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Abstract

Resource Allocation in Cognitive Radio Networks

by Athipat Limmanee

This thesis focuses on optimal power allocation problems for various types of

spectrum-sharing based cognitive radio networks in the presence of delay-sensitive

primary links. To guarantee the quality of service in the delay-sensitive primary

network, primary user’s outage probability constraint (POC) is imposed such that

the transmission outage probability of each primary user is confined under the pre-

defined threshold.

We first consider a cognitive radio network consisting of a secondary user (SU)

equipped with orthogonal frequency-division multiplexing (OFDM) technology able

to access N randomly fading frequency bands for transmitting delay-insensitive as

well as delay-sensitive traffic. Each band is licensed to an individual single-antenna

and delay-sensitive primary user (PU) whose quality of service is assured by a POC.

Assuming full channel state information (CSI) is available at the secondary network,

we solve the SU’s ergodic capacity maximization problem subject to SU’s average

transmit power, SU’s outage probability constraints (SOC) and all POCs by using a

rigorous probabilistic power allocation technique. A suboptimal power control policy

is also proposed to reduce the high computational complexity when N is large.

Next, we study cognitive broadcast channels with a single-antenna secondary

base station (SBS) and M single-antenna secondary receivers (SRs) sharing the

same spectrum band with one single-antenna and delay-sensitive PU. The SBS aims

to maximize the ergodic sum downlink throughput to all M SRs subject to a POC

and a transmit power constraint at the SBS. With full CSI available at the secondary

network, the optimal solution reveals that at each timeslot SBS will choose the SR

with the highest direct channel power gain and allocate the timeslot to that user. The



opportunistic scheduling aspect from the optimality condition allows us to further

analyze the downlink throughput scaling behavior in Rayleigh fading channel as M

grows large.

We then examine a cognitive multiple-access channels with a single-antenna SBS

and M single-antenna secondary transmitters sharing the same spectrum band with

a single-antenna and delay-sensitive PU. Under an average transmit power constraint

in each secondary transmitters and a POC at the primary link, we characterize the

ergodic capacity region and two outage capacity regions, i.e. common outage capac-

ity region and individual outage capacity region, in the secondary uplink network

by exploiting the polymatroid structure of the problems. Also, the derivation of the

associated optimal power allocation schemes are provided. The optimal solutions

for the problems demonstrate that successive decoding is optimal and the decoding

order can be solved explicitly as a function of joint channel state.

Finally, we investigate a transmit power allocation problem for minimizing outage

probability of a single-antenna SU subject to a POC at a delay-sensitive and single-

antenna PU and an average transmit power constraint at the SU, providing that the

SU has quantized channel side information via B-bit feedback from the band man-

ager. By using nearest neighbourhood condition, we can derive the optimal channel

partition structure for the vector channel space, making Karush-Kuhn-Tucker con-

dition applicable as a necessary condition for finding a locally optimal solution. We

also propose another low-complexity suboptimal algorithm. Numerical results show

that the SU’s outage probability performance from the suboptimal algorithm ap-

proaches the SU’s outage probability performance in the locally-optimal algorithm

as the number of feedback bits, B, increases. Besides, we include the asymptotic

analysis on the SU’s outage probability when B is large.
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Chapter 1

Introduction

In this chapter, we will first briefly describe the basic concepts of cognitive radio

networks and related works to pave the way for the more detailed contributions of the

thesis in the subsequent chapters. In Section 1.1, we provide the rationale behind

cognitive radio (CR) technology. Section 1.2 is divided into two parts. Section

1.2.1 will give an overview of information theoretic notions utilized to constitute

important performance measures in general wireless communication networks and

also address some important works related to this thesis. In Section 1.2.2, related

literature in the context of energy-efficient resource allocation problem for different

CR network paradigms will be discussed. Section 1.3 completes this chapter with

an organization of the thesis and its contributions.

1.1 Motivation

The significance of ubiquitous wireless access has been dramatically increasing in

the last decade since new wireless applications become more and more popular. For

example, a mobile phone is not just a voice-only phone as we can enjoy watching

video, talking to friends from different parts of the world or even conducting finan-

cial transactions through this device. Undoubtedly, the availability of high quality

wireless services has fueled the acute growth in mobile subscriber demands. How-

ever, the transition from voice-only communications to multimedia communications

along with the increase in the number of wireless subscribers has made wireless

spectrum severely crowded. According to the Australian radiofrequency spectrum

allocation chart in Fig.1.1, almost all frequency bands have been licensed and very

little new bandwidth remains for the rising number of wireless products [1]. The

1



2 1.1. Motivation

Figure 1.1: Australian radiofrequency spectrum allocation chart in 2009 by ACMA.

main benefit of the licensing approach is that the licensee can completely control

its assigned spectrum and unilaterally manage interference among the users and the

users’ quality-of-service (QoS). Nevertheless, the bursty nature of most data traffic

still provides a great deal of opportunities to use the vacant spectrum, even though

a licensed channel is actively used. Furthermore, Spectrum Policy Task Force has

recognized that most of licensed spectrum bands are actually not in short supply

and in fact they are quiet most of the time. This implies that the spectrum drought,

as perceived today, is mainly because of the static licensed spectrum management

policy rather than any physical shortage [2]. In 2003, the Federal Communication

Committee suggested a new concept for dynamically allocating the spectrum to en-

counter the problem of spectrum scarcity in the future. The idea is that additional

wireless devices can exploit sophisticated technology to opportunistically share the

same spectrum with the entrenched licensed users or primary users (PUs) and thus

facilitate a more efficient spectrum utilization.

The cognitive radio concept can trace its roots back to an early work by Joseph

Mitola in 1999. In [3], Mitola defined the term software defined radio (SDR). SDRs
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are wireless devices that can be rapidly upgraded and adapted to the environment in

real time, empowered by a flexible software architecture. In [4], Mitola then coined

the term cognitive radio for the SDRs that are capable of sensing the environment,

for example channel, codebook, or activity side information of the other nodes with

which they share the spectrum [5–7]. By exploiting the side information, the cogni-

tive radio users can either utilize the spectrum when they sense the spectrum hole or

simultaneously operate as long as their interferences do not degrade the QoS of the

primary transmission to an unacceptable level. Clearly, the cognitive radio users’

performances are not only bounded by their own resources, but also restricted by the

service quality in the primary networks. So, it is necessary for cognitive radio users

or secondary users (SUs) to wisely manage their resources in order to achieve maxi-

mum performance without disturbing service quality in primary links. To this end,

several optimization techniques are applied as main tools to tackle resource man-

agement problems, making optimization one of the most attractive methodologies

in this research arena.

This thesis focuses on the resource allocation problem in cognitive wireless net-

works where the transmission power budget is one of the limited resources. Essen-

tially in cognitive radio networks, the service quality in the primary network also

restricts the interference caused by the secondary network. Thus, the design of ef-

ficient power allocation strategies for the secondary network also depends upon the

specific type of wireless service in the primary network. In many common wireless

networks, real-time applications such as voice and video services constitute an im-

portant part of the overall traffic. This motivates us to investigate optimal power al-

location schemes for maximizing information theoretic performance in various types

of secondary networks under the QoS requirements in delay-sensitive primary net-

works.

1.2 Literature review

This section is divided into two parts. The first part will provide a review of the

existing literature related to information theoretic performance measures used in
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fading wireless channels. The second part will discuss some selected articles that

previously dealt with power allocation policies in cognitive radio networks, especially

for the underlay paradigm based cognitive radio network, which is the cognitive radio

paradigm of interest in the thesis.

1.2.1 Capacity in wireless channel

The channel capacity is one of the most important performance measures in wireless

communication as it represents the maximum data rate can be transmitted through

the wireless channel with asymptotically small error probability. The breakthrough

study in channel capacity was pioneered in 1948 by Shannon based on the notion

of the mutual information between input and output of a channel [8]. More specifi-

cally, capacity is defined as the mutual information maximized over all possible input

distributions. However in practical situations, a wireless channel varies randomly

and continuously over time and the transmitters cannot have infinite power budget.

Wolfowitz then considered the capacity of time-varying channel, proving that if the

channel stochastic process is assumed to be stationary and ergodic, the capacity of

the time-varying channel is the expectation of the capacity of the particular channel

state [9] and the result is the same even though the number of channel state is infi-

nite [10]. Under the assumption of stationarity and ergodicity, the maximum achiev-

able capacity assuming no constraints on delay is thus called the ergodic capacity. In

a single user scenario, [10] argued that if the transmitter and the receiver know the

channel state, i.e. perfect channel side information (CSI) is assumed, the transmitter

can adapt its power to achieve the maximum ergodic capacity subject to its average

power constraint. The optimal power control scheme is the well-known water-filling

(WF) policy. The idea is to allocate more power to the better channel power gain

while stop transmitting when the channel power gain is really poor [11]. After [10],

there were several works that looked at ergodic capacity maximization problems in

various sorts of wireless networks. In orthogonal frequency-division multiplexing

(OFDM) technology where the transmitter sends information through parallel sub-

channels, the optimal power policy to achieve maximum ergodic capacity subject to

its average power constraint is also in water-filling manner, i.e. water-filling is done
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over the OFDM subcarriers, alias multi-dimension water-filling [12]. In single-input

single-output (SISO) fading multiple-access channels (MAC) with continuous fading

channel scenario, [13] showed in 1995 that the base station allocates a given time

slot (over which the fading channel remains invariant) to the user with the strongest

channel power gain only so as to maximize the ergodic uplink sum capacity in a MAC

with identical transmitters, implying that a dynamic time-division-multiple-access

(D-TDMA) is the optimal scheme. In 1998, [14] studied the analogous scenario but

investigated more general cases by considering unequal rate rewards in each user for

the sake of fairness among users. By exploiting the convexity and the polymatroid

structure of the problem, [14] rigorously proved that each point on the boundary of

the ergodic capacity region is attainable by successive decoding. Coincidentally, Tse

proposed the optimal power allocation scheme for maximizing ergodic sum downlink

capacity in SISO fading broadcast channels (BC) in 1997, showing that D-TDMA is

optimal by designating the whole time slot for the user with the strongest reception

only [15]. Then in 2001, [16] investigated the ergodic capacity region of M -user

fading BC with perfect CSI at the base station and the receivers. These results are

obtained for code-division with and without successive decoding, frequency-division

and time-division, showing that the achievable regions for frequency-division, time-

division and code-division without successive decoding are equivalent whereas the

achievable region for code-division with successive decoding has the largest capacity

region.

However, ergodic capacity is the performance measure of the long-term achiev-

able rate averaged over the time-varying channel. To average out the fluctuation of

the channel, the coded symbols must span many coherence time periods, and this

coding/decoding delay can be quite significant [12]. For applications that have a

tight delay constraint relative to the channel coherence time, this notion of capacity

is not meaningful because the user may suffer from outage. The outage event hap-

pens when the instantaneous rate drops below the encoding rate or target rate at

the receiver. Then, the decoding error probability at the receiver cannot be made

arbitrarily small regardless of the code used by the transmitter [12]. The probability

of the outage event for the corresponding target rate is called the outage probability.
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In the delay-limited case, we restrict ourselves to power control policies such that the

instantaneous mutual information is kept constant at all times, i.e. zero outage prob-

ability. The notion of delay-limitedness is inferred in many articles. Several works

on power control, such as [17] and [18], assume that a desired signal-to-interference

noise ratio must be met for every fading realization so as to the encoding rate is kept

constant. While it is straightforward that the single user delay-limited power control

policy is channel inversion, the multiple user scenario is more interesting since it

involves tradeoffs between the power and rate allocation and the interference among

the users. In [19] the authors defined the formal concept of delay-limited capac-

ity, also known as zero-outage capacity, for MAC. Similar to [14], [19] utilizes the

convexity and polymatroid structure of the problem to characterize the entire delay-

limited capacity region and the corresponding optimal power control schemes and

proves that the optimal solution is always successive decoding. Nonetheless, there

are some fading distributions for which zero outage probability cannot be achieved,

such as Rayleigh fading, since the probability that the channel is in deep fade is

non-zero [12]. Another performance measure called the ǫ-outage capacity is also

used to define the largest rate of transmission R such that the outage probability is

less than ǫ. In the single-user case, the well-known power strategy, called truncated

channel inversion (TCI), is the optimal solution to ǫ-outage capacity maximization

under average transmit power constraint [20]. In [21], the authors solved the outage

minimizing problem for the M -parallel block-fading additive white Gaussian noise

(BF-AWGN) channel with perfect CSI assumed at both transmitter and receiver.

The optimal power solution suggests that deterministic schemes are generally subop-

timal but a probabilistic power allocation scheme is optimal for channel distribution

consisting of discrete fading states, i.e. the optimal solution is randomized between

zero-power and a multi-dimensional basic rate allocation policies. In [22] the authors

studied two outage scenarios for the SISO fading MAC. The first one is common out-

age where an outage must be declared simultaneously for all users and the second

one is individual outage where an outage can be declared individually. Significantly,

it was shown in [22] that finding the outage capacity region is equivalent to deriving

the outage probability region for a given rate vector. Similar to the results in [14]
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and [19], [22] also proved that successive decoding is the optimal decoding strategy.

In SISO fading BC, [23] looked at several types of time-division multiple-access sim-

ilar to [16] and proved by the same technique as in [22] that the outage capacity

region can be implicitly acquired by deriving the outage probability region for a

given rate vector. The results presented in [13] and [15], in [14] and [16] and in [22]

and [23] reflect the hidden relationship between MAC and BC problems. The rela-

tionship is later clarified in [24] which emphasized the duality of the capacity region

of Gaussian MAC and BC by showing that the capacity region of the Gaussian

BC under a sum power constraint is exactly the same as the capacity region of a

dual Gaussian MAC subject to the same sum power constraint instead of individual

power constraints.

In [25], the authors argued that neither the ergodic capacity nor the outage ca-

pacity is exclusively appropriate in some variable rate applications. For example in

some video or audio applications, the source rate can be adjusted due to the fading

channel conditions in order to provide multiple QoS levels. Generally, a non-zero

basic rate R is needed to ensure a minimum acceptable service quality. Therefore,

the authors solved the problem of the ergodic capacity maximization subject to

an average power constraint and the constraint that the outage probability is no

more than ǫ for a given target instantaneous rate R. Note that the outage prob-

ability constraint is imposed on the problem in order to guarantee the minimum

QoS. The problem is also known as service-outage maximization problem, for an

M -parallel block fading channel. The derivation reveals that the optimal power

strategy is randomized between two deterministic power allocation schemes [25], i.e.

a multi-dimensional water-filling allocation and a multi-dimensional basic-rate al-

location scheme. In free-space optical communication channel, [26] examined the

service-outage maximization problem by suggesting that intensity modulation di-

rect detection optical block fading channel with Poisson receiver statistics can be

modelled as Poisson fading channel and again the optimal power solution shows the

randomization manner between two deterministic schemes. Since outage probability

is used as the QoS metric for delay-sensitive users in this thesis, the idea of proba-

bilistic power allocation technique shown in [21,25,26] serves as a vital tool to help
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solving problems from Chapter 2 to Chapter 4.

1.2.2 Cognitive radio network paradigms

In cognitive radio networks, the QoS of primary networks must be guaranteed, mak-

ing power control schemes in non-cognitive environments unable to be directly ap-

plied. Based on the type of available network side information, there are three main

approaches for CR to manage its resultant interference: interweave, overlay, and

underlay [6].

The interweave or spectrum sensing paradigm is regarded as the simplest ap-

proach to prevent secondary networks from degrading the QoS in primary network

by allowing SUs to transmit only the frequency band is detected to be idle. The idea

is originally outlined in [4]. In this paradigm, occupancy knowledge of the primary

users in each spectrum is required for the cognitive transmitters, making an accurate

sensing of the presence of non-cognitive users quite crucial. Theoretically, the resul-

tant interference from secondary networks is zero when primary network is active.

In practice, sensing ability is imperfect due to multipath fading of wireless channels

and the fluctuations in noise/interference level [27], leading to the the occurrence

of probability of missed detection and probability of false alarm. Also, the frame

structure of any cognitive radio system consists of a sensing time slot and a data

transmission slot, leading to the tradeoff between sensing time and data transmission

time [28]. Motivated by these limitations, the topic on resource allocation in the

interweave paradigm becomes attractive. For example, [29] considers the achievable

throughput from a queue stability perspective by deriving the optimal power control

for maximizing the cognitive users arrival rate whereas PU’s packet arrival is held

fixed to assure a certain primary average throughput. The optimal sensing time and

power allocation that maximizes the average throughput subject to the probability

of detection of the PUs under two different power constraints: peak (short-term)

transmit power constraint and average (long-term) transmit power constraint were

derived in [28] for a single frequency band and in [30] for a wideband scenario.

For the overlay paradigm, the codebook and message side information of primary

networks are presumed to be available at secondary networks. Thus, concurrent
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cognitive and non-cognitive users transmissions are allowed and the cognitive radio

users may even facilitate the transmission of the non-cognitive users. The overlay

paradigm is also referred in the information theory literature as an interference chan-

nel with asymmetric message knowledge, degraded message sets, or one cooperating

encoder [6]. One of the notable works on the overlay paradigm is [7] which addressed

four causal protocols and investigated corresponding achievable rate regions of cog-

nitive and non-cognitive users which combines Gel’fand–Pinkser coding [31] with an

achievable rate region construction for the interference channel [32]. In the addi-

tive Gaussian noise case, this represents the similarity to dirty-paper coding [33], a

technique used in the computation of the capacity of the Gaussian multiple-input

multiple-output (MIMO) BC [34]. Providing that there is no rate degradation for the

PU in the SU’s vicinity and the primary receiver adopts a single-user decoder, [35]

characterized the largest reliable rate for the SU and also demonstrated that mul-

tiuser decoding at the primary receiver is optimal in the high-interference regime for

the viewpoint of maximal jointly achievable rates in the overlay network with a pair

of primary and secondary users.

In the underlay paradigm [6, 36] or horizontal spectrum sharing [5, 7], which is

the main paradigm of interest in this thesis, cognitive networks can simultaneously

share the same spectrum with primary networks. Unlike the overlay paradigm, the

cognitive radio users in underlay paradigm are assumed to have CSI of the network.

By exploiting channel knowledge, the cognitive radio users must control the amount

of their interference to avoid deteriorating the QoS of the primary networks to de-

ficient level. The simplest method is to limit interference from secondary network

to each primary receiver or the so-called interference temperature [5]. The idea of

interference temperature limit is to quantify and manage the source of interference

by real-time interactions between transmitter and receiver in an adaptive manner so

as to ensure that the total interference from the secondary network to each primary

receiver is no more than a predefined value. So, given a particular frequency band in

which the interference temperature is not exceeded, that band could be made avail-

able to cognitive radio users [5]. Motivated by the idea of interference temperature

limit, the study on the channel capacity for secondary users in underlay paradigm
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has drawn a lot of attention. Gastpar derived the behaviour of capacity of different

additive white Gaussian noise (AWGN) channels subject to a received power con-

straint at the intended receiver or at the third party in [37]. The capacity under

receive power constraints at the receiver side is shown to be very similar to that

under transmit power constraints at the transmitter side because, for such invariant

channels, the received power at the third-party receiver is merely a deterministically

scaled version of the transmitted power. Therefore, analyzing the channel capacity

problem subject to received power constraints is tantamount to analyzing it subject

to transmit power constraints. However in fading wireless channels, the secondary

network can gain benefits from the presence of channel fading, for example when the

channel gain from a secondary transmitter to a primary receiver is in deep fade, it is

more likely that the secondary transmitter can opportunistically increase transmit

power to achieve higher rate.

Based on the results of [37] and the fading property of typical wireless channels,

a number of works have addressed the design of optimal power allocation policy to

achieve maximum transmission performance in the secondary network. For point-to-

point communication in the underlay paradigm, [38] studied the SU ergodic capacity

maximization subject to either an average or a peak interference power constraint

at each single-antenna equipped primary receiver. The corresponding power con-

trol policies were derived and later used to compute the closed-form expression of

the ergodic capacity in various types of channel fading statistics. Nevertheless, [38]

overlooked the effect of transmit power budget which is a limited resource for any

wireless devices in practice. Under the identical problem considered in [38], [39] also

imposed transmit power constraint at the secondary transmitter, i.e. either an av-

erage transmit power constraint or a peak transmit power constraint, and analyzed

both ergodic capacity maximization and outage probability minimization problems

under different channel fading scenarios. In 2009, [40] investigated the analogous

scenario but assumed that the SU utilizes sensing-based spectrum sharing approach

to avoid exceeding the average interference threshold at the primary receiver. More

specifically, the model consists of two stage for each frame duration time T . In the

first stage, the SU listens to activity of the PU with sensing time τ . In the second
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stage, the SU adapts its transmit power based on the sensing results in the remain-

ing duration time T − τ . The optimal power allocation policies for both when PU is

active and when PU is inactive and optimal sensing time τ were derived. In [41], au-

thors derived the optimal power allocation scheme that maximizes secondary user’s

effective capacity [42] subject to an average interference constraint (the simplified

version of outage probability constraint at the PU) in Rayleigh fading channel which

ensures the QoS of the delay-sensitive PU.

Several articles, such as [43, 44], have also suggested that the secondary net-

works can further increase transmission performance by exploiting CSI between

secondary transmitter and primary receiver channels and between primary trans-

mitter and primary receiver channels. For secondary transmitter-primary receiver

channels, it is suggested that the secondary transmitter can estimate this gain by

measuring the received power of signals transmitted by the primary receiver and

under the assumption of channel reciprocity and that secondary transmitter knows

the primary receiver transmission power. For primary transmitter-primary receiver

channels, various suggestions have been made including that of eavesdropping on

primary receiver feedback to primary transmitter [45], and receiving feedback from

a cooperative SU node employed near the primary receiver [46]. Instead of using an

average interference power constraint to guarantee PU’s QoS, a new constraint called

primary capacity loss constraint (PCLC) was introduced into SU ergodic capacity

maximization problem [43]. The idea is that the SU will not cause an unsatisfactory

loss in PU’s ergodic capacity if it knows an additional CSI between the primary

transmitter and the primary receiver. The solution for the problem is called modi-

fied water-filling power control since the power level is adapted based on not merely

the channel power gain between the secondary transmitter-receiver pair, but also

the channel power gains between primary receiver and secondary transmitter and

between the primary transmitter-receiver pair. By using Jensen’s inequality, the

author also showed that the proposed SU power control policy is superior to the

conventional strategy under interference constraint by showing that the achievable

ergodic capacity region of PU and SU under PCLC is larger than that under an

average interference power constraint. Although considering PCLC instead of aver-
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age interference power constraint gives an advantage to secondary network, PCLC

is not an appropriate constraint when PU is interested in a delay-sensitive applica-

tion, such as live video streaming, because ergodic capacity does not take a tight

delay constraint into an account. Hence, primary user’s outage probability constraint

(POC) was introduced in [44] where PU’s outage probability must not exceed the

given threshold. The optimal power policies to maximize SU ergodic capacity and

to minimize SU outage probability subject to POC and transmit power constraint

(either peak or average power constraint) were provided in [44].

Optimal power allocation problems in the underlay paradigm are also extensively

studied in other types of secondary networks. There are several articles consider-

ing a parallel fading channel in secondary network where a SU is equipped with

OFDM technology. OFDM has gained reputation with the emergence of wireless

communications and wideband systems because of simplicity in channel equaliza-

tion and coding and the ability to compensate for multipath fading [47]. Espe-

cially in OFDM-based CR system, SUs will have more alternatives to enhance its

transmission efficiency, for instance, by using the spectrum slots left by PUs [48],

transmitting opportunistically through unoccupied subcarriers in the primary sys-

tems [49], or even sharing the subcarriers with PUs on the condition that the QoS

of the primary system is guaranteed [50, 51]. In [51], the authors studied channel

capacity maximization of an OFDM-equipped secondary user sharing the subcarri-

ers of the orthogonal frequency division multiple access (OFDMA) based primary

system. Each subcarrier of the primary system is protected by either an interference

constraint or PCLC, i.e. hybrid protection constraint. While in [49], the effect of SU

cross-band interference to the side-by-side PU frequency bands was elaborated by

solving the total transmission rate maximization problem subject to total cross-band

interference and transmit power constraint in each subcarrier.

There are also a lot of works paying attention to the multiple-user scenario for

both cognitive MAC (C-MAC) and cognitive BC (C-BC). For example, [52] ex-

tended the results from fading non-cognitive MAC in [13,14] to fading C-MAC and

from fading non-cognitive BC in [15,16] to fading C-BC. The authors in [52] derived

the optimal power policies that maximize ergodic sum capacity for both uplink and
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downlink channel for secondary network subject to average/peak transmit power

constraint at each transmitter and average/peak interference power constraint at

each receiver. In C-BC, it was shown that the base station allocates a given time

slot to only one user so as to maximize the ergodic sum downlink capacity, imply-

ing that a dynamic time-division-multiple-access (D-TDMA) is the optimal scheme.

However, it is not always the case in C-MAC. Particularly, more than one user can

transmit at the same time when peak interference constraints are included in the

ergodic sum uplink capacity maximization problem. Recently, [53] characterized

common outage capacity region and individual outage capacity region in cognitive

MAC subject to peak interference power constraint at each primary receiver and

peak transmit power constraint at each secondary transmitter and solved the corre-

sponding optimal power control schemes. By using a similar idea proposed in [22]

for the non-cognitive MAC problem, [53] argued that the outage capacity region

can be implicitly obtained by deriving the outage probability region for a given

rate vector. Another challenging problem for the multiple-user scenario in cognitive

system is to analyze how the sum throughput in the secondary network scales as

the number of secondary users, M , grows large. Originally, Sharif and Hassibi [54]

studied how the ergodic sum downlink throughput in non-cognitive multiple-input-

multiple-output (MIMO) broadcast channel scales with number of transmit anten-

nas, number of receive antennas and number of receivers. In [54], the base station is

presumed to allocate the whole time slot to the receiver with the maximum signal-

to-interference-noise ratio with the constant power allocation policy. Note that [54]

became the first work that adopts extreme value theory to rigorously render through-

put scaling analysis. Extreme value theory is utilized to specify the possible forms

for the limiting distribution of maxima in sequences of independent and identically

distributed (i.i.d.) random variables. Apart from the telecommunication arena, ex-

treme value theory is also used in other aspects, such as geological engineering [55]

and financial risk analysis [56]. With the aid of extreme value theory, the secondary

throughput scaling is later analyzed for three types of cognitive networks, includ-

ing cognitive MAC, cognitive BC, and cognitive parallel access channel, under peak

transmit power and peak interference power constraints in [57]. Then, [58] examined
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the multiuser diversity gain due to the optimal power allocation policy in cognitive

MAC under an average interference power constraint and an average transmit power

constraint with various types of fading channel statistics.

Although the knowledge of CSI is assumed at secondary transmitters in the un-

derlay paradigm, to obtain perfect CSI theoretically requires infinite feedback bits

from receivers even in non-cognitive networks, making the assumption impractical.

Therefore, various works looked at power allocation problems using limited feed-

back scenario. Many results, for example in [59–61], even attested that allowing

the receiver to feedback a small number of bits to the transmitter can make the

performance of the system approach the optimal performance with full CSI. In [59],

outage minimization problem subject to average transmit power constraint for a

single-user non-cognitive MIMO system with quantized feedback was investigated.

With a given set of power levels, the optimal channel state partitioning can be de-

rived by using the nearest-neighbourhood condition (NNC) and the problem can be

rewritten as a function of power. Then, the optimal power control can be derived by

using Karush-Kuhn-Tucker (KKT) necessary condition. By using NNC and KKT

conditions, several papers used this approach to solve the optimization problem with

quantized feedback in various types of networks. In [62], outage probability min-

imization subject to average transmit power constraint in parallel fading channels

was solved. In cognitive radio scenarios, SU ergodic capacity maximization problem

in parallel channel subject to average transmit power constraint at the SU and av-

erage interference power constraint at PU in each subchannel was addressed in [60]

and the optimal power policy was derived accordingly. Later, [63] investigated the

same network setup as [60] but an average interference power constraint is replaced

by a peak power constraint at PU in each subchannel. The SU outage probability

minimizing problem in a narrow band network subject to average transmit power

and average interference power constraint was derived in [61]. In [60–63], various

suboptimal algorithms were elaborated to ease complexity in computational problem

in the optimal solutions and asymptotic analyses of the SU performance were also

studied. In multi-antenna radio networks systems, the resource allocation problem

is still challenging as beamforming and power control codebooks are required to be
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optimally designed. However, existing works design these codebooks independently,

i.e. either assume fixed transmission power and find the optimal beamforming code-

book [64–66] or presume an isotropic transmission at the transmitter and solve the

optimal power control [67–69]. Although [70] recently proposed a joint design of

power control and beamforming codebook for outage minimizing problem in non-

cognitive single user multiple-input-single-output (MISO) network, the problem is

even more complicated in cognitive radio environment due to constraint imposed

by the primary networks. This makes the design and analysis of limited feedback

based algorithms for coexisting multiple antenna networks a largely unchartered

research arena. In [71], the authors considered the outage minimization problem

of MISO system in secondary network under interference constraint and proposed

two cognitive beamforming algorithms for cognitive beamforming based on quan-

tized cooperative feedback from single-antenna equipped primary receiver to the

secondary transmitter based on the orthogonality of the channel between the SU

transmit beamformer and the feedback channel. Also, the effect of the cooperative

feedforward of the secondary-link CSI from secondary transmitter to the primary

receiver was examined.

1.3 Outline and contribution of the thesis

In this thesis, we focus on optimal transmission power allocation problems in specific

types of secondary networks which share the same frequency band licensed to delay-

sensitive primary links. Throughout the thesis, an outage probability constraint is

imposed at each delay-sensitive PU, i.e. the service quality in each primary link is

guaranteed by a POC.

The block diagram in Fig. 1.2 illustrates the organization and the contribution

items of the thesis. More specifically, the contributions to the thesis from Chapter

2 to Chapter 5 are as follows:

• Chapter 2

We consider a CR network with an OFDM-based SU and N delay-sensitive

PUs. The SU aims at transmitting delay-insensitive as well as delay-sensitive
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Figure 1.2: Block diagram of thesis structure and contribution items.

data by accessing N randomly fading frequency bands which each band is li-

censed to an individual delay-sensitive PU which is interested in meeting a

minimum rate guarantee for delay-sensitive services with a maximum allow-

able primary outage probability, i.e. POC. Typically, PUs has its own power

policy based on the CSI of its direct gain between the PU transmitter and the

PU receiver only regardless the existence of secondary networks. Under the

assumption that PUs’ power policies and CSI of the network are revealed to

the SU, we solve the SU’s ergodic capacity maximization problem subject to

SU’s average transmit power and outage probability constraints (SOC) and

all POCs or the so-called service-outage based capacity maximization for SU

with POCs. With a rigorous probabilistic power allocation technique, it allows

us to derive optimal power policies applicable to both continuous and discrete

fading channels. Also, a suboptimal power control policy is proposed in order

to alleviate the high computational complexity of the optimal policy when N

is large.
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• Chapter 3

This chapter focuses on a spectrum-sharing based fading cognitive radio broad-

cast channel (BC) with a single-antenna secondary base station (SBS) and M

single-antenna secondary receivers (SRs) concurrently utilizing the same spec-

trum band with a delay-sensitive primary user (PU). The quality-of-service

requirement for the primary user is set by an outage probability constraint

(POC). We address the optimal power allocation problem for the SBS ergodic

sum capacity (ESC) maximization in the secondary BC network subject to

POC and a transmit power constraint at SBS described by either an average

or a peak power constraint. Optimality conditions reveal that in each timeslot

(or fading block over which the channels remain invariant) SBS will choose

only one SR that has the highest value of a certain metric consisting of the ra-

tio of the SR’s direct channel gain and the sum of interference and noise at the

SR, and allocate the timeslot to that user. Furthermore, the secondary net-

work throughput scaling analysis as the number of secondary users M → ∞, is

also investigated, showing that if PU utilizes an ON-OFF transmission power

control policy with a constant power when ON, the SBS ESC in the cognitive

BC scales according to log(logM). If PU applies a truncated channel inversion

(TCI) power policy (which is equivalent to the optimal power control policy

for primary outage minimization in the absence of the secondary network),

the SBS ESC scales like ǫp log(logM) where ǫp is the PU outage probability

threshold.

• Chapter 4

This chapter concerns a spectrum-sharing based fading cognitive multiple-

access channel (C-MAC) with a single-antenna secondary base station (SBS)

andM single-antenna secondary transmitters, simultaneously sharing the same

spectrum band with one delay-sensitive primary user (PU) and aiming to com-

municate with the SBS. The quality-of-service in primary network is guaran-

teed by a primary user’s outage probability constraint (POC) while an indi-

vidual power resource for each secondary transmitter is limited by an average
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transmit power constraint (ATPC). This chapter considers the problem of

optimal power allocation depending on whether the traffic in the secondary

network is delay-sensitive or not. In delay-insensitive traffic, we first study the

optimal power allocation policy that maximizes ergodic sum uplink capacity

subject to POC and ATPC. Then, we extend to the more generalized case,

i.e. the optimal power strategy for achieving ergodic capacity region subject

to POC and ATPC. In delay-sensitive traffic, we discuss two types of outage

situation, i.e. an outage must be declared simultaneously for all users (com-

mon outage) and outages are declared individually for each user (individual

outage). Then, the power policies to achieve the common outage capacity re-

gion and the individual outage capacity region subject to POC and ATPC are

presented. Under the assumption that each SU knows the channel state per-

fectly in a continuous fading channel scenario, the optimal power strategies for

these problems are derived by using a rigorous probabilistic power allocation

technique and the solution reveals that successive decoding is optimal and the

decoding order can be solved explicitly as a function of channel state.

• Chapter 5

Finally, this chapter looks at the more practical scenario with quantized CSI

presumed in the secondary network. In this chapter, a single-antenna SU

coexists with a delay-sensitive and single-antenna PU in a narrowband under-

lay CR network and receives quantized CSI through a finite B-bit feedback

from a band manager or a cognitive radio network manager. We consider the

power allocation problem for minimizing outage probability of a single-antenna

SU under POC and average transmit power constraint at SU. Exploiting a

nearest-neighbourhood condition, we can derive the optimal channel partition

structure (CPS) for the vector channel space, making KKT condition appli-

cable as a necessary condition for finding a locally optimal power codebook.

A low-complexity suboptimal algorithm is also proposed. Furthermore, an

asymptotic analysis of the SU outage probability is also investigated.

Last but not least, Chapter 6 provides some concluding remarks as well as pos-
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sible extensions for future works.
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Chapter 2

Service-outage Capacity Maximization in

Cognitive Radio for Parallel Fading Channels

Orthogonal frequency division multiplexing (OFDM) is regarded as a potential trans-

mission technique for broadband wireless systems due to its high transmission effi-

ciency, its robustness against inter-symbol interference in frequency selective chan-

nels, and especially due to its great flexibility in dynamically allocating transmission

resources, making OFDM widely accepted as a promising candidate for future CR

systems [48]. In OFDM-based CR system, SUs will have more alternatives to en-

hance its transmission efficiency, for instance, by using the spectrum gaps left by

PUs [48], transmitting opportunistically through vacant subcarriers in the primary

systems [49], or even sharing the subcarriers with PUs on the condition that the

QoS of the primary system is guaranteed [50] [51].

This chapter will focus on a transmit power allocation problem in an OFDM-

based CR system within the underlay paradigm where an OFDM-based SU seeks

a fundamental tradeoff between maximizing its own throughput with limited re-

sources and minimizing the performance loss in the primary system. Resource allo-

cation problems in OFDM-based CR systems have already attracted wide attention.

In [12] and [72], it is shown that the water-filling power policy is the optimal trans-

mission strategy to maximize ergodic channel capacity in a conventional OFDM

system with a total ATPC across the sub-bands . This water-filling policy cannot

be used when PUs’ service quality constraints are taken into an account. In [50],

the authors derived the solution of SU’s instantaneous rate maximization problem

with transmit power constraint and an individual interference power constraint on

each subcarrier to protect the corresponding primary transmission. Then in [51], the

authors proposed a new type of constraint to protect the PU QoS, called the ‘rate

21
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loss constraint’ (RLC), defined as the upper bound of the PU rate loss due to SU

transmission. In [49], the authors derived the optimal power control policy for the

SUs’ sum rate-maximizing power allocation problem under the constraint that SU

cross band interference incurred by the side-by-side PU frequency bands is limited.

However, if the PUs are engaged in transmission of delay-sensitive information , the

PU outage probability constraint becomes a more suitable measure for protecting a

delay-sensitive primary user in [73,74] where the optimal power allocation problems

for the secondary ergodic and outage capacity maximization problem with a primary

outage constraint were addressed and later further extended in [44]. Finally, an ef-

fective capacity based delay QoS constraint on the SU and a PU outage constraint

was considered in [75], where the authors propose a variable-rate variable-power

based MQAM scheme to solved the associated optimization problems with full CSI.

In this chapter, we consider a CR network where an OFDM-based SU oper-

ates in an orthogonal frequency division multiple access (OFDMA) based primary

system. The SU aims to transmit both delay-sensitive and delay-insensitive infor-

mation (such as integrated voice/video and packet data) over N subcarriers of the

OFDMA-based primary system. Each subcarrier is licensed to an individual PU

that wishes to maintain a basic rate with a certain outage probability. In other

words, we solve the SU’s ergodic capacity (SEC) maximization problem under an

SU’s outage probability constraint (SOC), N PUs’ outage probability constraints

(POCs), and an SU’s average transmit power constraint (ATPC). This problem is

closely related to the ‘service-outage capacity problem in parallel fading channel’ [25]

in the sense that if all N POCs are discarded from our problem, the two problem

become exactly the same. The idea is that as soon as the service quality of the

delay-sensitive information (voice) is ensured by a guaranteed outage probability,

any excess rate can be used to delay-insensitive information (data) in a best-effort

fashion. The problem also extends the result in [76], where only one single frequency

band is considered. Furthermore, this chapter addresses the relationship between

the feasibility of the SEC maximization problem and the problem of SU’s outage

probability (SO) minimization subject to all N POCs and an ATPC. This SO prob-

lem was initially addressed in [74] for N = 1. In this chapter, the result of [74] is
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generalized to the case when N > 1. Under the assumption that the PU in each

subcarrier has a transmission policy that is based on its own channel between its

corresponding primary transmitter and receiver only and that the SU has knowledge

of all PUs’ transmission policies as well as the full channel state information (CSI)

of the entire network, both SEC and SO problems are solved by using a rigorous

‘probabilistic power allocation’ technique, originally proposed in [21]. This method

allows us to treat the optimal power allocation problem as a convex optimization

problem and renders our power allocation results applicable to both continuous as

well as discrete fading channels. However, the optimal power control for the SEC

problem results in a high computational complexity (exponential in N) when the

number of sub-carriers, N is large. Thus motivated, we also propose a suboptimal

power control policy with a reduced real-time computational complexity to alleviate

this problem. Numerical studies illustrate the performance of the optimal power

policies and demonstrate that our proposed suboptimal policy is not only compu-

tationally efficient, but also satisfies the SOC and all POCs incurring a small SU

ergodic capacity loss.

The rest of this chapter is organized as follows. Section 2.1 presents the sys-

tem model. We formulate SEC maximization problems in Section 2.2. Section 2.3

demonstrates the derivation on the optimal solution for the SEC problem, discusses

the feasibility of SEC problem and its relationship with the extended SO minimiza-

tion problem, and proposes a low-complexity suboptimal power scheme for the SEC

maximization problem. Illustrative numerical results are provided in Section 2.4

followed by some concluding remarks in Section 2.5.

List of notations in Chapter 2 : ∂y
∂x∗

denotes the derivative of y over x evaluated at

x = x∗. ≺,� denote componentwise strict inequality and componentwise inequality

in RN , respectively. 〈x〉 =
N
∑

i=1

xi. [x]+ = max(0, x). 1 {Z } represents indicator

function, i.e. 1 {Z } = 1 if the event Z is true and it is zero for otherwise.
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2.1 System model

We consider a cognitive radio environment withN primary transmitter-receiver pairs

(PT-PR) and a single OFDM-based secondary transmitter-receiver pair (ST-SR).

The SU can access all N frequency bands of which the i-th band is licensed to the i-

th PU (PUi) for i ∈ {1, 2, . . . , N} in an OFDMA-based primary system. All channels

involved in this cognitive radio network are assumed to be block fading additive white

Gaussian noise (BF-AWGN) channels [21]. The instantaneous channel power gains in

the i-th subchannel for the link PTi-PRi, ST-SR, PTi-SR, and ST-PRi are denoted

by gi, hi, αi, and βi, respectively. Let νi
∆
= [gi, hi, αi, βi] and ννν

∆
= [ν1, ν2, . . . , νN ]

represent the combined channel state vector. The vector fading process ννν is presumed

to be stationary and ergodic with a cumulative density function F (ννν). The additive

noises at PR and SR in i-th subchannel are assumed to be independent Gaussian

random variables with zero mean and variance N0. We assume that SU transmitter

has full CSI of ννν, i.e. all channel gains in the network, while the i-th PU has full

CSI for the direct channel power gain gi between PTi and PRi only.

Remark 2.1.1. In our problem formulation, we do not allow the primary users

to share the N channel bands to avoid PUs causing interference to each other.

Consideration of PU generated mutual interference or an appropriate scheduling

policy that allocates each band to a distinct PU in every fading block will render

our problem formulation rather complex and is beyond the scope of our work. Note

however that it is easy to extend the results in this chapter to the case where each

primary user has a distinct set of subcarriers (so that the primary users do not cause

interference to each other) that it can use, although this will result in an increased

complexity for the power allocation problem.

Remark 2.1.2. Note that the assumption of full CSI at the ST of all channels is not

realistic for a practical cognitive radio system, as much as in any existing wireless

communication systems. In particular, obtaining full channel information of the

SU-PR channels and PT-PR channels may be difficult. In recent literature however,

some practical schemes have been suggested for obtaining such information at the

ST in [43]. For ST-PR channels, it is suggested that the ST can estimate this gain by
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measuring received power of signals transmitted by the PR and under the assumption

of channel reciprocity and that ST knows the PR transmission power. For PT-PR

channels, various suggestions have been made including that of eavesdropping on PR

feedback to PT [77], and receiving feedback from a cooperative SU node employed

near the PR [46], while information about ST-SR channels can be obtained via

classical channel feedback and training schemes. Furthermore, power allocation for

the secondary user’s ergodic capacity maximization under average transmit power

and average interference (peak interference) (at the primary receiver) constraints

in a spectrum sharing scenario with quantized CSI (or limited feedback) has been

investigated in [60]. Design and analysis of such limited feedback based design for the

service-outage considered in this current submission is a considerably much harder

problem and will be investigated in future work. The results obtained in this chapter

based on full CSI will serve as a benchmark for any such future results based on

partial or imperfect CSI.

Remark 2.1.3. We have addressed the above issue of possible unavailability of full

CSI at the ST further by illustrating the effect of imperfect or partial CSI at the

ST in terms of SU ergodic capacity loss. We have carried out a sensitivity analysis

with respect to noisy estimated CSI of the PT-PR channels gi, i = 1, 2, . . . , N . For

further details, see Figure 2.6 in Section 2.4.

Our main focus is on the service-outage based power allocation problem which

combines the concepts of ergodic capacity and outage capacity. Let Ppi(gi) rep-

resent PUi’s power strategy as PUi’s power policy is assumed to be determined

by the direct channel power gain gi between PTi and PRi only, due to a com-

mon assumption that the PUs are generally oblivious to the presence of the SU.

Ps(ννν) = [Ps1(ννν), . . . , PsN(ννν)] denotes SU’s power allocation strategy as a function

of the channel state ννν, where Psi(ννν) is the transmission power for the i-th band.

The instantaneous transmission rates rpi for the i-th PU and rs for the SU can be

defined as rpi(ννν, Psi(ννν)) = log(1 +
giPpi(gi)

βiPsi(ννν)+N0
) and rs(ννν,P(ννν)) =

N
∑

i=1

rsi(ννν, Psi(ννν)) =

N
∑

i=1

log(1+ hiPsi(ννν)
αiPpi(gi)+N0

). Note that we drop the constant 1
2

and use natural logarithm

for simplicity and gi is in fact an element of ννν . Let r0
pi and r0

s denote the service
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rates of PUi and the SU, respectively, and r0
p =

[

r0
p1, r

0
p2, . . . , r

0
pN

]

. In this work, we

assume that each PU adopts an ON-OFF power control policy, i.e. Ppi(gi) = Pci if

gi ≥ gT,i = (e
r0
pi−1)N0

Pci
, i.e. gi is good enough to support r0

pi, and Ppi(gi) = 0 oth-

erwise. In the absence of any SU transmission, PUi’s outage probability becomes

ǫcpi = Pr
{

log
(

1 + giPci

N0

)

< r0
pi

}

. Therefore, when the SU is active, PUi’s commu-

nication is protected as long as ǫcpi ≤ Pr
{

log
(

1 + giPci

βiPsi(ννν)+N0

)

< r0
pi

}

≤ ǫpi, where

ǫpi is the outage probability threshold of PUi. Define ǫǫǫp = [ǫp1, . . . , ǫpN ] and let ǫs

represent the SU outage probability threshold. Note that the results in this chapter

can be extended to any other transmission power policy for the primary users as

long as this policy is known to the SU.

2.2 Problem formulation

The service-outage problem in this chapter can be formulated as follows:

max
Ps(ννν)�0

E

[

N
∑

i=1

rsi(ννν, Psi(ννν))

]

s.t. (a) E

[

N
∑

i=1

Psi(ννν)

]

≤ Pav, (b) Pr

{

N
∑

i=1

rsi(ννν, Psi(ννν)) < r0
s

}

≤ ǫs

(c) Pr
{

rpi(ννν, Psi(ννν)) < r0
pi

}

≤ ǫpi ,∀i

(2.1)

It was shown in [21, 25] that for such outage-based optimization problems, a de-

terministic power allocation policy is not optimal in general, especially for discrete

fading channel distributions. Similar to [25] we show that (2.1) can be solved by

using a probabilistic power allocation technique, i.e. by treating Ps(ννν) as a prob-

abilistic power allocation scheme with a conditional probability density function

(PDF) fPs|ννν(ps | ννν), having transmit power Psi(ννν) through i-th subchannel with

conditional PDF fPsi|ννν(psi | ννν). Note also that such a probabilistic power allocation

policy helps transform the above optimization problem (2.1) into a standard convex

optimization problem following similar lines as in [25]. ps(ννν) = [ps1(ννν), . . . , psN(ννν)]

where psi(ννν) indicates a deterministic power allocation policy for the i-th subchan-

nel. With the assumptions of ergodicity of the fading channels and perfect CSI at
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the SU transmitter, we have

E [rs(ννν,Ps(ννν))] =
∫ ∫

rs(ννν,ps(ννν))fPs|ννν(ps | ννν)dps(ννν)dF (ννν)

E [〈Ps(ννν)〉] =
∫ ∫

〈ps(ννν)〉 fPs|ννν(ps | ννν)dps(ννν)dF (ννν)

Pr {rs(ννν,Ps(ννν)) < r0
s} =

∫ ∫

1 (rs(ννν,ps(ννν)) < r0
s) fPs|ννν(ps | ννν)dps(ννν)dF (ννν)

Pr
{

rpi(ννν, Psi(ννν)) < r0
pi

}

=
∫ ∫

1
(

rpi(ννν, psi(ννν)) < r0
pi

)

fPsi|ννν(psi | ννν)dpsi(ννν)dF (ννν)

(2.2)

where all conditional PDFs are nonnegative, i.e. fPs|ννν(ps | ννν) ≥ 0 and fPsi|ννν(psi | ννν) ≥

0, and
∫

fPs|ννν(ps | ννν)dps(ννν) and
∫

fPsi|ννν(psi | ννν)dpsi(ννν) are 1 for all i.

