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Abstract

O
PPORTUNISTIC beamforming is a reduced feedback communication strategy for

vector broadcast channels which only requires partial channel state information

(CSI) at the base station for its operation. Although reducing feedback, this strategy, in

its plain implementations, displays a linear growth in the feedback load with the total

number of users in the system, which can be an onerous requirement for large systems.

This impracticality motivates the use of selective feedback techniques in which only the

users with good channels are allowed to feed back. In this thesis, we focus on a more

stringent but practical finite limit on the feedback load, and we study the structure of the

sum-rate maximizing decentralized selective feedback policies, and how the resulting

sum-rate compare to the sum-rate without any user selection.

Firstly, we set up the problem of finding the structure of downlink sum-rate maximiz-

ing selective decentralized feedback policies for opportunistic beamforming under finite

feedback constraints on the average number of mobile users feeding back. We show that

any sum-rate maximizing selective decentralized feedback policy must be a threshold

feedback policy. This result holds for most practical fading channel models.

Then, the resulting optimum threshold selection problem is analyzed in detail. This

is a non-convex optimization problem over finite dimensional Euclidean spaces. By uti-

lizing the theory of majorization, an underlying Schur-concave structure in the sum-rate

function is identified, and the sufficient conditions for the optimality of homogenous

threshold feedback policies are obtained. Applications of these results are illustrated

for well known fading channel models such as Rayleigh, Nakagami and Rician fading

channels, along with various engineering and design insights. Rather surprisingly, it is

shown that using the same threshold value at all mobile users is not always a rate-wise
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optimal feedback strategy, even for a network with statistically identical mobile users.

For the Rayleigh fading channel model, on the other hand, homogenous threshold feed-

back policies are proven to be rate-wise optimal if multiple orthonormal data carrying

beams are used to communicate with multiple mobile users simultaneously.

Having established the optimality of a homogenous threshold for a multi-beam Rayleigh

fading environment, we then analyze the derivation of these optimum policies which en-

sure a O (1) feedback constraint as the number of users grows large. Starting with a

set of statistically identical users, we obtain the tradeoff curve tracing the Pareto opti-

mal boundary between feasible and infeasible feedback-capacity pairs for opportunistic

beamforming. Any point on this tradeoff curve can be obtained by means of the derived

threshold feedback policies, which are rate-wise optimal. We further show to what ex-

tent the O (1) feedback constraint must be relaxed to achieve the same sum-rate scaling as

with full CSI. Extensions of these results to heterogeneous communication environments

in which different users experience non-identical path-loss gains are also provided. We

also show how threshold feedback policies can be used to provide fairness in a hetero-

geneous system, while simultaneously achieving optimal capacity scaling. Although the

results in this analysis are asymptotic in the sense that they are derived by letting the

number of users grow large, they provide promising performance results in finite size

systems.

Finally, we focus on the structure of the optimal homogenous threshold feedback pol-

icy that maximizes the ergodic downlink sum-rate under a peak feedback load constraint,

which we model by using a multi-packet reception model for the uplink. We solve the

resulting quasi-convex optimization problem by obtaining a formula for the sum-rate

maximizing threshold level. While providing insights on the implications of our results

in practical systems, we also obtain the Pareto optimal boundary between feasible and

infeasible feedback-capacity pairs under peak feedback load constraints.
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Chapter 1

Introduction

1.1 Multiple-input Multiple-output

I
MPROVING rates of data communication over wireless links to meet the insatiable

demand for multimedia traffic has become one of the pressing concerns for wireless

telecommunications technology [7]. The upcoming fourth generation (4G) technology,

which is also known as the Long Term Evolution (LTE), is envisioned to achieve data rates

as high as 1 Gbit/s for users with low mobility, and 100 Mbit/s for users with high mobil-

ity [1, 12, 33]. Multiple-input multiple-output (MIMO) systems featuring multiple trans-

mit and receive antennas at the ends of a wireless link [8, 91] marked a paradigm change

from scalar communication to the vector one, and sparked great research interest in the

past decade as a methodology which can facilitate such high data rates. The progress in

research urged many commercial entities to develop multiple-antenna technologies for

wireless networks, and today, these technologies have emerged as strong candidates in

fulfilling the data rate requirements set for the next generation networks.

One of the main benefits of MIMO is the power gain achieved by using multiple trans-

mit antennas. The multiple antennas also create multiple time varying signal paths be-

tween mobile users and the base station, which increase the reliability of communication.

For an example, the multiple paths can be utilized to transmit multiple redundant copies

of the data stream (space time codes) to the receiver to ensure reliable decoding [89].

This is called the diversity gain. Alternately, these multiple paths can be utilized to trans-

mit different data streams from the same radio resource in separate spatial dimensions,

which yields a degree-of-freedom gain (alternatively called multiplexing gain). Analysis of
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2 Introduction

this multiplexing gain started with the single user MIMO scenario, where the base station

communicates with a single user through multiple transmit antennas. If there are Nt an-

tennas at the base station and Nr antennas at the mobile, the base station could obtain a

multiplexing gain of min(Nt, Nr) for this scenario [26]. This gain is constrained by the

size and cost limitation of a user terminal which requires the number of receiver anten-

nas to be minimum. Therefore, research focus shifted to multi-user MIMO which allows

the base station to obtain the maximum multiplexing gain through transmitting to mul-

tiple users simultaneously [22,30]. This model is also called the MIMO Gaussian broadcast

channel.

Some of the gains associated with MIMO can be harvested without requiring any

knowledge of the wireless channel states, but some others can be exploited effectively

only through some form of channel state information (CSI) at the base station [48, 85].

Consider a multiuser communication system utilizing multiple transmission antennas at

the base station in a fading environment. The channel changes over time, and the goal

of the base station is to maximize downlink data rates by taking channel variations into

account. In this setting, selecting the users with the best instantaneous channel for com-

munication is a simple communication strategy that is heuristically expected to maximize

downlink data rates. Indeed, this is the classical communication approach utilizing mul-

tiuser diversity to take advantage of changing channel conditions for rate maximization,

e.g., see [42] where a power control scheme for maximizing the uplink capacity is pre-

sented thanks to multiuser diversity. In such communication instances necessitating the

use of CSI for adaptive signaling, feedback is an important means to convey required

information from mobile users to the base station.

The capacity region of a Gaussian broadcast channel, which utilizes the aspects of

multiuser diversity, is well studied in the literature [11,94,96,98]. It is shown in [98] that if

the base station has full CSI, the capacity region of the Gaussian MIMO broadcast channel

can be obtained through a technique called dirty paper coding (DPC) [16]. In DPC, the

base station calculates the interference at each user, and transmits in a manner which

minimizes this interference. Implementation of such a technique for MIMO systems is

extremely complex computationally, which makes it infeasible for any practical purpose.
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Therefore, most of the research in the area focused on linear beamforming techniques

[60, 63, 86, 106] to achieve higher rates of data communication, which are provably near

the achievable capacity limits through DPC.

1.2 Why Opportunistic Beamforming ?

Although these beamforming techniques reduce the complexity associated with DPC,

they still require full CSI. This means, the base station should know all the vector channel

gains between the transmit antennas and the users, and assuming Nt transmit antennas

at the base station and a single antenna at each user, a user is required to feed back Nt

complex values (or a quantized version of it [39]) to the base station. Of course, these

techniques will work well in systems with a small number of users because obtaining the

knowledge about all the vector channel gains will not be a huge burden on the feedback

link. However, feasibility of obtaining this knowledge at the base station decreases with

the number of users in the system, or in other words, the practicality of implementation

decreases with the size of the system. This motivated schemes which operated on partial

CSI.

Opportunistic beamforming is an extension of the conventional beamforming mech-

anism where full CSI is not required. It has attracted considerable attention starting with

[97] since it is considered to be a practical way of reducing feedback requirements in

MIMO systems, but still achieving the same performance limits with the DPC technique

[79]. The capacity scaling laws achieved by opportunistic beamforming were first ob-

tained by Shariff and Hassibi in [79]. Among many other results, they, in particular,

show that if an opportunistic scheduling algorithm is used to harvest multiuser diversity

gains, the downlink throughput scales optimally like Nt log log n, where n is the num-

ber of users in the system. To achieve these gains, their proposed scheduling algorithm

operates as follows. The beams are randomly generated. Each mobile user feeds back

the signal-to-interference-plus-noise-ratio (SINR) (i.e., a real number) corresponding to

the beam with the best signal quality and the index of this beam (i.e., an integer). Upon

receiving SINR values from all the users, the base station schedules the user having the
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best SINR on each beam. This leads to a considerable reduction in feedback requirements

when compared to signal processing techniques requiring full CSI to achieve system ca-

pacity.

The decrease in the feedback load will simultaneously decrease the latency of obtain-

ing feedback. Most of the work on beamforming techniques assume that the channel does

not change in the coherence interval. Therefore, accuracy of the results depends on the

length of this coherence interval. In a practical setup, increased latency in the feedback

loop may lead to the base station making user selection based on expired CSI, which will

nullify any multi-user diversity gains.

On top of this, opportunistic beamforming has a low implementation complexity

compared to signal processing techniques which require knowledge about the channel

vectors between the base station and the users. Specifically, it will not require matrix

inversions. The low complexity makes it easy to be implemented practically, even for a

system with a large number of users.

Because of these reasons, although being introduced in 2002, there is still considerable

research interest on this technique [6, 17, 40, 57, 62, 84, 104], and we will use it as a frame-

work for our work. Interested readers are referred to [97] and [91] for more advantages

of this technique.

1.3 Focus of the Thesis

In this thesis, we consider opportunistic communication along multiple orthonormal

beams. The focus is on the total ergodic downlink communication rate, and the base

station is provided only with partial CSI. The base station selects the user with the high-

est SINR on each beam to maximize the sum-rate at the downlink.

Although opportunistic beamforming reduces feedback considerably in comparison

to having full CSI, the technique in its plain implementations still displays a waste of

feedback resources. Consider a simple single beam scenario. In the feedback stage, all the

users will feed back the SINR value on this beam to the base station. However, the base

station will schedule communication only to the user with the highest SINR. Therefore,
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there is a clear waste of resources created by the feedback of users having no realistic

chance of being scheduled for communication.

Since all the users are required to feed back, there is a linear growth in feedback with

the total number of users in the system. Therefore, the modest doubly logarithmic mul-

tiuser diversity gain at the downlink is achieved at the expense a O (n) growth in feed-

back. The linear growth can again be an impractical burden on the uplink for a large

numbers of users.

These considerations motivate the use of selective feedback techniques in which only

the users with good channels are allowed to feed back [29]. By using selective feedback,

we focus on a more stringent but practical finite limit on the feedback load. We assume

that there is no cooperation between the different mobile users. Therefore, we only focus

on the class of decentralized selective feedback policies. In this thesis, we ask: What is

the structure of the sum-rate maximizing decentralized selective feedback policies, and

how does the resulting sum-rate compare to the sum-rate without any user selection?

1.4 Contributions and the Outline of the Thesis

Firstly, we discuss some fundamentals and background information in Chapter 2. Ob-

taining the sum-rate maximizing decentralized selective feedback policy under finite

feedback constraints provides an answer to the first part of the question raised in the

previous section. We start the analysis in Chapter 3, where we set a finite constraint on

the average number of users feeding back. Therefore, our initial optimization problem is

finding the decentralized selective feedback policy which maximizes the ergodic down-

link sum-rate, such that the average number of users feeding back is less than a given

constant λ. This problem is not easy to solve since the optimization is done over function

spaces [49], and the objective function is not necessarily convex.

We first show that any sum-rate maximizing selective decentralized feedback policy

for a given constraint on the average number of users feeding back must be a threshold

feedback policy. According to a threshold feedback policy, each user, independently from

others, decides to feed back or not by comparing its SINR values with a predetermined



6 Introduction

threshold value. Users are allowed to have different thresholds if such heterogeneity

maximizes the total downlink rate. This result is highly adaptable due to its distribu-

tion independent nature, i.e., it does not depend on the particular statistical model of

the wireless channel as long as the resulting SINR distribution is continuous, which is

true for most common fading models. It provides an analytical justification for the use

of threshold feedback policies in practical systems, and reinforces previous work ana-

lyzing threshold feedback policies as a selective feedback technique without proving its

optimality. It is robust to selfish unilateral deviations, and possesses a stability property

from a game theoretic point of view. Finally, it reduces the search for rate-wise optimal

feedback policies subject to the given feedback constraints from function spaces to a finite

dimensional Euclidean space.

The above result forms a basis for the optimal threshold selection problem analyzed

in Chapter 4. Now, the optimization problem is over the familiar finite dimensional Eu-

clidean spaces. Each user will have its own threshold value. Now, the optimization

problem is obtaining the set of threshold values which maximizes the ergodic downlink

throughput, such that the average number of users feeding back is less than λ. Still,

the optimization problem is a hard one to solve, due to the objective function not being

necessarily convex as a function of the threshold values. Thus, we resort to the theory

of majorization [51], and solve the optimal threshold selection problem by identifying

an underlying Schur-concave structure in the sum-rate function. In particular, we obtain

sufficient conditions for the Schur-concavity of the sum-rate, and therefore for the rate

optimality of homogenous threshold feedback policies in which all users use the same

threshold for their feedback decisions.

Rather surprisingly, our results reveal that the naive but intuitive approach of setting

a homogenous threshold value to maximize the total downlink communication rate for a

network with identical users experiencing statistically the same channel conditions does

not always work. We provide a simple counterexample, where Schur-concavity of the

sum-rate is violated, and it becomes strictly suboptimal to use the same threshold value

to mediate the feedback decisions. An extensive numerical study utilizing our sufficient

conditions is also performed to illustrate optimality and sub-optimality regions for the
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homogenous threshold feedback policies for fading models other than Rayleigh fading

such as Rician and Nakagami fading.

However, on the more positive side, we show that the sum-rate is always a Schur-

concave function when two or more orthonormal beams are used to simultaneously

communicate with multiple users located in a Rayleigh fading environment. In order

to find answers to the second part of the question posed in the previous section, the dif-

ference between communication rates achieved with and without user selection is also

illustrated for this fading scenario. In particular, when the threshold values are optimally

set for large user populations, there is almost no rate loss even when the average num-

ber of users feeding back per beam is relatively small. From a practical point of view,

this signifies a significant reduction in the feedback load without noticeable performance

loss.

The results in Chapter 3 and Chapter 4 form a basis for the problem analyzed in

Chapter 5. Now, we have obtained the optimality of a homogenous threshold value for

a Rayleigh fading channel, where multiple orthonormal beams are transmitted from the

base station. In Chapter 5, we show how to set this homogenous threshold value to en-

sure O (1) feedback load on the average as the number of users in the system grows large.

We illustrate the sub-optimal and optimal throughput scaling of such a system through

the feedback-capacity tradeoff curve tracing the Pareto optimal boundary between fea-

sible and infeasible feedback-capacity pairs. A feedback-capacity pair (λ, c) lying above

this curve is an infeasible operating point, and a point below this curve is a feasible but

suboptimal operating point. It is suboptimal in the sense that there is another feedback

policy achieving the same capacity scaling with strictly less feedback. Our derived ho-

mogeneous threshold feedback policy achieves any point on this tradeoff curve. In par-

ticular, we show that there exists a sequence of homogeneous threshold feedback policies

with appropriately chosen thresholds achieving any point on this curve. We also show

that Nt log log n scaling in [79] can be achieved by only allowing O
(
(log n)ε) users to

feed back on the average for any ε ∈ (0, 1).

This feedback reduction is for a system with statistically identical users. In Chapter

5, we go on to study a system where different users in the cell experience different path-
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loss gains. Obviously, the same threshold level for all users will not work for such a

system because this will make the users located close to the base station feed back with

very high probabilities compared to the users at the cell edge. In this chapter, we show

that the threshold levels at different users can be systematically altered according to the

user locations without violating the O (1) feedback constraint. We obtain the feedback-

capacity tradeoff curve for this system, and we again show to which extent the feedback

requirement should be relaxed to achieve Nt log log n scaling.

In Chapter 5, we also discuss how fairness can be achieved among users, which be-

comes an important issue for heterogeneous communication environments. If a beam

is allocated to the user having the best SINR, a user situated far from the base station

may starve for data compared to a user staying close to the base station. To address this

issue, we introduce two new scheduling policies. These scheduling policies coupled up

with the systematic alteration of the threshold levels at different users allow the system to

achieve the optimum throughput scaling with the added advantage of ensuring fairness

among users.

Most of our results in Chapter 5 are asymptotic in the sense that they are derived

by letting the number of users in the system grow large. Hence, we also perform some

numerical evaluations to illustrate the accuracy of the results for finite size systems. In

particular, we show that the threshold levels set by using our asymptotic formulas clearly

achieve O (1) feedback in finite size systems as well. We also compare the two proposed

fair scheduling policies with the scheduling policy of allocating the beam to the best

user for finite n. Although achieving the same asymptotic performance, we observe that

ensuring fairness causes a clear degradation in rate for any finite size system, which

is, in fact, the tradeoff between rate maximization and ensuring fairness in a wireless

communication network.

In Chapter 6, we make a subtle but interesting change to the optimization problem

studied in Chapters 3, 4 and 5. In this chapter, we derive the structure of the optimal

homogenous threshold feedback policy that maximizes the ergodic downlink sum-rate

under a peak feedback load constraint λ, i.e., an instantaneous constraint on the number of

users feeding back. Firstly, we define a multiple access model which imposes this instan-
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taneous feedback constraint on the system. Unlike Chapters 3, 4 and 5, where an ideal

medium-access-control (MAC) layer for contention resolution on the uplink feedback

channel is assumed and the likely packet collisions are neglected, we use a multi-packet

reception model to resolve collisions from users in this chapter. The base station can re-

construct all the feedback packets successfully if and only if the random number of users

feeding back is less than or equal to λ, which is the maximum number of packets that

the base station can decode concurrently. We say that a collision occurs if the random

number of users feeding back is greater than λ. In this case, all packets are destroyed

together. We do not consider back-off and retransmission issues. Therefore, a collision

will cause zero rate.

We show that this is a quasi-convex optimization problem by analyzing the rate ex-

pression, and solve it to obtain a formula for the optimal threshold value at the user.

These results hold for most practical fading distributions as well. To discuss the results

in more detail and to provide further insights, we apply them to the well known Rayleigh

fading channel model. The discussion includes the implications of the derived formulas

in practical systems. As we did in Chapter 4, we demonstrate the amount of feedback

reduction that can be achieved without any noticeable performance degradation in rate

by setting the threshold levels optimally, and as we did in Chapter 5, we illustrate the

tradeoff between feedback and rate by obtaining the Pareto optimal boundary between

feasible and infeasible feedback-rate pairs, but with an instantaneous constraint on the

number of users feeding back.

We also study the rate-wise optimality of using a homogenous threshold level in

Chapter 6. Again, in line with the justifications done in Chapter 4, a homogenous thresh-

old level seems optimal intuitively because the users are statistically identical. However,

we provide a simple counter example which shows that this intuition is not always true

for an instantaneous feedback constraint as well. For some channel conditions, a better

sum-rate can be achieved by setting threshold levels unequally among the users. Chapter

7 concludes the thesis.
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Chapter 2

Fundamentals and Background

This chapter will first explain the importance of channel state information (CSI) in the context of a

wireless communication network, and the possible gains that can be achieved by having CSI at the base

station. Then, we will discuss the difficulties associated with obtaining full CSI at the base station,

which motivates the concept of opportunistic beamforming. We will explain the basic operation of

opportunistic beamforming by defining a formal multi-beam single cell system model. This system

model will be used through out this thesis as a framework for the analysis. We obtain an expression

for the ergodic downlink throughput, and do a preliminary analysis of it for a Rayleigh fading channel

model. We end the chapter with a detailed review on opportunistic beamforming and other related

literature.

2.1 The Importance of Channel State Information (CSI)

I
N a wireless communication system comprised of a multitude of mobile users (MUs),

the base station being able to select and communicate at a higher rate with a user

having a good channel state compared to a user having a poor one is referred to as the

multiuser diversity gain [42]. This can be best illustrated through a simple example us-

ing the broadcast channel given in Fig. 2.1. The base station has one transmit antenna,

and there are n MUs with a single receive antenna. Consider all the variables to be real

numbers for simplicity. If we assume that the transmit power is one, the received signal

by MU k is given by

Yk = hks + Zk,

where s is the transmitted symbol, hk is the random channel gain between the base station

and MU k, and Zk is the additive white Gaussian noise with a variance of σ2 at MU k. We

11
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Figure 2.1: Scalar broadcast channel.

have dropped the time index for simplicity. Since the transmitted signal is a scalar, this

channel model is well known as the scalar broadcast channel model.

If the base station knows all the channel gains between the base station and the MUs,

i.e., it knows hk for all k ∈ {1, . . . , n}, the MU with the best channel state can be picked

for data communication to maximize the downlink rate. This maximum ergodic rate can

be written as

R = E

[

log

(

1 + max
1≤k≤n

|hk|2
σ2

)]

, (2.1)

where the expectation is over the random channel gains, and we have assumed E
[
s2
]
=

1. However, to achieve this rate, the base station needs to know the channel gains of all

the individual MUs.

Next, let us consider the scenario where the base station has no knowledge about the

channel, i.e., no CSI. The base station can now select a MU randomly for communication,

and the maximum ergodic rate can be written as

R = E

[

log

(

1 +
|hk|2
σ2

)]

. (2.2)

The rate achieved for each of these scenarios for different number of MUs are illustrated

in Fig. 2.2. The figure shows clearly that having CSI is extremely useful since not having

any CSI will nullify the multiuser diversity gain, and the system will achieve the same
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Figure 2.2: The rate achieved with and without CSI for different n.

ergodic rate irrespective of the number of MUs. this shows that CSI plays an important

role in a wireless network.

Now, let us take a step further and consider a scenario where the base station has

multiple transmit antennas, and each MU has a single receive antenna. The base station

utilizes the multiple antennas for beamforming, and transmits a single beam. The chan-

nel model is illustrated in Fig. 2.3. This is called a vector broadcast channel since the

transmitted signal is now a vector, defined by

x = bs,

where s is the transmitted symbol, b is called the beamforming vector, and we have again

assumed that the transmit power is one for simplicity. Vector b = [b1,1, b2,1]
> contains

two complex numbers with which s is multiplied at each of the antennas (refer Fig. 2.3)

to create the beam, thus called the beamforming vector. The received signal at MU k can
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User k

h1,k

h2,k

s

b1,1

b2,1

Figure 2.3: Vector broadcast channel: single beam and two transmit antennas.

be written as

Yk = h>
k bs + Zk,

where hk is the random complex channel gain vector between the base station and the

kth MU given by hk = [h1k, h2k]
>, and Zk is the complex white Gaussian noise at MU k

having a variance of σ2.

Firstly, lets assume that b is fixed and the base station knows all the vector channel

gains between the base station and the MUs. Now, the maximum ergodic rate for this

configuration can be written as

R = E

[

log

(

1 + max
1≤k≤n

|h>
k b|2
σ2

)]

, (2.3)

where again the expectation is over the random channel gains, and we have assumed

E
[
s2
]
= 1. Using the CSI, the base station communicates with the MU who maximizes
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|h>
k b|2.

Next, let us consider b to be no longer fixed. Now, we can optimize over b to fur-

ther increase the downlink rate, and obviously, CSI can be used for this process as well.

Among many methods, the simplest will be to set b such that it maximizes the dot prod-

uct in (2.3) (maximizing the SNR), which is setting it equal to the complex conjugate of

the channel of that particular user. For this scenario, i.e., when setting

b =
h†

k

|hk|
,

where the operator (·)† represents the complex conjugate, the received signal by MU k

can be given by

Yk = |hk|s + Zk.

Now, the channel gains from each of the antennas add up constructively (in phase) at the

receiver. The maximum ergodic rate for this configuration can be achieved by maximiz-

ing among the MUs, and it is given by

R = E

[

log

(

1 + max
1≤k≤n

|hk|2
σ2

)]

. (2.4)

From this two simple examples, we have explained the importance and the advan-

tages of having CSI at the base station. However, the next important question is how CSI

can be acquired. In our work, we consider frequency division duplexing (FDD). There-

fore, the channel gains on the uplink and the gains on the downlink will be different.

In such a setting, each MU/receiver has to calculate the channel gain on the downlink,

and feed it back. In a more general setting where Nt transmitting antennas are employed

at the base station, each MU has to feedback Nt complex numbers for the base station

to have full knowledge about the channel (full CSI). Therefore, although beamforming

techniques reduce the complexity compared to DPC, the full CSI requirement creates a

huge feedback requisite for a large network. We conclude full CSI may be impractical for

a large system, but having no CSI will mitigate the multiuser diversity gains as shown in

Fig, 2.2. This problem motivates systems which operate on partial CSI.
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2.2 Opportunistic Beamforming

Opportunistic beamforming is a communication technique relying on partial CSI, and has

attracted considerable attention and research effort since its inception by Viswanath et al.

in [97]. In this section, we will discuss some fundamentals of opportunistic beamforming

with some analysis on the downlink throughput.

The signal model studied in [97] is similar to the one studied for a vector broadcast

channel in the previous section (please refer to Fig. 2.3 for a graphical representation).

The difference is, now, the beamforming vector b is generated randomly without any

knowledge of the channel. Each MU calculates the SNR on this randomly generated

beam, where

SNRk =
|h>

k b|2
σ2

is the SNR at MU k, and feeds it back. The base station schedules communication to the

MU with the highest SNR. Therefore, the amount of feedback is reduced from Nt × n

complex numbers to n real numbers. The maximum ergodic rate can be written as

R = E

[

log

(

1 + max
1≤k≤n

SNRk

)]

. (2.5)

Although reducing feedback, this model does not fully utilize the degree-of-freedom

gain of a MIMO broadcast channel. To show this, we provide another simple numer-

ical example, which is presented in Fig. 2.4. In this example, we have considered a

system consisting of 4 transmit antennas, and simulated the ergodic rate for different

number of beams M. As shown in Fig. 2.4 the rate can be significantly increased by in-

creasing the number of simultaneous beams, i.e., using the degree-of-freedom gain of the

MIMO broadcast channel to communicate with multiple MUs simultaneously (multiuser

MIMO). By using this concept, [79] extended opportunistic beamforming to simultane-

ous multiple orthogonal beams from the base station. They called this technique ran-

dom beamforming. Since the multiple beams create interference, each MU feeds back

the signal-to-noise-plus-interference-ratio (SINR) and the index of the best beam to the

base station. Still, compared to having full CSI, the amount of feedback is reduced from

Nt × n complex numbers to n real numbers and n integers, still providing considerable
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Figure 2.4: The behavior of the sum-rate with n for different values of M, where Nt = 4.

gains in feedback. In the next subsection, a formal system model is defined for such a

system transmitting multiple orthogonal beams.

2.2.1 System Model

Consider a multi-antenna single cell vector broadcast channel. There are n MUs in the

cell. The base station has Nt transmit antennas, and each MU is equipped with a single

receive antenna. The channel gains between the receive antenna of the ith MU and the

transmit antennas of the base station are given by

hi = (h1,i, . . . , hNt,i)
> , (2.6)

where hk,i is the channel gain between the kth transmit antenna at the base station and the

receive antenna at the ith MU. The channel gains hk,i, k = 1, . . . , Nt and i = 1, . . . , n, are
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independent and identically distributed (i.i.d.) random variables. In addition, a quasi-

static block fading model in which channel gains are constant through a coherence time

interval, and change from one coherence period to another independently according to

a common fading distribution is studied. For the sake of notational simplicity, the time

index is dropped here in the channel model, and also later in the representation of trans-

mitted and received signals.

The base station transmits M, M ≤ Nt, different data streams intended for M different

MUs. The symbols of the kth stream are represented by sk. They are chosen from the

capacity achieving unit power (complex) Gaussian codebooks, and are sent along the

directions of M orthonormal beamforming vectors

{

bk = (b1,k, . . . , bNt,k)
>
}M

k=1
. (2.7)

These beamforming vectors can be either deterministic, or randomly generated and up-

dated periodically. The overall transmitted signal from the base station is given by

s =
√

ρ
M

∑
k=1

bksk, (2.8)

where ρ is the transmit power per beam 1. The signal received by the ith MU is equal to

Yi =
√

ρ
M

∑
k=1

h>
i bksk + Zi, (2.9)

where Zi is the unit power (complex) Gaussian background noise. With these normalized

parameter selections, ρ also signifies the SNR per beam as in [79]. Let γm,i be the SINR

value corresponding to the mth beam at the ith MU. Then, it is given by

γm,i =
|h>

i bm|2
ρ−1 + ∑

M
k=1,k 6=m |h>

i bk|2
. (2.10)

Let γi = (γ1,i, . . . , γM,i)
> ∈ R

M
+ represent the SINR vector at MU i. Beams are sta-

1The transmit signal can be normalized by the number of beams to avoid the linear increase in transmit
power with the number of beams. This normalization will not affect our results, so avoided for simplicity.
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tistically identical, and the elements of γi are identically distributed for all i ∈ {1, . . . , n}
with a common marginal distribution F. However, SINR values at a particular MU are

dependent random variables.

2.2.2 Obtaining an Expression for Rate

A naive approach of allocating beams is randomly assigning them among the MUs. Then,

the ergodic downlink sum-rate is given by

R = E

[
M

∑
m=1

log (1 + γm,i)

]

, (2.11)

where the expectation is taken over the random SINR values. Since the beams are statis-

tically identical, we have

R ≤ M log (1 + E [γm,i]), (2.12)

using the Jensen’s inequality. From (2.10), it is not hard to see that the SINRs behave as

γm,i ≈
1

M − 1

on the average for large M, by using the law of large numbers. Therefore, if we randomly

assign beams to the MUs, the average downlink throughput R will be less than one,

R ≤ M log (1 + E [γm,i]) (2.13)

≈ M log

(

1 +
1

M − 1

)

(2.14)

<
M

M − 1
≈ 1, (2.15)

which means that we will not get a multiplexing gain even though M different signals

are transmitted simultaneously. This is another example which clarifies that no CSI at the

transmitter will be almost useless.

Because of this reason, the MUs feed back their maximum SINR value and the index
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of the best beam. Each beam is allocated to the MU having the best SINR on it. Let Gm

be the random set of MUs feeding back requesting beam m. Then, the ergodic downlink

sum-rate can be written as

R = E

[
M

∑
m=1

log

(

1 + max
i∈Gm

γm,i

)]

. (2.16)

An Important Simplification of the Expression for Rate

We can do a simplification to this expression by assuming that the same MU will not have

the maximum SINR value on two or more beams. Then the ergodic downlink sum-rate

can be written as

Rup = E

[
M

∑
m=1

log

(

1 + max
1≤i≤n

γm,i

)]

. (2.17)

In fact, this is an upper bound to the sum-rate achieved in (2.16). However, the assump-

tion made will hold in all practical cases as discussed in Chapter 3 (Lemma 3.5). This

assumption is very important because it makes the expression obtained for the rate math-

ematically tractable. Rup can be evaluated as

Rup = M

∞∫

0

log(1 + x)dG(x)dx, (2.18)

where G(x) is the cumulative distribution function (CDF) of the maximum of n i.i.d.

random variables having a common marginal distribution F. G(x) can be obtained by

raising F to the power of n [68]. Therefore,

Rup = M

∞∫

0

log(1 + x)nF(x)(n−1)dF(x). (2.19)

Comparatively, evaluating R in 2.16 is not so straightforward. This is complex because

in getting the CDF, we have to first consider the maximization of the SINR among the

beams, which is the maximization of M dependent values, and then, the maximization

among the MUs in Gm, which is a random set. Because of this complexity, the upper

bound Rup has been analyzed in many works associated with opportunistic beamform-
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ing, after making the assumption that the same MU will not have the maximum SINR

value on two or more beams [36, 69, 105] .

In the next subsection, we will study the throughput scaling of the ergodic sum-rate

of opportunistic beamforming given in (2.16), for a Rayleigh fading channel.

2.2.3 Analysis on Rate: Rayleigh Fading Channels

We have already discussed the advantages of opportunistic beamforming in terms of

feedback. However, the question is to what extent we should sacrifice in terms of rate to

obtain this gain in feedback. It is shown in [70, 79] that the reduction in feedback doesn’t

hinder the performance of a system with a large number of MUs in terms of sum-rate

capacity, and it achieves the same throughput scaling law as using dirty paper coding

with full CSI at the transmitter [80]. To give a sketch of this proof, we will consider a

Rayleigh fading environment, i.e., hk,i, k = 1, . . . , Nt and i = 1, . . . , n, are assumed to be

i.i.d. with the common distribution CN (0, 1), where CN
(
µ, σ2

)
represents the circularly-

symmetric complex Gaussian distribution with mean µ and variance σ2.

For this channel model, the SINR distribution function F and the associated probabil-

ity density function f can be given as

F(x) = 1 − e
− x

ρ

(x + 1)M−1
(2.20)

and

f (x) =
e
− x

ρ

(x + 1)M

[
1

ρ
(x + 1) + M − 1

]

, (2.21)

respectively [79]. The proof techniques of these two expressions can be found in Chapter

5 (Appendix 5.9.1). For such a setup, a closed form expression for (2.19) is given in [105]

and [36], and a closed form approximation can be found in [69].

As we have claimed earlier, the rate expression given in (2.17) is in fact an upper

bound on the actual rate obtained using opportunistic beamforming. Now, we consider

a feedback mechanism where a threshold is set at the receiver, and the MU feeds back
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only if the SINR value is above the threshold. We set the threshold at one. Since we

further reduce the amount of feedback setting the threshold, the rate obtained with the

threshold is a lower bound to the rate given in (2.16). This lower bound can be written as

R ≥ MPr

{

max
1≤i≤n

SINRi,1 ≥ 1

}

E

[

log

(

1 + max
1≤i≤n

SINRi,1

)

| max
1≤i≤n

SINRi,1 ≥ 1

]

,

which simplifies to

R ≥ M
[
1 −

(
Pr {SINRi,1 ≤ 1}n)]

E

[

log

(

1 + max
1≤i≤n

SINRi,1

)

| max
1≤i≤n

SINRi,1 ≥ 1

]

,

since the MUs are i.i.d., and

Pr

{

max
1≤i≤n

SINRi,1 ≤ 1

}

= Pr {(SINRi,1 ≤ 1)}n .

To prove the throughput scaling, [79] uses these bounds on the average rate, and show

both the lower and upper bounds grow like Nt log log n, which is the same throughput

scaling that one can achieve using dirty paper coding.

Please refer Fig. 2.4 to see how the rate behaves with the number of MUs in the

system. The rate increases with the number of MUs because of the multiuser diversity

gains, but when n is large, it increases slowly like log log n. A similar behavior is shown in

Fig. 2.5, where the behavior of the rate with the number of beams is illustrated. The rate

first increases with the number of beams because of degrees of freedom gain. However it

later saturates because increasing the number of beams increases the interference, which

simultaneously reduces the SINR values.

