
THERMOMECHANICAL MODELING OF POROUS CERAMIC-
METAL COMPOSITES ACCOUNTING FOR THE STOCHASTIC

NATURE OF THEIR MICROSTRUCTURE

A Dissertation
Presented to

The Academic Faculty

by

Janine Johnson

In Partial Fulfillment
of the Requirements for the Degree

Ph.D. in the
School of Mechanical Engineering

Georgia Institute of Technology
May 2010

THERMOMECHANICAL MODELING OF POROUS CERAMIC-

METAL COMPOSITES ACCOUNTING FOR THE STOCHASTIC

NATURE OF THEIR MICROSTRUCTURE

Approved by:

Dr. Jianmin Qu, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

 Dr. Hamid Garmestani
School of Material Science
Georgia Institute of Technology

Dr. Arun Gokhale
School of Material Science
Georgia Institute of Technology

 Dr. W. Steven Johnson
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Suresh Sitaraman
School of Mechanical Engineering
Georgia Institute of Technology

 Dr. Edgar Lara-Curzio
High Temperature Materials
Laboratory
Oak Ridge National Laboratory

 Date Approved: Nov. 5, 2009

To Dad and rousing renditions of “Here Comes the Sun”

ACKNOWLEDGEMENTS

 I wish to thank Dr. Jianmin Qu, my PhD advisor, for his support and guidance

through the years. I’m a better person for it. I would also like to thank my reading

committee for all of their advice, data, and patience (and willingness to travel). Thank

you Shenjia Zhang for the anode data. Next I cannot forget my editing friends. Thank

you Sara for countless commas and Jeffrey Donnell for working very quickly. All of my

labmates deserve thanks, but most especially Narasimhan for being a great person to talk

OOP with. I’ve done just a tiny bit of computing, so a huge thanks to the support staff of

the PACE and JADE computer clusters. Thank you Nitin, Lauren, Belen, Ashley,

Christine, Charlotte, Temsiri and Caroline for listening to whatever I was worked up

about at the time. Last, but not least, to several years of Georgia Tech friends and

colleagues. I would name you all, but there just isn’t enough space.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... iv

LIST OF TABLES... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS.. xiii

SUMMARY.. xv

CHAPTER 1: INTRODUCTION.. 1
1.1. Fuel Cells ... 4
1.1.1. Computer Modeling .. 5
1.1.2. Anode (Ni-YSZ) ... 7
1.2. Research methodology... 9
1.2.1. Stochastic reconstruction .. 9
1.2.2. Finite element models ... 10
1.3. Summary .. 12

CHAPTER 2: STOCHASTIC RECONSTRUCTION... 14

2.1. Theory of random media.. 17
2.1.1. Indicator function.. 17
2.1.2. Probability functions... 17
2.1.3. Compatibility .. 19
2.1.4. Alternate probability functions ... 20
2.2. Reconstruction methodology ... 20
2.3. Ni-YSZ reconstruction... 22
2.3.1. Two-point probability ... 24
2.3.2. Lineal path probability.. 26
2.4. Accuracy and computational expense.. 27
2.5. Summary .. 29

CHAPTER 3: PERCOLATION .. 30

3.1. Theory .. 31
3.1.1. Probability functions... 31
3.1.2. Continuum percolation.. 32
3.2. Methodology.. 33
3.3. Results.. 35
3.3.1. ORNL sample ... 35
3.3.2. Percolation threshold .. 38

 v

3.4. Discussion .. 40
3.5. Summary .. 40

CHAPTER 4: EFFECTIVE STRUCTURAL PROPERTIES ... 41

4.1. Theory .. 45
4.1.1. Representative volume elements... 45
4.1.2. Effective properties... 46
4.2. ORNL sample analysis .. 49
4.2.1. Finite element model... 50
4.2.2. Constituent material properties ... 50
4.2.3. Convergence analysis.. 51
4.2.3.1. Discretization error and RVE size ... 51
4.2.3.2. Robustness ... 55
4.2.4. Final RVE size .. 57
4.2.4.1. Modulus RVE .. 57
4.2.4.2. CTE RVE... 58
4.2.4.3. Sample size .. 59
4.3. Microstructure variation... 59
4.3.1. Reconstructions... 59
4.3.1.1. Porosity .. 61
4.3.1.2. Characteristic length .. 62
4.3.2. Microstructural impact.. 64
4.3.2.1. Porosity .. 64
4.3.2.2. Internal length scales.. 65
4.4. Summary .. 68

CHAPTER 5: EFFECTIVE THERMAL CONDUCTIVITY.. 70

5.1. Thermal resistance model .. 71
5.2. FE model.. 75
5.3. Results.. 76
5.3.1. RVE Size... 76
5.3.2. Interfacial Resistance .. 77
5.3.3. Varying microstructures.. 79
5.4. Discussion .. 81
5.4.1. RVE size and discretization .. 81
5.4.2. Numerical results .. 82
5.5. Summary .. 83

CHAPTER 6: DAMAGE AND PLASTICITY ... 84

6.1. Theory .. 87
6.2. Methodology.. 89
6.2.1. Finite element model... 89
6.2.2. Constituent properties ... 89
6.2.2.1. Damage .. 89
6.2.2.2. Plasticity... 91
6.2.3. Data analysis ... 92

 vi

6.2.4. Microstructure analysis... 92
6.3. Results.. 93
6.3.1. Discretization and RVE size ... 93
6.3.2. Microstructure analysis... 99
6.3.2.1. Base model... 99
6.3.2.2. Porosity .. 102
6.3.2.3. Microstructural variation ... 102
6.4. Discussion .. 105
6.4.1. RVE size and discretization .. 105
6.4.2. Data analysis of base model.. 105
6.4.3. Microstructure variation.. 108
6.5. Summary .. 109

CHAPTER 7: TIME-DEPENDENT DEFORMATION ... 111

7.1. Theory .. 112
7.1.1. Thermal stresses.. 112
7.1.2. Composite creep.. 114
7.2. FE model.. 117
7.3. Results and discussion ... 119
7.3.1. RVE size and discretization .. 119
7.3.2. Base model.. 123
7.3.2.1. Stress relaxation ... 123
7.3.2.2. Constant strain rate .. 125
7.3.3. YSZ Percolation.. 126
7.3.4. Nickel Length Scales .. 129
7.4. Summary .. 131

CHAPTER 8: SUMMARY AND CONLUSIONS.. 132

8.1. Chapter summary ... 132
8.2. Major conclusions.. 134
8.3. Contributions ... 136
8.1. Future work.. 138

APPENDIX A: PROBABILITY INDEPENDENCE.. 139

APPENDIX B: RECONSTRUCTION CODE .. 141

APPENDIX C: DATA FITTING .. 181

APPENDIX D: MATERIAL PROPERTIES .. 183

REFERENCES ... 192

 vii

LIST OF TABLES

Table 1.1. Numerical analyses and objectives. .. 11

Table 2.1. Parameters of ORNL Ni-YSZ... 22

Table 3.1. Percolation values of ORNL sample for R = 50 and N = 20. 36

Table 4.1. Comparison of constituent material properties... 51

Table 4.2. Discretization of modulus at 25ºC. ... 54

Table 4.3. RVE size of modulus at 25ºC. .. 54

Table 4.4. T-test and f-test results of Young’s modulus for different RVEs at 25ºC. 56

Table 4.5. Microstructure realizations. .. 60

Table 4.6. Percolation threshold for different microstructures. 66

Table 5.1. Comparison of constituent material properties... 75

Table 5.2. Interface area and conductivity at RT for changing porosity. 81

Table 5.3. Interface area for changing length scales.. 81

Table 6.1. Damage and plasticity microstructure realizations... 93

Table 7.1. Time-dependent microstructure realizations. ... 118

Table 7.2. RVE size and discretization for a strain rate of 1x10-6 /s at 500ºC............... 120

Table 7.3. Composite creep values for increasing volume fraction of YSZ.................. 128

Table A.1. Reconstruction code. ……………………………………………………… 142

Table B.1. Equations for data fitting. ………………………………………………….182

viii

LIST OF FIGURES

Figure 1.1. Schematic PEN layer of pSOFC.. 2

Figure 1.2. Multiple levels of SOFC modeling.. 6

Figure 1.3. Image of 22 vol.% porous Ni-YSZ.. 7

Figure 1.4. 1D visualization of composite construction. ... 10

Figure 2.1. Example 2-point probability function. .. 19

Figure 2.2. Reconstruction algorithm. ... 21

Figure 2.3. RVE length versus voxel length for to 2-point probability functions ORNL.
... 24

Figure 2.4. (a) Probability distribution for random microstructure (b) image of random
distribution (c) probability distribution for final realization and (d) image of final
realization (black – nickel, grey – YSZ, light grey – pores).. 25

Figure 2.5. Sum of complete set of 2-point functions for Ni-YSZ. 26

Figure 2.6. (a) Lineal path probability functions for Ni-YSZ and (b) image of lineal path
based reconstruction.. 27

Figure 2.7. Difference between energies for final 2-point and lineal path probability
functions for (a) the 2-point reconstruction and (b) the lineal path reconstruction. 28

Figure 2.8. Computational expense of the reconstruction against number of elements. . 29

Figure 3.1. Illustration of voxel cluster in YSZ phase... 33

Figure 3.2. Impact of periodicity on clustering in pores.. 34

Figure 3.3. Comparison of and for ORNL sample. 35 ()
2 ()iC r ()

2 ()iS r

Figure 3.4. Comparison of cluster function for (a) two-point and (b) lineal
reconstructions based on ORNL sample... 37

Figure 3.5. Percolation threshold and average cluster size as porosity decreases. 39

Figure 3.6. Cluster size across 12μm volume for different porosities. 39

ix

Figure 4.1. Examples of various RVEs.. 42

Figure 4.2. Schematic of representative volume element (RVE). 45

Figure 4.3. Unit cell RVE with volume fraction of ORNL sample. 50

Figure 4.4. Box plots of discretization error and RVE size for Young’s modulus at room
temperature (a-b), Young’s modulus at 1020ºC (c-d), and CTE at 1020ºC (e-f). 53

Figure 4.5. Mean of Young's modulus (a) and CTE (b) for variation in element size. ... 55

Figure 4.6. Normal distribution of modulus for varying sample sizes. 56

Figure 4.7. Variation of modulus for FE results compared to experimental values. 61

Figure 4.8. Variation of CTE (a) and modulus (b) versus temperature. 62

λFigure 4.9. Young’s modulus (a) and shear modulus (b) against for one phase while
with other phases are at 0.6 μm. ... 63

λFigure 4.10. CTE against for one phase while other phases are at 0.6 μm. 64

Figure 4.11. Change in length at percolation threshold of porosity for modulus. 67

Figure 4.12. Change in length at percolation threshold of porosity for CTE. 68

Figure 5.1. RVE in transport model... 71

Figure 5.2. Illustration of thermal conductivity model. ... 72

Figure 5.3. Box plots of discretization error and RVE size, respectively, for Young’s and
the uncorrected thermal conductivity (a-b)... 76

Figure 5.4. Histogram of FE thermal conductivity for different sample sizes and
elements sizes at N = 20. .. 77

Figure 5.5. Interfacial resistivity determined at 34% porosity... 78

Figure 5.6. FE results without interfacial resistance.. 78

Figure 5.7. Corrected thermal conductivity versus porosity for numerical analysis (a) and
ORNL results [27] (b). .. 80

Figure 5.8. Thermal conductivity for changing length scales in pore phase. 80

Figure 6.1. Stress-strain in the YSZ element. .. 90

 x

Figure 6.2. Plastic strain curves for nickel... 91

Figure 6.3. Variation in modulus (a) and yield stress (b). ... 94

Figure 6.4. Stress contour plots for (a) R=30; N =12 and (b) R=40; N =16. 95

Figure 6.5. Stress contour plots for (a) R=50; N =20 and (b) R=60; N =24. 96

Figure 6.6. Mark probability function for different RVE sizes at yield. 97

Figure 6.7. Stress-strain curves for different realizations sets of 40% Ni-YSZ. 98

Figure 6.8. Average stresses carried by nickel and YSZ for base model. 100

Figure 6.9. Mark function for all phases at point of yield for base model..................... 100

Figure 6.10. Mark functions for (a) plastic strain in Ni and (b) damage in YSZ. 101

Figure 6.11. xxσ for Ni (a) ,YSZ (b), plastic (c) and damage zones (d) at multiple strains.
... 101

Figure 6.12. Stress-strain curves for 22% and 40% porosity... 102

Figure 6.13. Stress-strain curves for changing characteristic lengths............................ 103

Figure 6.14. Distribution fits for damaged YSZ(a) and plastic nickel(b) at yielding.... 104

Figure 7.1. Residual stresses in the bi-layer. ... 113

Figure 7.2. Internal stresses in Ni-YSZ for stress free temperature increase. 114

Figure 7.3. Illustration of stages of creep (a) and log stress-strain curves (b). 116

Figure 7.4. Illustration of composite creep for a constant strain rate and temperature.. 117

Figure 7.5. Stress decomposition for cermet (a) and the derivative of stress change with
respect to strain (b) over time for a strain rate of 1 x 10-6 /s at 500°C............................ 122

Figure 7.6. Stress relaxation over time for an initial stress of 40MPa........................... 123

Figure 7.7. Stress relaxation for multiple pre-stresses at 700ºC. 124

Figure 7.8. Stress distributions for nickel (a) and YSZ (b) at zero time and for increasing
times for nickel (c) and YSZ (c) for an initial stress of 40MPa at 700°C....................... 125

Figure 7.9. Stress-strain curves for different strain rates at 500ºC. 126

 xi

Figure 7.10. Stress-strain curves for changing volume fraction YSZ for a strain rate 1 x
10-6 /s at 500°C. .. 127

Figure 7.11. Steady-state modulus as strain approaches infinity................................... 129

Figure 7.12. Stress relaxation for nickel length scales at 500°C. 130

Figure 7.13 The YSZ mark function at (a) zero time and (b) 5 hours. 131

 xii

LIST OF ABBREVIATIONS

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

CTE Coefficient of Thermal Expansion

FE Finite Element

LRO Long Range Order

OOF Object Oriented Finite

ORNL Oak Ridge National Laboratory

pSOFC Planar Solid Oxide Fuel Cells

PEN Positive-Electrolyte-Negative

RVE Representative Volume Element

SAM Simulated Annealing Method

SERVE Statistically Equivalent Representative Volume Element

SOFC Solid Oxide Fuel Cells

SRO Short Range Order

 xiii

TPB Triple Phase Boundary

VC-FEM Voronoi Cell-Finite Element Method

YSZ Ytrria Stabilized Zirconia

 xiv

SUMMARY

 Porous ceramic-metal composites, or cermets, such as nickel zirconia (Ni-YSZ),

are widely used as the anode material in solid oxide fuel cells (SOFC). These materials

need to enable electrochemical reactions and provide the mechanical support for the

layered cell structure. Thus, for the anode supported planar cells, the thermomechanical

behavior of the porous cermet directly affects the reliability of the cell. Porous cermets

can be viewed as three-phase composites with a random heterogeneous microstructure.

While random in nature, the effective properties and overall behavior of such composites

can still be linked to specific stochastic functions that describe the microstructure. The

main objective of this research was to develop the relationship between the

thermomechanical behavior of porous cermets and their random microstructure. The

research consists of three components. First, a stochastic reconstruction scheme was

developed for the three-phase composite. From this multiple realizations with identical

statistical descriptors were constructed for analysis. Secondly, a finite element model

was implemented to obtain the effective properties of interest including thermal

expansion coefficient, thermal conductivity, and elastic modulus. Lastly, nonlinear

material behaviors were investigated, such as damage, plasticity, and creep behavior. It

was shown that the computational model linked the statistical features of the

microstructure to its overall properties and behavior. Such a predictive computational

tool will enable the design of SOFCs with higher reliability and lower costs.

 xv

CHAPTER 1

INTRODUCTION

In a composite, a combination of different microstructures results in a hybrid

material that may behave differently from any of the constituent materials. In metal-

ceramic composites, called cermets, the strength of the ceramic plus the ductility of the

metal may result in a stronger and less brittle material than a pure ceramic. The addition

of a third phase, such as porosity, could increase a cermet’s functionality by allowing

fluid flow, while simultaneously reducing strength. This simple example demonstrates

how a composite’s bulk behavior becomes an increasingly complicated relationship of

desired functions, volume fractions, phase distributions, and phase properties. Research

that enhances the understanding of these relationships would benefit development of

composites and the technologies that use them.

 For instance, the study of porous cermets can be used in the development of

planar solid oxide fuel cells (pSOFCs). All fuel cells have an anode and cathode layer for

oxygen ion transfer across the electrolyte, and for fuel and air flow as shown in Figure

1.1. In pSOFCs the electrodes are solid components. In particular, the anode material

(Ni-YSZ), made of a distribution of pores, nickel, and ytrria stabilized zirconia (YSZ), is

a three-phase co-continuous cermet. Such three-phase materials are the focus of this

work. The anode’s proper function requires a continuous phase distribution, porosity for

fuel flow, and the correct combination of ceramic and metal for structural support and

electron transfer at high temperatures. Each phase in the anode must serve its own

1

functions without limiting the functionality of the other phases. For instance, as the

volume percent of nickel increases, electrical and thermal conductivity will increase, but

so will the thermal expansion of the microstructure. One way to study these increasingly

complex interactions is through computer modeling of the microstructure.

Figure 1.1. Schematic PEN layer of pSOFC.

Numerical models of co-continuous multi-phase composites must be robust

enough to investigate multiple loading scenarios while accounting for the stochastic

nature of the cermet. Each phase in the cermet is distributed such that each sample of the

microstructure will be physically different, but all the samples can still be described with

one set of stochastic functions. As a random heterogeneous microstructure, it is through

stochastic descriptors, called probability functions, that the microstructure can be

quantified. Plus, since it is not realistic to import multiple digital images of physical

samples of Ni-YSZ, a method must be used to recreate realizations of Ni-YSZ from a

unifying set of probability functions. A realization is defined in this context as a

computer-generated image of the microstructure based on statistical descriptors of the

material.

 2

The simulations must also be three-dimensional (3D) since the co-continuous

natures of the phases mean 2D models will not capture pore continuity and a

disconnected material could result. Accurate determination of stress or temperature fields

also requires a 3D analysis. Field behavior will follow the path of the microstructure

depending on the loading conditions. In a 2D model those paths are limited. For

instance, branching of stresses around pores will be limited to two paths, and a true

picture of internal stresses will be missing.

The purpose of this research is to use stochastic reconstructions of the

microstructure to model the material behavior of porous cermets, such as Ni-YSZ. The

research consists of microstructure generation followed with a detailed study of material

properties, damage plus plasticity, and creep. This is done through a combination of

stochastic reconstructions and numerical simulations of thermomechanical properties

with the purpose to enhance the overall understanding of porous cermets.

In the first step, a voxel-based stochastic reconstruction scheme was implemented

to generate multiple realizations of the three-phase composite. Then, a finite element

model was constructed for each of the microstructure realizations in order to conduct

thermomechanical analyses that will allow us to obtain the effective properties of interest

including thermal conductivity, elastic modulus, and thermal expansion. Stress-strain

curves will be provided for plastic and creep behavior. Throughout this thesis, questions

concerning the use of representative volume elements (RVEs) were addressed as the

length scales increased from small scale deformations to large scale failure.

The rest of this chapter addresses the basic theory behind fuel cells, and current

numerical methods to study them. The anode material is discussed in detail, and

 3

operating conditions and the available experimental data are also discussed. The final

sections will outline the research methodology and data results. Detailed theory and

literature used in development of the research methodology are found in the chapters

specific to each topic.

1.1. Fuel Cells

Society’s increasing energy demands balanced with the need for cost effective

and environmentally friendly fuels require that multiple avenues for power generation be

investigated. To that end, fuel cells are a relatively established technology that uses

electrochemical reactions to generate electric power with low environmental impact.

While pSOFCs have significant promise for high power density applications, reliability

and production difficulties limit their commercial viability [1, 2].

A planar SOFC consists of two porous layers (the anode and cathode), through

which flow the fuel and oxidant, respectively (recall Figure 1.1). These metal-ceramic

materials, or cermets, are bonded to a solid electrolyte layer to form a tri-layer structure

called the PEN (positive-electrolyte-negative), across which ion diffusion generates a

voltage. These electrochemical reactions take place within fuel cells at extremely high

temperatures (>800ºC), which subject the cell components to harsh operating

environments and severe thermomechanical stresses.

