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Abstract

Multi-user Multiple-Input Multiple-Output (MU-MIMO) systems are be-

coming increasingly important in wireless telecommunication networks. The

multiple antennas at the base station allow for multiple users to be scheduled

at the same time. This leads to multiplicative gains in transmission rates

when compared to point-to-point communication. However, in order to reap

the full benefits of the MU-MIMO, accurate channel state information (CSI)

is required. This is a bigger issue in downlink broadcast channels (BC) as

attaining accurate CSI would require users to feedback large amounts of in-

formation leading to large bandwidth requirements. As a result, this would

restrict the data transmission rate in the uplink. Therefore, it is important

to focus on limited or finite-rate feedback (LF/FRF) schemes.

In limited feedback, the CSI feedback is restricted by the number of

feedback bits allocated by each user. By limiting the feedback bits, a more

practical scenario could be modeled whereby users utilize low complexity

codebooks to feedback information with minimal delay. The trade-off that

comes with this is saturation in the performance of the MU-MIMO BC.

As the transmit power or signal-to-noise ratio (SNR) is increased, inter-

user interference becomes a major problem. While transmission schemes

such as zero-forcing beamforming (ZFBF) aid to resolve the performance

to an extent, the limited CSI at the transmitter (CSIT) would imply that

this interference cannot be completely subdued. In order to overcome this

performance saturation, in this thesis, we investigate multi-user transmission

and user-scheduling schemes with limited feedback.

Scheduling of users is a critical and challenging problem. Base stations

can attempt to maximize the performance of the broadcast channel by choos-

ing the best set of users. However, in order to do so, an exhaustive search



over all possible user-sets is required. This is generally computationally in-

feasible. Therefore, sub-optimal algorithms are required. While classical

algorithms like semi-orthogonal user scheduling (SUS) increase the perfor-

mance of schemes utilizing ZFBF, the performance still saturates.

This thesis develops novel user-scheduling schemes to overcome the per-

formance limits experienced in MU-MIMO BC. Our investigations identify

the problems with classical schemes in their attempt to schedule as many

users as possible. However, in the case when the channel is interference

limited it is often better to switch to a smaller user-set in order to maxi-

mize performance. This raises an important research question of ”how many

users should the base station select?”. Some attempts to answer this ques-

tion have been made recently by employing multi-mode user scheduling.

Here, each user approximates the system rate for different settings in order

to work out its preferred number of co-scheduled users (mode of operation).

The base station receives the preferred mode of operation of all the users

along with CSI via limited feedback and makes a decision on the number

of users to schedule. The main contribution of this thesis is the derivation

of novel closed form expressions for rate approximations employed to de-

termine their preferred mode in two different schemes. The first scheme

outperforms the existing multi-mode scheduling schemes by providing im-

proved scheduling criteria. The second is a novel scheme that combines

SUS with multi-mode scheduling. Experimental simulations show the sig-

nificant performance gains achieved by these schemes and reveal important

considerations for future research.
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Chapter 1

Introduction

The ever-rising demand for broadband applications such as multimedia ser-

vices has driven the need for high-speed computer networks and reliable

wireless communication systems [1, 2]. These services are required to be

flexible enough to be delivered anywhere anytime at home and business en-

vironments. Recent developments in cellular technology have resulted in

smart-phones and other wireless portable devices that are an integral part

of almost every individual’s daily life. The resulting outcome being wit-

nessed is an unprecedented increase in the traffic of cellular networks. This

poses a major challenge in achieving the high quality of service (QoS) de-

mands of the exponentially growing number of cellular users [3]. A top-level

QoS could be attained predominantly via higher data transmission rates and

ubiquitous connectivity for multiple users. However, QoS is fundamentally

constrained by limited wireless resources, such as frequency spectrum, chan-

nel power and channel conditions which dictate fading signals and inter-cell

interference [4]. These limitations have raised an immense scope for poten-

tial research contributions in this direction.

In recent years, cellular technology developments and innovative com-

munication techniques have emerged to improve the data transmission rates

in wireless systems. Among the factors that affect the performance of wire-
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less transmission, the effects of fading due to fluctuations in signal strength

could be addressed by deploying multiple antennas at both the base sta-

tion (BS) as well as receiver units (users). The resulting configuration is a

multiple-input multiple-output (MIMO) system [5]. In MIMO, the multiple

transmit and receive antennas can be exploited for improving the data rate

of a single-user, via effective transreceiver designs. When the transmit an-

tennas are used to broadcast data requested by multiple users, more users

in a channel are being served, thereby improving the system throughput [6].

In such a scenario Multi-User (MU) diversity can be exploited, where the

user selection is done opportunistically to address fading signals. Such a

channel is termed as Multi-User MIMO (MU-MIMO).

A wireless communication network typically has a downlink and an up-

link [7]. In the downlink, the base station transmits information to various

users in the system, via broadcast [8]. In the uplink, users transmit in-

formation to the base station. We are interested particularly in Frequency

Division Duplex (FDD) where the downlink and uplink operate in separate

frequency bands, and hence the base station cannot predict the downlink

channel from observing the uplink. In such a scenario, each user will have

to feedback information about its channel. A series of active research has

investigated on MU-MIMO channels and multi-user diversity. While many

of the problems involving uplink transmission have been addressed, research

on the downlink broadcast channel is still progressing and the main re-

sults are still fairly recent [4, 9]. Many studies have focused on arriving

at performance limits of MU-MIMO channels using information theoretic

approaches and uplink-downlink duality [10, 11]. The capacity achieving

transmission schemes break down in situations where the transmitter does

not have full channel state information (CSI). Furthermore, these schemes

are often too computationally complex to be implemented in practice. As a

result, progress was made on devising simpler linear transmission schemes
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that utilize beamforming to steer the user-requested data symbols in or-

der to mitigate interference or maximize the signal power, or both. In or-

der to improve average system throughput, user scheduling algorithms were

employed [12, 13]. While not optimal, splitting the capacity optimization

problem into simpler design problems reduces the computational load of

the system as well as improves our understanding of the various research

scopes in a MU-MIMO Broadcast Channel (BC) with limited CSI. As such,

this thesis analyses existing transmission schemes and proposes an enhanced

user scheduling design for a MU-MIMO BC with limited feedback and zero-

forcing beamforming (ZFBF). The research is limited to a single cell, with a

single base station and multiple users (receivers). Interference from external

cells is not considered.

The rest of the chapter is organised as follows. Section 1.1 provides

the background theory and concepts evolving with MU-MIMO. In Section

1.2, we explain the current limitations and the motivation of this research

study. Next, we state the aim of the thesis and the research questions in

Section 1.3. Finally, Section 1.4 provides the contributions of this research

and organisation of the thesis.

1.1 Background

A pioneer in information theory, Claude Shannon is considered the father of

modern communications theory due to his famous paper published in 1948

that forms the basis of communication systems design. In his paper [14],

the noisy channel coding theorem provides an absolute limit on how fast

it is possible to transmit error-free data within a channel of a given band-

width, and with given noise conditions within that channel. In other words,

Shannon’s concept of channel capacity becomes the fundamental principle to

determine the maximum data transmission rate that can be achieved over

the channel. Shannon derived the channel capacity (C) with an additive
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white Gaussian noise (AWGN) into a compact formula as given below:

C = W log

(
1 +

P

N0W

)
(1.1)

where W is the available bandwidth in Hz, N0 is the one-sided noise power

spectral density in Watt/Hz, and P is the transmit power in Watts. The

ratio of received signal to noise power, P/N0W is called the signal-to-noise

ratio (SNR).

Shannon postulated that if it is possible to separate every output in the

receiver, finding the most closely matched input would yield an optimum de-

coding method. However, the primary implementation obstacle is that for

all but the shortest bit sequences, the computational complexity in terms

of memory and processing time required to decode the noisy received data

is very high [15]. Hence, for all practical purposes, Shannon capacity was

unreachable in reality. However, in 1990s, the introduction of Turbo Codes

[16] and Gallager’s Low Density Parity Check (LDPC) codes rediscovered by

[17], along with increased computing power enabled ideal wireless transmis-

sion performance to approach the Shannon limit. These coding and signal

processing techniques assume large bandwidth and power, which are scarce

resources in many practical wireless systems, resulting in more research in

optimising these resources.

Early research showed that by employing multiple antennas at both

transmitter and receiver ends, the capacity can increase [18, 19] linearly

by about the minimum number of antennas used between the two commu-

nication ends, as compared to using a single antenna at both ends [18, 19].

This capacity increase may not be noteworthy in practice when users typi-

cally have a single or dual antenna devices. In a single-user (SU) scenario,

these multiple antennas could be exploited simultaneously through beam-

forming for improving the received SNR. Beamforming is a method used to

steer the data symbol in the direction of the user channel, by adjusting the
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power of the transmit antennas accordingly. In the case where users have

only one or two antennas the data transmission rate could be improved by

incorporating multiple users.

In MU-MIMO systems, where multiple users operate in the same fre-

quency and time bands but are separated in space, the most prominent

channels fall under two categories, MIMO broadcast channel (BC) and

MIMO multiple-access channel (MAC). While MIMO BC models a downlink

transmission from one base station to many receivers or multiple users, the

MIMO MAC models an uplink transmission from multiple users to a single

base station. In both cases the performance is determined as the maxi-

mum sum of each user’s data rate, denoted by the sum-rate. In the case of

MIMO MAC, successive interference cancellation at the receiver (BS) could

be easily adopted to achieve the capacity region. In the case of MIMO BC,

dirty paper coding (DPC) which is a well-known precoding scheme may be

employed at the BS. Several research studies have shown that dirty paper

coding (DPC) can achieve maximum sum capacity [20, 21, 22]. However,

achieving DPC capacity has been reported to be impractical in many wire-

less applications due to non-availability of full channel state information

(CSI) and its high complexity [23, 1, 13]. In the uplink however, the CSI

can be retrieved via well designed channel estimator. This makes it more

challenging to arrive at optimal transmission schemes for MIMO BC than

for MIMO MAC.

When analysing the sum-rate of MU-MIMO transmission schemes two

important performance measures can be noted, namely the Spatial Diver-

sity gain and Multiplexing gain. The diversity gain is an additive perfor-

mance improvement observed as the number of users in the system increases,

because the probability of finding users with better channel conditions in-

creases. As both the number of users and antennas in the base station

increase, so does the steepness of the sum-rate curve at high SNR in the log
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scale. This multiplicative increase in performance is known as the Multi-

plexing gain and is limited by whichever is lower - the number of base station

antennas or the total number of antennas of the scheduled users. Further

information on these performance gains can be seen in Chapter 2. While

transmitting to more users results in performance gains, in the case when the

base station does not have full CSI, the increase in the number of scheduled

users will also result in an increase in interference. Hence, in MU-MIMO,

practical techniques to suppress inter-user interference in the BC and to ex-

ploit partial CSI are being developed, utilizing downlink beamforming at the

base station and limited feedback from users [5, 23]. In addition, user selec-

tion plays an important role in achieving higher throughput in MU-MIMO

BC and poses more scope for discovery of efficient transmission schemes

that are essential for achieving the desired QoS for the ever-growing large

wireless user-base.

1.2 Motivations of the Study

After more than a decade of research in combining multiple antenna tech-

niques with advanced signal processing schemes in MIMO technology, re-

cent developments and interests have been moving into commercial wireless

communication systems [24, 12]. Though MIMO is getting standardised in

Worldwide Interoperability for Microwave Access (WiMAX) and 3rd Gen-

eration Partnership Project (3GPP) specifications, more advanced forms of

MIMO are required for future releases of 3GPP Long Term Evolution (LTE)

and LTE- Advanced systems [3, 2]. With the various MIMO schemes be-

ing standardised in 3GPP systems, the focus of future LTE specifications

is to provide the base station with advanced capability to dynamically se-

lect an optimal MIMO scheme when channel conditions change in mobile

environments.

Hence, a motivation for this study is to analyse the effect of allowing
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the base station to decide on the number of users to schedule, which we

will denote as “mode” of operation. The problem of “how to schedule

users?” has seen developments over the past decade. However, the problem

of “how many users to schedule?” has seen its importance only in recent

years. The early progress in literature states that scheduling more users is

better. This is justified because, assuming each user meets its QoS require-

ments, transmitting to several users allows for attaining spatial multiplexing

gains. However, the transmission schemes that amount to these multiplexing

gains highly depend on the accuracy of CSI at the transmitter (CSIT). With

limited CSIT, the same arguments may hold, but only up to a certain point.

As the transmit power is increased in the base station, interference between

users becomes a bigger issue, and without full CSIT it is not possible to

completely remove interference. While user scheduling aids in improving

throughput in such scenarios, classical scheduling schemes aim to schedule

as many users as possible. Because we are no longer completely cancelling

interference with limited CSI, more users amount to more interference, and

as the transmit power grows large, so does the interference power, causing

the throughput of the system to saturate.

While one way to deal with the problem is to increase the amount of CSIT

as the transmit power increases, this is often impractical. This is because

the users (mobile phones), which have to feedback this information, are

limited in terms of computational resources. Hence, rather than increasing

feedback information, we need to limit or even reduce feedback overhead and

look toward other parameters that can improve performance. The other way

to deal with the problem is to reduce interference power. The base station

can do this by scheduling users such that interference is reduced, based

on the limited feedback information from the users. Classical scheduling

algorithms such as semi-orthogonal user selection and greedy user selection

can be utilized provided there is a large number of users to choose from.
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With a limited number of users, the base station might not always find users

that are suited to reduce interference. Furthermore, scheduling algorithms

involving a large user-set are often computationally taxing.

Considering (semi-)practical scenarios with low (but error free) feedback

information and a reasonable number of users, an alternative method to re-

duce interference is to simply reduce the number of users that are scheduled.

This motivates research in the direction of designing effective schemes where

the base station utilizes feedback information from the users to determine

the system conditions. The base station can utilize this information to de-

termine the number of users to schedule in order to maximize performance.

1.3 Research Questions

The primary aim of this thesis is to study the performance of transmission

techniques in MU-MIMO downlink channels and to develop adaptive multi-

mode transmission schemes for achieving improved performance. In order

to accomplish this, we address the following research questions:

Q1. What are the popular multi-user transmission schemes and how do

they compare? (Chapter 3)

Q2. How can we exploit partial CSI and perform user scheduling via limited

feedback channels? (Chapter 4)

Q3. Can an adaptive multi-mode transmission scheme with user scheduling

employing zero-forcing beamforming (ZFBF) and limited feedback provide

significant performance gains in MU-MIMO broadcast channels? (Chapter 5)
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1.4 Contributions and Organisation of the Thesis

The main contribution of this thesis is the proposition of novel user schedul-

ing schemes that incorporate mode selection at the base station. Mode

selection allows the base station to select the number of users to schedule

utilizing information provided by all the users. This improves performance

as the base station can utilize the user-side information to limit the number

of scheduled users in high-interference scenarios, hence overcoming through-

put saturation common in classical scheduling algorithms [25]. The thesis

also compares different schemes and provides analysis on the important fac-

tors to consider when selecting the number of users and how they affect

performance, via simulations. The initial contributions expand on previous

work in this area via deriving closed form solutions for lower bounds of sys-

tem performance, estimated at the user-side. We also establish improved

criteria for user selection at the base station. More prominent contribu-

tions include incorporating semi-orthogonal user scheduling (SUS) in the

multi-mode transmission scheme to further improve performance and novel

closed form derivations of improved rate approximations at the users. The

derivation process involved in the closed form expressions reveal the pa-

rameters which are important and those that are not. The derivations also

highlight the similarities and differences between the rate approximations.

Furthermore, these closed-form solutions can then be adapted into practical

algorithms used in the base station and more importantly mobile phones,

which may not have the processing capacity to perform accurate numeri-

cal integrations with minimal delay. The simulation results show significant

performance improvements over existing multi-mode transmission schemes,

as well as provide open pathways for future research.

The remainder of the thesis is organized as follows. Chapter 2 provides

the system model, background and overview of a general downlink broad-

cast channel. It discusses the practical constraints as well as performance
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measures that we identify as important considerations for investigating the

MU-MIMO broadcast channels. Chapter 3 outlines the various full-CSI

multi-user transmission schemes currently utilized in literature, establishing

their practical limitations due to their ideal assumption of perfect channel

knowledge. Chapter 4 describes the notion of limited feedback and the con-

siderations required when the transmitter does not have full-CSI information

in both single and multi-user systems. Furthermore, the chapter discusses

how user scheduling aids in further achieving full multiplexing gain of limited

feedback and establishes performance comparisons of popular user schedul-

ing algorithms reported in literature. From these background investigations,

Chapter 5 identifies the drawbacks of classical schemes with the main ob-

jective to improve on multi-mode transmission schemes present in recent

literature. This chapter proposes novel user scheduling schemes for MU-

MIMO broadcast channels and establishes significant sum-rate performance

gains through theoretical and experimental investigations.
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Chapter 2

System Overview

This chapter provides an overview of the wireless communication system

being analysed. The aim of the chapter is to illustrate the various stages

involved in the system in order to give a big picture of the system as a whole

while also pointing out the topic of interest, where our research and con-

tributions lie. Firstly, a schematic for a typical physical layer transmission

model will be described. This will be followed by introducing the baseband

equivalent system model as well as some fundamental notations. The func-

tion of precoding or beamforming in a multi-user scenario will be explained.

Thereafter, the purpose of feedback and the different receiver structures will

be outlined. Throughout this section the general assumptions made in the

research will be stated. Finally, the chapter overviews the various perfor-

mance measures that may be considered in the thesis.

2.1 Physical Downlink

A high-level view of the transmitter side operations at the physical layer

is given in Fig. 2.1. The figure illustrates an extended version of Shanon’s

model of a general communication system [14] which traditionally consists of

an information source, transmitter, noisy channel, receiver and information
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sink.

Transmitter Model

The information source collects data from the upper layer(s) which can be

in the form of voice signals, video, text or commands. The data will then

be quantized into a set of symbols. The source encoder compresses this

information and converts it into a bit stream. Redundancy (parity bits)

is then added to the bit stream via the outer channel encoder, forming an

error-correction code. This redundancy is used by the receiver to detect

and correct errors in the bit stream. The symbol map component converts

the bits from the outer channel encoder into symbols. These symbols are

in the form of constellation points, in C. The inner coder often consisting

of space-time block codes, such as Alamouti’s scheme, which aims to create

multiple copies of the data symbols to be transmitted across the transmit

antennas. Layer mapping is used to arrange the data symbols based on

what is required by each user/receiver at each time slot. Layer mapping

is often done in OFDM based systems to allocate data symbols into the

time-frequency grid. Beamforming or precoding is then used to combine the

incoming data symbols into a number of streams equal to the number of

transmit antennas. In simplistic terms, the role of beamforming is to adjust

the power of each antenna in order to steer the data symbol towards a user.

This is mathematically done by attaching a vector (pertaining to the antenna

power) that directs each user’s requested data. The resulting vectors are

then superimposed before being broadcast. Note that space time codes

can be used without beamforming and vice-versa [26]. While beamforming

provides the same diversity gain along with an array gain(received power),

it requires channel state information at the transmitter in certain schemes.

Finally, in order to broadcast the information, the data streams are then

shaped into pulses and modulated onto carrier waves to be sent across the
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Figure 2.1: Transmitter Side Schematic

wireless channel.

The transmitter simultaneously receives signals through the uplink per-

taining to feedback information needed for beamforming, from each user.

Furthermore, the CSI that is received can be used for rate adjustments in

the channel coders as well as user scheduling [7].
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Receiver Model

On the receiver side, the antenna array receives the signal from the wireless

channel and a number of operations are performed before converting it back

to data symbols. Firstly, the carrier is removed via a receive filter, converting

the signal into its baseband equivalent.

Figure 2.2: Receiver Side Schematic

Next, the signal is sampled into a discrete time series and this will be the

effective received signal used for receive combining. Receive combining aims

to convert the problem of joint decoding of data streams into an independent

decoding problem by combining the received signals from each antenna in

an optimal way to reduce inter-antenna interference as well as noise. This

of course requires channel knowledge [27]. Channel decoding algorithms

(e.g. ML/minimum distance decoding) may then be used to retrieve the

data symbols which will then be converted into bits. These bits will be

decoded again, this time to remove redudancies and detect/correct errors.