2.3 Literature Review

Some of the literature associated with opportunistic beamforming has already been intro-

duced and discussed in the previous sections of this chapter. To summarize, the concept

of opportunistic beamforming was introduced by Viswanath et. al. in 2002 [97]. They

studied opportunistic beamforming for a single beam from the base station in a single
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Figure 2.5: The behavior of the sum-rate with M for different values of n.

cell environment. Shariff and Hassibi extended this concept to simultaneous multiple

orthogonal beams from a single base station, which they named random beamforming [79].

They showed that the proposed reduced feedback scheme can achieve the same capacity

scaling laws of Nt log log n, with those achieved by dirty paper coding [80]. They also

showed that the linear scaling of the sum-rate with the number of beams is preserved as

long as Nt grows logarithmically with n.

Extensions and slight modifications of this result can be found in the literature as well.

[101] gives a tighter upper bound on the average rate obtained in [79] using the properties

of the extreme value distribution. In 2010, [70] analyzed the average rate of the exact

scheme proposed in [79] without analyzing the bounds, and obtained the same result.

They used order statistics [19] of the ratio of a linear combination of exponential random

variables for this proof. The effect of spacial correlation between transmit antennas on

this sum-rate capacity scaling has been studied in [2].
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A system with multiple antennas at the receiver is studied in [79] as well. Let Nr be

the number of receive antennas. The authors consider three different cases:

i) Treating each receiver antenna as an independent MU, i.e., nNr MUs.

ii) Assigning at most one beam to each MU, where each MU only feeds back informa-

tion regarding the best receive antenna.

iii) Assigning Nr beams for the selected MUs assuming M
Nr

is an integer.

In the analysis the authors claim that case (i) is the best and case (iii) is the worst for

finite n. However, all cases give similar results when n grows large asymptotically. The

technique of considering each antenna as an independent MU is used in [20, 21] as well.

This technique is improved in [70] to allow combining at the receivers in order to increase

the received SINR. [70] uses the multiple receive antennas and a MMSE receiver, which

is known to be the optimal linear receiver.

One of the main concerns associated with opportunistic beamforming is fairness, i.e.,

whether a MU staying near the base station will be scheduled frequently and the MUs

at the cell edge will be starved. To address this issue, an algorithm called proportionally

fair algorithm is introduced in [97]. This takes into consideration the ratio between the

requested rate and the average throughput for a particular MU. A MU with a high ratio

will be prioritized over the others. If a MU is not scheduled for a long time the average

throughput for the MU will reduce giving a higher value for the ratio, for that particular

MU. In [79], the authors claim that fairness can be obtained automatically as a byproduct

of having multiple beams. A MU located near the base station gets a high signal power

as well as high interference from the other beams. The MUs at the cell edge gets low

signal power and low interference. They claim that the fairness will prevail since the

selection parameter is the SINR. However, this is not a fair assumption in a multi-cell

environment. Therefore, in [54], the proportional fair algorithm has been extended for

multiuser scheduling.

Another concern associated with opportunistic beamforming is its applicability to fi-

nite systems. Various methods have been proposed to optimize opportunistic beamform-

ing for smaller networks as well. It has been shown in [56] and [55] that opportunistic

beamforming can be effectively used for sparse networks. The main idea in these works
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is to select a target group of MUs using opportunistic beamforming, and then use more

efficient beamforming schemes to serve the MUs in the target group. The more efficient

methods include transmit beamforming and also allocating power among beams opti-

mally [87]. In [54], it has been shown how feedback aggregation can be used to optimize

performance of opportunistic beamforming. In this scheme, the base station uses the

memory about the channel to optimally select the beamforming vectors. The base station

keeps track of beamforming vectors which give higher throughput and use them more

frequently. In [15,41,64], schemes are proposed where multiple beamforming vectors are

used to optimize the performance. In this technique, the time-slot is sub divided into Q

mini-slots, with a separate set of beamforming vectors for each mini-slot. Rate is checked

on each of the mini-slots and the optimum set of beamforming vectors is selected for

transmission.[92] proposes adaptive beam selection, where scheduler picks the optimum

subset of beams that maximizes the system sum-rate instead of communicating on all the

generated beams.

Natural ways of further reducing the feedback load of a MIMO broadcast channel are

using quantized feedback [28,35,39,43,90], or exploiting the properties of the fading pro-

cess for feedback compression [24, 25, 38, 61]. With the developments of digital commu-

nication, quantized feedback is preferred in many communication systems. A compari-

son between digital and analog feedback methods is given [10]. Before long, quantized

feedback techniques were introduced and studied using an opportunistic beamforming

framework [21, 65, 78, 93]. Out of them, [65] investigate the performance of opportunis-

tic beamforming with an SNR quantization scheme that maximizes the expected system

throughput. They derive the SNR statistics and the system throughput to optimize the

SNR quantization with respect to thresholds separating quantization levels. They show

that when the number of feedback bits grow large, the PDF of the quantized SNR approx-

imates well to the continuous (actual) SNR distribution. [78] extends the results in [43]

for an opportunistic beamforming framework. They also propose and analyze a com-

pound strategy that uses one bit for multi-user diversity and any further information for

beamforming.

Although all of these techniques combined with opportunistic beamforming reduce
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feedback considerably in comparison to having full CSI, still, all the MUs are required to

feed back, which can be an impractical feedback requirement on the feedback channel.

Also, it is a waste of feedback resources created by the MUs having no realistic chance

of being scheduled for communication. [29] shows that most part of this feedback is un-

justifiable, and selective feedback techniques, where only a fraction of the MUs feedback,

can be used to achieve similar diversity gains through considerably lesser amount of

feedback. [34, 45] extend the results in [29] by proposing a feedback mechanisms which

operates on multiple feedback thresholds. By employing multiple feedback thresholds,

the base station can conduct the feedback collection process by polling the MUs sequen-

tially from the highest threshold value down to the lowest threshold value until feedback

from one or more MUs is received. A threshold feedback policy was first introduced for

opportunistic beamforming in [79]. A similar feedback policy was studied in [70]. Ac-

cording to this feedback policy, a MU feeds back if the SINR on the best beam is above

a given constant threshold. However, even when using a constant threshold feedback

policy, the number of MUs feeding back grows linearly with the total number of MUs in

the system. As a result, to achieve modest doubly logarithmic multiuser diversity gains

at the downlink through opportunistic scheduling, we still need to improve the capacity

of the feedback link linearly with the number of MUs in the system. In [21], it was shown

that it is enough to have only O (log n) MUs feeding back to achieve the same downlink

sum-rate scaling in [79] by varying the common threshold level with the total number of

MUs in the system.

With the emergence of wide-band communication, opportunistic beamforming has

been extended for Orthogonal-frequency-division multiplexing (OFDM) networks as well

[23, 27, 46, 66, 81]. For wide-band systems, the transmitted signals cannot form a single

beam pointing to a certain direction due to the multipath propagation. Therefore, in

OFDM networks, it is suggested to decompose the bandwidth into parallel narrow band

sub-carriers so that random beamforming concept can be applied on each of them. [27]

considers the neighboring sub-carriers as a cluster, and shows that the knowledge of the

quality of the center subcarrier sheds light about the quality of the whole cluster. There-

fore, they claim, MUs need only feedback the best SINR at the center subcarrier of each
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cluster in order to maintain the same throughput scaling as when full CSI is available at

the base station.

All the above works have been done in a single cell environment. Some analysis

on opportunistic beamforming in multi cell environments exist as well. [4] and [88] have

mainly concentrated on optimizing the scheduling strategies of opportunistic beamform-

ing in a multi-cell environment. [59] focus on using combined scheduling and beamform-

ing to mitigate performance losses due to inter-cell interference. [44, 58, 67] have concen-

trated on the throughput of a simple multi cell model with noncooperative base stations.

[99] consider a multi cell random beamforming scheme where a cooperative base sta-

tion can simultaneously beamform to its local MUs by utilizing full CSI and randomly

beamform to the MUs in the neighboring cells.

More related works have been discussed in Chapters 3, 4, 5 and 6.





Chapter 3

Optimality of Threshold Feedback
Policies

Beamforming techniques utilizing only partial channel state information (CSI) has gained popular-

ity over other communication strategies requiring perfect CSI thanks to their lower feedback require-

ments. The amount of feedback in beamforming based communication systems can be further reduced

through selective feedback techniques in which only the users with channels good enough are allowed

to feed back by means of a decentralized feedback policy. In this chapter, we prove that thresholding

at the receiver is the rate-wise optimal decentralized feedback policy for feedback limited systems with

prescribed feedback constraints. This result is highly adaptable due to its distribution independent na-

ture, provides an analytical justification for the use of threshold feedback policies in practical systems,

and reinforces previous work analyzing threshold feedback policies as a selective feedback technique

without proving its optimality. It is robust to selfish unilateral deviations. Finally, it reduces the

search for rate-wise optimal feedback policies subject to feedback constraints from function spaces to a

finite dimensional Euclidean space.

3.1 Introduction

W
E consider the classical opportunistic communication along multiple orthonor-

mal beams. The focus is on the total downlink communication rate1, and the

base station is provided only with partial CSI (i.e., downlink SINR values) for scheduling

such as in the IS-856 standard. Hence, the (full CSI) sum-rate capacity achieving dirty

paper precoding [11,16,94,96,98], or any other transmit beamforming strategy requiring

full CSI to this end, is automatically disallowed. The wireless channels, and therefore

1Unless otherwise stated, we use the term rate (or, its derivatives such as sum-rate, total rate, aggregate
communication rate) to always refer to the ergodic rate obtained by averaging over many fading states.

29
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the attained signal-to-interference-plus-noise ratios (SINR) by different users on different

beams, change over time. The base station selects the best user (the user with the highest

SINR) per beam to maximize the sum-rate at the downlink.

This is the opportunistic beamforming approach utilizing multiuser diversity and

varying channel conditions to extract all degrees-of-freedom available for the downlink

communication (provided by the use of multiple transmit antennas) as well as to deliver

improved power gains [79, 97]. Indeed, it achieves the same full CSI sum-rate capacity

to a first order for large numbers of mobile users (MUs) in the network [79]. However,

for large numbers of MUs, the opportunistic beamforming approach still requires large

amounts of data to be fed back, which is an onerous requirement on the uplink feed-

back channel. What is needed is a selective decentralized feedback policy that will only

choose a small subset of MUs to be multiplexed on the uplink feedback channel. In this

case, the downlink sum-rate is certainly a function of the feedback policy selecting MUs.

We ask: What is the structure of the sum-rate maximizing selective decentralized feed-

back policies, and how does the resulting sum-rate compare to the sum-rate without any

user selection? This chapter focuses on selective feedback techniques, and formally estab-

lishes the structure of rate-wise optimal feedback policies for vector broadcast channels

under finite feedback constraints.

3.1.1 Related Work

Feedback load reduction techniques for adaptive signaling in wireless communication

networks have been a key area of research for more than a decade, especially with the

advent of MIMO technology [18, 39, 43, 47, 48, 79]. Among many promising approaches

proposed over the last decade, opportunistic beamforming has attracted considerable

attention and research effort since its inception by Viswanath et al. in [97]. It is a practical

way of reducing feedback requirements for vector broadcast channels, yet still achieves

the full CSI sum-rate capacity at the downlink to a first order [79]. In this chapter, we are

also motivated by such opportunistic communication and beamforming techniques, and

focus on the downlink sum-rate maximization under finite feedback constraints on the

feedback uplink.
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Capacity scaling laws attained by opportunistic beamforming were first obtained by

Shariff and Hassibi in [79]. Among many other results, they, in particular, showed that

if an opportunistic scheduling algorithm is used to harvest multiuser diversity gains,

the downlink throughput scales optimally like Nt log log n, where Nt is the number of

transmit antennas at the base station, and n is the number of MUs in the system. In

[101], the authors built upon [79] to derive tighter expressions for the downlink sum-rate

scaling for opportunistic beamforming. Unlike these works, the results derived for the

structure and optimization of the downlink sum-rate in this chapter are correct for any

number (small and large) of MUs in the network. In addition, the sum-rate maximization

problem addressed in this chapter does not appear in [79] and [101].

Without any user selection, the number of MUs feeding back grows linearly with the

total number of MUs in the system to achieve double logarithmic growth in the downlink

sum-rate. Threshold feedback policies are frequently used to alleviate such an excessive

feedback requirement on the uplink [6, 21, 29, 34, 70, 73, 77, 79]. In [29], the authors pro-

posed to use a common threshold level to arbitrate MUs’ feedback decisions for scalar

channels. They showed that this approach has the potential to significantly reduce the

total feedback load on the uplink while maintaining almost the same sum-rate perfor-

mance at the downlink. In [34], the authors extended the feedback scheme proposed

in [29] by using multiple threshold levels. This work differs from [29] and [34] in three

important aspects. Firstly, we provide an analytical justification for why threshold feed-

back policies are right choice for user selection, e.g., see Section 3.3 for details. Secondly,

in Chapter 4, we pose an optimum threshold selection problem in which we search for

the optimum assignment of thresholds to MUs. We show that using the same thresh-

old value for all MUs is not always optimum even if all MUs experience statistically the

same channel conditions. Finally, our results are given for more general vector broadcast

channels.

In [79] and [70], the authors used a constant threshold level, the same for all MUs and

independent of the number of MUs, to reduce the total feedback load for vector broadcast

channels within the opportunistic beamforming framework. Such a constant threshold-

ing scheme cannot eliminate the linear growth in the average number of MUs feeding
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back. In [21], it was shown that it is enough to have only O (log n) MUs feeding back

to achieve the same downlink sum-rate scaling in [79] by varying the common threshold

level with the total number of MUs in the system. The threshold was set such that any

MU having a SINR above the threshold will achieve log log n scaling, allowing one bit

feedback [20, 21, 103]. This result was extended in [73, 77] by showing that O
(
(log n)ε),

ε ∈ (0, 1), MUs are enough to achieve the same downlink sum-rate scaling in [79]. It is

almost as if constant feedback load is enough to maintain optimum sum-rate scaling but

not exactly. These results will be discussed in more detail in Chapter 5. Recently, [6] stud-

ied the amount of feedback (partial CSI) required to achieve the same sum-rate capacity

achieved with perfect CSI at the BS, considering various SNR regimes. In contrast to these

previous works, we focus on more stringent but practical constant feedback requirements

in this chapter. The sum-rate maximization framework introduced here does not exist in

these papers, either. Finally, these previous works only focused on the asymptotic sum-

rate scaling behavior, whereas our results are correct for any finite number of MUs in the

network.

3.1.2 Contributions

In this chapter, we first show that any sum-rate maximizing selective decentralized feed-

back policy for a given constraint on the average number of MUs feeding back must be

a threshold feedback policy in which each MU, independently from others, decides to feed

back or not by comparing its SINR values with a predetermined threshold value. We

start with a simple single user scenario, and then extend it to a general multi-user sce-

nario, where different MUs are allowed to have different thresholds if such heterogeneity

in thresholds maximizes the total downlink rate. This thresholding optimality result does

not depend on the particular statistical model of the wireless channel as long as the re-

sulting SINR distribution is continuous, which holds for most common fading models

such as Rayleigh, Rician and Nakagami fading. It also possesses a stability property from

a game theoretic point of view as explained in Section 3.5.

These findings provide an analytical justification for the use of threshold feedback

policies in practical systems, and strengthen previous work on thresholding as an appro-
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priate selective feedback scheme, e.g., see [21, 29, 34, 70, 73, 79]. They also form a basis

for the optimum threshold selection problem analyzed in Chapter 4. To some extent,

our thresholding optimality result is intuitive and expected. It is even known to hold in

the limit without feedback constraints for richly scattered Rayleigh fading environments

[21, 73]. However, its proof in our case is not straightforward, and requires a careful

analysis of rate gain and loss events due to coupling effects, induced by finite feedback

constraints, of MUs’ individual feedback rules on the sum-rate function. We show that

the proof can be simplified considerably if we study a scenario where the MUs use a ho-

mogeneous feedback policy since the homogeneity nullifies the coupling effects of MUs’

individual feedback rules on the sum-rate function.

The organization of this chapter is as follows. We precisely define feedback policies

and formulate the problem of finding the optimal feedback policy maximizing aggregate

communication rate under finite feedback constraints as a function optimization problem

in Section 3.2. We prove that the rate-wise optimal feedback policy solving this optimiza-

tion problem is a threshold feedback policy in Section 3.3. In Section 3.4, we analyze

the special case, where the MUs are restricted to feed back using a homogenous thresh-

old feedback policy. We discuss the results in Section 3.5, and Section 3.6 concludes the

chapter.

3.2 Problem Formulation

We study the vector broadcast channel model given in Subsection 2.2.1. The base station

communicates with n MUs through M different orthogonal beams simultaneously. The

base station has Nt transmit antennas, and each MU is equipped with a single receive

antenna. The beams are assumed to be statistically identical, and MUs experience statis-

tically independent channel conditions. γm,i is the SINR at beam m at MU i, and γi ∈ R
M
+

represents the SINR vector at MU i. The elements of γi are identically distributed for

all i ∈ N with a common marginal distribution F, where N = {1, . . . , n}. We will as-

sume that F is continuous, and has the density f with support R+, which are true for

many fading models including Rayleigh, Rician and Nakagami fading. If M = 1, we will
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use γi to denote the SINR of MU i on this single beam. The M-by-n SINR matrix of the

whole n-user communication system is denoted by Γ ∈ R
M×n
+ . If the base station has per-

fect knowledge of Γ, the aggregate communication rate can be maximized by choosing

the best MU with the highest SINR on each beam. However, this necessitates excessive

amount of feedback and information exchange between the base station and MUs. There-

fore, we focus on the sum-rate maximization under finite feedback constraints, where

MUs feed back according to a predefined selective feedback policy as defined below.

Let

γ?
i = max

1≤k≤M
γk,i

be the maximum SINR value at MU i, and

b?i = arg max
1≤k≤M

γk,i

be the index of the best beam achieving γ?
i . Also, let M = {1, . . . , M}. Using these

notations, we formally define a feedback policy as follows.

Definition 3.1. A feedback policy F : R
M×n
+ 7→ {Ω

⋃{ø}}n is an {Ω
⋃{ø}}n-valued function

F = (F1, . . . ,Fn)
> ,

where Fi : R
M×n
+ 7→ Ω

⋃{ø} is the feedback rule of MU i, Ω is the set of all feedback packets

2 and ø represents the no-feedback state. We call F a general decentralized feedback policy

if Fi is only a function of γi for all i ∈ N . We call it a homogenous general decentralized

feedback policy if it is decentralized and all MUs use the same feedback rule. Finally, we call it

a maximum SINR decentralized feedback policy, if Fi (γi) is only a function of γ?
i and b?i ,

and produces a feedback packet containing γ?
i as the sole SINR information on a positive feedback

decision, and otherwise produces ø.

Intuitively, a feedback policy determines whether a MU will feed back or not. Upon

a positive feedback decision, it generates a feedback packet containing SINR values at

2Many different feedback mechanisms can be considered. Feeding back all the SINR values, feeding back
only the maximum SINR, feeding back the two largest SINRs, are just few of these approaches. The structure
of the feedback packet will depend on the feedback approach. Ω is the set containing all of these possible
feedback packets.
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selected beams (along with other information to be contained in the packet header), and

sends it to the base station for central processing. When it is clear from the context, we

will omit the term “general”. We will index system-wide feedback policies by super-

scripts such as F
i, and individual feedback rules by subscripts such as Fi. We use the

term “policy” to refer to system-wide feedback rules, whereas the term “rule” is used to

refer to individual feedback rules. The definitions given for system-wide feedback poli-

cies extend to individual feedback rules in an obvious way when possible. We assume

that there is no cooperation between different MUs, which is true for most practical sys-

tems, therefore we can narrow down our study to decentralized feedback policies for the

system in consideration.

Furthermore, we will focus our attention on beam symmetric feedback policies since

beams are assumed to be statistically identical. We formally define beam symmetric poli-

cies as follows.

Definition 3.2. Let Π : R
M 7→ R

M be a permutation mapping, i.e.,

Π (γ) =
(

γπ(1), . . . , γπ(M)

)>
,

for some one-to-one π : M 7→ M. For Γ ∈ R
M×n, let

Π (Γ) = [Π (γ1) , . . . , Π (γn)] .

If Ii is the set of beam indexes selected by Fi (Γ), and π (Ii) is the set of beam indexes selected by

Fi (Π (Γ)) for all i ∈ N , we say F is a beam symmetric feedback policy.

This symmetry assumption is just for the sake of notational simplicity, and the same

techniques can be generalized to beam asymmetric policies by allowing different feed-

back policies for different beams at MUs. We let Ξ denote the set of all beam symmetric

decentralized feedback policies. When it is clear from the context, we will also omit the

term “beam symmetric”.

Given a feedback policy F , we have a random set of MUs Gm (F (Γ)) requesting

beam m ∈ M. When Gm (F (Γ)) is a non-empty set at a given fading state, the base

station selects the MU with the highest SINR in this set to maximize the instantaneous
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communication rate in the direction of beam m. If Gm (F (Γ)) is an empty set, we say a

feedback outage event occurs at beam m, and zero rate is achieved at this beam.3

Then, the downlink ergodic sum-rate achieved under the feedback policy F is given

by

R (F ) = EΓ [r (F , Γ)] = EΓ

[
M

∑
m=1

log

(

1 + max
i∈Gm(F (Γ))

γm,i

)]

, (3.1)

where r (F , Γ) is the instantaneous sum-rate achieved under the feedback policy F , expec-

tation is taken over the random SINR matrices, and the result of the maximum operation

is zero when Gm (F (Γ)) is an empty set. rm (F , Γ) and Rm (F ) denote the instantaneous

sum-rate and the ergodic sum-rate on beam m, respectively. Note that

rm (F , Γ) = log

(

1 + max
i∈Gm(F (Γ))

γm,i

)

, (3.2)

and

Rm (F ) = EΓ [r
m (F , Γ)] . (3.3)

Also, the sum-rate achieved on an event A under F is written as

R (F ,A) = EΓ [r (F , Γ) 1A] , (3.4)

and conditioned on an event A (or, a random variable), we define the conditional sum-rate

as

R (F |A) = EΓ [r (F , Γ) |A] . (3.5)

We will use R (F ) as the performance measure of a given feedback policy along the rate

dimension.

3Note that the base station does not have access to any CSI on the feedback outage event. Without any
CSI, reliable communication is still possible if we can average over very large time-scales for all MUs. The
extra rate term to be added to (3.1) in this case would not affect our analysis in remainder of the chapter, and
therefore is omitted for simplicity.
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Given a feedback policy F , we will use the average number of MUs feeding back per

beam Λ (F ) to measure the performance of F along the feedback dimension. Λ (F ) can

be written as

Λ (F ) =
n

∑
i=1

pi, (3.6)

where

pi = Pr {Fi (Γ) selects beam 1} (3.7)

since F is beam symmetric. We are interested in maximizing the ergodic sum-rate under

finite feedback constraints, and the resulting rate maximization problem can be written

as

maximize
F∈Ξ

R (F )

subject to Λ (F ) ≤ λ
, (3.8)

i.e., find the optimal feedback policy maximizing the aggregate communication rate sub-

ject to feedback constraint λ. This optimization problem is over function spaces [49], and

the objective function is not necessarily convex. In this chapter, we will reduce the search

for optimal feedback policies to an optimal threshold selection problem over finite dimen-

sional Euclidean spaces by proving rate-wise optimality of threshold feedback policies.

The next section establishes the optimality of threshold feedback policies.

3.3 Optimality Analysis

In this section, we show that the solution of the optimization problem posed in (3.8)

must be a threshold feedback policy. We start our analysis by formally defining threshold

feedback policies.

Definition 3.3. We say

T = (T1, . . . , Tn)
>
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is a general threshold feedback policy (GTFP) if, for all i ∈ N , there is a threshold τi such

that Ti (γi) generates a feedback packet containing SINR values {γk,i}k∈Ii
if and only if γk,i ≥ τi

for all k ∈ Ii ⊆ M. We call it a homogenous general threshold feedback policy if all MUs

use the same threshold τ, i.e., τi = τ for all i ∈ N .

We note that a MU can be allocated to multiple beams according to Definition 3.3.

Another class of threshold feedback policies are the feedback policies limiting each MU

to request only the beam with the highest SINR, e.g., see [21,70,73,79]. We call this class of

feedback policies maximum SINR threshold feedback policies, and formally define them

as follows.

Definition 3.4. T = (T1, . . . , Tn)
> is a maximum SINR threshold feedback policy (MTFP)

if, for all i ∈ N , there is a threshold τi such that Ti (γi) produces a feedback packet requesting

beam k and containing γk,i as the sole SINR information if and only if b?i = k and γ?
i ≥ τi.

For a given set of threshold values, it is not hard to see that the GTFP (corresponding

to these threshold values) always achieves a rate at least as good as the rate achieved

by the MTFP (corresponding to the same threshold values) because MUs request all the

beams with SINR values above their thresholds under the GTFP, which includes the best

beam with the highest SINR. Since maximum SINR values are also fed back by GTFPs,

they can be considered more general than MTFPs. Moreover, as shown later in Lemma

3.5, a GTFP reduces to an MTFP if threshold values of all MUs are greater than one. In

this section, we will first prove that GTFPs form a rate-wise optimal subset of general

decentralized feedback policies, and then obtain a similar result for MTFPs.

3.3.1 Optimality of General Threshold Feedback Policies

It is enough to focus only on the first beam since R (F ) can be written as

R (F ) = MEΓ

[

log

(

1 + max
i∈G1(F (Γ))

γ1,i

)]

(3.9)

under our assumptions in Section 3.2. For our proofs, we will define various sets whose

elements lie in various spaces including R
M
+ and R

M×n
+ . Therefore, paying attention to
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the space in which the elements of a set lie will facilitate exposition in the rest of the

chapter.

For a given beam symmetric general decentralized feedback policy F = (F1, . . . ,Fn)
>,

we let

FBi =
{

γi ∈ R
M
+ : Fi (γi) selects beam 1

}

(3.10)

for all i ∈ N . Given F , we construct a GTFP T by choosing τi as

Pr {γ1,i ≥ τi} = Pr {γi ∈ FBi}

for all i ∈ N . This construction is feasible since γ1,i is assumed to have a continuous

distribution function. Such a selection of T leads to a fair comparison between F and T

since Λ(F ) = Λ(T ). We divide FBi into two disjoint sets

SL
i =

{

γi ∈ R
M
+ : γi ∈ FBi & γ1,i < τi

}

, (3.11)

and

SR
i =

{

γi ∈ R
M
+ : γi ∈ FBi & γ1,i ≥ τi

}

. (3.12)

Finally, we let

S̄R
i =

{

γi ∈ R
M
+ : γi /∈ FBi & γ1,i ≥ τi

}

. (3.13)

We will use these sets to show R (T ) ≥ R (F ).

The proof is simple for a single MU single beam communication scenario. For a par-

ticular realization of the SINR value γ1, the same instantaneous rate is achieved by both

feedback policies if they result in the same feedback decision. On the other hand, the

achieved instantaneous rate will be different if only one of the policies results in a posi-

tive feedback decision. This happens either when γ1 ∈ SL
1 , in which case only F leads

to a positive feedback decision, or when γ1 ∈ S̄R
1 , in which case only T leads to a pos-
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itive feedback decision. The worst case SINR on the event γ1 ∈ S̄R
1 is greater than the

threshold value τ1, and the best case SINR achieved by the MU on the event γ1 ∈ SL
1 is

less than τ1. Therefore, the rates achieved by F and T can be upper and lower bounded,

respectively, to show that R (T ) ≥ R (F ). These ideas are formally stated through the

following lemma.

Lemma 3.1. For any general decentralized feedback policy F , there exists a GTFP T such that

Λ (F ) = Λ (T ) and R (T ) ≥ R (F ), where n = 1 and M = 1.

Proof. Refer Appendix 3.7.1 for the proof.

The proof for the multiuser scenario hinges on the same principles above but it is

not straightforward due to coupling effects of individual feedback rules on the aggre-

gate rate expression. Part of the complexity to deal with these effects arises from the

heterogeneous nature of the feedback rules. For example, consider a two-user single

beam communication scenario. Let F = (F1,F2) be a general decentralized feedback

policy, and T = (T1, T2) be the corresponding general threshold feedback policy as con-

structed above. Consider the event A in which γ1 ∈ S̄R
1 and γ2 ∈ SL

2 . On this event,

F schedules MU 2, whereas T schedules MU 1. If τ2 > τ1, we can envisage cases in

which both γ2 > γ1 and γ1 > γ2 can happen with positive probability on A. For exam-

ple, we can represent the sets of interest defined earlier on the real line in this case (i.e.,

M = 1), and Figs. 3.1(a) and 3.1(b) show example realizations of γ1 and γ2 for which

r (T , Γ) < r (F , Γ) and r (T , Γ) > r (F , Γ), respectively. Therefore, average sum-rates

cannot be bound easily to determine which feedback policy achieves higher expected

rate on A. The same arguments continue to hold for other events, and the problem com-

plexity is further magnified with increasing numbers of MUs. To overcome these issues,

we will prove a more general result indicating that the best strategy for a MU is to always

use a threshold feedback policy whatever the feedback policies of other MUs are.

To this end, we let

G−1
1 (F (Γ)) = {i ∈ N : i 6= 1 & i ∈ G1 (F (Γ))}

for a given F = (F1, . . . ,Fn)
>. That is, G−1

1 (F (Γ)) is the random set of MUs containing
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(b) γ1 ∈ S̄R
1 , γ2 ∈ SL

2 and r (T , Γ) > r (F , Γ).

Figure 3.1: A two-user example indicating problem complexity due to heterogeneity and
the coupling effects between individual feedback policies.

all MUs requesting beam 1 under F , except for the first MU. The superscript −1 is used

to indicate that all MUs but MU 1 requesting beam 1 are included in G−1
1 (F (Γ)). The

maximum beam 1 SINR value achieved by a MU in this random set is denoted by γ̄?
1 (F ),

i.e.,

γ̄?
1 (F ) = max

i∈G−1
1 (F (Γ))

γ1,i.

Consider now the decentralized feedback policy F
1 = (T1,F2, · · · ,Fn)

>. That is, we
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only allow MU 1 to switch to the threshold feedback rule T1 with the threshold value τ1

determined as above. Then, for almost all realizations of Γ, we have

γ̄?
1 (F ) = γ̄?

1

(

F
1
)

= γ̄?
1 .

Therefore, the difference between R (F ) and R
(

F
1
)

depends only on the rate achieved

by MU 1 under these two feedback policies.

We are interested in proving R (F ) ≤ R (T ). A brief sketch of the proof is as fol-

lows. We first prove that R (F ) ≤ R
(

F
1
)

. To this end, we let Γ−1 be the SINR matrix

containing SINR values of all MUs except those of the first MU. We also let

R (F |Γ−1) = EΓ [r (F , Γ) |Γ−1]

be the conditional average sum-rate achieved by F for a given Γ−1. Then, it is enough

to show that R
(

F
1|Γ−1

)

≥ R (F |Γ−1) for almost all Γ−1. This result implies that the

sum-rate increases if MU 1 switches to a threshold feedback rule regardless of feedback

rules of other MUs. Repeating the same steps for other MUs i ∈ {2, 3, · · · , n} one-by-

one, we end up with the threshold feedback policy T after n steps, and conclude that

R (T ) ≥ R (F ).

Before giving the details of the proof sketched above, we will first perform a prelimi-

nary analysis. For the rest of this part of the chapter, F 1 will represent the decentralized

feedback policy derived from a given decentralized feedback policy F as above. When

we switch from F to F
1, we can identify three main types of events: neutral, loss and gain

events. On the neutral event, we will continue to achieve the same downlink throughput

under both feedback policies. On the loss event, we will lose some data rate upon switch-

ing to F
1 from F . Finally, on the gain event, we will gain some data rate upon switching

to F
1 from F . The difference R

(

F
1
)

− R (F ) depends on the average sum-rates lost

and gained on the loss and gain events. To show that

R
(

F
1
)

− R (F ) ≥ 0,
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we need to characterize these loss and gain events precisely. We first formally define

these events, and then provide their further characterizations suitable for our analysis in

Lemmas 3.2 and 3.3.

Definition 3.5. The loss, gain and neutral events upon switching to F
1 from F on beam 1 are

defined as

AL =
{

Γ ∈ R
M×n
+ : r1

(

F
1, Γ

)

< r1 (F , Γ)
}

, (3.14)

AG =
{

Γ ∈ R
M×n
+ : r1

(

F
1, Γ

)

> r1 (F , Γ)
}

(3.15)

and

AN =
{

Γ ∈ R
M×n
+ : r1(F 1, Γ) = r1(F , Γ)

}

, (3.16)

respectively.

The neutral event is not so much of an interest since both policies achieve the same

rate on this event. However, loss and gain events require further evaluation, and the next

two lemmas provide other characterizations for these events. These characterizations

will be important when we compare R
(

F
1
)

against R (F ).

Lemma 3.2. AL is equal to

AL =
{

Γ ∈ R
M×n
+ : γ1 ∈ SL

1 & γ̄?
1 < γ1,1

}

.

Proof. Refer Appendix 3.7.2 for the proof.

A similar characterization for the gain event on beam 1 is given in the next lemma.

Lemma 3.3. AG is equal to

AG =
{

Γ ∈ R
M×n
+ : γ1 ∈ S̄R

1 & γ̄?
1 < γ1,1

}

.

Proof. Refer Appendix 3.7.2 for the proof.
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These auxiliary results will aid to prove sum-rate optimality of F 1 over F in Theorem

3.1. Before providing the details of the proof of this theorem, we will again give a sketch

of the proof. AL, AG and AN are three disjoint events with total probability mass of one.

Therefore, for a feedback policy F , we can write

R1 (F |Γ−1) = R1 (F , AL|Γ−1) + R1 (F , AG|Γ−1) + R1 (F , AN |Γ−1) .

We can write a similar expression for R1
(

F
1|Γ−1

)

. Comparison of these two expres-

sions term-by-term reveals that

R1
(

F
1|Γ−1

)

≥ R1 (F |Γ−1) .

Since this inequality holds for almost all Γ−1, we also have

R1
(

F
1
)

≥ R1 (F ) .

Since beams are statistically identical, the total rate is M times the rate achieved on beam

1. Therefore, we finally have

R
(

F
1
)

≥ R (F ) . (3.17)

We make this idea formal in the proof of the next theorem.

Theorem 3.1. Let

F = (F1, . . . ,Fn)
>

and

F
1 = (T1,F2, . . . ,Fn)

>

be defined as above. Then, Λ (F ) = Λ
(

F
1
)

, and R
(

F
1
)

≥ R (F ) for any M ≥ 1.

Proof. Refer Appendix 3.7.3 for the proof.

This theorem shows that if a MU starts using a threshold feedback rule, the sum-rate

improves regardless of the feedback rules of all other MUs. This leads to the following
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key finding.

