
Hierarchical Model Predictive Control of an

Unmanned-Aerial-Vehicle Based

Multitarget-Multisensor Data Fusion System

Peter William Sarunic

M.Eng., B.Eng., B.Sc.

Submitted in total fulfilment of the requirements

of the degree of Doctor of Philosophy

March 2012

Department of Electrical and Electronic Engineering

The University of Melbourne

Victoria 3010, Australia

ii

To my wife Mirjana,

my daughters Adriana, Marina and Kristina,

and the memory of my parents, Venci and Neda.

iii

Abstract

There has been rapidly growing interest in the development of increased au-

tomation in the military in recent years. In particular, the number of unmanned

aircraft and ground vehicles being put into use is rapidly increasing. Concur-

rently, there has been an associated increase in the amount of research being

performed to develop increased autonomy, moving from relatively simple re-

motely controlled devices to autonomous systems that are able to operate in a

sense-think-act paradigm, i.e., robots.

An application of robotic technology that is of considerable military signif-

icance is that of detection and tracking of enemy assets. A key advantage of

using autonomous vehicles in this application is that the locations and details

of potential threats can be determined using relatively inexpensive unmanned

vehicles with the operator of the system standing back at a safe distance. One

example is the use of teams of unmanned aerial vehicles (UAVs) carrying passive

direction-of-arrival sensors to detect and track enemy emitters such as radar-

carrying platforms so as to enable reaction to the threats with other resources

which could, say, include jammers or missile-carrying aircraft. In this thesis the

problem of how to adaptively control the trajectories of UAVs in such an ap-

plication in order to optimize performance in response to target measurements,

while avoiding no-fly zones, is considered and a solution is developed.

Because of the complexity of situations that are encountered, a major issue is

iv

how to formulate the problem in a manner which enables efficient computation

of optimal behaviours for the platforms. In fact, an optimal solution cannot in

practice be found by any physically implementable method. Hence, in this thesis

an approach will be developed that enables implementation of a computationally

feasible, albeit suboptimal solution, that takes into account both short-term and

long-term goals. To this end, the problem will be addressed by developing a

hierarchical control approach, incorporating an automated planner and a low-

level (short-term) control algorithm.

A key aim is to use a consistent mathematical framework that can be gen-

eralized to a range of optimal control problems. As a result, all components of

the controllers that are developed are based on concepts from estimation theory,

dynamic programming and optimal control, giving a mathematically coherent

and scalable solution.

To evaluate the effectiveness of the approach, first a controller is developed

using an idealized UAV model and simulations are performed. Its performance is

compared with a commonly used “myopic” control approach and found to give

important improvements. Subsequently an improved planner is incorporated

and tested, and then a version of the controller using a fixed-wing aircraft

model for the UAVs is implemented. This version is also tested by simulation

and found to perform successfully. Finally, a mathematical analysis of stability

is commenced and significant headway made towards a stability proof.

v

Declaration

This is to certify that:

(i) the thesis comprises only my original work towards the PhD except where

indicated,

(ii) due acknowledgement has been made in the text to all other material used,

(iii) the thesis is fewer than 100,000 words in length, exclusive of tables, bib-

liographies and appendices.

Peter William Sarunic

vi

Acknowledgements

Some time ago, in the course of discussions with Prof. Bill Moran and Dr. Len

Sciacca, the suggestion that I might study for a PhD arose. I was unsure at first,

but after some discussions with my wife, Mirjana, who strongly encouraged me

to take on the challenge, I decided to enrol in the course of study. Were it not

for them, especially my wife, I might never have taken this path.

I would like to extend my sincere gratitude to my principal supervisor, Pro-

fessor Rob Evans for his support and guidance. His broad knowledge and deep

insight, as well as his helpful manner, were invaluable to my studies. I would

also like to thank my co-supervisors Bill Moran and Stephen Howard; Bill in

particular, who I believe, was the first to suggest I study for a PhD.

I am also very grateful for the vision and leadership of Dr. Len Sciacca, Chief

of Electronic Warfare & Radar Division (EWRD), Defence Science & Technol-

ogy Organization, in helping to initiate this work, and would like to thank Dr.

Jackie Craig, subsequent Chief of EWRD, Dr. Alasdair McGinnes, Research

Leader, Electronic Warfare Systems Integration Branch, and Dr. Damian Hall,

Head, Distributed Electronic Warfare Group, for allowing me to continue on

and complete this project.

I would like to thank my friends and colleagues for sharing thoughts, prob-

lems and ideas. In particular, I would like to thank Dr. Hatem Hmam, John

Kitchen and Dr. Darren Bachmann.

vii

Last, and by certainly all means most, I thank my wife, Mirjana, for her

enduring love, patience and support.

Peter Sarunic,

Adelaide, South Australia,

March 2012

viii

Publications

During the course of this project, the following publications and public presen-

tations have been made, which are based on work presented in this thesis. They

are listed for reference.

1. Peter W. Sarunic, Robin J. Evans and Bill Moran, “Control of Unmanned

Aerial Vehicles for Passive Detection and Tracking of Multiple Emitters”,

IEEE Symposium: Computational Intelligence for Security and Defence

Applications, 8-10 July 2009, Ottawa, Canada.

2. Peter W. Sarunic, Robin J. Evans, “Control of Unmanned Aerial Vehi-

cles Performing Multiple Target Passive Detection and Tracking”, Fifth

International Conference on Intelligent Sensors, Sensor Networks and In-

formation Processing, 7-10 December 2009, Melbourne, Australia.

3. Peter W. Sarunic, Robin J. Evans, “Trajectory Control of Autonomous

Fixed-Wing Aircraft Performing Multiple Target Passive Detection and

Tracking”, Sixth International Conference on Intelligent Sensors, Sen-

sor Networks and Information Processing, 7-10 December 2010, Brisbane,

Australia.

ix

Contents

Abstract iv

Declaration vi

Acknowledgements vii

Publications ix

List of Figures xiv

List of Algorithms xvi

Abbreviations xvii

1 Introduction 1

1.1 Thesis Outline . 5

1.2 Contributions . 6

2 Literature Review 9

2.1 Summary of Published Papers 9

2.1.1 Distributed Electronic Warfare Sensor Networks 10

2.1.2 Electronic Warfare Sensor Management Solution Approaches 14

x

2.1.3 Solution Approaches for Problems Involving Sensor Plat-

form Trajectory Control 20

2.1.4 Cooperative Sensor Network Problem Types 33

2.1.5 Proposed General Solution Approach 35

2.2 Review of Relevant Theory . 37

3 Theoretical Background 39

3.1 Some Preliminaries . 39

3.1.1 Stochastic Processes . 39

3.1.2 Markov Processes . 40

3.1.3 Markov Sequences . 40

3.1.4 A Remark on Notation for Discrete Time Processes . . . 41

3.1.5 Markov Decision Processes 42

3.2 Estimation and Tracking . 43

3.2.1 Continuous Time Linear Stochastic Dynamic Systems . . 44

3.2.2 Discrete Time Linear Stochastic Dynamic Systems 45

3.2.3 The Kalman Filter . 48

3.2.4 Multitarget Tracking . 49

3.3 Optimal Control . 51

3.3.1 Dynamic Programming 51

3.3.2 Certainty Equivalent Control 59

3.3.3 Hierarchical Control . 61

3.3.4 Model Predictive Control 63

3.3.5 Hierarchical Model Predictive Control 65

4 Hierarchical Model Predictive Control of UAV Trajectories 67

4.1 Problem Statement . 67

xi

4.2 Mathematical Framework and Proposed Control Algorithm Con-

cept . 69

4.3 State Estimation Algorithm . 72

4.4 Planning Algorithm . 75

4.4.1 Assignment Algorithm 75

4.4.2 Heuristic Shortest Path Algorithm 77

4.4.3 Shortest Path Algorithm using Policy Rollout 81

4.4.4 Comparison of Heuristic and Rollout Based Shortest Path

Algorithms . 84

4.5 One-Step-Ahead Controller . 88

4.6 Simulations and Results . 91

4.6.1 Comparison of the Hierarchical MPC Algorithm with a

Myopic Controller . 92

4.6.2 Comparison of the Two Versions of the Hierarchical MPC

Algorithm . 97

5 Introduction of a Fixed-Wing UAV Dynamics Model 101

5.1 Fixed-Wing Dynamics Model 102

5.2 Avoidance of No-fly Zones . 104

5.3 Improved Approximation to One-Step-Ahead Dynamic Program-

ming . 111

5.4 Maintenance of Minimum Distance to Target 113

5.5 Simulations . 114

6 Stability Analysis 123

6.1 Background Theory . 124

6.1.1 State Vector Representation of Dynamical Systems . . . 124

6.1.2 Definition of Stability . 126

xii

6.1.3 The Direct Method of Lyapunov 127

6.1.4 Discrete Time Systems 130

6.1.5 Stability of Model Predictive Optimal Control 132

6.2 Outline of Stability Proof Approach 133

6.3 One-Step-Ahead Controller Stability Analysis - Idealized Dynam-

ics . 137

6.4 One-Step-Ahead Controller Stability Analysis - Fixed-Wing Air-

craft Dynamics . 146

7 Concluding Remarks 162

7.1 Summary and Conclusions . 162

7.2 Future Work . 165

Bibliography 167

xiii

List of Figures

2.1 Basic Cooperative Sensor Network Concept 12

2.2 The “broken” OODA Loop . 15

3.1 Cycle k + 1 of the Kalman Filter 50

3.2 Proposed Hierarchical MPC Concept 66

4.1 Paths Produced by Heuristic Shortest Path Algorithm for Case

of Two No-fly Zones . 80

4.2 UAV Paths Produced by Rollout Based Planner 86

4.3 UAV Paths Produced by Heuristic Based Planner 87

4.4 UAV and Emitter Trajectories Produced by Myopic Controller . 93

4.5 Emitter Position Estimation Errors for Myopic Controller 94

4.6 UAV and Emitter Trajectories Produced by Model Predictive

Controller . 95

4.7 Emitter Position Estimation Errors for Model Predictive Controller 96

4.8 UAV and Emitter Trajectories for Controller with Heuristic Path

Planning . 99

4.9 UAV and Emitter Trajectories for Controller with Rollout Path

Planning . 100

5.1 Multi-step Look-ahead Algorithm Example 105

xiv

5.2 Fixed-Wing UAV and Emitter Trajectories for Controller with

Heuristic Path Planning . 116

5.3 Fixed-Wing UAV and Emitter Trajectories for Controller with

Rollout Path Planning . 117

5.4 Enlarged View of Fixed-Wing UAV and Emitter Trajectories for

Terminal Phase of Controller with Rollout Path Planning 118

5.5 UAV to Target Distances and Angles Subtended about Target by

UAVs 1 and 2 . 120

5.6 Emitter Position Estimation Errors for Fixed-Wing UAV Con-

troller with Heuristic Path Planning 121

5.7 Emitter Position Estimation Errors for Fixed-Wing UAV Con-

troller with Rollout Path Planning 122

6.1 Cost CP as a Function of the UAV’s Heading θ and Distance y. 141

6.2 UAV Velocity and Acceleration Vectors and their x, y Components151

6.3 Plot of Equation 6.35 . 155

6.4 Plot of Equation 6.34 . 156

6.5 Actual Iterative Controller Cost Difference 157

6.6 Single-Step Transitions of Iterative Controller 159

6.7 Theta and y components of Trajectories from a Range of Starting

Points. 161

xv

List of Algorithms

4.1 Heuristic Shortest Path Algorithm 79

5.1 Depth-first Search Algorithm for Avoidance of No-fly Zones . . . 108

5.2 Improved Approximation to One-step-ahead Dynamic Program-

ming . 112

xvi

Abbreviations

AOA Angle of Arrival

CE Certainty Equivalent

CEC Certainty Equivalent Control

CSN Cooperative Sensor Network

DEW Distributed Electronic Warfare

DEWSN Distributed Electronic Warfare Sensor Network

DOA Direction of Arrival

EA Electronic Attack

EETS Exhaustive Expansion Tree Search

ES Electronic Support

ESA Electronically Steerable Array

EW Electronic Warfare

FIM Fisher Information Matrix

GPS Global Positioning System

HMM Hidden Markov Model

JMLS Jump Markov Linear System

MDP Markov Decision Process

MILP Mixed Integer Linear Programming

MPC Model Predictive Control

OODA Observe Orient Decide Act

xvii

PDF Probability Density Function

POMDP Partially Observed Markov Decision Process

SAR Synthetic Aperture Radar

SPLAM Simultaneous Planning Localization and Map Building

SQP Sequential Quadratic Programming

TDOA Time Difference of Arrival

UAV Unmanned Aerial Vehicle

xviii

Chapter 1

Introduction

In recent years there has been a surge of interest in the development of in-

creased automation in the military, particularly in the United States. Large

numbers of unmanned aircraft and ground vehicles are currently in produc-

tion and their numbers are rapidly increasing. In addition to the increase in

numbers of unmanned platforms there has been a large expansion in research

being performed to develop increased autonomy, moving from relatively simple

remotely controlled devices to autonomous systems that are able to operate

in a sense-think-act paradigm, i.e., robots. These systems have sensors with

which they gather information about their environment, computer processors

to processes the information and make appropriate decisions, and effectors to

perform appropriate physical actions on their environment. Increasingly pow-

erful computer technology, the Global Positioning System (GPS), and a range

of other technologies have made these robotic systems feasible and useful in

the battlefield. In addition to the development of enabling technologies, their

increased ability in recent years to observe, geolocate and then attack targets

in hostile environments while keeping soldiers out of harm’s way has been one

of the key drivers for their proliferation. Not only are numbers of unmanned

1

2

systems rapidly growing but the range of types of systems is quickly expanding.

Examples such as Predator and Global Hawk drones, Fire Scout unmanned he-

licopters, Protector robotic sentry motorboats and the TALON ground robot

are just a sample of the wide range currently operating or in development. To

acquire more of a flavour of developments in this area and their implications,

the reader is referred to [51] for a discussion of the current state and likely fu-

ture trends of robotics in the military. The article also goes on to describe the

profound and far reaching implications on the method of execution of war that

this technology is bringing about, as well as implications for future warfare and

associated ethical issues.

An application of robotic technology that is of considerable military signifi-

cance is that of detection and tracking of enemy assets. A key advantage of using

autonomous vehicles in this application is that the locations and details of po-

tential threats can be determined using relatively inexpensive pilotless vehicles

with the operator of the system standing back at a safe distance. If in addition

the sensors that are used are passive, the threat’s location can be determined

covertly with the enemy being none the wiser. One example is the use of teams

of unmanned aerial vehicles (UAVs) carrying passive direction of arrival (DOA)

sensors to detect and track enemy emitters such as radar-carrying platforms so

as to enable reaction to the threats with other resources which might, for exam-

ple, include jammers or missile-carrying aircraft. In this thesis, the problem of

how to control the UAVs in such an application, so as to optimize performance

in response to target measurements, is considered and a solution developed.

Because of the complexity of situations that are encountered and the re-

sulting vast number of low-level options available to the platforms, a major

issue is how to formulate the problem in a manner which enables computation-

ally efficient determination of “optimal” behaviours for the platforms. Sensor

3

scheduling and control problems can be formulated and, in theory, be solved

using dynamic programming; however, finding the optimal solution to these

problems is in general computationally infeasible, so, in practice approximations

and simplifications must be made to find a satisfactory suboptimal solution. In

this thesis the problem will be addressed by developing a hierarchical approach

where higher level and more long term measures of effectiveness are used by an

automated planner to find a coarse-grained approximate solution that is then

used by a low-level control algorithm as guidance in its determination of the fine-

grained control inputs to the sensors. This approach is used primarily to enable

a computationally feasible, albeit suboptimal, solution to a problem whose op-

timal solution cannot in practice be found by the direct dynamic programming

method or for that matter any other implementable method.

The problem considered in this thesis, i.e., that of multisensor-multitarget

platform steering, was chosen primarily because of a requirement for a solution

to this problem by the author’s employer. As it turns out, the problem is also

appropriate for a PhD project because finding an efficient solution is a challeng-

ing task, requiring a substantial research effort for what is still an open area of

study. In the following few paragraphs we will define the problem somewhat

more precisely.

The specific problem that will be considered is that of a mission where

multiple UAVs, which are carrying passive electronic support (ES) sensors, are

performing the task of detecting and tracking multiple radar-carrying platforms

which may be stationary or slowly moving. In an operational scenario the

radar-carrying platforms could be either land or sea based. A scenario could for

example involve a group of UAVs flying in formation in support of a sea based

asset. The UAVs will be passively sensing the environment for radar emitters

and tracking their locations. A centralized tracker, which could be based on a

4

land or sea based asset, or possibly one of the UAVs, will be performing the

tracking, using data received from all the UAVs. As enemy radars are detected,

the UAVs will be assigned to appropriate targets and will alter their trajectories

to improve target position estimates in as short a time as possible. Any no-fly

zones that may exist in the region will be taken into account in the determination

of target assignment and trajectory optimization. The control/scheduling task

will involve:

• detection of targets,

• tracking of detected targets,

• obstacle avoidance (e.g. no-fly zones, threats to sensor platforms),

• trajectory control of UAVs on the basis of measurements.

The emphasis of the work is on tactical response in military scenarios hence

a key aim will be to develop efficient algorithms capable of interacting with the

environment in real time. Another key aim is to use a consistent mathemat-

ical framework for the solution to the problem. To this end the solution will

involve sensor fusion, planning, assignment and low-level control tied together

using estimation theory, dynamic programming and optimal control to give a

mathematically coherent result. One more point should be noted; the mathe-

matical theory used in this thesis is quite general, hence much of what is learned

in solving the problem considered here can be used for solving the other types

of problems mentioned above as well as a range of other control/scheduling

problems.

5

1.1 Thesis Outline

This chapter introduces the subject of research along with a summary of the

context into which the research fits. It also gives a summary of the remainder

of the thesis and summarizes the main contributions.

Chapter 2 reviews the current relevant literature and provides a description

of the implications for the research that is the subject of this thesis. The review

describes what has been achieved to date on the problem in question, what is

lacking in current solutions, and also includes a more general component which

is used to develop the approach that will be presented in detail in subsequent

chapters.

Chapter 3 provides an outline of the background theory that is utilized to

develop the algorithms in the subsequent chapters.

In Chapter 4, the problem to be addressed is more formally stated and split

up into the subproblems of estimation and tracking, assignment, planning and

control. The subproblems are then addressed and a solution to each developed.

The algorithms developed are then coded and tested through simulation. In this

chapter (i.e., Chapter 4), a highly simplified dynamics model for the UAVs is

used in order to concentrate effort on the mathematical and algorithmic aspects

of the subproblems mentioned, without delving into specifics relating to any

particular type of UAV.

In Chapter 5, more detailed and realistic UAV dynamics are introduced and

investigated. To do this, a specific class of UAV is considered, i.e., fixed-wing

UAVs. Modifications and additions are then made to the algorithms that were

developed in Chapter 4 in order to enable them to function effectively with the

dynamics and constraints of the fixed-wing UAVs considered. The new modified

algorithms are then tested by simulation to verify their effectiveness.

6

Chapter 6 addresses the issue of system stability from a theoretical point of

view. The type of controller developed in this thesis is an extremely difficult one

to analyse for stability, so the task has been broken into looking at components

of the system, analysing them and inferring stability of the entire system from

them. Both the initial idealized UAV model of Chapter 4 as well as that of

Chapter 5 are analysed and results developed. At the time of writing, only a

partial analysis has been done with further work required to fully analyse the

control system.

In Chapter 7, the outcomes of this thesis are reviewed and discussed. This

is then followed by a summary of future work to be done in order to further

develop and analyse the algorithms.

1.2 Contributions

This thesis makes a number of novel contributions to the body of knowledge in

the field of sensor scheduling and control; these are summarized below.

Firstly, a comprehensive review of the scientific literature on the problem

being considered here and of related areas has been completed in Chapter 2.

The review brings together battle-management concepts from the military and

research on a number of related electronic warfare sensor management problems

to demonstrate the motivation and context within which the problem being

considered fits, what the state of current research is, and aid in the development

of the solution approach. As a result of this review, it has been found that no

other significant works have been presented in the literature that deal with the

unique combination of issues dealt with in this thesis.

Chapter 3 is the result of a survey of more general literature in the area

of optimal control. While presented as a background chapter, it is largely the

7

result of a broad survey of modern optimal control theory and techniques, with

the aim of finding the most appropriate solution approach for the sensor man-

agement problem being considered. The chapter describes a range of optimal

control algorithms, starting from the basic dynamic programming algorithm,

which proves to be impractical for our problem, and ending with the hierar-

chical model predictive control algorithm that is developed later in this thesis.

The primary contribution of this chapter is the concise bringing together of the

various modern optimal control techniques that have relevance to our problem

and demonstration of how they evolve from the basic theory.

In Chapter 4, a novel controller using a hierarchical variant of the model

predictive control approach is developed to address the adaptive multisensor

multitarget tracking problem summarized above. This consists of a fine-grained

controller and a planner, organized in a manner that is new to this type of adap-

tive sensing problem. Also in Chapter 4, two novel path planning algorithms are

presented and their performance assessed. Both algorithms are integrated into

the hierarchical controller and the performance of the system tested by simula-

tion and compared with a “myopic” controller similar to that commonly seen in

the literature. Key features of the controller are the incorporation of long-term

goals utilizing a dynamic programming based formulation and its usability in

real-time systems.

The problem considered is then developed further in Chapter 5 with the

dynamics of a specific type of sensor platform being incorporated, i.e., fixed-

wing aircraft, and the requisite additions made to the control algorithm to enable

robust performance. The controller is again tested by simulation and shown to

perform effectively, further demonstrating the effectiveness of the approach and

usability in a practical distributed sensing application.

An important property of any control system is stability. In Chapter 6 a

8

mathematical analysis of stability of the newly developed controller of Chapter

4 and the version with fixed-wing aircraft dynamics of Chapter 5 is commenced.

It is found that stability analysis of the controllers is a highly challenging task;

however significant inroads are made by focusing on components of the control

systems. Together with the results of simulations in the chapters 4 and 5, the

analysis gives further confidence that the controllers should be stable. This

being said, further mathematical analysis is required to give a deeper under-

standing of the behaviour of the controllers and more confidence in their overall

stability.

Chapter 2

Literature Review

A literature review was performed with two aims in mind: (1) to determine

what research has been done in related areas and what the inadequacies of the

current solutions are, in order to determine and address the specific problem to

be considered here, and (2) to determine and gain a knowledge of relevant areas

of mathematics as well as gain new ideas on how to approach the problem. With

regard to the first aim, a survey of published papers was performed, primarily

in the areas of optimal control and scheduling with a particular emphasis on

application to distributed sensors and autonomous airborne vehicles. For the

second aim, texts on relevant areas of mathematics and engineering were read

and analysed in order to gain a solid foundation in theory that could be used

to address the task in question.

2.1 Summary of Published Papers

The following subsections, in a step by step fashion, will first describe the general

class of problems that the problem considered here falls within. The general

motivations and the types of solution approaches that have been used to solve

9

10

these optimization problems will then be described. This will be followed by

a grouping/classification of the problems to show how our problem fits within

the general context, and finally the general approach that will be used for our

problem will be proposed.

2.1.1 Distributed Electronic Warfare Sensor Networks

In the military context, the task that is being considered here falls within the

class of problems associated with distributed electronic warfare sensor networks.

A general description of some modern trends in distributed electronic warfare

sensor networks (DEWSN) can be found in [48]. The most relevant parts of this

paper will be summarized below in some detail as the system that is developed in

this thesis is a type of DEWSN and looking at the bigger picture has significant

bearing on the solution approach chosen here.

The management of electronic warfare (EW) sensor and jamming assets is

a major challenge for modern military forces. To achieve dominance of the

radio frequency spectrum with the aim of enabling control of the battlespace

requires the integration of multiple EW and surveillance sensors, communication

networks as well as electronic attack measures. Sensors are now multi-tasking

with the ability to rapidly and automatically switch modes in order to adapt to

mission requirements. For example, radars with electronically steerable arrays

(ESA) can switch between search and track modes and change their array steer

direction almost instantly to track known targets while searching for new ones.

Similarly synthetic aperture radar (SAR) systems on unmanned aircraft can

perform multiple tasks in real time. These systems are called multi-function

systems with each function being associated with a mode of operation and the

selection of which mode to operate in is referred to as sensor mode scheduling.

Even within a mode, such parameters as transmit energy, transmit waveform

11

type and beam time on target can be allocated and varied to accommodate

mission requirements.

Single sensor scheduling and adaptation, of which the two above cases are

examples, is a mature technology, however, techniques for the optimal schedul-

ing and control of systems across a network of sensors are not as well developed.

A key difference is that the scheduling and control of resources is carried out

across a communications network which generally suffers from more stringent

constraints on data throughput as a result of limited communications band-

width. Clearly in this type of distributed system the scheduling of the trans-

mission of data between components of the system is an important component

of the scheduling problem. Another difference is, in general, an increase in the

number of parameters that can be controlled, with the possibility of having mul-

tiple disparate sensors whose relative geographic position can also be controlled,

themselves each having multiple modes of operation. This clearly provides the

potential for improved sensing performance, but with this added flexibility of

course comes the price of a more challenging scheduling and control task. How-

ever, as with the single sensor case, the distributed sensor scheduling problem

is essentially a constrained optimization problem and in that sense is similar to

the single sensor problem, with similar techniques being applicable.

In [48] the concept of the cooperative sensor network (CSN) is introduced

as a framework for the management of data, sensor modes and other associated

sensor parameters in a network of EW sensors. The CSNs described in the

paper have as their core a sensor scheduler around which architectures can be

constructed to enable the building of a range of systems which can include radar

systems, ground sensor networks and distributed EW systems. The concept is

also flexible enough to be used for the determination of flight paths of teams

of UAVs with on-board angle-only ES sensors, for optimal target acquisition;

12

Sensor 1

Sensor 2

Sensor N

Targets/Threats
Communications

Network

Target 1

Target 2

Target M

CSN Scheduler &

Data Processor

Combat

System

Data Selection

Data Selection

Data Selection

Mode Selection

Data

Data

Data

Mode Selection

Mode Selection

Figure 2.1: Basic Cooperative Sensor Network Concept

this of course is the subject of this thesis. The core concept of a CSN i.e., that

of a sensor/data scheduler is shown diagrammatically in Figure 2.1. Note that

the figure is a little different to that in [48]; this was done to emphasise the

sensor mode/parameter selection aspect of the CSN which was missing in the

corresponding figure in [48].

The basis of the CSN architecture is a sensor scheduler which optimizes

system performance by computing an optimal sensor scheduling policy for the

given target behaviour and subject to the prevailing constraints. Some key

benefits of a CSN are:

• Tracking performance is improved in regions of sensor overlap. Tracks can

be initiated sooner, be more reliable and of higher accuracy than those of

the individual sensors.

13

• Sensor geometry can be optimized to yield different views of targets, aid-

ing in the detection of low observables or targets whose view may be

obstructed for individual sensors.

• Individual sensor performance requirements may be reduced through op-

timal placement of sensors.

• Individual sensors operating in different parts of the spectrum can provide

a multi-spectral capability thus enabling detection of a wider range of

targets.

• Tracks can be cued and handed over between sensors, and thus targets

can be followed over wider geographic regions.

The concept of a CSN can also be extended to include cooperative ES and

electronic attack (EA). Adding effectors (jammers) or sensor/effectors (com-

bined sensors/jammers) to the list of sensors in Figure 2.1, with appropriate

changes to the associated communication link with the scheduler, is easily ac-

commodated in the CSN concept. EA is used to disrupt enemy surveillance

functions and information gathering/sharing capability, but can also potentially

interfere with friendly surveillance and communications assets. Hence coordina-

tion of distributed EW assets is paramount if friendly RF assets such as sensors

and communication systems are not to be adversely affected. A CSN can be

used to perform this coordination; additionally the CSN can optimize resource

use so that the least number of assets are required to perform the coordinated

sensing/jamming function.

An important point brought up in [48] (and earlier in [49]) relates to bat-

tlespace dynamics. A close coupling exists between the management of sensors

in the battlespace and the ability to engage threats with available weapon sys-

tems. Clearly dynamic optimization of sensor parameters and modes can lead

14

to more rapid and appropriate target engagement. Figure 2.2 (extracted from

[48]) is a representation of the cycle of battle as an Observe-Orient-Decide-Act

(OODA) loop. The small rectangles added to the figure represent breaks in the

automated components of the loop that would occur when non-networked sen-

sor data is reported either manually or semi manually. The effect of the manual

handling, and processing of data is that OODA blockages are introduced, result-

ing in an increase in time required to assimilate information, make time critical

battle decisions and hence reduced warfighting tempo and hence effectiveness.