Depending on the type of encoder and decoder, this two stage process can
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be combined into one using soft information (e.g. distance between data

point and constellation point) to decode the data stream directly into bits

[7]. The decoded digital data can then be decompressed and sent back to

the upper layer in the system in order to recreate its respective voice/video

signal, for example.

The receiver also consists of a channel estimation block which functions

to accurately estimate the wireless channel at the receiver side [28]. The

channel estimation for example, could use observation of a training sequence

sent by the transmitter over time in conjunction with least-squares algorithm

to predict the effective channel. In the case where there is inter-symbol

interference, typically an equilizer is used in conjunction to the predicted

channel to reduce its effects. The channel estimate can also be fed back to

the transmitter via the uplink either by finite rate digital feedback or analog

feedback in order to provide the transmitter with partial CSI.

2.2 MIMO Baseband Model

One of the main models used to analyse various systems in this research

is the baseband equivalent model for the MIMO communication system.

This model ignores stages prior to beamforming and post receive combining.

The outline of the model is depicted in Fig. 2.3. The figure depcits the

transmitter-receiver model for a particular user k. Each user is assumed to

have the same setup.

The input-output relationship between x, the signal broadcast by the

base station, and yk, the signal received at user k, is given by the expression

below:

yk(n) = Hk(n)x(n) + zk(n), k = 1, . . . ,K (2.1)

Assuming that the transmitter has NT antennas and the kth user has

NRk receive antennas, the input is given by x(n) ∈ CNT×1, the channel is
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Figure 2.3: MIMO model for each user

given by Hk(n) ∈ CNRk×NT , the output is given by yk(n) ∈ CNRk×1 and

the AWGN is given by zk(n) ∈ CNRk×1. Here, n indexes the discrete time

instant or channel use of the information transfer. In the case where there

is no ISI as in the situation above, the index n can be dropped [29]. Most

of the analysis in this thesis deals with a system in a particular time instant

and not over multiple time instances. Unless otherwise stated, the elements

of Hk(n) and zk(n) are generated using an i.i.d. circular symmetric normal

distribution denoted by CN (0, σ2).

Beamforming

Beamforming is a type of linear precoding that superimposes the data re-

quested by different users into a number of data streams determined by the

transmit antennas. Unlike space-time coding which sends replica of the data

requested by each user (over different antennas and over time), beamforming

combines the user information together [26]. The other major difference is

that, in certain beamforming schemes, channel knowledge is required and

beamforming exploits the nature of the channel to either prevent interference

or strengthen the signal. In other words, beamforming can vary depending
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on the received CSI, whereas space time codes are often fixed or limited to

a few different options. One of the main examples of beamforming in liter-

ature is zero-forcing. With perfect CSIT, zero-forcing is a method used to

precancel the channel effects via channel inversion so that the data received

at each user is interference free. The input-output relationship including

linear precoding is shown below:

Firstly, we let

x =
K∑
k=1

Bkuk.

Assuming there is a total of K users, {Bk}k=1...K are the beamforming

matrices for each user, Bk ∈ CNT×Nuk . uk ∈ CNuk×1 is a vector containing

the Nuk data symbols requested by user k. The number of symbols that

can be sent to each user is restricted by Nuk ≤ NRk i.e. the number of

receive antennas. In practical scenarios, each user will only have one or two

receive antennas. Note that a receiver with multiple receive antennas need

not necessarily request multiple data symbols. For simplicity, it is usually

assumed each user is limited to one data symbol per symbol transmission

time (Nuk = 1), in which case uk is a scalar (denoted by uk)and Bk is a

vector (denoted by bk). The input-output relationship from the base station

to each user is then given by:

yk = HkBkuk +
K∑
j 6=k

HkBjuj + zk, k = 1, . . . ,K (2.2)

The first term consists of the actual information required by user k, the

second term consists of interference from other users and the third is AWGN

[28]. Clearly, the beamforming matrices have to be designed to reduce the

interference, while at the same time keeping the receive power of the required

information (the first term) large enough to reduce the effect of noise. A

performance measure that addresses this trade-off is capacity which will be

discussed in Section 2.3.
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There are also non-linear precoding schemes that achieve the capacity

of a MU-MIMO channel with perfect CSIT, most notably the Dirty Paper

Coding (DPC)[30]. DPC attempts to successively pre-cancel interference on

the transmitter side, by sending the difference between the data symbols and

interference instead of the data itself [31]. In many ways DPC on transmit-

ter side is similar to MMSE-SIC on the receiver side, in terms of achieving

MIMO capacity. The duality of this relationship is discussed later in the

thesis. DPC is in fact practically complex to implement, and construction

and decoding of nested lattice structures required in DPC are computation-

ally taxing [27]. DPC is seen in Tomlinson-Harashima precoding, and Costa

Precoding.

Channel

Wireless communication channels consist of signals that traverse via multi-

ple paths due to scatters and reflectors in the environment before reaching

the receiver. Heavy destructive interference causes the channel to go into

deep fade resulting in failure of communication. In a discrete time system

the multiple paths reaching the receiver over a time period is combined into

a single channel gain (in a point-to-point system) or channel matrix (in a

MIMO system) per discrete time instant [12]. Typically, the channel ele-

ments can be modelled by Rayleigh fading which is a statistical model suit-

able for a propagation based environment with many small scatterers and

reflectors. Each path is modelled as a circular symmetric random variable

and the addition of these paths (by the central limit theorem) constitutes a

circular symmetric Gaussian random variable. Each path in the fading chan-

nel contains the parameters Doppler Shift and Delay [32]. The maximum

Delay Spread and Doppler Shift are given below:

Ds = max
i,j

fc|τ pi(t)− τ
p
j(t)|, Td = max

i,j
|τi(t)− τj(t)|
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where fcτ
p
i(t) is the doppler shift of the ith path and τi(t) is the delay of the

ith path The coherence time and coherence bandwidth which dictate how

quickly the channel varies in time and frequency respectively, can hence be

defined as follows:

Tc =
1

4Ds
, Wc =

1

2Td

As a direct result of these parameters there are four possible fading sce-

narios that could occur, namely, slow fading, fast fading, frequency selective

fading and flat fading. Fig.2.4 shows a time-frequency grid where these

scenarios lie.

Figure 2.4: Fading Scenarios

T refers to the symbol period and W = 1/T . For the purposes of this

thesis, we do not consider frequency selective scenarios as they require the

use of equalizers to attempt to nullify the ISI and hence complicate the anal-

ysis. In the special case of under-spread channels where the delay spread is

much smaller than the coherence time, pertaining to a highly time invariant

channel, OFDM can be used. In this thesis we assume that the channel is in

block fading, in other words the channel is invariant over a number of sym-

bol periods. In a selective fading scenario equation (2.2) can be rewritten

as follows:

yk(n) =

L−1∑
l=0

Hk(l, n)xk(n− l) + zk(n), k = 1, . . . ,K (2.3)
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Here, L corresponds to the number of channel taps or ISI terms.

Receive Combining

Receive combining, as mentioned earlier, is used to perform operations on

the received data stream in order to retrieve the data required by the user

with minimal noise and/or inter antenna interference. The case of receivers

studied in this thesis are linear receivers.

With multiple receive antennas, each user can request more than one

information symbol per channel use. In the case when the data transferred

to each receive antenna is different, it is required to de-correlate the data

stream into seperate streams, and in the case when the data is repeated at

each receive antenna, it is required to combine them into a single stream.

Fortunately, the design of the precoding/beamforming matrix addresses this

issue and the classical receiver architectures can be used regardless of the

situation [29]. The assumptions at this stage are that the receiver has perfect

knowledge of CSI, as well as knowledge of the beamforming vectors, which

in a feedback scenario can be retrieved from the vector codebook. The two

main receiver architectures considered are the MMSE receiver and Zero-

forcing receiver. While zero-forcing completely nulls out the interference, it

does not optimally scale the noise and hence is not optimal in a low SNR

scenario. The MMSE receiver is closer to optimal and is optimal amongst

the linear receivers in trading off noise and interference [33]. There exist

non-linear receivers such as MMSE-SIC, MMSE with successive interference

cancellation which achieve capacity in a SU-MIMO scenario, but are not

considered due to complexity of analysis. Other non-linear receivers such as

decision-feedback equalizers are not considered as ISI in general is not con-

sidered in this thesis. The equations for working out the receive combining

vector (matrix in the case of multiple data streams) V for the receiver are
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given below:

VZF =

[
[HB]H [HB]

]−1

[HB]H (2.4)

VMMSE =

[
[HB]H [HB] + σ2I

]−1

[HB]H (2.5)

The additional σ2I term in the MMSE receiver exists to account for noise.

The output can then be transformed via matrix multiplication, y′ = Vy to

form the effective received data streams at the receiver.

Feedback

Feedback is commonly used by the system to provide receiver side channel

information to the transmitter via the uplink. Recalling that the system in

consideration is Frequency Division Duplex (FDD), the downlink and uplink

channel are in general not reciprocal [32]. Therefore, the transmitter cannot

predict the users’ channel by constant observation of the information it re-

ceives. For simplicity it is assumed that the feedback channel has no delay

and is error free. Furthermore, the processing time of any feedback algo-

rithm discussed will be negligible when calculating or simulating the various

performance measures. However, complexity analysis of the various algo-

rithms can be performed to compare their relative speed, albeit trade-offs

between complexity and performance can be dependent on many physical

factors which are not considered.

There are two main types of feedback, namely, analog and digital. In

analog feedback, the receiver attempts to provide the channel information

that it has estimated back to the transmitter. In one example [34], the CSI

being fed back is multiplied by a spreading signal and the spreading signal for

each user will be orthonormal. When the combined CSI information from

each user is received, de-spreading can be done to retrieve the individual

CSI, along with MMSE receiver to reduce noise. In fact, this process is

very similar to beamforming and combining, the difference being that the
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spreading strategy will only be effecient when the feedback link is not a

fading channel. This is of course just one example of analog feedback under

certain specific conditions.

Digital feedback can be split into a few stages depending on its design.

In digital feedback, the CSI needs to be quantized depending on the number

of bits available for feedback. To be specific there are in fact two parameters

needed to be quantized; channel direction (CDI), which is useful for beam-

forming in order to cancel out interference and channel gain (CGI) which is

useful for user selection [5]. In essence, in digital feedback the things that

need to be considered are, the information being fed back and the design

of the vector quantization codebook, and these differ depending on certain

conditions [35]. For example, in the case where the channel is spatially cor-

related, it may not in fact be optimal to use the same codebook that is

proven optimal for the case of an i.i.d. fading channel.

Adding further, the above feedback description focuses on a particular

time slot or fading block. If we include time into the problem, it is entirely

possible to create an adaptive or recursive feedback method that uses the

channel information from previous slots along with the current feedback

message and incrementally updates the channel state information at the

transmitter (CSIT) [36]. In fact, by doing so feedback schemes dealing with

spatio-temporally correlated channels can be possibly designed. Lastly, the

major assumptions in this thesis are that the channel estimation is perfect,

the feedback link is delay and error free and there is no processing delay in

any of the stages. However, some of these assumptions can be relaxed, and

the implications of doing so are discussed in later parts of this thesis.

2.3 Performance Measures

There are a few measures of performance mentioned in this thesis, capacity,

outage-probability, and bit error rate [37]. While sum-rate/capacity will be
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the main measure of performance, certain models presented in literature deal

with other performance measures. Therefore this section will cover these as

well. In a multi-user scenario capacity refers to a rate region rather than a

single value and performance is evaluated via maximizing the sum of data

rates of all the users. An alternative performance measure that is used more

practically is minimizing the transmission power with respect to the Quality

of Service (QoS) requirements of each user; often QoS is a rate request or a

minimum receive SINR requirement.

Capacity

In telecommunication the main gauge of performance is speed of data trans-

fer; in the case of a mobile phone this could be the time taken to load a

webpage or file transfer or video streaming. In the downlink channel, in a

physical layer, the main measure of performance is Capacity, which deter-

mines the maximum possible rate that data (bits) can be transferred per

symbol time (in a given bandwidth) such that the data received has an

arbitrarily small probability of having errors [28].

Capacity takes a finite value if there are power constraints on the data

being sent. In the system described thus far there are two types of power

constraints that can be used; Total Power Constraint (TPC) can be written

as either a long term power constraint E[‖x‖2] ≤ P , or a instantaneous

power constraint ‖x‖2 ≤ P ; Per-antenna Power Constraint (PPC) which

can be written as E[xi] ≤ Pi, i = 1, . . . , NT . In practical terms, the latter

would be more realistic as TPC would imply that each antenna should have

the capability of transmitting full, if not almost full power. In other words,

TPC should not exceed the power limitations of each antenna. In PPC,

however, each antenna has its own power constraint, and this is not an

issue. The downside is that Capacity optimization problems with PPC take
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much longer to solve, and generally do not have closed form expressions.

Under TPC and full CSI MIMO, capacity can be written as

C = max
Kx,T r(Kx)6P

I(x : y)

= max
Kx,T r(Kx)6P

log2[det(I +
1

N0
HKxHH)]

(2.6)

Kx = E(xxH), T r(Kx) = E(‖x‖2) 6 P

and the ergodic capacity can be written as

C = max
Kx,T r(Kx)6P

EH

[
log2[det(I +

1

N0
HKxHH)]

]
(2.7)

With PPC, the water-filling solution will have an additional constraint, mak-

ing it more complicated [23]. Capacity expressions in multi-user scenarios

are shown later in the thesis. As mentioned earlier, in a multi-user scenario

we are interested in maximizing the sum-rate with given power constraints

or minimizing power with respect to a set of user rates. These are opti-

mization problems that can be solved numerically given the conditions, in

certain cases (e.g. zero-forcing beamforming) closed form expressions can

be attained.

The definitions of capacity so far assume a certain fixed set of users; of-

ten the number of available users are far more than the number of transmit

antennas and hence user scheduling as well as fairness schemes need to be

implemented in order to optimize the sum-rate [10, 19]. While user selec-

tion depends on CSI feedback, fairness depends on the rate region. Multiple

points in the rate region are Pareto optimal in maximizing sum-rate. In a

high-level system point of view maximizing the sum-rate is sufficient. How-

ever, in a fairness point of view, it is required to allocate rates to each user

as “equally” as possible so that users with low channel gains can still attain
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consistent service [38]. Hence, the fairest Pareto optimal point that achieves

maximum sum-rate would have to be computed.

Outage Probability

In the scenario where the transmitter does not have channel state infor-

mation, ergodic capacity can still be achieved in a single-user case with

appropriate receiver architecture in a fast fading scenario. This is done by

coding over several time instances to combat fading using diversity. In a

slow fading scenario however, without CSIT, the transmitter cannot com-

pensate for the event that the channel is in deep fade [5]. In the event of deep

fade, the decoding error probability cannot be made arbitrarily small, and

the capacity of the channel is zero in the strict sense. This does not mean

that information cannot be transferred. Instead, an alternative measure of

performance, outage probability, is used to determine the outage capacity.

Outage probability is defined as follows (MIMO).

Pmimoout = min
Kx,T r(Kx)6P

{
log2det

(
I +

1

N0
HKxHH

)
< R

}
(2.8)

0 < ε < 1 can then be defined such that we can send information at rate R

so long as Pmimoout < ε. ε-capacity or outage capacity is then the maximum

R such that the inequality holds.

Bit Error Probability

Bit Error Probability(BER) is a straightforward performance measure which

is often non-trivial to compute in a closed form expression, as error correct-

ing capabilities of different channel codes can vary substantially. BER is

the ratio of the number of errors to the number of information bits trans-

ferred [33]. Soft information instead of BER can also be used to gauge code

performance. However, as the number of simulations grow large BER will

eventually present the same outcome. BER is mostly used as a comparison
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method to examine the relative performance of various channel codes under

different SNR values. Analysis of the performance of the codes are limited

to the AWGN channel.

Diversity and Multiplexing Gains

Diversity and multiplexing gains are high SNR performance measures de-

rived from Capacity and error probability expressions outlined above. Spa-

tial Multiplexing defines the number of degrees of freedom that are used in a

MIMO system [37]. When the channel is i.i.d. full spatial multiplexing gains

can be achieved by sending different data symbols at each transmit antenna.

On the other hand, when the data symbols are the same in all the transmit

antennas, full diversity gain is achieved [39]. The trade-off between Spatial

Multiplexing and Diversity does implicitly come about in this thesis but will

not be discussed in detail. The expressions for diversity and multiplexing

for a MIMO system is given below:

Spatial Multiplexing: lim
SNR→∞

R(SNR)

log(SNR)
= r

Spatial Diversity: lim
SNR→∞

logPe(SNR)

log(SNR)
= −d

User Diversity: lim
SNR→∞

R(SNR,K)

r log logK
= m

(2.9)

User diversity comes from the ability to schedule users when a sufficiently

large number of users are present. When the number of users in the system

(assuming single receive antennas) equals the number of transmitting anten-

nas, full multiplexing gain can be achieved. However, when there is a large

number of users in the system, the transmitter has the choice of being able

to select which users to schedule. Due to this choice, the transmitter can

intelligently select users that complement each other (for example by being
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orthogonal to one another) based on the channel feedback thus increasing

the sum-rate when compared to a scenario where there is a small number of

users and the scheduling decision is limited.
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Chapter 3

Multi-User Transmission

Schemes

This chapter begins by briefly introducing the single-user (or point-to-point)

MIMO transmitter and receiver designs and their performance. In a practi-

cal multi-user system, each user has a limited number of antennas, and there-

fore full multiplexing and diversity gains cannot be achieved when transmit-

ting to one user alone. Operating with multiple users solves this problem,

however, the users cannot communicate with each other and hence receiver

strategies used in single-user MIMO do not apply. Transmitter schemes in

multi-user scenarios are discussed here, and these aim to reduce the effects of

inter-user interference and achieve multiplexing gains. Two broad multi-user

transmission strategies are prominent in literature, non-linear and linear pre-

coding [40, 41]. The schemes in each are discussed along with performance

comparisons. The complexity of the different schemes will also be shown in

an intuitive sense. For the purposes of this chapter full CSIT is assumed

unless otherwise stated.
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3.1 Single-User MIMO

We start by reviewing the single-user MIMO system. The input-output

relationship was defined in [7] and its capacity was given by the following

optimization problem:

C = max
Kx,T r(Kx)6P

I(x : y)

= max
Kx,T r(Kx)6P

log2[det(I +
1

N0
HKxHH)]

(3.1)

When the channel is known to both transmitter and receiver, a tran-

sreceiver architecture can be used to separate the block fading channel

into parallel interference-free channels. This is done by taking the SVD

of H = UΛVH . By multiplying a pre-processing matrix, Q, with the data

symbols, we can write the transmitted signal as x = Qu. The covariance

matrix of x can then be written as Kx = Qdiag(P1, .., PNT )QH . In the

case when full CSIT is available we can choose Q = V and multiply the

received signal at the user by UH , thereby decomposing the received signal

into parallel streams. In other words the equivalent channel can be written

as

y = Λu + z

the capacity expression is then simplified to

C =

Nmin∑
i=1

log

(
1 +

P ∗i λ
2
i

N0

)
(3.2)

where λi are the ordered diagonal elements of Λ. Nmin = min(NT , NR) .The

optimal power allocation is given by the well-known water-filling problem,

where

P ∗i =

(
µ− N0

λ2
i

)+

(3.3)

µ is a variable in the Lagrangian form of the original optimization problem.

µ or the “water-level” can then be calculated such that
∑NT

i=1 Pi = P ∗. A
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simple analysis can then be done to show that at the high SNR regime,

equal power allocation is asymptotically optimal, whereas in the low SNR

regime, it is optimal to allocate power to the strongest eigenmode. In high

SNR, it is important to note that in order to achieve the full spatial degrees

of freedom, Nmin, H has to be well-conditioned and full rank, while at low

SNR, this is irrelevant as the antennas jointly transmit a single stream.

