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Abstract

Performance of Estimation and Detection Algorithms in Wireless

Networks

by Alex Seak Chon Leong

This thesis focuses on techniques for analyzing the performance of estimation

and detection algorithms under conditions which could be encountered in wireless

networks, with emphasis on wireless sensor networks. These include phenomena such

as measurement losses, fading channels, measurement delays and power constraints.

We first look at the hidden Markov model (HMM) filter with random measure-

ment losses. The loss process is governed by another Markov chain. In the two-state

case we derive analytical expressions to compute the probability of error. In the

multi-state case we derive approximations that are valid at high signal-to-noise ra-

tio (SNR). Relationships between the error probability and parameters of the loss

process are investigated.

We then consider the problem of detecting two-state Markov chains in noise,

under the Neyman-Pearson formulation. Our measure of performance here is the

error exponent, and we give methods for computing this, firstly when channels are

time-invariant, and then for time-varying fading channels. We also characterize the

behaviour of the error exponent at high SNR.

We will look at the fixed lag Kalman smoother with random measurement losses.

We investigate both the notion of estimator stability via expectation of the error

covariance, and a probabilistic constraint on the error covariance. A comparison

with the Kalman filter where lost measurements are retransmitted is made.

Finally we consider the distributed estimation of scalar linear systems using

multiple sensors under the analog forwarding scheme. We study the asymptotic

behaviour of the steady state error covariance as the number of sensors increases.



We formulate optimization problems to minimize the sum power subject to error

covariance constraints, and to minimize the error covariance subject to sum power

constraints. We compare between the performance of multi-access and orthogonal

access schemes, and for fading channels the effects of various levels of channel state

information (CSI).
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Chapter 1

Introduction

In this chapter we will briefly describe the basic concepts related to the topics in this

thesis. We first provide an overview of wireless sensor networks, fading channels, and

measurement losses and delays in wireless networks. We will then give a summary of

the various detection and estimation algorithms studied in the thesis, and mention

some of their main properties. Asymptotic concepts will be utilized in some chapters,

and the notation which we will use in the thesis will be defined. We conclude the

chapter with an outline of the thesis and its main contributions.

1.1 Wireless Sensor Networks

Wireless sensor networks are collections of sensors which can communicate with each

other or to a central node/base station via wireless links. These sensors are equipped

with sensing, computing and communications capabilities. Current and future ad-

vances in hardware technologies have allowed these sensors to become small and

low cost. Potential applications of wireless sensor networks are many, and include

environmental and infrastructure monitoring, healthcare, home automation, target

tracking and surveillance. Recent years have seen a huge interest in wireless sensor

networks by researchers in many different disciplines such as electrical engineering,

computer science, physics and mathematics; some surveys of the field include (Aky-

ildiz et al., 2002; Chong & Kumar, 2003). However many challenges remain before

their full benefits can be realised.

For instance, sensor nodes can be deployed either in predetermined locations

or randomly, and due to their low cost we could have many of them. However

the sensors often run on batteries which are difficult/costly to replace, so that low

1



2 Chapter 1. INTRODUCTION

power and energy consumption is of paramount importance. Another reason why

utilising sensor networks effectively is challenging is because the sensor nodes have

to communicate with each other through unreliable wireless links.

This thesis will focus on techniques for analyzing the performance of signal pro-

cessing algorithms under conditions which could be encountered in wireless networks,

in particular wireless sensor networks. These include channel fading, measurement

losses, measurement delays, and the presence of power constraints. While these is-

sues are prevalent in the communications and networking communities, they have

received much less attention in other areas such as radar and control. Knowledge

of the achievable performance and fundamental limitations of particular algorithms

will be useful both for engineers who wish to apply these algorithms to wireless

networks, as well as motivating the design of new algorithms which may be more

suited to these environments. In the past, underlying assumptions such as all (noisy)

measurements being received at the receiver perfectly without any delay, have often

been used in the literature. However, the increasing use of wireless technologies in

practical systems means that these assumptions may no longer be appropriate. This

thesis will involve the performance analysis of a few algorithms of interest where

such assumptions are relaxed.

1.1.1 Fading channels

Wireless channels are inherently time-varying. The quality of the channel is deter-

mined by factors such as distance, line of sight, channel bandwidths and frequencies

used, and transmission data rates. Fading refers to the random fluctuations in the

amplitude and phase of a signal due to interference between different versions of the

transmitted signal.

The effect of a fading channel on a signal is often modelled as follows. Suppose

a message sk is transmitted through a wireless channel. Then the received message

yk is regarded as

yk = hksk + nk

where nk is a noise term and hk is the channel gain, which models the effect of
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random fluctuations on the amplitude and phase of the signal. Various assumptions

on hk can be made. One can give hk various different probability distributions, such

as Rayleigh when there is no line of sight, or Rician when there is a line of sight,

or others such as Nakagami. Depending on the situation, hk will either change at

every time instant or can be assumed to be constant for a number of time steps.

Even when the channels are time-varying, the successive instances may be either

independent or correlated.

A survey of results on fading channels from an information theoretic viewpoint is

(Biglieri et al., 1998). One issue which can affect the performance of wireless systems

dramatically is the question of how much we know about hk. This is referred to as

channel state information (CSI) in the literature. If the transmitter has knowledge

of the actual values of hk we say that we have full transmitter CSI, and if the

receiver has this knowledge we say that we have full receiver CSI. CSI is often

obtained/estimated by sending some training symbols and taking measurements,

and it may not be feasible for both the transmitter and receiver to have full CSI,

depending on the situation. When the transmitter has full CSI it can do power

control to improve performance, such as increasing capacity or reliability. Even if

one doesn’t have full CSI, if the distribution of hk is known then we can still hope to

gain some improvement over not assuming anything about hk at all, though not as

great as when there is full CSI. From a signal processing perspective, it is important

to be able to characterize the performance of estimation and detection algorithms

in the presence of fading under various different assumptions on the availability of

CSI.

1.1.2 Measurement Losses and Delays

Another phenomenon which can occur in wireless networks that can reduce perfor-

mance is measurement loss. Suppose the measurements are digitized and grouped

together in packets which are then sent over the wireless channel. Then due to col-

lisions the entire packet may be lost entirely (Sinopoli et al., 2004). Depending on

the fading channel quality, we might also decide not to use any corrupted packets

that arrive (Mostofi & Murray, 2005).
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Delays in receiving measurements can occur if lost packets have to be retrans-

mitted. The use of protocols such as Carrier Sense Multiple Access (CSMA), which

involve transmitters checking for existing activity in the channel and deferring trans-

mission if the channel is busy, can also result in delays.

The presence and absence of measurements will also affect the performance of

signal processing algorithms, many of which were originally designed assuming mea-

surements to always be available with negligible delay. Being able to analyze and

characterize the performance of algorithms when there are random packet losses

and/or delays is thus also of interest when doing signal processing in wireless net-

works.

1.2 Signal Detection

General references on hypothesis testing and detection include (Poor, 1994; Kay,

1998; Casella & Berger, 2002). In statistics a fundamental method of inference

is that of hypothesis testing, where we have a number of different hypotheses and

we want to determine which of them is true. To do this one makes a number

of observations (assumed to all be drawn from the same hypothesis) and on the

basis of these observations comes to a decision using a hypothesis test. Here we

concentrate on binary hypothesis testing where there are two hypotheses H0 and

H1. H0 is often called the null hypothesis and H1 the alternative hypothesis. We

also restrict ourselves to simple hypotheses where each of the two hypotheses can

be specified by a single probability distribution. For multiple hypothesis testing and

composite hypothesis testing the reader is referred to the references above.

An example of a simple binary hypothesis testing problem is a signal detection

problem where we have the hypotheses

H0 : yk = wk

H1 : yk = sk + wk (1.1)

for k = 1, . . . , n, i.e. we take n observations before making a decision. Here H0
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represents the situation where our measurements yk consists of random noise wk, and

H1 represents the case where there is a signal sk immersed in noise wk.
1 The signal

sk may either be a known signal, or a random signal where we have some knowledge

of its distribution. The situation (1.1) is often used in radar where sk represents

(the signal generated by) a target, so that H0 would be the case where a target

is not present and H1 the case where a target is present. Some other applications

include communications e.g. receiver detecting whether signals have been sent to it,

seismology e.g. detection of earthquakes, and astronomy e.g. detecting signals from

pulsars.

Two quantities which are of interest in binary hypothesis testing are the prob-

abilities of making the following two types of errors: 1) deciding H1 when H0 is

actually true, known as a Type I error in the statistics literature, and 2) deciding

H0 when H1 is actually true, known as a Type II error. Alternative notation in the

radar literature which is perhaps more illuminating, is to call a Type I error a false

alarm, and a Type II error a missed detection. This is due to the fact that H0 is

commonly used to represent the absence of a target, and H1 the presence of a target.

One way of designing hypothesis tests is to use rules which reduce the probabilities

of these two types of errors from occurring. However in general there is a trade-off

involved in that we cannot reduce both at the same time. Neyman-Pearson detec-

tion and Bayesian detection are two commonly used criteria which will be described

below.

As a preliminary let

L(y1, . . . , yn) ≡
p1(y1, . . . , yn)

p0(y1, . . . , yn)

be the likelihood ratio, where p1 and p0 are the likelihoods (densities) under H1 and

H0 respectively.

1In this thesis we will not be too particular with the distinction between a random vari-
able/process and its realization.
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1.2.1 Neyman-Pearson detection

The Neyman-Pearson criterion, first formalized by J. Neyman and E. Pearson in

(Neyman & Pearson, 1933), is to minimize the probability of missed detection PM

subject to the constraint that the probability of false alarm PFA satisfies PFA ≤ α,

where α is usually chosen to be small.2 It recognises the fact that PFA and PM are not

necessarily of equal importance. For instance, in some applications false alarms may

be highly undesirable, and we want to minimise the probability of missed detection

while guaranteeing that PFA is sufficiently small.

The Neyman-Pearson lemma states that if the null and alternative hypotheses

are both simple, then the optimal test which satisfies the Neyman-Pearson criterion

is to decide H1 if L(y1, . . . , yn) > γ, otherwise decide H0, where γ is determined such

that PFA ≤ α is satisfied. Thus the optimal test involves forming the likelihood ratio

and seeing if it exceeds a certain threshold γ. This threshold can be determined ana-

lytically in some simple situations, though in general one has to resort to simulations

or bounds.

1.2.2 Bayesian detection

When one has prior information P (H0) and P (H1) on the probability of each hy-

pothesis occurring, then Bayesian detection is another commonly used alternative.

Suppose we assign certain costs to error and/or detection events, e.g. let Cij be the

cost of deciding Hi when Hj is true. Then the Bayes risk is defined as

R =
1
∑

i=0

1
∑

j=0

CijP (decide Hi|Hj)P (Hj).

For example, if we assign costs such that C00 = C11 = 0 and C01 = C10 = 1, then

the Bayes risk becomes

P (decide H0|H1)P (H1) + P (decide H1|H0)P (H0)

2Often the solution will be such that PFA = α is achieved, though in complicated situations
one might be satisfied as long as PFA ≤ α is achieved (Casella & Berger, 2002, p.385), hence the
use of the inequality.
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which can be regarded as the average probability of error.

It is known (Poor, 1994) that the hypothesis test which minimizes the Bayes risk

is to decide H1 if L(y1, . . . , yn) > γ, otherwise decide H0, where the threshold γ is

now

γ =
(C10 − C00)P (H0)

(C01 − C11)P (H1)
,

and it is assumed that C10 > C00 and C01 > C11. So like the Neyman-Pearson test,

the Bayesian test also compares the likelihood ratio against a threshold, though

in general the values of the two thresholds will be different. For the case when

C00 = C11 = 0 and C01 = C10 = 1, this reduces to deciding H1 when

p1(y1, . . . , yn)

p0(y1, . . . , yn)
>
P (H0)

P (H1)
,

which can be easily shown to be equivalent to deciding H1 when

P (H1|y1, . . . , yn) > P (H0|y1, . . . , yn)

and deciding H0 otherwise. This is the well-known result that maximum a posteriori

(MAP) detection minimizes the probability of error.

1.3 Signal Estimation

In signal estimation3 we are interested in estimating a process {xk} from measure-

ments {yk} which are related to {xk} in some way. For example, we may have

detected that a target is present, and we now wish to track it. Specifically, at time

k we want to estimate xk, given measurements y1, . . . , ym. Often this estimate is

chosen to be the one with minimum mean squared error (MMSE), i.e. the estimate

x̂k which minimizes

E

[

||Xk − X̂k||2|Y1, . . . , Ym

]

.

3Also referred to as state estimation in some contexts, such as hidden Markov models and linear
systems.
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In the case where m < k, this is referred to as prediction, for m = k as filtering and

for m > k as smoothing.4 From probability theory it is well-known (e.g. (Shiryaev,

1996, p.237)) that the optimal solution is the conditional expectation

X̂k = E [Xk|Y1, . . . , Ym] .

Now if one knows exactly the distribution of p(xk|y1, . . . , ym), then the problem

is essentially solved, e.g. perform a numerical integration to get E [Xk|Y1, . . . , Ym].

However finding p(xk|y1, . . . , ym) is in general very difficult. The subject of nonlinear

filtering deals with these issues, and some recent developments for approximately

solving these problems include particle filters (Arulampalam et al., 2002) and un-

scented filters (Julier & Uhlmann, 2004).

Two commonly used models for describing signals that are considered in this

thesis are hidden Markov models and linear systems. Hidden Markov model filters

(see Section 1.4) are a type of nonlinear filter which can be found exactly because of

its finite state space (assuming the underlying Markov chain is finite state), so that

we can represent the distribution of p(xk|y1, . . . , ym) by a probability mass function.

This is in contrast to a (continuous) probability density which in general requires an

infinite number of parameters to specify5, so that the resulting filter is often infinite

dimensional.

However, recall that the Gaussian distribution is a continuous distribution which

can be completely specified by two parameters, its mean and variance. Furthermore,

linear transformations of Gaussian random variables remain Gaussian. Then in the

case where we have linear systems with additive Gaussian noise, the optimal filter

will turn out to be finite dimensional, and its solution admits a simple recursive

form known as the Kalman filter (see Section 1.5).

4In the literature the term “filtering” is also sometimes used in broad terms to refer to all three
of these situations.

5In mathematics it is well-known that many function spaces are infinite dimensional, even
though the continuous distributions commonly encountered in undergraduate courses might give
the impression that all probability density functions (p.d.f.’s) can be specified by a few parameters.
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1.4 Hidden Markov Models

References on hidden Markov models (HMMs) include (Rabiner, 1989; Ephraim &

Merhav, 2002; Elliott et al., 1995). Let {Xk} be a finite state Markov chain (for

definiteness let it have M states) with transition probability matrix A, i.e. the

entries aij of A represent

aij = P (Xk+1 = j|Xk = i),

and initial probability distribution π0. Let Yk be a random function of Xk (though

not depending on previous values Xk−1, Xk−2, . . . ), with

P (Yk = yk|Xk = i) ≡ bi(yk) (1.2)

known. {Yk} is then conditionally independent given the Markov chain {Xk}. The

term “hidden” refers to the situation where one can only observe {Yk} even though

the Markov chain {Xk} is the underlying process of interest, and one then attempts

to make inferences on Xk based on Yk. A hidden Markov model is often specified as

the tuple (A,B, π0) where B denotes the collection of all bi’s in (1.2). Though it will

not be used in this thesis, we note that hidden Markov models can also be written

in a state space form reminiscent of (1.4)-(1.5) in the next section, however what

one might regard as the process noise term is now no longer independent Gaussian

noise, but a martingale difference sequence (Elliott et al., 1995).

HMMs were first studied in the 1960s by L. Baum and T. Petrie (Baum &

Petrie, 1966), who referred to them as “probabilistic functions of Markov chains”.

In the ensuing years, many applications of HMMs have been found, including speech

recognition, radar, communications, and biology, see (Rabiner, 1989; Ephraim &

Merhav, 2002) and the references therein. As an example, a two-state Markov chain

could be used to model binary data where one of the states corresponds to a 1 and

the other 0, with the transition probabilities of the Markov chain representing the

probability of moving from 1 to 0, or 0 to 1. Some reasons for the popularity of

HMMs is its flexibility in modelling nonlinear phenomena and its amenability to
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implementation due to the finite dimensionality of the HMM filter.6

1.4.1 HMM Filter

Recall from Section 1.3 (also MAP detection in Section 1.2.2) that to perform op-

timal estimation, one is often required to know the distribution of p(xk|y1, . . . , ym).

For the hidden Markov models considered in this thesis, where we assume that {Xk}
is a finite state Markov chain, these are just the conditional probabilities

P (Xk = i|y1, . . . , ym), i = 1, . . . ,M

and the collection of these forms a probability mass function. Since the number of

variables is finite, the filter is finite dimensional and can be derived relatively easily.

Here we present the formulas for the filtering case, HMM prediction and smoothing

can be found in the general references (Rabiner, 1989; Ephraim & Merhav, 2002).

Define

P (Xk = i|y1, . . . , yk) ≡ Πi
k|k

and let Πk|k be the column vector with Πi
k|k as its entries. Then the conditional

probabilty estimates can be computed recursively as follows:

Πk+1|k+1 =
Byk+1

ATΠk|k
[

1 . . . 1
]

Byk+1
ATΠk|k

(1.3)

where

Byk+1
=

















b1(yk+1) 0 . . . 0

0 b2(yk+1) . . . 0
...

...
. . .

...

0 0 . . . bM(yk+1)

















.

Hence the HMM filter admits a recursive form, and is a nonlinear function of the

measurements yk in general, c.f. the Kalman filter of Section 1.5.

6This is true for finite state Markov chains. However the notion of HMMs can also be extended
to Markov chains with countable state spaces or continuous state Markov processes.



1.5. KALMAN FILTERING 11

1.4.2 State Estimation of HMMs

Given observations Y1, . . . , Yk, we wish to find the “best” estimate of Xk based on

these observations. The maximum a posteriori (MAP) rule

X̂k = arg max
j=1,...,M

Πj
k|k

gives the estimate X̂k that minimizes the probability of error P (X̂k 6= Xk). If the

states correspond to e.g. points in Euclidean space, then mean squared error (MSE)

criteria can also been considered, see (Golubev, 2000).

Another related problem is to determine the most likely sequence X1, . . . , Xk

given Y1, . . . , Yk which can be solved by using the Viterbi algorithm (Rabiner, 1989;

Ephraim & Merhav, 2002).

1.5 Kalman Filtering

General references for this section include (Anderson & Moore, 1979) and (Kailath

et al., 2000).

1.5.1 Linear systems

Suppose the process {xk} evolves according to

xk+1 = Akxk + wk (1.4)

and the measurements {yk} are given by

yk = Ckxk + vk, (1.5)
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where Ak and Ck are matrices, and {wk} and {vk} are mutually independent7 white8

Gaussian noise processes with zero mean and covariance matrices Qk ≥ 0 and Rk > 0

respectively. We refer to xk as the state and the problem of estimating xk as a state

estimation problem. The initial state x0 is assumed to be Gaussian with known

mean and covariance matrix. We call wk the process noise and vk the measurement

noise.

Linear systems have many applications in engineering. The use of linear systems

in modelling is ubiquitous in control theory. In radar, the motion of a target can

also be modelled using linear systems. Other situations which have been modelled

using linear systems include variations in daily temperatures and the concentration

of chemicals (air pollution) in the atmosphere.

1.5.2 Kalman filter

A recursive solution to the filtering problem for the linear system (1.4)-(1.5) was

given by R. Kalman in (Kalman, 1960).9 We first introduce some notation. Let

x̂k|m ≡ E [xk|y0, . . . , ym]

and

Pk|m ≡ E
[

(xk − x̂k|m)(xk − x̂k|m)T |y0, . . . , ym
]

7The results can also be derived for more general linear systems such as correlation between the
process and measurement noises, see (Anderson & Moore, 1979).

8Here {wk} being white means that wk and wl are independent random variables for k 6= l.
Similarly for {vk}.

9The continuous time version of the problem was later solved by R. Kalman and R. Bucy in
(Kalman & Bucy, 1961), and is known as the Kalman-Bucy filter.
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represent the state estimates and error covariance matrices of these estimates. Then

the Kalman filtering equations can be written as:10

x̂k+1|k = Akx̂k|k

Pk+1|k = AkPk|kA
T
k +Qk

x̂k+1|k+1 = x̂k+1|k + Pk+1|kC
T
k+1(Ck+1Pk+1|kC

T
k+1 +Rk+1)

−1(yk+1 − Ck+1x̂k+1|k)

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T
k+1(Ck+1Pk+1|kC

T
k+1 +Rk+1)

−1Ck+1Pk+1|k.

(1.6)

The first and second equations of (1.6) are commonly referred to as the time update

equations, the third and fourth equations of (1.6) the measurement update equations.

We note that the Kalman filter equations compute the state estimates and cor-

responding error covariances recursively. It also computes both the filtered estimate

x̂k|k and the one-step ahead predicted estimate x̂k+1|k. The Kalman filter is a linear

filter since the measurements yk are used in a linear fashion to compute the esti-

mates. Another property of the Kalman filter is that the recursions for the error

covariances do not actually depend on the measurements, so can be precomputed

(assuming Ak, Ck, Rk, Qk are known beforehand).11

Now suppose Ak, Ck, Rk, Qk are constant, and we drop the subscript k on these

quantities. Then in many cases the error covariance Pk+1|k converges to a limit P∞

as k → ∞. For stable systems (i.e. the eigenvalues of the matrix A are all less than

1 in magnitude), this is guaranteed and the steady state error covariance P∞ can be

found as the solution of the equation

P∞ = A[P∞ − P∞C
T (CP∞C

T +R)−1CP∞]AT +Q. (1.7)

In general there is no closed form solution for P∞,12 though various routines can

be used to solve for P∞ numerically, such as those found in Matlab. For unstable

10Other equivalent ways of writing these equations are possible, see (Anderson & Moore, 1979;
Kailath et al., 2000).

11When there is random measurement loss as in Chapter 4 this is no longer the case as the error
covariances will then depend on the values of the loss process.

12In the scalar case however closed form solutions can be found, see e.g. Chapter 5.
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systems, P∞ can still exist (as a bounded quantity) and be found by solving the same

equation (1.7), but extra assumptions are needed. One such set of assumptions is

that the system is detectable and stabilizable (Anderson & Moore, 1979).

1.5.3 Kalman smoothers

The original derivations in (Kalman, 1960) allowed one to recursively compute both

the filtered and one-step ahead predicted estimates and their corresponding covari-

ances. Prediction for further instances x̂k+N |k, N > 1 can also be derived easily from

these equations, see (Anderson & Moore, 1979). However, it was not immediate

how to extend these results to smoothing, and it was left to later researchers such as

(Rauch, 1963; Fraser & Potter, 1969) to derive the various smoothers; both (Ander-

son & Moore, 1979) and (Kailath et al., 2000) discuss some of the history of these

results.

There are in fact three different types of smoothers commonly used. The fixed-

point smoother estimates xj for some fixed j, while measurements y1, . . . , yj, yj+1, . . .

are taken. This smoother is used when there is some important time instance at

which one wants to estimate the state accurately as more and more measurements

come in, e.g. an initial time instance.

The fixed-lag smoother estimates xk−N for some fixed lag N from measurements

y1, . . . , yk, which is used to provide on-line smoothing of data as it is received, though

introducing a delay of N .

The fixed-interval smoother considers a fixed interval e.g. [1, 2, . . . ,M ], and

estimates xi for i = 1, . . . ,M based on y1, . . . , yM . This type of smoother is used

when one can do off-line processing of a set of measurements and we want the best

estimate at each time instance based on the entire set of measurements.

1.6 Asymptotic Notation

Suppose we wish to study the asymptotic behaviour of a function f(x) near a point

of interest x0. For instance, if we are interested in the large x behaviour we can take

x0 to be infinity, and for small x behaviour we can take x0 to be zero. Asymptotic
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notation can be used to describe how “close” one function is to another in a math-

ematically precise manner. Below we will fix the notation that will be used in later

chapters, particularly Chapters 3 and 5, noting that other authors sometimes use

the same symbols with slightly different meanings. For further reference see (Olver,

1974).

1) We say that f(x) = O(g(x)) if there is a constant M such that

∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

≤M

for all x in some neighbourhood of x0.

2) We say that f(x) = o(g(x)) if

f(x)

g(x)
→ 0

as x→ x0.

3) We say that f(x) ∼ g(x) if

f(x)

g(x)
→ 1

as x → x0. One thing to note is that f(x) ∼ g(x) does not necessarily mean that

f(x) → g(x) as x → x0. For instance, let f(x) = x2 + x and g(x) = x2. Then

f(x) ∼ g(x) for x→ ∞, but the difference f(x)−g(x) = x is unbounded as x→ ∞.

1.7 Outline and Contributions of Thesis

This thesis deals with the performance analysis of estimation and detection algo-

rithms operating in wireless environments. While assumptions such as those of all

measurements being received without delay may have been satisfactory in the past,

the increasing reliance on wireless technologies means that consideration of phe-

nomena such as measurement losses, fading, delays and power constraints will be of

increasing importance.

The algorithms whose performance we will analyze include the HMM filter,
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Neyman-Pearson detector, and the Kalman filter and smoother. Different notions

of performance are used (depending on the algorithm), such as the probability of

error, the error exponent, steady state error covariances, and notions of stability for

time-varying error covariances. The main contributions of this thesis are contained

in Chapters 2 to 5. Chapters 2 and 3 deal with algorithms related to hidden Markov

models, while Chapters 4 and 5 deal with algorithms related to linear systems and

Kalman filtering. A brief description of each of these chapters follows.

In Chapter 2 we look at the performance of the HMM filter, with random packet

losses governed by another Markov chain. Here we are interested in the probability

of error, specifically methods for computing it analytically/numerically. In the case

where only measurement losses occur but no noise is added, we derive an expression

for the probability of error which is given in terms of an infinite series. We also prove

some monotonicity properties that the parameters of the loss process will have on the

probability of error. In the case where there are both losses and additive Gaussian

noise we further specialise into two-state and multi-state Markov chain situations.

For two-state Markov chains we present a numerical method for computing the

probability of error, and its numerical properties are analyzed. For multi-state

Markov chains, we give an approximation for the probability of error which is valid

at high signal to noise ratio (SNR). The derivation of the approximation is based

on methods used in the noiseless case. Numerical comparisons demonstrating the

accuracy of our formulae with simulation results are presented throughout.

In Chapter 3 we consider the detection of two-state Markov chains in noise and

fading under the Neyman-Pearson criterion. The measure of performance we are

interested in here is the error exponent, which represents the rate at which the

probability of missed detection PM decays for a fixed constraint on the probabil-

ity of false alarm PFA, as the number of samples taken goes to infinity. We first

present a numerical method for computing the error exponent in the case of time-

invariant channels. The method is similar to the numerical method for computing

the probability of error for the noisy two-state case of Chapter 2, even though the

two problems at first appear to be quite different. We also determine the asymptotic

form of the error exponent at high SNR, which is shown to scale linearly with the
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SNR, independently of the values of the Markov chain transition probabilities. We

then extend our numerical method for computing the error exponent to the case of

fading channels without CSI. The asymptotic form at high SNR is determined, and

is now shown to scale logarithmically with the SNR, in contrast to the time-invariant

channel case.

In Chapter 4 we study the Kalman fixed lag smoother with random packet

loss (mainly i.i.d. Bernoulli here), and whether the additional delay introduced

by smoothing brings us any advantages over the Kalman filter. Two different per-

formance criteria will be considered, one being a notion of estimator stability via

boundedness of the expectation of the error covariance (Sinopoli et al., 2004), and

the other a probabilistic notion of performance (Shi et al., 2005) which deals with

questions such as the probability of the error covariance being less than a certain

value at a given time. The equations for the fixed lag smoother with random packet

loss are first derived. We look at the stability of the smoother in terms of the

boundedness of the expectation of the error covariance. We show that for unstable

systems with random losses, Kalman smoothing does not provide any advantage over

Kalman filtering in terms of stability of the estimator, since the critical thresholds

for the arrival rate guaranteeing stability turn out to be the same in both cases.