Theorem 3.2. For any beam symmetric general decentralized feedback policy F , there exists a

GTFP T such that Λ (F ) = Λ (T ) and R (T ) ≥ R (F ).

Proof. For a given F = (F1, . . . ,Fn)
>, let T = (T1, . . . , Tn)

> be the GTFP constructed as

above. Let

F
k = (T1, . . . , Tk,Fk+1, . . . ,Fn)

>

for 1 ≤ k ≤ n − 1. When k = n, we have F
n = T . By Theorem 3.1, we have

R (F ) ≤ R
(

F
1
)

≤ · · · ≤ R (F n) = R (T ) .

Since

Λ (F ) = Λ
(

F
1
)

= · · · = Λ (F n) = Λ (T ) ,

the proof is complete.

3.3.2 Optimality of Maximum SINR Threshold Feedback Policies

In this part, we briefly explain why similar results also hold for MTFPs. The proof tech-

niques are the same except for some subtle differences. To start with, under a maximum

SINR decentralized feedback policy, each MU requests only the beam achieving the max-

imum SINR if the feedback conditions are met, i.e., see Definitions 3.1 and 3.4. Hence, the

thresholds are set such that

Pr {b?i = 1 and γ?
i ≥ τi} = Pr {γi ∈ FBi} .

The definition of FBi is refined in which MU i requests beam 1 if and only if b?i = 1 and γ?
i

satisfies feedback conditions. The definitions of other sets and events of interest require
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only some subtle modifications, too. For example, AL can now be defined as

AL =
{

Γ ∈ R
M×n
+ : γ1 ∈ SL

1 & γ̄?
1 < γ?

1

}

,

where

SL
1 =

{

γ1 ∈ R
M
+ : γ1 ∈ FB1 & γ?

1 < τ1

}

.

The next two theorems provide results analogous to the ones stated in Theorems 3.1 and

3.2.

Theorem 3.3. For a given beam symmetric decentralized maximum SINR policy F = (F1, . . . ,Fn)
>,

let F 1 = (T1,F2, . . . ,Fn)
> be the maximum SINR threshold feedback policy derived from F by

allowing MU 1 to switch from F1 to T1, where T1 is a beam symmetric maximum SINR threshold

rule whose threshold is set as above. Then, Λ (F ) = Λ
(

F
1
)

, and R
(

F
1
)

≥ R (F ) for any

M ≥ 1.

Theorem 3.4. For any beam symmetric decentralized maximum SINR feedback policy F , there

exists an MTFP T such that Λ (F ) = Λ (T ) and R (T ) ≥ R (F ).

Since the proofs of these theorems are similar to the proofs above, we skip them to

avoid repetition. It is important to note that Theorems 3.2 and 3.4 hold for any continuous

SINR distribution.

3.4 Special Case: Homogenous Threshold Feedback Policies

Due to the general nature of the analysis, we can directly extend the results in the previ-

ous sections for a case where the MUs use a homogenous feedback policy. However, in

this section, we give a simpler proof using basic set theory for such a scenario. We will

use the same sets FB, SL, SR and S̄R given in (3.10), (3.11), (3.12), and (3.13), respectively,

but we will drop the user index since it will be unnecessary due to the homogeneity.

Again, if the best MU has a positive feedback decision on both the feedback policies, the

system will achieve the same instantaneous downlink throughput. Therefore, any event
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which creates a positive feedback decision at the best MU on one feedback policy, but not

on the other, creates interest. As a start, let’s define the event

AS =

(
n⋃

i=1

{

γi ∈ SL
}
)
⋂

(
n⋂

i=1

{

γi /∈ SR
}
)

,

which is true when there exists at least one MU having a SINR vector from the set SL,

and there is no MU having a SINR vector from SR. We define another event

Aτ =

(
n⋃

i=1

{

γi ∈ S̄R
}
)
⋂

(
n⋂

i=1

{

γi /∈ SR
}
)

,

which is true when there exists at least one MU having a SINR vector from the set S̄R,

and there is no MU having a SINR vector from SR. Note that in both the events, the

possibility of a MU getting a SINR vector from SR is eliminated. This is done to avoid

the neutral event. Also note that,

Pr {AS} = Pr {Aτ} =
n

∑
i=1

(
n

i

)

pi
L(1 − Pr {γ1,i ≥ τ})n−i = pev,

where pL = Pr
{

γi ∈ SL
}

, and we also have pL = Pr
{

γi ∈ S̄R
}

from the definition of

the sets.

Now, let’s look at the complements of these events which are stated in the following

lemma.

Lemma 3.4. The complement of AS is given by

Ac
S =

(
n⋂

i=1

{γi /∈ FB}
)
⋃

(
n⋃

i=1

{

γi ∈ SR
}
)

,

and the complement of Aτ is

Ac
τ =

(
n⋂

i=1

{γ1,i < τ}
)
⋃

(
n⋃

i=1

{

γi ∈ SR
}
)

.

Proof. Refer Appendix 3.7.4 for the proof.
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In the proof of the next theorem, these auxiliary results are used to prove the optimal-

ity.

Theorem 3.5. For any beam symmetric decentralized homogenous feedback policy F , there exists

a homogenous threshold feedback policy T such that Λ (F ) = Λ (T ) and R (T ) ≥ R (F ).

Proof. Refer Appendix 3.7.5 for the proof.

3.5 Discussion of Results

In this part, we briefly discuss the results presented above. We start with a comparison

between GTFPs and MTFPs. The main advantage of GTFPs over MTFPs is the ability of

the base station to allocate multiple beams to a MU. Therefore, a GTFP policy achieves

higher data rates when compared to an MTFP policy with the same threshold levels.

From a practical point of view, such gains in data rates are expected to be minor due to

dependencies among beams at a MU, i.e., high γm,i implies low γk,i, ∀k 6= m. Moreover,

both types of policies achieve the same performance if all threshold values are greater

than 1, which is formally proved in the next lemma.

Lemma 3.5. Let T be an MTFP with thresholds {τi}i∈N , and T
′ be the corresponding GTFP

with the same threshold levels. Let Nm and N ′
m be the sets of MUs requesting beam m ∈ M

according to T and T
′, respectively. If τi > 1 for all i ∈ N , then Nm = N ′

m.

Proof. Refer Appendix 3.7.6 for the proof.

Note that the requirement on threshold values for the equality of MTFPs and GTFPs

in Lemma 3.5 is only a 0 [dB] requirement, which is practically a quite low SINR value.

This implies that both feedback policies will actually achieve the same sum-rate in almost

all practical communication scenarios.

On the other hand, from a theoretical point of view, the resulting optimization prob-

lem over R
n
+ lends itself more amenable to further analysis if we only focus on GTFPs.

More specifically, we can search for the optimal beam symmetric feedback policies within

the class of GTFPs without sacrificing from optimality thanks to Theorem 3.2, and with a
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slight abuse of notation, we can equivalently write (3.8) as

maximize
τ∈R

n
+

R (τ)

subject to ∑
n
i=1 Pr {γ1,i ≥ τi} ≤ λ

. (3.18)

Some further game theoretic insights are as follows. We will only focus on GTFPs but

similar explanations also hold for MTFPs. Given the same utility function R (F1, . . . ,Fn)

for all MUs, the selfish optimization problem faced by MU i is to choose a beam symmet-

ric decentralized feedback rule maximizing its utility given other MUs’ feedback rules

without increasing the feedback level. Theorem 3.1 shows that the dominant strategy is

to switch from Fi to the corresponding threshold rule Ti. As a result, the set of GTFPs

constitute the set of Nash equilibria for this feedback rule selection game, and therefore

GTFPs are also stable operating points from a game theoretic point of view.

In the next chapter, we will analyze the finite dimensional optimization problem in

(3.18). We will show that the sum-rate becomes a Schur-concave function of feedback

probabilities pi = Pr {γ1,i ≥ τi} if the SINR distribution satisfies some mild conditions.

This result establishes the optimality of homogenous general threshold feedback policies

among the class of beam symmetric general decentralized feedback policies.

3.6 Conclusions

Opportunistic beamforming is an important communication strategy achieving the full

CSI sum-rate capacity for vector broadcast channels to a first order by only requiring

partial CSI at the base station. Nevertheless, it cannot eliminate the linear growth in the

feedback load with increasing numbers of MUs in the network unless a selective feed-

back policy is implemented for user selection. In this chapter, we have been motivated by

these considerations to analyze the resulting downlink sum-rate with user selection when

orthonormal beams are opportunistically allocated to MUs for the downlink communi-

cation. In particular, we have focused on the structure of optimal selective decentralized

feedback policies for opportunistic beamforming under finite feedback constraints on the

average number of MUs feeding back. We have shown that threshold feedback policies
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in which MUs compare their beam SINRs with a threshold for their feedback decisions

are always optimal to maximize the downlink sum-rate. This class of policies was stud-

ied in many previous works such as [21, 29, 34, 70, 73, 79] without any formal justification

for why they are the right choice for user selection. Our thresholding optimality result

provides the formal justification, which holds for all fading channel models with contin-

uous distribution functions. Since each threshold feedback policy can be associated with

a threshold vector in R
n
+, these results also reduce the search for rate-wise optimal feed-

back policies from function spaces to finite dimensional Euclidean spaces, which will be

analyzed in the next chapter.

3.7 Appendix

3.7.1 Proof of Lemma 3.1

Using the definition of rate, the average throughput achieved using F is given by

R (F ) = E

[

log(1 + γ1).1{γ1∈SL
1 }
]

+ E

[

log(1 + γ1).1{γ1∈SR
1 }
]

,

and since supSL
1 is less than the threshold,

R (F ) ≤ Pr

{

γ1 ∈ SL
1

}

log(1 + τ1) + E

[

log(1 + γ1).1{γ1∈SR
1 }
]

.

Similarly, the average throughput achieved using T can be written as

R (T ) = E

[

log(1 + γ1).1{γ1∈S̄R
1 }
]

+ E

[

log(1 + γ1).1{γ1∈SR
1 }
]

,

which can be lower bounded as,

R (T ) ≥ Pr

{

γ1 ∈ S̄R
1

}

log(1 + τ1) + E

[

log(1 + γ1).1{γ1∈SR}
]

= R (F )
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since

Pr

{

γ1 ∈ S̄R
1

}

= Pr

{

γ1 ∈ SL
1

}

,

which completes the proof.

3.7.2 Loss Event and Gain Event

Proof of Lemma 3.2

Set

ĀL =
{

Γ ∈ R
M×n
+ : γ1 ∈ SL

1 & γ̄?
1 < γ1,1

}

.

We will show ĀL = AL. For all Γ with γ1 ∈ SL
1 , MU 1 requests beam 1 under F , but not

under F 1. Therefore, if γ1 ∈ SL
1 and γ̄?

1 < γ1,1, the system using F schedules MU 1 for

communication along beam 1, and the system using F
1 schedules another MU having

γ̄?
1 < γ1,1 for communication along beam 1. This means r1

(

F
1, Γ

)

< r1 (F , Γ) for all

Γ ∈ ĀL, implying ĀL ⊆ AL.

Showing AL ⊆ ĀL will complete the proof. For all Γ with γ̄?
1 ≥ γ1,1, both feedback

policies will achieve the same throughput by scheduling the MU having γ̄?
1 . Therefore,

we must have γ̄?
1 < γ1,1 on the loss event. Now, if γ1 /∈ FB1, MU 1 will not feed back

under F , which implies no potential loss on beam 1. Therefore, for all Γ ∈ AL, we must

have γ1 ∈ FB1 and γ̄?
1 < γ1,1. If γ̄?

1 < γ1,1 and γ1 ∈ SR
1 , MU 1 requests beam 1 under both

feedback policies, resulting in a neutral event. This implies that γ1 ∈ SL
1 and γ̄?

1 < γ1,1

for all Γ ∈ AL. Therefore, we also have AL ⊆ ĀL, which concludes the proof.

Proof of Lemma 3.3

The proof is similar to the one given for Lemma 3.2. Set

ĀG =
{

Γ ∈ R
M×n
+ : γ1 ∈ S̄R

1 & γ̄?
1 < γ1,1

}

.
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We first show that ĀG ⊆ AG. For all Γ with γ1 ∈ S̄R
1 and γ̄?

1 < γ1,1, a system using F
1

schedules MU 1 for communication on beam 1, but a system using F schedules the MU

with γ̄?
1 < γ1,1. Therefore, r1

(

F
1, Γ

)

> r1 (F , Γ) if γ1 ∈ S̄R
1 and γ̄?

1 < γ1,1, implying

ĀG ⊆ AG.

Next, observe that the neutral event occurs for all Γ with γ̄?
1 ≥ γ1,1. Therefore, we

must have γ̄?
1 < γ1,1 on the gain event. If γ1,1 < τ1, MU 1 will not feed back under

F
1, and therefore no rate gain is achieved by switching to F

1. Therefore, we must have

γ1,1 ≥ τ1 on the gain event. If γ1 ∈ SR
1 , MU 1 still feeds back under both feedback

policies, which again leads to a neutral event. Therefore, for all Γ ∈ AG, we must have

γ1 ∈ S̄R
1 and γ̄?

1 < γ1,1, which shows that AG ⊆ ĀG and completes the proof.

3.7.3 Proof of Theorem 3.1

It is enough to prove R1
(

F
1|Γ−1

)

≥ R1 (F |Γ−1) for almost all Γ−1. By definition, we

have

R1 (F , AN |Γ−1) = R1
(

F
1, AN |Γ−1

)

,

and therefore we are only interested in the average sum-rates on loss and gain events.

The following identity follows from the definition of conditional expectation.

R1 (F , AL|Γ−1) = Pr (AL|Γ−1)EΓ

[

r1 (F , Γ) |AL, Γ−1

]

.

Lemma 3.2 implies that whenever AL is correct, MU 1 requests beam 1, and achieves the

best SINR on beam 1 among all the MUs requesting beam 1. Since γ1 ∈ SL
1 on AL, γ1,1 is

less than τ1. Therefore,

R1 (F , AL|Γ−1) ≤ Pr (AL|Γ−1) log (1 + τ1). (3.19)

Similarly, we can write

R1 (F , AG|Γ−1) = Pr (AG|Γ−1)EΓ

[

r1 (F , Γ) |AG, Γ−1

]

.
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Lemma 3.3 implies that MU 1 achieves the best SINR on beam 1 among all the MUs

requesting beam 1 but γ1 ∈ S̄R
1 on AG. Therefore, γ1 /∈ FB1, and MU 1 will not request

beam 1 under F . Hence, F schedules beam 1 to the MU with SINR value γ̄?
1 , which leads

to 4

R1 (F , AG|Γ−1) = Pr (AG|Γ−1) log (1 + γ̄?
1). (3.20)

Similar to the above arguments, MU 1 will not request beam 1 under F 1 on the event

AL since γ1 ∈ SL
1 . This means

R1
(

F
1, AL|Γ−1

)

= Pr (AL|Γ−1) log (1 + γ̄?
1). (3.21)

Finally, MU 1 requests beam 1 under F 1 on AG, leading to

R1
(

F
1, AG|Γ−1

)

≥ Pr (AG|Γ−1) log (1 + max (τ1, γ̄?
1)). (3.22)

By using (3.19), (3.20), (3.21) and (3.22), we have

R1
(

F
1|Γ−1

)

− R1 (F |Γ−1) ≥ Pr (AG|Γ−1) (log (1 + max (τ1, γ̄?
1))− log (1 + γ̄?

1))

+ Pr (AL|Γ−1) (log (1 + γ̄?
1)− log (1 + τ1)) .

To conclude the proof, we need to analyze two different cases separately. If γ̄?
1 ≥ τ1,

then it directly follows that

R1
(

F
1|Γ−1

)

− R1 (F |Γ−1) ≥ 0.

If γ̄?
1 < τ1, then we have

R1
(

F
1|Γ−1, γ̄?

1 < τ1

)

− R1 (F |Γ−1, γ̄?
1 < τ1)

≥ (Pr (AG|Γ−1, γ̄?
1 < τ1)− Pr (AL|Γ−1, γ̄?

1 < τ1)) (log (1 + τ1)− log (1 + γ̄?
1)) .

4Note that γ̄?
1 is a (measurable) function of Γ−1, and therefore (3.20) conforms with the measure theoretic

definition of the conditional expectation.



54 Optimality of Threshold Feedback Policies

Observe that

Pr (AG|Γ−1, γ̄?
1 < τ1) = Pr

{

γ1 ∈ S̄R
1

}

and

Pr {AL|Γ−1, γ̄?
1 < τ1} ≤ Pr

{

γ1 ∈ SL
1

}

.

Since Pr
{

γ1 ∈ S̄R
1

}
= Pr

{
γ1 ∈ SL

1

}
, we have

R1
(

F
1|Γ−1, γ̄?

1 < τ1

)

− R1 (F |Γ−1, γ̄?
1 < τ1) ≥ 0.

After removing conditioning, this proves that R1
(

F
1|Γ−1

)

≥ R1 (F |Γ−1) for almost all

Γ−1, and therefore

R1
(

F
1
)

≥ R1 (F ) .

3.7.4 Proof of Lemma 3.4

Using set theory, we have

Ac
S =

(
n⋂

i=1

{

γi /∈ SL
}
)
⋃

(
n⋃

i=1

{

γi ∈ SR
}
)

.

Since the complement of
⋂n

i=1 {γi /∈ FB} is
⋃n

i=1 {γi ∈ FB}, we have

Ac
S =

(
n⋂

i=1

{

γi /∈ SL
}
)
⋂

({
n⋂

i=1

{γi /∈ FB}
}
⋃

{
n⋃

i=1

{γi ∈ FB}
})

⋃

(
n⋃

i=1

{

γi ∈ SR
}
)

.

This can be rewritten as

Ac
S =

(
n⋂

i=1

{

γi /∈ SL, FB
}
)
⋃

({
n⋃

i=1

{γi ∈ FB}
}
⋂

{
n⋂

i=1

{

γi /∈ SL
}
})
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⋃

(
n⋃

i=1

{

γi ∈ SR
}
)

.

Since

{
n⋃

i=1

{γi ∈ FB}
}
⋂

{
n⋂

i=1

{

γi /∈ SL
}
}

=
n⋃

i=1

{

γi ∈ SR
}

,

we have

Ac
S =

(
n⋂

i=1

{γi /∈ FB}
)
⋃

(
n⋃

i=1

{

γi ∈ SR
}
)

.

Ac
τ can be obtained by following the same lines of the proof of Ac

S, which completes this

proof.

3.7.5 Proof of Theorem 3.5

We can write the average rate on beam one as

R1 (F ) = R1 (F , AS) + R1 (F , Ac
S)

= E

[

log

(

1 + max
1≤i≤n

γ1,i1{γi∈FB}

)

1{(⋃n
i=1{γi∈SL})⋂(⋂n

i=1{γi /∈SR})}

]

+ E

[

log

(

1 + max
1≤i≤n

γ1,i1{γi∈FB}

)

1{(⋂n
i=1{γi /∈FB})⋃(⋃n

i=1{γi∈SR})}

]

.

Since
⋂n

i=1 {γi /∈ FB} and
⋃n

i=1

{
γi ∈ SR

}
are disjoint sets, we can write

R1 (F ) = E

[

log

(

1 + max
1≤i≤n

γ1,i1{γi∈FB}

)

1{(⋃n
i=1{γi∈SL})⋂(⋂n

i=1{γi /∈SR})}

]

+ E

[

log

(

1 + max
1≤i≤n

γ1,i1{γi∈FB}

)

1{⋂n
i=1{γi /∈FB}}

]

︸ ︷︷ ︸

=0

+ E

[

log

(

1 + max
1≤i≤n

γ1,i1{γi∈FB}

)

.1{⋃n
i=1{γi∈SR}}

]

.
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We will upper bound R1 (F ) as,

R1 (F ) ≤ pev log (1 + τ) + E

[

log

(

1 + max
1≤i≤n

γ1,i1{γi∈FB}

)

1{⋃n
i=1{γi∈SR}}

]

by evaluating the first term in the right hand side of the equation, and using the fact that

there is at least one MU with a SINR vector from SL, and supSL = τ. When it comes to

the last term in the right hand side, it is not hard to see that if there exists a MU i with

γi1{γi∈FB} ∈ SR, then max
1≤i≤n

γ1,i ∈ SR. Therefore, we have

R1 (F ) ≤ pev log (1 + τ) + E

[

log

(

1 + max
1≤i≤n

γ1,i1{γi∈SR}

)

1{⋃n
i=1{γi∈SR}}

]

.

Now, by using a similar technique, we will obtain a lower bound for R1 (T ), and show

that it is greater than or equal to this upper bound of R1 (F ).

Using Aτ and Ac
τ, we have

R1 (T ) = R1 (T , Aτ) + R1 (T , Ac
τ) .

Using similar arguments to the ones done above, we have

R1 (T ) ≥ pev log (1 + τ) + E

[

log

(

1 + max
1≤i≤n

γ1,i1{γ1,i≥τ}

)

1{⋂n
i=1 γ1,i<τ}

]

︸ ︷︷ ︸

=0

+ E

[

log

(

1 + max
1≤i≤n

γ1,i1{γ1,i≥τ}

)

1{⋃n
i=1{γi∈SR}}

]

.

It is not hard to see that,

E

[

log

(

1 + max
1≤i≤n

γ1,i1{γ1,i≥τ}

)

1{⋃n
i=1{γi∈SR}}

]

≥ E

[

log

(

1 + max
1≤i≤n

γ1,i1{γi∈SR}

)

1{⋃n
i=1{γi∈SR}}

]

.

Therefore, R (T ) ≥ R (F ), which completes the proof.
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3.7.6 Proof of Lemma 3.5

Nm and N ′
m are given as

Nm =
{

i ∈ N : b∗i = m & γb∗i ,i ≥ τi

}

and

N ′
m = {i ∈ N : γm,i ≥ τi} .

Thus, we have Nm ⊆ N ′
m. To show the other direction, take any i ∈ N ′

m, and a beam

index r 6= m. Then, |h>
i qm|2 > |h>

i qr|2 because τi > 1. Therefore, the following holds.

γm,i =
|h>

i qm|2
1
ρ + ∑

M
k=1,k 6=m |h>

i qk|2

>
|h>

i qr|2
1
ρ + ∑

M
k=1,k 6=r |h>

i qk|2
= γr,i.

As a result, any MU i ∈ N ′
m achieves its maximum SINR at beam m if τi > 1. This implies

that b∗i = m and i ∈ Nm.





Chapter 4

Optimal Threshold Selection Problem

Threshold feedback policies are well known and provably rate-wise optimal selective feedback tech-

niques for communication systems requiring partial channel state information (CSI). However, op-

timal selection of thresholds at mobile users to maximize information theoretic data rates subject to

feedback constraints is an open problem. In this chapter, we focus on the optimal threshold selection

problem, and provide a solution for this problem for finite feedback systems. Rather surprisingly,

we show that using the same threshold values at all mobile users is not always a rate-wise optimal

feedback strategy, even for a system with identical users experiencing statistically the same channel

conditions. By utilizing the theory of majorization, we identify an underlying Schur-concave struc-

ture in the rate function and obtain sufficient conditions for a homogenous threshold feedback policy

to be optimal. Our results hold for most fading channel models, and we illustrate applications of our

results to well known fading channel models such as Rayleigh, Nakagami and Rician fading channels,

along with various engineering and design insights. We show, for the Rayleigh fading channel model,

homogenous threshold feedback policies are proven to be rate-wise optimal if multiple orthonormal

data carrying beams are used to communicate with multiple mobile users simultaneously.

4.1 Introduction

C
ONSIDER a multiuser communication system in a fading environment. The chan-

nel changes over time, and the goal of the base station is to maximize downlink

data rates by taking channel variations into account. The base station has multiple trans-

mission antennas, and therefore can possibly communicate with a selected subset of mo-

bile users (MUs) through multiple traffic flows simultaneously. In this setting, selecting

the MUs with the best instantaneous signal-to-interference-plus-noise-ratios (SINR) for

communication is a simple communication strategy that is heuristically expected to max-

59
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imize downlink data rates. Indeed, this is the classical opportunistic communication

approach. However, regardless of partial or perfect CSI feedback, all MUs contend for

the uplink to communicate their CSI to the base station in such a setting. This is an im-

practical burden on the uplink (for large numbers of MUs), and a significant waste of

communication resources, which is created by the feedback from MUs having no realis-

tic chance of being scheduled for communication. These considerations motivate the use

of selective feedback techniques in which only the MUs with channels good enough are

allowed to feed back [29].

Having established the optimality of threshold feedback policies in the previous chap-

ter, this chapter studies the important issue of how to set threshold values at MUs opti-

mally to maximize downlink data rates without violating finite feedback constraints. To

this end, we focus on the general setting of vector broadcast channels operating based

on the concept of opportunistic beamforming [79]: Each MU calculates the SINR on each

beam (random orthonormal beams in this context) and feeds back the SINR value and

the index of the best beam to the base station. Upon retrieval of this information, the base

station schedules the MU with the best SINR on each beam. Certainly, threshold feedback

policies provide further feedback reductions for such systems, and therefore the follow-

ing question is of practical and theoretical importance to answer: What is the optimal

assignment of thresholds to MUs so that aggregate data rates over multiple beams are

maximized subject to constraints on the average number of MUs feeding back per beam?

4.1.1 Related Works

On top of the work discussed in Chapter 3, related work also includes [65, 78]. In [65,

78], CSI parameters were quantized to reduce the feedback load for OBF. This approach

cannot eliminate the linear feedback load growth alone, but it leads to further feedback

reductions when combined with a user selection protocol. In this chapter, we solve the

optimum threshold selection problem offline under statistical information about wireless

channels. Once the thresholds are optimally assigned for user selection, it is an added

design choice how to quantize SINR parameters, and the resulting performance analysis

requires further investigation, which we do not address in this chapter.
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Thresholding techniques are commonly seen in networks which do not utilize OBF as

well [5,53,71,102,106]. In [106], the authors study a zero-force beamforming framework,

and use an orthogonality threshold for selecting the MUs. By using the threshold, they

are able to select a subset of MUs having channel vectors which are nearly orthogonal

to each other. Optimum sumrate is achieved asymptotically. [5] also uses a zero-force

beamforming framework, and a thresholding technique for user selection. In this tech-

nique, only the MUs with eigenvectors whose corresponding singular values are above a

given threshold value are considered for selection. Among them, a subset of MUs having

channel vectors which are nearly orthogonal to each other is selected. The authors pro-

vide sufficient and necessary conditions on the threshold value for the system to achieve

optimum sum-rate capacity. These works are related in the sense that they use the same

selective feedback technique, but different since they consider a framework which require

perfect CSI at the base station.

In [71], the authors focused on exploiting multiuser diversity in a distributed manner

for scalar multiple access channels by means of thresholds. Their MAC layer consisted

of a collision channel model, and the thresholds were chosen to be the same for all MUs

with identical channel statistics. Although we focus on the dual vector broadcast chan-

nels in this chapter without any attention on the multiple access feedback uplink, our

results have some ramifications for the MAC problem studied in [71]. First of all, our

homogenous threshold optimality results imply that using different threshold levels for

different MUs with identical channel conditions may further improve the data rates re-

ported in [71]. Secondly, they provide a cross-layer design parameter for the number of

MUs to be multiplexed on the uplink (for feedback) without any noticeable performance

degradation at the downlink.

4.1.2 Contributions

As shown in the previous chapter, the optimization problem we face is over the familiar

finite dimensional Euclidean spaces, but it turns out that the objective sum-rate function

is not necessarily convex as a function of users’ threshold values. Thus, we resort to

the theory of majorization [51], and solve the optimum threshold selection problem by
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identifying an underlying Schur-concave structure in the sum-rate function. In particular,

we obtain sufficient conditions for the Schur-concavity of the sum-rate, and therefore for

the rate optimality of homogenous threshold feedback policies in which all MUs use the

same threshold for their feedback decisions. These conditions are provided for general

fading models under some mild conditions on the resulting SINR distribution, which are

satisfied by most common fading models such as Rayleigh, Rician and Nakagami fading.

A naive but intuitive approach to maximize the total downlink communication rate

for a network with identical MUs experiencing statistically the same channel conditions is

to use a homogenous threshold feedback policy satisfying feedback constraints. Rather

surprisingly, our results reveal that this intuition does not always work here. We pro-

vide a simple counterexample in which only a single beam is used for the downlink

communication with two MUs in a Rayleigh fading environment. In the high signal-to-

noise-ratio (SNR) regime, necessary conditions for the Schur-concavity of the sum-rate

are violated, and it becomes strictly suboptimal to use the same threshold value to medi-

ate users’ feedback decisions. Indeed, we prefer one MU over the other one by assigning

a small threshold for this MU to minimize the feedback outage event probability, i.e., the

probability that none of the MUs feeds back. On the other hand, we show that the sum-

rate is a Schur-concave function when the SNR is low, and therefore the homogenous

threshold feedback policy satisfying feedback constraints with equality is the optimum

policy to maximize the sum-rate in the low SNR regime. To put it in another way, we

trade the power gain (due to multiuser diversity) for the degrees-of-freedom gain (due

to minimum outage communication) in the high SNR regime, whereas the degrees-of-

freedom gain is traded for the power gain in the low SNR regime. An extensive nu-

merical study utilizing our sufficient conditions is also performed to illustrate optimality

and sub-optimality regions for the homogenous threshold feedback policies for fading

models other than Rayleigh fading such as Rician and Nakagami fading.

On the more positive side, we show that the sum-rate is always a Schur-concave func-

tion for all values of SNR when two or more orthonormal beams are used to simultane-

ously communicate with multiple MUs located in a Rayleigh fading environment. In this

case, the downlink communication becomes interference limited, rather than noise lim-
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ited, due to inter-beam interference, and therefore the behavior of the optimum threshold

feedback policy becomes unchanged for all SNR values: Use the same threshold for all

MUs such that the feedback constraint is satisfied with equality. For this fading scenario,

the difference between communication rates achieved with and without user selection is

also illustrated. In particular, when the threshold values are optimally set for large MU

populations, there is almost no rate loss if the average number of MUs feeding back per

beam is around five. From a practical point of view, this signifies a significant reduction in

the feedback load without noticeable performance loss, and provides an important cross-

layer design parameter for the higher MAC layer for multiplexing MUs on the uplink to

feed back.

The rest of this chapter is organized as follows. We first formulate the problem in

Section 4.2, and provide an overview of our main results in Section 4.3 without any formal

proofs. We then introduce some key concepts from the theory of majorization in Section

4.4. Then, formal proofs are supplied in Section 4.5 and in related appendices. We present

an extensive numerical and simulation study to illustrate the applications of the results

to familiar fading models along with various engineering and design insights in Section

4.6. Section 4.7 concludes the chapter.

4.2 Problem Formulation

In this chapter, we study the vector broadcast channel model given in Subsection 2.2.1,

and we extend the problem formulated in Chapter 3, where we established the optimality

of threshold feedback policies. Firstly, we will recall some important information, which

will facilitate exposition in the rest of the chapter.

To recall, the base station communicates with n MUs through M different orthogo-

nal beams simultaneously. The base station has Nt transmit antennas, and each MU is

equipped with a single receive antenna. The beams are assumed to be statistically iden-

tical, and MUs experience statistically independent channel conditions. γi,m is the SINR

at beam m at MU i, and γi ∈ R
M
+ represents the SINR vector at MU i. The elements of γi

are identically distributed with a common marginal distribution F. We will assume that
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F is continuous, and has the density f with support R+. The M-by-n SINR matrix of the

whole n-user communication system is denoted by Γ ∈ R
M×n
+ .

The MUs will feedback using a decentralized general threshold feedback policy, which

has been defined in Chapter 3. We restate the definition in this chapter for the sake of

completeness.

Definition 3.3 We say

T = (T1, . . . , Tn)
>

is a general threshold feedback policy (GTFP) if, for all i ∈ N , there is a threshold τi such

that Ti (γi) generates a feedback packet containing SINR values {γk,i}k∈Ii
if and only if γk,i ≥ τi

for all k ∈ Ii ⊆ M. We call it a homogenous general threshold feedback policy if all MUs

use the same threshold τ, i.e., τi = τ for all i ∈ N .

We only consider GTFPs in this chapter to avoid repetition (the definition of maxi-

mum threshold feedback policy (MTFP) is given in Definition 3.4, and the subtle differ-

ences between GTFPs and MTFPs are discussed in Section 3.5). We will also drop the

term general for simplicity.

Given a threshold feedback policy T , we have a random set of MUs Gm (T (Γ)) re-

questing beam m ∈ M. Then, the downlink ergodic sum-rate achieved under the thresh-

old feedback policy T is given by

R (T ) = EΓ [r (T , Γ)] = EΓ

[
M

∑
m=1

log

(

1 + max
i∈Gm(T (Γ))

γm,i

)]

, (4.1)

where r (T , Γ) is the instantaneous sum-rate achieved under the threshold feedback policy

T . rm (T , Γ) and Rm (T ) denote the instantaneous sum-rate and the ergodic sum-rate on

beam m, respectively. Note that

rm (T , Γ) = log

(

1 + max
i∈Gm(T (Γ))

γm,i

)

, (4.2)
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and

Rm (T ) = EΓ [r
m (T , Γ)] . (4.3)

We will use R (T ) as the performance measure of a given feedback policy along the rate

dimension.

Given a threshold feedback policy T , we will use the average number of MUs feeding

back per beam Λ (T ) to measure the performance of T along the feedback dimension.

We have

Λ (T ) =
n

∑
i=1

Pr {γ1,i ≥ τi} .

Given a finite feedback system with a feedback constraint λ, the main optimization prob-

lem to be solved now is to determine the optimal threshold values to maximize the down-

link throughput, which is formally written as

maximize
τ∈R

n
+

R (τ)

subject to ∑
n
i=1 Pr {γ1,i ≥ τi} ≤ λ

. (4.4)

The optimization problem in (4.4), which we call optimal threshold selection problem, is

still not easy to solve, even for a simple two-user system, due to the non-convex objec-

tive function, and a constraint set depending on the distribution of SINR values. The

complexity of the problem further increases with increasing numbers of MUs due to the

dimensionality growth. Therefore, it is not possible to solve the optimal threshold se-

lection problem in its full generality for a general n-user system. However, we can still

search for a structure in the sum-rate function to solve the optimal threshold selection

problem, which is what we will do in the remainder of this chapter.

More specifically, we will search for sufficient conditions to be satisfied by SINR dis-

tributions so that the sum-rate becomes a Schur-concave function of feedback probabili-

ties. Roughly speaking, a Schur-concave function increases when the dispersion among

the components of its argument decreases, which implies a solution for the optimization
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problem in (4.4) is a homogenous threshold feedback policy in which thresholds are set

according to

τ
? =

(

F−1

(

1 − λ

n

)

, · · · , F−1

(

1 − λ

n

))>
(4.5)

if the sum-rate is a Schur-concave function. We make this intuitive idea rigorous below.