When the transmitter does not know the channel exactly, V-BLAST

(Vertical-Bell Laboratories Layered Space-Time) can be used. In V-BLAST,

Q is chosen to multiplex the incoming data symbols onto the transmit an-

tennas. When Q = V, we achieved the capacity that was just shown above.

When Q = I (identity matrix), the data symbols are spread across the an-

tennas without any manipulation. The latter scenario is commonly used

when the transmitter has no CSI.

While V-BLAST achieves capacity, the above assumes a fast-fading chan-

nel, where there is sufficient diversity in the channel across time and sce-

narios involving deep fade can be avoided by well designed channel codes.

In slow fading however, the channel will remain more or less constant over

several symbol transmission time-slots. In V-BLAST, the data is transmit-

ted over the antenna array over one symbol time, each stream can traverse

to NR possible receiver antennas. When the data stream from a transmit

antenna to all the receive antenna goes through deep fade, that information

will be lost. The MIMO channel itself provides a diversity of NT ×NR (all

possible transmitter receiver antenna combinations). The sub-optimality

of V-BLAST in slow fading scenarios is because there is no coding across

streams. An alternative method for outage-efficiency in slow fading was

given as D-BLAST, where the coding is done diagonally over the space-time

grid. Because of this parts of the codeword are scattered across different

antennas over time, hence achieving the full diversity gain. (e.g. the data

intended for the first receiver antenna is sent from the first transmit antenna
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on the first time slot, the second transmit antenna on the second time slot

and so on. In V-BLAST the data to the first receiver is always sent from

the first transmit antenna, so if that particular channel is in deep fade, all

the data to receiver 1 will be lost).

3.2 Multi-User MIMO

For a Multi-User MIMO scenario, we assume that fading occurs in “blocks”

and the channel at each block is independent and i.i.d. In the single-user

case, capacity is a scalar. In a multi-user scenario, the information sent to

each user is independent, and because the users are isolated, each user has

its own rate at which it receives information. The set of user rates can then

be given as:

R(π,Kx1, ...,KxK) = [Rπ(1), ...Rπ(K)]
T (3.4)

Rπ(k) = log2

∣∣∣I + Hπ(k)

(∑
j≥k Kxπ(j)

)
HH
π(k)

∣∣∣∣∣∣I + Hπ(k)

(∑
j>k Kxπ(j)

)
HH
π(k)

∣∣∣ , k = 1, ...,K (3.5)

where Kxk is the covariance matrix of transmitted signal intended for user

k. π is the user permutation or ordering, and
∑K

k=1 Tr(Kxk) ≤ P is the

total power constraint. The capacity of a MU-MIMO system is then defined

by its rate region. The rate region is the convex hull of the union of all the

rate vectors over all possible permutations and covariance matrices. This

can be written as:

C = Co

(
π,Kxk�0,

⋃
∑K
k=1 Tr(Kxk)≤P

R(π,Kx1, ...,KxK)

)
(3.6)

Co(.) is the convex hull. Clearly, comparing the performance of two schemes

via the use of the rate vectors can be difficult. As such the performance is

usually characterized as a simpler form via the sum-rate. The sum-rate is
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maximized amongst all the possible rate vectors in the capacity region.

CSUM = max
R∈C

K∑
k=1

Rk (3.7)

In fact, for a given user ordering, the condition for maximization can be

simplified to the maximization problem over all possible covariance matrices.

This is the main performance measure used in most MU-MIMO block fading

channels. For simplicity purposes most of the analysis in MU-MIMO systems

is done assuming single antennas at the receiver N
(k)
R = 1 ∀ k. The issue

with maximizing the sum-rate is that while performance is maximized from

a system point of view, fairness issues are not addressed. Typically, if a user

has a particularly weak channel, it will be neglected for a long period of time.

While fairness issues are not considered here, they provide an important

scope for research especially when dealing with multi-cell scenarios.

Unlike in single-user MIMO, transreceiver designs cannot be employed

here, as the users are isolated. While they have knowledge of hk, their own

channel, they do not have knowledge of H, the channel of the entire system,

which is required for receive combining. Hence, interference cancellation has

to be done at the transmitter. Therefore, perfect CSIT is essential in achiev-

ing MIMO capacity. In the next few sections non-linear and linear precoding

schemes that aim to maximize the sum-rate of a MU-MIMO channel will be

discussed.

3.3 Dirty Paper Coding

Dirty Paper Coding (DPC) is a non-linear precoding method that received a

lot of attention in multi-user communications from Costa’s paper on “Writ-

ing on Dirty Paper” [30], notably due to its ability to achieve the capacity

region that maximizes the sum-rate [21, 20]. In DPC, the input signal is en-

coded such that the additive Gaussian interference known to the transmitter

(non-causally) is pre-subtracted without increasing the transmit power. In a
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multi-user scenario, DPC can be thought of a successive encoding method.

Given an ordered set of users, the base station can treat the information

requested by the users that come after a particular user in the set as inter-

ference. Since the base station knows the channel, it can precode the data

symbol to remove this interference.

In an information theoretic perspective, let us suppose we have a point-

to-point channel, with input X, interference S ∼ N (0,KS) (known at the

transmitter non-causally), noise Z ∼ N (0, N) and output, Y . KS and N

are arbitrary variances that are known. In the original works, dirty paper

coding achieves AWGN capacity if S and Z are Gaussian, with X generated

using a Gaussian codebook.

Y = X + S + Z

C = sup
px,u,s

{
I(U ;Y )− I(U ;S)

}
(3.8)

where x = f(u, s) is a deterministic function and E(X2) ≤ P . The capacity

is then given by 1
2 log2(1 + P/N) if PU |S ∼ N (αS, P ). This is done by

choosing x = u−αs and α = P/(P +N). The results have been generalized

to arbitrary interference distribution or noise distribution provided one or

the other is Gaussian.

Hence, in a multi-user scenario when we successively apply the above

information theoretic concepts to design the codewords to pre-cancel inter-

ference, our effective received signal at user, for a given user ordering would

look like:

yk[m] = (hHk bk)uk[m] +

r∑
j>k

(hHk bj)uj [m] + zk[m] (3.9)

The above is when there is a single antenna at each user. Depending on

the user ordering, the data symbol requested by the first user does not have

any interference subtracted, each subsequent user-requested data symbol is

coded to subtract the interference from the data-symbols requested by users
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before it, and hence only the signal corresponding to the last user will be

completely interference free. In other words, Rk = log(1 + SINRk).

SINRk =

(
Pk|hHk bk|2

N0 +
∑
j>k

Pj |hHk bk|2

)
(3.10)

Although not immediately apparent, this is exactly the definition of the

rates in the rate vector given in equation 3.5, noting that the expression

here is for the single receive antenna case. The remaining problem is then

to choose the beamformers (which effectively form the covariance matrix)

to maximize the sum-rate.

Hence, dirty paper coding can achieve the capacity region of a MIMO

broadcast channel. The downside is that the capacity region of a MIMO

BC is a non-convex function of {Kxk}, which depend on the beamforming

vectors and power allocation strategy. An alternative way to optimize the

sum-rate according to the covariance matrices is to utilize duality. The

successive decoding in the MAC is similar to DPC in BC. In fact the duality

is shown in [42]. In a dual MIMO MAC, the received signal is given by

y =
K∑
k=1

HH
k xk + z (3.11)

The information sent by the users are jumbled and superimposed at the

base station. Unlike the broadcast channel however, in the MAC channel

the receiver antennas can cooperate and hence with receiver CSI, successive

decoding can be performed (e.g. via MMSE-SIC). The duality between BC-

MAC states that the capacity regions of the MIMO BC and MIMO MAC are

identical, provided that the sum-power constraints are the same. (Note that

the individual powers allocated to each beamformer to achieve this capacity

are in general different in the MAC and BC). The sum capacity can then be

written as [10].

C = max
Kxk�0,

∑K
k=1 Tr(Kxk)6P

log2

[
det

(
I +

K∑
k=1

HKxkH
H

)]
(3.12)
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An established algorithm [11] to maximize the capacity is the iterative

water-filling algorithm which is described in section 3.5. Upon maximizing

the capacity, the covariance vectors must also be calculated so that optimal

transmission strategies can be employed. This is generally not an easy prob-

lem. While the covariance matrices that optimize the capacity can be found

for the MAC channel, converting these covariance matrices for the BC is in

general complicated and requires a number of matrix operations which may

not be efficient in practical systems. However, once the covariance matrices

are computed, the beamformers and power allocation can be extracted from

them. The problem stated thus far is for a given set of users. Things become

even more complicated when there is a large number of users and schedul-

ing is required to utilize the multi-user diversity. In order to optimize the

sum-rate when there is a large number of users, the above procedure must

be calculated for every permutation of users.

3.4 Transmit Beamforming

While non-linear precoding schemes such as DPC are of interest due to their

ability to pre cancel interference and achieve the capacity region of a MIMO

BC, they are high in complexity and require perfect CSI at the transmitter

[43]. When coupled with finite-rate feedback and user scheduling, the above

schemes are tough to analyse or implement in practice. To this end, linear

precoding (beamforming) methods are shown.

Zero-forcing

Assuming single antenna receivers, we can write the input-output relation-

ship as follows:

yk[m] = (hHk bk)uk +

r∑
j 6=k

(hHk bj)uj + zk (3.13)
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Zero-forcing beamforming (ZFBF) is performed by selecting beamform-

ing vectors such that the interference from the other users is nulled [5]. In

other words, hHk bj = 0 . This is done by choosing the beamformers bk in

the null space of span{hj |1 ≤ j ≤ K, j 6= k}.

A trivial choice is to choose the beamformers from the columns of the

pseudo inverse of the channel matrix. The channel matrix is defined as

H =
[
hT1 ,h

T
2 , . . . ,h

T
K

]T
. And the pseudo inverse is given by:

H† = HH(HHH)−1 (3.14)

Let the beamforming matrix be B = [b1,b2, . . . ,bK ]. We can then choose:

B = H†diag{P1, . . . , PK} (3.15)

where P1, . . . , PK are the power allocated to each user. the effective received

signals are then given by

yk = Pkuk + zk (3.16)

Hence, the rate maximization problem for zero-forcing beamforming can be

written as:

RZF = max
P=[P1,...,PK ]

K∑
k=1

log(1 + Pk)

subject to: Tr(BHB) =
∑
k

Pk

[(
HHH

)−1
]
k,k
≤ P

(3.17)

By water-filling [7], P ∗k =

(
1

λ[(HHH)−1]
k,k

− 1

)+

and
∑

k

(
1
λ −

[(
HHH

)−1
]
k,k

)+

= P .

The implicit assumptions are that the channel vectors are not correlated, in

other words full rank and that the dimensions are limited by K < NT . The

first condition is fulfilled by the choice of i.i.d. Rayleigh fading channel. As

for the second, when there are multiple users in the system, user scheduling
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has to be performed to limit the number of users to the number of trans-

mit antennas. In this section, a pre-selected set of users has been assumed.

Typically the optimization problem would extend over all possible subsets

of the users.

Regularization

While zero-forcing solely removes interference, a regularization parameter

can be added to the channel inversion to improve performance in scenarios

where the channels of the users are noise-limited or ill-conditioned [40, 33].

The regularized channel inverse is given by:

HH(HHH + αIK)−1 (3.18)

α is a parameter that determines the ratio of noise/interference cancellation.

When α is zero we have perfect interference cancellation. As α grows large,

more noise is cancelled.

Zero-forcing Dirty Paper Coding

Recall that there are two stages of complexity in DPC, firstly, calculating

the sum-rate and the corresponding covariance matrices that maximize it

for a given user-set; secondly, the issue of implementing DPC in practice.

Having introduced zero-forcing, we can give a sub-optimal solution to the

first problem by choosing the beamformers (and hence covariance matrices)

to null the interference while assuming DPC is perfectly implemented.

Since DPC pre-cancels interference from the users that come before the

current user [27, 28], we only require the beamformers to cancel the inter-

ference from the users that are ordered after the current user. In other

words, we require beamforming to convert the effective channel to a lower

triangular matrix.

H can be decomposed as H = GQ via the Q-R decomposition method

using Gram-Schmidt orthogonalization to the rows of H. Let m = rank(H),
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then G ∈ CK×m is lower triangular and Q = Cm×NT is orthonormal in its

rows. To be consistent with zero-forcing beamforming, we assume m = K

i.e. the channel is of full rank. Now we can choose the beamformers from

Q from the property that QQH = I. This leaves the channel to equal the

lower triangular matrix G. Choose:

B = QHdiag{P1, . . . , PK} (3.19)

where B is a matrix consisting of the beamformers in the columns. After

DPC is applied, the effective channel becomes

yk = Pkgk,kuk + zk (3.20)

gk,k is the kth diagonal element of G. By letting P̂k = Pkgk,k, we can define

the sum-rate as

RZF = max
P

K∑
k=1

log(1 + P̂k)

subject to: Tr(BHB) =
∑
k

P̂k
|gk,k|2

≤ P
(3.21)

By water-filling the optimal power allocation is given by P̂ ∗k =
(
|gk,k|2
λ − 1

)+
,

where
∑

k

(
1
λ −

1
|gk,k|2

)+
= P

Random Beamforming

The methods so far require perfect CSI to operate well. In the case when the

transmitter only has partial or no CSI from the receiver, a random beam-

forming approach can be used [23]. In random beamforming, the beamform-

ing vectors are chosen as random orthonormal vectors (BBH = I) according

to an isotropic distribution. B = [b1, . . . ,bK ]. Here, however, we assume

the base station has some CSI namely the preferred beamformer and SINR

of each user. A total of K beamformers are chosen where K users are sched-

uled at a time. We assume there exist a large number of users. Suppose
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there are n >> NT users in the system, the SINR of the ith user for each

choice of beamforming vector is given by:

SINRi,k =
|hibk|2

1 +
∑

j 6=k |hibj |2
, 1 ≤ k ≤ K, i = 1, ..., n (3.22)

The ith user then sends back the index of the beamformer that maximizes

this SINR, k∗(i), as well as the maximum SINR given by

SINRi = max
1≤k≤K

SINRi,k, i = 1, . . . , n (3.23)

Finally, the transmitter selects the optimal set of users by going through

each beamforming index and selecting the user i∗(k) that has the best SINR

for the corresponding beamformer.

i∗(k) = arg max
i:k∗(i)=k

SINRi, 1 ≤ k ≤ K (3.24)

Hence, the kth symbol being transmitted at a time slot will be dedicated

to user i∗(k). Note that there is a small probability that a single-user can

have, the maximum SINR for two or more different beamformers, but this

is generally ignored when the number of users in the system is large.

3.5 Beamforming with Multiple-Antenna Receivers

When dealing with multiple-antenna receivers, zero-forcing can still be ap-

plied. However, using zero-forcing via channel inversion treats the antennas

at each receiver as separate users. This would mean that the total number

of users that can be transmitted to at a channel use will be limited. For

example, if we have a user that has NR = NT then with zero-forcing, if

that user is scheduled, no other users can be co-scheduled. However, since

the receivers can effectively combine the signals from their own antennas,

transmission schemes that utilize this fact can be implemented to achieve

better throughputs than with channel inversion. One such scheme that uses

an extended form of zero-forcing is “Block Diagonalization” [39, 36].
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Block Diagaonalization

Due to multi-antenna receivers considered, the channel matrix is composed

of matrices for each user rather than vectors and is given by:

H = [HH
1 HH

2 . . . HH
K ]H (3.25)

And the corresponding beamforming matrix is given by:

B = [B1 B2 . . . BK ] (3.26)

The idea then is to diagonalize HB. This would mean that the channels

to each receive antenna would be in parallel streams without interference.

The zero interference criterion is then to choose HkBj = 0 ∀k 6= j.To do

this we require the beamformers, Bk, to lie in the null space spanned by

H̃k = [HH
1 . . . HH

k−1 HH
k+1 . . . HH

K ]H

We note that prior to any processing the capacity maximization problem

for block diagonalization can be written as:

CBD = max
B: HiBj=0,i 6=j

K∑
j=1

log2 |I +
1

N0
HjBjB

H
j HH

j | (3.27)

We can then decompose H̃k as:

H̃k = ŨkΣ̃k[Ṽ
(1)
k Ṽ

(0)
k ]H (3.28)

The right singular vectors can be split into two parts, Ṽ
(1)
k which is in the

subspace spanned by H̃k and Ṽ
(0)
k which is in its null space. For the second

term to exist, it is required that rank(H̃k) < NT or equivalently the nullspace

of H̃k must have at least dimension one. Since Ṽ
(0)
k correseponds to the zero

singular values and forms an orthonormal basis of the nullspace, it can be a

candidate when choosing Bk. The effective channel for user k then becomes
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HkV
(0)
k . In order for feasible transmission however, we require at least one

row of Hk is independent of the rows of H̃k. Note that the equivalent

channel for each user does not contain any inter-user interference and hence

is equivalent to SU-MIMO that we discussed at the start of the chapter. As

such, we can decompose (SVD) the effective channel as follows:

H̃kṼ
(0)
k = Uk

 Σk 0

0 0

 [V
(1)
k V

(0)
k ]H (3.29)

Recall in SU-MIMO, for channel known at the transmitter, the precoding

matrix was chosen as the right matrix of the SVD. As before, we can decom-

pose the right singular vectors into two parts. Ideally we want to transmit

the symbols along the vectors that correspond to the non-zero singular val-

ues. Therefore, the zero interference beamforming matrices can be chosen

as Bk = Ṽ
(0)
k V

(1)
k and the capacity can be calculated via water-filling.

Sub-Optimal Strategies

A simpler and more intuitive way is to decompose Hk = UkΣkVk directly

and multiply the received signal yk by the receive filter, UH
k . This effectively

splits the antennas at each receiver into independent streams that can be

treated as separate “users”. The system can then be viewed as a MIMO

BC with
∑

kNRk users and zero-forcing can then be applied via channel

inversion.

A second way is to exploit the receiver architectures presented in chapter

2. Assuming that each user only requests one data symbol per channel use,

the receive combiners will combine the signals from the receiver antennas

into one stream. The transmitter can then form its beamformers based on

the largest right singular value of the decomposed channel matrix of each

user.
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Both the above methods are suboptimal when compared to Block Diag-

onalization. The first is suboptimal as it treats each antenna as a user via

appropriate receiver filtering. Due to this, we limit the number of effective

users we can transmit to, and in scenarios where the channels are in deep

fade we cannot utilize user diversity. The second is suboptimal as it only ex-

ploits information from the largest right singular value of the user’s channel,

in other words the “best” antenna of each user. As such when using zero-

forcing beamforming, the dominant interference from other users is reduced

but not completely eliminated. The advantage of the above strategies when

compared to Block Diagonalization is that they take less computation time

and are only required to calculate the SVD of each user channel once. In

Block Diagaonlization the SVD has to be done twice along with additional

matrix multiplications.

3.6 Performance and Complexity

Performance

Comparison of performance in terms of sum-rate and outage probability of

the above given schemes have been shown via simulations in literature. Most

of which arrive to the same conclusion. Here, we will provide an intuitive

interpretation of the relative performance and discuss the basic results. The

sum-capacity of a MIMO BC varies depending on SNR. At low SNR, the

performance is noise limited, and at high SNR it is interference limited.

The intuition behind this is that at the low SNR region both the signal and

interference power are low compared to noise power, which is assumed to

have fixed variance. On the other hand, at high SNR, the interference and

signal power are large compared to noise, and interference becomes a bigger

issue.

The most important result of the performance of MIMO BC channel
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comes from its duality relationship with the MAC. In the MAC, the sum-

capacity increases linearly with min(NT ,M), M represents the number of

scheduled users. Using duality, it can be verified that the same linear growth

is achievable for the BC. Assuming that the users are limited to a single an-

tenna, via appropriate user scheduling and precoding the full multiplexing

benefit of single-user MIMO can still be achieved, provided K > NT . As

discussed, DPC achieves the sum-capacity of the MIMO BC and hence also

achieves the full spatial degrees of freedom of MIMO. The downside of DPC

is its difficulty in implementation. Beamforming which has a much lower

complexity relative to DPC in fact achieves a large portion of the capacity

region.

