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Abstract

Until recently the applications of radar technology have been limited to envi-
ronments with large open space. One of the reasons for such confinement

is the radar system’s dependence on line of sight communication for detection
and/or tracking; this is easily accomplished in an open space environment. Addi-
tionally, it has been long believed that multipath reflections hinder the functions
of a radar system.

Modern research efforts, however, have radically challenged the belief that
multipath reflections are nuisances. Various studies suggest that multipath reflec-
tions contain information that could be exploited for tracking and/or detecting
objects. This paradigm shift has enabled potential new applications in radar tech-
nology, particularly pertaining to multipath rich dense urban environments. The
main focus of this thesis is the study of radar tracking using multipath in an urban
environment. We have particularly emphasised accounting for uncertainty inher-
ent in urban environments. In doing so, we have adapted a Bayesian probabilistic
framework for inferential tasks.

After introducing a robust model for a multipath environment, we derive per-
formance bounds for tracking a moving target in such an environment. Recent
developments in nonlinear statistical signal processing, as well as the availabil-
ity of powerful computing resources have enabled us to design statistical filters
for challenging tracking problems. Consequently, we propose a novel Markov
Chain Monte Carlo based particle filter to address the tracking problem pertaining
to our multipath model. We then address the multipath tracking problem where
much larger uncertainty exists on the locations of the building in the urban envi-
ronment; that is, when a map of the environment is not available. We also study
a particular generalisation of a multivariate von-Mises distribution, which was
encountered while addressing the tracking problem. A comprehensive Bayesian
conjugate analysis of this distribution is provided.
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“Far better an approximate answer to the right question, which is often vague, than
an exact answer to the wrong question, which can always be made precise."

— John Tukey (1915-2000)
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CHAPTER 1

Introduction

1.1 What is multipath?

A radar system operates by transmitting electromagnetic signals, which upon
contact with various objects are reflected back to a radar sensor. The signal

that is received is then processed to detect and/or track the state of the objects
from which it is reflected. Unless the radar system operates in an open area, the
radar sensor receives signals over multiple paths due to the transmitted signal
being scattered by other uninteresting objects in the environment. We use the term
“direct path” to refer to a path that only comes into contact with the object of
interest, whilst a path that arises due to multiple reflections is referred to as a
“multipath”.

Typically, in conventional radar systems, only the direct path is considered
valuable or informative; therefore various techniques are used to mitigate the ef-
fects of multipath. The modern treatment of the subject is quite the opposite; since
some of the multipaths may have come into contact with the object of interest,
recent studies have initiated a paradigm shift where multipath is exploited to en-
hance the radar detection and filtering process.

This thesis contributes and further extends the research on multipath radar by
rigorously investigating some interesting topics related to the subject.

1.2 Summary of contributions

• We introduce a novel measurement model for the multipath radar tracking
problem. One of the objectives of the model is to probabilistically formulate
some of the uncertainty prevailing in a realistic radar environment, which is
not accounted for in existing models. This is done by extending the radar
measurement equation by introducing some random parameters. Further,
the new model does not impose any geometrical restrictions on the place-
ment of obstacles within the environment.

• We investigate the performance bounds for estimating the target state using

1



2 Chapter 1. Introduction

our model of the environment. The Posterior Cramér Rao Bound (PCRB)
is derived by exploiting the physical relationships formed in the multipath
environment due to specular nature of the reflections.

• We propose a Markov Chain Monte Carlo (MCMC) based particle filter to
solve the difficult filtering problem associated with tracking a target under
the proposed measurement model.

• We study the target tracking problem when the map of the environment is
unavailable. The data association problem appearing in this context is solved
using an importance sampling based method.

• We present a particular generalisation of the multivariate von-Mises (VM)
distribution, which has a direct relationship to the proposed multipath mea-
surement model. A comprehensive Bayesian analysis of the new distribution
is provided.

1.3 List of publications

Journal articles

• Scholarly journal articles titled “Target tracking in a partially unknown mul-
tipath environment using an MCMC based particle filter” and “Multipath radar
tracking in an unknown environment” are under preparation.

International conferences

• B. S. Karunaratne, M. Morelande, and B. Moran, “MCMC particle filter for
tracking in a partially known multipath environment" in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2013, Vancouver,
Canada.

• B. S. Karunaratne, M. Morelande, and B. Moran, “Target tracking in a multipath
environment” in IET International Conference on Radar Systems, Glasgow, UK,
2012.

• B. S. Karunaratne, M. Morelande, and B. Moran, “Bayesian conjugate analysis
for multiple phase Estimation” in IEEE International Conference on Information
Fusion (FUSION), Singapore, 2012.

• B. S. Karunaratne, M. Morelande, B. Moran, and S.Howard, “Performance
bounds for tracking in a multipath environment" in IEEE International Conference
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on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic,
2011, pp. 3652-3655.

1.4 The organisation of the thesis

From a high level perspective, our efforts have focused on modelling and mitiga-
tion of the uncertainty present in a realistic multipath radar environment. In most
of the existing literature on multipath radar, it is assumed that the environment
is known precisely. We believe that by acknowledging the unknown and incor-
porating the resulting uncertainty through mathematical models, more robust fil-
tering solutions could be developed. We have adapted the Bayesian probabilistic
framework throughout our work, since it blends naturally into translating the un-
certainty associated with the multipath environment into stochastic mathematical
models. The core of this thesis spans over six chapters.

Chapter 22 provides background material required for understanding the rest
of the thesis. Here the objectives are twofold. The first being to introduce some
concepts relevant to statistical signal processing, mainly from a Bayesian point of
view. Introductions to popular tracking algorithms are also provided. The second
objective is to introduce briefly some of the main radar system concepts.

In Chapter 33, we study the performance bounds for tracking a target in a mul-
tipath environment. First, we propose a model for the multipath environment
where the locations of the walls are only approximately known. In other words,
we assume that there exists some uncertainty in the knowledge about the location
of the walls. We believe that this is a reasonably realistic assumption given the
availability of electronic data such as Google Maps. As an example, the uncer-
tainty in the location could be due to the errors in the map used to obtain knowl-
edge about the environment. Further, we relax the assumption that the reflectivity
factors of the walls are known exactly. These various sources of uncertainty in the
environment are captured in the model by introducing relevant parameters to the
radar measurement equation and treating them as unknown random parameters.
As an example, the uncertainty in the wall locations is captured by introducing a
random phase shift to each of the multipath signals. The PCRB is defined as the
lower bound on mean squared error for estimating random parameters. In this
chapter, we derive the PCRB for tracking a target under the proposed multipath
model.

The random phase shifts that we introduced into the measurement equation
make the filter design process challenging. These parameters are circular variables
by definition. Thus, while in pursuit of designing a filter, we were led to investi-
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gate a particular multivariate generalisation of the VM distribution. In particular,
the normalising constant of this multivariate VM distribution has a direct relation-
ship with the multipath radar target tracking problem; the specifics are described
in the same chapter. A Bayesian conjugate analysis for this Generalised von-Mises
(GVM) is described in detailed in Chapter 44.

The statistical filter developed for the multipath filtering problem introduced
in Chapter 33 is described in Chapter 55. The estimation problem proved to be very
challenging, particularly because of the environmental uncertainty in the model.
The standard nonlinear filtering methods such as variants of the Kalman filter were
not even remotely suitable for our problem. We used a sequential Monte Carlo
technique known as particle filtering to develop a solution. However, we had to
adopt a different approach from the common one of using importance sampling to
generate the required particles for many reasons that are also discussed in Chapter
55. As an alternative to importance sampling, we made use of MCMC to generate
the required particles.

In Chapter 66, we extend the previous problem by considering a model where
extremely large uncertainty of the locations prevails. The brute force method of
solving the data association problem appearing in this context was not feasible be-
cause the number of association hypotheses grows exponentially with the number
of obstacles. We provide an elegant solution to this problem through importance
sampling. It is shown in the same chapter that explicit ordering of the elements of
the state vector sometimes adversely affect the filter performance. This problem
was solved in Chapter 66 using a recently published method known as Set Joint
Probabilistic Data Association Filter (SJPDAF). Because of the difficulty posed by
the tracking problem, we had to explore beyond the realm of traditional tracking
algorithms to propose a robust solution.



CHAPTER 2

Background

Summary

In this chapter, we present the relevant background information to assist in com-
prehending the rest of the thesis. The chapter is divided into two main parts. In

the first part, the statistical signal processing concepts are introduced. Brief intro-
ductions to tracking algorithms: Kalman filter, Extended Kalman filter, Unscented
Kalman filter, and Particle filter are also discussed in the first part. The second part
is reserved to introduce the important principles of a generic radar system.

2.1 Introduction to statistical signal processing for target
tracking

The main aim in statistical signal processing is to infer and/or predict unobserved
parameters of a system upon observing noisy measurements. Apart from the noise
present in the measurements, the unobserved parameters of the system may also
introduce randomness to the overall system through non-deterministic dynamic
behaviour. The methods used in statistical signal processing can be divided into
two broad categories based on whether the unobserved parameters are considered
deterministic or random. The former is known as the classical approach to statis-
tical signal processing while the latter is known as the “Bayesian” approach.

We explain the difference between the two approaches with the aid of a simple
estimation problem.

Consider a simple scenario where a single unobserved parameter denoted by
θ ∈ R is concerned. We observe a sequence of N measurements y1, y2, . . . , yN given
by

yi = θ + wi for i = 1, 2, . . . , N, (2.1)

where w1, w2, . . . , wN are Independent and Identically Distributed (IID) random
variables with

wi ∼ N (·; 0, σ2) for i = 1, 2, . . . , N. (2.2)

5



6 Chapter 2. Background

Here N () denotes the normal distribution with the usual parameterisation. As-
sume that the noise variance σ2 ∈ R is known.

2.1.1 Classical inference of the unobserved parameter θ

In the classical approach the parameter θ is treated as a deterministic (but un-
known) quantity. An estimator of θ upon observing the measurements yn is a
function of the measurements, denoted by θ̂(yn). An estimator is said to be un-
biased if the expected value of the estimator (averaged over the measurements) is
equal to the true parameter θ, for all possible θ; that is, for an unbiased estimator
θ̂(yn):

θ =
∫

y
θ̂(yn)p(y1, y2, . . . , yN)dy1dy2 · · ·dyN , for all possible θ. (2.3)

Among all the unbiased estimators, the one that has the minimum variance is
of particular interest, and is known as the Minimum Variance Unbiased Estimator
(MVUE).

For the simple example considered here, the likelihood function p(y; θ) is given
by

L(θ; y) =
N

∏
i=1
N (yi; θ, σ2),

=
1

(2πσ2)N/2 exp

(
− 1

2σ2

N

∑
i=1

(yi − θ)2

)
. (2.4)

Though the likelihood function is a probability measure, p(y; θ), defined on the
space of measurements, it is helpful to treat it as a function of θ, with the measure-
ments fixed. This leads to the popular classical estimator known as the Maximum
Likelihood Estimator (MLE), which is defined as the value of θ that maximises the
likelihood function. We simulated an experiment of the model (2.12.1) with {N, σ, θ}
set to {5, 0.5, 10} and observed:

[y1, . . . , y5]
′ = [9.956053, 10.058880, 10.706742, 10.354342, 10.609167]′.

The likelihood function (2.42.4) for the experiment is shown in Figure 2.12.1.

MLE can be found by differentiating the likelihood function and solving for the
parameters that yield a derivative of 0. Usually, it is mathematically convenient to
maximise the natural logarithm of the likelihood function, which is known as the
log-likelihood function; this is mathematically consistent because the logarithm is a
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Figure 2.1: The likelihood function for a hypothetical experiment using (2.12.1) with
{N, σ, θ} set to {5, 0.5, 10}.

monotonically increasing function.

For the likelihood function (2.42.4), the MLE is found as follows:[
∂ logL(θ; y)

∂θ

]
θ=θ̂MLE

= 0, (2.5)

1
σ2

N

∑
i=1

(yi − θ̂MLE) = 0, (2.6)

θ̂MLE =
1
N

N

∑
i=1

yi, (2.7)

=: ȳ. (2.8)

It is easily seen that the MLE is an unbiased estimator and the standard deviation
of the estimator is σ/

√
N.

2.1.2 Bayesian inference of the unobserved parameter θ

In contrast to the classical estimation theory, the Bayesian way of treating un-
known parameters is to consider them as random quantities. Any prior knowledge
of the unknown parameters is quantified by a probability distribution, known as
the prior. As an example, suppose we know that a parameter we wish to estimate
is restricted to a certain range of values; this could be captured in the prior distri-
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bution by assigning 0 probability density for any point outside the said range.

When new information (such as measurements from a sensor) is available, the
prior distribution is updated to arrive at the posterior distribution. The mathe-
matical framework for obtaining the posterior from the prior (in the light of new
measurements) is given by the well known Bayes’ theorem, which is named after
Rev. Thomas Bayes. However, the current mathematical form of the theorem is
due to the French mathematician, Pierre-Simon Laplace. Bayes’ theorem states:

p(θ|y) = p(y|θ)p(θ)
p(y)

. (2.9)

Each of the terms appearing in (2.92.9) is identified with special terminology:

p(θ|y) = The posterior distribution,

p(y|θ) = The likelihood function (same as (2.42.4), which appears in

the context of classical inference theory. This is considered as,

a function of θ with y fixed.),

p(θ) = The prior distribution,

p(y) = The normalising constant or evidence.

Notice that in (2.92.9), the new information modifies the prior distribution through
the likelihood function. The posterior distribution quantifies the knowledge of the
parameter θ, upon observing y. In many instances of practical application, the
posterior distribution is known only up to the normalising constant; however, that
is usually sufficient to obtain posterior estimates such as the posterior mean which
minimizes the Mean Squared Error (MSE). Nevertheless, the normalising constant
is useful for model comparisons, and predicting future measurements.

Another challenge of practicality in Bayesian inference is that a closed form
solution of the posterior density is not available most of the time. However, there
are many techniques to obtain approximate solutions to the posterior distribution
when an exact solution is not available. With the increasing computing capabilities
available today, Monte Carlo methods are becoming a popular option for perform-
ing Bayesian inference. In particular, both Sequential Monte Carlo and Markov
Chain Monte Carlo methods have evolved as viable options, especially due to the
recent developments in parallel computing.

Now, we demonstrate the use of Bayesian inference by applying it to solve the
same estimation problem specified in (2.12.1) and (2.22.2).
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Figure 2.2: An illustration of the likelihood, prior, and posterior distributions for a
hypothetical experiment.

Assume that the prior distribution θ is a normal distribution with mean 10 and
standard deviation 1; that is

p(θ) = N (θ; 10, 1); (2.10)

For this example, the posterior distribution p(θ|y1, y2 . . . , y5) is readily available
through the well known Kalman Filter equations, which we describe later in this
chapter:

p(θ|y1, . . . , y5) = N (θ; K(y− 10H), 1−KH), (2.11)

where

y = [y1 y2 y3 y4 y5]
′, (2.12)

H = [1 1 1 1 1]′, (2.13)

K = H′(HH′ + σ2I5), (2.14)

with I5 denoting the identity matrix of rank 5.

We set σ = 0.5 as before and run a single realisation of the experiment. The
likelihood function, prior, and posterior distribution alongside the true value of
θ is shown in Figure 2.22.2. Notice, how the uncertainty on θ, which is reflected by
the spread of the prior distribution, is reduced after observing relatively precise
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measurements as evident from the spread of the posterior distribution. The point
estimate of θ (chosen as the posterior mean), in this particular example, is approx-
imately the same as that would have been given by the MLE in classical inference.
However, Bayesian inference, provides much richer information such as the cred-
ible region of an estimate, which can be clearly interpreted probabilistically as a
measure of believability based on the prior knowledge and the observed measure-
ments.

Particularly motivated by this ability to quantify uncertainty, we follow the
Bayesian framework in this thesis.

2.1.3 General recursive Bayesian solution for single target tracking

Consider a single target whose state evolves through time according to a known
stochastic differential equation. It is usually convenient to solve the inference prob-
lem in discrete time rather than in continuous time. Thus, we focus our efforts on
a discrete time target tracking problem (a stochastic differential equation can be
discretized by converting it to a stochastic difference equation).

We denote the target state vector at discrete time k as xk, where k = 0, 1, 2, 3, . . ..
The target state may include quantities such as position and velocity that might be
of interest for inferential purposes. Following the Bayesian framework, we treat
the target state as a random quantity. The target state is directly not observable,
but only through the use of some measurements. Denote the measurement vector
available at time k by yk. The trajectory of measurements up to time k is denoted
by the vector yk; that is

yk = [y′1 y′2 . . . y′k]
′. (2.15)

Similarly, the trajectory of the target states up to time k is denoted by xk; that is

xk = [x′1 x′2 . . . x′k]
′. (2.16)

Assume that the measurement yk is related to the target state xk through a
known deterministic function hk(xk):

yk = hk(xk) + wk, (2.17)

where wk ∼ pw(·) is a temporally uncorrelated (that is wk is uncorrelated to wl for
k 6= l) white noise process. Further, we assume that the target dynamics follow a
first order Markovian process and xk is related to xk−1 through a known determin-
istic function fk(xk) as

xk = fk(xk−1) + vk, (2.18)
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where the noise vk follows a temporally uncorrelated white random process with
vk ∼ pv(·).

The state transitions are Markovian in the sense that:

p(xk|xk−1) = p(xk|xk−1). (2.19)

Upon observing yk we are interested in establishing a recursive relationship
between the posterior distributions at time k and k − 1; that is between p(xk|yk)

and p(xk−1|yk−1). From Bayes’ theorem, we write p(xk|yk) as

p(xk|yk) =
p(yk|xk, yk−1)p(xk|yk−1)

p(yk|yk−1)
. (2.20)

Assuming that we know the posterior distribution at time k− 1, that is p(xk−1|yk−1),
the posterior at time k is available from (2.202.20) via a two step procedure: prediction
and measurement update.

2.1.3.1 Prediction step

In this step, the prediction density p(xk|yk−1) appearing in (2.202.20) is obtained. Note
that the density p(xk|yk−1) quantifies the knowledge of the target state at time k
after observing measurements only up to time k − 1; hence the name prediction.
Following the Chapman-Kolmogorov equations, the prediction density is related
to p(xk−1|yk−1) by:

p(xk|yk−1) =
∫

p(xk|xk−1, yk−1)p(xk−1|yk−1)dxk−1, (2.21)

=
∫

p(xk|xk−1)p(xk−1|yk−1)dxk−1. (2.22)

Using a transformation of random variables, the density p(xk|xk−1) appearing
above is obtained from (2.182.18) as pv(xk − fk(xk−1)). Thus, we write the prediction
density as

p(xk|yk−1) =
∫

pv(xk − fk(xk−1))p(xk−1|yk−1)dxk−1. (2.23)

2.1.3.2 Measurement update

In this step, the new measurement yk is used to adjust the prior belief conveyed
through the prediction density. From (2.202.20), note that the likelihood function p(yk|
xk), which contains the new measurement yk, when multiplied by the predic-
tion density p(xk|yk−1) returns a quantity proportional to the posterior density
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p(xk|yk); that is

p(xk|yk) ∝ p(yk|xk)p(xk|yk−1), (2.24)

= pw(yk − hk(xk))p(xk|yk−1). (2.25)

The last line follows from a transformation of random variable principle using
(2.172.17). Note that the prediction density p(xk|yk−1) was calculated in the previous
step: prediction. The normalising constant p(yk|yk−1), which ensures that the pos-
terior distribution integrates to 1 is given by

p(yk|yk−1) =
∫

pw(yk − hk(xk))p(xk|yk−1)dxk. (2.26)

Thus, the posterior distribution resulting after the measurement update is

p(xk|yk) =
pw(yk − hk(xk))

∫
pv(xk − fk(xk−1))p(xk−1|yk−1)dxk−1∫

pw(yk − hk(χk))

{∫
pv(χk − fk(xk−1))p(xk−1|yk−1)dxk−1

}
dχk

.

(2.27)
This procedure, which we refer to as the general Bayesian filtering recursion, is
shown in Figure 2.32.3.

Note that in the context of tracking a target over time, the posterior distribu-
tion at time k is used to derive the prior distribution for time k + 1. Hence, it is
convenient for the prior and the posterior to have the same functional form so that
the mathematical manipulations needed to transition from prior to the posterior
remain consistent over time. However, in general the posterior and the prior be-
long to different parametric families of distributions. Under some conditions, it
can be guaranteed that both the posterior and the prior are of the same form. This
property is known as conjugacy in Bayesian inference. Of particular interest are
the conditions that guarantee the prior and the posterior to be Gaussians. The well
known Kalman filter provides a closed form solution for the posterior distribution
for this case.

The conditions for which the Kalman filter is applicable are:

C1: The state transitions and measurements are linear functions of the state vec-
tor; that is

xk = Fkxk−1 + vk (note that fk(xk−1) = Fkxk−1),

yk = Hkxk + wk (note that hk(xk) = Hkxk).
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Figure 2.3: An illustration of the general Bayesian recursion for single target track-
ing.
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C2: The noise sequences vk and wk are from temporally uncorrelated, zero mean,
white Gaussian noise processes:

vk ∼ N (0, Qk),

wk ∼ N (0, Rk).

C3: The prior distribution at time 0, p(x0), is Gaussian, with mean x̂0|0 and co-
variance P0|0.

Next we introduce the Kalman filter and subsequently introduce some of the
common suboptimal filters when all or some of the conditions above do not apply.

2.1.3.3 Kalman Filter

The Kalman Filter is named after Rudolf Kálmán, one of the co-inventors of the
celebrated signal processing algorithm. The filter is usually expressed as a set
of equations, which are known as Kalman Filter equations. When all the condi-
tions C1, C2, and C3 are valid, the prediction density p(xk|yk−1), the normalising
constant p(yk|yk−1), and the posterior p(xk|yk) are conveniently Gaussian. The
Kalman equations provide the exact expressions for the parameters (mean and co-
variance) of these distributions.

Before deriving the exact expressions, we present the following theorem, which
we will use to derive the Kalman filter.

Theorem 2.1. For x1, µ1 ∈ Rd1 , x2 ∈ Rd2 , H ∈ Rd2×d1 , and covariance matrices P1 and
P2:

N (x2; Hx1, P2)N (x1; µ1, P1) = N (x2; Hµ1, P3)N (x1; µ, P),

where

P3 = HP1H′ + P2,

µ = µ1 + K(x2 −Hµ1),

P = P1 −KHP1,

with K = P1H′P−1
3 .

Proof. See [Ho 1964Ho 1964].

First, we focus on the prediction density p(xk|yk−1). Note that pv(xk− fk(xk−1)) =

N (xk; Fkxk−1, Qk); we apply that on (2.232.23) and use Theorem 2.12.1 to obtain an expres-
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sion for the prediction density;

p(xk|yk−1) =
∫

pv(xk − fk(xk−1))p(xk−1|yk−1)dxk−1, (2.28)

=
∫
N (xk; Fkxk−1, Qk)N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1, (2.29)

=
∫
N (xk; x̂k|k−1, Pk|k−1)

×N (xk−1; x̂k−1|k−1 + L(xk − Fkx̂k−1|k−1), (2.30)

Pk−1|k−1 − LkFkPk−1|k−1)dxk−1,

= N (xk; x̂k|k−1, Pk|k−1), (2.31)

where Lk = Pk−1|k−1F′k(FkPk−1|k−1F′k + Qk)
−1 and

x̂k|k−1 = Fkx̂k−1|k−1, (2.32)

Pk|k−1 = Qk + FkPk−1|k−1F′k. (2.33)

With the expression for the prediction density p(xk|yk−1) in hand, we move
on to obtaining an expression for the normalising constant p(yk|yk−1). Note that
due to the conditions C1 and C2, we have pw(yk − hk(xk)) = N (xk; Hkxk, Rk).
Therefore, once again we use Theorem 2.12.1 as:

p(yk|yk−1) =
∫

pw(yk − hk(xk))p(xk|yk−1)dxk, (2.34)

=
∫
N (yk; Hkxk, Rk)N (xk; x̂k|k−1, Pk|k−1)dxx, (2.35)

= N (y; ŷk|k−1, Sk), (2.36)

where

ŷk|k−1 = Hkx̂k|k−1, (2.37)

Sk = HkPk|k−1H′k + Rk. (2.38)

We use Theorem 2.12.1 once more to find the posterior distribution:

p(xk|yk) =
p(yk|xk)p(xk|yk−1)

p(yk|yk−1)
, (2.39)

=
N (yk; Hkxk, Rk)N (xk; x̂k|k−1, Pk|k−1)

N (y; ŷk|k−1, Sk)
, (2.40)

= N (xk; x̂k|k, Pk|k), (2.41)
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where

x̂k|k = x̂k|k−1 + Kk(yk −Hkx̂k|k−1), (2.42)

Pk|k = Pk|k−1 −KkHkPk|k−1, (2.43)

and Kk = Pk|k−1H′kS−1
k .

The terms ŷk|k−1, Sk, and Kk are also identified with the terms: “predicted mea-
surement”, “innovation covariance”, and “Kalman gain” respectively. The Kalman
filter recursion is given by Algorithm 2.12.1.

Algorithm 2.1: Kalman filter recursion

1 Compute the statistics of the prediction distribution:

x̂k|k−1 = Fkx̂k−1|k−1,

Pk|k−1 = Qk + FkPk−1|k−1F′k.

2 Compute the statistics of the predicted measurement density:

ŷk|k−1 = Hkx̂k|k−1,

Sk = HkPk|k−1H′k + Rk.

3 Compute the Kalman gain:

Kk = Pk|k−1H′kS−1
k .

4 Compute the posterior statistics after measurement update:

x̂k|k = x̂k|k−1 + Kk(yk −Hkx̂k|k−1),

Pk|k = Pk|k−1 −KkHkPk|k−1,

2.1.3.4 Extended Kalman Filter

The Extended Kalman Filter (EKF) is an extension of the Kalman Filter when con-
dition C1, that is when the linearity of the measurement and/or dynamic equa-
tions do not hold. In such scenarios, the EKF provides a mechanism for approxi-
mating the statistics of the posterior distribution.

The idea is as follows. The EKF relies on the linearisation of the non-linear
measurement (hk(xk)) and process (fk(xk−1)) functions. The linear approximations
are obtained by performing Taylor series expansions and ignoring the higher-order
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terms. With the linear approximations, the derivation of the EKF equations is the
same as that of the Kalman filter.

The linearisation of fk(xk−1) by Taylor series expansion around x̂k−1|k−1 results
in

fk(xk−1) ≈ Fkxk−1 + εfk(x̂k−1|k−1) + vk, (2.44)

where

Fk = ∇x′k−1
fk(xk−1)

∣∣∣∣
xk−1=x̂k−1|k−1

, (2.45)

εfk(x) = fk(x)− Fkx, (2.46)

with ∇x denoting the gradient operation.

Equation (2.442.44) and assumption C2 lead to the approximated transition density

p(xk|xk−1) ≈ N (xk; Fkxk−1 + εfk(x̂k−1|k−1), Qk). (2.47)

Theorem 2.12.1 is used to obtain the prediction density p(xk|yk−1):

p(xk|yk−1) =
∫

p(xk|xk−1)p(xk−1|yk−1)dxk−1, (2.48)

≈
∫
N (xk; Fkxk−1 + εfk(x̂k−1|k−1), Qk)N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1,

(2.49)

= N (xk; Fkxk−1 + εfk(x̂k−1|k−1), FkPk−1|k−1F′k + Qk), (2.50)

= N (xk; x̂k|k−1, Pk|k−1), (2.51)

where

x̂k|k−1 = fk(x̂k−1|k−1), (2.52)

Pk|k−1 = FkPk−1|k−1F′k + Qk. (2.53)

The measurement function hk(xk) is linearised using the Taylor series expan-
sion about x̂k|k−1:

hk(xk) ≈ Hkxk + εhk(x̂k|k−1) + wk, (2.54)

where

Hk = ∇x′k
hk(xk)

∣∣∣∣
xk=x̂k|k−1

, (2.55)

εhk(x) = hk(x)−Hkx. (2.56)
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Algorithm 2.2: Extended Kalman Filter recursion

1 Compute the Jacobian of fk at x̂k−1|k−1:

Fk = ∇x′k−1
fk(xk−1)

∣∣∣∣
xk−1=x̂k−1|k−1

.

2 Compute the statistics of the prediction distribution:

x̂k|k−1 = fk(x̂k−1|k−1),

Pk|k−1 = Qk + FkPk−1|k−1F′k.

3 Compute the Jacobian of hk at x̂k|k−1:

Hk = ∇x′k
hk(xk)

∣∣∣∣
xk=x̂k|k−1

.

4 Compute the statistics of the predicted measurement density:

ŷk|k−1 = hk(x̂k|k−1),

Sk = HkPk|k−1H′k + Rk.

5 Compute the posterior statistics after measurement update:

x̂k|k = x̂k|k−1 + Pk|k−1H′kS−1
k (yk − ŷk|k−1),

Pk|k = Pk|k−1 − Pk|k−1H′kS−1
k HkPk|k−1.

The linearised measurement function allows the use of Theorem 2.12.1 to obtain
a closed form (but approximate) solution to the measurement prediction density
(normalising constant):

p(yk|yk−1) =
∫

p(yk|xk)p(xk|yk−1)dxk, (2.57)

≈
∫
N (yk; Hkxk + εhk(x̂k|k−1), Rk)N (xk; x̂k|k−1, Pk|k−1)dxk, (2.58)

= N (yk; Hkx̂k|k−1 + εhk(x̂k|k−1), HkPk|k−1H′k + Rk), (2.59)

= N (yk; ŷk|k−1, Sk), (2.60)

where

ŷk|k−1 = hk(x̂k|k−1), (2.61)

Sk = HkPk|k−1H′k + Rk. (2.62)
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Finally, the statistics of the posterior distribution are approximated as:

p(xk|yk) =
p(yk|xk)p(xk|yk−1)

p(yk|yk−1)
, (2.63)

≈ N (yk; Hkxk + εhk(x̂k|k−1), Rk)N (xk; x̂k|k−1, Pk|k−1)

N (yk; ŷk|k−1, Sk)
, (2.64)

= N (xk; x̂k|k, Pk|k), (2.65)

where

x̂k|k = x̂k|k−1 + Pk|k−1H′kS−1
k (yk − ŷk|k−1), (2.66)

Pk|k = Pk|k−1 − Pk|k−1H′kS−1
k HkPk|k−1. (2.67)

The EKF recursion is summarised in Algorithm 2.22.2.

2.1.3.5 Unscented Kalman Filter

A drawback of the EKF is the need to compute the Jacobian matrix, which is more
often than not computationally demanding. Additionally the accuracy and gen-
erality are some what limited in the EKF. The Unscented Kalman Filter (UKF)
avoids the need to evaluate the Jacobians; instead the UKF uses a mathematical
tool known as the Unscented Transform (UT) to approximate the required statis-
tics appearing in the general Bayesian recursion for target tracking. Generally, the
approximations obtained via UT are more accurate on average than the linearised
approximations used in the EKF.