A CSN achieves an increase in OODA loop tempo by removing the manual

process of data assimilation as well as by optimizing the sensor parameters and

modes in a way that would be infeasible to perform manually. Put concisely, the

purpose of a CSN is to increase the rate at which knowledge can be gained and

exploited to increase the tempo of battle and thus overwhelm the enemy’s ability

to react to friendly actions. Given this aim, the motivation for a considerable

effort in solving as effectively as possible what is a complex and difficult set of

constrained optimization problems is clear.

As possible further reading on the topic, the reader is also referred to [49]

where a more general description of the concept of a cooperative sensor network

(CSN) is provided. This paper, while also covering some DEW concepts looks

at how CSNs can more generally aid in the battle management process and in

particular shorten the time of execution of the OODA loop.

2.1.2 Electronic Warfare Sensor Management Solution

Approaches

This section looks at the solution approaches that have been tried for various

types of multimode sensors and CSNs, the aim being to help determine the

15

Battle Management

Sensor to

Shooter

targeting

BDA

Situation

Assessment
RESTRIKE

Start of

Campaign

Operational

Appraisal

Sensor

Tasking

Situational

Awareness

Allocation of

Resources

Oper ational

Planning

Tactical

Planning

Multiple

EngagementsManual

Repor ting

Manual

Tasking

Manual

Reporting Manual Resorce

Request

Manual

Planning

Figure 2.2: The “broken” OODA Loop

appropriate way ahead for the problem being considered in this thesis.

Modern military radars are increasingly using phased array antennas, have

increased computing capability and more flexible transmitter hardware, giv-

ing them increased capability to adapt their beam steer direction and transmit

waveforms to optimize performance. Unlike mechanically scanned radars which

have to contend with antenna inertia, phased array radars can re-direct their

beam in any direction almost instantaneously. One outcome of this is that

phased array radars can switch between the tasks of tracking existing targets

and acquiring new targets equally quickly. This enables the separation of the

task of searching for new targets and that of updating existing tracks and thus

the optimization of both separately and individually. In [34] the task of opti-

mizing the radar transmit waveform for new target acquisition is considered and

a solution approach presented. In that paper the adaptive waveform scheduling

16

problem for new target detection is posed as a partially observed Markov de-

cision process (POMDP) and solved using a stochastic dynamic programming

approach. POMDPs and stochastic dynamic programming will be described

later in this thesis, but for now what is most relevant is that this is the tech-

nique that was used. Solutions to this type of problem are optimal control

policies that optimize an objective (cost or reward) function. The adaptive

waveform optimization problem for target detection thus becomes the selection

of which sequence of waveforms to use to maximize the overall rewards of target

detection. With appropriate choice of reward function, the time taken to detect

new targets and the radar resources used can thus be optimized. In [34] a short

optimization horizon was used, the justification being that only the detection

of new targets problem was considered and the number of radar dwells used to

confirm a new track is typically very small.

Another paper that looks at a multifunction phased array radar scheduling

problem is [58]. In [58] an algorithm that optimizes on two criteria in order to

schedule radar beam steer actions is presented. The algorithm has the dual aim

of detecting new targets (surveillance mode) and maintaining tracks on known

targets (track or revisit mode), treating the resulting sensor management prob-

lem as two separate subproblems, one for each radar mode. For the surveillance

mode, the objective (reward) function for selecting the next beam steer direc-

tion is the expected number of new targets within the beam and for the revisit

mode the objective function is the expected information gain. The problem is

formulated as a stochastic control problem and a myopic (i.e., one step look-

ahead), dynamic programming based scheduling scheme is developed. As part

of the solution a tunable parameter which they refer to as the “revisit ratio” is

defined and used to provide control of the distribution of resources (i.e., radar

beam dwell time) between the two radar modes.

17

A paper by Krishnamurphy and Evans [32] also considers the electronically

scanned radar beam scheduling problem. This paper presents a dynamic pro-

gramming based solution in which the beam scheduling task is formulated as

a multi-arm bandit problem involving a hidden Markov model (HMM) for the

targets. The multi-arm bandit approximation of the system is implemented as

a way of computing long-term optimal beam scanning schedules while avoid-

ing the exponential complexity of more general POMDP models. The paper

describes the algorithm in considerable detail including the assumptions made

in using the multi-arm bandit formulation and the range of applicability of the

solution.

When a network of distributed sensors is used, scheduling data transmission

between components of the system via the network communication system can

result in significant performance improvements. This is because in a distributed

system there are generally constraints on data throughput as a result of limited

communications bandwidth. Scheduling of the actual activation of the individ-

ual sensors may also have pay-offs, as there may be costs associated with power

usage, interference with other sensors, or for example, in military applications

some sensors may have higher likelihood of being detected by the enemy than

others. One paper that has application to this problem is [31], which considers

the problem of choosing which one of a number of sensors to select at each time

instant to provide the next measurement of a target’s state. The paper uses

a HMM based formulation of the problem to develop dynamic programming

based solutions. Both optimal and suboptimal scheduling algorithms are de-

veloped and numerical examples provided to demonstrate performance. While

the problem considered involves the selection of only one sensor at a time, the

solution approach can be generalized to the selection of multiple sensors at any

time instant. The paper also suggests a generalization from the use of HMMs

18

for the targets to implementing jump Markov Linear Systems (JMLSs) in the

target model; this generalization is described in [14] which will be summarized

next.

A paper by Evans, Krishnamurthy, Nair and Sciacca [14] describes sensor

and data rate control algorithms for tracking maneuvering targets. It first gives

a short description of an algorithm for the scheduling of flexible multimode

measurement sensors and then, in considerable detail, presents algorithms for

scheduling data transfer across data links between multiple sensors and a track-

ing computer. Both problems are solved within the framework of a partially

observed stochastic control problem. For the case of the multi-mode sensor

problem the paper considers the example of beam scheduling in electronically

scanned radars and represents the problem with a multi-armed bandit struc-

ture (as in [32], which was reviewed earlier, but now using a JMLS target

model in place of a HMM). For the data transfer scheduling case, the problem

of target tracking in a multiple radar network, with a limited-data-rate com-

munication channel to the central tracking computer, is considered. For this

problem, first the optimal sensor-data scheduling algorithm, which is developed

using stochastic dynamic programming, is presented. This algorithm uses a fi-

nite horizon cost function, which is based on the outputs of an adaptive tracker,

to optimally select which sensor’s data is to be transmitted to the tracker at

each tracker update. As the optimal algorithm is not practically implementable

because of computational complexity, a practically implementable suboptimal

algorithm which optimizes instantaneous cost is then developed. Simulations

that demonstrate performance improvements resulting from data rate control

are also presented.

An article by Sciacca et al. [50] considers the problem of the localisation

of multiple targets using a CSN with communication bandwidth constraints.

19

It discusses two examples (i) a radar network and (ii) unattended ground sen-

sors with angle-only measurements. The paper outlines a suboptimal scheduling

algorithm for the unattended ground sensor problem and presents results of sim-

ulations of the system. The algorithm that is used is also based on a stochastic

scheduling/control approach.

In [21], sensor scheduling in a multiple sensor network is investigated. The

particular problem considered is that of selection of which sensor to activate

over time, trading off sensing performance with sensor usage costs. The prob-

lem is formulated as a stochastic optimal control problem, and a suboptimal

approximation is found to the long term optimal solution. Two key features of

the approach used are that it takes into account both long-term and short-term

costs and benefits, and secondly that it does not rely on analytical tractability

of the system under consideration. Sophisticated models for sensor behaviour

and target dynamics can be modelled because of the use of a Monte Carlo ap-

proach. The scheduling algorithm that is developed uses a particle filter to deal

with the non-linear aspects of the problem, with the long term expectations of

costs calculated by averaging over a large number of particles. Policy roll-out

[5, p. 314] is used as the Q-value approximation method [5, p. 320]. As an

example problem, a simulation of a radar network and a single target, with only

one radar selected at a given time, is presented. The algorithm is shown to

give improved performance over a simpler and commonly used “closest point of

approach” algorithm. In its conclusions the paper suggests a future direction of

work could be the more general sensor management problem, including sensor

geometry control, sensor bandwidth allocation, sensor mode switching, as well

as sensor scheduling. Other possible constraints into the POMDP formulation

suggested are battery capacity, load balancing, and bandwidth limits.

20

2.1.3 Solution Approaches for Problems Involving Sen-

sor Platform Trajectory Control

As UAV trajectory control for the optimization of sensor geometry in a CSN is

the central theme of this thesis, let us now look at work that has been done that

is specifically about controlling trajectories of UAVs for the purpose of sensing.

This will then be related to the work on control of the parameters described

above and be used as an aid in developing the algorithm that is the subject of

this thesis.

A paper by Oshman and Davidson [45] considers the problem of bearings

only target localization, i.e., the estimation of the location of a fixed target using

a sequence of noisy bearings measurements. The paper considers a single sensor,

single target system and presents three methods of computing optimal trajec-

tories for the observer (i.e., sensor). The methods are direct optimal control

methods, which are based on parameterizing the control history using a fixed

set of constant parameters (the discrete-time control inputs), thereby convert-

ing an infinite dimensional control problem into a finite dimensional parameter

optimization one. The methods presented take into account long term costs by

considering a predetermined number of discrete-time measurements and opti-

mizing on those measurements. The first two methods rely on gradient-based

numerical techniques and the third method is formulated so as to be solvable

using non-linear programming, and a gradient descent method is then used to

solve the non-linear programming problem. The third method (i.e., the dif-

ferential inclusion method) has the added feature that it can incorporate both

state and control inequality constraints in the solution. The measure that is

used as the reward in the optimization is the determinant of the Fisher Infor-

mation Matrix (FIM). The reasoning behind using the determinant of the FIM

21

is as follows. According to the Cramér-Rao Lower Bound Theorem, if we have

a nonrandom parameter x0 and an unbiased estimator of the parameter x̂ (Θ)

where Θ is the set of measurements, the estimation error covariance matrix P

is bounded from below as follows:

P = E
{
(x̂ (Θ)− x0) (x̂ (Θ)− x0)T

}
≥M−1 (2.1)

where M is the FIM and is given by

M = −E

{
∂2

∂x2
log pΘ|x (Θ|x)

}

x=x0

(2.2)

and pΘ|x is the conditional probability density function. In the case of an efficient

estimator, equality holds in Equation 2.1. The covariance matrix P is positive

semidefinite and its associated quadratic form defines a hyperellipsoid whose

semiaxis sizes are defined by the eigenvalues of P and semiaxis orientations are

defined by the eigenvectors of P . For the two-dimensional case the one-sigma

area of the resulting ellipse is

A1σ = π
√
detP (2.3)

The optimal trajectory is defined in [45] to be the one that results in the

minimum value of A1σ in Equation 2.3. Now, from Equation 2.1, for an effi-

cient estimator the error covariance matrix and the FIM are inversely related,

resulting in the one-sigma uncertainty region for the two dimensional case being

expressible as

A1σ =
π

√
det (M)

Hence, maximizing det (M) results in the minimization of A1σ and thus opti-

mization of the trajectory. Note that because the Fisher information matrix is

dependent on the target position, an initial estimate of the position must be

made, with the optimality of the calculated trajectory being dependent on the

22

validity and accuracy of this initial estimate. It should also be noted that the

techniques presented in [45] cannot deal with manoeuvring targets (i.e., target

tracking) and cannot incorporate prior information, in the form of a probability

distribution, in target position. Additionally, all three techniques are subopti-

mal as they all rely on a gradient based solution process which cannot in general

be guaranteed to converge to a global minimum.

A paper that covers optimization of multiple passive receiver trajectories for

stationary target localization is [12]. This paper again considers a single sta-

tionary target, but instead of using angle-only sensors, it describes a technique

called scan-based localization. For a radar with a constant scan rate (typically

mechanically scanned radars with rotating antennas) the times at which the

radar beam is intercepted by a pair of passive sensors can be used to calculate

the angle subtended by the pair of sensors about the radar’s position. With more

than two sensors the collection of subtended angles can be used to calculate the

radar’s position, thus the term scan-based localization. As with [45], this paper

presents an algorithm that is based on maximization of the determinant of the

FIM; however, in this case there is no attempt at long term optimization. The

algorithm presented simply performs one-step-ahead (myopic) optimization by

using a simple gradient descent approach. Because of the use of a myopic cost

function that relies entirely on local topology the trajectories that this technique

produces can be quite non-optimal in the long term sense. To compensate for

this, an ad-hoc factor is added to the cost function that makes the sensors

move closer to the target more quickly than would be the case when the FIM

maximization is simply used by itself.

The paper (i.e., [12]) also presents an ad-hoc method for avoidance of zones

that the sensor platforms may be barred from entering. For example these

zones may be regions where threats to the platforms may exist. The method it

23

proposes is to add a multiplicative factor for each “threat” zone centre to the

cost function; this serves to steer the sensors away from the centre of that threat

zone. The method, as presented, requires the threat zones to be circular. In

order to stop the sensors from coming too close to the target, another addition

is made to the algorithm; when an update is computed for the next sensor

position, if the update would bring the sensor within a minimum radius around

the target, the updated position is projected away from the target onto the

circle representing the minimum radius, thus avoiding the possibility of coming

too close to the target.

As was the case with [45], the approach presented in [12] cannot deal with

manoeuvring targets (i.e., target tracking) and, as it relies on a gradient based

solution technique with only a local cost function used at each update, it cannot

in general be guaranteed to converge to a global minimum. The ad-hoc nature

of the factor that is introduced to make the sensors move closer to the target

more quickly and thus make the trajectories “more optimal” in the global sense

is also very limiting from the point of view of adding any insight into the task

of finding the long-term optimum trajectories and doesn’t address the issue of

avoidance of the sensors becoming trapped in local maxima.

In [56], research on coordinating multiple UAVs to search for, detect and lo-

cate mobile ground targets that are emitting radio frequency signals is described.

Each UAV carries a passive sensor that collects relatively coarse angle-of-arrival

measurements. A Kalman filter is used to compute target location estimates

and an ad-hoc control algorithm is used to coordinate the motion of the UAVs

so as to further improve the location estimates. To address the general problem

considered, i.e., searching for, detecting and locating emitters, a distributed con-

trol architecture, using a state machine for each UAV to determine its operating

state, is used. The paper gives a short description of the state machine which

24

has four states, i.e., Global Search, Approach Target, Locate Target, and Reac-

quire Target, and then goes on to describe in more detail the algorithms used

in the Locate Target state. The algorithms that are described are not actual

optimization or optimal control algorithms. Instead, Toussaint et al. prescribe

predetermined desired behaviours for the UAVs and apply ad-hoc control laws

to make the UAVs behave in the desired way; no-fly zones are not considered

in the formulation.

In [17], Frew, Dixon, Argrow and Brown outline the development of a net-

worked UAV communication, command and control architecture. Of particular

interest here, their efforts to solve the radio localization problem, where one or

more UAVs react cooperatively to determine the locations of radio emitters, are

introduced. In their approach, emitter localization is cast as a stochastic distrib-

uted estimation problem and UAV mobility is used to optimize target position

estimation accuracy by maximizing the FIM. In their problem formulation, a

team of N UAVs and M radio emitters are considered. The motion of the UAVs,

which are fixed-wing aircraft, is represented by a simple planar kinematic model

involving vehicle speed (which is constant), heading and turn rate. The turn

rate can take on discrete values up to the maximum turn rate ωmax. The radio

emitters, which may be stationary or moving, are each assumed to be transmit-

ting omnidirectionally and a propagation model is used to determine the power

received by each sensor from each emitter. The receivers on each UAV can only

measure received power; two cases are considered: (1) the receivers can only

measure the total power received, and (2) the receivers can distinguish between

transmission from different sources, and thus measure the individual signal pow-

ers received. The radio localization problem is then broken down into two sub-

problems, the first being the estimation of the state of all the transmitters, and

the second being the determination of the control input (in this case turn rate)

25

for each UAV that optimizes some combination of performance and information

criteria. At the time of writing in [17], the radio source localization estimator

had not yet been developed, but it was stated that a maximum-likelihood esti-

mator would be designed in future that fuses synchronous measurements from

the multiple distributed UAVs and that multiple-model and hybrid estimation

techniques would be incorporated when the number of emitters is also unknown.

Their solution to the second subproblem, i.e., that of calculating the optimal

control inputs, involves the use of a distributed receding horizon control policy.

Receding horizon control will be described in more detail later in this thesis;

however, for the purposes of understanding this paper a short summary is given

here. Let us assume that the state of one of the UAVs is x (k) at time k, then

the main steps in the receding horizon control policy at time k for that UAV are

(1) calculating the optimal control sequence {u∗ (k + 1) , ..., u∗ (k + Th)} over a

finite planning horizon 2 ≤ Th < ∞ and (2) implementing the optimal control

input(s) over some control horizon k ≤ t ≤ k + Tc where Th and Tc are integers

satisfying 1 ≤ Tc ≤ Th; then at time k + Tc steps 1 and 2 are repeated, and so

on. In [17], the basic RHC policy is extended to multiple UAVs through a co-

operative process in which distributed control is achieved by iterative consensus

between the individual receding horizon controllers. The optimization presented

in [17] uses an optimization that for each UAV minimizes a cost function that

has three components, i.e., (1) a control cost which limits the control input,

(2) an uncertainty cost which encourages the UAV to improve its knowledge of

the state of the M targets, and (3) a distance cost which keeps the UAV some

distance away from the emitter position estimates, both for safety and to avoid

mathematical singularities in the estimation equations. In the calculation of the

uncertainty cost, a version of the FIM that takes into account target process

noise is used to compute the future covariance matrix for each emitter at each

26

time increment over the planning horizon; the traces of the covariance matrices

are then summed up to arrive at the uncertainty cost. The reader is referred to

equations (6) to (16) in [17] for the detailed cost computation equations.

The solution to the receding horizon optimization problem described above is

obtained through an exhaustive search over some discretized input space. This

method has the advantage that it results in the optimal solution for a given

planning horizon, avoiding any issues relating to convergence to local minima.

Unfortunately, as the planning horizon is increased, the amount of computa-

tion required grows extremely quickly (exponentially), necessitating very short

horizons. In [17] the planning horizon was limited to 2-4 sample times. This

very short planning horizon to a large extent negates most of the advantages of

formulating the problem to include future costs as opposed to simply using a

gradient descent technique. A point to note also is that no-fly-zones (using in-

equality constraints) are not considered in the formulation. While, in principal,

they could be incorporated using the above approach, the short horizons that

have to be used would make incorporation of no-fly-zones problematic. This is

because, with short horizons, avoidance of UAV entrapment behind no-fly-zones

(in local minima) cannot be guaranteed, and also the UAV dynamics, which are

limited by maximum turn rates, may not be able to be allowed for, i.e., the

UAVs could move into positions that they may not be able to manoeuvre out

of without violating their dynamic constraints.

A paper by Leung et al. [38] describes work that applies the receding hori-

zon control approach to the problem of trajectory control of autonomous ro-

bots gathering information. Note that in this paper the term model predictive

control (MPC) is used for the control approach; receding horizon control and

model predictive control are simply two alternate names for this type of control

27

algorithm. In this paper, two types of problem are considered (1) simulta-

neous planning, localization and map building (SPLAM) and (2) multi-robot

geolocation. In both problems the information gathering task is formulated by

estimating a state vector containing features of interest in the environment. In

the SPLAM problem the estimation is performed by using an extended Kalman

filter, whereas for the multi-robot geolocation problem an extended information

filter is used. Because of its similarity to the problem considered in this thesis,

we shall concentrate on the second problem, i.e., multi-robot geolocation; the

summary below thus relates to that problem. It should be noted, however, that

very similar approaches are used for both problems, the difference mainly being

in the details.

The planning/control problem for the information gathering task is formu-

lated as an optimal control problem and the MPC approach is used to find a

suboptimal solution. The task which is optimized is the localization of targets

as quickly as possible from a sequence of observations. This is done by applying

controls so as to maximize the minimum eigenvalue of the information matrix,

with constraints on the robots motion being incorporated into the optimization

process. The features (i.e., the targets, in the multi-robot geolocation problem)

are assumed to be stationary and it is assumed that the poses of the robots are

obtained from an external source such as GPS. No-fly zones of the type consid-

ered in this thesis are not incorporated in the problem formulation, however,

minimum distances from targets are enforced; they refer to these as no-go zones.

In their simulations the UAVs were assumed to be equipped with cameras as

the sensors, and the controls available to the controller were the roll angles of

the UAVs.

Two optimization strategies are used, i.e., (1) Exhaustive Expansion Tree

28

Search (EETS) and Sequential Quadratic programming (SQP). The EETS per-

forms an exhaustive search among a limited number of control sequences. As

stated in the paper, if for each robot the number of possible control options is

Nω, the number of steps in the optimization is N and there are n robots, the

information gain for (Nω)
nN options needs to be evaluated at each update of

the controller. The number of options to be evaluated hence rapidly becomes

extremely large as N is increased (as N is a factor in the exponent); and as a

result the optimization horizon N is limited to small values. They also use SQP

together with the EETS, by first doing a coarse optimization using the EETS

and then fine tuning their solution with SQP. The reasoning is that, while SQP

is an efficient method for continuous optimization problems, using SQP with a

random initial guess for the optimal solution will often lead to a local optimum

being found. Using the EETS first is thus expected to provide a good initial

guess that can then be refined using SQP.

To increase the planning horizon Leung et al. suggest a strategy where

the controls are not changed at every step of the optimization calculations.

For example, to double the planning horizon without increasing the amount of

computation, they allow changes in control options at every second step. This

of course increases the coarseness in the optimization and is quite limited in

its capability to effectively increase the planning horizon. They also argue that

they have shown in their SLAM simulations that there is a limit to the benefits

gained by increasing the planning horizon, especially for systems with large

uncertainties, where long-term rewards may not be realized. To some extent

the argument holds for their problem; however, for the problem considered in

this thesis, where there are no-fly zones that must be avoided, whose positions

are known from the outset, and where the range of the sensors is much greater

than the distance travelled by the UAVs over a small number of steps of the

29

controller, much longer horizons than are possible with the technique described

in [38] are highly desirable.

In [54], Singh et al. present a sensor scheduling algorithm for the case when

the state, observation and action (control) spaces are all continuous, one appli-

cation clearly being the observer trajectory optimization problem. The major

goal of the work presented is to solve this problem directly, without recourse to

discretization of the state, observation or, in particular, the action space as is

often done in other work presented in the literature. Additionally, no assump-

tions of linearity or Gaussianity are made, so as to make the solution approach

as general a possible. To facilitate solution without these assumptions, they

resort to a sequential monte-carlo approach, i.e., a particle filter. In their so-

lution approach, the system is modelled as a continuous-state HMM, with the

observations also assumed to be continuous. In order to allow the action space

to be continuous, an iterative, stochastic gradient technique is implemented to

optimize the action sequence. To develop the technique, a performance cri-

terion is defined, whose gradient with respect to the action sequence is first

derived, and then a method for computing low-variance estimates of the gradi-

ent is demonstrated. These estimates of the gradient are used in an iterative,

simulation (i.e., particle filter) based optimization of the action sequence. Using

this optimization, a local optimum of the performance criterion is computed.

As an example of a sensor scheduling problem, Singh et al. then consider the

specific case of observer trajectory planning for the case of multiple observers

and a single target. To demonstrate the utility of their algorithm for this ap-

plication, they performed simulations for the one and two observer case. They

used a relatively short optimization horizon of N = 7 in all their simulations.

Results concerning convergence of the algorithm were derived mathematically

as well as through demonstration in their simulations.

30

While an interesting and informative study from a theoretical point of view,

for the problem being considered in this thesis, [54] has some serious short-

comings. Firstly the technique is computationally very intensive. For the sim-

ulation examples presented, Singh et al. cite simulation times of several hours

on a 2.8 GHz Pentium 4 CPU. Importantly, this is for scenarios that are much

simpler than those that will be dealt with in this thesis, and also for relatively

short optimization horizons. Despite the high computational requirements, the

algorithm only finds a local minimum of the cost function as a result of the

use of the gradient based technique. When dealing with multiple observers and

multiple targets, it is quite plausible that the algorithm could converge to a

local minimum that is a very poor solution. Also, the problem that Singh et

al. have solved does not include hard constraints for avoidance of obstacles

such as no-fly zones, and the algorithm they use appears to not be particularly

amenable to the addition of this type of constraint.

A paper by Hanselmann, Morelande, Moran and Sarunic [20] presents algo-

rithms for scheduling passive sensors (mounted on UAVs), which are detecting

and tracking radars. Two types of sensors are considered i.e., angle-of-arrival

(AOA) sensors and time-difference-of-arrival (TDOA) sensors. The algorithms

model the system as a POMDP in a stochastic dynamic programming formula-

tion of the scheduling problem. An interesting aspect of the algorithms is the

application of information theory through the use of Rényi information diver-

gence between posterior and prior probability density functions (PDFs) as the

reward function in the optimizations. The reasoning behind the use of this mea-

sure is that it has the advantage of permitting target detection and estimation

to be handled in the same framework. One-step-ahead algorithms for scheduling

angle of arrival vs. time difference of arrival measurements, as well as for tra-

jectory control of UAVs are presented. Multi-step-ahead formulations are also

31

discussed. A significant aspect of the work is that a sophisticated tracker, which

deals with some real-world issues in passive angle-only tracking, is used. The use

of information theoretic concepts for making the reward functions more general

could possibly be further developed to advantage, but care must be taken to

ensure that the increase in “information” that is maximized accurately reflects

performance parameters that are relevant to the application. A major draw-

back of the approach is the amount of computation required to find the optimal

solutions. The one-step-ahead algorithms don’t deal with long term costs of

actions while still being quite computationally intensive; the multi-step-ahead

version, although it can be formulated in theory, is even more severely limited

by computational requirements, to the extent of not being practicably imple-

mentable for anything but quite short horizons. As long term optimization is

in general very important for optimal trajectory control, this limitation is quite

serious for this application.

Bellingham, Richards and How [3] present a trajectory optimization algo-

rithm for autonomous fixed-wing UAVs. The case of a single UAV flying a

trajectory to a known goal position in two dimensional space, with obstacles

(no-fly zones) in the flight path, is considered. Note that the algorithm they

present does not involve sensing, but is included in this survey because the

way it performs trajectory control is relevant to this thesis. The most impor-

tant feature of the approach that they present is that it computes a long-range

dynamically constrained UAV trajectory, which avoids no-fly zones, from the

UAV’s starting point to the final goal. To achieve this, while maintaining the

amount of computation required at a workable level, the authors of [3] have split

the trajectory optimization problem into two sub-problems, producing an algo-

rithm comprising a cost estimation phase, which in a coarse manner considers

32

the entire UAV path to the goal, and a trajectory design phase, which incorpo-

rates a receding horizon control strategy with relatively short term goals. In the

cost estimation phase, a cost map of minimum time-to-go from a limited set of

points to the final goal is produced. This is done by creating a visibility graph

which is then searched using Dijkstra’s single source shortest path algorithm

[10]. The resulting cost map takes into account the requirement for the UAV to

avoid the no-fly zones, which are assumed to be the sum of one or more rectan-

gles. The cost estimation phase is performed once for a given goal position and

obstacle field, but needs to be repeated if the environment changes. The cost

map information is used in the terminal penalties of the receding horizon opti-

mization i.e., the trajectory design phase, to design a series of short trajectory

segments that are followed until the goal is reached.

The division of computation between the cost estimation and trajectory

design components is performed in such a way that the trajectory optimization

phase can be formulated using only linear and binary variables. Then in the

trajectory design phase, mixed integer linear programming (MILP) is repeatedly

applied in a receding horizon strategy to compute the UAV trajectory from

starting point to the final goal. Note that by using MILP, difficulties associated

with nonlinear programming such as having to choose a suitable initial guess

for optimization because of the possibility of converging to a local minimum are

avoided.