However, if instead we consider a probabilistic notion of performance then we find

that Kalman smoothing does perform better than Kalman filtering. We also ana-

lyze two simple strategies for retransmitting lost measurements, and we find that in

both cases, their distributions turn out to be the same as the Kalman filter (without

retransmission), so provides no advantage using both notions of performance, but

with the disadvantage of introducing an additional delay.

In Chapter 5 we address the problem of estimation of scalar linear systems with

multiple sensors, using a scheme known as analog forwarding, where the different

sensors make measurements of the scalar state, and transmits directly (uncoded but

with a possible scaling) to the fusion center for further processing. The situation

turns out to be just another linear system, so that optimal state estimation can be

achieved using a Kalman filter. Error covariances will be the measure of performance

in this chapter. In the case where the system is stable and the channels are time-
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invariant, there will be a steady state error covariance. We will consider both a

multi-access scheme and an orthogonal access scheme for the sensors to transmit

their measurements to the fusion center, and make comparisons between them. We

will show that in many situations, as the number of sensors M goes to infinity, the

steady state error covariance converges to the process noise variance at the rate

1/M . Moreover, we find that in the multi-access case this can be achieved even if

the total power used by all sensors is bounded, though this is not possible in the

orthogonal case. Power efficiency will also be another consideration in this chapter.

We formulate and solve two optimization problems, one being to minimize the sum

power subject to an error covariance constraint, the other being to minimize the

error covariance subject to a sum power constraint. Both of these problems turn

out to be convex and hence can be solved efficiently. We then switch to time-varying

fading channels. In the case where CSI is available, there is no notion of a steady

state error covariance, so we look at the error covariance at each individual time

step and perform optimization at each time step. When we don’t have CSI but have

channel statistics, we will derive the best linear estimator whose equations turn out

to be similar to the Kalman filter, and study its performance.



Chapter 2

Hidden Markov Model Filtering with Random

Packet Loss

2.1 Introduction

This chapter studies the probability of error for maximum a posteriori (MAP) esti-

mation of hidden Markov models, where measurements can be either lost or received

according to another Markov process. Estimation with lossy measurements was con-

sidered for linear systems in (Sinopoli et al., 2004), for the Kalman filtering problem

with losses modelled by an independent and identically distributed (i.i.d.) Bernoulli

process.1 They showed that for an unstable system, there exists a threshold such

that if the probability of reception exceeds this threshold then the expected value

(with respect to the loss process) of the error covariance matrix (which is a random

quantity due to random losses) will be bounded, but if the probability of reception

is lower than this threshold then the error covariance diverges. In a slightly different

context, (Tiwari et al., 2005) (also see (Huang & Dey, 2007)) extends these results to

Markovian loss processes, which allows modelling of more “bursty” types of errors.

Estimation with Markovian packet losses was also studied in (Smith & Seiler, 2003),

and sub-optimal estimators were derived which can be used to provide upper bounds

on the estimation errors of the optimal estimator.

The purpose of this chapter is to use some of the ideas relating to lossy mea-

surement processes, but to apply it to the different problem of state estimation

for Markov chains. For HMM estimation problems the state space is often finite,

thus notions of estimation stability as in (Sinopoli et al., 2004) are not appropriate.

1The extension of some of these results to Kalman smoothing is the subject of Chapter 4.

19



20 Chapter 2. HMM FILTERING WITH RANDOM PACKET LOSS

Instead here we will use the probability of estimation error as our measure of per-

formance, also see (Wonham, 1965; Golubev, 2000) for mean square error criterions.

Obtaining analytical expressions for the error performance associated with filtering

for HMMs (even without any loss process) is a difficult problem however, where few

general results are known. Some results for two-state Markov chains in the con-

tinuous time case may be found in (Wonham, 1965). In discrete time, asymptotic

formulae for “slow” Markov chains or Markov chains with “rare transitions” with

finite state space were obtained in (Khasminskii & Zeitouni, 1996) for the probabil-

ity of error, and (Golubev, 2000) for a mean square error criterion. This was later

extended to HMM smoothing for Markov chains with rare transitions in (Shue et al.,

2000). A general characterization of the error probability for the two-state hidden

Markov model in discrete time was derived in (Shue et al., 2001), and a numerical

method to calculate it was proposed. However the problem for general multi-state

Markov chains is still open.

The organisation of the chapter is as follows. We will first study the simpler

problem with observation losses but no noise in Section 2.3. Analytical expressions

for the error probabilities will be derived and some special cases presented in 2.3.1

and 2.3.2 respectively. Some relationships between the error probability and the

parameters of the Markovian loss process are established in 2.3.3 and numerical

studies presented in 2.3.4. Multi-state Markov chains are considered in 2.3.5. We

will then shift our attention to the more general HMM problem with noise in Section

2.4. In 2.4.1 and 2.4.2 we will characterize the error probabilities for the two-state

Markov chain, though using quite different methods. Section 2.4.3 will present some

numerical studies for the noisy case. It is more difficult here to prove properties

similar to the ones in the noiseless case, and some conjectures which will require

further investigation are stated. Section 2.4.4 studies the situation when the signal

is i.i.d. In 2.4.5 and 2.4.6, high SNR approximations for the two-state and multi-state

Markov chains respectively are derived and numerical comparisons made.
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2.2 Model and notational conventions

The main model of interest is

Yk = γ(Zk)h(Xk) + vk. (2.1)

Here {Yk} is the observation process, {vk} is the noise process which will be i.i.d.

and N(0, σ2).2 {Xk} and {Zk} are homogeneous two-state Markov chains3 which are

assumed to be independent of each other, with h(1) = −1, h(2) = 1, γ(1) = 0, γ(2) =

1. h(Xk) can be interpreted as the signal that we wish to estimate, and γ(Zk) as

the correlated loss process, with the correlation modelled by a Markov chain. We

will assume that γ(Zk) is known to us at each time instant. In Sections 2.3.5 and

2.4.6 we will look at the situation where {Xk} is a multi-state Markov chain.

Originally, in the paper (Leong et al., 2007) we followed (Shue et al., 2001)

(also notably in the monograph (Elliott et al., 1995)) and used the conventions

aij = P (Xk+1 = i|Xk = j) and gij = P (Zk+1 = i|Zk = j) for the transition

probabilities. However, to maintain consistency with the rest of the thesis, in this

chapter we will use instead the more common conventions

aij = P (Xk+1 = j|Xk = i) and gij = P (Zk+1 = j|Zk = i)

for the transition probability matrices A = (aij) and G = (gij). Assuming that

a21, a12, g21, g12 6= 0, unique stationary probabilities will then exist and are given by

P (Xk = 1) = a21

a12+a21
, P (Xk = 2) = a12

a12+a21
, P (Zk = 1) = g21

g12+g21
, P (Zk = 2) =

g12
g12+g21

.4

Denote the conditional probability vector for the HMM filter by Πk|k, with the

i-th entry being Πi
k|k = P (Xk = i|Y0 = y0, . . . , Yk = yk, Z0 = z0, . . . , Zk = zk). The

MAP estimate of Xk, which is well-known to minimize the probability of error, is

2Other noise types such as noise with state-dependent variances are possible, but some deriva-
tions will be more complicated.

3Some work on the case where {Xk} is a multi-state Markov chain is considered in Sections
2.3.5 and 2.4.6.

4Strictly speaking, this is true if the initial state of the Markov chain has the same distribution
as the stationary distribution, otherwise this holds only in the limit as k → ∞.
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for the two-state case

X̂k =







1 , Π1
k|k > Π2

k|k

2 , otherwise.

2.3 Noiseless case

We first study the simpler version of the model (2.1)

Yk = γ(Zk)h(Xk)

which does not have the noise term vk. The probability of estimation error that

we derive will be given in terms of an infinite series, which is a more explicit form

than that which will be derived for the noisy case in Section 2.4.1. The noiseless

case considered here is quite suitable for the noisy situation at high SNR, since

(roughly speaking) at high SNR the errors due to the packet loss process tends to

dominate the errors due to the noise term, see for example the discussion at the

end of Section 2.4.5. Indeed, the derivation in Section 2.4.5 of an approximation for

the error probability at high SNR will be based on some of the techniques of this

section.

2.3.1 Derivation of probability of error

For this simple noiseless model, whenever there is no packet loss, i.e. Zk = 2, the

estimate (of h(Xk)) will be the same as the measurement. The probability vectors

Πk|k are therefore updated as:

Πk+1|k+1 =























ATΠk|k , γ(Zk+1) = 0
[

1 0
]T

, γ(Zk+1) = 1, Yk+1 = h(1)
[

0 1
]T

, γ(Zk+1) = 1, Yk+1 = h(2).

So whenever there is no packet loss, the probability vector will “reset” to either
[

1 0
]T

or
[

0 1
]T

, a fact we will exploit in our derivation of the probability of
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error. When a packet is received, no errors will be made, so

P (Error) = P (Error, Zk = 1) + P (Error, Zk = 2) = P (Error, Zk = 1).

This can be further split up as follows:

P (Error, Zk = 1) = P (Error, Zk−1 = 1, Zk = 1) + P (Error, Zk−1 = 2, Zk = 1)

= P (Error, Zk−2 = 1, Zk−1 = 1, Zk = 1)

+ P (Error, Zk−2 = 2, Zk−1 = 1, Zk = 1)

+ P (Error, Zk−1 = 2, Zk = 1)

...

=
∞
∑

n=1

p(n)

where p(n) ≡ P (Error, Zk−n = 2, Zk−n+1 = 1, Zk−n+2 = 1, . . . , Zk = 1).

Expressions for each term p(n) can be derived. Define Π1,n ≡ (An)T
[

1 0
]T

and Π2,n ≡ (An)T
[

0 1
]T

, with Πj
i,n representing the j-th element of Πi,n. For

brevity, also let Z ≡ (Zk−n = 2, Zk−n+1 = 1, Zk−n+2 = 1, . . . , Zk = 1). Then

p(n) = P (Z,Xk = 1, arg max
j

Πj
1,n 6= 1, Xk−n = 1)

+ P (Z,Xk = 2, arg max
j

Πj
1,n 6= 2, Xk−n = 1)

+ P (Z,Xk = 1, arg max
j

Πj
2,n 6= 1, Xk−n = 2)

+ P (Z,Xk = 2, arg max
j

Πj
2,n 6= 2, Xk−n = 2)

=
g12

g12 + g21

g21(1 − g12)
n−1×

[

P (Xk−n = 1)a
(n)
11 IargmaxjΠ

j
1,n 6=1 + P (Xk−n = 1)a

(n)
12 IargmaxjΠ

j
1,n 6=2

+P (Xk−n = 2)a
(n)
21 IargmaxjΠ

j
2,n 6=1 + P (Xk−n = 2)a

(n)
22 IargmaxjΠ

j
2,n 6=2

]

=
g12

g12 + g21

g21(1 − g12)
n−1

2
∑

r,s=1

P (Xk−n = r)a(n)
rs IargmaxjΠ

j
r,n 6=s

(2.2)

where I is the indicator function and a
(n)
ij is the (i, j)-th entry of the matrix An. For
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a more explicit expression for p(n), note that

An =





a21+a12(1−a12−a21)n

a12+a21

a12−a12(1−a12−a21)n

a12+a21

a21−a21(1−a12−a21)n

a12+a21

a12+a21(1−a12−a21)n

a12+a21



 (2.3)

which may be verified using induction. Then

Π1,n =





a21+a12(1−a12−a21)n

a12+a21

a12−a12(1−a12−a21)n

a12+a21





and

Π2,n =





a21−a21(1−a12−a21)n

a12+a21

a12+a21(1−a12−a21)n

a12+a21



 .

Also define

q1
n ≡ a21 − a12 + 2a12(1 − a12 − a21)

n

a12 + a21

q2
n ≡ a21 − a12 − 2a21(1 − a12 − a21)

n

a12 + a21

. (2.4)

Note now that argmaxjΠ
j
1,n = 1 is equivalent to q1

n > 0, argmaxjΠ
j
1,n = 2 is equiv-

alent to q1
n ≤ 0, argmaxjΠ

j
2,n = 1 is equivalent to q2

n > 0, and argmaxjΠ
j
2,n = 2 is

equivalent to q2
n ≤ 0. Then it is easily shown that (2.2) can also be written in the

form

p(n) =



































g12
g12+g21

g21(1 − g12)
n−1
[

a21

a12+a21
a

(n)
11 + a12

a12+a21
a

(n)
21

]

, q1
n ≤ 0, q2

n ≤ 0

g12
g12+g21

g21(1 − g12)
n−1
[

a21

a12+a21
a

(n)
11 + a12

a12+a21
a

(n)
22

]

, q1
n ≤ 0, q2

n > 0

g12
g12+g21

g21(1 − g12)
n−1
[

a21

a12+a21
a

(n)
12 + a12

a12+a21
a

(n)
21

]

, q1
n > 0, q2

n ≤ 0

g12
g12+g21

g21(1 − g12)
n−1
[

a21

a12+a21
a

(n)
12 + a12

a12+a21
a

(n)
22

]

, q1
n > 0, q2

n > 0.

(2.5)

Hence

P (Error) =
∞
∑

n=1

p(n)

where p(n) is given by (2.5), a
(n)
ij is the (i, j)-th entry of An in (2.3), and q1

n and

q2
n are given by (2.4). Numerical computation of such infinite series can be easily
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Table 2.1: Simulation and analytical comparison of noiseless error probabilities
a12 a21 g12 g21 simulation analytical
0.51 0.67 0.06 0.30 0.3591 0.3596
0.31 0.34 0.65 0.97 0.2210 0.2208
0.43 0.91 0.18 0.38 0.2178 0.2178
0.74 0.20 0.69 0.59 0.0982 0.0981
0.04 0.09 0.55 0.69 0.0507 0.0506

handled using computer algebra software such as Mathematica.

In Table 2.1 we compare the derived expression with simulation results for a

selection of different parameter values. We set the distribution of the initial states

of the Markov chains to be equal to the stationary distributions (though by the

exponential forgetting property of the HMM filter (Le Gland & Mevel, 2000; Shue

et al., 1998) the effect of the initial state should not have a major effect for long

runs), and then run Monte Carlo simulations of the filtering updates to obtain the

probability of error. The simulations results were averaged over 10 runs, each run

of length 100000. It may be seen that, not suprisingly, there is very close agreement

at all values considered.

2.3.2 Special cases

In certain cases, the expression for the error probability can be further simplified.

We present two examples.

(i) If a12 = a21 < 0.5 so that A is symmetric, then q1
n > 0 and q2

n ≤ 0 always, and

P (Error) =
∞
∑

n=1

1

2

g12g21

g12 + g21

(1 − g12)
n−1 [1 − (1 − 2a21)

n]

=
g21a21

(g12 + g21)(2a21 + g12 − 2a21g12)
.

(ii) Suppose the signal is i.i.d., i.e. a12 = 1−a21. If a21 ≤ 0.5, then q1
n ≤ 0, q2

n ≤ 0,∀n,

and

P (Error) =
∞
∑

n=1

g12g21

g12 + g21

(1 − g12)
n−1a21 =

a21g21

g12 + g21

.
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If a21 > 0.5, then q1
n > 0, q2

n > 0,∀n, and

P (Error) =
∞
∑

n=1

g12g21

g12 + g21

(1 − g12)
n−1(1 − a21) =

(1 − a21)g21

g12 + g21

.

Figure 2.5 of Section 2.3.4 contains some simulation results for this example. The

linear dependence on the stationary probability g21
g12+g21

when the data is i.i.d. also

holds in the noisy case, see Section 2.4.4.

2.3.3 Theoretical properties

We now demonstrate some relationships between the probability of error and the

parameters of the packet loss process. Proofs of Theorems 2.3.1 - 2.3.3 may be found

in the appendix to this chapter, Section 2.6.

Theorem 2.3.1. For fixed A and g12, the probability of error is monotonically in-

creasing in g21.

Theorem 2.3.2. For fixed A and g21, the probability of error is monotonically de-

creasing in g12.

Theorem 2.3.1 states that the error probability increases as g21 increases, when all

other parameters are fixed. Intuitively this is reasonable, since g21 is the probability

that the next packet is lost given that the current packet has been received, so we

are more likely to drop packets and do worse at estimation when this parameter is

increased. Theorem 2.3.2 is also quite intuitive, as g12 is the probability that the

next packet will be received correctly given that the current packet has been lost,

so increasing this parameter should improve our estimation performance.

For the third result, let p0 be the stationary probability that a measurement is

not received, i.e. p0 = P (Zk = 1) = g21
g12+g21

. Theorem 2.3.3 shows that in general p0

alone does not uniquely determine the error probabilities, but also depends on the

sizes of g12 and g21, which can be interpreted as how quickly/slowly the packet loss

process is varying in time. For example, when both g12 and g21 are small, transitions

from one state to the other are rare, so that we can regard the Markov chain as being

slow. Essentially, Theorem 2.3.3 says that for a given p0, slower dynamics are worse
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for state estimation in that we will get a higher probability of error (except perhaps

when the signal is i.i.d. as noted in example (ii) of Section 2.3.2).

Theorem 2.3.3. (i) For fixed A and p0, the probability of error is non-increasing

in g12 (equivalently in g21).

(ii) The probability of error converges, for fixed p0 and as g12 → 0, to p0E0, where

E0 ≡ min( a12

a12+a21
, a21

a12+a21
) is the probability of error in the complete absence of ob-

servations.

By Theorem 2.3.3 (ii), p0E0 is therefore an upper bound on the error probability.

A lower bound can also be derived, by noting that for p0 ≤ 1
2
, the largest possible

values for g12 and g21 where one can obtain p0 are g12 = 1 and g21 = p0
1−p0

, and for

p0 >
1
2
, the largest possible values are g21 = 1 and g12 = 1−p0

p0
. Substituting these

values into the formula for P (Error) and using Theorem 2.3.3 (i), we then obtain

the lower bound

P (Error) ≥







p0t(1) , p0 ≤ 0.5
∑∞

n=1(1 − p0)
(

2p0−1
p0

)n−1

t(n) , p0 > 0.5.

where t(n) is defined as (also see Section 2.6):

t(n) ≡































a21(a12+a21)
(a12+a21)2

, q1
n ≤ 0, q2

n ≤ 0

a2
21

+2a21a12(1−a21−a12)n+a2
12

(a12+a21)2
, q1

n ≤ 0, q2
n > 0

2a21a12−2a21a12(1−a21−a12)n

(a12+a21)2
, q1

n > 0, q2
n ≤ 0

a12(a12+a21)
(a12+a21)2

, q1
n > 0, q2

n > 0.

As a special case, when a12 = a21 < 0.5 we have the more explicit expression

P (Error) ≥







a21p0 , p0 ≤ 0.5

a21p20
1−2a21+(4a21−1)p0

, p0 > 0.5.

For the i.i.d. signal case, it can also be shown that the upper and lower bounds

coincide.
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Figure 2.1: Noiseless probability of error for various g21

2.3.4 Numerical studies

For the simulations in the first three graphs, the length of each run is one million.

The solid lines represent the theoretical error probability. In Figure 2.1 we plot

the simulated probability of error for 50 values of g21, with a12 = 0.3, a21 = 0.4,

and g12 = 0.5. In Figure 2.2 we plot the simulated probability of error for 50

values of g12, with a12 = 0.3, a21 = 0.4, and g21 = 0.5. In Figure 2.3 we plot the

simulated probability of error for 50 values of g21, with g12 = g21 (i.e. p0 = 0.5 is

fixed), a12 = 0.1 and a21 = 0.1. We can see that the results are in agreement with

Theorems 2.3.1 - 2.3.3 respectively.

For the next two graphs, we randomly generate both g21 and g12, and then form

p0 = g21
g12+g21

. The length of each simulation run is 100000. In Figure 2.4 we plot

the simulated probability of error for 500 values of p0, with a12 = a21 = 0.1, i.e. A

is symmetric. The solid lines are plots of the upper and lower bounds on the error

probability mentioned after the statement of Theorem 2.3.3. The simulation results

can be seen to lie within the bounds. In Figure 2.5 we plot the simulated probability

of error for 500 values of p0, with a12 = 0.3 and a21 = 0.7, i.e. signal is i.i.d. The
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Figure 2.2: Noiseless probability of error for various g12
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Figure 2.3: Noiseless probability of error for various g21, with p0 fixed
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Figure 2.4: Noiseless probability of error and bounds for various p0, symmetric A

linear dependence on the probability of not receiving a packet, agrees with example

(ii) of Section 2.3.2.

2.3.5 Multiple states

We now consider {Xk} as a Markov chain having M > 2 states, with the assumption

that it has a unique stationary distribution. The packet loss process {Zk} is still the

same two-state Markov chain.

The probability vectors are updated as:

Πk+1|k+1 =















































ATΠk|k , γ(Zk+1) = 0
[

1 0 . . . 0
]T

, γ(Zk+1) = 1, Yk+1 = h(1)
[

0 1 . . . 0
]T

, γ(Zk+1) = 1, Yk+1 = h(2)

...
...

[

0 0 . . . 1
]T

, γ(Zk+1) = 1, Yk+1 = h(M)

and MAP estimates of the states are obtained as X̂k = arg maxj=1,...,M Πj
k|k.
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Figure 2.5: Noiseless probability of error for various p0, signal i.i.d.

Define Πi,n ≡ (An)T
[

0 . . . 0 1 0 . . . 0
]T

where the 1 is in the i-th posi-

tion. Then in a straightforward extension of the two-state case (2.2), we can derive

p(n) =
g12

g12 + g21

g21(1 − g12)
n−1

M
∑

r,s=1

P (Xk−n = r)a(n)
rs IargmaxjΠ

j
r,n 6=s

(2.6)

with the probability of error given by P (Error) =
∑∞

n=1 p(n). More explicit ex-

pressions (in terms of the Markov chain parameters) for the stationary probabilities

P (Xk−n = r) and the elements a
(n)
rs would be very complicated to write down with-

out additional structure in the transition matrix A, since for M states, the A matrix

would have M(M−1) free parameters in general. However, given a set of parameters

these quantities can be evaluated on a computer quite easily.

As an example, let g12 = 0.48, g21 = 0.26 and

A =











0.18 0.76 0.06

0.56 0.36 0.08

0.13 0.27 0.60











.
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Computation of the error probability using (2.6) is 0.1527. Simulation results aver-

aged over 10 runs, each of length 100000, gives an error probability of 0.1523, which

is very close to the analytical expression.

As another example, where an explicit expression is available, assume that the

signal is governed by an M -state Markov chain, with ε ≤ 1
M

and transition matrix

A =

















1 − (M − 1)ε ε . . . ε

ε 1 − (M − 1)ε . . . ε
...

...
. . .

...

ε ε . . . 1 − (M − 1)ε

















.

In (Khasminskii & Zeitouni, 1996), a similar model is considered where the off-

diagonal entries are not necessarily identical (the diagonal entries are also not nec-

essarily identical), but need to be close to zero for their asymptotic results to be

valid. Here however, ε does not need to be asymptotically small, only that ε ≤ 1
M

is

satisfied. It can be verified that the (i, j)-th entries of An are

a
(n)
ij =







1
M

(1 + (M − 1)(1 −Mε)n) , i = j

1
M

(1 − (1 −Mε)n) , i 6= j.

Hence

p(n) =
g12g21

g12 + g21

(1 − g12)
n−1M − 1

M
(1 − (1 −Mε)n)

and

P (Error) =
∞
∑

n=1

p(n) =
(M − 1)g21ε

(g12 + g21)(Mε+ g12 −Mεg12)
.

2.4 Noisy case

2.4.1 Derivation of probability of error

In this section we derive expressions for the probability of error in the noisy case.

Unfortunately, the methods used for the noiseless case don’t seem to extend to the
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situation here. We will use a different method, whose analysis is based in part on

(Shue et al., 2001). Recall the model (2.1) from Section 2.2,

Yk = γ(Zk)h(Xk) + vk.

Given Xk and γ(Zk) = 1, the observations Yk are conditionally distributed as

P (Yk ∈ dy|Xk = i, Zk = 2) =
1√

2πσ2
exp

(

−(yk − h(i))2

2σ2

)

dy

≡ bi(yk)dy.

A straightforward modification of (1.3) to incorporate the packet loss shows that

the probability vectors can be updated recursively as follows:

Πk+1|k+1 =















ATΠk|k , γ(Zk+1) = 0

Byk+1
ATΠk|k

[

1 1
]

Byk+1
ATΠk|k

, γ(Zk+1) = 1
(2.7)

where

Byk+1
=





b1(yk+1) 0

0 b2(yk+1)



 .

Using the definition qk ≡ Π1
k|k − Π2

k|k (noting that −1 ≤ qk ≤ 1), the probability of

filtering error can then be written as

P (Error) = P (Xk = 1, X̂k = 2) + P (Xk = 2, X̂k = 1)

= P (Xk = 1, Zk = 1, qk ≤ 0) + P (Xk = 1, Zk = 2, qk ≤ 0)

+ P (Xk = 2, Zk = 1, qk > 0) + P (Xk = 2, Zk = 2, qk > 0)

=

∫ 0

−1

f 1,1
k (q)dq +

∫ 0

−1

f 1,2
k (q)dq +

∫ 1

0

f 2,1
k (q)dq +

∫ 1

0

f 2,2
k (q)dq

(2.8)

where f i,Ik (q)dq ≡ P (Xk = i, Zk = I, qk ∈ (q, q + dq)).

To find a recursive relation which will allow us to characterize the densities
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f i,Ik (q), first consider

P (Xk+1 = i, Zk+1 = I, qk+1 ∈ (q, q + dq), Xk = j, Zk = J, qk ∈ (q̃, q̃ + dq̃))

= P (qk+1 ∈ (q, q + dq)|Xk+1 = i, Zk+1 = I, qk = q̃)

× P (Xk+1 = i, Zk+1 = I|Xk = j, Zk = J) × P (Xk = j, Zk = J, qk ∈ (q̃, q̃ + dq̃))

= Si,I(q, q̃)dq × aijgIJ × f j,Jk (q̃)dq̃

where we have used the Markov property and the independence of {Xk} and {Zk},
and defined

Si,I(q, q̃)dq ≡ P (qk+1 ∈ (q, q + dq)|Xk+1 = i, Zk+1 = I, qk = q̃).

For γ(Zk+1) = 1, i.e. Zk+1 = 2, we can derive in a similar manner to (Shue et al.,

2001) (which only contained expressions for symmetric A) the recursion

qk+1

=
exp(−2yk+1

σ2 )[1 + a21 − a12 + (1 − a21 − a12)qk] − 1 + [a21 − a12 + (1 − a21 − a12)qk]

exp(−2yk+1

σ2 )[1 + a21 − a12 + (1 − a21 − a12)qk] + 1 − [a21 − a12 + (1 − a21 − a12)qk]

(2.9)

and so

Si,2(q, q̃)dq =
1√

2πσ2
exp

[

−(g(q, q̃) − h(i))2

2σ2

]

σ2

1 − q2
dq

with

g(qk+1, qk) = −σ
2

2
ln

(1 + qk+1)[1 − (a21 − a12) − (1 − a21 − a12)qk]

(1 − qk+1)[1 + (a21 − a12) + (1 − a21 − a12)qk]
.

For γ(Zk+1) = 0, i.e. Zk+1 = 1, it is straightforward to show that the recursion

for q is now

qk+1 = a21 − a12 + (1 − a21 − a12)qk. (2.10)
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Thus

Si,1(q, q̃)dq = P (qk+1 ∈ (q, q + dq)|Xk+1 = i, Zk+1 = 1, qk = q̃)

= P (a21 − a12 + (1 − a21 − a12)q̃ ∈ (q, q + dq))

= IB(q, q̃, dq)

where I is the indicator function and

B ≡ {(q, q̃, dq) : a21 − a12 + (1 − a21 − a12)q̃ ∈ (q, q + dq)}.