4.3 Main Results

The main results of this section are stated in Theorems 4.1 and 4.2. In these theorems, we

view the sum-rate as a function of feedback probabilities. This approach does not limit

the generality of our results since SINR probability density function is already assumed

to have R+ as its support, and therefore there is a one-to-one correspondence between

feedback threshold values τi and the feedback probabilities pi, i.e., τi = F−1 (1 − pi) for

all i ∈ N . This assumption is satisfied for many commonly used practical fading models

such as Rayleigh, Rician and Nakagami fading. Our theorems are as follows, and q in

Theorem 4.1 is an auxiliary random variable.

Theorem 4.1. The sum-rate R (p) is a Schur-concave function if

log (1 + γ) (λ − 2q) +
∫ F−1(1−q)

F−1(1+q−λ)

F(x)

1 + x
dx − (λ − 2q) log

(

1 + F−1 (1 + q − λ)
)

≥ 0 (4.6)

for all γ ≥ 0, λ ∈ [0, 2] and max {0, λ − 1} ≤ q ≤ λ
2 .

Theorem 4.2. The sum-rate R (p) is Schur-concave if f is bounded at zero, and has the derivative

f ′ satisfying

f ′
(

F−1(x)
)

≤ − f
(

F−1(x)
)

1 + F−1(x)
(4.7)

for all x ∈ [0, 1].

The proofs of Theorems 4.1 and 4.2 require introduction of new notation, and involve

several cases to analyze separately. We also need some key results from the theory of
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majorization [51] to prove these results. Therefore, we have relegated their proofs to the

following sections and appendixes. We now briefly discuss their implications.

We first note that the sufficient condition for the Schur-concavity of the sum-rate given

in (4.6) is stronger than the one given in (4.7) in the sense that (4.6) always holds whenever

(4.7) holds, but not vice versa. This is formally established in Section 4.5. Furthermore,

since the first term in (4.6) is always positive, an easier condition to check for the Schur-

concavity of the sum-rate function is

∫ F−1(1−q)

F−1(1+q−λ)

F(x)

1 + x
dx − (λ − 2q) log

(

1 + F−1(1 + q − λ)
)

≥ 0 (4.8)

for all λ ∈ [0, 2] and max {0, λ − 1} ≤ q ≤ λ
2 . Further, we can bound (4.8) from below to

obtain another sufficient condition as

(1 + q − λ) log
(

1 + F−1(1 − q)
)

− (1 − q) log
(

1 + F−1 (1 + q − λ)
)

≥ 0, (4.9)

for all λ ∈ [0, 2] and max {0, λ − 1} ≤ q ≤ λ
2 . For a two-user system, (4.8) is also neces-

sary, i.e., see Lemma 4.7 and discussions therein.

Although the conditions (4.8) and (4.9) are easy to verify numerically, they may not

be tractable analytically. The integral expression in (4.8) is hard to evaluate in closed-

form. Analytical verification of (4.9) is also difficult due to the presence of conflicting

forces working in opposite directions to increase/decrease the value of the bound. For

example, the pre-log factor of the first term in (4.9), which is 1+ q − λ, is smaller than the

pre-log factor of the second term, which is 1− q, for max {0, λ − 1} ≤ q ≤ λ
2 . Conversely,

for max {0, λ − 1} ≤ q ≤ λ
2 , F−1(1 − q) appearing inside the logarithm in the first term is

greater than F−1(1 + q − λ) appearing inside the logarithm in the second term.

On the other hand, the sufficient condition for the Schur-concavity of the sum-rate

function given in Theorem 4.2 turns out to be much easier to deal with analytically al-

though it looks more complex than (4.8) and (4.9). In particular, it provides an almost com-

plete characterization for the solution of optimal threshold selection problem for richly

scattered Rayleigh fading environments. More precisely, (4.7) is always satisfied for all

values of ρ for Rayleigh fading channels whenever M ≥ 2. Hence, the sum-rate is al-
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ways a Schur-concave function of feedback probabilities in this case, and is maximized

if thresholds are chosen according to (4.5). In Section 4.6, we provide a detailed discus-

sion for the optimality and sub-optimality of homogenous threshold feedback policies

for Rayleigh fading channels as well as other wireless channel models. Next, we will

briefly introduce some key concepts from the theory of majorization to be used later in

our analysis.

4.4 Majorization

For a vector x in R
n, we denote its ordered coordinates by

x(1) ≥ · · · x(k−1) ≥ x(k) ≥ x(k+1) ≥ · · · x(n)

For x and y in R
n, we say x majorizes y and write it as x �M y if we have

k

∑
i=1

x(i) ≥
k

∑
i=1

y(i)

when k = 1, . . . , n − 1, and

n

∑
i=1

x(i) =
n

∑
i=1

y(i).

A function ϕ : R
n 7→ R is said to be Schur-convex if x �M y implies ϕ (x) ≥ ϕ (y), and

ϕ is Schur-concave if −ϕ is Schur-convex. Schur-convex/concave functions often arise in

mathematical analysis and engineering applications [3, 95]. For example, every function

that is concave (convex) and symmetric is also a Schur-concave (Schur-convex) function.

A Schur-concave function tends to increase when the components of its argument be-

come more similar. We will establish conditions under which the sum-rate becomes a

Schur-concave function, which will, in turn, imply the optimality of homogenous thresh-

old feedback policies. The following lemma is helpful in establishing these conditions.
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Lemma 4.1. Let ϕ be a real-valued function defined on R
n
+, and

D = {z ∈ R
n
+ : z1 ≥ · · · ≥ zn} .

Then, ϕ is a Schur-convex function if and only if, for all z ∈ D and i = 1, . . . , n − 1,

ϕ (z1, . . . , zi−1, zi + ε, zi+1 − ε, zi+2, . . . , zn)

is increasing in ε over the region 0 ≤ ε ≤ min {zi−1 − zi, zi+1 − zi+2}. 1

It can be seen that the coordinates zi and zi+1 are systematically altered by using the

parameter ε, and the constraints on ε eliminate any violation in the order. Interested

readers are referred to [51] for more insights on the theory of majorization. Now, we will

see how we can use this theory to identify the Schur-concave structure in the objective

rate function.

4.5 Schur-concavity Analysis for the Sum-rate

The main objective is to establish sufficient conditions on the SINR distributions for the

Schur-concavity of the sum-rate function. Again, we focus on the first beam to explain

our proof ideas without any loss of generality since all beams are statistically identical.

We start by analyzing the sum-rate as a function of thresholds as given in (4.4) to estab-

lish three important lemmas. Next, we will incorporate the feedback constraint into our

optimization problem by interpreting the sum-rate as a function of feedback probabili-

ties. Using these results, we will finally establish the underlying Schur-concave structure

in the sum-rate function through the theory of majorization.

1At the end points i = 1, i = n − 1, the condition is modified accordingly.
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4.5.1 Rate as a Function of Thresholds

Consider thresholds in increasing order, i.e., τπ(1) ≤ · · · ≤ τπ(i) ≤ τπ(i+1) ≤ · · · ≤ τπ(n).

Based on Lemma 4.1, it is enough to consider

R1
(

τπ(i+1) + ε, τπ(i) − ε
)

= R1
(

τπ(n), . . . , τπ(i+1) + ε, τπ(i) − ε, . . . , τπ(1)

)

,

to identify the underlying Schur-concave structure in the sum-rate function.2 However,

analysis of this function is still complex. Therefore, we resort to the following divide-

and-conquer approach.

With a slight abuse of notation, we define the truncated SINR on beam m at MU i as

γ̄m,i = γm,i1{γm,i≥τi}.

Let

N ′ = {k ∈ N : k 6= π(i) & π(i + 1)} .

Also, let

γ̄?
N ′ = max

k∈N ′
γ̄1,k,

which is the maximum truncated SINR on beam 1 among the MUs in N ′. The instanta-

neous rate on beam 1 as a function of γ̄1,π(i), γ̄1,π(i+1) and γ̄?
N ′ is

r1
(

γ̄1,π(i+1), γ̄1,π(i), γ̄?
N ′

)

= log
(

1 + max
{

γ̄1,π(i+1), γ̄1,π(i), γ̄?
N ′

})

. (4.10)

We fix the thresholds and the SINR values of all MUs in N ′.3 Randomness is now associ-

ated only with MUs π(i) and π(i + 1). Therefore,

R1
(

τπ(i+1), τπ(i)|γ̄?
N ′

)

= E

[

r1
(

γ̄1,π(i+1), γ̄1,π(i), γ̄?
N ′

)

|γ̄?
N ′

]

. (4.11)

2We suppress the dependency of R1 on τπ(k), k 6= i, i + 1 here and later in the chapter when we focus only
on thresholds τπ(i) and τπ(i+1).

3Fixing random SINR values means conditioning on them in the probabilistic sense. Out of the trun-
cated SINR values which are being fixed, only γ̄?

N ′ will affect the rate expression, because the beam will be
allocated to the MU with the maximum truncated SINR. Therefore, it is sufficient just to condition on γ̄?

N ′ .
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As shown later in the chapter, this approach helps us to use the results derived for a

two-user system to simplify our analysis. Therefore, considering a two-user system first,

the rate on beam 1 as a function of the thresholds is explicitly given in Lemma 4.2.

Lemma 4.2. The rate on beam 1 of a two-user system is equal to

R1 (τ) =
∫ ∞

τπ(2)

log(1 + x)dF2(x) + F
(

τπ(2)

) ∫ τπ(2)

τπ(1)

log(1 + x)dF(x).

Proof. See Appendix 4.8.1.

Coming back to the general n-user scenario, it is not tractable to obtain the rate ex-

plicitly as we have done in the previous lemma. However, we can explicitly write down

an expression for R1
(

τπ(i+1), τπ(i)|γ̄?
N ′

)

. R1
(

τπ(i+1), τπ(i)|γ̄?
N ′

)

is parameterized by γ̄?
N ′ ,

and its shape depends on the value of γ̄?
N ′ . Three cases of interest are γ̄?

N ′ > τπ(i+1),

γ̄?
N ′ < τπ(i) and τπ(i) ≤ γ̄?

N ′ ≤ τπ(i+1). We will now establish three important lemmas

for these three cases, which will be useful in interpreting the rate function. The two-user

rate expression given in Lemma 4.2 functions as a building block to obtain beam 1 rate

expressions in these cases. We will start with the case γ̄?
N ′ > τπ(i+1).

Lemma 4.3. If γ̄?
N ′ > τπ(i+1), R1

(

τπ(i+1), τπ(i)|γ̄?
N ′

)

is given by

R0 (γ̄
?
N ′) = Pr

{
ξ?i+1,i ≤ γ̄?

N ′ |γ̄?
N ′
}

log (1 + γ̄?
N ′) + E

[

log
(
1 + ξ?i+1,i

)
1{ξ?i+1,i>γ̄?

N ′}|γ̄
?
N ′

]

,

where ξ?i+1,i = max
{

γ1,π(i+1), γ1,π(i)

}

.

Proof. See Appendix 4.8.2.

Note that R1
(

τπ(i+1), τπ(i)|γ̄?
N ′

)

depends only on γ̄?
N ′ but not on τπ(i) and τπ(i+1)

when γ̄?
N ′ > τπ(i+1). The next lemma provides an analogous expression for R1

(

τπ(i+1), τπ(i)|γ̄?
N ′

)

when γ̄?
N ′ < τπ(i).

Lemma 4.4. If γ̄?
N ′ < τπ(i), R1

(

τπ(i+1), τπ(i)|γ̄?
N ′

)

is given by

R1

(

τπ(i+1), τπ(i)|γ̄?
N ′

)

=
∫ ∞

τπ(i+1)

log(1 + x)dF2(x) + F
(

τπ(i+1)

) ∫ τπ(i+1)

τπ(i)

log(1 + x)dF(x)

+ log (1 + γ̄?
N ′) F

(

τπ(i)

)

F
(

τπ(i+1)

)

.
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∞
0

γ̄?
N ′

R1

(

τπ(i+1), τπ(i)|γ̄?
N ′

)

τπ(i)

γ̄?
N ′

R2

(

τπ(i+1), τπ(i)|γ̄?
N ′

)

τπ(i+1)
γ̄?
N ′

R0 (γ̄?
N ′)

Figure 4.1: Beam 1 rate as a function of thresholds for different values of γ̄?
N ′

Proof. See Appendix 4.8.2.

Finally, we look at the case where τπ(i) ≤ γ̄?
N ′ ≤ τπ(i+1).

Lemma 4.5. If τπ(i) ≤ γ̄?
N ′ ≤ τπ(i+1), R1

(

τπ(i+1), τπ(i)|γ̄?
N ′

)

is given by

R2

(

τπ(i+1), τπ(i)|γ̄?
N ′

)

=
∫ ∞

τπ(i+1)

log(1 + x)dF2(x) + F
(

τπ(i+1)

) ∫ τπ(i+1)

γ̄?

N ′
log(1 + x)dF(x)

+ log (1 + γ̄?
N ′) F

(

τπ(i+1)

)

F (γ̄?
N ′) .

Proof. See Appendix 4.8.2.

For the final two cases, we note that R1
(

τπ(i+1), τπ(i)|γ̄?
N ′

)

depends both on thresh-

old values τπ(i) and τπ(i+1), and on γ̄?
N ′ . The results of these three lemmas have been

graphically summarized in Fig. 4.1.

If γ̄?
N ′ = τπ(i), R1 and R2 in Lemmas 4.4 and 4.5 evaluate to the same expression. Sim-

ilarly, if γ̄?
N ′ = τπ(i+1), R0 and R2 in Lemmas 4.3 and 4.5 evaluate to the same expression.

This shows that the rate as a function of γ̄?
N ′ is continuous at τπ(i) and τπ(i+1).

Given the initial threshold values
{

τπ(k)

}n

k=1
, the first step to discover the Schur-
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concave structure in the sum-rate function is to analyze the behavior of the function

gT(ε) = R1
(

τπ(i+1) + ε, τπ(i) − ε|γ̄?
N ′

)

for

ε ∈
[

0, min
{

τπ(i) − τπ(i−1), τπ(i+2) − τπ(i+1)

}]

by making use of Lemma 4.1. This is now a scalar problem. At this point, it is more

useful to interpret the sum-rate as a function of feedback probabilities since the feedback

constraint in (4.4) is in terms of these probabilities. This interpretation helps us to in-

corporate the feedback constraints into our optimization problem more easily, as will be

shown next.

4.5.2 Rate as a Function of Feedback Probabilities

There is a one-to-one correspondence between feedback thresholds τπ(i) and feedback

probabilities pπ(i) since f has the support R+, i.e., τπ(i) = F−1(1 − pπ(i)). Hence, we can

represent R1
(

τπ(i+1), τπ(i)|γ̄?
N ′

)

as R1
(

pπ(i), pπ(i+1)|γ̄?
N ′

)

without any ambiguity. With

this interpretation, the optimization problem in (4.4) can be considered as the problem of

finding optimum feedback probability vector

p? = (p?1 , . . . , p?n)
>

in [0, 1]n subject to the feedback constraint

n

∑
i=1

p?i ≤ λ,

where pi = Pr {γ1,i ≥ τi}. Indeed, it is easy to see that any feedback policy solving (4.4)

must achieve the feedback constraint with equality, i.e.,

n

∑
i=1

p?i = λ.
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Since F is monotone increasing, we have

pπ(1) ≥ pπ(2) ≥ · · · ≥ pπ(i) ≥ pπ(i+1) ≥ · · · ≥ pπ(n).

Focusing on pπ(i) and pπ(i+1), we have the feedback level

λi = pπ(i) + pπ(i+1),

and other probabilities give us natural boundaries on pπ(i) and pπ(i+1) as such pπ(i+2) ≤
pπ(i+1) ≤ pπ(i) ≤ pπ(i−1). Without violating these boundaries, we will vary pπ(i) and

pπ(i+1) by keeping λi constant.

Similar to the previous part, we start our analysis by focusing on a two-user system.

Given a feedback constraint λ > 0, we can restrict our search for the optimal feedback

probability vector to the plane given by

pπ(1) + pπ(2) = λ.

On this plane, we write the rate function R1 (p) as a function of only pπ(2) without any

ambiguity. The communication rate on this plane as a function of pπ(2) is given below.

Lemma 4.6. The rate on beam 1 of a two-user system on the plane

P =
{

p ∈ [0, 1]2 : pπ(1) + pπ(2) = λ
}

as a function of pπ(2) is equal to

R1
(

pπ(2)

)

=
∫ ∞

F−1(1−pπ(2))
log (1 + x) dF2(x) +

(

1 − pπ(2)

) ∫ F−1(1−pπ(2))

F−1(1+pπ(2)−λ)
log (1 + x) dF(x).

for max {0, λ − 1} ≤ pπ(2) ≤ λ
2

Proof. Follows from a direct substitution of τπ(2) = F−1
(

1 − pπ(2)

)

in Lemma 4.2.

F−1 in the expression above represents the functional inverse of F. We give the first

derivative of the two-user rate in the following lemma.
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p
10

pπ(i+2)

pπ(i+1) − min
{

pπ(i+1) − pπ(i+2), pπ(i−1) − pπ(i)

}

pπ(i+1)

ε

λi
2

q

pπ(i) pπ(i−1)

Figure 4.2: Ordered feedback probabilities, and the range of q and ε.

Lemma 4.7. The first derivative of R1
(

pπ(2)

)

on

P =
{

p ∈ [0, 1]2 : pπ(1) + pπ(2) = λ
}

is equal to

dR1
(

pπ(2)

)

dpπ(2)
=
∫ F−1(1−pπ(2))

F−1(1+pπ(2)−λ)

F(x)

1 + x
dx

−
(

λ − 2pπ(2)

)

log
(

1 + F−1
(

1 + pπ(2) − λ
))

. (4.12)

for max {0, λ − 1} ≤ pπ(2) ≤ λ
2 .

Proof. Follows directly after differentiating the rate expression in Lemma 4.6.

We note that Lemma 4.1 implies the necessity of
dR1(pπ(2))

dpπ(2)
≥ 0 for all

pπ(2) ∈
[

max {0, λ − 1} ,
λ

2

]

and λ ∈ [0, 2] for the Schur-concavity of the two-user sum-rate. Consider now the n-
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user scenario. Given the initial feedback probabilities
{

pπ(k)

}n

k=1
, we need to analyze the

behavior of the function

gp(ε) = R1
(

pπ(i) + ε, pπ(i+1) − ε|γ̄?
N ′

)

(4.13)

for

ε ∈
[

0, min
{

pπ(i−1) − pπ(i), pπ(i+1) − pπ(i+2)

}]

to discover Schur-concavity of the rate function by Lemma 4.1. We have already dis-

cussed how we can vary pπ(2) by keeping λ constant for the two-user case. Analysis of

the general n-user scenario is not fundamentally different from the two-user scenario,

and a similar technique used for the analysis of the two-user rate function can still be ap-

plied for the general n-user case without violating the boundary conditions on feedback

probabilities. That is, we introduce an auxiliary variable q ∈ Pi+1, replace pπ(i+1) − ε

with q and pπ(i) + ε with λi − q, and write R1
(

pπ(i) + ε, pπ(i+1) − ε|γ̄?
N ′

)

as a function of

q, where

Pi+1 =

[

pπ(i+1) − min
{

pπ(i+1) − pπ(i+2), pπ(i−1) − pπ(i)

}

,
λi

2

]

.

Fig. 4.2 provides a graphical representation for the selection of q. By using Lemma

4.3, 4.4 and 4.5, we have

R1 (q|γ̄?
N ′) = R0 (γ̄

?
N ′) 1{q>1−F(γ̄?

N ′)} + R1 (q|γ̄?
N ′) 1{q>λi−(1−F(γ̄?

N ′))}
+ R2 (q|γ̄?

N ′) 1{q≤1−F(γ̄?

N ′ ) & q≤λi−(1−F(γ̄?

N ′))} (4.14)

for q ∈ Pi+1.

Some insights about (4.14) are as follows. Let

qmin = pπ(i+1) − min
{

pπ(i+1) − pπ(i+2), pπ(i−1) − pπ(i)

}

,

and assume 1− F (γ̄?
N ′) ≤ λi

2 . If 1− F (γ̄?
N ′) < qmin, R1 (q|γ̄?

N ′) is equal to R0 (γ̄?
N ′) for all

q ∈
[

qmin, λi
2

]

. On the other hand, if 1 − F (γ̄?
N ′) ≥ qmin, R1 (q|γ̄?

N ′) first becomes equal
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to R2 (q|γ̄?
N ′) and then equal to R0 (γ̄?

N ′) as q changes from qmin to λi
2 . This behavior is

graphically depicted in Fig. 4.3.4 Therefore, the rate in this case can be visualized as a

concatenation of two functions with a gluing point at 1 − F (γ̄?
N ′). Similar explanations

can be given for 1 − F (γ̄?
N ′) >

λi
2 .

R0 (γ̄?
N ′)

R1 (q|γ̄?
N ′)

q
qmin 1 − F(γ̄?

N ′) λi/2

R2 (q|γ̄?
N ′)

Figure 4.3: A pictorial representation for the rate expression in (4.14) for qmin ≤ 1 −
F (γ̄?

N ′) ≤ λi
2 .

4.5.3 Schur-concavity of the Sum-rate Function

Building upon our analysis above, we will obtain sufficient conditions for the Schur-

concavity of the sum-rate in this part. We start our analysis by first providing a proof for

Theorem 4.1. We restated Theorem 4.1 below for the sake of completeness.

4The plot may not be exactly accurate. It is just given to conceptualize the behavior of the rate function.
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Theorem 4.1: The sum-rate R (p) is a Schur-concave function if

log (1 + γ) (λ − 2q) +
∫ F−1(1−q)

F−1(1+q−λ)

F(x)

1 + x
dx − (λ − 2q) log

(

1 + F−1 (1 + q − λ)
)

≥ 0

for all γ ≥ 0, λ ∈ [0, 2] and max {0, λ − 1} ≤ q ≤ λ
2 .

Proof. Refer Appendix 4.8.3 for the proof.

Second, we provide a proof for Theorem 4.2 based on Theorem 4.1. The new sufficient

condition for the Schur-concavity of the sum-rate function is obtained by means of a

second order analysis. Although complex looking, it turns out to be much easier to deal

with analytically as illustrated for Rayleigh fading channels in the next section. Again,

we restate Theorem 4.2 below for the sake of completeness.

Theorem 4.2: The sum-rate R (p) is Schur-concave if f is bounded at zero, and has the

derivative f ′ satisfying

f ′
(

F−1(x)
)

≤ − f
(

F−1(x)
)

1 + F−1(x)

for all x ∈ [0, 1].

Proof. Refer Appendix 4.8.4 for the proof.

4.6 Applications and Discussion

In this section, we will apply our results derived in Section 4.5 to well known fading chan-

nel models. We will also discuss the intuition behind the resulting performance figures.

We start our discussion with Rayleigh fading channels, which is one of the most com-

monly used channel models in the literature, e.g., see [9,82,83], and closely approximates

measured data rates in densely populated urban areas [14].
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(a) Behavior of the sum-rate as a function of the feedback probability p2 of the second
MU for the first example. (M = 1, λ = 0.5 and ρ = 0 [dB])

0 0.1 0.2 0.3 0.4 0.5
1.38

1.385

1.39

1.395

1.4

1.405

Feedback Probability p2

S
u
m

-r
a
te

(N
a
ts

p
er

C
h
a
n
n
el

U
se

)

(b) Behavior of the sum-rate as a function of the feedback probability p2 of the second
MU for the second example. (M = 1, λ = 0.5 and ρ = 10 [dB])

Figure 4.4: Numerical examples illustrating the optimality and sub-optimality of ho-
mogenous threshold policies for different network configurations.
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4.6.1 Rayleigh Fading Channels

Consider the Rayleigh fading channel model in which hk,i, k = 1, . . . , Nt and i = 1, . . . , n,

are assumed to be i.i.d. with the common distribution CN (0, 1), where CN
(
µ, σ2

)
rep-

resents the circularly-symmetric complex Gaussian distribution with mean µ and variance

σ2. Recall that the background noise is the unit power (complex) Gaussian noise, and

therefore ρ is interpreted as the average SNR below.

For this channel model, the SINR distribution function F and the associated probabil-

ity density function f can be given as

F(x) = 1 − e
− x

ρ

(x + 1)M−1
(4.15)

and

f (x) =
e
− x

ρ

(x + 1)M

[
1

ρ
(x + 1) + M − 1

]

, (4.16)

respectively [79]. More details on obtaining these expressions can be found in Appendix

5.9.1 of Chapter 5. An important quantity of interest to apply our results in Theorems

4.1 and 4.2 is the functional inverse, F−1, of F. The next lemma provides an analytical

expression for F−1 for Rayleigh fading channels.

Lemma 4.8. F−1 is equal to

F−1(x) =







−1 + (M − 1)ρW

(

exp
(

1
(M−1)ρ

)

(M−1)ρ
(1 − x)

1
1−M

)

if M ≥ 2

−ρ log (1 − x) if M = 1

,

where x ∈ [0, 1] and W is the Lambert W function given by the defining equation

W(x) exp(W(x)) = x

for x ≥ − 1
e .

Proof. See Appendix 4.8.5.
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To motivate the discussion below, we start by providing two simple numerical exam-

ples; first of which illustrates a network configuration in which homogenous threshold

feedback policies are optimal, whereas the second example provides another network

configuration in which homogenous threshold feedback policies are strictly suboptimal.

Consider two MUs located in a Rayleigh fading environment, i.e., all channel (ampli-

tude) gains are random with distribution CN (0, 1). M and λ are chosen to be M = 1 and

λ = 0.5 in both examples below. We set ρ to 0 [dB] in the first example, while it is set to

10 [dB] in the second one. Since all MUs are identical with identical fading characteris-

tics in this set-up, it is intuitively expected that a homogenous threshold feedback policy

must be optimal, and solve the rate maximization problem in (4.4) under both network

configurations.

This is indeed correct for the first network configuration as shown in Fig 4.4(a). The

sum-rate is clearly maximized at p = (0.25, 0.25)>, and therefore the homogenous thresh-

old feedback policy with thresholds set as τhomo = (log (4) , log (4))> solves (4.4). How-

ever, this intuition does not always work as illustrated by the second example. In this

case, the homogenous threshold feedback policy equalizing the feedback probabilities

of MUs becomes strictly suboptimal, i.e., see Fig. 4.4(b). This shows that R (p) is not a

Schur-concave function of feedback probabilities for these selections of model parame-

ters, and hence, it is not necessarily maximized at p = (0.25, 0.25)>. We note that the

selection of parameters in both examples is just for elucidatory purposes, and the same

arguments continue to hold for other values of λ.

This discussion motivates the following question: When are homogenous threshold

feedback policies optimal for Rayleigh fading channels? The answer is supplied by the

following two theorems.

Theorem 4.3. For Rayleigh fading environments with M = 1 and ρ ≤ 1, R (p) is a Schur-

concave function of feedback probabilities, and therefore the homogenous threshold feedback policy

satisfying feedback constraints with equality solves (4.4) when M = 1 and ρ ≤ 1.

Theorem 4.4. For Rayleigh fading environments with M > 1, R (p) is a Schur-concave func-

tion of feedback probabilities, and therefore the homogenous threshold feedback policy satisfying

feedback constraints with equality solves (4.4) when M > 1.
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Proof. See Appendix 4.8.6.

Since the proofs are similar, and are based on the sufficient condition established in

Theorem 4.2, we skip the proof of Theorem 4.3 to avoid repetitions. Theorem 4.3 shows

that it is enough to have ρ smaller than or equal to 1 to ensure the optimality of homoge-

nous threshold feedback policies for Rayleigh fading environments when only a single

beam is used for the downlink communication. Since F in (4.15) does not depend on Nt,

the same result continues to hold for Nt > 1 as long as multiple transmit antennas are

used to form a single beam as in [97].

On the other hand, Theorem 4.4 provides an extension of Theorem 4.3 to multiple

beams. Theorem 4.4 is promising for multiuser MIMO downlink communication in

a Rayleigh fading environment because it shows that homogenous threshold feedback

policies are always optimal if multiple beams are used to communicate with multiple

MUs simultaneously. Although the optimality of homogenous threshold feedback poli-

cies strongly depends on the properties of the underlying fading process modulating

received signal strengths and the background noise level present in the system for the

single beam case, this is not true anymore for multiple beams. More intuition is provided

on this point later.

From a theoretical viewpoint, it is surprising to see that a property holding in the

setting of a more complicated and general MIMO system model does not always hold

for single-input systems. From a practical viewpoint, MIMO technology is becoming an

integral part and a key feature of the next generation wireless communication systems.

Thus, these results provide analytically justified design guidelines to maximize data rates

subject to feedback constraints in densely populated urban areas with 4G communication

systems.

In the second example above, the rate loss due to use of the homogenous feedback

policy seems to be very minor around 0.01 [nats per channel use], and therefore it can

be thought to be negligible for all practical purposes. This motivates us to examine the

rate difference between homogenous and optimal threshold feedback policies for a broad

spectrum of the SNR parameter to verify or falsify the validity of this conception. To this

end, we investigate the optimality gap arising from the use of homogenous threshold
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Figure 4.5: The optimality gap arising from the use of homogenous threshold feedback
policies for different values of ρ when M = 1.

feedback policies as opposed to choosing thresholds optimally to maximize the sum-

rate in Rayleigh fading environments in Fig. 4.5. We set n to 2, λ to 0.5 and M to 1 in

this numerical example. Note that homogenous threshold feedback policies are always

optimal when M > 1. Hence, there is no optimality gap to investigate in this case. For

other values of λ and n, qualitatively similar observations continue to hold. Since we find

optimal threshold levels through an exhaustive search, setting n to 2 limits our search

space.

For small values of ρ up to 0 [dB], the homogenous threshold feedback policy with

threshold levels set as τhomo = (ρ log (4) , ρ log (4))> is optimum as predicted by Theo-

rem 4.3. It continues to be optimum for a little while up to around 5.7 [dB] SNR values,

and after which it becomes strictly suboptimal to use the homogenous threshold feedback

policy in terms of the achieved downlink sum-rate. Furthermore, as channel conditions

become better, i.e., large values of ρ, the optimality gap becomes larger. Practically, this

observation indicates that the use of homogenous threshold feedback policies may lead



84 Optimal Threshold Selection Problem

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Average Number of MUs Feeding Back per Beam (λ)

 

 

n = 10

n = 30

n = 150

n = 300

R
(τ

?
)

R
(0
)

Figure 4.6: The ratio between the rates achieved with and without thresholding as a
function of the average number of users feeding back per beam for different numbers of
MUs.

to excessive rate loss in the high SNR regime for single beam systems when compared to

the rate achieved by the optimal feedback policy.

Another important issue to investigate is the amount of feedback reduction that can

be achieved by setting thresholds optimally. In Fig. 4.6, we plot the ratio
R(τ?)
R(0)

between

the rates achieved with and without thresholding as a function of λ for different numbers

of MUs. In this figure, we set M to 1, and ρ to 1. Again, similar observations continue

to hold for other values of M and ρ. Since ρ = 1, the homogenous threshold feedback

policy with thresholds set as

τ
? =

(

ρ log
(n

λ

)

, . . . , ρ log
(n

λ

))

is optimum, i.e., see Lemma 4.8 and Theorem 4.3. After inspecting the figure, we see that

there is almost no rate loss if the average number of MUs feeding back per beam is around

five. We call this critical feedback level λc, which is an important design parameter to be
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inputed to the higher MAC layer. It is interesting to see that the same design parameter

applies to all
R(τ?)
R(0)

curves that shift to the right only slightly and converge pointwise to a

limiting curve as the number of MUs in the system increases.

The reason behind this phenomenon can be explained as follows. No feedback out-

age event occurs and beams are always assigned to the best MUs at each fading state

when thresholds are set to zero. On the other hand, the feedback outage event probabil-

ity is strictly positive when thresholds are optimally set to meet the feedback constraint

λ. However, the tails of the distribution of the random number of MUs requesting each

beam decays to zero exponentially fast, and therefore we are almost always guaranteed

to have at least one MU demanding each beam whenever λ is above the critical feedback

level λc. As a result, the feedback outage event probability becomes negligible, and the

beams are still assigned to the best MUs with very high probability whenever λ ≥ λc.

Moreover, the distribution of the random number of MUs feeding back converges to a

limiting distribution linearly with the total number of MUs in the system, which results

in the observed pointwise convergence behavior in Fig. 4.6. Further details about the lim-

iting
R(τ?)
R(0) curve (as n → ∞) can be found in Chapter 5, where its exact characterization

is obtained and interpreted as the feedback-capacity tradeoff curve.

Two possible interpretations about λc are as follows. Since the base station communi-

cates only with the best MU on each beam, an ideal feedback policy in terms of the opti-

mal usage of uplink communication resources is the one that only allows the best MU to

feed back at each channel fading state. However, such a policy requires centralized oper-

ation, or coordination among MUs. Thus, when compared with the ideal feedback policy,

λc can be interpreted as the price that we have to pay to achieve almost the same perfor-

mance with the ideal feedback policy due to decentralized operation. Secondly, when

compared with the all-feedback policy, it represents the amount of feedback reduction

that can be achieved without any noticeable performance degradation. For example, as

opposed to allowing all MUs to feed back, we can reduce the total feedback load 30 times

and 60 times by setting thresholds optimally when n = 150 and n = 300, respectively,

without any evident performance loss.
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4.6.2 Rician and Nakagami Fading Channels

In this part, we extend our analysis above to other channel models by briefly studying

optimality and sub-optimality regions for homogenous threshold feedback policies for

Nakagami and Rician fading channel models. We set M to 1 for simplicity. Otherwise,

calculations for the M > 1 case easily gets very complicated for these channel models,

which hinders the intuitive understanding of the results below. In particular, the deriva-

tion of the SINR distribution in the general case becomes very complex.

We start our discussion with Nakagami fading channels. In this case, hk,i, k = 1, . . . , Nt

and i = 1, . . . , n, are i.i.d. with the common distribution Nakagami (µ, ω), where µ and ω

are shape and spread parameters, respectively. Hence, channel power gains are Gamma

distributed with distribution Gamma
(

µ, ω
µ

)

, where µ and ω
µ are shape and scale param-

eters of the associated Gamma distribution, respectively. We first note that ω is equal

to the average channel power gain, and therefore it is set to 1 to be consistent with the

Rayleigh fading channel model above. Secondly, if X is a random variable with distri-

bution Gamma
(

µ, 1
µ

)

, then aX is distributed according to Gamma
(

µ, a
µ

)

, where a is

a positive real number. Therefore, under this channel model, the SINR5 distribution is

equal to Gamma
(

µ,
ρ
µ

)

.

