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Abstract

Feedback interconnections often arise in the modelling and control of dynamical systems.

This thesis considers the robustness of uncertain linear time-varying feedback systems in

continuous time.

Robust stability results are developed in terms of a generalisation of the ν-gap metric

for causal linear time-varying systems, which in the special case of time-invariant systems

reduces to the well-known metric introduced by Vinnicombe. The robust stability results

motivate the ν-gap metric as a measure of distance between open-loop systems from

the perspective of quantifying the difference in closed-loop behaviour. The approach

taken is operator-theoretic and it is underpinned by the existence of normalised strong

representations of open-loop system graphs; this is known to hold given a stabilisable and

detectable time-varying state-space realisation, for example. It is shown that the robust

stability conditions are also necessary when the variation with time is periodic.

While the ν-gap alone offers a sensible measure of uncertainty in a feedback inter-

connection, the use of integral quadratic constraints to encapsulate known aspects of the

uncertainty is shown to lead to a potential reduction in conservatism in robustness analy-

sis. Formalising this involves establishing the pathwise connectedness of sufficiently small

ν-gap metric balls in the graph topology, using a linear fractional transformation (LFT)

characterisation of the metric. Central to the LFT characterisation is the existence of a

J-spectral factorisation, which is also shown herein for time-varying systems with stabil-

isable and detectable state-space models and for distributed-parameter transfer functions

in the constantly proper subclass of the Callier-Desoer algebra.

As an application of the theoretical developments, a sampled-data approximation

problem is rigorously formulated with respect to the ν-gap measure of error and optimally

solved. The formulation involves development of a modelling framework within which it

is possible to represent both types of system of interest and have a well-defined ν-gap

distance. The aforementioned LFT characterisation of the ν-gap plays an important

role in recasting the approximation problem as a sequence of convex feasibility problems

solvable by standard H∞ synthesis tools.
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Chapter 1

Introduction

Uncertainty is inherent in system modelling inasmuch as any mathematical model can

at best approximate the behaviour of a real-world process. It may arise due to as-

pects of the dynamics of real systems not being representable by the class of models

used or the precise numerical values of the various parameters of the model only being

determinable to some degree of certainty. This dissertation is mainly concerned with

quantifying uncertainty within the context of feedback interconnections. These commonly

arise in modelling and control of dynamical systems, for both analysis and synthesis

purposes [DFT92, ZDG96, ZD98, DP00, Vin01, Kha02, ÅM08]. In practice, physical sys-

tems can often be modelled as feedback interconnections of a component with a simple

structure, linear time-invariant (LTI) for example, with another component which may

be time-varying or uncertain. Feedback control, on the other hand, is widely applied

for alleviating the effects of any unmeasured disturbances acting on the system and un-

certainty about the system dynamics. Robust stability and performance of uncertain

feedback interconnection is therefore an important problem to investigate.

The need to quantify the uncertainty to which a feedback interconnection is in-

sensitive spawned the development of the gap metrics in the literature [ZES80, ES85,

GS90, QD92, Vin93]. Of these, the ν-gap metric [Vin93, Vin01] emerges to be the least

conservative for finite-dimensional LTI systems, as far as a generalised robust stabil-

ity margin is concerned. In addition, it has a clear frequency response interpretation.

A unified ν-gap metric and integral quadratic constraint (IQC) based robust stability

framework, established for linear time-invariant (LTI) systems in the series of publica-

tions [CJK12, CJK10, CJK09, JCK08], is generalised in [JC10, JC11] to accommodate

causal linear systems that are time-varying with potentially unbounded gain over the

space of doubly infinite finite-energy signals. In particular, a generalised ν-gap distance

is defined, assuming the existence of certain normalised strong representations of the sys-

tem graphs, which is the case for various classes of linear systems, including those with

1



2 Chapter 1. Introduction

time-varying state-space realisations that are stabilisable and detectable. The main re-

sults in [JC10, JC11] establish that the generalised ν-gap metric enjoys homotopy-type

robustness properties when combined with IQC conditions. It remained unclear whether

the metric could be used to quantify feedback robustness non-conservatively, as is the case

for LTI systems [Vin93, Vin01]. In this thesis, aspects of this issue are addressed. The

definition of closed-loop stability is first formulated in a manner that is seamlessly com-

patible with the generalised ν-gap metric, whereby the double-axis Paradox of Georgiou

& Smith [GS95] does not arise via the implicit encapsulation of an arrow of time [GS10].

The following are developed by combining the ideas in [Vin93, Vin01] and [JC10, JC11]:

(i) sufficient conditions for robust stability; (ii) properties of the topology induced by the

ν-gap metric; and, (iii) for a class of linear periodically time-varying (LPTV) systems,

the so-called strong necessity robustness condition. These motivate the generalised ν-

gap metric as a tool for studying the robustness of linear time-varying (LTV) feedback

systems.

An operator-theoretic robust stability theory for LTV systems defined on singly infi-

nite (i.e. with a fixed ‘initial’ time) discrete time is reported in [Fei98] and the references

therein. This setting has the advantage that the inverses of causal systems are causal

and closed-loop stabilisability is equivalent to the existence of strong left and right graph

representations/symbols [DS93]. These are not known to hold in continuous time. Ro-

bust stability is studied in [Fei98] in terms of a discrete time-varying generalisation of

the Georgiou’s formula of the gap metric [Geo88]. By contrast, this thesis considers

continuous-time systems on doubly infinite signal spaces in a manner consistent with the

original development of the ν-gap metric in a time-invariant setting [Vin93, Vin01].

The ν-gap metric is closely related to the standard gap metric, in that they are both

useful measures of feedback uncertainty and they induce the same topology (at least

on LTI systems), which is often called the graph topology. Variants of the robustness

properties of the ν-gap metric can also be found expressed in terms of the gap met-

ric [GS90, FGS93, CV02]. A few notes are in order. Firstly, the gap metric theory is pre-

dominantly developed for systems on signal spaces with support on a positive half-line. On

the contrary, the definitions of the generalised ν-gap metric and feedback stability used in

this thesis do not attribute special significance to a particular time instant separating the

past and the future, as is consistent within a time-varying context. Secondly, the issue of

causality of feedback interconnections is addressed upfront, amounting to a proper treat-

ment of closed-loop stability [GS10]. Thirdly, the generalised ν-gap metric is amenable

to a characterisation in terms of a linear fractional transformation (LFT) [Can06], which

is useful in the study of the pathwise connectedness of ν-gap metric balls in the graph

topology, as well as the numerical synthesis of a system to lie within a specified ν-gap
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distance from another, as discussed further below.

Feedback stability analysis via integral quadratic constraints (IQCs) is known to offer

generality over small-gain [Zam66], passivity [Wil72], and circle/Popov criterion [HM68]

based approaches, in terms of exploiting known system structure to reduce conservatism

in stability analysis [MR97, Jön01]. The IQC framework was first developed for the

feedback interconnection of a stable LTI system and a stable uncertain system that may

be non-stationary and even nonlinear. In [RM97], nonlinear open-loop unstable systems

are accommodated directly, without recourse to methods such as loop transformations,

in conjunction with homotopies that are continuous with respect to the generalised gap

metric from [GS97, JSV05]. The work [JC10, JC11] is similar in spirit, but rather involves

the generalised definition of closed-loop stability and the generalised ν-gap metric for

linear time-varying systems. In this thesis, the additional flexibility engendered by IQCs

is reconciled with a ν-gap ball based robustness result described above, by establishing

that the latter can be recovered within the unified IQC / ν-gap homotopy framework

of [JC10, JC11]. This involves a proof that any ν-gap metric ball of a radius less than

the maximal stability margin of its centre is path-connected with respect to the graph

topology. Towards this end, the aforementioned linear fractional characterisation of the ν-

gap metric [Can06] plays a crucial role, in that it provides a bijective continuous mapping

between a unit ball of stable systems and a ν-gap ball of a specified size, as already seen in a

finite-dimensional time-invariant context [CJK12, CJK10]. The LFT is contingent on the

existence of a certain J-spectral factorisation of a graph symbol expression. In this thesis,

the results are established for more general classes of linear systems; specifically, time-

varying finite-dimensional state-space systems and time-invariant distributed-parameter

systems in the Callier-Desoer algebra.

To illustrate an application of the theory developed in this thesis, the problem of

model approximation is considered in terms of the ν-gap metric as the measure of error.

A systematic approach to approximation is to formulate it in terms of a constrained

optimisation problem, where the constraints reflect the structure to be imposed on the

systems involved and the cost is a measure of approximation error. Here, attention is

restricted to the problem of approximating a given LTI system by a periodic sampled-

data system, which arises commonly in situations where feedback controllers designed

using continuous-time algorithms are to be implemented using digital hardware. This

problem has been considered in [CV04], in which the pointwise gap metric is the measure

of approximation error. While a solution is identified therein, it remained unclear whether

the class of systems employed completely characterise behaviour as required to rigorously

introduce the ν-gap metric. This issue is addressed in this thesis via the development

of a framework that is sufficiently rich to equivalently represent all of the system types
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involved.

A direct formulation of the solution to the problem of optimal sampled-data ap-

proximation with dynamic input-output weightings is developed. The approach involves

the aforementioned LFT characterisation, constructed from a single J-spectral factori-

sation; by contrast, a more complicated three-term factorisation, which underlies the

DGKF solution to the standard H∞ control problem [DGKF89, ZDG96], is utilised

in [CV04]. The proposed algorithm is a bisection search yielding a finite sequence of

convex LFT synthesis problems which can be solved using standard H∞ sampled-data

methods [BP92, Yam94, CF95, CG97]. For completeness, a corresponding system of linear

matrix inequality (LMI) feasibility conditions, which can be efficiently tested via standard

optimisation tools [BV04], is provided based on [GA94].

Overview of contents

Chapter 2 introduces the notation and reviews necessary preliminaries on basic signals

and systems theory. In particular, notions of operator equivalence, causality, and Wiener-

Hopf / Hankel operator classes are presented. Importantly, this chapter states the list of

assumptions made on the operators considered in this thesis, regarding in particular the

existence of normalised strong graph representations/symbols. These are verified for three

generic classes of linear systems — (i) time-varying finite-dimensional state-space systems,

(ii) distributed-parameter time-invariant systems, and (iii) periodic systems with finite-

dimensional transfer function ‘realisations’ in the lifted domain, which include systems

with a sampled-data structure. All these classes are reconsidered in future chapters.

Specifically, (i) and (ii) appear in Chapter 4, while (iii) in Chapters 3 and 5.

The notion of closed-loop stability and the generalised ν-gap metric are presented

in Chapter 3 for causal LTV systems having normalised strong/coprime graph symbols.

Before this, some results on Fredholm / Wiener-Hopf / Hankel operators are provided.

Several ν-gap based robustness results are derived, including a bound on the residual

stability margin in the presence of perturbations on a component of a feedback intercon-

nection and bilateral bounds on the induced norm of the difference between the closed-loop

operators. For the class of periodic systems considered in Chapter 2, a strong necessity

condition for robust stability is also established in terms of the generalised ν-gap metric.

In Chapter 4, a unifying framework encompassing both the ν-gap metric and IQC

based analysis is reviewed. Therein, known structure of the uncertain components of a

feedback connection can be characterised by IQCs and exploited to reduce conservatism

in stability analysis. The associated additional flexibility is reconciled with the ν-gap ball
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based stability results of Chapter 3 by showing that the latter can be recovered within the

combined IQC and ν-gap homotopy based framework. To this end, path-connectedness

of ν-gap balls in the graph topology plays a central role. This is established by exploiting

a linear fractional characterisation of the ν-gap metric and the existence of a certain J-

spectral factorisation, which is shown to be true for the classes of finite-dimensional LTV

systems and distributed-parameter LTI systems introduced in Chapter 2.

Chapter 5 considers the problem of model approximation with respect to the ν-gap as

the measure of error. Part of this effort involves developing appropriate system representa-

tions via the Fourier transform and time-lifting isomorphisms, so as to be consistent with

the definition of the ν-gap. The LFT characterisation of the metric is again employed,

in this case to transform the approximation problem into a finite sequence of feasibility

problems, from which an optimal solution may be found. More specifically, the problem

of optimal sampled-data approximation of continuous-time LTI systems is examined and

an LMI-based numerical algorithm proposed. The class of periodic systems considered in

Chapter 2 plays a crucial role in this respect.

Finally, in Chapter 6, the main contributions of this work are summarised. Potential

directions for future research are also identified.
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Chapter 2

Signals and Systems

This chapter establishes the basic notation and operator-theoretic setting for the thesis.

A recurring theme of this thesis is the study of linear operators via their graphs. The

notion of equivalence of operators in terms of an isomorphic relation between their graphs

is introduced in Section 2.1. In addition, generalised Wiener-Hopf and Hankel operators,

which are important in the study of time-varying systems as demonstrated in [JC10,

JC11], are defined.

In Section 2.2, we identify assumptions on the class of linear operators considered

throughout this thesis in accordance with [JC10, JC11]. Loosely speaking, we assume

that a system graph can be represented as the range of (resp. kernel) of a causal, bounded

operator which is causally left (resp. right) invertible. To justify these assumptions, each

is verified for three general classes of linear systems, which also arise later in the thesis.

In Section 2.3, time-varying systems with finite-dimensional state-space realisations that

are stabilisable and detectable [IS04, MC10] are considered. Distributed-parameter time-

invariant systems in the Callier-Desoer algebra [CD78, CZ95] are examined in Section 2.4.

Finally, Section 2.5 considers a class of periodic systems taken from [CV04], which include

those with a sampled-data structure.

The development of this chapter is based on [JC10, JC11]. Standard references for

the functional analysis concepts used here are [Kat80, Kre89, GGK90, Rud91].

2.1 Notation and basic operator theory

The real and complex numbers are denoted R and C, respectively. The transpose of

a matrix M ∈ Rp×m is denoted MT ∈ Rm×p and the complex conjugate transpose of

M ∈ Cp×m is denoted M∗ ∈ Cm×p. The maximum and minimum singular values of an

7
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M ∈ Cp×m are denoted σ̄(M) and σ(M), respectively. We denote by Z, T and D the

integers, the unit circle and the open unit disc in the complex plane, respectively.

For a linear operator mapping between Hilbert spaces X : dom (X) ⊂ H1 → H2, its

kernel is denoted by

ker (X) := {x ∈ dom (X) |Xx = 0},

its image by

img (X) := {y ∈ H2 | y = Xx for some x ∈ dom (X)},

and its graph by

GX :=

{[
y

u

]
∈ H2 ×H1 : u ∈ dom (X) and y = Xu

}
.

Given X ⊂ dom (X), X|X denotes the restriction of X to X . We define, respectively, the

upper and lower gains of X as

γ̄(X) := sup
‖w‖H1

=1
‖Xw‖H2 and γ(X) := inf

‖w‖H1
=1
‖Xw‖H2 .

X is said to be bounded if dom (X) = H1 and γ̄(X) <∞.

We denote by L (H1,H2) the Banach space of all bounded linear operators mapping

between the Hilbert spaces H1 and H2. An operator X ∈ L (H1,H2) is compact if

for any bounded sequence {xk} in H1, {Xxk} has a convergent subsequence in H2. A

compact operator X ∈ L (H,H) on a separable Hilbert space H is of the Hilbert-Schmidt

class [GGK90, Chapter VIII] if

∞∑
i=1

‖Xei‖2H <∞ for any orthonormal basis {en}∞n=1 of H.

An important result on compact operators, exploited several times in this thesis, is stated

below.

Lemma 2.1.1 ([Kat80, Thm III.4.8]). Given two bounded linear operators X ∈ L (H0,H1),

Z ∈ L (H2,H3) and a compact operator Y ∈ L (H1,H2), the composition ZYX ∈
L (H0,H3) is compact.

The unique Hilbert adjoint of an X ∈ L (H1,H2) is denoted X∗ ∈ L (H2,H1) and

〈Xw, v〉H2 = 〈w,X∗v〉H2 ∀w ∈ H1, v ∈ H2.

It holds that img (X)⊥ = ker (X∗) and ker (X)⊥ = cl img (X∗), where ⊥ denotes the
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orthogonal complement and cl(·) the closure of a subspace. As such, ker (X∗X) = ker (X).

Furthermore, the following identities hold: γ̄(X∗) = γ̄(X); when X has a bounded inverse,

γ̄(X−1) = 1/γ(X) and γ(X∗) = γ(X). Given any X,Y ∈ L (H1,H2), γ(X + Y) ≥
γ(X) − γ̄(Y). Finally, if

[
X
Y

]
: H1 → H2 × H3 satisfies X∗X + Y∗Y = I (i.e. it is

an isometry) or if
[
X Y

]
: H1 × H2 → H3 is such that XX∗ + YY∗ = I (i.e. it is a

co-isometry), then γ̄2(Y) = 1− γ2(X).

2.1.1 Equivalence of operators

Two normed spaces V1 and V2 are said to be isometrically isomorphic if there exists a

bijective bounded linear operator Φ : V1 → V2 such that ‖Φv1‖V2 = ‖v1‖V1 , ∀v1 ∈ V1.

When this is the case, we denote the isomorphic relationship between V1 and V2 via the

isomorphism Φ by V1
Φ∼ V2. In line with the input-output approach adopted in this thesis,

we study the relationships between operators by way of their graphs.

Definition 2.1.2. Two operators X : dom (X) ⊂ X1 → X2 and Y : dom (Y) ⊂ Y1 → Y2

are said to be equivalent if there exists an isomorphism

Φ2 ⊕Φ1 :=

[
Φ2 0

0 Φ1

]
:

[
X2

X1

]
→

[
Y2

Y1

]

such that GX
Φ2⊕Φ1∼ GY. When this is the case, we denote it as X Φ2⊕Φ1∼ Y. When

X1 = X2, Y1 = Y2 and Φ1 = Φ2 = Φ, we use the shorthand notation Φ to denote Φ⊕Φ

and say X Φ∼ Y if GX
Φ∼ GY. Note that if X is a bounded linear operator, then X Φ2⊕Φ1∼ Y

implies γ̄(Y) = γ̄(X) and γ(Y) = γ(X).

Remark 2.1.3. Given a linear operator X : dom (X) ⊂ X1 → X2 and an isomorphism

Φ2⊕Φ1 :
[
X2
X1

]
→
[
Y2
Y1

]
, note that [ y0 ] ∈ (Φ2⊕Φ1) GX =⇒ y = 0. Thus, (Φ2⊕Φ1) GX is

the graph of a linear operator Y : dom (Y) ⊂ Y1 → Y2 defined by Y := u 7→ Φ2XΦ−1
1 u,

for u ∈ dom (Y) := Φ1 dom (X). Indeed, Y is such that X Φ2⊕Φ1∼ Y, since clearly

GX
Φ2⊕Φ1∼ GY. It is therefore the case that GX

Φ2⊕Φ1∼ GY is equivalent to the following

collection of conditions:

1. dom (X) Φ1∼ dom (Y);

2. img (X) Φ2∼ img (Y);

3. Yu = Φ2XΦ−1
1 u,∀u ∈ dom (Y).

Definition 2.1.4. We use the notation X Φ2⊕Φ1
" Y to denote X is defined by and

equivalent to Y via Φ2 ⊕Φ1.
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Remark 2.1.5. Given two operators A : dom (A) ⊂ V2 → V3 and B : dom (B) ⊂ V1 →
V2, note that

dom (AB) = {x ∈ dom (B) | Bx ∈ dom (A)}.

In the special case where img (B) ⊂ dom (A), we have then dom (AB) = dom (B).

Lemma 2.1.6. Given linear operators A : dom (A) ⊂ V2 → V3, B : dom (B) ⊂ V1 → V2,

C : dom (C) ⊂ X2 → X3, and D : dom (D) ⊂ X1 → X2 and isomorphisms Φ1 : V1 → X1,

Φ2 : V2 → X2 and Φ3 : V3 → X3, suppose that img (B) ⊂ dom (A), A Φ3⊕Φ2∼ C and

B Φ2⊕Φ1∼ D. Then img (D) ⊂ dom (C) and AB Φ3⊕Φ1∼ CD.

Proof. From Remark 2.1.3, A Φ3⊕Φ2∼ C is equivalent to

(a) dom (A) Φ2∼ dom (C);

(b) img (A) Φ3∼ img (C);

(c) Cu = Φ3AΦ−1
2 u,∀u ∈ dom (C);

and B Φ2⊕Φ1∼ D is equivalent to

(d) dom (B) Φ1∼ dom (D);

(e) img (B) Φ2∼ img (D);

(f) Du = Φ2BΦ−1
1 u,∀u ∈ dom (D).

Now, suppose u ∈ img (D). Then Φ−1
2 u ∈ img (B) by (e). Since img (B) ⊂ dom (A),

we have Φ−1
2 u ∈ dom (A). This implies Φ2Φ

−1
2 u = u ∈ dom (C) by (a), and hence

img (D) ⊂ dom (C). By Remark 2.1.5,

dom (AB) = dom (B) and dom (CD) = dom (D) ,

and therefore dom (AB) Φ1∼ dom (CD) by (d).

We show now img (AB) Φ3∼ img (CD). Note that img (AB) = AB dom (B) =

A img (B) and similarly img (CD) = C img (D). Suppose y ∈ A img (B), whereby

y = Au, for a u ∈ img (B) ⊂ dom (A). By (c), we then have y = Φ−1
3 CΦ2u =⇒

Φ3y = CΦ2u. Note that Φ2u ∈ img (D) by (e), and hence Φ3y ∈ C img (D). Therefore,

Φ3 img (AB) ⊂ img (CD). The fact that Φ−1
3 img (CD) ⊂ img (AB) follows by reversing

the preceding argument.
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Finally, note that for any u ∈ dom (CD) = dom (D),

CDu = Φ3AΦ−1
2 Du = Φ3AΦ−1

2 Φ2BΦ−1
1 u = Φ3ABΦ−1

1 u,

where the first equality follows from (c) and the proven fact that img (D) ⊂ dom (C), and

the second equality from (f). Putting all the results together, we have, by Remark 2.1.3,

GAB
Φ3⊕Φ1∼ GCD.

2.1.2 Causal mappings of finite-energy signals

In line with the ν-gap metric based analysis [Vin93, Vin01, CJK12, JC10, JC11], operators

mapping between finite-energy continuous-time signals are of central concern. Define the

Hilbert space

L2
R :=

{
φ : R→ Rm

∣∣∣∣ ‖φ‖2 := 〈φ, φ〉
1
2
2 <∞, where 〈u, v〉2 :=

∫ ∞
−∞

u(t)T v(t) dt

}
.

In general, the codomain of functions in L2
R may also be taken as Cm or any Hilbert space.

In the sequel, we assume compatibility between the input-output spaces of component

operator mappings in compositions. Define the following two subsets of L2
R:

L2
I :=

{
φ ∈ L2

R | φ(t) = 0 ∀t ∈ R \ I
}

for some I ⊂ R;

L2+ :=
{
φ ∈ L2

R | Πτφ = 0, for some τ ∈ R
}

=
⋃
τ∈R

L2
[τ,∞),

where Πτ denotes the truncation operator at time τ ∈ R defined by

Πτ : L2
R → L2

(−∞,τ); Πτx(t) :=

{
x(t) t < τ

0 t ≥ τ.

Clearly, L2
R is the orthogonal direct sum of L2

(−∞,τ) and L2
[τ,∞) for any τ ∈ R. Note that

the closure of L2+ in L2
R is equal to L2

R. For a linear operator X : dom (X) ⊂ L2
R → L2

R,

define respectively its graph and truncated graph as

GX :=

{[
y

u

]
∈ L2

R : u ∈ dom (X) and y = Xu

}
;

and G τ
X := GX ∩L2

[τ,∞).
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Similarly, its inverse graph and truncated inverse graph are defined respectively as

G ′X :=

{[
y

u

]
∈ L2

R : y ∈ dom (X) and u = Xy

}
;

and G ′ τX := G ′X ∩L2
[τ,∞).

We conclude this subsection with the definition of causality, which is an important

notion in systems theory and has been widely studied the literature; see, for example,

[Wil69, Sae70, FS82, GS93, CV02, GS10].

Definition 2.1.7. A linear operator X : dom (X) ⊂ L2
R → L2

R is said to be causal if for

all τ ∈ R, ΠτGX is the graph of a linear operator, i.e.,

∀τ ∈ R, ∀

[
yτ

uτ

]
∈ ΠτGX, we have that uτ = 0 =⇒ yτ = 0.

A similar definition can be made in terms of the inverse graph.

If dom (X) = L2
R, then the above definition is equivalent to

ΠτX(I−Πτ ) = 0 ∀τ ∈ R.

By contrast, X is said to be anti-causal if (I−Πτ )XΠτ = 0 ∀τ ∈ R. If X is simultaneously

causal and anti-causal, it is called memoryless. Note that X ∈ L (L2
R,L

2
R) is causal if,

and only if, X∗ is anti-causal.

Lemma 2.1.8. An operator X : dom (X) ⊂ L2
R → L2

R for which L2+ ⊂ dom (X) is such

that ΠτX(I−Πτ ) = 0 ∀τ ∈ R if, and only if, XL2
[τ,∞) ⊂ L2

[τ,∞) ∀τ ∈ R.

Proof. (=⇒) For any τ ∈ R and u ∈ L2
[τ,∞), note that Xu = X(I −Πτ )u, and therefore

ΠτXu = ΠτX(I−Πτ )u = 0, where the last equality holds by hypothesis. Consequently,

Xu ∈ L2
[τ,∞). (⇐=) Suppose, to the contrary, that there exist a τ ∈ R and a u ∈ L2

[τ,∞)

such that ΠτX(I −Πτ )u 6= 0. Let v := (I −Πτ )u ∈ L2
[τ,∞), so that ΠτXv 6= 0. This

implies Xv /∈ L2
[τ,∞), contradicting the hypothesis.

2.1.3 Wiener-Hopf and Hankel operators

Generalised Wiener-Hopf (a.k.a. Toeplitz) and Hankel operators are defined here. These

operators are useful in the study of linear time-varying systems; see e.g. [IS04]. As

reported in [JC10, JC11], they are crucial in ν-gap metric based stability analysis of
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time-varying feedback systems, in conjunction with the theory of Fredholm operators, as

detailed in the next chapter.

Definition 2.1.9. Given X ∈ L (L2
R,L

2
R), define

1. the Wiener-Hopf operator relative to the ‘initial’ time τ as

TX,τ := (I−Πτ )X|L2
[τ,∞)

: L2
[τ,∞) → L2

[τ,∞);

2. the forward Hankel operator relative to the ‘initial’ time τ as

H+−
X,τ := (I−Πτ )X|L2

(−∞,τ)
: L2

(−∞,τ) → L2
[τ,∞);

3. the backward Hankel operator relative to the ‘initial’ time τ as

H−+
X,τ := ΠτX|L2

[τ,∞)
: L2

[τ,∞) → L2
(−∞,τ),

It is straightforward to show from first principles that the adjoints of these operators are

given by

(TX,τ )∗ = TX∗,τ ; (H+−
X,τ )∗ = H−+

X∗,τ ; (H−+
X,τ )∗ = H+−

X∗,τ ;

see for e.g., [JC10, Lem. 2] for a standard proof.

Definition 2.1.10. A causal X ∈ L (L2
R,L

2
R) is said to have non-singular instantaneous

gain if

inf
τ∈R

inf
δ>0

γ
(
Πτ+δX|img(Πτ+δ−Πτ )

)
> 0.

Remark 2.1.11. The concept of instantaneous gain arises in the earlier study of well-

posedness of feedback interconnections for possibly nonlinear systems [Wil71, DV75].

As observed in [JC10, JC11], it is useful for defining graphs of causal operators; see

Lemma 2.1.13 after the following.

Lemma 2.1.12 ([JC10, Lem. 5]). If a causal X ∈ L (L2
R,L

2
R) has non-singular instan-

taneous gain, then for all τ ∈ R,

1. the Wiener-Hopf operator TX,τ is injective; and

2. the algebraic inverse T−1
X,τ : img (TX,τ )→ L2

[τ,∞) is causal.

Proof. Suppose for some τ ∈ R, there exists a non-zero w ∈ ker (TX,τ ) ⊂ L2
[τ,∞). Then

for sufficiently large δt > 0, we have (Πτ+δt −Πτ )w = Πτ+δtw 6= 0. It follows that

Πτ+δtX(Πτ+δt −Πτ )w = Πτ+δtXΠτ+δtw = Πτ+δtXw = 0,
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where the second equality holds by the causality of X. This contradicts the hypothesis of

non-singular instantaneous gain and thus TX,τ must be injective for all τ ∈ R, whereby

the algebraic inverse T−1
X,τ : img (TX,τ )→ L2

[τ,∞) is well-defined.

Now suppose to the contrary that T−1
X,τ is not causal for some τ ∈ R, i.e. there exist

δ > 0 and y ∈ img (TX,τ ) ∩ L2[τ + δ,∞) such that with u := T−1
X,τy ∈ L2

[τ,∞), we have

Πτ+δu 6= 0. Observe that

0 = Πτ+δy = Πτ+δTX,τu = Πτ+δXΠτ+δu

= Πτ+δX(Πτ+δ −Πτ )u,

where the second last equality follows from the causality of X and the last from Πτu = 0.

This contradicts the hypothesis that X has non-singular instantaneous gain. Therefore,

T−1
X,τ must be causal for all τ ∈ R.

Lemma 2.1.13 ([JC10, Rem. 3]). Given a causal operator G :=
[

N
M

]
∈ L (L2

R,L
2
R), if

M has non-singular instantaneous gain, then

GL2+ = {v ∈ L2
R | v = Gw; w ∈ L2+} =

⋃
τ∈R

img (TG,τ )

is the graph of a causal operator P : img (M|L2+) ⊂ L2
R → L2

R which satisfies

P|
img

(
M|

L2
[τ,∞)

) = TN,τT
−1
M,τ for all τ ∈ R.

Proof. Note for any τ ∈ R and [ yu ] ∈ img (TG,τ ), there exists by definition a v ∈ L2
[τ,∞)

for which y = TN,τv and u = TM,τv. If u = 0, then v = T−1
M,τu = 0, where T−1

M,τ exists by

Lemma 2.1.12. This implies y = 0 and hence GL2+ is the graph of an operator; call it P.

To show causality of P, suppose Πτ1u = 0 for some τ1 > τ , then Πτ1v = Πτ1T
−1
M,τu = 0,

since by Lemma 2.1.12 T−1
M,τ is causal. This implies Πτ1y = Πτ1TN,τv = 0, where the

last equality follows by the causality of TN,τ , as required for P to be causal.

2.2 Representations of system graphs

Following [JC10, JC11], the developments of closed-loop robustness results in the forth-

coming chapters are underpinned by the following assumptions on the existence of ‘strong

graph representations/symbols’ for causal linear operators. In Sections 2.3, 2.4, and 2.5,

we present classes of systems for which the assumptions are satisfied; namely, finite-

dimensional time-varying state-space systems, distributed-parameter time-invariant sys-
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tems, and generic periodic systems with finite-dimensional ‘realisations’; of these, the

first two classes mentioned have already been examined in [JC10, JC11], and the last is

adapted from [CV04].

Assumption 2.2.1. Given a causal operator P : dom (P) ⊂ L2
R → L2

R, there exist causal

operators N,M, Ñ, M̃,X,Y, X̃, Ỹ ∈ L (L2
R,L

2
R) satisfying the following properties:

1. the double Bezout identity [
Y X

M̃ −Ñ

][
N X̃

M −Ỹ

]
= I;

2. img (G) = ker
(
G̃
)

and G τ
P := GP ∩ L2

[τ,∞) = img (TG,τ ) = ker
(
TG̃,τ

)
for all

τ ∈ R, where

G :=

[
N

M

]
and G̃ :=

[
−M̃ Ñ

]
are respectively called right and left strong graph symbols/representations for P,

respectively.

Assumption 2.2.2. G∗G = I and G̃G̃
∗

= I, i.e. the strong right and left graph symbols

are normalised.

Assumption 2.2.3. H+−
G,τ and H+−

G̃,τ
are compact for all τ ∈ R.

The term ‘strong’ in part 2 of Assumption 2.2.1 is borrowed from [DS93] to emphasise

that right (resp. left) graph symbols have left (resp. right) bounded causal inverses. In

this thesis, graph symbols are always taken to be strong.

Definition 2.2.4. We denote by S the set of causal operators for which all of Assump-

tions 2.2.1, 2.2.2, and 2.2.3 are satisfied.

2.3 Finite-dimensional time-varying systems

Here we summarise several basic notions for LTV systems, and refer to [IS04] for more

details. Consider the finite-dimensional continuous time-varying linear system u 7→ y

described by

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t),
(2.1)
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where t ∈ R and A, B, C, andD are continuous and bounded matrix-valued functions with

A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rp×n, and D(t) ∈ Rp×m. We let X : R→ Rn×n denote

the (invertible) principal fundamental matrix defined by the solution of Ẋ(t) = A(t)X(t)

with X(0) = I, which exists by the assumptions on A [BAG92]. It follows that the state

transition matrix ΦA(t, s) := X(t)X(s)−1 satisfies, for all t, s,∈ R,

d

dt
ΦA(t, s) = A(t)ΦA(t, s), ΦA(t, t) = I, and ΦA(t, τ)ΦA(τ, s) = ΦA(t, s) ∀τ ∈ R.