Hence in the steady state we have the following relations for the densities, which

is a system of four Fredholm integral equations

f i,I(q)dq =
2
∑

j=1

2
∑

J=1

ajigJI

∫ 1

−1

Si,I(q, q̃)f
j,J(q̃)dq̃dq, i = 1, 2, I = 1, 2. (2.11)

2.4.2 Numerical method

To compute the error probability we will need to numerically solve the system of

integral equations (2.11). We will present an existing method which is slightly

different from that of (Shue et al., 2001), where convergence analysis is perhaps

more readily obtained.5

By a result from (Tricomi, 1957, p.151), we can transform (2.11) into a single

integral equation as follows. Define

Φ(q) =































f 1,1(q) , −1 < q < 1

f 1,2(q − 2) , 1 < q < 3

f 2,1(q − 4) , 3 < q < 5

f 2,2(q − 6) , 5 < q < 7

(2.12)

5The method presented here and its analysis can also be applied with slight modifications to
the original problem in (Shue et al., 2001)
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K(q, q̃) =















































































































































































a11g11S1,1(q, q̃) , −1 < q < 1,−1 < q̃ < 1

a11g21S1,1(q, q̃ − 2) , −1 < q < 1, 1 < q̃ < 3

a21g11S1,1(q, q̃ − 4) , −1 < q < 1, 3 < q̃ < 5

a21g21S1,1(q, q̃ − 6) , −1 < q < 1, 5 < q̃ < 7

a11g12S1,2(q − 2, q̃) , 1 < q < 3,−1 < q̃ < 1

a11g22S1,2(q − 2, q̃ − 2) , 1 < q < 3, 1 < q̃ < 3

a21g12S1,2(q − 2, q̃ − 4) , 1 < q < 3, 3 < q̃ < 5

a21g22S1,2(q − 2, q̃ − 6) , 1 < q < 3, 5 < q̃ < 7

a12g11S2,1(q − 4, q̃) , 3 < q < 5,−1 < q̃ < 1

a12g21S2,1(q − 4, q̃ − 2) , 3 < q < 5, 1 < q̃ < 3

a22g11S2,1(q − 4, q̃ − 4) , 3 < q < 5, 3 < q̃ < 5

a22g21S2,1(q − 4, q̃ − 6) , 3 < q < 5, 5 < q̃ < 7

a12g12S2,2(q − 6, q̃) , 5 < q < 7,−1 < q̃ < 1

a12g22S2,2(q − 6, q̃ − 2) , 5 < q < 7, 1 < q̃ < 3

a22g12S2,2(q − 6, q̃ − 4) , 5 < q < 7, 3 < q̃ < 5

a22g22S2,2(q − 6, q̃ − 6) , 5 < q < 7, 5 < q̃ < 7.

Then it can be seen that (2.11) is equivalent to the homogeneous Fredholm equation

Φ(q) −
∫ 7

−1

K(q, q̃)Φ(q̃)dq̃ = 0 (2.13)

with Φ(q) also satisfying the normalising condition
∫ 7

−1
Φ(q)dq = 1. For the numer-

ical solution of (2.13), consider the related eigenvalue problem (Hackbusch, 1995)

γΦ(q) =

∫ 7

−1

K(q, q̃)Φ(q̃)dq̃ (2.14)

which corresponds to (2.13) when γ = 1. We will solve (2.14) using the Nyström

method (Hackbusch, 1995; Atkinson, 1997). Replacing the integral by a 4N -point
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quadrature rule6, and defining

K ≡











w1K(t1, t1) . . . w4NK(t1, t4N)
...

. . .
...

w1K(t4N , t1) . . . w4NK(t4N , t4N)











we obtain

K











Φ(t1)
...

Φ(t4N)











= γ











Φ(t1)
...

Φ(t4N)











where wj represent the weights and tj the quadrature points of the quadrature rule.

In the results presented in this chapter the midpoint rule is used, though other

alternatives such as composite Gauss-Legendre quadrature are possible (Atkinson,

1997, p.110).7

To obtain an approximation for Φ(q), we then take the eigenvector that corre-

sponds to the largest real eigenvalue of K, and normalise it so that
∫ 7

−1
Φ(q)dq = 1

is satisfied. Using a “weak” version of the Perron-Frobenius theorem (Seneta, 1981,

p.28) on K shows that this eigenvector will have non-negative entries, which is re-

quired if it is to approximate a probability density. The probability of error can

then be calculated from (2.8) and (2.12).

We would like the largest eigenvalue to be close to one. As N → ∞, K will

tend to a column stochastic matrix, in the sense that the sum of each column will

converge to one. For example, for the first column

4N
∑

i=1

w1K(ti, t1) →
∫ 1

−1

(

a11g11S1,1(q, t1) + a11g12S1,2(q, t1)

+ a12g11S2,1(q, t1) + a12g12S2,2(q, t1)
)

dq

= a11g11 + a11g12 + a12g11 + a12g12 = 1

where convergence is achieved for any reasonable composite quadrature scheme, such

6We call it a 4N -point rather an N -point quadrature rule for convenience, since Φ(q) is a
combination of 4 densities

7The Gauss-Legendre quadrature rule will be used in Chapter 3 of this thesis.
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as the midpoint rule (Ralston & Rabinowitz, 1978, p.116). Similarly this holds for

the other columns of K. Since a stochastic matrix has largest eigenvalue one, and by

the continuity of eigenvalues (Stewart & Sun, 1990), it then follows that the largest

eigenvalue of K can be made arbitrarily close to one for N sufficiently large. We

can also show that the eigenvector corresponding to the largest eigenvalue is unique.

Note that we can partition K as

K =

















a11g11S11 a11g21S11 a21g11S11 a21g21S11

a11g12S12 a11g22S12 a21g12S12 a21g22S12

a12g11S21 a12g21S21 a22g11S21 a22g21S21

a12g12S22 a12g22S22 a22g12S22 a22g22S22

















(2.15)

with each element representing an N × N matrix. Referring to (2.15) and the

definition of K, it may be easily shown that the blocks aijgIJS12 and aijgIJS22

contain strictly positive entries. The blocks aijgIJS11 and aijgIJS21 can each be

further divided into the form










1

2

3











where blocks 1 and 3 contain all zeros, while block 2 has at least one positive

entry in each row and column, with the sizes of these blocks being the same for all

aijgIJS11 and aijgIJS21. The matrix K is thus reducible since it will have a number

of rows which consist entirely of zeros, and the Perron-Frobenius theorem (Seneta,

1981) is not directly applicable. We can however form a submatrix by deleting the

all-zero rows and the associated columns, without changing the largest eigenvalue.

Due to the structure in the blocks aijgIJS11 and aijgIJS21, it can be seen that

this submatrix is primitive. The Perron-Frobenius theorem may then be applied to

conclude that there is an eigenvalue with magnitude greater than any other, with

a unique eigenvector (up to constant multiples). By the comments above, this will

also hold for the original matrix K.

In Table 2.2 we compare the numerical method with simulation results for a

selection of different parameter values. Here we use N = 1000, and fix σ2 = 1.
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Table 2.2: Simulation and analytical comparison of noisy error probabilities, with
σ2 = 1

a12 a21 g12 g21 simulation analytical
0.89 0.30 0.26 0.93 0.2241 0.2248
0.86 0.97 0.06 0.78 0.3882 0.3887
0.14 0.68 0.07 0.10 0.1415 0.1411
0.07 0.88 0.71 0.87 0.0658 0.0654
0.55 0.50 0.22 0.50 0.3793 0.3789

Simulations results were again averaged over 10 runs, each run of length 100000.

It may be seen that there is very close agreement at the values considered here.

However, for smaller values of σ, it has been observed (see Table 2.3, also (Shue

et al., 2001)) that the accuracy of the numerical method is not so good when using

N = 1000. By the previous statements, the accuracy should increase with N , but

due to memory limitations increasing N substantially is currently not feasible. In

Section 2.4.5 we will derive an approximation for the error probability which is more

computationally tractible and provides close agreement with simulations for small

σ.

2.4.3 Numerical studies

We now show some plots which are analogues of Figures 2.1 - 2.5, with an additional

noise term of variance σ2 = 1. The simulation runs are of length one million for the

first three graphs. In Figure 2.6 we plot the simulated probability of error for 50

values of g21, with a12 = 0.3, a21 = 0.4, and g12 = 0.5. In Figure 2.7 we plot the

simulated probability of error for 50 values of g12, with a12 = 0.3, a21 = 0.4, and

g21 = 0.5. In Figure 2.8 we plot the simulated probability of error for 50 values of

g21, with g21 = g12, a12 = 0.1 and a21 = 0.1. The solid lines represents the analytical

calculation using N = 200. In Figure 2.8 there is a slight but noticeable discrepancy

between the simulation and analytical results at small values of g21. This is due to

the use of N = 200 in the numerical calculuation, as it is found that increasing N to

say 500 would give much closer agreement. For Figures 2.9 and 2.10 the simulations

runs are of length 100000. In Figure 2.9 we plot the simulated probability of error

for 500 random values of p0, with a12 = a21 = 0.1, i.e. A is symmetric. In Figure
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Figure 2.6: Noisy probability of error for various g21

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

g
12

P
(E

rr
or

)

Figure 2.7: Noisy probability of error for various g12
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Figure 2.8: Noisy probability of error for various g21, with p0 fixed
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Figure 2.9: Noisy probability of error for various p0, symmetric A
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Figure 2.10: Noisy probability of error for various p0, signal i.i.d.

2.10 we plot the simulated probability of error for 500 random values of p0, with

a12 = 0.3 and a21 = 0.7, i.e. signal i.i.d. Comparing these graphs with Figures 2.1 -

2.5, we can see that there is a noise floor introduced which tends to shift the graphs

upwards. The noiseless Figures 2.1 - 2.5 also seem to cover a larger range of values

as the parameters vary, one reason could be that there is a greater sensitivity to

packet loss in the noiseless case, since losing packets is the only way in which one

can make an error there.

Proving results similar to Theorems 2.3.1 - 2.3.3 in the noisy case seems to be

very difficult. We will state these as conjectures.

Conjectures

1. For fixed A, σ and g12, the probability of error is monotonically increasing in g21.

2. For fixed A, σ and g21, the probability of error is monotonically decreasing in g12.

3. Let p0 be the stationary probability that a measurement is not received, i.e.

p0 = P (Zk = 1) = g21
g12+g21

. Then for fixed A, σ and p0, the probability of error

is non-increasing with g21. Furthermore, this probability of error converges, for

fixed p0 and as g21 → 0, to p0E0 + (1 − p0)E1, where E1 is the probability of error
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obtained when measurements are always received, and E0 ≡ min( a12

a12+a21
, a21

a12+a21
) is

the probability of error in the complete absence of observations.

The intuition behind conjecture 3 can be explained as follows: In (Le Gland &

Mevel, 2000; Shue et al., 1998), the exponential forgetting property of HMM filters

is demonstrated. For slowly varying dynamics in the loss process, during the (usu-

ally) long periods where we always receive measurements, the probability of error

there would be close to the error probability when we assume that measurements

are always received. Similarly, for the periods when we don’t obtain any observa-

tions, the error probability would be close to the error in the complete absence of

observations. The overall error probability should then be able to be averaged over

these two situations, giving p0E0 + (1 − p0)E1 as the conjectured limit.

2.4.4 Signal is i.i.d.

Signals which are i.i.d. (or close to i.i.d.) are commonly encountered in digital

communications. In Figure 2.10, we saw that when the signal {Xk} is i.i.d., there

seems to be a linear relationship between p0 and the probability of error even when

the loss process is Markovian. In this section we will show that this is indeed the

case. If the signal is i.i.d., the A matrix has the form

A =





a21 1 − a21

a21 1 − a21





and the probability vector updates (2.7) become

Πk+1|k+1 =



































a21

1 − a21



 , γ(Zk+1) = 0





a21b1(yk+1)

a21b1(yk+1)+(1−a21)b2(yk+1)

(1−a21)b2(yk+1)

a21b1(yk+1)+(1−a21)b2(yk+1)



 , γ(Zk+1) = 1

which depends on the values Yk+1 and Zk+1 but which importantly does not depend

on values at previous times. Using this fact, an explicit expression for the error

probability can then be derived quite easily.
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Given Zk = 1, the recursion (2.10) for q is just qk = 2a21 − 1. If a21 > 0.5, then

qk > 0, and

P (Error|Zk = 1) = P (Xk = 2, qk > 0|Zk = 1) = P (Xk = 2) = 1 − a21.

If a21 ≤ 0.5, then qk ≤ 0, and so

P (Error|Zk = 1) = P (Xk = 1, qk ≤ 0|Zk = 1) = P (Xk = 1) = a21.

This can be written more compactly as

P (Error|Zk = 1) = min(a21, 1 − a21).

Next, we have

P (Error|Xk = 1, Zk = 2)

= P (a21b1(Yk) ≤ (1 − a21)b2(Yk)|Xk = 1)

= P

(

a21 exp

(−(Yk + 1)2

2σ2

)

≤ (1 − a21) exp

(−(Yk − 1)2

2σ2

)

|Xk = 1

)

= P

(

Yk ≥ −σ
2

2
ln

(

1 − a21

a21

)

|Xk = 1

)

= P

(

vk ≥ 1 − σ2

2
ln

(

1 − a21

a21

))

= P

(

v′k ≤ − 1

σ

(

1 − σ2

2
ln

(

1 − a21

a21

)))

where v′k is N(0, 1). Similarly,

P (Error|Xk = 2, Zk = 2) = P

(

v′k ≤ − 1

σ

(

1 +
σ2

2
ln

(

1 − a21

a21

)))

,
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and so

P (Error|Zk = 2) = P (Error|Xk = 1, Zk = 2)P (Xk = 1)

+ P (Error|Xk = 2, Zk = 2)P (Xk = 2)

= a21P

(

v′k ≤ − 1

σ

(

1 − σ2

2
ln

(

1 − a21

a21

)))

+ (1 − a21)P

(

v′k ≤ − 1

σ

(

1 +
σ2

2
ln

(

1 − a21

a21

)))

.

(2.16)

The probability of error in the case of i.i.d. data is therefore

P (Error) = P (Error|Zk = 1)P (Zk = 1) + P (Error|Zk = 2)P (Zk = 2)

where we use the expressions for P (Error|Zk = 1) and (2.16), together with the

stationary probabilities for the loss process P (Zk = 1) = g21
g12+g21

and P (Zk = 2) =

g12
g12+g21

. Since P (Zk = 2) = 1 − P (Zk = 1), this probability of error is linear in

P (Zk = 1), for fixed A and σ. The solid line in Figure 2.10 is a plot of this linear

expression, which can be seen to coincide with the simulation results.

2.4.5 High SNR approximation

In this section we will derive an approximate expression for the error in the high

SNR, or small σ regime. When σ is small, we can see from (2.9) that for Yk+1 > 0,

qk+1 ≈ −1, and for Yk+1 < 0, qk+1 ≈ 1. So at high SNR, the probability updates

can be approximated by the simpler sub-optimal scheme

Πk+1|k+1 =























ATΠk|k , γ(Zk+1) = 0
[

1 0
]T

, γ(Zk+1) = 1 , Yk+1 ∈ D1
[

0 1
]T

, γ(Zk+1) = 1 , Yk+1 ∈ D2.

where we have defined the sets D1 ≡ (−∞, 0] and D2 ≡ (0,∞). To derive the

probability of error using such a scheme, first note that

P (Yk ∈ D2|Xk = 1, Zk = 2) = P

(

v′k >
1

σ

)
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and

P (Yk ∈ D1|Xk = 2, Zk = 2) = P

(

v′k >
1

σ

)

,

where v′k is N(0, 1). Using Dc
m to denote the complement of Dm,

P (Error, Zk = 2) = P (Yk ∈ Dc
1, Xk = 1, Zk = 2) + P (Yk ∈ Dc

2, Xk = 2, Zk = 2)

= P (Yk ∈ Dc
1|Xk = 1, Zk = 2)P (Xk = 1)P (Zk = 2)

+ P (Yk ∈ Dc
2|Xk = 2, Zk = 2)P (Xk = 2)P (Zk = 2)

= P

(

v′k >
1

σ

)

P (Zk = 2)

where we have again used the independence of {Xk} and {Zk}.

The derivation of the term P (Error, Zk = 1) is similar to the noiseless error

probability derived in Section 2.3.1, we will use the same notation and point out the

main differences. We can still write

P (Error, Zk = 1) =
∞
∑

n=1

p(n)

where p(n) ≡ P (Error, Zk−n = 2, Zk−n+1 = 1, Zk−n+2 = 1, . . . , Zk = 1) ≡ P (Error, Z),

but now

p(n) = P (Z,Xk = 1, arg max
j

Πj
1,n 6= 1) + P (Z,Xk = 2, arg max

j
Πj

1,n 6= 2)

+ P (Z,Xk = 1, arg max
j

Πj
2,n 6= 1) + P (Z,Xk = 2, arg max

j
Πj

2,n 6= 2)

= P (Z,Xk = 1, arg max
j

Πj
1,n 6= 1, Yk−n ∈ D1, Xk−n = 1)

+ P (Z,Xk = 1, arg max
j

Πj
1,n 6= 1, Yk−n ∈ D1, Xk−n = 2)

+ · · · + P (Z,Xk = 2, arg max
j

Πj
2,n 6= 2, Yk−n ∈ D2, Xk−n = 1)

+ P (Z,Xk = 2, arg max
j

Πj
2,n 6= 2, Yk−n ∈ D2, Xk−n = 2)

=
g12g21

g12 + g21

(1 − g12)
n−1

×
2
∑

r,s,t=1

P (Xk−n = r)a(n)
rs IargmaxjΠ

j
t,n 6=s

P (Yk−n ∈ Dt|Xk−n = r, Zk−n = 2)
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As in the noiseless case, we can write this in a more explicit form

p(n) =
g12

g12 + g21

g21(1 − g12)
n−1

×



























































[

a21

a12+a21
a

(n)
11 + a12

a12+a21
a

(n)
21

]

, q1
n ≤ 0, q2

n ≤ 0

P
(

v′k <
1
σ

)

[

a21

a12+a21
a

(n)
11 + a12

a12+a21
a

(n)
22

]

+ P
(

v′k >
1
σ

)

[

a21

a12+a21
a

(n)
12 + a12

a12+a21
a

(n)
21

]

, q1
n ≤ 0, q2

n > 0

P
(

v′k <
1
σ

)

[

a21

a12+a21
a

(n)
12 + a12

a12+a21
a

(n)
21

]

+ P
(

v′k >
1
σ

)

[

a21

a12+a21
a

(n)
11 + a12

a12+a21
a

(n)
22

]

, q1
n > 0, q2

n ≤ 0
[

a21

a12+a21
a

(n)
12 + a12

a12+a21
a

(n)
22

]

, q1
n > 0, q2

n > 0.

(2.17)

The probability of error of this scheme is therefore

P (Error) = P (Error, Zk = 1) + P (Error, Zk = 2)

=
∞
∑

n=1

p(n) + P

(

v′k >
1

σ

)

g12

g12 + g21

.

with p(n) given by (2.17) and v′k begin N(0, 1).

In Table 2.3 we compare simulation results of the optimal filter together with the

“exact” analytical calculation of Section 2.4.2, and the sub-optimal approximation

just derived. We use a12 = 0.3, a21 = 0.2, g12 = 0.8, g21 = 0.5 and various values of σ.

The computation using the method of Section 2.4.2 was done with N = 1000. For

a further comparison, in the final column we also include simulation results when

there is no packet loss. The simulation runs are of length 10 million.

Firstly, we can see that for values of σ smaller than approximately 0.8, the

numerical method of Section 2.4.2 does not give accurate results when using N =

1000, in fact the accuracy worsens the smaller σ is. Improving the accuracy would

involve increasing N substantially, which in turn increases the computation time and

memory requirements dramatically. We can also see that the sub-optimal expression

gives very good agreement with simulations for small values of σ, moreover it can

be computed very easily with current computer algebra software. Indeed, in this

example the noiseless probability of error can be computed to be 0.1022, so that
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Table 2.3: Comparison of error probabilities for various values of σ
σ simulation approximation Method of Section 2.4.2 no packet loss

1.0 0.2126 0.2279 0.2123 0.1351
0.8 0.1754 0.1859 0.1763 0.0889
0.6 0.1350 0.1400 0.1540 0.0395
0.4 0.1064 0.1071 0.2193 0.0052
0.3 0.1024 0.1025 0.3520 0.00037

even for σ = 0.3, the difference between the noisy and noiseless error probabilities

are almost negligible. Since our approximation (2.17) converges to the noiseless

expression (2.5) as σ → 0, this is one reason why the approximation performs very

well at high SNR.

Comparing the noiseless error probability of 0.1022, the error probabilities with

no packet loss and the error probabilities with both packet loss and noise, it appears

that for σ smaller than around 0.4-0.5, the packet loss starts to dominate for this

example. In general, the σ value where the packet loss term starts to dominate

will depend on other parameters such as g12 and g21, and is an issue that requires

further study. However through our numerical investigations, we have found that σ

around 0.4-0.5 seems to be a reasonable figure for most (randomly generated) sets

of parameter values.

2.4.6 Multiple states - High SNR

For the noisy case with multiple states (and no packet loss), asymptotic results for

the error performance of slow Markov chains exist in the literature e.g. (Khasminskii

& Zeitouni, 1996), (Golubev, 2000), but general expressions for arbitrary Markov

chains are not known. In this section we will treat arbitrary Markov chains with

packet loss at high SNR. We will choose the signal levels h(Xk) to be of M -ary

Pulse-amplitude-modulation (PAM) type. Without loss of generality, we let these

levels be situated at 1, 3, . . . , 2M − 1, i.e.

h(m) = 2m− 1 , m = 1, 2, . . . ,M.
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Define the sets

Dm =



















(−∞, 2] , m = 1

(2m− 2, 2m] , m = 2, 3, . . . ,M − 1

(2m− 2,∞) , m = M.

The optimal way to update the probabilities is the obvious generalization of (2.7),

but which appears to be very difficult to analyze. However, motivated by the high

SNR approximation in the 2-state case, consider the following sub-optimal scheme:

Πk+1|k+1 =















































ATΠk|k , γ(Zk+1) = 0
[

1 0 . . . 0
]T

, γ(Zk+1) = 1, Yk+1 ∈ D1
[

0 1 . . . 0
]T

, γ(Zk+1) = 1, Yk+1 ∈ D2

...
...

[

0 0 . . . 1
]T

, γ(Zk+1) = 1, Yk+1 ∈ DM .

Similar to the two-state case in Section 2.4.5, we can derive

P (Error, Zk = 2) = P (Yk ∈ Dc
1|Xk = 1, Zk = 2)P (Xk = 1)P (Zk = 2) + . . .

+ P (Yk ∈ Dc
M |Xk = M,Zk = 2)P (Xk = M)P (Zk = 2)

= P

(

v′k >
1

σ

)

P (Zk = 2)[2 − P (Xk = 1) − P (Xk = M)]

and

p(n) =
g12g21

g12 + g21

(1 − g12)
n−1

×
M
∑

r,s,t=1

P (Xk−n = r)a(n)
rs IargmaxjΠ

j
t,n 6=s

P (Yk−n ∈ Dt|Xk−n = r, Zk−n = 2).

Therefore

P (Error) = P (Error, Zk = 1) + P (Error, Zk = 2)

= P

(

v′k >
1

σ

)

g12

g12 + g21

[2 − P (Xk = 1) − P (Xk = M)] +
∞
∑

n=1

p(n).
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Table 2.4: Comparison of noisy error probabilities for various values of σ, 3-state
example

σ simulation approximation
1.0 0.2905 0.3276
0.8 0.2444 0.2691
0.6 0.1948 0.2054
0.4 0.1580 0.1595
0.3 0.1524 0.1531

with v′k being N(0, 1). As in the noiseless multi-state case, more explicit expressions

would be very complicated to write down in general.

In Table 2.4 we compare this approximation with simulation results of the op-

timal filter, using the 3-state example of Section 2.3.5 with g12 = 0.48, g21 = 0.26

and

A =











0.18 0.76 0.06

0.56 0.36 0.08

0.13 0.27 0.60











together with an additional noise term. We can again see that the sub-optimal

expression gives good agreement with simulations for small values of σ.

2.5 Conclusion

In this chapter we have derived analytical expressions for the error probability of

HMM filters in the presence of Markovian packet losses, with emphasis on two-

state Markov chains. A number of relationships between the error probabilities

and the parameters of the loss process have been shown via numerical studies, and

theoretical justification has also been obtained in some cases. Chapter 3 will turn

to the problem of detecting whether a signal modelled as a two-state Markov chain

is actually present. While the two problems (in this chapter and Chapter 3) appear

to be quite different, it turns out that some of the techniques used in this chapter

can also be applied there.
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2.6 Appendix

For convenience in our proofs, let us define

s(n) ≡ g12g21

g12 + g21

(1 − g12)
n−1

t(n) ≡































a21(a12+a21)
(a12+a21)2

, q1
n ≤ 0, q2

n ≤ 0

a2
21

+2a21a12(1−a21−a12)n+a2
12

(a12+a21)2
, q1

n ≤ 0, q2
n > 0

2a21a12−2a21a12(1−a21−a12)n

(a12+a21)2
, q1

n > 0, q2
n ≤ 0

a12(a12+a21)
(a12+a21)2

, q1
n > 0, q2

n > 0

(2.18)

so that p(n) = s(n)t(n).

2.6.1 Proof of Theorem 2.3.1

Proof.

dP (Error)

dg21

=
∞
∑

n=1

ds(n)

dg21

t(n) =
∞
∑

n=1

g2
12(1 − g12)

n−1

(g12 + g21)2
t(n).

Term-by-term differentiation of the infinite series can be justified by using the Weier-

strass M -test, see e.g. (Rudin, 1976). It is easy to see from (2.18) or (2.5) that

the t(n) terms are all positive. As each term in the sum is greater than zero,

dP (Error)
dg21

> 0.

2.6.2 Proof of Theorem 2.3.2

While the statement of Theorem 2.3.2 looks similar to that of Theorem 2.3.1, the

proof is not as straightforward. Before we prove this, we need the following technical

result.

Lemma 2.6.1. The terms t(n) given by (2.18) form a non-decreasing sequence.

Proof. We will prove this lemma assuming throughout that a21 ≤ a12. The argu-

ments when a21 > a12 are almost identical and will be omitted.
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The proof will be divided up into the situations a21 + a12 < 1, a21 + a12 > 1 and

a21 + a12 = 1.

We first consider the situation a21 + a12 < 1. We need to look at the following

four cases.

1. q1
n ≤ 0 and q2

n ≤ 0

By definition (2.4), this implies 2a12(1− a21 − a12)
n ≤ a12 − a21 and −2a21(1− a21 −

a12)
n ≤ a12 − a21. Then

a21 − a12 + 2a12(1 − a21 − a12)
n+1 ≤ a21 − a12 + (a12 − a21)(1 − a21 − a12) ≤ 0

a21 − a12 − 2a21(1 − a21 − a12)
n+1 ≤ a21 − a12 + (a12 − a21)(1 − a21 − a12) ≤ 0

so that q1
n+1 ≤ 0 and q2

n+1 ≤ 0, and hence t(n+ 1) = t(n) = a21

a21+a12
from (2.18).

2. q1
n ≤ 0 and q2

n > 0

This would imply 2a12(1−a21−a12)
n ≤ a12−a21 and −2a21(1−a21−a12)

n > a12−a21.

However the second assertion is a contradiction, so this case cannot occur.

3. q1
n > 0 and q2

n ≤ 0

This would imply 2a12(1−a21−a12)
n > a12−a21 and −2a21(1−a21−a12)

n ≤ a12−a21.

