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Abstract

Optimization of industrial processes or behavior of any real-world system typically

attracts a lot of attention among researchers. Many different approaches are suggested

and many different algorithms designed and explored.

The work reported in this thesis is motivated by perturbation-based extremum seeking

algorithm. This is a model-free or a so called ”black-box” real time optimization

technique that dates back in 1922. The main difference and may be the challenge

is the way how the gradient is estimated. The algorithm uses periodic perturbation

which is injected into the algorithm with intention to extract the information about

the gradient. To deal with the model uncertainties and unknown disturbances it is

assumed no information is available about the plant dynamics. Analytical structure

of cost function is not known but its measurements are available. Structure of input-

output correlation is used to find the necessary condition to force the gradient towards

zero, and consequently output to the optimal set-point.

The research analyzes first order extremum seeking controller. Procedure for tuning

the parameters is established and SPA stability proved in multidimensional parameter

space. It is shown that proper tuning of parameters can guaranty stability beyond

the local analysis. If properly tuned this parameters can considerably speed up the

algorithm, enlarge the domain of attraction or increase the accuracy of the controller.
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Chapter 1

Introduction

Nonlinear optimal control problems are problems involving real world situations where

the objectives are locating the minimum or maximum of the cost function, during,

for example, the operation of some physical, social or, may be economic processes.

Algorithms used to solve these problems are expected to satisfy the objectives.

The function may be given analytically or determined ”experimentally”. Noise and

experimental error may, or may not be associated with this function. However, there

may exist constraints equations which limit the arguments of the performance mea-

sure. The efficiency of available search techniques for computing the optimum is

affected by certain global and local properties of functions. Generally, a function may

or may not exhibit discontinuities. The best known search techniques are perhaps

elementary gradients methods.

When the performance measure f(x) is evaluated experimentally, there exist experi-

mental errors from measurements and from noise in the physical system under study.

Under such conditions, exact expressions are not obtainable for the function f(x) or

for the gradient of f(x). It is possible, however, to obtain expected values of these by

using appropriate expressions.
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1.1 Formulation of general optimization problem Introduction

The work reported in this thesis is motivated primarily by the problems of stability

of algorithms for extremum seeking control for general dynamical nonlinear systems.

1.1 Formulation of general optimization problem

Optimization is concerned with the general problem of finding an unrestricted ex-

tremum of a function f : Rn → R. Suppose the function of interest can be calculated

at all points. The goal of optimization is to find local extremum value (minimum or

maximum) at some x∗ such that the following holds:

f(x∗) ≤ f(x) or f(x∗) ≥ f(x) (1.1)

for all x ∈ Rn in case of global optimization. In other words optimization control

task is to locate an input x which optimizes an unknown function f(x) such that, for

example:

x∗ = arg minx∈Rnf(x) (1.2)

x∗ is the argument which minimizes the function f(x). For the sake of simplicity it

may be assumed that the objective function f(x) has only one minimum.

For differentiable functions it is well known the condition for optimality to be satisfied

is the gradient to be equal to zero. In literature this condition is often called first-order

condition for optimality. The second-order condition guaranties the second derivative

(Hessian) to be positive or negative (definite or semidefinite). Of course, first one is

necessary, while the second one indicates a local convexity or concavity of the cost

function and, thus the nature of the extremum.
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1.2 Real-time optimization Introduction

1.2 Real-time optimization

Optimization of process performance gained popularity in recent years as it represents

natural drive for production costs minimization and/or product quality improvement.

No matter whether the process is mechanical, electrical or chemical standard opti-

mization tools mostly use model-based techniques. To compute the valid optimal

solution in numerical procedures these techniques require adequate knowledge and

enough information about process models. Unfortunately, in many cases models of

high accuracy are usually unavailable. They could be found with an effort but often

cost benefit is unclear. Typically therefore, controller for model-based optimization

must be robust to allow for possible model-plant mismatch.

A model of limited accuracy when used to optimize a real complex process will lead

to errors and, an inexact optimum. Such model may possibly result in suboptimal

operation, or even worse, lead to unfeasible/inadmissable optimal conditions. This

task is, however, even more complicated by the fact that process data are usually

noisy and signals may not carry enough information for efficient process identification.

Hence, one of the main challenges in real time optimization (RTO) mainly arises from

the incapability to design and adapt precise models for complex processes.

RTO is usually considered as a nonlinear programming problem (NLP) whose objec-

tive is to drive the system towards the optimal steady-state operating performance

of the process, while satisfying constraints if they exist. The RTO is a closed-loop

control that uses available measurements to compensate for model uncertainty and,

thus improve the system performance in the context of process optimization. It is

done through iterative adjustment of selected system parameters in real time. As

structural and parametric errors are inevitable in real-world systems a number of al-

gorithms are developed to achieve this goal considering the systems with the presence

of significant uncertainties.
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1.2 Real-time optimization Introduction

In view of the above, normally, RTO is implemented through a two-step approach.

This is described in [5]. In the literature this is, also, often referred as repeated

identification and optimization. Model parameters are iteratively estimated and the

updated model is then used to adapt the decision variables. In the first step, the

values of the chosen model parameters θ are estimated using the process output

measurements. In the second step the updated model is used to adapt the decision

variables via optimization. This two-step approach works well only when provided

the model mismatch is low.

However, it is worth mentioning that measurements of cost function are not always

available. Depending whether measurements are used for computing the optimal

solution or not there are two main available optimization methods that can handle

with uncertainties:

- robust optimization is typically used in the absence of measurements;

- adaptive optimization is used when measurements are available. That can help

identify and adjust to process changes and disturbances.

Actually, all control theory is designed to drive a system to a prescribed mode of be-

havior. Robust and adaptive control schemes are employed in particular to deal with

uncertainties in the system description, so that the desired behavior can be reached

despite this problem. In adaptive optimization there are three main approaches that

differ in the way the adaptation is performed:

- model parameter adaptation updates a model parameters and repeats the opti-

mization for newly identified parameters;

- modifier adaptation modifies the constraints and gradients and repeats the op-

timization;

13



1.2 Real-time optimization Introduction

- direct input adaptation transforms the optimization problem into a feedback

control problem.

Schematic description of real-time optimization methods is given at figure below.

Figure 1.1: Summary of real-time optimization methods

The main idea of the first approach is to use the measurements to refine the model,

and then to use this updated model for the optimization. However, difficulties arise

when selection of appropriate adjustable parameters has to be made. First, these

parameters have to represent actual changes in the process and must be adjustable.

They have to be chosen among those which are the most influential on system be-

havior. Secondly, they have to be identifiable and be relevant. In other words they

have to contribute in finding the optimum in a reasonable time. Such information

can be extracted from an adequate model or available knowledge about the system to

be optimized. Clearly, the more accurate the model, the better our choice of relevant
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1.2 Real-time optimization Introduction

parameters. Better parameter estimates may be obtained when dealing with smaller

set of parameters. Serious problems may occur when the number of uncertain model

parameters is large. More parameters will lead to significant errors, and hence to a

false optimum.

In cases where modified terms are added to the cost function and constraints if they

are present, and then measurements are used to update these terms, the adaptation

is called modifier adaptation. In general, methods that belong to this group are used

in order to overcome the modeling deficiencies. Only several of them are presented

in the literature. The goal is to add the terms that would modify both cost function

and constraints.

The last class is the input adaptation. Here the inputs are adjusted using feedback

controllers. Optimization problem is transformed into a feedback control problem so

that repeated optimization is avoided. It directly manipulates the input variables.

The challenge is to find functions of the measured variables which, when held constant

by adjusting the input variables, enforce optimal plant performance.

To overcome the deficiencies of two-step RTO methods (for example model mismatch),

some other methods also have been proposed. These techniques do not rely on a

process model update, and are classified into two subgroups:

1. model-free methods - when no process model is used during the operation;

2. fixed-model methods - where approximate model is used without refinement.

Techniques from the former group are usually based on gradient-based algorithms that

require the gradients of cost and constraint functions to be computed (estimated)

using the available measurements. One way to determine the gradient is by using

finite-difference method that estimates the gradient in straightforward manner. Finite

difference approximation replaces direct gradient measurements.
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1.3 Extremum seeking Introduction

Model based techniques use both the available measurements and a process model to

search for optimal system operation. The process model is used to estimate the gradi-

ents of cost and constraint functions during the optimization process. When compar-

ing fixed-model RTO methods with model-free approaches, it should be stressed that

the direct solution of a nonlinear programming problem allows handling constraints

without having to make any assumption regarding the set of active constraints at the

optimal point.

1.3 Extremum seeking

As already seen, the standard approach of real-time optimization is the model-based

repeated optimization where the model is adapted using the available measurements.

Then the numerical optimization is performed on the updated model. An alternative

approach is known as the extremum-seeking control. It allows treating the optimiza-

tion problem as a control problem with the advantages related to sensitivity reduction

and disturbance rejection.

The task in control problems is to force a system to operate in desired manner, that is,

to follow some given reference value or patterns such that a desired system behavior

is achieved. Sometimes, the desired performance is not known in advance precisely.

One example is on-line optimization of the cost function when there is no available

analytical knowledge about it. Neither dynamical model of the plant nor the model

of response map is known. Another case is stabilization of the system in the presence

of uncertainties or disturbances.

A controller should stabilize the system and compensate effects of disturbances vari-

ations of unknown uncertainties. This simply implies that it is more convenient to

consider the case when there is no information about the system. Both dynamics and
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1.3 Extremum seeking Introduction

cost function can be seen as black-box. Since the analytic form of cost function is

unknown a priori, ES controller can rely only on its measurements. Thus the value

of objective function f(x) at every moment is assumed to be available by taking the

measurements. Derivative of the function to be optimized is not available, but the

function itself can be measured and gradient estimated.

The main goal of ES is to move the operating point of the system to optimize the

function of the system state and force the system to operate at a set-point that

represents the optimal value of a function being optimized in the feedback loop. ESC

should find optimum or track the same in case it is time-varying. As optimal operating

point is not known in advance, it is necessary for the controller to find the optimal

set-point while the system is operating. Consequently the state will also converge

to its optimal value x∗. The static response curve should have at least one extremal

value (see Figure 1.). It optimizes process in real time on both dynamic or static

systems.

Extremum seeking algorithm does not provide any information about the gradient

and, thus it relies only on the measurements of the objective function. This is the

case where the knowledge of the input-output relationships is known from theoret-

ical analysis. Perturbation-based algorithm uses periodic probing signal to extract

information about gradient from this reference-to-output relationship.

In general, for different algorithms different search techniques are proposed in lit-

erature. Finite-difference schemes provide a straightforward way of estimating the

gradient. However, this method becomes experimentally intractable for more large

number of control parameters. Also, several other methods have been proposed such

as dynamic perturbations, and recursive Broyden-like updates. Alternatively, the

gradient can be computed using Kalman filter. Assuming the filter can perfectly

estimate state variables, gradient can be evaluated using appropriate expressions.
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1.3 Extremum seeking Introduction

Another choice for gradient estimation technique may be sliding mode control or

fuzzy logic.

What usually happens in real-world systems, and may make additional problems, is

the existence of more than one extremal value. Mostly iterative or so called ”step-by-

step” algorithms are used to find at least one x∗. Step-by-step moves the algorithm

from a set of initial guesses of x∗ to a final value. Naturally, it is expected the final

value to be closer to the true optimum than the initial guesses. In practice it is

common to seek only one x∗ in the algorithmic search. Hence it is adapted that any

value from the set of optimizers is good as any else and there is often no need to

determine whole set of optimal values. The potential issue of nonuniqueness of x∗ is

sometimes of limited practical concern.

To achieve the best possible performance ES algorithm should be designed in a way

that would guaranty that the global extremum of an objective function is reached.

It is always more practical and the one should always try to seek globally optimal

solution to the optimization problem if all other factors are equal. Also we should be

aware of the fact that such solution may not be available or even achieved so easily.

In those situations one must be satisfied with a local solution as it is still better than

any other in its vicinity. Luckily, many problems consider the cost function with only

one optimizer.

Classical ES works on the principle of steepest descent. This search technique is

based on the simple principle that states: from a given value x the best direction to

go is the one that produces the largest local change of the cost function. At given x

this direction is defined with the gradient vector. Mathematically speaking, steepest

descent algorithm is defined as:

x̂k+1 = x̂k − akg(x̂k), k = 0, 1, 2, . . . (1.3)
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1.3 Extremum seeking Introduction

Here k is the iteration count, x̂0 is the initial guess of x∗, ak > 0 is step size, and

g(x̂k) is the gradient of function f(x) at kth iteration.