The UT is similar in spirit to the method of importance sampling [Robert 2004Robert 2004]
where both use a weighted average of a set of discrete points to evaluate moments
of a function of a random variable. However, the difference between the two meth-
ods stems from the mechanism used to select the discrete points used for weighing.
In UT, the points and the associated weights are chosen deterministically. Suppose
that we are interested in evaluating the expectation of some function g(ψ) of a
random variable ψ with a probability density function p(ψ):

ĝ =
∫

g(ψ)p(ψ)dψ. (2.68)

The UT approximates ĝ by evaluating the function g(ψ) at specific points known
as sigma points and assigning weights known as sigma weights followed by taking
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the weighted average of the function g evaluated at those sigma points; that is,

ĝ ≈
s

∑
i=1

σig(χi), (2.69)

where s, σi, and χi are the number of sigma points, the ith sigma weight and the ith

sigma point respectively.
Let µ and C be the mean and covariance of ψ; that is,

µ =
∫

ψp(ψ)dψ, (2.70)

C =
∫
(ψ− µ)(ψ− µ)′p(ψ)dψ, (2.71)

(2.72)

The sigma points and sigma weights are chosen to match the first two moments of
p(ψ): µ and C; that is, sigma points and sigma weights should satisfy

µ =
s

∑
i=1

σiχi, (2.73)

C =
s

∑
i=1

σi(χi − µ)(χi − µ)′. (2.74)

There are many methods to select sigma points and sigma weights that satisfy
(2.732.73) and (2.742.74) [Julier 2000Julier 2000, Lerner 2002Lerner 2002].

We now show how the UT is used to approximate the moments of the posterior
distribution p(xk|yk). It can be shown [Anderson 1979Anderson 1979, Example 3.2] that the first
two moments of the posterior distribution x̂k|k and Pk|k are given by

x̂k|k = x̂k|k−1 + ψkS−1
k (yk − ŷk|k−1), (2.75)

Pk|k = Pk|k−1 −ψkS−1
k ψ′k, (2.76)

where

x̂k|k−1 = E(xk|yk−1), (2.77)

ŷk|k−1 = E(yk|yk−1), (2.78)

ψk = cov(xk, yk|yk−1), (2.79)

Sk = cov(yk|yk−1), (2.80)

with the operators E and cov indicating expectation and covariance respectively.
The quantities x̂k|k−1, Pk|k−1, ŷk|k−1, ψk, and Sk are generally not known in closed
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form when the functions fk and hk are non-linear. The UT provides approxima-
tions for these quantities which are required for calculating the posterior statistics.

Algorithm 2.3: Unscented Kalman Filter recursion

1 Compute the sigma points χi and sigma weights σi, for i = 1, 2, . . . , s to
match the prior distribution moments x̂k−1|k−1 and Pk−1|k−1.

2 Compute the statistics of the Prediction distribution:

x̂k|k−1 =
s

∑
i=1

σifk(χ
i),

Pk|k−1 =
s

∑
i=1

σi(fk(χ
i)− x̂k|k−1)(fk(χ

i)− x̂k|k−1)
′ + Qk.

3 Compute the sigma points Y i and sigma weights εi, for i = 1, 2, . . . , s to
match the predictive distribution moments x̂k|k−1 and Pk|k−1.

4 Compute the statistics of the predicted measurement density:

ŷk|k−1 =
s

∑
i=1

εihk(Y i),

Sk = Rk +
s

∑
i=1

εi(hk(Y i)− ŷk|k−1)(hk(Y i)− ŷk|k−1)
′.

5 Compute the ψk matrix:

ψk =
s

∑
i=1

εi(Y i − x̂k|k−1)(hk(Y i)− ŷk|k−1)
′.

6 Compute the posterior statistics after measurement update:

x̂k|k = x̂k|k−1 + ψkS−1
k (yk − ŷk|k−1),

Pk|k = Pk|k−1 − Pk|k−1ψkS−1
k ψ′k.

First, consider x̂k|k−1 and Pk|k−1:

x̂k|k−1 = E(fk(xk−1) + vk|yk−1), (2.81)

= E(fk(xk−1)|yk−1), (2.82)

≈
s

∑
i=1

σifk(χ
i), (2.83)

Pk|k−1 = cov(fk(xk−1) + vk|yk−1), (2.84)

= cov(fk(xk−1)|yk−1) + Qk, (2.85)
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≈
s

∑
i=1

σi(fk(χ
i)− x̂k|k−1)(fk(χ

i)− x̂k|k−1)
′ + Qk, (2.86)

where (χi, σi) is the ith sigma point and weight selected to match the first two mo-
ments of p(xk−1|yk−1). We again use UT to approximate the remaining quantities
needed for approximating the posterior moments. Let Y i denote the ith sigma
point with weight εi chosen to match the previously approximated moments of
p(xk|yk−1) denoted by x̂k|k−1 and Pk|k−1. Then,

ŷk|k−1 = E(xk|yk−1), (2.87)

≈
s

∑
i=1

εihk(Y i), (2.88)

ψk = cov(xk, yk|yk−1), (2.89)

≈
s

∑
i=1

εi(Y i − x̂k|k−1)(hk(Y i)− ŷk|k−1)
′, (2.90)

Sk = cov(yk|yk−1), (2.91)

≈ Rk +
s

∑
i=1

εi(hk(Y i)− ŷk|k−1)(hk(Y i)− ŷk|k−1)
′. (2.92)

The UKF in algorithmic form is given in Algorithm 2.32.3.

2.1.4 Particle filtering

Particle filtering is a popular technique to solve challenging non-linear filtering
problems. Since we are using particle filtering extensively in this thesis, the topic
is discussed in more detail than the tracking methods already described in this
section. A particle filter recursively approximates the posterior density using a
set of weighted random samples. The introduction presented in this section fol-
lows the auxiliary variable implementation of [Pitt 1999Pitt 1999]. Note that most popular
techniques including the Bootstrap Filter (BF) [Gordon 1993Gordon 1993] and the Optimum
Importance Density (OID) particle filter [Arulampalam 2002Arulampalam 2002] are covered by the
auxiliary variable framework.

Assume that at time k − 1, the posterior is approximated using Z samples
x(1)k−1, . . . , x(Z)

k−1 and corresponding weights w1
k−1, . . . , wZ

k−1 as follows:

p(xk−1|yk−1) ≈
Z

∑
z=1

wz
k−1δ(xk−1 − x(z)k−1), (2.93)

where δ(·) denotes the Kronecker delta.
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Bayes’ rule leads to a posterior approximation at time k as shown below:

p(xk|yk) ∝ p(yk|xk)p(xk|yk−1),

= p(yk|xk)
∫

p(xk|xk−1)p(xk−1|yk−1)dxk−1,

∝∼
Z

∑
z=1

wz
k−1 p(yk|xk)p(xk|x(z)k−1). (2.94)

Note that (2.942.94) is only an approximation to the posterior distribution. Let p̂(xk|yk)

denote this approximation and we refer to it as the empirical posterior distribution;
that is

p̂(xk|yk) ∝
Z

∑
z=1

wz
k−1 p(yk|xk)p(xk|x(z)k−1). (2.95)

Following [Pitt 1999Pitt 1999], we reverse the marginalisation in (2.952.95) and introduce the
particle index i as an auxiliary variable. This gives

p̂(xk, i|yk) ∝ wi
k−1 p(yk|xk)p(xk|x(i)k−1). (2.96)

An approximation to the posterior at time k can be obtained by sampling from
(2.962.96). The auxiliary variable, which can be discarded after sampling is intended
to assist in drawing samples of the state vector. Often, it is difficult to sample
from p̂(xk, i|yk), and instead a suitable candidate distribution known as an impor-
tance density q(xk, i|yk) is used to obtain samples, which are then appropriately
weighted. This procedure of drawing samples from an alternative distribution is
known as importance sampling. The samples drawn from the importance density is
used as follows to obtain the posterior density approximation:

p̂(xk|yk) ∝
Z

∑
i=1

wi
kδ(xk − x(i)k ), (2.97)

where (x(j)
k , tj) ∼ q(xk, i|yk) for j = 1, 2, . . . , Z and

wj
k ∝

p(x(j)
k , tj|yk)

q(x(j)
k , tj|yk)

. (2.98)

The particle filtering recursion in algorithmic form is presented in Algorithm
2.42.4, assuming that at time k− 1 the posterior approximation p̂(xk|yk) is available
as in (2.932.93).

The particular choice of the importance density is crucial for a good particle
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Algorithm 2.4: Basic particle filter recursion

1 for i = 1 to Z do
/* Generate a new particle and assign a weight */

2 Draw (x(i)k , ti) ∼ q(xk, i|yk)
3 Calculate

w̃i
k =

wti
k−1 p(yk|x(i)k )p(x(i)k |x

(ti)
k−1)

q(x(i)k , ti|yk)

4 Normalise the weights:

wi
k = w̃i

k

/ Z

∑
j=1

w̃j
k for i = 1, 2, . . . , Z.

5 Estimate the posterior distribution at time k:

p̂(xk|yk) =
Z

∑
i=1

wi
kδ(xk − x(i)k ),

filter design. The BF is obtained by choosing

qbs(xk, i|yk) ∝ wi
k−1 p(xk|x(i)k−1). (2.99)

A sample (x̃, t) can be obtained from qbs(xk, i|yk) following a two step proce-
dure. First draw an index t with Probability(t = z) ∝ wz

k−1. Then the target sample
x̃ is drawn from p(xk|x(t)k−1). The main drawback of qbs(·) is that the current mea-
surement yk is not used to draw samples. Consequently, the BF is very inefficient
in all but very basic practical applications; a relatively large number Z of sam-
ples is required to obtain comparable performance with better importance density
choices.

A much desired importance density is the OID, which involves drawing sam-
ples directly from (2.962.96). Let φi =

∫
p(yk|xk)p(xk|x(i)k−1)dxk. Then the OID can be

derived as follows:

qoid(xk, i|yk) ∝ wi
k−1 p(yk|xk)p(xk|x(i)k−1),

= wi
k−1φi

{
p(yk|xk)p(xk|x(i)k−1)

φi

}
,

= γi pi(xk|yk), (2.100)
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where γi = wi
k−1φi, and

pi(xk|yk) = p(yk|xk)p(xk|x(i)k−1)/φi.

Drawing a sample (x̃, t) from qoid is similar to that of qbs except, we first draw
ti with Probability(t = j) ∝ γj followed by drawing x̃ from pt(xk|yk).

It can be easily verified by taking the ratio between p(xk, i|yk) and qoid(xk, i|yk),
that the importance weights of the samples obtained from the OID are constant
irrespective of the value of the sample. It is this property that led to the use of the
term OID for the density (2.1002.100). Unlike the BF, the OID has the desirable property
of using the current measurement to influence the selection of the particle index t
and the state vector. However, often it is difficult to find the OID in closed form.

Two common problems of particle filters are particle degeneracy and impov-
erishment. Particle degeneracy occurs when after several iterations of the filter,
relatively few particles contain significant weight, while the others contribute a
negligible mass. A common technique used to counter the degeneracy problem is
to introduce a resampling step [Arulampalam 2002Arulampalam 2002]. However, resampling intro-
duces the second problem of particle impoverishment [Arulampalam 2002Arulampalam 2002]; that
is, particles losing diversity and ultimately all collapsing to a single point. Two
common solutions to the impoverishment problem are the resample-move algo-
rithm [Gilks 2001Gilks 2001] and kernel regularisation [Musso 2001Musso 2001]. We only discuss kernel
regularisation since it is the method that we have used in this thesis.

2.1.4.1 Kernel regularisation

Kernel regularisation, in the context of particle filtering, means approximating the
density of an underlying set of particles using a kernel [Silverman 1986Silverman 1986].

First, we look at the concept of kernel estimation of a density. Suppose ν ∈ Rd

is a random variable with the probability distribution p(ν). Let ν(z) ∼ p(ν) for
z = 1, 2, . . . , Z be Z samples from p(ν). A question one might face here would
be: how to estimate the underlying probability distribution when presented with
a set of samples. A crude approximation to p(ν) can be made by a sum of delta
functions centered around the sample points; that is,

p(ν) ≈ 1/Z
Z

∑
z=1

δ(ν− ν(z)). (2.101)

Note that the draws from (2.1012.101) always produce samples from a finite set of
points. This can lead to particle impoverishment. The kernel method of approxi-
mating the original distribution from samples involves convolving the right hand
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side of (2.1012.101) with a kernel function Kh(ν). Here, Kh(ν) is a non-negative valued
radially symmetric function, which integrates to unity over the domain of ν. Two
common kernel functions are multivariate normal and Epanechnikov functions.
For a bandwidth parameter h > 0, the kernel approximation to p(ν) is

p̂h(ν) =
1

Zhd

Z

∑
z=1

Kh

{
1
h
(ν− ν(z))

}
. (2.102)

Note that unlike the previous approximation (2.1022.102) has continuous support.
The bandwidth parameter h effects the approximation performance in two ways,
namely: bias and variance. A larger h value will result in a lower variance but
at the expense of bias. A trade-off between bias and variance is effected by the
choice of h. The common practice, as suggested by Silverman [Silverman 1986Silverman 1986], is
to choose h that minimises the Mean Integrated Squared Error (MISE)

MISE = E
[∫

(p(ν)− p̂h(ν))
2dν

]
. (2.103)

Unfortunately, it can be shown [Silverman 1986Silverman 1986] that the optimum choice of h
depends on the distribution p(ν) which needs to be estimated. Assume the un-
known distribution is a standard multivariate normal distribution; approximate
formulae for the optimum bandwidth in the MISE sense for various kernel func-
tions are given in [Silverman 1986Silverman 1986, p. 87].

Kernel regularisation in the context of particle filtering simply refers to replac-
ing the discrete distribution (2.972.97) with its kernel density.

The effectiveness of using a kernel to solve particle impoverishment is best
illustrated by a simple example.

Example 2.1.1. Assume ν0, ν1, and y ∈ R are three random variables such that

ν0 ∼ N (·; µ, p2), (2.104)

ν1 = 2ν0 + v, (2.105)

y = ν1 + w, (2.106)

where noise variables v and w are mutually independent, zero mean, and Gaussian with
variances r2 and q2 respectively. It is obvious that the estimation problem of finding the
posterior mean p(ν1|y) can be optimally solved (in MMSE sense) using the Kalman filter,
but for demonstration purposes, we use the OID particle filter described earlier.
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Let v(z)0 for z = 1, 2, . . . , Z be Z particles; such that,

p(v0) ≈
1
Z

Z

∑
z=1

δ(v0 − v(z)0 ). (2.107)

Use of a Gaussian kernel with a bandwidth parameter h on the particle set results in
the following continuous approximation to p(v0):

p(v0) ≈
1
Z

Z

∑
j=1
N (v0; v(i)0 , hσ2), (2.108)

where σ2 is the sample covariance. Note that, when h tends to 0, the smoothed density
(2.1082.108) tends to the original unsmoothed approximation (2.1072.107).

It can be shown that the OID (2.1002.100) is given by

qoid(v1, i|y) ∝ N (y; 2v(i)0 , γ2)N (v1; 2v(i)0 + Kλi, φ2), (2.109)

where i is the auxiliary variable used to assist in sampling, and

γ2 = r2 + q2 + 4h2, (2.110)

K = (r2 + 4h2σ2)γ−2, (2.111)

λi = y− 2v(i)0 , (2.112)

φ2 = (r2 + 4h2σ2)(1− K). (2.113)

As explained earlier, obtaining a sample from qoid(v1, i|y) involves, first, drawing a
particle index i. This is analogous to a resampling step in the Sequential Importance Sam-
pling (SIS) particle filter. If the filter is subjected to severe particle impoverishment; then
only a few samples will be selected many times. Figure 2.42.4 illustrates the effect of band-
width on particle impoverishment. Simulation parameters were set as follows:

{Z, µ, p2, q2, r2} = {100, 0, 3.5, 0.01, 0.01}.

Figure 2.42.4(a) is a plot of the number of times each particle index was chosen when sampling
100 times from qoid(v1, i|y) with h = 0 (that is, without any kernel smoothing). But
repeating the same experiment with the bandwidth h chosen according to [Silverman 1986Silverman 1986,
p. 87] results in Figure 2.42.4(b).

Out of 100 particle indices, only 7 were chosen at least once, when resampled 100 times
without using a kernel. This result indicates severe particle impoverishment. On the other
hand, 39 indices were chosen at least once, when a smoothing kernel was used, suggesting



28 Chapter 2. Background

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

Particle number

N
u

m
b

e
r 

o
f 

ti
m

e
s
 a

 p
a

rt
ic

le
 w

a
s
 s

a
m

p
le

d

(a)

0

5

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

Particle number

N
u

m
b

e
r 

o
f 

ti
m

e
s
 a

 p
a

rt
ic

le
 w

a
s
 s

a
m

p
le

d
g

(b)

Figure 2.4: Simulation results: (a) Particle index selection without using a kernel.
(b) Particle index selection with a kernel.

the effectiveness of kernel regularisation as a solution to particle impoverishment.

2.2 Radar Fundamentals

The acronym RADAR stands for RAdio Detection And Ranging. Radar technol-
ogy exploits the properties of Electro Magnetic (EM) waves to interrogate objects
located further away. Application areas of radar technology span industries such
as aerospace, automotive navigation, defence applications, and meteorology. One
of the reasons for such diverse applications is the ability of Radar to operate under
all weather conditions.

At a fundamental level, a radar system operates by transmitting an EM sig-
nal and subsequently collecting the reflected signals. The received signals are
then processed to extract information about the objects that caused the reflections.
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Transmitting subsystem T/R

Tx/Rx switch

Antenna

transmitte
d signal

reflected signal

Receiving subsystem Detection processing Tracking
detection based measurements

raw sensor measurements

Figure 2.5: A block diagram of a typical monostratic radar system.

The frequency of operation for radar varies depending on the application from 3
MHz (HF) to 110 GHz (W-Band) up to millimetre wave frequencies (100-300 GHz)
[Richards 2010Richards 2010].

A radar system consists of three main components: transmitter, receiver, and
signal processor. If the transmitter and receiver are co-located then the radar sys-
tem is said to be Monostatic; the term Bistatic refers to a configuration where the
transmitter and receiver are not co-located. Figure 2.52.5 illustrates how the subsys-
tems are inter-related for a monostatic radar system. Giving comprehensive details
about the operation of a radar is beyond the scope of this thesis. Next we focus on
developing the necessary background knowledge to complement the main theo-
retical contributions laid out in the upcoming chapters.

The transmitter subsystem is responsible for preparing and transmitting the
EM signal to interrogate the objects of interest in the environment. The transmitted
waveform is a baseband signal modulated by a sinusoidal carrier signal that can
be represented by the following complex form:

g(t) = s(t) exp(j(ωct + φ(t))), (2.114)

where s(t) exp(jφ(t)) is the baseband signal and ωc is the carrier frequency. A rule
of thumb is that if the bandwidth of the baseband signal is less than one tenth of
the carrier frequency, then the transmitted signal is considered to be narrowband
[Levanon 2004Levanon 2004]. Throughout the rest of the thesis, we make the narrowband as-
sumption for the transmitted waveform. The signal received back at the receiver
is delayed by the time taken for the transmitted signal to traverse the signal path.
This delay provides crucial information for the radar system to detect the range of
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the object that caused the reflection. The delay is related to the range by

τ =
2R
C

, (2.115)

where we have assumed that the signal travels at the speed of light C. For a nar-
rowband transmitted signal, any motion (relative to the radar system) of the re-
flecting object induces an apparent frequency shift in the returned signal. This
phenomenon is known as the Doppler effect [Levanon 2004Levanon 2004] and the frequency
change is known as the doppler shift. Doppler shift is given by

ν =
2πṘ
λc

, (2.116)

where Ṙ denotes the time derivative of range (range rate) and λc is the wavelength
of the carrier. In modern radar systems the doppler shift is used to distinguish
moving objects from the stationary clutter as well as to infer the velocity of the
objects. Apart from time delay and doppler effects, the returned signal is also
subjected to attenuation. This attenuation is caused by many factors such as at-
mospheric absorption, distance of travel, reflection losses, etc. The nature of atmo-
spheric absorption is dependent on the frequency of operation of the radar. Typ-
ically the radar carrier frequencies are chosen to minimize the absorption losses.
The attenuation due to the travelled distance follows the inverse square law. A
reflectivity factor of an object is a scalar quantity by which the amplitude of the
signal is reduced after reflecting off the object. Ignoring the atmospheric effects,
the losses due to the distance travelled and reflection can be written as (for a mono-
static system)

α =
ε

R2 , (2.117)

where ε ∈ [0, 1] is the reflectivity factor of the object.

The returned signal (modulated) which is subjected to time delay, doppler and
attenuation is

h(t) = αg(t− τ) exp(jνt). (2.118)

Upon receipt of the reflected signal by the receiver subsystem, it is subjected
to demodulation, where the baseband signal is extracted from the modulated sig-
nal. The extracted baseband signal is then passed through an Analog-to-Digital
conversion process to obtain the discrete samples:

y[n] = αs(nT − τ) exp(νnT) + w[n] for n = 1, 2, 3, . . . , (2.119)
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where T is the sampling period and w[n] is a zero mean IID noise process known
as measurement noise. Measurement noise arises because of the imperfections in the
radar sensors and the Analog-to-Digital conversion process.

The sampled measurements are then passed onto the detection processing
(matched filtering) subsystem for generating candidate range and doppler pairs
(detections) and/or tracking (filtering). A tracking subsystem typically uses one
of the algorithms discussed in Section 2.1.32.1.3 to track the state of the objects of inter-
est.

2.2.1 Matched filtering

Matched filtering refers to the process used by radar systems to produce candi-
date detections. It can be shown [Levanon 2004Levanon 2004] that for a signal s(t) superim-
posed with an Additive White Gaussian Noise (AWGN) process w(t), the impulse
response of a filter that maximises the SNR at a given time t0 is,

f (t; t0) = Ks∗(t0 − t), (2.120)

where K is an arbitrary constant. Without loss of generality we set K = 1 and
t0 = 0. Note that the impulse response is proportional to the time reversed and
delayed original signal s(t); hence the rationale for the use of the term matched
filter. The time domain response of the filter (2.1202.120) at lag τ for a doppler shifted
signal s(t) exp(j2πν0t) is

so(τ, ν) =
∫

s(t) exp(jνt)s∗(t− τ)dt. (2.121)

When viewed as a function of two parameters τ and ν, the output of the matched
filter will be maximized when τ = 0 and ν = 0. This is not surprising because
when τ = 0 and ν = 0 the input signal is exactly matched to the underlying filter.
If the input signal to the matched filter is delayed by τ0, the peak in the output
function so(τ, ν) will be shifted by τ0 in the delay dimension. In an actual use
case, the delay and doppler shift of the received signal are not known; hence the
received signal is passed through a bank of matched filters, where each filter is
designed (matched) to maximise the SNR at a distinct delay (t0) and doppler (ν)
pair. In practice the detection is performed on a discretized grid on the delay and
doppler dimensions, with the grid spacings chosen according to the requirements
of the radar application. A target is declared at a particular delay doppler pair
if the matched filter output at that point is greater than a pre-selected threshold.
This threshold is chosen to satisfy the required probability of detection and/or
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false alarms [Kay 1998Kay 1998].
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Figure 2.6: Ambiguity function for P = 8 Linear Frequency Modulated pulses
where the duty cycle T/Tr = 1/9 with Tr = 1/1.25. The signal parameters used in
this example are borrowed from [Levanon 2004Levanon 2004].

Note that the peak of (2.1212.121) does not depend on the shape of the waveform
but rather on the energy of the transmitted signal s(t) and the measurement noise
power. However, the shape of the waveform influences the response at points off
the peak. It is desired from a matched filter to have a sharp (peak) response at
the corresponding delay-doppler of a received signal and a very low response at
off-peak points. One of the main challenges in radar waveform design is to in-
vent waveforms that result in matched filter responses which fall-off quickly from
the peak response; this helps in separating out targets that are close to each other
(in either range or doppler). The ability of a waveform to separate a target in
range and doppler is measured by the range and doppler resolution of the wave-
form respectively. A common way of increasing the range resolution is to use
pulse compression by linear frequency modulation, which is also known as chirp-
ing [Levanon 2004Levanon 2004]. The doppler resolution is typically increased by processing a
stream of pulses instead of a single pulse. An interesting recent contribution in a
waveform design with a high doppler resolution is found in [Pezeshki 2007Pezeshki 2007].

The tool used to analyse the range and doppler resolution of a waveform is



2.2. Radar Fundamentals 33

known as the ambiguity function and is given by

χ(τ, ν) =

∣∣∣∣∫ s(t) exp(jνt)s∗(t− τ)dt
∣∣∣∣ . (2.122)

Properties of the ambiguity function are discussed in [Levanon 2004Levanon 2004]. The ambi-
guity function for a train of Linear Frequency Modulated (LFM) pulses is shown
in Figure 2.62.6.

2.2.2 Raw sensor measurements vs. detection based measurements for
tracking

As shown by dashed lines in Figure 2.52.5 the input to the tracking subsystem can
either be supplied from the output of the matched filter or directly from the out-
put of the receiving subsystem. In the former case the tracking algorithms use
the candidate range/doppler points as measurements. We refer to this type of
measurements as detection based measurements. The second type of measurements,
which is the output of the receiving subsystem, is referred to as raw sensor measure-
ments. It has been shown in [Morelande 2007Morelande 2007] that an improved Posterior Cramér-
Rao Bound [Van Trees 1968Van Trees 1968, Tichavsky 1998Tichavsky 1998] can be obtained by using raw sensor
measurements instead of detection based measurements. This is intuitively under-
standable through a well known result in information theory, which states that the
entropy of a random variable could only decrease by passing through a determin-
istic transformation.





CHAPTER 3

Posterior Cramér-Rao bounds for
multipath radar tracking

Summary

Tracking in a multipath environment poses many challenges. It is important to
quantify the achievable performance bounds in such an environment. Find-

ing the performance bounds can be challenging because it requires calculation of
derivatives of parameters that are functions of reflection points with respect to tar-
get related quantities. We propose a method to calculate a lower bound for the
Mean Squared Error (MSE) in target state estimation in a multipath environment.
A novel measurement model is introduced involving a general abstraction of a re-
alistic multipath environment. In this model, we have incorporated some of the in-
herent uncertainty in the environment typically not accounted for in conventional
problem formulations such as the uncertainty because of imprecision in maps of
the surveillance area and in the reflectivity factors of the reflective surfaces.

3.1 Introduction

In this chapter, we introduce a novel model for tracking in a partially known envi-
ronment and obtain the Posterior Cramér Rao lower Bound (PCRB) for the estima-
tion problem. The novelty of the model is the acknowledgement of the imperfect
knowledge of the multipath environment and the accounting for the resulting un-
certainty by the introduction of appropriate random components to the measure-
ment equation.

The Cramér-Rao Lower Bound (CRB) provides a lower bound on the variance
of unbiased estimators of deterministic parameters. The CRB is explicitly given
by the inverse of the Fisher Information Matrix (FIM) I(·) [Kay 1998Kay 1998], which for a
deterministic parameter x and measurement vector y is defined as

I(x) =
∫

∂ log p(y; x)
∂x

p(y; x)dy. (3.1)

35
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The Bayesian counterpart of the lower bound is known as the PCRB or Bayesian
CRB. More specifically, the PCRB is the lower bound on the MSE of estimators for
random parameters. Note that the notion of “unbiasedness” is not present in the
description as compared to that of the CRB [Gill 1995Gill 1995]. PCRB is also specified by
the inverse of the FIM, which in a Bayesian setting is defined by

J =
∫

∂ log p(y, x)
∂x

p(y, x)dydx. (3.2)

Note that the expectation is over both the measurement y and the parameter x in
(3.23.2). In a Bayesian filtering problem, the calculation (3.23.2) becomes progressively
more difficult over time because of the unbounded growth in the dimension of the
measurement trajectory vector. However, Tichavsky et al [Tichavsky 1998Tichavsky 1998] have
proposed an elegant method for efficiently calculating the PCRB, by employing
a recursive procedure. We use this method to find the PCRB for our multipath
filtering problem.

The performance bounds in the context of multipath radar appear in numerous
research findings [Rendas 1991Rendas 1991, Hamilton 1992Hamilton 1992, Ianniello 1986Ianniello 1986, Hayvaci 2012bHayvaci 2012b]. In
[Hamilton 1992Hamilton 1992, Hayvaci 2012bHayvaci 2012b, Ianniello 1986Ianniello 1986] the analysis is restricted to two
multipaths. Thus, obtaining the derivatives for the CRB is not mathematically
complicated, particularly when the number of allowed reflection points in a mul-
tipath is one. In [Rendas 1991Rendas 1991] an arbitrary number of multipaths is allowed in
the measurement model, but no method is proposed to calculate the required
derivatives for evaluating the CRB. The existing work could also be categorised
based on the nature of sensing: active [Hayvaci 2012bHayvaci 2012b] or passive [Hamilton 1992Hamilton 1992,
Ianniello 1986Ianniello 1986, Rendas 1991Rendas 1991]. A common feature in [Rendas 1991Rendas 1991, Hamilton 1992Hamilton 1992,
Ianniello 1986Ianniello 1986, Hayvaci 2012bHayvaci 2012b] is the treatment of unknown parameters as deter-
ministic quantities, which prevents the assignment of probabilistic measures to
reflect the prior knowledge. Additionally, these research efforts do not consider
the tracking problem where localizing a target over time is of interest.

Most of the multipath tracking solutions that we review in Chapters 55 and 66
use detection based measurements for the tracking algorithm. However, as men-
tioned in the Chapter 22, it has been shown [Morelande 2007Morelande 2007] that direct supply
of raw sensor data as measurements to a filter results in improved performance
bounds. Further, the data association problem, present when using detections
based measurements, is no longer applicable when the sensor data are directly
used. However, the drawback of using raw measurements for filtering is the need
for computationally intensive calculations, particularly because of the large size of
the measurement. With the enormous processing capabilities of modern technolo-
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gies such as Graphical Processing Units (GPU), the computational demand for raw
sensor data processing is no longer a problem. In our work on multipath radar ap-
pearing in this chapter, we use raw sensor measurements as the measurements for
the tracking algorithm.

In this chapter, we present a general model for a multipath environment con-
taining a dynamic target and concentrate on deriving a performance bound (PCRB)
for the tracking problem. We do not impose any restriction on the number of mul-
tipaths or the number of walls in the environment. In Chapter 55, we design a
stochastic filter for the model. One of the main challenges in deriving the PCRB for
our model is the need to calculate the derivatives of the likelihood function with re-
spect to the reflection points. We achieve this by exploiting recursive relationships
between reflection points induced by the specular nature of multipath reflections.
In developing the multipath model we have emphasised the inherent uncertainty
present in a realistic multipath environment, which is not typically accounted for
in conventional multipath models. In many multipath radar applications, the
knowledge of the location of the reflecting objects (such as walls) is assumed to
be available through a map of the terrain [Chakraborty 2010Chakraborty 2010, Chakraborty 2011Chakraborty 2011,
Barbosa 2008Barbosa 2008]. Usually, this knowledge of the locations is accepted without ques-
tioning the accuracy of the map. However, even when the reflecting environment
is ostensibly known, we believe that it is important to account for the small errors
(of the scale of few wavelengths) in a realistic model. Since this error in loca-
tion translates to a phase shift in the received signal, we capture this uncertainty
by introducing a uniformly distributed random phase shift to each of the multi-
paths. Another source of uncertainty that we have accounted for originates from
the reflectivity factors of the multipath causing obstacles. A reflectivity factor is the
fraction of the amplitude of the incident signal which is retained in the reflected
signal. In conventional multipath radar problem formulations, this fraction is ei-
ther assumed to be known or taken as 1. We model the reflectivity factors of the
walls as random parameters following a Gaussian distribution.