From the point of view of the aims of this thesis, the key feature of the

approach used in [3] is that it has a planning horizon right up to the final goal,

which enables it to deal with no-fly zones in a way that avoids entrapment of the

UAV behind them. The trajectories it produced in simulations were also not far

from optimal while still computationally realistic for the problem considered,

which is a significant achievement in this type of problem. However, for the task

33

set in this thesis, the algorithm still falls short of the mark. While the algorithm

manages to reduce the amount of computation significantly through the use of

receding horizon control, it is still quite computationally intensive. Also, it

only deals with single UAVs and doesn’t consider target position estimation;

the goal position (i.e., the endpoint) of the UAV’s trajectory is deterministic

and fixed. This is in fact a much simpler problem than that considered in this

thesis. In the problem that is the subject of this thesis there are multiple UAVs

and multiple targets whose position (and even existence) is not known initially

and must be estimated “on the fly” as the trajectory control is performed. As

a result the technique presented in [3] still requires too much computation to

be useful for the problem of this thesis, and of course doesn’t deal with the

estimation aspects at all. It does, however, incorporate some useful ideas that

have bearing on the current task.

2.1.4 Cooperative Sensor Network Problem Types

The articles summarized in Sections 2.1.2 and 2.1.3 offer various solutions to a

representative range of CSN problems. The key CSN problems that are covered

by the references are summarized below.

Sensor Beam Steering This problem involves multiple objects being ob-

served by a sensor. An example of this type of problem involves a radar tracking

multiple targets, where at each time step the controller must decide which target

to observe, so as to minimize some cost function. Examples of research in this

area from the work reviewed in Section 2.1.2 are [32], [14] and [58]. All three

of these papers present solutions to this problem that use stochastic dynamic

programming.

34

Sensor Waveform Selection An example of this type of problem is a

radar with single or multiple targets. At each time step the controller decides

which waveform mode to use with only one mode being able to be used at that

time step. The choice of mode is based on the minimization of a cost function.

The example considered in Section 2.1.2 on this topic is [34]. The solution

approach used in [34] involves modelling the system as a POMDP and using

stochastic dynamic programming to find the “optimal” waveform sequence.

Communication Bandwidth Limited Sensor Scheduling An exam-

ple of this type of problem is a radar network with bandwidth limited commu-

nications between individual radars. At each time step the controller decides

which data to transmit to the network’s tracking computer on the basis of opti-

mizing tracking performance within the communication bandwidth constraints.

This type of problem may also include more general sensor usage costs in the

optimization. Examples considered in Section 2.1.2 of research in this area are

[14], [31] [50] and [21]. These papers describe solution approaches that use sto-

chastic dynamic programming. Decisions on which sensor to activate over time

are made on the basis of minimizing the sum of the estimation error and sensor

usage costs.

Sensor Platform Steering The fourth type of problem involves typically

multiple sensors whose combined state is controlled to optimize target state es-

timation. In this type of problem the positions of the sensors are controllable,

while the targets are generally assumed to follow independent partially observed

stochastic processes. The observation processes are also assumed to be indepen-

dent and random. Stochastic control theory can form the basis of the solution

to this problem as well. An important example of this type of problem structure

35

is that of UAVs carrying passive ES sensors, detecting EM radiation emanat-

ing from radar transmitters. Examples that are summarized in Section 2.1.3 of

research on sensor platform steering are [45], [12], [56], [17], [38], [54] and [20].

Of these, [56] uses ad-hoc control laws to perform the UAV trajectory control,

[12] uses straight forward gradient descent method, [45] uses an optimal control

technique that does not involve dynamic programming, [17] uses a distributed

receding horizon control technique that involves dynamic programming, [38]

also uses a receding horizon control technique, [54] uses a gradient based tech-

nique and [20] uses a direct stochastic dynamic programming approach. While

it does not involve sensing, the trajectory control technique described in [3]

has relevance to the sensor platform steering problem we are interested in; it

uses an optimal control technique that also does not explicitly involve dynamic

programming, and has the added novelty of using a two level approach that

achieves a near optimal solution with an optimization horizon at the final goal.

2.1.5 Proposed General Solution Approach

All four types of problem summarized in Section 2.1.4 are important in actual

military applications, with typically more than one needing to be addressed si-

multaneously in a particular application. The upshot of this is that, all other

things being equal, it would be advantageous to use the same general approach

for all four of the problems. As can be seen from the references summarized

in Sections 2.1.2 and 2.1.3, dynamic programming based approaches have been

used in all four types of problem, so from this point of view alone it is desir-

able to seriously consider its use in the problem considered in this thesis. One

important advantage of dynamic programming and one of the reasons for its

use in all of these problems is its generality and as a result a wide range of

optimal control and scheduling problems are amenable to its application. Using

36

a dynamic programming based approach for the CSN being developed in this

thesis, if done properly, will impart the advantages of compatibility with other

CSNs developed using the same approach as well as extendability thus enabling

development of systems of increased complexity and a mix of optimization pa-

rameters. Another advantage of this approach is that it provides a method of

taking into account long term cost, which is highly desirable in the above prob-

lems and this is particularly evident in the sensor platform steering problem.

Dynamic programming is also well suited to all four types of problem for another

important reason, i.e., uncertainty in the sensor information in these problems

necessitates continual adaptation as more information is obtained, and dynamic

programming is in essence an adaptive technique. There is one important dis-

advantage that dynamic programming has, and that is that exact solutions to

real world problems which are computationally feasible are often not achievable

using the technique. For this reason, gradient descent techniques which only

perform local optimization are often used instead. However the solutions they

produce are often far from optimal in the global sense and they are also suscepti-

ble to convergence to local minima. A middle ground is to develop approximate

dynamic programming based solutions using ingenuity to achieve near optimal-

ity in a global sense and computational feasibility. The approach that will be

developed in this thesis will use that approach. Before developing the solution,

a considerable amount of further reading of the literature, now concentrating

on more general theory in relevant areas of mathematics and engineering, was

performed; this will be summarized in the following section.

37

2.2 Review of Relevant Theory

The second aim of the literature survey was to determine, and gain a knowledge

of, relevant areas of mathematics as well as gain new ideas on how to approach

the problem. As a result, the areas covered in this component of the literature

survey were quite broad, the reasoning being that a wide range of background

material should be looked at so as to enable the selection of appropriate tech-

niques from as wide a range of options as possible. While some papers were

studied, the primary references for this part of the survey were text books. The

text books that have been fully or partially read in order to gain knowledge

of the areas of mathematics and engineering that could have some relevance

to the problem considered in this thesis are as follows. Philosophical aspects

of Bayesian probability theory are covered in [25]. Differential geometry was

considered to have general application to the problem; some basic theory in

this field is covered in [39]. Dynamic programming will form the core of the

approach that will be used in this project. For this the major reference was [5].

The broader area of optimal control is described in [33]. Planning, which is a

closely related field, is covered in [36]. Estimation and tracking theory is another

key relevant area for this work. For this, [2] has been referenced. The field of

convex optimization has some relevance to this work. For this, [7] was studied.

Information Theory is covered in [11] and [46]. The theory of differential games

is covered in [26]. Bayesian networks are covered in [28]. Dynamical system

stability theory is covered in [59]. Finally, a number of topics of relevance to

advanced and intelligent control systems are covered in [1].

The relevant theory from the text books that had the most influence in

developing the algorithms presented in this thesis will now be summarized in

the following chapter. The chapter is presented as a background theory chapter,

38

and for the sake of conciseness is a summary of only the theory that is required

in the subsequent chapters. Note that presentation of the theory of stability of

dynamical systems is postponed until Chapter 6, where it is subsequently used

for stability analysis of the solutions that have been developed in this project.

Chapter 3

Theoretical Background

3.1 Some Preliminaries

The solutions that will be presented in the following sections treat the states

of the systems concerned as stochastic processes and contain an underlying

assumption of the “Markov property”; the following definitions relate to this.

3.1.1 Stochastic Processes

A scalar random variable is a (real) number x determined by the outcome ω of

a random experiment

x = x (ω)

A (scalar) random process or stochastic process [2, p. 55] is a function of

time determined by the outcome of a random experiment

x (t) = x (t, ω)

This is a family or an ensemble of functions of time, in general different for each

outcome of ω.

39

40

3.1.2 Markov Processes

A Markov process is a stochastic process [2, p. 59] that is defined by the following

property (called the Markov property)

p [x (t) |x (τ) , τ ≤ t1] = p [x (t) |x (t1)] ∀t > t1

In words, this property states that the past up to any time t1 is fully character-

ized by the value of the process at t1, or worded in another way, “the future is

independent of the past if the present is known”.

The state x (t) of a (possibly time-varying) dynamic system driven by white

noise n (t) as defined by the following equation:

ẋ (t) = f [t,x (t) ,n (t)]

is a Markov process, where, in general both x (t) and n (t) are vector-valued

random processes.

3.1.3 Markov Sequences

A random sequence or a discrete time stochastic process is a time-indexed se-

quence of random variables

Xk = {x (j)}kj=1 k = 1, 2, ...

In a similar way to the continuous-time definition of the Markov property,

a random sequence is a Markov sequence or discrete time Markov process [2, p.

62] if

p
[
x (k) |Xj

]
= p [x (k) |x (j)] ∀k > j

The (real-valued) zero-mean sequence v (j), j = 1, 2, ... is a discrete time

white noise (or a white sequence) if

E [v (k) v (k)] = q (k) δkj

41

where δkj is the Kronecker delta function and q (k) is the variance of the se-

quence. If q (k) = q, i.e., the variance is time invariant, the sequence is station-

ary.

The state x (k) of a dynamic system excited by white noise v (k) as defined

by the following equation

x (k + 1) = f [k,x (k) ,v (k)]

is a discrete time Markov process, or Markov sequence where, in general both

x (k) and v (k) are vector-valued.

The state of a discrete time linear dynamic system excited by white Gaussian

noise

x (k + 1) = Fx (k) + v (k)

is a Gauss-Markov process.

3.1.4 ARemark on Notation for Discrete Time Processes

Much of the mathematics presented in the remainder of this thesis will involve

representations of discrete time systems. Two types of notation will be used for

the time indexing. The first involves simply placing the time index k in brackets

as above, whilst the second has the time index as a subscript. So, for example,

if we have a variable x that is a function of discrete time then

x (k) � xk � x (tk)

The choice of which is used will be based on which is most convenient for the

particular situation.

42

3.1.5 Markov Decision Processes

A Markov decision process (MDP) is an extension on the concept of a Markov

process (described in Sections 3.1.2 and 3.1.3). It is a natural way of formulating

problems involving stochastic processes in which decisions are made incremen-

tally as additional information is received. The basic formulation of an MDP

[22, p. 1] consists of four objects (S,C, q, r) where

(a) S is the state-space. The elements x of S are called the states.

(b) C is the action (or control) space. To each state x ∈ S we associate a

non-empty subset U (x) of C, whose elements u are admissible actions (or

controls) when the system is in state x.

(c) q is the transition law.

(d) r is the one-step reward function (alternately one can use a cost function).

The above definition is interpreted as representing a controlled stochastic

system which is observed at times tk, k = 0, 1, 2, Let the state and control

at time tk be denoted by xk and uk, respectively, then the MDP generates a

sequence of states that evolves as follows. At time k = 0, the system starts at

the initial state x0, then for all k ≥ 0, if the system is in state xk at time tk and

the control uk is chosen, a reward r (xk, uk) is received and the system moves to

a new state xk+1 according to the probability distribution q (xk+1|xk, uk).
A partially observed Markov decision process (POMDP) is a generalization of

an MDP. In a POMDP the system dynamics are modelled as for an MDP; how-

ever, the underlying state cannot be directly observed. Instead, a probability

distribution over all possible states x, known as the belief state is maintained.

To account for this, the formulation of a POMDP consists of all the objects

described above for an MDP, plus the following [22, p. 84], [21]

43

(e) An observation space Z. The elements z of Z are called the measurements.

(f) An observation map L (z|x, u), which probabilistically maps states x and

controls u into measurements z.

(g) An initial observation map L0 (z|x), which probabilistically maps states x

measurements z.

(h) An a priori initial probability distribution P0 for the state x.

The sequence of states generated by a POMDP evolves as follows. At time

k = 0, the system starts at the initial (unobservable) state x0 which has a

given a priori probability distribution P0 (x0), and the initial measurement z0 is

generated according to the initial observation map L0 (z0|x0). Then for all k ≥ 0,

if the system is in state xk at time tk and the control uk is applied, a reward

r (xk, uk) is received and the system moves to a new state xk+1 according to

the probability distribution q (xk+1|xk, uk). The measurement zk+1 is generated

according to the observation map L (zk+1|xk+1, uk).
The solution of problems with this structure (i.e., both MDPs and POMDPs)

comes in the form of a policy, i.e., a rule that specifies which control one should

apply if one arrives in a particular state (or belief state) at a particular time.

To arrive at the policy, MDPs and POMDPs can be solved using dynamic

programming; this will be described in Section 3.3.1.

3.2 Estimation and Tracking

Estimation and tracking are an important component of the problem being

considered in this thesis. The generally accepted way of performing this function

is to treat the system to be tracked as a dynamic stochastic process. Key

44

aspects of the approach, with emphasis on what will be used later in this thesis,

are described in this section. Note that for the purposes of this thesis the

targets that will be tracked will be treated as a linear system. This is only an

approximation, as in reality the measurement process (using angle-only sensors),

when considered in Cartesian coordinates, will be non-linear; more will be said

about this later.

3.2.1 Continuous Time Linear Stochastic Dynamic Sys-

tems

The state space model of continuous time linear stochastic systems can be rep-

resented as [2, p. 183]

ẋ (t) = A (t)x (t) +B (t)u (t) +D (t) ṽ (t) (3.1)

where

x (t) is the nx dimensional state vector of the system,

u (t) is the nu dimensional (control) input vector,

ṽ (t) is the continuous time zero-mean white nv dimensional Gaussian

process (plant) noise, with autocorrelation E
[
ṽ (t) ṽ (τ)T

]
= V (t) δ (t− τ),

A (t) is the system matrix,

B (t) is the (continuous time) input gain,

D (t) is the (continuous time) noise gain.

A (t), B (t), and D (t) are known matrices of dimensions nx × nx,

nx × nu, nx × nv, respectively.

The output of the system can be represented as

z (t) = C (t)x (t) + w̃ (t) (3.2)

where

45

w̃ (t) is the output disturbance or measurement noise, and

C (t) is the (known) nz × nx measurement matrix.

Equation 3.1 is known as the (continuous time) dynamic or plant equation

and Equation 3.2 is referred to as the output or measurement equation. The

noises ṽ (t) and w̃ (t) in Equations 3.1 and 3.2 are usually assumed to be zero

mean, white and mutually independent.

3.2.2 Discrete Time Linear Stochastic Dynamic Systems

In most practical situations it is convenient to discretize time and use a discrete

time state space model instead [2, p. 192]. In the state space representation of

a discrete time system it is assumed that the input is piecewise constant, i.e.,

u (t) = u (tk) tk ≤ t ≤ tk+1

The state at sampling time tk+1 can be written in the following form

x (tk+1) = F (tk+1, tk)x (tk) +G (tk+1, tk)u (tk) + v (tk)

For a time-invariant continuous time system sampled at arbitrary times we then

have

F (tk+1, tk) = F (tk+1 − tk) = e(tk+1−tk)A
∆
= F (k)

G (tk+1, tk) =

∫ tk+1

tk

e(tk+1−τ)ABdτ
∆
= G (k)

v (tk) =

∫ tk+1

tk

e(tk+1−τ)ADṽ (τ) dτ
∆
= v (k)

Assuming ṽ (t) to be zero-mean and white results in

E [v (k)] = 0

and

E
[
v (k)v (k)T

]
= Q (k) δkj

46

where δkj is the Kronecker delta function, and the covariance Q (k) of the dis-

crete time process noise is

Q (k) =

∫ tk+1

tk

e(tk+1−τ)ADV (τ)DTe(tk+1−τ)A
T

dτ

Hence the system equation for a discrete time linear dynamic stochastic system

can be described using index-only notation as

x (k + 1) = F (k)x (k) +G (k)u (k) + v (k) k = 0, 1, ... (3.3)

Using similar notation the discrete time measurement equation can be writ-

ten as

z (k) = H (k)x (k) +w (k) k = 1, 2, ... (3.4)

where

E [w (k)] = 0

and

E
[
w (k)w (k)T

]
= R (k) δkj

Here the measurement given by Equation 3.4 represents a “short-term” in-

tegration during which the state is assumed to be constant.

The definitions of the entries in Equations 3.3, and 3.4 for the discrete time

system are

x (k) is the nx dimensional state vector,

u (k) is an nu dimensional known (control) input vector,

v (k) , k = 0, 1, ... is a sequence of zero-mean white nv dimensional

Gaussian process noise,

z (k) is the nz dimensional measurement vector,

47

w (k) , k = 1, 2, ... is a sequence of zero-mean white nz dimensional

Gaussian measurement noise,

F (k) is the state transition matrix,

G(k) is the gain through which the (control) input enters the system, and

H(k) is the measurement matrix.

One can alternatively define a direct discrete time model rather than a dis-

cretized version of a continuous time model. In that case the process noise,

which is modelled directly as a sequence of zero-mean white nv dimensional

Gaussian noise is typically modelled as entering the system through a noise

gain Γ(k), resulting in the following system equation

x (k + 1) = F (k)x (k) +G (k)u (k) + Γ(k)v (k) k = 0, 1, ... (3.5)

In this case the process noise covariance is also defined directly as

Q (k)
∆
= E
[
v (k)v (k)T

]

resulting in

E
[
(Γ(k)v (k)) (Γ(k)v (k))T

]
= Γ(k)Q (k) Γ(k)T

and similarly the measurement noise covariance matrix is defined directly as

R (k)
∆
= E
[
w (k)w (k)T

]

Note that the matrices F (k), G(k),Γ(k), H(k), Q (k) , and R (k) are all as-

sumed known and may be time-varying, i.e., the system can be time varying

with non-stationary process and measurement noise. Also note that the state

x (k), k = 0, 1, ... is a Gauss-Markov process.

48

3.2.3 The Kalman Filter

The Kalman filter is the primary method of solving the problem of state esti-

mation for the discrete time linear dynamic system described in the previous

subsection. Before summarizing the Kalman filter algorithm some definitions

will first be given, as follows. Let

x̂ (j|k) ∆= E
[
x (j) |Zk

]

where

Zk
∆
= {z (j) , j ≤ k}

denotes the sequence of observations available at time k, and

E
[
x (j) |Zk

]

is the conditional expectation of x (j) given Zk.

If j = k then x̂ (j|k) is the estimate of the state (also called the filtered

value), or, if j = k+1 then x̂ (j|k) is the predicted value (one-step) of the state.

The state estimation error at time k is defined as

x̃ (k|k) ∆= x (k)− x̂ (k|k)

The state prediction error at time k is defined as

x̃ (k + 1|k) ∆= x (k + 1)− x̂ (k + 1|k)

The state estimation covariance matrix (i.e., the covariance associated with the

estimate x̂ (k|k)) at time k is

P (k|k) ∆
= E
[
x̃ (k|k) x̃ (k|k)T |Zk

]

The state prediction covariance matrix (i.e., the covariance associated with the

prediction x̂ (k + 1|k)) at time k is

P (k + 1|k) ∆= E
[
x̃ (k + 1|k) x̃ (k + 1|k)T |Zk

]

49

The predicted measurement (one-step) is

ẑ (k + 1|k) ∆= E
[
z (k + 1) |Zk

]

The measurement prediction error (also called the innovation or residual) is

defined as

ν (k + 1)
∆
= z̃ (k + 1|k) ∆

= z (k + 1)− ẑ (k + 1|k)

The measurement prediction covariance matrix or innovation covariance matrix

is

S (k + 1)
∆
= E
[
z̃ (k + 1|k) z̃ (k + 1|k)T |Zk

]

The Kalman filter gain is

W (k + 1)
∆
= P (k + 1|k)H (k + 1)T S (k + 1)−1

The Kalman filter is a recursive algorithm, starting with the initial estimate

x̂ (0|0) of x (0) and the associated initial covariance P (0|0), both assumed to be

available. The steps involved in one cycle of the algorithm are shown in Figure

3.1

3.2.4 Multitarget Tracking

In the type of problem being considered here, the number of targets is generally

unknown. There are also often false detections occurring and some detections

are missed. To deal with this, algorithms for track initiation, data association

(i.e., assignment of detections to appropriate targets), track maintenance (when

there are missed detections), and track termination (when targets go out of

view), are generally required. Depending on the circumstances and details of

the sensors and emitters, the multitarget tracking and false detection aspects

of the problem can vary from relatively simple to extremely challenging. There

50

State estimate at t k

Pk + 1|k + 1 =

Pk + 1|k − Wk + 1Sk + 1Wk + 1T

Updated state covariance

x̂k|k

State covariance at t k

Pk|k

Known

input

uk
x̂k + 1|k =

Fkx̂k|k + Gkuk

State prediction State prediction covariance

Pk + 1|k =

FkPk|kFkT + ΓkQkΓkT

Measurement prediction

ẑk + 1|k = Hk + 1x̂k + 1|k

Innovation covariance

Sk + 1 =

Hk + 1Pk + 1|kHk + 1T + Rk + 1

Measurement

zk + 1

Measurement residual

νk + 1 = zk + 1 − ẑk + 1|k

Filter gain

Wk + 1 =

Pk + 1|kHk + 1TSk + 1−1

Updated state estimate

x̂k + 1|k + 1 =
x̂k + 1|k + Wk + 1νk + 1

State Estimation State Covariance Computation

Figure 3.1: Cycle k + 1 of the Kalman Filter

51

is considerable literature on the multitarget tracking problem covering a wide

range of target and sensor types. One example of research for a situation very

much like that dealt with in this thesis is [19]. As the central theme of this

thesis is the control of UAVs, the details of how the multiple target tracking

component would work are not considered here. Instead it is assumed that data

association has been achieved successfully by unspecified algorithms and then

(as part of the algorithms developed here) the correctly assigned measurements

are applied as inputs to Kalman filters which perform the target state estimation

process.

3.3 Optimal Control

The type of problem that we are considering has a sequential structure in which

decisions must be made as information is being received and outcomes of the

decisions are partly random and partly under the control of the decision maker.

Dynamic programming provides a natural mathematical framework for mod-

elling and solving this type of decision problem. It is used in a wide range

of areas, including robotics, automated control as well as economics and man-

ufacturing. We will now describe the dynamic programming algorithm, and

following from that, show how other well known optimal control algorithms de-

rive from it, finally finishing with the approach that we have developed for our

problem.

3.3.1 Dynamic Programming

Consider the discrete-time dynamic system [5, p. 13]

xk+1 = fk (xk, uk, vk) , k = 0, 1, ...,N − 1

52

where the state xk is an element of a space Sk, the control uk is an element of

a space Ck, and the random disturbance vk is an element of a space Dk.

The control is constrained to take values in a predefined non-empty subset

U (xk) ⊂ Ck, which depends on the current state xk, or in other words, uk ∈
U (xk) for all xk ∈ Sk and k. The random disturbance vk is characterized by a

probability distribution Pvk (·|xk, uk) that may depend explicitly on xk and uk

but not on values of prior disturbances vk−1, ..., v0 (i.e., it satisfies the Markov

property). Note that this system is an example of an MDP (summarized in

Section 3.1.5).

Let us consider the class of policies (control laws) that consist of a sequence

of functions

π =
{
µ0, ..., µN−1

}

where µk maps states xk into controls uk = µ (xk) and µ (xk) ∈ Uk (xk) ∀xk ∈
Sk. Such policies will be called admissible. Given an initial state x0 and an

admissible policy π =
{
µ0, ..., µN−1

}
, the states xk and disturbances vk have

distributions defined by the system equation

xk+1 = fk (xk, µ (xk) , vk) , k = 0, 1, ...,N − 1

For given cost functions gk, k = 0, 1, ..., N , the expected cost of the policy π

starting at x0 is

Jπ (x0) = E

{

gN (xN) +
N−1∑

k=0

gk (xk, µ (xk) , vk)

}

where the expectation is taken over the random variables xk and vk. The optimal

policy π∗ is the one that minimizes the cost, i.e.,

Jπ∗ (x0) = min
π∈Π

Jπ (x0)

where Π is the set of all admissible policies.

53

The optimal cost depends on x0 and will be denoted J∗ (x0), i.e.,

J∗ (x0) = min
π∈Π

Jπ (x0)

J∗ (x0) will be called the optimal cost function or the optimal value function.

The basic idea that the dynamic programming algorithm is based on is the

principle of optimality [5, p. 18] which can be stated as follows.

Let π∗ =
{
µ∗0, ..., µ

∗
N−1

}
be an optimal policy for the basic problem, and

assume that when using π∗, a given state xi occurs at time i with positive

probability. Consider the subproblem whereby we are at xi at time i and wish

to minimize the “cost-to-go” from time i to time N , i.e.,

E

{

gN (xN) +
N−1∑

k=i

gk (xk, µ (xk) , vk)

}

then the truncated policy
{
µ∗i , µ

∗
i+1..., µ

∗
N−1

}
is optimal for this subproblem.

Using this principle leads us to the dynamic programming algorithm, which

can be stated as follows [5, p. 23].

For every initial state x0, the optimal cost J∗ (x0) of the basic problem is

equal to J (x0), given by the last step of the following algorithm, which proceeds

backward in time from period N − 1 to 0

JN (xN) = gN (xN) ,

Jk (xk) = min
uk∈Uk(xk)

E
vk
{gk (xk, uk, vk) + Jk+1 (fk (xk, uk, vk))} , (3.6)

k = 0, 1, ...N − 1

where the expectation is taken with respect to the probability distribution of

vk which depends on xk and uk. Furthermore, if u∗k = µ∗k (xk) minimizes the

right side of Equation 3.6 for each xk and k, the policy π∗ =
{
µ∗0, ..., µ

∗
N−1

}
is

optimal.

54

The above algorithm assumes that the controller has access to the exact value

of the current state (this is referred to as the perfect state information case);

however, in the problem that is considered in this thesis, as with many other

real-life problems, this is not the case. Some of the variables are not directly

accessible; instead, their values are measured with relatively inaccurate sensors.

We can model this type of problem by assuming that at each stage the controller

receives some observations of the value of the current state, which are corrupted

by stochastic uncertainty. Problems in which the controller uses observations

of this type in place of the actual state are called problems of imperfect state

information; they are also referred to as POMDPs (summarized in Section

3.1.5). Conceptually these types of problem can be reduced to the problem of

perfect state information and hence solved using dynamic programming. One

way of reducing the problem to the perfect information case is described below.

Problems with Imperfect State Information

Consider the problem where, instead of knowing xk, we receive observations

z0 = h0 (x0, w0) , zk = hk (xk, uk−1, wk) , k = 1, 2, ...,N − 1

where each observation zk belongs to a given observation space Zk, the random

observation disturbance wk belongs to a given space Wk. We will assume that

the probability distribution of the observation disturbance wk+1 depends explic-

itly only on the immediately preceding state, control, and system disturbance

xk, uk, vk and not on xk−1, ..., x0, uk−1, ..., u0, vk−1, ..., v0, wk−1, ...w0.

The initial state x0 is also random and characterized by a probability distri-

bution Px0 . The probability distribution Pvk (·|xk, uk) of vk is given and may de-

pend explicitly on xk and uk but not on values of prior disturbances vk−1, ..., v0,

wk−1, ..., w0. The control uk is constrained to take values from a given nonempty

55

subset Uk of the control space Ck and it is assumed that this subset does not

depend on xk.

Let Ik be the information available to the controller at time k; we will call

it the information vector. We have

Ik = (z0, ..., zk, u0, ..., uk−1) , k = 1, 2, ..., N − 1,

I0 = z0

We now consider the class of policies that consist of a sequence of functions

π =
{
µ0, ..., µN−1

}

where each function µk maps the information vector Ik into the control space

Ck and µ (Ik) ∈ Uk for all Ik, k = 0, 1, ...,N − 1. These policies will be called

admissible. We now want to find an admissible policy π =
{
µ0, ..., µN−1

}
, that

minimizes the cost function

Jπ = E
x0,vk,wk
k=0,..,N−1

{

gN (xN) +
N−1∑

k=0

gk (xk, µ (Ik) , vk)

}

subject to the system equation

xk+1 = fk (xk, µ (Ik) , vk) , k = 0, 1, ..., N − 1

and the measurement equation

z0 = h0 (x0, w0) , zk = hk
(
xk, µk−1 (Ik−1) , wk

)
, k = 1, 2, ..., N − 1

Note that for the perfect information case we were looking for a rule that

specifies the control uk to be applied for each state xk and time k, whereas now

we are trying to find a rule that gives the control uk to be applied for every

possible information vector Ik and time k.