Figure 1.2 illustrates how, actually this algorithm works. For the sake of simplicity

we may suppose the convex function changes only with the i − th component of a

vector variable x and is fixed for all other n− 1 components.

Figure 1.2: Update directions for steepest descent

From Figure 1.2 and equation (1.3) it becomes obvious that, no matter at which side

of minimum the current estimate is, the algorithm will continue to move towards

optimum in a direction that is opposite to the sign of the gradient vector with respect

to the corresponding component. For example, if current value of x̂i at the kth

iteration is on the right side of the minimum (function is monotonically increasing)

gradient will be positive. From expression (1.3) it follows the search direction will be

opposite to the gradient sign and thus it keeps minus in next iteration. In that way

function moves left, that in direction that will decrease its value.

Comment 1.1 Figure 1.1 involves just situation in which cost function changes with

respect to one variable. Hence, for the value of the argument denoted as x∗ f(x∗) is

just a component of real minimum. Complete analysis would involve interplay with
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1.3 Extremum seeking Introduction

the other components of the vector x. Hence, the whole analysis and the graph are

quite more difficult.

Comment 1.2 The algorithm guaranties the convergence in infinite time. The proof

for this can be found in any literature that considers optimization or/and numerical

methods ([59]).

The convergence speed of this algorithm sometimes can cause significant problems.

The only methods which will converge quickly for a general function are those which

will guarantee to find the extremum of a general quadratic or cubic speedily. The

Newton - Raphson method has fast convergence. Problem is that it requires second

derivatives of the function to be evaluated, and frequently fails to converge from a

poor approximation to the minimum. Available literature emphasize the fact that

Newton method, although fast, does not guarantee convergence always. From this

point of view it would be reasonable to find ”optimal” optimum seeking method, what

is actually impossible for arbitrary f(x)cannot be found. To improve the convergence

speed of classical perturbation extremum seeking some researchers tried to switch

from steepest descent to Newton-Raphson method.

Comment 1.3 The Newton - Raphson algorithm may speed up the algorithm but

also may make it unstable in some situations. By Taylor theorem (Appendix A)

twice differentiable function will be nearly quadratic in small vicinity of the optimum.

Hence, one the solution is near the optimal value the algorithm is expected to converge

quadriatically:

||x̂k+1 − x∗|| = O(||x̂k − x∗||2) (1.4)

In many practical problems constraints are put on certain variables. Constraints may

make analysis more difficult. Constraints are classified as hard and soft constraints.

20



1.4 Motivational examples Introduction

The former do not allow any value of the x to be ever outside of the constrained set.

The later allow some values of x to be outside the constrained set, but only during

the search process and only for a limited time. It is required the final estimate of x lie

inside the constrained set. To our knowledge there is still no results that appeared in

the literature which would solve the constrained problem for sinusoidally perturbed

extremum seeking controller.

1.4 Motivational examples

To illustrate the efficiency and justify the recently gained popularity and interest in

development of extremum seeking controllers examples are presented in this section.

These two examples motivate the need for reliable algorithm. Therefore, our starting

point is an example of instabilities that occur during the combustion. This is, prob-

ably, one of the earliest motivational examples that contributed to the development

of ESC. These instabilities manifests as limit cycle self-excited oscillations in velocity

or in pressure and have a significant effect on performance of gas turbines.

Figure 1.3: Combustion process in gas turbine
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1.4 Motivational examples Introduction

Pressure oscillations are in particular known as thermo-acoustic instabilities and are

the main cause of high level oscillation that can result in a high level of noise or even

in a severe damaging of mechanical parts. In Figure 1.3 a sketch of a combustion

process in gas turbines is shown.

First results were gained from the model based analysis and had success showing

that with an appropriate choice of the phase-shift the pressure amplitude can be

substantially reduced. However, this may not lead to the optimal solution as the

used algorithm could not guaranty phase-shift that would minimize the amplitude

and thus suppress the oscillations in best possible way. Experiments showed that

using the classical extremum seeking algorithm gives better results.

Second motivational example comes from the need to solve the problem of thermo-

elastic instabilities in disc-brakes present during the braking actions. This instabilities

are called judder and occur at some critical braking speed. The main cause for

judder to occur is unevenly distributed heat that results in hot spots and change of

pressure. Consequently, disc thickness variations will occur and manifest itself in form

of thermo-acoustic and/or thermo-elastic instabilities. Driver can experience this as

an unpleasant noise or shacking of a vehicle.

Moreover, uneven heat distribution along with oscillations can lead to serious failure

of mechanical parts and thus accidents. The industry nowdays invests a lot of money

in solving this issue. One way to overcome it is to change the design. Another,

economically more suitable would be to minimize the amplitude of vibrations. At

this point extremum seeking controllers seem to be good starting point in finding

optimal operating conditions.
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1.5 Simple extremum seeking algorithm Introduction

1.5 Simple extremum seeking algorithm

Extremum seeking controllers perform optimization by monitoring the system perfor-

mance, and tuning the parameters on-line to improve the performance. The controller

starts from some initial parameter values, perturbs iteratively the same, observes re-

sponse and tune the parameters. This procedure runs as long as optimal value of

response map is found. Measurements are collected after the transients are settled.

Otherwise, finding the minimum at minimal time should be done by appropriate

choice or design of algorithms. It guarantees closed-loop stability if designed appro-

priately. The choice of certain design parameters to be adjusted significantly de-

termine the system’s behavior and convergence speed. Classical perturbation-based

SISO extremum seeking algorithm for general nonlinear dynamical systems is given

on Fig 1.4.

Figure 1.4: Higher order extremum seeking algorithm

Here x ∈ Rn is the state, θ ∈ R is the control input and h : Rn → R is the objective

function. The output is fed to the outer-loop extremum seeking controller. Dither

signal a sin(ωt) is correlated to the output of the integrator as an excitation signal to

assist the gradient estimation. Tuned parameters a and ω are a suitably small chosen
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1.5 Simple extremum seeking algorithm Introduction

amplitude and frequency. Main task of the controller is to drive the state to a value

such that the cost function h(x) is extremized. The optimization problem becomes

one of regulating the norm of the gradient to small neighborhood of zero which is the

main objective in designing the ES controller.

The job of high pass filter with cut-off frequencies ωh is to isolate the variations of

the optimized variable from its averaged value. Signal η represents the the state

of high pass filter and is modulated with the same excitation signal. The resulting

signal is filtered using the low pass filter with cut-off frequencies ωl to get the gradient

estimate. The last step is to drive this gradient towards zero what is finally done with

integral controller.

Figure 1.5: Static curve

Roughly speaking starting assumption that should be made in analysis of extremum

seeking design is that a static curve possesses absolute minimum or maximum (see

Figure 1.5). For the sake of simplicity it is assumed that the function is locally

convex or concave. Hence, this extremum is unique. Second, there is no information
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1.5 Simple extremum seeking algorithm Introduction

about dynamic or static model of a plant, but is assumed the measurements of a

cost function are available. Algorithm is designed in a way that would guarantee the

convergence of a controller parameter θ which would assure driving the system to the

optimal set-point.

Numerical example. Consider optimizing the behavior of plant dynamics defined

with ẋ = −x + (u + 1)2, y = −x2 + 2, for the case of scalar controller parameter.

Here u and y are decision variable and output, respectively. The initial conditions

and tuning parameters are selected as follows: x0 = −2, k = 0.1, ω = 1, a = 0.25. For

filters let ωl = 0.5 and ωh = 1. Parameters are tuned in a way that would ensure

stability. Quick calculation shows that the optimal operating point is reached at

y∗ = −2. We also have that optimal value of a state is x∗ = 0 and optimal value for

chosen input θ∗ = −1. Simulation results for this example are shown at Figure 1.6
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Figure 1.6: Performance of extremum seeking controller

Algorithm forces the output to converge to its optimal value in finite time. However,
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1.5 Simple extremum seeking algorithm Introduction

parameter selection is the main cause of relatively slow convergence. For practical

purposes it is very important that extremum seeking finds the optimal value of cost

function in minimal time. One more important thing that can be noticed from Figure

1.6 is that the output will most of the time oscillate in a vicinity of optimal value.

Although it depends on a parameter selection, the accuracy of the algorithm still

remains an open question.

As it is emphasized in [74, 7] the presence of dynamics in system may cause measure-

ment errors as the process performance may not settle at a new steady-state value

before the new measurement is taken. To avoid the errors due to transients and noise

we have to wait long enough and this can cause the slow finding of an extremum and

thus slow convergence. Fast systems can handle somehow with this situation, but it

is essentially bad and undesirable in case of chemical systems that typically possess

slow parameters itself. It practically leads to interactions in control systems which

can complicate the whole situation seriously. The precision of measurements may

also be interrupted with a noise.

Actually, in practice we can deal with two main types of systems: static and dy-

namic. This is associated with the convergence time and stability. Astrom and

Witenmark gave in [7] quite nice analysis for static mappings. It is emphasized the

plant with dynamics can lead to certain interactions and destabilize the system. One

way to overcome the problem is to use singular and regular perturbation technique

to transform the problem into a static. However, this is the main reason for slower

convergence. The main limitation of these methods is that they require the dynamics

of the adaptation to be two orders of magnitude slower than the system dynamics.
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1.6 Outline of the thesis

The thesis pursues theoretical development of model-free real-time optimization. This

approach uses black box plant dynamics and cost function. It is addressed using an

on-line optimization technique in adaptive control theory known simply as extremum

seeking. Here it is given a brief overview of the thesis, chapter by chapter.

Chapter 2: Background

In this chapter we review various topics which are prerequisites to the results consider

and developed in latter chapters. we begin by giving formal definitions and some

examples needed for understanding stability phenomena and systems features which

are in close connection with stability.

The remainder of the chapter gives some basic Lyapunov theorems and its extensions

used in Chapter 3 and Chapter 4. Some extensions of these theorems are also consid-

ered. This is a natural consequence, since we discuss the efficiency and applicability

of the algorithms in terms of stability.

Since the goal is to approximate behavior of functions that are not known a priori

meaning of averaging technique is briefly described at the end of the chapter. Without

understanding this method we cannot completely understand how extremum seeking

really works. Although this is an old technique used to find approximate solutions

of general nonlinear dynamical systems it still attracts a lot of attention among re-

searchers. Tools that are widely used in averaging process can be found in a number

of publications.
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Chapter 3: Extremum seeking controllers

This chapter introduces extremum seeking algorithm and its numerous designs. Per-

formance and drawbacks of proposed controllers are discussed. Controllers that are

still in the focus of attention are perturbation based controllers. To overcome slow

convergence, to improve the accuracy or to enlarge the basin of attraction some au-

thors suggested modification of an algorithm that for the first time appeared in PhD

thesis of Leblanc, back in 1922.

Thirty years after, in 1950’s, solutions using sliding mode control are introduced.

The main reason for this were probably uncertainties. This techniques showed very

good results when the knowledge of the plant model dynamics and parameters is not

satisfactory, or in the presence of unknown disturbances. There is a belief that the

performance of any algorithm can be significantly improved if we can use as much

information about the plant as we can. Consequently, part of a chapter considers

recent results that join together real time optimization and model predictive control

when constraints exist. Opposite to the classical ”black-box” approach it is assumed

that the plant model is known in advance. Chapter also analyses extremum seeking

designs constructed using nonlinear programming tools.

Chapter 4: Multidimensional parameter ESC

Chapter 4 develops extremum seeking controller with p-dimensional parameter (where

p is a finite number). Stability is established on non-local basis. It is shown that ap-

propriate tuning of parameters can guarantee not only local stability. It is assumed

that the output function has unique maximum. Classic singular perturbation method

is used to separate the time scales and prevent the coupling of plant and controller

dynamics. Semi-global practical stability is proved for multi-input single-output gen-
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eral nonlinear systems. Discussion on the performance is conducted using numerical

experiments.

Chapter 5: Conclusions and future work

Chapter 5 brings together up to date contributions and limitations of the algorithms.

Some open questions are discussed and some directions for future work in this area

are proposed.
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Chapter 2

Background

2.1 Lyapunov stability concepts

Along with existence and uniqueness of solution, probably the most important issue

to be considered is its stability with respect to variations to initial conditions and

system parameters. A solution corresponding to the prescribed initial conditions and

parameters settings is stable if small changes in two latter cause only small changes in

the solution in the whole future, or even if the solutions corresponding to varied condi-

tions tend to the desired one as time tends to infinity. Consider the non-autonomous

system [?]:

ẋ = f(t, x) (2.1)

where f : R+ ×D → Rn, f
′
x : R+ ×D → Rn and D ⊂ Rn is an open and connected

subset. Let ψ : R+ → D be the solution of (2.1) and denote its initial value at an

arbitrary t0 ≤ 0 by ψ0 = ψ(t0).