The rest of this chapter is organised as follows. Section 3.23.2 introduces the dy-
namic model as well as the measurement model for the partially known multipath
environment 11. Section 3.33.3 presents the procedure for calculating the PCRB for the
filtering problem along with the details on how to calculate the various derivatives
required to compute the PCRB. Section 3.43.4 is dedicated to demonstrating the PCRB
bound through simulation examples along with a supplementary discussion. Fi-
nally, concluding remarks for this chapter are contained in Section 3.53.5.

1The term “partially known” is used because, we assume that a map of the area is available but
it is accurate only up to few wavelengths.
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Some of the notations and acronyms we have adopted are given in Table 3.13.1.
Any notation/acronym, which does not appear in Table 3.13.1 is defined when first
introduced.

Table 3.1: Summary of common notations and acronyms.

Notation/Acronym Description

δ Kronecker delta.
I Identity matrix. The dimensions would be implied by the

context unless explicitly stated through a subscript.
0 Zero matrix. The dimensions would be implied by the con-

text unless explicitly stated through a subscript.
⊗ Kronecker product
yk [y′1 y′2 . . . , y′k]

′

Θk [Θ′0, Θ′1 . . . , Θ′k]
′

N (·; ∆, Λ) Multivariate Gaussian distribution with parameters ∆

(mean) and Λ (covariance)
CN (·; ∆, Λ) Circular symmetric complex Gaussian distribution with pa-

rameters ∆ (mean) and Λ (covariance)
U(α,β) Uniform distribution in (α, β).
AOA Angle of Arrival
CRB Cramér Rao lower Bound
MSE Mean Squared Error
PCRB Posterior CRB
RMSE Root MSE

3.2 Modelling and notation

Consider a target travelling in an urban terrain. Multiple radar transmitters are
placed at suitable locations to illuminate the radar environment. The radar sensors
receive a superposition of multiple signals due to scattering of the transmitted
signal. We introduced the term “multipath” in Chapter 11. Recall that a signal
which has been in contact with the target as well as some reflective surfaces in the
environment is referred to as a “multipath". The path which only hits the target
along the way is called a “direct path". Figure 3.13.1 illustrates that two possible paths
reflecting off the target. The first is a direct path, whereas the second is an example
of a multipath.

The target state (in a 2-dimensional world) at time tk is denoted by xk = [xk ẋk yk

ẏk]
′, where (xk, yk) are the target coordinates (position) in the Cartesian plane and
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Target
path

2

ReceiverTransmitter

path 1

Figure 3.1: An example of multipath reflections.

(ẋk, ẏk) are the respective velocities. The target state is assumed to transition from
time tk−1 to tk according to the following dynamic equation:

xk = Fkxk−1 + wk, k = 1, 2, . . . , (3.3)

where

Fk = I2 ⊗
[

1 T̃
0 1

]
, (3.4)

with cov(wk1 , wk2) = δk1−k2 Qk and

Qk = I2 ⊗ κ

[
T̃3/3 T̃2/2
T̃2/2 T̃

]
. (3.5)

Here, T̃ = tk − tk−1 is the state sampling period and κ is a noise intensity parame-
ter. The prior distribution for x0 is assumed to be

x0 ∼ N (·; γ0, P0). (3.6)

Consider the following setup:

• N transmitters are placed at suitable locations.

• Return signals are received by M uniform linear arrays with the mth array
composed of Lm elements.
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• During the sampling period each transmitter transmits a sequence of P pulses
of duration D and period T1, with the first pulse being transmitted at tk, for
k = 1, 2, 3, . . .

• Let sk,n denote the signal transmitted by the nth transmitter at time tk.

• Let the total number of paths between the nth transmitter and the mth receiver
be denoted by Pn,m.

• Incoming data are sampled every T2 seconds.

• The reflections off the walls are specular (that is, mirror reflections).

• The transmitters and receivers are coherent.

• The target is a point scatterer.

• There are B buildings in the terrain, which are numbered from 1 to B.

• When a path hits the bth wall, the signal attenuates by a random reflectivity
factor, which is distributed according to N (·; µb, ιb), where the prior param-
eters µb and ιb are known.

• When a multipath hits the target, the signal attenuates by a random target
reflectivity factor, which has the distribution N (·; µ0, ι0), where the prior pa-
rameters µ0 and ι0 are known.

• The wall and target reflectivity factors are contained in a vector zk, and are
assumed to be temporally uncorrelated. The diagonal covariance matrix of
zk is denoted by Qk,z.

• Because of the uncertainty of the wall locations of the order of a wavelength,
the radar signal corresponding to the pth path between the nth transmitter
and the mth receiver is phase shifted by ψ

p
n,m, where

ψ
p
n,m ∼ U[0,2π).

The phase variables at time k for each transmitter-receiver pair are contained
in the vector ψk.

• Let Θk denote the vector consisting of target kinematics xk, phase variables
ψk, and reflectivity factors zk; that is

Θk = [x′k ψ′k z′k]
′.
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The signal vector received by all the sensors at time tk + uT2 is

yk(u) = h(Θk; u) + e(u), for u = 0, . . . , U − 1, (3.7)

where e(u) is a circularly symmetric complex white Gaussian process with covari-
ance matrix 2σ2I, and

h(Θk; u) =
N

∑
n=1


µk,n,1(Θk; uT2)

...
µk,n,M(Θk; uT2)

 , (3.8)

with the measurement function µk,n,m(·) for n = 1, . . . , N and m = 1, . . . , M, given
by

µk,n,m(Θ; t) =
Pn,m

∑
p=1

gp
n,m(x, z; t) exp(jψp

n,m), (3.9)

and

gp
n,m(x, z; t) = α

p
n,m(x, z)sk,n(t− τ

p
n,m(x))ejνp

n,m(x)tam(t; θ
p
n,m(x), θ̇

p
n.m(x)), (3.10)

with
am(t; θ, θ̇) =

[
1 e−jd̄mrt · · · e−j(Lm−1)d̄mrt

]′
, (3.11)

where

rt = cos θ − θ̇t sin θ, (3.12)

d̄m = 2πdm/λ, (3.13)

dm = the separation between the elements of the mth sensor array, (3.14)

λ = the wavelength of the carrier signal. (3.15)

Note that we have made the approximation cos(θ + θ̇t) ≈ cos θ− (sin θ)θ̇t. This is
valid if θ̇t is small throughout the surveillance duration [Vincent 2000Vincent 2000].

For the pth path between the nth transmitter and the mth sensor array:

• α
p
n,m(x, z) is the intensity of the return signal. This includes transmitted sig-

nal strength as well as path attenuation.

• θ
p
n,m(x) is AOA.

• θ̇
p
n,m(x) is the rate of change of the AOA.

• τ
p
n,m(x) is the delay of the signal.
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• ν
p
n,m(x) is the Doppler shift.

The mathematical expressions for the above five quantities are given in Section 3.33.3
(A much simpler measurement equation, without any phased array elements and
a random phase shift, is explained in Chapter 22.)

The entire measurement vector at time tk is

yk = h(Θk) + e, (3.16)

where

yk = [yk(0) . . . yk(U − 1)]′,

h(Θk) = [h(Θk; 0) . . . h(Θk; U − 1)]′,

e = [e(0) . . . e(U − 1)]′.

Let yk = [y′1 y′2 . . . , y′k]
′ denote the vector of all measurements up to and

including time k. The target tracking problem is to estimate the target state xk after
observing yk.

3.3 Theory/Methodology

3.3.1 Recursive calculation of the Information Matrix

Let the joint distribution of Θk and yk be denoted by pk; then, from recursive ap-
plication of Bayes’ rule,

pk(Θ
k, yk) = p(Θ0)

{
k

∏
i=1

p(yi|Θi)

}{
k

∏
i=1

p(Θi|Θi−1)

}
. (3.17)

We decompose Θk into two components: Θk and Θk−1:

Θk = [(Θk−1)′ Θ′k]
′. (3.18)

The information matrix corresponding to Θk and yk is given by

J(Θk) =

E
{
−∆Θk−1

Θk−1 pk

}
E
{
−∆Θk

Θk−1 pk

}
E
{
−∆Θk−1

Θk
pk

}
E
{
−∆Θk

Θk
pk

}  , (3.19)

,

[
Ak Bk

B′k Ck

]
. (3.20)
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It can be shown that, under some regularity conditions [Tichavsky 1998Tichavsky 1998], the MSE
of the estimator of Θk is lower bounded by the bottom-right matrix block of{

J(Θk)
}−1

; that is,

E
{
(Θk − Θ̂k)(Θk − Θ̂k)

′} ≥ (Ck − B′kA−1
k Bk)

−1, (3.21)

where Θ̂k is an estimator of Θk. Let the matrix (Ck − B′kA−1
k Bk) be called the “in-

formation submatrix” for Θk and denoted by Jk. That is,

Jk = Ck − B′kA−1
k Bk. (3.22)

Note that, to compute Jk, one would have to either compute the inverse of
J(Θk), extract the bottom-right sub-matrix followed by a matrix inversion of the
extracted sub-matrix or alternatively exploit (3.223.22) where the size of the Ak matrix
that needs to be inverted is smaller than the full matrix J(Θk). However, both
approaches are not feasible since, as time k tends to infinity, the size of the matrices
which need to be inverted increases. Tichavsky et al [Tichavsky 1998Tichavsky 1998] proposed an
elegant recursive solution to this problem which we now state as a theorem.

Theorem 3.1. The sequence {Jk} of posterior information submatrices for estimating Θk

follows the recursion:

Jk = D22
k −D21

k (Jk−1 + D11
k )−1D12

k , (3.23)

where

D11
k = E{−∆Θk−1

Θk−1
log p(Θk|Θk−1)},

D12
k = E{−∆Θk

Θk−1
log p(Θk|Θk−1)},

D21
k = E{−∆Θk−1

Θk
log p(Θk|Θk−1)} = {D12

k }′,
D22

k = E{−∆Θk
Θk

log p(Θk|Θk−1)}+ E{−∆Θk
Θk

log p(yk|Θk)},

provided that the derivatives, expectations, and matrix inversions appearing above exist.

Proof. See [Tichavsky 1998Tichavsky 1998].

For the model specified in Section 3.23.2 the matrices D11
k , D12

k , and D21
k can be

obtained easily using matrix derivatives. We found the framework presented in
[Macrae 1974Macrae 1974] to be convenient to perform the required matrix differentiations.
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The derivatives are

D11
k = blkdiag(F′kQ−1

k Fk, 0), (3.24)

D12
k = blkdiag(−FkQ−1

k , 0), (3.25)

D21
k = {D12

k }′, (3.26)

where the operator blkdiag denotes concatenating the matrices given as arguments
diagonally.

The first term of D22
k , which we will denote by D22

k,1, can be similarly shown to
be

D22
k,1 = E{−∆Θk

Θk
log p(Θk|Θk−1)}, (3.27)

= blkdiag(−FkQ−1
k , 0, Q−1

k,z ). (3.28)

The second term of D22
k , which we denote by D22

k,2, can be shown to be

D22
k,2 = E{−∆Θk

Θk
log p(yk|Θk), (3.29)

=
1
σ2 Re{E[∆Θk

h(Θk)
∗(∆Θk

h(Θk)
′)′]}. (3.30)

We expand the right hand side of (3.303.30) using equations (3.83.8)-(3.103.10):

D22
k,2 =

1
σ2

U−1

∑
u=0

Re{E[∆Θk
h(Θk; uT2)

∗(∆Θk
h(Θk; uT2)

′)′]}, (3.31)

=
1
σ2

U−1

∑
u=0

N

∑
n=1

M

∑
m=1

Re{E[∆Θk
µk,n,m(Θk; uT2)

∗(∆Θk
µk,n,m(Θk; uT2)

′)′]}, (3.32)

=
1
σ2

U−1

∑
u=0

N

∑
n1=1

N

∑
n2=1

M

∑
m=1

Pn1,m

∑
p1=1

Pn2,m

∑
p2=1

Re

(
E
[

∆Θk
{gp1

n1,m(xk, zk; uT2) exp(jψp1
n1,m)}∗

(
∆Θk
{gp2

n2,m(xk, zk; uT2) exp(jψp2
n2,m)}′

)′])
.

(3.33)

Since E
{

exp(jψp2
n2,m − jψp1

n1,m)
}
= δn1−n2 δp1−p2 , (3.333.33) reduces to

D22
k,2 =

1
σ2

U−1

∑
u=0

N

∑
n=1

M

∑
m=1

Pn,m

∑
p=1

Re

(
E
[

∆Θk
{gp

n,m(xk, zk; uT2) exp(jψp
n,m)}∗

(
∆Θk
{gp

n,m(xk, zk; uT2) exp(jψp
n,m)}′

)′])
. (3.34)
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With the objective of breaking down (3.343.34) further, we use the (multivariate)
chain rule for differentiation to expand ∆Θ{g

p
n,m(x, z; t) exp(jψp

n,m)}′ as

∆Θ{gp
n,m(x, z; t) exp(jψp

n,m)}′ =

α
p
n,m exp{j(ψp

n,m + tτp
n,m)}

([
j(∆θψ

p
n,m + t∆θν

p
n,m) +

∆θα
p
n,m

α
p
n,m

]
× s(t− τ

p
n,m)am(t; θ

p
n,m, θ̇

p
n,m)

′

− ∂s(t− τ
p
n,m)

∂τ
p
n,m

∆θτ
p
n,mam(t; θ

p
n,m, θ̇

p
n,m)

′

+ jd̄m
[
(sin θ

p
n,m + θ̇

p
n,mt cos θ

p
n,m)∆θθ

p
n,m + sin θ

p
n,mt∆θθ̇

p
n,m
]
s(t− τ

p
n,m)

× bm(t; θ
p
n,m, θ̇

p
n,m)

′
)

. (3.35)

Define J(β, γ) , ∆θβ(∆θγ)′ and H(β, γ) , J(β, γ) + J(γ, β). We now apply
(3.353.35) in (3.343.34) to obtain

D22
k,2 =

1
σ2

U−1

∑
u=0

N

∑
n=1

M

∑
m=1

Pn,m

∑
p=1

E

{
(α

p
n,m)

2

(
Lm‖s(uT2 − τ

p
n,m)‖2

[
J(ψp

n,m, ψ
p
n,m)

+ (uT2)
2J(νp

n,m, ν
p
n,m) +

1
(α

p
n,m)2

J(αp
n,m, α

p
n,m)

]
− LmIm

{
s(uT2 − τ

p
n,m)

∗ ∂s(uT2 − τ
p
n,m)

∂τn,m

}
×
[
H(ψ

p
n,m, τ

p
n,m) + (uT2)H(ν

p
n,m, τ

p
n,m)

]
− LmRe

{
s(uT2 − τ

p
n,m)

∗ ∂s(uT2 − τ
p
n,m)

∂τn,m

}
×
[ 1

α
p
n,m

H(α
p
n,m, τ

p
n,m)

]
+ Lm

∥∥∥∥∂s(uT2 − τ
p
n,m)

∂τn,m

∥∥∥∥2

J(τp
n,m, τ

p
n,m)

+ d̄m
Lm(Lm − 1)

2
‖s(uT2 − τ

p
n,m)‖2

[{
sin θ

p
n,m + θ̇

p
n,m(uT2) cos θ

p
n,m
}

×
{

H(θ
p
n,m, ψ

p
n,m) + (uT2)H(ν

p
n,m, θ

p
n,m)

}
+ (uT2) sin θ

p
n,m
{

H(θ̇
p
n,m, ψ

p
n,m)

+ (uT2)H(θ̇
p
n,m, ν

p
n,m)

}]
− d̄m

Lm(Lm − 1)
2

Im
{

s(uT2 − τ
p
n,m)

∗ ∂s(uT2 − τ
p
n,m)

∂τn,m

}
×
[{

sin θ
p
n,m + θ̇

p
n,m(uT2) cos θ

p
n,m
}

H(τ
p
n,m, θ

p
n,m) + sin θ

p
n,m(uT2)H(τ

p
n,m, θ̇

p
n,m)

]
+ (d̄m)

2 (Lm − 1)Lm(2Lm − 1)
6

‖s(uT2 − τ
p
n,m)‖2

[{
sin θ

p
n,m + θ̇

p
n,m(uT2) cos θ

p
n,m
}2

× J(θp
n,m, θ

p
n,m) + (sin θ

p
n,m)

2(uT2)
2J(θ̇p

n,m, θ̇
p
n,m) + sin θ

p
n,m(uT2)

×
{

sin θ
p
n,m + θ̇

p
n,m(uT2) cos θ

p
n,m
}

H(θ̇
p
n,m, θ̇

p
n,m)

])}
. (3.36)
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The expectation appearing in (3.363.36) cannot be found in closed form, but we
approximate using Monte Carlo. The main challenge of evaluating (3.363.36) is the
calculation of some of the derivatives (appearing within J(·) and H(·) terms) with
respect to the state variable. Next, we show how this is solved for the functions
that are not straightforward.

3.3.2 Evaluating the measurement function gradients

Consider a single path from a transmitter located at (aTx, bTx) to a sensor located
at (aRx, bRx). Let the number of reflection points between the transmitter and the
target located at (x, y) be S with the sth reflection point denoted by (ωs, ρs). The
point corresponding to s = 1 is the reflection point immediately after the transmit-
ter. Similarly, let the number of reflection points between the target and the sensor
be L with the lth reflection point located at (ξl , ζl). The reflection point for l = 1
corresponds to the reflection immediately before the sensor.

It is convenient to assign:

(ω0, ρ0) , (aTx, bTx), (3.37)

(ξ0, ζ0) , (aRx, bRx), (3.38)

(ωS+1, ρS+1) , (x, y), (3.39)

(ξL+1, ζL+1) , (x, y). (3.40)

Let the bottom most point of the wall on which the lth reflection point lies (in
the path from the target to the receiver) be denoted by (γl , χl). In the case of the
wall being parallel to the horizontal axis, choose the left-most point on the wall as
(γl , χl). We use the point (γl , χl) as a reference point. The distance between the
points (ξl , ζl) and (γl , χl) is denoted by dl . We use βl to denote the angle this wall
makes with the horizontal axis. The notation is illustrated in Figure 3.23.2, which
shows a ray hitting the lth reflection point between the target and the sensor.

Similar notation is adopted for the path segments between the transmitter and
the target. In particular, we use (vs, ϕs) to denote the reference point for the wall
on which the sth reflection point between the target and the transmitter lies. The
distance between (vs, ϕs) and (ωs, ρs) is denoted by ςs.

In the following discussion, we have dropped the indices identifying the path
in favour of brevity. We now show the procedure only for calculating the deriva-
tives with respect to x and ẋ when necessary. The same procedure can be used to
find the derivatives with respect to y and ẏ.

First, we show how ∂θ/∂x is calculated. The quantity ∂θ/∂x is a term appear-
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βl

φl

φl−1

(ξl−1, ζl−1)

(ξl , ζl)

(ξl+1, ζl+1)

(γl , χl)
dl

Figure 3.2: Reflection points between the target and sensor.

ing in ∆Θθ needed to evaluate the PCRB.

The reflection points on the transmitter-target path can be parametrised as fol-
lows:

ξl = γl + dl cos βl , (3.41)

ζl = χl + dl sin βl . (3.42)

Let φl be the AOA at the lth reflecting point. Then it can be shown that, because of
the specular nature of the reflections,

φl = 2
l

∑
i=1

βi(−1)i+l + θ(−1)l . (3.43)
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Consider the AOA θ at the sensor:

θ =: f0(d1) = arctan
[

χ1 + d1 sin β1 − bRx

γ1 + d1 cos β1 − aRx

]
. (3.44)

Reflection points are related by, for l = 1, . . . , L− 1,

tan φl−1 =
χl+1 + dl+1 sin βl+1 − χl − dl sin βl

γl+1 + dl+1 cos βl+1 − γl − dl cos βl
. (3.45)

Now by solving (3.453.45) for dl we have, for l = 1, . . . , L− 1,

dl =: fl(dl+1, θ),

=
χl+1 − χl + dl+1(sin βl+1 − tan φl cos βl+1)

sin βl − tan φl cos βl
,

− tan φl(γl+1 − γl)

sin βl − tan φl cos βl
. (3.46)

Similarly,

dL =: fL(x, y, θ) =
y− χL − tan φL(x− γL)

sin βL − tan φL cos βL
. (3.47)

Taking derivatives of (3.443.44),(3.463.46), and (3.473.47) with respect to x we have the fol-
lowing equations:

∂θ

∂x
=

∂ f0

∂d1

∂d1

∂x
, (3.48)

∂dl

∂x
=

∂ fl

∂dl+1

∂dl+1

∂x
+

∂ fl

∂θ

∂θ

∂x
for l = 1, . . . , L− 1, (3.49)

∂dL

∂x
=

∂ fL

∂x
+

∂ fL

∂θ

∂θ

∂x
. (3.50)

We rewrite (3.493.49) as, for l = 1, . . . , L− 1,

∂dl

∂x
= Λl + ηl

∂θ

∂x
, (3.51)

where Λl and ηl follow the recursive relationships:

Λl = Λl+1
∂ fl

∂dl+1
, (3.52)

ηl = ηl+1
∂ fl

∂dl+1
+

∂ fl

∂θ
, (3.53)
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with the recursions terminated by using (3.503.50) to define the quantities:

ΛL =
∂ fL

∂x
, (3.54)

ηL =
∂ fL

∂θ
. (3.55)

Finally, by substituting the expression for ∂d1/∂x obtained from (3.513.51) into (3.483.48),
we have

∂θ

∂x
= Λ0 + η0

∂θ

∂x
, (3.56)

where

Λ0 = Λ1
∂ f0

∂d1
, (3.57)

η0 = η1
∂ f0

∂d1
. (3.58)

By rearranging (3.563.56), we obtain

∂θ

∂x
=

Λ0

1− η0
. (3.59)

Thus, the derivative ∂θ/∂x is found using Λ0 and η0, which can be calculated re-
cursively starting from the values of (3.543.54) and (3.553.55), and using the recursions
(3.523.52) and (3.533.53). Once ∂θ/∂x is obtained, (3.493.49) and (3.503.50) are used to obtain the
partial derivatives ∂dl/∂x, which are needed for some of the calculations that we
explain shortly. Figure 3.33.3 contains an illustration to help understand the sequence
of calculations needed.

We now focus on evaluating the derivatives of θ̇, as needed to obtain the PCRB.
By differentiating (3.443.44) with respect to time and using (3.483.48), we have

θ̇ =
∂ f0

∂d1

(
∂d1

∂x
ẋ +

∂d1

∂y
ẏ
)
=

∂θ

∂x
ẋ +

∂θ

∂y
ẏ. (3.60)

By once again differentiating the above equation with respect to x, we obtain

∂θ̇

∂x
=

∂2θ

∂x2 ẋ +
∂2θ

∂x∂y
ẏ. (3.61)

The second derivatives appearing in (3.613.61) can be found following a similar proce-
dure to the one used to obtain the first derivative ∂θ/∂x.
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ΛL Λl Λl−1 Λ0

ηL ηl ηl−1 η0

∂dL
∂x

∂dl
∂x

∂dl−1
∂x

∂d1
∂x

∂θ
∂x = Λ0

1−η0

Figure 3.3: An illustration of the process involved in calculating ∂θ/∂x and ∂dl/∂x.
The directions of the arrows indicate the sequence of evaluating the quantities.

The derivative of θ̇ with respect to ẋ is simply

∂θ̇

∂ẋ
=

∂θ

∂x
. (3.62)

Let the sth and lth path segments of the forward and return path be denoted by
Rs and rl , respectively; that is,

Rs =
√
(ωs −ωs−1)2 + (ρs − ρs−1)2, (3.63)

rl =
√
(ξl − ξl−1)2 + (ζl − ζl−1)2. (3.64)

Then, the received signal amplitude is given by

α =
√

E

S+1

∏
s=1

$s

L

∏
l=1

εl

S+1

∑
s=1

Rs

L+1

∑
l=1

rl

, (3.65)

where E is the transmitted signal energy and $s is a random reflectivity factor of
the wall which the sth reflection point (between the transmitter and the target) lies,
for the path in context. Similarly, εl is the random reflectivity of the wall on which
the lth reflection point lies between the target and the transmitter, for a particular
path.

By using (3.633.63)-(3.653.65) and noting that Rs and rl are functions of (ςs, ςs−1) and
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(dl , dl−1) respectively, the derivative of α with respect to x is given by

∂α

∂x
=

L+1

∑
l=1

∂α

∂rl

∂rl

∂x
+

S+1

∑
s=1

∂α

∂Rs

∂Rs

∂x
, (3.66)

=

{
∂α

∂r1

∂r1

∂d1

∂d1

∂x
+

L

∑
l=2

∂α

∂rl

(
∂rl

∂dl

∂dl

∂x
+

∂rl

∂dl−1

∂dl−1

∂x

)
+

∂α

∂rL+1

∂rL+1

∂dL

∂dL

∂x

+
∂α

∂rL+1

∂rL+1

∂x

}

+

{
∂α

∂R1

∂R1

∂ς1

∂ς1

∂x
+

S

∑
s=2

∂α

∂Rs

(
∂Rs

∂ςs

∂ςs

∂x
+

∂Rs

∂ςs−1

∂ςs−1

∂x

)
+

∂α

∂RS+1

∂RS+1

∂ςS

∂ςS

∂x

+
∂α

∂RS+1

∂RS+1

∂x

}
. (3.67)

We have already shown how ∂dl/∂x appearing in (3.673.67) is calculated. The proce-
dure for calculating ∂ςs/∂x terms is exactly the same as that for calculating ∂dl/∂x
(note that dl is a quantity appearing in the context of the forward signal path from
the transmitter to the target; the counterpart in the reverse segment is ςs. Thus the
same procedure used to obtain ∂dl/∂x can be used to evaluate ∂ςs/∂x). The partial
derivatives ∂rl/∂dl , ∂rl/∂dl−1, and ∂rL+1/∂x appearing in (3.673.67) are:

∂r1

∂d1
=

(cos β1)(γ1 + d1 cos β1 − aTx) + (sin β1)(χ1 + d1 sin β1 − bTx)

r1
, (3.68)

∂rl

∂dl
=

(cos βl)
(

dl cos βl − dl−1 cos βl−1 + γl − γl−1

)
rl

+
(sin βl)

(
dl sin βl − dl−1 sin βl−1 + χl − χl−1

)
rl

for l = 2, 3, . . . , L, (3.69)

∂rl

∂dl−1
=

(cos βl−1)
(

dl−1 cos βl−1 − dl cos βl + γl−1 − γl

)
rl

+
(sin βl−1)

(
dl−1 sin βl−1 − dl sin βl + χl−1 − χl

)
rl

for l = 2, 3, . . . , L, (3.70)

∂rL+1

∂dL
=

(cos βL)
(

dL cos βL + γL − x
)
+ (sin βL)

(
dL sin βL + χL − y

)
rL+1

, (3.71)

∂rL+1

∂x
=

x− dL cos βL − γL

rL+1
. (3.72)

The derivatives of Rs for s = 1, 2, . . . , S + 1 follow similarly and these can then be
used in (3.673.67).
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The delay τ is given by

τ = 1/c
S+1

∑
s=1

Rs + 1/c
L+1

∑
r=1

rl , (3.73)

Thus, the derivative of τ with respect to x can be obtained by

∂τ

∂x
= 1/c

S+1

∑
s=1

∂Rs

∂ςs

∂ςs

∂x
+ 1/c

L+1

∑
r=1

∂rl

∂dl

∂dl

∂x
. (3.74)

where the quantities on the right hand side of (3.743.74) are already discussed.

The doppler shift is given by ν = 2π(V + U)/λ, where

U = ṘS+1,

=
∂RS+1

∂x
ẋ +

∂RS+1

∂y
ẏ +

∂RS+1

∂ςS

{
∂ςS

∂x
ẋ +

∂ςS

∂y
ẏ
}

, (3.75)

V = ṙL+1,

=
∂rL+1

∂x
ẋ +

∂rL+1

∂y
ẏ +

∂rL+1

∂dL

{
∂dL

∂x
ẋ +

∂dL

∂y
ẏ
}

. (3.76)

To evaluate ν with respect to x, the second derivatives of the dl and ςs are required.
Those can be found by following exactly the same recursive procedure used to find
their first derivatives.

We have omitted other derivatives that are needed to evaluate PCRB since they
are straightforward.

3.4 Results and discussion

Consider a transmitted signal of unit energy given by

s(t) =
1√
P

(P−1)/2

∑
−(P−1)/2

exp [jυ− 1/(2κ2)](t− pT1)
2

(πκ2)1/4 . (3.77)

In our example, we have set the number P of transmitted pulses to three. The
width parameter κ is chosen to give an effective duration of 250 ns and the chirp
rate υ is such that the effective bandwidth of the signal is 40 MHz. The pulse
repetition interval is chosen as T1 = 100 µs. We use a single transmitter and a
single sensor with L = 3 array elements. Antenna elements are separated by 4λ;
the wavelength of the carrier frequency λ is chosen as 0.1 m. The state sampling
period is T̃ = 1 s and the receiver samples data with a period of T2 = 10 ns.
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Figure 3.4: The multipath environment and the nominal target trajectory.

The radar environment and the nominal target trajectory are shown in Figure
3.43.4. The initial prior distribution for the target kinematic state is Gaussian with
mean and covariance matrix given by

γ0 =


2040
1.55
1150
17.5

 , (3.78)

P0 =


2 0 0 0
0 0.5 0 0
0 0 2 0
0 0 0 0.5

 . (3.79)

The process noise covariance matrix Qk is set by κ = 0.04. The reflecting sur-
faces are made up of eight walls. All the random reflectivity variables associ-
ated with walls are assumed to be distributed according to N (·; 0.6, 0.052); that is,
(µb, ιb) , (0.6, 0.052), for b = 1, 2, . . . , 8. The random reflectivity variables associ-
ated with the target are assumed to be distributed according toN (·; 0.7, 0.052); that
is, (µ0, ι0) , (0.7, 0.052). The transmitted signal energy E is chosen such that the
signal-to-noise ratio of the weakest multipath signals at the output of the matched
filter, averaged over the entire trajectory, is 20dB.

Figure 3.53.5 shows the PCRB for position and velocity for the setup considered.
The D22

k,2 component of the bound (3.363.36), which is the only component without a
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Figure 3.5: Root mean square error of a particle filter against PCRB for: (a) position
in meters (b) velocity in meters per second.

closed form solution, was found using 500 Monte Carlo realisations. The RMSE of
a particle filter based on Markov Chain Monte Carlo is overlaid on top of the PCRB
curves. The design of this particle filter is covered in Chapter 55. The particle filter
was run over 100 realisations to obtain the RMSE. The Markov Chain length is set
to 150 for this particle filter. Note that the RMSE curves follow the general shape
of the PCRB curves, and in some instances become very close to the lower bound.
However, during the latter stage of the trajectory, the RMSE deviates significantly
from the PCRB curves. It should be noted that the RMSE being lower at time 0 in
the velocity PCRB plot is a consequence of Monte Carlo sampling error.

