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Abstract

Power allocation for distortion outage minimization in wireless sensor

networks

by Chih-Hong Wang

This thesis presents energy-efficient power allocation algorithms for wireless sen-

sor networks used in distributed estimation. We focus on problems that require

minimizing the distortion outage probability when fading is present. Optimal and

suboptimal power allocation schemes have been obtained and analyzed for a number

of different wireless sensor network models and network assumptions.

We first look at power allocation for a clustered wireless sensor network where

the clusterheads send their observations to the fusion center through orthogonal

multi-access channels. Assuming full CSI (channel state information) is available,

we obtain optimal power allocation that minimizes distortion outage probability

subject to a long-term average power constraint for any arbitrary fading distribu-

tions. We then consider partial CSI at the transmitter via limited feedback and

propose suboptimal power allocation schemes with low computational complexity

for Nakagami-m fading channels. Simulation results show significant power gain for

just a few bits of feedback.

We then consider a wireless sensor network where sensors send their measure-

ments to the fusion center using coherent multi-access assuming full CSI is available.

We present three power allocations - equal power allocation, short-term optimal

power allocation and long-term optimal power allocation - and analyze theoretically

the diversity order of estimation outage, given in terms of the number of sensors

in the network, that these three power allocation can achieve for Rayleigh fading.

Simulation results are given for performance comparison.

Finally we consider power allocation for a wireless sensor network where the sen-



sor data are spatially correlated. We obtained necessary and sufficient conditions for

finding the optimal power allocation. Simulation results show significant power gain

can be achieved when the correlation between the sensor data is exploited. Various

other aspects of the problem such as finding the closed form power allocations for

any general correlation matrix and asymptotic outage performance analysis are still

open problems. Some ideas are provided for future work.
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Chapter 1

Introduction

This chapter first gives the problem statement of the thesis. This includes a general

introduction and gives the motivations that lead to the formulation of the problem.

A survey of related literatures is given next. The author then defines the scope of

the research problem as well as the aim of the research. Next the contribution of

thesis is presented, and this chapter concludes by giving the outline structure of the

thesis.

1.1 Problem statement

Wireless sensor network (WSN) consists of many sensor nodes distributed over a ge-

ographical area where the sensors can communicate with other sensors through wire-

less channels to accomplish certain tasks. WSNs have many potential applications

that have already been implemented and those yet to emerge as newer technologies

become available. They can be used in environmental and wildlife habitat moni-

toring, in tracking targets for defense applications, monitoring chemical/poisonous

gas level in factories, in healthcare products and many other areas of human life.

A real example of WSN developed in Australia is a smart sensor network that con-

sists of 120 sensor nodes that monitor the quality of drinking water in south-east

Queensland [1].

Wireless sensor network is a type of ad-hoc network, which is characterized by

any type of networks that can be set up wirelessly without the use of infrastructure

[2]. Hence, many network configurations exist for WSNs, for example, sensors in a

WSN can configure themselves into clusters, elect clusterheads, perform cooperative

transmission by acting as relay nodes and many more. An example of a wireless

1



2 1.1. Problem statement

Figure 1.1: An example of a WSN.

sensor network structure is given in Fig. 1.1 [3]. However this ad-hoc nature of WSNs

also brings many design challenges that are often unique for different applications.

Sensors are usually cheap, mass-manufactured, battery-operated devices that

have limited energy and processing and communication capabilities. They are usu-

ally deployed in large numbers with high redundancies in wireless sensor networks.

As technology advances, it is expected that the sensor to become smaller in size. A

picture of a typical sensor is shown in Fig. 1.2 [4], depicting the smallness in physical

size of the sensor node. Replacement of batteries is usually costly and unnecessary,

since sensors are expected to be deployed once only and the environment in which

the sensors are deployed can be hazardous or hard to reach. Energy is consumed

in WSNs (and in ad-hoc networks in general) mainly in one of the three modes of

operation - transmitting, receiving and in ‘listening’ mode, and energy is consumed

differently in different modes of operation [5]. Generally energy is consumed in cir-

cuit operation (e.g. in DAC (digital to analog converter), ADC (analog to digital

converter) and frequency synthesizer) and in transmission. For long-range applica-

tions the transmission energy dominates, while in short-range applications, circuit

energy and transmission energy consumptions are comparable to each other [5].

As ad-hoc networks (and hence WSNs) are critically dependent on the rate of

energy consumption, how to efficiently manage the energy/power consumption of

sensors is a problem that is particularly crucial for wireless sensor networks. Power

control is a strategy that is used to manage the transmission power of sensors in

WSNs. Power control in WSNs can be centralized or distributive or a mixture of

both. In centralized power control, a central processing unit requires to collect all of

the network parameters and compute the power allocation which is then sent back



1.2. Literature review 3

Figure 1.2: A picture of Mica2dot sensor node manufactured by Crossbow Technol-
ogy Inc..

to each sensors. Centralized power control thus requires greater communication

overheads. In distributed power control, the sensors are capable of computing the

power based on regional information, such as information gathered from its neighbor

sensors. In partial centralized/distributive power allocation schemes, only some in-

formation (some key parameters) are exchanged between the sensors and the central

processing unit, and both sensors and central processing unit perform computation.

The issue of energy consumption in WSNs is of great importance. This motivates

the author to conduct research in obtaining the derivation and theoretical analysis

of power control algorithms in WSNs.

1.2 Literature review

Recently many works in the literature have proposed and studied cross-layer opti-

mization to maximize the lifetime of energy-constrained wireless sensor networks and

wireless networks in general. The traditional design approach for wireless networks

has been based on the OSI (open system interconnection) model framework that

sub-divides a communication system into seven layers based on its functionalities.

Although the OSI model has simplified the protocol design of communication sys-

tems greatly, the layers are usually designed independently and does not take into
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Figure 1.3: A graphical illustration of an adaptive cross-layer design and operation.

account of parameters used by other layers. This design method is hence regarded

as sub-optimal for wireless communication systems [6,7] and, as noted in [6], system

components such as medium access control protocols, radio link control, radio re-

source management schemes and routing algorithms can all benefit in some degree

from the awareness of the the variations in the channel in time and frequency. This

leads to the concept of cross-layer optimization where the layers in the wireless com-

munication system should be designed jointly by taking into account of global system

constraints and the relevant parameters that are exchanged between layers [7]. See

Fig. 1.3 for a graphical illustration of an adaptive cross-layer design and opera-

tion [7]. These parameters may include the channel state information, QoS-related

parameters, network resource information and the traffic pattern offered by each

layer to others, see [6]. Although cross-layer optimization can bring higher efficiency

in wireless communication systems, it also comes with extra signaling required to

extract and process the relevant parameters, and greater computation complexity.

This trade-off should be investigated in a case-by-case basis to see if the overall gain

from the cross-layer optimization outweighs the cost [6].

Cross-layer optimization has been studied in many areas and applications of wire-

less networks and is shown to improve the lifetime of such networks. The authors

in [8] studied minimum-energy scheduling problem in wireless data networks that is
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adaptive jointly to backlog and channel conditions subject to a packet transmission

deadline over multi-access channels, broadcast channels, and channels with fading.

They have deviced a heuristic online algorithm that can achieve significant energy

savings by such joint adaptation. Work in [9] studied the problem of energy effi-

cient transmission scheduling for delay constrained (both a deadline constraint and

an average delay constraint) wireless networks. In particular, they investigated the

jointly use of channel coding and electro-chemical mechanisms in batteries (batter-

ies allow them to recover energy during idle periods) to achieve significant energy

savings. Cross-layer optimization method is applied to wireless bio-sensor networks

in [10] where the authors propose to jointly optimize over congestion control and

medium access control, and jointly over power and bio-effects control. The authors

in [11] investigated a cross-layer optimization problem that computes the optimal

transmission powers, rates, and link schedule that maximize the network lifetime

in interference-limited wireless sensor networks. They observed the advantage of

using transmission strategies such as multi-hop routing, load balancing, interference

mitigation and frequency reuse to increase the lifetime of energy-constrained net-

works. [12] studied adaptive transmission rate and power based on perfect channel

state information and the buffer occupancy and illustrated the trade off between

average power and average delay. The authors also gave some discussion on the

architectural issues relating to cross-layer design.

Cooperative diversity can be utilized to improve the performance through the

use of spatial diversity gain and MIMO (multiple input multiple output) techniques

in wireless sensor networks. Here multiple sensors (terminals) in a network coop-

erate to form a virtual antenna array realizing spatial diversity in a distributed

fashion [13]. The authors in [13] studied the simplest form of cooperative network

- a single-relay fading channel, where the relay terminal uses either amplify-and-

forward or decode-and-forward. They showed that based on an outage capacity

analysis, full spatial diversity is achieved by certain time-division multiple-access-

based cooperative protocols provided that appropriate power control is employed.

Various cooperative diversity and protocols for multiple source-relay networks have

also been studied in [14–17]. In [14] the authors studied power allocation in wireless
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networks under decode-and-forward cooperative diversity and assumed that only the

mean channel gains are available at the transmitters. They showed that using a near-

optimal solution, significant performance gain can be achieved over other schemes in

the literature. Multi-hop, cluster-based sensor network with cooperative distributed

MIMO channels is studied in [18] for minimizing the end-to-end outage probability

by deriving the optimum time and power allocated to each cluster subject a energy

constraint. Energy-efficiency of MIMO and cooperative MIMO techniques are also

investigated in [5] in sensor networks having throughput and delay requirements. In

the energy consumption model the authors considered transmission energy as well

as the circuit energy consumption. Cross-layer optimization based on cooperative

MIMO techniques with rate adaption is considered in [19] and achieves significant

improvement in energy and delay performances.

Recent result in [20] demonstrating the asymptotic optimality of uncoded analog

forwarding of measurements by multiple sensors as opposed to separate source chan-

nel coding have motivated a lot of researchers to investigate multi-sensor estimation

(distributed estimation) problems and related energy/power efficiency issues within

this uncoded transmission framework. In [21] an optimal power allocation scheme

is obtained for analog forwarding based transmission through an AWGN (additive

white Gaussian noise) multi-access channel in an inhomogeneous Gaussian sensor

network. [22] looks at estimation diversity and energy efficiency in distributed sens-

ing. It shows that the estimation diversity increases in the order of the number of

sensors and derives optimal power allocation schemes for minimum distortion under

power constraint and minimum power under distortion constraint using orthogonal

multi-access protocol. The same group of authors later in [23] studied optimal lin-

ear decentralized estimation in coherent MAC (multi-access channel) for scalar and

vector sources under bandwidth and power constraints. Minimum energy problem

with correlated sensor noise is studied in [24]. The aforementioned works are based

on static channels and do not explicitly take into account fading channels, for which

meeting a strict distortion constraint may not be always possible. This motivates

us to study distortion outage, similar to the concept of capacity outage in delay-

sensitive applications such as voice communications over wireless channels [25–27],
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and seek to find the power allocation policies that minimize distortion outage prob-

ability when channel fading is present.

1.3 Aim and scope

We consider WSNs used in distributed estimation. This type of WSN usually has

sensors deployed over a geographical area to monitor some physical phenomenon

of interest which we call the source. The sensors take measurements of the source

independently and transmit their measurements wirelessly to a central processing

unit, or commonly known as the fusion center (FC). After having received all the

measurements (or some of the measurements) from the sensors, the fusion center

then tries to reconstruct, using the appropriate algorithms, the actual value of the

physical phenomenon that is being observed. We call the algorithm that is used in

reconstructing the source the estimator and the reconstructed quantity the estimate

of the source.

There are a number of uncertainties in this network that makes the measure-

ments received at the fusion center distorted; they are the measurement noise when

the sensors take measurements, the channel fading which is a fundamental property

of the wireless channel, as well as the channel noise. The estimate of the source

hence is a random quantity as a function of all these uncertainties. In estimation

theory, the estimator should be chosen (or constructed) such that it gives the mini-

mum distortion, which is simply given by the mean square error or the variance of

the estimate, given that the estimator is unbiased. In this work we will use distor-

tion outage probability or simply outage probability as a performance measure. The

distortion outage probability is given by the probability that the distortion exceeds

a given threshold Dmax.

Motivated by results in [20–22], the aim of this thesis is to investigate power

allocation schemes and their performances relating to distortion outage probability

in wireless sensor networks used in distributed estimation within the framework of

amplify-and-forward transmission with different multi-access protocols and various

sensor network assumptions.
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Figure 1.4: Block diagram of thesis structure and contribution items.

1.4 Contribution of thesis

A block diagram showing the organization and the contribution items of the thesis

is shown in Fig. 1.4. The thesis has the following contribution items:

1. We consider fading channels in a clustered wireless sensor network used in

distributed estimation and obtain optimal power allocation scheme that min-

imizes distortion outage probability with full CSI (channel state information)

under amplify-and-forward transmission and orthogonal multi-access protocol.

We show that the optimal power allocation schemes can be implemented in a

mixture of centralized and distributed manner. Computer simulations show

that the optimal power allocation scheme achieves significant power gain over

both equal power allocation and power allocation based on channel statistics.

2. We extend the problem in item 1 and study a more practical scenario where we
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consider partial CSI at the clusterheads (transmitters). We study the power

allocation with limited feedback and obtain, after using a number of useful

approximations, a sub-optimal scheme that is simple to implement (low in

computational complexity). Simulation results show that outage performance

with limited feedback achieves significant power gain over no CSI, and in some

cases some power gain over power allocations obtained by simultaneous per-

turbation stochastic approximation.

3. We consider coherent multi-access protocol in a wireless sensor network used in

distributed estimation with fading channels under amplify-and-forward trans-

mission framework. We obtain the optimal power allocation that minimizes

the distortion outage probability.

4. We study the diversity order of estimation outage for the coherent multi-access

protocol case for equal power allocation, short-term optimal power allocation

and long-term optimal power allocation schemes. We obtain the asymptotic

expressions for these three power allocation schemes and show that the diver-

sity orders increase in the order ofN logN for both equal power and short-term

optimal power allocations, where N is the number of sensors. For long-term

optimal power allocation, we show that it is possible to drive the outage prob-

ability to zero with a finite long-term total power constraint.

5. We study the problem when the sensor data are spatially correlated. We con-

sider a wireless sensor network using orthogonal multi-access and amplify-and-

forward protocols. We obtain the optimal power allocation that minimizes the

distortion outage probability subject to a long-term average power constraint

and show that significant energy can be saved by incorporating correlation into

the network model. The higher the correlation amongst the sensor data, the

more power gain the network can achieve.
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1.5 Organization of thesis

The thesis is organized as follows. In Chapter 2 we investigate the power alloca-

tion algorithm for a clustered wireless sensor network where sensors within a cluster

transmit their measurement to their clusterhead using amplify-forwarding scheme.

The clusterheads then transmit, also using amplify-forwarding scheme, the aggre-

gated measurements from the sensors to the fusion center where an estimator is used

to reconstruct the source. We assume that the clusterheads transmit through or-

thogonal multi-access Rayleigh-fading channels. We seek to find the optimal power

allocation that minimizes the distortion outage probability for a given average power

constraint. In this problem we assumed that full CSI is available at both the sensors

and the fusion center. In order to implement the optimal power allocation algorithm

to real systems it would require feedback channels (from fusion center to sensors)

having zero noise, zero delay and infinite bandwidth. This motivates us to study

power allocation with limited feedback, where only partial or quantized CSI is avail-

able at the sensors. The study of power allocation with limited feedback is given in

the second half of Chapter 2.

In Chapter 3 we investigate power allocation algorithms that minimizes outage

probability in wireless sensor networks where sensors transmit their signals to the

fusion center via a coherent multi-access channel. Motivated by the results in diver-

sity gain for orthogonal channels obtained in [22], we analyze the diversity order for

the coherent MAC case. We give theoretical analysis on three different power allo-

cation schemes - equal power allocation, short-term optimal power allocation and

long-term optimal power allocation, and obtain their diversity order of estimation

outage as the number of sensors gets large.

Measurements of sensors in a wireless sensor network may be spatially correlated.

This correlation structure may be exploited to further improve the energy efficiency

in wireless sensor networks. This motivates us to investigate the power allocation

algorithms for wireless sensor networks with correlated data. This work is given in

Chapter 4.

We conclude the thesis in Chapter 5 by giving concluding remarks and future
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work.
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Chapter 2

Power allocation in orthogonal MAC: full CSI and

limited feedback

2.1 Introduction

Wireless sensor networks have many useful applications such as in environmental

and wildlife habitat monitoring, in tracking targets for defense applications, in aged

health care and many other ares of human life. Wireless sensor networks usually

involve large numbers of sensor nodes that are distributed geographically to monitor

certain physical phenomenon and collect measurements which are then sent to a

central processing unit (often called a FC) via the wireless channel. The fusion

center computes estimates of the samples of the physical phenomenon from the

noisy measurements collected by the sensors. Energy consumption is a unique and

important issue in wireless sensor networks performing such distributed estimation

tasks because sensors are expected to be deployed once only and their batteries are

often irreplaceable due to high cost. Due to random fading in wireless transmission,

the quality of the estimation at the FC, measured by a distortion measure, becomes

a random variable. In delay-limited settings, instead of minimizing a long term

average distortion (or expected distortion for ergodic fading channels), it is more

appropriate to minimize the probability that the distortion for each estimate exceeds

a certain threshold, the so-called distortion outage probability. This is similar to

the idea of minimizing the information outage probability in block-fading wireless

communication channels in the information theoretic context [27]. Optimal power

allocation at the sensor transmitters for such outage minimization under various

power constraints is an important problem from the point of view of reducing energy

consumption in sensor networks. In this chapter we first look at optimal power

13
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allocation problem for distortion outage minimization in a clustered sensor network

with full CSI at both the clusterheads (transmitters) and the receiver (FC). We

then study a more practical power allocation problem where the sensors only have

quantized CSI by using finite rate channel feedback broadcast by the FC to the

transmitters at the clusterheads (CHs) for the various clusters.

Motivated by the recent result in [20] showing that uncoded analog-forwarding of

measurements by multiple sensors asymptotically outperforms the separate source

channel coding, many works in the literature have investigated multi-sensor esti-

mation problems and related energy/power efficiency issues within this uncoded

transmission framework [21–24]. Energy efficiency in wireless sensor networks has

been studied in the context of power optimization problems where optimal power

allocations (minimizing total power subject to a distortion constraint or minimizing

distortion subject to a total power constraint) have been found for sensor networks

with orthogonal MAC [22] and coherent MAC [21]. However these optimal power

allocation strategies are based on static channels and do not explicitly take into

account of fading channels, for which meeting a strict distortion constraint may not

be always possible. In [27], optimal power allocation schemes were obtained for

minimizing the information outage probability over block-fading channels subject

to peak and/or long-term average power constraints. In this chapter we will use

the same techniques as in [27] and obtain the optimal power allocation that mini-

mizes the distortion outage probability for a clustered wireless sensor network with

orthogonal MAC.

The optimal power allocation that minimizes the distortion outage probability,

however, assumes perfect CSI at both transmitter and receiver. In practice, perfect

CSI at the transmitter (CSIT) relies on instantaneous channel feedback from the FC,

which is difficult to implement due to the limited bandwidth, delay and error in the

feedback channel. Motivated by these constraints, many work in the literature have

looked at power control in the field of MIMO beamforming systems with partial CSIT

using limited feedback [28, 29]. The optimal power allocation scheme for systems

employing limited feedback is in general complex and hence difficult to obtain. [30]

studied average reliable throughput minimization over slow fading channels. They
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found properties of optimal power allocation policy that aid in the design of power

allocation algorithms. A suboptimal power allocation scheme is proposed in [31]

for a single user system with multiple transmit antennas and single receive antenna

with finite rate feedback power control. These suboptimal power allocation schemes,

although not optimal, can provide significant gains over no-CSIT even for small

number of feedback bits. A recent paper [32] studies the effect of partial CSIT in

a distributed estimation problem over a multiaccess channel where various forms

partial CSI are assumed to be available at the sensor transmitters, and their effect

on minimization of distortion or estimation error is investigated. Finally, a related

performance criterion in distributed estimation, called distortion exponent, measures

the slope of the average end-to-end distortion on a log-log scale at high SNR [33].

This metric is similar to that of diversity gain studied in this paper (also termed

as estimation diversity in [22]), which looks at the rate of diminishing of outage

probability at high SNR rather than distortion.

In this chapter we study a wireless sensor network where sensors are organized

into clusters. Each cluster has an elected clusterhead. The sensors observe a Gaus-

sian random source and send their observed (noisy) information to the clusterhead

(CH) by uncoded analog transmission using distributed beamforming. The cluster

heads then transmit the combined received signal to the FC using amplify-and-

forward and an orthogonal multi-access (e.g. FDMA (frequency-division multiple

access)) where the channel is subject to random fading. It is assumed that the

channel from each clusterhead to the FC is subject to independent and ergodic

block fading where each fading block is long enough for all transmissions within the

clusters and between the CHs and the FC to be completed and an estimate of the

random Gaussian source to be computed at the FC. The details of this clustered

wireless sensor network model is given in Section 2.2.

We present two main problems in this chapter. In the first problem, given in

Section 2.3, we design an optimal power allocation scheme at the CH’s (based on

full CSI at the FC and the CH’s) to minimize the distortion outage probability.

The optimal power allocation scheme can be applied to any arbitrary fading dis-

tribution in general. In our work we have assumed Rayleigh fading and simulation



16 2.1. Introduction

results showed that optimal power allocation achieves significant power gain in out-

age performance over equal power allocation. The optimal power allocation scheme

obtained here assumes that full instantaneous CSIT is available via feedback from

the FC, which requires an error-free, delay-less, infinite-bandwidth feedback channel

and extra communication overheads, and this can be impractical in real systems.

Hence we study some sub-optimal power allocation algorithms based on the statistics

of the fading channels, by minimizing some upper bounds of the outage probability

as obtaining an explicit expression for the outage probability proves to be difficult.

It is seen that these statistical power allocation schemes do not fare well compared

to the performance of the full CSI based algorithm, thus mandating the need for

power allocation algorithms based on finite rate channel feedback.

In Section 2.4 we present our second problem which is to find power control

schemes in Nakagami-m fading using limited feedback. The feedback system works

as follows. We assume that an optimal power codebook (to be designed) is pre-

computed at the FC based on the fading channel distributions and the average

power constraint, and stored at the FC as well as the CH transmitters. In real time,

under the assumption of perfect CSI at the FC, an index (corresponding to a region

in a multi-dimensional space that the channel vector belongs to) is computed and

broadcast to all CHs so that they can use the corresponding transmit power from

their pre-computed power codebooks. This index can only take a limited number

of values due to the finite rate constraint on the feedback channel. In general,

solving for the globally optimal power codebook is difficult due to the non-convexity

of the associated optimization problems and the difficulty of exactly computing

the probability of the channel vector belonging to a specific region defined by the

index of the power codebook. We obtain a power allocation scheme that is low in

computational complexity after imposing a constraint on the structure of the power

codebook and using various useful approximations for computing the probability

of the channel vectors belonging to the multi-dimensional quantized regions and

distributions of average sum power across the various regions. We also study the

asymptotic behavior of the outage probability and obtain an approximate expression

of the diversity gain (as the number of feedback bits goes to infinity) achieved by
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Figure 2.1: Schematic diagram of a wireless sensor network.

the proposed power allocation scheme.