Definition 2.1 The solution ψ : R+ → D of (2.1) is said to be stable in the Lyapunov

sense (see Fig 2.1) if for every ε > 0 and t0 ≥ 0 there is a δ(ε, t0) > 0 such that
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for all |x0 − ψ0| < δ(ε, t0) the solution ϕ(t, t0, x
0) is defined on [t0,∞), and for all

t > t0

|ϕ(t, t0, x0)− ψ(t)| < ε (2.2)

Figure 2.1: Stable solution in Lyapunov sense

Definition 2.2 We say that the solution ψ is uniformly stable if it is stable in the

Lyapunov sense, and δ in the previous definition can be chosen independent of t0.

Definition 2.3 The solution ψ : R+ → D of (2.1) is attractive (see Fig. 2.2) if for

every t0 ≥ 0 there is an η(t0) > 0 such that |x0 − ψ(t0)| < η(t0) implies

lim
t→∞

|ϕ(t, t0, x0)− ψ(t)| = 0, (2.3)

that is, to every ε > 0 and x0 ∈ B(ψ(t0), η(t0)) there belongs a T (t0, ε, x0) > 0 such

that for all t ≥ t0 + T (t0, ε, x0) the following holds |ϕ(t, t0, x0)− ψ(t)| < ε. B(a, δ) is

by definition the ball with center at a and radius δ, that is:

B(a, δ) = {x ∈ Rn : |x− a| < δ} (2.4)
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Figure 2.2: Stable solution in Lyapunov sense

Definition 2.4 Solution of (2.1) is said to be asymptotically stable if it is stable in

the Lyapunov sense and attractive.

In the sequel, we will merely be interested in the stability of an equilibrium. To

further simplify notation we use an appropriate translation of coordinates to shift an

arbitrary equilibrium point to the origin.

Definition 2.5 A point x∗ ∈ Rn is stable at t0 for the system (2.1) if and only if

for every ε ∈ R+ there is δ ∈ R+, δ = δ(ε, t0, x
∗) such that ||x0 − x∗|| < δ implies

||x(t, t0, x0)− x∗|| < ε for every t ≥ t0. (See Fig 2.1)

Definition 2.6 A point x∗ ∈ Rn is globally stable if and only if there exists a δ,

denoted δM(ε, t0, x
∗) obeying Definition 2.1 that tends to +∞ as ε →∞.

Comment 2.1 Definition 2.1 broadens the concept of continuity of a function at

a point to motions. The Lyapunov stability concept was originally concerned with

stability of a motion and of the origin x = 0 which was later broadened to stability

of a set. The closeness in the Lyapunov sense means that the distance is less than ε

for any given ε ∈ R+. The Lyapunov closeness is demanded for all the initial states
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x0 = x(t0) whose distance from x = 0 is less than some δ = δ(t0, ε) ∈ Rn.

Comment 2.2 Definition 2.5 can be satisfied by arbitrarily small δ ∈ R+ even if the

corresponding ε ∈ R+ has been chosen very large. It requires only the existence of

δ ∈ R+ obeying its condition. This is a conceptual drawback of the Lyapunov stability

concept from the point of view of engineering technical applications and needs.

Example 2.1 Let n = 2, x = [x1 x2]
T , α ∈ R+ and the system (2.1) take the

following specific form:

ẋ = (−α + |x1|+ |x2|)x (2.5)

The phase portrait is given in Fig. 2.3. The state x = 0 is stable. However, if α is

small (e.g. α = 10−3) or very small (e.g. α = 10−10) then the dynamic behaviour

of the system is unsatisfactory in the engineering sense even for small initial states

(|x10|+ |x20| > 10−3) or (|x10|+ |x20| > 10−10) respectively.

Comment 2.3 Example 2.1. shows that existence of positive δ obeying Definition

2.1 is not adequate engineering information about the qualitative dynamic properties

of the system. Useful information is that about the largest neighbourhood Ds(ε, t0)

of x = 0 such that |x(t, t0, x0)| < ε is satisfied for all t ∈ R0 iff x0 ∈ Ds(ε, t0) for any

ε ∈ R+. Moreover, we need information about the largest neighbourhood Ds(t0) of

x = 0 containing all Ds(ε, t0), that is that Ds(t0) =
⋃

[Ds(ε, t0) : ε ∈ R+].

For the sake of simplicity the system (2.1) for many applications may be reduced to

the autonomous one:

ẋ = f(x), f : Rn → Rn (2.6)
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Figure 2.3: The state portrait of the system of Example 2.1

Motions of time-invariant systems, as well as their properties, do not depend on the

initial moment t0. Thus, we may set t0 = 0. The motion, which passes through x0 at

t = 0, is denoted by x(·, x0). This reduces Definition 2.5 to Definition 2.6.

Definition 2.7 The origin of the system (2.6) is stable (See Fig 2.4) iff for every

ε ∈ R+ there is δ ∈ R+, δ = δ(ε), such that ||x0|| < δ implies ||x(t, x0)|| < ε for all

t ∈ R+.

Figure 2.4: Stable origin
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Despite the fact Lyapunov was not the first to introduce the notion of attraction, he

was the first to state general qualitative conditions for convergence of system motions

to zero steady-state. This eventually led to definitions of attraction and asymptotic

stability of the origin.

Definition 2.8 The origin of (2.6) is attractive (See Fig 2.5) if and only if there is

∆ > 0 and for every ξ > 0 there is τ ∈ Rn, τ = τ(x0, ξ), such that ||x0|| < ∆ implies

limt→∞ ||x(t, x0)|| = 0. Origin is globally attractive iff previous statement holds for

∆ = ∞.

Figure 2.5: Attractive origin

The definition of attraction requires only the existence of ∆ > 0 obeying its condi-

tion irrespective of whether ∆ is large or small even very small. In the case of the

system (2.6) in the form given in Example 2.1 the origin is attractive. However, this

property becomes useless from an engineering point of view as soon as α is too small.

Furthermore, for engineering purposes it is important to derive or at least to estimate

well the largest neighbourhood Da of x = 0 such that limt→∞ ||x(t, x0)|| = 0 holds if

and only if x0 ∈ Da.

Definition 2.9 The origin of (2.6) is asymptotically stable if and only if it is both

stable and attractive.
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The notion of asymptotic stability has the same drawback as stability and attraction.

The steady-state of the system considered in Example 2.1 is asymptotically stable.

Unfortunately its asymptotic stability can be useless for real world problems in the

case of small parameter as it is already mentioned. Asymptotic stability of origin is

meaningful for engineering purposes provided only that D is sufficiently large from

the engineering point of view. Engineering requests for a higher quality of the system

dynamic behavior demand sufficient rate of convergence. For this purpose it is very

important the concept of exponential stability.

Definition 2.10 The state x = 0 of the system (2.6) is exponentially stable (see Fig

2.6) if and only if there are ∆ > 0 and positive numbers β ≥ 1 and γ, such that

||x0|| < ∆ implies ||x(t, x0)|| ≤ β||x0|| exp(−γt) for ∀t ∈ R+.

Figure 2.6: Exponentially stable origin

Comment 2.4 For engineering applications the existence of ∆, β and γ does not

give sufficient information. In addition to that we need the knowledge of the smallest

possible value of γ, the largest possible value of γ and of the largest neighbourhood

De of the origin such that ||x(t, x0)|| ≤ β||x0|| exp(−γt) for ∀t ∈ R+ for all t ∈ R+

holds iff x0 ∈ De.There is certainly a trade of among β, γ and De in general which is

illustrated as follows. For the system of Example 2.1 the set De depends on α and γ

via α1 De(α1) = {x : |x1|+ |x2| ≤ α1}, where α1 = α−γ should be positive. For given
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α and γ, α > γ > 0, the set De(α1) is the largest neighbourhood of the origin such

that x0 ∈ De(α1) implies ||x(t, x0)|| ≤ β||x0|| exp(−γt) for ∀t ∈ R+, where β =
√

2.

2.2 Comparison functions and Laypunov direct method

Definition 2.11 A function α : [0, a) → R+ is a comparison function of the class K
if and only if:

1. α is continuous on [0, a): α(r) ∈ C([0, a)),

2. α vanishes at the origin: α(0) = 0

3. α is strictly monotonously increasing on [0, a): 0 ≤ r1 < r2 < α imply 0 ≤
α(r1) < α(r2).

It is said to belong to class K∞ if and only if α = ∞.

Definition 2.12 A function β : [0, a)× [0,∞) → R+ is a comparison function of the

class KL if and only if:

1. β is continuous on [0, a),

2. for each fixed s the mapping β(r, s) belongs to class K with respect to r,

3. for each fixed r the mapping β(r, s) is decreasing with respect to s and β(r, s) →
0 as s →∞.

Lyapunov established very powerful method to treat stability in his famous paper

published more that 100 years ago. Proof of this method can be found in any literature

that deals with stability problems. The method has its origin in Mechanics, starting

from Lagrange’s theorem in XV III century that is completely proved by Dirichlet.
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According to this theorem if a potential energy of a conservative mechanical system

has a strict minimum at a point, then this point is stable.

Consider the function V : R+×U → R, where U ⊂ Rn is open and connected, 0 ∈ U ,

and assume that V ∈ C1. It is said that V is positive semi-definite if V (t, x) ≥ 0 for all

(t, x) ∈ R+×U ; we say the V is positive definite if there is a function W ∈ C0(U,R),

such that for all (t, x) ∈ R+ × U , x 6= 0:

V (t, x) ≥ W (x) > 0, (2.7)

and V (t, 0) = W (0) = 0; V is indefinite if for every small neighborhood B of the

origin it assumes positive as well as negative values in R+ ×B.

Definition 2.13 Let V ∈ C1(R+ × U) where U ⊂ D ⊂ Rn is open and connected.

The derivative of V with respect to the system (2.1) at (t0, x0) ∈ R+ × U is

V̇ =
d

dt
V (t, x(t, t0, x0))|t=t0

= V
′
t (t0, x0) +

n∑

k=1

V
′
xk

(t0, x0)fk(t0, x0)

= V
′
t (t0, x0) + 〈gradV (t0, x0), f(t0, x0)〉 (2.8)

Theorem 2.1 If there exists a function V ∈ C1(R+ × U,R) where 0 ∈ U ⊂ D, and

a function α ∈ K such that for (t, x) ∈ R+ × U : V (t, x) ≥ α(|x|), V (t, 0) = 0 and V̇

is negative semi-definite, then the origin is stable.

Comment 2.5 These conditions imply that V is positive definite. However, it is

proved in (Rouche-Mawhin) that if V is positive definite that such an α exists. It is

also proved that besides the conditions of this theorem there exists an α2 ∈ K such

that V (t, x) ≤ α2(|x|), then the origin is uniformly stable.
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Theorem 2.2 Assume that there exist a function V ∈ C1(R+ × U,R) where 0 ∈
U ⊂ D, and a functions α1, α2, α3 ∈ K such that α1(|x|) ≤ V (t, x) ≤ α2(|x|), and

V̇ (t, x) ≤ −α3(|x|). Then the origin is uniformly asymptotically stable.

Equivalent definition using also comparison comparison functions can be given via

following lemma:

Lemma 2.1 Origin of the system (2.1) is uniformly asymptotically stable if and only

if there exist a class KL function β and a positive constant c independent of t0, such

that

||x(t)|| ≤ β(||x(t0)||, t− t0), ∀t ≥ t0 ≥ 0, ∀||x(t0)|| ≤ c (2.9)

Definition 2.13 Semi-global practical asymptotic (SPA) stability. Consider the sys-

tem:

ẋ = f(t, x, ε) (2.10)

where ε ∈ Rl
+ is a parameter vector. System (2.12) is said to be semiglobally prac-

tically asymptotically (SPA) stable, uniformly in (ε1, . . . , εj), j ∈ {1, . . . , l}, if there

exists β ∈ KL such that the following holds. For each pair of strictly positive real

numbers (∆, ν), there exist real numbers ε∗k = ε∗k(∆, ν) > 0, k = 1, 2, . . . , j and for

each fixed εk ∈ (0, ε∗k), k = 1, 2, . . . , j there exist εi = εi(ε1, ε2, . . . , εi−1, ∆, ν, with

i = j + 1, j + 2, . . . , l, such that the solutions of the system with the so constructed

parameters ε = (ε1, . . . , εl) satisfy:

|x(t)| ≤ β(|x(t0)|, (ε1 · ε1 · · · εl)(t− t0)) + ν (2.11)
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2.3 Asymptotic approximations and averaging

Nonlinear nature of systems typically prohibits us finding the closed-form, analytical

solution. In these cases efforts are usually directed towards finding the approximate

solutions or simplified systems that still with satisfactory accuracy should represent

real physical nature of the problem. It happens very often that one has to construct

approximate solutions of polynomial, transcendental or differential equations. Our

objective is to construct approximations to the solutions of the differential equations.