Recently, researchers have shifted focus to intermediate temperature pSOFCs,

which operate at temperatures between 500-800ºC by changing the electrolyte to a thin

film [1]. These intermediate temperature pSOFCs require less expensive interconnect

materials and manifolds, and also reduce the thermal effects on the PEN. However, the

use of thin film electrolytes shifts the functional support from the fully dense electrolyte

 4

to the electrodes. In anode-supported cells, the anode material must now provide the

necessary mechanical strength for the layered cell structure. Thus the thermomechanical

behavior of the porous cermet, Ni-YSZ, directly affects the reliability of the cell.

Operating conditions of solid oxide fuel cells consist of three stages: start-up,

steady-state, and shut-down. Initially, during start-up, the cell is heated from room

temperature to the final operating temperature; many manufacturers send preheated air

through the cathode during start up to reduce the chances of thermal shock. Steady-state

operation occurs after the cell reaches its operation temperature. The operating

temperature is influenced by several factors such as electrolyte thickness (thinner

electrolytes enable lower operating temperatures) and the direction of fuel flow. During

steady-state operation, stresses in the cell are influenced by the temperature gradients

generated from the electrochemical reactions.

1.1.1. Computer Modeling

 The study and optimization of SOFCs range from electrical output to structural

degradation, but optimization of one parameter will impact, sometimes catastrophically,

another aspect of the fuel cell. Numerical modeling then must take place at multiple

levels to accurately capture these disparate factors. Models range from those that include

the macroscopic behavior of the stack, the effective behaviors of laminated PEN layers

and seals, and finally that of a specific component. Figure 1.2 is a simple illustration of

these levels. Modeling at the component level would improve the usefulness of the

macroscopic analyses by providing realistic approximations for different configurations

and operating conditions.

 5

Figure 1.2. Multiple levels of SOFC modeling.

In the past, modeling has focused on determining the electrochemistry and

thermal gradients occurring in the stack for various geometries and flow patterns [3-12].

Occasionally, these same models were used to find the stress gradients in the PEN layers

[6]. Since a large fraction of cell failures are known to occur around seals and

interconnects, several studies have recently focused on the PEN layer and a limited

amount of the surrounding geometry [13-16]. Two of these studies have found the anode

to be the main source of failure. Zhang et al. determined that fracture failure is most

likely to occur in the anode layer of the PEN [13]. Nakajo et al. reached the same

conclusion [14]. Studies of the anode material often focus on the linkage of the triple

phase boundaries (TPBs), which is the point where all three phases conduct and is the

active site for electrode reactions [17, 18]. Recently, Kim et al. has started using multi-

level modeling to link the composite anode to the PEN level [18].

 6

1.1.2. Anode (Ni-YSZ)

Ni-YSZ is one of the most commonly used anode materials in SOFCs [19], where

each phase serves a specific purpose and the triple point boundaries are a site for

electrochemical reactions. YSZ is added to help match the coefficient of thermal

expansion (CTE) to the YSZ electrolyte and to prevent sintering of nickel. Material

porosity varies from 20-40% for efficient mass transport. The nickel allows electron

transfer. In anode-supported configurations, the anode is significantly thicker than the

electrolyte layer and the two layers are often created by co-firing, which leaves residual

stresses in the layers due to thermal mismatch of YSZ and Ni-YSZ.

This work examines the anode material manufactured by Oak Ridge National

Laboratory (ORNL), which starts as a slurry of NiO and ZrO2 stabilized with 8 mol%

Y2O3 (Figure 1.3).

Figure 1.3. Image of 22 vol.% porous Ni-YSZ.

 7

There is abundant experimental data for the electrical, thermophysical and

mechanical properties of Ni-YSZ, but the data is tied closely to the specific composition

and manufacturing of the given pSOFC. The electrical conductivity is often studied since

it influences the performance of the fuel cell [20-23]. Another factor of interest is the

reduction of oxygen in the anode precursor and the potential of re-oxidation in the anode

[24, 25]. Thermophysical properties are significant as temperature-sensitive nickel

interacts with temperature-resistant YSZ. The CTE and thermal conductivity both exhibit

spikes in values at the Curie point of nickel [26, 27].

Elastic and fracture properties of both YSZ and Ni-YSZ have been studied in

relation to temperature and porosity [25, 28-33]. Radovic et al. determined that the

modulus of Ni-YSZ could be related to porosity using the composite sphere model [31].

Fracture toughness has been found to decrease with temperature and porosity, although

the fracture toughness of Ni-YSZ was higher than YSZ [33]. Of significant interest is the

long term temperature behavior of Ni-YSZ. Porosity and modulus were found to be

independent of thermal aging although biaxial strength values decreased [34]. It was also

found that the residual stresses in the electrolyte layer decreased with thermal aging,

suggesting stress relaxation in the anode layer [34]. In one study by Gutierrez-Mora et

al., creep in a bonded anode and electrolyte layer was diffusion-controlled at high

temperatures [35]. Since the experimental data described above is specific to the

manufacturing and composition of Ni-YSZ, a numerical study would provide insight into

universal factors that dictate behavior.

 8

1.2. Research methodology

The study of porous Ni-YSZ using reconstructions is a three-step process, where

each step overlaps and influences the next. Initially a microstructure is created using a

stochastic reconstruction, and then a FE analysis is implemented. This first round of FE

was used to test model validity and to determine possible alterations to the

microstructure. The objective is to link the probability functions to specific changes in

the FE analysis. Detailed theory and literature for each step is provided in the relevant

chapter.

1.2.1. Stochastic reconstruction

A composite can be reconstructed with three sets of information: the amount of

each phase, the shape and size of particles, and how those particles interact. A 1D

example, illustrated in Figure 1.1, starts with volume fraction, then length of particles,

and finally how the particles are interrelated. In stochastic materials, amount, shape and

interaction can be described through probabilities. The most basic descriptor is the

volume fraction, iϕ , which is the ratio of the volume of phase i to the total volume of the

material, and provides the amount of each phase. Volume fraction is also the probability

that a given point will lie in the phase i . The information of each volume fraction could

be used to recreate a simple realization of the microstructure. By adding more

information to the probabilistic description, a progressively more detailed reconstruction

is formed. By adding location, orientation, multiple sampling points, and other

conditions, information about length scales of particles and their interactions is built into

the probability function.

 9

1 2

volume fractions

particle size

order

1 2

volume fractions

particle size

order

Figure 1.4. 1D visualization of composite construction.

The digital reconstruction method in this work uses probability functions of an

ORNL sample to place voxels (3-D cubes) to create a realization [36]. The experimental

results used to determine the probability functions of the ORNL sample showed an

isotropic material, without any short range order (SRO) and a random long range order

(LRO) [37]. SRO relates to the shape and size of particles in a composite and the lack of

any definable order means the particles overlap. LRO tells how particles interact at a

greater distance and for random materials is a constant. Nickel has a slightly larger

particle size, or characteristic length, but other than the difference in volume fractions,

22% porosity and 43% YSZ, the pore phase and YSZ phase were identical. All phases

percolate. Once the general behavior of the microstructure is understood, these

probability functions can be used to create new microstructures for analysis.

1.2.2. Finite element models

The FE models can be grouped into three categories: structural, transport, and

nonlinear behavior. Nonlinear behavior involves the incorporation of damage, plasticity

and creep. Table 1.1 lists each area studied and the objective of the analysis.

 10

Table 1.1. Numerical analyses and objectives.

Category Field Behavior Objective

Stochastic percolation
• cluster size
• relate volume fraction to

percolation
FE Analysis

• temperature dependence

Structural elastic constants • porosity dependence
• statistical variation of

properties
Transport thermal conductivity • impact interfacial resistance

• damage size and location in
relation to microstructure Damage and

plasticity
stress-strain curves

yield stress
• importance nickel length scale
• structural strength of Ni-YSZ

versus strain rate strain-rate curves Creep stress relaxation • change in internal stresses
• impact YSZ percolation

A robust reconstruction procedure allows creation of any number of realizations

of the original ORNL sample and any amount of variations on the initial probability

functions. Therefore each analysis will follow the same general principles. First the

validity of the analysis will be assessed, followed by an extensive examination of a base

model. The base model will either be the original ORNL microstructure or one with the

same ratio of nickel to YSZ, but varying porosity. Once the base model is examined, the

original probability functions are modified. New realizations are now examined to see

how bulk behavior changes with alterations in the probability functions.

The validity of the FE models was examined by primarily looking at the

discretization error and representative volume element (RVE) size. Discretization refers

to the physical size of the voxel used for the realization, while representative volume

element size is the total size of the realization. A discretization parameter and RVE size

parameter are introduced to determine convergence of the FE models. To test this a

 11

comparison to experimental data is used when available. An examination of field

behavior with the microstructure might also be used to determine the correct voxel and

volume size.

All finite element modeling is performed using the commercial software Abaqus

6.8.1. Post-processing of the FE models is performed using the scripting language

Python. The models are constructed of eight node block elements with perfect bonding.

Each voxel of the reconstruction is equivalent to one FE element, which is set to either

the pore, YSZ, or nickel phase.

1.3. Summary

Porous cermets are of vital importance in the development of pSOFCs, and

studies have found the anode material to be the material most likely to fail in anode-

supported structures. Since the fuel cell undergoes high temperatures and stress gradients

from thermal mismatch and construction, many different factors may play into this

failure. It can be useful in pSOFC research to determine how changes in bulk behavior

can be linked to changes within the composite. For example, when does nickel creep

lead to a lack of structural support for the PEN, or which has more impact on the

modulus: porosity or temperature?

The nature of the microstructure, three-phase and co-continuous, requires a three-

dimensional reconstruction process. Rather than inputting multiple images of different

anodes, a reconstruction process that can create multiple realizations for varying

probability descriptors would provide insight into the microstructure. Voxel

reconstruction is a computationally inexpensive and flexible method to do this, especially

 12

considering it is also a 3D reconstruction. These realizations can then be used in multiple

ways to study the porous cermet.

The following chapter will introduce the stochastic reconstruction in detail, as

well as different probability functions that can be used for reconstruction. Chapter Three

will introduce the cluster function, which can be used to determine percolation in the

microstructure. The percolation becomes a parameter that can be directly correlated to

various material properties. Chapter Four begins the FE analysis with an extensive

examination of structural properties. Significant time is spent on determining the

accuracy of the model, and then the impact of porosity and internal length scales are

covered. In Chapter Five, the transport property, thermal conductivity, is examined, and

a methodology to account for interfacial resistance in the FE model is covered. Chapter

Six and Chapter Seven study nonlinear behavior in the microstructure. In Chapter Six,

methods are introduced to study the occurrence of damage and plasticity in the structure.

Chapter Seven focuses on stress relaxation due to creep in the nickel phase. General

conclusions about porous cermets and the use of stochastic reconstructions are covered in

the final chapter. Briefly covered will the possible impact for the study of pSOFCs.

 13

CHAPTER 2

STOCHASTIC RECONSTRUCTION

In this work, the 3-phase composite, Ni-YSZ is numerically generated using a

digitized stochastic reconstruction methodology. A three-dimensional realization is

generated from cubic building blocks, termed voxels, distributed to match probabilistic

functions describing each phase. The multiple realizations allow determination of the

statistical variation of key material properties, such as modulus and the coefficient of

thermal expansion (CTE).

Reconstruction of heterogeneous structures takes place down several avenues

depending on the type of microstructure to be studied. Fiber and particulate composites

can be reconstructed through tessellation procedures and then analyzed using self-

consistent methods. Pyrz studied fiber composites using Dirichelet tessellations for

simulated hard-core models and microscopy images, respectively, where stresses were

calculated using reflection models [38]. Further research by Bochenek and Pyrz studied

unidirectional fiber-reinforced composites and particulate composites using Voronoi

tessellations, where each tessellation is treated as an element with a particle at its center.

Ghosh et al. directly incorporated RVEs generated from Voronoi tessellations into a

multi-scale finite element analysis [39-44]. The microstructural model is termed VC-

FEM and models particulates in a matrix using Voronoi tessellations [39]. The same

method was used for a multi-scale damage analysis in porous materials [41].

Additionally, three-dimensional models were created through stereological methods for

particle reinforced metal matrix composites [40]. Next, the concept of statistically

 14

equivalent representative volume elements (SERVE) was used with VC-FEM to study

fiber and particulate composites that varied randomly within the microstructure [41-44].

Other methods, such as the “shaking” method, use extremely detailed images of

particulate composites to exactly recreate embedded impurities or porosity [45-51]. The

process of smoothing actual particulates in metals was incorporated with probability

distributions to recreate the materials by “shaking” the particulates [49-51]. Other

methods perform finite element analyses on the actual microstructure input via the open

source software OOF. The OOF model can be used for different studies, such as

Cannillo’s and Carter’s stochastic damage analysis on a polycrystalline microstructure

[52]. Each of the methods has different advantages and disadvantages. Tessellation

procedures are best used for fiber or particle composites, but not necessarily well suited

for complex three-phase composites. While OOF exactly recreates a microstructure it

does not have the capability to generate new microstructures with the same stochastic

descriptors.

 A modification of the simulated annealing method (SAM) is used here for its

flexibility and efficiency in creating multiple realizations for numerical analysis. Rintoul

and Torquato used the simulated annealing method to reconstruct a distribution of

spheres using the radial distribution function [53]. Yeong and Torquato then applied the

simulated annealing method to the recreation of digitized media [54]. Calculation time

was minimized by limiting optimization of the two-point correlation function and the

lineal path function in orthogonal directions and then updating the functions only along

rows and columns with one to one pixel exchanges. However, Manwart and Hilfer noted

that the time-saving device of using only orthogonal directions will introduce anisotropy

 15

for microstructures displaying significant short range order [55]. The impact of short

range order was reduced by adding additional sampling directions in the SAM procedure

in work by Cule and Torquato [56]. Microstructural information from a 2D slice can also

be used to construct a three-dimensional image as shown in Part II of Yeong’s and

Torquato’s work on reconstructing random media [57]. Rozman and Utz used several

techniques to improve the efficiency of the Monte Carlo reconstruction, including the

Great Deluge Algorithm plus an additional criterion for “uphill” moves, limiting pixel

changes to the interface, and calculating perturbations of the probability functions [58].

Johnson and Qu used the SAM method in addition to Rozman and Utz’s modifications to

recreate three phase 3D microstructures, the primary basis for the following work [36].

 A 3D reconstruction process is required for study of Ni-YSZ due to the continuity

of each of the phases, making it possible that a 2D reconstruction will not capture the

structural strength of the microstructure. Since the Ni-YSZ is isotropic, 2D probability

functions can be easily expanded to 3 phases and the SAM method provides an efficient

methodology to recreate this 3D microstructure. The use of cubes allows many different

realizations to be created, while keeping the model small enough to be studied

numerically. Another advantage of SAM is the ease with which microstructural changes

can be implemented in the reconstruction.

 The chapter begins with an explanation of the theory behind random media and

the introduction of the probability functions used for the reconstruction similar to that

published by Johnson and Qu [36]. The reconstruction of the microstructure is then

discussed in detail followed by an analysis of the accuracy of the reconstruction.

Computational details such as expense and methodology will be described throughout.

 16

2.1. Theory of random media

2.1.1. Indicator function

 For any media of volume the microstructure can be fully characterized by an

indicator function

iV

() 1, if
()

0, otherwise
i ix V

I x
∈⎧

= ⎨
⎩

�
� , (2.1)

where i is the phase number, and x� is the vector location within the volume. The

microstructure is assumed to be static and therefore is not a function of time.

 The indicator function describes every possible point with a material, such that for

any number, , of phases the following equality holds, k

 . (2.2) ()

1
() 1

k
i

i
I x

=

=∑ �

2.1.2. Probability functions

 The indicator function (2.2) allows any random media to be described by

determining the probability of a desired event or occurrence. For example, an event of

interest could be when multiple points lie within the same phase. Such an event is an

example of the -point probability function as illustrated in (2.3). n

()() () () ()
1 2 1 2(, , ,) () 1, () 1, , () 1i i i

n n nS x x x P x x xi= Ι = Ι = Ι =� � � � � �… … , (2.3)

where indicates the probability that a given location lies within phase i . As the order

 increases more microstructural details are captured.

P

n

 If the probability distributions of a material are invariant with respect to location,

the material is statistically homogenous and the material is ergodic. Plus, if the random

media does not depend on the orientation of the vector positions, but only on the

 17

magnitude of the distance between the points, it can be considered isotropic. In this case,

the n-point functions now become functions of the distance between the points such that

j ir x x= −� � .

 Thus for homogenous media the 1-point function will reduce to the volume

fraction, , of the material, iϕ

 ()() ()
1 ()i i

j iS P x ϕ= Ι =� , (2.4)

and the 2-point functions become functions of distance , r

() ()()() () () ()
2 2 1 2 1 2() (,) 1, 1i i i iS r S x x P x x= = Ι = Ι� � � � = . (2.5)

Bounds exist for the 2-point function in homogenous media as the radius reduces

to zero or extends to infinity. These are

()
20

lim ()i
ir

S r ϕ
→

= and (2.6)

()2()
2lim ()i

ir
S r ϕ

→∞
= . (2.7)

 In equation (2.6), reduces to as decreases and the two points

converge to each other. In equation (2.7), as the distances between the points increase,

they are no longer spatially correlated and the 2-point approach becomes equivalent to

calculating the at two separate points as shown in

2 ()iS r 1 ()iS r r

1 ()iS r Figure 2.1.

 18

Radius (μm)

0 5 10 15 20 25

S
2(

 r
)

0.0

0.1

0.2

0.3

0.4

0.5

volume fraction of phase i (ϕi)

(ϕi)
2distance, r, approaches inf

Figure 2.1. Example 2-point probability function.

2.1.3. Compatibility

The behavior of the 2-point probability function as approaches zero provides a

hint to the relationship between the probability functions for multiple phases. For a two-

phase material, the description of one phase will guarantee its complement to the second

phase, and Torquato and Stell showed that any n-point probability function can be written

as a function of the other phases [22]. Thus as the number of phases increases the

relationship must also be quantified between the phases, i.e. for three phases there are

actually nine phases, namely phase 1, phase 2, phase 3, and permutations of any set of

two phases. Therefore a complete set of probability functions fulfills the following

equality for any distance, , in

r

(2.8). r

()

1 1
() 1

k k
ij

i j
S r

= =

=∑∑ (2.8)

 19

However, if the reconstruction used all available probability functions to recreate

a microstructure, it would be over-constrained, and only an independent set of three

probability functions are needed. For a three-phase microstructure, this condition can be

satisfied by using , , and ()1S ()2S ()3S (see proof in Appendix A based on [59]).

2.1.4. Alternate probability functions

The reconstruction does not have to be based on the use of n-point probability

functions. Different characteristics can be captured by establishing different criteria. An

example is the lineal path function. This function is equivalent to the two-point

probability function except that now the path connecting the two points must lie in the

same phase. Another example of function is the cluster function, which requires two

points be connected within the same particle. These functions give some higher order

information about connectivity of the phases, without the computational expense of n-

point probability functions of . It should be kept in mind that the function

definitions are arbitrary, and therefore cannot be treated in the same manner as n-point

functions. These functions will be discussed further in Chapter 3.

2n >

2.2. Reconstruction methodology

The realizations were generated using the digitized simulated method introduced

by Yeong and Torquato with modifications from Rozman and Utz [57, 58]. The

algorithms were implemented in the C++ language and the GNU GCC compiler [60]. A

complete set of the code can be found in Appendix B. The reconstruction procedure

modifies the indicator function in equation (2.2) until the sample matches the desired

probability functions. Then the indicator function is used to create a voxel representation

 20

of the material for further numerical use. Each voxel represents a different phase. The

algorithm is described in Figure 2.2.

1. Set sample size, voxel size, volume fractions, and reference

probability functions (()i
reff).

2. Used random number generation to seed indicator function.
()i

newf3. Calculate probability functions () of current realizations in all

three orthogonal directions.

4. Exchange random voxels located on interface. (A two-set paired

voxel exchange is used to maintain volume fraction.)

5. Update probability functions using perturbation in each orthogonal

direction.

E) 6. Calculate energy (

() ()()2() ()i j i j
ref

i j
newE f r f r⎡ ⎤= −⎢ ⎥⎣ ⎦∑∑

7. Accept or reject change. Allow uphill movement through threshold

value () ∇

()
()

if 11

if 10
new old

new old

E E
P

E E
< + ∇⎧

= ⎨ > + ∇⎩

8. Repeat until an accepted criterion is reached.

Figure 2.2. Reconstruction algorithm.

The efficiency of the process was increased by using voxel selection at the

interface, by sampling in orthogonal directions, using the great deluge algorithm, and

using perturbations to calculate the correlation functions [36]. Recall that Manwart and

Hilfer showed that sampling in orthogonal directions is acceptable for functions without

short range order [55]. Boundaries are periodic.