2.2 Sensor network model

A schematic diagram of the wireless sensor network studied in this chapter is shown

in Fig. 2.1. N clusters of sensors are distributed around a single point source θ[k]

that is to be measured. Here k = 0, 1, 2 . . . denotes discrete time instants. We

assume that θ[k] is an independent and identically distributed (i.i.d.) Gaussian,

band-limited random process of zero mean and variance σ2
θ . Each cluster contains

Mi sensors (the subscript i denotes the index of the cluster and i = 1, . . . , N) that

observe the source and send their measurements to a pre-selected clusterhead. The

observed sample xim[k] of the mth sensor in the ith cluster at time k is given as

xim[k] = θ[k] +N i
m[k] (2.1)

where N i
m[k] is the measurement noise which is i.i.d., Gaussian distributed of zero

mean and variance (σi
m)

2
. We assume that θ[k] is independent of N i

m[k], ∀k, i,m.

The measurement noise variance is assumed to be proportional to the square of the
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distance from the source to the sensor (although the noise model at the sensors can

be appropriately adjusted depending on the sensing model of the sensors). A more

realistic model may include spatial correlation of the observed signal amongst sen-

sors, which is studied in Chapter 4. For simplicity, this chapter treats the observed

signal as being spatially independent of each other. We also assume that CHs are

selected by some chosen protocol, and that CHs are capable of transmitting with

greater power than the sensors, since the transmission distance between a CH and

the fusion center is larger in general.

Motivated by recent results showing asymptotic optimality of uncoded analog

transmission from multiple sensors observing a Gaussian source [20], we assume

that the sensors within a cluster simply amplify-and-forward (using equal power)

their observations to CH via a multi-access channel using distributed beamforming

so that the signals arriving at CH can be added up coherently. This is referred to

as the first stage of transmission. Although distributed beamforming may not be

easy to implement (see [34] for details of implementing distributed beamforming),

specially in the case of large number of sensors within each cluster, it has been shown

that even under the presence of random phase errors, the average loss in performance

is not significant unless the variance of the phase errors is severely large. The signal

received at the nth CH is given as

yi[k] =

Mi
∑

m=1

[

αi
m

√

gim
(

θ[k] +N i
m[k]

)

]

+N + C1i[k] (2.2)

where αi
m is the power gain factor,

√

gim is the channel gain of the first stage of

transmission and N i
C1 is the zero-mean AWGN channel noise of variance (σi

C1)
2
. We

also assume that the channels between sensors and CHs are static, where the channel

gains are assumed to be proportional to the inverse of the square of the transmission

distance. We also assume that the signal received at each CH is not interfered by

any signals from other clusters (which can be achieved by a time-division multi

access protocol where each cluster operates in a different time slot). For simplicity,

we let CHs also use the amplify-and-forward scheme to transmit yi[k] to FC using

an orthogonal multi access protocol such as FDMA. We refer the transmission of
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signals from CHs to FC as the second stage of transmission. We assume that full

(instantaneous) CSI is available at both the transmitters (CHs) and the receiver

(FC) (which can be obtained by delay-less and error-free feedback from FC once

FC has estimated the channels using pilot tones). We do not consider the effects of

channel estimation errors or power consumptions due to channel estimation in this

work. The signal received at FC from the ith CH is given as

zi[k] = βi
√

hiyi[k] +N i
C2[k] (2.3)

where βi is the power gain factor,
√
hi is the channel gain of the second stage of

transmission and N i
C2 is the zero mean AWGN channel noise of variance (σi

C2)
2.The

received signal vector is given as z = sθ + v where

z = [z1[k], . . . , zN [k]]
T

s =

[

β1
√

h1

M1
∑

m=1

α1
m

√

g1m, . . . , βN
√

hN

MN
∑

m=1

αN
m

√

gNm

]T

v =

[

β1
√

h1

(

M1
∑

m=1

α1
m

√

g1mN
1
m[k] +N1

C1[k]

)

+N1
C2[k],

. . . , βN
√

hN

(

MN
∑

m=1

αN
m

√

gNmN
N
m [k] +NN

C1[k]

)

+NN
C2[k]

]T

where T denotes transposition.

In what follows, we suppress the time index k for simplicity. The fusion cen-

ter now needs to reconstruct the value of θ given the vector of measurements z.

Assuming that the FC has prior knowledge of the p.d.f. (probability density func-

tion) of θ, it is well-known from estimation theory that the optimal estimator to

use in this case is the MMSE (minimum mean square error) estimator given as

θ̂ = s
T
C

−1
z

1

σ2
θ

+sTC−1s
where C is a diagonal matrix with its ith diagonal element given as

Cii = β2
i hi

(

∑Mi

m=1(α
i
m)

2gim(σ
i
m)

2 + (σi
C1)

2
)

+(σi
C2)

2. The variance of θ̂, also referred

to as distortion, is given as var(θ̂) =
[

1
σ2
θ
+ sTC−1s

]−1

. From Fig. 2.1 we may also

obtainX i
m = αi

m(θ+N
i
m) and Yi = βi

(

∑Mi

m=1

√

gimX
i
m +N i

C1

)

. Define qi as the total

power of sensors in the ith cluster and Pi the power of the ith CH. We then obtain
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qi =
∑Mi

m=1 (α
i
m)

2
(σ2

θ + (σi
m)

2) and Pi = β2
i

(

∑Mi

m=1 (α
i
m)

2
(σ2

θ + (σi
m)

2) gim + (σi
C1)

2
)

.

With the above model and expressions, we are now ready to formulate the problems.

2.3 Power control schemes in fading channels with

full CSI

2.3.1 Problem formulation

We are primarily interested in obtaining the optimal power allocation that minimizes

the total power of sensors and CHs subject to a distortion constraint at the FC, i.e.,

minimize
Pi,qi

N
∑

i=1

(Pi + qi)

subject to var[θ̂] ≤ Dmax

qi ≥ 0 ∀i
Pi ≥ 0 ∀i.

(2.4)

The optimization problem (2.4) can be easily shown to be non-convex. In order to

avoid this difficulty, we assume that the sensors within clusters have fairly limited

functionality and have only a few adjustable transmission power levels (e.g. low,

medium and high transmission power). With this assumption we drop the opti-

mization variable qi and assume that it is fixed at a value within a finite set of a

small number of elements. We investigate the effect of qi later via simulations in

Section 2.3.3. Furthermore we assume all sensors within a cluster transmit with

equal power (qi/Mi). Hence the expressions for sensor power gain, CH power and

distortion become

αi
m =

√

qi
Mi [σ2

θ + (σi
m)

2]
(2.5)

Pi = β2
i Ci (2.6)

var
[

θ̂
]

= σ2
θ

(

1 +
N
∑

i=1

β2
i hiUi

β2
i hiVi + (σi

C2)
2

)−1

(2.7)
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where Ci = (qi/Mi)
∑Mi

m=1 g
i
m + (σi

C1)
2, Ui = (qi/Mi)

(

∑Mi

m=1

√

gim/ (1 + (γim)
−1)
)2

,

Vi = (qi/Mi)
∑Mi

m=1(g
i
m(γ

i
m)

−1)/ (1 + (γim)
−1) + (σi

C1)2 and γim = σ2
θ/(σ

i
m)

2.

We now solve this optimization problem for static (modeling only distance based

attenuation) and fading (modeling random channel variations in addition to distance

based attenuations) channels in the second stage of transmission (CH’s to FC), and

describe the corresponding problem formulations in the following two subsections

respectively. Note that the fading channel gain,
√
hi is assumed to be i.i.d. Rayleigh-

distributed, and hence the signal power gain, hi is i.i.d. exponentially distributed

(although the analysis can be extended to any other fading distribution). The fading

channel power gain is modeled as

hi = ζifi (2.8)

where ζi is the mean channel gain and fi is i.i.d. exponentially distributed with unity

mean (any non-unity mean value of fi can be absorbed into ζi). The mean channel

gain is assumed to be equal to the inverse of the transmission distance squared.

Static channel

In this section, we assume that the channel gains are static and distance-based, and

are given by ζi. The optimization problem becomes

min
β2
i

N
∑

i=1

β2
i Ci

s.t. σ2
θ

(

1 +

N
∑

i=1

β2
i ζiUi

β2
i ζiVi + (σi

C2)
2

)−1

≤ Dmax

β2
i ≥ 0, i = 1, . . . , N.

(2.9)

The solution of a variation to this problem (for a best linear unbiased estimator

(BLUE) instead of the MMSE estimator) can be found in [22], and we just state

it below as it will be useful in later sections where we solve the problem for fading
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channels. The optimal power gain for problem (2.9) is given as

P ∗
i =











0, i > N1

CiGi

Hi

(

1√
η−1
i ρ0

− 1

)

, i ≤ N1

(2.10)

where Gi = Ui/Vi, Hi = ζiUi/(σ
i
C2)

2, ηi = Hi/Ci and ρ0 = D(N1)/C(N1). D(i) =
∑i

j=1Gj − (σ2
θ/Dmax − 1) and C(i) =

∑i
j=1Gj/

√
ηj . N1 is given by ordering η1 ≥

. . . ≥ ηN and finding g(N1) > 0 and g(N1+1) ≤ 0, where g(i) = 1−D(i)/
(√

ηiC(i)
)

,

i = 1, . . . , N .

Similarly, the solution for the dual problem given as

min
β2
i

σ2
θ

(

1 +

N
∑

i=1

β2
i ζiUi

β2
i ζiVi + (σi

C2)
2

)−1

s.t.
N
∑

i=1

β2
i Ci ≤ Ptot

β2
i ≥ 0, i = 1, . . . , N

(2.11)

can also be found in [22]. The optimal power allocation is given as

P ∗
i =











0, i > N1

Civi

(

1√
ξ−1
i c0

− 1

)

, i ≤ N1

(2.12)

where vi = (σi
C2)

2/ζiVi, ξi = ζiUi/Ci(σ
i
C2)

2 and c0 = A(N1)/B(N1). A(i) =
∑i

j=1 vj
√

ξjCj and B(i) =
∑i

j=1 vjCj + Ptot. N1 is given by ordering ξ1 ≥ . . . ≥ ξN

and finding f(N1) > 0 and f(N1 + 1) ≤ 0, where f(i) =
√
ξiB(i)/A(i) − 1,

i = 1, . . . , N .

Fading channel

In this subsection we assume Rayleigh-faded channels between CH’s and FC as given

by (2.8) and define the probability of distortion outage. The probability of distortion

outage is defined as the probability that the distortion exceeds some predefined

threshold, Dmax. We want to minimize this distortion outage probability subject to
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a long term power constraint, stated as

min Pr (D(P(h),h) > Dmax)

s.t. E[〈P(h)〉] ≤ Pav

P(h) � 0

(2.13)

where P(h) , [P1(h), . . . , PN(h)]
T , h , [h1, . . . , hN ]

T , 〈x〉 , (1/M)
∑M

i=1 xi where

M is the length of the vector x, Pr(x) denotes probability of the event x, � denotes

component-wise inequality. and

D(P(h),h) = σ2
θ

(

1 +
N
∑

i=1

Pi(h)hiUi

Pi(h)hiVi + Ci(σ
i
C2)

2

)−1

(2.14)

is the distortion achieved at FC as a function of the channel gains (random) and

CH transmission power, which are also functions of the channel gains. Note that we

assume instantaneous channel knowledge at FC (receiver) and at the transmitters

(CH’s) (where the transmitter CSI can be accurately obtained via feedback channels

which are error-free and have zero delay).

2.3.2 Solution and optimal power allocation scheme

The problem given in (2.13) can be solved in the same way as in [27]. We first

consider the following minimization problem given as

min 〈P(h)〉
s.t. D(P(h),h) ≤ Dmax

P(h) � 0.

(2.15)

The above problem seek to find the minimum average transmission power required

to meet the distortion constraint for FC to receive a single measurement from all

CHs. We assume full instantaneous CSI is available, hence h is a known vector

quantity and is regarded here simply as a constant vector.

We have the following lemma:

Lemma 2.3.1. Without loss of generality, assume h1 ≥ h2 ≥ . . . ≥ hN . With the



24 2.3. Power control schemes in fading channels with full CSI

knowledge of h, the solution for (2.15) has already been given in (2.10). Hence the

ith optimal power is given as

P ∗
i (h) =

CiGi

H̄i

[ √
η̄i

ρ̄0(h, N1)
− 1

]+

, i = 1, . . . , N (2.16)

where N1 is a unique integer in {1, . . . , N} required to evaluate ρ̄0(h, N1). H̄i, η̄i

and ρ̄0(h, N1) are defined similarly to the static channel case except that ζi is now

replaced by hi and the explicit dependence on h is shown. Note also that [x]+ denotes

max(x, 0).

One can also obtain the following Lemma which is necessary to find the final

optimal solution of problem (2.13).

Lemma 2.3.2. The optimal power function, P∗(h) , (P ∗
1 (h), ..., P

∗
N(h)) , is a con-

tinuous function of h. Furthermore, 〈P∗(h)〉 is a non-increasing function of hi,

i = 1, . . . , N .

The proof of this lemma, as well as other lemma and theorems, can be found in

the appendix.

We define two regions, R(s) and R(s) and the boundary surface B(s) for some

non-negative s as in [27]:

R(s) = {h ∈ R
N
+ : 〈P(h)〉 < s}

R(s) = {h ∈ R
N
+ : 〈P(h)〉 ≤ s}

B(s) = {h ∈ R
N
+ : 〈P(h)〉 = s}

(2.17)

We then define two average power sums as

P (s) =

∫

R(s)

〈P(h)〉dF (h)

P (s) =

∫

R(s)

〈P(h)〉dF (h)
(2.18)

where F (h) denotes the joint c.d.f. (cumulative distribution function) of h. Finally,
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the power sum threshold s∗ and the weight w∗ are given as

s∗ = sup{s : P (s) < Pav}

w∗ =
Pav − P (s∗)

P (s∗)− P (s∗)

(2.19)

With the above lemma and definitions we can now present the solution to (2.13).

The proof follows using similar techniques as in [27] and is excluded.

Theorem 2.3.1. The solution of problem (2.13) is given as

P̂(h) =







P∗(h), if h ∈ R(s∗)

0, if h 6∈ R(s∗)
(2.20)

while if h ∈ B(s∗), P̂(h) = P∗(h) with probability w∗ and P̂(h) = 0 with probability

1− w∗.

The optimal power allocation scheme states that if the channel condition is above

some threshold then CHs transmit with power allocation given by (2.16), or else none

should transmit to save power.

Remark 2.3.1. Note that the solution given in (2.20) is of a general form, which can

be applied to both continuous and discontinuous fading distributions. If the fading

distribution is continuous (which is true for this problem), then the probability that

h ∈ B(s∗) is zero, hence discarding the need for randomization at the boundary.

Remark 2.3.2. Note also that while the computations necessary to implement

the above solutions are carried out at FC (such as those of s∗ (based on Pav) and

ρ̄0(h, N1)) and the decision whether CH’s should transmit or not transmit can be

broadcast by FC, the optimal power allocation for individual CH can be easily

implemented in a distributed fashion (in the case where the CH’s transmit). The

fusion center has to just broadcast the quantity ρ̄0(h, N1) to all CH’s and CH’s can

then update their transmission power according to (2.16) which only involves local

variables at CH’s (apart from ρ̄0(h, N1)).
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2.3.3 Simulation results

Two sensor network topologies are simulated in MATLAB. Topology A has six

clusters deployed equally spaced around the source and Topology B deploys six

clusters on one side of the source only as shown in Fig. 2.2. Topology B models

environments where it is difficult or impossible to deploy sensors in certain parts of

the landscape, for example, when the source is located at the edge of a cliff. The

sensors in each cluster are organized in four equally spaced concentric circles and the

number of sensors in each circle are 6,12,18 and 24 from the smallest to the biggest

circle respectively. All clusters have a radius of 40m. All sensors transmit with

qi/Mi = 1mW in topology A. In topology B sensors transmit with 1.33mW, 1mW

and 0.67mW in the two clusters closest to the source, two clusters second closest

and two clusters farthest away from the source respectively. The clusterheads are

located at the center of each cluster for simplicity. CHs are 100m and 60m apart

from the next closest CH in topology A and B respectively. The fusion center is

located 500m away from the source in both topologies. The channel noise variances

are set to (σi
C1)

2 = 10−12 Watts and (σi
C2)

2 = 10−10 Watts for i = 1, . . . , 6 in the first

and second stage of transmission respectively in both topologies. Source variance is

set to σ2
θ = 1 Watt.

Static channel

Fig. 2.3 shows total power consumption,
∑N

i=1(Pi + qi), versus total sensor power

within clusters,
∑N

i=1 qi, in topology A. In this simulation only the total sensor power

of one of the six clusters is varied. As
∑N

i=1 qi increases, more power is allocated to

the sensors, and hence signals received at CHs have a lower distortion. Therefore,

CHs can transmit with less power to achieve the same distortion. However total

power starts to increase after some point of
∑N

i=1 qi since allocating extra qi cannot

bring down the distortion anymore and this power is wasted. Asymptotic analysis



2.3. Power control schemes in fading channels with full CSI 27

Figure 2.2: Wireless sensor network topologies. Left: topology A. Right: topology
B.

shows that as qi goes to infinity ∀i, distortion is given as

lim
qi→∞

D = σ2
θ











1 +
N
∑

i=1

(

Mi
∑

m=1

√

gim
1+(γi

m)−1

)2

Mi
∑

m=1

gim(σi
m)2

1+(σi
m)−1











−1

. (2.21)

This is in fact the same expression as the minimum distortion achievable at FC if

β2
i → ∞ ∀i, and characterizes the feasible set of the distortion constraint for the

optimization problem in (2.9).

Fig. 2.4 shows how the number of sensors per cluster affects sum power while

keeping qi fixed. As the number of sensors per cluster increases (while keeping qi

fixed), more observations are transmitted to CH. This lowers the distortion at CH

and hence CHs need less power to meet the distortion requirement at the fusion

center. The expression of taking the limit of distortion as the number of sensors,
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Figure 2.3: Total clusterhead power versus distortion (Topology A).

Mi, goes to infinity is given as

lim
Mi→∞

σ2
θ











1 +
N
∑

i=1

(

Mi
∑

m=1

√

gim
1+(γi

m)−1

)2

Mi
∑

m=1

gim(σi
m)2

1+(σi
m)−1











−1

. (2.22)

Numerical analysis shows that the quantity (distortion) in (2.22) decreases like 1/Mi

which conforms with the asymptotic analysis given in [20].

Fading channel

In this section, the channels between CH’s and FC are modeled as Rayleigh-faded

channels. The following results are obtained over 1,000,000 realizations of exponentially-

distributed channel power gains of mean equal to the inverse of the distance squared

for each average power given. The distortion requirement is set to 0.0043, which is

a hundred times the minimum achievable distortion.

Fig. 2.5 shows Pav versus s∗ (the sum power threshold that determines whether

CH’s should transmit or not). This graph allows us to obtain the value of s∗ that

corresponds to a given Pav.
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Figure 2.4: Total clusterhead power versus number of sensors per cluster.
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Figure 2.6: Poutage against Pav.

Fig. 2.6 shows the distortion outage probability against average power for op-

timal power allocation (OPA) and equal power allocation (EPA). EPA allocates all

CHs with equal transmitting power, which equals Pav. As shown in this figure,

optimal power allocation scheme performs significantly better than EPA scheme for

both network topologies. In the (simplified) problem formulation we assumed that

the sensors can only transmit with a finite number of power levels and hence qi is no

longer a variable of optimization. Here we investigate the effect of qi on the outage

performance via simulation. Fig. 2.7 shows how the outage probability varies with

qi using optimal power allocation in topology A (essentially total power consumed

by sensor transmissions in all clusters are kept at the same value qi). Dmax is set to a

hundred times the minimal achievable distortion. As qi increases, the outage prob-

ability obviously decreases. However,the effect of lowering the outage probability

by increasing qi quickly saturates when qi reaches around −70dBW; any qi higher

than this power level does not lower the outage probability significantly. This is

because adjusting qi only affects the first stage of transmission and the resulting

distortion achieved at CHs. The saturation level outage probability then depends

on the channel conditions in the second stage of transmission (clusterheads to the

fusion center). One can similarly plot the outage probability versus Pav for various
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Figure 2.7: Poutage against qi with different long-term average power using optimal
power allocation in topology A (Dmax = 0.0043).

values of qi. While increasing average transmit power for the clusterheads decreases

the outage probability, increasing qi beyond a certain level does not result in any

significant reduction in the outage probability.

Power allocation based on statistics of the fading channels

As acquiring full instantaneous channel knowledge at the clusterhead transmitters

can be costly, here we look at some optimal power allocation methods based on statis-

tical knowledge of the fading channels between the clusterheads and the fusion cen-

ter. Since the fading statistics do not necessarily vary rapidly with time, this requires

very little overhead communication between the clusterheads and the fusion center.

It is however difficult to obtain an explicit expression of the outage probability for

N > 1 (an observation which was also made in [22]). Hence we choose to minimize

an upper bound on the outage probability by minimizing the expected distortion,

which is motivated by Markov’s inequality Pr(D > Dmax) = Pr(D ≥ Dmax) ≤ E[D]
Dmax

.

To simplify the analysis even further, we obtain an approximation to the expected
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distortion by obtaining a lower bound on it, which is given by

minE

[

1

σ2
θ

+
1

σ2
θ

N
∑

i=1

Uiβ
2
i hi

Viβ2
i hi + δi

]−1

≥ min

(

1

σ2
θ

+
1

σ2
θ

N
∑

i=1

Uiβ
2
iE[hi]

Viβ2
iE[hi] + δi

)−1

≡ σ2
θ(1 + max

N
∑

i=1

Uiβ
2
iE[hi]

Viβ2
i hiE[hi] + δi

)

≥ σ2
θ(1 + maxE

[

N
∑

i=1

Uiβ
2
i hi

Viβ
2
i hihi + δi

]

)

(2.23)

where δi = (σi
C2)

2. The inequalities in the above analysis follow from Jensen’s

inequality due to convexity of the distortion function with respect to the channel

gains. Although the distortion outage probability may not be strictly upper bounded

by this lower bound on the expected distortion, it provides a heuristic for obtaining

a statistical power allocation scheme.

We can now solve an optimization problem by minimizing the lower bound of

expected distortion given by the last line of (2.23) as

max E

[

N
∑

i=1

Uiβ
2
i hi

Viβ2
i hi + δi

]

s.t.

N
∑

i=1

β2
i Ci ≤ Ptot

β2
i ≥ 0 ∀i.

(2.24)

For Rayleigh-faded channels, the objective function can be expressed as

E

[

N
∑

i=1

Uiβ
2
i hi

Viβ2
i hi + δi

]

=
Ui

Vi
− Uiδi

Vi
E

[

1

Viβ2
i hi + δi

]

= K1i −
Uiδi
Vi

∫ ∞

0

λie
−λihi

Viβ2
i hi + δi

dhi

= K1i −
K2i

β2
i

e
K3i
β2
i E1

(

K3i

β2
i

)

where K1i = Ui/Vi, K2i = Uiλiδi/V
2
i , K3i = λiδi/Vi and E1(z) =

∫∞
z
e−t/t dt. Hence
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the optimization problem is given as

min
N
∑

i=1

(

K2i

β2
i

e
K3i
β2
i E1

(

K3i

β2
i

)

−K1i

)

s.t.

N
∑

i=1

β2
i Ci ≤ Ptot

β2
i ≥ 0 ∀i.

(2.25)

It can be easily shown that this problem is a standard convex optimization problem

and by solving the KKT (Karush-Kuhn-Tucker) conditions and letting zi = K3i/βi
2,

we get the following set of nonlinear equations



































µ > 0
N
∑

i=1

K3iCi

zi
−Ptot = 0

z2i [e
ziE1(zi)(1 + zi)− 1] =

CiK
2
3i

K2i
µ, 0 ≤ zi <∞

z2i [e
ziE1(zi)(1 + zi)− 1] ≤ CiK2

3i

K2i
µ, zi = ∞

(2.26)

where µ is the Lagrangian multiplier. The optimal power values can be obtained by

solving the above set of nonlinear equations numerically by using provably conver-

gent fixed point iterative methods.