It seems that from early mathematical developments it was quite natural to use

asymptotic expansions as tools for approximating the original systems.

Averaging is mostly used as standard mathematical tool for finding approximate

solution of nonlinear differential equations which have one of several standard forms.

Using averaging we are able to get the model enough simple and accurate that can

be useful in making decisions /conclusions about stability of equilibrium for general

system. There are several theorems concerning the relation between the averaged

and the general system (for details see [41]). It is proved that the approximate

solution follows the true one for the time of order 1/ε if the initial conditions x(0)

and xapp(0) were close to order ε, that is if |x(0) − xapp(0)| = O(ε). Also averaging

enables us to derive conclusions about qualitative local behavior of the dynamics of

approximated system which corresponds to the same qualitative and local behavior

of the general system. It is proved that stable equilibrium point of the approximated

system correspond to a stable limit cycle of original system. In cases when the

system cannot provide enough information about the solution of original system and

its qualitative properties the next step is usually to continue analysis using second

order averaging and so on.
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Chapter 3

Extremum seeking controllers

Extremum seeking control dates back at least to 1922. Due to the implementation

problems, these controllers were almost forgotten for the next thirty years. However,

in early 50’s, even without rigorous stability proofs, and despite the high cost, these

controllers were implemented and showed very good performance. An interest for

this area arose again in the 1950s and 1960s, and recent years due to the studies

in [50], where stability results were established employing averaging and singular

perturbation techniques for general unknown nonlinear systems. These results were

later successfully applied, i.e. to the model of an axial-flow compressor, drag reduction

flight formations, efficient fuel-burning in IC engines, etc. Essentially, ES is adaptive

control technique. Details on adaptive control can be found in [49], [4], [51] and [7].

The aim of this chapter is to give an insight into different optimization strategies

using model-free methods. This approach uses only input and output of the system

to find optimal working conditions. They can be classified into two main categories:

deterministic and stochastic. Their properties and limitations are discussed in this

chapter.
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3.1 Deterministic ESC

The main point in extremum-seeking is to find the way to estimate the gradient and

keep it close to zero (the closer the better). For this purpose several techniques have

been proposed.

There are different ways to extract the information about gradient of any function.

One way is to directly compute the gradient and get its accurate value. This, however

can be done only in case when function is completely known analytically. In situations

where analytical solution is not available alternative method is required to extract

any information about gradient. At least what the one can expect in these situations

is that the output measurements are available.

The most common method used to estimate gradient is so called perturbation tech-

nique. System is perturbed using an external excitation signal to estimate the gradient

(see, for example [7]). Also, the excitation can be generated internally by sliding mode

control as in Yaodong et al. Guay and Zhang in [36] proposed an adapted model of

the system that is used for analytical evaluation of the gradient under the condition

that cost function is not available for measurement.

3.1.1 Sinusoidally perturbed ES

To estimate the gradient both Leblanc and Krstic used perturbation method. It is

the so called, ”disturbe and observe” method. The idea that lies behind this method

is to perturb the input by adding a periodic signal, observe its effect on the output

and make a correlation between these two signals. The perturbation signal is added

with intention to increase excitation of the process and accuracy of the estimates. It

is necessary to have an appropriate excitation to detect any change. The external
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excitation signal is intentionally injected as perturbation to the input signal. In this

way, in 2000 Krstic and Wang [7] proved exponential convergence of the algorithm

using classical averaging technique.

Perturbation technique is used in the extremum-seeking quite a lot, and introduces

periodic signal in the loop to ”extract” the gradient from the resulting cost function

y(t). Output signal (as in Fig 1.2 and 3.1) is then taken as a substitute for a true

gradient. As perturbation signal sinusoidal wave is used. This signal can be easily

generated. The technique also can be used when the estimation of a gradients is

done with respect to two or more variables. Perturbation-based extremum-seeking

gain popularity mainly due to the work of Krstic and Wang where it is proved that

stability of the algorithm is guaranteed only if the parameters are appropriately tuned.

A periodical excitation signal is added to the input, and its effect observed at the

output.

Typically, perturbation-correlation method involves perturbation, correlation and ad-

justment. We may consider an arbitrary system with appropriate inputs, and a means

of continuously measuring a cost function. The inputs are changed with intention to

affect the output. The question that arises here is how we can change/adjust these

inputs in order to get the optimal cost function. We may say the simplest procedures

would be to adjust the input and see effect on cost function. However, we should keep

in mind the real-world systems involve a number of plant parameters to be adjusted.

These parameters may vary with time. Hence, the feasibility of this method would

depend on the stability of the overall system. The main task of the perturbation is to

give variations to the input. Assuming the control parameter starts with some initial

value θ0 its perturbed term can be written as θ0 + a sin(ωt). This will eventually

result in a change of the cost function, that is y(t) + ∆y (see Fig 3.1).

The task of correlation is to estimate the change of the cost function with respect to
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the change of the input. Mathematically speaking, correlating the perturbation with

the output leads to conditions needed to be satisfied for gradient to converge to zero

value. Correlation also gives the information at which side of the nominal value of de-

cision variable lies its optimal value. Observing the output and its estimated gradient

input can be adjusted so that the cost function is optimized. In this way algorithm

actually controls the sign. As it is already implied, control signal is perturbed with

sinusoidal probing signal.

Denote the cost function as y = h(x(θ)). Even we do not know the exact mathematical

representation of this function, by locally perturbing the input θ, we need to estimate

its gradient. Goal is to determine the procedure which would adjust the parameter θ

so that it converges towards its optimal value θ∗. That would consequently lead the

gradient to a small vicinity of zero.

Figure 3.1: The effect of sinusoidal perturbation on cost function

Perturbation technique allocates a separate test signal to each decision variable. On-

line estimation of the correlations between the sinusoidal perturbations and cost func-

tion are used to approximate components of gradient of the output with respect to

the decision variables. The gradient thus estimated is then used as a search direction
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in the decision variable space to improve the value of cost function. Figure (3.1)

shows how the perturbation method actually works. Note that this is basic steepest

descent method which has been described in introductory part.

To derive the exact mathematical expression let the parameter θ be varied sinusoidally

around a nominal value θ0. By observing the variations of the output and phase

difference between the input and output, the direction in which input has to be

adjusted in order to minimize the output can be obtained.

Recall the algorithm from Fig 1.4. The optimization algorithm that would eventually

minimize the cost function is given by equation:

˙̂
θ = kh(x(θ)) sin(ωt) (3.1)

Averaged value of some cost function y(t) over a period of time T is given by

1
T

∫ T

0
y(t)dt. If we assume that the algorithm will converge after large enough, but

finite time, the averaged parameter will finally reach a small vicinity of its optimal

value, that is θ̂av → θ∗. Then taking excitation amplitude to be small enough it

follows that the averaged system can be described with the following expression:

θ̂av = θ̂∗ ∼= θ̂ = θ∗ ± ak

∫ T

0

y(τ) sin(ωτ)dτ (3.2)

Observing the last equation it is obvious that the second term at the right hand

side has to be equal zero for the decision variable to converge towards its optimum.

This term actually brings into connection the input and output of the system and

represents mentioned correlation:

corr{y(t), a sin(ωt)} := lim
T→∞

1

T

∫ T

0

y(τ) sin(ωτ)dτ = 0 (3.3)
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It is not hard to see that the correlation consists necessary information about the

gradient. Moreover, if we apply Taylor series on the output function and insert into

the last expression it can be very easily seen that the condition (3.3) will be satisfied

only when the gradient is zero. Hence, the correlation is equivalent to the gradient

of the output. From the previous it follows that parameter θ̂ is updated based on

information about the gradient. Therefore, the update law is as follows:

dθ̂

dt
≈ k

∂h

∂θ
(3.4)

or

θ̂new ≈ θ̂previous + k
∂h

∂θ
(3.5)

The whole algorithm, thus showed to work using the principle of steepest descent

method as was described in more details in introductory chapter. Clearly, controller

gain k has the role of the step size.

3.1.2 Analysis of sinusoidally perturbed ES algorithm with

and without dynamics

Case1: Plant without dynamics

Analysis and optimization of static maps by using ESC is quite a simple task. Sta-

bility is guaranteed regardless the choice of parameters and performance is quite

satisfactory. Fig.3.2 shows the structure of the basic SISO extremum seeking control

scheme for minimization in case of static mapping.

46



3.1 Deterministic ESC Extremum seeking controllers

Figure 3.2: Basic extremum seeking scheme for static mapping

Using standard Taylor expansion and the fact fact that f is of class C2 at least locally

around θ∗ and has minimum at that point, it can be written:

f(θ) = f(θ∗) +
1

2
f ′′(θ∗)(θ − θ∗)2 + O((θ − θ∗)3) (3.6)

Hence, the gradient can be approximated locally at θ = θ∗ by:

∂f(θ)

∂θ
≈ f ′′|θ∗(θ − θ∗) (3.7)

Denoting by θ̃ = θ∗− θ̂ the estimation error and using relations from Fig 3.2 it follows

that:

y ≈ f ∗ +
f
′′

2
(θ̃ − a sin(ωt))2 (3.8)

High-pass filter is applied to the output to eliminate the presence of DC term, that

is f ∗. Such signal is then demodulation with dither signal. Resulting signal consists
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high frequency terms which will be almost completely reduced after passing through

the integrator. Information about the gradient is obtained after passing through low-

pass filter integrator with cut off at 0 Hz frequency. Thus the final form of equation

from which we can give the desired information about gradient is given as follows:

˙̃θ ≈ −akf ′′(θ∗)
2

θ̃ (3.9)

Depending on the sign of f ′′(θ∗), the parameters a and k can be always chosen so

that (local) asymptotical stability is guaranteed (i.e. the condition akf ′′(θ∗) > 0 is

satisfied). Using mathematical transformations and operations described in details in

[5] we arrive to the final expression:

˙̂
θ ≈ k

1

2
a
∂f

∂θ
|θ=θ̂ (3.10)

The estimated gradient can be used to update the current value of the parameter

θ. Such updating law guarantees the (local) convergence of the parameter θ̂ to the

extremum point θ∗.

Case2: Plant with dynamics

Analysis of dynamical plants is far more complicated. Plant dynamics interacts with

algorithm dynamics which may lead to instabilities. This algorithm appeared in two

forms in literature: first-order (FO) and higher-order (HO) ESC. This terms are

for the first time introduced in [71] where stability results are derived for algorithm

consisting only of integrator without filters. This algorithm is named FO ESC and is a

simpler version of what is called HO ESC (see Figure 1.4). For the sake of generality,

here we will briefly analyse the HO ES controllers. Complete stability analysis for
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this algorithm can be found in [50]. It is adaptive closed-loop type of control whose

nonlinear model and control law may be described as follows:

ẋ = f(x, u)

y = h(x)

u = α(x, θ) (3.11)

Cut-off frequencies of the high pass and low pass filters need to be lower than the

frequency ω of the perturbation signal. In addition, the adaptation gain k has to

be small. Thus, the overall feedback system has a fast, a medium and a slow time

scale corresponding to the plant dynamics, the periodic perturbation and the filters

in the extremum seeking scheme, respectively. In case of FR ESC only slow and fast

time-scales are identified. If the plant behavior varies due to uncertainties, the time

scales of the perturbation signal and and the filters have to be slower than the slowest

possible plant dynamics.