 21

Part of the flexibility of the DIB reconstruction is the ability to define an energy

criterion based on desired probability functions. Any desired probability function can be

used and these individual functions can be weighted as desired. This is because the

energy function minimizes the least square difference between a given set of probability

functions and the functions existing at the current time step of the reconstruction.

2.3. Ni-YSZ reconstruction

For this work, the three phases are described using the equation for Debye random

media [61, 62]. For Debye media, the 2-point probability function does not exhibit any

short-range order and is defined by one characteristic length, λ , and the volume fraction

of the reconstructed phase, iϕ . The analytical expression for Debye media is shown in

(2.8).

() () 2
2 () (1) ()i r

i i iS r e λϕ ϕ −= − + ϕ (2.9)

These functions were found to match experimental data obtained from analysis of

the anode material made at Oak Ridge National Laboratory (ORNL) [37]. Micrographs

of the anode were obtained from a SEM (Joel 1530) with a pixel size of 0.05μm x

0.05μm. The characteristics of the ORNL sample are listed in Table 2.1.

Table 2.1. Parameters of ORNL Ni-YSZ.

 iϕ λ (μm) i Phase

1 Nickel .35 .60

2 YSZ .43 .40

3 Pores .22 .40

 22

Since nickel has the largest characteristic length, it is used to determine the length

and size of the total reconstructed sample. Two parameters will be used for the

reconstruction. The first parameter, , will relate to the physical size of the sample and

is a function of the representative volume length, , and

N

λRVEL such that

RVELN
λ

= . (2.10)

The next parameter, , relates the size of the realization to the voxel length, . voxelLR

RVE

voxel

LR
L

= . (2.11)

Accurate reconstruction of Ni-YSZ is based on correctly balancing these

parameters, where relates to physical size and N R describes discretization as illustrated

in Figure 2.3. As the voxel length decreases, with R increasing, more short range

behavior is captured, and as the RVE length and increase, more long range behavior is

captured.

N

In future chapters, several sets of realizations are generated for varying sizes and

compositions. However, in the rest of this chapter the ORNL sample, as described in

Table 2.1, is used.

 23

r (μm)

0 1 2 3 4 5 6 7 8 9 10

S
2(

r)

0.0

0.1

0.2

0.3

0.4

0.5

LRVE for N = 10

λ = 0.6 for nickel

LRVE = Nλ

Lvoxel for R = 10

Lvoxel for R = 50

S2
Ni

Figure 2.3. RVE length versus voxel length for to 2-point probability functions ORNL.

2.3.1. Two-point probability

Using equation (2.9) and the parameters listed in Table 2.1, the microstructure is

reconstructed from a completely random distribution to a three-phase representation of

Ni-YSZ. The reconstruction was done for multiple voxel and volume sizes, but only an

 of 50 and of 20 is illustrated in N Figure 2.4. R

 24

Radius (μm)

0 5 10 15 20 25

S
2(

 r
)

0.0

0.1

0.2

0.3

0.4

0.5

Nickel
YSZ
Pore

(a) (b)

Radius (μm)

0 5 10 15 20 25

S
2(

 r
)

0.0

0.1

0.2

0.3

0.4

0.5

Nickel
YSZ
Pore

(c) (d)
Figure 2.4. (a) Probability distribution for random microstructure (b) image of random

distribution (c) probability distribution for final realization and (d) image of final
realization (black – nickel, grey – YSZ, light grey – pores).

To confirm that the reconstruction has a realistic indicator function and phase

relationships, all nine two-point probability functions were checked to determine whether

equation (2.8) was satisfied. Figure 2.5 shows how the sum of functions will equal unity

for every distance between the two points. Also, as the mixed phase probability functions

extend toward infinity, they become equal to i jϕ ϕ . This condition guarantees that each

phase has random long range order (LRO). Both of these conditions ensure that the

artificially generated indicator function accurately describes the composite.

 25

r (μm)

0 2 4 6 8 10

S
2ij (r)

0.0

0.2

0.4

0.6

0.8

1.0
S2

31

S2
13

S2
23

S2
32

S2
12

S2
21

S2
33

S2
22

S2
11

Figure 2.5. Sum of complete set of 2-point functions for Ni-YSZ.

2.3.2. Lineal path probability

Experimental data also provided lineal path functions for the microstructure [37].

The lineal path functions used in the reconstruction were best fit polynomial

approximations from the experimental data. Examination of Figure 2.6 shows that the

lineal path function for the nickel phase takes slightly longer to reach zero, corresponding

with its larger characteristic length over the other two phases.

 26

Radius (μm)

0 1 2 3 4 5

L(
r)

0.0

0.1

0.2

0.3

0.4

0.5

Nickel
YSZ
Pores

(a) (b)
Figure 2.6. (a) Lineal path probability functions for Ni-YSZ and (b) image of lineal path

based reconstruction.

2.4. Accuracy and computational expense

Two reconstructions have been generated, one based on the 2-point probability

function and the other based on the lineal path function. Other than the material analysis

in future chapters, two ways currently exist to differentiate between the reconstructions.

These are the final energy of the realization (refer to Figure 2.2) and the computational

expense of creating the realization.

During the reconstruction, the minimum acceptable energy, or least square

difference, for the 2-point reconstruction was set to 1x10-7 for a given radius around the

sampling point. For the lineal path analysis, the reconstruction would reach a global

minimum well above this value, suggesting limitations in its ability to completely

describe a microstructure. In Figure 2.7, the least square difference for the entire sample

is totaled and compared between the two reconstructions. For the two-point

reconstruction, the lineal path behavior is not captured. However, the lineal path

reconstruction will accurately capture some minimum of the two-point probability

 27

function, which is shown by the difference in scales between the figures. Primarily, the

long range behavior of the microstructure is replicated using the lineal path function,

while some of the short range behavior is lost.

N (LRVE / Lvoxel)

30 40 50 60

E
 (1

x1
0-3

)

0

20

40

60

80

100

120
lineal
2-pt

N (LRVE/Lvoxel)

30 40 50 60
E

 (1
x1

0-3
)

0

2

4

6

8

10

12

lineal
2-pt

(a) (b)
Figure 2.7. Difference between energies for final 2-point and lineal path probability

functions for (a) the 2-point reconstruction and (b) the lineal path reconstruction.

The slight gain in microstructural detail with the lineal path function must also be

balanced with the added computational expense. A primary advantage of the

reconstruction methodology is the efficiency with which multiple realizations can be

created and their microstructure modified. Figure 2.8 shows the exponential increase in

reconstruction with volume size. The large increase is due to the nature of a 3-D

reconstruction.

 28

Number of Elements (1x103)

0 50 100 150 200 250

C
P

U
 C

lo
ck

tim
e

(1
 x

 1
03)

0

1

2

3

4

5

6

2-point
lineal

Figure 2.8. Computational expense of the reconstruction against number of elements.

2.5. Summary

The methodology for a voxel reconstruction of Ni-YSZ has been detailed and

demonstrated for a realistic three-phase microstructure. The reconstructions were found

to be compatible and a realistic representation of the microstructure. While the lineal

path reconstruction captured more microstructural details than the 2-point

reconstructions, the 2-point one was found to be much more efficient. The next chapter

will further focus on connectivity by investigating percolation in the reconstructions. The

final chapters will study the material behavior of the microstructure via finite element

analysis.

 29

CHAPTER 3

PERCOLATION

 In complex composites, such as Ni-YSZ, the continuity of the phases will control

fuel/air flow through pores, electron transfer in nickel, and the overall structural strength

due to YSZ. Percolation of a system is a measure of connectivity, or clustering, but

cannot be measured by lower order probability functions, such as the two-point function.

Most significantly, the two-point probability function provides no insight into the

percolation threshold. The percolation threshold, which Torquato defined as “the point

where a cluster [connected group of elements] first spans the system”, is a parameter

which will tell us if flow can occur through a phase [63].

 Torquato et al. used the two-point cluster function specifically to study

percolating clusters in a composite system, and proved that the cluster function will

become long ranged at the percolation threshold in a system [64]. Lee and Torquato

numerically confirmed the long-range behavior at the percolation threshold for penetrable

concentric-shell models [65]. Additionally, Lee and Torquato used series expansions of

the mean cluster size to determine the percolation threshold, by calculating the point

when the cluster size became infinite [66]. Percolation, as an infinite spanning cluster, is

strongly influenced by both boundary conditions and window size. Sang Bub Lee

reduced this impact using free boundary conditions for an optimized cell window, while

Yi and Sastry treated percolation as a probabilistic property that approached unity as the

window size increased [67, 68].

 30

 Percolation and its threshold for a given system is also scalable for given material

properties, such as structural properties and transport properties like thermal conductivity.

For instance, in a two-phase porous medium, there will be a point of percolation where

the material will no longer be able to support loads, etc. In continuum systems, Feng et

al. determined power relationship exponents for elasticity, conductivity, and permeability

[69].

 In this chapter, the cluster function is studied in relation to the 3-phase

microstructure generated in Chapter 2. It is used to contrast the lineal path function

reconstruction with the original Debye reconstruction. Finally, the impact of

discretization is discussed and the percolation threshold is determined for the pore phase.

3.1. Theory

3.1.1. Probability functions

 Two-point probability functions provide little information about how particles are

connected within a microstructure. Higher order functions, such as the 3-point

probability function, can provide this information, but are computationally expensive to

use. Another approach is to add constraints on the 2-point function that will provide

connectivity information such as the lineal path function defined in Chapter Two.

Another function along those lines is the cluster function, which is defined heuristically

in equation (3.1)

 (3.1) 1 2()
2

probability that and can be connected
()

by any line that lies entirely in phase
i x x

C r
i

≡

 31

 While the development of the lineal path and cluster functions is not as rigorous

as that seen for the n -point functions, bounds also exist. As r approaches zero eqn. (3.1)

will also equal the volume fraction, representing a cluster of one particle.

3.1.2. Continuum percolation

 In a multi-phase microstructure, the volume fraction, iϕ , of a given phase i is

equivalent to the probability that a given point will lie in a cluster of any size. The

percolation threshold, icϕ , is the minimum volume fraction needed for a volume spanning

cluster to first appear. This implies the following relationship,

 if 0 then phase is continuous in the volumeic iϕ > . (3.2)

 Determination of icϕ is dependent on volume fraction, microstructural features,

volume size, and so on. The final value is non-universal and is relevant only to a given

specific microstructure.

 Torquato et al. demonstrated that the cluster function will become long ranged at

the percolation threshold such that [64],

()
2lim ()i

icr
C r ϕ

→∞
= , (3.3)

thus providing a way to determine when continuity occurs in any given phase for any set

microstructure. For this work, the distance, , where the cluster function begins to

approach the percolation threshold is designated by

r

()i
CL . It serves as a measure of

clustering independent of percolation. The mean cluster size, iZ , will be infinite in a

continuum system that satisfies condition (3.2) and can be calculated from

 32

()
2 ()ii

i
i

Z C r drη
ϕ

= ∫ , (3.4)

where η is the particle density.

3.2. Methodology

 In the voxel reconstruction used here, each voxel is treated as a separate particle

and is considered to be connected if any two particles share a full side. This provides the

most conservative estimate of percolation possible. A cluster map is created that records

each individual cluster for a phase and the location of each particle within it. For

instance, in Figure 3.1, a total of eight clusters exist in the 2D representation. Each

cluster is denoted with a white line. Then while sampling through the entire system, a

two step criterion is used to determine the probability. First are any two points of the

same phase (i.e. calculation of), and second are the two points in the same cluster. ()
2

iS

Figure 3.1. Illustration of voxel cluster in YSZ phase.

 33

 While orthogonal sampling is used for , the cluster functions are not restricted

to orthogonal planes. This is unlike the current methodology in calculation of the lineal

path function, that samples only in three directions, and which would have binning

complications if multiple directions or a purely random sampling was used. The curves

are averaged across five realizations.

()
2

iS

 The percolation threshold is found when the change in percolation is less than

0.1% across the length. Boundary effects are neglected, and the periodicity of the

microstructure ignored. To test the periodicity assumption, plot Figure 3.2 shows the

cluster function for different measures of periodicity, where states the number of

voxels that are overlapped into the measurement. The x-axis distance between points is

kept in voxels. While the curve changes, the overall change is small. Also, since

periodicity is included, volume fraction is now capable of fluctuation. Therefore, to

provide a more conservative estimate and to maintain volume fraction, periodicity is

neglected.

P

r (voxels)

0 5 10 15 20 25 30

C
2P

or
e (

r)

0.00

0.05

0.10

0.15

0.20

0.25
P = 0
P = 1
P = 2
P = 5

Figure 3.2. Impact of periodicity on clustering in pores.

 34

3.3. Results

3.3.1. ORNL sample

 In Figure 3.3, the cluster function, calculated without periodicity, is plotted for the

ORNL sample reconstructed in Chapter 2. It can be seen that clustering follows behavior

similar to that of the two-point functions. The lower long range order (LRO) is to be

expected since all particles do not lie in one continuous cluster. The close match in short

range order (SRO) happens, because for smaller distances, the points are more likely to

connect. There is minimum difference in the nickel 2-point probability and cluster

function, probably owing to the longer λ in this phase.

r (μm)

0 1 2 3 4 5 6 7 8

C
2(

r)

0.0

0.1

0.2

0.3

0.4

0.5
S2

Ni

C2
Ni

S2
YSZ

C2
YSZ

S2
Pore

C2
Pore

Figure 3.3. Comparison of and for ORNL sample. ()
2 ()iC r ()

2 ()iS r

 To test the convergence behavior of the cluster function, the pore phase for

increasing sizes, which measure discretization as a ratio of to , is plotted in RVEL voxelLR

 35

Figure 3.4. These functions are shown for both the two-point reconstruction and the

lineal path reconstructions in Chapter Two. Also plotted for reference is the long range

order (LRO) of . However, the lineal path function has a less consistent

convergence behavior.

2
poreS

()i
CL iZ The lineal path reconstruction has different and sizes for nickel and YSZ

as listed in Table 3.1 except for the pore phase. Since the average cluster size would be

infinite for a continuous media, in this work it is calculated across three-fourths of the

sample width, both to eliminate boundary effects and to capture more SRO behavior.

Table 3.1. Percolation values of ORNL sample for R = 50 and N = 20.

()i
cL

 ZModel Phase i icϕ i
(μm)

Ni 2.2 0.125 4.77

YSZ 2.6 0.177 6.57 2-Point

Pore 2.9 0.032 1.57

Ni 3.1 0.125 4.07

YSZ 1.9 0.180 5.56 Lineal

Pore 2.9 0.034 1.57

 36

r (μm)

0 2 4 6 8 10

C
2P

or
e (

r)

0.00

0.05

0.10

0.15

0.20

0.25
R = 10
R = 20
R = 30
R = 40
R = 50
R = 60
(ϕpore)

2

(a)

r (μm)

0 2 4 6 8 10

C
2P

or
e (

r)

0.00

0.05

0.10

0.15

0.20

0.25
R = 10
R = 20
R = 30
R = 40
R = 50
R = 60
(ϕpore)

2

(b)
Figure 3.4. Comparison of cluster function for (a) two-point and (b) lineal

reconstructions based on ORNL sample.

37

3.3.2. Percolation threshold

 Based on (3.2) it is reasonable to assume that when the cluster function reaches

zero, flow will no longer occur within the phase for a given volume. As porosity

decreases, the percolation threshold (eqn. (3.3)) and cluster size (eqn. (3.4)) also

decreases. These values are plotted against varying porosities in Figure 3.5. For the

realizations with 14% porosity, the phase no longer percolates and the average cluster

size across the volume significantly drops. In ()i
CLFigure 3.6, the length at percolation, ,

is plotted. The percolation threshold works well with a linear fit, and in the analysis,

average cluster size matches a power curve. The fitting is done using the commercial

software SigmaPlot and information on the equations can be found in Appendix C [70].

From the linear equation the percolation threshold equals zero at 16%. Both percolation

threshold and average cluster size are closely correlated to porosity. The length at which

percolation occurs, Figure 3.6, has higher variability, but is also independent of porosity,

at least until the minimum threshold is approached.

38

ϕic
pore

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

ϕ po
re

0.0

0.1

0.2

0.3

0.4

0.5

ΖPore (μm2)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

ϕ po
re

0.0

0.1

0.2

0.3

0.4

0.5

(a) (b)

Figure 3.5. Percolation threshold (a) and average cluster size (b) as porosity decreases.

LC (μm)

0 1 2 3 4 5 6

ϕ po
re

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.6. Cluster size across 12μm volume for different porosities.

 39

3.4. Discussion

 The cluster function introduced in (3.1) provided information about connectivity

of the system through the percolation threshold and other parameters. It also

differentiated between the continuity in different reconstructions. Figure 3.4 shows that

an R greater than forty captures the long range behavior of the cluster function. At this

point, the cluster function differentiates between the lineal path and two-point

reconstructions in the different cluster sizes and lengths at percolation (refer to Table

3.1). The curves for porosity, however, are not significantly different. This probably

relates to the porosity having a volume fraction of 22%, which means the smaller volume

fraction dominates more than phase distribution. Figure 3.5 and Figure 3.6 prove that

continuity will occur in the porous phase until 16% porosity and that pore
CL is the only

parameter independent of the volume fraction of porosity.

3.5. Summary

 The percolation threshold and length have been introduced, as has a methodology

for measuring them. These parameters, though specific to the reconstruction, can now be

used as another measure of microstructure in future chapters. In the next chapter,

percolation threshold and length will be shown to correlate with changes in modulus.

 40

CHAPTER 4

EFFECTIVE STRUCTURAL PROPERTIES

 Theories behind random heterogeneous materials use probabilities to characterize

the distribution of phases within a microstructure, and as the phase distribution is

stochastic, so will be the overall material response of the microstructure. Determination

of effective properties becomes a function of the representative volume element (RVE),

the length scales of heterogeneities, constituent properties, and the specific field behavior

being studied. For any numerical analysis, computational error will also become a factor

due to discretization of the microstructure. Therefore, before an accurate material

analysis can take place, the necessary number of realizations and sufficient RVE size in

relation to the microstructure must be determined. Once an RVE is established, changes

in effective properties can be related to the volume fractions, microstructural details, and

so on, allowing an efficient way to predict material behavior.

 A major difficulty in the study of composites is that for every material behavior

studied, the necessary RVE may change. A fiber composite can be easily studied with

one 2D image of one fiber in a square, but as complexity grows, so will the RVE, Figure

4.1. Rules of thumb exist, such as that the RVE must be eight times larger than the

largest characteristic length, yet examination of the literature shows no consistent

formulation of RVE size [44, 46, 71-74].

 41

Figure 4.1. Examples of various RVEs.

 Typically, material properties will be determined either through bounds or

through analysis of a specific RVE. Bounds on material properties can be determined

through variational methods such as Hashin-Shtrikman, which is based on volume

fraction [75]. For greater accuracy, two-point and higher probability functions can also

be used for bounds on material properties ranging from the effective elastic modulus,

thermal conductivity, and even nonlinear plasticity [76-78].

 In RVE analyses, FE methods are often used. The shape of the mesh depends on

the reconstruction method, but could consist of regular shaped elements, or an irregular

geometry dependant mesh. The microstructure is put into the FE model and then the

constituent materials are controlled by the appropriate constitutive equations. Segurado

et al. studied the effect of clustering on the total strength of metal matrix composites

through a nonlinear FE analysis with a geometry dependant mesh [79]. Schmauder et al.

used a plastic flow model to study residual stresses [80]. Shan and Gokhale created FE

models from serial montaging and reconstructions to capture material behaviors at the

desired length scales [47]. Examples of digitized, or regularly shaped FE elements, also

exist for various mechanical analyses. Garboczi and Day used a linear elastic finite

element model to determine bounds on the Poisson’s ratio and other elastic properties for

 42

any microstructure that can be digitized [71]. Terada et al. used digital images of fiber

composites to look at microscopic stress variation and to determine the effective modulus

and shear modulus [81]. Takano et al. used a voxel mesh to study the stress behavior in

a porous microstructure [82]. Kumar et al. used the Yeong-Torquato reconstruction to

perform an elastic-plastic analysis on multi-phase composites, which accurately modeled

stress-strain curves and shear band localization [83]. Mishnaevsky and co-workers used

voxel meshes to study damage growth in metals with particulates, graded composites, and

porous microstructures [84-86].