Note that the overall shape of the PCRB conforms with the general intuition;
that is, the PCRB is relatively low while the target is approaching either the trans-
mitter or the sensor because of strong multipath reflections. The PCRB reaches a
local peak halfway through the trajectory (around the time k = 10), which again is
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due to relatively weak multipath signals available around that time of the trajec-
tory.

Next, consider a scenario involving a single wall as shown in Figure 3.63.6.

transmitter
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target trajectory
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1,566.67

Figure 3.6: The multipath environment and the nominal target trajectory involving
a single wall.

We ran the the particle filter developed in Chapter 55 with varying number of
particles. The results are shown in Figure 3.73.7. As expected, increasing the num-
ber of particles helps to reduce the RMSE. However, since the PCRB is not a tight
bound for this problem, it is not expected to be reached by asymptotically increas-
ing the number of particles (note that particularly in non-linear signal processing
problems, the PCRB not being possible to achieve is the norm rather than the ex-
ception).

3.5 Conclusion

In this chapter we have formulated a general tracking problem in a multipath en-
vironment. We have incorporated into our model some of the uncertainty prevail-
ing in a realistic tracking situation, not usually taken into account in conventional
multipath models. Obtaining performance bounds is an important part of any
estimation problem, and this chapter has been dedicated to deriving the Poste-
rior Cramér Rao Lower Bound for the novel model. The obtained bound can be
used as a benchmark in designing statistical filters. The main challenge of deriv-
ing the bound resides in the evaluation of various derivatives with respect to the
target kinematics. We have solved this problem by exploiting geometrical relation-
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Figure 3.7: Root mean square error of particle filters against PCRB for: (a) position
in meters (b) velocity in meters per second.

ships induced in the environment through the specular nature of reflections. The
recursive method used to calculate the various derivatives can be easily used or
extended to find the PCRB for other multipath models.



CHAPTER 4

Conjugate analysis of a
multivariate von-Mises

distribution

Summary

In this chapter, we propose a Bayesian conjugate framework for inferring mul-
tiple phases. The framework requires a generalisation of the von-Mises (VM)

distribution for multiple variables. This work was performed in our pursuit of
designing a target tracking filter for the multipath model introduced in Chapter
33. The principal difficulty we faced with generalising the VM distribution is the
computation of the first order moment and the normalising constant, which are
important for Bayesian inference. We propose two approaches to solve the prob-
lem: one based on a Bessel function expansion and the other based on a Markov
Chain Monte Carlo (MCMC) technique using the Gibbs sampler. We then assess
the performance of these two methods against variations in parameters of the Gen-
eralised von-Mises (GVM) distribution.

4.1 Introduction

In the last chapter we introduced a novel model for a multipath environment,
where the uncertainty in the wall locations is accounted for by introducing a ran-
dom phase shift to the radar measurement equation. Since the measurement
recorded at the sensor is a superposition of such randomly phase shifted radar
signals, the likelihood function depends on multiple phase variables. Our initial
attempts at designing a tracker for the multipath model directed us to derive a
Bayesian conjugate framework to conveniently estimate the phase variables. This
chapter presents the work done towards that end.

In particular, we consider the problem of estimating the phases of multiple
superimposed signals embedded in additive Gaussian noise. This problem is of

57
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interest in a number of areas such as radar, communications, and biology. For in-
stance, in communications we may receive a signal, which is the sum of several
carriers, each subject to an unknown phase shift. For the case of a single phase,
it was shown in [Quinn 2011Quinn 2011] that a Bayesian conjugate analysis is possible with
the VM distribution as the prior. In other words, when a VM distributed prior
is updated with a likelihood function proportional to a VM distribution, then the
resulting posterior also follows a VM distribution. It will be shown in this chapter
that, for multiple phases, the conjugate prior is a particular multivariate gener-
alisation of the VM distribution. Note that we are considering “phase” variables,
which are by definition circular quantities. Some fundamental differences between
circular and linear statistics are given in Appendix 4.A4.A.

Several multivariate generalisations of the VM distribution have been pro-
posed in the statistics literature. The key difficulty with the use of multivariate
VM distributions is the computation of the integrals such as the normalising con-
stant required to compute posterior statistics. In [Rivest, L. P. 1988Rivest, L. P. 1988], [Singh 2002Singh 2002],
and [Mardia 2010Mardia 2010] the normalising constant for various bivariate VM distributions
were derived. The results derived in [Rivest, L. P. 1988Rivest, L. P. 1988] and [Mardia 2010Mardia 2010] are of
particular interest as they can be used in the conjugate analysis of two phases.
However, there appears to be no results that can be used for conjugate Bayesian
analysis of a general number of phases. We present two methods of calculating the
posterior statistics for a proposed GVM distribution. The first method is based on
the direct evaluation of the integral using summations while the second method
is based on MCMC methods [Robert 2004Robert 2004]. The scheme proposed in [Chib 1995Chib 1995]
is used to calculate the normalising constant using MCMC, which uses multiple
Gibbs chains to approximate the normalising constant. The samples generated in
the process of calculating the normalising constant can be conveniently used to
calculate posterior statistics such as circular mean and variance. It will be shown
later that the direct method requires an infinite summation that does not have a
closed form solution. In practice, we have to choose a finite truncation point for
the infinite summation and discard the insignificant terms. Thus, the two meth-
ods presented in this chapter are not exact methods but approximations. In this
chapter, we assess the performance of these two approximations as a function of
the parameters of the proposed GVM distribution.

The rest of the chapter is organised as follows. First, we show the relationship
of the GVM distribution with the multipath model explained in Chapter 33 in Sec-
tion 4.24.2. In Section 4.34.3, we introduce the general measurement model. The core
of the technical content is embedded in Section 4.44.4. There, we present the conju-
gate analysis for the GVM distribution and present two methods for calculating
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the moments. Various simulation results used to assess the methods are presented
in Section 4.54.5. Finally, the conclusion for the work in this chapter is presented in
Section 4.64.6.

Some of the notations and acronyms we have adapted are given in Table 4.14.1.
Any notation/acronym, which does not appear in Table 4.14.1 is defined when it first
appears.

Table 4.1: Summary of common notations and acronyms.

Notation/Acronym Description

C Field of complex numbers
R Field of real numbers
VM(ψ; γ, δ) von-Mises distribution with concentration parameter γ and

location parameter δ
GVM(ψ; µ1) Generalised von-Mises distribution with parameters de-

fined by µ1
N (·; ∆, Λ) Multivariate Gaussian distribution with parameters ∆

(mean) and Λ (covariance)
CN (·; ∆, Λ) Circular symmetric complex Gaussian distribution with pa-

rameters ∆ (mean) and Λ (covariance)
R(·) Real component of the argument
GVM Generalised von-Mises distribution
VM von-Mises distribution
MCMC Markov Chain Monte Carlo
MSE Mean Squared Error

4.2 The relationship of the GVM distribution to the multi-
path model

For brevity, we present a simplified version of the multipath model presented in
Chapter 33. Consider the target tracking problem in an urban terrain where the
received signal at the sensors consists of multiple reflecting paths. Assume that a
map of the terrain is available. In a realistic setting, the information obtained about
the building locations using the map may not be very accurate. As discussed in
Chapter 33 we account for this uncertainty in reflector locations by introducing a
random phase shift for each multipath in the measurement equation (4.14.1); that is,

y =
q

∑
i=1

exp(jψi)gi(x) + w, (4.1)
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where

x = Target state,

y = Measurement vector,

q = Number of multipaths,

gi(x) = Measurement function for the ith multipath.

This function accounts for quantities such as

delay, doppler and attenuation of the transmitted

signal,

ejψi = Random phase shift for the ith path.

Target

e jψ
2g

2 (x)

ReceiverTransmitter

e jψ
1g

1 (x)

Figure 4.1: An illustration of circular variables in the multipath model.

A hypothetical radar scene involving two multipaths is shown in Figure 4.14.1.

We are interested in obtaining an estimate for the target state upon observing
the measurements. Suppose we design a marginalised particle filter
[Arulampalam 2002Arulampalam 2002] to approximate p(x, ψ|y) as follows:

p(x, ψ|y) = p(ψ|x, y)p(x|y) (4.2)

∝ p(ψ|x, y)p(y|x)p(x), (4.3)

= p(ψ|x, y)
[∫

p(y|x, ψ)p(ψ|x)dψ

]
p(x), (4.4)

≈
N

∑
i=1

vi p(ψ|x(i), y)δ(x− x(i)), (4.5)
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where for i = 1, 2, . . . , N,

x(i) ∼ q(x|y) for some importance distribution q(x|y) (4.6)

vi ∝
p(x(i))

∫
p(y|x(i), ψ)p(ψ|x(i))dψ

q(x(i)|y) . (4.7)

Note that the marginalisation is over the phase variables ψ and only x samples
are drawn to obtain the posterior approximation (4.54.5). From (4.54.5) point estimates
for x could be obtained by using a weighted average of the samples. Point esti-
mates for ψ could be obtained by taking the weighted average of the means of
the conditional posterior p(ψ|x, y). Now focus on the term

∫
p(y|x, ψ)p(ψ)dψ ap-

pearing in the weight calculation (4.74.7). This is exactly the normalising constant of
p(ψ|y, x).

Thus the distribution p(ψ|y, x) is being used for calculating the particle weights
vi as well as for obtaining a point estimate for ψ. It turns out that the GVM dis-
tribution studied in this chapter has the same functional form of p(ψ|x, y); hence
our motivation to invent a procedure to calculate the normalising constant and a
conjugate framework for GVM distribution.

4.3 Modelling and notation

We drop the dependency on target state x from the example used in Section 4.24.2
and re-pose the problem so that the setup is not specific to the multipath filtering
problem introduced in Chapter 33.

We observe q superimposed signals in additive noise to obtain an observation
vector y consisting of k complex-valued measurements. In particular, we consider
a measurement equation of the form

y =
q

∑
i=1

exp(jψi)gi + w, (4.8)

where gi ∈ Ck, i = 1, . . . , q are known signal vectors and the noise vector w is
a circular symmetric complex multivariate Gaussian with covariance matrix σ2Ik,
where Ik is the k× k identity matrix. It is desired to estimate the unknown phase
shifts: ψi ∈ [0, 2π), i = 1, . . . , q. Equation (4.84.8) can be considered as a multivari-
ate circular regression model. In addition to the multipath filtering problem, real
world examples of this model can be found in communications, radar, bioinfor-
matics, microbiology and molecular physics.
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4.4 Theory/Methodology

4.4.1 Conjugate analysis

A conjugate prior has the desirable property that the posterior distribution retains
the same form as the prior, which facilitates convenient recursive Bayesian infer-
ence schemes. Thus, we wish to find a conjugate prior for our problem of multiple
phase estimation.

The measurement equation (4.84.8) results in a likelihood of the form:

L(ψ; y) = CN
(

y;
q

∑
i=1

exp(jψi)gi; σ2Ik

)
, (4.9)

=
b(y)

πk |σ2Ik|
exp

[
R{h(y)′u(ψ)}

]
, (4.10)

where

h(y) =
2
σ2 [y

∗g1 . . . y∗gq . . .− g2
∗g1 − g3

∗g1 . . . − gq
∗gq−1]

′,

b(y) = exp

[
− 1

σ2 (||y||
2
2 +

q

∑
i=1
||gi||22)

]
,

u(ψ) = [a(ψ)′ ã(ψ)′]′,

and

a(ψ) = [ejψ1 ejψ2 . . . ejψq ]′,

ã(ψ) = [ej(ψ1−ψ2) ej(ψ1−ψ3) . . . ej(ψq−1−ψq)]′.

The conjugate prior for the likelihood (4.104.10) is given by

f (ψ|µ0) =
1

N0(µ0)
exp

[
R{µ′0u(ψ)}

]
, (4.11)

where µ0 ∈ Cq(q+1)/2 is the parameter vector of the prior and N0(µ0) is the nor-
malising constant.

To see that (4.114.11) is indeed the conjugate prior, we use Bayes’ rule to find the
posterior density by:

f (ψ|y, µ0) ∝ L(ψ; y) f (ψ|µ0),
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= CN (y;
q

∑
i=1

ejψi gi; σ2Ik)GVM(ψ; µ0),

∝ exp
[
R{h(y)′u(ψ)}

]
exp

[
R{µ′0u(ψ)}

]
,

= exp
[
R{(h(y) + µ0)

′u(ψ)}
]

,

∝ GVM(ψ; µ1), (4.12)

where we use the notation GVM(ψ; µ0) to refer to the distribution (4.114.11) and

µ1 = µ0 + h(y). (4.13)

Thus, a posterior of the same form as the prior is obtained with parameters up-
dated using the simple rule (4.134.13), hence the conjugacy.

Note that the distribution (4.114.11) is a multivariate generalisation of the VM dis-
tribution. This can be easily seen by re-writing (4.114.11) in a re-parameterised form
as follows:

f (ψ|µ0) =: f̃ (ψ|ν0),

=
1

Ñ0(ν0)
exp

[
q

∑
i=0

κi,i cos(ψi − θi,i) +
q−1

∑
i=1

q

∑
j=i+1

κi,j cos(ψi − ψj + θi,j)

]
,

(4.14)

where ν0 is the vector of parameters κi,j and θi,j for 1 ≤ i ≤ q and i ≤ j ≤ q.
Transformation of the parameters from µ0 to ν0 and vice versa are straightforward.

Note that the univariate VM distribution is a special case of the GVM distribu-
tion for q = 1. Non-zero κi,j terms for i 6= j give rise to correlation between the
phase variables. Thus κi,j = 0 for all i 6= j corresponds to phases being indepen-
dent of each other and hence for this situation GVM becomes the product of q VM
distributions with circular mean for ith phase being equal to θi,i. When correlation
between the phases is present the circular mean for ith phase does not equal θi,i,
but rather is influenced by other phases.

In point estimation, we are very much interested in two particular posterior
statistics, namely the first order moment and the variance. In distributions involv-
ing circular variables, it is customary to take the expectation of exp(jψk) instead of
ψk as the first moment, as explained in Appendix 4.A4.A.

The first order moment Λ of the distribution GVM(ψ; µ1) is given by

Λ = E{[exp(jψ1) . . . exp(jψq)]}′. (4.15)
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Point estimates of the phases can be found as

ψ̂ = ∠Λ. (4.16)

Evaluation of the posterior statistic in (4.154.15) requires integration with respect to
GVM(ψ; µ1). This is not straightforward for an arbitrary number of q phases. The
q = 1 case is trivial since this leads to the well known VM distribution. Evaluation
of similar integrals for q = 2 can be found in [Singh 2002Singh 2002] and [Mardia 2010Mardia 2010]. The
integrals for q > 2 have not been addressed in the literature but are essential for
Bayesian inference for multiple phases using our model.

Next, we present two methods to evaluate the posterior statistics.

4.4.2 Evaluating Posterior statistics using the direct method

Consider the problem of finding the normalising constant and the first order mo-
ment of GVM(ψ; µ). It is easier to solve this by using the re-parameterised form
(4.144.14). Let ν be the new parameter obtained by transforming µ, and define Ñi,k(ν)

with 1 ≤ i ≤ q and k ∈ {0, 1} for the parameter vector ν as

Ñi,k(ν) =
∫

ψ∈[0,2π]q
exp(jψik) exp

[
q

∑
j=0

κj,j cos(ψj − θj,j)

+
q−1

∑
t=1

q

∑
j=t+1

κt,j cos(ψt − ψj + θt,j)

]
dψ, (4.17)

Note that Ñi,0(ν) gives the normalising constant of GVM(ψ; µ) and is inde-
pendent of the index i. Thus we will simply refer to Ñi,0(ν) as Ñ0(ν).

Now the first order moment vector (4.154.15) of GVM(ψ; µ) is expressed as

Λ =
1

Ñ0(ν)
[Ñ1,1(ν) Ñ2,1(ν) . . . Ñq,1(ν)]

′. (4.18)

The key formula for evaluating integral (4.174.17) is the following result from
[Abramowitz 1964Abramowitz 1964, 9.6.34]:

exp[z cos(β)] =
∞

∑
k=−∞

Ik(z) cos(kβ), (4.19)

where z ∈ R and Ik denotes the modified Bessel function of the first kind of order
k.

Theorem 4.14.1 presents the direct expression for Ñi,k(ν).
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Theorem 4.1. Ñi,k(ν) is given by

Ñi,k(ν) =(2π)q ∑
n1,n2,...,nq(q−1)/2

{
q

∏
m=1

In̂m(κm,m)

}
{

q−1

∏
m=1

q

∏
l=m+1

Incm+l−2m(κl,m)

}
uk(αq). (4.20)

where, for m = 1, . . . , q:

n̂m = δi−m +
m−1

∑
j=1

ncj+m−2j −
q

∑
j=m+1

ncm+j−2m,

cm = (m− 1)q− (m− 1)(m− 2)/2 + 1,

αq =
q−1

∑
l=1

q

∑
j=l+1

ncl+j−2lθl,j −
q

∑
j=1

n̂jθj,j,

uk(αq) =

{
cos(αq), if k = 0,
exp(jαq), otherwise,

with δi denoting Kronecker delta.

Proof. See Appendix 4.B4.B.

In general for q phases, (4.204.20) implies the need of q(q − 1)/2 nested summa-
tions. Thus, this method becomes computationally very expensive as the number
of phases involved increases. Equation (4.204.20) requires each indexing variable of
the summation to range from −∞ to ∞. A finite summation suffices to obtain a
close approximation to the converged value of the sum because of the decaying
characteristics of Ik as k → ∞. The number of terms that is needed to get a good
approximation depends on the parameters of the integral (4.204.20). Larger values of
the parameters κi,j in (4.204.20) require more terms in the summation.

The main practical constraint for applying this method is the computational
infeasibility of Bessel functions for large arguments. Bayesian update according
to (4.134.13) results in the Bessel arguments required in the summation monotonically
increasing at each iteration. After several iterations the computation of the sum-
mation becomes numerically infeasible and hence results in unstable estimates.
Performing calculations on a logarithmic scale and normalising all the summation
terms with the product of zero order Bessel functions as shown in equation (4.214.21)
can help to some extent, but even that does not completely solve the problem of
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numerical precision;

log
(

Ñi,k(ν)
)
= q log(2π) +

q−1

∑
m=1

q

∑
l=m

log (I0(κl,m))

+ log
(

Ňi,k(ν)
)

, (4.21)

where

Ňi,k(ν) = ∑
n1,n2,...,nq(q−1)/2

{
q

∏
m=1

In̂m(κm,m)

I0(κm,m)

}
{

q−1

∏
m=1

q

∏
l=m+1

Incm+l−2m(κl,m)

I0(κl,m)

}
uk(αq).

A robust method for obtaining the logarithm of a modified Bessel function of
the first kind is given in [Tanabe 2007Tanabe 2007].

Next, we describe an alternative method of calculating the same posterior statis-
tics using an MCMC scheme.

4.4.3 Evaluating Posterior statistics using MCMC

The idea of MCMC is to design a Markov Chain such that its stationary distribu-
tion is same as the distribution from which the samples are required. The two most
popular methods of achieving this goal are Metropolis-Hastings and Gibbs sam-
pling [Robert 2004Robert 2004]. Gibbs sampling is a particularly attractive solution when sam-
ples from the conditional distributions are easy to obtain, but direct sampling from
the joint distributions is not straightforward. The Gibbs method has the added ad-
vantage that its acceptance rate is 100%.

Interestingly, the posterior distribution f (ψ|y, µ0) has all the full conditionals
(the univariate distribution obtained by conditioning on all the variables except
one from a multivariate distribution) as univariate VM; that is, for all j (1 ≤ j ≤ q),
we have

f (ψj|ψ1, . . . , ψj−1, ψj+1 . . . , ψq, y, µ0) = VM(ψj; γj; δj)

where γj and δj are functions of ψ1, . . . , ψj−1, ψj+1 . . . , ψq, y, µ0.
Efficient methods exist to obtain samples from the VM distribution[Best 1979Best 1979].

Therefore, Gibbs sampling is a natural choice for obtaining samples from the pos-
terior. These samples can be used to calculate the point estimates as an alternative
to the direct method.

In addition to the approximation of the point estimates, the normalising con-
stant can also be approximated using an MCMC scheme by using the method pro-
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posed by Chib [Chib 1995Chib 1995]. Chib’s method uses the output from multiple Gibbs
chains to evaluate the normalising constant.

Next, we describe how the normalising constant can be calculated using Chib’s
method when Gibbs sampling with two blocks is considered.

4.4.3.1 Chib’s method illustrated for Gibbs sampling involving two blocks

Consider a posterior distribution p(x1, x2|y). We are interested in approximating
the normalising constant p(y), which we express as

p(y) =
p(y|x1, x2)p(x1, x2)

p(x1, x2|y)
. (4.22)

Note that the normalising constant does not depend on a particular value of
x1 or x2; in other words, if we can obtain (or approximate) each of the three terms
appearing on the right hand side of (4.224.22) for some particular value of x1 = x∗1
and x2 = x∗2 , then the normalising constant can be found (or approximated) using
(4.224.22). Usually, out of the three terms, the likelihood p(y|x∗1 , x∗2) and the prior
p(x∗1 , x∗2) are known exactly. However, the third term p(x∗1 , x∗2 |y) is known only
up to a normalising constant (ironically, the normalising constant is exactly the
quantity that we are interested in evaluating).

We write p(x∗1 , x∗2 |y) as:

p(x∗1 , x∗2 |y) = p(x∗1 |x∗2 , y)p(x∗2 |y), (4.23)

= p(x∗1 |x∗2 , y)
∫

p(x∗2 |x1, y)p(x1|y)dx1. (4.24)

Gibbs sampling proceeds by sampling, in turn, from the conditional marginal
posterior distributions for each sampling block. For the two sampling block ex-
ample considered here, the conditional marginal distributions are p(x1|x2, y) and
p(x2|x1, y). Suppose, we have obtained G samples, {x(g)

1 , x(g)
2 }G

g=1, after sufficient
burn-in from the Markov Chain, then these samples can be used to make approx-
imate inferences for the statistics of the posterior distribution p(x1, x2|y). Thus, if
we fix x2 at x∗2 , then use the samples from the Gibbs chain, the integral appearing
in (4.244.24) is approximated by

∫
p(x∗2 |x1, y)p(x1|y)dx1 ≈

1
G

G

∑
g=1

p(x∗2 |x(g)
1 , y). (4.25)

We assume that the conditional marginal distribution p(x1|x2, y) can be calcu-
lated (or approximated) for any given value of x1 and x2. Therefore p(x∗1 , x∗2 |y) is
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approximated by using (4.254.25) in (4.244.24). Finally, (4.244.24) is used in (4.224.22) to arrive at
the desired quantity, p(y).

Though x∗1 and x∗2 can be chosen arbitrarily, Chib recommends setting them at
a mode such as the posterior mean, which is easily approximated by the Gibbs
samples.

The general case involving more than two sampling blocks is discussed in de-
tail in [Chib 1995Chib 1995]; this generalisation, which is required for approximating the
normalising constant of GVM is presented in algorithmic form in Algorithm 4.14.1.

Algorithm 4.1: Normalising constant using MCMC

1 Draw ψ
(0)
i ∼ U[0,2π)(·) for i = 2, . . . , q;

2 for i = 1 to q do
3 Draw G samples (after a burn-in period) for each phase ψj for i ≤ j ≤ q

using the following VM distribution.

ψ
(g)
j ∼ p(ψ(g)

j |ψ∗i−1, . . . , ψ∗1 , ψ
(g)
i+1, . . . , ψ

(g)
j−1, ψ

(g−1)
j+1 . . . , ψ

(g−1)
q , y, µ0)

4 Set ψ∗i = 1
G ∑G

g=1 ψ
(g)
i

5 Calculate

Ci =
1
G

G

∑
g=1

π(ψ∗i |ψ∗1 , . . . , ψ∗i−1, ψ
(g)
i+1, . . . , ψ

(g)
q )

6 return
p(ψ∗|y, µ0)

∏
q
i=1 Ci

The samples generated when i = 1 in Algorithm 4.14.1 are from a Markov Chain
with the stationary distribution being the posterior p(ψ|y, µ0) and hence can be
used to calculate the point estimates. This is a particular advantage of Chib’s
method; that is, some of the samples generated to calculate the normalising con-
stant can also be used to obtain point estimates. Another important advantage
of using the MCMC method compared to the direct method discussed in Section
4.4.24.4.2 is that the Bessel functions need not be evaluated, as is required in the direct
method.
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4.5 Results and discussion

In this section we assess the two methods in terms of performance and demon-
strate the effect of:

• Number of variates in the GVM,

• Size of concentration parameters κi,j for 1 ≤ i ≤ q and i ≤ j ≤ q,

• Amount of correlation between the phase variables.

We have chosen a simulation setup that easily enables us to control the param-
eters indicated above. Consider a signal of q complex exponentials with known
frequency and amplitude (but unknown phase) embedded in complex white Gaus-
sian noise. The nth element (1 ≤ n ≤ k) of the measurement vector is given by

yn =
q

∑
i=1

ejψi ai exp(jωin) + wn, (4.26)

where wn ∼ CN (0, σ2) and σ2 = E(wnw∗n).
The unknown phase variables ψi for 1 ≤ i ≤ q are treated as random variables.

Note that the size of concentration parameters κi,j can be altered by varying the
complex noise variance σ2. The correlation between the phases is easily controlled
by varying the frequency separation between carrier frequencies.

For the tests that follow, the base settings are as follows:

[ψ1 ψ2 ψ3 ψ4] = [π/6 − π/4 π/3 π/5],

[a1 a2 a3 a4] = [0.2 0.135 0.185 0.23],

[ω1 ω2 ω3 ω4] = [0.5 0.75 1.0 1.25],

σ = 0.2,

k = 5.

Note that not all parameters may be used for some experiments which follow.
For convenience we define a test scenario using the triplet:

T = {q, σ, ∆},

where,

q = number of unknown variates included in the model,

σ = complex noise variance in the measured signal,
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∆ = frequency separation between carriers.

The algorithms are assessed as a function of computational load. The compu-
tational complexity of evaluating (4.204.20) is O(Mq(q−1)/2) where M is the truncation
point in the infinite summation. Therefore, Mq(q−1)/2 is used in the performance
analysis as the computational complexity of the direct method. For the MCMC
method, complexity is measured by the number of samples drawn after burn-in
for each Gibbs iteration.

In particular, we wish to find out the relative expense of each method when
using it to:

• find point estimates,

• find the normalising constant.

Point estimation is performed as follows. First, we obtain k = 5 measurements
under the test scenario at hand. Next, we use an uninformative (flat) prior and ar-
rive at the posterior parameter vector (µ5) by using the 5 measurements obtained.
We use a GVM distribution with parameter vector µ5 as the prior for processing a
further 5 measurements to obtain point estimates under each method; that is, we
use a GVM distribution parametrised by µ5 as a prior to obtain approximations to
E{exp(jψ)|µ10} using each method.

We define the error between the true posterior angle ψ̂ = arg(E{exp(jψ)|µ10})
and the approximate value ˆ̂ψ to be || exp(jψ̂)− exp(j ˆ̂ψ)||. The true posterior angle
is approximated by using the Monte Carlo method with a very large sample size
(105). As a consequence of this approximation, the MSE is bounded by the variance
of the MCMC method’s estimator with 100000 samples.

A similar procedure is followed to assess the normalising constant evaluation.
As before, we obtain a suitable parameter vector µ5 for the prior using k = 5
measurements. The predicted density for the next measurement p(y6|µ5) is given
by

p(y6|µ5) =
∫

p(y6|ψ, µ5)p(ψ|µ5)dψ,

=
b(y6)

πσ2N0(µ5)

∫
exp

[
R{µ6(y1:6)

′u(ψ)}
]

dψ,

=
b(y6)N0 [µ6(y1:6)]

πσ2N0(µ5)
, (4.27)

where y1:6 = [y1 . . . y6]′ and µ6(·) is the updated parameter vector which follows
from µ5 according to (4.134.13).
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We can obtain two approximations for the predicted measurement density by
using each method to evaluate the normalising constants N0(·) appearing in (4.274.27).
Let p̂1 and p̂2 be the two approximations to the predicted measurement density
obtained by using the direct method and the MCMC method respectively. A close
approximation to the true predicted measurement density p(y|µ5) is an indication
that the corresponding method performs well in calculating the normalising con-
stant.

We use the Kullback-Leibler divergence (KLD) as a measure of closeness be-
tween two distributions. Denote the KLD between two distributions p and p̃ as
K(p, p̃) where

K(p, p̃) =
∫

p(y) log
(

p(y)
p̃(y)

)
dy. (4.28)

Let L( p̂1, p̂2) be defined as

L( p̂1, p̂2) = K(p(y6|µ5), p̂1(y))− K(p(y6|µ5), p̂2(y)). (4.29)

Thus L( p̂1, p̂2) is the change in KLDs between the approximate distributions
induced by the two methods with respect to the true predicted measurement den-
sity. Intuitively L( p̂1, p̂2) can be thought of as the difference between “distances”
of p̂1 and p̂2 from p(y6|µ5). Note that KLD is not a true distance (metric) since in
general K(p, p̂) 6= K( p̂, p).

A positive value of L indicates that the MCMC method yields a better approx-
imation than the direct method while a negative value of L implies the opposite.
The Monte Carlo method to approximate L is given in Appendix 4.C4.C.

In the next three subsections, we use the above procedures to assess the perfor-
mance of the direct method and the MCMC method in calculating point estimates
and normalising constants of the GVM.

4.5.1 Effect of number of variates

In order to infer the effect of number of variates in the GVM, we estimated ψ1

under the following test scenarios and calculated the MSE:

• T1={2,σ,0.25}

• T2={3,σ,0.25}

• T3={4,σ,0.25}

The effect of the number of variates on the MSE in obtaining point estimates
for ψ1 under each method is presented in Figure 4.24.2. From these results, it is clear
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Figure 4.2: The effect of number of variates on estimating ψ1 plotted against ex-
pense N. Solid lines correspond to the direct method while the dashed lines corre-
spond to MCMC method.

that for both methods MSE decreases as the complexity N increases. The MCMC
method is less sensitive to a change in the number of variables in terms of MSE
compared to the direct method. The direct method fails in particular for relatively
small numbers of truncation points, which is attributed to ignoring significant
terms in the infinite summation (4.204.20).
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Figure 4.3: The effect of number of variates on the KLD difference L( p̂1, p̂2) plotted
against expense N.

Figure 4.34.3 plots the KLD difference L( p̂1, p̂2) for setups T1, T2 and T3. The re-
sults suggest that the performance of the direct method worsens when q increases.
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This confirms the expected behaviour since truncating the summations in (4.204.20) ig-
nores more significant terms when q is increased. However, when enough expense
is allowed both methods respond to a change in q the same way as indicated by L
reaching 0 asymptotically.

