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Abstract

Stability and robust stability analysis of general nonlinear systems requires a

range of tools; some of these tools conclude about robust stability of the original

system via similar property of simpler auxiliary systems. Methods that are based

on a time scale separation of state variables, such as the averaging and singular

perturbations methods, play an important role in this context. Numerous results

using averaging or singular perturbation techniques consider stability properties

of the original nonlinear systems based on simpler approximated models. These

classical techniques are invaluable in a range of engineering applications, such as

power electronics and electro-mechanical systems. The current trends in tech-

nology and advances in control engineering lead to system models of increased

complexity that necessitate various extensions of these classical results in a range

of directions. This thesis contains several novel results that extend classical aver-

aging and singular perturbation theory to new important classes of models, such

as switched and hybrid systems.

We first consider a parameterized family of discrete-time systems, which may

arise when an approximate discrete-time model of a sampled-data system with

disturbances is used for controller design. This situation arises often in controller

design for nonlinear sampled-data plants when the exact discrete-time model is

not possible to obtain analytically. We adapt recently proposed notions of strong

and weak averages to parameterized systems with disturbances. We show under

appropriate conditions that the solutions of the time varying family of discrete-

time systems with disturbances converge uniformly on compact time intervals to

the solutions of the average family of discrete-time systems. Moreover, we show

that input-to-state stability (ISS) of the strong average system implies semi-

global practical ISS (SGP-ISS) of the actual family of systems. Furthermore, the

actual family of systems are semi-globally practically derivative ISS (SGP-DISS)

if their weak average is ISS.

We next consider stability of disturbed switched nonlinear and linear sys-

tems, for which the switching signal is rapidly time-varying. We show that the
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appropriate notions of strong and weak averages play an important role in the

context of switched systems. We show under appropriate conditions that ISS

of the strong average implies SGP-ISS of the actual switched system. A similar

result is shown to hold for weak averages but the conclusion is slightly weaker as

we can only prove semi-global practical differential ISS (SGP-DISS) that requires

the derivatives of disturbances to be bounded. We also introduce the definition

of partial strong average, and provide stronger conclusions for the linear switched

system. We show that exponential ISS of the strong or the partial strong aver-

age system with linear gain imply exponential ISS with linear gain of the actual

switched system. Similarly, exponential ISS of the weak average guarantees an

appropriate exponential derivative ISS property for the actual system. Moreover,

using the Lyapunov method, we show that linear ISS gains of the actual sys-

tem and its average converge to each other as the rate of the switching signal is

increased.

After that, stability of a class of time-varying hybrid dynamical systems via

averaging method is considered. Closeness of solutions of the time-varying system

to solutions of its weak or strong average on compact time domains is given under

the assumption of forward completeness for the average system. We also show

that ISS of the strong average implies SGP-ISS of the actual system. In a similar

fashion, ISS of the weak average implies SGP-DISS of the actual system. A

pulse-width-modulated hybrid feedback control example is used to illustrate the

results.

Finally, we consider a class of singularly perturbed hybrid dynamical sys-

tems without disturbances. The fast states are restricted to a compact set a

priori. The continuous-time boundary layer dynamics produce solutions that are

assumed to generate a well-defined average vector field for the slow dynamics.

This average, the projection of the jump map in the direction of the slow states,

and flow and jump sets from the original dynamics define the reduced, or aver-

age, hybrid dynamical system. Appropriate assumptions for the average system

lead to conclusions about the original, higher-dimensional system. For example,

forward pre-completeness for the average system leads to a result on closeness of

solutions between the original and average system on compact time domains. In

addition, global asymptotic stability for the average system implies semiglobal,

practical asymptotic stability for the original system. We also give examples to

illustrate the averaging concept and to relate it to classical singular perturba-

tion results as well as to other singular perturbation results that have appeared

recently in the literature.
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Dragan Nešić. Prof. Nešić gives me time and space to develop an understanding

of the related research topics, which at the same time has broadened my views

on academic work. It has been very grateful and enjoyable to work with him.

I would also like to thank Prof. Andrew Teel at the University of California,

Santa Barbara for his interest and support in collaboration. Prof. Teel is actually

more a supervisor for me than only a collaborator. Indeed, the long emails

between us can be combined to be a book.

I deeply thank my parents for their underlying love and support. Their

support and encouragement are always genuine and sincere, and I appreciate it

a lot. Also my special thanks to my husband and my daughter for their love,

support and care. Without their support, it’s impossible for me to resign from

my previous job and start my PhD. study and finish it. Thanks are also extended

to Dr. Chris Manzie and Dr. Rahul Sharma for the valuable discussions on the

related research problems. Many thanks to my friend Dr. Ying Tan, who is very

kind to supply her help even on the topic of my attitude to life.

I would also like to thank all the various administration staff in the Depart-

ment of Electrical and Electronic Engineering, in particular Jackie Brissonnette,

Rosanna Parissi and IT depart staff for taking any problems in the administra-

tive and IT areas out my concerns. I am also very grateful to friends for their

continuous assistance and support. Last but not least, I would like to thank the

Department of Electrical and Electronic Engineering for having me and providing

the study environment, equipment and financial support.

ix



x



Contents

I Background 1

1 Introduction 3

1.1 Novel model classes: beyond the disturbance-free continuous-time

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Contribution and outline . . . . . . . . . . . . . . . . . . . . . . . 17

II Research Work 21

2 Averaging of parameterized discrete-time Systems 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Parameterized discrete-time systems . . . . . . . . . . . . . . . . 31

2.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 An application example . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Averaging of Fast Switching Systems 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Nonlinear switched systems . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Closeness of solutions . . . . . . . . . . . . . . . . . . . . . 50

xi



CONTENTS

3.3.2 ISS analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Linear switched systems . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Input-to-State Stability of a Class of Hybrid Systems 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Useful definitions under hybrid frameworks . . . . . . . . . . . . . 67

4.3 Strong and weak averages . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 PWM hybrid feedback control example . . . . . . . . . . . . . . . 82

4.5.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.2 Averaging analysis . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Averaging in Singularly Perturbed Hybrid Systems 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Singularly perturbed hybrid systems . . . . . . . . . . . . . . . . 97

5.4 Coordinate transformation . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

III Future Work 117

6 Summary and future work 119

6.1 Summary of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A 127

A.1 Proof of Theorem 2.4.4 . . . . . . . . . . . . . . . . . . . . . . . . 128

A.2 Proof of Theorem 2.4.5 . . . . . . . . . . . . . . . . . . . . . . . . 134

xii



W. Wang CONTENTS

A.3 Proof of Lemma 2.4.8 . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.4 Proof of Theorem 2.4.10 . . . . . . . . . . . . . . . . . . . . . . . 137

B 139

B.1 Proof of Theorem 3.4.5 . . . . . . . . . . . . . . . . . . . . . . . . 144

B.2 Proof of Theorem 3.4.7 . . . . . . . . . . . . . . . . . . . . . . . . 148

C 151

C.1 Proofs of Theorems 4.4.1 and 4.4.2 . . . . . . . . . . . . . . . . . 151

C.1.1 Technique results . . . . . . . . . . . . . . . . . . . . . . . 151

C.1.2 Proof of Theorem 4.4.1 . . . . . . . . . . . . . . . . . . . . 159

C.1.3 Proof of Theorem 4.4.2 . . . . . . . . . . . . . . . . . . . . 163

C.2 Proofs of Theorems 4.4.4 and 4.4.5 . . . . . . . . . . . . . . . . . 165

C.2.1 Technique results . . . . . . . . . . . . . . . . . . . . . . . 165

C.2.2 Proof of Theorem 4.4.4 . . . . . . . . . . . . . . . . . . . . 167

C.2.3 Proof of Theorem 4.4.5 . . . . . . . . . . . . . . . . . . . . 169

D 171

D.1 Proof of Lemma 5.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 171

D.2 Proof of Lemma 5.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . 179

xiii



CONTENTS

xiv



Part I

Background

1





Chapter 1

Introduction

Mathematical models of dynamical systems arising in engineering and science

are often too complex to be analyzed directly as their exact closed-form solutions

are possible only in very special cases. In general, the dynamic behavior and

properties of the model need to be analyzed via various approximate methods,

such as numerical solution methods [4,57] and asymptotic methods [73,119,132].

These methods provide systematic procedures for approximating the solutions of

the model and, hence, for analysis of the behavior of complex dynamical systems.

Asymptotic methods apply to systems modeled as

ẋ = f(t, x, ε) , (1.1)

where ε is a positive “small” parameter. Asymptotic methods can be used to

compute the solution x(t, ε) of (1.1) via an approximate simpler system whose

solution is denoted as x̄(t, ε). The approximating solution is such that the error

x(t, ε) − x̄(t, ε) is small in some sense when |ε| is small. Asymptotic methods

can also be used to conclude stability properties of (1.1) from stability of the

approximating system.

Among the numerous asymptotic methods, the averaging and the singular

perturbation methods play a significant role as they apply to cases when a sepa-

ration of time scales can be identified in the model; in other words, the variables

in the model can be classified into “slow” and “fast”. Such situations are very

common in practice and these methods are ubiquitous in a range of engineering

applications. Averaging applies to a class of time-varying systems of the form

ẋ = f

(
t

ε
, x

)
, (1.2)
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CHAPTER 1. INTRODUCTION

where ε > 0 is a small parameter. Hence, the time variations of right hand side

of the model are faster than the variations of the states of the system. The vector

field is often assumed to be periodic with f(t+T, x, 0) = f(t, x, 0) for some T > 0.

On the other hand, the singular perturbation technique applies to models of the

form:

ẋ = f(t, x, z, u, ε)

εż = g(t, x, z, u, ε) ,
(1.3)

where u = u(t) is the control vector and the states x and z can be classified into

slow and fast respectively.

Averaging is ubiquitous in analysis of several important classes of engineered

systems. For instance, in power electronic systems, pulse width modulation

(PWM) is prevalent and it can often be shown that the response of the system

is equivalent to the average effect of the pulse train; hence, averaging techniques

can be used in their analysis [83]. Certain control strategies are also amenable to

analysis via the averaging method, such as the vibrational control [164], network

control [147], adaptive control [5] and extremum seeking control [149, 150].

There are numerous examples of singularly perturbed systems that arise

in engineering practice and especially in control engineering. For instance, in

electromechanical systems such as electrical motors, the electrical variables (e.g.

voltages and currents) change more rapidly in time than the mechanical variables

(e.g. velocities and positions) and singular perturbation methods can be used for

their analysis [76]. Indeed, in this case the electrical and mechanical variables

can be respectively classified as “fast” and “slow”. Other examples of singu-

larly perturbed systems are chemical reactors with slow and fast reactions [101].

Singular perturbations are also useful in situations when the time scale separa-

tion is enforced through the use of classes of controllers u, such as the high gain

controllers [76,138], backstepping controllers [79,140,159] or feedforwarding con-

trollers [122]. Further applications can be found in fields of atmosphere or ocean

science, finance, chemical engineering and so on [52, 75, 107, 119, 163].

This thesis concentrates on developing asymptotic methods - in particular,

averaging and singular perturbations - for several classes of models that were

not previously considered in the literature; the emphasis is on the development of

tools that are useful in analysis and design of control systems. Novel technologies,

new controller design techniques and classes of controllers necessitate the use of
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1.1. NOVEL MODEL CLASSES: BEYOND THE DISTURBANCE-FREE

CONTINUOUS-TIME SYSTEMS

such new models for which asymptotic methods need to be developed.

This chapter is organized as follows. In Section 1.1, we introduce and moti-

vate the classes models that we consider in the present dissertation. Background

on averaging and singular perturbations methods are respectively presented in

Sections 1.2 and 1.3. The main contributions of the thesis are summarized and

its outline is presented in the last section.

1.1 Novel model classes: beyond the disturbance-

free continuous-time systems

Averaging and singular perturbation methods have been typically addressed for

continuous-time systems without disturbances, by considering models of the form

(1.2) and (1.3) respectively. A good summary of these classical results can be

found in [74] and references cited therein. However, understanding of robust-

ness to disturbances is essential in control theory and asymptotic methods for

continuous-time systems with exogenous disturbances were recently developed.

Indeed, results for averaging were developed in [110,153] for continuous-time

systems with disturbances w:

ẋ = f

(
t

ε
, x, w

)
, (1.4)

and for singular perturbations were proposed in [37, 151] for continuous-time

systems of the form:

ẋ = f(t, x, z, w, ε)

εż = g(t, x, z, w, ε) .

The main purpose of this thesis is to develop averaging and singular pertur-

bation asymptotic tools for stability and robust stability analysis of several classes

of discrete-time, switched and hybrid models that were recently considered in the

literature. We next introduce these classes of models and provide motivation for

their investigation. More details on prior research work on averaging and singular

perturbation methods are presented in the next two sections.

First, we consider averaging for a family of parameterized discrete-time mod-

els with disturbances of the form:

5



CHAPTER 1. INTRODUCTION

∆x

τ
= Fτ

(
kτ

ε
, x(kτ), w(kτ)

)
, (1.5)

where ∆x := x((k + 1)τ) − x(kτ), τ is the sampling period and ε > 0 is a

small parameter. These models arise when an approximate discrete-time model

of a sampled-data plant is used to design a discrete-time controller [112]. The

sampling period τ can be adjusted to reduce the mismatch between the exact and

approximate discrete-time models of the plant.

Sampled-data systems are prevalent in the control engineering practice and

currently attract a lot of attention in the literature, see [35,36,67]. The presence

of a sampler in the closed loop makes the sampled-data system time-varying even

if the plant and controller are time invariant. This complicates the analysis of

sampled-data systems, especially when the plant is nonlinear [35, 36, 67].

A framework for controller design for nonlinear sampled-data plants via their

approximate discrete-time models was proposed and developed in [109,112,113].

Parameterized discrete-time systems of the form (1.5) naturally arise within this

design framework and their stability properties need to be ensured in order for the

results in [109, 112, 113] to apply. Hence, the averaging results for (1.5) that we

prove in Chapter 2 can be used together with the results in [109, 112] to design

controllers for time-varying sampled-data plants, as illustrated by an example

in Chapter 2. To the best of our knowledge this class of models has not been

considered before in the context of averaging.

We also consider averaging for nonlinear and linear switched systems of the

form:

ẋ = fρ( t

ε)
(x, w) , (1.6)

where x is the state and w is the external disturbance; ε is a small positive

parameter; there are N subsystems indexed by set i ∈ S , {1, 2, · · · , N} and

ρ : R+ → S is a switching law.

Stability of switched systems is often based on slow switching assumption

and many references use the notion of the “dwell time” to prove stability of the

switched system [65, 88, 89, 104, 105, 161, 166]. We, on the other hand, consider

rapidly switching systems with disturbances of the form (1.6) and use averaging

techniques to investigate their properties. Switching systems of this form have

been used in applications in areas such as power electronics [83], network control

systems [127, 147], adaptive control systems [5, 41], synchronization of chaotic
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1.1. NOVEL MODEL CLASSES: BEYOND THE DISTURBANCE-FREE

CONTINUOUS-TIME SYSTEMS

oscillators [95], control of multiple autonomous agents [126] and so on.

Recently, a new modeling framework was proposed for hybrid systems as

outlined in [55]. Stability analysis for hybrid feedback control systems continues

to attract attention since hybrid feedbacks enhance the capabilities of nonlinear

feedback control even for a continuous-time plant. There are many circumstances

where hybrid feedbacks play an important role, such as for systems with quantized

signals [87], systems that do not admit control-Lyapunov functions [54,129,134],

locomotion robotic systems [128,133], autonomous vehicles systems [99], juggling

systems [31, 137], motor drive control systems [90] and robot path following sys-

tems [64].

We consider in this thesis two classes of parameterized hybrid models that

are presented next. The models we consider fit within the modeling framework

proposed in [55]. We first consider averaging for the following class of hybrid

systems:

ẋ = fε(x, w, τ)

τ̇ = 1
ε

}
((x, w), τ) ∈ C × R≥0

x+ ∈ G(x, w)

τ+ ∈ H(x, w, τ)

}
((x, w), τ) ∈ D × R≥0 ,

(1.7)

where x is the state; w is the hybrid input signal; ε > 0 is a parameter; fε is the

flow mapping and G is a set valued mapping that respectively reflect continuous-

time and discrete-time dynamics of the state x; C and D are constraint sets that

allow x to flow and jump respectively; H is the jump mapping for the timer τ .

The hybrid model (1.7) arises in hybrid feedback control systems that are

driven by pulse-width-modulation (PWM). PWM is a technique in which the

width of a train of voltage (or current) pulses is adjusted (modulated) by rapidly

turning the switch between the supply and load on and off [152]. This technique is

ubiquitous in electrical power systems that are an indispensable technology and

prevalent in many branches of technology, manufacturing, transportation, and

so on. The key elements of electrical power systems, electronic power convert-

ers, have a very high efficiency and power density and can operate at very high

frequencies due to efficient power semi-conductors that allow for high frequency

switching with minimal losses. Indeed, this allows for an efficient implementation

of various PWM techniques [71, 97].

The PWM technique is used extensively in power electronics and finds wide

applications in industry [40,71,83,118,146,148]. The net effect of the modulated
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CHAPTER 1. INTRODUCTION

voltage pulse train on a load can be shown to be equal to the average voltage of

the pulse train; while this observation can be proved in many situations, rigorous

averaging techniques for general pulse width modulated systems are still not fully

developed. The existing averaging results for PWM systems, e.g. [78,83,100], are

tailored for the case when systems are controlled with a continuous feedback

controller. Note that there are situations when certain closed-loop performance

specifications can not be achieved for power converter systems with any contin-

uous feedback controller whereas they are achievable with a hybrid controller,

see [24, 32, 93, 98]. This observation provides a partial motivation for developing

averaging techniques for hybrid systems in Chapter 4.

Finally, we consider a class of singularly perturbed hybrid systems:

ẋ = f(x, z, ε)

ż = 1
ε
ψ(x, z, ε)

}
(x, z) ∈ C ×Ψ (1.8)

(x, z)+ ∈ G(x, z) (x, z) ∈ D ×Ψ ,

where x and z are the states; f and ψ are continuous functions; G is a set-valued

mapping; C andD are constraint sets that allow for x to flow or jump respectively.

The set Ψ is assumed to be compact as we wish to deal with compact attractors

for the fast state z and without any assumption on the set-valued map G; if (1.8)

admits solutions with a purely discrete-time domain then a jump rule like z+ = z

will not allow z to converge to a compact set unless it is constrained to a compact

set a priori. The small parameter ε > 0 ensures that the flow dynamics of z are

much faster than x. Hybrid systems (1.8) can be used to model the dynamics of

a hybrid feedback control system with fast but continuous actuators.

In the next two sections we provide the background on averaging and singular

perturbations. We start from the classical results that consider disturbance-free

continuous-time systems, and then discuss the results that are more closely related

to models that we introduced in this section. We do not present a comprehensive

overview of the literature and more details can be found in the cited references.

1.2 Averaging

Averaging was developed into a rigorous approximation theory during the sec-

ond half of the 18th century with its origins in astronomy and physics [23]. As

mentioned in [132], the original work of obtaining approximate solutions for dif-
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W. Wang 1.2. AVERAGING

ferential equations via averaging was first developed and used extensively by La-

grange [80] and Laplace in his study of the Sun-Jupiter-Saturn configuration [82].

The averaging method has attracted research attention ever since and found

applications in areas such as power electronics [83], network control systems [127,

147], adaptive control systems [5, 41], synchronization of chaotic oscillators [95],

control of multiple autonomous agents [126] and so on. Systems that are amenable

to averaging exhibit a time-scale separation between the time variations of the

state of the system and the time variations of the derivative of that state [23]. For

such systems, the effect of fast oscillatory dynamics is averaged in an appropriate

sense and then the average behavior of the system is captured by an appropriately

defined time-invariant average system. It is then shown that the time-invariant

average system approximates the actual time varying system in an appropriate

sense. Consequently, the standard methods for time-invariant systems can be

employed to consider properties for the actual time-varying system based on this

average model.

Suppose we are given a time-varying system (1.2), where f(., x) is assumed

to be periodic of period T > 0. The classical averaging method shows that the

following time-invariant system

ẋ = fav(x) (1.9)

can be used to analyze the properties of (1.2), where

fav(x) :=
1

T

∫ T

0

f(τ, x)dτ .

The basic problem in the averaging method is to determine in what sense the

behavior of the time-invariant average system (1.9) approximates the behavior of

the actual time-varying system (1.2).

The classical averaging method, see [132], shows that the solutions of system

(1.2) can be approximated by the solutions of its time-invariant average system

on compact time intervals, with the error of order of O(ε) on the time scale

of order O(1/ε). The Krylov-Bogolyubov-Mitropolsky method relaxes periodic

assumption for vector fields f in (1.2) to almost-periodic [23].

Note that it is not necessary for f to be periodic or almost periodic; indeed,

general averaging methods can be applied in this case [74, Chapter 10]. With

the assumption of existence of a well-defined average, closeness between solu-

9
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tions of the time-varying system and solutions of its average on intervals of the

order O(1/ε) can be studied. The order of approximation error is determined

by an order function δ(ε), which depends on how well the average system (1.9)

approximates the actual system (1.2).

Systems for which the dynamics simultaneously depend on a “fast” and a

“slow” time modeled as ẋ = fp(t/ε, t, x, ε) often arise in practice. In such cases,

only the fast variations in the system are averaged whereas the slow variations are

retained in the approximate model; this leads to the notion of “partial averages”

considered in [16, 66, 132]. Despite the fact that the partial average is a time-

varying system, partial averages may still greatly simplify the analysis and they

find applications in various areas, such as celestial mechanics [132]. We use the

notion of partial averages to study dynamical properties of switched linear systems

in Chapter 3.

Averaging can also be used to conclude about the stability properties of

the actual system (1.2) via the stability properties of its average system (1.9).

First, we discuss the classical results that assume local asymptotic/exponential

stability properties of the average system and then summarize results that use

global asymptotic stability of the average system. In fact, it can be shown that

stability of the average system typically implies a weaker stability property for

the actual system. To be more precise, the solutions of the actual time-varying

system are ultimately bounded with the ultimate bound that becomes arbitrarily

small, if the parameter ε is sufficiently reduced. This topological nature of the

convergence property of solutions is called practical stability.

Practical stability was used in the early work on stability analysis for continuous-

time systems by using the averaging method, where the vector field f in (1.2) is

assumed to be periodic or almost periodic. For instance, Hale [62] proved that for

nonlinear systems (1.2), there exists a periodic solution in a neighborhood of the

equilibrium point that is uniformly asymptotically stable, when the linearization

of the averaged system (1.9) is exponentially stable.

Without the assumption of periodicity or almost periodicity for vector fields,

the averaging results in [3,74,121] show that exponential stability of the averaged

system implies practical exponential stability for the actual system. These results

are based on the Lyapunov approach, where the time-invariant nonlinear average

system is linearized at its equilibrium and exponential stability of the approxi-

mated linear model guarantees the existence of a Lyapunov function, which can

be used in analysis of stability properties for the actual system.

Note that the results in [3, 62, 74, 121] focus on local stability of dynamical

10
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systems. In contrast, sufficient conditions are established in [2, 120] that can

be used to conclude uniform semi-global practical asymptotic stability for the

original time-varying system in case when the system is homogeneous with a

positive order. The concept of semi-global asymptotic stability pertains to the

case when one can prove that, by tuning the parameter ε, the domain of attraction

can be arbitrarily enlarged [33].

Relaxing the homogeneous assumption, Teel et al. showed in [103,156] that,

under appropriate technical conditions, if the origin of the average system is

globally asymptotically stable, then it is semi-globally practically asymptotically

stable for the actual time-varying system.

The averaging results given above do not consider influence of input signals.

Indeed, for continuous-time systems with exogenous disturbances, see (1.4), an

appropriate averaging stability theory was derived in [110, 151, 153, 155], where

the notions of strong and weak averages introduced in [110] play an important

role. We summarize these concepts next as they are directly related to results

presented in this thesis. A function fwa(x, w) is said to be a weak average of

s 7→ f(s, x, w) in (1.4) if

∣∣∣∣fwa(x, w)−
1

T

∫ t+T

t

f(s, x, w)ds

∣∣∣∣ ≤ βav(max{|x|, |w|, 1}, T ) ,

holds for arbitrary T > 0, where the function βav is of class KL 1. On the other

hand, we have a strong average fsa(x, w) for s : 7→ f(s, x, w) if

∣∣∣∣
1

T

∫ t+T

t

[fsa(x, w(s))− f(s, x, w(s))]ds

∣∣∣∣ ≤ βav(max{|x|, ||w||∞, 1}, T ),

for all w ∈ L∞
2. Consequently, we can define the weak average ẋ = fwa(x, w) and

the strong average ẋ = fsa(x, w) for system (1.4). Note that it is not necessary

for f to be periodic or almost periodic to employ the strong or the weak average

definition. Also note that the input signal w is a vector in the definition of weak

average whereas it is a function in the strong average definition, which implies

that weak averages pertain to slow-varying input signals and strong averages are

applicable for both fast and slow varying signals.

With the strong and weak average definitions, robustness properties to dis-

1 The definition of KL function is given at the beginning of Part II.
2 For a measurable function w(·), it is called w ∈ L∞ if ||w||∞ < ∞, where ||w||∞ :=

ess sup
t≥0

|w(t)|.

11
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turbances for continuous-time systems (1.4) are considered in [110,153,155], where

the notions of input-to-state stability (ISS) and derivative ISS (DISS) are used.

ISS and DISS are important tools in analysis of robustness to disturbances for

dynamical systems but they are only two of the many other possible robust sta-

bility properties for dynamical systems [6–8, 49, 63, 70, 96, 139]. The concept of

ISS introduced by Sontag [143,144] provides a way to characterize the asymptotic

behavior of nonlinear systems in the presence of perturbations. ISS reflects the

relationships between states and inputs: bounded inputs imply bounded states.

DISS is a generalization of ISS and it is useful in some important situations, where

the infinity norm of the input signal and the infinity norm of its derivatives are

rather small, e.g. in the output regulation context. For instance, one can get

tighter estimation for the steady-state tracking due to time-varying and smooth

reference signals in the output regulation context [8, 114].

It was shown in [110] that the actual time-varying system is semi-globally

practically ISS (SGP-ISS) if its strong average is ISS, and it is semi-globally

practically DISS (SGP-DISS) if its weak average is ISS. In [153, 155], one can

get that solutions of system (1.4) can be made arbitrarily close to solutions of

its strong or weak average systems on the finite time interval if ε can be reduced

sufficiently small. As a generalization of results in [110], a unified framework

for studying robustness properties to slowly-varying parameters, rapidly-varying

signals and generalized singular perturbations is given in [151]. We can also get

from [110] that strong averages exist for a smaller class of systems but using

them one can state stronger stability results. On the other hand, weak averages

exist for a larger class of systems but using them one can state weaker stability

results. Nevertheless, weak averages are found useful in cases when disturbances

are bounded and have bounded derivatives and such situation arises when one

deals with cascaded systems.

We next summarize averaging results that are related to parameterized discrete-

time systems, switched systems and hybrid systems discussed in Section 1.1.

For parameterized discrete-time systems (1.5), we are not aware of any aver-

aging results. Hence, we next summarize averaging results on non-parameterized

discrete-time systems that are most closely related to our results in Chapter 2.

As mentioned in [84], the reference [61] is among the first to discuss stability

properties of discrete-time systems with periodic vector fields. Early Russian

citations that include [19] and [102] extended the work of [61] to non-periodic

systems. Averaging of discrete systems has been also developed for applications

in adaptive identification and control [15, 21, 22, 141]. In particular, it is shown

12
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in [15, 21, 141] that if the linearization of the averaged system is exponentially

stable, then there exists a unique solution of the original discrete-time system

in a neighborhood of the equilibrium point of the averaged system. Moreover, if

the equilibrium points of both systems are identical, then the original system is

locally exponentially stable.

Most averaging results for discrete-time systems focus on local stability prop-

erties of the actual system and assume that no exogenous signals exist. Addi-

tionally, these results can be applied for analysis of sampled-data systems only

under the assumption that the exact discrete-time model of the plant is known,

which is often not justified in sampled-data nonlinear systems. On the other

hand, we consider non-local ISS properties for parameterized discrete-time sys-

tems in Chapter 2, that naturally arise when an approximate discrete-time model

of a sampled-data nonlinear system is used for its stability analysis or controller

design, see [109, 112]. Indeed, the results of this chapter can be used together

with [109,112] to design controllers achieving ISS for nonlinear sampled-data sys-

tems for which the exact discrete-time model can not be analytically computed

and we have to use an approximate discrete-time model for controller design and

stability analysis.

In Chapter 3, robust stability analysis of fast switching systems is considered.

Averaging methods play an important role in this context and find applications in

areas such as power electronic systems, digital control systems, synchronization

of chaotic oscillators, control of multiple autonomous agents and so on [20, 48,

124–126, 147]. Nevertheless, the averaging theory for switched systems is still

underdeveloped.

Recent averaging results for systems with fast switching behavior show that

under appropriate switching signals, the switched systems whose subsystems are

not necessarily stable may still exhibit a stable behavior if the average system

induced by the switching system is stable [127,131]. For instance, exponential sta-

bility of a class of linear switched systems was investigated under the assumption

that its average system is exponentially stable [127]. In [131], the same authors

use the averaging method to analyze the finite L2 gain property of rapidly switch-

ing linear systems of the form

ẋ = Aρ( t

ε)
x+Bρ( t

ε)
w

y = Cρ( t

ε)
x ,

(1.10)
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where x, u and y are states, input signals and outputs respectively; there are

N time-invariant subsystems characterized by the matrices (Ci, Ai, Bi) with i ∈
S := {1, 2, · · · , N}; ρ : R+ → S is a switching law.

It is shown in [131] that if the input matrix Bρ does not switch, the L2 gain of

the actual time-varying switched system is bounded by the L2 gain of its average

ẋ = Āx+ B̄w

y = C̄x
(1.11)

when the switching rate is increased, where Ā := 1
T

∫ T

0
Aρ(s)ds and B̄ and C̄ are

defined similarly. In addition, it was illustrated via an example that if the input

matrix Bρ switches, then the L2 gain of the actual switched system may not be

bounded by the L2 gain of its average when the switching rate increases. We

consider averaging for general nonlinear switched systems and also give stronger

conclusions for linear switched systems than [131]. The details of our contribu-

tions are given in Section 1.4.

In Chapter 4, we consider averaging of hybrid dynamical systems (1.7). As

we already pointed out, hybrid systems are more general than pure continuous-

time or discrete-time systems. They represent a relatively new area of research

including a variety of challenging problems that may be approached at various

levels of detail and sophistication [9, 165]. Consequently, most averaging results

on hybrid dynamics are valid only for special classes of systems.

For instance, systems with dither signals are a special class of hybrid systems,

for which stability analysis via the averaging method is given in [68,69,149,150].

The dither signal has the effect of averaging the nonlinearity of Lipschitz contin-

uous feedback systems [167]; it also provides excitation for parameter identifica-

tion to find an extremum value of a known nonlinear mapping and leads to many

practical implementations [1, 86, 123, 149, 150, 168]. Iannelli et al indicated how

averaging can be used to infer rigorous practical stability of a class of nonlinear

dither systems by analyzing the continuous-time average systems [68, 69, 167].

Note that for dither systems, a continuous-time or a non-hybrid average

system is used to approximate the actual hybrid system. However, in some sit-

uations, it is more appropriate to approximate the time-varying hybrid system

by a time-invariant hybrid system. For example, the hybrid systems (1.7) used

to model the hybrid feedback control systems that are actuated through pulse-

width modulation (PWM). PWM is a paradigm in which the actuator can only

14
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apply pulses of constant amplitude and modulated width [152]. In this case, it

is desirable to prove that the pulse-width modulated implementation produces a

closed-loop behavior that is similar to the behavior generated by implementing

the hybrid feedback directly [154].

The results in [154] can handle such PWM hybrid feedback control examples.

It is shown that asymptotic stability of time-varying hybrid systems can be con-

cluded from asymptotic stability of its hybrid time-invariant average system. We

extend the averaging results given in [154] to hybrid systems with disturbances in

Chapter 4. Adapting the notions of strong and weak averages from [110], robust-

ness properties to inputs signals are considered for the time-varying hybrid system

based on ISS of its strong or weak hybrid average system. The problem is stud-

ied under the hybrid framework that combines the results in [25,26,29,30,53,56],

where many important results for continuous-time systems are carried over to

the hybrid setting, so that we can use it as analysis tools to tackle challenging

problems related to hybrid dynamics.

We next summarize pertinent results on singular perturbations that are rel-

evant to results that we present in Chapter 5.

1.3 Singular perturbations

Singular perturbation techniques are used to study dynamical systems having a

natural separation of time scales where all states can be grouped into slow and fast

time scales. Such systems arise in all areas of science and engineering [76, 107].

These techniques are also used to analyze control problems for plants not in

standard singular perturbation form. For example, the singular perturbation

technique was applied to the high-gain feedback control, optimal control and

stochastic control [76, 77, 138]. Many references on the applications of singular

perturbation techniques in system control are provided in [106].

The basic intuitive ideas of singular perturbation theory can be found in

Prandtl’s study in 1904 on fluid dynamical boundary layers and early works by

Laplace, Kirchhoff and others, see references in [116]. Almost half a century later,

the benchmark works of Tikhonov [157] and Levinson [85] appeared.

The celebrated Levinson-Tikonov approach applies to continuous-time sys-

tems of the form (1.3). Assuming the existence of isolated real roots z = h(t, x)

for the algebraic equation 0 = g(t, x, z, 0), we can obtain auxiliary systems from

(1.3): the slow (reduced) system
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dx

dt
= f(t, x, h(t, x), 0) , (1.12)

and a family of fast (boundary layer) systems

dy

dτ
= g(t0, x0, y + h(t0, x0), 0) , (1.13)

where the change of variables y = z − h(t, x) is performed when the variables

t = t0 + ετ and x = x(t0 + ετ, ε) are “frozen” by letting ε = 0 at t = t0 and

x = x0. Then, one can relate the dynamical properties of the perturbed system

(1.3) to properties of the auxiliary systems (1.12) and (1.13).

Assume that vector fields are Lipschitz continuous; the solutions of the

boundary layer system (1.13) exponentially converge to a stable equilibrium man-

ifold h(t, x); and the reduced system (1.12) has a unique solution x̄(t) for initial

condition x(t0), for some positive real number t1 > t0 and for all t ∈ [t0, t1]. The

classical singular perturbation technique, see [74], shows that the solutions x(t)

and z(t) of the actual system (1.3) can be approximated by x̄, the solution y of

the boundary layer system (1.13) and the quasi-steady state z̄ := h(t, x̄(t)) of fast

states for a sufficiently small ε > 0:

x(t, ε)− x̄(t) = O(ε)

z(t, ε)− h(t, x̄(t))− y

(
t

ε

)
= O(ε) ∀ t ∈ [t0, t1] .

Moreover, exponential stability of the original system (1.3) can be guaranteed

with exponential stability of the reduced and boundary layer systems (1.12) [74].

The singular perturbation technique has attained a high level of maturity in

the theory of continuous-time and discrete-time control systems described by ordi-

nary differential and difference equations respectively [60,60,91,92,106]. Analogs

of the classical singular perturbation theory were also established for differential

inclusions on finite time intervals [44, 160] and on infinite time intervals [162]

with the assumptions that the boundary layer system converges to a Lipschitz

set-valued map and that the reduced system is globally asymptotically stable.

Another direction for development of the singular perturbation theory is to

relax the assumption of the classical singular perturbation theory that trajectories

of the boundary layer system converge to an equilibrium manifold. Instead, it is
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assumed that the trajectories converge to a set on which one can average their

steady state behavior to obtain the slow system. For example, the trajectories of

the boundary layer may converge to a family of limit cycles parameterized by the

slow state variables. The steady-state behavior then can be used to average the

derivative of slow state variables. This idea can be found in the optimal control

results in [50,51], the work of Grammel in [58,59], the work of Artstein in [10–12]

where the averaging is done using invariant measures and the reduced system is

typically a differential inclusion. More recently, we can find this idea in a unified

framework for studying robustness to slowly-varying parameters, rapidly-varying

signals and generalized singular perturbations in [151].

Results considering singularly perturbed hybrid systems are limited and most

of them consider some special class of hybrid systems [14,39,47,72,135,136,145].

For instance, stability of singularly perturbed hybrid feedback control systems is

considered in [135, 136]. In particular, it is showed in [136] that hybrid control

systems are robust to filtered measurements, a class of singular perturbation,

and the continuous-time implementation of the control signal. The stability re-

sult in [135] applies to hybrid control systems that are singularly perturbed by

fast, continuous actuators. This singular perturbation result justifies hybrid con-

trol design based on a simplified plant model that ignores stable, fast actuator

dynamics. The analysis implies that if a hybrid control system has a compact set

that is globally asymptotically stable when the actuator dynamics are omitted,

then the same compact set is semi-globally practically asymptotically stable for

the actual hybrid system under perturbations by actuators. In Chapter 5, we

consider the class of singularly perturbed hybrid systems (1.8) and use the av-

eraging method to study slow dynamics and relax the assumption that solutions

of boundary layer systems converge to an equilibrium manifold. Our results in

Chapter 5 are also compared with the results of [135] via examples.

1.4 Contribution and outline

The dissertation is organized as follows. We present our research work in Part II.

Some useful definitions and mathematical notation are first listed at the beginning

of Part II. After that, Chapters 2-5 are included. Robustness properties to

disturbances via averaging are considered for a family of parameterized discrete-

time systems in Chapter 2, for switched systems in Chapter 3 and for a class

of time-varying hybrid systems in Chapter 4. Asymptotic stability for singularly

perturbed hybrid systems is analyzed in Chapter 5. We summarize the thesis and
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propose some topics for further research in Chapter 6 that is the only chapter of

Part III. We next discuss contributions for our research work in Chapters 2-5.

In Chapter 2, we consider non-local ISS properties for parameterized discrete-

time systems that naturally arise when an approximate discrete-time model of

a sampled-data nonlinear system is used for its stability analysis or controller

design. We show that under appropriate conditions, ISS of strong (or weak) av-

erage of the family of discrete-time systems implies SGP-ISS (or SGP-ISS like)

properties for the actual family of systems. We also present general results on

closeness of solutions of the actual system with solutions of its weak or strong

average that only require the average system to be forward complete. Our results

can be used together with [109, 112] to design controllers achieving ISS for non-

linear sampled-data systems for which the exact discrete-time model can not be

analytically computed and we have to use an approximate discrete-time model

for controller design and stability analysis.

In Chapter 3, we present averaging results on robustness analysis for both

nonlinear and linear switched systems. We show that the notions of strong, weak,

and partial strong average play an important role in the context of switched

systems. A direct application of results in [110] yields conditions under which

solutions of the strong/weak average can approximate well solutions of the actual

switched system on finite time intervals, and ISS of the strong/weak average

implies SGP-ISS/SGP-DISS of the switched system. Although these results follow

directly from [110], to the best of our knowledge they were not known in the

switched systems literature. Recent results in [131] that consider averaging of

linear switched systems with disturbances (1.8) show that L2 gain of the actual

switched system (1.8) is bounded by the L2 gain of its average (1.11). We provide

stronger conclusions with which exponential ISS of the strong and the partial

strong average system with linear gain imply exponential ISS with linear gain

of the actual system. Similarly, exponential ISS of the weak average guarantees

an appropriate exponential derivative ISS (DISS) property for the actual system.

Moreover, using the Lyapunov method, we show that the estimates of the linear

ISS gain of the actual system and its average converge to each other as the

switching rate is increased.

In Chapter 4, we study the behavior of a class of hybrid dynamical systems

with disturbances through its hybrid average system. Our results generalize the

averaging results for hybrid systems in [154] to deal with exogenous disturbances.

Closeness of solutions between the time-varying system and its weak or strong

average on compact time domains is given under the assumption of forward com-
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pleteness for the average system. We also show that ISS of the strong/weak

average implies SGP-ISS/SGP-DISS of the actual hybrid system. Through a

power converter example, we show that our results for hybrid systems can also be

used as an analysis tool in the framework of designing a hybrid feedback control

for PWM control systems.

Chapter 5 considers asymptotic stability of a class of singularly perturbed

hybrid dynamical systems (1.8) using both the singular perturbation technique

and the averaging method. The continuous-time boundary layer dynamics pro-

duce solutions that are assumed to generate a well-defined average vector field for

the slow dynamics. This average, the projection of the jump map in the direction

of the slow states, and flow and jump sets from the original dynamics define the

reduced, or average, hybrid dynamical system. Assumptions about the average

system lead to conclusions about the original, higher-dimensional system. For

example, forward pre-completeness for the average system leads to a result on

closeness of solutions between the original and average system on compact time

domains. In addition, global asymptotic stability for the average system implies

semiglobal, practical asymptotic stability for the original system. We give ex-

amples to illustrate the averaging concept and to relate it to classical singular

perturbation results as well as to other singular perturbation results that have

appeared recently for hybrid systems.

In classical singular perturbation theory, see [16, 74, 158], it is assumed that

the boundary layer system has a globally asymptotically stable equilibrium man-

ifold and the vector fields are Lipschitz continuous. In contrast, a compact set

replaces such equilibrium manifold and no Lipschitz continuity condition is needed

for vector fields in our results, which greatly weaken that fundamental assump-

tion. Moreover, we illustrate through an example that our results can provide

sharper conclusions than the recent stability analysis results on singularly per-

turbed hybrid systems in [135, 136].
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Research Work
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Notations

| · | refers to the Euclidean norm, R≥0 := [0,+∞), Z≥0 := {0, 1, 2, · · · }.

B is the closed unit ball in an Euclidean space, the dimension of which should

be clear from the context.

M : Rn ⇉ Rn refers to a set-valued map such that every value of the argument

x ∈ Rn is mapped into a set M(x)⊂Rn.

Given a set S, its closed convex hull denoted by conS is the smallest closed

convex set that contains S. Given set A ⊂ Rn and a x ∈ Rn, define

|x|A := miny∈A |x− y|.

A function γ : R≥0 → R≥0 is of class-G if it is zero at zero, continuous and

nondecreasing.

A function ϕ : R≥0 ×R≥0 → R≥0 is of class-GG if it is zero at zero, continuous

and nondecreasing in both arguments.

A function α : R≥0 → R≥0 is of class-K if it is of class-G and strictly increasing.

A continuous function σ : R≥0 → R≥0 is of class-L if it is non-increasing and

converging to zero as its argument grows unbounded.

A function β : R≥0 × R≥0 → R≥0 is of class-KL if it is of class-K in its first

argument and class of L in its second argument.

A class-KL function β(·, s) is called exponential if β(r, s) = Kr exp(−λs) for

some K > 0, λ > 0.
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Chapter 2

Averaging of parameterized

discrete-time Systems

2.1 Introduction

Sampled-data nonlinear systems often arise in engineering practice since digitally

controlled continuous processes are prevalent and nonlinear plant dynamics are

common in a range of applications [35, 36, 67]. Tools for analysis and controller

design for sampled-data nonlinear systems are still underdeveloped. Indeed, the

most common approach to controller design is emulation of continuous controllers

where the controller is first designed ignoring sampling and then discretized for

digital implementation. An alternative approach is to discretize the plant model

and then design the controller in discrete-time. While this approach is common

for linear plants, it is not applicable to most nonlinear plants since one can not

find analytically the exact discrete-time model of the system as this requires an

analytical solution of a set of nonlinear differential equations that model the plant

dynamics.