Adapting a technique similar to the one used in [25], we define the 4 weighting

functions and 4 corresponding deterministic power schemes for each of the subchan-

nels as shown in (2.3) and (2.4) below.

w1i(ννν) = Pr

{

rpi(ννν, Psi(ννν)) ≥ r0
pi,

N
∑

i=1

rsi(ννν, Psi(ννν)) ≥ r0
s | ννν

}

w2i(ννν) = Pr

{

rpi(ννν, Psi(ννν)) < r0
pi,

N
∑

i=1

rsi(ννν, Psi(ννν)) ≥ r0
s | ννν

}

w3i(ννν) = Pr

{

rpi(ννν, Psi(ννν)) ≥ r0
pi,

N
∑

i=1

rsi(ννν, Psi(ννν)) < r0
s | ννν

}

w4i(ννν) = Pr

{

rpi(ννν, Psi(ννν)) < r0
pi,

N
∑

i=1

rsi(ννν, Psi(ννν)) < r0
s | ννν

}

(2.3)

p1i(ννν) = E

[

Psi(ννν) | rpi(ννν, psi(ννν)) ≥ r0
pi,

N
∑

i=1

rsi(ννν, psi(ννν)) ≥ r0
s , ννν

]

p2i(ννν) = E

[

Psi(ννν) | rpi(ννν, psi(ννν)) < r0
pi,

N
∑

i=1

rsi(ννν, psi(ννν)) ≥ r0
s , ννν

]

p3i(ννν) = E

[

Psi(ννν) | rpi(ννν, psi(ννν)) ≥ r0
pi,

N
∑

i=1

rsi(ννν, psi(ννν)) < r0
s , ννν

]

p4i(ννν) = E

[

Psi(ννν) | rpi(ννν, psi(ννν)) < r0
pi,

N
∑

i=1

rsi(ννν, psi(ννν)) < r0
s , ννν

]

(2.4)

Note that the weighting function wki(ννν) represents the probability of using the de-

terministic power strategy pki(ννν), which is computed as the expectation of the prob-

abilistic power control Psi(ννν) within the set that corresponds to wki(ννν).

Let wa(ννν) = Pr

{

N
∑

i=1

rsi(ννν, Psi(ννν)) ≥ r0
s | ννν

}

. It follows that w2i(ννν) = wa(ννν) −

w1i(ννν) and w4i(ννν) = 1−wa(ννν)−w3i(ννν) for all i. Also, let Xw∗
ki

be a Bernoulli random

variable which is equal to 1 with probability w∗
ki and 0 for otherwise. We now have

the following Lemma the detailed proof of which can be found in Appendix A.1.
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Essentially, given an arbitrary feasibly policy, one can construct a randomized policy

as stated in the Lemma below and show that this policy satisfies all the constraints

and achieves an equal or better rate than the arbitrary feasible policy.

Lemma 2.2.1. There exists an optimum solution P∗
s(ννν) of problem (2.1) of the form

P ∗
si(ννν) =

4
∑

k=1

Xw∗
ki
(ννν)p∗ki(ννν) where

• (1)

[

N
∑

i=1

rsi(ννν,
w∗

1i(ννν)

w∗
1i(ννν)+w

∗
2i(ννν)

p∗1i(ννν) +
w∗

2i(ννν)

w∗
1i(ννν)+w

∗
2i(ννν)

p∗2i(ννν)) − r0
s

]

≥ 0,

(2) w∗
1i(ννν)

[

1
βi

(

giPpi(gi)

e
r0
pi−1

−N0

)+

− p∗1i(ννν)

]

+w∗
3i(ννν)

[

1
βi

(

giPpi(gi)

e
r0
pi−1

−N0

)+

− p∗3i(ννν)

]

≥ 0,

(3) w∗
1i(ννν) + w∗

2i(ννν) = w∗
1j(ννν) + w∗

2j(ννν) = w∗
a(ννν), (4)

4
∑

k=1

w∗
ki(ννν) = 1,

(5) E [w∗
1i(ννν) + w∗

2i(ννν)] = E [w∗
a(ννν)] ≥ 1 − ǫs,

(6) E [w∗
1i(ννν) + w∗

3i(ννν)] ≥ 1 − ǫpi, (7) E

[

N
∑

i=1

4
∑

k=1

w∗
ki(ννν)p

∗
ki(ννν)

]

≤ Pav.

for all i, j ∈ {1, 2, . . . N} and i 6= j.

Using Lemma 2.2.1, (2.1) can be rewritten as

max
pki≥0,wa,w1i,w3i

E

[

N
∑

i=1

w1i(ννν)rsi(ννν, p1i(ννν)) + (wa(ννν) − w1i(ννν))rsi(ννν, p2i(ννν))

+ w3i(ννν)rsi(ννν, p3i(ννν)) + (1 − wa(ννν) − w3i(ννν)) rsi(ννν, p4i(ννν))]

s.t. (a) E

[

N
∑

i=1

w1i(ννν)p1i(ννν) + (wa(ννν) − w1i(ννν))p2i(ννν)

+ w3i(ννν)p3i(ννν) + (1 − wa(ννν) − w3i(ννν)) p4i(ννν)] ≤ Pav,

(b) E [wa(ννν)] ≥ 1 − ǫs, (c) E [w1i(ννν) + w3i(ννν)] ≥ 1 − ǫpi,∀i

(d)

[

N
∑

i=1

rsi(ννν,
w1i(ννν)
wa(ννν)

p1i(ννν) + (wa(ννν)−w1i(ννν))
wa(ννν)

p2i(ννν)) − r0
s

]

≥ 0,∀i

(e) w1i(ννν)

[

1
βi

(

giPpi(gi)

e
r0
pi−1

−N0

)+

− p1i(ννν)

]

+ w3i(ννν)

[

1
βi

(

giPpi(gi)

e
r0
pi−1

−N0

)+

− p3i(ννν)

]

≥ 0,∀i

(f) wa(ννν) − w1i(ννν) ≥ 0,∀i (g) 1 − wa(ννν) − w3i(ννν) ≥ 0,∀i

(h) w1i(ννν), w3i(ννν) ≥ 0,∀i.

(2.5)
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where ∀i stands for ∀i = 1, 2, . . . , N . It can be shown that (2.5) is a convex opti-

mization problem. The proof of convexity can be found in Appendix A.2. For conve-

nience, we define prs(ννν) = [prs,1(ννν), . . . , prs,N(ννν)] with prs,i(ννν) =
(

µ(ννν) −
αiPpi(gi)+N0

hi

)+

where µ(ννν) satisfies
N
∑

i=1

rsi(ννν, prs,i(ννν)) = r0
s , and is derived by minimizing

∑N
i=1 prs,i(ννν)

subject to
N
∑

i=1

rsi(ννν, prs,i(ννν)) ≥ r0
s . Note that µ(ννν) is obviously strictly positive. Also,

define prp,i(ννν) = 1
βi

(

giPpi(gi)

e
r0
pi−1

−N0

)+

so that rpi(ννν, prp,i(ννν)) = r0
pi.

2.3 Main results

In this section, we will focus on solving the optimization Problem (2.1) by a func-

tional optimization technique similar to [25] and conclude with results regarding the

feasibility of this problem.

First, note that the Lagrangian for (2.5) can be written as follows

l(ννν, pki(ννν), wa(ννν), w1i(ννν), w3i(ννν), λ, sa, s, q(ννν), ui(ννν), γi(ννν), ηi(ννν))

= wa(ννν)

[

sa +
N
∑

i=1
(rsi(ννν, p2i(ννν)) − λp2i(ννν) + γi(ννν)) −

N
∑

i=1
(rsi(ννν, p4i(ννν)) − λp4i(ννν) + ηi(ννν))

]

+

N
∑

i=1
w1i(ννν) (si + rsi(ννν, p1i(ννν)) − λp1i(ννν) − (rsi(ννν, p2i(ννν)) − λp2i(ννν)) − γi(ννν)) +

N
∑

i=1
w3i(ννν) (si + rsi(ννν, p3i(ννν)) − λp3i(ννν) − (rsi(ννν, p4i(ννν)) − λp4i(ννν)) − ηi(ννν)) +

q(ννν)

(

N
∑

i=1
rsi(ννν,

w1i(ννν)
wa(ννν) p1i(ννν) + wa(ννν)−w1i(ννν)

wa(ννν) p2i(ννν)) − r0s

)

+

N
∑

i=1
ui(ννν) (w1i(ννν) [prp,i(ννν) − p1i(ννν)] + w3i(ννν) [prp,i(ννν) − p3i(ννν)])

(2.6)

where λ, sa, si, q(ννν), ui(ννν),γi(ννν), and ηi(ννν) are the nonnegative Lagrange multipliers

corresponding to constraints (2.5a) to (2.5g). From the associated (necessary and

sufficient) KKT conditions, we have for i = 1, 2, . . . , N ,

∂l(...)

∂p∗ki(ννν)







= 0, p∗ki(ννν) > 0

≤ 0, p∗ki(ννν) = 0
(2.7)

∂l(...)

∂w∗
a(ννν)

= 0 (2.8)

∂l(...)

∂w∗
mi(ννν)







= 0, w∗
mi(ννν) > 0

≤ 0, w∗
mi(ννν) = 0

, for m = 1, 3. (2.9)
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λ∗

(

E

[

N
∑

i=1

w∗
1i(ννν)p

∗
1i(ννν) + (w∗

a(ννν) − w∗
1i(ννν))p

∗
2i(ννν) (2.10)

+w∗
3i(ννν)p

∗
3i(ννν) + (1 − w∗

a(ννν) − w∗
3i(ννν)) p

∗
4i(ννν)] − Pav) = 0 (2.11)

s∗a (E [w∗
a(ννν)] − (1 − ǫs)) = 0 (2.12)

s∗i (E [w∗
1i(ννν) + w∗

3i(ννν)] − (1 − ǫpi)) = 0 (2.13)

q∗(ννν)

(

N
∑

i=1

rsi(ννν,
w∗

1i(ννν)

w∗
a(ννν)

p∗1i(ννν) +
(w∗

a(ννν) − w∗
1i(ννν))

w∗
a(ννν)

p∗2i(ννν)) − r0s

)

= 0 (2.14)

u∗i (ννν)
(

w∗
1i(ννν)

[

p∗rp,i(ννν) − p∗1i(ννν)
]

+ w∗
3i(ννν)

[

p∗rp,i(ννν) − p∗3i(ννν)
])

= 0 (2.15)

γ∗i (ννν) [w∗
a(ννν) − w∗

1i(ννν)] = 0, (2.16)

η∗i (ννν) [1 − w∗
a(ννν) − w∗

3i(ννν)] = 0, (2.17)

w∗
1i(ννν), w

∗
3i(ννν) ≥ 0, (2.18)

p∗ki(ννν) ≥ 0, k = 1, 2, 3, 4 (2.19)

Using the conditions from (2.7) to (2.19), the Lagrangian at the optimal solution

for each state ννν must satisfy

l(ννν, p∗ki(ννν), w
∗
a(ννν), w

∗
1i(ννν), w

∗
3i(ννν), w

∗
4i(ννν), λ

∗, s∗a, s
∗, γ∗i (ννν), η

∗
i (ννν))

= w∗
a(ννν)

(

N
∑

i=1
[rsi(ννν, p

∗
2i(ννν)) − λ∗p∗2i(ννν)] −

N
∑

i=1
[rsi(ννν, p

∗
4i(ννν)) − λ∗p∗4i(ννν)]

)

+

N
∑

i=1
w∗

1i(ννν) [(rsi(ννν, p
∗
1i(ννν)) − λ∗p∗1i(ννν)) − (rsi(ννν, p

∗
2i(ννν)) − λ∗p∗2i(ννν))] +

N
∑

i=1
w∗

3i(ννν) [(rsi(ννν, p
∗
3i(ννν)) − λ∗p∗3i(ννν)) − (rsi(ννν, p

∗
4i(ννν)) − λ∗p∗4i(ννν))] +

s∗aw
∗
a(ννν) +

N
∑

i=1
s∗i [w∗

1i(ννν) + w∗
3i(ννν)]

(2.20)

We now define the “subchannel benefit functions” as follows

B1i(ννν, p
∗
1i(ννν), λ

∗, s∗i )
∆
= B1i,ννν

∆
= rsi(ννν, p

∗
1i(ννν)) − λ∗p∗1i(ννν) + s∗i

B2i(ννν, p
∗
2i(ννν), λ

∗)
∆
= B2i,ννν

∆
= rsi(ννν, p

∗
2i(ννν)) − λ∗p∗2i(ννν)

B3i(ννν, p
∗
3i(ννν), λ

∗, s∗i )
∆
= B3i,ννν

∆
= rsi(ννν, p

∗
3i(ννν)) − λ∗p∗3i(ννν) + s∗i

B4i(ννν, p
∗
4i(ννν), λ

∗)
∆
= B4i,ννν

∆
= rsi(ννν, p

∗
4i(ννν)) − λ∗p∗4i(ννν)

(2.21)

Also, define pwf (ννν, λ
∗) = [pwf,1(ννν, λ

∗), . . . , pwf,N(ννν, λ∗)] where pwf,i(ννν, λ
∗) =

(

1
λ∗

−
αiPpi(gi)+N0

hi

)+

.

With the above definitions and notations, Theorem 2.3.1 below summarizes the opti-

mal solution to Problem (2.1). The detailed proof can be found in in Appendix A.3.
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Theorem 2.3.1. There exists a minimum average power Pmin such that if Pav =

Pmin, we have P ∗
si(ννν) = (Xw∗

1i
(ννν) +Xw∗

2i
(ννν))prs,i(ννν). If Pav > Pmin,

P ∗
si(ννν) = pwf,i(ννν, λ

∗) +Xw∗
1i
(ννν)
[

(prs,i(ννν) − pwf,i(ννν, λ
∗))+ − (pwf,i(ννν, λ

∗) − prp,i(ννν))
+]

+Xw∗
2i
(ννν)
[

(prs,i(ννν) − pwf,i(ννν, λ
∗))+]+Xw∗

3i
(ννν)
[

− (pwf,i(ννν, λ
∗) − prp,i(ννν))

+] ,

where

w∗
1i(ννν) =



















0 , B1i,ννν ≤ B2i,ννν

κ∗1i(ννν) , B1i,ννν = B2i,ννν

w∗
a(ννν) , B1i,ννν ≥ B2i,ννν

, w∗
2i(ννν) = w∗

a(ννν) − w∗
1i(ννν),

w∗
3i(ννν) =



















0 , B3i,ννν ≤ B4i,ννν

κ∗3i(ννν) , B3i,ννν = B4i,ννν

1 − w∗
a(ννν) , B3i,ννν ≥ B4i,ννν

, w∗
4i(ννν) = (1 − w∗

a(ννν)) − w∗
3i(ννν),

w∗
a(ννν) =















































































0 , s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν

≤
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

κ∗a(ννν) , s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν

=
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

1 , s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν

≥
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

where Sk is the set of subchannel i that use power policy p∗ki, 0 < κ∗1i(ννν) <

w∗
a(ννν), 0 < κ∗3i(ννν) < 1 − w∗

a(ννν), and 0 < κ∗a(ννν) < 1. λ∗, s∗a, and s∗i , κ
∗
1i(ννν),

κ∗3i(ννν) and κ∗a(ννν) are the solutions to E

[

N
∑

i=1

P ∗
si(ννν)

]

= Pav, E [w∗
a(ννν)] ≥ 1 − ǫs,

and E [w∗
1i(ννν) + w∗

3i(ννν)] ≥ 1 − ǫpi for all i, respectively.

Discussions on the optimal power control scheme:

• Pmin denotes the minimum average power required by the SU to make Problem

(2.1) feasible. A discussion on the feasibility condition will be provided in

Section IV.A.

• For continuous fading channels, S1 ∩ S2 and S3 ∩ S4 are empty sets since
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B1i,ννν = B2i,ννν and B3i,ννν = B4i,ννν can occur with probability of measure zero

for every i, making the optimal power allocation scheme deterministic, i.e.

only one deterministic power strategy is used for each ννν. Obviously, there are

at most 2N + 1 possible candidate power control policies, i.e. each channel

can use pwf,i or prp,i or all channels use prs. When N = 1, this reduces to

only 3 possible power policies, as presented in [76]. This raises the question

regarding the necessity of using a probabilistic power allocation policy for con-

tinuous fading channels. The justification behind using a probabilistic power

allocation law as a candidate for an optimal policy is twofold. First and fore-

most this transforms Problem (2.1) to a convex optimization problem (2.5)

which can then easily be solved using the necessary and sufficient KKT con-

ditions. In addition, this makes the optimal power allocation law applicable

to general fading distributions which may have discrete components. In the

case of continuous fading distributions (as considered in the Numerical results

section), the probabilistic power allocation law simplifies to a switching policy

amongst a number of deterministic policies (as explained above). In this case,

the benefit of using a probabilistic power allocation technique lies in making

the original problem convex and thus easily solvable. More details on this can

be found in [25] for the non-cognitive setting.

In order to compute the optimal power allocation policy, we first compute

prs(ννν) and pwf (ννν, λ
∗) and prp,i(ννν) for every subchannel for a given ννν. Then,

the possibility of using each of these deterministic schemes is checked, e.g.

prs(ννν) can be used only when pwf (ννν, λ
∗) ≺ prs(ννν) for all subchannels and,

for the i-th subchannel, prp,i(ννν) can be used only when prp,i(ννν) > pwf,i(ννν, λ
∗).

From the remaining deterministic power allocation policies, for a given chan-

nel state, SU selects the power policy that results in the largest value of the

Lagrangian function (2.20), which can be interpreted as the total benefit for

the SU. Essentially, for a price of λ∗
N
∑

i=1

P ∗
si(ννν), the SU gets a rate rs(ννν,PPP

∗
s(ννν))

and gains a benefit of s∗a if SU is not in outage and gains a benefit of s∗i if

the i-th PU is not in outage. Note that these power allocation policies are

computed (for every channel state) as a function of a fixed set of values of
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the Lagrange multipliers. In order to determine the optimal values of the La-

grange multipliers, one can use either subgradient based iterative methods or

other appropriate numerical search methods in order to satisfy the average SU

transmit power and the SU and PU outage probability constraints.

Note that for every channel realization, one has to find an optimal policy

from a set of 2N + 1 policies, which can be computationally prohibitive to

implement in real time if N is large. Thus motivated, we propose a suboptimal

power scheme in Section IV.B which reduces the number of candidate power

allocation policies to just three for each channel realization.

• Additionally, we emphasize the role of λ∗ in the derived optimal power alloca-

tion scheme. When λ∗ is large, implying that the SU has a low power budget

Pav, SU is more likely to adopt the policy PPP ∗
s(ννν) = prs(ννν) to support its tar-

get rate. However, if λ∗ is small corresponding to a high SU Pav budget, it

tends to use prp,i(ννν) in each subchannel to avoid causing disruptions to PUi’s

communication. Also, if all POCs and SOC are dropped, λ∗ simply controls

the threshold corresponding to the well known water-filling power allocation

policy represented by pwf (ννν).

2.3.1 Feasibility of the service-outage problem

It can be seen from Theorem 2.3.1 that an average power budget Pav ≥ Pmin is

required for Problem (2.1) to be feasible, i.e. the SU requires a minimum average

power Pmin to at least support the service rate while satisfying all the POCs. The

feasibility of the problem (2.1) is therefore directly related to the problem of SU

outage capacity maximization subject to allN POCs and an average SU transmission

power constraint. In order to compute Pmin, it is therefore necessary to address

the optimal power control problem for SU’s outage probability (SO) minimization

problem subject to all POCs and ATPC.

The SO minimization problem subject to N POCs and SU’s ATPC can be ex-
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pressed as follows:

min
Ps(ννν)�0

Pr

{

N
∑

i=1

rsi(ννν, Psi(ννν)) < r0
s

}

s.t. (a) E

[

N
∑

i=1

Psi(ννν)

]

≤ Pav, (b) Pr
{

rpi(ννν, Psi(ννν)) < r0
pi

}

≤ ǫpi ,∀i

(2.22)

Note that Problem (2.22) can be regarded as an extension of [74] to the N > 1 case.

This problem can also be solved using the probabilistic power allocation technique.

By using the definition of w∗
ki(ννν) and p∗ki(ννν) as shown in (2.3) and (2.4), we can

prove the following result shown in Theorem 2.3.2 which presents the optimal power

allocation policy for Problem (2.22). The proof is similar to that of Theorem 2.3.1

and is therefore omitted to avoid repetition.

Theorem 2.3.2. The optimal solution for (2.22) is P ∗
si(ννν) = (Xw∗

1i
(ννν)+Xw∗

2i
(ννν))prs,i(ννν) =

Xw∗
a
(ννν)prs,i(ννν), where

w∗
1i(ννν) =







w∗
a(ννν) , i ∈ M

0 , i /∈ M
, w∗

2i(ννν) = w∗
a(ννν) − w∗

1i(ννν),

w∗
3i(ννν) =







1 − w∗
a(ννν) , i ∈ J

0 , i /∈ J
, w∗

4i(ννν) = (1 − w∗
a(ννν)) − w∗

3i(ννν),

w∗
a(ννν) =







































1 ,
∑

i∈J
S∗
i ≤ 1 − Λ∗

N
∑

i=1
prs,i(ννν) +

∑

i∈M
S∗
i

κ∗ao(ννν) ,
∑

i∈J
S∗
i = 1 − Λ∗

N
∑

i=1
prs,i(ννν) +

∑

i∈M
S∗
i

0 ,
∑

i∈J
S∗
i ≥ 1 − Λ∗

N
∑

i=1
prs,i(ννν) +

∑

i∈M
S∗
i

where J = {j|rpj(ννν, 0) ≥ r0
pj} and M = {m|rpm(ννν, prs,m) ≥ r0

pm}, and M ⊆ J .

Λ∗, S∗
i and κ∗ao(ννν) are solutions to the constraints E

[

N
∑

i=1

P ∗
si(ννν)

]

= Pav and

E [w∗
1i(ννν) + w∗

3i(ννν)] ≥ 1 − ǫpi for all i.

Table 2.1 reveals the possible non-negative weighting functions wki(ννν) in each

subchannel and corresponding power control policies pki(ννν) for a given channel state

ννν, leading to the final result in Theorem 2.3.2 which shows that there are 2 determin-

istic power schemes involved in this problem. Either the SU is OFF in order to allow

an outage or it is ON with power policy p∗
rs(ννν). In other words, the SU decides to
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Table 2.1: Three possible cases in i-th subchannel for a given ννν

Cases Power allocation policy Candidate non-negative wki

rpi(ννν, prs,i) ≥ r0pi and p∗1i = prs,i and p∗3i = 0 w∗
1i = w∗

a, w
∗
3i = 1 − w∗

a

rpi(ννν, 0) ≥ r0pi

rpi(ννν, prs,i) < r0pi and p∗2i = prs,i and p∗3i = 0 w∗
2i = 1 − w∗

1i = w∗
a,

rpi(ννν, 0) ≥ r0pi w∗
3i = 1 − w∗

a

rpi(ννν, prs,i) < r0pi and p∗2i = prs,i and p∗4i = 0 w∗
2i = 1 − w∗

1i = w∗
a,

rpi(ννν, 0) < r0pi w∗
4i = 1 − w∗

a

gain a benefit of
∑

i∈J

S∗
i when it keeps silent and a benefit of 1−Λ∗

N
∑

i=1

prs,i(ννν)+
∑

i∈M

S∗
i

when it is active. It is to be noted also that S∗
i represents the benefit when PUi is

not in outage. It is not hard to show that the solution above can be specialized to

the one proposed in [74] when N = 1 and can also be specialized to the solution of

the SO minimization problem without POCs in parallel fading channels [21].

We now go back to the discussion on feasibility of Problem (2.22) and how to

compute Pmin. Clearly, it is directly related to SU’s ǫs-outage capacity which can

be computed through the solution to Problem (2.22). Let Cǫs(Pav, r
0
p, ǫǫǫp) stand for

SU’s ǫs-outage capacity with POCs given fixed r0
p, ǫǫǫp, ǫs, and Pav. Cǫs(Pav, r

0
p, ǫǫǫp)

is the maximum instantaneous rate at which the SU can transmit with an outage

probability ǫs under POCs. So, problem (2.1) is feasible iff the SU target rate

r0
s ≤ Cǫs(Pav, r

0
p, ǫǫǫp). For simplicity, let Pmin(r

0
s , r

0
p, ǫǫǫp) = Pmin be the minimum SU

average power needed to support r0
s with outage probability ǫs while satisfying all

N POCs. Hence, the feasibility condition for our main problem is then Pav ≥ Pmin.

If Pav = Pmin, then p∗
1(ννν) = p∗

2(ννν) = prs(ννν) and p∗
3(ννν) = p∗

4(ννν) = 0 due to Theorem

2.3.2.

To compute Pmin, we search for the optimal Λ∗ and all S∗
i that solve E[w∗

a(ννν)] =

1− ǫs, E[w∗
1i(ννν) +w∗

3i(ννν)] ≥ 1− ǫpi for all i. Once Λ∗ and S∗
i are obtained, Pmin can

be computed as E[〈P∗
s〉].
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2.3.2 Proposed suboptimal power control

The optimal solution to Problem (2.1) shows that the optimal power allocation

policy can be evaluated to be one of at most 2N + 1 candidate policies for every

channel realization ννν, based on the pre-computed Lagrange multipliers λ, sa, and

all si, leading to a high computational complexity when N is large. In this section

we will investigate a suboptimal power control policy which can help lower this

computational burden. Note that the Lagrange multipliers λ, sa, and all si can be

computed off-line as they depend on long term average constraints, and thus only

on the channel statistics and not on the instantaneous channel values. Below we

show that our suboptimal power allocation scheme reduces the number of candidate

power control policies from at most 2N + 1 candidate policies to only at most 3

candidate policies.

We first make some useful observations about the optimal power allocation so-

lution presented in Theorem 2.3.1.

• If s∗a = 0, the optimization problem reduces to N separate optimization sub-

problems coupled by the same λ∗, allowing each subchannel of SU to select a

power strategy between pwf,i(ννν) and pwf,i(ννν) − (pwf,i(ννν) − prp,i(ννν))
+ indepen-

dently of the strategies used in other subchannels. Roughly speaking, the SU

is always allowed to transmit with pwf,i when pwf,i < prp,i. Otherwise, SU has

to decide whether pwf,i(ννν) or prp,i(ννν) will return a higher benefit. It is not hard

to show that if there exists some s∗i = 0, the corresponding power control in

that i-th subchannel is pwf,i. Furthermore, note that there is no need to use

the strategy prs(ννν) since the SOC is inactive.

• If s∗a > 0 and s∗i = 0 for all i, there are just two candidate power strategies

which are pwf (ννν) + (prs(ννν)−pwf (ννν))
+ and pwf (ννν). In this case, all POCs are

inactive.

• The least complicated circumstance arises when both s∗a and all s∗i are zero.

The optimal power control is just pwf (ννν).

• The most complicated scenario arises when both s∗a and all s∗i are positive. In
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this case, the SU can either decide to transmit with pwf (ννν)+(prs(ννν)−pwf (ννν))
+

or select whether to transmit with pwf,i(ννν) or with pwf,i(ννν) − (pwf,i(ννν) −

prp,i(ννν))
+ in the i-th band for a given channel state ννν. Thus the SU has

to select one strategy out of at most 2N + 1 strategies for every realization

ννν. Moreover, the tradeoff between satisfying the SU service rate and avoid-

ing causing PU outages makes the optimal power strategy impossible to be

selected independently in each subchannel.

The proposed suboptimal power control will therefore focus on the worst case sce-

nario when both s∗a and some or all s∗i are positive, so that the number of candidate

power strategies in each ννν is substantially reduced while sacrificing a small SU er-

godic capacity loss. Note that for the first three cases above, the suboptimal power

control is kept the same as the optimal one due to its low complexity. However,

the remaining power strategies must be selected carefully since the SU must satisfy

both SOC and all POCs. Below we describe how we choose the three candidate

power vector policies P1,P2 and P3) which constitute the suboptimal power control

policies for each ννν.

(1): P1 = pwf (ννν) is utilized when SU decides to neglect the outage situation for all

PUs and SU itself.

(2): P2 = pwf (ννν)+(prs(ννν)−pwf (ννν))
+ is kept as one of the candidates since it helps

SU support its service rate.

(3): For P3, we assign the i-th power element to be P3i = pwf,i for s∗i = 0. For

s∗i > 0, P3i = pwf,i(ννν)− (pwf,i(ννν)− prp,i(ννν))
+. Note that this power policy is used to

prevent PUs’ outage situation in all subchannels (1 power policy) instead of consid-

ering all possible candidates that can protect each subchannel (up to 2N policies) in

the optimal solution.

In our proposed suboptimal power control, the number of candidate power strategies

reduces from at most 2N + 1 to just 3 for each ννν. Furthermore, it is not hard to

show that this suboptimal scheme is in fact optimal when N = 1.
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2.4 Numerical results

In this section, we will illustrate via simulation results the performance of the opti-

mal solutions to the service-outage based capacity optimization problem (2.1), the

generalized SO minimization problem (2.22), and also the performance of the subop-

timal power allocation policy. All channel power gains are assumed to be mutually

independent and exponentially distributed (Rayleigh fading) with unit mean. Noises

at all PR and SR for each subchannel are presumed to be equal and AWGN with

a normalized unit variance, i.e. N0 = 1. This allows us to consider the SU and PU

transmit powers and the SU average transmit power constraint in unitless terms,

and thus expressed in dB. Note also that the SU average transmission power can be

regarded as the average transmit SNR at the SU transmitter. We assume that all

PUs are symmetric with identical transmit power Pci = 15 dB, identical maximum

outage probability ǫpi = 0.1, and identical service rates, the exact value of which

will be specified within the individual simulation descriptions below. The SU out-

age probability threshold ǫs is also set to be 0.1. The units of the service rates for

SU and PU are expressed in nats/transmission. In the various figures illustrating

the simulation results, Rs (in nats/transmission) denotes the SU ergodic capacity

achieved under various combinations of primary and secondary outage constraints.

2.4.1 SO minimization problem

Fig. 2.1 illustrates the SU outage probability performance of the optimal solution

to Problem (2.22) for N = 2 subchannels with r0
s = 0.8, r0

s = 2 when r0
pi =

0.4. The results for the SO minimization problem without POCs are also included

as a lower bound to the solution to Problem (2.22). Noticeably, POCs make the

outage probability graph saturate in the high average power region, i.e. the SU

cannot reduce its outage probability substantially regardless of how large its average

transmission power budget is. Also as expected, the SU can have a lower outage

probability when the service rate is lower. For a fixed r0
s = 0.8, Fig. 2.2 illustrates

the SU outage probability performance for various values of r0
pi. Clearly, SU can

achieve a lower outage probability when PUs’ service rates are decreased. However,
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SU outage prob. minimisation with POCs (r 0
s
 = 0.8 )

SU outage prob. minimisation with POCs (r 0
s
 = 2 )

SU outage prob. minimisation without  POCs (r 0
s
 = 0.8 )

SU outage prob. minimisation without  POCs (r 0
s
 = 2)

Figure 2.1: SU outage probability performance from SU outage probability mini-
mization problem with POCs with varying r0

s (ǫpi = 0.1, ǫs = 0.1, r0
pi = 0.4)

one may wonder why the SU outage probability with higher PUs’ target rates are

marginally better in the low SNR region (indicated by the green oval). This is due

to the ON-OFF PU power control policy. In particular, in the low SNR region, with

higher r0
pi, PUi is more likely to turn OFF and thus be in outage since the threshold

of gT,i is high. This allows the SU more opportunities to transmit. However, at high

SNR, POCs become active and they get stricter with higher r0
pi, thus restricting

the SU transmission opportunities, and increasing its outage probability. In Fig.2.3,

we compare the SU ǫs-outage capacities with POCs and without POCs for N =

4 subchannels. Obviously, the one without POCs will serve as an upper bound

of the one with POCs. The results also show that the under the POCs, the SU

outage capacity eventually saturate and cannot increase any further, regardless of

the average transmission power. This implies that the SU cannot have a service rate

r0
s to be more than a certain ‘maximum target rate’, say r0

s,MAX when the POCs

are present. This observation is important for Problem (2.1) since this problem is

feasible iff Pav ≥ Pmin where Pmin is the minimum power that can support SU ǫs-

outage capacity r0
s when the POCs are present. Hence, if r0

s > r0
s,MAX , then Pmin

becomes infinity.
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Figure 2.2: SU outage probability performance from SU outage probability mini-
mization problem with POCs with varying r0

pi(ǫpi = 0.1, ǫs = 0.1, r0
pi = 0.4)

2.4.2 SEC maximization problem

In Fig.2.4, we compare the the SU ergodic capacity achieved by the optimal solution

to Problem (2.1) with related bounds for 2 subchannels with r0
s = 0.6 and r0

pi = 0.4.

The performance of the optimal solution to Problem (2.1) is denoted by (P1). The

optimal SU ergodic capacity performance when the POCs are discarded and only

SOC is present, is represented by (P3), and the SU ergodic capacity performance

with the POCs present and SOC discarded is represented by (P2), whereas (P4)

represents the SU ǫs-outage capacity with all the POCs present. As expected, (P1)

and (P4) start at the same point Pav = Pmin, which is the minimum power necessary

for feasibility of Problem (2.1). As the available average power Pav increases, the

SU ergodic capacity achieved as a solution to Problem (2.1) can enter up to three

different stages, as shown in Fig. 2.4. In the first stage, the ergodic capacity graphs

(P1) and (P3) are identical since POCs are still inactive. Once at least one POC

becomes active (in the second stage), (P1) is upper bounded by both (P3) and

(P2). Eventually, as Pav increases even further, (P1) becomes identical with (P2)

when the SOC become completely inactive in the third stage. However, it should

be clarified that there may not always be a third stage as illustrated by Fig.2.5(a)
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Figure 2.3: SU outage capacity versus average power budget from SU outage prob-
ability minimization problem with 4 subchannels (ǫpi = 0.1, ǫs = 0.1, r0

pi = 0.4)

where r0
s is varied while all r0

pi are still kept at 0.4. Note that in the third stage, the

SU outage constraint becomes inactive, thus, in this stage the SU ergodic capacity

results should be independent of r0
s . As seen in Fig.2.5(a), the SU ergodic capacity

graphs of r0
s = 0.4 and r0

s = 0.6 become strictly positive at different Pav (due

to different Pmin requirements), but they become exactly the same when Pav is

high enough which implies that they reach the third stage where SOC becomes

inactive. However,this is not the case when r0
s is considerably high such that the

power strategy prs is unavoidable for some channel states. Indeed, when r0
s = 0.8,

the SU ergodic capacity does not enter the third stage no matter how high Pav is,

as illustrated by Fig.2.5(b), via the performance gap with the SU ergodic capacities

for r0
s = 0.4 and r0

s = 0.6. Additionally, in Fig. 2.6, the effect of a noisy estimated

channel gain between each PTi and PRi on the SU average rate performance is

demonstrated. More specifically, we model the noisy estimated version of gi using

the well established model used in [63,78]. Let the complex channel amplitude gain

between PUi and SU be ag,i. Thus, gi = |ag,i|
2, and the noisy estimated version of ag,i

is modelled as âg,i = ρag,i+
√

1 − ρ2ni, where 0 ≤ ρ ≤ 1 is the correlation coefficient

between true and the estimated channel amplitude. ni is the estimation error of i-th
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0.6)

subchannel which is distributed according to a complex normal distribution with

zero mean and unit variance. Thus, the estimated channel power gain becomes

ĝi = |âg,i|
2, which has an exponential distribution with unity mean identical to that

of gi. Figure 2.6 illustrates the effect of ρ on the SU average rate when N = 2,

r0
s = 0.6 nats/transmission, r0

pi = 0.4 nats/transmission for all i, and the maximum

primary and secondary outage probabilities are 0.1. Note that in designing the

power allocation policy, ĝi is used instead of gi, but the Lagrange multipliers are

chosen such that the PU and SU outage constraints as well as the SU average

power constraint are satisfied. Compared to the case of perfect knowledge of gi (i.e.

ρ = 1), the average rate loss for the SU is measured as approximately 6.4925%,

10.1505% and 20.3530% for ρ = 0.95, 0.9 and 0.8, respectively for fixed Pav = 15

dB. (indicated by blue dashed line). This result indicates that, as ρ decreases, the

unreliability in estimated channel gain increases and thus places more restriction on

the SU power policy in order to protect QoS in each primary link. Also, the SU

requires more average power to make the problem feasible if ρ decreases (indicated

by the black dashed oval), since ĝi also affects the term hi

αPp(ĝi)+N0
. This results in
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the SU misinterpreting the ON-OFF status of PUi and allocating incorrect power

to the individual subchannels.
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Figure 2.6: The effect of the noisy primary channel estimates on SU ergodic capacity

2.4.3 Suboptimal power allocation scheme

In this part we will illustrate the performance of the suboptimal power scheme in

comparison with the optimal one. For these simulations, we useN = 16 subchannels,

r0
s = 2, r0

pi = 1.25, ǫs = ǫpi = 0.1. In Fig. 2.7(a), it is seen that there is a small SU

ergodic capacity loss of approximately 5.36% when the suboptimal algorithm is used,

compared to the optimal power control policy, when s∗a and all s∗i is positive (Stage

2 mentioned above). However, our suboptimal power allocation policy is chosen

carefully so that all POC and SOC are ensured, as illustrated in Fig. 2.7(b) for the

same example. It implies that the SU can possibly sacrifice a small capacity loss

by adopting this suboptimal power strategy, in return for a substantial reduction in

real-time computational complexity while still ensuring that SOC and all POCs are

satisfied.
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2.5 Conclusion

This chapter has derived an optimal power allocation policy (under full CSI at the

OFDM-based SU transmitter and receiver) in a spectrum sharing cognitive radio

network over N parallel fading channels, that maximizes SU ergodic capacity under

a SU outage probability constraint, outage probability constraints on all N primary

users, and an average transmit power constraint at the SU transmitter. As a special

case, we have also solved the secondary outage minimization problem when N ≥ 1,

thus generalizing previous work with N = 1. The optimal solutions are derived

by using a probabilistic power allocation technique that allows our results to be

applicable to both continuous and discrete fading channels. To avoid an exponen-

tial computational complexity for deriving the SU’s optimal power policy in real

time for a given channel realization, we have proposed a low-complexity suboptimal

power control policy, which substantially reduces the number of computations in

each channel realization, while guaranteeing both PU’s and SU’s outage probabil-

ity constraints for a small loss in the SU ergodic capacity performance. Numerical

results are presented to illustrate the performance of all derived algorithms.



Chapter 3

Power Allocation in Cognitive Broadcast

Channels with Primary Outage Probability

Constraint

In this chapter, we focus on a single-input single-output (SISO) fading cognitive

broadcast channel which co-exists with a delay-sensitive primary link under aver-

age and peak transmit power constraint at the secondary base station in underlay

cognitive radio paradigm. For non-cognitive SISO fading broadcast channels, in-

formation theoretic capacity notions were investigated in, e.g. [15, 16]. In [15], the

authors showed that the base station allocates a given time slot (over which the

fading channel remains invariant) to the user with the strongest reception only so as

to maximize the total throughput, implying that a dynamic time-division-multiple-

access (D-TDMA) is the optimal scheme. Later, the authors of [24] re-emphasized

the duality of the capacity region of Gaussian multiple-access channels (MAC) and

broadcast channels (BC) by showing that the capacity region of the Gaussian BC

under a sum power constraint is exactly the same as the capacity region of a dual

Gaussian MAC subject to the same sum power constraint instead of the individual

power constraints. Using this result from [24], the authors of [52] investigated the

optimal power control for ergodic sum capacity (ESC) maximization in the SISO

fading cognitive BC (C-BC) under both average/peak transmit power constraints

and PIPC/AIPC, proving that D-TDMA is the optimal scheme for achieving the

ESC in C-BC, reflecting the optimality of the opportunistic scheduling strategy.

Opportunistic user selection strategies have also motivated researchers to analyze

how the ESC scales as the number of users M increases. The analysis for through-

put scaling in non-cognitive multiple-input multiple-output (MIMO) BC is provided

47
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in [54]. For underlay cognitive radio networks, there are a number of works studying

multiuser diversity. For example, in [79], the authors studied the C-MAC system

under a peak transmit power constraint at each secondary transmitter and a peak

interference power constraint at the primary receiver and analyzed capacity scaling

as the ratio of the transmit power to the interference power approaches infinity.

In [80], secondary capacity gains in C-MAC are investigated with the user selection

criterion based on the strongest secondary direct channel and the weakest inter-

ference channel under a peak interference constraint. Later in [57], the multiuser

interference diversity is examined for three types of cognitive networks, including

C-MAC, C-BC, and cognitive parallel access channel (C-PAC), under peak transmit

power and peak interference power constraints. Recently, the multiuser diversity

gain due to optimal power control in C-MAC under average transmit and average

interference power constraints with various types of fading channels was investigated

in [81] [58]. In contrast to [57] and [58], in this chapter we study the MUD gain

under optimal power control for a SISO C-BC under a probabilistic interference

constraint for protecting the delay-sensitive primary’s transmission, namely, POC.

The novel contributions of this chapter can be summarized as the following:

• We derive the optimal power control policy for the ESC maximization problem

in a SISO C-BC under a PU outage probability constraint (POC), under both

average transmit power constraint (ATPC) and peak transmit power constraint

(PTPC) at the SBS transmitter assuming that perfect knowledge of all involved

channel gains at the SBS along with the PU’s transmission power control

policy. We use a rigorous probabilistic power allocation technique [21, 25,

76] in order to derive the optimal power schemes and we show that for both

ATPC and PTPC, a D-TDMA based scheme is optimal when continuous fading

channels are considered.

• We derive asymptotic scaling laws for the SBS ergodic sum capacity as the

number of SUs, M → ∞ when SBS uses the optimal power control policy

mentioned above, for two types of PU power control policy assuming all chan-

nels undergo independent Rayleigh fading:
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1. When the delay-sensitive PU uses an ON-OFF power control policy with

a constant power when ON to meet its basic rate requirement, we show

that the SBS ESC scales as log logM .

2. When the delay-sensitive PU uses a truncated channel inversion (TCI)

policy (that minimizes its own outage probability under an average PU

transmit power constraint [21] in the absence of the secondary network),

we show that the SBS ESC scales according to ǫp log(logM) with a pre-

log factor ǫp, ǫp being the maximum allowable outage probability at the

PU receiver in presence of the SU network.

• We also present a set of comprehensive numerical results illustrating our claims

on the asymptotic throughput scaling laws as well as the effect of the various

parameters involved in the optimization problems.

The remainder of Chapter 3 is organized as follows. The description of our

system model is presented in Section 3.1. Under the assumption of full channel

side information at SBS and PU’s power strategy being known to SBS, the optimal

power control policies for the problem with ATPC and PTPC are presented in

Section 3.2. When all pertinent channels undergo independent Rayleigh fading,

Section 3.3 provides the asymptotic SBS sum throughput scaling results under the

optimal power strategy subject to either ATPC or PTPC, given PU’s power policy

is ON-OFF with a constant power when ON, showing that the SBS sum throughput

grows as log(logM). In Section 3.4, the asymptotic SBS sum throughput scaling law

of ǫp log(logM) is derived under Rayleigh fading and a TCI power control policy at

the PU transmitter and the optimal power control policy at the SBS with both ATPC

and PTPC. Table 3.1 summarizes the contributions in Section 3.3 and Section 3.4.

The numerical results are presented in Section 3.5 followed by some concluding

remarks in Section 3.6.

List of notations in Chapter 3 : Here is a list of important notations used in

this chapter. E[.] denotes the statistical expectation. Pr {.} represents probability.

The cumulative density function (CDF) of a random variable Z is given by FZ(z)

whereas FZ(z|Y ) expresses the conditional CDF of Z given Y . Let Xw be a Bernoulli
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Table 3.1: Throughput analyses in Chapter 3

Section PU’s power policy SU power constraint Throuput scaling result

3.3.1 ON-OFF ATPC log(logM)

3.3.2 ON-OFF PTPC log(logM)

3.4.1 TCI ATPC ǫp log(logM)

3.4.2 TCI PTPC ǫp log(logM)

random variable such that Xw = 1 with probability w and Xw = 0 with probability

1 − w. ∂y
∂x∗

denotes the partial derivative of y with respect to x, evaluated at x =

x∗. pT represents the transpose of vector p. Sc represents the complement of

the set S. We also use the notation f(x) = O(g(x)) as x → ∞ to imply that

lim supx→∞ | f(x)
g(x)

|< ∞, f(x) = o(g(x)) as x → ∞ to imply that lim
x→∞

| f(x)
g(x)

|= 0

and f(x) = Θ(g(x)) as x → ∞ to imply that there exist positive constants K1 and

K2 such that K1 < lim
x→∞

| f(x)
g(x)

|< K2.

3.1 System model

We consider a cognitive fading broadcast channel (C-BC) with one secondary base

station (SBS) transmitting to M secondary receivers (SRs), sharing the same spec-

trum as a primary transmitter-receiver pair (PT-PR). All terminals involved are

equipped with a single antenna. All channels involved in this cognitive radio net-

work are assumed to be mutually independent block fading additive white Gaussian

noise (BF-AWGN) channels [21] with continuous CDFs. Let the channel gains from

SBS to the i-th SR, PT to PR, PT to the i-th SR, and SBS to PT be denoted by

hi, g, αi, and β, respectively, as illustrated in Fig.3.1. Let χχχ represent the combined

channel state vector, i.e. χχχ = {g, β, h1, . . . , hM , α1, . . . , αM}. As usual, we assume

the primary user’s transmit power control strategy is based only on the direct gain

g between PT and PR, regardless of the interference from the secondary network.

We also assume that SBS has perfect CSI on χχχ and primary user’s power policy, so
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that it also knows the PU’s power allocation for every realization of χχχ.

