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SUMMARY 

 

 Porous ceramic-metal composites, or cermets, such as nickel zirconia (Ni-YSZ), 

are widely used as the anode material in solid oxide fuel cells (SOFC).  These materials 

need to enable electrochemical reactions and provide the mechanical support for the 

layered cell structure.  Thus, for the anode supported planar cells, the thermomechanical 

behavior of the porous cermet directly affects the reliability of the cell.  Porous cermets 

can be viewed as three-phase composites with a random heterogeneous microstructure.  

While random in nature, the effective properties and overall behavior of such composites 

can still be linked to specific stochastic functions that describe the microstructure.  The 

main objective of this research was to develop the relationship between the 

thermomechanical behavior of porous cermets and their random microstructure.  The 

research consists of three components.  First, a stochastic reconstruction scheme was 

developed for the three-phase composite.  From this multiple realizations with identical 

statistical descriptors were constructed for analysis.  Secondly, a finite element model 

was implemented to obtain the effective properties of interest including thermal 

expansion coefficient, thermal conductivity, and elastic modulus.  Lastly, nonlinear 

material behaviors were investigated, such as damage, plasticity, and creep behavior.  It 

was shown that the computational model linked the statistical features of the 

microstructure to its overall properties and behavior.  Such a predictive computational 

tool will enable the design of SOFCs with higher reliability and lower costs.

 xv



 

CHAPTER 1 
 

INTRODUCTION 

 

In a composite, a combination of different microstructures results in a hybrid 

material that may behave differently from any of the constituent materials.  In metal-

ceramic composites, called cermets, the strength of the ceramic plus the ductility of the 

metal may result in a stronger and less brittle material than a pure ceramic.  The addition 

of a third phase, such as porosity, could increase a cermet’s functionality by allowing 

fluid flow, while simultaneously reducing strength.  This simple example demonstrates 

how a composite’s bulk behavior becomes an increasingly complicated relationship of 

desired functions, volume fractions, phase distributions, and phase properties.  Research 

that enhances the understanding of these relationships would benefit development of 

composites and the technologies that use them.   

 For instance, the study of porous cermets can be used in the development of 

planar solid oxide fuel cells (pSOFCs).  All fuel cells have an anode and cathode layer for 

oxygen ion transfer across the electrolyte, and for fuel and air flow as shown in Figure 

1.1.  In pSOFCs the electrodes are solid components.  In particular, the anode material 

(Ni-YSZ), made of a distribution of pores, nickel, and ytrria stabilized zirconia (YSZ), is 

a three-phase co-continuous cermet.  Such three-phase materials are the focus of this 

work.  The anode’s proper function requires a continuous phase distribution, porosity for 

fuel flow, and the correct combination of ceramic and metal for structural support and 

electron transfer at high temperatures.  Each phase in the anode must serve its own 
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functions without limiting the functionality of the other phases.  For instance, as the 

volume percent of nickel increases, electrical and thermal conductivity will increase, but 

so will the thermal expansion of the microstructure.  One way to study these increasingly 

complex interactions is through computer modeling of the microstructure. 

 

 

Figure 1.1.  Schematic PEN layer of pSOFC. 

 

 

Numerical models of co-continuous multi-phase composites must be robust 

enough to investigate multiple loading scenarios while accounting for the stochastic 

nature of the cermet.  Each phase in the cermet is distributed such that each sample of the 

microstructure will be physically different, but all the samples can still be described with 

one set of stochastic functions.  As a random heterogeneous microstructure, it is through 

stochastic descriptors, called probability functions, that the microstructure can be 

quantified.  Plus, since it is not realistic to import multiple digital images of physical 

samples of Ni-YSZ, a method must be used to recreate realizations of Ni-YSZ from a 

unifying set of probability functions.  A realization is defined in this context as a 

computer-generated image of the microstructure based on statistical descriptors of the 

material.    
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The simulations must also be three-dimensional (3D) since the co-continuous 

natures of the phases mean 2D models will not capture pore continuity and a 

disconnected material could result.  Accurate determination of stress or temperature fields 

also requires a 3D analysis.  Field behavior will follow the path of the microstructure 

depending on the loading conditions.  In a 2D model those paths are limited.  For 

instance, branching of stresses around pores will be limited to two paths, and a true 

picture of internal stresses will be missing.  

The purpose of this research is to use stochastic reconstructions of the 

microstructure to model the material behavior of porous cermets, such as Ni-YSZ.  The 

research consists of microstructure generation followed with a detailed study of material 

properties, damage plus plasticity, and creep.  This is done through a combination of 

stochastic reconstructions and numerical simulations of thermomechanical properties 

with the purpose to enhance the overall understanding of porous cermets. 

In the first step, a voxel-based stochastic reconstruction scheme was implemented 

to generate multiple realizations of the three-phase composite.  Then, a finite element 

model was constructed for each of the microstructure realizations in order to conduct 

thermomechanical analyses that will allow us to obtain the effective properties of interest 

including thermal conductivity, elastic modulus, and thermal expansion.  Stress-strain 

curves will be provided for plastic and creep behavior.  Throughout this thesis, questions 

concerning the use of representative volume elements (RVEs) were addressed as the 

length scales increased from small scale deformations to large scale failure. 

The rest of this chapter addresses the basic theory behind fuel cells, and current 

numerical methods to study them.  The anode material is discussed in detail, and 
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operating conditions and the available experimental data are also discussed.  The final 

sections will outline the research methodology and data results.  Detailed theory and 

literature used in development of the research methodology are found in the chapters 

specific to each topic. 

1.1.  Fuel Cells 

Society’s increasing energy demands balanced with the need for cost effective 

and environmentally friendly fuels require that multiple avenues for power generation be 

investigated.  To that end, fuel cells are a relatively established technology that uses 

electrochemical reactions to generate electric power with low environmental impact.  

While pSOFCs have significant promise for high power density applications, reliability 

and production difficulties limit their commercial viability [1, 2].   

A planar SOFC consists of two porous layers (the anode and cathode), through 

which flow the fuel and oxidant, respectively (recall Figure 1.1).  These metal-ceramic 

materials, or cermets, are bonded to a solid electrolyte layer to form a tri-layer structure 

called the PEN (positive-electrolyte-negative), across which ion diffusion generates a 

voltage.  These electrochemical reactions take place within fuel cells at extremely high 

temperatures (>800ºC), which subject the cell components to harsh operating 

environments and severe thermomechanical stresses.    

Recently, researchers have shifted focus to intermediate temperature pSOFCs, 

which operate at temperatures between 500-800ºC by changing the electrolyte to a thin 

film [1].  These intermediate temperature pSOFCs require less expensive interconnect 

materials and manifolds, and also reduce the thermal effects on the PEN.  However, the 

use of thin film electrolytes shifts the functional support from the fully dense electrolyte 
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to the electrodes.  In anode-supported cells, the anode material must now provide the 

necessary mechanical strength for the layered cell structure.  Thus the thermomechanical 

behavior of the porous cermet, Ni-YSZ, directly affects the reliability of the cell. 

Operating conditions of solid oxide fuel cells consist of three stages: start-up, 

steady-state, and shut-down.  Initially, during start-up, the cell is heated from room 

temperature to the final operating temperature; many manufacturers send preheated air 

through the cathode during start up to reduce the chances of thermal shock.  Steady-state 

operation occurs after the cell reaches its operation temperature.  The operating 

temperature is influenced by several factors such as electrolyte thickness (thinner 

electrolytes enable lower operating temperatures) and the direction of fuel flow.  During 

steady-state operation, stresses in the cell are influenced by the temperature gradients 

generated from the electrochemical reactions. 

1.1.1.  Computer Modeling 

 The study and optimization of SOFCs range from electrical output to structural 

degradation, but optimization of one parameter will impact, sometimes catastrophically, 

another aspect of the fuel cell.  Numerical modeling then must take place at multiple 

levels to accurately capture these disparate factors.  Models range from those that include 

the macroscopic behavior of the stack, the effective behaviors of laminated PEN layers 

and seals, and finally that of a specific component.  Figure 1.2 is a simple illustration of 

these levels.  Modeling at the component level would improve the usefulness of the 

macroscopic analyses by providing realistic approximations for different configurations 

and operating conditions.  
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Figure 1.2.  Multiple levels of SOFC modeling. 

 

In the past, modeling has focused on determining the electrochemistry and 

thermal gradients occurring in the stack for various geometries and flow patterns [3-12].  

Occasionally, these same models were used to find the stress gradients in the PEN layers 

[6].  Since a large fraction of cell failures are known to occur around seals and 

interconnects, several studies have recently focused on the PEN layer and a limited 

amount of the surrounding geometry [13-16].  Two of these studies have found the anode 

to be the main source of failure.  Zhang et al. determined that fracture failure is most 

likely to occur in the anode layer of the PEN  [13].  Nakajo et al.  reached the same 

conclusion [14].  Studies of the anode material often focus on the linkage of the triple 

phase boundaries (TPBs), which is the point where all three phases conduct and is the 

active site for electrode reactions [17, 18].  Recently, Kim et al. has started using multi-

level modeling to link the composite anode to the PEN level [18].  
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1.1.2.  Anode (Ni-YSZ) 

Ni-YSZ is one of the most commonly used anode materials in SOFCs [19], where 

each phase serves a specific purpose and the triple point boundaries are a site for 

electrochemical reactions.  YSZ is added to help match the coefficient of thermal 

expansion (CTE) to the YSZ electrolyte and to prevent sintering of nickel.  Material 

porosity varies from 20-40% for efficient mass transport.  The nickel allows electron 

transfer.  In anode-supported configurations, the anode is significantly thicker than the 

electrolyte layer and the two layers are often created by co-firing, which leaves residual 

stresses in the layers due to thermal mismatch of YSZ and Ni-YSZ.   

This work examines the anode material manufactured by Oak Ridge National 

Laboratory (ORNL), which starts as a slurry of  NiO and ZrO2 stabilized with 8 mol% 

Y2O3 (Figure 1.3). 

 

 

Figure 1.3.  Image of 22 vol.% porous Ni-YSZ. 
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There is abundant experimental data for the electrical, thermophysical and 

mechanical properties of Ni-YSZ, but the data is tied closely to the specific composition 

and manufacturing of the given pSOFC.  The electrical conductivity is often studied since 

it influences the performance of the fuel cell [20-23].  Another factor of interest is the 

reduction of oxygen in the anode precursor and the potential of re-oxidation in the anode 

[24, 25].  Thermophysical properties are significant as temperature-sensitive nickel 

interacts with temperature-resistant YSZ.  The CTE and thermal conductivity both exhibit 

spikes in values at the Curie point of nickel [26, 27].   

Elastic and fracture properties of both YSZ and Ni-YSZ have been studied in 

relation to temperature and porosity [25, 28-33].  Radovic et al. determined that the 

modulus of Ni-YSZ could be related to porosity using the composite sphere model [31].  

Fracture toughness has been found to decrease with temperature and porosity, although 

the fracture toughness of Ni-YSZ was higher than YSZ [33].  Of significant interest is the 

long term temperature behavior of Ni-YSZ.  Porosity and modulus were found to be 

independent of thermal aging although biaxial strength values decreased [34].  It was also 

found that the residual stresses in the electrolyte layer decreased with thermal aging, 

suggesting stress relaxation in the anode layer [34].  In one study by Gutierrez-Mora et 

al., creep in a bonded anode and electrolyte layer was diffusion-controlled at high 

temperatures [35].  Since the experimental data described above is specific to the 

manufacturing and composition of Ni-YSZ, a numerical study would provide insight into 

universal factors that dictate behavior.  
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1.2.  Research methodology 

The study of porous Ni-YSZ using reconstructions is a three-step process, where 

each step overlaps and influences the next.  Initially a microstructure is created using a 

stochastic reconstruction, and then a FE analysis is implemented.  This first round of FE 

was used to test model validity and to determine possible alterations to the 

microstructure.  The objective is to link the probability functions to specific changes in 

the FE analysis.  Detailed theory and literature for each step is provided in the relevant 

chapter. 

1.2.1.  Stochastic reconstruction 

A composite can be reconstructed with three sets of information:  the amount of 

each phase, the shape and size of particles, and how those particles interact.  A 1D 

example, illustrated in Figure 1.1, starts with volume fraction, then length of particles, 

and finally how the particles are interrelated.  In stochastic materials, amount, shape and 

interaction can be described through probabilities.  The most basic descriptor is the 

volume fraction, iϕ , which is the ratio of the volume of phase i  to the total volume of the 

material, and provides the amount of each phase.  Volume fraction is also the probability 

that a given point will lie in the phase i .  The information of each volume fraction could 

be used to recreate a simple realization of the microstructure.  By adding more 

information to the probabilistic description, a progressively more detailed reconstruction 

is formed.  By adding location, orientation, multiple sampling points, and other 

conditions, information about length scales of particles and their interactions is built into 

the probability function. 
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Figure 1.4.  1D visualization of composite construction. 

 

 

The digital reconstruction method in this work uses probability functions of an 

ORNL sample to place voxels (3-D cubes) to create a realization [36].  The experimental 

results used  to determine the probability functions of the ORNL sample showed an 

isotropic material, without any short range order (SRO) and a random long range order 

(LRO) [37].  SRO relates to the shape and size of particles in a composite and the lack of 

any definable order means the particles overlap.  LRO tells how particles interact at a 

greater distance and for random materials is a constant.  Nickel has a slightly larger 

particle size, or characteristic length, but other than the difference in volume fractions, 

22% porosity and 43% YSZ, the pore phase and YSZ phase were identical.  All phases 

percolate.  Once the general behavior of the microstructure is understood, these 

probability functions can be used to create new microstructures for analysis.   

1.2.2.  Finite element models 

The FE models can be grouped into three categories: structural, transport, and 

nonlinear behavior.  Nonlinear behavior involves the incorporation of damage, plasticity 

and creep.  Table 1.1 lists each area studied and the objective of the analysis. 
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Table 1.1.  Numerical analyses and objectives. 

Category Field Behavior Objective 

Stochastic percolation 
• cluster size 
• relate volume fraction to 

percolation 
FE Analysis   

• temperature dependence 

Structural elastic constants • porosity dependence 
• statistical variation of 

properties 
Transport thermal conductivity • impact interfacial resistance 

• damage size and location in 
relation to microstructure Damage and 

plasticity 
stress-strain curves 

yield stress 
• importance nickel length scale 
• structural strength of Ni-YSZ 

versus strain rate strain-rate curves Creep stress relaxation • change in internal stresses 
• impact YSZ percolation 

 

A robust reconstruction procedure allows creation of any number of realizations 

of the original ORNL sample and any amount of variations on the initial probability 

functions.  Therefore each analysis will follow the same general principles.  First the 

validity of the analysis will be assessed, followed by an extensive examination of a base 

model.  The base model will either be the original ORNL microstructure or one with the 

same ratio of nickel to YSZ, but varying porosity.  Once the base model is examined, the 

original probability functions are modified.  New realizations are now examined to see 

how bulk behavior changes with alterations in the probability functions.   

The validity of the FE models was examined by primarily looking at the 

discretization error and representative volume element (RVE) size.  Discretization refers 

to the physical size of the voxel used for the realization, while representative volume 

element size is the total size of the realization.  A discretization parameter and RVE size 

parameter are introduced to determine convergence of the FE models.  To test this a 
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comparison to experimental data is used when available.  An examination of field 

behavior with the microstructure might also be used to determine the correct voxel and 

volume size. 

All finite element modeling is performed using the commercial software Abaqus 

6.8.1.  Post-processing of the FE models is performed using the scripting language 

Python.  The models are constructed of eight node block elements with perfect bonding.  

Each voxel of the reconstruction is equivalent to one FE element, which is set to either 

the pore, YSZ, or nickel phase.    

1.3.  Summary 

Porous cermets are of vital importance in the development of pSOFCs, and 

studies have found the anode material to be the material most likely to fail in anode-

supported structures.  Since the fuel cell undergoes high temperatures and stress gradients 

from thermal mismatch and construction, many different factors may play into this 

failure.  It can be useful in pSOFC research to determine how changes in bulk behavior 

can be linked to changes within the composite.  For example, when does nickel creep 

lead to a lack of structural support for the PEN, or which has more impact on the 

modulus: porosity or temperature? 

The nature of the microstructure, three-phase and co-continuous, requires a three- 

dimensional reconstruction process.  Rather than inputting multiple images of different 

anodes, a reconstruction process that can create multiple realizations for varying 

probability descriptors would provide insight into the microstructure.  Voxel 

reconstruction is a computationally inexpensive and flexible method to do this, especially 
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considering it is also a 3D reconstruction.  These realizations can then be used in multiple 

ways to study the porous cermet. 

The following chapter will introduce the stochastic reconstruction in detail, as 

well as different probability functions that can be used for reconstruction.  Chapter Three 

will introduce the cluster function, which can be used to determine percolation in the 

microstructure.  The percolation becomes a parameter that can be directly correlated to 

various material properties.  Chapter Four begins the FE analysis with an extensive 

examination of structural properties.  Significant time is spent on determining the 

accuracy of the model, and then the impact of porosity and internal length scales are 

covered.  In Chapter Five, the transport property, thermal conductivity, is examined, and 

a methodology to account for interfacial resistance in the FE model is covered.  Chapter 

Six and Chapter Seven study nonlinear behavior in the microstructure.  In Chapter Six, 

methods are introduced to study the occurrence of damage and plasticity in the structure.  

Chapter Seven focuses on stress relaxation due to creep in the nickel phase.  General 

conclusions about porous cermets and the use of stochastic reconstructions are covered in 

the final chapter.  Briefly covered will the possible impact for the study of pSOFCs.  
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CHAPTER 2 

STOCHASTIC RECONSTRUCTION 

 

In this work, the 3-phase composite, Ni-YSZ is numerically generated using a 

digitized stochastic reconstruction methodology.  A three-dimensional realization is 

generated from cubic building blocks, termed voxels, distributed to match probabilistic 

functions describing each phase.  The multiple realizations allow determination of the 

statistical variation of key material properties, such as modulus and the coefficient of 

thermal expansion (CTE). 

Reconstruction of heterogeneous structures takes place down several avenues 

depending on the type of microstructure to be studied.  Fiber and particulate composites 

can be reconstructed through tessellation procedures and then analyzed using self-

consistent methods.  Pyrz studied fiber composites using Dirichelet tessellations for 

simulated hard-core models and microscopy images, respectively, where stresses were 

calculated using reflection models [38].  Further research by Bochenek and Pyrz studied 

unidirectional fiber-reinforced composites and particulate composites using Voronoi 

tessellations, where each tessellation is treated as an element with a particle at its center.  

Ghosh et al. directly incorporated RVEs generated from Voronoi tessellations into a 

multi-scale finite element analysis [39-44].  The microstructural model is termed VC- 

FEM and models particulates in a matrix using Voronoi tessellations [39].  The same 

method was used for a multi-scale damage analysis in porous materials [41].  

Additionally, three-dimensional models were created through stereological methods for 

particle reinforced metal matrix composites [40].  Next, the concept of statistically 
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equivalent representative volume elements (SERVE) was used with VC-FEM to study 

fiber and particulate composites that varied randomly within the microstructure [41-44].  

Other methods, such as the “shaking” method, use extremely detailed images of 

particulate composites to exactly recreate embedded impurities or porosity [45-51].  The 

process of smoothing actual particulates in metals was incorporated with probability 

distributions to recreate the materials by “shaking” the particulates [49-51].  Other 

methods perform finite element analyses on the actual microstructure input via the open 

source software OOF.  The OOF model can be used for different studies, such as 

Cannillo’s and Carter’s stochastic damage analysis on a polycrystalline microstructure 

[52].  Each of the methods has different advantages and disadvantages.  Tessellation 

procedures are best used for fiber or particle composites, but not necessarily well suited 

for complex three-phase composites.  While OOF exactly recreates a microstructure it 

does not have the capability to generate new microstructures with the same stochastic 

descriptors.   

 A modification of the simulated annealing method (SAM) is used here for its 

flexibility and efficiency in creating multiple realizations for numerical analysis.  Rintoul 

and Torquato used the simulated annealing method to reconstruct a distribution of 

spheres using the radial distribution function [53].  Yeong and Torquato then applied the 

simulated annealing method to the recreation of digitized media [54].  Calculation time 

was minimized by limiting optimization of the two-point correlation function and the 

lineal path function in orthogonal directions and then updating the functions only along 

rows and columns with one to one pixel exchanges.  However, Manwart and Hilfer noted 

that the time-saving device of using only orthogonal directions will introduce anisotropy 
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for microstructures displaying significant short range order [55].  The impact of short 

range order was reduced by adding additional sampling directions in the SAM procedure 

in work by Cule and Torquato [56].  Microstructural information from a 2D slice can also 

be used to construct a three-dimensional image as shown in Part II of Yeong’s and 

Torquato’s work on reconstructing random media [57].  Rozman and Utz used several 

techniques to improve the efficiency of the Monte Carlo reconstruction, including the 

Great Deluge Algorithm plus an additional criterion for “uphill” moves, limiting pixel 

changes to the interface, and calculating perturbations of the probability functions [58].   

Johnson and Qu used the SAM method in addition to Rozman and Utz’s modifications to 

recreate three phase 3D microstructures, the primary basis for the following work [36].   

 A 3D reconstruction process is required for study of Ni-YSZ due to the continuity 

of each of the phases, making it possible that a 2D reconstruction will not capture the 

structural strength of the microstructure.  Since the Ni-YSZ is isotropic, 2D probability 

functions can be easily expanded to 3 phases and the SAM method provides an efficient 

methodology to recreate this 3D microstructure.  The use of cubes allows many different 

realizations to be created, while keeping the model small enough to be studied 

numerically.  Another advantage of SAM is the ease with which microstructural changes 

can be implemented in the reconstruction.   

 The chapter begins with an explanation of the theory behind random media and 

the introduction of the probability functions used for the reconstruction similar to that 

published by Johnson and Qu [36].  The reconstruction of the microstructure is then 

discussed in detail followed by an analysis of the accuracy of the reconstruction.  

Computational details such as expense and methodology will be described throughout.  
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2.1.  Theory of random media 

2.1.1.  Indicator function 

 For any media of volume  the microstructure can be fully characterized by an 

indicator function 

iV

( ) 1,    if  
( )

0,   otherwise
i ix V

I x
∈⎧

= ⎨
⎩

  ,      (2.1)

where i  is the phase number, and x  is the vector location within the volume.  The 

microstructure is assumed to be static and therefore is not a function of time.  

 The indicator function describes every possible point with a material, such that for 

any number, , of phases the following equality holds, k

  .        (2.2) ( )

1
( ) 1

k
i

i
I x

=

=∑

2.1.2.  Probability functions 

 The indicator function (2.2) allows any random media to be described by 

determining the probability of a desired event or occurrence.  For example, an event of 

interest could be when multiple points lie within the same phase.  Such an event is an 

example of the -point probability function as illustrated in (2.3). n

( )( ) ( ) ( ) ( )
1 2 1 2( , , , ) ( ) 1, ( ) 1, , ( ) 1i i i

n n nS x x x P x x xi= Ι = Ι = Ι =… … ,  (2.3)   

where indicates the probability that a given location lies within phase i .  As the order 

 increases more microstructural details are captured. 

P

n

 If the probability distributions of a material are invariant with respect to location, 

the material is statistically homogenous and the material is ergodic.  Plus, if the random 

media does not depend on the orientation of the vector positions, but only on the 
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magnitude of the distance between the points, it can be considered isotropic. In this case, 

the n-point functions now become functions of the distance between the points such that 

j ir x x= − . 

 Thus for homogenous media the 1-point function will reduce to the volume 

fraction, , of the material, iϕ

   ( )( ) ( )
1 ( )i i

j iS P x ϕ= Ι =  ,      (2.4) 

and the 2-point functions become functions of distance , r

( ) ( )( )( ) ( ) ( ) ( )
2 2 1 2 1 2( ) ( , ) 1, 1i i i iS r S x x P x x= = Ι = Ι  = .   (2.5) 

Bounds exist for the 2-point function in homogenous media as the radius reduces 

to zero or extends to infinity.  These are 

( )
20

lim ( )i
ir

S r ϕ
→

=   and       (2.6) 

( )2( )
2lim ( )i

ir
S r ϕ

→∞
=  .       (2.7)  

 In equation (2.6),  reduces to  as  decreases and the two points 

converge to each other.  In equation (2.7), as the distances between the points increase, 

they are no longer spatially correlated and the 2-point approach becomes equivalent to 

calculating the  at two separate points as shown in 

2 ( )iS r 1 ( )iS r r

1 ( )iS r Figure 2.1.    
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Figure 2.1.  Example 2-point probability function. 

 

2.1.3.  Compatibility 

The behavior of the 2-point probability function as  approaches zero provides a 

hint to the relationship between the probability functions for multiple phases.  For a two-

phase material, the description of one phase will guarantee its complement to the second 

phase, and Torquato and Stell showed that any n-point probability function can be written 

as a function of the other phases [22].  Thus as the number of phases increases the 

relationship must also be quantified between the phases, i.e. for three phases there are 

actually nine phases, namely phase 1, phase 2, phase 3, and permutations of any set of 

two phases.  Therefore a complete set of probability functions fulfills the following 

equality for any distance, , in 

r

(2.8). r

( )

1 1
( ) 1

k k
ij

i j
S r

= =

=∑∑         (2.8)  
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However, if the reconstruction used all available probability functions to recreate 

a microstructure, it would be over-constrained, and only an independent set of three 

probability functions are needed.  For a three-phase microstructure, this condition can be 

satisfied by using , , and ( )1S ( )2S ( )3S  (see proof in Appendix A based on [59]). 

2.1.4.  Alternate probability functions 

The reconstruction does not have to be based on the use of n-point probability 

functions.  Different characteristics can be captured by establishing different criteria.  An 

example is the lineal path function.  This function is equivalent to the two-point 

probability function except that now the path connecting the two points must lie in the 

same phase.  Another example of function is the cluster function, which requires two 

points be connected within the same particle.  These functions give some higher order 

information about connectivity of the phases, without the computational expense of n-

point probability functions of .  It should be kept in mind that the function 

definitions are arbitrary, and therefore cannot be treated in the same manner as n-point 

functions.  These functions will be discussed further in Chapter 3. 

2n >

2.2.  Reconstruction methodology 

The realizations were generated using the digitized simulated method introduced 

by Yeong and Torquato with modifications from Rozman and Utz [57, 58].  The 

algorithms were implemented in the C++ language and the GNU GCC compiler [60].  A 

complete set of the code can be found in Appendix B.  The reconstruction procedure 

modifies the indicator function in equation (2.2) until the sample matches the desired 

probability functions.  Then the indicator function is used to create a voxel representation 
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of the material for further numerical use.  Each voxel represents a different phase.  The 

algorithm is described in Figure 2.2.   

 

 

1. Set sample size, voxel size, volume fractions, and reference 

probability functions ( ( )i
reff ). 

2. Used random number generation to seed indicator function. 
( )i

newf3. Calculate probability functions ( ) of current realizations in all 

three orthogonal directions. 

4. Exchange random voxels located on interface.  (A two-set paired 

voxel exchange is used to maintain volume fraction.)  

5. Update probability functions using perturbation in each orthogonal 

direction. 

E ) 6. Calculate energy (

( ) ( )( )2( ) ( )i j i j
ref

i j
newE f r f r⎡ ⎤= −⎢ ⎥⎣ ⎦∑∑  

7. Accept or reject change.  Allow uphill movement through threshold 

value ( ) ∇

( )
( )

if 11
  

if 10
new old

new old

E E
P

E E
< + ∇⎧

= ⎨ > + ∇⎩
 

8. Repeat until an accepted criterion is reached. 

Figure 2.2.  Reconstruction algorithm. 

 

The efficiency of the process was increased by using voxel selection at the 

interface, by sampling in orthogonal directions, using the great deluge algorithm, and 

using perturbations to calculate the correlation functions [36].  Recall that Manwart and 

Hilfer showed that sampling in orthogonal directions is acceptable for functions without 

short range order [55].  Boundaries are periodic.   
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Part of the flexibility of the DIB reconstruction is the ability to define an energy 

criterion based on desired probability functions.  Any desired probability function can be 

used and these individual functions can be weighted as desired.  This is because the 

energy function minimizes the least square difference between a given set of probability 

functions and the functions existing at the current time step of the reconstruction. 

2.3.  Ni-YSZ reconstruction 

For this work, the three phases are described using the equation for Debye random 

media [61, 62].  For Debye media, the 2-point probability function does not exhibit any 

short-range order and is defined by one characteristic length, λ , and the volume fraction 

of the reconstructed phase, iϕ .  The analytical expression for Debye media is shown in 

(2.8).  

( ) ( ) 2
2 ( ) (1 ) ( )i r

i i iS r e λϕ ϕ −= − + ϕ      (2.9)  

These functions were found to match experimental data obtained from analysis of  

the anode material made at Oak Ridge National Laboratory (ORNL) [37].  Micrographs 

of the anode were obtained from a SEM (Joel 1530) with a pixel size of 0.05μm x 

0.05μm.  The characteristics of the ORNL sample are listed in Table 2.1. 

 

Table 2.1.  Parameters of ORNL Ni-YSZ. 

 iϕ λ  ( μm ) i Phase 

1 Nickel .35 .60 

2 YSZ .43 .40 

3 Pores .22 .40 
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Since nickel has the largest characteristic length, it is used to determine the length 

and size of the total reconstructed sample.  Two parameters will be used for the 

reconstruction.  The first parameter, , will relate to the physical size of the sample and 

is a function of the representative volume length, , and 

N

λRVEL  such that 

RVELN
λ

= .        (2.10) 

The next parameter, , relates the size of the realization to the voxel length, . voxelLR

RVE

voxel

LR
L

=  .        (2.11)  

Accurate reconstruction of Ni-YSZ is based on correctly balancing these 

parameters, where  relates to physical size and N R  describes discretization as illustrated 

in Figure 2.3.  As the voxel length decreases, with R  increasing, more short range 

behavior is captured, and as the RVE length and  increase, more long range behavior is 

captured.   

N

In future chapters, several sets of realizations are generated for varying sizes and 

compositions.  However, in the rest of this chapter the ORNL sample, as described in 

Table 2.1, is used. 
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Figure 2.3.  RVE length versus voxel length for to 2-point probability functions ORNL. 

 

2.3.1.  Two-point probability 

Using equation (2.9) and the parameters listed in Table 2.1, the microstructure is 

reconstructed from a completely random distribution to a three-phase representation of 

Ni-YSZ.  The reconstruction was done for multiple voxel and volume sizes, but only an 

 of 50 and of  20 is illustrated in N Figure 2.4.   R
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Figure 2.4.  (a) Probability distribution for random microstructure (b) image of random 

distribution (c) probability distribution for final realization and (d) image of final 
realization (black – nickel, grey – YSZ,  light grey – pores). 

 

To confirm that the reconstruction has a realistic indicator function and phase 

relationships, all nine two-point probability functions were checked to determine whether 

equation (2.8) was satisfied.  Figure 2.5 shows how the sum of functions will equal unity 

for every distance between the two points.  Also, as the mixed phase probability functions 

extend toward infinity, they become equal to i jϕ ϕ .  This condition guarantees that each 

phase has random long range order (LRO).  Both of these conditions ensure that the 

artificially generated indicator function accurately describes the composite.    
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Figure 2.5.  Sum of complete set of 2-point functions for Ni-YSZ. 

 

2.3.2.  Lineal path probability 

Experimental data also provided lineal path functions for the microstructure [37].  

The lineal path functions used in the reconstruction were best fit polynomial 

approximations from the experimental data.  Examination of Figure 2.6 shows that the 

lineal path function for the nickel phase takes slightly longer to reach zero, corresponding 

with its larger characteristic length over the other two phases.  
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Figure 2.6.  (a) Lineal path probability functions for Ni-YSZ and (b) image of lineal path 

based reconstruction. 

 

2.4.  Accuracy and computational expense 

Two reconstructions have been generated, one based on the 2-point probability 

function and the other based on the lineal path function.  Other than the material analysis 

in future chapters, two ways currently exist to differentiate between the reconstructions.  

These are the final energy of the realization (refer to Figure 2.2) and the computational 

expense of creating the realization.   