4.5.2 Effect of size of concentration parameters κi,j

Larger κi,j values result in a concentrated GVM distribution. The size of these con-
centration parameters can be altered by varying the noise variance in the observed
signal. The noise variance has an inverse relationship with these parameters. We
have devised the following tests to analyse the effect of the size of concentration
parameters:

• T4={3,σ/
√

2,0.25}

• T5={3,σ,0.25}

• T6={3,
√

2σ,0.25}
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Figure 4.4: The effect of size of concentration parameters on estimating ψ1 plotted
against expense N. Solid lines correspond to the direct method while the dashed
lines correspond to MCMC method.

Figure 4.44.4 summarises the mean errors in estimates of ψ1 in experiments T4, T5

and T6. Again the direct method is more sensitive to changes in the size of κ values
than the MCMC method. Performance of the direct method is degraded when the
size of the concentration parameters is increased. This is attributed to the fact that
the number of significant terms contributing to equation (4.204.20) increases when the
size of κ is increased. The effect of κ values on the normalising constant calculation
is similar to that of point estimates as evidenced by Figure 4.54.5.
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Figure 4.5: Effect of size of concentration parameters on KLD difference L( p̂1, p̂2)
plotted against expense N.

4.5.3 Effect of correlation between the phase variables

Correlation between phase variables can be easily controlled in our test set-up by
altering the spacing between the carrier frequencies. Larger spacing results in less
correlation and vice versa. Thus, the following set of tests are used to analyse the
performance of the two methods:

• T7={3,σ,1/8}

• T8={3,σ,1/4}

• T9={3,σ,1/2}

Figures 4.64.6 and 4.74.7 illustrate the effect of correlation between phases on point
estimation and normalising constant calculation respectively using the two meth-
ods. High cross correlation between phase i and j results in a high κi,j value. The
direct method then requires a large truncating point M, and therefore a large com-
putational expense, to perform well. The Gibbs sampling based MCMC approxi-
mation also becomes worse as correlation between phases increases although the
deterioration in performance is more graceful than for the direct method.

4.6 Conclusion

We have considered the problem of estimating phases of multiple superimposed
signals in additive Gaussian noise. The estimation problem is solved via a Bayesian
conjugate framework which requires a particular multivariate generalisation of the
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Figure 4.7: The effect of correlation between phases on KLD difference L( p̂1, p̂2)
plotted against expense N.

VM distribution. We have presented two methods, which can be used to calculate
the posterior statistics of the proposed GVM distribution. The first method is a re-
sult of direct evaluation of an integral whereas the second method utilises MCMC
methods. We have shown how the predicted measurement density can be obtained
using the aforementioned methods. Performance of each method is assessed as
a function of computational complexity subject to changes in parameters of the
GVM distribution. The simulation results suggest that the performance of the di-
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rect method is more sensitive to the parameters when compared to the MCMC
based method. Further, when the allowed computational expense is restricted,
in general the MCMC based method tends to perform better. However, the results
suggest that when the allowed computational expense is increased, asymptotically,
the difference in the performance of the methods becomes smaller.

Appendices

4.A Difference between circular and linear statistics

From an abstract perspective, a circular variable could be thought of as a point in
R that is mapped on to a unique point on the unit circle defined on the field of
complex numbers. These variables have the wrapping effect in the sense that, an
increment of an integer multiple of 2π in the circular variable maps to the same
point on the unit circle. Thus, without loss of generality, we can restrict a circular
variable to a line segment of length 2π in R and define any probability measures
on this line segment rather than on the entire real line (note that points at the
beginning and end of the line segment represent the same point on the unit circle).

Because of this wrapping behaviour, the circular moments are defined differ-
ently than that of linear moments. For a circular variable ψ from a distribution
p(ψ) defined on Γ, where Γ is an interval in R of length 2π, the first moment m1

and variance γ are defined by [Mardia 1972Mardia 1972]:

m1 =
∫

ψ∈Γ
exp(jψ)p(ψ)dψ, (4.30)

γ = 1− |m1|. (4.31)

On the other hand, if ψ is a linear variable defined on Γ, the corresponding statistics
are

m1 =
∫

ψ∈Γ
ψp(ψ)dψ, (4.32)

γ =
∫
(ψ−m1)

2 p(ψ)dψ. (4.33)

Note that for circular variables the variance, which is a measure of spread, lies be-
tween 0 and 1, with 1 indicating maximum spread. To understand how the mea-
sure of spread works intuitively, think of a uniformly distributed phase variable
(which has a maximum spread); the first moment m1 is at the origin of C (due to
the integration of exp(jψ) over an interval of length 2π): thus, from (4.314.31) we have
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the circular variance to be 1, which of course is to be expected for a quantity with
a maximum spread. To phrase it a little more generally: the higher the circular
spread, the smaller would be the size of the first moment vector and vice versa.

4.B Proof of Theorem 4.14.1

Consider evaluating Ñ0(ν) (Evaluating the more general Ñi,k(ν) is similar).

Define the following quantities:

Aj(ψj+1, ψj+2, . . . , ψq) ,
q

∏
i=j+1

exp(κi,i cos(ψi − θi,i))

×
q−1

∏
l=j+1

q

∏
m=l+1

exp(κm,l cos(ψl − ψm + θm,l)),

for j = 1, 2, . . . , q− 1, (4.34)

Mj(ψj+1, ψj+2, . . . , ψq) ,
∫

exp
[ q

∑
i=1

κi,i cos(ψi − θi,i)

+
q−1

∑
i=1

q

∑
j=i+1

κi,j cos(ψi − ψj + θi,j)

]
dψ1dψ2 . . . dψj,

for j = 1, 2, . . . , q, (4.35)

=
∫

Mj−1(ψj, ψj+1, . . . , ψq)dψj for j = 2, 3, . . . , q.

(4.36)

From this point onwards, we denote Mj(ψj+1, ψj+2, . . . , ψq) simply by Mj, in
favour of notational simplicity.

Note that Mq = Ñ0(ν). We carry out the integration sequentially over ψ1 to ψq

and in the process obtain M1 to Mq. The first step is to integrate over ψ1 and obtain
M1. We separate ψ1 terms and express M1 as

M1 =
∫

A1(ψ2, . . . , ψq)

[
exp(κ1,1 cos(ψ1 − θ1,1))

q

∏
m=2

exp(κ1,m cos(ψ1 − ψm + θ1,m))

]
dψ1. (4.37)

We then apply (4.194.19) and do the following manipulations:

M1 =
∫

A1(·)
(

∑
n1

In1(κ1,1) cos{n1(ψ1 − θ1,1)}
)
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q

∏
m=2

∑
n1,m

In1,m(κ1,m) cos{n1,m(ψ1 − ψm + θ1,m)}dψ1,

=
∫

A1(·)
(

∑
n1

In1(κ1,1) cos{n1(ψ1 − θ1,1)}
)

×
{

∑
n1,2,n1,3...,n1,q

q

∏
m=2

In1,m(κ1,m) cos{n1,m(ψ1 − ψm + θ1,m)}
}

dψ1,

=
∫

A1(·) ∑
n1,n1,2,n1,3...,n1,q

In1(κ1,1)

{
q

∏
m=2

In1,m(κ1,m)

}

cos

{
ψ1

( q

∑
j=2

n1,j + n1

)
−

q

∑
j=2

n1,j(ψj − θ1,j)− n1θ1,1

}
dψ1. (4.38)

Since the integration is performed on ψ1 ∈ (0, 2π], only the cosine terms of (4.384.38)
in which the coefficient of ψ1 is zero contribute to the result; that is

n1 +
q

∑
j=2

n1,j = 0 =⇒ n1 = −
q

∑
j=2

n1,j. (4.39)

Define ñ1 as

ñ1 , −
q

∑
j=2

n1,j. (4.40)

Using ñ1 to eliminate the nested summation over n1 appearing in (4.384.38), we obtain

M1 = (2π)A1(·) ∑
n1,2,n1,3 ...,n1,q

Iñ1(κ1,1)

{
q

∏
m=2

In1,m(κ1,m)

}
cos

{
−

q

∑
j=2

n1,j(ψj − θ1,j)

− ñ1θ1,1

}
. (4.41)

If we assume the general form of Mt for t = 1, 2, . . . , q− 1 to be

Mt = (2π)t At(·) ∑
n1,2 ...n1,q,......,nt,t+1 ...nt,q

{
t

∏
m=1

Iñm(κm,m)

}{
t

∏
l=1

q

∏
m=l+1

Inl,m(κl,m)

}

× cos

{
−

t

∑
i=1

q

∑
j=t+1

ni,jψj +
t

∑
i=1

q

∑
j=i+1

ni,jθi,j −
t

∑
j=1

ñjθj,j

}
, (4.42)

where

ñj =
j−1

∑
i=1

ni,j −
q

∑
i=j+1

nj,i, (4.43)
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then Mt+1 is given by

Mt+1 =
∫

Mtdψt+1,

= (2π)t At+1(·)
∫

∑
n1,2...n1,q,......,nt,t+1...nt,q

{
t

∏
m=1

Iñm(κm,m)

}{
t

∏
l=1

q

∏
m=l+1

Inl,m(κl,m)

}

× cos

{
−

t

∑
i=1

q

∑
j=t+1

ni,jψj +
t

∑
i=1

q

∑
j=i+1

ni,jθi,j −
t

∑
j=1

ñjθj,j

}

×
[

exp(κt+1,t+1 cos(ψt+1 − θt+1,t+1))

×
q

∏
m=t+2

exp(κt+1,m cos(ψt+1 − ψm + θt+1,m))

]
dψt+1. (4.44)

Using (4.194.19) on the exponential terms appearing in (4.444.44), we have

Mt+1 = (2π)t At+1(·)
∫

∑
n1,2...n1,q,......,nt,t+1...nt,q

{
t

∏
m=1

Iñm(κm,m)

}{
t

∏
l=1

q

∏
m=l+1

Inl,m(κl,m)

}

× cos

{
−

t

∑
i=1

q

∑
j=t+1

ni,jψj +
t

∑
i=1

q

∑
j=i+1

ni,jθi,j −
t

∑
j=1

ñjθj,j

}

×
(

∑
nt+1

Int+1(κt+1,t+1) cos{nt+1(ψt+1 − θt+1,t+1)}
)

×
{

∑
nt+1,t+2,nt+1,t+3 ...,nt+1,q

q

∏
m=t+2

Int+1,m(κt+1,m)

× cos{nt+1,m(ψt+1 − ψm + θt+1,m)}
}

dψt+1, (4.45)

= (2π)t At+1(·)
∫

∑
n1,2...n1,q,......,nt+1,t+2...nt+1,q

{
t

∏
m=1

Iñm(κm,m)

}
Int+1(κt+1,t+1)

×
{

t+1

∏
l=1

q

∏
m=l+1

Inl,m(κl,m)

}

× cos

{
ψt+1

(
nt+1 −

t

∑
i=1

ni,t+1 +
q

∑
i=t+2

nt+1,i

)
−

t+1

∑
i=1

q

∑
j=t+2

ni,jψj

+
t+1

∑
i=1

q

∑
j=i+1

ni,jθi,j −
t

∑
j=1

ñjθj,j − nt+1θt+1,t+1

}
dψt+1. (4.46)

By the use of the same argument in obtaining (4.394.39), we see that only the terms
of which the coefficient of ψt+1 in (4.464.46) equals 0 contribute to the result of the
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integration over ψt+1. The coefficient of ψt+1 is zero when nt+1 = ñt+1. We use
ñt+1 to eliminate the summation over nt+1 and obtain the result after integrating
over ψt+1 as

Mt+1 = (2π)t+1At+1(·) ∑
n1,2 ...n1,q,......,nt+1,t+2...nt+1,q

{
t+1

∏
m=1

Iñm(κm,m)

}

×
{

t+1

∏
l=1

q

∏
m=l+1

Inl,m(κl,m)

}
cos

{
−

t+1

∑
i=1

q

∑
j=t+2

ni,jψj +
t+1

∑
i=1

q

∑
j=i+1

ni,jθi,j

−
t+1

∑
j=1

ñjθj,j

}
. (4.47)

Note that (4.474.47) and (4.424.42) share the same mathematical form. Further, observe
that the expression for M1 in (4.414.41) is a special case of the generic form (4.474.47). Thus,
it follows by mathematical induction that (4.424.42) holds true for t = 1, 2, . . . , q− 1.

Finally, Ñ0(ν) = Mq is obtained by setting t = q− 1 in (4.424.42) as

Mq = (2π)q ∑
n1,2 ...n1,q,......,nq−1,q

{
q

∏
m=1

Iñm(κm,m)

}{
q−1

∏
l=1

q

∏
m=l+1

Inl,m(κl,m)

}

× cos

{
q−1

∑
i=1

q

∑
j=i+1

ni,jθi,j −
q

∑
j=1

ñjθj,j

}
. (4.48)

The exact form of the formula given in Theorem 4.14.1 follows from re-labelling
the variables {n1,2, n1,3, . . . , n1,q, n2,3, n2,4, . . . . . . , nq−1,q} as {n1, n2, . . . , nq(q−1)/2}.

4.C Calculating L( p̂1, p̂2)

We propose a Monte Carlo method to approximate L( p̂1, p̂2) as follows:

L( p̂1, p̂2) =
∫

p(y|µ5) log
(

p(y|µ5)

p̂1(y)

)
dy−

∫
p(y|µ5) log

(
p(y|µ5)

p̂2(y)

)
dy,

=
∫

log
(

p̂2(y)
p̂1(y)

)
p(y|µ5)dy,

= Ey|µ5

[
log
(

p̂2(y)
p̂1(y)

)]
,

≈ 1/n
n

∑
i=1

log

(
p̂2(y(i))
p̂1(y(i))

)
, (4.49)

where y(i) for 1 ≤ i ≤ n is the ith sample from the predicted measurement density
p(y|µ5).
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The required samples from p(y|µ5) can be easily generated as demonstrated
below:

p(y, ψ|µ5) = p(y|ψ, µ5)p(ψ|µ5),

= CN (y; h(ψ); σ2)GMV(ψ|µ5), (4.50)

where h(ψ) is the measurement function corresponding to equation (4.264.26). Gener-
ating the ith sample from p(y|µ5) can be accomplished in two steps:

• step 1: Generate a sample ψ(i) from a Markov Chain with the stationary dis-
tribution being GMV(ψ|µ5) using the Gibbs sampler. This process is triv-
ial since all the full conditional distributions(the univariate distribution ob-
tained by conditioning all the variables but one from a multivariate distribu-
tion) are VM distributed as discussed in Section 4.4.34.4.3,

• step 2: Generate a sample y(i) from CN (y; h(ψ(i)); σ2).

Sample y(i) can be used to infer any statistic from the desired distribution p(y|µ5).





CHAPTER 5

A particle filter for a partially
known multipath environment

Summary

In Chapter 33 we introduced a novel multipath model, where the inherent un-
certainty in the environment is taken into account in the radar measurement

equation. In particular, recall that the uncertainty in the location of the walls is
captured in the model by introducing a uniformly distributed random phase shift
into the radar equation. Further, we relaxed the assumption that the reflectivity
factors of the walls and the target are known; they are considered as random pa-
rameters. In this chapter, we propose a Markov Chain Monte Carlo (MCMC) based
particle filter as a solution to this challenging filtering problem of estimating the
target state amidst multipath reflections.

5.1 Introduction

In Chapter 11, we discussed the changing perspective on multipath in the radar sig-
nal processing research community. In particular, recall that the conventional ap-
proach towards addressing multipath is to treat it as a nuisance during the filtering
process [Rigling 2008Rigling 2008, Mecca 2006Mecca 2006]. Recent studies [Krolik 2006Krolik 2006, Chakraborty 2010Chakraborty 2010,
Chakraborty 2011Chakraborty 2011, Hayvaci 2012bHayvaci 2012b, Hayvaci 2012aHayvaci 2012a, Li 2011Li 2011, Sen 2007Sen 2007, Sen 2011Sen 2011] in-
dicate a deviation from this approach and promote multipath as a useful resource
for tracking in urban environments. In order to exploit the information content
in multipath we need good models of the multipath environment, and a sound
formulation of the estimation problem. In Chapter 33, we proposed a novel model
where the uncertainty in a realistic multipath environment is captured in the radar
measurement equation. In this chapter, we propose a statistical filter to track a
moving target under the proposed multipath model. First, we present a brief re-
view of some of the relevant work appearing in the literature and also discuss how
our work differs from those.

83
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Among existing work, it is common to see geometrical restrictions imposed
on the multipath environment. As an example in [Chakraborty 2010Chakraborty 2010], multipath
causing reflective surfaces are assumed to be parallel to each other. In [Sen 2007Sen 2007,
Sen 2011Sen 2011] authors assume that all the multipath appear in a single range cell. This
assumption is only valid in very specific situations such as when the multipath en-
vironment consists of a narrow canal. In [Hayvaci 2012aHayvaci 2012a, Hayvaci 2012bHayvaci 2012b] the num-
ber of multipaths available is limited to two. In the work presented in this chapter,
we formulated the estimation problem without imposing any geometrical limita-
tions on the environment. Additionally, our problem formulation accommodates
an arbitrary (but known) number of walls (reflective surfaces) in the environment.

The existing literature can be broadly divided into two categories
based on how the unknown parameters are perceived in the model: determin-
istic [Sen 2007Sen 2007, Sen 2011Sen 2011, Li 2011Li 2011, Hayvaci 2012bHayvaci 2012b] or random [Chakraborty 2010Chakraborty 2010,
Chakraborty 2011Chakraborty 2011]. Treating the unknown parameters as random quantities has
the advantage of incorporating prior knowledge and uncertainty into the model.
However, it appears that the deterministic treatment of unknown parameters is
commoner than the alternative stochastic treatment in the literature on multipath
radar. In our work, we have stressed the incorporation of uncertainty about the en-
vironment. Thus, we have been led to the treatment of the unknown parameters
as random quantities and thereby followed a Bayesian framework for inferencing
tasks.

Not much work has been done particularly on the target tracking problem
in urban multipath radar. The tracking problem involves recursive estimation
of parameters as they evolve through time. Usually, the dynamic behaviour of
the parameters is specified through a differential or difference equation known as
the “process equation”. Some examples of existing work on tracking a target in
multipath radar environment are [Chakraborty 2010Chakraborty 2010, Chakraborty 2011Chakraborty 2011, Li 2011Li 2011].
In contrast a static parameter formulation is considered in [Sen 2007Sen 2007, Sen 2011Sen 2011,
Hayvaci 2012aHayvaci 2012a, Krolik 2006Krolik 2006]. In the work described in this chapter, we focus on
the multipath target tracking problem while explicitly accounting for the uncer-
tainty in the environment.

In Section 2.2.22.2.2, we discussed the two types of measurements (raw sensor mea-
surements vs detection based measurements), which could be used for tracking.
A common theme among most of the existing work on multipath radar is the
use of radar detections as measurements for the target tracker [Chakraborty 2010Chakraborty 2010,
Chakraborty 2011Chakraborty 2011, Li 2011Li 2011]. However, recall that a recent study [Morelande 2007Morelande 2007]
suggest that using raw radar sensor measurements as input to the filter results
in a lower PCRB. Additionally, the use of detections for tracking introduces the
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data association problem, where the challenge is to map detections to physical
paths. In [Chakraborty 2010Chakraborty 2010, Chakraborty 2011Chakraborty 2011] it is assumed that these associa-
tions have been optimally carried out. Motivated by these arguments, we opt to
use raw radar sensor data as measurements in our tracker. Note that by using raw
sensor data, the data association problem can be avoided since the measurement
is a superposition of all the multipath signals and therefore the likelihood function
can be specified without an exhaustive summation over the space of possible data
associations.

At this point, we summarise the important aspects of our multipath model on
which the target tracking filter proposed in this chapter is based. We do not im-
pose any geometrical restrictions on the environment such as the obstacle walls
being vertical, horizontal, or parallel. Once a radar signal is in contact with ei-
ther the target or a wall, it is attenuated by a fraction we refer to as a “reflectivity
factor”. We treat the reflectivity factors of the walls and the target as unknown in-
dependent random quantities. Further, we assume that the location information is
accurate only up to a few wavelengths. This uncertainty in the wall location infor-
mation is modelled by introducing a uniformly distributed random phase shift to
each of the multipath signals. From a Bayesian perspective, the flat prior (uniform
distribution) imposed on the phase shifts is used to translate the uncertainty in the
building locations into a mathematical model. The idea of introducing a uniformly
distributed phase shift can also be seen in [Wilson 1999Wilson 1999], but is used there in a dif-
ferent context. The assumptions that the locations of the walls are known up to a
certain accuracy and the wall reflectivity factors are unknown random variables
are quite practical. As an example, the available map of the terrain may contain
errors which will be accounted for by the former assumption.

In accordance with this model of the environment, the state vector includes
the phase variables and reflectivity factors in addition to the target dynamics.
This amounts to a challenging filtering problem. Particularly, we emphasise that
the uniform prior distribution imposed on the phase variables significantly con-
tributes to the uncertainty of measurement. We have chosen to address this highly
non-linear filtering problem by employing a particle filter.

We described the particle filter in detail in Section 2.1.42.1.4. In that discussion
we introduced the typical procedure of generating particles using a Monte Carlo
method known as importance sampling. However, it has been shown that there
are drawbacks in using importance sampling such as divergence issues
[Robert 2004Robert 2004, section 3.3.2], poor performance in high dimensional problems
[Li 2005Li 2005, Oh 1991Oh 1991] and difficulty in choosing a good importance density. It should
be noted that importance sampling, though quite common, is not the only choice
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for particle generation. Recently, researchers have considered MCMC methods to
generate particles [Khan 2005Khan 2005]. MCMC techniques are quite attractive for particle
generation because of the relative ease of constructing a Markov Chain with the
stationary distribution being the desired empirical filtering density. MCMC meth-
ods such as Gibbs and Metropolis-Hastings (MH) algorithms are two simple and
popular methods to construct a desired Markov Chain. In this chapter, we employ
the MCMC based approach for particle generation because of these difficulties,
which are especially pertinent to challenging high-dimensional filtering problems
such as the one being addressed. However, it should be noted that MCMC meth-
ods are not without drawbacks such as the challenges in constructing a chain that
converges quickly and diagnosing convergence [Kass 1998Kass 1998].

It is relevant to highlight some of the differences between the MCMC based
particle filter proposed in [Khan 2005Khan 2005] and the one presented in this chapter. In
[Khan 2005Khan 2005] the MH sampler was used with a proposal which adds, removes or
predicts targets. Its disadvantages are that it relies on prior statistics and so is not
influenced by the measurements. Further, it does not exploit the structure of a
model, such as ours, in which full conditional marginals are available for most of
the parameters and can be approximated quite accurately for the other parameters
(kinematic states).

The dimension of our measurement vector is relatively large because of our use
of raw sensor measurements. When using approximate algorithms such as particle
filters, a single Bayesian update using a large measurement vector has the poten-
tial to introduce considerable error into the estimate [Oudjane 2000Oudjane 2000, (9)]. More
generally the problem arises when a large amount of information (that is, signal
to noise ratio is very high), all at once, is used on sub-optimal filtering algorithms.
One solution to the problem is to gradually perform the Bayesian update, which
is known as progressive correction. Progressive correction is achieved in two ways:
partitioning the measurements into smaller batches and processing them sequen-
tially as in [Chopin 2002Chopin 2002] or decomposing the likelihood function into a series of
products and processing each term sequentially as in [Oudjane 2000Oudjane 2000]. We have
implemented progressive correction using the former approach of partitioning the
measurement vector into smaller blocks.

Our contributions in this chapter can be summarised as follows. We address
the multipath radar target tracking problem with emphasis on incorporating the
environmental uncertainty. The tracker is implemented using an MCMC based
particle filter, where we have exploited the fact that the full conditional marginal
posterior distributions are readily available or can be well approximated. These
concepts can be applied to any generic filtering problem where it is difficult to
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design good importance distributions.
The rest of the chapter is organised as follows. We specify the multipath model

introduced in Chapter 33 once again in Section 5.25.2 to safeguard the reader from
flipping back and forth between chapters. The proposed particle filter design is
presented in Section 5.35.3. Section 5.45.4 presents simulation results and a discussion
followed by a conclusion to the chapter.

Some of the frequently used notations and acronyms are given in Table 5.15.1.
Any notation/acronym which does not appear in Table 5.15.1 is defined at the first
occurrence.

Table 5.1: Summary of common notations and acronyms.

Notation/Acronym Description

I Identity matrix (The dimensions would be implied by the
context unless explicitly stated through a subscript.)

⊗ Kronecker product
1 : k [1 2 . . . k]′ k ∈ Z+

xv [xv1 xv2 . . . xvN ] (xn is the nth element of x. Here, the index
vector v consist of N integer indices.)

N (·; Θ, Λ) Multivariate Gaussian distribution with parameters Θ

(mean) and Λ (covariance)
CN (·; Θ, Λ) Circular symmetric complex Gaussian distribution with pa-

rameters Θ (mean) and Λ (covariance)
AOA Angle of Arrival
BF Bootstrap Filter
MCMC Markov Chain Monte Carlo
MH Metropolis-Hastings
OID Optimum Importance Density
UT Unscented Transformation

5.2 Modelling and notation

Consider a target travelling in an urban terrain. Multiple radar transmitters are
placed at suitable locations to illuminate the radar environment. The radar sensors
receive a superposition of multiple signals due to scattering of the transmitted
signal.

The target state at time tk is denoted by xk = [xk ẋk yk ẏk]
′, where (xk, yk) is the

target position in the Cartesian plane and (ẋk, ẏk) are the respective velocities. The
target state is assumed to transition from time tk−1 to tk according to the following
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dynamic equation:

xk = Fkxk−1 + wk, k = 1, 2, . . . , (5.1)

where

Fk = I2 ⊗
[

1 T̃
0 1

]
, (5.2)

with cov(wk1 , wk2) = δk1−k2 Qk and

Qk = I2 ⊗ κ

[
T̃3/3 T̃2/2
T̃2/2 T̃

]
. (5.3)

Here, T̃ = tk − tk−1 is the state sampling period.

Consider the following setup:

• N transmitters are placed at suitable locations.

• Return signals are received by M uniform linear arrays with the mth array
composed of Lm elements.

• During the sampling period each transmitter transmits a sequence of P pulses
of duration D and period T1, with the first pulse being transmitted at tk, for
k = 1, 2, 3, . . .

• Let sk,n denote the time series transmitted by the nth transmitter at time tk.

• Let the total number of paths between the nth transmitter and the mth receiver
be denoted by Pn,m.

• Incoming data are sampled at a rate of T2 seconds.

• The reflections off the walls are specular (that is, mirror reflections).

• The transmitters and receivers are coherent.

• The target is a point scatterer.

• There are B buildings in the terrain, which are numbered from 1 to B.

• Each time a multipath hits the bth wall, the signal attenuates by a random
reflectivity factor, which is distributed according to N (·; µb, ιb), where the
prior parameters µb and ιb are known.
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• Each time a multipath hits the target, the signal attenuates by a random tar-
get reflectivity factor, which has the distribution N (·; µ0, ι0), where the prior
parameters µ0 and ι0 are known..

• The collection of all the wall and target reflectivity factors is denoted by the
vector zk, and is assumed to be temporally uncorrelated.

• The locations of the buildings in the surveillance area are approximately
known.

• Because of the uncertainty of the wall locations, the radar signal correspond-
ing to the pth path between the nth transmitter and the mth receiver is phase
shifted by ψ

p
n,m, where

ψ
p
n,m ∼ U[0,2π).

The collection of all such phase variables between all the transmitters and
receivers at time k is denoted by the vector ψk. Let ψi,k denote the ith member
of this vector.

The signal vector received by all the sensors at time tk + uT2 is

Yk(u) = h(xk, ψk, zk; u) + e(u), for u = 0, . . . , U − 1, (5.4)

where e(u) is a circular symmetric complex white Gaussian process with covari-
ance matrix 2σ2I, and

h(xk, ψk, zk; u) =
N

∑
n=1


µk,n,1(xk, ψk, zk; uT2)

...
µk,n,M(xk, ψk, zk; uT2)

 ,

with the measurement function µk,n,m(·) for n = 1, . . . , N, m = 1, . . . , M, given by

µk,n,m(x, ψ, z; t) =
Pn,m

∑
p=1

gp
n,m(x, z; t) exp(jψp

n,m), (5.5)

and

gp
n,m(x, z; t) = α

p
n,m(x, z)sk,n(t− τ

p
n,m(x))ejνp

n,m(x)t

× am(t; θ
p
n,m(x), θ̇

p
n.m(x)), (5.6)

with
am(t; θ, θ̇) =

[
1 e−jd̄mrt · · · e−j(Lm−1)d̄mrt

]′
, (5.7)
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where

rt = cos θ − θ̇t sin θ, (5.8)

d̄m = 2πdm/λ, (5.9)

dm = the separation between the elements of the mth sensor array, (5.10)

λ = the wavelength of the carrier signal. (5.11)

For the pth path between the nth transmitter and the mth sensor array:

• α
p
n,m(x, z) is the intensity of the return. This includes transmitted signal

strength as well as path attenuation.

• θ
p
n,m(x) is the Direction of Arrival (DOA).

• θ̇
p
n,m(x) is the rate of change of the DOA.

• τ
p
n,m(x) is the delay of the signal.

• ν
p
n,m(x) is the Doppler shift.

The mathematical expressions for the above five quantities are included in Ap-
pendix 5.A5.A.

The entire measurement vector at time tk is

Yk = h(xk, ψk, zk) + e, (5.12)

where

Yk = [Yk(0) . . . Yk(U − 1)]′,

h(xk, ψk, zk) = [h(xk, ψk, zk; 0) . . . h(xk, ψk, zk; U − 1)]′,

e = [e(0) . . . e(U − 1)]′.

It is convenient to work with real vectors; thus, we split the complex measure-
ment vector and complex h(xk) into real and imaginary parts, and concatenate
them into real vectors as follows:

yk = [Re(Yk)
′ Im(Yk)

′]′, (5.13)

h̃(xk, ψk, zk) = [Re{h(xk, ψk, zk)}′ Im{h(xk, ψk, zk)}′]′. (5.14)

Let yk = [y1 y2 . . . , yk]
′, denote the vector of all measurements up to and

including time k. The main objective in tracking is to estimate the target state xk

after observing yk.
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5.3 Theory/Methodology

Suppose a vector θk ∈ RN can be partitioned into P components as

θk = [θ′1,k, θ′2,k, . . . , θ′P,k]
′. (5.15)

A simple method to construct a Markov Chain with p(θk|yk) as its stationary dis-
tribution is the Gibbs sampling method [Geman 1984Geman 1984]. To use this method it is re-
quired to be able to draw samples from all the conditional marginal distributions.
This means, sampling from p(θj,k|yk, θ1:j−1,k, θj+1:P,k) for every j = 1, 2, . . . , P; a
luxury which is not computationally possible in general. A more general solu-
tion to designing a desired Markov chain is the MH algorithm [Metropolis 1953Metropolis 1953,
Hastings 1970Hastings 1970]. The MH algorithm samples from some proposal q(θj,k|yk, θ1:j−1,k,
θj+1:P,k), and accepts the new sample with a certain probability, such that the chain
converges to the desired target density. Note that the Gibbs sampling method is a
special case of the MH algorithm which occurs when the proposals are chosen as
the full conditional marginals.