56

Now, with the assumptions made above, it can be shown [5, chapt. 5] that a

sufficient statistic for the above problem is given by the conditional probability

distribution Pxk|Ik of the state xk, given the information vector Ik. In particular,

we can write for all k

Pxk+1|Ik+1 = Φ
(
Pxk|Ik , uk, zk+1

)
,

where Φk is some function that can be determined from the data associated with

the problem, uk is the control, and zk+1 plays the role of a random disturbance

whose statistics are known and depend explicitly on Pxk|Ik and uk, and not on

zk, ..., z0.

The dynamic programming algorithm for the imperfect information case,

can be thus stated as follows [5, p. 246] for all k < N − 1

J̄k
(
Pxk |Ik
)
= min

uk∈Uk

[
E

xk,vk,zk+1

{
gk (xk, uk, vk) + J̄k+1

(
Φ
(
Pxk|Ik , uk, zk+1

))
|Ik, uk
}]

and for the case where k = N − 1

J̄N−1
(
PxN−1|IN−1

)
= min

uN−1∈UN−1

 E
xN−1,vN−1

gN (fN−1 (xN−1, uN−1, vN−1))+

gN−1 (xN−1, uN−1, vN−1) |IN−1, uN−1

The above algorithm yields a policy of the form

π̄∗ =
{
µ̄∗0
(
Px0|I0
)
, ., µ̄∗k
(
Pxk|Ik
)
, .., µ̄∗N−1

(
PxN−1|IN−1

)}

and the optimal cost is given by

J∗ = E
z0

{
J̄0
(
Px0|z0
)}

where J0 is obtained from the last step of the of the algorithm, and the probabil-

ity distribution of z0 is obtained from the measurement equation z0 = h0 (x0, w0)

and the statistics of x0 and w0.

57

The above algorithm can be viewed as a dynamic programming algorithm of

a perfect state information problem whose state is Pxk |Ik . Hence, in the absence

of perfect knowledge of the state, the controller can be viewed as controlling the

probabilistic state Pxk|Ik so as to minimize the expected cost-to-go conditioned

on the information Ik. The representation of the optimal policy as a sequence

of functions of the conditional probability Pxk|Ik is conceptually very useful in

that it provides a decomposition of the optimal controller into two parts, i.e.,

• an estimator, which generates the probability distribution Pxk |Ik using the

measurement zk and the control uk−1,

• an actuator, which generates a control input to the system as a function

of the probability distribution Pxk|Ik .

While conceptually useful, the above algorithm, as it stands can only be

applied in practice for relatively simple problems that have a solution space

that is relatively small. The problem is that for most real-life applications the

amount of computation required to obtain optimal policies is so huge that the

algorithm simply is infeasible to apply. However, one can take this concept

further. Consider the case of a linear system and a quadratic cost function; this

type of system can be described by the following equations [5, chapt. 5.2]

xk+1 = Akxk + Bkuk + vk k = 0, 1, ..., N − 1

zk = Ckxk + wk k = 0, 1, ..., N − 1

and its cost as

E

{

xTNQNxN +
N−1∑

k=0

(
xTkQkxk + uTkRkuk

)
}

where xk, zk and uk are vectors of dimension nx, nz and nu, respectively and the

matrices Ak, Bk, Ck, Qk and Rk are given and have the appropriate dimensions.

58

The matrices Qk and Rk are assumed to be positive semidefinite symmetric and

positive definite symmetric, respectively. The controls uk are unconstrained,

and the disturbances vk are independent random vectors with given probability

distributions that have zero mean and finite second moment and are also inde-

pendent of xk and uk. The observation noise vectors wk are independent and

also independent of vk and x0.

It can be shown that for the above problem the optimal policy is the same as

for the perfect information case, but with the state xk replaced by its conditional

expectation E {xk|Ik}. So now we have the optimal controller decomposed into

two parts as follows

• an estimator, which generates the conditional expectation E {xk|Ik} using

the measurement zk and the control uk−1,

• an actuator, which multiplies E {xk|Ik} by a gain matrix Lk and applies

the control input uk = Lk.

The gain matrix Lk is independent of the statistics of the problem and is

the same as would be the case with the deterministic problem with vk and x0

fixed and equal to their expected values. Hence, the estimator portion of the

optimal controller is an optimal solution of the problem of estimating the state

xk assuming the control is not subject to choice, and the actuator portion is

an optimal solution of the control problem assuming perfect state information.

This property is referred to as the separation theorem for linear systems and

quadratic cost or the certainty equivalence principle.

If we go one step further and assume the disturbances vk, wk and the initial

state x0 are Gaussian random vectors, a computationally efficient implementa-

tion of the estimator of the conditional expectation E {xk|Ik} exists, i.e., the

Kalman filter, which was described in Section 3.2.3.

59

The outcome of all this is a huge reduction in the amount of computation

required while still retaining optimality of the solution. The above result for

linear systems with quadratic cost is so useful that it is also used as the basis

of various suboptimal control schemes for nonlinear systems. In fact, because

of the challenging nature of optimal stochastic control of nonlinear systems,

approximations are often the only recourse. One of the more straightforward

methods of approximation is based on the idea that any sufficiently smooth

nonlinear system is approximately linear in the neighbourhood of a reference

sequence of states. The control scheme is then designed using the separation

properties of linear quadratic systems, bearing in mind that the resulting control

will be suboptimal; the resulting controller is referred to as a certainty equivalent

(CE) controller [5, p. 271]. This approximation will, in fact, be used in the

development of the algorithm that is the subject of this thesis. At this point,

the reader is also referred to one of the seminal papers on separation theorems

for discrete time stochastic control systems by H. S. Witsenhausen, i.e., [60].

The paper discusses the above separation theorem as well as other “softer”

separation theorems based on less restrictive assumptions.

3.3.2 Certainty Equivalent Control

As mentioned above, the CE controller is a suboptimal control scheme that

applies at each stage the control that would be optimal if some or all of the

uncertain quantities were fixed at some “typical” values. To see how this works,

consider the imperfect state information problem described above. Now as-

sume we have an estimator that uses the information Ik to produce an estimate

x̄k (Ik) = E {xk|Ik} of the state, and for every state control pair (xk, uk) an es-

timate of the disturbance v̄k (xk, uk) = E {vk|xk, uk}. The control input µ̃k (Ik)

applied by the CE controller at time k is then determined by the following

60

algorithm:

1. Compute a state estimate x̄k (Ik) given the current information vector Ik.

2. Find a suboptimal control sequence {ũk, ũk+1, ..., ũN−1} that solves the

deterministic problem of minimizing

gN (xN) +
N−1∑

i=k

gi (xi, ui, v̄i (xi, ui))

subject to the initial condition xk = x̄k (Ik) and for i = k, k + 1, ...,N − 1

ui ∈ Ui (xi) , xi+1 = fi (xi, ui, v̄i (xi, ui))

3. Use the first element in the resulting control sequence as the control, i.e.,

µ̃k (Ik) = ũk.

The above optimization algorithm must be solved for each time k, hence a

total of N such problems has to be solved by the CE controller to determine

the entire sequence of control inputs µ̃k (Ik), k = 0, 1, ...,N − 1. Note, however,

that each of the problems is deterministic.

Even though the certainty equivalent control (CEC) approach greatly re-

duces the amount of computation required, it still requires the solution of a

deterministic optimal control problem at each stage. For many problems this

still requires more computation than is feasible to implement. A method to

reduce the computation further is to use some form of heuristic algorithm. One

commonly used variant of the CEC approach is to use an easily implementable

heuristic to find a suboptimal control sequence {ũk, ũk+1, ..., ũN−1} for each stage

of the above minimization problem. The way this is generally done is to use

minimization over the first control uk with the cost of the remaining stages

61

k + 1, ..., N − 1 being approximated using the heuristic. Hence, at each time k,

a control ũk that minimizes the expression

gk (xk, uk, v̄k (xk, uk)) +Hk+1 (fk (xk, uk, v̄k (xk, uk))) ,

over uk ∈ Uk (xk) is applied, where Hk+1 is the cost-to-go function corresponding

to the heuristic. Note that Hk+1 (fk (xk, uk, v̄k (xk, uk))) = Hk+1 (xk+1) is the

estimate of the cost incurred over the remaining stages k+1, ..., N − 1, starting

from state xk+1, based on the heuristic and the assumption that the future

disturbances are equal to their typical values v̄i (xi, ui). In a later chapter of

this dissertation, a particular and commonly used method of approximating the

cost-to-go called policy rollout will be described in some detail and used to solve

part of the optimization problem that we are concerned with.

Using the above heuristic based approach increases the range of problems

that can be dealt with; however, many practical problems are sufficiently com-

plex that, by itself, the approach does not simplify the computations sufficiently

to provide the required solution. This is, in fact, the case for the problem being

dealt with in this thesis. Two approaches that can further aid us in dealing with

complexity are hierarchical control and model predictive control. These will be

summarized in the following two sections.

3.3.3 Hierarchical Control

The advantage of developing hierarchical solutions for the optimization of dy-

namical systems is that, although dynamic programming can be used in princi-

ple, as the dimension and number of variables is increased the direct solutions to

the control problems rapidly become intractable; this dilemma was first referred

to by Bellman [4] as the “curse of dimensionality”. Breaking up the problems

62

into a hierarchy of smaller control problems can make otherwise infeasible op-

timization problems solvable.

For our purposes, a hierarchy can be defined as having the following prop-

erties [52, chapt. 1]:

1. A hierarchy consists of decision making units arranged in a pyramid struc-

ture, where at each level, one or more units operate in parallel.

2. Hierarchical structures exist in systems which have an overall goal, and

the goals of all the decision making units are in harmony.

3. There is an iterative information exchange between the decision making

units on the various levels of the hierarchy, with a precedence for informa-

tion going down and being treated as commands by the lower levels which

try to obey where possible.

4. The time horizon of interest increases as one goes up the hierarchy.

A well known method of breaking up an optimization problem into a hier-

archy is to form the Lagrangian dual of the original optimization problem and

solve the dual problem by decomposing it into N optimization problems, one for

each subsystem, and then using a two level iterative calculation structure to find

the optimal solution. The reader is referred to [35], [52] and [53] for a detailed

description of this hierarchical solution approach. This approach, however, is

not feasible for the problem that we are dealing with because, even if all other

potential issues could be dealt with, the method does not sufficiently reduce the

computation requirements for this problem to enable it to be implemented in a

realizable real-time system, which is a primary requirement of any solution that

is to be developed. Instead a hierarchical form of the model predictive control

approach was used. Model predictive control is described in the next section.

63

3.3.4 Model Predictive Control

Model predictive control (MPC), otherwise known as receding horizon control

or moving horizon control is a form of CEC that originated in the nineteen

seventies and has found widespread use particularly in petro-chemical process

control and related industries. With the increase in computational power of

modern computers it is also now finding more widespread use in areas such as

robotics. The term model predictive control defines a range of control methods

that have a common general strategy [8]. The features that are common to the

MPC strategy are

• explicit use of a model to predict the system output at future time instants

up to a finite horizon and calculation of an optimal control sequence by

minimizing a cost function,

• a receding horizon strategy where at each update of the controller the

horizon is displaced toward the future.

In its simplest form the MPC algorithm is as follows. At each sampling time

k, k = 0, 1, 2, ... of the system

1. solve on-line, a finite horizon open-loop optimal control problem using the

state of the system at time k as the initial state, and the information avail-

able at time k. This optimization results in an optimal control sequence
{
u∗k, u

∗
k+1, ..., u

∗
k+NH−1

}
where NH is the prediction horizon,

2. then apply the first control in this sequence, i.e., u∗k to the plant.

MPC offers a range of advantages over other methods, the most important

being

64

• It is one of the few methods that can deal effectively with hard constraints.

• It can be used to control a large variety of processes from those with quite

simple dynamics to more complex ones.

• It has the ability to handle control problems where off-line computation

of a control law is difficult or impossible.

• It is able to effectively deal with multi-variable systems.

• It is an open methodology based on certain basic principles which allows

for future extensions.

There is a considerable literature on MPC which attests to the importance

and usefulness of this approach. The reader is referred to the surveys of the

state of the art and literature which can be found in [42] and [43].

The strategy described above can also be generalized somewhat as follows.

Let NP be the planning horizon where 2 ≤ NP < ∞ and NC be the control

horizon where 1 ≤ NC ≤ NP . Then the strategy is as follows:

1. at times k = 0, NC , 2NC , 3NC , ...calculate and store the optimal control se-

quence
{
u∗k, u

∗
k+1, ..., u

∗
k+NP−1

}
based on the information available at time

k,

2. at each sampling time k, k = 0, 1, 2, ... of the system, apply the optimal

control action u∗k for time k that was (most recently) calculated in step 1.

This version of MPC reduces the number of times the open loop optimiza-

tions are performed while still applying the most recently computed optimal

control at each sampling time k of the plant. The main advantage of this

generalization is a reduction in the amount of computation required, but with

65

the cost, of course, of some degradation in performance as NC increases; with

this approach the designer needs to balance performance against computation

requirements for the particular application being considered.

3.3.5 Hierarchical Model Predictive Control

One can generalize the MPC concept still further; in particular there has been

considerable research in distributed MPC and increasingly in recent years in

hierarchical MPC with the aim of dealing with more complex and large scale

systems. A variety of solutions to various types of problems have been presented

in the literature; the reader is referred to the survey paper [47] by Scattolini for a

survey and classification of distributed and hierarchical MPC solution strategies

for various types of problems.

In this thesis we take the general idea of hierarchical MPC and develop

a form that enables us to solve the distributed sensing problem that we are

dealing with. The details will be described in the following chapter; however,

the general concept involves the implementation of a planner which computes

coarse-grained preliminary trajectories for the UAVs with a planning horizon

NP that is right up to the current estimate of the goal state. Instead of these

trajectories being passed down to the individual UAV controllers, individual

cost functions for each UAV, which are based on the trajectories computed by

the planner, are notionally passed down and added together with local cost

functions to compute and implement the individual UAVs control actions. The

local computation and application of the control actions is performed at each

system sampling time k with a local optimization horizon of 1. The control

horizon NC (as defined above) corresponds in length to a single leg of the most

recently computed preliminary trajectory produced by the planner. Figure 3.2

shows the concept diagrammatically; in the figure the cost functions produced

66

Planner

UAV1 Controller UAV2 Controller UAVN Controller

(Long Horizon)

(Short Horizon) (Short Horizon) (Short Horizon)

CT1
= CP1

+ CC1
CT2

= CP2
+ CC2

CTN
= CPN

+ CCN

CP1
CP2

CPN

Figure 3.2: Proposed Hierarchical MPC Concept

by the planner are labelled CPi , the local cost functions are labelled CCi and the

combined cost functions for each UAV are labelled CTi where i = 1, .., N and

N is the number of UAVs. Note that this control structure has the properties

that were used to define a hierarchy in Section 3.3.3.

At this point now we have summarized the background theory that will be

used for the formulation of the solution to the adaptive multisensor multitarget

tracking problem being considered. The following chapter will now develop the

hierarchical controller to address this problem.

Chapter 4

Hierarchical Model Predictive

Control of UAV Trajectories

4.1 Problem Statement

The problem to be considered in this project is that of multiple UAVs carrying

passive ES sensors, detecting, tracking and reacting to multiple stationary or

slowly moving radar-carrying platforms. The tracking will be performed coop-

eratively with a centralized tracker collecting detections from the UAVs, per-

forming data association and forming tracks. Upon detection of enemy radars,

a centralized controller will assign UAVs to appropriate targets, based on target

distance taking into account no-fly zones that must be avoided. The UAVs will

respond to the threats by altering their trajectories to improve target position

estimates in as short a time as possible, so as to enable reaction to threats with

other resources which could, for example, include jammers or missile-carrying

aircraft. Stochastic optimal control theory is used to form the basis of the

solution to this problem.

Let us consider key components of the problem in some detail now.

67

68

Detection of targets Target detection will be by ES sensors which will pro-

vide angle-only information about radar emitters to a specified accuracy, which

is generally quite coarse. The emitters will be assumed to be scanning radars

with high gain narrow main beams. Detections by the ES sensors will only

occur when they are illuminated by the main beam of a radar. The detections

will hence be asynchronous.

Tracking of detected targets In this type of problem a multi-target Kalman

filter based tracker, incorporating a data association algorithm, is generally

used. For this paper a simplified tracker will be used which will include key

features relevant to the scheduling problem being considered here.

Obstacle avoidance There may be no-fly zones in the area of coverage or

areas to be avoided because of threats of UAVs being detected by the enemy.

These obstacles need to be taken into account when UAV to target assignment is

done and in the computation of UAV trajectories. For this to be done, planning

algorithms need to be applied which optimize on the basis of long term goals

while simultaneously avoiding the obstacles.

Optimal trajectory control Taking into consideration all of the above, the

trajectories of the UAVs must be controlled in such a way as to optimize perfor-

mance, the goal being to achieve required target position estimation accuracy

within the shortest possible time so as to enable some operational goal to be

achieved, e.g., destruction of enemy asset.

In the following sections the UAV trajectory optimization algorithm address-

ing the above problem is developed. The problem is approached by formulating

it as a POMDP and developing a hierarchical model predictive control (Section

3.3.5) solution taking into account short and long term costs. The effectiveness

69

of the approach is evaluated by performing simulations involving multiple UAVs

and targets.

4.2 Mathematical Framework and Proposed Con-

trol Algorithm Concept

As mentioned in Section 4.1, the system is modelled as a POMDP (Section

3.1.5); the optimization problem can then be formulated as a discrete time

dynamic system of the following general form

xk+1 = f (xk, uk, vk) , k = 0, 1, ..., N − 1, (4.1)

where k indexes discrete time, xk is the state of the system at time k, uk is the

control or decision variable to be selected at time k, vk is a random parameter

(also called disturbance or noise), N is the horizon or number of times control

is applied.

The controller has access to observations zk of the form

z0 = h0 (x0, w0) , zk = hk (xk, uk−1, wk) , k = 1, 2, ...,N − 1 (4.2)

where wk is the random observation disturbance.

The initial state x0 is random and characterized by a given probability distri-

bution Px0. The probability distribution Pvk (·|xk, uk) of vk is given, and it may

depend explicitly on xk and uk but not on the prior disturbances v0, ..., vk−1,

w0, ..., wk−1. The control uk is constrained to take values from a given non-

empty subset Uk of the control space Ck. Let us denote by Ik the information

available to the controller at time k and call it the information vector. We

have I0 = z0, Ik = (Ik−1, zk, uk−1) , k = 1, 2, ..., N − 1. Furthermore, we have

70

P (zk+1|Ik, uk) = P (zk+1|Ik, uk, z0, z1, ..., zk) since z0, z1, ..., zk are part of the

information vector Ik.

Consider the class of policies consisting of the sequence of functions π =
{
µ0, ..., µN−1

}
, where each function µk maps the information vector Ik into the

control space Ck and uk = µk(Ik) ∈ Uk, for all Ik, k = 0, 1, ...,N − 1. Such

policies are called admissible. Let gk (xk, uk, vk) be the cost function associated

with selection of control uk at time k, k = 0, 1, ..., N − 1. The optimal solution

is then the admissible policy π =
{
µ0, ..., µN−1

}
that minimises the cost

Jπ = E
x0,vk,wk
k=0,..,N−1

{
N−1∑

k=0

gk (xk, uk, vk|Ik, uk)
}

(4.3)

subject to Equations 4.1 and 4.2.

In principle the optimal solution can be found using dynamic programming,

however, in practice computing the solution is infeasible because of the ex-

cessive amount of computation required. Instead, an approximate dynamic

programming approach is considered here involving a form of CEC by sub-

stituting xk with its state estimate x̄k (Ik) = E {xk|Ik}, and similarly letting

v̄k (xk, uk) = E {vk|xk, uk} and also applying heuristics to further reduce the

amount of computation required. With these substitutions an approximate so-

lution can be formulated in which a minimisation is performed on the following

expression at each time step k

J̃k = gk (x̄k, uk, v̄k) +Hk+1 (fk (x̄k, uk, v̄k)) , (4.4)

where Hk+1 is the cost-to-go function corresponding to the heuristic, to compute

a suboptimal control sequence {ũk, ũk+1, ..., ũN−1} . Unfortunately, while much

less computationally intensive than the optimal solution, this formulation still

results in a very large amount of computation for the current problem unless

Hk+1 is set to zero (as is commonly done) or some trivial heuristic.

71

To further simplify the calculation of a suboptimal control sequence for the

UAV control problem a hierarchical variant of the model predictive control ap-

proach is proposed. The solution involves splitting the control algorithm into

two components. First, a planner which uses a heuristic algorithm, motivated

by Equation 4.4, to find a coarse-grained solution. The planner uses a cost

function which involves only distance travelled to target, to find the best as-

signment of UAVs and their best trajectories on the basis of the lowest overall

cost. The reasoning is that a key aspect of the problem is to reliably bring the

UAVs within proximity of their assigned targets, while avoiding no-fly zones

and in particular avoiding being trapped in local minima, which is a problem

that often occurs with myopic optimization algorithms. This optimization is

performed repeatedly at relatively long time steps every TP seconds (currently

TP is set to 60 seconds). Two types of planner will be developed, a heuristic

algorithm and one that uses a policy rollout approach [6]; their performance

will then be compared.

The second component of the control algorithm is a fine-grained one-step-

ahead controller (i.e., as per Equation 4.4 but with Hk+1 (fk (x̄k, uk, v̄k)) = 0).

The one-step-ahead controller is executed at short time steps (at every measure-

ment update in the algorithm presented in this chapter - this will, however, be

modified in a subsequent chapter as the algorithm is further developed). The

fine-grained controller has two components in its cost function, one being based

on the one-step-ahead estimation error of the system of sensors and the other

being based on the cost of divergence from the path computed by the planner.

In addition to the two components of the control algorithm described above,

an estimation algorithm is required in order to be able to compute the state

estimates x̄k (Ik) = E {xk|Ik}. So in summary, the control system consists

of a state estimation algorithm and a controller, where the controller has two

72

components, a planner and a one-step-ahead controller. The following sections

will describe each component in detail.

Before beginning the next section, it should be noted that with the type

of the problem being considered, all the key aspects can be modelled as two

dimensional scenarios while maintaining the essential features of the problem.

Attempting to model the problem in three dimensional space would hugely

complicate the problem without adding anything of significance to the solution.

Hence, in the remainder of the thesis, the problem is presented and solved in two

dimensional Cartesian space. As is apparent from the references in Chapter 2,

this is consistent with the approach generally taken in the literature for similar

problems.

4.3 State Estimation Algorithm

A Kalman filter is used for the estimation component of the control algorithm.

Section 3.2.3 describes the general Kalman filter in detail. Here it will be quickly

summarized and then a filter be developed specifically for our application.

The Kalman filter is an optimal estimator for a discrete time linear dynamic

system which can be described by the following general system and measurement

equations respectively

x (k + 1) = F (k)x (k) +G (k)u (k) + Γ(k)v (k) k = 0, 1, ...

z (k) = H (k)x (k) +w (k) k = 1, 2, ...

where x (k) is the state vector of the system, u (k) is a known (control) input

vector, v (k), k = 0, 1, ... is a sequence of zero-mean white Gaussian noise, z (k)

is the measurement vector, w (k), k = 1, 2, ... is a sequence of zero-mean white

73

Gaussian measurement noise, F (k) is the state transition matrix, G(k) is the

gain through which the (control) input enters the system, Γ(k) is the noise

gain and H(k) is the measurement matrix. F (k), G(k),Γ(k),H(k) are assumed

known.

Consider now the case of a target whose motion is modelled by a piecewise

constant white noise acceleration model in a Cartesian coordinate system [2].

Also assume that the x and y components of the target’s acceleration noise

are independent, with equal standard deviation σa, then the following system

equation can be easily derived

x (k + 1) = F (k)x(k) + Γ(k)ar(k)

where

F (k) =

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

Γ(k) =

0.5T 2 0

T 0

0 0.5T 2

0 T

x(k) =
[

x ẋ y ẏ
]T

k

ar(k) =
[
arx ary

]T

k

and the acceleration noise covariance matrix is

Qa(k) =

σ
2
a 0

0 σ2a

74

The measurement equation is

z(k) = H(k)x(k) +w(k)

where

H(k) =

 1 0 0 0

0 0 1 0

z(k) =
[

zx zy

]T

k

w(k) =
[
wx wy

]T

k

In the application being considered the measurements are of angle only, with

the possibility of some range information being deduced from signal strength.

Since the measurements are actually in polar coordinates, with measurement

errors being in range and azimuth, the measurement error covariance matrix,

in Cartesian coordinates is [15]:

R(k) =

σ
2
wr

cos2 θ + r2σ2wθ sin
2 θ 1

2

[
σ2wr − σ2wθ

]
sin 2θ

1
2

[
σ2wr − σ2wθ

]
sin 2θ σ2wr sin

2 θ + r2σ2wθ cos
2 θ

k

where r(k) and θ(k) are the range and azimuth of the target, respectively, σwr(k)

and σwθ(k) are the standard deviations of the range and azimuth components

of the measurement noise, respectively.

For the tracker simulator used in this work, a separate Kalman filter is run

for each target using the measurements from all sensors. There are consider-

able challenges in multi-target multi-sensor angle-only tracking, leading to quite

complex tracking algorithms being required to obtain good performance. The

emphasis of this work is on control aspects, rather than the development of a

sophisticated tracker, hence only a simple tracker simulator and measurement

model are considered. The “actual” measurements that are simulated also follow

this model, but retain the key properties of much better measurement accuracy

75

in angle than in range, and cross-range error that increases linearly with tar-

get range, thus avoiding tedious details that are not particularly relevant to

the central theme of this work. Data association, i.e., the correct assignment

of measurements to targets is also a challenging component of the tracking al-

gorithm. For this work the data association is simulated using known correct

assignments of measurements and for now assumed perfect. In real situations,

data association would generally not be perfect, with its quality being a function

of algorithms used and the specific scenario in question. For a description of

a tracker that does address the complexities of multisensor angle-only tracking

the reader is referred to [19].

4.4 Planning Algorithm

The planning algorithm is composed of a shortest path calculation algorithm

and an assignment algorithm. Two shortest path computation algorithms have

been developed; the first is a heuristic algorithm and the second uses a technique

called policy rollout. Section 4.4.1 describes the assignment algorithm, and

then Sections 4.4.2 and 4.4.3 describe the heuristic and rollout based shortest-

path algorithms respectively. Section 4.4.4 then demonstrates and compares the

performance of the planner when using heuristic and rollout based shortest-path

algorithms. The algorithms were implemented in Matlab for this demonstration.

4.4.1 Assignment Algorithm

A key aim of the control is to position the UAVs as quickly as possible to

satisfy some estimation accuracy criterion for all known targets. For direction

of arrival sensing, two sensors for a particular target is the minimum number

that can give good position estimates quickly. Hence a design choice was made

76

to assign a pair of UAVs to each known target and optimize each pair’s control on

performance for their assigned target. Excess available UAVs are not assigned

to any particular target and their control is optimized for overall performance

on all targets. Note that in some situations one may wish to assign single UAVs

or even 3 or more UAVs to a particular target. This would still be workable

within the algorithmic approach that is to be proposed. However, for the sake

of demonstrating the approach without involving unnecessary complexity but

still without loss of generality, we chose to demonstrate the approach with what

is likely to be the most commonly used number of UAVs, i.e., two.

The first task once at least one or more targets are detected is hence to

assign a pair or pairs of UAVs to known targets. The assignment is based on

the shortest distance to target for each UAV taking into account no-fly zones

which must be avoided. The no-fly zones are modelled as the sum of one or

more circular regions and are assumed to be stationary. In order to perform

the assignment, the shortest distance to target is first calculated for each UAV-

target combination using one of the two shortest path algorithms that will be

described in Sections 4.4.2 and 4.4.3. The assignment is then performed as

follows.

Let dik be the shortest distance calculated for UAV i and target k using the

selected shortest path algorithm. Then, once dik for all possible values of i and

k are computed, the next step is to compute the cost for each pair of UAVs to

target combination. Let Cijk represent the cost for UAVs i and j to travel to

target k. The algorithm then defines the cost to be:

Cijk = max (dik, djk)

Without limiting generality, let us now consider the case where the number

of UAVs is even and equal to or greater than twice the number of known targets;

77

the following can then be relatively easily derived. The number of ways pairs

of UAVs can be assigned to all the targets is:

NA =

NT∏

k=1

C
NU−2(k−1)
2

where NU is the number of UAVs, NT is the number of (known) targets and

CN
k =

N !

k! (N − k)!