For a large user-set, K, the expected sum-rate of DPC can be approximated

as follows [41].

E{RDPC} ∼ NT log

(
1 +

P

NT
log (K)

)
(3.30)

In other words DPC achieves the full spatial multiplexing gain, NT . The

multi-user diversity gain is given by logK.

In fact it is shown that E(RBF ) = E(RDPC) in optimal beamforming

with a large number of users, where E(RBF ) is the expected sum-rate uti-

lizing beamforming. This can be observed from the random beamforming

scheme shown in section 3.4. Despite being sub-optimal, the RBF scheme is

still able to achieve the MIMO multiplexing gains [41], so an optimal beam-

forming scheme should do so as well. While RBF achieves performance

gains, its performance in practical schemes with a reasonable number of

users is low and underwhelming compared to zero-forcing beamforming.

The asmyptotic optimality (as K grows large) of beamforming schemes

can also be argued via ZFBF. The intuition is that when K is small, we are

limited in the choice of users and in cases where condition number of the
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channel is high, channel inversion is difficult to compute. More importantly,

this means that some of the channel vectors are close to being aligned, hence

zero-forcing would cause a huge loss in receive signal power, as most of the

transmit power is used to remove the interference. This would not be the

case when the user’s channels are orthogonal and the beamformers would be

aligned to the channels to increase the receive signal power. As K increases,

the probability of finding a set of users with well conditioned channel is

higher. In other words, the chances of finding users with orthogonal channels

is higher [44, 45]. This improves the received SNR when zero-forcing the

interference, which in turn improves sum-rate on average. And as K → ∞

it is always possible to find orthogonal users, which means that zero-forcing

simplifies to maximum ratio transmission and the sum-rate gap between

DPC and BF goes to 0. Of course smart user scheduling algorithms are

required to ensure these gains are achieved for a reasonable K, as we cannot

always guarentee to have a very large number of users.

Performance Comparison

Generally,

RCoop ≥ RDPC ≥ RZFDPC ≥ RZF ≥ RRBF

Coop stands for full cooperation, where the users know the entire channel

H, and is essentially the same as SU-MIMO. DPC, ZFDPC, ZF and RBF

correspond to the various precoding schemes discussed in this chapter, where

the users only know their own channel hk.

While there are variety of proofs justifying the above order, this is in

fact quite intuitive. While practically not implementable due to size and

cost constraints at the receiver, Cooperative MIMO (or SU-MIMO) has the

highest sum-rate due to the receivers being able to communicate with one

another. As such transreceiver designs can be constructed and are relatively

easy to implement. While DPC does not perform as well as SU-MIMO, it
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does achieve the capacity region of the MIMO BC channel. The remaining

schemes are strictly inferior when compared to DPC [41, 23]. While they

provide simplified ways of calculating the beamformers (and covariance ma-

trices) that reduce interference or maximize signal power they are in general

not optimal. Amongst these schemes ZFDPC performs better than ZF. In

ZF each user interferes with all the other users, hence the beamformers have

to be chosen strictly from the null space of the interfering user’s channels.

In ZFDPC each user only interferes with the users that come before it (for

a given ordered set of users), and hence there is more freedom in choosing

the beamformers, i.e the beamformers can be chosen from a larger subspace,

allowing for more optimal choices. It is easy to see that RBF which only

uses partial CSI at the transmitter is outperformed by all the other schemes

that utilize full CSI at the transmitter.

Complexity

The complexity of DPC, ZFBF, ZFDPC and RBF is also compared in an

intuitive sense. The operations of these methods are fairly common and can

be broken down into, encoding, rate, and beamforming calculations.

In DPC the iterative water-filling is used to calculate the optimal covari-

ance matrices for the transmit signals (and hence beamformers) [11]. Here,

the capacity maximization problem is solved by using the dual MAC prob-

lem. However, the covariance matrices for the BC that achieve this capacity

are not trivial to find. As such this iterative algorithm arbitrarily fixes the

covariance matrices of the transmit signals of all but one users, and optimizes

the capacity over just that one user. This is effectively a SU-MIMO channel

which is trivial to optimize. In other words, at each step of the algorithm,

the optimization problem simplifies to a equivalent point-to-point MIMO

optimization problem where water-filling is done over a modified channel.

The resulting covariance matrix that maximizes the mentioned problem is
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then updated, and in the next iteration, a different user’s covariance matrix

is fixed, and the process is repeated. The algorithm is terminated when the

maximum error between the covariance matrixes in the current and previous

iteration is below a pre-designed threshold. User selection is then performed

via repeating the above algorithm over different combinations of users, and

by finding the optimal set.

Furthermore, while the above can be computed via algorithms mentioned

in [11], complicated methods are required to implement DPC by the means

of channel coding. It is shown in [11] that nested lattice structures are used

when designing symbol constellations. In short, DPC is computationally

taxing and hard to implement, while the beamforming schemes are roughly

similar in terms of complexity, except for ZFDPC. While, ZFDPC does not

require an iterative water-filling algorithm for its beamformer choice, it still

requires the implementation of DPC in a channel coding sense. The compar-

ison of the remaining techniques along with DPC can hence be summarized

in the following table:

RBF DPC ZF ZFDPC

Random Vector Iterative water-filling Channel Inversion Q-R Decomposition

generation MAC-BC Conversion water-filling Lattice Precoding +

SINR maximization Lattice Precoding+ cancel interference

cancel interference
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Chapter 4

Limited Feedback and User

Scheduling

Transmitter knowledge of the channel information in TDD systems can be

found by using various estimation schemes. In TDD, the uplink and down-

link share the same frequency band and hence the respective channels are

reciprocal. In FDD however, this is not the case and it is in general not

simple for transmitters to attain CSI in an open loop system. As such,

closed loop feedback schemes have been established in literature, where the

users estimate their channels and feed this information via the uplink. The

feedback link is assumed to have a low rate and negligible error and delay.

Two broad ways of providing feedback are via analog and digital feedback.

Analog feedback is limited by the noise in the uplink channel and digital feed-

back is limited by the number of feedback bits that can be used for channel

quantization. Upon receiving feedback information, the base station per-

forms its usual operations, beamforming and user scheduling to maximize

throughput. The purpose of this chapter is to analyse the various feedback

methods in literature and their performance. Most of this chapter focuses

on digital feedback, including the design of codebooks. The performance

of limited feedback and the role of CQI and CDI feedback in both single
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and multi-user systems are also shown. While limited feedback, as we will

observe, is able to attain the full multiplexing gain as long as the number of

feedback bits per codeword is scaled appropriately with the SNR, the addi-

tion of user scheduling greatly improves the performance of the system. To

this end, this chapter also provides some current user scheduling algorithms

along with performance comparisons between these methods in a limited

feedback scenario.

4.1 Limited Feedback for a Single-User

This section talks about the design and optimization of a limited feedback

single-user system. Many of the concepts defined in this section in fact can

be adapted to the multi-user scenario, which will be discussed in a later

section. The design considerations for a user with a single receive antennas

is first discussed before moving on to receivers with multiple antennas.

4.1.1 Single Antenna User

We start with looking at the MISO system with NT antennas at the trans-

mitter and 1 antenna at the receiver. The input-output relationship can be

written as:

y = hHbu+ z (4.1)

where the notation holds in consistency with that described in the system

overview. Briefly, y is the output signal, h is the channel vector, b is the

beamforming vector, u is the data symbol to be transmitter and z is complex

AWGN. In order to utiize the available feedback bits to provide CSI, the

channel directional information (CDI) can be quantized. While codebook

design for vector codebooks will be discussed later, for simplicity the code-

words are assumed to be randomly generated unit norm vectors. In other

words, they are picked randomly from a uniform distribution on the surface
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area of an isotropic complex unit sphere. We can then define the set of beam-

formers as F = {b1,b2, ...,bNC}. Assuming we have B bits of feedback, this

would mean that the number of codewords per codebook would be NC = 2B.

Or in the case that log2NC is not an integer, B = dlog2NCe. Assuming that

maximal ratio transmission is used, we want to pick the beamformer that

is more closely aligned to the channel vector than any other beamformer in

the set. We can then define the beamformer amongst the set that minimizes

the “chordal distance” with the channel as:

b∗ = argmaxb∈F |bHh|2 (4.2)

In a single-user scenario, the channel capacity is directly related to the

received SNR. As such we would want to maximize the receive SNR with

respect to the beamformers in F . Indeed, choosing the codeword that max-

imizes SNR is equivalent to choosing the codeword that is aligned to the

channels (noting that the codewords have equal magnitude). Thus, the SNR

conditioned on the knowledge of the channel at the receive side is given by:

γ = P max
b∈F
|bHh|2 (4.3)

where, P = Es
N0

is the transmit SNR of each symbol. Defining ω = max
b∈F

|bHh|2
‖h‖22

we can then see that the SNR is given by the multiplication of two random

variables, ω and ‖h‖, γ = Pω‖h‖22. Another aspect to note is that ‖h‖22
is in fact the sum of the square of normally distributed random variables.

Recognizing this, it can hence be shown that ‖h‖22 is Gamma distributed

given by Γ(NT , σ
2), where σ2 can be treated as the variance of each i.i.d.

channel coefficient. As for ω it is first important to recognize that 0 ≤

ω ≤ 1 when ω is 1, this implies that the best codeword in the codebook

is completely aligned to the channel, for a given channel. Likewise when ω

is close to 0, this implies that the codebook quantizes the channel poorly.

For argument’s sake, if we let x = |bHh|2
‖h‖22

, noting that b is a unit vector, we
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see that x = cos2 θ,where θ is the angle between the beamformer and the

channel vector.

The distance between any two complex unit norm vectors w and v is

given by d(w,v) =
√

1− x, x ∈ [0, 1]. If we define a space comprising of all

possible unit norm channel realizations that have a distance measure less

than
√

1− x for a given x and beamformer bi, the CDF of x in a geometric

sense can be found by taking the ratio of the surface area of this space of

beamformers over the surface area of the total unit sphere. We can define

the above mentioned space as:

Cbi(
√

1− x) = {v ∈ ΩNT : d(v,bi) <
√

1− x} (4.4)

where, ΩNT is the set of all unit norm vectors in a NT dimensional complex

hypersphere. Letting A(.) denote the surface area operator, it can be shown

that [46]:

A(Cbi(
√

1− x))

A(ΩNT )
= (
√

1− x)2(NT−1) = (1− x)NT−1 (4.5)

The above describes geometrically the probability that two vectors are within
√

1− x distance apart. The CDF of x can then be defined as [47]:

Fx(x) = 1− (1− x)NT−1 (4.6)

Next, taking the maximum of x generated by each beamformer in the code-

book and noting that the beamformers are equally distributed, CDF of ω

can be written as:

Fω(ω) = (1− (1− ω)Nt−1)N (4.7)

Now that we have defined the CDFs of ω and the channel, the closed form
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expressions for Ergodic SNR and the Capacity can be derived and are written

as [47]:

E[γ] = Eω [ω]E‖h‖[‖h‖22] = NTP −NTPNB
(
N,

NT

NT − 1

)
(4.8)

E[γ] = Eω [ω]E‖h‖[‖h‖22] = NTP −NTPNB
(
N,

NT

NT − 1

)
(4.9)

C(P ) = Eω
[
E‖h‖

[
log2

(
1 + Pω‖h‖22

) ∣∣∣ω]]
= log2 e

(
NT−1∑
k=0

Ek+1

(
1

P

)
e

1
P −

∫ 1

0
Fω(ω)

NT

ω
e

1
PωEm+1

(
1

ρω

)
dω

)
(4.10)

In both SNR and capacity expressions the first terms (e.g. NTP for

SNR) correspond to the case when the transmitter has full CSI knowledge.

E(.) refers to the exponential integral and B(α, β) is the beta function.

The second term in both expression comes from the error due to quantiza-

tion; furthermore, the second terms only depend on the transmit power, P .

Therefore, the quantization error reduces the gradient of the receive SNR

and Capacity as P increases. This hence translates into a constant gap in

performance in dB scale. While the performance of the system drops by

a constant in the dB scale, the multiplexing gain is still 1. Therefore, we

can still achieve the single-user multiplexing gain with a fixed number of

feedback bits.

Thus far, we have concerned ourselves with the feedback of the normal-

ized beamformers in a codebook, and it should be noted that in the analysis

so far only the ergodic rate was computed. While this approach may be

applicable for block fading channels that are fast varying, in block fading

channels that are slow varying sending information at the ergodic rate may
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cause high error rates at a particular time block due to the probability of

the channel being in deep fade. In order to compute the performance and

allocate an accurate rate to an user, the transmitter hence has to calculate

the outage capacity of the channel, which depends on both channel direction

and magnitude. This motivates feedback in such scenarios to consider both

Channel Direction Indicator (CDI) and Channel Quality Indicator (CQI).

4.1.2 Multiple Antenna User

In the case of full CSI, we had established that using SVD we can form the

corresponding transreceiver architecture to split the MIMO channel into sev-

eral parallel SISO channels. When limited feedback is available, obviously

this cannot be done perfectly, causing some interference between the anten-

nas; and intuition tells that this would lead to performance loss depending on

the accuracy of the channel estimation. The main difference between a user

with single antenna and one with multiple antennas is the channel. With

multiple antennas we have a channel matrix and by observing the structure

of a matrix we can intuitively say that designing codebooks of matrices is

firstly more complicated and secondly would require a lot of bits to maintain

a similar resolution to the single antenna case. This section hence addresses

simplified designs for a transreceiver structure under limited feedback.

If we take a generalized transreceiver design, we can write it as:

y = vHHbs+ vHz (4.11)

This differs slightly from the single antenna case. Note that in the sin-

gle antenna case the beamformers were chosen based on maximum ratio

transmission. Here, we have an extra parameter, v that is used for “receive

combining” which was discussed in Chapter 2. The overall goal in a single-

user system, for example maximizing capacity, is equivalent to maximizing
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the received SNR. Hence, we have to design v and b such that the received

SNR is maximized. As mentioned earlier in a full CSI scenario these can be

chosen based on performing the SVD of H. For a general scenario we can

write this problem as:

max
v,b

P |vHHb| (4.12)

where P = Es
N0

as before. The maximization problem above is too general

and difficult to solve, and hence is usually given constraints depending on the

implementation issues. These constraints are discussed as follows. Firstly,

the above problem can be simplified by assuming a particular type of beam-

forming or receive combining. In other words, for a given beamformer, b,

we can perform a receive combining technique known as Maximum Ratio

Combining (MRC) which can be treated as the dual to MRT. Firstly, we

want to note that in order to leave the output magnitude unscaled, we can

add a constraint ‖v‖ = 1. Then by noting the following,

|vHHb|2 ≤ ‖v‖22‖Hw‖22 (4.13)

and that ‖v‖ = 1, we require MRC to have |vHHb|2 = ‖Hb‖22. An obvious

choice for MRC is v = Hb
‖Hb‖22

. Assuming that we always use maximum ratio

combining, the maximization problem then reduces to choosing a beam-

forming scheme. To be consistent with the single-user case, we can again

use MRT. With MRT, the choosing of the transmit beamformer then reduces

to the following problem:

b∗ = arg max
x∈ΩNT

|xHHHHx| (4.14)

The solution to the above equation is not unique, as any transformation

of the solution by a multiplication of the form ejθ will achieve the same

maxima.
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Recall in the single antenna case in calculating the maximum SNR, we

required the distribution of ‖h‖22. In a multiple antenna case, we need

the distribution of HHH which follows a complex Wishart distribution. A

property of Wishart distributed matrices is then that the distribution of

HHH is equivalent to the distribution given by UΣUH , where U is Haar

distributed NT ×NT unitary matrix, Σ is a diagonal matrix. Following this

property, the Wishart distribution is invariant to unitary transformations.

Another property is that for a Haar distributed UNT×NT , given a unit norm

vector, we have x ∈ ΩNT , Ux ∈ ΩNT .

This means that a solution to the maximization problem in (4.14) is to

have b∗ = Uei where ei is a vector, 1 × NT with 1 in the ith component

and 0 for every other component. Following from this and the property

of Haar distributed matrices, any linear combination of the columns of U

is uniformly distributed in the unit norm complex hypersphere. We can

then write the inner terms in the maximization problem as |xHUΣUHh| .

Knowing that UHx is uniformly distributed in ΩNT and that Σ is simply a

scaling, it is then easy to see an important property shown in [48]:

“The problem of finding quantized beamformers for MISO systems is the

same as that of finding quantized beamformers for MIMO systems”.

In other words, the choice of beamformers ONLY depends on the number

of transmit antennas and hence, all the analysis done in single antenna

systems can be directly applied to multiple antenna systems when the receive

combining is fixed as MRC.

What remains to be investigated in the context of limited feedback for

single-user systems is the problem of how to determine optimal or close to

optimal codebooks. Thus far we have seen that, while random codebooks

are observed to perform well in an ergodic sense, in a practical sense the
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transmitter would require a fixed codebook. To this end, the theory of

Grassmanian line packing and using the fact that choosing a beamformer

is equivalent to choosing a line across the origin in the complex space, and

the results of the work in [49], together summarize that the optimal way to

design a codebook is to maximize the minimum distance between any two

codewords. In other words, given a distance measure,

δ(B) = min
1≤k<l≤N

√
1− |bHk bl|2 = sin(θmin) (4.15)

the optimal codebook can be chosen by solving the following problem:

B = arg max
X∈ΩNNT

δ(X) (4.16)

4.2 Limited Feedback for Multiple Users

In a multi-user scenario, the base station requires feedback from each user.

Recalling that the users cannot directly cooperate we need to consider two

things. Firstly, interference cancellation must be done completely in the

transmitter, and hence in a sense we could say that feedback becomes all

the more critical in achieving the full-CSI performance gains. Secondly, a

new dimension to the problem is added namely, the choice of users we are

transmitting to, i.e user scheduling. While the idea of user scheduling is

not unique to limited feedback, it is important when it comes to analysis

of the system when the number of users is greater than the number of

transmit antennas K > NT , since ZFBF based transmission schemes cannot

accommodate all the users. Furthermore, limited feedback not only creates

quantization errors due to the limited choice of beamformers, it also makes

user scheduling algorithms less optimal. It should be noted that while the

differences in terms of performance analysis between multiple and single-

user systems exist, the quantization process and the design of codebooks

in a multi-user scenario uses much of the theory already discussed in the

single-user case.
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4.2.1 Performance of MU-MIMO with RVQ

In this scenario, each user quantizes the channel directions and the corre-

sponding codebook index is fed back to the transmitter. The transmitter

will contain K different codebooks, one for each user. It is easy to see that

if we have the same codebook for each user, there is a possibility that two

or more users will feedback the same codeword. When this happens, the

interference from these users cannot be resolved by ZFBF.

Although these codebooks are randomly and independently generated,

it is shown in [50] that it is sufficient to simply rotate one fixed codebook

over K randomly generated unitary rotation matrices, as an equivalent way

of generating these codebooks. As with the single-user case, we will now

discuss the ergodic performance for limited feedback with random vector

codebooks. To briefly reiterate the system model of a multi-user system in

a simplified form, we can write down the input-output relationship and the

SINR for the ith as follows.

yi = hHi

K∑
j=1

bjsj + zi, i = 1, . . . ,K (4.17)

γi =

P
NT
|hHi bi|2

1 +
∑

i 6=j
P
NT
|hHi bj |2

(4.18)

Note that in the above, equal power is distributed for each of the users.

Since the capacity is directly dependent on the SINR terms, we would require

to analyse the distribution of the variables involved in the equation. Before

doing so, recall in the single-user case, we had chosen beamformers according

to equation (4.2). In a multi-user scenario we do not in fact use MRT

to each user, as the interference from the different users has to be taken

account of. As such the zero-forcing technique discussed in chapter 3 will

be used to determine the beamformers. For zero-forcing beamforming, the

beamformer is dependent on the channel and hence a fixed codebook of

beamformers cannot be used. Instead, the codebooks are used to select the

63



quantized channel directions as opposed to the beamformers. The vectors

in the codebook are still isotropically distributed in a unit norm complex

sphere and techniques such as Grassmanian codebook designs will still hold.

