗
A (gA).

Notice that, from Table 5.4, regardless of the attacker’s channel state, the sensor chooses
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Figure 5.4: Mixed strategies at the attacker.

not to transmit with probability of 1 when g2
S and g3

S are observed. If the sensor’s channel

changes to g1
S, it keeps silent with probability of 0.189; while using p2

S to transmit with

the probability of 0.811. Similar interpretations can be obtained from the attacker’s power

allocation strategy π∗
A (gA) in Table 5.5. Assuming at the channel instance (g2

S, g2
A), with-

out the sensor’s channel information the attacker decides to transmit using power 1.0mW

with probability 0.214, which is a kind of a ’silly’ move since the sensor would keep silent

when the channel is g2
S. Similar behaviors can be viewed at the channel instance (g1

S, g1
A)

that although the sensor does not transmit anything to the FC with probability of 0.189,

the attacker still keeps jamming the channel with power 1.0mW all the time.

Figure 5.6 shows the optimality of the mixed strategy pair
{

π∗
S (gS) , π∗

A (gA)
}

where

players only have access to its own full channel state information. At each testing point,

the payoff function is evaluated over 80000 times for three strategy pairs under the same

power constraints. It is seen that no player would benefit from moving away from the

Bayesian Nash equilibrium point.
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Figure 5.5: Performance comparison for zero-sum games in discrete fading channels with
complete channel information.

5.7 Conclusion

In this chapter, we have considered a game theoretic approach for transmit power allo-

cation in distributed estimation under DoS attacks. A two-player zero-sum game is for-

mulated and a Nash equilibrium is investigated for various scenarios. We first looked at

repeated games in non-fading channels, where players are assumed being able to receive

feedback from the last play and based on which to update its current transmit power. To

obtain a strategy pair at a Nash equilibrium, we applied modified backward induction

or Nash Q-learning algorithm. In the partial CSI of fading channel scenarios, we consid-

ered Bayesian games, where the optimal strategy is formed based on player’s knowledge

about its own channel and the belief it holds toward the opponent’s statistical channel

information.
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Figure 5.6: Performance comparison for zero-sum Bayesian games in discrete fading
channels with incomplete channel information.



Chapter 6

Conclusions

T
HIS thesis had explored energy-efficient and secure power allocation algorithms

in distributed estimation of wireless sensor networks. We focused on two types

of security issues in the network − passive eavesdropping and active attacking, and we

investigated a number of power transmission policies that minimize the distortion level

or distortion outage probability at a remote processor. Below we summarize our work

and present some possible future research topics that are related to our work.

6.1 Summary

In Chapter 3 we looked at the performance of distributed estimation in a wireless sensor

network with the presence of an eavesdropper. Based on the amplify-and-forward frame-

work, we studied power allocation algorithms that minimize estimation error at the fu-

sion center subject to transmit power constraints at the sensor(s) and secrecy constraints

at the adversary in every transmission time slot or over a few fading blocks. If a sensor

is equipped with multiple transmit antennas, we derived power allocation schemes that

are either able to achieve zero information leakage or significantly enhance the overall

system performance depending on the availability of the eavesdropper’s channel infor-

mation. A similar idea is introduced in the multiple sensors scenario where a few sensors

serve as friendly relays to broadcast random signals to deceive the adversary.

In Chapter 4 we studied outage-minimizing power allocation algorithms in distributed

estimation of a wireless sensor network, where the sensor(s) send their observations to

the fusion center via orthogonal multiple access channels (MACs) which are listened to

127
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by a passive eavesdropper via another set of MACs. We obtained the optimal power

transmission policies for Rayleigh fading channels assuming that the legitimate receiver

knows the channel state information (CSI) of both itself and the eavesdropper. When

the number of sensors or number of antennas at the fusion center is large, to overcome

a high computational complexity in the partial CSI scenario we proposed a sub-optimal

power allocation algorithm that has a low computational complexity. On the other hand,

we showed that the distortion outage probability can be dramatically reduced or even

driven to zero in some cases for a sensor with two or more transmit antennas.

In Chapter 5 we exploited the sensor’s best transmission strategy in distributed esti-

mation when a single sensor system is under denial-of-service attacks, where an adver-

sary sends jamming signals attempting to jeopardize the estimation quality at the fusion

center. We applied a game theoretic approach to model the interactions between the sen-

sor and attacker, and derived power allocation strategies at a Nash equilibrium subject to

power constraints for non-fading and fading channel environments. Repeated games are

studied for non-fading channels where both players are assumed to be able to observe

the results from previous plays, based on which to update the current actions. When

fading is present, we looked at channel adaptive power policies at a Nash equilibrium. If

players only know its own CSI and have a belief toward the opponent’s statistical chan-

nel information, we studied Bayesian games and obtained the ‘optimal’ power allocation

schemes.

6.2 Future Research

For the work on optimal power allocation for distributed estimation in Chapter 3, fu-

ture research could include the consideration of multiple receive antennas at the fusion

center and/or at the eavesdropper. It is of interest to investigate power allocation algo-

rithms that keep a low distortion level at the FC when the eavesdropper is equipped with

multiple antennas. One other possible extension is to study the optimal number of sen-

sors serving as friendly relays to broadcast ‘noise’ in the network. From the simulation

results it is clear that when the power budget is relatively large, having a few sensors
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transmitting noise can dramatically increase the estimation qualities. But the question is

how many sensors, as when the the number of sensors, K, increases, the estimation error

decays to a constant at the rate 1/K. Therefore, instead of fixing the number of relays for

all situations, an adaptive network structure considering the power budget and security

constraints is more applicable to practical setups.

In Chapter 4, we studied optimal power schemes for distortion outage minimization

problems. Owing to the high complexity costs in deriving optimal power strategies in

the partial CSI case, we considered a sub-optimal solution in which only the sensor with

the best channel conditions transmits its observations to the fusion center. Although

this consumes less time to implement, other power allocation algorithms that give better

performance and less complexity could be investigated. Additionally, in the multiple-

sensor scenarios, the distortion outage probability saturates as the power budget grows

large as to keep the security constraint at the eavesdropper satisfied. It is of interest to

consider using a small portion of power to generate ‘noise’ to confuse the adversary, such

that the secrecy constraint is always met.

For the power allocation for distributed estimation under denial-of-service attacks in

Chapter 5, the work only considers a single sensor system. A more general game theoretic

model capturing the conflicting interests of sensors and attacker could be studied for

a multiple-sensor network where the fusion center is equipped with multiple receive

antennas. One may also be interested in looking at the existence as well as uniqueness of

Nash equilibrium for such game theoretic power allocation problems.

Another future work could look at power control problems for different transmission

protocols. In Chapter 3 and Chapter 4, we only considered applying orthogonal MACs;

we are also interested in investigating the secure and energy-efficient power allocation

schemes for a sensor network using coherent MAC protocol. Furthermore, the wireless

sensor network considered in this thesis only looks at a single Gaussian source. It is also

interesting to study the power allocation policies for a vector source. In regards to the

channel model, future research may include different fading distributions.
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