Then for every possible assignment of pairs of UAVs to all targets, Am, m =

1, ..,NA, compute the sum of the costs for each UAV pair to target combination

CAm =
∑

Cijk

The optimal assignment, which has the minimum value of CAm associated

with it, is then found. This assignment is performed every time the planner is

run and is stored for use by the one-step-ahead controller until the next run of

the planner. The first legs of the UAV paths associated with this assignment

are also stored.

4.4.2 Heuristic Shortest Path Algorithm

The problem of path planning in an environment with obstacles has in the past

been performed with a number of algorithms. For example, the Distance Trans-

form [27], a combination of the Distance Transform and a Map Segmentation

Algorithm [40], Visibility Graph [44], [3], Rapidly-exploring Random Trees [37]

and a Potential Field Based Approach [30]. In this thesis two new algorithms,

one a heuristic algorithm and the other based on an approximate dynamic pro-

gramming technique called policy rollout [6] are developed as alternate path

planning algorithms suitable for real time applications. Let us now consider the

heuristic algorithm.

78

The shortest distance to target is calculated for each UAV-target combi-

nation according to the recursive algorithm described by the three functions

in Algorithm 4.1, starting with the function StraightToTarget. Application of

this algorithm usually results in multiple possible paths (e.g., 2 paths when

1 no-fly zone is encountered, 4 paths when 2 no-fly zones are encountered,

and so on). The best of these (i.e., the shortest path) is then picked based

on the path length of each of the paths. Figure 4.1 shows an example of

the case when two no-fly zones are encountered. The initial position (in me-

tres) of the UAV is xUAV = (19000, 1000) and the position of its target is

xT = (25000, 50000). The first no-fly-zone is the union of two circular regions

with centres at xNFZ1c1 = (21500, 15000) , xNFZ1c2 = (28500, 15000) and radii

rNFZ11 = 6500, rNFZ12 = 6500, respectively, and the second no-fly zone is a cir-

cular region with its centre at xNFZ2c = (25000, 35000) and radius rNFZ2 = 8000.

For this case, four paths are computed, with path 1 being selected as the shortest

path.

Some comments regarding computational complexity of Algorithm 4.1 are

worthwhile. In computer science the term time complexity is generally used to

quantify the time taken for an algorithm to run as a function of the size of

the input to the problem. The time complexity is commonly expressed using

a capital O to represent the order of the function. Using this terminology, the

time complexity of Algorithm 4.1 can easily be shown to be O
(
NS.2

NNFZ
)

where

NS is the number of steps traversed (equivalent to distance travelled) from the

UAV’s initial position to its final position, and NNFZ is the number of no-fly

zones that are encountered by the UAV. The important points to note are that

the time complexity is a linear function of NS, the number of steps traversed,

and an exponential function of NNFZ, the number of no-fly zones encountered.

Since, in general, for the type of problem considered in this thesis, although NS

79

Algorithm 4.1 Heuristic Shortest Path Algorithm
Function StraightToTarget:
loop

Move one step straight toward target
If reached target then exit loop
If current step is in obstacle then

BypassAnticlockwise
BypassClockwise
exit loop

end loop

Function BypassAnticlockwise:
loop

Move one step at smallest possible angle
anticlockwise from direction of target

If reached target then exit loop
If current step is not in obstacle for a step
that is directly towards target then

StraightToTarget
exit loop

end loop

Function BypassClockwise:
loop

Move one step at smallest possible angle
clockwise from direction of target

If reached target then exit loop
If current step is not in obstacle for a step
that is directly towards target then

StraightToTarget
exit loop

end loop

80

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5
x 10

4 Path 1

X (metres)

Y
 (

m
e

tr
e

s
)

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5
x 10

4 Path 2

X (metres)

Y
 (

m
e

tr
e

s
)

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5
x 10

4 Path 3

X (metres)

Y
 (

m
e

tr
e

s
)

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5
x 10

4 Path 4

X (metres)

Y
 (

m
e

tr
e

s
)

Figure 4.1: Paths Produced by Heuristic Shortest Path Algorithm for Case of
Two No-fly Zones

81

will usually be large, NNFZ will be small, making Algorithm 4.1 well suited to

this type of problem.

Another point to note is that, while the shortest path produced by the

heuristic algorithm is not optimal, it will generally be quite a reasonable ap-

proximation and, importantly, it can be computed very quickly. The algorithm

will also be used as a component of the algorithm described in Section 4.4.3,

leading to an algorithm which produces paths that are closer to optimal, but at

the expense of extra computation.

4.4.3 Shortest Path Algorithm using Policy Rollout

The policy rollout approach [5, p. 314], [6] that has been developed for com-

puting the shortest distance to target is as follows. Consider a single UAV and

target; the shortest path from the current UAV position to the target can be

estimated using Equation 4.4, where the equation is applied to the simplified

problem of determining the shortest distance to target. To describe the rollout

approach as used here, first, for all uk ∈ Uk (x̄k), let

Qk (x̄k, uk) = gk (x̄k, uk, v̄k) +Hk+1 (fk (x̄k, uk, v̄k)) (4.5)

where Qk (x̄k, uk) is known as the Q-factor of (x̄k, uk) at time k. Consider,

the second component of Equation 4.5, i.e., the cost-to-go Hk+1 (fk (x̄k, uk, v̄k)).

To approximate Hk+1 for each possible next state, fk (x̄k, uk, v̄k) , a heuristic

(suboptimal) base policy π =
{
µk, ..., µN−1

}
, where µk = µk (x̄k) , is applied,

which results in the sequence of controls {uk, ..., uN−1} and states {x̄k+1, ..., x̄N}.
The base policy is the heuristic algorithm that was described in Section 4.4.2.

The Q-factors Qk (x̄k, uk) for all uk ∈ Uk (x̄k) are then computed using Equa-

tion 4.5, where gk (x̄k, uk, v̄k) is the distance travelled from x̄k to x̄k+1 with con-

trol uk applied, and Hk+1 is the sum of the distances travelled from x̄k+1 to

82

x̄N for the sequence of states {x̄k+1, ..., x̄N} , as computed from the algorithm

above, starting from the next state, fk (x̄k, uk, v̄k) resulting from control uk, i.e.,

Hk+1 =
N−1∑

j=k+1

|x̄j+1 − x̄j| (4.6)

The rollout control µ̃ (x̄k) is then obtained by finding the minimum Q-factor,

i.e.,

µ̃ (x̄k) = arg min
uk∈Uk(x̄k)

Qk (x̄k, uk) (4.7)

This process is then repeated at each time step k, k = 0, .., NR − 1, where

NR is the number of steps in the rollout policy, to find a (suboptimal) solution

for the shortest path. The time complexity of the policy rollout algorithm, for

a single UAV and target, is O
(
NR.NS.2

NNFZ
)
, where NS and 2NNFZ are defined

in Section 4.4.2.

Note that there are some options in the way that the base policy could be

used when performing the policy roll-out algorithm and subsequent assignment.

The way that was chosen is as per the following procedure:

1. Perform the policy rollout algorithm for each single target to single UAV

combination, with Hk+1 in Equation 4.6 determined by applying the heuris-

tic algorithm (Algorithm 4.1). As mentioned in Section 4.4.2, application

of the heuristic algorithm usually results in multiple possible paths for

each UAV-target pair. The best of these, i.e., the shortest path, is picked

for use in the policy rollout.

2. Using the assignment algorithm (Section 4.4.1) and costs for each UAV-

target pair produced by rollout algorithm, perform the assignment.

Two other ways that the policy rollout could have been performed are also

worth mentioning. In the first, the policy rollout in step 1 would be performed

83

on all of the paths produced by the heuristic algorithm, and then selection of

the best path, for use by the assignment algorithm, made on the basis of the

costs of the rolled out paths. This is more accurate because the rolled out paths,

which are in general closer to optimal than those produced by the heuristic al-

gorithm, are now used to select the shortest path for use by the assignment

algorithm. This method, however, requires more computation because the roll-

out algorithm, which requires considerably more computation than the heuristic

algorithm, is now executed more times. Usually this approach would probably

only produce a small improvement in accuracy, but occasionally (say for highly

concave no-fly zones) it may result in a large improvement. Another option is

to wait until the assignment is done before performing rollout, i.e., perform the

assignment using just the heuristic algorithm and then apply rollout just on the

paths corresponding to the final assignments of UAVs to targets. This is a little

less accurate but possibly much less computation is required. The choice as to

which is best is a compromise between accuracy and computation requirements

and depends on:

a. The number of UAVs and targets - for large numbers, the last approach

described above may be necessary.

b. The number of no-fly zones in the path of the UAVs - many no-fly zones

results in many possible paths in step 1 above, making the first or last approach

more attractive. For small numbers of UAVs, targets and no-fly zones the second

approach is the best.

84

4.4.4 Comparison of Heuristic and Rollout Based Short-

est Path Algorithms

To demonstrate and compare the performance of the heuristic and rollout al-

gorithms, consider now a scenario with four UAVs, two targets and two no-fly-

zones. The initial positions (in metres) of the UAVs are xUAV 1 = (16000, 5000),

xUAV 2 = (17000, 5000), xUAV 3 = (18000, 5000), xUAV 4 = (19, 000, 5000), and

the positions of the targets are xT1 = (10000, 45000), xT2 = (35000, 45000).

The first no-fly zone consists of the union of two circular regions with centres

at xNFZ1c1 = (13000, 17000) , xNFZ1c2 = (20000, 17000) and radii rNFZ11 = 5000,

rNFZ12 = 5000, respectively. The second no-fly zone is a circular region with

its centre at xNFZ2c = (8500, 28000) and radius rNFZ2 = 4000. The step size in

the planning algorithm is |x̄j+1 − x̄j| = 2000 for all but the final step, and the

control options are changes in heading in fixed increments of 5 degrees. The

rollout algorithm and the base policy (heuristic) algorithm described in Sections

4.4.3 and 4.4.2 were run for this scenario producing the UAV paths shown in

Figure 4.2 in Figure 4.3 respectively. Note that the rollout algorithm produces

paths that are a substantial improvement on the paths produced by the heuris-

tic base algorithm. The execution times for the rollout and heuristic algorithm

were 4.55s and 0.21s, respectively, on a PC with a 2.4GHz Intel Core Duo CPU.

The rollout algorithm clearly involves considerably more computation than sim-

ply using the heuristic algorithm, but for small numbers of UAVs, targets and

no-fly-zones the computational requirements are not prohibitive. The rollout

algorithm resulted in path lengths for UAVs 1 to 4 of 44975m, 44844m, 43789m

and 43304m, respectively, whereas the heuristic algorithm gave path lengths of

46288m, 47772m, 44115m and 43445m. The rollout algorithm hence produced

a reduction in path lengths of 2.84%, 6.13%, 0.74% and 0.32% respectively for

85

UAVs 1 to 4, for this particular scenario. Note that the path produced by

the rollout algorithm is still not quite optimal with some “kinks” in the paths.

Some preliminary experimentation has indicated that this effect is related to

the size of the steps in the heuristic algorithm that is used as the base policy

for the policy rollout algorithm. Making the size of the last step in the heuristic

algorithm just prior to hitting a no-fly zone variable, i.e., making this step just

reach the no-fly-zone without a change in heading, is expected to reduce this

effect; however, this has not been tested experimentally as yet.

At this point it is worth noting that the choice that was made on how

to represent the no-fly zones, i.e., by using the union of circular regions, is

somewhat arbitrary and should not be considered as limiting. This method of

representation was chosen simply for convenience and ease of implementation.

With regard to the algorithms for circumventing the no-fly zones, there are other

representations that would be equally valid and would not affect the efficacy of

the algorithms, and may even be more appropriate in an actual operational

implementation. The no-fly zone shapes can, in fact, be very general in nature;

for example they could be represented by the union of convex polygons or even a

discrete map, thus allowing any shape at all. For both of these representations,

an efficient algorithm for determining whether a UAV has moved into a no-

fly zone can easily be implemented. For example, with regard to the union

of convex polygons representation, one could test whether a point is within a

convex polygon by simply treating the line segments in the perimeter as vectors

all touching tip to tail. Let us assume that they are joined this way in an

anticlockwise fashion. Now, for each one of these perimeter vectors, form a

second vector which starts at the start of the perimeter vector and finishes at

the point being tested, then take the cross product of the two vectors. If, for

all the perimeter vectors, the cross product is positive, the point being tested

86

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4 UAV Paths

X (metres)

Y

(m
e

tr
e

s
)

Figure 4.2: UAV Paths Produced by Rollout Based Planner

87

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4 UAV Paths

X (metres)

Y

(m
e

tr
e

s
)

Figure 4.3: UAV Paths Produced by Heuristic Based Planner

88

is within the convex polygon. For a composite polygon, i.e., a polygon that is

the union of convex polygons, if the point is not within any of the constituent

polygons, it is obviously not in the composite polygon. The test for the discrete

map case is even more obvious, so won’t be described here.

4.5 One-Step-Ahead Controller

Control is implemented by changing the direction of travel of the UAVs which

travel at a constant pre-set speed, or by setting speed to zero. The controller

works on a one-step-ahead basis, where the step length is the time between

reception of consecutive measurements. A key point to note is that long term

costs are taken into account through a component of the cost function which

uses information passed down by the planner.

Let us now consider cycle k of the controller. The first step is to calculate the

target state predictions x̂j(k+1|k) and their associated covariances Pj(k+1|k),
j = 1, .., NT at a predetermined time in the future. This is done by performing

the prediction stage of the Kalman filter for each track from its last update

time to the time in the future that we are interested in. For this work the time

in the future is assumed to be the same for all tracks, set to t + 2.5 seconds,

where t is the current time. In reality the tracks for the targets will not be

updated simultaneously, but a quite complicated (and possibly not very reliable)

algorithm would be required to estimate future update times for each track

based on past measurements given that each UAV may receive measurements

from multiple sources. The approximation made here is good as long as the

targets are moving slowly and with small accelerations.

Next, all possible control options for each UAV upi, p = 1, ..,NC, i = 1, .., NU ,

where NC is the number of control options, are performed while holding all

89

the other UAVs states fixed. The control options are changes in heading in

fixed predetermined increments, or the selection of zero speed. For each control

upi the expected Kalman filter estimate for each target x̂pij(k + 1|k + 1) and

its covariance Ppij(k + 1|k + 1) is computed using the prediction x̂j(k + 1|k),
its associated covariance Pj(k + 1|k), and then the measurement prediction

ẑpij(k+1|k) and its covariance Spij(k+1|k) for all targets whose state estimates

are in range of UAV i. Note that not all possible combinations are tried since

to do this all possible choices for a particular UAV must be performed, for all

possible combinations of the other UAV control options. Hence, what is done

here is only an approximation to one-step-ahead dynamic programming. This

is done to speed up computation, and is a good approximation if the distance

travelled by each UAV during the prediction period is small compared to the

distances between the UAVs. Note also that the control options are tested to

see if they would take the UAV into a no-fly-zone or bring the UAV closer than

allowable to any of the estimated target positions and are not used if they do

so.

Let us define two types of cost now, a cost associated with estimation error

CE and a cost CP associated with the divergence of the UAV from the path

calculated by the path planner for the control option in question.

Consider first CE. Given the expected estimate covariances for each target

Ppij(k + 1|k + 1) consider only the position components giving the covariance

matrix for the position estimates

P pos
pij (k + 1|k + 1) =

 σ
2
1 σ12

σ21 σ22

pij

From a practical point of view a useful measure of cost is the length of the

major axis of the error ellipse which encloses the target position with probability

90

Pe. Given the above covariance matrix the length of the major axis is [55]

lmax = 2
√

κλmax

where λ1 is the largest eigenvalue of the covariance matrix and is given by

λmax =
1

2

[
σ21 + σ22 +

√
(σ21 − σ22)

2
+ 4σ212

]

and

κ = −2 ln (1− Pe)

Now let the cost CEpij be CEpij = kλλmaxpij where kλ is a positive constant

and note that CEpij ∝ l2maxpij .

Now consider CP . Let CP = Cd+Cv where Cd is the cost associated with the

distance d of the UAV from the path calculated by the path planner for that UAV

and Cv is the cost associated with vdiff , the magnitude of the difference between

the component of the UAV velocity vector in the direction of the (directed) line

corresponding to the current leg of the path calculated by the planner and the

speed of the UAV.

Let the current leg of the path for a particular UAV be represented by the

line segment joined by (x1, y1) and (x2, y2) and the current UAV position be

(x, y). Let a = (x2, y2) − (x1, y1) and b = (x, y) − (x1, y1) and θ be the angle

between a and b. It can easily be shown that the distance d is

d =
|(x2 − x1) (y − y1)− (y2 − y1) (x− x1)|√

(x2 − x1)
2 + (y2 − y1)

2

Now let the cost of using control option p for UAV i be Cdpi = kdd
2
pi where

kd is a positive constant.

Consider now Cv. Let v be the (vector) velocity of a particular UAV and

w be the orthogonal projection of v on the vector a. Let z be a vector with

91

magnitude vM , i.e., the maximum possible speed of the UAV, but with the same

direction as a. It can easily be shown that

vdiff
∆
= |z−w| = |z| − v · a|a|

Let the components of v be (vx, vy), and note that |z| = vM , then

vdiff = vM −
[vx (x2 − x1) + vy (y2 − y1)]√

(x2 − x1)
2 + (y2 − y1)

2

Now let the cost using control option p for UAV i be Cvpi = kvv
2
diffpi

, where kv

is a positive constant. The total cost of using control option p for UAV i is then

Cpi = Cdpi + Cvpi +
∑

j∈S

CEpij

If the UAV being considered has not been assigned to a target, the set S is

the set of all targets that are in range of the UAV. If the UAV has been assigned

to a target then the set S is only the assigned target, assuming it’s in range. If

the UAV being considered has not been assigned to any particular target and

is not within range of any of the targets the above cost function has the same

value for every possible option, hence is not useful. For that situation it was

decided (somewhat arbitrarily) that the UAV in question should continue on a

path as near as practicable to its current path while still avoiding obstacles.

4.6 Simulations and Results

Simulation software has been written to assess the approach and some prelim-

inary assessment performed with simulation experiments. Two sets of simula-

tions were performed; in the first the new hierarchical MPC algorithm using the

heuristic shortest path algorithm is compared with a “myopic” one-step-ahead

92

algorithm, and in the second, the two versions of the MPC algorithm are com-

pared. The simulations and associated results are described in the following two

subsections.

4.6.1 Comparison of the Hierarchical MPC Algorithm

with a Myopic Controller

In this set of simulations, two algorithms were simulated, one being the new

MPC algorithm (using the heuristic based shortest path algorithm) and the

other being a myopic one-step-ahead control algorithm which was used for com-

parison. The myopic control algorithm was based on Equation 4.4 with Hk+1

set to zero (and with no guidance from a planner). The scenario that was con-

sidered consisted of two slowly moving targets, travelling at 5 m/s, and four

UAVs, travelling at a speed of 30 m/s with direction of travel being the con-

trolled variable, with a no-fly-zone consisting of two intersecting circles. The

simulation corresponded to a scenario of 25 minutes duration. The targets were

mechanically scanned radars with a 4 deg. beamwidth and a scan rate of 72

deg./s. The UAVs each had an ES sensor with a detection range of 40 km for

the radars in question, with a bearing measurement error standard deviation of

5 deg. The tracker Kalman filters and the controllers assumed an acceleration

process noise standard deviation of 1 m/s2. The planner update interval was

60 sec. Figures 4.4 and 4.5 show the UAV trajectories and tracker position es-

timate errors respectively for the myopic controller. The UAV trajectories and

tracker position estimate errors respectively for the model predictive controller

are shown in Figures 4.6 and 4.7.

The execution times for the myopic and model predictive controllers were

273s and 313s, respectively, on a PC with a 2.4GHz Intel Core Duo CPU. The

93

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4 UAV and Emitter Paths

X (metres)

Y

(m
e
tr

e
s)

UAVs
Emitters
No−fly zones

Figure 4.4: UAV and Emitter Trajectories Produced by Myopic Controller

94

0 500 1000 1500
0

2000

4000

6000

8000

10000
Estimation Errors for Track 1

Time (seconds)

E
r
r
o
r

(
m

e
tr

e
s
)

0 500 1000 1500
0

2000

4000

6000

8000

10000
Estimation Errors for Track 2

Time (seconds)

E
r
r
o
r

(
m

e
tr

e
s
)

Figure 4.5: Emitter Position Estimation Errors for Myopic Controller

95

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4 UAV and Emitter Paths

X (metres)

Y

(m

e
tr

e
s)

UAVs
Emitters
No−fly zones

Figure 4.6: UAV and Emitter Trajectories Produced by Model Predictive Con-
troller

96

0 500 1000 1500
0

2000

4000

6000

8000

10000
Estimation Errors for Track 1

Time (seconds)

E
r
r
o
r

(
m

e
tr

e
s
)

0 500 1000 1500
0

2000

4000

6000

8000

10000
Estimation Errors for Track 2

Time (seconds)

E
r
r
o
r

(
m

e
tr

e
s
)

Figure 4.7: Emitter Position Estimation Errors for Model Predictive Controller

97

execution time for the model predictive controller is hence approximately 15%

more than for the myopic algorithm, a relatively small penalty for taking into

account long term cost. The most obvious performance difference is that for the

myopic controller one of the UAVs becomes trapped by the no-fly-zone whereas

with the model predictive controller all the UAVs successfully bypass the no-fly-

zone. Another difference is that with the model predictive controller the UAVs

come into close proximity of the targets more quickly. With regard to tracker

estimate errors the model predictive controller appears to give somewhat smaller

errors in the latter part of the scenario. To confirm this and to determine the

extent of improvement a statistical analysis involving a large number of runs

would be required.

4.6.2 Comparison of the Two Versions of the Hierarchi-

cal MPC Algorithm

In this set of simulations the two versions of the hierarchical MPC algorithm are

implemented, i.e., using the heuristic planner and then the rollout based planner,

and their performance compared. The scenario that was considered consisted of

two slowly moving targets travelling at 5 m/s, four UAVs travelling at a speed of

30 m/s with direction of travel being the controlled variable, and two no-fly zones

obstructing the paths of the UAVs. The simulation corresponded to a scenario

of 25 minutes duration. The targets were mechanically scanned radars with a

4 degree beamwidth and a scan rate of 72 deg./s. The UAVs each had an ES

sensor with a detection range of 40 km for the radars in question, with a bearing

measurement error standard deviation of 5 deg. The tracker Kalman filters and

the controllers assumed an acceleration process noise standard deviation of 1

m/s2. The planner update interval was 60 sec. The UAV trajectories for the

98

controller using heuristic path planning are shown in Figure 4.8, and Figure

4.9 shows the UAV trajectories for the controller using rollout path planning.

The execution times for the controller using heuristic path planning and the

controller using rollout path planning were 259s and 316s, respectively, on a

PC with a 2.4GHz Intel Core Duo CPU. For this scenario, the performance

differences are essentially a small reduction in distance travelled to target by

the UAVs when the rollout path planner is used, but at the cost of a small

increase in computation time. The relative performances of the two planning

algorithms are expected to vary considerably with changes in scenario; however,

in general the heuristic algorithm is expected to be faster, but at the expense

of less optimal UAV trajectories.

99

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4 UAV and Emitter Paths

X (metres)

Y

(m

e
tr

e
s
)

UAVs
Emitters
No−fly−zones

Figure 4.8: UAV and Emitter Trajectories for Controller with Heuristic Path
Planning

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4 UAV and Emitter Paths

X (metres)

Y

(m

e
tr

e
s
)

UAVs
Emitters
No−fly−zones

Figure 4.9: UAV and Emitter Trajectories for Controller with Rollout Path
Planning

Chapter 5

Introduction of a Fixed-Wing

UAV Dynamics Model

In Chapter 4, algorithms for the control of UAVs which used a very simple

model of UAV dynamics were presented. The reasoning behind this approach

was to first develop the general algorithms for controlling UAVs in the type of

application being considered without the distraction of details regarding specific

UAV types. The algorithms could then later be tailored to the specific system

that is to be implemented. In this chapter, one class of UAV is investigated.

For the purpose of example, fixed-wing UAVs are considered and an appropriate

dynamics model developed. This choice of UAV type was made for two reasons:

• Optimal control of this type of UAV within the constraints of the problem

being considered is quite challenging because of the limited range of dy-

namics available, for example a fixed-wing UAV cannot simply stop and

instantaneously change direction to avoid a no-fly zone.

• The work presented in this thesis will contribute to a research and de-

velopment program that incorporates Aerosonde UAVs [24], [16]. The

101

102

dynamics model used in this chapter is loosely based on this type of UAV

so as to allow easy transfer of algorithms and knowledge gained to that

application.

In addition to developing the fixed-wing dynamics model, some additional

algorithm modifications needed to be made in order to enable the controller to

perform successfully with the new dynamics. Sections 5.1 to 5.4 describe the

dynamics model that is used and the other modifications that were required.

Section 5.5 then presents the results of simulations of the new controller.

5.1 Fixed-Wing Dynamics Model

Consider a somewhat idealised model of a fixed-wing UAV which is limited to

travelling at a fixed speed but can turn in the horizontal plane over a range

of turn rates corresponding with transverse accelerations up to ±atmax. In any

individual turn the magnitude of the transverse acceleration at is constant and

its direction is toward a fixed point, the centre of the turn. This type of turn

will be referred to as a coordinated turn. Using the coordinated turn model,

the transition from the UAV state x (k) at time tk to x (k + 1) at time tk+1 is

described by the following matrix equation [2, p. 187]

x (k + 1) =

1 sinωkT
ωk

0 − (1−cosωkT)
ωk

0 cosωkT 0 − sinωkT

0 (1−cosωkT)
ωk

1 sinωkT
ωk

0 sinωkT 0 cosωkT

x (k) (5.1)

where

x (k) =
[
xk ẋk yk ẏk

]T

and

103

ωk =
at (k)

v
(5.2)

In the above, at (k) is the transverse acceleration at time tk ≤ t < tk+1, v is

the UAV’s speed, ωk is the angular velocity of the UAV at time tk ≤ t < tk+1,

and T is the time interval T = tk+1 − tk. When the UAV is not turning, the

state transition equation is simply

x (k + 1) =

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

x (k)

Using this model leads us to a new one-step-ahead controller as follows. In-

stead of control being implemented by (instantaneously) changing direction or

speed as was the case previously, control is now implemented by applying an

appropriate transverse acceleration at each controller update. The choice of pos-

sible control options that could be used must now be made. As there is no clear

best choice, the following was chosen using judgement regarding what should

work well. Firstly the maximum transverse acceleration must be determined.

The acceleration must be within the capabilities of a realistic unmanned fixed-

wing aircraft and additionally not result in manoeuvres that would severely

affect performance of the sensors on the UAVs. With regard to the sensors, at

this stage, details of sensor implementation are not known so limitations result-

ing from sensor choice and mounting details cannot be considered, although it

is possible that certain aircraft banking angles or indeed aircraft headings could

be problematic. This consideration is hence left for a later date; for now the

assumption will be that transverse accelerations of up to 5 m/s2 (approximately

0.5 G’s) are allowable; this transverse acceleration should be easily achievable

104

in terms of aircraft dynamics. The next detail to determine is the number of

possible controls that are to be considered and the way they will span the range

of −5.0 to +5.0 m/s2 transverse accelerations that the aircraft will be allowed

to perform. The choice that was made is a compromise between computational

load and granularity in possible controls allowed. The control options are as fol-

lows. Eleven possible controls (for each UAV) are considered, the controls being

−5,−5/2,−5/4,−5/8,−5/16, 0, 5/16, 5/8, 5/4, 5/2, and 5 m/s2. Note that the

controls are not equally spaced, incorporating a zero turn rate, and then for

both left and right turns, acceleration options that are twice the next smaller

option forming a binary sequence up to the maximum allowed acceleration.

5.2 Avoidance of No-fly Zones

Incorporating the fixed-wing UAV dynamics model brings with it some difficul-

ties not encountered with the simple model considered previously. These issues

arise because now the UAV cannot instantaneously change its velocity. One

problem is that of avoidance of no-fly zones; this will be considered now. With

the control algorithm described in Chapter 4 the UAV can come to positions

where, within the dynamical constraints now being considered, it cannot ma-

noeuvre around a no-fly zone. The problem is that the planner only produces

approximate flight paths which are used as a guide by the controller and not

followed exactly. Hence the UAV cannot simply rely on the one-step-ahead con-

troller, as presented in Chapter 4, for avoidance of no-fly zone intrusion. One

solution to this is to incorporate some additional look-ahead in the one-step-

ahead controller.