Definition 2.3.1 ([Cop78]). A continuous, bounded function A : R → Rn×n is said to

define an exponentially dichotomic evolution if there exist τ ∈ R, an associated projection

P = P 2 ∈ Rn×n, ρ ≥ 1, and σ > 0 such that

‖ΦA(t, τ)PΦA(τ, s)‖ ≤ ρe−σ(t−s), ∀t ≥ s

‖ΦA(t, τ)(In − P )ΦA(τ, s)‖ ≤ ρe−σ(s−t), ∀s ≥ t,
(2.2)

where ‖ · ‖ denotes the spectral norm. This implies

img (P ) = {x ∈ Rn : ΦA(·, τ)x ∈ L2
[τ,∞)} and

ker (P ) = {x ∈ Rn : ΦA(−·, τ)x ∈ L2
(−∞,τ)}.

In particular, if P = In, then A is said to define an exponentially stable evolution.

The pair (A,B) is said to be stabilisable if, and only if, there exists a continuous and

bounded F such that A + BF defines an exponentially stable evolution. In contrast,

(C,A) is said to be detectable if, and only if, there exists a continuous and bounded L

such that A+ LC defines an exponentially stable evolution. We assume throughout this

section that all state-space realisations are stabilisable and detectable.

When the matrix function A in a system of the form (2.1) defines an exponentially di-

chotomous evolution, the state-space system can be equivalently interpreted as a bounded

convolution operator Z : L2
R → L2

R given by

(Zu)(t)=D(t)u(t) + C(t)ΦA(t, τ)P

∫ t

−∞
ΦA(τ, s)B(s)u(s) ds (2.3)

− C(t)ΦA(t, τ)(I − P )

∫ ∞
t

ΦA(τ, s)B(s)u(s) ds, (2.4)

where τ ∈ R, P ∈ Rn×n are such that (2.2) is satisfied for A [BAG92, Thm 1.1]. It

follows that A defines an exponentially stable evolution (i.e. P = I) if, and only if, the

corresponding Z is bounded and causal (on the entirety of L2
R). When this is the case, it

follows that the associated forward Hankel operator, H+−
Z,τ is compact for all τ ∈ R. To
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see this, note the Hankel factorisation H+−
Z,τ = LO,τLC,τ , where the observability operator

LO,τ ∈ L (Rn,L2
[τ,∞)) and controllability operator LC,τ ∈ L (L2(−∞, τ ],Rn) are defined

by

(LO,τx)(t) := C(t)ΦA(t, τ)x and LC,τu :=

∫ τ

−∞
ΦA(τ, s)B(s)u(s) ds.

Since LC,τ has finite-dimensional image and LO,τ has finite-dimensional domain, both

operators are compact [Kre89, Thm. 8.1-4]. As such, H+−
Z,τ is compact by Lemma 2.1.1.

Henceforth we denote Z in terms of its state-space realisation:

Z =

(
A B

C D

)
= (A,B,C,D).

Elementary operations on input-output convolution operators are briefly described below;

see [IS04, Section 2.1] for more details. First of all, the Hilbert adjoint of Z is given by

Z∗ = (−AT ,−CT , BT , DT ). If D is boundedly invertible and A − BD−1C defines an

exponentially dichotomic evolution, then Z is boundedly invertible and

Z−1 =

(
A−BD−1C BD−1

−D−1C D−1

)
.

Let Z1 := (A1, B1, C1, D1) and Z2 := (A2, B2, C2, D2). A realisation for their composition

is given by

Z1Z2 =


[
A2 0

B1C2 A1

] [
B2

B1D2

]
[
D1C2 C1

]
D1D2

 . (2.5)

For any τ ∈ R, let

G τ :=

{[
y

u

]
∈ L2

[τ,∞)

∣∣∣∣∣ ∃x ∈ L2
[τ,∞) for which (2.1) is satisfied

}
.

Without assuming that A defines an exponentially dichotomic evolution, it is shown

in [MC10] that if the pairs (A,B) and (C,A) are respectively stabilisable and detectable,
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then

[
N X̃

M −Ỹ

]
:=


A+BF

[
BR−1/2 −LR̃1/2

][
C +DF

F

] [
DR−1/2 R̃1/2

R−1/2 0

]  ;

[
Y X

M̃ −Ñ

]
:=


A+ LC

[
L −(B + LD)

][
R1/2F

R̃−1/2C

] [
0 R1/2

R̃−1/2 −R̃−1/2D

]  ,

where R := I+DTD, R̃ := I+DDT , F := −R−1(DTC+BTX), L := −(BDT+Y CT )R̃−1,

X(t) := lim
tf→∞

X̃(t; tf ), Y (t) := lim
ti→−∞

Ỹ (t; ti), and X̃ = X̃T and Ỹ = Ỹ T are respectively

the solutions to the time-varying single-point boundary-value differential Riccati equations

− ˙̃X = X̃(A−BR−1DTC) + (A−BR−1DTC)T X̃ − X̃BR−1BT X̃ + CT R̃−1C; X̃(tf ; tf ) = 0

˙̃Y = (A−BDT R̃−1C)Ỹ + Ỹ (A−BDT R̃−1C)T − Ỹ CT R̃−1CỸ +BR−1BT ; Ỹ (ti; ti) = 0,

are such that: [
Y X

M̃ −Ñ

][
N X̃

M −Ỹ

]
= I,

img (G) = ker
(
G̃
)

, G τ = img (TG,τ ) = ker
(
TG̃,τ

)
for all τ ∈ R, G∗G = I and

G̃G̃
∗

= I, where

G :=

[
N

M

]
and G̃ :=

[
−M̃ Ñ

]
.

Also see [ABB02, TV92], in which the same result is obtained under stronger assumptions.

As such, a stabilisable and detectable state-space system of the form (2.1) may be

associated with a linear mapping P : img (M|L2+) ⊂ L2
R → L2

R (as in [JC10, JC11]), with

graph

GP := GL2+ = {w | w = Gv for some v ∈ L2+} ⊂ L2+. (2.6)

As discussed in Lemma 2.1.13, since the instantaneous gain of M is inf
t∈R

σ(R−1/2(t)) > 0, P

is a causal operator by the above definition of its graph. Importantly, Assumptions 2.2.1,

2.2.2, and 2.2.3 hold from the preceding developments.

Definition 2.3.2. We denote by V ⊂ S the set of causal operators with stabilisable and

detectable state-space realisations of the form (2.1) and graphs defined as in (2.6).
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2.4 Infinite-dimensional time-invariant systems

In this section, we consider the constantly proper subclass of the Callier-Desoer alge-

bra [CD78, CZ95]. Time-domain systems can be defined via multiplication operators

with symbols in this class using the continuous-time Fourier transform isomorphism, as

discussed below. For this class of systems, the ν-gap metric introduced in Chapter 3 will

be shown in Section 4.6.2 to reduce to the original expression of [Vin93, Vin01, CJK12,

CJK10, CJK09].

Define Cσ+ := {a+ jb | a, b ∈ R, a > σ} with closure Cσ+.

Frequency-domain signal spaces

We define the frequency-domain signal spaces L2
jR (resp. H2

C+
and H2

C−) to comprise of

continuous-time Fourier transforms F of functions in L2
R (resp. L2

[0,∞) and L2
(−∞,0)), so

that

L2
R

F∼ L2
jR (resp. L2

[0,∞)
F∼ H2

C+
and L2

(−∞,0)
F∼ H2

C−),

with F : L2
R → L2

jR defined by (Ff)(jω) := 1√
2π

∫∞
−∞ f(t)e−jωt dt. The inner product

and norm on L2
jR are given by 〈φ̂, ψ̂〉2 :=

∫∞
−∞ φ̂(jω)∗ψ̂(jω) dω and ‖φ̂‖2 := 〈φ̂, φ̂〉

1
2
2 ,

respectively. Let Sτ : L2
R → L2

R denote the continuous-time shift operator defined by

(Sτu)(t) := u(t− τ). Observe that for any u ∈ L2
R,

(FSτu)(jω) = e−jωτ (Fu)(jω),

whereby L2+ =
⋃
τ∈R SτL

2
[0,∞)

F∼
⋃
τ∈R e

−jωτH2
C+

.

A transfer function algebra

Suppose u : [0,∞)→ Rp×m satisfies e−σ·u(·) ∈ L1 for some σ ∈ R, where

L1 :=

{
φ : [0,∞)→ Rp×m

∣∣∣∣ ∫ ∞
0
|φjk(t)| dt <∞

}
.

Then for s ∈ Cσ+, the Laplace transform of u is defined by

û(s) :=

∫ ∞
0

e−stu(t) dt.
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Given σ ∈ R, let A(σ) denote the causal convolution algebra of integral operator kernels

φ(t) =

{
0 for t < 0

φa(t) +
∑∞

i=1 φiδ(t− ti) for t ≥ 0
, (2.7)

where

1. e−σ·φa(·) ∈ L1;

2. t1 = 0 and ti > 0 for i > 1;

3. δ(· − ti) is the Dirac delta centred at ti;

4.
∑∞

i=1 |φi[j, k]|e−σti < ∞, for all j = 1, 2, . . . , p and k = 1, 2, . . . ,m, where φi[j, k]

denotes the (j, k)th entry of φi ∈ Rp×m; and

5. ‖φ[j, k]‖σ :=
∫∞

0 e−σt|φa[j, k](t)| dt+
∑∞

i=1 |φi[j, k]|e−σti .

Each φ ∈ A(σ) has Laplace transform

φ̂(s) =

∫ ∞
0

φa(t)e
−stdt+

∞∑
i=1

φie
−sti ,

defined for all s ∈ Cσ+. The class Â(σ) comprises functions that are Laplace transforms

of kernels in A(σ). Every entry φ̂[j, k] of a φ̂ ∈ Â(σ) is [CZ95, Lem. A.7.47]:

1. analytic on Cσ+;

2. continuous on s = σ + jω for ω ∈ R; and

3. bounded on Cσ+ with sups∈Cσ+ |φ̂[j, k](s)| ≤ ‖φ[j, k]‖σ.

Moreover,

φ̂~ ψ = φ̂ψ̂

for any ψ ∈ A(σ), where ~ denotes convolution product; see [CZ95, Lem. A.7.46].

Let Â := Â(0) and define:

Â− :=
{
φ̂
∣∣∣ φ̂ ∈ Â(σ) for some σ < 0

}
; and

Â∞ :=

{
φ̂ ∈ Â−

∣∣∣∣∣ inf
{s∈C0+ | |s|≥ρ}

σ(φ̂(s)) > 0 for sufficiently large ρ > 0

}
.
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The Callier-Desoer class B̂ [CD78, CZ95] consists of transfer functions in which each entry

belongs to the quotient algebra

Â−
[
Â∞

]−1
:=
{
φ̂ = ν̂µ̂−1

∣∣∣ ν̂ ∈ Â−, µ̂ ∈ Â∞
}
.

Indeed, B̂ encompasses all real-rational proper transfer functions [CZ95, Thm. 7.1.16].

All Φ̂ ∈ B̂ are proper in that for sufficiently large ρ > 0,

sup
{s∈C0+ | |s|≥ρ}

σ̄(Φ̂(s)) <∞;

see [CZ95, Lem. 7.2.5]. Φ̂ is called constantly proper if for some matrix Φ̂∞ ∈ Cp×m,

lim
ρ→∞

[
sup

{s∈C0+ | |s|≥ρ}
σ̄
(

Φ̂(s)− Φ̂∞

)]
= 0.

We use the superscript cp to denote the sub-algebra of transfer functions which are con-

stantly proper. Note, the sub-algebra Âcp
(σ) corresponds to the Laplace transforms of

distributions in A(σ) for which φi = 0, ∀i > 1 in (2.7); see [CZ95, Lem. 7.2.5]. A symbol

φ̂ ∈ Âcp
∞ satisfies φ̂(s)→ φ1 as |s| → ∞ in C0+ [CW90, Fact 1(c)], whereby φ1 is invert-

ible by the definition of Âcp
∞ and hence convolution with φ has non-singular instantaneous

gain (cf. Definition 2.1.10).

Importantly, every transfer function in B̂cp
admits normalised doubly coprime factori-

sation, as shown in the following.

Proposition 2.4.1. Given any P ∈ B̂cp
, there exist N, Ñ,X, Y, X̃, Ỹ ∈ Âcp

− and M̃,M ∈
Âcp
∞ such that

NM−1 = M̃−1Ñ = P ;[
Y X

M̃ −Ñ

][
N X̃

M −Ỹ

]
= I on C0+;

M∗M +N∗N = I and M̃M̃∗ + ÑÑ∗ = I on jR.

Proof. The proof is based on [CZ95, Thm. 7.2.8 and 7.2.14] and the spectral factorisation

result [CW99, Thm. 2.2]. See [CJK09, Thm. 1] for details.
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Frequency-domain multiplication operators

Given any P ∈ B̂cp \ Âcp
− , we define the multiplication operator MP : dom (MP ) ⊂

L2
jR → L2

jR associated with symbol P , by (MPu)(s) := P (s)u(s), for u in

dom (MP ) :=

{
u ∈

⋃
τ∈R

ejωτH2
C+

∣∣∣∣∣ ∀τ ∈ R, u ∈ ejωτH2
C+

=⇒ P (·)u(·) ∈ ejωτH2
C+

}
=
⋃
τ∈R

ejωτ{u ∈H2
C+
| P (·)u(·) ∈H2

C+
}.

(2.8)

If P ∈ Âcp
− , MP : dom (MP ) := L2

jR → L2
jR is defined to be (MPu)(s) := P (s)u(s).

Note that given a P ∈ B̂cp
, P ∈ Âcp

− if, and only if,

MPH
2
C+
⊂H2

C+
and γ̄(MP ) := sup

u∈L2
jR

‖MPu‖2
‖u‖2

= sup
s∈C0+

σ̄(P (s)) =: ‖P‖∞ <∞, (2.9)

in which case we say P is a stable transfer function [CZ95, Thm. A.6.26].

Proposition 2.4.2. Given P ∈ B̂cp
, let N,M, Ñ, M̃ ∈ Âcp

− be coprime factors for P

as in Proposition 2.4.1. Define G :=
[
N
M

]
∈ Âcp

− and G̃ :=
[
−M̃ Ñ

]
∈ Âcp

− . Then

img (MG) = ker
(
M G̃

)
and

GMP
∩ ejωτH2

C+
= img

(
MG|ejωτH2

C+

)
= ker

(
M G̃|ejωτH2

C+

)
∀τ ∈ R, (2.10)

By virtue of the above equation, G and G̃ are respectively called right and left normalised

graph symbols for P .

Proof. We follow the standard argument in [Vin01, Prop. 1.33] and first prove (2.10)

for τ = 0. If [ yu ] ∈ GMP
∩ H2

C+
, then y = NM−1u. Let q := M−1u, we obtain

[ yu ] = Gq. By Proposition 2.4.1, there exists [ Y X ] ∈ Âcp
− such that [ Y X ]G = I. So

q = [ Y X ] [ yu ] ∈ H2
C+

and [ yu ] ∈ img

(
MG|H2

C+

)
. Conversely, if [ yu ] ∈ Gq : q ∈ H2

C+
,

then y = NM−1u = Pu and u, y ∈H2
C+

, so [ yu ] ∈ GMP
∩H2

C+
. As such, GMP

∩H2
C+

=

img

(
MG|H2

C+

)
. Now note that by Proposition 2.4.1, G̃G = 0, whereby

GMP
∩H2

C+
= img

(
MG|H2

C+

)
⊂ ker

(
M G̃|H2

C+

)
.

Conversely, if [ yu ] ∈ H2
C+

and G̃ [ yu ] = 0, then y = M̃−1Ñu = Pu and thus [ yu ] ∈
GMP

∩H2
C+

.
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The case for τ 6= 0 follows the same line of arguments above by replacing throughout

H2
C+

with e−jωτH2
C+

, while noting that given any Φ ∈ Âcp
− ,

MΦ(ejωτH2
C+

) = ejωτMΦH
2
C+
⊂ ejωτH2

C+
∀τ ∈ R.

To see that img (MG) = ker
(
M G̃

)
, note that G̃G = 0 implies img (MG) ⊂ ker

(
M G̃

)
.

Conversely, suppose that [ yu ] ∈ L2
jR and G̃ [ yu ] = 0, then y = M̃−1Ñu = NM−1u. Letting

q := M−1u yields [ yu ] = Gq. As above, since [ Y X ]G = I, q = [ Y X ] [ yu ] ∈ L2
jR, from

which it follows that [ yu ] ∈ img (MG).

By the above proposition, given any P ∈ B̂cp
, we have

GMP
=
⋃
τ∈R

img

(
MG|ejωτH2

C+

)
=
⋃
τ∈R

ker

(
M G̃|ejωτH2

C+

)
.

Remark 2.4.3. If P ∈ Âcp
− is as in Proposition 2.4.2, then

GMP
= img (MG) = ker

(
M G̃

)
,

which is a closed subspace in L2
jR, since MG has a left stable inverse M [Y X ] [Kat80,

Thm. IV.5.2]. The proof is the same as that of Proposition 2.4.2 after replacing H2
C+

with L2
jR throughout.

Equivalent time-domain systems

Definition 2.4.4. Define the set of continuous-time operators

W :=
{

P F
" MP

∣∣∣ P ∈ B̂cp
}
,

where the notation " is defined in Definition 2.1.4.

From (2.8), we have that each P ∈ W is time-invariant in that SτGP ⊂ GP ∀τ ∈ R,

where Sτ denotes the continuous-time shift operator. Furthermore, P is causal because

if u ∈ dom (P) = F−1dom (MP ) is an element of L2
[τ,∞) for some τ ∈ R, then y := Pu ∈

L2
[τ,∞), whereby Πτu = 0 =⇒ Πτy = 0. When Φ ∈ Âcp

− , the element Φ F
" MΦ of W can

be identified with several properties. First of all, in view of (2.9), Φ is bounded on L2
R with

γ̄(Φ) = γ̄(MΦ) = ‖Φ‖∞. Second, Φ is causal by Lemma 2.1.8, since ΦL2
[τ,∞) ⊂ L2

[τ,∞) for

all τ ∈ R by (2.9) and time-invariance. Also, the Hankel operator H+−
Φ,0 is compact [CZ95,
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Lem. 8.2.4]. Exploiting the fact that ΦSτ = SτΦ for all τ ∈ R, note

H+−
Φ,τ := (I−Πτ )Φ|L2

(−∞,τ)
= (I−Πτ )SτΦS−τ |L2

(−∞,τ)

= Sτ (I−Π0)Φ|L2
(−∞,0)

S−τ |L2
(−∞,τ)

= SτH
+−
Φ,0S−τ |L2

(−∞,τ)
,

from which it follows by Lemma 2.1.1 that H+−
Φ,τ is compact for all τ ∈ R.

Given any P ∈ B̂cp
and the corresponding linear time-invariant (LTI) operator P F

"

MP , define the bounded causal operators on L2
R:

N F
" MN ,M

F
" MM , Ñ

F
" M Ñ , M̃

F
" M M̃ ,X

F
" MX ,Y

F
" MY , X̃

F
" M X̃ , Ỹ

F
" M Ỹ ,

where N, Ñ,X, Y, X̃, Ỹ ∈ Âcp
− and M̃,M ∈ Âcp

∞ are as in Proposition 2.4.1. By Proposi-

tion 2.4.2, img (G) = ker
(
G̃
)

and

GP ∩L2
[τ,∞) = img (TG,τ ) = ker

(
TG̃,τ

)
for all τ ∈ R,

where G :=
[

N
M

]
and G̃ :=

[
−M̃ Ñ

]
. H+−

G,τ and H+−
G̃,τ

are compact for all τ ∈ R as

noted before. Furthermore, by Proposition 2.4.1, it holds that[
Y X

M̃ −Ñ

][
N X̃

M −Ỹ

]
= I

and G∗G = I and G̃G̃
∗

= I.

In a nutshell, elements in W satisfy all Assumptions 2.2.1, 2.2.2, and 2.2.3, i.e. W ⊂ S.

Remark 2.4.5. In [JC10, JC11], each P ∈ B̂cp
is associated with a time-domain operator

P : dom (P) ⊂ L2
R → L2

R, with graph

GP :=

{[
y

u

] ∣∣∣∣∣ ŷ = Nŵ; û = Mŵ; ŵ ∈
⋃
τ∈R

ejωτH2
C+

}
,

where N and M are as in Proposition 2.4.1. This association is consistent with the more

general LTV case considered at the end of Section 2.3. Since M ∈ Âcp
∞, convolution

with M (i.e. the operator M F
" MM ) has non-singular instantaneous gain in the time

domain. As such, P is linear and causal by Lemma 2.1.13. Furthermore, P F∼ MP , i.e.

the above definition results in the same time-domain objects as those in W. The use of

multiplication operators as the building block for time-domain operators in this section

is motivated by the fact that in Chapter 5, systems with sampled-data structure have to
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be constructed in the absence of the coprime factors N and M .

2.5 Periodic systems

This section considers a class of periodic systems adapted from [CV04], via the time-lifting

technique [BPFT91, BP92, Yam94, CF95]. Time-domain systems are defined in terms of

frequency-domain multiplication operators as in the previous section.

Signal spaces

The following Hilbert spaces, with h > 0 as a parameter, play a central role in our study

of h-periodic systems:

`2
Z(L2

[0,h)) :=

{
f : Z→ L2

[0,h)

∣∣∣∣∣ ‖f‖2`2Z := 〈f, f〉`2Z <∞, where 〈f, g〉`2Z :=
∞∑

i=−∞
〈fi, gi〉2

}
;

`2
Z+

(L2
[0,h)) :=

{
f ∈ `2

Z(L2
[0,h)) | fi = 0,∀i < 0

}
.

We define L2
T(L2

[0,h)) (resp. H2
D(L2

[0,h))) to comprise of the discrete-time Fourier transform

Z of the signals in `2
Z(L2

[0,h)) (resp. `2
Z+

(L2
[0,h))) so that `2

Z(L2
[0,h))

Z∼ L2
T(L2

[0,h)) and

`2
Z+

(L2
[0,h))

Z∼ H2
D(L2

[0,h)), where the isomorphism [SNF70, Chapter 5]

Z : `2
Z(L2

[0,h))→ L2
T(L2

[0,h)); (Z f)(z) :=
∑
i∈Z

zifi.

The inner product and norm on L2
T(L2

[0,h)) are given by 〈f, g〉L2
T

:=
∫
z∈T〈f(z), g(z)〉2 dz

and ‖f‖2
L2

T
:=

∫
z∈T ‖f(z)‖22 dz, respectively. Similarly, we make use of the relation

L2
R

W h∼ `2
Z(L2

[0,h)), where W h denotes the time-lifting isomorphism [BPFT91, BP92,

Yam94, CF95], defined by

W h : L2
R → `2

Z(L2
[0,h)); (W hf)i(t) = f(hi+ t), t ∈ [0, h).

Together,

L2
R

Z W h∼ L2
T(L2

[0,h)) and L2
[0,∞)

Z W h∼ H2
D(L2

[0,h)).

Now let Di : `2
Z(L2

[0,h)) → `2
Z(L2

[0,h)) denotes the discrete-time shift operator, i.e.

(Diu)(k) := u(k − i) for any i ∈ Z. Similarly, let Sτ : L2
R → L2

R denote the continuous-

time shift operator defined by (Sτu)(t) := u(t − τ) for any τ ∈ R. Observe that for any
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h > 0, k ∈ Z, and u ∈ L2
R,

(Z W hSkhu)(z) = (Z DiW hu)(z) = zk(Z W hu)(z).

Noting L2+ =
⋃
k∈Z

SkhL
2
[0,∞) for any h > 0, it follows

⋃
k∈Z

zkH2
D(L2

[0,h)) = Z W hL
2+. We

may often drop the codomain of the functions in these spaces, i.e. L2
[0,h), for notational

convenience.

Transfer functions

The following class of rational transfer functions [CV04] is the central object of study:

L :=

 P = z 7→ zC(I − zA)−1B +D

∈ L (C,L (L2
[0,h),L

2
[0,h))) (a.e.)

∣∣∣∣∣∣∣
A ∈ Cn×n; B ∈ L (L2

[0,h),C
n);

C ∈ L (Cn,L2
[0,h));

D ∈ L (L2
[0,h),L

2
[0,h)) is causal

 ,

where by causality of D we mean ΠτD(I−Πτ ) = 0∀τ ∈ [0, h). For any transfer function

P (z) = zC(I − zA)−1B + D ∈ L, we denote its non-unique realisation by (A,B,C,D).

The order/complexity of a realisation of a transfer function is defined to be the dimension

of its ‘A’ matrix. A minimal realisation is one of minimal order [Can98, Section 2.4.1].

Define the stable subclass of L as

LH∞D = {P ∈ L | if (A,B,C,D) is a minimal realisation for P, then spec(A) ⊂ D} ,

where spec(·) the spectrum of a matrix. Note that every P ∈ LH∞D is analytic on D and

has finite infinity-norm ‖P‖∞ := supz∈D γ̄(P (z)).

Given P (z) = zC(I − zA)−1B +D ∈ L, its corresponding para-Hermitian conjugate

function is given by P ∗(z) = B∗(zI −A∗)−1C∗ +D∗. Note that unless D is memoryless,

P ∗ /∈ L. P is invertible as an element in L, i.e. P−1 ∈ L, if, and only if, its feedthrough

term D ∈ L (L2
[0,h),L

2
[0,h)) has a bounded causal inverse. In this case, a realisation for

the inverse is given by

P−1 =

(
A−BD−1C BD−1

−D−1C D−1

)
. (2.11)

Given P1 = (A1, B1, C1, D1) ∈ L and P2 = (A2, B2, C2, D2) ∈ L of compatible dimen-
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sions, a representation of their product is given by

P1P2 =


[
A1 B1C2

0 A2

] [
B1D2

B2

]
[
C1 D1C2

]
D1D2

 =


[
A2 0

B1C2 A1

] [
B2

B1D2

]
[
D1C2 C1

]
D1D2

 ∈ L.

Likewise, for addition,

P1 + P2 =


[
A1 0

0 A2

] [
B1

B2

]
[
C1 C2

]
D1 +D2

 ∈ L.

Definition 2.5.1. Given P ∈ L, P is said to admit normalised doubly coprime factorisa-

tions if there exist coprime factorsN,M, Ñ, M̃ ,X, Y, X̃, Ỹ ∈ LH∞D such thatM−1, M̃−1 ∈
L and [

Y X

M̃ −Ñ

][
N X̃

M −Ỹ

]
= I; NM−1 = M̃−1Ñ = P ;

M∗M +N∗N = I; M̃M̃∗ + ÑÑ∗ = I.

Proposition 2.5.2. Given any P = (A,B,C,D) ∈ L, if D∗D and DD∗ are Hilbert-

Schmidt operators, then P admits normalised doubly coprime factorisations as per Def-

inition 2.5.1 by construction. To be specific, let R := I + D∗D and R̃ := I + DD∗.

Suppose without loss of generality that the realisation (A,B,C,D) is minimal [Can98,

Section 2.4.1], then one realisation of the required coprime factors is given by

[
N X̃

M −Ỹ

]
:=


A+BF

[
BV −LS−1

][
C +DF

F

] [
DV S−1

V 0

]  ;

[
Y X

M̃ −Ñ

]
:=


A+ LC

[
L −(B + LD)

][
V −1F

SC

] [
0 V −1

S −SD

]  ,

where

F := −(R+B∗XB)−1(B∗XA+D∗C); L := −(BD∗ +AY C∗)(R̃+ CY C∗);

V and S are causal operators in L (L2
[0,h),L

2
[0,h)) with bounded causal inverses satisfying

(R + B∗XB)−1 = V V ∗ and (R̃ + CY C∗)−1 = SS∗; and 0 ≤ X = X∗ ∈ Cn×n, 0 ≤ Y =

Y ∗ ∈ Cn×n are the stabilising solutions to the discrete-time finite-dimensional algebraic
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Riccati equations1

X = (A−BR−1D∗C)∗X(I +BR−1B∗X)−1(A−BR−1D∗C) + C∗R̃−1C;

Y = (A−BD∗R̃−1C)Y (I + C∗R̃−1CY )−1(A−BD∗R̃−1C)∗ +BR−1B∗

which satisfy spec(A+BF ) ⊂ D and spec(A+ LC) ⊂ D.

Proof. This mainly follows from [Can98, Lem. 5.4], where verification of the conditions

of Definition 2.5.1 is achieved by direct calculations. Additional effort is required in the

setting here to show that the square-root factors V and S can be taken to be causal and

causally invertible, as required for N,M, Ñ, M̃ ,X, Y, X̃, Ỹ ,M−1, M̃−1 to reside in L. This

follows by the so-called ‘triangular’ spectral factorisation results in [AHM09, Prop 2.2 and

Thm. 3.7]. In particular, note that because B∗XB and CY C∗ are finite-rank operators

(specifically, compositions of three finite-rank operators), they are of the Hilbert-Schmidt

class [GGK90, Cor. VIII.2.4]. Consequently, since D∗D and DD∗ are Hilbert-Schmidt

by hypothesis, D∗D+B∗XB and DD∗+CY C∗ are also Hilbert-Schmidt [GGK90, Thm.

2.3]. As such, by [AHM09, Prop 2.2 and Thm. 3.7], I + D∗D + B∗XB and I + DD∗ +

CY C∗ admit ‘triangular’ spectral factorisations, i.e. there exist causal V, V −1, S, S−1 ∈
L (L2

[0,h),L
2
[0,h)) such that

I +D∗D +B∗XB = V −1(V −1)∗ and I +DD∗ + CY C∗ = S−1(S−1)∗,

as required.

In light of the preceding development, we have the following definition.

Definition 2.5.3. Define the following subsets of L:

LCF := {P ∈ L | P admits normalised doubly coprime factorisations};

LHS := {P = (A,B,C,D) ∈ L | D∗D and DD∗ are Hilbert-Schmidt}.

Note that LHS ⊂ LCF by Proposition 2.5.2.

Multiplication operators

Recall that
⋃
k∈Z z

kH2
D = Z W hL

2+. Given a P ∈ L \LH∞D , define the associated

multiplication operator, MP : dom (MP ) ⊂ L2
T → L2

T, to be (MPu)(z) := P (z)u(z),

1Note that the solutions X and Y exist by the minimality of (A,B,C,D) [Can98, Prop. 2.20].
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where

dom (MP ) :=

{
u ∈

⋃
k∈Z

zkH2
D

∣∣∣∣∣ if u ∈ zjH2
D for some j ∈ Z, then P (·)u(·) ∈ zjH2

D

}
=
⋃
k∈Z

zk
{
u ∈H2

D
∣∣ P (·)u(·) ∈H2

D
}
.

When P ∈ LH∞D , MP : dom (MP ) := L2
T → L2

T is defined to be (MPu)(z) := P (z)u(z).

Note that given a P ∈ L, P ∈ LH∞D if, and only if,

MPH
2
D ⊂H2

D and γ̄(MP ) := sup
‖u‖

L2
T

=1
‖MPu‖L2

T
= sup

z∈D
γ̄(P (z)) =: ‖P‖∞ <∞,

in which case we say P is a stable transfer function [SNF70, Chapter 5].

Proposition 2.5.4. Given a P ∈ LCF , let N,M, Ñ, M̃ ∈ LH∞D be coprime factors for

P as in Definition 2.5.1. Define G :=
[
N
M

]
∈ LH∞D and G̃ :=

[
−M̃ Ñ

]
∈ LH∞D . Then

img (MG) = ker
(
M G̃

)
and

GMP
∩ zkH2

D = img
(
MG|zkH2

D

)
= ker

(
M G̃|zkH2

D

)
∀k ∈ Z.

By virtue of the above equation, G and G̃ are respectively called right and left normalised

graph symbols for P .

Proof. The proof follows the same line of argument as in Proposition 2.5.4.

By the above proposition, given any P ∈ LCF , we have

GMP
=
⋃
k∈Z

img
(
MG|zkH2

D

)
=
⋃
k∈Z

ker
(
M G̃|zkH2

D

)
.

Remark 2.5.5. If the P ∈ LCF in Proposition 2.5.4 is an element of LH∞D , then

GMP
= img (MG) = ker

(
M G̃

)
,

which is a closed subspace in L2
T, since MG has a left stable inverse M [Y X ] [Kat80,

Thm. IV.5.2]. The proof is the same as that of Proposition 2.5.4 after replacing H2
D with

L2
T throughout.
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Time-domain systems

Given a P ∈ L, observe that for any i ∈ Z, if [ yu ] ∈ GMP
, i.e. y, u ∈ zkH2

D for some

k ∈ Z and y = MPu, then

[
ziy

ziu

]
∈ GMP

because ziy, ziu ∈ zi+kH2
D and MP (ziu) = ziy.

Consequently, the discrete-time operator Pd
Z
" MP is a shift-invariant operator in the

sense that for all i ∈ Z, DiGPd ⊂ GPd . In light of the fact that W −1
h Di = SihW

−1
h ∀i ∈ Z,

it follows that with P W h
" Pd

Z
" MP (cf. Definition 2.1.4), we have

SihGP ⊂ GP ∀i ∈ Z.

In other words, P Z W h
" MP is a continuous-time linear periodically time-varying (LPTV)

operator with period h. Furthermore, P is a causal operator. To see this, suppose

a realisation for P ∈ L is (A,B,C,D). Now given any
[
ŷ
û

]
∈ GMP

, there exists by

definition a j ∈ Z such that û, ŷ ∈ zjH2
D and ŷ = MP û. In particular,

ŷ(z) = P (z)û(z) = (zC(I − zA)−1B +D)û(z).