Consider the multipath filtering problem introduced in Section 5.25.2. The state
vector at time k can be broadly divided into three components as: target kinematics
xk, phase variables ψk, and wall reflectivities zk. In the context of particle filtering,
using the auxiliary variable framework described in Section 2.1.42.1.4, we have an ad-
ditional variable i indicating the sample index.

We wish to construct a Markov chain with stationary distribution p(xk, ψk, zk, i|
yk). The Markov chain is progressed from state (x, ψ, z, i) to a different state
(x′, ψ′, z′, i′) over a series of draws using either Gibbs steps (when drawing from a
full conditional marginal distribution is feasible) or MH steps which approximate
a Gibbs step.

We present the discussion of the transition from (x, ψ, z, i) to (x′, ψ′, z′, i′) in
four parts, as shown below:

(x, ψ, z, i)
part 1−−−→ (x, ψ′, z, i)

part 2−−−→ (x, ψ′, z, i′)
part 3−−−→ (x, ψ′, z′, i′)

part 4−−−→ (x′, ψ′, z′, i′).
(5.16)

5.3.1 Updating the phase vector

Consider the distribution p(ψk|yk, xk, i, z). Bayes’ rule leads to the following set of
equations:

p(ψk|yk, xk, i, zk) ∝ p(yk|ψk, xk, zk)p(ψk), (5.17)
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∝ CN (Yk; h(xk, ψk, zk), 2σ2I). (5.18)

By direct substitution of (5.55.5), followed by some simple manipulations, it can
be shown that p(ψk|yk, xk, i, zk) has the following form:

p(ψk|yk, xk, i, zk) ∝ exp
{ Ω

∑
n1=1

κn1,n1 cos(ψn1,k − φn1,n1)+

Ω−1

∑
n1=1

Ω

∑
n2=n1+1

κn1,n2 cos(ψn1,k − ψn2,k + φn1,n2)
}

, (5.19)

where

Ω is the number of elements in ψk,

κn1,n2 and φn1,n2 for n1 ≤ n2 ≤ Ω are functions of xk, zk, and yk.

The formulae for κn1,n2 and φn1,n2 are included in Appendix 5.B5.B. Equation (5.195.19)
shows that p(ψk|·) is the Generalised Multivariate von-Mises (GVM) considered
in Chapter 44 and [Karunaratne 2012aKarunaratne 2012a]. Obtaining samples directly from (5.195.19) is
not feasible. However, note that the full conditional marginal distributions for
each of the phase variables are from the univariate von-Mises family; that is

p(ψi,k|yk, xk, zk, ψ1:i−1,k, ψi+1:Ω,k) =

VM(ψi,k; yk, xk, zk, ψ1:i−1,k, ψi+1:Ω,k). (5.20)

Note that VM distribution is a nice distribution, where sampling can easily
be performed [Best 1979Best 1979]. An implication of (5.205.20), is that Gibbs sampling can
be used, if the transition from (xk, ψk, z, i) to (xk, ψ′k, z, i) is carried out over Ω
Markov steps, where in each step only one phase is updated by drawing from a
VM distribution.

The process is illustrated by the following state flow sequence.

(xk, ψ1:Ω,k, zk, i) −→ (xk, ψ′1,k, ψ2:Ω,k, zk, i) −→ (xk, ψ′1:2,k, ψ2:Ω,k, zk, i) 99K (xk, ψ′k, zk, i)

The above procedure can be summarised as drawing ψ′k from the proposal
qψ(ψ′k|ψk, yk, xk, i, z), where

qψ(ψ
′
k|ψk, yk, xk, i, zk) =

Ω

∏
j=1
VM(ψ′j,k|ψ′1:j−1,k, ψj+1:Ω,k, yk, xk, zk). (5.21)
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5.3.2 Updating the particle index

This part involves moving the Markov Chain from the state (xk, ψ′k, zk, i) to (xk, ψ′k,
zk, i′), which is accomplished by drawing a particle index i′ from p(i′|xk, zk, ψ′k, yk).
First, the form of the discrete distribution p(i′|xk, zk, ψ′k, yk) is discussed.

Assume that we are regularising the particles at time k − 1 using a Gaussian
kernel. Then, the kernel density of xk−1 conditioned on a particle index i and the
measurement history yk−1 is

p̂h(xk−1|i, yk−1) = N (xk−1; xi
k−1, h2Σ), (5.22)

where h is the smoothing bandwidth (set using the empirical formulae found in
[Silverman 1986Silverman 1986]) and Σ is the covariance of samples x(z)k−1 for z = 1, . . . , Z.

Now we apply Bayes’ rule on p(i′|xk, zk, ψ′k, yk):

p(i′|xk, zk, ψ′k, yk) ∝ p(yk|xk, zk, ψ′k)p(i|xk, zk, ψ′k, yk−1), (5.23)

∝ p(xk|i′, yk−1), (5.24)

=
∫

p(xk|xk−1) p̂h(xk−1|i′, yk−1)dxk−1, (5.25)

=
∫
N (xk; Fkx(i

′)
k−1, Qk)N (xk−1; xi′

k−1, h2Σ)dxk−1, (5.26)

= N (xk; Fkx(i
′)

k−1, Qk + h2Σ). (5.27)

The result (5.275.27) is particularly important; we have a closed form solution to p(i′|xk,
zk, ψ′k, yk). Therefore, a Gibbs step is easily performed to accomplish part 2 of the
transition, by evaluating (5.275.27) for all the particles, followed by randomly draw-
ing a particle index with a probability proportional to those calculated values. It
should be noted that the expense of drawing the auxiliary variable is O(Z2).

5.3.3 Updating the reflectivity factors

Here, the objective is to progress the Markov Chain by updating the reflectivity
factors from zk to z′k. The reflectivity factors appear within the attenuation function
α(x, z), which in turn appears in the measurement function (5.65.6). The attenuation
function α(x, z) is explicitly defined in (5.465.46).

Consider an individual element of the vector zk. It is easy to see from (5.465.46)
that this component affects the measurement function (5.65.6) linearly. This fact, to-
gether with a Gaussian prior distribution for the reflectivity factors, results in the
full conditional marginal distribution of a single element in zk being normally dis-
tributed. Thus, the Kalman filter explained in Section 2.1.3.32.1.3.3 is easily used to ob-
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tain the full conditional marginal distribution. Consequently, the transition from
(x, ψ′, zk, i′) to (x, ψ′, z′k, i′) is easily performed over a series of Gibbs steps: by
updating one element at a time through sequentially drawing samples from full
conditional marginal distributions. Recall that we used a similar procedure to up-
date ψk.

To describe the sampling procedure mathematically, let

zk = [z1,k z2,k, . . . , zΓ,k]
′,

where Γ is the number of reflectivity factors at time k. Then z′k is drawn from the
following distribution:

qz(z′k|xk, i′, ψ′k, yk) =
Γ

∏
j=1

p(z′j,k|xk, i′, ψ′k, z′1:j−1,k, zj+1:Γ,k), (5.28)

=
Γ

∏
j=1
N (z′j,k; z̄j, Cj), (5.29)

where the parameters of the normal distribution z̄j and Cj, are completely defined
by the full conditional marginal distribution for z′j,k; that is, p(z′j,k|xk, i′, ψ′k, z′1:j−1,k,
zj+1:Γ,k). The parameters z̄j and Cj follow from Kalman filter equations.

5.3.4 Updating the target kinematics

This part is concerned with the transition of the Markov Chain from (xk, ψ′k, z′k, i′)
to (x′k, ψ′k, z′k, i′). The full conditional marginal distribution for xk is not available
in closed form; therefore, we use a MH step which approximates a Gibbs step.
This involves finding an approximation to the full conditional marginal for the
kinematic state.

We wish to bring to the attention of the reader the work presented by us in
[Karunaratne 2012bKarunaratne 2012b], where the multipath filtering problem with known phases
and reflectivity factors was considered. The full conditional marginal distribution
for xk considered in this section is exactly the posterior distribution for the filter-
ing problem considered in [Karunaratne 2012bKarunaratne 2012b]; there, the posterior distribution
for the target state was not known in closed form, but we proposed an efficient
importance density based on the Unscented approximation to the OID.

Recall that the measurement vector is quite large as a result of the decision to
use raw sensor data instead of radar detections. In such settings, the concept of
progressive correction [Oudjane 2000Oudjane 2000, Morelande 2009Morelande 2009] suggests performing the
Bayesian correction process in multiple steps in order to reduce the approximation
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error in particle filtering. Here, we adhere to that concept by splitting the large
measurement block into smaller sub-blocks, and performing the Bayesian update
sequentially over those sub-blocks. The procedure is explained next, along with
how we have exploited the UT to approximate the full conditional marginal distri-
bution p(xk|yk, ψk, zk, i).

Let yk and h̃(xk) be partitioned into J blocks with each block consisting of Λ
elements as shown below:

yk = [y′1,k y′2,k . . . y′J,k]
′, (5.30)

h̃(xk) = [h̃1(xk)
′ . . . h̃J(xk)

′]′. (5.31)

Note that the two vectors should be partitioned consistently (that is, the ith mea-
surement partition yi,k corresponds to the ith partition h̃i(xk) of the noiseless mea-
surement vector h̃(xk)).

Let the notation yj
k denote the measurement vector consisting of measurement

partitions 1 to j at time k. Assume that we have processed the measurement par-
titions 1 to j− 1, so that the distribution p̂(xk|yj−1

k , yk−1, ψk, zk, i) is known (in the
boundary case of j = 1 the relevant distribution is p̂(xk|yk−1, ψk, zk, i)). We intend
to process the jth partition to arrive at p(xk|yj

k, yk−1, ψk, zk, i).

Using Bayes’ rule p(xk|yj
k, yk−1, ψk, zk, i) is given by

p(xk|yj
k, yk−1, ψk, zk, i) =

p(xk, yk,j|yj−1
k , yk−1, ψk, zk, i)

p(yk,j|yj−1
k , yk−1, ψk, zk, i)

. (5.32)

The distribution p(xk, yk,j|yj−1
k , yk−1, ψk, zk, i) is not available in closed-form

and hence we approximate it as by a normal density; that is

p(xk, yj,k|yj−1
k , yk−1, ψk, zk, i) ≈ N

([
xk

yj,k

]
; µ

j
m,k, Cj

i,k

)
, (5.33)

where

µ
j
i,k =

[
x̂j−1

i,k

ŷj
i,k

]
,

Cj
i,k =

 Pj−1
i,k Ψ

j
i,k{

Ψ
j
i,k

}′
Sj

i,k

 .

Note that equation (5.335.33) implies that (x̂j−1
i,k , Pj−1

i,k ) and (ŷj
i,k, Sj

i,k) are moments
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of the predicted state and measurement distributions:

p(yj,k|yj−1
k , yk−1, ψk, zk, i) ≈ N (yj,k; ŷj

i,k, Sj
i,k), (5.34)

p(xk|yj−1
k , yk−1, ψk, zk, i) ≈ N (xk; x̂j−1

i,k , Pj−1
i,k ). (5.35)

The UT can be used to approximate the moments appearing in (5.335.33). How the UT
is used in the Unscented Kalman filter is explained in Section 2.1.32.1.3. Basically, the
moments of a non-linear function are approximated using the UT by evaluating the
function at deterministic points known as sigma points, and assigning a weight
(the sigma weight) to each of these points. These sigma points are transformed
using the non-linear function, and their (weighted) sample statistics are used to
approximate the moments of the non-linear function. There are many methods
to choose sigma points and corresponding sigma weights, but we have used that
suggested in [Julier 2000Julier 2000].

Suppose χ1, . . . , χS are S sigma points with weights given by v1, . . . , vS respec-
tively, and chosen to match the first two moments of p(xk|yj−1

k , yk−1, ψk, zk, i). The
procedure can be initiated by noting that the first two moments of p(xk|y0

k , yk−1, i)
are Fx(i)k−1 and Qk + h2Σ respectively.

Let Ym = h̃j(χm). The following equations provide expressions for moments
appearing in (5.335.33):

ŷj
i,k ≈

S
∑

m=1
vmYm, (5.36)

Sj
i,k ≈ σ2I +

S
∑

m=1
vm(Ym − ŷj

i,k)(Ym − ŷj
i,k)
′, (5.37)

Ψ
j
i,k ≈

S
∑

m=1
vm(χm − x̂j

i,k)(Ym − ŷj
i,k)
′. (5.38)

With the moment approximations (5.365.36)-(5.385.38) in hand, we can now substitute
(5.335.33) and (5.345.34) into (5.325.32), and do the necessary manipulations [Anderson 1979Anderson 1979,
Example 3.2] to obtain p(xk|yj

k, ψk, zk, i) as

p(xk|yj
k, ψk, zk, i) = N (xk; x̂j

i,k, Pj
i,k), (5.39)

where

x̂j
i,k = x̂j−1

i,k + Ψ
j
i,k

{
Sj

i,k

}−1
(yj,k − ŷj

i,k), (5.40)

Pj
i,k = Pj−1

i,k −Ψ
j
i,k

{
Sj

i,k

}−1 {
Ψ

j
i,k

}′
. (5.41)
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Once the last (Jth) measurement partition is processed, we have an approxima-
tion to the full conditional marginal density p(xk|yk, ψk, zk, i) as

p(xk|yk, ψk, zk, i) ≈ N (xk; x̂J
i,k, PJ

i,k). (5.42)

Let qx(xk|yk, ψk, zk, i) = N (xk; x̂J
i,k, PJ

i,k); we use qx(·) as an efficient proposal in
the MH algorithm to update the target dynamics and complete the transition from
(xk, ψ′k, z′k, i′) to (x′k, ψ′k, z′k, i′).

As our filter is based on MCMC, some implementation details on chain conver-
gence related issues are discussed now. One of the main concerns in MCMC based
methods is the rate of convergence of the Markov Chain [Kass 1998Kass 1998]. We have ob-
served that for some initial values the mixing of samples in the Markov chain was
poor. In such cases the chain was restarted with a different initial state. There are
many methods developed for diagnosing chain convergence [Cowles 1996Cowles 1996], but
we use rather a simple method of monitoring the (approximated) effective sample
size
[Arulampalam 2002Arulampalam 2002].

5.4 Results and discussion

Consider the multipath environment illustrated in Figure 5.15.1. The environment
consists of four walls, a single transmitter and a single receiver (B = 4, M = 1, N =

1). The Cartesian coordinates of the transmitter and the sensor are (2060, 1425)
and (2120, 1620), respectively. The prior distribution for the target is assumed to
be normal with mean [2083 0 1280 12]′ and covariance matrix I2 ⊗ diag([2 1/4]),
where diag(·) represents a diagonal matrix with its diagonal elements being spec-
ified by the argument to the function. The state sampling interval T̃ is set to 1 s.
The process noise covariance matrix Qk is fixed by setting κ = 2.1. The measure-
ment noise covariance is set by σ2 = 0.4. The trajectory of the target over 38 time
scans is shown in Figure 5.15.1. Note that the trajectory of the target used for this
setup does not follow the constant velocity motion model on which the filter is
designed. Therefore, we have accounted for the model mismatch by assuming
large enough uncertainty on the target dynamics through a sufficiently large pro-
cess noise covariance matrix Qk. This model mismatch together with large process
noise make the tracking problem even more challenging.

The signal transmitted from the nth transmitter at time k is chosen as a linear
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transmitter

receiver

number of multipaths = 04
number of multipaths = 08
number of multipaths = 09
number of multipaths = 12

1,833.33 1,900 1,966.67 2,033.33 2,100 2,166.67 2,233.33 2,300 2,366.67

1,166.67

1,233.33

1,300

1,366.67

1,433.33

1,500

1,566.67

1,633.33

1,700

1,766.67

Figure 5.1: Simulation environment for a target travelling around a corner.
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chirp signal with energy E given by

sk,n(t) =
√

E√
P

(P−1)/2

∑
p=−(P−1)/2

exp {[jυ− 1/(2ρ2)](t− pT1)
2}

(πρ2)1/4 . (5.43)

The number of P pulses transmitted is set to 3. The chirp parameter υ is chosen
such that the effective bandwidth of the signal is 40 MHz. The duration of the
pulse is set to 250 ns, which is controlled by the parameter ρ. The interval between
pulses T1 is set to 100 µs. The number of elements of the sensor is fixed at L1 = 2.
The wavelength of the carrier frequency of the radar signal λ is set to 1.0 m. The
signal energy E of the transmitted signal is calculated such that a desired average
Signal to Noise Ratio (SNR) is achieved for the entire target trajectory. For each
time scan of the trajectory, the SNR of the least attenuated path was considered
to obtain the average SNR for the entire trajectory. We chose the desired SNR as
20dB at the output of the matched filter. The distribution parameters for the wall
reflectivities are µb = 0.6 and ιb = .0025 for b ∈ {1, 2, 3, 4}. The distribution
parameters for the target reflectivity are µ0 = 0.7 and ι0 = 0.0025. The bandwidth
for kernel regularisation was set using [Silverman 1986Silverman 1986, p. 87] with further scaling
by a factor of 0.5.

For generating simulation results in this section, we performed Monte Carlo
experiments by repeating each simulation experiment 100 times, with the target
trajectory fixed as in Figure 5.15.1. The reasons for fixing the trajectory instead of
generating it each time through the stochastic kinetic motion model are twofold.
First, we wanted to assess the filter against a challenging scenario such as one
comprising a segment which includes the target taking a turn around a corner.
Secondly, if the trajectory was randomly drawn each time from the target dynamics
model, there is a chance that in some realisations the target would hit a wall.

One of the key parameters of particle based filters is the number of particles
used. With the objective of assessing the sensitivity of the filter to sample size,
we ran the simulation by varying the number of particles while keeping the rest
of the parameters constant. The results are shown in Figure 5.25.2. Unsurprisingly
the results suggest that the use of more particles leads to better performance. The
effect of the number of particles is more visible in the RMSE graph for the velocity
when compared against that of the position. The relatively small number of parti-
cles required for almost optimal performance is also evident from these results. An
intuitive interpretation of the shape of the curves can be presented based on the
target trajectory and the placement of the transmitter and the sensor as shown in
Figure 5.15.1. The reduction of the error from time step 2 up to about 12 is due to the
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Figure 5.2: Results of the experiment to assess the effect of the number of particles.
The diagram shows the RMSE of the filter for: (a) position in meters (b) velocity in
meters per second.

target moving towards the transmitter and hence progressively producing strong
reflections; the transmitter is closest to the target at time step 12. Afterwards, the
error increases as it moves away from the transmitter until time step 18. The avail-
ability of more multipath and the fact that the target is approaching the sensor is
the explanation for the reduction of error from time step 18 to 33. At k = 33, the
target is closest to the sensor. During the last stages of the trajectory (k = 34 to 38)
error increases due to the target shifting away from the sensor which leads to weak
and fewer multipaths.

The use of progressive correction is a key element in the construction of an ap-
proximation to the full conditional marginal of the kinematic state. It is of some
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interest to observe the effect of progressive correction on the performance of the
particle filter. To that end, we varied the number of measurements (Λ) that were
used in a single Bayesian update step (while keeping the number of particles fixed
at 50). Here, a smaller number of measurements per update (small Λ) implies that
more progressive correction is used. The results are shown in Figure 5.35.3, which
prove to be interesting. Progressive correction appears to degrade the performance
during the initial trajectory segment (around time steps 2 to 6) but has a significant
favourable effect around time step 12. The explanation for this behaviour is as fol-
lows. There are two conflicting sources of error at play here. First, note that each
time a progressive correction is made, we do a Gaussian approximation to the pos-
terior distribution. Thus, the use of more progressive correction steps implies that
the Gaussian approximation occurs more frequently leading to accumulation of
error of this type. The second type of error, which progressive correction is in-
tended to reduce is that introduced by the application of the Bayesian correction
to an approximate prior rather than the true prior. This error is more severe in the
presence of strong signals (see [Oudjane 2000Oudjane 2000, (9)]). Performing more progressive
corrections does help to reduce this error but introduces the approximation error
of the other type. The result in Figure 5.35.3 is an excellent illustration of the interplay
between these two types of errors. During time steps 2 to 6, the received signals
are relatively weak and so the error introduced at the Bayesian correction stage
is not severe enough for progressive correction to be useful; in fact the error due
to a large number of Gaussian approximations outweighs the benefit from pro-
gressive correction. This leads to performance degradation with more progressive
corrections during the initial stage of the trajectory. On the other hand, around
time step 12, the target is very close to the transmitter, which results in very strong
signals. The progressive correction is more useful at this stage and the overall
error reduced by using it far outweighs the error introduced by the use of more
Gaussian approximations. We further noted that with less progressive correction,
the Markov Chain had to be restarted many times to obtain a convergent chain,
further confirming the difficulty faced by the filter in the presence of very strong
signals.

For comparison purposes, we implemented the bootstrap particle filter for the
multipath estimation problem. Results are shown in Figure 5.45.4. Unsurprisingly,
the bootstrap filter, even with 1000 particles was not able to track the target. Al-
though the results show that increasing the number of particles reduces the error
in the bootstrap filter, it appears that a very large number of particles would be
needed to achieve a comparable level of performance against the MCMC particle
filter (with 150 particles). As discussed in Section 2.1.42.1.4, the main draw back of
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Figure 5.3: Results of the experiment to assess the effect of the progressive cor-
rection. The diagram shows the RMSE of the filter for: (a) position in meters (b)
velocity in meters per second.

the bootstrap filter is that it does not use the current measurement for drawing the
samples, thus performing very poorly in challenging filtering problems. However,
it should be noted that the computational expense per particle is much lower in the
BF, but this expense reduction does not make up for the much larger sample size
required to get equivalent error performance to that of the MCMC particle filter.

In general, the simulation results suggest that the proposed filter is capable of
tracking the target while exploiting multipath for a challenging scenario, despite
the motion model of the filter not matching the dynamics of the simulated trajec-
tory. We believe that introducing multiple motion models for different manoeu-
vres would enhance the filter performance. This could be easily accomplished
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Figure 5.4: A comparison of the MCMC particle filter against the bootstrap particle
filter. MCMC particle filter was configured with Λ = 3. The diagram shows the
RMSE of the filters for: (a) position in meters (b) velocity in meters per second.

within the proposed MCMC framework by introducing an additional auxiliary
variable to indicate the motion model used. However, the benefit of using multi-
ple manoeuvring models comes with the cost of extra computation.

5.5 Conclusion

In this chapter, we have presented a statistical filter that exploits multipath for
tracking a target in a multipath rich environment. The filter is based on a real-
istic model of the environment that takes account of uncertainty in the wall lo-
cations. This uncertainty is modelled by assuming that each multipath is phase
shifted by a uniformly distributed random variable. Further, we have assumed
that the wall and target reflectivities are unknown stochastic variables. A conse-
quence of the assumed model is that the underlying filtering problem turned out
to be very challenging. To address this challenging filtering problem, we have pro-
posed an MCMC based particle filter. In the MCMC particle filter, the particles are
extracted from a Markov Chain that has the desired posterior as the stationary dis-
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tribution.The filter presented in this chapter is a testimony to the option of using
MCMC for particle generation when it is difficult to design efficient importance
densities. We have introduced kernel regularisation and progressive correction
to the MCMC particle filter to improve the overall robustness of the tracker. The
progressive correction is particularly beneficial when the filter is operating under
high SNR, which might happen when the target is moving very close to the sensor
or transmitter, or in a region with very strong multipath reflections. We have in-
cluded simulation results involving a challenging setup, which includes the target
taking a turn around a corner. The simulation results support the utility of the
proposed MCMC filter.

Appendices

5.A Expressions for target quantities

For the pth path between the nth transmitter and the mth receiver, consider the
quantities: α

p
n,m(xk, zk), θ

p
n,m(xk), θ̇

p
n,m(xk), τ

p
n,m(xk), and ν

p
n,m(xk). For brevity, the

subscripts identifying the specific transmitter, receiver, path, and time are dropped
from the following discussion.

For the path under consideration assume that the location of the transmitter
is (atx, btx) and that of the sensor is (arx, brx). Let the number of reflection points
between the transmitter and target located at (x, y) be S, with the sth reflection
point denoted by (ωs, ρs). The point corresponding to s = 1 is the reflection point
immediately after the transmitter. Similarly, let the number of reflection points
between the target and the sensor be L, with the lth reflection point located at
(ξl , ζl). The reflection point immediately before the sensor corresponds to l = 1. It
is convenient to assign (ω0, ρ0) = (atx, btx), (ξ0, ζ0) = (arx, brx) and (ωS+1, ρS+1) =

(ξL+1, ζL+1) = (x, y). Let the sequence of walls hit along the forward path be
denoted by q1, . . . , qS; similarly, let the sequence of walls hit along the return path
be denoted by u1, . . . , uL.

Define Rs and rl to be the length of the sth and lth path segments in the forward
and return journey of the signal respectively; then,

Rs =
√
(ωs −ωs−1)2 + (ρs − ρs−1)2, (5.44)

rl =
√
(ξl − ξl−1)2 + (ζl − ζl−1)2. (5.45)
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The attenuation factor α(x, z) is given by

α(x, z) =
√

E

ρ
S+1

∏
s=1

$s

L

∏
l=1

εl

S+1

∑
s=1

Rs

L+1

∑
l=1

rl

, (5.46)

where

E is the energy of the transmitted signal,

$s ∼ N (·; µqs , ιqs) is a random wall reflectivity factor,

εl ∼ N (·; µul , ιul ) is a random wall reflectivity factor,

ρ ∼ N (·; µ0, ι0) is the reflectivity factor of the target.

The AOA θ(x), at the sensor is given by

θ(x) = arctan
[

ζ1 − brx

η1 − arx

]
. (5.47)

The function θ̇(x) is the time derivative of (5.475.47), and the method to calculate it
is given in Chapter 33 and in [Karunaratne 2011Karunaratne 2011] .

The delay for the path is given by

τ(x) = 1/c
S+1

∑
s=1

Rs + 1/c
L+1

∑
r=1

rl , (5.48)

where c is the speed of light.
The doppler shift ν(x) is given by

ν(x) =
2π(ṘS+1 + ṙL+1)

λ
, (5.49)

where the dot notation denotes differentiation with respect to time. Here again,
the interested reader is referred to [Karunaratne 2011Karunaratne 2011] or to Chapter 33.
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5.B Full conditional marginal distribution of the phase vec-
tor

The full conditional marginal distribution for ψk is given by

p(ψk|yk, xk, zk, i) ∝ p(yk|ψk, xk, zk)p(ψk), (5.50)

∝ p(yk|ψk, xk, zk), (5.51)

= CN (Yk; h(xk, ψk, zk), 2σ2I). (5.52)

Let ∆k = Yk − h(xk, ψk, zk); then,

p(ψk|yk, xk, zk, i) ∝ exp(−∆∗k (2σ2I)−1∆k), (5.53)

∝ exp
(

1
σ2 [Re{Y∗k h(·)} − h(·)∗h(·)]

)
, (5.54)

where the operator “∗” denotes conjugate transpose, and the arguments of the
function h(xk, ψk, zk) have been dropped for brevity. Now, we focus on the terms
Y∗k h(·) and h(·)∗h(·) appearing in the above equation. By using (5.45.4) and (5.55.5) we
have

Y∗k h(·) =
U−1

∑
u=0

∑
n,m

Pn,m

∑
p=1

Y∗k gp
n,m(·) exp(jψp

n,m), (5.55)

and

h(·)∗h(·) =
U−1

∑
u=0

∑
n1,m1,n2,m2

Pn1,m1

∑
p1=1

Pn2,m2

∑
p2=1

gp2
n2,m2(·)∗g

p1
n1,m1(·) exp{j(ψp1

n1,m1 − ψ
p2
n2,m2)}.

(5.56)

Let ψk be a vector containing all the phase variables ψ
p
n,m, for 1 ≤ n ≤ N and

1 ≤ m ≤ M. Further, for notational simplicity, we relabel the phases as

ψk = [ψ1,k ψ2,k . . . ψΩ,k]
′. (5.57)

This allows us to express (5.555.55) and (5.565.56) in simpler forms:

Y∗k h(·) =
Ω

∑
m=1

um(·)∗ exp(jψm,k), (5.58)

h(·)∗h(·) =
Ω

∑
m1=1

Ω

∑
m2=1

u∗m2
(·)um1(·) exp{j(ψm1,k − ψm2 , k)}, (5.59)
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= 2Re

{
Ω−1

∑
m1=1

Ω−1

∑
m2=m1+1

u∗m2
(·)um1(·) exp{j(ψm1,k − ψm2,k)}

}

+
Ω

∑
m=1

u∗m(·)um(·), (5.60)

where the functions um(·) for m ≤ Ω are implicitly defined through (5.555.55), (5.565.56)
and the re-labeling of (5.575.57). Substitution of (5.585.58) and (5.605.60) back into (5.545.54) pro-
duces the following proportionality:

p(ψk|yk, xk, zk, i) ∝ exp
{ Ω

∑
n=1

κn,n cos(ψn,k − φn,n)+

Ω−1

∑
n1=1

Ω

∑
n2=n1+1

κn1,n2 cos(ψn1,k − ψn2,k + φn1,n2)
}

, (5.61)

where κn1,n2 and φn1,n2 for 1 ≤ n1 ≤ Ω− 1 and n1 ≤ n2 ≤ Ω are:

κn1,n2 =


||un1(·)||22

σ2 if n1 = n2,

−||un2(·)∗un1(·)||22
σ2 otherwise,

(5.62)

and

ψn1,n2 =

arg{u(n1)(·)} if n1 = n2,

arg{u(n2)∗(·)un1(·)} otherwise.
(5.63)

The distribution given in (5.615.61) is the GVM distribution introduced in Chapter
44 and in [Karunaratne 2012aKarunaratne 2012a].





CHAPTER 6

Multipath radar tracking with
large uncertainty

Summary

We have relaxed some of the common assumptions and have built a filter
to track a target moving in a partially known multipath environment in

Chapter 55. In this chapter, we formulate the target tracking problem for radar
in a multipath environment where significant uncertainty on the locations of the
multipath causing obstacles (walls) is present. This significant uncertainty arises
from a relaxation of the assumption that the wall locations in the environment are
known, either partially as in Chapter 55 or completely. We propose a statistical
filter and a data association method based on importance sampling to address
these challenges. Recently introduced techniques in statistical signal processing
such as Set JPDAF and progressive correction are incorporated into the proposed
filter. Finally, simulation results are presented to investigate the performance of
the filter under challenging tracking scenarios.