On the other hand, an approximate discrete-time plant model, such as the

approximate model obtained by using the Euler method, is readily available

but it was shown in [109, 111–113] that controller design based on approximate

discrete-time models needs to be carried out very carefully. Indeed, it was shown

in [112, Example 3] that a family of controllers may stabilize a family of ap-

proximate discrete-time models for all sampling periods τ > 0 but at the same

time destabilize the family of exact discrete-time models for all sampling periods

τ > 0. Certain consistency conditions in [112] are needed to guarantee that a

set is semi-globally practically stable in the sampling period τ for the family of

exact discrete-time models if this set is uniformly globally asymptotically stable
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for the family of approximate discrete-time models. At the same time, semi-

global practical stability of sets for the exact discrete-time models implies under

weak conditions the same property for the actual sampled-data system, see [113].

Similar results in [109] presented conditions to guarantee semi-global practical

input-to-state stability (SGP-ISS) of sets for exact discrete-time models implies

the same property for the actual sampled-data system.

Indeed, the results in [109, 111–113] proposed a controller design framework

for sampled-data nonlinear systems that is based on families of approximate

discrete-time plant models parameterized by the sampling period. One typically

needs to verify uniform stability properties of a family of approximate parameter-

ized discrete-time models for stabilization of sampled-data nonlinear systems un-

der this framework. This motivates the averaging results provided in the present

chapter that can be used to conclude SGP-ISS of parameterized families of dis-

crete time systems and to design controllers for nonlinear sampled-data systems

together with the results in [109]. More details are given in Section 2.2.

Recall that most averaging results for discrete-time systems focus on local

exponential stability for non-parameterized discrete-time systems, such as [15,

141]. Such results are useful in situations when the exact discrete-time model of

the sampled-data system is known. We are not aware of discrete-time averaging

results for systems with disturbances, which is the main focus of the present

chapter. Moreover, our results can be used together with [109] to analyze ISS of

sampled-data nonlinear systems for which we can not compute the exact discrete-

time model, and we need to use an approximate model for stability analysis or

controller design.

We adapt the strong and weak average definitions introduced in [110] for

continuous-time systems to consider robustness to disturbances for discrete-time

systems. We present conditions under which ISS of the strong average implies

SGP-ISS of the family of time-varying parameterized discrete-time systems. We

also prove similar results based on ISS of the weak average where we conclude an

ISS like property that requires derivatives of disturbances to be bounded.

This chapter is organized as follows. Section 2.2 lists the preliminary results

and Section 2.3 presents the parameterized discrete-time systems and average

definitions under the discrete-time setting. The main results and an application

example are given in Section 2.4 and Section 2.5 respectively. The last section

contains some conclusions. Proofs of the main results are provided in the Ap-

pendix A.
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2.2 Preliminaries

Consider a nonlinear sampled-data plant with disturbances

ẋ = f(t, x, u, w) , (2.1)

where x ∈ Rn, w ∈ Rm and u ∈ Rp are respectively the state, exogenous distur-

bance and control input. For a given function w : R≥0 → Rm, use the notation

wf [k] := {w(t) : t ∈ [kτ, (k + 1)τ ]} with k ∈ N and the sampling period τ > 0,

and w(k) is the value of the function w(·) at t = kτ , k ∈ N. The control is taken

to be a piecewise constant signal with u(t) = u(kτ) for t ∈ [kτ, (k + 1)τ).

If we want to carry out a controller design in discrete-time then we need to

compute the (exact) discrete-time model of the plant:

x(k + 1) = x(k) +

∫ (k+1)τ

kτ

f(s, x(s), u(k), w(s))ds

:= F e
τ (kτ, x(k), u(k), wf [k]) , (2.2)

which is obtained by integrating (2.1) over one sampling interval [kτ, (k + 1)τ ]

from the initial time kτ and the initial state x(k) := x(kτ) with a constant

control input u(k) := u(kτ) and given disturbance inputs wf [k]. Note that (2.1)

is a functional difference equation as it is dependent on wf [k]. Since (2.1) is

nonlinear, it is typically not possible to analytically compute the exact discrete-

time model (2.2) for controller design.

Instead, we can use approximate discrete-time models for controller design.

Different approximate discrete-time models can be obtained using different meth-

ods. For instance, with the assumption that the disturbances w(·) are constant

during sampling intervals, w(t) = w(k), ∀ t ∈ [kτ, (k + 1)τ ] and using a classical

Runge-Kutta numerical integration scheme (e.g., Euler), one gets the approxi-

mate models that can be formed as:

x(k + 1) = F a
τ (kτ, x(k), u(k), w(k)) . (2.3)

On the other hand, using the numerical integration schemes for systems with mea-

surable disturbances in [46], we obtain another family of approximate discrete-

time models:
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x(k + 1) = F a
τ (kτ, x(k), u(k), wf [k]) . (2.4)

Assume that the sampling period τ is a design parameter which can be

arbitrarily assigned. Consider a family of dynamical feedback controllers:

z(k + 1) = Gτ (x(k), z(k))

u(k) = uτ(x(k), z(k)) , (2.5)

where z ∈ Rnz and G : Rn × Rnz → Rnz . Let

x̄ :=

[
x

z

]

F i
τ (kτ, x̄(k), ·) :=

(
F i
τ (kτ, x(k), uτ (x(k), z(k)), ·)
Gτ (x(k), z(k))

)
. (2.6)

The superscript i is either e or a, where e stands for exact model and a stands for

approximate model. This superscript is omitted if we refer to a general model.

The third argument of F i
τ(kτ, x̄, ·) (fourth argument of F i

τ ) is either a vector w(k)

or a piece of function wf [k].

Then, a natural question is if we design a family of dynamical feedback

controllers (2.5) such that a set is stable in an appropriate sense for the following

family of approximate discrete-time closed-loop models

x̄(k + 1) = Fa
τ (kτ, x̄(k), w(k)) (2.7)

or

x̄(k + 1) = Fa
τ (kτ, x̄(k), wf [k]), (2.8)

would it be also stable (maybe in some weaker sense) for the family of exact

discrete-time models

x̄(k + 1) = F e
τ (kτ, x̄(k), wf [k]) (2.9)
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using the same family of controllers (2.5).

In fact, it was shown in [109] that this is not always true. To give the details,

we denote the norm ||w||∞ := ess supt≥0 |w(t)|, write w ∈ L∞ if there exists

r > 0 such that ||w||∞ ≤ r and define Lyapunov-semiglobal-ISS for the family of

approximate closed-loop models (2.7) or (2.8).

Definition 2.2.1. The family of parameterized discrete-time systems (2.8) is

Lyapunov-semiglobally-ISS if there exists functions α1, α2, α3 ∈ K∞ and γ̃ ∈ K,

and for any strictly real numbers ∆1,∆2, δ1, δ2 there exist strictly positive real

numbers τ ∗ and L such that for all τ ∈ (0, τ ∗) there exists a function Vτ : R≥0 ×
Rn → R≥0 such that for all x̄ ∈ Rn+nz with |x̄| ≤ ∆1 and for all w ∈ L∞ with

||w||∞ ≤ ∆2 the following holds:

α1(|x̄|) ≤ Vτ (kτ, x̄) ≤ α2(|x̄|)
1

τ
[Vτ (Fτ (kτ, x̄, wf))− Vτ (kτ, x̄)] ≤ −α3(|x̄|) + γ̃(||wf ||∞) + δ1 ∀ k ≥ 0, (2.10)

and, moreover, for all x1, x2, z with |(x1, z)T |, |(x2, z)T | ∈ [δ2,∆1], τ ∈ (0, τ ∗)

and k ≥ 0, we have |Vτ (kτ, x1, z)− Vτ (kτ, x2, z)| ≤ L|x1 − x2|.

Remark 2.2.2. For the family of parameterized discrete-time systems (2.7), the

condition (2.10) is replaced by: for all τ ∈ (0, τ ∗), all x̄ ∈ Rn+nz with |x̄| ≤ ∆1

and all w ∈ Rm with |w| ≤ ∆2 we have:

1

τ
[Vτ (Fτ(kτ, x̄, w))− Vτ (kτ, x̄)] ≤ −α3(|x̄|) + γ̃(|w|) + δ1.

With the above definition, the following conditions presented in [109] are

required to guarantee that ISS properties of the approximate models (2.7) or

(2.8) implies the similar property to the exact approximate models (2.9). 1

1. The family F a
τ is one-step weakly consistent with F e

τ : for any given

strictly positive real numbers ∆x,∆u,∆w,∆ẇ, there exists a function α ∈
K∞ and τ ∗ > 0 such that for all τ ∈ (0, τ ∗), all x ∈ Rn, u ∈ Rp with |x| ≤ ∆x

and |u| ≤ ∆u and function w(·) that are continuously differentiable and

satisfy ||wf ||∞ ≤ ∆w and ||ẇ||∞ ≤ ∆ẇ we have that |F a
τ − F e

τ | ≤ τα(τ);

1 Results in [109] are given for time invariant systems but these results can easily be extended

to cover time-varying systems, see [81].
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2. The family of control laws uτ is locally uniformly bounded: for any ∆x̄ > 0

there exist strictly positive numbers τ ∗ and ∆u such that for all τ ∈ (0, τ ∗)

and all |x̄| ≤ ∆x̄ we have |uτ (x̄)| ≤ ∆u.

3. The family of approximate closed-loop models (2.7) or (2.8) is Lyapunov-

semiglobally-ISS.

Note that the above conditions pertain to both approximate models (2.7)

and (2.8). As a matter of fact, if we only consider the approximate discrete-

time models (2.8), we may only need the following Conditions 4-6, of which the

one-step strong consistency between F a
τ and F e

τ condition is independent to the

derivative of disturbances.

4. The family F a
τ is one-step strongly consistent with F e

τ : for any given

strictly positive real numbers ∆x,∆u,∆w, there exists a function α ∈ K∞

and τ ∗ > 0 such that for all τ ∈ (0, τ ∗), all x ∈ Rn, u ∈ Rp and w ∈ L∞

with |x| ≤ ∆x, |u| ≤ ∆u and ||wf ||∞ ≤ ∆w such that |F a
τ − F e

τ | ≤ τα(τ);

5. The family of control laws uτ is locally uniformly bounded: for any ∆x̄ > 0

there exist strictly positive numbers τ ∗ and ∆u such that for all τ ∈ (0, τ ∗)

and all |x̄| ≤ ∆x̄ we have |uτ (x̄)| ≤ ∆u.

6. The family of approximate closed-loop models (2.8) is Lyapunov-semiglobally-

ISS.

The one-step strong or weak consistency condition is adapted from the nu-

merical analysis literature and it holds for most commonly used approximations,

such as Runge-Kutta methods. The second condition is easily checked once the

control law (2.5) is obtained. The last condition is typically the hardest to check

and it needs to be done on a case-by-case basis. This necessitates the develop-

ment of various stability analysis tools for parameterized families of discrete-time

systems (2.3) or (2.4) under the control law (2.5) that are useful in different sit-

uations. The main purpose of this chapter is to develop several such stability

analysis tools that are based on the averaging theory.

Indeed, we define weak and strong averages to consider robustness to the

disturbances with different properties for discrete-time models for families of dis-

crete time models (2.7) or (2.8). The weak average definition pertains to slow

varying disturbances that is consistent to the class of approximate models ((2.7),

where w is assumed to be constant during the sampling interval, and we can
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apply Conditions 1-3 to ensure stability of the exact models. The strong average

definition is applicable for both fast and slow varying signals and consequently

pertains to both approximate models (2.7) and (2.8). Then, if we consider exact

models through (2.8) using strong average, we only need to verify Conditions 4-6.

2.3 Parameterized discrete-time systems

We use sampled versions of a given continuous-time function in this chapter.

Given a function w : R≥0 → Rm and a positive sampling period τ > 0, we define

its sampled version as wτ := {w(kτ) : k ∈ N} but we omit the subscript τ for no-

tational simplicity. Then, we define its infinity norm as |w|∞ := maxk≥0 |w(kτ)|.

Consider a family of time varying discrete-time systems parameterized by

the sampling time interval τ > 0:

∆x

∆k
= Fτ (kτ, x, w) ∆k = τ , (2.11)

where x ∈ R
n is the state, w ∈ R

m is the input signal, ∆x := x(kτ +∆k)−x(kτ),
k ≥ 0.

We also investigate the family of parameterized discrete-time systems that

depends on a small parameter ε > 0:

∆x

∆k
= Fτ

(
kτ

ε
, x, w

)
∆k = τ , (2.12)

where the small parameter ε is used to imply that the time-varying terms change

faster than states and hence they can be averaged. We require the following

assumptions on local Lipschitz continuity and boundedness of Fτ (kτ, x, w).

Assumption 2.3.1. The family of parameterized functions Fτ (kτ, x, w) is locally

Lipschitz continuous in (x, w) uniformly in kτ , Fτ (kτ, 0, 0) is bounded.

Next we adapt weak and strong average definitions that are introduced in

[110] for continuous-time systems to families of discrete-time systems (2.12) so

that we can obtain stability results that are fully consistent with [109, 112]. In

particular, we want to check Condition 3 in the results outlined above.

Definition 2.3.2 (weak average). A function Fwa
τ is said to be the weak average

of Fτ if there exists βwa ∈ KL and T ∗ > 0 such that for all T > T ∗, there exists
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τ ∗ = τ ∗(T ), such that ∀ τ ∈ (0, τ ∗) and Nτ ≥ T , the following holds for all

x ∈ Rn, w ∈ Rm

∣∣∣∣∣F
wa
τ (x, w)− 1

Nτ

k+N∑

s=k

Fτ (sτ, x, w)∆s

∣∣∣∣∣ ≤ βwa(max{|x|, |w|, 1}, Nτ) . (2.13)

The weak average of the parameterized family of discrete-time systems (2.12) is

then defined as

∆y

∆k
= Fwa

τ (y, w) ∆k = τ . (2.14)

�

Let LW be a given subset of input signals w : dom w → Rm. We have the

following strong average definition.

Definition 2.3.3 (strong average). A function F sa
τ is said to be the strong average

of Fτ if there exists βsa ∈ KL and and T ∗ > 0 such that for all T > T ∗, there

exists τ ∗ = τ ∗(T ), such that ∀ τ ∈ (0, τ ∗) and Nτ ≥ T , the following holds for all

x ∈ Rn, w ∈ LW

∣∣∣∣∣
1

Nτ

k+N∑

s=k

{F sa
τ (x, w(sτ))− Fτ (sτ, x, w(sτ))}∆s

∣∣∣∣∣ ≤ βsa(max{|x|, |w|∞, 1}, Nτ).

(2.15)

The strong average of the parameterized family of discrete-time systems (2.12) is

then defined as

∆y

∆k
= F sa

τ (y, w) ∆k = τ . (2.16)

�

The above weak and strong average definitions are adapted from [110] where

continuous-time systems are considered. The following remark using weak average

as an example to illustrate that the average definitions for parameterized discrete-

time systems that depend on the parameter τ are consistent to the definitions for

continuous-time systems in [110].
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Remark 2.3.4. In [110], a locally Lipschitz continuous function fwa : R
n×Rm →

Rn is called the weak average for the function f : R≥0 × Rn × Rm → Rn if there

exist β̃av ∈ KL and T ∗ > 0 such that for all T ≥ T ∗ and t ≥ 0, the following

holds:

∣∣∣∣fwa(x, w)−
1

T

∫ t+T

t

f(s, x, w)ds

∣∣∣∣ ≤ β̃wa(max(|x|, |w|, 1), T ) . (2.17)

Let t := kτ and T̃ := Nτ for arbitrary k ≥ 0, Nτ > 0 and fixed τ . We

consider the inequality (2.13) in the weak average definition for parameterized

discrete-time systems and get that

∣∣∣∣∣F
wa
τ (x, w)− 1

Nτ

k+N∑

s=k

Fτ (sτ, x, w)∆s

∣∣∣∣∣

≤
∣∣∣∣∣F

wa
τ (x, w)− 1

T̃

∫ t+T̃

t

Fτ (h, x, w)dh

∣∣∣∣∣

+

∣∣∣∣∣
1

T̃

∫ t+T̃

t

Fτ (h, x, w)dh−
1

Nτ

k+N∑

s=k

Fτ (sτ, x, w)∆s

∣∣∣∣∣ ,

≤ β̃wa

(
max{|x|, |w|, 1}, T̃

)
+

1

T̃

∣∣∣∣∣

∫ t+T̃

t

Fτ (h, x, w)dh−
k+N∑

s=k

Fτ (sτ, x, w)τ

∣∣∣∣∣ ,

(2.18)

where β̃wa(·) comes from (2.17). The second term of (2.18) denotes the error

between the sum of Fτ (sτ, x, w) from s = k to s = k + N and the integral of

Fτ (h, x, w) for h ∈ [kτ, (k +N)τ ]. To construct a βwa ∈ KL to bound (2.18), it

is required that the parameter τ is sufficiently small such that the second term of

(2.18) can be bounded with a function γ(|x|, |w|) of class-GG. Note that 1
T̃
≤ 2

T̃+1

for any T̃ ≥ 1. Let

βwa(max{|x|, |w|, 1}, Nτ) := β̃wa

(
max{|x|, |w|, 1}, T̃

)
+

2

T̃ + 1
γ(|x|, |w|) .

Then, for any Nτ ≥ 1, we have that

33



CHAPTER 2. AVERAGING OF PARAMETERIZED DISCRETE-TIME
SYSTEMS

∣∣∣∣∣F
wa
τ (x, w)− 1

Nτ

k+N∑

s=k

Fτ (sτ, x, w)∆s

∣∣∣∣∣ ≤ βwa(max{|x|, |w|, 1}, Nτ) ,

which gives the Definition 2.3.2 and illustrates that the weak average definition for

parameterized discrete-time systems depends on τ . For general periodic systems,

the sampling period τ is independent of T , but τ ∗ = τ ∗(T ) is used for the aim

of generalization. For instance, it is used to exclude the case when the sampling

interval τ coincides with the integer multiple of period for periodic function Fτ . In

this case, the average of Fτ is a constant that can not provide useful information

about Fτ . �

Note that the main difference between the weak and strong averages is that in

the definition of weak average the disturbance is kept constant in (2.13) whereas

in the definition of strong average the inequality (2.15) needs to hold for all

disturbances w ∈ LW . In case when w ≡ 0 both definitions of average coincide.

Strong averages exist for a smaller class of systems but using them we can

state stronger stability results. On the other hand, weak averages exist for a

larger class of systems but using them we can state weaker stability results. Nev-

ertheless, weak averages are found useful in cases when disturbances are bounded

and have bounded derivatives and such situation arises when one deals with ISS

of cascaded systems. Hence, the notions of weak and strong averages are useful

in different situations and so we investigate both.

Remark 2.3.5. A complete characterization of strong averages for continuous-

time periodic systems was given in [110]. It can be shown in a similar manner

to [110] that any Fτ (sτ, x, w) that is periodic in sτ has a strong average if and

only if the function Fτ has the structure as follows:

Fτ (kτ, x, w) = F 1
τ (kτ, x) + F 2

τ (x, w) , (2.19)

and there exists the average Fav(x) for F 1
τ (kτ, x) according to either of our def-

initions (they coincide since F 1
τ does not depend on the disturbance). Then,

F sa
τ (x, w) := Fav(x) + F 2

τ (x, w) satisfies our definition of the strong average for

Fτ .

The following example shows that for some systems, the weak average may

exist whereas the strong average does not.

34



W. Wang 2.3. PARAMETERIZED DISCRETE-TIME SYSTEMS

Example 2.3.6. Consider the system

∆x

∆k
= −0.5x3 + cos

(
kτ

ε

)
x3w (2.20)

where x,w ∈ R. The weak average of −0.5x3 + cos(kτ)x3w is

∆y

∆k
= −0.5y3 .

Indeed, setting s̃ = sτ and T := Nτ we can write for sufficiently small τ that

∣∣∣∣∣
1

Nτ

k+N∑

s=k

cos(sτ)x3w · τ
∣∣∣∣∣ =

∣∣∣∣∣
1

Nτ

kτ+Nτ∑

s̃=kτ

cos(s̃)x3w ·∆s̃
∣∣∣∣∣ ,

≤
∣∣∣∣
x3w

T

∫ kτ+T

kτ

cos(s̃)ds̃

∣∣∣∣ ,

≤ |x3w|π
T

≤ 2(max{|x|, |w|, 1})4π
T + 1

, (2.21)

where the last inequality holds when T ≥ 1 and we can let βwa(s, t) :=
2πs4

t+1
.

Now, we will show that there does not exist strong average for system (2.20).

Pick an arbitrary x̄ 6= 0 and note that, for any given function F sa
τ (x, w), we have

two possibilities

a. either F sa
τ (x̄, w) + 0.5x̄3 = 0, ∀ w, or

b. ∃ w̄ such that F sa
τ (x̄, w̄) + 0.5x̄3 6= 0.

Suppose that F sa
τ (x, w) is the strong average for −0.5x3 +cos(kτ)x3w and case a

holds. Let w(kτ) = cos(kτ), s̃ = sτ , and NCτ := Cπ for C ∈ N, similarly like

(2.21), we have

∣∣∣∣∣
1

NCτ

k+NC∑

s=k

x̄3cos2(sτ) · τ
∣∣∣∣∣ =

∣∣∣∣∣
1

NCτ

kτ+NCτ∑

s̃=kτ

x̄3cos2(s̃)∆s̃

∣∣∣∣∣ ,

≤
∣∣∣∣
1

Cπ

∫ kτ+Cπ

kτ

x̄3cos2(s̃)ds̃

∣∣∣∣ ,

=
1

2
|x̄3| > 0 ∀ C > 0 ,
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which does not converge to zero as C approaches infinity (NCτ → ∞). Suppose

now that F sa
τ (x, w) is the strong average for −0.5x3 + cos(kτ)x3w and case b

holds. Pick w(kτ) = w̄, set NCτ := 2Cπ, one gets

∣∣∣∣∣
1

NCτ

k+NC∑

s=k

(F sa
τ (x̄, w̄) + 0.5x̄3 − x̄3w̄ cos(sτ)) · τ

∣∣∣∣∣ ,

=

∣∣∣∣∣
1

NCτ

kτ+NCτ∑

s̃=kτ

(F sa
τ (x̄, w̄) + 0.5x̄3 − x̄3w̄ cos(s̃))∆s̃

∣∣∣∣∣ ,

≤
∣∣∣∣

1

2Cπ

∫ kτ+2Cπ

kτ

(F sa
τ (x̄, w̄) + 0.5x̄3 − x̄3w̄ cos(s̃))ds̃

∣∣∣∣ ,

= |0.5x̄3 + F sa
τ (x̄, w̄)| > 0 ∀ C > 0 .

The left hand side in the above expression is larger than zero for all C ∈ N and

it does not converge to zero as C approaches infinity (NCτ → ∞). Hence, there

does not exist a strong average for system (2.20). �

2.4 Main results

We first show that solutions of families of strong or weak averages can be ar-

bitrarily close to solutions of the family of actual parameterized discrete-time

systems on compact time intervals. Instead of requiring stability of strong/weak

average systems, an appropriate concept of forward completeness that is weaker

than stability, see Def. 2.4.1 below, is assumed.

Definition 2.4.1. Let LW be a set of locally bounded functions, the system

∆y

∆k
= Fτ (y, w) y(k0τ) = y0 ∆k = τ (2.22)

is said to be LW-forward complete if for each r > 0 and T > 0 there exists R ≥ r

and τ ∗ > 0 such that, for all τ ∈ (0, τ ∗), |y0| ≤ r and w ∈ LW , the solutions of

(2.22) are contained in a closed ball of radius R for all (k − k0)τ ∈ [0, T ]. �

To present results for strong and weak averages respectively, that pertain to

input signals with different properties, we need some definitions to classify classes

of disturbances.

Definition 2.4.2. Let LW be a set of locally bounded functions, the set LW is
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equi-bounded if there exists a strictly positive real number r such that, for all

w ∈ LW , |w|∞ ≤ r. �

Definition 2.4.3. Let LW be a set of locally bounded functions, the set LW is

equi-uniformly Lipschitz if there exists a strictly positive real number ν and τ ∗ > 0

such that, for all τ ∈ (0, τ ∗), w ∈ LW ,
∣∣∆w
∆k

∣∣
∞ ≤ ν <∞. �

Note that sampling a bounded continuous-time function w(·) at any sampling

period yields its sampled version wτ = w(kτ) that is still bounded. From Def.

2.4.3, we know that if ẇ(·) is bounded, then its sampled version wτ = w(kτ) will

be equi-uniformly Lipschitz continuous.

Now, we are ready for the following theorems that give conditions under

which the solution of the family of systems (2.12) are close to the solutions of

its weak average (2.14) or strong average (2.16) on compact time intervals. The

proofs are presented in Appendices A.1 and A.2.

Theorem 2.4.4 (Closeness to weak average). Suppose that Assumption 2.3.1

holds for the family of discrete-time systems (2.12), the set LW is equi-bounded

and equi-uniformly Lipschitz, there exists a locally Lipschitz continuous function

Fwa
τ : Rn × Rm → Rn that is weak average of Fτ : R≥0 × Rn × Rm → Rn

and the family weak average systems (2.14) are LW-forward complete. Then,

for each triple (r, δ, T ) of strictly positive real numbers there exists a triple of

(τ ∗, ε∗, µ) of strictly positive numbers such that, for each τ ∈ (0, τ ∗), ε ∈ (0, ε∗),

k0τ ≥ 0, |y0| ≤ r, w ∈ LW and for each x0 such that |x0 − y0| ≤ µ, each solution

x(kτ, k0, x0, w) of the family of systems (2.12) and the solution y((k−k0)τ, y0, w)
of the weak average satisfy

|x(kτ, k0τ, x0, w)− y((k − k0)τ, y0, w)| ≤ δ, ∀ k : (k − k0)τ ∈ [0, T ] . �

Theorem 2.4.5 (Closeness to strong average). Suppose that Assumption 2.3.1

holds for the family of discrete-time systems (2.12), the set LW is equi-bounded,

there exists a locally Lipschitz continuous function F sa
τ : Rn × Rm → Rn that

is strong average of Fτ : R≥0 × Rn × Rm → Rn and the family strong average

systems (2.16) are LW-forward complete. Then, for each triple (r, δ, T ) of the

strictly positive real numbers there exists a triple (τ ∗, ε∗, µ) of the strictly positive

numbers such that for each τ ∈ (0, τ ∗), ε ∈ (0, ε∗), k0τ ≥ 0, |y0| ≤ r, w ∈ LW and

for each x0 such that |x0 − y0| ≤ µ, each solution x(kτ, k0, x0, w) of the family of

systems (2.12) and the solution y((k − k0)τ, y0, w) of the strong average satisfies
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|x(kτ, k0τ, x0, w)− y((k − k0)τ, y0, w)| ≤ δ, ∀ k : (k − k0)τ ∈ [0, T ] .

�

Before we come to the main results of this chapter, a preliminary lemma

is given and proved in Appendix A.3 first. For a given disturbance set LW , we

show that the family of discrete-time systems are semi-globally practically ISS

on the set LW on compact time intervals, if and only if they are semi-globally

practically ISS on the set LW . Precise definitions are first given and followed by

Lemma 2.4.8.

Definition 2.4.6. The parameterized family of discrete-time systems (2.12) is

said to be semiglobally practically ISS on the set LW on compact time intervals,

if there exist β ∈ KL and γ ∈ G such that for each triple of (r, δ, T ) with r >

δ ≥ 0 and T > 0, there exist positive real numbers τ ∗ and ε∗ such that for each

τ ∈ (0, τ ∗) and for all ε ∈ (0, ε∗), k0τ ≥ 0, each w ∈ LW and x(k0τ) ∈ Rn with

|w|∞ ≤ r and |x(k0τ)| ≤ r, we have

|x(kτ)| ≤ max{β(|x(k0τ)|, (k − k0)τ), γ(|w|∞)}+ δ, ∀ (k − k0)τ ∈ [0, T ] .

�

Note that above semiglobal practical ISS for system (2.12) is defined on

compact time intervals. The following definition is used to show that such a

property holds for infinite time intervals. We also include semi-global practical

asymptotic stability for the parameterized family of discrete-time systems (2.12)

in the following definition for the disturbance-free case.

Definition 2.4.7. The parameterized family of discrete-time systems (2.12) is

said to be semiglobally practically ISS on the set LW , if there exist β ∈ KL and

γ ∈ G such that for each pair of (δ, r) with r > δ ≥ 0, there exist positive real

numbers τ ∗ and ε∗ such that for each τ ∈ (0, τ ∗), ε ∈ (0, ε∗), k0τ ≥ 0, each

w ∈ LW and x(k0τ) ∈ Rn with |w|∞ ≤ r and |x(k0τ)| ≤ r, we have

|x(kτ)| ≤ max{β(|x(k0τ)|, (k − k0)τ), γ(|w|∞)}+ δ, ∀ (k − k0)τ ≥ 0 .
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Moreover, when w(·) ≡ 0, the parameterized family of discrete-time systems

(2.12) is said to be semiglobally practically asymptotically stable if there exists

β ∈ KL such that for each pair of (δ, r) with r > δ ≥ 0, there exist positive

real numbers τ ∗ and ε∗ such that for each τ ∈ (0, τ ∗), ε ∈ (0, ε∗), k0τ ≥ 0 and

x(k0τ) ∈ Rn with |x(k0τ)| ≤ r, we have

|x(kτ)| ≤ β(|x(k0τ)|, (k − k0)τ) + δ, ∀ (k − k0)τ ≥ 0 .

�

Lemma 2.4.8. The parameterized family of discrete-time systems (2.12) is semi-

globally practically ISS on the set LW on compact time intervals if and only if it

is semi-globally practically ISS on the set LW . �

Next, with the above Lemma 2.4.8 and the results on closeness of solutions

on compact time intervals in Theorem 2.4.4/2.4.5, we assume that the family

of strong or weak averages is ISS and show the ISS properties for the actual

parameterized discrete-time systems. We next give the definition of ISS and global

asymptotic stability for time-invariant parameterized discrete-time systems.

Definition 2.4.9. The parameterized family of discrete-time systems ∆y
∆k

= Fτ (y, w)

with ∆k = τ is said to be globally ISS on the set LW if there exist β ∈ KL and

γ ∈ G such that for all w ∈ LW each solution of the system satisfies

|y(kτ)| ≤ max{β(|y(0)|, kτ), γ(|w|∞)}, ∀ kτ ≥ 0 .

Moreover, the parameterized family of discrete-time systems ∆y
∆k

= Fτ (y) with

∆k = τ is said to be globally asymptotically stable if there exist β ∈ KL such that

each solution of the system satisfies

|y(kτ)| ≤ β(|y(0)|, kτ), ∀ kτ ≥ 0 .

�

Now, we come to the results that provide the conditions to guarantee that ISS

of weak/strong average systems implies SGP-DISS/SGP-ISS for the actual family

of parameterized discrete-time systems (2.12). The proof of Theorem 2.4.10 is

provided in Appendix A.4 and the proof of Theorem 2.4.11 is omitted as it is

identical to the proof of Theorem 2.4.10.
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Theorem 2.4.10. Suppose that Assumption 2.3.1 holds for the family of discrete-

time systems (2.12), the set LW is equi-bounded and equi-uniformly Lipschitz,

there exists a locally Lipschitz continuous function Fwa
τ : Rn × Rm → Rn that is

weak average of Fτ : R≥0×Rn×Rm → Rn and the family of weak average systems

(2.14) is globally ISS on the set LW . Then, the family of discrete-time systems

(2.12) is semi-globally practically ISS on the set LW . �

Theorem 2.4.11. Suppose that Assumption 2.3.1 holds for the family of discrete-

time systems (2.12), the set LW is equi-bounded, there exists a locally Lipschitz

continuous function F sa
τ : Rn × Rm → Rn that is strong average of Fτ : R≥0 ×

Rn×Rm → Rn and the family of strong averages (2.16) is globally ISS on the set

LW . Then, the family of discrete-time systems (2.12) is semi-globally practically

ISS on the set LW . �

We emphasize that the conclusion of Theorem 2.4.10 that exploits weak

averages holds only for sets of disturbances LW that are equi-bounded and equi-

uniformly Lipschitz. On the other hand, the conclusion of Theorem 2.4.11 that in-

volves strong averages holds on larger sets of disturbances that are equi-bounded.

The results of Theorem 2.4.10 and 2.4.11 can be directly applied to a distur-

bance free case:

∆x

∆k
= Fτ

(
kτ

ε
, x

)
∆k = τ , (2.23)

and obtain the following corollary. Note that we can use the average for Fτ

according to either of our definition of strong and weak average, as they coincide

in the disturbance-free case.

Corollary 2.4.12. Suppose the parameterized family of discrete-time systems

(2.23) has a family of average systems ∆y
∆k

= F av
τ (y) where ∆k = τ , if the family

of average systems is globally asymptotically stable, then the family of discrete-

time systems (2.23) is semi-globally practically asymptotically stable. �

2.5 An application example

To illustrate applicability of the results of this chapter, we address stabilization

for the single-degree-freedom oscillator system with a periodically time-varying

mass, which is an important model that arises in the application of biomechanics,

robotics, conveyor systems, fluid structure interaction problems and many other

situations [117].
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Consider the nonlinear model for Duffing oscillator with a periodically time-

varying mass [115]:

y′′ + kM(t)y + γM(t)y3 = u(t) ,

where y(t) is the displacement of the center mass measured from its rest, u(t) is

the input, k > 0 and γ 6= 0 are stiffness coefficients of linear and cubic elastic

restoring forces respectively. M(t) is the total mass of the oscillator that is

periodic in T̃ and satisfies 2

M(t) =

{
m t ∈ [nT̃ , nT̃ + c)

0 t ∈ [nT̃ + c, (n+ 1)T̃ )

where n = 0, 1, · · · , m and c are positive constants.

To illustrate our results, u is implemented via a digital controller. Then,

with x1 = y and x2 = y′, we have

ẋ1 = x2

ẋ2 = −kM
(
t

ε

)
x1 − γM

(
t

ε

)
x31 + u(t) , (2.24)

where u(t) = u(kτ) := u(k), ∀ t ∈ [kτ, (k + 1)τ), k ∈ N, τ > 0 is the sampling

interval and the small parameter ε > 0 is used to imply thatM(·) is fast switching.

We use the Euler approximation and get the family of approximate models

parameterized by ∆k = τ :

∆x1(k)

∆k
= x2(k)

∆x2(k)

∆k
= −kM

(
kτ

ε

)
x1(k)− γM

(
kτ

ε

)
x1(k)

3 + u(k) . (2.25)

LetM0 :=
cm
T̃
. Noting that the definitions of the strong and the weak average

coincide without disturbances, the average of the family of discrete time systems

(2.25) is

2 The expression of total mass M(t) for the oscillator comes from [115].
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∆x1(k)

∆k
= x2(k) (2.26)

∆x2(k)

∆k
= −kM0x1(k)− γM0x

3
1(k) + u(k) .

Indeed, setting s̃ = sτ and T := Nτ we have for sufficiently small τ that

∣∣∣∣∣
1

Nτ

k+N∑

s=k

(kM(sτ)x1 + γM(sτ)x31 − kM0x1 − γM0x
3
1)τ

∣∣∣∣∣

=

∣∣∣∣∣
1

Nτ

kτ+Nτ∑

s̃=kτ

(kM(s̃)x1 + γM(s̃)x31 − kM0x1 − γM0x
3
1)∆s̃

∣∣∣∣∣ ,

≤
∣∣∣∣
kx1 + γx31

T

∫ kτ+T

kτ

(M(s̃)−M0)ds̃

∣∣∣∣ ,

≤ 2cm(k + γ)(max{|x|, 1})3
T + 1

, (2.27)

where the last inequality holds when T ≥ 1 and we can let βsa(s, t) = βwa(s, t) :=
2cm(k+γ)s3

t+1
in this case.
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Figure 2.1: (a) τ = 0.005 ε = 0.005 (b) τ = 0.1 ε = 0.005 (c) τ = 0.01 ε = 0.09
(d) τ = 0.01 ε = 0.097

It is straight forward that under the controller u(k) = γM0x
3
1 − 2

√
kM0x2,
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the closed loop of the average system is a linear system whose eigenvalues are

within the unit circle and then it is globally exponentially stable. From the result

in Corollary 2.4.12, we conclude that the family of discrete time systems (2.25) is

semi-globally practically stable. Recall the sufficient conditions of [109] mentioned

in Section 2.2 that guarantee the same controller u(k) for the approximate model

can stabilize the exact discrete-time model. With the fact that the control law is

bounded on compact sets uniformly in small τ , we conclude semi-global practical

stability of the sampled data system (2.24) with this controller u(k).

To simulate the sampled data system (2.24), we assume that T̃ = 1s and

have the trajectory of the solutions x1 and x2 under different values of parameter

ε and sampling time interval τ in Fig. 2.1. The plots (a) and (c) of Fig. 2.1 show

that when ε and τ are sufficiently small, the trajectories of the sampled-data

system (2.24) converge to the equilibrium. On the other hand, when sampling

time intervals τ or parameters ε are chosen rather large, see plots (b) and (d) in

Fig. 2.1, trajectories of the system fluctuate in a rather large interval.

2.6 Conclusions

ISS of parameterized families of discrete-time systems was investigated via the

averaging method in this chapter. The main results are useful when an approxi-

mate discrete-time model of a sampled-data system is used for controller design.

We showed that under appropriate conditions, ISS of strong (or weak) average of

the family of discrete-time systems implies SGP-ISS (or SGP-ISS like) properties

for the actual family of systems. We showed via an example that the results can

be used with [109] to design controllers via approximate discrete-time models that

achieve ISS of sampled-data nonlinear systems. Moreover, we presented general

results on closeness of solutions of the actual system with solutions of its weak or

strong average that only require the average system to be forward complete.
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Chapter 3

Averaging of Fast Switching

Systems

3.1 Introduction

Averaging is an important analysis tool for rapidly switched systems that arise

in a range of engineering applications, such as power electronics [83], network

control systems [127, 147], adaptive control systems [5, 41], synchronization of

chaotic oscillators [95], control of multiple autonomous agents [126] and so on.

However, the averaging theory for fast switching systems is still underdeveloped.

In the present chapter, we use the averaging technique to consider ISS stability

for both nonlinear and linear switched systems. We directly apply the results

in [110] to the averaging analysis of general switched nonlinear systems and derive

stronger conclusions for linear switched systems.

Note that the averaging results for continuous-time systems in [110] do not

deal exclusively with switched systems but they are general enough to include

nonlinear switched systems as a special case. Indeed, we show in Section 3.3

that the notions of weak and strong averages that were pioneered in [110] play a

significant role in the context of rapidly switched systems with disturbances. We

provide conditions under which ISS of the strong average implies SGP-ISS of the

nonlinear switched system. Using the notion of weak average, we can conclude a

SGP-DISS property that requires also derivatives of disturbances to be bounded.

Moreover, the results in [110] are too weak whenever the ISS disturbance

gain is linear and the decay of transients is exponential. Such a situation often

arises in linear switched systems and, hence, there is a strong motivation for

sharpening the results in [110], see Section 3.4. With the notions of strong and

weak averages given in [110] and partial strong average that we propose here, we
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derive results for the case when the average system is ISS with an exponential KL
estimate and a linear gain. We show that exponential ISS of the strong average

implies exponential ISS with linear gain for the actual linear switched system

for sufficiently high switching rates. We also show that if the weak average is

exponentially ISS with linear gain, then the actual linear switched system satisfies

an exponential DISS property.

In addition, using partial averaging [121], we present stronger conclusions

for the case when there does not exist a strong average. The partial strong

average is used to show that its exponential ISS implies exponential ISS properties

for the actual system when switching is fast enough. Moreover, based on the

Lyapunov method, we show that an estimate of the linear ISS gain of the actual

system converges to the estimated ISS gain of its average as the switching rate is

increased.

These new results provide novel insights on robustness in the context of

linear switched systems, and we believe that these average notions will play an

important role in future developments of averaging methodology for switched

systems with disturbances.

Chapter 3 is organized as follows. We give definitions on average and ISS-

like properties for continuous-time systems in Section 3.2. Sections 3.3 and 3.4

contain the main results on averaging of the general nonlinear switched system

and the linear switched system, respectively. Conclusions are given in the last

section and the proofs of the main results are presented in the Appendix B.

3.2 Definitions

Weak, strong and partial strong average definitions together with some ISS-like

properties for continuous-time systems are given in this section. Strong and

weak average definitions are useful to consider both nonlinear switched systems

in Section 3.3 and linear switched systems in Section 3.4. The partial strong

average definition is used to obtain stronger conclusions if there does not exist

a strong average for a linear switched system and only weak conclusions can be

obtained with the weak average definition.

For nonlinear continuous-time systems

ẋ = f(t, x, w) ,
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where x ∈ Rn and w ∈ Rm are states and input signals respectively. Given a

measurable function w(·), let ||w||∞ := ess supt≥0 |w(t)| and denote w ∈ L∞ if

||w||∞ < ∞. Then, we have the following weak and strong averages (introduced

in [110]).

Definition 3.2.1 (Weak average). A function fwa : R
n ×Rm → Rn is said to be

a weak average of f : R≥0 × Rn × Rm → Rn if there exist βav ∈ KL and T ∗ > 0

such that for all t ≥ 0, T ≥ T ∗, x ∈ Rn and w ∈ Rm, the following holds:

∣∣∣∣fwa(x, w)−
1

T

∫ t+T

t

f(s, x, w)ds

∣∣∣∣ ≤ βav(max{|x|, |w|, 1}, T ) .

�

Definition 3.2.2 (Strong average). A function fsa : R
n×Rm → Rn is said to be

a strong average of f : R≥0 ×Rn ×Rm → Rn if there exist βav ∈ KL and T ∗ > 0

such that for all t ≥ 0, T ≥ T ∗, x ∈ Rn and w ∈ L∞, the following holds:

∣∣∣∣
1

T

∫ t+T

t

[fsa(x, w(s))− f(s, x, w(s))]ds

∣∣∣∣ ≤ βav(max{|x|, ||w||∞, 1}, T ) .

�

For continuous-time systems with x ∈ R
n and w ∈ R

m of the form

ẋ = fp

(
t

ε
, t, x, w

)
,

where the small parameter ε > 0 is used to show that some time-varying terms

of fp change faster than others time-varying terms, and for which we can define

the partial strong average.

Definition 3.2.3 (Partial strong average). A function fpsa : R≥0×R
n×R

m → R
n

is said to be a partial strong average of fp : R≥0 × R≥0 × Rn × Rm → Rn if there

exist βav ∈ KL and T ∗ > 0 such that for all t ≥ 0, T ≥ T ∗, x ∈ Rn and w ∈ L∞,

the following holds:

∣∣∣∣
1

T

∫ t+T

t

[
fpsa(t, x, w(s))− fp

(s
ε
, t, x, w(s)

)]
ds

∣∣∣∣ ≤ βav(max{|x|, ||w||∞, 1}, T ) .

�

We consider robustness to different classes of disturbances for switched sys-

tems in the present chapter. Consequently, we need definitions on robustness sta-

bility to disturbances for continuous-time systems, such as input-to-state stability
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(ISS), derivative ISS, semi-global practical ISS (SGP-ISS), semi-global practical

DISS (SGP-DISS) and exponential ISS. We also need definitions for subsets of

input signals with specified properties, such as equi-essential boundedness and lo-

cal equi-uniform Lipschitz continuity. Some of these properties have been defined

in last chapter but in the discrete-time setting.

Equi-essential boundedness and local equi-uniform Lipschitz continuity for a

subset of disturbances w ∈ LW ⊂ L∞ are first given and followed by definitions

on robustness stability to disturbances.