Then

a21 − a12 + 2a12(1 − a21 − a12)
n+1 > a21 − a12 + (a12 − a21)(1 − a21 − a12)

a21 − a12 − 2a21(1 − a21 − a12)
n+1 ≤ a21 − a12 + (a12 − a21)(1 − a21 − a12) ≤ 0.

So either q1
n+1 > 0 and q2

n+1 ≤ 0, or q1
n+1 ≤ 0 and q2

n+1 ≤ 0. If q1
n+1 > 0 and q2

n+1 ≤ 0,

then

t(n+ 1) =
2a21a12 − 2a21a12(1 − a21 − a12)

n+1

(a21 + a12)2

>
2a21a12 − 2a21a12(1 − a21 − a12)

n

(a21 + a12)2
= t(n)

since (1 − a21 − a12)
n+1 < (1 − a21 − a12)

n.
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If q1
n+1 ≤ 0 and q2

n+1 ≤ 0, then

(a21 + a12)
2[t(n+ 1) − t(n)] = a2

21 + a21a12 − 2a21a12 + 2a21a12(1 − a21 − a12)
n

= a2
21 − a21a12 + 2a21a12(1 − a21 − a12)

n

> a2
21 − a21a12 + a21(a12 − a21) = 0.

4. q1
n > 0 and q2

n > 0

This would imply 2a12(1−a21−a12)
n > a12−a21 and −2a21(1−a21−a12)

n > a12−a21.

The second assertion is a contradiction. We thus see that for a21 + a12 < 1, t(n) is

non-decreasing with n in each case.

Now consider the situation a21 + a12 > 1. We have the following four cases:

1. q1
n ≤ 0 and q2

n ≤ 0

This implies 2a12(1−a21−a12)
n ≤ a12−a21 and −2a21(1−a21−a12)

n ≤ a12−a21. We

have 2a12(1−a21−a12)
n+1 ≥ (a12−a21)(1−a21−a12) and −2a21(1−a21−a12)

n+1 ≥
(a12 − a21)(1 − a21 − a12), or

−2a21(1 − a21 − a12)
n+1 ≤ −a21

a12

(a12 − a21)(1 − a21 − a12)

and

2a12(1 − a21 − a12)
n+1 ≤ −a12

a21

(a12 − a21)(1 − a21 − a12).

Then

a21 − a12 + 2a12(1 − a21 − a12)
n+1 ≤ a21 − a12 +

a12

a21

(a21 − a12)(1 − a21 − a12)

= (a21 − a12)
(a21 + a12)(1 − a12)

a21

≤ 0

and

a21 − a12 − 2a21(1 − a21 − a12)
n+1 ≤ a21 − a12 +

a21

a12

(a21 − a12)(1 − a21 − a12)

= (a21 − a12)
(a21 + a12)(1 − a21)

a12

≤ 0,

so that q1
n+1 ≤ 0 and q2

n+1 ≤ 0, and hence t(n+ 1) = t(n).
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2. q1
n ≤ 0 and q2

n > 0

This implies 2a12(1− a21 − a12)
n ≤ a12 − a21 and −2a21(1− a21 − a12)

n > a12 − a21,

which in turns implies that (1 − a21 − a12)
n < 0. Then

a21 − a12 + 2a12(1 − a21 − a12)
n+1 ≥ a21 − a12 + (a12 − a21)(1 − a21 − a12)

a21 − a12 − 2a21(1 − a21 − a12)
n+1 < a21 − a12 + (a12 − a21)(1 − a21 − a12) ≤ 0.

So either q1
n+1 ≤ 0 and q2

n+1 ≤ 0, or q1
n+1 > 0 and q2

n+1 ≤ 0. If q1
n+1 ≤ 0 and q2

n+1 ≤ 0,

(a21 + a12)
2[t(n+ 1) − t(n)] = a2

21 + a21a12 − a2
21 − 2a21a12(1 − a21 − a12)

n − a2
12

= a21a12 − 2a21a12(1 − a21 − a12)
n − a2

12

> a21a12 + a12(a12 − a21) − a2
12 = 0.

If q1
n+1 > 0 and q2

n+1 ≤ 0,

(a21+a12)
2[t(n+ 1) − t(n)]

= 2a21a12 − 2a21a12(1 − a21 − a12)
n+1 − a2

21 − 2a21a12(1 − a21 − a12)
n − a2

12

= −2a21a12(1 − a21 − a12)
n(2 − a21 − a12) − (a21 − a12)

2

> a12(a12 − a21)(2 − a21 − a12) − (a21 − a12)
2

= (1 − a12)(a
2
12 − a2

21) ≥ 0.

3. q1
n > 0 and q2

n ≤ 0

This implies 2a12(1− a21 − a12)
n > a12 − a21 and −2a21(1− a21 − a12)

n ≤ a12 − a21,

which in turns implies that (1 − a21 − a12)
n > 0. Then

a21 − a12 + 2a12(1 − a21 − a12)
n+1 < a21 − a12 + (a12 − a21)(1 − a21 − a12) ≤ 0

a21 − a12 − 2a21(1 − a21 − a12)
n+1 ≥ a21 − a12 + (a12 − a21)(1 − a21 − a12).
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So either q1
n+1 ≤ 0 and q2

n+1 ≤ 0, or q1
n+1 ≤ 0 and q2

n+1 > 0. If q1
n+1 ≤ 0 and q2

n+1 ≤ 0,

(a21 + a12)
2[t(n+ 1) − t(n)] = a2

21 + a21a12 − 2a21a12 + 2a21a12(1 − a21 − a12)
n

= a2
21 − a21a12 + 2a21a12(1 − a21 − a12)

n

> a2
21 − a21a12 + a21(a12 − a21) = 0.

If q1
n+1 ≤ 0 and q2

n+1 > 0,

(a21+a12)
2[t(n+ 1) − t(n)]

= a2
21 + 2a21a12(1 − a21 − a12)

n+1 + a2
12 − 2a21a12 + 2a21a12(1 − a21 − a12)

n

= (a21 − a12)
2 + 2a21a12[(1 − a21 − a12)

n+1 + (1 − a21 − a12)
n] > 0

since (1 − a21 − a12)
n > 0 and |(1 − a21 − a12)

n| > |(1 − a21 − a12)
n+1|.

4. q1
n > 0 and q2

n > 0

This implies 2a12(1− a21 − a12)
n > a12 − a21 and −2a21(1− a21 − a12)

n > a12 − a21.

This is not possible since of the terms 2a12(1 − a21 − a12)
n,−2a21(1 − a21 − a12)

n,

one must be positive and one negative, but a12 − a21 ≥ 0. Hence for a21 + a12 > 1,

t(n) is also non-decreasing with n in all cases.

The final situation with a21 + a12 = 1 is straightforward, only the case q1
n ≤ 0

and q2
n ≤ 0 can occur, and

t(n) =
a21

a21 + a12

,∀n.

Now we can prove Theorem 2.3.2.

Proof. First,

dP (Error)

dg12

=
∞
∑

n=1

ds(n)

dg12

t(n)

=
∞
∑

n=1

−g21(1 − g12)
n−2[g2

12(n− 1) + g21(ng12 − 1)]

(g12 + g21)2
t(n).

(2.19)
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Showing that this quantity is negative is equivalent to showing that

∞
∑

n=1

−(1 − g12)
n−2[g2

12(n− 1) + g21(ng12 − 1)]t(n) < 0.

Unlike the proof of Theorem 2.3.1, not every term in the summation here is negative.

However, it is not difficult to show that for m ≡
⌊

g2
12

+g21
g2
12

+g21g12

⌋

, the first m terms will

be positive, while the rest will be negative. We may then use Lemma 2.6.1 to obtain

the bound

∞
∑

n=1

−(1 − g12)
n−2[g2

12(n− 1) + g21(ng12 − 1)]t(n)

≤ t(m)
∞
∑

n=1

−(1 − g12)
n−2[g2

12(n− 1) + g21(ng12 − 1)].

To complete the proof, we note the following closed form expression, which can be

verified using induction:

k
∑

n=1

−(1−g12)
n−2[g2

12(n−1)+g21(ng12−1)] = −1+(1−g12)
k−1[1+g12(k−1)+g21k].

We note that this expression also allows us to apply the Weierstrass M -test to justify

the term-by-term differentiation (2.19). Hence

∞
∑

n=1

−(1 − g12)
n−2[g2

12(n− 1) + g21(ng12 − 1)] = −1

and therefore

∞
∑

n=1

−(1 − g12)
n−2[g2

12(n− 1) + g21(ng12 − 1)]t(n) ≤ −t(m) < 0.
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2.6.3 Proof of Theorem 2.3.3

Proof. That E0 actually is the error probability in the complete absence of observa-

tions is not difficult to show. For example, one can use the fact that An converges

to a rank 1 matrix (with the stationary probabilities in the rows) as n→ ∞, so that

without observations, one would choose the state estimate which on average is more

likely to occur.

(i) The proof of this part is similar to that of Theorem 2.3.2.

Since P (Error) =
∑∞

n=1 p0g12(1 − g12)
n−1t(n), we have

dP (Error)

dg12

=
∞
∑

n=1

−p0(1 − g12)
n−2(ng21 − 1)t(n).

It can be easily seen that for m ≡
⌊

1
g12

⌋

, the first m terms in the series will be

positive, while the rest will be negative. Using Lemma 2.6.1, we obtain the bound

∞
∑

n=1

−p0(1 − g12)
n−2(ng21 − 1)t(n) ≤ t(m)

∞
∑

n=1

−p0(1 − g12)
n−2(ng21 − 1).

We have the following closed form expression:

k
∑

n=1

−p0(1 − g12)
n−2(ng21 − 1) = (1 − g12)

k−1p0,

so
∞
∑

n=1

−p0(1 − g12)
n−2(ng21 − 1) = 0,

and therefore
∞
∑

n=1

−p0(1 − g12)
n−2(ng21 − 1)t(n) ≤ 0.

(ii) We consider the cases a21 6= a12 and a21 = a12 separately. First assume that

a21 6= a12. From (2.4) it can be seen that there exists an N such that either q1
n >

0, q2
n > 0,∀n > N (when a21 > a12), or q1

n < 0, q2
n < 0,∀n > N (when a21 < a12).
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Hence t(n) = E0,∀n > N and

P (Error) =
N
∑

n=1

p0g12(1 − g12)
n−1t(n) + E0

∞
∑

n=N+1

p0g12(1 − g12)
n−1.

Applying Lemma 2.6.1, we can obtain the bounds

t(1)
N
∑

n=1

p0g12(1 − g12)
n−1 + E0

∞
∑

n=N+1

p0g12(1 − g12)
n−1

≤ P (Error) ≤ E0

∞
∑

n=1

p0g12(1 − g12)
n−1

or

t(1)[p0 − (1 − g12)
Np0] + E0(1 − g12)

Np0 ≤ P (Error) ≤ E0p0.

Taking the limit as g12 → 0 then gives the result for a21 6= a12.

Now assume that a21 = a12. We further divide into 3 cases.

1) For a21 = 0.5, we have q1
n ≤ 0, q2

n ≤ 0,∀n, and

P (Error) = p0 ×
1

2

∞
∑

n=1

g12(1 − g12)
n−1

=
p0

2
= p0E0

irrespective of g12.

2) For a21 < 0.5, we have q1
n > 0, q2

n < 0,∀n, so

P (Error) = p0

∞
∑

n=1

g12(1 − g12)
n−1 × 1

2
[1 − (1 − 2a21)

n]

=
a21p0

2a21 − 2a21g12 + g12

which converges to p0
2

as g12 → 0.
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3) For a21 > 0.5, we have q1
n < 0, q2

n > 0 for n odd, and q1
n > 0, q2

n < 0 for n even, so

P (Error) = p0

∞
∑

m=1

g12(1 − g12)
2m−2 × 1

2
[1 + (1 − 2a21)

2m−1]

+ p0

∞
∑

m=1

g12(1 − g12)
2m−1 × 1

2
[1 − (1 − 2a21)

2m]

= p0

∞
∑

n=1

g12(1 − g12)
n−1 × 1

2
[1 − (2a21 − 1)n]

=
(1 − a21)p0

2(1 − a21) − 2(1 − a21)g12 + g12

which also converges to p0
2

as g12 → 0.



60 Chapter 2. HMM FILTERING WITH RANDOM PACKET LOSS



Chapter 3

Neyman-Pearson Detection of Markov Chains in

Noise

3.1 Introduction

The detection of random signals in noise is an important problem in engineering

and signal processing. In general, performance analysis of detectors via closed form

expressions for the probability of error or related quantities is intractible except for

very simple test statistics. One alternative is to study the rate of decrease of the

probability of error as the number of samples increases, or in the Neyman-Pearson

formulation the probability of missed detection with a fixed false alarm probability

constraint.

Let PM represent the probability of missed detection and PFA the probability

of false alarm. The error exponent for Neyman-Pearson detection is defined as the

limit (log in this chapter will refer to the natural logarithm unless stated otherwise)

K = lim
n→∞

− 1

n
logPM , (3.1)

and represents the rate at which PM decays for a fixed constraint on PFA as the

number of samples n → ∞. Another interpretation of the error exponent is that

PM becomes proportional to exp(−nK) as n → ∞. The error exponent K for the

Neyman-Pearson detection problem can be shown (see (Sung et al., 2006) and the

references therein) to be the following almost sure limit (provided it exists) under

61
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H0
1

K = lim
n→∞

1

n
log

p0,n

p1,n

(yn) = lim
n→∞

− 1

n
logLn(y

n) (3.2)

where p0,n and p1,n are the null and alternative joint densities respectively of the

measurements

yn ≡ (y1, . . . , yn),

and

Ln(y
n) =

p1,n

p0,n

(yn)

is the likelihood ratio.2 Unfortunately closed form expressions for the error exponent

are often still not possible except in rare cases. The subject of this chapter is the

numerical computation of the error exponent for Neyman-Pearson detection of a

two-state Markov chain in noise. Such a detection problem can arise when the

signal is modelled as binary data.

Some previous work, e.g. (Benitz & Bucklew, 1990; Bahr & Bucklew, 1990;

Chamberland & Veeravalli, 2003; Mergen et al., 2007), have characterised the large

sample behaviour of detectors using results from large deviations theory such as

the Gärtner-Ellis theorem to determine the rate functions, though evaluating these

numerically usually required further optimization techniques. Moreover, often the

minimum probability of error criterion or detection with fixed thresholds is used

instead of the Neyman-Pearson criterion, so that limn→∞− 1
n

logPe is analysed in-

stead of (3.1). Neyman-Pearson detection of Gauss-Markov processes is however

considered in (Sung et al., 2006). By studying (3.2) and using properties of the

innovations process and the state space structure, the authors managed to obtain

a closed form expression for the error exponent, and derived relationships between

the error exponent and parameters of the system.

On the other hand, in detection problems involving Markov chains, the problem

1In the i.i.d. case this is Stein’s lemma, and (3.2) is equivalent to computing the Kullback-Leibler
distance between the two densities

2One could also define error exponents for Bayesian detection. Here we would have two expo-
nents representing limn→∞ − 1

n
logPM and limn→∞ − 1

n
logPFA which could be possibly different.

However relationships such as (3.2) no longer hold, and one must resort to large deviations tech-
niques to analyse these exponents, such as in (Mergen et al., 2007).
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of trying to decide between two Markov chains with different transition parame-

ters (but no noise) is treated in standard textbooks such as (Dembo & Zeitouni,

1998). Likelihood ratios for detecting Markov chains in noise are derived in (Scharf

& Nolte, 1977). Classification of HMMs with empirically observed statistics is stud-

ied in (Merhav, 1991). Error exponents in HMM order estimation are considered

in e.g. (Liu & Narayan, 1994; Gassiat & Boucheron, 2003). However, the prob-

lem of determining the error exponent associated with detecting a Markov chain in

noise and how this error exponent behaves as system parameters vary, has not been

previously treated in the literature.

Moreover, apart from (Mergen et al., 2007) the impact of fading has not been

addressed in these previous works, though likelihood ratios for various decentralized

detection schemes over fading channels have been derived recently, see e.g. (Chen

et al., 2004; Niu et al., 2006). Intuitively fading reduces detection performance,

and it is of interest to know what the error exponents are in fading environments,

for example in wireless sensor networks where there are limited resources and delay

constraints such that waiting to collect too many data samples for a hypothesis test

is not desirable.

In this chapter we will adopt a similar philosophy to (Sung et al., 2006) in

studying the error exponent via (3.2) and properties of the likelihood ratio. While

a closed form expression cannot be obtained, numerical methods for computing

the error exponent when the Markov chain has two states will be presented; this

situation can occur when binary data (e.g. the presence or absence of a target) is

being detected over a communication channel with noise. We first treat the case

where the channel is time-invariant and known in Section 3.3, and then extend

our methods to channels which are randomly time-varying (e.g. a wireless link)

in Section 3.4, for a Rayleigh fading channel with no instantaneous channel state

information. We will numerically study the behaviour of the error exponent as the

transition parameters of the Markov chain are varied, and also as the noise variance

is varied. In particular, for Gaussian noise we shall see that at high SNR there is a

marked contrast between the time-invariant and fading scenarios, with the scaling

of the error exponent with SNR being linear and logarithmic respectively.
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channel noise

sk

hk wk

detector
signal     ?

k=1,...,n

Figure 3.1: System model

3.2 System model

Let the null and alternative hypotheses be

H0 : yk = wk

H1 : yk = sk + wk (3.3)

for k = 1, 2, . . . , n, see Figure 3.1. The noise process {wk} is assumed to be i.i.d. and

N(0, σ2).3 The process {sk} which we wish to detect is a homogeneous two-state

Markov chain, with state space {ψ1, ψ2}, and ψ2 = −ψ1. We use the convention

that

aij = P (sk+1 = ψj|sk = ψi)

for the transition probabilities, with the assumption that 0 < aij < 1,∀i, j. In

Section 3.3 the process {hk} will be taken to be constant for all k, while in Section

3.4 {hk} will be a time-varying fading process.

3.3 Error exponent computation for time-invariant

channels

We first consider time-invariant channels, where without loss of generality we take

hk = 1,∀k in (3.3). We will calculate the error exponent using the form (3.2), where

3The method presented here does not necessarily require the noise to be Gaussian (Shue et al.,
2001), though some of the expressions will change for different noise distributions
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Ln(y
n) = p1,n

p0,n
(yn) is the likelihood ratio. The likelihood ratio for the problem of

detecting Markov chains in noise (3.3) has been previously derived in e.g. (Scharf

& Nolte, 1977). One can write

Ln(y
n) =

n
∏

k=1

l(yk|yk−1)

where

l(yk|yk−1) =
p1(yk|sk = ψj, y

k−1)

p0(yk|yk−1)

P (sk = ψj|yk−1)

P (sk = ψj|yk)

= exp

(

ψjyk
σ2

− 1

2

ψ2
j

σ2

)

P (sk = ψj|yk−1)

P (sk = ψj|yk)

for any j ∈ {1, 2}. For definiteness we choose j = 1. We have the recursive relations

P (sk = ψj|yk−1) =
2
∑

i=1

aijP (sk−1 = ψi|yk−1) (3.4)

P (sk = ψj|yk) =
p1(yk|sk = ψj)P (sk = ψj|yk−1)

∑2
i=1 p1(yk|sk = ψi)P (sk = ψi|yk−1)

(3.5)

where p1(yk|sk = ψj) is the density of yk under the alternative hypothesis, i.e.

p1(yk|sk = ψj) =
1√

2πσ2
exp

(−(yk − ψj)
2

2σ2

)

.

Thus the error exponent can be written as

K = lim
n→∞

− 1

n
log

n
∏

k=1

l(yk|yk−1) = lim
n→∞

− 1

n

n
∑

k=1

log l(yk|yk−1)

= lim
n→∞

− 1

n

n
∑

k=1

[

ψ1yk
σ2

− 1

2

ψ2
1

σ2
+ logP (sk = ψ1|yk−1) − logP (sk = ψ1|yk)

]

provided that the limit exists. Now under H0, {yk} is i.i.d. zero mean Gaussian.

Thus

− 1

n

n
∑

k=1

ψ1yk
σ2

→ 0 a.s.
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by the strong law of large numbers. Since 0 < aij < 1,∀i, j by assumption, the

transition matrix for {sk} will be primitive. From (Le Gland & Mevel, 2000) it then

follows that P (sk = ψ1|yk−1) and P (sk = ψ1|yk) have invariant limiting distributions

under H0 as k → ∞, by taking h• as the zero mapping in Example 1.1 of (Le Gland

& Mevel, 2000) and considering our situation as a case of a misspecified hidden

Markov model (HMM). Hence by the arguments above and the ergodic theorem:

K =
1

2

ψ2
1

σ2
− E[logP (sk = ψ1|yk−1) − logP (sk = ψ1|yk)] a.s. (3.6)

We also note that an alternative way of showing the existence of the almost sure

limit is by using Proposition 3.2 of (Le Gland & Mevel, 1997).

To calculate the above, it suffices to find the limiting distribution of P (sk =

ψ1|yk), since P (sk = ψ1|yk−1) is related by (3.4). We apply a method from (Shue

et al., 2001) (also Chapter 2), which was originally used for the problem of computing

the probability of error in HMM filtering for two-state Markov chains.4 Let qk ≡
P (sk = ψ1|yk) and fk(q)dq ≡ P (qk ∈ (q, q + dq)). Then

P (qk ∈ (q, q + dq),qk−1 ∈ (q̃, q̃ + dq̃))

= P (qk ∈ (q, q + dq)|qk−1 = q̃)P (qk−1 ∈ (q̃, q̃ + dq̃))

= P (qk ∈ (q, q + dq)|qk−1 = q̃)fk−1(q̃)dq̃.

(3.7)

Using (3.5) and recalling that ψ2 = −ψ1, we have

qk =
exp(−(yk−ψ1)2

2σ2 )[a11qk−1 + a21(1 − qk−1)]

exp(−(yk−ψ1)2

2σ2 )[a11qk−1 + a21(1 − qk−1)] + exp(−(yk+ψ1)2

2σ2 )[a12qk−1 + a22(1 − qk−1)]

=
a11qk−1 + a21(1 − qk−1)

a11qk−1 + a21(1 − qk−1) + exp(−2ψ1yk

σ2 )[a12qk−1 + a22(1 − qk−1)]
.

Thus

yk = − σ2

2ψ1

ln
[a11qk−1 + a21(1 − qk−1)](1 − qk)

[a12qk−1 + a22(1 − qk−1)]qk
≡ g(qk, qk−1)

4As was the case in Chapter 2, this method unfortunately doesn’t appear to be extendable to
Markov chains with more than two states.
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and
∣

∣

∣

∣

dyk
dqk

∣

∣

∣

∣

=

∣

∣

∣

∣

σ2

2ψ1qk(1 − qk)

∣

∣

∣

∣

=
σ2

2|ψ1|qk(1 − qk)
.

Then by a change of variable, again noting that yk is N(0, σ2) under H0, we obtain

P (qk ∈ (q, q + dq)|qk−1 = q̃) =
1√

2πσ2
exp

(

−g(q, q̃)
2

2σ2

)

σ2

2|ψ1|q(1 − q)
dq

≡ S(q, q̃)dq.

Hence from (3.7) we can see that in the limit as k → ∞, fk(q) satisfies the following

integral equation:

f(q)dq =

∫ 1

0

S(q, q̃)f(q̃)dq̃dq. (3.8)

This integral equation may be solved numerically using a procedure described

in (Leong et al., 2007) and Chapter 2 (with slight modifications). Consider the

eigenvalue problem

λf(q) =

∫ 1

0

S(q, q̃)f(q̃)dq̃,

which corresponds to (3.8) when λ = 1. We can solve this eigenvalue problem

using the Nyström method (Atkinson, 1997). Replacing the integral by an N -point

quadrature rule, and defining

K ≡











w1S(t1, t1) . . . wNS(t1, tN)
...

. . .
...

w1S(tN , t1) . . . wNS(tN , tN)











we obtain

K











f(t1)
...

f(tN)











= λ











f(t1)
...

f(tN)











where wj represent the weights and tj the quadrature points of the quadrature rule.

The Gauss-Legendre quadrature rule is commonly used for the Nyström method

(Atkinson, 1997, p.110). In this chapter we will use the Gauss-Legendre rule in a

composite scheme (Ralston & Rabinowitz, 1978, p.113); this allows a simple way to

vary the precision by changing the number of sub-intervals. In the following sections
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Figure 3.2: Error exponent K for various a12 and a21

we use 200 sub-intervals, each sub-interval using a 4-th order Gauss-Legendre rule.

Then in order to obtain an approximation for f(q), we take the eigenvector that

corresponds to the largest real eigenvalue of K, and normalise so that
∫ 1

0
f(q)dq =

1 is satisfied. We may then calculate E[logP (sk = ψ1|yk)] and hence the error

exponent via (3.6). Some numerical properties of this method are described in

(Leong et al., 2007) and Chapter 2.

3.3.1 Numerical studies

First we study how the error exponent varies when the transition parameters vary,

while all other parameters are fixed. Figure 3.2 shows a 3D plot of the error exponent

for different values of a12 and a21. We fix ψ1 = −1, ψ2 = 1, σ2 = 1. In Figure 3.3

we show plots for four different fixed values of a21, and a12 is varied.5 For a12 small,

the error exponent K is large. As a12 increases, K decreases until a certain point

at which it starts to increase again. An intuitive explanation as to why K is large

5By the symmetry of the situation, we will get the same behaviour when a21 is varied and the
other parameters are fixed.
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Figure 3.3: Error exponent K for various a12, with a21 fixed

when a12 is close to zero or one is that in either of these situations the signal will

have a certain amount of “correlation” which makes the signal easier to detect. This

is because if a12 is close to zero then when it is in state 1, it tends to stay in the

same state, whereas if a12 is close to one then when it is in state 1, the state at the

next time instant is very likely to switch to state 2.

In Figure 3.4 we plot Monte Carlo simulations of the miss probability PM versus

the number of samples n, with a PFA constraint of 0.01 and σ2 = 1, for three

different sets of transition parameters. We can see that the rate of decrease of PM

is greatest when a12 = 0.9, a21 = 0.2, followed by a12 = 0.1, a21 = 0.2 with the

smallest for a12 = 0.3, a21 = 0.2. This is consistent with the results in Figure 3.3,

where a12 = 0.9, a21 = 0.2 has the largest error exponent and a12 = 0.3, a21 = 0.2

the smallest error exponent for the three sets of values considered.

Next we look at how the error exponent behaves at different noise levels for fixed

Markov chain transition parameters. In Figure 3.5 we plot the error exponent as

the noise variance σ2 varies, for four different sets of parameter values. We again

set ψ1 = −1, ψ2 = 1. Observe that the error exponent appears to scale linearly with
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the “signal-to-noise ratio”
ψ2

1

σ2 . At high SNR the error exponents also become very

close to each other in a relative sense, for all four sets of parameter values used. We

have the following result, which is proved in the appendix, Section 3.6.

Lemma 3.3.1. With Gaussian noise and as σ2 → 0,

K ∼ ψ2
1

2σ2
(3.9)

where f ∼ g means that limσ→0
f(σ)
g(σ)

= 1.

The dashed line in Figure 3.5 is the asymptotic expression (3.9). By Lemma

3.3.1 the scaling at high SNR is indeed linear. Moreover the asymptotic expression

for K at high SNR does not depend on the parameters a12 and a21, which completely

specifies the two-state Markov chain. It is known that when detecting a constant

signal in Gaussian noise, the error exponent scales linearly with SNR. In fact, it can

be easily shown that for a constant signal of amplitude ψ1, the error exponent is

exactly
ψ2

1

2σ2 . So from Lemma 3.3.1, the effect of Markov chain state transitions on

the performance of detectors become less important at high SNR. Another potential

use of Lemma 3.3.1 is to show that the high SNR performance of a detector does not

degrade too much even when the transition parameters may not be known exactly

but only estimates are available, though this will require further investigation.