Figure 3.1: System model for cognitive BC

In this chapter, we assume that the QoS guarantee of the delay-sensitive PU

with a target rate r0
p allows a maximum primary outage probability of ǫp. In a

typical wireless fading environment, even in the absence of interference from the

secondary network, the PU may not be able to avoid an outage event when the PT-

PR channel is in deep fade. For example, with an average or peak transmit power

constraint, the PU cannot meet the target rate for a Rayleigh fading channel if it

falls below a certain threshold [21] unless it is equipped with multiple antennas. We

further presume that the PU’s power policy is designed to allow for a maximum PU

outage probability of ǫ0p ≤ ǫp in the absence of the secondary interference. In this

chapter, we assume that the PU employs either an ON-OFF power strategy with a

constant power when ON (ON-OFF) or a truncated channel inversion (TCI) power

strategy. For the ON-OFF power strategy, the PU transmits with a constant power

Pp(g) = Pc when g ≥ gT = (e
r0
p−1)N0

Pc
to meet the target rate and Pp(g) = 0 for

g < gT , where N0 denotes the AWGN variance at the primary receiver. For the TCI

power control policy, the amount of the PU’s transmit power adapts according to

the direct channel gain g when the PU is ON, i.e. Pp(g) = (e
r0
p−1)N0

g
when g ≥ gT

and Pp(g) = 0 otherwise. Note that [21] has shown that the above TCI power policy

is the solution to the primary outage probability minimization problem subject to
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an average transmit power constraint. Note also that gT is chosen such that for

Pr(g < gT ) = ǫ0p. It is worth noting that these two PU power policies are designed

based on the PU’s direct channel gain g only, reflecting the obliviousness of the PU

to the interference from the secondary network.

Let P(χχχ) = [P1(χχχ), . . . , PM(χχχ)]T where Pi(χχχ) denote the SBS’s transmit power

allocated for the i-th SU receiver. The PU’s instantaneous rate expression can be

written as

rp(χχχ,P(χχχ)) = log






1 + gPp(g)

(

β
M
∑

i=1
Pi(χχχ)

)

+N0






(3.1)

The delay-sensitive primary network has an outage probability constraint (POC)

with a target rate r0
p and a maximum outage probability threshold ǫp, such that

Pr
{

rp(χχχ,P(χχχ)) < r0
p

}

≤ ǫp (3.2)

The power budget at the SBS can be either ATPC or PTPC as shown in (3.3) and

(3.4), respectively.

E

[

M
∑

i=1

Pi(χχχ)

]

≤ Pav (3.3)

M
∑

i=1

Pi(χχχ) ≤ PO (3.4)

In this chapter, we focus on solving the ergodic sum capacity maximizing problem in

the secondary downlink subject to (3.2) and either (3.3) or (3.4). Similar to [52], by

applying the MAC-BC duality result in [24], the capacity region of the C-BC can be

written in terms of the capacity region of the dual MAC under an average or peak

sum power constraint. Thus, the ergodic sum capacity achieved by the secondary

network in this problem can be written as follows

Cs = max
P(χχχ)�0

E [rs(χχχ,P(χχχ))] s.t. (3.2) and either (3.3) or (3.4)

where rs(χχχ,P(χχχ)) is the instantaneous sum rate of the auxiliary cognitive MAC



3.2. Optimal power strategies 53

expressed as

rs(χχχ,P(χχχ)) = log

(

1 +
M
∑

i=1

hi

αiPp(g)+N0
Pi(χχχ)

)

(3.5)

Note that we drop the constant 1
2

in the instantaneous rate expressions in (3.1) and

(3.5) and use natural logarithm for simplicity. We also assume that the AWGN

variances in each SU receiver is given by N0 as well.

3.2 Optimal power strategies

This section will derive the optimal power schemes such that maximize ergodic sum

downlink capacity subject to a POC with either an ATPC in Section 3.2.1 or a

PTPC in Section 3.2.2.

The ergodic sum capacity maximization problem from the SBS to M SUs with

a POC and an ATPC, (P1), is defined as follows.

(P1) max
P(χχχ)

E [rs(χχχ,P(χχχ))] (3.6a)

s.t. Pr
{

rp(χχχ,P(χχχ)) < r0
p

}

≤ ǫp (3.6b)

E

[

M
∑

i=1

Pi(χχχ)

]

≤ Pav (3.6c)

P(χχχ) � 0 (3.6d)

If the constraint (3.6c) is replaced by
M
∑

i=1

Pi(χχχ) ≤ PO, then we have an ergodic

sum capacity maximization problem with a POC and a PTPC, labelled by (P2).

By applying the same technique as in [21, 25, 76], we can prove that the optimal

power control for (P1) and (P2) is randomized between two deterministic schemes,

i.e. p1(χχχ) = E
[

P(χχχ) | rp(χχχ,p(χχχ)) ≥ r0
p

]

and p2(χχχ) = E
[

P(χχχ) | rp(χχχ,p(χχχ)) < r0
p

]

,

with the probability indicated by the weighting function w(χχχ) can be expressed as

w(χχχ) = Pr
{

rp(χχχ,P(χχχ)) ≥ r0
p | χχχ

}

.
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3.2.1 Optimal power policy for ATPC

Lemma 3.2.1. The optimal solution of the problem (P1) can be expressed by

P∗(χχχ) = w(χχχ)p1(χχχ) + (1 − w(χχχ))p2(χχχ), where E [w(χχχ)] ≥ 1 − ǫp, E

[

M
∑

i=1

P ∗
i (χχχ)

]

and rp(χχχ,p1(χχχ)) ≥ r0
p for all χχχ.

The proof of Lemma 3.2.1 can be found in Appendix B.1. For convenience, we

further define Pp(g) =
(

gPp(g)

er0
p−1

−N0

)+

. Reformulating (P1) by Lemma 3.2.1, we

obtain

(P1) max
pk(χχχ),w(χχχ)

E [w(χχχ)rs(χχχ,p1(χχχ)) + (1 − w(χχχ))rs(χχχ,p2(χχχ))] (3.7a)

s.t. E
[

1T (w(χχχ)p1(χχχ) + (1 − w(χχχ))p2(χχχ))
]

≤ Pav (3.7b)

E [w(χχχ)] ≥ 1 − ǫp (3.7c)

w(χχχ)
[

Pp(g) − β1Tp1(χχχ)
]

≥ 0 (3.7d)

pk(χχχ) � 0, ∀k ∈ {1, 2} (3.7e)

0 ≤ w(χχχ) ≤ 1 (3.7f)

In a similar manner as in [25,76], the objective function can be proved to be concave

while the other constraints are linear. Hence, the problem (P1) can be solved by the

necessary and sufficient Karush-Kuhn-Tucker (KKT) optimality conditions which

are provided in Appendix B.2. For convenience, define zi = hi

αiPp(g)+N0
for all i,

p∗WF,i(χχχ) = ( 1
Λ∗ − 1

zi
)+ and p∗RP (χχχ) = Pp(g)

β
. Applying KKT conditions and the fact

that channel state is continuous, the optimal power policy can be summarized in

Theorem 3.2.1

Theorem 3.2.1. The optimal power control for (P1) is P∗ = Xw∗(χχχ)p∗
1(χχχ) +

(1 − Xw∗(χχχ))p∗
2(χχχ), where λ∗ and S∗ are the solutions to E

[

M
∑

i=1

P ∗
i (χχχ)

]

= Pav and

E [w∗(χχχ)] ≥ 1 − ǫp and p∗
1(χχχ), p∗

2(χχχ) and w∗(χχχ) are defined as follows

p∗1i(χχχ) =























p∗WF,i(χχχ) , w∗(χχχ) = 1, p∗WF,i(χχχ) ≤ p∗RP (χχχ), i = arg max
m∈I

zm

p∗RP (χχχ) , w∗(χχχ) = 1, p∗WF,i(χχχ) > p∗RP (χχχ), i = arg max
m∈I

zm

0 , otherwise

(3.8)
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p∗2i(χχχ) =







p∗WF,i(χχχ) , w∗(χχχ) = 0, i = arg max
m∈I

zm

0 , otherwise
(3.9)

w∗(χχχ) =







1, BB
1,χχχ > BB

2,χχχ

0, BB
1,χχχ < BB

2,χχχ

(3.10)

where BB
1,χχχ = rs(χχχ,p

∗
1(χχχ))− Λ∗1Tp∗

1(χχχ) + S∗ and BB
2,χχχ = rs(χχχ,p

∗
2(χχχ))− Λ∗1Tp∗

2(χχχ).

The physical interpretation of benefit function BB
k,χχχ represents the profit by using

power policy p∗
k(χχχ). The SBS will select the power strategy that returns the highest

profit. Proof of Theorem 3.2.1 can be found in Appendix B.3.

3.2.2 Optimal power policy for PTPC

Note that by replacing the constraint (3.7b) with 1T (w(χχχ)p1(χχχ)+(1−w(χχχ))p2(χχχ)) ≤

PO, we will get the reformulated version of (P2). Following the same procedure as

in the ATPC case, we start from KKT necessary and sufficient conditions provided

in Appendix B.4. Providing that channel state is continuous, the optimal power

policy can be summarized in Theorem 3.2.2.

Theorem 3.2.2. The optimal power control for problem (P2) is P∗ = Xw∗
1
(χχχ)p∗

1(χχχ)+

(1 − Xw∗
1
(χχχ))p∗

2(χχχ), where Λ∗(χχχ) and S∗ are the solution to
M
∑

i=1

P ∗
i (χχχ) ≤ PO and

E [w∗(χχχ)] ≥ 1 − ǫp while p∗
1(χχχ), p∗

2(χχχ) and w∗(χχχ) are defined as follows

p∗1i(χχχ) =























PO , w∗(χχχ) = 1, PO ≤ p∗RP (χχχ), i = arg max
m∈I

zm

p∗RP (χχχ) , w∗(χχχ) = 1, PO > p∗RP (χχχ), i = arg max
m∈I

zm

0 , otherwise

(3.11)

p∗2i(χχχ) =







PO , w∗(χχχ) = 0, i = arg max
m∈I

zm

0 , otherwise
(3.12)

w∗(χχχ) =







1, BB
1,χχχ > BB

2,χχχ

0, BB
1,χχχ < BB

2,χχχ

(3.13)



56 3.3. SU throughput scaling with ON-OFF power policy at PU

where BB
1,χχχ = rs(χχχ,p

∗
1(χχχ))−Λ∗(χχχ)1Tp∗

1(χχχ)+S∗ and BB
2,χχχ = rs(χχχ,p

∗
2(χχχ))−Λ∗(χχχ)1Tp∗

2(χχχ).

For The proof of Theorem 3.2.2 , please refer to Appendix B.5.

Remark 3.2.1. BB
1,χχχ = BB

2,χχχ happens with zero probability in continuous fading

channel scenario.

3.3 SU throughput scaling with ON-OFF power

policy at PU

In this section, we investigate the SBS throughput (ergodic sum rate) scaling laws

as the number of secondary users M goes to infinity when the PU adopts an ON-

OFF power control policy. In order to do this, we make the additional assumption

that all channel power gains are exponentially distributed with unity mean. We

then analyze the asymptotic scaling properties of the ergodic sum rate according

to the derived optimal power control laws for both ATPC and PTPC cases. From

the derived optimal solution in the ATPC case, we can divide the channel state χχχ

into four possible cases as shown in Table 3.2. Similarly, there are also four possible

cases for the optimal power control solution derived for the PTPC case as shown in

Table. 3.3 below.

Table 3.2: Four possible cases for the fading channel state χχχ with ATPC and ON-
OFF power policy at the PU

Case Properties Power control Outage at PU

1 g < gT p∗WF,i∗ Yes (PU turns OFF)

2 g ≥ gT , p∗WF,i∗ ≤ p∗RP p∗WF,i∗ No

3 g ≥ gT , p∗WF,i∗ ≥ p∗RP , BB
1,χχχ ≤ BB

2,χχχ p∗WF,i∗ Yes

4 g ≥ gT , p∗WF,i∗ ≥ p∗RP , BB
1,χχχ > BB

2,χχχ p∗RP No
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Table 3.3: Four possible cases in fading channel state χχχ for PTPC and ON-OFF
power policy at the PU

Case Properties Power control Outage at PU

1 g < gT PO Yes (PU turn OFF)

2 g ≥ gT , PO ≤ p∗RP PO No

3 g ≥ gT , PO ≥ p∗RP , BB
1,χχχ ≤ BB

2,χχχ PO Yes

4 g ≥ gT , PO ≥ p∗RP , BB
1,χχχ > BB

2,χχχ p∗RP No

Obviously, if S∗ = 0, it implies that SBS can transmit with p∗WF in ATPC case

or PO in ATPC case without making POC active, as if the primary network never

existed. This scenario then simplifies to a non-cognitive broadcast channel. With

similar technique in [54,58], we can show that the ergodic sum rate for a BC scales

like log(logM) in this case. Hence, this chapter will only study the case that S∗ > 0.

Recall that zi = hi

αiPp(g)+N0
. Let FG(g) be the CDF of g. First we find the CDF of zi

when g < gT and g ≥ gT , denoted by FZ(z | S1) and FZ(z | Sc1), respectively. Here

S1 denotes the set g < gT and Sc1 denotes the set g ≥ gT .

• When g ≥ gT , i.e. χχχ ∈ Sc1, zi = hi

αiPc+N0
which is independent on the value

of g. We can show that FZ(z | Sc1) =
(

1 − exp(−N0z)
1+Pcz

)

and the probability den-

sity function fZ(z | Sc1) = d
dz

[

1 − exp(−N0z)
1+Pcz

]

. Since
1−FZ(z |Sc

1)

fZ(z |Sc
1)

= Pcz+1
N0Pcz+N0+Pc

,

lim
z→∞

d
dz

[

1−FZ(z |Sc
1)

fZ(z |Sc
1)

]

= lim
z→∞

(

Pc

N0Pcz+N0+Pc

)2

= 0. It means that FZ(z | Sc1) be-

longs to the domain of attraction of the Gumbel distribution [82] as it satisfies

the Von Mises conditions. When g < gT , z = h
N0

and it is now independent on

g. Thus, the CDF z of is FZ(z | S1) = (1− exp(−N0z)). By the similar proce-

dure, we can show that FZ(z | S1) also belongs to the domain of attraction of

the Gumbel distribution.

• In order to analyze how the secondary throughput scales, we have to investigate

the property of zmax = max
m∈I

zm for large M . The required result is provided in

Lemma 3.3.1 as follows:
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Lemma 3.3.1. lim
M→∞

E[log(zmax)1{zmax≥Λ∗} |S
c
1]

log(logM)
= 1 and lim

M→∞

E[log(zmax)1{zmax≥Λ∗} |S1]
log(logM)

=

1.

Proof. Please refer to Appendix B.6.

• Define θ = Pp(g)

β
. For g ≥ gT , θ = 1

β

(

gPc

exp(r0p)−1
−N0

)

. The CDF of θ given

g ≥ gT , Fθ(θ | S
c
1), can be expressed as 1 − 1

1+coθ
where co =

exp(r0p)−1

Pc
= gT

N0
.

The above results will be used below to analyze the SBS throughput scaling laws as

M → ∞, for the ATPC case and the PTPC case, respectively.

3.3.1 Throughput scaling in ATPC case

From Table. 3.2, the channel states when g ≥ gT can be illustrated by Figure. 3.2,

all regions can be described as follows.

S1 = {g < gT}

S2 = {g ≥ gT , zmax ≤ Λ∗}
⋃

{

g ≥ gT , zmax ≥ Λ∗, 1
Λ∗ −

1
zmax

≤ θ ≤ ∞
}

S3 =
{

g ≥ gT , zmax ≥ Λ∗

ko
, 0 ≤ θ ≤ ko

Λ∗ −
1

zmax

}

S4 =
{

g ≥ gT , zmax ≥ Λ∗, ko

Λ∗ −
1

zmax
≤ θ ≤ 1

Λ∗ −
1

zmax

}

(3.14)

where ko is the solution to log (ko) − ko + S∗ + 1 = 0.

• Throughput C∗
s = E [rs(χχχ,P

∗(χχχ))] = E [r∗s ] can be computed as follows

C∗
s =

4
∑

k=1

Pr(Sk)E [r∗s | Sk]

= Pr(S1)E
[

log( zmax

Λ∗ )1{zmax≥Λ∗} | S1

]

+ Pr(S2)E
[

log( zmax

Λ∗ )1{zmax≥Λ∗} | S2

]

+Pr(S3)E
[

log( zmax

Λ∗ )1{zmax≥Λ∗} | S3

]

+ Pr(S4)E [log(1 + θzmax) | S4]

(3.15)

Hence, the upper-bound of C∗
s is

C∗
s ≤ Pr(S1)E

[

log( zmax

Λ∗ )1{zmax≥Λ∗} | S1

]

+ Pr(S2)E
[

log( zmax

Λ∗ )1{zmax≥Λ∗} | S2

]

+Pr(S3)E
[

log( zmax

Λ∗ )1{zmax≥Λ∗} | S3

]

+ Pr(S4)E
[

log( zmax

Λ∗ )1{zmax≥Λ∗} | S4

]

= E
[

log( zmax

Λ∗ )1{zmax≥Λ∗}

]

(3.16)
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Figure 3.2: Region in ATPC case given that g ≥ gT when the PU uses ON-OFF
power strategy

• It is worth mentioning that Λ∗ varies with the number of SUs M , but we do

not show it explicitly. The property of Λ∗ is emphasized in Lemma 3.3.2.

Lemma 3.3.2. Λ∗ has an upper-bound, i.e. Λ∗ ≤ 1
Pav

, and it is bounded away

from zero.

The proof of Lemma 3.3.2 can be found in Appendix B.7.

• Note that ko = 1 when S∗ = 0, Pr {S4} = 0, and pRP is not applied in any

channel states. As explained earlier, the throughput scaling in this case has

been analyzed already [54]. When ko approaches 0, it implies that Pr {S3} = 0

and the total outage probability becomes Pr {S1} + Pr {S3} = ǫ0p + 0 = ǫ0p,

implying that we set ǫp = ǫ0p. So, the analysis will be split into 2 parts. First

is when ǫp > ǫ0p (0 < ko < 1) and the second is when ǫp = ǫ0p (ko = 0).
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Lower-bound on throughput when ǫp > ǫ0p

In set S4, we know that kozmax

Λ∗ ≤ 1 + θzmax ≤ zmax

Λ∗ . C∗
s is also lower-bounded by

C∗
s ≥ Pr(S1)E

[

log( zmax

Λ∗ )1{zmax≥Λ∗} | S1

]

+ Pr(S2)E
[

log( zmax

Λ∗ )1{zmax≥Λ∗} | S2

]

+Pr(S3)E
[

log( zmax

Λ∗ ) | S3

]

+ Pr(S4)E
[

log(kozmax

Λ∗ ) | S4

]

= E
[

log( zmax

Λ∗ )1{zmax≥Λ∗}

]

+ Pr {S4} log(ko)

≥ E
[

log( zmax

Λ∗ )1{zmax≥Λ∗}

]

+ log(Λ∗

co
· γǫ

1−γǫ
)

(3.17)

where the last inequality is from the lower bound of ko and γǫ =
ǫp−ǫ0p
1−ǫ0p

> 0, whose

corresponding proof in Appendix B.8 shows that Λ∗

co

(

γǫ

1−γǫ

)

≤ ko < 1.

Lower-bound on throughput when ǫp = ǫ0p

In this case, the region S3 disappears. Therefore, the total capacity C∗
s is

Pr {g < gT}E [r∗s | g < gT ] + Pr {g ≥ gT}E [r∗s | g ≥ gT ].

In Appendix B.9, we have shown that

• If Λ∗ ≥ co, then E [r∗s | g ≥ gT ] ≥ E
[

log( zmax

Λ∗ )1{zmax≥Λ∗} | g ≥ gT
]

+
co
Λ∗

1− co
Λ∗

log co
Λ∗

• If Λ∗ ≤ co, then E [r∗s | g ≥ gT ] ≥ E
[

log( zmax

co
)1{zmax≥co} | g ≥ gT

]

+ 1
1− co

Λ∗
log co

Λ∗

Theorem 3.3.1. When PU uses ON-OFF with constant power control, the behavior

of throughput from the SBS under a POC and an ATPC with optimal power control

can be described as follows.

lim
M→∞

C∗
s

log(logM)
= 1

The proof of Theorem 3.3.1 are summarized in Appendix B.10, through the

results from Appendix B.6 to B.9.

3.3.2 Throughput scaling in PTPC case

In order to analyze the asymptotic scaling laws of the SBS ergodic sum rate, we first

observe the following facts from Table. 3.3.
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• Given g ≥ gT , Po ≤ θ < ∞ in case 2. For 0 ≤ θ ≤ Po, we have case 3

and 4 which are separated by the curved K(zmax). The function K(zmax) is

derived from the condition that BB
1,χχχ = BB

2,χχχ, whose expression and property

are summarized in Lemma 3.3.3.

Lemma 3.3.3. The properties of K(zmax) are as follows:

– K(zmax) = − 1
zmax

+
(

1
zmax

+ Po

)

exp(−S∗ − zmax

1+Pozmax
).

– For S∗ > 0, K ′(zmax) > 0, i.e. K(zmax) is a strictly increasing function

if POC is active.

The proof of are provided in Appendix B.11. Let zo be the unique root of the

equation K(zmax) = 0. (As we consider the case that POC is active, S∗ > 0

and the root is unique as K(zmax) is a strictly increasing function.) The regions

when g ≥ gT are illustrated by Figure. 3.3. Finally, we can identify the regions

as follows.

S1 = {g < gT }

S2 = {g ≥ gT , 0 ≤ zmax <∞, Po ≤ θ ≤ ∞}

S3 = {g ≥ gT , zo ≤ zmax <∞, 0 ≤ θ ≤ K(zmax)}

S4 = {g ≥ gT , zo ≤ zmax <∞, K(zmax) ≤ θ ≤ Po}
⋃

{g ≥ gT , 0 ≤ zmax < zo, 0 ≤ θ ≤ Po}

(3.18)

• Notice that, as S∗ approaches ∞, lim
S∗→∞

K(zmax) = − 1
zmax

< 0 which means

that lim
S∗→∞

zo tends to infinity. Thus, the region S3 vanishes, implying that

ǫ0p = Pr {S1} = ǫp. Hence, the analysis on the lower bound of throughput

is split into two parts, i.e. when ǫp > ǫ0p (0 < S∗ < ∞) and when ǫp = ǫ0p

(S∗ = ∞).
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Figure 3.3: Region in PTPC case given that g ≥ gT when the PU uses ON-OFF
power strategy

• Throughput C∗
s = E [r∗s ] can be calculated as follows

C∗
s =

4
∑

k=1

Pr(Sk)E [r∗s | Sk]

= Pr(S1)E [log(1 + Pozmax) | S1] + Pr(S2)E [log(log(1 + Pozmax) | S2]

+Pr(S3)E [log(1 + Pozmax) | S3] + Pr(S4)E [log(1 + θzmax) | S4]

(3.19)

Hence, the upper-bound of C∗
s is

C∗
s ≤ Pr(S1)E [log(1 + Pozmax) | S1] + Pr(S2)E [log(log(1 + Pozmax) | S2]

+Pr(S3)E [log(1 + Pozmax) | S3] + Pr(S4)E [log(1 + Pozmax) | S4]

= E [log(1 + Pozmax)]

(3.20)

Lower-bound on throughput when ǫp > ǫ0p

C∗
s =

4
∑

k=1

Pr(Sk)E [r∗s | Sk]

≥
4
∑

k=1

Pr(Sk)E [log(1 + Pozmax) | Sk] − Pr {S4} δ(Po, co, γǫ)

≥ E [log(1 + Pozmax)] − δ(Po, co, γǫ)

(3.21)
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where δ(Po, co, γǫ) = log
(

Poco
γǫ

1−γǫ

)

and γǫ =
ǫp−ǫ0p
1−ǫ0p

. Appendix B.12 provides the

details of proof in this case.

Lower-bound on throughput when ǫp = ǫ0p

In this case, the region S3 vanishes. Thus, SU sum downlink capacity becomes

Pr {g < gT}E [r∗s | g < gT ] + Pr {g ≥ gT}E [r∗s | g ≥ gT ], where E [r∗s | g < gT ] =

E [log(1 + Pozmax) | g < gT ] and it is shown in Appendix B.13 thatE [r∗s | g ≥ gT ] ≥

E
[

log( zmax

co
1 (z ≥ co)) | g ≥ gT

]

− log

(

Po+ 1
co

Po

)

.

Theorem 3.3.2. When PU uses ON-OFF with constant power control, the behavior

of throughput from the SBS under a POC and a PTPC with optimal power control

can be described as follows.

lim
M→∞

C∗
s

log(logM)
= 1

The proof of Theorem 3.3.2 are summarized in Appendix B.14, through the

results in Appendix B.6 and Appendix B.11 to B.13.

3.4 SU throughput scaling with TCI power policy

at PU

In this section we focus on the case where the PU uses the TCI policy and derive

asymptotic scaling laws of the SBS ergodic sum capacity when the number of SUs,

M → ∞, under the assumption (identical to Section 3.3) that all channel power gains

are independent and identically exponentially distributed with unity mean. Again,

we first divide the channel state χχχ into specific sets with the aid of the optimal power

allocation solutions in Theorem 3.2.1 for ATPC and in Theorem 3.2.2 for PTPC,

respectively shown in Table 3.4 and Table 3.5.

Under the truncated channel inversion policy, PU is ON with Pp(g) = k1
g

where

k1 =
(

er
0
p − 1

)

N0. In this scenario, no SU is allowed to transmit if BB
1,χχχ > BB

2,χχχ,

since p∗RP (χχχ) = 0. Similar to the previous section, we will analyze the throughput
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Table 3.4: Three possible cases in fading channel state χχχ for ATPC with TCI power
policy at the PU

Case Properties Power control Outage at PU Probability

1 g < gT p∗WF Yes (PU turn OFF) ǫ0p

2 g ≥ gT , BB
1,χχχ ≤ BB

2,χχχ p∗WF Yes ǫp − ǫ0p

3 g ≥ gT , BB
1,χχχ > BB

2,χχχ p∗RP = 0 No 1 − ǫp

Table 3.5: Three possible cases in fading channel state χχχ for PTPC with TCI power
policy at the PU

Case Properties Power control Outage at PU Probability

1 g < gT PO Yes (PU turn OFF) ǫ0p

2 g ≥ gT , BB
1,χχχ ≤ BB

2,χχχ PO Yes ǫp − ǫ0p

3 g ≥ gT , BB
1,χχχ > BB

2,χχχ p∗RP = 0 No 1 − ǫp

scaling laws only for the case when S∗ > 0. Define ρi = hi

αiPp(g)+N0
. The optimal SBS

power allocation solution dictates that the SBS will transmit to the user with the

maximum ρ, i.e. ρmax, for both ATPC and PTPC. It is also worth mentioning that

we know the exact probability for each case of the channel fading state, as shown in

Tables 3.4 and 3.5, so a complicated throughput analysis by using conditional CDFs

as used in Section 3.3, can be avoided.

First, note that max hi
k1
gT
αi+N0

≤ ρmax ≤ max hi

N0
regardless the value of g. Existing

results from [58, 83] can be used to show that both max hi
k1
gT
αi+N0

and max hi

N0
scale

like logM as M → ∞. Thus, as M grows large, ρmax also scales like logM . Next,

we provide our detailed analysis of the SBS ergodic sum capacity scaling laws for

ATPC in Section 3.4.1 and PTPC in Section 3.4.2.
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3.4.1 Throughput scaling in ATPC case

Assume that S∗ > 0. From Table. 3.4, we can seperate the region 2 and 3 by

setting BB
1,χχχ = BB

2,χχχ, where BB
1,χχχ = S∗, BB

2,χχχ = log(1 + ρmaxp
∗
WF ) − Λ∗p∗WF , and

p∗WF =
(

1
Λ∗ −

1
ρmax

)+

. Thus, it yields

S∗ = log(ρmax

Λ∗ ) − (1 − Λ∗

ρmax
) = − log(Ω) + Ω − 1 = t(Ω) (3.22)

where Ω = Λ∗

ρmax
and 0 ≤ Ω ≤ 1. Further note that t(Ω) is a decreasing function in

Ω. Thus, the region can also be expressed as follows

S̃1 = {g < gT}

S̃2 = {g ≥ gT , 0 ≤ Ω ≤ t−1(S∗)} =
{

g ≥ gT ,
Λ∗

t−1(S∗)
≤ ρmax <∞

}

S̃3 =
{

g ≥ gT , 0 ≤ ρmax ≤ Λ∗

t−1(S∗)

}

(3.23)

where t−1(.) is inverse function of t.

With the similar procedure as in Appendix B.7 in ATPC case for ON-OFF power

control at the PU, we can show that Λ∗ will not converge to zero for all M . Further,

as the probability of S̃2 and S̃3 are fixed, we can come up with a property of 1
t−1(S∗)

as shown in Lemma 3.4.1.

Lemma 3.4.1. For ǫp > ǫ0p,
1

t−1(S∗)
= Θ(logM).

Proof. As ρmax scales like logM , we first assume that 1
t−1(S∗)

grows faster than

logM . It implies that, for M large enough, Pr(S̃2) converges to 0, which contradicts

the fact that Pr(S̃2) = ǫp − ǫ0p > 0 for all M . Next, assume that 1
t−1(S∗)

grows

slower than logM . It means that, when M is large enough, Pr(S̃3) converges to

0, which contradicts the fact that Pr(S̃3) = 1 − ǫp > 0 for all M . Thus, 1
t−1(S∗)

=

Θ(logM).

Theorem 3.4.1. When PU uses TCI power control, the behavior of throughput from

the SBS under a POC and an ATPC with optimal power control can be described as

follows.

lim
M→∞

C∗
s

log(logM)
= ǫp
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For the case ǫp = ǫ0p, the proof is in Appendix B.15. The result from Lemma

3.4.1 is useful to prove Theorem 3.4.1 when ǫp > ǫ0p whose details are provided in

Appendix B.16.

The intuitive explanation for Theorem 3.4.1 is that when PU uses TCI power

control, the SBS are forced to turn off if it decides to protect primary link’s QoS

because even small amount of power can put PU in an outage. As the primary outage

probability threshold is ǫp, it means SBS are allowed to transmit with probability

ǫp which leads to the pre-log factor term.

3.4.2 Throughput scaling in PTPC case

Assume that S∗ > 0. From Table. 3.4, we can seperate the region 2 and 3 by setting

BB
1,χχχ = BB

2,χχχ, where BB
1,χχχ = S∗ and BB

2,χχχ = log(1 + ρmaxPO) − Λ∗(χχχ)PO. Note that

in PTPC case, Λ∗(χχχ) = ρmax

1+ρmaxPO
if PO is applied. Thus, it yields

S∗ = log(1 + ρmaxPO) − ρmaxPO

1+ρmaxPO
= − log(ω) + ω − 1 = t(ω) (3.24)

where ω = 1
1+ρmaxPO

and 0 ≤ ω ≤ 1. Further note that t(ω) is a decreasing function

in ω. Thus, the region can also be expressed as follows

S̃1 = {g < gT}

S̃2 = {g ≥ gT , 0 ≤ ω ≤ t−1(S∗)} =
{

g ≥ gT ,
1
PO

(

1
t−1(S∗)

− 1
)

≤ ρmax <∞
}

S̃3 =
{

g ≥ gT , 0 ≤ ρmax ≤ 1
PO

(

1
t−1(S∗)

− 1
)}

(3.25)

where t−1(.) is inverse function of t.

Similar to the proof of Lemma 3.4.1 in ATPC case, we can show that, for ǫp > ǫ0p,

1
t−1(S∗)

= Θ(logM). The result will help use prove the result in Theorem 3.4.2 when

ǫp > ǫ0p, which is in Appendix B.18. For ǫp = ǫ0p, the details of the proof is in

Appendix B.17.

Theorem 3.4.2. When PU uses TCI power control, the behavior of throughput from

the SBS under a POC and a PTPC with optimal power control can be described as
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follows.

lim
M→∞

C∗
s

log(logM)
= ǫp

The intuitive reason for the appearence of the pre-log factor ǫp is similar to ATPC

case with TCI power control at PU.

3.5 Numerical results

In this section, we present some numerical results on the performance of the proposed

optimal power policies for the capacity maximization problem with POC and ATPC

or PTPC. All channel gains involved are assumed to be Rayleigh fading and the

corresponding channel power gains are taken to be exponentially distributed with

unit mean. Noises at PR and all SRs are presumed to be equal and AWGN with unit

variance, i.e. N0 = 1. Note that this allows the transmit power at the primary and

secondary transmitters to be interpreted as signal-to-noise ratio at the transmitter

side. Unless specified otherwise, the constant power Pc for the primary ON-OFF

power policy is set to be 15 dB when it is ON. PU’s target rate is r0
p = 1.25 nats per

channel use and the primary outage probability threshold ǫp = 0.1. For the primary

TCI power policy, we set ǫ0p = 0.05. For convenience, we further assume that all

secondary receivers are identical. The simulation results are based on a Monte-Carlo

method averaged over 105 channel realizations.

3.5.1 The effect of POC on sum ergodic capacity in C-BC

channel

Figures 3.4 and 3.5 exhibit the effect of the average transmit power budget on

the SBS downlink sum capacity when PU uses an ON-OFF power policy with a

constant power when ON for both with and without POC. Fig.3.4 shows that with

an increasing average power budget (Pav), SBS downlink sum capacity increases

for both with and without POC when PU applies the ON-OFF power strategy, as

expected. The same feature is also noticed for the PTPC case, shown in Fig.3.5.

However, the POC becomes the dominant constraint when the average power budget
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is raised further, making the rate of increase in the SBS downlink sum capacity drop

significantly compared to the case without POC. The implication of the optimal

power policies with POC is that when POC becomes active, SBS is forced to transmit

with the highest possible power that still guarantees PU’s service rate, i.e. p∗RP , for

some channel realizations. Nevertheless, PU can still face outage either due to its

own transmission strategy (when PU is OFF) or when SBS chooses to transmit to

maximize its sum capacity even though this strategy causes an outage to the PU.

It is also worth pointing out that Figures 3.4 and 3.5 show the benefit of multiuser

diversity. As the number of SRs M increases, the SBS downlink throughput is

enhanced as SBS has a statistically higher opportunity to obtain a high value of

zmax. Detailed throughput scaling results are discussed next.

2 4 6 8 10 12 14 16

0.5

1

1.5

2

2.5

3

3.5

Pav (dB)

E
r
g
o
d
ic

s
u
m

c
a
p
a
c
it
y

Pc = 15dB., r0
p = 1.25, ǫp = 0.1, ATPC

 

 

Ergodic sum capacity with POC (M = 4)

Ergodic sum capacity with POC (M = 16)

Ergodic sum capacity with POC (M = 256)

Ergodic sum capacity w/o POC (M = 4)

Ergodic sum capacity w/o POC (M = 16)

Ergodic sum capacity w/o POC (M = 256)

Figure 3.4: SU ergodic sum capacity in BC problem against average transmit power
budget : r0

p = 1.25, ǫp = 0.1, and Pc = 15 dB. with ON-OFF power policy at the
PU

3.5.2 Throughput scaling results in the secondary network

This part presents the numerical results which affirm the throughput scaling results

of Theorems 3.3.1 to 3.4.2. We also present some numerical results and intuitive

explanations regarding how the individual parameters of the problem setup affect

the SBS downlink throughput.
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Figure 3.5: SU ergodic sum capacity in BC problem against peak transmit power
budget : r0

p = 1.25, ǫp = 0.1, and Pc = 15 dB. with ON-OFF power policy at the
PU

Throughput scaling results with ON-OFF power policy at the PU

Fig.3.6 depicts the normalized throughput Cs

log(logM)
as a function of secondary re-

ceivers M for both ATPC and PTPC when the PU utilizes the ON-OFF power

policy. For these simulations, Pav for the ATPC case and PO for the PTPC case

are set to 8 dB. The results reveal that the normalized throughput converges to 1

in both cases, as stated in Theorems 3.3.1 and 3.3.2. Note that the convergence is

asymptotic in nature and for a finite number of SUs, the gap between the normalized

throughput and its asymptotic value can be appreciable.

The number of parameters affecting the SBS sum throughput include the con-

stant power Pc at the PU, the PU’s target rate r0
p, the PU’s outage probability

constraint ǫp and the power budget at SBS (Pav for ATPC and PO for PTPC). In

Fig.3.7, we illustrate the effect of these parameters on the SBS sum throughput with

ATPC. We use the parameter values (r0
p = 1.25, Pc = 15dB., Pav = 15dB., ǫp = 0.1)

in Fig.3.7 as the reference for the ATPC case. For convenience, the graph log logM

is also plotted as a reference.

First, we look at the effect of secondary power budget on the SBS sum through-

put. A decrease in the secondary power budget significantly reduces the SU sum
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throughput as expected. Next, if Pc is raised while the other variables are kept fixed,

gT = (e
r0
p−1)N0

Pc
is reduced, making ǫ0p decrease, and the additional outage, ǫp − ǫ0p,

caused by the SBS increase. Thus, SBS sum throughput increases as a result. An-

other variable that affects gT is r0
p since gT decreases if r0

p is decreased, leading to the

an increase in the sum throughput. Intuitively, it means that POC is less strict as

r0
p is reduced. Finally, the PU outage probability threshold ǫp affects the throughput

scaling as it also directly affects the POC. From Fig.3.7, it is seen that the SBS sum

throughput shifts downwards as ǫp is reduced to 0.08. This is obviously due to the

fact that the POC becomes stricter. It is observable that the results with PTPC

in Fig.3.8 are quite similar to ATPC case and the corresponding explanation are

excluded to avoid repetition. Note also that the gap between the sum throughput

curves and the first order approximation represented by the log logM curve can be

attributed to the second order approximations which are not explicitly shown here.

For more details on the second order approximations and related explanations on

the cognitive multiple-access channel case, see [58].
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Figure 3.6: Normalized SBS sum throughput with ON-OFF power policy at the PU

Throughput scaling results with TCI power policy at the PU

In this part, the TCI power policy is assumed at the PU. We plot the normalized

throughput Cs

log(logM)
as a function of secondary receivers M for both ATPC and

PTPC in in order to illustrate the results of Theorem 5 and 6. Pav in ATPC case
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Figure 3.7: The effect of related parameters on SBS sum throughput with POC
against M for ON-OFF power policy at PU and ATPC

and PO in PTPC case are set to be 1 dB. The results in Fig.3.9 shows that the

normalized throughput converges to ǫp asM is large enough. Intuitively, it is because

the secondary network cannot transmit within 1 − ǫp fraction of time.

In the scenario with TCI case, there are also various variables which affect the

SU throughput scaling, including the value of ǫ0p, the PU’s target rate r0
p, PU outage

probability constraint ǫp and the secondary network’s power budget (Pav for ATPC

and PO for PTPC). Fig.3.10 and Fig.3.11 depict the effect of those variables on the

SU throughput scaling. We set the case (r0
p = 1.25, ǫ0p = 0.05, Pav = 5dB., ǫp = 0.1)

in Fig.3.10 as the reference of ATPC case and the case (r0
p = 1.25, ǫ0p = 0.05, PO =

5dB., ǫp = 0.1) in Fig.3.11 as the reference of PTPC case.

Similar to ON-OFF case, the secondary power budget significantly affects the

throughput scaling. As noticed from Fig.3.10 and Fig.3.11, when Pav or PO is

decreased, the throughput scaling is shifted downwards. Next, the decrement in

ǫ0p makes the throughput drop because the trucated threshold gT = − log(1 − ǫ0p)

(in Rayleigh fading model) is reduced. Although the additional outage is raised

like ON-OFF power policy, SBS will always stop transmitting if SBS decides to

protect PU when PU is active in TCI case. Further, suppose that ǫ0p,1 > ǫ0p,2, then

gT,1 > gT,2. With ǫ0p = ǫ0p,2, SU can transmit when g ∈ [gT,2 , gT,1]. However, the

interference from PU to secondary network is really high in this additional range as
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Figure 3.8: The effect of related variables on SBS sum throughput with POC against
M for ON-OFF power policy at PU and PTPC

as PU transmits with power (e
r0
p−1)N0

g
. It means the range g ∈ [gT,2 , gT,1] does not

help enhance secondary throughput much, making SU throughput scaling declines as

ǫ0p reduces. Finally, r0
p affects the throughput scaling via POC as shown in Fig.3.10

and Fig.3.11 when r0
p becomes 4.00. The reason is that if the PU target rate is

reduced, POC becomes more lenient, thereby making throughput scaling raise.
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Figure 3.9: Normalized throughput in TCI power policy at the PU
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Figure 3.10: The effect of related variables on SU throughput scaling with POC
against M with TCI at PU. for ATPC

3.6 Conclusion

In this chapter, we have investigated the information-theoretic asymptotic limits of

the ergodic sum capacity of a fading cognitive broadcast channel that shares the same

frequency band as a delay sensitive PU. Under an outage probability constraint at

the PU receiver, we have derived optimal power allocation strategies to maximize the

SBS ergodic sum capacity, under an average (long term) transmit power constraint

or a peak (short term) transmit power constraint. The derivation of the power

policies is based on a probabilistic power allocation technique, which reveals that it

is optimal to allocate transmission during an entire fading block to only one SR for

a continuous fading channel scenario. Under these opportunistic SBS optimal power

allocation schemes, we have also analyzed how the SBS sum throughput scales as the

number of secondary receivers goes to infinity when all relevant channels undergo

independent Rayleigh fading. These asymptotic capacity scaling laws are derived

under two types of transmission power policies assumed at the PU: (1) an ON-

OFF policy with a constant power when ON and (2) a truncated channel inversion

policy. Rigorous theoretical analyses show that the SBS sum throughput scales like

log(logM) and ǫp log(logM) for cases (1) and (2), respectively. Numerical results

are also presented to illustrate the theoretical findings.
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Figure 3.11: The effect of related variables on SU throughput scaling with POC
against M with TCI at PU. for PTPC



Chapter 4

Power Allocation in Cognitive Multiple-access

Channels with Primary Outage Probability

Constraint

In Chapter 4, we consider SISO uplink channels in an underlay-based CR scenario

with M secondary transmitters and an SBS, sharing the same frequency band with

a delay-sensitive primary user. This chapter investigates various optimal power allo-

cation problems regarding two commonly adopted utility functions for fading chan-

nels, namely, the ergodic capacity [10] and outage capacity [21]. Ergodic capacity

determines the maximum mutual information averaged over all the channel fading

states regardless of a delay constraint while outage capacity defines the maximum

instantaneous information rate that can be supported with a given outage probabil-

ity and it is therefore a more appropriate performance indicator for delay-sensitive

applications.

Information theoretic capacity notions for non-cognitive SISO fading multiple-

access channels were investigated in, e.g. [13,14,19,22]. For non-cognitive MAC, the

authors in [13] showed that a given time slot (over which the fading channel remains

invariant) is allocated to the secondary transmitter with the strongest channel power

gain in order to maximize ergodic sum capacity. Under the same network setup

considered in [13], Tse and Hanly studied two types of information theoretic capacity

notions, i.e. ergodic capacity in [14] and delay-limited capacity (also known as zero-

outage capacity) in [19]. In [14] and [19], the idea of polymatroid structure was used

as the main ingredient to show that successive decoding is always optimal to achieve

all boundary points on ergodic capacity and delay-limited capacity regions, leading

to closed-form expressions of the optimal power policies. However, in [21] and [22],

75
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the authors argued that outage situation is unavoidable in some wireless channel

models, e.g. Rayleigh fading, and zero-outage capacity is therefore unattainable.

In [22], the authors defined two outage scenarios in non-cognitive MAC. The first

one is known as common outage where an outage must be declared simultaneously for

all users and the second one is individual outage where an outage can be declared

individually. Significantly, it was shown in [22] that finding the outage capacity

region is equivalent to deriving the outage probability region for a given rate vector.

Similar to the results in [14] and [19], in [22], the authors also proved that successive

decoding is the optimal decoding strategy. In the C-MAC scenario, [52] solved the

ergodic sum capacity maximization problem subject to a transmit power constraint

and an interference power constraint for both long-term and short-term perspectives

in the single-input-single-output (SISO) case. Under the peak interference power

constraints at PU receivers, the optimal power allocation policy for maximizing the

weighted sum instantaneous rate of multi-antenna under the peak interference power

constraints at PU receivers in C-MAC was later proposed in [84]. Recently, both the

common outage capacity region and the individual outage capacity region for SUs

in C-MAC subject to peak interference power constraint and peak transmit power

constraint were studied and the corresponding optimal power allocation strategies

were solved in [53]. This chapter, on the contrary, utilizes POC as a mean to entrench

the QoS of the single-antenna delay-sensitive PU.

This chapter considers fading C-MAC where M SUs, equipped with a single

antenna each, communicate with a secondary base station (SBS) by sharing the

same spectrum band with an existing delay-sensitive PU. The service quality of PU

is guaranteed by a primary outage probability constraint (POC). The power budget

in each secondary transmitter is limited by an average transmit power constraint

(ATPC). We assume that SUs have perfect CSI of the entire network while the

PU has power policy based on the full CSI of its own direct gain between PU

transmitter and PU receiver only and that strategy is revealed to all SUs. The novel

contributions of this chapter can be summarized as the following:

• Section 4.2 : Ergodic capacity
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1. In Section 4.2.1, we derive the optimal power control policy for the ergodic

sum uplink capacity maximization problem subject to POC and ATPC,

which is the special boundary point on the ergodic capacity region under

POC and ATPC.

2. In Section 4.2.2, we extend the problem to the generalized case, i.e. we

render the optimal power control policy to achieve any boundary points

of the ergodic capacity region under POC and ATPC.

3. In Section 4.2.3, we thoroughly discuss the optimal power allocation re-

sults between the special case (ergodic sum capacity maximization) and

the more generalized problem (ergodic capacity region). We show that

the complicated optimal power solution in the more generalized case sub-

sumes the optimal solution in the ergodic sum capacity case.

• Section 4.3 : Outage capacity

1. The definitions of common outage and individual outage are introduced

in Section 4.3.1.

2. In Section 4.3.2, we study the common outage capacity region subject

to POC and ATPC. Rather than solving the problem directly, we utilize

a technique similar to [22] in order to show that the outage capacity

region can be implicitly acquired by considering the usage probability

maximization problem subject to POC and ATPC for a given SU rate

vector ro and then derive the optimal power policy accordingly.

3. In Section 4.3.3, we derive the optimal power policy that can achieve all

boundary points on individual outage capacity region subject to POC and

ATPC by following the same procedure as when we analyze the common

outage capacity region subject to POC and ATPC

Simulation results are illustrated in Section 4.4 followed by concluding remarks in

Section 4.5.

List of notations in Chapter 4 : Here is the list of notations we use in this chapter.

E[.] denotes the statistical expectation. Pr {.} represents probability. Cumulative
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density function (CDF) of random variable Z is given by FZ(z) whereas FZ(z|Y )

expresses CDF of Z given Y . Let Xw be a Bernoulli w random variable such that

Xw = 1 with probability w and Xw = 0 with probability 1 − w. ∂y
∂x∗

denotes partial

derivative of y with respect to x, evaluated at x = x∗. PT represents transpose of

vector P. For two vectors P and Q, PQ = {P1Q1, . . . , PMQM}. [x]+ = max(0, x).