Definition 3.2.4 (Equi-essential boundedness). Given a subset LW of signals

w ∈ L∞, the set LW is called equi-essentially bounded if there exists a strictly

positive real number Ω such that, for all w ∈ LW , ||w||∞ ≤ Ω. �

Definition 3.2.5 (Local equi-uniform Lipschitz continuity). Given a subset LW

of signals w ∈ L∞, the set LW is called locally equi-uniformly Lipschitz continuous

if there exists L > 0 such that, for all w ∈ LW and (t, s) ≥ 0

|w(s)− w(t)| ≤ L|t− s|.

�

Note that LW is locally equi-uniformly Lipschitz continuous if each w ∈ LW

is absolutely continuous and there exists a strictly positive real number Ω1 such

that, for all w ∈ LW , ||ẇ||∞ ≤ Ω1.

Definition 3.2.6 (ISS). The system ẋ = f(x, w) is said to be input-to-state

stable with respect to (β, γ) with β ∈ KL and γ ∈ G if each solution of the system

satisfies

|x(t)| ≤ β(|x(0)|, t) + γ(||w||∞) , ∀ t ≥ 0 .

�

Definition 3.2.7 (DISS). The system ẋ = f(x, w) is said to be derivative input-

to-state stable with respect to (β, γ, γ1) with β ∈ KL and γ, γ1 ∈ G if each solution

of the system satisfies

|x(t)| ≤ β(|x(0)|, t) + γ(||w||∞) + γ1(||ẇ||∞) , ∀ t ≥ t0 ≥ 0 .

�
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Definition 3.2.8 (SGP-ISS). The system ẋ = f(t, x, w, ε) is said to be semi-

globally practically input-to-state stable with respect to (β, γ) with β ∈ KL and

γ ∈ G if for any strictly positive real numbers r,Ω and ν, there exists ε∗ > 0

such that for each ε ∈ (0, ε∗], each solution of the system with |x(t0)| ≤ r and

||w||∞ ≤ Ω satisfies

|x(t)| ≤ β(|x(t0)|, t− t0) + γ(||w||∞) + ν , ∀ t ≥ t0 ≥ 0.

�

The concept of derivative input-to-state stability (DISS) in Def. 3.2.7 was

proposed in [8]. In contrast, the following definition give a stronger semi-global

practical version of DISS, where γ1(s) ≡ 0 in Def. 3.2.7.

Definition 3.2.9 (SGP-DISS). The system ẋ = f(t, x, w, ε) is said to be semi-

globally practically derivative input-to-state stable with respect to (β, γ) with β ∈
KL and γ ∈ G if for any strictly positive real numbers r,Ω,Ω1 and ν, there exists

ε∗ > 0 such that for each ε ∈ (0, ε∗], each solution of the system with |x(t0)| ≤ r,

||w||∞ ≤ Ω and ||ẇ||∞ ≤ Ω1 satisfies

|x(t)| ≤ β(|x(t0)|, t− t0) + γ(||w||∞) + ν , ∀ t ≥ t0 ≥ 0.

�

Definition 3.2.10 (Exponential ISS). The system ẋ = f(t, x, w) is said to be

exponentially input-to-state stable with linear gain γ > 0 if there exist positive

constants K, λ such that each solution of the system satisfies [74, Section 4.9]

|x(t)| ≤ K exp(−λ(t− t0))|x(t0)|+ γ||w||∞ , ∀ t ≥ t0 ≥ 0 .

�

In the following section, we directly apply the averaging results in [110] and

[153] to analyze ISS of rapidly switching nonlinear systems. Although the results

presented in this section follow directly from [110] and [153], we present them

here because to the best of our knowledge they appear to be new in the context

of switched systems. Indeed, we are not aware of any averaging results for general

nonlinear switched systems that investigate ISS. Moreover, Section 3.3 serves as a

motivation for the use of the notions of strong and weak averages that we believe

are going to be useful in a range of other averaging problems for switched systems

with disturbances.
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3.3 Nonlinear switched systems

Consider fast switching nonlinear systems of the form:

ẋ = fρ( t

ε)
(x, w) , (3.1)

where x ∈ Rn is the state, w ∈ Rm is the external disturbance and ε > 0 is a small

parameter; there are N subsystems indexed by set i ∈ S , {1, 2, · · · , N}, where
ρ : R+ → S is a switching law. The switched system (3.1) shows a fast switching

behavior when ε is sufficiently small. Note that for any fixed and arbitrarily small

ε, the switching signal ρ guarantees that we do not have Zeno solutions. We need

the following assumption on continuity and local boundedness of the mapping f

of system (3.1).

Assumption 3.3.1. fρ(t)(x, w) is locally Lipschitz in x, w, uniformly in ρ, and

there exists c ≥ 0 such that |fρ(t)(0, 0)| ≤ c for all t ≥ 0. �

Applying the definitions of weak and strong averages in Def. 3.2.1 and 3.2.2

to consider nonlinear switched system (3.1), we get that its strong average is

ẋ = fsa(x, w) , (3.2)

and the weak average is

ẋ = fwa(x, w) . (3.3)

Directly applying the results in [110] and [153] to the switched system (3.1),

we have the results on closeness of solutions between actual switched system (3.1)

with solutions of its weak average (3.2) or strong average (3.3), see Subsection

3.3.1. We also present conditions under which ISS of the strong or weak average

imply appropriate semi-global practical ISS properties of the actual system in

Subsection 3.3.2.

3.3.1 Closeness of solutions

Here, we present the results on how the strong or weak average can approximate

the actual switched system (3.1) based on forward completeness of the average

system. The definition of LW-forward completeness for a continuous-time system

is first given.
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Definition 3.3.2 (LW-forward completeness). Given a subset LW of signals w ∈
L∞ and a continuous function f : Rn × Rm → Rn, the system ẋ = f(x, w) is

said to be LW-forward complete if for each r > 0 and T > 0 there exists R ≥ r

such that, for all |x0| ≤ r and w ∈ LW , the solutions of the system exist and are

contained in a closed ball of radius R for all t ∈ [0, T ]. �

Without a stability assumption for the average system, the results of closeness

of solutions in the following lemmas show that the strong/weak average system

approximates well the actual switched system for some classes of disturbances.

Theorem 3.3.3 (Closeness to strong average). Suppose that Assumption 3.3.1

holds for the system (3.1), there exists a locally Lipschitz continuous function

fsa : R
n × Rm → Rn that is strong average of t 7→ fρ(t)(x, w), the set LW is equi-

bounded and the strong average (3.2) of system (3.1) is LW-forward complete.

Then, for each triple of strictly positive real numbers (r, δ, T ), there exists a couple

of (ε∗, µ) of strictly positive numbers such that, for each ε ∈ (0, ε∗), for all t0 ≥ 0,

|y0| ≤ r, x0 such that |x0 − y0| ≤ µ and w ∈ LW , each solution xε(t, t0, x0, w) of

the system (3.1) and the solution y(t− t0, y0, w) of its strong average (3.2) satisfy

|xε(t, t0, x0, w)− y(t− t0, y0, w)| ≤ δ ∀ t ∈ [t0, t0 + T ].

�

Theorem 3.3.4 (Closeness to weak average). Suppose that Assumption 3.3.1

holds for the system (3.1), there exists a locally Lipschitz continuous function

fwa : Rn × Rm → Rn that is weak average of t 7→ fρ(t)(x, w), the set LW is

equi-bounded and locally equi-uniformly continuous and the weak average (3.3) of

system (3.1) is LW-forward complete. Then, for each triple of strictly positive

real numbers (r, δ, T ), there exists a couple of (ε∗, µ) of strictly positive numbers

such that, for all ε ∈ (0, ε∗), for all t0 ≥ 0, |y0| ≤ r, x0 such that |x0 − y0| ≤ µ

and w ∈ LW , each solution xε(t, t0, x0, w) of the system (3.1) and the solution

y(t− t0, y0, w) of its weak average (3.3) satisfy

|xε(t, t0, x0, w)− y(t− t0, y0, w)| ≤ δ, ∀ t ∈ [t0, t0 + T ].

�

Note that the result on closeness of solutions holds for equi-essentially bounded

disturbances for strong averages, see Theorem 3.3.3, while the same conclusion
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holds for equi-essentially bounded and locally equi-uniformly Lipschitz continu-

ous disturbances for weak averages in Theorem 3.3.4. The following example is

used to illustrate this.

Example 3.3.5. Consider the switched system

ẋ = fρ( t

ε
)(x) +Bρ( t

ε
)xw (3.4)

where x, w ∈ R. The switching law ρ( t
ε
) selects elements of the set S = {1, 2}

according to the policy

ρ

(
t

ε

)
=





1 t
ε
∈
[
nπ, (2n+1)π

2

)

2 t
ε
∈
[
(2n+1)π

2
, (n+ 1)π

) (3.5)

where n ∈ N≥0. Let f1(x) = f2(x) = 0.1x, B1 = 1 and B2 = −1. Then, the weak

average of system (3.4) is

ẏ = 0.1y , (3.6)

since the weak average definition in Def. 3.2.1 holds with letting βav(s, t) :=
πs2

t+1

and the fact that

∣∣∣∣fwa(x, w)−
1

T

∫ t+T

t

fρ(s)(x, w)ds

∣∣∣∣ ≤
|xw|
T

∣∣∣∣
∫ t+T

t

Bρ(s)ds

∣∣∣∣

≤ |xw|π
2T

≤ (max{|x|, |w|, 1})2π
1 + T

,

where the last inequality holds for T ≥ 1. Moreover, using the same technique

as in Example 2.3.6, one can show that there does not exist a strong average for

system (3.4).

We next consider two input signals: w1(t) = sin(t) and

w2(t) =

{
1 when ρ(t) = 1

−1 when ρ(t) = 2 .
(3.7)

We have the following simulations that give the errors between the solution x of

the actual system (3.4) with the solution y of its weak average system (3.6) under
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different input signals.
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Figure 3.1: The error between solution x of system (3.4) with solution y of its
weak average system (3.6) for the input w1 = sin(t).

Since forward-completeness and Lipschitz properties hold naturally for linear

systems and the weak average system (3.6) is linear and unstable, we know that

conditions of Theorem 3.3.4 are satisfied for the sinusoidal signal w1. This is

consistent to the simulations results in Fig. 3.1, where the error between solutions

of the actual switched system and solutions of its weak average system decreases

when ε is reduced.
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t

x−
y

Figure 3.2: The error between solution x of system (3.4) with solution y of its
weak average system (3.6) for the input w2 in (3.7).

On the other hand, note that the actual system (3.4) with the given distur-

bance (3.7) that has unbounded derivatives evolves like
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ẋ = 0.1x+ x = 1.1x ,

for which the dynamics of state x is independent of the parameter ε. Then, the

error x− y can not be reduced by regulating ε, see Fig. 3.2, and the closeness of

solutions between system (3.4) and its weak average system do not hold. �

3.3.2 ISS analysis

We considered the case when average systems are forward-complete and presented

results on closeness of solutions in last subsection. In the present subsection, we

assume that the strong or weak average is ISS and conclude semi-global practical

ISS properties for the actual switched system. Using the definitions of ISS, SGP-

ISS and SGP-DISS in Definitions 3.2.6, 3.2.8 and 3.2.9, we give the following

results.

Theorem 3.3.6. Suppose that Assumption 3.3.1 holds for the system (3.1), there

exists a locally Lipschitz continuous function fsa : Rn × Rm → Rn that is strong

average of t 7→ fρ(t)(x, w), the set LW is equi-bounded and the strong average

(3.2) of the system (3.1) is ISS with respect to (β, γ), then the system (3.1) is

SGP-ISS with respect to (β, γ). �

Theorem 3.3.7. Suppose that Assumption 3.3.1 holds for the system (3.1), there

exists a locally Lipschitz continuous function fwa : Rn × Rm → Rn that is weak

average of t 7→ fρ(t)(x, w), the set LW is equi-bounded and locally equi-uniformly

continuous and the weak average (3.3) of the system (3.1) is ISS with respect to

(β, γ), then the system (3.1) is SGP-DISS with respect to (β, γ). �

We have stated that ISS of the strong average system implies the actual

switched system is SGP-ISS. On the other hand, it is impossible to prove a

similar result for weak averages without the assumption that the disturbances

are absolutely continuous with w, ẇ ∈ L∞. The following example shows that

the weak average system maybe ISS, but the actual switched system is not ISS.

Example 3.3.8. Consider the switched system (3.4) in Example 3.3.5 with the

switched signal ρ given in (3.5). Let f1(x) = f2(x) = −0.5x, B1 = 1 and B2 =

−1. Using the results in Example 3.3.5, we have that there does not exist a strong

average for system (3.4) and its weak average is

ẏ = −0.5y . (3.8)
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Note that the weak average (3.8) of system (3.4) is disturbance free and it is

uniformly globally asymptotically stable. In other words, it is ISS with with zero

disturbance gain. Now we consider a bounded disturbance for the actual system

and we show that its solution grows unbounded, i.e. the actual system is not

SGP-ISS.

Considering the input signal w2(t) in (3.7), the actual system (3.4) with this

disturbance evolves like

ẋ = −0.5x+ x = 0.5x,

which is independent of the perturbation ε > 0 and has solutions that grow un-

bounded from any non-zero initial condition. Note that the actual system (3.4) is

not SGP-ISS. This is due to the fact that the disturbance is discontinuous. �

The weak average is quite useful for analysis of stability properties of several

classes of time-varying interconnected systems, where the input of one subsystem

is the output of another subsystem. In particular, an important motivation for use

of weak average is the analysis of ISS of time-varying switched cascaded systems.

Consider the system

ξ̇ = fρ1( t

ε
)(ξ, η)

η̇ = fρ2( t

ε
)(η)

where ξ ∈ Rn1 , η ∈ Rn2 . Using Theorem 3.3.7, we have the following corollary.

Corollary 3.3.9. Suppose that fρ1(t)(ξ, η) satisfies Assumption 3.3.1, and for

each r > 0 there exist R > 0 and ε∗ > 0 such that |η| ≤ r and ε ∈ (0, ε∗) implies

|fρ2( t

ε
)(η)| ≤ R. If the weak average of the ξ-subsystem exists and is ISS with

respect to η and if the η-subsystem is uniformly semi-globally practically asymp-

totically stable in ε, then the system (3.9) is uniformly semi-globally practically

asymptotically stable in ε. �

Note that to get the results for semi-global practical asymptotic stability of

the cascade, the ξ-subsystem does not have to be uniformly semi-globally ISS

with respect to η and instead we can use the semi-global practical DISS property

that was concluded in Theorem 3.3.7. Note that this is weaker than the classical

cascaded result, see [74, Lemma 4.7], in which ISS is used for the top system to

conclude stability of the cascade. This observation was already made in [110].
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Example 3.3.10. Consider the switched cascaded system:

ξ̇ = −0.5ξ +Bρ( t

ε
)ξη

η̇ = −(1− 0.5Bρ( t

ε
))η , (3.9)

where Bρ(t) comes from Example 3.3.8. The weak average of the ξ-subsystem

(when η is regarded as the input) was shown in Example 3.3.8 to be ISS with

zero gain. Note also that the η-subsystem is uniformly semi-globally practically

asymptotically stable and hence from Corollary 3.3.9 we conclude that the cascade

system (3.9) is uniformly semi-globally practically asymptotically stable in ε. This

is despite the fact that the ξ-subsystem is not semi-globally practically ISS as

shown in Example 3.3.8. �

3.4 Linear switched systems

We consider linear fast switching systems and present stronger results than those

in the last section. We consider the linear switched system of the form:

ẋ = Aρ1(
t

ε
)x+Bρ2(

t

ε
)w (3.10)

where x ∈ Rn is the state, w ∈ Rm is the input, (Ai, Bi) is a family of con-

stant matrices that is parameterized by some index i ∈ S , {1, 2, · · · , N},
ρ1, ρ2 : R≥0 → S are piecewise constant functions of time, called switching sig-

nals. Suppose that for any fixed and arbitrary small ν > 0, the interval between

consecutive switching times is not smaller than ν for switching signals ρ1(t), ρ2(t).

Using the following definition of average for switched matrices, together with

the definitions of weak, strong and partial strong averages for continuous-time

systems in Definitions 3.2.1-3.2.3, we can generate several type of averages for

the linear switched system (3.10).

Definition 3.4.1 (Average for switched matrices). A constant matrix Aav is said

to be an average of Aρ(t) if there there exist a class-L function σ and positive real

numbers k and T ∗, such that for all t ≥ 0 and T ≥ T ∗, the following holds:

∣∣∣∣Aav −
1

T

∫ t+T

t

Aρ(s)ds

∣∣∣∣ ≤ kσ(T ). (3.11)
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�

Note that the average of switched matrices does not necessarily imply that

ρ(·) : R≥0 → S is periodic. On the other hand, suppose that ρ(·) is periodic of

period T . It can be shown that the average matrix defined as Aav =
1
T

∫ T

0
Aρ(t)dt

satisfies Def. 3.4.1 for some k and σ ∈ L. Let Ti be the length of time during one

period for which ρ(t) = i. Then, it is not hard to see that

Aav =
1

T

N∑

i=1

AiTi =

N∑

i=1

λiAi ,

where by definition λi = Ti/T and
∑N

i=1 λi = 1.

Using the Def. 3.4.1, averages for switched matrices, we will concentrate on

three types of average systems for linear switched systems (3.10). In particular,

it can be shown that if Aav and Bav are respectively averages of Aρ1(t) and Bρ2(t)

in (3.10) under Def. 3.4.1, the system

ẋ = Aavx+Bavw (3.12)

satisfies the weak average definition in Def. 3.2.1. On the other hand, if we have

that Bi = B for all i ∈ {1, 2, · · · , N}, or in other words the matrix Bρ2(t) in (3.10)

satisfies Bρ2(t) ≡ B for all t ≥ 0, then the system

ẋ = Aavx+Bw (3.13)

satisfies the definition of strong average in Def. 3.2.2. Finally, we will also consider

the system

ẋ = Aavx+Bρ2(
t

ε
)w . (3.14)

It is not hard to show that this system is a partial strong average of system (3.10)

under Def. 3.2.3.

Note that the definition of partial strong average is novel in the context of

switched systems. Using this definition we can conclude exponential ISS proper-

ties for the actual linear switched system in cases when a strong average does not

exist and weak averages would give too weak conclusions.
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In order to state the results on robust stability for linear switched systems,

we need the definition of exponential-ISS with linear disturbance gain in Def.

3.2.10. We show that the estimated linear ISS gains of the actual system and its

average converge to each other as the switching rate is increased using Lyapunov

method.

Definition 3.4.2. For the linear system ẏ = Ay +Bw, if there exist γa > 0 and

a symmetric positive definite constant matrix P such that for all y and w there

exist positive real numbers c1, c2, and the quadratic Lyapunov function V = yTPy

satisfying

c1|y|2 ≤ V (y) ≤ c2|y|2,
dV

dy
(y) (Ay +Bw) ≤ −|y|2 + γa|w|2 ∀ y, w ,

then the systems ẏ = Ay +Bw is exponentially ISS. �

Definition 3.4.3. For a time-varying linear system ẏ = Ay + Bρ2( t

ε)
w, if there

exist positive real numbers ε∗, γa, c1, c2, and a continuously differentiable function

V (t, y) such that for all ε ∈ (0, ε∗) and t ≥ 0

c1|y|2 ≤ V (t, y) ≤ c2|y|2,
∂V

∂t
(t, y) +

∂V

∂y
(t, y)

(
Ay +Bρ2( t

ε)
w
)

≤ −|y|2 + γa|w|2 ∀ y, w

holds, then the systems ẏ = Ay +Bρ2( t

ε)
w is exponentially ISS. �

Remark 3.4.4. Let λmin(·) and λmax(·) be the minimum and the maximum eigen-

value of a matrix respectively. For a given matrix P , let c1 := λmin(P ) and

c2 := λmax(P ). Then, exponentially ISS in Definitions 3.4.2 and 3.4.3 ensures

that for the system ẏ = Ay +Bw or ẏ = Ay +Bρ2( t

ε)
w, there exist γa > 0 and a

quadratic Lyapunov function V = yTPy such that [3]:

|x(t)| ≤ K exp(−λ(t− t0))|x0|+ γ||w||∞ ∀ t ≥ t0 ≥ 0 ,

where parameters K =
√

c2
c1
, λ = 1

2c2
and γ =

√
c2γa
c1

. This is consistent to Def.

3.2.10 on exponential ISS for continuous-time systems. On the other hand, Def.

3.2.10 also guarantees the existence of the constant matrix P in Def. 3.4.2 that

can be calculated through the Lyapunov matrix equation AT
avP + PAav = −I. �

The following results show that the actual linear switched system (3.10)
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is exponentially DISS if its weak average is exponential-ISS. In addition, if its

strong or partial strong average system is exponential-ISS, then system (3.10) is

exponentially ISS. The proofs of Theorems 3.4.5 and 3.4.7 are given in Appendices

B.1 and B.2 respectively. The proof of Theorem 3.4.8 is omitted as it is nearly

identical to the proof of Theorem 3.4.5.

Theorem 3.4.5. Suppose that the weak average (3.12) of system (3.10) exists

and is exponentially ISS. Then, for any δ > 0 there exists ε∗ > 0 and for all

ε ∈ (0, ε∗), w, ẇ ∈ L∞ and x0 := x(t0) ∈ Rn, the solution of system (3.10)

satisfies:

|x(t)| ≤ (K + δ) exp(−(λ− δ)(t− t0))|x0|+ (γ + δ)||w||∞ + δ||ẇ||∞
∀ t ≥ t0 ≥ 0 , (3.15)

where positive constants K, λ, γ come from Remark 3.4.4. Thus, the system (3.10)

is exponentially derivative input-to-state stable (DISS) uniformly in ε. �

Related results were presented in [131] where L2 gain stability was considered

for rapidly switching linear systems (1.10) that can be formed as (3.10) with

letting ρ1(
t
ε
) = ρ2(

t
ε
) := ρ( t

ε
). In [131], it is showed via an example that if the

input matrix Bρ switches, then the L2 gain of the actual switched system may

not be bounded by the L2 gain of its average when the switching rate increases.

Comparing with their results, we show in Theorem 3.4.5 that an estimate of ISS

gain of the actual system also can be recovered by its weak average (note that

δ in (3.15) can be arbitrarily small when ε is sufficiently small) if we restrict

the derivatives of disturbances to be uniformly bounded. The following example

illustrates this.

Example 3.4.6. Consider the linear switched system (3.10) with ρ1(
t
ε
) = ρ2(

t
ε
) :=

ρ( t
ε
). Let switching signals be the same as (3.5) in Example 3.3.8. Let A1 = A2 =

−0.5, B1 = 1 and B2 = −1.

As the input matrix Bρ switches, we do not have a strong average for the

switched system (3.10). Its weak average (3.8) given in Example 3.3.8 is distur-

bance free and it is uniformly globally exponentially stable. In other words, it is

exponentially ISS with zero disturbance gain. Now we consider a bounded distur-

bance for the actual system and we show that its linear gain is not zero. For some

c > 0, consider the following input:
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w1(t) =

{
c when ρ(t) = 1

−c when ρ(t) = 2 .

Then, the actual system with the given disturbance evolves like

ẋ = −0.5x+ c

and its solution is x(t) = exp(−0.5t)x0+2c(1− exp(−0.5t)). For any x0 > 0, we

have that x(t) > 2c and x(t) → 2c when t → ∞. As ||w||∞ = c we get the linear

gain γ of the actual system satisfies γ ≥ 2, which is much lager than the ISS gain

of its weak average that is equal to zero. This is consistent to the results in [131].
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Figure 3.3: Dynamics of the actual switched system with disturbances w2(t) =
sin(t).

On the other hand, for some input signals with bounded derivatives, such as

a sinusoidal signal w2(t) = sin(t), Theorem 3.4.5 shows that the actual systems

is exponentially ISS with the estimated ISS gain converges to the estimated ISS

gain of its weak average system. Although we may not get the analytical solution

of the actual system but the simulation results in Fig. 3.3 shows that its solutions

converge to the origin and then its ISS gain is zero. Hence, the results of Theorem

3.4.5 can be applied only when ẇ ∈ L∞ is satisfied and conclusions we obtain are

sharper than [131] under these conditions. �

In the case when the input matrix Bρ does not switch, [131] shows that the

L2 gain of the actual time varying switched system is bounded by the L2 gain

of its average as the switching rate is increased. We consider a different stability
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property (ISS as apposed to L2 stability), and we get a stronger conclusion that

the estimated linear ISS gain can be recovered for linear switched systems that

allow for strong averages, see Theorem 3.4.7.

Theorem 3.4.7. Suppose that the strong average (3.13) of system (3.10) exists

and is exponentially ISS. Then, for any δ > 0 there exists ε∗ > 0 and for all

ε ∈ (0, ε∗), w ∈ L∞ and x0 := x(t0) ∈ Rn, the solution of system (3.10) satisfies:

|x(t)| ≤ (K + δ) exp(−(λ− δ)(t− t0))|x0|+ (γ + δ)||w||∞ ∀t ≥ t0 ≥ 0 ,

where positive constants K, λ, γ come from Remark 3.4.4. Thus, the system (3.10)

is exponentially ISS uniformly in ε. �

When there does not exist a strong average for the linear switched system

(3.10) and the conclusions on exponential-DISS for this switched system in The-

orem 3.4.5 is too weak, we give the following result to obtain exponential ISS for

such system.

Theorem 3.4.8. Suppose that the partial strong average (3.14) of system (3.10)

exists and is exponentially ISS. Then, for any δ > 0 there exists ε∗ > 0 and for

all ε ∈ (0, ε∗), w ∈ L∞ and x0 ∈ Rn, the solution of system (3.10) satisfies:

|x(t)| ≤ (K + δ) exp(−(λ− δ)(t− t0))|x0|+ (γ + δ)||w||∞ ∀t ≥ t0 ≥ 0 .

where positive constants K, λ, γ come from Remark 3.4.4. Thus, the system (3.10)

is exponentially ISS uniformly in ε. �

In a similar fashion like Corollary 3.3.9, we can state a corollary that can

be derived from Theorem 3.4.5 for the following cascaded linear switched system,

for which the ξ-subsystem does not have to be uniformly exponentially ISS with

respect to η to get the exponential stability of the cascade and instead we can

use the exponential DISS property that was concluded in Theorem 3.4.5.

Consider a cascaded linear switched system

ξ̇ = Aρ1(
t

ε
)ξ +Bρ2(

t

ε
)η ,

η̇ = Aρ3(
t

ε
)η , (3.16)

where ξ ∈ Rn1 , η ∈ Rn2 .
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Corollary 3.4.9. Suppose that the weak average of ξ-subsystem exists and is ex-

ponentially ISS with respect to η, and the average of η-subsystem is exponentially

stable, then there exists a ε∗ > 0 such that for all ε ∈ (0, ε∗), the system (3.16) is

exponentially stable uniformly in ε.

Note that (3.10) is comprised of subsystems ẋ = Aix + Biw that are not

necessarily ISS, but the average system induced by subsystems and switching

signals is ISS. Our main results show that stability of average systems implies the

whole switched system is stable when the switching rate is high enough, and the

following is a simple example that illustrates this fact.

Example 3.4.10. Consider the linear switched system (3.10) with ρ1(
t
ε
) = ρ2(

t
ε
) :=

ρ( t
ε
). Let the switching signal ρ(·) be the same as (3.5) in Example 3.3.8. Let

B1 = B2 = 0,

f1(x) =

[
−3 0

0 1

]
x , f2(x) =

[
1 0

0 −3

]
x . (3.17)

From the average definition (strong and weak average coincide in this case), the

average system
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Figure 3.4: The trajectories of states x1 and x2 for system (3.10).

ẋ =

[
−1 0

0 −1

]
x
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induced by two unstable subsystems and the periodical switching signal (3.5) is an

exponentially stable. Our results in Theorem 3.4.5 or 3.4.7 show that the actual

system (3.10) is stable when ε is small enough. The simulation results in Fig.

3.4 illustrate this conclusion. �

From classical stability analysis theory for switched systems, e.g. [89], we

know that slow switching assumption can guarantee that the whole switched

system is stable if all subsystems are stable. However, we may not get the same

conclusion for rapidly switching systems as the average system might not be ISS

even if all subsystems are ISS. The following example is used to show this in zero

disturbance case.

Example 3.4.11. Consider the linear switched system (3.10) with ρ1(
t
ε
) = ρ2(

t
ε
) :=

ρ( t
ε
). Let the switching signal be the same as (3.5) in Example 3.3.8, B1 = B2 = 0

and

f1(x) =

[
−1 −4

0 −1

]
x , f2(x) =

[
−1 0

−4 −1

]
x . (3.18)
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Figure 3.5: The trajectories of states x1 and x2 for system (3.10).

The average system

ẋ =

[
−1 −2

−2 −1

]
x
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induced from both exponentially stable subsystems is unstable with real part of one

eigenvalues (λ1 = 1 and λ2 = −3) being positive.

We can see in Fig. 3.5 that stability of the switched system can be kept when

switching is slow enough, ε = 3.2 (the period of the switched signal is 10), and

this property is lost when ε = 0.16 (the period of the switched signal is 0.5). �

3.5 Conclusions

ISS of fast switching systems with disturbances via the averaging method was

investigated in this chapter. We directly applied the results in [110] to gen-

eral switched nonlinear system with disturbances and presented conditions under

which ISS of the strong average implies semi-global practical ISS of the actual

switched system. We also showed a semi-global practical DISS property using the

notion of weak average and requiring derivatives of disturbances to be bounded.

Results were also derived for the strong or the weak average system to be ISS

with an exponential KL estimate and a linear gain. We proved that exponential

ISS of the strong and the partial strong average system implies exponential ISS

for the actual linear switched system with their estimated linear gains converging

to each other as the parameter is reduced. Moreover, exponential ISS of the weak

average guarantees an appropriate DISS property for the actual system. We em-

phasize that one contribution of this chapter is a systematic use of strong, partial

strong and weak averages for switched systems with disturbances that we believe

will be very useful in a range of other averaging questions for switched systems.
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Chapter 4

Input-to-State Stability of a

Class of Hybrid Systems

4.1 Introduction

In this chapter, we consider a class of hybrid models via averaging. This hybrid

model arises in hybrid feedback control systems that are driven by pulse-width-

modulated (PWM) actuators. For such systems, it is desirable to prove that

the PWM implementation of a given hybrid control law produces a closed-loop

behavior that is similar to the behavior that would be achieved by implementing

the hybrid feedback directly. In this case, a simpler hybrid system is used to

approximate the actual hybrid system. See Section 1.1 for further motivation

and related references.

Our results fit in the framework [25,26,29,30,53,56] considering hybrid sys-

tems of the form

ξ̇ ∈ F(ξ) ξ ∈ C
ξ+ ∈ G(ξ) ξ ∈ D ,

(4.1)

where the states agree with a set-valued flow mapping F with states constrained

in the flow set C and a set-valued jump mapping G with states constrained in the

jump set D. This hybrid model captures a wide variety of dynamic phenomena

including systems with logic-based state components that take values in a discrete

set, as well as timers, counters, and other components. One can find how to

cast hybrid automata, switched systems, as well as sampled-data and networked

control systems, into such form [55]. Using this modeling framework, one can

generalize most classical results on continuous-time systems to the hybrid setting.
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Strong and weak average definitions are used to approximate the time-varying

hybrid systems by time-invariant hybrid systems. We consider closeness of so-

lutions of the strong average system and solutions of the actual hybrid system

disturbed by bounded input signals on compact time domains assuming that the

strong average system is forward pre-complete. Same conclusion can be obtained

based on forward pre-completeness of the weak average system for bounded input

signals with bounded derivatives.

We also show that ISS of the strong average implies semi-global practical ISS

(SGP-ISS) of the actual system. In a similar fashion, ISS of the weak average

implies semi-global practical derivative ISS (SGP-DISS) of the actual system.

Using a PWM hybrid feedback control example, we illustrate how to apply our

averaging results for hybrid systems to design a controller based on the simpler

hybrid average system to stabilize the actual PWM hybrid feedback system.

Averaging of hybrid systems attracts attention since the averaging method

can be used to simplify analysis of time-varying hybrid dynamics and hybrid

dynamics naturally arise in a range of engineering applications, for example power

electronics [34, 146], robotic manufacturing [142], automotive engine controlling

[17], air traffic management systems [94], chemical process [9, 13, 45] and so on.

However, most averaging results for hybrid systems focus on approximating a

special class of hybrid system by a non-hybrid average system. For instance,

one can find that a continuous-time system is the average for the dither system

in [68,69]. These results are not applicable for the case we consider in this chapter.

Stability properties of a class of time-varying hybrid dynamical systems with-

out disturbances are considered in [154] based on asymptotic stability of its hybrid

average system. This chapter extends the results in [154] to hybrid dynamical

systems with exogenous disturbances and gives sufficient conditions such that ISS

of the strong or the weak average system imply ISS-like properties for the actual

hybrid system.

The chapter is organized as follows. Some useful definitions are given in

Section 4.2. Section 4.3 presents the definitions of strong and weak averages for

hybrid systems. Section 4.4 contains the main results and Section 4.5 gives an

application example in PWM hybrid feedback control to illustrate how to apply

the main results. Conclusions are provided in the last section.
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4.2 Useful definitions under hybrid frameworks

We present some useful definitions in this section for the hybrid framework pro-

vided in [25,26,29,30,53,55,56]. For this purpose, consider a hybrid system with

ξ ∈ Rn and w ∈ W ⊂ Rm of the form

H
ξ̇ = F (ξ, w) (ξ, w) ∈ C

ξ+ ∈ G(ξ, w) (ξ, w) ∈ D .
(4.2)

To define solution for hybrid system in (4.1) and solution pairs for hybrid

system H in (4.2), we need the definitions on properties of set-valued mappings,

such as outer semi-continuity and local boundedness.

Definition 4.2.1 (Outer semi-continuity). A set-valued mapping M : Rn ⇉ Rn

is outer semi-continuous at x ∈ R
n if for all sequences xi → x and yi ∈ M(xi)

such that yi → y we have y ∈ M(x), and M is outer semi-continuous (OSC) if

it is outer semi-continuous at each x ∈ Rn.

Definition 4.2.2 (Local boundedness). A set-valued mapping M : Rn ⇉ Rn

is locally bounded if for any compact set A ⊂ Rn there exists r > 0 such that

M(A) :=
⋃

x∈AM(x) ⊂ rB; if M is OSC and locally bounded, then M(A) is

compact for any compact set A.

Solutions for hybrid systems, under the framework in [25,26,29,30,53,55,56],

are defined on hybrid time domains. A set S ⊂ R≥0 × Z≥0 is called a compact

hybrid time domain if S =
⋃J−1

j=0 ([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ . The set S is a hybrid time domain if for all

(T, J) ∈ S, S ∩ ([0, T ] × {0, 1, · · · , J}) is a compact hybrid time domain. A

hybrid time domain example from [55] is given in Fig. 4.1.

A function x : R≥0 → R
n is locally absolutely continuous if its derivative is

defined almost everywhere and we have x(t)−x(t0) =
∫ t

t0
ẋ(s)ds for all t ≥ t0 ≥ 0,

for which the precise definition see [108]. Now, we can define solutions for hybrid

system in (4.1), also see [55], and solution pairs for hybrid system H in (4.2) [28].

Definition 4.2.3. A hybrid signal is a function defined on a hybrid time domain.

w : dom w → W is called a hybrid input if w(·, j) is Lebesgue measurable and

locally essentially bounded for each j. A hybrid signal ξ : dom ξ 7→ R
n is called

a hybrid arc if ξ(·, j) is locally absolutely continuous for each j. A hybrid arc

ξ : dom ξ 7→ Rn is a solution to the hybrid system (4.1) if ξ(0, 0) ∈ C ∪ D and:
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Figure 4.1: A hybrid time domain example.

1. for all j ∈ Z≥0 and almost all t such that (t, j) ∈ dom ξ, ξ(t, j) ∈ C and

ξ̇(t, j) ∈ F(ξ(t, j));

2. for all (t, j) ∈ dom ξ such that (t, j+1) ∈ dom ξ, ξ(t, j) ∈ D and ξ(t, j+1) ∈
G(ξ(t, j)).

A hybrid arc ξ : dom ξ 7→ Rn and a hybrid input w : dom w 7→ W form a

solution pair to system H in (4.2) if dom ξ = dom w, (ξ(0, 0), w(0, 0)) ∈ C ∪D
and

1. for all j ∈ Z≥0 and almost all t such that (t, j) ∈ dom ξ, (ξ(t, j), w(t, j)) ∈ C

and ξ̇(t, j) = F (ξ(t, j), w(t, j));

2. for all (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ, (ξ(t, j), w(t, j)) ∈ D and

ξ(t, j + 1) ∈ G(ξ(t, j), w(t, j)).

A solution or a solution pair is maximal if it cannot be extended. �

An example of a trajectory for a hybrid system, obtained from [55], is given in

Fig. 4.2; its hybrid time domain dom x is given in Fig. 4.1.

Let CΩ := {ξ : ∃w ∈ W ∩ ΩB such that (ξ, w) ∈ C)} and FΩ(ξ) := {v ∈
R

n : v = F (ξ, w), w ∈ W ∩ ΩB and (ξ, w) ∈ C}. In order to exploit recent

results in the literature on robustness for hybrid systems, we make the following

assumptions.
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Figure 4.2: A solution of a hybrid system.

Assumption 4.2.4. The sets C ⊂ Rn × Rm, D ⊂ Rn × Rm and W ⊂ Rm are

closed; F : C → R
n is continuous, for each Ω ≥ 0 and ξ ∈ CΩ, the set FΩ(ξ) is

convex; G : Rn×Rm ⇉ Rn is outer semi-continuous and locally bounded, and for

each (ξ, w) ∈ D, G(ξ, w) is nonempty. �

Assumption 4.2.4 lists some basic regularity conditions that combine what

is typically assumed in continuous-time and in discrete-time systems. On the

other hand, the convexity condition in Assumption 4.2.4 is used to guarantee

robustness to disturbances for hybrid systems and the results in this chapter are

based on robustness properties of the hybrid system. Example 4.4.10 that shows

up later illustrates necessities of the convexity condition.

Given any hybrid signal w : dom w 7→ W, let Γ(w) denote the set of (t, j) ∈
dom w such that (t, j + 1) ∈ dom w, and define

|w| := max

{
ess sup

(t,j)∈dom w\Γ(w)

|w(t, j)|, sup
(t,j)∈Γ(w)

|w(t, j)|
}
. (4.3)

For a hybrid arc w, ẇ(t, j) is well defined for almost all t such that (t, j) ∈ dom w.

Noting the fact that ẇ can be defined arbitrarily on the set {t : (t, j) ∈ dom w}
of nonzero (Lebesgue) measure, the following definition for |ẇ| is well defined and

is consistent with the definition in (4.3):

|ẇ| := ess sup
(t,j)∈dom w

|ẇ(t, j)| . (4.4)
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Let LW be a given subset of hybrid signals w : dom w → W. The definitions

of equi-essential boundedness and local equi-uniform Lipschitz continuity for a set

of hybrid signals follows from Definitions 3.2.4 and 3.2.5, respectively. Note that

a sufficient condition for LW to be locally equi-uniformly Lipschitz continuous is

that there exists a strictly positive real number Ω1 such that, for each w ∈ LW ,

w(·, j) is locally absolutely continuous for each j and for all (t, j) ∈ dom w such

that |ẇ| ≤ Ω1.

We consider closeness between solutions of hybrid dynamical systems to solu-

tions of its average systems on compact time domains as one of the main results.

These results are stated under the assumption that the average hybrid system is

forward pre-complete. The definitions of forward pre-completeness and closeness

of hybrid signals are given here.

Definition 4.2.5. (Forward completeness) A hybrid solution pair is said to be

forward complete if its domain is unbounded. A hybrid solution pair is said to be

forward pre-complete if its domain is compact or unbounded. System H is said

to be forward pre-complete from a compact set K0 ⊂ Rn with a disturbance bound

Ω ≥ 0 if all maximal solution pairs (ξ, w) with ξ(0, 0) ∈ K0 and w with |w| ≤ Ω

are forward pre-complete. �

For pure continuous-time systems, forward completeness guarantees the ex-

istence of solutions with no finite-time escape occurring. In contrast, forward

pre-completeness of hybrid systems, where the prefix “pre-” is used since it is not

a requirement that maximal solutions to be complete, shows that solutions are

contained in a compact set in compact time domains. See more details in [55] on

considering properties of hybrid systems without insisting on completeness of so-

lutions. With forward pre-completeness of hybrid systems, we consider closeness

of solutions of the actual hybrid system with solutions of its approximation.

Note that closeness between hybrid signals may not hold uniformly in t, see

an example in Fig. 4.3. Two hybrid solutions that start from initial point x0 and

x0 + δ are plotted in Fig. 4.3 respectively, where x0 := x(0, 0) and δ > 0 is a

small number. The plot in the left corresponds to the solution components on

hybrid time domains and the right plot illustrates the same solution components

parameterized by t. The trajectories of these two solutions are not close in the

uniform distance, in particular, at nearby jump times. On the other hand, the

neighborhoods around its pieces shows closeness of their graphs which motivates

the use of graph distance for describing closeness of hybrid solutions, see the

following concept of (T, ρ)-closeness for hybrid signals [55].
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Figure 4.3: Closeness of hybrid signals.

Definition 4.2.6 (Closeness of hybrid signals). Two hybrid signals ξ1 : dom ξ1 7→
Rn and ξ2 : dom ξ2 7→ Rn are said to be (T, ρ)-close if:

1. (a) for each (t, j) ∈ dom ξ1 with t+ j ≤ T there exists s such that (s, j) ∈
dom ξ2, with |t− s| ≤ ρ and |ξ1(t, j)− ξ2(s, j)| ≤ ρ,

2. (b) for each (t, j) ∈ dom ξ2 with t + j ≤ T there exists s such that (s, j) ∈
dom ξ1, with |t− s| ≤ ρ and |ξ2(t, j)− ξ1(s, j)| ≤ ρ.

�

We also study robust stability properties of hybrid systems with the defini-

tions of ISS, SGP-ISS and SGP-DISS that are given below. Given a compact set

A ⊂ Rn, a function χ : Rn → R≥0 is said to be a proper indicator function for

A on Rn if χ is continuous, χ(x) = 0 if and only if x ∈ A, and χ(x) → ∞ when

|x| → ∞. To study stability concepts with respect to a certain measure instead

of a vector norm, in the following we let A ⊂ R
n be nonempty and compact and

let χ : Rn → R≥0 be a proper indicator for A.

The definition of input-to-state stability (ISS) for hybrid system H (4.2)

given in [28] is first recalled.

Definition 4.2.7 (ISS). System H in (4.2) is called ISS with respect to (χ, β, γ)

with β ∈ KL and γ ∈ G if for all ξ(0, 0) = ξ0 ∈ Rn and w ∈ Rm each solution

pair (ξ, w) satisfies

χ(ξ(t, j)) ≤ max{β(χ(ξ0), t+ j), γ(|w|)} , ∀(t, j) ∈ dom ξ . (4.5)

�

Note that the existence of a class-KL function β in Definition 4.2.7 for the
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compact set A is equivalent to stability and pre-attractivity of the set A as defined

in [30]. For more details see [56, Theorem 6.5].