We can also look at minimizing the lower bound on expected distortion given

by the third line of (2.23), which is equivalent to problem (2.11). Fig. 2.8 shows

the outage probability achieved by problem (2.24) (heuristic method 1) and problem

(2.11) (heuristic method 2) for Topology A. Clearly, the sub-optimal statistical power

allocation methods based on minimizing the upper bounds on the outage probability

do not fare well compared to the performance of the optimal power allocation method

based on full CSI at the clusterhead transmitters. A similar observation was also

made in [29] in the context of outage probability performance of beamforming in

multiple antenna systems. This motivates the need for optimal power allocation for

distortion outage minimization based on quantized or finite rate channel feedback

from the fusion center to the clusterheads, a topic that is begin investigated in the

following section.
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Figure 2.8: Performance of heuristic methods that use knowledge of channel statistics
(topology A).

2.4 Power control schemes in Nakagami-m fading

using limited feedback

In the previous section (Section 2.3) we have presented the optimal power allocation

algorithm that minimizes the distortion outage probability with the assumption that

CSIT and CSIR (CSI at the receiver) are known. In this section we will assume that

only partial CSIT is available. The type of partial CSIT considered here is in the

form of quantized (or rate-limited) feedback.

Following the assumption made in Section 2.3.1 that all sensors within a cluster

transmit with equal power (qn/Mn), the expressions for sensor power gain, CH power

and distortion have already been obtained in Section 2.3.1 and are given in (2.5),

(2.6) and (2.7) respectively.

We assume that the channels between the CHs and the FC are stationary ergodic

and subject to independent Nakagami-m block-fading, and hence the channel power

gain hn ∈ ℜ+ is distributed according to a gamma distribution with a mean equal

to the inverse of the square of the transmission distance. In other words, the p.d.f.
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of hi, i = 1, 2, . . . , N , is given as

fi (hi) =
(miλi)

mi hmi−1
i

Γ (mi)
e−miλihi, i = 1, . . . , N (2.27)

where 1
λi

is the mean channel power gain and mi ≥ 0.5 is a real parameter that

indicates the severity of the fading. Γ(·) is the Gamma function defined as Γ(m) =
∫∞
0
tm−1e−tdt. We include a subscript i in fi(·) because the distributions are in-

dependent but not identical. For the special case of Rayleigh-fading, the channel

power gain is exponentially distributed given by fi (hi) = λie
−λihi which can be

easily obtained by substituting mi = 1 into (2.27).

2.4.1 Problem formulation

In wireless sensor networks with rate-limited feedback links, only a finite set of power

values can be transmitted from the receiver (FC) to the transmitters (CHs). We

denote the collection of this finite set of power values as a power codebook P(N,L)

where N and L are the number of CH transmitters and the number of power levels

respectively. It is often more practical to convert L into R binary bits using the

relationship L = 2R and refer to the unit of feedback resolution in terms of bits. For

an R-bit broadcast feedback channel and N clusters in the network, we quantize the

vector channel space ℜN
+ into L regions. Denote the regions as R(N)

j and the power

codeword associated with the j-th quantized region as P(N)
j ∈ P(N,L), j = 1, . . . , L.

Furthermore, the j-th region power codeword P(N)
j = [P1,j, . . . , PN,j]

T contains a set

of N power values specifying the CH transmit powers. We assume that CHs and

FC know this (pre-computed) power codebook, since this power codebook can be

computed offline, purely based on the channel statistics and the available average

power. We will first present the single-cluster network problem formulation as it is

simple and provides some useful intuitions and properties that will be useful later

in formulating the multi-cluster problem.
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Power allocation with quantized CSIT with a single cluster (N = 1)

arbitrary power codebook P(1,L) = [P1,1, . . . , P1,L]
T assigned deterministically to L

quantization regions in h1 ∈ ℜ+, that is whenever h1 belongs to the j-th quantiza-

tion region, the CH uses the transmission power P1,j with probability one. Without

loss of generality, we assume that P1,1 > . . . > P1,L ≥ 0. Before we define the

quantization regions, we need to first state a property that the optimal quantizer

(one that minimizes the outage probability) possesses. Note that when N = 1 it can

be easily shown that the distortion and the outage probability are monotonically

decreasing functions of power. These two properties are the same as the problems

studied in [35–37] and hence it can be easily shown in a similar fashion that the

optimal (deterministic) index mapping achieving minimum outage probability also

has a circular structure (one that wraps around) as in [35–37]. It is straightfor-

ward to show that, for a given fading block, in the case of non-outage, the index

is assigned to the minimum power that can meet the distortion threshold, and in

the case of outage, which occurs when none of the power in the power codebook

can meet the distortion threshold, the index is assigned to the smallest power. We

now introduce a set of channel thresholds defining the boundaries of the quantized

channel regions as an alternative for defining the problem instead of power simply

because it is easier to define the cumulative distribution function (c.d.f.) for the

fading distribution and the outage probability in terms of the channel thresholds.

However through out this chapter we may use channel thresholds and power inter-

changeably, depending on whichever is more convenient in the given context. The

channel thresholds are one-to-one functions of the quantized power values, given

as s1,j = φ1/P1,j where φ1 = C1(σ
1
C2)

2γth/(U1 − V1γth) and γth = σ2
θ/Dmax − 1.

For notational completeness we denote S(1,L) = {s1,1, . . . , s1,L} (the superscript ‘1’

denotes N = 1 and L denotes that there are L power feedback levels or quanti-

zation regions). Denote the regions as R
(1)
j , j = 1, . . . , L (the superscript indicates

N = 1). The circular index mapping allows us to naturally define R
(1)
j = [s1,j , s1,j+1),

j = 1, . . . , L − 1, R
(1)
L = {[0, s1,1), [s1,L,∞]} and the outage region R

(1)
out = [0, s1,1).

Note that R
(1)
out ⊆ R

(1)
L . Let F1(x) , Pr{0 < h1 ≤ x} denote the cdf of the channel
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gain for N = 1. Note that the outage probability is then simply given by F1(s1,1).

The problem of minimizing the outage probability subject to a long-term average

power constraint can then be formulated as

min F1(s1,1)

s.t.
L−1
∑

j=1

P1,j [F1(s1,j+1)− F1(1, s1,j)] + P1,L(1− F1(s1,L) + F1(s1,1)) ≤ Pav

0 < s1,j < s1,j+1 ∀j = 1, 2, . . . , L− 1

(2.28)

Power allocation with quantized CSI when N ≥ 2

We begin by first illustrating the complexity in the structure of quantization regions

for N ≥ 2 through an example. Fig. 2.9 shows the quantization regions of a

suboptimal solution for N = 2 and L = 4 obtained by using iterative Lloyd’s

algorithm incorporating a simulation based randomized optimization method called

SPSA (simultaneous perturbation stochastic approximation [38]), where the first

step of the algorithm finds the optimal channel partitions for a given set of quantized

power values and the second step uses SPSA to find a locally optimal set of quantized

power values for these channel partitions using SPSA . These two steps are iterated

until a satisfactory convergence criterion is met. For more details on this algorithm

and SPSA as a stochastic optimization tool, see Section 2.4.2) where we provide this

SPSA based algorithm that has a superior performance compared to our quantized

power allocation algorithms, but at the cost of a high computational complexity.

We can see from Fig. 2.9 the irregularity in the way the regions can be formed

already for N = 2 and L = 4. In the general case with N (≥ 2) cluster network

with L-level power feedback, the optimal quantizer is unknown. Hence in order to

make the quantized power allocation problem for distortion outage minimization

analytically tractable, we impose a restriction on the ordering of the powers. This

restriction gives the quantization regions a certain structure which can be exploited

for analytical tractability, at the cost of a small performance loss.

Recall that the power codewords of a (N ,L) power codebook are given by P(N)
j =

[P1,j, . . . , PN,j]
T , j = 1, . . . , L. We assume the restriction in ordering of the power
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Figure 2.9: Quantization regions when N = 2, L = 4 using Lloyd’s algorithm with
SPSA.

codeword given as P(N)
1 ≻ . . . ≻ P(N)

L where ≻ denotes component-wise inequal-

ity. We first show, in a similar way to [37], that the optimal (deterministic) index

mapping that achieves the minimum outage probability for N ≥ 2 also has a circu-

lar structure. The component-wise inequality of the power codeword implies that

Λ1 > . . . > ΛL where Λj =
∑N

i=1 Pi,j, j = 1, . . . , L. Note also that distortion

and the outage probability are monotonically decreasing functions of Pi,j. We are

interested in finding an index mapping scheme that achieves the minimum outage

probability subject to a long-term average power constraint. We first consider the

set of channel gains which are not in outage with a non-zero probability measure:

S = {h : D(P(N)
1 ,h) ≤ Dmax}. The optimal index mapping strategy for a channel h

in this set is for the receiver to feed back an index i such thatD(P(N)
i ,h) ≤ Dmax and

D(P(N)
i+1 ,h) > Dmax. Denote by I the set of channel realizations that get assigned

to the index i. Now assume the contrary, that it is optimal to feed back some j 6= i

for h ∈ H ⊆ I where H has a non-zero probability measure. If j < i, construct

a new scheme that maps all elements of H to i instead. The newly constructed

scheme clearly uses less average power since Λi < Λj while the outage probability

remains the same. If j > i, we see that an outage also occurs for h ∈ H. Thus
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the corresponding outage has increased, which is a contradiction to the assump-

tion that j 6= i is optimal. Now consider the set of channels in outage, namely

{h : D(P(N)
1 ,h) > Dmax} with a non-zero probability measure. It is easy to see

that the optimal feedback index should be L since it is the one that results in the

smallest average power consumption while achieving the same outage probability,

since ΛL < Λj ∀j < L.

To illustrate the structure of the quantization regions under the above-mentioned

restriction on the quantized power values, we give an example of an N = 2 network

with R = log2 L-bit feedback in Fig. 2.10. Similar to the N = 1 case, we quantize

the channel space into L regions according to a circular quantization structure. The

regions are defined as R(N)
j = {h : D(P(N)

j ,h) ≤ Dmax∩D(P(N)
j+1,h) > Dmax} for j =

1, . . . , L−1 and R(N)
L = {h : D(P(N)

1 ,h) > Dmax∪D(P(N)
L ,h) ≤ Dmax}. Denote the

boundaries that divide the channel space into L regions as Bj(s
(N)
j ) for j = 1, . . . , L,

where s
(N)
j = {s1,j, . . . , sN,j} ∈ S(N,L). The circular quantizer structure implies that

there should only exist a single outage region given by R(N)
out = {h : D(h,P(N)

1 ) >

Dmax} ⊆ R(N)
L . It also implies that si,j = φi/Pi,j where φi = Ci(σ

i
C2)

2γth/(Ui −
Viγth). In order to ensure no outage exists outside the set R(N)

out defined above,

the distortion must be constant and equal to Dmax on all the boundaries between

any two quantized regions. This allows us to easily write down the expressions

that define the boundaries Bj(P(N)
j ) : Dmax = σ2

θ

(

1 +
∑N

i=1
Pi,jhiUi

Pi,jhiVi+Ci(σi
C2)

2

)−1

after

substituting Pi,j = Ciβ
2
i,j. We also call the boundaries as distortion curves for this

reason.

With this quantizer structure, we are interested in minimizing the distortion

outage probability subject to a long-term average power constraint in the vector

channel quantization space. Defined FN(s
(N)
j ) , Pr(h ≺ Bj) where the set {h ≺

Bj} , {h : D(h,P(N)
j ) > Dmax}. The quantized power allocation problem for

outage minimization for this quantizer structure for N -clusters and R-bit feedback
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Figure 2.10: Vector channel quantization regions formed by a series of distortion
curves for a 2-cluster network.

is given by

min FN (s
(N)
1 )

s.t.
L−1
∑

j=1

Λj

[

FN (s
(N)
j+1)− FN(s

(N)
j )

]

+ ΛL

[

1− FN(s
(N)
L ) + FN(s

(N)
1 )

]

≤ NPav

0 ≤ si,j ≤ si,j+1 ∀i, j.
(2.29)

where Λj =
∑N

i=1 Pi,j denotes the elementwise sum of the power codeword P(N)
j .

2.4.2 Solution and optimal power allocation scheme

Problem (2.29) is non-convex in general, but we can find a locally optimal solution

using the standard Lagrange multiplier based optimization technique and the asso-

ciated Karush-Kuhn-Tucker (KKT) necessary optimality conditions. Note that it

can be easily shown that the second constraint in (2.29) is satisfied with a strict

inequality. We therefore discard this constraint in what follows as it will not affect
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the result. The Lagrangian is given by

FN(s
(N)
1 )+µ

[

L−1
∑

j=1

Λj(FN (s
(N)
j+1)− FN (s

(N)
j )) + ΛL(1− FN (s

(N)
L ) + FN(s

(N)
1 ))−NPav

]

(2.30)

where µ is the Lagrange multiplier. For ease of viewing, we write the partial deriva-

tives of the cdf FN (s
(N)
j ) and the sum power function Λj with respect to any of

its variables in s
(N)
j or P(N)

j as ∂FN (s
(N)
j )/∂s

(N)
j , ∂Λj/∂s

(N)
j , ∂FN (P(N)

j )/∂P(N)
j and

∂Λj/∂P(N)
j

Single-cluster network (N = 1)

In this case, the cdf F1(s1,j) can be obtained by integrating (2.27) from 0 to s1,j. For

Nakagami-m fading, the cdf is given by the regularized lower incomplete Gamma

function defined as F1(s1,j) = γ(mλs1,j, m)/Γ(m) where γ(x,m) =
∫ x

0
tm−1e−tdt is

the incomplete Gamma function.

For Rayleigh fading channels the cdf has a simple closed form expression given

as F1(s1,j) = 1 − e−λs1,j and the KKT conditions (2.28) for m = 1 and P1,j > 0 are

given as

λe−λs1,i+1

s1,i
− e−λs1,i+1 − e−λs1,i+2

s21,i+1

− λe−λs1,i+1

s1,i+1

= 0, i = 1, . . . , L− 2,

λe−λs1,L

s1,L−1
− 1− e−λs1,1 + e−λs1,L

s21,L
− λe−λs1,L

s1,L
= 0 (2.31)

L−1
∑

i=1

e−λs1,i − e−λs1,i+1

s1,i
+

1− e−λs1,1 + e−λs1,L

s1,L
=
Pav

φ
.

Note that the last KKT condition relates to the long-term average power constraint

which must be met with equality as implied by the optimality condition. Problem

(2.31) then can be solved by fixed point iterative methods for solving nonlinear equa-

tions or any other suitable nonlinear equation solver. The corresponding equations

for Nakagami-m fading can be also solved similarly, we do not include them here to

avoid repetition.
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Multi-cluster network (N ≥ 2)

The KKT conditions of (2.29) for N ≥ 2 and Pi,j > 0 are given as

∂Λj

∂si,j

/

∂FN (s
(N)
j )

∂si,j
=

∂Λj

∂sk,j

/

∂FN (s
(N)
j )

∂sk,j
∀i, k ∈ {1, . . . , N}, ∀j = 1, . . . , L

L−1
∑

j=1

Λj(FN (s
(N)
j+1)− FN (s

(N)
j )) + ΛL(1− FN (s

(N)
L ) + FN(s

(N)
1 )) = NPav

0 ≺ s1 ≺ s2 ≺ . . . ≺ sL.

(2.32)

In general, computing the cdfs, namely FN (s
(N)
j ) for N > 1, involves evaluat-

ing multi-dimensional integrals as a function of the distortion curves and cannot be

expressed in closed forms. We can however approximate the distortion curve by a

straight line (or a hyperplane if N > 2) that passes through the same points as the

distortion curve does at the axes, shown as the straight line above the distortion

curve in Fig. 2.12. We call this approximation the outer-straight-line approxi-

mation and denote the ith plane as B̄i. We can also construct another straight

line/hyperplane that is parallel to B̄i and is tangent to Bi, shown by the straight

line below the distortion curve in Fig. 2.12. We call this the inner-straight-line

approximation and denote the ith plane as Bi. Simulation results show that these

two approximations give very comparable outage performances, hence the rest of

the chapter will be based on the outer-straight-line approximation (referred in this

chapter simply as the straight-line approximation (SLA)). A visual illustration com-

paring the actual outage region and the SLA approximation for N = 3 is shown

in Fig. 2.11. However it is difficult to illustrate what the regions would look like

for N > 3. The approximated cdf function obtained by SLA is now defined as

F̄N(sj) , Pr(h ≺ B̄j). In the literatures, a number of different expressions of the

same cdf function exist for Nakagami-m fading. In [39, 40] the cdf is expressed in

the form of iterative equations. [41] provides an expression which approximates the

multivariate cdf by an equivalent scalar lower regularized incomplete Gamma func-

tion. In [42], the cdf is expressed in an integral form. In [43], the cdf is given in the
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Figure 2.11: Exact outage region and SLA approximation in ℜ3
+.

form of an ‘infinite-sum-series’ representation

F̄N (Pj,m) =

N
∏

i=1

(

mi

µ̃i

)mi

Γ

(

1 +
N
∑

i=1

mi

)

∞
∑

n1=0

· · ·
∞
∑

nN=0

[

N
∏

i=1

(mi)ni

(

−mi

µ̃i

)ni
1
ni!

]

(

1 +
N
∑

i=1

mi

)

nT

(2.33)

where (α)k = Γ(α+k)
Γ(α)

, nT =
N
∑

i=1

ni, µ̃i =
Pi,j

φiλi
and Pi,j > 0 ∀i, j. The partial derivative

of the cdf is given as

∂F̄N

∂Pi,j
=

1

φiλi











−mi

µ̃i,j
F̄N −

N
∏

k=1

(

mkγth
µ̃k,j

)mk ∞
∑

n1=0

· · ·
∞
∑

nN=0

ni

µ̃i

N
∏

k=1

[

(mk)nk

(

−mkγth
µ̃k

)nk
1
nk!

]

(

1 +
N
∑

k=1

mk

)

nT











(2.34)

The KKT conditions shown in (2.32) constitute a set of nonlinear equations,

where the number of equations grows exponentially as the number of feedback bits

increases. In this section we develop a number of suboptimal algorithms by combin-

ing some existing and some newly derived (by us) approximations for special cases of

high and low average power, respectively. For moderate to large number of feedback

bits we use an exiting approximation called equal average power per region (EPPR)
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Figure 2.12: Inner and outer straight-line approximations.

derived in [28, 31] using the Mean Value Theorem of real analysis. However, before

we can write down the problem formulation using this EPPR approximation, we

must deal with the issue of whether we should allocate power in the outage region

or not. Although it is counter-intuitive to envisage allocating power in the outage

region and indeed when full channel information is available, the optimal solution is

to not allocate any power in the outage region. This is not true however when quan-

tized channel information is available, as shown in [31, 36] and it is optimal to use

the smallest power from the power codebook in the outage region. With a nonzero

power in the outage region (NZPOR), the channel space is quantized into L regions

including L− 1 non-outage regions and the Lth region containing a non-outage re-

gion as well as an outage region due to the circular nature mentioned earlier. It may

be near-optimal however to allocate zero power in the outage region (ZPOR), in the

case of very low average power as also noted in [37]. In this case, there would be L

regions with L− 1 non-outage regions and the Lth region containing only the out-

age region. We observe through simulations that using the EPPR approximation,

ZPOR performs nearly optimally when the available average power is very low (the

actual threshold below which ZPOR performs near-optimally depends on N and R).

This algorithm with EPPR+ZPOR has the added advantage of low complexity of
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implementation, as will be evident below. We now provide the problem formulations

using EPPR approximation for NZPOR and ZPOR respectively given as

min F̄N(s1)

s.t. Λj(F̄N(s
(N)
j+1)− F̄N(s

(N)
j )) = NPav

L
, j = 1, . . . , L− 1

ΛL(1− F̄N (sL) + F̄N(s1)) =
NPav

L

0 ≺ s1 ≺ s2 ≺ . . . ≺ sL.

(2.35)

min F̄N(s1)

s.t. Λj(F̄N(s
(N)
j+1)− F̄N(s

(N)
j )) = NPav

L−1
, j = 1, . . . , L− 2

ΛL−1(1− F̄N (s
(N)
L−1)) =

NPav

L−1

0 ≺ s1 ≺ s2 ≺ . . . ≺ sL−1.

(2.36)

The following lemma shows that at high average power and using SLA, one can

further simplify the optimal power allocation scheme.

Lemma 2.4.1. Based on SLA, for Nakagami-m fading with m = [m1, . . . , mN ]
T

being the fading parameter of each channel, as Pav → ∞, it is asymptotically optimal

to transmit with Pi,j = mi

mk
Pk,j, i, k ∈ {1, . . . , N}, j = 1, . . . , L. If all the fading

parameters are identical, it is asymptotically optimal to transmit with equal transmit

power per CH for every quantization region, i.e., Pi,j = Pk,j ∀i, k ∈ {1, . . . , N},
j = 1, . . . , L.

This proof, as well as proofs of other lemmas and theorems, can be found in

the Appendix. Hence problem (2.35) and (2.36) can be further simplified at high

average power by letting all CHs transmit with equal power in the case where all

mi are identical. We will abbreviate equal power per CH as EPPC. Each boundary

can now be expressed as a function of a single scalar variable. For simplicity we

use P1,j as the variable. Since si,j = φi/P1,j, we can also express channel thresholds

belonging to the same boundary as a function of s1,j given as si,j = (φi/φ1) s1,j.

When all channels from the CHs to the Fusion centre are independent and identically
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distributed, using SLA, EPPR and EPPC, problem (2.35) becomes

min F̄N(s1,1)

s.t. Pj(F̄N (s1,j+1)− F̄N(s1,j)) =
Pav

L
, j = 1, . . . , L− 1

PL(1− F̄N (s1,L) + F̄N(s1,1)) =
Pav

L

0 < s1,1 < s1,2 < . . . < s1,L.

(2.37)

For low values of the long-term average power, we solve problem (2.36) by using the

nonlinear optimization toolbox ‘fmincon’ in MATLAB. and for large values long-term

average power, we solve problem (2.37) using simple binary search algorithm through

the constraint. The results are then combined and only the best are selected out of

the outage performance obtained from these two problems. Note that the constraint

on the component-wise ordering of the powers in problem (2.37) is automatically

satisfied due to EPPC and EPPR approximations. In problem (2.36), we can pre-

serve the power-ordering constraint by breaking down the problem into a series of

inter-related sub-problems where we first solve for sL−1, and then solve for sL−2 and

by following the same steps we can eventually solve for s1. Note that sL has all

its elements equal to positive infinity. The sub-problems are given as min F̄N (sL−1)

s.t. ΛL−1(1−F̄N (s
(N)
L−1)) =

NPav

L−1
and min F̄N (sj) s.t. Λj(F̄N (s

(N)
j+1)−F̄N (s

(N)
j )) = NPav

L−1
,

j = 1, . . . , L − 2. One can easily show that solving this series of sub-problems is

the same as solving problem (2.36) by verifying the KKT conditions. At each sub-

problem once sj+1 is obtained, we can solve for sj by making sure that sj ≺ sj+1,

j = 1, . . . , L− 2.

Power allocation for quantized CSI using a simultaneous perturbation

stochastic approximation (SPSA) algorithm

The vector channel quantization problem can be formulated as the classical vector

quantization problem with a modified distortion measure, and the solution can be

found by using the iterative Lloyd’s algorithm incorporating SPSA [44]. Since re-

sults obtained using this method do not use any approximations, they can provide

benchmarks for performance comparison. Lloyd’s algorithm with SPSA can find a
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locally optimal power codebook that minimizes the outage probability subject to a

long-term average power constraint. The Lloyd iteration for codebook improvement

involves two steps. In the first step, given the power codebook P(N,L) one finds the

optimal partition for the quantization cells using the nearest neighbor condition by

solving the following optimization problem

argmin
P(N)
j

Λj s.t. D
(

h,P(N)
j

)

≤ Dmax (2.38)

Problem (2.38) can be solved numerically using Monte Carlo simulation for a given

P(N,L). Its solution contains a set of L regions or cells R(N)
j , j = 1, . . . , L in the

vector channel space as well as the outage region R(N)
out ⊆ R(N)

L , where none of the

power vectors in the power codebook can achieve the distortion constraint.