As such,
[
ȳ
ū

]
:= Z −1

[
ŷ
û

]
∈ GPd ∩ Dj`

2
Z+

can be described by the convolution opera-

tion [IOW99, Section 2.6]:

ȳk =
k−1∑
i=j

CAk−i−1Būi +Dūk, ∀k ≥ j.

Since D is causal by definition, it follows that [ yu ] := W −1
h

[
ȳ
ū

]
∈ GP ∩ L2[j,∞) is such

that y depends causally on u. In consequence, P is causal, as claimed.

Definition 2.5.6. We define the following classes linear periodically time-varying (LPTV)

systems with transfer function representations in L:

P :=
{

P Z W h
" MP : P ∈ L

}
;

PCF :=
{

P Z W h
" MP : P ∈ LCF ⊂ L

}
⊂ P;

PHS :=
{

P Z W h
" MP : P ∈ LHS ⊂ LCF

}
⊂ PCF ,

where LCF and LHS are as in Definition 2.5.3.

We verify below that all of Assumptions 2.2.1, 2.2.2, and 2.2.3 are satisfied by operators

in PCF , i.e. PCF ⊂ S.

Given any (stable) Φ = (A,B,C,D) ∈ LH∞D , any [ yu ] ∈ GΦd
, where Φd

Z
" MΦ, can
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be described by the convolution operation [IOW99, Thm. 2.6.1]:

yk =
k−1∑
i=−∞

CAk−i−1Bui +Duk,∀k ∈ Z. (2.12)

Since D is causal by definition, it follows that Φ W h
" Φd is a bounded causal operator on

L2
R with γ̄(Φ) = γ̄(MΦ) = ‖Φ‖∞ and γ(Φ) = γ(MΦ) = infz∈D γ(Φ(z)). Also, for any

τ ∈ R, the Hankel factorisation H+−
Φ,τ = LO,τLC,τ holds, where the observability operator

LO,τ ∈ L (Cn,L2
[τ,∞)) and the controllability operator LC,τ ∈ L (L2

(−∞,τ),C
n) are defined

by

(LO,τx)(t) :=
(
CAj(t)x

) (
t−

(
k + j(t)

)
h
)
, t ≥ τ and LC,τu :=

k−1∑
i=−∞

Ak−i−1B(W hu)i,

in which k := bτ/hc, j(t) := b(t− kh)/hc, and b·c denotes the floor function. Since LC,τ

has finite-dimensional image and LO,τ has finite-dimensional domain, both operators are

compact [Kre89, Thm. 8.1-4]. This implies that H+−
Φ,τ is compact by Lemma 2.1.1.

Now, given any P ∈ LCF and the corresponding LPTV operator P Z W h
" MP , define

the bounded causal operators

N Z W h
" MN ,M

Z W h
" MM , Ñ

Z W h
" M Ñ , M̃

Z W h
" M M̃ ,

X Z W h
" MX ,Y

Z W h
" MY , X̃

Z W h
" M X̃ , Ỹ

Z W h
" M Ỹ ,

where N,M, M̃, Ñ ,X, Y, X̃, Ỹ ∈ LH∞D are as in Definition 2.5.1. By the properties of

coprime factors and the preceding developments, it follows that[
Y X

M̃ −Ñ

][
N X̃

M −Ỹ

]
= I,

G∗G = I, G̃G̃
∗

= I, and H+−
G,τ and H+−

G̃,τ
are compact for all τ ∈ R, where G :=

[
N
M

]
and G̃ := [−M̃ Ñ ]. Moreover, by Proposition 2.5.4, we have that img (G) = ker

(
G̃
)

and

GP ∩L2[kh,∞) = img (TG,kh) = ker
(
TG̃,kh

)
for all k ∈ Z. In fact, it can be shown that

GP ∩L2
[τ,∞) = img (TG,τ ) = ker

(
TG̃,τ

)
for all τ ∈ R. (2.13)

To be precise, given any k ∈ Z and τ ∈ [kh, (k+ 1)h), note that img (TG,τ ) ⊂ L2
[τ,∞) and

img (TG,τ ) ⊂ GP∩L2[kh,∞) by (2.13), and hence img (TG,τ ) ⊂ GP∩L2
[τ,∞). Conversely,

suppose that [ yu ] ∈ GP ∩ L2
[τ,∞), then from (2.13) there exists a q ∈ L2[kh,∞) such that

[ yu ] = TG,khq. In fact, it can be shown that q ∈ L2
[τ,∞), so that [ yu ] = TG,τq, whereby
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GP∩L2
[τ,∞) ⊂ img (TG,τ ). To see this, suppose to the contrary that Πτq 6= 0. Let D be the

feedthrough D-term of M . Therefore, from (2.12), u(t) = (Dq)(t) and (D−1u)(t) = q(t)

for t ∈ [kh, (k + 1)h). Note that Πτu = 0 since u ∈ L2
[τ,∞), from which it follows that

D−1 is not causal, contradicting M−1 ∈ L. Similar arguments can be used to establish

GP ∩L2
[τ,∞) = ker

(
TG̃,τ

)
.

In summary, all of Assumptions 2.2.1, 2.2.2 and 2.2.3 hold, leading to the fact that

PCF ⊂ S.

2.6 Summary

This chapter presents the preliminary material. The notion of operator equivalence is

utilised to define time-domain linear operators based on frequency-domain objects. Three

generic classes of linear systems are presented and shown to satisfy assumptions on the

existence of normalised strong graph representations/symbols. Subsequent chapters de-

velop robust stability analysis results for abstract operators assumed to admit such graph

representations and the system classes here serve as examples of operators of this kind.

Restrictions to these specific classes of systems from the abstract setting take place on

several occasions later in the thesis, where certain additional results may be derived. In

particular, see Sections 3.4, 4.6, and Chapter 5.



Chapter 3

Robust stability analysis via the

ν-gap metric

In this chapter, we define a notion of closed-loop stability for continuous linear time-

varying (LTV) systems, which implicitly contains an arrow of time [GS10]. Robust sta-

bility results for feedback systems are derived. The development is underpinned only

by the assumptions on the existence of normalised strong graph symbols/representations

stated in Section 2.2. Building on the initial work in [JC10, JC11], the definition of the

ν-gap metric is motivated here via a necessary and sufficient Fredholm index condition

for the stability of an uncertain feedback interconnection, contingent on a robust stability

margin of the nominal closed-loop being sufficiently large. A lower bound on robust sta-

bility margin of the perturbed feedback systems is derived thereupon. We also consider

the variation of a closed-loop mapping, used to gauge performance and robustness, as an

open-loop component of the feedback interconnection is perturbed. Uniform upper and

lower bounds on the induced norm of the difference are established in terms of the ν-gap

distance between the perturbed and nominal systems. From these bounds it follows that

the ν-gap metric induces the coarsest topology with respect to which closed-loop stability

is maintained in small neighbourhoods and closed-loop performance varies continuously.

All of the aforementioned results have their time-invariant roots in [Vin93, Vin01].

Towards addressing the issue of potential conservatism, with respect to the robust sta-

bility margin, in closed-loop analysis via the generalised ν-gap metric, the class of causal

linear periodically time-varying (LPTV) systems introduced in Section 2.5 is considered

via the well-known time-lifting [BPFT91, BP92, Yam94, CF95] isomorphism also dis-

cussed therein. Importantly, this system class includes from an operator-theoretic point

of view finite-dimensional linear time-invariant (LTI) systems and periodic sampled-data

systems, thereby laying the foundation for the work in Chapter 5 on sampled-data ap-

33
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proximation. A necessary condition for robust stability, analogous to the LTI results

in [Vin01], is then derived. This leads to a quantitative measure of the maximal ν-gap

ball of causal LPTV perturbations a feedback system can sustain while preserving internal

stability.

The chapter is organised as follows. In Section 3.1 we present some properties of

Fredholm, Wiener-Hopf, and Hankel operators, which are useful in the modelling of sys-

tem behaviour as in [JC10, JC11]. In Section 3.2 a generalised definition of feedback

stability is stated and characterised in terms of system graph symbols as in [JC10, JC11].

Section 3.3 contains the definition of the ν-gap metric from [JC10, JC11], sufficient condi-

tions for robust stability, and bilateral bounds on closed-loop errors. Finally, we consider

a class of LPTV systems and derive a necessary and sufficient robust stability condition

in Section 3.4.

3.1 Preliminaries

3.1.1 Fredholm operators

The use of Fredholm theory in ν-gap metric based analysis is initially suggested in [Vin93,

Vin01] to extend the concept of winding number of a closed Nyquist curve for irrational

transfer functions via the Fredholm index; see [CJK12, CJK10, CJK09] for a more com-

plete development. This is further generalised in [JC10, JC11] to linear time-varying

systems.

Definition 3.1.1. An operator X ∈ L (H1,H2) is of Fredholm type if both dim ker (X)

and codim img (X) = dim coker(X) = dim ker (X∗) are finite, where dim denotes the

dimension of a subspace and coker denotes the quotient space of the codomain by the

image. In this case, the Fredholm index of X is defined to be

ind(X) := dim ker (X)− codim img (X) .

Note that a bijective X is necessarily Fredholm with

dim ker (X) = codim img (X) = ind(X) = 0.

Lemma 3.1.2. Let X ∈ L (H1,H2) and Z ∈ L (H2,H3) be Fredholm operators. The

following hold:

(i) X∗ is Fredholm and ind(X∗) = −ind(X);

(ii) ZX is Fredholm and ind(ZX) = ind(Z) + ind(X);
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(iii) if Y ∈ L (H1,H2) is such that γ(X) > γ̄(Y), then X + Y is Fredholm and

ind(X + Y) = ind(X);

(iv) if K ∈ L (H1,H2) is a compact operator, then X + K is Fredholm and

ind(X + K) = ind(X).

Proof. (i) See [Kat80, Cor. IV.5.14];

(ii) See [GGK90, Thm. XI.3.2];

(iii) This follows from the more general [Kat80, Thm. IV.5.22], in which the relative

gain term b can be taken to be 0 because Y is bounded. See also [JC10, Lem. 1];

(iv) See [GGK90, Thm. XI.4.2] or [Kat80, Thm. IV.5.26].

3.1.2 Wiener-Hopf and Hankel operators

We collect here a number of useful results on families of generalised Wiener-Hopf (a.k.a.

Toeplitz) and Hankel operators defined in Definition 2.1.9 of Section 2.1. As reported

in [JC10, JC11], these operators play an important role in ν-gap metric based stability

analysis of time-varying feedback systems in conjunction with the theory of Fredholm

operators.

Lemma 3.1.3. Let X,Y ∈ L (L2
R,L

2
R), the following hold:

(i) If X is causal then TX,τ = X|L2
[τ,∞)

and TX,τ is causal for all τ ∈ R;

(ii) If X and Y are causal and TX,τ = TY,τ for all τ ∈ R, then X = Y.

(iii) If TX,τ is causal for all τ ∈ R, then X is causal;

(iv) The mixed Toeplitz-Hankel composition identity

TYX,τ = TY,τTX,τ + H+−
Y,τH

−+
X,τ ,∀τ ∈ R.

If X is causal or Y is anti-causal, then TYX,τ = TY,τTX,τ ,∀τ ∈ R;

(v) If X is causal, then γ̄(X) = sup
τ∈R

γ̄(TX,τ ) and γ(X) = inf
τ∈R

γ(TX,τ ).
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Proof. (i): See [JC10, Lem. 4]. In particular, since X is causal, ΠτX|L2
[τ,∞)

= 0. Hence

TX,τ = (I−Πτ )X|L2
[τ,∞)

= X|L2
[τ,∞)

.

Causality of TX,τ then follows from that of X.

(ii): Since L2+ is dense in L2
R, given any u ∈ L2

R, there exists a sequence {vi} in L2+

such that vi → u. Note that X and Y are continuous because they are bounded [Kre89,

Thm. 2.7-9], whereby Xvi → Xu and Yvi → Yu. But Xvi = Yvi ∀i by hypothesis and

part (i) of the lemma, and hence Xu = Yu, by the uniqueness of the limit of a convergent

sequence. Since u ∈ L2
R is arbitrary, it follows that X = Y.

(iii): Suppose X is not causal, then there exists a τ ∈ R such that TX,τ is not causal.

In particular, non-causality of X implies the existence of a τ̂ ∈ R and a u ∈ L2[τ̂ ,∞)

such that with y := Xu, Πτ̂y 6= 0. In other words, Πτ̂y is a nonzero signal in L2(−∞, τ̂).

As such, there exists a τ < τ̂ for which (I−Πτ )Πτ̂y 6= 0. It follows that

Πτ̂TX,τu = Πτ̂ (I−Πτ )Xu = Πτ̂ (I−Πτ )y = (I−Πτ )Πτ̂y 6= 0,

i.e. TX,τ is not causal.

(iv): See [JC10, Lem. 4]. In particular, notice that

TYX,τ = (I−Πτ )YX|L2
[τ,∞)

= (I−Πτ )Y
(
(I−Πτ ) + Πτ

)
X|L2

[τ,∞)

= TY,τTX,τ + H+−
Y,τH

−+
X,τ .

Furthermore, when X is causal, H−+
X,τ = 0; whereas when Y is anti-causal, H+−

Y,τ = 0.

(v): First note that

γ̄(X) ≥ sup
τ∈R

γ̄(TX,τ ) and γ(X) ≤ inf
τ∈R

γ(TX,τ ), (3.1)

where the second inequality holds since TX,τ = X|L2
[τ,∞)

, by part (i) of the lemma. Also,

by the definition of γ̄(X), for any ε > 0, there exists a u ∈ L2
R such that ‖u‖2 = 1

and γ̄(X) − ‖Xu‖2 < ε
2 . Now recall that boundedness of X implies its continuity on

L2
R [Kre89, Thm. 2.7-9], whereby there exists a δ > 0 such that ‖X(u− v)‖2 < ε

2 for any

v ∈ L2
R satisfying ‖u− v‖2 < δ. Since L2+ is dense in L2

R, there exists a τ̂ ∈ R such that

v ∈ L2[τ̂ ,∞), v(t) = u(t)∀t ≥ τ̂ and ‖u − v‖2 < δ. Note because ‖u‖2 = 1, ‖v‖2 ≤ 1,
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whereby
‖TX,τ̂v‖2
‖v‖2 ≥ ‖TX,τ̂v‖2. As such,

γ̄(X)−
‖TX,τ̂v‖2
‖v‖2

≤ γ̄(X)− ‖TX,τ̂v‖2 = γ̄(X)− ‖Xv‖2

= γ̄(X)− ‖Xu−X(u− v)‖2
≤ γ̄(X)− ‖Xu‖2 + ‖X(u− v)‖2

<
ε

2
+
ε

2
= ε.

Since ε was arbitrary, it follows from (3.1) that γ̄(X) = supτ∈R γ̄(TX,τ ). The case for

γ(X) can be shown using the same line of argument.

Remark 3.1.4. The mixed Hankel-Toeplitz composition identity in Lemma 3.1.3(iv) has

been explored in various contexts; see, for example, [IS04], [ZM88], and [BSK06, Chapter

2]. As demonstrated in [JC10, JC11], the identity is imperative to subsequent robustness

analysis for feedback interconnections of causal linear time-varying systems.

Remark 3.1.5. By Lemma 3.1.3(iv), when X,X−1 ∈ L (L2
R,L

2
R) are both causal, we

have T−1
X,τ = TX−1,τ for all τ ∈ R. This implies TX,τ is Fredholm with ind(TX,τ ) =

0∀τ ∈ R.

Lemma 3.1.6 ([JC10, Lem. 3]). Given an X ∈ L (L2
R,L

2
R) and any τ ∈ R, the Wiener-

Hopf operator TX,τ : L2
[τ,∞) → L2

[τ,∞) has a bounded inverse if, and only if,

γ(TX,τ ) > 0 and TX,τ is Fredholm with ind(TX,τ ) = 0.

Proof. Necessity is straightforward since when TX,τ has a bounded inverse, it is bijec-

tive and γ(TX,τ ) = 1/γ̄(T−1
X,τ ) > 0. For sufficiency, note that γ(TX,τ ) > 0 implies

ker (TX,τ ) = {0}, whereby codim img (TX,τ ) = dim ker (TX,τ ) − ind(TX,τ ) = 0. Hence,

TX,τ is bijective. That the inverse is bounded follows from the bounded inverse theo-

rem [Kre89, Thm. 4.12-2].

3.2 Stability of feedback systems

In this section we introduce the generalised notion of closed-loop stability and derive a

useful characterisation in terms of system graph symbols/representations. While initial

versions of these appear in [JC10, JC11], some effort is required here to establish additional

useful properties of graph symbols and to rigorously account for the slightly amended

definition of feedback stability, which now implicitly embeds an arrow of time [GS10].
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In Section 3.2.1, the stability of feedback interconnections of linear time-varying sys-

tems is defined. Discussions of causality and the well-known difficulties of classical double-

axis input-output approaches to stability analysis are provided. Properties of graph sym-

bols / representations are developed in Section 2.2, leading to a useful characterisation

of closed-loop stability in Section 3.2.3. This is central to the development of the main

robustness results.

3.2.1 Feedback stability

?
dye

?
yc

C

uc
-− e
6du

6up

P

yp
�
−

Figure 3.1: Standard feedback configuration

The feedback interconnection described by the following and illustrated in Figure 3.1

is the main object of study:

dy = yc + yp; du = up + uc; yp = Pup; uc = Cyc, (3.2)

where P : dom (P) ⊂ L2
R → L2

R and C : dom (C) ⊂ L2
R → L2

R are two causal linear

operators.

Definition 3.2.1. The feedback interconnection of P and C, denoted [P,C], is said to

be internally stable if for all τ ∈ R, FP,C,τ is bijective, where

FP,C,τ : (dom (C)× dom (P)) ∩L2
[τ,∞) → L2

[τ,∞)[
yc

up

]
7→

[
dy

du

]
=

[
I P

C I

][
yc

up

]

and supτ∈R γ̄(F−1
P,C,τ ) <∞. We say that P is feedback stabilisable if there exists a causal

C such that [P,C] is stable.

Lemma 3.2.2. If [P,C] is stable in the sense of Definition 3.2.1, then F−1
P,C,τ is neces-

sarily causal for every τ ∈ R.

Proof. According to the definition of feedback stability, FP,C,τ : dom (FP,C,τ )→ L2[τ,∞),
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where dom (FP,C,τ ) := (dom (C)×dom (P))∩L2[τ,∞), is bijective for every τ ∈ R. Note

that, for real τ2 ≥ τ1,

FP,C,τ2 = FP,C,τ1 |dom(FP,C,τ2), (3.3)

since dom (FP,C,τ2) ⊂ dom (FP,C,τ1). Moreover, note that

dom
(
F−1

P,C,τ2

)
= L2[τ2,∞) ⊂ L2[τ1,∞) = dom

(
F−1

P,C,τ1

)
.

For a fixed τ1 ∈ R, suppose to the contrapositive that there exist x ∈ L2[τ1,∞) and

τ2 > τ1 for which Πτ2x = 0 (i.e. x ∈ L2[τ2,∞)) and Πτ2F
−1
P,C,τ1

x 6= 0; in other words,

suppose that F−1
P,C,τ1

is not causal. Let z1 := F−1
P,C,τ1

x and z2 := F−1
P,C,τ2

x. Then

FP,C,τ1z1 = x = FP,C,τ2z2 = FP,C,τ1z2,

where (3.3) has been used. As such, FP,C,τ1(z1 − z2) = 0, which implies z1 = z2 ∈
L2[τ2,∞), since ker (FP,C,τ1) = {0}. This contradicts the hypothesis that Πτ2z1 6= 0.

Thus, F−1
P,C,τ1

must be causal, as claimed.

Remark 3.2.3. Lemma 3.2.2 illustrates that causality of the closed-loop mapping is

encapsulated in the definition of feedback stability. In other words, causality can be

importantly viewed as a property that is preserved through feedback interconnections

that are stable in the generalised sense of Definition 3.2.1. This is consistent with the

viewpoint in [DN70, GS10], where it is argued that a proper definition of closed-loop

stability must incorporate causality, or a so-called ‘arrow of time’. We note a non-singular

instantaneous gain assumption is used in [JC10, JC11] to guarantee causality; this appears

to be redundant in light of Lemma 3.2.2.

Example 3.2.4. Consider the feedback interconnection (3.2) involving two causal LTI

operators

P : L2
R → L2

R

up 7→ yp, yp(t) = up(t− δ)− up(t) and

C : L2
R → L2

R

yc 7→ uc, uc(t) = −yc(t),

(3.4)

for some δ > 0. This example is taken from [Wil71, Section 4.3.2] to demonstrate that

a feedback interconnection of two bounded causal operators is not necessarily causal1.

Indeed, let f be a function in L2
[0,∞) that is non-zero on [0, δ) and set

[
dy
du

]
:=
[

0
f

]
∈ L2

[0,∞).

1The feedback interconnection of the two systems described in (3.4) is said to be ill-posed in [Wil71].
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It follows that the corresponding up satisfying (3.2) is given by up(·) = du(·+ δ) /∈ L2
[0,∞),

whereby FP,C,0 =
[ yc
up

]
∈ L2

[0,∞) 7→
[
dy
du

]
∈ L2

[0,∞) is not bijective. As such, [P,C] is not

internally stable in accordance with Definition 3.2.1.

Remark 3.2.5. In Definition 3.2.1, bounded invertibility of the closed-loop operator is

required on a singly infinite space L2
[τ,∞), for all possible ‘initial times’ τ ∈ R. A necessary

condition is that the truncated graphs G τ
P and G ′ τC are closed subspaces of L2[τ,∞) [DS93,

Thm 6.2][FGS93, Prop. 1]; this is the case under the assumptions of Section 2.2, whereby

‘strong’ graph symbols exist; see Remark 3.2.10. Invertibility over the doubly infinite L2
R

is not considered since for causal systems of importance P : dom (P) ⊂ L2
R → L2

R and

C : dom (C) ⊂ L2
R → L2

R, the L2
R-graphs GP and G ′C may not be closed subspaces of

L2
R [GS95, JP00, Par04]. An example of such system, taken from [GS95], is

(Piu)(t) :=

∫ ∞
−∞

hi(t− τ)u(τ) dτ =: (hi ~ u)(t), t ∈ R,

where

h1(t) :=

{
et t ≥ 0

0 otherwise
and h2(t) :=

{
−et t ≤ 0

0 otherwise
.

Note that P1 is causal, P2 is anti-causal, and GP2 ⊂ cl GP1 [GS95], where cl denotes the

closure of a subspace.

Our viewpoint is consistent with the ‘behavioural’ theory of [BFP08], where system

behaviour is effectively defined on doubly-infinite time-axis while closed-loop stability

requires boundedness mappings of signals of semi-infinite support.

Remark 3.2.6. [Fei98] presents a robust stability theory in a discrete and semi-infinite

time setting (i.e. with a fixed ‘initial’ time), where invertibility and causal invertibility of

causal systems are equivalent (lower triangular matrices have lower triangular inverses).

This is not the case in general for continuous-time systems defined on the doubly infinite

time axis, motivating the importance of Lemma 3.2.2.

Remark 3.2.7. By requiring FP,C,τ to be invertible for all τ ∈ R, Definition 3.2.1 does

not attribute significance to any particular ‘initial time’ in line with the time-varying

setting of this thesis. The definition generalises from LTI systems, in which case it is

enough to only test bounded invertibility of FP,C,0, since this is equivalent to bounded

invertibility at any initial time by shift-invariance.
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Given a stable feedback interconnection [P,C], for each τ ∈ R let

ΠG τP‖G
′ τ
C

:=

[
dy

du

]
∈ L2

[τ,∞) 7→

[
yp

up

]
∈ G τ

P =

[
−I 0

0 I

]
F−1

P.C,τ +

[
I 0

0 0

]
and

ΠG ′ τC ‖G
τ
P

:=

[
dy

du

]
∈ L2

[τ,∞) 7→

[
yc

uc

]
∈ G ′ τC =

[
I 0

0 −I

]
F−1

P,C,τ +

[
0 0

0 I

]
,

(3.5)

where dy, du, yp, up, yc, and uc satisfy (3.1). The notation reflects that these are parallel

projection operators onto and along the restricted graphs G τ
P and G ′ τC , which are of

importance in robust stability and performance analysis [DGS93, FGS93, CV02]. These

operators satisfy the following identities for all τ ∈ R:

ΠG τP‖G
′ τ
C

+ ΠG ′ τC ‖G
τ
P

= I;

ΠG τP‖G
′ τ
C

(
ΠG τP‖G

′ τ
C
x1 + ΠG ′ τC ‖G

τ
P
x2

)
= ΠG τP‖G

′ τ
C
x1 ∀x1, x2 ∈ L2

[τ,∞);

ΠG ′ τC ‖G
τ
P

(
ΠG ′ τC ‖G

τ
P
x1 + ΠG ′ τC ‖G

τ
P
x2

)
= ΠG ′ τC ‖G

τ
P
x1 ∀x1, x2 ∈ L2

[τ,∞).

(3.6)

We define the robust stability/performance margin of the feedback interconnection (3.2)

as

bP,C :=


(

sup
τ∈R

γ̄
(
ΠG τP‖G

′ τ
C

))−1

if [P,C] is stable;

0 otherwise.

Similarly,

bC,P :=


(

sup
τ∈R

γ̄
(
ΠG ′ τC ‖G

τ
P

))−1

if [P,C] is stable;

0 otherwise.

Indeed, bP,C = bC,P, since P and C are linear [DGS93]. Note that bP,C is a generic mea-

sure of performance in the H∞ loop-shaping paradigm for robust control design [MG90,

MG92, Vin01]. Generalisation to possibly nonlinear systems can also be seen in [GS97,

Vin99, JSV05]. The following lemma offers a geometric interpretation of the robustness

margin in terms of system graphs along the lines of [FGS93, GS97].

Lemma 3.2.8. If [P,C] is stable,

bP,C = inf
τ∈R

inf
v∈G τP,w∈G ′ τC

‖v + w‖2
‖v‖2

.

Proof. Since [P,C] is stable, we have

sup
τ∈R

γ̄
(
ΠG τP‖G

′ τ
C

)
= sup

τ∈R
sup

u∈L2
[τ,∞)

∥∥∥ΠG τP‖G
′ τ
C
u
∥∥∥

2

‖u‖2
<∞
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and ΠG τP‖G
′ τ
C

is causal, whereby ΠG τP‖G
′ τ
C
L2

[τ,∞) ⊂ L2
[τ,∞). It follows from the feedback

configuration (3.2) that

γ̄
(
ΠG τP‖G

′ τ
C

)
= sup

u∈L2
[τ,∞)

∥∥∥ΠG τP‖G
′ τ
C
u
∥∥∥

2

‖u‖2
= sup

v∈G τP,w∈G ′ τC

‖v‖2
‖v + w‖2

.

Consequently,

bP,C =

(
sup
τ∈R

γ̄
(
ΠG τP‖G

′ τ
C

))−1

= inf
τ∈R

(
γ̄
(
ΠG τP‖G

′ τ
C

))−1

= inf
τ∈R

(
sup

v∈G τP,w∈G ′ τC

‖v‖2
‖v + w‖2

)−1

= inf
τ∈R

inf
v∈G τP,w∈G ′ τC

‖v + w‖2
‖v‖2

,

as claimed.

This section is concluded with the following well-known small-gain theorem, which

can be found in one form or another in [Zam66, Wil69, DV75, MH92, Kha02].

Lemma 3.2.9. Given causal P : dom (P) ⊂ L2
R → L2

R and C : dom (C) ⊂ L2
R → L2

R

such that P and C are bounded on L2+ with L2+ ⊂ dom (P) and L2+ ⊂ dom (C), let

Pτ := P|L2
[τ,∞)

and Cτ := C|L2
[τ,∞)

. If supτ∈R γ̄(CτPτ ) < 1, then [P,C] is stable.

Proof. Because γ̄(CτPτ ) < 1 for every τ ∈ R, (I − CτPτ ) is boundedly invertible and

γ̄
(
(I−CτPτ )−1

)
≤ (1− γ̄(CτPτ ))−1 [Kre89, Thm. 7.3-1]. It is straightforward to verify

using (3.2) that

F−1
P,C,τ =

[
−Pτ

I

]
(I−CτPτ )−1

[
−Cτ I

]
−

[
I 0

0 0

]
,

wherefrom the claimed result follows.

3.2.2 Properties of graph symbols

Recall the three assumptions on the existence of ‘strong graph representations/symbols’

for causal linear operators stated in Section 2.2. These assumptions underly importantly

the developments in this thesis. They are reproduced below, intertwined with several

notes on useful properties. These are exploited in subsequent sections for closed-loop

robustness analysis.
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Assumption 2.2.1. Given a causal operator P : dom (P) ⊂ L2
R → L2

R, there exist causal

operators N,M, Ñ, M̃,X,Y, X̃, Ỹ ∈ L (L2
R,L

2
R) satisfying the following properties:

1. the double Bezout identity [
Y X

M̃ −Ñ

][
N X̃

M −Ỹ

]
= I;

2. img (G) = ker
(
G̃
)

and G τ
P := GP ∩ L2

[τ,∞) = img (TG,τ ) = ker
(
TG̃,τ

)
for all

τ ∈ R, where

G :=

[
N

M

]
and G̃ :=

[
−M̃ Ñ

]
are respectively called right and left strong graph symbols/representations for P.

Remark 3.2.10. By the properties of graph symbols in Assumption 2.2.1 and Lemma 3.1.3(iv),

it follows that TG,τ has a causal left inverse TZ,τ , and TG̃,τ has a causal right inverse

TZ̃,τ , where Z := [ Y X ] and Z̃ :=
[
−X̃
Ỹ

]
. Note that the left-bounded-invertibility of

TG,τ implies G τ
P = img (TG,τ ) is a closed subspace [Kat80, Thm. IV.5.2], as is necessary

for feedback stability [DS93, Thm. 6.2][FGS93, Prop. 1]. This is also consistent with

Remark 3.2.5 about the definition of closed-loop stability.

Note that graph symbols are not unique. The time-invariant version of the following

lemma can be found in e.g. [Vin01, Prop. 1.4].

Lemma 3.2.11. Right (resp. left) graph symbols are unique to within right (resp. left)

composition with a bounded causal operator which has a bounded and causal inverse.

Proof. We prove the result for right graph symbols; the case for left graph symbols can

be established similarly. Suppose we have a right graph symbol G for P and Z is a left

causal bounded inverse of G, i.e. ZG = I, then GQ is also a right graph symbol for any

Q ∈ Q, where

Q :=
{
Q ∈ L (L2

R,L
2
R) | Q is boundedly invertible with Q,Q−1 causal

}
. (3.7)

To see this, note that Q−1Z is a left bounded causal inverse of GQ, and

img (TGQ,τ ) = img (TG,τTQ,τ ) = img (TG,τ ) = G τ
P ∀τ ∈ R,

where the first equality follows from Lemma 3.1.3(iv) and the second from the fact that

T−1
Q,τ = TQ−1,τ ∀τ ∈ R; see Remark 3.1.5.
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Conversely, suppose Ga is another right graph symbol for P and Za is a left causal

bounded inverse of Ga, i.e. ZaGa = I. We show below that there exists a Q ∈ Q such

that

Ga = GQ.

For any τ ∈ R and q ∈ L2
[τ,∞), let [ yu ] := TG,τq. Since by the definition of graph symbols

img (TG,τ ) = img (TGa,τ ) = G τ
P, there exists a qa ∈ L2

[τ,∞) such that

TGa,τqa = [ yu ] = TG,τq.

Left-composing the above with TZa,τ yields qa = TZa,τTG,τq; see Remark 3.2.10. Thus,

TG,τ = TGa,τ (TZa,τTG,τ ) = TGaZaG,τ , (3.8)

where the last equality holds by Lemma 3.1.3(iv). Similarly,

TGa,τ = TGZGa,τ . (3.9)

Now composing (3.8) and (3.9) with TZ,τ and TZa,τ , respectively, yields

I = TZGaZaG,τ = TZaGZGa,τ .

Let Q := ZGa and S := ZaG, we then have from the above that

TGa,τ = TGQ,τ and TQS,τ = TSQ,τ = I for all τ ∈ R.

By Lemma 3.1.3(ii), it follows that Ga = GQ and QS = SQ = I, i.e. Q−1 = S, whereby

Q ∈ Q, as required.

Remark 3.2.12. In the semi-infinite discrete-time setting [Fei98], by exploiting Arveson’s

inner/outer factorisation in nest algebras, closed-loop stabilisability of an operator can be

shown to be equivalent to the existence of strong right and left representations on semi-

infinite time [DS93]. Therefrom, the set of all stabilising ‘controllers’ may be characterised

by the so-called Youla parameterisation. As discussed in [DS93], the equivalence proof

does not carry over to continuous-time systems since it exploits the fact that causal

bounded operators admit lower triangular matrix representations; furthermore, Arveson’s

inner/outer factorisations may not exist in continuous nest algebras [DS93, Thm. 6.1].

Assumption 2.2.2. G∗G = I and G̃G̃
∗

= I, i.e. the right and left graph symbols are

normalised.