1 {z} represents the indicator function, i.e. 1 {Z } = 1 if the event Z is true and it

is zero otherwise.

4.1 System model

We consider a cognitive radio environment with a primary transmitter-receiver pair

(PT-PR) and a cognitive multiple-access channel with an SBS and M secondary

transmitters. All terminals involved are equipped with a single antenna. The pri-

mary user’s quality of service is guaranteed by a POC with a service rate r0
p and

an outage probability threshold ǫp. All channels involved in this cognitive radio

network are assumed to be independent block fading additive white Gaussian noise

(BF-AWGN) channels with continuous CDFs [21].

In the C-MAC, M secondary transmitters aim to transmit the signal to the

SBS. Let STi represent i-th secondary transmitter. As depicted in Figure 4.1, the

instantaneous channel power gains in i-th subchannel for the link PT-PR, STi-SBS,

PT-SBS, and STi-PR are denoted by g, hi, α, and βi. The additive noises at PR and

SBS are assumed to be independent Gaussian random variables with zero mean and

variance N0. Let ννν = [g, α, h1, . . . , hM , β1, . . . , βM ]T denote the combined channel

state vector and βββ = [β1, . . . , βM ]T . The vector fading process ννν is assumed to be

stationary and ergodic, with a continuous CDF F (ννν). We assume the primary user’s

transmit power control strategy is based only on the direct gain g between PT and

PR, regardless of the interference from the secondary network. We also assume that

SBS has perfect CSI on ννν and primary user’s power policy, so that it also knows the

PU’s power allocation for every realization of ννν. Let P(ννν) = [P1(ννν), · · · , PM(ννν)]T

which denotes the i-th ST’s transmit power to the SBS. The PU instantaneous rate
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expression can be written as

rp(ννν,P(ννν)) = log






1 + gPp(g)

(

M
∑

i=1
βiPi(ννν)

)

+N0






(4.1)

Note that PU’s power control policy is expressed as Pp(g) to reflect the PU’s obliv-

iousness to the interference caused by the secondary network and having the power

policy based on CSI of its direct gain g only. In a typical wireless fading environ-

ment, even in the absence of interference from the secondary network, the PU may

not be able to avoid an outage event when the PT-PR channel is in deep fade. For

example, with an average or peak transmit power constraint, the PU cannot meet

the target rate for a Rayleigh fading channel if it falls below a certain threshold [21]

unless it is equipped with multiple antennas. We further presume that the PU’s

power policy is designed to allow for a maximum PU outage probability of ǫ0p ≤ ǫp in

the absence of the secondary interference. In this chapter, PT is assumed to employ

an ON - OFF power strategy with constant power when ON (ON-OFF), i.e. the

PU transmits with constant power Pp(g) = Pc when g ≥ gT = (e
r0
p−1)N0

Pc
to meet the

target rate and Pp(g) = 0 for g < gT , where N0 denotes the AWGN variance at the

primary receiver.

Figure 4.1: System model for cognitive MAC

Define Pav = [Pav,1, . . . , Pav,M ]T where Pav,i is the average transmit power bud-

get at the i-th ST. The delay-sensitive primary network requires a target rate r0
p
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and a maximum outage probability threshold ǫp. The average transmit power con-

straint (ATPC) and the primary outage probability constraint (POC) are described

as follows:

E [P(ννν)] � Pav (4.2)

Pr
{

rp(ννν,P(ννν)) < r0
p

}

≤ ǫp (4.3)

For convenience, define h̄i = hi

αPp(g)+N0
. With a given power allocation P(ννν) in a

specific channel state ννν satisfying ATPC and POC, the following rate vectors are

achievable in this given channel state ννν

CMAC(ννν,P(ννν)) =

{

r = [r1, . . . , rM ] :
∑

i∈S

ri ≤ log(1 +
∑

i∈S

h̄iPi(ννν)),∀S ⊂ {1, . . . ,M}

}

(4.4)

The definition of CMAC(ννν,P(ννν)) in (4.4) is the capacity region of the equivalent

Gaussian MAC for the channel state ννν, corresponding to the power control P(ννν) in

the secondary network.

4.2 Ergodic capacity region

In this part, we will investigate the ergodic capacity region for C-MAC under ATPC

and POC. First, we look at the result for optimal power allocation policy in a

special case - ergodic sum rate maximization problem - in Section 4.2.1, i.e. when

S = {1, . . . ,M}. Note that when M = 1, i.e. the system is reduced from cognitive

MAC to cognitive point-to-point communication, the solution has already appeared

in [44]. Later in Section 4.2.2, we will study the more general case for all possible

subsets S of the set E = {1, . . . ,M}, i.e. the optimal power allocation policy that

achieves all points in the boundary of the ergodic capacity region.
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4.2.1 Special case: Ergodic sum rate maximization problem

with ATPC and POC

For the instantaneous sum rate, we have S = E . Hence from (4.4), the instantaneous

sum uplink capacity in C-MAC can be described as follows:

rs(ννν,P(ννν)) = log

(

1 +
M
∑

i=1

h̄iPi(ννν)

)

(4.5)

This section will focus on the ergodic sum capacity maximizing problem in C-MAC

with ATPCs and POC which can be expressed as

max
P(ννν)�0

E [rs(ννν,P(ννν))] s.t. (4.2) and (4.3). (4.6)

With the same technique as in [25], we define the two weighting functions wk(ννν), k =

1, 2 as follows:

w1(ννν) = Pr
{

rp(ννν,P(ννν)) ≥ r0
p | ννν

}

w2(ννν) = Pr
{

rp(ννν,P(ννν)) < r0
p | ννν

}

(4.7)

It is obvious to see that w2(ννν) = 1 − w1(ννν) and we will use this fact from now on.

We also define the two corresponding power schemes as follows:

p1(ννν) = E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p, ννν
]

p2(ννν) = E
[

P(ννν) | rp(ννν,p(ννν)) < r0
p, ννν
]

(4.8)

The definitions of w1(ννν), p1(ννν) and p2(ννν) above lead to Lemma 4.2.1 below, the

proof of which is provided in Appendix C.1.

Lemma 4.2.1. There exists an optimum solution P∗(ννν) of Problem (4.6) of the

form P∗(ννν) = Xw∗
1(ννν)(ννν)p

∗
1(ννν) + (1 −Xw∗

1(ννν)(ννν))p
∗
2(ννν) where

• (1) E [w∗
1(ννν)p

∗
1(ννν) + (1 − w∗

1(ννν))p
∗
2(ννν)] � Pav, (2) E[w∗

1(ννν)] ≥ 1 − ǫp,

(3) w∗
1(ννν)

[

(

gPp(g(ννν))

er0
p−1

−N0

)+

− βββTp∗
1(ννν)

]

≥ 0, (4) p∗
k(ννν) � 0, k = 1, 2, ,

(5) 0 ≤ w∗
1(ννν) ≤ 1.
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Then, the optimization problem in (4.6) can be rewritten as

max
pk(ννν)�0,w1(ννν)

Rs = E [w1(ννν)rs(ννν,p1(ννν)) + (1 − w1(ννν))rs(ννν,p2(ννν))] (4.9a)

s.t. E [w1(ννν)p1(ννν) + (1 − w1(ννν))p2(ννν)] � Pav, (4.9b)

E [w1(ννν)] ≥ 1 − ǫp, (4.9c)

w1(ννν)

[

(

gPp(g)

er
0
p − 1

−N0

)+

− βββTp1(ννν)

]

≥ 0, (4.9d)

0 ≤ w1(ννν) ≤ 1. (4.9e)

The optimization problem (4.9) can be proved to be convex over (p1(ννν),p2(ννν), w1(ννν)).

We can then write the Lagrangian associated with (4.9) as follows:

l(ννν,pk(ννν), w1(ννν),λλλ, s, τ(ννν))

= w1(ννν)

[

rs(ννν,p1(ννν)) −
M
∑

i=1

λip1,i(ννν) + s+ τ(ννν)

(

Pp(g) −
M
∑

i=1

p1,i(ννν)βi

)]

+(1 − w1(ννν))

[

rs(ννν,p2(ννν)) −
M
∑

i=1

λip2,i(ννν)

]

(4.10)

where λλλ, s, and τ(ννν) are Lagrange multipliers corresponding to equations (4.9b) to

(4.9d). Let i ∈ {1, 2, . . . ,M} and k ∈ {1, 2}. The set of KKT conditions corre-

sponding to (4.9) are provided in Appendix C.2.

Using the KKT conditions, p∗
2(ννν), p∗

1(ννν), and w∗
1(ννν) can be derived as follows:

• For p∗2,i(ννν), we have 0 = ∂l(...)
∂p∗2,i(ννν)

= (1 − w∗
1(ννν))

[

∂rs(ννν,p2(ννν))
∂p∗2,i(ννν)

− λ∗i

]

if p∗2,i(ννν) > 0.

If 1−w∗
1(ννν) > 0, it yields 1 +

M
∑

i=1

p∗2,i(ννν)h̄i =
(

h̄i

λ∗i

)

. Let p∗wf,i(ννν) =
(

1
λ∗i

− 1
h̄i

)+

.

By using the fact that λ∗i is constant for all i and the channel state is contin-

uous, p∗2,i(ννν) can be expressed as follows:

p∗2,i(ννν) =







p∗wf,i(ννν) , w∗
1(ννν) = 0, i = arg max

m∈E

h̄m

λ∗m

0 , otherwise
(4.11)

Obviously, the optimal power allocation policy p∗
2 is exactly the same as the

optimal power allocation policy that maximizes the ergodic sum capacity for

non-cognitive uplink channels, previously studied in [13, 14]. Intuitively, this
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happens because p∗
2 is used when the secondary network decides to put the

PU in outage and thus does not have to control the amount of interference

caused to the primary link.

• For p∗1,i(ννν), we have ∂l(...)
∂p∗1,i(ννν)

= w∗
1(ννν)

[

∂rs(ννν,p∗
1(ννν))

∂p∗1,i(ννν)
− λ∗i − τ ∗(ννν)βi

]

from the KKT

conditions.

Note that in using the policy p∗
1(ννν) when w∗

1(ννν) > 0 , our problem is similar to

the sub-dual problem with peak interference constraint for each given channel

state ννν. This implication is based on the fact that Pp(g) = βββTp∗
1(ννν) if τ ∗(ννν) >

0. Therefore, it is obvious that the solution for p∗
1 is similar to p∗

2 for τ ∗(ννν) = 0.

For τ ∗(ννν) > 0, it implies that 1 +
M
∑

i=1

p∗1,i(ννν)h̄i =
(

h̄i

λ∗i +τ∗(ννν)βi

)

if p∗1,i(ννν) > 0.

Lemma 4.2.2. For p∗
1(ννν), there are at most two users that are allowed to

transmit

Proof. Suppose there are |V | users with p∗1,v > 0, where v ∈ V and V ⊂ E .

The condition 1+
M
∑

i=1

p∗1,i(ννν)h̄i =
(

h̄v

λ∗v+τ∗(ννν)βv

)

<
(

h̄v

λ∗v

)

must hold for all v ∈ V .

Note that there is only one τ ∗(ννν), but |V | − 1 independent equations. Hence,

1 ≥ |V |−1. So, there are at most two users can transmit when u∗(ννν) > 0.

Thus, the analysis is divided into two cases, i.e. when one user transmits and

when two users transmit.

Only one user transmits :

p∗1,i(ννν) =























p∗wf,i(ννν) , w∗
1(ννν) = 1, τ ∗(ννν) = 0, i = arg max

m∈E

hm

λ∗m

p∗rp,i(ννν) , w∗
1(ννν) = 1, τ ∗(ννν) > 0, i = arg max

m∈E

h̄i

λ∗i +u∗(ννν)βi

0 , otherwise

(4.12)

where p∗rp,i(ννν) = 1
βi
Pp(g).

Two users transmit :

If there are two active SUs, i.e. p∗1,b, p
∗
1,v > 0 and b 6= v, the two following
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conditions in (4.13) and (4.14) must hold

1 +
∑

i∈E

p∗1,i(ννν)h̄i = 1 + p∗1,v(ννν)h̄v + p∗1,b(ννν)h̄b =

h̄v

βv
− h̄b

βb

λv

βv
− λb

βb

(4.13)

∑

i∈E

p∗1,i(ννν)βi = p∗1,v(ννν)βv + p∗1,b(ννν)βb = Pp(g) (4.14)

Note that (4.13) is due to τ ∗(ννν) = 1
βv

(

h̄v

1+
∑

i∈E
p∗1,i(ννν)h̄i

− λ∗v

)

= 1
βb

(

h̄b

1+
∑

i∈E
p∗1,i(ννν)h̄i

− λ∗b

)

.

(4.14) follows from the KKT conditions.

Hence, we can summarize the solution for this case as follows:

p∗1,i(ννν) =



























































































p∗wf,i(ννν) , w∗
1(ννν) = 1, τ ∗(ννν) = 0,

(

i = arg max
m∈E

hm

λ∗m

)

p∗1,b(ννν) , w∗
1(ννν) = 1, τ ∗(ννν) > 0,
(

i ∈

{

v, b | v, b = arg max
m∈E

h̄i

λ∗i +τ∗(ννν)βi

})

,

(

p∗1,b(ννν) satisfies (4.13) and (4.14)
)

p∗1,v(ννν) , w∗
1(ννν) = 1, τ ∗(ννν) > 0,
(

i ∈

{

v, b | v, b = arg max
m∈E

h̄i

λ∗i +τ∗(ννν)βi

})

,

(

p∗1,v(ννν) satisfies (4.13) and (4.14)
)

0 , otherwise

(4.15)

Remark 4.2.1. To search for p∗1,i(ννν) > 0, the geometrical method proposed

in [85] can be applied. Note that the optimal solution p∗1,i(ννν) does not have a

closed-form expression when two users are allowed to transmit.

Remark 4.2.2. Despite allowing two users to transmit, the expression of the

achievable sum rate is still the same, i.e. log(1+
M
∑

i=1

p∗1,i(ννν)h̄i) = log
(

h̄v

λ∗v+τ∗(ννν)βv

)

.

• For w∗
1(ννν), we first define two benefit functions as follows: B1(ννν,p

∗
1(ννν),λ

∗λ∗λ∗, s∗) =

B1,ννν = rs(ννν,p
∗
1(ννν))−λ

∗λ∗λ∗Tp∗
1(ννν)+s

∗ and B2(ννν,p
∗
2(ννν),λ

∗λ∗λ∗) = B2,ννν = rs(ννν,p
∗
2(ννν))−

λ∗λ∗λ∗Tp∗
2(ννν). The physical interpretation of benefit functions represents the profit
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due to using the power policy p∗
k(ννν). From (C.6), we get

w∗
1(ννν) =







1, B1,ννν > B2,ννν

0, B1,ννν < B2,ννν

(4.16)

Note that w∗
1(ννν) can take values either 1 or 0 for each given state ννν in the con-

tinuous fading channel case. The interpretation is that the secondary network

will use policy p∗
1(ννν) if the policy 1 returns higher profit than policy 2.

Thus, the optimal solution for the problem (4.6) can be summarized in Theorem

4.2.1 as follows:

Theorem 4.2.1. The optimal power control for (4.6) is given by P∗(ννν) = Xw∗
1
(ννν)p∗

1+
(

1 −Xw∗
1
(ννν)
)

p∗
2, where the expression of p∗

1 is defined by either (4.12) or (4.15),

the expression of p∗
2 is defined by (4.11) and the expression of w∗

1(ννν) follows from

(4.16). The Lagrange multipliers λ∗λ∗λ∗ and s∗ are the solutions to E[P∗(ννν)] � Pav and

E[w∗
1(ννν)] ≥ 1 − ǫp.

4.2.2 General case: Ergodic Capacity Region for Secondary

Network with ATPC and POC

In this part, we extend the result in Section 4.2.1 to the more generalized case, i.e.

we consider all possible subsets S of E , by solving the optimal power policy to achieve

all the boundary points of the ergodic capacity region with POC and ATPC. Thus,

we have to consider all possibilities of the subsets S ⊂ E . To this end, we apply

the result in [14] which revealed that the capacity region of the fading MAC can be

written as the weighted sum of the capacity regions of CMAC(ννν,P(ννν)). Therefore,

the problem is formulated as follows:

max
r(ννν,P(ννν)),P(ννν)�0

µµµT Cs = µµµT E[r(ννν,P(ννν))]

s.t. r(ννν,P(ννν)) ∈ CMAC(ννν,P(ννν)),

(4.2) and (4.3)

(4.17)
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Remark 4.2.3. It is worth noting that we also have to search for the optimal

r(ννν,P(ννν)) in this problem as all combinations of S are considered and the expression

of ri(ννν,P(ννν)) in the rate vector r(ννν,P(ννν)) is affected by the decoding order. In [14],

it was proved that because of the polymatroid structure of CMAC(ννν,P(ννν)), for any

power control P(ννν), µµµT r is maximized at

Rπ(1) = log(1 + h̄π(1)Pπ(1)(ννν))

Rπ(k) = log(1 +
h̄π(1)Pπ(1)(ννν)

1+
k−1
∑

i=1
h̄π(i)Pπ(i)(ννν)

), k = 2, · · · ,M

where π is the permutation corresponding to a decreasing ordering of the components

of the vector µµµ.

With similar procedure in Section 4.2.1, we first define w1(ννν), p1(ννν) and p2(ννν)

w1(ννν) = Pr
{

rp(ννν,P(ννν)) ≥ r0
p | r ∈ CMAC(ννν,P(ννν)), ννν

}

(4.18)

p1(ννν) = E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p, r ∈ CMAC(ννν,p(ννν)), ννν

]

p2(ννν) = E
[

P(ννν) | rp(ννν,p(ννν)) < r0
p, r ∈ CMAC(ννν,p(ννν)), ννν

]

(4.19)

For convenience, we further define r1 = r(ννν,p1(ννν)) and r2 = r(ννν,p2(ννν)). With

w1(ννν), p1(ννν), p2(ννν), r1 and r2, we can prove the following Lemma:

Lemma 4.2.3. There exists an optimum solution P∗(ννν) of problem (4.20) of the

form P∗(ννν) = Xw∗
1(ννν)(ννν)p

∗
1(ννν) + (1 −Xw∗

1(ννν)(ννν))p
∗
2(ννν) where

• (1) E [w∗
1(ννν)p

∗
1(ννν) + (1 − w∗

1(ννν))p
∗
2(ννν)] � Pav, (2) E[w∗

1(ννν)] ≥ 1 − ǫp,

(3) w∗
1(ννν)

[

Pp(g) − βββTp∗
1(ννν)

]

≥ 0, (4) p∗
k(ννν) � 0, k = 1, 2 ,

(5) 0 ≤ w∗
1(ννν) ≤ 1, (6) rk ∈ CMAC(ννν,p∗

k(ννν)), k = 1, 2.

The proof of Lemma 4.2.3 is provided in Appendix C.3. Via Lemma 4.2.3, (4.20)
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can be reformulated as follows:

max
rk,pk(ννν)�0,w1(ννν)

µµµT E[w1(ννν)r1 − (1 − w1(ννν))r2] (4.20a)

s.t. E [w1(ννν)p1(ννν) + (1 − w1(ννν))p2(ννν)] � Pav, (4.20b)

E[w1(ννν)] ≥ 1 − ǫp, (4.20c)

w1(ννν)
[

Pp(g) − βββTp1(ννν)
]

≥ 0, (4.20d)

rk ∈ CMAC(ννν,pk(ννν)), k = 1, 2 , (4.20e)

0 ≤ w1(ννν) ≤ 1. (4.20f)

We will solve the optimization Problem (4.20) by a functional optimization tech-

nique similar to [25]. The Lagrangian associated with (4.20) can be written as

follows:

l(ννν,p1(ννν),p2(ννν), w1(ννν), λ, s, τ(ννν))

= w1(ννν)
[

µµµT r1 − λλλTp1(ννν) + s+ τ(ννν)
(

Pp(g) − βββTp1(ννν)
)]

+ (1 − w1(ννν))
[

µµµT r2 − λλλTp2(ννν)
]

(4.21)

where λλλ, s, and τ(ννν) are the nonnegative Lagrange multipliers corresponding to the

constraints (4.20b) to (4.20f), respectively.

As r∗k is a function of p∗
k, the region r∗k ∈ CMAC(ννν,p∗

k(ννν)) can be characterized

by 2M − 1 constraints for each k and it is not easy to visualize. Instead of applying

KKT conditions directly, we can observe that for given λλλ∗T , s∗ and τ ∗(ννν) with an

arbitrary w∗
1(ννν), the optimization problem can be decomposed to two subproblems

as follows:

Subproblem I: max
r1,p1(ννν)

µµµT r1 − λλλ∗Tp1(ννν) + s∗ + τ ∗(ννν)
(

Pp(g) − βββTp1(ννν)
)

s.t. r1 ∈ CMAC(ννν,p1(ννν)),

τ ∗(ννν)
(

Pp(g) − βββTp1(ννν)
)

= 0.

(4.22)

Subproblem II: max
r2,p2(ννν)

µµµT r2 − λλλ∗Tp2(ννν)

s.t. r2 ∈ CMAC(ννν,p2(ννν)).
(4.23)
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Indeed, the objective of (4.22) is equivalent to maximizingµµµT r1−(λλλ∗+τ ∗(ννν)βββ)Tp1(ννν)

as s∗ is a long-term Lagrange multiplier and Pp(g) is independent on (r1,p1). Fur-

thermore, observe that Subproblem I corresponds to capacity region with instan-

taneous interference power constraint with the threshold Pp(g). When τ ∗(ννν) = 0,

the solution to Subproblem I and Subproblem II become similar and the solu-

tion was previously shown in [14]. So, now we will study the case that τ ∗(ννν) > 0

only. In other words, τ ∗(ννν) > 0 is selected such that Pp(g) = βββTp1(ννν).

Hence, define ηηη = [η1, . . . , ηM ] where ηi = λ∗i + τ ∗(ννν)βi. So for a given λλλ∗ and

τ ∗(ννν), (4.22) can be rewritten as

Subproblem I: max
r1,p1(ννν)

µµµT r1 − ηηηTp1(ννν)

s.t. r1 ∈ CMAC(ννν,p1(ννν))
(4.24)

To solve this, we re-state Theorem 3.14 in [14] as follows:

Theorem 4.2.2.

max
x,y

µµµT · x −ΛΛΛT · y s.t. x(S) ≤ G (y(S)) ∀S ⊂ E (4.25)

where G is a monotonically increasing concave function. Define the marginal utility

functions

ui(z) ≡ µiG
′(z) − Λi i = 1, . . . ,M

u∗(z) ≡
[

max
i
ui(z)

]+

.
(4.26)

Then, the solution to (4.25) is given by
∞
∫

z=0

u∗(z)dz and an optimizing point (x∗,y∗)

to achieve this can be found by an appropriate greedy algorithm.

By Theorem 4.2.2, we define G (z) ≡ log(1 + z) and q1 = [h̄1p1,i, . . . , h̄Mp1M ]T

which can be interpreted as the vector of the received SNR from each ST to the

SBS. Hence, (4.24) becomes

max
r1,q

M
∑

i=1

µir1,i −
M
∑

i=1

ηi

h̄i
q1,i s.t. r1(S) ≤ log(1 + q1(S)) ∀S ⊂ E (4.27)

Define the marginal utility functions ui(z) = µi

1+z
− ηi

h̄i
in which ui(z) · dz can be
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interpreted as the difference between rate revenue ( µi

1+z
· dz) and power cost ( ηi

h̄i
· dz)

at the interference level 1 + z. Also, let u∗(z) =
[

max
i
ui(z)

]+

be the the highest

marginal utility function. The user with the highest marginal utility function will

be decoded at the interference level 1 + z. Further notice that when τ ∗(ννν) > 0,

ηi = λ∗i +τ
∗(ννν)βi > λ∗i implying that the instantaneous interference power constraint

causes an increase in the power price that each SU has to pay and the additional

cost also depends on value of βi, i.e. whether the interference channel gain from

SUi to PU is strong or weak. With a similar technique previously used in [14], the

problem (4.27) is equivalent to.

max
q

[

µπ(1) log
(

1 + qπ(1)

)

−
ηπ(1)

h̄π(1)
qπ(1)

]

+
M
∑

i=2



µπ(i) log



1 +
qπ(i)

1+
i−1
∑

k=1

qπ(k)



−
ηπ(i)

h̄π(i)
qπ(i)





(4.28)

where π(.) be the permutation representing a decreasing order of the vector µµµ.

Therefore, the optimal solution can be achieved by successive decoding for all

cases. π(.) represents the decoding order function. The signal from SUπ(M) is de-

coded first, treating the signal from SUπ(1) to SUπ(M−1) as noise. Then, the decoded

signal from SUπ(M) is subtracted from the total received power and SUπ(M−1)’s mes-

sage is decoded while treating the signal from SUπ(1) to SUπ(M−2) as noise. SUπ(1)

is decoded at the end. Consequently, π(.) also reflects the priority among the users

since, for instance, SUπ(M) has to deal with not merely the background noise but

also the interference from the other users. Here z corresponds to the total interfering

power received from other users while SUπ(i) is decoded, making the total interfer-

ence equal 1+zi. In other words, the solution (4.28) can be interpreted as the choice

of users that will transmit at the noise level 1 + z for z ∈ [0, ∞).

Note that in order to find the maximum utility function for a given channel

state ννν, there are four possible cases that need to be considered. The first case

is when µi 6= µj and ηi

h̄i
6=

ηj

h̄j
. In this case, the two curves will intersect at most

once as g′(z) is monotone. Thus, only one user with the highest marginal utility

function will transmit at that interference level 1 + z. The second case is when

µi = µj and ηi

h̄i
6=

ηj

h̄j
. Without loss of generality, suppose that ηi

h̄i
>

ηj

h̄j
, then there
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is no power allocated to the i−th user as ui(z) < uj(z) for all z. The third case

is when µi 6= µj and ηi

h̄i
=

ηj

h̄j
. Suppose that µi < µj. Then the i−th user will not

transmit as ui(z) < uj(z) for all z. The last case is when µi = µj and ηi

h̄i
=

ηj

h̄j
,

making ui(z) = uj(z) for all z. Thus, if ui(z) = uj(z) = u∗(z), the i-th and the j-th

secondary transmitters are allowed to transmit at that interference level 1 + z.

Lemma 4.2.4. There are at most two users that satisfy ηi

h̄i
=

ηj

h̄j
for i 6= j.

Proof. The proof is similar to the proof of Lemma 4.2.2 by showing that there exists

at most two SUs that satisfy
λ∗i +τ∗βi

h̄i
=

λ∗j +τ∗βj

h̄j
for i 6= j.

By Lemma 4.2.4 and considering the four cases for finding the maximum utility

function, we can conclude that there are at most two users allowed to transmit at

the same interference level 1 + z and this happens only when u∗(z) = ui(z) = uj(z).

Now we will investigate the rate and power obtained by each user in the specific

channel state ννν.

Case I: One user is allowed to transmit at the interference level 1 + z

It means the curves ui(z) and uj(z) intersect at most once. For channel state ννν,

the i−th user is therefore allocated the power with p∗1,i(ννν) = 1
h̄i

∫

Ai

dz and the rate

r∗1,i =
∫

Ai

1
1+z

dz where Ai ≡ {z ∈ [0,∞ ) : ui(z) = u∗(z) and ui(z) > 0} such that

Pp(g) = βββTp∗
1.

Case II: Two users are allowed to transmit at the interference level 1 + z

Suppose SUv and SUb satisfy the conditions stated above. Then µv = µb = µπ(K).

Without loss of generality, we can assume that, after permutation π(.), v = π(K)

and b = π(K + 1). Further,
ηπ(K)

h̄π(K)
=

ηπ(K+1)

h̄π(K+1)
. From the problem (4.28), the term
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related to SUv and SUb becomes



µπ(K) log



1 +
qπ(K)

1+
K−1
∑

i=1
qπ(i)



−
ηπ(K)

h̄π(K)
qπ(K)





+



µπ(K+1) log



1 +
qπ(K+1)

1+
K
∑

k=1
qπ(i)



−
ηπ(K+1)

h̄π(K+1)
qπ(K+1)





= µπ(K)



log



1 +
qπ(K)+qπ(K+1)

1+
K−1
∑

i=1
qπ(i)







−
[

ηπ(K)

h̄π(K)
qπ(K) +

ηπ(K+1)

h̄π(K+1)
qπ(K+1)

]

= µπ(K)



log



1 +
qπ(K)+qπ(K+1)

1+
K−1
∑

i=1
qπ(i)







−
ηπ(K)

h̄π(K)

[

qπ(K) + qπ(K+1)

]

(a)
= µπ(K)



log



1 +
q̃π(K),π(K+1)

1+
K−1
∑

i=1
qπ(i)







−
ηπ(K)

h̄π(K)

[

q̃π(K),π(K+1)

]

(b)
=



µπ̃(K) log



1 +
qπ̃(K)

1+
K−1
∑

i=1
qπ̃



−
ηπ̃(K)

h̄π̃(K)
qπ̃(K)





+



µπ̃(K+1) log



1 +
qπ̃(K+1)

1+
K
∑

k=1

qπ̃(i)



−
ηπ̃(K+1)

h̄π̃(K+1)
qπ̃(K+1)





(4.29)

where q̃π(K),π(K+1) = qπ(K) + qπ(K+1) and π̃(.) is another permutation such that

π̃(K) = π(K + 1), π̃(K + 1) = π(K) and π̃(i) = π(i) for all i 6= K,K + 1.

Remark 4.2.4. The steps (a), (b) in (4.29) reveal that the solution is still successive

decoding; however, the two users are treated as if they were combined as a single

user. So in this case, the allocated power p∗
1 must satisfy the set of equations in

(4.30).

p∗1,i = 1
h̄i

∫

Ai

dz , for i 6= π(K), π(K + 1)

h̄π(K)p
∗
1,π(K) + h̄π(K+1)p

∗
1,π(K+1) =

∫

A′

dz = q̃π(K),π(K+1)

Pp(g) = βββTp∗
1

(4.30)

where A′ ≡
{

z ∈ [0,∞ ) : uπ(K)(z) = uπ(K+1)(z) = u∗(z) and uπ(K)(z) > 0
}

. Thus,
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the sum rate from the users SUπ(K) and SUπ(K+1) after decoding becomes r∗1,π(K) +

r∗1,π(K+1) =
∫

A′

1
1+z

dz and the rate r∗1,i =
∫

Ai

1
1+z

dz for other secondary users. The

condition in (4.30) will be used in Section 4.2.3 when we discuss the relationship

between the ergodic sum capacity maximizing problem in (4.6) and the ergodic

capacity region problem in (4.20).

Remark 4.2.5. The result of (b) in (4.29) reveals that in the decoding process, the

SBS can use another permutation π̃(.) such that π̃(K) = π(K+1), π̃(K+1) = π(K)

and π̃(i) = π(i) for all i 6= K,K + 1 while obtaining the same result as using

permutation π(.). In other words, although SUv and SUb transmit simultaneously

at the interference level 1 + z, switching the decoding order between v and b at the

SBS does not affect the achievable rate.

By using the KKT conditions and the fact that continuous fading channels are

assumed, the solution for w∗
1(ννν) becomes

w∗
1(ννν) =







0, µµµT r1 − λλλ∗Tp∗
1(ννν) + s∗ < µµµT r2 − λλλ∗Tp∗

2(ννν)

1, µµµT r1 − λλλ∗Tp∗
1(ννν) + s∗ > µµµT r2 − λλλ∗Tp∗

2(ννν)
(4.31)

Note that µµµT r1 − λλλ∗Tp∗
1(ννν) + s∗ and µµµT r2 − λλλ∗Tp∗

2(ννν) serve as the benefit of using

strategy p∗
1(ννν) and p∗

2(ννν), respectively. The secondary network will use the strategy

that returns the highest profit.

4.2.3 Discussion

In this part we clarify the relationship between the optimal power policies in Sec-

tions 4.2.1 and 4.2.2. For the ergodic sum rate, it implies that µ1 = . . . = µM = µ.

Without loss of generality, we can assign µ = 1. For power policy p2,i(ννν) and for

a specific ννν, only the i−th user is allowed to transmit when i = arg min
m∈E

λi

h̄i
since

[ui(z)]
+ =

[

µi

1+z
− λi

h̄i

]+

= u∗(z) for all z. We then have

p∗2,i(ννν) =











1
h̄i

∞
∫

z=0

1
{

1
1+z

− λi

h̄i
> 0
}

dz =
[

1
λi

− 1
h̄i

]+

, i = arg max
m∈E

h̄m

λ∗m

0 , else

(4.32)
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The solution is exactly the same as shown in Section 4.2.1, i.e. p2(ννν) = p∗
WF (ννν).

In the same manner, p∗1,i(ννν) can be investigated. When τ ∗(ννν) = 0, the solution

is the same as (4.32) and at most one user transmits. When τ ∗(ννν) > 0, it means

βββTp∗
1(ννν) = Pp(g). Note that in this case, we have two subcases

1. One user case

As µi = 1 for all i, it means that there exists only the i−th user with the

minimum
λ∗i +τ∗(ννν)βi

h̄i

p∗1,i(ννν) =



























1
h̄i

∞
∫

z=0

1
{

1
1+z

−
λ∗i +τ∗(ννν)βi

h̄i
> 0
}

dz
(a)
= Pp(p)

βi

,

(

i = arg max
m∈E

h̄m

λ∗m+τ∗(ννν)βm

)

0 , otherwise

(4.33)

Note that (a) follows from βββTp∗
1(ννν) = Pp(g). So, the solution reflects the same

result as in (4.12).

2. Two users case

In this case there are two users: SUv and SUb with the minimum λ∗v+τ∗(ννν)βv

h̄v
=

λ∗b+τ∗(ννν)βb

h̄b
, making u∗(z) = [uv(z)]

+ = [ub(z)]
+ for all z. Thus, the achievable

sum rate by p∗
1(ννν) can be described as follows:

r∗s = r∗1,v(ννν) + r∗1,b(ννν) =

∞
∫

z=0

1

1 + z
1

{

1

1 + z
−
λ∗i + τ ∗(ννν)βi

h̄i
> 0

}

dz

= log

(

h̄v
λ∗v + τ ∗(ννν)βv

)

(4.34)

By the definition of sum rate, it leads to 1 +
∑

i∈E

p∗1,i(ννν)h̄i = h̄v

λ∗v+τ∗(ννν)βv
=

h̄b

λ∗
b
+τ∗(ννν)βb

. Also, βββTp∗
1(ννν) = Pp(g). Thus, the results are the same as the

condition in (4.30) which q̃π(K),π(K+1) = h̄v

λ∗v+τ∗(ννν)βv
− 1. After rearranging, the

same result expressed in (4.13) and (4.14) can also be obtained.

The optimal values w∗
1(ννν) in the derivations in Section 4.2.1 and 4.2.2 are obviously

the same.
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4.3 Outage capacity region

In this section, we will focus on outage capacity for the M -user secondary uplink

network under ATPC and POC. There are two types of outage capacity definitions

that have been previously studied, including common outage capacity and individ-

ual outage capacity in [22] for non-cognitive environment and in [53] for cognitive

environment under an instantaneous interference constraint at the primary network.

Therefore, we start Section 4.3 with the descriptions of those two outage capacities.

Prior to solving the optimal power control policies, we will show that the outage

capacity region (both common and individual) is implicitly obtained by deriving the

outage probability region for a given rate vector. Therefore, we will explicitly derive

the optimal power control policies to achieve common outage probability region in

Section 4.3.2 and individual outage probability region in Section 4.3.3, severally.

4.3.1 Definition of common outage capacity and individual

outage capacity

In both non-cognitive and cognitive MAC, there are two outage scenarios in that

have been studied, i.e. common outage capacity and individual outage capacity.

The definition of those two outage capacities are as follows:

Definition 4.3.1. A rate vector is said to be in the common outage capacity region

Co(Pav, ǫp, ǫs) if and only if there exists a random power vector P(ννν) that satisfies

(4.2) and (4.3), and allows the rate vector to be achieved with a probability of at

least 1 − ǫs, i.e. Pr {ro ∈ CMAC(ννν,P(ννν))} ≥ 1 − ǫs. The common outage capacity

region is then expressed as

Co(Pav, ǫp, ǫs)
∆
=

⋃

P(ννν)∈F

{ro : Pr {r ∈ CMAC(ννν,P(ννν))} ≥ 1 − ǫs} (4.35)

where F
∆
= {P(ννν) : (4.2), (4.3) }

Definition 4.3.1 reveals that the common outage capacity region consists of all

rate vectors that can be maintained with a common outage probability no larger
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than ǫs under ATPC and POC. It is also observable that the non-outage event or so

called usage event is declared simultaneously to all users.

Definition 4.3.2. A rate vector ro = [ro,1, . . . , ro,M ]T is said to be in the indi-

vidual outage capacity region Co(Pav, ǫp, ǫǫǫs) if and only if there exists a random

power vector P(ννν) that satisfies (4.2) and (4.3), and a corresponding vector of rate

allocation function r(ννν,P(ννν)) ∈ CMAC(ννν,P(ννν)) for each fading state ννν such that

Pr {ri(ννν,P(ννν)) ≥ ro,i} ≥ 1− ǫs,i. The individual outage capacity region is defined as

Co(Pav, ǫp, ǫǫǫs)
∆
=

⋃

P(ννν)∈F

{ro : Pr {ri(ννν,P(ννν)) ≥ ro,i} ≥ 1 − ǫs,i, ∀i} (4.36)

where F
∆
= {P(ννν) : (4.2), (4.3) }.

In other words, Definition 4.3.2 implies that the individual outage capacity region

consists of all rate vector that can be maintained with an outage probability vector.

Remark 4.3.1. The simple explanation of the difference of those two outage ca-

pacity notion is how we define outage event. In the common outage capacity, the

non-outage event happens when target data rates ro of all STs are satisfied. In the

individual outage capacity, the non-outage outage events are treated individually

in each ST. So for some channel realization ννν, the secondary network is allowed to

neglect some STs and satisfy the service requirements of the remaining STs. This

provides the secondary network more options to transmit, thus making the individ-

ual outage capacity problem more lenient than that of common outage capacity.

4.3.2 Common outage capacity

This section will consider how to achieve each boundary points of the common

outage capacity region as defined in Definition 4.3.1. Define weighting functions

ψk(ννν), k = 1, 2, 3, 4 and the corresponding power control for four possible situations
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that can happen.

ψ1(ννν) = Pr
{

rp(ννν,P(ννν)) ≥ r0
p, ro ∈ CMAC(ννν,P(ννν)) | ννν

}

ψ2(ννν) = Pr
{

rp(ννν,P(ννν)) < r0
p, ro ∈ CMAC(ννν,P(ννν)) | ννν

}

ψ3(ννν) = Pr
{

rp(ννν,P(ννν)) ≥ r0
p, ro /∈ CMAC(ννν,P(ννν)) | ννν

}

ψ4(ννν) = Pr
{

rp(ννν,P(ννν)) < r0
p, ro /∈ CMAC(ννν,P(ννν)) | ννν

}

(4.37)

p1(ννν) = E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p, ro ∈ CMAC(ννν,p(ννν)), ννν

]

p2(ννν) = E
[

P(ννν) | rp(ννν,p(ννν)) < r0
p, ro ∈ CMAC(ννν,p(ννν)), ννν

]

p3(ννν) = E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p, ro /∈ CMAC(ννν,p(ννν)), ννν

]

p4(ννν) = E
[

P(ννν) | rp(ννν,p(ννν)) < r0
p, ro /∈ CMAC(ννν,p(ννν)), ννν

]

(4.38)

Lemma 4.3.1. Co(Pav, ǫp, ǫs) is achieved by a power policy P(ννν) of the form

P∗(ννν) =
4
∑

k=1

Xψk(ννν)(ννν)pk(ννν) where

• (1) E[ψ1(ννν) + ψ2(ννν)] ≥ 1 − ǫs, (2) E

[

4
∑

k=1

ψk(ννν)pk(ννν)

]

� Pav,

(3) E[ψ1(ννν)+ψ3(ννν)] ≥ 1−ǫp, (4) ψk(ννν)
[

Pp(g) − βββTpk(ννν)
]

≥ 0, k = 1, 3 ,

(5) 1 −
4
∑

k=1

ψk(ννν) = 0, (6) pk(ννν) � 0, k = 1, 2, 3, 4 ,

(7) ψk(ννν) ≥ 0, k = 1, 2, 3, 4 , (8) ro ∈ CMAC(ννν,pk(ννν)), k = 1, 2

Proof. The proof of Lemma 4.3.1 is included in Appendix C.5.

Lemma 4.3.1 simply describes the characteristics of the optimal solution P∗(ννν)

which is randomized amongst the four deterministic power policies pk(ννν). Thus, we

have to find the optimal solutions for pk(ννν) and ψk(ννν). However, the common outage

capacity region and the corresponding solutions of pk(ννν) and ψk(ννν) are difficult to

obtain explicitly by directly characterizing its boundary points. Instead, we can show

that the common outage capacity region can be implicitly obtained by deriving the

common outage probability region for each given rate vector. To do so, Definitions

4.3.3 to 4.3.5 and Proposition 4.3.1 below are required.

Definition 4.3.3. The outage probability ǫs is in the common outage probability set

OC(Pav, ǫp, ro) if and only if the rate vector ro ∈ Co(Pav, ǫp, ǫs).
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Definition 4.3.4. The usage probability ǭs is in the common usage probability set

ŌC(Pav, ǫp, ro) if and only if the rate vector ro ∈ Co(Pav, ǫp, 1 − ǭs).

Definition 4.3.5. The minimum common outage probability Prmin(Pav, ǫp, ro) is

the smallest probability in the set OC(Pav, ǫp, ro).

Proposition 4.3.1. The common usage probability set ŌC(Pav, ǫp, ro) is equivalently

given by

ŌC(Pav, ǫp, ro) =
⋃

(ψk(ννν),pk(ννν))∈F

E[ψ1(ννν) + ψ2(ννν)] (4.39)

where F
∆
= {(ψk(ννν), pk(ννν)) : the constraints (2) to (8) in Lemma. 4.3.1}

Proof. The common usage probability ǭs is in the common usage probability set if

and only if the rate vector ro ∈ Co(Pav, ǫp, 1 − ǭs), which is true if and only if the

constraints in Lemma. 4.3.1 are satisfied. Then, we have

ŌC(Pav, ǫp, ro) =
⋃

(ψk(ννν),pk(ννν))∈F

[0, E[ψ1(ννν) + ψ2(ννν)]] (4.40)

However, notice that if P(ννν) exists and E[ψ1(ννν) +ψ2(ννν)] = ǭs, the function ψ1(ννν) +

ψ2(ννν) can be reduced such that E[ψ1(ννν)+ψ2(ννν)] = ϑ for any 0 ≤ ϑ ≤ ǭs. Therefore,

the interval [0, E[ψ1(ννν) + ψ2(ννν)]] is no longer required, leading to the result in (4.39).

Thus for a given 0 ≤ ǫs ≤ 1, it is clear that the common outage capacity

Co(Pav, ǫp, ǫs) can be implicitly obtained when the minimum common outage prob-

ability for a given rate ro is computed where the optimal power control is applied.

In other words, for any rate vector ro such that ro ∈ Co(Pav, ǫp, ǫs) if and only if

Prmin(Pav, ǫp, ro) ≤ ǫs.

From Definitions 4.3.3 - 4.3.5, deriving for the optimal power control for the

common outage probability region is identical to solving for the optimal power policy

that maximizes the common usage probability in the set ŌC(Pav, ǫp, ro). Hence, we

have to solve

max
ε̄s

ε̄s s.t. ε̄s ∈ ŌC(Pav, ǫp, ro). (4.41)
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With a given rate vector ro, define the set QC(ro) =
{

(ε̄s, P̄, εp) | ε̄s ∈ ŌC(P̄, εp, ro)
}

.

Due to the convexity of the set QC(ro) (the proof is in Appendix C.6), the problem

(4.41) can be rewritten as

max
(ε̄s,P̄,εp) ∈ QC(ro)

ε̄s s.t. εp ≤ ǫp and P̄ � Pav. (4.42)

By Proposition 4.3.1, a probability ε̄s is in ŌC(Pav, ǫp, ro), if and only if there exists

(ψk(ννν), pk(ννν)) that satisfies the constraints (2) to (8) in Lemma. 4.3.1 and ε̄s =

E[ψ1(ννν) + ψ2(ννν)]. So, we have to solve

max
pk(ννν)�0,ψk(ννν)≥0

E[ψ1(ννν) + ψ2(ννν)] (4.43a)

s.t. E

[

4
∑

k=1

ψk(ννν)pk(ννν)

]

� Pav, (4.43b)

E[ψ1(ννν) + ψ3(ννν)] ≥ 1 − ǫp (4.43c)

ϕk(ννν)
[

Pp(g) − βββTpk(ννν)
]

≥ 0, k = 1, 3 , (4.43d)

1 −

4
∑

k=1

ψk(ννν) = 0, (4.43e)

ro ∈ CMAC(ννν,pk(ννν)), k = 1, 2. (4.43f)

We will solve the optimization Problem (4.43) by a functional optimization tech-

nique similar to [25]. The Lagrangian corresponding to (4.43) can be written as

follows:

l(ννν,p1(ννν),p2(ννν), ψk(ννν), λ, s, ϕ(ννν),Γ(ννν))

= ψ1(ννν)
[

1 − λλλTp1(ννν) + s+ ϕ1(ννν)
(

Pp(g) − βββTp1(ννν)
)

− Γ(ννν)
]

+ψ2(ννν)
[

1 − λλλTp2(ννν) − Γ(ννν)
]

+ψ3(ννν)
[

−λλλTp3(ννν) + s+ ϕ3(ννν)
(

Pp(g) − βββTp1(ννν)
)

− Γ(ννν)
]

+ψ4(ννν)
[

−λλλTp4(ννν) − Γ(ννν)
]

+ Γ(ννν)

(4.44)

where λλλ, s, ϕ(ννν), Γ(ννν) are the nonnegative Lagrange multipliers corresponding to

constraints (4.43b) to (4.43e). With these Lagrange multipliers, we can write the

KKT conditions corresponding to Problem (4.43) which is provided in Appendix C.7.

As ro is a function of p∗
k, the region ro ∈ CMAC(ννν,p∗

k(ννν)) can be described
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by 2M − 1 constraints for each k and it is not easy to visualize. Instead of using

the KKT conditions directly, we can observe that for given λλλ∗T , s∗ and ϕ∗
3(ννν) with

arbitrary ψ∗
k(ννν), the optimization problem can be decomposed to four subproblems.

Each of them corresponds to the optimal p∗
k.

Subproblem for p∗
4 : max

p4(ννν)
− λλλ∗Tp4(ννν) − Γ∗(ννν). (4.45)

Subproblem for p∗
3 : max

p3(ννν)
−
[

λλλ∗T + ϕ∗(ννν)βββT
]

p3(ννν)

+ [s∗ − Γ∗(ννν) + ϕ∗
3(ννν)Pp(g)]

s.t. ϕ∗
3(ννν)

[

Pp(g) − βββTp3(ννν)
]

= 0.