In the second step we find the improved power codebook. This involves solving

the optimization problem

min E
[

1(D
(

h,P(N)
1

)

> Dmax)|h ∈ R(N)
out

]

× Pr(h ∈ R(N)
out )

s.t.
L
∑

j=1

(

ΛjPr(h ∈ R(N)
j )

)

≤ NPav

(2.39)

where 1(·) is the indicator function. Because we do not have an explicit outage

probability expression, we resort to using SPSA, a type of stochastic optimization

algorithm, to numerically search for the new power codebook [45]. SPSA randomly

chooses the search direction and iterates toward a locally optimal solution. Denote

P̃ = [P(N)
1

T
, · · · ,P(N)

L

T
]T as the NL by 1 column vector. Define a loss function

J(P̃) = Pr(h ∈ R(N)
out ) + λ̄

L
∑

j=1

(

ΛjPr(h ∈ R(N)
j )

)

where λ̄ is the Lagrangian multi-

plier. Since the loss function can be viewed as the objective function of an uncon-

strained optimization problem, we will have to obtain Pav numerically as a function

of λ̄. Once the new power codebook is found, we repeat step 1 and step 2 until the

stopping criterion is met. The 2-sided SPSA algorithm used in this chapter can be

summarized by the following steps [38]:

1. Initialization and Coefficient Selection: Set counter index k = 0. Use a random

initial power codebook P̃0 and set non-negative coefficients a, c, A, α and γ
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in the SPSA gain sequences as ak = a/(A + k + 1)α and ck = c/(k + 1)γ. For

additional guidelines on choosing these coefficients, see [38].

2. Generation of Simultaneous Perturbation: Generate a NM-dimensional ran-

dom perturbation column vector ∆k. Each component of ∆k are i.i.d Bernoulli

±1 distributed with probability of 0.5 for each ±1 outcome.

3. Loss Function Evaluations : Obtain two measurements of the loss function

based on the simultaneous perturbations around the current power codebook

P̃k : J(P̃k + ck∆k) and J(P̃k − ck∆k) with ck and ∆k are defined in Steps 1

and 2.

4. Gradient Approximation: Generate the simultaneous perturbation approxima-

tion to the unknown gradient given as ĝk(P̃k) =
J(P̃k+ck∆k)−L(P̃k−ck∆k)

2ck

[

∆−1
k,1,∆

−1
k,2, . . . ,∆

−1
k,NL

]T

where ∆k,i is the ith component of the ∆k vector.

5. Updating power codebook : Use the standard stochastic approximation form

P̃k+1 = P̃k − akĝk(P̃k).

6. Iteration or Termination: Return to Step 2 with k+1 replacing k. Terminate

the algorithm if there is little change in several successive iterations or the

maximum allowable number of iterations has been reached.

Remark 1. SPSA is computationally intensive and requires tuning λ̄ and all the

coefficients whenever network parameter changes, such as any changes in the average

power constraint or the number of feedback bits. Convergence can be slow and may

settle to different local minima depending on the initial points chosen. Hence in the

next section, we will only provide limited SPSA results (up to 4 bits of feedback) as a

performance benchmark for our various approximate distortion outage minimization

algorithms.
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2.4.3 Asymptotic behavior of outage probability and diver-

sity gain in quantized feedback

In this section we briefly present some results on the asymptotic behaviour of the

distortion outage probability as the available long-term average power Pav goes to

infinity. We also provide an approximation for the diversity gain (see definition

below) which essentially indicates how fast the outage probability decays with in-

creasing Pav. The asymptotic behavior of outage probability as Pav → ∞ is given

in the following Lemma.

Lemma 2.4.2. Suppose the fading channels between the clusterheads and the fusion

centre undergo independent Nakagami-m fading with the i-th clusterhead having a

fading parameter of mi. As Pav → ∞, the asymptotic distortion outage probability

achieved by the SLA based power allocation algorithm with quantized channel feedback

of R = log2 L bits is given by

lim
Pav→∞

Poutage ≈









N
∏

i=1

(λiφi)
mi

Γ(1 +Q)









QL−1+···+Q+1

×
(

LQ

NPav

)QL+···+Q2+Q

(2.40)

where Q =
∑N

i=1mi. Note that Poutage ≈ F̃N(s1,1) given by (6.22) in the Appendix.

The diversity gain d is defined as

d , − lim
Pav→∞

logPoutage

logPav

(2.41)

Theorem 2.4.1. Under the same conditions as in Lemma 2.4.2, the diversity gain

achieved by the SLA based power allocation algorithm with quantized channel feedback

of R = log2 L bits is given by d ≈ QL + · · ·+Q2 +Q, where Q =
∑N

i=1mi.

Remark 2. Note that there are a number of approximations (all of them analytically

justified) that are used to derive the above results as can be seen in their proofs in

the Appendix. We would like to remark here that it is because of this reason we

express the asymptotic expressions as approximate relationships. Whether or not

these limiting values hold exactly with equality is left open for future research.
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2.4.4 Simulation results

Our simulation results are based on the topology given in Fig. 2.13. The topology

for N = 1 (one cluster) is obtained by discarding all the clusters except the one on

the top left. For N = 2 we keep the top left and the bottom right clusters. For

N = 6 the topology is given as it is in Fig. 2.13. The sensors in each cluster are

placed in four equally-spaced concentric circles and the number of sensors in each

circle are 6, 12, 18 and 24 from the smallest to the biggest circle respectively. All

clusters have a radius of 40m. All sensors transmit with a power of qn/Mn = 1mW.

The cluster heads are located at the center of each cluster for simplicity. CHs are

100m apart from the next closest CH (for the 6-cluster network). The FC is located

500m away from the source. The channel noise variances are set to (σn
C1)

2 = 10−12

Watts and (σn
C2)

2 = 10−10 Watts ∀n. The source variance is set to σ2
θ = 1 Watt.

The maximum distortion threshold Dmax is set to 0.0043 (10% of the minimum

achieveable distortion of the 6-cluster network). Recall that there are no expressions

of the outage probability for N ≥ 2 in closed form, hence we obtain the outage

probability via Monte Carlo simulation over 1,000,000 channel realizations using

the locally optimum power allocation (for N = 1 and the SPSA algorithm) and

the strictly sub-optimal power allocation obtained via SLA and the various other

approximations such as EPPC and EPPR etc. For very low average power values,

the outage performance is obtained using the ZPOR algorithm.

We now present the simulation results for N = 1, 2, 6. In this section we give

simulation results based on three different Nakagami-m fading parameters, i.e., m =

0.5 (severe fading), m = 1 (Rayleigh fading) and m = 2 (less severe fading). We

assume that fading channels between CHs and FC have identical fading parameters

(mi = mk ∀i, k) since the transmission distances between CHs and FC are relatively

large compared with the inter-cluster distances.

The outage performance of the single cluster limited-feedback problem using

EPPR approximation with Nakagami fading parameter m = 0.5 is shown in Fig.

2.14. Although in the single cluster network we are only quantizing a scalar channel

space, its performance studies allow us obtain some fundamental but important
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Figure 2.13: Wireless sensor network topology.

insights into the results for quantizing the multi-dimensional vector channel space.

The outage performance using equal power allocation (EPA), allocating all CHs

with the same powers, and optimal power allocation scheme for full CSI using (2.20)

are also shown in the figure to provide performance benchmarks. Fig. 2.14 shows

a progression of performance improvement from EPA which has no knowledge of

CSIT, to partial CSIT with increase in feedback resolution from 1 bit to 6 bits,

to full CSI (complete knowledge of CSIT). At Poutage = 0.1, a 1-bit feedback can

achieve roughly half the power gain (in dB) than that of EPA relative to full-CSI.

With R = 6, the outage performance is already very close to full CSI.

Fig. 2.15 gives some indications of how good the approximation methods (SLA

and SLA+EPPR) are for N = 2, R = 1 and m = 0.5, 1, 2. The benchmark here is

the optimal outage performance obtained using an exhaustive search (ES) method.

The exhaustive search is used due to difficulties in obtaining the closed-form outage

expressions for N > 1. ES is carried out over 100,000 search points in ℜ2
+. Fig.

2.15 shows both SLA and SLA+EPPR are good approximations at least under

this topology setting as both give results that are closely matched to the optimal

outage performance. In the remaining simulation results we will only be using the
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Figure 2.14: Outage performance of a single-cluster network employing EPA,1,2,4
and 6 feedback bits and optimal full-CSI power allocation for m = 0.5.

combination of SLA and EPPR.

Fig. 2.16 and Fig. 2.17 show the outage performance obtained by SPSA algo-

rithm and EPA, SLA+EPPR and full CSI for N = 2 and R = 1, 2, 4 for m = 0.5

and 2 respectively. Comparing these two figures we find that larger average power

is required in Fig. 2.16 to achieve the same outage probability due to more severe

fading. We can also observe that as the number of CH increases from one to two,

less average power is required to achieve the same outage probability due to diver-

sity gain. For example, for m = 0.5, R = 4 and N = 2, the long-term average

power required to achieve an outage performance of 0.1 is -39dBW, 7.4dB less than

N = 1 with the same settings. Note also that the power gain gap between the 4-bit

feedback and the full CSI has widened. This gap will become more prominent in the

case N = 6. Also note that SPSA gives very similar results as to SLA+EPPR. The

coefficients used in SPSA algorithm are roughly set to c = 10−5, A = 80, α = 0.602,

γ = 0.101 and a = 10−6 · (A+ 1)α/(mean magnitude of ĝ0). In step 2 of the Lloyd’s

algorithm outlined in Section 2.4.2 the probabilities are calculated by Monte Carlo

simulation over 100,000 vector channel realizations.

The outage performance for N = 6, R = 1, 2, 4 obtained by using EPA, SLA,
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Figure 2.15: Comparison of the outage probability of a 2-cluster network 1-bit feed-
back. Figure shows optimal, SLA and SLA+EPPR for different Nakagami-m fading
parameters.
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Figure 2.16: Outage performance of 1, 2 and 4-bit feedback, full CSI and EPA of
the 2-cluster network for m = 0.5.
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Figure 2.17: Outage performance of 1, 2 and 4-bit feedback, full CSI and EPA of
the 2-cluster network for m = 2.

SPSA and full CSI for m = 0.5 and 1 are shown in Fig. 2.18 and Fig. 2.19

respectively. The parameters used in SPSA here are the same as for N = 2. Observe

again the effect of diversity gain with the increased number of clusters. The gap

between the 4-bit feedback and the full-CSI has widened. This may be due to the

fact that the feedback resolution per CH decreases as N increases with a fixed R.

Simulation results show that at Poutage = 0.1, having a 4-bit feedback can achieve

half the power gain (in dB) than that of EPA relative to full CSI.

The diversity gains are also shown in Fig. 2.17 and Fig. 2.18 as solid straight

lines just above the outage probability curves. From the definition of the diversity

gain, we can see that it is simply given by the gradient of the outage probability

as Pav → ∞. Note that the straight lines are inserted in these figures to provide

a visual description of the diversity gains by showing the gradients ; they do not

represent the actual outage performance. These straight lines indicate the constant

slopes at which the outage curves should decrease as Pav gets very large.
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Figure 2.18: Outage performance of 1, 2 and 4-bit feedback, full CSI and EPA of
the 6-cluster network for m = 0.5.
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Figure 2.19: Outage performance of 1, 2 and 4-bit feedback, full CSI and EPA of
the 6-cluster network for m = 2.
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2.5 Conclusions

In this chapter we propose outage-minimizing power allocation algorithms for a clus-

tered wireless sensor network using orthogonal multi-access protocol based on (1)

having complete knowledge of the instantaneous CSI and (2) having partial CSIT.

The sensors within a cluster observe a single Gaussian source and transmit their sig-

nals (corrupted by measurement noise) to the pre-elected clusterhead using analog-

forwarding via a coherent multi-access channel (assuming distributed beamforming).

The clusterheads then transmit the combined signals using amplify-forwarding via

orthogonal multi-access channels with fading to the FC which computes an estimate

of the source from all the signals it receives. The distortion (which is a function of

the random channels between the CHs and the FC) is required to be less than a

certain maximum threshold and can violate this condition only with a certain small

probability, called the distortion outage probability.

Based on assumption (1), we have derived the optimal power allocation that

minimizes the distortion outage probability subject to a long-term average power

constraint for any arbitrary fading distributions. The optimal power allocation states

that if the channel condition is above some threshold then the CHs should transmit

with the solution of minimizing total power subject to a distortion constraint, or else

none should transmit to save power. Simulation results show that when Rayleigh

fading is considered, this power allocation scheme offers significant power gain over

equal power allocation (where all cluster heads transmit with equal power) and some

power allocation schemes based on the channel statistics.

Assumption (2) considers a more practical situation where the transmitters (CHs)

have limited knowledge of the channel state information. We assume that there is a

pre-computed power codebook which is available to both the CHs and the FC. Based

on the channel state information, the FC finds the index of the corresponding power

codebook and broadcast this index (in terms of fixed number of bits) to all the CHs

which then transmit with the power specified by the power codebook. We investigate

the power codebook that minimizes the outage probability subject to a long-term

average power constraint in Nakagami-m fading channels. Essentially this involves
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finding the quantization regions in the multi-dimensional channel state space and

the corresponding CH transmission powers in the regions that would minimize the

outage probability. We propose a number of low-complexity outage minimization

algorithms with various levels of useful approximations. An extensive set of numer-

ical results are presented to demonstrate the performance of these algorithms for

different fading conditions (including Rayleigh fading) in Nakagami-m fading. An

approximate expression of the diversity gain is also obtained in terms of the number

of feedback bits and the Nakagami-m fading parameters for large power. Simulation

results show that the diversity gain matched well against Monte-Carlo simulation

results.

Future work includes finding better approximations or bounds to solve for the

optimal power allocation that further improves the outage performance of the limited

feedback case. Extending the work to other fading distributions should also be

investigated.
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Chapter 3

Power allocation in coherent MAC with full CSI

and diversity order analysis

Wireless sensor networks have recently attracted research interests and practical im-

plementations in many areas of human life due to the numerous applications WSNs

can achieve such as in environmental monitoring, tracking in defense technology,

monitoring chemical levels in factories, and health monitoring, just to name a few.

WSNs normally consist of a large number of sensor nodes dispersed over some area

to take measurements. The sensor nodes are battery operated devices that have

sensing, computation and communication capabilities [5]. The sensors may be con-

figured into various ad-hoc network structures depending on the protocol and the

application being considered [7]. Examples of these such as forming clusters and

electing cluster heads [18], cooperative transmission and cooperative diversity (relay

nodes used to forward signals) [13–16,19] and multiple sensor transmission to achieve

distributed beam-forming as in MIMO systems [5] show the flexibility of the WSNs

and how various wireless communication technologies can be applied in WSNs.

One important issue in WSNs is the utilization of battery energy, since sensors

rely on batteries to stay alive, and replacing batteries is considered expensive. Many

works in the literature have considered energy-efficient protocols [46–50], power allo-

cation schemes and cross-layer optimization [5, 11, 19] to optimize the use of energy

in WSNs under various different network assumptions and protocols. In distributed

estimation sensors independently collect data of some physical phenomenon and

transmit their measurements to a central processing unit (a.k.a. the fusion center)

where it tries to reconstruct the physical quantity from the sensor measurements.

Recently [20] showed that in a Gaussian sensor network it is asymptotically optimal

to transmit using uncoded analog forwarding of measurements by multiple sensors

59



60

as opposed to separate source channel coding. Later in [51] it was shown that in

a Gaussian sensor network it is exactly optimal to transmit using uncoded analog

forwarding of measurements by multiple sensors. Many works have since studied

the power-allocation problems in multi-sensor estimation under the framework of

analog-forwarding transmission.

In [21] the authors obtained the optimal power allocation of an inhomogeneous

Gaussian wireless sensor network using analog amplify-and-forward through coher-

ent MAC subject to a distortion constraint (a performance metric given by the

variance of the reconstructed source). In the case of amplify-and-forward through

orthogonal MAC, [22] solved the problem of minimizing power under distortion

constraint and minimizing distortion under power constraint. The study of power

allocation in distributed estimation for a vector source is given in [23] for coher-

ent MAC and [52] for orthogonal MAC, which also studied power allocation with

correlation in sensor data. Power allocation considering correlated sensor noise is

studied in [24]. When fading channels are considered, distortion becomes a random

variable as a function of the channel gains and it is not always possible to satisfy

the distortion constraint. In such cases an estimation outage or distortion outage

occurs [22]. This leads to the notion of distortion outage probability, which is de-

fined as the probability that the distortion exceeds a given threshold Dmax. The

authors in [53] obtained the optimal power allocation that minimizes the distortion

outage probability subject to a long-term average power constraint in a clustered

WSN using amplify-and-forward orthogonal multi-access protocol.

The estimation diversity achieved by wireless sensor networks was first studied

in [22] for equal power allocation in orthogonal multi-access channels with Rayleigh

fading. They showed that such a network can achieve an estimation diversity on the

order of the number of sensors in the network. In [54] it is shown that the diver-

sity gain is unchanged in the presence of channel estimation error when compared

against the perfect channel case. The study of outage scaling laws and diversity for

distributed estimation over orthogonal multi-access channels is given in [55] for a

large class of fading distributions. With a fixed power per sensor, the authors in [55]

showed that the outage probability decays faster than exponentially in the number
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of sensors and slower than exp (−K logK), where K is the number of sensors.

In the previous chapter we studied outage-minimizing power allocation schemes

for orthogonal MAC. In this chapter we will look at a WSN where multiple sen-

sors take noisy measurements of a single i.i.d. Gaussian source and transmit, us-

ing amplify-and-forward, their noisy measurements to the fusion center through

Rayleigh-faded channels with channel noise modeled by AWGN. We assume that

the sensors transmit coherently to the FC so that the signals add up in phase at

the FC [20]. Under this setting we consider three power allocation schemes - equal

power allocation, short-term optimal power allocation (minimizing distortion) and

long-term optimal power allocation (minimizing distortion outage probability) - and

give theoretical analysis on the diversity order of distortion outage using these power

allocation schemes. We show that the diversity order achieved by the equal power

allocation and the short-term power allocation is N logN , where N is the number

of sensors. In the long-term optimal power allocation we show that we can drive the

outage probability to zero using finite total power for N > 1. Using a lower bound

on the total instantaneous power, we obtain an approximation for the minimum

number of sensors in which the outage probability is driven to zero in the long-term

optimal power allocation, for a given power constraint.

This chapter is organized as follows. In Section 3.1 we give the network model.

We define and state the three different power allocations in Section 3.2, based on

which we perform theoretical analysis to find their diversity orders of distortion out-

age in Section 3.3. Simulation results are given in Section 3.4, followed by concluding

remarks in Section 3.5.

In this chapter, symbols in bold indicate that they are column vectors, e.g.,

x = [x1, . . . , xN ]
T , where T denotes vector transposition. The arithmetic mean of

a vector x of length N is denoted by 〈x〉 ,
∑N

i=1 xi/N . Given a random variable

X , its p.d.f. and c.d.f. are denoted as fX(x) and FX(x) respectively, while E[X ]

denotes its expectation.
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Figure 3.1: Schematic diagram of the wireless sensor network using coherent MAC
scheme.

3.1 Network model

A schematic diagram of the wireless sensor network model is shown in Fig. 3.1. We

assume that there are N sensors in the network and the sensors observe a single

point Gaussian source, denoted by θ[k], which has zero mean and variance σ2
θ , and

is i.i.d. in time (k denotes the discrete time index). The measurements of the ith

sensor at time k are given as

xi[k] = θ[k] + wi[k]

where wi is Gaussian with zero mean and variance σ2
i and denotes the sensor mea-

surement noise. The sensors amplify and forward their signals to the fusion center

via a coherent MAC channel [20] with a gain of βi[k]. The transmitted signal is

given as

yi[k] = βi[k]xi[k].

We assume that the instantaneous channel gains, denoted as
√

hi[k], are time-

varying random quantities that are i.i.d. over time (as in the block fading model).

The channel noise is i.i.d. AWGN denoted as nc[k], with zero mean and variance

σ2
c . We assume that full CSI (channel state information including gain and phase)
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is available at both the transmitters and the receiver. This implies that the FC is

aware of all the values of hi[k] and the corresponding phase information while the

i-th sensor has information of the gain and phase of its own channel to the FC, ∀i, k.
Note that CSI at the receiver can be easily obtained by the use of pilot tone training

from the transmitters, while CSI at the transmitter requires the FC to adopt some

feedback mechanism to send the CSI back to the transmitters. We assume that

this feedback mechanism is error-free, delay-less and has infinite bandwidth. Since

the sensor transmitters are assumed have their channel phase information, they can

individually cancel this phase at the transmitter and hence the signal received by

the FC is given by1

z[k] =

N
∑

i=1

√

hi[k]βi[k]θ[k] +

N
∑

i=1

√

hi[k]βi[k]wi[k] + nc[k]. (3.1)

Remark 3. Note that in this chapter we are not claiming that such perfect synchro-

nization at the sensor transmitters or in other words, distributed transmit beam-

forming is a realistic assumption. However our goal in this chapter is to derive the

diversity order of distortion outage probability under this idealistic assumption. An

analysis involving the case where the signals add up noncoherently at the FC will

be interesting and is left for future work.

We define the transmission power of the ith sensor as Pi[k] , E [y2i [k]], and

obtain

Pi[k] = Ciβ
2
i [k],

where Ci = σ2
θ + σ2

i .

It is well known that the optimal estimator for θ is the linear MMSE estimator

[56], given as θ̂ = E[θz]
E[z2]

z. The mean squared error or distortion Dk of this estimator,

1The coherent sum (3.1) requires distributed transmit beamforming [34] that may be difficult
to achieve for large sensor networks. This model however is commonly studied, e.g. in works such
as [20, 23, 51].
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is given as

Dk =





1

σ2
θ

+





N
∑

i=1

√

hi[k]Pi[k]

Ci





2
(

N
∑

i=1

hi[k]Pi[k]σ
2
i

Ci
+ σ2

c

)−1




−1

. (3.2)

Note that (3.2) gives the expression of the instantaneous distortion, i.e., it is a

function of the channel realizations hi, ∀i, k. Due to the randomness of the fading

channels, the instantaneous distortion at the FC changes randomly over time. Such

estimation networks usually impose a distortion threshold at the FC to guarantee

acceptable estimation, and if the instantaneous distortion Dk exceeds the distortion

threshold Dmax, a distortion outage event occurs. We define the distortion outage

probability, or simply outage probability, as the probability that the distortion exceeds

the maximum distortion threshold, expressed as Poutage , Pr(Dk > Dmax).

We would like to minimize the distortion outage probability by the use of power

control or power allocation, by adapting the transmission power of the sensors Pi[k].

Under full CSI, Pi[k](h[k]) will be assumed to be a function of the channel gains.

Remark : Due to the i.i.d. (in time) nature of the network model, we will drop

the time index k from the rest of the chapter.

3.2 Full-CSI power control schemes

In the following subsections we introduce three different power control schemes for

our proposed wireless sensor network model. We will give results on the diversity

order of distortion outage achieved by these three schemes in Section 3.3.