Remark 3.2.13. Normalised right (resp. left) graph symbols are unique to within right

(resp. left) composition with a bounded unitary memoryless operator. To see this, sup-
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pose G is a normalised right graph symbol for P. Then by Lemma 3.2.11, all other right

graph symbols may be expressed as GQ for some Q ∈ Q, where Q is as defined in (3.7).

These are normalised if, and only if, Q is unitary, i.e. Q∗Q = QQ∗ = I. Note that since

Q∗ = Q−1, Q is necessarily memoryless, i.e. simultaneously causal and anti-causal. The

case for left graph symbols can be established similarly.

Assumption 2.2.3. H+−
G,τ and H+−

G̃,τ
are compact for all τ ∈ R.

Lemma 3.2.14 ([JC10, Lem. 9]). Given causal operators P1 and P2, suppose Assump-

tions 2.2.1 and 2.2.3 hold, then H−+

G̃2G̃
∗
1,τ

is compact for all τ ∈ R.

Proof. Since by hypothesis G̃2 causal, G̃
∗
2 must be anti-causal, and hence for any τ ∈ R

H+−
G̃1G̃

∗
2,τ

= (I−Πτ )G̃1G̃
∗
2Πτ = (I−Πτ )G̃1ΠτG̃

∗
2Πτ = H+−

G̃1,τ
(ΠτG̃

∗
2Πτ ).

By lemma 2.1.1, H+−
G̃1G̃

∗
2,τ

is compact. This implies H−+

G̃2G̃
∗
1,τ

=
(
H+−

G̃1G̃
∗
2,τ

)∗
is compact,

since the adjoint of a compact operator is compact [Kat80, Thm. III.4.10].

By convention throughout this thesis, G :=
[

N
M

]
denote as above a right strong graph

symbol for P, and G̃ := [−M̃ Ñ ] a left strong graph symbol. Similarly,
[

V
U

]
and [−Ũ Ṽ ]

respectively denote a right strong (inverse) graph symbol and a left strong (inverse) graph

symbol for C. Specifically, we define

K :=

[
V

U

]
and K̃ :=

[
−Ũ Ṽ

]
,

so that for every τ ∈ R, G ′ τC := G ′C ∩L2
[τ,∞) = img (TK,τ ) = ker

(
TK̃,τ

)
.

3.2.3 Characterisation of feedback stability via graph symbols

The stability of a feedback interconnection [P,C] can be characterised in terms of graph

symbols for P and C. This is an important ingredient in the development of ν-gap based

robustness analysis, as developed in the time-invariant setting of [Vin93, Vin01, CJK12,

CJK10, CJK09, JCK08] and generalised to time-varying systems in [JC10, JC11]. We

suppose the standing Assumption 2.2.1 holds for every causal operator in this subsection.

The notation is as introduced in the preceding subsections. In particular, given causal

operators P : dom (P) ⊂ L2
R → L2

R and C : dom (C) ⊂ L2
R → L2

R, G and G̃ denote

respectively right and left graph symbols for P while K and K̃ denote respectively right

and left graph symbols for C. For the subsequent lemma, the definition of Wiener-Hopf

operators is as given in Definition 2.1.9.
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Lemma 3.2.15. Given τ ∈ R, the following are equivalent:

(i) FP,C,τ , as defined in Definition 3.2.1, has a bounded inverse on L2
[τ,∞);

(ii) TK̃G,τ has a bounded inverse;

(iii) TG̃K,τ has a bounded inverse.

When any of the above holds,

ΠG τP‖G
′ τ
C

= TG,τT
−1
K̃G,τ

TK̃,τ and ΠG ′ τC ‖G
τ
P

= TK,τT
−1
G̃K,τ

TG̃,τ ,

where ΠG τP‖G
′ τ
C

and ΠG ′ τC ‖G
τ
P

are parallel projections in (3.5) and (3.6).

Proof. The proof can be found in [Can06, Prop. 3]; it is included here for completeness.

We establish the equivalence between (i) and (ii); (i) ⇐⇒ (iii) follows similarly.

Since GP ∩ L2
[τ,∞) = img (TG,τ ) and G ′C ∩ L2

[τ,∞) = ker
(
TK̃,τ

)
, we have by [FGS93,

Prop. 1 & 2] that (i) is equivalent to

img (TG,τ ) + ker
(
TK̃,τ

)
= L2

[τ,∞) and img (TG,τ ) ∩ ker
(
TK̃,τ

)
= {0}. (3.10)

Observe that since TK̃,τ has a right causal inverse and TG,τ has a left causal inverse,

as in Remark 3.2.10, we have img
(
TK̃,τ

)
= L2

[τ,∞) and ker (TG,τ ) = {0}. With the

co-ordinatisation identities in (3.10), this implies

img
(
TK̃G,τ

)
= img

(
TK̃,τTG,τ

)
= L2

[τ,∞) and ker
(
TK̃G,τ

)
= ker

(
TK̃,τTG,τ

)
= {0}.

That TK̃G,τ has a bounded inverse then follows from the open mapping theorem [Kre89,

Thm. 4.12-2]. To establish the converse of this implication, assume TK̃G,τ boundedly

invertible. Then the fact that ker
(
TK̃G,τ

)
= {0} implies img (TG,τ )∩ker

(
TK̃,τ

)
= {0}.

Now for any h ∈ L2
[τ,∞), define e := TK̃,τh ∈ L2

[τ,∞). By the bounded invertibility of

TK̃G,τ , there exists a unique q ∈ L2
[τ,∞) such that e = TK̃G,τq. Putting these together,

we thus have

TK̃,τ (h−TG,τq) = 0,

i.e. (h−TG,τq) ∈ ker
(
TK̃,τ

)
. Since h is arbitrary, it follows immediately that

img (TG,τ ) + ker
(
TK̃,τ

)
= L2

[τ,∞).

Now we show that ΠG τP‖G
′ τ
C

= TG,τT
−1
K̃G,τ

TK̃,τ when (3.10) holds. To this end, note
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that (3.10) implies any h ∈ L2
[τ,∞) can be uniquely decomposed into h = g + k with

g = ΠG τP‖G
′ τ
C
h ∈ GP ∩L2

[τ,∞) and k = ΠG ′ τC ‖G
τ
P
h ∈ G ′C ∩L2

[τ,∞).

Now since GP ∩ L2
[τ,∞) = img (TG,τ ) and TG,τ has a left causal inverse, there exists a

unique q ∈ L2
[τ,∞) such that g = TG,τq. Correspondingly, for all h ∈ L2

[τ,∞),

(ΠG τP‖G
′ τ
C
−TG,τT

−1
K̃G,τ

TK̃,τ )h = g −TG,τT
−1
K̃G,τ

TK̃,τ (TG,τq + k) = g −TG,τq = 0,

whereby the claim is proved. The expression for ΠG ′ τC ‖G
τ
P

can be established similarly.

By the equivalence of (i) and (ii) in Lemma 3.2.15, [P,C] is stable if, and only if, TK̃G,τ

is boundedly invertible for all τ ∈ R and supτ∈R γ̄(T−1
K̃G,τ

) <∞. In turn, this is equivalent

to infτ∈R γ(TK̃G,τ ) = γ(K̃G) > 0, where the equality follows from Lemma 3.1.3(v).

Analogously, by the equivalence of Lemma 3.2.15(i) and (iii), [P,C] is stable if, and only

if, TG̃K,τ is boundedly invertible for all τ ∈ R and infτ∈R γ(TG̃K,τ ) = γ(G̃K) > 0.

Lemma 3.2.16. The following are equivalent:

1. [P,C] is stable;

2. γ(K̃G) = inf
τ∈R

γ(TK̃G,τ ) > 0 and TK̃G,τ is Fredholm with ind(TK̃G,τ ) = 0∀τ ∈ R;

3. γ(G̃K) = inf
τ∈R

γ(TG̃K,τ ) > 0 and TG̃K,τ is Fredholm with ind(TG̃K,τ ) = 0∀τ ∈ R.

Proof. By combining Lemmas 3.1.6 and 3.2.15, and noting the immediately preceding

observation as in [JC10, Lem. 8].

When graph symbols have the property of being normalised as in Assumption 2.2.2,

several useful identities may be derived.

Using the properties of normalised graph symbols in Assumptions 2.2.1 and 2.2.2, one

obtains [
G̃

G∗

] [
G̃
∗

G
]

=

[
I 0

0 I

]
and

[
K̃

K∗

] [
K̃
∗

K
]

=

[
I 0

0 I

]
,

i.e.
[

G̃
G∗

]
and

[
K̃
K∗

]
are right-invertible with bounded right inverses

[
G̃
∗

G
]

and[
K̃
∗

K
]
, respectively. Mimicking the argument in the proof of [Can06, Prop. 4], observe

that

ker

([
G̃

G∗

])
= ker

(
G̃
)
∩ ker (G∗) = ker

(
G̃
)
∩ img (G)⊥ = {0},
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whereby
[

G̃
G∗

]
is left-invertible and the left inverse is equal to the right inverse

[
G̃
∗

G
]
.

A similar argument applies to C, that is,
[

K̃
K∗

]
has the left inverse

[
K̃
∗

K
]
. These

imply

G̃
∗
G̃ + GG∗ = I and K̃

∗
K̃ + KK∗ = I. (3.11)

It follows that for two causal operators P1 and P2 with respective right and left normalised

graph symbols Gi and G̃i,
[

G∗2G1

G̃2G1

]
and

[
G∗2G̃

∗
1

G̃2G̃
∗
1

]
are isometries, while

[
G∗2G1 G∗2G̃

∗
1

]
and

[
G̃2G1 G̃2G̃

∗
1

]
are co-isometries. These lead to

γ̄(G̃2G1) =
√

1− γ2(G∗2G1) = γ̄(G̃1G2) (3.12)

γ(G∗2G1) =

√
1− γ̄2(G̃2G1) = γ(G̃2G̃

∗
1). (3.13)

Furthermore, notice that
[

K∗G̃
∗

K̃G̃
∗

]
is an isometry while

[
K̃G K̃G̃

∗
]

and
[
G̃K G̃K̃

∗
]

are a co-isometries, whereby

γ(K̃G) =

√
1− γ̄2(K̃G̃

∗
) = γ(K∗G̃

∗
) =

√
1− γ̄2(G̃K̃

∗
) = γ(G̃K). (3.14)

Similarly,
[
K∗G̃

∗
K∗G

]
is a co-isometry, whereby

γ̄(G∗K) = γ̄(K∗G) =
√

1− γ2(K∗G̃
∗
) =

√
1− γ2(G̃K). (3.15)

Lemma 3.2.17. If γ(G̃K) = γ(K̃G) > 0, then G̃K and K̃G are boundedly invertible.

Similarly, if γ(G̃2G̃
∗
1) > 0, then G̃2G̃

∗
1 is boundedly invertible.

Proof. The proof is based on [JC10, Lem. 10]. First we remark that γ(G̃K) = γ(K̃G)

from (3.14). We prove the result only for G̃K as the case for K̃G follows a similar

proof. Notice that γ(G̃K) > 0 implies γ̄(K̃G̃
∗
) < 1 and γ̄(G∗K) < 1 by (3.14) and

(3.15) respectively. Consequently, it holds that γ̄(G̃K̃
∗
K̃G̃

∗
) = γ̄(K̃G̃

∗
)2 < 1 and

γ̄(K∗GG∗K) = γ̄(G∗K)2 < 1. Moreover, we have from (3.11) that

I = G̃G̃
∗

= G̃KK∗G̃
∗

+ G̃K̃
∗
K̃G̃

∗

and I = K∗K = K∗G̃
∗
G̃K + K∗GG∗K.

As such, G̃KK∗G̃
∗

= I − G̃K̃
∗
K̃G̃

∗
and K∗G̃

∗
G̃K = I − K∗GG∗K are boundedly

invertible by [Kre89, Thm. 7.3-1], implying respectively that img
(
G̃K

)
= L2

R and

ker
(
G̃K

)
= {0}, i.e. G̃K is bijective. That (G̃K)−1 is bounded follows from the open

mapping theorem [Kre89, Thm. 4.12-2]. The second part of the lemma can be established
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using the same line of arguments along with (3.12), (3.13), and (3.11); see [JC10, Lem.

10].

Note that if K̃G or G̃K has a bounded causal inverse, then [P,C] is stable by

Lemma 3.2.16 and Remark 3.1.5. That the converse also holds is shown below.

Observe that when [P,C] is stable, γ(K̃G) > 0 by Lemma 3.2.16, and hence it

follows from Lemma 3.2.17 that (K̃G)−1 ∈ L (L2
R,L

2
R). Furthermore, by (3.5) and

Lemma 3.2.15, ΠGP‖G ′C,τ = TG,τT
−1
K̃G,τ

TK̃,τ is causal for all τ ∈ R. Thus, T−1
K̃G,τ

is

causal by the fact that TG,τ has a left causal inverse and TK̃,τ has a right causal inverse;

recall Remark 3.2.10. Now, using Lemma 3.1.3(iv), we have that T(K̃G)−1,τTK̃G,τ =

T(K̃G)−1K̃G,τ = I, i.e. T(K̃G)−1,τ is the left inverse of TK̃G,τ . Since TK̃G,τ is invertible,

its left inverse is equal to its inverse, i.e. T(K̃G)−1,τ = T−1
K̃G,τ

, which is causal for all

τ ∈ R. It follows by Lemma 3.1.3(iii) that (K̃G)−1 is causal.

All of the above arguments hold analogously for ΠG ′C‖GP
. In other words, [P,C] is

stable if, and only if, G̃K has a bounded causal inverse.

Remark 3.2.18. It is shown above that stability of [P,C] is equivalent to either K̃G

or G̃K being boundedly and causally invertible, where G and G̃ are respectively right

and left normalised graph symbols for P whereas K and K̃ are those for C. Now recall

by Lemma 3.2.11 that graph symbols are related by composition with a bounded causal

operator that has a bounded causal inverse. As such, given another (not necessarily

normalised) left graph symbol K̃1 for C and a right graph symbol G1 for P, bounded

causal invertibility of K̃G is equivalent of that of K̃1G1. A similar argument applies to

G̃K.

When [P,C] is stable, we have by Lemma 3.1.3(iv) that ΠG τP‖G
′ τ
C

= TG(K̃G)−1K̃,τ ,

and thus

sup
τ∈R

γ̄
(
ΠG τP‖G

′ τ
C

)
= sup

τ∈R
γ̄
(
TG(K̃G)−1K̃,τ

)
= γ̄(G(K̃G)−1K̃) = γ̄((K̃G)−1) = 1/γ(K̃G),

where the second equality holds by Lemma 3.1.3(v) and the third by Assumption 2.2.2,

whereby the graph symbols are normalised. Therefore,

bP,C :=

(
sup
τ∈R

γ̄
(
ΠG τP‖G

′ τ
C

))−1

= γ(K̃G) > 0.

Similarly, bC,P :=
(

supτ∈R γ̄
(
ΠG ′ τC ‖G

τ
P

))−1
= γ(G̃K) > 0. Using (3.14), it holds that

bP,C = bC,P, which is consistent with [DGS93, Prop. 6] since P and C are linear.
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We summarise all the preceding results in the following main theorem of this section.

Theorem 3.2.19. Given a causal P : dom (P) ⊂ L2
R → L2

R, for which G and G̃ are

respectively right and left graph symbols, and a causal C : dom (C) ⊂ L2
R → L2

R, for which

K and K̃ are respectively right and left graph symbols, the following are equivalent:

1. [P,C] is stable in the sense of Definition 3.2.1;

2. K̃G has a bounded causal inverse;

3. G̃K has a bounded causal inverse;

4. γ(K̃G) = inf
τ∈R

γ(TK̃G,τ ) > 0 and TK̃G,τ is Fredholm with ind(TK̃G,τ ) = 0∀τ ∈ R;

5. γ(G̃K) = inf
τ∈R

γ(TG̃K,τ ) > 0 and TG̃K,τ is Fredholm with ind(TG̃K,τ ) = 0∀τ ∈ R.

Suppose further that Assumption 2.2.2 holds, i.e. these graph symbols are normalised,

then when [P,C] is stable, we have bP,C = bC,P = γ(K̃G) = γ(G̃K) > 0.

3.3 Robust stability properties of the ν-gap metric

The ν-gap metric for linear time-varying systems is formally defined in this section. We

present sufficient conditions for robust feedback stability and properties of the ν-gap

metric, as delineated in the introduction to this chapter. A robust stability result that

motivates the definition of the ν-gap is derived in Section 3.3.1. That the ν-gap is a

metric is shown in Section 3.3.2, together with several of its robustness and topological

properties.

3.3.1 The ν-gap metric

We begin with the following important robustness result, which generalises the time-

invariant case considered in [Vin01, Lem. 3.6]. The proof is constructed by combining

aspects of [JC10, Lem. 10 and Thm. 1]. First recall the following definition from

Section 2.2.

Definition 2.2.4. We denote by S the set of causal operators for which all of Assump-

tions 2.2.1, 2.2.2, and 2.2.3 are satisfied.

Theorem 3.3.1. Given P1,P2,C ∈ S, suppose that γ̄(G̃2G1) < bP1,C = γ(G̃1K). Then

(i) TG̃2G̃
∗
1,τ

is Fredholm for all τ ∈ R; and
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(ii) [P2,C] is stable if, and only if, ind(TG̃2G̃
∗
1,τ

) = 0∀τ ∈ R.

Proof. (i): First, by (3.12) and hypothesis, γ̄(G̃1G2) = γ̄(G̃2G1) < γ(G̃1K) ≤ γ̄(G̃1K) ≤
1, where the last inequality holds since the graph symbols are normalised. As such, for

all τ ∈ R,

γ̄(TG̃1G2G∗2G̃
∗
1,τ

) ≤ γ̄(G̃1G2G
∗
2G̃
∗
1) < 1 and γ̄(TG̃2G1G∗1G̃

∗
2,τ

) ≤ γ̄(G̃2G1G
∗
1G̃
∗
2) < 1.

(3.16)

Now using (3.11), note that

TG̃1G̃
∗
2G̃2G̃

∗
1,τ

= I−TG̃1G2G∗2G̃
∗
1,τ

and TG̃2G̃
∗
1G̃1G̃

∗
2,τ

= I−TG̃2G1G∗1G̃
∗
2,τ
. (3.17)

As such, with (3.16) it follows by Lemma 3.1.2(iii) and (3.17) that TG̃1G̃
∗
2G̃2G̃

∗
1,τ

and

TG̃2G̃
∗
1G̃1G̃

∗
2,τ

are Fredholm with

ind(TG̃1G̃
∗
2G̃2G̃

∗
1,τ

) = ind(TG̃2G̃
∗
1G̃1G̃

∗
2,τ

) = ind(I) = 0.

Now note that by Lemma 3.1.3(iv) and Definition 2.1.9,

TG̃1G̃
∗
2G̃2G̃

∗
1,τ

= (TG̃2G̃
∗
1,τ

)∗TG̃2G̃
∗
1,τ

+ H+−
G̃1G̃

∗
2,τ

H−+

G̃2G̃
∗
1,τ

and

TG̃2G̃
∗
1G̃1G̃

∗
2,τ

= TG̃2G̃
∗
1,τ

(TG̃2G̃
∗
1,τ

)∗ + H+−
G̃2G̃

∗
1,τ

H−+

G̃1G̃
∗
2,τ
,

in which the composition of Hankel operators H+−
G̃1G̃

∗
2,τ

H−+

G̃2G̃
∗
1,τ

and H+−
G̃2G̃

∗
1,τ

H−+

G̃1G̃
∗
2,τ

are

compact by Assumption 2.2.3, Lemma 3.2.14, and Lemma 2.1.1. Consequently, applying

Lemma 3.1.2(iv) yields (TG̃2G̃
∗
1,τ

)∗TG̃2G̃
∗
1,τ

and TG̃2G̃
∗
1,τ

(TG̃2G̃
∗
1,τ

)∗ are Fredholm with

ind
(

(TG̃2G̃
∗
1,τ

)∗TG̃2G̃
∗
1,τ

)
= ind

(
TG̃2G̃

∗
1,τ

(TG̃2G̃
∗
1,τ

)∗
)

= 0. That TG̃2G̃
∗
1,τ

is Fredholm

then follows from ker
(
TG̃2G̃

∗
1,τ

)
= ker

(
(TG̃2G̃

∗
1,τ

)∗TG̃2G̃
∗
1,τ

)
and ker

(
(TG̃2G̃

∗
1,τ

)∗
)

=

ker
(
TG̃2G̃

∗
1,τ

(TG̃2G̃
∗
1,τ

)∗
)

.

(ii): Our objective is to show that

1. γ(G̃2K) > 0; and

2. TG̃2K,τ is Fredholm with ind(TG̃2K,τ ) = ind(TG̃2G̃
∗
1,τ

) for all τ ∈ R,

from which the claimed result follows by Theorem 3.2.19.
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To begin with, note that when γ(G̃1K) < 1, we have by hypothesis

γ̄(G̃2G1)√
1− γ̄2(G̃2G1)

<
γ(G̃1K)√

1− γ2(G̃1K)
,

since x 7→ x/
√

1− x2 is monotonic on [0, 1). This implies

γ̄(G̃2G1)
√

1− γ2(G̃1K) < γ(G̃1K)

√
1− γ̄2(G̃2G1), (3.18)

which also holds trivially when γ(G̃1K) = 1. Combining (3.13), (3.18), and (3.15) yields

γ(G̃2G̃
∗
1G̃1K) ≥ γ(G̃2G̃

∗
1)γ(G̃1K) =

√
1− γ̄2(G̃2G1)γ(G̃1K)

> γ̄(G̃2G1)
√

1− γ2(G̃1K)

= γ̄(G̃2G1)γ̄(G∗1K) ≥ γ̄(G̃2G1G
∗
1K).

(3.19)

Now using (3.11), we arrive at the identity

G̃2K = G̃2

(
G̃
∗
1G̃1 + G1G

∗
1

)
K = G̃2G̃

∗
1G̃1K + G̃2G1G

∗
1K, (3.20)

whereby γ(G̃2K) ≥ γ(G̃2G̃
∗
1G̃1K)− γ̄(G̃2G1G

∗
1K) > 0, as required by the first objective

identified above.

Because γ(G̃1K) > 0 by hypothesis and γ(G̃2G̃
∗
1) > 0 by (3.19), both G̃2G̃

∗
1 and

G̃1K are boundedly invertible by Lemma 3.2.17. As a result, (3.20) can be rewritten as

G̃2K = (I + X)G̃2G̃
∗
1G̃1K with X := G̃2G1G

∗
1K(G̃2G̃

∗
1G̃1K)−1.

Application of both parts of Lemma 3.1.3(iv) then yields

TG̃2K,τ = TI+X,τTG̃2G̃
∗
1,τ

TG̃1K,τ + H+−
I+X,τH

−+

G̃2G̃
∗
1,τ

TG̃1K,τ ,∀τ ∈ R. (3.21)

Note that H+−
I+X,τH

−+

G̃2G̃
∗
1,τ

TG̃1K,τ is compact by Lemma 2.1.1, since H−+

G̃2G̃
∗
1,τ

is compact

by Lemma 3.2.14. Furthermore, by (3.19),

γ̄(TX,τ ) ≤ γ̄(X) ≤ γ̄(G̃2G1G
∗
1K)

γ(G̃2G̃
∗
1G̃1K)

< 1.

Hence by Lemma 3.1.2(iii), TI+X,τ is Fredholm and ind(TI+X,τ ) = ind(I + TX,τ ) =

ind(I) = 0 for all τ ∈ R. Also, since [P1,C] is stable by the hypothesis that bP1,C > 0,

the use of Theorem 3.2.19 implies TG̃1K,τ is Fredholm and ind(TG̃1K,τ ) = 0 for all τ ∈ R.
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All in all, applying Lemma 3.1.2, parts (iv) and (ii), to (3.21) yields TG̃2K,τ is Fred-

holm for all τ ∈ R with

ind(TG̃2K,τ ) = ind(TI+X,τTG̃2G̃
∗
1,τ

TG̃1K,τ )

= ind(TI+X,τ ) + ind(TG̃2G̃
∗
1,τ

) + ind(TG̃1K,τ )

= ind(TG̃2G̃
∗
1,τ

),

as required by the second objective identified above.

Remark 3.3.2. The robustness result above is developed in terms of (normalised) left

graph symbols. On the contrary, right graph symbols are used to develop the analogous

time-invariant result in [Vin01, Lem. 3.6]. The next lemma shows the equivalence between

the two. It is of note that the derivation in [Vin01, Lem. 3.6] does not directly carry over

to the time-varying case as above, which explains the rationale behind using left graph

symbols.

Lemma 3.3.3 ([JC10, Prop. 1]). Given P1,P2 ∈ S and any τ ∈ R, TG̃2G̃
∗
1,τ

is Fredholm

if, and only if, TG∗2G1,τ is Fredholm, in which case ind(TG̃2G̃
∗
1,τ

) = −ind(TG∗2G1,τ ).

Proof. First we identify a few useful identities and properties of the graph symbols. Recall

from Assumption 2.2.1 that for any P ∈ S, G τ
P = img (TG,τ ) = ker

(
TG̃,τ

)
for all τ ∈ R.

It follows that

G τ ⊥
P = img (TG,τ )⊥ = ker

(
TG∗,τ

)
and G τ ⊥

P = ker
(
TG̃,τ

)⊥
= img

(
TG̃

∗
,τ

)
,

where the last equality holds because img
(
TG̃

∗
,τ

)
is closed. To see this, note that by

Assumption 2.2.1 and Lemma 3.1.3(iv), TG̃
∗
,τ has a bounded left (anti-causal) inverse

T[ X̃
∗ −Ỹ

∗ ],τ , implying that γ(TG̃
∗
,τ ) > 0, and hence img

(
TG̃

∗
,τ

)
is closed [GGK90,

Thm. XI.2.1]. Also recall that γ(TG,τ ) > 0 since the operator has a bounded left

(causal) inverse.

Now application of Lemma 3.1.3(iv) gives

TG̃2G̃
∗
1,τ

= TG̃2,τ
TG̃

∗
1,τ

+ H+−
G̃2,τ

H−+

G̃
∗
1,τ
,

where the second term is compact by Assumption 2.2.3 and Lemma 2.1.1. Suppose that
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TG̃2G̃
∗
1,τ

is Fredholm. It follows from Lemma 3.1.2(iv) and the development above that

ind(TG̃2G̃
∗
1,τ

) = ind(TG̃2,τ
TG̃

∗
1,τ

)

:= dim ker
(
TG̃2,τ

TG̃
∗
1,τ

)
− dim ker

(
TG̃1,τ

TG̃
∗
2,τ

)
= dim

(
ker
(
TG̃2,τ

)
∩ img

(
TG̃

∗
1,τ

))
− dim

(
ker
(
TG̃1,τ

)
∩ img

(
TG̃

∗
2,τ

))
= dim

(
G τ

P2
∩ G τ ⊥

P1

)
− dim

(
G τ

P1
∩ G τ ⊥

P2

)
= dim

(
ker
(
TG∗1,τ

)
∩ img (TG2,τ )

)
− dim

(
ker
(
TG∗2,τ

)
∩ img (TG1,τ )

)
= dim ker

(
TG∗1,τ

TG2,τ

)
− dim ker

(
TG∗2,τ

TG1,τ

)
=: −ind(TG∗2,τ

TG1,τ ) = −ind(TG∗2G1,τ ),

where causality of G1 here and Lemma 3.1.3(iv) have been exploited in the last equality.

It is clear that TG∗2G1,τ is Fredholm, as required.

Conversely, starting with the assumption that TG∗2G1,τ is Fredholm and reversing the

line of argument above, we have TG̃2G̃
∗
1,τ

is Fredholm and ind(TG∗2G1,τ ) = −ind(TG̃2G̃
∗
1,τ

).

Motivated by Theorem 3.3.1 and Lemma 3.3.3 , we have the following definition.

Definition 3.3.4. The ν-gap function δν : S× S→ [0, 1] is defined as

δν(P1,P2) :=


γ̄(G̃2G1) if TG∗2G1,τ is Fredholm and ind(TG∗2G1,τ ) = 0 for all τ ∈ R

1 otherwise.

Lemma 3.3.5. The ν-gap δν is well-defined in the sense that it is independent of the

choice of normalised graph symbols.

Proof. Suppose we have two sets of normalised graph symbols for Pi, denoted {Gi, G̃i}
and {Γi, Γ̃i}, where i ∈ {1, 2}. Note that by Remark 3.2.13 there exist unitary memoryless

bounded operators Qi and Q̃i such that

Γi = GiQi and Γ̃i = Q̃iG̃i,

from which it follows that

γ̄(Γ̃2Γ1) = γ̄(Q̃2G̃2G1Q1) = γ̄(G̃2G1).

It remains to show that for any τ ∈ R, TΓ̃2Γ̃
∗
1,τ

is Fredholm if, and only if, TG̃2G̃
∗
1,τ
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is, and when this is the case, that ind(TΓ̃2Γ̃
∗
1,τ

) = ind(TG̃2G̃
∗
1,τ

). First recall from Re-

mark 3.2.13 that Q̃i are memoryless, whereby use of Lemma 3.1.3(iv) implies T−1
Q̃i,τ

=

TQ̃
∗
i ,τ

, and hence TQ̃i,τ
is Fredholm with ind(TQ̃i,τ

) = ind(TQ̃
∗
i ,τ

) = 0. Furthermore,

TΓ̃2Γ̃
∗
1,τ

= TQ̃2,τ
TG̃2G̃

∗
1,τ

TQ̃
∗
1,τ

by the second part of Lemma 3.1.3(iv). Thus, when

TG̃2G̃
∗
1,τ

is Fredholm, we have by Lemma 3.1.2(ii) that TΓ̃2Γ̃
∗
1,τ

is Fredholm and

ind(TΓ̃2Γ̃
∗
1,τ

) = ind(TQ̃2,τ
TG̃2G̃

∗
1,τ

TQ̃
∗
1,τ

)

= ind(TQ̃2,τ
) + ind(TG̃2G̃

∗
1,τ

) + ind(TQ̃
∗
1,τ

)

= ind(TG̃2G̃
∗
1,τ

).

The converse can be established by assuming TΓ̃2Γ̃
∗
1,τ

is Fredholm and reversing the line

of argument above.

It follows from Theorem 3.3.1 and Lemma 3.3.3 that for any P1,P2,C ∈ S such that

bP1,C > δν(P1,P2), [P2,C] is stable. Moreover, when δν(P1,P2) < 1, it is necessarily

true that δν(P1,P2) = γ̄(G̃2G1). It is illustrated in Section 4.6.2 of the next chapter that

in the time-invariant case, the above definition reduces to the well-known Vinnicombe’s

ν-gap metric for frequency-domain objects [Vin93, Vin01, CJK12, CJK10, CJK09].

The following corollary provides a lower bound on the residual robust performance

margin that can be guaranteed when a C that achieves a certain bP1,C is connected in

feedback with P2, which may represent a perturbed version of P1. Its time-invariant

version can be found in [Vin93, Thm. 4.2].

Corollary 3.3.6. For any P1,P2,C ∈ S,

arcsin bP2,C ≥ arcsin bP1,C − arcsin δν(P1,P2),

which implies the weaker inequality bP2,C ≥ bP1,C − δν(P1,P2).

Proof. The result is trivially true when [P1,C] is unstable or δν(P1,P2) ≥ bP1,C. There-

fore, suppose that the converse is true, by which δν(P1,P2) < bP1,C ≤ 1, and therefore

δν(P1,P2) = γ̄(G̃2G1). It follows by Definition 3.3.4, Theorem 3.3.1, and Lemma 3.3.3

that [P2,C] is stable, and as a consequence the only step left now is to establish the
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bound on bP2,C. Towards this end, we make use of (3.20), which yields

bP2,C = γ(G̃2K) ≥ γ(G̃2G̃
∗
1)γ(G̃1K)− γ̄(G̃2G1)γ̄(G∗1K)

=
√

1− δν(P1,P2)2bP1,C − δν(P1,P2)
√

1− b2P2,C

= cos(arcsin δν(P1,P2)) sin(arcsin bP1,C)

− sin(arcsin δν(P1,P2)) cos(arcsin bP2,C)

= sin(arcsin bP1,C − arcsin δν(P1,P2)),

where the second equality follows from (3.13) and (3.15). The proof is completed by

taking arcsin of both sides and noting that arcsin(·) is monotonically increasing.

3.3.2 Properties of the generalised ν-gap metric

Here we establish various properties of the ν-gap, including proofs for the claim that it is

a metric and that it induces the coarsest topology under which closed-loop stability and

performance are robust properties.

We first prove the metric property of δν(·, ·) following the LTI development in [Vin93,

Vin01]. Recall from Definition 3.2.1 that stability of a feedback interconnection is deter-

mined only by the behaviour of its subsystems on L2+. Furthermore, recall from Sec-

tions 2.3, 2.4, and 2.5 that given time-varying state-space realisations or frequency domain

symbols, the construction of P : dom (P) ⊂ L2
R → L2

R is such that dom (P) ⊂ L2+ and

so GP ∩ L2+ = GP. By virtue of these, we identify operators having the same behaviour

on L2+:

P1 = P2 if GP1 ∩L2+ = GP2 ∩L2+. (3.22)

This identification is used in the proof of part (b) of the theorem below.

Theorem 3.3.7. δν(·, ·) is a metric on S.