Krstic showed [50] that averaged reduced system is obtained using the standard pro-

cedure in the form:

d

dτ




θ̃a
r

ξa
r

η̃a
r


 = δ




k
′
ξa
r

−ω
′
Lξa

r + a
ω
′
L

2π

∫ 2π

0
(ν(θ̃a

r + a sin σ)a sin σdσ

−ω
′
H η̃a

r +
ω
′
H

2π

∫ 2π

0
ν(θ̃a

r + a sin σ)dσ


 (3.12)

From averaged system equilibrium point is computed transforming dynamic equations

into static problem - all three equations at the right hand side should be equal zero.
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Function ν(θ̃) can be approximated around the equilibrium using Taylor series:

ν(θ̃) =
N∑

i=0

1

i!
νi(0)(̃θ)i + O(aN) (3.13)

Consider the following expansion:

θ̃i = (θ̃a + a sin(ωt))i =
i∑

k=1

Ci
kθ̃

ai−k

ak sink(ωt) (3.14)

where Ci
k = i!

k!(i−k)!
. Then the integral from the second row in equation (3.12) using

the simplified notation can be rewritten as

∫ 2π

0

ν(θ̃) sin(ωt)dt + O(aN)

=
N∑

i=0

1

i!
νi(0)

i∑

k=1

Ci
kθ̃

ai−k

ak

∫ 2π
ω

0

sink+1(ωt)dt =

=
N∑

i=0

2j<(i−1)∑

k=1

C i
2j+1

i!
νi(0)θ̃ai−2j−1

a2j+1

∫ 2π
ω

0

sin2j+2(ωt)dt

= a

N∑
i=0

2j<(i−1)∑
j=1

(
−1

4
)
Ci

2j+1C
2j+2
j+1

i!
νi(0)θ̃ai−2j−1

a2j = 0 (3.15)

The expansion of fourth-order is given as:

ν
′
+ ν

′′
+ ν

′′′
(
1

2
θ̃a2

+
1

8
a2) + ν

′′′′
(
1

6
θ̃a3

+
1

8
a2θ̃a) = 0 (3.16)

Moreover, the third-order expansion of θ̃a
r is:

θ̃a
r = b0 + b1a + b2a

2 + b3a
3 + 0(a4) (3.17)
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Assuming that output at some point achieves maximum the following conditions are

derived:

ν(0) = 0 (3.18)

ν
′
(0) = 0 (3.19)

ν
′′
(0) < 0 (3.20)

Equating the coefficients of the powers of a gives:

b0 = 0, b1 = 0, b3 = 0 (3.21)

b2 = − ν
′′′

8ν ′′
(3.22)

In similar fashion η̃a
r is calculated. The equilibrium point of the averaged system is

found to be a function of the amplitude of sinusoidal perturbation signal, that is:

θ̃ae
r =

ν
′′′
(0)

8ν ′′(0)
a2 + O(a3) (3.23)

η̃ae
r =

ν
′′
(0)

4
a2 + O(a3) (3.24)

ξae
r = 0 (3.25)

Evaluation of Jacobian of system (3.12) gives the final condition for stability of aver-

aged system:

∫ 2π

0

ν
′
(θ̃ae

r + a sin σ) sin σdσ < 0 (3.26)

Further, stability of boundary layer can be proved introducing additional assumptions.

By establishing stability results of boundary layer along with stability of reduced

system it is proved that the closed-loop system is locally exponentially stable.
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Comment 3.4 Results for exponential stability for singularly perturbed systems in

Krstic’s paper use celebrated Tihonov theorem. Some discussions and generalizations

of Tihonov theorem can be found in a number of works. From a practical standpoint,

the problem with Tihonov’s theorem is that stability analysis of nonlinear system is

typically difficult. First, there may be more than one root of (3.11) and the relevant

one has to be identified. Second, the local stability properties of the root must be

determined. Finally, the domain of influence of the root must be established, and

usually is the most difficult step. Typically the best that can be done is local analysis

based on linearization of a system. Hence, it is necessary for the stability discussed

in Tihonov’s theorem that Jacobian matrix is negative around the equilibrium. This

proves local exponential stability.

3.1.3 Algorithm performance. Some extensions and modifi-

cations

Although it is very popular, perturbation technique has some limitations. The main

is the slow convergence due to the fact that excitation frequency ω for ES is typically

chosen to be small value. This value can be increased to improve convergence speed,

but may cause the instabilities.

The main requirement for this frequency to be small enough is in order to transform

dynamic into a ”static” system by using multiple time-scale separation. Generally

speaking, this is the separation between the system dynamics, the perturbation fre-

quency and the adaptation rate and is needed in order to avoid the undesirable

interactions between adaptation rate and the plant[50].

It is widely known that all parameters play very important role when considering the

performance of ESC. Excitation amplitude a and controller gain k are another two
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significant parameters. They affect not only the convergence speed but also domain

of attraction and algorithm accuracy. Sometimes we are able to tune this parameters

in a way that would provide better convergence speed, but this, for example, may also

result in a reduction of a basin of attraction. The trade-off between convergence speed,

controller accuracy and domain of attraction is always present. Hence, probably the

main challenge in this area is to modify the algorithm in a way which would guaranty

fast convergence, large enough domain and minimal error. Although considerable

work has been done in resolving this issue it still remains the open question.

Dependence of convergence speed on parameters of excitation signal is investigated in

[72, 15, 50] for a nonlinear static map. Results in [50] implies the that averaged system

converges to a neighborhood of the optimum, and that this size is being determined

by the amplitude of the excitation signal.

It is also shown that not only the amplitude and frequency, but also the shape of the

dither signal has an effect on convergence speed [72]. Same publication gives also an

insight how the error in the optimal solution is caused with a change in the dither

and controller parameters.

The problem of slow convergence becomes very acute in chemical systems whose

parameter might vary very slowly. Slow convergence might be acceptable only in very

fast systems. Alternatively, some other methods for gradient estimation is proposed

by Guay in his numerous works. In one of them, opposite to standard assumptions,

it is supposed that the cost function is not directly measurable for feedback. Explicit

information about this function is given and inverse optimal technique employed.

Gradient is estimated based on a model whose parameters are identified using the

dither frequency in the bandwidth of the system.

The error of the algorithm showed to be proportional to the amplitude of the dither. In

[72] it is shown, for example, that for fixed other parameters larger values of frequency
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imply better convergence speed. Finally, in [15] the size of the error dependence on

frequency is determined. Calculations proved for general nonlinear system that this

error is proportional to the square of the dither frequency. This is true even when the

amplitude is set to zero. When the results are applied on Wiener or Hammerstein

system the neighborhood immediately become zero.

Nevertheless, some processes showed to have better performance in case when system

operates in small vicinity of optimum than at exact optimal value. This case is

investigated in [75]. The algorithm is used to minimize the friction coefficient. After

designing controller based on methods of feedback linearization and H∞ technique

the coefficient is kept at the value slightly less than the maximum allowed. Stability

analysis in this research uses Popov criterion. Results from experiment clearly prove

this controller gives similar or even better performance with much smoother operation

than those which operate at exact minimum.

To improve the overall performance of existing ES scheme Krstic in [46] added a

compensator to the integrator. Simulations showed it to be more efficient than stan-

dard ESC. Compensator improves relative degree and phase response of ES loop.

Compensator is designed as PD-type in order to preserve stability, that is to sat-

isfy the conditions for Strict Positive Realness. Algorithm showed faster adaptation

(tracking) obtained allowing higher adaptation gain k. However for some applications

introduction of compensator may be harmful. Faster convergence is also the topic of

studies in [68] where modified algorithm is used.

To handle with the problems when the dynamics of the adaptation is slower than the

system dynamics, simple and effective approach in estimating the gradient is described

in [70]. Multiple identical units with non-identical inputs are used to compute the

gradient via finite difference method. In this way the perturbation that is along

the unit dimension allows faster adaptation. Dynamics of adaptation is almost in the
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same time scale as the system dynamics. The convergence of the scheme is established

via tools of Lyapunov analysis. As authors emphasize the method showed to be very

effective also in cases where the dynamics is not a bottleneck.

Also one of the main challenges with ESC and most deterministic adaptive control

approaches is the ability to recover the true unknown values of the parameters. In

most approaches, the convergence of parameters to their true values can only be

ensured if the closed-loop trajectories provide sufficient excitation for the parameter

estimation routine. An excitation signal can be introduced momentarily in the control

system to achieve the necessary excitation. For nonlinear systems, the problem of

determining appropriate excitation conditions remains open. Although some limited

persistence of excitation conditions have been derived, they remain difficult to apply.

Such conditions appeared in [36] for the solutions of an adaptive ESC problem. In

fact, the fulfillment of such conditions dictates the performance of the optimization

routine. Given some results in this area (for example [2], [25], [36]), convergence to

the optimum is guaranteed only by assuming the satisfaction of a these condition.

Results proposed in [50] are extended to the case of discrete-time systems and com-

plete analysis is given in [16]. The stability analysis of the discrete-time case is quite

different compering with the one that can be found in [50]. Once again the two-time

scale averaging theory is employed and sufficient conditions under which the plant

output exponentially converges to sufficiently small neighborhood of the extremum

value are derived.

ES scheme for nonlinear systems is also generalized to what is known as Slope seeking.

It is for the first time introduced in [6]. Slope seeking drives the output to the value of

the reference to output plant that corresponds to zero slope. The analysis is conducted

on static plant, single and multi-parameter design and on one with the compensator.

Application of this method can be found, for example, in [45].
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Analysis proposed in [13] gives insight in a modified ES algorithm. For the purpose of

optimizing the coupling between the emitting Lower Hybrid antennas and the plasma

scrape off layer in the radio-frequency heating system of tokamak plasmas, technique

without external dithering is introduced (see Figure 3.3). The role of standard dither

signals is given to disturbances affecting the system. These disturbances, already

present in the control system, are used as probing signals so that injection an external

dithering signals is not necessary. This design is shown to be more robust as it is

less rigorous than the previous algorithms. Proofs for global stability use a novel

Lyapunov - based proof technique as compared to that in the classical approaches.

Proposed scheme relaxes the convexity condition on the unknown function required

in classical extremum seeking.

Figure 3.3: ES scheme without dither signal

In [86] opposite to standard stability assumptions moderately unstable single poles

along with both single and double integrators are allowed. Extensions are made for

case of marginally stable systems and moderately unstable systems. Results are then

applied for control of autonomous vehicles for finding a source of a signal whose

strength decays with the distance. The task of ES is to track the source of a scalar

valued signal that typically decays away from the origin while extracting the implicit
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position information through gradient estimation. The algorithm employs phase lead

compensators to preserve robustness in presence of destabilizing effects.

3.1.4 Sliding mode ESC

More than fifty years ago, another optimization approach based on sliding mode

control was popularized. This is actually the method that brought into life ESC after

being in shadow for thirty years. This topic was revisited again in 1980’s.

It is well known that sliding mode controllers showed to be very good solution when

dealing with uncertainties. The idea to introduce it into extremum seeking theory was

initiated by Drakunov and Ozguner (see [30]). They maximized the engine efficiency

by finding the best ignition angle using a self-optimizing scheme. Their implemen-

tation was done using only analogue circuitry. The generated work was measured

directly from the dynamometer. General sliding mode scheme is given at Fig 3.4.

The method uses sliding mode (SM) to estimate the gradient of performance func-

tion.

Figure 3.4: ES control using sliding mode

Extremum seeking based on sliding mode is widely studied in literature. It appears

in several algorithms. This method was also applied in optimizing many real-world
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processes. Further theoretical extensions and relevant applications of sliding mode ES

can be found, for example in [62], [17], [29], [81], [80] and [82]. Comparisons between

a sliding mode and some other techniques can be found [60].

3.1.5 RTO and model predictive control. Unified framework

Work reported in [3], [35] [2] and [1] gives a new frame for a control algorithm that

incorporates Real-Time Optimization (RTO) and Model Predictive Control (MPC).

It results in a techniques that solves an output feedback extremum seeking control

problem for nonlinear known system. The method guarantees parameter convergence

with minimal but sufficient level of perturbation. Stability results are obtained using

well-known Lyapunov techniques. Model is shown to be robust to modeling errors

and bounded disturbances. Moreover, last two papers consider optimizing systems

under constraints.

This theoretical results are latter applied on chemical reactors in [34], [33], [56], [32],

[38], [40] and [39]. These publications analyse how to optimize chemical processes

in reactor systems that are operate under different working conditions. Controllers

are designed to satisfy stability issues. With the choice of appropriate Lyapunov

function and determining the conditions under which its derivative would satisfied

stability requirements adaptation update laws are obtained.

Same technique in controllers’ construction is further adopted in [25], [24], [37], [63]

and [26]. All these systems discuss nonlinear systems under constraints given in a form

of particular functions or as general inequalities/equalities. Constraints are put on

adaptation parameters which should be inside the convex set during the adaptation

time. This is useful fact that allows Lyapunov stability analysis to use projection

function as a part Lyapunov function.
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3.1.6 Numerical approach. Nonlinear programming

ES controllers can be built using nonlinear programming optimization techniques.