Remark : In this chapter we assume that the power allocations are limited by a

total power Ptot that is fixed as the number of sensors N varies, similar to the “total

power constraint” of e.g. [57]. Analysis can also be carried out for the case where

the total power Ptot scales linearly with the number of sensors N , but are omitted

to avoid repetition.
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3.2.1 Equal power allocation

A very simple power allocation scheme is to have all the sensors transmit with the

same power. Given a fixed total power constraint Ptot, the individual sensor power

is then given as Pi = Ptot/N , ∀i.

3.2.2 Short-term optimal power allocation

Since the transmitters have CSI, we can formulate a power control scheme that

minimizes the distortion while satisfying a total power constraint in every trans-

mission. We will call this power allocation the short-term optimal power allocation

(ST-OPA). ST-OPA can be obtained by solving the following optimization problem

min D(P(h),h)

s.t.
∑N

i=1 Pi(h) ≤ Ptot, Pi(h) ≥ 0 ∀i.
(3.3)

Problem (3.3) has been solved in [23]. The short-term optimal power allocation of

the ith sensor is given by

P ∗
i (h) = Ptotci(hi)

(

N
∑

j=1

cj(hj)

)−1

∀i (3.4)

where ci(hi) = Cihi/ (Ci + Ptothiσ
2
i /σ

2
c )

2
. From (3.4) we see that the optimal power

of the ith sensor is computed by multiplying Ptot by a ratio that is bounded between

zero and one, i.e., we divide up Ptot amongst the sensors by using this ratio. Also

note that in coherent MAC the sensors will always transmit with non-zero powers,

unlike in the case of orthogonal channels where some sensors may turn off and do

not transmit [22].

3.2.3 Long-term optimal power allocation

We now consider imposing a long-term total power constraint to the wireless sensor

network, where the total power usage is averaged over time. Since the problem

now deals with an extra dimension in time, an appropriate performance measure
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is the distortion outage probability introduced in Section 3.1. We are interested in

finding the optimal power allocation that minimizes the outage probability subject

to a long-term total power constraint. We call this power allocation scheme the

long-term optimal power allocation (LT-OPA). The problem is given as

min Pr (D (P(h),h) > Dmax)

s.t. E
[

∑N
i=1 Pi(h)

]

≤ Ptot, Pi(h) ≥ 0 ∀i.
(3.5)

Problem (3.5) can be solved in a similar way to [27]. First consider the following

minimization problem given as

min 〈P (h)〉
s.t. D(P(h),h) ≤ Dmax, Pi(h) ≥ 0 ∀i.

(3.6)

We have the following lemma:

Lemma 3.2.1. With the knowledge of h, the solution of problem (3.6) is given as

P ∗
i (h) = Ptot(h)ci(hi)

(

N
∑

j=1

cj(hj)

)−1

, i = 1, . . . , N (3.7)

where ci(hi) = Cihi/ (Ci + Ptot(h)hiσ
2
i /σ

2
c )

2
and Ptot(h) is the solution of

γth =
N
∑

i=1

hi
(

σ2
cCi

Ptot(h)
+ σ2

i hi

) (3.8)

where γth = 1/Dmax − 1/σ2
θ .

The proof of this lemma can be found in [23] and is hence omitted. One also

has the following Lemma which is necessary to find the optimal solution of problem

(3.5):

Lemma 3.2.2. The long-term optimal power P∗(h) = [P ∗
1 (h), . . . , P

∗
N(h)]

T as given

in (3.7), is a continuous function of h. Furthermore, 〈P∗(h)〉 is a non-increasing

function of hi for i = 1, . . . , N .

Proof. See Appendix.
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Before we give the solution to problem (3.5), we will also need the follow-

ing definitions and notations, similar to those in [27]. We first define the re-

gions RT (t) =
{

h :
∑N

i=1 Pi(h) < t
}

, RT (t) =
{

h :
∑N

i=1 Pi(h) ≤ t
}

and BT (t) =
{

h :
∑N

i=1 Pi(h) = t
}

. We then define two power sum quantities as

PT (t) =

∫

RT (t)

N
∑

i=1

Pi(h)dF (h) (3.9)

P T (t) =

∫

R̄T (t)

N
∑

i=1

Pi(h)dF (h) (3.10)

where F (h) denotes the joint c.d.f. of h. Finally, the power sum threshold t∗ and

the weight u∗ are given as t∗ = sup {t : PT (t) < Ptot} and u∗ = Ptot−PT (t∗)
P̄T (t∗)−PT (t∗)

.

With the above lemma and definitions we can now present the solution to problem

(3.5).

Theorem 3.2.1. The solution of problem (3.5) is given as

P̂(h) =







P∗(h), if h ∈ RT (t
∗)

0, if h 6∈ RT (t
∗)

(3.11)

while if h ∈ BT (t
∗), P̂(h) = P∗(h) with probability u∗ and P̂(h) = 0 with probability

1− u∗, where P∗(h) is given in (3.7).

The proof follows using similar techniques as in [27] and is hence excluded.

The long-term optimal power allocation scheme that minimizes the outage prob-

ability subject to a long-term total power constraint says that if the vector of channel

gains falls inside the region defined by RT (t
∗), where t∗ is a quantity that is asso-

ciated with Ptot, then the sensors should transmit with powers given by (3.7) and

achieve a distortion of exactly Dmax. Otherwise, none should transmit to save power,

and this is where outage occurs.

We can also obtain another condition that determines whether the sensors trans-

mit or not (hence the condition for an outage event to occur). Note that in order to

compute the optimal powers P ∗
i (h), we first need to compute Ptot(h). From Ptot(h)

and the definition of t∗, the outage event only occurs if Ptot(h) > t∗. Hence in every
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transmission, the fusion center simply computes the quantity Ptot(h) and compares

it against t∗. If Ptot(h) > t∗, then all sensors should be turned off to save power.

Otherwise, the sensors should transmit with power given by (3.7). The value of t∗

would depend on the value of Ptot and it can be predetermined numerically in off-line

mode via Monte-Carlo simulation. A closed-form expression of a lower bound on t

is given in Section 3.3.3 which allows one to quickly compute a lower bound of t∗

given Ptot.

3.3 Diversity orders of estimation outage

We are interested in seeing how the outage probability decays as the number of

sensors increases. In this section we will obtain for large N asymptotic closed-

form expressions of logPoutage, for the different power allocation schemes given in

Section 3.2. Such expressions characterize the diversity order of distortion outage

introduced in [22], who showed that the outage probability decays exponentially

with the number of sensors for N i.i.d. orthogonal MAC. For analytical tractability,

in the following theoretical analysis, we will only consider a homogeneous wireless

sensor network where all the measurement noise and fading distributions are i.i.d.

As a consequence, we will denote σ2
i = σ2 and Ci = C = σ2

θ + σ2, ∀i.
Notation: For two functions f(·) and g(·), we will use the standard asymptotic

notation (see for example [58]) and say that f ∼ g as t→ t0, if
f(t)
g(t)

→ 1 as t→ t0.

3.3.1 Equal power allocation

Substituting Pi = Ptot/N into (3.2), after some algebraic manipulation we obtain

D

σ2
θ

=

∑N
i=1 hi

N
+ σ2

c

σ2Ptot
∑N

i=1 hi

N
+ σ2

cC
σ2Ptot

+
σ2
θN

σ2

(
∑N

i=1

√
hi

N

)2 . (3.12)

Inspecting the RHS of (3.12), we note that 1
N

∑N
i=1 hi and

1
N

∑N
i=1

√
hi converge to

E[h] and E[
√
h] respectively by the strong law of large numbers as N gets large.

However we find that var
(

1
N

∑N
i=1 hi

)

= 1
N
var[h] and var

(

σ2
θN

σ2

(
∑N

i=1

√
hi

N

)2
)

≈
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4σ4
θN

σ4 (E[
√
h])2var[

√
h] (obtained using the Delta method [59]). We see that the

variance of 1
N

∑N
i=1 hi decreases like 1/N , whereas the approximate variance of

σ2
θN

σ2

(
∑N

i=1

√
hi

N

)2

increases with N . We therefore choose to replace 1
N

∑N
i=1 hi by

its mean E[h], and retain
σ2
θN

σ2

(

1
N

∑N
i=1

√
hi

)2

for large N . This gives us the follow-

ing result where the distortion converges (for large N) almost surely to a random

variable expressed as:

D
a.s.→ σ2

θη



η +
σ2
θN

σ2

(

∑N
i=1

√
hi

N

)2




−1

(3.13)

where η = E[h] + σ2
cC

σ2Ptot
.

The asymptotic distortion outage probability for large N can therefore be found

as

Poutage =Pr (D > Dmax) (3.14)

→Pr

(

1

N

N
∑

i=1

√

hi <

√

ησ2 (σ2
θ −Dmax)

Dmaxσ
2
θN

)

(substitute (3.13) and re-arrange)

(3.15)

=Pr

(

1

N

N
∑

i=1

√

hi <
a√
N

)

(3.16)

where a =

√

ησ2(σ2
θ−Dmax)

Dmaxσ2
θ

.

By inspecting (3.16) we see that the asymptotic outage probability is expressed in

terms of the empirical mean of i.i.d. random variables
√
hi being less than a threshold

that is a function of N . This resembles a more general form of the typical large devi-

ation problem where the threshold is a constant. In Theorem 3.3.1 we will provide a

generalized version of Cramer’s Theorem which can be applied to (3.16). Before we

give the theorem we need the following definitions. The moment-generating function

of the random variable X is defined as MX(t) , E
[

etX
]

. The cumulant-generating

function of the random variable X is defined as ΛX(t) , logMX(t). The rate func-

tion of the random variable X is defined as IX(c) = sup
t

{ct− ΛX(t)}. We also define
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the following notations relating to the rate function as I+X(c) = sup
t>0

{ct− ΛX(t)} and

I−X(c) = sup
t<0

{ct− ΛX(t)}. Note here that I+X and I−X have the same value as IX ; these

two notations are introduced only to further restrict the domain of the supremum

without affecting the result of IX . Hence these notations may be used interchange-

ably depending on whether we have extra knowledge of the domain over which the

supremum is achieved.

Theorem 3.3.1. Let X1, X2, . . . be i.i.d. random variables with mean µX > 0, and

suppose that their moment generating function MX(t) = E
[

etX
]

is finite in some

neighborhood of the origin t = 0. Let Ỹn,i be the exponential change of distribution

of Yi = −Xi + µX defined as

dFỸn
(y) =

eτny

MY (τn)
dFY (y) (3.17)

Suppose that Pr
(

1
n

∑n
i=1 Ỹn,i > E

[

Ỹn,i

])

is bounded away from zero as n→ ∞. Let

an = a
np , p ≥ 0 and Pr(X < an) > 0, ∀n. Then IX(an) > 0 for sufficiently large n,

and

log Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

∼ −nIX (an) as n→ ∞. (3.18)

Proof. See Appendix.

In order to apply Theorem 3.3.1 to (3.16), we need to verify the assumption that

Pr
(

1
n

∑n
i=1 Ỹn,i > E

[

Ỹn,i

])

is bounded away from zero as n → ∞. The following

lemma verifies this condition in the case of Rayleigh fading.

Lemma 3.3.1. Let Yi = −
√
hi + E

[√
hi
]

, where
√
hi is Rayleigh distributed with

parameter κ (i.e. f√h(x) = x
κ2 e

−x2/2κ2
). Denote Ỹn,i as the exponential change of

distribution of Yi as defined in (3.17). Then

Pr

(

1

n

n
∑

i=1

Ỹn,i > E
[

Ỹn,i

]

)

→ 0.5 as n→ ∞ (3.19)

Proof. See Appendix.
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Applying Theorem 3.3.1 to (3.16) we have

logPoutage ∼ −NI−√
h

(

a√
N

)

as N → ∞ (3.20)

where

I−√
h

(

a√
N

)

= sup
θ<0

(

a√
N
θ − logM√

h(θ)

)

. (3.21)

Since
√
h is Rayleigh distributed with parameter κ, its moment generating func-

tion is available in closed form as

M√
h

(

−
√
2x

κ

)

= 1−
√
πxex

2

erfc (x) (3.22)

where we have used a substitution of variables θ = −
√
2x/κ.

We need to find the value of θ that attains the supremum in the rate function

I−√
h
(a/

√
N). This value of θ can be found by using the stationary condition (first

derivative) given as

dI−√
h

(

a/
√
N
)

dθ
= 0, θ < 0 (3.23)

⇒
√
N

a
= ψ(θ) (3.24)

where

ψ(θ) =
(

Λ′√
h
(θ)
)−1

=M√
h(θ)/M

′√
h
(θ). (3.25)

After substituting θ = −
√
2x/κ in (3.24) and some algebraic manipulation, it is

possible to obtain √
N

2
= ψ

(

−
√
2x

κ

)

(3.26)

where

ψ

(

−
√
2x

κ

)

=

√
2

κ

xM√
h

(

−
√
2x
κ

)

1−M√
h

(

−
√
2x
κ

)

− 2x2M√
h

(

−
√
2x
κ

) . (3.27)
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Note that ψ
(

−
√
2x
κ

)

is a continuous non-decreasing function of x since

dψ
(

−
√
2x
κ

)

dx
=

√
2

κ

Λ′′√
h

(

−
√
2x
κ

)

(

Λ′√
h

(

−
√
2x
κ

))2 ≥ 0 (3.28)

where the inequality is due to the cumulant generating function being a convex

function and hence its second derivative is non-negative. The continuity of ψ
(

−
√
2x
κ

)

can be seen from (3.25); since M√
h(θ) is a positive continuous strictly-increasing

convex function, this implies that M ′√
h
(θ) > 0, and the change of variables from θ

to x preserves the continuity of the function.

Hence from (3.26), large N corresponds to the case of large x. We now show

that ψ
(

−
√
2x/κ

)

in fact increases linearly in x for large x. We substitute the

asymptotic expansion of the complementary error function (for large x) given as

erfc(x) = e−x2

x
√
π

∑∞
n=0(−1)n (2n)!

n!(2x)2n
into the moment generating function (3.22) and

obtain

M√
h

(

−
√
2x

κ

)

=
1

2x2
− 3

4x4
+

15

8x6
+ · · · . (3.29)

We then substitute (3.29) into (3.26) to obtain the following

√
N

a
=

√
2

κ

x
(

1
2x2 − 3

4x4 +
15
8x6 + · · ·

)

1−
(

1
2x2 − 3

4x4 +
15
8x6 + · · ·

)

− 2x2
(

1
2x2 − 3

4x4 +
15
8x6 + · · ·

) (3.30)

=

√
2

κ

1
2x

− 3
4x3 +

15
8x5 + · · ·

1
x2 − 3

x4 + · · · ∼
√
2

κ

x

2
for large x (3.31)

Hence for large N ,

θ ∼ −2
√
N

a
. (3.32)

Substituting this asymptotic expression for θ back into the rate function gives

I√h

(

a√
N

)

∼− a√
N

2
√
N

a
− logM√

h

(

− 2

aN

)

= −2− logM√
h

(

− 2

aN

)

(3.33)

∼− 2− log

(

a2

2κ2N

)

(3.34)

=− 2− log

(

a2

2κ2

)

+ logN. (3.35)
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Hence from (3.20) the outage probability for large N satisfies

logPoutage ∼−NI√h

(

a√
N

)

(3.36)

∼−N

(

−2− log

(

a2

2κ2

)

+ logN

)

(3.37)

∼−N logN (3.38)

which shows that the diversity order of distortion outage in i.i.d. coherent MAC with

Rayleigh fading using EPA is N logN for large N . In [22], the authors obtained a

diversity order of N for i.i.d. orthogonal MAC with Rayleigh fading using EPA. We

thus see that the coherent MAC achieves a higher diversity order over the orthogonal

MAC case by a factor of logN for i.i.d. Rayleigh-faded channels.

Remark : Note that if the total power scales linearly with the number of sensors,

then a diversity order of N logN for orthogonal MAC can also be achieved [55]. In

contrast, here we showed that for coherent MAC a diversity order of N logN can

still be achieved when the total power is fixed.

3.3.2 Short-term optimal power allocation

We first give the expression of distortion using ST-OPA. Substituting (3.4) into (3.2)

gives

D =







1

σ2
θ

+

(

∑N
i=1

√

hiP ∗
i

)2

σ2
∑N

i=1 hiP
∗
i + σ2

CC







−1

=
σ2
θσ

2

σ2 + σ2
θ

∑N
i=1 Zi

(3.39)

where Zi = hi/ (hi + ρ) with ρ = Cσ2
c/Ptotσ

2, and the second equality follows after

some algebraic manipulation. The distortion outage probability can therefore be

written as

Poutage = Pr (D > Dmax) = Pr

(

1

N

N
∑

i=1

Zi < gN

)

(3.40)

where gN = g/N and g = σ2 (1/Dmax − 1/σ2
θ).

Denote Z as the random variable distributed according to the common distribu-

tion of Zi. We now apply Theorem 3.3.1 to (3.40). We have the following lemma

needed for verifying one of the assumptions in Theorem 3.3.1 (similar to lemma
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3.3.1).

Lemma 3.3.2. Let Yi = −Zi + E [Zi], where Zi = hi/ (hi + ρ), with hi being expo-

nentially distributed. Denote Ỹn,i as the exponential change of distribution of Yi as

defined in (3.17). Then

Pr

(

1

n

n
∑

i=1

Ỹn,i > E
[

Ỹn,i

]

)

→ 0.5 as n→ ∞ (3.41)

This lemma can be proved in a similar manner to Lemma 3.3.1 and is excluded

to avoid repetition.

Applying Theorem 3.3.1 to (3.40) we have

logPoutage ∼ −NI−Z (gN) as N → ∞ (3.42)

where I−Z (gN) = sup
θ<0

(gNθ − logMZ(θ)).

In order to obtain MZ(θ), we need the distribution of Z. The common distri-

bution of i.i.d. random variables Zi can be easily obtained since Zi =
(

1 + ρ
hi

)−1

,

where hi are i.i.d. exponentially distributed random variables with parameter λ.

Note that the domain of Zi is [0, 1). The c.d.f. and p.d.f. of Z are given by

FZ(z) = 1 − e−
λρ

1/z−1 and fZ(z) = λρ 1
(1−z)2

e−λρ z
1−z respectively. The mean of Z

is given as µZ = 1 − λρeλρE1(λρ), where E1(x) =
∫∞
x

e−t

t
dt is the exponential

integral. The moment generating function of Z is given as MZ(θ) = E
[

eθZ
]

=

λρ
∫ 1

0
1

(1−z)2
eθz−λρ z

1−z dz.

We need to find the value of θ that attains the supremum in the rate function

I−Z (gN). This value of θ can be found by using the stationary condition
dI−Z (gN )

dθ
= 0,

θ < 0. Taking the first derivative of the rate function gives

gN − M ′
Z(θ)

MZ(θ)
= 0 ⇒gN =

∫ 1

0
z

(1−z)2
eθz−λρ z

1−z dz
∫ 1

0
1

(1−z)2
eθz−λρ z

1−z dz
(3.43)

⇒gN =

∫ 1

0
zg(z, t)dz

∫ 1

0
g(z, t)dz

(3.44)

where t = −θ and g(z, t) = 1
(1−z)2

e−tz−λρ z
1−z .
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Note that as N increases, gN decreases to zero. Also note that g(z, t) > 0. Let

ϕ(θ) = M ′
Z(θ)/MZ(θ). Replacing θ by −t and taking the derivative of ϕ(−t) w.r.t.

t yields dϕ(−t)
dt

= −Λ′′
Z(−t) ≤ 0, where the inequality arises due to the cumulant

generating function being a convex function. Hence ϕ(−t) is a continuous non-

increasing function of t (the continuity of ϕ(−t) is evident by inspecting the RHS of

(3.44)). Hence large N corresponds to the case of large t in (3.44). Let x = 1/(1−z).
It can be easily shown that (3.44) can be written as

gN = 1−
∫∞
1

1
x
e

t
x
−cxdx

∫∞
1
e

t
x
−cxdx

(3.45)

where c = λρ.

Lemma 3.3.3.

gN ∼ 1

t
as t→ ∞. (3.46)

Proof. See Appendix.

Hence for large N , we have

θ ∼ − 1

gN
. (3.47)

Substituting this asymptotic expression for θ back into MZ(θ) gives

MZ(θ) = λρe−t+c

∫ ∞

1

e−tp(x)q(x)dx ∼ λρe−t+c e
t−c

t
∼ λρgN (3.48)

Substituting θ ∼ − 1
gN

and MZ(θ) ∼ λρgN back into the rate function gives

IZ(aN ) ∼ −gN
1

gN
− log

(

λρg

N

)

for large N (3.49)

= −1− log (λρg) + logN. (3.50)

Hence from (3.42) the outage probability for large N is asymptotically

logPoutage ∼ −NIZ(gN) (3.51)

∼ −N (−1 − log (λρg) + logN) (3.52)

∼ −N logN. (3.53)
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Hence the diversity order of distortion outage for i.i.d. coherent MAC with Rayleigh

fading using ST-OPA is N logN , which interestingly achieves the same diversity

order of distortion outage as EPA.

3.3.3 Long-term optimal power allocation

In this section we first show that it is possible to use LT-OPA in coherent MAC

to achieve zero distortion outage with a finite amount of power, if the number of

sensors N > 1. We will later show that this result implies that for a given power

constraint it is possible to achieve zero distortion outage with finite N , i.e., there

exists a finite number of sensors that will drive the distortion outage to zero. We

will obtain an approximate expression for finding such N .

We first analyze the power required to achieve zero outage. For N = 1, the sum

power expression in (3.8) can be re-arranged and expressed as Ptot(h) =
K1

h
where

K1 =
γthσ

2
cC

(1−σ2γth)
. The region RT (t) can be easily found directly from the definition as

RT (t) = {h : Ptot(h) < t} =
{

h : h > K1

t

}

. The average power sum, PT (t), becomes

PT (t) =

∫

RT (t)

Ptot(h)dF (h) =

∫ ∞

K1
t

K1

h
λe−λhdh = λK1

∫ ∞

λK1
t

e−u

u
du (3.54)

= λK1E1

(

λK1

t

)

(3.55)

where u = λh and E1(x) =
∫∞
x

e−t

t
dt is the exponential integral. To find the maxi-

mum total power that achieves zero-outage, we simply let t → ∞. This is because

the region RT (t) defines the set of channel realizations where the sensor does trans-

mit to meet the distortion constraint. Hence, the outage probability is also given by

Poutage = Pr(h 6∈ RT (t)). When we let t → ∞, we increase RT (t) to be the whole

channel space, implying that the outage region is reduced to null, and hence outage

probability is reduced to zero. However, as t → ∞, PT (t) → ∞, implying that we

need an infinite amount of power to achieve zero outage for N = 1.

For N > 1 it is difficult to obtain closed form expressions of the maximum

power required to achieve zero-distortion. Instead, we show that it is possible to

achieve zero-outage with finite power for N > 1. Suppose we have a sub-optimal
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power allocation scheme as follows. For every transmission, we select the sensor

with the best channel gain and use only that sensor to transmit with just enough

power to meet the distortion constraint. Denote the power as P̃ (hmax) where hmax =

max(h1, . . . , hN). P̃ (h) can be obtained from the distortion constraint and it is given

as P̃ (hmax) = γthσ
2
cC

(1−σ2γth)hmax
. We can see that power is proportional to the inverse

of the channel gain. This power allocation scheme is simply a channel inversion

scheme. The c.d.f. and p.d.f. of choosing the maximum channel gain out of a set of

i.i.d. exponential-distributed random variables {h1, . . . , hN} is given respectively as

Fhmax(t) =
(

1− λe−λt
)N

and fhmax(t) = Nλ
(

1− λe−λt
)N−1

e−λt. The transmission

power averaged over all possible values of the channel realization and over time is

then given as

E
[

P̃ (hmax)
]

=

∫ ∞

0

γthσ
2
cC

(1− σ2γth)h
·Nλ

(

1− λe−λh
)N−1

e−λhdh. (3.56)

The integral above is well-known to be finite for N > 1. Since this suboptimal

power allocation scheme can achieve zero-outage with finite power, the optimal power

allocation scheme will also achieve zero-outage with finite power.