 In any FE analysis of composites, the first step is to determine RVE size. From a

stochastic standpoint, the RVE is a volume sufficiently large to capture the statistical

mean of the larger material [72, 73]. The RVE will vary in size and shape depending on

the microstructure and application. Shan and Gokhale determined the smallest acceptable

RVE sizes for fiber composites by using FE models containing different fiber sizes,

volume fractions, configurations and different length scales [46]. Gitman et al. used FE

to develop a stochastic criterion for representative volume elements [74]. A chi-square

criterion was used to find lower size bounds by looking at different realizations and

volume fractions. Knit et al. provided a quantitative definition of RVE size with the

understanding that the material property measured will change the minimum size of the

RVE [73]. Lastly, Swaminathan et al. investigated the size of statistically equivalent

RVE’s (SERVEs) using four different methods; 1) convergence modulus, 2) marked

correlation functions, 3) distribution of significant microstructural features, and 4) two-

point correlation functions [44].

 43

 Since it can be assumed the RVE will change for any material property, the work

presented in this chapter focused on structural and expansion properties brought about by

the stresses and strains occurring in the microstructure.

 Initially, to study RVE size and discretization errors, each realization was

converted into a FE model and appropriately modeled. Primarily, a graphical portrayal of

the results is provided, but limited quantitative measures are used throughout to validate

conclusions. This chapter focuses on the macro response of each realization, and detailed

studies of field behavior within the microstructure were left for future chapters. The

analysis was organized to meet the following objectives:

• To provide a “rule of thumb” in the determination of representative
volume element size and appropriate voxel size.

• Determination of the mean and standard deviation of the effective
property (assuming normality of data spread) with comparison to
experimental data.

• Investigation into the appropriate number of samples and
robustness of the analysis.

 After determining the adequate RVE size, the microstructure was used to study

increasing porosity. Then the impact of internal length scales on effective properties and

clustering in the microstructure was studied. The impact of temperature also provided

insight into how the bulk parameters, such as volume fraction and variation of constituent

properties, affect the microstructure. This is an extension of work previously done by

Johnson and Qu [36].

 44

4.1. Theory

4.1.1. Representative volume elements

 Representative volume elements (RVEs) must be of sufficient size to be

statistically equivalent to the microstructure while still capturing the effective behavior

independent of boundary effects or loading. In this work the RVE is represented by a

cube shaped realization with sides of length, , and volume, V . Boundary

conditions are prescribed within the volume, or on the surface,

RVEL

Vδ , as illustrated in

Figure 4.2.

Vδ

x

y

z

V

O

RVEL

Vδ

x

y

z

V

O

RVELRVEL

Figure 4.2. Schematic of representative volume element (RVE).

()ixF The volume average of any variable field value () occurring within the RVE

is defined by

1
()iV
x dV

V
≡ ∫F F , (4.1)

 45

ixwhere is the position vector for a Cartesian coordinate system. The subscript i refers

to indicial notation.

 An additional notation will be used in this work that indicates a volume average

within a specific phase in the microstructure, which is denoted by adding a phase suffix,

. 1 2 or 3, ,k =

1
k

k
iV

kx dV
V

≡ ∫F F() (4.2)

 The effective field behaviors for the RVE will be denoted by a superscript bar

such as F .

 Material properties such as Young’s modulus, E , and Poisson’s ratio, , are

isotropic composite properties unless a subscript is used to denote a specific phase.

v

4.1.2. Effective properties

tot
ijε The total effective strain, , occurring within a composite in the elastic regime

can be written as a sum of the elastic strain, thm
ijε, and thermal strains, , such that ijε

tot tot thm
ij ij ij ijε ε ε ε≈ = + . (4.3)

tot
ijεIn equation (4.3), refers to the strains calculated from the composite modulus, E ,

and thermal expansion, α , and is equivalent to the volume average strain. The subscripts

are indicial notation.

 By assuming isotropy and Hooke’s law, equation (4.3) can now be written as a

function of the Cauchy stress (TΔ), delta temperature (ijσ), the coefficient of thermal

expansion and elastic constants () as shown in ,E v (4.4). ()mmα ijδ is the Kronecker

delta.

 46

()1tot
ij ij mm ij mm ijT

E E
ν νε σ σ δ α

+
= − + Δ δ . (4.4)

 To solve for the constants in equation (4.4), three different load cases are

required. Solving for CTE a temperature load is required such that,

 for T CΔ = ix V∈ (4.5)

and C represents any given constant.

The effective CTE is now

tot
ii ii Tα ε≡ Δ . (4.6)

 Internal stresses are now developed within each phase, such that

1
0

n
p

p
p

σ ϕ σ
=

⎡ ⎤= ⎣ ⎦∑ = , (4.7)

where is equal the volume fraction of each phase, , for phases. nppϕ

 The second case used a hydrostatic, or volumetric expansion, , to determine the

bulk modulus such that

e

ij ii
dVe
V

ε α= = − ΔT , (4.8)

Vδ must equal (4.9)-(4.11). and where the displacements applied on

 for 1iu C= i RVEx L= , (4.9)

 for iu = 0 0ix = , and (4.10)

 for 2T CΔ = ix V∈ . (4.11)

 Equation (4.4) can now be solved for the bulk modulus,

3 1 2 3
iiEK

v e
σ

= =
−()

. (4.12)

 47

The assumption of isotropy is verified by ensuring that

11 22 33σ σ σ≈ ≈ and (4.13)

12 23 13 0σ σ σ≈ ≈ ≈ . (4.14)

Stochastic variation in microstructure requires the approximation sign. Knit et al. showed

that the coefficients of the full elasticity matrix converged to zero as RVE size increased

[73].

 Lastly, the modulus was solved by application of a fixed displacement in any

given orthogonal direction as listed in equations (4.15) through (4.17).

 for 1iu C= i RVEx L= and (4.15)

 for iu = 0 0ix = for . (4.16) 1, 2, or 3i =

 for 2T CΔ = ix V∈ . (4.17)

 Now the temperature-dependant Young’s modulus can be found using the

following relationship.

p
p iiii

ii tot
ii ii ii

E
T

ϕ σσ
ε ε α

= =
− Δ

 . (4.18)

In equation (4.18), as the thermal strain approaches the total strain for small loads, a

singularity will occur, meaning that the effective modulus should be determined well

away from small applied strains.

 The combination of hydrostatic expansion and deformation in only one

orthogonal direction can used to solve for shear modulus and Poisson’s ratio through the

following relationships,

3
9

KEG
K E

=
−

 and 3
6

K E
K

ν −
= . (4.19)

 48

4.2. ORNL sample analysis

Since nickel has the largest characteristic length, refer to the ORNL sample in

Table 2.1, as it is used to determine the length and size of the total reconstructed sample.

The and N parameters (refer to eqn. (2.10) and (2.11)R) are used in the creation of

multiple realizations. As previously defined, the parameter R is the ratio of to

 and provides information on the discretization of the microstructure, while

relates RVE size to the largest

RVEL

NvoxelL

λ of the microstructure. The parameters and N R

provide a dimensionless method of balancing the requirements of volume size and

discretization of a voxel reconstruction.

Three additional models were also constructed for comparison purposes with the

ORNL model: a random distribution, a periodic distribution, and finally a lineal path

based reconstruction. The lineal path reconstruction used six order polynomial

approximations of the lineal path functions determined from the ORNL sample and is

plotted in Figure 2.6 with the same RVE size and voxel size as the realization in Figure

2.4(c-d). The random distribution in Figure 2.4(a-b) has the same volume fraction of the

ORNL sample, but each voxel was placed using a random number generator. The

periodic microstructure was arbitrarily set so the volume fractions are maintained and the

RVE can be treated as a unit cell in recreating a larger structure, shown in Figure 4.3.

 49

Figure 4.3. Unit cell RVE with volume fraction of ORNL sample.

4.2.1. Finite element model

 The commercial software Abaqus was used to perform the finite element analysis.

For each digital image reconstructed, the voxels were transferred to 8 node brick

elements and input into a FE model. Perfect bonding was assumed between the elements,

and each element was assigned the material properties corresponding to the digital

reconstruction.

4.2.2. Constituent material properties

At room temperature the structural properties between nickel and YSZ are very

similar; however, the temperature related properties of nickel are both significantly larger

and more variable than YSZ. Table 4.1 lists the relevant material properties at room

temperature and at 1000ºC (complete Abaqus property files are included in Appendix D).

The pore phase had a modulus of 1 MPa and a CTE of 0 /ºC. Figure 4.8 also includes

plots of CTE for YSZ and nickel. Experimental studies of the electrolyte material, non-

porous nickel 8mol% ytrria (YSZ) material, were used as the YSZ properties in the Ni-

YSZ composite [27, 33, 87].

 50

Nickel is treated as a general polycrystalline material with primarily linearly

dependant temperature properties. Grain size dependence is neglected. The behavior of

nickel around the Curie point is complicated by the sudden jump in thermal expansion

from the paramagnetic transition; therefore, a temperature dependent equation of CTE

was used from the work of Faisst [88]. This expression was applied to published linear

values to provide the CTE from 0ºC-1000ºC [89]. The change in modulus due to

temperature for nickel is a linear relationship discussed by Kocks and Chen and

commonly reported modulus values [90, 91].

Table 4.1. Comparison of constituent material properties.

Property Temp. (ºC) YSZ Ni Ratio Ni to YSZ

25 216 207 1.0
E (GPa)

1000 216 121 0.6

25 0.32 0.31 1.0
ν

1000 0.32 0.31 1.0

25 8.5 12.5 1.5
CTE (10-6/ºC)

1000 10.5 19.8 1.9

4.2.3. Convergence analysis

4.2.3.1. Discretization error and RVE size

 Before determining the effective behavior of the modulus for varying

microstructures, the accuracy and acceptable RVE size of the ORNL model are

 51

determined. This is done by examining the effective material properties for varying

discretization error and RVE sizes for the ORNL sample.

In Figure 4.4, box plots are provided for the modulus at two temperatures, as well

as the CTE of the ORNL sample. The plots in the left column keep a constant volume,

while varying R . The plots on the right column vary while maintaining a constant

element size. The line within each box plot is the median value of five samples with

properties measured in the three orthogonal directions for a total of fifteen data points.

The box itself represents the middle 50% of the data and the lines extend to the outliers.

N

 In Table 4.3 and Table 4.4 the t-test and the chi-square criterion are used to

compare the mean, χ , and standard deviations, , between the samples for modulus

data. This was done to validate the use of box plots to determine acceptable element and

volume sizes. In

S

Figure 4.1, Table 4.2 and Table 4.3, one particular volume is

highlighted in grey. Even though each material property has different convergence

behaviors, this volume was found to be acceptable for each analysis.

 The convergence behavior of the lineal, random, and periodic reconstructions are

shown in Figure 4.5. The mean values are plotted against a ratio of voxel size to

characteristic length, which clearly illustrates the convergence behavior as voxel size

decreases. Once a sufficient voxel and RVE length are reached, it can be seen that the

results are independent of RVE size.

 52

R (LRVE / Lvoxel)

10 20 30 40 50 60

M
od

ul
us

 (
G

Pa
)

80

90

100

110

120

130

140

LRVE = 12μm
Lvoxel = 0.24μm

N (LRVE / λ)

4 8 12 16 20 24

M
od

ul
us

 (
G

Pa
)

80

90

100

110

120

130

140
LRVE = 12μm
Lvoxel = 0.24μm

(a) (b)

N (LRVE / λ)

4 8 12 16 20 24

M
od

ul
us

 (
G

P
a

)

70

80

90

100

110
LRVE = 12μm
Lvoxel = 0.24μm

R (LRVE / Lvoxel)

10 20 30 40 50 60

M
od

ul
us

 (
G

Pa
)

70

80

90

100

110

LRVE = 12μm
Lvoxel = 0.24μm

(c) (d)

R (LRVE / Lvoxel)

10 20 30 40 50 60

C
TE

 (
1

x
10

-6
)

11

12

13

14

15

16

17
LRVE = 12μm
Lvoxel = 0.24μm

N (LRVE / λ)

4 8 12 16 20 24

C
TE

 (
1

x
10

-6
)

11

12

13

14

15

16

17

LRVE = 12μm
Lvoxel = 0.24μm

(e) (f)

Figure 4.4. Box plots of discretization error and RVE size for Young’s modulus at room
temperature (a-b), Young’s modulus at 1020ºC (c-d), and CTE at 1020ºC (e-f).

53

Table 4.2. Discretization of modulus at 25ºC.

LRVE
(μm)

Lvoxel
(μm)

chi-square
test** t-test* Model # Num R N χ (GPa) S

ORNL 15 10 20 12 1.20 119.56 2.12 fail fail
ORNL 15 20 20 12 0.60 118.29 1.63 fail pass
ORNL 15 30 20 12 0.40 113.91 1.26 fail pass
ORNL 15 40 20 12 0.30 111.42 1.71 pass pass
ORNL 15 50 20 12 0.24 110.82 1.29 – –
ORNL 15 60 20 12 0.20 110.28 1.78 pass fail

*NULL Hypothesis – Mean of sample is equivalent to mean of Model #5 with failure to reject hypothesis at
5% significance level.
**NULL Hypothesis – Variance is equivalent to variance of Model #5 with failure to reject hypothesis at
5% significance level.

Table 4.3. RVE size of modulus at 25ºC.

LRVE
(μm)

Lvoxel
(μm)

chi-square
test** t-test* Model # Num R N χ (GPa) S

ORNL 15 50 4 2.4 0.24 114.71 13.38 pass fail
ORNL 15 50 8 4.8 0.24 113.58 5.07 pass fail
ORNL 15 50 12 7.2 0.24 111.09 3.70 pass fail
ORNL 15 50 16 9.6 0.24 110.64 1.72 pass pass
ORNL 15 50 20 12 0.24 110.82 1.29 – –
ORNL 15 50 24 14.4 0.24 110.82 1.22 pass pass

*NULL Hypothesis – Mean of sample is equivalent to mean of Model #5 with failure to reject hypothesis at
5% significance level.
**NULL Hypothesis – Variance is equivalent to variance of Model #5 with failure to reject hypothesis at
5% significance level.

 54

R / N (λ / Lvoxel)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

M
od

ul
us

 (G
Pa

)

90

100

110

120

130

140

150
N = 15
N = 20
N = 30
Lineal
Random
Periodic

R / N (λ / Lvoxel)

0 1 2 3 4 5

C
TE

 (
1

x
10

-6
)

10

11

12

13

14

15

16

17

18
N = 15
N = 20
N = 30
Lineal
Random
Periodic

 (a) (b)
Figure 4.5. Mean of Young's modulus (a) and CTE (b) for variation in element size.

4.2.3.2. Robustness

The robustness of the analysis is tested by studying the statistical distribution of

the modulus for two different sample sizes and two different volume sizes. In Figure 4.6,

the normal distributions of fifteen and 150 samples are plotted for the converged volume

of and a larger element size for the same volume of 50R = 30R = . Once again

quantitative measures are used to compare standard deviation and mean as shown in

Table 3.

55

Modulus (GPa)

100 105 110 115 120

Pr
ob

ab
ili

ty
 D

en
si

ty

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
R = 30 (150 samples)
R = 50 (150 samples)
R = 30 (15 samples)
R = 50 (15 samples)

Figure 4.6. Normal distribution of modulus for varying sample sizes.

Table 4.4. T-test and f-test results of Young’s modulus for different RVEs at 25ºC.

LRVE
(μm)

Lvoxel
(μm)

2 sample
t-test* f-test** Model # Num R N χ (GPa) S

ORNL 15 50 20 12 0.24 110.82 1.71
pass pass

ORNL 150 50 20 12 0.24 110.65 1.52
ORNL 15 30 20 12 0.40 113.91 1.26

fail fail
ORNL 150 30 20 12 0.40 111.15 3.04
ORNL 150 30 20 12 0.40 111.15 3.04

pass fail
ORNL 150 50 20 12 0.24 110.65 1.52
ORNL 15 30 20 12 0.40 111.15 3.04

fail pass
ORNL 15 50 20 12 0.24 110.65 1.52

*NULL Hypothesis – Unknown mean is same for both distributions with failure to reject hypothesis at 5%
significance level.
**NULL Hypothesis – Unknown variance is same for both distributions with failure to reject hypothesis at
5% significance level.

56

4.2.4. Final RVE size

4.2.4.1. Modulus RVE

In Figure 4.4, it can be seen that the discretization error controls accuracy while

RVE size controls the standard deviation. To gain perspective on variability, the plots are

scaled such that the maximum and minimum are approximately twenty percent of the

initial mean. Table 4.2 and Table 4.3 support the conclusion drawn from the box plots.

The t-test fails for discretization error until a sufficient voxel size is reached, while the

standard deviation doesn’t vary. However, for RVE size, all t-tests pass for a 95%

confidence level. The standard deviations in the chi-square test only pass near the same

RVE size.

The modulus results at higher temperatures can be seen to vary more than those at

room temperature, especially with regard to RVE size. This is an artifact of equation

(4.18) by introducing the variation of CTE in the results for effective modulus.

The box plot data sets look at the variation of results due to changes in R and .

These results also take for granted that the created microstructure is actually significant in

determination of material properties. Plus, it is difficult to extrapolate the results of the

box plot to broader conclusions about acceptable RVE sizes for voxel reconstructions.

Thus

N

Figure 4.5, which plots the mean modulus for realization sets against a ratio of

characteristic length to voxel length, is used to draw a broader conclusion;

For for element sizes less than 15N ≥ Niλ the modulus is independent of

 even if the final result has not converged. RVEL

57

 This indicates that the error is now purely from discretization. At this point, the

modulus is entirely dependant on the physical size of each element converging to a

consistent point. Once the element size reaches a certain point it can be stated:

For when voxel length is one half of 15N ≥ Niλ the RVE is an accurate

 representation of the ORNL sample.

 The lineal path realizations also show a good match to experimental values, and

since results in Chapter Two and Three showed different connectivity behavior, its

accuracy was studied. However, since no analytical expression exists for them and

computation time is much larger, they are not necessary to use. The periodic and random

realizations have results that serve like upper bounds on the modulus, probably due to the

change in pore distribution.

4.2.4.2. CTE RVE

Interestingly, in Figure 4.4(e-f) it can be seen that unlike the modulus which sees

a small increase due to insufficient RVE size, the CTE drops with a very large increase in

variation. In regards to discretization error a small decrease in value can be seen, but

only the largest element size shows significant error.

 The trend in CTE is much more linear than that of modulus. Modulus values

steadily increase, diverging away from the correct modulus as the element size increases,

but even the random distribution provides an approximate measure of CTE for any

element size (Figure 4.5(b)). The periodic distribution, however, proves to be completely

inaccurate. Therefore, for CTE it can now be stated:

 58

For CTE can be approximated by any distribution with random

 long range order and the correct volume fractions.

15N ≥

4.2.4.3. Sample size

The previous results assume that five realizations with measurements in three

directions are sufficient to describe the microstructure, but it can be shown that the

number of samples needed is also dependent on discretization of the realization. In

Figure 4.6, as the number of samples increases for the rougher microstructure, the mean

shifts toward the more refined data set. For the more refined (and considered converged)

data set, the normal distribution barely shifts. These results are apparent in the

hypothesis tests listed in Table 4.4, and this corresponds with the statement that

discretization influences standard deviation.

For CTE the standard deviation for samples is small with values consistently less

than one percent of the mean.

4.3. Microstructure variation

4.3.1. Reconstructions

 Now that the RVE size is determined, the microstructure can be modified as

needed to study porous cermets. To this end, multiple realizations of the three-phase

composite were generated using the Debye equation (Chapter 2, eqn. 2.9). The base

microstructure set each λ to those determined from analysis of an ORNL sample in

Table 2.1. From these base parameters several additional microstructures were generated

with either varying porosity or λ , refer to Table 4.5.

 59

Table 4.5. Microstructure realizations.

λNi
(μm)

Lvoxel
(μm)

LRVE
(μm)

λpore
(μm)

λYSZ
(μm) poresϕNiϕ YSZϕ N R Set Mod.