Semi-global practical-ISS and semi-global practical derivative-ISS are defined

for a hybrid system Hµ with data (Fµ, Gµ, Cµ, Dµ) that depends on a small pa-

rameter µ > 0 with x ∈ Rn and w ∈ Rm:

Hµ

ẋ ∈ Fµ(x, w) x ∈ Cµ

x+ ∈ Gµ(x, w) x ∈ Dµ .
(4.6)

Definition 4.2.8 (SGP-ISS). System Hµ in (4.6) is called semi-globally practi-

cally ISS with respect to (χ, β, γ) with β ∈ KL and γ ∈ G if, for each compact set

K0 ⊂ Rn and any positive real numbers Ω and ν there exists µ∗ > 0 such that for

each µ ∈ (0, µ∗], each solution pair (x, w) with x0 := x(0, 0) ∈ K0 and |w| ≤ Ω

satisfies

χ(x(t, j)) ≤ max{β(χ(x0), t+ j), γ(|w|)}+ ν , ∀(t, j) ∈ dom x .

�

Definition 4.2.9 (SGP-DISS). System Hµ in (4.6) is called semi-globally prac-

tically derivative ISS with respect to (χ, β, γ) with β ∈ KL and γ ∈ G if, for each

compact set K0 ⊂ Rn and each triple of positive real numbers (Ω,Ω1, ν), there ex-

ists µ∗ > 0 such that for each µ ∈ (0, µ∗], each solution pair (x, w), where w(·, j)
is locally absolutely continuous, with x0 := x(0, 0) ∈ K0, |w| ≤ Ω and |ẇ| ≤ Ω1

satisfies:

χ(x(t, j)) ≤ max{β(χ(x0), t+ j), γ(|w|)}+ ν , ∀(t, j) ∈ dom x .

�

4.3 Strong and weak averages

In this section, a class of time-varying hybrid systems is presented and definitions

of weak and strong average for such systems are given. In addition, we introduce

functions that are used in a coordinate transformation that facilitates establishing

the averaging results for the given class of systems. Basic requirements of these

functions are established in several lemmas.
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Consider a class of time-varying hybrid systems Hǫ that depends on a small

parameter ε > 0

Hǫ

ẋ = fε(x, w, τ)

τ̇ = 1
ε

}
((x, w), τ) ∈ C × R≥0

x+ ∈ G(x, w)

τ+ ∈ H(x, w, τ)

}
((x, w), τ) ∈ D × R≥0 ,

(4.7)

where x ∈ Rn, w ∈ Rm, fε : Rn × Rm × R≥0 → Rn, G : Rn × Rm ⇉ Rn and

H : Rn × Rm × R≥0 ⇉ R≥0.

Assumption 4.3.1. Sets (C,D) and the jump mapping G : Rn × Rm ⇉ Rn

satisfy Assumption 4.2.4; τ 7→ fε(x, w, τ) is measurable for each (x, w) ∈ C;

and for each δ > 0 and compact set K ⊂ Rn × Rm there exist M(K) > 0 and

ε∗(K, δ) > 0 such that

|f0(x, w, τ)| ≤ M ∀((x, w), τ) ∈ (C ∩K)× R≥0 , (4.8)

|fε(x, w, τ)− f0(x, w, τ)| ≤ δ

3
∀((x, w), τ, ε) ∈ (C ∩K)× R≥0 × (0, ε∗] .

�

Note that only local boundedness but no continuity condition is needed for

the flow mapping f0. For instance, we show that it holds for PWM hybrid feed-

back control systems in Section 4.5, for which a differential equation with the

discontinuous right-hand side is used to describe flow dynamics. Conditions for

(G,C,D) in the above assumption are also mild and they guarantee that the sets

of solutions of H have good sequential compactness properties [55].

We next define weak and strong averages that are taken from [110] for the

flow mapping f0 : C × R≥0 → Rn on the flow set C. Comparing with average

definitions in the previous chapters, we require bounds of the average error to

hold only for x ∈ C. For simplicity, the following average definitions are defined

on the time domain t instead of hybrid time domain (t, j).

Definition 4.3.2. (Weak Average) For a function f0 : C × R≥0 → R
n, the

function fwa : C → Rn is said to be a weak average on C if for each compact set

K ⊂ Rn×Rm there exists a class-L function σK such that, for all ((x, w), τ, T ) ∈
(C ∩K)× R≥0 × R≥0:

∣∣∣∣fwa(x, w)−
1

T

∫ τ+T

τ

f0(x, w, s)ds

∣∣∣∣ ≤ σK(T ) .
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�

We next define strong average for a subset of input signals. As the strong

average is defined on the time domain t, we need the notation for sets of input

signals defined on t. For any functions w̃ ∈ L∞ : R≥0 → W, let L̃W be a subset

of input signals. We have the following strong average definition.

Definition 4.3.3. (Strong Average) For a function f0 : C1 × W × R≥0 → Rn,

the function fsa : C1 ×W → Rn is said to be a strong average on C1 ×W if for

each compact set K ⊂ Rn × Rm there exists a class-L function σK such that, for

all w̃ ∈ L̃W with ((x, w̃(s)), τ, T ) ∈ ((C1 ×W) ∩K) × R≥0 × R≥0 for all s ≥ 0,

the following holds:

∣∣∣∣
1

T

∫ τ+T

τ

[fsa(x, w̃(s))− f0(x, w̃(s), s)]ds

∣∣∣∣ ≤ σK(T ) .

�

Letting fwa come from Definition 4.3.2 and (G,C,D) from (4.7), the weak

average Hwa of system Hǫ is

Hwa

ξ̇ = fwa(ξ, w) (ξ, w) ∈ C

ξ+ ∈ G(ξ, w) (ξ, w) ∈ D .
(4.9)

Similarly, for the case where C = C1 ×W, the strong average Hsa of system Hǫ

is

Hsa

ξ̇ = fsa(ξ, w) (ξ, w) ∈ C

ξ+ ∈ G(ξ, w) (ξ, w) ∈ D ,
(4.10)

where fsa comes from Definition 4.3.3.

To study closeness of solutions between system Hǫ and its weak or strong

average, we define the functions ηwa and ηsa used in a coordinate transformation

to facilitate the averaging results for weak average and strong average case re-

spectively. Similar techniques have been used to average continuous-time systems

in [74, Chapter 10]. Let fwa and fsa come from the definitions of weak average

and strong average. For each ((x, w), τ, µ) ∈ C × R≥0 × R≥0 and τ0 ∈ [0, τ ], let

ηwa(x, w, τ, τ0, µ) :=

∫ τ

τ0

exp(µ(s− τ))[f0(x, w, s)− fwa(x, w)]ds . (4.11)
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Let 0 ≤ τ0 ≤ τ1 and w̃ : [τ0, τ1] → W be given. For each τ ∈ [τ0, τ1] and

(x, µ) ∈ C1 × R≥0, let

ηsa(x, w̃, τ, τ0, µ) :=

∫ τ

τ0

exp(µ(s− τ))[f0(x, w̃(s), s)− fsa(x, w̃(s))]ds . (4.12)

We assume that, when µ = 0, ηsa and ηwa are locally Lipschitz, uniformly in

τ and τ0, as stated below in Assumptions 4.3.4 and 4.3.5. These assumptions may

hold even when f is not periodic in τ nor continuous in (x, w). The pulse-width

modulated hybrid control example in Section 4.5 illustrates this situation. Let

N̄ := {1, · · · , n}. For each i ∈ N̄ , ηisa represents the ith component of ηsa, and

similarly for ηiwa.

Assumption 4.3.4. For a function f0 defined on C × R≥0, fwa is a continuous

function that is a weak average of f0 on C and, for each compact set K ⊂ Rn×Rm,

there exists L(K) such that, for all i ∈ N̄ , ((x1, w1), τa), ((x2, w2), τb) ∈ (C∩K)×
R≥0 and τ0 ∈ [0,min{τa, τb}]:

∣∣ηiwa(x1, w1, τa, τ0, 0)− ηiwa(x2, w2, τb, τ0, 0)
∣∣

≤ L(|x1 − x2|+ |w1 − w2|+ |τa − τb|) .

�

Assumption 4.3.5. For a function f0 defined on C1 × W × R≥0, where C ⊂
C1 ×W, fsa is a continuous function that is a strong average of f0 on C1 ×W
and, for each compact set K ⊂ Rn × Rm, there exists L(K) such that, for all

i ∈ N̄ , 0 ≤ τ0 ≤ τ1, w̃ : [τ0, τ1] → W and ((x1, w̃(s)), τa), ((x2, w̃(s)), τb) ∈
((C1 ×W) ∩K)× [τ0, τ1] for all s ∈ [τ0, τ1]:

∣∣ηisa(x1, w̃, τa, τ0, 0)− ηisa(x2, w̃, τb, τ0, 0)
∣∣ ≤ L(|x1 − x2|+ |τa − τb|) .

�

4.4 Main results

In this section, we present the results on closeness of solutions for hybrid system

Hǫ and its averages systems. We also state results on semiglobal practical ISS

(DISS) properties of Hǫ assuming ISS of its strong average (weak average). For

different classes of input signals, we first show that solutions of system Hǫ and

solutions of its strong or weak average system are (T, ρ)-close (Def. 4.2.6) using
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forward pre-completeness (Def. 4.2.5) of the average system. The proofs of

Theorems 4.4.1 and 4.4.2 are given in Appendix C.1.

Theorem 4.4.1. (Weak average) Suppose that the set LW is equi-essentially

bounded and locally equi-uniformly Lipschitz continuous, system Hǫ in (4.7) sat-

isfies Assumptions 4.3.1 and 4.3.4, and its weak average system Hwa satisfies

Assumptions 4.2.4 and is forward pre-complete from a compact set K0 ⊂ Rn with

a disturbance bound Ω ≥ 0. Then, for each T ≥ 0 and ρ > 0, there exists ε∗ > 0

such that, for all ε ∈ (0, ε∗] and w ∈ LW , for each solution pair (x, w) to Hǫ with

x(0, 0) ∈ K0 there exists some solution pair (ξ, w1) to Hwa with ξ(0, 0) ∈ K0 and

|w1| ≤ |w| such that x and ξ are (T, ρ)-close. �

If, there exists a strong average for system Hǫ, we can obtain a stronger

conclusion in the following theorem, for which the results on closeness of solutions

of the actual hybrid system Hǫ and solutions of its strong average hold without

requiring the derivative of input signals to be bounded.

Theorem 4.4.2. (Strong average) Suppose that the set LW is equi-essentially

bounded, system Hǫ in (4.7) satisfies Assumptions 4.3.1 and 4.3.5, and its strong

average system Hsa satisfies Assumptions 4.2.4 and is forward pre-complete from

a compact set K0 ⊂ Rn with a disturbance bound Ω ≥ 0. Then, for each T ≥ 0

and ρ > 0, there exists ε∗ > 0 such that, for all ε ∈ (0, ε∗] and w ∈ LW , for each

solution pair (x, w) to Hǫ with x(0, 0) ∈ K0 there exists some solution pair (ξ, w1)

to Hsa with ξ(0, 0) ∈ K0 and |w1| ≤ |w| such that x and ξ are (T, ρ)-close. �

For the 0-input case, the result on closeness between solutions of the hybrid

system Hǫ and solutions of its average system can be directly derived from The-

orem 4.4.1 or 4.4.2. In this case, assumptions and definitions for system Hǫ with

disturbances can be directly used with letting w = 0 ⊂ Rm and dom w := dom ξ.

Note that the weak and the strong averages for system Hǫ coincide for zero input

signals. Let Hav denote this average system. Applying the results in Theo-

rem 4.4.1 or 4.4.2, we can directly get the following corollary that is identical

to [154, Theorem 1].

Corollary 4.4.3. Suppose that system Hǫ, where w = 0 ⊂ Rm, in (4.7) satisfies

Assumptions 4.3.1 and 4.3.4, and its average system Hav satisfies Assumption

4.2.4 and is forward pre-complete from a compact set K0 ⊂ Rn. Then, for each

T ≥ 0 and ρ > 0, there exists ε∗ > 0 such that, for all ε ∈ (0, ε∗], each solution

x to Hǫ with x(0, 0) ∈ K0 there exists some solution ξ to Hav with ξ(0, 0) ∈ K0

such that x and ξ are (T, ρ)-close. �
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The results on closeness of solutions in Theorems 4.4.1 and 4.4.2 hold for arbi-

trarily large compact hybrid time domains if we assume forward pre-completeness

of the average system. We conclude that the strong/weak average system ap-

proximate well solutions of the original system on compact time domains, where

disturbances are required to be Lipschitz and bounded for weak averages whereas

only bounded for the strong averages.

We next consider stability properties of system Hǫ if we assume ISS of its

weak/strong average. In Theorem 4.4.4, we show that ISS (Def. 4.2.7) of the

weak average system implies semi-global practical derivative ISS (Def. 4.2.9) of

the original system Hǫ. When the strong average system is ISS, we conclude semi-

global practical ISS (Def. 4.2.8) for system Hǫ in Theorem 4.4.5. The proofs are

given in Appendix C.2.

Theorem 4.4.4. Suppose that the set LW is equi-essentially bounded and locally

equi-uniformly Lipschitz continuous, system Hǫ in (4.7) satisfies Assumptions

4.3.1 and 4.3.4 and its weak average system Hwa satisfies Assumptions 4.2.4 and

is ISS with respect to (χ, β, γ). Then, system Hǫ is SGP-DISS with respect to

(χ, β, γ). �

The above results show that if the weak average system is ISS with functions

β ∈ KL and γ ∈ G for the class of bounded disturbances that have bounded

derivatives, the actual system is SGP-DISS with the same β and γ. Furthermore,

we can obtain the same conclusion for system Hǫ with bounded disturbances if

its strong average system is ISS, see Theorem 4.4.5.

Theorem 4.4.5. Suppose that the set LW is equi-essentially bounded, system Hǫ

in (4.7) satisfies Assumptions 4.3.1 and 4.3.5 and its strong average system Hsa

satisfies Assumption 4.2.4 and is ISS with respect to (χ, β, γ). Then, system Hǫ

is SGP-ISS with respect to (χ, β, γ). �

Note that Theorem 4.4.4 pertains to bounded input signals with bounded

derivatives. In the following example, we can see that for bounded disturbances

that do not have bounded derivatives, ISS of the weak average system does not

guarantee robustness to disturbances for the original system.

Example 4.4.6. Consider a hybrid system of the form
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ẋ = f(x, w, τ)

τ̇ = 1
ε

}
(x, w, τ) ∈ C × R× R≥0

x+ = g(x)

τ+ = 0

}
(x, w, τ) ∈ D × R× R≥0 , (4.13)

where constraint sets C := R≥0, D := R≤0, and

f(x, w, τ) := −kx3 + cos(τ)x3w (4.14)

g(x) := −x

for the parameter k ∈ (0, 0.5). The flow dynamics of hybrid system (4.13) agree

with the continuous-time system ẋ = −kx3 + cos
(
t
ε

)
x3w for x ∈ C considered

in [110, Example 1]. It is showed in [110, Example 1] that there does not exist

a strong average for the function f : C × R × R≥0 → R in (4.14) and its weak

average is fwa(x) = −kx3. Then, from (4.9), we have that the weak average of

system (4.13) is

ẏ = fwa(y) y ∈ C

y+ = g(y) y ∈ D , (4.15)

where g : R → R, sets C and D come from (4.13).

Let A := {0}. Consider a Lyapunov function candidate V (y) = 1
2
y2. Note

that this V : R → R≥0 satisfies

uC(y) < 0 ∀ y ∈ C \ A
uD(y) = 0 ∀ y ∈ D , (4.16)

where uC(y) := 〈∇V (y), fwa(y)〉 = −ky4 and uD(y) := V (g(y))− V (y). For any

µ > 0, noting that the set V −1(µ) ∩ {y ∈ R|uC(y) = uD(y) = 0} is empty and

using the LaSalle’s Principle for hybrid systems [55, Theorem 23], we can get

that A is globally asymptotically stable. In other words, the weak average system

is ISS with zero disturbance gain. We next show that the actual system (4.13) is
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not SGP-ISS. In fact, the original system exhibits finite time escapes under the

action of bounded signals.

Consider a bounded continuous input signal w(τ) = cos(τ) that can be rewrit-

ten as wε(t) = cos
(
t
ε

)
on the t time domain. Note that |wε| = 1 for any ε but

|ẇε| = 1
ε
that becomes arbitrarily large when ε is sufficiently small. Thus, the

signal w is not locally equi-uniformly Lipschitz continuous, see Def. 3.2.5. Recall

that

∫ T

t

cos2(s) = 0.5T + 0.25(sin(2t+ 2T )− sin(2t)) ,

By direct integration of ẋ = −kx3 + cos
(
t
ε

)
x3w with the input signal wε(t) =

cos
(
t
ε

)
, we have

∫ x(t)

x(t0)

dx

x3
=

∫ t

t0

(
cos2

(s
ε

))
ds

and

x2(t) =
x2(t0)

1− 2ψ(ε, t, t0)x2(t0)
, (4.17)

where

ψ(ε, t, t0) = (0.5− k)(t− t0) + 0.25ε

(
sin

(
2t

ε

)
− sin

(
2t0
ε

))
.

Fix t0 ≥ 0, ε > 0 and let x(t0) := x(t0, 0) = 1. Considering (4.17), we know

that there exists some t1 ≥ t0 such that ψ(ε, t1, t0) = 0.5 since (0.5−k) ∈ (0, 0.5).

Moreover, we have that (t1, 0) ∈ dom x for the solution x of actual hybrid system

(4.13) as the solution x(t, 0) with the initial condition x(t0, 0) = 1 will stay in the

set C (x(t, 0) ∈ R≥0) and keep flowing when t0 ≤ t ≤ t1. Then, there are finite

escape times for such a maximal solution x and the actual hybrid system (4.13)

is not semi-globally practically ISS. �

We consider robustness to disturbances for hybrid systems Hǫ in Theorems

4.4.4 and 4.4.5. Our results generalize the asymptotic stability analysis results of
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a class of hybrid systems for the disturbance-free case in [154]. We can directly

apply Theorem 4.4.4 or 4.4.5 to consider hybrid system Hǫ when w ≡ 0 and get

a corollary that gives the same conclusion as [154, Theorem 4]. Let A ⊂ Rn be

nonempty and compact and χ : Rn → R≥0 be a proper indicator for A. The

precise definitions on global asymptotic stability of system H and semi-global

practical asymptotic stability of system Hµ when w ≡ 0 are given first. After

that, the corollary is presented.

Definition 4.4.7 (GAS). System H in (4.2), when w ≡ 0, is called globally

asymptotically stable with respect to (χ, β) with β ∈ KL if for all ξ(0, 0) = ξ0 ∈ Rn

each solution ξ satisfies

χ(ξ(t, j)) ≤ β(χ(ξ0), t+ j)} ∀ (t, j) ∈ dom ξ . (4.18)

�

Definition 4.4.8 (SGP-AS). System Hµ in (4.6), when w ≡ 0, is called semi-

globally practically asymptotically stable with respect to (χ, β) with β ∈ KL if for

each compact set K0 ⊂ Rn and any positive real number ν there exists µ∗ > 0

such that for each µ ∈ (0, µ∗], each solution x with x0 := x(0, 0) ∈ K0 satisfies

χ(x(t, j)) ≤ β(χ(x0), t+ j) + ν ∀ (t, j) ∈ dom x .

�

Corollary 4.4.9. Suppose that system Hǫ in (4.7) with w ≡ 0 satisfies Assump-

tions 4.3.1 and 4.3.4 and its average system Hav satisfies Assumption 4.2.4 and

is GAS with respect to (χ, β). Then, system Hǫ is SGP-AS with respect to (χ, β).

�

The above results are based on the property that hybrid systems are robust

to perturbations. In particular, we need that forward pre-completeness or ISS of

hybrid system H in (4.2) imply similar properties for its inflated system Hδ:

Hδ

˙̄x ∈ Fδ(x̄, w) (x̄, w) ∈ Cδ

x̄+ ∈ Gδ(x̄, w) (x̄, w) ∈ Dδ .
(4.19)

For a parameter δ > 0, the data (Fδ, Gδ, Cδ, Dδ) are defined as
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Fδ(x̄, w) := conF ((x̄+ δB, w) ∩ C) + δB

Gδ(x̄, w) := G((x̄+ δB, w) ∩D) + δB

Cδ := {(x̄, w) : (x̄+ δB, w) ∩ C 6= ∅}
Dδ := {(x̄, w) : (x̄+ δB, w) ∩D 6= ∅} .

As part of the proof for the main results of this chapter, we prove some prelim-

inary results in the Appendices C.1 and C.2 that show robustness properties to

perturbations for hybrid system H in (4.2).

Without convexity condition for the flow mapping F in Assumption 4.2.4,

robustness to perturbations for hybrid system H is not guaranteed. The following

example, see also [27, Remark 3], is used to illustrate that forward completeness

of a hybrid system without convexity assumption for its flow mapping F may not

be preserved under a small perturbation.

Example 4.4.10. Let x = [x1, x2]
T ∈ R2 and w = [w1, w2]

T ∈ W ⊂ R2. Consider

the system H (4.2) with the data

F (x, w) :=

[
x31|w1 − w2|
w1 − w2

]
,

G(x, w) := 0,

C := {x ∈ R
2 : x1 ≥ 0, x2 = 0} ×W,

D := R
2 ×W.

Note that for hybrid system H with above (F,G,C,D), all solution pairs starting

from the set (R2 ×W) \C are forced to jump to the origin by the mapping G. At

the same time, the signal w1 − w2 will drive the solution that starts in the set C

to leave this set and then jump to the origin whenever w1(·, 0)− w2(·, 0) 6= 0, or

keep it staying at the initial position when w1(·, 0)−w2(·, 0) = 0. Thus, we know

that the hybrid system H is forward pre-complete. While, for its inflated system

Hδ, one can find x(·, 0) to flow in Cδ and blow up on the compact time domain.

Indeed, noting the analytic solution of ẋ1 = x31|w1 − w2|:

x1(t, 0) =
1√

1
x2
1
(0,0)

− 2
∫ t

0
|w1(τ, 0)− w2(τ, 0)|dτ

,
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we can see x(·, 0) blow up in the x1 coordinate for an appropriately chosen w(·, 0)
where (x, w) is the maximal solution pair that starts in Cδ ×W with Cδ := {x :

(x+ δB) ∩ C 6= ∅} for a positive real number δ. �

4.5 PWM hybrid feedback control example

Pulse-width-modulated (PWM) control strategy is useful for systems controlled

by on-off switches, which are commonly utilized to model switching power elec-

tronic systems and find wide application in industry [40,83,118,146,148]. In this

section, we take PWM hybrid feedback control systems as an example to show

how to apply the results presented above.

In particular, Subsection 4.5.1 illustrates how to model a hybrid feedback

controlled PWM power converter as hybrid systems of the form (4.7). In Subsec-

tion 4.5.2, we consider strong and weak averages for the PWM hybrid feedback

control system and apply the results given in Section 4.4 to analyze its ISS prop-

erties. Moreover, we revisit the power converter example to show that we can

design a hybrid controller based on the simpler average model such that the actual

converter system can be stabilized using the same controller.

4.5.1 Models

To show how to model a general PWM hybrid feedback control system as hybrid

system Hǫ, we first consider a single rate PWM boost power converter example,

see Fig. 4.4. For this PWM power converter, the open-loop model considered in

[78] and closed-loop model with a continuous feedback controller presented in [83,

Section 4] are first given. We also present the closed-loop system when this power

converter is controller by a general hybrid controller. After that, we consider a

general continuous-time plant with hybrid feedbacks that are implemented via

multi-rate PWM. We show that the class of hybrid systems (4.7) considered in

this chapter include this general multi-rate PWM hybrid model as a special case.

Example 4.5.1. Suppose that the boost converter in Fig. 4.4 operates in the con-

tinuous conduction mode [83]; in this case there are two configuration modes for

the converter system corresponding to the on/off state of the switches. Namely,

the mode q1 corresponds to the switch SW1 on and SW2 off and the mode q2 cor-

responds to SW1 off and SW2 on. A PWM produces a signal in form of a pulse

train (e.g. that takes values only at 0 and 1) of a constant frequency but with
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Figure 4.4: Continuous-time feedback control boost converter [83].

pulses that have a varying width; the pulse width is modulated using the measure-

ments from the plant to determine the duty ratio, i.e., the ratio of time spent at

0 to the time spent at 1 or SW1 on to off for the converter system in Fig. 4.4.

Let ξ1 denote the instantaneous value of the inductor current iL and ξ2 := vC

be the capacitor voltage. Let ξ := (ξ1, ξ2). Considering the circuit in Fig. 4.4, we

have that dynamics of states ξ agree with ξ̇ = Aqiξ + Bqi on the qi configuration

for i = 1, 2 [83], where

Aq1 :=

[
0 0

0 − 1
RC

]
, Aq2 :=

[
0 − 1

L
1
C

− 1
RC

]
, Bq1 = Bq2 :=

[
E
L

0

]
.

1

1 2 t

1

6789
::;<=>?; @AB −

0.75

Figure 4.5: A typical triangle switching signal p(t) in PWM control systems and
u(d− p(t)) for d = 0.75.
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Noting that the point of equilibrium of the converter system can be moved to

the origin using a coordinate transformation, one can consider the stabilization of

the origin for the closed-loop converter system. For the converter example in [83],

see Fig. 4.4, note that the triangle switched signal is denoted by 0.7 + 2.3 p(t),

where p(t) is periodic in t satisfying p(t) = t
T
for t ∈ [0, T ) and T > 0. Then, we

have the closed-loop model of the converter system [83]:

ξ̇ = Aq2ξ +Bq1 + (Aq1ξ − Aq2ξ)u(d(ξ)− p(τ)), (4.20)

where the duty ratio function d(ξ) := g(ξ)−0.7
3−0.7

, with g(ξ) = 1 − 0.4ξ1 + 0.1ξ2 is

scaled using the minimum and the maximum values of the triangle signal so that

d(ξ) takes values in [0, 1]; u : R → [0, 1] is the unit step function with u(s) = 1

for s ≥ 0 and u(s) = 0 for s < 0. Fig. 4.5 is an example of u(d − p(t)) for

d = 0.75 and T = 1.

The open-loop model for this converter system is given in [78]:

ξ̇ = Aq2ξ +Bq1 + (Aq1ξ −Aq2ξ)u(d− p(τ)), (4.21)

where d ∈ [0, 1] is the duty cycle for the open-loop PWM operation.

Note that there are situations when certain closed-loop performance specifi-

cations can not be achieved with any linear feedback controller whereas they are

achievable with a hybrid controller, see [18]. For instance, a switched controller

designed via Lyapunov approach in [24] is employed to control a power converter

system in [93] and it was shown to provide better performance on transient and

steady dynamics than continuous PID controllers. More details can be found in

the survey of hybrid control techniques for power converter systems [32,98]. This

observation provides a partial motivation for developing averaging techniques for

hybrid systems that can be used to analyze a class of hybrid PWM systems in

general and power converter systems in particular.

We next consider the same converter but instead of the continuous controller

d(ξ) in Fig. 4.4 we want to apply a hybrid feedback controller, see Fig. 4.6.

Suppose that hybrid controller h : C̄ × D̄ → [0, 1] that was designed to satisfy

given performance specifications is given as:
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η̇ = R(η, ξ) (ξ, η) ∈ C̄

η+ ∈ S(η, ξ) (ξ, η) ∈ D̄

h := h(η, ξ) ,

(4.22)

where η ∈ Rn; C̄, D̄ are the constraint sets that allow flows and jumps for η;

R : C̄ → R
n is a flow mapping and S : D̄ ⇉ R

n is a set-valued mapping.

Note that states η may include physical variables together with logic variables or

operation modes that are used to describe the hybrid feedback control law.
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Figure 4.6: Hybrid feedback control boost converter

Applying this h(η, ξ) to the open-loop converter system (4.21), we have that

the closed-loop model of the converter system in Fig. 4.6 is:

[
ξ̇

η̇

]
=

[
Aq2ξ +Bq1

R(η, ξ)

]
(4.23)

+

[
Aq1ξ −Aq2ξ

0

]
· u(h(η, ξ)− p(τ)) (ξ, η) ∈ C̄

[
ξ+

η+

]
∈
[
ξ

S(η, ξ)

]
(ξ, η) ∈ D̄ .

Averaging results from [83] can be used to analyze the model (4.20) but not

the model (4.23). In this chapter we presented results that can be used to analyze

models of the form (4.23). With these analysis results, one can design hybrid

controllers h(η, ξ) based on the simpler average model to obtain similar properties

of the actual PWM closed-loop system under the same h.
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Note that the average model of open-loop converter system (4.21) is given

in [78]:

ξ̇ = Aq2ξ +Bq1 + d (Aq1 −Aq2) ξ, (4.24)

where the duty cycle d ∈ [0, 1] can be taken as a control signal. Suppose a con-

troller h : C̄ ∪ D̄ → [0, 1] is designed to stabilize the open-loop average system

(4.24) by letting d := h. Then, our results in this chapter can be used to analyze

the stability properties of the PWM converter system (4.23) through stability of

the closed-loop of system (4.24) using the same controller h. �

We assume that the controller h and the triangle signal p in Example 4.5.1

satisfy h(η, ξ) : C̄ × D̄ → [0, 1] and p : R≥0 → [0, 1] respectively. The following

remark shows that we may consider h and p only with their images in [0, 1]

without loss of generality.

Remark 4.5.2. Suppose that we need a controller Ũ = Ũ(ξ, η) that takes values

in [a, b] to stabilize the plant and achieve appropriate performance. To implement

this controller via PWM we need to get an average ranging from a to b using

a step function ũ(·) that satisfies ũ(s) = a for s < 0 and ũ(s) = b for s ≥ 0.

Suppose also that we want to use a triangle signal p̂(·) = c + kp(·) ∈ [c, c + k],

with k > 0 to implement this controller, where p(·) is the triangle wave defined

earlier. Then, we need a duty cycle function Û(ξ, η), generated from Ũ(ξ, η), but

taking values in [c, c + k]. In particular, we take Û(ξ, η) := c + k Ũ(ξ,η)−a
b−a

. The

PWM control that we need to implement is then

ũ(Û(ξ, η)− p̂(τ)) ,

which can be written in other ways and it is also equal to

a + (b− a)u(h(ξ, η)− p(τ)) ,

where

h(ξ, η) :=
Ũ(ξ, η)− a

b− a
,

u(s) :=
ũ(s)− a

b− a
,

p(τ) :=
p̂(τ)− c

k
. �
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Note that the averaging results of this chapter pertain to a more general class

of PWM systems that is presented next. We consider a general continuous-time

plant with disturbances controlled by hybrid feedbacks that are implemented via

multi-rate PWM. Consider a continuous-time plant with states ξ ∈ Rn, distur-

bances w ∈ W ⊂ Rm and outputs y ∈ Rl:

ξ̇ = O(ξ, w) +
k∑

i

Pi(ξ, w)hi , (4.25)

y = Q(ξ, w) .

For this continuous-time plant, the hybrid feedback controllers hi are given through

the following auxiliary hybrid system with states η ∈ Rh:

η̇ = R(η, y) (η, y) ∈ C1

η+ ∈ S(η, y) (η, y) ∈ D1

hi = hi(η, y) ,

where C1, D1 ∈ Rh × Rl are the constraint sets that allow flows and jumps for

η; S : Rh ⇉ Rh is a set-valued mapping that is outer semi-continuous, locally

bounded and for each (η, y) ∈ D1, S(η, y) is nonempty; functions O : Rn ×W →
R

n and R : C1 → R
h are continuous while Pi : R

n ×W → R
n, Q : Rn ×W → R

l

and hi : R
h × Rl → [0, 1] are locally Lipschitz.

Let

C := C1 ×W, D := D1 ×W, hi(x, w) := hi(η,Q(ξ, w)),

x :=

[
ξ

η

]
, ψi(x, w) :=

[
Pi(ξ, w)

0

]
,

F0(x, w) :=

[
O(ξ, w)

R(η,Q(ξ, w))

]
,

G(x, w) :=
[
ξ

S(η,Q(ξ, w))

]
.

In the case when feedback controllers hi are implemented by multi-rate PWM,

the closed-loop of system (4.25) becomes:
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ẋ = F(x, w, τ)

τ̇ = 1
ε

}
((x, w), τ) ∈ C × R≥0

x+ ∈ G(x, w)
τ+ = τ

}
((x, w), τ) ∈ D × R≥0 ,

(4.26)

where G : Rn × Rm ⇉ Rn is the jump mapping, C and D ⊂ Rn × Rm are given

sets that allow for flow and jump for the designed hybrid feedback controller and

F(x, w, τ) := F0(x, w) +
m∑

i=1

gi(x, w)u(hi(x, w)− pi(τ)) . (4.27)

The second term of F in (4.27) is used to model a multi-rate implementation of

a PWM hybrid controller. As pi(τ) are the only time-varying terms, the small

parameter ε > 0 in (4.26) is used to guarantee that the switching signals pi change

fast compared with state ξ and so the effect of pi can be averaged.

4.5.2 Averaging analysis

We next consider the PWM hybrid feedback control system with disturbances in

(4.26) to illustrate how our results can be applied so that the ISS properties of

the actual closed loop of system (4.26) can be studied through its time-invariant

average system.

First, we show that there exists a weak average for function F : C×R≥0 → Rn

in (4.27) on the set C and Assumption 4.3.4 holds for the PWM control system

in (4.26). Given T > max{T1, · · · , Tn}, let ki = ki(T ) ∈ Z≥0 and T̃i ∈ [0, Ti)

satisfying T = kiTi + T̃i. Note that ki(T ) → ∞ when the given T approaches

infinity. For all (x, w) ∈ C, we get

1

T

∫ τ+T

τ

{
F0(x, w) +

m∑

i=1

gi(x, w)u(hi(x, w)− pi(s))

}
ds

= F0(x, w) +
m∑

i=1

gi(x, w)
1

T

{∫ τ+kiTi

τ

u(hi(x, w)− pi(s))ds

+

∫ τ+kiTi+T̃i

τ+kiTi

u(hi(x, w)− pi(s))ds

}
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= F0(x, w) +
m∑

i=1

gi(x, w)

(
kiTi

kiTi + T̃i
hi(x, w) +

vi(x, w, T̃i)

kiTi + T̃i

)
,

where vi(x, w, T̃i) :=
∫ τ+T̃i

τ
u(hi(x, w)− pi(s))ds that satisfies |vi(x, w, T̃i)| ≤ T̃i.

Let

fwa(x, w) := F0(x, w) +

m∑

i=1

gi(x, w)hi(x, w) .

Note that for any compact set K ⊂ Rn×Rm, there exists r > 0 such that, for all

(x, w) ∈ C ∩K:

∣∣∣∣∣fwa(x, w)−
1

T

∫ τ+T

τ

{
F0(x, w) +

m∑

i=1

gi(x, w)u(hi(x, w)− pi(s))

}
ds

∣∣∣∣∣

≤ 1

T

m∑

i=1

|gi(x, w)vi(x, w, T̃i)| ≤
r

T + 1
:= σK(T ) ,

which shows that fwa agrees with Definition 4.3.2. Let G, C,D come from (4.26).

Then, the hybrid system Hwa

ẋ = fwa(x, w) (x, w) ∈ C

x+ ∈ G(x, w) (x, w) ∈ D ,
(4.28)

with same G, C,D in (4.26), is the weak average for the PWM closed-loop control

system.

Next we verify Assumption 4.3.4. Considering the definition of ηwa in (4.11),

it follows for each τ ∈ (0,mini{Ti}) and τ0 ∈ [0, τ ] that

ηwa(x, w, τ, τ0, 0)

=

∫ τ

τ0

(
F0(x, w) +

m∑

i=1

gi(x, w)ui(hi(x, w)− pi(s))− fwa(x, w)

)
ds ,

=

m∑

i=1

gi(x, w)

∫ τ

τ0

[ui(hi(x, w)− pi(s))− hi(x, w)]ds ,

=
m∑

i=1

gi(x, w)(min{(τ − τ0), hi(x, w)} − (τ − τ0)hi(x, w)) , (4.29)
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which is bounded for any (x, w) in a compact set and locally Lipschitz as functions

gi and hi are locally Lipschitz. Then, Assumption 4.3.4 holds for the function

ηwa(x, w, τ, τ0, 0).

Recall that for any function F(t, x, w) that is periodic in t, the necessary

and sufficient condition for existence of strong averages is that function F has

the following structure [110]:

F(t, x, w) = F1(t, x) + F2(x, w) .

We can get that for PWM control system (4.26) there exists a strong average if

gi(x, w) and hi(x, w) are independent of w, i.e., gi(x, w) := gi(x) and hi(x, w) :=

hi(x). In this case, following the calculations used to establish the weak average,

we get that fsa(x, w) := f0(x, w)+
∑m

i=1 gi(x)hi(x) on the set C, at least when C

has the form C = C1 ×W, and the strong average of system (4.26) is

ẋ = fsa(x, w) (x, w) ∈ C

x+ ∈ G(x, w) (x, w) ∈ D .
(4.30)

Using the definition of ηsa in (4.12), we have

ηsa(x, w, τ, τ0, 0)

=

∫ τ

τ0

(
f0(x, w) +

m∑

i=1

gi(x)ui(hi(x)− pi(s))− fsa(x, w)

)
ds ,

=
m∑

i=1

gi(x)

∫ τ

τ0

(ui(hi(x)− pi(s))− hi(x))ds .

Noting (4.29), it follows that Assumption 4.3.5 holds for the function ηsa(x, w, τ, τ0, 0).

The above analysis shows that Assumptions 4.3.4 and 4.3.5 hold with func-

tions hi and gi being locally Lipschitz. Note that only local boundedness but no

continuity condition is required for the flow mapping of the actual hybrid systems

in Assumption 4.3.1. This condition holds for PWM hybrid feedback control sys-

tems (4.26) and then we can get that the results in Section 4.4 can be applied

under some mild regular conditions. The following corollaries come directly from

Theorems 4.4.4-4.4.5. Using these corollaries we can analyze robust stability of

the time-varying PWM control system (4.26) based on its weak or strong average

system.

Corollary 4.5.3. Suppose that the set LW is equi-essentially bounded and locally
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equi-uniformly Lipschitz continuous, the PWM hybrid control system in (4.26)

satisfies Assumptions 4.3.1 and its weak average system Hwa satisfies Assumption

4.2.4 and is ISS with respect to (χ, β, γ). Then, the PWM hybrid control system

in (4.26) is SGP-DISS with respect to (χ, β, γ). �

Corollary 4.5.4. Suppose that the set LW is equi-essentially bounded, the PWM

hybrid control system in (4.26) satisfies Assumptions 4.3.1 and its strong average

system Hsa satisfies Assumption 4.2.4 and is ISS with respect to (χ, β, γ). Then,

the PWM hybrid control system in (4.26) is SGP-ISS with respect to (χ, β, γ). �

Recall that the power converter model in Example 4.5.1 is disturbances free.

We can apply the results obtained in Corollary 4.4.9 to revisit Example 4.5.1.

Example 4.5.5. Note that the single rate PWM power converter system (4.23)

in Example 4.5.1 is a special case of PWM hybrid feedback control systems in

(4.26). We can directly apply the results on strong (4.30) or weak average (4.28)

of general hybrid feedback control systems (they coincide for the zero-input case)

to get the average for the closed-loop converter system (4.23):

[
ξ̇

η̇

]
=

[
Aq2ξ +Bq1

R(η, ξ)

]
+

[
Aq1ξ − Aq2ξ

0

]
h(η, ξ) (ξ, η) ∈ C̄

[
ξ+

η+

]
∈
[
ξ

S(η, ξ)

]
(ξ, η) ∈ D̄ . (4.31)

For the PWM hybrid feedback power converter system (4.23) and its average

system (4.31), Assumptions 4.3.4 and 4.3.5 hold since the local boundedness and

Lipschitz condition are naturally satisfied for linear systems since the auxiliary

system generating hybrid feedback controllers for linear plant is usually linear.

Then, if we design hybrid feedbacks such that the closed-loop average model

(4.31) for the power converter is globally asymptotically stable, Corollary 4.4.9

shows that the actual converter system (4.23) under the same hybrid controller is

SGP-AS. �

4.6 Conclusions

We considered ISS properties for a class of time-varying hybrid dynamic systems

via the averaging method. Using the notions of strong and weak average, the time-

varying hybrid system is approximated by a time-invariant hybrid system. We
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showed that solutions of the actual time-varying hybrid system and solutions of

its weak or strong average can be made arbitrarily close on compact time domains

by reducing the parameter ε if the average system is forward pre-complete. Our

main results also showed that ISS of the strong (weak) average implies SGP-

ISS (SGP-DISS) of the actual system. A PWM hybrid feedback control power

converter example was used to illustrate our results.
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Chapter 5

Averaging in Singularly

Perturbed Hybrid Systems

5.1 Introduction

We consider a class of singularly perturbed hybrid systems in this chapter using

both the singular perturbation technique and the averaging method. Such a class

of hybrid systems can be used to model the dynamics of a hybrid feedback control

system with fast but continuous actuators. We analyze the singularly perturbed

hybrid system via a reduced-order hybrid system, which is defined by the average

vector field for the slow dynamics that is generated by solutions of continuous-

time boundary layer dynamics, the projection of the jump map in the direction

of the slow states, and flow and jump sets from the original dynamics.

Averaging method is used in [16] together with the singular perturbation

technique to consider continuous-time systems when the boundary layer system is

time-varying and possesses a time-varying integral manifold on which the deriva-

tive of slow state variables can be averaged. Such results can be applied to

adaptive control systems [130] and extremum seeking control systems [149]. The

averaging method is also helpful in considering the singular perturbation prob-

lem when the boundary layer system is not time varying. Instead of insisting

that trajectories of the boundary layer system converge to an equilibrium mani-

fold, as in the classical singular perturbation theory, a set is used to replace the

equilibrium manifold. For instance, trajectories of the boundary layer system

might be assumed to converge to a family of limit cycles parameterized by slow

state variables, which then can be used to average the derivative of slow state

variables [151].

Combining averaging and singular perturbation techniques, we first consider

93



CHAPTER 5. AVERAGING IN SINGULARLY PERTURBED HYBRID
SYSTEMS

closeness between solutions of the average system and solutions of the slow dy-

namics for the actual perturbed hybrid system on compact time domains based

on forward pre-completeness of the average system. We also consider stability

properties of the singularly perturbed hybrid system with the assumption that

its average system is asymptotically stable. We show that a compact set is semi-

globally practically asymptotically stable for the actual hybrid system if it is

globally asymptotically stable for the average system. Compared to hybrid sin-

gular perturbation results in [135], our averaging models in some cases are better

approximations for the original system and using them we can draw stronger sta-

bility conclusions for the original system. An example is used to illustrate this

claim.

The chapter is organized as follows. We provide some useful preliminary

results in Section 5.2. Section 5.3 introduces a class of singularly perturbed hy-

brid systems and the average definition, and illustrates the existence of averages

through several examples. The intuitional idea on relating the actual perturbed

system with its average system through the state augmentation and the coordi-

nate transformation is given in Section 5.4. Section 5.5 is the main results and

Section 5.6 contains the conclusions.

5.2 Preliminaries

We provide some preliminary results that consider robustness to small perturba-

tions for hybrid systems in this section. Consider a hybrid system with states

ξ ∈ R
n of the form

H
ξ′ ∈ F (ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D ,
(5.1)

and list some mild conditions in Assumption 5.2.1 that are assumed to hold for

the system H .

Assumption 5.2.1. The sets C,D ⊂ Rn are closed; F : Rn ⇉ Rn is outer semi-

continuous and locally bounded and for each ξ ∈ C, F (ξ) is nonempty and convex;

G : Rn ⇉ Rn is outer semi-continuous and locally bounded, for each ξ ∈ D, G(ξ)

is nonempty. �

We consider closeness between solutions of the reduced hybrid average system

and solutions of the slow dynamics of the original singularly perturbed hybrid
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system based on forward pre-completeness of the average system. Recall Def.