We now proceed to find an approximation for the maximum number of sensors

Nmax that still has non-zero outage for a given Ptot for LT-OPA. Then Nmax+1 can be

regarded as the minimum number of sensors that achieves zero outage. To do this, we

first find a lower bound on the instantaneous power Ptot(h). We begin with the equa-

tion we need to solve to obtain Ptot(h), given as σ2γth =
∑N

i=1

(

σ2
cC

σ2Ptot(h)hi
+ 1
)−1

.

Let f(hi) =
(

σ2
cC

σ2Ptot(h)hi
+ 1
)−1

. It is straight forward to show that f is concave in

hi ∀i. Applying Jensen’s inequality we have

σ2γth =

∑N
i=1 f(hi)

N
≤ f

(

∑N
i=1 hi
N

)

⇒ σ2γth
N

≤ 1
σ2
cC

σ2Ptot(h)
1
N

∑N
i=1 hi

+ 1
(3.57)

⇒σ2γth
N

σ2
cC

σ2Ptot(h)
1
N

∑N
i=1 hi

≤ 1− σ2γth
N

(3.58)

⇒Ptot(h) ≥
KN

∑N
i=1 hi

(3.59)
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where KN = γthσ
2
cC/

(

1− σ2γth
N

)

.

Let P̆tot(h) = KN/
∑N

i=1 hi. Using the lower bound expression P̆tot(h), we obtain

the following modified definitions and expressions to the ones given in Section 3.3.3.

The definition of RT (t̆) becomes

R̆T (t̆) =
{

h : P̆tot(h) < t̆
}

=

{

h :

N
∑

i=1

hi >
KN

t̆

}

. (3.60)

The definition of PT (t̆) becomes

P̆T (t) =

∫

RT (t)

P̆tot(h)dF (h) = KT

∫

∑N
i=1 hi>

KN
t̆

1
∑N

i=1 hi
e−λ

∑N
i=1 hidh1 · · · dhN .

(3.61)

Note that hi is exponentially distributed with mean 1/λ. Let T =
∑N

i=1 hi. It is well

known that T is Gamma distributed with parameters k = N ,θ = 1
λ
. Hence P̆T (t)

becomes

P̆T (t) = KN

∫

∑N
i=1 hi>

KN
t̆

1
∑N

i=1 hi
e−λ

∑N
i=1 hidh1 · · · dhN = KN

1

Γ(k)θk

∫ ∞

KN
t̆

T k−2e−
T
θ dT

(3.62)

=
KN

Γ(N)λ−n

∫ ∞

KN
t̆

TN−2e−λTdT =
KNλ

N − 1
· Γ
(

N − 1, λKN/t̆
)

Γ(N − 1)
. (3.63)

The definition of t̆∗ becomes t̆∗ = sup
{

t̆ : P̆T (t̆) < Ptot

}

. We can solve for t̆∗ by

letting P̆T (t̆
∗) = Ptot and obtain

KNλ

N − 1
· Γ
(

N − 1, λKN/t̆
∗)

Γ(N − 1)
= Ptot. (3.64)

The outage event becomes P̆outage =
{

h : P̆tot(h) > t̆∗
}

=
{

h : 1
N

∑N
i=1 hi <

KN

Nt̆∗

}

.

If we let t̆∗ → ∞ in (3.64) for a given finite N then KN/t̆
∗ → 0, Γ(N−1,λKN/t̆∗)

Γ(N−1)
→ 1

and
KNλ

N − 1
= Ptot (3.65)

Equation (3.65) allows us to solve for N , and it gives an approximation N̆max to the

maximum number of sensors that has non-zero outage probability for a given Ptot.
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The solution of (3.65) can be found in closed-form and is given as

N̆max =









(1 + σ2γth)Ptot + γthσ
2
cCλ+

√

[(1 + σ2γth)Ptot + γthσ2
cCλ]

2 − 4P2
totγthσ

2

2Ptot









(3.66)

where ⌊x⌋ denotes the floor function of x.

3.4 Simulation results

The following results, if not computed directly from the equations, are obtained via

Monte Carlo simulation over 1,000,000 channel realizations. We first present the

diversity order of distortion outage for EPA. We simulated the case where Ptot =

10mW and plotted the results in Fig. 3.2. The lines plotted in plus signs shown

are plots of logPoutage obtained via Monte Carlo simulation, where log is the natural

log. The lines plotted in triangles are the exact values of −NI√h(a/
√
N) where the

values of I√h(a/
√
N) are obtained by solving (3.21) numerically. The squares are

plots of (3.37). The figure shows that as N gets large, the asymptotic expression

(3.37) converges to −NI√h(a/
√
N). Note that the asymptotic results I√h(a/

√
N)

and (3.37) only give us the slope of the outage probability when plotted on a log

scale; these two lines may not necessarily converge to logPoutage but their gradients

should coincide for large N , as can be seen in Fig. 3.2.

We now look at ST-OPA. Fig. 3.3 shows the log of the outage probability using

ST-OPA as a function of N in circles and −NIZ(gN) obtained numerically in squares

for Ptot = 10mW. It shows that −NIZ(gn) gives a similar gradient as logPoutage. In

Fig. 3.3 we also show the asymptotic expression of −NIZ(gN) plotted in plus signs.

We see that as N increases, the asymptotic expression gives very similar gradients

as −NIZ(gN).

With the long-term OPA, we first present the relation between t∗ and Ptot for a

fixed total power constraint shown in Fig. 3.4. The circles and squares are obtained

via Monte Carlo simulation. The solid lines on the graph are obtained by solving

(3.64) numerically. We see that the results match closely. Note that Ptot is a
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Figure 3.2: EPA with Ptot = 10mW. Squares: (3.37) against N . Triangles:
−NI√h(a/

√
N) against N . Plus signs: logPoutage from Monte Carlo simulation.

Simulation parameters: σ = 0.0014, a = 0.003, σ2
θ = 1, σ2

i = 10−3, σ2
c = 10−8,

Dmax = 0.1.
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Figure 3.3: ST-OPA with Ptot = 10mW. Plus signs: (3.52) against N . Squares:
−NIZ(g/N) against N . Circles: logPoutage against N . Simulation parameters:
λ = 250, 000, g = 0.09, σ2

θ = 1, σ2
i = 10−3, σ2

c = 10−8, Dmax = 0.1.
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Figure 3.4: Ptot versus t
∗. Circles and squares: from Monte Carlo simulation with

1,000,000 channel realizations. Solid lines: numerical solution of (3.64). Simulation
parameters: σ2

θ = 1, σ2 = 10−3, σ2
c = 10−8, Dmax = 0.1, λ = 250, 000.

monotonically increasing function of t∗ for any fixed N , and as t∗ gets large, the

value of Ptot saturates and approaches to some asymptotic value. The saturation

behavior is due to Γ(N−1,λζ)
Γ(N−1)

→ 1 as t → ∞ for fixed N , implying the existence of a

finite Ptot achieving zero outage.

An approximate relationship between Nmax and Ptot for LT-OPA has been ob-

tained in (3.66). To see how good the approximation is, we plot (3.66) together with

Nmax obtained via Monte Carlo simulation, where we compute E [〈Ptot(h)〉] for a

given N over 1,000,000 channel realizations. The results are shown in Fig. 3.5.

In Fig. 3.6 we compare the outage performance as a function of N for the three

different power allocation schemes considered in this chapter, using Ptot = 1, 600µW.

Note that for LT-OPA, due to the existence of Nmax, the outage probability for

N > Nmax is zero and hence we cannot show results for N > Nmax on the graph.

In this example, Nmax = 15. From this figure we can see that the gradients of EPA

and ST-OPA are similar for large N , while the outage probability curve for LT-OPA

approaches to a vertical asymptote located at Nmax.
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3.5 Conclusions

In this chapter we have derived theoretical results on the diversity order of distortion

outage in wireless sensor networks using different power allocation schemes. We

presented three power allocation schemes - EPA, ST-OPA and LT-OPA. We then

followed by presenting the theoretical results on the diversity order of distortion

outage achieved by each of the power allocation schemes under Rayleigh fading.

The equal power allocation asymptotically achieves a diversity order of N logN ,

which is larger than the diversity order achieved by EPA in orthogonal MAC [22] by

a factor of logN . We have also shown that ST-OPA (minimizing distortion subject

to a total power constraint) achieves the same diversity order of distortion outage

as EPA. This suggests that in the case of a large number of sensors, the spatial

diversity gain in EPA can overcome fading equally well as ST-OPA, which requires

knowing CSIT. In the analysis of diversity order in LT-OPA, we found that the

outage probability can be driven to zero with a finite amount of total power. We

also obtained a closed form approximation to the minimum number of sensors that

drives the outage probability to zero for a given total power constraint. Simulation

results show that this approximation gives very close results to the true value.

Future extension of this work may include non-i.i.d. fading channels or different

fading distributions. One may also extend this work to dynamical systems where

the source is a time-varying Gauss Markov random process.
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Chapter 4

Power allocation with correlated sensor data

4.1 Introduction

In the previous chapters we studied multiple-sensor estimation problems where the

sensors observe a single Gaussian source and that their observations are spatially

uncorrelated. However in many practical networks, especially for dense sensor net-

works, the sensor observations, although may differ slightly from one to another,

can be spatially-correlated. This motivates us to study the power allocation that

minimizes the distortion outage probability with correlated sensor data.

There are a number of existing works in the literature that considers correlation

in wireless sensor networks. In [60] the authors exploit the sensor data correlation

on the medium access control layer. They have developed a theoretical framework

for transmission regulation of sensor nodes under a distortion constraint. They

showed that a sensor node can act as a representative node for several other sensor

nodes observing the correlated data, and the proposed medium access control can

improve energy efficiency, packet drop rate and latency. The authors in [24] con-

sidered the case where the sensor noises are correlated and showed that the total

energy consumption required for transmission in a sensor network can be minimized

by considering jointly the number of quantization levels for each sensor and informa-

tion about correlation of sensor observations. A more recent work in [52] considered

optimal power allocation in linear estimation of correlated data in wireless sensor

network using analog modulation and orthogonal multi-access transmission protocol.

In this work the authors defined averaged distortion measure and solved optimiza-

tion problems of minimizing total power subject to average distortion constraint.

Problems involving correlation of data usually involve complex matrix algebra, and

85
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closed-form solutions for problems with a general covariance matrix can be difficult

to find. In [24, 52], they have both used a tridiagonal covariance matrix model for

simulation due to the simplicity in calculating the inverse of tridiagonal matrices.

Other practical models of the covariance matrix can be found in [60, 61].

In this chapter we consider the network model given in [52] which is summarized

as follows. We assume a wireless sensor network where the sensor observations are

jointly Gaussian, spatially correlated, and corrupted by i.i.d. AWGN. The sensors

amplify and forward their signals to the FC by over orthogonal multi-access channels

(e.g. FDMA). We assume block-fading channels and that the instantaneous CSI is

available at the sensors (transmitters) and the FC (receiver), and that the sensor

data correlation matrix is known and does not change in time. The distortion of

the estimate computed at the FC using an MMSE estimator is a random quantity

due to the random nature of the fading channels and hence may exceed the required

distortion threshold with non-zero probability. In this chapter we will apply the

techniques presented in Chapter 2 and find the optimal power allocation that mini-

mizes the distortion outage probability (the probability that the average distortion

exceeds a certain threshold) subject to a long-term average power constraint for the

case of spatially-correlated sensor data. Simulation results show significant power

savings can be achieved for highly-correlated sensor data.

The organization of this chapter is given as follows. In Section 4.2 we give

the wireless sensor network model and the problem formulation. In Section 4.3 we

present the power allocation schemes and solutions, followed by simulation results

in Section 4.4. We conclude this chapter by giving some concluding remarks and

discussions in Section 4.6.

4.2 Sensor network model and problem formula-

tion

A schematic diagram of the wireless sensor network studied in this chapter is shown

in Fig. 4.1. Assume that there are N sensors and each sensor observes a random
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Figure 4.1: Schematic diagram of a wireless sensor network for distributed estimation

Gaussian process that is i.i.d in time. We assume that the sources may be spatially

correlated, but the correlation pattern stays fixed in time. This model may be

thought of as a wireless sensor network monitoring over a static spatially-correlated

field.

Denote the realization of the ith source as θi and the respective measurement

noise as wi. The measurements of the sensors at discrete time k = 0, 1, 2, . . . are

given as

x[k] = θθθ[k] +w[k]

where

x[k] = [x1[k], . . . , xN [k]]
T (4.1)

θ[k] = [θ1[k], . . . , θN [k]]
T (4.2)

w[k] = [w1[k], . . . , wN [k]]
T , (4.3)

where T denotes transposition. We assume that the observation noise w[k] is in-

dependent white Gaussian noise with zero mean and covariance matrix Cw =

diag(σ2
1, . . . , σ

2
N). We assume that the source θθθ[k] is i.i.d Gaussian distributed ran-

dom process with zero mean and autocorrelation matrix Cθθθ = E
[

θθθθθθT
]

. Note here
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that since the source has zero mean, its autocorrelation matrix is identical to its

covariance matrix. We assume that the sensors use amplify-and-forward scheme

to transmit wirelessly their measurements to the fusion center through orthogonal

block-fading channels. We denote the ith sensor’s amplifier gain (voltage gain), the

channel gain (voltage gain) and the channel noise of the ith channel as βi[k],
√

hi[k]

and ni[k] respectively. Let n[k] = [n1[k], . . . , nN [k]]
T . We assume that the channel

noise n[k] is independent white Gaussian noise with zero mean and covariance ma-

trix Cn = diag(ξ21 , . . . , ξ
2
N). We assume that the instantaneous CSI is known at both

the transmitters (sensors) and the receiver (FC). The fusion center receives a vector

of signals given as (for brevity we discard the time index k)

z = Hθθθ + v (4.4)

where

z = [z1, . . . , zN ]
T (4.5)

H = diag
(

β1
√

h1, . . . , βN
√

hN

)

(4.6)

v =
[

β1
√

h1w1 + n1, . . . , βN
√

hNwN + nN

]T

. (4.7)

Here H is a deterministic matrix, θθθ is multivariate Gaussian with zero mean and

covariance Cθθθ and v is white Gaussian noise with known covariance matrix Cv =

diag (β2
1h1σ

2
1 + ξ21 , . . . , β

2
NhNσ

2
N + ξ2N). Since θθθ and v are Gaussian and mutually

uncorrelated, they are jointly Gaussian. Hence z and θθθ are also jointly Gaussian,

and we can therefore use MMSE estimator at the fusion center, which is the optimal

estimator in this case, and reconstruct an estimate of the source vector θ̂̂θ̂θ given as

θ̂̂θ̂θ = CθθθH
T
(

HCθθθH
T
)−1

z

where θ̂̂θ̂θ =
[

θ̂1, . . . , θ̂N

]T

. The estimation distortion is given by the error-covariance

matrix associated with θ̂̂θ̂θ given as

Dθ̂̂θ̂θ =
[

HTC−1
v
H+C−1

θθθ

]−1
(4.8)
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We define the average distortion measure D̄ as

D̄ =
1

N
E
[

(θθθ − θ̂̂θ̂θ)T (θθθ − θ̂̂θ̂θ)
]

=
1

N
tr
(

E
[

(θθθ − θ̂̂θ̂θ)(θθθ − θ̂̂θ̂θ)T
])

=
1

N
tr
(

Dθ̂̂θ̂θ

)

=
1

N
tr
(

HTC−1
v
H+C−1

θθθ

)−1

Due to the randomly-varying nature of the wireless channels, the reconstructed

sources at FC are also random quantities whose average distortion may be differ-

ent upon each reception of the signals transmitted by the sensors. One commonly

used performance metric is the distortion outage probability, which is defined as

the probability that the average distortion D̄ of the reconstructed source exceeds

a given threshold D̄max. Note that sensors only have limited average power and

the average distortion at the receiver may be very large when fading is severe in the

wireless channels. The outage probability hence is a function of the channel gain dis-

tributions. In the following we formulate two problems - minimizing the short-term

total transmit power subject to a distortion constraint and minimizing the distortion

outage probability subject to a long-term average transmit power constraint. We

assume that full CSI is available at both the sensors and FC, and we compute the

sensors’ transmit powers based on these instantaneous CSI.

4.2.1 Short-term power allocation

We would like to minimize the total transmit power of the sensors while satisfying

an average distortion constraint at FC. We call this problem the short-term power

allocation because we are primarily concerned with the sensor transmission powers

for a single time instance k. The channel gain h here is invariant over each block due

to block-fading. is We formulate this short-term power allocation as an optimization
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problem given as

min
N
∑

i=1

Pi

s.t. 1
N
tr
(

HTCv
−1H+C−1

θθθ

)−1 ≤ D̄max

Pi ≥ 0 ∀i

(4.9)

where Pi = W 2
i β

2
i and W 2

i = [Cθθθ]i,i + σ2
i . The notation [A]i,j denotes the ith row

and the jth column element of matrix A. Note that this power allocation needs to

be recomputed every time the sensors transmit their measurements to FC, since the

fading gains would have changed in the next transmission.

Problem (4.9) has been solved in [52]. Here we simply give the solution of problem

(4.9) in this chapter as it will be useful later. We first transform problem (4.9) into

a convex optimization problem [52] given as

min
N
∑

i=1

α2
i

hi

(

ri
1−riσ2

i

)

s.t. 1
N
tr
(

R+C−1
θθθ

)−1 ≤ D̄max

0 ≤ ri ≤ 1
σ2
i

∀i

(4.10)

where R = diag(r1, . . . , rN), ri =
Pihi

Pihiσ2
i +α2

i
and α2

i = W 2
i ξ

2
i . The solution can be

obtained by solving the KKT conditions given as

α2
i

hi

(

1

1− riσ
2
i

)2

− λ0
1

N

(

eeeTi
(

R+C−1
θθθ

)−2
eeei

)

− γi = 0

1

N
tr
(

R+C−1
θθθ

)−1
= D̄max

γiri = 0

γi ≥ 0

λ0 ≥ 0

(4.11)

where γi and λ0 are the Lagrangian multipliers, eeei is the N × 1 vector which has its

ith component equal to 1 and all of its other components equal to 0. For spatial

correlated sources (when Cθθθ is not a diagonal matrix), the solution does not have

a closed-form. Numerical methods may be used to solve for the unknowns. For
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spatially uncorrelated sources, we may obtain the optimal power P∗ = (P ∗
1 , . . . , P

∗
N)

as follows [52]. With out loss of generality, order the channel gain vector h such that

α1

[Cθθθ]1,1
√
h1

≤ α2

[Cθθθ]2,2
√
h2

≤ . . . ≤ αN

[Cθθθ]N,N

√
hN

(4.12)

The optimal power of the ith channel is given as

P ∗
i (h) =

Gi

ηi

[ √
ηi

ρ0(h, N1)
− 1

]+

(4.13)

where Gi = [Cθθθ]i,i /
(

[Cθθθ]i,i + σ2
i

)

, ηi = [Cθθθ]i,i hi/α
2
i , ρ0(h, N1) = B(N1)/A(h, N1),

B(N1) =
∑N1

j=1Gj + ND̄max −
∑N

i=1 [Cθθθ]i,i and A(h, N1) =
∑N1

j=1Gj/
√
ηj. [x]+

denotes max(0, x). N1 ∈ {1, . . . , N} can be obtained by solving f(N1) < 1 and

f(N1 + 1) ≥ 1, where f(i) = αiB(i)
√
N/ [Cθθθ]i,iA(h, i)

√
hi.

4.2.2 Minimizing distortion outage probability

We denote the distortion outage probability as Pr(D(P(h),h) > D̄max), where Pr(x)

denotes the probability that the event x occurs. We also define the long-term average

transmit power as the power averaged over the total number of the sensors N and

over time, denoted as E [〈P〉] where P = [P1, . . . , PN ]
T , 〈x〉 denotes the arithmetic

mean of the vector x of length M defined as (1/M)
∑M

i=1 xi and E[x] denotes the

expectation of x. The optimization problem that minimizes the distortion outage

probability subject to a long-term average power constraint is given as

min Pr
(

D(P(h),h) > D̄max

)

s.t. E [〈P〉] ≤ Pav

P � 0

(4.14)

where Pav is the long-term average power threshold and � denotes component-wise

inequality.
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4.3 Power allocation schemes and solutions

Problem (4.14) can be solved in the same way as in [27]. First consider the following

minimization problem given as

min 〈P(h)〉
s.t. D(P(h),h) ≤ D̄max

P(h) � 0

(4.15)

We have the following lemma:

Lemma 4.3.1. With the knowledge of h, the solutions of (4.15) for spatially un-

correlated sources and spatially correlated sources are given by (4.13) and (4.11)

respectively.

One can also obtain the following Lemma which is necessary to find the optimal

solution to problem (4.14).

Lemma 4.3.2. The optimal power, P∗(h) = [P ∗
1 (h), . . . , P

∗
N(h)]

T , is a continuous

function of h. Furthermore, 〈P∗(h)〉 is a non-increasing function of hi for n =

1, . . . , N . In fact, we can show that for all P ∗
n(h), n = 1, . . . , N , the following is

true:
∂ 〈P∗(h)〉
∂hn

= − 1

N

P ∗
n

hn
(4.16)

The proof of this lemma can be found in the appendix. We define two regions,

R(s) and R̄(s) and the boundary surface B(s) for some non-negative s as in [27]:

R(s) = {h ∈ R
N
+ : 〈P(h)〉 < s}

R(s) = {h ∈ R
N
+ : 〈P(h)〉 ≤ s}

B(s) = {h ∈ R
N
+ : 〈P(h)〉 = s}

(4.17)

We then define two average power sums as

P (s) =

∫

R(s)

〈P(h)〉dF (h)

P (s) =

∫

R(s)

〈P(h)〉dF (h)
(4.18)
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where F (h) denotes the c.d.f. of h. Finally, the power sum threshold s∗ and the

weight w∗ are given as

s∗ = sup{s : P (s) < Pav}

w∗ =
Pav − P (s∗)

P (s∗)− P (s∗)

(4.19)

With the above lemma and definitions we now present the solution to problem

(4.14). The proof follows using similar techniques as in [27] and hence excluded.

Theorem 4.3.1. The solution of problem (4.14) is given as

P̂(h) =







P∗(h), if h ∈ R(s∗)

0, if h 6∈ R(s∗)
(4.20)

while if h ∈ B(s∗), P̂(h) = P∗(h) with probability s∗ and P̂(h) = 0 with

probability 1−w∗. The optimal power allocation scheme that minimizes the outage

probability subject to a long-term average power constraint says that if the vector of

channel gains falls inside the region defined by R(s∗), where s∗ is a quantity that is

associated with Pav, then the sensors should transmit with power given by (4.11) or

(4.13) depending on whether the sources are spatially correlated. Otherwise, none

should transmit to save power.

4.4 Simulation results

We modeled two wireless sensor networks, one with 2 sensors and the other with

4 sensors (N = 2, 4). For both sensor networks, half of the sensors are placed at

a distance 500 meters from FC, and the other half 600 meters. The measurement

noises are i.i.d. Gaussian of zero mean and variance 10−3 for all sensors. The

AWGN channel noises are i.i.d. Gaussian of zero mean and variance 10−10 for all

channels. We assume the wireless channels are Rayleigh-faded. The signal power

gains are hence independently exponentially-distributed and we assume that the

mean channel gains are equal to inverse of the transmission distances squared. We

use a source correlation model taken from [52] where we define a single correlation
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coefficient, ρ, and the autocorrelation matrix Cθθθ is given as

[Cθθθ] = ρ|j−i|, ρ < 1 (4.21)

We set ρ = 0.3, 0.6 and 0.9.