3.4 Error exponent computation for fading chan-

nels

We now consider a randomly time-varying Rayleigh6 fading channel in the detection

problem (3.3). Without loss of generality we will let the process {hk} have unit

power, with density

p(hk) = 2hk exp(−h2
k), hk ≥ 0

6Our method should also work for other fading distributions, provided that after “averaging”
over hk (Niu et al., 2006), p1(yk|sk = ψj) still has a tractible closed form such as (3.10)
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as in (Niu et al., 2006). We assume that hk and hl are independent for k 6= l.

This is a reasonable assumption if the sampling time is greater than the channel

coherence time, as might occur in low data rate systems such as wireless sensor

networks, see also the block fading models commonly used in the communications

theory literature (Ozarow et al., 1994). We assume that the receiver knows the

distribution of the fading process, but the instantaneous values of hk are unknown,

i.e. has no instantaneous channel state information (CSI). This is because acquiring

channel knowledge might be too expensive when resources are limited, and also

because the assumption of full CSI may not be appropriate in the context of a signal

detection problem, depending on the nature of the source of the signal.

An inspection of the derivations in (Scharf & Nolte, 1977) shows that one can

still write the likelihood ratio for problem (3.3) in the form Ln(y
n) =

∏n
k=1 l(yk|yk−1)

where

l(yk|yk−1) =
p1(yk|sk = ψj, y

k−1)

p0(yk|yk−1)

P (sk = ψj|yk−1)

P (sk = ψj|yk)

for any j ∈ {1, 2} (the explicit expressions for the terms will now be different

though). We have p1(yk|sk = ψj, y
k−1) = p1(yk|sk = ψj) if the fades are inde-

pendent. The recursive relations (3.4) and (3.5) will continue to hold. One also has,

in a slight generalization of Lemma 1 in (Niu et al., 2006),

p1(yk|sk = ψj) =
1√

2πσ2

2σ2

ψ2
j + 2σ2

e−y
2
k
/2σ2

[

1 +
√

2πajyke
(ajyk)2/2Q(−ajyk)

]

(3.10)

where

aj ≡
ψj

σ
√

ψ2
j + 2σ2

and

Q(x) =

∫ ∞

x

1√
2π
e−t

2/2dt

is the Q-function. For brevity, call

a ≡ a1 =
ψ1

σ
√

ψ2
1 + 2σ2

.
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The error exponent can be written as

K = lim
n→∞

− 1

n

n
∑

k=1

[

log
p1(yk|sk = ψ1)

p0(yk|yk−1)
+ logP (sk = ψ1|yk−1) − logP (sk = ψ1|yk)

]

.

provided the limit exists. By similar arguments as in Section 3.3 and again using

results from (Le Gland & Mevel, 2000), we can show that the almost sure limit does

exist and is equal to

K = − log
2σ2

ψ2
1 + 2σ2

−
∫ ∞

−∞

log
[

1 +
√

2πayke
(ayk)2/2Q(−ayk)

] 1√
2πσ2

e−y
2
k
/2σ2

dyk

− E

[

log
P (sk = ψ1|yk−1)

P (sk = ψ1|yk)

]

(3.11)

where the second term (the integral) can be evaluated numerically. For calculation

of the other terms, again let qk = P (sk = ψ1|yk) and fk(q)dq = P (qk ∈ (q, q + dq)).

The relation (3.7) still holds, but we now have from (3.5) that

qk =[1 +
√

2πayke
(ayk)2/2Q(−ayk)][a11qk−1 + a21(1 − qk−1)]

/

(

[1 +
√

2πayke
(ayk)2/2Q(−ayk)][a11qk−1 + a21(1 − qk−1)]

+ [1 −
√

2πayke
(ayk)2/2Q(ayk)][a12qk−1 + a22(1 − qk−1)]

)

or

1 −
√

2πayke
(ayk)2/2Q(ayk)

1 +
√

2πayke(ayk)2/2Q(−ayk)
=
a11qk−1 + a21(1 − qk−1)

a12qk−1 + a22(1 − qk−1)
× 1 − qk

qk
. (3.12)

Given qk and qk−1, (3.12) can be solved for yk numerically. The solution obtained

can be shown to be unique by the following argument. Since the right hand side of

(3.12) is positive, for a > 0,

1 −
√

2πayke
(ayk)2/2Q(ayk)

1 +
√

2πayke(ayk)2/2Q(−ayk)
→







∞ , y → −∞
0 , y → +∞.
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Moreover, we obtain after some calculations that

d

dyk

(

1 −
√

2πayke
(ayk)2/2Q(ayk)

1 +
√

2πayke(ayk)2/2Q(−ayk)

)

=
−
√

2πae(ayk)2/2

[

1 +
√

2πayke(ayk)2/2Q(−ayk)
]2 < 0

so that the left hand side of (3.12) is strictly decreasing in yk, and hence a unique

solution will be obtained. A similar argument holds if a < 0.

Next, using implicit differentation on (3.12) we obtain

−
√

2πae(ayk)2/2

[

1 +
√

2πayke(ayk)2/2Q(−ayk)
]2

dyk
dqk

= − 1

q2
k

× a11qk−1 + a21(1 − qk−1)

a12qk−1 + a22(1 − qk−1)

or

∣

∣

∣

∣

dyk
dqk

∣

∣

∣

∣

=

[

1 +
√

2πayke
(ayk)2/2Q(−ayk)

]2

√
2π |a| e(ayk)2/2q2

k

× a11qk−1 + a21(1 − qk−1)

a12qk−1 + a22(1 − qk−1)
. (3.13)

By a change of variable

S(q, q̃)dq ≡ P (qk ∈ (q, q + dq)|qk−1 = q̃)

=
1√

2πσ2
e−y

2
k
/2σ2

∣

∣

∣

∣

dyk
dqk

∣

∣

∣

∣

|qk=q,qk−1=q̃dq

where yk is the numerical solution to (3.12) and
∣

∣

∣

dyk

dqk

∣

∣

∣
is given by (3.13). We will

then need to solve the integral equation

f(q)dq =

∫ 1

0

S(q, q̃)f(q̃)dq̃dq

using the same numerical procedure as in Section 3.3.

3.4.1 Numerical studies

In Figure 3.2 we show a 3D plot of the error exponent for different values of a12 and

a21. We fix ψ1 = −1, ψ2 = 1, σ2 = 1. In Figure 3.7 we show plots for four different

fixed values of a21, as a12 is varied. Similar behaviour to the case without fading

in Figures 3.2 and 3.3 can be observed, though the error exponents are smaller
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Figure 3.8: Miss probability with Rayleigh fading versus number of samples, with
PFA = 0.01 and σ2 = 1

due to the presence of fading. Figure 3.8 plots Monte Carlo simulations of PM

versus the number of samples, which also demonstrates the deterioration in detection

performance when there is fading when compared with Figure 3.4.

In Figure 3.9 we plot the error exponent with fading as the noise variance σ2

varies, for four different sets of parameter values. We again set ψ1 = −1, ψ2 = 1.

The error exponent now appears to scale logarithmically with the signal-to-noise

ratio. As in Figure 3.5, at high SNR the error exponents approach each other (in a

relative sense) for all four sets of parameter values used. We have the following:

Lemma 3.4.1. With Gaussian noise and Rayleigh fading, as σ2 → 0,

K ∼ log
ψ2

1

2σ2
. (3.14)

The proof is in Section 3.6. The dashed line in Figure 3.9 is a plot of the expres-

sion (3.14). Note that we don’t plot for smaller values of 1/σ2 as then the asymptotic

expression takes on negative values. We see that the asymptotic expression is log-
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Figure 3.9: Error exponent K with Rayleigh fading for various σ2

arithmic, where again there is no dependence on the parameters a12 and a21. The

error exponent for detecting a constant signal of amplitude ψ1 with the Rayleigh

fading model used here can be shown to be asymptotic to log
ψ2

1

2σ2 , so that as in

the time-invariant case, state transitions of the Markov chain have a less significant

effect on performance at high SNR.

The difference in behaviour in the scaling of the error exponent with SNR in

Figures 3.5 and 3.9 can possibly be attributed to the discrete nature of the states in

the signal {sk} in the case without fading, whereas with fading the received signal

{hksk} (even without noise) can take on a continuous range. Other situations where

logarithmic scaling in the error exponent has also been observed include (see e.g.

(Sung et al., 2006)) the detection of Gaussian signals in Gaussian noise, and the

detection of Gauss-Markov systems in noise, where in both cases the signals to be

detected have a continuous range.
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3.5 Conclusion

We have presented numerical methods to compute the error exponent associated

with Neyman-Pearson detection of a two-state Markov chain in noise, both with and

without fading. Numerical studies relating the error exponent to the parameters of

the system have been presented. In particular, with Gaussian noise, at high SNR

the error exponents scale linearly without fading but logarithmically with fading.

While the results presented in this chapter have dealt with Gaussian noise, the

methods to compute the error exponent will in principle still work with other noise

distributions. However, in general the high SNR behaviour of the error exponent in

non-Gaussian noise is likely to be highly dependent on the nature of the distributions.

For instance, consider the generalized Gaussian distribution (Miller & Thomas, 1972)

with density

f(x) =
cη(σ, c)

2Γ(1/c)
exp{−[η(σ, c)|x|]c},

where η(σ, c) ≡ σ−1[Γ(3/c)/Γ(1/c)]1/2, σ2 is the noise variance, and c > 0 is a

parameter that controls the rate of decay of the tails. For c = 2, this reduces to the

Gaussian density and for c = 1 the Laplacian density. Using this density for the

noise, preliminary results for the time-invariant case suggest a O( 1
σc ) scaling of the

error exponent at high SNR, so that for larger c (faster decaying tail probabilities) the

rate of increase of the error exponent is greater than for distributions with heavier

tails. Future work will include a more thorough investigation of the generalized

Gaussian distribution and other types of noise and fading processes.

3.6 Appendix

3.6.1 Proof of Lemma 3.3.1

Note that
ψ2

1

2σ2 is just the first term on the right hand side of (3.6), so it suffices to

show that

E

[

log
P (sk = ψ1|yk−1)

P (sk = ψ1|yk)

]

= o

(

1

σ2

)
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for small σ. Denote

po(yk) ≡
1√

2πσ2
e−y

2
k
/2σ2

.

Suppose P (sk = ψ1|yk−1) = p. Then from (3.5)

P (sk = ψ1|yk) =
exp

(

−(yk−ψ1)2

2σ2

)

p

exp
(

−(yk−ψ1)2

2σ2

)

p+ exp
(

−(yk+ψ1)2

2σ2

)

(1 − p)

and so

log
P (sk = ψ1|yk−1)

P (sk = ψ1|yk)
= log

(

p+ (1 − p) exp

(

−2ψ1yk
σ2

))

.

Suppose ψ1 > 0 (the calculations for ψ1 < 0 are similar). For yk > 0, one can

easily show that

log p ≤ log

(

p+ (1 − p) exp

(

−2ψ1yk
σ2

))

≤ 0.

So
∫ ∞

0

log

(

p+ (1 − p) exp

(

−2ψ1yk
σ2

))

p0(yk)dyk = O(1).

For yk < 0,

∫ 0

−∞

log

(

p+ (1 − p) exp

(

−2ψ1yk
σ2

))

p0(yk)dyk

=

∫ ∞

0

log

(

p+ (1 − p) exp

(

2ψ1yk
σ2

))

p0(yk)dyk

=

∫ ∞

0

log

[

exp

(

2ψ1yk
σ2

)(

p exp

(

−2ψ1yk
σ2

)

+ (1 − p)

)]

p0(yk)dyk

=

∫ ∞

0

(

2ψ1yk
σ2

+ log

(

p exp

(

−2ψ1yk
σ2

)

+ (1 − p)

))

p0(yk)dyk

=

√

2

π

ψ1

σ
+

∫ ∞

0

log

(

p exp

(

−2ψ1yk
σ2

)

+ 1 − p

)

p0(yk)dyk

and the term
∫ ∞

0

log

(

p exp

(

−2ψ1yk
σ2

)

+ 1 − p

)

p0(yk)dyk
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is O(1) by a similar argument to the case when yk > 0. So

E

[

log
P (sk = ψ1|yk−1)

P (sk = ψ1|yk)
∣

∣

∣p

]

= O(1) +O

(

1

σ

)

+O(1)

= O

(

1

σ

)

= o

(

1

σ2

)

for small σ.

Hence

E

[

log
P (sk = ψ1|yk−1)

P (sk = ψ1|yk)

]

= E

[

E

[

log
P (sk = ψ1|yk−1)

P (sk = ψ1|yk)
∣

∣

∣p

]]

is also o
(

1
σ2

)

.

3.6.2 Proof of Lemma 3.4.1

Referring to (3.11), we have

− log
2σ2

ψ2
1 + 2σ2

∼ log
ψ2

1

2σ2
.

Denote

po(yk) ≡
1√

2πσ2
e−y

2
k
/2σ2

.

We first show that

∫ ∞

−∞

log
[

1 +
√

2πayke
(ayk)2/2Q(−ayk)

]

p0(yk)dyk = o

(

log
1

σ2

)

.

Assume ψ1 > 0 (again the calculations for ψ1 < 0 are similar), which implies a is

positive. We can write

∫ ∞

−∞

log
[

1 +
√

2πayke
(ayk)2/2Q(−ayk)

]

p0(yk)dyk

=

∫ ∞

0

log
[

1 +
√

2πayke
(ayk)2/2Q(−ayk)

]

p0(yk)dyk

+

∫ ∞

0

log
[

1 −
√

2πayke
(ayk)2/2Q(ayk)

]

p0(yk)dyk
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We have

∫ ∞

0

log
[

1 +
√

2πayke
(ayk)2/2Q(−ayk)

]

p0(yk)dyk

≤
∫ ∞

0

log
[

1 +
√

2πayke
(ayk)2/2

]

p0(yk)dyk

=

∫ ∞

0

log
[

e(ayk)2/2
(

e−(ayk)2/2 +
√

2πayk

)]

p0(yk)dyk

≤
∫ ∞

0

(

(ayk)
2

2
+ log

(

1 +
√

2πayk

)

)

p0(yk)dyk

≤
∫ ∞

0

(

(ayk)
2

2
+
√

2πayk

)

p0(yk)dyk

=
a2σ2

4
+ aσ = O(1)

since a ≡ ψ1

σ
√
ψ2

1
+2σ2

. So

∫ ∞

0

log
[

1 +
√

2πayke
(ayk)2/2Q(−ayk)

]

p0(yk)dyk = O(1).

Next note that

∣

∣

∣log
[

1 −
√

2πayke
(ayk)2/2Q(ayk)

]∣

∣

∣ ≤ log
[

1 +
√

2πayke
(ayk)2/2Q(−ayk)

]

using the result previously shown in Section 3.4 that

1 −
√

2πayke
(ayk)2/2Q(ayk)

1 +
√

2πayke(ayk)2/2Q(−ayk)

is decreasing with yk, and is equal to 1 when yk = 0. So

∫ ∞

0

log
[

1 −
√

2πayke
(ayk)2/2Q(ayk)

]

p0(yk)dyk

is also O(1). Hence

∫ ∞

−∞

log
[

1 +
√

2πayke
(ayk)2/2Q(−ayk)

]

p0(yk)dyk = O(1) +O(1) = o

(

log
1

σ2

)

.

Using the bounds just derived, together with the same arguments as for the proof
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of Lemma 3.3.1, we can show that the remaining term in (3.11) satisfies

E

[

log
P (sk = ψ1|yk−1)

P (sk = ψ1|yk)

]

= O(1) = o

(

log
1

σ2

)

,

as follows. Suppose P (sk = ψ1|yk−1) = p. Then

log
P (sk = ψ1|yk−1)

P (sk = ψ1|yk)
= log

(

p+ (1 − p)
1 −

√
2πayke

(ayk)2/2Q(ayk)

1 +
√

2πayke(ayk)2/2Q(−ayk)

)

.

For yk > 0, one can show easily that

log p ≤ log

(

p+ (1 − p)
1 −

√
2πayke

(ayk)2/2Q(ayk)

1 +
√

2πayke(ayk)2/2Q(−ayk)

)

≤ 0,

so
∫ ∞

0

log

(

p+ (1 − p)
1 −

√
2πayke

(ayk)2/2Q(ayk)

1 +
√

2πayke(ayk)2/2Q(−ayk)

)

p0(yk)dyk = O(1).

For yk < 0,

∫ 0

−∞

log

(

p+ (1 − p)
1 −

√
2πayke

(ayk)2/2Q(ayk)

1 +
√

2πayke(ayk)2/2Q(−ayk)

)

p0(yk)dyk

=

∫ ∞

0

log

(

p+ (1 − p)
1 +

√
2πayke

(ayk)2/2Q(−ayk)
1 −

√
2πayke(ayk)2/2Q(ayk)

)

p0(yk)dyk

≤
∫ ∞

0

log

(

1 +
1 +

√
2πayke

(ayk)2/2Q(−ayk)
1 −

√
2πayke(ayk)2/2Q(ayk)

)

p0(yk)dyk

=

∫ ∞

0

log
(

2 +
√

2πayke
(ayk)2/2Q(−ayk) −

√
2πayke

(ayk)2/2Q(ayk)
)

p0(yk)dyk

−
∫ ∞

0

log
(

1 −
√

2πayke
(ayk)2/2Q(ayk)

)

p0(yk)dyk

≤
∫ ∞

0

log
(

2 +
√

2πayke
(ayk)2/2Q(−ayk)

)

p0(yk)dyk

−
∫ ∞

0

log
(

1 −
√

2πayke
(ayk)2/2Q(ayk)

)

p0(yk)dyk

which by previous arguments is O(1). Hence

E

[

log
P (sk = ψ1|yk−1)

P (sk = ψ1|yk)

]

= E

[

E

[

log
P (sk = ψ1|yk−1)

P (sk = ψ1|yk)
∣

∣

∣
p

]]

= O(1).



Chapter 4

Kalman Smoothing with Random Packet Loss

4.1 Introduction

Problems involving estimation over lossy communication networks have received

considerable attention in recent years, due to their relevance in areas such as wireless

sensor networks and networked control systems. When measurements from sensors

are located at separate locations and have to be transmitted for processing through

unreliable (e.g. wireless) channels losses can occur, and how these packet losses

affect the performance of the estimator is of significant interest.

Early work on state estimation with measurements losses include (Nahi, 1969),

who derived the optimal linear estimator for linear systems with i.i.d. Bernoulli

losses, where the parameters of the loss process is known, but which of the individual

measurements are lost/received is not explicitly known. This was later extended

to the optimal linear smoother in (Monzingo, 1975). More recently, in the case

where we know which measurements are lost/received, it was shown in (Sinopoli

et al., 2004) that for an unstable system with i.i.d. Bernoulli losses there exists

a critical threshold such that the expected value of the error covariance (which is

randomly time-varying due to the random losses) will be bounded if the packet

arrival rate exceeds this threshold, but will diverge otherwise. Further avenues of

research suggested in (Sinopoli et al., 2004) include studying multiple sensors (Liu

& Goldsmith, 2004), correlated loss processes such as Markov (Huang & Dey, 2007),

consideration of delays (Schenato, 2006), and smoothing, which is the subject of this

chapter. A different notion of estimator performance using probabilistic constraints

was considered in (Shi et al., 2005). A survey of these and other related results can

be found in (Hespanha et al., 2007).

83
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If the sensor has local computation ability, which is sometimes referred to as a

“smart sensor”, then an alternative scheme is to transmit the state estimate instead

of the raw measurements (Xu & Hespanha, 2005), which allows estimator stability

to be achieved with lower packet arrival rates. With computation available at the

sensors, distributed Kalman filtering with quantized measurements (Ribeiro et al.,

2006) has also been considered. Estimation problems with random measurement

losses for other systems include: jump linear systems (Fletcher et al., 2004), hidden

Markov models (Leong et al., 2007), robust finite horizon filtering (Wang et al.,

2005) and robust H∞ filtering (Wang et al., 2006). The related problem of control

over packet dropping links has also received considerable attention, see (Schenato

et al., 2007; Hespanha et al., 2007) and the references therein.

This chapter considers the situation where we allow for some additional delay

and computational complexity so that Kalman smoothing can be done on the mea-

surements, and whether this provides any advantages over filtering. We assume that

the sensors transmit the raw measurements directly as they do not have enough

computation ability to be a smart sensor. We first derive in Section 4.2 the equa-

tions for the Kalman fixed lag smoother with random packet loss and use these

equations to analyse its performance. While intuitively we might expect smoothing

to perform better than filtering, in Section 4.3 we show that with the stability notion

via expected error covariance in (Sinopoli et al., 2004), the use of Kalman smooth-

ing does not actually provide any improvement over the Kalman filter. However,

using instead the probabilistic notion of performance in (Shi et al., 2005), we will

see in Section 4.4 that the Kalman smoother can provide significant performance

gains over the Kalman filter. In Section 4.5 we analyze Kalman filtering using two

simple retransmission strategies, which we find provides the same performance as

a Kalman filter without retransmission, and hence Kalman smoothing outperforms

these retransmission strategies with the probabilistic performance measure of (Shi

et al., 2005).
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4.2 Derivation of Kalman fixed lag smoother

Let the discrete time linear system be:

xk+1 = Axk + wk

yk = Cxk + vk

(4.1)

with wk and vk being Gaussian with zero mean and covariance matrices Q ≥ 0 and

R > 0 respectively. Let {γk} be the random packet loss process which is equal to

1 if the measurement yk is received at time k, and 0 otherwise. Define the state

estimates and corresponding error covariances as

x̂k|m = E [xk|{Y0, . . . , Ym}, {γ0, . . . , γm}]

Pk|m = E
[

(xk − x̂k|m)(xk − x̂k|m)T |{Y0, . . . , Ym}, {γ0, . . . , γm}
]

.

In (Sinopoli et al., 2004), it is shown that the Kalman filter equations for the system

(4.1) when there is packet loss can be written as

x̂k+1|k = Ax̂k|k−1 + γkKk(yk − Cx̂k|k−1)

Pk+1|k = APk|k−1A
T − γkKkCPk|k−1A

T +Q
(4.2)

where Kk = APk|k−1C
T (CPk|k−1C

T + R)−1 (note that Kk here is defined slightly

differently from (Sinopoli et al., 2004)).

Now from (Anderson & Moore, 1979, p.176-179), it is known that one way to

derive a fixed lag Kalman smoother for the system (4.1), with smoothing lag N , is

to consider the “augmented” model
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yk =
[

C 0 . . . 0 0
]
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so that

x
(1)
k+1 = xk, x

(2)
k+1 = xk−1, . . . , x

(N+1)
k+1 = xk−N .

Define

x̂
(i)
k+1|k ≡ E[x

(i)
k+1|{Y0, . . . , Yk}, {γ0, . . . , γk}] = x̂k−(i−1)|k, i = 1, . . . , N + 1
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where we make the identifications

P
(0,0)
k+1|k = Pk+1|k, P

(0,i)
k+1|k = P

(i)
k+1|k, P

(i,i)
k+1|k = Pk−(i−1)|k

Then applying the result of (Sinopoli et al., 2004) (equation (4.2)) to the augmented

model with x̂k+1|k,Pk+1|k,Kk in place of x̂k+1|k, Pk+1|k, Kk, the Kalman smoother
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equations with packet loss can be extracted after some computation as follows:

x̂k+1|k = Ax̂k|k−1 + γkKk(yk − Cx̂k|k−1)

x̂k|k = x̂k|k−1 + γkK
(1)
k (yk − Cx̂k|k−1)

x̂k−i|k = x̂k−i|k−1 + γkK
(i+1)
k (yk − Cx̂k|k−1), i = 1, . . . , N

Kk+1 = APk+1|kC
T (CPk+1|kC

T +R)−1

K
(i)
k+1 = P

(i−1)
k+1|kC

T (CPk+1|kC
T +R)−1, i = 1, . . . , N + 1

Pk+1|k = APk|k−1A
T − γkKkCPk|k−1A

T +Q

P
(i)
k+1|k = AP

(i−1)
k|k−1 − γkKkCP

(i−1)
k|k−1, i = 1, . . . , N + 1

(4.3)

with the error covariances of the filtered and smoothed estimates given by

Pk|k = Pk|k−1 − γkK
(1)
k CPk|k−1

Pk−i|k = Pk−i|k−1 − γkK
(i+1)
k CP

(i)
k|k−1, i = 1, . . . , N

(4.4)

and with initial conditions as stated in (Anderson & Moore, 1979).

When there are no packet losses at time k we have γk = 1, and we see that the

equations reduce to the standard fixed lag smoother equations. However when a

measurement at time k is lost, i.e. γk = 0, we have x̂k−i|k = x̂k−i|k−1 and Pk−i|k =

Pk−i|k−1 and the previous estimates and covariance matrices will get propagated.

In Figure 4.1 we show an example comparing the error covariances of the pre-

dicted, filtered and smoothed (with lag 1) estimates, for a scalar system with

A = 1.3, C = 1, R = 1, Q = 0.5. The sequence {γk} here is 111101001110000111....

Propagation of the error covariances when there are measurement losses can be

readily observed.

4.3 Stability of Kalman smoothing

In (Sinopoli et al., 2004), the authors showed that for an unstable system (i.e.

the matrix A has an eigenvalue with magnitude ≥ 1) with Bernoulli packet losses,

there exists a critical threshold such that the expected value of the error covariance

Pk|k−1 will be bounded if the packet arrival rate exceeds this threshold, but becomes
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Figure 4.1: Comparison of the error covariances of the predicted, filtered and
smoothed (with lag 1) estimates.

unbounded otherwise. Now from Figure 4.1 it might seem reasonable to suggest

that smoothing gives an improvement over filtering. However in this section we

will show the somewhat surprising result that for an unstable system with Bernoulli

losses, smoothing does not improve the stability of the estimator, in the sense that

the critical threshold for keeping the expected error covariances bounded in the

smoothing case is the same as in the filtering case.

We first introduce some definitions. For {γk} a Bernoulli process, let λ = P(γk =

1), then λ will also be the arrival rate of the measurements. For matrices P and Q,

P ≤ Q will mean that Q − P is positive semi-definite. Matrices Pk are said to be

bounded if there exists a matrix M < ∞ such that Pk ≤ M,∀k, and unbounded if

such an M does not exist. Then we have the following:

Lemma 4.3.1. For unstable systems, as k → ∞, E[Pk|k+N ] is unbounded if and

only if E[Pk|k−1] is unbounded.

Proof. First, from the smoother equations (4.4) and the definitions of K
(i)
k in (4.3),

it is not hard to see that Pk|k+N ≤ Pk|k−1,∀k. So the implication that E[Pk|k−1]
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bounded ⇒ E[Pk|k+N ] bounded, or the equivalent statement E[Pk|k+N ] unbounded

⇒ E[Pk|k−1] unbounded, immediately follows.

We now show that E[Pk|k−1] unbounded ⇒ E[Pk|k+N ] unbounded. Let λ < λc,

where λc is the critical arrival rate such that E[Pk|k−1] will be unbounded as k → ∞
if and only if λ < λc, whose existence for unstable systems is shown in (Sinopoli

et al., 2004).1 Let A be the event that measurements at time k, k+1, . . . , k+N are

lost. Using some elementary properties of positive semi-definite matrices and the

smoother equations (4.4), we have

E[Pk|k+N ] = E[Pk|k+N |A]P(A) + E[Pk|k+N |Ac]P(Ac)

≥ E[Pk|k+N |A]P(A)

= E[Pk|k−1]P(A)

= E[Pk|k−1](1 − λ)N+1

(4.5)

and E[Pk|k−1] by hypothesis is unbounded as k → ∞ for λ < λc. Hence E[Pk|k+N ] is

also unbounded as k → ∞.