(4.46)

Subproblem for p∗
2 : max

p2(ννν)
− λλλ∗Tp2(ννν) − Γ∗(ννν)

s.t. ro ∈ CMAC(ννν,p2(ννν)).
(4.47)

Subproblem for p∗
1 : max

p1(ννν)
−
[

λλλ∗T + ϕ∗
1(ννν)βββ

T
]

p1(ννν)

+ [s∗ − Γ∗(ννν) + ϕ∗
1(ννν)Pp(g)]

s.t. ro ∈ CMAC(ννν,p1(ννν)),

ϕ∗
1(ννν)

[

Pp(g) − βββTp1(ννν)
]

= 0.

(4.48)

In Appendix C.8, we will solve for the optimal power pk(ννν), providing that the

corresponding ψ∗
k(ννν) > 0. Essentially Lemma 3.3 in [14] serves as the main tool for

obtaining p∗
1(ννν) and p∗

2(ννν). We then restate Lemma 3.3 in [14] as follows:

Lemma 4.3.2. Let G̃ (f) be a contra-polymatroid. Then the points v(π) where π is

the permutation on E are precisely the vertices of G̃ (f). Moreover, if ΛΛΛ is a given

vector in RM
+ then a solution of the optimization problem

min
p1(ννν)

ΛΛΛT · x s.t. x ∈ G̃ (f) (4.49)

is attained at a point v(π∗), where π∗ is any permutation such that Λπ∗(1) ≥ · · · ≥

Λπ∗(M). Conversely, if f is a set function and v(π) ∈ G̃ (f) for every permutation π.

Then G̃ (f) is a contra-polymatroid.

Define ηηη
∆
= [η1, . . . , ηM ] and ηi = λ∗i + ϕ∗

1(ννν)βi. Then, we summarize the expres-

sion of the optimal solution in Proposition 4.3.2 below
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Proposition 4.3.2. Provided that ψ∗
k(ννν) > 0, the corresponding p∗

k(ννν) can be ex-

pressed as follows: p∗
4(ννν) = p∗

3(ννν) = 0.

For p∗
2(ννν), we have

p∗2,π2(i) =











1
h̄π2(i)

[

exp(ro,π2(i)) − 1
]

, i = 1

1
h̄π2(i)

[

exp(
i
∑

m=1

ro,π2(m)) − exp(
i−1
∑

m=1

ro,π2(m))

]

, i = 2, . . . ,M

where the permutation π2 satisfies
λ∗

π2(1)

h̄π2(1)
≥ . . . ≥

λ∗
π2(M)

h̄π2(M)
.

For p∗
1(ννν), we have

p∗1,π1(i) =











1
h̄π1(i)

[

exp(ro,π1(i)) − 1
]

, i = 1

1
h̄π1(i)

[

exp(
i
∑

m=1

ro,π1(m)) − exp(
i−1
∑

m=1

ro,π1(m))

]

, i = 2, . . . ,M

ϕ∗
1(ννν)

[

βββTp∗
1 − Pp(g)

]

= 0

where the permutation π1 satisfies
ηπ(1)

h̄π(1)
≥ . . . ≥

ηπ(M)

h̄π(M)
.

Proof. See Appendix C.8.

Remark 4.3.2. The characteristics of p∗
1 and p∗

2 are quite similar to the delay-

limited solution in [19] because the definition of p∗
1 and p∗

2 restrict these power

control schemes to always satisfy ro ∈ C(ννν,pk) for k = 1, 2. Nevertheless, the

solutions for p∗
1 and p∗

2 are different in the sense that power price to pay in p∗
2 is λλλ∗

while power price to pay in p∗
1 is ηηη � λλλ∗. It is because the PU must not be in outage

when the power control scheme p∗
1 is applied, according to the definition. By this

limitation, the secondary network has to pay an additional cost for p∗
1 in order to

ensure the PU’s target rate for that channel realization.

For the optimal ψ∗
k(ννν), we define four benefit functions corresponding to p∗

k(ννν) as

follows: Bcom
1 = 1−λλλ∗Tp∗

1(ννν)+s
∗, Bcom

2 = 1−λλλ∗Tp∗
2(ννν), Bcom

3 = −λλλ∗Tp∗
3(ννν)+s

∗ and

Bcom
4 = −λλλ∗Tp∗

4(ννν). Note that the superscript ‘com’ stands for ‘common outage’.

According to the KKT conditions, we have that , ψ∗
k(ννν) > 0 if Bcom

k = max
j

Bcom
j

and ψ∗
k(ννν) = 0 if Bcom

k ≤ max
j

Bcom
j for all k. As we consider continuous fading
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channels, the condition that Bk = Bj for j 6= k happens with probability of zero

measure. Hence, there is only one ψ∗
k(ννν) = 1 corresponding to the maximum Bj.

Theorem 4.3.1. The optimal solution of (4.43) is P∗(ννν) =
4
∑

k=1

Xψ∗
k
(ννν)p∗

k(ννν), where

p∗
k(ννν) follows from Proposition 4.3.2. ψ∗

k(ννν) is determined by

ψ∗
k(ννν) =











1, Bk = max
j

Bj

0, Bk < max
j

Bj

for k = 1, 2, 3, 4. (4.50)

λλλ∗T and s∗ are the solutions to E [P∗(ννν)] � Pav and E [ψ∗
1(ννν) + ψ∗

3(ννν)] ≥ 1 − ǫp.

Remark 4.3.3. It can be noticed that there are at most three power strategies

for each channel realization ννν as the optimal solutions p∗
3 = p∗

4 = 0. First, let us

consider the three possible scenarios from Table 4.1. In the first case, it implies that

PU faces outage, although M SUs are turned off. Therefore, it is impossible to make

ψ∗
1 and ψ∗

3 be positive. The second case means that SU can avoid causing an outage

either by setting P∗ = 0 or by setting P∗ = p∗
1. Otherwise, they may apply strategy

p∗
2 when they decide to cause an outage to PU. For the last case, SUs do not cause

any outage to PU despite using policy p∗
2. That is why ψ∗

2 = 0 due to the definition

in (4.37). Mathematically, it happens when p∗
1 = p∗

2, i.e. when ϕ∗
1(ννν) = 0. From

Table. 4.1, we can also show that the solution in [44] is a special case when M = 1.

Table 4.1: Three possible cases in common outage problem for a given ννν

Cases Candidate non-negative ψk Power allocation policy

rp(ννν,0) < r0
p ψ∗

2, ψ
∗
4 p∗

2,p
∗
4

rp(ννν,0) ≥ r0
p and rp(ννν,p

∗
2) < r0

p ψ∗
1, ψ

∗
2, ψ

∗
3 p∗

1,p
∗
2,p

∗
3

rp(ννν,0) ≥ r0
p and rp(ννν,p

∗
2) ≥ r0

p ψ∗
1, ψ

∗
3 p∗

1 = p∗
2,p

∗
3

4.3.3 Individual outage capacity

This section will investigate how to achieve each boundary point of individual outage

capacity regarding to Definition 4.3.2. To apply the probabilistic power allocation

technique, we have to know all the situation that can happen in each ννν and then
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assign the corresponding weighting function. We can define that by the aid of the

information below.

• Let 0 ≤Mo ≤M and Sn be the set of SUs that do not face individual outage

(subscript n stands for non-outage). Then, if there are Mo users that face

outage, the remaining Mn = M −Mo SUs are not in outage. In other words, if

ri(ννν,P(ννν)) ≥ ro,i, then i ∈ Sn. Otherwise, i ∈ E \Sn. It is obvious that there

are 2M possible sets of Sn. Hence, for 0 ≤ j ≤ 2M − 1, we can fix the index of

SUs in Sn(j) for each j. Also, let the cardinality of Sn(j) be Nj. Hence, the

cardinality of Sn(0) is zero.

• For convenience, we define ξξξ(j) = [ξ(j, 1), . . . , ξ(j,M)]T as the binary expan-

sion of j. For each vector ξ(j), if ξ(j, i) = 0, then SUi is in outage (i /∈ Sn(j)).

Otherwise, i ∈ Sn(j)and ξ(j, i) = 1 (SUi is not in outage).

• Furthermore, the power control policy in the set Sn(j) may or may not cause

an outage to the PU. In other words, we still have two subcases which are

rp(ννν,P(ννν)) < r0
p or rp(ννν,P(ννν)) ≥ r0

p.

• Therefore, we have

Pr {ri(ννν,P(ννν)) ≥ ro,i} =
2M−1
∑

j=1

Pr {i ∈ Sn(j)}

=
2M−1
∑

j=1

Pr
{

i ∈ Sn(j), rp(ννν,P(ννν)) ≥ r0
p

}

+
2M−1
∑

j=1

Pr
{

i ∈ Sn(j), rp(ννν,P(ννν)) < r0
p

}

(4.51)

With the information above, we can define weighting function ζk(ννν, j) as follows:

ζ1(ννν, j) = Pr
{

rp(ννν,P(ννν)) ≥ r0
p,Sn(j) | ννν

}

ζ2(ννν, j) = Pr
{

rp(ννν,P(ννν)) < r0
p,Sn(j) | ννν

}

(4.52)

Note that if i ∈ Sn(j), then Pr {ri(ννν,P(ννν)) ≥ ro,i,Sn(j)} = E[ζ1(ννν, j) + ζ2(ννν, j)].
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For the corresponding pk(ννν, j) for each ζk(ννν, j), they can be expressed as follows:

p1(ννν, j) = E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p, Sn(j), ννν

]

p2(ννν, j) = E
[

P(ννν) | rp(ννν,p(ννν)) < r0
p, Sn(j), ννν

]

(4.53)

Lemma 4.3.3. To achieve Co(Pav, ǫp, ǫǫǫs), there exists a power policy P(ννν) of the

form P(ννν) =
2M−1
∑

j=0

2
∑

k=1

Xζk(ννν,j)(ννν)pk(ννν, j) where

• (1)
∑

j:i∈Sn(j)

E[ζ1(ννν, j) + ζ2(ννν, j)] ≥ 1 − ǫs,i, ∀i ,

(2) E

[

2M−1
∑

j=0

2
∑

k=1

ζk(ννν, j)pk(ννν, j)

]

� Pav,

(3)
2M−1
∑

j=0

E[ζ1(ννν, j)] ≥ 1 − ǫp,

(4) ζ1(ννν, j)
[

Pp(g) − βββTp1(ννν, j)
]

≥ 0, ∀j ,

(5) 1 −
2M−1
∑

j=0

2
∑

k=1

ζk(ννν, j) = 0, ∀j, k = 1, 2 ,

(6) pk(ννν, j) � 0, ∀j, k = 1, 2 ,

(7) ζk(ννν, j) ≥ 0, ∀j, k = 1, 2 ,

(8) ξξξ(j)ro ∈ CMAC(ννν,pk(ννν, j)), ∀j, k = 1, 2.

Appendix C.9 provides the details of proof of Lemma 4.3.3.

Similar to Lemma 4.3.1, Lemma 4.3.3 reveals that the optimal power scheme

P∗(ννν) is randomized amongst the 2 · 2M deterministic power policies pk(ννν, j) and

we can solve for pk(ννν) and ψk(ννν) accordingly. Following the same procedure as in

Section 4.3.2 , we will prove that the individual outage capacity region is implicitly

obtained by deriving the individual outage probability region for each given rate

vector via Definition 4.3.6 to 4.3.7 and Proposition 4.3.3 as follows.

Definition 4.3.6. The outage probability vector ǫǫǫs is in the individual outage prob-

ability set OI(Pav, ǫp, ro) if and only if the rate vector ro ∈ Co(Pav, ǫp, ǫǫǫs).

Definition 4.3.7. The usage probability vector ǭǫǫs is in the individual usage proba-

bility set ŌI(Pav, ǫp, ro) if and only if the rate vector ro ∈ Co(Pav, ǫp,1 − ǭǫǫs).
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Proposition 4.3.3. The individual usage probability set ŌI(Pav, ǫp, ro) is equiva-

lently given by

ŌI(Pav, ǫp, ro) =
⋃

(ζk(ννν,j),pk(ννν,j))∈F

[Ω1, . . . ,ΩM ] (4.54)

where F
∆
= {(ζk(ννν, j), pk(ννν, j)) : the constraints (2) to (8) in Lemma. 4.3.3} and

Ωi =
∑

j:i∈Sn(j)

E[ζ1(ννν, j) + ζ2(ννν, j)].

Proof. The individual usage probability vector [ǭs,1, . . . , ǭs,M ] is in the individual

usage probability set if and only if the rate vector ro ∈ Co(Pav, ǫp,1 − ǫǫǫs), which

is true if and only if all constraints in Lemma. 4.3.3 are satisfied. Using the same

idea from the proof in Proposition 4.3.1, we can obtain the result in Proposition

4.3.3.

With Definition 4.3.7 and Proposition 4.3.3, we have shown that, with a given ǫǫǫs,

Co(Pav, ǫp, ǫǫǫs) can be implicitly acquired with the boundary of the usage probability

region ŌI(Pav, ǫp, ro) for a given ro is solved via the optimal power allocation because

ro ∈ Co(Pav, ǫp, ǫǫǫs) if and only if [1 − ǫs,1, . . . , 1 − ǫs,M ] ∈ ŌI(Pav, ǫp, ro).

Define the set QI(ro) =
{

(ε̄εεs, P̄, εp) | ε̄εεs ∈ ŌI(P̄, εp, ro)
}

and prove in Appendix

C.10 that QI(ro) is a convex set and the individual usage probability region ŌI(Pav, ǫp, ro)

is convex.

From the convexity of ŌI(Pav, ǫp, ro), the usage probability vector ε̄εεs will be on

the boundary surface of ŌI(Pav, ǫp, ro) if and only if it is the solution to

max
ε̄εεs ∈ ŌI(Pav ,ǫp,ro)

µµµT · ε̄εεs (4.55)

for some nonnegative µµµ = [µ1, . . . , µM ]T . Together with the convexity of the set

QI(ro) and Proposition 4.3.3, it implies that we must solve

max
pk(ννν,j),ζ1(ννν,j)

2M−1
∑

j=1

∑

i∈Sn(j)

µiE[ζ1(ννν, j) + ζ2(ννν, j)] (4.56a)

s.t. E





2M−1
∑

j=0

2
∑

k=1

ζk(ννν, j)pk(ννν, j)



 � Pav (4.56b)
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2M−1
∑

j=0

E[ζ1(ννν, j)] ≥ 1 − ǫp (4.56c)

ζ1(ννν, j)
[

Pp(g) − βββTp1(ννν, j)
]

≥ 0, ∀j, k (4.56d)

1 −
2M−1
∑

j=0

2
∑

k=1

ζk(ννν, j) = 0 (4.56e)

pk(ννν, j) � 0, k = 1, 2 (4.56f)

ζk(ννν, j) ≥ 0, k = 1, 2 (4.56g)

ξξξ(j)ro ∈ CMAC(ννν,pk(ννν, j)), ∀j, k. (4.56h)

The variable µi ≥ 0 represents the reward if the target rate of SUi is met. By

varying the given nonnegative vector µµµ, the derived optimal power solutions will

achieve all the boundary points of ŌI(Pav, ǫp, ro).

To solve for the optimal solution, we first write the corresponding Lagrangian.

l(ννν,pk(ννν, j), ζk(ννν, j), λ, s, φ(ννν, j),Γ(ννν))

=
2M−1
∑

j=0

ζ1(ννν, j)

[

Nj(
∑

i∈Sn(j)

µi) − λλλTp1(ννν, j) + s+ φ(ννν, j)
(

Pp(g) − βββTp1(ννν, j)
)

− Γ(ννν)

]

+
2M−1
∑

j=0

ζ2(ννν, j)

[

Nj(
∑

i∈Sn(j)

µi) − λλλTp2(ννν, j) − Γ(ννν)

]

+ Γ(ννν)

(4.57)

where λ, s, φ(ννν, j), and Γ(ννν) are the Lagrange multipliers corresponding to con-

straints (4.56b) to (4.56e). The KKT necessary and sufficient conditions corre-

sponding to Problem (4.56) are provided in Appendix C.11.

Similar to the solving procedure in Section 4.3.2, the problem can be decom-

posed to 2 · 2M subproblems each corresponding to ζ∗k(ννν, j). Therefore, we can write

subproblems regarding to p∗
2(ννν, j) and p∗

1(ννν, j) as follows

Subproblem for p2(ννν, j) : max
p2(ννν,j)

Nj(
∑

i∈Sn(j)

µi) − λλλ∗Tp2(ννν, j) − Γ∗(ννν)

s.t. ξξξ(j)ro ∈ CMAC(ννν,p2(ννν, j)).

(4.58)



106 4.3. Outage capacity region

Subproblem for p1(ννν, j) : max
p1(ννν,j)

Nj(
∑

i∈Sn(j)

µi) −
[

λλλ∗T + φ∗(ννν, j)βββT
]

p1(ννν, j)

+ [s∗ − Γ∗(ννν) + φ∗(ννν, j)Pp(g)]

s.t. ξξξ(j)ro ∈ CMAC(ννν,p1(ννν, j)),

φ∗(ννν, j)
[

Pp(g) − βββTp1(ννν, j)
]

= 0.

(4.59)

Define ηηη(j) = [η1(j), . . . , ηM(j)] and ηi(j) = λ∗i +φ∗(ννν, j)βi. With the aid of Lemma

4.3.2, we can find the optimal solution for p∗
2(ννν, j) and p∗

1(ννν, j) as summarized in

Proposition 4.3.4 by solving each subproblem.

Proposition 4.3.4. Providing that ζ∗k(ννν, j) > 0, the corresponding p∗
k(ννν, j) for the

set Sn(j) for j = 0, . . . , 2M − 1 can be expressed as follows: For p∗
2(ννν, j),

p∗2,i(ννν, j) = 0, ∀i /∈ Sn(j)

p∗2,π2,j(l)
=











1
h̄π2,j(l)

[

exp(ro,π2,j(l)) − 1
]

, l = 1

1
h̄π2,j(l)

[

exp(
i
∑

m=1

ro,π2,j(m)) − exp(
i−1
∑

m=1

ro,π2,j(m))

]

, l = 2, . . . , Nj

where the permutation function π2,j(.) is for the Nj SUs in the subset Sn(j) and

satisfies
λπ2,j(1)

h̄π2,j(1)
≥ . . . ≥

λπ2,j(Nj)

h̄π2,j(Nj)
. For p∗

1(ννν, j),

p∗1,i(ννν, j) = 0, ∀i /∈ Sn(j)

p∗1,π1,j(l)
=











1
h̄π1,j(l)

[

exp(ro,π1,j(l)) − 1
]

, l = 1

1
h̄π1,j(l)

[

exp(
i
∑

m=1

ro,π1,j(m)) − exp(
i−1
∑

m=1

ro,π1,j(m))

]

, l = 2, . . . , Nj

φ∗(ννν, j)
[

βββTp∗
1(ννν, j) − Pp(g)

]

= 0

where the permutation function π1,j(.) is for the Nj SUs in the subset Sn(j) and

satisfies
ηπ1,j(1)(j)

h̄π1,j(1)
≥ . . . ≥

ηπ1,j(Nj)(j)

h̄π1,j(Nj)
.

Proof. Please refer to Appendix C.12.

Remark 4.3.4. For the optimal p∗
2(ννν, j), the solution is similar to p∗

1(ννν, j) except

one needs to use
λ∗

π2,j(1)

h̄π2,j(l)
instead of

ηπ1,j
(j)

h̄π1,j(l)
for all users in the subset Sn(j). The
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interpretation is that for the strategy p∗
1(ννν, j), SUs have to avoid disturbing PU and

therefore consider the term ηπ(l)(j) as a power price, whereas the interference cost

term φ∗(ννν, j)βi is neglected in strategy p∗
2(ννν, j).

Furthermore, it can be observed that for strategy p∗
1(ννν, j) for all j is the solution

for minimizing individual outage probability subject to short-term interference power

constraint with threshold Pp(g). That is why the solution p∗
1(ννν, j) is the same as

in [53], where the short-term interference threshold is fixed. For p∗
2(ννν, j) for all j,

the solution is similar to [22] which there is no interference constraint imposed in

that problem.

Remark 4.3.5. When j = 0, Sn(j) is an empty set as there is no i ∈ Sn(0), so all

SUs are turned OFF. If Sn(j) = E , then all SUs turn ON and the solution is the

same as delay-limited case similar to [19].

For the optimal solution of ζ∗k(ννν, j). For simplicity, we define the benefit func-

tions Bind
k (ννν, j) corresponding to the power policy p∗

k(ννν, j) as follows: Bind
1 (ννν, j) =

Nj(
∑

i∈Sn(j)

µi) − λλλ∗Tp∗
1(ννν, j) + s∗ and Bind

2 (ννν, j) = Nj(
∑

i∈Sn(j)

µi) − λλλ∗Tp∗
2(ννν, j). Note

that the superscript ‘ind’ represents ‘individual outage’. Applying KKT condi-

tions and the fact that we consider continuous fading channels, the condition that

Bind
k (ννν, j) = Bind

k′ (ννν, j′) for j 6= j′ or for k 6= k′ happens with probability of measure

zero. Therefore there is only one ζ∗k(ννν, j) = 1 which corresponds to the maximum

Bind
k (ννν, j) and this leads to Theorem 4.3.2 as follows.

Theorem 4.3.2. The optimal solution of (4.56) is P∗(ννν) =
2
∑

k=1

2M−1
∑

j=0

Xζ∗
k
(j)(ννν)p

∗
k(ννν, j),

where p∗
k(ννν, j) follows from Proposition 4.3.4. ζ∗k(ννν, j) is determined by

ζ∗k(ννν, j) =











1, Bk(ννν, j) = max
j′,k′

Bk′(ννν, j
′)

0, Bk(ννν, j) < max
j′,k′

Bk′(ννν, j
′)

for k = 1, 2 and j = 0, . . . , 2M − 1.

where λλλ∗T and s∗ are the solutions to E [P∗(ννν)] � Pav and
2M−1
∑

j=0

E [ζ∗1 (ννν, j)] ≥ 1− ǫp.
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4.4 Simulation results

In this section, we present some numerical results on the performance of the proposed

optimal power policies. All channels involved are presumed to undergo Rayleigh

fading and the corresponding channel power gains are taken to be exponentially

distributed with unit mean. Noises at the PR and the SBS are assumed to be equal

and AWGN with unit variance, i.e. N0 = 1 or (0 dB). Unless specified otherwise, the

constant power Pc for the primary ON-OFF power policy is set to be 15 dB. when

the PU is ON. The primary outage probability is set to be 0.1. For convenience, we

further assume that all secondary transmitters are identical. The simulation results

are based on a typical Monte-Carlo method averaged over 105 channel realizations.

4.4.1 Ergodic capacity results

In this part, all channel power gains are taken to be exponentially distributed with

unit mean. Fig. 4.2 exhibits the plot of SU ergodic sum uplink capacity against

average power budget per SU with varying number of users M when PU’s target

rate is fixed at r0
p = 0.3 nats per channel use. With an increasing average power

Pav,i, ergodic sum capacity at the SBS increases for both with and without POC as

expected. However, the POC becomes the dominant constraint when the average

power budget is raised further, leading to the significant decrement in the ergodic

sum capacity compared to the case without POC.

Using the solution in Section 4.2.2, we sketch the ergodic capacity region for

M = 2 as shown in Fig.4.3. The figure compares the region for both with and

without POC for a fixed target rate which we provide two values of fixed target

rates, i.e. when r0
p = 0.3 and when r0

p = 1.0. The figure reveals that when POC

is imposed, the ergodic capacity region is smaller than the one without POC. The

explanation is that SUs cannot transmit with as much power as they would like due

to the service quality protection in the primary link. The region is even smaller

if r0
p is raised further as POC becomes stricter. Note that the region for without

POC, one can notice that the region when r0
p = 1.0 is slightly larger than that of

r0
p = 0.3. This is because, when r0

p = 1.0 is large, the probability that PU will turn
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Figure 4.2: SU ergodic sum capacity against average power budget per user : Pc = 15
dB., r0

p = 0.3, and ǫp = 0.1

off is higher by the definition of ON-OFF power control and thus it causes lower

interference to the secondary network than the PU in the case of r0
p = 0.3 does. Note

that in order to generate each point on the boundary region, we first set the value of

the pre-defined vector µµµ = [µ1, µ2]
T = [1, tan θ], where θ ∈ [0, 90◦]. Then, a point on

the boundary can be generated by the optimal power control policy corresponding

to each specific value of θ, as it is varied between θ = 0 to θ = 90◦. This way we

can obtain the entire curve of each boundary.
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Figure 4.3: Ergodic-capacity region corresponding to feasible power control policy
for the problem without POC and with POC: ǫp = 0.1, Pc = 15 dB., Pav,i = 15 dB.
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4.4.2 Outage probability results

In this part, we assume that the direct channel power gains, i.e. g and hi, are

exponentially distributed with unit mean whereas the cross channel power gains, i.e.

α and βi, are exponentially distributed with mean 0.5.

First, we look at how the POC affects the common outage probability. Fig. 4.4

illustrates the common outage probability performance of the optimal power control

for maximizing the common usage probability subject to ATPC and POC when

M = 2, ro to be [0.3, 0.3] and fixed ǫp = 0.1 for various PU’s target rates, i.e.

r0
p = 0.15, 0.25, 0.5. As expected, when the target rate is raised, SUs face more

common outage for a given average power constraint. For a fixed PU’s target rate

r0
p = 0.25, Fig. 4.5 depicts the common outage performance with several PU outage

probability thresholds, i.e. ǫp = 0.03, 0.08, 0.1, and also includes the case that POC

is discarded from the problem (ǫp = 1). It can be noticed that common outage

probability can be reduced further if PU outage probability threshold is increased,

i.e. the constraint becomes more lenient.
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Figure 4.4: Common outage probability against average power constraint per user:
Pc = 15 dB., ǫp = 0.1, M = 2, r = [0.3 0.3]

Next, Fig. 4.6 is used to illustrate the effect of the number of secondary trans-

mitters in the C-MAC network for the common outage problem against the indi-

vidual average power constraint Pav,i. We set the target rate vectors such that each
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Figure 4.5: Common outage probability against average power constraint per user:
Pc = 15 dB., r0

p = 0.25, M = 2, r = [0.3 0.3]

ro,i = 0.3 for M = 1, 2, 3. With other parameters fixed, we can observe that, the

secondary network faces a higher common outage as the number of secondary trans-

mitters is raised. The reason is twofold. First, M SUs must either support all the

individual target rates or turn off in the common usage probability maximization

problem, so the problem becomes stricter with an increasing M . Second, the user

who decodes first must encounter the interference from the users who decode after

him. Therefore, with the increment in M , the interference signals are magnified

and each SU requires more power to support their target rates. The individual us-

age probability maximization problem is a more relaxed problem compared to the

common usage maximization problem as we do not have to satisfy all the outage

probability constraints for the target rate vector. The results in Fig.4.7 affirms

this fact. Fig. 4.7(a) reveals that, when all SUs are identical, the achievable indi-

vidual outage probability is significantly lower than the achievable common outage

probability because the secondary network in the individual outage case has more

alternatives for its power allocation policy while the secondary network in the com-

mon outage tends to keep silent, making the actual PU outage probability in the

individual outage case always higher than that of the common outage case as shown

in Fig.4.7(b).

Fig.4.8 demonstrates the effect of POC on the individual outage probability. By
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Figure 4.6: Common outage probability against average power constraint per user
with M = 1 and M = 2: Pc = 15 dB., r0

p = 0.25, ro,i = 0.3

using r0
p = 0.25, ǫp = 0.1 as a reference, if we increase the PU target rate (from

r0
p = 0.25 to r0

p = 0.5) or decrease the outage probability threshold (from ǫp = 0.1 to

ǫp = 0.05), POC will become stricter and thus lessen the outage performance in each

secondary transmitter. Finally, we consider the effect of the decoding order strategy

on each SUi’s individual outage probability performance when M = 3. In Fig.4.9,

the results depict the outage probability performance both in the secondary network

(in Fig.4.9(a)) and in the primary link (in Fig.4.9(b)) due to the optimal decoding

order and another suboptimal decoding strategy which always decodes SU1 first and

SU3 last. As expected, Fig.4.9(a) shows that SU3 faces an outage least frequently

under the same Pav,i whereas the individual outage probability for SU1 is the largest

among the users. Also, the outage probability in SU3 of the suboptimal decoding

order case is substantially reduced compare to that of the optimal decoding order

case. The reason is that the suboptimal decoding strategy always places SU3 in the

highest priority by decoding last. Hence, SU3 does not require power to cope with

the interference from any other users while SU1 has to combat interferences from

all other users. The performance for the user whose message is decoded first for

the suboptimal strategy is, of course, worse than that of the optimal. However, it

can be seen from Fig.4.9(b) that the suboptimal decoding order creates an outage

event in the primary link more often than the optimal decoding order does. It is
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because the suboptimal decoding strategy provides less options for SU power control

policies. For the optimal power strategy, SUs can select Nj users to transmit, leading

to
M
∑

Nj=0

(

M

Nj

)

= 2M possible options. Also, among the selected Nj users, there are

Nj! permutations for decoding. Thus, the suboptimal method suggests that the

complexity can be reduced if the decoding priority among the user is fixed beforehand

while sacrificing the outage probability performance in some lower-priority secondary

transmitters and outage performance in the PU’s link accordingly.

4.5 Conclusions

In this chapter, we have studied the optimal power allocation problem in a fad-

ing multiple-access cognitive radio network sharing the same frequency band with

a delay-sensitive primary user. Under a primary user outage probability constraint

and individual average power constraints for each secondary user, we have derived

the optimal power policies for achieving points the ergodic capacity region, common

outage capacity region and the individual outage capacity region, with full CSI at

all secondary transmitters for continuous fading channels. We have shown that the

problems involved in this chapter can be solved by using probabilistic power con-

trol techniques. For power control for each case, we have shown that the successive
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decoding is optimal due to the polymatroid structure of the problem. Numerical

results were presented to illustrate the effect of the primary user’s outage proba-

bility constraint on the achievable SU ergodic sum capacity and both common and

individual outage probability regions.



Chapter 5

Outage Minimization under Primary Outage

Constraint with Quantized Feedback

In this chapter, we focus on the underlay paradigm where SUs can simultaneously

transmit in the same frequency band with PUs, while ensuring the QoS level in

the primary network. Optimization problems in the spectrum-sharing scheme draw

wide attention from researchers since the performance in the primary network must

be protected while SUs aim to maximize their performance with their limited re-

sources, e.g. transmit power constraint. For instance, [39] studied SU outage proba-

bility minimization problem subject to average/peak transmit power constraint and

average/peak interference power constraint on the primary receiver. Then, [44] in-

vestigated SU outage probability minimizing problem but considered the primary

outage constraint (POC) instead of interference power constraint to ensure the QoS

in delay-sensitive PU. Recently, [76] solved the service-outage maximizing problem

for SU with POC and average transmit power constraint (ATPC).

However, the aforementioned literatures [39,44,76] assume that SUs have perfect

channel side information at transmitters (CSIT), although the CSIT is imperfect in

a practical situation. The imperfect CSIT problem is more challenging in wireless

communication research: [59, 64, 68, 86] for example studied various types of partial

CSIT in a non-cognitive network. [59] considered the outage minimization problem

for MIMO system with quantized feedback, i.e. the transmitter will receive B-bit

feedback side information from the receiver or the band controller, which holds the

channel knowledge information of the entire network. It is worth noting that [59]

serves as a benchmark for our problem as we add POC to this problem in single-

antenna case.

Nevertheless, the study of partial CSI for cognitive radio scenario remains an

117
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uncharted area. Motivated by this fact, [87] investigated the effect of partial CSI at

the secondary transmitter on the ergodic capacity and outage capacity under aver-

age/peak intereference power constraint where the secondary transmitter has a noisy

estimate of the true CSI. Then, the effect of imperfect channel estimation between

a secondary transmitter and a primary receiver on the mean SU’s channel capacity

with impact of quantization levels on the CSI under peak transmit power and peak

interference power constraints was studied in [88]. Recently, [71] offered a practical

design of both cooperative feedback and feedforward between primary receiver and

multi-antenna secondary transmitter and analyzed SU outage probability behavior

accordingly.

This chapter aims to solve SU outage minimizing problem subject to POC and

ATPC with quantized feedback. Under the same assumption as [60] and [61], sec-

ondary transmitter receives B-bit CSI through a perfect feedback link from a band

controller who knows the entire channel power gains involved in the network. [60]

addressed OFDM-based SU ergodic capacity maximization problem subject to an

ATPC and M average interference power constraints (AIPC) with quantized infor-

mation of the vector channel space involving channel gains over all M bands. In [61],

the authors studied the SU outage minimization subject to ATPC and AIPC with a

single pair of single-antenna PU and single-antenna SU and proposed low-complexity

algorithm for suboptimal solution to the problem. They also proved the optimality

of an L-region ‘stepwise’ channel partition structure where each region corresponds

to the quantized power used in the channel state.

This chapter extends the problem in [44] to the B-bit feedback case, thus making

it non-convex. However, standard Lagrange multiplier-based optimization technique

can be used and a local optimal solution can be found via Karush-Kuhn-Tucker

(KKT) necessary conditions. It is worth noting that the structure of this work

follows that of [61] which considered outage minimization with limited feedback

in cognitive scenario using KKT condition and proposed an efficient suboptimal

algorithm. However, our work is different from [61] in three ways. Firstly, we

consider POC which is more appropriate to ensure QoS for a delay-sensitive PU than

AIPC in [61]. Secondly, except the asymptotic analysis on SU outage probability



119

part, there is no any assumption on fading distributions of all channel power gains,

making results in this chapter more general. Thirdly, our work also considers the

practical effect of the interference channel gain from primary transmitter (PT) to

secondary receiver (SR) as opposed to [61] and previous works in [38, 39] which

presume that the interference noise from primary transmitter to secondary receiver

is negligible.

The contributions for this chapter are as follows: The optimal channel parti-

tion structure (CPS) for a given power codebook is obtained. Then, assuming that

the PU transmits at constant power, we can use the optimal CPS to find a locally

optimal power codebook through KKT condition, leading to the corresponding al-

gorithm. Regardless of the type of continuous fading distribution of the channel

gains, we later prove two important properties of the optimal codebook. Firstly, we

show that the lowest power level approaches zero. Secondly, the ratio between two

adjacent power levels is constant. By the first property, we propose a suboptimal

solution by assuming that the lowest power level is zero, named ‘Zero-Forced Lowest

Power Level (ZFLP)’, which is considered as more computationally efficient than

the optimal solution and whose performance is close to the locally optimal algorithm

when the number of feedback bits B ≥ 6, as corroborated by our simulation results.

Finally, if all channel gains are assumed to be Rayleigh fading, SU outage behaviour

approximation from that suboptimal algorithm is examined when the number of bits

is large. The simulation results suggest that the approximation is very close to the

actual SU outage probability when B ≥ 8 and the achievable SU outage probability

performance is close to full CSI case when B ≥ 10.

The rest of this chapter is organized as follows. Section 5.1 describes the system

model and problem statement. In Section 5.2, we examine the problem in limited

feedback scenario, derive the optimal channel partition structure (CPS) and use the

KKT condition to solve for a (locally) optimal solution. We also show that the lowest

power level converges to zero when the number of feedback bits is large, leading to a

low-complexity ZFLP algorithm for the suboptimal solution as we force the lowest

power level to be zero. Later, we analyze the outage behavior for SU when B is

large enough in Section 5.3, prior to presenting the numerical results in Section 5.4



120 5.1. Problem statement and system model

and ending the chapter by concluding remarks in Section 5.5.

5.1 Problem statement and system model

We consider a single primary transmitter-receiver pair (PT-PR) and a single sec-

ondary transmitter-receiver pair (ST-SR) accessing the same frequency band in a

typical spectrum sharing scenario. All channels involved in this cognitive radio net-

work are assumed to be independent BF-AWGN channels [21]. The additive noises

at the PR and SR are assumed to be independent Gaussian random variables with

zero mean and variance N0. As shown in Figure 5.1, the instantaneous channel

power gains for the link PT-PR, ST-SR, PT-SR, and ST-PR are denoted by g, h, α,

and β, respectively. Let ν = {g, h, α, β} denote the combined channel state vector,

presumed to be a vector of continuous random variables. The vector fading process

ν is assumed to be stationary and ergodic. We assume that the delay-sensitive PU

h

β

α

gPT

PR

SR
ST

Feedback link

CR Band Controller

Figure 5.1: System Model in Chapter 5

uses constant power control denoted by Pc and the SU adjusts its power, ps(ν̂),

according to the side information at secondary transmitter ν̂. Note that ν̂ = ν, if

SU has full CSI for the entire network. Therefore, the rate expressions for both PU

and SU can be defined as follows

rp(ν, ps(ν̂)) = log
(

1 + gPc

βps(ν̂)+N0

)

rs(ν, ps(ν̂)) = log
(

1 + h
αPc+N0

ps(ν̂)
) (5.1)
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Let the target rate and outage probability threshold of the PU communication be r0
p

and ǫp, respectively. As PU utilizes constant power control, PU will face outage with

probability ǫ0p, even if SU is not active: this occurs whenever g < gT =
(exp(r0p)−1)N0

Pc
.

Assuming that ǫp ≥ ǫ0p, we will consider SU outage minimization problem subject

to average transmit power constraint (ATPC) at SU and a primary user’s outage

probability constraint (POC) in order to protect the delay-sensitive PU, defined as

follows

min
ps(ν̂)

Pr
{

rs(ν, ps(ν̂)) < r0
s

}

(5.2a)

s.t. Pr
{

rp(ν, ps(ν̂)) < r0
p

}

≤ ǫp (5.2b)

E [ps(ν̂)] ≤ Pav (5.2c)

ps(ν̂) ≥ 0 (5.2d)

where r0
s denotes SU target rate. As illustrated in Figure 5.1, we assume that there

is a cognitive-radio band controller (CR band controller) who can collect CSI of

the entire network ν from PR and SR possibly from wireline connections, map the

obtained CSI into quantized regions and feed back the quantized information, ν̂, via

a perfect feedback link to ST using B bits. Note that when ν̂ = ν, i.e. full CSI case,

the optimal solution is proved to be truncated channel inversion proposed in [44]

which is considered as a benchmark to our problem.

5.2 SU outage minimization problem with quan-

tized feedback

In this section, we consider the limited-feedback case in which the ST receives B

feedback bits from the band controller, the ST will transmit power corresponding

to that quantized feedback information ν̂. With B-bit feedback, we can have a

power codebook P = [p1, . . . , pL], where L = 2B. Without loss of generality, let

p1 > . . . > pL. SU will utilize pj if ν̂ ∈ Rj. We first define the indicator function,

1 (X), which is equal to 1 if the eventX is true and it is 0 otherwise. For convenience,
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we define variable x and Γ as follows:

x = 1
β

(

gPc

exp(r0p)−1
−N0

)

Γ = h
αPc+N0

,
(5.3)

where cSU = exp(r0
s) − 1.

It is easy to verify that the SU will face outage if it transmits with power pj

such that pj <
cSU

Γ
, whereas the PU will be in outage if pj > x. Therefore, we can

reformulate the problem as follows

min
pj ,Rj

L
∑

j=1

Pr(Rj)E[1 (pj <
cSU
Γ

) |Rj] (5.4a)

s.t.
L
∑

j=1

Pr(Rj)E[1 (pj > x) |Rj] ≤ ǫp (5.4b)

L
∑

j=1

Pr(Rj)E [pj |Rj] ≤ Pav (5.4c)

pj ≥ 0, ∀j. (5.4d)

Note that the problem (5.4) is nonconvex in general. Still, we can find a locally

optimal solution by using standard Lagrange multiplier-based optimization and then

applying Karush-Kuhn-Tucker (KKT) necessary condition. Hence, we first write the

Lagrangian corresponding to (5.4) as follows:

L(λ, s, pj,Ri) =

(

L
∑

j=1

Pr(Rj)[1 (pj <
cSU

Γ
) + s1 (pj > x) + λpj |Rj]

)

− sǫp − λPav

(5.5)

where s and λ are the Lagrange multipliers for POC and ATPC, respectively. Then,

the dual problem can be written as

max
λ,s

[

min
pj≥0,Rj

L(λ, s, pj,Ri)

]

. (5.6)

In (5.5), one can notice that there is no obvious way to directly obtain a gradient

of the Lagrangian with respect to pj. However, a local optimum for (5.6) can be

solved by using the Simultaneous Perturbation Stochastic Approximation (SPSA)
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algorithm [89] with subgradient method [90]. However, it is worth mentioning that,

the SPSA approach returns a locally optimal solution and there is no explicit ex-

pression for both SU and PU outage probability, leading to very high computational

complexity and thus a very long convergence time. To reduce the complexity in

searching for optimal codebook and quantized channel partition region, we will first

derive the optimal channel partition structure (CPS) as a function of given power

codebook P. The optimal channel partition structure will help us express both SU

and PU outage probability functions in term of the power codebook, allowing us to

utilize the KKT condition to solve for a local optimum, but with faster computation

time compared to SPSA.

5.2.1 Optimal channel partition structure and searching al-

gorithm

The optimal channel partition structure (CPS) for a given codebook P can be defined

as follows.

Lemma 5.2.1. (Channel Partition Structure) For given λ, s and power code-

book P, the power control can be defined as follows.

p(Γ, x) =



















pj, 1 ≤ j ≤ k, x /∈ (pL, pj] , Γ ∈
[

cSU

pj
, cSU

pj+1

)

pj, k + 1 ≤ j ≤ L, Γ ∈
[

cSU

pj
, cSU

pj+1

)

pL, otherwise

(5.7)

where k = arg min
j:pj>pL+ 1−s

λ

pj and k becomes 0 when s = 0.

Proof. Please refer to Appendix D.1.

It is worth noting that our CPS in Lemma 5.2.1 becomes similar to previous

result in [59] when s = 0, i.e. when POC is inactive. By Lemma 5.2.1, CPS can

be illustrated in Figure 5.2 regardless of the channel power gains involved in this

problem. Note that the grey line separates the outage and non-outage region of PU,

i.e. PU is in outage for channel state on the left-hand side of this line, while PU

does not face an outage when channel state lies in the right-hand side of the line.
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Figure 5.2: Channel partition structure with power levels for outage minimization
problem with quantized CSI case (B = 3)

Let FG(g) and FΓ(Γ) denote the CDF of g and Γ. Given that g ≥ gT , CDF of

X̃ is represented by FX̃(x), i.e. FX̃(x) = FX(x | g ≥ gT ). Also, let τG = 1− FG(gT ).

Thus, (5.6) can be transformed to

max
λ,s

[

min
pj≥0

GO + sG1 + λG2

]

(5.8)

where GO, G1 and G2 is expressed by

GO = FΓ( cSU

p1
) + τG

k
∑

j=1

[FX̃(pj) − FX̃(pL)]
(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

G1 = (1 − τG) + τGFX̃(pL) + τG
L−1
∑

j=k+1

[FX̃(pj) − FX̃(pL)]
(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

G2 = pL

(

1 − FΓ( cSU

pL
) + FΓ( cSU

p1
)
)

+ τG
k
∑

j=1

(pL − pj)
(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

[FX̃(pj) − FX̃(pL)]

+
L−1
∑

j=1

pj

(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

(5.9)

Note that GO describes SU’s outage probability, G1 describes PU’s outage probabil-

ity and G2 describes SU’s power usage.
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5.2.2 Locally optimal power codebook from KKT condition

The power codebook P must satisfy KKT necessary condition for a local optimum,

i.e. ∂
∂pj
L(. . .) = 0 for all j. Let F ′

X(x) denotes the first-order derivative with respect

to x.

For j = 1,

0 = − cSU

p21
F ′

Γ( cSU

p1
) + τG

(

cSU

p21
F ′

Γ( cSU

p1
)[FX̃(p1) − FX̃(p2)] + F ′

X̃
(p1)

[

FΓ( cSU

p2
) − FΓ( cSU

p1
)
])

+λ
{

[FΓ( cSU

p2
) − FΓ( cSU

p1
)] − cSU

p21
pLF

′
Γ( cSU

p1
) + τG(p1 − p2)[FX̃(p1) − FX̃(pL)] cSU

p21
F ′

Γ( cSU

p1
)
}

−λτG

{(

[FΓ( cSU

p2
) − FΓ( cSU

p1
)][FX̃(p1) − FX̃(p2)] + (p1 − p2)[FΓ( cSU

p2
) − FΓ( cSU

p1
)]F ′

X̃
(p1)

)}

Thus, we can write p2 as a function of p1 and pL by solving ∂L
∂p1

. For 1 < j < L, pj+1

can be expressed as a function of pj−1, pj and pL by solving ∂L
∂pj

. The expressions of

∂L
∂pj

for all j can be found in Appendix D.2. By using these conditions, the algorithm

to search for a locally optimal codebook is summarized below.

Two steps for solving the optimization problem

1. For fixed values λ and s, there are L equations from ∂L
∂pj

= 0 that need to be

satisfied by the locally optimal power codebook. Given p1 and pL, p2, . . . , pL−1

can be computed successively from ∂L
∂pj

= 0 for j = 1, . . . , L − 2. Then, we

can numerically solve p1 and pL such that ∂L
∂pL−1

= 0 and ∂L
∂pL

= 0 are satisfied.

We can implement the numerical computation in MATLAB by using function

fzero, for example.

2. To update the optimal value λ and s, the subgradient method [90] can be used

by the following equations.

sm+1 = [sm − ϑm (ǫp −G1)]
+

λm+1 = [λm − ςm (Pav −G2)]
+

(5.10)

where m is the iteration number. For the m-th iteration, ϑm and ςm represent

the step sizes which satisfy square summable, but not summable step size, i.e.
∞
∑

m=1

ϑ2
m <∞ and

∞
∑

m=1

ϑm = ∞ and likewise for ςm.
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Remark 5.2.1. For a given Pav and ǫp, one can first assume that s = 0, i.e. POC

is inactive. Next, apply the two steps above to solve for p1, . . . , pL and λ. Then,

check whether the returned optimal solution satisfies POC or not. If it does, this is

the optimal solution. Otherwise, s > 0 must also be determined.

For the locally optimal solution, it is noticeable that, for given λm and sm, p1 and

pL must be initialized in order to compute p2, . . . , pL−1 and then these initialized p1

and pL must be checked via KKT condition. Hence, although it returns a locally

optimal solution, the algorithm is tedious. To alleviate the problem, we seek another

efficient suboptimal solution which performs very close to the local optimal one. Our

suboptimal approach adopts the idea from the optimal approach when the number

of bits B is large. The properties are summarized in the following subsection.

5.2.3 Proposed suboptimal algorithm

In this part, we will start from Lemma 5.2.2 which analyzes the behavior of the lowest

power level of the locally optimal codebook as the number of bits grows large. Then,

we will use the intuition from Lemma 5.2.2 for our proposed suboptimal algorithm.