In [74] applicable numerical algorithms are studied and dynamical interactions be-

tween an optimization algorithm and the optimized dynamical system is analyzed.

Furthermore some recipes to achieve faster extremum seeking are derived and new

convergence properties are established using direct search algorithms for nonsmooth

optimization problems. To allow system dynamics to settle before new measurements

are taken Teel and Popovic introduced waiting time. The algorithm was latter applied

in [28] for Raman optical amplifiers.

In [85] and [84] extremum seeking controller design is also based on numerical ap-

proach. First part deals with construction of state regulator via output tracking for

state feedback linearizable systems. Clearly, the optimization algorithm used here

works using principle of classical steepest descent approach. Global convergence for

regulator is proved under certain assumptions. Second part considers robust ex-

tremum seeking control design. Controller is designed to be robust to input distur-

bance and unknown plant dynamics for state feedback linearizable systems.

3.2 Stochastic ESC

Methods that are mostly used to approximate gradient in area of stochastic opti-

mization are Simultaneously Perturbation Stochastic Approximation (SPSA), Kiefer-

Wolfowitz finite-difference SA (FDSA) and Random Direction Stochastic Approxima-

tion (RDSA). They are two-sided methods whose required number of measurements

differs. In general, the accuracy of an estimate in stochastic approximation algorithms

increases with the number of taken measurements which, on the other side can reflect

on the overall cost.
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Application these algorithms is also demonstrated in [65]. In the same work it is shown

that algorithms such as simultaneous perturbation stochastic approximation (SPSA)

with projection, may exhibit especially slow convergence because of the interaction

between the projection operator and a gradient approximation. It is also shown how

to modify the standard SPSA algorithm to remove this effect and get fast convergence

that can be useful for applications in real - world problems.

Above research deals with bound constraints. The settings for constrained stochastic

optimization problem can be put in the following form:

min
θ∈G

f(θ), f(θ) := F (y(θ, ω)) (3.27)

forG = θ = [θ1, θ2, . . . , θp] ∈ Rp|ai 6 θi 6 bi, i = 1, 2, . . . , p (3.28)

−∞ < ai < bi < ∞ (3.29)

where G is the constrained set, θ is vector that has the same meaning as in previous

analysis - it represents input parameter’s space. f(·) is value of the cost function

which is an expectation of y(·, ·), the sample measurement of the cost. It is also

afunction of control signal θ. ω denotes the random variable. Function y can be

rewritten as y(·, ·) = f(x) + η(ω). Here η is measurement noise. Particular problem

that usually occurs even when algorithm is proved to converge is slow approach to the

optimal value. Not only that theory revealed it, but also some experiments done in

case of automotive engine optimization presented in [65] confirmed these theoretical

results. Analysis of convergence speed of the SPSA algorithm with projection and

constraints can be found in same work. Constraints are considered to be hard. This

means that noisy evaluations of the cost function f : Rp → R are available only over

the set G.

Stochastic approximation algorithm itself can be defined as an optimization setting

with projection.
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θk+1 = πG{θk − akĝk(θk)} (3.30)

where the step size ak → 0 as k → ∞, and πG : Rp → Rp is the projection onto the

set G.

When SPSA with projection was applied the algorithm turned out to be incomparably

faster in reaching the minimum than SA with projection. Yet, this faster convergence

can be achieved only with SPSA. The problem encountered in this case is existing ge-

ometric interaction between the projection operator and the SPSA gradient estimate.

The interaction happens when one or more components of the current iterate reach

the boundary of the constrained set while the (negative) gradient field is directed

against the boundary. The effect of the interaction is described as ”iterate bouncing

against the constraints”. In other words, the iterates first reach the boundary of

the constrained set. In next iteration they ”bounce” back, and the value of the cost

function increases. However the influence of the ”bouncing effect” on optimization

speed was not so clear when iterates were far away from the optimum. This bouncing

effect is the main cause of slower convergence, so the algorithm was modified.

This modified algorithms was latter applied in on-line optimization of parameters

of an automotive internal combustion engine. Three-dimensional space of indepen-

dent parameters was analysed. The goal was to optimize engine’s break specific fuel

consumption (BSFC). To achieve this several optimization algorithms or their mod-

ifications were applied and results compared. Modified model showed to work very

well.

Results proposed in [55] use stochastic perturbations to extract gradient information

by using one-sided search algorithm. Instead of periodic excitation noisy signal is

added to input. Input and output are correlated in same fashion as for periodic

probing signals and information about gradient is obtained.
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3.3 Examples of applications

There are many examples where previously described techniques are used to optimize

some physical or chemical operating conditions. One of earliest practical work by

Wang and Krstic was reported in [79]. Here extremum seeking was used for problem

of maximizing the pressure rise in an axial flow compressor. It is applied to the

MooreGreitzer model. The experiment resolves a concern that extremum seeking

requires the use of periodic probing signal. Authors pay special attention to emphasize

satisfactory results of laboratory experiments. The algorithm performed well in the

high-noise experimental environment. Actually, the high noise made the effect of the

periodic perturbation hardly noticeable.

Work published in [14] discusses controller design for drag minimization in formation

flight. Modified Kalman filter is introduced to estimate the gradient of the cost

function so that controller can drive the system to this maximum. This filter actually

estimates the slope of the function, providing robustness to measurement noise. It

is assumed the Kalman filter perfectly estimates the state variables. To achieve the

desired behavior due to the present uncertainties robust and adaptive control schemes

are employed. Designed controller must both stabilize the aircraft and seek the best

operating point.

Tracking emitted signals by non-holonomic vehicles in target tracking problem was

motivation for a number of publications. Distribution of these signals is generally

not known. However, it is known that signal strength decays and it has maximum

value at source itself. First autonomous vehicles are considered in [86]. The analysis

is then expanded to non-holonomic vehicles both for 2D and 3D case while tuning

the angular or forward velocity (see, for example [19, 22, 18, 83, 20, 21, 23, 48, 87]).

PID controller are possibly the most popular controller for industrial applications.

However, sometimes the performance of these controllers may not be satisfactory.
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To improve their effectiveness ES controller can be used as it is already shown in

[43]. This should be quite useful application due to their wide industrial use. PID

controller is used such that derivative term acts only on the plant output but not on

the reference. Task of ES is to tune the parameters of the controller in a way that

would reduce the error to its minimal value. The numerical experiments are done

for several plants: two with time delays, one with non minimum phase and one with

multiple poles. To compare the effectiveness of ES algorithm some other standard

methods whose purpose can be tuning of controller parameters are chosen. Those

three are standard Ziegler-Nichols method,Iterative Feedback Tuning and Internal

Model Control. Results are applied in [42] to tune the combustion timing controller

of an experimental of homogenous charge compression ignition engine.

The principles of extremum seeking control has been also applied to 2nd and 4th order

models of anaerobic digestion in [69]. The goal of the AD process is production of

biogas. As an optimization objective it is then natural to consider the maximization

of the biogas flow rate. The purpose of the extremum seeking method is then to

iteratively adjust the dilution rate in order to steer the process to the maximum of

this map. In order to maximize the biogas productivity of the AD, extremum seeking

control is applied using the dilution rate as a control action and the biogas flow rate

as a measured output.

One more example is application of ES in cases where stabilization of equilibrium

is not possible for some reasons. Some systems, for example have limit cycle that

have to be controlled. If the size of the limit cycle depends on some of the control

parameters, then a reasonable objective would be to tune this parameter to minimize

the size of the limit cycle. Results of this research is published in [77] and simulations

have been done with classical Van der Pol oscillator.

Furthermore, ES found to be useful also in reducing the magnitude of the impact
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of mechanical valve actuator [64]. Impacts experienced by the actuator are exces-

sively loud and create unnecessary wear. Based on a measure of the sound intensity

at impact, the controller tunes a nonlinear feedback to achieve small impact veloci-

ties within desirable bounds. Experimental results showed that transition times and

impact velocities were satisfactory.

To help finding the maximum biomass production rate in a continuous stirred tank

bioreactor ES scheme is applied in [78]. Work proposed in this paper analyses both

Monod and Haldane model. In case of Haldane model, a subcritical bifurcation pre-

vents operation with a satisfactory stability region near the maximum. To overcome

this problem a local stabilizing feedback controller with a washout filter is designed

to soften the bifurcation, that is to extend the operating range. Adding this filter the

structure of equilibria is preserved. It is shown that by applying ES to Monod and

Haldane models it is possible to optimize steady-state of a continuous stirred tank

reactor in presence of uncertainties due to process kinetics.

The analysis continues in same spirit in [9] where ES scheme for bioprocesses is ex-

tended for problem which multivalued functions as cost functions. Optimal operating

point is obtained as a best solution that would satisfy both yield and productivity.

Research showed that the optimization problem is feasible for systems with multival-

ued discontinuous cost functions.

Area that attracted a lot of intention is minimization of energy consumption. To

direct the economizer in HVAC (heating, ventilating and air conditioning) to operate

in optimal manner a new ES scheme is developed in [53]. Here ES works as a part of

a three-state economizer control strategy. It is used to control actuators to minimize

mechanical cooling load. On the other hand saturation of actuators is taken into

account as it would cause windup which may disable ES action. Hence the ES is

modified as it can be seen at Fig 3.5.
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Figure 3.5: Block diagram for the anti-windup ESC

Other approaches and applications can also be found in number of other literature.

Such is, for example problem of reducing the vibrations due to thermo-acoustic insta-

bilities that occur in gas turbine engines. This is investigated in [8, 57, 58]. Former

is based on steepest descent method of algorithm in [50]. Last two are papers by

same authors using Newton algorithm. First gives theoretical frame which relaxes

dependence of the search algorithm on the curvature of the plant map. The theory

is applied in second part where one can find comparison of experimental results. In

[10], [11] and [73], where it is used to lower the power consumption, to achieve the

maximum power of grid-connected PV arrays and to keep the wheel slip as close as

possible to the to the optimum of the friction curve in ABS, respectively. Investigation

done in [76] is one more paper that minimizes overall used energy in HVAC systems

and in [61] the whole analysis goes towards best possible approximate matching in a

short time for case of multi-parameter extremum seeking, receding horizon controller.

Following the same fashion ES is applied also in [31] and [54]. First paper employs ES

to control detached flow with strictly linear dynamics. Research conducted in second

one tunes boundary controller in order to maximize the outlet temperature electri-

cally conducting fluid in order to improve heat exchange efficiency. ES is further

applied in [44], [52], [47], [67], [27], [12].
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Chapter 4

p-dimensional parameter space

4.1 First order ESC. Problem formulation

In this chapter the problem formulation is presented. The first order algorithm with

multiple-input-single-output is shown in Figure 4.1. Structure of this simplified ver-

sion for SISO case is introduced in [71] and non-local stability results established.

When optimizing some process in practice, quite often there is a need for MISO

and MIMO. As many authors suggest MISO controllers are more significant. Nu-

merous physical and chemical processes to be optimized are by nature multivariable.

Here results are extended to MISO case. The whole analysis can be in same fashion

extended for first order MIMO systems. As will be seen latter standard methods

of decentralized control are not needed. Appropriate choice of excitation frequency

makes it possible that for FR controller all subsystems may be analysed as separate

and independent SISO systems.

At Figure 4.1 θ̂ is the current estimate of controller parameter. The maximum value

is denoted as θ∗. Sinusoidal perturbation is added to the plant input. The main

problem considered here is the one of finding the extrema of performance measure

66



4.1 First order ESC. Problem formulation p-dimensional parameter space

which is a nonlinear real-valued function of the p − dimensional parameter and its

initial value θ0 known.

Figure 4.1: First order MISO extremum seeking algorithm

From Figure 4.1 it follows that the adaptation rate is described using the next ex-

pression:

dθ̂i

dt
= kih(x)ai sin(ωit), i = 1, 2, . . . , p (4.1)

where k is a positive integrator gain that is chosen by the designer. For a given plant

an optimal selection of the gain k could be made. As extremum seeking optimizes an

unknown steady-state of unknown dynamics it is not clear how to select the gain to

guarantee the best performance.
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4.2 Convergence analysis. SPA stability p-dimensional parameter space

Consider a nonlinear system with p inputs and single output given by the following

equations:

ẋ = f(x, u)

y = h(x) (4.2)

where x ∈ D ⊂ Rn, u, and y ∈ R are the state variable, control input and system

output, respectively. The vector fields f : D × Rp → Rn and h : D → R are

sufficiently smooth in their arguments. The output y reports the cost function which

is the function of state h(x).