4.2.5, we have that a hybrid solution is said to be forward pre-complete if its

domain is compact or unbounded. System H is said to be forward pre-complete

from a compact set K0 ⊂ Rn if all maximal solutions ξ with ξ(0, 0) ∈ K0 are

forward pre-complete.

We need the following definition on (T, J, ρ)-closeness for hybrid signals,

which has the same implication as (T, ρ)-closeness for hybrid signals in Def. 4.2.6

but we use two positive real numbers T and J instead of only T to define the

compact time domain. This (T, J, ρ)-closeness concept is useful in proving the

main results of this chapter.

Definition 5.2.2 ((T, J, ρ)-closeness). Two hybrid signals ξ1 : dom ξ1 7→ Rn and

ξ2 : dom ξ2 7→ Rn are said to be (T, J, ρ)-close if:

1. for each (t, j) ∈ dom ξ1 with t ≤ T and j ≤ J there exists s such that

(s, j) ∈ dom ξ2, with |t− s| ≤ ρ and |ξ1(t, j)− ξ2(s, j)| ≤ ρ,

2. for each (t, j) ∈ dom ξ2 with t ≤ T and j ≤ J there exists s such that

(s, j) ∈ dom ξ1, with |t− s| ≤ ρ and |ξ2(t, j)− ξ1(s, j)| ≤ ρ.

�

We also consider the stability properties of the perturbed system under the

assumption that a compact set is globally asymptotically stable for its average

system. Let a compact set A ⊂ Rn be given. Recall the definitions on global

asymptotic stability (GAS) of the set A in Def. 4.4.7 for hybrid system H in

(5.1), and semi-global practical asymptotic stability (SGP-AS) of the set A in

Def. 4.4.8 for hybrid system Hµ in (4.6) when w ≡ 0.

Next, we present the preliminary results in Proposition 5.2.3 on properties

of system H based on its forward pre-completeness and Lemmas 5.2.4-5.2.5 on

robustness to small perturbations for system H . For this purpose, we consider a

hybrid system Hδ inflated from the system H in (5.1):

Hδ

x̄′ ∈ Fδ(x̄) x̄ ∈ Cδ

x̄+ ∈ Gδ(x̄) x̄ ∈ Dδ ,
(5.2)

where x̄ ∈ Rn, and for a parameter δ > 0, the data {Fδ, Gδ, Cδ, Dδ} are defined

as
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Fδ(x̄) := conF ((x̄+ δB) ∩ C) + δB , (5.3)

Gδ(x̄) := G((x̄+ δB) ∩D) + δB , (5.4)

Cδ := {x̄ : (x̄+ δB) ∩ C 6= ∅} ,
Dδ := {x̄ : (x̄+ δB) ∩D 6= ∅} .

Proposition 5.2.3, also see [56, Corollary 4.7], discusses the compactness of

the reachable set for the system H based on its forward pre-completeness. For a

given compact set K0 ⊂ Rn, let S(K0) denote the set of maximal solutions ξ to

system H in (5.1) with ξ(0, 0) ∈ K0. Then, we have the results precisely given

below.

Proposition 5.2.3. Suppose that system H in (5.1) satisfies Assumption 5.2.1

and it is forward pre-complete from a compact set K0 ⊂ Rn. Then, for each

T, J ≥ 0 the reachable set

R(K0, T, J) := {ξ(τ, j) : ξ ∈ S(K0), τ ≤ T, j ≤ J} (5.5)

is compact. �

The following Lemma 5.2.4, also as [56, Corollary 5.5], is about the closeness

of solutions between the system H with the system Hδ inflated from H by a small

parameter δ > 0.

Lemma 5.2.4. Suppose that the system H in (5.1) satisfies Assumption 5.2.1,

and it is forward pre-complete from a compact set K0 ⊂ Rn. Then, for each

ρ > 0 and any strictly positive real numbers T, J there exists δ∗ > 0 such that for

all δ ∈ (0, δ∗] and any solution x̄ of the inflated system Hδ formed as (5.2) with

x̄(0, 0) ∈ K0+ δB there exists a solution ξ to the system H with ξ(0, 0) ∈ K0 such

that x̄ and ξ are (T, J, ρ)-close. �

When system H is globally asymptotically stable, Lemma 5.2.5 shows that

its inflated system Hδ is SGP-AS, also see [56, Theorem 6.6].

Lemma 5.2.5. Suppose that system H in (5.1) satisfies Assumption 5.2.1, and

the compact set A is globally asymptotically stable with respect to β ∈ KL for

system H. Then, the compact set A is SGP-AS for the system Hδ. �
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5.3 Singularly perturbed hybrid systems

We present a class of singularly perturbed hybrid systems in this section, for which

the analysis is developed based two time scales, (τ, j) and (t, j) with τ = εt, with

the notations x′ = dx
dτ
, ẋ = dx

dt
. The average definition is given. Existence of

the average is discussed, for which we give some conclusion in Lemma 5.3.5 and

illustrate this through several examples.

Consider a class of singularly perturbed hybrid systems with the time vari-

ables (τ, j):

Hε

x′ = f(x, z, ε)

z′ = 1
ε
ψ(x, z, ε)

}
(x, z) ∈ C ×Ψ (5.6)

(x, z)+ ∈ G(x, z) (x, z) ∈ D ×Ψ ,

where x ∈ R
n, z ∈ R

m, C,D ⊂ R
n, Ψ ⊂ R

m, f : C × Ψ × R≥0 → R
n, ψ :

C × Ψ × R≥0 → Rm, G : Rn × Rm ⇉ Rn × Rm, and ε > 0 is a small parameter

that ensures the flow dynamics of z are much faster than x.

Let f0(x, z) := f(x, z, 0) and ψ0(x, z) := ψ(x, z, 0). We assume that system

Hε satisfies the following conditions.

Assumption 5.3.1. The sets C and D are closed and the set Ψ is compact. G is

outer semi-continuous and locally bounded, and for each (x, z) ∈ D × Ψ, G(x, z)
is nonempty. f0 : C × Ψ → Rn and ψ0 : C × Ψ → Rm are continuous, and for

each δ > 0 and compact K ⊂ Rn there exists ε∗ := ε∗(K, δ) > 0 such that

|f(x, z, ε)− f0(x, z)| ≤ δ

|ψ(x, z, ε)− ψ0(x, z)| ≤ δ

}
∀ ((x, z), ε) ∈ ((C ∩K)×Ψ)× (0, ε∗] . (5.7)

�

The set Ψ is assumed to be compact as we wish to deal with compact attractors

for the fast state z and without any assumption on the set-valued map G; if (5.6)
admits solutions with a purely discrete-time domain then a jump rule like z+ = z

will not allow z to converge to a compact set unless it is constrained to a compact

set a priori.

To facilitate the definition of the boundary layer system (see (5.9) below),

the system Hε is also expressed with the time variables (t, j) with t := τ/ε:
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Hε

ẋ = εf(x, z, ε)

ż = ψ(x, z, ε)

}
(x, z) ∈ C ×Ψ (5.8)

(x, z)+ ∈ G(x, z) (x, z) ∈ D ×Ψ .

Then, we can define the boundary layer system of the system Hε as

Hbl

ẋbl = 0

żbl = ψ0(xbl, zbl)

}
(xbl, zbl) ∈ C ×Ψ , (5.9)

which is obtained by ignoring the jump mapping and setting ε = 0 in (5.8). Note

that the continuous-time boundary layer model only includes the flow dynamics

of the original system Hε as we consider the case when the dynamics of singular

perturbations are continuous-time varying.

We next give the average definition for flow dynamics of system Hε based on

functions f0 : C ×Ψ → R
n and ψ0 : C ×Ψ → R

m that denote slow and fast flow

dynamics respectively. The average for hybrid system Hε is given after that.

Definition 5.3.2. For functions f0 : C × Ψ → Rn and ψ0 : C × Ψ → Rm, the

set-valued mapping Fav : Rn ⇉ R
n is said to be an average of f0 with respect to

ψ0 on C ×Ψ if for each compact set K ⊂ Rn there exists a class-L function σK

such that, for each L > 0, x ∈ C ∩K and each function zbl : [0, L] 7→ Ψ satisfying

żbl = ψ0(x, zbl) there exists a measurable function fzbl : [0, L] → Rn such that

fzbl(s) ∈ Fav(x) for all s ∈ [0, L] and the following holds:

∣∣∣∣
1

L

∫ L

0

[f0(x, zbl(s))− fzbl(s)]ds

∣∣∣∣ ≤ σK(L) . (5.10)

�

For the singularly perturbed system Hε modeled in (5.6) or (5.8) with a well-

defined average, we have its average system Hav := {F,G,C,D} formed as (5.1)

with

F (x) := Fav(x) ∀ x ∈ C , (5.11)

G(x) := {v1 ∈ R
n : (v1, v2) ∈ G(x, z), (z, v2) ∈ Ψ× R

m} , (5.12)
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where Fav comes from the definition of the average and G is the projection of

G(x, z) in the x direction. The flow mapping of the average system, according to

the average definition, is constructed by solutions of the boundary layer system

so that fast dynamics of the original system are averaged into slow dynamics.

As mentioned before, we consider the case when singular perturbations are con-

tinuously time-varying, and then the jump mapping of the average system is

consistent to the jump dynamics for the slow state x of the original system.

Before analyzing the singularly perturbed system Hε through its average

system Hav, we assume that a well-defined average is admitted by Hε.

Assumption 5.3.3. The function f0 : C × Ψ → R
n admits an outer semi-

continuous, locally bounded and convex set-valued average mapping Fav : R
n ⇉ Rn

with respect to ψ0 : C ×Ψ → Rm on the set C ×Ψ. �

We provide some sufficient conditions such that Assumption 5.3.3 holds in

Lemma 5.3.5. We show that the existence of the average can be guaranteed with

the conditions listed in Assumption 5.3.4 and Lemma 5.3.5. The idea of Lemma

5.3.5 is implicit in the results of [151] and the proof is provided in the Appendix

D.2.

Assumption 5.3.4. For a given compact set Ω ⊂ C × Ψ, there exist an outer

semi-continuous, locally bounded and convex set-valued mapping Fav : Rn ⇉ Rn

and a class-L function σΩ such that, for each L > 0, (x, zbl(0)) ∈ Ω and function

zbl : [0, L] 7→ Ψ satisfying żbl = ψ0(x, zbl) there exists a measurable function

fzbl : [0, L] → Rn such that fzbl(s) ∈ Fav(x) for all s ∈ [0, L] and the following

holds:

∣∣∣∣
1

L

∫ L

0

[f0(x, zbl(s))− fzbl(s)]ds

∣∣∣∣ ≤ σΩ(L) .

�

Lemma 5.3.5. Suppose that the singularly perturbed system Hε in (5.6) satisfies

Assumptions 5.3.1. Assumption 5.3.3 holds if for each compact set K ⊂ Rn there

exists a compact set Ω ⊂ (C ∩ K) × Ψ such that Assumption 5.3.4 holds and

Ω is globally asymptotically stable for the boundary layer system in (5.9) with C

replaced with C ∩K. �

We next present a few examples to show some situations when Assumption

5.3.3 holds. For instance, it holds in the case when the boundary layer system

Hbl has a globally asymptotically stable quasi-steady state equilibrium manifold
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h : C → Ψ, which is an essential assumption for classical singular perturbation

theory. The existence of the average Fav : C ⇉ Rn of the f0 : C ×Ψ → Rn with

respect to ψ0 : C × Ψ → Rm for the perturbed system Hε in (5.8) is considered

as an example.

Example 5.3.6. To show the existence of the average of f0 with respect to ψ0

when the boundary layer system globally asymptotically converges to an equilib-

rium manifold, we assume that the following conditions hold. The functions f0

and ψ0 are assumed to be continuous. Moreover, there exists a continuous func-

tion h : C → Ψ such that, for each compact set K ⊂ Rn and x ∈ C ∩ K, the

compact set Ω := {(x, zbl) : x ∈ C ∩K, zbl = h(x)} is globally asymptotically sta-

ble for the boundary layer system Hbl formed in (5.9) with C replaced by C ∩K.

Then, we show that the function x 7→ f0(x, h(x)) is the average of f0 with respect

to ψ0.

Based on Lemma 5.3.5, we just need to show that Assumption 5.3.4 holds.

From global asymptotic stability of Ω, in particular, its forward invariance, we

have that if (x, zbl(0)) ∈ Ω then zbl(s) = h(x) for all s ≥ 0. It is then immediate

that Assumption 5.3.4 holds for fav(x) = f0(x, h(x)) using σΩ(L) ≡ 0.

The following example shows existence of the average of f0 with respect to ψ0

if the dynamics of the boundary layer system follow an oscillator that converges to

a stable limit cycle. Moreover, we revisit this example in Section 5.5 to illustrate

that we can get stronger results than [135] by using averaging in the context of

singularly perturbed hybrid systems.

Example 5.3.7. Consider a singularly perturbed system with x ∈ R and z ∈ R2:

ẋ = εf0(x, z)

ż = ψ0(z) + εψ1(x, z)

}
(x, z) ∈ C ×Ψ , (5.13)

where C := {x : x ≥ 0}, Ψ is a compact set satisfying S1 ⊂ Ψ ⊂ R2 \ {0} with S1

being the unit circle, ψ1 : C ×Ψ → Ψ is locally bounded, and

f0(x, z) := −(0.5x+ xz1) ,

ψ0(z) :=

[
z1 − z2 − z1

√
z21 + z22

z1 + z2 − z2
√
z21 + z22

]
. (5.14)

It is convenient to consider the dynamics ż = ψ0(z) in polar coordinates with
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z1 = ρ sin θ and z2 = ρ cos θ: ρ̇ = ρ(1 − ρ) and θ̇ = 1, which shows that the

solution of ż = ψ0(z) is an oscillator that asymptotically converges to a limit

cycle on the unit circle S1 ⊂ Ψ.

For each compact K ⊂ R, let Ω := (C ∩K) × S1. Noting that Ω is globally

asymptotically stable for the boundary layer system Hbl of (5.13) with C replaced

by (C ∩ K), the solution z1 of system Hbl with (x, z(0)) ∈ Ω satisfies z1(t) =

sin(t + φ), where the parameter φ is determined by the initial condition of z.

Then, for each M > 0, L > 0, x ∈ [−M,M ] and solution z1 : [0, L] 7→ Ψ of

system Hbl satisfying (x, z(0)) ∈ Ω, it follows that,

∣∣∣∣
1

L

∫ L

0

[−(0.5x+ xz1(s)) + 0.5x]ds

∣∣∣∣ ≤ |x|
L

∣∣∣∣
∫ L

0

sin(s+ φ)ds

∣∣∣∣

≤ 2M

L
:= σΩ(L) ,

where the last inequality holds since the integration of a sinusoid function over

the time less than one period is less than 2. From Lemma 5.3.5 and the fact that

σΩ is of class-L, we have that Fav(x) := −0.5x is the average of f0 with respect

to ψ0 in (5.13) on C ×Ψ. �

Note that global asymptotic stability of the boundary layer system in Exam-

ple 5.3.6 or the condition that the boundary layer system converges to a stable

limit cycle in Example 5.3.7 is not necessary for the existence of an average. To

illustrate this, we revisit Example 5.3.7 and redefine ψ0 : Ψ → Ψ such that the

boundary layer system contains equilibria that are neither stable nor attractive

but the average is equal to what would be obtained by restricting the initial con-

ditions of the boundary layer system to these equilibria. Note that the average

Fav agrees with continuous functions in the above two examples. On the other

hand, it is a set-valued mapping in the following example.

Example 5.3.8. Consider the singularly perturbed system (5.13) with replacing

ψ0 in (5.14) as

ψ0(z) :=




−z1
(√

z2
1
+z2

2
−1

)3

√
z2
1
+z2

2

+ z2(z1 + z2 − 1)2 + z2

(
1−

√
z21 + z22

)2

−z2
(√

z2
1
+z2

2
−1

)3

√
z2
1
+z2

2

− z1(z1 + z2 − 1)2 − z1

(
1−

√
z21 + z22

)2


 . (5.15)

Like in Example 5.3.7, the set Ψ is a compact set satisfying S1 ⊂ Ψ ⊂ R2 \ {0}.
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Noting the dynamics ż = ψ0(z) in polar coordinates:

ρ̇ = −(ρ− 1)3 ,

θ̇ = (ρ sin(θ) + ρ cos(θ)− 1)2 + (1− ρ)2 ,
(5.16)

we know that θ is unbounded when the solution of ż = ψ0(z) starts off the unit

circle S1, since the first term of righthand of dynamics of θ is positive and second

term is not integrable. Noting that θ̇ > 0 and θ(t) is unbounded when t grows,

we know that the equilibria (0, 1) and (1, 0) of the boundary layer system Hbl are

neither stable nor attractive for any solution of system Hbl that starts in Ψ \ S1.
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Figure 5.1: Trajectories of the solution z of ż = ψ0(z).

From Fig. 5.1, we can see that solutions of ż = ψ0(z) that start off the

unit circle S1, tend toward S1 while rotating in the counterclockwise direction

with motion that becomes arbitrarily slow at points arbitrarily close to equilibria

(0, 1) or (1, 0). For each M > 0, let K := [−M,M ] and Ω := (C ∩ K) × S1.

It is clear that Ω is globally asymptotically stable for the boundary layer system

with C replaced by C ∩K. We next consider if there exists a σΩ ∈ L such that

Assumption 5.3.4 holds to invoke Lemma 5.3.5.

Note that the boundary layer system (5.16) degenerates into θ̇ = φ(θ) when

z(0) ∈ S1 with φ(θ) := (sin(θ)+cos(θ)−1)2. Moreover, each solution z1 of system

Hbl with (x, z(0)) ∈ Ω has the form of

z1(t) = sin(θ(t, θ(0))) (5.17)
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where θ(0) is determined by the initial condition z(0). As the function φ(θ) is

periodic in θ with the period 2π, we consider the solution z1 for θ(0) ∈ [0, 2π].

Let Θ := [0, π/2] and Ω1 := [−M,M ] × {ρ = 1, θ ∈ Θ}. We first check if

Assumption 5.3.4 holds for all (x, z(0)) ∈ Ω1 ⊂ Ω. Note that θ = 0 and θ = π/2

are the equilibria of θ̇ = φ(θ), for which the solution θ(t, θ(0)) is forward invariant

in the set Θ. Then, the solution z1 in (5.17) picks value in [0, 1] and the function

f0(x, z) in (5.13) satisfies f0(x, z(s)) ∈ [−0.5x,−1.5x] for all solutions (x, z) of

system Hbl with (x, z(0)) ∈ Ω1. Let Fav(x) := [−0.5,−1.5]x. Then, for each

solution z of system Hbl of (5.13) starting on the set Ω1, we can always find

fzbl(s) ∈ Fav(x) such that Assumption 5.3.4 holds for arbitrary class-L function

σΩ.

We next consider Assumption 5.3.4 when (x, z(0)) ∈ Ω \ Ω1. Note that

Ω \Ω1 = [−M,M ]×{ρ = 1, θ ∈ (π/2, 2π)}. For arbitrarily small δ ∈ (0, 0.5] and

θ(t, θ(0)) satisfies θ̇ = φ(θ), let

ϑ := arcsin(δ) ∈ [0, π/6]

T (δ) := {t : θ(t, ϑ+ π/2) = 2π − ϑ} , (5.18)

where T (δ) is the time for function θ(t, θ(0)) going through that starts from θ(0) >

π/2 in the neighborhood of π/2 and reach some point that is less than but quite

close to 2π.
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Figure 5.2: Functions φ(θ) and T̃ (δ).

Noting φ : (π/2, 2π) → [0, (
√
2 + 1)2] is symmetric about θ = 5π/4 and is
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strictly increasing on [π/2 + ϑ, 5π/4], see Fig. 5.2, we can get that θ̇ ≥ φ(ϑ)

for θ ∈ [π/2 + ϑ, 5π/4]. Since φ(ϑ) = 2(1 − δ)(1 −
√
1− δ2), we have T (δ) ≤

3π/4−arcsin(δ)

(1−δ)(1−
√
1−δ2)

:= T̃ (δ). Noting that T̃ : (0, 0.5] → R>0 is continuous, strictly

decreasing, bounded away from zero and limδ→0 T̃ (δ) = ∞, there exists a α ∈ K∞

such that α(1/δ) = T̃ (δ) for δ ∈ (0, 0.5].

For each solution of θ̇ = φ(θ) with θ(0) ∈ (π/2, 2π), let T1 := {t ≥ 0 : θ(t) =

π/2+ϑ} and T1 := 0 if θ(t) ≥ π/2+ϑ for all t ≥ 0, let T2 ≥ T1 := {t ≥ 0 : θ(t) =

2π − ϑ} and T2 := T1 if θ(t) ≥ 2π − ϑ for all t ≥ 0. Noting that T2 − T1 ≤ Tδ in

(5.18), we have for each L > 0:

1

L

∫ L

0

| sin(θ(s))|ds ≤ 1

L

∫ T1

0

1ds+

∫ T2

T1

1ds+

∫ L

T2

δds

≤ T1
L

+
T̃ (δ)

L
+ δ =

T1
L

+
α(1/δ)

L
+ δ . (5.19)

Noting that (5.19) holds for arbitrary δ ∈ (0, 1/2], it holds for

δ = min



0.5,

1

α−1
(√

L
)



 . (5.20)

Let c := T1

L
and note that c ∈ [0, 1] from the definition of L and T1 in (5.19).

Then, we have for each M > 0, L > 0, x ∈ [−M,M ] and solution z1 : [0, L] 7→ Ψ

of system Hbl satisfying (x, z(0)) ∈ (Ω \Ω1), the function fzbl(s) = −(0.5 + c)x ∈
Fav(x) satisfies:

∣∣∣∣
1

L

∫ L

0

[−(0.5x+ xz1(s))− fzbl(s)]ds

∣∣∣∣

=

∣∣∣∣
1

L

∫ L

0

[−(0.5x+ xz1(s)) + (0.5− c)x]ds

∣∣∣∣

≤ |x|
(
1

L

∫ L

0

| sin(θ(s))|ds− c

)

≤M



max

{
α(2),

√
L
}

L
+min


0.5,

1

α−1
(√

L
)






:= σΩ(L) .

The function σΩ defined by the inequalities above is of class-L, which together
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with Lemma 5.3.5 shows that the set-valued mapping Fav(x) := [−1.5,−0.5]x is

average of system (5.13) when ψ0 in (5.14) is replaced with (5.15). �

To illustrate how to get the jump mapping G of the averaged system from G
of the actual hybrid system, a simple example is given.

Example 5.3.9. Consider the hybrid system Hε with the data (f0, ψ0,G, C,D,Ψ)

formed as (5.8) with C,Ψ, f0 given in (5.13), and for some γ > 0 with G, D being

defined as

G(x, z) :=
[

−γx+ z21

g(x, z)

]
D := {x : x ≤ 0} (5.21)

where g(x, z) is an arbitrary function. Noting the definition of G in (5.12) and

the average of f0 with respect to ψ0 on C ×Ψ from Examples 5.3.7 and 5.3.8, we

get the average of the hybrid system Hε with ψ0 in (5.14) is

ξ′ = −0.5ξ ξ ∈ C

ξ+ ∈ −γξ + [c3, c4] ξ ∈ D , (5.22)

and for ψ0 in (5.15) is

ξ′ ∈ [−1.5,−0.5]ξ ξ ∈ C

ξ+ ∈ −γξ + [c3, c4] ξ ∈ D , (5.23)

where the positive real numbers c3 := minz∈Ψ{z21} and c4 := maxz∈Ψ{z21}. �

5.4 Coordinate transformation

To employ a coordinate transformation, a continuous function that reflects accu-

mulating errors between the actual system and its average is usually constructed

to facilitate averaging techniques, see early works in [22] for adaptive control sys-

tems, general averaging theory for continuous-time systems [74] and for hybrid

dynamical systems [154]. In the present section, we provide some intuition on

how to construct a function η that facilitates the averaging method and use coor-

dinate transformations to relate the perturbed hybrid system Hε with its average
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system Hav. The property of η is given in Lemma 5.4.1 that is essential to prove

the main results presented in Section 5.5.

The function η used in the coordinate transformation is constructed by aug-

menting the actual time-varying hybrid system Hε. Let the set valued mapping

Fav come from Definition 5.3.2. For a µ ≥ 0, let

F µ
av(x) := conFav((x+ µB) ∩ C) + µB .

We intersect the sets C,D with K and augment the perturbed system Hε in (5.8)

with µ ≥ 0 and the state η ∈ Rn to obtain the following system:

HK

x′ = f(x, z, ε)

z′ = 1
ε
ψ(x, z, ε)

η′ ∈ 1
ε
[f(x, z, ε)− F µ

av(x)− µη]





∀ (x, z, η) ∈ (C ∩K)×Ψ× Rn

(x, z)+ ∈ G(x, z)
η+ = 0

}
∀ (x, z, η) ∈ (D ∩K)×Ψ× Rn .

(5.24)

For each solution (x, z, η) of HK , letting x = x̄ + εη and noting η+ = 0, it

follows that

x̄′ ∈ F µ
av(x) + µη ,

x̄+ = x+ .

Considering the definition of G in (5.12), we have

x̄′ ∈ F µ
av(x̄+ εη) + µη (x̄+ µη) ∈ C

x̄+ ∈ G(x̄+ εη) (x̄+ µη) ∈ D .
(5.25)

Note that all solutions x of the system HK are constrained to the compact

set K ∪G(K ∩D), with the compactness coming from the semi-continuity of the

jump mapping G. From (5.25), we know that if µ, ε can be chosen sufficiently

small so that there exists a solution η of HK such that µ, µ|η(t, j)| and ε|η(t, j)|
are bounded by any given δ/2 > 0, noting that F

δ/2
av (x + δ/2) ∈ F δ

av(x) from

(5.3) and definition of Gδ in (5.4), then we get a system that is inflated from the

average system of HK by δ:
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x̄′ ∈ F δ
av(x̄) x̄ ∈ Cδ

x̄+ ∈ G(x̄+ δB) ⊂ Gδ(x̄) x̄ ∈ Dδ .
(5.26)

The requirements on µ|η| and ε|η| are established in the following results. The

proof of Lemma 5.4.1 is given in the Appendix D.1 while Corollary 5.4.2 follows

from Lemma 5.4.1 and the discussion above.

Lemma 5.4.1. Suppose that Assumption 5.3.1 holds for the singularly perturbed

system Hε in (5.8). Then, for any ν > 0 and compact set K ⊂ R
n there exists

(µ, ε∗) > 0 such that, for all ε ∈ (0, ε∗], each solution (x, z) of the system HK in

(5.24) there exists a solution η of HK with η (0, 0) = 0 that satisfies

µ|η(t, j)| ≤ ν, ∀ (t, j) ∈ dom (x, z). (5.27)

�

Corollary 5.4.2. Suppose that Assumption 5.3.1 holds for the singularly per-

turbed system Hε in (5.8). Then, for any δ > 0 and any compact set K ⊂ R
n

there exists ε∗ > 0 such that, for all ε ∈ (0, ε∗] and each solution (x, z) of the

system HK in (5.24) there exists a solution η of HK with η (0, 0) = 0 such that

ε|η(t, j)| ≤ δ/2 for all (t, j) ∈ dom (x, z) and x̄ := x − εη is the solution of the

system Hδ in (5.2) inflated from the average system Hav of Hε. �

Using Lemma 5.2.4 and forward pre-completeness of the average system Hav

of the perturbed system Hε, we can consider closeness between solutions of Hε

and solutions of system Hav. Similarly, with Lemma 5.2.5, we can consider the

stability properties of Hε assuming global asymptotic stability of its average sys-

tem Hav. Note that the compact set K that is used to define the augmented

system HK can be constructed using the forward pre-completeness and global

asymptotic stability of Hav respectively.

5.5 Main results

We first present results on closeness of the slow solutions x of the singularly per-

turbed system Hε to the solutions of its average system Hav on compact time

domains in Theorem 5.5.1, under the assumption that the system Hav is forward

pre-complete from a given compact set. We also consider stability properties of

the actual hybrid system Hε based on global asymptotic stability of its average
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system Hav. After that, we consider a continuous-time plant with a hybrid con-

troller implemented through a fast actuator as an example to illustrate the main

results of the present chapter.

Theorem 5.5.1. Suppose that the singularly perturbed system Hε in (5.6) satis-

fies Assumptions 5.3.1 and 5.3.3 and that its average system Hav defined in (5.1),

(5.11) and (5.12) is forward pre-complete from a compact set K0 ⊂ Rn. Then,

for each ρ > 0 and any strictly positive real numbers T, J , there exists ε∗ > 0

such that, for each ε ∈ (0, ε∗] and each solution x to system Hε with x(0, 0) ∈ K0,

there exists some solution ξ to system Hav with ξ(0, 0) ∈ K0 such that x and ξ

are (T, J, ρ)-close. �

Proof. Let the compact set K0 ⊂ Rn, T, J > 0 and ρ ∈ (0, 1) be given. From

Lemma 5.2.4, the set K0 with T , J and ρ
2
generate a δ∗ ∈ (0, ρ/2) such that,

for all δ ∈ (0, δ∗] and for any solution x̄ with x̄(0, 0) ∈ K0 + δB of system Hδ

in (5.2) inflated from the average system Hav defined in (5.1), (5.11) and (5.12),

there exists a solution ξ with ξ(0, 0) ∈ K0 of system Hav such that ξ and x̄ are(
T, J, ρ

2

)
-close. Consider a δ ∈ (0, δ∗].

Let Sav(K0) denote the set of maximal solutions to the average system Hav

in (5.1), (5.11) and (5.12) with ξ(0, 0) ∈ K0. Define

Rav (K0, T, J) := {ξ(τ, j) : ξ ∈ Sav(K0), τ ≤ T, j ≤ J}
K := (Rav(K0, T, J) + B) ∪G((Rav(K0, T, J) + B) ∩D) , (5.28)

where K is compact from Proposition 5.2.3 and the outer semi-continuity and

local boundedness of the jump map G.

Let ε∗1 > 0 and µ > 0 be generated by Lemma 5.4.1 with the compact set K

and δ. Let ε∗ := min{ε∗1, µ} and consider an ε ∈ (0, ε∗]. Then, Corollary 5.4.2

shows that, for each solution (x, z, η) of system HK with (x(0, 0), z(0, 0)) ∈ K0×Ψ

and η(0, 0) = 0, x̄(τ, j) = x(τ, j)−εη(τ, j) is a solution of the system Hδ in (5.26)

inflated from Hav. From the fact that δ < ρ/2, x is ρ
2
close to x̄ and then it is

(T, J, ρ)-close to ξ, the latter being a solution of the average system starting in

K0.

Now, consider a solution x̃ of the system Hε in (5.6) with (x̃(0, 0), z̃(0, 0))∈
K0×Ψ. According to the discussion above, if x̃(τ, j) ∈ K for all (τ, j) ∈ dom (x̃, z̃)

with τ ≤ T and j ≤ J , then there exists a solution ξ of the average system Hav

such that x̃ is also (T, J, ρ)-close to ξ. Otherwise, suppose that there exists
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(τ, j) ∈ dom (x̃, z̃) such that x̃(s, i) ∈ K for all (s, i) ∈ dom (x̃, z̃) satisfying

s ≤ τ , i ≤ j and either

Case 1 (τ, j + 1) ∈ dom (x̃, z̃) and x̃(τ, j + 1) 6∈ K or else,

Case 2 there exist a monotonically decreasing sequence ri > 0 satisfying limi→∞ ri =

τ , (ri, j) ∈ dom (x̃, z̃) and x̃(ri, j) 6∈ K for each i.

Note that the solution x̃(s, i) must agree with a solution of system HK up to time

(τ, j). Because of the relationship stated in Corollary 5.4.2, between HK and the

average system, x̃ must satisfy x̃(τ, j) ∈ Rav(K0, T, J) + ρB. Then, for Case 1,

using the definition of K above, x̃(τ, j + 1) ∈ G((Rav(K0, T, J) + ρB) ∩D) ⊂ K,

which is a contradiction since ρ < 1, while, for Case 2, there exists ρ̃ ∈ (ρ, 1)

such that, for large i, x̃(ri, j) ∈ Rav(K0, T, J)+ ρ̃B ⊂ K, which is a contradiction.

This establishes the result.

Next, in Theorem 5.5.2, the stability properties of system Hε are considered

under a global asymptotic stability assumption on the average system Hav.

Theorem 5.5.2. Suppose that the singularly perturbed system Hε in (5.6) satis-

fies Assumptions 5.3.1 and 5.3.3 and the compact set A is globally asymptotically

stable for its average system Hav defined in (5.1), (5.11) and (5.12) with respect

to β ∈ KL. Then, the compact set A×Ψ is SGP-AS for system Hε with respect

to β. �

Proof. Let ν ∈ (0, 1) and the compact set K0 ⊂ Rn be given. Let β ∈ KL, the
compact set A ⊂ Rn and the proper indicator function χ : Rn → R≥0 for the set

A come from the definition of global asymptotic stability for the average system

Hav. Using Lemma 5.2.5, let ν
3
and the compact set K0 generate a δ > 0 such that

each solution x̄ of system Hδ inflated from Hav with x̄(0, 0) ∈ K0 + δB satisfies

χ(x̄(τ, j)) ≤ β(χ(x̄(0, 0)), τ + j) +
ν

3
∀ (τ, j) ∈ dom x̄ . (5.29)

Define

K1 :=

{
x ∈ R

n : χ(x) ≤ β

(
max
x̄∈K0

χ(x̄), 0

)
+ 1

}

K := K1 ∪G(K1 ∩D) . (5.30)

The set K is compact because of continuity of the β, compactness of the set A
and outer semi-continuity of the set mapping G : Rn ⇉ Rn.
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With the fact that for all m ≥ 0, β(m, s) converges to zero as s ≥ 0 ap-

proaches infinity, let ε∗1 > 0 be such that, for all x ∈ K and x̄ ∈ K + ε∗1B

satisfying |x− x̄| ≤ ε∗1, the following holds:

χ(x) ≤ χ(x̄) +
ν

3

β(χ(x̄), s) ≤ β(χ(x), s) +
ν

3
, ∀ s ∈ R≥0 . (5.31)

System HK defined in (5.24) is introduced. For each solution (x, z) of the system

HL, let Lemma 5.4.1 with the δ and the set K generate ε∗2 > 0, µ > 0 and the

solution η of system HK . Let ε∗ := min{ε∗1, ε∗2, µ} and consider a ε ∈ (0, ε∗].

Then, Corollary 5.4.2 shows that for each ε ∈ (0, ε∗2] and solution (x, z, η) of

system HK with (x(0, 0), z(0, 0)) ∈ K0 × Ψ and η(0, 0) = 0, x̄ := x − εη is the

solution to the inflated system Hδ, and then (5.29) holds.

Using (5.31), for all solutions (x, z) to system HK with (x(0, 0), z(0, 0)) ∈
K0 ×Ψ and (τ, j) ∈ dom (x, z), we have

χ(x(τ, j)) ≤ χ(x̄(τ, j)) +
ν

3

≤ β(χ(x̄(0, 0)), τ + j) +
2ν

3
≤ β(χ(x(0, 0)), τ + j) + ν . (5.32)

In particular, since ν < 1, each solution to system HK starting in K0 remains in

the compact set

Kν :=

{
x ∈ R

n : χ(x) ≤ β

(
max
x̄∈K0

χ(x̄), 0

)
+ ν

}
.

With ν < 1, Kν is contained in K defined in (5.30). Considering the solutions

(x̃, z̃) of the perturbed system Hε in (5.6) with (x̃(0, 0), z̃(0, 0)) ∈ (C∩K)×Ψ, we

show that for the solution x̃ such that x̃(s, i) ∈ K up to s ≤ τ , i ≤ j and Cases

1-2 in the proof of Theorem 5.5.1 are assumed to occur. As x̃ must agree with a

solution of HK up to time (τ, j). It then satisfies (5.32). Noting the definition of

K in (5.30), neither of Cases 1-2 can occur, which proves the result.

In the following example, we consider a continuous-time plant with a hybrid

controller implemented through a fast actuator and with additive disturbances
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that are fast but have zero average. In this case, the averaging approach to

singular perturbations, as studied in the current chapter, allows treating both

disturbances within one framework to assess stability properties of the closed-

loop system.

Example 5.5.3. Consider a continuous-time system with states ξ ∈ Rn, distur-

bances w ∈ R
m and parameter ε > 0:

ξ̇ = f(ξ) + g(ξ)u+ ℓ(ξ)Qw (5.33)

εẇ = Sw ,

where functions f : Rn → Rn, g : Rn → Rn×l and ℓ : Rn → Rn×m are continuous;

u ∈ Rl is the control vector, Q is a constant matrix, the matrix S is stable such

that ẇ = Sw generates sinusoids or exponentially decaying sinusoids.

Let Z1 be a finite subset of the integers and κ : Rn ×Z1 → Rl be continuous.

We consider the case that the control signals u are generated by fast actuators

through ǫζ̇ = Aζ + Bκ(ξ, q) and u = Cζ with a Hurwitz matrix A and matrices

C and B of appropriate dimensions satisfying −CA−1B = 1. Then, the overall

dynamical system is

ξ̇ = f(ξ) + g(ξ)Cζ + ℓ(ξ)Qw

q̇ = 0

ǫẇ = Sw

ǫζ̇ = Aζ +Bκ(ξ, q)





((ξ, q), (w, ζ)) ∈ C̄ ×Ψ

ξ+ = ξ

q+ ∈ G(ξ, q)

w+ = w

ζ+ = ζ





((ξ, q), (w, ζ)) ∈ D̄ ×Ψ , (5.34)

where ζ ∈ R
l, C̄, D̄ are closed subsets of Rn × Z1, Ψ is compact, G is outer

semicontinuous, locally bounded and non-empty on D̄.

Considering the results of Examples 5.3.6 and 5.3.8 and the fact that the sum

of sinusoids has zero mean [74, Execise 10.12], we get that the average of system

(5.34) is:
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ξ̇ = f(ξ) + g(ξ)κ(ξ, q)

q̇ = 0

}
(ξ, q) ∈ C̄

ξ+ = ξ

q+ ∈ G(ξ, q)

}
(ξ, q) ∈ D̄ . (5.35)

Note that for the closed-loop original system (5.34), regularity conditions for

(G, C̄, D̄) and continuity of the flow mapping required in Assumption 5.3.1 are

satisfied. Then, we can directly apply Theorem 5.5.2 to conclude that if there

exists a compact set A1 ⊂ Rn such that A := A1 × Z1 is globally asymptoti-

cally stable for the average system (5.35), then set A is semi-globally practically

asymptotically stable the original system (5.34). �

In classical singular perturbation theory, say [16,74,158], the boundary layer

system Hbl is assumed to have a globally asymptotically stable equilibrium man-

ifold. Such an assumption is formulated as follows.

Assumption 5.5.4. For the boundary layer system Hbl in (5.9), the function

h : C → Ψ is continuous and for each compact set K ⊂ R
n, the compact set

MK := {(x, zbl) : x ∈ C ∩K, zbl = h(x)}

is globally asymptotically stable with respect to β ∈ KL.

As shown in Example 5.3.6, Assumption 5.5.4 is sufficient to guarantee As-

sumption 5.3.3. On the other hand, as shown in Example 5.3.8, Assumption 5.5.4

is not necessary to guarantee Assumption 5.3.3. From Example 5.3.6, we know

that the function x 7→ fav(x) := f0(x, h(x)) is the average of f0 with respect

to ψ0 for the system Hε based on Assumption 5.5.4. Then, the average system

Hav := {F,G,C,D} of the perturbed system Hε is formed as (5.1) with same G

in (5.12) and

F (x) := f0(x, h(x)), ∀ x ∈ C . (5.36)

The following two corollaries follow directly from our main results. Note

that these results are more general than [16,74,151,158] since the assumption of

Lipschitz continuity for the functions f0 and ψ0 in [16,74,151,158] are not needed

in the current chapter.
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Corollary 5.5.5. Suppose that the singularly perturbed system Hε in (5.6) sat-

isfies Assumptions 5.3.1 and 5.5.4 and its average system Hav defined in (5.1),

(5.36) and (5.12) is forward pre-complete from a compact set K0 ⊂ Rn. Then,

for each ρ > 0 and any strictly positive real numbers T, J there exists ε∗ > 0

such that, for each ε ∈ (0, ε∗] and each solution x to system Hε with x(0, 0) ∈ K0

there exists some solution ξ to system Hav with ξ(0, 0) ∈ K0 such that x and ξ

are (T, J, ρ)-close. �

Corollary 5.5.6. Suppose that the singularly perturbed system Hε in (5.6) satis-

fies Assumption 5.3.1 and 5.5.4 and the compact set A is globally asymptotically

stable for its average system Hav defined in (5.1), (5.36) and (5.12) with respect

to β ∈ KL. Then, the compact set A×Ψ is SGP-AS for system Hε with respect

to β. �

We next compare our results with [135], which considers a class of hybrid

control systems singularly perturbed by fast but continuous actuators, where a

reduced system that omits the actuator dynamics is used in analysis of stability

properties of the actual system. To extend the classical singular perturbation

theory to the hybrid setting, the equilibrium manifold in Assumption 5.5.4 is

replaced by a set-valued mapping H : Rn ⇉ R
m in [135]. The closed-loop of the

hybrid control system considered in [135] is formed as

diag (In, εIm) y
′ ∈ F1(y) y ∈ C ×Ψ

y+ ∈ G(y) y ∈ D ×Ψ , (5.37)

where y := (x, z) ∈ Rn×Rm, In and Im respectively denote the n×n and m×m

identity matrices, F1 : Rn × R
m ⇉ R

n × R
m and G : Rn × R

m ⇉ R
n × R

m.

In [135], the reduced system Hr := {F,G,C,D} of the perturbed system (5.37)

is defined as (5.1) with the set-valued mapping H and

F (x) := con{v1 ∈ R
n : (v1, v2) ∈ F1(x, z), z ∈ H(x), v2 ∈ R

m} ,
G(x) := {v1 ∈ R

n : (v1, v2) ∈ G(x, z), (z, v2) ∈ Ψ×Ψ} . (5.38)

Note that G defined in (5.38) is a projection of G to the subspace of the slow

state x, which is same as the definition of (5.12) for the average system, except

that the image v2 of jump mapping for fast states z is constrained to the compact
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set Ψ in (5.38) and v2 is allowed to pick values in Rm for our results. Comparing

with [135], the results of this chapter give sharper results in some cases and we

revisit Examples 5.3.7 and 5.3.8 with the result of Example 5.3.9 to illustrate

this.

Example 5.5.7. Consider the hybrid system Hε := (f, ψ,G, C,D,Ψ) formed as

(5.8) with with f, C,Ψ given in (5.13), ψ in (5.14) or (5.15), and G, D defined in

(5.21). From the definition of the reduced system in (5.38) given in [135], noting

the fact that the boundary layer system of system (5.13) converges to a stable limit

cycle on S1 and letting c3 and c4 come from Example 5.3.9, the reduced system

of [135] is

ξ′ ∈ −0.5ξ + |ξ|B ξ ∈ C

ξ+ ∈ −γξ + [c3, c4] ξ ∈ D . (5.39)

Note that there are solutions for the reduced system (5.39) that exponentially grow

unbounded.