In Fig. 4.7, we illustrate the regions on which homogenous threshold feedback poli-

cies are optimal and suboptimal for the Nakagami fading channel model. We set n to

2 and λ to 0.5 in this figure. The same observations continue hold for other parameter

selections. The blue region is computed numerically by using the sufficient condition for

the Schur-concavity of the sum-rate in Theorem 4.1, whereas the red region is obtained

by evaluating the sufficient condition in Theorem 4.2 numerically. As mentioned earlier,

the sufficient condition in Theorem 4.1 is stronger than the one in Theorem 4.2, which

is why the red region is contained within the blue region in Fig. 4.7. Note that the Nak-

agami fading model reduces to the Rayleigh fading model, and the red region only covers

SNR values less than one when µ = 1, which is in accordance with our discussion and

Theorem 4.3 above. Surprisingly, our numerical investigation shows that homogenous

5No inter-beam interference exists in the M = 1 case. Hence, the random SINR is the same quantity with
the random SNR. We continue to use the term SINR for this case to avoid any confusion with the average
SNR ρ.
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Figure 4.7: The regions on which homogenous threshold feedback policies are optimal
and suboptimal for the Nakagami fading channel model.

threshold feedback policies are suboptimal outside the blue region in Fig. 4.7. There-

fore, we conjecture that the condition provided in Theorem 4.1 is also necessary for the

optimality of homogenous threshold feedback policies.

Secondly, we consider the Rician fading channel model in which the channel am-

plitude gains are Rician distributed with distribution Rician (K, P), where P is the total

power gain and K (a.k.a., K factor) is the ratio between the power in the direct path and the

power in the scattered paths. We set P to 1 to be consistent with the Rayleigh and Nak-

agami fading channel models studied above. If X is a random variable with distribution

Rician (K, P), then
(

X
σ

)2
has a non-central Chi-square distribution with two degrees of

freedom, and the non-centrality parameter is given by 2K if the scaling coefficient σ is

chosen to be σ =
√

P
2(1+K)

. We obtain the SINR distribution by scaling this non-central

Chi-square distribution with ρσ2.

Fig. 4.8 illustrates the regions on which homogenous threshold feedback policies are
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Figure 4.8: The regions on which homogenous threshold feedback policies are optimal
and suboptimal for the Rician fading channel model.

optimal and suboptimal for the Rician fading channel model. We set n to 2 and λ to 0.5

in this figure. Since the similar explanations above continue to hold for the Rician fading

channel model as well, we do not repeat them here again.

4.6.3 Why Does Sub-optimality Arise?

In this part, we provide an intuitive explanation for why homogenous threshold feedback

policies sometimes become suboptimal to use even when MUs experience statistically the

same channel conditions. Our discussion will focus on the single beam case first.

Let β be the feedback outage event probability, R (τhomo) be the sum-rate achieved by

the homogenous threshold feedback policy satisfying feedback constraints with equality,

and R (τ?) be the sum-rate achieved by setting thresholds optimally. For simplicity, we

let n = 2, but similar explanations continue to hold for any n. The sum-rate in this case
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Figure 4.9: Optimal feedback probability p?2 of the second MU as a function of ρ. (λ = 0.5)

can be written as

R (τ1, τ2) = (1 − β) E

[

log

(

1 + max
i=1,2

γi1{γi≥τi}

)∣
∣
∣ No Outage

]

.

Two key underlying factors affect this rate expression. The first one is the power gain

that can be achieved by means of multiuser diversity. This is represented by the maxi-

mization operation inside the logarithm function above. The more MUs feed back, the

more likely the output of this maximization operation to be higher. Indeed, the exact

asymptotic statistics of the resulting power gain (under various channel models) can be

obtained by resorting to an order statistics analysis [19]. The second factor is the degrees-

of-freedom gain represented by the 1− β term. The smaller the feedback outage event prob-

ability, the higher the degrees-of-freedom gain that we achieve. The choice of thresholds

affects both gains, and the interplay between them determines how we set thresholds to

maximize the downlink sum-rate.

In Fig. 4.9, we focus on the Rayleigh fading channel model to provide further details
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about the interplay between power and degrees-of-freedom gains. In this figure, we set λ

to 0.5, and plot the optimal feedback probability p?2 of the second MU as a function of ρ. In

the low SNR regime, p?2 is equal to 0.25, which implies the optimality of the homogenous

threshold feedback policy equalizing the feedback probabilities of both MUs. However,

as ρ increases, we start to prefer one MU over the other one to maximize the sum-rate.

In this case, for example, we prefer the first MU over the second one by decreasing the

feedback probability of the second MU to zero, and increasing the feedback probability

of the first MU to 0.5 in the high SNR regime.

The main reason behind this behavior is as follows. When the SNR is low, the sum-

rate increases almost linearly with the power gain. As a result, we tend to choose thresh-

olds equally to maximize the power gain, and thereby to maximize the sum-rate, in the

low SNR regime although such a threshold assignment reduces the degrees-of-freedom

gain. In the high SNR regime, on the other hand, the power gain can only provide a log-

arithmic increase in the sum-rate, i.e., the law of diminishing returns. Hence, the power

gain earned by setting thresholds equally becomes negligible when compared to the loss

in the degrees-of-freedom gain, and we tend to choose thresholds heterogeneously to

maximize the degrees-of-freedom gain, and thereby to maximize the sum-rate, in the

high SNR regime. A similar behavior continues to hold for other channel models, which

is what we investigate next.

In Figs. 4.10(a) and 4.10(b), we plot the ratio
R(τhomo)

R(τ?)
as a function of ρ and K, respec-

tively, for the Rician fading channel model. We set λ to 1 in both figures. The SNR has the

same effect on how we set thresholds optimally in the Rician case as well. When small,

we prefer the power gain over the degrees-of-freedom gain, and set thresholds equally

to maximize the sum-rate, which is why
R(τhomo)

R(τ?)
ratio is around one for small values of ρ,

and for K = 0 and 2. When high, we prefer the degrees-of-freedom gain over the power

gain, and set thresholds unequally to maximize the sum-rate, which is why
R(τhomo)

R(τ?)
ratio

converges to 0.75 for high values of ρ.

The exact behavior of
R(τhomo)

R(τ?)
strongly depends on K, too. Roughly speaking, K deter-

mines the dynamic range of the SINR distribution, and the power gain due to multiuser

diversity becomes more prominent when the dynamic range of the distribution is large



4.6 Applications and Discussion 91

−20 −10 0 10 20 30 40
75

80

85

90

95

100

SNR ρ ([dB])

 

 

K = 0

K = 2

K = 10

K = 50

R
(τ

h
o

m
o
)

R
(τ

?
)

%

(a) As a function of ρ.

0 200 400 600 800 1000
75

80

85

90

95

100

K Factor

 

 

ρ = 0 [dB]

ρ = +10 [dB]

ρ = +20 [dB]

R
(τ

h
o

m
o
)

R
(τ

?
)

%

(b) As a function of K.

Figure 4.10: The change of the ratio between the sum-rates achieved by homogenous and
optimal threshold feedback policies as a function of ρ and K for a Rician fading model.
(λ = 1)
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[91]. However, as K increases, the power in the direct path increases, which, in turn, nul-

lifies the scattering effects and reduces the dynamic range of the SINR distribution, e.g.,

see Fig. 4.11 for an illustration. Therefore, regardless of how small the SNR is, it may still

become suboptimal to use homogenous threshold feedback policies when K is large, as

illustrated by the curves corresponding to K = 10 and 50 in Fig. 4.10(a). Furthermore,

as K increases, the channel becomes more deterministic, and we experience almost no

power gain due to multiuser diversity in the limit. As a result,
R(τhomo)

R(τ?)
still converges to

0.75 as K grows large, which is illustrated by Fig. 4.10(b).

Finally, we note that the limiting value of
R(τhomo)

R(τ?)
(in the high SNR, or high K regime)

depends on the feedback constraint λ. If λ ≤ 1, the optimum feedback probability selec-

tion converges to p1 = λ and p2 = 0 (or, vice versa) when ρ or K grows large. Hence,

R(τhomo)
R(τ?)

converges to 1 − λ
4 for λ ≤ 1, which is inline with the 0.75 limit to which the

curves in both Figs. 4.10(a) and 4.10(b) converge. If λ > 1, the optimum feedback prob-

ability selection converges to p1 = 1 and p2 = λ − 1 (or, vice versa) when ρ or K grows
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large. Hence,
R(τhomo)

R(τ?)
converges to λ− λ2

4 for λ > 1. Let C? (λ), 0 ≤ λ ≤ 2, be the limiting

value that
R(τhomo)

R(τ?)
converges as ρ or K grows large. It is not hard to see that the minimum

value of C? (λ) is 0.75, which is achieved when λ = 1.

A similar analysis can be done for a Nakagami channel model as well. In Figs. 4.12(a)

and 4.12(b), we plot the ratio
R(τhomo)

R(τ?) as a function of ρ and µ, respectively. λ is set at 1

in both figures. We omit the explanation to avoid repetition. Using the analysis on the

Rician and Nakagami models, we can obtain the maximum optimality loss arising from

the use of homogenous threshold feedback policies for a two-user single beam system,

which we state through the following corollary.

Corollary 4.1. The maximum optimality loss arising from the use of homogenous threshold feed-

back policies for a two-user single beam system is 25%.

Up to now, we have only focused on the single beam case to explain why homogenous

threshold feedback policies may sometimes become suboptimal to use. Based on the ar-

guments above, we provide further insights as to why homogenous threshold feedback

policies are always optimal to use when M > 1 for the Rayleigh fading channel model.

We first note that, in contrast to the single beam case, Theorem 4.4 indicates a poten-

tial phase transition phenomenon in the behavior of the sum-rate in which homogenous

threshold feedback policies suddenly become always optimal to use when we go from the

single beam case to the multiple beams case. The main reason behind this phenomenon

is the inter-beam interference when multiple beams are used to communicate with mul-

tiple MUs simultaneously. Such a multiuser operation makes the network interference

limited, rather than being noise limited, when compared to the single beam case. More

specifically, an increase in SNR implies a corresponding increase in the inter-beam in-

terference experienced by other beams, and the system ends up operating always in the

low SNR regime effectively when M > 1. Therefore, the low SNR Rayleigh fading be-

havior kicks in, and homogenous threshold feedback policies always become optimal to

use. On the other hand, received signal powers improve linearly with SNR in the single

beam case, which makes homogenous threshold feedback policies suboptimal to use in

the high SNR regime.

Although this intuition works for the Rayleigh fading channel model, it is too op-
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timistic to ask for the optimality of homogenous threshold feedback policies for other

channel models as well when M > 1. As our discussion above makes it apparent, the

power gain due to multiuser diversity strongly depends on the parameters of the fad-

ing process determining the dynamic range of the resulting SINR distribution. There

is no power gain to benefit from multiuser diversity by giving all MUs equal chances

of channel access if the SINR distribution becomes increasingly more deterministic. In

these instances, it is expected that a heterogenous threshold assignment will maximize

the sum-rate even if the network is interference limited due to multi-beam operation. It is

a potential future research interest to investigate the conditions on the parameters of the

fading process to guarantee the optimality of homogenous threshold feedback policies

for channel models other than the Rayleigh fading model such as Rician and Nakagami

fading channels.

4.7 Conclusions

Having established the optimality of threshold feedback policies in the previous chapter,

we now faced an optimal threshold selection problem to maximize the sum-rate. This is

a non-convex optimization problem over finite dimensional Euclidean spaces. We solved

this problem by identifying an underlying Schur-concave structure in the sum-rate when

it is viewed as a function of feedback probabilities. Specifically, we have obtained suf-

ficient conditions ensuring the Schur-concavity of the sum-rate, and therefore the rate

optimality of homogenous threshold feedback policies in which all MUs use the same

threshold for their feedback decisions. These sufficient conditions have been provided

for general fading channel models as well.

We have performed an extensive numerical and simulation study to illustrate the

applications of our results to familiar fading channel models such as Rayleigh, Nak-

agami and Rician fading channels. With some surprise, we have shown that homogenous

threshold feedback policies are not always optimal to use for general fading channels,

even when all MUs experience statistically the same channel conditions. In the particu-

lar case of Rayleigh fading channels, on the other hand, homogenous threshold feedback
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policies have been proven to be rate-wise optimal if multiple beams are used for the

downlink communication. We have also studied the optimality and sub-optimality re-

gions for the homogenous threshold feedback policies in the Rician and Nakagami case.

The detailed insights regarding when and why homogenous threshold feedback policies

are rate-wise optimal or suboptimal have been provided, in conjunction with various

other design and engineering perspectives.

4.8 Appendix

4.8.1 Proof of Lemma 4.2

Assume τ2 ≥ τ1 (i.e., τ1 = τπ(1) and τ2 = τπ(2)) for notational simplicity. Then, for a

two-user system, the rate on beam 1 as a function of the thresholds is given as

R1 (τ1, τ2) = F (τ1)
∫ ∞

τ2

log (1 + x)dF(x) + F (τ2)
∫ ∞

τ1

log (1 + x)dF(x)

+ E

[

log (1 + max {γ1,1, γ1,2}) 1{γ1,1≥τ1,γ1,2≥τ2}
]

= F (τ1)
∫ ∞

τ2

log (1 + x)dF(x) + F (τ2)
∫ ∞

τ1

log (1 + x)dF(x)

+ (1 − F (τ1)) (1 − F (τ2))E [log (1 + max {γ1,1, γ1,2}) |γ1,1 ≥ τ1, γ1,2 ≥ τ2] .

Let

H(x) = Pr {max {γ1,1, γ1,2} ≤ x|γ1,1 ≥ τ1, γ1,2 ≥ τ2} ,

i.e., H(x) is the CDF of max {γ1,1, γ1,2} given γ1,1 ≥ τ1 and γ1,2 ≥ τ2. Then,

H(x) =







F(x)−F(τ1)
1−F(τ1)

· F(x)−F(τ2)
1−F(τ2)

if x ≥ max {τ1, τ2}

0 if x < max {τ1, τ2}
. (4.17)

We can write R1 (τ1, τ2) as

R1 (τ1, τ2) = F (τ1)
∫ ∞

τ2

log (1 + x)dF(x) + F (τ2)
∫ ∞

τ1

log (1 + x)dF(x)
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+ (1 − F (τ1)) (1 − F (τ2))
∫ ∞

max{τ1,τ2}
log (1 + x)dH(x), (4.18)

and substituting (4.17) in (4.18) leads to

R1 (τ1, τ2) =
∫ ∞

τ2

log(1 + x)dF2(x) + F (τ2)
∫ τ2

τ1

log(1 + x)dF(x), (4.19)

for τ2 ≥ τ1. For τ1 ≥ τ2, we just switch the places of τ1 and τ2 in (4.19). Hence, the proof

is complete.

4.8.2 Rate for Different Values of γ̄?
N ′

Proof of Lemma 4.3

Let ξ̄?i+1,i = max
{

γ̄1,π(i+1), γ̄1,π(i)

}

. From (4.11),

R1
(

τπ(i+1), τπ(i)|γ̄?
N ′

)

= log (1 + γ̄?
N ′)Pr

{
ξ̄?i+1,i ≤ γ̄?

N ′ |γ̄?
N ′
}

+ E

[

log
(
1 + ξ̄?i+1,i

)
1{ξ̄?i+1,i>γ̄?

N ′}|γ̄
?
N ′

]

. (4.20)

Let A =
{

ξ̄?i+1,i ≤ γ̄?
N ′

}

and B =
{

ξ?i+1,i ≤ γ̄?
N ′

}

. Since γ̄?
N ′ is larger than τπ(i+1), it

follows that A = B. Thus, we can write

Pr
{

ξ̄?i+1,i ≤ γ̄?
N ′ |γ̄?

N ′
}
= Pr

{
ξ?i+1,i ≤ γ̄?

N ′ |γ̄?
N ′
}

for the first term on the righthand side of (4.20). For the second term, we have ξ̄?i+1,i =

ξ?i+1,i since ξ̄?i+1,i > γ̄?
N ′ > τπ(i+1), which concludes the proof.

Proof of Lemma 4.4

When γ̄?
N ′ < τπ(i), (4.20) simplifies to

R1
(

τπ(i+1), τπ(i)|γ̄?
N ′

)

= E

[

log
(
1 + ξ?i+1,i

)
1{γ1,π(i)>τπ(i),γ1,π(i+1)>τπ(i+1)}

]

+ E

[

log
(

1 + γ1,π(i+1)

)

1{γ1,π(i+1)>τπ(i+1)}
]

F
(

τπ(i)

)
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+ E

[

log
(

1 + γ1,π(i)

)

1{γ1,π(i)>τπ(i)}
]

F
(

τπ(i+1)

)

+ log (1 + γ̄?
N ′) F

(

τπ(i)

)

F
(

τπ(i+1)

)

.

The first three terms on the righthand side is identical to the rate expression for the

two-user system in Lemma 4.2. Substituting the result for the two-user case completes

the proof.

Proof of Lemma 4.5

For τπ(i) ≤ γ̄?
N ′ ≤ τπ(i+1), (4.20) simplifies to

R
(

τπ(i+1), τπ(i)|γ̄?
N ′

)

= log (1 + γ̄?
N ′) F

(

τπ(i+1)

)

F (γ̄?
N ′)

+ E

[

log
(

1 + γ1,π(i)

)

1{γ1,π(i)>γ̄?

N ′}|γ̄
?
N ′

]

F
(

τπ(i+1)

)

+ E

[

log
(

1 + γ1,π(i+1)

)

1{γ1,π(i+1)>τπ(i+1)}
]

F (γ̄?
N ′)

+ E

[

log
(
1 + ξ?i+1,i

)
1{γ1,π(i)>γ̄?

N ′ ,γ1,π(i+1)>τπ(i+1)}|γ̄
?
N ′

]

The last three terms on the righthand side can be further simplified as in Lemma 4.2

for the two-user system, which completes the proof.

4.8.3 Proof of Theorem 4.1

It is enough to show that R1 (q|γ̄?
N ′) is a non-decreasing function of q ∈ Pi+1 for all

i = 1, . . . , n − 1 and γ̄?
N ′ ≥ 0 based on Lemma 4.1. To this end, we can write R1 (q|γ̄?

N ′)

explicitly as

R1 (q|γ̄?
N ′) =

∫ ∞

F−1(1−q)
log(1 + x)dF2(x) + (1 − q)

∫ F−1(1−q)

F−1(1+q−λi)
log(1 + x)dF(x)

+ log (1 + γ̄?
N ′) (1 − q) (1 + q − λi) .

Using Lemma 4.7, we get

dR1 (q|γ̄?
N ′)

dq
= log (1 + γ̄?

N ′) (λi − 2q)
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+
∫ F−1(1−q)

F−1(1+q−λi)

F(x)

1 + x
dx − (λi − 2q) log

(

1 + F−1(1 + q − λi)
)

. (4.21)

Similarly, we can write R2 (q|γ̄?
N ′) explicitly as

R2 (q|γ̄?
N ′) =

∫ ∞

F−1(1−q)
log(1 + x)dF2(x) + (1 − q)

∫ F−1(1−q)

γ̄?

N ′
log(1 + x)dF(x)

+ log (1 + γ̄?
N ′) (1 − q) F (γ̄?

N ′) .

Differentiation and integration-by-parts give us

dR2 (q|γ̄?
N ′)

dq
=
∫ F−1(1−q)

γ̄?

N ′

F(x)

1 + x
dx ≥ 0.

Thus, R1 (q|γ̄?
N ′) is a non-decreasing function of q ∈ Pi+1 for all i = 1, . . . , n − 1 and

γ̄?
N ′ ≥ 0 if (4.6) is correct.

4.8.4 Proof of Theorem 4.2

Let

U (q, λ) =
∫ F−1(1−q)

F−1(1+q−λ)

F(x)

1 + x
dx − (λ − 2q) log

(

1 + F−1 (1 + q − λ)
)

.

Then, it is enough to show that U (q, λ) ≥ 0 for all λ ∈ [0, 2] and max {0, λ − 1} ≤ q ≤ λ
2

by Theorem 4.1. To this end, it is enough to show
∂U(q,λ)

∂q ≤ 0 for all λ ∈ [0, 2] and

max {0, λ − 1} ≤ q ≤ λ
2 since U

(
λ
2 , λ
)
= 0.

The following lemma simplifies the proof considerably.

Lemma 4.9. If f is bounded at zero and f ′ satisfies f ′
(

F−1(x)
)
≤ − f(F−1(x))

1+F−1(x)
for all x ∈ [0, 1],

then G ≤ 0 on [0, 1], where

G(x) = log
(

1 + F−1(x)
) (

1 + F−1(x)
)

f
(

F−1(x)
)

− x

for x ∈ [0, 1].



100 Optimal Threshold Selection Problem

Proof. By taking the first derivative of G(x) with respect to x,

dG(x)

dx
= log

(

1 + F−1(x)
) (

1 + F−1(x)
) f ′

(
F−1(x)

)

f (F−1(x))
+ log

(

1 + F−1(x)
)

= log
(

1 + F−1(x)
)
[

1 +

(
1 + F−1(x)

)
f ′
(

F−1(x)
)

f (F−1(x))

]

< 0.

Hence, G(x) is strictly decreasing for x > 0, and achieves its maximum at x = 0. We have

limx→0 G(x) = 0 since f (x) is bounded at 0, which completes the proof.

Now, consider the partial derivative of U (q, λ) with respect to q, which is equal to

∂U (q, λ)

∂q
=

1 − q

1 + F−1(1 − q)
.

−1

f (F−1(1 − q))
− 1 + q − λ

1 + F−1 (1 + q − λ)
.

1

f (F−1 (1 + q − λ))

− λ − 2q

1 + F−1 (1 + q − λ)
.

1

f (F−1 (1 + q − λ))
+ 2 log

(

1 + F−1 (1 + q − λ)
)

.

Taking the common denominators gives us

∂U (q, λ)

∂q
= K1 (q) g1 (q, λ) + K2 (q, λ) g2 (q, λ) ,

where

g1 (q, λ) = log
(

1 + F−1 (1 + q − λ)
) (

1 + F−1(1 − q)
)

f
(

F−1(1 − q)
)

− (1 − q),

g2 (q, λ) = log
(

1 + F−1 (1 + q − λ)
) (

1 + F−1 (1 + q − λ)
)

f
(

F−1 (1 + q − λ)
)

− (1 − q),

K1(q) =
1

(1 + F−1(1 − q)) f (F−1(1 − q))
, and

K2 (q, λ) =
1

(1 + F−1 (1 + q − λ)) f (F−1 (1 + q − λ))
.

Note that K1 and K2 are always positive. Thus, it is enough to show that g1 and g2

are non-positive on
[
max {0, λ − 1} , λ

2

]
for any fixed λ ∈ [0, 2]. To this end, g1 and g2 on

[
max {0, λ − 1} , λ

2

]
can be upper bounded as

g1 (q, λ) ≤ gu
1 (q) = log

(

1 + F−1 (1 − q)
) (

1 + F−1 (1 − q)
)

f
(

F−1 (1 − q)
)

− (1 − q)



4.8 Appendix 101

and

g2 (q, λ) ≤ gu
2 (q, λ) = log

(

1 + F−1 (1 + q − λ)
)

×
(

1 + F−1 (1 + q − λ)
)

f
(

F−1 (1 + q − λ)
)

− (1 + q − λ) .

Now, using Lemma 4.9, we can show that both gu
1 and gu

2 are non-positive functions

on
[
max (0, λ − 1) , λ

2

]
. This means

∂U(q,λ)
∂q ≤ 0, which implies U (q, λ) ≥ 0 for all λ ∈

[0, 2] and max {0, λ − 1} ≤ q ≤ λ
2 .

4.8.5 Proof of Lemma 4.8

For M = 1, it is easy to get F−1(x) = −ρ log (1 − x). For M > 1, we need to find the

function F−1(x) satisfying

F
(

F−1(x)
)

= 1 −
exp

(

− F−1(x)
ρ

)

(1 + F−1(x))
M−1

= x.

The following chain of implications hold.

F
(

F−1(x)
)

= x

⇔
((

1 + F−1(x)
)

exp
(

1+F−1(x)
(M−1)ρ

))1−M
= exp

(

− 1
ρ

)

(1 − x)

⇔ 1+F−1(x)
(M−1)ρ

exp
(

1+F−1(x)
(M−1)ρ

)

= 1
(M−1)ρ

(

exp
(

− 1
ρ

)

(1 − x)
) 1

1−M

⇔ F−1(x) = −1 + (M − 1)ρW

(

exp
(

1
(M−1)ρ

)

(M−1)ρ
(1 − x)

1
1−M

)

,

which completes the proof.

4.8.6 Proof of Theorem 4.4

By Theorem 4.3, it is enough to show that f ′
(

F−1(x)
)
≤ − f(F−1(x))

(1+F−1(x))
for all x ∈ [0, 1]. To

this end, let

g(x) = 1 +

(
1 + F−1(x)

)
f ′
(

F−1(x)
)

f (F−1(x))
. (4.22)
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To simplify g(x) further, we first put y = F−1(x) in (4.22). Then

g(y) = 1 +
1 + y

e
− y

ρ

(y+1)M

(
1
ρ (y + 1) + M − 1

)×




(1 + y)Me

− y
ρ 1

ρ − (1 + y)Me
− y

ρ

(
1
ρ (y + 1) + M − 1

)
1
ρ − M(1 + y)M−1

(
1
ρ (y + 1) + M − 1

)

e
− y

ρ

(1 + y)2M



 .

After some further simplifications, we get

g(y) = 1 +

1
ρ (y + 1)

(
1
ρ (y + 1) + M − 1

) − 1

ρ
(y + 1)− M.

Using Lemma 4.8, we can write y as y = −1 + (M − 1)ρW̄(x), where

W̄(x) = W




exp

(
1

(M−1)ρ

)

(M − 1)ρ
(1 − x)

1
1−M



 .

Hence, g(x) can be given as

g(x) = 1 +
W̄(x)

W̄(x) + 1
− (M − 1)W̄(x)− M

= − (M − 1)W̄(x)2 + (2M − 3)W̄(x) + M − 1

W̄(x) + 1
,

which is always strictly negative for M ≥ 2. This implies

f ′
(

F−1(x)
)

≤ − f
(

F−1(x)
)

(1 + F−1(x))

for all x ∈ [0, 1] when M ≥ 2, which completes the proof.



Chapter 5

The Feedback Capacity Tradeoff

Opportunistic beamforming is a reduced feedback communication strategy for vector broadcast

channels which requires partial channel state information (CSI) at the base station for its operation.

Although reducing feedback, this strategy in its plain implementations displays a linear growth in

the feedback load with the total number of users in the system n, which is an onerous requirement for

large systems. This chapter focuses on a more stringent but realistic O (1) feedback constraint on the

feedback load. Starting with a set of statistically identical users, we obtain the tradeoff curve tracing

the Pareto optimal boundary between feasible and infeasible feedback-capacity pairs for opportunistic

beamforming. Any point on this tradeoff curve can be obtained by means of homogeneous decentral-

ized threshold feedback policies, which are rate-wise optimal, in which a user feeds back only if the

received signal quality is good enough. The chapter includes the derivation of these optimum policies,

and further shows to what extent the O (1) feedback constraint must be relaxed to achieve the same

sum-rate scaling as with perfect CSI. Extensions of these results to heterogeneous communication

environments in which different users experience non-identical path-loss gains are also provided. We

also show how threshold feedback policies can be used to provide fairness in a heterogeneous system,

while simultaneously achieving optimal capacity scaling. Although most of our results are asymptotic

in the sense that they are derived by letting n grow large, they provide promising performance figures

with a close match to the asymptotically optimal results when used in finite size systems.

5.1 Introduction

T
HE full utilization of the benefits of MIMO in a communication environment con-

sisting of a multitude of mobile users (MUs) requires the base station to have some

knowledge about the channel state information (CSI) of all MUs, either perfect [11,94,96],

or partial [79, 97]. This can be a very onerous capacity requirement on the uplink when

compared with the gains achieved in the downlink. This chapter focuses on the impor-
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tant issue of feedback-capacity tradeoff in multi-antenna systems, which can be a perfor-

mance limiting criterion for future 4G wireless networks. Here, we show that we can limit

the feedback requirements on the uplink to practical levels, yet still achieve near-perfect

aggregate communication rate scaling in the downlink. We focus on the classical oppor-

tunistic beamforming framework which operates on partial CSI, and still achieves the

optimum capacity scaling in single-cell MIMO systems [79], as an alternative to schemes

requiring perfect CSI to maximize data communication rates. The downlink throughput

scales like M log log n, where M is the number of transmit antennas at the base station,

and n is the number of MUs in the system. Although opportunistic beamforming reduces

feedback considerably in comparison to having full CSI in its plain implementations, the

number of MUs feeding back still grows linearly with the total number of MUs in the

system. As a result, to achieve modest double-logarithmic multiuser diversity gains at

the downlink through opportunistic scheduling, we still need to improve the capacity of

the feedback link linearly with the number of MUs in the system, which is an impractical

feedback requirement on the feedback channel. A solution which alleviates this impracti-

cality is selective feedback, which we studied extensively in Chapter 3 and 4, where only

a small subset of MUs (i.e., MUs having the best instantaneous channel states) are mul-

tiplexed on the uplink feedback channel. Since the base station can communicate only

with up to M MUs, simultaneously, an ideal selective feedback policy should allow only

M MUs to feed back, i.e., O (1) feedback requirement.

5.1.1 Contributions

Firstly, we will use the results in Chapter 3 and 4 to obtain the structure of the downlink

sum-rate maximizing selective decentralized feedback policy. We show that the sum-rate

maximizing selective decentralized feedback policy is a homogeneous threshold feedback

policy, where each MU requests a beam if its SINR value on that particular beam is above

a given threshold value.

Then, we show how to set threshold values to ensure O (1) feedback load on the av-

erage as the number of MUs in the system grows large. We illustrate the sub-optimal

and optimal throughput scaling of such a system through the feedback-capacity trade-
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off curve tracing the Pareto optimal boundary between feasible and infeasible feedback-

capacity pairs. If a feedback-capacity pair (λ, c) lies above this curve, then it is an infea-

sible operating point (i.e., there is no feedback policy achieving the capacity scaling of

c log log n subject to the restriction that no more than λ MUs feed back on the average),

and if it is below this curve, then it is a feasible operating point (i.e., there is a feedback

policy achieving the capacity scaling of c log log n without violating the feedback con-

straint λ). Furthermore, if a feedback policy operates at a point strictly below the tradeoff

curve, then it is suboptimal in the sense that there is another feedback policy achieving

the same capacity scaling with strictly less feedback. Our derived homogeneous thresh-

old feedback policy achieves any point on this tradeoff curve. In particular, we show

that there exists a sequence of homogeneous threshold feedback policies with appropri-

ately chosen thresholds achieving any point on this curve. We also show that M log log n

scaling in [79] can be achieved by only allowing O
(
(log n)ε) MUs to feed back on the

average for any ε ∈ (0, 1).

The above contributions are for a system with statistically identical MUs. However,

this assumption hardly holds in a practical system due to different path-loss gains expe-

rienced by the MUs in a cell. Obviously, the same threshold level for all MUs will not

work for such a system. To be more specific, if the threshold is low, the MUs located close

to the base station will feed back with very high probability. On the other hand, the MUs

located far away from the base station will feed back with very low probabilities if the

threshold level is set to a high value. In this work, we show that the threshold levels at

different MUs can be systematically altered according to the user locations without violat-

ing the O (1) feedback constraint. We obtain the feedback-capacity tradeoff curve for this

system, and we again show that relaxing the O (1) feedback requirement to O
(
(log n)ε)

for any ε ∈ (0, 1) will be enough to achieve M log log n scaling in [79].

Although providing optimum performance in throughput scaling under finite feed-

back constraints, providing fairness among MUs becomes an important issue for hetero-

geneous communication environments. If a beam is allocated to the MU having the best

SINR, a MU situated far from the base station has a lower probability of being scheduled

and may starve for data compared to a MU staying close to the base station. To address
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this issue, we introduce two new scheduling policies. These scheduling policies coupled

up with the systematic alteration of the threshold levels at different MUs allow the sys-

tem to achieve the optimum throughput scaling with the added advantage of ensuring

fairness among MUs.

Most of our results in this chapter are asymptotic in the sense that they are derived

by letting the number of MUs in the system grow large. Hence, we have also performed

some numerical evaluations to illustrate the accuracy of our results for finite size systems.

In particular, we show that the threshold levels set by using our asymptotic formulas

clearly achieve O (1) feedback in finite size systems as well. Although the closeness of

the simulated results to the theoretical results reduce a little when M is increased, O (1)

constraint is well preserved, and shows a clear convergence to the theoretical result when

the number of MUs is increased. We also compare the two proposed fair scheduling

policies with the scheduling policy of allocating the beam to the best MU for finite n.

Although achieving the same asymptotic performance, we observe that ensuring fairness

causes a clear degradation in rate for any finite size system. This is, in fact, the tradeoff

between rate maximization and ensuring fairness in a wireless communication network.

5.1.2 Related Works

The related work to this chapter includes most of the references given in Chapter 3 and

4. We study the opportunistic beamforming framework , but we have finite feedback

constraints on the uplink in contrast to a feedback load which increases linearly with

the number of MUs in [79, 97]. Quantization of the CSI parameters is an obvious way

of further facilitating the feedback reduction for opportunistic beamforming, e.g., see

[39, 65, 78]. Although this technique helps to reduce the feedback considerably, it still

cannot eliminate the linear growth in the feedback load. Therefore, opportunistic beam-

forming techniques were coupled with selective feedback techniques to further increase

feedback performance [21,70,74,79]. Thresholding at the receiver, which has been proven

to be the rate-wise optimal decentralized feedback policy in [74], has been the most com-

monly used selective feedback technique in the literature. The authors of [74] also prove

the rate-wise optimality of homogeneous threshold feedback policies for a base station
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transmitting multiple orthonormal beams in a Rayleigh fading environment. Our work

focuses on homogeneous threshold feedback policies to obtain O (1) feedback. Therefore,

these results are directly related to the work in this chapter, and ensures zero optimality

gap created by just focussing on the class of homogeneous threshold feedback policies

for asymptotic throughput scaling. Different from [74], this chapter focuses on the opti-

mum asymptotic throughput scaling under finite feedback constraints, and derives the

feedback-capacity tradeoff curve.

A thresholding scheme for opportunistic beamforming was first proposed in [79], and

then analyzed in greater detail in [70], but they only used a constant threshold indepen-

dent of the number of MUs. Although such a constant thresholding scheme reduces the

feedback, it cannot eliminate the linear growth in the average number of MUs feeding

back, which renders them inappropriate for systems with large numbers of MUs but

requiring only finitely many of them to feed back on the uplink. This discussion also im-

plies that an ideal threshold should be a function of n. To this end, the results presented

in [21] are promising to some extent where they showed that the average number of MUs

feeding back can be reduced to log n by means of thresholding without any performance

loss in the downlink throughput scaling. The main focus of our work is the further re-

duction of the average number of MUs feeding back to a more practical O (1) level, and

to investigate the capacity scaling laws with O (1) feedback requirements. In this work,

as a by-product of our analysis, we also show that the logarithmically growing feedback

requirement can be further reduced to O
(
(log n)ε) for ε ∈ (0, 1) while achieving opti-

mal downlink sum-rate scaling given in [79]. It is almost as if a constant feedback load is

enough to maintain optimum sum-rate scaling but not exactly.