Since E[Pk|k+N ] is unbounded if and only if E[Pk|k−1] is unbounded, the critical

threshold on the arrival rate of packets for the Kalman smoother must therefore

be the same as the critical threshold λc for the Kalman filter derived in (Sinopoli

et al., 2004). Thus from the stability point of view of keeping the expected error

covariances bounded, there is no advantage to be gained in smoothing. One can

compare this result with the work in (Schenato, 2006) where packets can be both

lost or delayed, which showed that stability of the Kalman filter (using constant

gains) does not depend on packet delay but only on the probability that the packet

eventually arrives.

The above result can also be extended to the case of Markovian packet losses

(Huang & Dey, 2007), at least for scalar systems. Theorem 6 of (Huang & Dey,

2007) gives the condition that the Kalman filter for a scalar system is stable if and

1In the general vector case λc cannot be determined even numerically, though upper and lower
bounds can be derived (Sinopoli et al., 2004), however exact knowledge of the critical rate will not
be required in the proof.
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only if q, the probability of receiving the next measurement given that the current

measurement is lost, satisfies A2(1 − q) < 1. The statement and proof of Lemma

4.3.1 can be easily modified to deal with this situation. To show that E[Pk|k−1]

unbounded ⇒ E[Pk|k+N ] unbounded, we choose q < 1− 1
A2 instead of λ < λc. Then

the calculation (4.5) holds except that now we replace P(A) = (1 − λ)N+1 with

P(A) = P(γk = 0)(1 − q)N .

4.4 Kalman smoothing with probabilistic constraints

Rather than studying the expected error covariance, an alternative notion of per-

formance for Kalman filtering which has been considered is putting probabilistic

constraints on the error covariance (Shi et al., 2005; Adlakha, 2005). The motiva-

tion for this is that low probability events, such as a long sequence of measurement

losses, can cause the expected error covariance to become unbounded, even when

“typical” behaviour is such that the error covariance will lie below a certain value

with high probability.

Given an upper bound M and an ε ∈ (0, 1), one can ask the question as to what

packet arrival rate λ is required in order to satisfy the constraint

P(Pk|k−1 ≤M) > 1 − ε (4.6)

where ε is usually chosen to be small so that the error covariance satisfies Pk|k−1 ≤M

with probability close to one. This can be extended naturally to Kalman smoothing

as the constraint

P(Pk|k+N ≤M) > 1 − ε (4.7)

While we showed in Section 4.3 that estimator stability in the sense of keeping

expected error covariance bounded cannot be improved by smoothing, the situation

is different when we consider probabilistic constraints. For instance, we shall see

that given M and ε the arrival rate which is sufficient to satisfy (4.7) will be smaller

than what is required to satisfy (4.6).
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Define

k1 ≡ min{k ∈ Z+ : hk(M̄) 6≤M}

where hk(X) means that the operator h(X) ≡ AXAT +Q is applied k times to X.

For C invertible (e.g. a scalar system), M̄ is defined as M̄ ≡ AC−1R(CT )−1AT +Q.

When C is not invertible the expression for M̄ is more complicated and may be

found in (Epstein et al., 2007).

Then it is shown in (Shi et al., 2005, Corollary 4) that if the losses are Bernoulli

and the packet arrival rate λ satisifes the condition

λ ≥ 1 − ε
1

k1 , (4.8)

then (4.6) will also be satisfied. The quantity k1 specifies the number of successive

packet losses that can be tolerated before the error covariance updates for Pk|k−1

applied to the matrix M̄ can no longer be bounded by the threshold M , which

is then used to derive the condition (4.8). Using the property of the smoother

equations (4.4) that previous estimates will get propagated when no measurements

are received, it can be seen that an extra N + 1 losses can be tolerated before

the smoothing error covariances (with lag N) will exceed the threshold M . Hence

replacing k1 with k1 + N + 1 allows us to translate the results of (Shi et al., 2005)

to the smoothing case, so that if

λ ≥ 1 − ε
1

k1+N+1 (4.9)

then the condition (4.7) will be satisfied. From the condition (4.9), it may be seen

that as the smoothing lag N increases, the packet arrival rate λ which is sufficient to

guarantee (4.7) will be smaller, at the expense of additional delay and computational

complexity.

As an illustration consider the scalar system A = 1.3, C = 1, Q = 0.5, R = 1,

where it can be determined that k1 = 2. Choose M = 6.25 and ε = 0.05, so that we

want the error covariances to lie below 6.25 for at least 95% of the time. The second

row of Table 4.1 shows the arrival rates required for several different smoothing lags
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Table 4.1: Arrival rates λ sufficient to satisfy probabilistic constraints (4.6)-(4.7) and
simulated probabilities, with A = 1.3, C = 1, Q = 0.5, R = 1,M = 6.25, ε = 0.05

Pk|k+N Pk|k−1 Pk|k Pk|k+1 Pk|k+2 Pk|k+3 Pk|k+4

λ 0.776 0.632 0.527 0.451 0.393 0.348
P(Pk|k+N ≤M) 0.975 0.970 0.963 0.959 0.958 0.959

N obtained using the condition (4.9). The third row contains simulated probabilities

P(Pk|k+N ≤M) using the corresponding λ values, where we simulate the system over

100000 time steps. We can see that in each case we have P(Pk|k+N ≤M) > 0.95.

4.5 Kalman filtering with retransmissions

In this section we analyze the performance of Kalman filtering using some simple

retransmission strategies. The packet losses will again be assumed to be Bernoulli

with packet arrival rate λ.

4.5.1 Deterministic retransmission strategy

Consider the following retransmission strategy: If a measurement is lost at time k,

ask for retransmission of this measurement up to N times (if the packet is still not

received), while the measurements at times k + 1, k + 2, . . . are discarded when re-

transmission is occurring. Note that with this scheme only one packet is transmitted

at any time instance and there is no queueing of packets, other than the single packet

waiting to be transmitted. Assume that the probability of receiving a retransmitted

packet is still λ. We are interested in the Kalman filtering performance (which could

be delayed by up to N) of this retransmission scheme.

Recall the sequence {γk} of 0s and 1s that specifies which measurements are lost

and received. With retransmission we will look at the sequences of 0s and 1s together

with whether the retransmitted packets are successful. To introduce notation, such

a sequence for N = 2 might look like

1 6 0 601 6 0 600 1 1 6 01 1 . . . (4.10)
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where “6 0601” represents that the retransmission is successful on the second attempt,

“6 0600” that both retransmissions are not successful, “6 01” that the retransmission

succeeded on the first attempt and “ ” that the measurement is not sent (so will

be assumed to be 0), so that (4.10) is equivalent to the sequence 110000011101 . . . .

It is clear that the number of 0s and 1s in both sequences are the same, hence the

probabilities of each occurring will be the same.

The key idea in analyzing the performance of this scheme is the following:

Lemma 4.5.1. Ignoring the first entry,2 there is a bijection between sequences {γk}
which can be obtained without retransmission and sequences that can be obtained

with retransmission. Moreover, they have the same probabilities of occurring.

Proof. Firstly, for any valid sequence of retransmissions, we will clearly obtain a

corresponding {γk} which has the same probability of occurring.

Now given a sequence {γk}, the following procedure will allow us to obtain a

retransmission sequence which will match up with {γk}.
If {γk} starts off with 0, go to step 1), otherwise go to step 2).

Step 1) Let m count the number of 0s before the first 1.

• If m = 1 then the first entry for the retransmission sequence is 1. Go to step

2)

• If 2 ≤ m ≤ N , the sequence starts with 0, followed by retransmissions with

success at the (m− 1)-th retransmission. Go to step 2)

• If m > N , write this as m = a(N + 1) + b, with a and b being non-negative

integers and b < N + 1.

– If b = 0, the sequence consists of 0s with all retransmissions failing re-

peated a times. Go to step 2)

– If b = 1, the sequence consists of a 1, followed by 0s with all retransmis-

sions failing repeated a times. Go to step 2)

2The reason we ignore the first entry is that cases like 01 . . . cannot be obtained using the

retransmission strategy considered here since the second measurement will always be discarded when

we ask for retransmission of the first measurement.
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– Else the sequence is 0 followed by retransmissions with success at the

(b − 1)-th retransmission, followed by 0s with all retransmissions failing

repeated a times. Go to step 2)

Step 2) Let n count the number of 0s between two successive 1s.

• If n = 0, the next entry in the retransmission sequence is 1. Return to step 2)

• If 0 < n ≤ N , the next entries are a 0, followed by retransmissions with success

at the n-th retransmission. Return to step 2)

• If n > N , write this as n = c(N + 1) + d, with c and d being non-negative

integers and d < N + 1.

– If d = 0, the next entries are a 1, followed by 0s with all retransmissions

failing repeated c times. Return to step 2)

– Else the next entries are a 0 followed by retransmissions with success at

the d-th retransmission, followed by 0s with all retransmissions failing

repeated c times. Return to step 2)

Following this procedure we can find a retransmission sequence which will match

up with any given{γk}, and the probabilities of obtaining both sequences are the

same. Uniqueness comes from the fact that lost measurements are always retrans-

mitted in this scheme.

Step 1) in the proof of Lemma 4.5.1 takes care of the situation where there is

a possible mismatch in the first entry due to {γk} starting off with a 0. Step 2)

of the proof is then repeatedly applied, and here we can always finding a matching

set of retransmissions. Table 4.2 shows some simple examples of {γk} and the

corresponding retransmission sequences, withN = 3. The first three columns involve

applications of step 1), and we see that the only possible mismatch in the sequences

in the first and third columns is in the first entry. The last three columns will involve

step 2), and we can see that the sequences in the fourth and sixth column are matched

up. As an example of the procedure in full, consider {γk} = 0000000100001000001,

and we want to find a retransmission sequence equivalent to this, using N = 3. Then
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Table 4.2: Some simple {γk} and retransmission sequences, with N = 3
{γk} m retransmission sequence {γk} n retransmission sequence
01 1 11 11 0 11

001 2 6 01 1 101 1 6 01 1

0001 3 6 0601 1 1001 2 6 0 601 1

00001 4 6 060 600 1 10001 3 6 0 60601 1

000001 5 1 6 0 60600 1 100001 4 1 6 060600 1

0000001 6 6 01 6 0 60600 1 1000001 5 6 01 6 060600 1

in step 1) m = 7 = 1 × 4 + 3, so a = 1 and b = 3. The first time we run step 2), we

have n = 4 = 1×4+0, so c = 1 and d = 0. The second time we run step 2), we have

n = 5 = 1 × 4 + 1, so c = 1 and d = 1. Following the procedure the retransmission

sequence is constructed as

6 0 601 6 0 60600 1 6 060 600 6 01 6 060 600 1

which agrees with the original {γk} apart from the first entry.

Thus apart from a possible mismatch in the first entry we know that there

is always a sequence of retransmissions which will reproduce the same behaviour

as a sequence {γk} for the Kalman filter without retransmission, with the same

probability of occurring. So asymptotically, the probability distributions when doing

Kalman filtering with retransmissions will be the same as that for Kalman filtering

with no retransmissions. Hence stability properties are the same as that of (Sinopoli

et al., 2004), i.e. the critical thresholds λc don’t change. The probabilistic behaviour

will also be the same as for Kalman filtering with no retransmissions so the bounds

in (Shi et al., 2005) will still apply. Therefore this retransmission scheme provides

no advantages over filtering using both of the performance measures considered

in this correspondence, while at the same time possibly introducing a delay up

to N . This agrees somewhat with the intuition that using new measurements for

estimation is better than retransmitting old measurements, though here we actually

showed that their distributions are essentially the same. Consequently, comparing

smoothing with retransmissions we find that Kalman smoothing will outperform this

retransmission strategy using the probabilistic notion of performance as discussed in
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Section 4.4. We remark that this retransmission scheme and Lemma 4.5.1 can also

be applied to other estimators such as the hidden Markov model filter (Chapter 2),

so long as the measurement losses are restricted to be an i.i.d. Bernoulli process.

4.5.2 Random retransmission strategy

An extension of the deterministic retransmission strategy is for retransmission re-

quests to be random. Here if a packet is not received, then with probability p it

asks for a retransmission independently up to a maximum of N times (if retransmis-

sions were unsuccessful), otherwise it will wait for the next measurement. It turns

out that the distribution is again asymptotically the same as that for Kalman fil-

tering without retransmissions, hence the same conclusions on its performance and

comparison with Kalman smoothing applies.

To analyze this scheme, let us look at the case of a 1 followed by n successive

0s. Consider for instance n = 3 (i.e. the sequence 1000) and N = 2. In contrast

to the deterministic strategy, there are now seven possible ways in which we can

obtain this via retransmissions: 1 0∗ 0∗ 0∗ , 1 0∗ 6 00∗ , 1 6 00∗ 0∗ ,

1 6 0600 , 6 01 0∗ 0∗ , 6 01 6 00∗ , 6 0601 0∗ , where the “ ∗ ”

here indicates that we did not ask for a retransmission. The corresponding proba-

bilities of these events (here we’re ignoring the λ(1−λ)3 term which results from re-

ceiving a 1 and three 0s) are (1−p)3, p(1−p)2, p(1−p)2, p2, p(1−p)2, p2(1−p), p2(1−p).
However one can check that the sum of these probabilities is equal to one, so that

considering all these events as a whole gives a correspondence to the original sequence

1000, similar to Lemma 4.5.1. If we can show that this is true in general, then by

independence and similar arguments as in the proof of Lemma 4.5.1 the probability

distributions for this scheme will asymptotically be the same as for Kalman filtering

without retransmissions.

To do this we first look at the block of 0s by themselves. Let f(n) be the sum of

the probabilities of the different ways in which we can get n successive zeroes. Then
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f(0) = 1, f(−1) = f(−2) = · · · = 0 and the following recursion holds:

f(n) = (1 − p)f(n− 1) + p(1 − p)f(n− 2) + p2(1 − p)f(n− 3) + . . .

+ pN−1(1 − p)f(n−N) + pNf(n−N − 1)
(4.11)

This is because the term (1− p)f(n− 1) comes from not asking for a retransmission

after the first 0, the term p(1 − p)f(n − 2) comes for asking for retransmission

once unsuccessfully, and then deciding not to ask again, and so on with the last

term pNf(n− (N + 1)) the case where we asked for N retransmissions but all were

unsuccessful.

Returning to the case of a 1 followed by n successive 0s, and let g(n) be the sum

of the probabilities of the different ways in which we can do this. Then g(n) satisfies

the relation

g(n) = f(n) + pf(n− 1) + p2f(n− 2) + · · · + pNf(n−N) (4.12)

The term f(n) represents the situation where we successfully received the first mea-

surement, the other terms represent cases where there is retransmission of the first

measurement until a successs, similar to how (4.11) is derived. Substituting (4.11)

into (4.12) we find that

g(n) = f(n− 1) + pf(n− 2) + p2f(n− 3) + · · · + pNf(n−N − 1)

Comparing this with (4.12) we see that g(n) must be constant, and hence g(n) =

· · · = f(0) = 1.

4.6 Conclusion

In this chapter we have derived the Kalman smoother in the presence of random

packet losses, and compared it against the Kalman filter with packet losses as well

as a simple retransmission scheme. We found that the Kalman smoother provided

gains over the Kalman filter in the probabilistic sense of (Shi et al., 2005), but not
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in terms of the stability notion of (Sinopoli et al., 2004). We also found that the

simple retransmission schemes considered here will statistically perform the same as

the Kalman filter without retransmission, while also introducing an additional delay.

Future work will involve analysis of retransmission strategies where more than one

packet can be sent at a time.



Chapter 5

Power Efficient State Estimation Using Multiple

Sensors

5.1 Introduction

Previous chapters have analyzed the performance of existing algorithms which have

been modified to deal with phenomena such as measurement losses and fading. The

focus of this chapter is on estimation algorithms more specifically designed for use in

wireless sensor networks, where issues such as power efficiency and medium access are

also addressed. Since the sensors will have limited energy and computational ability,

which imposes severe constraints on system design, signal processing algorithms

which can efficiently utilise these resources are of great interest.

In recent years there has been a considerable literature on estimation and de-

tection schemes for use in wireless sensor networks. Work on detection include

(Chamberland & Veeravalli, 2003; Chamberland & Veeravalli, 2004) which studies

the asymptotic optimality of using identical sensors in the presence of energy con-

straints, and (Chen et al., 2004; Jiang & Chen, 2005) which derives fusion rules for

distributed detection in the presence of fading. Parameter estimation or estimation

of constant signals is studied in e.g. (Ribeiro & Giannakis, 2006; Xiao et al., 2006)

where issues of quantization and optimization of power usage are addressed. A hier-

archical approach to estimation of fields is considered in (Nowak et al., 2004). Type

based methods for detection and estimation of discrete sources are proposed and

analyzed in (Mergen & Tong, 2006; Mergen et al., 2007; Liu & Sayeed, 2007).

A promising scheme for distributed estimation in sensor networks is analog for-

warding, where measurements from the sensors are transmitted directly (possibly

scaled) to the fusion center without any coding, which is motivated by optimal-

99



100 Chapter 5. POWER EFFICIENT STATE ESTIMATION

ity results on uncoded transmissions in point-to-point links (Goblick, 1965; Gastpar

et al., 2003). Other related information theoretic results include (Berger et al., 1996;

Viswanathan & Berger, 1997; Ishwar et al., 2005). Analog forwarding schemes are

attractive due to their simplicity as well as the possibility of real-time processing

since there is no coding delay. In (Gastpar & Vetterli, 2003) the asymptotic (large

number of sensors) optimality of analog forwarding for estimating an i.i.d. scalar

Gaussian process is shown. Analog forwarding with optimal power allocation is

studied in (Xiao et al., 2005) and (Cui et al., 2007) for multi-access and orthogonal

schemes respectively. Lower bounds and asymptotic optimality results for estimat-

ing independent vector processes, is addressed in (Gastpar & Vetterli, 2005). In

(Bahceci & Khandani, 2006) the vector data to be estimated is allowed to be cor-

related between sensors, and optimal power allocation problems are formulated and

solved, though the processes are still i.i.d. over time.

Rather than the i.i.d. processes previously considered, in this chapter we ad-

dress estimation of dynamical systems using analog forwarding of measurements. In

particular, we will consider the problem of state estimation of discrete-time scalar

linear systems using multiple sensors. As is well-known, optimal state estimation

of a linear system can be achieved using a Kalman filter. Other work on Kalman

filtering in sensor networks include (Zhang & Li, 2004) which studied optimal sensor

data quantization, and (Ribeiro et al., 2006), where Kalman filtering using one bit

quantized observations is considered and performance is shown to lie within a con-

stant factor of the standard Kalman filter. Another related area with a long history

is that of distributed Kalman filtering, where the main objectives include doing local

processing at the individual sensor level to reduce the computations required at the

fusion centre (Willner et al., 1976; Hashemipour et al., 1988), or to form estimates

at each of the individual sensors in a completely decentralized fashion without any

fusion centre (Rao & Durrant-Whyte, 1991). However here we assume that com-

putational resources available at the sensors are limited so that they will only take

measurements and then transmit them to the fusion center for further processing,

using uncoded analog forwarding.

In this chapter we will consider estimation of scalar linear systems using multiple
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sensors communicating to the fusion centre via multi-access or orthogonal medium

access schemes. In particular, our focus will be on deriving asymptotic behaviour of

the error covariance with respect to the number of sensors for these schemes as well as

optimal transmission power allocation to the sensors under a constraint on the error

covariance at the fusion center or a sum power constraint at the sensor transmitters.

We consider both static and fading channels and in the context of fading channels,

we consider various levels of availability of channel state information (CSI) at the

transmitters and the fusion center. The chapter is organized as follows. Section

5.2 specifies our model and preliminaries. Section 5.3 gives a number of examples

between multi-access and orthogonal access schemes, which show that in general

one scheme does not always perform better than the other. We investigate the

asymptotic behaviour for a large number of sensors M in Section 5.4, where it is

shown that the error covariance decays at the rate 1/M , and in the multi-access case

even where the total power is bounded. Optimal power allocation for static channels

is considered in Section 5.5, where we formulate and solve optimization problems

for 1) an error covariance constraint and 2) a sum power constraint. Section 5.6

will look at fading channels. In the case where we have channel state information

(CSI) we can run the optimization at each time step. When we don’t have CSI, we

will derive a sub-optimal linear estimator similar to (Nahi, 1969; Rajasekaran et al.,

1971; Hadidi & Schwartz, 1979), which can be used for non-zero mean fading. The

1/M scaling behaviour is also observed here, and we will also perform optimization

using this estimator. Some numerical studies are presented in Section 5.7.

5.2 Models and preliminaries

Throughout this chapter, i represents the sensor index and k represents the time

index. Let the linear system be

xk+1 = Axk + wk
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with the M sensors each observing

yi,k = Cixk + vi,k, i = 1, . . . ,M

with wk and vi,k being zero-mean Gaussians having covariances Q and Ri respec-

tively, with the vi,k’s being independent between sensors. Note that the sensors can

have different observation matrices Ci and measurement noise variances Ri. In this

chapter we will restrict ourselves to scalar systems, so that A,Ci, Q,Ri are scalar

quantities. For the sake of generality, we allow A and Ci to take on both positive

and negative values.1 It is assumed that the parameters A,Ci, Q and Ri are known.

Moreover, we assume that the system is stable, i.e. |A| < 1.

5.2.1 Multi-access scheme

In the (non-orthogonal) multi-access scheme the fusion center receives the sum

z̃k =
M
∑

i=1

α̃i,kh̃i,kyi,k + ñk (5.1)

where ñk is zero-mean complex Gaussian with variance 2N , h̃i,k are the complex-

valued channel gains, and α̃i,k are the complex-valued multiplicative amplification

factors in an amplify and forward scheme. See Figure 5.1. We assume that all

transmitters have access to their complex channel state information (CSI), and use

α̃i,k = αi,k
h̃∗i,k

|h̃i,k|

where αi,k is real-valued, i.e. we do distributed transmitter beamforming. Calling

hi,k ≡ |h̃i,k|, zk ≡ <[z̃k], nk ≡ <[ñk], we then have

zk =
M
∑

i=1

αi,khi,kyi,k + nk (5.2)

1This is with the aim of eventually extending our results to vector models, where e.g. A matrices
would often contain both positive and negative entries.
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Figure 5.1: Analog Forwarding - Multi-Access

The assumption of CSI at the transmitters is crucial in order for the signals to add

up coherently in (5.2), and may not be easy to achieve in large sensor networks.2

Continuing further, we may write

zk =
M
∑

i=1

αi,khi,kCixk +
M
∑

i=1

αi,khi,kvi,k + nk

= C̄kxk + v̄k

where C̄k ≡ ∑M
i=1 αi,khi,kCi and v̄k ≡ ∑M

i=1 αi,khi,kvi,k + nk. Hence, we have the

following linear system

xk+1 = Axk + wk

zk = C̄kxk + v̄k

(5.3)

with v̄k having variance R̄k ≡ ∑M
i=1 α

2
i,kh

2
i,kRi + N . Define the state estimate and

error covariance as

x̂k+1|k = E [xk+1|{z0, . . . , zk}]

Pk+1|k = E
[

(xk+1 − x̂k+1|k)
2|{z0, . . . , zk}

]

Then it is well known that optimal estimation of the state xk in the minimum mean

2The case where the channel gains are unknown but channel statistics are available is addressed
in Section 5.6.2. This can also be used to model the situation where perfect phase synchronization
cannot be achieved (Gastpar & Vetterli, 2005).
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Figure 5.2: Analog Forwarding - Orthogonal Access

squared error sense can be achieved using a (time-varying) Kalman filter (Anderson

& Moore, 1979). We recall that even if the noises are non-Gaussian, the Kalman

filter is still the best linear estimator.

5.2.2 Orthogonal access scheme

In the orthogonal scheme each sensor transmits its measurement to the fusion center

via orthogonal channels (e.g. using FDMA or CDMA), so the fusion center receives

z̃i,k = α̃i,kh̃i,kyi,k + ñi,k, i = 1, . . . ,M

with ñi,k’s independent, zero mean complex Gaussian with variance 2N,∀i. See Fig-

ure 5.2. We will again assume CSI at the transmitters and use α̃i,k = αi,k
h̃∗

i,k

|h̃i,k|
, αi,k ∈

R. Let hi,k ≡ |h̃i,k|, zi,k ≡ <[z̃i,k], ni,k ≡ <[ñi,k]. We can then write the situation

(using the superscript “o” to distinguish some quantities in the orthogonal scheme

from the multi-access scheme) as the linear system

xk+1 = Axk + wk

zok = C̄o
kxk + v̄ok
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where

zok ≡











z1,k

...

zM,k











, C̄o
k ≡











α1,kh1,kC1

...

αM,khM,kCM











, v̄ok ≡











α1,kh1,kv1,k + n1,k

...

αM,khM,kvM,k + nM,k











with the covariance of v̄ok being

R̄o
k ≡

















α2
1,kh

2
1,kR1 +N 0 . . . 0

0 α2
2,kh

2
2,kR2 +N . . . 0

...
...

. . .
...

0 0 . . . α2
M,kh

2
M,kRM +N

















The state estimate and error covariance are now defined as

x̂ok+1|k = E [xk+1|{zo0, . . . , zok}]

P o
k+1|k = E

[

(xk+1 − x̂ok+1|k)
2|{zo0, . . . , zok}

]

Optimal estimation of xk in the orthogonal scheme can also be achieved using a

Kalman filter. The advantage of the orthogonal scheme is that we do not need

carrier-level synchronization among all sensors, but only require synchronization

between each individual sensor and the fusion center (Cui et al., 2007).

5.2.3 Transmit powers

For stable scalar systems, it is well known that if Xk is stationary we have

E[X2
k ] =

Q

1 − A2
,∀k.

In both the multi-access and orthogonal schemes, the power used at time k by the

ith sensor in transmitting its measurement to the fusion center is then

pi,k = α2
i,k

(

C2
i

Q

1 − A2
+Ri

)
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5.2.4 Steady state error covariance

For the moment we will let h̃i,k = h̃i,∀k, and hence hi,k = hi,∀k, be time-invariant,

deferring the discussion of time-varying channels until Section 5.6. For stable sys-

tems and time-invariant channels we will also assume that αi,k = αi,∀k, i.e. the

amplification factors don’t vary with time, and will drop the subscript k from quan-

tities such as C̄k and R̄k.

From Kalman filtering theory, we know that the steady state (as k → ∞) error

covariance P∞ (provided it exists) in the multi-access scheme satisfies

P∞ = A[P∞ − P∞C̄
T (C̄P∞C̄

T + R̄)−1C̄P∞]AT +Q =
A2P∞R̄

C̄2P∞ + R̄
+Q

where R̄ and C̄ are the time-invariant versions of R̄k and C̄k.
3 For stable systems,

it is known that the steady state error covariance always exists (Anderson & Moore,

1979, p.77). For C̄ 6= 0, the solution to this can be easily shown to be

P∞ =
(A2 − 1)R̄ + C̄2Q+

√

((A2 − 1)R̄ + C̄2Q)2 + 4C̄2QR̄

2C̄2
(5.4)

We note that (5.4) can also be written as

P∞ =
(A2 − 1) +QS +

√

(A2 − 1 +QS)2 + 4QS

2S
(5.5)

with S ≡ C̄2/R̄ regarded as a signal-to-noise ratio (SNR). We have the following

property, which is proved in Appendix 5.9.1. For a similar SNR improvement prop-

erty of the Kalman filter, see (Anderson & Moore, 1979, p.118-120).