ORNL - 0.6 0.4 0.4 0.35 0.43 0.22 0.24 12 20 50

1 0.32 0.40 0.28

2 0.30 0.36 0.34 poresϕ 0.6 0.4 0.4 0.24 12 20 50

3 0.27 0.33 0.40

pore

YSZ

λ

λ
4 0.6 0.6 0.6 0.35 0.43 0.22 0.24 12 20 50

5 0.6 0.4 0.6 0.24 12 20 50

6 0.6 0.8 0.6 0.24 12 15 50poreλ 0.35 0.43 0.22

7 0.6 1.0 0.6 0.23 15 15 65

8 0.6 0.6 0.4 0.24 12 20 50

9 0.6 0.6 0.8 0.24 12 15 50YSZλ 0.35 0.43 0.22

10 0.6 0.6 1.0 0.23 15 15 65

11 0.4 0.6 0.6 0.24 12 20 50

12 0.8 0.6 0.6 0.24 12 15 50Niλ 0.35 .43 0.22

13 1.0 0.6 0.6 0.23 15 15 65

60

4.3.1.1. Porosity

 To study the influence of porosity on the cermet, models 1-3 in Table 4.5 were

reconstructed with the same characteristic lengths as the ORNL sample, but steadily

increasing porosities. As the porosity increased, the ratio between nickel and YSZ is held

constant. The results are compared against the ORNL composite sphere model

developed by Radovic et al. for Ni-YSZ cermets in Figure 4.7 [25]. Also plotted is the

upper bound from the Hashin Sthrikman model, a variational method that calculates

bounds based on volume fractions and constituent properties. Lastly the CTE and

modulus were plotted against temperature in Figure 4.8(a-b).

vol. % Ni - YSZ

0 20 40 60 80 100

M
od

ul
us

 (
G

P
a

)

0

50

100

150

200

250
Hashin Sthrikman Upper Bound
FE results
ORNL composite sphere

Figure 4.7. Variation of modulus for FE results compared to experimental values.

61

Temperature (ºC)

0 200 400 600 800 1000

C
TE

 (
10

-6
 m

m
 /

m
m

)

0

5

10

15

20

25

22% Porosity
28% Porosity
34% Porosity

40% Porosity
Nickel
YSZ

Temperature (ºC)

0 200 400 600 800 1000 1200

M
od

ul
us

 (
G

P
a

)

0

20

40

60

80

100

120

140 22%
28%
34%
40%

(b) (a)

Figure 4.8. Variation of CTE (a) and modulus (b) versus temperature.

4.3.1.2. Characteristic length

 The final Debye functions of the microstructure will be influenced by the starting

particle sizes, the sintering temperature and time. So it is reasonable that changing length

scale should be studied. In Set 4 the characteristic length was set equal for all three

phases, and found to be roughly equivalent to the ORNL sample. Set 4 is now used as

the base for changes in length scale. Three different cases are examined where λ varies

for porosity (models 5-7), YSZ (8-10), and nickel (11-13). The volume fractions are held

constant. The results from Section 4.2 were used to maintain acceptable R and

values. However, this does mean the volume and voxel size may vary across sets.

N

 For each case, five models were created, and the modulus, shear modulus, and

CTE were determined in three directions for fifteen samples. In Figure 4.9 and Figure

4.10 λ these properties are plotted against the changing for each phase and is normalized

by the mean values from Model 4, designated , , and . For each data set, a

linear fit is also shown.

oE oG oCTE

 62

λphase (μm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

E
 /

E
o

0.90

0.95

1.00

1.05

1.10

Pore (4-7)
Pore Fit
YSZ (8-10)
YSZ Fit
Nickel (11-13)
Ni Fit

(a)

λphase (μm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

G
 /

G
o

0.90

0.95

1.00

1.05

1.10

Pore (4-7)
Pore Fit
YSZ (8-10)
YSZ Fit
Nickel (11-13)
Ni Fit

(b)

λFigure 4.9. Young’s modulus (a) and shear modulus (b) against for one phase while
with other phases are at 0.6 μm.

63

λphase (μm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

C
TE

 /
C

TE
o

0.90

0.95

1.00

1.05

1.10

Pore (4-7)
Pore Fit
YSZ (8-10)
YSZ Fit
Ni (11-13)
Ni Fit

λFigure 4.10. CTE against for one phase while other phases are at 0.6 μm.

4.3.2. Microstructural impact

 Varying the characteristic lengths changed the resulting properties less than five

percent, while changing porosity brought about a significant change in modulus and had

no impact on CTE. Therefore, the cluster function and the parameters determined in

Chapter 3 were used to provide further insight into microstructural changes.

4.3.2.1. Porosity

 In Figure 4.7 the predicted modulus of the Debye realizations show a good match

to previous experimental results, and it can be seen that as the porosity increases the

modulus decreases in a nonlinear manner. After temperature is added, additional stresses

are generated, since now nickel and YSZ also undergo stresses due to thermal mismatch.

This explains why, in Figure 4.8, CTE does not change with volume fraction and is in

64

fact dependant on the ratio between the volume fraction of nickel and YSZ. It also shows

that outside the Curie point region in nickel, the thermal expansion is primarily linear.

Both plots in Figure 4.8 are reasonable in reference to experimental results [25, 27].

 Due to the calculation of modulus from equation (4.18) and the linear properties

used for nickel’s modulus, the effective modulus is linearly temperature dependent.

However, as the amount of nickel drops, the variation of the modulus due to temperature

continues to slightly decrease. This is seen in the steadily decreasing slopes of each

curve where at 22% porosity the modulus drops by 0.023 GPa/ºC and at 40% porosity it

changes by .010 GPa/ºC.

 Theory holds that the percolation threshold should be related to the effective

modulus through a power law relation such that

(i icE)βϕ ϕ∝ − . (4.20)

β is the power law exponent and icϕ is the percolation threshold. Feng et al. found that

for the Swiss cheese model, the modulus exponent was equal to 5/2 [69]. When (4.20) is

applied across different porosities, a value for β of -2.85 ± 0.056 at room temperature is

found.

4.3.2.2. Internal length scales

 There is consistently an inverse relationship between changes in length scales for

porosity and the other phases. As porosity increases, the modulus steadily drops,

although the length scale would need to be fairly large before even a five percent change

would occur. For CTE, the behavior is flipped and now an increase in pore size increases

CTE. Another parameter is needed to relate change to one phase for all variations of the

internal length scales.

 65

 As discussed in Chapter Three, the percolation threshold can be approximated

from the point when the cluster function reaches its long term values. In Table 4.6 it can

be seen that these percolation values stay approximately stable despite changes in λ .

Table 4.6. Percolation threshold for different microstructures.

 ()mλ μ Percolation Threshold

Ni=YSZ Pore Ni YSZ Pore

0.6 0.40 0.120 0.180 0.040

0.6 0.60 0.115 0.184 0.038

0.6 0.80 0.114 0.178 0.034

0.6 1.00 0.112 0.176 0.043

Ni=Pore YSZ

0.6 0.40 0.121 0.175 0.038

0.6 0.60 0.115 0.184 0.038

0.6 0.80 0.114 0.198 0.042

0.6 1.00 0.116 0.212 0.045

YSZ=Pore Ni

0.6 0.40 0.111 0.188 0.038

0.6 0.60 0.115 0.184 0.038

0.6 0.80 0.130 0.178 0.040

0.6 1.00 0.140 0.180 0.044

pore
cL Next the point, , introduced as the distance at which the percolation threshold

is reached, is examined. pore
CLFigure 4.11 and Figure 4.12 compare for all the models of

 66

varying microstructures and 22% porosity (models 4 – 13 in Table 4.5). When the

effective properties are correlated to , a definite link can be drawn between the

clustering of porosity and the resulting modulus and CTE for all variations in

CL

λ .

LC
Pore (μm)

0 2 4 6 8

M
od

ul
us

 (
G

P
a

)

100

105

110

115

120
Models 4 - 7
Models 8 - 10
Models 11 - 13
Linear Fit

Figure 4.11. Change in length at percolation threshold of porosity for modulus.

 67

LC
Pore (μm)

0 2 4 6 8

C
TE

 (
1x

10
-6

)

10

11

12

13

14

15

Models 4 - 7
Models 8 - 10
Models 11 - 13
Linear Fit

Figure 4.12. Change in length at percolation threshold of porosity for CTE.

4.4. Summary

 The three objectives during the determination of RVE size for structural

properties were to obtain a rule of thumb, verify accuracy, and verify robustness of the

analysis. It was found that an 50R = 20N = and is more than sufficient to capture

material behavior, plus a minimum of 40R = 15N = and will work for both properties.

This applies to displacement boundary conditions and any edge effects resulting from

them. Upon examining Figure 4.8 it can be stated that for three-phase Debye media the

modulus needs an element size half of the characteristic length and, the CTE will vary

little depending primarily on ratio between Ni and YSZ in a distribution with random

long range order.

 68

 Both the analysis of robustness and comparison to experimental results show that

the voxel reconstruction works for the analysis.

 When the voxel reconstructions were used to predict changes in structural

properties due to microstructural details, it was found the most significant change was

due to change in volume fraction of porosity. The importance of percolation of the pore

phase also would explain why the lineal path and two point reconstructions has the same

modulus. Despite differences in the nickel and YSZ phases, the pore phases were exact

(recall Table 3.1). Overall, the behaviors of the porous cermet can be summarized as

follows:

• modulus is most influence by changes in volume fraction,

• CTE is dependent on the ratio of the volume fractions of nickel to YSZ and

not the volume fraction of pores,

• at 40% porosity the impact of temperature on modulus is minimal,

• an increase in modulus will result in a decrease of CTE and vice versa, and

• finally pore percolation can be correlated with modulus and CTE.

The next chapter moves from a structural analysis to a transport analysis to determine the

effective thermal conductivity of the porous cermet.

 69

CHAPTER 5

EFFECTIVE THERMAL CONDUCTIVITY

Previously, a methodology to study the structural properties of porous cermets

was introduced, but a slightly different formulation is needed to study transport

properties, like thermal conductivity. Transport properties differentiate from a structural

analysis due to the occurrence of a direction-dependent flux field. For thermal

conductivity, this is an energy field that correlates to a temperature change in any given

direction. This chapter will investigate the voxel reconstruction’s ability to determine

transport properties for the cermet.

As in the previous chapter, the first step examines the variation in conductivity

with changes in RVE size and discretization of the microstructure. However, an FE

model with perfect bonding between elements is not capable of accurately predicting a

composite’s thermal conductivity, and another factor must be taken into account. This

factor is energy loss due to the interfacial resistance between nickel and YSZ. Since this

resistance is dependent on morphology, surface roughness, and temperature variation, it

is not realistically possible to measure an accurate value that can be easily used in

analysis of the anode. To that end, a simple theoretical model is used alongside

published experimental data to modify the FE results. A numerically determined thermal

resistivity is then used to study the change in conductivity for different microstructures.

 70

5.1. Thermal resistance model

 For any material, the heat flux and temperature change can be related through

thermal conductivity, , using Fourier’s Law. Equation (5.1)κ is the one-dimensional

form of this law. Thermal conductivity then is an inherent material property that

describes a material’s ability to transfer heat. Equation (5.1) relates the change of

temperature, , in a given direction for a length, TΔ xΔ , to the heat flux, Q , such that �

TQ A
x

κ Δ
= −

Δ
� . (5.1)

, is perpendicular the heat flux and normal vector, n , as illustrated in �The area, A Figure

5.1.

x

y

z O

xΔ

oT

fT

o
TT x T
x

Δ
= +

Δ

A
n�

x

y

z O

xΔ

oT

fT

o
TT x T
x

Δ
= +

Δ

A
n�

Figure 5.1. RVE in transport model.

 71

L
κ1 κ2 κb

a1 a2 ab
Aib

A

L
κ1 κ2 κb

a1 a2 ab
Aib

A

Figure 5.2. Illustration of thermal conductivity model.

 In a composite material, the effective conductivity will be related to the bulk

constituent properties and also to the behavior at the interfaces of those constituents. For

example, assume that a composite material is made of a B length of blocks, where each

block has a b thermal conductivity and length, as illustrated in Figure 5.2. The total

length of the bar is the sum of each individual block length, a function, , as illustrated

in

ba

Figure 5.2, so that

1

B

b b
b

L a B a Ba
=

= = =∑ i , (5.2)

ba = awhere is the average length of the blocks.

 Furthermore, each b block of a material will have a thermal conductivity, bκ .

Thus the resistivity of the nth block is

 1br κ= b , (5.3)

and the resistance of the nth block is now a function of geometry and resistivity such that

b b
b

r aR
A

= . (5.4)

 At the interface an interfacial resistivity, , is used to find the total interfacial

resistance,

ibr

ibR , for interfaces, and a total length, . 1B − L

 72

in ib
ib

LR r
A

= . (5.5)

In equation (5.5) is the total of the interfacial area normal to the direction of heat

change across the entire length. It should be noted that for the actual cermet material, the

solid to pore interfaces are neglected in this formulation.

ibA

 A factor, ρ , can now be written as

ib

L
A

ρ = . (5.6)

 The parameter ρ lends well to use with digitized microstructures such as the

voxel reconstructions. The interface area is determined simply by counting the number

of connecting blocks of nickel and YSZ in the desired direction.

 Going back to Figure 5.2, the total resistance along the entire bar is

1

B

total b ib
b

R R R
=

= +∑ , (5.7)

and the total heat flux of the composite can now be written as

total

TQ
R
Δ

= −� . (5.8)

xΔ with for the entire length of the bar and substituting in equation (5.1)Replacing L ,

an expression for thermal conductivity can be found, such that

total

L
R A

κ = . (5.9)

(5.7) into (5.9) the thermal conductivity is now Substituting

1

1
B

b b
ib

b

r a r
L

κ
ρ

=

=
+∑

 . (5.10)

 73

 Note that ba L is equal to the volume fraction of block ; thus the finite element

solution without considering interfaces can be set equal to

n

1

1 B

b b
bFEM

r ϕ
κ =

≈ ∑ . (5.11)

Equation (5.10) can now be rewritten as

1

1

FEM ibr
κ

κ ρ−=
+

 . (5.12)

 To use (5.12), consider a microstructure that has the experimental thermal

conductivity, , i.e. ()
exp

oκ

() ()()
()
exp 1()

1o

oo
FEM ibr

κ
κ ρ

−=
+

 . (5.13)

In equation (5.13) the superscript (o) indicates that these quantities are related to a

particular microstructure.

 Solving for interfacial resistance

() ()
exp

() () ()
exp

1 o o
FEM

ib o o o
FEM

r
κ κ

ρ κ κ
⎛ ⎞−

= ⎜⎜
⎝ ⎠

 ⎟⎟ . (5.14)

()oρ Note that is independent of microstructure, while ibr is determined from the

specific reconstruction. This means that once is determined, the thermal conductivity

can be determined for any realization using

ibr

(5.12). As mentioned the previous

formulation works well for the discretized microstructure; however, it does not

necessarily determine the actual interfacial resistivity of nickel and YSZ. This is mainly

due to the simplified approximation of the microstructure.

 74

5.2. FE model

At room temperature, the structural properties of nickel and YSZ are very similar;

however, the temperature-related properties of nickel are both significantly larger and

more variable than YSZ. Table 5.1 lists the relevant material properties, taken from the

literature, at room temperature and at 1000ºC [27, 92, 93]. A complete list of the

temperature dependent properties can be found in Appendix D. Experimental studies of

the electrolyte material, non-porous nickel 8mol% ytrria (YSZ) material, were used as the

YSZ properties in the Ni-YSZ composite [27, 33, 87]. Nickel is treated as a general

polycrystalline material with primarily linearly dependant temperature properties except

near the Curie point. The CTE and specific heat of nickel specifically show an

exponential jump in value around the Curie point due to the paramagnetic transition.

Nickel’s thermal conductivity also varies significantly around the Curie point, but with an

inverse relationship to that of CTE and specific heat [94].

The pore elements in the sample are set equal to an argon atmosphere. It should

be noted that at room temperature, the thermal conductivity of nickel is approximately 43

times that of YSZ and 4844 times that of argon. Temperature dependence was neglected

for argon.

Table 5.1. Comparison of constituent material properties.

Property Temperature (ºC) Ni YSZ Argon

127 77.5 1.89 .016 κ(W / (mºC)
1000 70.0 2.05 .016

 75

5.3. Results

5.3.1. RVE Size

 The methodology for determining RVE size was the same as that used by Johnson

and Qu, which first finds the acceptable element size by varying R and then finds the

acceptable RVE size by varying [36]. Recall that N is equivalent to from R B Figure

5.2. Box plots of these results are shown in Figure 2. For each set of five samples, the

thermal conductivity was measured in three directions providing a total of fifteen data

points and also confirming that the effective value is independent of direction. To

determine that a sufficient number of samples were collected, histograms were plotted of

the data spread for 15 samples and 150 samples at an element size before and after

convergence (refer to Figure 5.4). This is done for the FE results without accounting for

interfacial resistance.

R (LRVE / Lvoxel)

10 20 30 40 50 60

κ FE
M

 (
W

/m
*K

)

9

10

11

12

13

14

15

16

LRVE = 12μm
Lvoxel = 0.24μm

N (LRVE / λ)

4 8 12 16 20 24

κ FE
M

 (
W

/m
*K

)

9

10

11

12

13

14

15

16

LRVE = 12μm
Lvoxel = 0.24μm

(e) (f)
Figure 5.3. Box plots of discretization error and RVE size, respectively, for Young’s and

the uncorrected thermal conductivity (a-b).

 76

κFEM

7.5 9.0 10.5 12.0 13.5

Pr
ob

ab
ili

ty
 D

en
si

ty

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70
R = 30 (15 samples)
R = 50 (15 samples)
R = 30 (150 samples)
R = 50 (150 samples)

Figure 5.4. Histogram of FE thermal conductivity for different sample sizes and
elements sizes at N = 20.

5.3.2. Interfacial Resistance

 Equations (5.12) and (5.14) were used along with experimental results for Ni-

YSZ with 34% porosity from work by Radovic et al. [27] to determine the interfacial

resistivity as defined by (5.12). The FE results used to determine resistivity were

obtained from ORNL realization set where was equal to 20 and N R was equal to 50.

The interfacial resistivity results are plotted against temperature in Figure 5.5. In Figure

5.6 the original FE thermal conductivity is compared to the experimental results from

ORNL, and the FE results are seen to be as much as 50% higher than experimental

values.

 77

 Temperature (ºC)

0 200 400 600 800 1000

r in
 (m

m
2 *K

 /
W

)

0

1

2

3

4

5

Figure 5.5. Interfacial resistivity determined at 34% porosity.

Temperature (ºC)

0 200 400 600 800 1000

κ (
W

/m
*K

)

0

2

4

6

8

10

12
FE
ORNL

Figure 5.6. FE results without interfacial resistance.

 78

5.3.3. Varying microstructures

 The interfacial resistivity from Figure 5.5 was used to plot the thermal

conductivity for 22%, 28%, and 40% porosity, shown in Figure 5.7a. The results are

compared to ORNL thermal conductivity values (Figure 5.1b) at different porosities and

are found to match well. The characteristic length of the microstructure for the different

porosities was left equal to the original ORNL sample (refer Table 2.1). The next set of

realizations assumed that nickel and YSZ both had a λ of 0.6 mμ , while the length scale

of the pore phase was allowed to vary. These are model numbers 5-7 listed in

Table 4.5. The thermal conductivity results for these realizations are plotted Figure 5.8.

The results are averaged over fifteen samples.

()oρ For each new realization set, the values that change are the FE results and the

value, while remains the same. In Table 5.2 and Table 5.3, the ratio of the nickel to

YSZ interface to the total area is recorded. In Table 5.2 the results were found to be

linearly related to the porosity with a negative slope of 28 percent and an intercept of

0.17.

ibr

 79

Temperature (ºC)

0 200 400 600 800 1000

κ (W
/m

*K
)

0

2

4

6

8

10
22% Porosity
28% Porosity
40% Porosity

(a) (b)

Figure 5.7. Corrected thermal conductivity versus porosity for numerical analysis (a) and
ORNL results [27] (b).

Temperature (ºC)

0 200 400 600 800 1000

κ (W
/m

*K
)

0

2

4

6

8

10

λpore = 0.4 μm
λpore = 0.6 μm
λpore = 0.8 μm
λpore = 1.0 μm

Figure 5.8. Thermal conductivity for changing length scales in pore phase.

 80

Table 5.2. Interface area and conductivity at RT for changing porosity.

 poreϕ .22 .28 .34 .40

/inA A .107 .088 .071 .056

κ
(6.89 5.70 4.75 3.76 (/ ()W m Ki)

Table 5.3. Interface area for changing length scales.

()mμ poreλ 0.4 0.6 0.8 1.0

/inA A .077 .098 .109 .113

κ
(5.92 6.55 6.85 7.61 (/ ()W m Ki)

5.4. Discussion

5.4.1. RVE size and discretization

Examination of Figure 5.3 leads to the same conclusion for thermal conductivity

as for structural properties, i.e. discretization of the microstructure controls accuracy

while the RVE size controls standard deviation. However, thermal conductivity seems to

have a much higher variability overall. The minimum acceptable R and are 50 and

20, respectively. This is compared to 40 and 16 for the modulus. Plus, in Figure 5.4(a),

the shift of the less accurate model to a correct mean is much more pronounced,

suggesting that the model itself is fundamentally wrong at this lower discretization. The

higher variability in the thermal conductivity most likely results from the addition of

N

 81

direction in the formulation. The effective conductivity is now dependent on the

variability of the interfaces in one direction as the temperature changes.