The minimum achievable average distortion at FC can be obtained by setting

Pav → ∞. This in effect eliminates the uncertainties caused by the channel noise.

The minimum achievable average distortion does not become zero due to the exis-

tence of measurement noise. The minimum achievable average distortion D̄min is

given as

D̄min =
1

N
tr
(

σ2I+C−1
θθθ

)−1
(4.22)

where σ2 = 10−3 (measurement noise variance) and I is the identity matrix of size

N × N . Given the above parameters, D̄min ≈ 0.001. Based on this fact, we set

the average distortion constraint D̄max = 0.05. The following outage probability re-

sults are obtained using Monte Carlo simulation over 1,000,000 channel realizations.

Closed form solutions of (4.10) for general correlation matrices do not exist and we

use numerical tools in MATLAB in obtaining the optimal power allocations.

Fig. 4.2 shows the distortion outage probability against long-term average power

for different correlation coefficients. The top curve indicate the outage performance

achieved when the source data are uncorrelated. Not surprisingly, as the correlation

coefficient increases, less long-term average power is required to achieve the same

outage probability. Large power savings can be achieved when the correlation is

high e.g. ρ = 0.9, while performances of uncorrelated and ρ = 0.3, 0.6 have very

similar performance.

Fig. 4.3 shows the outage performance of 4 sensors measuring four correlated

sources. The improvement in the power savings can be easily seen even for some

correlation ρ = 0.3, 0.6, and a large power gain is obtained for ρ = 0.9. This is as a

result of exploiting the correlation between the sources.
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Figure 4.2: Outage performance of N = 2, D̄max = 0.05
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Figure 4.3: Outage performance of N = 4, D̄max = 0.05
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4.5 Analysis of asymptotic average distortion for

equal power allocation and some ideas for fu-

ture work

The difficulty in finding the closed-form expressions of the optimal power allocations

lies in the expression of the average distortion 1
N
tr
(

R+C−1
θθθ

)−1
. Here we provide

a rough idea for evaluating the approximate asymptotic average distortion for large

number of sensors transmitting with constant equal powers for correlation matrices

of the form given in 4.21. The inverse of the autocorrelation matrix is given as

C−1
θθθ =























a1 b 0 · · · 0

b a2 b
. . .

...

0 b
. . . b 0

...
. . . b aN−1 b

0 · · · 0 b aN























(4.23)

where

b =
−ρ

1− ρ2
, ai =







1
1−ρ2

, i = 1, N

1+ρ2

1−ρ2
, i = 2, . . . , N − 1

(4.24)

Note that in the diagonal elements of the above matrix only the first and the last

elements have different expressions from the rest of the elements in ai. For large N ,

we assume that the effect of a1 and aN is diminished by the large numbers of ai in

between where i = 2, . . . , N − 1 and we replace a1 and aN by 1+ρ2

1−ρ2
. This leads us to

study the quantity X = X1 +X2 where

X1 =























1+ρ2

1−ρ2
−ρ

1−ρ2
0 · · · 0

−ρ
1−ρ2

1+ρ2

1−ρ2
−ρ

1−ρ2
. . .

...

0 −ρ
1−ρ2

. . . −ρ
1−ρ2

0
...

. . . −ρ
1−ρ2

1+ρ2

1−ρ2
−ρ

1−ρ2

0 · · · 0 −ρ
1−ρ2

1+ρ2

1−ρ2























(4.25)
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and X2 = diag(r1, . . . , rN), where the ri’s are i.i.d.. Note that X1 is a tridiagonal

Toeplitz matrix. We are interested in

1

N
tr
(

X−1
)

(4.26)

for large N .

Consider the Stieltjes transform of X = X1 +X2,

GN
X(z) =

1

N
tr (−zIN +X)−1 (4.27)

where IN is the identity matrix of dimension N by N . Notice that

GN
X(0) =

1

N
tr (X)−1 (4.28)

is the quantity that we are intersected in.

Under certain asymptotic freeness assumptions [62,63], GX(z) = limN→∞GN
X(z)

can be determined from the asymptotic eigenvalue distributions of X1 and X2. More

specifically, we can determine GX(0) as follows. From equations (23)-(24) of [64],

GX(0) can be found by solving the following set of simultaneous equations in the

variables {GX(0), ρ1, ρ2}

GX(0) =
1

1/ρ1 + 1/ρ2
(4.29)

GX(0) = E

[

1

X1 + 1/ρ1

]

(4.30)

GX(0) = E

[

1

X2 + 1/ρ2

]

(4.31)

where Xi is a random variable distributed according to the asymptotic eigenvalue

distribution of Xi.

For the matrix X1 given by (4.25), it is well known (e.g. pp.34-35 of [65]) that

the eigenvalues have the form

λj(X1) =
1 + ρ2

1− ρ2
+

2ρ

1− ρ2
cos

(

πj

N + 1

)

, j = 1, . . . , N. (4.32)
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After some manipulations, we can the find that the asymptotic eigenvalue distribu-

tion of X1 is given as

fX1(x1) =
1− ρ2

π

1
√

4ρ2 −
(

x1 (1− ρ2)− (1 + ρ2)2
)2
,
1− ρ

1 + ρ
< x1 <

1 + ρ

1− ρ
(4.33)

For the matrix X2 = diag(r1, . . . , rN), if we assume that the transmission powers P

are equal and constant across all the sensors and over time, and that the channel

gains, measurement noise and channel noise are i.i.d., then ri’s are i.i.d. with

ri =
Phi

Pσ2hi + α2
(4.34)

where σ2 = σ2
i , ∀i, denotes the common variance of the measurement noise and

α2 = W 2ξ2 where W 2 = [Cθθθ]i,i + σ2 and ξ2 = ξ2i , ∀i, is the common variance of the

channel noise. For i.i.d. Rayleigh fading channels, hi are exponentially distributed

with parameter λ. We can find that

fX2(x2) =
Pαλ

(P − Pσ2x2)
2 exp

( −αλx2
P − Pσ2x2

)

, 0 ≤ x2 <
1

σ2
(4.35)

Hence solving the simultaneous equations (4.30) is equivalent to solving for

{ρ1, ρ2} the simultaneous equations

1

1/ρ1 + 1/ρ2
= E

[

1

X1 + 1/ρ1

]

(4.36)

1

1/ρ1 + 1/ρ2
= E

[

1

X2 + 1/ρ2

]

(4.37)

with the distributions of X1 and X2 given by (4.33) and (4.35) respectively. This

can be done numerically. The quantity

lim
N→∞

1

N
tr
[

X−1
]

= GX(0) =
1

1/ρ1 + 1/ρ2
(4.38)

can then be determined.

Fig. 4.4 shows how the average distortion behaves as a function of N for one

realization of the channel gains for different values of ρ. We can observe that the av-
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Figure 4.4: Average distortion against N for one realization of channel gains. Sim-
ulation parameters: σ2 = 10−3, ξ2 = 10−10, P = 1mW and λ = 250, 000.

erage distortions converges to some asymptotic values. Comparing these simulation

results against the theoretical asymptotic average distortions computed by (4.38),

given as 0.0775, 0.0656 and 0.0382 for ρ = 0.3, 0.6 and 0.9 respectively, shows they

are closely matched. Similar result can be observed in Fig. 4.5 where the average

distortion is plotted against N for different sensor power P . The asymptotic average

distortions obtained by (4.38) are 0.1262, 0.0382 and 0.0091 for P = 0.1mW, 1mW

and 10mW respectively.

Here we provide another idea for dealing with the inversion of symmetric tridi-

agonal matrices in the expression tr (Y−1) where

Y =























r1 + a1 b 0 · · · 0

b r2 + a2 b
. . .

...

0 b
. . . b 0

...
. . . b rN−1 + aN−1 b

0 · · · 0 b rN + aN























(4.39)

The study of analytic inversion of symmetric tridiagonal matrices can be found

in [66, 67] where both references provided closed form expressions of the elements
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Figure 4.5: Average distortion against N for one realization of channel gains. Sim-
ulation parameters: σ2 = 10−3, ξ2 = 10−10, ρ = 0.9 and λ = 250, 000.

of the inverse of symmetric tridiagonal matrices. Using the results in [66], we can

express tr (Y−1) as

tr
(

Y−1
)

=
N
∑

i=1

[

Y−1
]

i,i
=

N
∑

i=1

di+1 · · · dN
δi · · · δN

(4.40)

where

δ1 = r1 + a1, δi = ri + ai −
b2

δi−1
, i = 2, . . . , N (4.41)

and

dN = rn + aN , di = ri + ai −
b2

di+1
, i = N − 1, . . . , 1. (4.42)

We observe that we can also represent the δi’s and di’s in terms of determinants of

sub-matrices of Y as

δi =

∣

∣Y(i)
∣

∣

|Y(i−1)| , i = 1, . . . , N (4.43)

and

di =

∣

∣Y(N−i+1)

∣

∣

∣

∣Y(N−i)

∣

∣

, i = 1, . . . , N (4.44)

where
∣

∣Y(i)
∣

∣ = |Y(1 : i, 1 : i)| and
∣

∣Y(i)

∣

∣ = |Y(N − i+ 1 : N,N − i+ 1 : N)| (using
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the matrix notations in MATLAB). Note that by default
∣

∣Y(0)
∣

∣ =
∣

∣Y(0)

∣

∣ = 1.

This analytic expressions of the inverse of the symmetric tridiagonal matrix may be

another idea to consider for finding the analytic solution of the problems studied in

this chapter.

4.6 Conclusions

In this chapter we investigated the power allocation scheme that minimizes the

distortion outage probability for a wireless sensor network used in monitoring sources

that are jointly Gaussian and spatially-correlated. We derived the necessary and

sufficient conditions for solving such power allocation scheme subject to a long-term

average power constraint. These conditions can be applied for any arbitrary fading

distributions and correlation matrices, however closed form expressions could not be

found. We present numerical simulation results based on a particular autocorrelation

matrix and show that significant power savings can be achieved by exploiting the

correlation structure of the sensor data, and that the higher the data are correlated,

the more power can be saved.

For future work one may try to find the closed-form power allocation for general

correlation matrices for arbitrary number of sensors in the network. One may also

investigate asymptotic behavior of distortion outage probability and the diversity

gain.
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Chapter 5

Conclusions

This thesis studies power allocation problems in wireless sensor networks used in

distributed estimation. Based on the amplify-and-forward framework, we investi-

gated a number of energy-efficient power allocation algorithms that minimize dis-

tortion outage probability subject to long-term power constraint for different trans-

mission protocols (coherent and orthogonal MAC), fading channels (Rayleigh fading,

Nakagami-m fading and general fading distributions), limited feedback and corre-

lation amongst sensor data. Below we shall give a summary of our work and some

possible future research topics relating to our work in this thesis.

5.1 Summary

In Chapter 2 we studied outage-minimizing power allocation algorithms of a clus-

tered wireless sensor network where the clusterhead transmitters send the observa-

tion signals from which they received from the sensors within clusters to the fusion

center via an orthogonal MAC. We derived the optimal power allocation for fading

channels under the assumption that the instantaneous CSI is available at both the

cluster heads and the fusion center. We also studied some heuristic power allocation

schemes based on the channel statistics. However simulation results showed that the

performance of these schemes is significantly worse than the full CSI case. We then

investigated the power allocation algorithm with limited feedback (partial CSI at

the cluster heads) for Nakagami-m fading channels. We showed that it is difficult to

find the optimal power allocation due to the highly irregularity in the structure of

the quantization regions. Nonetheless we proposed a sub-optimal power allocation

algorithm that have low computational complexity and simulation results showed

103
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significant power gains can be achieved by using just a few number of feedback bits.

In Chapter 3 we assumed that the sensors directly send their observations to

the fusion center through a coherent MAC. We proposed three power allocation

algorithms based on full CSI and gave theoretical analysis on the diversity order of

estimation outage for each of the power allocation schemes. We found that EPA

scheme and the power allocation scheme that minimizes the distortion subject to

a total power constraint (ST-OPA) achieve the same diversity order, showing that

spatial diversity in EPA can overcome fading equally well as having knowledge of full

CSI in ST-OPA for large number of sensors. On the other hand, the analysis for LT-

OPA (minimizing outage probability subject to a long-term total power constraint)

showed that we can drive the outage probability to zero using finite amount of long-

term total power for networks with two or more number of sensors. We obtained

an approximate expression for finding the required amount of long-term power for

a given number of sensors and vice versa.

In Chapter 4 we exploited correlation amongst the sensor data and used this

knowledge to further reduce the outage probability for a given average power. We

studied a wireless sensor network where the sensors transmit their signals to the fu-

sion center via orthogonal MAC. We derived the necessary and sufficient conditions

for which the optimal power allocation must satisfy (which can be solved numeri-

cally) for any arbitrary fading distributions; however we did not find the closed-form

expressions of the power allocation scheme. We present numerical results based on a

particular correlation matrix and show that significant power savings can be achieved

by taking into account the correlation structure of the sensor data.

5.2 Future research

For the work on optimal power allocation for distortion outage minimization, one

may investigate how much additional energy is required to implement the algo-

rithm, such as the energy used in the computation of transmission power and CSI

acquisition, and see if there is an advantage in adopting such algorithm and by how

much. The wireless sensor network considered in this problem only considers a single
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Gaussian source. One may extend the problem to estimate a field of some physical

phenomenon, which may have more practical applications. In the clustered wireless

sensor network we have assumed that sensors within a cluster transmit with the

same power and studied the effect of the sensor powers via simulation. One may

investigate how the sensor powers should be adapted or allocated to transmit their

signals to the cluster heads. Some other research areas include finding the optimal

size of the clusters, the number of clusters and cross-layer optimization.

For the work on power allocation with limited feedback, due to the difficulties

in evaluating the average power over the multi-dimensional channel state space, we

have used a number of approximations and imposed extra constraints to simplify the

problem. Although it provides a simple algorithm to implement, the performance

that it can achieve is still sub-optimal. For example, in the case of 4-bit feedback,

the outage performance achieved by SPSA (high computation complexity) is better

than our proposed algorithm. One can investigate power allocation schemes that

can perform better than our proposed algorithm and power allocation algorithms

that can be applied to other fading channels (other than Nakagami-m). Optimal

distortion-minimizing power allocation with limited feedback still remains as an open

problem.

For the work on power allocation schemes for coherent MAC, we mainly focused

our work on analyzing the diversity order of estimation outage based on the as-

sumption that full CSI is available. In real networks having knowledge of CSI at the

transmitters can be hard or expensive to implement as it requires a perfect feedback

channel (zero-delay, error-free and infinite bandwidth). Therefore one may investi-

gate the problem of energy-efficient power allocation schemes with limited feedback

for sensor networks using coherent MAC protocol. In our work we have also as-

sumed i.i.d. fading channels. Future extension of this work may include non-i.i.d.

fading channels or different fading distributions. One may also extend this work

to dynamical systems where the source is a time-varying Gauss Markov random

process.

For the work on correlated sensor data, the closed-form optimal power allocation

for a general correlation matrix is still unknown. One may investigate the asymptotic
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behavior of average distortion outage probability and diversity gain. Other research

directions include extending the problem to limited feedback and/or channel state

estimation.

Another future work could look at energy minimization problem for different

network lifetime definitions. The work in this thesis looks at the performance of

the wireless sensor network with long-term average power constraint assuming all

sensor nodes have power to perform distributed estimation. However as one sensor

dies the network would have to continue with the remaining nodes provided that the

distortion constraint can still be met. One may investigate optimizing the network

lifetime where the lifetime could be defined as the first instant of time after which

the distortion constraint can no longer be met.



Chapter 6

Appendix

6.1 Proof of Lemma 2.3.2

Proof. The first statement can be proved in a similar way to the one given in [27]

and is omitted. The second statement can be proved by differentiating 〈P∗(h)〉 with
respect to hn ∀n and show that it is non-positive. We begin with

∂〈P∗(h)〉
∂hn

=
1

N

∂

∂hn

N
∑

i=1

P ∗
i (h) (6.1)

=
1

N

(

N
∑

i=1,i 6=n

∂P ∗
i (h)

∂hn
+
∂P ∗

n(h)

∂hn

)

(6.2)

We will obtain the two derivatives inside the bracket of (6.2) separately. It is

straight forward to show that the first term in the bracket is equal to

∂P ∗
i (h)

∂hn i 6=n

= − GiGn

2D(N1)
√
η̄ihn

√
η̄n

(6.3)

and the second term in the bracket is

∂P ∗
n(h)

∂hn
=
CnGn

hnH̄n

(

1−
√
η̄n

2ρ̄0
− Gn

2D(N1)

)

. (6.4)

For n > N1,

∂〈P∗(h)〉
∂hn

=
1

N

(

N1
∑

i=1,i 6=n

∂P ∗
i (h)

∂hn
+
∂P ∗

n(h)

∂hn

)

=
1

N

(

N1
∑

i=1,i 6=n

∂P ∗
i (h)

∂hn

)

(6.5)

= − 1

N

N1
∑

i=1,i 6=n

GiGn

2D(N1)
√
η̄ihn

√
η̄n

≤ 0. (6.6)
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For n ≤ N1,

∂〈P∗(h)〉
∂hn

=
1

N

(

N
∑

i=1,i 6=n

∂P ∗
i (h)

∂hn
+
∂P ∗

n(h)

∂hn

)

(6.7)

=
1

N

(

−
N
∑

i=1,i 6=n

GiGn

2D(N1)
√
η̄ihn

√
η̄n

+
CnGn

hnH̄n

(

1−
√
η̄n

2ρ̄0
− Gn

2D(N1)

)

)

(6.8)

= − 1

N

(

N
∑

i=1

GiGn

2D(N1)
√
η̄ihn

√
η̄n

+
CnGn

hnH̄n

(√
η̄n

2ρ̄0
− 1

)

)

(6.9)

= − Gn

2D(N1)Nhn
√
η̄n

(

2C(N1)−
2D(N1)√

η̄n

)

(6.10)

= − Gn

Nhnη̄n

[√
η̄n
ρ̄0

− 1

]+

≤ 0. (6.11)

Hence ∂〈P∗(h)〉
∂hn

≤ 0 ∀n and this completes the proof of the second statement.

6.2 Proof of Lemma 2.4.1

Proof. Recall the cdf expressed in the ‘infinite-sum-series’ form given in (2.33).

Note that when j = 1, the expression corresponds to the outage probability, i.e.,

F̄N(s
(N)
1 ) ≡ Poutage. As Pav → ∞, si,j → 0, and (2.33) can be simplified as,

F̄N(s
(N)
j ) =

N
∏

i=1

(miλisi,j)
mi

Γ

(

1 +
N
∑

i=1

mi

) ×
∞
∑

n1=0

· · ·
∞
∑

nN=0

[

N
∏

i=1

(mi)ni
(−miλisi,j)

ni 1
ni!

]

(

1 +
N
∑

i=1

mi

)

nT

(6.12)

≈

N
∏

i=1

(miλisi,j)
mi

Γ

(

1 +
N
∑

i=1

mi

) , F̃N (s
(N)
j ) (6.13)

The partial derivative of F̃N(s
(N)
j ) w.r.t. si,j is given as

∂F̃N (s
(N)
j )

∂si,j
= F̃N(s

(N)
j ) · mi

si,j
(6.14)
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Substituting (6.14) into the KKT conditions (2.32) gives

∂Λj

∂si,j

/

∂F̃N (sj)

∂si,j
=

∂Λj

∂sk,j

/

∂F̃N (sj)

∂sk,j

⇒ − φi

s2i,j

/

F̃N (sj)mi

si,j
= − φk

s2k,j

/

F̃N(sj)mk

sk,j

⇒ Pk,j =
mk

mi
Pi,j ∀i, k ∈ {1, . . . , N}, j ∈ {1, . . . , L} (6.15)

If all mi = mk∀i, k, then Pi,j = Pk,j, ∀i, j, k. This completes the proof.

6.3 Proof of Lemma 2.4.2

Proof. In Lemma 2.4.1 we obtained F̃N (s
(N)
j ) and showed that as Pav → ∞ it is

asymptotically optimal to transmit with Pi,j = mi

mk
Pk,j. We can use this result to

express any Pi,j in terms of P1,j ∀i, j. Hence instead of dealing with a vector space,

we can reduce the problem down to a scalar problem by expressing (6.13) as a

function of P1,j given as

F̃N (Pj) =

N
∏

i=1

(λiφi)
mi

Γ (1 +Q)
· m

Q
1

PQ
1,j

(6.16)

where Q =
∑N

i=1mi. The quantity Λj =
∑N

i=1 Pi,j can also be written as a function

of P1,j given as

Λj =
Q

m1
P1,j (6.17)

As Pav → ∞ the channel thresholds become small, si,j → 0 ∀i, j. Hence the long-

term average power in each quantized region can be approximated to be the same

(EPPR), as shown in [31]. Applying (6.16) and (6.17) to the constraints in problem

(2.35), we can derive the outage probability as a function of Pav, N and L. This

expression is also used to obtain the diversity gain of the network. Starting from

the last equation in (2.35), as Pav → ∞, si,j → 0,

ΛL

(

1− F̃N(PL)
)

≈ NPav

L
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⇒ Qφ1

m1s1,L









1−
(

m1

φ1

)Q

N
∏

i=1

(λiφi)
mi

Γ (1 +Q)
sQ1,L









≈ NPav

L

⇒ 1−
(

m1

φ1

)Q

N
∏

i=1

(λiφi)
mi

Γ (1 +Q)
sQ1,L ≈ m1NPav

φ1QL
s1,L (6.18)

Since s1,L is small, sQ1,L << s1,L and we can discard the term with sQ1,L in (6.18).

After rearranging we obtain an expression of s1,L given as

s1,L ≈ φ1QL

m1NPav

(6.19)

Applying (6.16) and (6.17) to the constraint with j = L − 1 in problem (2.35)

gives

φ1Q

m1s1,L−1









(

m1

φ1

)Q

N
∏

i=1

(λiφi)
mi

Γ (1 +Q)
sQ1,L −

(

m1

φ1

)Q

N
∏

i=1

(λiφi)
mi

Γ (1 +Q)
sQ1,L−1









=
NPav

L

⇒
(

m1

φ1

)Q

N
∏

i=1

(λiφi)
mi

Γ (1 +Q)
sQ1,L =









m1NPav

φ1LQ
+

(

m1

φ1

)Q

N
∏

i=1

(λiφi)
mi

Γ (1 +Q)
sQ−1
1,L−1









s1,L−1

⇒
(

m1

φ1

)Q

N
∏

i=1

(λiφi)
mi

Γ (1 +Q)
sQ1,L ≈ m1NPav

φ1LQ
s1,L−1

⇒s1,L−1 ≈
(

m1

φ1

)Q

N
∏

i=1

(λiφi)
mi

Γ (1 +Q)

(

φ1LQ

m1NPav

)Q+1

(6.20)

where the last line is obtained after substituting (6.19). Repeating the above steps

for the remaining constraints in (2.35), we can obtain

s1,1 ≈









(

m1

φ1

)Q

N
∏

i=1

(φiλi)
m1

Γ(1 +Q)









QL−2+···+Q+1

×
(

φ1LQ

m1NPav

)QL−1+···+Q+1

(6.21)
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and the outage probability is

F̃N (s1,1) ≈
(

m1

φ1

)Q

N
∏

i=1

(λiφi)
mi

Γ(1 +Q)
sQ1,1

≈









N
∏

i=1

(λiφi)
mi

Γ(1 +Q)









QL−1+···+Q+1

×
(

LQ

NPav

)QL+···+Q

(6.22)

6.4 Proof of Theorem 2.4.1

Proof. Let J(Q) = QL + · · ·+ Q2 + Q. The diversity gain for the limited-feedback

system can be obtained by substituting (6.22) to (2.41) and is given as

d ≈− lim
Pav→∞

log











N
∏

i=1
(λiφi)mi

Γ(1+Q)





J(Q)/Q
(

LQ
NPav

)J(Q)







logPav

=− lim
Pav→∞









J(Q)
Q

[

log
N
∏

i=1

(λiφi)
mi − log Γ(1 +Q)

]

logPav

+
J(Q) [logL+ logQ− logN − logPav]

logPav









=J(Q) (6.23)

6.5 Proof of Lemma 3.2.2

Proof. In the first statement it is immediate to see that P∗(h) is a continuous func-

tion of h. In the second statement we need to show that 〈P(h)〉 is a non-increasing

function of hi, i = 1, . . . , N . We begin with the partial derivative of the short-term
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average power given as

∂ 〈P(h)〉
∂hi

=
∂

∂hi

Ptot(h)

N
=
σ2
c

N

∂ν

∂hi
(6.24)

where ν = Ptot

σ2
c

is the Lagrangian multiplier in one of the KKT conditions (see [23]).