The quantized channel will then be given by:

ĥi = argmaxw∈Fi |w
Hhi|

2
(4.19)

where, Fi is the quantized set of channel vectors for the ith and w is some

vector in this set. Recall further, that in the single-user case we had split

the SNR into two variables namely the magnitude of the channel, and the

dot product of the normalized channel and the optimal beamformer. We can

apply the same split in the multi-user case and rewrite the SINR received

at each user as:

γi =

P
NT
‖hi‖2|h̃Hi bi|2

1 +
∑

i 6=j
P
NT
‖hi‖2|h̃Hi bj |2

(4.20)

The variables we require the distributions in calculating the ergodic ca-

pacity are namely, ‖hi‖2, |h̃Hi bi|2, and |h̃Hi bj |2. The distribution of the

first two variables have been established in section 4.1, where the channel

magnitude follows a Gamma distribution, and the second variable follows a

Beta distribution with expectation given by NB(N, NT
NT−1). As for |h̃Hi bj |2,

the form being similar to the second variable, we would expect it to also

follow a Beta distribution. However, since the beamformer is chosen based

on the nullspace of the quantized channel values of every other user, we

would expect the parameters of the Beta distribution to be different. The

following arguments lead to the distribution of the third variable, which we

will term as the interference due to quantization error.

Recall that the quantized version of the channel vector, hi is denoted ĥi. The

beamformers in zero-forcing, are chosen via channel inversion. In effect chan-

nel inversion asserts the condition that the beamformer for user i are chosen
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in the nullspace of the channel vectors of the other users: bi ∈ Null({ĥj}j 6=i).

Keeping this in mind, we can resolve h̃j (the normalized channel vector) as:

h̃j = α1ĥj + α2sj (4.21)

where sj is orthogonal to the quantized channel direction and α1 and α2 are

scaling factors such that the terms α1ĥj , h̃j and sj geometrically form as a

right angled triangle. The angle between α1ĥj and h̃j can be denoted by θ.

It is easy to see that α1 = |h̃Hj ĥj |, since both the channel variables are of

unit norm. Noting the structure of the right angle triangle, we can work out

α2 from α2
2‖sj‖2 = ‖h̃j‖2 − α2

1‖ĥj‖2. Noting that h̃j and ĥj are unit norm

and using the expression for α1, we can write α2 =
√

1− |h̃Hj ĥj |2 = sin θ.

Now if we consider |h̃Hj bi|2, i 6= j, and substitute the expression for h̃j ,

noting that bi is chosen to be orthogonal to ĥj , we have:

|h̃Hj bi|2 = sin2 θ |sHj bi|2 (4.22)

The distribution of sin θ is the same as that of the quantization error and

is given by the minimum of N , B(NT − 1, 1) distributed random variables

as in section 4.1. Since sj , bj are unit norm vectors in the nullspace of ĥj

of dimension (NT−1), |sHj bj |2 is Beta distributed according to: B(1, NT−2).

Now that the distributions of the various variables within the SINR ex-

pressions are established, these can then be used to generate upper bounds

on the ergodic capacity of the limited feedback system. The performance

measures that are interesting to look at are the bounds on the ergodic ca-

pacity, the rate difference between full CSI and limited CSI and the bit

allocation law required to maintain the multiplexing gains. While the de-

tails of the proofs can be found in [5] the outcomes will be stated in the
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following set of equations. An important set of bounds used on most of

the proofs are the set of bounds on the quantized error, which are given as

follows:

A simple property to note is that Beta random variables are limited to [0, 1],

which means that the quantization error variables can be upper bounded by:

|hHj bi|2 ≤ sin2(θj), ∀j 6= i (4.23)

Using this, the expectation of the log upper bound of the quantization error

can be bounded by:

B + log2 e

NT − 1
≤ EF,H

[
log2

(
sin2(∠ĥj , ĥj)

)]
≤ B

NT − 1
(4.24)

where the expectation is taken over all the possible channel realizations

and codebook sets. B is the number of feedback bits allocated to each

user (assumed to be the same for all users), and 2B = NC codewords exist

in each random vector codebook. The first performance measure we can

analyse is in fact the performance drop in terms of throughput due to the

above quantization error, and this is given by:

4R(P ) ,
1

NT
[RCSI(P )−RLF (P )] (4.25)

where, RCSI(P ) is the throughput from zero-forcing with full CSI and RLF

is from zero-forcing with limited feedback (random vector codebooks). Us-

ing the properties of expectation, Jensen’s equality and the bounds shown

above, it can be shown that the average expected throughput loss due to

quantization is upper bounded as follows:

4R(P ) < log2

(
1 + 2

− B
NT−1P

)
(4.26)

What we can say from this is that the quantized error is a function

the SNR and in order to keep the upper bound on the error constant, we
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would need to manipulate the feedback bits, B according to SNR. The exact

relationship will be shown in discussions that follow. For now the second

performance measure we are interested in is the upper bound on the ergodic

capacity of the limited feedback scheme. This can be shown to be [5]:

RLF (P ) ≤ NT

(
1 +

B + log2 e

NT − 1
+ log2(NT − 2) + log2 e

)
(4.27)

Here we see something interesting in that the upper bound is in fact

not dependent on the SNR and for a fixed number of transmit antennas and

feedback bits we see that the capacity in fact asymptotically approaches this

upper bound as the SNR increases. This reveals an important point that

unlike in single-user MIMO scenarios, the multiplexing gain is in fact not

achieved for high SNR in the case of limited feedback, provided the number

of feedback bits are fixed. In other words the performance saturates. Thus,

we can see the upper bounds on both 4R and RLF come to the same

conclusion that the number of feedback bits has to be a function of SNR in

order for full multiplexing gain to be achieved. To this end, we can simply

compute this relationship between feedback bits and SNR by forcing the

upper bound on 4R to be a constant.

By setting log2

(
1 + 2

− B
NT−1P

)
= log2 b, where log2 b is some maximum

possible rate gap we would have for any SNR value, the expression for feed-

back bits required to maintain the multiplexing gain can then be written

as:

B = (NT − 1) log2 P − (NT − 1) log2(b− 1) (4.28)

Setting log2 b to 3dB simplifies the above expression to the one in equation

(4.29), with PdB being the power in dB scale.

B =
NT − 1

3
PdB bits/mobile (4.29)
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From the analysis above, the implications are that for a fixed number of

transmitters, the throughput in a limited feedback scenario can indeed

achieve the multiplexing gain of a full CSI scenario using zero-forcing and

random vector codebooks. However, the number of bits required scales

linearly (in dB scale) with SNR. When operating at a highly interference

limited SNR regime, the feedback bits required to maintain the multiplexing

gain can be impractical.

Note that for the discussion so far, we have assumed that the set of

users are completely independent and randomly generated. Furthermore,

the number of users in the system is equal to the number of transmit an-

tennas. If we are looking at an urban environment with a large set of users

within the cell range of a base station, intuitively we can choose users based

on feedback information to be orthogonal or semi-orthogonal to one another.

As such, in order to improve the performance of a limited feedback system,

user scheduling or selection algorithms must also be considered. These al-

gorithms will be discussed in section 4.3.

4.3 User Scheduling

Recall in Chapter 3 that the capacity maximization problem for a multi-user

scenario via dirty paper coding was two-fold. Firstly, given a set of users,

the optimal beamforming and power allocation strategy has to be chosen to

maximize capacity. Secondly, this process is repeated over all possible sets

of users to find the “global” (in the sense of the best user-set) maximum

capacity. While the first problem is simplified via ZFBF in limited feedback

scenarios, in most of the analysis so far we have assumed a fixed set of users.

In this section we address the second problem by discussing the recent user

selection algorithms, focusing on the Semi-orthogonal User Scheduling (SUS)

algorithm.
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4.3.1 Semi-Orthogonal User Selection (SUS)

The SUS algorithm can be thought of as a tailor-made algorithm for zero-

forcing beamforming. The main idea of the algorithm is to choose a set of

users that are nearly orthogonal to one another, at the same time having

selected user channels that guarantee a reasonably high receive SNR. Since,

the user channels are nearly orthogonal to one another, this simplifies the

channel inversion procedure used in zero-forcing, by keeping the channel

well conditioned. Furthermore, balancing channel magnitude and directional

feedback information becomes important in ensuring high receive SINR at

the scheduled users. The SUS algorithm based on the material in [41], is

then summarized as follows:

Firstly, the initialization parameters are defined

Ti = {1, . . . ,K}

S = φ

i = 1

Ti is the set of users yet to be scheduled, S is the set of selected users so far

and i is the iteration count.

Secondly, Gram-Schmidt orthogonalization is performed. For each user,

k that is yet to be scheduled, i.e k ∈ Ti, the component of its channel

vector, hk, that is orthogonal to the space spanned by the orthogonalized

versions of the channels of the users previously scheduled is computed. Here,

gk is the component of hk that is orthogonal to the subspace spanned by

(g(1), . . .g(i−1)); the set denotes the orthogonalized channel vectors of the

users scheduled so far and the subscript in parentheses, g(.), denote the
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iteration rather than the user index.

gk = hk −
i−1∑
j=1

hHk g(j)

‖g(j)‖2
g(j)

= hk

(
I−

i−1∑
j=1

gH(j)g(j)

‖g(j)‖2

)
hk = gk,when i = 1

Thirdly, now that gk has been computed for all the users, the process of

chosing the next user is to simply chose the user with the largest ‖g‖. As-

suming π(i) = k is the user selected at the ith iteration, we can then update

the set of scheduled users.

π(i) = arg max
k∈Ti
‖gk‖

S ← S ∪ {π(i)}

h(i) = hπ(i)

g(i) = gπ(i)

The remaining step is to update the set of users yet to be scheduled. Nor-

mally, we can leave the algorithm in the previous step until NT users are

selected. However, the concept of semi-orthogonality introduced in this step

serves to force some amount of orthogonality between the selected users, by

filtering out the remaining users via the following condition.

Ti+1 =

{
k ∈ Ti, k 6= π(i)|

|hHk g(i)|
‖hk‖‖g(i)‖

< ε

}

i← i+ 1
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Adaptation to Limited Feedback

While the above scheduling algorithm is based on full CSIT information, a

similar scheduling algorithm can be performed based on the CQI and CDI

feedback. In the limited feedback case, the first user is chosen based on the

maximum CQI parameter that was fed back. The details of this algorithm

can be seen in Chapter 5.

4.3.2 Other User Selection Algorithms

SUS can be computationally taxing especially with a large number of users.

In this section, we will go through some simplified user selection algorithms.

Channel Magnitude Quantization

As inferred from the title, here only the norm of the channel is used for

selection and orthogonality is ignored. As such the user selection is much

simpler, as the entire Gram-Schmidt procedure is not required, and neither

is the forcing of semi-orthogonality. The algorithm can be summarized as

follows:

The algorithm is initialized by selecting the user with the highest channel

magnitude as follows:

π(1) = arg max
k∈T1
‖hk‖

S = k

The remaining users are selected in a similar process until K = NT users

are selected as follows:

π(i) = arg max
k∈Ti
‖hk‖

S ← S ∪ k

Ti+1 ← Ti/k
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Angle based User Selection

The flipside of magnitude based selection is angular selection (which is ef-

fectively selection based on user CDI). The initialization is similar to the

previous case, i.e. the first user is chosen based on channel magnitude max-

imization. The subsequent users are then selected based on the following

criteria:

π(i) = arg max
k∈Ti

∑
j∈S

θ(hk,hj)

|S|

S ← S ∪ k

Ti+1 ← Ti/k

Recall in the SUS algorithm, the Gramm-Schmidt algorithm was used to

select the orthogonal set of users, here a more simplistic maximum average

angle approach is used.

Random User Selection

Random User Selection (RUS) with RVQ based beamforming would provide

similar results to that discussed in section 4.2 and hence is a useful scheduling

algorithm for comparison purposes.

S = π(1), ...π(K),where π(i) is chosen randomly from T , the set of all users

None of these algorithms perform notably well, as they do not incorpo-

rate both CQI and CDI in their design. With CDI alone, the base station

might be choosing semi-orthogonal users and simplifying the computation

of the channel inverse. However, in such a scenario, the users being selected

may not have good channels and hence the system throughput might suffer.

With CQI alone, the base station will select users with the best channels,

but this would not overcome the performance saturation experienced in lim-

ited feedback if the users are interfering with one another. On the upside,
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these algorithms do simplify the computational time for the base-station to

schedule the users.

4.4 Analog vs Digital Feedback

While this research focuses on Digital Feedback, this section provides a brief

introduction to analog and hybrid feedback methods. The basic result from

RVQ limited feedback was that the throughput saturates with SNR, and

the number of feedback bits have to be scaled with SNR in order to achieve

multiplexing gains. In other words, the design of the codebook depends on

the SNR. In practice however, the SNR is only known to lie in a certain

range i.e. the base station does not have an accurate estimate. Due to

this, performance loss in practical systems will be incurred. Furthermore,

when operating at the interference limited (high SNR) region the number

of feedback bits required to maintain the multiplexing gain are high. This

is also not very practical as it complicates the problem of codebook design

and increases the complexity of the design procedure. The motivation for

digital feedback in wireless communication is the same as in any other field

that incorporates coding - to employ error correction procedures in order

to minimize the effect of noise from the feedback channel. Error-free feed-

back is indeed an assumption that can be relaxed and schemes that take

into account of error and delay in the feedback link are being researched.

However, it is intuitive to state that error-free feedback holds more value in

digital feedback than in analog. Having stated the practical limitations of

the limited feedback schemes, this section will discuss ideas shown in [27]

and compare digital, analog and hybrid feedback schemes.
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4.4.1 Analog Feedback

A popular technique in analog feedback is that users estimate and feedback

their channel vector using orthogonal feedback channels. In order to do

this, the downlink channel coefficients for user k is multiplied by a spread-

ing signal sk known at both the transmitter and receiver. For simplicity the

following analysis considers only AWGN feedback channels (as opposed to

the usual fading channel). A term useful later on for comparing the digital

and analog feedback performance is given by βfb. βfb is known as the band-

width expansion factor. In order to feedback the NT channel coefficients,

each user requires βfbNT channel uses. The received feedback signal at the

base station over βfbNT channel uses from user i can then be written as:

yi =
√
βfbPfb

NT∑
k=1

skhi,k + zi

where the spreading sequences, {sk}NTk=1 (Assuming K = NT users have been

scheduled) are orthonormal, and hi,k represents the channel gain from the

kth antenna in the base station to the ith user. The noise vector instead of

being NT × 1 in a single channel user is now βfbNT × 1. The base station

then performs de-spreading to retrieve the individual streams of channel

information. The effective received CSI from base station antenna k to user

i can then be written as:

ri,m =
√
βfbPfbhi,k + ẑi,m

Recall, in the downlink case, in a multi-user MIMO system, an impor-

tant difference to single-user MIMO is that the receiver antennas cannot

cooperate as they are from different users. In the case of the feedback link,

the base station antennas can cooperate and hence receiver side methods

such as MMSE-SIC are still viable in the estimation of the received infor-

mation. Due to the spreading sequence, the information received does not
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have inter-antenna interference. As such, MMSE estimation is sufficient and

can be employed to reduce the effects of noise when retrieving the CSI.

A theoretical interpretation about the comparison of the upper and lower

rate bounds using analog and digital feedback for ZFDPC was given in [28].

These results also hold for ZF. For analog feedback, the multiplexing gain

is preserved as long as SINR in the feedback link scales as follows:

βfbPfb ∼ a

(
P

N0

)b
For some pre-defined constants, a, b > 0, where a multiplexing gain of NT

is achieved if and only if b ≥ 1. As per usual, without loss of generality,

N0 = 1 can be assumed. An important point of note is that in order to

compare the results of digital feedback with analog feedback, it is required

to relate the feedback bits per user with the feedback SNR and the number of

channel uses in the feedback link, βfb. Assuming the availability of an error

free code, the maximum rate at which feedback bits can be transmitted

is log2(1 + Pfb). A proposed comparison in [28] is that βfbNT channel

uses in analog feedback corresponds to βfb(NT − 1) channel uses in digital

feedback, assuming no feedback bits are required for CQI. As such, the

effective “bits” used in analog feedback is given by B = βfb(NT −1) log2(1+

Pfb). Furthermore, noting that a multiplexing gain of NT is achieved if B

scales as (M − 1) log2(P/N0). The SNR in analog feedback hence needs

to scale with that of digital feedback based on the following condition for

comparison to be valid:

Pfb =

(
P

N0

) 1
βfb − 1

The theoretical result hence shows that when βfb > 1 digital feedback

outperforms analog feedback asymptotically, and full multiplexing gain is

achieved if and only if βfb < 1. Having compared analog and digital feed-

back, there in fact exist methods that accommodate both types of feedback
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for attaining CSI at the transmitter. The next section will go through a

particular “hybrid” feedback scheme.

4.4.2 Hybrid Feedback

The hybrid algorithm [34] is based on quantizing the CSI given a fixed

number of feedback bits. The quantized CSI is then sent through to the

transmitter along with a short error correction code. Along with this, the

quantization error (calculated at the user) is sent via analog feedback. The

steps of the algorithm are then as follows:

Firstly, the channel is quantized using a B bit codebook. While the quan-

tization can be done depending on the scenario, i.e. split between CQI and

CDI and choice of CQI, for simplicity we assume only CDI quantization is

performed and the criteria as before is to choose ĥk = arg max
w∈F
‖w � h̃k‖,

with F being a set of 2B, NT dimensional vectors chosen from a random or

Grassmanain codebook.

Secondly, a unitary transformation is performed on the channel vectors, to

align h̃ to ĥ. Note that this is just an equal phase rotation on each element

of the channel and does not affect the channel direction. The point of this

algorithm is to find the unitary transformation matrix that minimizes the

variance given by:

Φk = arg min
Φ∈UNT

‖h̃kΦ− ĥk‖2

where Φ denotes the unitary rotation matrix and UNT denotes the set of

all NT × NT unitary matrices. The aligned version of the channel can be

denoted by h̃k. Thirdly, following up from the digital feedback, the analog

feedback which is the quantization error can be defined as follows:

Ek = h̃k − ĥk
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Fourthly, the digital information (representing the index of the quantized

channel) is encoded by a short algebraic code e.g. a Reed Muller code, and

the resulting codeword can be denoted by c = (c1, . . . , c2). Finally, each

user transmits Ek and ck via an appropriate split of resources between the

digital and analog feedback (e.g. a split of power or bandwidth between

the two parts to the feedback). The base station then uses a ML decoder

to retrieve the digital information and the analog error is retrieved via a

MMSE estimator as was the case in the previous section.
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Chapter 5

Novel User Scheduling with

Mode Selection

The chapters so far have developed the foundations of the research topic, as

well as outlined some recent developments in literature. The downlink phys-

ical layer operations have been illustrated along with the baseband commu-

nication model and its performance measures. Various transmission designs

have been analysed in the full-CSI case for both single and multiple users.

Zero-forcing beamforming, which balances simplicity of implementation and

performance gains, is implemented in this research. We then proceeded to

examine the effects of limited feedback, again for both single and multi-user

scenarios. The performance losses due to the limited feedback information

was improved by employing user scheduling. Despite this, high SNR multi-

plexing gains were not achieved.

In order to overcome the performance losses of limited feedback, this

chapter considers the concept of mode selection, whereby the base station,

depending on various parameters, decides how many users to select for trans-

mission. The notion of the number of users the base station selects is referred

to as the “mode” of operation. To this end, this chapter explores the main

research area by outlining and analysing the existing schemes in literature.
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Following this, the chapter will describe the system design in section 5.2 and

outline the main operations at the transmitter and receiver in section 5.3.

Section 5.3 onwards, we propose novel improvements and alternatives to the

existing schemes and compare the results via Monte Carlo simulations.