During the reconstruction, the minimum acceptable energy, or least square 

difference, for the 2-point reconstruction was set to 1x10-7 for a given radius around the 

sampling point.  For the lineal path analysis, the reconstruction would reach a global 

minimum well above this value, suggesting limitations in its ability to completely 

describe a microstructure.  In Figure 2.7, the least square difference for the entire sample 

is totaled and compared between the two reconstructions.  For the two-point 

reconstruction, the lineal path behavior is not captured.  However, the lineal path 

reconstruction will accurately capture some minimum of the two-point probability 
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function, which is shown by the difference in scales between the figures.  Primarily, the 

long range behavior of the microstructure is replicated using the lineal path function, 

while some of the short range behavior is lost.   
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Figure 2.7.  Difference between energies for final 2-point and lineal path probability 

functions for (a) the 2-point reconstruction and (b) the lineal path reconstruction. 

 

The slight gain in microstructural detail with the lineal path function must also be 

balanced with the added computational expense.  A primary advantage of the 

reconstruction methodology is the efficiency with which multiple realizations can be 

created and their microstructure modified.  Figure 2.8 shows the exponential increase in 

reconstruction with volume size.  The large increase is due to the nature of a 3-D 

reconstruction. 
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Figure 2.8.  Computational expense of the reconstruction against number of elements. 

 

2.5.  Summary 

The methodology for a voxel reconstruction of Ni-YSZ has been detailed and 

demonstrated for a realistic three-phase microstructure.  The reconstructions were found 

to be compatible and a realistic representation of the microstructure.  While the lineal 

path reconstruction captured more microstructural details than the 2-point 

reconstructions, the 2-point one was found to be much more efficient.  The next chapter 

will further focus on connectivity by investigating percolation in the reconstructions.  The 

final chapters will study the material behavior of the microstructure via finite element 

analysis.   
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CHAPTER 3 

PERCOLATION 

 

 In complex composites, such as Ni-YSZ, the continuity of the phases will control 

fuel/air flow through pores, electron transfer in nickel, and the overall structural strength 

due to YSZ.  Percolation of a system is a measure of connectivity, or clustering, but 

cannot be measured by lower order probability functions, such as the two-point function.  

Most significantly, the two-point probability function provides no insight into the 

percolation threshold.  The percolation threshold, which Torquato defined as “the point 

where a cluster [connected group of elements] first spans the system”, is a parameter 

which will tell us if flow can occur through a phase [63]. 

 Torquato et al. used the two-point cluster function specifically to study 

percolating clusters in a composite system, and proved that the cluster function will 

become long ranged at the percolation threshold in a system [64].  Lee and Torquato 

numerically confirmed the long-range behavior at the percolation threshold for penetrable 

concentric-shell models [65].  Additionally, Lee and Torquato used series expansions of 

the mean cluster size to determine the percolation threshold, by calculating the point 

when the cluster size became infinite [66].  Percolation, as an infinite spanning cluster, is 

strongly influenced by both boundary conditions and window size.  Sang Bub Lee 

reduced this impact using free boundary conditions for an optimized cell window, while 

Yi and Sastry treated percolation as a probabilistic property that approached unity as the 

window size increased [67, 68].   
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 Percolation and its threshold for a given system is also scalable for given material 

properties, such as structural properties and transport properties like thermal conductivity.  

For instance, in a two-phase porous medium, there will be a point of percolation where 

the material will no longer be able to support loads, etc.  In continuum systems, Feng et 

al. determined power relationship exponents for elasticity, conductivity, and permeability 

[69]. 

 In this chapter, the cluster function is studied in relation to the 3-phase 

microstructure generated in Chapter 2.  It is used to contrast the lineal path function 

reconstruction with the original Debye reconstruction.  Finally, the impact of 

discretization is discussed and the percolation threshold is determined for the pore phase. 

3.1.  Theory 

3.1.1.  Probability functions 

 Two-point probability functions provide little information about how particles are 

connected within a microstructure.  Higher order functions, such as the 3-point 

probability function, can provide this information, but are computationally expensive to 

use.  Another approach is to add constraints on the 2-point function that will provide 

connectivity information such as the lineal path function defined in Chapter Two.  

Another function along those lines is the cluster function, which is defined heuristically 

in equation (3.1)  

    (3.1) 1 2( )
2

probability that   and  can be connected
( )

by any line that lies entirely in phase         
i x x

C r
i

≡
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 While the development of the lineal path and cluster functions is not as rigorous 

as that seen for the n -point functions, bounds also exist.  As r  approaches zero eqn. (3.1) 

will also equal the volume fraction, representing a cluster of one particle.   

3.1.2.  Continuum percolation 

 In a multi-phase microstructure, the volume fraction, iϕ , of a given phase i  is 

equivalent to the probability that a given point will lie in a cluster of any size.  The 

percolation threshold, icϕ , is the minimum volume fraction needed for a volume spanning 

cluster to first appear.  This implies the following relationship, 

  if 0  then phase  is continuous in the volumeic iϕ > .  (3.2) 

 Determination of icϕ  is dependent on volume fraction, microstructural features, 

volume size, and so on.  The final value is non-universal and is relevant only to a given 

specific microstructure. 

 Torquato et al. demonstrated that the cluster function will become long ranged at 

the percolation threshold such that [64], 

( )
2lim ( )i

icr
C r ϕ

→∞
= ,       (3.3)   

thus providing a way to determine when continuity occurs in any given phase for any set 

microstructure.  For this work, the distance, ,  where the cluster function begins to 

approach the percolation threshold is designated by 

r

( )i
CL .  It serves as a measure of 

clustering independent of percolation.  The mean cluster size, iZ ,  will be infinite in a 

continuum system that satisfies condition (3.2) and can be calculated from 
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( )
2 ( )ii

i
i

Z C r drη
ϕ

= ∫  ,       (3.4) 

where η is the particle density. 

3.2.  Methodology 

 In the voxel reconstruction used here, each voxel is treated as a separate particle 

and is considered to be connected if any two particles share a full side.  This provides the 

most conservative estimate of percolation possible.  A cluster map is created that records 

each individual cluster for a phase and the location of each particle within it.  For 

instance, in Figure 3.1, a total of eight clusters exist in the 2D representation.  Each 

cluster is denoted with a white line.  Then while sampling through the entire system, a 

two step criterion is used to determine the probability.  First are any two points of the 

same phase (i.e. calculation of ), and second are the two points in the same cluster.  ( )
2

iS

  

 

Figure 3.1.  Illustration of voxel cluster in YSZ phase. 
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 While orthogonal sampling is used for , the cluster functions are not restricted 

to orthogonal planes.  This is unlike the current methodology in calculation of the lineal 

path function, that samples only in three directions, and which would have binning 

complications if multiple directions or a purely random sampling was used.  The curves 

are averaged across five realizations. 

( )
2

iS

 The percolation threshold is found when the change in percolation is less than 

0.1% across the length.  Boundary effects are neglected, and the periodicity of the 

microstructure ignored.  To test the periodicity assumption, plot Figure 3.2 shows the 

cluster function for different measures of periodicity, where  states the number of 

voxels that are overlapped into the measurement.  The x-axis distance between points is 

kept in voxels.  While the curve changes, the overall change is small.  Also, since 

periodicity is included, volume fraction is now capable of fluctuation.  Therefore, to 

provide a more conservative estimate and to maintain volume fraction, periodicity is 

neglected.   
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Figure 3.2.  Impact of periodicity on clustering in pores. 
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3.3.  Results 

3.3.1.  ORNL sample 

 In Figure 3.3, the cluster function, calculated without periodicity, is plotted for the 

ORNL sample reconstructed in Chapter 2.  It can be seen that clustering follows behavior 

similar to that of the two-point functions.  The lower long range order (LRO) is to be 

expected since all particles do not lie in one continuous cluster.  The close match in short 

range order (SRO) happens, because for smaller distances, the points are more likely to 

connect.  There is minimum difference in the nickel 2-point probability and cluster 

function, probably owing to the longer λ  in this phase. 
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C
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Figure 3.3.  Comparison of  and  for ORNL sample. ( )
2 ( )iC r ( )

2 ( )iS r

  

 To test the convergence behavior of the cluster function, the pore phase for 

increasing sizes, which measure discretization as a ratio of  to , is plotted in RVEL voxelLR
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Figure 3.4.  These functions are shown for both the two-point reconstruction and the 

lineal path reconstructions in Chapter Two.  Also plotted for reference is the long range 

order (LRO) of .  However, the lineal path function has a less consistent 

convergence behavior.   

2
poreS

( )i
CL iZ The lineal path reconstruction has different  and  sizes for nickel and YSZ 

as listed in Table 3.1 except for the pore phase.  Since the average cluster size would be 

infinite for a continuous media, in this work it is calculated across three-fourths of the 

sample width, both to eliminate boundary effects and to capture more SRO behavior. 

   

Table 3.1.  Percolation values of ORNL sample for R = 50 and N = 20. 

( )i
cL   

  ZModel Phase i icϕ i
( μm ) 

Ni 2.2 0.125 4.77 

YSZ 2.6 0.177 6.57 2-Point 

Pore 2.9 0.032 1.57 

Ni 3.1 0.125 4.07 

YSZ 1.9 0.180 5.56 Lineal 

Pore 2.9 0.034 1.57 
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(b) 
Figure 3.4.  Comparison of cluster function for (a) two-point and (b) lineal 

reconstructions based on ORNL sample. 
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3.3.2.  Percolation threshold 

 Based on (3.2) it is reasonable to assume that when the cluster function reaches 

zero, flow will no longer occur within the phase for a given volume.  As porosity 

decreases, the percolation threshold (eqn. (3.3)) and cluster size (eqn. (3.4))  also 

decreases.  These values are plotted against varying porosities in Figure 3.5.  For the 

realizations with 14% porosity, the phase no longer percolates and the average cluster 

size across the volume significantly drops.  In ( )i
CLFigure 3.6, the length at percolation, , 

is plotted.  The percolation threshold works well with a linear fit, and in the analysis, 

average cluster size matches a power curve.  The fitting is done using the commercial 

software SigmaPlot and information on the equations can be found in Appendix C [70].  

From the linear equation the percolation threshold equals zero at 16%.  Both percolation 

threshold and average cluster size are closely correlated to porosity.  The length at which 

percolation occurs, Figure 3.6, has higher variability, but is also independent of porosity, 

at least until the minimum threshold is approached. 
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Figure 3.5.  Percolation threshold (a)  and average cluster size (b)  as porosity decreases. 
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Figure 3.6.  Cluster size across 12μm volume for different porosities. 
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3.4.  Discussion 

 The cluster function introduced in (3.1) provided information about connectivity 

of the system through the percolation threshold and other parameters.  It also 

differentiated between the continuity in different reconstructions.  Figure 3.4 shows that 

an R  greater than forty captures the long range behavior of the cluster function.  At this 

point, the cluster function differentiates between the lineal path and two-point 

reconstructions in the different cluster sizes and lengths at percolation (refer to Table 

3.1).  The curves for porosity, however, are not significantly different.  This probably 

relates to the porosity having a volume fraction of 22%, which means the smaller volume 

fraction dominates more than phase distribution.  Figure 3.5 and Figure 3.6 prove that 

continuity will occur in the porous phase until 16% porosity and that pore
CL  is the only 

parameter independent of the volume fraction of porosity. 

3.5.  Summary 

 The percolation threshold and length have been introduced, as has a methodology 

for measuring them.  These parameters, though specific to the reconstruction, can now be 

used as another measure of microstructure in future chapters.  In the next chapter, 

percolation threshold and length will be shown to correlate with changes in modulus. 
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CHAPTER 4 

EFFECTIVE STRUCTURAL PROPERTIES 

 

 Theories behind random heterogeneous materials use probabilities to characterize 

the distribution of phases within a microstructure, and as the phase distribution is 

stochastic, so will be the overall material response of the microstructure.  Determination 

of effective properties becomes a function of the representative volume element (RVE), 

the length scales of heterogeneities, constituent properties, and the specific field behavior 

being studied.  For any numerical analysis, computational error will also become a factor 

due to discretization of the microstructure.  Therefore, before an accurate material 

analysis can take place, the necessary number of realizations and sufficient RVE size in 

relation to the microstructure must be determined.  Once an RVE is established, changes 

in effective properties can be related to the volume fractions, microstructural details, and 

so on, allowing an efficient way to predict material behavior. 

 A major difficulty in the study of composites is that for every material behavior 

studied, the necessary RVE may change.  A fiber composite can be easily studied with 

one 2D image of one fiber in a square, but as complexity grows, so will the RVE, Figure 

4.1.  Rules of thumb exist, such as that the RVE must be eight times larger than the 

largest characteristic length, yet examination of the literature shows no consistent 

formulation of RVE size [44, 46, 71-74]. 
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Figure 4.1.  Examples of various RVEs. 

 

 Typically, material properties will be determined either through bounds or 

through analysis of a specific RVE.  Bounds on material properties can be determined 

through variational methods such as Hashin-Shtrikman, which is based on volume 

fraction [75].  For greater accuracy, two-point and higher probability functions can also 

be used for bounds on material properties ranging from the effective elastic modulus, 

thermal conductivity, and even nonlinear plasticity [76-78].   

 In RVE analyses, FE methods are often used.  The shape of the mesh depends on 

the reconstruction method, but could consist of regular shaped elements, or an irregular 

geometry dependant mesh.  The microstructure is put into the FE model and then the 

constituent materials are controlled by the appropriate constitutive equations.  Segurado 

et al. studied the effect of clustering on the total strength of metal matrix composites 

through a nonlinear FE analysis with a geometry dependant mesh [79].  Schmauder et al. 

used a plastic flow model to study residual stresses [80].  Shan and Gokhale created FE 

models from serial montaging and reconstructions to capture material behaviors at the 

desired length scales [47].  Examples of digitized, or regularly shaped FE elements, also 

exist for various mechanical analyses.  Garboczi and Day used a linear elastic finite 

element model to determine bounds on the Poisson’s ratio and other elastic properties for 
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any microstructure that can be digitized [71].  Terada et al. used digital images of fiber 

composites to look at microscopic stress variation and to determine the effective modulus 

and shear modulus [81].   Takano et al. used a voxel mesh to study the stress behavior in 

a porous microstructure [82].  Kumar et al. used the Yeong-Torquato reconstruction to 

perform an elastic-plastic analysis on multi-phase composites, which accurately modeled 

stress-strain curves and shear band localization [83].  Mishnaevsky and co-workers used 

voxel meshes to study damage growth in metals with particulates, graded composites, and 

porous microstructures [84-86].   

 In any FE analysis of composites, the first step is to determine RVE size.  From a 

stochastic standpoint, the RVE is a volume sufficiently large to capture the statistical 

mean of the larger material [72, 73].  The RVE will vary in size and shape depending on 

the microstructure and application.  Shan and Gokhale determined the smallest acceptable 

RVE sizes for fiber composites by using FE models containing different fiber sizes, 

volume fractions, configurations and different length scales [46].  Gitman et al. used FE 

to develop a stochastic criterion for representative volume elements [74].  A chi-square 

criterion was used to find lower size bounds by looking at different realizations and 

volume fractions.  Knit et al. provided a quantitative definition of RVE size with the 

understanding that the material property measured will change the minimum size of the 

RVE [73].  Lastly, Swaminathan et al. investigated the size of statistically equivalent 

RVE’s (SERVEs) using four different methods; 1) convergence modulus, 2) marked 

correlation functions, 3) distribution of significant microstructural features, and 4) two-

point correlation functions [44].  
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 Since it can be assumed the RVE will change for any material property, the work 

presented in this chapter focused on structural and expansion properties brought about by 

the stresses and strains occurring in the microstructure.   

 Initially, to study RVE size and discretization errors, each realization was 

converted into a FE model and appropriately modeled.  Primarily, a graphical portrayal of 

the results is provided, but limited quantitative measures are used throughout to validate 

conclusions.  This chapter focuses on the macro response of each realization, and detailed 

studies of field behavior within the microstructure were left for future chapters.  The 

analysis was organized to meet the following objectives: 

• To provide a “rule of thumb” in the determination of representative 
volume element size and appropriate voxel size. 

• Determination of the mean and standard deviation of the effective 
property (assuming normality of data spread) with comparison to 
experimental data. 

• Investigation into the appropriate number of samples and 
robustness of the analysis.  

 After determining the adequate RVE size, the microstructure was used to study 

increasing porosity.  Then the impact of internal length scales on effective properties and 

clustering in the microstructure was studied.  The impact of temperature also provided 

insight into how the bulk parameters, such as volume fraction and variation of constituent 

properties, affect the microstructure.  This is an extension of work previously done by 

Johnson and Qu [36]. 
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4.1.  Theory 

4.1.1.  Representative volume elements 

 Representative volume elements (RVEs) must be of sufficient size to be 

statistically equivalent to the microstructure while still capturing the effective behavior 

independent of boundary effects or loading.  In this work the RVE is represented by a 

cube shaped realization with sides of length, ,  and volume, V .  Boundary 

conditions are prescribed within the volume, or on the surface, 

RVEL

Vδ ,  as illustrated in 

Figure 4.2. 

Vδ

x

y

z

V

O

RVEL

Vδ
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z

V

O

RVELRVEL

 

Figure 4.2.  Schematic of representative volume element (RVE). 

  

( )ixF The volume average of any variable field value ( ) occurring within the RVE  

is defined by  

1
( )iV
x dV

V
≡ ∫F F  ,        (4.1) 
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ixwhere  is the position vector for a Cartesian coordinate system.  The subscript i  refers 

to indicial notation.   

 An additional notation will be used in this work that indicates a volume average 

within a specific phase in the microstructure, which is denoted by adding a phase suffix, 

.  1 2  or 3, ,k =

1
k

k
iV

kx dV
V

≡ ∫F F( )        (4.2) 

 The effective field behaviors for the RVE will be denoted by a superscript bar 

such as F . 

 Material properties such as Young’s modulus, E , and Poisson’s ratio, , are 

isotropic composite properties unless a subscript is used to denote a specific phase.  

v

4.1.2.  Effective properties 

tot
ijε The total effective strain, ,  occurring within a composite in the elastic regime 

can be written as a sum of the elastic strain, thm
ijε, and thermal strains, , such that ijε

tot tot thm
ij ij ij ijε ε ε ε≈ = + .      (4.3)   

tot
ijεIn equation (4.3),  refers to the strains calculated from the composite modulus, E , 

and thermal expansion, α , and is equivalent to the volume average strain.  The subscripts 

are indicial notation. 

 By assuming isotropy and Hooke’s law, equation (4.3) can now be written as a 

function of the Cauchy stress ( TΔ), delta temperature (ijσ ), the coefficient of thermal 

expansion and elastic constants ( ) as shown in ,E v (4.4).  ( )mmα ijδ  is the Kronecker 

delta. 
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( )1tot
ij ij mm ij mm ijT

E E
ν νε σ σ δ α

+
= − + Δ  δ .   (4.4) 

 To solve for the constants in equation (4.4), three different load cases are 

required.  Solving for CTE a temperature load is required such that, 

   for T CΔ = ix V∈        (4.5) 

and C represents any given constant. 

The effective CTE is now 

tot
ii ii Tα ε≡ Δ  .       (4.6) 

 Internal stresses are now developed within each phase, such that 

1
0

n
p

p
p

σ ϕ σ
=

⎡ ⎤= ⎣ ⎦∑ =  ,       (4.7) 

where  is equal the volume fraction of each phase, , for  phases.   nppϕ

 The second case used a hydrostatic, or volumetric expansion, ,  to determine the 

bulk modulus such that 

e

ij ii
dVe
V

ε α= = − ΔT  ,       (4.8) 

Vδ  must equal (4.9)-(4.11). and where the displacements applied on 

    for  1iu C= i RVEx L= ,      (4.9) 

    for  iu = 0 0ix = , and      (4.10) 

   for 2T CΔ = ix V∈ .       (4.11)   

 Equation (4.4) can now be solved for the bulk modulus,  

3 1 2 3
iiEK

v e
σ

= =
−( )

.      (4.12)   
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The assumption of isotropy is verified by ensuring that  

11 22 33σ σ σ≈ ≈   and       (4.13)  

12 23 13 0σ σ σ≈ ≈ ≈  .        (4.14)

Stochastic variation in microstructure requires the approximation sign.  Knit et al. showed 

that the coefficients of the full elasticity matrix converged to zero as RVE size increased 

[73]. 

 Lastly, the modulus was solved by application of a fixed displacement in any 

given orthogonal direction as listed in equations (4.15) through (4.17). 

    for  1iu C= i RVEx L=  and       (4.15) 

    for  iu = 0 0ix =  for .     (4.16) 1, 2,  or 3i =

   for 2T CΔ = ix V∈ .       (4.17) 

 Now the temperature-dependant Young’s modulus can be found using the 

following relationship. 

p
p iiii

ii tot
ii ii ii

E
T

ϕ σσ
ε ε α

= =
− Δ

  .      (4.18) 

In equation (4.18), as the thermal strain approaches the total strain for small loads, a 

singularity will occur, meaning that the effective modulus should be determined well 

away from small applied strains.   

 The combination of hydrostatic expansion and deformation in only one 

orthogonal direction can used to solve for shear modulus and Poisson’s ratio through the 

following relationships,  

3
9

KEG
K E

=
−

    and  3
6

K E
K

ν −
= .     (4.19) 
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4.2.  ORNL sample analysis 

Since nickel has the largest characteristic length, refer to the ORNL sample in 

Table 2.1, as it is used to determine the length and size of the total reconstructed sample.  

The  and N  parameters (refer to eqn. (2.10) and (2.11)R ) are used in the creation of 

multiple realizations.  As previously defined, the parameter R   is the ratio of  to 

 and provides information on the discretization of the microstructure, while  

relates RVE size to the largest 

RVEL

NvoxelL

λ  of the microstructure.  The parameters  and N R  

provide a dimensionless method of balancing the requirements of volume size and 

discretization of a voxel reconstruction.   

Three additional models were also constructed for comparison purposes with the 

ORNL model:  a random distribution, a periodic distribution, and finally a lineal path 

based reconstruction.  The lineal path reconstruction used six order polynomial 

approximations of the lineal path functions determined from the ORNL sample and is 

plotted in Figure 2.6 with the same RVE size and voxel size as the realization in Figure 

2.4(c-d).  The random distribution in Figure 2.4(a-b) has the same volume fraction of the 

ORNL sample, but each voxel was placed using a random number generator.  The 

periodic microstructure was arbitrarily set so the volume fractions are maintained and the 

RVE can be treated as a unit cell in recreating a larger structure, shown in Figure 4.3.    
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Figure 4.3.  Unit cell RVE with volume fraction of ORNL sample.  

 

4.2.1.  Finite element model 

 The commercial software Abaqus was used to perform the finite element analysis.  

For each digital image reconstructed, the voxels were transferred to 8 node brick 

elements and input into a FE model.  Perfect bonding was assumed between the elements, 

and each element was assigned the material properties corresponding to the digital 

reconstruction.  

4.2.2.  Constituent material properties 

At room temperature the structural properties between nickel and YSZ are very 

similar; however, the temperature related properties of nickel are both significantly larger 

and more variable than YSZ.  Table 4.1 lists the relevant material properties at room 

temperature and at 1000ºC (complete Abaqus property files are included in Appendix D).  

The pore phase had a modulus of 1 MPa and a CTE of 0 /ºC.  Figure 4.8 also includes 

plots of CTE for YSZ and nickel.  Experimental studies of the electrolyte material, non-

porous nickel 8mol% ytrria (YSZ) material, were used as the YSZ properties in the Ni-

YSZ composite [27, 33, 87].   

 50



 

Nickel is treated as a general polycrystalline material with primarily linearly 

dependant temperature properties.  Grain size dependence is neglected.  The behavior of 

nickel around the Curie point is complicated by the sudden jump in thermal expansion 

from the paramagnetic transition; therefore, a temperature dependent equation of CTE 

was used from the work of Faisst [88].  This expression was applied to published linear 

values to provide the CTE from 0ºC-1000ºC [89].  The change in modulus due to 

temperature for nickel is a linear relationship discussed by Kocks and Chen and 

commonly reported modulus values [90, 91].   

 

Table 4.1.  Comparison of constituent material properties. 

Property Temp. (ºC) YSZ Ni Ratio Ni to YSZ 

25 216  207  1.0 
E (GPa) 

1000 216  121 0.6 

25 0.32 0.31  1.0 
ν 

1000 0.32 0.31 1.0 

25 8.5 12.5 1.5 
CTE (10-6/ºC) 

1000 10.5 19.8 1.9 

 

4.2.3.  Convergence analysis 

4.2.3.1.  Discretization error and RVE size 

 Before determining the effective behavior of the modulus for varying 

microstructures, the accuracy and acceptable RVE size of the ORNL model are 
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determined.  This is done by examining the effective material properties for varying 

discretization error and RVE sizes for the ORNL sample. 

In Figure 4.4, box plots are provided for the modulus at two temperatures, as well 

as the CTE of the ORNL sample.  The plots in the left column keep a constant volume, 

while varying R . The plots on the right column vary  while maintaining a constant 

element size.  The line within each box plot is the median value of five samples with 

properties measured in the three orthogonal directions for a total of fifteen data points.  

The box itself represents the middle 50% of the data and the lines extend to the outliers.   

N

 In Table 4.3 and Table 4.4 the t-test and the chi-square criterion are used to 

compare the mean, χ ,  and standard deviations, ,  between the samples for modulus 

data.  This was done to validate the use of box plots to determine acceptable element and 

volume sizes.  In 

S

Figure 4.1, Table 4.2 and Table 4.3, one particular volume is 

highlighted in grey.  Even though each material property has different convergence 

behaviors, this volume was found to be acceptable for each analysis.   

 The convergence behavior of the lineal, random, and periodic reconstructions are 

shown in Figure 4.5.  The mean values are plotted against a ratio of voxel size to 

characteristic length, which clearly illustrates the convergence behavior as voxel size 

decreases.  Once a sufficient voxel and RVE length are reached, it can be seen that the 

results are independent of RVE size. 
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Figure 4.4.  Box plots of discretization error and RVE size for Young’s modulus at room 
temperature (a-b), Young’s modulus at 1020ºC (c-d), and CTE at 1020ºC (e-f). 

 

53 



 

 

Table 4.2.  Discretization of modulus at 25ºC. 

LRVE  
(μm)

Lvoxel  
(μm) 

chi-square 
test** t-test* Model # Num R N χ (GPa) S 

ORNL 15 10 20 12 1.20 119.56 2.12 fail fail 
ORNL 15 20 20 12 0.60 118.29 1.63 fail pass 
ORNL 15 30 20 12 0.40 113.91 1.26 fail pass 
ORNL 15 40 20 12 0.30 111.42 1.71 pass pass 
ORNL 15 50 20 12 0.24 110.82 1.29 – – 
ORNL 15 60 20 12 0.20 110.28 1.78 pass fail 

*NULL Hypothesis – Mean of sample is equivalent to mean of Model #5 with failure to reject hypothesis at 
5% significance level. 
**NULL Hypothesis – Variance is equivalent to variance of Model #5 with failure to reject hypothesis at 
5% significance level. 

 

Table 4.3.  RVE size of modulus at 25ºC. 

LRVE  
(μm)

Lvoxel  
(μm) 

chi-square 
test** t-test* Model # Num R N χ (GPa) S 

ORNL 15 50 4 2.4 0.24 114.71 13.38 pass fail 
ORNL 15 50 8 4.8 0.24 113.58 5.07 pass fail 
ORNL 15 50 12 7.2 0.24 111.09 3.70 pass fail 
ORNL 15 50 16 9.6 0.24 110.64 1.72 pass pass 
ORNL 15 50 20 12 0.24 110.82 1.29 – – 
ORNL 15 50 24 14.4 0.24 110.82 1.22 pass pass 

*NULL Hypothesis – Mean of sample is equivalent to mean of Model #5 with failure to reject hypothesis at 
5% significance level. 
**NULL Hypothesis – Variance is equivalent to variance of Model #5 with failure to reject hypothesis at 
5% significance level. 
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Figure 4.5.  Mean of Young's modulus (a) and CTE (b) for variation in element size.  

 

4.2.3.2.  Robustness 

The robustness of the analysis is tested by studying the statistical distribution of 

the modulus for two different sample sizes and two different volume sizes.  In Figure 4.6, 

the normal distributions of fifteen and 150 samples are plotted for the converged volume 

of  and a larger element size for the same volume of 50R = 30R = .  Once again 

quantitative measures are used to compare standard deviation and mean as shown in 

Table 3. 

55 



 

Modulus (GPa)

100 105 110 115 120

Pr
ob

ab
ili

ty
 D

en
si

ty

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
R = 30 ( 150 samples )
R = 50 ( 150 samples )
R = 30 ( 15 samples )
R = 50 ( 15 samples )

 

Figure 4.6.  Normal distribution of modulus for varying sample sizes. 

 

Table 4.4.  T-test and f-test results of Young’s modulus for different RVEs at 25ºC. 

LRVE  
(μm)

Lvoxel  
(μm) 

2 sample 
t-test* f-test** Model # Num R N χ (GPa) S 

ORNL 15 50 20 12 0.24 110.82 1.71
pass pass 

ORNL 150 50 20 12 0.24 110.65 1.52
ORNL 15 30 20 12 0.40 113.91 1.26

fail fail 
ORNL 150 30 20 12 0.40 111.15 3.04
ORNL 150 30 20 12 0.40 111.15 3.04

pass fail 
ORNL 150 50 20 12 0.24 110.65 1.52
ORNL 15 30 20 12 0.40 111.15 3.04

fail pass 
ORNL 15 50 20 12 0.24 110.65 1.52

*NULL Hypothesis – Unknown mean is same for both distributions with failure to reject hypothesis at 5% 
significance level. 
**NULL Hypothesis – Unknown variance is same for both distributions with failure to reject hypothesis at 
5% significance level. 
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4.2.4.  Final RVE size 

4.2.4.1.  Modulus RVE 

In Figure 4.4, it can be seen that the discretization error controls accuracy while 

RVE size controls the standard deviation.  To gain perspective on variability, the plots are 

scaled such that the maximum and minimum are approximately twenty percent of the 

initial mean.  Table 4.2 and Table 4.3 support the conclusion drawn from the box plots.  

The t-test fails for discretization error until a sufficient voxel size is reached, while the 

standard deviation doesn’t vary.  However, for RVE size, all t-tests pass for a 95% 

confidence level.  The standard deviations in the chi-square test only pass near the same 

RVE size.   

The modulus results at higher temperatures can be seen to vary more than those at 

room temperature, especially with regard to RVE size.  This is an artifact of equation 

(4.18) by introducing the variation of CTE in the results for effective modulus. 

The box plot data sets look at the variation of results due to changes in R  and .  

These results also take for granted that the created microstructure is actually significant in 

determination of material properties.  Plus, it is difficult to extrapolate the results of the 

box plot to broader conclusions about acceptable RVE sizes for voxel reconstructions.  

Thus 

N

Figure 4.5, which plots the mean modulus for realization sets against a ratio of 

characteristic length to voxel length, is used to draw a broader conclusion;  

 
For  for element sizes less than  15N ≥ Niλ  the modulus is  independent of  

 even if the final result has not converged. RVEL
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 This indicates that the error is now purely from discretization.  At this point, the 

modulus is entirely dependant on the physical size of each element converging to a 

consistent point.  Once the element size reaches a certain point it can be stated: 

For  when voxel length is one half of 15N ≥ Niλ  the RVE is an accurate 

 representation of the ORNL sample.    

 The lineal path realizations also show a good match to experimental values, and 

since results in Chapter Two and Three showed different connectivity behavior, its 

accuracy was studied.  However, since no analytical expression exists for them and 

computation time is much larger, they are not necessary to use.  The periodic and random 

realizations have results that serve like upper bounds on the modulus, probably due to the 

change in pore distribution.  

4.2.4.2.  CTE RVE 

Interestingly, in Figure 4.4(e-f) it can be seen that unlike the modulus which sees 

a small increase due to insufficient RVE size, the CTE drops with a very large increase in 

variation.  In regards to discretization error a small decrease in value can be seen, but 

only the largest element size shows significant error.   