Before developing the look-ahead algorithms, a modification was made to

105

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

X (metres)

Y
 (

m
e
tr

e
s
)

No−fly Zone

Figure 5.1: Multi-step Look-ahead Algorithm Example

106

the original low-level (i.e., one-step-ahead) controller algorithm so that the con-

troller updates now occur at (fixed) 3 second intervals instead of at the receipt

of each new measurement. This leads to a more predictable algorithm in terms

of stability and with regard to the additional look-ahead that will be now be

described. Now with a fixed update interval, the number of steps of look-ahead

that is required can be calculated. Noting that we have set a maximum trans-

verse acceleration of atmax = 5 m/s2, and referring to Equation 5.2 the maximum

turn rate for a UAV travelling at 30 m/s is ωmax = 5/30 = 0.1667 rad/s or 9.55

◦/s. To perform a 180 degree turn would take 180/9.55 = 18.85 seconds which

corresponds to 6.28 update intervals. Performing a look-ahead of at least 7

update intervals would thus guarantee that the UAV would be able to avoid a

wide range of possible obstacles. Let us hence make the requirement that a look-

ahead of 7 update intervals is to be performed at each update of the low-level

controller. The most obvious way of doing this is to perform multi-step-ahead

dynamic programming at each update; however, this approach results in a pro-

hibitively large computational requirement as is demonstrated by the following.

Consider the number of sequences of controls that need to be dealt with in a

multi-step dynamic programming algorithm for the case of Ns steps, Nu UAVs

and Nc controls per UAV at each step. It can be easily shown that the number

of sequences of controls that need to be considered is

NNc,Nu
Ns

=
[
(Nc)

Nu
]Ns

Consider the case of Nc = 11, Nu = 2, Ns = 7, then using the above equation

we find that approximately 3.8×1014 sequences of controls must be considered,

i.e., the corresponding UAV states computed, whether the states correspond

to no-fly zones determined and if they don’t, then their costs calculated and

the lowest cost sequence of controls determined. Realistically, doing this at

107

every update of the controller is not a viable approach. Clearly some form of

simplification must be made to arrive at a usable algorithm for performing the

multi-step look-ahead. The algorithm developed to achieve this is described in

the following paragraphs. In essence the algorithm performs an approximation

to one-step-ahead dynamic programming, but with multi-step-ahead testing of

avoidance of no-fly zones for a subset of possible controls; the results of the

avoidance of no-fly zones tests are then used to constrain the controls that are

tried in the first step i.e., the one-step-ahead dynamic programming step.

Consider first a description of the algorithm by example. Referring to Figure

5.1 consider a UAV in the position shown by the blue circle heading in the

positive y direction. At this point a decision must be made as to which control

to apply for the next 3 seconds (until the next update of the low-level controller).

The figure shows the results of three possible controls in red. Choosing a zero

turn rate would take the UAV to the middle red circle after 3 seconds, performing

a 5 m/s2 right turn would take it to the rightmost red circle and performing

a 5 m/s2 left turn would take it to the leftmost red circle. Without loss of

generality, let us assume that only these three controls are available; then with

the algorithm described in Chapter 4, the cost of the three controls would

be calculated and the lowest cost control selected and applied until the next

controller update. If this happens to be the control associated with zero turn

rate, on subsequent updates there will be no controls available that would enable

avoidance of the no-fly zone, hence the UAV would fail to avoid the no-fly zone.

With the new algorithm, prior to calculating costs, each possible control is first

tested to see if for the subsequent 6 updates at least one path can be found that

avoids all no-fly zones. The controls that satisfy the test then have their costs

calculated and the control with lowest cost is subsequently applied. In Figure

5.1 both the left and right turns pass the test but the zero turn rate does not,

108

hence the zero turn rate will not be chosen irrespective of its cost. Of the two

remaining controls, the one with the lower cost will then be applied for the next

3 seconds. This algorithm is repeated for each UAV at each update.

Now to the test to see if after 3 seconds a control will take the UAV to a

position where it is still possible to find a path that avoids all no-fly zones. An

algorithm to achieve this is outlined as pseudo-code in Algorithm 5.1. Note that

this algorithm is performed for all Nc controls.

Algorithm 5.1 Depth-first Search Algorithm for Avoidance of No-fly Zones
use control to update UAV_State;
CanAvoidNoFlyZones = NoFlyZoneTest(UAV_State);

function CanAvoidNoFlyZones = NoFlyZoneTest(UAV_State):
set CanAvoidNoFlyZones = false;
test if current UAV position is in a no-fly zone;
if UAV in a no-fly zone

return to calling function (with CanAvoidNoFlyZones = false);
end;
CanAvoidNoFlyZones = RecursiveNoFlyZoneTest(UAV_State);

function CanAvoidNoFlyZones = RecursiveNoFlyZoneTest(UAV_State):
Depth = Depth + 1;
if Depth > Ns

CanAvoidNoFlyZones = true;
return to calling function;

end;
set CanAvoidNoFlyZones = false;
for selected subset of controls (i.e., turn rates)

update UAV_State;
test to see if UAV position is inside of a no-fly zone;
if UAV is not in no-fly zone

CanAvoidNoFlyZones = RecursiveNoFlyZoneTest(UAV_State);
if CanAvoidNoFlyZones = true

return to calling function;
end;

end;
end;

109

Algorithm 5.1 recursively performs a depth-first search [10] to find a path

that over the next Ns steps avoids all the no-fly zones. As soon as one path is

found the algorithm returns CanAvoidNoFlyZones = true. If no path can be

found the algorithm returns CanAvoidNoFlyZones = false.

Let us now determine the computational requirements of Algorithm 5.1. For

step 1 (i.e., the approximation to one-step-ahead dynamic programming) each

UAV is considered individually, hence for each UAV there is Nc controls, giving

a total of Nc×Nu controls in total to be considered for all the UAVs. For steps

2 to Ns, each UAV is again considered individually; however, now only a subset

of controls is considered. Let the number of controls considered be N ′
c. Consider

first, step 2. For a single UAV, for each control from step 1 there is N ′
c controls

at step 2, hence, Nc×N ′
c sequences of controls. In total, for all the UAVs there

is Nc ×N ′
c ×Nu. By induction, the number of possible sequences at step Ns is

then

MNc,N
′

c,Nu
Ns

= Nc × (N ′
c)
Ns−1 ×Nu

Let Nc = 11, N ′
c = 3, Nu = 2, and Ns = 7, then, using the above equation,

the maximum possible number of control sequences that need to be considered

is approximately 1.6×104, which is 10 orders of magnitude less than for the full

dynamic programming algorithm above. Note also that this is the maximum

number of possible sequences to consider. Because the algorithm involves a

depth-first search and needs to only find one sequence that avoids no-fly zones

for each control in step 1, the number of sequences considered is usually much

less than the maximum. In the case when there are no no-fly zones near any of

the UAVs the number of sequences is simply Nc.

Note that N ′
c = 3 was used in the example above even though the full set of

controls available is Nc = 11; this can be justified by the fact that in steps 2 to

Ns only a search for the existence of one possible path is being performed. No

110

costs are calculated and the path found is not necessarily the one that will be

used in subsequent updates. In the current implementation of the algorithm,

the three controls that are used are at1 = 0 m/s2, at2 = −5 m/s2 and at3 = 5

m/s2, i.e., straight ahead, hard left and hard right turns. Using N ′
c = 3 instead

of the full set of 11 controls simply introduces some coarseness to the search

for a possible path, which is not a significant issue since the updates are only

3 seconds apart. Note that the first step of the algorithm uses the full set of

controls and the controller calculates the cost of all of them subject, of course,

to satisfaction first of no-fly zone avoidance.

Note that an example of an obstacle that could still “trap” the above multi-

step look-ahead algorithm is an object with a deep but very narrow concavity

of width less than twice the turn circumference of the UAV. Putting a limita-

tion on the no-fly zones to not have such concavities is a simple and not very

restrictive way of dealing with this. Note also that there is a very simple and

computationally efficient variant of the above algorithm that simply involves

testing whether, for each possible control in the first update, either a hard left

turn or a hard right turn avoids all no-fly zones for the subsequent 6 updates.

With this algorithm the maximum number of possible sequences is simply 2Nc.

If the no-fly zones are spaced more than one turn diameter apart this algorithm

would be expected to work quite well and doesn’t have the disadvantage de-

scribed above. It does have a disadvantage in that if distinct no-fly zones are

very close to one another the algorithm will disallow paths between the no-fly

zones; this, however is not considered a significant restriction in the current

application.

111

5.3 Improved Approximation to One-Step-Ahead

Dynamic Programming

Using the set of controls described in Section 5.1, in particular, making the

controls differ only in transverse acceleration up to a maximum value, and

also having the relatively short update interval of 3 seconds, enables another

change to be made which improves on the approximation to one-step-ahead

dynamic programming that was used earlier in Chapter 4. Previously, at each

update k, instead of considering every possible combination of controls leading

to all possible states at update k + 1, an approximation was used where all

possible controls for each UAV were considered while keeping the other UAV

states fixed at their update k values. This led to a reduction in the number of

controls to be considered for Nu UAVs from (Nc)
Nu controls to NcNu controls,

at the cost of some decrease in the accuracy of the control cost calculation.

Now, instead of keeping the other UAV states at their kth update value, the

states are extrapolated to their (k + 1)th update values using the zero transverse

acceleration control. This change improves the approximation to the full one-

step-ahead dynamic programming algorithm without significantly increasing the

amount of computation required. This is because the difference between the

position components of any two of the possible states at update (k + 1) for a

particular UAV are smaller than the difference between any one of the possible

positions at update (k + 1) and the position at update k. Another change has

also been made, i.e., for each UAV, once its lowest cost control is determined, it

is used in place of the zero acceleration control for that UAV when computing the

lowest cost control for all subsequent UAVs considered. This further improves

the cost calculation approximation. The pseudocode in Algorithm 5.2 shows

the algorithm with the improvements described above.

112

Algorithm 5.2 Improved Approximation to One-step-ahead Dynamic Pro-
gramming
for i = 1 to Nu

calculate Ref_UAV_State(i) by applying zero turn rate control to UAV i;
end;
for i = 1 to Nu

for j = 1 to Nc

calculate Test_UAV_State(i, j) by applying control j to UAV i;
CanAvoidNoFlyZones = NoFlyZoneTest(Test_UAV_State(i, j));
if CanAvoidNoFlyZones = true

calculate Cost(i, j) associated with Test_UAV_State(i, j),
Ref_UAV_State(k), k = 1...Nu, k �= i and predicted target
state estimates;

else
Cost(i, j)= ∞;

end;
end;
find the control number jmin of the control that gives the
lowest cost, i.e., jmin = argmin

j
Cost(i, j);

set Selected_Control(i)= jmin;
set Ref_UAV_State(i)=Test_UAV_State(i, jmin);

end;

113

5.4 Maintenance of Minimum Distance to Tar-

get

As with avoidance of no-fly zones, incorporating the fixed-wing UAV dynam-

ics model brings with it added difficulties in maintaining a minimum distance

between each UAV and any of the targets. This again arises because the UAV

cannot instantaneously change its velocity. However, using Algorithm 5.1 to

maintain the minimum distance has the problem that the targets are potentially

moving, albeit fairly slowly; also their positions and motion are not known ex-

actly, with the estimates varying somewhat from one update to the next. Hence

making predictions about the targets’ positions and associated no-go regions

around them multiple updates into the future can have sufficient inaccuracy

associated with it for the UAVs to end up in positions where their next update

can’t take them out of a no-go region around a target, irrespective of the control

used, when using the Algorithm 5.1. However, because the no-go regions around

the targets are simply based on range, a simple approach involving the addition

of a cost associated with nearness to a target can be used instead. The approach

is as follows. Let Rt be the range of the UAV from the nearest target, and Rtmin

be the minimum allowable range, then define the “range cost” CR associated

with the UAV’s position to be CR = KR (Rtmin −Rt) /Rtmin when Rt < Rtmin

and CR = 0 when Rt � Rtmin, where KR is a positive constant which is made

sufficiently large to make CR quickly become much larger than other costs as-

sociated with the UAV’s position as Rt decreases below Rtmin. This cost is then

added to the other costs associated with position of the UAV in question. The

effect is that there will be a strong propensity for the UAV to veer away from

targets for which Rt < Rtmin while having no effect on UAV behaviour as long

as Rt � Rtmin. This approach was used for maintaining distance from targets

114

and found to work quite successfully. Note that this approach was not used for

the no-fly zones because the method used there has the flexibility to deal with

any shape of no-fly zone, and is better at strictly keeping the UAVs outside of

the no-fly zone perimeters when the perimeters are fixed and known exactly.

5.5 Simulations

Simulation software was written (in Matlab) to assess performance of the model-

predictive controller with the above dynamics incorporated. Two simulations

were performed, one using the rollout based planner and the other using the

heuristic based planner. The scenario that was considered consisted of two

slowly moving targets travelling at 5 m/s, four UAVs travelling at a speed of 30

m/s with direction of travel being the controlled variable, and two no-fly zones

obstructing the paths of the UAVs. The first no-fly zone was composed of the

union of 3 circles with centres at (18000, 15000), (26500, 20000), (35000, 15000)

and radius 6000 metres. The second no-fly zone consisted of a single circle with

centre (11000, 27000) and radius 5000 metres. The scenario was designed to

be quite challenging. To that end one of the no-fly zones has its concave side

facing the starting point of the UAVs so as to

• maximize the potential for entrapment in local minima,

• test the ability of the multi-step-look-ahead algorithm to guarantee that

the UAVs can turn in time to avoid intrusion into the no-fly-zones,

• and challenge the path planning algorithm’s ability to find a path around

the concavity in the no-fly zone.

The second no-fly zone adds complexity to the planning component of the

algorithm by testing that the algorithm recursions perform correctly.

115

The simulation corresponded to a scenario of 30 minutes duration. The

targets were mechanically scanned radars with a 4 degree beamwidth and a

scan rate of 72 deg./s. The UAVs each had an ES sensor with a detection range

of 40 km for the radars in question, with a bearing measurement error standard

deviation of 5 deg. The tracker Kalman filters and the controllers assumed an

acceleration process noise standard deviation of 1 m/s2. The planner update

interval was 60 sec. Figure 5.2 shows the UAV trajectories for the controller

using heuristic path planning. The UAV trajectories for the controller using

rollout path planning is shown in Figure 5.3. The execution times for the

controller using heuristic path planning and the controller using rollout path

planning were 240 seconds and 291 seconds, respectively, on a PC with a 2.4GHz

Intel Core Duo CPU.

Figure 5.4 shows an enlarged view of the terminal phase trajectories of the

two UAVs that approach target 1 for the case of the controller with rollout

based path planning. Here the outcome of the inability of the UAVs to stay in

a fixed position is demonstrated. Instead of stopping at some optimal position,

the UAVs must constantly perform slow (5.0 m/s2) turns to maintain an ap-

proximately optimal geometry with regard to the target in question. Within the

constraints of the UAV dynamics, the control algorithm was found to perform

very well in this regard. One would expect that once the UAVs settle into their

terminal phase they would tend to move into positions that are approximately

90o apart when viewed from the target and at the minimum allowable distance

from the target. The reader is referred to [13] for an analysis of optimal sensor

geometries for angle of arrival sensors. Note that the small circles at the end

of the UAV and target trajectories in Figure 5.4, which represent the positions

of the UAVs and target at the termination of the scenario, demonstrate this

116

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

X (metres)

Y

(m
e

tr
e

s
)

UAVs
Emitters
No−fly zones

Figure 5.2: Fixed-Wing UAV and Emitter Trajectories for Controller with
Heuristic Path Planning

117

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

X (metres)

Y

(m
e

tr
e

s
)

UAVs
Emitters
No−fly zones

Figure 5.3: Fixed-Wing UAV and Emitter Trajectories for Controller with Roll-
out Path Planning

118

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

x 10
4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

x 10
4

X (metres)

Y

(m

e
tr

e
s
)

UAVs
Emitters
No−fly zones

Figure 5.4: Enlarged View of Fixed-Wing UAV and Emitter Trajectories for
Terminal Phase of Controller with Rollout Path Planning

119

geometry. Figure 5.5 gives a clearer indication of the actual UAV to target

distances as well as the angles subtended by the UAVs 1 and 2 about target 1

during the entire terminal phase of the scenario. Note that both the distances

and the angle subtended oscillate around the expected distance and angle. The

oscillations are not unexpected given the inability of the UAVs to stay in a fixed

position, the target is not stationary, and there is noise in the target position

estimates. Nevertheless, there is no indication of instability and the resulting

position estimates are good.

While the primary aim of the simulations was to demonstrate the control

algorithms’ ability to perform well when the fixed-wing aircraft dynamics are

imposed, a quick look at measurement accuracy is worthwhile. Figures 5.6

and 5.7 show the emitter position estimation errors for the scenarios using the

heuristic and rollout planning algorithms respectively. The figures demonstrate

similar position accuracies for target 1, but for target 2 the rollout based al-

gorithm gives significantly improved accuracy. This is due to the significantly

more optimal trajectories of the UAVs tracking target 2 in the case of the rollout

algorithm. The cost incurred to achieve this accuracy improvement is a 21%

increase in computation time.

120

1400 1450 1500 1550 1600 1650 1700 1750 1800
0

500

1000

1500

2000

2500

3000
Distance of UAV 1 From Target

Time (seconds)

D
is

ta
n

c
e

(m

e
tr

e
s
)

1400 1450 1500 1550 1600 1650 1700 1750 1800
0

500

1000

1500

2000

2500

3000
Distance of UAV 2 From Target

Time (seconds)

D
is

ta
n

c
e

(m

e
tr

e
s
)

1400 1450 1500 1550 1600 1650 1700 1750 1800
0

50

100

150

 Angle Subtended by UAVs About Target

Time (seconds)

A
n

g
le

(d

e
g

re
e

s
)

Figure 5.5: UAV to Target Distances and Angles Subtended about Target by
UAVs 1 and 2

121

0 200 400 600 800 1000 1200 1400 1600 1800
0

2000

4000

6000

8000

10000
Estimation Errors for Track 1

Time (seconds)

E
rr

o
r

 (
m

e
tr

e
s
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

2000

4000

6000

8000

10000
Estimation Errors for Track 2

Time (seconds)

E
rr

o
r

 (
m

e
tr

e
s
)

Figure 5.6: Emitter Position Estimation Errors for Fixed-Wing UAV Controller
with Heuristic Path Planning

122

0 200 400 600 800 1000 1200 1400 1600 1800
0

2000

4000

6000

8000

10000
Estimation Errors for Track 1

Time (seconds)

E
rr

o
r

 (
m

e
tr

e
s
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

2000

4000

6000

8000

10000
Estimation Errors for Track 2

Time (seconds)

E
rr

o
r

 (
m

e
tr

e
s
)

Figure 5.7: Emitter Position Estimation Errors for Fixed-Wing UAV Controller
with Rollout Path Planning

Chapter 6

Stability Analysis

An important property that must be satisfied by any control system is stabil-

ity [59]. Essentially, stability means that a small difference between the actual

conditions of operation of the system and the conditions the control system is

designed for must not completely alter the system behaviour. In this chapter,

the controllers developed in Chapters 4 and 5 will be analysed for stability. It

will become evident that the nature of these controllers makes proving stability

a challenging task; however, some headway is made by concentrating on compo-

nents of the system, developing mathematical proofs where possible, and aiding

the demonstration of stability with graphical demonstration of convergence for

regions in the state space for which a mathematical proof could not be found.

We will first begin with a summary of stability analysis techniques in the

following section. The focus will be on Lyapunov’s direct method as this was

found to be most helpful for this problem and was, in fact, the method that

was used. We will then give an outline of our stability proof approach for the

controllers developed in Chapters 4 and 5. This will include some intuitive argu-

ments regarding stability of the overall system as well as a discussion regarding

what further work would need to be done to complete a full proof. Finally,

123

124

we will look in detail at what can be said about stability of the low-level con-

trol component of the model predictive controllers presented in Chapters 4 and

5. The controller described in Chapter 4 will be analysed first and then the

controller described in Chapter 5 will be considered.

6.1 Background Theory

In this section we will define what stability means in some detail and then go on

to describe the technique that we will later use to begin to produce some stability

proofs for the system we are concerned with. The texts [59] and [57] cover the

theory of stability of dynamical systems in detail. The following subsections

will give only a short summary of the theory, concentrating on that which will

be used in the proofs later in this chapter. The summary will closely follow the

notation and descriptions in [59]. We will first consider stability definitions and

Lyapunov’s direct method for proving the stability of continuous systems (as

they were first developed for continuous time), and then how they are extended

to discrete time systems, of which our problem is an example. It will be found

that the definitions and techniques are almost identical for the two types of

system.

6.1.1 State Vector Representation of Dynamical Systems

Consider a continuous dynamical system described by the following first-order

vector differential equation

ẋ (t) = f (x (t) , t;u (t))

where x (t) is the value of the nx-dimensional state vector x at time t, and u (t)

is the value of the nu-dimensional (control) input vector u at time t.

125

The dynamical system may also have an output of the form

y (t) = g (x (t) , t;u (t))

where y (t) is the value the ny-dimensional output vector y at time t.

The solution to the above system, with the given initial conditions x0 at t0,

will be denoted by x (t;x0, t0).

If the input u (t) �= 0 for some t, the system is called a forced system. The

dynamic system is called free or unforced if there is no input, i.e., u (t) = 0, ∀t;
the governing equation then becomes

ẋ (t) = f (x (t) , t)

From a mathematical point of view, there is no distinction between a free system

and a forced system with a given input function.

The system is called stationary if the vector function f does not depend ex-

plicitly on time. A system that is both free and stationary is called autonomous.

This type of system is governed by the following equation

ẋ (t) = f (x (t))

If for all t

f (xe, t) = 0

for some xe, then

x (t;xe, t0) = xe

for any t0; this means that any solution that passes through xe will remain there

for all future time. The solution xe is called the equilibrium solution, and, if

xe = 0, the null solution, and the state xe is referred to as the equilibrium state.

Before going further, a short note on some notation that will be used is

required; the norm of a vector x will be denoted by ‖x‖. It will, in fact, be the

126

Euclidean norm, i.e.,

‖x‖ =
(

nx∑

i=1

x2i

) 1

2

6.1.2 Definition of Stability

The definition of stability that is of interest to us deals with the stability of

an equilibrium with respect to some initial conditions. This definition was

first discussed rigorously by the Russian mathematician Lyapunov and is hence

referred to as stability in the sense of Lyapunov. This definition will now be

summarized below.

Let xe be an equilibrium state of the free dynamical system

ẋ (t) = f (x (t) , t)

with

f (xe, t) = 0

for all t.

The equilibrium state xe, or the equilibrium solution x (t) = xe, is called

stable if for any given t0 and positive ε, there exists a positive δ (ε, t0) such that

‖x0 − xe‖ < δ

implies

‖x (t;x0, t0)− xe‖ < ε

for all t ≥ t0.

The equilibrium state xe is called convergent (or attractive) if for any t0

there exists a δ1 (t0) such that

‖x0 − xe‖ < δ1

127

implies

lim
t→∞

x (t;x0, t0) = xe

for all t0.

The equilibrium state xe is called asymptotically stable if it is convergent

and stable.

In words, the concepts of stability and asymptotic stability are as follows. If,

when a system is perturbed slightly from its equilibrium state, all subsequent

motions remain in a correspondingly small neighbourhood of the equilibrium

state, then it is stable. If in addition, all subsequent motions return to the

equilibrium, then it is asymptotically stable.

Note that the properties of stability and asymptotic stability are local; they

state that there exists some region in state space surrounding the equilibrium

state such that all trajectories starting from within that region are stable or

asymptotically stable, but they say nothing about how large that region is. In

the case of asymptotic stability the region is called the domain of attraction.

In practice it is important to know how large the region is, and it is desirable

(although not always necessary) for that region to be the entire state space.

This leads us to the following definition.

The equilibrium state xe is called globally asymptotically stable if it is stable

and if every motion, from anywhere within the state space, converges to the

equilibrium state as t→∞.

6.1.3 The Direct Method of Lyapunov

A general technique for proving the stability of a dynamical system is the direct

method of Lyapunov (also referred to as Lyapunov’s second method). Before

describing the method some definitions are required as follows.

128

Let V (x) be a real scalar function of the vector x, and let S be a closed

bounded region in the x space, containing the origin, then we can define the

following.

The function V (x) is positive semi-definite in S if, for all x in S,

(i) V (x) has continuous partial derivatives with respect to the components of

the vector x,

(ii) V (0) = 0,

(iii) V (x) ≥ 0.

The function V (x) is positive definite in S if, for all x in S,

(i) V (x) has continuous partial derivatives with respect to the components of

the vector x,

(ii) V (0) = 0,

(iii) V (x) > 0.

The control system that has been developed in this thesis is stationary, and

although there are control inputs u, they are known, i.e., they are a function of

the current state of the system, hence the system can be treated mathematically

as a free system. Being both stationary and free thus makes it an autonomous

system. Hence the Lyapunov stability theorems that will be presented in the

sequel will be restricted to autonomous systems. Also, the stability theorems

that will be presented concern stability of a system at the origin. This does not,

however, represent any loss of generality since the problem of the stability of

any equilibrium state can be reduced to the problem of the stability of the null

solution of another dynamical system, via a suitable transformation.

129

Let us now consider the stability properties of the null solution of the au-

tonomous system

ẋ (t) = f (x (t)) (6.1)

with f (0) = 0. The following two theorems constitute Lyapunov’s direct

method for autonomous systems.

Theorem 6.1 The null solution, or the equilibrium state at the origin of the

system represented by Equation 6.1, is stable if there is some neighbourhood

of the origin where a positive definite function V (x (t)) exists such that its

derivative V̇ (x (t)) with respect to the solutions of Equation 6.1 is negative

semi-definite in that region.

Theorem 6.2 The null solution, or the equilibrium state at the origin of the

system represented by Equation 6.1, is asymptotically stable if there is some

neighbourhood of the origin where a positive definite function V (x (t)) exists

such that its derivative V̇ (x (t)) with respect to the solutions of Equation 6.1 is

negative definite in that region.

As was mentioned earlier, it is important to be able to estimate the region

about the equilibrium point where all motions initiating in that region converge

to that equilibrium. The following theorem provides us with that information.

Theorem 6.3 Let V (x (t)) be a scalar function. Suppose that the region R =

{x (t) |V (x (t)) < a} is bounded. Let V̇ (x (t)) be the derivative of V (x (t)) along

the solutions of Equation 6.1. If V (x (t)) is positive definite and V̇ (x (t)) neg-

ative definite in R, then the origin is an asymptotically stable equilibrium state

and all the motions starting in R converge to the origin as t→∞.

130

6.1.4 Discrete Time Systems

Let us now consider how the theory for continuous time systems presented in

the previous sections translates to discrete time systems.

The dynamic equations of a discrete time system can be written in the

following general form

x (k + 1) = f (x (k) , k,u (k))

where x (k) is the value of the nx-dimensional state vector x at time t = tk,

u (k) is the value of the nu-dimensional (control) input vector u at time t = tk,

and k is a discrete time index which only takes on integer values.

The dynamical system may also have an output of the form

y (k) = g (x (k) , k;u (k))

where y (k) is the value the ny-dimensional output vector y at time t = tk.

This system is free if there is no control input; the resulting dynamic equation

then becomes

x (k + 1) = f (x (k) , k)

It is stationary if the vector function f does not depend explicitly on the

time index k; the dynamic equation then takes the form

x (k + 1) = f (x (k) ,u (k))

It is autonomous if it is both free and stationary, resulting in the following

dynamic equation

x (k + 1) = f (x (k))

Now let us consider how the stability definitions apply to discrete time sys-

tems. Consider now the free discrete time system described by the following

131

difference equation

x (k + 1) = f (x (k) , k)

The state xe is an equilibrium state of the system if for all k

xe = f (xe, k)

and a solution starting at state xe at time tk0 will remain in that state for all

time, i.e.,

x (k;xe, k0) = xe

The stability definitions which were presented in Section 6.1.2 for continuous

time systems can be transferred almost verbatim to discrete time systems, with

the only change being the replacement of time t with the discrete time index k,

and the initial time t0 with time index corresponding to the initial time, i.e., k0.