From the average definition, we get that the average system of system Hε is

formed as (5.22) or (5.23) in Example 5.3.9. Recalling that C := {ξ : ξ ≥ 0} in

(5.13), the jump mapping makes all solutions starting from the set D go back to

the flow set C and we know that the flow dynamics globally exponentially converge

to the origin from (5.22). Then, we can conclude stability of system Hε via

stability of its average system (5.22) using Theorem 5.5.2, but we cannot draw

this stability conclusion from the reduced system (5.39). �

5.6 Conclusions

We analyzed the properties of a class of hybrid dynamical systems using singu-

lar perturbations theory and the averaging method. We showed that if there

exists a well defined average for the actual perturbed hybrid system, the slow

solutions of the actual system are arbitrarily close to the solution of the average

system that approximates the slow dynamics of the actual system on compact

time domains for arbitrarily small values of the singular perturbation parameter.

We also showed that global asymptotic stability of a compact set for the aver-

age system implies that the set is semi-globally practically asymptotically stable

for the actual perturbed system. Through several examples, we showed that the
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condition to guarantee the existence of the average is not stringent and our re-

sults are more general than the classical singular perturbation theory, where the

asymptotic stability of the boundary layer system or local Lipschitz continuity of

the vector fields are assumed.
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Chapter 6

Summary and future work

We first summarize main results of this dissertation and emphasize their contri-

butions. In the second section, we propose some topics for further research.

6.1 Summary of the thesis

Averaging and singular perturbation techniques were utilized to consider sev-

eral classes of dynamical systems in this thesis. We extended the classical av-

eraging theory to consider new addressed classes of systems: the parameterized

discrete-time systems, switched systems and hybrid systems. For input signals

with different properties, we studied the trajectories and analyzed the robust-

ness to disturbances of these classes of dynamical systems using the concepts

of strong and weak averages. We also combined the averaging method and the

singular perturbation technique for analysis of asymptotic stability for a class

of hybrid dynamical systems. Our contributions in Chapters 2-5 are discussed

below in more detail.

In Chapter 2, for the family of parameterized discrete-time systems with

bounded disturbances, we showed that if the strong average system is forward

complete, its solutions can be made arbitrarily close to solutions of the actual

system on compact time intervals. The same conclusion holds if the weak av-

erage system is forward complete and the actual system is affected by bounded

disturbances that also have bounded derivatives. We also showed that ISS of the

strong averages implies semi-global practical ISS (SGP-ISS) of the actual fam-

ily of parameterized discrete-time systems, and ISS of the weak averages implies

semi-global practical derivative ISS (SGP-DISS) of the actual systems instead.

For the case of no disturbance, our results show that strong and weak averages

coincide and if such a average system is globally asymptotically stable then the
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actual system is semi-globally practically asymptotically stable. In other words,

the bounds of the solutions of the actual system, have an additive offset that

becomes arbitrarily small and the estimate of the domain of attraction can be

arbitrarily enlarged by tuning certain parameter of the actual system. To the

best of our knowledge, this result is weaker than the prior results on averaging of

discrete-time systems where exponential stability is typically assumed.

Together with the results in [109], the averaging results for families of param-

eterized discrete-time systems given in Chapter 2 can be used to design controllers

achieving ISS for nonlinear sampled-data systems, for which the exact discrete-

time model can not be analytically computed and we have to use an approximate

discrete-time model for controller design and stability analysis. For approximate

discrete-time models that are time-varying, it is still challenging to design a con-

troller based on this model. Through an example of a Duffing oscillator, we

showed that one can design a controller based on its time-invariant average sys-

tems to achieve ISS for the closed-loop system such that the actual approximate

model of the sample-data system is SGP-ISS. Then, the results in [109] imply

that the original sampled-data system has similar stability properties.

In Chapter 3, both nonlinear and linear switched systems are considered.

For nonlinear switched systems, we presented conditions under which ISS of the

strong average implies SGP-ISS of the actual switched system. We also showed a

SGP-DISS property using the notion of weak average and requiring derivatives of

disturbances to be bounded. For the linear switched system, we adapted strong

and weak average definitions from [110] and introduced a partial strong average to

consider its robust stability when the average system is ISS with an exponential

KL estimate and a linear gain.

We proved that exponential ISS of the strong and the partial strong average

system implies exponential ISS for the actual linear switched system with their

estimated linear gains converging to each other as the parameter is reduced.

Moreover, exponential ISS of the weak average guarantees an appropriate DISS

property for the actual system. Our results provide stronger conclusions than the

prior results on the same topic [131] as we show that the estimated linear gain of

the linear switched system converges to the estimated linear gain of the strong or

partially strong average. Moreover, an estimate of ISS gain of the actual system

also can be recovered by its weak average when switching rate is large enough if

we restrict the derivatives of disturbances to be uniformly bounded.

One contribution of these results is a systematic use of strong, partial strong

and weak averages for switched systems with disturbances that we believe will
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be very useful in a range of other averaging questions for switched systems. The

results we obtained in Chapter 3 can be applied to analyze global stability or

robustness to disturbances for various applications [20, 124, 126, 147].

In Chapter 4, we consider ISS properties for a class of hybrid systems using

the averaging method that had not been addressed before. Using the notions

of strong and weak average, a time-varying hybrid system is approximated by a

time-invariant hybrid system. For hybrid systems with bounded input signals, we

presented results on closeness of solutions between the actual system and solutions

of its strong average with the assumption that this strong average system is

forward complete. We obtained this result with the weak average system assuming

its forward completeness for bounded input signals that have bounded derivatives.

We also showed that ISS of the strong average implies SGP-ISS of the actual

system. In a similar fashion, ISS of the weak average implies SGP-DISS of the

actual system.

The results in Chapter 4 can be used as an analysis tool for closed-loop

of pulse-width-modulated (PWM) hybrid feedback control systems. Indeed, the

averaging results for hybrid systems in Chapter 4 shown to be useful when design-

ing hybrid feedbacks that are implemented via PWM. For the hybrid feedback

controller that is applied directly to a continuous-time plant and the closed-loop

system is stable, our results show that the same controller implemented via PWM

can also stabilize the actual system. A simple power converter example is used

to illustrate how to apply the averaging results for hybrid systems for controllers

design.

In Chapter 5, we considered a class of hybrid systems singularly perturbed

by fast but continuous actuators. Combining both the averaging and the singular

perturbation techniques, we studied the properties of this class of hybrid systems

based on its reduced hybrid system, which is defined by the average vector field

for the slow dynamics that is generated by solutions of continuous-time boundary

layer dynamics, the projection of the jump map in the direction of the slow

states, and flow and jump sets from the original dynamics. With this reduced

hybrid model, we presented the results that for each solution of the slow dynamics

of the actual singularly perturbed system, there exits a solution of its average

system such that they are arbitrarily close for small enough values of the singular

perturbation parameter. Moreover, we also showed that the global asymptotic

stability of a compact set for the average system implies that the set is semi-

globally practically asymptotically stable for the actual perturbed system.

The results in Chapter 5 are more general than classical singular perturbation
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theory as they weaken the typical assumptions that require the existence of an

asymptotically stable manifold for the boundary layer system and local Lipschitz

continuity of the vector fields. We showed that the existence of asymptotically

stable manifold of the boundary layer system implies the existence of the aver-

age for the actual system, but using several examples we showed that this is not

necessary. Indeed, we require a weaker assumption for the boundary layer sys-

tem, for which the solutions asymptotically converge to a compact set. Through

examples, we also showed that our results give sharper conclusions than other

singular perturbation results for hybrid systems that have appeared recently in

the literature.

6.2 Future work

There are many possible future directions for this research. The following list

highlights but some of the possibilities for future studies and research topics.

With the assumption of existence of a well defined average for parameter-

ized discrete-time systems, switched systems and hybrid systems, we considered

closeness between solutions of the original time-varying system and solutions of

its average on compact time intervals. The order of approximation error O(δ) is

determined by an order function δ(ε) that depends on properties of the actual

system and the input signals. Note that higher order approximations are useful

in some cases. We can apply the results in [132, Chapter 3] on second order

approximations for nonlinear systems to work on more precise approximations to

improve closeness of solutions results in Chapters 2-4.

We presented results on global ISS properties for the three classes of systems

mentioned above. In some situations, local or regional stability is of interest. For

instance, prior averaging results for discrete-time systems focus on local exponen-

tial stability [15, 21, 141]. For this case, it is useful to draw conclusions on local

robust stability for the actual systems based on local exponential ISS of their av-

erage systems. On the other hand, when the approximation of the actual system

has a stronger stability property, such as uniform global exponential stability,

further work can be done to find precise conditions that the original system is

also globally exponentially stable. For systems with disturbances, one can study

its global exponential ISS.

We analyzed robustness to disturbances using the concept of ISS for switched

systems and stated that our results give sharper conclusions than [131], where the
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finite L2 gain property of rapidly switching linear systems was considered using

the averaging method. One can go further with our averaging result in Chapter

3 that employ strong, partial strong and weak averages to consider the linear

switched model in [131] and give stronger results on its finite L2 gain property.

Note that a partial strong average notion is introduced in Chapter 3 to

provide stronger results when there does not exist a strong average for linear

switched systems and using weak averages only obtain too weak conclusions.

This concept of partial averaging can also be applied to consider, e.g., stability

for nonlinear switched systems

ẋ = fρ( t

ε)
(x) + gρ(t)(x) , (6.1)

and hybrid systems with flow dynamics of the form:

ẋ = f

(
t

ε
, x

)
+ g(t, x) . (6.2)

One can average the first term fρ(·)(x) in (6.1) and f(·, x) in (6.2) respectively to

get a simpler but still time-varying approximation for the actual system. Then,

the results in Chapters 3 and 4 can be generalized to analyze robustness to dis-

turbances for such classes of systems using the partial averaging notions.

Note that our averaging results for hybrid systems in Chapter 4 consider the

case when flow dynamics of the hybrid systems agree with differential equations

but without assuming that the vector fields are continuous. Hence, our results

are applicable for systems with dither signals, for which the dynamics are denoted

by a differential equation with discontinuous righthand side. We can revisit the

models with dither signals in [68, 69, 149, 150] for stability analysis and work on

new results for such systems with external disturbances. One can also consider

extremum seeking control problem [1,86,123,168] in the case when plants are af-

fected by disturbances using the results in Chapter 4 that pertain to discontinuity

of dynamics for its closed-loop system.

The averaging results for hybrid system in Chapter 4 can also be generalized

to consider the class of hybrid systems:
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ẋ ∈ F

(
t

ε
, x

)
x ∈ C

x+ ∈ G(x) x ∈ D ,

where the state x agrees with differential inclusions instead of differential equa-

tions on the flow constraint set C. The above hybrid systems can take the models

in [42,43] that present averaging results for differential inclusions as a special case.

Our averaging results for hybrid systems apply to the case when hybrid

models only have time varying flow dynamics that can be averaged. The jump

dynamics of the original hybrid system is the same as in its average system. On

the other hand, for hybrid systems with almost periodical changes in jump dy-

namics, one can develop a hybrid average system that includes averaging behavior

for both flow and jump dynamics to approximate the actual system. Then, sta-

bility analysis based on such a hybrid average model can recover the averaging

results not only for pure continuous-time systems but also for pure discrete-time

systems, e.g., the results in [141].

For the class of singularly perturbed hybrid systems we considered in Chapter

5, where hybrid control systems are assumed implemented by continuous and

fast actuators, the vector filed that denotes slow flow dynamics is assumed to be

continuous. The continuity assumption on the slow vector field can be relaxed

to an assumption that small perturbations to the solutions of the boundary layer

system lead to small changes in the integral that defines the average vector field.

These generalizations are useful for recovering the averaging results of [154]. Also,

one can consider set-valued boundary layer dynamics. These generalizations are

useful for recovering the singular perturbation results in [135].

As one more step, one can generalize the results in Chapter 5 to analyze

asymptotic stability via averaging for a class of hybrid systems

ẋ ∈ εF (x, z, ε)

ż ∈ Ψ(x, z, ε)

}
(x, z) ∈ C

(x, z)+ ∈ G(x, z) (x, z) ∈ D ,

where the flow mapping F , Ψ and jump mapping G are set-valued. The above

hybrid system can include the models in [44, 160, 162] as a special case, where

the singular perturbation results for differential inclusions are provided. We can
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also consider robustness to disturbances for the slow states of such class of sys-

tems assuming appropriate ISS properties for that reduced order system and the

boundary layer system.

Moreover, we concluded in Chapter 5 that the slow dynamics of the singu-

larly perturbed hybrid systems admit a semi-globally asymptotically stable set

if a well defined average system exists and this set is globally asymptotically

stable for its average system. Instead of asymptotic stability, we can study expo-

nential stability properties for the singularly perturbed hybrid systems based on

exponential stability of its reduced average hybrid system.
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Appendix A

To prove Theorems 2.4.4 and 2.4.5, we first present a lemma that considers close-

ness of points of some functions on finite time intervals.

Lemma A.0.1. Let the set of functions w̃i(kτ)(i = 1, · · · , n), W̃, be equi-bounded

and equi-uniformly Lipschitz, then for any δ̃ > 0 and all w̃ ∈ W̃ there exists

ρ∗ > 0 such that, for each ρ ∈ (0, ρ∗] and τ < ρ, the following holds:

|w̃i(kτ)− w̃i(k0τ)| ≤ δ̃ ∀ (k − k0)τ ∈ [0, ρ] .

�

Proof of Lemma A.0.1

Given arbitrary δ̃ > 0. Let r and ν come from the definitions of equi-

boundedness and equi-uniform Lipschitzness. Let

ρ∗ :=
1

ν
ln

(
1 +

δ̃

r

)
.

Consider ρ ∈ (0, ρ∗], and let

ek := |w̃i(kτ)− w̃i(k0τ)|, ∀(k − k0)τ ∈ [0, ρ] .

As W̃ is equi-bounded and equi-uniformly Lipschitz, for each w̃i ∈ W̃ ,

|w̃i((k + 1)τ)− w̃i(kτ)| ≤ ντ |w̃(kτ)| .

Assume for the purpose of induction that

em ≤ (exp(νmτ)− 1) |w̃i(k0τ)| mτ ∈ [0, ρ] . (A.1)
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This is trivially true for m = 0. Noting that for all mτ ∈ [0, ρ],

em+1 = |w̃i((m+ 1)τ)− w̃i(k0τ)|
≤ |w̃i(mτ)− w̃i(k0τ)| + |w̃i((m+ 1)τ)− w̃i(mτ)|
≤ |w̃i(mτ)− w̃i(k0τ)| + ντ |w̃i(mτ)|
≤ |w̃i(mτ)− w̃i(k0τ)| + ντ(|w̃i(mτ)− w̃i(k0τ)|+ |w̃i(k0τ)|)
= (1 + ντ)em + ντ |w̃i(k0τ)|
≤ (1 + ντ)(exp(νmτ)− 1)|w̃i(k0τ)| + ντ |w̃i(k0τ)|
= {(1 + ντ) exp(νmτ)− 1}|w̃i(k0τ)|
≤ (exp(ν(m+ 1)τ)− 1)|w̃i(k0τ)| ,

one gets that the inductive hypothesis (A.1) holds. With the fact that |w̃(k0τ)| ≤
r for all w̃(k0τ) ∈ W̃ , mτ ≤ ρ and noting the definition of ρ, it follows for each

τ < ρ that (A.1) satisfies

|em| ≤ δ̃ ∀mτ ∈ [0, ρ] ,

and this gives the conclusion. �

A.1 Proof of Theorem 2.4.4

Part 1. Definition of τ ∗, ε∗ and µ:

Given arbitrary δ, T > 0. Without loss of generality, assume δ < 1. Let r and

ν come from the definitions of equi-boundedness and equi-uniform Lipschitzness

ofW. Let R ≥ r and τ ∗1 comes fromW-forward completeness of the weak average.

Then, from the definition of weak average and Lipschitz condition of Fτ (kτ, x, w),

it follows that for all w satisfying |w| ≤ r, there exists L > 0 such that, for all

τ ∈ (0, τ ∗1 ), |y| ≤ R + 1 and |x| ≤ R + 1:

|Fwa
τ (x, w)− Fwa

τ (y, w)| ≤ L|x− y| ,

and there exists a finite positive number B such that

B := max
kτ≥0,|x|≤R+1,|y|≤R+1,|w|≤r

{|Fτ (kτ, x, w)|, |Fwa
τ (y, w)|} . (A.2)
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Then, let

µ :=
δ

2 exp 2LT+L2T
2

, (A.3)

and in preparation for defining ε∗, let

G

(
kτ

ε
, w̃

)
:= w̃T

1

{
Fτ

(
kτ

ε
, w̃2, w̃3

)
− Fwa

τ (w̃2, w̃3)

}
(A.4)

with w̃i being components of appropriate dimension of a vector w̃. Let W̃ be the

set of functions

w̃(kτ) :=



w̃1(kτ)

w̃2(kτ)

w̃3(kτ)


 ,

that is equi-bounded and equi-uniformly Lipschitz. Let τ ∗2 come from the defini-

tion of equi-uniform Lipschitzness of W, and ρ > 0 be such that, for all w̃ ∈ W̃ ,

kiτ ≥ 0, (k − ki)τ ∈ [0, ρ] and τ ∈ (0, τ ∗2 ):

∣∣∣∣G
(
kτ

ε
, w̃(kτ)

)
−G

(
kτ

ε
, w̃(kiτ)

)∣∣∣∣ ≤
δ2

8T exp(2LT + L2T )
. (A.5)

Such ρ exists since G is Lipschitz uniformly in w̃, and from Lemma A.0.1, w̃(kτ)

and w̃(kiτ) can be arbitrarily close for each τ ∈ (0, τ ∗2 ) and all (k − ki)τ ∈ [0, ρ],

if ρ is sufficiently small. Moreover, the quantity being bounded in (A.5) is zero

when kτ = kiτ . Then, the left hand side of (A.5) can be made arbitrarily small

by choosing small enough ρ.

Let βwa ∈ KL and T ∗ > 0 and τ ∗3 come from the definition of weak average.

Let T̃ > T ∗, τ ∗3 = τ ∗3 (T̃ ) be such that for all τ ∈ (0, τ ∗3 ) and Ñτ ≥ T̃ :

βwa(max{(R + 1), r}, Ñτ) ≤ δ2

8T (1 + 3B) exp(2LT + L2T )
. (A.6)

Consider τ ∈ (0, τ ∗) with τ ∗ := min{τ ∗1 , τ ∗2 , τ ∗3}. Without loss of generality for

the fast sampling system, assume τ < 1 and let

ε∗ := min

{
ρ

Ñτ
,

δ2

16BÑτ(1 + 3B) exp(2LT + L2T )

}
. (A.7)
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Part 2. Error of solutions:

For any fixed τ ∈ (0, τ ∗). Consider k0τ ≥ 0, y0 ∈ R
n with |y0| ≤ r, ε ∈ (0, ε∗),

x0 ∈ Rn such that |x0 − y0| ≤ µ. For (k − k0)τ ∈ [0, T ] and w ∈ W, let

E(kτ) := x(kτ, k0τ, x0, w)− y((k − k0)τ, y0, w) ,

and note that |E(k0τ)| ≤ µ ≤ δ
2
< 1. If |E(kτ)| < 1 for all (k − k0)τ ∈ [0, T ],

then define k̄τ = k0τ + T . Otherwise, define

k̄τ := max
s∈[0,T ]

{s : |E(kτ)| < 1 ∀kτ ∈ [0, s]} .

Note that k̄τ > k0τ , E(·) and x(·, k0τ, x0, w) are defined on [k0τ, k̄τ ]. Let

w̃(kτ) ∈ W̃ be such that, for all kτ ∈ [k0τ, k̄τ ],



w̃1(kτ)

w̃2(kτ)

w̃3(kτ)


 =



ET (kτ) + τφT (kτ) + τ

2
ψT (kτ)

x(kτ, k0, x0, w)

w(kτ)


 , (A.8)

with

ψ(kτ) := Fτ

(
kτ

ε
, x, w

)
− Fwa

τ (x, w) ,

φ(kτ) := Fwa
τ (x, w)− Fwa

τ (y, w) . (A.9)

Such a w̃(kτ) ∈ W̃ exists since w̃3 ∈ W, and for all kτ ∈ [k0τ, k̄τ ], |E(kτ)| <
1, and from (A.2), we know |φ| ≤ 2B and |ψ| ≤ 2B. Then, for each τ ∈ (0, τ ∗)

and all kτ ∈ [k0τ, k̄τ ], it follows that |w̃1|∞ ≤ (1 + 3B), and
∣∣∆w̃1

∆k

∣∣
∞ ≤ 2B +

3L(B + ν). Moreover, since |y((k− k0)τ, y0, w)| ≤ R for all kτ ∈ [0, T ], it follows

that |x(kτ, k0, x0, w)| ≤ R + 1 for all kτ ∈ [k0τ, k̄τ ] and
∣∣∆w̃2

∆k

∣∣
∞ ≤ B from (A.2).

Using the simplified notation x and y to replace x(kτ, k0τ, x0, w) and y((k−
k0)τ, y0, w), and define the difference of E(kτ) as
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H(kτ) :=
∆E(kτ)

∆k

=
E(kτ +∆k)− E(kτ)

∆k

=
x(kτ +∆k)− x(kτ)

∆k
− y(kτ +∆k)− y(kτ)

∆k

= Fτ

(
kτ

ε
, x, w

)
− Fwa

τ (y, w) , (A.10)

where the last equality comes from (2.12) and (2.14). Comparing (A.10) with

(A.9), one gets H(kτ) = ψ(kτ) + φ(kτ). Moreover, for all (k − k0)τ ∈ [0, k̄τ ],

consider a scalar-valued function V (kτ) := 1
2
ET (kτ)E(kτ), we have

∆V (kτ)

∆k
=

1

2

ET (kτ +∆k)E(kτ +∆k)− ET (kτ)E(kτ)

∆k

=
1

2

(E(kτ +∆k) + E(kτ))T (E(kτ +∆k)−E(kτ))

∆k

=
1

2

(
2E(kτ) + ∆k

∆E(kτ)

∆k

)T
∆E(kτ)

∆k

= ET (kτ)H(kτ) +
1

2
∆kHT (kτ)H(kτ) . (A.11)

Substituting H(kτ) with the expression of φ(kτ) and ψ(kτ) in (B.8), noting (A.8)

and the definition of G(·) in (A.4), and using the following inequality from the

Lipschitz condition of weak average

|φ(kτ)| ≤ L|E(kτ)| , (A.12)

it follows for (k − k0)τ ∈ [0, k̄τ ] that:

∆V (kτ)

∆k
= ET (kτ)(ψ + φ) +

1

2
(ψ + φ)T (ψ + φ)τ

= ET (kτ)φ +
τ

2
φTφ+ ET (kτ)ψ + τφTψ +

τ

2
ψTψ

≤ V (kτ)(2L+ L2τ) + ET (kτ)ψ + τφTψ +
τ

2
ψTψ

= V (kτ)(2L+ L2τ) + (ET (kτ) + τφT +
τ

2
ψT )ψ

= V (kτ)(2L+ L2τ) +G

(
kτ

ε
, w̃

)
.

By standard comparison theorems in [74], there existsW (kτ) withW (k0τ) =
1
2
µ2
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such that V (kτ) ≤W (kτ) and satisfy the equation

W ((k + 1)τ) = (2Lτ + L2τ 2 + 1)W (kτ) +G

(
kτ

ε
, w̃

)
∆k .

With the fact that Nτ ≤ T and the definition of µ in (A.3), one knows V (k0τ) ≤
1
2
µ2 = δ2

8 exp(2LT+L2T )
. Then, with the inequality

{1 + (2Lτ + L2τ 2)}N ≤ exp(2LNτ + L2Nτ 2) ,

it follows from the definition of τ that:

V (kτ)

≤ (2Lτ + L2τ 2 + 1)k−k0V (k0τ) +

k−1∑

s=k0

(2Lτ + L2τ2 + 1)k−1−sG
(
sτ
ε , w̃(sτ)

)
∆s

≤ exp(2LNτ + L2Nτ 2)V (k0τ) + exp(2LNτ + L2Nτ 2)
k−1∑

s=k0

G
(
sτ
ε , w̃(sτ)

)
∆s

≤ exp(2LT + L2Tτ)V (k0τ) + exp(2LT + L2Tτ)

k−1∑

s=k0

G
(sτ
ε
, w̃(sτ)

)
∆s

≤ δ2

8
+ exp(2LT + L2T )

k−1∑

s=k0

G
(sτ
ε
, w̃(sτ)

)
∆s .

Fix kτ ∈ [k0τ, k̄τ ] and set m to be the largest nonnegative integer such that m ≤
(k−k0−1)τ

εÑτ
with εÑτ ≤ ρ, where ρ is a positive real number such that inequality

(A.5) holds. Letting (ki − k0)τ = iεÑτ for i = 0, 1, · · · , m, one gets

V (kτ) ≤ δ2

8
+ exp(2LT + L2T )

k−1∑

s=km

G
(sτ
ε
, w̃(sτ)

)
∆s

+exp(2LT + L2T )
m−1∑

i=0

ki+1∑

s=ki

G
(sτ
ε
, w̃(sτ)

)
∆s . (A.13)

From the definition ofm, we have (ki+1−ki)τ = εÑτ and (k−km−1)τ ≤ εÑτ

for kτ ∈ [k0τ, k̄τ ]. Noting (A.2), (A.4), the definition of ε and |E(kτ)| < 1 holds

for all kτ ∈ [k0τ, k̄τ ], one gets
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∣∣∣G
(sτ
ε
, w̃(sτ)

)∣∣∣ ≤ 2B|w̃1(kτ)| ≤ 2B(1 + 3B) , (A.14)

and

exp(2LT + L2T )

k−1∑

s=km

G
(sτ
ε
, w̃(sτ)

)
∆s

≤ εÑτ2B(1 + 3B) exp(2LT + L2T ) ≤ δ2

8
.

(A.15)

Define the function kτ = εζτ , using which we map the countable set {k0τ, k1τ, k2τ, · · · }
into a set {ζ0τ, ζ1τ, ζ2τ, · · · } with k0τ = εζ0τ , kiτ = k0τ+i∆k and ζiτ = ζ0τ+i∆ζ ,

for i = 1, 2, · · · . Under the mapping, the corresponding family of systems (2.12)

could be written as

∆x

∆ζ
= εFτ (ζτ, x, w) ∆ζ =

τ

ε
, (A.16)

with the fixed initial time k0τ = εζ0τ . Then, if (2.12) satisfies

|x(kτ)| ≤ β(|x0|, (k − k0)τ) ,

where x0 = x(k0τ), then the family of systems (A.16) satisfies

|x(ζτ)| ≤ β(|x0|, ε(ζ − ζ0)τ)

with x0 = x(εζ0τ).

Then, the countable set {k0τ, k1τ, k2τ, · · · } is mapped by the function kτ =

εζτ into a set {ζ0τ, ζ1τ, ζ2τ, · · · }, with k0τ = εζ0τ , kiτ = k0τ + iεÑτ and ζiτ =

ζ0τ + iÑτ , for i = 1, 2, · · · . From (A.6), the following holds:
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∣∣∣∣∣

ki+1∑

s=ki

G(
sτ

ε
, w̃(kiτ))∆s

∣∣∣∣∣

≤ |w̃T
1 (kiτ)| ·

∣∣∣∣∣εÑτF
wa
τ (w̃2, w̃3)−

ki+1∑

k=ki

Fτ (
sτ

ε
, w̃2, w̃3)∆s

∣∣∣∣∣

= (1 + 3B) ·
∣∣∣∣∣εÑτF

wa
τ (w̃2, w̃3)− ε

ζi+1∑

ζ=ζi

Fτ (ζτ, w̃2, w̃3)∆ζ

∣∣∣∣∣

≤ εÑτ(1 + 3B) ·

∣∣∣∣∣∣
Fwa
τ (x, w)− 1

Ñτ

ζi+Ñ∑

ζ=ζi

Fτ (ζτ, x, w)∆ζ

∣∣∣∣∣∣
≤ εÑτ(1 + 3B)βwa(max{(R + 1), r}, Ñτ)

≤ εÑτ
δ2

8T exp(2LT + L2T )
. (A.17)

Substituting (A.15) into (A.13), noting the fact mεÑτ ≤ T and combining

with the inequalities (A.17), (A.5), we get

V (kτ) ≤ δ2

4
+ exp(2LT + L2T ) ·

m−1∑

i=0

ki+1∑

s=ki

{
G
(sτ
ε
, x(kiτ), w(kiτ)

)

+
∣∣∣G
(sτ
ε
, x(sτ), w(sτ)

)
−G

(sτ
ε
, x(kiτ), w(kiτ)

)∣∣∣
}
∆s

≤ δ2

4
+ exp(2LT + L2T )mεÑτ · 2δ2

8T exp(2LT + L2T )

≤ δ2

2
.

As V (kτ) ≤ δ2

2
for all kτ ∈ [k0τ, k̄τ ] and V (kτ) =

1
2
ET (kτ)E(kτ), one knows

that |E(kτ)| ≤ δ < 1 for all kτ ∈ [k0τ, k̄τ ]. From the definition of k̄, it follows

that (k̄− k0)τ ≤ T so that |E(kτ)| ≤ δ for all (k− k0)τ ∈ [0, T ]. This establishes

the result. �

A.2 Proof of Theorem 2.4.5

The proof of Theorem 2.4.5 follows exactly the same steps as the proof of Theorem

2.4.4 with following changes. With the strong average definition, instead of (A.17)

we use
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∣∣∣∣∣

ki+1∑

s=ki

G(
sτ

ε
, w̃1, w̃2, w̃(sτ))∆s

∣∣∣∣∣

≤ εÑτ |w̃T
1 |

1

Ñτ
·
∣∣∣∣∣

ζi+1∑

ζ=ζi

{F (ζτ, w̃2, w̃3(εζτ))− Fsa(w̃2, w̃3(εζτ))}∆ζ
∣∣∣∣∣

≤ εÑτ(1 + 3B)βsa(max{(R + 1), r}, Ñτ)

≤ εÑτ
δ2

8T exp(2LT + L2T )
. (A.18)

Define w̃(kτ) as (A.8). Similarly like (A.5), we can show that for each τ ∈ (0, τ ∗)

there exists sufficiently small ρ > 0 such that, for all k0τ ≥ 0 and (k−ki)τ ∈ [0, ρ]:

∣∣∣∣G
(
kτ

ε
, w̃(kτ)

)
−G

(
kτ

ε
, w̃1(kiτ), w̃2(kiτ), w̃3(kτ)

)∣∣∣∣ ≤
δ2

8T exp(2LT + L2T )
.

(A.19)

Note that we need the closeness of points of w̃1(·) and w̃2(·) on finite time intervals

with the equi-boundedness of w̃3 ∈ W to show the existence of such ρ. From the

result in Lemma A.0.1, the equi-boundedness and the equi-uniform Lipschitzness

of w̃1(·) and w̃2(·) presented in the proof of Theorem 2.4.4, w̃1(kτ) with w̃1(kiτ)

and w̃2(kτ) with w̃2(kiτ) can be arbitrarily close for all (k − ki)τ ∈ [0, ρ] when

ρ is sufficiently small. That is, there exists ρ > 0 such that (B.11) holds as G

is Lipschitz uniformly in w̃, and for kτ = kiτ the quantity being bounded in

(B.11) is zero and its left hand side can be made arbitrarily small by choosing ρ

sufficiently small.

Using the inequalities (A.15), (A.18), (B.11) and the fact mεÑτ ≤ T , one

knows that for all kτ ∈ [k0τ, k̄τ ] the following holds:
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V (kτ) ≤ δ2

4
+ exp(2LT + L2T ) ·

m−1∑

i=0

ki+1∑

s=ki

{
G
(sτ
ε
, w̃1(kiτ), w̃2(kiτ), w̃3(sτ)

)

+
∣∣∣G
(sτ
ε
, w̃(sτ)

)
−G

(sτ
ε
, w̃1(kiτ), w̃2(kiτ), w̃3(sτ)

)∣∣∣
}
∆s

≤ δ2

4
+ exp(2LT + L2T )mεÑτ

·
{

δ2

8T exp(2LT + L2T )
+

δ2

8T exp(2LT + L2T )

}

≤ δ2

2
.

This establishes the result in the same way as Theorem 2.4.4. �

A.3 Proof of Lemma 2.4.8

A trajectory approach that also taken in [151] is utilized to prove the following

preliminary result. The sufficiency is straightforward. For considering the neces-

sity, note (k − k0)τ ∈ [0, T ], take arbitrary ( δ
2
, r), and let T > 0 be large enough

such that for all β(max{r, γ(r) + δ}, sτ) ≤ δ
2
, ∀sτ ∈ [T,∞). From this, estimate

the trajectory of the x(kτ) step by step and finish the proof.

A For all x(k0τ) ∈ R
n with |x(k0τ)| ≤ max{r, γ(r) + δ}, w ∈ LW with

|w|∞ ≤ r and sτ ∈ [T,∞)

max{β(|x(k0τ)|, sτ),γ(|w|∞)}+ δ

2

≤ max{β(max{r, γ(r) + δ}, sτ), γ(|w|∞)}+ δ

2

≤ max

{
δ

2
, γ(|w|∞)

}
+
δ

2
≤ γ(|w|∞) + δ (A.20)

B From the assumption that the family of systems (2.12) is semi-globally ISS

on finite time intervals, for the particular values 2T , δ
2
, max{r, γ(r) + δ} > 0, we

get a τ ∗ > 0 and a ε∗ > 0 such that for each τ ∈ (0, τ ∗) and for all ε ∈ (0, ε∗) and

x(k0τ) ∈ R
n with |x(k0τ)| ≤ max{r, γ(r) + δ}, |x(kτ)| ≤ max{β(|x(k0τ)|, (k −

k0)τ), γ(|w|∞)} + δ
2
, ∀(k − k0)τ ∈ [0, 2T ]. Together with (A.20) it follows that

|x(kτ)| ≤ γ(|w|∞) + δ, ∀(k − k0)τ ∈ [T, 2T ], and in particular one gets that

|x(T )| ≤ γ(r) + δ.
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C With initial value x̄(k̄0τ) = x(T ), repeated application of A and B, for

|x̄(k̄0τ)| ≤ max{r, γ(r)+δ} and sτ ∈ [k̄0τ, k̄τ0+T ], we have max{β(|x̄(k̄0τ)|, sτ),
γ(|w|∞)} + δ

2
≤ γ(|w|∞) + δ, and |x̄(kτ)| ≤ max{β(|x̄(k̄0τ)|, sτ), γ(|w|∞)} + δ

2
,

∀(k − k̄0)τ ∈ [0, 2T ]. It follows that |x(kτ)| ≤ γ(|w|∞) + δ, ∀(k − k0)τ ∈ [T, 3T ]

and repeating the process yields that, for all k0τ ≥ 0 and x(k0τ) ∈ R
n with

|x(k0τ)| ≤ max{r, γ(r) + δ}, |x(kτ)| ≤ γ(|w|∞) + δ hold ∀(k − k0)τ ∈ [T,∞). �

A.4 Proof of Theorem 2.4.10

From Lemma 2.4.8, it is just necessary to show that the family of systems (2.12)

is semiglobally practically ISS on finite time interval on the set LW . Taking

arbitrary triple (r, δ, T ), let δ̃ > 0 and T > 0 satisfy

max
d∈[0,r],(k−k0)τ∈[0,T ]

[
β(d+ δ̃, (k − k0)τ)− β(d, (k − k0)τ)

]
+ δ̃ ≤ δ . (A.21)

Using the result of Theorem 2.4.4, for some sufficiently small numbers τ ∗ > 0

and ε∗ > 0, for each τ ∈ (0, τ ∗) and for all ε ∈ (0, ε∗), there exits δ̃ ≥ 0 and

(k−k0)τ ∈ [0, T ], such that the solution x(kτ, k0τ, x0, w) of the family of systems

(2.12) and the solution of the family of weak average systems satisfy

|x(kτ, k0τ, x0, w)− y((k − k0)τ, y0, w)| ≤ δ̃ . (A.22)

Using the simplified notation x(kτ) and y(kτ) to replace x(kτ, k0τ, x0, w) and

y((k − k0)τ, y0, w), the global ISS of the family of weak average systems on the

set LW guarantee that for any y(k0τ) ∈ R
n and w ∈ LW , we have

|y(kτ)| ≤ max{β(|y(k0τ)|, (k − k0)τ), γ(|w|∞)} ∀(k − k0)τ ≥ 0 . (A.23)

Note that for any y(kτ) and x(kτ) satisfy the inequality (A.22), |x(k0τ)−y(k0τ)| ≤
δ̃ holds. Using (A.21), (A.22) and (A.23), one gets for all (k − k0)τ ∈ [0, T ],

137



APPENDIX A.

|x(kτ)| ≤ |y(kτ)|+ |x(kτ)− y(kτ)|
≤ max{β(|y(k0τ)|, (k − k0)τ), γ(|w|∞)}+ δ̃

≤ max{β(|x(k0τ)|+ δ̃, (k − k0)τ), γ(|w|∞)}+ δ̃

≤ max{β(|x(k0τ)|, (k − k0)τ), γ(|w|∞)}+ δ .

The result then follows by applying Theorem 2.4.8. �
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The proof of Theorems 3.4.5 starts from the following technical lemma.

Lemma B.0.1. Suppose that the weak average of system (3.10) exists and satis-

fies Assumption 3.4.2 with Lyapunov function V and positive constants c1, c2 and

γa. Then, for any δ̃ ∈ (0, 1) there exists τ̃ ∗ > 0 such that, for each τ ∈ (0, τ̃ ∗)

there exist ε∗ > 0 and an increasing sequence of times ti(i ∈ N) : ti+1 − ti ≤ τ

with ti → ∞ as i → ∞, and then for all ti ≥ t0, ε ∈ (0, ε∗), w, ẇ ∈ L∞ and

x0 := x(t0) ∈ Rn, the solution of system (3.10) satisfies:

V (x(ti+1))− V (x(ti))

τ
≤ −

(
1− δ̃

)
|x(ti)|2 +

(
γa + δ̃

)
||w||2∞ + δ̃||ẇ||2∞ . (B.1)

�

Lemma B.0.2. Suppose that the strong average of system (3.10) exists and sat-

isfies Assumption 3.4.2 with Lyapunov function V and positive constants c1, c2

and γa. Then, for any δ̃ ∈ (0, 1) there exists τ̃ ∗ > 0 such that, for each τ ∈ (0, τ̃ ∗)

there exist ε∗ > 0 and an increasing sequence of times ti(i ∈ N) : ti+1 − ti ≤ τ

with ti → ∞ as i → ∞, and then for all ti ≥ t0, ε ∈ (0, ε∗), w ∈ L∞ and

x0 := x(t0) ∈ Rn, the solution of system (3.10) satisfies:

V (x(ti+1))− V (x(ti))

τ
≤ −

(
1− δ̃

)
|x(ti)|2 +

(
γa + δ̃

)
||w||2∞ . (B.2)

�

Proof of Lemma B.0.1

Let a positive real number δ̃ < 1 be given. Let the quadratic Lyapunov

function V and positive constants c1, c2 and γa come from Assumption 1. Let

k1, k2, T
∗ > 0 and σ1, σ2 ∈ L come from the definition of average for matrices Aρ1

and Bρ2 . In preparation for defining ε∗, let T̃1 ≥ T ∗ and T̃2 ≥ T ∗ satisfying
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σ1(T̃1) ≤ δ̃

8k1c2

σ2(T̃2) ≤ δ̃

8k2c2
,

and define T̃ = max{T̃1, T̃2}. Let τ1 satisfies τ1 ≤ δ̃
8c2am

and a strictly positive

real number am = maxt≥t0{|Aρ1(t)|, |Bρ2(t)|} be given. Let τ2 > 0 be such that for

any δ̃, ti ≥ t0 and positive constant k̃ such that

s ∈ [ti, ti + τ2] ⇒ k̃s exp(2ams) ≤ δ̃ .

Then define τ̃ ∗ := min{τ1, τ2}. For all τ ∈ (0, τ̃ ∗), let ε∗ :=
{

τ
T̃

}
, and ti = t0+iεT̃

for all ε ∈ (0, ε∗) and i ∈ N. From the definition of ε∗, we have ti+1− ti = εT̃ ≤ τ .

Applying the Lyapunov candidate function V in Assumption 3.4.2 to system

(3.10) for all t ∈ [ti, ti+1], it follows that

∂V

∂x
(x(t, ti)){Aρ1(

t

ε
)x(t, ti) +Bρ2(

t

ε
)w(t)} (B.3)

=
∂V

∂x
(x(ti)){Aavx(ti) +Bavw(t)} −

∂V

∂x
(x(ti)){Bavw(t)− Bavw(ti)}

−∂V
∂x

(x(ti)){Aavx(ti) +Bavw(ti)}+
∂V

∂x
(x(ti)){Aρ1(

t

ε
)x(ti) +Bρ2(

t

ε
)w(ti)}

+
∂V

∂x
(x(t, ti)){Aρ1(

t

ε
)x(t, ti) +Bρ2(

t

ε
)w(t)}

−∂V
∂x

(x(ti)){Aρ1(
t

ε
)x(ti) +Bρ2(

t

ε
)w(ti)} .

Integrating both sides of the inequality along the solution of x(t, ti) over the

interval [ti, ti+1] and with the fact
∣∣∂V
∂x
(x(ti))

∣∣ ≤ 2c2|x(ti)|, we get
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V (x(ti+1))− V (x(ti))

εT̃

≤ 1

εT̃

∫ ti+1

ti

∂V

∂x
(x(ti)){Aavx(ti) +Bavw(s)}ds

︸ ︷︷ ︸
1

+
2c2|x(ti)|

εT̃

∣∣∣∣
∫ ti+1

ti

Bav(w(s)− w(ti))ds

∣∣∣∣
︸ ︷︷ ︸

2

+
2c2|x(ti)|

εT̃

{∣∣∣∣
∫ ti+1

ti

{Aav − Aρ1(
s

ε
)}x(ti)ds

∣∣∣∣+
∣∣∣∣
∫ ti+1

ti

{Bav −Bρ2(
s

ε
)}w(ti)ds

∣∣∣∣
}

︸ ︷︷ ︸
3

+
1

εT̃

∣∣∣∣
∫ ti+1

ti

{
∂V

∂x
(x(s))

(
Aρ1(

s

ε
)x(s) +Bρ2(

s

ε
)w(s)

)

︸ ︷︷ ︸
4

−∂V
∂x

(x(ti))
(
Aρ1(

s

ε
)x(ti) +Bρ2(

s

ε
)w(ti)

)}
ds

∣∣∣∣
︸ ︷︷ ︸

4

.

We now turn to bounding each of the terms on the right-hand side: 1. From

Assumption 1, it follows that the term 1 is bounded by

1

εT̃

∫ ti+1

ti

∂V

∂x
(x(ti)){Aavx(ti) +Bavw(s)}ds

≤ 1

εT̃

∫ ti+1

ti

{−|x(ti)|2 + γa|w(s)|2}ds

≤ −|x(ti)|2 + γa||w||2∞ .