Proof. We need to show the following for any P1,P2,P3 ∈ S:

(a) δν(P1,P2) = δν(P2,P1) (symmetry);

(b) δν(P1,P2) ≥ 0, with δν(P1,P2) = 0 if, and only if, P1 = P2 (positive definiteness);

(c) δν(P1,P2) ≤ δν(P1,P3) + δν(P2,P3) (triangle inequality).
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Throughout, let Gi and G̃i denote right and left normalised graph symbols for Pi,

respectively.

(a): From (3.12), we have γ̄(G̃2G1) = γ̄(G̃1G2). Furthermore, by Lemma 3.1.2(i),

TG∗2G1,τ is Fredholm if, and only if, TG∗1G2,τ is, with ind(TG∗2G1,τ ) = −ind(TG∗2G1,τ ) for

all τ ∈ R. Symmetry therefore holds by the definition of δν(·, ·).

(b): That δν(P1,P2) ≥ 0 is obvious. When P1 = P2, δν(P1,P2) = 0 since G∗1G1 = I

and G̃1G1 = 0 by Assumptions 2.2.1 and 2.2.2. Now suppose δν(P1,P2) = 0. Note

that this implies γ̄(G̃2G1) = γ̄(G̃1G2) = 0 and hence G̃2G1 = G̃1G2 = 0. As such,

by Lemma 3.1.3(iv), TG̃2,τ
TG1,τ = TG̃2G1,τ

= 0 and TG̃1,τ
TG2,τ = TG̃1G2,τ

= 0 for all

τ ∈ R, and thus

img (TG1,τ ) ⊂ ker
(
TG̃2,τ

)
and img (TG2,τ ) ⊂ ker

(
TG̃1,τ

)
.

But GP1 ∩ L2
[τ,∞) = img (TG1,τ ) = ker

(
TG̃1,τ

)
and GP2 ∩ L2

[τ,∞) = img (TG2,τ ) =

ker
(
TG̃2,τ

)
, implying that GP1 ∩ L2

[τ,∞) = GP2 ∩ L2
[τ,∞) for all τ ∈ R. Consequently,

P1 = P2 by the identification in (3.22).

(c): First note that by Definition 3.3.4, it is always the case that δν(P1,P2) ≤ 1, hence

the triangle inequality holds vacuously if δν(P1,P3)+δν(P2,P3) ≥ 1. Thus, suppose that

δν(P1,P3) + δν(P2,P3) < 1. (3.23)

This implies δν(P1,P3) < 1 and δν(P2,P3) < 1, whereby δν(P1,P3) = γ̄(G̃3G1) and

δν(P2,P3) = γ̄(G̃3G2), i.e.

TG̃3G̃
∗
1,τ

and TG̃2G̃
∗
3,τ

are Fredholm with ind(TG̃3G̃
∗
1,τ

) = ind(TG̃2G̃
∗
3,τ

) = 0 ∀τ ∈ R

(3.24)

by Definition 3.3.4 and Lemma 3.3.3.

Now notice that (3.11) gives

G∗2G1 = G∗2

(
G3G

∗
3 + G̃

∗
3G̃3

)
G1 = G∗2G3G

∗
3G1 + G∗2G̃

∗
3G̃3G1,
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whereby

γ(G∗2G1) ≥ γ(G∗2G3G
∗
3G1)− γ̄(G∗2G̃

∗
3G̃3G1)

≥ γ(G∗3G2)γ(G∗3G1)− γ̄(G̃3G2)γ̄(G̃3G1)

⇐⇒
√

1− γ̄2(G̃2G1) ≥
√

1− γ̄2(G̃3G2)

√
1− γ̄2(G̃3G1)− γ̄(G̃3G2)γ̄(G̃3G1)

⇐⇒ γ̄2(G̃2G1) ≤ γ̄2(G̃3G2) + γ̄2(G̃3G1) + 2γ̄(G̃3G2)γ̄(G̃3G1)

√
1− γ̄2(G̃2G1)

=⇒ γ̄(G̃2G1) ≤ γ̄(G̃3G1) + γ̄(G̃3G2) = δν(P1,P3) + δν(P2,P3).

where (3.13) has been used to arrive at the first equivalence relation. To complete the

proof, we show below that TG̃2G̃
∗
1,τ

is Fredholm with ind(TG̃2G̃
∗
1,τ

) = 0 for all τ ∈ R,

whereby δν(P1,P2) = γ̄(G̃2G1).

First observe that the condition (3.23) implies γ̄(G̃3G1) + γ̄(G̃3G2) < 1, whereby

γ̄(G̃3G1)γ̄(G̃3G2) <

√
1− γ̄2(G̃3G1)

√
1− γ̄2(G̃3G2).

Combining the above with (3.12) and (3.13) yields

γ̄(G̃2G3G
∗
3G̃
∗
1) ≤ γ̄(G̃2G3)γ̄(G̃1G3) = γ̄(G̃2G3)γ̄(G̃3G1)

<

√
1− γ̄2(G̃3G2)

√
1− γ̄2(G̃3G1)

= γ(G̃2G̃
∗
3)γ(G̃3G̃

∗
1) ≤ γ(G̃2G̃

∗
3G̃3G̃

∗
1).

(3.25)

Now using (3.11), one obtains

G̃2G̃
∗
1 = G̃2

(
G̃
∗
3G̃3 + G3G

∗
3

)
G̃
∗
1 = G̃2G̃

∗
3G̃3G̃

∗
1 + G̃2G3G

∗
3G̃
∗
1. (3.26)

Since according to (3.25), γ(G̃2G̃
∗
3) > 0 and γ(G̃3G̃

∗
1) > 0, we have by Lemma 3.2.17

that G̃2G̃
∗
3 and G̃3G̃

∗
1 are boundedly invertible. As such, (3.26) becomes

G̃2G̃
∗
1 = (I + X)G̃2G̃

∗
3G̃3G̃

∗
1 with X := G̃2G3G

∗
3G̃
∗
1(G̃2G̃

∗
3G̃3G̃

∗
1)−1.

Applying Lemma 3.1.3(iv) twice yields for any τ ∈ R,

TG̃2G̃
∗
1,τ

= T(I+X)G̃2G̃
∗
3,τ

TG̃3G̃
∗
1,τ

+ H+−
(I+X)G̃2G̃

∗
3,τ

H−+

G̃3G̃
∗
1,τ

= T(I+X),τTG̃2G̃
∗
3,τ

TG̃3G̃
∗
1,τ

+ H+−
(I+X),τH

−+

G̃2G̃
∗
3,τ

TG̃3G̃
∗
1,τ

+ H+−
(I+X)G̃2G̃

∗
3,τ

H−+

G̃3G̃
∗
1,τ
.

(3.27)
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Note that through (3.25),

γ̄(TX,τ ) ≤ γ̄(X) ≤ γ̄(G̃2G3G
∗
3G̃
∗
1)

γ(G̃2G̃
∗
3G̃3G̃

∗
1

< 1.

Thus by Lemma 3.1.2(iii), TG̃2G̃
∗
1,τ

is Fredholm with ind(TG̃2G̃
∗
1,τ

) = ind(TI+X,τ ) =

ind(I + TX,τ ) = ind(I) = 0. By (3.24) and Lemma 3.1.2(ii), this means the operator

T(I+X),τTG̃2G̃
∗
3,τ

TG̃3G̃
∗
1,τ

is Fredholm with

ind(T(I+X),τTG̃2G̃
∗
3,τ

TG̃3G̃
∗
1,τ

) = ind(T(I+X),τ ) + ind(TG̃2G̃
∗
3,τ

) + ind(TG̃3G̃
∗
1,τ

) = 0.

Note that H−+

G̃2G̃
∗
3,τ

and H−+

G̃3G̃
∗
1,τ

are compact by Assumption 2.2.3 and Lemma 3.2.14.

Thus, by Lemma 2.1.1, H+−
(I+X),τH

−+

G̃2G̃
∗
3,τ

TG̃3G̃
∗
1,τ

and H+−
(I+X)G̃2G̃

∗
3,τ

H−+

G̃3G̃
∗
1,τ

are com-

pact. Since the sum of two compact operators is compact [Kat80, Thm. III.4.7], applying

Lemma 3.1.2(iv) to (3.27) then yields TG̃2G̃
∗
1,τ

is Fredholm with

ind(TG̃2G̃
∗
1,τ

) = ind(T(I+X),τTG̃2G̃
∗
3,τ

TG̃3G̃
∗
1,τ

) = 0,

as required.

In the following theorem, we bound the errors in the closed-loop mappings due to

perturbations of P in terms of the ν-gap measure of distance between the nominal and

perturbed systems; see [Vin01, Thm. 3.19] for a time-invariant equivalent. This leads to

useful topological properties of the ν-gap metric. A similar result in terms of the standard

gap metric can be found in [CV02, Thm. III.2].

Theorem 3.3.8. For any P1,P2,C ∈ S such that [P1,C] and [P2,C] are stable,

δν(P1,P2) ≤ sup
τ∈R

γ̄
(
ΠG τP1

‖G ′ τC −ΠG τP2
‖G ′ τC

)
≤ δν(P1,P2)

bP1,CbP2,C
. (3.28)

Proof. Let ∆τ := ΠG τP2
‖G ′ τC −ΠG τP1

‖G ′ τC . We show below that ∆τ = ΠG ′ τC ‖G
τ
P1

ΠG τP2
‖G ′ τC

as in the proof for [CV02, Thm III.2]. Given any u ∈ L2
[τ,∞), let

vi := ΠG τPi
‖G ′ τC u and wi := ΠG ′ τC ‖G

τ
Pi
u (i = 1, 2),

so that u = v1 + w1 = v2 + w2. It follows that

∆τu = v1 − v2 = w1 − w2 =: w ∈ G ′ τC .
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Consequently, as ΠG ′ τC ‖G
τ
P1
w = w and u was arbitrary, we have that

∆τ = ΠG ′ τC ‖G
τ
P1

∆τ = ΠG ′ τC ‖G
τ
P1

ΠG τP2
‖G ′ τC ,

where the last equality holds because ΠG ′ τC ‖G
τ
P1

ΠG τP1
‖G ′ τC = 0. From Lemma 3.2.15, we

then have for any τ ∈ R,

∆τ = TG2,τT
−1
K̃G2,τ

TK̃,τ −TG1,τT
−1
K̃G1,τ

TK̃,τ (3.29)

= TK,τT
−1
G̃1K,τ

TG̃1,τ
TG2,τT

−1
K̃G2,τ

TK̃,τ

= TK,τT
−1
G̃1K,τ

TG̃1G2,τ
T−1

K̃G2,τ
TK̃,τ ,

where the last equality holds by Lemma 3.1.3(iv) and causality of G2. It follows imme-

diately that

sup
τ∈R

γ̄(∆τ ) ≤ sup
τ∈R

γ̄(T−1
G̃1K,τ

)γ̄(TG̃1G2,τ
)γ̄(T−1

K̃G2,τ
) ≤ δν(P1,P2)

bP1,CbP2,C
,

i.e. the upper bound in (3.28) holds.

To establish the lower bound, first define

Q := (K̃G2)−1K̃G1,

so that Q,Q−1 ∈ L (L2
R,L

2
R) are both causal; see Theorem 3.2.19. Then it follows from

(3.29) that

∆τ = (TG2,τTQ,τ −TG1,τ )T−1
K̃G1,τ

TK̃,τ .

Noting that γ̄(TK̃G1,τ
) ≤ γ̄(K̃G1) ≤ 1, and so γ(T−1

K̃G1,τ
) ≥ 1, one gets

sup
τ∈R

γ̄(∆τ ) ≥ sup
τ∈R

γ̄(TG1,τ −TG2,τTQ,τ )

= γ̄(G1 −G2Q)

= γ̄

([
G∗2G1 −Q

G̃2G1

])
≥ γ̄(G̃2G1),

(3.30)

where the first equality follows from Lemma 3.1.3(v) and the second from the fact that[
G∗2
G̃2

]
is an isometry; see (3.11). It remains to confirm the Fredholm index condition in

the definition of the ν-gap metric. First observe that if γ̄(G1 − G2Q) ≥ 1, then from

(3.30) we have supτ∈R γ̄(∆τ ) ≥ 1 and as a result the lower bound in (3.28) holds trivially.
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So we consider the case where γ̄(G1 −G2Q) < 1, which in turn implies

γ̄(G1 −G2Q) = γ̄(G∗1(G1 −G2Q)) = γ̄(I−G∗1G2Q) < 1.

Consequently, as G∗1G2Q = I− (I−G∗1G2Q), we have

γ(G∗1G2Q) > 0 and TG∗1G2Q,τ is Fredholm with ind(TG∗1G2Q,τ ) = 0∀τ ∈ R,

where the latter holds by Lemma 3.1.2(iii). Because Q has a bounded causal inverse,

γ(G∗1G2Q) > 0 implies γ(G∗1G2) > 0. Moreover, TQ,τ is boundedly invertible, hence

for all τ ∈ R, ind(TQ,τ ) = 0 (cf. Remark 3.1.5) and Fredholmness of TG∗1G2Q,τ =

TG∗1G2,τTQ,τ implies that of TG∗1G2,τ . Applying Lemma 3.1.2(ii) again, it follows that

0 = ind(TG∗1G2Q,τ ) = ind(TG∗1G2,τ ) + ind(TQ,τ ) = ind(TG∗1G2,τ ) ∀τ ∈ R.

Application of Lemma 3.1.2(i) then yields ind(TG∗2G1,τ ) = −ind(TG∗1G2,τ ) = 0∀τ ∈ R,

whereby δν(P1,P2) = γ̄(G̃2G1), as required for the lower bound in (3.28) to hold via

(3.30).

In the sequel, the topology generated by the ν-gap metric is termed the graph topology,

in line with the existing literature [Vin93, Vin01, You98, Vid84, FGS93, CV02]. The

bounds in Theorem 3.3.8 facilitate simple and direct proofs of the following properties of

the graph topology. Specifically, the graph topology is the weakest topology with respect

to which both feedback stability and performance are robust properties. The previous

work in [CV02] establishes a similar result for the standard gap metric (i.e. only semi-

infinite signal space with a fixed ‘initial’ time) in a potentially LTV setting, while [Vin01,

Chapter 7] does so for the ν-gap metric in the time-invariant setting. The proofs of the

following corollaries are based on these references.

Corollary 3.3.9. Given P and a sequence {Pi} in S, the following are equivalent:

(i) δν(P,Pi)→ 0;

(ii) For any C such that [P,C] is stable, ΠG τPi
‖G ′ τC → ΠG τP‖G

′ τ
C

uniformly in τ ∈ R.

Proof. That (ii) implies (i) follows from the lower bound in Theorem 3.3.8 while the

converse implication from the upper bound and the robustness result Corollary 3.3.6.

Corollary 3.3.10. When S is equipped with the graph topology, for any C ∈ S, the

mapping X := P ∈ S 7→ ΠG ·P‖G
′ ·
C

is continuous at all points P in S (C) := {P ∈ S :

[P,C] is stable}. Furthermore, the graph topology is the weakest topology on S for which

this holds.
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Proof. Corollary 3.3.6 and the upper bound in Theorem 3.3.8 guarantee that given any

P ∈ S (C) and ε > 0, there exists a δ > 0 such that

δν(P, P̃) < δ =⇒ [P̃,C] is stable and sup
τ∈R

γ̄
(
ΠG τ

P̃
‖G ′ τC −ΠG τP‖G

′ τ
C

)
< ε,

from which continuity of X follows. For the second part, suppose T is a topology having

the property under consideration. This implies for any P ∈ S (C) and ε > 0, there exists

an open neighbourhood of P, denoted N (P, ε) ∈ T , such that

[P̃,C] is stable and sup
τ∈R

γ̄
(
ΠG τ

P̃
‖G ′ τC −ΠG τP‖G

′ τ
C

)
< ε,∀P̃ ∈ N (P, ε).

By the lower bound in Theorem 3.3.8, it follows that

δν(P, P̃) < ε∀P̃ ∈ N (P, ε),

i.e. N (P, ε) ⊂ Bε(P) := {P̃ ∈ S : δν(P, P̃) < ε}. In other words, any set that is open

with respect to the graph topology is also open with respect to the topology T .

3.4 Robustness analysis for periodic systems

The previous section presented sufficient conditions for robust feedback stability in terms

of the ν-gap metric. Here we derive a necessary condition which is analogous to the first

part of [Vin01, Thm. 3.10]. Since the proof of this result relies on explicit construction of

a perturbed system, we depart from the purely abstract setting and focus in this section

on the class of linear periodically time-varying (LPTV) systems PHS ⊂ PCF introduced

in Section 2.5.

3.4.1 The ν-gap metric for periodic systems

The same notation from Section 2.5 is used here. Given P1,P2 ∈ PCF , by the h-

periodicity property of the operators, SkhG
∗
2G1 = G∗2G1Skh ∀k ∈ Z, where Sτ denotes

the continuous-time shift operator and G1,G2 ∈ P are right graph symbols for P1 and
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P2, respectively. Consequently, for all τ ∈ R and k ∈ Z,

S−khTG∗2G1,τ+khSkh|L2
[τ,∞)

= S−kh(I−Πτ+kh)G∗2G1|L2[τ+kh,∞)Skh|L2
[τ,∞)

= (I−Πτ )S−khG
∗
2G1Skh|L2

[τ,∞)

= (I−Πτ )G∗2G1|L2
[τ,∞)

= TG∗2G1,τ .

(3.31)

Furthermore, note that as bijective mappings the restricted shift operators S−kh|L2[τ+kh,∞) :

L2[τ+kh,∞)→ L2
[τ,∞) and Skh|L2

[τ,∞)
: L2

[τ,∞) → L2[τ+kh) are both Fredholm with zero

index. Thus, it follows by Lemma 3.1.2(ii) that ind(TG∗2G1,τ ) = ind(TG∗2G1,τ+kh)∀τ ∈
R, k ∈ Z. Thus, for the system class PCF , Definition 3.3.4 of the ν-gap metric then

simplifies to

δν(P1,P2) :=


γ̄(G̃2G1) = ‖G̃2G1‖∞ if TG∗2G1,τ is Fredholm

and ind(TG∗2G1,τ ) = 0 for all τ ∈ [0, h)

1 otherwise,

(3.32)

where G̃2, G̃1 ∈ LH∞D are respectively normalised left and right graph symbols for

P2, P1 ∈ LCF as in Proposition 2.5.4.

3.4.2 A necessary condition for robust stability

The main result here characterises the maximal ν-gap metric ball of perturbations a

nominal stable feedback system can tolerate before becoming unstable. It is analogous

to the time-invariant case of [Vin01, Rem 3.11(i)]. The proof presented below borrows

ideas from [CG00, Thm 4.2], in which the standard gap metric is studied within a largely

different setting.

Theorem 3.4.1. Given P1,C ∈ PHS and β < bopt(P1;PHS) := sup
C∈PHS : [P,C] is stable

bP,C,

[P2,C] is stable for all P2 ∈ PHS satisfying δν(P1,P2) < β if, and only if, bP1,C ≥ β.

Proof. Sufficiency is immediate from Corollary 3.3.6. For the necessity proof, suppose to

the contrary that bP1,C < β. We show below that it is possible to then construct a system

P2 ∈ PHS such that δν(P1,P2) < β and [P2,C] is unstable.

First note that the stability of [P1,C] is equivalent to K̃G1 having a bounded causal

inverse by Theorem 3.2.19, which in turn is equivalent to (K̃G1)−1 ∈ LH∞D . In addition,
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we have b−1
P1,C

= γ̄((K̃G1)−1) = ‖(K̃G1)−1‖∞ = ‖(K̃G1)−1K̃‖∞, where the last equality

holds since K̃ is normalised, i.e. K̃K̃∗ = I. Let

Γ := (K̃G1)−1K̃ ∈ LH∞D .

Since Γ is analytic in D, for any ε0 > 0 and ε1 > 0, there exists by the maximum modulus

principle a z0 ∈ {z ∈ C : (1− ε0) ≤ z < 1} such that

(bP1,C + ε1)−1 < γ̄(Γ(z0)) ≤ b−1
P1,C

.

It follows by the definition of the induced norm that there exists u ∈ L2
[0,h) such that

‖u‖2 = 1 and

γ̄(Γ(z0)) ≥ ‖Γ(z0)u‖2 ≥ (bP1,C + ε1)−1.

We define ∆0 := ĈB : L2
[0,h) → L2

[0,h), where B ∈ L (L2
[0,h),C

n) maps αΓ(z0)u to

(−α, 0, · · · , 0)T for all α ∈ C and every element in {x ∈ L2
[0,h) : 〈x, αΓ(z0)u〉2 = 0;α ∈ C}

to 0, while Ĉ := (v1, v2, · · · , vn)T 7→ v1u ∈ L (Cn,L2
[0,h)), so that

γ̄(∆0) ≤ (bP1,C + ε1) and Γ(z0)u ∈ ker (I + Γ(z0)∆0) .

As such, I + Γ(z0)∆0 is not invertible. Define

∆(z) :=
z

z0
∆0 = (0, B, Ĉ/z0, 0) ∈ LH∞D ,

so that ∆(z0) = ∆0, whereby it is clear that I + Γ∆ is not invertible in LH∞D . We set

ε1 := (β − bP1,C)/2 and ε0 := ε1/2β, so that

‖∆‖∞ =
1

|z0|
γ̄(∆0) ≤

bP1,C + ε1
1− ε0

< β.

Now define

Ĝ2 := G1 + ∆ ∈ LH∞D .

Since G1 is normalised, i.e.
(
G1(1

z )
)∗
G1(z) = I ∀z ∈ D ∪ T and ‖∆‖∞ < β < 1, we

have infz∈T γ(Ĝ2(z)) > 0. Partition conformably G1 =
[
N1
M1

]
and Ĝ2 =

[
N̂2

M̂2

]
and recall

that by Definition 2.5.1, G1 is left-invertible in LH∞D . Given that ∆ does not have a

feedthrough ‘D’ term in its realisation, Ĝ2 and M̂2 have the same feedthrough terms as

those of G1 and M1, respectively. Consequently, M̂2 is invertible in L since M1 is, and

hence Ĝ2 is left-invertible in L. Let the Hardy space

H∞D :=

{
Φ : D→ L (L2

[0,h),L
2
[0,h))

∣∣∣∣∣ Φ is analytic in D and

‖Φ‖∞ := supz∈D γ̄(Φ(z)) <∞

}
.
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We now show that there exists a ĜL2 ∈ H∞D such that ĜL2 Ĝ2 = I on D (i.e. Ĝ2 is a

legitimate graph symbol), by following the argument employed at the end of [Vin01, Pg.

144]. To this end, let C1 ∈ PHS be such that bP1,C1 > β, which exists by hypothesis.

Then

inf
z∈D

γ
(
Ĝ2(z)

)
≥

infz∈D γ
(
K̃1(z)Ĝ2(z)

)
‖K̃1‖∞

≥ inf
z∈D

γ
(
K̃1(z)Ĝ2(z)

)
≥ inf

z∈D
γ
(
K̃1(z)G1(z)

)
− ‖K̃1∆‖∞

= bP1,C1 − β > 0,

where the fact that K̃1K̃
∗
1 = I has been used. As such, Ĝ(z) has a left bounded inverse

for all z ∈ D, and hence Ĝ2 has a left inverse in H∞D , which we denote by ĜL. It

follows that
⋃
k∈Z img

(
M Ĝ2

|zkH2
D

)
is the graph of a multiplication operator with symbol

P2 := N̂2M̂
−1
2 ∈ L; see Proposition 2.5.4. Note that P2 has the same feedthrough term

as that of P1 ∈ LHS , and hence P2 ∈ LHS .

We now proceed to show that [P2,C], where P2
Z W h
" MP2 , is not a stable feedback

interconnection. Let G2 be a normalised right graph symbol for P2 with a left inverse

GL2 ∈ LH∞D , which exists by Proposition 2.5.2. Define Q̂ := M̂−1
2 M2 ∈ L, so that

Q̂−1 = M−1
2 M̂2 ∈ L and G2 = Ĝ2Q̂. Furthermore, note that Q̂ = ĜL2G2 ∈ LH∞D and

Q̂−1 = GL2 Ĝ2 ∈ LH∞D . Now observe that

(K̃G1)−1K̃G2 = (K̃G1)−1K̃Ĝ2Q̂ = (I + Γ∆)Q̂,

from which it follows that K̃G2 is not invertible in LH∞D . By Theorem 3.2.19, this implies

that [P2,C] is not stable. To complete the proof, we establish below that δν(P1,P2) < β.

First we see that G∗1G2 = G∗1(G1 + ∆)Q̂ = (I + G∗1∆)Q̂. By defining G1
Z W h
" MG1 ,

G2
Z W h
" MG2 , ∆ Z W h

" M∆, Q̂ Z W h
" M Q̂ and noting that G1 is normalised, we have

γ̄(G∗1∆) = ‖G∗1∆‖∞ ≤ ‖∆‖∞ < β < 1.

Now by Lemma 3.1.2(i), (ii), and (iii) in the order they are stated, for all τ ∈ [0, h),

−ind(TG∗2G1,τ ) = ind(TG∗1G2,τ ) = ind(T(I+G∗1∆)Q̂,τ ) = ind(TI+G∗1∆,τ ) + ind(TQ̂,τ )

= ind(TQ̂,τ ) = 0,

where the last equality holds by Remark 3.1.5 because Q̂−1 ∈ LH∞D , Q̂
−1 Z W h∼ M Q̂−1 is
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a bounded causal operator. Finally, with

Q̂ :=
{

Q Z W h
" MQ : Q ∈ LH∞D

}
,

we have that

δν(P1,P2) = γ̄(G̃2G1) ≤ inf
Q∈Q̂

γ̄

([
G∗2G1 −Q

G̃2G1

])
= inf

Q∈Q̂
γ̄

([
G∗2

G̃2

]
(G1 −G2Q)

)
= inf

Q∈Q̂
γ̄(G1 −G2Q)

= inf
Q∈LH∞D

‖G1 −G2Q‖∞

= inf
Q∈LH∞D

‖G1 − (G1 + ∆)Q̂Q‖∞

≤ ‖∆‖∞ < β,

where the third equality follows from the fact that
[

G∗2
G̃2

]
is an isometry as in (3.11).

3.5 Summary

This chapter motivates a generalised ν-gap from [JC10, JC11] as a measure of distance

between open-loop causal linear time-varying systems from the perspective of capturing

their ‘closed-loop’ difference. The development relies only on assumptions regarding the

existence of normalised strong graph symbols/representations satisfying a corresponding

Hankel operator compactness property as in [JC10, JC11], as defined in Chapter 2. Several

notions including feedback stability and robustness margin are also generalised from the

time-invariant case [Vin93, Vin01] and characterised in terms of system graph symbols

building upon the initial development in [JC10, JC11]. The ν-gap metric is shown to

possess various useful closed-loop robustness characteristics. These lay the foundations for

the development of more advanced stability analysis and model approximation methods

in the forthcoming chapters.



Chapter 4

Stability analysis via the integral

quadratic constraints

The theory of integral quadratic constraints (IQCs) [MR97, Jön01] presents a general tool

for characterising the input-output behaviour of systems. It is well-documented in the

literature [MR97, RM97] that IQC based robustness analysis generalises the small-gain,

passivity, and circle/Popov criterion type stability arguments [Kha02]. The main goal

of this chapter is to corroborate the benefits brought about by incorporating IQCs into

the ν-gap metric based analysis along the lines of [JC10, JC11], where IQCs are used

to characterise input/output behaviour and continuous ν-gap homotopies to characterise

the robustness properties of uncertain feedback interconnections. Towards this end, the

theories are consolidated within a unified robustness analysis framework, from which a

pure ν-gap metric ball type robust stability result is then shown to be recoverable. Several

intermediate results are derived along the way, each of which is interesting in its own right.

In particular, a useful characterisation of the ν-gap distance in terms of a linear fractional

transformation (LFT) being stable and contractive is developed in an operator-theoretic

setting, in the spirit of [Can06, BC07]. The LFT provides a bijective and continuous

map between a ν-gap ball and a corresponding norm-ball. This is exploited to establish

that sufficiently small ν-gap metric balls are pathwise connected in the graph topology.

A ν-gap ball based robustness result then follows from this result within the IQC/ν-gap

framework of [JC10, JC11].

In the literature, LFT characterisation of similar kind has been used to examine various

model approximation and validation problems; see, for example, [Dav95, Vin01, Can01,

CV04]. These shift-invariant studies are closely tied to the so-called DGKF solution to

H∞ optimal control problems [DGKF89, ZDG96]. A different and more direct route is

adopted here, based on a J-spectral factorisation approach. Earlier works in this direction

67
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include [Can06, BC07] and [BC08], where the ν-gap metric for finite-dimensional linear

time-invariant (LTI) systems is characterised in terms of an LFT and a step-wise procedure

for reduced-order approximation proposed, respectively.

The LFT characterisation requires the existence of a certain J-spectral factorisation

of a normalised graph symbol expression. This is established for two generic classes

of linear systems from Chapter 2, namely time-varying systems with finite-dimensional

stabilisable and detectable state-space realisations [IS04, MC10] and multiplications by

distributed-parameter transfer functions in the constantly proper subclass of the Callier-

Desoer algebra [CD78, CZ95]. In the latter case, the definition of the generalised ν-

gap metric is also shown to reduce to the more familiar winding number expression;

see [CJK12, CJK10, CJK09, Vin93, Vin01].

This chapter has the following structure. The IQC/ν-gap robust stability analysis

from [JC10, JC11] is reviewed in the next section. The aforementioned linear fractional

characterisation of the metric is developed in Section 4.2 under the assumption that a

certain J-spectral factorisation exists. A pathwise connectedness result on ν-gap balls

is established in Section 4.3. The flexibility of the unified framework over that of the

ν-gap alone is then demonstrated in Section 4.4. Section 4.5 contains a characterisation

of the robust stability margin. The existence of the required J-spectral factorisation is

established for specific classes of systems in Section 4.6.

4.1 A unified IQC and ν-gap based robustness result

In this section, a mixed integral quadratic constraint (IQC) and ν-gap metric based

feedback robustness result is presented in a general setting. It is based on the initial

developments in [JC10, JC11, CJK12, CJK10, CJK09, JCK08].

Recall that the set of causal operators which satisfy all of Assumptions 2.2.1, 2.2.2,

and 2.2.3 is denoted by S as in Definition 2.2.4.

Definition 4.1.1 (Integral Quadratic Constraints [MR97]). An operator X ∈ S is said

to satisfy the IQC defined by the multiplier Ψ = Ψ∗ ∈ L (L2
R,L

2
R) if

〈v,Ψv〉2 ≥ 0, ∀v ∈ GX ∩L2+.

This is denoted X ∈ IQC(Ψ). On the other hand, X is said to satisfy the strict comple-

mentary IQC, denoted X ∈ IQCc(Ψ), if there exists an ε > 0 such that

〈v,Ψv〉2 ≤ −ε‖v‖22,∀v ∈ G ′X ∩L2+.
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Lemma 4.1.2. Given P,C ∈ S, suppose there exists a Ψ = Ψ∗ ∈ L (L2
R,L

2
R) such that

P ∈ IQC(Ψ) and C ∈ IQCc(Ψ).

Then there exists an η > 0 such that

‖v + w‖22 ≥ η2‖v‖22 for all v ∈ GP ∩L2+ and w ∈ G ′C ∩L2+.

Note that if in addition [P,C] is stable, Lemma 3.2.8 yields bP,C ≥ η.

Proof. The proof follows from an argument employed in the proof of [JC11, Thm. 1],

which is included here for completeness. From hypothesis, we have

∃ε > 0 such that 〈w,Ψw〉2 ≤ −ε‖w‖22, ∀w ∈ G ′C∩L2+ and 〈v,Ψv〉2 ≥ 0,∀v ∈ GP∩L2+,

for any P ∈P. With Υ := 2Ψ + εI, these conditions become

〈v,Υv〉2 ≥ ε‖v‖22, ∀v ∈ GP ∩L2+ and 〈w,Υw〉2 ≤ −ε‖w‖22, ∀w ∈ G ′C ∩L2+.

It follows that for any v ∈ GP ∩L2+ and w ∈ G ′C ∩L2+,

ε(‖v‖22 + ‖w‖22) ≤ 〈v,Υv〉2 − 〈w,Υw〉2 = 〈v + w,Υ(v + w)〉2 − 2〈w,Υ(v + w)〉2
≤ ‖Υ‖‖v + w‖22 + 2‖Υ‖‖w‖2‖v + w‖2

≤ ‖Υ‖‖v + w‖22 +
2‖Υ‖2‖v + w‖22

ε
+
ε

2
‖w‖22,

where the last inequality holds since 2xy ≤ x2

γ + γy2 for any x, y, γ ∈ R. This implies(
1 +

2

ε
‖Υ‖

)
‖Υ‖‖v + w‖22 ≥ ε‖v‖22 +

ε

2
‖w‖22 ≥ ε‖v‖22

=⇒ ‖v + w‖22 ≥ η2‖v‖22,

for any positive η ≤ ε√
‖Υ‖(ε+2‖Υ‖)

.

In IQC-based feedback robustness analysis framework of [JC10, JC11, CJK12, CJK10,

CJK09, JCK08], homotopies of systems in the ν-gap metric play a crucial role.