6.1 Introduction

Many interesting approaches have been proposed for the problem of tracking in a
multipath environment where the geometry of the environment is known
[Chakraborty 2010Chakraborty 2010, Chakraborty 2011Chakraborty 2011, Krolik 2006Krolik 2006, Hayvaci 2012aHayvaci 2012a, Hayvaci 2012bHayvaci 2012b,
Barbosa 2008Barbosa 2008, Pulford 1998Pulford 1998]. A more detailed review of some of this work is given
in Chapter 55. As a summary, most of these papers consider an environment where
the number of obstacles is limited or configured in a special way, e.g., parallel
walls. Another common feature of most of this work is the use of radar detec-
tions as the measurements for the tracker, but it was shown in [Morelande 2007Morelande 2007]
that better performance bounds could be achieved if raw sensor data were used as
measurements for the tracker instead of the radar detections. The work done by
us on a partially known multipath environment using raw measurements instead

109
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of detections to track a target in an urban terrain where walls are not necessar-
ily parallel to each other can be found in [Karunaratne 2012bKarunaratne 2012b, Karunaratne 2013Karunaratne 2013].
These were also explained in more detail in Chapters 33 and 55. A natural extension
to these previous work was to investigate the problem of tracking in a multipath
environment where a large uncertainty about the environment prevails. We de-
scribe our work on that objective in this chapter; but first, we briefly review some
relevant literature.

For investigating the problem of tracking in an unknown environment, we
have chosen to use the detection based measurement model rather than the raw
sensor data. This is done to avoid the expense of dealing with a large measure-
ment vector and to make it easier to focus on the difficulties which arise from
gross uncertainties in the environment. The use of detections in a multipath envi-
ronment creates another problem known as data association. Basically, the problem
is about resolving the ambiguity of the origin of each measurement. The data as-
sociation problem has been extensively studied in the past. One of the popular
suboptimal solutions to the data association problem is provided by the Proba-
bilistic Data Association Filter (PDAF) [Bar-Shalom 2009Bar-Shalom 2009]. The Joint Probabilistic
Data Association Filter (JPDAF) is an extension to the PDAF for cases involving
more than one target [Bar-Shalom 2009Bar-Shalom 2009]. An application of probabilistic data asso-
ciation techniques for target tracking in clutter is presented in [Kirubarajan 1998Kirubarajan 1998],
which focuses on the problem of discrimination of target returns from clutter re-
turns, rather than that of exploiting multipath information. The use of a data
association filter while exploiting multipath is considered in [Chakraborty 2011Chakraborty 2011].
Therein the authors apply a modified Interacting Multiple Model PDAF (IMM-
PDAF) [Houles 1989Houles 1989] to separate clutter while exploiting the information content
in multipath. However, they assume optimal associations for the multipath mea-
surements involving the target (optimal in the sense that the sources of the non-
clutter measurements are assumed to be known). Another example of data
association for a multipath model in “over the horizon radar” is presented in
[Pulford 1998Pulford 1998]. In that model, the multipath reflections are caused by two iono-
spheric layers located at known heights; hence, the multipath environment is con-
sidered to be known.

Our task of tracking in an uncertain multipath environment closely resembles
the well established (Simultaneous Localisation and Mapping) SLAM problem ap-
pearing in the domain of robotics and control research. A review of SLAM de-
velopments is found in [Durrant-Whyte 2006Durrant-Whyte 2006, Bailey 2006Bailey 2006]. Conceptually, from a
high level perspective, both problems try to estimate the target state as well as
the environment. The difference between the SLAM and tracking in an uncertain
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multipath environment comes from the measurement model used; much of SLAM
uses LiDAR technology where multipath is out of context. For the tracking prob-
lem considered in this paper, the relationship between the measurements and the
environment is more indirect than in conventional SLAM setups. In SLAM one
usually obtains direct position measurements of scatterers which compose the en-
vironment. This creates a direct relationship between the measurements and the
environment. In contrast, in our problem, the environment is observed indirectly
through the measurements which simultaneously contain information about the
target and the environment. This gives rise to a difficult problem in non-linear
estimation and data association.

Some recent work on radar tracking in an unknown multipath environment is
found in [Li 2011Li 2011]. The problem considered there is to track a moving radio fre-
quency emitter. The authors do not impose any restrictions on the geometry of the
walls. The problem formulation also allows for false alarms and missed detections.
The data associations are performed using the well known Viterbi algorithm. The
associations are chosen to maximise the log-likelihood. Note that evaluation of
the log likelihood function for each possible association requires the knowledge of
the target state, which is not available to us. The authors take a suboptimal ap-
proach of using the predicted state based on the previous measurements and the
previous associations. The disadvantage of this approximation is that, if the pre-
diction covariance is broad, the chances of the true target state being significantly
different from the prediction are high. This has the undesired effect of using an
inaccurate approximation of the cost function. An alternative approach would
be to take the expectation of the likelihood with respect to the prior distribution
[Bar-Shalom 2009Bar-Shalom 2009], thus eliminating the dependency of the target state on the cost
function.

In this chapter, we present our study on tracking a target in a highly uncer-
tain multipath environment where the radar system (both the transmitter and the
receiver) is not collocated with the target. The brute force calculation of all the
association probabilities is computationally very expensive. In some special cases
efficient methods exist to solve the data association problem involving very large
number of possible hypotheses [Horridge 2006Horridge 2006]. It is not immediately obvious to
us how to extend [Horridge 2006Horridge 2006] to the problem considered in this chapter. So
we propose an efficient importance sampling procedure to draw samples from as-
sociation events. The posterior moments conditioned on the sampled association
events are also calculated using a Monte Carlo approach. Finally, the state estimate
is obtained by averaging the conditional posteriors over association probabilities.
Special care is needed in fusing the mixture of conditional posterior distributions.
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This is due to the implicit ordering in a vector representation, which results in
unnecessary confusion between the labels assigned to the walls. We used the Set
JPDAF (SJPDAF) method suggested in [Svensson 2009Svensson 2009] to address the issue which
yields more accurate Gaussian approximations. Another approach to address this
problem could be found in [Blom 2011Blom 2011]. Because it is desired to focus on the prob-
lems posed by an unknown environment, we analyse the case where the environ-
ment contained two walls and assume in this work perfect detections with no false
alarms. The methodology developed here can be extended without too much dif-
ficulty to the case of an unknown number of walls along with missed detections
and clutter. This extension is discussed but not implemented

The rest of the chapter is organised as follows. We first introduce the pro-
cess and measurement models used in Section 6.26.2. In addition, the estimation
problem is formulated in that section. The estimation method is then presented
in Section 6.36.3. We do so by first setting up a basic filter and improving it grad-
ually by incorporating the concept of progressive correction, SJPDAF algorithm,
and a marginalising procedure using the conditional Gaussian formula. Simula-
tion examples along with a discussion are presented in Section 6.46.4 followed by
concluding remarks.

Some of the common notation and acronyms used in this chapter are sum-
marised in Table 6.16.1. Any notation or acronym not appearing in Table 6.16.1 is defined
at its first occurrence.

Table 6.1: Summary of common notation and Acronyms.

Notation/Acronym Description

xk [x′1 x′2 . . . x′k]
′ where k ∈ Z+

1 : k [1 2 . . . k]′ k ∈ Z+

xv [xv1 xv2 . . . xvN ] (xn is the nth element of x. Here, the index
vector v consist of N integer indices)

{x(j)}J
j=1 {x(1), x(2), . . . , x(J)} (A set of samples)

Sn Set of all permutations of integers 1 to n where n ∈ Z+

MSE Mean Squared Error
BMSE Bayesian MSE
RMSE Root MSE
MCMC Markov Chain Monte Carlo
PDAF Probabilistic Data Association Filter
JPDAF Joint PDAF
SJPDAF Set JPDAF
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Figure 6.1: An illustration of a K× K surveillance area.

6.2 Modelling and notation

Consider a K × K surveillance area as shown in Figure 6.16.1. Two walls are located
within this surveillance area. A point target is moving across the surveillance re-
gion and the kinematic state of it at discrete time k is denoted by Tk. Tk consists of
position and velocity information in the Cartesian plane; that is,

Tk = [xk ẋk yk ẏk]
′,

where (xk, yk) ∈ R2 is the position of the target and the dot notation denotes dif-
ferentiation with respect to time. Without loss of generality, we consider the origin
(0, 0) to be the bottom left most point of the surveillance region. A radar transmit-
ter and a receiver are located at known positions within the surveillance region to
collect measurements for use in localizing the target.

We use a straight line to represent a wall parametrised as follows:

x sin α− y cos α + β = 0.

Thus, the ith wall where i ∈ {1, 2} is represented by the vector

wi = [αi βi]
′. (6.1)
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Let W be defined as:
W = [w′1 w′2]

′.

Note that one of the limitations of our representation is that we assume the
wall to exist throughout the intersection between the straight line represented by
the wall parameters and the surveillance area. We believe that the extension to the
general case involving line segments could be developed based on the foundation
laid out in this chapter.

6.2.1 State dynamics

The kinematic state of the target is assumed to transition from time k− 1 to k ac-
cording to the following stochastic model:

Tk = FTk−1 + vk, (6.2)

where

F = I2 ⊗
[

1 1
0 1

]
, (6.3)

vk ∼ N (·; 0, Q), (6.4)

with the symbols ⊗ , I, and 0 denoting the Kronecker operator, Identity matrix,
and Zero matrix of appropriate dimensions respectively. The notation N (·; , µ, Σ)

denotes a normal distribution with mean µ and covariance Σ.

The vector of wall parameters (W) is modelled as a vector of static random
parameters. That is, the wall parameters are not time dependent.

W is assumed to be drawn from a prior distribution pw(·). A highly uncertain
prior distribution for W will be described in Section 6.2.46.2.4.

The state vector xk at time k consists of both the target dynamics and wall pa-
rameters; that is,

xk = [T′k W′]′. (6.5)

6.2.2 Measurements

The measurements at time k consist of range (r) and Angle of Arrival (AOA) (θ)
of each multipath and the direct path. We define a multipath as a path from the
transmitter to the radar sensor which has been in contact with the target as well
as at least with one wall. Any path that has hit a wall more than twice is ignored
in the model under the assumption that such paths are subject to severe attenua-
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tion in signal power. We assume that the walls act as specular reflectors and that
necessary processing has been carried out to reject clutter measurements.

The measurement vector at time k for N paths is given by

yk = [r′1,k r′2,k . . . r′N,k]
′ + uk, (6.6)

= [y′1,k y′2,k . . . y′N,k]
′, (6.7)

where

ri,k = [ri,k θi,k]
′ denotes a vector containing (noiseless) range and AOA of the ith

path at time k,

uk ∼ N (·; 0, R) is the measurement noise,

yi,k is the vector containing the range and AOA of the ith multipath at time k.

The noise covariance matrix R is

R = IN ⊗
[

σ2
r 0

0 σ2
θ

]
.

We assume that all the possible paths arising from reflections from the two
walls exist at time k.

6.2.3 Path configurations and the measurement association vector

A path can be decomposed into two segments: the forward path from the trans-
mitter to the target and the reverse path from the target to the sensor. Assume
that at most one wall is hit in each segment (because the strength of the reflections
diminishes over multiple reflections, we ignore more than one reflection in each
segment). Thus a path is uniquely identified by two numbers given by the labels
of the walls that were hit in each segment respectively. If a wall is not hit on a par-
ticular segment, then that segment would be identified by “0”. We denote this pair
of non-negative integers identifying a path as a path configuration. As an example
a path configuration of (2,1) is a multipath that has travelled in the following se-
quence; transmitter→wall 2→target→wall 1→sensor. A direct path is identified
by the path configuration (0,0).

Note that for a 2 wall environment, 9 distinct path configurations exist. Let the
9×2 matrix C denote the collection of all the path configurations, where the ith row
Ci contains the ordered pair of numbers identifying the ith path configuration; that
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y1,k y2,k y3,k y4,k y5,k y6,k y7,k y8,k y9,k

0,0 1,1 2,2 0,1 0,2 1,2 1,0 2,0 2,1

e1,k
=

2 e 2,
k
=

1

e3,k
=

3

e4,k = 9 e5,k
=

5

e6,k
=

7 e 7,
k
=

6

e8,k
=

8e9,k
= 4

Figure 6.2: Associating measurements with path configurations for ek =
[2 1 3 9 5 7 6 8 4]′.

is,

C =



0 0
1 1
2 2
0 1
0 2
1 2
1 0
2 0
2 1


. (6.8)

We name C the path configuration matrix.

By itself the measurement vector yk does not provide information about how
the measurements are associated with path configurations. The association vector
ek ∈ S9 provides the mapping between measurements and path configurations.
Then, the ith element of ek, denoted by ei,k maps the path configuration represented
by the ith row of C to the eth

i,k measurement at time k. As an illustration we use an
example in Figure 6.26.2 to further clarify how yk is associated with path configura-
tions ek. Suppose ek = [2 1 3 9 5 7 6 8 4]′. Then the measurement associations are
shown in Figure 6.26.2.

Figure 6.26.2 also illustrates an important difference between conventional data
association problems and the one considered here. Note that information about a
particular wall is contained in more than one measurement. As an example, for
the particular ek used to draw Figure 6.26.2, the information about the wall labelled
“1” is contained in measurements y1,k, y9,k, y7,k, y6,k, and y4,k. In contrast, only one
measurement is associated with a single target in conventional data association
problem formulations.
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6.2.4 A highly uncertain prior for the wall parameters

Recall that we used the parametrization x sin α − y cos α + β = 0 to represent a
wall. A continuum of line equations could be obtained by varying the slope pa-
rameter α and the intercept parameter β. We are interested only in lines that pass
through the K × K surveillance area. Suppose we do not assume any knowledge
about the wall location; then, a loose implication is that all the lines which pass
through the surveillance area are equally likely. The joint distribution formed
through the following marginal distribution for α and the conditional distribution
for β|α is a reasonable prior distribution which captures such large uncertainty in
the environment:

p(α) = U[0,π), (6.9)

p(β|α) = URβ(α), (6.10)

where

Rβ(α) =

{β;−K sin(α) ≤ β ≤ K cos(α)} if α < π/2,

{β; K(cos(α)− sin(α)) ≤ β ≤ 0} Otherwise.
(6.11)

It is easy to see that a uniform distribution in [0, π) for the slope parameter α

results in all the line slopes being equally likely. The conditional distribution p(β|α)
is obtained by solving for the range of β values (with α fixed) that represent the
lines passing through the surveillance area, and assigning a uniform distribution
for β over that region.

From equations (6.96.9) and (6.106.10), it is possible to work out the mean and covari-
ance of the joint distribution p(α, β). They are given by

Mean (α, β) =

 π
2

−K
π

 , (6.12)

and

Covariance (α, β) =


π2

12
−K

π

−K
π

K2(2π2 − 6 + π)

6π2

 . (6.13)

6.2.5 Estimation problem

Let yk = [y′1 y′2 . . . y′k]
′ denote the vector containing measurements up to time k.

We are interested in estimating the state vector xk upon observing yk.

If the performance of the estimator is measured in terms of the BMSE, then the
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optimal estimator is the posterior mean of xk; that is, x̂k = E(xk|yk), where the
operator E(·) denotes expectation [Kay 1993Kay 1993].

6.3 Theory/Methodology

Consider the posterior distribution of the target state xk. We write this as

p(xk|yk) = ∑
ek

p(xk|yk, ek)p(ek|yk). (6.14)

The first term in the summand is a conditional posterior of the target state (con-
ditioned on the association vector), while the second term p(ek|yk) is the posterior
distribution of the association vector ek. We now concentrate on the latter; that is,
p(ek|yk):

p(ek|yk) ∝ p(yk|ek, yk−1)p(ek|yk−1), (6.15)

∝ p(ye1,k ,k|ek, yk−1)p(ye2,k ,k|ye1,k ,k, ek, yk−1) · · · p(yeN,k ,k|ye1:N−1,k ,k, ek, yk−1),
(6.16)

= p(ye1,k ,k|e1,k, yk−1)p(ye2,k ,k|e1:2,k, ye1,k ,k, yk−1) · · ·
p(yeN,k ,k|ek, ye1:N−1,k ,k, yk−1), (6.17)

=
N

∏
n=1

p(yen,k ,k|e1:n,k, ye1:n−1,k ,k, yk−1), (6.18)

where N = 9 is the number of path configurations. Equation (6.166.16) follows from
Bayes theorem applied to p(yk|ek, yk−1) along with the assumption that p(ek|yk−1)

= p(ek) is a uniform prior distribution.

Before proceeding further, we simplify the notation by introducing pn(yen,k ,k|
yk−1):

pn(yen,k ,k|yk−1) = p(yen,k ,k|e1:n,k, ye1:n−1,k ,k, yk−1). (6.19)

Here, we let the conditioning on e1:n,k and ye1:n−1,k ,k be implicitly implied by the
subscript n of pn, unless we explicitly include those as conditioning variables. Ad-
ditionally, from this point onwards we drop the notation k in the subscript of ei,k

in favour of brevity.

Using (6.186.18) and the shortened notation (6.196.19), we write p(ek|yk) as follows:

p(ek|yk) ∝
N

∏
n=1

pn(yen,k|yk−1). (6.20)

The posterior distribution for the target state is now expressed in terms of pn(·)
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by substituting (6.206.20) into (6.146.14) to give

p(xk|yk) ∝ ∑
ek

N

∏
n=1

p(xk|yk, ek)pn(yen,k|yk−1). (6.21)

An optimal implementation of the filter using (6.216.21) is not possible because
there are too many association hypotheses ek, as well as intractable integrals. Pro-
cedures for addressing these issues are given in the following sections.

6.3.1 A basic filter using Monte Carlo approximations

We now consider one of the intractable integrals that prevents us from imple-
menting the optimal filter based on the exact posterior given in (6.216.21); namely the
pn(yen,k|yk−1) terms appearing in (6.206.20). The integral that needs to be evaluated is
given below:

pn(yen,k|yk−1) =
∫

pn(yen,k|xk, yk−1)p(xk|e1:n−1, ye1:n−1,k, yk−1)dxk. (6.22)

Though a closed form solution is not available for (6.226.22), we could approximate
it by Monte Carlo using samples from p(xk|e1:n−1, ye1:n−1,k, yk−1). Unfortunately,
the distribution p(xk|e1:n−1 , ye1:n−1,k, yk−1) is also not known in closed form, but
for the sake of argument, assume that we have a reasonable approximation for it
denoted by p̂(xk|e1:n−1, ye1:n−1,k, yk−1). In particular, let p̂(xk|e1:n−1, ye1:n−1,k, yk−1)

be a particle approximation of p(xk|e1:n−1, ye1:n−1,k) consisting of a finite number of
weighted samples; then,

pn(yen,k|yk−1) ≈
∫

pn(yen,k|xk, yk−1) p̂(xk|e1:n−1, ye1:n−1,k, yk−1)dxk, (6.23)

≈ 1
M

M

∑
m=1

pn(yen,k|χ(n,m)
k , yk−1), (6.24)

where χ
(n,m)
k ∼ p̂(xk|e1:n−1, ye1:n−1,k, yk−1).

The approximate distribution p̂(xk|e1:n−1, ye1:n−1,k, yk−1) that was used to draw
samples in (6.246.24) can be updated to p̂(xk|e1:n, ye1:n,k, yk−1) as shown by (6.256.25), which
satisfies the recursive dependence required to evaluate pn+1(·):

p̂(xk|e1:n, ye1:n,k, yk−1) ∝
M

∑
m=1

pn(yen,k|χ(n,m)
k , yk−1)δ(xk − χ

(n,m)
k ). (6.25)

Two common problems associated with particle based recursive procedures
such as the process described by (6.246.24) and (6.256.25) are known as particle degeneracy
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and particle impoverishment [Arulampalam 2002Arulampalam 2002]. These problems in the context of
particle filtering were discussed in Section 2.1.42.1.4. Degeneracy and impoverishment
problems could be counteracted to a certain extent by introducing a simple resam-
pling procedure followed by regularization as described in [Arulampalam 2002Arulampalam 2002,
p. 182]. These procedures in the context of the current filtering problem are briefly
explained as follow. Suppose that the sample χ

(n,m)
k is assigned a weight of pn(yen,k|

χ
(n,m)
k , yk−1), for m = 1, 2, . . . , M. Let Ek,n denote the sample covariance of these

weighted samples. Further, let t1, t2, . . . , tM be M index variables drawn according
to

Prob(tm = i) ∝ pn(yen,k|χ(n,i)
k , yk−1) for m = 1, 2, . . . , M. (6.26)

Let x̃(n,m)
k = χ

(n,tm)
k for all m = 1, 2, . . . , M. Both resampling and kernel regularisa-

tion are concurrently achieved by redrawing x(n,m)
k for m = 1, 2, . . . , M according

to:
x(n,m)

k ∼ N (·, x̃(n,m)
k , h2Ek,n), (6.27)

where h is a smoothing parameter known as the bandwidth [Silverman 1986Silverman 1986].

The samples obtained in (6.276.27) are now used to approximate p(xk|e1:n, ye1:n,k,
yk−1) as

p̂(xk|e1:n, ye1:n,k, yk−1) ∝
M

∑
m=1

δ(xk − x(n,m)
k ). (6.28)

Compared to (6.256.25), the approximation (6.286.28) is less prone to particle degener-
acy and impoverishment problems.

We use (6.246.24) in (6.206.20) to approximate the posterior distribution for the associ-
ation vector by

p(ek|yk) ∝
N

∏
n=1

M

∑
m=1

pn(yen,k|x(n,m)
k , yk−1). (6.29)

We wish to obtain samples from (6.296.29). Note that p(ek|yk) is a discrete dis-
tribution, and thus directly sampling from it requires that (6.296.29) be calculated for
all the possible association hypotheses. This is extremely expensive because of
the enormous number of possible hypotheses. For example, with two walls there
are 9! = 362880 hypotheses. Hence we use the following importance distribution
q(ek|yk) to draw association vector samples:

q(ek|yk) =
N

∏
n=1

(
∑M

m=1 pn(yr,k|e1:n−1, en = r, x(n,m)
k , yk−1)

∑v∈An ∑M
m=1 pn(yv,k|e1:n−1, en = v, x(n,m)

k , yk−1)

)
where r ∈ An,

(6.30)
with An = {1, 2, . . . , N}\{e1, e2, . . . , en−1}.

Drawing a sample from q(ek|yk) is a sequential process where one element of
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the association vector is drawn at each step. In contrast, if we were to draw a sam-
ple from p(ek|yk), the posterior association probabilities for all ek ∈ S9 need to
be calculated. This is a good example of the usefulness of importance sampling,
where we are able to greatly reduce the amount of computational expense by ex-
ploring only the significant areas of the sampling distribution.

In the context of importance sampling, the samples obtained from q(ek|yk) are
assigned a weight φ̃ given by the ratio of p(ek|yk) to q(ek|yk):

φ̃ = p(ek|yk)/q(ek|yk), (6.31)

∝
N

∏
n=1

∑
r∈An

M

∑
m=1

pn(yr,k|e1:n−1, en = r, x(n,m)
k , yk−1). (6.32)

We obtain the posterior distribution for the target state as follows:

p(xk|yk) =
∫

p(xk|yk, ek)p(ek|yk)dek, (6.33)

∝∼
J

∑
j=1

φ̃j p̂(xk|e(j)
k , yk), (6.34)

where J is the sample size, and

e(j)
k ∼ q(ek|yk), (6.35)

φ̃j ∝
N

∏
n=1

∑
r∈An,j

M

∑
m=1

pn(yr,k|e(j)
1:n−1, e(j)

n = r, x(n,m)
k , yk−1), (6.36)

with An,j given by

An,j = {1, 2, . . . , N}\{e(j)
1 , e(j)

2 , . . . , e(j)
n−1}. (6.37)

It should be noted that the statistics of the target samples obtained during the
process of drawing associations ek (as presented in (6.256.25)-(6.286.28)) are used to ap-
proximate p̂(xk|e(j)

k , yk) by a Gaussian.

The recursive calculation procedure involved in obtaining estimates at time k is
summarised in algorithmic form in Algorithm 6.16.1, which is included in Appendix
6.B6.B. Once again it should be noted that, prior to processing measurements at time
k + 1, we summarise the posterior distribution at time k by a Gaussian distribution
using the sample moments.
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6.3.2 Progressive correction

Recall (6.236.23) and (6.246.24), where we considered the probability distribution of the
eth

n measurement at time k, conditioned on the first n elements of the association
vector (e1:n) as well as the n − 1 measurements already associated (ye1:n−1,k) and
the past measurements yk−1:

pn(yen,k|yk−1) ≈
∫

pn(yen,k|xk, yk−1) p̂x(xk|e1:n−1, ye1:n−1,k, yk−1)dxk, (6.38)

≈ 1
M

M

∑
m=1

pn(yen,k|x(n,m)
k , yk−1), (6.39)

The accuracy of the approximation (6.396.39) is important because of its direct involve-
ment in the calculation of the sample weight of the associations (see (6.326.32)). An
alternative way of approximating (6.386.38) is through the concept of progressive cor-
rection. We introduced the idea of progressive correction in Chapter 55 and used it
in the proposed MCMC particle filter. In Chapter 55, the progressive correction was
performed by partitioning the measurement vector and sequentially performing
the Bayesian correction by considering one partition at a time. Another approach
to progressive correction is to express the likelihood function as a series of products
and performing the Bayesian correction sequentially over each term in the series
as in [Oudjane 2000Oudjane 2000]. In this chapter we use the latter approach as follows: Let B
real numbers in [0, 1] such that their sum is equal to 1, be denoted by γ1, γ2, . . . , γB.
Then we write pn(yen,k|yk−1) as:

pn(yen,k|yk−1) ≈
∫

pn(yen,k|xk, yk−1) p̂x(xk|e1:n−1, ye1:n−1,k, yk−1)dxk, (6.40)

=
∫ { B

∏
b=1

[pn(yen,k|xk, yk−1)]γb

}
p̂x(xk|e1:n−1, ye1:n−1,k, yk−1)dxk,

(6.41)

=
∫ { B

∏
b=2

[pn(yen,k|xk, yk−1)]γb

}
{[

pn(yen,k|xk, yk−1)
]γ1

p̂x(xk|e1:n−1, ye1:n−1,k, yk−1)
}

dxk,

(6.42)

= ω1

∫ { B

∏
b=2

[pn(yen,k|xk, yk−1)]γb

}
p̂x,1(xk|e1:n−1, ye1:n−1,k, yk−1)dxk,

(6.43)
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where

ω1 =
∫
[pn(yen,k|xk, yk−1)]γ1 p̂x(xk|e1:n−1, ye1:n−1,k, yk−1)dxk,

(6.44)

p̂x,1(xk|e1:n, ye1:n−1,k, yk−1) =
pn(yen,k|xk, yk−1)]γ1 p̂x(xk|e1:n−1, ye1:n−1,k, yk−1)

ω1
.

(6.45)

The process is easily continued to give, recursively,

pn(yen,k|yk−1) ≈
B

∏
b=1

ωb, (6.46)

where

ωb =
∫
[pn(yen,k|xk, yk−1)]γb p̂x,b−1(xk|e1:n−1, ye1:n−1,k, yk−1)dxk, for b = 2, 3, . . . , B

(6.47)
with p̂x,b(xk|e1:n−1, ye1:n−1,k) related to p̂x,b−1(xk|e1:n−1, ye1:n−1,k) through

p̂x,b(xk|ye1:n−1,k, yk−1) =
[pn(yen,k|xk, yk−1)]γb p̂x,b−1(xk|e1:n−1, ye1:n−1,k, yk−1)

ωb
.

(6.48)
Note that p̂x,B(xk|e1:n−1, ye1:n−1,k ,k, yk−1) is an alternative approximation to (6.256.25).

The difference between the two approximations is that a sequence of correction
steps have been carried out while obtaining p̂x,B(xk|e1:n−1, ye1:n−1,k ,k, yk−1) whereas
(6.256.25) is obtained by a single correction step. Progressive correction is known to
reduce the approximation error in the context of particle filtering [Oudjane 2000Oudjane 2000],
and is particularly well suited for the specific filtering problem considered in this
chapter because of the challenges arising from the large uncertainty of the envi-
ronment.

The progressive correction procedure in algorithmic form to obtain p̂x(xk|e1:n,
ye1:n,k, yk−1) from p̂x(xk|e1:n−1, ye1:n−1,k, yk−1) is listed in Algorithm 6.26.2, which is in-
cluded in the Appendix 6.B6.B. It should be noted that after each progressive cor-
rection, the resulting distributions p̂x,b(·), for b = 1, 2, . . . , B, are approximated
as Gaussian distributions using the statistics of the weighted samples obtained at
each step. This step of summarising the distribution using a Gaussian distribu-
tion requires special attention. First, if the underlying distribution is multi-modal,
then a Gaussian approximation to that is not appropriate. Secondly, when certain
elements in the state vector are not directly affected by a measurement (but, indi-
rectly affected through the remaining elements in the state vector), then a Gaussian
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approximation leads to additional loss in accuracy for the indirectly affected ele-
ments. We address these issues in Section 6.3.36.3.3 and 6.3.46.3.4.

6.3.3 The need for the Set JPDAF

A common problem with data association algorithms such as PDAF, JPDAF, and
Multiple Hypothesis Tracking (MHT) filter [Blackman 2004Blackman 2004] is the requirement of
these algorithms to retain the label assigned to each target throughout the trajec-
tory. This is a consequence of the implicit labelling when parameter vectors are
concatenated into a vector. However, in some instances preserving the identity
of the targets is not required. As an example in our situation, it is not important
to preserve the identity of the two walls. In other words, we are not concerned
about which label we assign to the walls (1 or 2) as long as we can estimate both
wall parameters with reasonable accuracy. As an illustration, consider two pos-
sible associations for the first measurement y1,k given by e6,k = 1 and e9,k = 1.
The association given by e6,k = 1 corresponds to the path configuration (1, 2) and
thus maps the measurement y1,k to a path that hits the wall identified by label “1”
during the forward path and the wall with the label “2” during the return path re-
spectively. On the other hand, e9,k = 1 corresponds to the path configuration (2, 1)
and thus hits the walls labelled “2” and “1” on the forward path and reverse path
respectively. However, the interesting thing to note is that e6,k = 1 represents the
same association as e9,k = 1 if the labels attached to the walls are switched under
any one of those hypotheses. Extending the example further, the association vector
samples e(1)k and e(2)k given below represent the same measurement association, if
the labels assigned to the walls are switched under any one of those hypothesis:

e(1)k = [2 9 4 3 5 1 6 8 7]′, (6.49)

e(2)k = [2 4 9 5 3 7 8 6 1]′. (6.50)

The consequences of this effect on the estimates are significant, as we explain next.