 The trend in CTE is much more linear than that of modulus.  Modulus values 

steadily increase, diverging away from the correct modulus as the element size increases, 

but even the random distribution provides an approximate measure of CTE for any 

element size (Figure 4.5(b)).  The periodic distribution, however, proves to be completely 

inaccurate.  Therefore, for CTE it can now be stated: 
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For  CTE can be approximated by any distribution with random 

 long range order and the correct volume fractions.    

15N ≥

4.2.4.3.  Sample size 

The previous results assume that five realizations with measurements in three 

directions are sufficient to describe the microstructure, but it can be shown that the 

number of samples needed is also dependent on discretization of the realization.  In 

Figure 4.6, as the number of samples increases for the rougher microstructure, the mean 

shifts toward the more refined data set.  For the more refined (and considered converged) 

data set, the normal distribution barely shifts.  These results are apparent in the 

hypothesis tests listed in Table 4.4, and this corresponds with the statement that 

discretization influences standard deviation. 

For CTE the standard deviation for samples is small with values consistently less 

than one percent of the mean. 

4.3.  Microstructure variation 

4.3.1.  Reconstructions 

 Now that the RVE size is determined, the microstructure can be modified as 

needed to study porous cermets.  To this end, multiple realizations of the three-phase 

composite were generated using the Debye equation (Chapter 2, eqn. 2.9).  The base 

microstructure set each λ  to those determined from analysis of an ORNL sample in 

Table 2.1.  From these base parameters several additional microstructures were generated 

with either varying porosity or λ , refer to Table 4.5. 

 

 59



 

 

Table 4.5.  Microstructure realizations. 

λNi 
(μm) 

Lvoxel 
(μm) 

LRVE 
(μm) 

λpore 
(μm) 

λYSZ 
(μm) poresϕNiϕ YSZϕ N R Set Mod. 

ORNL - 0.6 0.4 0.4 0.35 0.43 0.22 0.24 12 20 50

1 0.32 0.40 0.28 

2 0.30 0.36 0.34 poresϕ 0.6 0.4 0.4 0.24 12 20 50 

3 0.27 0.33 0.40 

pore

YSZ

λ

λ
4 0.6 0.6 0.6 0.35 0.43 0.22 0.24 12 20 50 

5 0.6 0.4 0.6 0.24 12 20 50

6 0.6 0.8 0.6 0.24 12 15 50poreλ 0.35 0.43 0.22  

7 0.6 1.0 0.6 0.23 15 15 65

8 0.6 0.6 0.4 0.24 12 20 50

9 0.6 0.6 0.8 0.24 12 15 50YSZλ 0.35 0.43 0.22  

10 0.6 0.6 1.0 0.23 15 15 65

11 0.4 0.6 0.6 0.24 12 20 50

12 0.8 0.6 0.6 0.24 12 15 50Niλ 0.35 .43 0.22  

13 1.0 0.6 0.6 0.23 15 15 65
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4.3.1.1.  Porosity 

 To study the influence of porosity on the cermet, models 1-3 in Table 4.5 were 

reconstructed with the same characteristic lengths as the ORNL sample, but steadily 

increasing porosities.  As the porosity increased, the ratio between nickel and YSZ is held 

constant.  The results are compared against the ORNL composite sphere model 

developed by Radovic et al. for Ni-YSZ cermets in Figure 4.7 [25].  Also plotted is the 

upper bound from the Hashin Sthrikman model, a variational method that calculates 

bounds based on volume fractions and constituent properties.  Lastly the CTE and 

modulus were plotted against temperature in Figure 4.8(a-b). 
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Figure 4.7.  Variation of modulus for FE results compared to experimental values. 
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Figure 4.8.  Variation of CTE (a) and modulus (b) versus temperature. 

 

4.3.1.2.  Characteristic length 

 The final Debye functions of the microstructure will be influenced by the starting 

particle sizes, the sintering temperature and time.  So it is reasonable that changing length 

scale should be studied.  In Set 4 the characteristic length was set equal for all three 

phases, and found to be roughly equivalent to the ORNL sample.  Set 4 is now used as 

the base for changes in length scale.  Three different cases are examined where λ  varies 

for porosity (models 5-7), YSZ (8-10), and nickel (11-13).  The volume fractions are held 

constant.  The results from Section 4.2 were used to maintain acceptable R  and  

values.  However, this does mean the volume and voxel size may vary across sets.  

N

 For each case, five models were created, and the modulus, shear modulus, and 

CTE were determined in three directions for fifteen samples.  In Figure 4.9 and Figure 

4.10 λ these properties are plotted against the changing  for each phase and is normalized 

by the mean values from Model 4, designated , , and  .  For each data set, a 

linear fit is also shown.    

oE oG oCTE
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λFigure 4.9.  Young’s modulus (a) and shear modulus (b) against  for one phase while 
with other phases are at 0.6 μm. 
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λFigure 4.10.  CTE against  for one phase while other phases are at 0.6 μm. 

 

4.3.2.  Microstructural impact 

 Varying the characteristic lengths changed the resulting properties less than five 

percent, while changing porosity brought about a significant change in modulus and had 

no impact on CTE.  Therefore, the cluster function and the parameters determined in 

Chapter 3 were used to provide further insight into microstructural changes.  

4.3.2.1.   Porosity 

 In Figure 4.7 the predicted modulus of the Debye realizations show a good match 

to previous experimental results, and it can be seen that as the porosity increases the 

modulus decreases in a nonlinear manner.  After temperature is added, additional stresses 

are generated, since now nickel and YSZ also undergo stresses due to thermal mismatch.  

This explains why, in Figure 4.8, CTE does not change with volume fraction and is in 
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fact dependant on the ratio between the volume fraction of nickel and YSZ.  It also shows 

that outside the Curie point region in nickel, the thermal expansion is primarily linear.  

Both plots in Figure 4.8 are reasonable in reference to experimental results [25, 27]. 

 Due to the calculation of modulus from equation (4.18) and the linear properties 

used for nickel’s modulus, the effective modulus is linearly temperature dependent.  

However, as the amount of nickel drops, the variation of the modulus due to temperature 

continues to slightly decrease.  This is seen in the steadily decreasing slopes of each 

curve where at 22% porosity the modulus drops by 0.023 GPa/ºC and at 40% porosity it 

changes by .010 GPa/ºC. 

 Theory holds that the percolation threshold should be related to the effective 

modulus through a power law relation such that 

( i icE )βϕ ϕ∝ −  .       (4.20) 

β  is the power law exponent and icϕ  is the percolation threshold.  Feng et al. found that 

for the Swiss cheese model,  the modulus exponent was equal to 5/2 [69].  When (4.20) is 

applied across different porosities, a value for β  of -2.85 ± 0.056 at room temperature is 

found.   

4.3.2.2.  Internal length scales 

 There is consistently an inverse relationship between changes in length scales for 

porosity and the other phases.  As porosity increases, the modulus steadily drops, 

although the length scale would need to be fairly large before even a five percent change 

would occur.  For CTE, the behavior is flipped and now an increase in pore size increases 

CTE.  Another parameter is needed to relate change to one phase for all variations of the 

internal length scales.   
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 As discussed in Chapter Three, the percolation threshold can be approximated 

from the point when the cluster function reaches its long term values.  In Table 4.6 it can 

be seen that these percolation values stay approximately stable despite changes in λ . 

 

Table 4.6.  Percolation threshold for different microstructures. 

 ( )mλ μ  Percolation Threshold 

Ni=YSZ Pore Ni YSZ Pore 

0.6 0.40 0.120 0.180 0.040 

0.6 0.60 0.115 0.184 0.038 

0.6 0.80 0.114 0.178 0.034 

0.6 1.00 0.112 0.176 0.043 

Ni=Pore YSZ  

0.6 0.40 0.121 0.175 0.038 

0.6 0.60 0.115 0.184 0.038 

0.6 0.80 0.114 0.198 0.042 

0.6 1.00 0.116 0.212 0.045 

YSZ=Pore Ni  

0.6 0.40 0.111 0.188 0.038 

0.6 0.60 0.115 0.184 0.038 

0.6 0.80 0.130 0.178 0.040 

0.6 1.00 0.140 0.180 0.044 

 

pore
cL Next the point, , introduced as the distance at which the percolation threshold 

is reached, is examined.  pore
CLFigure 4.11 and Figure 4.12 compare  for all the models of 

 66



 

varying microstructures and 22% porosity (models 4 – 13  in Table 4.5).  When the 

effective properties are correlated to , a definite link can be drawn between the 

clustering of porosity and the resulting modulus and CTE for all variations in

CL

λ . 
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Figure 4.11.  Change in length at percolation threshold of porosity for modulus. 
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Figure 4.12.  Change in length at percolation threshold of porosity for CTE. 

 

4.4.  Summary 

 The three objectives during the determination of RVE size for structural 

properties were to obtain a rule of thumb, verify accuracy, and verify robustness of the 

analysis.  It was found that an 50R = 20N = and  is more than sufficient to capture 

material behavior, plus a minimum of 40R = 15N = and  will work for both properties.  

This applies to displacement boundary conditions and any edge effects resulting from 

them.  Upon examining Figure 4.8 it can be stated that for three-phase Debye media the 

modulus needs an element size half of the characteristic length and, the CTE will vary 

little depending primarily on ratio between Ni and YSZ in a distribution with random 

long range order. 
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 Both the analysis of robustness and comparison to experimental results show that 

the voxel reconstruction works for the analysis. 

 When the voxel reconstructions were used to predict changes in structural 

properties due to microstructural details, it was found the most significant change was 

due to change in volume fraction of porosity.  The importance of percolation of the pore 

phase also would explain why the lineal path and two point reconstructions has the same 

modulus.  Despite differences in the nickel and YSZ phases, the pore phases were exact 

(recall Table 3.1).  Overall, the behaviors of the porous cermet can be summarized as 

follows: 

• modulus is most influence by changes in volume fraction, 
 
• CTE is dependent on the ratio of the volume fractions of nickel to YSZ and 

not the volume fraction of pores, 
 
• at 40% porosity the impact of temperature on modulus is minimal, 
 
• an increase in modulus will result in a decrease of CTE and vice versa, and 
 
• finally pore percolation can be correlated with modulus and CTE. 
 

The next chapter moves from a structural analysis to a transport analysis to determine the 

effective thermal conductivity of the porous cermet. 
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CHAPTER 5 

EFFECTIVE THERMAL CONDUCTIVITY 

 

Previously, a methodology to study the structural properties of porous cermets 

was introduced, but a slightly different formulation is needed to study transport 

properties, like thermal conductivity.  Transport properties differentiate from a structural 

analysis due to the occurrence of a direction-dependent flux field.  For thermal 

conductivity, this is an energy field that correlates to a temperature change in any given 

direction.  This chapter will investigate the voxel reconstruction’s ability to determine 

transport properties for the cermet.   

As in the previous chapter, the first step examines the variation in conductivity 

with changes in  RVE size and discretization of the microstructure.  However, an FE 

model with perfect bonding between elements is not capable of accurately predicting a 

composite’s thermal conductivity, and another factor must be taken into account.  This 

factor is energy loss due to the interfacial resistance between nickel and YSZ.  Since this 

resistance is dependent on morphology, surface roughness, and temperature variation, it 

is not realistically possible to measure an accurate value that can be easily used in 

analysis of the anode.  To that end, a simple theoretical model is used alongside 

published experimental data to modify the FE results.  A numerically determined thermal 

resistivity is then used to study the change in conductivity for different microstructures.   
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5.1.  Thermal resistance model  

 For any material, the heat flux and temperature change can be related through 

thermal conductivity, ,  using Fourier’s Law.  Equation (5.1)κ  is the one-dimensional 

form of this law.  Thermal conductivity then is an inherent material property that 

describes a material’s ability to transfer heat.  Equation (5.1) relates the change of 

temperature, , in a given direction for a length, TΔ xΔ , to the heat flux, Q , such that   

TQ A
x

κ Δ
= −

Δ
  .        (5.1) 

, is perpendicular the heat flux and normal vector, n ,  as illustrated in The area, A Figure 

5.1. 
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Figure 5.1.  RVE in transport model. 
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Figure 5.2.  Illustration of thermal conductivity model. 

 

 In a composite material, the effective conductivity will be related to the bulk 

constituent properties and also to the behavior at the interfaces of those constituents.  For 

example, assume that a composite material is made of a B length of blocks, where each 

block has a b  thermal conductivity and length, as illustrated in Figure 5.2.  The total 

length of the bar is the sum of each individual block length, a function, , as illustrated 

in 

ba

Figure 5.2, so that 

1

B

b b
b

L a B a Ba
=

= = =∑ i  ,      (5.2) 

ba = awhere  is the average length of the blocks. 

 Furthermore, each b  block of  a material will have a thermal conductivity, bκ .  

Thus the resistivity of the nth block is  

  1br κ= b ,        (5.3) 

and the resistance of the nth block is now a function of geometry and resistivity such that  

b b
b

r aR
A

= .        (5.4)   

 At the interface an interfacial resistivity, , is used to find the total interfacial 

resistance, 

ibr

ibR , for  interfaces, and a total length, . 1B − L
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in ib
ib

LR r
A

=  .        (5.5)  

In equation (5.5)  is the total of the interfacial area normal to the direction of heat 

change across the entire length.  It should be noted that for the actual cermet material, the 

solid to pore interfaces are neglected in this formulation. 

ibA

 A factor, ρ , can now be written as 

ib

L
A

ρ =  .        (5.6) 

 The parameter ρ  lends well to use with digitized microstructures such as the 

voxel reconstructions.  The interface area is determined simply by counting the number 

of connecting blocks of nickel and YSZ in the desired direction. 

 Going back to Figure 5.2, the total resistance along the entire bar is  

1

B

total b ib
b

R R R
=

= +∑  ,        (5.7) 

and the total heat flux of the composite can now be written as  

total

TQ
R
Δ

= −  .        (5.8) 

xΔ  with  for the entire length of the bar and substituting in equation (5.1)Replacing L , 

an expression for thermal conductivity can be found, such that  

total

L
R A

κ =  .        (5.9) 

(5.7) into (5.9)  the thermal conductivity is now  Substituting  

1

1
B

b b
ib

b

r a r
L

κ
ρ

=

=
+∑

  .        (5.10) 
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 Note that ba L  is equal to the volume fraction of block ; thus the finite element 

solution without considering interfaces can be set equal to  

n

1

1 B

b b
bFEM

r ϕ
κ =

≈ ∑  .       (5.11) 

Equation (5.10) can now be rewritten as 

1

1

FEM ibr
κ

κ ρ−=
+

  .       (5.12) 

 To use (5.12), consider a microstructure that has the experimental thermal 

conductivity, , i.e. ( )
exp

oκ

( ) ( )( )
( )
exp 1( )

1o

oo
FEM ibr

κ
κ ρ

−=
+

  .      (5.13) 

In equation (5.13) the superscript (o) indicates that these quantities are related to a 

particular microstructure.   

 Solving for interfacial resistance 

( ) ( )
exp

( ) ( ) ( )
exp

1 o o
FEM

ib o o o
FEM

r
κ κ

ρ κ κ
⎛ ⎞−

= ⎜⎜
⎝ ⎠

  ⎟⎟ .      (5.14) 

( )oρ Note that  is independent of microstructure, while ibr  is determined from the 

specific reconstruction.  This means that once  is determined, the thermal conductivity 

can be determined for any realization using 

ibr

(5.12).  As mentioned the previous 

formulation works well for the discretized microstructure; however, it does not 

necessarily determine the actual interfacial resistivity of nickel and YSZ.  This is mainly 

due to the simplified approximation of the microstructure. 

 

 74



 

5.2.  FE model 

At room temperature, the structural properties of nickel and YSZ are very similar; 

however, the temperature-related properties of nickel are both significantly larger and 

more variable than YSZ.  Table 5.1 lists the relevant material properties, taken from the 

literature, at room temperature and at 1000ºC [27, 92, 93].  A complete list of the 

temperature dependent properties can be found in Appendix D.  Experimental studies of 

the electrolyte material, non-porous nickel 8mol% ytrria (YSZ) material, were used as the 

YSZ properties in the Ni-YSZ composite [27, 33, 87].  Nickel is treated as a general 

polycrystalline material with primarily linearly dependant temperature properties except 

near the Curie point.  The CTE and specific heat of nickel specifically show an 

exponential jump in value around the Curie point due to the paramagnetic transition.  

Nickel’s thermal conductivity also varies significantly around the Curie point, but with an 

inverse relationship to that of CTE and specific heat [94]. 

The pore elements in the sample are set equal to an argon atmosphere.  It should 

be noted that at room temperature, the thermal conductivity of nickel is approximately 43 

times that of YSZ and 4844 times that of argon.  Temperature dependence was neglected 

for argon. 

 

Table 5.1.  Comparison of constituent material properties. 

Property Temperature (ºC) Ni YSZ Argon 

127 77.5 1.89 .016 κ( W / (mºC) 
1000 70.0 2.05 .016 
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5.3.  Results 

5.3.1.  RVE Size 

 The methodology for determining RVE size was the same as that used by Johnson 

and Qu, which first finds the acceptable element size by varying R  and then finds the 

acceptable RVE size by varying [36].  Recall that N  is equivalent to  from R B Figure 

5.2.  Box plots of these results are shown in Figure 2.  For each set of five samples, the 

thermal conductivity was measured in three directions providing a total of fifteen data 

points and also confirming that the effective value is independent of direction.  To 

determine that a sufficient number of samples were collected, histograms were plotted of 

the data spread for 15 samples and 150 samples at an element size before and after 

convergence (refer to Figure 5.4).  This is done for the FE results without accounting for 

interfacial resistance.   
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Figure 5.3.  Box plots of discretization error and RVE size, respectively, for Young’s and 

the uncorrected thermal conductivity (a-b).   
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Figure 5.4.  Histogram of FE thermal conductivity for different sample sizes and 
elements sizes at N = 20. 

 

5.3.2.  Interfacial Resistance 

 Equations  (5.12) and  (5.14) were used along with experimental results for Ni-

YSZ with 34% porosity from work by Radovic et al. [27] to determine the interfacial 

resistivity as defined by (5.12).  The FE results used to determine resistivity were 

obtained from ORNL realization set where was equal to 20 and N R  was equal to 50.  

The interfacial resistivity results are plotted against temperature in Figure 5.5.  In Figure 

5.6 the original FE thermal conductivity is compared to the experimental results from 

ORNL, and the FE results are seen to be as much as 50% higher than experimental 

values.   
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Figure 5.5.  Interfacial resistivity determined at 34% porosity. 

 

Temperature ( ºC )

0 200 400 600 800 1000

κ   (
W

/m
*K

)

0

2

4

6

8

10

12
FE
ORNL

 

Figure 5.6.  FE results without interfacial resistance. 
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5.3.3.  Varying microstructures 

 The interfacial resistivity from Figure 5.5 was used to plot the thermal 

conductivity for 22%, 28%, and 40% porosity, shown in Figure 5.7a.  The results are 

compared to ORNL thermal conductivity values (Figure 5.1b) at different porosities and 

are found to match well.  The characteristic length of the microstructure for the different 

porosities was left equal to the original ORNL sample (refer Table 2.1).  The next set of 

realizations assumed that nickel and YSZ both had a λ  of 0.6 mμ , while the length scale 

of the pore phase was allowed to vary.  These are model numbers 5-7 listed in  

Table 4.5.  The thermal conductivity results for these realizations are plotted Figure 5.8.  

The results are averaged over fifteen samples.     

( )oρ For each new realization set, the values that change are the FE results and the  

value, while remains the same.  In Table 5.2 and Table 5.3, the ratio of the nickel to 

YSZ interface to the total area is recorded.  In Table 5.2 the results were found to be 

linearly related to the porosity with a negative slope of 28 percent and an intercept of 

0.17.  

ibr

 79



 

 

 

Temperature ( ºC )

0 200 400 600 800 1000

κ  (W
/m

*K
)

0

2

4

6

8

10
22% Porosity
28% Porosity
40% Porosity

(a) (b) 
 

Figure 5.7.  Corrected thermal conductivity versus porosity for numerical analysis (a) and 
ORNL results [27] (b). 
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Figure 5.8.  Thermal conductivity for changing length scales in pore phase. 
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Table 5.2.  Interface area and conductivity at RT for changing porosity. 

 poreϕ .22 .28 .34 .40 

/inA A  .107 .088 .071 .056 

κ  
(  6.89 5.70 4.75 3.76 ( / ( )W m Ki )

 

 

Table 5.3.  Interface area for changing length scales. 

( )mμ  poreλ 0.4 0.6 0.8 1.0 

/inA A  .077 .098 .109 .113 

κ  
(  5.92 6.55 6.85 7.61 ( / ( )W m Ki )

 

5.4.  Discussion 

5.4.1.  RVE size and discretization 

Examination of Figure 5.3 leads to the same conclusion for thermal conductivity 

as for structural properties, i.e. discretization of the microstructure controls accuracy 

while the RVE size controls standard deviation.  However, thermal conductivity seems to 

have a much higher variability overall.  The minimum acceptable R  and  are 50 and 

20, respectively.  This is compared to 40 and 16 for the modulus.  Plus, in Figure 5.4(a), 

the shift of the less accurate model to a correct mean is much more pronounced, 

suggesting that the model itself is fundamentally wrong at this lower discretization.  The 

higher variability in the thermal conductivity most likely results from the addition of 

N
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direction in the formulation.  The effective conductivity is now dependent on the 

variability of the interfaces in one direction as the temperature changes.    

5.4.2.  Numerical results 

 The addition of interfacial resistivity had a significant impact on the FE 

predictions of thermal conductivity, which dropped by as much as 50%.  In Figure 5.7 the 

predictions of thermal conductivity for different porosities match well to experimental 

results [27].    Knowledge of the accuracy of the thermal conductivity values for different 

length scales would require additional experimental results, but there is an obvious 

increase in thermal conductivity with an increase in interfacial area.  The reason is hard to 

verify, but a reasonable assumption is increasing Ni-YSZ interfaces means a drop in 

argon to solid interfaces.   

 The final point of interest is the change in interfacial area for both volume 

fractions and length scales.  First it should be noted that in a digitized medium, the slope 

of the two-point probability function can be related to the resulting surface area of a 

phase, ,  as shown in equation (5.15) [63]. s

( )2
0 2r

d S r
dr d=

= −
s  , where      (5.16) 

in (5.16) the variable  refers to the dimensionality of the system.  This relationship 

between surface area and 2-point probability functions explains the linear change in 

interfacial area for varying volume fractions.  The slopes of the probability functions do 

not vary with increases in volume fraction.  However, these slopes will change with 

length scale.  This is significant since thermal conductivity now varies linearly with 

d
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porosity, but shows no obvious correlation to length scales.  This behavior is the reverse 

of how the modulus behaves with changes in length scales and volume fractions.   

5.5.  Summary 

 Although the finite element solution alone does not accurately predict the thermal 

conductivity for different microstructures, the addition of interfacial resistivity appears 

sufficient to predict thermal conductivity.  The use of interfacial area to link the thermal 

conductivity values also provided insights into how the property will vary with 

microstructure.  It is significant that a change in porosity results in a linear change of 

thermal conductivity as compared to the results for modulus and CTE in the previous 

chapter. 

 One issue with the transport analysis is its dependence on experimental data and 

the constituent properties used in the analysis.  This can especially be seen in the Curie 

point behavior, which despite being included in the FE model, does not carry through to 

the FE results, especially compared to published values that use the specific heat and 

Lorenz number to calculate the thermal conductivity [27].  However, an extensive study 

of the Curie point behavior is outside the scope of this work.    

 For both Chapter Four and Five effective properties were determined for linear 

material behaviors (except at the Curie Point).  The next few chapters will investigate 

nonlinear material behaviors. 
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CHAPTER 6 
 

DAMAGE AND PLASTICITY 

 

In fuel cells, the anode will not undergo a typical loading scenario and it can be 

expected that manifold constraints, sealing at edges, and contact with interconnects could 

result in areas of high localized stresses leading to failure in sections of the anode.  

Additionally, in anode supported stacks, the anode bears the majority of the load, having 

heights up to 1mm, compared to the electrolyte and cathode that have heights less than 20 

μm.  Thermal mismatch between the electrolyte and anode layers during the tape cast 

process is yet another factor that will induce stresses in the anode.  It is possible that 

during pSOFC construction, the initial warparge of the PEN from sintering and then the 

process of assembly in the stack could lead to localized failures in the anode, even before 

operation.   

For these reasons, the study of damage and plasticity in Ni-YSZ is significant to 

fuel cell behavior, but the cermet failure is also useful to the overall study of composites.  

In the cermet, two contrasting material behaviors occur around a continuous distribution 

of pores.  In brittle YSZ, failure can be assumed to be instantaneous and localized, while 

the plastic nature and lower strength of nickel suggests a more distributed loading.  How 

these behaviors govern the bulk response of the composite is not easily discerned without 

a three-dimensional numerical analysis.  The significance of microstructural distribution 

on bulk behavior is even harder to quantify. 
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Finite element methods have often been used to study damage and plasticity in 

composites.  Lee, et al. incorporated damage into a multi-scale tessellation FE model,  

using elliptical cracks, which were allowed within each particle [39].  The work was 

extended to incorporate damage and plasticity by Ghosh, Lee, et al. in a review of VC-

FEM in 2001 [41].  Ghosh also tracked damage evolution in subsequent works [95].  The 

combined works of Segurado and Gonzalez studied the effect of clustering on the total 

strength of metal-matrix composites with a nonlinear FE analysis [79, 96].    

Kumar et al. used the simulated annealing method to perform an elastic-plastic 

analysis on multi-phase composites [83].  Mishnaevsky et al. modeled damage growth 

and fracture by either “softening” or disappearing elements as a given criterion is 

exceeded [84, 86].  Next, Mishnaevsky used the Rice-Tracey damage parameter to 

measure void growth in porous and graded composites [85].  Cannillo and Carter studied 

realistic and idealized brittle materials using an FE analysis combined with a Weibull 

probability criterion for individual element failure [52].  Polycrystalline structures were 

studied in a similar way by Zimmerman et al. by applying the Griffith failure criteria to 

grain boundary elements [97].  Singh et al. used the maximum principal stress criterion 

and yield stress to study damage and plasticity in discontinuous reinforced aluminum 

alloys [50].   To study fiber composites, the McClintock void growth model was used 

[47].   

Once the microstructure is analyzed, there are a variety of methods to relate the 

material to the microstructure.  FE contour plots provide a visual representation of 

stresses and strains, but histograms of stress distributions, cumulative probability plots, 

and standard deviations of field data can quantify the results [79, 82].  Other work has 
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focused on finding microstructural “hot spots” or the creation of behavior-related 

correlation functions [83].  Kumar et al. used an elastic-plastic analysis FE model to 

compare stress-strain curves, stress histograms, and shear band localization for multiple 

realizations [83].   

In the determination of effective properties (refer to Chapters 4-5), the focus was 

on determining the mean and statistical distribution of common material properties for an 

acceptable discretization and RVE size.  In the study of nonlinear behavior, there was a 

brief look at the trend in convergence of the sample size and the different measures of 

damage and plasticity.  Then, the focus shifted to the impact of damage and plasticity on 

bulk behavior and its correlation to the probabilistic features of the microstructure.   

Stress-strain curves were used to provide a bulk description of the material 

behavior, but different measures were needed to understand the interaction between 

phases.  Three primary methods were used:  phase decomposition, distribution fits, and 

finally, the mark probability function.  Through these methods, the following features of 

porous cermets were investigated:    

• the internal stress distribution in each phase, 
• the size and distribution of failure in the microstructure, and  
• the significant features that influence the bulk response. 
 

 In the following sections, the mark probability function will be introduced along 

with a brief review of the use of volume averages in the RVE analysis.  The material 

behaviors for nickel and YSZ will be described and the procedures for data analysis 

briefly discussed.  It should be noted that the analysis is based on the small deformation 

assumption, and cannot accurately model large scale deformations.  In determination of 

the model size, a look will be given to modulus, and yield stress and stress-strain curves 
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will be examined.  The rest of the chapter will focus on the internal stress distribution and 

failure behavior of one Ni-YSZ realization.  Changes in the behavior of the porous 

cermet will be studied against porosity and probability functions. 

6.1.  Theory 

The realizations were loaded with kinematic boundary conditions using the same 

as in Chapter Four.  A displacement is applied along the boundary; in this case the 

displacement changes with time, such that 

  for 1( )iu C t= i RVEx L=  and      (6.1) 

  for  for iu = 0 0ix = 1,  2, or 3i = .     (6.2)

 As the displacement increases, individual elements in the nickel and YSZ phases 

will behave depending on their specific failure criteria.  The slow failure of individual 

elements will change the stress-strain relationship from linear to nonlinear.  Since this 

point occurs at different times for different realizations, a consistent criterion to 

determine nonlinearity is needed.  This condition is met through the 2% yield offset, 

which finds the yield stress at the intersection of the stress-strain curve and the linear 

offset of the modulus. 

iiσ Recall that the volume average of stresses, designated with , can be 

decomposed into the average stresses occurring in each phase, 

1

n
p

ii p ii
p

σ ϕ σ
=

⎡= ⎣∑ ⎤
⎦ .       (6.3) 

In equation (6.3) designates phase number for  total phases, while the double i  

subscripts refer to the direction. 

np
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 Equation (6.3) provides a relationship between the stresses and the volume 

fraction of each phase.  Strain is another matter, being volume dependent; it is a sum of 

the total strains occurring in the microstructure.   

 Currently lacking is a means to connect the actual microstructural behavior to the 

stresses and strains occurring in the microstructure.  To that end, the mark probability 

function is used as introduced by Pyrz [98]. 

 First, recall that the two-point probability function, , can be used to 

completely describe any phase in the microstructure by determining the probability that 

any two points will lie in the same phase.  Next, define a mark, , which is any field 

behavior that meets the conditions of an arbitrary binning process, .  Binning can be 

limited to one phase or combination of phases, magnitude of a quantity, and so on.  Now 

the mark function, 

( )
2

ijS

( )
2
bm

b

( )
2

bM ,  combines the user-defined mark with the microstructure’s 

probability functions such that 

( )
( ) 2
2 ( )

2

( , )
( )

b
b k l

ij

m x xM
S r

=  .       (6.4) 

( )
2

bM kx function becomes a function of the orientation of two different points, Here the  

and lx , since the mark is not only dependent on the microstructure but also on the 

loading conditions that result in the field behavior.   

 Equation (6.4) is normalized by the two-point probability function.  It is 

designated with  to allow for normalization by one phase, a combination of phases, or 

all phases.   

ij
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 For the isotropic homogenous media, the mark function will have bounds that can 

be defined as 

( )
( ) 2
2

(0)(0)
b

b

ij

mM
ϕ

=  .      (6.5) 

As  approaches zero, equation (6.5) is the probability that any given point in the phase, 

or combination of phases , will satisfy the conditions of . 

r

ij ( )bm

6.2.  Methodology 

6.2.1.  Finite element model 

 As before, each voxel is treated as a material point and perfect bonding is 

assumed to occur between the elements.  Damage and plasticity are incorporated in the 

FE model through standard material models from the software, Abaqus 6.8-1 [99].  In 

Appendix D these property files are listed, and they are further described in 6.2.2.  Pore 

elements are deleted to improve computation time.  Artificial damping is also 

implemented to enable convergence of the FE solution, but no other artificial methods are 

used.  The stabilization parameter was optimized using the largest FE models, and once 

determined, kept constant for all models.   

6.2.2.  Constituent properties 

6.2.2.1.  Damage 

Radovic et al. reported biaxial strengths of 345 MPa and 209 MPa for room 

temperature and 800ºC, respectively, in 8mol% YSZ [32].  For this work, the ultimate 

uniaxial tensile strength was conservatively set equal to these biaxial strengths, with a 
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linear change between the two temperatures.  The maximum stress criterion was such that 

failure occurs when 

1 2 2max , , ultσ σ σ σ≥ .       (6.6) 

Before this point, the material is elastic and isotropic.  Failure does not occur in 

compression.  Once failure occurs, damage occurs in the direction of the principle stress. 