5.4.2. Numerical results

 The addition of interfacial resistivity had a significant impact on the FE

predictions of thermal conductivity, which dropped by as much as 50%. In Figure 5.7 the

predictions of thermal conductivity for different porosities match well to experimental

results [27]. Knowledge of the accuracy of the thermal conductivity values for different

length scales would require additional experimental results, but there is an obvious

increase in thermal conductivity with an increase in interfacial area. The reason is hard to

verify, but a reasonable assumption is increasing Ni-YSZ interfaces means a drop in

argon to solid interfaces.

 The final point of interest is the change in interfacial area for both volume

fractions and length scales. First it should be noted that in a digitized medium, the slope

of the two-point probability function can be related to the resulting surface area of a

phase, , as shown in equation (5.15) [63]. s

()2
0 2r

d S r
dr d=

= −
s , where (5.16)

in (5.16) the variable refers to the dimensionality of the system. This relationship

between surface area and 2-point probability functions explains the linear change in

interfacial area for varying volume fractions. The slopes of the probability functions do

not vary with increases in volume fraction. However, these slopes will change with

length scale. This is significant since thermal conductivity now varies linearly with

d

 82

porosity, but shows no obvious correlation to length scales. This behavior is the reverse

of how the modulus behaves with changes in length scales and volume fractions.

5.5. Summary

 Although the finite element solution alone does not accurately predict the thermal

conductivity for different microstructures, the addition of interfacial resistivity appears

sufficient to predict thermal conductivity. The use of interfacial area to link the thermal

conductivity values also provided insights into how the property will vary with

microstructure. It is significant that a change in porosity results in a linear change of

thermal conductivity as compared to the results for modulus and CTE in the previous

chapter.

 One issue with the transport analysis is its dependence on experimental data and

the constituent properties used in the analysis. This can especially be seen in the Curie

point behavior, which despite being included in the FE model, does not carry through to

the FE results, especially compared to published values that use the specific heat and

Lorenz number to calculate the thermal conductivity [27]. However, an extensive study

of the Curie point behavior is outside the scope of this work.

 For both Chapter Four and Five effective properties were determined for linear

material behaviors (except at the Curie Point). The next few chapters will investigate

nonlinear material behaviors.

 83

CHAPTER 6

DAMAGE AND PLASTICITY

In fuel cells, the anode will not undergo a typical loading scenario and it can be

expected that manifold constraints, sealing at edges, and contact with interconnects could

result in areas of high localized stresses leading to failure in sections of the anode.

Additionally, in anode supported stacks, the anode bears the majority of the load, having

heights up to 1mm, compared to the electrolyte and cathode that have heights less than 20

μm. Thermal mismatch between the electrolyte and anode layers during the tape cast

process is yet another factor that will induce stresses in the anode. It is possible that

during pSOFC construction, the initial warparge of the PEN from sintering and then the

process of assembly in the stack could lead to localized failures in the anode, even before

operation.

For these reasons, the study of damage and plasticity in Ni-YSZ is significant to

fuel cell behavior, but the cermet failure is also useful to the overall study of composites.

In the cermet, two contrasting material behaviors occur around a continuous distribution

of pores. In brittle YSZ, failure can be assumed to be instantaneous and localized, while

the plastic nature and lower strength of nickel suggests a more distributed loading. How

these behaviors govern the bulk response of the composite is not easily discerned without

a three-dimensional numerical analysis. The significance of microstructural distribution

on bulk behavior is even harder to quantify.

 84

Finite element methods have often been used to study damage and plasticity in

composites. Lee, et al. incorporated damage into a multi-scale tessellation FE model,

using elliptical cracks, which were allowed within each particle [39]. The work was

extended to incorporate damage and plasticity by Ghosh, Lee, et al. in a review of VC-

FEM in 2001 [41]. Ghosh also tracked damage evolution in subsequent works [95]. The

combined works of Segurado and Gonzalez studied the effect of clustering on the total

strength of metal-matrix composites with a nonlinear FE analysis [79, 96].

Kumar et al. used the simulated annealing method to perform an elastic-plastic

analysis on multi-phase composites [83]. Mishnaevsky et al. modeled damage growth

and fracture by either “softening” or disappearing elements as a given criterion is

exceeded [84, 86]. Next, Mishnaevsky used the Rice-Tracey damage parameter to

measure void growth in porous and graded composites [85]. Cannillo and Carter studied

realistic and idealized brittle materials using an FE analysis combined with a Weibull

probability criterion for individual element failure [52]. Polycrystalline structures were

studied in a similar way by Zimmerman et al. by applying the Griffith failure criteria to

grain boundary elements [97]. Singh et al. used the maximum principal stress criterion

and yield stress to study damage and plasticity in discontinuous reinforced aluminum

alloys [50]. To study fiber composites, the McClintock void growth model was used

[47].

Once the microstructure is analyzed, there are a variety of methods to relate the

material to the microstructure. FE contour plots provide a visual representation of

stresses and strains, but histograms of stress distributions, cumulative probability plots,

and standard deviations of field data can quantify the results [79, 82]. Other work has

 85

focused on finding microstructural “hot spots” or the creation of behavior-related

correlation functions [83]. Kumar et al. used an elastic-plastic analysis FE model to

compare stress-strain curves, stress histograms, and shear band localization for multiple

realizations [83].

In the determination of effective properties (refer to Chapters 4-5), the focus was

on determining the mean and statistical distribution of common material properties for an

acceptable discretization and RVE size. In the study of nonlinear behavior, there was a

brief look at the trend in convergence of the sample size and the different measures of

damage and plasticity. Then, the focus shifted to the impact of damage and plasticity on

bulk behavior and its correlation to the probabilistic features of the microstructure.

Stress-strain curves were used to provide a bulk description of the material

behavior, but different measures were needed to understand the interaction between

phases. Three primary methods were used: phase decomposition, distribution fits, and

finally, the mark probability function. Through these methods, the following features of

porous cermets were investigated:

• the internal stress distribution in each phase,
• the size and distribution of failure in the microstructure, and
• the significant features that influence the bulk response.

 In the following sections, the mark probability function will be introduced along

with a brief review of the use of volume averages in the RVE analysis. The material

behaviors for nickel and YSZ will be described and the procedures for data analysis

briefly discussed. It should be noted that the analysis is based on the small deformation

assumption, and cannot accurately model large scale deformations. In determination of

the model size, a look will be given to modulus, and yield stress and stress-strain curves

 86

will be examined. The rest of the chapter will focus on the internal stress distribution and

failure behavior of one Ni-YSZ realization. Changes in the behavior of the porous

cermet will be studied against porosity and probability functions.

6.1. Theory

The realizations were loaded with kinematic boundary conditions using the same

as in Chapter Four. A displacement is applied along the boundary; in this case the

displacement changes with time, such that

 for 1()iu C t= i RVEx L= and (6.1)

 for for iu = 0 0ix = 1, 2, or 3i = . (6.2)

 As the displacement increases, individual elements in the nickel and YSZ phases

will behave depending on their specific failure criteria. The slow failure of individual

elements will change the stress-strain relationship from linear to nonlinear. Since this

point occurs at different times for different realizations, a consistent criterion to

determine nonlinearity is needed. This condition is met through the 2% yield offset,

which finds the yield stress at the intersection of the stress-strain curve and the linear

offset of the modulus.

iiσ Recall that the volume average of stresses, designated with , can be

decomposed into the average stresses occurring in each phase,

1

n
p

ii p ii
p

σ ϕ σ
=

⎡= ⎣∑ ⎤
⎦ . (6.3)

In equation (6.3) designates phase number for total phases, while the double i

subscripts refer to the direction.

np

 87

 Equation (6.3) provides a relationship between the stresses and the volume

fraction of each phase. Strain is another matter, being volume dependent; it is a sum of

the total strains occurring in the microstructure.

 Currently lacking is a means to connect the actual microstructural behavior to the

stresses and strains occurring in the microstructure. To that end, the mark probability

function is used as introduced by Pyrz [98].

 First, recall that the two-point probability function, , can be used to

completely describe any phase in the microstructure by determining the probability that

any two points will lie in the same phase. Next, define a mark, , which is any field

behavior that meets the conditions of an arbitrary binning process, . Binning can be

limited to one phase or combination of phases, magnitude of a quantity, and so on. Now

the mark function,

()
2

ijS

()
2
bm

b

()
2

bM , combines the user-defined mark with the microstructure’s

probability functions such that

()
() 2
2 ()

2

(,)
()

b
b k l

ij

m x xM
S r

=
� �

 . (6.4)

()
2

bM kx� function becomes a function of the orientation of two different points, Here the

and lx� , since the mark is not only dependent on the microstructure but also on the

loading conditions that result in the field behavior.

 Equation (6.4) is normalized by the two-point probability function. It is

designated with to allow for normalization by one phase, a combination of phases, or

all phases.

ij

 88

 For the isotropic homogenous media, the mark function will have bounds that can

be defined as

()
() 2
2

(0)(0)
b

b

ij

mM
ϕ

= . (6.5)

As approaches zero, equation (6.5) is the probability that any given point in the phase,

or combination of phases , will satisfy the conditions of .

r

ij ()bm

6.2. Methodology

6.2.1. Finite element model

 As before, each voxel is treated as a material point and perfect bonding is

assumed to occur between the elements. Damage and plasticity are incorporated in the

FE model through standard material models from the software, Abaqus 6.8-1 [99]. In

Appendix D these property files are listed, and they are further described in 6.2.2. Pore

elements are deleted to improve computation time. Artificial damping is also

implemented to enable convergence of the FE solution, but no other artificial methods are

used. The stabilization parameter was optimized using the largest FE models, and once

determined, kept constant for all models.

6.2.2. Constituent properties

6.2.2.1. Damage

Radovic et al. reported biaxial strengths of 345 MPa and 209 MPa for room

temperature and 800ºC, respectively, in 8mol% YSZ [32]. For this work, the ultimate

uniaxial tensile strength was conservatively set equal to these biaxial strengths, with a

 89

linear change between the two temperatures. The maximum stress criterion was such that

failure occurs when

1 2 2max , , ultσ σ σ σ≥ . (6.6)

Before this point, the material is elastic and isotropic. Failure does not occur in

compression. Once failure occurs, damage occurs in the direction of the principle stress.

The Abaqus option for tension stiffening was added to the solution, with the

addition of a damage parameter as shown in equations (6.7) and (6.8), so that

(expult p)σ σ ε= − for and (6.7) 0pε ≥

1
ult

D σ
σ

= − . (6.8)

In equation (6.7) is plastic strain and ultσpε is the ultimate strength. The damage

parameter has no impact on the FE analysis and is only used as a measure of failure for a

given FE element.

Strain (1 x 10-3 mm/mm)

0 5 10 15 20 25 30

S
tre

ss
 (

M
Pa

)

0

50

100

150

200

250

300

350

D
am

ag
e

0.0

0.2

0.4

0.6

0.8

1.0
Stress
Damage

Figure 6.1. Stress-strain in the YSZ element.

 90

6.2.2.2. Plasticity

The plastic stress-strain curves are input as data points for four different

temperature loadings. These data points were determined using the Chakrabarty law such

that stress is a piecewise function as shown in equation (1.9).

,

,

y
n

y y
y

E

E

ε σ σ

σ εσ σ σ
σ

≤⎧
⎪⎪= ⎛ ⎞⎨

>⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

 , (1.9)

where is a hardening parameter. n

Thompson found that yielding in nickel is a function of grain size, and the Hall-

Petch relation was used to determine the yield stress for a grain size of 1μm [100, 101].

A slight temperature dependence in the yield stress and the hardening exponents in

equation (1.9) were assumed due to experimental results from Srinivas et al. [102].

Strain (mm/mm)

0.000 0.002 0.004 0.006 0.008 0.010

St
re

ss
 (

M
P

a
)

0

100

200

300

400

25ºC
200ºC
400ºC
500ºC
700ºC

Figure 6.2. Plastic strain curves for nickel.

 91

The classical metal plasticity law is linearly elastic before failure. Isotropic

hardening is used and yielding occurs when the von Mises stress reaches the yield stress.

6.2.3. Data analysis

As mentioned in the introduction, three techniques are used to study the field

behaviors occurring throughout the microstructure. These are stress decomposition,

distribution fitting, and finally, the mark function as described in Section 6.1. These tools

treat each element, or voxel, as its own spot in the continuum media. The value at the

centroid of each element is found by interpolating from the nodal values. Using the

element values, the data can be averaged, input into histograms for data fitting, or binned

for use in a mark calculation. The output histograms are fitted to a 3 parameter Gaussian

distribution, a 4 parameter Weibull distribution, or left as a histogram. The distribution

fitting tool used was the commercial software SigmaPlot and specific equations are

provided in Appendix C [70].

6.2.4. Microstructure analysis

The extensive and detailed analysis of multiple realizations in Chapter Four is

neither computationally realistic nor necessarily relevant to the damage and plasticity

analysis. The priority is to link the behavior to specifics of the microstructure, and to

determine worst case scenarios for failure in Ni-YSZ. Therefore, the analysis focuses on

a 40% porous microstructure with the same distribution as the ORNL sample. To study

convergence behavior, 4-5 samples were analyzed, where each model was strained in the

x-direction via displacement boundary conditions. For modified microstructures, one to

three samples were deemed sufficient. The models examined are listed in Table 6.1.

 92

Table 6.1. Damage and plasticity microstructure realizations.

λpore
(μm)

λYSZ
(μm)

λNi
(μm)

Lvoxel
(μm)

LRVE
(μm) Niϕ YSZϕ Poresϕ N R Mod. Set #

1 5 0.60 20

2 5 0.40 30

3 5 0.30 400.6 0.4 0.4 .27 .33 .40 12 20 R

4 4 0.24 50

5 1 0.20 60

6 1 7.2 12 30

7 5 9.6 16 40N 0.6 0.4 0.4 .27 .33 .40 0.24

8 1 14.4 24 60

 poreλ 9 3 0.6 0.8 0.4 .27 .33 .40 .27 16 20 60

 YSZλ 10 3 0.6 0.4 0.8 .27 .33 .40 .27 16 20 60

 Niλ 11 2 0.9 0.4 0.4 .27 .33 .40 .27 16 18 60

 iϕ 12 1 0.6 0.4 0.4 .35 .43 .22 0.24 12 20 50

6.3. Results

6.3.1. Discretization and RVE size

 Previously, it was found that discretization influenced accuracy and that RVE size

controlled standard deviation of the modulus (refer to Chapter Four). For nonlinear

behaviors, the goal is to capture the trend in convergence behavior in order to be

reasonably confident of accurate results. Figure 6.3 plots the mean with outliers to the

 93

maximum and minimum values for modulus in plot (a) and yield stress in plot (b). On

the right hand side of the plot is an additional reconstruction with a smaller RVE size.

Model numbers five and eight, with 60R = 20N =and , are not shown in Figure 6.3, but

have yield stresses of 40.33 MPa and 37.78 MPa, respectively.

R (LRVE / Lvoxel)

20 30 40 50 40

M
od

ul
us

 (
G

P
a

)

30

35

40

45

50

55

60
N = 20
N = 16

R (LRVE / Lvoxel)

20 30 40 50 40

σ y (
 M

Pa
)

30

35

40

45

50

55

60
N = 20
N = 16

(a) (b)
Figure 6.3. Variation in modulus (a) and yield stress (b).

 Due to the inherently larger variation in stress-strain curves, it is hard to

determine from Figure 6.3 the best model for analysis. The need for accuracy must also

be balanced with the significantly larger computation times required to analyze a more

refined microstructure. In Figure 6.4 and Figure 6.5, contour plots are shown for

realization cross-sections with increasing RVE sizes, but with a constant element size.

The figures are scaled to show the size relationship between images. The stresses are

obviously dependent on the loading in the x-direction. In the smaller sizes in Figure 6.4,

higher stresses appear to be more heavily distributed at the edges of the microstructure.

 94

(a)

(b)

Figure 6.4. Stress contour plots for (a) R=30; N =12 and (b) R=40; N =16.

95

(a)

(b)

Figure 6.5. Stress contour plots for (a) R=50; N =20 and (b) R=60; N =24.

96

 While the contour plots provide a qualitative clue about stress behavior, the mark

functions in Figure 6.6 provide a quantitative measure of this edge effect. For four

different RVE sizes, at the point of yield, the mark function is calculated with the binning

parameter set for the x-direction stresses to be greater than four times the yield stress.

Since it is for all phases, including the pore phase, it is normalized by one and literally

provides the percentage for the entire volume.

r (μm)

0 2 4 6 8 10 12

 M

2(b
) (1

x1
0-2

)

0

1

2

3

4

5

6

7

R = 30
R = 40
R = 50
R = 60

b = [σxx > 4σy for all phases]

Figure 6.6. Mark probability function for different RVE sizes at yield.

 Finally, plots of the stress-strain curves are shown in Figure 6.7 for sets 3-4 in

Table 4.1. The plot compares the stress-strain curves of RVEs of the same size but

different discretization, where the maximum and minimum curves for each realization set

are shown. The middle section of grey is the overlap between the two different RVE

sizes. The overlap between the stress-strain curves for the two different sets of

realizations shows that the deformation behavior is inherent to a particular microstructure

97

and independent of RVE size and voxel size. This is so long as RVE size and voxel size

are sufficient. Although the smaller element size for the 50R = realizations seems

slightly more capable of capturing a higher amount of damage and plastic behavior in the

composite, as shown by its lower bound in Figure 6.7. The stress-strain curve of a

random distribution with 40% porosity is also included since it provides insight into the

impact of microstructure order for the damage and plasticity models. The much higher

stress-strain curves for the random microstructure highlight that pore size and the

arrangement of the nickel and YSZ do influence stress-strain behavior, much like results

for modulus in Figure 4.5.

Strain (mm/mm 1x10-3)

0.0 0.5 1.0 1.5 2.0

S
tre

ss
 (

M
P

a
)

0

20

40

60

80

Upper Bound; R = 40
Overlap
Lower Bound; R = 50
Random

Figure 6.7. Stress-strain curves for different realizations sets of 40% Ni-YSZ.

 98

6.3.2. Microstructure analysis

6.3.2.1. Base model

 Once the RVE is determined, the first step is extensive examination of the base

model, the 40% porous microstructure with the same features as the original ORNL

sample. The model was from set 4 in Table 6.1 and has a yield stress nearest the average

yield for the realizations. It was strained until a fully plastic state occurred, and then each

of the tools described in sections 6.1and 6.2.3 were applied. First, using equation (6.3),

the stress-strain curves for the nickel and YSZ phase are plotted in Figure 6.8. Next,

mark functions for the stresses in all three phases (Figure 6.9) and then the mark

functions for yield and damage in only the nickel and YSZ phases (Figure 6.10) are

studied. Each mark function is shown for the direction of loading (x-direction), and the

direction normal to loading (yz-plane), and can be seen to vary depending on direction.

In Figure 6.10 the nickel and YSZ probability distributions are also shown for

comparison purposes. The plots show the amount and interaction of the field behaviors.

 Finally, the stress distributions occurring in nickel and YSZ are shown in Figure

6.11(a-b). In Figure 6.11 (c-d), the stress distributions are plotted for only the damaged

or plastic regions in the base model. In Figure 6.11 plots (a) and (d) fit a Weibull

distribution, while YSZ in (b) did not fit a normal or Weibull distribution and was left as

a histogram. Only the areas of plastic strain for nickel matched a Gaussian distribution.

For increasing strains the overall stresses in (a) and (b) changed very little compared to

the significant changes seen in the plastic and damage zones in (c) and (d). The shift in

curves for (c) and (d) are partly due to redistribution of stresses, but also the increase in

the average effective stress, , within the composite. oσ

 99

εxx (mm/mm 1x10-3)

0 1 2 3 4

σ xx
 (

M
P

a
)

0

10

20

30

40

50

Nickel
YSZ
Ni-YSZ

Figure 6.8. Average stresses carried by nickel and YSZ for base model.

r (μm)

0 2 4 6 8 10

M
2(b

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
x; σxx > 0

x; σxx > σavg

yz; σxx > 0

yz; σxx > σavg

Figure 6.9. Mark function for all phases at point of yield for base model.

 100

r (μm)

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.30
M

2(b
)

x; εp > 0 at εy

yz; εp > 0 at εy

x; εp > 0 at 200% εy

yz; εp > 0 at 200% εy

S2
Ni

(a)
r (μm)

x; D > 0 at εy

yz; D > 0 at εy

x; D > 0 at 200% εy

yz; D > 0 at 200% εy

S2
YSZ

M
2(b

)

0 2 4 6 8 10

(b)
Figure 6.10. Mark functions for (a) plastic strain in Ni and (b) damage in YSZ.