Consider the posterior estimates of just the slope parameters of the two walls
(that is, α1 and α2). Assume that the true slope parameters are given by π/4 and
−π/6. Recall from (6.346.34) that we approximated the posterior of α1 and α2 by a
Monte Carlo approach:

p(α1, α2|yk) ∝∼
J

∑
i=1

φ̃i p̂(α1, α2|e(i)k , yk). (6.51)

For the purpose of demonstration we restrict the number of ek samples to just
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the 2 samples explicitly given by (6.496.49) and (6.506.50). Further, assume that the two
hypotheses are equally weighted; that is, φ̃1 = φ̃2 ∝ .5. Finally assume that the
conditional posteriors are given by the following two equations:

p̂(α1, α2|e(1)k , yk) = N
(
·;
[

0.74
−0.49

]
, 0.01I2

)
(6.52)

p̂(α1, α2|e(2)k , yk) = N
(
·;
[
−0.55

0.8

]
, 0.01I2

)
(6.53)

The contour plot for the posterior obtained by substituting (6.526.52) and (6.536.53)
into (6.516.51) is shown in Figure 6.36.3(a). It is evident that the posterior is bimodal.
Therefore, the posterior mean, given by [0.095 0.155]′, is quite distant from the true
value and a Gaussian, as used in JPDAF, is a poor approximation to the posterior.
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Figure 6.3: Contour plot of p(α1, α2|yk): (a) before label switching (b) after label
switching.
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Suppose now, we exchange the wall labels under the data association hypoth-
esis e(2)k . Then the conditional posteriors are approximated by:

p̂(α1, α2|e(1)k , yk) = N
(
·;
[

0.74
−0.49

]
, 0.01I2

)
(6.54)

p̂(α1, α2|e(2)k , yk) = N
(
·;
[

0.8
−0.55

]
, 0.01I2

)
(6.55)

The contour plot for the posterior distribution after label switching is given
in Figure 6.36.3(b). Note that the posterior approximation after label switching re-
sembles a bivariate Gaussian distribution and the posterior mean [0.77 − 0.52]′ is
much closer to the true parameters. Of course we could have alternatively ex-
changed the labels under e(1)k instead of e(2)k and obtained [−0.52 0.77]′ as the
posterior mean. The mean of [−0.52 0.77]′ would be a poor estimate if we are
concerned about the MSE. However, if we are concerned only about knowing the
wall positions and not so much about the identity of the walls, either estimate of
[0.77 − 0.52]′ or [−0.52 0.77]′ is equally preferable to the estimate obtained without
the label exchange.

The above example illustrates one of the drawbacks of the traditional proba-
bilistic data association algorithms, when preserving the identities of the targets
is not essential. The posterior approximation obtained without label exchange is
analogous to the approach taken by traditional probabilistic data association algo-
rithms. In conventional JPDAF algorithm, the main objective is to minimize the
RMSE, and as such the first approach (without label switching) is better on av-
erage than the alternative. However, a more suitable measure of performance for
multi-object probabilistic data association algorithms where target identity
retention is not important is known as Optimal Sub Pattern Assignment (OPSA)
[Schuhmacher 2008bSchuhmacher 2008b, Schuhmacher 2008aSchuhmacher 2008a]. A modification to the traditional JPDAF
algorithm with the emphasis on reducing the Mean OPSA (MOPSA) is known as
SJPDAF and proposed in [Svensson 2009Svensson 2009]. The SJPDAF does permit as well as pro-
mote label switching to obtain a posterior that resembles a multivariate Gaussian
distribution.

We incorporate the SJPDAF algorithm into our filter design for the reasons pre-
sented above. A complete account of the SJPDAF algorithm is beyond the scope of
this thesis. However, the intuition behind the SJPDAF algorithm is as follows. The
SJPDAF algorithm describes the multi-object state (in our problem, multi-objects
are the two walls) as a Random Finite Set (RFS). The RFS representation provides
a framework for formulating problems related to unlabelled multiple object state
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estimation [Mahler 2007Mahler 2007]. The SJPDAF algorithm exploits the fact that there are
many labelled densities that give rise to the same RFS density. A set of labelled
densities that gives rise to the same RFS density is said to belong to the same RFS
family. Svensson et al prove in [Svensson 2009Svensson 2009] that any member of the same RFS
family when updated with the same likelihood function results in labelled den-
sities that belong to the same (updated) RFS family. Thus, any member density
of the same RFS family can be used in place of another, which allows replacing
labelled densities with a different one in exchange of computational convenience
or a gain in estimation performance. In the context of the example used here, the
densities before and after label switching (that is, (6.536.53) and (6.556.55)) belong to the
same RFS and either one could be used in place of the other. The SJPDAF algo-
rithm switches between the label switched densities and (ideally) uses the ones
that result in a posterior distribution close to a multivariate Gaussian.

In Algorithm 6.36.3 (which is included in the Appendix 6.B6.B), we have listed the
SJPDAF in algorithmic form to obtain the posterior distribution parameters when
provided with the association vector samples e(j)

k , association probability φj, and
parameters of the conditional distribution p̂(xk|e(j)

k , yk) for j = 1, . . . , J.

6.3.4 Marginalising using conditional Gaussian formula

Observation of (6.346.34) makes it clear that a good approximation for the conditional
posterior p(xk|ek, yk) is desired since it is directly related to the posterior approx-
imation of p(xk|yk). Note that in the preceding discussions p(xk|ek, yk) was ob-
tained sequentially, where we considered one association at a time. In other words,
as explained through the equations (6.206.20)-(6.256.25), the approximation to p(xk|ek, yk)

is obtained through a process where N intermediate densities p(xk|e1, ye1,k, yk−1),
p(xk|e1:2, ye1:2,k, yk−1), . . . , p(xk|e1:N , ye1:N ,k, yk−1) were encountered. Thus to obtain
the nth intermediate density, the measurement yen,k ,k is used to update the prior
p(xk|e1:n−1, ye1:n−1,k, yk−1). In Section 6.3.26.3.2 we discussed a particular technique,
namely progressive correction, that could be applied to reduce the approximation
error when updating p̂(xk|e1:n−1, ye1:n−1,k, yk−1) to arrive at p̂(xk|e1:n, ye1:n,k, yk−1).
Now we present yet another improvement that is used to obtain even better ap-
proximations.

Note that the update process is happening under the condition that the new
measurement yen,k is associated with the path configuration corresponding to the
nth row of the path configuration matrix C. Apart from the path configurations
(1, 2) and (2, 1) all other path configurations are tied to at most one wall. As an
example path configurations (1, 0) or (2, 2) are tied to walls labelled 1 and 2 respec-
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tively, whereas the direct path (0, 0) is not tied to any wall at all. Thus, the likeli-
hood function p(yen,k|xk, en) only depends on a subset of elements of the state vec-
tor, namely the kinematic state Tk and the elements related to the walls that are tied
to the path configuration represented by Cn. Conversely, wall parameters that are
not linked to Cn do not affect the likelihood function under consideration. We par-
tition the state vector into two components Ω1,k and Ω2,k, where Ω1,k corresponds
to the elements of xk that influence the likelihood function and Ω2,k to house to the
rest of the elements of xk. So far the approach has been to use particle filtering on
the entire state vector xk to approximate p̂(xk|e1:n, ye1:n,k, yk−1). A better approach
would be to use particle filtering only on Ω1,k to obtain p̂(Ω1,k|e1:n, ye1:n,k, yk−1)

and then use an analytical method to obtain p̂(Ω2,k|e1:n, ye1:n,k, yk−1). The motiva-
tion behind this approach is that it is desirable to use analytical methods whenever
possible as it yields a lower variance approximation. This is also the concept un-
derlying marginalised particle filter [Cappé 2007Cappé 2007, Schon 2005Schon 2005]. Next, we explain
how marginalising could be applied using the conditional Gaussian formula.

Without loss of generality consider the generic problem of approximating p(Ω1,
Ω2|y) where p(y|Ω1, Ω2) = p(y|Ω1). In other words, the likelihood function does
not depend on Ω2. Suppose we wish to approximate p(Ω1, Ω2|y) as a multivariate
Gaussian as shown in (6.566.56).

p̂(Ω1, Ω2|y) = N
([

Ω1

Ω2

]
;

[
Ω̂1

Ω̂2

]
,

[
D̂1,1 D̂1,2

D̂2,1 D̂2,2

])
. (6.56)

Assume that the prior p(Ω1, Ω2) is given by the following with all the param-
eters known:

p̂(Ω1, Ω2) = N
([

Ω1

Ω2

]
;

[
Ω̃1

Ω̃2

]
,

[
D̃1,1 D̃1,2

D̃2,1 D̃2,2

])
. (6.57)

In Section 6.3.26.3.2 we described a Monte Carlo procedure for approximating the
moments in (6.566.56). Using this procedure to approximate all moments in (6.566.56)
introduces unnecessary variance. Since the measurements depend only on Ω1, we
can instead apply the procedure of Section 6.3.26.3.2 to find approximations of Ω̂1 and
D̂1,1 only. The remaining posterior moments can be found using the conditional
Gaussian theorem [Zhang 2005Zhang 2005, p. 186]:

Theorem 6.1. If

p(x1, x2) = N
(
·;
[

µ1

µ2

]
,

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

])
;
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then,
p(x1|x2) = N

(
·; µ1 + Σ1,2Σ−1

2,2(x2 − µ2), Σ1,1 − Σ1,2Σ−1
2,2 Σ2,1

)
.

Proof. See Appendix 6.A6.A.

We now show how Ω̂2 can be analytically obtained using Ω̃1, D̃1,1, and Theo-
rem 6.16.1:

Ω̂2 =
∫

Ω2 p(Ω2|y)dΩ2, (6.58)

=
∫ ∫

Ω2 p(Ω2|y, Ω1)p(Ω1|y)dΩ1dΩ2, (6.59)

=
∫ [∫

Ω2 p(Ω2|Ω1)dΩ2

]
p(Ω1|y)dΩ1, (6.60)

=
∫ [∫

Ω2N (Ω2; Ω̃2 + A(Ω1 − Ω̃1), D̃2,2 −AD̃1,2)dΩ2

]
N (Ω1; Ω̂1, D̂1,1)dΩ1,

(6.61)

=
∫ [

Ω̃2 + A(Ω1 − Ω̃1)
]
N (Ω1; Ω̂1, D̂1,1)dΩ1, (6.62)

= Ω̃2 + A(Ω̂1 − Ω̃1), (6.63)

where
A = D̃2,1D̃−1

1,1 .

Equation (6.596.59) follows from Chapman-Kolmogorov formula, while equation
(6.606.60) follows from the use of Fubini’s theorem to switch the order of integration
along with the fact that Ω2 and y are independent of each other when conditioned
on Ω1. Equation (6.616.61) follows from the application of Theorem 6.16.1. Finally (6.626.62)
and (6.636.63) are obtained by noting that the solutions of the integration operations
in question are the means of the respective normal distributions.

Use of a similar procedure makes it straightforward to obtain the expressions
for the remaining three parameters of the distribution (6.566.56). They are

D̂2,2 = D̃2,2 −AD̃1,2 + AD̂1,1A′, (6.64)

D̂2,1 = AD̂1,1, (6.65)

D̂1,2 = D̂′2,1. (6.66)

Algorithm 6.46.4, which is included in the Appendix 6.B6.B, illustrates how all the
improvements (SJPDAF, progressive correction, and marginalising) are integrated
into a single filter.



130 Chapter 6. Multipath radar tracking with large uncertainty

6.3.5 Handling a mix of circular and linear variables in the state vector

Note that the state variable is a mixture of linear and circular parameters where
the circularity is contributed by the slope parameters of the walls. Thus, whenever
a parameter like sample mean is calculated special attention is required for the
circular components of the variable. As an example for the case of calculating the
sample mean of the state vector, the directional statistics [Mardia 1972Mardia 1972] are used to
obtain the sample means of the circular variables due to the reasons highlighted
in Appendix 4.A4.A. Additionally when a difference between two slope variables is
calculated (one example of this occurring is while calculating the likelihood func-
tion which involves subtracting a circular quantity from the AOA measurement)
we use modulo 2π operation to preserve the circularity.

6.4 Results and discussion
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Figure 6.4: Multipath environment.

Consider the simulation setup depicted in Figure 6.46.4. The size of the area is set
by letting K = 200. The two walls are represented by the parameters (α, β) given
by [π/4 150 cos(π/4)]′ and [5π/8 250 cos(3π/4)]′ respectively. The coordinates
of the radar transmitter and receiver are (100, 120) and (90, 90) respectively. The
initial prior for the target kinematic state T0 is a multivariate normal with mean
[60 0 50 5]′ and the covariance matrix is diagonal with the diagonal elements given
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by [9 1 9 1]′. The covariance matrix Q for the process noise is

Q =

[
κ1 0
0 κ2

]
⊗

 (∆T)3

3
(∆T)2

2
(∆T)2

2
∆T

 , (6.67)

where κ1 = κ2 = 0.5 and the state sampling interval ∆T is set as 1. Measurement
noise parameters are set by σ2 = 1 and σθ = π/90.

We tested the filter against two separate prior distributions for the wall param-
eters. The first is a normal approximation to the prior that was derived in Section
6.2.46.2.4. Let this prior be denoted by pw,1(·). The second prior pw,2(·) is less uncertain
about the environment compared to pw,1(·), but still enforces relatively large un-
certainty on the environment. The two prior distributions pw,1 and pw,2 are given
by the following formulae:

pw,1(w1, w2) = N (·; µw,1, Cw,1), (6.68)

pw,2(w1, w2) = N (·; µw,2, Cw,2), (6.69)

where

µw,1 =

[
1
1

]
⊗
[

π/2
−200/π

]
,

Cw,1 =

[
1 0
0 1

]
⊗
[

π2/12 −200/π

−200/π 2002(2π2 − 6 + π)/(6π2)

]
,

µw,2 =


π(1/4 + 27/180)
150 cos(π/4)− 35
π(5/8− 21/180)

250 cos(3π/4) + 40

 ,

Cw,2 =

[
1 0
0 1

]
⊗
[
(30π/180)2 0

0 702

]
.

To put the level of uncertainty assumed by the prior distributions in some con-
text, note that for pw,1, the standard deviation (of the marginal distributions) for
the intercept (β) is approximately 106.8 and for the angle parameter (α) is approxi-
mately 52 degrees. The corresponding numbers for pw,2 are 70 and 30 respectively.

In the previous section, we discussed three techniques as improvements to
the basic algorithm outlined in Algorithm 6.16.1, namely “progressive correction”,
“SJPDAF”, and “marginalising using conditional Gaussian formula”. First, we ex-
plore the contribution of each of these methods on the overall performance. Figure
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6.56.5 shows the effect of the number of correction steps on the filter performance. For
this simulation pw,2(·) was used with M = 1000 target samples drawn at each pro-
gressive correction step. The number J of association samples drawn is fixed at
300 for all the simulations appearing in this section. Further, all the simulation
results that follow are produced by Monte Carlo using 150 realisations of each ex-
periment.
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Figure 6.5: Simulating the effect of progressive correction by varying the number
of correction steps. In (a) position RMSE in meters is plotted against time while in
(b) velocity RMSE in meters per second is plotted against time.

It is evident from Figure 6.56.5 that the progressive correction plays an important
role on the filter performance. With fewer corrections such as 6 and 9, the filter lost
track, but 12 correction steps were sufficient to produce good results. Progressive
correction was particularly important in our filtering problem because of the large
uncertainty introduced by the prior.

Figure 6.66.6 shows the results of a similar experiment, but this time the objec-
tive was to investigate the utility of marginalising using the conditional Gaussian
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formula. Again the prior used here is pw,2 and for both curves 12 progressive
corrections with M = 1000 samples were used. The results clearly show the effec-

1

3

5

7

9

11

13
15
17
19
21
23
25

0 5 10 15 20
Time

S
a
m

p
le

 R
M

S
E

 f
o
r 

ta
rg

e
t 
p
o
s
it
io

n

Without cond. Gauss

With cond. Gauss

(a)

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20
Time

S
a
m

p
le

 R
M

S
E

 f
o
r 

ta
rg

e
t 
ve

lo
c
it
y

Without cond. Gauss

With cond. Gauss

(b)

Figure 6.6: Simulating the utility of marginalising using the conditional Gaussian
formula. In (a) position RMSE in meters is plotted against time while in (b) velocity
RMSE in meters per second is plotted against time.

tiveness of marginalising. To achieve the same level of performance as the black
curve whilst not marginalising, we would have had to set the sample size M to a
much higher value at a cost of computational expense.

The more uncertain prior pw,1 was used to assess the contribution of the SJPDAF
algorithm and the result is illustrated in Figure 6.76.7. Twelve progressive corrections
were used for this experiment along with M set to 3000. The algorithm lost track
when the SJPDAF was not used, which is not unexpected due to the reasoning
discussed in Section 6.3.36.3.3.

Since the main objective of the work presented in this chapter was to provide a
filtering solution to a largely uncertain multipath environment, it follows naturally
to study the effect of the level of prior uncertainty on the filter performance. The
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Figure 6.7: Simulating the utility of SJPDA algorithm. In (a) position RMSE in
meters is plotted against time while in (b) velocity RMSE in meters per second is
plotted against time.

filter was run against various uncertainty levels ranging from a deterministic en-
vironment (that is, where the wall parameters are assumed to be exactly known)
through to pw,1 and pw,2. The results are shown in Figure 6.86.8. By observing the
three curves in Figure 6.86.8 which had used M = 1000 samples we conclude that the
results confirm the intuition that larger uncertainty makes the tracking problem
harder. In fact with M = 1000 for pw,1 the filter loses the track. However increas-
ing the sample size to M = 3000 produces good results for the prior even with the
largest uncertainty.

Note that the mean of the slope parameter under pw,1 is π/2 and therefore the
maximum divergence from this parameter occurs when the slope is 0 (that is, when
the wall is horizontal). With the intention of assessing the filter performance with
a maximum divergence from the mean slope parameter, we changed one of the
walls to have the parameters [0 35]′ and ran the simulation against prior pw,1 with
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Figure 6.8: Assessing the effect of uncertainty on the filter performance. In (a)
position RMSE in meters is plotted against time while in (b) velocity RMSE in
meters per second is plotted against time.

12 progressive corrections and M set to 3000. The new multipath environment and
the filter performance are shown in Figures 6.96.9 and 6.106.10 respectively. The results
suggest that the algorithm was able to track the target under this challenging setup.

We observed while drawing association samples e(j)
k for j = 1, 2, . . . , J that

some associations are commoner than others, which is not unusual. We were able
to exploit this fact to significantly improve the execution time by storing the result
of probability calculations (6.396.39) and reusing them when needed.

The overall simulation results suggest that the proposed algorithm was able to
track a target in a highly uncertain multipath environment. Each of the methods
“progressive correction”, “SJPDAF” and “marginalising using conditional Gaus-
sian formula” contributed significantly to the success of the overall method while
omitting any one of those led to severe performance degradation and even track
loss for the simulations carried out.
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Figure 6.9: Multipath environment with a horizontal wall.

Though we have considered only a two wall setup and a clutter free model, the
framework can be extended to include clutter and multiple unknown number of
walls. The computational expense of the exact solution (6.216.21) increases exponen-
tially with the number of clutter measurements and walls. The importance sam-
pling based approach we proposed would not be subject to this increase as, for
a fixed sample size J, its expense depends polynomially on the number of walls
and clutter measurements. However, an increased sample size may be required to
achieve good performance. The challenge, when the number of walls is unknown,
can be handled within the same framework proposed in this chapter by introduc-
ing multiple target tracking techniques such as [Garcia-Fernandez 2011Garcia-Fernandez 2011].

6.5 Conclusion

In this chapter, we have formulated a challenging problem of tracking a target in
a highly uncertain multipath environment. We took a Bayesian approach in de-
riving a filtering solution to the problem. An importance sampling based filter
was proposed to solve the tracking problem. Additionally, we proposed an impor-
tance sampling based method to avoid the typical exhaustive calculation involv-
ing a summation over the potentially large number of possible data association
hypotheses. This method can be applied to general data association problems.
The proposed filter incorporated recent techniques such as Set JPDAF algorithm
and progressive correction. We included simulation results to illustrate the per-
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Figure 6.10: Simulating the filter with a horizontal wall. In (a) position RMSE in
meters is plotted against time while in (b) velocity RMSE in meters per second is
plotted against time.

formance of the proposed filter. Though we have assumed a clutter free model
with two walls the framework presented can be extended to incorporate clutter
and multiple unknown walls whilst staying within the vicinity of the proposed
solution.

Appendices

6.A Proof of Theorem 1

Proof. Define a random variable as follows:[
x1 − Σ1,2Σ−1

2,2 x2

x2

]
=

[
I −Σ1,2Σ−1

2,2

0 I

] [
x1

x2

]
. (6.70)
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Note that the distribution of the random vector in (6.706.70) is a multivariate nor-
mal with mean [

I −Σ1,2Σ−1
2,2

0 I

] [
µ1

µ2

]
=

[
µ1 − Σ1,2Σ−1

2,2 µ2

µ2

]
, (6.71)

and covariance matrix[
I −Σ1,2Σ−1

2,2

0 I

] [
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]  I 0

−
(

Σ−1
2,2

)′
Σ′1,2 I

 =

[
Σ1,1 − Σ1,2Σ−1

2,2 Σ2,1 0
0 Σ2,2

]
.

(6.72)
The above form implies that the marginal distribution of x1 − Σ1,2Σ−1

2,2 x2 is
multivariate normal with mean µ1 − Σ1,2Σ−1

2,2 µ2 and covariance Σ1,1 − Σ1,2Σ−1
2,2 Σ2,1,

which would lead to the desired result:

p(x1|x2) = N
(
·; µ1 + Σ1,2Σ−1

2,2(x2 − µ2), Σ1,1 − Σ1,2Σ−1
2,2 Σ2,1

)
.
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6.B Algorithms

Algorithm 6.1: A basic state estimation algorithm for the multipath filtering
problem

Input: µk|k−1, Ek|k−1, yk

1 for j = 1 to J do
2 Set A1,j = {1, 2, . . . , N}.
3 Draw M samples x(1,1)

k , x(1,2)
k , . . . , x(1,M)

k from N (·; µk|k−1, Ek|k−1).

4 for n = 1 to N do
5 Let the tth element in An,j be denoted by an,t where

t ∈ {1, 2, . . . , N − n + 1}.
6 for t = 1 to N − n + 1 do

7 Calculate ψn,t = ∑M
m=1 pn(ye(j)

n ,k
|e(j)

1:n−1, e(j)
n = an,t, x(n,m)

k , yk−1).

8 Draw an index t with Prob(t = t̃) ∝ ψn,t̃.

9 Set e(j)
n = aj,t.

10 Set An+1,j = An,j\{e(j)
n }.

/* Draw new samples from the updated conditional posterior

+ resample + regularize */

11 Let µ
(j)
k,n and E(j)

k,n be the sample mean and covariance of the weighted

particles denoted by the sample-weight pairs {x(n,m)
k , τ

(n,m)
k }M

m=1

where, τ
(n,m)
k = pn(ye(j)

n
|e(j)

1:n, x(n,m)
k , yk−1).

12 for m = 1 to M do

13 Draw an index lm with Prob(lm = m̃) ∝ τ
(n,m̃)
k .

14 Draw x(n+1,m)
k ∼ N (·; x(n,lm)

k , h2E(j)
k,n) where h is the bandwidth

parameter.

15 Set e(k)k = [e(j)
1 e(j)

2 . . . e(j)
N ]′.

16 Set φ̃j = ∏N
n=1 ∑

N−j+1
t=1 ψn,t.

17 Set φi = φ̃i/ ∑J
j=1 φ̃j for all i = 1, 2, . . . , J.

18 Set µk|k = ∑J
j=1 φjµ

(j)
k,N .

19 Set Ek|k = ∑J
j=1 φjE

(j)
k,N + ∑J

j=1 φj(µ
(j)
k,N − µk|k)(µ

(j)
k,N − µk|k)

′.
Output: µk|k, Ek|k.
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Algorithm 6.2: Progressive correction algorithm
Input: µ0, E0, n, en, yen

/* The index n defines the path configuration considered in the
current context (that is, the nth row of C). */

/* en is the nth element of the association vector. */
/* yen is the measurement associated with the path configuration

given by Cn (nth row of C). */

1 Draw x̃(m)
1 ∼ N (·; µ0, E0) for m = 1, 2, . . . , M.

2 Choose B exponents γ1, γ2, . . . , γB to be used in the progressive correction
such that 0 ≤ γb ≤ 1 and ∑B

b=1 γb = 1 for b = 1, 2, . . . , B.
3 for b = 1 to B do
4 for m = 1; to M do
5 Let τb,m = [p(yen |en, x̃(m)

b )]γb .

6 Let ωb =
1
B ∑B

b=1 τb,m.
/* Resample and generate the next set of samples */

7 Let E be the sample covariance of x̃(m)
b with weight τb,m for

m = 1, 2, . . . , M.
8 for m = 1 to M do
9 Draw an index lm with Prob(lm = m̃) ∝ τb,m̃.

10 Draw x̃(m)
b+1 ∼ N (·; x̃(lm)b , h2E) where h is the bandwidth parameter.

11 Set normalising constant φ = ∏B
b=1 ωb.

12 Set µ, E to be the sample mean and covariance of {x̃(m)
B+1}M

m=1, respectively.
Output: µ, E, and φ.
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Algorithm 6.3: Set JPDAF adapted to the multipath filtering problem

Input: {µ(j), E(j), φj, e(j)}J
j=1.

1 Let R be the number of unique data association vectors among {e(j)}J
j=1.

2 Let hr be the rth association hypothesis, for r = 1, 2, . . . , R.

3 Calculate all R association probabilities where for the rth hypothesis hr the
probability is given by:

Prob(hr) = ∑
j

φj where the summation is over j such that e(j) = hr.

4 Set µ̃r, Ẽr to be the mean and covariance under hypothesis hr (for
r = 1, . . . , R); that is, the mixture mean and covariance of all the mixture
components given by mean µ(j) and covariance E(j) for all j such that
e(j) = hr.

5 Define w̃l
r to be the vector of parameters (α and β parameters) of the wall

labelled l (l ∈ {1, 2}) extracted from µ̃r.
6 while not converged do
7 For l = 1, 2, calculate ŵl = ∑R

r=1 Prob(hr)w̃l
r.

8 Draw a hypothesis t randomly with Pr(t = t̃) = Prob(ht̃).
9 Calculate:

γ = 2Prob(ht)
{
(ŵ1 − ŵ2)′(w̃1

t − w̃2
t ) + Prob(ht)‖w̃1

t − w̃2
t ‖2
}

.

10 if 0 < γ then
/* Swap the labels */

11 Appropriately swap the elements related to wall labels 1 and 2 in the
mean vector µ̃t and covariance matrix Ẽt.

12 Set µ = ∑R
r=1 Pr(hr)µ̃r.

13 Set E = ∑R
r=1 Pr(hr)Ẽr + ∑R

r=1 Pr(hr)(µ̃r − µ)(µ̃r − µ)′.
Output: µ, E.
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Algorithm 6.4: Improved recursive state estimation algorithm
Input: µk|k−1, Ek|k−1, yk

1 for j = 1 to J do
2 Set A1,j = {1, 2, . . . , N}
3 Set µ

(j)
k,0 = µk|k−1

4 Set E(j)
k,0 = Ek|k−1

5 for n = 1 to N do
6 Let the tth element in An,j be denoted by an,t where

t ∈ {1, 2, . . . , N − n + 1}.
7 for t = 1 to N − n + 1 do

8 - Let [µk,n,t, Ek,n,t, ψn,t] = return values of the progressive
correction algorithm with input arguments
[µ

(j)
k,n−1, E(j)

k,n−1, n, an,t, yan,t,k].

9 - Group the state variable in to two components, Ω1 and Ω2 such
that the likelihood function
p(yan,t,k|Ω1, Ω2, en = an,t) = p(yan,t,k|Ω1, en = an,t).

10 - From µk,n,t and Ek,n,t extract the sub-blocks corresponding to Ω1.

11 - Use the marginalising method explained in 6.3.46.3.4 on the
extracted sub-blocks from the above step to replace the sub blocks
of µk,n,t and Ek,n,t relating to Ω2.

12 Draw an index t with Prob(t = t̃) ∝ ψn,t̃.

13 Set e(j)
n = an,t.

14 Set An+1,j = An,j\{e(j)
n }.

15 Set µ
(j)
k,n = µk,n,t.

16 Set E(j)
k,n = Ek,n,t.

17 Set e(j)
k = [e(j)

1 e(j)
2 . . . e(j)

N ]′

18 Set φ̃j = ∏N
n=1 ∑

N−j+1
t=1 ψn,t

19 Set φi = φ̃i/ ∑J
j=1 φ̃j for all i = 1, 2, . . . , J

20 Set [µk|k, Ek,k] to be the output of the SJPDAF algorithm with input

parameters {µ(j)
k,N , E(j)

k,N , φn, e(j)
k }

J
j=1.

Output: µk|k, Ek|k.



CHAPTER 7

Conclusion

This thesis has focused on the study of exploiting multipath reflections in radar
to track the state of a moving target. These research efforts contribute to

the current paradigm shift occurring in the radar statistical signal processing re-
search community, where the long perceived view of multipath as a nuisance is
challenged.

We have placed heavy emphasis on modelling the uncertain environment. Thus,
naturally we were led to embrace the Bayesian framework for inference where un-
known parameters are treated as random quantities.

In Chapter 33 we have presented a model for tracking a moving target in a par-
tially known multipath radar environment. Within the same chapter, the perfor-
mance bounds for tracking a moving target using multipath were derived. The
model formulation permits an arbitrary number of multipath causing walls with-
out imposing any restriction on their relative placement. The term partially known
means that the locations of the walls are known only up to the accuracy of several
wavelengths. This assumption is realistic and captures the mild errors present in
the map used to assess the environment. We modelled this uncertainty in the en-
vironment by introducing a uniformly distributed random phase shift to the radar
measurement equation. We further relaxed the assumption that the reflectivity
factors of the walls are known and treated them as random parameters. However,
these assumptions, which are valid in a practical setting, presented a challenging
estimation problem. We proposed a Markov Chain Monte Carlo based particle fil-
tering method in Chapter 55 to track a target under these assumptions. In Chapter
66 we further increased the uncertainty imposed in a multipath environment; as an
example consider a situation arising when a map of the environment is not avail-
able. The resulting data association problem and the tracking problem yet again
turned out to be very challenging. We proposed an importance sampling based
method to solve these problems. In Chapter 44 we presented a generalisation of a
multivariate von-Mises distribution that was developed while trying to solve the
partially known multipath environment problem. This generalisation can be used
to conveniently solve inference problems that might arise in real world applica-
tions involving multiple circular varialbles.
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We believe that the outcome of this thesis will contribute to accelerate the
widespread adaptation of multipath reflections in modern radar based tracking.
It is our sincere hope that some of the methods proposed in this thesis could be
adapted to solve general signal processing problems.

7.1 Future Work

• We believe that the resource allocation in multipath radar raises important
research questions. The optimal design of radar waveforms and scheduling
in multipath tracking is a topic that should be pursued in the future. Addi-
tionally the scheduling problem extends in space dimension as well; that is
answering questions such as “where should the transmitters and receivers
be placed to improve tracking?”.

• In the work presented in Chapter 66, the analysis was restricted to the situ-
ation where only two walls exist in the environment. We assumed perfect
radar detections and did not consider the possibility of clutter. Further, the
walls were represented by continuous lines rather than by line segments.
More work is required to relax these assumptions.

• We saw in Chapter 55 that Bayesian progressive correction could either en-
hance or detract the filter performance depending on the signal-to-noise ra-
tio. A method to adaptively apply progressive correction based on the signal
strength is desirable.

• In statistical procedures model checking is an important step. Thus, after ex-
tending the proposed methods from 2-dimensional geometry to 3-dimensional
geometry, it would be worthwhile to assess the proposed models against real
data. Since our model assumptions are based on substantive reasoning, we
believe that the proposed models and methods fall to the latter category in
the famous quote by G.E. Box: “All models are wrong; some models are use-
ful”.
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