2. With the definition of τ , we have for all t ∈ [ti, ti+1] that term 2 is bounded by

2c2|x(ti)|
εT̃

∣∣∣∣
∫ ti+1

ti

Bav(w(s)− w(ti))ds

∣∣∣∣ ≤ 2c2amτ |x(ti)| · ||ẇ||∞

≤ δ̃

8
(|x(ti)|2 + ||ẇ||2∞) . (B.4)

3. Under two time scale behavior of Aρ1(
s

ε
) and Bρ2(

s

ε
), set s = εν, and consider

the average definition for matrices, we have that term 3 can be bounded by
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2c2|x(ti)|
εT̃

{∣∣∣∣
∫ ti+1

ti

{Aav − Aρ1(
s

ε
)}x(ti)ds

∣∣∣∣+
∣∣∣∣
∫ ti+1

ti

{Bav −Bρ2(
s

ε
)}w(ti)ds

∣∣∣∣
}

≤ 2c2|x(ti)|
{∣∣∣∣∣Aav −

1

T̃

∫ ti+T̃

ti

Aρ1(ν)dν

∣∣∣∣∣ · |x(ti)|

+

∣∣∣∣∣Bav −
1

T̃

∫ ti+T̃

ti

Bρ2(ν)dν

∣∣∣∣∣ · ||w||∞
}

≤ 2c2|x(ti)|{k1σ1(T̃ )|x(ti)|+ k2σ2(T̃ )||w||∞}

≤ 1

4
{δ̃|x(ti)|2 + δ̃|x(ti)| · ||w||∞} ≤ 3δ̃

8
|x(ti)|2 +

δ̃

8
||w||2∞ .

Finally, term 4 is bounded by

∣∣∣∣
∂V

∂x
(x(t, ti)){Aρ1(

t

ε
)x(t, ti) +Bρ2(

t

ε
)w(t)} −

∂V

∂x
(x(ti)){Aρ1(

t

ε
)x(ti) +Bρ2(

t

ε
)w(ti)}

∣∣∣∣

≤
∣∣∣∣
∂V

∂x
(x(t, ti))

{
Aρ1(

t

ε
)(x(t, ti)− x(ti)) +Bρ2(

t

ε
)(w(t)− w(ti))

}∣∣∣∣

+

∣∣∣∣
{
∂V

∂x
(x(t, ti))−

∂V

∂x
(x(ti))

}
{Aρ1(

t

ε
)x(ti) +Bρ2(

t

ε
)w(ti)}

∣∣∣∣
≤ 2c2am {|x(t, ti)| · (|x(t, ti)− x(ti)|+ |w(t)− w(ti)|)

+|x(t, ti)− x(ti)|(|x(ti)|+ ||w||∞)} . (B.5)

As for all t ∈ [ti, ti+1] and ti ≥ t0, the solution of system (3.10) satisfies x(t, ti) =

x(ti)+
∫ t

ti
(Aρ1(s)x(s)+Bρ2(s)w(s))ds.With the definition of am, it is obvious that

for all t ∈ [ti, ti+1]

|x(t, ti)| ≤ exp(amτ)|x(ti)|+ (exp(amτ)− 1)||w||∞. (B.6)

Noting |w(t) − w(ti)| ≤ ||ẇ||∞τ and |x(t, ti) − x(ti)| ≤ amτ(|x(t, ti)| + ||w||∞),

it follows that the inequality (B.5) is bounded by 2τ exp(2amτ)c2{5a2m(|x(ti)|2 +
||w||2∞) + am||ẇ||2∞}. Let ā = min{am, 1} and k̃ := 1

4c2ā2
. Note that

k̃ >
max{|x(ti)|2, ||w||2∞, ||ẇ||2∞}

4c2{5a2m(|x(ti)|2 + ||w||2∞) + am||ẇ||2∞}

and the definition of τ2, it follows that term 4 is bounded by δ̃
2
(|x(ti)|2+ ||w||2∞+
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||ẇ||2∞) for all τ ∈ (0, τ̃ ∗). Combining the upper bound of four terms in (B.4), we

complete the proof:

V (x(ti+1))− V (x(ti))

τ
≤ −

(
1− δ̃

)
|x(ti)|2 +

(
γa +

5δ̃

8

)
||w||2∞ +

5δ̃

8
||ẇ||2∞

≤ −
(
1− δ̃

)
|x(ti)|2 +

(
γa + δ̃

)
||w||2∞ + δ̃||ẇ||2∞ .

�

Proof of Lemma B.0.2

Given δ̃ < 1, define T̃1, τ2 and am same as the proof of Lemma B.0.1. Let

T̃ := T̃1, τ
∗ := τ2, ti = t0 + iεT̃ for all ε ∈ (0, ε∗) and i ∈ N with ε∗ defined in

(A.7). Then, the majority of the proof of Lemma B.0.2 is same as the proof of

Lemma B.0.1, except equations (B.3) and (B.4) are replaced by

∂V

∂x
(x(t, ti)){Aρ1(

t

ε
)x(t, ti) +Bw(t)} =

∂V

∂x
(x(ti)){Aavx(ti) +Bw(t)}

−∂V
∂x

(x(ti)){Aav −Aρ1(
t

ε
)}x(ti) +

{
∂V

∂x
(x(t, ti))−

∂V

∂x
(x(ti))

}
Bw(t)

+
∂V

∂x
(x(t, ti))Aρ1(

t

ε
)x(t, ti)−

∂V

∂x
(x(ti))Aρ1(

t

ε
)x(ti) (B.7)

and

V (x(ti+1)− x(ti))

εT̃
≤ 1

εT̃

∫ ti+1

ti

∂V

∂x
(x(ti)){Aavx(ti) +Bw(s)}ds

︸ ︷︷ ︸
1

+
2c2|x(ti)|

εT̃

∣∣∣∣
∫ ti+1

ti

{Aav −Aρ1(
s

ε
)}x(ti)ds

∣∣∣∣
︸ ︷︷ ︸

2

+
1

εT̃

∣∣∣∣
∫ ti+1

ti

(
∂V

∂x
(x(s))− ∂V

∂x
(x(ti))

)
Bw(s)ds

∣∣∣∣
︸ ︷︷ ︸

3

+
1

εT̃

∣∣∣∣
∫ ti+1

ti

{
∂V

∂x
(x(s))Aρ1(

s

ε
)x(s)−

∂V

∂x
(x(ti))Aρ1(

s

ε
)x(ti)

}
ds

∣∣∣∣
︸ ︷︷ ︸

4

. (B.8)

Similarly, term 1 is bounded by −|x(ti)|2 + γa||w||2∞ from Assumption 1. Using
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the definition of average for matrices, and letting s = εν, the upper bound of

term 2 is

2c2(ti)|
εT̃

∣∣∣∣
∫ ti+1

ti

{Aav − Aρ1(
s

ε
)}x(ti)ds

∣∣∣∣ ≤ 2c2|x(ti)|2
∣∣∣∣∣Aav −

1

T̃

∫ ti+T̃

ti

Aρ1(ν)dν

∣∣∣∣∣

≤ 2c2k1σ1(T̃ )|x(ti)|2 ≤
δ̃

4
|x(ti)|2 . (B.9)

Let k̃ := 1
12c2a2m

. With k̃ > max{|x(ti)|2,||w||2
∞
}

4c2a2m(4|x(ti)|2+3||w||2
∞
)
and from the definition of τ̃ ∗, we

have that for all t ∈ [ti, ti+1] and ti ≥ t0, term 3 is bounded by

∣∣∣∣
∂V

∂x
(x(t, ti))−

∂V

∂x
(x(ti))

∣∣∣∣ · |Bw(s)|

≤ 2c2am|x(t, ti)− x(ti)| · ||w||∞
≤ 2c2a

2
mτ(|x(t, ti)|+ ||w||∞) · ||w||∞

≤ 2τ exp(amτ)c2a
2
m(|x(ti)|+ ||w||∞)||w||∞

≤ δ̃

4
(|x(ti)|2 + ||w||2∞) , (B.10)

and the upper bound of term 4 is

∣∣∣∣
∂V

∂x
(x(t, ti))Aρ1(

t

ε
)x(t, ti)−

∂V

∂x
(x(ti))Aρ1(

t

ε
)x(ti)

∣∣∣∣

≤
∣∣∣∣
∂V

∂x
(x(t, ti))Aρ1(

t

ε
)(x(t, ti)− x(ti))

∣∣∣∣

+

∣∣∣∣
∂V

∂x
(x(t, ti))−

∂V

∂x
(x(ti))

∣∣∣∣ · |Aρ1(
t

ε
)x(ti)|

≤ 2τ exp(2amτ)c2a
2
m(4|x(ti)|2 + 3||w||2∞) ≤ δ̃

2
(|x(ti)|2 + ||w||2∞) . (B.11)

Combining the upper bounds of all terms into (B.8), this complete the proof. �

B.1 Proof of Theorem 3.4.5

Let the quadratic Lyapunov function V and positive constants c1, c2 and γa come

from Assumption 3.4.2,K, λ and γ come from Remark 3.4.4. Given any 0 < δ̃ < 1,
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τ̃ ∗ is then determined from Lemma B.0.1 by δ̃. Let

am := max
t≥t0

{|Aρ1(t)|, |Bρ2(t)|} , c := 1− δ̃ > 0 . (B.12)

Let τ3 = c2
c
and τ ∗ = min{τ̃ ∗, τ3}, then we have 0 <

(
1− cτ

c2

)
< 1 when τ ∈

(0, τ ∗). Let ε∗ be determined by τ from Lemma B.0.1, and the proof is followed

for all ε ∈ (0, ε∗). For preparing the definition of δ, let

m := 1− cτ

c2
, µ :=

√
τ

c1(1−m)
. (B.13)

Then, let

δ1 = (exp(amτ)− 1)(γ +K + 1) + exp(amτ)


γ

√
δ̃

1− δ̃
+ µ
√
δ̃


 ,

δ2 =
δ̃

2c2
, δ3 =

(
exp

(
2τ

(
am + λ− δ̃

2c2

))
− 1

)
K ,

δ := max{δ1, δ2, δ3, δ̃} . (B.14)

With am defined above, for all t ≥ t0, solutions of system (3.10) satisfy |x(t)| ≤
exp(am(t− t0))|x0|+ (exp(am(t− t0))− 1)||w||∞, and then there exists a ti0 such

that ti0 − t0 ≤ τ implies

|x(ti0)| ≤ exp(amτ)|x0|+ (exp(amτ)− 1)||w||∞ . (B.15)

From Lemma B.0.1, for all ε ∈ (0, ε∗) and any ti0 satisfying ti0 − t0 ≤ τ and

ti0+k − ti0+k−1 ≤ τ , ∀k ∈ N, we have

V (x(ti0+1))− V (x(ti0))

τ
≤ −c|x(ti0)|2 +

(
γa + δ̃

)
||w||2∞ + δ̃||ẇ||2∞ . (B.16)

Using V (x) ≤ c2|x|2, it follows that

V (x(ti0+1)) ≤
(
1− cτ

c2

)
V (x(ti0)) + τ

(
γa + δ̃

)
||w||2∞ + τ δ̃||ẇ||2∞ .
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With the definition of m, we have 0 < m < 1 and

V (x(ti0+1)) ≤ mV (x(ti0)) + τ
(
γa + δ̃

)
||w||2∞ + τ δ̃||ẇ||2∞ .

By repeating this argument, and using (1− z)n ≤ exp(−nz), ∀z ∈ (0, 1), we have

∀n ∈ N

V (x(ti0+n))

≤ mnV (x(ti0)) +
n∑

k=1

mk−1τ(γa + δ̃)||w||2∞ +
n∑

k=1

mk−1τ δ̃||ẇ||2∞

≤ exp

(
−cτn
c2

)
V (x(ti0)) +

τ(γa + δ̃)

(1−m)
||w||2∞ +

τ δ̃

(1−m)
||ẇ||2∞ .

From c1|x|2 ≤ V (x) ≤ c2|x|2, we know that

|x(ti0+n)|2 ≤
c2
c1

exp

(
−cτn
c2

)
|x(ti0)|2 +

τ(γa + δ̃)

c1(1−m)
||w||2∞ +

τ δ̃

c1(1−m)
||ẇ||2∞ .

With the definition of µ and K, and noting ti0+n − ti0 ≤ nτ , it follows that

|x(ti0+n)| ≤ K exp

(
− c

2c2
(ti0+n − ti0)

)
|x(ti0)|

+µ
(√

γa +
√
δ̃
)
||w||∞ + µ

√
δ̃||ẇ||∞ . (B.17)

Letting λ̄ = c
2c2

, and by repeating the same argument, one knows that for every

j ∈ N

|x(ti0+jn)| ≤ K exp
(
−λ̄(ti0+jn − ti0)

)
|x(ti0)|

+µ
(√

γa +
√
δ̃
)
||w||∞ + µ

√
δ̃||ẇ||∞ . (B.18)

For every t ≥ ti0 , there exist j ∈ N such that t ∈ [ti0+jn, ti0+jn+1). While (B.18)

gives the evolution of the flow at times ti0+jn, ∀j ∈ N, but gives no informa-

tion about the flow between the times ti0+jn. Considering (B.6), it follows that

|x(t, ti0+jn)| ≤ exp(amτ)|x(ti0+jn)|+ (exp(amτ)− 1)||w||∞, ∀t ∈ [ti0+jn, ti0+jn+1).
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Noting (B.17), it follows that for all t ≥ ti0 , the solution of system (3.10) satisfies

|x(t, ti0)| ≤ exp(amτ)K exp(−λ̄(ti0+jn − ti0))|x(ti0)|+ (exp(amτ)− 1)||w||∞
+µ exp(amτ)

√
δ̃||ẇ||∞ + µ exp(amτ)

(√
γa +

√
δ̃
)
||w||∞

≤ exp((am + λ̄)τ)K exp
(
−λ̄(t− ti0)

)
|x(ti0)|+ µ exp(amτ)

√
δ̃||ẇ||∞

+ (exp(amτ)− 1) ||w||∞ + µ exp(amτ)
(√

γa +
√
δ̃
)
||w||∞ . (B.19)

With γ =
√

c2γa
c1

, the definitions of m and δ, we have

µ
√
γa =

√
τγa

c1(1−m)

=

√
c2γa

c1

(
1− δ̃

) = γ ·
√

1 +
δ̃

1− δ̃

and

µ exp(amτ)
(√

γa +
√
δ̃
)
+ (exp(amτ)− 1)(K + 1)

≤ exp(amτ)


γ + γ

√
δ̃

1− δ̃
+ µ
√
δ̃


+ (exp(amτ)− 1)(K + 1)

≤ γ + δ . (B.20)

Considering the definition of δ, we know that

exp(2(am + λ̄)τ)K = exp

(
2

(
am + λ− δ̃

2c2

)
τ

)
K ≤ K + δ . (B.21)

Then, combining λ̄ = 1−δ̃
2c2

≥ λ − δ, (B.14), (B.15) and (C.26) into (B.23), the

following completes the proof:
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|x(t)| ≤ exp(2(am + λ̄)τ)K exp
(
−λ̄(t− t0)

)
|x0| (B.22)

+µ exp(amτ)
(√

γa +
√
δ̃
)
||w||∞ + exp(amτ)µ

√
δ̃||ẇ||∞

+ (exp(amτ)− 1) (K + 1)||w||∞
≤ (K + δ)(exp(−(λ− δ)(t− t0))|x0|+ (γ + δ)||w||∞ + δ||ẇ||∞ .

B.2 Proof of Theorem 3.4.7

The proof of Theorem 3.4.7 is exactly same as the proof of Theorem 3.4.5 in Sec-

tion B.1 with the following changes. Given any 0 < δ̃ < 1, τ̃ ∗ is then determined

from Lemma B.0.2 by δ̃. Let am := maxt≥t0{|Aρ1(t)|, |Bρ2(t)|} and c := 1− δ̃ > 0.

Let τ3 =
c2
c
and τ ∗ = min{τ̃ ∗, τ3}. Let ε∗ be determined by τ from Lemma B.0.2,

and the proof is followed for all ε ∈ (0, ε∗). Define the δ > 0 as (B.14).

Using the results from Lemma B.0.2, for all ε ∈ (0, ε∗) and any ti0 satisfying

ti0 − t0 ≤ τ and ti0+k − ti0+k−1 ≤ τ , ∀k ∈ N, the following inequality replacing

(B.16) in Section B.1 holds.

V (x(ti0+1))− V (x(ti0))

τ
≤ −c|x(ti0)|2 +

(
γa + δ̃

)
||w||2∞ .

With the definition of m in (B.13), we have

V (x(ti0+1)) ≤ mV (x(ti0)) + τ
(
γa + δ̃

)
||w||2∞ .

By repeating this argument, and using (1− z)n ≤ exp(−nz), ∀z ∈ (0, 1), we have

∀n ∈ N

V (x(ti0+n)) ≤ mnV (x(ti0)) +
n∑

k=1

mk−1τ(γa + δ̃)||w||2∞

≤ exp

(
−cτn
c2

)
V (x(ti0)) +

τ(γa + δ̃)

(1−m)
||w||2∞ .

Then, (B.23) and (B.22) in the proof of Theorem 3.4.5 are replaced by
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|x(t, ti0)| ≤ exp((am + λ̄)τ)K exp
(
−λ̄(t− ti0)

)
|x(ti0)|

+ (exp(amτ)− 1) ||w||∞ + µ exp(amτ)
(√

γa +
√
δ̃
)
||w||∞ . (B.23)

and

|x(t)| ≤ exp(2(am + λ̄)τ)K exp
(
−λ̄(t− t0)

)
|x0|+ (exp(amτ)− 1) (K + 1)||w||∞

+ µ exp(amτ)
(√

γa +
√
δ̃
)
||w||∞

≤ (K + δ)(exp(−(λ− δ)(t− t0))|x0|+ (γ + δ)||w||∞,

which give the conclusion of Theorem 3.4.7.
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Appendix C

C.1 Proofs of Theorems 4.4.1 and 4.4.2

We need some technique results that are presented and proved in Subsection C.1.1

to show Theorems 4.4.1 and 4.4.2.

C.1.1 Technique results

Lemma C.1.1. For a function f0 defined on C×R≥0, suppose fwa is a continuous

function that is a weak average of f0 on C. Then, for each compact set K ⊂
Rn × Rm, there exists a function αK of class-G such that for all ((x, w), µ, τ) ∈
(C ∩K)× R≥0 × R≥0 and τ0 ∈ [0, τ ]:

µ|ηwa(x, w, τ, τ0, µ)| ≤ αK(µ) .

�

Proof of Lemma C.1.1

The proof uses the same technical method as Lemma 1 in [154] and follows

the calculation of [74, p. 415]. Let the compact set K ⊂ Rn×Rm be given. From

the definitions of the weak average, for each ((x, w), τ, µ) ∈ C × R≥0 × R≥0 and

τ0 ∈ [0, τ ], the following holds:

|ηwa(x, w, τ + T, τ0, 0)− ηwa(x, w, τ, τ0, 0)|

=

∣∣∣∣
∫ τ+T

τ

[f0(x, w, s)− fwa(x, w(s))]ds

∣∣∣∣ ≤ TσK(T ) . (C.1)

Integrating by parts in the definition of ηwa, we have:
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ηwa(x, w, τ, τ0, µ)

=

[
exp(µ(s− τ))

∫ s

τ0

(f0(x, w, r)− fwa(x, w))dr

]τ

τ0

−µ
∫ τ

τ0

exp(µ(s− τ))

∫ s

τ0

(f0(x, w, r)− fwa(x, w))drds,

= ηwa(x, w, τ, τ0, 0)− µ

∫ τ

τ0

exp(µ(s− τ))ηwa(x, w, s, τ0, 0)ds . (C.2)

Then, adding and subtracting µηwa(x, w, τ, τ0, 0)
∫ τ

τ0
exp(µ(s− τ))ds to the right

hand side of (C.4), we obtain

ηwa(x, w, τ, τ0, µ)

= exp(−µ(τ − τ0))ηwa(x, w, τ, τ0, 0)

+µ

∫ τ

τ0

exp(−µ(τ − s))[ηwa(x, w, τ, τ0, 0)− ηwa(x, w, s, τ0, 0)]ds .

Let τ̂ := τ − τ0. Using the fact ηwa(x, w, τ0, τ0, 0) = 0 and (C.1), it follows that

µ|ηwa(x, w, τ, τ0, µ)| ≤ exp(−µ(τ − τ0))µ(τ − τ0)σK(τ − τ0)

+ µ2

∫ τ

τ0

exp(−µ(τ − s))(τ − s)σK(τ − s)ds

= exp(−µτ̂ )µτ̂σK(τ̂) + µ2

∫ τ̂

0

exp(−µr)rσK(r)dr

= exp(−µτ̂ )µτ̂σK(τ̂) +
∫ µτ̂

0

exp(−z)zσK
(
z

µ

)
dz .

There are two possibilities for µτ̃ : µτ̃ ≤ √
µ and µτ̃ ≥ √

µ. In the first case, we

have

exp(−µτ̂ )µτ̂σK(τ̂) +
∫ µτ̂

0

exp(−z)zσK
(
z

µ

)
dz ≤ √

µσK(0) +
µ

2
σK(0) .

For the second case, using η exp(−η) ≤ exp(−1) for all η ≥ 0 and
∫∞
0

exp(−z)zdz =

1, and then
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exp(−µτ̂ )µτ̂σK(τ̂) +
∫ µτ̂

0

exp(−z)zσK
(
z

µ

)
dz

≤ exp(−1)σK

(
1√
µ

)
+ σK(0)

∫ µτ̂

0

zdz + σK

(
1√
µ

)∫ ∞

µτ̂

z exp(−z)dz

≤ (exp(−1) + 1)σK

(
1√
µ

)
+
µ

2
σK(0) .

Then, let

αK(µ) :=
µ

2
σK(0) + max{√µσK(0), σK

(
1√
µ

)
(exp(−1) + 1)} .

Since σK is of class-L, it follows that αK is of class-G. �

Lemma C.1.2. For a function f0 defined on C1×W×R≥0, where C ⊂ C1×W,

suppose fsa is a continuous function that is a strong average of f0 on C1 × W.

Then, for each compact set K ⊂ Rn × Rm, there exists a function αK of class-G
such that for all 0 ≤ τ0 ≤ τ1, w̃ : [τ0, τ1] → W and ((x, w̃(s)), µ, τ) ∈ ((C1×W)∩
K)× R≥0 × [τ0, τ1] for all s ∈ [τ0, τ1], the following holds:

µ|ηsa(x, w̃, τ, τ0, µ)| ≤ αK(µ) .

�

Proof of Lemma C.1.2:

Let the compact set K ⊂ Rn × Rm be given. From the definitions of the

strong average, for any 0 ≤ τ0 ≤ τ1, τ, (τ + T ) ∈ [τ0, τ1], w̃ : [τ0, τ1] → W and

(x, w̃(s)) ∈ (C1 ×W) ∩K for all s ∈ [τ0, τ1], the following holds:

|ηsa(x, w̃, τ + T, τ0, 0)− ηsa(x, w̃, τ, τ0, 0)|

=

∣∣∣∣
∫ τ+T

τ

[f0(x, w̃(s), s)− fsa(x, w̃(s))]ds

∣∣∣∣ ≤ TσK(T ) . (C.3)

Integrating by parts in the definition of ηsa, we have:
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ηsa(x, w̃, τ, τ0, µ)

=

[
exp(µ(s− τ))

∫ s

τ0

(f0(x, w̃(r), r)− fsa(x, w̃(r)))dr

]τ

τ0

−µ
∫ τ

τ0

exp(µ(s− τ))

∫ s

τ0

(f0(x, w̃(r), r)− fsa(x, w̃(r)))drds,

= ηsa(x, w̃, τ, τ0, 0)− µ

∫ τ

τ0

exp(µ(s− τ))ηsa(x, w̃, s, τ0, 0)ds . (C.4)

Then, adding and subtracting µηsa(x, w̃, τ, τ0, 0)
∫ τ

τ0
exp(µ(s − τ))ds to the right

hand side of (C.4), we obtain

ηsa(x, w̃, τ, τ0, µ)

= exp(−µ(τ − τ0))ηsa(x, w̃, τ, τ0, 0)

+µ

∫ τ

τ0

exp(−µ(τ − s))[ηsa(x, w̃, τ, τ0, 0)− ηsa(x, w̃, s, τ0, 0)]ds .

Then, the following steps are identical to the proof of Lemma C.1.1 with

replacing (C.1) and (C.2) by (C.3) and (C.4) respectively. �

Claim C.1.3. Under Assumption 4.3.4, for each compact set K ⊂ Rn × Rm

there exists L(K) such that, for each i ∈ N̄ , µ > 0, ((x1, w1), τa), ((x2, w2), τb) ∈
(C ∩K)× R≥0 and τ0 ∈ [0,min{τa, τb}]:
∣∣ηiwa(x1, w1, τa, τ0, µ)− ηiwa(x2, w2, τb, τ0, µ)

∣∣ ≤ 2L(|x1 − x2|+ |w1 − w2|+ |τa − τb|) .

�

Proof of Claim C.1.3

Let the compact K ⊂ R
n×R

m be given. Integrate by parts in the definition

of ηwa to get (C.2). Then, for all i ∈ N̄ , ((x1, w1), τa), ((x2, w2), τb) ∈ (C∩K)×R≥0

and τ0 ∈ [0,min{τa, τb}], it follows from Assumption 4.3.4 that:
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∣∣ηiwa(x1, w, τa, τ0, µ)− ηiwa(x2, w, τb, τ0, µ)
∣∣

≤
∣∣ηiwa(x1, w, τa, τ0, 0)− ηiwa(x2, w, τb, τ0, 0)

∣∣

+µ

∫ τa

τ0

exp(µ(s− τa))|ηiwa(x1, w, s, τ0, 0)− ηiwa(x2, w, s+ τb − τa, τ0, 0)|ds

≤ L(|x1 − x2|+ |τa − τb|)
(
1 + µ

∫ τa

τ0

exp(µ(s− τa))ds

)

≤ 2L(|x1 − x2|+ |τa − τb|) , (C.5)

where the last inequality in (C.5) follows from the fact µ
∫ τa
τ0

exp(µ(s−τa))ds ≤ 1

for any µ, τ0, τa ≥ 0. �

Claim C.1.4. Under Assumption 4.3.5, for each compact set K ⊂ Rn×Rm there

exists L(K) such that, for each i ∈ N̄ , µ > 0, 0 ≤ τ0 ≤ τ1, w̃ : [τ0, τ1] → W and

((x1, w̃(s)), τa), ((x2, w̃(s)), τb) ∈ ((C1 ×W) ∩K)× [τ0, τ1] for all s ∈ [τ0, τ1], the

following holds:

∣∣ηisa(x1, w̃, τa, τ0, µ)− ηisa(x2, w̃, τb, τ0, µ)
∣∣ ≤ 2L(|x1 − x2|+ |τa − τb|) .

�

Proof of Claim C.1.4

Integrate by parts in the definition of ηsa to get (C.4). The proof of Claim

C.1.4 is identical to the proof of Claim C.1.3 with replacing (C.2) by (C.4). �

Claim C.1.5. Let J ⊂ Rn be closed, L > 0, and M > 0. For a vector-valued

function f := (f1, · · · , fn) where fi : J → R are real-valued functions, define

g̃i(x) := sup
z∈J

{fi(z)− L|x− z|} .

Let

sat(s) :=
Ms

max{M, |s|} , (C.6)

and g(x) := sat(g̃(x)) with g̃ := (g̃1, · · · , g̃n). Then, the function g satisfies the

following properties:
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1. |g(x)| ≤M for all x ∈ Rn,

2. |g(x)− g(y)| ≤ √
nL|x− y| for all x, y ∈ Rn and

3. if, for all i ∈ {1, · · · , n}, x, y ∈ J , |f(x)| ≤M and |fi(x)−fi(y)| ≤ L|x−y|,
then g(x) = f(x) for all x ∈ J .

�

Proof of Claim C.1.5

Noting g(x) = sat(g̃(x)) and (C.6), it is straightforward that the first prop-

erty is satisfied. Let N̄ = {1, · · · , n}. Let k ∈ N̄ satisfy |g̃k(x) − g̃k(y)| =

maxi∈N̄ |g̃i(x) − g̃i(y)|. Without loss of generality, assume g̃k(x) ≥ g̃k(y). Using

the fact |sat(ξ) − sat(ψ)| ≤ |ξ − ψ| for all ξ, ψ ∈ R
n, the extended function g

satisfies

|g(x)− g(y)| = |sat(g̃(x))− sat(g̃(y))|
≤ |g̃(x)− g̃(y)|

=

(
n∑

i=1

|g̃i(x)− g̃i(y)|2
) 1

2

≤
(
n · |g̃k(x)− g̃k(y)|2

) 1

2

≤
(
n · sup

a∈J
|L|a− x| − L|a− y||2

) 1

2

≤
(
nL2 · sup

a∈J
|a− x− a + y|2

) 1

2

=
√
nL|x− y| ,

for all x, y ∈ Rn. Now, consider the third property. Let M > 0 be such that

|f(x)| ≤M ∀ x ∈ J. (C.7)

Let L > 0 be such that

|fi(x)− fi(y)| ≤ L|x− y| ∀ x, y ∈ J, i ∈ N̄ . (C.8)

Using (C.8), for x ∈ J , we have
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fi(x) ≤ sup
z∈J

{fi(z)− L|x− z|}

= g̃i(x) = sup
z∈J

{fi(z)− fi(x) + fi(x)− L|x− z|} ≤ fi(x) .

Noting the construction of gi in (C.6), we have that gi(x) ≥ sat (fi(x)) with

letting z = x for all x ∈ J . Moreover, with we have for any x ∈ J :

gi(x) = sat

(
sup
z∈J

{fi(z)− fi(x) + fi(x)− L|x− z|}
)

≤ sat (fi(x)) = fi(x) ,

which shows g̃i(x) = fi(x) for all x ∈ J . Then, with (C.7) and the definition of

g, it follows that g(x) = sat(f(x)) = f(x) when x ∈ J . �

Claim C.1.6. The hybrid arc ξ is a solution to the hybrid inclusion

HΩ

ξ̇ ∈ FΩ(ξ) ξ ∈ CΩ

ξ+ ∈ GΩ(ξ) ξ ∈ DΩ

(C.9)

that is extended from system H in (4.2) for some Ω ≥ 0 with the data (FΩ, GΩ, CΩ, DΩ)

being defined as:

FΩ(ξ) := {v ∈ R
n : v = F (ξ, w), w ∈ W ∩ ΩB and (ξ, w) ∈ C}

GΩ(ξ) := {v ∈ R
n : v ∈ G(ξ, w), w ∈ W ∩ ΩB and (ξ, w) ∈ D}

CΩ := {ξ : ∃w ∈ W ∩ ΩB such that (ξ, w) ∈ C)}
DΩ := {ξ : ∃w ∈ W ∩ ΩB such that (ξ, w) ∈ D)} , (C.10)

if and only if there exists a hybrid input w1 such that (ξ, w1) is a solution pair to

system H in (4.2) with |w1| ≤ Ω. �

Proof of Claim C.1.6

The proof is identical to [28, Claim 3.7].

Proposition C.1.7. Suppose that system H in (4.2) satisfies Assumption 4.2.4,
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and it is forward pre-complete from a compact set K0 ⊂ Rn with a disturbance

bound Ω ≥ 0. Then, for each ρ > 0 and T ≥ 0 there exists δ∗ > 0 such

that for all δ ∈ (0, δ∗], each solution pair (x̄, w) of system Hδ in (4.19) with

x̄(0, 0) ∈ (K0 + δB) and |w| ≤ Ω there exists a solution pair (ξ, w1) to system H

with ξ(0, 0) ∈ K0 and |w1| ≤ |w| such that x̄ and ξ are (T, ρ)-close. �

Proof of Proposition C.1.7

Let the compact set K0 and Ω ≥ 0 be given. For some δ > 0, let (x̄, w) be a

solution pair to systemHδ with x̄(0, 0) ∈ (K0+δB) and w with |w| ≤ Ω. Let Ω1 :=

|w| ∈ [0,Ω]. Consider a hybrid inclusionH(Ω1,δ) := {F(Ω1,δ), G(Ω1,δ), C(Ω1,δ), D(Ω1,δ)}
formed as (C.9) with its data being constructed from the systemHδ := {Fδ, Gδ, Cδ, Dδ}
in (4.19):

F(Ω1,δ)(x̄) := {v ∈ R
n : v ∈ Fδ(x̄, w), w ∈ W ∩ Ω1B and (x̄, w) ∈ Cδ}

G(Ω1,δ)(x̄) := {v ∈ R
n : v ∈ Gδ(x̄, w), w ∈ W ∩ Ω1B and (x̄, w) ∈ Dδ}

C(Ω1,δ) := {x̄ : ∃w ∈ W ∩ Ω1B such that (x̄, w) ∈ Cδ)}
D(Ω1,δ) := {x̄ : ∃w ∈ W ∩ Ω1B such that (x̄, w) ∈ Dδ)} . (C.11)

Note that the data {F(Ω1,δ), G(Ω1,δ), C(Ω1,δ), D(Ω1,δ)} in (C.11) satisfies

F(Ω1,δ)(x̄) = conFΩ1
((x̄+ δB) ∩ CΩ1

)) + δB

G(Ω1,δ)(x̄) = GΩ1
((x̄+ δB) ∩DΩ1

) + δB

C(Ω1,δ) = {x̄ : (x̄+ δB) ∩ CΩ1
6= ∅}

D(Ω1,δ) = {x̄ : (x̄+ δB) ∩DΩ1
6= ∅} , (C.12)

with {FΩ1
, GΩ1

, CΩ1
, DΩ1

} defined as (C.10). From (C.12), it is straightforward

that H(Ω1,δ) is an inclusion inflated from HΩ1
:= {FΩ1

, GΩ1
, CΩ1

, DΩ1
}.

Consider arbitrary ρ > 0 and T ≥ 0. Note that forward pre-completeness

of HΩ1
on the set K0 comes from Claim C.1.6 and the assumption that H is

forward pre-complete from K0. Noting that for each ξ ∈ CΩ1
, FΩ1

(ξ) is convex

in Assumption 4.2.4, we have FΩ1
(ξ) = con FΩ1

(ξ) for each ξ ∈ CΩ1
. Using the

results of [56, Corollary 5.2] and [56, Theorem 5.4], we have that there exists

a δ∗ > 0 such that for all δ ∈ (0, δ∗] and for each solution x̄ of H(Ω1,δ) with

x̄(0, 0) ∈ K0 + δB there exists a solution ξ to HΩ1
with ξ(0, 0) ∈ K0 such that x̄
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and ξ are (T, ρ)-close. Consider Hδ in (4.19) and H(Ω1,δ) in (C.11) with δ ∈ (0, δ∗].

Note that for each solution pair (x̄, w) of system Hδ there exists a solution x̄ to

the inclusion H(Ω1,δ). Considering any solution pair (x̄, w) of system Hδ with

x̄(0, 0) ∈ (K0 + δB) and w with |w| = Ω1 ∈ [0,Ω], noting the closeness of solu-

tions x̄ to H(Ω1,δ) and ξ to HΩ1
and applying Claim C.1.6 completes the proof. �

Proposition C.1.8. Suppose that system H in (4.2) satisfies Assumption 4.2.4

and it is forward pre-complete from a compact set K0 ⊂ Rn with a disturbance

bound Ω ≥ 0. Then, for each T ≥ 0 the reachable set

RT (K0,Ω) := {ξ(t, j) : (ξ, w) ∈ S(K0), t+ j ≤ T, |w| ≤ Ω} (C.13)

is compact, where S(K0) denotes the set of maximal solution pairs (ξ, w) to system

H in (4.2) with ξ(0, 0) ∈ K0. �

Proof of Proposition C.1.8

The result follows using Claim C.1.6 and the result of [56, Corollary 4.7]. �

C.1.2 Proof of Theorem 4.4.1

Let Ω,Ω1 > 0 come from the definitions of equi-essential boundedness and local

equi-uniform Lipschitz continuity respectively. Let the compact set K0 be given.

Let T ≥ 0 and ρ > 0 be given. Apply Proposition C.1.7 with the set K0 and

(T, ρ,Ω) to generate a δ∗ > 0 such that for all δ ∈ (0, δ∗] and the system Hδ

inflated from the weak average system Hwa, for each solution pair (x̄, w) to Hδ

with x̄(0, 0) ∈ (K0 + δB) there exists a solution pair (ξ, w1) to system Hwa with

ξ(0, 0) ∈ K0 and |w1| ≤ |w| such that the solutions x̄ and ξ are (T, ρ
2
)-close.

Without loss of generality, assume that δ < 1 and ρ < 1.

Let Swa(K0) denote the set of maximum solution pairs to the weak average

system Hwa with ξ(0, 0) ∈ K0 and define the set K as

RT (K0,Ω) := {ξ(t, j) : (ξ, w) ∈ Swa(K0), t+ j ≤ T, |w| ≤ Ω},
K1 := RT (K0) + B, (C.14)

K := K1 ∪G((K1 × ΩB) ∩D),
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where K1 is compact from Proposition C.1.8. The set K is also compact as G is

outer semi-continuous and locally bounded.

Set K̄ := K × ΩB ⊂ R
n × R

m. Let ηwa(x, w, τ, τ0, µ) be defined as (4.11).

Let K̄ generate L
(
K̄
)
≥ 1 such that Assumption 4.3.4 holds for all ((x1, w1), τa),

((x2, w2), τb) ∈ (C ∩ K̄)× R≥0 and τ0 ∈ [0,min{τa, τb}] with L := L
(
K̄
)
. Let K̄

and Lemma C.1.1 generate αK̄ and pick µ > 0 such that αK̄(µ) ≤ δ
3
. Then, for this

µ, for all ((x, w), τ) ∈
(
C ∩ K̄

)
×R≥0 and τ0 ∈ [0, τ ], we have |ηwa(x, w, τ, τ0, µ)| ≤

δ
3µ
.

Let J :=
(
C ∩ K̄

)
× R≥0. Claim C.1.5 gives us a new function η̃wa that

defined on R
n × R

m × R≥0 → R
n. For the picked µ, the following properties are

satisfied for η̃wa.

1. for all (x, w, τ) ∈ Rn × Rm × R≥0 and τ0 ∈ [0, τ ]:

|η̃wa(x, w, τ, τ0, µ)| ≤
δ

3µ
, (C.15)

2. |η̃wa(x1, w1, τa, τ0, µ)− η̃wa(x2, w2, τb, τ0, µ)| ≤ 2
√
nL(|x1 − x2|+ |w1 −w2|+

|τa − τb|) for each (x1, w1, τa), (x2, w2, τb) ∈ Rn × Rm × R≥0 and τ0 ∈
[0,min{τa, τb}],

3. η̃wa(x, w, τ, τ0, µ) = ηwa(x, w, τ, τ0, µ) for all ((x, w), τ) ∈ (C∩K̄)×R≥0 and

τ0 ∈ [0, τ ].

Let Assumption 4.3.1, δ and the set K̄ generate M
(
K̄
)
≥ 1 and ε∗1 such that

the bounds (4.8) hold with M :=M
(
K̄
)
and ε ∈ (0, ε∗1]. Let ε

∗
2 =

δ
6
√
nL(M+1+Ω1)

,

ε∗3 =
3ρµ
2δ

, ε∗4 = 3µ and ε∗ = min{ε∗1, ε∗2, ε∗3, ε∗4}. Consider ε ∈ (0, ε∗].

Let (x, w, τ) be a solution to the system

HK

ẋ = fε(x, w, τ)

τ̇ = 1
ε

}
((x, w), τ) ∈ (C ∩ K̄)× R≥0,

x+ ∈ G(x, w) ∩K
τ+ ∈ H(x, w, τ)

}
((x, w), τ) ∈ (D ∩ K̄)× R≥0.

(C.16)

Note that the system HK agrees with system Hǫ but with G intersected with K

andC,D intersected withK×ΩB. By construction, for each (t, j) ∈ dom (x, w, τ),

we have (x(t, j), w(t, j)) ∈ K̄. With (C.15) and the definitions of ε, we have for

all (t, j) ∈ dom (x, w, τ):
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|εη̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ)| ≤
εδ

3µ
≤ δ (C.17)

holds for all τ0 ∈ [0, τ(t, j)]. For each (t, j) ∈ dom (x, w, τ), define

x̄(t, j) = x(t, j)− εη̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ), (C.18)

with τ0 := τ(tj , j) and tj := min{t : (t, j) ∈ dom (x, w, τ)}. It follows that x̄ is a

hybrid arc. For each (t, j) ∈ dom x̄ such that for all (t, j + 1) ∈ dom x̄,

(x(t, j), w(t, j)) = (x̄(t, j) + εη̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ), w(t, j)) ∈ D ∩ K̄,

which with (C.17) implies that (x̄(t, j), w(t, j)) ∈ Dδ and

x̄(t, j + 1) = x(t, j + 1)− εη̃wa(x(t, j + 1), w(t, j + 1), τ(t, j + 1), τ0, µ)

∈ (G((x(t, j), w(t, j)) ∩D) + δB) ∩K
⊂ G((x(t, j), w(t, j)) ∩D) + δB

= G((x̄(t, j) + εη̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ), w(t, j)) ∩D) + δB

⊂ G((x̄(t, j) + δB, w(t, j)) ∩D) + δB

= Gδ(x̄(t, j), w(t, j)) .

Moreover, for each j such that the set Ij := {t : (t, j) ∈ dom x̄} has nonempty

interior and for all t ∈ Ij,

(x(t, j), w(t, j)) = (x̄(t, j) + εη̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ), w(t, j)) ∈ C ∩ K̄

implies that (x̄(t, j), w(t, j)) ∈ Cδ. Noting η̃wa is globally Lipschitz continuous,

x̄(·, j) is locally absolutely continuous and the set LW is locally equi-uniformly

Lipschitz continuous, and for almost all t ∈ Ij we have
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˙̄x(t, j)

∈ ẋ(t, j)− ε
∂η̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ)

∂x
ẋ(t, j)

−ε∂η̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ)

∂w
ẇ(t, j)− ∂η̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ)

∂τ

= fε(x(t, j), w(t, j), τ(t, j))− ε
∂η̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ)

∂x
ẋ(t, j)

−ε∂η̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ)

∂w
ẇ(t, j)− f0(x(t, j), w(t, j), τ(t, j))

+fwa(x(t, j), w(t, j))− µη̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ)

∈ fwa(x̄(t, j) + εη̃wa(x(t, j), w(t, j), τ(t, j), τ0, µ), w(t, j)) +
δB

3
+ε2

√
nL(M + 1 + Ω1)B+ αK(µ)B

∈ F (x̄(t, j) + δB, w(t, j)) + δB

⊂ Fδ(x̄(t, j), w(t, j)) , (C.19)

where

[
∂η̃wa(x, w, τ, τ0, µ)

∂x
,
∂η̃wa(x, w, τ, τ0, µ)

∂w
,
∂η̃wa(x, w, τ, τ0, µ)

∂τ

]

can be considered as generalized Jacobian of η̃wa. The sequence of equalities and

inclusions in (C.19) hold from the results in (Section 2.6, [38]) with Assumption

4.3.1, definitions of ε∗ and µ. Then, it follows that (x̄, w) is the solution pair of

system Hδ, and we can conclude that for each (x̄, w) there exists some solution

pair (ξ, w1) to system Hwa such that x̄ and ξ are (T, ρ
2
) close. Moreover, from the

definition of x̄ in (C.18) and definition of ε∗, we know that for the solution pair

(x, w) to system HK , x is (T, ρ
2
) close to x̄ and then it is (T, ρ)-close to ξ.

Next, consider solution pairs of system Hǫ that start in K0. Let (x̃, w) be

a solution pair to system Hǫ with x̃(0, 0) ∈ K0 and |w| ≤ Ω. If x̃ ∈ K for all

(t, j) ∈ dom x̃ with t + j ≤ T , then for each solution pair (x̃, w) of Hǫ, there

exists some solution pair (ξ, w1) of system Hwa such that x̃ is also (T, ρ) close to

ξ. Now, suppose that there exists (t, j) ∈ dom x̃ such that x̃(s, i) ∈ K satisfying

s+ i ≤ t+ j and either

1. (t, j + 1) ∈ dom x̃ and x̃(t, j + 1) 6∈ K or else,

2. there exist a monotonically decreasing sequences ri with the limit limi→∞ ri =

t such that (ri, j) ∈ dom x̃ and x̃(ri, j) 6∈ K for each i.
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The solution pair (x̃, w) must agree with a solution pair of system HK up to time

(t, j), and thus must satisfy x̃ ∈ RT (K0) + ρB. If this follows, by the definition

of K in (C.14) and ρ < 1, which implies that RT (K0) + ρB is contained inside of

K, that neither of these two case can occur. This establishes the result.