The Abaqus option for tension stiffening was added to the solution, with the 

addition of a damage parameter as shown in equations (6.7) and (6.8), so that  

(expult p )σ σ ε= −  for  and     (6.7) 0pε ≥

1
ult

D σ
σ

= − .        (6.8) 

In equation (6.7)  is plastic strain and ultσpε  is the ultimate strength.  The damage 

parameter has no impact on the FE analysis and is only used as a measure of failure for a 

given FE element. 
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Figure 6.1.  Stress-strain in the YSZ element. 
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6.2.2.2.  Plasticity 

The plastic stress-strain curves are input as data points for four different 

temperature loadings.  These data points were determined using the Chakrabarty law such 

that stress is a piecewise function as shown in equation (1.9). 

,               

,   

y
n

y y
y

E

E

ε σ σ

σ εσ σ σ
σ

≤⎧
⎪⎪= ⎛ ⎞⎨

>⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

  ,     (1.9) 

where is a hardening parameter. n

Thompson found that yielding in nickel is a function of grain size, and the Hall-

Petch relation was used to determine the yield stress for a grain size of 1μm [100, 101].  

A slight temperature dependence in the yield stress and the hardening exponents in 

equation (1.9) were assumed due to experimental results from Srinivas et al. [102]. 
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Figure 6.2.  Plastic strain curves for nickel. 
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The classical metal plasticity law is linearly elastic before failure.  Isotropic 

hardening is used and yielding occurs when the von Mises stress reaches the yield stress.   

6.2.3.  Data analysis 

As mentioned in the introduction, three techniques are used to study the field 

behaviors occurring throughout the microstructure.  These are stress decomposition, 

distribution fitting, and finally, the mark function as described in Section 6.1.  These tools 

treat each element, or voxel, as its own spot in the continuum media.  The value at the 

centroid of each element is found by interpolating from the nodal values.  Using the 

element values, the data can be averaged, input into histograms for data fitting, or binned 

for use in a mark calculation.  The output histograms are fitted to a 3 parameter Gaussian 

distribution, a 4 parameter Weibull distribution, or left as a histogram.  The distribution 

fitting tool used was the commercial software SigmaPlot and specific equations are 

provided in Appendix C [70].   

6.2.4.  Microstructure analysis 

The extensive and detailed analysis of multiple realizations in Chapter Four is 

neither computationally realistic nor necessarily relevant to the damage and plasticity 

analysis.  The priority is to link the behavior to specifics of the microstructure, and to 

determine worst case scenarios for failure in Ni-YSZ.  Therefore, the analysis focuses on 

a 40% porous microstructure with the same distribution as the ORNL sample.  To study 

convergence behavior, 4-5 samples were analyzed, where each model was strained in the 

x-direction via displacement boundary conditions.  For modified microstructures, one to 

three samples were deemed sufficient.  The models examined are listed in Table 6.1. 
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Table 6.1.  Damage and plasticity microstructure realizations. 

λpore 
(μm) 

λYSZ 
(μm) 

λNi 
(μm) 

Lvoxel 
(μm) 

LRVE 
(μm) Niϕ YSZϕ Poresϕ N R Mod. Set # 

1 5 0.60 20

2 5 0.40 30

3 5 0.30 400.6 0.4 0.4 .27 .33 .40 12 20 R

4 4 0.24 50

5 1 0.20 60

6 1 7.2 12 30

7 5 9.6 16 40N  0.6 0.4 0.4 .27 .33 .40 0.24 

8 1 14.4 24 60

 poreλ 9 3 0.6 0.8 0.4 .27 .33 .40 .27 16 20 60

 YSZλ 10 3 0.6 0.4 0.8 .27 .33 .40 .27 16 20 60

 Niλ 11 2 0.9 0.4 0.4 .27 .33 .40 .27 16 18 60

 iϕ 12 1 0.6 0.4 0.4 .35 .43 .22 0.24 12 20 50

 

6.3.  Results 

6.3.1.  Discretization and RVE size 

 Previously, it was found that discretization influenced accuracy and that RVE size 

controlled standard deviation of the modulus (refer to Chapter Four).  For nonlinear 

behaviors, the goal is to capture the trend in convergence behavior in order to be 

reasonably confident of accurate results.  Figure 6.3 plots the mean with outliers to the 

 93



 

maximum and minimum values for modulus in plot (a) and yield stress in plot (b).  On 

the right hand side of the plot is an additional reconstruction with a smaller RVE size.  

Model numbers five and eight, with 60R = 20N =and , are not shown in Figure 6.3, but 

have yield stresses of 40.33 MPa and 37.78 MPa, respectively.  
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Figure 6.3.  Variation in modulus (a) and yield stress (b). 

 

 Due to the inherently larger variation in stress-strain curves, it is hard to 

determine from Figure 6.3 the best model for analysis.  The need for accuracy must also 

be balanced with the significantly larger computation times required to analyze a more 

refined microstructure.  In Figure 6.4 and Figure 6.5, contour plots are shown for 

realization cross-sections with increasing RVE sizes, but with a constant element size.  

The figures are scaled to show the size relationship between images.  The stresses are 

obviously dependent on the loading in the x-direction.  In the smaller sizes in Figure 6.4, 

higher stresses appear to be more heavily distributed at the edges of the microstructure. 
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( a ) 

 
( b ) 

Figure 6.4.  Stress contour plots for (a) R=30;  N =12 and (b) R=40;  N =16. 
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( a ) 

 
( b ) 

Figure 6.5.  Stress contour plots for (a) R=50;  N =20 and (b) R=60;  N =24.
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 While the contour plots provide a qualitative clue about stress behavior, the mark 

functions in Figure 6.6 provide a quantitative measure of this edge effect.  For four 

different RVE sizes, at the point of yield, the mark function is calculated with the binning 

parameter set for the x-direction stresses to be greater than four times the yield stress.  

Since it is for all phases, including the pore phase, it is normalized by one and literally 

provides the percentage for the entire volume. 
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Figure 6.6.  Mark probability function for different RVE sizes at yield. 

 

 Finally, plots of the stress-strain curves are shown in Figure 6.7 for sets 3-4 in 

Table 4.1.  The plot compares the stress-strain curves of RVEs of the same size but 

different discretization, where the maximum and minimum curves for each realization set 

are shown.  The middle section of grey is the overlap between the two different RVE 

sizes.  The overlap between the stress-strain curves for the two different sets of 

realizations shows that the deformation behavior is inherent to a particular microstructure 
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and independent of RVE size and voxel size.  This is so long as RVE size and voxel size 

are sufficient.  Although the smaller element size for the 50R =  realizations seems 

slightly more capable of capturing a higher amount of damage and plastic behavior in the 

composite, as shown by its lower bound in Figure 6.7.  The stress-strain curve of a 

random distribution with 40% porosity is also included since it provides insight into the 

impact of microstructure order for the damage and plasticity models.  The much higher 

stress-strain curves for the random microstructure highlight that pore size and the 

arrangement of the nickel and YSZ do influence stress-strain behavior, much like results 

for modulus in Figure 4.5.  
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Figure 6.7.  Stress-strain curves for different realizations sets of 40% Ni-YSZ. 
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6.3.2.  Microstructure analysis 

6.3.2.1.  Base model 

 Once the RVE is determined, the first step is extensive examination of the base 

model, the 40% porous microstructure with the same features as the original ORNL 

sample.  The model was from set 4 in Table 6.1 and has a yield stress nearest the average 

yield for the realizations.  It was strained until a fully plastic state occurred, and then each 

of the tools described in sections 6.1and 6.2.3 were applied.  First, using equation (6.3), 

the stress-strain curves for the nickel and YSZ phase are plotted in Figure 6.8.  Next, 

mark functions for the stresses in all three phases (Figure 6.9) and then the mark 

functions for yield and damage in only the nickel and YSZ phases (Figure 6.10) are 

studied.  Each mark function is shown for the direction of loading (x-direction), and the 

direction normal to loading (yz-plane), and can be seen to vary depending on direction.  

In Figure 6.10 the nickel and YSZ probability distributions are also shown for 

comparison purposes.  The plots show the amount and interaction of the field behaviors.   

 Finally, the stress distributions occurring in nickel and YSZ are shown in Figure 

6.11(a-b).  In Figure 6.11 (c-d), the stress distributions are plotted for only the damaged 

or plastic regions in the base model.  In Figure 6.11 plots (a) and (d) fit a Weibull 

distribution, while YSZ in (b) did not fit a normal or Weibull distribution and was left as 

a histogram.  Only the areas of plastic strain for nickel matched a Gaussian distribution.  

For increasing strains the overall stresses in (a) and (b) changed very little compared to 

the significant changes seen in the plastic and damage zones in (c) and (d).  The shift in 

curves for (c) and (d) are partly due to redistribution of stresses, but also the increase in 

the average effective stress, ,  within the composite. oσ
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Figure 6.8.  Average stresses carried by nickel and YSZ for base model. 
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Figure 6.9.  Mark function for all phases at point of yield for base model. 
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Figure 6.10.  Mark functions for (a) plastic strain in Ni and (b) damage in YSZ. 
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6.3.2.2.  Porosity 

The damage and plasticity behavior for a 22% porous model was also calculated, 

and the yield stress was found to be 101.47 MPa.  When the stress-strain curves for the 

22% model and the 40% model are normalized by their respective yield stresses, the 

curves are very similar, as shown in Figure 6.12. 
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Figure 6.12.  Stress-strain curves for 22% and 40% porosity. 

 

6.3.2.3.  Microstructural variation 

 In Table 6.1, four different microstructures are listed with changing characteristic 

lengths of the Debye random media for each of the phases.  Stress-strain curves for these 

different realizations are plotted against the base model (Figure 6.13).  While changes are 

not large, some variations can be seen, such as the early flattening of the curve when the 

characteristic length of nickel is increased.  There is also an increase in strength with an 
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increase in YSZ.  While the stress-strain curve is slightly higher for the increased pore 

length scale, it has basically the same shape as the base model.  
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Figure 6.13.  Stress-strain curves for changing characteristic lengths. 

 

 To gain more insight into the stress-strain curves in Figure 6.13, the distribution 

plots are found for the percentages of nickel and YSZ experiencing plastic strain and 

damage, respectively.  The plots are similar to those in Figure 6.11(c-d) except only the 

stress distributions at yield are shown, and multiple realizations are compared.  Once 

again, nickel matched a Gaussian distribution and YSZ was a Weibull curve.  In Figure 

6.14(a) the shapes of the base model and increased pore curves are the same even though 

the magnitude differs, and in Figure 6.14(b), the peaks match for the two curves. 
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Figure 6.14.  Distribution fits for damaged YSZ(a) and plastic nickel(b) at yielding. 
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6.4.  Discussion 

6.4.1.  RVE size and discretization 

The increased variability in the RVE size and discretization results means that the 

methodology from Chapter 4 is not necessarily the best way to determine RVE size.  It is 

certainly the least efficient for the larger computer models.  In fact, Figure 6.3 shows that 

the variation of yield stress is much larger than the modulus even for the small sample 

sizes.  However, the figure does show that smaller RVE sizes have a negative impact on 

both accuracy and standard deviation.  Recall that very small RVE sizes accurately 

predicted linear material properties.  Instead, the ability to study stress distributions 

within the microstructure through histograms and mark functions provides more insight 

into the microstructure.   

In the plots of the mark functions for stresses in all phases (Figure 6.6), the larger 

sizes of  and reach a fairly smooth LRO as compared to that of the smaller 

sizes.  This is especially true for 

50R = 60R =

30R = , which exhibits an almost periodic nature across 

its length.  When the curves are compared to the equation for Debye random media (eqn. 

2.2), the curves match fairly well with a characteristic length of 0.6 μm, especially for the 

larger sizes.  Overall, the mark correlation function appears to show the influence of edge 

effects, and when the binning stress is high enough, the curve acts similar to a two-point 

probability function. 

6.4.2.  Data analysis of base model 

Figure 6.8 through Figure 6.11 provide a wealth of information about the internal 

stresses occurring in the microstructure.  They feature stress decomposition, mark 
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functions, and probability distributions, and each figure provides a different insight into 

the cermet’s behavior.  To begin with, the stress decomposition of Figure 6.8 showed that 

nickel and YSZ carry very similar loads, but at a certain point, YSZ does not carry an 

increasing load.  Contrast this with the fact that only 7.0% of YSZ, equivalent to 2.3% of 

the entire sample volume, even experiences damage at two times the strain at yield.  On 

the other hand, 12.9% of nickel undergoes a slightly higher occurrence of plasticity.  

However, due to the smaller volume fraction of nickel, this represents only 3.5% of the 

entire volume.   

The distribution of damage and plasticity illustrates the non-uniform stress 

distribution within the microstructure, and at yield, thirteen percent of the solid mass is 

carrying a negative or zero load.  The mark function in Figure 6.9 verifies that little more 

than fifty percent of the total volume is carrying a tensile load, and this tensile load is 

fairly independent of the loading direction, the x-directions, and the cross-planes, the y 

and z-directions.  Therefore, this part of the microstructure could be considered “fully 

connected,” such that this region will always carry an initial load regardless of size.  

However, when the binning value for stress is above the average stress, the mark function 

obviously changes with direction, although both curves have the same LRO behavior.  

When fitted to the Debye equation, the characteristic length of the curve in the x-

direction is twice that of the cross-plane direction.  This means that the higher stresses are 

more closely grouped and continuous in the direction of loading.  As the stress spreads 

away from areas with high stress, the grouping becomes smaller and shorter in range.  It 

is also noteworthy that the characteristic length in the cross-planes and for the tensile 

stress curves is between 0.55 – 0.60 μm, a value in between the length scales of the YSZ 
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and nickel phases.  This directly links the stress distributions occurring to the specific 

microstructure.   

In Figure 6.10, the mark functions for the occurrence of damage and plasticity 

provide information about the occurrence of specific failures.  At the yield strain, the 

relationship between sites of plasticity and damage is vanishingly small at 2 μm.  At two 

times the yield strain, the plasticity of nickel shows no particular order in either the short 

or long range.  The curves in the yz-plane are still less than those in the x-directions, 

which corresponds to the stress distributions discussed previously.  Damage is much 

more localized than plasticity in all directions.  Interestingly, it also appears damage is 

slightly higher in the cross-plane than in the direction of loading.  Most likely, damage 

occurs at a point and then spreads perpendicular to the initial damage site, which 

corresponds with the maximum stress criteria used for YSZ.   

The last data tool was distribution curve fitting of histograms, and Figure 6.11 

used four different distributions to study the microstructure.  Both nickel and YSZ have 

large right leaning stress distributions (Figure 6.11 (a) and (b)), which result from the 

lack of compressive stresses in the microstructure.  The fact that YSZ does not fit a 

Weibull distribution results from the bulk of the stress being near the average stress value 

in the microstructure.  This is probably due to its larger volume fraction providing a 

slightly more uniform stress distribution.  Surprisingly, neither the nickel nor YSZ 

distribution change significantly in shape or size with increasing strain, meaning that 

even as plasticity and damage occur the overall stress interactions between the phases 

stay the same.  The strong right leaning distributions correspond well to the notion of 

failure in materials.  Defects lead to areas of high stresses, which then lead to failure, and 
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although defects are not specifically modeled the distribution of Ni, YSZ, and pores lead 

to similar behavior.  It would also be expected that for different microstructures different 

stress distributions would result.  For instance, a completely random distribution would 

probably have a Gaussian distribution since each phase is randomly distributed.   

In contrast, in Figure 6.11(c) and (d), the distributions for the plastic and damage 

zones change drastically, with increasing strains, mainly in size.  Nickel has a Gaussian 

distribution for all strains and the shifting of the curve to the left for increasing strain 

comes from the change in stress distribution from previously deformed elements.  

Looking at Figure 6.11 (a) for increasing strains, the Gaussian distribution slowly starts 

to show a higher left skew.  This comes from high stress being “disconnected” from the 

model as damage and plasticity increase.  The YSZ distributions of Figure 6.11 behave 

exactly as expected, since as each element continues to undergo damage, the stresses 

continually decrease. 

6.4.3.  Microstructure variation 

The microstructure was varied either by volume fraction or internal length scales.  

Changing the volume fraction for the microstructure showed that the calculated yield 

stress was higher, but that the actual shape of the stress-strain curve was similar at least 

up to yielding.  The 22% porous realization is the only simulation to actually show failure 

at any point, which for the kinematic load, occurred near the edge and spread in the yz-

plane.  This makes sense as damage growth occurs in the cross-plane.  An examination of 

the mark curve (plot not shown) for binning with all stresses greater than the average 

current stress found that the SRO matched that of a Debye function with a 0.6 μm.  

However, the LRO order was greater than that of the Debye function, suggesting that the 
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stresses are correlated at a much larger length scale for the smaller porosity 

microstructure.  

When changing the internal length scales, the goal was to change the actual shape 

of the stress-strain curves in some significant way, and from Figure 6.13, the most 

significant change occurs with a change in YSZ length scales.  The curves with increased 

YSZ exhibited better post yielding behavior.  Looking at Figure 6.14(a), it also has the 

smallest and most right leaning distribution.  Apparently the grouping of YSZ in larger 

clusters prohibits damage growth.  Yielding in nickel, as shown in Figure 6.14(b), is 

fairly insensitive to changes in length scales, although the largest curve is the increased 

YSZ model.  Therefore, larger YSZ particles also help shift loading to the more ductile 

nickel, improving the post yielding behavior.  It is of interest that changing length scales 

had at most a potential 5% change in modulus, but those changes could then result in 

significant changes in the stress-strain curves 

6.5.  Summary 

The voxel reconstructions of previous chapters were applied to a study of 

nonlinear deformation.  By setting the YSZ phase properties to those for brittle failure 

and the nickel phase to that of plastic behavior, a yield stress value of 40 MPa was 

predicted for 40% Ni-YSZ.  The analysis found that for RVE size, yield stress was more 

variable than modulus and a larger RVE size, but not necessarily a smaller voxel size, 

was needed than was usually the case for a linear analysis.   

Then while varying the microstructure and studying in detail one base model, the 

following conclusions were made about failure in the actual cermet:  
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• the mark function shows a correlation between microstructure and stress 
distributions, 

• the stresses in each phase have a Weibull type distribution, 

• the ratio of yield stress to modulus is similar for 22% and 40% porosities, and  

• a slight change in YSZ length scales has a significant impact on the stress-strain 
curves. 
 

Future work on this area would focus on deformation behavior after yielding.  

While examined in this chapter, much remains unknown about how the constituents, 

especially nickel, would actually change after initial yielding or damage.  Implementation 

of an incremental plasticity theory would better model unloading behavior and address 

the fact that the stress distribution within nickel is only relatively monotonic.  Another 

aspect of interest would be examination of fracture in the cermet, although published 

experimental data exists for fracture properties of the anode [28, 33, 87].  Experimental 

information on the stress-strain behavior of the anode would be useful, though Radovic 

and Lara-Curzio did find bi-axial strength values 63.8 ± 19.7 MPa [31].  While this does 

not correspond exactly with yield stress behavior, the values predicted within this work 

appear reasonable.      
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CHAPTER 7 
 

TIME-DEPENDENT DEFORMATION 

  

As discussed in the Introduction (recall Figure 1.2) stresses in the fuel cell are 

dependent on a complex interaction of manufacturing, operating conditions, and cell 

configuration.  However, even without external loading the thermal mismatch of the 

electrolyte and anode bi-layers will still result in a constant stress in the anode material.  

Then at the most basic level, the cermet will carry internal stresses due to the thermal 

mismatch of nickel and YSZ.  These two conditions, along with the fact that pSOFCs 

undergo high temperatures for extended periods of time, make the study of time-

dependent deformation of nickel within the composite a priority.   

There are many unknowns concerning the time-dependent, or creep, deformation 

of the anode material.  Both numerical and experimental studies of the anode-electrolyte 

bi-layers have found that the residual stresses in the electrolyte are in compression 

resulting from the initial sintering at high temperatures [34, 103].  Lara-Curzio et al. 

found an initial drop in these residual stresses at 800°C due to creep deformation of Ni-

YSZ [34].  Gutierrez-Mora et al. specifically studied creep in the bi-layer and found that 

at high temperatures ( > 1100ºC ) nickel controlled deformation, but that the bi-layer 

deformation did not correlate with nickel stress exponents [35].  Other studies of nickel 

aggregation primarily focused on electrical performance and not structural properties [18, 

21, 23]. 
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The voxel reconstructions were used to examine the cermet properties 

independent of the bonded electrolyte layer.  By examining an initially stress-free anode 

with different applied strains and strain rates conclusions can be extrapolated to possible 

PEN behavior.  This chapter will first introduce the nature of stresses in the PEN layer 

that result from thermal mismatch during the sintering process.  Then the stresses from 

thermal mismatch in the anode itself will be discussed.  Next, the methodology behind 

creep in pure metals and composites will be covered before determination of RVE size.  

An abbreviated study of RVE size for creep deformation is done, and the different 

measurements to determine convergence of the stress-strain curves are discussed.   

Once RVE size is determined, four different features of creep in the anode 

material are investigated:  stress relaxation over time, strain rate dependence, the 

significance of YSZ percolation, and finally the influence of the internal nickel length 

scales.  Each of these topics provides insight into the final deformation experienced by 

the PEN layer.  

7.1.  Theory  

7.1.1.  Thermal stresses 

The anode-electrolyte bi-layer is sintered at temperatures as high as 1400°C and 

as the bi-layer is cooled to room temperature, the lower CTE of YSZ, YSZα , results in a 

compressive stress in YSZ and a tensile stress in the anode [19].  Figure 7.1 shows the 

resulting warpage that occurs during the cooling process, where higher shrinkage in 

nickel deforms the electrolyte.  Since sintering occurs at temperatures higher than 

operating temperatures, this stress distribution will occur at all operating temperatures.  
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Experiments have found these electrolyte compressive stresses range from 500-800MPa 

even at high temperatures [34, 103].  Recall that the electrolyte typically has heights of 

10μm compared to 1mm for the anode, meaning the anode will carry significantly less 

stress.  For the previous dimensions and for a compressive electrolyte stress of 800MPa, 

the stress in the anode would be 8MPa.  

sT T<
YSZ Ni YSZα α −<

0Ni YSZσ − >

0YSZσ <

Stress free at sintering

sT T<
YSZ Ni YSZα α −<

0Ni YSZσ − >

0YSZσ <

Stress free at sintering

 

Figure 7.1.  Residual stresses in the bi-layer. 

 

 If the anode is heated without an external load, the distribution of stresses within 

the composite will vary around an average result.  In fact, since the CTE of nickel is 

greater than that of YSZ, the average stresses in YSZ will be positive compared to 

negative stresses in nickel.  Figure 7.2 illustrates the difference in average stresses in each 

phase for a temperature increase without additional loading.  In Figure 7.2 both nickel 

and YSZ are purely elastic and the model is idealized in that PEN residual stresses are not 

incorporated.  The magnitude of the average stresses is dictated by the volume fractions 

of each phase such that equilibrium is satisfied.  Also at the Curie point, the relationship 

to the composite CTE can be seen with the mirroring of the stress spikes due to nickel’s 
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paramagnetic transition.  The creep deformation of nickel will therefore vary throughout 

the microstructures due to this distribution of stresses.  As nickel deforms so will the 

equilibrium relationship between nickel and YSZ.  The question then becomes what is the 

overall impact of nickel deformation on the anode.  
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Figure 7.2.  Internal stresses in Ni-YSZ for stress free temperature increase. 

 

 

7.1.2.  Composite creep 

Since in comparison to nickel, YSZ will experience little deformation over time, it 

can be assumed that temperature-dependent deformation of Ni-YSZ will be controlled by 

the creep behavior of the nickel phase.  First though, we present a temperature-dependent 

definition of strain for the composite as shown in equation (7.1).  This definition is for the 

bulk response of the composite, even though, as illustrated in Figure 7.2, internal stresses 

will exist even at a stress-free stage for the composite.  For small times the total strain of 
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εtotε thmεthe composite, , is the sum of the elastic, ,  and thermal strains, , occurring in 

the composite such that  

tot thmε ε ε= + .        (7.1)

Therefore Hooke’s law for a uniaxial loading must account for the thermal deformation, 

and total strain is now defined as 

tot T
E
σε α= + Δ .          (7.2) 

Over extended time periods, the nickel phase will begin to experience creep and 

the total strain must now include creep strain, cε , shown in (7.3),   

tot thm cε ε ε ε= + + .       (7.3) 

In metals, creep can typically be broken down into three stages, an initial fast 

stage of strain, a long term steady-state deformation, and finally, a fast deformation 

preceeding catastrophic failure, as illustrated in Figure 7.3 (a).  The classic approach to 

creep in metals uses an Arrhenius equation to describe the steady-state strain rate, which 

is defined in (7.4). 

   , where       (7.4) /n Q RTA eε σ −=

A  and are dimensionless constants.  Q  is the activation energy with units of calorie per 

mole.  

n

R  is the universal gas constant and T  is the temperature.  The strain rate is the 

derivative of strain with respect to time of the total strain, defined as 

cd
dt
εε = .        (7.5)  

Since both thermal and elastic strains are independent of time, they drop from the 

equation(7.5).  In studying creep, the n exponent is often of primary interest since it 

describes the slope of the log strain rate versus stress curve (see Figure 7.3 (b)).    
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Figure 7.3.  Illustration of stages of creep (a) and log stress-strain curves (b). 

 

For a pure material, once steady-state creep has been reached, the stress will 

become constant with time.  This is not necessarily true for a metal-ceramic composite.  

Initially a stress-strain curve of the composite will have an instantaneous slope equal to 

the modulus of the microstructure, , but over time this slope will change.  Assuming 

that creep in the ceramic phase is minimal, once the steady state strain is reached in the 

time-dependent phase, the microstructure will continue to deform by the rules governing 

the remaining phase.  In Figure 7.4, the stress-strain curves from an FE analysis of pure 

nickel and a Ni-YSZ composite are plotted for a constant strain rate and temperature.  It 

can be seen that over time as nickel experiences creep, a steady-state modulus, 

iE

ssE , value 

is reached for the composite.  This value is equivalent to the modulus of the YSZ portion 

of the composite.  Since the load is applied with a constant strain rate, the curve would 

have the same behavior when plotted against time. 
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Figure 7.4.  Illustration of composite creep for a constant strain rate and temperature. 

 

7.2.  FE model 

In the analysis of time-dependent deformation, several models of different 

element and RVE sizes are examined first, followed with reconstructions that vary either 

porosity or internal length scales.  A complete list of the reconstructed models is provided 

in Table 7.1.   

The YSZ material is the same elastic material from Chapter Four, but the nickel 

material is modified to account for time-dependent deformation.  A temperature-

dependent modulus and CTE is used for nickel, while a steady-state creep formulation is 

used based on equation (7.4).  The parameters for nickel creep were determined from 

multiple published works [104-108].  Weertman and Shahinian found the creep exponent, 

, to be 4.6, which was used for nickel in this work [105].  The material data is also n

 117



 

modified to account for a temperature-dependent modulus.  The complete property data is 

found in Appendix D.  All simulations are run at 500°C unless otherwise specified. 

Two different loading conditions are used throughout.  The stress relaxation 

model loads the model to an initial strain in the x-direction and a constant temperature for 

the entire model.  The model is then held at a constant strain and temperature over time to 

allow stress relaxation to occur.  The second model applies an increasing strain over time 

in the x-direction for a constant temperature.  The strain is applied so that the strain rate 

for the composite is constant over time. 

  

Table 7.1.  Time-dependent microstructure realizations. 

λNi 
(μm) 

λpore 
(μm) 

λYSZ 
(μm) 

Lvoxel 
(μm) 

LRVE 
(μm) poresϕNiϕ YSZϕ N R Mod. Set 

1 0.40 30

2 0.30 400.6 0.4 0.4 .27 .33 .40 12 20 R

3 0.24 50

4 0.24 7.2 12 30
N  0.6 0.4 0.4 .27 .33 .40 

5 0.24 9.6 16 40

6 .46 .14 .40 

7 .44 .16 .40 

8 .42 .18 .40  YSZϕ 0.6 0.4 0.4 .30 12 20 40

9 .36 .24 .40 

10 .30 .30 .40 

11 0.9 0.4 0.4 .27 .33 .40 0.24 16 18 60
 Niλ

12 0.3 0.4 0.4 .27 .33 .40 0.20 8 20 40
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7.3.  Results and discussion 

7.3.1.  RVE size and discretization 

Several assumptions started the analysis of acceptable RVE size and 

discretization.  The first was that since for this analysis, nickel is the only phase 

undergoing nonlinear deformation, then convergence behavior must be better than that 

for the damage and plasticity analysis, where both phases experienced nonlinear 

deformation.  The second assumption was that our primary concern is the final steady 

state deformation of the microstructure, ssE , as illustrated in Figure 7.4.  To that end, the 

same base microstructure from Chapter Six is studied for several different RVE sizes and 

discretizations.  Table 7.1 lists values for the instantaneous modulus, the stress and slope 

of curves at an arbitrary strain, and finally, steady-state modulus as the strain approaches 

infinity.  Each model is loaded in the x-direction with a constant strain rate.  It should be 

noted that an initial thermal strain was preset for a CTE of 12.07 x 10-6 / ºC at 500ºC for 

all realizations.   
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Table 7.2.  RVE size and discretization for a strain rate of 1x10-6 /s at 500ºC. 

ssE  at 
 

( GPa ) 

ssE  at σ  at 
R  N iE  36.7 10ε −= × # ε → ∞  36.7 10ε −= ×( GPa ) ( MPa ) ( GPa ) 

1 43.87 148.8 9.29 1.45 
2 42.34 139.8 8.77 1.56 30 20 
3 46.16 154.4 9.60 1.71 

Average 147.7 ± 7.37 9.22 ± 0.42 44.12 ± 1.92 1.57 ± 0.13 
1 45.27 155.9 9.60 2.39 
2 42.07 146.3 9.49 2.49 40 20 
3 43.28 150.4 10.25 2.79 

Average 150.9 ± 4.82 9.78 ± 0.41 43.54 ± 1.62 2.56 ± 0.21 
1 41.77 135.3 7.92 1.43 
2 43.59 144.2 10.8 1.67 50 20 
3 41.47 145.6 10.3 2.20 

Average 141.7 ± 5.59 9.67 ± 1.54 42.28 ± 1.15 1.76 ± 0.40 
1 40.34 137.9 8.68 2.38 
2 41.01 133.4 7.82 1.38 30 12 
3 39.88 139.5 8.48 2.93 

Average 136.9 ± 3.16 8.33 ± 0.45 40.41 ± 0.57 2.23 ± 0.79 
1 41.53 137.6 10.16 2.99 
2 44.71 142.8 9.96 3.54 40 16 
3 45.29 138.2 9.30 2.20 

Average 139.5 ± 2.84 9.81 ± 0.45 2.91 ± 0.67 43.84 ± 2.02
 

 

In the data from Table 7.2, one accurate estimate of convergence of the creep, 

RVE size, is not immediately obvious.  As in Chapter Four, the modulus of the 

microstructure is easily determined for a minimum R  and  of 40 and 16, respectively.  

However, for the stress at a given strain, the RVE size becomes much more significant 

and the convergence behavior is similar to what was found for the damage and plasticity 

analysis in the previous chapter.  One factor of interest is that the early steady-state 

N
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modulus values show a more reliable convergence behavior than that of the infinite value.  

The variability probably results from the increase of length scale for the non-YSZ phases, 

as nickel no longer has a non-uniform stress distribution.  In other words the 

microstructure becomes similar to a two phase composite of pores and YSZ. 

To further investigate this behavior, Figure 7.5 (a) plots the average stresses for 

both nickel and YSZ for model 1 in Table 7.1.  The curve covers a total of 50 hours with 

a steadily increasing strain at a constant strain rate.  It should be noted that this is not a 

realistic portrayal of cermet behavior, because catastrophic failure would occur at a much 

lower strain.  However, the curve does illustrate that after a reasonably short time, the 

slopes of the Ni-YSZ and YSZ curves are almost identical.  Figure 7.5(b) plots the 

derivative of the stress with respect to strain, a value with units equivalent to that of 

Young’s modulus.  In Figure 7.5(b), the curve approaches zero very quickly, at little 

more than five hours.  To that end, the steady-state slope at reasonably small times in 

combination with the stress value for a given strain rate appears to be a better measure of 

convergence behavior, than either the initial modulus or the steady-state value as time 

approaches infinity. 
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Figure 7.5.  Stress decomposition for cermet (a) and the derivative of stress change with 
respect to strain (b) over time for a strain rate of 1 x 10-6 /s at 500°C. 
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7.3.2.  Base model 

7.3.2.1.  Stress relaxation 

 From the previous convergence analysis, the highlighted realization from Table 

7.2 was used to study the variation in behavior for stress relaxation and strain rate.  The 

first set of FE models loaded the microstructure to the approximate yield stress estimated 

in Chapter Six and measured the stress relaxation over time.  This was done at both 

500ºC and 700ºC for a total of 10,000 hours (refer to Figure 7.6).  The increase in 

temperature has a significant impact on the amount of time required to reach steady state 

and in the initial stress drop.  Next, in Figure 7.7, the impact of the initial stress on the 

stress relaxation is shown at 700ºC.  Also of interest is the rise in stress for a pre-stress 

value of 10 MPa.  This is due to nickel being primarily in compression at such low stress 

values.     
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Figure 7.6.  Stress relaxation over time for an initial stress of 40MPa. 
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Figure 7.7.  Stress relaxation for multiple pre-stresses at 700ºC.   