Lemma 5.2.2. lim
L→∞

pL = 0.

Proof. Please refer to Appendix D.3.

Noticeably, L-th power level pL appears in all the KKT conditions. With a large

number of bits, repeatedly initializing both p1 and pL makes the algorithm described

in Section 5.2.2 tedious. Lemma 5.2.2 suggests that as the number of bits gets

larger, pL will approach zero. By fixing pL = 0, the KKT conditions and searching

algorithm become less complicated, although they no longer return a locally optimal

solution to the original problem. The obtained algorithm is described below. In our

simulation results, we will compare it to another suboptimal algorithm based on the

generalized Lloyd’s algorithm with Sigmoid Function Approximation (GLA+SFA)

from [70] and described briefly in Appendix D.4

Zero-Forced Lowest Power Level Algorithm (ZFLP)
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In the algorithm for the locally optimal solution in Section 5.2.2, we have to

initialize both p1 and pL. As noted earlier, the algorithm will be very slow if the

number of bits is large. Hence, rather than initializing both p1 and pL, ZFLP

algorithm assumes that pL is zero. The rationale behind this suboptimal algorithm

is from Lemma 5.2.2 as explained previously. This algorithm therefore reduces the

complexity in searching computation.

By assuming that pL = 0, we have FΓ( cSU

pL
) = FΓ(∞) = 1 and FX̃(pL) = 0. We

can rewrite (5.8) as

max
λ,s

[

min
pj≥0

GO,s + sG1,s + λG2,s

]

(5.11)

where GO,s, G1,s and G2,s is expressed by

GO,s = FΓ( cSU

p1
) + τG

k
∑

j=1

[FX̃(pj)]
(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

G1,s = (1 − τG) + τG
L−1
∑

j=k+1

FX̃(pj)
(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

G2,s =
L−1
∑

j=1

pj

(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

− τG
k
∑

j=1

pjFX̃(pj)
(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

(5.12)

Based on the KKT condition, we must have ∂L(...)
∂pj

= 0 for all j. For example,

when j = 1, it yields

0 = − cSU

p21
(1 − τGFX̃(p1))F

′
Γ( cSU

p1
) + τG

(

FΓ( cSU

p2
) − FΓ( cSU

p1
)
)

F ′
X̃

(p1)

+λ
[(

FΓ( cSU

p2
) − FΓ( cSU

p1
)
)

[

1 − τGFX̃(p1) − p1τGF
′
X̃

(p1)
]

+p1 (1 − τGFX̃(p1)) ·
cSU

p21
F ′

Γ( cSU

p1
)
]

This suggests that p2 can be written as a function of p1. Likewise, for 1 < j < L

(details in Appendix D.5), we can show that pj+1 can be determined from a given pj

through the condition ∂L(...)
∂pj

= 0. By those facts, for given λ and s, we first initialize

the value of p1 so that p2, . . . , pL−1 can be recursively computed in term of p1 by

using the conditions ∂L(...)
∂pj

= 0 for j = 1, . . . , L − 2. At the end, the initialized p1

must ensure that the condition ∂L(...)
∂pL−1

= 0 is satisfied. Then, we can use subgradient

method, as shown previously in (5.10), to update for λ and s. The procedures are

repeated until convergence.
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5.3 Asymptotic analysis on SU outage probability

for ZFLP

In this section, we aim at analyzing the asymptotic behavior of SU outage probability

as L grows large, when all channel power gains are presumed to be exponentially

distributed, i.e. under a Rayleigh fading assumption.

Lemma 5.3.1. Regardless of the fading distributions of channel gains, we have

pj

pj+1
=

pj−1

pj
for 1 < j < k + 1 and k + 1 < j < L− 1 as L→ ∞.

Proof. Please refer to Appendix D.6

In this part, all channel power gains are further presumed to be exponentially

distributed, so FΓ(Γ) =
(

1 − exp(−N0Γ)
1+PcΓ

)

, FX̃(x) = 1 − 1
1+cox

, where co =
exp(r0p)−1

Pc

and τG = e−gT . We will use the expressions on those CDF to analyze SU outage

probability when L is large. According to Lemma 5.2.2, we can assume that pL = 0.

Also, λ ≈ λf and s ≈ sf , where λf and sf are the Lagrange multipliers corresponding

to ATPC and POC in the full CSI case. From Lemma 5.3.1, let
pj

pj+1
≈

pj−1

pj
= θ for

1 ≤ j ≤ k,
pj

pj+1
≈

pj−1

pj
= κ for k + 1 ≤ j ≤ L− 1. For simplicity, define f1(pj) and

f2(pj) as follows

f1(pj) = λpj (1 − e−gTFX̃(pj)) + e−gTFX̃(pj)

= λpj

(

1 − e−gT

[

1 − 1
1+copj

])

+ e−gT

[

1 − 1
1+copj

]

f2(pj) = se−gTFX̃(pj) + λpj = se−gT

[

1 − 1
1+copj

]

+ λpj

(5.13)

Thus, f ′
1(pj) = λ

(

1 − e−gT

[

1 − 1
1+copj

])

+e−gT
co(1−λpj)

(1+copj)2
and f ′

2(pj) = se−gT 1
(1+copj)2

+

λ. Let vj = cSU

pj
. Then, we can prove the two following lemmas.

Lemma 5.3.2. As L grows large, θ can be approximated from solving

θ =

[

1 − f1(
p0
θ
) + p0

θ
f ′

1(
p0
θ
)

p0
θ
f ′

1(
p0
θ
)

]

where p0
∆
= 1

λ
.

Proof. Please Refer to Appendix D.7
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Lemma 5.3.3. As L grows large, we have κ ≈ θ.

Proof. Please refer to Appendix D.8

By Lemma 5.3.2 and 5.3.3 , we can now write pj = p0θ
−j for all j. As L is large,

pj ≈ (1 − jǫθ), making 0 < ǫθ <
1

L−1
and lim

L→∞
θ = 1. Next, θ can be determined via

using two following equations.

ǫp − (1 − e−gT ) = e−gT

L−1
∑

j=k+1

FX̃(pj)
(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

≈ FPOC(θ, k)

(5.14)

Pav =
L−1
∑

j=1

pj

(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

− e−gT

k
∑

j=1

pjFX̃(pj)
(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

≈ FATPC(θ, k)

(5.15)

The expressions of FPOC(θ, k) and FATPC(θ, k) are included in Appendix D.9. Fur-

ther, we can approximate k by using the fact that lim
L→∞

k = k(θ) =
⌈

− log(1−s)
log θ

⌉

.

Hence, we can determine θ by solving

sǫp − (1 − e−gT ) + λPav = sFPOC(θ, k(θ)) + λFATPC(θ, k(θ)) (5.16)

For the objective function, we finally have

ǫs = FΓ(v1) + e−gT

k
∑

j=1

FX̃(pj) [FΓ(vj+1) − FΓ(vj)]

(d)
≈ 1 − e−N0v1

1+Pcv1

(

1 − PccocSUe
−gT

PccocSU−1

)

− PccocSUe
−gT

PccocSU−1
· Pce−N0v1θk

1+Pcv1θk + A4(v1θ
k) − A4(v1)

lim
L→∞

ǫs = 1 − e−N0cλ

1+Pccλ

(

1 − PccocSUe
−gT

PccocSU−1

)

− PccocSUe
−gT

PccocSU−1
· Pce

−N0
cλ

1−s

1+Pc
cλ

1−s

+ A4(
cλ

1−s
) − A4(cλ)

(5.17)

Again, the summation can be approximated by integration shown in (5.17) and

A4(z) is expressed by

A4(z) = cocSUe
−gT

PccocSU−1

[(

N0 −
Pc

PccocSU−1

)

e−gT eN0cocSUE1(N0(z + cocSU))

+ Pce
N0
Pc

PccocSU−1
E1(N0z + N0

Pc
)

] (5.18)

Remark 5.3.1. If s = 0, k becomes zero and θ is determined from average power

constraint. Then, ǫs ≈ 1 − e−N0v1

1+Pcv1
= 1 − e−N0cλθ

1+Pccλθ
and lim

L→∞
ǫs = 1 − e−N0cλ

1+Pccλ
equivalent
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to the result in [61].

5.4 Simulation results

In this part, the numerical results on SU performance are illustrated for the SU

outage minimizing problem subject to ATPC and POC based on various algorithms

mentioned in this chapter. All channel gains involved are assumed to be independent

and identically distributed (i.i.d.) and exponentially distributed (Rayleigh fading)

with unit mean. Noises at PR and SR are presumed to be equal and AWGN with a

normalized unit variance. This allows us to consider the SU and PU transmit powers

and the SU average transmit power constraint in unitless terms, thus expressed in

dB. Note also that the SU average transmission power can be regarded as the average

transmit SNR at the SU transmitter. Unless specified otherwise, the simulation

parameters are set as: SU target rate r0
s = 0.3, PU constant power Pc = 15 dB., PU

target rate r0
s = 0.2 and PU outage probability threshold ǫp = 0.1.

Figure 5.3 compares SU outage performance of ZFLP algorithm for suboptimal

solution with local optimal solution and another suboptimal solution GLA+SA with

varying number of feedback bits B = {1, 2}. SU outage performances when the

secondary transmitter has no CSIT (B = 0) and when it has full CSI (B = ∞)

are also included as a reference. First, the figure shows that SU outage probability

performance from locally optimal solution is improved significantly (by about 41.5%)

with B = 1 compared to the performance in no CSI case. It confirms the benefit

of CSI feedback. Also, the results reveal that the SU outage probability of ZFLP

algorithm surpasses that of GLA+SA for any given B. For example, with a fixed

Pav = 11.5 dB, achieved outage probability from GLA+SA is ǫs = 0.3457 for B = 1

and ǫs = 0.2260 for B = 2, while ZFLP can achieve ǫs = 0.2887 for B = 1 and

ǫs = 0.1941 for B = 2 which are approximately 16.5% and 20.17% lower than that

of GLA+SA. Further, ZFLP is considerably faster than GLA+SA. With Intel(R)

Core(TM)2 Duo CPU and 2.99GHz with 3.48GB RAM, GLA+SA took roughly

988.3412 seconds for B = 2. (SFA procedure was done with 2 × 105 samples,

starting from K = 20 with the increment of K is 1.5, ending at K = 672.3 when
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convergence is met. Note that the initial guess of power codebook may cause a

different convergence time.) On the other hand, ZFLP took just 176.51 seconds to

achieve the same level of accuracy. Thus, ZFLP is more efficient than GLA+SFA

both from a performance and a time-consumption points of views.

Moreover, Figure 5.3 shows that, although ZFLP algorithm is for suboptimal

solution, the SU outage probability performance from ZFLP approaches that of the

optimal solution when B increases. As mentioned earlier, one has to initialize both

p1 and pL to search for p2, . . . , pL−1 and keep updating p1 and pL till the constraints

are satisfied for the optimal solution. The outage for SU is about 0.2577 for 1 bit

and 0.1749 for 2 bits feedback in optimal solution with Pav = 11.5 dB. The result

then suggests that SU outage performance can be sacrificed for 12.0% when B = 1

and 3.1% when B = 2 by just assuming pL = 0 to ease time consuming problem.

Note that the gap between ZFLP and the optimal are closer when B is raised.
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Figure 5.3: SU outage probability against average power Pav with varying number
of feedback bits by the three algorithms

Next, the effect of PU target rate r0
p on SU outage probability performance for

quantized feedback will be inspected. With r0
p = {0.2, 0.4}, we thus study the

performance for three varying number of feedback bits, i.e. B = {4, 6, 10} and for

full CSI as a reference. There are four important results shown in Figure 5.4. Firstly,
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with the same B, SU outage probability when r0
p = r0

p,2 = 0.4 always greater than

that of when r0
p = r0

p,1 = 0.2 obviously because POC in the first case is stricter.

Secondly, under the same r0
p, one additional feedback bit can reduce the gap of

SU outage performance. However, it can be observed that the size of the reduced

gap is smaller and smaller as B approaches infinity, i.e. full CSI case. Thirdly,

regardless the number of feedback bits and r0
p, the feature of achieving SU outage

probability is similar, i.e. SU outage drops significantly when Pav is low but reach

saturation when Pav is high. Intuitively, it implies that, despite having abundant

average power budget, SU cannot always enjoy using that as QoS in primary link

must be protected. Lastly, SU outage performances when B = 6 due to the optimal

approach and ZFPL suboptimal approach are almost overlapped at Pav = 11.5 dB,

the difference is about 6.6×10−5 for r0
p = 0.2 where SU outage probability is around

0.1726 and about 7.3 × 10−5 for r0
p = 0.4 where SU outage probability is around

0.1260. Thus, we avoid very high complexity in optimal approach by using ZFLP

when B = 10 and the results for both target rates shows that SU outage probability

performance is very close to full CSI case when B = 10.
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Figure 5.4: SU outage probability against average power Pav with varying r0
p

In Figure 5.5, SU probability results based on ZFLP algorithm for B = {2, 4, 6, 8}

are plotted against SU probability results from asymptotic analysis in Section 5.3.
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The result shows that the reduction in the gap between outage performance in

ZFLP and its approximation. For example, at Pav = 11.5 dB. i.e. the difference

is approximately 14.01%, 6.22%, 2.46% and 0.926% for B = 2, 4, 6, 8, respectively.

This is as expected because the analysis in Section 5.3 is based on the assumption

that L approaches ∞, so the higher the B, the smaller the gap between the exact

and the approximated performance. Finally, the result in Figure 5.6 also confirms

our analysis in Section 5.3, where the figure shows the sketch of asymptotic ap-

proximated SU’s performance from ZFLP and the actual performance from ZFLP

against L = 2B, comparing with the corresponding full CSI performance. Notice-

ably, the curve of approximated SU performance is improved but with slower rate

for additional feedback bit and eventually reaches the performance of the full CSI

case. The simulations show that SU performance from asymptotic approximation is

indistinguishable from the simulated result from ZFLP algorithm for B ≥ 8 and the

performance is quite close to full-CSI case when B ≥ 10.
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5.5 Conclusion

This chapter has considered a cognitive radio network in underlay paradigm with

a single pair of PU and SU, where the PU’s service quality is protected by outage

probability constraint. Assuming that the PU uses a constant power control, SU

outage probability minimization problem subject to an ATPC and a POC under

quantized feedback scenario has been investigated. First, the optimal channel struc-

ture for a given power codebook was obtained and then a locally optimal codebook

was solved for by using the KKT necessary condition. Later, we proved that the

lowest power level, pL, approaches zero as B grows large. This fact allowed us to

propose another algorithm for suboptimal solution, called ZFLP, by assuming that

pL = 0. The numerical results showed that the SU outage performance from ZFLP

algorithm is close to the performance from a locally optimal solution for B ≥ 10 but

offers lower computational complexity. Also, ZFLP outperforms another suboptimal

algorithm (GLA+SFA) for any given number of feedback bits. Finally, we approx-

imated SU outage probability performance with the aid of several properties of a

locally optimal power codebook when the number of bits grows large. The numerical

results illustrated the difference between exact SU outage probability performance
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with our approximation against varying number of feedback bits, showing that the

gap is nearly indistinguishable when B ≥ 8.
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Chapter 6

Conclusions

This thesis investigated power-efficient resource alllocation strategies for underlay (or

spectrum sharing) based cognitive radio networks in fading channels coexisting in the

same frequency band with delay-sensitive primary user(s) where the service quality

of each primary user is guaranteed by an outage probability constraint. Below, we

will summarize our contributions and give possible ideas for future research related

to the topics in this thesis.

6.1 Summary

In Chapter 2, we derived the optimal power allocation strategy to maximize the

service-outage capacity for an OFDM-based secondary user in N parallel fading

channels where a distinct delay-sensitive primary user possesses a given subchannel.

With perfect channel side information at the secondary transmitter, the solution

was obtained by a probabilistic power allocation technique which reveals that the

optimal power policy is randomized among 2N +1 deterministic power policies. The

complexity of the optimal solution thus increases exponentially with the number of

subchannels. Hence, we also proposed a suboptimal power strategy that is random-

ized among only 3 deterministic power policies. Performance comparisons between

the sub-optmal and optimal solutions were presented.

In Chapter 3, we focused on a cognitive broadcast channel sharing the same

spectrum band with a delay-sensitive primary user with perfect channel side infor-

mation assumed at the secondary network. The optimal power policies to maximize

the ergodic sum downlink capacity subject to either an average or a peak transmit

power constraint were derived under continuous fading channel assumptions. The

137
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associated optimal strategy is that the secondary base station assigns the a given

time slot (or equivalently a fading block over which the channel remains invariant)

to only one user. Such a dynamic time-division multiple-access characteristic al-

lows us to investigate further how the ergodic sum capacity scales as the number

of secondary receivers, M , becomes large. We have shown that, if the PU adopts

an ON-OFF power policy with constant power control when ON, the secondary

ergodic sum throughput in BC scales according to log(logM). If the PU uses a

truncated channel inversion power control, the secondary sum throughput scales

like ǫp log(logM) where ǫp is the PU outage probability threshold.

In Chapter 4, we studied continuous fading cognitive multiple-access channels

with a real-time based primary user with full channel side information assumed at

the secondary base station and the secondary transmitters. In Section 4.2, we fo-

cused on the ergodic capacity notion. We initially considered the special case of

ergodic capacity acheiving region, i.e. SU ergodic sum rate maximization problem

subject to POC and average transmit power constraint at each secondary trans-

mitters. The optimal solution expresses that at most two users can simultaneously

transmit. Later, we characterized the ergodic capacity achieving region with the sim-

ilar types of constraints by using mathematical ingredients due to the polymatroid

structure of the problem, showing that successive decoding is optimal. In Section

4.3, we addressed two problems of outage capacity, i.e. common outage capacity

and individual outage capacity. We proved that common outage capacity region

and individual outage capacity region can be acquired by implicitly deriving the

minimum common outage probability and the individual outage probability region,

respectively, for a given rate vector. The optimal policies for both common out-

age probability and individual outage probability minimizing problems also reveal

that successive decoding is optimal. Additionally, the effect of decoding order was

illustrated via numerical simulations.

In Chapter 5, we examined the outage minimization problem for a single-antenna

secondary user with a delay-sensitive primary user under quantized feedback. By

using the nearest neighbourhood condition, the optimal channel partition structure

can be derived for a given power codebook. Thus, the problem can be reformulated
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in terms of the power codebook and the locally optimal power codebook is solved

accordingly by using necessary Karush-Kuhn-Tucker conditions. However, the com-

plexity in computing a locally optimal power codebook increases as the number

of feedback bits becomes large. In order to alleviate the burden on computational

complexity, we also proposed a suboptimal algorithm called zero-forced lowest power

level algorithm (ZFLP) by assuming that the lowest power level is zero, which is a

property that is achieved by the power codebook as the number of feedback bits goes

to infinity. In additon, an asymptotic analysis on the SU outage probability based

on the ZFLP algorithm was given. Numerical results were provided to validate the

performance of the ZFLP algorithm and the asymptotic approximation.

6.2 Future research

For the work on Chapter 2, the complexity to evaluate the optimal power in each

channel state increases as the number of subchannels grows, hence a suboptimal algo-

rithm was proposed. One can investigate power allocation schemes that can perform

better than our proposed suboptimal algorithm. It is also possible to consider the

optimal power control when each PU is not bounded to be just a delay-sensitive and

may possess more than one subchannels. Further, there may be more than one PU

operating in each subchannel. However, in order to analyze this case one requires

the expression of the capacity of parallel interference channels which is still a largely

unsolved problem. Also, when CSI at the OFDM-equipped secondary user is imper-

fect, one can extend this work by analyzing the power control under quantized or

noisy channel feedback.

In the work on Chapter 3 and Chapter 4, we have considered the multiuser

scenario in secondary network with only a single primary user, so it is possible to

extend this work to the case of multiple primary users in the primary network.

Also, CSI of the entire network is presumed to be available at each transmitter

which is hard to obtain in practice. Therefore, the more challenging problem is how

to design efficient power control policies given that only quantized channel feedback

is available. Essentially in typical broadcast channels where the receivers do not
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cooperate and the number of bits fed back to the base station increases with the

number of receivers. It is worth mentioning that one can consider the throughput

scaling analyses for cognitive MAC in the similar manner as we did for cognitive

BC in Chapter 3. Other types of wireless channel models, such as Nakagami-m

or Rician fading, can be considered in the future extensions as the channel model

obviously affects the throughput scaling result. Another intriguing problem is to

elaborate the resource allocation problem to a cognitive MIMO network with a

delay-sensitive primary network since in this case both a beamforming codebook

and power codebook must be appropriately designed.

Finally, the work on Chapter 5 can be extended to the case when there is no

band manager and the secondary transmitter acquires partial side information via

receiving quantized feedback directly from the secondary receiver and the primary

receiver separately and the quantized feedback design from both terminals is re-

quired for the secondary network. In brief, one can further analyze the problem

using separate scalar quantization, as opposed to vector quantization that we have

considered in Chapter 5. Besides, other utility functions can replace the outage

probability. For example, secondary ergodic capacity maximization subject to pri-

mary user’s outage constraint and average transmit power constraint under limited

feedback is still unexplored. Another possibility for extending this work is to ana-

lyze more generalized scenarios, such as when the secondary user is equipped with

OFDM technology like the work in Chapter 2 but within a limited feedback scenario,

or when each secondary terminal is equipped with multiple antennas, or even when

there are multiple secondary and/or primary users, e.g. cognitive BC or cognitive

MAC under a quatized feedback setup.



Appendix A

Proofs in Chapter 2

A.1 Proof of Lemma 2.2.1

We first show that for an arbitrary feasible probabilistic power scheme Ps(ννν), we can

always construct another feasible scheme P′
s(ννν) which is randomized among deter-

ministic power schemes pki(ννν) with time-sharing factors wki(ννν), and performs equally

well or better than Ps(ννν) . Since Ps(ννν) is feasible, Ps(ννν) satisfies all the constraints,

i.e. E[〈PPP si(ννν)〉] ≤ Pav, Pr
{

rpi(ννν, Psi(ννν)) < r0
pi

}

≤ ǫpi, and Pr

{

N
∑

i=1

rsi(ννν, Psi(ννν)) < r0
s

}

≤

ǫs. By the definitions of pki(ννν) in (2.4) and wki(ννν) in (2.3), we have the following

condition:

r0
s ≤ E

[

N
∑

i=1

rsi(ννν, Psi(ννν)) |
N
∑

i=1

rsi(ννν, psi(ννν)) ≥ r0
s , ννν

]

(a)

≤
N
∑

i=1

rsi(ννν, E

[

Psi(ννν) |
N
∑

i=1

rsi(ννν, psi(ννν)) ≥ r0
s , ννν

]

)

(b)
=

N
∑

i=1

rsi(ννν,
w1i(ννν)
wa(ννν)

p1i(ννν) + wa(ννν)−w1i(ννν)
wa(ννν)

p2i(ννν))

where (a) follows from Jensen’s inequality since
N
∑

i=1

rsi(ννν, psi(ννν)) is concave over ppps(ννν)

and (b) follows from the fact thatE

[

Psi(ννν) |
N
∑

i=1

rsi(ννν, psi(ννν)) ≥ r0
s , ννν

]

= w1i(ννν)
wa(ννν)

p1i(ννν)+

wa(ννν)−w1i(ννν)
wa(ννν)

p2i(ννν) by conditional expectation.

Furthermore, for all i, Pr {P ′
si(ννν) = p1i(ννν)} = w1i(ννν) and Pr {P ′

si(ννν) = p2i(ννν)} =

w2i(ννν). Hence, w1i(ννν)+w2i(ννν) = Pr

{

P ′
si(ννν) = E

[

Psi(ννν) |
N
∑

i=1

rsi(ννν, psi(ννν)) ≥ r0
s , ννν

]

| ννν

}

=

wa(ννν) for all i.

In other words, Pr

{

P′
s(ννν) = E

[

Ps(ννν) |
N
∑

i=1

rsi(ννν, psi(ννν)) ≥ r0
s , ννν

]

| ννν

}

= wa(ννν).

Therefore,

Pr

{

N
∑

i=1

rsi(ννν, P
′
si(ννν)) ≥ r0

s | ννν

}

≥ wa(ννν) and E

[

Pr

{

N
∑

i=1

rsi(ννν, P
′
si(ννν)) ≥ r0

s | ννν

}]

≥

E [wa(ννν)] ≥ 1−ǫs. This implies that the new power scheme P′
s(ννν), if feasible, results
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in an SU outage probability performance that will not be worse than that of Ps(ννν).

Now, we will show that rpi(ννν, E
[

Psi(ννν) | rpi(ννν, psi(ννν)) ≥ r0
pi, ννν

]

) ≥ r0
pi. Note that

when rpi(ννν, psi(ννν)) ≥ r0
pi, it implies psi(ννν) ≤ 1

βi

(

giPpi(gi)

e
r0
pi−1

−N0

)+

, i.e. the possible

solution lies in a halfspace. Further, notice that E
[

Psi(ννν) | rpi(ννν, psi(ννν)) ≥ r0
pi, ννν

]

is

a convex combination of the possible solutions in that halfspace weighted by the

probability that each solution can happen. So, E
[

Psi(ννν) | rpi(ννν, psi(ννν)) ≥ r0
pi, ννν

]

also

lies in the same halfspace due to convex set properties, which means

r0
pi ≤ rpi(ννν, E

[

Psi(ννν) | rpi(ννν, psi(ννν)) ≥ r0
pi, ννν

]

)
(c)
= rpi(ννν,

w1i(ννν)
w1i(ννν)+w3i(ννν)

p1i(ννν) + w1i(ννν)
w3i(ννν)+w3i(ννν)

p3i(ννν))

where (c) follows again from the definition of conditional expectation.

In addition, Pr
{

P ′
si(ννν) = E

[

Psi(ννν) | rpi(ννν, psi(ννν)) ≥ r0
pi, ννν

]

| ννν
}

= w1i(ννν)+w3i(ννν)

and it can be shown that E
[

Pr
{

rpi(ννν, P
′
si(ννν)) ≥ r0

pi | ννν
}]

≥ E [w1i(ννν) + w3i(ννν)] ≥

1 − ǫpi.

Also, E[〈PPP ′
s(ννν)〉] = E[

N
∑

i=1

4
∑

k=1

wki(ννν)pki(ννν)] = E[〈PPP s(ννν)〉] . The feasibility of

P′
s(ννν) has thus been proved. Finally, it can be shown that E

[

N
∑

i=1

rsi(ννν, P
′
si(ννν))

]

=

E

[

N
∑

i=1

4
∑

k=1

wki(ννν)rsi(ννν, pki(ννν))

]

≥ E

[

N
∑

i=1

rsi(ννν, Psi(ννν))

]

, where the inequality follows

from Jensen’s inequality. This completes the proof.

A.2 Proof of convexity of (2.5)

Here we suppress the dependence of the determistic power policies and the weight-

ing functions on ννν. Let xki = wkipki where w2i = wa − w1i. Then we can map

(p1i, p2i, p3i, p4i, w1i, w3i, w4i, wa) to (x1, x2, x3, x4, w1i, w3i, w4i, wa), such that (2.5)
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can be rewritten as

max
Z (xki,wki,∀k,∀i)

E

[

N
∑

i=1

4
∑

k=1

wkirs(ν,
xki

wki
)

]

s.t. (a) E

[

N
∑

i=1

4
∑

k=1

xki

]

≤ Pav, (b) E [w1i + w3i] ≥ 1 − ǫpi,

(c) E [w1i + w2i] = E [wa] ≥ 1 − ǫs,

(d)
N
∑

i=1
rsi(ννν,

w1i

wa

x1i

w1i
+ (wa−w1i)

wa

x2i

wa−w1i
) − r0s ≥ 0,

(e) w1iprp,i(ν) + w3iprp,i(ν) − x1i − x3i ≥ 0, (f) wa − w1i = w2i ≥ 0,

(g) 1 − wa − w3i = w4i ≥ 0, (h) xki ≥ 0, (i) wki ≥ 0.

(A.1)

Note that in the objective function of (A.1), wkirs(ν,
xki

wki
) is concave over (xki, wki)

(see [25]). To show that (A.1d) is convex, we can rearrange the inequality to be
N
∏

i=1

[

wa + hi

αPpi(gi)+N0
(x1i + x2i)

]1/N

≥ wae
r0
s

N . Since t(z) =

(

K
∏

i=1

z

)1/N

is concave on

z ∈ ℜK
+ [90], the left side of the inequality is concave with respect to (wa, x1i, x2i),

while the right hand side is linear over wa. This results in a convex constraint

when written in the standard form. The convexity of the rest of the constraints are

obvious. This proves the convexity of (2.5).

A.3 Proof of Theorem 2.3.1

We will first solve for p∗ki(ννν) to show that there are 2N + 1 possible deterministic

optimal power schemes p∗(ννν) and then derive the solution for all optimal weighting

functions. With w∗
ki(ννν) = 0, the solution of p∗ki(ννν) has no impact on the optimization

problem. Hence, we will consider the case w∗
ki(ννν) > 0 in order to solve for p∗ki(ννν).

To avoid the repetition, we will show the derivation for p∗1i(ννν) only and the finalized

expressions for all p∗ki(ννν) for k = 2, 3, 4.

By
∂

N
∑

i=1
rsi(ννν,

w∗
1i(ννν)

w∗
a(ννν)

p∗1i(ννν)+
w∗

a(ννν)−w∗
1i(ννν)

w∗
a(ννν)

p∗2i(ννν))

∂p∗1i(ννν)
=

w∗
1i(ννν)

w∗
a(ννν)

1
w∗

1i
(ννν)

w∗
a(ννν)

p∗1i(ννν)+
w∗

a(ννν)−w∗
1i

(ννν)

w∗
a(ννν)

p∗2i(ννν)+
αiPpi(gi)+N0

hi

,

we apply the condition in (2.7), we can now solve for p∗1i(ννν) (when w∗
1i(ννν) > 0) as

follows:

• When q∗(ννν) = 0 and u∗i (ννν) = 0

It yields 1

p∗1i(ννν)+
αiPpi(gi)+N0

hi

− λ∗ = 0 and thus p∗1i(ννν) = pwf,i(ννν, λ
∗).
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• When q∗(ννν) = 0 and u∗i (ννν) > 0

In this case

[

1

p∗1i(ννν)+
αPpi(gi)+N0

hi

− λ∗
]

− u∗i (ννν) = 0, and w∗
1i(ννν)(prp,i − p∗1i(ννν)) +

w∗
3i(ννν)(prp,i − p∗3i(ννν)) = 0 by u∗i (ννν) > 0 from the associated KKT conditions.

Suppose both w∗
1i(ννν) and w∗

3i(ννν) are positive. Let p∗1i(ννν) < prp,i, which leads to

p∗3i(ννν) > prp,i which contradicts the definition in (2.4). Similarly, we cannot let

p∗1i(ννν) > prp,i using the same argument. Then one must have p∗1i(ννν) = p∗3i(ννν) =

prp,i(ννν). Again, by (2.4), we can conclude that, when q∗(ννν) = 0 and u∗i (ννν) > 0,

both w∗
1i(ννν) and w∗

3i(ννν) cannot be positive, since identical values of p∗1i(ννν) and

p∗3i(ννν) cannot achieve the service rate for the SU on one hand (definition of

p∗1i(ννν)) and result in an outage for the SU on the other hand (definition of

p∗3i(ννν)).

• When q∗(ννν) > 0

First, let w∗
1i(ννν) > 0 and w∗

a(ννν)−w
∗
1i(ννν) > 0. Then one should have

w∗
1i(ννν)

w∗
a(ννν)

p∗1i(ννν)+

w∗
a(ννν)−w∗

1i(ννν)

w∗
a(ννν)

p∗2i(ννν) = prs,i(ννν) in every i-th subchannel in order to achieve mini-

mum power consumption.

Thus, we have

w∗
1i(ννν)

w∗
a(ννν)

rsi(ννν, p
∗
1i(ννν)) +

w∗
a(ννν)−w∗

1i(ννν)

w∗
a(ννν)

rsi(ννν, p
∗
2i(ννν))

(d)

≤ rsi(ννν, prs,i(ννν))

∴

N
∑

i=1

[

w∗
1i(ννν)

w∗
a(ννν)

rsi(ννν, p
∗
1i(ννν)) +

w∗
a(ννν)−w∗

1i(ννν)

w∗
a(ννν)

rsi(ννν, p
∗
2i(ννν))

]

≤ r0
s

(A.2)

where (d) follows from Jensen’s inequality.

The above result implies that if SU randomly switches between the strategies

p∗1i(ννν) and p∗2i(ννν), the average SU rate in that specific ννν will be less than r0
s .

But from the definition, we know that w∗
a(ννν) = Pr(

∑N
i=1 rsi(ννν, prs,i(ννν)) ≥ r0

s).

Hence the only possibility is that the equality is met if and only if p∗1i(ννν) =

p∗2i(ννν) = prs,i(ννν). However, this is impossible due to the definition in (2.4).

Hence, to achieve r0
s with probability w∗

a(ννν) for a given ννν, it can be done by

1. either w∗
1i(ννν) = w∗

a(ννν), w
∗
2i(ννν) = 0, p∗1i(ννν) = prs,i(ννν),

2. or w∗
1i(ννν) = 0, w∗

2i(ννν) = w∗
a(ννν), p

∗
2i(ννν) = prs,i(ννν).
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Now, we will consider the two sub-cases when u∗i (ννν) > 0 and u∗i (ννν) = 0

– When q∗(ννν) > 0 and u∗i (ννν) > 0

As u∗i (ννν) > 0 p∗1i(ννν) = prp,i . However, this optimal power p∗1i(ννν) = prp,i is

not one of the conditions for q∗(ννν) > 0 discussed earlier, unless prp,i = prs,i

with positive probability, which is not possible for a continuous fading

scenario. Although it is possible that prp,i = prs,i for a discrete fading

scenario, this will not affect the optimal solution.

– When q∗(ννν) > 0 and u∗i (ννν) = 0

Then, From the three conditions previously discussed, it shows that if

both w∗
1i(ννν), w

∗
2i(ννν) > 0, then p∗1i(ννν) = p∗2i(ννν) = prs,i(ννν), (by consid-

ering the the optimality conditions when q∗(ννν) > 0 and p∗2i(ννν) > 0),

which is impossible by definition. So, if q∗(ννν) > 0 and w∗
1i(ννν) > 0,

then p∗1i(ννν) = prs,i(ννν) while w∗
2i(ννν) = 0. Furthermore, it is impos-

sible for p∗1i(ννν) = prs,i(ννν) to hold when prs(ννν) ≺ pwf (ννν, λ
∗) because

p∗rs,i(ννν) =

(

1+
q∗(ννν)
w∗

a(ννν)

λ∗
−

αiPpi(gi)+N0

hi

)+

> p∗wf,i(ννν, λ
∗), ∀i. Note that here

we have µ(ννν) =
1+

q∗(ννν)
w∗

a(ννν)

λ∗
.

Applying a similar procedure to p∗ki(ννν), for k = 2, 3, 4, we obtain the closed form

solutions of all p∗ki(ννν) as follows

p∗1i(ννν) =



















pwf,i(ννν, λ
∗) , w∗

1i(ννν) > 0, prs(ννν) � pwf (ννν, λ
∗), pwf,i(ννν, λ

∗) ≤ prp,i(ννν)

prs,i(ννν) , w∗
1i(ννν) > 0, pwf (ννν, λ

∗) ≺ prs(ννν), pwf,i(ννν, λ
∗) ≤ prp,i(ννν)

prp,i(ννν) , w∗
1i(ννν) > 0, prs(ννν) � pwf (ννν, λ

∗), pwf,i(ννν, λ
∗) > prp,i(ννν)

(A.3)

p∗2i(ννν) =







pwf,i(ννν, λ
∗) , w∗

a(ννν) − w∗
1i(ννν) > 0, prs(ννν) � pwf (ννν, λ

∗)

prs,i(ννν) , w∗
a(ννν) − w∗

1i(ννν) > 0, pwf (ννν, λ
∗) ≺ prs(ννν)

(A.4)

p∗3i(ννν) =







pwf,i(ννν, λ
∗) , w∗

3i(ννν) > 0, pwf,i(ννν, λ
∗) ≤ prp,i(ννν)

prp,i(ννν) , w∗
3i(ννν) > 0, pwf,i(ννν, λ

∗) > prp,i(ννν)
(A.5)

p∗4i(ννν) = pwf,i(ννν, λ
∗) , w∗

4i(ννν) > 0 (A.6)
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Now, we will derive optimal solutions for w∗
1i(ννν), w

∗
3i(ννν), and w∗

a(ννν).

w∗
3i(ννν)

Regardless of whether q∗(ννν) is zero or strictly positive, we have ∂l(...)
∂w∗

3i(ννν))
= si +

rsi(ννν, p3i(ννν))−λp3i(ννν)− (rsi(ννν, p4i(ννν))−λp4i(ννν))− η∗i (ννν) (note that when u∗i (ννν) > 0,

the term u∗i (ννν)(prp,i(ννν)−p
∗
3i) = 0 from optimality conditions). Hence from the KKT

conditions, it follows that

w∗
3i(ννν)







= 0 , si + rsi(ννν, p3i(ννν)) − λp3i(ννν) ≤ (rsi(ννν, p4i(ννν)) − λp4i(ννν)) + η∗i (ννν)

> 0 , si + rsi(ννν, p3i(ννν)) − λp3i(ννν) = (rsi(ννν, p4i(ννν)) − λp4i(ννν)) + η∗i (ννν)

(A.7)

Note for w∗
3i(ννν) and w∗

4i(ννν)

• Suppose that 1 − w∗
a(ννν) > 0. From (A.7),

∂l(...)

∂w∗
3i(ννν)

= 0 ⇒ w∗
3i > 0, B3i,ννν = B4i,ννν + η∗i (ννν) ≥ B4i,ννν

⇒







w4i = 0 , B3i,ννν ≥ B4i,ννν , η
∗
i ≥ 0

w4i > 0 , B3i,ννν = B4i,ννν , η
∗
i = 0

∂l(...)

∂w∗
3i(ννν)

≤ 0 ⇒ w∗
3i = 0, B3i,ννν ≤ B4i,ννν + η∗i = B4i,ννν , as η∗i = 0

Then, for every B4i,ννν + η∗i , it can be replaced by either B3i,ννν or B4i,ννν .

• If 1 − w∗
a(ννν) = 0, w∗

3i(ννν) = w∗
4i(ννν) = 0

Also, B3i,ννν ≤ B4i,ννν + η∗i (ννν) as ∂l(...)
∂w∗

3i(ννν)
≤ 0 and B4i,ννν ≤ B4i,ννν + η∗i (ννν) because

η∗i (ννν) ≥ 0 as w∗
4i(ννν) = 1 − w∗

a(ννν) − w∗
3i(ννν) = 0.

• We then have the solution for w∗
3i(ννν) and w∗

4i(ννν) as follows.

w∗
3i(ννν) =































0 , 1 − w∗
a(ννν) = 0

0 , 1 − w∗
a(ννν) > 0, B3i,ννν ≤ B4i,ννν

κ∗3i(ννν) , 1 − w∗
a(ννν) > 0, B3i,ννν = B4i,ννν

1 − w∗
a(ννν) , 1 − w∗

a(ννν) > 0, B3i,ννν ≥ B4i,ννν

w∗
4i(ννν) = (1 − w∗

a(ννν)) − w∗
3i(ννν).
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where 0 < κ∗3i(ννν) < 1 − w∗
a(ννν).

Optimal solutions for w∗
1i(ννν) and w∗

a(ννν)

From KKT condition (2.9),

w∗
1i(ννν)







> 0 , ∂l(...)
∂w∗

1i(ννν)
= 0

= 0 , ∂l(...)
∂w∗

1i(ννν)
≤ 0

∂l(...)
∂w∗

1i(ννν)
=

(

s∗i + (rsi(ννν, p
∗
1i(ννν)) − λ∗p∗1i(ννν)) + q∗(ννν)

w∗
a(ννν)

p∗1i(ννν)−p
∗
2i(ννν)

w∗
1i

(ννν)

w∗
a(ννν)

p∗1i(ννν)+
(w∗

a(ννν)−w∗
1i

(ννν))

w∗
a(ννν)

p∗2i(ννν)+
αiPpi(ννν)+N0

hi

)

−(rsi(ννν, p
∗
2i(ννν)) − λ∗p∗2i(ννν) + γ∗i (ννν))

Remark: Again, note that the term u∗i (ννν)(prp,i(ννν) − p∗1i) = 0 due to the optimality

condition.

From KKT condition in (2.8) that ∂l(...)
∂w∗

1i(ννν)
= 0, we also have

s∗a +
N
∑

i=1

(

rsi(ννν, p
∗
2i(ννν)) − λ∗p∗2i(ννν) + γ∗i (ννν) −

q∗(ννν)w∗
1i(ννν)

(w∗
a(ννν))2

p∗1i(ννν)−p
∗
2i(ννν)

w∗
1i

(ννν)

w∗
a(ννν)

p∗1i(ννν)+
(w∗

a(ννν)−w∗
1i

(ννν))

w∗
a(ννν)

p∗2i(ννν)+
αiPpi(ννν)+N0

hi

)

=
N
∑

i=1
(rsi(ννν, p

∗
4i(ννν)) − λ∗p∗4i(ννν) + η∗i (ννν))

(A.8)

CASE 1: If q∗(ννν) > 0

Since we have shown that in this case w∗
1i(ννν) and w∗

2i(ννν) cannot be positive at

the same time (i.e. S1 ∩ S2 is an empty set), we have the two following cases:

CASE 1.1: w∗
1i(ννν) = w∗

a(ννν) > 0 and w∗
2i(ννν) = 0 ⇒ γ∗i (ννν) ≥ 0

We have p∗1i(ννν) = prs,i(ννν) and the condition from ∂l(...)
∂w∗

1i(ννν)
that

B1i,ννν = (s∗i + (rsi(ννν, p
∗
1i(ννν)) − λ∗p∗1i(ννν)))

= (rsi(ννν, p
∗
2i(ννν)) − λ∗p∗2i(ννν) + γ∗i (ννν) −

q∗(ννν)
w∗

a(ννν)
p∗1i(ννν)−p

∗
2i(ννν)

w∗
1i

(ννν)

w∗
a(ννν)

p∗1i(ννν)+
(w∗

a(ννν)−w∗
1i

(ννν))

w∗
a(ννν)

p∗2i(ννν)+
αiPpi(ννν)+N0

hi

)

= (rsi(ννν, p
∗
2i(ννν)) − λ∗p∗2i(ννν) + γ∗i (ννν) −

q∗(ννν)
w∗

a(ννν)
p∗1i(ννν)−p

∗
2i(ννν)

prs,i(ννν)+
αiPpi(ννν)+N0

hi

)

For w∗
2i(ννν) = 0, we can set p∗2i(ννν) = p∗rs,i(ννν) arbitrarily, resulting in B1i,ννν = B2i,ννν +

γ∗i (ννν) ≥ B2i,ννν . Note that this case happens when prs,i(ννν) ≤ prp,i(ννν), i.e. i-th PU is
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not disturbed by p∗1i(ννν) = p∗rs,i(ννν).

CASE 1.2: w∗
1i(ννν) = 0 and w∗

2i(ννν) = w∗
a(ννν) > 0 ⇒ γ∗i (ννν) = 0

B1i,ννν = (s∗i + (rsi(ννν, p
∗
1i(ννν)) − λ∗p∗1i(ννν)))

≤ (rsi(ννν, p
∗
2i(ννν)) − λ∗p∗2i(ννν) + 0 − q∗(ννν)

w∗
a(ννν)

p∗1i(ννν)−p
∗
2i(ννν)

w∗
1i

(ννν)

w∗
a(ννν)

p∗1i(ννν)+
(w∗

a(ννν)−w∗
1i

(ννν))

w∗
a(ννν)

p∗2i(ννν)+
αiPpi(ννν)+N0

hi

)

= B2i,ννν

(A.9)

As p∗1i(ννν)) can be arbitrarily set to be equal to p∗2i(ννν) since w∗
1i(ννν) = 0.

Note: For w∗
a(ννν) > 0 and q∗(ννν) > 0

Consider the term

s∗a+
N
∑

i=1

(

rsi(ννν, p
∗
2i(ννν)) − λ∗p∗2i(ννν) + γ∗i (ννν) −

q∗(ννν)w∗
1i(ννν)

(w∗
a(ννν))2

p∗1i(ννν)−p
∗
2i(ννν)

w∗
1i

(ννν)

w∗
a(ννν)

p∗1i(ννν)+
(w∗

a(ννν)−w∗
1i

(ννν))

w∗
a(ννν)

p∗2i(ννν)+
αiPpi(ννν)+N0

hi

)

.

Then, rsi(ννν, p
∗
2i(ννν))−λ

∗p∗2i(ννν)+γ
∗
i (ννν)−

q∗(ννν)w∗
1i(ννν)

(w∗
a(ννν))2

p∗1i(ννν)−p
∗
2i(ννν)

w∗
1i

(ννν)

w∗
a(ννν)

p∗1i(ννν)+
(w∗

a(ννν)−w∗
1i

(ννν))

w∗
a(ννν)

p∗2i(ννν)+
αiPpi(ννν)+N0

hi

can be replaced by B1i,ννν for the subchannel that w∗
1i(ννν) = w∗

a(ννν) . Likewise, in the

subchannel that w∗
2i(ννν) = w∗

a(ννν), we can replace the term by B2i,ννν as γ∗i (ννν) = 0 and

q∗(ννν)w∗
1i(ννν)

(w∗
a(ννν))2

p∗1i(ννν)−p
∗
2i(ννν)

prs,i(ννν)+
αiPpi(ννν)+N0

hi

= 0.

Thus, we can replace the left-hand side of (A.8) by s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν , where
∑

i∈S1∩S2

B1i,ννν appears when both w∗
1i(ννν) and w∗

2i(ννν) are positive.

However, we have
∑

i∈S1∩S2

B1i,ννν = 0 in this case because either w∗
1(ννν) or w∗

2(ννν) is

positive in this case and S1 ∩ S2 is an empty set. Then, the following conditions

are obtained.

• 0 < w∗
a(ννν) < 1

In this case, both w∗
a(ννν) and 1 − w∗

a(ννν) are positive. We can also replace the

right-hand side of (A.8) by
∑

i∈S3

B3i,ννν+
∑

i∈S4

B4i,ννν−
∑

i∈S3∩S4

B3i,ννν as B4i,ννν+η
∗
i (ννν)

is equal to either B3i,ννν or B4i,ννν as shown previously.

Finally, we have

s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν =
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

Note that the intersection term appears if both w∗
3i(ννν) and w∗

4i(ννν) are positive

at the same time, thereby yielding B3i,ννν = B4i,ννν .