One of the main concerns associated with opportunistic beamforming is fairness.

To address this issue, an algorithm called proportionally fair algorithm is introduced in

[97]. This takes into consideration the ratio between the requested rate and the average

throughput for a particular MU and ensures long-term fairness among MUs in terms of

average data rates achieved by prioritizing a MU with a high ratio over the others. [54]

extends this algorithm for multiuser scheduling. In [79], they claim that fairness can be

obtained automatically as a byproduct of having multiple beams since a MU located near
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the base station gets a high signal power as well as high interference from other beams.

Our work introduces a new approach for achieving fairness in opportunistic beamform-

ing. We show that setting different threshold levels at different MUs according to their lo-

cations, and fine tuning the scheduling policy, allows the system to obtain fairness among

MUs.

Related work also includes the literature studying the applicability of opportunistic

beamforming to finite networks or smaller sets of MUs [41, 54, 56, 102]. These works

make subtle changes to the feedback and scheduling policies given in [97] and [79] to

achieve better performance or robustness for smaller networks. In this work, we also

verify the applicability of our asymptotic results to finite size systems. Although our

motivation in this work is clearly different than the one in [41,54,56,102], it is a promising

future research direction how to make use of the concepts in these works to enhance the

applicability of our asymptotic results to finite size systems.

The rest of the chapter is organized as follows. In Section 5.2, we put forward the

problem formulation. We review some fundamental properties of user SINRs and basic

concepts from the extreme value theory in Section 5.3. Next, in Section 5.4, we present the

main result of this chapter, which is the feedback-capacity tradeoff curve for opportunis-

tic beamforming. We extend these results to statistically non-identical MUs in Section 5.5

and the fairness issues are investigated in Section 5.6. Section 5.7 contains the numerical

evaluations that illustrate the applicability of our results to finite size systems. Section

5.8 concludes the chapter.

5.2 Problem Formulation

In this chapter, we continue studying the multi-antenna single cell vector broadcast chan-

nel model given in Subsection 2.2.1 specifically for a Rayleigh fading model. To recall, the

base station communicates with n mobile users. The base station has Nt transmit anten-

nas, and each MU is equipped with a single receive antenna. The channel gains between

the receive antenna of the ith MU and the transmit antennas of the base station are given

by hi = (h1,i, . . . , hNt,i)
>, where hk,i is the channel gain between the kth transmit antenna
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at the base station and the receive antenna at the ith MU. We assume hk,i, k = 1, . . . , Nt

and i = 1, . . . , n, are independent and identically distributed (i.i.d.) random variables

drawn from a zero mean and unit variance circularly-symmetric complex Gaussian distribu-

tion CN (0, 1), similar to the model given in Subsection 4.6.1.

The base station transmits M data streams intended for M different MUs along the

directions of M orthonormal beamforming vectors
{

bk = (b1,k, . . . , bNt,k)
>
}M

k=1
. The sym-

bols of the kth stream are represented by sk. The signal received by the ith MU is equal

to

Yi =
√

ρ
M

∑
k=1

h>
i bksk + Zi, (5.1)

where Zi is the unit power (complex) Gaussian background noise and ρ is the transmit

power per beam. With these normalized parameter selections, ρ also signifies the SNR

per beam.

γm,i is the SINR at beam m at user i, and it is given by

γm,i =
|h>

i bm|2
ρ−1 + ∑

M
k=1,k 6=m |h>

i bk|2
. (5.2)

γi ∈ R
M
+ represents the SINR vector at user i. The elements of γi are identically dis-

tributed with a common marginal distribution F. The M-by-n SINR matrix of the whole

n-user communication system is denoted by Γ ∈ R
M×n
+ . If Γ is known by the base station,

then the aggregate communication rate can be maximized by choosing the best MU with

the highest SINR per beam. However, this requires an excessive amount of feedback and

information exchange between the base station and MUs. Here, we are interested in the

rate maximization under finite feedback constraints.

The MUs feedback using a given feedback policy F . A definition of F is given in

Definition 3.1. We give a more refine definition which is more relevant to the work in this

chapter below, where M = {1, . . . , M}, and N = {1, . . . , n}.

Definition 5.1. A feedback policy F : R
M×n
+ 7→ {Ω

⋃{ø}}n is an {Ω
⋃{ø}}n-valued function

F = (F1, . . . ,Fn)
> , (5.3)
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where Fi : R
M×n
+ 7→ Ω

⋃{ø} is the feedback policy of MU i, Ω is the set of all possible feedback

packets1 and ø represents the no-feedback state. We call F a decentralized feedback policy if Fi is

only a function of γi for all i ∈ N . We call it a homogeneous decentralized feedback policy if all

MUs use the same feedback policy, i.e., Fi = Fj for all i, j ∈ N .

A feedback policy determines two key performance measures of interest. Firstly, it

determines the downlink ergodic sum-rate in an n-user system under the feedback policy

F , which is given by

Rn (F ) = EΓ

[
M

∑
m=1

log

(

1 + max
i∈Gm(F (Γ))

γm,i

)]

. (5.4)

Note that this is the same definition given in (3.1), but we are introducing the subscript n

since it is an variable that we alter in this analysis, unlike the analysis done in the previous

chapters. Given a feedback policy F , we will use Rn (F ) to measure the performance of

F along the rate dimension. The next performance measure of interest is the average

number of MUs feeding back Λ(F ), which is used to measure the performance of F

along the feedback dimension. Λ(F ) can be written as

Λ(F ) =
n

∑
i=1

Pr {Fi (Γ) 6= ø} . (5.5)

We define the feedback-capacity pre-log scaling factor C?(λ) as

C?(λ) = lim sup
n→∞

sup
F :Λ(F )≤λ

Rn(F )

M log log n
. (5.6)

It is not hard to see that C?(λ) is a monotone increasing function of λ with C?(0) = 0 (i.e.,

beams are randomly allocated to MUs without using any CSI) and limλ→∞ C?(λ) = 1 (i.e.,

all MUs feedback their maximum SINR [79]). In this chapter, we will determine C?(λ)

for intermediate values of λ in (0, ∞), and call the resulting curve the feedback-capacity

tradeoff curve as it signifies the best achievable capacity scaling given the feedback con-

1Many different feedback mechanisms can be considered. Feeding back all the SINR values, feeding back
only the maximum SINR, feeding back the two largest SINRs, are just few of these approaches. The structure
of the feedback packet will depend on the feedback approach. Ω is the set containing all of these possible
feedback packets.
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straint λ.

We say a sequence of feedback policies
{

F
(n)
}∞

n=1
is asymptotically λ-optimal if, for a

given feedback constraint λ, we have Λ
(

F
(n)
)

≤ λ for all n large enough and

lim
n→∞

Rn

(

F
(n)
)

M log log n
= C?(λ). (5.7)

In the rest of the chapter, we will not allow any message passing among MUs, and

therefore focus on the distributed scenario. Hence, we will seek for asymptotically λ-

optimality within the class of decentralized feedback policies.

We have already proved in Chapter 3 that a threshold feedback policy will be the

downlink rate maximizing decentralized feedback policy when such a constraint on the

average number of users feeding back is enforced (please refer Theorem 3.2 and Theo-

rem 3.3). Therefore, we can only focus on the class of decentralized threshold feedback

policies T without any loss in optimality. Definitions for a threshold feedback policy is

given in Definition 3.3 and 3.4. As we did for the definition of the feedback policy, we

will conclude this section by giving a more refine definition for threshold feedback poli-

cies, which is an important subset of decentralized feedback policies since they become

asymptotically λ-optimal for appropriately chosen thresholds as we will see in Section

5.4.

Definition 5.2. We say T = (T1, . . . , Tn)
> is a threshold feedback policy if, for all i ∈ N , there

is a threshold τi such that Ti (γi) generates a feedback packet containing SINR values {γk,i}k∈Ii

if and only if γk,i ≥ τi for all k ∈ Ii ⊆ M. We call it a homogeneous threshold feedback policy if

all MUs use the same threshold τ, i.e., τi = τ for all i ∈ N .

5.3 Signal-to-interference-plus-noise-ratio (SINR)

The SINR is an important parameter in our analysis since it is the metric that captures

the quality of the channel, i.e., see the rate definition in (5.4). Therefore, we will briefly

review some of its fundamental properties in this section along with some basic concepts

from the extreme value theory [19].
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The SINR expression given in (5.2) for this specific system model consists of i.i.d.

unit mean exponential random variables
{

|h>
i qk|2

}M

k=1
in the numerator and the denom-

inator. Using this property, we can obtain the cumulative distribution function and the

probability density function

Lemma 5.1. The cumulative distribution function (CDF) and the probability density function

(PDF) of the SINR on a beam at a user for the model in consideration are given by,

F(x) = 1 − e
− x

ρ

(x + 1)M−1
(5.8)

and

f (x) =
e
− x

ρ

(x + 1)M

[
1

ρ
(x + 1) + M − 1

]

, (5.9)

respectively.

Proof. See Appendix 5.9.1.

Using these two functions and the result in Theorem 4.4, we can obtain the rate-wise

optimality of homogeneous threshold feedback policies. This optimality ensures zero op-

timality gap, which can be possibly created by just focussing on the class of homogeneous

threshold feedback policies for asymptotically λ-optimality. Therefore, we will analyze,

C?(λ) = lim sup
n→∞

sup
T :Λ(T )≤λ

Rn(T )

M log log n
, (5.10)

where T is a homogenous threshold feedback policy.

For a sequence of i.i.d. random variables X1, X2, · · · , Xn with the common cumulative

distribution function (CDF) G, we define

X?
n = max

1≤i≤n
Xi. (5.11)

The CDF of X?
n is equal to Gn, and if there exists a sequence of constants an and bn such

that X?
n−bn

an
converges in distribution as n goes to infinity, then Gn (anx + bn) converges to

one of the three well-known distributions: Frechet, Weibull, or Gumbel [19], given by
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i) Frechet G1(x; α) =







0 x ≤ 0, α > 0

exp (−x−α) x > 0

ii) Weibull G2(x; α) =







exp [−(−x)α] x ≤ 0, α > 0

1 x > 0

iii) Gumbel G3(x) =

{

exp [−e−x] −∞ < x < ∞

It is also known that the limiting distribution is of type iii, if the growth function,

which is defines by

g(x) =
1 − F(x)

f (x)
,

satisfies the von Mises’ sufficient condition. It is not hard to see that

lim
x→∞

d

dx

[
1 − F(x)

f (x)

]

= lim
x→∞

d

dx




(1 + x)

[
1
ρ (x + 1) + M − 1

]



 = 0, (5.12)

which indicates that the growth function satisfies the von Mises sufficient condition. This

implies that if

γ?
m(n) = max

1≤i≤n
γm,i,

there exist sequences of real numbers {an}∞
n=1 and {bn}∞

n=1 such that γ?
m(n)−bn

an
converges

in distribution to the Gumbel distribution, i.e., for any x ∈ R,

Fn (anx + bn) → exp
(
−e−x

)

as n goes to infinity. We formally state the sequences of real numbers an and bn in the

following lemma.

Lemma 5.2. The sequences of real numbers {an}∞
n=1 and {bn}∞

n=1 for the system model in con-

sideration are given by,

an =
ρ(1 + bn)

1 + bn + ρ(M − 1)
(5.13)
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and

bn = ρ log n − ρ(M − 1) log (1 + bn) , (5.14)

respectively.

Proof. See Appendix 5.9.2.

In the next lemma, we establish an important structural property for the sum-rate

function Rn (T ) when a homogeneous threshold feedback policy T with a threshold

level τ greater than 1 is used for MU selection. This property will simplify our analysis

greatly in the remainder of the chapter.

Lemma 5.3. Let T be a homogeneous feedback policy with threshold τ > 1. Then,

Rn (T ) = M
(

EΓ

[

log (1 + γ?
1(n)) 1{G1(T (Γ)) 6=∅}

])

,

where 1{·} is the indicator function. Moreover, if a MU feeds back, it only requests the best beam

with the maximum SINR.

Proof. See Appendix 5.9.3.

An important theoretical consequence of this lemma is that it shows that it is enough

to focus on the scaling properties of γ?
m(n) to derive the scaling behavior of the sum-rate

function. As will be seen in Section 5.4, scaling behavior of γ?
m(n) can be obtained conve-

niently by using the extreme value theory. Moreover, since one of the main objectives of

this chapter is to eliminate the linear growth in feedback load with the number of MUs,

an assumption of a threshold being larger than one is not actually a limitation. That is,

to eliminate the linear growth, the common threshold at MU terminals should gradually

increase with the number of MUs. Therefore, if n is large enough, there exists n? such

that for all n > n?, τ > 1. Furthermore, note that the lower bound on the threshold is

0[dB], which is a realistic figure even in a practical system with finite number of MUs.



5.4 Feedback-Capacity Tradeoff and Threshold Feedback Policies 115

5.4 Feedback-Capacity Tradeoff and Threshold Feedback Poli-

cies

In this section, we will prove the asymptotic λ-optimality of homogeneous threshold

feedback policies with appropriately chosen threshold levels, and obtain the feedback-

capacity tradeoff curve C?(λ). One natural way of feedback reduction by means of a

threshold feedback policy is to use a constant threshold τ, which is independent of n.

Even though this approach reduces the number of MUs feeding back per beam by a

factor of 1 − F(τ), it cannot eliminate the linear feedback growth measured in terms of

the number of MUs feeding back. Therefore, more stringent but realistic O (1) feedback

constraints on the feedback channel render constant thresholding approach useless for

all practical purposes. As a result, we need threshold levels to grow to infinity to achieve

O (1) feedback as the number of MUs in the system increases.

In the next part of the chapter, roughly speaking, we will show that we can make a se-

quence of thresholding rules
{

T
(n)
}∞

n=1
asymptotically λ-optimal by setting the thresh-

old level of T (n) to

τn(x) = anx + bn, (5.15)

where an and bn are sequences of constants given in (5.13) and (5.14), respectively. Here,

x is our design degree of freedom that we use to slide on the tradeoff curve C?(λ) to

achieve optimal capacity scaling without violating the feedback constraint.

5.4.1 Feedback-Capacity Tradeoff Curve

In Theorem 5.1, we establish the form of the feedback-capacity tradeoff curve C?(λ).

Before going into the details of the proof of Theorem 5.1, we will first provide some

intuition for the proof. Consider a threshold feedback policy T
(n) with a threshold level

chosen as τn(x) = anx + bn.2 Then, the random number of MUs requesting beam 1 when

2The form of threshold feedback policies that we use to prove Theorem 5.1 will be slightly different for
technical purposes.
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there are n MUs in the system can be written as

λn,1(x) =
n

∑
i=1

1{γ1,i≥anx+bn} (5.16)

for all n large enough (see the proof of Lemma 5.3). Note that λn,1(x) is a binomial ran-

dom variable with parameters

θn(x) = 1 − F(anx + bn)

and n, i.e.,

λn,1(x) ∼ B (n, θn(x))

. Since γ?
1(n) converges in distribution to the Gumbel distribution, we have

lim
n→∞

(1 − θn(x))n = exp
(
−e−x

)
. (5.17)

Using this convergence, we can obtain an important result, which is given in the follow-

ing lemma.

Lemma 5.4. For any fixed x ∈ R, if limn→∞ (1 − θn(x))n = exp (−e−x), then

lim
n→∞

nθn(x) = e−x. (5.18)

Proof. See Appendix 5.9.4.

By using Lemma 5.4 and invoking the classical Poisson approximation for Binomial

distributions, we conclude that λn,1(x) can be approximated in distribution by a Poisson

random variable with mean nθn(x) for n large enough. Furthermore, Lemma 5.4 also

shows the form threshold levels achieving the required O(1) feedback constraints, i.e.,

lim
n→∞

Λ
(

T
(n)
)

= Me−x. (5.19)

However, we now encounter with the problem of outage. Above arguments indicate

that the outage event occurs with probability around exp (−e−x) for n large enough. For
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example, if we set x = 0, there will be approximately M MUs feeding back on the average

but each beam will face an outage event with probability around 0.37 for n large enough,

which shows a tradeoff between feedback and the capacity loss due to outage. In the next

theorem, we make these intuitive ideas rigorous.

Theorem 5.1. The feedback-capacity tradeoff curve C?(λ) of a single-cell MIMO communication

system with M transmit antennas at the base station is given by

C?(λ) = 1 − exp

(

− λ

M

)

, (5.20)

where λ is the O (1) feedback constraint.

Proof. See Appendix 5.9.5.

Theorem 5.1 clearly indicates how much loss in the capacity we have to tolerate in

order not to violate a given feedback constraint on the feedback channel. By relaxing

the feedback constraint, we can decrease outage probability and achieve higher rates

of communication. Our design parameter x helps us to adjust threshold levels so that

we can slide on the feedback-capacity tradeoff curve in the right direction to maximize

communication rates while meeting the feedback constraint.

Fig. 5.1 shows feedback-capacity tradeoff curves for different numbers of transmitter

antennas at the base station. Any feedback-capacity pair (λ, c) below these curves can

be achieved by means of a homogeneous decentralized feedback policy, whereas there is

no such policy that can achieve (λ, c) above them. Moreover, if a homogeneous decen-

tralized feedback policy operates at a point strictly below the tradeoff curves, then it is

sub-optimal in the sense that we can find another homogeneous decentralized feedback

policy achieving the same capacity scaling with strictly less feedback. Therefore, these

curves can also be considered as the Pareto optimal boundary between the feedback con-

straint and capacity scaling in single-cell MIMO communication systems.
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Figure 5.1: Feedback-capacity tradeoff curves for different numbers of transmitter anten-
nas: M = 1, M = 2 and M = 4.

5.4.2 Closing the Capacity Gap with O
(
(log n)ε) Feedback

As shown in the previous section, when there is a stringent O (1) feedback constraint λ

on the feedback channel, there will always be a capacity loss in the downlink of a single-

cell MIMO communication system, albeit a small one for large but finite values of λ. In

this part of the chapter, we will now show that we can even get rid of this capacity loss

by sending the design parameter x, used to set threshold levels above, slowly to −∞ if

the O (1) feedback constraint is relaxed to O
(
(log n)ε) for any ε > 0.

To this end, we consider a sequence of homogeneous decentralized threshold feed-

back policies
{

T
(n)
}∞

n=1
with threshold levels

τn(xn) = anxn + bn (5.21)
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such that

xn = −ε log log n (5.22)

for some ε > 0. As above, let λn,1(xn) be the random number of MUs requesting beam

1 under the thresholding rule T
(n) when there are n MUs in the system. Then, by using

Lemma 5.3, we can write

λn,1(xn) =
n

∑
i=1

1{γ1,i≥anxn+bn}

for all n large enough. λn,1(xn) has a binomial distribution with parameters

θn(xn) = 1 − F (anxn + bn)

and n. Therefore, the outage probability at beam 1 is equal to

βn = (1 − θn(xn))
n

and

Λ
(

T
(n)
)

= Mnθ(xn).

We will now obtain an expression for θn (−ε log log n), which is formally stated in the

following lemma.

Lemma 5.5. For some positive sequence of real numbers {kn}∞
n=1 such that kn = O (1), we have

θn(−ε log log n) =
1

n
(log n)ε kn (5.23)

for the system in consideration.

Proof. See Appendix 5.9.6.

Using this result, we have the average feedback around O
(
(log n)ε). Furthermore,

we can obtain an expression for the outage probability, which we obtain through the

following lemma.
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Lemma 5.6. For these choices of threshold levels, i.e., τn(xn) = anxn + bn, where xn = −ε log log n,

we have the outage probability

βn = O

(
1

(log n)ε

)

(5.24)

for the system in consideration.

Proof. See Appendix 5.9.7.

Since the outage probability goes to zero, we do not have any optimality gap in the

scaling of the system capacity. The following theorem formally characterizes this result.

Theorem 5.2. A sequence of thresholding rules
{

T
(n)
}∞

n=1
with thresholds τ(xn) = anxn + bn,

where an and bn are given in (5.13) and (5.14), respectively, and xn = −ε log log n for any

ε ∈ (0, 1), achieves the M log log n-type capacity scaling behavior, i.e.,

lim
n→∞

Rn

(

T
(n)
)

M log log n
= 1, (5.25)

with feedback load growing as Λ
(

T
(n)
)

= O
(
(log n)ε).

Theorem 5.2 can be proven by following the same lines in the proof of Theorem 5.1,

and therefore we omit the details. One implication of this theorem is that we can achieve

the optimal capacity scaling with an “almost” O (1) feedback by setting ε close to zero.

However, we cannot make ε exactly zero, and therefore the feedback increases to infinity

but at a much slower rate than log n for small values of ε. The analysis in this part

of the chapter extends similar findings in [21], where they only showed that O (log n)

feedback, i.e., ε = 1, is enough to achieve optimal capacity scaling. Here, we show that

we can make the growth rate of the feedback arbitrarily close to constant feedback by

introducing another design parameter ε to choose threshold feedback policies.

Finally, since threshold levels are chosen to grow like log n in all the analysis above, it

will be enough to assume that each MU only feeds back its user index and the index of the

best beam. Any MU, not only the MU with the maximum SINR requesting a particular

beam, with SINR above the threshold will achieve log log n-type scaling. This means that
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the base station can select one MU randomly for every beam among the MUs requesting

it without any loss in the asymptotic performance.

5.5 Heterogeneous Communication Environments

The analysis in the earlier sections of the chapter was done for a homogeneous network

with all the MUs having equal average SNR ρ, but in a practical system, this assumption

hardly holds because the MUs are scattered throughout the cell. To model this scenario,

we consider the setup given in the next subsection.

5.5.1 System Setup

We assume that the set of MUs is divided into L groups (n >> L) according to their

average SNR values. ρk represents the SNR of the kth group. For notational simplicity,

we will assume that each group has n̄ = n
L MUs, i.e., equal number of MUs. For a given

set of SNR values {ρ1, . . . , ρL}, let

ρmax = max
1≤l≤L

ρl (5.26)

and

ρmin = min
1≤l≤L

ρl , (5.27)

and we assume that 0 < ρmin ≤ ρmax < ∞. Also, let

l? = arg max
1≤l≤L

ρl , (5.28)

which is the index of the best group, and

l[ = arg min
1≤l≤L

ρl , (5.29)
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Figure 5.2: Setup for the analysis for heterogeneous communication environments.

which is the index of the worst group. Please refer to Fig. 5.2 for a possible graphical rep-

resentation, where MUs whose distances to the base station in between some predefined

limits are assigned to the same group, and are approximated as having the same average

SNR value. Also, note that the MUs in a particular group, e.g., let’s say group k, are still

statistically identical to each other with a common CDF for the SINR on a beam given by

F(x, ρk) = 1 − e
− x

ρk

(x + 1)M−1
. (5.30)

Finally, let γ?
m(n̄, k) denote the maximum SINR on beam m among the n̄ MUs in group k.

5.5.2 Throughput Scaling for a Heterogeneous System

In this part of the chapter, we will extend the results in Subsection 5.4.1 while taking the

heterogeneity in SNR values into account. We will show that the heterogeneous network,
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which is illustrated in Fig. 5.2, will achieve the same C?(λ) scaling given in Theorem

5.1, for any given threshold levels achieving the feedback constraint λ. These ideas are

formally given in the following theorem.

Theorem 5.3. Consider a heterogeneous single-cell MIMO communication system with M trans-

mit antennas at the base station where each MU has a bounded SNR from a finite set of SNR

values. The feedback-capacity tradeoff curve C?(λ) of this system is given by

C?(λ) = 1 − exp

(

− λ

M

)

, (5.31)

where λ is the O (1) feedback constraint.

Proof. See Appendix 5.9.8.

We can also achieve the M log log n-type throughput scaling behavior by setting x

as a function of n and slowly decreasing it to −∞ as we did in Subsection 5.4.2. The

arguments for the proof and the analysis are similar to the fixed x case, and therefore we

skip them to avoid repetition. The results are formally stated in the following theorem.

Theorem 5.4. A sequence of thresholding rules
{

T
(n)
}∞

n=1
with thresholds

τn̄(xn̄, k) = an̄(k)xn̄ + bn̄(k),

where k ∈ {1, . . . , L} and an̄(k) and bn̄(k) are given in (5.34) and (5.35), respectively, and

xn̄ = −ε log log n̄ for any ε ∈ (0, 1), achieves the M log log n-type capacity scaling behavior,

i.e.,

lim
n→∞

Rn

(

T
(n)
)

M log log n
= 1, (5.32)

with feedback load growing like Λ
(

T
(n)
)

= O
(
(log n)ε).
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5.5.3 Drawbacks of the Scheduling Policy

The main drawback of this scheduling policy is its inability to provide fairness among

different MUs. If the MUs were homogeneous, fairness would be achieved as an auto-

matic byproduct of the homogeneity assumption. However, if a beam is allocated to the

MU having the best SINR in a heterogeneous communication environment, the MUs with

low average SNR values will starve for data, which eliminates fairness in the system. The

fairness among MUs can be defined using two different view points. The first one is pro-

viding the same rate for all the MUs, which we call rate-wise fairness. The second one

is providing all the MUs the equal share of the channel in time, which we call time-wise

fairness. In the next section, we will analyze how threshold feedback policies can be used

to achieve time-wise fairness in a heterogeneous network while achieving the optimum

throughput scaling under finite feedback constraints.

5.6 Obtaining Time-wise Fairness Through Thresholds

The first challenge in achieving fairness in a heterogeneous network is the process of

setting the threshold levels at different MUs. Clearly, we will run into two problems by

setting the same threshold value for all MUs in such a system. Firstly, all the MUs in

groups with high SNR values will feedback with high probabilities if the threshold is set

to a low value. Secondly, the MUs in groups with low SNR values will feedback with

small probabilities if the threshold is set to a high value. Therefore, it is imperative to

set different threshold levels for different MU groups to make sure that all MUs have an

opportunity to feed back regardless of their relative channel conditions. To this end, the

threshold for the kth group k ∈ {1, . . . , L} is chosen as

τn̄(x, k) = an̄(k)x + bn̄(k), (5.33)

where

an̄(k) =
ρk(1 + bn̄)

1 + bn̄ + ρk(M − 1)
, (5.34)
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bn̄(k) = ρk log n̄ − ρk(M − 1) log (1 + bn̄) , (5.35)

and x is the design degree of freedom. The techniques used in Section 5.3 to obtain (5.13)

and (5.14) can also be used to obtain (5.34) and (5.35), respectively. All the MUs in the kth

group will use this homogeneous threshold. It is not hard to see that the threshold value

is systematically reduced for MUs with poor average SNR values compared to MUs with

high SNR. This ensures that all the MUs have an opportunity to feed back regardless of

their relative channel conditions.

In the previous section, we claimed that the current scheduling scheme will not ensure

time-wise fairness. We call this policy the Best User Allocation Policy (BUAP). Therefore,

we will now define two new scheduling schemes which can be used to achieve fairness.

5.6.1 Time-wise Fair Scheduling Policies

Definition 5.3. Best User Fair Allocation Policy (BUFAP) : The threshold for the kth group

k ∈ {1, . . . , L} is chosen as τn̄(x, k) = an̄(k)x + bn̄(k) where x is the design degree of freedom,

and an̄(k) and bn̄(k) are given in (5.34) and (5.35), respectively. Let Gm,k (T (Γ)) be the set of

MUs feeding back on beam m from group k. Select the best MU n? ∈ Gm,k (T (Γ)) for each

m ∈ M and each k. Allocate a mini-slot msk for each group k ∈ {1, . . . , L}. All the mini-slots

are equal in length in the time domain. Schedule communication to the selected MUs in each

group on their allocated mini-slots and respective beams. Zero rate will be achieved on beam m

in msk if Gm,k (T (Γ)) is an empty set, i.e., an outage event. Refer to Fig. 5.3(a) for a graphical

representation of the time slot.

Definition 5.4. Random User Allocation Policy (RUAP) : The threshold for the kth group

k ∈ {1, . . . , L} is chosen as τn̄(x, k) = an̄(k)x + bn̄(k) where x is the design degree of freedom,

and an̄(k) and bn̄(k) are given in (5.34) and (5.35), respectively. Randomly select a MU n′ ∈
Gm (T (Γ)) for each m ∈ M and schedule transmission to the selected MUs on the respective

beams. Zero rate will be achieved on beam m if Gm (T (Γ)) is an empty set. Refer to Fig. 5.3(b)

for a graphical representation of the time slot.

When intuitively looking at the two scheduling policies, we can see that both of them
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Obtain

Feedback
ms1 ms2 . . . msL

(a) Time slot for Best User Fair Allocation Policy (BUFAP).

Obtain

Feedback Schedule n′

(b) Time slot for Random User Allocation Policy (RUAP).

Figure 5.3: The two new scheduling policies for M = 1.

will provide some sense of fairness since they treat all the groups equally when schedul-

ing communication on the downlink. Next, we will see how we can achieve fairness

by using the scheduling policies defined above. Similar to our analysis in Section 5.4

and Section 5.5, we will start with a O (1) feedback constraint and obtain the feedback-

capacity tradeoff curve in a time-wise fair system. Then, we will see how we can set

threshold levels in a time-wise fair system to ensure optimal throughput scaling.

5.6.2 Throughput Scaling for a Time-wise Fair System

We will now extend the results in Subsection 5.4.1 taking fairness considerations into

account. Since these results are derived by allocating each beam to the MU having the

maximum SINR on it, i.e., the maximization among n random variables, we only use BU-

FAP given in Definition 5.3 for the theoretical analysis. Note that the best user allocation

policy also allows a maximization in each of the mini-slots. Although there is no restric-

tion in using the random user allocation policy for this scenario, the throughput scaling

achieved with the random allocation policy will be strictly less for the fixed x scenario

since the maximization among the MUs is neglected.

When x is fixed at a real number, we can write the random number of MUs requesting

beam 1 as

λn,1(x) =
L

∑
k=1

λ̄n̄,1(x, k)



5.6 Obtaining Time-wise Fairness Through Thresholds 127

=
L

∑
k=1

n̄

∑
i∈Sk,i=1

1{γ1,i≥an̄(k)x+bn̄(k)} (5.36)

for all n large enough, where Sk is the group of MUs having ρk as their average SNR

value. Again, λ̄n̄,1(x, k) is a binomial random variable with parameters

θn̄(x, k) = 1 − F (an̄(k)x + bn̄(k), ρk)

and n̄, i.e.,

λ̄n̄,1(x, k) ∼ B (n̄, θn̄(x, k)) .

λn,1(x) is the summation of L independent binomial random variables. Since n̄ → ∞

when n → ∞, we know γ?
1(n̄, k) converges in distribution to the Gumbel distribution for

all k. This means, we have e−x MUs feeding back from each group on a beam with an

outage of exp (−e−x). Therefore, we have O (1) feedback with

lim
n→∞

Λ
(

T
(n)
)

= MLe−x. (5.37)

This also means that all the groups have the same feedback-capacity tradeoff curve. Since

the BUFAP is used, time-wise fairness is guaranteed because an equal length mini-slot

is allocated to each group for downlink data transmission. Hence, O (1) feedback is

achieved while preserving fairness. These ideas and the feedback-capacity tradeoff curve

are formally given in the following theorem.

Theorem 5.5. Consider a heterogeneous single-cell MIMO communication system with M trans-

mit antennas at the base station where each MU has one of L bounded SNR values and the system

ensures time-wise fairness using a the Best User Fair Allocation Policy . The feedback-capacity

tradeoff curve C?(λ) of this system is given by

C?(λ) = 1 − exp

(

− λ

ML

)

, (5.38)

where λ is the O (1) feedback constraint.

Proof. Since the system achieves the same throughput scaling in all the mini-slots, the
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theorem can be proven by considering the throughput scaling of a single mini-slot and

following the lines of the proof of Theorem 5.1.

We can again close this capacity gap with O
(
(log n̄)ε) feedback by setting xn̄ =

−ε log log n̄ in a time-wise fair system as well. Now, O
(
(log n̄)ε) MUs will feed back

from each group, and the outage probability will go to zero as n → ∞ since n̄ = n
L .

We have also claimed in Subsection 5.4.2 that allocating the beam to the best MU feed-

ing back or any random MU feeding back provides the same asymptotic performance in

throughput scaling when xn is varied. Therefore, the scheduling policies given in Def-

inition 5.3 and Definition 5.4 can be both used to achieve fairness for this scenario. We

formally state these results in the next theorem.

Theorem 5.6. A sequence of thresholding rules
{

T
(n)
}∞

n=1
with thresholds

τn̄(xn̄, k) = an̄(k)x + bn̄(k),

where k ∈ {1, . . . , L} and an̄(k) and bn̄(k) are given in (5.34) and (5.35), respectively, and

xn̄ = −ε log log n̄ for any ε ∈ (0, 1), achieves the M log log n-type capacity scaling, i.e.,

lim
n→∞

Rn

(

T
(n)
)

M log log n
= 1, (5.39)

with feedback load growing as Λ
(

T
(n)
)

= O
(
(log n)ε) while ensuring time-wise fairness in

the system.

Proof. See Appendix 5.9.9.

Theorems 5.5 and 5.6 show us that after some modifications to the scheduling policy,

the results on throughput scaling hold for a heterogeneous set of MUs as well, and the

system can simultaneously achieve time-wise fairness by fine tuning the threshold levels

at different MUs according to their average SNR values.
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Figure 5.4: Simulation results illustrating the applicability of results in Subsection 5.4.1
to finite size systems, where ρ = 1.
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5.7 Applicability to Finite Size Systems

Our analysis in the previous sections were based on asymptotic results. We will now see

that some of our results provide good performance matches even for finite size networks.

We start with the results obtained for the tradeoff curve in Subsection 5.4.1 and simulate

the average number of MUs feeding back and the outage probability for various numbers

of MUs in the range of 50 to 300 for ρ = 1.

The simulation results are illustrated in Fig. 5.4. We set x = − log 7 which makes the

average number of MUs feeding back 7 when n → ∞. The simulated performance figures

in Fig. 5.4(a) almost overlap with the theoretical results when M = 1, which makes the

threshold setting ideal for finite number of MUs for this scenario. On the other hand,

we can also observe that the tightness reduces a bit when M is increased. This can be

reasoned out as follows. The simulated results will be close to the theoretical results if the

distribution of the maximum SINR closely approximates the Gumbel distribution. When

M is increased, interference is introduced, which causes the SINR to reduce. Hence,

realized SINR values will achieve low values more frequently than high values. Since

the distribution of the maximum SINR depends on high SINR values, which now have

low probabilities of occurrence, we have to maximize over more random variables for

the maximum SINR distribution to converge to the Gumbel distribution. This is evident

in the Fig. 5.4(a) as well where we observe that the average number of MUs feeding back

per beam converging to 7 as n is increased. When the value of ρ is decreased, i.e., when

the SINR is more noise dominated, the simulation results become tighter and the average

number of MUs feeding back per beam is scattered closely around 7 even for the M = 4

case. It is also important to note that even when M is increased, we still have an upper

bound on the average number of MUs feeding back per beam, which is approximately

9.15 for the M = 4 in Fig. 5.4(a). This implies that we can still upper bound the average

number of MUs feeding back by using a constant λ, i.e., O (1) feedback load.