 

Study of the base model (recall the highlighted realization in Table 7.2) led to 

several conclusions about the stress behavior of the microstructure.  In Figure 7.6 the 

cermet lost almost seventy-five percent of its initial load in a relatively short amount of 

time, but the final difference between the two temperatures was only 2MPa.  Curve fits to 

the histograms of stresses at 700ºC, Figure 7.8, support this by showing how the nickel 

stresses converge at a mean value over time.  Also significant is that as nickel 

experiences creep, the stresses in YSZ shift from a Weibull distribution in Figure 7.8(b) 

to a Gaussian distribution at 1,000 hours in Figure 7.8(d).  This results from the nickel 

phase no longer carrying the compressive load from thermal expansion.  The loading of 

nickel is also higher than that of YSZ initially, because of its smaller volume fraction.  

The amount of nickel carrying an initial compression also matters, since, as shown in 

Figure 7.7, for the smallest load, an initial stress increase occurs. 
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Figure 7.8.  Stress distributions for nickel (a) and YSZ (b) at zero time and for increasing 

times for nickel (c) and YSZ (c) for an initial stress of 40MPa at 700°C. 

 

7.3.2.2.  Constant strain rate 

Next, traditional stress-strain curves (thermal strain is present, but not plotted) are 

shown for several different strain rates in Figure 7.9.  The stress-strain curves are plotted 

for eight different strain rates.  For the largest strain rate, 1 x 10-1 /s, the total run time is 

6.7 x 10-2 seconds and for the smallest strain the total time is 67,000 seconds.  As the 

total run time increases the final stress values decrease as more creep occurs in nickel.  
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One factor of interest is that all the curves either overlap or intersect at 37 MPa and a 

strain of 9 x 10-4 mm/mm.  
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Figure 7.9.  Stress-strain curves for different strain rates at 500ºC. 

 

7.3.3.  YSZ Percolation 

 In Chapter Three percolation and the percolation threshold were introduced.  

Percolation described the connectivity of a phase in the system and percolation threshold 

was the volume fraction at which a phase could be said to have an infinite cluster.  Since 

YSZ has the same characteristic length as the pore phase, then YSZ should exhibit 

similar clustering behavior as the pore phase.  To that end, the stress-strain curves were 

examined for a constant porosity of 40%, but a steadily decreasing volume fraction of 

YSZ.  The curves in Figure 7.10 occur for a constant strain rate and temperature.  Since 

CTE will vary significantly with the increase in nickel volume fraction, each realization 
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was loaded to an initial zero stress for its particular microstructure.  It can be seen that as 

the volume fraction of YSZ drops, the creep behavior of nickel becomes steadily more 

dominant.  
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Figure 7.10.  Stress-strain curves for changing volume fraction YSZ for a strain rate 1 x 
10-6 /s at 500°C. 

 

 The impact of YSZ volume fraction is obvious from Figure 7.10, and it can be 

seen that at 14% and 16% YSZ, the curves almost plateau, even just for a short time.  

This corresponds to the prediction in Figure 3.5 that the phase will no longer percolate.  

The fact that some load still exists is probably an artifact of the discretized microstructure 

and the clustering assumption of full sides, where full sides of the cube are touching 

instead of edges or corners.  Volume size also has an impact, since percolation threshold 

predicts an infinite cluster but does not prohibit a large cluster for a given volume.  Table 

7.3 lists the instantaneous modulus of each realization and also the steady-state value as 
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strain approaches infinity.  The  value stays fairly consistent for all volume fractions, 

but the other values change significantly.  A plot of the steady-state modulus as strain 

approaches infinity is the most obvious connection to the predicted percolation threshold 

as shown in Figure 7.11.  Interestingly at a certain point above 18% this relationship also 

becomes linear. 

iE

 

Table 7.3.  Composite creep values for increasing volume fraction of YSZ. 

ssE  at σ  at 
iE ssE  at ε → ∞   YSZϕ 21.0 10ε −= ×  21.0 10ε −= ×  

( GPa ) 
( GPa ) ( GPa ) ( MPa ) 

0.14 37.90 86.65 1.60 0.007 

0.16 40.77 96.27 1.77 0.006 

0.18 40.96 102.93 2.52 0.012 

0.24 39.75 111.44 3.13 0.078 

0.30 42.13 151.65 6.19 1.71 

0.33 42.07 167.38 7.61 2.49 

 

 128



 

Ess ( GPa )

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ϕ Y
S

Z

0.0

0.1

0.2

0.3

0.4

 

Figure 7.11.  Steady-state modulus as strain approaches infinite. 

 

7.3.4.  Nickel Length Scales 

To study the impact of length scales, the stress relaxation for three different 

models was studied at 500ºC.  The first is the same realization used in Figure 7.6, but 

now a realization with a nickel characteristic length of 0.3 μm and 0.9 μm is also added 

(refer to Table 7.1).  Each model was initially loaded to a pre-stress of 40MPa before 

allowing time-dependent deformation.  The stress relaxation curves are shown in Figure 

7.12. 
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Figure 7.12.  Stress relaxation for nickel length scales at 500°C. 

 

For the realization with a smaller nickel characteristic length, the stress relaxation 

over time is slightly higher.  In Figure 7.13 the mark correlation functions are plotted for 

a value two times greater than the initial stress of 40MPa.  Since the nickel stresses 

converge towards a mean, only the YSZ function is shown and the function is normalized 

by YSZ’s 2-point probability function.  It can be seen that over time, the magnitude of the 

stresses decreases, but the overall shape of the curves does not change.  The smaller 

nickel characteristic length also results in a higher stress distribution in YSZ, which 

explains the higher stress relaxation seen in the 0.3 μm nickel length scale.  The smaller 

scale results in higher stresses between the two phases, increasing the amount of creep 

nickel experiences.  This is not an immediately obvious conclusion about creep behavior 

in the cermet, since the first assumption would be that larger nickel sizes would lead to 

higher creep.  Also note that for the two larger nickel length scales the difference in 
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behavior and mark functions is not as pronounced.  This leads to the conclusion that the 

nickel length scale must be smaller than the YSZ and pore scales in order to produce a 

significant change.   
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Figure 7.13 The YSZ mark function at (a) zero time and (b) 5 hours. 

 

7.4.  Summary 

The preceding results show the significant impact that nickel creep has on the 

cermet.  Data regarding the size of the RVE followed a behavior similar to that of 

damage and plasticity, but was difficult to determine for infinite times.  However, very 

early on, the YSZ microstructure dominated deformation.  Several factors influence creep 

behavior, and it was found that initial stress and operating temperature both have serious 

impacts.  Finally, the rate of deformation and the amount of stress relaxation was affected 

by YSZ percolation and nickel length scales, respectively. 
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CHAPTER 8 
 

SUMMARY AND CONCLUSIONS 

  

 Three-phase composites are a fundamental component of planar solid oxide fuel 

cells, a high density power system.  In particular, the anode, the focus of this work, 

consists of nickel, YSZ, and a continuous pore phase, where each phase is vital to the 

proper operation of the fuel cell.  Numerical studies of the PEN layer have found that 

failure will most likely occur in the anode layer since it provides the structural strength 

for the layer [13-16].  However, an extensive study of the anode’s structural behavior in 

relation to its microstructure is lacking.  This dissertation outlines a numerical method to 

study composite behavior in relation to its microstructure and seeks to improve 

understanding of porous cermets in general.  Each chapter outlined a different component 

of the analysis along with results and predictions of the composite behavior.  This final 

chapter briefly summarizes the preceding chapters, reviews major conclusions, and then 

discusses the significance of this research. 

8.1.  Chapter summary 

 The previous chapters have outlined a numerical methodology to study porous 

cermets using voxel reconstructions.  The approach first created a new “realization,” 

which was a computer generated image constructed of voxels that matched a given set of 

probability functions that were obtained from a physical representation of the 

microstructure.  This realization was then used to study multiple properties for the 
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composite ranging from linear material properties to nonlinear deformation.  Chapter One 

introduced the theory and methodology behind creating the microstructure realizations.  

Two different probability functions were used to create a realization of an ORNL anode 

sample, the 2-point probability and lineal path functions.  Chapter Two continued to 

study the realizations, by using the cluster function to study whether a phase would 

percolate or not.   

 The next two chapters, four and five, studied the linear material properties of 

porous cermets grouped as structural or transport properties.  In Chapter Four, an 

exhaustive study of the appropriate RVE and voxel size were undertaken in determination 

of Young’s modulus and CTE.  The methodology to determine RVE size was then used 

in Chapter Five to determine the acceptable RVE size for determination of thermal 

conductivity.  The structural properties of modulus and CTE were predicted for different 

porosities with a good match to experimental data, and once interfacial resistivity was 

accounted for in the transport analysis, a good match to experimental results was also 

achieved.  The final section of each of these chapters was the creation of new realization 

sets based on modified probability functions.  This was done to link microstructural 

behavior to the probability descriptors of the microstructure. 

 From here, the research shifted from the prediction of material properties to a 

nonlinear analysis of deformation behavior.  The anode can be expected to experience 

high stresses during assembly and from cell configuration, plus prolonged thermal 

stresses during operation, both of which lead to nonlinear material behavior.  First, 

damage and plasticity were incorporated in the FE models and stress-strain curves plotted 

for multiple realizations.  The microstructures were studied by examining the average 

 133



 

stresses in nickel and YSZ, determining the shape of the stress distribution within the 

microstructure, or finally by use of a mark function.  The mark function treats stresses, or 

other field parameters, in the microstructure in a fashion similar to that of a probability 

function that describes a specific phase.  The methods of data analysis provided a 

probabilistic description of the stresses in the composite.  In Chapter Seven, time-

dependent deformation was studied by adding creep behavior to the nickel phase.  Since 

the PEN layer is known to experience stress relaxation after extended periods of time in 

high operating temperatures, the anode behavior was specifically studied for that 

situation.  Also investigated were stress-strain curves for loading with a constant strain 

rate, and this proved to be an effective way to see the impact of YSZ percolation on the 

creep behavior of Ni-YSZ. 

8.2.  Major conclusions 

 Each of the preceding chapters in this work studied a specific aspect of the anode 

relevant to successful operation of the fuel cell and from that several conclusions about 

cermet behavior were drawn.  Because each analysis was based on similar sets of 

realizations, the composite behavior can now be connected across many different material 

behaviors.  Initially a study of percolation in Chapter 3 found that the minimum volume 

fraction needed for continuous porosity was 16%.  It was also found the modulus was 

more sensitive to percolation length than to cluster size, and a larger pore percolation 

length gave a lower modulus.  In fact, pore percolation was the only factor that could be 

linked across multiple changes in microstructural length scales.  Plus, improvements in 

modulus lead to a decrease in CTE, which is beneficial to SOFCs since a common goal is 

to match the anode’s CTE to YSZ.  In Chapter Five’s transport analysis, it was found that 
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interfacial resistance must be included in the thermal modeling, for it can contribute as 

much as 50% to the total effective thermal conductivity.  Each effective property was 

found to be most influenced by a different feature of the microstructure;  

• the modulus changes most with change in pore volume fraction,  

• an increase in the percolation length of the porosity would cause a smaller 
drop in modulus, 

• the CTE was independent of porosity and strongly temperature dependent, 

• and thermal conductivity had a linear relationship with the interfacial area of 
nickel and YSZ.  

 For nonlinear deformations, specific conclusions were drawn from studying the 

interaction of nickel and YSZ.  It was found that the brittle and ductile nature of YSZ and 

nickel, would lead to damage spreading perpendicular from the strain, while plastic strain 

increases the most in the direction of strain.  The most significant change in post-yielding 

behavior came from increasing the length scale of YSZ, while increasing pore size had a 

minimal effect.  Larger clustering of YSZ inhibited damage in that phase, and it was 

found that although porosity affects modulus, nonlinear deformation is controlled by the 

interaction of the nickel and YSZ phases.   

 In the second nonlinear analysis for time-dependent deformation, YSZ controls 

the final shape of the microstructure, but the length scale of nickel will influence the rate 

of stress relaxation.  Both temperature and the initial stress also strongly influence the 

rate of deformation; however, the impact of pre-stress is greater since the initial 

compression of nickel, due to thermal stresses, controls the amount of nickel creep.   
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 The results from Chapters Seven and Eight lead to the following conclusions 

• the post-yielding behavior of the composite is strongly influenced by changes 
in the length scale of YSZ or nickel, and 

• initial creep behavior is strongly influenced by nickel, but over time YSZ 
controls the deformation. 

 In a slightly different category, conclusions can also be drawn about the 

methodologies used in this research.  For instance, especially for the linear material 

properties, a realization based on the 2-point probability functions accurately predicted 

cermet behavior.  Also for linear properties, RVE size controlled standard deviation while 

voxel size (or discretization) controlled accuracy.  This was not true for the nonlinear 

analysis, and the RVE size needed to be larger for such analyses than was the case for a 

linear analysis.  The use of multiple realization sizes showed that the final results were 

consistent across multiple realization sets for both linear and nonlinear analyses once 

convergence of the RVE was reached.    

8.3.  Contributions 

 Although this research was conducted based on the anode material used in fuel 

cells, the methodologies developed here can be applied to other composites. The overall 

process served as a platform to study a complex microstructure in a wide variety of ways, 

and with minimal computational expense.  The research modified existing 
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methods and developed new techniques to provide new information about three-phase 

composites.  Tools that were enhanced include 

• modification of SAM to model three-phase composites in 3D, 

• use and then actual modification of realistic probability functions during the 
stochastic reconstruction to relate material behavior to a given microstructure, 
and 

• the use of histograms and mark functions to study the internal stress 
distribution within the microstructure. 

New techniques in this research were developed in several different areas ranging from 

RVE size determination to effective properties.  They are described as follows; 

• the use of discretization and RVE size parameters and box plots to provide a 
visual tool in the determination of convergence for FE models for effective 
properties, 

• introduction of the percolation length to relate changes in pore size to changes 
in modulus and CTE, 

• calculation of interfacial resistivity parameter to account for imperfect 
interfaces in the FE model, and to accurately predict thermal conductivity, and  

• the study of YSZ percolation and introduction of a steady-state modulus in 
examining creep in the Ni-YSZ cermet.   

 Overall the research met the requirements for a successful analysis of three-phase 

cermets.  It modeled the interpenetrating microstructures in three dimensions, while 

capturing the percolating nature of all three phases.  Also important was the ability to 

study the stress distributions occurring within the microstructure.  To study the internal 

stresses in this way allowed conclusions to be drawn about the interactions between  
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phases and resulting bulk behavior.  To that end some significant contributions 

concerning cermet behavior are 

• changes in porosity are more significant to modulus, than changes in internal 
length scales 

• changes in length scales of the microstructure will more strongly influence 
post-yield and creep behavior than either modulus or CTE, 

• the interface of nickel and YSZ is a significant factor for transport properties, 
and 

• the initial stress in the cermet will have a larger impact on stress relaxation 
than temperature. 

 

8.4.   Future work 

 Further work in this research can take place down several avenues.  The accuracy 

of voxel reconstructions could be studied for new microstructures, or modified 

microstructures could be used to test the realizations’ ability to predict material behavior.  

Specific to fuel cell research, further study of post-yielding and fatigue behavior can 

provide more insights into failure of the PEN layer.  Introduction of an incremental 

plasticity model in nickel would allow the accurate modeling of unloading behavior.  

First, experimental studies need to be developed to investigate the specific behavior of 

nickel, and to a lesser extent YSZ, within the anode.  This would lead to more accurate 

material data to improve the accuracy of the analysis.  Still voxel reconstructions proved 

to be an effective way to study three-phase composites and have potential for further 

development.  
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APPENDIX A 

PROBABILITY INDEPENDENCE 
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 The voxel reconstruction used , , and  to recreate each realization.  

The following formulation, based on a personal communication from Dr. Garmestani at 

Georgia Tech [59], proves that the three probability functions completely describe the 

microstructure. 
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 Equations (A.1) and (A.2), provide a complete relationship between the following 

probability functions.  Accounting for symmetry of the probability functions, if the three 

functions used result in an independent matrix then the microstructure is accurately 

described.  

 For the set of , , and  the matrix takes the form in (A.3). (1)
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 Since the determinant of A  is greater than zero the solution to the set of equations 

is nontrivial.  However, for , , and  the determinant is equal to zero and 

these probability functions do no describe the microstructure, as shown in (A.4). 
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RECONSTRUCTION CODE 
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 Table A.1 provides a list of the CPP code used for the voxel reconstruction.  The 

table starts with the base program, followed with the environment header file.  Each 

following row lists the subprograms and header files listed in environment.h. 

 

Table A.1.  Reconstruction code. 
createMatDebye.cpp 
#include "environment.h" 
 
int createMat( FileCall&, const SIZE&, vector<Material>&, bool, double, int ); 
 
int main() { 
 string dir = "//nv//hp4//gtg580j//c_files//datFiles//"; 
 std::clock_t start = std::clock(); 
 Material phase1("NI", .35, 1), phase2("YSZ", .43, 2); 
 Material phase3 = --(phase1 + phase2); 
 vector <Material> phases; 
 phases.push_back(phase1); 
 phases.push_back(phase2); 
 phases.push_back(phase3); 
 cout <<"The microstructure is: " <<endl; 
 cout <<phase1 <<endl <<phase2 <<endl <<phase3  <<endl; 
 
 SIZE INN(40); 
 int numReal = 10; 
 queryDefaults( INN, numReal ); 
 string groupName = convert( INN.W() ); 
 
 cout <<"Current identifier is " <<groupName <<endl; 
 groupName = groupName + queryString(); 
 
 double cl; 
 cout <<"What is diameter " <<endl; 
 cin >>cl; 
 int lro; 
 cout <<"What is the LRO " <<endl; 
 cin >>lro; 
 
 string labelStr; 
 for ( int i = 0; i < numReal; i++ ) { 
  labelStr = "seq" + convert( i + 1 ); 
  FileCall names( dir, "ranMat", groupName, labelStr, ".dat" ); 
  srand( i * 10 ); 
  createMat(names, INN, phases, true, cl, lro); 
 } 
 
 cout <<"Clock time: "; 
 cout <<(( std::clock()- start)/(double)CLOCKS_PER_SEC ) <<'\n'; 
 return 0;  } 
 
int createMat( FileCall& fc, const SIZE& INN, vector<Material>& phases, bool third, 
double cl, int lro  ) 
{ 
 string name = fc.name(); 
 cout <<"Current file name: " <<name <<endl <<endl; 
 
 FileCall record(fc.getDir(), "log", fc.getDes(), "", ".log" ); 
 string RECORD = record.name(); 
  
 //LOG FILE AND INITIALIZE CLOCK TIME 
 ofstream log( RECORD.c_str(), ios::app ); 
 header( log, name, phases, INN ); 
 log << "The diameter is " <<cl <<endl; 
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 log << "The long range order is " <<lro <<endl; 
 std::clock_t start = std::clock(); 
 
 
 //CREATE SAMPLE 
 const SIZE OUT = (INN > 10) ? INN + MAX_BORDER : INN + MIN_BORDER; 
 int sample[OUT.S()]; 
 fillArray(sample, OUT.S(), 1); 
 
 vector<Material>::iterator iter = phases.begin(); 
 ++iter; 
 while ( iter != phases.end() ) { 
  fillCenter(sample, OUT, INN, *iter); 
  fillBorder(sample, OUT, INN, *iter); 
  ++iter;  } 
 
 iter = phases.begin(); 
 while ( iter != phases.end() )  { 
  log <<*iter; 
  ++iter; } 
 
 log <<OUT <<endl <<INN; 
 //Ratio of CL's  
 double ratioCharLen = 0.66666667;// is ORNL value 
 log <<"The ratio of char. lengths is " <<ratioCharLen <<endl; 
 
 //STOCHASTIC INITIALIZATION 
 { 
 int radius = ( int ) ( 2 * lro ); 
 //Stochastic <Corr Function> name(material, SIZE, radius, per. overlap); 
 Stochastic <TwoPoint> stoch1(phases[0], OUT, radius, (int)cl); 
 Stochastic <TwoPoint> stoch2(phases[1], OUT, radius, (int)(cl)); 
 Stochastic <TwoPoint> stoch3(phases[2], OUT, radius, (int)(cl)); 
 Energy s1( cl, phases[0], 'D' ); 
 Energy s2( ratioCharLen * cl, phases[1], 'D' ); 
        Energy s3( ratioCharLen * cl, phases[2], 'D' ); 
 stoch1.total ( sample ); 
 stoch2.total ( sample ); 
 stoch3.total ( sample ); 
 
 double eng = 0; double engPrime = 0; 
 eng = s1.calc( stoch1.funcOut() ) + s2.calc( stoch2.funcOut() ); 
 double factor = 1; 
  
 if ( third == true ) { 
  stoch3.total ( sample ); 
  eng = eng + factor * s3.calc( stoch3.funcOut() ); } 
 
 //START LOOP 
 Counter c, reject, accept;   //Initialize counters 
 double acceptRate = 0; 
 Schedule deluge( THRESHOLD );   //Great Deluge algorithm 
 IdLoc pA(3, OUT, INN), pB(3, OUT, INN); 
 Coord cA = pA.get_loc(); Coord cB = pB.get_loc(); 
 VolStatus status; 
 
 while ( eng > ERROR ) { 
  c.incCount(); 
 
  pA.rotate(); 
  pB.rotate(); 
 
  std::clock_t startInt = std::clock(); 
 
  if ( status.get() == true )  
   findOnInterface( sample, pA, pB ); 
  else 
   correctVolStatus( sample, pA, pB, status );  
 
  cA = pA.get_loc(); cB = pB.get_loc(); 
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  double endInt = (std::clock() - startInt)/(double)CLOCKS_PER_SEC; 
 
  std::clock_t startStoch = std::clock();   
  stoch1.temp( sample, cA, cB ); 
  stoch2.temp( sample, cA, cB ); 
 
  engPrime = s1.calc( stoch1.funcOut() ) + s2.calc( stoch2.funcOut() ); 
  //engPrime = s1.calc( stoch1.funcOut() ); 
  if ( third == true ) { 
   stoch3.temp( sample, cA, cB ); 
   engPrime = engPrime + factor * s3.calc( stoch3.funcOut() ); } 
 
  if ( deluge.deluge(eng, engPrime) == 1 || reject == INN.S() / 2 ) { 
   eng = engPrime; 
   stoch1.accept(cA, cB); stoch2.accept(cA, cB); 
   if ( third == true ) stoch3.accept(cA, cB); 
   reject.reset(); accept.incCount(); 
   if ( status.get() == false ) 
    status.reset(); 
   else 
    status.check(pA, pB); 
  } 
  else { 
   pA.resetId( sample ); pB.resetId( sample ); 
   reject.incCount(); 
   stoch1.reject(); stoch2.reject(); 
   if ( third == true ) stoch3.reject(); 
  } 
 
  double endStoch = (std::clock() - startStoch)/(double)CLOCKS_PER_SEC; 
 
  if ( c % STATUS_COUNT == 0 ) { 
   acceptRate = accept / STATUS_COUNT * 100; 
   currentStatus( cout, eng, c, reject, acceptRate); 
   currentStatus( log, eng, c, reject, acceptRate); 
   accept.reset(); 
   //cout <<"\t\t" <<endStoch <<"\t\t" <<endInt <<endl; 
   } 
 
  if ( c > MAX_COUNT ) break; 
 } 
 finalStatus( cout, eng, c, (( std::clock()- start)/(double)CLOCKS_PER_SEC )); 
 finalStatus( log, eng, c, (( std::clock()- start)/(double)CLOCKS_PER_SEC )); 
 } 
 //SHRINK ARRAY 
 int center[INN.S()]; 
 shrinkArray(sample, center, INN, OUT); 
 dataOutput(center, INN, phases, name); 
 return 0;} 
environment.h 
#include "jmath.h" 
#include "random.h" 
#include "arrayFunctions.h" 
#include "dataFiles.h" 
 
#include "Counter.h" 
#include "SIZE.h" 
#include "Coord.h" 
#include "Material.h" 
#include "Stochastic1.h" 
#include "IdLoc.h" 
#include "VolStatus.h" 
#include "Schedule.h" 
#include "InputPar.h" 
 
#include <ctime> 
 
#include <string> 
using std::string; 
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#include <fstream> 
using std::ifstream; 
using std::ofstream; 
 
#include <iostream> 
using std::cout; 
using std::cin; 
using std::endl;  
using std::ios; 
 
#include <iomanip> 
using std::setw; 
using std::setprecision; 
 
#include <vector> 
using std::vector; 
using std::iterator; 
const double ERROR = 1e-7; 
const double THRESHOLD = .000001; 
const int MAX_BORDER = 0; 
const int MIN_BORDER = 0; 
const int MAX_COUNT = 10000000; 
const int STATUS_COUNT = 10000; 
jmath.h 
#ifndef GUARD_jmath_h 
#define GUARD_jmath_h 
 
#include "random.h" 
#include "SIZE.h" 
#include "Coord.h" 
#include "arrayFunctions.h" 
#include <cmath> 
#include <vector> 
using std::vector; 
#include <iostream> 
using std::cout; 
const double PI = acos(-1.0); 
 
double heaviside(double); 
double overlapping_sphere(double, double, double); 
double debye_oscill(double, double, double, double); 
double debye_decay(double, double, double); 
double poly(long double, long double, long double, long double, long double, long double, 
long double, long double); 
int bin( double val ); 
vector <double> pureTwoPoint( int, SIZE, int* ); 
vector <double> pureTwoPoint( int, int, SIZE, int* ); 
#endif 
jmath.cpp 
#include "jmath.h" 
 
double heaviside(double x) 
{ 
 if ( x > 0 ) 
  return 1; 
 else if ( x == 0 ) 
  return .5; 
 else 
  return 0; 
} 
double overlapping_sphere(double dia, double r, double vf) 
{ 
 double g_func; 
 double o_func; 
 double vf2 = (double) 1 - vf; 
 
 g_func = pow(dia, 2) / 2 *  
   ( PI - heaviside(dia - r) * 
   ( acos( r / dia ) - (r / dia) * sqrt( fabs(1 - pow (r / dia, 
2))))); 

 145



 

 o_func = 1 - 2 * vf2 + pow( vf2 , 4 * g_func / ( PI * pow(dia, 2))); 
 
 return o_func; 
} 
double debye_oscill(double a, double b, double r, double vf) 
{ 
 double o_func; 
 double vf2 = (double) 1 - vf; 
 double q = 2 * PI / b;  
 if (r == 0)  
  o_func = vf; 
 else  
  o_func = vf * vf2 * exp ( -r / a ) * sin ( q * r ) / ( q * r ) + pow( vf, 
2 ); 
 return o_func; 
} 
double debye_decay(double charLength, double r, double vf) 
{ 
 double o_func; 
 
 o_func = (1-vf) * vf * exp ( -r / charLength ) + vf * vf; 
 
 return o_func; 
} 
double poly(long double c1, long double c2, long double c3, long double c4, long double 
c5, long double c6, long double c7, long double x) 
  
{ 
 double o_func; 
 
 o_func = c1 * pow( x, 6 ) + c2 * pow( x, 5 ) + c3 * pow( x, 4 ) + c4 * pow( x, 3 ) 
+ c5 * pow( x, 2 ) + c6 * x + c7; 
 return o_func; 
} 
int bin( double val ) { 
 double decimal = val - (int) val ; 
 if ( decimal >= .5 ) 
  return (int)ceil( val ); 
 else 
  return (int)floor( val ); 
} 
 
vector <double> pureTwoPoint ( int mat, SIZE d, int* arr ) { 
 int maxR = d.min(); 
 double curR = 0; 
 int binR = 0; 
 
 int trials[maxR]; 
 int hits[maxR]; 
 double func[maxR]; 
 
 for ( int i = 0; i < maxR; ++i ) { 
  trials[i] = 0; 
  hits[i] = 0; 
  func[i] = 0; } 
 
 int ct = 0; 
 while ( ct < 1000 ) { 
  Coord a, b; 
  a.set( random( d.W() ), random( d.H() ), random( d.D() ) );  
  b.set( random( d.W() ), random( d.H() ), random( d.D() ) );  
  curR = distance( a, b ); 
  binR = bin( curR ); 
  if ( binR < maxR ) { 
   trials[ binR ]++; 
   if ( arr[ index( a, d ) ] == mat && arr[ index( b, d ) ] == mat ) {
    hits[ binR ]++; 
    func[ binR ] = (double)hits[ binR] / (double)trials[ binR 
]; } 
   if ( binR == 0 ) 
    ct++;   } 
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  if ( ct % 10 == 0 ) { 
   //cout <<"Current count " <<ct <<endl; 
   ct++; } 
 } 
 
 vector<double> temp; 
 for ( int i = 0; i < maxR; ++i ) 
  temp.push_back( func[i] ); 
 
 return temp; 
} 
vector <double> pureTwoPoint ( int mat1, int mat2, SIZE d, int* arr ) { 
 int maxR = d.min(); 
 double curR = 0; 
 int binR = 0; 
 
 int trials[maxR]; 
 int hits[maxR]; 
 double func[maxR]; 
 
 for ( int i = 0; i < maxR; ++i ) { 
  trials[i] = 0; 
  hits[i] = 0; 
  func[i] = 0; } 
 
 int ct = 0; 
 while ( ct < 100000 ) { 
  Coord a, b; 
  a.set( random( d.W() ), random( d.H() ), random( d.D() ) );  
  b.set( random( d.W() ), random( d.H() ), random( d.D() ) );  
  curR = distance( a, b ); 
  binR = bin( curR ); 
  if ( binR < maxR ) { 
   trials[ binR ]++; 
   if ( arr[ index( a, d ) ] == mat1 && arr[ index( b, d ) ] == mat2 ) 
{ 
    hits[ binR ]++; 
    func[ binR ] = (double)hits[ binR] / (double)trials[ binR 
]; } 
   if ( binR == 0 ) 
    ct++; } 
  if ( ct % 100 == 0 ) { 
   cout <<"Current count " <<ct <<endl; 
   ct++; } 
 } 
 
 vector<double> temp; 
 for ( int i = 0; i < maxR; ++i ) 
  temp.push_back( func[i] ); 
 return temp;}} 
random.h 
#ifndef GUARD_random_h 
#define GUARD_random_h 
#include <cstdlib> 
#include <iostream> 
#include <fstream> 
using std::ostream; 
using std::cout; 
using std::endl; 
 
 
//random....... sends back random value between 0 and b 
//random....... sends back random value between a and b 
//NOTE:  MIN VALUE EQUAL TO a OR 0 
//NOTE:  MAX VALUE 1 LESS THAN b 
//randomDouble. sends back double value between a and b 
//randomSeed... seeds random numbers 
//NOTE:  SOURCE CODE FROM ETTER C++ BOOK 
 
int random( int value ); 
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int random( int a, int b ); 
double randomDouble( double a, double b ); 
void randomSeed(int value ); 
 
#endif 
random.cpp 
// random.cpp 
 
#include "random.h" 
 
int random( int value ) 
{ 
 return rand() % value; 
} 
 
int random( int a, int b ) 
{ 
 return rand() % ( b - a + 1 ) + a; 
} 
 
double randomDouble( double a, double b ) 
{ 
 return ((double)rand()/RAND_MAX)*(b - a) + a; 
} 
 
void randomSeed( int value ) 
{ 
 srand( value ); 
} 
arrayFunctions.h 
 
#ifndef GUARD_arrayFunctions_h 
#define GUARD_arrayFunctions_h 
#include "random.h" 
#include "SIZE.h" 
#include "Coord.h" 
#include "Material.h" 
#include <cmath> 
#include <iomanip> 
using std::setprecision; 
#include <iostream> 
using std::cout; 
using std::endl; 
#include <fstream> 
using std::ofstream; 
 