Definition 4.1.3. We say that two operators Pa and Pb in S are joined by a path if

there exists a homotopy of operators {Pλ ∈ S : λ ∈ (0, 1)} such that the mapping

λ ∈ [0, 1] 7→ Pλ with P0 := Pa and P1 := Pb is continuous with respect to δν(·, ·).
Pa and Pb are said to be connected by a weak path if for every η > 0, there exists
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P(η) := {Pi ∈ S : i = 1, 2, . . . , N(η)} such that P1 = Pa, PN = Pb and δν(Pi,Pi+1) <

η,∀i = 1, 2, . . . , N − 1. When this is the case, the weak path is denoted by P(Pa,Pb) :=⋃
η>0 P(η). An uncertainty set of operators W is said to be (weakly) path-connected in

the graph topology if for any two elements in W , there exists a (weak) path connecting

them in W .

Theorem 4.1.4. Suppose [Pa,C] is stable, then [Pb,C] is stable if

1. Pa and Pb are connected by a weak path P(Pa,Pb);

2. there exists a Ψ = Ψ∗ ∈ L (L2
R,L

2
R) such that

P ∈ IQC(Ψ),∀P ∈P(Pa,Pb) and C ∈ IQCc(Ψ).

Proof. By hypothesis and Lemma 4.1.2, bPa,C ≥ η for some η > 0. Given this η, it

follows by hypothesis that there exists P(η) := {Pi ∈ S : i = 1, 2, . . . , N} such that

P1 = Pa, PN = Pb and δν(Pi,Pi+1) < η, ∀i = 1, 2, . . . , N − 1. Noting that [P1,C] is

stable by hypothesis, the result follows by a simple inductive argument which establishes

that [Pi,C] is stable for all i = 2, . . . , N . Specifically, suppose that [Pk,C] is stable,

whereby b(Pk,C) ≥ η by hypothesis and Lemma 4.1.2 again. Since δν(Pk,Pk+1) < η, it

follows by Corollary 3.3.6 that [Pk+1,C] is stable.

Corollary 4.1.5. Given a C ∈ S and a weakly path-connected set W ⊂ S, suppose there

exists a P0 ∈ W such that [P0,C] is stable. If in addition there exists a Ψ = Ψ∗ ∈
L (L2

R,L
2
R) such that P ∈ IQC(Ψ),∀P ∈ W and C ∈ IQCc(Ψ), then [P,C] is stable for

all P ∈ W .

Proof. By hypothesis, for every P ∈ W , there exists a weak path connecting it with P0.

The claim that [P,C] is stable then holds by Theorem 4.1.4.

For analogous IQC/ν-gap based results to the above, see [JC10, JC11, CJK12, CJK10,

CJK09, JCK08]. Moreover, [RM97] contains a similar result for nonlinear operators

developed within a different setting using the generalised gap metric from [GS97]. Other

works which exploit gap-homotopies in a similar fashion include [Vin99, JSV05].

4.2 A linear fractional characterisation of the ν-gap metric

In this section, we establish a characterisation of the generalised ν-gap metric based

on [Can06, BC07]. To be specific, given two P1,P2 ∈ S, it is shown that δν(P1,P2) < r
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if, and only if, the linear fractional transformation (LFT) of a certain bounded causal

operator R on P2 is bounded, causal, and strictly contractive. The R involved has a

bounded causal inverse and is dependent on P1 and r ∈ (0, 1). The characterisation is of

crucial importance in this thesis, forasmuch as it underlies the path-connectedness proof

in the succeeding section and is useful for tackling problems in model approximation with

respect to the ν-gap measure of error as delineated in Chapter 5.

We begin with two preliminary lemmata from [Can06] stated in the form of com-

plementary integral quadratic constraints (IQCs). They clearly demonstrate the close

relationship between feedback performance margin and the ν-gap metric. Recall the no-

tation introduced for operator graph symbols in Section 3.2.3, which is also used below.

Lemma 4.2.1. Given P,C ∈ S, the following are equivalent for any r ∈ (0, 1):

1. γ(G̃K) > r;

2. for all [ yu ] ∈ G ′C ∩L2+ =
⋃
τ∈R img (TK,τ ), there exists an ε > 0 such that〈

[ yu ] ,
(
r2I− G̃

∗
G̃
)

[ yu ]
〉

2
≤ −ε ‖[ yu ]‖22 .

Likewise, γ(G̃K) ≥ r if, and only if,
〈

[ yu ] ,
(
r2I− G̃

∗
G̃
)

[ yu ]
〉

2
≤ 0 for all [ yu ] ∈ G ′C∩L

2+.

Proof. The proof is straightforward from the definition of induced gains. In particular,

since graph symbols are causal by definition, application of Lemma 3.1.3(i) yields

γ(TG̃K,τ )2 = inf
q∈L2

[τ,∞):‖q‖2=1

〈
G̃Kq, G̃Kq

〉
2

= inf
[ yu ]∈img(TK,τ):‖[ yu ]‖

2
=1

〈
[ yu ] , G̃

∗
G̃ [ yu ]

〉
2
,

where the last equality holds since TK,τ is an isometry. It follows immediately that

inf
τ∈R

γ(TG̃K,τ ) ≥ r ⇐⇒
〈

[ yu ] ,
(
r2I− G̃

∗
G̃
)

[ yu ]
〉

2
≤ 0, ∀ [ yu ] ∈

⋃
τ∈R

img (TK,τ ) and

inf
τ∈R

γ(TG̃K,τ ) > r ⇐⇒
〈

[ yu ] ,
(
r2I− G̃

∗
G̃
)

[ yu ]
〉

2
≤ −ε ‖[ yu ]‖22 , ∀ [ yu ] ∈

⋃
τ∈R

img (TK,τ ) ,

where ε is some positive real number. The claimed result then follows from Lemma 3.1.3(v),

whereby γ(G̃K) = infτ∈R γ(TG̃K,τ ).

Lemma 4.2.2. Given P1,P2 ∈ S, the following are equivalent for any r ∈ (0, 1) and any

i, j ∈ {1, 2} satisfying i 6= j:

1. γ̄(G̃iGj) < r;
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2. for all [ yu ] ∈ GPj ∩L2+ =
⋃
τ∈R img

(
TGj ,τ

)
, there exists ε > 0 such that〈

[ yu ] ,
(
r2I− G̃

∗
i G̃i

)
[ yu ]
〉

2
≥ ε ‖[ yu ]‖22 .

Likewise, γ̄(G̃iGj) ≤ r if, and only if,
〈

[ yu ] ,
(
r2I− G̃

∗
i G̃i

)
[ yu ]
〉

2
≥ 0 for all [ yu ] ∈

GPj ∩L2+.

Proof. First note that γ̄(G̃2G) = γ̄(G̃1G2) by (3.12), which explains the subscripts i and

j. The proof for this lemma is largely similar to that for the previous one. Specifically,

because graph symbols are causal by definition and TGj ,τ is an isometry,

γ̄(TG̃iGj ,τ
)2 = sup

q∈L2
[τ,∞):‖q‖2=1

〈
G̃iGjq, G̃iGjq

〉
2

= sup

[ yu ]∈img
(
TGj ,τ

)
:‖[ yu ]‖

2
=1

〈
[ yu ] , G̃

∗
i G̃i [ yu ]

〉
2
.

The result follows immediately from this equality and Lemma 3.1.3(v).

We are now ready to establish the LFT characterisation of the ν-gap metric. First

define the maximal robustness margin of any P ∈ S by

bopt(P; S) := sup
C∈S : [P,C] is stable

bP,C. (4.1)

Theorem 4.2.3. Given m-input p-output operators P1, P2 ∈ S and a positive number

r < bopt(P1; S), suppose there exists a boundedly invertile causal

R =

[
R11 R12

R21 R22

]
∈ L (L2

R,L
2
R)

such that R−1 ∈ L (L2
R,L

2
R) is causal and

r2Ip+m − G̃
∗
1G̃1 = R∗

[
−Ip 0

0 Im

]
R. (4.2)

Then the following are equivalent:

1. δν(P1,P2) < r;

2. the LFT operator illustrated in Figure 4.1,

F(R,P2) : dom (F(R,P2)) ⊂ L2
R → L2

R,

for which RG is a (not necessarily normalised) right graph symbol, is such that
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F(R,P2) is causal, L2+ ⊂ dom (F(R,P2)), and

γ̄(F(R,P2)|L2+) := sup
u∈L2+:‖u‖2=1

‖F(R,P2)u‖2 < 1.

ŷ
�

R
û- 6

u
Pi

y
�

Figure 4.1: Graphical representation of the LFT F(R,Pi)

Remark 4.2.4. J-spectral factorisation in (4.2) is not unique. Specifically, given any

R̂ that solves (4.2) and any causal Q ∈ L (L2
R,L

2
R) such that Q−1 ∈ L (L2

R,L
2
R) is

causal and Q∗
[−I 0

0 I

]
Q =

[−I 0
0 I

]
, R := QR̂ is also a solution to (4.2). Indeed, Q can

be constructed in such a way that R21N2 + R22M2 has non-singular instantaneous gain

(cf. Definition 2.1.10), so that by Lemma 2.1.13

RG2L
2+ =

[
R11N2 + R12M2

R21N2 + R22M2

]
L2+

is the graph of a causal linear operator F(R,P2) : img (R21N2 + R22M2|L2+) ⊂ L2
R →

L2
R satisfying

F(R,P2)
∣∣∣
img

(
R21N2+R22M2|L2

[τ,∞)

) = TR11N2+R12M2,τT
−1
R21N2+R22M2,τ

∀τ ∈ R.

This linear fractional transformation (LFT) of the pair (R,P2) is consistent with chain-

scattering formalism of [Kim97]. As an example, see [BC08, Lem. 2], which considers

the class of finite-dimensional LTI systems with sufficiently small instantaneous gains.

The R constructed there is such that R21 = 0 and R22 has non-singular instantaneous

gain. Combining this with the non-singular instantaneous gain of M2, it follows that

R21N2 + R22M2 has non-singular instantaneous gain. In the special case where P2 that

has zero instantaneous gain, i.e. strictly causal, see Proposition 5.3.1 for a formula of

such an R.

Proof of Theorem 4.2.3. The line of proof follows the arguments underlying [Can06, Thm.

1] and [BC07, Thm. 3]. We first note a consequence of the hypothesis r < bopt(P1; S),

whereby there exists a C ∈ S such that [P1,C] is stable and bP1,C = γ(G̃1K) ≥ r.
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Combining (4.2) with Lemmas 4.2.1 and 4.2.2 yields respectively

γ(G̃1K) ≥ r ⇐⇒
〈
R [ yu ] ,

[−I 0
0 I

]
R [ yu ]

〉
2
≤ 0,∀ [ yu ] ∈ G ′C ∩L2+ and (4.3)

γ̄(G̃iG1) < r ⇐⇒
〈
R [ yu ] ,

[−I 0
0 I

]
R [ yu ]

〉
2
≥ ε ‖[ yu ]‖22 ,∀ [ yu ] ∈ GPi ∩L2+. (4.4)

? y

C
u
- û -

R−1
ŷ

�

Figure 4.2: Graphical representation of the LFT X (R,C)

Let X (R,C) : dom (X (R,C)) ⊂ L2
R → L2

R be the causal LFT operator illustrated in

Figure 4.2, for which RK is a (not necessarily normalised) right graph symbol X (R,C),

i.e.

G ′X (R,C) ∩L2
[τ,∞) = img (TRK,τ ) ∀τ ∈ R;

see Remark 4.2.4. By (4.3), it follows that

〈[
ŷ
û

]
,
[−I 0

0 I

] [
ŷ
û

]〉
2
≤ 0 ∀

[
ŷ
û

]
∈ G ′X (R,C) ∩L2+. (4.5)

Define

C(τ) :=
{
ŷ ∈ dom (X (R,C)) ∩L2

[τ,∞) | û = X (R,C)ŷ ∈ L2
[τ,∞)

}
.

As such, we have from (4.5) that X (R,C)|C(τ) is contractive, i.e. γ̄
(
X (R,C)|C(τ)

)
≤ 1,

for all τ ∈ R. In fact, it can be shown that C(τ) = L2
[τ,∞) for all τ ∈ R, from which it

follows that γ̄(X (R,C)|L2+) ≤ 1. To this end, let

F(R,P1) : dom (F(R,P1)) ⊂ L2
R → L2

R

be the causal LFT operator for which RG1 is a (not necessarily normalised) right graph

symbol; see Figure 4.1 and Remark 4.2.4. It follows that G̃1R
−1 is a (not necessarily nor-

malised) left graph symbol for F(R,P1), satisfying GF(R,P1) ∩ L2
[τ,∞) = ker

(
TG̃1R−1,τ

)
for all τ ∈ R. Since γ̄(G̃1G1) = 0 < r, and in light of (4.4), we have

〈[
ŷ
û

]
,
[−I 0

0 I

] [
ŷ
û

]〉
2
≥ ε

∥∥[ ŷ
û

]∥∥2

2
,∀
[
ŷ
û

]
∈ GF(R,P1) ∩L2+. (4.6)

Define

P1(τ) :=
{
û ∈ dom (F(R,P1)) ∩L2

[τ,∞) | ŷ = F(R,P1)û ∈ L2
[τ,∞)

}
.
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It follows from (4.6) that F(R,P1)|P1(τ) is uniformly strictly contractive in τ ∈ R, i.e.

supτ∈R γ̄
(
F(R,P1)|P1(τ)

)
< 1. Also, since [P1,C] is stable, it follows by Theorem 3.2.19

that

G̃1K = G̃1R
−1RK

has a bounded and causal inverse, whereby TG̃1R−1RK,τ is boundedly invertible for all

τ ∈ R; see Remark 3.1.5. As such, it can be shown as in the proof of Lemma 3.2.15 that

FF(R,P1),X (R,C),τ :=

[
I F(R,P1)

X (R,C) I

]∣∣∣∣∣
C(τ)×P1(τ)

is boundedly invertible for all τ ∈ R. Now suppose, to the contrapositive, that there

exists a τ ∈ R such that C(τ) 6= L2
[τ,∞) or P1(τ) 6= L2

[τ,∞). Then by the large-gain

theorem [GKM97], it would follow that

γ̄(F(R,P1)X (R,C)|P1C(τ)) ≥ 1,

where

P1C(τ) := {x ∈ C(τ) | X (R,C)x ∈ P1(τ)} ,

contradicting supτ∈R γ̄
(
F(R,P1)|P1(τ)

)
< 1 and supτ∈R γ̄

(
X (R,C)|C(τ)

)
≤ 1. As such,

one may conclude that C(τ) = L2
[τ,∞) and P1(τ) = L2

[τ,∞) for all τ ∈ R, whereby

γ̄(X (R,C)|L2+) ≤ 1 and γ̄(F(R,P1)|L2+) < 1. Using the preceding development, we

are now ready to establish the equivalence of 1) and 2).

2) =⇒ 1): First note that G̃2R
−1 is a left graph symbol for the causal LFT F(R,P2),

as in the analogous case for F(R,P1) before. Furthermore, since γ̄(F(R,P2)|L2+) < 1,

or equivalently, for some ε > 0,

〈[
ŷ
û

]
,
[−I 0

0 I

] [
ŷ
û

]〉
2
≥ ε

∥∥[ ŷ
û

]∥∥2

2
∀
[
ŷ
û

]
∈ GF(R,P2) ∩L2+,

we have that

〈
R [ yu ] ,

[−I 0
0 I

]
R [ yu ]

〉
2
≥ ε ‖[ yu ]‖22 ∀ [ yu ] ∈ GP2 ∩L2+ =

⋃
τ∈R

img (TG2,τ ) .

Therefore from (4.4), γ̄(G̃2G1) < r. Moreover, the small-gain argument in Lemma 3.2.9

can be used to conclude that [F(R,P2),X (R,C)] is stable, which by Theorem 3.2.19

is equivalent to G̃2R
−1RK = G̃2K having a bounded causal inverse. This in turn is

equivalent to [P2,C] being stable. Using Theorem 3.3.1, we may thus conclude that for all

τ ∈ R, TG∗2G1,τ is Fredholm and ind(TG∗2G1,τ ) = 0, whereby δν(P1,P2) = γ̄(G̃2G1) < r.
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1) =⇒ 2): Since γ̄(G̃2G1) < r, it follows by (4.4) that

〈
R [ yu ] ,

[−I 0
0 I

]
R [ yu ]

〉
2
≥ ε ‖[ yu ]‖22 ,∀ [ yu ] ∈ GP2 ∩L2+,

and hence

〈[
ŷ
û

]
,
[−I 0

0 I

] [
ŷ
û

]〉
2
≥ ε

∥∥[ ŷ
û

]∥∥2

2
,∀
[
ŷ
û

]
∈ GF(R,P2) ∩L2+. (4.7)

Define

P2(τ) :=
{
û ∈ dom (F(R,P2)) ∩L2

[τ,∞) | ŷ = F(R,P2)û ∈ L2
[τ,∞)

}
.

It follows from (4.7) that F(R,P2)|P2(τ) is uniformly strictly contractive in τ ∈ R, i.e.

supτ∈R γ̄
(
F(R,P2)|P2(τ)

)
< 1. Thus, it remains to show that P2(τ) = L2

[τ,∞) for all

τ ∈ R. To this end, observe that by Corollary 3.3.6, [P2,C] is stable, since δν(P1,P2) <

r ≤ bP1,C. By Theorem 3.2.19, this implies that G̃2K = G̃2R
−1RK has a bounded

causal inverse. The remainder of the proof is the same as the above case of showing

F(R,P1) is bounded on L2+ via the large-gain theorem [GKM97].

4.3 Path-connectedness of ν-gap metric balls

We establish that any ν-gap ball of radius less than the maximal robust stability margin

of its centre, is pathwise connected in the graph topology. This is exploited in Section 4.4

to reconcile the IQCs based framework discussed in Section 4.1 with the ν-gap robustness

results of Chapter 3. The proof makes use of the LFT characterisation developed in

the previous section. More specifically, the LFT is shown to provide an invertible and

continuous mapping from a unit ball of stable causal operators to a ν-gap ball of interest,

under which path-connectedness is preserved. The proof closely follows the original ideas

developed in [CJK10, CJK12] for the time-invariant case.

Theorem 4.3.1. Given Pc ∈ S for which G̃c is a normalised left graph symbol, an

r < bopt(Pc;S) and any P0,P1 ∈ Gr(Pc) := {P ∈ S | δν(Pc,P) < r}, the following path

is continuous with respect to the ν-gap metric:

θ ∈ [0, 1] 7→ Pθ := F(R−1
c ,Qθ) ∈ Gr(Pc),

where Qθ := (1− θ)Q0 + θQ1, with

Qi := F(Rc,Pi) for i = 0, 1,
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and Rc is a J-spectral factor for G̃
∗
cG̃c−r2I; see (4.2). As such, Gr(Pc) is path-connected

in the graph topology. Moreover, F(R−1
c ,Q) ⊂ Gr(Pc), where Q is any convex subset of

B1 := {Q ∈ S : Q is causal and bounded on L2+ with γ̄(Q) < 1}, is path-connected.

Proof. We first show that Pθ ∈ Gr(Pc) ∀θ ∈ [0, 1]. Towards this end, note that because

Pi ∈ Gr(Pc) for i ∈ {1, 2}, whereby δν(Pc,Pi) < r < bopt(Pc;S), Qi is bounded and

causal on L2+ with γ̄(Qi|L2+) < 1 by Theorem 4.2.3. Correspondingly, for all θ ∈ [0, 1],

Qθ is bounded and causal on L2+ with

γ̄(Qθ|L2+) ≤ (1− θ)γ̄(Q0|L2+) + θγ̄(Q1|L2+) < 1.

Furthermore, since Rc has a bounded causal inverse, it follows that

F(Rc,Pθ) = F(Rc,F(R−1
c ,Qθ)) = Qθ.

By Theorem 4.2.3, we thus have δν(Pc,Pθ) < r, whereby Pθ ∈ Gr(Pc) as claimed.

Now note that since r < bopt(Pc;S), there exists by definition a C ∈ S such that [Pc,C]

is stable and bPc,C > r. By Corollary 3.3.6, we then have that [P,C] is stable for every

P ∈ Gr(Pc) with bP,C ≥ bPc,C − r =: ∆ > 0. Furthermore, for any θ1, θ2 ∈ [0, 1] such

that γ̄(G̃θ2Gθ1) < ∆, application of Theorem 3.3.1 yields that for all τ ∈ R, TG∗θ2
Gθ1

,τ

is Fredholm and ind(TG∗θ2
Gθ1

,τ ) = 0. As such, provided that γ̄(G̃θ2Gθ1) can be made

arbitrarily small via the choice of |θ2 − θ1|, continuity of the path θ 7→ Pθ in the graph

topology follows. This is now established.

To begin with, recall that for any θ ∈ [0, 1], the causal operator Qθ|L2+ : L2+ → L2
R

is bounded. Therefore, given that L2
R is the closure of L2+, Qθ|L2+ has a bounded linear

extension Q̂θ : L2
R → L2

R satisfying Q̂θ|L2+ = Qθ|L2+ and γ̄(Q̂θ) = γ̄(Qθ|L2+) [Kre89,

Thm. 2.7-11]. The causality of Q̂θ follows from that of Qθ by Lemma 3.1.3(iii). Now

observe that by definition

Zθ := R−1
c

[
Q̂θ

I

]
and Z̃θ :=

[
−I Q̂θ

]
Rc

are respectively right and left graph symbols for Pθ that are not necessarily normalised.

Their (non-unique) respective left and right causal bounded inverses can be taken as

ZLθ =
[
0 I

]
Rc and Z̃

R
θ = R−1

c

[
−I

0

]
.

Given normalised right and left graph symbols Gθ and G̃θ for Pθ ∈ S, there exist by
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Lemma 3.2.11 bounded causal Xθ and X̃θ such that Gθ = ZθXθ and G̃θ = X̃θZ̃θ.

Indeed, Xθ = ZLθ Gθ and X̃θ = G̃θZ̃
R
θ , whereby γ̄(Xθ) ≤ γ̄(Rc) and γ̄(X̃θ) ≤ γ̄(R−1

c ).

Finally, notice that for any θ1, θ2 ∈ [0, 1],

γ̄(G̃θ2Gθ1) = γ̄(X̃θ2Z̃θ2Zθ1Xθ1) ≤ γ̄(X̃θ2)γ̄(Q̂θ2 − Q̂θ1)γ̄(Xθ1)

≤ 2|θ2 − θ1|γ̄(Rc)γ̄(R−1
c ),

thereby establishing continuity of the path θ 7→ Pθ.

4.4 Reconciling IQC and ν-gap based robust stability re-

sults

We argue in this section that ν-gap homotopy-type robustness results are more general and

powerful than the ball-type ones when it is possible to exploit via IQCs known structure

of a feedback system in stability analysis following [MR97, JC10, JC11, CJK12, CJK09].

The development relies on the pathwise connectedness result on ν-gap metric balls in

Section 4.3 to recover a sufficient ball-type robust stability condition within the IQC

setting of Section 4.1.

Suppose that we are given Pc,C ∈ S such that bPc,C > r for some r < bopt(Pc; S).

Define the ν-gap metric ball of causal operators centred at Pc:

Gr(Pc) := {P ∈ S | δν(Pc,P) < r}.

Application of Lemmas 4.2.1 and 4.2.2 yields that

P ∈ IQC(Ψ),∀P ∈ Gr(Pc) and C ∈ IQCc(Ψ),

where

Ψ = Ψ∗ := r2I− G̃
∗
cG̃c

and G̃c is a normalised left graph symbol for Pc. This is originally noted in the time-

invariant case in [CJK12, CJK10, JCK08]. Moreover, Gr(Pc) is path-connected (and

hence weakly path-connected) in the graph topology by Theorem 4.3.1. Therefore, it

is true that [P,C] is stable for all P ∈ Gr(Pc) by Corollary 4.1.5. Notice that this

also follows directly by the ν-gap ball based results, Theorem 3.3.1 or Corollary 3.3.6.

Nevertheless, Corollary 4.1.5 offers greater flexibility in robust stability analysis since it

can be applied to any path-connected subset of Gr(Pc), and C is only required a priori

to stabilise any element of the set. Note that IQCs may be found by exploiting known
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structure of the systems of interest [MR97, JC10, JC11, CJK12, CJK09, JCK08].

4.5 The optimal stability margin

A characterisation of the feedback robust stability/performance margin is derived in this

section. The proof is based, in large part, on the the time-invariant case [Vin01, Prop.

4.1]. It relates the performance margin to the solution of a Nehari extension problem,

whose optimal value can be expressed as the norm of a Hankel operator for certain classes

of systems. The result is used in the ensuing section to relate the existence of the J-

spectral factorisation underpinning the LFT characterisation developed in Section 4.2 to

maximal robustness margin of the system involved. See [GM89, Thm. 4.1], and [CZ95,

Thm. 9.4.3] for similar results in the linear time-invariant case.

Theorem 4.5.1. Given causal operators P and C that satisfy Assumptions 2.2.1 and 2.2.2,

the following are equivalent for any r ∈ (0, 1):

(i) [P,C] is stable and bP,C > r;

(ii) Given a normalised left graph symbol G̃ for P, the operator C has a not necessarily

normalised right graph symbol Ku satisfying

γ̄(G̃
∗ −Ku) <

√
1− r2;

(iii) Given K, a normalised right graph symbol for C,

inf
Q∈Q

γ̄(G̃
∗ −KQ) <

√
1− r2, (4.8)

where Q := {Q ∈ L (L2
R,L

2
R) | Q is boundedly invertible and Q,Q−1 are causal}.

Proof. We establish that both (i) and (ii) are equivalent to (iii). We begin with the proof

for (i) =⇒ (iii). First recall
[

K∗

K̃

]
is an isometry from (3.11). Now note that

inf
Q∈Q

γ̄(G̃
∗ −KQ) ≥ inf

Q∈L (L2
R,L

2
R)
γ̄(G̃

∗ −KQ)

= inf
Q∈L (L2

R,L
2
R)
γ̄

([
K∗G̃

∗ −Q

K̃G̃
∗

])
= γ̄(K̃G̃

∗
) =

√
1− γ2(K̃G) =

√
1− b2P,C,

(4.9)
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where (3.14) and Theorem 3.2.19 have been used. Recall from (3.11) that
[

G̃
G∗

]
is an

isometry. Set Q := b2P,C(G̃K)−1 ∈ Q, it follows that

γ̄(G̃
∗ −KQ) = γ̄

([
I− G̃KQ

G∗KQ

])
= γ̄

([
(1− b2P,C)I

b2P,CG∗K(G̃K)−1

])
=
√

(1− b2P,C)2 + γ̄2(G∗K(G̃K)−1)b4P,C

=

√√√√(1− b2P,C)2 +
1− b2P,C
b2P,C

b4P,C =
√

1− b2P,C,

where the second last equality holds since
[

G∗K
G̃K

]
is an isometry, whereby

〈[
G∗K
G̃K

]
u,
[

G∗K
G̃K

]
u
〉

2

〈u, u〉2
= 1 =⇒ ‖G∗Ku‖22

‖u‖22
= 1− ‖G̃Ku‖22

‖u‖22
, ∀u ∈ L2

R.

To summarise, the lower bound in (4.9) is achievable when [P,C] is stable, from which

we have (i) =⇒ (iii).

We now show that (iii) =⇒ (i). Note that since G̃ is normalised,

γ̄(G̃
∗ −KQ) < 1 =⇒ γ̄

(
G̃(G̃

∗ −KQ)
)

= γ̄(I− G̃KQ) < 1. (4.10)

Thus we have γ(G̃KQ) > 0, because G̃KQ = I − (I − G̃KQ). Since Q is boundedly

invertible, it then also follows that γ(G̃K) > 0. Using (4.10), we see that for all τ ∈ R,

γ̄(I−TG̃KQ,τ ) ≤ γ̄(I− G̃KQ) < 1,

which implies by Lemma 3.1.2(iii) that TG̃KQ,τ = I− (I−TG̃KQ,τ ) is Fredholm with

ind(TG̃KQ,τ ) = ind(I) = 0. (4.11)

Since T−1
Q,τ = TQ−1,τ is Fredholm as in Remark 3.1.5 and TG̃KQ,τ = TG̃KQ,τT

−1
Q,τ by

Lemma 3.1.3(iv), it follows by Lemma 3.1.2(ii) that TG̃K,τ is Fredholm. Moreover, ap-

plying Lemma 3.1.2(ii) to (4.11) yields

ind(TG̃K,τ ) + ind(TQ,τ ) = ind(TG̃KQ,τ ) = 0,∀τ ∈ R.

However, ind(TQ,τ ) = 0 ∀τ ∈ R; see Remark 3.1.5. Therefore ind(TG̃K,τ ) = 0 ∀τ ∈ R,

and hence [P,C] is stable by Theorem 3.2.19. Also, we have bP,C > r by (4.8) and (4.9).

Clearly (iii) =⇒ (ii) by Lemma 3.2.11. To show that (ii) =⇒ (iii), we simply need
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to find a Q ∈ Q such that Ku = KQ. Such a Q exists by Lemma 3.2.11.

4.6 Existence of J-spectral factorisation

We consider two general classes of linear systems in this section and show existence of

the J-spectral factorisation upon which the linear fractional characterisation of the ν-

gap metric (Theorem 4.2.3) and the path-connectedness of ν-gap balls (Theorem 4.3.1)

are dependent to be valid. The first of these is the class of finite-dimensional linear

time-varying (LTV) systems with stabilisable and detectable state-space realisations in

Section 2.3, while the second is the class of systems associated with multiplication by an

infinite-dimensional transfer function in the constantly proper Callier-Desoer algebra in

Section 2.4.

4.6.1 Finite-dimensional time-varying systems

A simplified ν-gap metric formula

Recall the class of LTV systems V considered in Section 2.3 and the notion of exponential

dichotomy in Definition 2.3.1. Given any Z ∈ V with a state-space realisation (A,B,C,D)

that is exponentially dichotomous with respect to the projection P , suppose D has a

uniformly bounded inverse and A× := A−BD−1C defines an exponentially dichotomous

evolution with respect to the projection P×, it follows by [GKS84, Thm. II.5.2] that TZ,τ

is Fredholm for all τ ∈ R with

ind(TZ,τ ) = rank(P )− rank(P×)

= dim img (P )− dim img
(
P×
)

= dim ker (P )− dim ker
(
P×
)
.

Now given P1,P2 ∈ V, let G1 be a normalised right graph symbol for P1 and G2, G̃2

be respectively normalised left and right graph symbols for P2. Suppose a state-space

realisation for G∗2G1 is given by (A,B,C,D), in which D has a bounded inverse and

A× := A− BD−1C defines an exponential dichotomy, then Definition 3.3.4 of the ν-gap

distance between P1 and P2 can be written as

δν(P1,P2) :=


γ̄(G̃2G1) if rank(PG∗2G1

)− rank(P×G∗2G1
)

1 otherwise,
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where PG∗2G1
and P×G∗2G1

are the projections defining the exponential dichotomies of A

and A×, respectively.

J-spectral factorisation

The objective of this subsection is to show that the J-spectral factor in (4.2) of The-

orem 4.2.3 exists for V. To this end, the following result, which is a consolidation of

Remark 3.16, Corollary 3.26, and Theorem 4.9 from [IS04], is essential.

Proposition 4.6.1. Given an exponentially dichotomic system Σ ∈ V of the form

Σ =


[
A 0

Q −AT

] [
B

−L

]
[
LT BT

]
S

 ,

in which A defines an exponentially stable evolution, QT = Q, and ST = S, suppose

1. inf
t∈R
| det(S(t))| > 0, where det denotes the determinant of a square matrix;

2. S is of a constant Jordan structure, i.e. the number of its (real) distinct eigenvalues

does not depend on time t ∈ R;

3. the family of algebraic inverses of Wiener-Hopf operators
{

(TΣ,τ )−1
}
τ∈R is well-

defined and uniformly bounded with respect to τ , i.e. there exists an η > 0 such

that

‖TΣ,τu‖2 ≥ η‖u‖2,∀u ∈ L2
[τ,∞), ∀τ ∈ R.

Then the Kalman-Popov-Yakubovich system of equations in J-form

S = V TJp,mV ;

L+XB = W TJp,mV ;

Ẋ +ATX +XA+Q = W TJp,mW,

has a stabilising solution V , W , and X = XT that is continuous and bounded on R
such that X is continuously differentiable on R and A−BV −1W defines an exponentially

stable evolution, where Jp,m :=
[
Ip 0
0 −Im

]
denotes the sign matrix of S. Furthermore, with

R := (A,B,W, V ) ∈ V, R−1 ∈ V is exponentially stable (or equivalently, bounded and

causal on L2
R) and

Σ = R∗Jp,mR,
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where Jp,m :=
[

Ip 0
0 −Im

]
. Σ is said to admit a J-spectral factorisation when the above is

true.

Now suppose we are given an m-input p-output system P ∈ V, for which G̃ ∈ V is a

normalised left graph symbol. Consider

Σr := G̃
∗
G̃− r2Ip+m r ∈ (0, 1).

Let G̃ = (A,B,C,D). Using the composition of systems formula (2.5), one may write

Σr =


[

A 0

−CTC −AT

] [
B

−CTD

]
[
DTC BT

]
DTD − r2I

 .

Theorem 4.6.2. For any r ∈
(

0,
√

1− supτ∈R γ̄
2(H−+

G̃
∗
,τ

)

)
, Σr admits a J-spectral fac-

torisation:

Σr = R∗Jp,mR.