The dither signal d(t) is defined as a p-dimensional vector using standard matrix

notation:

d(t) = (a1 sin(ω1t), ..., ai sin(ωit), ...ap sin(ωpt)) =




a1 sin(ω1t)
...

ai sin(ωit)
...

ap sin(ωpt)




= a sin(ωt) (4.3)

The control problem here is to find a simple, but efficient enough strategy that would

optimize the output y = h(x).

4.2 Convergence analysis. SPA stability

Krstic and Wang in their publication proved local exponential stability. For the

simpler algorithm it can be proved that under certain circumstances algorithm can
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4.2 Convergence analysis. SPA stability p-dimensional parameter space

be semi-globally stable. This highly depends on the parameters and how they are

tuned. If appropriately tuned controlled will be SPA stable. As starting point assume

that x and y starting are available for feedback. Then control law for (4.2) defined in

the following form:

u = α(x, θ) (4.4)

where θ = θ̂ + a sin(ωt) is a p - dimensional vector whose i-th component θi can be

written as:

θi = θ̂i + ai sin(ωit) (4.5)

It is assumed that after some time controller parameter will reach its optimum θ∗.

From Figure 4.1 it follows that dynamics of the plant and adaptation rate, respec-

tively, can be expressed in the following form:

ẋ = f(x, α(x, θ̂ + a sin(ωt)))

˙̂
θ = h(x)dk(t) (4.6)

where dk denotes the signal defined in (4.3) whose each component is multiplied with

corresponding gain ki. To analyze dynamic behavior of state under the control input

u it is appropriate to employ a change of variables. For system (4.6) the deviations

x̃ = x − x∗ and θ̃ = θ − θ∗ are introduced. Geometrically, this transformation of

coordinates determines the translation of variables into the origin. They are by their

nature tracking errors. To study the behavior of x̃ near t = 0 the time scale is

”stretched” by introducing the transformation t = τ/ω. Small parameter ω can be

expressed with respect to the following relationship:

ω =
ω1

n1

=
ω2

n2

= · · · = ωp

np

(4.7)
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4.2 Convergence analysis. SPA stability p-dimensional parameter space

which follows from the fact that the system with p inputs is analyzed.

Parameterized equilibrium point x(θ) will finally reach its optimum x∗(θ∗). It will be

assumed that variable x has a much faster dynamic response such that a time scale

decomposition exists and the closed loop system has the following standard form:

ω
dx̃

dτ
= f(x̃ + x∗, α(x̃ + x∗, θ̃ + θ∗ + d(nτ)))

dθ̃

dτ
= h(x̃ + x∗) dδ(nτ) (4.8)

where dδ denotes the dither signal dk multiplied with new small parameter δ ∈ Rp.

This parameter is introduced through expression ki = ωδi. Recall that (θ̃ + θ∗) ∈ Rp

and dδ(nτ) ∈ Rp are vector of input signal and its perturbation, respectively. Then

the signal dδ(nτ) may be written as:

dδ(nτ) = (a1δ1 sin(n1τ), ..., aiδi sin(niτ), ...apδp sin(npτ))

Note We are interested in system (4.8) under the assumptions that ω is ”small

enough” (i.e. relative to the other parameters of the system). In this case, ˙̃x is large

compared with the ˙̃θ and we refer to x̃ and θ̃ as fast and slow variables, respectively.

Clearly, the system (4.8) has the standard time-scale structure. Singular pertur-

bations and averaging method should be applied at this stage. When seeking the

solution for (4.8), it is natural to set ω = 0 and solve the resulting problem in order

to obtain the reasonable approximation. Set ω = 0, the first equation of system (4.8)

degenerates into algebraic:

f(x̃ + x∗, θ̃ + θ∗ + d(nτ)) = 0 (4.9)
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4.2 Convergence analysis. SPA stability p-dimensional parameter space

Comment 4.1 Because the second equation of the system (4.8) is with n ODE of first

order, only n initial conditions can be met and it is natural to retain the condition

on the slow variables and meet the condition on x by allowing discontinuity at t = 0.

To simplify further analysis we assume the equation (4.9) has a unique solution.

x̃ + x∗ = l(θ̃ + θ∗ + d(nτ)) (4.10)

where l(θ̃ + θ∗ + a sin(nτ)) is sufficiently smooth function with respect to θ. The

following assumption can be made:

Assumption1. There exists a function l : Rp → Rn such that f(x, α(x, θ)) = 0 iff

x = l(θ)

Substitution of equation (4.10) into second equation of a system (4.8) gives differential

form for reduced system:

dθ̃r

dτ
= ϕ(θ̃r + θ∗ + d(nτ)) dδ(nτ) (4.11)

where ϕ = h ◦ l(θ̃r + θ∗ + a sin(nτ)) and where upper index r is introduced to denote

the reduced system.

Comment 4.2 At this point the form of nonlinear equations (4.11), that can be used

in the following analysis, should be found. It is known that asymptotic series (and

particularly Taylor) can serve for this task. The goal is to simplify the system and to

get the system that is suitable for further mathematical analysis. Taylor expansion

will allow us to get reasonably good approximation. For this purpose it is enough to

develop asymptotic expansion up to the second order.

Details about Taylor series expansion for a differentiable real-valued function f :

Rn → R and disturbance q ∈ Rn can be found in Appendix A.
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4.2 Convergence analysis. SPA stability p-dimensional parameter space

Assuming that ϕ is analytical expansion around the equilibrium point (θ∗ + θ̃) ∈ Rp

with respect to p - dimensional vector d(nτ) as disturbance, will be therefore expressed

in the following way:

ϕ(θ∗ + θ̃ + d(nτ)) = ϕ(θ∗ + θ̃) +

p∑
i=1

aiϕ
′
i(θ

∗ + θ̃) sin(niτ)+

+
1

2

p∑
i,j=1

aiajϕ
′′
ij(θ

∗ + θ̃) sin(niτ) sin(njτ) + ... (4.12)

Assuming also that the parameter a is small enough the quadratic and higher order

terms. Otherwise, when substituted in reduced system these would result in a cubic

and even higher order terms. After neglecting particular terms expression (4.12) can

be rewritten as:

ϕ(θ∗ + θ̃ + d(nτ)) = ϕ(θ∗ + θ̃) +

p∑
i=1

aiϕ
′
i(θ

∗ + θ̃) sin(niτ) (4.13)

Substitution of (4.13) into (4.11) leads to:

dθ̃ri

dτ
= ai · δi sin(niτ) · ϕ(θ̃r + θ∗) +

p∑

l=1

aial · δiϕ
′
l(θ̃

r + θ∗) · sin(nlτ) sin(niτ) (4.14)

Recalling Sanders and V erhulst [66] (see Chapter 2) it can be easily seen that the

system (4.14) has the form identical to:

dθ̃r

dτ
= εϕ̂(θ̃r + θ∗, τ) + ε2ϕ̄(θ̃r + θ∗, τ) (4.15)

Here dither amplitude is represented as a small parameter ε and where second order

averaging for a general nonlinear systems on time-scale 1/ε can be applied. Func-

tions ϕ̂(·) and ϕ̄(·) are equal to the first and second addends of (4.14), respectively,
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4.2 Convergence analysis. SPA stability p-dimensional parameter space

excluding small parameter. Introduce the near-identity transformation and averaged

system of (4.15) as follows:

θ̃r = w + au1(t, w) (4.16)

u1(t, w) =

∫ t

0

ϕ̂(w, τ)dτ − lim
T→∞

∫ T

0

∫ t

0

ϕ̂(w, τ)dτdt (4.17)

dθ̃ra

dτ
= εϕ0(θ̃ra + θ∗) + ε2ϕ10(θ̃ra + θ∗) + ε2ϕav(θ̃

ra + θ∗) (4.18)

Here ϕ0(·), ϕ10(·) and ϕav(·) are averages of ϕ̂(·, τ), ϕ1(·, τ) and ϕ̄(·, τ), respectively.

Here ϕ1(·, τ) is defined with:

ϕ1(θ̃ra + θ∗, τ) = ∇ϕ̂(θ̃ra + θ∗, τ)u1(θ̃
ra + θ∗, τ)−∇u1(θ̃

ra + θ∗, τ)ϕ◦(θ̃ra + θ∗) (4.19)

In this analysis only final results from [66] are used in order to find an approximate

solution. Theoretical introduction and all details about the derivations for all expres-

sions can be found in Section 3.4 in same book.

Proceed to get the averaged solution:

ϕ10
i = lim

T→∞
1

T

∫ T

0

ϕ′
θ̃i
(θ̃ + θ∗)u1(t, θ̃ + θ∗) sin(niτ)dτ = 0 (4.20)

ϕi
av = lim

T→∞
1

T

∫ T

0

(

p∑

l=1

alϕ
′
l sin(nlτ)) sin(niτ)dτ (4.21)

For all l 6= i terms are equal to zero. So, the only term that is left in (4.21) is:

ϕi
av = lim

T→∞
1

T

∫ T

0

aiϕ
′
i sin

2(niτ)dτ =
1

2
aiϕ

′
i(θ

∗ + θav) (4.22)
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4.2 Convergence analysis. SPA stability p-dimensional parameter space

The averaged system in final form can be written in index or vector notation:

dθ̃i
av

dτ
=

1

2
a2

i δiϕ
′
i(θ

∗ + θav) (4.23)

dθ̃av

dτ
=

1

2
D∇ϕ(θ∗ + θav) (4.24)

where D is a diagonal matrix D = diag(δia
2
i ). Clearly, the goal was to show the

average system consists only of one term - gradient:

dθ̂i

dt
= (ak)ih(x) sin(ωit) = ki

∂ϕ(θav + θ∗)
∂θi

(4.25)

Hence, when θ̂ → θ∗ it follows that ∇ϕ tends to zero and output function reaches its

optimum. Stability of averaged system (4.24) is established employing Assumption

2.

Assumption2. Denoting ϕ(·) = h◦ l(·), there exists a unique non-degenerate critical

point θ∗ maximizing ϕ(·) and, the following holds:

∇ϕ(θ∗) = 0, H(ϕ(θ∗)) < 0

D̄∇ϕ(θ∗ + ξ) < 0, ∀ξi 6= 0 (4.26)

where H(ϕ) is Hessian matrix and D̄ = diag[δ1a
2
1ξ1, δ2a

2
2ξ2, . . . , δpa

p
1ξp].

Following the procedure from [41] and using Assumption 2 the stability of boundary

layer for overall system will be established in following few steps. First introduce

shifts x̄ = x̃−x∗− l(θ∗+ θ̃ +a sin(nτ)), γ = (nτ −nτ0)\ω and θ̄ = θ∗+ θ̃ +a sin(nτ0).
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4.2 Convergence analysis. SPA stability p-dimensional parameter space

Set ω = 0. Then the boundary layer is of the form:

dx̄

dγ
= f(x̄ + l(θ̄), α(x̄ + l(θ̄), θ̄)) (4.27)

Here, third assumption is introduced to guarantee sufficient conditions for asymptotic

stability of (4.8).

Assumption3. For each θ ∈ Rp, the equilibrium x = l(θ) of systems (4.8) is globally

asymptotically stable, uniformly in θ.

To prove SPA near-identity transformation is used as well as tools from [41] (Chap-

ter 10). It is proved that MISO system can be regarded as group of p completely

independent SISO closed-loops. Thus, if to any of those loops we assign only their

corresponding parameters as a and δ then it is enough to prove SPA stability for an

arbitrary ES controller. Coordinate transformation can be described via:

θ̃r(τ) = µ(τ) + aδu1(µ, τ) (4.28)

For the sake of simplicity we can introduce the following notation ϕ(θ∗ + θ̃) and
∑

i aiϕ
′
i(θ

∗ + θ̃) sin(niτ) for ψ1(θ) and ψ2(τ, θ), respectively. Then function u1 and its

derivatives with respect to τ and µ to are defined as:

u1(τ, µ(τ)) =

∫ τ

0

(ψ1(µ) + aψ2(ξ, µ)− aϕav(µ))dξ (4.29)

∂u1

∂τ
= ψ1(µ) + aψ2(τ, µ)− aϕav(µ) (4.30)

∂u1

∂µ
=

∫ τ

0

(
∂ψ1

∂µ
(µ) + a

∂ψ2

∂µ
(ξ, µ)− a

∂ϕav

∂µ
(µ))dξ (4.31)
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4.2 Convergence analysis. SPA stability p-dimensional parameter space

To get the ODE of reduced system differentiate (4.28) with respect to time. It yields

to the expression of the form:

dθ̃r

dτ
=

dµ

dτ
+ aδ(

∂u1

∂τ
+

∂u1

∂µ
· ∂µ

∂τ
) (4.32)

Equalize expressions in (4.32) with reduced system (4.14) will lead to:

dµ

dτ
(1 + aδ

∂u1

∂µ
) = aδ{ψ1(µ + aδu1)− ψ1(µ)}+

+ a2δ{ψ2(τ, µ + aδu1)− ψ1(τ, µ)}+ a2δϕav(µ) + O(a3) (4.33)

Using the statement of Lagrange Theorem (see Appendix A) and fact that parameters

(a, δ) are sufficiently small it can be shown that:

ψ1(µ + aδu1)− ψ1(µ) = O(aδ) (4.34)

ψ2(τ, µ + aδu1)− ψ2(τ, µ) = O(aδ) (4.35)

Consequently the final system will be:

dµ

dτ
= a2δϕav(µ) + O(a3δ) (4.36)

Finally, using Lyapunov function of the form V (µ) = 1
2
µ2 SPA stability of the reduced

system is proved by analyzing the sign of:

V̇ =
1

2
a2δϕav(µ)µ (4.37)

Theorem 4.1 The system (4.6) is SPA stable uniformly in parameters (a2, δ) pre-

suming the Assumptions 1, 2 and 3 hold.
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4.3 Numerical results and discussion p-dimensional parameter space

4.3 Numerical results and discussion

In this section previously developed theory and results are used to simulate numerical

example. Simulations illustrate the applicability and efficiency of proposed solution.