Lemma 5.2.1. P∞ is a decreasing function of S

In the orthogonal access scheme, the steady state error covariance P o
∞ satisfies

P o
∞ = A[P o

∞ − P o
∞C̄

oT

(C̄oP o
∞C̄

oT

+ R̄o)−1C̄oP o
∞]AT +Q (5.6)

3The assumption of time-invariance is important. For time-varying R̄k and C̄k, the error co-
variance usually will not converge to a steady state value
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where R̄o and C̄o are the time-invariant versions of R̄o
k and C̄o

k . We have that P o
∞ is

a scalar, but C̄o is now a vector and R̄o a matrix. To simplify the expressions, first

apply the matrix inversion lemma to get

C̄oT

(C̄oP o
∞C̄

oT

+ R̄o)−1C̄o = C̄oT
[

R̄o−1 − R̄o−1

C̄o(P o−1

∞ + C̄oT

R̄o−1

C̄o)−1C̄oT

R̄o−1
]

C̄o

= C̄oT

R̄o−1

C̄o − (C̄oT

R̄o−1

C̄o)2

1/P o
∞ + C̄oT R̄o−1C̄o

=
C̄oT

R̄o−1

C̄o

1 + P o
∞C̄

oT R̄o−1C̄o

(5.7)

and where we can easily compute C̄oT

R̄o−1

C̄o as

So ≡ C̄oT

R̄o−1

C̄o =
M
∑

i=1

α2
ih

2
iC

2
i

α2
ih

2
iRi +N

with So regarded as a signal-to-noise ratio. Then the solution to (5.6) can be com-

puted as

P o
∞ =

A2 − 1 +QSo +
√

(A2 − 1 +QSo)2 + 4QSo

2So
(5.8)

The error covariance P o
∞ is a decreasing function of So using the same proof as in

Appendix 5.9.1.

Comparing (5.5) and (5.8) we see that the functions for P∞ and P o
∞ are of the

same form, except that in the multi-access case we have

S ≡ C̄2

R̄
=

(

∑M
i=1 αihiCi

)2

∑M
i=1 α

2
ih

2
iRi +N

and in the orthogonal case we have

So ≡ C̄oT

R̄o−1

C̄o =
M
∑

i=1

α2
ih

2
iC

2
i

α2
ih

2
iRi +N
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5.3 Examples of multi-access vs orthogonal access

Now one might ask the question as to whether one scheme is always better the

other, e.g. whether S ≥ So given the same values for αi, hi, Ci, Ri, N are used in

both expressions. However in general this is not true. We present below a number of

examples showing different behaviour in different situations. Assume for simplicity

that the αi’s are chosen such αiCi are positive for all i = 1, . . . ,M .

1) Consider first the case when N = 0. Then we have the inequality

M
∑

i=1

α2
ih

2
iC

2
i

α2
ih

2
iRi

≥

(

∑M
i=1 αihiCi

)2

∑M
i=1 α

2
ih

2
iRi

which can be shown by applying Theorem 65 of (Hardy et al., 1952). So when

N = 0, So ≥ S and consequently P o
∞ will be smaller than P∞. The intuitive

explanation for this is that if there is no noise introduced at the fusion center, then

receiving the individual measurements from the sensors is better than receiving a

linear combination of the measurements.

2) Next we consider the case when the noise variance N is large. We write

S − So

=

(

∑M
i=1 αihiCi

)2

∑M
i=1 α

2
ih

2
iRi +N

−
M
∑

i=1

α2
ih

2
iC

2
i

α2
ih

2
iRi +N

=
1

(

∑M
i=1 α

2
ih

2
iRi +N

)

∏M
i=1(α

2
ih

2
iRi +N)





(

M
∑

i=1

αihiCi

)2 M
∏

i=1

(α2
ih

2
iRi +N)

− α2
1h

2
1C

2
1

(

M
∑

i=1

α2
ih

2
iRi +N

)

∏

i:i6=1

(α2
ih

2
iRi +N) − . . .

− α2
Mh

2
MC

2
M

(

M
∑

i=1

α2
ih

2
iRi +N

)

∏

i:i6=M

(α2
ih

2
iRi +N)



 .

The coefficient of the NM term in the numerator is

(

M
∑

i=1

αihiCi

)2

− α2
1h

2
1C

2
1 − · · · − α2

Mh
2
MC

2
M > 0.
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For N sufficiently large, this term will dominate, hence S > So and the multi-access

case will now have smaller error covariance than the orthogonal case.

3) Now look at the “symmetric” situation where αi = α,Ci = C,Ri = R, hi =

h,∀i. Then we have

S =
M2α2h2C2

Mα2h2R +N
=

Mα2h2C2

α2h2R +N/M

So =
Mα2h2C2

α2h2R +N

so S ≥ So with equality only when N = 0 (or M = 1). Thus in the symmetric case,

multi-access outperforms orthogonal access.

4) Suppose N 6= 0. In the multi-access case we have a sum of measurements

plus noise introduced at the fusion center, whereas in the orthogonal case the fusion

center adds noise onto each of the individual measurements. Thus a reasonable

question to ask is whether one can always achieve S > So for M sufficiently large.

However the answer is no as the following counterexample illustrates. Let αi =

1, hi = 1, Ri = 1,∀i. Let M/2 of the sensors have Ci = 1, and the other M/2 sensors

have Ci = 2. We find that

S =
(M/2 +M)2

M +N
=

9

4

M

1 +N/M

So =
M

2

1 + 4

1 +N
=

5

2

M

1 +N

If say N = 1/8, then it may be verified that So > S for M < 10, So = S for M = 10,

and S > So for M > 10, so eventually the multi-access scheme outperforms the

orthogonal scheme. On the other hand, if

5

2(1 +N)
>

9

4

or N < 1/9, we will have So > S no matter how large M is.

Similar to example 1), the possible intuitive explanation for this is that even if

the individual measurements have a very small amount of noise added at the fusion

center, receiving these individual measurements from the sensors may still be better
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than receiving a linear combination of the measurements.

5.4 Asymptotic behaviour

Since P∞ is a decreasing function of S (similar comments apply for the orthogonal

case), increasing S will provide an improvement in performance. As S → ∞, we

can see from (5.5) that P∞ → Q, the process noise variance. Note that unlike e.g.

(Gastpar & Vetterli, 2003; Cui et al., 2007) where the mean squared error (MSE)

can be driven to zero in some situations such as when there is a large number of

sensors, here the lower bound Q on performance is always strictly greater than zero.

Now if the number of sensors is fixed, then it is not too difficult to show that S will

be bounded no matter how large (or small) one makes the αi’s, so getting arbitrarily

close to Q is not possible. On the other hand, if instead the number of sensors M

is allowed to increase, then P∞ → Q as M → ∞ can be achieved. Moreover we will

be interested in the rate at which this convergence occurs.

In this section we will investigate two simple strategies, 1) αi = 1,∀i, and 2)

αi = 1/
√
M,∀i.4 We do this first for the “symmetric” case (i.e. the parameters are

the same for each sensor) where we can obtain explicit asymptotic expressions. We

then use these results to bound the performance in the general asymmetric case.

We remark that the results in this section assume that large M is possible,

e.g. ability to synchronize a large number of sensors in the multi-access scheme, or

the availability of a large number of non-overlapping frequency bands in FDMA or a

large number of orthogonal spreading sequences in CDMA in the orthogonal scheme,

which may not always be possible in practice. However, in numerical investigations

we have found that the results derived in this section are quite accurate even for

20-30 sensors, see Section 5.7

4These strategies are related to the case of “equal power constraint” and “total power constraint”
in (Liu et al., 2007), and various versions have also been considered in the work of (Gastpar &
Vetterli, 2003; Gastpar & Vetterli, 2005; Xiao et al., 2005; Cui et al., 2007), in the context of
estimation of i.i.d. processes.
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5.4.1 No scaling: αi = 1, ∀i

Let αi = 1,∀i, so measurements are forwarded to the fusion center without any

scaling. Assume for simplicity the symmetric case, where Ci = C,Ri = R, hi = h,∀i.

In the multi-access scheme, C̄ = MhC and v̄k has variance R̄ = Mh2R + N .

Substituting into (5.4)

P∞ =
(A2 − 1)(Mh2R +N) +M2h2C2Q

2M2h2C2

+

√

((A2 − 1)(Mh2R +N) +M2h2C2Q)2 + 4M2h2C2Q(Mh2R +N)

2M2h2C2
.

We are interested in the behaviour of this as M → ∞. Now

√

((A2 − 1)(Mh2R +N) +M2h2C2Q)2 + 4M2h2C2Q(Mh2R +N)

=
(

h4C4Q2M4 + 2(A2 − 1)Rh4C2QM3 + 4h4C2QRM3 +O(M2)
)1/2

= h2C2QM2

(

1 +
2(A2 + 1)R

C2QM
+O

(

1

M2

))1/2

= h2C2QM2

(

1 +
1

2

2(A2 + 1)R

C2QM
+O

(

1

M2

))

= h2C2QM2 + (A2 + 1)h2RM +O(1)

(5.9)

where we have used the expansion

(1 + x)1/2 = 1 +
x

2
+O(x2)

for |x| < 1 (Abramowitz & Stegun, 1965, p.15), which is valid when M is sufficiently

large. Hence

P∞ = Q+
A2R

C2

1

M
+O

(

1

M2

)

So in this case the steady state error covariance for the multi-access scheme converges

to the process noise variance Q, at a rate of 1/M . This result matches the rate of

1/M achieved for estimation of i.i.d. processes using multi-access schemes, e.g.

(Gastpar & Vetterli, 2003; Liu et al., 2007).
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In the orthogonal scheme we have

So =
Mh2C2

h2R +N

and

P o
∞ =

(A2 − 1)(h2R +N) +Mh2C2Q

2Mh2C2

+

√

((A2 − 1)(h2R +N) +Mh2C2Q)2 + 4Mh2C2Q(h2R +N)

2Mh2C2
.

By similar calculations to (5.9) we find that

P o
∞ = Q+

A2(h2R +N)

h2C2

1

M
+O

(

1

M2

)

= Q+
A2(R +N/h2)

C2

1

M
+O

(

1

M2

)

.

The steady state error covariance again converges to Q at a rate of 1/M , but the

constant A2(R+N/h2)
C2 in front is larger. This agrees with example 3) of Section 5.3

that in the symmetric situation multi-access will perform better than orthogonal.

5.4.2 Scaling αi = 1/
√
M, ∀i

In the previous case with αi = 1,∀i, the power received at the fusion center will grow

unbounded as M → ∞. Suppose instead we let αi = 1/
√
M,∀i, which will keep

the power received at the fusion center bounded (and is constant in the symmetric

case), while the transmit power used by each sensor will tend to zero as M → ∞.

Again assume for simplicity that Ci = C,Ri = R, hi = h,∀i.

In the multi-access scheme we now have C̄ =
√
MhC and R̄ = h2R +N , and

S =
Mh2C2

h2R +N
,

so that

P∞ = Q+
A2(R +N/h2)

C2

1

M
+O

(

1

M2

)

.

So we again have the steady state error covariance converging to the process noise

variance Q at a rate of 1/M . In fact, we see that this is the same expression
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as in the orthogonal case but where we were using αi = 1,∀i. The advantage

here is that the transmit power used by each individual sensor can decrease to

zero as the number of sensors increases, which is possibly more desirable in power

constrained environments such as wireless sensor networks. For i.i.d. processes, this

1/M behaviour when the total received power is bounded has also been observed

(Gastpar & Vetterli, 2005; Liu et al., 2007).

In the orthogonal scheme we have

P o
∞ =

(A2 − 1)(h2R/M +N) + h2C2Q

2h2C2

+

√

((A2 − 1)(h2R/M +N) + h2C2Q)2 + 4h2C2Q(h2R/M +N)

2h2C2
.

One can show by similar computations to (5.9) that for large M ,

P o
∞ =

(A2 − 1)N + h2C2Q+
√

(A2 − 1)2N2 + 2(A2 + 1)Nh2C2Q+ h4C4Q2

2h2C2

+

[

(A2 − 1)R

2C2
+

(A2 + 1)h4RC2Q+ (A2 − 1)2Nh2R

2h2C2
√

(A2 − 1)2N2 + 2(A2 + 1)Nh2C2Q+ h4C4Q2

]

1

M

+O

(

1

M2

)

.

Note that

(A2 − 1)N + h2C2Q+
√

(A2 − 1)2N2 + 2(A2 + 1)Nh2C2Q+ h4C4Q2

2h2C2
> Q

so that the steady state error covariance converges as M → ∞ to a value strictly

greater than Q, though the convergence is still at a rate 1/M . An easier way to see

that convergence of P o
∞ to Q cannot be achieved is to note that here

So =
h2C2

h2R/M +N

which is bounded even as M → ∞. Another observation is that this is also the

behaviour which can be achieved in the multi-access case but with a scaling αi =

1/M (rather than αi = 1/
√
M), as the reader may verify. Analogously, for i.i.d.

processes it has been shown that in the orthogonal case the MSE does not go to zero



114 Chapter 5. POWER EFFICIENT STATE ESTIMATION

as M → ∞ when the total power used is bounded (Cui et al., 2007).

5.4.3 General parameters

The behaviour shown in the two previous cases can still hold under more general

conditions on Ci, Ri and hi. Suppose for instance that they can be bounded from

both above and below, i.e.

0 < Cmin ≤ |Ci| ≤ Cmax <∞,∀i

0 < Rmin ≤ Ri ≤ Rmax <∞,∀i

0 < hmin ≤ hi ≤ hmax <∞,∀i

We first treat the multi-access scheme. We have

MhminCmin ≤
M
∑

i=1

hiCi ≤MhmaxCmax

and

Mh2
minRmin ≤

M
∑

i=1

h2
iRi ≤Mh2

maxRmax

Recall from Lemma 5.2.1 that P∞ is a decreasing function of S = C̄2/R̄. If we

choose αi ∈ {+1,−1} such that αiCi is positive for all i, we have

Mh2
minRmin +N

M2h2
maxC

2
max

≤ R̄

C̄2
≤ Mh2

maxRmax +N

M2h2
minC

2
min

and by a similar calculation to (5.9) we can show that as M → ∞

Q+
A2h2

minRmin

h2
maxC

2
max

1

M
+O

(

1

M2

)

≤ P∞ ≤ Q+
A2h2

maxRmax

h2
minC

2
min

1

M
+O

(

1

M2

)

If instead we choose αi ∈ {1/
√
M,−1/

√
M} such that αiCi is positive for all i, we

have
h2
minRmin +N

Mh2
maxC

2
max

≤ R̄

C̄2
≤ h2

maxRmax +N

Mh2
minC

2
min
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and we can show that as M → ∞

Q+
A2(h2

minRmin +N)

h2
maxC

2
max

1

M
+O

(

1

M2

)

≤ P∞ ≤ Q+
A2(h2

maxRmax +N)

h2
minC

2
min

1

M
+O

(

1

M2

)

In either case, as the upper and lower bounds both converge to Q at a rate of 1/M ,

P∞ itself will also do so.

For the orthogonal scheme, a similar argument to the above shows that choosing

αi ∈ {+1,−1} gives convergence of P o
∞ to Q at the rate 1/M for general parameters.

However, if we choose αi ∈ {1/
√
M,−1/

√
M}, then P o

∞ does not converge to a limit

as M → ∞ for general parameters. For instance, suppose there are two distinct

sets of parameters, such that if all the sensors had the first set of parameters the

error covariance would converge to P o
∞,1, and if all the sensors had the second set of

parameters the error covariance would converge to P o
∞,2, with P o

∞,2 6= P o
∞,1. Suppose

the first M1 sensors have the first set of parameters, the next M2 (with M2 >> M1)

sensors the second set, the next M3 (with M3 >> M2) sensors the first set, the

next M4 (with M4 >> M3) sensors the second set, etc... Then P o
∞ would alternate

between approaching P o
∞,1 and P o

∞,2, and will not converge to a limit as M → ∞.

5.4.4 Equal power allocation

When the parameters are asymmetric, the above rules in general will allocate differ-

ent powers to the individual sensors. An alternative is to use equal power allocation.

Recall that the transmit power used by each sensor is

pi = α2
i

(

C2
i

Q

1 − A2
+Ri

)

If we allocate power p to each sensor, i.e. pi = p,∀i, then

αi =

√

p(1 − A2)

C2
iQ+Ri(1 − A2)

(5.10)
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If instead the total power ptotal is to be shared equally amongst sensors, then pi =

ptotal/M,∀i, and

αi =

√

ptotal(1 − A2)

M (C2
iQ+Ri(1 − A2))

(5.11)

Asymptotic behaviour of the different cases using equal power allocation will be

similar to Section 5.4.3, and can be treated using similar arguments there.

5.4.5 Remarks

1) Most of the previous rules in this section give a convergence rate of 1/M . We

might wonder whether we can achieve an even better rate (e.g. 1/M2) using other

choices for αi. The answer is no. Following (Gastpar & Vetterli, 2003), consider the

“ideal” case where sensor measurements are received perfectly at the fusion center,

and which mathematically corresponds to the orthogonal scheme with N = 0, αi =

1, hi = 1,∀i. This idealized situation provides a lower bound on the achievable error

covariance. We will have

So =
M
∑

i=1

C2
i

Ri

which can be used to show that P o
∞ converges to Q at the rate 1/M by a similar

argument to Section 5.4.3. Hence 1/M is the best rate that can be achieved using

any coded/uncoded scheme.

2) In the previous derivations we have not actually used the assumption that

|A| < 1, so the results in Sections 5.4.1 - 5.4.3 will hold even when the system is

unstable. However for unstable systems, E[X2
k ] becomes unbounded as k → ∞, so

if the αi,k’s are time invariant, then more and more power is used by the sensors as

time passes. If the application is a wireless sensor network where power is limited,

then the question is whether one can choose these αi,k’s such that both the power

used by the sensors and the error covariances will be bounded for all times. Now

if there is no noise at the fusion center, i.e. nk = 0 then a simple scaling of the

measurements at the individual sensors will work. But when nk 6= 0, as will usually

be the case in analog forwarding, we have not been able to find a scheme which

can achieve this for unstable systems. However in practice, in most cases, we will
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be interested in finite horizon results for unstable systems where the system states

and measurements can take on large values but are still bounded. In such finite

horizon situations, one can perform optimum power allocation either at each time

step similar to Section 5.6 for a finite number of time steps, or use a finite horizon

dynamic programming approach. These problems will be considered in future work.

5.5 Optimal power allocation

When there are a large number of sensors, one can use simple strategies such as αi =

1/
√
M,∀i, or the equal power allocation (5.11), which will both give a convergence of

the steady state error covariance to Q at a rate of 1/M (in the multi-access scheme),

while bounding the total power used by all the sensors. But when the number of

sensors is small, one may perhaps do better with different choices of the αi’s. In this

section we will address two relevant optimization problems.

5.5.1 Multi-access

Minimizing sum power

One possible formulation is to minimize the sum of transmission powers used by the

sensors subject to a bound on the steady state error covariance. More formally, the

problem is

min
M
∑

i=1

pi =
M
∑

i=1

α2
i

(

C2
iQ

1 − A2
+Ri

)

subject to P∞ ≤ D

with P∞ given by (5.4).

Some straightforward manipulations show that the constraint can be simplified

to

R̄
(

A2D +Q−D
)

+ C̄2D(Q−D) ≤ 0 (5.12)
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i.e.

(

M
∑

i=1

α2
ih

2
iRi +N

)

(

A2D +Q−D
)

+

(

M
∑

i=1

αihiCi

)2

D(Q−D) ≤ 0

Now define s = h1C1α1 + · · ·+ hMCMαM . Then the optimization problem becomes

min
α1,...,αM ,s

M
∑

i=1

α2
i

(

C2
iQ

1 − A2
+Ri

)

subject to

(

M
∑

i=1

α2
ih

2
iRi +N

)

(

A2D +Q−D
)

≤ s2D(D −Q)

s =
M
∑

i=1

hiCiαi

(5.13)

Before going further, we determine some upper and lower bounds on D. From

Section 5.4, a lower bound is D ≥ Q, where Q is the process noise variance. For an

upper bound, suppose C̄ = 0 so we don’t have any information about xk. Since we

are assuming the system is stable, one can still achieve an error covariance of Q
1−A2

(just let x̂k = 0,∀k), so D ≤ Q
1−A2 . Hence in problem (5.13) both D − Q ≥ 0 and

A2D +Q−D ≥ 0.

To reduce the amount of repetition in later sections, consider the slightly more

general problem

min
α1,...,αM ,s

M
∑

i=1

α2
i γi

subject to

(

M
∑

i=1

α2
i bi +N

)

x ≤ s2y

s =
M
∑

i=1

αiai

(5.14)

where x > 0, y > 0, γi > 0, ai ∈ R, bi > 0, i = 1, . . . ,M are constants. In the context

of (5.13), x = A2D+Q−D, y = D(D−Q), ai = hiCi, bi = h2
iRi and γi =

C2
i Q

1−A2 +Ri

for i = 1, . . . ,M .

The objective function of problem (5.14) is clearly convex. We can divide the

feasible region into two regions corresponding to s > 0 and s < 0. Then in each of
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the two regions, the function
∑M

i=1 α
2
i bi +N

s2

is convex, by noting that each of the functions α2
i /s

2 is convex. Hence the two regions

corresponding to s > 0 and s < 0 are both convex and the global solution can be

easily found numerically. Moreover, following similar steps to (Xiao et al., 2005), a

solution in (mostly) closed form can be obtained. Some details on the derivations

are in Appendix 5.9.2. Below we shall summarise what is required. One first solves

numerically for λ the equation

M
∑

i=1

λa2
i

γi + λbix
=

1

y

Since the left hand side is increasing with λ solutions to this equation will be unique

provided it exists. Taking limits as λ→ ∞, we see that a solution exists if and only

if
M
∑

i=1

a2
i

bi
>
x

y
(5.15)

Equation (5.15) thus also provides a feasibility check for the optimization problem

(5.14). In the context of (5.13), one can easily derive that (5.15) implies

M
∑

i=1

C2
i

Ri

>
A2D +Q−D

D(D −Q)

which indicates that the sum of the sensor signal to noise ratios must be greater than

a threshold (dependent on the error covariance threshold D) for the optimization

problem (5.13) to be feasible.

Next, we compute µ from

µ2 = Nx

(

M
∑

i=1

a2
i γi

4λ(γi + λbix)2

)−1

Finally we obtain the optimal αi’s (denoted by α∗
i )

α∗
i =

µai
2(γi + λbix)

, i = 1, . . . ,M.
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with the resulting powers

pi = α∗2
i

(

C2
i

Q

1 − A2
+Ri

)

, i = 1, . . . ,M

Note that depending on whether we choose µ to be positive or negative, two different

sets of α∗
i ’s will be obtained, one of which is the negative of the other, though the

pi’s and hence the optimal value of the objective function remains the same.

Minimizing error covariance

A related problem is to minimize the steady state error covariance subject to a sum

power constraint. Formally, this is

minP∞

subject to
M
∑

i=1

α2
i

(

C2
iQ

1 − A2
+Ri

)

≤ ptotal

with P∞ again given by (5.4). For this problem, the feasible region is clearly convex,

but the objective function is complicated. To simplify the objective, recall from

Lemma 5.2.1 that P∞ is a decreasing function of S = C̄2/R̄. Thus maximizing

C̄2/R̄ (or minimizing R̄/C̄2) is equivalent to minimizing P∞. If we regard C̄2/R̄ as

a signal-to-noise ratio, then this result has the interpretation that maximizing the

SNR minimizes P∞. Hence the problem is equivalent to

min
α1,...,αM ,s

∑M
i=1 α

2
ih

2
iRi +N

s2

subject to
M
∑

i=1

α2
i

(

C2
iQ

1 − A2
+Ri

)

≤ ptotal

s =
M
∑

i=1

hiCiαi
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We again introduce a more general problem

min
α1,...,αM ,s

∑M
i=1 α

2
i bi +N

s2

subject to
M
∑

i=1

α2
i γi ≤ ptotal

s =
M
∑

i=1

αiai

(5.16)

with x > 0, y > 0, γi > 0, ai ∈ R, bi > 0, i = 1, . . . ,M being constants. Arguing as

in the paragraph after (5.14), the objective function will be convex in each of the

two regions s > 0 and s < 0, so we will again obtain two sets of solutions. Unlike

problem (5.14), we have not been able to obtain an analytical solution here, though

numerical solutions can still be found easily since the problem is convex.

5.5.2 Orthogonal access

Minimizing sum power

The corresponding problem in the orthogonal scheme is

min
M
∑

i=1

pi =
M
∑

i=1

α2
i

(

C2
iQ

1 − A2
+Ri

)

subject to P o
∞ ≤ D

with P o
∞ now given by (5.8). By a rearrangement of the constraint, this can be

shown to be equivalent to

min
α1,...,αM

M
∑

i=1

α2
i

(

C2
iQ

1 − A2
+Ri

)

subject to
M
∑

i=1

α2
ih

2
iC

2
i

α2
ih

2
iRi +N

≥ A2D +Q−D

D(D −Q)

(5.17)

Since each of the functions
−α2

ih
2
iC

2
i

α2
ih

2
iRi +N
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is convex for αi > 0 (also for αi < 0), this problem is convex. Note that without

further restrictions on αi we will get 2M solutions with the same values of the

objective function, corresponding to the different choices of positive and negative

signs on the αi’s. This is in contrast to the multi-access case where there were

two sets of solutions. For simplicity we can take the solution corresponding to all

αi ≥ 0.5

An analytical solution can also be obtained. To reduce repetition in later sections,

consider the more general problem

min
α1,...,αM

M
∑

i=1

α2
i γi

subject to
M
∑

i=1

α2
i a

2
i

α2
i bi +N

≥ x

y

(5.18)

where x > 0, y > 0, γi > 0, ai ∈ R, bi > 0, i = 1, . . . ,M are constants and

γi, x, y, ai, bi have identical interpretations as in Section 5.5.1. Since the deriva-

tion of the analytical solution is similar to that found in (Cui et al., 2007) (though

what they regard as αk is α2
i here), it will be omitted and we will only present the

solution.

Firstly, the problem will be feasible if and only if

M
∑

i=1

a2
i

bi
>
x

y

Interestingly, this is the same condition for feasibility (5.15) in the multi-access case,

problem (5.14), indicating that the total SNR for the sensor measurements must be

greater than a certain threshold (dependent on D). Now assume that the sensors

are ordered so that
a2

1

γ1

≥ · · · ≥ a2
M

γM

5In general this is not possible in the multi-access case. For instance if we have two sensors
with C1 being positive and C2 negative, the optimal solution will involve α1 being positive and α2

negative, or vice versa. Restricting both αi’s to be positive in the multi-access case will result in
a sub-optimal solution.
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Note that in the context of problem (5.17),

a2
i

γi
=

h2
i

Q/(1 − A2) +Ri/C2
i

.

Clearly, this ordering favours the sensors with better channels and higher measure-

ment quality. Then the optimal values of α2
i (and hence α∗

i ) is given by

α∗2
i =







1
bi

(
√

λa2
iN

γi
−N) , i ≤M1

0 , otherwise

where
√
λ =

∑M1

i=1
|ai|
bi

√
γiN

∑M1

i=1
a2

i

bi
− x

y

and the number of sensors which are active, M1 (which can be shown to be unique

(Xiao et al., 2006)), satisfies
∑M1

i=1
a2

i

bi
− x

y
> 0,

∑M1

i=1
|ai|
bi

√
γiN

∑M1

i=1
a2

i

bi
− x

y

√

a2
M1
N

γM1

−N > 0 and

∑M1+1
i=1

|ai|
bi

√
γiN

∑M1+1
i=1

a2
i

bi
− x

y

√

a2
M1+1N

γM1+1

−N ≤ 0.