C.1.3 Proof of Theorem 4.4.2

The proof of Theorem 4.4.2 follows exactly the same steps in the proof of Theorem

4.4.1 with following changes. Let Ω ≥ 0 comes from the definition of equi-essential

boundedness and δ be same as the proof of Theorem 4.4.1. Let K be defined as

(C.14) for strong average system Hsa. Let the set K̄ := K × ΩB and δ generate

M
(
K̄
)
≥ 1 and ε∗1 such that bounds (4.8) hold withM :=M

(
K̄
)
and ε ∈ (0, ε∗1].

Let ηsa(x, w̃, τ, τ0, µ) be defined as (4.12). Let K̄ generate L
(
K̄
)
≥ 1 such

that Assumption 4.3.5 holds with L := L
(
K̄
)
. Let the set K̄ and Lemma C.1.2

generate αK̄ and pick µ > 0 such that αK̄(µ) ≤ δ
3
. Then, for this µ, for all

0 ≤ τ0 ≤ τ1, w̃ : [τ0, τ1] → W and ((x, w̃(s)), τ) ∈
(
(C1 ×W) ∩ K̄

)
× [τ0, τ1] for

all s ∈ [τ0, τ1], we have |ηsa(x, w̃, τ, τ0, µ)| ≤ δ
3µ
.

Let J := ((C1×W)∩K̄)×R≥0. Using the result in Claim C.1.5, we have the

function η̃sa such that, for the picked µ and for all 0 ≤ τ0 ≤ τ1, w̃ : [τ0, τ1] → W,

the following properties are satisfied:

1. for each (x, w̃(s), τ) ∈ Rn × Rm × [τ0, τ1] for all s ∈ [τ0, τ1]:

|η̃sa(x, w̃, τ, τ0, µ)| ≤
δ

3µ
, (C.20)

2. |η̃sa(x1, w̃, τa, τ0, µ) − η̃sa(x2, w̃, τb, τ0, µ)| ≤ 2
√
nL(|x1 − x2| + |τa − τb|) for

all (x1, w̃(s), τa), (x2, w̃(s), τb) ∈ Rn × Rm × [τ0, τ1] for all s ∈ [τ0, τ1],

3. η̃sa(x, w̃, τ, τ0, µ) = ηsa(x, w̃, τ, τ0, µ) for all ((x, w̃(s)), τ) ∈ ((C1×W)∩K̄)×
[τ0, τ1] for all s ∈ [τ0, τ1].

Let Assumption 4.3.1, δ and the set K̄ generate M
(
K̄
)
≥ 1 and ε∗1 such that

the bounds (4.8) hold with M := M
(
K̄
)
and ε ∈ (0, ε∗1]. Let ε∗2 = δ

6
√
nL(M+1)

,

ε∗3 =
3ρµ
2δ

, ε∗4 = 3µ and ε∗ = min{ε∗1, ε∗2, ε∗3, ε∗4}. Consider ε ∈ (0, ε∗].

Letting (x, w, τ) be a solution to the system HK in (C.16), it follows from

the construction of HK that (x(t, j), w(t, j)) ∈ K̄ for all (t, j) ∈ dom (x, w, τ).

Let τ0 := τ
(
t0j , j

)
and τ1 := τ

(
t1j , j

)
with t0j := min{t : (t, j) ∈ dom (x, w, τ)}
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and t1j := max{t : (t, j) ∈ dom (x, w, τ)}. Let w̃ : [τ0, τ1] → W be defined as

w̃(τ(s, j)) := w(s, j) for each s ∈ {t : (t, j) ∈ dom (x, w, τ)}. With (C.20) and

the definition of ε, it follows that for all (t, j) ∈ dom (x, w, τ),

|εη̃sa(x(t, j), w̃, τ(t, j), τ0, µ)| ≤
εδ

3µ
≤ δ . (C.21)

For each (t, j) ∈ dom (x, w, τ), define

x̄(t, j) = x(t, j)− εη̃sa(x(t, j), w̃, τ(t, j), τ0, µ) .

For each (t, j) ∈ dom x̄ such that for all (t, j + 1) ∈ dom x̄,

(x(t, j), w(t, j))

= (x̄(t, j) + εη̃sa(x(t, j), w̃, τ(t, j), τ0, µ), w(t, j)) ∈ D ∩ K̄

with (C.21) implies that (x̄(t, j), w(t, j)) ∈ Dδ and

x̄(t, j + 1)

= x(t, j + 1)− εη̃sa(x(t, j + 1), w̃, τ(t, j + 1), τ0, µ)

∈ (G((x(t, j), w(t, j)) ∩D) + δB) ∩K
⊂ G((x(t, j), w(t, j)) ∩D) + δB

= G((x̄(t, j) + εη̃sa(x(t, j), w̃, τ(t, j), τ0, µ), w(t, j)) ∩D) + δB

⊂ G((x̄(t, j) + δB, w(t, j)) ∩D) + δB

= Gδ(x̄(t, j), w(t, j)) .

Moreover, for each j such that the set Ij := {t : (t, j) ∈ dom x̄} has nonempty

interior and for all t ∈ Ij,

(x(t, j), w(t, j))

= (x̄(t, j) + εη̃sa(x(t, j), w̃, τ(t, j), τ0, µ), w(t, j)) ∈ C ∩ K̄

implies that (x̄(t, j), w(t, j)) ∈ Cδ. Noting the definition of w̃, instead of (C.19),

we have
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˙̄x(t, j) ∈ ẋ(t, j)− ε
∂η̃sa(x(t, j), w̃, τ(t, j), τ0, µ)

∂x
ẋ(t, j)

−∂η̃sa(x(t, j), w̃, τ(t, j), τ0, µ)
∂τ

= fε(x(t, j), w(t, j), τ(t, j))− f0(x(t, j), w̃(τ(t, j)), τ(t, j))

−ε∂η̃sa(x(t, j), w̃, τ(t, j), τ0, µ)
∂x

ẋ(t, j)

+fsa(x(t, j), w̃(τ(t, j))− µη̃sa(x(t, j), w̃, τ(t, j), τ0, µ)

= fε(x(t, j), w(t, j), τ(t, j))− f0(x(t, j), w(t, j), τ(t, j))

−ε∂η̃sa(x(t, j), w̃, τ(t, j), τ0, µ)
∂x

ẋ(t, j)

+fsa(x(t, j), w(t, j))− µη̃sa(x(t, j), w̃, τ(t, j), τ0, µ)

∈ fsa(x̄(t, j) + εη̃sa(x(t, j), w̃, τ(t, j), τ0, µ), w(t, j)) +
δB

3
+ε2

√
nL(M + 1)B+ αK(µ)

∈ F (x̄(t, j) + δB, w(t, j)) + δB

⊂ Fδ(x̄(t, j), w(t, j)) . (C.22)

Then, it follows that (x̄, w) is the solution pair to system Hδ, and we can conclude

that for any solution pair (x̄, w) there exists some solution pair (ξ, w1) to system

Hsa such that x̄ and ξ are (T, ρ
2
)-close. Then, with the same steps in proof of

Theorem 4.4.1, we can complete the proof.

C.2 Proofs of Theorems 4.4.4 and 4.4.5

C.2.1 Technique results

Proposition C.2.1. Suppose that system H in (4.2) satisfies Assumption 4.2.4,

and it is ISS with respect to (χ, β, γ). Then, for each compact set K0 ⊂ Rn and

each pair of (Ω, ν) ≥ 0 there exists δ > 0 such that for each solution pair (x̄, w)

of system Hδ in (4.19) with x̄0 := x̄(0, 0) ∈ (K0 + δB) and |w| ≤ Ω, the following

holds:

χ(x̄(t, j)) ≤ max{β(χ(x̄0), t+ j), γ(|w|)}+ ν ∀(t, j) ∈ dom x̄ . (C.23)

�

Proof of Proposition C.2.1
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The proof is based on the trajectory method used in [151]. Let the compact

set K0 be given. Let Ω, ν ≥ 0 be arbitrary. Due to the compactness of K0 and

continuity of γ, there exist m > ν + γ(Ω) such that K0 + B is contained in a

compact set {x̄ ∈ Rn : χ(x̄) ≤ m}. Pick large enough T ≥ 0 so that β(m, r) ≤ ν
2

for r ≥ T .

For the compact set K0 and Ω, let K be the reachable set defined as (C.13)

for system H for any (t, j) ∈ dom ξ with t + j ≤ 2T , which is compact from

Proposition C.1.8 with forward pre-completeness of system H on K0, thanks to

the assumed ISS property. Let M ≥ 0 be such that maxξ∈K0
χ(ξ) ≤ M . Using

the continuity of χ and β, and the fact that β(s, l) approaches zero as l ≥ 0 tends

to infinity, let ρ∗1 > 0 be small enough such that

β(s, l − ρ∗1)− β(s, l) ≤ ν

6
∀s ≤M, l ≥ 0 . (C.24)

Let ρ∗2 be sufficiently small such that, for all ξ ∈ K and x̄ ∈ (K + ρ∗2B) satisfying

|ξ − x̄| ≤ ρ∗2, we have

χ(x̄) ≤ χ(ξ) +
ν

6

β(χ(ξ), l) ≤ β(χ(x̄), l) +
ν

6
, ∀ l ≥ 0 . (C.25)

Let ρ = min{ρ∗1, ρ∗2} and ξ0 := ξ(0, 0). Let Proposition C.1.7 with (2T, ρ,Ω)

and the set K0 generate a δ∗ > 0. Consider δ ∈ (0, δ∗] and without loss of

generality assume that δ < 1. From Proposition C.1.7, we know that for each

solution pair (x̄, w) of system Hδ with x̄0 ∈ (K0 + δB) there exists some solution

pair (ξ, w1) of system H with ξ0 ∈ K0 and |w1| ≤ |w| such that x̄ and ξ are

(2T, ρ)-close. Then, with ISS property of H and the definitions of ρ∗ in (C.24)

and (C.25), we have for all (t, j) ∈ dom x̄ with 0 ≤ t+ j ≤ 2T , all solution pairs

(x̄, w) of system Hδ with x̄0 ∈ (K0 + δB) satisfy
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χ(x̄(t, j)) ≤ χ(ξ(s, j)) +
ν

6

≤ max{β(χ(ξ0), t+ j − ρ), γ(|w1|)}+
ν

6

≤ max{β(χ(ξ0), t+ j), γ(|w1|)}+
ν

3

≤ max{β(χ(x̄0), t+ j), γ(|w|)}+ ν

2

≤ max{β(m, t+ j), γ(|w|)}+ ν

2
. (C.26)

In particular, from the choice of T , (C.26) shows that χ(x̄(t, j)) ≤ max
{

ν
2
, γ(|w|)

}
+

ν
2
≤ γ(|w|) + ν for all (t, j) ∈ dom x̄ with T ≤ t+ j ≤ 2T .

Let x̄T := x̄(s, i) and inputs w̄(·, ·) := w(s+ ·, i+ ·) for each (s, i) such that

(s, i) ∈ dom x̄ and s + i = T . For (t, j) ∈ dom x̄ satisfying 2T ≤ t + j ≤ 3T ,

using m > γ(Ω) + ν, (C.26) implies

χ(x̄(t, j)) ≤ max{β(χ(x̄T ), t+ j), γ(|w̄|)}+ ν

2
,

≤ max {β(γ(|w|) + ν, t+ j), γ(|w|)}+ ν

2
≤ γ(|w|) + ν .

Using this fact recursively shows that χ(x̄(t, j)) ≤ γ(|w|)+ν for all (t, j) ∈ dom x̄

with t+ j ≥ T . This bound and (C.26) establish the bound in (C.23). �

C.2.2 Proof of Theorem 4.4.4

Let Ω,Ω1 > 0 come from the definitions of equi-essential boundedness and local

equi-uniform Lipschitz continuity respectively. Let functions (χ, β, γ) come from

the definition of ISS in Def. 3.2.6 for system Hwa. Let the compact set K0 ⊂ Rn

be given, and define

K1 := {x ∈ R
n :

χ(x) ≤ max

{
β

(
max
x̄∈K0

χ(x̄), 0

)
, γ(Ω)

}
+ 1

}

K := K1 ∪G((K1 ×W) ∩D) . (C.27)
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The set K is a compact because of continuity of the proper indicator χ and outer

semi-continuity of the set mapping G : Rn × Rm → Rn.

Let ν ∈ (0, 1). From the Proposition C.2.1, the ν,Ω and the compact set K

generate a δ > 0 such that, each solution pair (x̄, w) of system Hδ inflated from

Hwa with x̄0 := x̄(0, 0) ∈ K + δB satisfies

χ(x̄(t, j)) ≤ max{β(χ(x̄0), t+ j), γ(|w|)}+ ν

3
∀(t, j) ∈ dom x̄ . (C.28)

Without loss of generality, assume that δ < 1. Let K̄ := K × ΩB ⊂ Rn × Rm.

Let K̄ and Lemma C.1.1 generate αK̄ and pick µ > 0 such that αK̄ ≤ δ
3
. Let

K̄, δ and Assumption 4.3.1 generate M
(
K̄
)
> 1 and ε∗1 > 0 such that bounds

(4.8) hold with M := M
(
K̄
)
and ε ∈ (0, ε∗1]. Let Assumption 4.3.4 and the set

K̄ generate L := L
(
K̄
)
≥ 1 so that Assumption 4.3.4 holds for all ((x1, w1), τa),

((x2, w2), τb) ∈ (C ∩ K̄)× R≥0. Let ε
∗
2 =

δ
6
√
nL(M+1+Ω1)

, ε∗3 = 3µ.

System HK defined in (C.16) is introduced. With the continuity of the proper

indicator χ and class-KL function β and the fact that β(m, s) converges to zero

as s ≥ 0 approaches infinity for all m ≥ 0, let ε∗4 > 0 be such that, for all x ∈ K

and x̄ ∈ K + ε∗4LB satisfying |x− x̄| ≤ ε∗4L, the following holds:

χ(x) ≤ χ(x̄) +
ν

3

β(χ(x̄), s) ≤ β(χ(x), s) +
ν

3
, ∀s ∈ R≥0 . (C.29)

Letting ε∗ = min{ε∗1, ε∗2, ε∗3, ε∗4}, for each ε ∈ (0, ε∗], define x̄ as (C.18) with

the same construction method in the proof of Theorem 4.4.1. Then, we can show

that (x̄(t, j), w(t, j)) is a solution pair to the inflated system Hδ, and then (C.28)

holds. Letting x0 := x(0, 0) and using (C.29), for all solution pairs (x, w) ∈ K to

system HK and (t, j) ∈ dom x, we have

χ(x(t, j)) ≤ χ(x̄(t, j)) +
ν

3
,

≤ max{β(χ(x̄0), t+ j), γ(|w|)}+ 2ν

3
≤ max{β(χ(x0), t+ j), γ(|w|)}+ ν . (C.30)
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In particular, since ν < 1, each solution pair to system HK starting in K0 remains

in the compact set

Kν :=

{
x ∈ R

n : χ(x) ≤ max

{
β

(
max
x̄∈K0

χ(x̄), 0

)
, γ(Ω)

}
+ ν

}
.

With ν < 1 and continuity of χ, Kν is contained in K1 defined in (C.27). Finally,

using the same steps in the proof of Theorem 4.4.1, and the bound (C.30) on the

solution pairs of system HK to get conclusions about the solutions of system Hǫ

with x0 ∈ K0, and which establishes the result. �

C.2.3 Proof of Theorem 4.4.5

The proof is nearly identical to the proof of Theorem 4.4.4 except that µ > 0

is generated from Lemma C.1.2 and the definition of ε∗2 should be replaced by

ε∗2 := δ
6
√
nL(M+1)

, where L := L
(
K̄
)
≥ 1 is generated by Assumption 4.3.5 and

the set K̄. �
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D.1 Proof of Lemma 5.4.1

To prove Lemma 5.4.1, we need some technical results that are given first. Con-

sider an arbitrary compact set K ⊂ Rn. Let Sbl(K) denote the set of maximal

solutions (xbl, zbl) : dom (xbl, zbl) 7→ C ×Ψ of the boundary layer system in (5.9)

for (xbl, zbl(0)) ∈ (C ∩K) × Ψ. We first define functions Ybl : R≥0 → Rn × Rm,

which are constructed by piece-wise concatenating the solutions (xbl, zbl) of the

system Hbl.

Definition D.1.1. For any L > 0 and T ≥ 0, let n :=
⌈
T
L

⌉
and F(L,K, T ) be a

set of functions Ybl : [0, T ] → C×Ψ with Ybl := (Xbl,Zbl) such that for each integer

k ∈ {0, · · · , n} there exists yk :=
(
xkbl, z

k
bl

)
∈ Sbl(K) with L ∈ dom

(
xkbl, z

k
bl

)
:

Ybl(s+ kL) = yk(s), ∀ s ∈ [0, L) s.t. (s+ kL) ≤ T . (D.1)

�

Claim D.1.2. Suppose that the set-valued mapping Fav, that is outer semi-

continuous, locally bounded and convex, is an average of f0 with respect to ψ0

on C ×Ψ. Then, for each compact set K ⊂ Rn, L > 0, T ≥ 0 and all functions

(Xbl,Zbl) ∈ F(L,K, T ), there exists a measurable function fZbl
: [0, T ] → Rn

such that fZbl
(s) ∈ Fav(Xbl(s)) for all s ∈ [0, T ], and the following holds for all

t ∈ [0, T ]:

∣∣∣∣
∫ t

0

[f0(Xbl(s),Zbl(s))− fZbl
(s)]ds

∣∣∣∣ ≤ tσK(L) + Lσk(0) .

�

Proof of Claim D.1.2

171



APPENDIX D.

Let a compact set K ⊂ Rn, T ≥ 0 and L > 0 be given and the L-class
function σK be generated by the set K from the definition of average of f0 with

respect to ψ0. For each solution (xbl, zbl) of the boundary layer system, it follows

that there exists a function fzbl : [0, L] → Rn with fzbl(s) ∈ Fav(xbl) for s ∈ [0, L]

from average definition such that:

∣∣∣∣
∫ L

0

[f0(xbl, zbl(s))− fzbl(s)]ds

∣∣∣∣ ≤ LσK(L) . (D.2)

For any t ∈ [0, T ] and given L > 0, let n :=
⌊

t
L

⌋
and then we have t := nL + t̃

with 0 ≤ t̃ < L. For each solution (xkbl, z
k
bl) for k = {1, · · · , n} of the boundary

layer system, let fk
zbl

be generated by the average definition such that (D.2) holds.

Let

fZbl
(s+ kL) := fk

zbl
(s) , ∀ s ∈ [0, L) s.t. (s+ kL) ≤ T . (D.3)

With the definition of the function (Xbl,Zbl) in (D.1), we have

∣∣∣∣
∫ t

0

[f0(Xbl(s),Zbl(s))− fZbl
(s))]ds

∣∣∣∣

≤
∣∣∣∣∣

n−1∑

k=0

∫ (k+1)L

kL

[
f0(x

k
bl, z

k
bl(s− kL))− fzk

bl

(s)
]
ds

∣∣∣∣∣

+

∣∣∣∣∣

∫ nL+t̃

nL

[
f0(x

n
bl, z

n
bl(s− nL))− fzn

bl
(s)
]
ds

∣∣∣∣∣
≤ nLσK(L) + t̃σK(t̃) ≤ tσK(L) + Lσk(0), ∀ t ∈ [0, T ] .

�

Claim D.1.3. Suppose that the set-valued mapping Fav, that is outer semi-

continuous, locally bounded and convex, is an average of f0 with respect to ψ0

on C × Ψ. Then, for each compact set K ⊂ Rn and ν > 0 there exist L, µ∗ > 0

such that, for each T ≥ 0, µ ∈ [0, µ∗] and function (Xbl,Zbl) ∈ F(L,K, T ) there

exists a measurable function fZbl
: [0, T ] → Rn such that fZbl

(s) ∈ Fav(Xbl(s)) for

all s ∈ [0, T ], and η satisfying

η̇ = −µη + f0(Xbl,Zbl)− fZbl
, η(0) = 0,
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the following holds:

µ|η(t)| ≤ ν , ∀ t ∈ [0, T ] .

�

Proof of Claim D.1.3

Let a compact set K ⊂ Rn, T ≥ 0 and ν > 0 be given. Let L > 0 be

large enough such that σK(L) ≤ ν
2(exp(−1)+1)

, where σK is a L-class function

generated by the set K from the definition of average of f0 with respect to ψ0. Let

µ∗ = ν
4LσK(0)

and consider a µ ∈ [0, µ∗]. For each function (Xbl,Zbl) ∈ F(L,K, T ),

let fZbl
be generated by Claim D.1.2.

Let the function φ : R≥0 → Rn be such that

φ̇ = f0(Xbl,Zbl)− fZbl
, φ(0) = 0 .

Then, we have that η̇−φ̇ = −µ(η−φ)−µφ. Integrating this differential equation,

we have

η(t) = φ(t)−
∫ t

0

exp(µ(s− t))(µφ(s))ds . (D.4)

Adding and subtracting µφ(t)
∫ t

0
exp(µ(s− t))ds to the right hand side of (D.4),

we obtain

η(t) = exp(−µt)φ(t) +
∫ t

0

exp(−µ(t− s))[µ(φ(t)− φ(s))]ds .

For any T ≥ 0, we have that

|φ(t)| =
∣∣∣∣
∫ t

0

[f0(Xbl(s),Zbl(s))− fZbl
(s)]ds

∣∣∣∣ ≤ tσk(L) + LσK(0)

holds for all t ∈ [0, T ] from Claim D.1.2.

For any s ∈ [0, T ], letting
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X̃bl(·) := Xbl(s+ ·)
Z̃bl(·) := Zbl(s+ ·)
f̃Zbl

(·) := fZbl
(s+ ·) ,

it follows that

|φ(t)− φ(s)| =
∣∣∣∣
∫ t

s

[f0(Xbl(r),Zbl(r))− fZbl
(r)]dr

∣∣∣∣

=

∣∣∣∣
∫ t−s

0

[f0(Xbl(s+ y),Zbl(s+ y))− fZbl
(s+ y)]dy

∣∣∣∣

=

∣∣∣∣
∫ t−s

0

[f0(X̃bl(y), Z̃bl(y))− f̃Zbl
(y)]dy

∣∣∣∣

≤ (t− s)σk(L) + LσK(0) . (D.5)

Noting (D.5), the definitions of L and µ, and using the fact that y exp(−y) ≤
exp(−1) for all y ≥ 0 and

∫∞
0

exp(−y)ydy = 1, it follows that

µ|η(t)| ≤ µ exp(−µt)(tσK(L) + LσK(0))

+ µ2

∫ t

0

exp(−µ(t− s))[(t− s)σK(L) + LσK(0)]ds

= σK(L)µt exp(−µt) + µLσK(0) exp(−µt) + µ2

∫ t

0

exp(−µr)[rσK(L) + Lσk(0)]dr

≤ σK(L) exp(−1) + σK(L)

∫ µt

0

exp(−y)ydy + µLσK(0)

∫ µt

0

exp(−y)dy

≤ σK(L) exp(−1) + µLσK(0) + σK(L)

∫ ∞

0

exp(−y)ydy

+ µLσK(0)

∫ ∞

0

exp(−y)dy

≤ σK(L)(exp(−1) + 1) + 2µLσK(0) ≤ ν, ∀ t ∈ [0, T ] .

�

We also give the following claim that can be easily obtained by viewing u2

as an input to an exponentially stable linear system with η being initialized as

zero.
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Claim D.1.4. For any function η satisfying η̇ = −µη + u2 with η(0) = 0, the

following holds:

µ|η(t)| ≤ ||u2|| , ∀ t ≥ 0 , (D.6)

where u2 : R≥0 → R
n and ||u2|| = esst≥0|u2(t)|. �

Proof of Claim D.1.4

Consider the differential equation η̇ = −µη+u2 with the Lyapunov function

V (η) = ηTη. Note that for all µ|η| > |u2|,

V̇ = 2ηT (−µη + u2) < 0 ,

which implies that |η(t)| ≤ ||u2||
µ

for all t ≥ 0 and completes the proof. �

Consider a system inflated from the boundary layer system by δ > 0 and its

flow set intersected with a compact set K ⊂ Rn:

ẋ ∈ δB

ż ∈ con ψ0 (((x, z) + δB) ∩ (C ×Ψ)) + δB

}
, (x, z) ∈ (Cδ ∩K)×Ψδ , (D.7)

where

Cδ := {x : (x+ δB ∩ C) 6= ∅}
Ψδ := {z : (z + δB) ∩Ψ 6= ∅} .

With the definition of Hδ
bl, we give the following claim.

Claim D.1.5. For each triple of strictly positive real number (µ, L, ρ) and com-

pact set K ⊂ Rn there exists δ > 0 such that, for each each T̃ > 0 and solution

(x, z) of the system Hδ
bl in (D.7) with

[
0, T̃

]
= dom (x, z) there exists a function

(Xbl,Zbl) ∈ F (L,K, T ) where T ≥ T̃ − ρ such that:

|x(t)− Xbl(t)| ≤ µ

|z(t)− Zbl(t)| ≤ µ

}
, ∀ t ∈

[
0,min

{
T, T̃

}]
.

�
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Proof of Claim D.1.5

Let µ, L, ρ > 0 and any compact set K ⊂ Rn be given. Let Assumption

5.3.1 and the compact set K generate a M > 0 such that |ψ0(x, z)| ≤ M for all

(x, z) ∈ (C ∩K)×Ψ. Let

µ1 := min

{
µ

M + 2
, ρ

}
.

Let δ be generated by Lemma 5.2.4 with the set K and a triple of determined

numbers (L + 1, 0, µ1). For each solution (x, z) of the system Hδ
bl in (D.7) and

T̃ > 0 such that
[
0, T̃

]
= dom (x, z), consider any T ≥ T̃ − ρ.

For the given L, the determined T̃ and T , let

n :=




min
{
T, T̃

}

L



.

For each k ∈ {1, · · · , n − 1}, each solution (x, z) of the system Hδ
bl and l ∈

[0, L+ 1], Lemma 5.2.4 with (L+1, 0, µ1) guarantees that there exists a solution(
xkbl, z

k
bl

)
∈ Sbl(K) of the boundary layer system Hbl and t ∈ dom

(
xkbl, z

k
bl

)
with

|t− l| ≤ µ1 such that:

|x(l + kL)− xkbl(t)| ≤ µ1 ,

|z(l + kL)− zkbl(t)| ≤ µ1 . (D.8)

With the fact that |ẋ| ≤ 1 and |ż| ≤ M + 1 for the system Hδ
bl, we have

the solution (x, z) of Hδ
bl starting from the point

(
xkbl(t), z

k
bl(t)

)
such that |x(0)−

xkbl(t)| ≤ µ1 and |z(0)− zkbl(t)| ≤ µ1 satisfies

|x(t̃)− xkbl(t)| ≤ 2µ1 ≤ µ

|z(t̃)− zkbl(t)| ≤ (M + 2)µ1 ≤ µ

}
, ∀

∣∣t̃− t
∣∣ ≤ δ, (D.9)

which with Lemma 5.2.4 implies that for each k ∈ {1, · · · , n − 1} and solution

(x, z) of Hδ
bl there exists some solution

(
xkbl, z

k
bl

)
of Hbl such that
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|x(t+ kL)− xkbl(t)| ≤ µ

|z(t + kL)− zkbl(t)| ≤ µ

for all t ∈ [0, L+1−µ1]. Noting the fact that µ1 ≤ ρ from its definition, it follows

that the conclusion

|x(t+ kL)− xkbl(t)| ≤ µ

|z(t+ kL)− zkbl(t)| ≤ µ

also holds for all t ∈ [0, L+ 1− ρ]. Similarly, when k = n, we get

|x(t+ nL)− xkbl(t)| ≤ µ

|z(t+ nL)− zkbl(t)| ≤ µ

for all t + nL ≤ T̃ + 1 − ρ and then holds for t + nL ≤ min
{
T, T̃

}
. Noting

the definition of the function (Xbl,Zbl) ∈ F (L,K, T ) in (D.1), the conclusion is

obtained. �

Proof of Lemma 5.4.1

Let a compact set K ⊂ Rn and ν > 0 be given. Let µ∗, L > 0 be gen-

erated from Claim D.1.3 with ν
3
and the set K. Let M > 0 be such that

max{|f0(x, z)|, |Fav(x)|} ≤M/2 for all (x, z) ∈ (C ∩K)×Ψ from the continuity

of f0 and local boundedness of the set-valued mapping Fav.

Considering the continuity property of the function f0 in Assumption 5.3.1,

it follows that for any ν > 0 there exists µ ∈ (0, µ∗) such that

max{|x1 − x2|, |z1 − z2|} ≤ µ ⇒ f0(x1, z1)− f0(x2, z2)| ≤
ν

6
. (D.10)

Let ρ = ν
3(M+1)

. Let Claim D.1.5, the compact set K with (µ, L, ρ) generate

a δ1 > 0. Let δ := min{δ1, ν/6, 1} and Assumption 5.3.1 with K and δ generate

ε∗1 > 0 such that the bounds (5.7) hold for all ε ∈ (0, ε∗1]. Let ε
∗ := min

{
ε∗1,

δ
M+1

}
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and consider a ε ∈ (0, ε∗].

For each solution (x, z) of the system HK and (t, j) ∈ dom (x, z), let Ij :=

{t : (t, j) ∈ dom (x, z)}, t0j := min{t, t ∈ Ij} and T̃j := max{t, t ∈ Ij}. From

the construction of the augmented system HK in (5.24), for each j ∈ {(t, j) ∈
dom (x, z)}, the solution η :

[
t0j , T̃j

]
7→ Rn of system HK agrees with

η̇ ∈ −µη + f(x, z, ε)− F µ
av(x), η

(
t0j
)
= 0. (D.11)

For any T̃j ≥ ρ, let Tj := T̃j − ρ. For each solution (x, z) of the system HK ,

let the function (Xbl,Zbl) ∈ F(K,L, Tj) come from Claim D.1.5 and the function

fZbl
: [t0j , Tj] → Rn be generated by such (Xbl,Zbl) from Claim D.1.3. Noting the

definition of ε and the fact that the solution (x, z) of the system HK only flows

for all t ∈
[
t0j , Tj

]
, the solution (x, z) agrees with the system Hδ

bl defined in (D.7).

Then, the solution of the differential equation

η̇ = −µη + u1 + u2, η
(
t0j
)
= 0. (D.12)

with

u1 := f0(Xbl,Zbl)− fZbl
(t),

u2 := [f(x, z, ε)− f0(x, z)] + [f0(x, z)− f0(Xbl,Zbl)],

agrees with the differential inclusion in (D.11), which due to the fact that fZbl
(s) ∈

Fav(Xbl(s)) ⊂ Fav(Xbl) from Claim D.1.3, |Xbl(s) − x(s)| ≤ µ for all t ∈ [t0j , Tj ]

from Claim D.1.5, and then Fav(Xbl) ⊂ Fav(x + µB) ⊂ F µ
av(x). Then, for each

solution (x, z) of system HK if we can find a solution η of (D.12) such that

µ|η(t)| ≤ ν, then the proof of the lemma is completed.

Consider the response of η separately under inputs u1 and u2 on the time

interval
[
t0j , Tj

]
. For the effect of u1, Claim D.1.3 shows that µ|η| ≤ ν/3. More-

over, Claim D.1.5 with (D.10) shows that |u2(t)| ≤ ν/3 for t ∈ [0, Tj ] and Claim

D.1.4 guarantees that µ|η(t)| ≤ ν/3 for all t ∈ [0, Tj] under u2. Driven by both

u1 and u2, we know that µ|η(t)| ≤ 2ν/3 for all t ∈ [0, Tj] from the superposition

principle.

Using the fact that |u1(t) + u2(t)| ≤ M + 1 for all t ≥ 0 from the definition

of ε∗1 and considering |η(t)| on t ∈
[
Tj , T̃j

]
from an initial point |η(Tj)| ≤ 2ν

3µ
, we

can get
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µ|η(t)| ≤ 2ν

3
+ (M + 1)ρ ≤ ν ∀ t ∈

[
Tj , T̃j

]
. (D.13)

Similarly, we can consider |η(t)| when T̃j ≤ ρ from η
(
t0j
)
= 0 and get

µ|η(t)| ≤ (M + 1)ρ ≤ ν

3
∀ t ∈

[
t0j , T̃j

]
. (D.14)

which completes the proof.

D.2 Proof of Lemma 5.3.5

We need two technical lemmas and the following notations to prove the conclusion

of Lemma 5.3.5. For a compact set Ω ⊂ C × Ψ, let Sbl(Ω) denote the set of

maximal solutions (xbl, zbl) : dom(xbl, zbl) → C ×Ψ of the boundary layer system

Hbl for (xbl, zbl(0)) ∈ Ω. Let F(L,Ω, T ) be defined same as F(L,K, T ) in Def.

D.1.1 with replacing Sbl(K) by Sbl(Ω).

Lemma D.2.1. Suppose that Assumption 5.3.4 holds for a compact set Ω ⊂
C×Ψ. Then, for the set Ω there exists αΩ ∈ K∞ such that, for each ν ∈ (0, 1] there

exists L > 0 such that, for each T ≥ 0 and each function (Xbl,Zbl) ∈ F(L,Ω, T )

there exists a measurable function fZbl
: [0, T ] → Rn such that fZbl

(s) ∈ Fav(Xbl(s))

for all s ∈ [0, T ], and the following holds for all t ∈ (0, T ]:

1

t

∣∣∣∣
∫ t

0

[f0(Xbl(s),Zbl(s))− fZbl
(s)]ds

∣∣∣∣ ≤ ν +
αΩ(1/ν)

t
.�

Proof of Lemma D.2.1

Let σΩ ∈ L come from Assumption 5.3.4. Let arbitrary T ≥ 0 and ν ∈ (0, 1]

be given and let L = σ−1
Ω (ν). Let αΩ ∈ K∞ be such that

σ−1
Ω (1/s) ≤ 1

σΩ(0)
αΩ(s) ∀s ∈ [1,∞) , (D.15)

the existence of αΩ is due to σ−1
Ω (·) is non-decreasing and σ−1

Ω (1/s) is bounded for
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s ∈ [1,∞). Then, we have LσΩ(0) ≤ αΩ(1/ν). For each (Xbl,Zbl) ∈ F(L,Ω, T ),

let fZbl
: [0, T ] → Rn be generated by Claim D.1.2. Combining the fact that

LσΩ(0) ≤ αΩ(1/ν) and the result of Claim D.1.2 completes the proof. �

Lemma D.2.2. Suppose that functions f0 : C×Ψ → Rn and ψ0 : C×Ψ → Ψ are

continuous. Then, for each triple of strictly positive real number (µ, L, ρ) there

exists δ > 0 such that, for each compact set Ω ⊂ C × Ψ and solution (x, z) of

the boundary layer system (5.9) with (x(0), z(0)) ∈ Ω+ δB there exists a function

(Xbl,Zbl) ∈ F (L,Ω, T ) where T ≥ T̃ − ρ and
[
0, T̃

]
= dom (x, z) such that

|x(t)−Xbl(t)| ≤ µ

|z(t)−Zbl(t)| ≤ µ

}
, ∀ t ∈

[
0,min

{
T, T̃

}]
. �

Proof of Lemma D.2.2

Let a compact set Ω ⊂ C × Ψ be given. Let µ, L, ρ > 0 be given. Let

µ1 := min{µ, ρ}. Let L + 1 and µ1 generate a δ1 > 0 by using continuous

dependence of ψ0 on initial conditions to guarantee that solutions of the boundary

layer system Hbl satisfies

|z(t, z1)− z(t, z2)| ≤ µ1 ∀ t ∈ [0, L+ 1− µ1] and |z1 − z2| ≤ δ1 . (D.16)

Let δ := min{δ1, µ1}. For each solution (x, z) ∈ Sbl(Ω) and T̃ > 0 such that[
0, T̃

]
= dom (x, z), consider any T ≥ T̃ − ρ.

For the given L, the determined T̃ and T , let n :=

⌈
min{T,T̃}

L

⌉
. Noting the

definition of δ1, for each k ∈ {1, · · · , n−1} and solution (x, z) of system Hbl with

(x(0), z(0)) ∈ Ω + δB, it follows that there exists a solution
(
xkbl, z

k
bl

)
∈ Sbl(Ω) of

system Hbl and t ∈ dom
(
xkbl, z

k
bl

)
with t ∈ [0, L+ 1− µ1]:

|x(t+ kL)− xkbl(t)| ≤ µ1

|z(t + kL)− zkbl(t)| ≤ µ1 .

When k = n, we get that
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|x(t + nL)− xnbl(t)| ≤ µ1

|z(t + nL)− znbl(t)| ≤ µ1 ,

for all t + nL ≤ min{T, T̃}. Considering the definition of function (Xbl,Ybl) ∈
F(L,Ω, T ) and µ1 ≤ µ, we obtain the conclusion. �

Proof of Lemma 5.3.5

Let a compact set K ⊂ Rn be given. Let the compact set Ω ⊂ (C ∩K)×Ψ

satisfy Assumption 5.3.4 and be GAS for the boundary layer system Hbl with

C replaced by C ∩ K. Let β ∈ KL and σΩ ∈ L come from Definition ?? and

Assumption 5.3.4, respectively. Let the set K with Assumptions 5.3.1 and 5.3.4

generates a MK > 0 such that |f0(x, z)| + |Fav(x)| ≤ MK for all (x, z) ∈ (C ∩
K) × Ψ. For each ν ∈ (0, 1], let L > 0 and αΩ ∈ K∞ be generated by the set Ω

and ν/3 from Lemma D.2.1.

Considering continuity of f0, it follows that for any ν > 0 there exists a

µ1 ∈ (0, 1) such that

max{|x1 − x2|, |z1 − z2|} ≤ µ1 ⇒ f0(x1, z1)− f0(x2, z2)| ≤
ν

3
. (D.17)

Noting outer semi-continuity of the set-valued mapping Fav, for any ν > 0

there exists a µ2 > 0 such that for all µ ∈ (0, µ2) and each measurable function

f1 : [0, L] → Rn with f1(s) ∈ Fav(x(s)) for s ∈ [0, L], the function fµ
1 (s) ∈

Fav(x(s) + µB) for s ∈ [0, L] satisfies

|f1(s)− fµ
1 (s)| ≤

ν

3
, ∀ s ∈ [0, L]. (D.18)

Let µ := min{µ1, µ2}. Let (µ, L, 1) generates a δ > 0 from Lemma D.2.2.

Noting that L(·) is non-increasing function from the fact that L = σ−1
Ω (ν/3)

in the proof of Lemma D.2.1, it follows from the proof of Lemma D.2.2 that δ(ν)

increases when ν grows. From the continuity condition of ψ0 in Assumption 5.3.1

and the set Ω being GAS for system Hbl with respect to β, it follows that there

exists a continuous, strictly decreasing function TK : (0, 1] → R≥0 satisfies

β

(
max

(x,z)∈(C∩K)×Ψ
|(x, z)|Ω, TK(δ)

)
≤ δ. (D.19)
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Noting the properties of the function TK : (0, 1] → R≥0, the fact that

limδ→0 TK(δ) = ∞ and δ(·) is a continuous increasing function, there exists

α̂K ∈ K∞ such that TK(δ(ν)) ≤ α̂K(1/ν).

Noting the definition of MK > 0 and fzbl(s) ∈ Fav(x) for all s ∈ [0, L], for

each solution (x, z) ∈ (C ∩K)×Ψ of system Hbl, we have:

1

L

∣∣∣∣∣

∫ TK(δ(ν))

0

[f0(x, z(s))− fzbl(s)]ds

∣∣∣∣∣ ≤
MKTK(δ(ν))

L
(D.20)

≤ MK α̂K(1/ν)

L
.

From (D.19), we have that all solutions (x, z) of systemHbl satisfy (x(t), z(t)) ∈
Ω + δB when t ≥ TK(δ). Let functions (Xbl,Zbl) come from Lemma D.2.2

and fZbl
be generated by (Xbl,Zbl) from Lemma D.2.1. Noting the definition

of fZbl
in (D.3) and Lemma D.2.2, we have fZbl

(s) = fµ
zbl
(s) ∈ Fav(Xbl(s)) and

|fZbl
(s)− fzbl(s)| ≤ ν

3
holds for s ∈ [0, L] from (D.18). Let

X̃bl(·) := Xbl(·+ TK(δ(ν)))

Z̃bl(·) := Zbl(·+ TK(δ(ν)))

f̃Zbl
(·) := fZbl

(·+ TK(δ(ν))) .

Noting (D.17) and the results of Lemmas D.2.1 and D.2.2, it follows that

1

L

∣∣∣∣
∫ L

TK(δ(ν))

[f0(x, z(s))− fzbl(s)]ds

∣∣∣∣ (D.21)

≤ 1

L

∣∣∣∣
∫ L−1

TK(δ(ν))

[f0(Xbl(s),Zbl(s))− fZbl
(s)]ds

∣∣∣∣+
1

L

∣∣∣∣
∫ L−1

TK(δ(ν))

[fZbl
(s)− fzbl(s)]ds

∣∣∣∣

+
1

L

∫ L−1

TK(δ(ν))

|f0(x, z(s))− f0(Xbl(s),Zbl(s))|ds+
1

L

∣∣∣∣
∫ L

L−1

[f0(x, z(s))− fZbl
(s)]ds

∣∣∣∣ ,

≤ 1

L

∣∣∣∣∣

∫ L−1−TK(δ(ν))

0

[f0

(
X̃bl(s), Z̃bl(s)

)
− f̃Zbl

(s)]ds

∣∣∣∣∣+
2ν

3
+
MK

L
,

≤ ν +
αΩ(3/ν)

L
+
MK

L
.

Combining (D.20) and (D.21), we have
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1

L

∣∣∣∣
∫ L

TK(δ(ν))

[f0(x, z(s))− fzbl(s)]ds

∣∣∣∣ ≤ ν +
αK(1/ν)

L
+
MK

L
, (D.22)

where αK(s) = αΩ(2s) +MK α̂K(s) is of class-K∞ with αΩ and α̂K of class-K∞.

Noting that (D.22) holds for arbitrary ν ∈ (0, 1], let ν = min

{
1, 1

α̃K(
√
L)

}
and

substitute it in (D.22), we get for each solution (x, z) ∈ (C ∩K) × Ψ of system

Hε, there exists a fzbl(s) ∈ Fav(x) such that

1

L

∣∣∣∣
∫ L

0

[f0(x, z(s))− fzbl(s)]ds

∣∣∣∣

≤ min



1,

1

α̃K

(√
L
)



+

max
{
αK(1),

√
L
}

L
+
MK

L
,

:= σK(L),

where σK is of class-L. Noting that the definition of average holds with this σK ,

we know that Fav is the average of f0 with respect to ψ0 on C × Ψ and which

gives the conclusion.
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[115] D. Núñez and P. Torres. On the motion of of an oscillator with a periodically

time-varying mass. Nonlinear Analysis: Real World Application, 10(1976-

1983), 2009.

[116] R. E. O’Malley. Book reviews. Bulletin (New Series) of the American

Mathematical Society, 7(414-420), 1982.
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