Lyapunov’s stability theorems for continuous time systems, as presented in

Section 6.1.3, are also almost identical in the case of discrete time systems, with

the required modifications being as follows. Firstly, as for the stability defini-

tions, time t is replaced with the discrete time index k. The other modification

is that the time derivative V̇ (x (t)) of the Lyapunov function is replaced by its

difference function along the solutions of the system equation, i.e.,

∆V (x (k)) = V (x (k + 1))− V (x (k))

Although very similar to the continuous case, the discrete versions of the

theorems presented in Section 6.1.3 will now be presented below, essentially

because of their importance for the proofs in the subsequent sections of this

chapter.

Consider the stability properties of the null solution of the autonomous sys-

tem

x (k + 1) = f (x (k)) (6.2)

132

with f (0) = 0. The following theorems constitute Lyapunov’s direct method

for discrete time autonomous systems.

Theorem 6.4 The null solution, or the equilibrium state at the origin of the

system represented by Equation 6.2, is stable if there is some neighbourhood

of the origin where a positive definite function V (x (k)) exists such that its

difference function ∆V (x (k)) with respect to the solutions of Equation 6.2 is

negative semi-definite in that region.

Theorem 6.5 The null solution, or the equilibrium state at the origin of the

system represented by Equation 6.2, is asymptotically stable if there is some

neighbourhood of the origin where a positive definite function V (x (k)) exists

such that its difference function ∆V (x (k)) with respect to the solutions of Equa-

tion 6.2 is negative definite in that region.

Theorem 6.6 Let V (x (k)) be a scalar function. Suppose that the region R =

{x (k) |V (x (k)) < a} is bounded. Let ∆V (x (k)) be the difference function of

V (x (k)) along the solutions of Equation 6.2. If V (x (k)) is positive definite and

∆V (x (k)) negative definite in R, then the origin is an asymptotically stable

equilibrium state and all the motions starting in R converge to the origin as

k →∞.

6.1.5 Stability of Model Predictive Optimal Control

Proving that a model predictive control optimization scheme leads to a stable

closed loop control system is a non-trivial task. In general model predictive

controllers are implemented with a receding horizon strategy, so all that can be

said is that the optimization up to the (current) horizon is in some sense optimal.

As it turns out, however, if the cost function is positive definite it can be used

133

as a Lyapunov function. This approach was first suggested in the early 1980’s

and has over time become almost universally employed as a natural Lyapunov

function for stability analysis of model predictive control [42, Sect. 2.4], [18,

Sect. 4.4]. However, there is still another difficulty that must be dealt with,

in that the optimization problem that is solved is defined only up to a finite

optimization horizon, so that anything that can be said about stability within

the finite horizon does not necessarily say anything about the overall stability

over a period of time that is greater than the optimization horizon. A trick that

is often used to resolve this is to add appropriate cost function weighting and

restrictions on the terminal state of the optimization horizon to account for the

impact of events that lie beyond the end of the optimization horizon [18, Sect.

4.4], [42]. Hence, one must steer the system into this restricted terminal region

over the finite time available in the optimization window, in order to guarantee

stability. Three early and important papers on the use of these techniques,

i.e., use of the cost function as a Lyapunov function and imposition of terminal

constraints to guarantee stability, are [9], [29] and [41].

6.2 Outline of Stability Proof Approach

The solution that we use for our control problem is a somewhat unconventional

application of model predictive control and as a result our stability proofs will

need to be modified somewhat. Importantly, the cost function can still be used

as a Lyapunov function; however, the use of terminal constraints to guarantee

stability, in the sense described above, is not possible. What has been achieved

with regard to proof of stability will now be described.

As described in earlier chapters, because of the combinatorial aspects of the

multisensor multitarget problem that we are dealing with, the solution that has

134

been developed uses a hierarchical form of MPC. As currently implemented, a

planner computes all UAV assignments and nominal paths at fixed intervals of

time that are substantially longer than the controller update interval. At each of

these planner updates the nominal UAV paths are computed using the current

best estimate of the target states and the known UAV states. The computations

are open loop, leaving no possibility of instability. The only issues are whether

the planner will always find a feasible path for each UAV and how optimal the

assignments and paths will be. While not stability issues, let us consider these

issues now.

Firstly, the assignment algorithm is a direct one, considering all possible

assignments and selecting the lowest cost one. Assuming the path computations

are performed successfully, there is no possibility of the assignment algorithm

failing, and it is guaranteed to give an optimal assignment if the computed paths

for each possible assignment are optimal.

With regard to the planner’s path computations, let us first consider the

heuristic-based trajectory calculation algorithm presented in Section 4.4.2. With

not very restrictive constraints on the no-fly-zone number, shapes and spacings,

this algorithm will always find a (suboptimal) path from the current UAV posi-

tion to the current estimate of the assigned target, as long as a one exists. The

second trajectory calculation algorithm, i.e., the algorithm described in Section

4.4.3, uses a rollout policy which in turn uses the heuristic algorithm as its base

policy. This algorithm produces paths that are at least as close to optimal as

those of the base policy [5, Prop. 6.3.1 (p. 293), and Sect. 6.4 (p. 316)] and

often considerably closer to optimal. With the same non-restrictive constraints

as the heuristic algorithm, this algorithm will also always find a path if one

exists.

Now let us consider what occurs across multiple planner updates. At each

135

update of the planner, the estimates of the target states are different, firstly be-

cause targets move, but more importantly because there is substantial random

measurement error and consequently target state estimation error. The issue

here is how will the control algorithm deal with these random variations in tar-

get state estimates. This in fact is an issue of robustness, i.e., the maintenance

of properties such as stability and performance in the presence of uncertainty

[42, Sect. 4]. We will not deal with the issue of robustness rigorously, leaving it

as future work to be done; however, with regard to robustness to variations in

target state estimates across multiple planner updates some intuitive arguments

can be made that are reasonably convincing. Firstly, if the one-step-ahead con-

troller is stable between planner updates, then the UAVs will on average move

to positions where target state measurements become more accurate during

successive planner updates. The target state estimates will improve even more

than the measurements, because of the cumulative effect of the multiple mea-

surements made during the planner update period. Hence during successive

updates of the planner, the random variations in the target state estimates will

on average decrease, resulting in a self correcting effect. Secondly, the changes

in the UAV position from one update of the planner to the next will usually not

be very large relative to target distances, so even if the random measurement

error is such that the UAVs move toward poorer positions for the occasional

planner update period, the degradation in UAV geometry will only be small

and should almost always be more than compensated for by the fact that many

target state measurements are made during a planner update period thus still

leading to improved target state estimates for use in the subsequent planner

update. Hence, there will almost always still be a self correcting effect. This

has in fact been corroborated by the simulations that were presented in earlier

chapters, in that there was no sign of erratic behaviour of the controller.

136

Given the above, what is left to prove is, given the planner trajectories of

any selected update of the planner, will the one-step-ahead controller, using

the cost functions associated with the nominal planner paths and estimation

accuracy based cost be able to compute and control trajectories of the UAVs

without instability occurring. The one-step-ahead controller (locally) optimizes

over a very short horizon, NH = 1. The short horizon is a consequence of

the combinatorial aspects of taking into account the interaction of the multi-

ple UAV positions, which make longer optimization horizons computationally

infeasible. Because of this short horizon there is no way of implementing ter-

minal constraints to guarantee stability. What can be attempted, however, is

to use the one-step-ahead controller’s cost function as a Lyapunov function and

try to prove stability by demonstrating that the solutions (i.e., controls) of the

one-step-ahead controller, over multiple updates, converge to the desired equi-

librium point. To do this mathematically would be extremely difficult, if not

impossible because of the implicit nature of the control law and the dependence

of the cost function on the interaction between UAVs. In addition to these diffi-

culties there is also the uncertainty (randomness) in the target state estimates,

which leads to the issue of robustness, as was discussed above for the planner

updates. Hence no attempt will be made to give a full proof, leaving it as possi-

ble future work. However, a start will be made, concentrating on a component

of the one-step-ahead controller’s cost function to begin to get an indication of

the stability performance of the controller. This will allow some mathematical

proofs to be produced, which, with the aid of some graphical demonstrations

will begin to add to our confidence in the stability behaviour of the controller.

Referring to the definitions CP and CE in Section 4.5, the component of the

cost function that we will consider is the cost CP associated with the divergence

of the UAV trajectory from the path calculated by the path planner; this is

137

somewhat easier to deal with than the cost CE associated with target position

estimation error. The primary reasons CP is somewhat easier to deal with are

that it doesn’t depend on the interaction between the UAV’s relative positions,

and it is not affected (during a single planner update interval) by the random

variations of the target state estimates, i.e., it is deterministic.

In the following section we will analyse the one-step-ahead controller assum-

ing the idealized dynamics model for the UAVs that was presented in Chapter 4.

Considering only the cost function CP , we will provide a mathematical proof of

global asymptotic stability. In the subsequent section we will then consider the

one-step-ahead controller, again assuming only the cost function CP , but this

time using the fixed-wing UAV dynamics model that was presented in Chapter

5. We will mathematically prove this controller to be, at worst, locally stable,

and then go on to provide graphical demonstrations of asymptotically stable

behaviour given a range of UAV starting positions, thus providing strong evi-

dence of stability at points that are a considerable distance from the equilibrium

point.

6.3 One-Step-Ahead Controller Stability Analy-

sis - Idealized Dynamics

Let us first consider the one-step-ahead controller described in Chapter 4 as

it has simpler dynamics than the controller described in Chapter 5. In this

controller, an idealized model of UAVs is used in which control is implemented

by changing the direction of travel of the UAVs, while they travel at a constant

pre-set speed, or by setting the speed to zero. At each step the control that is

selected is the one that results in the minimum value of a cost function. The

138

changes in direction of travel, or between the preset speed and zero speed, are

assumed to occur instantaneously.

As mentioned in the previous section, to analyse stability for this controller,

Lyapunov’s direct method will be used, and the cost function will be used as

the Lyapunov function. As previously defined in Section 4.5, CP = Cd + Cv,

where (i) Cd is the cost associated with the distance d of the UAV from the

reference path calculated by the path planner for that UAV and (ii) Cv is the cost

associated with vdiff , the magnitude of the difference between the component

of the UAV velocity vector in the direction of the (directed) line corresponding

to the current leg of the path calculated by the planner, and the speed of the

UAV. Let us now look at the components of the cost function CP associated

with the cost Cd of the distance d and the cost Cv of vdiff , as was derived in

Section 4.5. The key equations presented in Section 4.5 are reproduced below

with the subscripts representing the control option and UAV subscripts removed

for convenience.

The current leg of the reference path for a particular UAV is represented by

the line segment joined by (x1, y1) and (x2, y2) and the current UAV position

is (x, y). Also a = (x2, y2) − (x1, y1), b = (x, y) − (x1, y1) and θ is the angle

between a and b. It can easily be shown that the distance d is

d =
|(x2 − x1) (y − y1)− (y2 − y1) (x− x1)|√

(x2 − x1)
2 + (y2 − y1)

2
(6.3)

The cost of using a particular control option for a particular UAV is then

defined as Cd = kdd
2 where kd is a positive constant.

Now let us revisit Cv. The vector v is the velocity of a particular UAV and

w is the orthogonal projection of v on the vector a. The vector z is a vector

with magnitude vM , i.e., the maximum possible speed of the UAV, but with the

same direction as a. Also note that the components of v are (ẋ, ẏ), and note

139

that |z| = vM , then

vdiff = vM −
[ẋ (x2 − x1) + ẏ (y2 − y1)]√

(x2 − x1)
2 + (y2 − y1)

2
(6.4)

The cost of using a particular control option for a particular UAV is then de-

fined as Cv = kvv
2
diff , where kv is a positive constant. The total cost associated

with d and vdiff is then

CP = Cd + Cv (6.5)

Without loss of generality, let y1 = y2 = 0, i.e., the line segment (x2, y2) −
(x1, y1) is assumed to be on the x-axis. Substituting y1 = y2 = 0 into Equation

6.3 results in d = |y| and hence Cd = kdy
2. Similarly, substituting y1 = y2 = 0

into Equation 6.4 results in vdiff = vM − ẋ and hence Cv = kv (vM − ẋ)2.

Substituting the equations for Cd and Cv into Equation 6.5 gives

CP = kdy
2 + kv (vM − ẋ)2 (6.6)

Now let us represent the UAV’s velocity vector v in polar form, i.e., v =v∠θ,

where v is the UAV’s speed and θ is the UAV’s heading. Recall that the speed

of the UAVs is constant, and equal to vM , for all but one control option in the

controller described in Chapter 4; this particular control option was employed

primarily to enable stopping of the UAVs once they reached their desired ter-

minal states (note that all the control options in the controller described in

Chapter 5 assume constant speed). So, assuming constant speed vM , the head-

ing θ and distance y fully define the aspects of the UAV’s state that determines

the cost CP . Rewriting Equation 6.6 in terms of θ and y gives

CP (θ, y) = kdy
2 + kv (vM − vM cos θ)2

= kdy
2 + kvv

2
M (1− cos θ)2 (6.7)

140

From Equation 6.7 we see that

CP (θ, y) > 0 ∀θ, y > 0

and

CP (θ, y) = 0 when θ = 0, y = 0

hence CP (θ, y) is positive definite, as required by Lyapunov’s Theorems in Sec-

tion 6.1.4.

At this point it pays to show Equation 6.7 graphically; Figure 6.1 shows the

cost CP as a function of the heading θ and distance y. The ranges of the heading

θ and distance y in this plot were −π ≤ θ ≤ π radians and −3600 ≤ y ≤ 3600

metres respectively, and the values of kd, kv and vM were kd = 0.001, kv = 3.6

and vM = 30 m/s.

With regard to the stability proof, the first thing to be noted is that since

at any individual step there is always the option of remaining stationary, the

UAV states will never diverge to higher cost states than the one that the UAV

is currently in. Hence, on this basis alone, the system is Lyapunov stable (but

not necessarily asymptotically stable). Asymptotic stability will now be proved

in the following paragraphs.

First let us determine the state update equations of the controller described

in Chapter 4. It is mathematically convenient to consider the change in the

direction of travel of a UAV at time tk to be the result of an impulse Ωkδk

where δk is a unit impulse starting at time tk and ending at time tk+∆ with

∆ → 0. This impulse is thus considered to be the control at time tk. The

change in direction of travel that results thus takes the form of a step function

with step-size ∆θk = Ωk, and we can arrive at any θk+1 = θk + Ωk by making

the appropriate choice for Ωk.

141

−4000

−2000

0

2000

4000

−4

−2

0

2

4
0

0.5

1

1.5

2

2.5

3

x 10
4

Distance (m)Heading (rad)

C
o

s
t

C
P
(k

)

Figure 6.1: Cost CP as a Function of the UAV’s Heading θ and Distance y.

142

The transition equations for each component of the state vector are then

xk+1 = xk + vT cos θk+1 (6.8)

ẋk+1 = v cos θk+1

yk+1 = yk + vT sin θk+1

ẏk+1 = v sin θk+1

where θk+1 is the heading during the time period tk < t ≤ tk+1, and T = tk+1−tk.

Note also that

ẋk = v cos θk (6.9)

ẏk = v sin θk

where θk is the heading during the time period tk−1 < t ≤ tk.

Now, let Equation 6.7 be the Lyapunov function (or equivalently, Equation

6.6) and note that we have already shown that it is positive definite. Hence, from

Theorem 6.6, if CP (k + 1)− CP (k) is negative definite and the only cost were

CP , then the controller is globally asymptotically stable. In other words, if it can

be proven that at every step of the controller, irrespective of the starting point,

the value of the Lyapunov function decreases, i.e., CP (k + 1) − CP (k) < 0 if

(θk, yk) �= (0, 0) and remains constant, i.e., CP (k + 1)−CP (k) = 0 if (θk, yk) �=
(0, 0), then if the only cost were CP , the controller is globally asymptotically

stable. This proof will now be given in the following paragraphs.

Before beginning the proof, for the sake of convenience (compactness and

consistency with the Lyapunov theorems in the previous section), let us now

define the following nomenclature

Vk
∆
= CP (k) (6.10)

143

and

∆Vk
∆
= CP (k + 1)− CP (k) (6.11)

The above two substitutions will be used in what follows.

With reference to Equations 6.6 and 6.11, the change in the cost function

CP i.e., ∆Vk, over two consecutive updates is

∆Vk = kdy
2
k+1 + kv (vM − ẋk+1)

2 − kdy
2
k − kv (vM − ẋk)

2 (6.12)

Rearranging and substituting Equations 6.8 and 6.9 into Equation 6.12 and

considering only the constant pre-set speed (i.e., v = vM) cases, gives

∆Vk = kd
[
(yk + vMT sin θk+1)

2 − y2k
]

+kv
[
(vM − vM cos θk+1)

2 − (vM − vM cos θk)
2]

Expanding, cancelling terms and rearranging the above equation gives

∆Vk = kd
(
v2MT 2 sin2 θk+1 + 2ykvMT sin θk+1

)
(6.13)

+kvv
2
M

[(
cos2 θk+1 − cos2 θk

)
− 2 (cos θk+1 − cos θk)

]

The most direct way to prove ∆Vk < 0 is to take the partial derivative of

Equation 6.13 with respect to θk+1, equate it to zero to find all the turning

points of ∆Vk, calculate the value of [∆Vk]j at these turning points as well as

at the maximum and minimum values of θk+1 (i.e., θk+1 = ±π), and then find

the minimum of these, min [∆Vk]j. Note that min [∆Vk]j is chosen because the

controller always chooses θk+1 so as to minimize ∆Vk. If the minimum value

of ∆Vk can be proven to always be less than zero (except at the equilibrium

point where it’s equal to zero) then the controller is asymptotically stable in

the Lyapunov sense.

Let us now take the partial derivative with respect to θk+1 of Equation

6.13 to see if the above approach is feasible. Taking the derivative and then

144

simplifying gives

∂∆Vk
∂θk+1

= 2kdvMT (vMT sin θk+1 cos θk+1 + yk cos θk+1) (6.14)

+2kvv
2
M (sin θk+1 − sin θk+1 cos θk+1)

The turning points and inflections of Equation 6.14 occur at

2kdvMT (vMT sin θk+1 + yk) cos θk+1 + 2kvv
2
M (1− cos θk+1) sin θk+1 = 0

We could not find a closed form solution for θk+1 (which may, in fact, be

impossible to find), hence another approach is required. Note that we need to

prove that a value of θk+1 can always be found that results in ∆Vk < 0 (or

∆Vk = 0 at the equilibrium point); to do this we do not necessarily need to find

the optimal value of θk+1. We will thus consider all the possible UAV states at

time tk and prove that a value θk+1 can always be found that gives ∆Vk < 0

when (θk, yk) �= (0, 0) and ∆Vk = 0 when (θk, yk) = (0, 0). The optimal θk+1

will always do as well or better, and will be found by the controller to within

the resolution of the search that is performed. This proof follows.

Let us assume that we choose θk+1 = 0, then Equation 6.13 becomes

∆Vk = kvv
2
M

[(
1− cos2 θk

)
− 2 (1− cos θk)

]

= kvv
2
M [(1− cos θk) (1 + cos θk)− 2 (1− cos θk)]

= kvv
2
M [(1− cos θk) (cos θk − 1)]

= −kvv
2
M (1− cos θk)

2

Simple inspection shows that if θk �= 0, choosing θk+1 = 0 results in ∆Vk < 0,

i.e., a cost decrease at every update of the controller.

Now let us assume that θk = 0, then the above equation becomes ∆Vk = 0,

i.e., choosing θk+1 = 0 results in the cost remaining the same. However as stated

above θk+1 = 0 may not necessarily be the lowest cost control. To see if there is

145

a lower cost control, let us consider the partial derivative with respect to θk+1 of

Equation 6.13, i.e., Equation 6.14 and determine its value at θk = 0, θk+1 = 0.

The result is

∂∆Vk
∂θk+1

∣∣∣∣ θk=0,
θk+1=0

= 2kdvMTyk

Now kd > 0, vM > 0, T > 0, hence if yk �= 0 then θk+1 = 0 is not a minimum,

i.e., a lower cost control can be found, resulting in ∆Vk < 0. If, however, yk = 0,

then θk+1 = 0 is a minimum resulting in ∆Vk = 0, which is exactly as required

since (θk, yk) = (0, 0) corresponds to the equilibrium point.

Now let us consider the case of the UAV being stationary at time tk (i.e., the

zero speed control option) and determine if there is a θk+1 for which ∆Vk < 0.

For this case, Equations 6.9 are replaced by

ẋk = 0 (6.15)

ẏk = 0

Rearranging and substituting Equations 6.8 and 6.15 into Equation 6.12 gives

∆Vk = kd
[
(yk + vMT sin θk+1)

2 − y2k
]
+ kv
[
(vM − vM cos θk+1)

2 − v2M
]

Expanding, cancelling terms and rearranging the above equation gives

∆Vk = kd
(
v2MT 2 sin2 θk+1 + 2ykvMT sin θk+1

)
+ kvv

2
M

(
cos2 θk+1 − 2 cos θk+1

)

(6.16)

Choosing θk+1 = 0 results in

∆Vk = −kvv
2
M

< 0

Hence for this case there is always a control that leads to a decrease in cost.

This now completes the proof that the above controller is globally asymptotically

stable.

146

6.4 One-Step-Ahead Controller Stability Analy-

sis - Fixed-Wing Aircraft Dynamics

Now let us consider the controller described in Chapter 5. In this controller,

a somewhat simplified model of fixed-wing UAVs is used, in which each UAV

is assumed to be travelling at a fixed speed but can turn in the horizontal

plane over a range of turn rates corresponding with transverse accelerations

up to ±atmax. During any period of time tk ≤ t < tk+1 the magnitude of the

transverse acceleration at is constant and its direction is toward a fixed point,

the centre of the turn. The model used to represent this type of turn is referred

to as a coordinated turn model [2, p. 187].

Referring to Equation 5.1 for the coordinated turn model, and repeating it

here for convenience, we have the following state equation for describing the

transition from the UAV state x (k) at time tk to x (k + 1) at time tk+1

x (k + 1) = A (k)x (k) (6.17)

where

A (k) =

1 sinωkT
ωk

0 − (1−cosωkT)
ωk

0 cosωkT 0 − sinωkT

0 (1−cosωkT)
ωk

1 sinωkT
ωk

0 sinωkT 0 cosωkT

x (k) =
[
xk ẋk yk ẏk

]T

and

ωk =
at (k)

v

and where T is the time interval T = tk+1 − tk, at (k) is the transverse (cen-

tripetal) acceleration at time tk ≤ t < tk+1, v is the UAV’s speed, and ωk is the

147

angular velocity of the UAV at time tk ≤ t < tk+1.

Rewriting the above state equation in another form gives

xk+1

ẋk+1

yk+1

ẏk+1

=

xk +
sinωkT
ωk

ẋk − (1−cosωkT)
ωk

ẏk

cos (ωkT) ẋk − sin (ωkT) ẏk
(1−cosωkT)

ωk
ẋk + yk +

sinωkT
ωk

ẏk

sin (ωkT) ẋk + cos (ωkT) ẏk

(6.18)

Also, the UAV’s speed is fixed at v = vM , resulting in

ẋk = vM cos θk (6.19)

ẏk = vM sin θk

where θk is the heading at time tk.

As was done in Section 6.3, let Equation 6.7 (or equivalently, Equation 6.6)

be the Lyapunov function. Again, as in Section 6.3, from Theorem 6.6, if

CP (k + 1) − CP (k) is negative definite and the only cost were CP , then the

controller is globally asymptotically stable. Hence, again we have to prove that

at every step of the controller, CP (k + 1) − CP (k) < 0 if (θk, yk) �= (0, 0) and

CP (k + 1)− CP (k) = 0 if (θk, yk) = (0, 0), in order to prove global asymptotic

stability. Let us investigate the possibility of proving this now. As in Section 6.3,

we will use the substitutions shown in Equations 6.10, and 6.11, i.e., Vk
∆
= CP (k)

and ∆Vk
∆
= CP (k + 1)− CP (k), respectively.

Using the above transition equation, i.e., Equation 6.18, the substitution as

per Equation 6.10 and referring to Equation 6.6, we derive the following for the

cost (Lyapunov) function at time tk+1

Vk+1 = kd

[
(1− cosωkT)

ωk
ẋk + yk +

sinωkT

ωk
ẏk

]2
(6.20)

+kv [vM − (cos (ωkT) ẋk − sin (ωkT) ẏk)]
2

148

Substituting Equation 6.19 into 6.20 gives

Vk+1 = kd

[
(1− cosωkT)

ωk
vM cos θk + yk +

sinωkT

ωk
vM sin θk

]2
(6.21)

+kv [vM − (cos (ωkT) vM cos θk − sin (ωkT) vM sin θk)]
2

The most direct way to prove ∆Vk < 0 is to take the partial derivative of

Equation 6.21 with respect to ωk, equate it to zero to find all the turning points

of Vk+1 (noting that these are also the turning points of ∆Vk), calculate the value

of [∆Vk]j at these turning points as well as at the maximum and minimum values

of ωk, and then find the minimum of these, min [∆Vk]j. If the minimum value of

∆Vk can be proven to always be less than zero (except at the equilibrium point

where it’s equal to zero) then the controller is globally asymptotically stable in

a Lyapunov sense. This approach will now be attempted.

Expanding and simplifying Equation 6.21 gives

Vk+1 =
8ω2k sin

(
1
2
(Tωk + θk)

)4
kvv

2
M + 2kd ((cos θk − cos (Tωk + θk)) vM + ωkyk)

2

2ω2k

Taking the partial derivative of the above equation with respect to ωk and then

simplifying, and letting

A (ωk) = sin

(
1

2
(Tωk + θk)

)2
sin (Tωk + θk)

B (ωk) = (− cos θk + cos (Tωk + θk) + Tωk sin (Tωk + θk))

C (ωk) = ((− cos θk + cos (Tωk + θk)) vM − ωkyk)

gives
∂Vk+1
∂ωk

=
2vM (2kvvMTω3kA (ωk)− kdB (ωk)C (ωk))

ω3k

The above equation then needs to be equated to zero and solved for ωk to

find the turning points. However, inspection of the equation shows that this is

not a realistic proposition. The method used for the stability proof for the first

149

controller is also not feasible as both θk+1 and yk+1 simultaneously change in a

fairly complex fashion as the control ωk is changed, and, as a result, values of

ωk that lead to ∆Vk < 0 for every possible starting point (θk, yk) (other than

(θk, yk) = (0, 0) where we require ∆Vk = 0) could not be found. What has been

achieved, however, is a less ambitious mathematical proof of stability, that of

local stability around the equilibrium point (θk, yk) = (0, 0). This will now be

given and then evidence of asymptotic stability at points well away from the

equilibrium point will be provided graphically. For the proof of local stability,

Theorem 6.4 is used.

Let us consider now an approximation to Equation 6.17 which is valid when

ωk is small, as is the case when θk and yk are near the equilibrium point. The

derivation of the approximate state equation follows.

Consider an object travelling in two dimensional space (x, y) under constant

acceleration ẍk = (ẍk, ÿk) for a period of time T . The equations describing the x

component of its position and velocity are

xk+1 = xk + ẋkT +
1

2
ẍkT

2

and

ẋk+1 = ẋk + ẍkT

The same applies to the y component, resulting in the following 2D state equa-

tion

x

ẋ

y

ẏ

k+1

=

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

x

ẋ

y

ẏ

k

+

1
2
T 2 0

T 0

0 1
2
T 2

0 T

 ẍ

ÿ

k

(6.22)

Now, assuming that the acceleration is at right angles to the direction of

150

motion and referring to figure 6.2, we have

ẍ = −at sin θ

ÿ = at cos θ

but

sin θ =
ẏ

vM
(6.23)

cos θ =
ẋ

vM

hence

ẍ =
−at
vM

ẏ (6.24)

ÿ =
at
vM

ẋ

Substituting Equations 6.24 into Equation 6.22 gives the following state

equation

x

ẋ

y

ẏ

k+1

=

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

x

ẋ

y

ẏ

k

+

1
2
T 2 0

T 0

0 1
2
T 2

0 T

−at
vM

ẏ

at
vM

ẋ

k

(6.25)

Simplifying Equation 6.25 results in

x

ẋ

y

ẏ

k+1

=

1 T 0 −at
2vM

T 2

0 1 0 −at
vM

T

0 at
2vM

T 2 1 T

0 at
vM

T 0 1

k

x

ẋ

y

ẏ

k

(6.26)

If the acceleration is part of a coordinated turn with angular velocity ω we have

ω =
at
vM

151

x&

y&

x&&

y&&

θ

θ

M
v

t
a

x

y

Figure 6.2: UAV Velocity and Acceleration Vectors and their x, y Components

152

Substituting into Equation 6.26 and moving the time-step subscript inside the

matrices results in

xk+1

ẋk+1

yk+1

ẏk+1

=

1 T 0 −ωk
2

T 2

0 1 0 −ωkT

0 ωk
2
T 2 1 T

0 ωkT 0 1

xk

ẋk

yk

ẏk

(6.27)

Let us now compare Equation 6.17 with Equation 6.27. Taking the first term

of the Taylor series about ωkT = 0 for sinωkT, cosωkT and then the first two

terms of the Taylor series of cosωkT we arrive at the following approximations

sinωkT ≈ ωkT (6.28)

cosωkT ≈ 1 (6.29)

cosωkT ≈ 1− ω2kT
2

2
(6.30)

Substituting 6.28 into elements (1,2), (2,4), (3,4), and (4,2) of A (k), 6.29

into elements (2,2) and (4,4) of A (k), and 6.30 into elements (1,4), and (3,2) of

A (k) in Equation 6.17 we obtain

A (k) ≈

1 T 0 −ωk
2

T 2

0 1 0 −ωkT

0 ωk
2
T 2 1 T

0 ωkT 0 1

which is identical to the state transition matrix in Equation 6.27.