Also from the KKT conditions [23] we have

N
∑

i=1

νhi
C + νhiσ2

= γth. (6.25)

Taking the partial derivative w.r.t. hi on both sides of (6.25) gives

∂

∂hi

N
∑

j=1

νhj
C + νhjσ2

= 0 ⇒ ∂

∂hi

νhi
C + νhiσ2

+

N
∑

j=1

∂

∂ν

νhj
C + νhjσ2

∂ν

∂hi
= 0

⇒ νC

(C + νhiσ2)2
+

N
∑

j=1

Chj

(C + νhjσ2)2
∂ν

∂hi
= 0

⇒ ∂ν

∂hi
= − νC

(C + νhiσ2)2

(

N
∑

j=1

Chj

(C + νhjσ2)2

)−1

< 0 ⇒ ∂ 〈P(h)〉
∂hi

=
σ2
c

N

∂ν

∂hi
< 0

which completes the proof.

6.6 Proof of Theorem 3.3.1

Proof. We prove the theorem by obtaining upper and lower bounds of log Pr
(

1
n

∑n
i=1Xi ≤ an

)

,

which asymptotically are equivalent for large n. The proof uses similar techniques

to those provided in the proof of Theorem 5.11.4 in [68].

Upper bound. Assume that X1, X2, . . . are i.i.d. distributed random vari-

ables with a common c.d.f. and p.d.f. denoted as FX(x) and fX(x) respectively.

Denote µX as the mean of Xi. Let Yi = −Xi + µX , hence E [Yi] = µY = 0. The

transformation allows us to obtain the following relationshipsMY (t) = eµX tMX(−t),
ΛY (t) = µXt + ΛX(−t) and

IY (cn) = sup
−t

{(µX − cn) t− ΛX(t)} . (6.26)
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Note that cn = µX − an.

We prove first that IY (cn) > 0 under the assumptions of the theorem. We

note that cnt− Λ(t) = log
(

ecnt

MY (t)

)

= log
(

1+cnt+o(t)

1+ 1
2
σ2
Y t2+o(t2)

)

for small positive t, where

σ2
Y = var(Y ); we have used here the assumption that MY (t) < ∞ near the origin.

For sufficiently small positive t, 1+cnt+o(t) > 1+ 1
2
σ2
Y t

2+o(t2), whence IY (cn) > 0

by the definition of the rate function.

We make two notes for future use. First, since ΛY (t) is convex with Λ′
Y (0) =

E[Y ] = 0, and since cn > µY = 0 for n ≥ N (the value of N can be found by

solving for the smallest integer n such that cn > 0), the supremum of cnt − ΛY (t)

over t ∈ R is unchanged by the restriction t > 0, which is to say that

IY (cn) = sup
t>0

{cnt− ΛY (t)} , cn > 0 for n ≥ N . (6.27)

Secondly, ΛY (t) is strictly convex wherever the second derivative Λ′′
Y (t) exists. To

see this, note that var(Y ) > 0 under the hypothesis of the theorem and

Λ′′
Y (t) =

MY (t)M
′′
Y (t)−M ′

Y (t)
2

MY (t)2
=
E
[

etY
]

E
[

Y 2etY
]

− E
[

Y etY
]2

MY (t)2
> 0 (6.28)

where the inequality is due to the Cauchy-Schwartz inequality applied to the random

variables Y e
1
2
tY and e

1
2
tY .

We have the following

Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

= Pr

(

n
∑

i=1

Yi ≥ ncn

)

= Pr
(

et
∑n

i=1 Yi ≥ encnt
)

for t > 0

(6.29)

≤E [exp (t
∑n

i=1 Yi)]

encnt
= e−ncntMY (t)

n = e−n(cnt−ΛY (t)) (6.30)

where the inequality is due to Markov’s inequality. Taking log on both sides gives

log Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

≤ −n (cnt− ΛY (t)) ∀t > 0 (6.31)

Since the upper bound in (6.31) is true for all t > 0 and we are looking for the
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tightest bound, we can further bound the LHS by taking the infimum on the RHS

log Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

≤ inf
t>0

{−n (cnt− ΛY (t))} = −n sup
t>0

{cnt− ΛY (t)} (6.32)

=− nI+Y (cn) = −nI−X (an) from (6.26) (6.33)

Lower bound. We first show that the problem falls under the regular case, i.e.,

that the supremum of the rate function IY (cn), n ≥ N is attained at some point

τ ∈ (0,∞). Denote FY (y) and fY (y) the common c.d.f. and p.d.f. of Y1, Y2, . . .

respectively. Since Pr (Yi > cn) > 0 for n ≥ N , there exists bn ∈ (cn,∞) such that

Pr(Yi > bn) > 0.

It follows that for t > 0,

cnt− ΛY (t) =cnt− logE
[

etY
]

= cnt− log

∫ ∞

−∞
etyfY (y)dy (6.34)

=cnt− log

[
∫ bn

−∞
etyfY (y)dy +

∫ ∞

bn

etyfY (y)dy

]

(6.35)

≤cnt− log

∫ ∞

bn

etyfY (y)dy ≤ cnt− log

{

etbn
∫ ∞

bn

fY (y)dy

}

(6.36)

=cnt− log
{

etbn Pr(Yi > bn)
}

(6.37)

=− (bn − cn) t− log Pr(Yi > bn) → −∞ as t→ ∞ (6.38)

since bn−cn > 0 for finite and fixed n. We deduce that the supremum of cnt−ΛY (t)

over values t > 0 is attained at some point τn ∈ (0,∞). The random sequence

Y1, Y2, . . . is therefore a regular case of the large deviation problem.

We now introduce an ancillary random variable (as a function of n) Ỹn with dis-

tribution function FỸn
(y), sometimes called an ‘exponential change of distribution’

or a ‘tilted distribution’, by

dFỸn
(y) =

eτny

MY (τn)
dFY (y) (6.39)

which can also be interpreted as FỸn
(y) = 1

MY (τn)

∫ y

−∞ eτnudFY (u). Let Ỹn,1, Ỹn,2, . . .

be i.i.d. distributed with c.d.f. FỸn
. We note the following properties of Ỹn,i. The
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moment generating function of Ỹn,i is

MỸn
(t) =

∫ ∞

−∞
etudFỸn

(u) =

∫ ∞

−∞

e(t+τn)u

MY (τn)
dFY (u) =

MY (t+ τn)

MY (τn)
(6.40)

The first two moments of Ỹn,i satisfy

E
[

Ỹn,i

]

=M ′
Ỹn
(0) =

M ′
Y (τn)

MY (τn)
= Λ′

Y (τn) = cn, (6.41)

var
(

Ỹn,i

)

=E

[

(

Ỹn,i

)2
]

−
(

E
[

Ỹn,i

])2

=M ′′
Ỹn
(0)−M ′

Ỹn
(0)2 (6.42)

=Λ′′
Y (τn) ∈ (0,∞). (6.43)

Denote S̃n =
∑n

i=1 Ỹn,i. Since S̃n is the sum of n i.i.d. random variables, it has

moment generating function

MS̃n
(t) =

(

MY (t+ τn)

MY (τn)

)n

=
E
[

e(t+τn)S̃n

]

MY (τn)n
=

1

MY (τn)n

∫ ∞

−∞
e(t+τn)udFSn(u) (6.44)

where FSn is the c.d.f. of Sn =
∑n

i=1 Yi. Therefore, the cumulative distribution

function of S̃n, denoted as FS̃n
, satisfies

dFS̃n
(y) =

eτny

MY (τn)n
dFSn(y). (6.45)

Let d > 0. We have

Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

= Pr

(

n
∑

i=1

Yi ≥ ncn

)

=

∫ ∞

ncn

dFSn(u) =

∫ ∞

ncn

MY (τn)
ne−τnudFS̃n

(u)

≥MY (τn)
n

∫ n(cn+d)

ncn

e−τnudFS̃n
(u) ≥MY (τn)

ne−n(cn+d))τn

∫ n(cn+d)

ncn

dFS̃n
(u)

=e−n(τn(cn+d)−ΛY (τn)) Pr
(

ncn < S̃n < n (cn + d)
)

=e−n(τn(cn+d)−ΛY (τn)) Pr

(

cn <
1

n
S̃n < cn + d

)

Since E
[

Ỹn,i

]

= cn and var
(

Ỹn,i

)

> 0, we have from the assumption of the

theorem that Pr
(

1
n
S̃n > cn

)

is bounded away from zero as n → ∞. We also have
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Pr
(

1
n
S̃n < cn + d

)

→ 1 as n→ ∞, which can be shown using a strong law of large

numbers for triangular arrays [69]. Therefore,

log Pr

(

1

n

n
∑

i=1

Xi ≤ an

)

≥− n (τn (cn + d)− ΛY (τn)) + log Pr

(

cn <
1

n
S̃n < cn + d

)

(6.46)

∼− n (τn (cn + d)− ΛY (τn)) as n→ ∞ (6.47)

∼− n (τncn − ΛY (τn)) as d → 0 (6.48)

=− nI+Y (cn) = −nI−X (an) (6.49)

6.7 Proof of Lemma 3.3.1

Proof. Here we want to show that

Pr

(

1

n
S̃n > cn

)

→ 0.5 (6.50)

as n → ∞. We note that the L.H.S. of (6.50) involves a sum of random variables
∑n

i=1 Ỹn,i that are i.i.d. across i for a given n. We will show that the central limit

theorem (CLT) applies in this case by showing that Lindeberg’s condition holds.

Before we state Lindeberg’s condition, we first introduce a change of variable to

simplify the problem in the later stage. Denote Ỹn the common distribution of Ỹn,i,

∀i. Let Z̃n = Ỹn − E
[

Ỹn

]

. Hence E
[

Z̃n

]

= 0 and var
(

Z̃n

)

= var
(

Ỹn

)

. Note also

that E
[

Ỹn

]

= cn and var
(

Ỹn

)

= Λ′′
Y (τn). Lindeberg’s condition is hence given as

1

σ2
Z̃n

∫

{

|Z̃n|>ǫ
√

nσ2
Z̃n

} z̃2fZ̃n
(z̃)dz̃ → 0 as n→ ∞ (6.51)

for every ǫ > 0. Proving that this condition is true for any general distribution is

hard because we do not have the closed-form expression of τn. Instead we will here

verify Lindeberg’s condition for
√
hi, where

√
hi is Rayleigh distributed.
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We first give the asymptotic expression of var
(

Ỹn

)

as n → ∞ for the Rayleigh

distribution. We have the following results:

dΛY (θ)

dθ
= µX +

1

M√
h(−θ)

dM√
h(−θ)
dθ

d2ΛY (θ)

dθ2
=

d2M√
h(−θ)

dθ2
M√

h(−θ)−
(

dM√
h(−θ)

dθ

)2

M√
h(−θ)2

(6.52)

Note that

dM√
h(−θ)
dθ

=
(κ2θ2 + 1)M√

h(−θ)− 1

θ
(6.53)

d2M√
h(−θ)

dθ2
= κ2

[(

κ2θ2 + 3
)

M√
h(−θ)− 1

]

(6.54)

Substituting (6.53) and (6.54) into (6.52) gives

d2ΛY (θ)

dθ2
=

(κ2θ2 − 1)M√
h(−θ)2 + (κ2θ2 + 2)M√

h(−θ)− 1

θ2M√
h(−θ)

(6.55)

Using the asymptotic expansion of M√
h(−θ) (since θ → ∞ as n→ ∞)

M√
h(−θ) =

1

κ2θ2
− 3

(κ2θ2)2
+

15

(κ2θ2)3
− · · ·

we obtain d2ΛY (θ)

dθ2
∼

2
κ4θ4

θ2 1
κ4θ4

= 2
θ2

and hence

var
(

Ỹn

)

= Λ′′
Y (τn) ∼

a2

2n
(6.56)

The expression of fZ̃n
(z̃) can be easily found and is given as

fZ̃n
(z̃) =

an − z̃

κ2MY (τn)
e−

(an−z̃)2

2κ2
+τn(z̃+cn) (6.57)

Note that Z̃n ∈ (−∞, an].

We are now ready to look at Lindeberg’s condition (6.51) after obtaining the
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expressions (6.56) and (6.57). We have

1

σ2
Z̃n

∫

{

|Z̃n|>ǫ
√

nσ2
Z̃n

} z̃2fZ̃n
(z̃)dz̃ =

1

σ2
Z̃n

(

∫ −ǫ
√

nσ2
Z̃n

−∞
z̃2fZ̃n

(z̃)dz̃ +

∫ an

ǫ
√

nσ2
Z̃n

z̃2fZ̃n
(z̃)dz̃

)

(6.58)

(a)∼ 1

σ2
Z̃n

∫ −ǫ
√

nσ2
Z̃n

−∞
z̃2fZ̃n

(z̃)dz̃ =
1

κ2σ2
Z̃n
MY (τn)

∫ −ǫ
√

nσ2
Z̃n

−∞
(an − z̃) z̃2e−

(an−z̃)2

2κ2
+τn(z̃+cn)dz̃

(6.59)

=
e−µ√

h
τn

κ2σ2
Z̃n
M√

h(−τn)

∫ ∞

ǫ
√

nσ2
Z̃n

(an + u)u2e−
(an+u)2

2κ2
+τn(cn−u)du (6.60)

=
1

κ2σ2
Z̃n
M√

h(−τn)

∫ ∞

ǫ
√

nσ2
Z̃n

(an + u)u2e−
(an+u)2

2κ2
−τnu+τncn−τnµ√

hdu (6.61)

where µ√
h = E

[√
h
]

, u = −z̃ and step (a) is due to the second integral vanishing to

zero as the integration interval becomes null, since an → 0 and ǫ
√

nσ2
Z̃n

→ aǫ/
√
2 as

n→ ∞. Also note that we have the following asymptotic expressions (as n→ ∞)

an = a/
√
n→ 0 (6.62)

cn = µ√
h − an → µ√

h (6.63)

τn ∼ 2
√
n

a
(from (3.32) and τ = −θ) (6.64)

M√
h(−τn) ∼

a2

4κ2n
(6.65)

σ2
Z̃n

∼ a2

2n
. (6.66)

We now show that (6.61) goes to zero as n→ ∞ by using an upper bound of (6.61)

and show that the upper bound goes to zero as n→ ∞. We can obtain the following

upper bounds by inspecting the exponential terms in (6.61): 1) e−
(an+u)2

2κ2 ≤ e−
u2

2κ2

(since an > 0), 2) eτncn−τnµ√
h = eτnµ

√
h
−τnan−τnµ√

h = e−τnan = O(1) (from (6.62)

and (6.64)) ⇒ eτncn−τnµ√
h ≤ C (for sufficiently large n), 3) e−τnu = e−

2
√

n
a

u(1+o(1)) ≤
e−

√
n
a

u (for sufficiently large n), where C is a constant.

Hence we substitute the upper bounds obtained above and the asymptotic ex-
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pressions (6.62), (6.65) and (6.66) into (6.61) and obtain the following upper bound

1

κ2σ2
Z̃n
M√

h(−τn)

∫ ∞

ǫ
√

nσ2
Z̃n

(an + u)u2e−
(an+u)2

2κ2
−τnu+τncn−τnµ√

hdu (6.67)

≤8Cn2

a4

∫ ∞

aǫ/
√
2

u3e−
u2

2κ2 e−
√

n
a

udu (1 + o(1)) (6.68)

We may use Laplace’s method [70] to obtain an asymptotic approximation of

I(
√
n) =

∫ ∞

aǫ/
√
2

u3e−
u2

κ2 e−
√
nu

a du (6.69)

in (6.68). Let h(u) = u/a and ϕ(u) = u3e−
u2

2κ2 . Hence the integral becomes

I(
√
n) =

∫ ∞

A

ϕ(u)e−
√
nh(u)du (6.70)

where A = aǫ/
√
2. It is straight forward to see that h(u) and ϕ(u) satisfy the four

conditions necessary for using Laplace’s method. The Taylor series for h(u) and ϕ(u)

as u→ A are given as h(u) ∼ h(A)+
∑∞

s=0 as(u−A)s+µ, ϕ(u) ∼∑∞
s=0 bs(u−A)s+α−1.

We give the values of the first few terms of the series: h(A) = ǫ/
√
2, a0 = 1/a, a1 = 0,

µ = 1, α = 1, b0 =
(

aǫ√
2

)3

exp
(

− (aǫ)2

4κ2

)

. The asymptotic approximation of I is given

as

I(
√
n) ∼ e−

√
nh(A)

∞
∑

s=0

Γ

(

s+ α

µ

)

cs√
n
(s+α)/µ

∼ c0√
n
e−ǫ

√
2n (6.71)

where we have simply retained the first term in the sum. Note that c0 = a
(

aǫ√
2

)3

exp
(

− (aǫ)2

4κ2

)

.

Hence Lindeberg’s condition becomes

8c0n
√
n

a4
e−ǫ

√
2n → 0 as n→ ∞. (6.72)

This completes the proof for showing that the CLT holds for
√
hi.
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6.8 Proof of Lemma 3.3.3

Proof. Let g(t) =
∫∞
1
e

t
x
−cxdx and h(t) =

∫∞
1

1
x
e

t
x
−cxdx. We use Laplace’s method

[70] to obtain asymptotic approximations of g(t) and h(t). We begin by writing g(t)

and h(t) as g(t) =
∫∞
1
e−tp(x)q(x)dx and h(t) =

∫∞
1
e−tp(x)φ(x)dx where p(x) = −1/x,

q(x) = e−cx and φ(x) = e−cx

x
. In order to apply Laplace’s method, we must check

four conditions (Theorem 1 in Ch 2 of [70]). The first condition is that p(x) > p(1)

for all x ∈ (1,∞), and for every δ > 0 the infimum of p(x) − p(1) in [1 + δ,∞) is

positive. This is true for p(x) = −1/x. The second condition is that p′(x) and q(x)

and φ(x) are continuous in a neighborhood of x = 1, except possibly at x = 1. This

is again true for the p′(x), q(x) and φ(x) defined here. The third condition says that

the asymptotic Taylor series of p(x), q(x) and φ(x) can be obtained as x → 1 from

the right. This can be easily verified and we will explicitly give these expressions

in what follows. The last condition is that the integral converges absolutely for

all sufficiently large t. This can be shown easily for g(t) and h(t). We will now

directly apply Laplace’s method. The Taylor series for p(x), q(x) and φ(x) as x→ 1

are given as p(x) ∼ p(1) +
∑∞

s=0 as(x − 1)s+µ, q(x) ∼
∑∞

s=0 bs(x − 1)s+α−1 and

φ(x) ∼
∑∞

s=0 ks(x− 1)s+β−1. We give the values of the first few terms of the series:

p(1) = −1, a0 = 1, a1 = −1, µ = 1, b0 = e−c, b1 = −ce−c, α = 1, k0 = e−c,

k1 = −(c+1)e−c and β = 1. The asymptotic approximation of g(t) is given as g(t) ∼
e−tp(1)

∑∞
s=0 Γ

(

s+α
µ

)

cs
t(s+α)/µ ∼ et

(

e−c

t
+ (2−c)e−c

t2

)

where we have simply retained the

first two terms in the sum. Note that c0 = b0

µa
α/µ
0

and c1 =
{

b1
µ
− (α+1)a1b0

µ2a0

}

1

a
(α+1)/µ
0

[70]. In the same way we obtain the asymptotic approximation of h(t) given as

h(t) ∼ et
(

e−c

t
+ (1−c)e−c

t2

)

.

Substituting the asymptotic approximations of g(t) and h(t) back into (3.45)

gives

gN = 1− h(t)

g(t)
∼ 1−

et
(

e−c

t
+ (1−c)e−c

t2

)

et
(

e−c

t
+ (2−c)e−c

t2

) =
1

t+ 2− c
∼ 1

t
for large t (6.73)

which completes the proof.
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6.9 Proof of Lemma 4.3.2

Proof. It can be easily show that at optimality the average distortion constraint

given in problem (4.10) must be met with equality, given as

1

N
tr
(

R∗ +C−1
θθθ

)−1
= D̄max (6.74)

where R∗ = diag(r∗1, . . . , r
∗
N). Differentiating (6.74) both sides w.r.t. hn gives

1

N

∂

∂hn
tr
(

R∗ +C−1
θθθ

)−1
= 0

⇒tr

(

∂

∂hn

(

R∗ +C−1
θθθ

)−1
)

= 0

⇒− tr

(

∂R∗

∂hn

(

R∗ +C−1
θθθ

)−2
)

= 0

⇒
N
∑

i=1

∂r∗i
∂hn

· eeeTi
(

R∗ +C−1
θθθ

)−2
eeei = 0

(6.75)

where ∂R∗

∂hn
= diag

(

∂r∗1
∂hn

, . . . ,
∂r∗N
∂hn

)

.

Let ki = eeeTi
(

R∗ +C−1
θθθ

)−2
eeei, the last line of (6.75) becomes

N
∑

i=1

∂r∗i
∂hn

ki = 0 (6.76)

From the KKT conditions given in (4.11), we can obtain the following expression

(by eliminating γi) given as

r∗i =
1

σ2
i






1−

√

√

√

√

Nα2
i

hiλ
∗
0

(

eeeTi
(

R∗ +C−1
θθθ

)−2
eeei

)







+

(6.77)

for i = 1, . . . , N . Assuming that r∗i ≥ 0, we can obtain

ki =
N (P 2

i hiσ
2
i )

2

hiλ
∗
0α

2
i

(6.78)



122 6.9. Proof of Lemma 4.3.2

Differentiating (6.78) w.r.t. hn yields

∂r∗i
∂hn

=











α2
nP

∗
n

(P ∗
nhnσ2

n+α2
n)

2 +
h2
nα

2
n

(P ∗
nhnσ2

n+α2
n)

2
∂P ∗

n

∂hn
, if i = n

α2
i hi

(P 2
i hiσ2

i +α2
i )

2

∂P ∗
i

∂hn
, if i 6= n

(6.79)

Substituting (6.78) and (6.79) into (6.76) gives

N
∑

i=1

∂r∗i
∂hn

ki = 0

⇒
N
∑

i=1
i 6=n

∂r∗i
∂hn

ki +
∂r∗n
∂hn

kn = 0

⇒N

λ∗0

N
∑

i=1
i 6=n

∂P ∗
i

∂hn
+
N

λ∗0

P ∗
n

hn
+
N

λ∗0

∂P ∗
n

∂hn
= 0

⇒∂ 〈P∗(h)〉
∂hn

= − 1

N

P ∗
n

hn

(6.80)

which completes the proof.
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