σxx / σo

-4 -2 0 2 4 6 8 10

%
 N

ic
ke

l

0

4

8

12

16

20
75% εy

100% εy

125% εy

150% εy

200% εy

σxx / σo

-4 -2 0 2 4 6 8 10

%
 Y

SZ

0

4

8

12

16

75% εy

200% εy

(a) (b)

σxx / σo

-4 -2 0 2 4 6 8 10

%
 N

ic
ke

l

0.0

1.0

2.0

3.0

4.0

5.0
75% εy

100% εy

125% εy

150% εy

200% εy

σxx / σo

-4 -2 0 2 4 6 8 10

%
 Y

SZ

0.0

0.2

0.4

0.6

0.8

1.0
75% εy

100% εy

125% εy

150% εy

200% εy

(c) (d)
Figure 6.11. for Ni (a) ,YSZ (b), plastic (c) and damage zones (d) at multiple strains. xxσ

 101

6.3.2.2. Porosity

The damage and plasticity behavior for a 22% porous model was also calculated,

and the yield stress was found to be 101.47 MPa. When the stress-strain curves for the

22% model and the 40% model are normalized by their respective yield stresses, the

curves are very similar, as shown in Figure 6.12.

Strain (mm / mm 1 x 10-3)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

σ xx
 /

σ y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

22% Porosity
40 % Porosity

Figure 6.12. Stress-strain curves for 22% and 40% porosity.

6.3.2.3. Microstructural variation

 In Table 6.1, four different microstructures are listed with changing characteristic

lengths of the Debye random media for each of the phases. Stress-strain curves for these

different realizations are plotted against the base model (Figure 6.13). While changes are

not large, some variations can be seen, such as the early flattening of the curve when the

characteristic length of nickel is increased. There is also an increase in strength with an

 102

increase in YSZ. While the stress-strain curve is slightly higher for the increased pore

length scale, it has basically the same shape as the base model.

εxx (mm/mm 1x10-3)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

σ xx
 (

M
P

a
)

0

10

20

30

40

50
base model (4)
increased pore (9)
increased YSZ (10)
increased nickel (11)

Figure 6.13. Stress-strain curves for changing characteristic lengths.

 To gain more insight into the stress-strain curves in Figure 6.13, the distribution

plots are found for the percentages of nickel and YSZ experiencing plastic strain and

damage, respectively. The plots are similar to those in Figure 6.11(c-d) except only the

stress distributions at yield are shown, and multiple realizations are compared. Once

again, nickel matched a Gaussian distribution and YSZ was a Weibull curve. In Figure

6.14(a) the shapes of the base model and increased pore curves are the same even though

the magnitude differs, and in Figure 6.14(b), the peaks match for the two curves.

 103

σxx/σavg

0 2 4 6 8 10

%
 Y

SZ

0.00

0.05

0.10

0.15

0.20 base model (4)
increased pore (9)
increased YSZ (10)
increased nickel (11)

(a)

σxx/σavg

2 3 4 5 6 7 8

%
 N

ic
ke

l

0.0

0.5

1.0

1.5

2.0

2.5

3.0
base model (4)
increased pore (9)
increased YSZ (10)
increased nickel (11)

(b)

Figure 6.14. Distribution fits for damaged YSZ(a) and plastic nickel(b) at yielding.

104

6.4. Discussion

6.4.1. RVE size and discretization

The increased variability in the RVE size and discretization results means that the

methodology from Chapter 4 is not necessarily the best way to determine RVE size. It is

certainly the least efficient for the larger computer models. In fact, Figure 6.3 shows that

the variation of yield stress is much larger than the modulus even for the small sample

sizes. However, the figure does show that smaller RVE sizes have a negative impact on

both accuracy and standard deviation. Recall that very small RVE sizes accurately

predicted linear material properties. Instead, the ability to study stress distributions

within the microstructure through histograms and mark functions provides more insight

into the microstructure.

In the plots of the mark functions for stresses in all phases (Figure 6.6), the larger

sizes of and reach a fairly smooth LRO as compared to that of the smaller

sizes. This is especially true for

50R = 60R =

30R = , which exhibits an almost periodic nature across

its length. When the curves are compared to the equation for Debye random media (eqn.

2.2), the curves match fairly well with a characteristic length of 0.6 μm, especially for the

larger sizes. Overall, the mark correlation function appears to show the influence of edge

effects, and when the binning stress is high enough, the curve acts similar to a two-point

probability function.

6.4.2. Data analysis of base model

Figure 6.8 through Figure 6.11 provide a wealth of information about the internal

stresses occurring in the microstructure. They feature stress decomposition, mark

105

functions, and probability distributions, and each figure provides a different insight into

the cermet’s behavior. To begin with, the stress decomposition of Figure 6.8 showed that

nickel and YSZ carry very similar loads, but at a certain point, YSZ does not carry an

increasing load. Contrast this with the fact that only 7.0% of YSZ, equivalent to 2.3% of

the entire sample volume, even experiences damage at two times the strain at yield. On

the other hand, 12.9% of nickel undergoes a slightly higher occurrence of plasticity.

However, due to the smaller volume fraction of nickel, this represents only 3.5% of the

entire volume.

The distribution of damage and plasticity illustrates the non-uniform stress

distribution within the microstructure, and at yield, thirteen percent of the solid mass is

carrying a negative or zero load. The mark function in Figure 6.9 verifies that little more

than fifty percent of the total volume is carrying a tensile load, and this tensile load is

fairly independent of the loading direction, the x-directions, and the cross-planes, the y

and z-directions. Therefore, this part of the microstructure could be considered “fully

connected,” such that this region will always carry an initial load regardless of size.

However, when the binning value for stress is above the average stress, the mark function

obviously changes with direction, although both curves have the same LRO behavior.

When fitted to the Debye equation, the characteristic length of the curve in the x-

direction is twice that of the cross-plane direction. This means that the higher stresses are

more closely grouped and continuous in the direction of loading. As the stress spreads

away from areas with high stress, the grouping becomes smaller and shorter in range. It

is also noteworthy that the characteristic length in the cross-planes and for the tensile

stress curves is between 0.55 – 0.60 μm, a value in between the length scales of the YSZ

 106

and nickel phases. This directly links the stress distributions occurring to the specific

microstructure.

In Figure 6.10, the mark functions for the occurrence of damage and plasticity

provide information about the occurrence of specific failures. At the yield strain, the

relationship between sites of plasticity and damage is vanishingly small at 2 μm. At two

times the yield strain, the plasticity of nickel shows no particular order in either the short

or long range. The curves in the yz-plane are still less than those in the x-directions,

which corresponds to the stress distributions discussed previously. Damage is much

more localized than plasticity in all directions. Interestingly, it also appears damage is

slightly higher in the cross-plane than in the direction of loading. Most likely, damage

occurs at a point and then spreads perpendicular to the initial damage site, which

corresponds with the maximum stress criteria used for YSZ.

The last data tool was distribution curve fitting of histograms, and Figure 6.11

used four different distributions to study the microstructure. Both nickel and YSZ have

large right leaning stress distributions (Figure 6.11 (a) and (b)), which result from the

lack of compressive stresses in the microstructure. The fact that YSZ does not fit a

Weibull distribution results from the bulk of the stress being near the average stress value

in the microstructure. This is probably due to its larger volume fraction providing a

slightly more uniform stress distribution. Surprisingly, neither the nickel nor YSZ

distribution change significantly in shape or size with increasing strain, meaning that

even as plasticity and damage occur the overall stress interactions between the phases

stay the same. The strong right leaning distributions correspond well to the notion of

failure in materials. Defects lead to areas of high stresses, which then lead to failure, and

 107

although defects are not specifically modeled the distribution of Ni, YSZ, and pores lead

to similar behavior. It would also be expected that for different microstructures different

stress distributions would result. For instance, a completely random distribution would

probably have a Gaussian distribution since each phase is randomly distributed.

In contrast, in Figure 6.11(c) and (d), the distributions for the plastic and damage

zones change drastically, with increasing strains, mainly in size. Nickel has a Gaussian

distribution for all strains and the shifting of the curve to the left for increasing strain

comes from the change in stress distribution from previously deformed elements.

Looking at Figure 6.11 (a) for increasing strains, the Gaussian distribution slowly starts

to show a higher left skew. This comes from high stress being “disconnected” from the

model as damage and plasticity increase. The YSZ distributions of Figure 6.11 behave

exactly as expected, since as each element continues to undergo damage, the stresses

continually decrease.

6.4.3. Microstructure variation

The microstructure was varied either by volume fraction or internal length scales.

Changing the volume fraction for the microstructure showed that the calculated yield

stress was higher, but that the actual shape of the stress-strain curve was similar at least

up to yielding. The 22% porous realization is the only simulation to actually show failure

at any point, which for the kinematic load, occurred near the edge and spread in the yz-

plane. This makes sense as damage growth occurs in the cross-plane. An examination of

the mark curve (plot not shown) for binning with all stresses greater than the average

current stress found that the SRO matched that of a Debye function with a 0.6 μm.

However, the LRO order was greater than that of the Debye function, suggesting that the

 108

stresses are correlated at a much larger length scale for the smaller porosity

microstructure.

When changing the internal length scales, the goal was to change the actual shape

of the stress-strain curves in some significant way, and from Figure 6.13, the most

significant change occurs with a change in YSZ length scales. The curves with increased

YSZ exhibited better post yielding behavior. Looking at Figure 6.14(a), it also has the

smallest and most right leaning distribution. Apparently the grouping of YSZ in larger

clusters prohibits damage growth. Yielding in nickel, as shown in Figure 6.14(b), is

fairly insensitive to changes in length scales, although the largest curve is the increased

YSZ model. Therefore, larger YSZ particles also help shift loading to the more ductile

nickel, improving the post yielding behavior. It is of interest that changing length scales

had at most a potential 5% change in modulus, but those changes could then result in

significant changes in the stress-strain curves

6.5. Summary

The voxel reconstructions of previous chapters were applied to a study of

nonlinear deformation. By setting the YSZ phase properties to those for brittle failure

and the nickel phase to that of plastic behavior, a yield stress value of 40 MPa was

predicted for 40% Ni-YSZ. The analysis found that for RVE size, yield stress was more

variable than modulus and a larger RVE size, but not necessarily a smaller voxel size,

was needed than was usually the case for a linear analysis.

Then while varying the microstructure and studying in detail one base model, the

following conclusions were made about failure in the actual cermet:

 109

• the mark function shows a correlation between microstructure and stress
distributions,

• the stresses in each phase have a Weibull type distribution,

• the ratio of yield stress to modulus is similar for 22% and 40% porosities, and

• a slight change in YSZ length scales has a significant impact on the stress-strain
curves.

Future work on this area would focus on deformation behavior after yielding.

While examined in this chapter, much remains unknown about how the constituents,

especially nickel, would actually change after initial yielding or damage. Implementation

of an incremental plasticity theory would better model unloading behavior and address

the fact that the stress distribution within nickel is only relatively monotonic. Another

aspect of interest would be examination of fracture in the cermet, although published

experimental data exists for fracture properties of the anode [28, 33, 87]. Experimental

information on the stress-strain behavior of the anode would be useful, though Radovic

and Lara-Curzio did find bi-axial strength values 63.8 ± 19.7 MPa [31]. While this does

not correspond exactly with yield stress behavior, the values predicted within this work

appear reasonable.

 110

CHAPTER 7

TIME-DEPENDENT DEFORMATION

As discussed in the Introduction (recall Figure 1.2) stresses in the fuel cell are

dependent on a complex interaction of manufacturing, operating conditions, and cell

configuration. However, even without external loading the thermal mismatch of the

electrolyte and anode bi-layers will still result in a constant stress in the anode material.

Then at the most basic level, the cermet will carry internal stresses due to the thermal

mismatch of nickel and YSZ. These two conditions, along with the fact that pSOFCs

undergo high temperatures for extended periods of time, make the study of time-

dependent deformation of nickel within the composite a priority.

There are many unknowns concerning the time-dependent, or creep, deformation

of the anode material. Both numerical and experimental studies of the anode-electrolyte

bi-layers have found that the residual stresses in the electrolyte are in compression

resulting from the initial sintering at high temperatures [34, 103]. Lara-Curzio et al.

found an initial drop in these residual stresses at 800°C due to creep deformation of Ni-

YSZ [34]. Gutierrez-Mora et al. specifically studied creep in the bi-layer and found that

at high temperatures (> 1100ºC) nickel controlled deformation, but that the bi-layer

deformation did not correlate with nickel stress exponents [35]. Other studies of nickel

aggregation primarily focused on electrical performance and not structural properties [18,

21, 23].

 111

The voxel reconstructions were used to examine the cermet properties

independent of the bonded electrolyte layer. By examining an initially stress-free anode

with different applied strains and strain rates conclusions can be extrapolated to possible

PEN behavior. This chapter will first introduce the nature of stresses in the PEN layer

that result from thermal mismatch during the sintering process. Then the stresses from

thermal mismatch in the anode itself will be discussed. Next, the methodology behind

creep in pure metals and composites will be covered before determination of RVE size.

An abbreviated study of RVE size for creep deformation is done, and the different

measurements to determine convergence of the stress-strain curves are discussed.

Once RVE size is determined, four different features of creep in the anode

material are investigated: stress relaxation over time, strain rate dependence, the

significance of YSZ percolation, and finally the influence of the internal nickel length

scales. Each of these topics provides insight into the final deformation experienced by

the PEN layer.

7.1. Theory

7.1.1. Thermal stresses

The anode-electrolyte bi-layer is sintered at temperatures as high as 1400°C and

as the bi-layer is cooled to room temperature, the lower CTE of YSZ, YSZα , results in a

compressive stress in YSZ and a tensile stress in the anode [19]. Figure 7.1 shows the

resulting warpage that occurs during the cooling process, where higher shrinkage in

nickel deforms the electrolyte. Since sintering occurs at temperatures higher than

operating temperatures, this stress distribution will occur at all operating temperatures.

 112

Experiments have found these electrolyte compressive stresses range from 500-800MPa

even at high temperatures [34, 103]. Recall that the electrolyte typically has heights of

10μm compared to 1mm for the anode, meaning the anode will carry significantly less

stress. For the previous dimensions and for a compressive electrolyte stress of 800MPa,

the stress in the anode would be 8MPa.

sT T<
YSZ Ni YSZα α −<

0Ni YSZσ − >

0YSZσ <

Stress free at sintering

sT T<
YSZ Ni YSZα α −<

0Ni YSZσ − >

0YSZσ <

Stress free at sintering

Figure 7.1. Residual stresses in the bi-layer.

 If the anode is heated without an external load, the distribution of stresses within

the composite will vary around an average result. In fact, since the CTE of nickel is

greater than that of YSZ, the average stresses in YSZ will be positive compared to

negative stresses in nickel. Figure 7.2 illustrates the difference in average stresses in each

phase for a temperature increase without additional loading. In Figure 7.2 both nickel

and YSZ are purely elastic and the model is idealized in that PEN residual stresses are not

incorporated. The magnitude of the average stresses is dictated by the volume fractions

of each phase such that equilibrium is satisfied. Also at the Curie point, the relationship

to the composite CTE can be seen with the mirroring of the stress spikes due to nickel’s

 113

paramagnetic transition. The creep deformation of nickel will therefore vary throughout

the microstructures due to this distribution of stresses. As nickel deforms so will the

equilibrium relationship between nickel and YSZ. The question then becomes what is the

overall impact of nickel deformation on the anode.

Temperature (ºC)

0 100 200 300 400 500

Av
er

ag
e

σ xx
 (

M
P

a
)

-300

-200

-100

0

100

200

Nickel
YSZ

Figure 7.2. Internal stresses in Ni-YSZ for stress free temperature increase.

7.1.2. Composite creep

Since in comparison to nickel, YSZ will experience little deformation over time, it

can be assumed that temperature-dependent deformation of Ni-YSZ will be controlled by

the creep behavior of the nickel phase. First though, we present a temperature-dependent

definition of strain for the composite as shown in equation (7.1). This definition is for the

bulk response of the composite, even though, as illustrated in Figure 7.2, internal stresses

will exist even at a stress-free stage for the composite. For small times the total strain of

 114

εtotε thmεthe composite, , is the sum of the elastic, , and thermal strains, , occurring in

the composite such that

tot thmε ε ε= + . (7.1)

Therefore Hooke’s law for a uniaxial loading must account for the thermal deformation,

and total strain is now defined as

tot T
E
σε α= + Δ . (7.2)

Over extended time periods, the nickel phase will begin to experience creep and

the total strain must now include creep strain, cε , shown in (7.3),

tot thm cε ε ε ε= + + . (7.3)

In metals, creep can typically be broken down into three stages, an initial fast

stage of strain, a long term steady-state deformation, and finally, a fast deformation

preceeding catastrophic failure, as illustrated in Figure 7.3 (a). The classic approach to

creep in metals uses an Arrhenius equation to describe the steady-state strain rate, which

is defined in (7.4).

 , where (7.4) /n Q RTA eε σ −=�

A and are dimensionless constants. Q is the activation energy with units of calorie per

mole.

n

R is the universal gas constant and T is the temperature. The strain rate is the

derivative of strain with respect to time of the total strain, defined as

cd
dt
εε =� . (7.5)

Since both thermal and elastic strains are independent of time, they drop from the

equation(7.5). In studying creep, the n exponent is often of primary interest since it

describes the slope of the log strain rate versus stress curve (see Figure 7.3 (b)).

 115

Log stress

Log Strain Rate T1
T2

T3

T1> T2> T3

n

Primary

Secondary

Tertiary

TIME

TOTAL STRAIN

(b) (a)

Figure 7.3. Illustration of stages of creep (a) and log stress-strain curves (b).

For a pure material, once steady-state creep has been reached, the stress will

become constant with time. This is not necessarily true for a metal-ceramic composite.

Initially a stress-strain curve of the composite will have an instantaneous slope equal to

the modulus of the microstructure, , but over time this slope will change. Assuming

that creep in the ceramic phase is minimal, once the steady state strain is reached in the

time-dependent phase, the microstructure will continue to deform by the rules governing

the remaining phase. In Figure 7.4, the stress-strain curves from an FE analysis of pure

nickel and a Ni-YSZ composite are plotted for a constant strain rate and temperature. It

can be seen that over time as nickel experiences creep, a steady-state modulus,

iE

ssE , value

is reached for the composite. This value is equivalent to the modulus of the YSZ portion

of the composite. Since the load is applied with a constant strain rate, the curve would

have the same behavior when plotted against time.

 116

Strain

S
tre

ss

pure metal
metal - ceramic
Ess

Ei

Figure 7.4. Illustration of composite creep for a constant strain rate and temperature.

7.2. FE model

In the analysis of time-dependent deformation, several models of different

element and RVE sizes are examined first, followed with reconstructions that vary either

porosity or internal length scales. A complete list of the reconstructed models is provided

in Table 7.1.

The YSZ material is the same elastic material from Chapter Four, but the nickel

material is modified to account for time-dependent deformation. A temperature-

dependent modulus and CTE is used for nickel, while a steady-state creep formulation is

used based on equation (7.4). The parameters for nickel creep were determined from

multiple published works [104-108]. Weertman and Shahinian found the creep exponent,

, to be 4.6, which was used for nickel in this work [105]. The material data is also n

 117

modified to account for a temperature-dependent modulus. The complete property data is

found in Appendix D. All simulations are run at 500°C unless otherwise specified.

Two different loading conditions are used throughout. The stress relaxation

model loads the model to an initial strain in the x-direction and a constant temperature for

the entire model. The model is then held at a constant strain and temperature over time to

allow stress relaxation to occur. The second model applies an increasing strain over time

in the x-direction for a constant temperature. The strain is applied so that the strain rate

for the composite is constant over time.

Table 7.1. Time-dependent microstructure realizations.