Now that it is shown from two points of view that Equation 6.27 is a valid

approximation for the actual state equation in the neighbourhood of ω = 0, let

us rewrite Equation 6.27 in a form that is more helpful for determining the cost

153

difference equation ∆Vk. Rearranging Equation 6.27 gives

xk+1

ẋk+1

yk+1

ẏk+1

=

xk + ẋkT − ωk
2
T 2ẏk

ẋk − ωkT ẏk

yk + ẏkT + ωk
2
T 2ẋk

ẏk + ωkT ẋk

(6.31)

Substituting rows 2 and 3 of Equation 6.31 into Equation 6.12 we obtain

∆Vk = kd

(
yk + ẏkT +

ωk
2
T 2ẋk

)2

+kv (vM − ẋk + ωkT ẏk)
2 − kdy

2
k − kv (vM − ẋk)

2

and then substituting Equation 6.23 into the above equation gives

∆Vk = kd
(
yk + vMT sin θk +

ωk
2
T 2vM cos θk

)2
(6.32)

+kv (vM − vM cos θk + ωkTvM sin θk)
2 − kdy

2
k − kv (vM − vM cos θk)

2

Expanding and collecting terms results in

∆Vk = kdv
2
MT 2 sin2 θk + 2kdvMykT sin θk +

ω2k

(
1

4
kdv

2
MT 4 cos2 θk + kvv

2
MT 2 sin2 θk

)
+

ωk
(
kdvMT 2 (vMT sin θk + yk) cos θk + 2kvv

2
MT (1− cos θk) sin θk

)

Taking the partial derivative with respect to ωk gives

∂∆Vk
∂ωk

= T 3 cos (θk) sin (θk) kdv
2
M + 2T sin (θk) kvv

2
M − 2T cos (θk) sin (θk) kvv

2
M

+2ωk

(
1

4
T 4 cos2 (θk) kdv

2
M + T 2 sin2 (θk) kvv

2
M

)
+ T 2 cos (θk) kdvMyk

Equating the above equation to zero and solving for ωk results in

ωk = −
2 (kdvMT 2 cos θk sin θk + 2kvvM sin θk − 2kvvM cos θk sin θk + kdykT cos θk)

T
(
kdT 2 cos2 θk + 4kv sin

2 θk
)
vM

(6.33)

154

At this value of ωk we must have either a maximum, minimum or inflection.

Note here that letting (θk, yk)→ (0, 0) (i.e., the equilibrium point) in the above

equation results in ωk → 0 which is consistent with the assumption that was

used to justify the above approximation for the A matrix, i.e., that ωk is small.

Substituting Equation 6.33 into Equation 6.32, substituting the first two

terms of the Taylor series for cos θk and sin θk, i.e., cos θk ≈ 1− θ2k
2

, sin θk ≈ θk

into the resulting equation and then simplifying and expanding gives

∆Vk ≈ − 4T 2k2dy
2
k

16kvθ
2
k + T 2kd

(
−2 + θ2k

)2 +
4T 2k2dy

2
kθ
2
k

16kvθ
2
k + T 2kd

(
−2 + θ2k

)2 (6.34)

+
24TkdkvvMykθ

3
k

16kvθ
2
k + T 2kd

(
−2 + θ2k

)2 +
8T 2kdkvv

2
Mθ4k

16kvθ
2
k + T 2kd

(
−2 + θ2k

)2

− T 2k2dy
2
kθ
4
k

16kvθ
2
k + T 2kd

(
−2 + θ2k

)2 +
4TkdkvvMykθ

5
k

16kvθ
2
k + T 2kd

(
−2 + θ2k

)2

+
4T 2kdkvv

2
Mθ6k

16kvθ
2
k + T 2kd

(
−2 + θ2k

)2 −
4k2vv

2
Mθ6k

16kvθ
2
k + T 2kd

(
−2 + θ2k

)2

Now as (θk, yk) → (0, 0), terms 2 to 8 in Equation 6.34 become negligible

leaving only term 1, i.e.,

∆Vk ≈
−4T 2k2dy2k

16kvθ
2
k + T 2kd

(
−2 + θ2k

)2 (6.35)

In the above equation kv and kd are positive, hence the denominator is the

sum of two terms which are ≥ 0 but which can never both be zero at the

same time, and thus, the denominator is > 0. Also, irrespecive of the value

of θk, the numerator is < 0 for all yk �= 0, and = 0 when yk = 0, therefore

∆Vk (θk, yk) = 0 at the equilibrium point (θk, yk) = (0, 0), and ∆Vk (θk, yk) ≤ 0

in the neighbourhood of the equilibrium point, i.e., ∆Vk (θk, yk) is negative semi-

definite. Hence, using Theorem 6.4, the above controller is, at the very least,

locally stable in the neighbourhood of (θk, yk)→ (0, 0).

155

−2

−1

0

1

2

−2

−1

0

1

2

x 10
−3

−4

−3

−2

−1

0

x 10
−3

Distance (m)Heading (rad)

C
P
(k

+
1
)−

C
P
(k

)

Figure 6.3: Plot of Equation 6.35

Now let us verify the validity of the approximations that we used to arrive

at Equation 6.35. Figure 6.3 shows a plot of Equation 6.35 and Figure 6.4

shows a plot of Equation 6.34. Comparison of the two plots shows that they are

almost identical over the (small) range of heading and distance considered in the

figures. This is as would be expected, with the solutions to the two equations

approaching each other as the range of heading and distance is decreased.

Figure 6.5 shows a plot of the actual iteratively derived cost differences. Note

that to produce this plot the iterations were performed by trying all possible

accelerations from -5.0 m/s2 to +5.0 m/s2 in steps of 0.01 m/s2 and finding

156

−2

−1

0

1

2

−2

−1

0

1

2

x 10
−3

−4

−3

−2

−1

0

x 10
−3

Distance (m)Heading (rad)

C
P
(k

+
1
)−

C
P
(k

)

Figure 6.4: Plot of Equation 6.34

157

−2

−1

0

1

2

−2

−1

0

1

2

x 10
−3

−4

−3

−2

−1

0

x 10
−3

Distance (m)Heading (rad)

C
P
(k

+
1
)−

C
P
(k

)

Figure 6.5: Actual Iterative Controller Cost Difference

the acceleration that leads to the lowest cost. In all three plots, i.e., Figures

6.3, 6.4 and 6.5, the range of the heading θk and distance yk considered was

−π
1800

≤ θk ≤ π
1800

radians, i.e., −0.1 ≤ θk ≤ 0.1 degrees and −2 ≤ yk ≤ 2

metres respectively. Comparison of the first two plots with the third shows that

both approximations are very similar to the actual cost differences seen in the

third plot over the (small) range of heading θk and distance yk considered, thus

confirming the validity of the equations that the first two plots represent.

As mentioned earlier in this section, global stability around the equilibrium

158

point could not be proved mathematically, however strong evidence of asymp-

totic stability at points well away from the equilibrium point can be provided

graphically and this will be shown now. Firstly, Figure 6.6 shows the single-step

transitions for the actual iterative algorithm. As with Figure 6.5, the iterations

were performed by trying all possible accelerations from -5.0 m/s2 to +5.0 m/s2

in steps of 0.01 m/s2 and finding the acceleration that leads to the lowest cost

for the update in question. However, here the range of the heading θk and dis-

tance yk at time k considered was −π ≤ θk ≤ π radians and −3600 ≤ yk ≤ 3600

metres respectively. In the figure the small circles correspond to the values of

(θk, yk) at time k, the dots at the other end of the line segments correspond to

the values of (θk+1, yk+1) at time k+1, and the line segments joining the circles

to the dots represent the transition from time k to time k+1. The line segments

and associated circle and dot that are in red indicate increasing or constant cost

from time k to time k+1, whereas those in green indicate decreasing cost. The

aim of the figure is to graphically show that for any starting point in the (θ, y)

plane within the range considered, the subsequent transition is consistent with

a general “flow” towards the equilibrium point at (θ, y) = (0, 0). Looking at

the figure, one sees that for the majority of starting points the transitions are

primarily a change in θ towards a small negative value when y > 0 and a small

positive value when y < 0, with a much smaller corresponding change in y. Once

a critical value of θ is reached there appears to be an abrupt change in direction

of the transitions such that there is primarily a decrease in the magnitude of y.

Note that while some of the transitions correspond to an increase in cost for that

transition the figure indicates that they soon lead to future transitions where

the cost is again decreasing. While covering a large number of starting points,

Figure 6.6 doesn’t show the change in direction toward decreasing y clearly, as

it occurs too abruptly, so Figure 6.7 was produced to show this more clearly.

159

−4 −2 0 2 4
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Heading (rad)

D
is

ta
n
c
e
 (

m
)

Figure 6.6: Single-Step Transitions of Iterative Controller

160

Figure 6.7 has much fewer starting points but follows the trajectories all the

way to convergence. As for Figures 6.5 and 6.6, the iterative algorithm was used

to produce this figure and the iterations were performed by trying all possible

accelerations from -5.0 m/s2 to +5.0 m/s2 in steps of 0.01 m/s2. The figure

shows the θ and y components of the trajectories from 36 different starting

points, which are marked with black dots. The abrupt change in direction

of the transitions can now be seen clearly in this figure. Importantly, all the

trajectories converge to the equilibrium point (θ, y) = (0, 0), which is marked

with a blue dot in the figure. In this figure also, the parts of the trajectories

during which the cost is increasing are shown in red. As can be seen from the

figure, despite travelling through sections of increasing cost, the trajectories all

converge to the equilibrium point.

161

−4 −3 −2 −1 0 1 2 3 4
−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

Heading (rad)

D
is

ta
n

c
e

 (
m

)

Figure 6.7: Theta and y components of Trajectories from a Range of Starting
Points.

Chapter 7

Concluding Remarks

The following section will summarize the outcomes of the work covered by this

thesis; this will be followed in the subsequent section by some suggestions for

possible future work.

7.1 Summary and Conclusions

The central theme of this thesis has been the development of an algorithm for

the control of a UAV-based passive distributed sensing system. The problem

that has been dealt with can be considered to fall within a broader class of

problems which we have referred to as cooperative sensor networks. It is also

clearly a control problem and has considerable overlap with work that has been

done in robotics, and of course military doctrine has needed to be taken into

account in the development of a solution. Chapter 1 of the thesis developed

the motivations for the work and began to introduce some of these concepts.

This was followed in Chapter 2 by a comprehensive review of the scientific

literature, firstly on broadly related research problems and then on problems

162

163

that are more closely related to ours. The review brought together battle-

management concepts from the military and research on a number of related

electronic warfare sensor management problems. It also demonstrated how our

problem fits within the context of these, and described the current state of the

art for these types of problems. As a result of this review, it was determined

that no other significant works had been presented in the literature that deal

with the unique combination of issues dealt with in this thesis.

Chapter 3 presented the theoretical background that is required for the sub-

sequent chapters. The contents of the chapter are the result of a broad survey

of modern optimal control theory and techniques, which was performed with

the aim of finding the most appropriate solution approach for the sensor man-

agement problem being considered. The chapter brings together theory sourced

from several texts and research papers and presents them in a concise manner

which was designed to help clarify and demonstrate the basis for the develop-

ment of the algorithms in the subsequent chapters.

A novel controller using a hierarchical variant of the model predictive control

approach is then developed in Chapter 4 to address the adaptive multisensor

multitarget tracking problem. The controller consists of a fine-grained controller

and a planner, organized in a manner that is new to this type of adaptive sensing

problem. A key feature of the controller is the incorporation of long-term goals

utilizing a dynamic programming based formulation. Also, the control algorithm

was designed from the outset to be usable in real-time systems. This goal had

a major impact on the solution approach which, in fact, successfully met this

requirement. As part of the development of the controller, two novel path

planning algorithms were presented. Both algorithms were integrated into the

hierarchical controller and the performance of the system tested by simulation

and compared with a “myopic” controller similar to that commonly seen in the

164

literature. The simulations showed clear advantages of the new algorithm, in

particular avoidance of entrapment by obstacles.

Chapter 5 takes the development of the control algorithm further, first in-

corporating a dynamics model for fixed-wing aircraft and then making the nec-

essary modifications to the algorithm to enable it to achieve its task with the

more restrictive constraints imposed by the type of UAV being considered. Sim-

ulations were then performed to demonstrate the performance of the algorithm

in its optimization of UAV trajectories. The simulations showed that, with the

changes made, the algorithm works well with the constraints imposed by the

type of fixed-wing aircraft considered, thus further demonstrating the effective-

ness of the approach and usability in a practical distributed sensing application.

A fundamental requirement of any control system is that it be stable. The

controllers that were developed in Chapters 4 and 5, when tested by simulation,

showed performance that was consistent with expectations and, in particular,

demonstrated stable behaviour. Generally in addition to simulation and testing

it is desirable to prove this property analytically. Chapter 6 presents an effort to

go some way to producing an analytical proof. As it turns out, stability analysis

of the controllers that have been developed is a highly challenging task; how-

ever substantial inroads were made by focusing on components of the system.

Together with the results of simulations in the chapters 4 and 5 the analysis

provided additional evidence that the controller should be stable; however, fur-

ther mathematical analysis is still required to give a deeper understanding of

the behaviour of the controllers and more confidence in their overall stability.

It is important to note the control approach that has been developed for the

problem considered in this thesis has much more general applicability than may

be immediately apparent. From the outset the aim was to produce a solution

that is scalable. Clearly simple extensions such as varying the numbers of UAVs

165

that are assigned to each target, or varying the type of sensor (or target) can be

relatively easily incorporated. But more importantly, the work can, for exam-

ple, be readily generalized to combine the problem of sensor platform steering

with jammer control, radar control, and even weapon trajectory control, us-

ing the same general approach. However, ingenuity is required, because for

all these cases the computational complexity of a full direct dynamic program-

ming solution will be beyond the capability of realizable computing systems.

For each extension or variation of the problem, approximations specific to that

problem will in general need to be used to achieve implementable solutions.

Unfortunately there will be no “magic bullet” solution for the type of complex

real-world problems described in this thesis; however, the optimal control ap-

proach described can be used as a guiding principle to develop solutions that,

while approximate, still have a sound basis in theory.

7.2 Future Work

As mentioned in the previous section, the algorithms presented in this thesis

concentrate on a fairly specific problem while using techniques that can be easily

modified for application to variants of the problem that may for example involve

different types of sensor. The techniques are also scalable to more complex

problems. Possible areas of future work that have practical application are:

(a) Considering different types of sensors on the UAVs. Particular types that

have military relevance are detected-power-level sensors, time-difference-

of-arrival sensors, and a technique called scan-based localization [23] which

uses a less sensitive type of time-difference-of-arrival algorithm, which only

applies to the geolocation of mechanically scanned radars.

166

(b) Detecting and tracking different types of emitters. An important exam-

ple of this is the geolocation of communications emitters such as mobile

phones, or military communications devices.

(c) Expanding the problem to more complicated systems, with multiple types

of platforms being controlled. An example of this could, say, be a system

where we have multiple UAVs carrying passive sensors as considered in this

thesis as well as possibly optical sensors, jammers mounted on other UAVs,

and a manned aircraft with an adaptively scanned radar. Considering how

this system could be optimized to detect, geolocate and destroy a surface

based radar while minimizing the risk to the manned aircraft’s crew is

clearly a very important problem to the military. It would also provide an

excellent test/demonstration of the scalability of the techniques developed

in this thesis.

The other main area of future work that could be done is to complete the

stability analysis of the controllers, which was partially completed in Chapter

6, building up to a thorough proof of stability of the entire systems. Again

relating to stability, time delays in the system and their effect on stability have

not been considered to date. Depending on how the actual control system is

implemented, time delays may possibly be an issue that needs to be considered

and this should also be considered as possible future work.

Bibliography

[1] James S. Albus, Alexander M. Meystel, Engineering of Mind - An Intro-

duction to the Science of Intelligent Systems, John Wiley and Sons, Inc.,

2001.

[2] Yaakov Bar-Shalom, Xiao-Rong Li, Estimation and Tracking: Principles,

Techniques, and Software, Artech House, 1993.

[3] John Bellingham, Arthur Richards, Jonathan P. How, “Receding Horizon

Control of Autonomous Aerial Vehicles”, Proceedings of the American Con-

trol Conference, Anchorage, Alaska, May 8-10, 2002.

[4] Richard Bellman, Dynamic Programming, Courier Dover Publications,

2003, Originally published by Princeton University Press, 1957.

[5] Dimitri P. Bertsekas, Dynamic Programming and Optimal Control - Volume

I, Second Edition, Athena Scientific, Belmont, Massachusetts, 2000.

[6] D. P. Bertsekas and D. A. Castanon, “Rollout Algorithms for Stochastic

Scheduling Problems”, Journal of Heuristics, Vol. 5, pp. 89-108, 1999.

[7] Stephen Boyd, Lieven Vandenberghe, Convex Optimization, Cambridge

University Press, 2004.

167

168

[8] E. F. Camacho and C. Bordons, Model Predictive Control, Second Edition,

Springer-Verlag London Ltd., 2007.

[9] C. C. Chen and L. Shaw, “On Receding Horizon Feedback Control”, Au-

tomatica, 18, pp. 349-352, 1982.

[10] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein C., “Introduction to

Algorithms”, Second Edition, MIT Press, 2001.

[11] Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, John

Wiley & Sons, Inc., 1991.

[12] Kutluyil Dogancay, “Online Optimization of Receiver Trajectories for Scan-

Based Emitter Localization”, IEEE Trans. on Aerospace and Electronic

Systems, Vol. 43, No. 3, pp. 1117-1125, July 2007.

[13] Kutluyil Dogancay, Hatem Hmam, “Optimal Angular Sensor Separation

for AOA Localization”, Signal Processing, Vol. 88, Issue 5, p.p. 1248-1260,

May 2008.

[14] Robin Evans, Vikram Krishnamurthy, Girish Nair, and Len Sciacca, “Net-

worked Sensor Management and Data Rate Control for Tracking Maneu-

vering Targets”, IEEE Transactions on Signal Processing, Vol. 53, No. 6,

June 2005.

[15] A. Farina, F. A. Studer, Radar Data Processing; Volume I - Introduction

and Tracking, Research Studies Press Ltd., 1985.

[16] A. Finn, K. Brown, T. Lindsay, “Miniature UAV’s & Future Electronic

Warfare”, Land Warfare Conference, October 2002, pp. 93-106, Brisbane,

Australia.

169

[17] Eric W. Frew, Cory Dixon, Brian Argrow, and Tim Brown, “Radio Source

Localization by a Cooperating UAV Team”, Infotech@Aerospace, 26-29

September 2005, Arlington, Virginia, USA.

[18] G. C. Goodwin, M. M. Seron, J. A. De Dona, Constrained Control and Es-

timation - An Optimisation Approach, Springer-Verlag London Ltd, 2005.

[19] T. Hanselmann, M. Morelande, “Multiple target tracking with asynchro-

nous bearings-only-measurements”, 10th International Conference on In-

formation Fusion 2007, 9-12 July 2007.

[20] Thomas Hanselmann, Mark Morelande, Bill Moran, Peter Sarunic, “Sensor

Scheduling for multiple target tracking and detection using passive mea-

surements”, 2008 11th International Conference on Information Fusion,

June 30 - July 3, 2008.

[21] Ying He, Edwin K. P. Chong, “Sensor Scheduling for Target Tracking in

Sensor Networks”, 43rd IEEE Conference on Decision and Control, De-

cember 14-17, 2004.

[22] O. Hernandez-Lerma, Adaptive Markov Control Processes, Springer-Verlag

New Yorke Inc., 1989.

[23] H. Hmam, “Scan-Based Emitter Passive Localization”, IEEE Transactions

on Aerospace and Electronic Systems, Vol. 43, No. 1, January, 2007.

[24] G. J. Holland, P. J. Webster, J. A. Curry, G. Tyrrell, D. Gauntlett, G.

Brett, J. Becker, R. Hoag, and W. Vaglienti, “The Aerosonde Robotic

Aircraft: A New Paradigm for Environmental Observations”, Bulletin of

the American Meteorological Society, pp. 889-901, 2001.

170

[25] Colin Howson, Peter Urbach, Scientific Reasoning: The Bayesian Ap-

proach, Open Court Publishing Company, 1989.

[26] Rufus Isaacs, Differential Games, John Wiley and Sons, Inc., 1965.

[27] R. A. Jarvis, “Collision-free Path Trajectory using Distance Transforms”,

Proc. National Conference and Exhibition on Robotics - Melbourne, 1984.

[28] Finn V. Jensen, Bayesian Networks and Decision Graphs, Springer-Verlag

New York, Inc., 2001.

[29] S. S. Keerthi and E.G. Gilbert, “Optimal, Infinite Horizon Feedback Laws

for a General Class of Constrained Discrete Time Systems: Stability and

Moving Horizon Approximations”, Journal of Optimization Theory and

Application, 57, pp. 265-293, 1988.

[30] O. Khatib, “Real-time Obstacle Avoidance for Manipulatiors and Mobile

Robots”, International Journal of Robotics Research, 5(1), 1986.

[31] Vikram Krishnamurphy, “Algorithms for Optimal Scheduling and Man-

agement of Hidden Markov Model Sensors”, IEEE Transactions on Signal

Processing, Vol. 50, No. 6, June 2002.

[32] Vikram Krishnamurphy and Robin J. Evans, “Hidden Markov Model Mul-

tiarm Bandits: A Methodology for Beam Scheduling in Multitarget Track-

ing”, IEEE Transactions on Signal Processing, Vol. 49, No. 12, December

2001.

[33] P. R. Kumar, Pravin Varaiya, Stochastic Systems - Estimation, Identifica-

tion and Adaptive Control, Prentice-Hall Information and System Sciences

Series, 1986.

171

[34] B. F. La Scala, W. Moran, R. J. Evans, “Optimal adaptive waveform se-

lection for target detection”, Proceedings of the International Radar Con-

ference, 3-5 September, 2003.

[35] L. S. Lasdon, Optimization Theory for Large Systems, MacMillan, New

York, 1971.

[36] Steven M. LaValle, Planning Algorithms, Cambridge University Press,

2006.

[37] S. M. LaValle, “Rapidly-exploring Random Trees: A New Tool for Path

Planning”, TR 98-11, Computer Science Dept., Iowa State University, Oc-

tober, 1998.

[38] Cindy Leung, Shoudong Huang, Ngai Kwok, Gamini Dissanayake, “Plan-

ning Under Uncertainty Using Model Predictive Control for Information

Gathering”, Robotics and Autonomous Systems 54 (2006), pp. 898-910.

[39] Martin M. Lipschutz, Theory and Problems of Differential Geometry,

Schaum’s Outline Series, McGraw-Hill Book Company, 1969.

[40] Mohamed Marzouqi and Ray A. Jarvis, “Efficient Robotic Pursuit of a

Moving Target in a Known Environment Using a Novel Convex Region

Segmentation”, 2nd International Conference on Autonomous Robots and

Agents, Palmerston North, New Zealand, December 13-15, 2004.

[41] Mayne, D. Q. and Michalska, H., “Receding Horizon Control of Non-linear

Systems”, IEEE Transactions on Automatic Control, 35(5), pp.814-824,

1990.

172

[42] Mayne, D. Q., Rawlings, J. B., Rao, C. V. and Scokaert, P. O. M., “Con-

strained Model Predictive Control: Stability and Optimality”, Automatica,

Vol. 36, pp. 789-814, 2000.

[43] Morari, M., and Lee, J . H., “Model Predictive Control: Past, Present, and

Future”, Computers and Chemical Engineering, Vol. 23, pp. 667-682, 1999.

[44] N. J. Nilsson, “A Mobile Automation: An Application of Artificial Tech-

niques”, Proceedings of the 1st International Joint Conference on Artificial

Intelligence, pp. 509-520, 1969.

[45] Yaakov Oshman, Pavel Davidson, “Optimization of Observer Trajectories

for Bearings-Only Target Localization”, IEEE Trans. on Aerospace and

Electronic Systems, vol.35, no. 3, pp. 892-902, July 1999.

[46] Fazlollah M. Reza, An Introduction to Information Theory, McGraw-Hill

Book Company, Inc., 1961.

[47] Riccardo Scattolini, “Architectures for Distributed and Hierarchical Model

Predictive Control - A Review”, Journal of Process Control 19 (2009), pp.

723-731.

[48] L. Sciacca, “Distributed Electronic Warfare Sensor Networks”, Association

of Old Crows Convention, 2002.

[49] L. J. Sciacca, A. Cullen and G. K. McCleery, “Cooperative Sensor Net-

works: Sensor Web Concepts for the Modern Warfighter”, Land Warfare

Conference 2001, Sydney, November 2001.

173

[50] Len J. Sciacca, Robin J. Evans, William Moran, Sofia Suvorova, “Coop-

erative Sensor Networks: A Stochastic Sensor Scheduling Approach”, Fi-

nal Program and Abstracts, Information, Decision and Control Conference,

2002.

[51] P. W. Singer, “War of the Machines”, Scientific American, July 2010.

[52] M. G. Singh, “Dynamical Hierarchical Control”, North-Holland Publishing

Co., 1977.

[53] Madan G. Singh, Stephen A. W. Drew, John F. Coales, “Comparisons

of Practical Hierarchical Control Methods for Interconnected Dynamical

Systems”, Automatica, Vol. 11, pp 331-350, Permagon Press, 1975.

[54] Sumeetpal S. Singh, Nikolaos Kantas, Ba-Ngu Vo, Arnaud Doucet, Robin

J. Evans, “Simulation-based Optimal Sensor Scheduling with Application

to Observer Trajectory Planning”, Automatica 43 (2007), pp. 817-830.

[55] D. J. Torrieri, “Statistical Theory of Passive Location Systems”, IEEE

Transactions on Aerospace and Electronic Systems, Vol. AES-20, No. 2,

March 1984.

[56] Gregory J. Toussaint, Pedro De Lima, Daniel J. Pack, “Localizing RF

Targets with Cooperative Unmanned Aerial Vehicles”, Proceedings of the

2007 American Control Conference, New York City, USA, July 2007.

[57] M. Vidyasagar, Nonlinear Systems Analysis, Second Edition, Prentice Hall,

Englewood Cliffs, New Jersey.

[58] Kruger White, Jason Williams, Peter Hoffensetz, “Radar Sensor Manage-

ment for Detection and Tracking”, 2008 11th International Conference on

Information Fusion, June 30 - July 3, 2008.

174

[59] J. L. Willems, Stability Theory of Dynamical Systems, Thomas Nelson and

Sons Ltd., 1970.

[60] Hans S. Witsenhausen, “Separation of Estimation and Control for Discrete

Time Systems”, Proceedings of the IEEE, Vol. 59, No. 11, November 1971.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Sarunic, Peter William

Title:

Hierarchical model predictive control of an unmanned-aerial-vehicle based multitarget-

multisensor data fusion system

Date:

2011

Citation:

Sarunic, P. W. (2011). Hierarchical model predictive control of an unmanned-aerial-vehicle

based multitarget-multisensor data fusion system. PhD thesis, Department of Electrical and

Electronic Engineering, The University of Melbourne.

Persistent Link:

http://hdl.handle.net/11343/37084

File Description:

Hierarchical model predictive control of an unmanned-aerial-vehicle based multitarget-

multisensor data fusion system

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.