Outage probabilities are illustrated in Fig. 5.4(b). Theoretically, asymptotic outage

probability should be around exp (− exp (log 7)) ≈ 0.0009. Again, our simulated results

in the M = 1 case converge to this value rather quickly when compared to the simulation

results in M = 2 and M = 4 cases. Also, we observe a decreasing behavior in βn when
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Figure 5.5: Convergence of the tradeoff curve as n → ∞ for M = 2 and ρ = 1.

M is increased, which is consistent with Fig. 5.4(a). This is because increasing M causes

more MUs to feed back for the finite n case. Fig. 5.5, which illustrates the convergence of

the tradeoff curve as n → ∞ for M = 2 and ρ = 1, concludes the numerical evaluations

for the tradeoff curve. We observe that increasing the number of MUs causes C?(λ) to

decrease for any given feedback level λ (except for very small λ). This is because the

outage probability increases with n as shown in Fig. 5.4(b).

Looking at the results in Subsection 5.4.2, we can show through simulations that the

average number of MUs feeding back can be reduced from n to O (log n) with this se-

lection of thresholds. We simulate the average number of MUs feeding back on a beam

for different MU levels, where we set ρ = 1 and ε = 1. The results are illustrated in Fig.

5.6(a). We observe that the average number of MUs feeding back can be reduced from n

to O (log n) with the proposed selection of thresholds in Subsection 5.4.2. It is important

to note that ε can be made smaller to further reduce the amount of feedback, but this

makes the results more dependent on the magnitude of n since βn = O
(

1
(log n)ε

)

and the
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Figure 5.6: Simulation results illustrating the applicability of results in Subsection 5.4.2
to finite size systems for ρ = 1 and ε = 1.
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Figure 5.7: Simulation of rate for different scheduling policies and threshold selections
for a set of homogeneous MUs, where n = 200 and ρ = 1.

rate at which βn goes to zero reduces when ε is reduced. This is why we have set ε = 1

for our simulations. When considering the outage probability, it is not difficult to see that

the outage probability for any finite n will be again positive since βn approaches zero

only when n → ∞. These results are illustrated in Fig. 5.6(b). As expected, the outage

probability is high compared to the results obtained for the fixed x scenario, for finite n.

However, the values for βn are still relatively small, with it being less than 0.5% for the

M = 2 case, and showing a clear convergence to zero as the number of MUs is increased.

Before focusing on the heterogeneous communication environments and the fairness

issues, we will perform some more simulations with the assumption of homogeneity. We

consider two cases, and simulate the rate for each case using different scheduling policies

for n = 200 and ρ = 1. Firstly, we set the common threshold value to zero and allow all

the MUs to feed back. The simulated rate is given in Fig. 5.7. Then, we set the common

threshold level as τn = anx + bn, where x = − log 7, and simulate the rate again. We

observe that there is almost no degradation in rate on the average if BUAP is used but
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Figure 5.8: Simulation of rate for different scheduling policies for a heterogeneous net-
work setting, where n = 200, ρ1 = 1 and ρ2 = 10 .

the feedback load is reduced from 200 MUs to a figure approximately less than 8.5 MUs

(please refer to Fig. 5.4(a) for the feedback levels at n = 200). On the other hand, setting

a positive threshold provides a huge gain in terms of rate for RUAP since it stops a MU

with low SINR from being scheduled for communication.

Now, we come to the scenario of heterogeneous MUs. We will assume two groups of

MUs with each group having 100 MUs each. The first group has an average SNR ρ1 = 1,

and the second group has an average SNR ρ2 = 10, i.e., 0[dB] and 10[dB], respectively.

Fig. 5.8 illustrates the simulated rate for this scenario with different scheduling policies.

We can observe that BUAP does the best in terms of rate, and the other two scheduling

policies achieve fairness at the expense of rate. This figure shows a clear tradeoff between

rate maximization and ensuring fairness in a heterogeneous network setting. Finally,

although both BUFAP and RUAP provide fairness, BUFAP is superior in terms of rate.

However, if a RUAP is used, MUs have the added flexibility of not feeding back the

SINR values to the base station. This implies a further reduction in feedback. It will also
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simplify the feedback protocol implementation, which will be the focus of our future

work.

5.8 Conclusions

Opportunistic beamforming is a communication strategy achieving the perfect CSI capac-

ity scaling for vector broadcast channels by only requiring partial CSI at the base station.

Nevertheless, in its plain implementations, it cannot eliminate the linear growth in the

feedback load with increasing numbers of MUs in the system. In this chapter, we have

focused on O (1) feedback constraints on the feedback load instead, and analyzed the

tradeoff between feedback and capacity in single-cell MIMO communication systems.

Starting with an assumption of statistically identical MUs, we have obtained the

tradeoff curve C?(λ) tracing the Pareto optimal boundary between feasible and infeasible

feedback and capacity pairs. A point above C?(λ) cannot be achieved by any decentral-

ized feedback policy, whereas all points below it, which are sub-optimal in the sense that

the same capacity scaling can be obtained by using strictly less feedback, can be achieved

by such a policy. We have provided the form of the homogeneous threshold feedback

policies, which are proven to be rate-wise optimal for Rayleigh fading environments with

multiple transmit antennas at the base station, achieving the feedback-capacity pairs on

C?(λ). We have also showed that if the O (1) feedback constraint λ is relaxed, we can

achieve M log log n-type capacity scaling with feedback load growing like O
(
(log n)ε)

for any ε ∈ (0, 1).

We have extended these results to a heterogeneous communication system, where

different MUs experience non-identical path-loss gains. Using the same threshold level

for all MUs does not work effectively for such a system. Therefore, we systematically

altered the threshold levels at different MUs according to their large scale path-loss gains

without violating the O (1) feedback constraint. We have showed that the heterogeneous

network achieves the same performance in capacity scaling and feedback as the network

consisting of statistically identical MUs. Since providing fairness among MUs is an im-

portant issue for such a heterogeneous communication environment, we have introduced
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two new scheduling policies. We have showed that these scheduling policies coupled up

with the systematic alteration of the threshold levels at different MUs allow the system

to achieve optimum throughput scaling and fairness among MUs, simultaneously.

Although most of our results are optimal in the limit for large networks, they also

provide a close match with the asymptotically optimal results when used in finite size

systems. In particular, we have showed that the threshold levels set by using the asymp-

totic formulas very rapidly achieve the required O (1) feedback constraints in finite size

systems as well. When comparing the two proposed fair scheduling policies with the

scheduling policy of allocating the beam to the best MU, we have observed that ensur-

ing fairness causes a clear degradation in rate for finite n although achieving the same

asymptotic performance. This is the tradeoff between rate maximization and ensuring

fairness in a wireless communication network.

5.9 Appendix

5.9.1 Proof of Lemma 5.1

First, let’s consider the division of two independent random variables U and V. If X = U
V ,

the CDF of X can be obtained by

Pr {X ≤ x} = F(x) = Pr

{
U

V
≤ x

}

,

which can be written as

F(x) =
∫

v∈V
fv(v).Pr

{
U

v
≤ x

}

dv

=
∫

v∈V
fv(v).Pr {U ≤ vx} dv,

where fv and fu are the densities of V and U,respectively. If Fu is the CDF of U, we get

F(x) =
∫

v∈V
fv(v)Fu(vx) dv. (5.40)
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The expression of the SINR given in (5.2) is the division of two random variables with

a further added constant in the denominator:

γm,i =

U
︷ ︸︸ ︷

|h>
i bm|2

1

ρ
︸︷︷︸

c

+
M

∑
k=1,k 6=m

|h>
i bk|2

︸ ︷︷ ︸

V

.

Due to the orthogonality of the beams, we can assume independence between U and

c+V. Therefore, we can make a slight change in (5.40) to take the constant c in to account.

We get

F(x) =
∫

v∈V

fv(v − c)Fu(vx) dv.

Also,
{

|h>
i qk|2

}M

k=1
are i.i.d. unit mean exponential random variables. Therefore, we

have

Fu(vx) = 1 − e−vx

and

fv(v − c) =
(v − c)(M−2)e−(v−c)

(M − 2)!
.

Substitution with a variable change t = v − c gives us

F(x) =
1

(M − 2)!

∫ ∞

0
t(M−2)e−t dt − e−cx

(M − 2)!

∫ ∞

0
t(M−2)e−t(1+x) dt.

By using integral tables [32], and by substituting for c, we get

F(x) = 1 − e
− x

ρ

(x + 1)M−1
. (5.41)

Differentiating this expression with respect to x gives us the PDF f (x).
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5.9.2 Proof of Lemma 5.2

Firstly, according to the results in [19], if the extreme value distribution converges to

the Gumbell distribution as n goes to infinity, the sequence of constants bn can be found

through the relation

1 − F(bn) =
1

n
.

Substituting for F gives

e
− bn

ρ

(bn + 1)M−1
=

1

n
.

which simplifies to

bn = ρ log n − ρ(M − 1) log (1 + bn) .

The other sequence of constants an, can be obtained using the relation

an =
1 − F(bn)

f (bn)
,

which simplifies to

an =
ρ(1 + bn)

1 + bn + ρ(M − 1)
, (5.42)

completing the proof.

5.9.3 Proof of Lemma 5.3

Since a common threshold is used for all the beams at a MU, and all the beams are statis-

tically identical, it will be enough to focus on the first beam. The total rate will be equal

to M times the rate achieved at the first beam.

Let N1 be the set of MUs having their best SINR value, which is greater than τ, at
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beam 1, i.e.,

N1 = {i : d?i ≥ τ & b?i = 1} ,

where b?i = arg max1≤j≤M γj,i is the index of the beam with the maximum SINR at MU i,

and d?i = max1≤j≤M γj,i is the value of this maximum SINR, for a given SINR matrix Γ.

We will first show that G1(T (Γ)) = N1. By definition of G1(T (Γ)), we have

N1 ⊆ G1(T (Γ)).

To show the other direction, take any i ∈ G1(T (Γ)), and a beam index r 6= 1.

Then, |h>
i q1|2 > |h>

i qr|2 because τ > 1. Therefore, the following chain of inequali-

ties/equalities hold.

γ1,i =
|h>

i q1|2
1
ρ + ∑

M
k=2 |h>

i qk|2

>
|h>

i qr|2
1
ρ + ∑

M
k=1,k 6=r |h>

i qk|2
= γr,i.

Therefore, MU i achieves its maximum SINR, which is greater than τ, at beam 1, and

belongs to N1. Moreover, all other SINR values are less than τ, and MU i only requests the

best beam with the maximum SINR, which is beam 1. We finish the proof by observing

that

max
i∈G1(T (Γ))

γ1,i = γ?
1(n)

since MUs who do not belong to G1(T (Γ)) have SINR values less than τ.

5.9.4 Proof of Lemma 5.4

First of all, we note that θn(x) cannot be equal to 0 (or 1) infinitely many times, otherwise

we can find a subsequence {nk}∞
k=1 such that limk→∞ (1 − θnk

(x))nk = 1 (or 0), which im-

plies x to be +∞ (or −∞), which is a contradiction. Therefore, without loss of generality,
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we can assume θn(x) ∈ (0, 1) for all n.

Next, we show that θn(x) converges to 0. To this end, assume that c > 0 is a limit

point of θn(x). This implies that we can find a subsequence {nk}∞
k=1 and ε ∈ (0, c) such

that limk→∞ θnk
(x) = c and

lim
k→∞

(1 − θnk
(x))nk ≤ lim

k→∞
(1 − c + ε)nk = 0,

which again creates a contradiction by implying x to be −∞.

To finish the proof, we focus on n log (1 − θn(x)). Since

lim
n→∞

(1 − θn(x))n = exp
(
−e−x

)
,

we have

lim
n→∞

n log (1 − θn(x)) = −e−x. (5.43)

By using Taylor series expansion for log (1 − θn(x)) around 1, we have

n log (1 − θn(x)) = −n
∞

∑
k=1

(θn(x))k

k

= −nθn(x)

(

1 +
∞

∑
k=2

(θn(x))k−1

k

)

= −nθn(x) (1 + O (θn(x))) . (5.44)

Since limn→∞ (1 + O (θn(x))) = 1, (5.43) and (5.44) together imply limn→∞ nθn(x) = e−x.

5.9.5 Proof of Theorem 5.1

It is enough to focus on the positive values of λ since it is easy to see that C?(λ) is zero

when there is no feedback. For a given feedback constraint λ > 0, we consider a sequence

of threshold feedback policies
{

T
(n)
}∞

n=1
with threshold levels

τn(x + εn) = an (x + εn) + bn,
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where x is chosen to be − log
(

λ
M

)
, an and bn are given by (5.13) and (5.14), respectively,

and εn is a sequence of real numbers going to zero, and is chosen to make Λ
(

T
(n)
)

= λ

for all n. It can be shown that such a sequence exists by using F, an and bn given in (5.8),

(5.13) and (5.14), respectively. Then, by assuming the limit below exists, which we will

show it exists, we see that

lim
n→∞

Rn

(

T
(n)
)

M log log n
= C?(λ).

Therefore, it will be enough to analyze the limiting behavior of
Rn(T (n))
M log log n to obtain C?(λ).

The lower bound on the limit behavior of
Rn(T (n))
M log log n is easy to obtain. When there is no

outage, Rn

(

T
(n)
)

becomes greater than M log (1 + an(x + εn) + bn). Let

βn = (1 − θn(x + εn))
n

be the outage probability at a particular beam, where θn(x) is as defined above. By using

Slutsky’s Theorem and putting x = − log
(

λ
M

)
, it is easy to see that

lim
n→∞

βn = exp

(

− λ

M

)

.

By using this result, we have

lim inf
n→∞

Rn

(

T
(n)
)

M log (1 + an(x + εn) + bn)
≥ 1 − exp

(
−e−x

)
.

Since limn→∞ an = ρ and bn = O (log n), we can equivalently write the above result as

lim inf
n→∞

Rn

(

T
(n)
)

M log log n
≥ 1 − exp

(

− λ

M

)

.

To compute the upper bound, we analyze the tail probabilities lying under the distri-

bution of γ?
1(n). In particular, it can be shown that the following hold for k ≥ 1:

Pr {τn(x + εn) ≤ γ?
1(n) ≤ an log log n + bn} = 1 − βn − O

(
1

log n

)

,
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Pr {an log log n + bn < γ?
1(n) ≤ an log n + bn} = O

(
1

log n

)

,

Pr {kan log(n) + bn < γ?
1(n) ≤ (k + 1)an log n + bn}=

1

n
O

(

eO(k)

nk−1

)

.

By using these estimates, we upper bound Rn

(

T
(n)
)

as

Rn

(

T
(n)
)

≤ M

(

1 − βn − O

(
1

log n

))

log (an log log n + bn)

+ O

(
log log n

log n

)

+ O

(
log log n

n

)

.

Since limn→∞ an = ρ and bn = O (log n), we have

lim sup
n→∞

Rn

(

T
(n)
)

M log log n
≤ 1 − exp

(

− λ

M

)

,

which completes the proof.

5.9.6 Proof of Lemma 5.5

To start with, we have

θn(xn) =
exp−

(
anxn+bn

ρ

)

(anxn + bn + 1)M−1
(5.45)

using (5.8), where an and bn are given in (5.13) and (5.14), respectively. From (5.14) we

have

bn = ρ log n − ρ(M − 1) log (1 + ρ log n − ρ(M − 1) log (1 + bn))

= ρ log n − ρ(M − 1) log (ρ log n)− ρ(M − 1) log

(

1 +
1

ρ log n
− (M − 1) log(1 + bn)

log n

)

= ρ log n − ρ(M − 1) log log n − ρ(M − 1) log ρ − ρ(M − 1) log

(

1 − O

(
log log n

log n

))

= ρ log n − ρ(M − 1) log log n − O (1) .
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By decreasing xn slowly to −∞ like −ε log log n for any ε ∈ (0, 1), we have θn(−ε log log n)

= exp

(
anε log log n

ρ
− bn

ρ
− (M − 1) log(1 − anε log log n + bn)

)

= exp

(
anε log log n

ρ
− log n + (M − 1) (log log n − log(1 − anε log log n + bn)) + O (1)

)

= exp

(
anε log log n

ρ
− log n + O (1)

)

.

Since limn→∞ an = ρ, we have, for some positive sequence of real numbers {kn}∞
n=1 such

that kn = O (1),

θn(−ε log log n) =
1

n
(log n)ε kn,

which completes the proof.

5.9.7 Proof of Lemma 5.6

To obtain the outage probability, we will first prove the following result. Let fn → 0 and

gn → ∞ as n → ∞. Then, (1 + fn)gn ∼ exp( fngn) if and only if ( fn)2gn → 0 as n → ∞

First, we will show that if (1+ fn)gn ∼ exp( fngn), ( fn)
2 gn converges to zero as n → ∞.

If (1 + fn)gn ∼ exp( fngn), we have

lim
n→∞

exp (gn log (1 + fn))

exp ( fngn)
= 1 ⇒ lim

n→∞
exp

(

fngn

(
log (1 + fn)

fn
− 1

))

= 1

which means,

lim
n→∞

fngn

(
log (1 + fn)

fn
− 1

)

= 0.

Since fn approaches zero as n goes to infinity, we can write

log(1 + fn)

fn
− 1 = fn

∞

∑
l=0

1

l + 2
(−1)l+1 f l

n
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using the power series expansion of log (1 + fn). As a result, we need to have

lim
n→∞

gn f 2
n

∞

∑
l=0

1

l + 2
(−1)l+1 f l

n = 0.

Since fn approaches zero as n goes to infinity, we have, for sufficiently large n,

∣
∣
∣
∣

1

l + 2
(−1)l+1 f l

n

∣
∣
∣
∣
≤ 0.5l .

Then, by the Lebesgue dominated convergence theorem, we obtain

lim
n→∞

∞

∑
l=0

1

l + 2
(−1)l+1 f l

n =
∞

∑
l=0

lim
n→∞

1

l + 2
(−1)l+1 f l

n

=
∞

∑
l=0

1

l + 2
(−1)l+1

1{l=0} = −1

2
.

Therefore, we conclude that ( fn)
2 gn converges to zero as n goes to infinity.

To show (1 + fn)gn ∼ exp( fngn) if ( fn)
2 gn → 0 as n → ∞ , observe that

(1 + fn)
gn

exp( fngn)
=

exp (gn log (1 + fn))

exp ( fngn)

= exp

(

f 2
n gn

∞

∑
l=0

1

l + 2
(−1)l+1 f l

n

)

for all sufficiently large n. We have shown that

lim
n→∞

∞

∑
l=0

1

l + 2
(−1)l+1 f l

n = −1

2
.

Since f 2
n gn approaches zero as n goes to infinity, by using the continuity of exp (·), we

have

lim
n→∞

(1 + fn)gn

exp( fngn)
= exp

(

lim
n→∞

f 2
n gn lim

n→∞

∞

∑
l=0

1

k + 2
(−1)l+1 f l

n

)

= 1,

which completes the proof of the result.
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For the outage probability, we have

βn = (1 − θn(−ε log log n))n.

Now, by using Lemma 5.5 and the result proved in this appendix, we have

βn = O
(

e−(log n)εkn

)

= O

(
1

(log n)ε

)

, (5.46)

which completes the proof of the lemma.

5.9.8 Proof of Theorem 5.3

To start with, the system will perform its best on the rate dimension if we only let the

MUs in l? to feedback such that they satisfy the feedback constraint λ. That is, we set

∞ as the threshold for all groups except l?. Clearly, this will be an upper bound on the

achievable rate. Similarly, we will achieve the worst performance if we set a threshold

which satisfies the feedback constraint λ for group l[, and ∞ as the threshold for all other

groups. This will be a lower bound on the achievable rate.

Since n̄ → ∞ when n → ∞, γ?
1(n̄, l?) and γ?

1(n̄, l[) converge in distribution to the

Gumbel distribution for the best case and the worst case, respectively. Hence, we have

the average number of MUs feeding back fixed at e−x from Lemma 5.4, and the outage

probability of a beam at exp (−e−x) from the Poisson approximation, implying we have

O (1) feedback with

lim
n→∞

Λ
(

T
(n)
)

= Me−x (5.47)

for both cases as well. From Theorem 5.1, we have the trade off curve

C?(λ) = 1 − exp

(

− λ

M

)

,

for both the worst case and the best case. Therefore, for any intermediate threshold set-

ting which achieves the same O (1) feedback constraint, we will end up having the same
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tradeoff curve, which completes the proof.

5.9.9 Proof of Theorem 5.6

To start with, since O
(
(log n̄)ε) MUs will feed back from each group, we have

Λ
(

T
(n)
)

= O
(
(log n̄)ε) = O

(
(log n)ε)

for the scheduling policies.

It is not hard to see that the throughput will scale like M log log n at each mini-slot if

the BUFAP is used since n̄ → ∞ as n → ∞. Therefore, we have

lim
n→∞

Rn

(

T
(n)
)

M log log n
= 1 (5.48)

for this scheduling policy as well as ensuring fairness.

To prove the same result for RUAP case, first we assume that all the groups have the

same SNR ρmax. Now, from Theorem 5.2, we have

lim
n→∞

Rn

(

T
(n)
)

M log log n
= 1. (5.49)

Then, we assume that all the groups have the same SNR ρmin. Again from Theorem 5.2,

we have

lim
n→∞

Rn

(

T
(n)
)

M log log n
= 1, (5.50)

which completes the proof.



Chapter 6

Optimal Selective Feedback Policies
under Peak Feedback Constraints

Opportunistic beamforming is a well-known communication technique that utilizes partial chan-

nel state information (CSI) to obtain multiuser diversity gains in the downlink. We focus on the

structure of the optimal homogenous threshold feedback policy that maximizes the ergodic downlink

sum-rate for opportunistic beamforming under a peak feedback load constraint, which we model by

using a multi-packet reception model for the uplink. The users with positive feedback decisions feed

their channel states back to the base station simultaneously. The base station can reconstruct all the

feedback packets successfully if and only if the random number of MUs feeding back is less than or

equal to λ, which is the peak feedback load constraint. We solve the resulting quasi-convex optimiza-

tion problem by obtaining a formula for the sum-rate maximizing feedback probability. The result

holds for many practical fading channel models. While providing insights on the implications of our

results in practical systems, we also illustrate the tradeoff between feedback and rate by obtaining the

Pareto optimal boundary between feasible and infeasible feedback-rate pairs. We also analyze whether

a homogenous threshold level is always rate-wise optimal even for a set of statistically identical users.

6.1 Introduction

O
PPORTUNISTIC beamforming is an adaptive signaling technique to reduce the

amount of feedback load for wireless vector broadcast channels [48, 97]. In this

technique, we opportunistically schedule randomly formed information carrying beams

among the mobile users (MUs) by taking partial CSI into account. An important prop-

erty of opportunistic beamforming is that it achieves the full CSI sum-rate capacity at the

downlink to a first order [79]. In this chapter, motivated by such opportunistic communi-

cation techniques, we focus on the downlink sum-rate maximization for vector broadcast

147
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channels under peak finite feedback constraints on the uplink.

Although opportunistic beamforming reduces the feedback load considerably in com-

parison to having full CSI, it still requires all the MUs to feed back in its plain implemen-

tations. This leads to an impractical linear growth in the feedback load with the number

of MUs. There is also a significant waste of communication resources created by the feed-

back packets from the MUs having no realistic chance of being scheduled for downlink

transmission. A potential solution alleviating this impracticality is the use of a selective

feedback technique in which only the MUs having good instantaneous channel states are

multiplexed on the uplink feedback channel [21, 29, 37, 73, 75, 76, 79].

The results obtained in Chapters 3, 4 and 5 are promising to obtain an O (1) feedback

load, on the average, through such a selective feedback mechanism. In particular, we

established the structure of selective feedback policies maximizing the vector broadcast

sum-rate such that the average number of MUs feeding back is less than a given finite

feedback load constraint. However, we assumed an ideal medium-access-control (MAC)

layer for contention resolution on the uplink feedback channel, and did not address the

likely packet collisions due to a potentially large number of MUs attempting to send their

feedback packets back to the base-station.

In this chapter, we consider a multi-packet reception model to resolve collisions from

MUs. MUs with positive feedback decisions feed their channel states back to the base

station simultaneously. The base station can reconstruct all the feedback packets success-

fully if and only if the random number of MUs feeding back is less than or equal to λ,

which is the maximum number of packets that the base station can decode concurrently.

The base station utilizes information contained in the decoded feedback packets to assign

beams to MUs. We say that a collision occurs if the random number of MUs feeding back

is greater than λ. In this case, all packets are destroyed together. We will derive the struc-

ture of the optimal homogenous threshold feedback policy that maximizes the ergodic

downlink sum-rate under the peak feedback load constraint λ imposed by this channel

model.

The studied model is general in a sense that λ = 1 gives us the slotted Aloha colli-

sion model [72], and λ > 1 gives us a special class of a multi-packet reception collision
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model called T-out-of-N channels [31, 50]. Such channels can be implemented by using

T-out-of-N codes [52]. However, unlike most such channel models, this work does not

consider back-off and retransmission issues. Hence, a collision will lead to zero rate. This

assumption helps to eliminate the base station from receiving expired information on the

instantaneous channel states. Interested readers are referred to [13] and the references

therein for more recent work on multi-packet reception. Among them, [107–109] include

extensions of multi-packet reception to MIMO wireless local area networks (LAN).

Our contributions and the organization of the chapter are as follows. We explain the

multiple access technique for feedback, and formulate the optimization problem in Sec-

tion 6.2. The base station uses the time-division-multiple-access (TDMA) technique to

mediate the process of feedback acquisition. Let M be the number of randomly formed

information carrying beams. Then, M mini-slots are allocated for feedback acquisition.

All MUs having a positive feedback decision on beam k transmit their feedback packets

in the kth mini-slot simultaneously. We call this multiple access model the Feedback Re-

source Partitioned Model. Using the model, we set up the problem of finding the optimal

homogenous threshold value which maximizes the ergodic downlink sum-rate, such that

the peak feedback load (the number of MUs feeding back in each mini-slot) is less than a

constant λ.

Then, in Section 6.3, we show that this is a quasi-convex optimization problem. The

quasi-concavity definition cannot be applied directly due to the complexity of the rate

expression. Hence, we resort to a first order analysis to prove the quasi-concavity, and

to solve the problem and obtain a formula for the optimal feedback probability. The

proof of the quasi concavity is distribution independent, i.e., the proof does not depend

on the particular statistical model of the wireless channel as long as the resulting SINR

distribution is continuous, and the formula for the optimal feedback probability holds

for most practical fading distributions such as Rayleigh, Ricean and Nakagami.

In Section 6.4, we make a subtle modification to the multiple access technique given

in Section 6.2. This is done by eliminating the TDMA process among the beams in the

feedback phase. In this model, the feedback resource is shared between beams, and all

the MUs having a positive feedback decision will feedback simultaneously regardless of
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the beam. We call this the Feedback Resource Sharing Model. We derive the rate expression

for this model as well.

Then, in Section 6.5, we apply our results to a Rayleigh fading channel model to pro-

vide further insights, and discuss the implications of the derived formulas in practical

systems. We provide numerical evidence to the quasi-concavity of rate, and demonstrate

the amount of feedback reduction that can be achieved without any noticeable perfor-

mance degradation in rate by setting the threshold levels optimally. We also illustrate

the tradeoff between feedback and rate by obtaining the Pareto optimal boundary be-

tween feasible and infeasible feedback-rate pairs. Any feedback-rate pair strictly above

the boundary is an infeasible operating point, and a pair strictly below this boundary is

a feasible but suboptimal operating point.

In the above analysis, we only focus on the class of homogenous threshold feedback

policies when solving the optimal threshold selection problem. However, a question

arises of whether a homogenous threshold is always rate-wise optimal. Similar to the

justifications done in Chapter 4, a homogenous threshold level seems optimal intuitively

because the MUs are statistically identical. However, in Section 6.6, we provide a simple

counter example which shows that this intuition is not always true, and for some chan-

nel conditions, a better sum-rate can be achieved by setting threshold levels unequally

among the MUs. We give reasons for this sub-optimality, and Section 6.7 concludes the

chapter.

6.2 System Model and Problem Setup

6.2.1 System Model

In this chapter, we again study the vector broadcast channel model given in Subsection

2.2.1. To recall, the base station has Nt transmit antennas, and each MU is equipped with

a single receive antenna. The base station communicates with n MUs through M different

beams along the directions of M orthonormal beamforming vectors
{

bk = (b1,k, . . . , bNt,k)
>
}M

k=1

simultaneously. The beams are assumed to be statistically identical, and MUs experience



6.2 System Model and Problem Setup 151

i.i.d. channel conditions. γi,m is the SINR at beam m at MU i, and it is given by

γm,i =
|h>

i bm|2
ρ−1 + ∑

M
k=1,k 6=m |h>

i bk|2
, (6.1)

where ρ is the transmit power per beam, hi is the vector channel gain between the base

station and MU i, Zi is the unit power (complex) Gaussian background noise. With these

normalized parameter selections, ρ also signifies the SNR per beam.

Let γi = (γ1,i, . . . , γM,i)
> ∈ R

M
+ represent the SINR vector at MU i. Since the channel

gains are i.i.d., the elements of γi are identically distributed for all i ∈ N with a common

marginal distribution F, where N = {1, . . . , n}. We will assume that F is continuous, and

has the density f with support R+. Let M = {1, . . . , M}.

6.2.2 Multiple Access Technique for Feedback

We focus on the sum-rate maximization under peak finite feedback constraints, where

only a subset of MUs feed back according to a predefined selective feedback policy. To

obtain partial CSI from this subset, the base station first broadcasts a feedback request

packet (FRP). On retrieval of this packet, the MUs make a feedback decision using a

homogenous threshold feedback policy, which we define as follows.

Definition 6.1. We say T is a homogenous threshold feedback policy if T (γk,i) generates a

feedback packet (FP) containing the SINR value γk,i if and only if γk,i ≥ τ for all k ∈ M and

i ∈ N . τ is the homogenous threshold value.

The base station uses the time-division-multiple-access (TDMA) technique to mediate

the process of feedback acquisition. More precisely, M mini-slots with length t are allo-

cated for FPs. All MUs having a positive feedback decision on beam k transmit their FPs

in the kth mini-slot simultaneously. The values for τ and t can be communicated to the

MUs at system initialization. The feedback acquisition process is pictorially represented

in Fig. 6.1. We call this multiple access model Feedback Resource Partitioned Model, or just

partitioned model in short.

It is important to note that a MU having an SINR value above the threshold on two
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Figure 6.1: The Multiple Access Technique for Feedback: The Feedback Resource Parti-
tioned Model.

or more beams will end up sending more than one FP according our definition of the

feedback policy. This can be considered as a waste of communication resources since the

MUs can piggy-back the additional data with the first FP. However, it has been shown

and discussed in detail in Chapter 3 (Lemma 3.5) that this will not happen if the thresh-

old value is above one (i.e., 0 [dB]), which holds for almost all practical communication

scenarios.

6.2.3 The Optimization Problem

We define the truncated SINR on beam m at MU i as

γ̄m,i = γm,i1{γm,i≥τ},
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0 < Λm (Γ̄) ≤ λΛm (Γ̄) = 0 Λm (Γ̄) > λ

Λm (Γ̄) Number of MUs feeding back

in mini-slot m

Zero rate on
beam m

(Outage Event)

Zero rate on
beam m

(Overflow Event)

Positive rate on
beam m

Figure 6.2: The channel model.

and

Γ̄ = (γ̄m,i)m∈M,i∈N

is the system-wide M-by-n truncated SINR matrix containing the truncated SINR values

of all MUs in the system. Given a threshold value τ, Λm (Γ̄) denotes the random number

of MUs feeding back on beam m, or alternatively, the random number of FPs transmitted

in mini-slot m. We have

Λm (Γ̄) =
n

∑
i=1

1{γm,i≥τ},

and it is our performance measure along the feedback dimension.

The base station will decode the FPs with probability one to retrieve the SINR infor-

mation if and only if the number of FPs transmitted in the respective mini-slot is less than

the feedback constraint λ. On the other hand, a collision will occur and all packets will

be lost with probability one if the number of FPs exceed λ. There will be zero rate on

beam m if the base station has no SINR information regarding the respective beam. This

happens on the overflow event, where more than λ MUs feed back, and also on the outage

event, where no MU feeds back. These ideas are pictorially represented in Fig. 6.2.

The base station selects the MU with the highest SINR on each beam for downlink

data transmission to maximize the instantaneous communication rate. Then, the down-

link ergodic sum-rate achieved for a threshold value τ and a feedback limit λ is given
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by

Rλ (τ) = E [rλ (τ, Γ̄)]

= E

[
M

∑
m=1

log

(

1 + max
1≤i≤n

γ̄m,i

)

1{Λm(Γ̄)≤λ}

]

, (6.2)

where rλ (τ, Γ̄) is the instantaneous sum-rate achieved for a given τ and λ, and the expec-

tation is taken over the random truncated SINR matrices. Note that the rate on beam m is

automatically equal to zero due to truncation if Λm (Γ̄) = 01. Rm
λ (τ) and rm

λ (τ, Γ̄) denote

the ergodic rate and the instantaneous rate on beam m, respectively. Also, the ergodic

sum-rate achieved on an event A is written as

Rλ (τ,A) = E [rλ (τ, Γ̄) 1A] .

We will use Rλ (τ) as the performance measure along the rate dimension.

Our main optimization problem is to determine the optimal homogenous threshold

value that maximizes the downlink sum-rate such that the number of MUs feeding back

on each beam at each channel realization is less than or equal to λ. Since the rate achieved

on the outage and overflow events is zero according to (6.2), we can formulate this prob-

lem as an unconstrained optimization problem. We can also view the sum-rate as a func-

tion of the feedback probability p = Pr {γi,m ≥ τ} without loss of generality since the

probability density function of the SINR is already assumed to have R+ as its support.

Therefore, there is a one-to-one correspondence between the threshold value τ and the

feedback probability p, i.e., τ = F−1 (1 − p). Using these justifications, the main opti-

mization problem to be solved can be represented as

maximize
p∈[0,1]

Rλ (p) . (6.3)

If λ = n, Rλ(p) strictly increases as a function of p, 0 ≤ p ≤ 1, and attains its max-

1Note that the base station does not have access to any CSI on the feedback outage or overflow events.
Without any CSI, reliable communication is still possible if we can average over very large time-scales for all
MUs. The extra rate term to be added to (6.2) in this case would not affect our analysis in remainder of the
chapter, and therefore is omitted for simplicity.
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imum at p = 1 since the probability of the overflow event is equal to zero in this case.