//fillArray... initializes 1D array with input value 
//fillSpace... inputs value at desired 3D coordinates in 1D array 
//    overloaded  
//fillCenter.. randomly distributes input value throughout center of 1D array 
//fillBorder.. randomly distributes input value throughout border of 1D array 
//count........ counts number of given input value in 1D array 
//screen....... prints 1D array as 3D array  
//    x -> rows, y -> columns, z -> each block 
//    starts counting at zero 
//screenRow... prints all rows for given y and z 
//screenCol... prints all columns for given x and z 
//screenDep... prints all depths for given x and y 
//refineArray. subdivides 1D array ( 1 grid to 4 ) 
//shrinkArray. given inner and outer borders creates new 1D array of inner size 
 
void fillArray(int*, const int, int); 
void fillSpace(int*, const SIZE, int, int, int, int); 
void fillSpace(int*, const SIZE, int, Coord); 
void fillCenter(int* arr, const SIZE, const SIZE, Material mat ); 
void fillBorder(int* arr, const SIZE, const SIZE, Material mat ); 
int count(int * arr, const SIZE s, int id); 
int countBorder(int* arr, const SIZE, const SIZE, int); 
void screen(int * arr, const SIZE); 
void screenRow(int * arr, const SIZE, int col, int dep); 

 148



 

void screenCol(int * arr, const SIZE, int, int); 
void screenDep(int * arr, const SIZE, int, int); 
void outputFile(int * arr, const SIZE, string ); 
//void readFile(string); 
void refineArray(int* old, int* new_, const SIZE); 
void shrinkArray(int* old, int* new_, const SIZE&, const SIZE&); 
#endif 
arrayFunctions.cpp 
#include "arrayFunctions.h" 
 
int main() 
{ 
 { 
 //SET UP CONDITIONS FOR USE 
 const SIZE out(30, 4, 4); 
 const SIZE in(20, 2, 2); 
 cout <<out <<in; 
 
 Material m1("ONE", .5, 6); 
 Material m2("TWO", .4, 7); 
 Material m3 = --(m1 + m2); 
 cout <<m1 <<m2 <<m3; 
 cout <<endl; 
 
 //INITIALIZE ARRAY 
 int arr[out.S()]; 
 
 //TEST OF FILL ARRAY 
 cout <<"TEST OF FILL ARRAY"; 
 fillArray(arr, out.S(), 1); 
 screen(arr, out); 
 
 //TEST OF FILL CENTER OF ARRAY 
 cout <<"TEST OF FILL CENTER"; 
 fillCenter(arr, out, in, m1); 
 fillCenter(arr, out, in, m2); 
 screen(arr, out); 
 
 //TEST OF FILL BORDER OF ARRAY 
 cout <<"TEST OF FILL BORDER"; 
 fillArray(arr, out.S(), 1); 
 fillBorder(arr, out, in, m1); 
 fillBorder(arr, out, in, m2); 
 fillBorder(arr, out, in, m3); 
 screen(arr,out); 
 
 //REFILL CENTER OF ARRAY 
 cout <<"REFILL CENTER"; 
 fillCenter(arr, out, in, m1); 
 fillCenter(arr, out, in, m2); 
 fillCenter(arr, out, in, m3); 
 screen(arr, out); 
 
 //TEST COUNT OF EACH ID 
 cout <<"TEST COUNT OF EACH ID" <<endl; 
 cout <<m1.get_id() <<": " <<count(arr, out, m1.get_id()) <<endl; 
 cout <<m2.get_id() <<": " <<count(arr, out, m2.get_id()) <<endl; 
 cout <<m3.get_id() <<": " <<count(arr, out, m3.get_id()) <<endl; 
 cout <<1 <<": " <<count(arr, out, 1) <<endl; 
 
 //TEST SCREEN PRINTOUTS OF EACH ROW COL AND DEP 
 cout <<"TEST SEPERATE SCREEN PRINT OUTS" <<endl; 
 cout <<"(0, 0, 1)" <<endl;  
 cout <<"ROW:  " <<endl;  
 screenRow(arr, out, 0, 1); 
 cout <<"COL:  " <<endl;  
 screenCol(arr, out, 0, 1); 
 cout <<"DEP:  " <<endl;  
 screenDep(arr, out, 0, 0); 
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 //TEST SHRINK ARRAY 
 cout <<endl <<"TEST SHRINK ARRAY"; 
 int arr_shrink[in.S()]; 
 shrinkArray(arr, arr_shrink, out, in); 
 screen(arr_shrink, in); 
 
 //TEST REFINE ARRAY 
 cout <<"REFINE ARRAY"; 
 SIZE large = in * 2; 
 int arr_ref[large.S()]; 
 refineArray(arr, arr_ref, in); 
 screen(arr_ref, large); 
 } 
 //TEST ERROR OUTPUT FOR FILL CENTER 
 cout <<"TEST ERROR OUTPUT FOR FILL CENTER" <<endl; 
 const SIZE out(30, 4, 4); 
 const SIZE in(20, 2, 2); 
 cout <<out <<in; 
 
 Material m1("ONE", .1, 6); 
 Material m2 = --m1; 
 cout <<m1 <<m2; 
 cout <<endl; 
 
 //INITIALIZE ARRAY 
 int arr[out.S()]; 
 //TEST OF FILL ARRAY 
 fillArray(arr, out.S(), 1); 
 
 //TEST OF FILL CENTER ERROR OF ARRAY 
 cout <<"TEST OF ERROR FOR FILL CENTER"; 
 fillCenter(arr, out, in, m1); 
 fillCenter(arr, out, in, m2); 
 screen(arr, out); 
 
 //TEST OF FILL BORDER ERROR OF ARRAY 
 cout <<"TEST OF ERROR FOR FILL BORDER"; 
 fillBorder(arr, out, in, m1); 
 fillBorder(arr, out, in, m2); 
 screen(arr, out); 
 
 return 0;} 
dataFiles.h 
#ifndef GUARD_dataFiles_h 
#define GUARD_dataFiles_h 
#include "SIZE.h" 
#include "Material.h" 
#include "Counter.h" 
#include "Stochastic1.h" 
#include "SurfArea.h" 
#include "InputPar.h" 
#include "jmath.h" 
#include <ctime> 
#include <vector> 
using std::vector; 
#include <sstream> 
#include <string.h> 
using std::string; 
#include <iomanip> 
using std::setw; 
using std::setprecision; 
#include <iostream> 
using std::cerr; 
using std::cout; 
using std::endl; 
using std::cin; 
using std::ios; 
#include <fstream> 
using std::ifstream; 
using std::ofstream; 
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void ansysOutput( int*, const SIZE, const char*, char ); 
 //Output data to ANSYS Element file 
 //Requires input ANSYS element file 
void dataOutput( int*, const SIZE&, const vector<Material>&, string ); 
void dataOutputTwoPhase( int*, const SIZE&, const vector<Material>&, string ); 
int setSize ( const char* ); 
void dataSort( double*, SIZE& , const char*); 
void dataInput( double*, const char* file_name ); 
void dataInput( int*, SIZE&, vector<Material>&, const char* file_name ); 
void dataInput( SIZE& s, vector<Material>& p, const char* file_name ); 
ostream& header( ostream&, string, vector<Material>, SIZE ); 
ostream& currentStatus( ostream& out, double eng, Counter& total, Counter& reject, double 
rate); 
ostream& finalStatus( ostream& out, double eng, Counter& total, double time ); 
ostream& stochFuncs( ostream& , vector<Material>, SIZE, int*, double*** ); 
ostream& stochStat( ostream& out, double*** record, int n, int type, int rad ); 
ostream& stochHeader(ostream&, vector<Material> ); 
ostream& areaData( ostream&, vector<Material>, SIZE, string, int*, vector<vector<int> >& 
); 
ostream& areaStat( ostream& out, vector<vector<int> >& record); 
ostream& areaHeader( ostream&, vector<Material> ); 
ostream& leastSquare( ostream&, vector<Material>, double cl, const SIZE&, double*** ); 
#endif 
dataFiles.cpp 
#include "dataFiles.h" 
void ansysOutput(int* arr, const SIZE dim, const char* file_name, char file_in[40]) 
{ 
 int count=0, row = 0, col = 0, dep = 0; 
 int j=0, k=1, l=2, m=3, n=4, o=5; 
 int p=6, q=7, r=8, s=9, t=10, u=11, v=12, w=13; 
  
 ofstream file_new(file_name); 
 ifstream elemdata; // indata is like cin 
 int data1; // variable for input value 
  
 elemdata.open(file_in); // opens the file 
 if(!elemdata) { // file couldn't be opened 
      cerr << "Error: file could not be opened" << endl; 
      exit(1); } 
  
 elemdata >> data1; 
 while ( !elemdata.eof() ) { // keep reading until end-of-file 
  if (count==j) {file_new << data1 <<",";  j=j+14;    
} 
  if (count==k) {file_new << data1 <<",";  k=k+14;   } 
  if (count==l) {file_new << data1 <<",";  l=l+14;   } 
  if (count==m) {file_new << data1 <<",";  m=m+14;   } 
  if (count==n) {file_new << data1 <<",";  n=n+14;   } 
  if (count==o) {file_new << data1 <<",";  o=o+14;   } 
  if (count==p) {file_new << data1 <<",";  p=p+14;   } 
  if (count==q) {file_new << data1 <<",";  q=q+14;   } 
  if (count==r) {file_new <<arr[row * dim.H() * dim.D() + col * dim.D() + 
dep] <<",";  r=r+14;  } 
  if (count==s) {file_new << data1 <<",";  s=s+14;   } 
  if (count==t) {file_new << data1 <<",";  t=t+14;   } 
  if (count==u) {file_new << data1 <<",";  u=u+14;   } 
  if (count==v) {file_new << data1 <<",";  v=v+14;   } 
  if (count==w) { 
    file_new << data1 <<"," <<endl; 
    w=w+14;  row++; 
    if ( row == dim.W() ) { 
     row = 0;  col++; 
     if ( col == dim.H() ) { 
      col = 0;  dep++; } } } 
   count++; 
      elemdata >> data1; // sets EOF flag if no value found 
 } 
 elemdata.close();   file_new.close(); 
} 
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void dataOutput(int* arr, const SIZE& dim, const vector<Material>& p, string file) 
{ 
 ofstream out(file.c_str()); 
 out <<dim.W() <<", " <<dim.H() <<", " <<dim.D() <<endl; 
 out <<p.size() <<endl; 
 for ( int i = 0; i < p.size(); i++ ) { 
  out <<p[ i ].get_name() <<endl; 
  out <<p[ i ].get_vf() <<endl <<p[ i ].get_id() <<endl; } 
 out <<endl <<endl; 
 for ( int i = 0; i < dim.S(); i++ ) 
  out <<arr[ i ] <<endl; 
 out.close(); 
} 
void dataOutputTwoPhase(int* arr, const SIZE& dim, const vector<Material>& p, string 
file) 
{ 
 ofstream out(file.c_str()); 
 out <<dim.W() <<", " <<dim.H() <<", " <<dim.D() <<endl; 
 out <<2 <<endl; 
 out <<p[0].get_name() <<endl; 
 out <<p[0].get_vf() <<endl; 
 out <<p[0].get_id() <<endl; 
 out <<"Pore" <<endl; 
 out <<p[1].get_vf() <<endl; 
 out <<3 <<endl; 
 out <<endl <<endl; 
 for ( int i = 0; i < dim.S(); i++ ) { 
  if ( arr[ i ] == 2 ) 
   out <<3 <<endl; 
  else 
   out <<arr[ i ] <<endl; } 
 out.close(); 
} 
int setSize( const char* file_name ) { 
 ifstream indata; 
 indata.open( file_name ); 
 if(indata.fail()) { // file couldn't be opened 
      cerr << "Error: file could not be opened" << endl; 
      exit(1); } 
 SIZE s; 
 indata >> s; 
 indata.close(); 
 return s.S(); 
} 
void dataSort( double* arr, SIZE& s, const char* file_name) 
{ 
 ifstream indata; 
 double var; 
 double data[ s.S() ]; 
 indata.open(file_name); 
 cout <<file_name <<endl; 
 if(!indata) { 
  cerr << "Error : file could not be opened in dataSort" <<endl; 
  exit(1); } 
 int i = 0; 
 while ( indata >> var ) { 
  data[i] = var;  
  i++;  } 
 i = 0; 
 cout <<"total in var is " <<i <<endl; 
 for (int n = 0; n < s.S(); n++) 
  arr[n]=data[n]; 
 indata.close(); 
} 
void dataInput( double* arr, const char* file_name ) 
{ 
 ifstream indata; // indata is like cin 
 double data; 
 indata.open(file_name); // opens the file 
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 if(!indata) { // file couldn't be opened 
      cerr << "Error: file could not be opened" << endl; 
      exit(1); } 
 int i = 0; 
 while (indata >> data) { 
  *(arr + i) = data; 
  i++; } 
 indata.close(); 
} 
void dataInput( int* arr, SIZE& s, vector<Material>& p, const char* file_name ) 
{ 
 ifstream indata; // indata is like cin 
 int data; 
 indata.open(file_name); // opens the file 
 if(!indata) { // file couldn't be opened 
      cerr << "Error: file could not be opened" << endl; 
      exit(1); } 
 indata >> s; 
 int n  = 0; 
 indata >> n; 
 Material temp; 
 vector<Material> temp2( n ); 
 for ( int i = 0; i < n; i++ ) { 
  indata >> temp; 
  temp2[i] = temp; } 
 p = temp2; 
 int i = 0; 
 while (indata >> data) { 
  *(arr + i) = data; 
  i++; } 
 indata.close(); 
} 
void dataInput( SIZE& s, vector<Material>& p, const char* file_name ) 
{ 
 ifstream indata; // indata is like cin 
 int data; 
 indata.open(file_name); // opens the file 
 if(!indata) { // file couldn't be opened 
      cerr << "Error: file could not be opened" << endl; 
      exit(1); } 
 indata >> s; 
 int n  = 0; 
 indata >> n; 
 Material temp; 
 vector<Material> temp2( n ); 
 for ( int i = 0; i < n; i++ ) { 
  indata >> temp; 
  temp2[i] = temp; } 
 p = temp2; 
 indata.close(); 
} 
ostream& header( ostream& out, string name, vector<Material> p, SIZE d ) { 
 out <<"Current file name: " <<name; 
 time_t rawtime;  struct tm * timeinfo; 
 time ( &rawtime ); timeinfo = localtime ( &rawtime ); 
 out <<endl <<"Initial local time and date: "  <<asctime (timeinfo); 
 std::clock_t start = std::clock(); 
 out <<"Materials" <<endl; 
 for ( int i = 0; i < p.size(); i++ ) 
  out <<p[ i ] <<endl; 
 out <<"Dimensions" <<endl; 
 out <<d; 
 out <<endl; 
} 
ostream& currentStatus( ostream& out, double eng, Counter& total, Counter& reject, double 
rate) 
{ 
 out <<"E = " <<setw(10) <<setprecision(3) <<eng; 
 out <<", c = " <<setw(8) <<total <<", r = " <<setw(5) <<reject; 
 out <<", AR = " <<setw(4) <<setprecision(2) <<rate <<"%" <<endl; 
 return out; 
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} 
ostream& finalStatus( ostream& out, double eng, Counter& total, double time ) 
{ 
 out <<endl; 
 out <<"The final energy is " <<setprecision(3) <<eng <<" at " <<total <<"." 
<<endl;  
 out <<"The total Clock time was " <<time <<"." <<endl; 
 return out; 
} 
 
ostream& stochFuncs( ostream& out, vector<Material> p, SIZE d, int* grid, double*** 
record) { 
 static int staticCt(0); 
  
 int ct = 0; 
 vector<double> t; 
 vector<Material>::iterator itMat = p.begin(); 
 while ( itMat != p.end() ) { 
  //Initialize 
  Stochastic<TwoPoint> twoPt(*itMat, d, d.W());  twoPt.total( grid ); 
  cout <<"."; 
  Stochastic<LinealChord> linCd(*itMat, d, d.W()); linCd.total( grid ); 
  cout <<"."; 
  Stochastic<ClusterFunc> clusFunc(*itMat, d, d.W()); clusFunc.total( grid 
); 
  //Stochastic<MixedPhase> clusFunc((itMat == --p.end()) ? p.front() : 
*(itMat + 1), *itMat, d, d.W()); 
  clusFunc.total(grid); 
  cout <<"."; 
  Stochastic<MixedPhase> mixPh(*itMat, (itMat == --p.end()) ? p.front() : 
*(itMat + 1), d, d.W()); 
  //mixPh.setMat( *itMat /*(itMat == --p.end()) ? p.front() : *(itMat + 1)*/ 
); 
  mixPh.total( grid ); 
  cout <<"."; 
  t = pureTwoPoint(p[ ct ].get_id(), d, grid); 
 
  //Input into output 
  for ( int i = 0; i < d.W(); i++ ) { 
   record[ staticCt ][ ct * 5 + 0 ][ i ] = twoPt.get_func( i ); 
   record[ staticCt ][ ct * 5 + 1 ][ i ] = t[ i ]; 
   record[ staticCt ][ ct * 5 + 2 ][ i ] = clusFunc.get_func( i ); 
   record[ staticCt ][ ct * 5 + 3 ][ i ] = linCd.get_func( i ); 
   record[ staticCt ][ ct * 5 + 4 ][ i ] = mixPh.get_func( i ); } 
  ct++; 
  ++itMat; } 
 
 for ( int j = 0; j < d.W(); j++ ) { 
  out <<j <<", "; 
  for ( int i = 0; i < p.size() * 5; i++ ) 
   out <<setprecision(3) <<record[staticCt][i][j] <<", "; 
  out <<endl; } 
 
 staticCt++; 
 return out; 
} 
ostream& stochStat( ostream& out, double*** record, int n, int type, int rad ) { 
  
 double ave, aveDev, stDev, var, skew, curt; 
 vector<double> dummy( n ); 
 
 out <<"average" <<endl; 
 for ( int k = 0; k < rad; k++ ) { 
  for ( int j = 0; j < type; j++ ) { 
   for ( int i = 0; i < n; i++ ) 
    dummy[i] = record[i][j][k]; 
   statData ( dummy, ave, aveDev, stDev, var, skew, curt); 
   if ( j == 0 ) 
    out <<k <<", "; 
   out <<setprecision(3) <<ave <<", "; 
  } 
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  out <<endl; } 
 
 out <<endl <<endl <<"standard deviation" <<endl; 
 for ( int k = 0; k < rad; k++ ) { 
  for ( int j = 0; j < type; j++ ) { 
   for ( int i = 0; i < n; i++ ) 
    dummy[i] = record[i][j][k]; 
   statData ( dummy, ave, aveDev, stDev, var, skew, curt); 
   if ( j == 0 ) 
    out <<k <<", "; 
   out <<setprecision(3) <<stDev <<", "; 
  } 
  out <<endl; } 
 return out; 
} 
 
ostream& stochHeader(ostream& out, vector<Material> p) { 
 vector<Material>::iterator itMat = p.begin(); 
 string dummy, dummy1; 
 out <<"Radius" <<", " ; 
 for (int i = 0; i < p.size(); i++ ){ 
  dummy = p[i].get_name(); 
  dummy1 = ( i == p.size() - 1 ) ? p[0].get_name() : p[i + 1].get_name(); 
  if ( dummy.size() > 3 ) 
   dummy = dummy.substr(0, 2); 
  if ( dummy1.size() > 3 ) 
   dummy1 = dummy1.substr(0, 2); 
  out <<dummy <<", " <<dummy <<", " <<dummy <<", " <<dummy <<", "  <<dummy + 
dummy1 <<", "; } 
 out <<endl <<"Type" <<", "; 
 itMat = p.begin(); 
 while ( itMat != p.end() ) {  
  out <<"TwoPt" <<", " <<"Pure" <<", " <<"Clus" <<", " <<"LinCd" <<", "  
<<"MxPh" <<", "; 
  ++itMat; } 
 out <<endl; 
 return out; 
} 
 
ostream& areaData( ostream& out, vector<Material> p, SIZE d, string label, int* grid, 
vector<vector<int> >& record) { 
  
 static int staticCt(0); 
 int localCt(0); 
 int blank; 
 out <<label <<", "; 
 vector<Material>::iterator itMat = p.begin(); 
 while ( itMat != p.end() ) { 
  SurfArea sa( SurfArea( d, *itMat ) ); 
  blank = sa.areaTotal( grid ); 
  out <<blank  <<", "; 
  record[staticCt][localCt] = blank; 
  localCt++; 
  ++itMat; } 
  
 itMat = p.begin(); 
 Material dummy; 
 while ( itMat != p.end() ) { 
  SurfArea sa( SurfArea( d, *itMat ) ); 
  dummy = (itMat == --p.end()) ? p.front() : *(itMat + 1);  
  blank = sa.areaInterface( grid,  dummy.get_id() ); 
  out <<blank <<", "; 
  record[staticCt][localCt] = blank; 
  localCt++; 
  ++itMat; } 
 
 itMat = p.begin(); 
 while ( itMat != p.end() ) { 
  SurfArea sa( SurfArea( d, *itMat ) ); 
  vector <int> bs = sa.areaBoundary( grid ); 
  vector <int>::iterator iter = bs.begin(); 
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  while ( iter != bs.end() ) { 
   out <<*iter  <<", "; 
   record[staticCt][localCt] = *iter; 
   localCt++; 
   ++iter; 
  } 
  ++itMat; } 
 out <<endl; 
 staticCt++; 
 return out; 
} 
ostream& areaStat( ostream& out, vector<vector<int> >& record) { 
 
 double ave, aveDev, stDev, var, skew, curt; 
 vector<double> dummy; 
 int maxCol = record.size() * 2 + record.size() * 3; 
 int maxRow = record.size(); 
 out <<"ave, aveDev, stDev, var, skew, curt" <<endl; 
 for ( int j = 0; j < maxCol; j++ ) { 
  for ( int i = 0; i < maxRow; i++ ) 
   dummy.push_back( (double)record[i][j] ); 
  statData ( dummy, ave, aveDev, stDev, var, skew, curt); 
  out <<setprecision(4); 
  out <<ave <<", " <<aveDev <<", " <<stDev <<", " <<var <<", " <<skew <<", "
<<curt <<endl; 
  dummy.clear(); } 
 
 return out; 
}  
ostream& areaHeader( ostream& out, vector<Material> p ) { 
 out <<"label" <<", "; 
 for ( int i = 0; i < p.size(); ++i ) 
  out << p[i].get_name().substr(0, 3) <<", "; 
 for ( int i = 0; i < p.size(); ++i ) 
  out << p[i].get_name().substr(0, 3) + p[( i == p.size() - 1 ) ? 0 : i + 
1].get_name().substr(0, 3) <<", "; 
 for ( int i = 0; i < p.size(); ++i ) 
  out << "R." + p[i].get_name().substr(0, 3) <<", " 
   << "T." + p[i].get_name().substr(0, 3) <<", " 
   << "F." + p[i].get_name().substr(0, 3) <<", "; 
 out <<endl; 
} 
ostream& leastSquare( ostream& out, vector<Material> p, double cl, const SIZE& d, 
double*** record ) { 
  
 Energy ni( cl, p[0] ), ysz( cl, p[1] ); 
 string name = p[2].get_name() + convert( d.D() ) + ".dat"; 
 Energy comp( name.c_str() ); 
 
 int half = d.D() / 2; 
 double niTotal[d.D()]; double yszTotal[d.D()]; double coTotal[d.D()]; 
 double niFirst[half]; double yszFirst[half]; 
 double coFirst[half]; 
 
 cout <<"Char length:  " <<half <<", " <<half <<", " <<half <<endl; 
 
 out <<d <<endl; 
 string header = "Num, niTot, ni" + convert( half ) + ", yszTot," + 
           "ysz" 
+ convert( half ) + ", coTot, " + 
           "co" 
+ convert( half ); 
 out <<header <<endl; 
 double niMax(0), yszMax(0), coMax(0), niMin(1), yszMin(1), coMin(1); 
 double niMaxI(0), yszMaxI(0), coMaxI(0), niMinI(1), yszMinI(1), coMinI(1); 
 for ( int i = 0; i < d.W(); i++ ) { 
 
  for ( int j = 0; j < d.D(); j++ ) { 
   niTotal[j] = record[i][0][j]; 
   yszTotal[j] = record[i][5][j]; 
   coTotal[j] = record[i][10][j]; } 
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  for ( int j = 0; j < half; j++ ) { 
   niFirst[j] = record[i][0][j]; 
   yszFirst[j] = record[i][5][j]; 
   coFirst[j] = record[i][10][j]; } 
  out <<i <<", "; 
  out <<ni.calc(niTotal, d.D()) <<", " <<ni.calc(niFirst, half) <<", "; 
  out <<ysz.calc(yszTotal, d.D()) <<", " <<ysz.calc(yszFirst, half) <<", "; 
  out <<comp.calc(coTotal, d.D()) <<", " <<comp.calc(coFirst, half) <<endl; 
 
  if ( ni.calc(niTotal, d.D()) > niMax ) 
   niMax = ni.get_eng(); 
  if ( ysz.calc(yszTotal, d.D()) > yszMax ) 
   yszMax = ysz.get_eng(); 
  if ( comp.calc(coTotal, d.D()) > coMax ) 
   coMax = comp.get_eng(); 
  if ( ni.calc(niTotal, d.D()) < niMin ) 
   niMin = ni.get_eng(); 
  if ( ysz.calc(yszTotal, d.D()) < yszMin ) 
   yszMin = ysz.get_eng(); 
  if ( comp.calc(coTotal, d.D()) < coMin ) 
   coMin = comp.get_eng(); 
 
  if ( ni.calc(niFirst, half) > niMaxI ) 
   niMaxI = ni.get_eng(); 
  if ( ysz.calc(yszFirst, half) > yszMaxI ) 
   yszMaxI = ysz.get_eng(); 
  if ( comp.calc(coFirst, half) > coMaxI ) 
   coMaxI = comp.get_eng(); 
  if ( ni.calc(niFirst, half) < niMinI ) 
   niMinI = ni.get_eng(); 
  if ( ysz.calc(yszFirst, half) < yszMinI ) 
   yszMinI = ysz.get_eng(); 
  if ( comp.calc(coFirst, half) < coMinI ) 
   coMinI = comp.get_eng(); 
 } 
  
 out <<endl <<endl; 
 out <<"max, " <<niMax <<", " <<niMaxI <<", " <<yszMax <<", " <<yszMaxI <<", " 
<<coMax <<", " <<coMaxI <<endl; 
 out <<"min, " <<niMin <<", " <<niMinI <<", " <<yszMin <<", " <<yszMinI <<", " 
<<coMin <<", " <<coMinI <<endl; 
   
 out <<"avg" <<endl; 
 double ave1(0), ave2(0), ave3(0), a(0); 
 vector<double> dummy1(d.W()), dummy2(d.W()), dummy3(d.W());  
 for ( int k = 0; k < d.D(); k++ ) { 
  int j1(0), j2(5), j3(10);  
  for ( int i = 0; i < d.W(); i++ ) { 
   dummy1[i] = record[i][j1][k]; 
   dummy2[i] = record[i][j2][k]; 
   dummy3[i] = record[i][j3][k]; } 
  statData ( dummy1, ave1, a, a, a, a, a); 
  statData ( dummy2, ave2, a, a, a, a, a); 
  statData ( dummy3, ave3, a, a, a, a, a); 
  niTotal[k] = ave1; 
  yszTotal[k] = ave2; 
  coTotal[k] = ave3; 
 } 
 for ( int j = 0; j < half; j++ ) 
  niFirst[j] = niTotal[j]; 
 for ( int j = 0; j < half; j++ ) 
  yszFirst[j] = yszTotal[j]; 
 for ( int j = 0; j < half; j++ ) 
  coFirst[j] = coTotal[j]; 
 
 out <<"avg, "; 
 out <<ni.calc(niTotal, d.D()) <<", " <<ni.calc(niFirst, half) <<", "; 
 out <<ysz.calc(yszTotal, d.D()) <<", " <<ysz.calc(yszFirst, half) <<", "; 
 out <<comp.calc(coTotal, d.D()) <<", " <<comp.calc(coFirst, half) <<endl; 
 
 return out;  } 
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Counter.h 
#ifndef GUARD_Counter_h 
#define GUARD_Counter_h 
 
// Counter.h 
/* Class members: 
  int count 
 Member functions: 
  Counter a():  default constructor -> 0 
  Counter a(value): constructor to integer value 
  inc_count():  increment count 
  reset():   reset count 
  get_count():  get count  
  bool_count():  bool determine if equal to integer value 
 Friend functions: 
  Overloaded << for output to screen 
*/ 
 
#include <iostream> 
#include <fstream> 
using std::ostream; 
using std::cout; 
using std::endl; 
 
class Counter 
{ 
private: 
 unsigned int count; 
public: 
 Counter() : count(0) { } 
 Counter(int value) : count(value) { } 
 void incCount() { count++; } 
 void reset()  { count = 0; } 
 int get_count() const { return count; } 
 bool operator == (int value ) { return count == value; } 
 bool operator > ( int value ) { return count > value; } 
 bool operator < ( int value ) { return count < value; } 
 double operator /( Counter c ) { return (double)count / c.get_count(); }  
 int operator %( int value ) { return count % value; } 
 friend ostream& operator <<(ostream& os, const Counter& c); 
}; 
 
#endif 
Counter.cpp 
#include "Counter.h" 
ostream& operator <<(ostream& os, const Counter& c) 
{ 
 os <<c.count; 
 return os; 
} 
SIZE.h 
#ifndef GUARD_SIZE_h 
#define GUARD_SIZE_h 
 
#include <cmath> 
#include <stdexcept> 
using std::domain_error; 
#include <iomanip> 
using std::setw; 
#include <iostream> 
#include <fstream> 
using std::ostream; 
using std::istream; 
using std::cout; 
using std::endl; 
 
//Constructors Default is 0 
//    (n) sets all equal to n 
//    (w, y, z) sets each equal 
//    each one calculate NUM 
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//Destructor 
//Accessors   
//Manipulators 
// DW, DH, DD calculates difference between inner and outer 
//    sizes.  Order in functions does not matter 
//  min   finds smallest dimension and outputs 
//Operators 
// *   multiplies by scaler 
// >   boolean test > relationship for each dimension 
//    will output error 
//Output 
// >>   one line prints all data members 
//Friends   
// borderTest boolean tells if coordinates are on border between 
//    two sizes 
 
class SIZE { 
private: 
 int WIDTH; 
 int HEIGHT; 
 int DEPTH; 
 int NUM; 
public: 
 SIZE () : WIDTH(0), HEIGHT(0), DEPTH(0) { 
  NUM = WIDTH * HEIGHT * DEPTH;  } 
 SIZE (int n) : WIDTH(n), HEIGHT(n), DEPTH(n) { 
  NUM = WIDTH * HEIGHT * DEPTH;  } 
 SIZE (int w, int h, int d) : WIDTH(w), HEIGHT(h), DEPTH(d) { 
  NUM = WIDTH * HEIGHT * DEPTH;  } 
 ~SIZE() { } 
 int W() const { return WIDTH; } 
 int H() const { return HEIGHT; } 
 int D() const { return DEPTH; } 
 int S() const { return NUM; } 
 int DW(const SIZE& s)  {return (int) fabs(s.W() - WIDTH) / 2; } 
 int DH(const SIZE& s)  {return (int) fabs(s.H() - HEIGHT) / 2; } 
 int DD(const SIZE& s)  {return (int) fabs(s.D() - DEPTH) / 2; } 
 int min(); 
 SIZE operator *(int n) const; 
 SIZE operator +(int n) const; 
 bool operator >(SIZE s) const; 
 friend ostream& operator <<(ostream& os, const SIZE& s); 
 friend istream& operator >>(istream&, SIZE&); 
 friend bool borderTest(int, int, int, SIZE s, SIZE p); 
}; 
 