Results showed that this algorithm works well for p− dimensional parameter, where

p can take any but final value in the set of positive integers.

Example 4.1 Numerical experiment is conducted for the case when θ is two-, three-

and five-dimensional parameter dimensional parameter For the sake of simplicity sim-

ulations are conducted for plant variations taken to be the same and equal to u, which

is incorporated in considered dynamical system. The following dynamics is to be op-

timized:

ẋ = x + 2u2 + 4u, y = −(x− 1)2 (4.38)

Using simple necessary conditions for extremum quick calculation shows that output

reaches its optimal value at y∗ = 0. At this point, state and parameters converge to

their optimal value x∗ = 1 and θ∗i = u∗ = −1.

Simulation results are shown at Figure 4.2. To completely analyze the effect of pa-

rameters choice two different group of excitation parameters are taken to optimizing

the same dynamical system. Parameters for the first case are chosen to be a1 = 0.25,

ω1 = 1, δ1 = 0.1, a2 = 0.1, ω2 = 0.5 and δ2 = 0.25; for second case a1 = 0.25, ω1 = 8,

δ1 = 0.1, a2 = 0.1, ω2 = 10 and δ2 = 0.25. For each choice of parameters initial

conditions are chosen to be the same.

For two-dimensional parameters both excitation amplitudes are chosen to have the

same values. Only the frequency is varied. It is obvious that for the two different
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Figure 4.2: ES convergence for two dimensional parameter

frequencies algorithm will have different convergence speed. Both algorithms will

converge to desired value, but the one with higher frequency showed to have better

performance, that is, to be faster. In both cases output converges to some vicinity

of its optimal value. Hence, there will always be present certain error. However, for

this example and this choice of parameter values algorithm with larger higher dither

frequency shows to be closer to the optimum all the time. It can be noticed that it

oscillates close to extremum with smaller amplitude. Hence, it is obvious that higher

frequency has considerable effect on better performance of the algorithm. On the

other side, if the frequency is chosen to be to large it may cause instabilities and the

algorithm may not converge.

To support discussed influence of excitation frequency the simulation results for both

cases are given together at Figure 4.3. Analyzing this figure it is completely obvious

superior behavior of algorithm whose parameters are tuned in a more proper way.
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Figure 4.3: Convergence speed comparison for two different frequencies

Further analysis is conducted for the case of three- and five- dimensional parameter.

First two parameters stay the same with choosing the second choice. For third pa-

rameter choice is made as follows a3 = 0.7, ω3 = 6, δ3 = 0.25; for forth and fifth

parameters are taken to be as follows: a4 = 0.25, ω4 = 5, δ4 = 0.25, and a5 = 0.1,

ω5 = 6, δ5 = 0.5.
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Figure 4.4: Algorithm performance for three- and five-dimensional parameter
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4.3 Numerical results and discussion p-dimensional parameter space

Extremum seeking performance in case of three-, and five-dimensional parameters is

shown on Figure 4.4. Comparison for both algorithms is further illustrated on Figure

4.5. Excitation parameters for this case are chosen such that they achieve in both

cases almost the same convergence speed. The three-dimensional parameter showed

better accuracy as it performs quite well in the small vicinity of the optimal value.

Five-dimensional parameter exhibits larger amplitude oscillations in its neighborhood.

Consequently, the error is larger.
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Figure 4.5: Comparison of two performances
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Chapter 5

Conclusions and future work

5.1 Contributions

Within this master thesis a model-free real time optimization for multivariable first

order extremum seeking control is proposed. Before investigating the problem in

more details the reader is presented with key assumptions and results needed for

resolving the problem. In general, we discussed some standard stability properties

and illustrate them by giving some helpful examples.

Case without input or state constraints is considered. Certain parameters are chosen

to be sufficiently small. SPA stability is established for reduced averaged and bound-

ary layer systems. Numerical results are discussed for two-input, three-input and

five-input systems. We discussed the importance of proving SPA stability. Therefore,

the selection of appropriate initial conditions was made to show the effectiveness of

the algorithm. Algorithm accuracy as well as convergence speed are also discussed.
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5.2 Algorithm limitations

As it was mentioned in Chapter 3 and Chapter 4 convergence speed still represents

unresolved issue. Moreover, problem of convergence speed is probably the most fre-

quently discussed problem among many authors. Some endeavors have been already

made. One idea is to switch to Newton algorithm which should provide faster adap-

tation.

Procedure for on-line tuning of parameters may speed up the controller, but may also

shrink the domain of attraction or even cause instabilities. These properties along

with accuracy depend highly on both excitation amplitude and frequency. Trade-off

between convergence speed, domain of attraction and algorithm accuracy is always

present. However, some compromise can be found depending on the application of

the controller. Consequently, these limitations may lead to poor performance. Thus

this may be motivation for development some new extremum seeking strategies.

Third, convergence to global optimum would mean the best possible performance of

the algorithm in presence of many local optimums. It can be said that the algorithm

can tend to any of them. To which it will converge depends at first instance on

initial conditions. Naturally, if the controller starts the search close to any of them it

will most likely converge to it. This simply means that it would be trapped in local

minimum or maximum. The problem is to find the way to force it to converge to

global. The problem becomes more complicated when the cost function is time varying

and global optimum is not permanent. The operating point that is considered to be

global optimum at one moment can easily turn to be local in the next. What may be

interesting is that probably it may happen that maximum changes into minimum.
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5.3 Discussion and future work

Some possible approaches in solving still open problems are discussed as well as the

time-line for the project.

Further work will involve analysis of a general nonlinear problems for finite or infinite

dimensions. We would also analyze some problems proposed during the past period.

Problems would be considered by releasing the existing and/or introducing some new

assumptions which will give completely different insight into the problem. Potentially

some assumptions and methods may be used in cases where gradient based techniques

do not work and where any information about gradient do not guaranty that the

local or global optimum will be approached or even be located. Also, the fact that

the behavior of some systems lead to an optimal value that may change in time gives

enough reasons to construct an algorithm that would be robust and capable enough

to track this value.

Existing adaptive ES algorithms may be improved in order to overcome known de-

ficiencies and achieve better performance while being aware of possible limitations.

One way to improve the overall performance is to improve the convergence speed.

This may be done using known techniques that may accelerate the whole mechanism.

Another way is to use the completely different algorithm. The algorithm should be

simple, practical and easy to implement.

Some other techniques that may be used in controller synthesis were studied only

marginally. This may result in lack of available mathematical tools needed for further

analysis. It would, therefore lead to theoretical developments in the area of averaging

and singular perturbations.
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Appendix A

Appendix

A.1 Taylor Theorem. Taylor series

Let A be an open set in Rn, x0 ∈ Rn and let f be a mapping f : A → R of class

Cm(A), m ≥ 1. If for any point h ∈ Rn there is a segment in [x0, x0 + h] is a subset

of a set A then

f(x0 + h)− f(x0) =
m∑

k=1

1

k!
(h1∂1 + · · ·+ hn∂n)kf(x0) + rm(x0, h) (A.1)

with

rm(x0, h) =
1

(m + 1)!
(h1∂1 + · · ·+ hn∂n)m+1f(x0 + θh), (A.2)

where θ ∈ (0, 1)and depends on x0 and h.

Let F be a function of class Cm+1 on [0, 1] such that

F : [0, 1] → R, F (t) = f(x0 + th) (A.3)
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A.1 Taylor Theorem. Taylor series Appendix

It satisfies Taylor formula and the reminder in Lagrange form:

F (t) = F (0) +
1

1!
F ′(0)t + · · ·+ 1

m!
F (m)(0)tm +

1

(m + 1)!
F (m+1)(θt)tm+1, t ∈ [0, 1]

(A.4)

where θ ∈ (0, 1). If we set t = 1 and using the following relation

dkF

dtk
(t) =

n∑
i1=1

n∑
i2=1

· · ·
n∑

ik=1

f(x0 + th)hi1hi2 . . . hik , k ∈ N (A.5)

the theorem is proved.

For any function R → R, the remainder rm(x0, h) can be also expressed in the so

called Peano form, that is

rm(x0, h) = o(||h||mRn) (A.6)

where o(||h||mRn) is a notation for any function that satisfies the following condition

lim
h→0

o(||h||mRn)

||h||mRn

= 0 (A.7)

If A is an open set in Rn and f is a mapping defined with f : A → R then the polynom

Pm(x) =
m∑

k=1

1

k!
((x1 − x1

0)∂1 + · · ·+ (xn − xn
0 )∂n)kf(x0) (A.8)

is called Taylor’s polynomial of a function f in x0 of degree m. If limit limm→∞ Pm(x)

exists than sum

∞∑

k=1

1

k!
((x1 − x1

0)∂1 + · · ·+ (xn − xn
0 )∂n)kf(x0) (A.9)
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is called Taylor series of function f in x0. For any h ∈ Rn with ||h|| < d, whose

segment [x0, x0 + h] lies in the ball L(x0; d) the Taylor formula with the remainder in

Peano form holds

f(x0 + h) = f(x0) +
1

2

n∑
i=1

m∑
j=1

∂i∂jf(x0)h
ihj + o(||h||2Rn) (A.10)

A.2 Lagrange Theorem

Theorem Let f(x) be a function such that:

• it is continuous on a closed interval [a, b],

• in any point of interval (a, b) it has finite or infinite first derivative.

Then there exists at least one point ξ within interval (a, b) such that the following

holds:

f(b)− f(a)

b− a
= f ′(ξ) (a < ξ < b) (A.11)

Proof. Let us consider a linear function L(x) with x as independent variable:

L(x) =
f(b)− f(a)

b− a
(x− a) + f(a) (A.12)

for which

L(a) = f(a), L(b) = f(b) (A.13)

that is, values of function L(x) at final points of the segment are equal to corre-

sponding values of function f(x) at the same points. Linear function L(x) has finite

derivative:

86



A.2 Lagrange Theorem Appendix

L′(x) =
f(b)− f(a)

b− a
= const. (A.14)

Function f(x)− L(x) satisfies conditions of Roll’s Theorem: it is continuous on seg-

ment [a, b], is zero at a and b and has a finite (infinite) first derivative within (a, b).

According to this theorem there exists at least one poit ξ ∈ (a, b) at which the

derivative

[f(x)− L(x)]′ = f ′(x)− L′(x) (A.15)

is equal zero, that is:

f ′(ξ)− L′(ξ) = 0 → f ′(ξ) = L′(ξ) (A.16)

From

L′(ξ) =
f(b)− f(a)

b− a
(A.17)

it follows that

f(b)− f(a)

b− a
= f ′(ξ), ξ ∈ (a, b) (A.18)

Geometrical interpretation. For any function f(x) that satisfies conditions of

Lagrange Theorem there exists a point ξ ∈ (a, b) at which tangent paralell with

secant determined with points A(a, f(a)) and B(b, f(b)) (see Fig A.1)
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Figure A.1: Geometrical meaning of Lagrange Theorem

namely, the direction coefficient of secant AB is given via:

tan(β) =
f(b)− f(a)

b− a
(A.19)

According to Lagrange Theorem this is equal to first derivative of function f(x) at ξ.
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