• w∗
a(ννν) = 1
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The right-hand side of (A.8) can be substituted by
N
∑

i=1

[B4i,ννν + η∗i (ννν)]. Since

1 − w∗
a(ννν) = w∗

3i(ννν) = w∗
4i(ννν) = 0 and η∗i (ννν) ≥ 0, we then have

s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν =
N
∑

i=1
[B4i,ννν + η∗i (ννν)]

(e)

≥
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

Note that (e) follows from B3i,ννν ≤ B4i,ννν + η∗i (ννν) due to the associated KKT

condition and B4i,ννν ≤ B4i,ννν + η∗i (ννν) because η∗i (ννν) ≥ 0 .

Hence, for q∗(ννν) > 0 and w∗
a(ννν) > 0, we have

w∗
1i(ννν) =







0 , w∗
a(ννν) > 0, B1i,ννν ≤ B2i,ννν

w∗
a(ννν) , w∗

a(ννν) > 0, B1i,ννν ≥ B2i,ννν

w∗
2i(ννν) = w∗

a(ννν) − w∗
1i(ννν).

CASE 1.3: w∗
1i(ννν) = w∗

2i(ννν) = w∗
a(ννν) = 0 ⇒ γ∗i (ννν) ≥ 0

This case happens when SU can achieve the target rate with equality (q∗(ννν) > 0)

but it is not selected as it is not an optimal strategy. As both w∗
1i(ννν) and w∗

2i(ννν)

are zero, we can arbitrarily set p∗1i(ννν) = p∗2i(ννν) = o(w∗
a(ννν)), such that B1i,ννν +

q∗(ννν)
w∗

a(ννν)

p∗1i(ννν)−p
∗
2i(ννν)

w∗
1i

(ννν)

w∗
a(ννν)

p∗1i(ννν)+
(w∗

a(ννν)−w∗
1i

(ννν))

w∗
a(ννν)

p∗2i(ννν)+
αiPpi(ννν)+N0

hi

= B1i,ννν ≤ B2i,ννν + γ∗i (ννν). The choice of

o(w∗
a(ννν)) is to ensure that the term involving (p∗1i(ννν) − p∗2i(ννν)) in the numerator

approaches 0 in the limit as w∗
a(ννν) → 0.

Finally, we can conclude that for q∗(ννν) > 0

w∗
1i(ννν) =



















0 , w∗
a(ννν) = 0

0 , w∗
a(ννν) > 0, B1i,ννν ≤ B2i,ννν

w∗
a(ννν) , w∗

a(ννν) > 0, B1i,ννν ≥ B2i,ννν

w∗
2i(ννν) = w∗

a(ννν) − w∗
1i(ννν).



150 A.3. Proof of Theorem 2.3.1

w∗
a(ννν) =















































































0 , s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν

≤
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

κ∗a(ννν) , s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν

=
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

1 , s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν

≥
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

CASE 2: If q∗(ννν) = 0

• Suppose that w∗
a(ννν) > 0 . From (A.8),

∂l(...)

∂w∗
1i(ννν)

= 0 ⇒ w∗
1i(ννν) > 0, B1i,ννν = B2i,ννν + γ∗i ≥ B2i,ννν

⇒







w∗
2i(ννν) = 0 , B1i,ννν ≥ B2i,ννν , γ

∗
i ≥ 0

w∗
2i(ννν) > 0 , B1i,ννν = B2i,ννν , γ

∗
i = 0

∂l(...)

∂w∗
1i(ννν)

≤ 0 ⇒ w∗
1i = 0, B1i,ννν ≤ B2i,ννν + γ∗i = B2i,ννν , as γ∗i = 0

• If w∗
a(ννν) = 0, then w∗

1i(ννν) = w∗
2i(ννν) = 0. Note that as q∗(ννν) = 0, we then

have B1i,ννν ≤ B2i,ννν + γ∗i (ννν) by KKT condition and B2i,ννν ≤ B2i,ννν + γ∗i (ννν) as

w∗
2i(ννν) = 0, making γ∗i (ννν) ≥ 0 for all i.

• We then have the solution for w∗
1i(ννν) and w∗

2i(ννν) for q∗(ννν) = 0 as follows.

w∗
1i(ννν) =































0 , w∗
a(ννν) = 0

0 , w∗
a(ννν) > 0, B1i,ννν ≤ B2i,ννν

κ∗1i(ννν) , w∗
a(ννν) > 0, B1i,ννν = B2i,ννν

w∗
a(ννν) , w∗

a(ννν) > 0, B1i,ννν ≥ B2i,ννν

(A.10)

w∗
2i(ννν) = w∗

a(ννν) − w∗
1i(ννν). (A.11)

where 0 < κ∗1i(ννν) < w∗
a(ννν).

Then, as q∗(ννν) = 0, for every B2i,ννν + γ∗i (ννν), it can be replaced by either B1i,ννν or

B2i,ννν .

There are 3 cases that we have to consider.
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1. 0 < w∗
a(ννν) < 1

In this case, both w∗
a(ννν) and 1−w∗

a(ννν) are positive and q∗(ννν) = 0. Thus, we can

replace the left-hand side of (A.8) by s∗a+
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν−
∑

i∈S1∩S2

B1i,ννν

and the right-hand side by
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν . Finally, we

have

s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν =
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

Again, note that the intersection term indicates the possibility of using a

randomized strategy for a given channel state ννν, which can happen when the

fading state is discrete.

2. w∗
a(ννν) = 1

As w∗
a(ννν) > 0, the left-hand side of (A.8) can be replaced by s∗a +

∑

i∈S1

B1i,ννν +

∑

i∈S2

B2i,ννν−
∑

i∈S1∩S2

B1i,ννν while
N
∑

i=1

[B4i,ννν + η∗i (ννν)] can substitute the right-hand

side of (A.8).

Since 1 − w∗
a(ννν) = w∗

3i(ννν) = w∗
4i(ννν) = 0 and η∗i (ννν) ≥ 0, we then have

s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν =
N
∑

i=1
[B4i,ννν + η∗i (ννν)]

(g)

≥
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

Note that (g) follows from the fact that B3i,ννν ≤ B4i,ννν + η∗i (ννν) due to the

associated KKT condition and B4i,ννν ≤ B4i,ννν + η∗i (ννν) since η∗i (ννν) ≥ 0 for all i.

3. w∗
a(ννν) = 0

As 1−w∗
a(ννν) > 0, the right-hand side of (A.8) becomes

∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν−

∑

i∈S3∩S4

B3i,ννν and the left-hand side is s∗a+
N
∑

i=1

[B2i,ννν + γ∗i (ννν) − 0] because q∗(ννν) =

0.
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Since w∗
a(ννν) = w∗

1i(ννν) = w∗
2i(ννν) = 0 and γ∗i (ννν) ≥ 0, we have

∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν = s∗a +
N
∑

i=1
[B2i,ννν + γ∗i (ννν) − 0]

(h)

≥ s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν

Note that (h) follows from B1i,ννν ≤ B2i,ννν + γ∗i (ννν) due to the associated KKT

condition and B2i,ννν ≤ B2i,ννν + γ∗i (ννν) since γ∗i (ννν) is non-negative.

Thus in this case also, we have

w∗
a(ννν) =















































































0 , s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν

≤
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

κ∗a(ννν) , s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν

=
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

1 , s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν

≥
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν

(A.12)

Therefore, (A.12) always holds regardless of the value of q∗(ννν).

Remark: For the continuous fading case, the condition s∗a+
∑

i∈S1

B1i,ννν+
∑

i∈S2

B2i,ννν−
∑

i∈S1∩S2

B1i,ννν =
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν −
∑

i∈S3∩S4

B3i,ννν is satisfied with probability of

zero measure. In other words, we can simplify (A.12) to the following:

w∗
a(ννν) =















0 , s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν <
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν

1 , s∗a +
∑

i∈S1

B1i,ννν +
∑

i∈S2

B2i,ννν −
∑

i∈S1∩S2

B1i,ννν >
∑

i∈S3

B3i,ννν +
∑

i∈S4

B4i,ννν

(A.13)



Appendix B

Proofs in Chapter 3

B.1 Proof of Lemma 3.2.1

Proof. For an arbitrary feasible probabilistic power scheme P(χχχ) with conditional

PDF fP|χχχ(p(χχχ) | χχχ),another feasible scheme P′
s(χχχ), which is randomised between

two deterministic power schemes with time-sharing factors w(χχχ), can achieve higher

SU average rate. The feasibility of P(χχχ) implies that E[
M
∑

i=1

Pi(χχχ)] ≤ Pav and

Pr
{

rp((χχχ),P(χχχ)) < r0
p

}

≤ ǫp.

Since p1 is feasible, we know that rp(χχχ,p1(χχχ)) ≥ E[rp(χχχ,Ps(χχχ)) | rp(χχχ,p(χχχ)) ≥

r0
p,χχχ]. Therefore, all of possible p(χχχ) such that rp(χχχ,p(χχχ)) ≥ r0

p lie in the halfspace

defined by pT (χχχ)βββ ≤
(

gPp(g)

er0
p−1

−N0

)+

. Thus, p1(χχχ) must also be in that halfspace,

i.e. pT1 (χχχ)βββ ≤
(

gPp(g)

er0
p−1

−N0

)+

.

Construct the new probabilistic scheme P′ such that P′ = p1(χχχ) with probability

w(χχχ) and P′ = p2(χχχ) with probability 1−w(χχχ), where w(χχχ) = Pr
{

rp(χχχ,P(χχχ)) ≥ r0
p | χχχ

}

.

For the PU’s outage probability based on the policy P′, we can show that

Pr
{

rp(χχχ,P
′(χχχ)) ≥ r0

p | χχχ
}

≥ w(χχχ), so E [w(χχχ)] ≥ 1 − ǫp.

As E

[

M
∑

i=1

w(χχχ)p1(χχχ) + (1 − w(χχχ))p2(χχχ)

]

= E

[

M
∑

i=1

P(χχχ)

]

� Pav, so the new

power control P′(χχχ) satisfies the average transmit power constraint.

Finally, we can show that average SU rate by P′(χχχ),

E [rs(χχχ,P
′(χχχ))]

= E [w(χχχ)rs(χχχ,p1(χχχ)) + (1 − w(χχχ))rs(χχχ,p2(χχχ))]

≥ E [rs(χχχ,P(χχχ))]

(B.1)

by the aid of Jensen’s inequality for concave function.
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B.2 KKT conditions for ATPC

∂l(...)

∂p∗ki(χχχ)







= 0, p∗ki(χχχ) > 0

≤ 0, p∗ki(χχχ) = 0
(B.2)

∂l(...)

∂w∗(χχχ)



















= 0, 0 < w∗(χχχ) < 1

≤ 0, w∗(χχχ) = 0

≥ 0, w∗(χχχ) = 1

(B.3)

Λ∗
(

Pav − E
[

1T (w(χχχ)p1(χχχ) + (1 − w(χχχ))p2(χχχ))
])

= 0 (B.4)

S∗ (E [w∗(χχχ)] − (1 − ǫp)) = 0 (B.5)

U∗(χχχ)w∗(χχχ)
[

Pp(χχχ) − β1Tp∗
1(χχχ)

]

= 0 (B.6)

p∗
k(χχχ) � 0 , k = 1, 2 (B.7)

0 ≤ w∗(χχχ) ≤ 1 (B.8)

B.3 Proof of Theorem 3.2.1

we will derive the optimal solutions for p∗
1(χχχ), p∗

2(χχχ), and w∗(χχχ) by using the condi-

tions from (B.2) to (B.8). If w∗(χχχ) > 0, we have





1

1+
M
∑

i=1
p∗1i(χχχ)zi

zi − Λ∗ − U∗(χχχ)β



 ≤

0 by (B.2) where the condition is met with equality iff p∗1i(χχχ) > 0. For any j 6= i,

if p∗1i(χχχ) > 0 and p∗1j(χχχ) > 0, the condition Λ∗+U∗(χχχ)β
zi

= Λ∗+U∗(χχχ)β
zj

must be satis-

fied. Notice that the numerator terms are exactly the same and zi is independent of

zj which happens with zero probability for continuous fading distributions. Define

p∗RP (χχχ) = Pp(χχχ)

β
. Thus,

p∗1i(χχχ) =























p∗WF,i(χχχ) , w∗(χχχ) = 1, p∗WF (χχχ) ≤ p∗RP (χχχ), i = arg max
m∈I

zm

p∗RP (χχχ) , w∗(χχχ) = 1, p∗WF (χχχ) > p∗RP (χχχ), i = arg max
m∈I

zm

0 , otherwise

(B.9)
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If (1−w∗(χχχ)) > 0, we can solve for p∗
2i by (B.2), yielding





1

1+
M
∑

i=1
p∗2i(χχχ)zi

zi − Λ∗



 ≤ 0.

The condition is satisfied with equality iff p∗2i(χχχ) > 0. Again, zi

Λ∗ =
zj

Λ∗ happens with

zero probability for i 6= j in the case of continuous fading channels. Therefore

p∗2i(χχχ) =







p∗WF,i(χχχ) , w∗(χχχ) = 0, i = arg max
m∈I

zm

0 , otherwise
(B.10)

For w∗(χχχ), first define two benefit functions as follows.

BB
1,χχχ

∆
= rs(χχχ,p

∗
1(χχχ)) − Λ∗1Tp∗

1(χχχ) + S∗

BB
2,χχχ

∆
= rs(χχχ,p

∗
2(χχχ)) − Λ∗1Tp∗

2(χχχ)
(B.11)

By (B.3), we get

w∗(χχχ) =







1, BB
1,χχχ > BB

2,χχχ

0, BB
1,χχχ < BB

2,χχχ

(B.12)

B.4 KKT conditions for PTPC

∂l(...)

∂p∗ki(χχχ)







= 0, p∗ki(χχχ) > 0

≤ 0, p∗ki(χχχ) = 0
(B.13)

∂l(...)

∂w∗(χχχ)



















= 0, 0 < w∗(χχχ) < 1

≤ 0, w∗(χχχ) = 0

≥ 0, w∗(χχχ) = 1

(B.14)

Λ∗(χχχ)
(

PO − 1T (w(χχχ)p1(χχχ) + (1 − w(χχχ))p2(χχχ))
)

= 0 (B.15)

S∗ (E [w∗(χχχ)] − (1 − ǫp)) = 0 (B.16)

U∗(χχχ)w∗(χχχ)
[

Pp(χχχ) − β1Tp∗
1(χχχ)

]

= 0 (B.17)

p∗
k(χχχ) � 0 , k = 1, 2 (B.18)

0 ≤ w∗(χχχ) ≤ 1. (B.19)
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B.5 Proof of Theorem 3.2.2

we will derive the optimal solutions for p∗
1(χχχ), p∗

2(χχχ), and w∗(χχχ) by using the condi-

tions from (B.13) to (B.19).

By applying the same procedure as in ATPC case, we can obtain the optimal

power control in PTPC case. To avoid repetition, some crucial results in PTPC case

are summarized as follows.

• When 1 − w∗(χχχ) > 0, the condition





1

1+
M
∑

i=1
p∗2i(χχχ)zi

zi − Λ∗(χχχ) − U∗(χχχ)β



 ≤ 0

can be acquired from KKT condition. Notice that Λ∗ = Λ∗(χχχ) in this case

because it is the Lagrange multiplier PTPC. The power control p∗
2 is

p∗2i(χχχ) =







PO , w∗(χχχ) = 0, i = arg max
m∈I

zm

0 , otherwise
(B.20)

• When w∗(χχχ) > 0, it requires that





1

1+
M
∑

i=1
p∗2i(χχχ)zi

zi − Λ∗(χχχ)



 ≤ 0. The power

control p∗
1 is

p∗1i(χχχ) =























PO , w∗(χχχ) = 1, PO ≤ p∗RP (χχχ), i = arg max
m∈I

zm

p∗RP (χχχ) , w∗(χχχ) = 1, PO > p∗RP (χχχ), i = arg max
m∈I

zm

0 , otherwise

(B.21)

• The solution for w∗(χχχ) in PTPC has the same expression as in (B.12) except

Λ∗is replaced by Λ∗(χχχ), i.e. it varies with channel state χχχ.

B.6 Proof of Lemma 3.3.1

We know that FZ(z | Sc1) = 1− exp(−N0z)
1+Pcz

while FZ(z | S1) = 1−exp(−N0z). Hence, we

will prove lim
M→∞

E[log(zmax)1{zmax≥Λ∗} |S
c
1]

log(log(M))
= 1 only due to the similarity in the procedure

to prove that lim
M→∞

E[log(zmax)1{zmax≥Λ∗} |S1]
log(log(M))

= 1.
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The normalizing constants aM and bM for Type-I convergence can be determined

by solving for F (bM) = 1 − 1
M

and aM = ψ(bM), where ψ is the reciprocal hazard

function, i.e. ψ(z) = (1 − FZ(z))/fZ(z).

Afterwards, we can apply recursive method to find bM and aM as follows.

bM = 1
N0

[logM − log(1 + PcbM )]

= 1
N0

logM − 1
N0

log(1 + Pc

N0
[logM − log(1 + PcbM )])

= 1
N0

logM − 1
N0

log( Pc

N0
logM) − 1

N0
log

[

1 + 1
Pc
N0

logM
− log(1+PcbM )

Pc
N0

logM

]

= 1
N0

logM − 1
N0

log( Pc

N0
logM) + 1

N0
log

[

Pc
N0

logM

Pc
N0

logM+1−log(1+PcbM )

]

= 1
N0

logM − 1
N0

log
(

Pc

N0
logM

)

+O
(

log log(M)
log(M)

)

(B.22)

aM = 1−FX(bM )
fX(bM ) =

(

exp(−N0bM )
1+PcbM

)

/
(

exp(−N0bM )
1+PcbM

[

Pc

1+PcbM
+N0

])

= PcbM+1
N0PcbM+N0+Pc

= 1
N0

(

1 − Pc

N0+Pc+N0PcbM

)

= 1
N0

(

1 − Pc

ξ

)

= 1
N0

(

1 −O
(

1
logM

))

(B.23)

where ξ = N0 + Pc +N0Pc

[

1
N0

logM − 1
N0

log
(

Pc

N0
logM

)

+O
(

log log(M)
log(M)

)]

. Follow

the same procedure as shown in [81], we can first show that, for given g ≥ gT ,

log(zmax)
log(logM)

converges in probability to 1. Then, define the event A.

A = {logM − Λ∗O(log(logM)) ≤ zmax ≤ logM − Λ∗O(1)} (B.24)

For M is large enough, we can then show that lim infM→∞
E[log(zmax)1{zmax≥Λ∗} |S

c
1]

log(logM)
≥ 1

as follows.

E
[

log(zmax)1{zmax≥Λ∗} | S
c
1

]

≥ E [log(zmax)1A | Sc1] ≥ log(logM) +O(1)

∴
E[log(zmax)1{zmax≥Λ∗} |S

c
1]

log(logM)
≥

E[log(zmax)1A |Sc
1]

log(logM)
= 1 + o(1)

(B.25)

Then, we can prove that lim
M→∞

E[zmax |Sc
1]

logM
= 1, by similar procedure from the proof of

Lemma 2 in [81]. Finally, lim supM→∞

E[log(zmax)1{zmax≥Λ∗} |S
c
1]

log(logM)
≤ 1 can be shown as
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follows

∵ E [log(1 + zmax) | S
c
1] ≤ E [log(1 + zmax) | S

c
1]

≤ log(1 + E [zmax | S
c
1]

= log(logM) +O(1)

∴
E[log(zmax)1{zmax≥Λ∗} |S

c
1]

log(logM)
= 1 + o(1)

(B.26)

Note that the second inequality in (B.26) follows from Jensen’s inequality and the

equality is due to lim
M→∞

E[zmax |Sc
1]

logM
= 1. By (B.25) and (B.26), we finally have

lim
M→∞

E[log(zmax)1{zmax≥Λ∗} |S
c
1]

log(logM)
= 1.

B.7 Proof of Lemma 3.3.2

First, we will investigate the bound of Λ∗. As ATPC is always met, we have

Pav =
3
∑

k=1

Pr(Sk)E

[

(

1
Λ∗ −

1
zmax

)+

| Sk

]

+ Pr(S4)E

[

(

1
Λ∗+U∗(χ)β

− 1
zmax

)+

| S4

]

≤ 1
Λ∗

4
∑

k=1

Pr(Sk) = 1
Λ∗

(B.27)

Suppose that lim
M→∞

Λ∗
M = 0. For ǫ > 0, there exists Mo such that, for M ≥ Mo,

Λ∗
M ≤ ǫ. Therefore, ( 1

Λ∗
M

− 1
zmax

)+ ≥ (1
ǫ
− 1

zmax
)+. For M is large enough, 1

zmax

converges to 0 in probability, implying that,(1
ǫ
− 1

zmax
)+ converges to 1

ǫ
in probability.

Finally, it means that ( 1
Λ∗

M
− 1

zmax
)+ ≥ 1

ǫ
with high probability. So, with an arbitrary

small ǫ, SU will violate the power constraint with high probability if lim
M→∞

Λ∗
M = 0.

Consequently, lim
M→∞

Λ∗
M > 0.

Now, we are sure that Λ∗
M will not converge to zero. Next, we will show that

when M is large enough, Λ∗
M is lower-bounded by

ǫ0p
Pav

.

Pav =
3
∑

k=1

Pr(Sk)E

[

(

1
Λ∗

M
− 1

zmax

)+

| Sk

]

+ Pr(S4)E

[

(

1
Λ∗

M+U∗(χ)β
− 1

zmax

)+

| S4

]

> Pr(S1)E

[

(

1
Λ∗

M
− 1

zmax

)+

| S1

]

= ǫ0pE

[

(

1
Λ∗

M
− 1

zmax

)+

| S1

]

(B.28)
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Since

lim
M→∞

E

[

(

1
Λ∗

M
− 1

zmax

)+

| S1

]

= lim
M→∞

[

1
Λ∗

M
(1 − FM

Z (Λ∗
M | S1)) −

∞
∫

zmaxΛ∗
M

1
zmax

dFM
Z (zmax | S1)

]

= 1
Λ∗

M

(B.29)

It is because, as M is large enough, FM
Z (Λ∗

M | S1) and
∞
∫

zmax=Λ∗
M

1
zmax

dFM
Z (zmax | S1)

approach zero. Finally, we have lim
M→∞

Λ∗
M >

ǫ0p
Pav

.

B.8 Lower bound on ko when ǫp > ǫ0p in ATPC with

ON-OFF power control at the primary user

Since Pr {S1} = ǫ0p, Pr {S3} = ǫp − ǫ0p and we have

ǫp − ǫ0p =
∞
∫

zmax=Λ∗

ko

ko
Λ∗−

1
zmax
∫

θ=0

dFΘ(θ | Sc1) · dF
M
Z (zmax | S

c
1) ·

∞
∫

g=gT

dFG(g)

∴ γǫ =
(ǫp−ǫ0p)
∞
∫

g=gT

dFG(g)
= (ǫp − ǫ0p)/(1 − ǫ0p)

=
∞
∫

zmax=Λ∗

ko





ko
Λ∗−

1
zmax
∫

θ=0

dFΘ(θ | Sc1)



 dFMZ (zmax | S
c
1)

=
∞
∫

zmax=Λ∗

ko

(

1 − 1

1+co
(

ko
Λ∗−

1
zmax

)

)

dFMZ (zmax | S
c
1)

≤

(

1 − 1
1+ koco

Λ∗

)

·
∞
∫

zmax=Λ∗

ko

dFMZ (zmax | S
c
1)

≤ 1 − 1
1+ koco

Λ∗

(B.30)

We finally have ko ≥
Λ∗

co

γǫ

1−γǫ
.
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B.9 Lower bound on E [r∗s | S
c
1] when ǫp = ǫ0p in ATPC

with ON-OFF power control at the primary

user

E [r∗s | S
c
1] =

∞
∫

zmax=Λ∗

∞
∫

θ= 1
Λ∗−

1
zmax

log( zmax
Λ∗ )dFΘ(θ | Sc1)dF

M
Z (zmax | S

c
1)

+
∞
∫

zmax=Λ∗

1
Λ∗−

1
zmax
∫

θ=0

log(1 + zmaxθ)dFΘ(θ | Sc1)dF
M
Z (zmax | S

c
1)

=
∞
∫

zmax=Λ∗

log( zmax
Λ∗ )

(

1 − FΘ(θ = 1
Λ∗ − 1

zmax
| Sc1)

)

dFMZ (zmax | S
c
1)

−
∞
∫

zmax=Λ∗

log( zmax
Λ∗ )

(

1 − FΘ(θ = 1
Λ∗ − 1

zmax
| Sc1)

)

dFMZ (zmax | S
c
1)

+
∞
∫

zmax=Λ∗

zmax
zmax−co

log(
zmax
Λ∗

1+co
(

1
Λ∗−

1
zmax

) )dFMZ (zmax | S
c
1)

=
∞
∫

zmax=Λ∗

zmax
zmax−co

log(
zmax
Λ∗

1+co
(

1
Λ∗−

1
zmax

) )dFMZ (zmax | S
c
1)

=
∞
∫

zmax=Λ∗

zmax
zmax−co

log( zmax
co

)dFMZ (zmax | S
c
1)

+
∞
∫

zmax=Λ∗

zmax
zmax−co

log( co

1+co
(

1
Λ∗−

1
zmax

) )dFMZ (zmax | S
c
1)

(B.31)

The lower bound for E [r∗s | S
c
1] is split in to two cases in (B.32) for co ≤ Λ∗ and

(B.33) for co ≥ Λ∗.

For co ≤ Λ∗,

E [r∗s | S
c
1]

=
∞
∫

zmax=Λ∗

zmax
zmax−co

log( zmax
co

)dFMZ (zmax | g ≥ gT )

+
∞
∫

zmax=Λ∗

zmax
zmax−co

log( co

1+co
(

1
Λ∗−

1
zmax

) )dFMZ (zmax | g ≥ gT )

>
∞
∫

zmax=Λ∗

log( zmax
co

)dFMZ (zmax | S
c
1) +

∞
∫

zmax=Λ∗

zmax
zmax−co

log( co

1+co
(

1
Λ∗−

1
zmax

) )dFMZ (zmax | S
c
1)

=
∞
∫

zmax=Λ∗

log( zmax
Λ∗ )dFMZ (zmax | S

c
1) −

∞
∫

zmax=Λ∗

log( coΛ∗ )dFMZ (zmax | S
c
1)

+
∞
∫

zmax=Λ∗

zmax
zmax−co

log( co

1+co
(

1
Λ∗−

1
zmax

) )dFMZ (zmax | S
c
1)

(B.32)
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≥
∞
∫

zmax=Λ∗

log( zmax
Λ∗ )dFMZ (zmax | S

c
1) − log( coΛ∗ )

[

1 − FMZ (zmax = Λ∗ | Sc1)
]

+ 1
1− co

Λ∗

[

1 − FMZ (zmax = Λ∗ | Sc1)
]

=
∞
∫

zmax=Λ∗

log( zmax
Λ∗ )dFMZ (zmax | S

c
1) +

[

1 − FMZ (zmax = Λ∗ | Sc1)
]

co
Λ∗

1− co
Λ∗

log co
Λ∗

>
∞
∫

zmax=Λ∗

log( zmax
Λ∗ )dFMZ (zmax | S

c
1) +

co
Λ∗

1− co
Λ∗

log co
Λ∗

= E
[

log( zmax
Λ∗ )1{zmax≥Λ∗} | S

c
1

]

+
co
Λ∗

1− co
Λ∗

log co
Λ∗

For (B.32), the first inequality is from zmax

zmax−co
log( zmax

co
) > log( zmax

co
). The sec-

ond inequality is from the lower bound of Q(zmax) = zmax

zmax−co
log( co

1+co( 1
Λ∗−

1
zmax

)
)

which is 1
1− co

Λ∗
log co

Λ∗ . Note that Q(zmax) is increasing function and always nega-

tive but bounded over the range Λ∗ ≤ zmax ≤ ∞. Thus, 1
1− co

Λ∗
log co

Λ∗ ≤ Q(zmax) ≤

log(
co
Λ∗

1+ co
Λ∗

) < 0. The last inequality is from
co
Λ∗

1− co
Λ∗

log co
Λ∗ ≤ 0 and increasing in zmax,

while
[

1 − FM
Z (zmax = Λ∗ | g ≥ gT )

]

< 1. Further, as co ≤ Λ∗ ≤ 1
Pav

, the minimum

of
co
Λ∗

1− co
Λ∗

log co
Λ∗ is − 1

co
.

For co ≥ Λ∗,

E [r∗s | S
c
1]

=
∞
∫

zmax=Λ∗

zmax
zmax−co

log( zmax
co

)dFMZ (zmax | S
c
1)

+
∞
∫

zmax=Λ∗

zmax
zmax−co

log( co

1+co
(

1
Λ∗−

1
zmax

) )dFMZ (zmax | S
c
1)

=
∞
∫

zmax=co

zmax
zmax−co

log( zmax
co

)dFMZ (zmax | S
c
1) +

co
∫

zmax=Λ∗

zmax
zmax−co

log( zmax
co

)dFMZ (zmax | S
c
1)

+
∞
∫

zmax=Λ∗

zmax
zmax−co

log( co

1+co
(

1
Λ∗−

1
zmax

) )dFMZ (zmax | S
c
1)

>
∞
∫

zmax=co

log( zmax
co

)dFMZ (zmax | S
c
1) +

co
∫

zmax=Λ∗

zmax
zmax−co

log( zmax
co

)dFMZ (zmax | S
c
1)

+
∞
∫

zmax=Λ∗

zmax
zmax−co

log( co

1+co
(

1
Λ∗−

1
zmax

) )dFMZ (zmax | S
c
1)

≥
∞
∫

zmax=co

log( zmax
co

)dFMZ (.) +
log(Λ∗

co
)

1− co
Λ∗

co
∫

zmax=Λ∗

dFMZ (.) + 1
1− co

Λ∗
log co

Λ∗

∞
∫

zmax=Λ∗

dFMZ (zmax | S
c
1)

=
∞
∫

zmax=co

log( zmax
co

)dFMZ (.) + [1 − FMZ (co | S
c
1)]

log( co
Λ∗ )

1− co
Λ∗

>
∞
∫

zmax=co

log( zmax
co

)dFMZ (.) +
log( co

Λ∗ )

1− co
Λ∗

= E
[

log( zmax
co

)1{zmax≥co} | S
c
1

]

+
log( co

Λ∗ )

1− co
Λ∗

(B.33)
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For (B.33), the first inequality is from zmax

zmax−co
log( zmax

co
) > log( zmax

co
). The second in-

equality is due to the minimum of zmax

zmax−co
log( zmax

co
) over Λ∗ ≤ z ≤ co is Λ∗

Λ∗−co
log(Λ∗

co
)

and the lower bound of Q(zmax) which is 1
1− co

Λ∗
log co

Λ∗ . The last inequality is because

of 0 < [1 − FM
Z (co | g ≥ gT )] < 1, while

log( co
Λ∗ )

1− co
Λ∗

≤ 0. Also note that, as 0 < Λ∗ ≤ co,
log( co

Λ∗ )

1− co
Λ∗

will not go to −∞.

B.10 Conclusion for throughput scaling in ATPC

case

As 0 < Λ∗ ≤ 1
Pav

, the behaviour of throughput in secondary network can be shown

as follows.

• Upper-bound : From (3.16), we can analyze the upper-bound

lim
M→∞

C∗
s

log(logM) ≤ lim
M→∞

E[log( zmax
Λ∗ )1{zmax≥Λ∗}]
log(logM)

(c)
= 1

(c) is because we can also show the convergence in mean for both the set S1

and Sc1 by the same technique in [81].

• Lower-bound :

– If ǫp > ǫ0p

lim
M→∞

C∗
s

log(logM)

≥ lim
M→∞

1
log(logM)

(

E
[

log( zmax
Λ∗ )1{zmax≥Λ∗}

]

+ log(Λ∗

co
· γǫ

1−γǫ
)
)

= lim
M→∞

1
log(logM)E

[

log( zmax
Λ∗ )1{zmax≥Λ∗}

]

+ lim
M→∞

1
log(logM) log(Λ∗

co
· γǫ

1−γǫ
)

= 1

– If ǫp = ǫ0p
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For Λ∗ ≥ co

lim
M→∞

C∗
s

log(logM)

≥ ǫ0p

(

lim
M→∞

1
log(logM)E

[

log( zmax
Λ∗ )1{zmax≥Λ∗}

]

)

+
(

1 − ǫ0p
)

(

lim
M→∞

1
log(logM)

(

E
[

log( zmax
Λ∗ )1{zmax≥Λ∗} | g ≥ gT

]

+
co
Λ∗

1− co
Λ∗

log co
Λ∗

)

)

= ǫ0p +
(

1 − ǫ0p
)

lim
M→∞

1
log(logM)E

[

log( zmax
Λ∗ )1{zmax≥Λ∗} | g ≥ gT

]

+
(

1 − ǫ0p
)

lim
M→∞

1
log(logM)

( co
Λ∗

1− co
Λ∗

log co
Λ∗

)

= 1

For Λ∗ ≤ co

lim
M→∞

C∗
s

log(logM)

≥ ǫ0p

(

lim
M→∞

1
log(logM)E

[

log( zmax
Λ∗ )1{zmax≥Λ∗}

]

)

+
(

1 − ǫ0p
)

(

lim
M→∞

1
log(logM)

(

E
[

log( zmax
co

)1{zmax≥co} | g ≥ gT

]

+ 1
1− co

Λ∗
log co

Λ∗

)

)

= ǫ0p +
(

1 − ǫ0p
)

lim
M→∞

1
log(logM)E

[

log( zmax
co

)1{zmax≥co} | g ≥ gT

]

+
(

1 − ǫ0p
)

lim
M→∞

1
log(logM)

(

1
1− co

Λ∗
log co

Λ∗

)

= 1

Finally, we can conclude that C∗
s grows like log(logM) in ATPC case. Finally,

we can conclude that C∗
s grows like log(logM) in ATPC case.

B.11 Proof of Lemma 3.3.3

Proof. When SBS transmits by power Po, KKT condition





1

1+
M
∑

i=1
p∗2i(χχχ)zi

zi − Λ∗(χχχ)





must equal to zero, thereby Λ∗(χχχ) = zmax

1+Pozmax
. Also, the boundary between the

region 3 and 4 has to satisfy the condition BB
1,χχχ = BB

2,χχχ. Therefore,

0 = BB
1,χχχ − BB

2,χχχ = [S∗ + log(1 + θzmax)] − [log(1 + Pozmax) − Λ∗(χχχ)Po]

∴
1+θzmax
1+Pozmax

= exp
(

−S∗ − Pozmax
1+Pozmax

)

∴ θ = K(zmax) = − 1
zmax

+ 1
zmax

(1 + Pozmax) exp
(

−S∗ − Pozmax
1+Pozmax

)
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Next, we will show that K(zmax) is strictly increasing over zmax ≥ 0 when POC is

active, i.e. S∗ > 0.

K ′(z) = 1
z2

[

1 −
(

1+2Poz
1+Poz

)

exp
(

−S∗ − Poz
1+Poz

)]

Let f(z) =
(

1+2Poz
1+Poz

)

exp
(

−S∗ − Poz
1+Poz

)

≥ 0. Thus,

f ′(z) = − exp
(

−S∗ − Poz
1+Poz

)

P 2
o

(1+Poz)
3 ≤ 0, for z ≥ 0

∴ f(z) is decreasing for 0 ≤ z ≤ ∞, so

f(z) ≤ f(z = 0) ≤ exp(−S∗) ≤ 1

∴ K ′(z) = 1
z2

(1 − f(z)) ≥ 1
z2

(1 − exp(−S∗)) > 0 for S∗ > 0

B.12 Expression of δ(Po, co, γǫ)

First, we will show that S∗ has an upper bound in this case because we know that

Pr {S3} = ǫp − ǫ0p. Define γǫ = (ǫp − ǫ0p)/(1 − ǫ0p). Then, we have

γǫ =
∞
∫

zmax=zo

(

K(zmax)
∫

θ=0

dFΘ(θ | g ≥ gT )

)

dFMZ (zmax | g ≥ gT )

=
∞
∫

zmax=zo

(

1 − 1
1+coK(zmax)

)

dFMZ (zmax | g ≥ gT )

≤
(

1 − 1
1+coK(∞)

)

(B.34)

Note that The inequality is from the fact that
(

1 − 1
1+coK(zmax)

)

≤
(

1 − 1
1+coK(∞)

)

and K(∞) = Po exp(−S∗ − 1), the condition on S∗ in this case becomes 0 < S∗ ≤

log(Poco
1−γǫ

γǫ
) − 1.

According to the condition on the set 4 that BB
1,χχχ ≥ BB

2,χχχ. We have

S∗ + log(1 + θzmax) ≥ log(1 + Pozmax) −
[

1 − 1
1+Pozmax

]

∴ log(1 + θzmax) ≥ log(1 + Pozmax) − S∗ − 1 + 1
1+Pozmax

≥ log(1 + Pozmax) − S∗ − 1

∴ log(1 + θzmax) ≥ log(1 + Pozmax) −
[

log(Poco
1−γǫ

γǫ
) − 1

]

− 1 = log(1 + Pozmax) − log(Poco
1−γǫ

γǫ
)

∴ E[log(1 + θzmax) | S4] ≥ E[log(1 + Pozmax) | S4] − δ(Po, co, γǫ)

∴ C∗
s ≥

4
∑

k=1

Pr(Sk)E [log(1 + Pozmax) | Sk] − Pr {S4} δ(Po, co, γǫ)

≥ E [log(1 + Pozmax)] − δ(Po, co, γǫ)
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B.13 Lower bound on E [r∗s | g ≥ gT ] when ǫp = ǫ0p

for PTPC with ON-OFF power policy at the

PU

E [r∗s | g ≥ gT ]

=

[

∞
∫

zmax=0

∞
∫

θ=Po

log(1 + zmaxPo)dFΘ(θ | g ≥ gT )dFMZ (zmax | g ≥ gT )

]

+

(

∞
∫

zmax=0

(

Po
∫

θ=0

log(1 + zmaxθ)dFΘ(θ | g ≥ gT )

)

dFMZ (zmax | g ≥ gT )

)

=

[

∞
∫

zmax=0

log(1 + zmaxPo) (1 − FΘ(θ = Po | g ≥ gT )) dFMZ (zmax | g ≥ gT )

]

+

(

∞
∫

zmax=0

zmax
zmax−co

log(1+Pozmax
1+Poco

) dFMZ (zmax | g ≥ gT )

−
∞
∫

zmax=0

log(1 + zmaxPo) (1 − FΘ(θ = Po | g ≥ gT )) dFMZ (zmax | g ≥ gT )

)

=
∞
∫

zmax=0

zmax
zmax−co

log(1+Pozmax
1+Poco

) dFMZ (zmax | g ≥ gT )

=
∞
∫

zmax=0

zmax
zmax−co

log( zmax
co

)dFMZ (zmax | g ≥ gT )

+
∞
∫

zmax=0

zmax
zmax−co

log(
Po+ 1

zmax

Po+ 1
co

)dFMZ (zmax | g ≥ gT )

≥

[

∞
∫

zmax=0

zmax
zmax−co

log( zmax
co

)dFMZ (zmax | g ≥ gT )

]

− log(
Po+ 1

co

Po
)

≥

[

∞
∫

zmax=co

log( zmax
co

)dFMZ (zmax | g ≥ gT )

]

− log(
Po+ 1

co

Po
)

= E[log( zmax
co

)1 (zmax ≥ co) | g ≥ gT ] − log(
Po+ 1

co

Po
)

(B.35)

Remark B.13.1. The second equality in (B.35) is obtained by using integration by

parts. The first inequality follows from the fact that − log(
Po+ 1

co

Po
) ≤ zmax

zmax−co
log(

Po+ 1
zmax

Po+ 1
co

) ≤

0. The last inequality is from zmax

zmax−co
log( zmax

co
) ≥ 0 for all zmax ≥ 0, using co instead

of 0 as the lower limit of integration and applying the fact that zmax

zmax−co
log( zmax

co
) ≥

log( zmax

co
).



166 B.14. Conclusion for throughput scaling in PTPC case

B.14 Conclusion for throughput scaling in PTPC

case

• Upper-bound :

From (3.20), we have

C∗
s ≤ E [log(1 + Pozmax)]

(a)

≤ log (E [(zmax)]) + log(Po + E
[

1
zmax

]

)

∴ lim
M→∞

C∗
s

log(logM) ≤ lim
M→∞

1
log(logM)

(

log (E [zmax]) + log(Po + E
[

1
zmax

]

)
)

= 1

(B.36)

Note that the inequality (a) from (B.36) follows from Jensen’s inequality.

• Lower-bound :

– When ǫp > ǫ0p

lim
M→∞

C∗
s

log(logM) ≥ lim
M→∞

1
log(logM)E [log(1 + Pozmax)] − lim

M→∞

1
log(logM)δ(Po, co, γǫ)

= lim
M→∞

1
log(logM)E [log(zmax)1 (z ≥ Po)] = 1

– When ǫp = ǫ0p

lim
M→∞

C∗
s

log(logM)

= ǫ0p lim
M→∞

E[r∗s |g<gT ]
log(logM) + (1 − ǫ0p) lim

M→∞

E[r∗s |g≥gT ]
log(logM)

= ǫ0p lim
M→∞

E[log(1+Pozmax)|g<gT ]
log(logM) + (1 − ǫ0p) lim

M→∞

E[rs|g≥gT ]
log(logM)

≥ ǫ0p lim
M→∞

1
log(logM)E [log(Pozmax) | g < gT ]

+(1 − ǫ0p) lim
M→∞

1
log(logM)

(

E
[

log( zmax
co

1 (z ≥ co)) | g ≥ gT

]

− log

(

Po+ 1
co

Po

))

= ǫ0p lim
M→∞

1
log(logM) [E [log(zmax) | g < gT ] + logPo]

+(1 − ǫ0p) lim
M→∞

1
log(logM)E

[

log( zmax
co

1 (z ≥ co)) | g ≥ gT

]

= 1

Remark B.14.1. The inequality is from the fact thatE [log(1 + Pozmax) | g < gT ] ≥

E [log(Pozmax) | g < gT ] and the result from (B.35) that E [r∗s | g ≥ gT ] ≥

E[log( zmax

co
)1 (zmax ≥ co) | g ≥ gT ] − log(

Po+ 1
co

Po
).
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Finally, we can conclude that C∗
s grows like log(logM) in PTPC case.

B.15 Proof of Theorem 3.4.1 for ǫp = ǫ0p

In this case, it implies that Pr(S̃2) = ǫp − ǫ0p = 0 and ρmax = hmax in S̃1. Then,

the throughput from the SBS is expressed as C∗
s = E

[

log(ρmax

Λ∗ )1{ρmax≥Λ∗, S̃1}

]

=

ǫ0pE
[

log(hmax

Λ∗ )
]

. Thus, we can conclude that lim
M→∞

C∗
s

log(logM)
= ǫp.

B.16 Proof of Theorem 3.4.1 for ǫp > ǫ0p

In this case, throughput C∗
s can be described as

C∗
s = E

[

log ρmax

Λ∗ 1{g<gT ,ρmax≥Λ∗}

]

+ E

[

log ρmax

Λ∗ 1{
g≥gT , ρmax≥

Λ∗

t−1(S∗)

}

]

(B.37)

Note that E
[

log ρmax

Λ∗ 1{g<gT , ρmax≥Λ∗}

]

have been shown previously that it scales like

ǫ0p log(logM). So, we have to show that E

[

log ρmax

Λ∗ 1{
g≥gT , ρmax≥

Λ∗

t−1(S∗)

}

]

scales like

(ǫp − ǫ0p) log(logM).

Then, we can compute the upper-bound of E

[

log ρmax

Λ∗ 1{
g≥gT , ρmax≥

Λ∗

t−1(S∗)

}

]

as

follows.

E

[

log ρmax

Λ∗ 1{
g≥gT , ρmax≥

Λ∗

t−1(S∗)

}

]

= E

[

log ρmax

Λ∗ 1{
ρmax≤logM, g≥gT ,ρmax≥

Λ∗

t−1(S∗)

}

]

+
∞
∑

i=1
E

[

log ρmax

Λ∗ 1{
i logM≤ρmax≤(i+1) logM, g≥gT ,ρmax≥

Λ∗

t−1(S∗)

}

]

≤ log( logM
Λ∗ )Pr

(

ρmax ≤ logM, g ≥ gT , ρmax ≥ Λ∗

t−1(S∗)

)

+
∞
∑

i=1
log( (i+1) logM

Λ∗ )Pr
(

ρmax ≥ i logM, g ≥ gT , ρmax ≥ Λ∗

t−1(S∗)

)

(a)

≤ log( logM
Λ∗ )Pr

(

g ≥ gT , ρmax ≥ Λ∗

t−1(S∗)

)

+
∞
∑

i=1
log( (i+1) logM

Λ∗ )Pr (ρmax ≥ i logM)

(b)

≤ (ǫp − ǫ0p) log( logM
Λ∗ ) +

∞
∑

i=1
log( (i+1) logM

Λ∗ )O( eO(i)

M iO(i)
)

∴ lim
M→∞

E



log ρmax
Λ∗ 1{

g≥gT , ρmax≥
Λ∗

t−1(S∗)

}





log(logM)

(c)

≤ (ǫp − ǫ0p)

(B.38)
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Remark B.16.1. The inequality from (a) in is from the fact that

Pr
(

ρ ≤ logM, g ≥ gT , ρmax ≥ Λ∗

t−1(S∗)

)

≤ Pr
(

g ≥ gT , ρmax ≥ Λ∗

t−1(S∗)

)

and

Pr
(

ρmax ≥ i logM, g ≥ gT , ρmax ≥ Λ∗

t−1(S∗)

)

≤ Pr (ρmax ≥ i logM). For (b), we

use the result in [81], i.e. Pr(ρmax ≥ i logM) ≤ O( eO(i)

M iO(i)
) because ρmax grows like

logM . In [81], it shows that
∞
∑

i=1

log( (i+1) logM
Λ∗ )O( eO(i)

M iO(i)
) is finite, leading to the result

in (c).

Thus, we have

lim
M→∞

C∗
s

log(logM) = lim
M→∞

E
[

log ρmax
Λ∗ 1{g≥gT }1{ρmax≥Λ∗}

]

log(logM) + lim
M→∞

E



log ρmax
Λ∗ 1{g≥gT }1

{

ρmax≥
Λ∗

t−1(S∗)

}





log(logM)

≤ ǫ0p + (ǫp − ǫ0p) = ǫp
(B.39)

The lower bound of E

[

log ρmax

Λ∗ 1{
g≥gT , ρmax≥

Λ∗

t−1(S∗)

}

]

can be obtained as follows

E

[

log ρmax

Λ∗ 1{
g≥gT , ρmax≥

Λ∗

t−1(S∗)

}

]

≥ E

[

log( 1
t−1(S∗)

)1{
g≥gT ,ρmax≥

Λ∗

t−1(S∗)

}

]

= log( 1
t−1(S∗)

)Pr(S̃2) =
(

ǫp − ǫ0p
)

log( 1
t−1(S∗)

)

(B.40)

Note that the inequality in (B.40) is from the condition ρmax ≥ Λ∗

t−1(S∗)
.