The system makes use of available communication resources in the best possible way by

setting the feedback probability of all MUs to one, i.e., by minimizing the outage event

probability. However, when λ < n, Rλ(0) and Rλ(1) are both equal to zero since the

outage and overflow events will happen with probability one for p = 0 and p = 1, re-

spectively.

When p is increased from zero to one for λ < n, Rλ(p) firstly increases with p since

increasing p reduces the probability of the outage event. On the other hand, increasing p

increases the probability of the overflow event in this case. Therefore, the loss created by

the overflow event will start to dominate the gain obtained by reducing the outage event

probability for large values of p, which eventually causes Rλ(p) to decrease and tail off

after some certain feedback probability. Therefore, intuitively, Rλ(p) will first increase

with p up to a certain probability, and then decrease, making Rλ(p) quasi-concave over p

for λ < n. In the next section, we will make these intuitive quasi-concavity ideas formal,

and solve the resulting optimization problem by obtaining an expression for the optimal

feedback probability p?, which maximizes the downlink ergodic sum-rate for a given

feedback constraint λ.

6.3 Selecting The optimal Feedback probability

To solve the optimization problem given in (6.3), it is enough to focus only on the first

beam since the beams are statistically identical and Rλ (p) can be written as

Rλ (p) = ME

[

log

(

1 + max
1≤i≤n

γ̄1,i

)

1{Λ1(Γ̄)≤λ}

]

. (6.4)

By using this idea, we will further evaluate the downlink sum-rate through the following

lemma.

Lemma 6.1. The ergodic sum-rate of the system in consideration is given by

Rλ (p) = M
λ

∑
k=1

(
n

k

)

k(1 − p)n−k Ik−1(p), (6.5)
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where

Ik−1(p) =
∫ ∞

F−1(1−p)
log (1 + x) [F(x)− (1 − p)]k−1 dF(x). (6.6)

Proof. See Appendix 6.8.1.

The proof of the quasi-concavity of rate over p requires some more effort since the

quasi-concavity definition cannot be applied directly. Hence, we will analyze the first

derivative of Rλ (p) as a function of p, which is formally obtained in the following lemma.

Lemma 6.2. The first derivative of the sum-rate Rλ (p) is given by

R′
λ (p) = M

[

n(1 − p)n−1 log
(

1 + F−1(1 − p)
)

− gλ(p)
]

, (6.7)

where

gk(p) =

(
n

k

)

k(n − k)(1 − p)n−k−1 Ik−1(p) (6.8)

for k ∈ {1, . . . , λ}.

Proof. See Appendix 6.8.2.

By manipulating the expression for the first derivative of the sum-rate, we will prove

that the ergodic sum-rate is a quasi-concave function of p. Then, by using this behavior,

we will obtain an expression for the optimal feedback probability p?, which is formally

stated in the following theorem. We focus only on the case where λ < n. For λ = n, p? is

equal to 1 as discussed above.

Theorem 6.1. Let λ < n. Then, the optimal feedback probability per beam p? for the system in

consideration is given by the solution to

cIλ−1(p?)− (1 − p?)λ log
(

1 + F−1(1 − p?)
)

= 0, (6.9)

where c = λ(n−1
λ ).
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Proof. The stationary points of Rλ (p) for p ∈ (0, 1) can be obtained from (6.7), and they

satisfy

Mn(1 − p)n−1

[

log
(

1 + F−1(1 − p)
)

− gλ(p)

n(1 − p)n−1

]

= 0.

After substituting for gλ(p) from (6.8), any p which satisfies

(1 − p)λ log
(

1 + F−1(1 − p)
)

= cIλ−1(p) (6.10)

will be a stationary point since Mn(1 − p)n−1 > 0 for all p ∈ (0, 1). Let

G1(p) = cIλ−1(p),

and

G2(p) = (1 − p)λ log
(

1 + F−1(1 − p)
)

.

We have G1(0) = 0, and

G1(1) = c
∫ ∞

0
log (1 + x) [F(x)]λ−1 dF(x).

Note that G1(1) > 0. We also have

G′
1(p) =







c (λ − 1) Iλ−2(p) if λ ≥ 2

c log
(
1 + F−1(1 − p)

)
if λ = 1

, (6.11)

which is again strictly positive for any p ∈ (0, 1). Hence, G1(p) is strictly increasing

function of p, with end points G1(0) = 0 and G1(1) > 0. Similarly, we have G2(1) = 0

and limp→0 G2(p) = ∞. Its first derivative is equal to

G′
2(p) = −(1 − p)λ−1

[
(1 − p)

(1 + F−1(1 − p)) f (F−1(1 − p))
+ λ log

(

1 + F−1(1 − p)
)]

,

which is strictly negative for any p ∈ (0, 1). Therefore, G2(p) is strictly decreasing. The
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Figure 6.3: A plot illustrating the behavior of G1(p) and G2(p).

behavior of G1(p) and G2(p) is illustrated in Fig. 6.3.2 Hence, G1(p) and G2(p) intersect

at a unique value of p, which implies that there is only one stationary point of Rλ(p)

for p ∈ (0, 1). Since limp→0 R′
λ(p) > 0, Rλ(0) = 0 and Rλ(1) = 0, this stationary point

corresponds to the global maximum of R′
λ(p). These arguments also indicate that the

sum-rate strictly increases up a point p?, and then, strictly decreases. Therefore, the sum-

rate is a quasi-concave function of p, which completes the proof.

It is important to note that the proven quasi-concavity property of the sum-rate is

distribution independent, and the result in Theorem 6.1 can be used to find the optimal

feedback probability for most practical fading distributions such as Rayleigh, Ricean and

Nakagami. However, substituting for F in (6.9) using a particular fading distribution

may not necessarily lead to a closed form expression for p?. In such cases, most of the

common root finding algorithms can be easily used to find the unique zero crossing since

(6.9) is a strictly increasing function of p. This will still be much efficient computationally,

compared to doing a line search over p on (6.5). In the next section, we will analyze a

2The plot is just given to conceptualize the behavior of the two functions.
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slightly different model, where we do an alteration to the multiple access technique for

feedback.

6.4 Feedback Resource Sharing Model

A possible modification of the problem setup presented in this chapter can be achieved

by eliminating the TDMA process among the beams in the feedback phase. In this model,

the feedback resource is shared between beams: we would have a single time slot with

increased peak feedback capacity. Thus, we call it the Feedback Resource Sharing Model,

or just sharing model in short. This means, we have a limit on the total number of MUs

feeding back on all the beams, i.e., we consider

∑
m∈M

Λm(Γ̄) ≤ λsm,

where λsm is the peak feedback constraint of the sharing model (recall, the peak feedback

constraint of the partitioned model is λ). The operational difference of this multiple ac-

cess technique to the one proposed in Subsection 6.2.2 is illustrated in Fig. 6.4. Now all

the MUs will feed back their FPs simultaneously regardless of the beam.

Although the multiple access technique looks simpler compared to the partitioned

case, the analysis of this model is much harder due to the complexity of the expression of

rate.We formally obtain this expression through the following lemma.

Lemma 6.3. The ergodic sum rate for the channel sharing model is given by

Rλsm (p) = M
min(λsm,n)

∑
j1=1

min(λsm,n)−j1

∑
j2=0

· · ·
min(λsm,n)−∑

M−1
k=1 jk

∑
jM=0

M

∏
m=1

(
n − ∑

m−1
k=1 jk

jm

)

× j1 p∑
M
k=2 jk(1 − p)Mn−∑

M−k
k=0 jk+1 Ij1−1(p), (6.12)

where τ > 1, and I is defined as in (6.6).

Proof. See Appendix 6.8.3.

Again, intuitively, the rate is quasi concave because all the arguments we made under
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Figure 6.4: The comparison of the operation in the MAC layer for a given channel real-
ization.

the partitioned case to justify this behavior still hold for the sharing model. The quasi-

concavity definition cannot be applied directly for the proof of the quasi concavity of

this model as well. However, unlike the partitioned case, where we analyzed the first

derivative for the proof of quasi concavity, the first derivative for this case turns out to be

complex and mathematically untractable. This makes the proof of the quasi concavity of

this model extremely hard. Therefore, we resort to numerical evaluations to back our in-

tuition, which will be presented in the next section. On top of this, due to the complexity

of the first derivative, doing a line search over p on (6.12) might be more beneficial com-

putationally to find the optimal feedback probability, compared to finding the unique

zero crossing using the first derivative as we did in the partitioned case. In the next sec-

tion, we will provide some numerical evaluations and insights into our results using a

Rayleigh fading channel model.
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Figure 6.5: A plot illustrating the behavior of Rλ(τ) and Rλsm
(τ) for different feedback

resources, where n = 30, M = 2 and ρ = 1.
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6.5 Discussion of Results: Rayleigh Fading Channels

For this numerical study, we will use Rayleigh fading channels, which is one of the most

commonly used channel models in the literature, e.g., see [9, 82, 83], and closely approxi-

mates measured data rates in densely populated urban areas [14]. We assume transmitted

signals of unit power, and Rayleigh distributed channel fading coefficients of unit power

i.e., hk,i, k = 1, . . . , Nt and i = 1, . . . , n, are assumed to be i.i.d. with the common distri-

bution CN (0, 1), where CN
(
µ, σ2

)
represents the circularly-symmetric complex Gaussian

distribution with mean µ and variance σ2. Recall that the background noise is the unit

power (complex) Gaussian noise, and therefore ρ is interpreted as the average SNR.

For this channel model, the SINR distribution function F and the associated probabil-

ity density function f can be given as

F(x) = 1 − e
− x

ρ

(x + 1)M−1
(6.13)

and

f (x) =
e
− x

ρ

(x + 1)M

[
1

ρ
(x + 1) + M − 1

]

, (6.14)

respectively [79]. F−1 for this model is given by

F−1(x) =







−1 + (M − 1)ρW

(

exp
(

1
(M−1)ρ

)

(M−1)ρ
(1 − x)

1
1−M

)

if M ≥ 2

−ρ log (1 − x) if M = 1

,

where x ∈ [0, 1] and W is the Lambert W function given by the defining equation

W(x) exp(W(x)) = x

for x ≥ − 1
e [74].

Firstly, we study the behavior of the sum-rate for both the sharing and partitioned

cases. As shown in Fig. 6.5, the sum-rate is quasi-concave over p for both the cases, and

is strictly increasing when λ = n, which is in line with our arguments above. When
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Figure 6.6: A plot illustrating the difference in sum-rate of the two models when λsm =
M × λ, where M = 2 and n = 20.

we compare the two cases, we can see that the partitioned case does better if λsm = λ.

This is obviously because more MUs feed back when a partitioned model is used with

this resource allocation. Therefore, for a more fair comparison in downlink sum-rate, we

consider the case λsm = M × λ, where M = 2 for this particular figure. We can see that

now, the sharing case is superior in terms of sum-rate. However, this is at the expense of

higher feedback resources in the uplink. It is also interesting to note that the difference in

sum-rate of the two models is considerable only when the feedback resources are limited.

A clearer illustration of this difference is given in Fig. 6.6, where we have numerically

evaluated the difference in sum-rates for different average SNR values. For the sake of

fairness in this comparison, we have set λsm = M × λ. The difference firstly increases

with λ, and then decreases when the feedback resources are further increased. When

the feedback resources are high, the selection of the multiple access technique has only a

small effect on the sum-rate. This brings us to the realization that the resource allocation

matters the most when the resources are limited.
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Figure 6.7: A plot illustrating the tradeoff between sum-rate and feedback for different
values of n, where M = 2 and ρ = 1.

Now that we have compared the two models, we will focus more on the partitioned

model in the remaining parts of the chapter. We can do similar analysis and discussions

for the sharing model, which we will skip to avoid repetition. Coming back to Fig. 6.5(a),

we can observe that the difference between the maximum sum-rates for λ = 10 and λ =

n = 30 is very small. This observation is more clearly depicted in Fig. 6.7, where we have

plotted the ratio of sum-rates achieved with (Rλ(p?)) and without (Rn(1)) thresholding

as a function of λ. The plot, in fact, represents the feedback-rate tradeoff for opportunistic

beamforming under peak feedback load constraints for different MU levels, and also

represents the amount of feedback reduction that can be achieved by setting the threshold

levels according to Theorem 6.1 without any noticeable performance degradation in rate.

The outage and overflow event probabilities are strictly positive when thresholds are

optimally set to meet the feedback constraint λ, λ < n, which causes a rate loss. However,

on inspecting Fig. 6.7, we see that there is almost no rate loss if λ is greater than 12, irre-

spective of the user level. This observation can be explained as follows. The base station
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communicates with only the best MU on each beam. Therefore, a perfect feedback policy

in terms of optimal usage of the uplink capacity is a policy which allows only the best

MU on each beam to feed back. However, since there is no coordination among the MUs,

this is impossible to achieve in a distributed manner, and setting λ = 1 results in a large

degradation in sum-rate as shown in the figure, mainly because such a small constraint

on the feedback load increases the probability of the outage and overflow events. There-

fore, the feedback constraint should be relaxed (or, the multipacket reception capability

should be improved) in a way which ensures the best MU feeds back without causing an

overflow event. The tails of the distribution of the random number of MUs requesting

each beam decays to zero exponentially fast. This means that there is a high probability of

the best MU feeding back without causing an overflow when λ is above a certain value,

which is 12 in this case. Increasing n increases the probability of the overflow event. This

results in the downwards shift of the curves in Fig. 6.7 when n is increased, although it is

negligibly small.

Some further comments on Fig. 6.7 are in order. The curves in this figure repre-

sent the Pareto optimal boundary between feasible and infeasible feedback-rate pairs,

which can be achieved by setting a threshold level in accordance with Theorem 6.1. Any

feedback-rate pair above the boundary is an infeasible operating point, which means that

the represented sum-rate cannot be achieved subject to the feedback restriction. If a pair

is below this boundary, then it is a feasible operating point, which means that the sum-

rate can be achieved without violating the feedback constraint. However, a point strictly

below the boundary is suboptimal in the sense that the same sum-rate can be achieved

with strictly less feedback or a better sum-rate can be achieved while maintaining the

same feedback level.

6.6 Optimality of a Homogenous Threshold

In the above analysis, we have only focussed on the class of homogenous threshold feed-

back policies when studying the optimal threshold selection. However, a question arises

of whether a homogenous threshold is always rate-wise optimal. Intuitively, it seems op-
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timal because the MUs are statistically identical. However, our next example shows that

this is not always true, i.e., sometimes a better sum-rate can be achieved by setting non

homogenous threshold levels among the MUs.

We focus on a three-user system, where M = 1, and we set λ at 2. Let τ1, τ2 and

τ3 be the threshold values, and p1, p2 and p3 be the feedback probabilities of MU 1, 2

and 3, respectively. The rate expression for this system is obtained through the following

lemma.

Lemma 6.4. The downlink ergodic rate of a single beam system with three MUs feeding back

using a non-homogenous feedback policy, and having a feedback constraint of 2 is given by

R2 (p1, p2, p3) =
3

∑
i=1

3

∏
k=1,k 6=i

(1 − pk)
∫ ∞

F−1(1−pi)
log (1 + x)dF(x)

+
2

∑
i=1

3

∑
j=i+1

(1 − pk)k 6=i,j

∫ ∞

max(F−1(1−pi),F−1(1−pj))
log (1 + x)dGi,j(x), (6.15)

where

Gi,j(x) = [F(x)− F(τi)]
[
F(x)− F(τj)

]
. (6.16)

This lemma can be proved by following the lines of the proofs of Lemma 6.1 and

Lemma 6.3. Therefore, we skip it to avoid repetition.

We now can do an exhaustive search over p1, p2 and p3 on (6.15) to find the set of

optimal feedback probabilities. The results are illustrated in Fig. 6.8(a). As the results

show, a homogenous threshold level is clearly sub-optimal for this system. At low SNRs,

two of the MUs use the same threshold while the other MU uses a lower threshold value,

which leads to a higher feedback probability. As we increase the average SNR, the feed-

back probabilities of two of the MUs go to one, and the feedback probability of the other

goes to zero.

This phenomenon can be explained as follows. Let βout be the outage event probabil-

ity, and let βovr be the overflow event probability. The sum-rate in this case can be written

as
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Figure 6.8: Plots illustrating the sub-optimality of homogenous thresholds for different
values of ρ, where n = 3 and λ = 2.
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R2 (τ1, τ2, τ3) = (1 − βout − βovr)×

E

[

log

(

1 + max
i=1,2,3

γ1,i1{γ1,i≥τi}

)∣
∣
∣ No Outage or Overflow

]

. (6.17)

Two key factors affect this rate expression. The first one of them is the maximization op-

eration inside the logarithm, which affects the power gain achieved by the means of mul-

tiuser diversity. The gain is likely to be higher if the maximization is done over a larger

set of MUs. Therefore, if gaining through multiuser diversity is the objective, the base

station would prefer if all the three MUs were feeding back with equal probability. The

second factor is the degrees-of-freedom gain represented by the (1 − βout − βovr) term. It

is not hard to see that smaller the βout and βovr, the higher the degrees-of-freedom gain

that we achieve. The choice of thresholds affects both gains, and the interplay between

them determines how we set thresholds to maximize the downlink sum-rate.

According to fig. 6.8(a), the degrees of freedom gain dominates the rate equation for

the whole range of SNR values considered in this figure. Thus a homogenous threshold

is suboptimal. It is also important to notice that the effects of multiuser diversity gains

further diminishes when ρ is increased. This can be explained using (6.17) as well. When

the SNR is low, the sum-rate increases almost linearly with the power gain, due to the

logarithm. Therefore, the effect of the multiuser diversity gain is at its maximum at low

SNR values. As a result, we have at least two MUs with the same threshold value. In the

mean time, the system increases the feedback probability of the other MU to decrease the

probability of the outage event.

In the high SNR regime, on the other hand, the power gain can only provide a loga-

rithmic increase in the sum-rate, i.e., the law of diminishing returns. Hence, the system

will do better by maximizing the degrees-of-freedom gain, instead of the multiuser di-

versity gain. We can see that the multiuser diversity gain is almost neglected at high SNR

values. The system tries to minimize the probability of the overflow event by sending

the feedback probabilities of two of the MUs to one, and the other to zero. The feedback

probabilities going to one simultaneously reduce the outage probability as well. The op-

timality gap, or the rate loss created by using a homogenous threshold instead of setting

the thresholds optimally as in Fig. 6.8(a) is shown in Fig. 6.8(b). We can see that the rate
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loss increases when the SNR is increased.

To shed more light on the above explanation, we do an extension on the above stud-

ied three-user system. We keep λ fixed and increase the number of MUs in the system.

Obviously, this increase in the number of MUs increases the ability of the system to gain

through multiuser diversity. We show that as we increase the ability of the base station to

gain through multiuser diversity, the system resorts to a homogenous threshold level. We

consider two groups of MUs. The first group G1 has n1 MUs with a feedback probability

of p
g
1 and a homogenous threshold value τ

g
1 . The second group G2 has n2 MUs with a

feedback probability of p
g
2 and a homogenous threshold value τ

g
2 . The only difference of

a MU from G2 to a one in G1 is the feedback probability. We keep λ fixed at 2, similar

to the previous example. We formally obtain an expression for the rate of this system

through the following lemma.

Lemma 6.5. The downlink ergodic rate for the system in consideration is given by

R2

(
p

g
1 , p

g
2

)
=

2

∑
i=1

ni

(
1 − p

g
i

)ni−1 (
1 − p

g
k

)nk

k 6=i

∫ ∞

F−1(1−p
g
i )

log (1 + x)dF(x)

+
2

∑
i=1

(
ni

2

)
(
1 − p

g
i

)ni−2 (
1 − p

g
k

)nk

k 6=i

∫ ∞

F−1(1−p
g
i )

log (1 + x)dGi,i(x)

+ n1n2

2

∏
k=1

(
1 − p

g
k

)nk−1
∫ ∞

max(F−1(1−p
g
1),F

−1(1−p
g
2))

log (1 + x)dG1,2(x), (6.18)

where

Gi,j(x) =
[
F(x)− F(τ

g
i )
] [

F(x)− F(τ
g
j )
]

. (6.19)

This lemma can be proved by following the lines of the proofs of Lemma 6.1 and

Lemma 6.3. Therefore, we skip this proof as well to avoid repetition.

We set n1 = 2. Then, we evaluate (6.18) for different values of n2, while keeping n1

constant. The results are illustrated in Fig. 6.9. We start at n2 = 1. This is similar to

the three-user scenario studied in this section under Lemma 6.4. The results are similar

as well, where the feedback probability of the first group with two MUs is near 0.9, and

the feedback probability of the group with 1 MU is almost at zero. However, when we
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Figure 6.9: A plot illustrating the behavior of p
g
1 and p

g
2 with n2, where n1 = 2, λ = 2,

and ρ = 1.

increase n2, we can see p
g
1 going down and p

g
2 going up. Finally, the probabilities start

fluctuating around the optimal homogenous feedback probability obtained using Theo-

rem 6.1, where we set n = n1 + n2. This means a homogenous threshold level becomes

optimal when we increase the number of MUs in the system while keeping λ fixed.

We could give another interpretation to this result as well. When n2 is increased, the

MUs in G2 starts to dominate the rate because n1 is fixed at a small value. In other words,

the effect of the two MUs in G1 on the rate diminishes gradually. Therefore, after a certain

value of n2 the system will not gain in rate by allocating a different threshold value to the

two MUs in G1. Therefore, the system starts using a homogenous threshold value.

6.7 Conclusions

In this chapter, we considered a multi-packet reception model on the uplink, where the

base station can successfully decode the feedback packets if and only if the number of
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feedback packets received is less than a constraint λ. The base station used a TDMA

technique among the beams to mediate the process of feedback acquisition. Using this

model, we obtained a formula for the downlink sum-rate maximizing feedback probabil-

ity for any given λ. Then, we made a subtle modification to the multiple access technique

for feedback by eliminating the TDMA process among the beams in the feedback phase.

We applied our results to the well known Rayleigh fading channel model and discussed

the importance of the results. We also obtained the Pareto optimal boundary between

feasible and infeasible feedback-rate pairs. Finally, we analyzed the rate-wise optimality

of using a homogenous threshold value. We provided a simple counter example which

showed that even for a set of statistically identical mobile users, a homogenous threshold

level can be sub-optimal for some channel conditions.

6.8 Appendix

6.8.1 Proof of Lemma 6.1

First, consider the event

Ak = {Γ̄|Λ1 (Γ̄) = k} ,

which is the event where exactly k MUs feed back on beam one. The probability of this

event is

pAk
=

(
n

k

)

pk(1 − p)n−k.

Therefore, we can write

R1
λ (p,Ak) = pAk

E

[

r1
λ (τ, Γ̄) |Ak

]

= pAk

∫ ∞

0
log(1 + x)dHk(x), (6.20)

where for Xi, 1 ≤ i ≤ k, distributed according to F and

Hk(x) = Pr {max {X1, . . . , Xk} ≤ x|X1 ≥ τ, . . . , Xk ≥ τ}
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=

(
F(x)− F(τ)

1 − F (τ)

)k

1{x≥τ}, (6.21)

which is the cumulative distribution function of the maximum of k i.i.d. SINR values

given all of them are above τ. Substitution of (6.21) in (6.20) together with F(τ) = 1 − p

gives

R1
λ (p,Ak) =

(
n

k

)

k(1 − p)n−k Ik−1(p). (6.22)

The rate on beam one will be non zero only on events Ak for 1 ≤ k ≤ λ. Since these are

disjoint events, summing over the average rates achieved on each of these events gives

us the ergodic rate on beam one, which completes the proof.

6.8.2 Proof of Lemma 6.2

Using the Leibniz integral rule, we obtain an expression for the first derivative of R1
λ (p,Ak),

which is

R1
λ (p,Ak)

′ = gk−1(p)− gk(p)

for k ≥ 2, and

R1
λ (p,A1)

′ =
(

n

1

)

(1 − p)n−1 log
(

1 + F−1(1 − p)
)

− g1(p)

for k = 1. Since

R1
λ (p) =

λ

∑
k=1

R1
λ (p,Ak) ,

we have

R′
λ (p) = M

λ

∑
k=1

R1
λ (p,Ak)

′ .

Therefore,

R′
λ (p) = M

[

R1
λ (p,A1)

′ +
λ

∑
k=2

(gk−1(p)− gk(p))

]

= M
[

n(1 − p)n−1 log
(

1 + F−1(1 − p)
)

− gλ(p)
]

,
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which completes the proof.

6.8.3 Proof of Lemma 6.3

We will consider the rate on beam 1. Take the event

Aj1,...,jM
= {Γ̄|Λk (Γ̄) = jk ∀k ∈ M} ,

which is the event where exactly jk MUs feed back on each beam k ∈ M. Since τ > 1, a

MU will not feed back on more than one beam3. Therefore the probability of this event

can be written as

Pr
{
Aj1,...,jM

}
=

(
n

j1

)

· · ·
(

n − ∑
M−1
k=1 jk

jM

)

pj1+...+jM(1 − p)n−j1 × . . . × (1 − p)n−∑
M−1
k=1 jk

=
M

∏
m=1

(
n − ∑

m−1
k=1 jk

jm

)

p∑
M
k=1 jk(1 − p)Mn−∑

M−k
k=0 jk+1 .

Therefore, similar to the partitioned case, we can write

R1
λsm

(
p,Aj1,...,jM

)
= Pr

{
Aj1,...,jM

}
∫ ∞

0
log(1 + x)dHj1(x), (6.23)

where Hj1(x) is defined as in (6.21). Substitution of Hj1(x) in (6.23) together with F(τ) =

1 − p gives

R1
λsm

(
p,Aj1,...,jM

)
=

Pr
{
Aj1,...,jM

}

pj1
j1 Ij1−1(p). (6.24)

The rate will be non zero only on events where ∑
M
k=1 jk ≤ λsm. Actually, since a MU will

not feed back on both the beams, ∑
M
k=1 jk ≤ min (λsm, n). Therefore we can obtain the rate

on beam one by introducing summations over jk for all k ∈ M such that this condition is

fulfilled, as follows.

3Since the SINRs at a user on different beams are dependent random variables, the event probabilities
cannot be written as a product of the feedback probabilities as we did in the partitioned scenario if a MU
feeds back on more than one beam.
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R1
λsm

(p) =
min(λsm,n)

∑
j1=1

min(λsm,n)−j1

∑
j2=0

· · ·
min(λsm,n)−∑

M−1
k=1 jk

∑
jM=0

M

∏
m=1

(
n − ∑

m−1
k=1 jk

jm

)

× j1 p∑
M
k=2 jk(1 − p)Mn−∑

M−k
k=0 jk+1 Ij1−1(p).

This completes the proof since the beams are statistically identical.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Opportunistic beamforming is an important communication strategy achieving the full

CSI sum-rate capacity for vector broadcast channels to a first order by only requiring

partial CSI at the base station. Nevertheless, it cannot eliminate the linear growth in the

feedback load with increasing numbers of mobile users (MUs) in the network unless a

selective feedback policy is implemented for user selection. In this thesis, we focused on a

more stringent but practical finite limit on the feedback load, and studied the structure of

the sum-rate maximizing decentralized selective feedback policies, and how the resulting

sum-rate compare to the sum-rate without any user selection.

First, we set a finite limit on the average number of MUs feeding back. We showed

that threshold feedback policies in which MUs compare their beam signal-to-interference-

plus-noise-ratios (SINRs) with a threshold for their feedback decisions are always optimal

to maximize the downlink sum-rate. This class of policies was studied in many previous

works without any formal justification for why they are the right choice for user selec-

tion. Our thresholding optimality result provides the formal justification, which holds

for all fading channel models with continuous distribution functions.

Having established the optimality of threshold feedback policies, we then studied

the optimal threshold selection problem to maximize the sum-rate under the same con-

straints on feedback. This was a non-convex optimization problem over finite dimen-

sional Euclidean spaces. We solved this problem by identifying an underlying Schur-

concave structure in the sum-rate. Specifically, we have obtained sufficient conditions

175
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ensuring the Schur-concavity of the sum-rate, and therefore the rate optimality of ho-

mogenous threshold feedback policies. These sufficient conditions were provided for

general fading channel models as well.

We also performed an extensive numerical and simulation study to illustrate the ap-

plications of our results to familiar fading channel models. With some surprise, we have

shown that homogenous threshold feedback policies are not always optimal to use for

general fading channels, even when all MUs experience statistically the same channel

conditions. In the particular case of Rayleigh fading channels, on the other hand, ho-

mogenous threshold feedback policies have been proven to be rate-wise optimal if mul-

tiple beams are used for the downlink communication. We have also studied the opti-

mality and sub-optimality regions for the homogenous threshold feedback policies in the

Rician and Nakagami case. The detailed insights regarding when and why homogenous

threshold feedback policies are rate-wise optimal or suboptimal have been also provided.

Then, we focused the tradeoff between feedback and capacity in single-cell MIMO

communication systems under O (1) feedback constraints. Starting with an assumption

of statistically identical MUs, we have obtained the tradeoff curve tracing the Pareto opti-

mal boundary between feasible and infeasible feedback and capacity pairs. A point above

the curve is unachievable, whereas all points below it are achievable, but sub-optimal in

the sense that the same capacity scaling can be obtained by using strictly less feedback.

We have provided the form of the homogeneous threshold feedback policies achieving

the feedback-capacity pairs on the curve. We have also showed that if the O (1) feedback

constraint relaxed, we can achieve the same scaling achieved with full CSI with feedback

load growing like O
(
(log n)ε) for any ε ∈ (0, 1).

We have also extended these results to a heterogeneous communication system, where

different MUs experience non-identical path-loss gains. We have systematically altered

the threshold levels at different MUs according to their large scale path-loss gains with-

out violating the O (1) feedback constraint. We showed that the heterogeneous network

achieves the same performance in capacity scaling and feedback as the network consist-

ing of statistically identical MUs. Since providing fairness among MUs is an important

issue for such a heterogeneous communication environment, we have introduced two
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new scheduling policies. We have showed that these scheduling policies coupled up

with the systematic alteration of the threshold levels at different MUs allow the system

to achieve optimum throughput scaling and fairness among MUs, simultaneously. Al-

though most of these results are optimal in the limit for large networks, they also provide

a close match with the asymptotically optimal results when used in finite size systems.

In particular, we have showed that the threshold levels set by using the asymptotic for-

mulas very rapidly achieve the required O (1) feedback constraints in finite size systems

as well.

Then, we made a subtle but interesting change to the optimization problem by set-

ting an instantaneous/peak constraint on the number of MUs feeding back. Firstly, we

defined a multiple access model which imposes this instantaneous feedback constraint

on the system. The base station can reconstruct all the feedback packets successfully if

and only if the random number of MUs feeding back is less than or equal to λ, which

is the peak feedback constraint. We say that a collision occurs if the random number of

MUs feeding back is greater than λ. In this case, all packets are destroyed together. We

showed that this is a quasi-convex optimization problem by analyzing the rate expres-

sion, and solved it to obtain a formula for the optimal threshold value at the MU. The

results do hold for most practical fading distributions, and we applied our results to the

well known Rayleigh fading channel model to discuss the importance of the results. Fi-

nally, we analyzed the rate-wise optimality of using a homogenous threshold value. We

provided a simple counter example which showed that even when considering a peak

feedback constraint, a homogenous threshold level can be sub-optimal for s set of statis-

tically identical MUs.

7.2 Future Work

Before concluding this thesis, we will briefly present some ideas which will motivate

future studies on this topic.
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7.2.1 Opportunistic Beamforming- Spatial Model With a Capped Gain

An introduction of a spatial model is not found in any of the analysis done on opportunis-

tic beamforming. In almost all the analysis, the slow gain is neglected, which implies

that all the users are equidistant from the base station. This issue can be addressed by

introducing a spatial stochastic process governing user locations on top of the fast-fading

model.

We can start with the system model presented in Subsection 2.2.1, i.e., a single cell

model in which M orthogonal beams are transmitted using Nt transmit antennas to n

users. However, in addition, we can introduce a slow gain to take user locations into

account. For user i, we denote the Nt-by-1 complex channel gain vector by hi. We call

this the fast gain.
√

gi, which is a random scalar, is the slow gain between the base station

and user i. The signal received by the ith MU is given by

Yi =
√

ρgi

M

∑
k=1

h>
i bksk + Zi, (7.1)

where ρ is the transmit power per beam, Zi is the unit power (complex) Gaussian back-

ground noise, sk and bk are the transmitted symbol and the beamforming vector corre-

sponding to the kth beam, respectively. Let γm,i be the SINR value corresponding to the

mth beam at the ith MU. Then, it is given by

γm,i =
|h>

i bm|2
(giρ)

−1 + ∑
M
k=1,k 6=m |h>

i bk|2
. (7.2)

Now the SINRs on a beam among the n users are independent, but non-identically dis-

tributed random variables. We believe that this model can be successfully used in the

future to analyze how the user locations would affect the results presented in this thesis.

7.2.2 Opportunistic Beamforming in a Multi-Cell Environment

Extending the results to a multi-cell environment will also be interesting. Let us consider

a model comprising N identical base-stations/cells. There are n MUs in each cell, and

each base station has Nt transmit antennas. Each MU is equipped with a single receive
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antenna. hij is the Nt-by-1 multi antenna channel gain vector between user j and base

station i. We assume that the elements of this vector are independent and identically

distributed random variables.
√

gki is the scalar slow gain from base station k to the users

in cell i, and we assume that all the users in cell i have the same gain. Each base station

transmits information along the directions of M orthonormal beamforming vectors. The

transmitted signal from the ith base station can be written as

xi =
√

ρ
M

∑
k=1

bi,ksi,k, (7.3)

where ρ is the transmit power per beam, and si,k and bi,k are the transmitted symbol and

the beamforming vector corresponding to the kth beam from base station i, respectively.

The signal received by the jth MU in cell i is given by

Yij =
√

ρgiih
>
ij xi +

N

∑
k 6=i

√
ρgkih

>
kjxk + Zi,j, (7.4)

where Zi,j is the unit power (complex) Gaussian background noise.

For simplicity, we can assume 0 < gki < 1, and gki = gik , i.e., a symmetric slow gain.

If N = 2, gi,i = 1 and gi,k = gk,i = g, this turns out to be the well known two cell Wyner

model [100]. Using this model, we can search for optimal selective feedback policies for

opportunistic beamforming in a multi-cell setting. Also, we can use this model to study

the effects of base station cooperation in such an environment.

7.2.3 The Optimal Threshold Selection Problem

In Chapter 4, we have studied the optimal threshold selection problem for opportunistic

beamforming. That is, given a finite feedback system with a feedback constraint λ, we

studied the problem of determining the optimal threshold values which maximize the

downlink throughput.

As mentioned in Chapter 4, this optimization problem is not easy to solve, even for

a simple two-user system, due to the non-convex objective function, and a constraint set

depending on the distribution of SINR values. Therefore, it is not possible to solve the
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optimal threshold selection problem in its full generality for a general n-user system. In

this thesis, we analyze a special case, which on itself is hard and interesting. The full case

will be very challenging, and we believe it is an interesting problem to be addressed in

the future.
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