Proof. Define Sr := DTD − r2Ip+m. We first show that inf
t∈R
| det(Sr(t))| > 0 and Sr is

of a constant Jordan structure, for any r ∈ (0, 1). By the normalisation property of the

left graph symbol, we have that G̃G̃
∗

= I, whereby D(t)DT (t) = Ip for all t ∈ R. This

implies D(t) has only p non-zero singular values, and these are all equal to unity [HJ85,

Thm. 7.3.5]. Consequently, as discussed in [HJ85, Section 0.4.6],

rank(D(t)) = rank
(
DT (t)D(t)

)
= rank

(
D(t)DT (t)

)
= p.

Putting these together, we conclude that DT (t)D(t) has p eigenvalues equal to 1 and m

zero-valued eigenvalues. It follows that Sr(t) has p (positive) eigenvalues equal to 1− r2

and m (negative) eigenvalues equal to −r2, for any r ∈ (0, 1). As such,

inf
t∈R
| det(Sr(t))| = (1− r2)pr2m > 0

and the number of distinct eigenvalues of Sr(t) is 2 for all t ∈ R, i.e. Sr is of a constant

Jordan structure.

Now we show that infτ∈R γ(TΣr,τ ) > 0, from which the claimed result then follows by

Proposition 4.6.1. To this end, fix any τ ∈ R. By Lemma 3.1.3(iv),

(TG̃
∗
,τ )∗TG̃

∗
,τ + (H−+

G̃
∗
,τ

)∗H−+

G̃
∗
,τ

= TG̃G̃
∗
,τ = I,
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i.e.

[
T

G̃
∗
,τ

H−+

G̃
∗
,τ

]
is an isometry, and thus we may conclude that

γ(TG̃
∗
,τ )2 = 1− γ̄2(H−+

G̃
∗
,τ

).

Define the operator

Bτ := G̃|L2
[τ,∞)	ker(TG̃,τ ).

Recall that by Assumption 2.2.1, there exists a causal W ∈ L (L2
R,L

2
R) such that G̃W = I

on L2
R. Define

Aτ := ΠL2
[τ,∞)	ker(TG̃,τ )W|L2

[τ,∞)
,

from which it follows that BτAτ = I on L2
[τ,∞). Furthermore, note that ker (Bτ ) = {0},

and hence Bτ has a left inverse, which is equal to its right inverse Aτ , i.e. AτBτ = I on

L2
[τ,∞)	ker(TG̃,τ ). As such, Bτ is boundedly invertible, and hence γ(Bτ ) = γ(B∗τ ). Now

note that

B∗τ = ΠL2
[τ,∞)	ker(TG̃,τ )G̃

∗|L2
[τ,∞)

= ΠL2
[τ,∞)

G̃
∗|L2

[τ,∞)
,

where ΠX denotes the orthogonal projection onto X . Note that B∗τ = TG̃
∗
,τ , and hence

γ(B∗τ ) = γ(TG̃
∗
,τ ) =

√
1− γ̄2(H−+

G̃
∗
,τ

).

Consequently,

γ(B∗τBτ ) ≥ γ(B∗τ )γ(Bτ ) = 1− γ̄2(H−+

G̃
∗
,τ

).

Thus for any r ∈
(

0,
√

1− supτ∈R γ̄
2(H−+

G̃
∗
,τ

)

)
, we have

inf
τ∈R

γ(TΣr,τ |L2
[τ,∞)	ker(TG̃,τ)) = inf

τ∈R
γ(B∗τBτ − r2I) > 0.

Combining the above with the observation that

TΣr,τu = −r2u,∀u ∈ ker(TG̃,τ ), τ ∈ R

yields the following uniform non-zero lower bound

inf
τ∈R

γ(TΣr,τ ) > 0,∀r ∈

(
0,
√

1− sup
τ∈R

γ̄2(H−+

G̃
∗
,τ

)

)
,

as required.

Remark 4.6.3. Here, we restrict to systems (A,B,C,D) that admit uniformly bounded,
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positive semidefinite solutions to the differential Riccati equation pair:

Ṗ + PA+ATP − PBBTP = 0;

Q̇−AQ−QAT +QCTCQ = 0,

such that A − BBTP and A − QCTC define exponentially stable evolutions and the

inverses of the positive definite blocks of P and Q are uniformly bounded; see [TV92,

(1.10)]. By the Nehari Theorem for finite-dimensional LTV systems [TV92, Section 3],

given an exponentially dichotomous state-space realisation (2.1) and the corresponding

convolution operator Z : L2
R → L2

R of the form (2.3),

inf
Q has an exponentially
stable realisation (2.1)

γ̄(Z−Q) = sup
τ∈R

γ̄(H−+
Z,τ ).

An immediate consequence of this and the equivalence between (i) and (ii) of Theo-

rem 4.5.1 is the following bound on the maximal robustness margin of P ∈ V:

bopt(P;V) := sup
C∈V : [P,C] is stable

bP,C ≤
√

1− sup
τ∈R

γ̄2(H−+

G̃
∗
,τ

), (4.12)

where G̃ is a normalised left graph symbol for P. Analogous results in the linear time-

invariant case can be found in [GM89, Thm. 4.2], [GS90, Thm. 2], [Vin01, Section 4.1],

and [CZ95, Lem. 9.4.7]. Using (4.12), Theorem 4.6.2 implies that Σr admits a J-spectral

factorisation for any r ∈ (0, bopt(P;V)).

4.6.2 Infinite-dimensional time-invariant systems

The ν-gap metric for time-invariant systems

The same notation from Section 2.4 is used here. The ν-gap metric is defined on W ⊂ S,

or directly on the frequency-domain space B̂cp
, as

δν(P1, P2) := δν(P1,P2) =


γ̄(G̃2G1) = ‖G̃2G1‖∞ if for all τ ∈ R,TG∗2G1,τ is Fredholm

and ind(TG∗2G1,τ ) = 0

1 otherwise,

where TG∗2G1,τ denotes the time-domain Wiener-Hopf operator given by Definition 2.1.9

in Section 3.1. The definition above can be reformulated in terms of more familiar condi-

tions in the literature [Vin93, CJK12, CJK10, CJK09], as we demonstrate below.
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Following [IZ01], the Wiener algebra is defined as

Ŵ :=
{
φ̂ = ν̂ + µ̂

∣∣∣ ν̂, µ̂∗ ∈ Âcp
}

and the sub-algebra

Ŵ− :=
{
φ̂ = ν̂ + µ̂ ∈ Ŵ

∣∣∣ ν̂, µ̂∗ ∈ Âcp
−

}
.

Let Φ̂ ∈ Ŵ . The frequency-domain Wiener-Hopf (a.k.a. Toeplitz) operator with symbol

Φ̂ is defined by

T Φ̂ := û ∈H2
C+
7→ Π+M Φ̂û ∈H2

C+
,

where Π+ : L2
jR → H2

C+
denotes the orthogonal projection. By contrast, the forward

and backward Hankel operators with symbol Φ̂ are defined respectively by

H+−
Φ̂

:= û ∈H2
C− 7→ Π+M Φ̂û ∈H2

C+
,

and

H−+

Φ̂
:= û ∈H2

C+
7→ Π−M Φ̂û ∈H2

C− ,

where Π− denotes orthogonal projection onto H2
C− . Note the Hilbert adjoints T ∗

Φ̂
= T Φ̂∗

and (H−+

Φ̂
)∗ = H+−

Φ̂∗
.

First observe that following a similar argument to (3.31) in Section 2.5, one may

show by exploiting the time-invariance property that for all τ ∈ R, ind(TG∗2G1,τ ) =

ind(TG∗2G1,0), the latter of which is equal to ind(TG∗2G1) by Lemma 3.1.2(ii), since

TG∗2G1,0 = F−1TG∗2G1F . Indeed, given any square Φ ∈ Ŵ , det(Φ(jω)) 6= 0∀ω ∈ R∪{∞}
if, and only if, TΦ is Fredholm [GGK90, Thm. XII.3.1]. In this case, the Fredholm index

ind(TΦ) := dim ker (TΦ)− dim img (TΦ)⊥ = −wno det(Φ),

where wno denotes the winding number around the origin of the curve parameterised by

ω 7→ det(Φ(jω)), as ω decreases from∞ to −∞; i.e. 1
2π× the net increase in the argument

∠ det Φ(jω) as the curve is traversed. Therefore, the ν-gap metric can be written more

familiarly [Vin93, Vin01, CJK12, CJK10, CJK09] as

δν(P1, P2) :=


‖G̃2G1‖∞ if det(G∗2G1(jω)) 6= 0∀ω ∈ R ∪ {∞}

and wno det(G∗2G1) = 0

1 otherwise.
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The robust stability margin of a feedback configuration, has also an equivalent frequency-

domain representation. The feedback interconnection of Figure 3.1 in Section 3.2 is

reproduced by Figure 4.3 in the frequency domain with P,C ∈ B̂cp
. Notice that by

Definition 3.2.1 and (3.5), feedback stability is equivalent to

[P,C] :=

[
P

I

]
(I − CP )−1

[
−C I

]
∈ Âcp

− ,

in which M [P,C] =
[
dy
du

]
7→
[ yp
up

]
. When this is the case, the robust stability margin of

[P,C] is bP,C := bP,C = ‖[P,C]‖−1
∞ . Moreover, the maximal robustness margin

bopt(P ; B̂cp
) := sup

C∈B̂cp
: [P,C]∈Âcp

−

bP,C = sup
C∈W : [P,C] is stable

bP,C =: bopt(P;W).

?
dye

?
yc

C

uc
-− e
6du

6up

P

yp
�
−

Figure 4.3: Feedback interconnection of transfer functions in B̂cp

J-spectral factorisation

Given any m-input p-output P ∈ B̂cp
and its associated time-domain operator P F

" MP ,

we show here that for any r ∈ (0, bopt(P;W)), there exists a causal R ∈ L (L2
R,L

2
R) such

that R−1 ∈ L (L2
R,L

2
R) is causal and

Σr := G̃
∗
G̃− r2Ip+m = R∗Jp,mR,

where Jp,m :=
[

Ip 0
0 −Im

]
and G̃ is a normalised left graph symbol for P. The J-spectral

factorisation problem can be equivalently formulated in the frequency domain by exploit-

ing the equivalence of operators via the Fourier transform isomorphism as

Σr := G̃∗G̃− r2Ip+m = R∗Jp,mR on jR,

where r ∈ (0, bopt(P ; B̂cp
)), Jp,m :=

[
Ip 0
0 −Im

]
, and R,R−1 ∈ Âcp

− . Towards resolving the

existence issue, some preliminary results are needed.
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In general, we say that a Φ = Φ∗ ∈ Ŵ admits a Jp,m-spectral factorisation over Âcp

(resp. Âcp
− ) if there exists a spectral factor R,R−1 ∈ Âcp

(resp. Âcp
− ) such that

Φ(jω) = R∗(jω)Jp,mR(jω) ∀ω ∈ R;

this is possible only if Φ(jω) has p positive and m negative eigenvalues for all ω ∈ R.

Proposition 4.6.4. [IZ01, Thm. 3.2] Let Φ = Φ∗ ∈ Ŵ be such that det(Φ(jω)) 6= 0 for

all ω ∈ R ∪ {∞}. The following statements are equivalent:

(i) Φ admits a Jp,m-spectral factorisation over Âcp
;

(ii) Φ has no equalising vector — there exists no non-zero û ∈ H2
C+

such that MΦû ∈
H2

C−;

(iii) TΦ is boundedly invertible.

Lemma 4.6.5. Let Φ = Φ∗ ∈ Ŵ−. If Φ admits a Jp,m-spectral factorisation over Âcp
,

then it admits a Jp,m-spectral factorisation over Âcp
− .

Proof. This holds via the argument employed in Step 2 of the proof for [CW90, Thm.

1], where a special type of J-spectral factorisation (the standard spectral factorisation) is

considered; specifically, with Jp,m = Jp,0 = Ip. The proof continues to hold for the general

J-spectral factorisation considered here, since multiplication by J = J−1 does not change

the holomorphicity or continuity properties of a transfer function.

We are now ready to establish the main result of this subsection.

Theorem 4.6.6. Given an m-input p-output P ∈ B̂cp
, for any r ∈ (0, bopt(P ; B̂cp

)), the

transfer function Σr := G̃∗G̃ − r2Ip+m ∈ Ŵ− admits a Jp,m-spectral factorisation over

Âcp
− .

Proof. Below we proceed to show that

i) det(Σr(jω)) 6= 0∀ω ∈ R ∪ {∞}; and

ii) ker(TΣr) = {0}, which is equivalent to Σr having no equalising vector.

The assertion then follows by Proposition 4.6.4 and Lemma 4.6.5.

i). Since G̃ is normalised, G̃(jω)G̃∗(jω) = Ip for all ω ∈ R∪{∞}; see Proposition 2.4.1.

This implies G̃(jω) has only p non-zero singular values, which are all 1’s [HJ85, Thm.
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7.3.5]. As such, by [HJ85, Sec. 0.4.6],

rank(G̃(jω)) = rank(G̃∗(jω)G̃(jω)) = rank(G̃(jω)G̃∗(jω)) = p.

Together, one may conclude that G̃∗(jω)G̃(jω) has p unity eigenvalues and m zero-valued

eigenvalues. It follows that Σr(jω) has p positive and m negative eigenvalues, for any

r ∈ (0, 1) and ω ∈ R ∪ {∞}. Finally, note that det(Σr(jω)) = 0 if, and only if, zero is an

eigenvalue of Σr(jω), by which i) holds as claimed.

ii). Observe that for any u ∈ ker(T G̃), TΣru = −r2u. Thus, ker(TΣr) ∩ ker(T G̃) =

{0}. Moreover, as established below, ker(TΣr)∩ (H2
C+
	 ker(T G̃)) = {0}, from which the

result follows as claimed. Specifically, by [CZ95, Lem. 9.4.7] and Proposition 2.4.1 we

have

bopt(P ; B̂cp
)2 = 1− γ̄(H−+

G̃∗
)2 > 0,

and because T ∗
G̃∗

T G̃∗ + (H−+
G̃∗

)∗H−+
G̃∗

= I, we conclude that

γ(T G̃∗)
2 := inf

x∈H2
C+

:‖x‖2=1
‖T G̃∗x‖

2
2 = 1− γ̄(H−+

G̃∗
)2 = bopt(P ; B̂cp

)2.

Now define the operator B := M G̃|H2
C+
	ker(T G̃), whereby

B∗ = ΠH2
C+
	ker(T G̃)M G̃∗ |H2

C+
= ΠH2

C+
M G̃∗ |H2

C+
.

Note that B∗ = T G̃∗ , and hence

γ(B∗) = γ(T G̃∗) = bopt(P ; B̂cp
) > 0.

Since B has a bounded inverse A := ΠH2
C+
	ker(T G̃)MW |H2

C+
, where W ∈ Âcp

is such

that G̃W = I, which exists by Proposition 2.4.1, we have γ(B) = γ(B∗). As such, it

follows that γ(B∗B) ≥ γ(B∗)γ(B) = bopt(P ; B̂cp
)2. Thus for any r < bopt(P ; B̂cp

), we

have

γ(TΣr |H2
C+
	ker(T G̃)) = γ(B∗B − r2I) > 0,

implying ker

(
TΣr |H2

C+
	ker(T G̃)

)
= {0}, as required.

4.7 Summary

The integration of integral quadratic constraint (IQC) based system analysis with the

ν-gap metric from [JC10, JC11] is reviewed in this chapter. The main significance of
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IQC conditions lies in providing a uniform lower bound on the robust stability margin

of an uncertain feedback interconnection. A powerful stability analysis method results

when this is unified with ν-gap homotopies, allowing exploitation of system structure in

an explicit fashion. Reconciliation with the original ν-gap framework in Chapter 3 is

carried out via a ν-gap ball path-connectedness result, shown using a linear fractional

characterisation of the ν-gap metric. An underlying assumption is the existence of a

certain J-spectral factorisation, which is also developed herein for two standard classes of

linear systems from Chapter 2: time-varying systems with finite-dimensional stabilisable

and detectable state-space realisations and distributed-parameter time-invariant systems

in the constantly proper Callier-Desoer algebra.



Chapter 5

Sampled-data approximation in

the ν-gap metric

Approximation involves the construction of a model satisfying structural constraints, while

remaining close to another model that is perhaps less tractable. Such problems arise in

the simulation and/or design of systems from broad array of application areas [Ant05].

Error is inevitably incurred in an approximation process. Within the context of feedback

modelling or compensator design, it is more important to measure approximation error in

terms of the difference in closed-loop behaviour. Endowed with the feedback robustness

properties delineated in Chapter 3, the ν-gap metric is a natural candidate to serve

this purpose. In addition, the linear-fractional characterisation developed in Chapter 4

presents an elegant way through which to approach model approximation problems in the

ν-gap due to the fact that linear fractional transformations (LFTs) are well-studied in

the literature.

This chapter revisits the problem of sampled-data approximation of a continuous linear

time-invariant (LTI) system with respect to a weighted ν-gap measure; see [CV04]. This is

particularly important in robust digital implementation of feedback control strategies for

continuous-time processes. A main concern in this chapter is to establish that the class of

linear periodically time-varying (LPTV) systems introduced in Section 2.5 is sufficiently

rich to equivalently represent both types of systems involved in the problem via the time-

lifting technique [BPFT91, BP92, Yam94, CF95], whereby they satisfy the assumptions

for the ν-gap distance to be well-defined. Using the LFT characterisation of the ν-gap

metric developed in Chapter 4, a linear matrix inequality (LMI) [GA94] based stepwise

algorithm is proposed for numerically synthesising a sampled-data approximation which

lies within the minimal ν-gap distance from a nominal LTI system. The difference between

the work in this chapter, which relies on a single J-spectral factorisation underpinning the

91
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LFT characterisation, and [CV04], which employes a less-direct three-term factorisation

to establish the result, is of note.

The chapter evolves along the following lines. First in the next section model approx-

imation in the ν-gap metric is formulated. Using the LFT characterisation, an equivalent

more tractable optimisation problem is proposed. Section 5.2 develops shift-invariant

representations for LTI and sampled-data systems. In Section 5.3, the sampled-data ap-

proximation problem is formulated and solved, and a system of LMI conditions is explicitly

provided to characterise the convex LFT synthesis problem arising from the proposed pro-

cedure. Finally, examples are provided to illustrate the algorithm’s numerical tractability.

5.1 General approximation problem formulation

First recall from Section 3.3 that the set of causal systems on which the ν-gap metric

is defined is denoted by S. Now given subsets ST and SA, which reflect the structural

constraints on the targets of approximation and approximations, respectively, the problem

may be posed as a constrained optimisation:

For some P ∈ ST, βopt := inf {β ∈ (0, bopt(P; S)) | ∃Pa ∈ SA such that δν(P,Pa) < β } .
(5.1)

Let Q := {Q ∈ L (L2
R,L

2
R) | Q is boundedly invertible and Q,Q−1 are causal}. As

in Theorem 4.2.3 of Chapter 4, suppose there exists a ν-gap J-spectral factor R(P, β) ∈ Q
such that

G̃
∗
G̃− β2I = R∗

[
I 0
0 −I

]
R, β ∈ (0, bopt(P; S)), (5.2)

where G̃ is a normalised left graph symbol for P. Then given any Pa ∈ S for which G̃a

is a left graph symbol, δν(P,Pa) < β if, and only if, the linear fractional transformation

(LFT) depicted in Figure 4.1

F(R,Pa) : dom (F(R,Pa)) ⊂ L2
R → L2

R,

for which G̃aR
−1 is a left graph symbol, is causal and strictly contractive on L2+, that

is, γ̄(F(R,Pa)|L2+) < 1. Correspondingly, the problem (5.1) may be recast as: Given a
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P ∈ ST,

βopt := inf

{
β ∈ (0, bopt(P; S))

∣∣∣∣∣ ∃Pa ∈ SA such that F(R,Pa) is causal and

γ̄(F(R,Pa)|L2+) < 1,where R(P, β) ∈ Q solves (5.2)

}
.

(5.3)

Observe that tractability of the problem (5.3) is tied with that of finding a structurally

constrained operator Pa ∈ SA such that an LFT F(R,Pa) is causal and its gain/norm

on L2+ is strictly bounded above by 1, where R is a ν-gap J-spectral factor for P ∈ ST.

In the problem of sampled-data approximation, ST corresponds to the set of finite-

dimensional LTI systems with real-rational transfer function representations and SA con-

sists systems with a sampled-data structure, composed of a stable finite-dimensional

anti-aliasing LTI filter, a periodic sampler, a discrete-time finite-dimensional linear shift-

invariant (LSI) system, and a synchronised zero-order hold. These are further detailed in

the next section.

5.2 Shift-invariant representations for periodic systems

This section constructs shift-invariant representations for two classes of linear periodically

time-varying (LPTV) systems which appear in the problem of sampled-data approxima-

tion. Specifically, we consider the class of finite-dimensional linear time-invariant (LTI)

systems, characterised by a rational frequency-domain symbol, and a class of LPTV sys-

tems with sampled-data structure. We study them here by working with the system

graphs and establish appropriate representations of these systems in line with the ν-gap

metric based robustness analysis from the previous chapters.

5.2.1 Preliminaries on system classes

Let X and Y denote arbitrary separable Hilbert spaces. Define the following transfer

function classes with ‘rational’ realisations:

Rp×m :=

{
s 7→ C(sI −A)−1B +D

∈ L (C,L (Cm,Cp)) (a.e. on C)

∣∣∣∣∣ A ∈ Rn×n; B ∈ Rn×m;

C ∈ Rp×n; D ∈ Rp×m

}
;

D(X ,Y) :=

{
z 7→ zC(I − zA)−1B +D

∈ L (C,L (X ,Y)) (a.e. on C)

∣∣∣∣∣ A ∈ Rn×n; B ∈ L (X ,Rn);

C ∈ L (Rn,Y); D ∈ L (X ,Y)

}
;

Dp×m := D(Cm,Cp).

Also recall the notation L, LCF , and LHS defined in Section 2.5.
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In the sequel, we may suppress the dimensions of the classes for notational simplicity.

If the operator ‘D’ in a realisation of a transfer function is 0, we say the transfer function

is strictly proper. The order/complexity of a realisation of a transfer function is defined

to be the dimension of its ‘A’ matrix.

Remark 5.2.1. A realisation of a transfer function is not unique. A minimal realisation is

one of minimal order. Given any realisation of a transfer function in R, D or L, a minimal

realisation can be constructed via a Kalman canonical decomposition; see [IOW99, Thm.

1.13.2] for R and D, and [Can98] for L.

We define the following sub-classes with an additional condition on the spectrum of

the ‘A’ matrix in any minimal realisation of a transfer function P :

RH∞C+
:= {P ∈R | spec(A) ⊂ C− } ;

DH∞D (X ,Y) := {P ∈ D(X ,Y) | spec(A) ⊂ D} ,
(5.4)

where C− denotes the open left-half complex plane and D the unit disk. For a P ∈RH∞C+
,

‖P‖∞ := sups∈C0+
σ̄(P (s)) < ∞, where σ̄(·) denotes the maximum singular value. On

the other hand, for a P ∈ DH∞D (X ,Y), ‖P‖∞ := supz∈D γ̄(P (z)) <∞.

Multiplication operators with symbols in L are as defined in Section 2.5. They can be

generalised to symbols in D(X ,Y) as follows. Given a P ∈ D(X ,Y), define the associated

multiplication MP : dom (MP ) : L2
T(X )→ L2

T(Y) by (MPu)(z) := P (z)u(z), where

dom (MP ) :=
⋃
k∈Z

zk
{
u ∈H2

D(X )
∣∣ MPu ∈H2

D(Y)
}
,

and L2
T(Z) and H2

D(Z) are respectively discrete-time Fourier transforms1 Z of signals in

`2
Z(Z) :=

{
f : Z→ Z

∣∣∣∣∣ ‖f‖2`2Z :=
∞∑

i=−∞
‖fi‖2X <∞

}
and

`2
Z+

(Z) :=
{
f ∈ `2

Z(Z) | fi = 0, ∀i < 0
}
.

When P ∈ DH∞D , dom (MP ) := L2
T(X ). Note that given a P ∈ D, P ∈ DH∞D if,

and only if, γ̄(MP ) = ‖P‖∞ < ∞ and MPH
2
D(X ) ⊂ H2

D(Y); see [SNF70, Chapter 5].

On the other hand, multiplication operators with symbols in R ⊂ B̂cp
are defined as in

Section 2.4.

Fundamental to the subsequent analysis is the result that all transfer functions in R
admit normalised doubly coprime factorisations over RH∞C+

. Recall that a similar result

holds for LCF and LHS ; see Definition 2.5.1 and Proposition 2.5.2.

1Z : `2Z(Z)→ L2
T(Z); (Z f)(z) :=

∑
i∈Z z

ifi.
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Proposition 5.2.2 ([ZDG96, Thm. 13.37]). Given any P ∈R, there exist

N,M, M̃, Ñ ,X, X̃, Y, Ỹ ∈RH∞C+

such that [
Y X

M̃ −Ñ

][
N X̃

M −Ỹ

]
= I; NM−1 = M̃−1Ñ = P ;

M∗M +N∗N = I; M̃M̃∗ + ÑÑ∗ = I.

(5.5)

5.2.2 Time-lifting results

The same notation from Section 2.1.1 on equivalence of operators is used in this section.

Time-invariant systems

We show that multiplication by any element in R is equivalent to multiplication by a

corresponding element in LCF via a composition of isomorphisms: the continuous-time

Fourier transform F , the time-lifting W h, and the discrete-time Fourier transform Z

(cf. Section 2.5). Note that the converse is not true. In particular, LCF is larger

than R in the sense that it can include symbols that correspond to (non-stationary)

periodic realisations in the time-domain. Our derivation makes use of an exponentially

stable normalised characterisation of the system graph. Such a characterisation naturally

admits a convolution/integral operator realisation in the time domain, as required to

directly apply the lifting isomorphism from [BPFT91, BP92, Yam94, CF95].

The following theorem demonstrates the lifting procedure of a stable transfer function.

It includes a condition for lifted transfer function invertibility. The fact that multiplication

by a stable transfer function defines an exponentially stable evolution over the doubly

infinite time is exploited in the proof. The more general case is considered later in

Theorem 5.2.5.

Theorem 5.2.3. Given P = (A,B,C,D) ∈ RH∞C+
, let P := (À, B̀, C̀, D̀) ∈ L, where

for any x ∈ Rn and w ∈ L2
[0,h),

Àx = eAhx; B̀w =

∫ h

0
eA(h−τ)Bw(τ) dτ ;

(C̀x)(θ) = CeAθx, ∀θ ∈ [0, h);

(D̀w)(θ) = Dw(θ) +

∫ θ

0
CeA(θ−τ)Bw(τ) dτ, ∀θ ∈ [0, h).
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Then MP
Z W hF−1

∼ MP . Moreover, P−1 ∈ L if P−1 ∈R.

Proof. Clearly D̀ is causal. Note that spec(À) ∈ D since spec(A) ∈ C− and thus, P ∈
LH∞D ; see (5.4). Since P ∈ RH∞C+

, i.e. A defines an exponentially stable dichotomy,

by [IOW99, Thm. 2.2.1], any [ yu ] ∈ GP, where P F
" MP , satisfies

y(t) =

∫ t

−∞
CeA(t−τ)Bu(τ) dτ +Du(t), ∀t ∈ R. (5.6)

Likewise, because P ∈ LH∞D , by [IOW99, Thm. 2.6.1], any
[ y
u

]
∈ GP, where P Z

" MP ,

satisfies

y
k

=
k−1∑
i=−∞

C̀Àk−i−1B̀ui + D̀uk,∀k ∈ Z. (5.7)

We now show that P W h∼ P, which, together with P F∼ MP and P Z∼ MP , implies that

MP
Z W hF−1

∼ MP .

Given any [ yu ] ∈ GP satisfying (5.6), for any h > 0, k ∈ Z and θ ∈ [0, h),

y(kh+ θ)

=

∫ kh+θ

−∞
CeA(kh+θ−τ)Bu(τ) dτ +Du(kh+ θ)

=

∫ kh

−∞
CeA(kh+θ−τ)Bu(τ) dτ +

∫ kh+θ

kh
CeA(kh+θ−τ)Bu(τ) dτ +Du(kh+ θ)

= CeAθ
∫ kh

−∞
eA(kh−τ)Bu(τ) dτ +

∫ θ

0
CeA(θ−τ)Bu(kh+ τ) dτ +Du(kh+ θ)

= CeAθ
k−1∑
i=−∞

∫ h

0
eA(kh−ih−τ)Bu(ih+ τ) dτ +

∫ θ

0
CeA(θ−τ)Bu(kh+ τ) dτ +Du(kh+ θ)

= CeAθ
k−1∑
i=−∞

eAh(k−i−1)

∫ h

0
eA(h−τ)Bu(ih+ τ) dτ

+

∫ θ

0
CeA(θ−τ)Bu(kh+ τ) dτ +Du(kh+ θ).

Letting
[ y
u

]
:= W h [ yu ] yields

y
k
(θ) =

k−1∑
i=−∞

CeAθ(eAh)k−i−1

∫ h

0
eA(h−τ)Bui(τ) dτ +

∫ θ

0
CeA(θ−τ)Buk(τ) dτ +Duk(θ),

which is (5.7). In particular,
[ y
u

]
∈ GP. Conversely, given any

[ y
u

]
∈ GP, by reversing the
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line of argument above, it follows that W −1
h

[ y
u

]
∈ GP. As such, GP

W h∼ GP and hence,

P W h∼ P.

For the final part of the lemma, observe that if D is invertible,

(D̀w)(θ) = Dw(θ) +

∫ θ

0
CeA(θ−τ)Bw(τ) dτ

= D

(
w(θ) +

∫ θ

0
D−1CeA(θ−τ)Bw(τ) dτ

)
.

Now note that the kernel of the integral operator above is norm-quadratically Lebesgue-

integrable in the following sense:∫ h

0

∫ h

0
γ̄(D−1CeA(θ−τ)B)2 dθ dτ <∞.

As such, the equation

v(θ) = (Ďw)(θ) := w(θ) +

∫ θ

0
D−1CeA(θ−τ)Bw(τ) dτ

is a Volterra Integral equation of the second kind, which has a unique (up to a set of

measure zero) solution w ∈ L2
[0,h) given any v ∈ L2

[0,h) [Tri85, Section 1.5]. Specifically,

the solution is given by the formula

w(θ) = (Ď−1v)(θ) = v(θ)−
∫ θ

0
H(θ, τ)v(τ) dτ,

where the resolvent kernel H satisfies

H(θ, τ) +D−1CeA(θ−τ)B =

∫ θ

τ
H(θ, z)D−1CeA(z−τ)B dz.

This implies that D̀−1 = Ď−1D−1 exists as a causal map and that D̀−1 ∈ L (L2
[0,h),L

2
[0,h))

by the open mapping theorem [Kre89, Thm. 4.12-2], which in turn implies the existence

of P−1 ∈ L, for which one realisation is given by (2.11) in Section 2.5.

Throughout, we use an underline to denote the lifted equivalent of a transfer function.

Lemma 5.2.4. Given P1, P2 ∈RH∞C+
, define P3 := P1P2 ∈RH∞C+

. Then we have that

P 3 = P 1P 2 ∈ LH∞D .

Proof. Given any X ∈ RH∞C+
, the corresponding X ∈ LH∞D , as defined in Theo-
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rem 5.2.3, satisfies

FW −1
h Z −1MXZ W hF

−1u = MXu, (5.8)

for all u ∈ dom (MX) = L2
jR; see Remark 2.1.3. In particular, for all u ∈ L2

jR, repetitive

application of (5.8) yields

FW −1
h Z −1MP 3

Z W hF
−1u = MP3u

= MP1(MP2u)

= FW −1
h Z −1MP 1

Z W hF
−1(MP2u)

= FW −1
h Z −1MP 1

Z W hF
−1FW −1

h Z −1MP 2
Z W hF

−1u

= FW −1
h Z −1MP 1

MP 2
Z W hF

−1u.

Therefore, MP 3
= MP 1

MP 2
= MP 1P 2

and hence, P 3 = P 1P 2 ∈ LH∞D .

Theorem 5.2.5. Given any P ∈R, there exists P ∈ LCF such that MP
Z W hF−1

∼ MP .

Proof. By Proposition 5.2.2, there exist N,M, M̃, Ñ ,X, X̃, Y, Ỹ ∈RH∞C+
such that[

Y X

M̃ −Ñ

][
N X̃

M −Ỹ

]
= I; NM−1 = M̃−1Ñ = P ;

M∗M +N∗N = I; M̃M̃∗ + ÑÑ∗ = I.

(5.9)

Applying Lemma 5.2.4 to (5.9) yields[
Y X

M̃ −Ñ

][
N X̃

M −Ỹ

]
= I

with N,M, M̃, Ñ ,X, X̃, Y , Ỹ ∈ LH∞D . Thus, N and M define a right coprime factorisa-

tion for a P := NM−1 ∈ L, where the invertibility of M in L follows from Theorem 5.2.3

since M−1 ∈R. Similarly, {Ñ , M̃} is a left coprime factor pair for P = M̃
−1
Ñ .