#endif 
SIZE.cpp 
 
#include "SIZE.h" 
//CONSTRUCTORS - header file 
//DESTRUCTORS - header file 
//ACCESSORS - header file 
//MANIPULATORS 
int SIZE::min() 
{ 
 int temp = DEPTH; 
 if ( WIDTH < DEPTH ) { temp = WIDTH; } 
 if ( HEIGHT < temp ) { temp = HEIGHT; } 
 return temp; 
} 
//OVERLOADED OPERATORS 
SIZE SIZE:: operator *(int n) const 
{ 
 SIZE temp(n * WIDTH, n * HEIGHT, n * DEPTH); 
 return temp; 
} 
SIZE SIZE:: operator +(int n) const 
{ 
 SIZE temp(n + WIDTH, n + HEIGHT, n + DEPTH); 
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 return temp; 
} 
bool SIZE:: operator >(SIZE s) const 
{ 
 bool a = WIDTH > s.W(); 
 bool b = HEIGHT > s.H(); 
 bool c = DEPTH > s.D(); 
 if ( !((a == b) && (b == c)) ) 
  throw domain_error("Sizes contradict"  ); 
 if ( WIDTH > s.W() ) 
  return true; 
 else 
  return false; 
} 
//OUTPUT 
ostream& operator <<(ostream& os, const SIZE& s) 
{ 
 os <<"WIDTH = " <<s.WIDTH <<", "; 
 os <<"HEIGHT = " <<s.HEIGHT <<", "; 
 os <<"DEPTH = " <<s.DEPTH <<", "; 
 os <<"NUM = " <<s.NUM <<endl; 
 return os; 
} 
istream& operator >>(istream& in, SIZE& s) { 
 char ch; 
 in >> s.WIDTH >>ch >>s.HEIGHT >>ch >>s.DEPTH; 
 s.NUM = s.WIDTH * s.HEIGHT * s.DEPTH; 
 return in; 
} 
 
//FRIENDS 
bool borderTest(int w, int h, int d, SIZE s, SIZE p) 
{   
 bool a = w < s.DW(p); 
 bool b = h < s.DH(p); 
 bool c = d < s.DD(p); 
 bool e = w >= ((s.WIDTH > p.WIDTH) ? s.WIDTH - s.DW(p) : p.WIDTH - s.DW(p)); 
 bool f = h >= ((s.HEIGHT > p.HEIGHT) ? s.HEIGHT - s.DH(p) : p.HEIGHT - s.DH(p)); 
 bool g = d >= ((s.DEPTH > p.DEPTH) ? s.DEPTH - s.DD(p) : p.DEPTH - s.DD(p)); 
 if ( a || b || c || e || f || g ) 
   return true; 
  else 
   return false;} 
 
Coord.h 
#ifndef GUARD_Coord_h 
#define GUARD_Coord_h 
 
#include "SIZE.h" 
#include <cmath> 
#include <vector> 
using std::vector; 
#include <iomanip> 
using std::setw; 
#include <iostream> 
#include <fstream> 
using std::ostream; 
using std::cout; 
using std::endl; 
 
//Constructors Default 0 
//    (n) sets all to n 
//    (x, y, z) sets each one 
//Destructor 
//Accessors  .getvariablename 
//Manipulator 
// set..  setvariablename each one 
//    set(x,y,z) will set all 
//Outputs 
// <<   (x,y,z) to line 
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//Friends   
// index  returns 3D index value for given Coord and SIZE 
// anyEqual boolean if any coordinates are equal to another 
//  distance calculates distance between two coordinates 
 
class Coord { 
private: 
 int x; 
 int y; 
 int z; 
public: 
 Coord () : x(0), y(0), z(0) { } 
 Coord (int n) : x(n), y(n), z(n) { } 
 Coord (int i, int j, int k) : x(i), y(j), z(k) { } 
 ~Coord() { } 
 int getx() { return x; } 
 int gety() { return y; } 
 int getz() { return z; } 
 int setx(int); 
 int sety(int); 
 int setz(int); 
 void set(int, int, int);  
 bool operator == (Coord& c) { return ( x == c.x && y == c.y && z == c.z ); } 
 friend ostream& operator <<(ostream& os, const Coord& c); 
 friend int index(const Coord&, const SIZE&); 
 friend bool anyEqual(const Coord&, const Coord&); 
 friend bool anyNext(const Coord&, const Coord&); 
 friend bool anyNext(const Coord&, vector<Coord>); 
 friend double distance(const Coord& b, const Coord& c);  
}; 
#endif 
Coord.cpp 
#include "Coord.h" 
//CONSTRUCTORS - header file 
//DESTRUCTOR - header file 
//ACCESSORS - header file 
//MANIPULATOR FUNCTIONS 
int Coord::setx( int value) { 
 return x = value; } 
int Coord::sety( int value) { 
 return y = value; } 
int Coord::setz( int value) { 
 return z = value; } 
void Coord::set(int a, int b, int c) { 
 x = a; y = b; z = c; 
} 
//OUTPUT FUNCTIONS 
ostream& operator <<(ostream& os, const Coord& c) { 
 os <<"( " <<c.x <<", " <<c.y <<", " <<c.z <<" )"; 
} 
//FRIEND FUNCTIONS 
int index(const Coord& c, const SIZE& s) { 
 return c.x * s.H() * s.D() + c.y * s.D() + c.z; 
} 
bool anyEqual(const Coord& a, const Coord& b) { 
 return (a.x == b.x) || (a.y == b.y) || (a.z == b.z); 
} 
bool anyNext(const Coord& a, const Coord& b) { 
 int e = a.x - b.x; int f = a.y - b.y; int g = a.z - b.z; 
 return ( abs( e ) + abs( f ) + abs( g ) <= 1 ) ; 
} 
bool anyNext(const Coord& a, vector<Coord> b) { 
 bool temp = false; 
 vector<Coord>::iterator iter = b.begin(); 
 for (iter = b.begin(); iter != b.end(); ++iter ) { 
  if ( anyNext( a, *iter ) == true ) 
   temp == true; 
  cout <<*iter <<endl; 
 } 
 return temp; 
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} 
double distance ( const Coord& b, const Coord& c) { 
 return sqrt(pow(b.x-c.x,2) + pow(b.y-c.y,2) + pow(b.z-c.z,2)); 
} 
Material.h 
#ifndef GUARD_Material_h 
#define GUARD_Material_h 
 
#include <iostream> 
using std::cerr; 
using std::cout; 
using std::endl; 
using std::cin; 
 
#include <fstream> 
using std::ifstream; 
using std::istream; 
using std::ostream; 
 
#include <string> 
using std::string; 
 
#include <stdexcept> 
using std::domain_error; 
 
//Constructors Default is "blank", .5, 1 
//    or specify name, vf, and id 
//Destructor 
//Accessors  get_(variable name) 
//Private Func  
//  Error  Checks vf is between 0 and 1 
//Operators   
// +   adds vf of Materials 
// --   finds complement of vf and increments id 
//Output 
// >>   Name, VF, and ID to one line 
//Input 
// <<   Input name, VF, and ID 
 
 
class Material { 
private: 
 string name; 
 double vf; 
 int id;  
 void error(); 
public: 
 Material (); 
 Material (string, double, int); 
 ~Material(); 
 string get_name() const; 
 double get_vf() const; 
 int get_id() const; 
 Material operator +(const Material& old); 
 Material operator --();  
 //OUTPUT FUNCTION 
 friend ostream& operator <<( ostream& out, const Material& m ); 
 friend istream& operator >>( istream& in, Material& m); 
}; 
 
#endif 
Material.cpp 
#include "Material.h" 
 
// CONSTRUCTOR FUNCTIONS 
Material::Material(): name("blank"), vf(.5), id(1) { 
} 
Material::Material(string n, double v, int i) : name(n), vf(v), id(i) { 
 error(); 
} 
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// DESTRUCTOR FUNCTIONS 
Material::~Material() { 
} 
 
// PRIVATE FUNCTIONS 
void Material::error() 
{  
 if (vf > 1 || vf < 0) 
  throw domain_error("Volume fractions is not between 1 and 0."); 
} 
 
// ACCESSOR FUNCTIONS 
string Material::get_name() const { return name; } 
double Material::get_vf() const { return vf; } 
int Material::get_id() const { return id; } 
// OVERLOADED OPERATORS 
Material Material::operator +(const Material& old) 
{ 
 Material temp("temp", 1, 1); 
 temp.vf = vf + old.vf; 
 (id > old.id)?temp.id = id:temp.id = old.id; 
 temp.error(); 
 return temp; 
} 
 
Material Material::operator --() 
{ 
 Material temp("Complement", 1, id + 1); 
 temp.vf = 1 - vf; 
 temp.error(); 
 return temp; 
} 
// OUTPUT FUNCTIONS 
ostream& operator<<(ostream& out, const Material& m) 
{ 
 out << "Name:  " <<m.name; 
 out << ", VF:  " <<m.vf; 
 out << ", ID:  " <<m.id; 
 return out;  
} 
//INPUT FUNCTIONS 
istream& operator>>(istream& in, Material& m) 
{ 
 in >>m.name >>m.vf >>m.id; 
 int ct = 0; 
 while ( (m.vf > 1 || m.vf < 0) && ct < 5) { 
  cout <<"Volume fraction must be in decimals." <<endl; 
  cin >>m.vf; 
  ct++; } 
 m.error(); 
 return in;} 
Stochastic1.h 
#ifndef GUARD_Stochastic1_h 
#define GUARD_Stochastic1_h 
 
#include "jmath.h" 
#include "SIZE.h" 
#include "Coord.h" 
#include "Material.h" 
 
#include <iostream> 
using std::cerr; 
using std::cout; 
using std::endl; 
using std::cin; 
 
#include <fstream> 
using std::ifstream; 
using std::ofstream; 
 

 163



 

#include <vector> 
using std::vector; 
 
class Hits { 
private: 
 int*** row; 
protected: 
 SIZE dim; 
 int dir; 
 int per; 
 int sz; 
 int temp; 
 int indexTwo; 
 int indexThree; 
 int (Hits::*pt2indexes)(int); 
 virtual bool criteria(int, int, int) = 0; 
public: 
 void initialize(int, int, int, SIZE ); 
 ~Hits(); 
 int get(int, int, int); 
 int indexRow(int); 
 int indexCol(int); 
 int indexDep(int); 
 virtual void updateIndex(int, int, int); 
 virtual int accept(int); 
 virtual int accept(int, int, int, int); 
 virtual int add(int*, int, int ) = 0; 
 virtual int setMat( Material& ) = 0; 
 friend ostream& operator <<( ostream& out, const Hits& h ); 
}; 
 
class TwoPoint : public Hits { 
protected: 
 bool criteria(int, int, int); 
public: 
 int add(int*, int, int); 
 int setMat( Material& ); 
}; 
class LinealChord : public TwoPoint { 
public: 
 int add(int*, int, int); 
}; 
class MixedPhase : public TwoPoint { 
 int n; 
public: 
 void initialize(int r, int p, int o, SIZE d ) { 
  Hits::initialize( r, p, o, d ); 
  int i = 0; n = i; }  
 int setMat( Material& mat );  
 bool criteria( int, int, int ); 
}; 
class ClusterFunc : public Hits { 
 int current; 
 vector<Coord> all; 
 int* coordMap; 
 Coord (ClusterFunc::*pt2coords)(int); 
public: 
 ClusterFunc() : current(0) { } 
 void initialize( int r, int p, int o, SIZE d );  
 Coord coordRow( int ); 
 Coord coordCol( int ); 
 Coord coordDep( int ); 
 int setMat( Material& ) { return 0; } 
 void fillAll( int*, int mat ); 
 void updateIndex(int, int, int ); 
 bool criteria(int, int, int ); 
 bool criteria(Coord&, Coord&); 
 int add(int* arr, int r, int mat); 
}; 
 
class Energy { 
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private: 
 double eng; 
 double r_func[400]; 
 double charLength; 
public: 
 Energy(); 
 Energy( double, const Material ); 
 Energy( double, const Material, char ); 
 Energy( double, double, const Material, char ); 
 Energy( long double, long double, long double, long double, long double, long 
double, long double, double, long double ); 
 Energy( const char* ); 
 ~Energy(); 
 double get_eng() const; 
 double get_cl() const; 
 double calc( const vector<double> ); 
 double calc( const double*, int ); 
 friend ostream& operator <<( ostream&, const Energy& ); 
}; 
 
template<class H> 
class Stochastic  { 
private: 
 int radius; 
 int per; 
 Material mat; 
 SIZE dim; 
 int* trials; 
 double* func;  //function is always current even to temp changes 
 double* o_func; 
 vector<int> hist; 
 void calcRadius(); 
 void initialize(); 
protected: 
 H width, height, depth; 
public: 
 Stochastic(); 
 Stochastic(Material m, SIZE d, int radius = 25, int per = 1); 
 Stochastic(Material m, Material n, SIZE d, int radius = 25, int per = 1); 
 Stochastic(int id, double vf, int X, int Y, int Z); 
 ~Stochastic(); 
 int get_radius();  
 double get_func(int r = 0); 
 vector<double> funcOut(); 
 void total(int*); 
 void temp(int*, Coord&, Coord& ); 
 void accept( Coord&, Coord& ); 
 void reject(); 
 void statusHits(int, Coord&, Coord&); 
 friend ostream& operator <<( ostream& out, const Stochastic<H>& s ) { 
  out <<s.mat <<s.dim; 
  out << "Radius:  " <<s.radius <<endl; 
 return out;  } 
}; 
// 
//STOCHASTIC CLASS 
// 
//CONSTRUCTOR FUNCTIONS 
template <class H> 
Stochastic<H>::Stochastic() : radius(25), per(0), mat("DEFAULT", .5, 1), dim(30) 
{ 
 initialize(); 
} 
template <class H> 
Stochastic<H>::Stochastic(Material m, SIZE d, int r, int p ) : mat(m), dim(d) 
{ 
 radius = r; 
 per = p; 
 initialize(); 
} 
template <class H> 
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Stochastic<H>::Stochastic(Material m, Material n, SIZE d, int r, int p ) : mat(m), dim(d)
 radius = r; 
 per = p; 
 initialize(); 
 width.setMat( n ); 
 height.setMat( n ); 
 depth.setMat( n ); 
} 
template <class H> 
Stochastic<H>::Stochastic(int id, double vf, int X, int Y, int Z) 
{ 
 Material blank("BLANK", vf, id); 
 SIZE blank1(X, Y, Z); 
 mat = blank; dim = blank1; 
 radius = X; 
 per = (int)(radius / 2); 
 initialize(); 
} 
//PRIVATE FUNCTIONS 
template <class H> 
void Stochastic<H>::calcRadius() { 
 if ( radius > dim.min() && dim.min() >= 10 ) { 
  radius = dim.min() - 5; 
  cout <<"The radius has been changed to " <<radius <<endl; } 
 else if ( radius > dim.min() ) { 
  radius = 5; 
  cout <<"The radius has been changed to " <<radius <<endl; } 
} 
template <class H> 
void Stochastic<H>::initialize() 
{ 
 calcRadius(); 
 trials = new int[radius]; 
 func = new double[radius]; 
 o_func = new double[radius]; 
 for ( int i = 0; i < radius; i++ ) { 
  func[i] = 0; o_func[i] = 0; 
  trials[i] = (dim.W()- i) * dim.H() * dim.D() 
         + dim.W() * (dim.H() - i) * dim.D()  
      + dim.W() * dim.H() * (dim.D() - i); 
 } 
 for ( int i = 0; i < per; i++ ) 
  trials[i] = dim.S() + dim.S() + dim.S(); 
 width.initialize(radius, per, 1, dim); 
 height.initialize(radius, per, 2, dim); 
 depth.initialize(radius, per, 3, dim); 
} 
template <class H> 
Stochastic<H>::~Stochastic() { } 
//ACCESSOR FUNCTIONS 
template <class H> 
int Stochastic<H>::get_radius() { 
 return radius; } 
template <class H> 
double Stochastic<H>::get_func(int r) { 
 return func[r];  } 
template <class H> 
vector<double> Stochastic<H>::funcOut() {  
 vector<double> temp; 
 for ( int i = 0; i < radius; i++ ) 
  temp.push_back(func[ i ]); 
 return temp; } 
//MANIPULATOR FUNCTIONS 
template <class H> 
void Stochastic<H>::total(int* arr) 
{ 
 for ( int r = 0; r < radius; r++ ) { 
  int total_Hits = 0; 
  for ( int col = 0; col < dim.H(); col++ ) { 
   for ( int dep = 0; dep < dim.D(); dep++ ) { 
    width.updateIndex(col, dep, 0); 
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    width.add(arr, r, mat.get_id()); 
    total_Hits = total_Hits + width.accept(r); } 
   } 
  for ( int row = 0; row < dim.W(); row++ ) { 
   for ( int dep = 0; dep < dim.D(); dep++ ) { 
    height.updateIndex(row, dep, 0); 
    height.add(arr, r, mat.get_id()); 
    total_Hits = total_Hits + height.accept(r); } 
   } 
  for ( int row = 0; row < dim.W(); row++ ) { 
   for ( int col = 0; col < dim.H(); col++ ) { 
    depth.updateIndex(row, col, 0); 
    depth.add(arr, r, mat.get_id()); 
    total_Hits = total_Hits + depth.accept(r); } 
   } 
  //cout <<"Totat hits: " <<total_Hits <<" at r " <<r <<endl; 
  func[r] = (double)total_Hits / trials[r]; 
 } 
} 
template <class H> 
void Stochastic<H>::temp(int* arr, Coord& a, Coord& b) 
{ 
 hist.clear(); 
 int old, new_; 
 
 int r1 = a.getx(); int c1 = a.gety(); int d1 = a.getz(); 
 int r2 = b.getx(); int c2 = b.gety(); int d2 = b.getz(); 
 
 for ( int r = 0; r < radius; r++ ) { 
   
  old = width.get(r, c1, d1) + width.get(r, c2, d2) + 
     height.get(r, r1, d1) + height.get(r, r2, d2) + 
     depth.get(r, r1, c1) + depth.get(r, r2, c2); 
 
  width.updateIndex(c1, d1, r1);  
  hist.push_back(width.add(arr, r, mat.get_id())); 
  width.updateIndex(c2, d2, r2); 
  hist.push_back(width.add(arr, r, mat.get_id())); 
  height.updateIndex(r1, d1, c1); 
  hist.push_back(height.add(arr, r, mat.get_id())); 
  height.updateIndex(r2, d2, c2); 
  hist.push_back(height.add(arr, r, mat.get_id())); 
  depth.updateIndex(r1, c1, d1); 
  hist.push_back(depth.add(arr, r, mat.get_id())); 
  depth.updateIndex(r2, c2, d2); 
  hist.push_back(depth.add(arr, r, mat.get_id())); 
   
  new_ = hist[0+6*r] + hist[1+r*6] + hist[2+r*6]  
    + hist[3+r*6] + hist[4+r*6] + hist[5+r*6]; 
  o_func[r] = func[r]; 
  func[r] = ( func[r] * trials [r] + new_ - old ) / trials[r]; 
  //if ( r == 0 ) 
  //cout <<width <<endl; 
 } 
} 
template <class H> 
void Stochastic<H>::accept(Coord& a, Coord& b) 
{ 
 int r1 = a.getx(); int c1 = a.gety(); int d1 = a.getz(); 
 int r2 = b.getx(); int c2 = b.gety(); int d2 = b.getz(); 
 for ( int r = 0; r < radius; r++ ) { 
  width.accept(r, c1, d1, hist[0+6*r]); 
  width.accept(r, c2, d2, hist[1+6*r]); 
  height.accept(r, r1, d1, hist[2+6*r]); 
  height.accept(r, r2, d2, hist[3+6*r]); 
  depth.accept(r, r1, c1, hist[4+6*r]); 
  depth.accept(r, r2, c2, hist[5+6*r]); 
 } 
 hist.clear(); 
} 
template <class H> 
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void Stochastic<H>::reject() { 
 for ( int r = 0; r < radius; r++ ) 
  func[r] = o_func[r]; 
} 
template <class H> 
void Stochastic<H>::statusHits(int r, Coord& a, Coord& b ) { 
 cout <<"Width: " <<width; 
 cout <<"Height: " <<height; 
 cout <<"Depth:  " <<depth; 
} 
#endif 
Stochastic1.cpp 
#include "Stochastic1.h" 
// 
//HITS CLASS 
// 
//CONSTRUCTOR FUNCTIONS 
void Hits::initialize(int r, int p, int o, SIZE d ) 
{ 
 dim = d; 
 dir = o; 
 per = p; 
 switch ( dir ) { 
  case 1 :  
   pt2indexes = &Hits::indexRow; 
   sz = dim.W();  
   indexTwo = dim.H(); indexThree = dim.D();  
   break; 
  case 2 :  
   pt2indexes = &Hits::indexCol; 
   sz = dim.H(); 
   indexTwo = dim.W(); indexThree = dim.D(); 
   break; 
  case 3 :  
   pt2indexes = &Hits::indexDep; 
   sz = dim.D(); 
   indexTwo = dim.W(); indexThree = dim.H(); 
   break; 
  default: 
   pt2indexes = &Hits::indexRow; 
   sz = dim.W(); 
   indexTwo = dim.H(); indexThree = dim.D();  
   break; 
 } 
 row = new int**[r]; 
 for ( int i = 0; i < r; i++ ) 
  *(row + i) = new int*[indexTwo]; 
 for ( int i = 0; i < r; i++ ) { 
  for ( int j = 0; j < indexTwo ; j++ ) 
   *(*(row + i) + j) = new int[indexThree]; } 
 for ( int i = 0; i < r; i++ ) { 
  for ( int j = 0; j < indexTwo; j++ )  { 
   for ( int k = 0; k < indexThree; k++ )  { 
    row[i][j][k] = 0; 
}}} 
} 
//DESTRUCTOR FUNCTION 
Hits::~Hits() {} 
//ACCESSOR FUNCTIONS 
int Hits::get(int r, int i2, int i3) { 
 return row[r][i2][i3]; } 
//MANIPULATOR FUNCTION 
int Hits::indexRow(int row_) { 
 return row_ * dim.H() * dim.D() + indexTwo * dim.D() + indexThree; 
} 
int Hits::indexCol(int col) { 
 return indexTwo * dim.H() * dim.D() + col * dim.D() + indexThree; 
} 
int Hits::indexDep(int dep) { 
 return indexTwo * dim.H() * dim.D() + indexThree * dim.D() + dep; 
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} 
void Hits::updateIndex(int i_2, int i_3, int) { 
 indexTwo = i_2; 
 indexThree = i_3; 
} 
int Hits::accept(int r) { 
 row[r][indexTwo][indexThree] = temp; 
 return temp; 
} 
int Hits::accept(int r, int i2, int i3, int val) { 
 row[r][i2][i3] = val; 
 return val; 
} 
//FRIENDS 
ostream& operator <<( ostream& out, const Hits& h) 
{ 
  /*for ( int i = 0; i < 1; i++ ) { 
  out <<endl; 
  for ( int j = 0; j < 10; j++ )  { 
   out <<endl; 
   for ( int k = 0; k < 10; k++ )  {  
    out <<h.row[i][j][k] <<"  "; 
   }}} 
  out <<endl;*/ 
  out <<"Index 2:  " <<h.indexTwo  <<", "; 
  out <<"Index 3:  " <<h.indexThree  <<", "; 
  out <<"Temp Hits:  " <<h.temp <<endl; 
  return out; 
} 
 
//TWO POINT CORRELATION FUNCTION 
bool TwoPoint::criteria(int id1, int id2, int mat ) { 
 return ( id1 == mat && id2 == mat ); 
} 
int TwoPoint::add(int* arr, int r, int mat)  { 
 temp = 0; 
 int ct = 0; int spacer = ct + r; 
 int space_1, space_2; 
 
 int totCt = 0; 
 
 while ( totCt < sz /*spacer < sz*/ ) 
 {  
  //cout <<"In loop  " <<ct <<endl; 
  //Periodic 
  if ( r < per && spacer >= sz ) 
   spacer = spacer - sz; 
  //End Periodic 
  space_1 = arr[(*this.*pt2indexes)(ct)]; 
  space_2 = arr[(*this.*pt2indexes)(spacer)]; 
  if (criteria (space_1, space_2, mat) == true ) 
   temp++; 
  //if ( r == 1 ) 
  //cout <<"1:  " <<ct <<"  2: " <<spacer <<" : " <<criteria (space_1, 
space_2, mat) <<endl; 
  ct++; 
  spacer = ct + r; 
  if ( r < per ) 
   totCt = ct; 
  else 
   totCt = spacer;  } 
 return temp; 
} 
int TwoPoint::setMat( Material& c ) { 
 return 0; 
} 
//LINEAL CHORD FUNCTION 
int LinealChord::add(int* arr, int r, int mat)  { 
 
 temp = 0; 
 int ct = 0;  
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 int spacer = ct + r;  
 int center = ct + 1; 
 int center1 = ct + 1; 
 bool query = false; 
 int space_1, space_2; 
 
 int totCt = 0; 
 
 while ( totCt < sz ) {//( spacer < sz ) { 
  if ( r < per && spacer >= sz ) 
   spacer = spacer - sz; 
  space_1 = arr[(*this.*pt2indexes)(ct)]; 
  space_2 = arr[(*this.*pt2indexes)(spacer)]; 
  if (criteria(space_1, space_2, mat) == true ) { 
   center = ct + 1; 
   center1 = ct + 1; 
   if ( r < per && spacer >= sz ) { 
    center = ct + 1 - sz; 
    center1 = ct + 1 - sz; } 
   //center1 = ct + 1; 
   while ( center1 < spacer ) { 
    if ( arr[(*this.*pt2indexes)(center1)] != mat ) { 
     //added center1 above 
     query = true; break; } 
    center1++;   } 
   if ( query == false ) temp++;  } 
  ct++; 
  spacer = ct + r; 
  query = false; 
  if ( r < per ) 
   totCt = ct; 
  else 
   totCt = spacer; 
 } 
 return temp; 
} 
 
//MIXED PHASE FUNCTION 
bool MixedPhase::criteria(int id1, int id2, int mat ) { 
 return ( id1 == mat && id2 == n ); // || ( id1 == n && id2 == mat )  
  // || ( id1 == mat && id2 == mat ) || ( id1 == n && id2 == n ) ; 
} 
int MixedPhase::setMat( Material& mat ) { 
 n = mat.get_id(); 
 return 0; } 
 
//CLUSTER FUNCTION 
void ClusterFunc::initialize( int r, int p, int o, SIZE d ) { 
 Hits::initialize( r, p, o, d ); 
 switch ( dir ) { 
  case 1 :  
   pt2coords = &ClusterFunc::coordRow; 
  break; 
  case 2 :  
   pt2coords = &ClusterFunc::coordCol; 
   break; 
  case 3 :  
   pt2coords = &ClusterFunc::coordDep; 
   break; 
  default: 
   pt2coords = &ClusterFunc::coordRow; 
   break; } 
 coordMap = new int[ dim.S() ]; 
 for ( int i = 0; i < dim.S(); i++ )  
  coordMap[i] = 0; 
} 
Coord ClusterFunc::coordRow( int row_ ) { 
 Coord dummy(row_, indexTwo, indexThree); 
 return dummy; } 
Coord ClusterFunc::coordCol( int col ) { 
 Coord dummy(indexTwo, col, indexThree); 
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 return dummy; } 
Coord ClusterFunc::coordDep( int dep ) { 
 Coord dummy(indexTwo, indexThree, dep); 
 return dummy; } 
void ClusterFunc::fillAll(int* arr, int mat) { 
 
 Coord temp; 
 for ( int i = 0; i < dim.W(); i++ ) { 
  for ( int j = 0; j < dim.H(); j++ ) { 
   for ( int k = 0; k < dim.D(); k++ ) { 
   temp.set(i, j, k); 
   if ( arr[ index( temp , dim) ] == mat ) 
    all.push_back( temp ); 
 }}} 
 
 int ct = 1, c = 0; //counter of clusters 
 vector<Coord> cluster; 
 vector<Coord> dummy = all; 
 vector<Coord>::iterator itDummy = dummy.begin(); 
 bool status = false; 
 
 while ( !dummy.empty() ) { 
  cluster.push_back( *(dummy.begin()) ); 
  c = 0; 
  while ( c < cluster.size() ) { 
   itDummy = dummy.begin(); 
   temp = *(cluster.begin() + c); 
   while ( itDummy != dummy.end() ) { 
    if ( anyNext(temp, *itDummy) == true ) { 
     cluster.push_back(*itDummy); 
     coordMap[ index( *itDummy, dim ) ] = ct; 
     itDummy = dummy.erase(itDummy);  
     status = true; 
    } 
    else 
     itDummy++; } 
   c++; } 
  if ( status == false ) 
   coordMap[ index( *(itDummy - 1), dim) ] = ct;  
  status = false; 
  ct++; 
  cluster.clear(); 
 } 
} 
void ClusterFunc::updateIndex(int i_2, int i_3, int d) { 
 indexTwo = i_2; 
 indexThree = i_3; 
 current = d; 
} 
bool ClusterFunc::criteria(int id1, int id2, int mat) { 
 return ( id1 == mat && id2 == mat ); 
}  
bool ClusterFunc::criteria(Coord& a, Coord& b) { 
 return ( coordMap[index(a, dim)] == coordMap[index(b, dim)] ); } 
int ClusterFunc::add(int* arr, int r, int mat)  { 
 
 if ( all.size() == 0 ) 
  fillAll( arr, mat ); 
 
 temp = 0; 
 int ct = 0; int spacer = ct + r; 
 Coord pt_1, pt_2; 
 int space_1, space_2; 
 while ( spacer < sz ) 
 { 
  pt_1 = (*this.*pt2coords)(ct); 
  pt_2 = (*this.*pt2coords)(spacer); 
  space_1 = arr[(*this.*pt2indexes)(ct)]; 
  space_2 = arr[(*this.*pt2indexes)(spacer)]; 
  if (criteria (space_1, space_2, mat ) == true  
       && criteria (pt_1, pt_2 ) == true ) 
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   temp++; 
  ct++; 
  spacer = ct + r;  
 } 
 return temp; 
} 
 
//ENERGY FUNCTIONS 
//CONSTRUCTOR FUNCTIONS 
Energy::Energy() : eng( 0 ) { } 
Energy::Energy(double dia, const Material m ) : eng( 0 ) { 
 charLength = dia; 
 for ( int i = 0; i <= dia; i++ ) 
  r_func[i] = overlapping_sphere(dia, i, m.get_vf()); 
 for ( int i = (int)dia + 1; i < 400; i++ ) 
  r_func[i] = m.get_vf() * m.get_vf(); 
} 
Energy::Energy(double dia, const Material m, char debye ) : eng( 0 ) { 
 charLength = dia; 
 for ( int i = 0; i < 400; i++ ) { 
  r_func[i] = debye_decay(charLength, i, m.get_vf()); 
  //if ( i < 20 ) 
  // cout <<r_func[i] <<"\t" <<charLength <<"\t" <<m.get_vf() <<endl; 
 } 
} 
Energy::Energy(double dia, double osc, const Material m, char debye ) : eng( 0 ) { 
        charLength = dia; 
 for ( int i = 0; i < 400; i++ ) { 
  r_func[i] = debye_oscill(charLength, osc, i, m.get_vf()); 
 } 
} 
Energy::Energy(long double c1, long double c2, long double c3, long double c4, long 
double c5, long double c6, long double c7, double length, long double conv ) : eng( 0 )
  for ( int i = 0; i < 400; i++ ) { 
   if ( i*conv > (int)length ) 
    r_func[i] = 0; 
   else 
    r_func[i] = poly(c1, c2, c3, c4, c5, c6, c7, conv * i ); 
   //if ( i < 100 ) 
    /*cout <<i <<"\t" <<conv*i <<"\t" <<r_func[i] <<endl;*/
} 
Energy::Energy(const char* name ) : eng(0) { 
 ifstream indata; indata.open(name); 
 if(!indata) { 
  cerr << "Error:  file could not be opened" <<endl; 
  exit(1); } 
 int i = 0; 
 while ( !indata.eof() ) { 
  indata >> * ( r_func + i ); 
  i++; } 
 indata.close(); 
 
 double prev = 0; 
 double delta = 0; 
 i = 0; 
 while ( i < 50 ) { 
  delta = fabs( prev - r_func[i] ) * 100 / r_func[i] ; 
  if (  delta <= 2 ) { 
   charLength = i; 
   break; } 
  prev = * ( r_func + i ); 
  i++; } 
} 
//DESTRUCTOR FUNCTION 
Energy::~Energy() {} 
//ACCESSOR FUNCTIONS 
double Energy::get_eng() const { return eng; } 
double Energy::get_cl() const { return charLength; } 
//MANIPULATOR 
double Energy::calc( const vector<double> func ) { 
 double e = 0; 
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 for ( int r = 0; r < func.size(); r++ ) 
  e = e + pow(func[r] - r_func[r],2); 
 eng = e; 
 return eng; 
} 
double Energy::calc( const double* arr, int rad ) { 
 double e = 0; 
 for ( int r = 0; r < rad; r++ ) 
  e = e + pow(arr[r] - r_func[r],2); 
 eng = e; 
 return eng; 
} 
ostream& operator <<(ostream& out, const Energy& e) 
{ 
 for ( int i = 0; i < 100; i++ ) 
  out <<e.r_func[ i ] <<endl; 
 return out; 
}   
IdLoc.h 
#ifndef GUARD_IdLoc_h 
#define GUARD_IdLoc_h 
 