Then, we have

lim
M→∞

C∗
s

log(logM) = lim
M→∞

E
[

log ρmax
Λ∗ 1{g≥gT , ρmax≥Λ∗}

]

log(logM) + lim
M→∞

E



log ρmax
Λ∗ 1{

g≥gT , ρmax≥
Λ∗

t−1(S∗)

}





log(logM)

= ǫ0p + lim
M→∞

E



log ρmax
Λ∗ 1{

g≥gT , ρmax≥
Λ∗

t−1(S∗)

}





log(logM)

≥ ǫ0p +
(

ǫp − ǫ0p
)

lim
M→∞

log( 1
t−1(S∗)

)

log(logM)

= ǫp

(B.41)

Note that the last equality in (B.41) is from Lemma 3.4.1. Thus, we can show that

lim
M→∞

C∗
s

log(logM)
≥ ǫp.

Finally, we have that lim
M→∞

C∗
s

log(logM)
= ǫp.
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B.17 Proof of Theorem 3.4.2 for ǫp = ǫ0p

In this case , it implies that Pr(S̃2) = ǫp − ǫ0p = 0 and ρmax = hmax in S̃1. Then,

the throughput from the SBS is expressed as C∗
s = E

[

log(1 + ρmaxPO)1{S̃1}

]

=

ǫ0pE [log(1 + ρmaxPO)]. Hence, we can conclude that lim
M→∞

C∗
s

log(logM)
= ǫp.

B.18 Proof of Theorem 3.4.2 for ǫp > ǫ0p

In this case, throughput C∗
s can be described as

C∗
s = E

[

log(1 + ρmaxPO)1{g<gT }

]

+ E

[

log(1 + ρmaxPO)1{
g≥gT , 1+ρmaxPO≥ 1

t−1(S∗)

}

]

(B.42)

As shown previously, E
[

log(1 + ρmaxPO)1{g<gT }

]

scales like ǫ0p log(logM). Now, we

will show that E

[

log(1 + ρmaxPO)1{
g≥gT , 1+ρmaxPO≥ 1

t−1(S∗)

}

]

scales like

(ǫp − ǫ0p) log(logM).

The upper-bound of E

[

log(1 + ρmaxPO)1{
g≥gT , 1+ρmaxPO≥ 1

t−1(S∗)

}

]

is as follows

E

[

log(1 + ρmaxPO)1{
g≥gT , 1+ρmaxPO≥ 1

t−1(S∗)

}

]

= E

[

log(1 + ρmaxPO)1{
1≤ρmax≤logM, g≥gT , 1+ρmaxPO≥ 1

t−1(S∗)

}

]

+
∞
∑

i=1
E

[

log(1 + ρmaxPO)1{
i logM≤ρmax≤(i+1) logM, g≥gT , 1+ρmaxPO≥ 1

t−1(S∗)

}

]

≤ log(1 + PO logM)Pr
(

1 ≤ ρmax ≤ logM, g ≥ gT , 1 + ρmaxPO ≥ 1
t−1(S∗)

)

+
∞
∑

i=1
log(1 + PO(i+ 1) logM)Pr

(

i logM ≤ ρmax ≤ (i+ 1) logM, g ≥ gT , 1 + ρmaxPO ≥ 1
t−1(S∗)

)

≤ log(1 + PO logM)Pr
(

g ≥ gT , 1 + ρmaxPO ≥ 1
t−1(S∗)

)

+
∞
∑

i=1
log(1 + PO(i+ 1) logM)Pr (i logM ≤ ρmax ≤ (i+ 1) logM)

(a)

≤ (ǫp − ǫ0p) log(1 + PO logM) +
∞
∑

i=1
log(1 + PO(i+ 1) logM)O( eO(i)

M iO(i)
)

∴ lim
M→∞

E



log(1+ρmaxPO)1{
g≥gT , 1+ρmaxPO≥ 1

t−1(S∗)

}





log(logM)

(b)

≤ (ǫp − ǫ0p)

(B.43)

In (B.43), (a) follows the result that Pr(ρmax ≥ i logM) ≤ O( eO(i)

M iO(i)
) because

ρmax grows like logM , while (b) is because
∞
∑

i=1

log(1 + PO(i + 1) logM)O( eO(i)

M iO(i)
) is

finite [81].
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Also, the lower-bound can be computed as follows.

E

[

log(1 + ρmaxPO)1{
g≥gT , 1+ρmaxPO≥ 1

t−1(S∗)

}

]

≥ E

[

log( 1
t−1(S∗)

)1{
g≥gT ,1+ρmaxPO≥ 1

t−1(S∗)

}

]

= log( 1
t−1(S∗)

)Pr(g ≥ gT , 1 + ρmaxPO ≥ 1
t−1(S∗)

)

= (ǫp − ǫ0p) log( 1
t−1(S∗)

)

(B.44)

By Lemma 3.4.1, it reveals that 1
t−1(S∗)

= Θ(logM), we then apply the facts that

E
[

log(1 + ρmaxPO)1{g<gT }

]

scales like ǫ0p log(logM) and the results from (B.43) and

(B.44). Thus, it is not hard to prove that lim
M→∞

C∗
s

log(logM)
is upper-bounded and

lower-bounded by ǫp, i.e. lim
M→∞

C∗
s

log(logM)
= ǫp.



Appendix C

Proofs in Chapter 4

C.1 Proof of Lemma 4.2.1

We first show that for an arbitrary feasible probabilistic power scheme P(ννν), we

can always construct another feasible scheme P′(ννν) which is randomized among

deterministic power schemes pk(ννν) with time-sharing factors wk(ννν), k = 1, 2, and

performs equally well or better than P(ννν).

By the concavity of rs(ννν,p(ννν)) over p and Jensen’s inequality, we obtain

rs(ννν,p1(ννν)) ≥ E[rs(ννν,Ps(ννν)) | rp(ννν,p(ννν)) ≥ r0
p, ννν]

rs(ννν,p2(ννν)) ≥ E[rs(ννν,Ps(ννν)) | rp(ννν,p(ννν)) < r0
p, ννν]

(C.1)

Further, the set of all possible p(ννν) such that rp(ννν,p(ννν)) ≥ r0
p lies in the halfspace

defined by pT (ννν)βββ ≤ Pp. Due to the definition in (4.8), p1(ννν) must also be in

that halfspace and it implies that pT1 (ννν)βββ ≤ Pp. Also, note that if w1(ννν) = 0, the

constraint is discarded from the optimization problem. Thus, we can write

w1(ννν)
[

Pp(g) − βββTp1(ννν)
]

≥ 0 (C.2)

Construct the new probabilistic scheme P′ such that P′ = p1(ννν) with probability

w1(ννν) and P′ = p2(ννν) with probability w2(ννν) = 1 − w1(ννν).

For the PU’s outage probability based on the policy P′, we can show that

Pr
{

rp(ννν,P
′(ν)) ≥ r0

p | ννν
}

≥ w1(ννν), so E [w1(ννν)] ≥ 1 − ǫp.

The average power of P′ does not exceed Pav, since

E [P′(ννν)] = E [w1(ννν)p1(ννν) + (1 − w1(ννν))p2(ννν)] = E[P(ννν)] � Pav (C.3)
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Now, it can be proved that P′(ννν) achieves higher average SU rate as follows:

E [rs(ννν,P
′(ννν))] = E [w1(ννν)rs(ννν,p1(ννν)) + (1 − w1(ννν))rs(ννν,p2(ννν))]

(a)

≥ E [rs(ννν,P(ννν))]
(C.4)

where the inequality is due to Jensen’s inequality.

C.2 KKT conditions corresponding to Problem

(4.9)

Let i ∈ {1, 2, . . . ,M} and k ∈ {1, 2}. From the Karush-Kuhn-Tucker (KKT) condi-

tions, we have

∂l(...)

∂p∗k,i(ννν)







= 0, p∗k,i(ννν) > 0

≤ 0, p∗k,i(ννν) = 0
(C.5)

∂l(...)

∂w∗
1(ννν)



















= 0, 0 < w∗
1(ννν) < 1

≤ 0, w∗
1(ννν) = 0

≥ 0, w∗
1(ννν) = 1

(C.6)

λλλ∗T (Pav − E [w1(ννν)p1(ννν) + (1 − w1(ννν))p2(ννν)]) = 0 (C.7)

s∗ (E [w∗
1(ννν)] − (1 − ǫp)) = 0 (C.8)

τ∗(ννν)w∗
1(ννν)

[

Pp(g) − βββTp∗
1(ννν)

]

= 0 (C.9)

p∗
k(ννν) � 0, k = 1, 2 (C.10)

0 ≤ w∗
k(ννν) ≤ 1 (C.11)

By using the KKT conditions from (C.5) to (C.11), we can derive p∗
2(ννν), p∗

1(ννν), and

w∗
1(ννν).

C.3 Proof of Lemma 4.2.3

We will show that, by P′(ννν), we can achieve a larger capacity region, i.e. CMAC(ννν,P(ννν)) ⊆

CMAC(ννν,P′(ννν)).
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Since for all S,

E[log(1 +
∑

i∈S

h̄iP
′
i (ννν))]

= E[w1(ννν) log(1 +
∑

i∈S

h̄ip1,i(ννν)) + (1 − w1(ννν)) log(1 +
∑

i∈S

h̄ip2,i(ννν))]

≥ E[log(1 +
∑

i∈S

h̄iPi(ννν))]

(C.12)

where the inequality follows from Jensen’s inequality. Therefore, CMAC(ννν,P(ννν)) ⊆

CMAC(ννν,P′(ννν)).

From the definition in (4.19), it is also evident that rk ∈ CMAC(ννν,pk(ννν)). Note

that the policy also satisfies AIPC and POC and this can be proven by a similar

procedure as used in Appendix C.1.

C.4 KKT conditions corresponding to Problem

(4.20)

∂l(...)

∂p∗k,i(ννν)







= 0, p∗k,i(ννν) > 0

≤ 0, p∗k,i(ννν) = 0
, k = 1, 2. (C.13)

∂l(...)

∂w∗
1(ννν)



















≥ 0, w∗
1(ννν) = 1

= 0, 0 < w∗
1(ννν) < 1

≤ 0, w∗
1(ννν) = 0

(C.14)

λλλ∗T (Pav − E[w∗
1(ννν)p

∗
1(ννν) + (1 − w∗

1(ννν))p
∗
2(ννν)]) = 0 (C.15)

s∗ (E [w∗
1(ννν)] − (1 − ǫp)) = 0 (C.16)

τ∗(ννν)w∗
1(ννν)

(

Pp(g) − βββTp∗
1(ννν)

)

= 0 (C.17)

p∗
k(ννν) � 0, k = 1, 2 (C.18)

0 ≤ w∗
1(ννν) ≤ 1 (C.19)

r∗k ∈ CMAC(ννν,p∗
k(ννν)), k = 1, 2. (C.20)
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C.5 Proof of Lemma 4.3.1

For an arbitrary feasible probabilistic power scheme P(ννν), we can always con-

struct another feasible scheme P′(ννν) which is randomized among deterministic power

schemes pk(ννν) with time-sharing factors ψk(ννν), k = 1, 2, 3, and performs equally well

or better than P(ννν).

As Pr {P′(ννν) = E [P(ννν) | ro ∈ CMAC(ννν,p(ννν)), ννν] | ννν} = ψ1(ννν) + ψ2(ννν), it implies

that Pr {ro ∈ CMAC(ννν,P′(ννν))} = E[Pr {ro ∈ CMAC(ννν,P′(ννν)) | ννν}] = E[ψ1(ννν)+ψ2(ννν)] ≥

1 − ǫs.

For ATPC, it is obvious that E[P′(ννν)] = E[
4
∑

k=1

ψk(ννν)pk(ννν)] = E[P(ννν)] � Pav.

Now, we will show that rp(ννν, E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p, ννν
]

) ≥ r0
p. Note that

when rp(ννν,p(ννν)) ≥ r0
p, it implies βββTp(ννν) ≤ Pp(g), so the possible solution lies in a

halfspace. Further, notice that

E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p, ro ∈ CMAC(ννν,p(ννν)), ννν

]

is a convex combination of all

possible solutions that satisfy ro ∈ CMAC(ννν,p(ννν)) and rp(ννν,p(ννν)) ≥ r0
p. Hence, it

implies that r0
p ≤ rp(ννν,p1(ννν)). In other words, we can write ψ1(ννν)

(

Pp(g) − βββTp1(ννν)
)

≥

0.

Likewise, we can also write ψ3(ννν)
(

Pp(g) − βββTp3(ννν)
)

≥ 0 due to the same reason.

For POC, since Pr
{

P′(ννν) = E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p, ννν
]

| ννν
}

= ψ1(ννν) + ψ3(ννν),

Pr {rp(ννν,P
′(ννν))} = E[Pr {rp(ννν,P

′(ννν)) | ννν}] = E[ψ1(ννν) + ψ3(ννν)] ≥ 1 − ǫp.

Also, by the definition in (4.38), we have ro ∈ CMAC(ννν,p1(ννν)). Likewise, ro ∈

CMAC(ννν,p2(ννν)).

We can then show that CMAC(ννν,P(ννν)) ⊆ CMAC(ννν,P′(ννν)) because of the concavity

of the log function in the definition of CMAC(ννν,P(ννν)).

C.6 Proof of convexity of the set QC(ro)

For a given rate vector ro, consider the two points (ε̄
(1)
s , ε

(1)
p , P̄(1)) and (ε̄

(2)
s , ε

(2)
p , P̄(2))

in the set QC(ro). By Definition 4.3.1 and Lemma 4.3.1, there must exist power

allocation policies P(1)(ννν) and P(2)(ννν) in the form expressed in Lemma 4.3.1 such

that, for all l = 1, 2, ε̄
(l)
s = E[ψ

(l)
1 (ννν) + ψ

(l)
2 (ννν)], 1 − ε

(l)
p = E[ψ

(l)
1 (ννν) + ψ

(l)
3 (ννν)] and
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P̄(l) = E[P(l)(ννν)] = E[
4
∑

k=1

ψ
(l)
k (ννν)p

(l)
k ]. To prove convexity of QC(ro), we must show

that (δε̄
(1)
s + (1 − δ)ε̄

(2)
s , δε

(1)
p + (1 − δ)ε

(2)
p , δP̄(1) + (1 − δ)P̄(2)) ∈ QC(ro), where

δ ∈ [0, 1]. To do so, we define another random power allocation P(x)(ννν) that is

randomized using the power policy P(1)(ννν) with probability δ and the policy P(2)(ννν)

with probability 1 − δ. Obviously, Pr
{

ro ∈ CMAC(ννν,P(x)(ννν))
}

= E[δ(ψ
(1)
1 (ννν) +

ψ
(1)
2 (ννν))+ (1− δ)(ψ

(2)
1 (ννν)+ψ

(2)
2 (ννν))] = δε̄

(1)
s +(1− δ)ε̄

(2)
s , Pr

{

rp(ννν,P
(x)(ννν)) ≥ r0

p

}

=

E[δ(ψ
(1)
1 (ννν) +ψ

(1)
3 (ννν)) + (1− δ)(ψ

(2)
1 (ννν) +ψ

(2)
3 (ννν))] = δ

[

1 − ε
(1)
p

]

+ (1− δ)
[

1 − ε
(2)
p

]

and E[P(x)(ννν)] = δP̄(1) + (1− δ)P̄(2). Thus, we have (δε̄
(1)
s + (1− δ)ε̄

(2)
s , δε

(1)
p + (1−

δ)ε
(2)
p , δP̄(1) + (1 − δ)P̄(2)) ∈ QC(ro) and QC(ro) is convex.

C.7 KKT conditions corresponding to Problem

(4.43)

From the associated (necessary and sufficient) KKT conditions , we have

∂l(...)

∂p∗k,i(ννν)







= 0, p∗k,i(ννν) > 0

≤ 0, p∗k,i(ννν) = 0
, k = 1, 2, 3, 4. (C.21)

∂l(...)

∂ψ∗
k(ννν)







= 0, ψ∗
k(ννν) ≥ 0

≤ 0, ψ∗
k(ννν) = 0

, k = 1, 2, 3, 4. (C.22)

λλλ∗T (Pav − E[w∗
1(ννν)p

∗
1(ννν) + (1 − w∗

1(ννν))p
∗
2(ννν)]) = 0 (C.23)

s∗ (E [ψ∗
1(ννν) + ψ∗

3(ννν)] − (1 − ǫp)) = 0 (C.24)

ϕ∗
k(ννν)ψ

∗
k(ννν)

(

Pp(g) − βββTp∗
k(ννν)

)

= 0, k = 1, 3 (C.25)

Γ∗(ννν)[1 −
4
∑

k=1

ψ∗
k(ννν)] = 0 (C.26)

p∗
k(ννν) � 0, k = 1, 2, 3, 4 (C.27)

ψ∗
k(ννν) ≥ 0, k = 1, 2, 3, 4 (C.28)

ro ∈ CMAC(ννν,p∗
k(ννν)), k = 1, 2. (C.29)
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C.8 Proof of Proposition 4.3.2

Note that Γ∗(ννν), s∗ and ϕ∗
k(ννν)Pp(g) are independent of pk(ννν). Thus, subproblems

(4.45) to (4.48) can be rewritten as follows:

Subproblem for p∗
4 : min

p4(ννν)
λλλ∗Tp4(ννν). (C.30)

Subproblem for p∗
3 : min

p3(ννν)

[

λλλ∗T + ϕ∗(ννν)βββT
]

p3(ννν)

s.t. ϕ∗
3(ννν)

[

Pp(g) − βββTp3(ννν)
]

= 0.
(C.31)

Subproblem for p∗
2 : min

p2(ννν)
λλλ∗Tp2(ννν)

s.t. ro ∈ CMAC(ννν,p2(ννν)).
(C.32)

Subproblem for p∗
1 : min

p1(ννν)

[

λλλ∗T + ϕ∗
1(ννν)βββ

T
]

p1(ννν)

s.t. ro ∈ CMAC(ννν,p1(ννν)),

ϕ∗
1(ννν)

[

Pp(g) − βββTp1(ννν)
]

= 0.

(C.33)

From (C.30) and (C.31), it is obvious that p∗
4(ννν) = p∗

3(ννν) = 0. Now, Lemma 4.3.2

can be applied to solve for p∗
2(ννν) and p∗

1(ννν). For a given rate vector ro and channel

state ννν, we define the set of received powers that can support ro, G̃ (r∗o), as follows:

G̃ (r∗o) =
{

q : qi = h̄ipi, ro ∈ CMAC(ννν,p)
}

(C.34)

which is a contra-polymatroid with rank function: f(S) = exp(ro(S)) − 1.

Substitute each pk,i by
qk,i

h̄i
and utilize Lemma 4.3.2 above. Thus, the solution

for p∗
2 is as follows:

p∗2,π(i) =











1
h̄π(i)

[

exp(ro,π(i)) − 1
]

, i = 1

1
h̄π(i)

[

exp(
i
∑

m=1

ro,π(m)) − exp(
i−1
∑

m=1

ro,π(m))

]

, i = 2, . . . ,M

where the permutation π satisfies
λ∗

π(1)

h̄π(1)
≥ . . . ≥

λ∗
π(M)

h̄π(M)
. For p∗

1, we have

p∗1,π(i) =











1
h̄π(i)

[

exp(ro,π(i)) − 1
]

, i = 1

1
h̄π(i)

[

exp(
i
∑

m=1

ro,π(m)) − exp(
i−1
∑

m=1

ro,π(m))

]

, i = 2, . . . ,M
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ϕ∗
1(ννν)

[

βββTp∗
1 − Pp(g)

]

= 0

where the permutation π satisfies
ηπ(1)

h̄π(1)
≥ . . . ≥

ηπ(M)

h̄π(M)
.

C.9 Proof of Lemma 4.3.3

For an arbitrary feasible probabilistic power scheme P(ννν), we can always con-

struct another feasible scheme P′(ννν) which is randomized among deterministic power

schemes pk(ννν) with time-sharing factors ψk(ννν), and performs equally well or better

than P(ννν).

Since Pr {P′(ννν) = E [P(ννν) | Sn(j), ννν] | ννν} = ζ1(ννν, j) + ζ2(ννν, j), it means that

Pr {ri(ννν,P(ννν)) ≥ ro,i} =
∑

j:i∈Sn(j)

E[Pr {Sn(j)}] =
∑

j:i∈Sn(j)

E[ζ1(ννν, j) + ζ2(ννν, j)] ≥

1 − ǫs,i for all i.

For ATPC, it is obvious that E[P′(ννν)] = E[
2M−1
∑

j=0

2
∑

k=1

ζk(ννν, j)pk(ννν, j)] = E[P(ννν)] �

Pav.

Now, we will show that rp(ννν, E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p,Sn(j), ννν

]

) ≥ r0
p. Note

that when rp(ννν,p(ννν)) ≥ r0
p, it implies βββTp(ννν) ≤ Pp(g), so the possible solution lies

in a halfspace. Further, notice that

E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p,Sn(j), ννν

]

is a convex combination of all possible so-

lutions in that halfspace weighted by the probability of each solution. Hence,

E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p,Sn(j), ννν

]

also lies in the same halfspace due to convex

set properties, which means ζ1(ννν, j)
(

Pp(g) − βββTp1(ννν, j)
)

≥ 0.

For POC, since Pr
{

P′(ννν) = E
[

P(ννν) | rp(ννν,p(ννν)) ≥ r0
p, ννν
]

| ννν
}

=
2M−1
∑

j=0

2
∑

k=1

ζ1(ννν, j),

Pr {rp(ννν,P
′(ννν))} = E[Pr {rp(ννν,P

′(ννν)) | ννν}] =
2M−1
∑

j=0

E[ζ1(ννν, j)] ≥ 1 − ǫp.

Also, we have the following constraints on p1(ννν, j) and p2(ννν, j), i.e. ξξξ(j)ro ∈

CMAC(ννν,p1(ννν, j)) and ξξξ(j)ro ∈ CMAC(ννν,p2(ννν, j)) by the definition.

We can then show that CMAC(ννν,P(ννν)) ⊆ CMAC(ννν,P′(ννν)) because of the concavity

of the log function in the definition of CMAC(ννν,P(ννν)).
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C.10 Proof of convexity of the set QI(ro)

For a given rate vector ro, consider the two points (ε̄εε
(1)
s , ε

(1)
p , P̄(1)) and (ε̄εε

(2)
s , ε

(2)
p , P̄(2))

in the set QI(ro). By Definition 4.3.2 and Lemma 4.3.3, there must exist power

allocation policies P(1)(ννν) and P(2)(ννν) in the form expressed in Lemma 4.3.3 such

that, for all l = 1, 2, ε̄
(l)
s,i =

∑

j:i∈Sn(j)

E[ζ1(ννν, j) + ζ2(ννν, j)], for 1 ≤ i ≤ M and

0 ≤ j ≤ 2M − 1. Also, 1 − ε
(l)
p = E

[

2M−1
∑

i=0

ψ
(l)
1 (ννν, j)

]

and P̄(l) = E[P(l)(ννν)] =

E

[

2M−1
∑

j=0

2
∑

k=1

ζk(ννν, j)pk(ννν, j)

]

. To prove convexity of QI(ro), we must show that

(δε̄εε
(1)
s + (1− δ)ε̄εε

(2)
s , δε

(1)
p + (1− δ)ε

(2)
p , δP̄(1) + (1− δ)P̄(2)) ∈ QI(ro), where δ ∈ [0, 1].

Again, we define another random power policy P(x)(ννν) that is randomized using

the power policy P(1)(ννν) with probability δ and the policy P(2)(ννν) with probability

1 − δ. By repeating a similar procedure to Appendix C.6, eventually, we can show

that QI(ro) is a convex set. Finally, the convexity of QI(ro) also implies that the

individual usage probability region ŌI(Pav, ǫp, ro) is convex.

C.11 KKT conditions corresponding to Problem

(4.56)

From the associated (necessary and sufficient) KKT conditions , we have

∂l(...)

∂p∗k,i(ννν, j)







= 0, p∗k,i(ννν, j) > 0

≤ 0, p∗k,i(ννν, j) = 0
, ∀j, k (C.35)

∂l(...)

∂ζ∗k(ννν, j)







= 0, ζ∗k(ννν, j) ≥ 0

≤ 0, ζ∗k(ννν, j) = 0
, ∀j, k (C.36)

λλλ∗T



Pav − E





2M−1
∑

j=0

2
∑

k=1

ζ∗k(ννν, j)p
∗
k(ννν, j)







 = 0 (C.37)

s∗



E





2M−1
∑

j=0

ζ∗1 (ννν, j)



− (1 − ǫp)



 = 0 (C.38)

φ∗(ννν, j)
[

ζ∗1 (ννν, j)
(

Pp(g) − βββTp∗
1(ννν, j)

)]

= 0, ∀j, k (C.39)
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Γ∗(ννν)[1 −

2M−1
∑

j=0

2
∑

k=1

ζ∗k(ννν, j)] = 0, ∀j (C.40)

p∗
k(ννν, j) � 0, ∀j, k (C.41)

ζ∗k(ννν, j) ≥ 0, ∀j, k (C.42)

ξξξ(j)ro ∈ CMAC(ννν,p∗
k(ννν, j)), ∀j, k. (C.43)

C.12 Proof of Proposition 4.3.4

Note that Nj(
∑

i∈Sn(j)

µi), Γ∗(ννν), s∗ and φ∗(ννν, j)Pp(g) are all independent of pk(ννν, j).

Thus, the subproblems can be reformulated as

Subproblem for p2(ννν, j) : min
p2(ννν,j)

λλλ∗Tp2(ννν, j)

s.t. ξξξ(j)ro ∈ CMAC(ννν,p2(ννν, j)).
(C.44)

Subproblem for p1(ννν, j) : min
p1(ννν,j)

ηηη(j)∗Tp1(ννν, j)

s.t. ξξξ(j)ro ∈ CMAC(ννν,p1(ννν, j)),

φ∗(ννν, j)
[

Pp(g) − βββTp1(ννν, j)
]

= 0.

(C.45)

For a given rate vector ro and channel state ννν, we define the set of received

powers that can support ro, G̃ (ξξξ(j)r∗o), as follows:

G̃ (ξξξ(j)r∗o) =
{

q : qi = h̄ipi, ξξξ(j)ro ∈ CMAC(ννν,p)
}

which is a contra-polymatroid with rank function: f(S) = exp(ξξξ(j)ro(S)) − 1.

Then, we can apply Lemma 4.3.2 to solve for p∗
1(ννν, j) and p∗

2(ννν, j) in a similar

manner as previously shown Appendix C.8.
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Appendix D

Proofs in Chapter 5

D.1 Proof of Lemma 5.2.1

Proof. The proof of CPS is based on the nearest neighbourhood condition as a given

ν̂ corresponds to only one power level pj, i.e.

Rj =
{

(x,Γ) |
[

1 (pj <
cSU
Γ

) + λpj + s1 (pj > x)
]

<
[

1 (pi <
cSU
Γ

) + λpi + s1 (pi > x)
]

,∀i 6= j
}

(D.1)

For simplicity, define l(pj) = 1 (pi <
cSU

Γ
) + λpi + s1 (pi > x).

For given λ, s and power codebook P, if SU allows an outage, it uses the lowest

power level pL. Otherwise, it can use the lowest power level pj,min such that pj,min ≥

cSU

Γ
. For x < pL, the PU will face an outage regardless of the power level that

SU uses. Also, for x ≥ pj,min, using power level pj,min does not disturb PU as

the interference cannot pull PU to be in outage. Therefore in these two cases,

SU transmits with pj when Γ ∈
[

cSU

pj
, cSU

pj+1

)

for j 6= L while using pL when Γ ∈

[0, cSU

p1

)

∪
[

cSU

pL
, ∞]

It is important to note that p1 ≤ pL+ 1
λ
, which can be proved by a contradiction.

First, assume that p1 > pL+ 1
λ
. Then, for a given channel state that Γ ∈

(

cSU

p1
, cSU

p2

]

and x < pL. Thus, the Lagrangian from p1 (non-outage case) becomes l(p1) = λp1 >

l(pL) = 1 + λpL, implying that even though a feedback resource is dedicated to p1,

it would never be used.

The more complicated case is when pL ≤ x < pj,min and s > 0, since the SU can

either make PU in outage but meet SU’s target rate or use pL to protect PU but

allows outage at SU. To determine this, SU compares the Lagrangian regarding to
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pj and pL. SU will transmit with pj to support its target rate if

l(pL) > l(pj)

1 + λpL > λpj,min + s

pL + 1−s
λ > pj,min

(D.2)

Otherwise, SU will allow an outage if pj,min > pL + 1−s
λ

, i.e. SU tends to save power

and protect PU links rather than trying to meet target rate with very high power

pj,min. For simplicity, define k = arg min
j:pj>pL+ 1−s

λ

pj. This implies that there is no need

for the SU to check the condition in (D.2) for k + 1 ≤ j ≤ L.

D.2 All KKT conditions for a locally optimal so-

lution

For j = 1,

0 = − cSU

p21
F ′

Γ( cSU

p1
) + τG

(

cSU

p21
F ′

Γ( cSU

p1
)[FX̃(p1) − FX̃(p2)] + F ′

X̃
(p1)

[

FΓ( cSU

p2
) − FΓ( cSU

p1
)
])

+λ
{

[FΓ( cSU

p2
) − FΓ( cSU

p1
)] − cSU

p21
pLF

′
Γ( cSU

p1
) + τG(p1 − p2)[FX̃(p1) − FX̃(pL)] cSU

p21
F ′

Γ( cSU

p1
)
}

−λτG

{(

[FΓ( cSU

p2
) − FΓ( cSU

p1
)][FX̃(p1) − FX̃(p2)] + (p1 − p2)[FΓ( cSU

p2
) − FΓ( cSU

p1
)]F ′

X̃
(p1)

)}

(D.3)

For 1 < j < k + 1,

0 = τG

[

[FX̃(pj) − FX̃(pj−1)]
cSU

p2j
F ′

Γ( cSU

pj
) +

(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

F ′
X̃

(pj)

]

+λ

{

[FΓ( cSU

pj+1
) − FΓ( cSU

pj
)] + (pj − pj−1)

cSU

p2j
F ′

Γ( cSU

pj
)

−τG

([

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
]

(FX̃(pj) − FX̃(pL))

+(pj − pL)
[

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
]

F ′
X̃

(pj)

−(pj − pL)
[

FX̃(pj) − FX̃(pL)
]

cSU

p2j
F ′

Γ( cSU

pj
)

)}

(D.4)
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For j = k + 1,

0 = −τG(FX̃(pk) − FX̃(pL)) cSU

p2
k+1

F ′
Γ( cSU

pk+1
)

+sτG

{

[

FΓ( cSU

pk+2
) − FΓ( cSU

pk+1
)
]

F ′
X̃

(pk+1) + [FX̃(pk+1) − FX̃(pL)] cSU

p2
k+1

F ′
Γ( cSU

pk+1
)

}

+λ

{

[

FΓ( cSU

pk+2
) − FΓ( cSU

pk+1
)
]

+ [pk+1 − pk]
cSU

p2
k+1

F ′
Γ( cSU

pk+1
)

+τG(pk − pL)[FX̃(pk+1) − FX̃(pL)] cSU

p2
k+1

F ′
Γ( cSU

pk+1
)

}

(D.5)

For k + 1 < j < L,

0 = 0 + sτG

[

(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

F ′
X̃

(pj) + [FX̃(pj) − FX̃(pj−1)]
cSU

p2j
F ′

Γ( cSU

pj
)

]

+λ

[

(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

+ cSU

p2j
F ′

Γ( cSU

pj
)[pj − pj−1]

]

(D.6)

For j = L,

0 = −τGF
′
X̃

(pL)

(

k
∑

j=1
[FΓ( cSU

pj+1
) − FΓ( cSU

pj
)]

)

+sτG

{

F ′
X̃

(pL)−

L−1
∑

j=k+1

[FΓ( cSU

pj+1
) − FΓ( cSU

pj
)]F ′

X̃
(pL) − cSU

p2L
F ′

Γ( cSU

pj
)[FX̃(pL−1) − FX̃(pL)]

}

+λ
{[

1 − FΓ( cSU

p1
) − FΓ( cSU

pL
)
]

+ (pL − pL−1)
cSU

p2
L

F ′
Γ( cSU

pj
)

+τG
k
∑

j=1

(

[FΓ( cSU

pj+1
) − FΓ( cSU

pj
)][FX̃(pj) − FX̃(pL)]

+ (pj − pL)[FΓ( cSU

pj+1
) − FΓ( cSU

pj
)]F ′

X̃
(pj)

)}

(D.7)

D.3 Proof of Lemma 5.2.2

We adopt a similar proof technique to that used in [61].



184 D.3. Proof of Lemma 5.2.2

Proof. First, (D.7) can be rewritten as

cSU

p2L
F ′

Γ( cSU

pL
)
[

sτG
[

FX̃(pL−1) − FX̃(pL)
]

+ λ(pL−1 − pL)
]

= F ′
X̃

(pL)τG

[

s
(

1 − FΓ( cSU

pL
) + FΓ( cSU

p1
)
)

+
k
∑

j=1
[λ(pj − pL) − (1 − s)]

(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

]

+λ
[

1 − FΓ( cSU

pL
) + G̃O

]

≥ λ
[

1 − FΓ( cSU

pL
) + G̃O

]

(D.8)

where G̃O is the value of GO at the optimum. Note that the inequality follows from

the fact that the positive term is discarded.

Now taking the limit as L → ∞ and assume that lim
L→∞

pL = δL > 0. Then, we

have that

lim
L→∞

cSU

p2L
F ′

Γ( cSU

pL
)
[

sτG
[

FX̃(pL−1) − FX̃(pL)
]

+ λ(pL−1 − pL)
]

≥ lim
L→∞

λ
[

1 − FΓ( cSU

pL
) + G̃O

]

≥ λ
[

1 − FΓ( cSU

pL
) + G̃F−CSIT

O

]

> 0

(D.9)

where G̃F−CSIT
O is the value of the objective function at the optimum when SU has

perfect CSI.

As p1 > p2 > . . . > pL > 0, the sequence {pj}
L
j=1 is a monotonically decreasing

sequence and bounded below by δL, thereby converging to its greatest lower bound

δL as L→ ∞. Hence, (pL−1 − pL) → 0 as L→ ∞, implying that

lim
L→∞

cSU

p2L
F ′

Γ( cSU

pL
)
[

sτG
[

FX̃(pL−1) − FX̃(pL)
]

+ λ(pL−1 − pL)
]

= cSU

δ2L
F ′

Γ( cSU

δL
)
[

sτG
[

FX̃(pL−1) − FX̃(pL)
]

+ λ(pL−1 − pL)
]

= 0

(D.10)

Obviously, the result in (D.10) contradicts (D.9) and the prior assumption that

lim
L→∞

pL = δL > 0.
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D.4 GLA+SFA

This algorithm is based on the generalized Lloyd’s algorithm together with using a

sigmoid function for indicator functions approximation, first proposed in [70]. More

specifically, this algorithm again starts with a random power codebook to employ the

nearest neighbourhood condition in Lloyd’s algorithm as explained earlier. Next, the

power codebook is updated by pj ≈ min
pj≥0

E
[

σ(K(pj −
cSU

Γ
)) + λpj + sσ(K(pj + x)) |Rj

]

for j = 1, . . . , L where σ(w) = 1
1+exp(w)

is the sigmoid function and the coefficient K

controls the steepness of the approximation. ( [70] provides more details on how to

select the value of K).

Note that, in any given region Rj, searching for pj is not completely exhaustive.

For j < L, all channel state ν ∈ Rj must result in non-outage, so the range of pj

lies between cSU

Γmax,j
and cSU

Γmin,j
, where Γmax,j = max

ν∈Rj

Γ(ν) and Γmin,j = min
ν∈Rj

Γ(ν). For

j = L, Rj consists of the non-outage region (Rn
L) and the outage region (Ro

L). Thus

the updated power codebook must lie in [0, cSU

min
ν∈Rn

L

Γ
]. Note that the range starts from

zero power for the case that SU will transmit with the lowest power level when it

allows outage. After the power codebook is updated, the algorithm repeats these

two steps until convergence.

D.5 All KKT conditions for ZFLP

For j = 1,

0 = − cSU

p21

(

1 − τGFX̃(p1)
)

F ′
Γ( cSU

p1
) + τG

(

FΓ( cSU

p2
) − FΓ( cSU

p1
)
)

F ′
X̃

(p1)

+λ
[(

FΓ( cSU

p2
) − FΓ( cSU

p1
)
) [

1 − τGFX̃(p1) − p1τGF
′
X̃

(p1)
]

+p1

(

1 − τGFX̃(p1)
)

· cSU

p21
F ′

Γ( cSU

p1
)
]

(D.11)

For 1 < j < k + 1,

0 = τG

[

(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

F ′
X̃

(pj) + cSU

p2j
F ′

Γ( cSU

pj
)[FX̃(pj) − FX̃(pj−1)]

]

+λ
[(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
) [

1 − τGFX̃(pj) − pjτGF
′
X̃

(pj)
]

+
[

pj
(

1 − τGFX̃(pj)
)

− pj−1

(

1 − τGFX̃(pj−1)
)]

· cSU

p2j
F ′

Γ( cSU

pj
)

]

(D.12)
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For j = k + 1,

0 = −e−gTFX̃(pk)
cSU

p2
k+1

F ′
Γ( cSU

pk+1
)

+s

(

τG

[

(

FΓ( cSU

pk+2
) − FΓ( cSU

pk+1
)
)

F ′
X̃

(pk+1) + cSU

p2
k+1

F ′
Γ( cSU

pk+1
)FX̃(pk+1)

])

+λ

[

(

FΓ( cSU

pk+2
) − FΓ( cSU

pk+1
)
)

F ′
X̃

(pk+1) + cSU

p2
k+1

F ′
Γ( cSU

pk+1
)[pk+1 − pk]

+ cSU

p2
k+1

F ′
Γ( cSU

pk+1
)[pk(1 − τGFX̃(pk))]

]

= −e−gTFX̃(pk)
cSU

p2
k+1

F ′
Γ( cSU

pk+1
)

+s

(

τG

[

(

FΓ( cSU

pk+2
) − FΓ( cSU

pk+1
)
)

F ′
X̃

(pk+1) + cSU

p2
k+1

F ′
Γ( cSU

pk+1
)FX̃(pk+1)

])

+λ

[

(

FΓ( cSU

pk+2
) − FΓ( cSU

pk+1
)
)

F ′
X̃

(pk+1) + cSU

p2
k+1

F ′
Γ( cSU

pk+1
)[pk+1 − pkτGFX̃(pk)]

]

(D.13)

For k + 1 < j < L− 1,

0 = 0 + s

(

τG

[

(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

F ′
X̃

(pj) + cSU

p2j
F ′

Γ( cSU

pj
)
[

FX̃(pj) − FX̃(pj−1)
]

])

+λ

[

(

FΓ( cSU

pj+1
) − FΓ( cSU

pj
)
)

+ cSU

p2j
F ′

Γ( cSU

pj
)[pj − pj−1]

]

(D.14)

For j = L− 1,

0 = 0 + s
(

τG

[(

1 − FΓ( cSU

pL−1
)
)

F ′
X̃

(pL−1) + cSU

p2L−1
F ′

Γ( cSU

pL−1
)
[

FX̃(pL−1) − FX̃(pL−2)
]

])

+λ
[(

1 − FΓ( cSU

pL−1
)
)

+ cSU

p2L−1
F ′

Γ( cSU

pL−1
)[pL−1 − pL−2]

]

(D.15)

D.6 Proof of Lemma 5.3.1

Proof. For 1 < j < k + 1, we first simplify (D.4) as follows

0 =
{

λ+
(

λ
(

FX̃(pL) − FX̃(pj)
)

+ F ′
X̃

(pj)(1 − λ(pj − pL))
)

τG

}(

pj

pj+1
−

pj−1

pj

)

=
(

pj

pj+1
−

pj−1

pj

)

(D.16)

For k + 1 < j < L, (D.6) can be simplified as follows

0 = sτG

[

F ′
X̃

(pj)
(

1
pj+1

− 1
pj

)

+ [FX̃(pj) − FX̃(pj−1)]
1
p2j

]

+ λ

[

1
pj+1

−
pj−1

p2j

]

=
(

pj

pj+1
−

pj−1

pj

)

(D.17)
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D.7 Proof of Lemma 5.3.2

For 1 ≤ j ≤ k,

pjf
′
1(pj) [FΓ(vj+1) − FΓ(vj)] = pj−1

[

f1(pj−1)−f1(pj)

pj−1−pj

]

(vj − vj−1)F
′
Γ(vj)

As L → ∞, it yields pjf
′
1(pj)F

′
Γ(vj) [vj+1 − vj] ≈ pj−1f

′
1(pj−1) (vj − vj−1)F

′
Γ(vj).

Thus, we have
pj

pj+1
≈

pj−1

pj
= θ = 1 + ǫθ, where θ can be approximated from solving

[

1−f1(p1)+p1f ′1(p1)

p1f ′1(p1)

]

≈ v2
v1

= θ =
[

1−f1(
p0
θ

)+
p0
θ
f ′1(

p0
θ

)
p0
θ
f ′1(

p0
θ

)

]

where p0
∆
= 1

λ
. Note that f1(p0) = 1, vj = pj−1

(

vj−vj−1

pj−1−pj

)

.

D.8 Proof of Lemma 5.3.3

For j = k + 1,

pk+1f
′
2(pk+1) [FΓ(vk+2) − FΓ(vk+1)] = pk

[

f1(pk)−f2(pk+1)

pk−pk+1

]

(vk+1 − vk)F
′
Γ(vk+1)

As L→ ∞, vk+2

vk+1
= pk+1

pk+2
≈
[

f1(pk)−f2(
pk
κ

)+
pk
κ
f ′2(

pk
κ

)
pk
κ
f ′1(

pk
κ

)

]

= κ = 1 + ǫκ. Therefore,

κ =
λpk+

co(1−λpk)

1+copk
e−gT pk−se

−gT
(copk+1)2

(1+copk+1)2

pk+1

[

λ+se−gT co
(1+copk+1)2

]

= θpk+1

λ+
co(1−θλpk+1)

1+θcopk+1
e−gT −se−gT

c2opk+1

(1+copk+1)2

pk+1

[

λ+se−gT co
(1+copk+1)2

]

= θ ·
λ+e−gT co

(1+copk+1)2

[

(1−θλpk+1)(1+copk+1)2

1+θcopk+1
−scopk+1

]

[

λ+se−gT co
(1+copk+1)2

]

(b)
≈ θ

(D.18)

where (b) is from the fact that lim
L→∞

θ = 1 + lim
L→∞

ǫθ ≈ 1 and lim
L→∞

pk+1 = 1−s
λ

, making

lim
L→∞

(1 − θλpk+1) ≈ s and lim
L→∞

(1+copk+1)
2

1+θcopk+1
≈ 1 + copk+1.
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D.9 Expressions of FPOC(θ, k) and FATPC(θ, k)

For POC, (5.14) can be approximated by integration as follows.

ǫp − (1 − e−gT )

≈ e−gT

L−1
∑

j=k+1

FX̃(pj)F
′
Γ(vj) [vj+1 − vj ]

= e−gT

L−1
∑

j=k+1

[

co
1+co

cSU
vj

]

(

e−N0vj
N0(1+Pcvj)+Pc

(1+Pcvj)2

)

vj [θ − 1]

≈ e−gT cocSU (θ − 1)
L−k−2
∑

j=0

θj

θj+
cocSU
vk+1

[

N0

1+θjPcvk+1
+ Pc

(1+θjPcvk+1)2

]

exp(−N0vk+1θ
j)

≈ e−gT cocSU (θ − 1)
L−k−1
∫

z=0

θz

θz+
cocSU
vk+1

[

N0
1+θzPcvk+1

+ Pc

(1+θzPcvk+1)2

]

exp(−N0vk+1θ
z)

(D.19)

Let t(y) = 1
y+

cocSU
vk+1

[

N0

1+yPcvk+1
+ Pc

(1+yPcvk+1)2

]

exp(−N0vk+1y) and s(z) = θzt(θz). By

changing of variable u = θz and du = u ln θdz. Thus,

ǫp − (1 − e−gT ) ≈ ln θ
L−k−1
∫

z=0

s(z)dz = A1(vk+1) −A1(vk+1θ
L−k−1) = FPOC(θ, k)

(D.20)

where

A1(z) =
N0+ Pc

1−PccocSU

1−PccocSU
[exp(N0cocSU )E1 (N0(cocSU + z))]

− Pc

1−PccocSU

[

exp(−N0z)
1+Pcz

+
exp(

N0
Pc

)

1−PccocSU
E1

(

N0

[

1
Pc

+ z
])

] (D.21)

Note that as L is large, lim
L→∞

vk+1 = cSUλ
1−s

.

Likewise, ATPC in (5.15) can be approximated as follows.

Pav ≈
L−1
∑

j=k+1

pjF
′
Γ(vj) [vj+1 − vj ] +

k
∑

j=1
pj(1 − e−gTFX̃(pj))F

′
Γ(vj) [vj+1 − vj ]

≈
L−k−2
∑

j=0

(

e−N0vk+1θ
j N0(1+Pcvk+1θ

j)+Pc

(1+Pcvk+1θj)2

)

cSU [θ − 1]

+
k−1
∑

j=0
(1 − e−gT + θje−gT

θj+cop1
)
(

e−N0v1θj N0(1+Pcv1θj)+Pc

(1+Pcv1θj)2

)

cSU [θ − 1]

≈ cSU (N0 + Pc)
[

e−gTE1(N0v1θ
k) − E1(N0vk+1θ

L−k−1)
]

+(1 − e−gT )(N0 + Pc)cSUE1(N0v1)

+
[

A2(vk+1θ
L−k−1) −A2(vk+1)

]

+
[

A3(v1θ
k) −A3(v1)

]

(D.22)
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(d)
= cSU (N0 + Pc)

[

e−gTE1(N0v0θ
k+1) − E1(N0vk+1θ

L−k−1)
]

+(1 − e−gT )(N0 + Pc)cSUE1(N0v0θ)

+
[

A2(vk+1θ
L−k−1) −A2(vk+1)

]

+
[

A3(v0θ
k+1) −A3(v0θ)

]

= FATPC(θ, k)

where

A2(z) = cSUPc

(

e
N0
Pc E1(N0z + N0

Pc
) + e−N0z

1+Pcz

)

A3(z) = cSU

PccocSU−1

[(

N0 −
Pc

PccocSU−1

)

e−gT eN0cocSUE1(N0(z + cocSU ))
]

+ PccSU

PccocSU−1

[

(

e−gT +(1−e−gT )(PccocSU−1)2

PccocSU−1

)

e
N0
Pc E1(N0z + N0

Pc
) − 1−(1−e−gT )PccocSU

1+Pcz
e−N0z

]

(D.23)

and the third approximation in (D.23) is from the approximation by integration

and the first equality in (D.23) is claimed by v0 = v1θ.
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