5.1 Introduction to Multi-Mode Scheduling

The prime motivation for enabling the Base Station to select the number of

users is to improve on the saturation in performance experienced in multi-

user transmission schemes, as the transmit power increases. To justify this,

we can refer to the single-user transmission scheme discussed in Chapter

4. Even with limited feedback, single-user schemes see continual increase in

performance as the SNR grows. The limiting factor in the performance in

a multi-user scenario is that due to quantization errors, zero-forcing cannot

completely eliminate interference. As the transmit power increases, both

the signal and interference power also increase, causing the performance to

saturate. An intuitive way to improve on the performance is to switch from

multi-user to single-user mode depending on the transmit SNR (i.e. switch

from transmitting to NT users to 1 user). Unfortunately, the choice between

single and multi-user modes is not that simple and the following will explain

why.

Firstly, the choice of single-user or multi-user essentially depends on the

SNR region where the rate of single-user transmission outperforms the sum-

rate of multi-user transmission. Because the channel varies in time and so

do the selected users, the SNR region where the mode of operation switches

would also vary in each channel use. Therefore, the choice of single or multi-

mode transmission depends not only on the transmit power, but also the

channels of all the users, the quantized channels and the beamformers, all of

which make up the received SINR of each user. Not all of these parameters

are readily available at each user and hence approximations have to be made
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on the rates of single and multi-mode transmission before this information

is fed back to the base station.

Secondly, we can also utilize this concept of switching modes of operation

when we are transmitting to multiple users. Majority of the scheduling algo-

rithms focus on selecting as many users as possible, limited by the number

of transmit antennas. However, it is arguable that depending on channel

conditions it may not be optimal to always transmit to NT users where

multi-mode transmission is preferred. Hence, we can expand the problem of

choosing between 1 and NT users to a general problem of “How many users

should the base station select?”.

5.1.1 Existing Schemes

This subsection will give an overview of some of the more prominent multi-

mode scheduling schemes in literature.

Mode Selection with Opportunistic Beamforming

Mode selection is a fairly recent topic of research and one of the initial

methods proposed was by [51]. In this work, opportunistic beamforming was

used, where both the base station and all the users have a single common

orthonormal codebook. Each user chooses the codeword that is most closely

aligned to the channel direction, as its beamformer. The scheduled users

would have to have unique codewords so as to reduce interference, so only

one user, out of all the users that chose the same codeword, can be selected.

A further improvements c ation was added, namely the number of codewords

equals the number of antennas at the Base Station.

Each user firstly selects its preferred beamformer from the codebook, and

estimates its SINR. The added stipulation in [51] that NC = NT is used to

approximate the SINR for each mode of operation via a linear approximation

on the SINR when NT users (mode NT ) are scheduled. What the authors
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had deduced from the SINR approximations was that, it was sufficient to

transmit to either 1 user or NT users. Each user then selects whether it

prefers single or multi-user mode (K = NT ) and sends this information

along with its preferred beamformer, and its SINR to the base station.

The base station uses the feedback information to select either 1 or NT

users to transmit to. In the case of single-user transmission, the base station

chooses the user with the highest receive SNR amongst the users that had

preferred single-user transmission. For NT users, the base station chooses

the users by selecting the best user (based on SINR feedback) from each

group of users pertaining to a codeword. This is repeated for all the code-

words, after which NT users will be selected, one for each beamformer.

Depending on the channel conditions and SINR, what we will see is that, on

an average, as the SNR increases, the system will transition from multi-user

transmission to single-user transmission, hence overcoming the saturation

in performance.

The problem with this scheme is that it depends on opportunistic beam-

forming and NT = NC . Opportunistic beamforming is not always the best

choice for beamformers. Zero-forcing performs better in the interference

limited region (mid to high SNR). Furthermore, zero-forcing can perform

as well as opportunistic beamforming in lower SNR regions by the use of

regularization and water-filling. In order to improve on the scheme, firstly,

we need to expand this design to ZFBF. Secondly, with ZFBF and random

vector codebooks, each user will now have an independently generated code-

book. This will allow for NC > NT , i.e increase in resolution of the feedback

information. Thirdly, to make the scheme holistic, the limitation of trans-

mitting to 1 or NT users can be lifted by allowing any mode (1, 2, . . . , NT )

to be chosen by the base station.
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Mode Selection with ZFBF

The work in [9] considered the mentioned improvements and focused on ad-

vancing multi-mode transmission in order to utilize ZFBF. To this end, a

ZFBF-based rate approximation method was derived for each user. Along

with ZFBF, [9] incorporated RVQ for its codebooks, and did not limit the

feedback to NT = NC . The increased feedback resolution and RVQ came

with the trade-off that the rate approximations no longer have information

on the choice of beamformers as the codebooks are random and indepen-

dently generated at each user. The scheme however took a step back in

terms of user scheduling. The base station used round robin scheduling

which has essentially the same ergodic sum-rate as random user selection.

Furthermore, in order to select the overall mode at the base station, the

users do not send back their preferred mode of operation as in the previ-

ous scheme. Instead, they feedback the rate approximations of all possible

modes of operation. The base station then uses this information and de-

termines the best users and the overall mode to transmit at. The problem

however, is that the feedback load is high if we apply the design to a practical

scenario, where CQI (the rate approximations) would have to be quantized,

or utilize extra resources in the case of analog transmission. [13] took this

issue into consideration and developed a closed form expression for the rate

approximation that each user can use to determine its preferred mode. This

way, each user does not have to feedback multiple rate approximations to

the base station. Furthermore, a novel scheduling scheme was designed such

that only the selected users would need to feedback CDI information. While

[13] outperformed the previously mentioned schemes, further improvements

can be made. To this end, this research aims to analyse and improve on the

two main aspects of the multi-mode scheduling scheme, namely the mode

selection process at the base station and the rate approximation at the user.
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5.2 Multi-Mode Scheduling Model

Figure 5.1: Block Diagram of the Multi-Mode Scheduling Process

In Multi-Mode scheduling, each user attempts to approximate the sum-

rate by utilizing the information known to it. This is by no means as ac-

curate as the sum-rate calculated at the base station, as the user does not

know which users are co-scheduled or their channel coefficients. Each user,

however, can approximate the inter user interference by utilizing the chan-

nel statistics (in our case we have a Rayleigh channel with AWGN noise)

and by knowing the scheduling process at the base station. This can be

done for a single user scenario, or when there is one co-scheduled user, two

co-scheduled users and so on. In other words, the user approximates the

sum-rate for each posisble mode of operation. The reason for doing this is

that, the user can then work out which mode of operation (or assumed num-

ber of scheduled users) produces the highest approximated sum-rate. This

information can then be fed back to the base station, where computations

are made to compare the preferred modes provided by each user in order to

make an informed decision on how many users to schedule. For example, in

the event that interference is a big issue, it is likely that most of the users

would prefer lower modes of operations (one or two users). This would hint

83



to the base station that it should transmit to either one or two users, and

by doing so, throughput can be improved when compared to transmitting

to several users, since the channel is interference limited. The details of the

operations performed at the base station and users are provided in Section

5.3.

Fig. 5.1 illustrates the multi-mode scheduling scheme used in our re-

search. Each user first estimates its own channel and quantizes it using a

pre-designed vector codebook. The codebook index that has been selected

would be converted to binary and this is the Channel Directional Informa-

tion (CDI). The codeword vector itself is used for rate approximation, where

the user approximates the sum-rate for each possible mode of operation. The

user then compares these rates and selects the mode corresponding to the

best sum-rate approximation as its preferred mode of operation. Along with

the CDI and preferred mode, the user also sends a Channel Quality Indica-

tor (CQI) back to the base station. CQI can typically be channel magnitude

or SINR or the Rate approximation itself and the choice of CQI depends on

the scenario.

The base station, which has its own copy of each user’s codebook, ac-

cumulates the feedback information from all the users and retrieves the

quantized channel vector using the CDI. The feedback information can then

be used for mode selection, where the base station decides the overall mode

of operation. The overall mode (m∗ along with the feedback information is

then used for scheduling and beamforming.

Majority of the processes in the above system model have been discussed

and built up in the previous chapters. Omitting the Rate approximation and

Mode selection, the above design is simply that of a limited feedback MU-

MIMO Channel with user scheduling. As a recap, the following will give the
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details of the various stages in a limited feedback ZFBF scheme.

Channel Estimate: Each user approximates the block fading channel vec-

tors at each channel use. Estimation error is not considered in this model

and hence we assume the user knows the exact channel coefficients.

Codebook Generation: Each user has randomly and independently gen-

erated codebook, Ck = {c1, . . . , cNC}. Each vector ci is chosen from a

unit-norm NT dimensional complex unit sphere.

CDI Quantization is done via choosing the codeword that is most closely

aligned to the channel vector. The index of this codebook vector is then fed

back to the base station in the uplink channel. Assuming that each user uses

B feedback bits for quantization of channel direction, then NC = 2B is the

total number of codewords per user. The criteria for choosing the quantized

channel vector is given by

ĥk = arg max
ci∈Ck

|hHk ci|2

‖hk‖22
, i = 1, . . . , NC (5.1)

The CDI information is the index, i, of the codeword that attains this max-

imum.

Feedback Channel: The user sends feedback information through the up-

link(feedback) channel, which is assumed to have no delay and no error.

Furthermore, while CDI is quantized, CQI information and mk, the pre-

ferred mode of a given user k, are assumed to be perfectly known at the

base station.

Base Station Operations: The user scheduling process somewhat de-

pends on the mode selection and will be discussed further in the chapter.

Beamforming however is done using zero-forcing on the quantized channel
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directions. At the transmitter, the set of unit norm beamforming vectors,

B = [b1, . . . ,bK ] can be evaluated as follows.

[b̂1, . . . , b̂K ] = Ĥ(ĤHĤ)−1

B = [b1, . . . ,bK ] =

[
b̂1

‖b̂1‖2
, . . . ,

b̂K

‖b̂K‖2

]
(5.2)

Where, Ĥ is the matrix consisting of the quantized channel vectors of the

scheduled users in its columns.

Performance Measure: For a given set of scheduled users, the perfor-

mance of the system can then be evaluated via its sum-rate. Assuming the

total power available at the transmitter is P and equal power is distributed

amongst the scheduled users, the received Signal to Interference plus Noise

Ratio (SINR) at user k (with unit noise variance) is given as follows.

γk =
P
K ‖hk‖

2
2|h̃Hk bk|2

1 + P
K

∑
j∈S,j 6=k ‖hk‖

2
2|h̃Hk bj |2

(5.3)

where h̃k = hk/‖hk‖2, S is the set of scheduled users and K = |S|. The

achievable sum-rate for a limited-feedback zero-forcing scheme is then:

CLF−ZFBF =
∑
k∈S

log2 (1 + γk) (5.4)

This is the performance measure utilized in analysing how well the ideas

and designs presented in this chapter fair in comparison to one another

and the existing schemes, via Monte Carlo simulations. In addition to the

standard design of the limited feedback ZFBF based broadcast channel, we

have mode selection/scheduling at the base station and rate approximation

at the user. If we look at the performance of the system, there are two

things that need to be optimized to achieve the maximum sum-rate for a

given set of users; namely the number of users, K, and the set of scheduled

users, S. As the number of users grow relatively large, optimizing the sum-

rate becomes non-trivial. To this end, we aim to simplify this problem by
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compounding scheduling schemes proposed in literature, and by deriving

novel rate approximations that each user can utilize to provide information

to the base station on its preferred mode as well as its channel quality.

5.3 Multi-Mode User Scheduling

Mode based scheduling schemes in literature are somewhat different com-

pared to classical scheduling schemes. The preferred mode of the kth user,

mk, adds an additional parameter to consider in the scheduling process. The

advantage of mode based scheduling algorithms is that they group the users

depending on their preferred modes. This is evident in [51] where the base

station treats the users that preferred mode 1 and mode NT separately in

the scheduling process, for example if the base station decides to transmit to

multiple users, the users corresponding to mode 1 are not even considered

in the scheduling. While mode selection schemes primarily aim to improve

performance, they also simplify the scheduling process compared to popular

scheduling schemes like Semi-orthogonal User Scheduling (SUS), by reduc-

ing the feedback load of the system. The user scheduling process we utilize

in the preliminary simulations is adapted from [13], which expanded the

user grouping process in [51] for the ZFBF based Multi-Mode transmission

scheme proposed in [48]. In this section, the Multi-mode User Scheduling

process is described, and analysis is performed on the validity of the scheme

and assumptions used in [13].

The user scheduling process in [13] has two stages. Firstly, each user

approximates its SINR as well as its preferred mode of transmission and

sends this information to the base station. As mentioned earlier, we assume

that no quantization is performed on the SINR (CQI) and preferred mode,

and these are fed back without error and delay. The base station groups

the users according to their preferred modes and chooses the mode with the

best performance based on the SINR feedback from the users within the
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mode. Secondly, supposing mode K has the best performance, the K users

that have the highest SINR within the group send their quantized channel

directions to the base station for ZFBF. The operations performed at the

transmitter and receivers can be summarized in the following subsections.

5.3.1 Operations at the Receiver

Firstly, the user has to approximate its rate. In fact, one of the most im-

portant aspects of the given design is the rate approximation, as the entire

mode selection procedure depends on the accuracy of this approximation.

While sections 5.4 and 5.6 provide the derivation and comparisons of the rate

approximations, the following describes the mode selection process. The es-

timated capacity by each user is a function of P , hk, ĥk and K i.e. the

parameters known at the user. The unknown parameters in γk have to be

approximated. Since hk and ĥk are common in every mode, the preferred

mode of user k from [13] is written as:

mk = arg max
1≤K≤NT

KC̃k(P/K) (5.5)

C̃k(P/K) is the approximate rate of the user k at mode K. Since user k has

no means to retrieve the channel information or SINR of the other users in

the system, [13] has adopted a scheme where user k assumes that the other

K − 1 users have the same approximate rate. In an ergodic sense it can be

shown via simulations that the above approximation is almost as accurate

as the actual ergodic capacity when selecting K users randomly. However,

it is intuitive that the above approximation can be quite far from the actual

sum-rate at a particular channel instantiation. It is also intuitive to argue

that instead of replicating its own rate K times to estimate the sum-rate, a

scheme that uses an expected rate for the interfering users would perform at

least as well as the above criterion. Hence, we propose the following mode
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choice for user k:

C̀k(P/K) =

 C̃k(P ) if K = 1;

C̃k(P/K) + (K − 1)E[C̃(P/K)] if K > 1.

mk = arg max
1≤K≤NT

C̀k(P/K) (5.6)

Regardless of the mode selection criteria used, the user feeds back, mk

and C̃k(P/K) to the base station for processing. After the base station

selects the best mode and the K users that correspond to that mode, each

user in S feeds back its quantized channel direction, h̃k.

5.3.2 Operations at the Transmitter

The transmitter groups the set of received modes, mk, into sets denoted

Gm = {k ∈ M | mk = m}. Let M denote the total number of users. The

best transmission mode is then chosen via the following expression:

m∗ = arg max
1≤m≤NT

∑
k∈Sm

C̀k(P/m) (5.7)

Sm can be recursively defined as:

Sm = φ

Sm ←
{

arg max
k∈Gm/Sm

C̀k(P/m)

}
∪ Sm, while |Sm| < m

The scheduled set of users can then be denoted as S = Sm∗ . In [13], it was

argued that it is better to select mode m for users in Gm as opposed to any

other mode, m′ 6= m. However, it was not shown that choosing mode m

provides the best performance (based on the given rate approximations) iff

all users are from Gm. In fact, it can be shown that there are cases when

users from Gm′ , m′ 6= m perform better than m∗ = m. Fig. 5.2 plots the

rate approximations under different values of K (Mode) and Z (accuracy

of quantization) for different received power P‖hk‖22. The square pointers

refer to the rate approximations made by users 1,2 and 3 at mode 2. The
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Figure 5.2: Scenario illustrating sub-optimality in the user selection

blue curves represent rate approximations for mode 1 and red curves for

mode 2. From the plots it is clear that User 1 ∈ G1 and User 2, 3 ∈ G2. We

assume the users in question have the highest rate approximations in their

respective modes. The black stem shows the max sum-rate approximation

for mode 1 and magenta for mode 2. The sum-rate for mode 2 being higher

than mode 1 is hence chosen. Note however, if we instead transmit to User

1 and User 3, we would have a sum-rate that outperforms the proposed

scheme.

Clearly, the user grouping procedure can be improved. However, the

idea behind keeping the user groups independent in the scheduling process

is twofold. Firstly, the feedback information is scaled differently in each

mode, and hence the base station cannot directly compare the rate approx-

imations across different user groups. Secondly, if the base station does

have this information, the optimal set of users can only be found via try-

ing all combinations of users. Although grouping users is sub-optimal, it
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does perform better than random selection proposed in previous works [52]

and requires less feedback bits when compared to semi-orthogonal schedul-

ing(SUS) methods [4], while providing some performance gains via multi-

mode selection.

5.4 Proposed Rate Approximation

Rate approximation plays a vital role in multi-mode scheduling as it gives

each user an idea of how many other users can be co-scheduled. The accuracy

of the rate approximation not only affects the effective mode that the base

station chooses but also determines the users that lie within each mode.

Different rate approximations will in general not contain the same users

in Gm. In the end, the actual performance of the system at a given time is

determined solely on S and m∗. Since each user will neither have the channel

information of the co-scheduled users, nor can it predict which users will be

co-scheduled, an accurate estimate of the rate at each time instance is not

possible. It is however, possible to evaluate the expected interference within

each user’s SINR. We start off by reformulating γk. Firstly we note that h̃k

can be decomposed as:

h̃k =
√
Zĥk +

√
1− Zsk (5.8)

where Z = |h̃Hk ĥk|2, sk is unit norm and orthogonal to ĥk. If we take

the dot product of equation (5.8) with bk and take the magnitude squared,

owing to the fact that (1− Z)|skbk|2 > 0, we can state the following lower

bound - |h̃Hk bk|2 ≥ Z|ĥHk bk|2. Furthermore, since bj is orthogonal to ĥk for

j 6= k, j ∈ S, we can also state the following |h̃Hk bj |2 = (1−Z)|sHk bj |2, j 6= k.

We can then form a lower bound on the SINR given by:

γk ≥
ZX

K
Pa + (1− Z)

∑
j∈S,j 6=k Yj

= γ̂k
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where, ‖hHk ‖ = a, |ĥHk bk|2 = X, and |sHk bj |2 = Yj . Yj are i.i.d. [5], and

we can set Y1 = Y2 = ... = Y . Before proceeding, we will discuss certain

prerequisites for formulating the rate approximation.

5.4.1 Distribution Of Parameters

In [13, 5, 9] it is shown that each of the variables are distributed as follows,

assuming that the channel elements are circular symmetric complex Gaus-

sian:

X ∼ B(NT −K + 1,K − 1)

Y ∼ B(1, NT − 2)

Z : FZ(z) = (1 − (1 − z)NT−1)2B (Also the minimum of 2B, B(1, NT − 1)

distributed random variables

a ∼ Γ(NT , σ
2) σ2 is the variance of the channel coefficients

Here, B(α, β) corresponds to the beta distribution, Γ(k, σ2) corresponds to

the gamma distribution, and FZ(z) is the cumulative distribution function

(CDF) of the random variable Z.

5.4.2 Convexity Analysis

Essentially, we now have the lower bound of the SINR to be a function of

a,X,Y and Z.

γ̂k = fk(a,X, Y, Z)

We can split up the above parameters based on whether or not they are

known at the user. For the parameters unknown to the user it is intuitive

to take their expectation in order to approximate the SINR. To this end,

Z and a are known to the user, whereas X and Y , which depend on the

beamformers, are not. However, the sum-rate approximation performed at

each user also depends on the channel details of the co-scheduled users, and

this is not available. A solution proposed in [13], was to simply assume
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the co-scheduled users have the same rate as the user in question. We

propose a more intuitive solution whereby, we take the expectation over

all four parameters when computing the rates of the co-scheduled users.