#include "random.h" 
#include "SIZE.h" 
#include "Coord.h" 
 
#include <vector> 
using std::vector; 
 
#include <iostream> 
using std::endl; 
using std::cout; 
using std::cin; 
 
//Constructors  default 2 phases 
//     input number phases and dimensions 
//     sets up both sequences for rotating numbers 
//Destructor 
//Accessors   get_variablename 
//Private function  
// findLowerLimits finds indices of 3 bottom arrays 
// findUpperLimits finds indices of 3 top arrays 
//Manipulator functions 
// rotate   shifts sequence numbers 
// findId   finds first index in array and then sets internal ids 
//  findId   finds index that does not match given input value 
// findNextId  finds index that will not overlap on given IdLoc 
// setId   sets index and ids for the current location 
// switchId  changes value in given array to id2 
//  resetId   restores value in given array to id1 
//Boolean Functions 
// onInterface  true if on interface 
// onBorder  true if on border 
//OUTPUT 
// <<    Outputs location and id switch 
//FRIENDS 
// findOnInterface finds a two indexes on interface using findID and 
//     findNextId 
 
 
class IdLoc { 
private: 
 SIZE out; 
 SIZE inn; 
 vector<int> seq1; 
 vector<int> seq2; 
 Coord loc; 
 int num; 
 int id1; 
 int id2; 
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 Coord findLowerLimits(); 
 Coord findUpperLimits(); 
public: 
 IdLoc(); 
 IdLoc(int, const SIZE&, const SIZE&); 
 ~IdLoc(); 
 int get_id1() const { return id1; } 
 int get_id2() const { return id2; } 
 int get_current( int* arr ) const { return arr[ index(loc,out) ]; } 
 Coord get_loc() const { return loc; } 
 void rotate(); 
 void findId(int*); 
 void findId(int*, int); 
 void findNextId(int*, const IdLoc&); 
 void setId(int*, int); 
 void switchId(int*); 
 void resetId(int*); 
 bool onInterface(int*); 
 bool onBorder(); 
 friend void findOnInterface(int* arr, IdLoc&, IdLoc&); 
 friend ostream& operator <<(ostream& os, const IdLoc& id); 
}; 
 
#endif 
IdLoc.cpp 
#include "IdLoc.h" 
//CONSTRUCTOR FUNCTIONS 
IdLoc::IdLoc() :  
 num(2), out(100), inn(100), loc(0), id1(0), id2(0) { 
 seq1.push_back( 1 ); seq1.push_back( 2 ); 
 seq2.push_back( 2 ); seq2.push_back( 1 ); 
} 
 
IdLoc::IdLoc(int p, const SIZE& o, const SIZE& i)  
: num(p), out(o), inn(i), loc(0), id1(0), id2(0) { 
 seq1.push_back( num );  //Set [0] to max id 
 seq2.push_back( num - 1); //Set [0] to max id - 1 
 
 for (int i = 1; i < num; i++) { 
  seq1.push_back(i); //pattern should be 3, 1, 2 
  seq2.push_back(seq1[i - 1]);  //pattern should be 2, 3, 1 
 } 
} 
//DESTRUCTOR FUNCTION 
IdLoc::~IdLoc() { } 
 
//PRIVATE FUNCTIONS 
Coord IdLoc::findLowerLimits() { 
 Coord temp(0, 0, 0); 
 if ( loc.getx() != 0 ) 
   temp.setx(loc.getx() - 1); 
 if ( loc.gety() != 0 ) 
  temp.sety(loc.gety() - 1); 
 if ( loc.getz() != 0 ) 
  temp.setz(loc.getz() - 1); 
 return temp; 
} 
Coord IdLoc::findUpperLimits() { 
 Coord temp(loc.getx()+2, loc.gety()+2, loc.getz()+2); 
 if ( loc.getx() >= out.W() - 1 ) 
   temp.setx(out.W()); 
 if ( loc.gety() >= out.H() - 1 ) 
   temp.sety(out.H()); 
 if ( loc.getz() >= out.D() - 1 ) 
   temp.setz(out.D()); 
 return temp; 
} 
 
//ACCESSOR FUNCTIONS IN HEADER 
//MANIPULATOR FUNCTIONS 
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void IdLoc::rotate() { 
 int temp; 
 for (int i = 0; i < num; i++) { 
  temp = seq1[i]; 
  seq1[i] = seq2[i]; 
  seq2[i] = temp; } 
} 
void IdLoc::findId( int* arr ) { 
 loc.set( random(out.W()), random(out.H()), random(out.D())); 
 id1 = arr[ index(loc, out) ]; 
 int i = 0; 
 while ( id1 != seq1[i] ) 
  i++; 
 id2 = seq2[i]; 
} 
void IdLoc::findId( int* arr, int id ) 
{ 
 loc.set( random(out.W()), random(out.H()), random(out.D())); 
 id1 = arr[index(loc, out)]; 
 while ( id1 == id ) { 
  loc.set( random(out.W()), random(out.H()), random(out.D())); 
  id1 = arr[index(loc, out)]; 
 } 
 int i = 0; 
 while ( id1 != seq1[i] ) 
  i++; 
 id2 = seq2[i];} 
void IdLoc::findNextId(int* arr, const IdLoc& id) 
{ 
 char check = 'N'; 
 int ct = 0; 
 while ( check == 'N' ) { 
  ct++; 
  loc.set( random(out.W()), random(out.H()), random(out.D())); 
  while ( anyEqual(loc, id.get_loc()) ) 
   loc.set( random(out.W()), random(out.H()), random(out.D())); 
   
  if ( arr[loc.getx()*out.H()*out.D()+loc.gety()*out.D()+loc.getz()] == 
id.get_id2() ) { 
   id1 = id.get_id2(); 
   id2 = id.get_id1(); 
   check = 'Y'; } 
  if ( ct++ > 1000000000 ) { 
   throw domain_error("Phases incorrect"); 
   break; }}} 
 
void IdLoc::setId( int* arr, int id ) { 
 id1 = arr[index(loc,out)]; 
 id2 = id; 
 arr[index(loc,out)] = id2; } 
void IdLoc::switchId(int* arr) { 
 arr[index(loc,out)] = id2; } 
void IdLoc::resetId(int* arr) { 
 arr[index(loc, out)] = id1; } 
//BOOLEAN FUNCTIONS 
bool IdLoc::onInterface(int* arr) { 
 
 Coord lower = findLowerLimits(); 
 Coord upper = findUpperLimits(); 
 Coord current(0, 0, 0); 
 int ct=0, tot=0; 
 
 for ( int i = lower.getx(); i < upper.getx(); i++ ) { 
  for ( int j = lower.gety(); j < upper.gety(); j++ ) { 
   for ( int k = lower.getz(); k < upper.getz(); k++ ) { 
    current.set(i, j, k); 
    if (arr[ index(current, out) ] == arr[ index(loc, out) ] ) 
    ct++; 
   tot++;}}} 
 return ( ct != tot );} 
bool IdLoc::onBorder() { 
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 return 
 loc.getx() < out.DW(inn) || loc.getx() >= out.W()-out.DW(inn) || 
 loc.gety() < out.DH(inn) || loc.gety() >= out.H()-out.DH(inn) || 
 loc.getz() < out.DD(inn) || loc.getz() >= out.D()-out.DD(inn);} 
//OUTPUT FUNCTIONS 
ostream& operator <<(ostream& os, const IdLoc& id) 
{ 
 /*os <<"Current Material conversion:  "  <<endl; 
 for (int i = 0; i < id.num; i++) { 
  os <<"Mat " <<id.seq1[i] <<"->" <<id.seq2[i] <<endl; 
 }*/ 
 os <<"Current location:  " <<id.loc; 
 os <<" for Material " <<id.id1; 
 os <<" -> " <<id.id2 <<endl; 
 return os;} 
//FRIENDS 
void findOnInterface(int* arr, IdLoc& a, IdLoc& b) 
{ 
  a.findId(arr);  //Select first Id 
   while (a.onInterface(arr) == 0) //Check interface 
   a.findId(arr); 
  b.findNextId(arr, a); 
  int c = 0; 
  while (b.onInterface(arr) == 0 ) { 
   b.findNextId(arr, a); 
   c++; 
   if (c > 1000000 ) break; } 
  a.switchId(arr); 
  b.switchId(arr);  } 
VolStatus.h 
#ifndef GUARD_VolStatus_h 
#define GUARD_VolStatus_h 
#include "IdLoc.h" 
#include <iostream> 
using std::cerr; 
using std::cout; 
using std::endl; 
using std::cin; 
 
//Data members 
//    id1, id2 are current materials of IdLoc 
//    border_stat_1,2 states if id1 or 2 are on border 
//    boolean (true if volume fractions changed between 
//     border and center) 
//Constructors booleans default to true 
//Destructors 
// reset  sets status back to true 
// check  sets status to true if both a and b are in center 
//     or on the border.  Also sets id1 and id2 
//Output  outputs volume status 
//Friend   
// correctVolStatus  
//    finds new index on border and center and 
//    change accordingly 
 
class VolStatus 
{ 
private: 
 int id1; 
 int id2; 
 bool border_stat_1; 
 bool border_stat_2; 
 bool status; 
public: 
 VolStatus(); 
 ~VolStatus(); 
 bool get() const { return status; } 
 void reset(); 
 bool check(IdLoc&, IdLoc&); 
 friend ostream& operator <<(ostream& os, const VolStatus& ); 
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 friend void correctVolStatus(int*, IdLoc&, IdLoc&, VolStatus& ); }; 
 
#endif 
VolStatus.cpp 
#include "VolStatus.h" 
//CONSTRUCTORS 
VolStatus::VolStatus()  
 : status(1), border_stat_1(1), border_stat_2(1), id1(0), id2(0) { }  
//DESTRUCTORS 
VolStatus::~VolStatus() { } 
//ACCESSORS 
//MANIPULATORS 
void VolStatus::reset() { 
 status = true;} 
//BOOLEANS 
bool VolStatus::check(IdLoc& a, IdLoc& b) 
{ 
 if ( a.onBorder() == b.onBorder() ) 
  status = true; 
 else  
  status = false; 
 
 id1 = a.get_id2(); id2 = b.get_id2(); //Sets to previous Material 
 border_stat_1 = a.onBorder();  
 border_stat_2 = b.onBorder(); 
 return status;} 
//OUTPUT 
ostream& operator <<(ostream& os, const VolStatus& v  ) { 
 os <<"ID 1:  " <<v.id1 <<" and Border Status:  " <<v.border_stat_1; 
 os <<"  (1 - Border, 0 - Center ) " <<endl; 
 os <<"ID 2:  " <<v.id2 <<" and Border Status:  " <<v.border_stat_2 <<endl; 
 os <<"Volume Status:  " <<v.status; 
 os <<"  (1 - Status Good, 0 - Volume Changed) " <<endl; 
 return os;} 
//FRIEND FUNCTIONS 
void correctVolStatus(int* arr, IdLoc& a, IdLoc& b, VolStatus& v) 
{ 
 a.findId(arr); b.findId(arr); 
 while ( a.onBorder() != v.border_stat_1  
  || a.get_id1() != v.id1 ) 
   a.findId(arr); 
 
 while ( b.onBorder() != v.border_stat_2  
      || b.get_current( arr ) != v.id2  
   || anyEqual(a.get_loc(), b.get_loc()) == true ) { 
   b.findId(arr);} 
 
 a.setId(arr, v.id2 ); 
 b.setId(arr, v.id1 );   } 
Schedule.h 
#ifndef GUARD_Schedule_h 
#define GUARD_Schedule_h 
 
//Data members 
// probability  probability of acceptence 
// threshold  determines rate of acceptence 
//Constructors  threshold default .0001 
//Destructor 
//Manipulators 
// deluge   deluge acceptence algorithm 
 
class Schedule 
{ 
private: 
 double probability; 
 double threshold; 
public: 
 Schedule(double threshold = .0001); 
 ~Schedule(); 
 double deluge(double, double);  }; 
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#endif 
Schedule.cpp 
#include "Schedule.h" 
//CONSTRUCTORS 
Schedule::Schedule(double n) : probability(0) { 
 threshold = n;} 
//DESTRUCTORS 
Schedule::~Schedule() {} 
//MANIPULATORS 
double Schedule::deluge(double old, double new_) { 
 
 if ( new_ < threshold * old + old ) 
  probability = 1; 
 else 
  probability = 0; 
 
 return probability;  } 
InputPar.h 
#ifndef GUARD_InputPar_h 
#define GUARD_InputPar_h 
#include "SIZE.h" 
#include <iostream> 
using std::cout; 
using std::cin; 
using std::endl;  
#include <fstream> 
using std::ostream; 
using std::istream; 
#include <string> 
using std::string; 
 
string convert( int ); 
void queryDefaults( SIZE&, int& ); 
string queryString(); 
 
class InputPar { 
public: 
 bool queryStatus();  
 SIZE inputSize(); 
 int inputNum();  }; 
class Label { 
 bool type; 
 char charLabel; 
 int intLabel; 
 int ct; 
public: 
 Label();  
 void setType(); 
 void incLabel(); 
 string getLabel(); 
}; 
class FileCall { 
private: 
 string dir; 
 string id; 
 string des; 
 string inc; 
 string ext; 
public: 
 FileCall();  
 FileCall(string, string, string, string inc = "", string ext = ".dat" ); 
 void updateId( string n) { id = n; } 
 void updateInc( string n ) { inc = n; }  
 string getDir() { return dir; } 
 string getId() { return id;  } 
 string getDes() { return des; } 
 string getInc() { return inc; } 
 string getExt() { return ext; } 
 string name();}; 
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#endif 
InputPar.cpp 
#include "InputPar.h" 
 
string convert( int num ) { 
 
 string temp("0"); 
 int dig(1), factor(10); 
 while ( num % factor != num ) { 
  dig++; 
  factor = 10 * factor; 
  temp.push_back('0');  } 
 
 int var = num; 
 char x; 
 for ( int i = 0; i < dig ; i ++ ) { 
  x = var % 10 + 48;  
  temp[dig - 1 - i] = x; 
  var = ( var - var % 10 ) / 10;}  
 return temp;} 
 
bool InputPar::queryStatus() { 
 char inp; 
 cout <<"Use default parameters Y/N" <<endl; 
 cin >>inp; 
 if ( inp == 'Y' || inp == 'y' ) 
  return false; 
 else 
  return true; } 
 
SIZE InputPar::inputSize() { 
 int num; 
 cout <<"Input size as integer" <<endl; 
 cin >>num; 
 SIZE temp(num); 
 return temp; } 
 
int InputPar::inputNum() { 
 int num; 
 cout <<"Input desired number of realizations" <<endl; 
 cin >>num; 
 return num; } 
 
Label::Label(): type(false), charLabel('a'), intLabel(1), ct(0) { } 
void Label::setType() { 
 char inp; 
 cout <<"Input Y/y for seq or N/n for char:  " <<endl; 
  cin >> inp; 
 if ( inp == 'Y' || inp == 'y' ) 
  type = false; 
 else 
  type = true;} 
void Label::incLabel() { 
 charLabel++; 
 intLabel++; 
 if ( ct == 26 ) 
  charLabel = 'a'; 
 ct++; } 
string Label::getLabel() { 
 string temp("blank"); 
 if ( type == true )  { 
  temp = charLabel; 
 if ( ct > 26 )  
  temp = temp + charLabel; } 
 else if ( type == false ) 
  temp = "seq" + convert( intLabel ); 
 
 return temp; } 
FileCall::FileCall() : dir(""), id("cfiles"), des(""), inc(""), ext(".dat") { 
} 
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FileCall::FileCall( string d, string i, string ds, string in, string ex ) : dir(d), 
id(i), des(ds), inc(in), ext(ex) { 
} 
string FileCall::name() { 
 string temp = dir + id + des + inc + ext; 
 return temp; } 
void queryDefaults( SIZE& dim, int& num ) { 
 InputPar ip; 
 cout <<dim; 
 cout <<"Realizations:  " <<num <<endl; 
 if ( ip.queryStatus() == true ) { 
  dim = ip.inputSize(); 
  num = ip.inputNum(); }} 
string queryString() { 
 char inp; string temp; 
 cout <<"Input string Y/N" <<endl; 
 cin >>inp; 
 if ( inp == 'Y' || inp == 'y' ) 
  cin >>temp; 
 else 
  temp = ""; 
 return temp;  } 
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APPENDIX C 

DATA FITTING 
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 The data from this work was fit to equations using the software, SigmaPlot 11.0.  

In Table B.1 these equations are listed.  For more information refer to the SigmaPlot help 

information [102]. 

 

Table B.1.  Equations for data fitting. 

Type Equation Parameters 

oy y ax= +  oy , a Linear 

by ax=  a, b Power 

2

exp 0.5 ox xy a
b

⎡ ⎤⎡ ⎤−⎛ ⎞= −⎢ ⎥⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

a, b, c, ox   Gaussian 

( ) 2
ln

exp 0.5 o
o

x x
y y a

b

⎡ ⎤⎡ ⎤⎛ ⎞⎢ ⎥⎢ ⎥= + − ⎜ ⎟
⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

oy , a, b, ox  Weibull 
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APPENDIX D 

MATERIAL PROPERTIES 
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 This appendix lists the Abaqus property files used in the analysis.  All the 

material behaviors are listed, although every property was not necessarily implemented in 

each analysis.  For information about scripting and keywords for Abaqus refer to Abaqus 

help manuals [98]. 

YSZ Property Data 
 

*Material, name=YSZ 
** --------------------------------------- 
** UNITS: watts / (mm * C) 
*Conductivity  
.002, 
** --------------------------------------- 
** UNITS: g/mm^3 
*Density 
 0.0590, 
** --------------------------------------- 
** UNITS: (N/mm^2), - 
*Elastic 
 216000, 0.315 
** --------------------------------------- 
** UNITS: % volumetric 
*Electrical Conductivity 
.252, 
** --------------------------------------- 
** UNITS: mm/(mm * °C) 
*Expansion 
8.27e-6, 0 
8.5e-6, 100 
10.5e-06, 950 
*Concrete Damaged Plasticity 
56.,  0.,500.,  1.,  0. 
*Concrete Compression Hardening 
69000.,   0. 
    0., 0.01 
*Concrete Tension Stiffening 
345.00, 0.00E+00 
247.69, 2.50E-03 
177.83, 5.00E-03 
127.67, 7.50E-03 
91.66, 1.00E-02 
65.81, 1.25E-02 
47.25, 1.50E-02 
33.92, 1.75E-02 
24.35, 2.00E-02 
17.48, 2.25E-02 
12.55, 2.50E-02 
9.01, 2.75E-02 
6.47, 3.00E-02 
4.65, 3.25E-02 
*Concrete Tension Damage 
0.00, 0.000 
0.272, 0.003 
0.475, 0.005 
0.620, 0.008 
0.724, 0.010 
0.799, 0.013 
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0.853, 0.015 
0.892, 0.018 
0.919, 0.020 
0.939, 0.023 
0.954, 0.025 
0.964, 0.028 
0.971, 0.030 
0.977, 0.033 

 
Argon/Porosity Property Data 

*Material, name=PORE 
** --------------------------------------- 
** UNITS: watts / (mm * C) 
*Conductivity 
.000016 
** --------------------------------------- 
** UNITS: g/mm^3 
*Density 
.001293, 0 
.001205, 20 
.001127, 40 
.001067, 60 
.001, 80 
.000946, 100 
.000898, 120 
.000854, 140 
.000815, 160 
.000779, 180 
.000746, 200 
.000675, 300 
.000566, 350 
.000524, 400 
** --------------------------------------- 
** UNITS: (N/mm^2), - 
*Elastic 
 1, 0.315 
** --------------------------------------- 

 
Nickel Property Data 

*Material, name=NICKEL 
** --------------------------------------- 
** UNITS: watts / (mm * C) 
*Conductivity  
    0.0775,   127. 
      0.07,   227. 
 0.0624393,   307. 
 0.0623511,   309. 
 0.0622021,   311. 
 0.0621209,   313. 
 0.0619969,   315. 
 0.0619025,   317. 
 0.0617648,   319. 
 0.0616734,   321. 
 0.0615556,   323. 
 0.0614642,   325. 
 0.0613448,   327. 
 0.0612319,   329. 
 0.0611418,   331. 
 0.0610027,   333. 
 0.0608483,   335. 
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Nickel Property Data (cont.) 
  0.060694,   337. 
 0.0605368,   339. 
 0.0603904,   341. 
 0.0602668,   343. 
 0.0600925,   345. 
 0.0599263,   347. 
 0.0598322,   348. 
 0.0597391,   349. 
 0.0596443,   350. 
 0.0595442,   351. 
 0.0594663,   352. 
 0.0594074,  352.5 
 0.0593553,   353. 
 0.0593085,  353.5 
 0.0592492,   354. 
 0.0592072,  354.5 
 0.0591474,   355. 
 0.0590818,  355.5 
 0.0590826,   356. 
 0.0591082,  356.5 
 0.0591426,   357. 
  0.059175,  357.5 
  0.059184,  357.6 
 0.0592082,  357.7 
 0.0592384,  357.8 
 0.0592889,  357.9 
 0.0593419,   358. 
 0.0593853, 358.05 
 0.0594239,  358.1 
0.0594722, 358.15 
 0.0595289,  358.2 
 0.0595776, 358.25 
 0.0596161,  358.3 
 0.0596566, 358.35 
   0.05969,  358.4 
  0.059751, 358.45 
   0.05983,  358.5 
  0.059931, 358.55 
  0.059932,  358.6 
  0.059932, 358.65 
   0.05989,  358.7 
  0.059805, 358.75 
 0.0597009,  358.8 
  0.059646, 358.85 
 0.0595883,  358.9 
  0.059548, 358.95 
 0.0595163,   359. 
 0.0594632,  359.1 
 0.0594338,  359.2 
  0.059422,  359.3 
 0.0594072,  359.4 
  0.059389,  359.5 
 0.0593548,   360. 
 0.0593138,  360.5 
 0.0592937,   361. 
 0.0593483,  361.5 
   0.05934,   362. 
 0.0593504,  362.5 
 0.0593519,   363. 
 0.0593498,  363.5 
 0.0593658,   364. 
 0.0593492,  364.5 
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Nickel Property Data (cont.) 
 0.0593559,   365. 
 0.0593519,  365.5 
 0.0593564,   366. 
 0.0593706,  366.5 
 0.0593776,   367. 
  0.059378,  367.5 
 0.0593907,   368. 
 0.0594734,   369. 
 0.0595204,   370. 
 0.0595708,   371. 
 0.0596163,   373. 
 0.0597148,   375. 
 0.0597824,   377. 
 0.0598622,   379. 
 0.0599589,   381. 
 0.0600192,   383. 
 0.0601024,   385. 
 0.0601916,   387. 
 0.0602695,   389. 
 0.0603566,   391. 
 0.0604732,   393. 
 0.0605628,   395. 
    0.0619,   527. 
    0.0638,   627. 
    0.0658,   727. 
    0.0679,   827. 
    0.0697,   927. 
    0.0716,  1027. 
    0.0735,  1127. 
** --------------------------------------- 
** UNITS: g/mm^3 
*Density 
 0.0888, 
** --------------------------------------- 
** UNITS: (N/mm^2), - 
*Elastic 
206617.7014,0.31,25 
200297.1506,0.31,100 
191700.5364,0.31,200 
183001.416,0.31,300 
174244.8267,0.31,400 
165452.8412,0.31,500 
161047.5731,0.31,550 
156637.5281,0.31,600 
152223.4775,0.31,650 
147806.0356,0.31,700 
143385.6971,0.31,750 
138962.8651,0.31,800 
134537.8713,0.31,850 
130110.9911,0.31,900 
125682.4551,0.31,950 
121252.4577,0.31,1000 
116821.1642,0.31,1050 
112388.7158,0.31,1100 
107955.2339,0.31,1150 
103520.8235,0.31,1200 
** --------------------------------------- 
** UNITS: mm/(mm * °C) 
*Expansion 
1.22672E-05,       0 
1.24804E-05,      20 
1.26951E-05,      40 
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Nickel Property Data (cont.) 
1.29117E-05,      60 
1.31304E-05,      80 
1.33514E-05,     100 
1.35752E-05,     120 
1.38022E-05,     140 
1.40331E-05,     160 
1.42687E-05,     180 
  1.451E-05,     200 
1.47586E-05,     220 
 1.5017E-05,     240 
1.52887E-05,     260 
1.55801E-05,     280 
1.59039E-05,     300 
1.62916E-05,     320 
1.68817E-05,     340 
 1.7163E-05,     345 
1.72447E-05,     346 
1.73452E-05,     347 
1.74789E-05,     348 
1.76903E-05,     349 
1.71806E-05,     351 
1.69251E-05,     352 
1.67713E-05,     353 
1.66611E-05,     354 
1.65754E-05,     355 
1.60128E-05,     375 
 1.5895E-05,     395 
1.58817E-05,     415 
1.59174E-05,     435 
1.59821E-05,     455 
1.60659E-05,     475 
1.61633E-05,     495 
 1.6271E-05,     515 
1.63867E-05,     535 
1.65089E-05,     555 
1.66363E-05,     575 
1.67681E-05,     595 
1.69037E-05,     615 
1.70425E-05,     635 
1.71842E-05,     655 
1.73282E-05,     675 
1.74745E-05,     695 
1.76228E-05,     715 
1.77728E-05,     735 
1.79243E-05,     755 
1.80773E-05,     775 
1.82317E-05,     795 
1.83872E-05,     815 
1.85438E-05,     835 
1.87015E-05,     855 
  1.886E-05,     875 
1.90195E-05,     895 
1.91798E-05,     915 
1.93408E-05,     935 
1.95026E-05,     955 
0.000019665,     975 
1.98281E-05,     995 
1.99917E-05,    1015 
2.01559E-05,    1035 
2.03206E-05,    1055 
2.04858E-05,    1075 
2.06515E-05,    1095 
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Nickel Property Data (cont.) 
2.08177E-05,    1115 
2.09843E-05,    1135 
2.11513E-05,    1155 
2.13186E-05,    1175 
2.14864E-05,    1195 
2.16545E-05,    1215 
2.18229E-05,    1235 
2.19916E-05,    1255 
2.21607E-05,    1275 
2.23301E-05,    1295 
2.24997E-05,    1315 
2.26697E-05,    1335 
2.28398E-05,    1355 
2.30103E-05,    1375 
 2.3181E-05,    1395 
2.33519E-05,    1415 
 2.3523E-05,    1435 
** --------------------------------------- 
** UNITS: kJ/kg*K  
*Specific Heat 
0.420074, -16.27 
 0.425094,  -7.41 
 0.428776,   1.81 
0.435136,  11.34 
  0.44183,  20.99 
 0.448943,  29.98 
 0.574008,   307. 
 0.575541,   309. 
 0.576563,   311. 
 0.578266,   313. 
 0.579629,   315. 
 0.581332,   317. 
 0.582695,   319. 
 0.584568,   321. 
 0.586272,   323. 
 0.588315,   325. 
 0.590189,   327. 
 0.592233,   329. 
 0.594618,   331. 
 0.596662,   333. 
 0.598706,   335. 
  0.60092,   337. 
 0.603304,   339. 
  0.60603,   341. 
 0.609266,   343. 
 0.612332,   345. 
 0.615909,   347. 
 0.617782,   348. 
 0.619826,   349. 
 0.622041,   350. 
 0.624425,   351. 
 0.627321,   352. 
 0.628683,  352.5 
 0.630216,   353. 
  0.63192,  353.5 
 0.633623,   354. 
 0.635667,  354.5 
 0.637711,   355. 
 0.639925,  355.5 
 0.643161,   356. 
 0.647079,  356.5 
 0.651678,   357. 
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Nickel Property Data (cont.) 
 0.657299,  357.5 
 0.658832,  357.6 
 0.660024,  357.7 
 0.661727,  357.8 
 0.663771,  357.9 
 0.665985,   358. 
 0.667348, 358.05 
 0.668711,  358.1 
 0.670244, 358.15 
 0.671947,  358.2 
  0.67365, 358.25 
 0.675353,  358.3 
 0.677227, 358.35 
  0.67893,  358.4 
 0.679612, 358.45 
 0.678419,  358.5 
 0.671606, 358.55 
 0.659172,  358.6 
  0.64265, 358.65 
  0.63209,  358.7 
 0.624936, 358.75 
 0.619997,  358.8 
 0.616931, 358.85 
 0.614205,  358.9 
  0.61148, 358.95 
 0.609947,   359. 
 0.606541,  359.1 
 0.603815,  359.2 
 0.602112,  359.3 
 0.599557,  359.4 
 0.597684,  359.5 
   0.5907,   360. 
  0.58542,  360.5 
 0.581332,   361. 
 0.578607,  361.5 
 0.575711,   362. 
 0.573327,  362.5 
 0.571112,   363. 
 0.569068,  363.5 
 0.567365,   364. 
 0.565491,  364.5 
 0.563958,   365. 
 0.562425,  365.5 
 0.561063,   366. 
 0.559871,  366.5 
 0.558678,   367. 
 0.557486,  367.5 
 0.556464,   368. 
 0.555101,   369. 
 0.553568,   370. 
 0.552206,   371. 
  0.54931,   373. 
 0.547266,   375. 
 0.545222,   377. 
 0.543519,   379. 
 0.542156,   381. 
 0.540623,   383. 
 0.539431,   385. 
 0.538409,   387. 
 0.537387,   389. 
 0.536536,   391. 
 0.536025,   393. 
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Nickel Property Data (cont.) 
 0.535343,   395. 
 0.534832,   397. 
 0.534492,   399. 
 0.533981,   401. 
  0.53364,   403. 
 0.533299,   405. 
 0.533129,   407. 
  0.53597,  537.9 
  0.54141,  593.5 
 0.546849,   649. 
  0.55187,  704.6 
 0.557309,  760.1 
 0.562748,  815.7 
 0.568187,  871.3 
** --------------------------------------- 
*Plastic 
179.8,0.00E+00,25 
185.56,7.41E-05,25 
200.46,3.07E-04,25 
220.13,7.19E-04,25 
241.53,1.32E-03,25 
263.17,2.13E-03,25 
284.39,3.13E-03,25 
304.95,4.34E-03,25 
324.78,5.75E-03,25 
343.89,7.36E-03,25 
362.33,9.18E-03,25 
380.12,1.12E-02,25 
397.33,1.34E-02,25 
** --------------------------------------- 
** UNITS: A ( /s ) , n, t, TEMP (ºC) 
*Creep 
 3.22e-48,    4.6,     0.,    25. 
 7.85e-36,    4.6,     0., 128.57 
 1.76e-28,    4.6,     0., 232.14 
 1.35e-23,    4.6,     0., 335.71 
 4.28e-20,    4.6,     0., 439.29 
 1.89e-17,    4.6,     0., 542.86 
 2.28e-15,    4.6,     0., 646.43 
 1.12e-13,    4.6,     0.,   750. 
** --------------------------------------- 
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