Minimizing error covariance

The corresponding problem in the orthogonal scheme is equivalent to

min
α1,...,αM

−
M
∑

i=1

α2
ih

2
iC

2
i

α2
ih

2
iRi +N

subject to
M
∑

i=1

α2
i

(

C2
iQ

1 − A2
+Ri

)

≤ ptotal

which is again a convex problem. For an analytical solution (Cui et al., 2007),

consider a more general problem

min
α1,...,αM

−
M
∑

i=1

α2
i a

2
i

α2
i bi +N

subject to
M
∑

i=1

α2
i γi ≤ ptotal

(5.19)
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where x > 0, y > 0, γi > 0, ai ∈ R, bi > 0, i = 1, . . . ,M are constants and interpreted

similarly as before. Assuming that the sensors are ordered so that

a2
1

γ1

≥ · · · ≥ a2
M

γM

the optimal α2
i to problem (5.19) is

α∗2
i =







1
bi

(
√

a2
iN

λγi
−N) , i ≤M1

0 , otherwise

where
1√
λ

=
ptotal +

∑M1

i=1
γi

bi
N

∑M1

i=1
|ai|
bi

√
γiN

and the number of sensors which are active, M1 (which is again unique (Xiao et al.,

2006)), satisfies

ptotal +
∑M1

i=1
γi

bi
N

∑M1

i=1
|ai|
bi

√
γiN

√

a2
M1
N

γM1

−N > 0 and
ptotal +

∑M1+1
i=1

γi

bi
N

∑M1+1
i=1

|ai|
bi

√
γiN

√

a2
M1+1N

γM1+1

−N ≤ 0

In the orthogonal case, the solutions of the optimization problems (5.18) and

(5.19) will involve some sensors with low quality measurements not transmitting,

whereas in the multi-access case all sensors will still get allocated some power when

we perform the optimizations. Therefore issues to do with sensor lifetime due to

some sensors transmitting more than others may be more serious in the orthogonal

case.

5.5.3 Distributed implementations

The optimization problems (5.14), (5.18) and (5.19) have analytical solutions, and

can admit distributed implementations, which may be important in large sensor

networks. For problem (5.14) the fusion center can calculate the values λ and µ and

broadcast them to all sensors, which can then be used by the sensors along with

their local information to determine the optimal αi’s, see (Xiao et al., 2005). For

problems (5.18) and (5.19), the fusion center can compute and broadcast λ to all
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sensors, which then determine their optimal αi’s using λ and their local information,

see (Cui et al., 2007).

5.6 Fading channels

The results presented so far have assumed that the channels are time-invariant.

But in applications such as sensor networks, measurements may be transmitted

over randomly time-varying (or fading) wireless channels. In this section we let the

channel gains h̃i,k be randomly time varying. We consider both the case where the

channel gains are known at the sensors and the fusion center, i.e. both transmitter

and receiver have channel state information (CSI), and where the channel gains are

not known at either the transmitters (sensors) or receiver (fusion center), in which

case we derive a suboptimal linear estimator.

5.6.1 With CSI

First we let both the sensors and fusion center to have channel state information

(CSI), so that the hi,k’s are known. We now also allow the amplification factors αi,k

to be time-varying. As a shorthand let Pk = Pk|k−1.

Multi-access

The Kalman filter recursion for the error covariances is (see (Anderson & Moore,

1979))

Pk+1 = A2Pk −
A2P 2

k C̄
2
k

C̄2
kPk + R̄k

+Q

=
A2PkR̄k

C̄2
kPk + R̄k

+Q

where C̄k ≡
∑M

i=1 αi,khi,kCi and R̄k ≡
∑M

i=1 α
2
i,kh

2
i,kRi +N .

One way in which we can formulate an optimization problem is to minimize the

sum of powers used at each time instant, subject to Pk+1|k being ≤ D at all time
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instances k. That is, for all k, we want to solve

min
M
∑

i=1

pi,k =
M
∑

i=1

α2
i,k

(

C2
iQ

1 − A2
+Ri

)

subject to Pk+1 =
A2PkR̄k

C̄2
kPk + R̄k

+Q ≤ D

(5.20)

The constraint can be rearranged to be equivalent to

R̄k

(

A2Pk +Q−D
)

+ C̄2
kPk(Q−D) ≤ 0

which looks rather similar to (5.12). In fact, once we’ve solved the problem (5.20)

at an initial time instance, e.g. k = 1, then P2 = D is true, so that the problem

becomes essentially identical to what was solved in Section 5.5.1. Therefore, the

only slight difference is in the initial optimization problem, which is also covered by

problem (5.14).

Another possible optimization problem is to minimize Pk+1|k at each time instant

subject to a sum power constraint at each time k, i.e.

minPk+1 =
A2PkR̄k

C̄2
kPk + R̄k

+Q

subject to
M
∑

i=1

α2
i,k

(

C2
iQ

1 − A2
+Ri

)

≤ ptotal

(5.21)

As we can rewrite the objective as

A2PkR̄k/C̄
2
k

Pk + R̄k/C̄2
k

+Q

it is clear that minimizing the objective function is equivalent to minimizing R̄k/C̄
2
k .

So at each time step we essentially solve the same problem considered in Section

5.5.1, while updating the value of Pk+1 every time.
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Orthogonal access

For time varying channels with CSI, the Kalman filter recursion for the error covari-

ances can be shown by a similar argument to (5.7) to be

P o
k+1 =

A2P o
k

1 + P o
k C̄

oT

k R̄o−1

k C̄o
k

+Q

If we wish to minimize the sum power while keeping P o
k+1 ≤ D at all time

instances, the constraint becomes

C̄oT

k R̄o−1

k C̄o
k =

M
∑

i=1

α2
i,kh

2
i,kC

2
i

α2
i,kh

2
i,kRi +N

≥ A2P o
k +Q−D

P o
k (D −Q)

If we wish to minimize P o
k+1 at each time instance subject to a sum power con-

straint at each time k, then this is the same as maximizing

C̄oT

k R̄o−1

k C̄o
k =

M
∑

i=1

α2
i,kh

2
i,kC

2
i

α2
i,kh

2
i,kRi +N

In both cases, the resulting optimization problems which are to be solved at each

time instant are variants of problems (5.18) and (5.19), and can be handled using

the same techniques.

Dynamic programming formulation

The optimization problems formulated in this section have constraints that must be

satisfied at each time step. An alternative formulation is to consider constraints on

the long term average. For instance, instead of problem (5.21), one might consider

instead the problem

min lim
T→∞

1

T

T
∑

k=1

E [Pk+1]

subject to lim
T→∞

1

T

T
∑

k=1

E[
M
∑

i=1

pi,k] ≤ ptotal
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where we try to determine policies that will minimize the expected error covariance

subject to the average sum power being less than a threshold ptotal. Solving such

problems will require dynamic programming techniques, and will be studied in future

work.

5.6.2 No CSI

Multi-access

Suppose now that CSI is not available at either the sensors or fusion center, though

channel statistics are known. We remark that this can also be used to model the sit-

uation where the sensors are not perfectly synchronized (Gastpar & Vetterli, 2005).

The optimal filter in this case will be nonlinear and highly complex, see e.g. (Jaffer

& Gupta, 1971). An alternative is to consider the best linear estimator in the mini-

mum mean squared error (MMSE) sense, based on (Rajasekaran et al., 1971). In our

notation, the situation considered in (Rajasekaran et al., 1971) would be applicable

to the model

xk+1 = Axk + wk

zk = αkhkCxk + vk

While this is not quite the same as the situation that we are considering, their

techniques can be suitably extended. We return to the full complex model (5.1).

Since we don’t have CSI, we will restrict α̃i,k = α̃i,∀k to be time invariant. The main

difference from (Rajasekaran et al., 1971) is that the innovations is now defined as





<[z̃k]

=[z̃k]



−





∑M
i=1 E[<[α̃iH̃i]]Ci

∑M
i=1 E[=[α̃iH̃i]]Ci



 x̂k|k−1

Assuming that the processes {h̃i,k}, i = 1, . . . ,M are i.i.d. over time, with real

and imaginary compenents independent of each other, and {h̃i,k} independent of

{wk} and {vi,k}, i = 1, . . . ,M , the linear MMSE estimator for scalar systems can be
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derived following the methods of (Rajasekaran et al., 1971) as follows:

x̂k+1|k = Ax̂k|k

Pk+1|k = A2Pk|k

x̂k+1|k+1 = x̂k+1|k + Pk+1|k
¯̄CT
(

¯̄CPk+1|k
¯̄CT + ¯̄R

)−1

(z̃k+1 − ¯̄Cx̂k+1|k)

Pk+1|k+1 = Pk+1|k − P 2
k+1|k

¯̄CT
(

¯̄CPk+1|k
¯̄CT + ¯̄R

)−1

(5.22)

where

¯̄C ≡





∑M
i=1 E[<[α̃iH̃i]]Ci

∑M
i=1 E[=[α̃iH̃i]]Ci





¯̄R ≡





¯̄R11
¯̄R12

¯̄R21
¯̄R22





with

¯̄R11 =
M
∑

i=1

(

Var[<[α̃iH̃i]]
C2
iQ

1 − A2
+ E[<2[α̃iH̃i]]Ri

)

+N

¯̄R12 = ¯̄R21 =
M
∑

i=1

E[<[α̃iH̃i]]E[=[α̃iH̃i]]Ri

¯̄R22 =
M
∑

i=1

(

Var[=[α̃iH̃i]]
C2
iQ

1 − A2
+ E[=2[α̃iH̃i]]Ri

)

+N

These look like the Kalman filter equations but with different C and R matrices,

so much of the previous analysis in this chapter will apply.6 For instance, there will

be a steady state error covariance given by

P∞ =
(A2 − 1) +QS +

√

(A2 − 1 +QS)2 + 4QS

2S

with S = ¯̄CT ¯̄R−1 ¯̄C. Note that for circularly symmetric fading channels e.g. Rayleigh,

we have ¯̄C = [ 0 0 ] and estimates obtained using this estimator will not be use-

ful. Other work where there are difficulties with circularly symmetric fading include

(Mergen & Tong, 2006; Gastpar & Vetterli, 2005; Liu et al., 2007).

6In fact one can regard it as an “equivalent” linear system along the lines of (Tugnait, 1981).



130 Chapter 5. POWER EFFICIENT STATE ESTIMATION

Thus we will now restrict ourselves to non-zero mean fading. Motivated by

transmitter beamforming in the case with CSI, let us choose

α̃i = αi
(E[H̃i])

∗

|E[H̃i]|

Then S simplifies to

S =

(

∑M
i=1 E[<[α̃iH̃i]]Ci

)2

∑M
i=1

(

Var[<[α̃iH̃i]]C2
i

Q
1−A2 + E[<2[α̃iH̃i]]Ri

)

+N

where we can find

E[<[α̃iH̃i]] = αi|E[H̃i]|

Var[<[α̃iH̃i]] =
α2
i

|E[H̃i]|2
(

E
2[<H̃i]Var[<H̃i] + E

2[=H̃i]Var[=H̃i]
)

E[<2[α̃iH̃i]] =
α2
i

|E[H̃i]|2
(

E
2[<H̃i]E[<2H̃i] + 2E

2[<H̃i]E
2[=H̃i] + E

2[=H̃i]E[=2H̃i]
)

(5.23)

using the shorthand E
2[X] = (E[X])2,<2[X] = (<[X])2 and =2[X] = (=[X])2. If

the real and imaginary parts are identically distributed, we have the further simpli-

fications Var[<[α̃iH̃i]] = α2
iVar[<H̃i] and E[<2[α̃iH̃i]] = α2

i

(

E[<2H̃i] + E
2[<H̃i]

)

.

Asymptotic behaviour using this estimator can then be analyzed using the tech-

niques in Sections 5.4. In particular, one can achieve P∞ = Q+O(1/M) behaviour,

even when the total power is bounded. So even though we don’t have CSI, and

are using a suboptimal linear filter, we can still achieve a decay to Q at a rate of

1/M when we have a large number of sensors and the fading is non-zero mean. The

intuition behind this result is that adding up a lot of random h̃i,k’s will tend to

average things out, so that we can replace the unknown h̃i,k’s with their statistics,

e.g. means and variances. A similar scaling result in the context of i.i.d. processes

and no CSI but non-zero mean fading was shown in (Liu et al., 2007).

Optimal power allocation using this estimator can be done, and the resulting

problems will be variants of problems (5.14) and (5.16).
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Orthogonal access

In the case of orthogonal access and no CSI, the equations for the linear MMSE can

also be similarly derived and will be of the form

x̂ok+1|k = Ax̂ok|k

P o
k+1|k = A2P o

k|k

x̂ok+1|k+1 = x̂ok+1|k + P o
k+1|k

¯̄CoT
(

¯̄CoP o
k+1|k

¯̄CoT

+ ¯̄Ro
)−1

(z̃ok+1 − ¯̄Cox̂ok+1|k)

P o
k+1|k+1 = P o

k+1|k − (P o
k+1|k)

2 ¯̄CoT
(

¯̄CoP o
k+1|k

¯̄CoT

+ ¯̄Ro
)−1

We have

¯̄Co ≡
[

E[<[α̃1H̃1]]C1 E[=[α̃1H̃1]]C1 . . . E[<[α̃MH̃M ]]CM E[=[α̃MH̃M ]]CM

]T

¯̄Ro ≡











¯̄Ro
11 . . . 0
...

. . .
...

0 . . . ¯̄Ro
MM











Each ¯̄Ro
ii is a block matrix of the form

¯̄Ro
ii =





¯̄Ro
ii,11

¯̄Ro
ii,12

¯̄Ro
ii,21

¯̄Ro
ii,22





with

¯̄Ro
ii,11 = Var[<[α̃iH̃i]]C

2
i

Q

1 − A2
+ E[<2[α̃iH̃i]]Ri +N

¯̄Ro
ii,12 = ¯̄Ro

ii,21 = E[<[α̃iH̃i]]E[=[α̃iH̃i]]Ri

¯̄Ro
ii,22 = Var[=[α̃iH̃i]]C

2
i

Q

1 − A2
+ E[=2[α̃iH̃i]]Ri +N

There will be a steady state error covariance given by

P o
∞ =

(A2 − 1) +QSo +
√

(A2 − 1 +QSo)2 + 4QSo

2So



132 Chapter 5. POWER EFFICIENT STATE ESTIMATION

with So = ¯̄CoT ¯̄Ro−1 ¯̄Co. If we choose

α̃i = αi
(E[H̃i])

∗

|E[H̃i]|

then So simplifies to

So =
M
∑

i=1

(

E[<[α̃iH̃i]]Ci

)2

(

Var[<[α̃iH̃i]]C2
i

Q
1−A2 + E[<2[α̃iH̃i]]Ri

)

+N

where we also refer to (5.23) for further simplification of these quantities.

Asymptotic behaviour and optimal power allocation can also be analyzed using

the techniques in Sections 5.4 and 5.5 respectively.

5.7 Numerical studies

5.7.1 Static channels

First we show some plots for the asymptotic results of Section 5.4. In Fig. 5.3

(a) we plot P∞ vs M in the multi-access scheme for the symmetric situation with

αi = 1/
√
M and A = 0.8, Q = 1.5, N = 1, C = 1, R = 1, h = 0.8. We compare this

with the asymptotic expression

Q+
A2(R +N/h2)

C2

1

M

Fig. 5.3 (b) plots the difference between P∞ and Q. We can see that P∞ is well

approximated by the asymptotic expression even for 20-30 sensors.

In Fig. 5.4 we plot P∞ vs M in the multi-access scheme with αi = 1/
√
M,A =

0.9, Q = 1, N = 1 and values for Ci, Ri, hi chosen from the range 0.5 ≤ Ci ≤ 1, 0.5 ≤
Ri ≤ 1, 0.5 ≤ hi ≤ 1. We also plot the (asymptotic) lower bound

Q+
A2(h2

minRmin +N)

h2
maxC

2
max

1

M
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and (asymptotic) upper bound

Q+
A2(h2

maxRmax +N)

h2
minC

2
min

1

M

It can be seen that P∞ does lie between the two bounds, both of which converge to

Q at the rate 1/M .

Next we look at numerical results for optimal power allocation in Section 5.5. In

Fig. 5.5 we compare between using optimal power allocation, equal power allocation

and using the same value of α for all sensors, for the multi-access scheme. We

use A = 0.9, N = 1, Q = 1 with various values for Ci, Ri drawn from a uniform

distribution U(0, 2), and values of hi drawn from U(0, 1). In (a) we keep D = 2,

while in (b) we keep ptotal = 1. In Fig. 5.6 we do the same thing for orthogonal

access. What can be observed is that as the number of sensors M increases there is

a general trend downwards for both graphs, though for equal power allocation and

using the same α’s for all sensors the behaviour is not necessarily monotonic. This is

due to the fact that some sensors might have low quality measurements, e.g. sensor

5 in Fig. 5.5, so that extra resources are needed to compensate if this sensor is to

be used. In the multi-access scheme, the performance gain in using optimal power

allocation over simpler strategies is quite small when the number of sensors M is

large. Also, there doesn’t appear to be a clear performance advantage in using either

equal power allocation or simply using the same α’s for all sensors, though in terms

of increasing the lifetime of a wireless sensor network, equal power allocation may be

preferable. Finally, optimal power allocation in the orthogonal scheme will involve

some sensors not transmitting, so even if we continually add in more sensors, they

will not be utilised if their measurements are of low quality. Thus we sometimes see

flat behaviour in Fig. 5.6 over a range of different numbers of sensors.

5.7.2 Fading channels

In Fig. 5.7 we compare between the full CSI and no CSI situations, using A =

0.9, N = 1, Q = 1 with various values for Ci, Ri drawn from a uniform distribution

U(0, 2). The h̃i,k’s are chosen to be Rician distributed with real and imaginary parts
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both being N(µi, σ
2
i ), with µi and σ2

i drawn from U(0, 1). In (a) we keep D = 2, and

in (b) we keep ptotal = 1. In the full CSI case the values are averaged over 10000 time

steps, and in the no CSI case they are the steady state values using the linear MMSE

estimator (5.22). In Fig. 5.8 we do the same for orthogonal access. We can see that

the performance loss in the no CSI case is not too great when compared to the case

with full CSI. Thus even if one has full CSI, but doesn’t want to perform power

allocation at every time step, using the linear MMSE estimator (5.22) instead could

be an attractive alternative. On the other hand, in Fig. 5.8 there is a significant

performance loss in the situation with no CSI, when compared to the multi-access

situation in Fig 5.7, possibly because we can’t get the averaging benefits that are

possible when we add measurements together in the multi-access case.

5.8 Conclusion

This chapter has investigated the use of analog forwarding in the distributed estima-

tion of stable scalar linear systems. We have shown a 1/M scaling behaviour of the

error covariance in a number of different situations, and have also formulated and

solved some optimal power allocation problems. A possible extension of this work

include extending our results to state estimation of vector linear systems. For vec-

tor linear systems, additional issues such as whether sensors will make observations

of the entire state or whether sensors should only measure certain components of

the state vector, observability of the resulting matrix when these measurements are

added together in the multi-access scheme, and the appropriate criteria with which

to formulate power allocation problems, will need to be addressed. Optimal power

allocation problems in the case of unstable systems in a finite horizon setting, as

well as the dynamic programming formulation approach to optimization, can also

be studied. These problems will form the topics of future investigations.
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5.9 Appendix

5.9.1 Proof of Lemma 5.2.1

Rewrite (5.5) as

P∞ =
(A2 − 1)

2

1

S
+
Q

2
+

√

(A2 − 1)2

4

1

S2
+

(A2 + 1)Q

2

1

S
+
Q2

4
.

Taking the derivative with respect to S we get

dP∞

dS
= −A

2 − 1

2

1

S2
− (A2 − 1)2 1

S3 + (A2 + 1)Q 1
S2

4
√

(A2−1)2

4
1
S2 + (A2+1)Q

2
1
S

+ Q2

4

.

To show that dP∞

dS
≤ 0, it is sufficient to show that





(A2 − 1)2 1
S3 + (A2 + 1)Q 1

S2

4
√

(A2−1)2

4
1
S2 + (A2+1)Q

2
1
S

+ Q2

4





2

≥
(

A2 − 1

2

1

S2

)2

.

Expanding and rearranging, this is equivalent to

(A2 − 1)4 1

S6
+ 2(A2 − 1)2(A2 + 1)Q

1

S5
+ (A2 + 1)2Q2 1

S4

≥ (A2 − 1)4 1

S6
+ 2(A2 − 1)2(A2 + 1)Q

1

S5
+ (A2 − 1)2Q2 1

S4

or

(A2 + 1)2Q2 ≥ (A2 − 1)2Q2,

which is certainly true.
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5.9.2 Derivation of analytical solution to problem (5.14)

Recall the problem (5.14)

min
α1,...,αM ,s

M
∑

i=1

α2
i γi

subject to

(

M
∑

i=1

α2
i bi +N

)

x ≤ s2y

s =
M
∑

i=1

αiai

where x > 0, y > 0, γi > 0, ai ∈ R, bi > 0, i = 1, . . . ,M are constants.

Following (Xiao et al., 2005) one can obtain a closed form solution as follows.

Form the Lagrangian

L =
M
∑

i=1

α2
i γi + λ

(

M
∑

i=1

α2
i bix+Nx− s2y

)

+ µ

(

s−
M
∑

i=1

αiai

)

.

The Karush-Kuhn-Tucker (KKT) conditions are:

∂L

∂s
= −2λsy + µ = 0 (5.24)

∂L

∂αi
= 2αi (γi + λbix) − µai = 0, i = 1, . . . ,M (5.25)

λ

(

M
∑

i=1

α2
i bix+Nx− s2y

)

= 0 (5.26)

λ ≥ 0 (5.27)
M
∑

i=1

α2
i bix+Nx− s2y ≤ 0 (5.28)

s−
M
∑

i=1

αiai = 0 (5.29)

Below we derive the solutions to the KKT equations (5.24)-(5.29). We have

γi + λbix =
µai
2αi

=
λsyai
αi
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=
λyai

∑M
i=1 αiai
αi

where the first, second and third lines used (5.25), (5.24) and (5.29) respectively.

Then
λa2

i

γi + λbix
=

αiai

y
∑M

i=1 αiai

and hence
M
∑

i=1

λa2
i

γi + λbix
=

1

y
, (5.30)

from which λ may be found numerically. Since the left hand side is increasing with λ

solutions to this equation will be unique provided it exists. Taking limits as λ→ ∞,

we see that a solution exists if and only if

M
∑

i=1

a2
i

bi
>
x

y
.

This provides a feasibility check for the optimization problem.

Next, we have from (5.26) that

M
∑

i=1

α2
i bix+Nx− s2y = 0.

Substituting expressions for αi from (5.25) and s from (5.24) we get

M
∑

i=1

µ2a2
i bix

4(γi + λbix)2
+Nx− µ2

4λ2y
= 0

and hence µ can be computed since

µ2 = Nx

(

1

4λ2y
−

M
∑

i=1

a2
i bix

4(γi + λbix)2

)−1

= Nx

(

M
∑

i=1

a2
i γi

4λ(γi + λbix)2

)−1

,

(5.31)

where the second line can be obtained by using the relation (5.30) and some algebraic

manipulations. Depending on whether we choose µ to be positive or negative, we
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will obtain the solution in one of the regions s > 0 of s < 0.

From (5.25) we may then determine the optimal αi’s as

α∗
i =

µai
2(γi + λbix)

, i = 1, . . . ,M.

Finally, we also have the relation

M
∑

i=1

α2
i γi =

M
∑

i=1

µ2a2
i

4(γi + λbix)2
γi = λNx

using the expression (5.31) for µ2.



Chapter 6

Conclusions

This thesis has looked at methods to analyze the performance of a selection of

estimation and detection algorithms operating in wireless environments. Character-

izing the achievable performance and performance limitations of these algorithms

is of importance both for engineers who wish to apply these algorithms to wireless

networks, as well as motivating the design of new algorithms which may be more

suited to these environments. Below we shall summarise our work, and list some

possible ideas for future research which are related to the topics in this thesis.

6.1 Summary

In Chapter 2 we studied the probability of error for maximum a posteriori estimation

of hidden Markov models, where measurements could be either lost or received ac-

cording to another Markov process. Analytical expressions for the error probabilities

were derived for the noiseless and noisy cases. We demonstrated some relationships

between the error probability and the parameters of the loss process via both anal-

ysis and numerical results. In the high SNR regime, approximate expressions which

are more easily computed than the exact analytical form for the noisy case were also

presented.

In Chapter 3 a numerical method for computing the error exponent for Neyman-

Pearson detection of two-state Markov chains in noise was presented, for both time-

invariant and fading channels. Numerical studies showing the behaviour of the error

exponent as the transition parameters of the Markov chain and the SNR were varied

were given. Comparisons between the high SNR asymptotics in Gaussian noise for

the time-invariant and fading situations were made, with different scalings in the
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error exponent with SNR observed and proved.

Chapter 4 studied the performance of the Kalman fixed lag smoother with ran-

dom packet losses, and how it compares with the Kalman filter with packet loss. In

terms of estimator stability via boundedness of the expectation of the error covari-

ance, we showed that smoothing did not provide any benefit over filtering. On the

other hand, it was demonstrated that using a probabilistic notion of performance,

smoothing could provide significant gains when compared to Kalman filtering. An

analysis of Kalman filtering using two simple retransmission schemes and its com-

parison with Kalman smoothing was also made.

In Chapter 5 we considered state estimation of scalar linear systems using ana-

log forwarding with multiple sensors, for both multiple access and orthogonal access

schemes. It was shown that optimal state estimation can be achieved at the fusion

centre using a time-varying Kalman filter. We showed that in many situations, the

error covariance decays at a rate of 1/M when the number of sensors M is large. Op-

timal allocation of transmission powers subject to constraints on the error covariance

or sum power was also considered. In the case of fading channels without channel

state information, a sub-optimal linear estimator was derived, and under optimal

power allocation, numerical studies showed that its performance in the multi-access

scheme is comparable to the case where full channel state information is available.

6.2 Future Research

For HMM filtering, incorporating fading with no CSI similar to Chapter 3 is one

possible extension. Finding ways to compute the probability of error for multi-

state Markov chains with noise will be highly desirable, though existing techniques

which can be used for the two-state case don’t appear to be sufficient to solve the

general case. Similarly, methods for computing the error exponent for detection of

multi-state Markov chains is another interesting open problem.

For the detection of Markov chains in noise, a more thorough analysis of non-

Gaussian noise and its effect on the error exponent at high SNR can be done, as

outlined in the conclusion of Chapter 3. It would be interesting to consider complex
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fading channels, and whether there is a dramatic change in behaviour in the case of

e.g. circularly symmetric channels (Mergen & Tong, 2006). Characterising the error

exponents for Bayesian detection rather than Neyman-Pearson detection is another

topic worth investigating. Analysis of detector behaviour in the case of uncertain

knowledge of system parameters, and how it relates to Lemmas 3.3.1 and 3.4.1 will

be of interest. The effect of uncertain parameters for the other algorithms in this

thesis can also be investigated.

For problems of linear filtering with random packet losses, more thorough investi-

gations of retransmission schemes would be interesting, to see whether performance

can be improved if e.g. we allow more than one packet to be retransmitted at a

time. Another intriguing problem is to look at using quantized measurements, pos-

sibly using the structural results of (Nair & Evans, 1999) or one bit quantization

schemes (Ribeiro et al., 2006), and see how stability of the estimator is affected.

For the work on power efficient state estimation in Chapter 5, we could investigate

more situations on the availability of CSI, e.g. CSI available at receiver but not

transmitter. In the case of no CSI, rather than the block fading model used, we

could potentially allow correlations by using the results of (Chow & Birkemeier, 1989;

Chow & Birkemeier, 1990). Extension of the analog forwarding scheme to vector

linear systems is also important. For vector linear systems, additional issues such as

whether sensors will make observations of the entire state or whether sensors should

only measure certain components of the state vector, observability of the resulting

matrix when these measurements are added together in the multi-access scheme,

and the appropriate criteria with which to formulate power allocation problems, will

need to be addressed. For instance, some sensors might only measure one component

e.g. position, of a state, and other sensors another component e.g. velocity. Then

one possibility is for all those sensors measuring the position to communicate in a

multi-access scheme to the fusion center, while the sensors measuring the velocity

communicates in a multi-access scheme but using a different orthogonal channel.

Estimation of unstable systems (both scalar and vector) over a finite horizon, as

well as solving the dynamic programming formulation of our optimization problems,

could also be considered. Finally, one could envisage state estimation problems using
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analog forwarding for other dynamical systems such as hidden Markov models, and

analyzing its performance there.
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