We now show that GMP
Z W hF−1

∼ GMP
. First recall as in Sections 2.4 and 2.5 that

GMP
= img (MG|FL2+) and GMP

= img
(
MG|Z W hL

2+

)
, where

G :=

[
N

M

]
∈RH∞C+

and G :=

[
N

M

]
∈ LH∞D .

right graph symbols for P and P , respectively. By Theorem 5.2.3, MG
Z W hF−1

∼ MG.
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Therefore, by Definition 2.1.2 and Remark 2.1.3,

img (MG|FL2+) Z W hF−1

∼ img
(
MG|Z W hL

2+

)
.

All in all, P := NM−1 ∈ L satisfies MP
Z W hF−1

∼ MP .

Finally, let

G̃ :=
[
−M̃ Ñ

]
∈RH∞C+

and G̃ :=
[
−M̃ Ñ

]
LH∞D

be left graph symbols for P and P , respectively. By (5.9), note that G∗G = I and

G̃G̃∗ = I. It can actually be shown using these identities that G∗G = I and G̃G̃
∗

= I,

i.e. G and G̃ are respectively normalised right and left graph symbols for P , whereby

P ∈ LCF . To this end, note that for any u, v ∈ L2
T,

〈u,G∗Gv〉L2
T

= 〈Gu,Gv〉L2
T

= 〈Gu,Gv〉L2
jR

= 〈u,G∗Gv〉L2
jR

= 〈u, v〉L2
jR

= 〈u, v〉L2
T
,

where u := FW −1
h Z −1u and v := FW −1

h Z −1v. A similar argument holds for G̃.

Sampled-data systems

In what follows, time-lifting of a sampled-data system is performed to obtain an equivalent

multiplication operator with a transfer function in the class LCF . A sampled-data system

is one which processes (pre-filtered) information discretely in time, via sampling and hold

operations.

Consider a sampled-data system:

P = HhPdShF : dom (P) ⊂ L2
R → L2

R, (5.10)

where

1. F F
" MF , with strictly proper F ∈ RH∞C+

, is a continuous-time LTI anti-aliasing

filter, and we assume (AF , BF , CF , 0) = F is a minimal realisation;

2. Pd
Z
" MPd , with Pd ∈ Dp×m, is a discrete-time LSI system, and we assume a

minimal realisation for Pd is (Ad, Bd, Cd, Dd);

3. Sh is an ideal sampler of period h > 0, i.e. (Shu)[·] := u(·h); and

4. Hh is a zero-order-hold of the same period h and synchronised with Sh, that is

(Hhu)(·) := u(b·/hc), where b·c denotes the floor function.
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Note that Hh ∈ L (`2
Z(Rp),L2

R) with γ̄(Hh) =
√
h. We now show that a sampled-data

system is equivalent to multiplication by a transfer function in LCF .

Theorem 5.2.6. Let HhPdShF := ΩΨ, where

Ψ :=

(
eAF h B̀F

CF 0

)
∈ DH∞D (L2

[0,h),C
m);

Ω :=

(
Ad Bd

C̀d D̀d

)
∈ D(Cm,L2

[0,h));

B̀Fw :=

∫ h

0
eAF (h−τ)BFw(τ) dτ ;

(C̀dx)(θ) := Cdx, (D̀du)(θ) := Ddu, ∀θ ∈ [0, h).

Then P = HhPdShF Z W h∼ MHhPdShF . Given the transfer functions Ω and Ψ above, a

possibly non-minimal realisation of HhPdShF ∈ Lp×m
HS ⊂ Lp×m

CF is (A,B,C, 0), where

A :=

[
eAF h 0

BdCF Ad

]
∈ Rn×n; B :=

[
B̀F

0

]
;

C ([ x1x2 ]) (θ) := DdCFx1 + Cdx2, ∀θ ∈ [0, h).

Proof. Exploiting the fact that F ∈RH∞C+
and following the proof of Theorem 5.2.3, it

can be shown that ShF Z⊕Z W h∼ MΨ. Note the only difference here is that the additional

sampling operation effectively discards the anti-aliasing filter’s output between sampling

instants. For now, suppose that dom (MΩ) = dom (MPd) and HhPd
Z W h⊕Z
∼ MΩ, which

is established later. In particular, see (5.13) and (5.15).

The graph of P = HhPdShF can be characterised as

GP =

{[
y

u

]
∈ L2+

∣∣∣∣∣ ∃uS ∈ dom (Pd) satisfying

uS = ShFu and y = HhPduS

}
. (5.11)

Given any [ yu ] ∈ GP, let uS ∈ dom (Pd) be such that uS = ShFu and y = HhPduS . Define

ûS := Z uS and
[ y
u

]
:= Z W h [ yu ]. It follows by the equivalences noted above that

y = MΩûS = MΩMΨu = MΩΨu = MHhPdShFu.

Clearly u ∈ dom
(
MHhPdShF

)
, since y ∈ Z W hL

2+. Thus,
[ y
u

]
∈ GMHhPdShF

. Con-

versely, given any
[ y
u

]
∈ GMHhPdShF

,

y(·) =
(
MHhPdShFu

)
(·) = Ω(·)Ψ(·)u(·) = Ω(·)ûS(·),
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where ûS := MΨu. Since Ψ ∈ DH∞D (L2
[0,h),C

m), observe that u ∈ dom (MΨ) =

Z W hL
2+ and ûS ∈

⋃
k∈Z z

kH2
D(Rm). Also,

y(·) = Ω(·)ûS(·) ∈ Z W hL
2+

implies ûS ∈ dom (MΩ) = dom (MPd), where the last equality holds by our starting

assumption. Moreover, noting that with [ yu ] := W −1
h Z −1

[ y
u

]
and uS := Z −1ûS ∈

dom (Pd) = dom (HhPd) (see Remark 2.1.5 for the last equality), we have y = HhPduS

and uS = ShFu. In particular, [ yu ] ∈ GP by (5.11). Thus, P Z W h∼ MHhPdShF , as required.

To complete the proof we show below dom (MΩ) = dom (MPd) andHhPd
Z W h⊕Z
∼ MΩ.

Towards this end, note that since Hh ∈ L (`2
Z(Rp),L2

R), we have Hh Z W h⊕Z
∼ MH , where

H :=

(
0 0

0 DH

)
∈ DH∞D (Cp,L2

[0,h)); and

(DHu)(θ) := u,∀θ ∈ [0, h).

(5.12)

Also note that DHDd = D̀d, DHCd = C̀d, and consequently HPd = Ω.

We first show that dom (MΩ) = dom (MPd). Suppose u ∈ dom (MPd), then

y(·) := Pd(·)u(·) ∈
⋃
k∈Z

zkH2
D(Rp) ⊂ dom (MH) ,

and hence H(·)y(·) = H(·)Pd(·)u(·) = Ω(·)u(·) ∈ Z W hL
2+. That is, u ∈ dom (MΩ)

and thus dom (MPd) ⊂ dom (MΩ). To see the converse inclusion, suppose that u ∈
dom (MΩ). That is,

‖MΩu‖2L2
T(L2

[0,h))
:=

∫ 2π

0
‖H(ejω)Pd(e

jω)u(ejω)‖22 dω <∞

=⇒
∫ 2π

0
‖DHPd(e

jω)u(ejω)‖22 dω <∞

=⇒
∫ 2π

0
h|Pd(ejω)u(ejω)|2 dω <∞,

where the last implication follows from the definition of DH in (5.12), whereby

‖DHx‖22 = h|x|2, ∀x ∈ Rp.

Thus, we have that ∫ 2π

0
|Pd(ejω)u(ejω)|2 dω =: ‖MPdu‖

2
L2

T(Rp)
<∞,
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i.e. u ∈ dom (MPd), and hence dom (MΩ) ⊂ dom (MPd). Altogether,

dom (MΩ) = dom (MPd) . (5.13)

We now establish that HhPd
Z W h⊕Z
∼ MHMPd and that MHMPd = MΩ, which

follows by HPd = Ω provided dom (MHMPd) = dom (MΩ) (see (5.14) below). Recall

that Hh Z W h⊕Z
∼ MH and Pd

Z∼ MPd , and note that img (Pd) ⊂ `2
Z(Rp) = dom (Hh).

So, by Lemma 2.1.6, HhPd
Z W h⊕Z
∼ MHMPd . Finally, note that dom (MHMPd) =

dom (MPd), which together with (5.13), implies

dom (MHMPd) = dom (MΩ) . (5.14)

Specifically, the fact that dom (MH) = L2
T(Rp) implies that dom (MPd) ⊂ dom (MHMPd).

Furthermore, we have dom (MHMPd) ⊂ dom (MPd) by definition; see Remark 2.1.5.

Thus, dom (MPd) = dom (MHMPd). Putting everything together yields

HhPd
Z W h⊕Z
∼ MHMPd = MΩ, (5.15)

as required.

5.3 Sampled-data approximation and proposed solution

The results in the preceding section establish that the transfer function class LCF is

sufficiently rich to equivalently represent both the LTI and SD system classes. Recall the

definition in Section 3.4 of the ν-gap metric (3.32) on the set PCF , which is reproduced

below:

δν(P1,P2) :=


γ̄(G̃2G1) = ‖G̃2G1‖∞ if for all τ ∈ [0, h),TG∗2G1,τ is Fredholm

and ind(TG∗2G1,τ ) = 0

1 otherwise.

Following Section 5.1, sampled-data approximation can be formulated as in (5.1):

For some P ∈ ST, βopt :=inf {β ∈ (0, bopt(P;E)) | ∃Pa ∈ SA such that δν(P,Pa) < β } .

where

bopt(P;E) := sup
C∈E : [P,C] is stable

bP,C with E :=
{

P F
" MP : P ∈R

}
,
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ST :=
{

P F
" MP : P ∈R is strictly proper

}
⊂ PCF ,

and

SA :=
{

Pa
Z W h
" MPa : Pa ∈ Ssd(F, h)

}
⊂ PCF ,

where the sampled-data structure set

Ssd(F, h) :=
{
Pa := HhPdShF ∈ LCF | Pd ∈ D

}
and the notationHhPdShF is defined in Theorem 5.2.6 given a strictly proper F ∈RH∞C+

and sampling period h > 0. Let G̃ ∈ RH∞C+
be a normalised left graph symbol for P ,

suppose there exists R,R−1 ∈RH∞C+
such that

G̃∗G̃− β2Ip+m = R∗
[
Ip 0
0 −Im

]
R,

then as demonstrated in Section 5.1, sampled-data approximation can be recast into the

following equivalent problem:

βopt := inf

{
β ∈ (0, bopt(P;E))

∣∣∣∣∣ ∃Pa ∈ SA such that F(R,Pa) is causal

and γ̄(F(R,Pa)|L2+) < 1

}
,

where R F
" MR. Recall that F(R,Pa) denotes an LFT for which GaR

−1 is a left graph

symbol, where Ga is a normalised left graph symbol for Pa. Let R ∈ LH∞D denote the

lifted equivalent of R and Fc(R,Pa) ∈ L the transfer function representation of F(R,Pa)

satisfying F(R,Pa)
Z W h∼ MFc(R,Pa). Denoting by Ga ∈ LH∞D a normalised left graph

symbol for Pa ∈ Ssd(F, h) ⊂ L, it follows that GaR
−1 is a left graph symbol for Fc(R,Pa).

Indeed, according to the LFT setup in Figure 4.1, we have

Fc(R,Pa) = (R11Pa +R12)(R21Pa +R22)−1 ∈ L,

provided the feedthrough ‘D’-term of R21Pa + R22 has a bounded causal inverse, which

is the case when that of R22 has a bounded causal inverse and that of Pa is zero; see

Theorem 5.2.6. Note that F(R,Pa) is causal and γ̄(F(R,Pa)|L2+) < 1 is equivalent to

Fc(R,Pa) ∈ LH∞D and ‖Fc(R,Pa)‖∞ < 1.
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Weighted sampled-data approximation

In sampled-data approximation, it is more convenient to formulate the problem involving

objects in LCF directly. To this end, define the inherited ν-gap metric on LCF as

δν(P1, P2) := δν(P1,P2),

where P1
Z W h
" MP1 and P2

Z W h
" MP2 . As is similar to Section 4.6.2, given P,C ∈ LCF

(resp. R), define P Z W h
" MP and C Z W h

" MC (resp. P F
" MP and C F

" MC), it follows

that closed-loop stability of [P,C] is equivalent to

[P,C] :=

[
P

I

]
(I − CP )−1

[
−C I

]
LH∞D (resp. RH∞C+

),

When this is the case, the robust stability margin bP,C := bP,C = ‖[P,C]‖−1
∞ .

Given P ∈R, input-output weights Wi,Wo ∈R for which WoPWi is strictly proper,

sampling period h > 0, and strictly proper F ∈RH∞C+
, the problem of optimal weighted

ν-gap metric based sampled-data approximation may be formulated as the following struc-

turally constrained optimisation:

βopt := inf
{
β ∈ (0, bopt(P ;R)) | ∃Pa ∈ Ssd(F, h) such that δν(WoPWi,WoPaWi) < β

}
,

(5.16)

where the maximal robustness margin

bopt(P ;R) := sup
C∈R : [P,C]∈RH∞C+

bP,C ,

the sampled-data structure set

Ssd(F, h) :=
{
Pa := HhPdShF ∈ LCF | Pd ∈ D

}
,

and the notation HhPdShF is defined in Theorem 5.2.6. As explained before, sampled-

data approximation (5.16) may be transformed into the equivalent problem:

inf{β ∈ (0, bopt(P ;R)) | Y(R(WoPWi, β),Wi,Wo, F, h) 6= ∅}, (5.17)

where

Y(R,Wi,Wo, F, h) :=

{
Pa ∈ Ssd(F, h)

∣∣∣∣∣ Fc(R,WoPaWi) ∈ LH∞D and

‖Fc(R,WoPaWi)‖∞ < 1

}
, (5.18)
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where the frequency-domain LFT is defined by Fc(Λ,∆) := (Λ11∆+Λ12)(Λ21∆+Λ22)−1,

and R(WoPWi, β) ∈ RH∞C+
is a ν-gap J-spectral factor for WoPWi ∈ R satisfying

R−1 ∈RH∞C+
and

G̃∗wG̃w − β2I = R∗
[
Ip 0
0 −Im

]
R,

with G̃w a normalised left graph symbol for WoPWi. An R always exists in this case, as

illustrated by the next result from [BC08, Lem. 2], which makes use of the J-spectral

factorisation result in [GGLD90].

Proposition 5.3.1. Given a strictly proper Φ ∈Rp×m and a β ∈ (0, bopt(Φ;R)), suppose

a minimal realisation for Φ is (A,B,C, 0). Define the following:

L := −Y CT ;

Z :=
β2

1− β2
X

(
I − β2

1− β2
Y X

)−1

,

where X and Y are respectively the stabilising solutions to the generalised control algebraic

Riccati equation (GCARE)

ATX +XA+ CTC −XBBTX = 0

and the generalised filtering algebraic Riccati equation (GFARE)

AY + Y AT − Y CTCY +BBT = 0.

Then the transfer function matrix R := (AR, BR, CR, DR) with

AR := A+ LC; BR :=
[
−L B

]
;

CR :=

 1√
1−β2

(LTZ − C)

1
βB

TZ

 ; DR :=

[√
1− β2Ip 0

0 βIm

]
,

is such that R,R−1 ∈RH∞C+
and

G̃∗ΦG̃Φ − β2Ip+m = R∗
[
Ip 0
0 −Im

]
R,

where G̃Φ ∈RH∞C+
denotes a normalised left graph symbol of Φ.

The formulation (5.17) gives rise to the following algorithm for solving problem (5.16),

which is optimal to within a pre-determined tolerance.

Algorithm 5.3.2. Suppose we are given P,Wi,Wo ∈ R for which WoPWi is strictly
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proper, a strictly proper F ∈ RH∞C+
, and a fixed sampling period h > 0. The fol-

lowing bisection search yields βopt in problem (5.16) to within a specified tolerance

ε ∈ (0, bopt(P ;R)), as well as a transfer function Pa ∈ Ssd(F, h) achieving βopt:

1. Set βopt := bopt(P ;R), βmin := 0, βmax := bopt(P ;R)− ε, and β := βmax.

2. Construct R(WoPWi, β) as per Proposition 5.3.1, with Φ := WoPWi.

3. If Y(R(WoPWi, β),Wi,Wo, F, h) is nonempty, set βmax := β and βopt := β. Other-

wise, set βmin := β.

4. If |β − (βmax + βmin)/2| > ε, loop from Step 2 with β := (βmax + βmin)/2.

5. If βopt < bopt(P ;R), choose a Pa from the set Y(R(WoPWi, βopt),Wi,Wo, F, h)

which is nonempty. Otherwise, problem (5.16) is unsolvable and the fixed pre-filter

F and/or sampling period h should be redesigned.

The set Y(R,Wi,Wo, F, h) is convex, as shown in the sequel using standard H∞

sampled-data synthesis techniques described by [BP92, Yam94, CF95, CG97]. As such,

Step 3 of Algorithm 5.3.2 is a convex feasibility problem and Step 5 involves locating a

feasibility point in a convex set.

A linear matrix inequality based solution

Here we demonstrate that the set Y(R,Wi,Wo, F, h) ⊂ Ssd(F, h) in Step 3 of Algo-

rithm 5.3.2, as defined in (5.18), is convex via an LMI approach [GA94] and that semidef-

inite programming methods [BV04] can be used for determining if the set is empty or not,

as well as constructing a feasible point in the latter case. We begin with a preliminary

lemma.

Lemma 5.3.3. Given R =

 AR [BR1 BR2 ][
CR1
CR2

] [
DR11 0

0 DR22

]  ∈R (resp. L), suppose R−1 ∈R

(resp. L) and let

R̃ =

[
R̃11 R̃12

R̃21 R̃22

]
:=

 A [B1 B2 ][
C1
C2

] [
0 D12
D21 0

]  ,

where

A :=AR −BR2D
−1
R22CR2; B1 := −BR2D

−1
R22; B2 := BR1;

C1 := −CR1; C2 := −D−1
R22CR2; D12 := −DR11; D21 := −D−1

R22.
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Then, for any P1 ∈R (resp. L), the chain-scattering LFT

Fc(R,P1) := (R11P1 +R12)(R21P1 +R22)−1

is equal to the Redheffer’s lower LFT

Fl(R̃, P1) := R̃11 + R̃12P1(I − R̃22P1)−1R̃21,

i.e. Fc(R,P1) = Fl(R̃, P1).

Proof. By noting that (Acl, Bcl, Ccl, Dcl) is a realisation for both Fc(R,P1) and Fl(R̃, P1):

Acl = Ā+BΦC; Bcl = B̄ +BΦD22; Ccl = C̄ +D11ΦC; Dcl = D12ΦD21,

where

Ā :=

[
A 0

0 0

]
; B̄ :=

[
B1

0

]
; B :=

[
0 B2

I 0

]
;

C̄ :=
[
C1 0

]
; C :=

[
0 I

C2 0

]
; D12 :=

[
0 D12

]
; D21 :=

[
0

D21

]
,

(5.19)

and Φ :=
[
A1 B1
C1 D1

]
with (A1, B1, C1, D1) being a realisation for P1. In particular, see [BC08,

Lem. 2] and [GA94, Section 2].

Definition 5.3.4. Given a P ∈ Rp×m, weights Wi ∈ Rm×m and Wo ∈ Rp×p for which

WoPWi ∈ Rp×m is strictly proper, a fixed sampling period h > 0, and a strictly proper

F ∈RH∞C+

m×m, suppose a ν-gap J-spectral factor for WoPWi, constructed following the

procedure in Proposition 5.3.1, is R ∈ RH∞C+

(p+m)×(p+m). Obtain R̃ ∈ R(p+m)×(m+p)

from R using Lemma 5.3.3 and then define

G :=

[
R̃11 R̃12Wo

FWiR̃21 FWiR̃22Wo

]
∈R(p+m)×(m+p).

Let a minimal realisation of G be given by

 A [B1 B2 ][
C1
C2

] [
0 D12
0 0

]
, with A ∈ Rn×n. Note

that the term D21 in the realisation of G are zero since F is assumed strictly proper. Now

calculate the matrix exponential

Q̂(h) =

[
Q̂11(h) Q̂12(h)

Q̂21(h) Q̂22(h)

]
:= exp

{
h

[
−ÂT −ĈT Ĉ
B̂B̂T Â

]}
∈ R2(n+p)×2(n+p)
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where

Â :=

[
A B2

0 0

]
∈ R(n+p)×(n+p);

ĈT Ĉ :=

[
CT1
DT

12

] [
C1 D12

]
; B̂B̂T :=

[
B1

0

] [
BT

1 0
]
.

Let G̀ :=

 A [ B̀1 B2 ][
C̀1
C2

] [
0 D̀12
0 0

]  ∈ D(p̄+m)×(m̄+p), where

A :=
[
In 0

]
Q̂11(h)−T

[
In

0

]
;

B2 :=
[
In 0

]
Q̂11(h)−T

[
0

Ip

]
;

B̀1B̀
T
1 :=

[
In 0

]
Q̂21(h)Q̂11(h)−1

[
In

0

]
;[

C̀T1
D̀T

12

] [
C̀1 D̀12

]
:= −Q̂11(h)−1Q̂12(h).

Note B̀1 ∈ Rn×m̄, C̀1 ∈ Rp̄×n, and D̀12 ∈ Rp̄×p.

Theorem 5.3.5. Using the notation developed in Definition 5.3.4, let D̃11 : L2
[0,h) →

L2
[0,h) be defined as

(D̃11w)(t) :=

∫ t

0
C1e

A(t−τ)B1w(τ) dτ,

and suppose that2 γ̄(D̃11) := ‖D̃11‖L2
[0,h)

< 1. Then we have Pd ∈ Yd
(
G̀ (R,Wi,Wo, F, h)

)
if, and only if, Pa := HhPdShF ∈ Y(R,Wi,Wo, F, h), where Y is as defined in (5.18) and

Yd(G̀) := {Pd ∈ D | Fl(G̀, Pd) ∈ DH∞D and ‖Fl(G̀, Pd)‖∞ < 1}.

Proof. As in Lemma 5.3.3, we have Fc(R,Pa) = Fl(R̃, Pa). Furthermore, the equivalence

between

1. Fl(R̃, Pa) ∈ LH∞D and ‖Fl(R̃, Pa)‖∞ < 1 and

2. Fl(G̀, Pd) ∈ DH∞D and ‖Fl(G̀, Pd)‖∞ < 1,

is proved in [CG97, Thm 4.1] and [BP92, Thm. 6]. In particular, the realisation formulae

2One way of computing the operator norm ‖ · ‖L2
[0,h)

can be found in [Dul99].
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in the statement of this theorem are from [CG97]. The result then follows from the above

equivalence.

Proposition 5.3.6 ([GA94, Section 6]). There exists Pd ∈ Dp×m such that

Fl(G̀, Pd) ∈ DH∞D and ‖Fl(G̀, Pd)‖∞ < 1

if, and only if, there exist symmetric matrices R,S ∈ Rn×n satisfying the following LMI

system:

[
NR 0(n+p̄)×m̄

0 Im̄

]T  ARAT −R ARC̀T1 B̀1

C̀1RA
T C̀1RC̀

T
1 − Ip̄ 0p̄×m̄

B̀T
1 0m̄×p̄ −Im̄

[ NR 0(n+p̄)×m̄

0 Im̄

]
< 0;

[
NS 0(n+m̄)×p̄

0 Ip̄

]T  ATSA− S ATSB̀1 C̀T1
B̀T

1 SA B̀T
1 SB̀1 − Im̄ 0m̄×p̄

C̀1 0p̄×m̄ −Ip̄

[ NS 0(n+m̄)×p̄

0 Ip̄

]
< 0;

[
R In

In S

]
≥ 0,

(5.20)

where img (NR) = ker
([
BT

2 D̀T
12

])
and img (NS) = ker

([
C2 0m×m̄

])
.

Suppose that the solutions R and S to the LMIs in (5.20) are found and that

rank(In −RS) = k ≤ n.

Let M,N ∈ Rn×k be any two full-column-rank matrices satisfying

MNT = In −RS

and 0 < Xcl ∈ R(n+k)×(n+k) be the unique solution of the linear equation[
S In

NT 0k×n

]
= Xcl

[
In R

0k×n MT

]
. (5.21)

Proposition 5.3.7 ([GA94, Section 7]). Suppose R and S have been found satisfying

the LMIs in Proposition 5.3.6, construct Xcl as in (5.21). Then there exists
[
Ad Bd
Cd Dd

]
∈

R(k+p)×(k+m) satisfying the LMI

HXcl +QT

[
Ad Bd

Cd Dd

]T
P + P T

[
Ad Bd

Cd Dd

]
Q < 0,



110 Chapter 5. Sampled-data approximation in the ν-gap metric

where

P :=

[
0k×n Ik 0k×n 0k×k 0k×m̄ 0k×p̄

BT
2 0p×k 0p×n 0p×k 0p×m̄ D̀T

12

]
;

Q :=

[
0k×n 0k×k 0k×n Ik 0k×m̄ 0k×p̄

0m×n 0m×k C2 0m×k 0m×m̄ 0m×p̄

]
;

HXcl :=


−X−1

cl A0 B0 0(n+k)×p̄

AT0 −Xcl 0(n+k)×m̄ CT0
BT

0 0m̄×(n+k) −Im̄ 0m̄×p̄

0p̄×(n+k) C0 0p̄×m̄ −Ip̄

 ;

A0 :=

[
A 0n×k

0k×n 0k×k

]
; B0 :=

[
B̀1

0k×m̄

]
; C0 :=

[
C̀1 0p̄×k

]
.

Moreover, Pd := (Ad, Bd, Cd, Dd) ∈ Dp×m satisfies Fl(G̀, Pd) ∈ DH∞D and ‖Fl(G̀, Pd)‖∞ <

1. Note that the order or degree of the constructed Pd satisfies

deg(Pd)≤deg(P ) + deg(F ) + 2(deg(Wi) + deg(Wo)). (5.22)

The set of solutions of a system of LMIs is convex [BV04]. Thus, Yd
(
G̀ (R,Wi,Wo, F, h)

)
is convex by Proposition 5.3.6. This in turn means that Y(R,Wi,Wo, F, h) is also convex

by Theorem 5.3.5. In the case where Yd(G̀) is non-empty, Proposition 5.3.7 can be used to

identify an element of the set and hence the corresponding element in Y(R,Wi,Wo, F, h).

In summary, Theorem 5.3.5 and Proposition 5.3.6 can together be employed to address

the convex feasibility problem in Step 3 of Algorithm 5.3.2, while Proposition 5.3.7 can

be used subsequently to construct a feasible point in Step 5.

5.4 Numerical examples

The numerical examples in this section are generated by making use of the MATLAB

toolboxes YALMIP [Löf04] and SDPT3 [TTT99] for defining and solving LMIs, respec-

tively.

First consider a strictly proper P ∈ R defined by P (s) = 0.5s+0.5
(0.05s+1)(0.2s+1) , whose

3-dB bandwidth is approximately 140 rad/sec and bopt(P ;R) = 0.849. We use unity

weights and set F (s) = b2

(s+b)2
, where b denotes the bandwidth of the anti-aliasing filter.

Figure 5.1 illustrates the value of δν(P ,HhPdShF ), where HhPdShF denotes the optimal

sampled-data approximation for P , obtained by applying Algorithm 5.3.2 while varying

b and h. It can be observed that a higher sampling frequency and an anti-aliasing filter’s
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bandwidth matching that of the nominal transfer function P , around 140 rad/sec, results

in better approximations with respect to the ν-gap metric.
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Figure 5.1: ν-gap between P and its optimal SD approximation

Consider now a plant

P (s) =
K

(τ1s+ 1)(τ2s+ 1)
,

where K = 2, τ1 = 0.05, and τ2 = 0.001. A transfer function of such form may model, for

instance, the dynamics of a DC servo motor from its input voltage to the output angular

velocity. Setting Wi(s) := 20
s+3 and Wo(s) := 1, a H∞ loop-shaping controller [MG90] for

P may be designed to be C(s) = Wo(s)Cs(s)Wi(s), where Cs(s) = −1.469s2−1507s−37850
s2+1064s+65680

.

The achieved robustness margin is b(P,C) = 0.562. Selecting F (s) := 5
s+5 , we discretise

Cs(s) to obtain Ĉs ∈ L by: (i) Applying Algorithm 5.3.2; and (ii) Taking the Tustin’s

bilinear transformation (z = 1+sh/2
1−sh/2 with h the sampling period). The resulting closed-

loop characteristics are summarised in Table 5.1, in which Ĉ := WoĈsWi and ∆ :=

[P ,C]− [P , Ĉ].

Observe that approach (i) outperforms (ii) significantly based on the achieved closed-

loop behaviours of their respective approximations. This owes to Algorithm 5.3.2 auto-

matically taking into account the anti-aliasing filter F and the input and output weights

Wi,Wo when executing sampled-data approximation, in such a way that is optimal in

the weighted ν-gap measure of distance, with respect to which the feedback robustness

results in Chapter 3 hold true. Nevertheless, note that the more accurate approximations

are acquired at the expense of a higher controller order. Specifically, the order of Cd ∈ D
in Ĉs = HhCdShF ∈ L for approach (ii) is 2 while that for approach (i) can be as high
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as 5; see (5.22).

Alg. Samp. freq. δν(C, Ĉ) b(P , Ĉ) ‖∆‖∞

(i)
100 rad/s 0.521 0.335 2.491
250 rad/s 0.342 0.403 1.504

(ii)
100 rad/s 0.707 0.084 11.239
250 rad/s 0.652 0.146 6.099

Table 5.1: Closed-loop performances of sampled-data control systems

5.5 Summary

This chapter reconsiders the problem of optimal sampled-data approximation from [CV04]

for robust feedback design, in which the error incurred is measured by the generalised ν-

gap metric from Chapter 3. An appropriate mathematical framework is developed to

rigorously define the ν-gap measure of distance between an LTI and a sampled-data

system. Through the previously established linear fractional characterisation of the ν-

gap metric in Section 4.2, it is shown that the approximation problem is solvable by a

line search involving at each step a convex feasibility check equivalent to the existence of

a solution to a set of LMIs. Numerical results demonstrate that the proposed algorithm

is well-suited for approximating controllers designed using robust H∞-loop shaping.
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Conclusions

This dissertation generalises the ν-gap metric based framework of Vinnicombe [Vin93,

Vin01] for analysing the robustness of LTI feedback interconnections, to a general time-

varying setting based on initial developments made in [JC10, JC11]. It is rigorously

established that the incorporation of integral quadratic constraints (IQCs) with the anal-

ysis framework, as originally suggested in [JC10, JC11], provides additional flexibility

over purely ν-gap ball based results. On the synthesis side, sampled-data approximation

problem [CV04] in the ν-gap metric is also considered and optimally solved. Below, the

main contributions are summarised and future research directions identified.

6.1 Contributions

• In Chapter 3, a framework for closed-loop stability which implicitly incorporates an

arrow of time [GS10] is developed. This extends the initial development in [JC10,

JC11], where a redundant instantaneous gain condition was included in the defini-

tion of closed-loop stability.

• A generalised ν-gap metric from [JC10, JC11] for causal linear time-varying systems

having normalised strong graph symbol representations is studied in Chapter 3.

Several ν-gap ball based sufficient conditions for robust closed-loop stability are

derived in a system-theoretic setting, leading to conclusions on the nice properties

of the graph topology.

• A necessary and sufficient ν-gap ball based robustness condition is established by

exploiting the periodically time-varying structure of a class of systems. This result,

together with the aforementioned ones, substantiate the fact that the ν-gap metric

has been generalised in the right way.

113
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• A useful characterisation of the ν-gap metric in terms of a gain bound on a linear

fractional transformation (LFT) is presented in Chapter 4. Based on this charac-

terisation, pathwise connectedness of ν-gap balls in the graph topology is estab-

lished, allowing for reconciliation of the more flexible IQC based system analysis

of [JC10, JC11] with the ν-gap ball based results of Chapter 3.

• J-spectral factorisation underpinning the LFT characterisation is shown to exist for

two generic classes of linear systems: finite-dimensional time-varying systems and

distributed-parameter time-invariant systems.

• In Chapter 5, appropriate representations of finite-dimensional linear time-invariant

and sampled-data systems are developed, resulting in a well-defined ν-gap measure

of distance between them.

• The problem of sampled-data approximation from [CV04] in the weighted ν-gap

metric is reformulated using the LFT characterisation and an iterative linear matrix

inequality based approach is proposed for optimally solving it.

6.2 Directions for further work

• Development of a ν-gap analysis framework similar to that in Chapter 3 to ac-

commodate nonlinear systems. Unifying this with the IQC based stability analysis

would be accomplishable using the arguments in Section 4.1, which exploit neither

the linearity property nor any function-theoretic representations.

• Recall from Chapter 4 that IQC based analysis relies on homotopies which are

continuous with respect to the ν-gap metric to conclude feedback stability. However,

unlike the ν-gap ball type robustness results, the analysis does not explicitly account

for closed-loop stability/performance margin of the perturbed feedback systems. An

interesting research direction is to examine if this is possible, perhaps by imposing

stronger condition on the ν-gap homotopies such as differentiability.

• Pathwise connectedness of different types of uncertainty sets may be verified. For

instance, intersections of ν-gap metric balls and a manifold of systems with dimen-

sions no larger than a fixed integer or sets which are structured in a particular

way.

• In view of the solvability of sampled-data approximation in the ν-gap metric in

Chapter 5, a characterisation of which structural constraints in model approximation

give rise to convex optimisation problems may be investigated via an LFT based

approach using ideas from, for instance, [RL06].
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