While the differences between the two solutions will be highlighted again

when formulating the rate approximations, the main reasoning to perform

convexity analysis on the variables is that the joint distributions required

to compute the mentioned expectations are not trivial to formulate. With

convexity, Jensen’s inequality can be utilized while maintaining the lower

bound to drag the expectations within the function. i.e EX [fk(X,Y, Z)] ≥

fk(EX [X], Y, Z) if fk is convex in X. Another underlying assumption is that

the parameters are independent in order to split up the joint expectation.

This will be discussed in the next subsection.

Convexity in Y

Convexity in Y is simple to address due to the well known fact that log (1 + 1/x)

is convex. Now if we look at fk(Y ;X,Z), it is of the form:

f(Y ) =
α1

α2 + α3Y
, α1, α2, α3 > 0

C(Y ) = log2(1 + f(Y ))

Since all the constants are greater than 0, the above operation is simply

a scaling and a shifting operation of log (1 + 1/x) and hence C(Y ) is convex.

As an example setting αi = 0.5, i = 1, 2, 3 fig. 5.3 plots C(Y ).

Convexity in Z

Convexity in Z is similar to the above, however there are extra conditions to

be enforced before convexity can be proved. As such, the second deravitive

approach is used here.

f(Z) =
α1Z

α2 + α3(1− Z)
, α1, α2, α3 > 0
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Figure 5.3: Convexity in Y

First we note that the above can be rewritten as:

f(Z) =
α1Z

α4 − Z
, α1 > 0, α4 > 1, 1 ≥ Z ≥ 0

C(Z) = log2(1 + f(Z))

d

dx
C(x) =

α1α2

(α2 − x)2(1 + α1
α2−x)

=
α1α2

(α2 − x)2 + α1(α2 − x)

d2

dx2
C(x) =

α1α2

((α2 − x)2 + α1(α2 − x))2
(2(α2 − x) + α1)

≥ 0

The last inequality comes from the fact that α2 ≥ 1 ≥ x and α2, α1, x > 0.

This implies that C(Z) is convex as well. Again, if desired, the above can

be verified via simulations.
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Convexity in a and X

f(.) is a non-convex function of a and X. Noting that log(1 + x) is not

convex, we see that f(X) = a1X, for a1 > 0 and f(a) = b1
b2/a+b3

, for

b1, b2, b3 ≥ 0. Clearly log(1 + f(X)) is non-convex. log(1 + f(a)) would

be non-convex for all a if b3 = 0; a quick check by double differentiating

log(1 + f(a)) would show that this not always convex when b3 > 0 . Since a

can take any value in [0,∞], Jensen’s inequality will fail at certain regions

depending on the coefficients.

It is however important to note that log(1 + f(a)) is a convex function

of 1
a , by the same arguments used in proving the convexity in Y . So for

future reference, instead of taking Ea(log(1 + f(a))) we can instead perform

E 1
a
(log(1 +f( 1

a))) ≥ log(1 +f(E 1
a
[ 1
a ])) in order to maintain the lower bound

on the rate-approximation.

5.4.3 Independence Analysis

As mentioned earlier, we can use convexity to simplify a lot of the derivations

while maintaining a lower bound on the rate approximation. This however

depends on an important assumption that X, Y , Z and a are mutually

independent. It is easy to argue that a is independent of the other three

simply because a refers to the channel magnitude while the other terms

depend on the quantized channel directions and the beamformers which do

not utilize the channel magnitude.

It is also arguable that Z is independent of X. Z corresponds to the

quantization error of the channel. X is simply the dot product of two vectors

that are independent of the original channel, and hence are also independent

of the quantization error. Y is the dot product of the channel of the user and

the beamformers of the other users and it is hard to picture intuitively the

independence or the dependence of Z and Y . While a decrease in quanti-

zation error decreases teh magnitude of the interference terms in the SINR,
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Figure 5.4: Demonstrating Independence property of X, Y and Z

this is taken care of by the (1−Z) term in the expression. In order to prove

independence we have to show the following.

p(X,Y, Z) = p(X|Y,Z)f(Y |Z)f(Z) = p(X)p(Y )p(Z)

p(.) represents the joint pdf of X,Y, Z

It is not trivial however to work out the joint distributions of X,Y and Z

and we cannot directly show independence, therefore when using indepen-

dence in the proof we use it solely as an assumption to simplify the proof. In

order to give an idea if the variables could possibly be independent is by us-

ing a property of independence. In other words we are testing by simulation

of the following holds:

E[XY Z] = EZ [Z]EX [X]EY [Y ]

Figure 5.4 simulates X, Y and Z by performing ZFBF and channel

quantization over randomly selected users. The blue stems correspond to
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the individual expectations of X, Y and Z. The red stem corresponds to

the product of these expectations and the green stem correspond to the

expectation of the product of X, Y and Z. As we note, the green and red

stems are equal.

5.4.4 Rate Approximation Formulation

Here our proposed rate approximations are derived. The problem with the

rate approximation proposed in [13] was that firstly, while they mentioned

it was closed form, upon careful analysis the solution contained a hyper-

geometric function, which is essentially an infinite sum. Furthermore, the

sum did not converge under certain scenarios, even so it was not simplified

for the cases where it does converge. As such we derive an alternative closed

form expression that can be verified to be accurate via using the integral

function in MATLAB.

Mode 1

In the case of a single-user scenario, the SINR can be written as:

γ = P‖h‖2|h̃Hb|2

C̃k(1) = log2(1 + γ)

Notice that the SINR is a function of the channel vector, and the beam-

former is based solely on the user’s channel as there are no interferers. This

means that there is no approximation needed, assuming the user knows the

transmission scheme being used (maximum ratio transmission in this case).

Mode K

When approximating the sum-rate of 1 < K ≤ NT co-scheduled users, we

need to work out the rate of the user as well as the co-scheduled users. The
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rate of the user k can be approximated as follows.

E [log2(1 + γk)] ≥ EX,Y [log2 (1 + γ̂k(X,Y ))]

≥ EX [log2 (1 + γ̂k (X,EY [Y ]))]

= C̃k(K)

It should be noted that the above expression is an approximate lower

bound. We used the discussions from earlier that the above expression is a

convex function of Y and therefore maintained the lower bound and simpli-

fying the expression via Jensen’s inequality. Furthermore, it was assumed

that X and Y are independent. The closed form expression for the rate

approximation can then be given by:

C̃k(P,K; δk) =
Γ(NT )

Γ(NT −K + 1)Γ(K − 1)

K−2∑
i=0

(
K − 2

i

)
(−1)i

NT −K + i+ 1

{[
1− (−1)NT−K+i+1

δk
NT−K+i+1

]
log(1 + δk)

+

NT−K+i+1∑
l=1

(−1)l

(NT −K + i− l + 2)δk
l−1

}
× 1

log(2)

(5.9)

where Γ(.) is the gamma function, and δk is given by:

δk =
Z

K
Pa + (K − 1)(1− Z)EY [Y ]

A brief account of the derivation is given below:

C̃k(P/K) =

∫ 1

0
log2(1 + δkx)fX(x)dx (5.10)

The probability density function (pdf) of X can then be substituted in the

above equation to form:

C̃k(P/K) = A

∫ 1

0
log2(1 + δkx)xNT−K(1− x)K−2dx (5.11)

where A is a constant dependent on NT and K. In order to simplify the

integral, a binomial expansion can be performed on (1 − x)K−2. Having
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done so, the integral simplifies to a sum of several integrals of the form:∫ 1

0
log(a+ bx)xmdx =

1

m+ 1

[
xm+1 − (−a)m+1

bm+1

]
×

log(a+ bx) +
1

m+ 1

m+1∑
l=1

(−1)lxm−l+2al−1

(m− l + 2)bl−1

(5.12)

The above involves the substitution ey = a + bx, as well as integration by

parts and a binomial expansion. Equations (5.10) (5.11), and (5.12) can

be used in conjunction to form equation (5.9). Recall in equation (5.6),

we proposed an alternative sum-rate expression that used an expected es-

timate for the rate of the interfering users. Unfortunately, the closed form

expression for Ea,Z [C̃k(P,K; δk)] is complicated to evaluate and might be in-

tractable. To this end, we use convexity again to our advantage to maintain

the lower bound and find a simpler expression for the co-scheduled users.

To be explicit, we can define the user rate by the following function:

fk(a,X, Y, Z) = log2

(
1 +

ZX
K
Pa + (1− Z)

∑
j∈S,j 6=k Yj

)
(5.13)

We had already described that fk(a,X, Y, Z) is convex in Y . Through con-

vexity tests, e.g. double derivative test, it can be shown that fk(.) is also

convex in Z, and concave in a (but convex in 1/a). This means that for the

interfering terms, have an expression similar to (5.9) , except instead of δk,

we use δj :

δj =
EZ [Z]

K
P E 1

a
[ 1
a ] + (K − 1) (1− EZ [Z])EY [Y ]

E(Y ) =
1

NT − 1

E(1/a) = 1/(NT − 1)

E(Z) = 1−
NC∑
i=0

(
NC
i

)
(−1)i

i(NT − 1) + 1

The approximated sum-rate at user k used for mode selection can then be

given by:

mk = arg max
1≤K≤NT

C̃k(P,K; δk) + (K − 1)C̃k(P,K; δj) (5.14)
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For future reference, the corrected version of the rate approximation pro-

posed in [13] is given by:

RA1 : arg max
1≤K≤NT

KC̃k(P,K; δk)

and the proposed rate approximation is given by:

RA2 : arg max
1≤K≤NT

C̃k(P,K; δk) + (K − 1)C̃k(P,K; δj)

Fig. 5.5 compares the ergodic sum-rate (via simulations) with the two rate

approximations for the case when K = 4. We will note that as expected,

both of the rate approximations are lower bounds and in fact the gap be-

tween RA1 and RA2 is relatively small. RA1 is labelled as biased, as the

interference terms in the approximation are based on the user’s channel at

a particular symbol period. RA2 is labelled as unbiased, as the interference

terms are calculated using the ergodic channel statistics and are not biased

to any particular user.
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Figure 5.5: Ergodic Sum-Rate of Random Scheduling (Blue) vs Biased Rate

Approximation, RA1 (Red) vs Unbiased Rate Approximation RA2

5.5 Preliminary Simulations and Analysis

Most of the following simulations compare the mode selection strategies

used in equation (5.5) vs that in equation (5.6). The simulations are done

over the range of powers -10 to 50 dB, and are repeated for 1000 iterations

for each power level. The simulation in Fig. 5.6 shows the achieved sum-

rate on average for the two different schemes which we will denote Rate

Approximation 1 (RA1), equation (5.5), and Rate Approximation 2 (RA2),

equation (5.6). Fig. 5.7 shows the modes that have been selected on average

at each power level; NT = 4, M = 25. The solid curves correspond to 4

feedback bits, and the dashed curves correspond to 15 feedback bits.

For the 4 bit case, we can see that RA2 outperforms RA1 at all SNR
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Figure 5.6: Sum-rate of RA1 vs RA2

Figure 5.7: Average mode selected in RA1 and RA2
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levels. On the other hand, for 15 bits, while RA2 performs well at a certain

range, RA1 briefly outperforms RA2 at high SNR. One major discrepancy

with respect to intuition is that the 15 bit curves should in theory outperform

the 4 bit curves simply because of the improved quantization. Whereas at

around 40-50dB we see that the 4 bit curves in fact perform better. The

reason for the difference in the simulation can be partly explained at follows.

If we look at Fig. 5.7, we note that at the 40-50dB range, the 15 bit curves

are transitioning from modes 2 and 3 down to a lower mode. In the 4 bit

case, the transition to mode 1, which is optimal at high SNR, has already

been made.

5.5.1 Varying the Number of Users

Figure 5.8: Sum-rate of RA1 vs RA2 for 10 and 100 users

Here, we study the effects of varying the number of users in the system.

In Fig. 5.8, the solid curves represent the sum-rate under different values

of M and B for RA1. The dashed curves repeat the same simulations for
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RA2. It is apparent that, except in the black curves and parts of the ma-

genta curve, RA2 outperforms RA1. The black curves correspond to the

case where B=15, M=100. In other words, when there is a large number

of users and high resolution of feedback. In such a case, RA1 outperforms

RA2 substantially. The reasoning behind this is as follows. With a large

number of users, multi-user diversity gains come into play. With the choice

of more users, there is a higher likelihood of finding users that fit in higher

modes of operation. With a higher resolution of feedback zero-forcing can be

done more accurately, and hence the system is able to support more users.

In other words, this improves multiplexing gains. With higher multiplexing

and diversity gains, they system is expected to prefer higher modes of trans-

mission for the given SNR values. Recalling that although RA2 provides a

more unbiased rate approximation, it is essentially a lower bound compared

to RA1, and hence would prefer lower modes of operation. As such, it is

not surprising that RA1 performs better in a scenario where higher modes

of operation are preferred. Therefore, we can conclude from the above ob-

servation that RA2 performs better than RA1 in a scenario where there is a

small-medium number of users and a low resolution of feedback, in the case

where the transmitter has four antennas. Furthermore, we also note that

when the number of feedback bits is low, increasing the number of users

does not have as much of an effect as if the number of feedback bits is high.

5.5.2 Mean Square Error using Rate Approximation

This section aims to explain the observation that RA2 performs better than

RA1 in scenarios involving few feedback bits and a small to moderate number

of users. Recall, RA1 approximates the rate of user k and assumes the rate

of the co-scheduled users is the same. More often than not the assumption

will not hold and will underestimate or overestimate the actual rate. Hence,

by intuition we would expect the mean squared error between RA1 and the
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actual rate to be significant. On the other hand, RA2 is a lower bound

to RA1, which means that its rate approximation on average is worse than

RA1. However, this is outweighed by the way RA2 is constructed. In RA2

the rate of the co-scheduled users follows an average approximation, causing

it to be less biased than RA1. Therefore, while RA2 might expect a larger

deviation from the actual sum-rate because it is a lower bound to RA1, this

is outweighed by its more stable approximation. In order to validate the

Figure 5.9: Mean squared error

above intuition, Fig. 5.9, plots the average error experienced between each

of the rate approximations and the actual sum-rate. The above is plotted

for B = 4 and M = 25, operating at mode 2. For the given scenario, RA2

has less error on average than RA1.

In the cases involving large number of users and high feedback resolu-

tion, the base station would prefer to operate at higher modes of operation.

With more co-scheduled users, the average rate-gap between RA1 and RA2

grows larger. Hence, the stability of the approximation in RA2 is unable

to offset the error caused from being a lower bound to RA1. A potential

improvement would then to exploit the properties of RA1 and RA2. Firstly,

noting that the above scheme does not assume a QoS requirement at the

user, it is not necessary to stick to lower bounds, and hence some of the

convexity assumptions in the derivations can be relaxed. Furthermore, the
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rate approximations are constructed without the use of scheduling knowl-

edge. With user scheduling, we would expect the sum-rate to be higher than

with random selection. Considering this, it may actually be more useful to

incorporate upper bounds on the rate approximations instead.

5.6 Proposed Multi-Mode Scheduling with SUS

We left the previous section with the idea that we need not restrict our-

selves to a lower bound when computing the rate approximations. What

this means is that we can relax some of the convexity properties and even

possibly attempt to establish a more accurate rate approximation via higher

order integrals. While these may improve the performance slightly in an

ergodic sense, in the end, tweaking the rate approximation to match the

actual ergodic sum-rate neglects a bigger problem that inhibits substantial

improvement in performance. The reason for this restraint is as follows.

Recall when we discussed scheduling in chapter [Ch 4], we established that

in literature the scheduling algorithms that seen most improvement in per-

formance incorporate both the CQI feedback, as selecting users with higher

CQI would mean that they would attain higher receive power, and CDI feed-

back, as knowledge of direction means we can attempt to avoid users that

have channels aligned to one another as this would produce interference.

What we note however, is that the multi-mode scheduling algorithms seen

in literature incorporate only CQI when attempting to schedule the users

and use CDI purely for zero-forcing. As such, this section proposes a novel

scheme to incorporate mode selection with a modified Semi-orthogonal User

Scheduling (SUS) utilizing limited feedback, thus hopefully achieving the

best of both schemes.
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5.6.1 Incorporating SUS at the Base Station

The mode selection procedure is done as per the norm by the base station.

The base station has knowledge of each user’s preferred mode (mk), the

CQI (C̃k(P/K)), and the CDI (ĥk). The base station then computes m∗.

Now instead of selecting the m∗ best users from Gm∗ based on their CQI, we

perform SUS on all the users within Gm∗ to select as many users as possible

that are semi-orthogonal to one another, up to m∗ users. Once m∗ and its

corresponding group of users are established by the base station the SUS

algorithm can then be performed as follows.

Let π(i) denote the index of the user selected at the ith iteration of

the algorithm (also known as permutation).ω(.) is the CQI(in our case the

rate approximation C̃k(P/K) ) used in the algorithm and is usually the

function of the channel. Ti is the set of users available for scheduling at

the ith iteration. ε is a tuning parameter used to determine the tightness

of the semi-orthogonality between the users; in other words it restricts how

aligned the user channels can be. Supposing there is a total of M users in

the system and we require to choose up to m∗ users, we can then formulate

the algorithm as shown.

Initialization:

T1 = Gm∗

π(1) = arg max
k∈T1

ω(hk)

Repeat:

Ti =
{
m ∈ Ti−1 : |ĥHmĥπ(j)| ≤ ε, for 1 ≤ j ≤ i

}
π(i) = arg max

k∈T1
ω(hk)

i← i+ 1

Termination Conditions:

Ti = ∅ or i > m∗
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The set S = {π(1), . . . , π(K)} where 1 ≤ K ≤ m∗ is the total number

of scheduled users. In the initialization, the set of available users is simply

Gm∗ . The best user is chosen based on the rate approximation feedback.

The remaining users that are available are then filtered and the users that

are not semi-orthogonal (determined by ε) to the scheduled users so far are

removed from the set Ti. The next user is again selected based on rate

approximation feedback. This process is repeated until there are no more

available users in T or when m∗ users have been scheduled.

A common problem in this scheme is that when the base station chooses

m∗ users, but the SUS algorithm only decides to choose < m∗ users (pos-

sibly because the users in group Gm∗ have channels that are mostly aligned

to one another). Intuitively, one might think in such a case it might be

better to switch to a different group, for example the group with the second

highest sum-rate approximation or the group corresponding to the number

of users the SUS algorithm decides to select. The problem with these so-

lutions is that it cannot be clearly justified whether making a transition

to a different group would improve the performance. If we transition to a

different group, say Gm1 , the scheduling algorithm might pick up m1 users.

However, it is not necessarily true that the m1 users from Gm1 would out

perform the < m∗ users from Gm∗ . While it is true that, based on the rate

approximations, transmitting to m∗ semi-orthogonal users in group Gm∗ is

better than transmitting to < m∗ or even > m∗ users from the same group,

the same does not hold when comparing different groups. Therefore, there

is not enough motive for us to implement a fix for the scenario where the

SUS algorithm chooses < m∗ users. Nonetheless, the alternative methods

are described in the following; while these are not implemented, their ad-

vantages/disadvantages can be left for future work.
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Next Best Group

Supposing the SUS algorithm could not find m∗ suitable users from Gm∗ ,

the base station can instead look into the group with the next best sum-

rate approximation. Let [m1,m2, . . . ,mNT ] = m be a vector of the various

modes ordered based on the sum-rate approximation of their corresponding

groups, Gmi . Note that the subscripts on the elements of m do not refer to

the actual mode, they are simply used to identify the best (m1 ) and worst

( mNT ) mode groups in terms of rate approximation. Further suppose that

S is the set of users scheduled by the SUS algorithm. Then the Next Best

Group scheduling can be written as follows.

Initialization:

i = 1

Repeat:

S = SUS(Gmi)

if |S| = mi : m∗ = mi, terminate

i← i+ 1

Add Closest Group

A common reason why the SUS algorithm chooses less than m∗ users is

simply due to the lack of users in the group. In such a scenario, we can

add a set of users from a different group to Gm∗ before performing SUS.

An interesting question then is which group should be added? The most

intuitive choices are the group with the next best rate approximation, as

this would ensure that the users have decent channel quality, or it could be

the group corresponding to m∗ − 1 or m∗ + 1 (i.e. the closest groups), if

they exist. While this would increase the number of users to choose from

in the SUS algorithm thereby achieving higher user diversity, there are two
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drawbacks of this scheme. Firstly, because we are combining two groups

worth of users in the scenario where SUS schedules < m∗ users, we may end

up with a substantial increase in users which may increase the number of

operations within the SUS algorithm. This issue is however, a minor one

compared to the second. The second issue is that, the rate approximations

from different groups cannot be directly compared since they correspond

to different preferred modes, i.e. the feedback information is different. To

this end, the base station would have to request the users in the closest

group or next best group to send their rate approximation for the case when

there are m∗ scheduled users. This would cause feedback overheads. The

research problem would then be whether the performance increase from this

scheme outweights the feedback overhead and the increase in computational

complexity, and again this is left for future work.

5.6.2 Simulations and Analysis

So how does incorporating SUS into the multi-mode scheduling scheme affect

the performance? The following figures plot the performance of SUS based

mode scheduling on top of the performance of RA1 and RA2 as in section

5.5. The black curve refers to the SUS scheme and the blue and red curves

as before refer to RA1 and RA2 respectively. Fig. 5.10 corresponds to the

case where there are 4 feedback bits and 50 users. Fig. 5.11 has 8 feedback

bits and 100 users.

We can see consistent increase in performance by using SUS especially in

the low-mid SNR regions. This improvement however is only slightly more

prominent as we increase the number of feedback bits and users. So why are

the improvements only marginal? The following subsections aim to explain

the observations and propose improvements.
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Figure 5.10: Mode selection with SUS + RA2 (Black) vs RA1 (Blue) vs

RA2 (Red) : 4 feedback bits 50 users

Figure 5.11: Mode selection with SUS + RA2 (Black) vs RA1 (Blue) vs

RA2 (Red) : 8 feedback bits 100 users
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Figure 5.12: Mode Selection(SUS) SINR feedback vs Magnitude feedback

SINR vs Magnitude feedback

The first way in which we can attempt to increase the performance gains

is to look at whether SINR feedback is better than magnitude feedback.

As we know rate approximations from each user are essentially the log of

their SINR. SUS uses this to select the best user in each iteration. How-

ever, this SINR is merely an approximation, whereas the channel magnitude

which is assumed to be known perfectly at the receiver need not be approx-

imated. So, if instead we use magnitude feedback instead would we see an

improvement? Fig 5.12 shows the results. The red curves correspond to the

sum-rate of the system with SINR feedback in the SUS algorithm and blue

curves correspond to magnitude feedback. This is plotted for 4 and 8 bits

of feedback. What we see is that SINR feedback consistently outperforms

magnitude feedback. The reasoning for this is simple. While SINR is an

approximation, it provides rough information on how much the quantization

112



errors and interference affect the given user. If we simply send magnitude

feedback, while the user might have a strong channel, it may be the case

that it suffers from quantization errors and we cannot infer this from ‖hk‖.

User Diversity

Even though the graphs simulate schemes with a relatively average num-

ber of users, the fact that we are dividing these users into different groups

mean that we are only dealing with a few users when performing SUS. So

while performing SUS without mode selection may give a more significant

gain in the low-mid SNR regimes, mode switching is essential in attaining

multiplexing gains at high SNR. Essentially by using SUS along with mode

selection apart from simply using SUS, we are trading off some of the user

diversity for multiplexing gains at high SNR regimes. As such, the perfor-

mance gains we see are marginal, and the reason why we are seeing these

gains is that SUS assures some degree of semi-orthogonality between the

co-scheduled users thereby reducing interference. In order to see a more

substantial improvement in performance, one approach would be to perform

mode selection as per usual, but perform SUS over all the users, not just

the selected group. In such a scenario we are increasing the computational

complexity as a trade-off for performance improvements.

Mode Selection Does Not Account for SUS

As the heading points out, we are selecting the best group based on the

highest rate approximations from each group and do not take into account

SUS. The problem with this is that the users that correspond to these high

rate approximations may not even be selected by the SUS algorithm as they

may not be semi-orthogonal to the other users in the group. Arguably it

might be better to decide on the best mode of transmission based on the

average sum-rate approximation of each group. This way the users with
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low rate-approximations will also have some weight to the sum-rate approx-

imations in case they are chosen by SUS for lack of better choices. Doing

so however produces another problem. While the mentioned solution works

for multi-user scenarios, when deciding between single-user and the other

modes an important point can be raised. In single-user mode, there is no

user scheduling required and the best user is always chosen. Furthermore,

recall that our rate approximations are lower bounds to the ergodic rates

but this doesn’t apply to the single-user rates which can be computed ac-

curately. Hence, the group corresponding to single-user mode will have a

higher weightage in terms of being selected. However, in the event that one

of the multi-user modes is chosen, the use of the average rate approximation

in this selection may improve the overall performance when using SUS as

opposed to simply selecting the group based on the best m∗ users.

Rate Approximation Does Not Account for SUS

By far the biggest limiting factor on the performance improvement however,

is that the rate approximations is a lower bound when compared to the

actual performance and the rate gap between the approximation and the

actual sum-rate is in fact larger when we utilize SUS. In other words, in

order to see more of an improvement in performance the rate approximation

has to be modified to take into account that SUS is being used at the base

station. To this end, section 5.6.3 derives and analyses a modified version

of the rate approximation that incorporates SUS.

5.6.3 Incorporating SUS in the Rate Approximation

So how can we incorporate the fact that the base station is using SUS to

improve on the rate approximations performed by each user. A quick search

in literature will provide a common large user approximation of the SINR

that the base station uses as CQI. This is given as follows:
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γk ≈
ρ‖hk‖2 cos2

2 θk

1 + ρ‖hk‖22 sin2 θk
(5.15)

Here, cos2 θk is simply Z, ρ = P/K where K is the total number of scheduled

users by the SUS algorithm, and ‖hk‖2 is simply a. We can then rewrite

the above as follows:

γk ≈
Z

NT
Pa + (1− Z)

(5.16)

Compared to the rate approximation in equation (5.13), we notice that a

lot of terms are in fact missing from the SUS-based approximation. Firstly,

X = 1 is due to the fact that this is a large user approximation, as the

number of users grow large it becomes more probable to find a set of users

whose quantized channels are almost entirely orthogonal to one another. In

order to ensure this, as the number of users grow large, ε can be decreased.

In such a scenario, assuming the quantized channels are indeed orthogonal,

this would mean that beamformers will be aligned with the quantized chan-

nels. In other words, ‖ĥkbk‖2 = X = 1. Secondly, we note that the term

(K − 1)EY [Y ] = (K − 1)/(NT − 1) = 1 . This is because, classically SUS

algorithm attempts to schedule as many users as possible, and in a ZFBF

based broadcast channel the maximum users possible is K = NT . In a large

user scenario, it is almost always possible to find NT candidates and thus

the SINR approximation does not consider the case where K < NT . For our

purposes however, we need to modify the above expression to account for

cases where K < NT , since we are incorporating mode selection. Lastly we

notice that in order to approximate the rate of the co-scheduled users, we

are taking the expectation over Z and a, whereas previously we had used

convexity to simplify this procedure. Since X is no longer a variable in the

large user approximation we can afford to do this without overcomplicating

the derivation. The generalization of the above for any K > 1 can be given
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as follows.

CSUSk (K) = log2(1 + γk) ≈ log2

(
1 +

Z
K
Pa + K−1

NT−1(1− Z)

)
(5.17)

This is derived simply by taking X = 1 and the expectation on Y via

Jensen’s inequality in equation (5.13). Now since Z and a are known to

the user, it can approximate its own rate by the given equation. For the

co-scheduled users however, we need to take the expectation over Z and a.

In other words we need to solve the following:∫ ∞
0

∫ 1

0
log2

(
1 +

z
K
Pa + K−1

NT−1(1− z)

)
pZ(z).dz pa(a).da (5.18)

Where, as before, pX(.) is the probability density function of variable X.

While the above double integral can be evaluated, its process is tedious

and is in the form of exponential integrals, some of which do not converge.

Hence, in order to simplify the proof, we replace 1/a with E[1/a] by utilizing

Jensen’s inequality as we did in the previous rate approximations. Equation

can then be simplified to the following expression.

C̄SUSk (K) =

∫ 1

0
log2

(
1 +

z
K

P (NT−1) + K−1
NT−1(1− z)

)
pZ(z).dz (5.19)

In order to evaluate the above, we can perform a simple integration by

parts. Let:

g(z) = log2

(
1 +

z
K

P (NT−1) + K−1
NT−1(1− z)

)

Fz(z) =

(
1− (1− z)NT−1

)2B

=

NC∑
k=0

k(NT−1)∑
i=0

(
NC

k

)(
k(NT − 1)

i

)
(−1)i+kzi

Fz above is expanded using the binomial theorem, and NC = 2B as before.

Then, the integral in 5.19 can be expressed as:[
Fz(z)g(x)

]1

0

−
∫ 1

0
g′(z)Fz(z)dz (5.20)
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The first part of the expression can be evaluated simply by substitution and

is given by:[
Fz(z)g(x)

]1

0

=

Nc∑
k=0

k(NT−1)∑
i=0

(
Nc

k

)(
k(NT − 1)

i

)
(−1)i+k log

(
1 +

P (NT − 1)

K

)
(5.21)

As for the integral term, we need to first evaluate g′(z) using a combination

of the chain rule and the quotient rule, we can work this out to be:

g′(z) =
α2

(α1 + α2(1− z))2 + z(α1 + α2(1− z))
, where

α1 =
K

P (NT − 1)
, α2 =

K − 1

NT − 1

(5.22)

We can in fact write the denominator as a trinomial, R = a + bz + cz2. a,

b, and c in this case are constants. We can then express the integral term

as shown:∫ 1

0
g′(z)Fz(z)dz =

K

P (NT − 1)

NC∑
k=0

k(NT−1)∑
i=0

(
NC

k

)(
k(NT − 1)

i

)
(−1)i+k

∫ 1

0

zi

R
.dz

(5.23)

R = a+ bz + cz2, a = (α1 + α2)2, b = (α1 + α2)(1− 2α2), c = α2(α2 − 1)

Now from 2.175 of the Table of Integrals, Series, and Products [53], we

note that the integral can be solved as:∫
zi

R
.dz =

zm−1

(1− i)c
− b

c

∫
zi−1

R
.dz − a

c

∫
zi−2

R
.dz (5.24)

Supposing A(i) =
∫ 1

0
zi

R .dz The above can be solved recursively as follows:

A(i) =
zm−1

(1− i)c
− b

c
A(i− 1)− a

c
A(i− 2)

A(1) =
1

2c
logR− b

2c
A(0)

A(0) =
1√
−∆

log

√
−∆− (b+ 2cz)√
−∆ + b+ 2cz

= A0(∆) for ∆ < 0

=
−2

b+ 2cz
for ∆ = 0, b and c 6= 0

= −A0(−∆) for ∆ > 0
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Where ∆ = 4ac − b2. A simple program can than be executed to compute

the solution to the above recursive relation. The special case when K = NT

in fact simplifies the above leading to a closed form expression. It should be

noted that closed form expressions are possible to be derived for K < NT

as well, though they are tedious to derive. Finally, combining the solution

of the recursive relation in equation (5.24) with (5.23), (5.21), and (5.20),

we can then work out C̄SUSk (K).

Our new rate approximation performed by user k in order to determine its

preferred mode can than be given by:

mk = arg max
1≤K≤NT

CSUSk (K) + (K − 1)C̄SUSk (K) (5.25)

5.6.4 Simulation and Analysis

Now that SUS has been incorporated in the base-station and a large user

SUS approximation has been incorporated at the user, how will the system

perform? For the following simulations we still use a similar number of users

and bits as we did when analysing SUS without the new rate approximation

in order to keep the comparisons feasible. Intuitively what we would expect

is that we would see benefits from using a SUS-based approximation. This

is because, as we have mentioned earlier, the previous rate approximation

underestimates the performance of the system when the base station utilizes

SUS. In the SUS approximation we are no longer limiting ourselves to a lower

bound when constructing the rate approximation and by doing so more users

will prefer higher modes of operation which, when aided by SUS at the

base station, would improve the performance of the system. The drawback

however, is that we are using a large user approximation and analysing the

system with moderate number of users. Therefore, In certain scenarios the

SUS-approximation may overestimate the capability of the system to handle

higher modes and this may cause performance drops when compared to the

previous schemes. The following figures show the performance of the SUS-
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Figure 5.13: Comparison of the different schemes (latest in magenta) for 8

feedback bits 100 users

based rate approximation, overlayed on the previous three schemes that have

been discussed thus far.

Fig 5.13 refers to the case with 8 feedback bits and 100 users, whereas Fig

5.14 is for 8 feedback bits and 200 users. The magenta curve represents the

performance of the latest scheme. As per the intuition, we do see significant

performance improvements in the 5-25 dB SNR regions for both scenarios.

However we do see a noticeable performance drop especially in relation to

the schemes using RA2 (black curve and red curve).

We can attempt to explain this performance drop as follows. Firstly, we

notice for all the curves, the 30 dB mark shows an obvious change in the

preferred mode of operation on average. This is noted by the change in the

curves’ behaviour. A similar transition is seen in the 40 dB mark where

all the curves transition to single-user mode. So what causes the drop in

performance in our latest scheme? In the transition regions, mode selection

becomes of prime importance, as at these SNR regions the users are more
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Figure 5.14: Comparison of the different schemes (latest in magenta) for 8

feedback bits 200 users

likely to be split in to groups by the base station. In other regions, the users

unanimously prefer one mode group. Note that the SUS rate approximation

works well when the number of users are large. In the transition regions,

since the users are split into several groups, even if the total number of

users is increased from 100 to 200, the number of users in each group is

still relatively small. Therefore, the large user approximation will in fact

overestimate the performance of the system, and allow for higher modes

an opportunity to be selected, even though they are not optimal. With

higher mode groups being selected, we experience more interference, since

the base station is transmitting to more users and 30 dB is a relatively high

SNR regime. SUS is used to help this situation, but again any selected

group only has a few number of users in it. These reasons coupled together

explain why the performance drops in the transition region.

Overall, RA1 which is adapted from [13] out-performs pre-existing sim-

ilar schemes found in literature. The comparison between existing schemes
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and the one proposed in [13] can be found in the respective paper. With the

modified rate approximation, RA2, a slight improvement can be seen in the

throughput, especially in the mid-SNR range. With the addition of SUS at

the base station, this improvement is more apparent. However, the addition

of SUS increases the computational complexity of the scheduling, and the

slight throughput increase may or may not justify the trade-off. The main

reason why the increase in throughput is not very drastic with the addition

of SUS is that the rate approximation at the user side in SUS1 is not altered

to take into account that the base station is using SUS. Upon using a large

user approximation at the user-side, and rederiving an alternate rate ap-

proximation, we see that the improvement in SUS2 is much more significant

in the mid-SNR regions. However, there are some performance drops in the

transition regions owing to the fact that we are using a large user approxi-

mation for a setting with a relatively small number of users. The following

sub section provides potential future research directions that could improve

upon our results.

Proposed Future Improvements

A brief account of research directions that can be undertaken is summarized

here.

Firstly, the base station can perform mode selection as per normal, with

the SUS-based large user rate approximation. However, after chosing the

preferred mode of operation, instead of performing SUS on Gm∗ we could

perform SUS on all the users. While this might increase the computational

complexity of the SUS algorithm, in return we expect to see improvements

in performance in the transition region due to the increase in the number of

users.

Secondly, once the transition regions have been identified for a given

system, a system specific solution would be to tune ε, the semi-orthogonality
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forcing parameter. If we decrease ε in the transition regions, then the base

station would be more inclined to schedule users from lower modes.

Thirdly, it would be good to derive a small user approximation instead,

to suit our scenario, which is in fact simpler said than done. However, [54]

gives some good leads on how to go about doing this. Suppose we start of

with a unit-norm complex NT -sphere, each point in the surface area of the

sphere represents a possible channel direction. In our analysis, the channel

direction has equal probability to point toward anywhere on this surface.

Supposing, the SUS algorithm chooses its first user with a random channel

direction, the next user has to be semi-orthogonal to the user that has just

been selected. What this means is that we can no longer select the next

user from the entire sphere, and must limit ourselves to a smaller strip,

determined by ε. As the SUS process continues the surface area from which

we choose users becomes significantly smaller. Therefore, the average SINR

approximation computed by each user in the first iteration of SUS would

not be the same at each subsequent iteration of the algorithm. This does

not matter in a large user-setting, as even though after every iteration the

pool of users we can choose from gets significantly smaller, it is still large

enough to provide diversity in the selection. This does matter, however, in

a small user-setting where we might quickly jump from choosing between

100 users in the first iteration to 20 in the second and maybe 5 on the third.

In fact, supposing NT = 4, we may not see very many instances where the

base station schedules 4 users with a total of a 100 users. This is even more

the case when we use mode selection in the transition regions where the

100 users are split into smaller groups before SUS is performed. Thus, a

small user approximation is imperative in taking the next step toward more

accurately approximating the rate of a SUS-based mode selection scheme.
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Chapter 6

Conclusions

This thesis has proposed novel schemes to improve on the limitations of clas-

sical user scheduling in MIMO-broadcast channels with limited feedback.

The main idea incorporated in order to overcome the performance limits

of the classical schemes was to employ multi-mode transmission. Here, the

technique involved users to approximate the sum-rate of the system by utiliz-

ing parameters known locally and treating unknown parameters as random

variables and taking the expectation over them. By adopting the rate ap-

proximations for different modes of operation, the user can then specify its

preferred mode of operation (the number of users co-scheduled). The base

station receives not only the channel quality indicator (CQI) and channel

directional information (CDI) information from the users, via limited feed-

back, but also their preferred mode of operation. The information received

can then be utilized by the base station to determine how many users to

schedule.

The idea of multi-mode scheduling is quite recent and some research has

been done in this topic. This thesis has proposed improvements over exist-

ing noteworthy schemes, and more importantly formulated novel schemes.

These schemes combine the grouping procedure used in [13] with the semi-

orthogonal user scheduling algorithm proposed in [4]. The design in [13]
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aims to reduce computational complexity at the base station by grouping

users according to their ”preferred mode” feedback. On the other hand,

semi-orthogonal user selection (SUS) [4] aims to improve performance by

avoiding users with aligned or poor channels. However, by incorporating

these two schemes into the scheduling process, the base station addresses

only one part of the problem. The other part of the problem is to formu-

late rate approximations at the user-side that could coincide with the given

operations at the base station. To this end, we have derived two new closed

form expressions for rate approximations at the user-side. When utilized

with the scheduling process at the base station these rate approximations

improve on the performance of pre-existing schemes. The two rate approxi-

mations correspond to the cases with and without SUS at the base station.

An important observation via simulations is that rate approximations have

to be tailored to the scheduling process at the base station. For instance,

using the SUS-based rate approximation at the user when the base station

does not use SUS will result in poor performance.

While the enhanced multi-mode scheme proposed in the thesis does im-

prove performance in most of the mid-high SINR region, it experiences per-

formance drops in certain regions when compared to earlier schemes pro-

posed in literature. The reason for this is that the SUS-based rate approx-

imation that was used was for a large user-set, while the target user-set in

the simulations consisted of only twenty to about two hundred users. De-

riving closed form expressions for rate approximations that accommodate

such smaller user-sets is of prime importance in overcoming the slight per-

formance deteriorations as well as further increasing the performance gains.

This is left for future research along with the many design considerations at

the base station, discussed in Chapter 5. In summary, this thesis has covered

the evolution of the basic point-to-point wireless communication model to

the MIMO broadcast channel. It has explained the shortcomings of limited
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feedback schemes currently used in literature and has proposed improve-

ments on existing multi-mode transmission schemes as well as shown closed

form derivations of rate approximations at the user-side. The contributions

of the thesis is of practical value since these closed form derivations not

only aid to model and compare the discussed rate approximations but from

a practical perspective, they also form gateways to algorithms that can be

implemented in real-life devices.
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