λNi
(μm)

λpore
(μm)

λYSZ
(μm)

Lvoxel
(μm)

LRVE
(μm) poresϕNiϕ YSZϕ N R Mod. Set

1 0.40 30

2 0.30 400.6 0.4 0.4 .27 .33 .40 12 20 R

3 0.24 50

4 0.24 7.2 12 30
N 0.6 0.4 0.4 .27 .33 .40

5 0.24 9.6 16 40

6 .46 .14 .40

7 .44 .16 .40

8 .42 .18 .40 YSZϕ 0.6 0.4 0.4 .30 12 20 40

9 .36 .24 .40

10 .30 .30 .40

11 0.9 0.4 0.4 .27 .33 .40 0.24 16 18 60
 Niλ

12 0.3 0.4 0.4 .27 .33 .40 0.20 8 20 40

 118

7.3. Results and discussion

7.3.1. RVE size and discretization

Several assumptions started the analysis of acceptable RVE size and

discretization. The first was that since for this analysis, nickel is the only phase

undergoing nonlinear deformation, then convergence behavior must be better than that

for the damage and plasticity analysis, where both phases experienced nonlinear

deformation. The second assumption was that our primary concern is the final steady

state deformation of the microstructure, ssE , as illustrated in Figure 7.4. To that end, the

same base microstructure from Chapter Six is studied for several different RVE sizes and

discretizations. Table 7.1 lists values for the instantaneous modulus, the stress and slope

of curves at an arbitrary strain, and finally, steady-state modulus as the strain approaches

infinity. Each model is loaded in the x-direction with a constant strain rate. It should be

noted that an initial thermal strain was preset for a CTE of 12.07 x 10-6 / ºC at 500ºC for

all realizations.

 119

Table 7.2. RVE size and discretization for a strain rate of 1x10-6 /s at 500ºC.

ssE at

(GPa)

ssE at σ at
R N iE 36.7 10ε −= × # ε → ∞ 36.7 10ε −= ×(GPa) (MPa) (GPa)

1 43.87 148.8 9.29 1.45
2 42.34 139.8 8.77 1.56 30 20
3 46.16 154.4 9.60 1.71

Average 147.7 ± 7.37 9.22 ± 0.42 44.12 ± 1.92 1.57 ± 0.13
1 45.27 155.9 9.60 2.39
2 42.07 146.3 9.49 2.49 40 20
3 43.28 150.4 10.25 2.79

Average 150.9 ± 4.82 9.78 ± 0.41 43.54 ± 1.62 2.56 ± 0.21
1 41.77 135.3 7.92 1.43
2 43.59 144.2 10.8 1.67 50 20
3 41.47 145.6 10.3 2.20

Average 141.7 ± 5.59 9.67 ± 1.54 42.28 ± 1.15 1.76 ± 0.40
1 40.34 137.9 8.68 2.38
2 41.01 133.4 7.82 1.38 30 12
3 39.88 139.5 8.48 2.93

Average 136.9 ± 3.16 8.33 ± 0.45 40.41 ± 0.57 2.23 ± 0.79
1 41.53 137.6 10.16 2.99
2 44.71 142.8 9.96 3.54 40 16
3 45.29 138.2 9.30 2.20

Average 139.5 ± 2.84 9.81 ± 0.45 2.91 ± 0.67 43.84 ± 2.02

In the data from Table 7.2, one accurate estimate of convergence of the creep,

RVE size, is not immediately obvious. As in Chapter Four, the modulus of the

microstructure is easily determined for a minimum R and of 40 and 16, respectively.

However, for the stress at a given strain, the RVE size becomes much more significant

and the convergence behavior is similar to what was found for the damage and plasticity

analysis in the previous chapter. One factor of interest is that the early steady-state

N

 120

modulus values show a more reliable convergence behavior than that of the infinite value.

The variability probably results from the increase of length scale for the non-YSZ phases,

as nickel no longer has a non-uniform stress distribution. In other words the

microstructure becomes similar to a two phase composite of pores and YSZ.

To further investigate this behavior, Figure 7.5 (a) plots the average stresses for

both nickel and YSZ for model 1 in Table 7.1. The curve covers a total of 50 hours with

a steadily increasing strain at a constant strain rate. It should be noted that this is not a

realistic portrayal of cermet behavior, because catastrophic failure would occur at a much

lower strain. However, the curve does illustrate that after a reasonably short time, the

slopes of the Ni-YSZ and YSZ curves are almost identical. Figure 7.5(b) plots the

derivative of the stress with respect to strain, a value with units equivalent to that of

Young’s modulus. In Figure 7.5(b), the curve approaches zero very quickly, at little

more than five hours. To that end, the steady-state slope at reasonably small times in

combination with the stress value for a given strain rate appears to be a better measure of

convergence behavior, than either the initial modulus or the steady-state value as time

approaches infinity.

 121

Time (hrs)

0 10 20 30 40 50

σ xx
 (

1
x

10
3 M

P
a

)

0.0

0.2

0.4

0.6

0.8

1.0

Ni
YSZ
Ni-YSZ

(a)

Time (hrs)

0 10 20 30 40 50

dσ
xx

/d
ε

(G
P

a
)

0

10

20

30

40

50

60

Nickel
YSZ
Ni-YSZ

(b)

Figure 7.5. Stress decomposition for cermet (a) and the derivative of stress change with
respect to strain (b) over time for a strain rate of 1 x 10-6 /s at 500°C.

122

7.3.2. Base model

7.3.2.1. Stress relaxation

 From the previous convergence analysis, the highlighted realization from Table

7.2 was used to study the variation in behavior for stress relaxation and strain rate. The

first set of FE models loaded the microstructure to the approximate yield stress estimated

in Chapter Six and measured the stress relaxation over time. This was done at both

500ºC and 700ºC for a total of 10,000 hours (refer to Figure 7.6). The increase in

temperature has a significant impact on the amount of time required to reach steady state

and in the initial stress drop. Next, in Figure 7.7, the impact of the initial stress on the

stress relaxation is shown at 700ºC. Also of interest is the rise in stress for a pre-stress

value of 10 MPa. This is due to nickel being primarily in compression at such low stress

values.

Time (Hrs 1 x 103)

0 2 4 6 8 10

σ xx
 (

M
P

a
)

0

10

20

30

40

50

500ºC
700ºC

Figure 7.6. Stress relaxation over time for an initial stress of 40MPa.

123

Time (Hrs)

0 50 100 150 200 250 300 350

σ xx
 /

σ i

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 MPa
20 MPa
30 MPa
40 MPa

Figure 7.7. Stress relaxation for multiple pre-stresses at 700ºC.

Study of the base model (recall the highlighted realization in Table 7.2) led to

several conclusions about the stress behavior of the microstructure. In Figure 7.6 the

cermet lost almost seventy-five percent of its initial load in a relatively short amount of

time, but the final difference between the two temperatures was only 2MPa. Curve fits to

the histograms of stresses at 700ºC, Figure 7.8, support this by showing how the nickel

stresses converge at a mean value over time. Also significant is that as nickel

experiences creep, the stresses in YSZ shift from a Weibull distribution in Figure 7.8(b)

to a Gaussian distribution at 1,000 hours in Figure 7.8(d). This results from the nickel

phase no longer carrying the compressive load from thermal expansion. The loading of

nickel is also higher than that of YSZ initially, because of its smaller volume fraction.

The amount of nickel carrying an initial compression also matters, since, as shown in

Figure 7.7, for the smallest load, an initial stress increase occurs.

 124

σxx /σavg

-20 -10 0 10 20

%
 N

ic
ke

l

0

2

4

6

8

10

σxx /σavg

-10 0 10 20 30 40

%
 Y

SZ

0

4

8

12

16

20

(a) (b)

σxx /σavg

-5.0 -2.5 0.0 2.5 5.0

%
 N

ic
ke

l

0

10

20

30

40

50

60

1 hrs
1,000 hrs
10,000 hrs

σxx /σavg

-6 -4 -2 0 2 4 6 8 10

%
 Y

S
Z

0

10

20

30

40

50
1 hrs
1,000 hrs
10,000 hrs

 (c) (d)
Figure 7.8. Stress distributions for nickel (a) and YSZ (b) at zero time and for increasing

times for nickel (c) and YSZ (c) for an initial stress of 40MPa at 700°C.

7.3.2.2. Constant strain rate

Next, traditional stress-strain curves (thermal strain is present, but not plotted) are

shown for several different strain rates in Figure 7.9. The stress-strain curves are plotted

for eight different strain rates. For the largest strain rate, 1 x 10-1 /s, the total run time is

6.7 x 10-2 seconds and for the smallest strain the total time is 67,000 seconds. As the

total run time increases the final stress values decrease as more creep occurs in nickel.

 125

One factor of interest is that all the curves either overlap or intersect at 37 MPa and a

strain of 9 x 10-4 mm/mm.

εxx (1 x 10-3 mm / mm)

0 1 2 3 4 5 6 7

σ xx
 (

M
P

a
)

0

50

100

150

200

250

300

1x10-1 / s
1x10-2 / s
1x10-3 / s
1x10-4 / s
1x10-5 / s
1x10-6 / s
1x10-7 / s

Figure 7.9. Stress-strain curves for different strain rates at 500ºC.

7.3.3. YSZ Percolation

 In Chapter Three percolation and the percolation threshold were introduced.

Percolation described the connectivity of a phase in the system and percolation threshold

was the volume fraction at which a phase could be said to have an infinite cluster. Since

YSZ has the same characteristic length as the pore phase, then YSZ should exhibit

similar clustering behavior as the pore phase. To that end, the stress-strain curves were

examined for a constant porosity of 40%, but a steadily decreasing volume fraction of

YSZ. The curves in Figure 7.10 occur for a constant strain rate and temperature. Since

CTE will vary significantly with the increase in nickel volume fraction, each realization

 126

was loaded to an initial zero stress for its particular microstructure. It can be seen that as

the volume fraction of YSZ drops, the creep behavior of nickel becomes steadily more

dominant.

εxx (1 x 10-3 mm / mm)

0 1 2 3 4 5 6 7 8 9 10 11

σ xx
 (

M
P

a
)

0

20

40

60

80

100

120

140

160

180

14% YSZ
16% YSZ
18% YSZ
24% YSZ
30% YSZ
33% YSZ

Figure 7.10. Stress-strain curves for changing volume fraction YSZ for a strain rate 1 x
10-6 /s at 500°C.

 The impact of YSZ volume fraction is obvious from Figure 7.10, and it can be

seen that at 14% and 16% YSZ, the curves almost plateau, even just for a short time.

This corresponds to the prediction in Figure 3.5 that the phase will no longer percolate.

The fact that some load still exists is probably an artifact of the discretized microstructure

and the clustering assumption of full sides, where full sides of the cube are touching

instead of edges or corners. Volume size also has an impact, since percolation threshold

predicts an infinite cluster but does not prohibit a large cluster for a given volume. Table

7.3 lists the instantaneous modulus of each realization and also the steady-state value as

 127

strain approaches infinity. The value stays fairly consistent for all volume fractions,

but the other values change significantly. A plot of the steady-state modulus as strain

approaches infinity is the most obvious connection to the predicted percolation threshold

as shown in Figure 7.11. Interestingly at a certain point above 18% this relationship also

becomes linear.

iE

Table 7.3. Composite creep values for increasing volume fraction of YSZ.

ssE at σ at
iE ssE at ε → ∞ YSZϕ 21.0 10ε −= × 21.0 10ε −= ×

(GPa)
(GPa) (GPa) (MPa)

0.14 37.90 86.65 1.60 0.007

0.16 40.77 96.27 1.77 0.006

0.18 40.96 102.93 2.52 0.012

0.24 39.75 111.44 3.13 0.078

0.30 42.13 151.65 6.19 1.71

0.33 42.07 167.38 7.61 2.49

 128

Ess (GPa)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ϕ Y
S

Z

0.0

0.1

0.2

0.3

0.4

Figure 7.11. Steady-state modulus as strain approaches infinite.

7.3.4. Nickel Length Scales

To study the impact of length scales, the stress relaxation for three different

models was studied at 500ºC. The first is the same realization used in Figure 7.6, but

now a realization with a nickel characteristic length of 0.3 μm and 0.9 μm is also added

(refer to Table 7.1). Each model was initially loaded to a pre-stress of 40MPa before

allowing time-dependent deformation. The stress relaxation curves are shown in Figure

7.12.

 129

Time (hrs)

0 1 2 3 4 5

σ xx
 (

M
P

a
)

0

10

20

30

40

50

λNi = 0.3
λNi = 0.6
λNi = 0.9

Figure 7.12. Stress relaxation for nickel length scales at 500°C.

For the realization with a smaller nickel characteristic length, the stress relaxation

over time is slightly higher. In Figure 7.13 the mark correlation functions are plotted for

a value two times greater than the initial stress of 40MPa. Since the nickel stresses

converge towards a mean, only the YSZ function is shown and the function is normalized

by YSZ’s 2-point probability function. It can be seen that over time, the magnitude of the

stresses decreases, but the overall shape of the curves does not change. The smaller

nickel characteristic length also results in a higher stress distribution in YSZ, which

explains the higher stress relaxation seen in the 0.3 μm nickel length scale. The smaller

scale results in higher stresses between the two phases, increasing the amount of creep

nickel experiences. This is not an immediately obvious conclusion about creep behavior

in the cermet, since the first assumption would be that larger nickel sizes would lead to

higher creep. Also note that for the two larger nickel length scales the difference in

 130

behavior and mark functions is not as pronounced. This leads to the conclusion that the

nickel length scale must be smaller than the YSZ and pore scales in order to produce a

significant change.

r (μm)

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

M
2Y

S
Z (r

)

λNi = 0.3 for σxx > 160 MPa
λNi = 0.6 for σxx > 160 MPa
λNi = 0.9 for σxx > 160 MPa

(a)
r (μm)

λNi = 0.3 for σxx > 160 MPa
λNi = 0.6 for σxx > 160 MPa
λNi = 0.9 for σxx > 160 MPa

M
2Y

S
Z (r

)
0 2 4 6 8

(b)
Figure 7.13 The YSZ mark function at (a) zero time and (b) 5 hours.

7.4. Summary

The preceding results show the significant impact that nickel creep has on the

cermet. Data regarding the size of the RVE followed a behavior similar to that of

damage and plasticity, but was difficult to determine for infinite times. However, very

early on, the YSZ microstructure dominated deformation. Several factors influence creep

behavior, and it was found that initial stress and operating temperature both have serious

impacts. Finally, the rate of deformation and the amount of stress relaxation was affected

by YSZ percolation and nickel length scales, respectively.

 131

CHAPTER 8

SUMMARY AND CONCLUSIONS

 Three-phase composites are a fundamental component of planar solid oxide fuel

cells, a high density power system. In particular, the anode, the focus of this work,

consists of nickel, YSZ, and a continuous pore phase, where each phase is vital to the

proper operation of the fuel cell. Numerical studies of the PEN layer have found that

failure will most likely occur in the anode layer since it provides the structural strength

for the layer [13-16]. However, an extensive study of the anode’s structural behavior in

relation to its microstructure is lacking. This dissertation outlines a numerical method to

study composite behavior in relation to its microstructure and seeks to improve

understanding of porous cermets in general. Each chapter outlined a different component

of the analysis along with results and predictions of the composite behavior. This final

chapter briefly summarizes the preceding chapters, reviews major conclusions, and then

discusses the significance of this research.

8.1. Chapter summary

 The previous chapters have outlined a numerical methodology to study porous

cermets using voxel reconstructions. The approach first created a new “realization,”

which was a computer generated image constructed of voxels that matched a given set of

probability functions that were obtained from a physical representation of the

microstructure. This realization was then used to study multiple properties for the

 132

composite ranging from linear material properties to nonlinear deformation. Chapter One

introduced the theory and methodology behind creating the microstructure realizations.

Two different probability functions were used to create a realization of an ORNL anode

sample, the 2-point probability and lineal path functions. Chapter Two continued to

study the realizations, by using the cluster function to study whether a phase would

percolate or not.

 The next two chapters, four and five, studied the linear material properties of

porous cermets grouped as structural or transport properties. In Chapter Four, an

exhaustive study of the appropriate RVE and voxel size were undertaken in determination

of Young’s modulus and CTE. The methodology to determine RVE size was then used

in Chapter Five to determine the acceptable RVE size for determination of thermal

conductivity. The structural properties of modulus and CTE were predicted for different

porosities with a good match to experimental data, and once interfacial resistivity was

accounted for in the transport analysis, a good match to experimental results was also

achieved. The final section of each of these chapters was the creation of new realization

sets based on modified probability functions. This was done to link microstructural

behavior to the probability descriptors of the microstructure.

 From here, the research shifted from the prediction of material properties to a

nonlinear analysis of deformation behavior. The anode can be expected to experience

high stresses during assembly and from cell configuration, plus prolonged thermal

stresses during operation, both of which lead to nonlinear material behavior. First,

damage and plasticity were incorporated in the FE models and stress-strain curves plotted

for multiple realizations. The microstructures were studied by examining the average

 133

stresses in nickel and YSZ, determining the shape of the stress distribution within the

microstructure, or finally by use of a mark function. The mark function treats stresses, or

other field parameters, in the microstructure in a fashion similar to that of a probability

function that describes a specific phase. The methods of data analysis provided a

probabilistic description of the stresses in the composite. In Chapter Seven, time-

dependent deformation was studied by adding creep behavior to the nickel phase. Since

the PEN layer is known to experience stress relaxation after extended periods of time in

high operating temperatures, the anode behavior was specifically studied for that

situation. Also investigated were stress-strain curves for loading with a constant strain

rate, and this proved to be an effective way to see the impact of YSZ percolation on the

creep behavior of Ni-YSZ.

8.2. Major conclusions

 Each of the preceding chapters in this work studied a specific aspect of the anode

relevant to successful operation of the fuel cell and from that several conclusions about

cermet behavior were drawn. Because each analysis was based on similar sets of

realizations, the composite behavior can now be connected across many different material

behaviors. Initially a study of percolation in Chapter 3 found that the minimum volume

fraction needed for continuous porosity was 16%. It was also found the modulus was

more sensitive to percolation length than to cluster size, and a larger pore percolation

length gave a lower modulus. In fact, pore percolation was the only factor that could be

linked across multiple changes in microstructural length scales. Plus, improvements in

modulus lead to a decrease in CTE, which is beneficial to SOFCs since a common goal is

to match the anode’s CTE to YSZ. In Chapter Five’s transport analysis, it was found that

 134

interfacial resistance must be included in the thermal modeling, for it can contribute as

much as 50% to the total effective thermal conductivity. Each effective property was

found to be most influenced by a different feature of the microstructure;

• the modulus changes most with change in pore volume fraction,

• an increase in the percolation length of the porosity would cause a smaller
drop in modulus,

• the CTE was independent of porosity and strongly temperature dependent,

• and thermal conductivity had a linear relationship with the interfacial area of
nickel and YSZ.

 For nonlinear deformations, specific conclusions were drawn from studying the

interaction of nickel and YSZ. It was found that the brittle and ductile nature of YSZ and

nickel, would lead to damage spreading perpendicular from the strain, while plastic strain

increases the most in the direction of strain. The most significant change in post-yielding

behavior came from increasing the length scale of YSZ, while increasing pore size had a

minimal effect. Larger clustering of YSZ inhibited damage in that phase, and it was

found that although porosity affects modulus, nonlinear deformation is controlled by the

interaction of the nickel and YSZ phases.

 In the second nonlinear analysis for time-dependent deformation, YSZ controls

the final shape of the microstructure, but the length scale of nickel will influence the rate

of stress relaxation. Both temperature and the initial stress also strongly influence the

rate of deformation; however, the impact of pre-stress is greater since the initial

compression of nickel, due to thermal stresses, controls the amount of nickel creep.

 135

 The results from Chapters Seven and Eight lead to the following conclusions

• the post-yielding behavior of the composite is strongly influenced by changes
in the length scale of YSZ or nickel, and

• initial creep behavior is strongly influenced by nickel, but over time YSZ
controls the deformation.

 In a slightly different category, conclusions can also be drawn about the

methodologies used in this research. For instance, especially for the linear material

properties, a realization based on the 2-point probability functions accurately predicted

cermet behavior. Also for linear properties, RVE size controlled standard deviation while

voxel size (or discretization) controlled accuracy. This was not true for the nonlinear

analysis, and the RVE size needed to be larger for such analyses than was the case for a

linear analysis. The use of multiple realization sizes showed that the final results were

consistent across multiple realization sets for both linear and nonlinear analyses once

convergence of the RVE was reached.

8.3. Contributions

 Although this research was conducted based on the anode material used in fuel

cells, the methodologies developed here can be applied to other composites. The overall

process served as a platform to study a complex microstructure in a wide variety of ways,

and with minimal computational expense. The research modified existing

 136

methods and developed new techniques to provide new information about three-phase

composites. Tools that were enhanced include

• modification of SAM to model three-phase composites in 3D,

• use and then actual modification of realistic probability functions during the
stochastic reconstruction to relate material behavior to a given microstructure,
and

• the use of histograms and mark functions to study the internal stress
distribution within the microstructure.

New techniques in this research were developed in several different areas ranging from

RVE size determination to effective properties. They are described as follows;

• the use of discretization and RVE size parameters and box plots to provide a
visual tool in the determination of convergence for FE models for effective
properties,

• introduction of the percolation length to relate changes in pore size to changes
in modulus and CTE,

• calculation of interfacial resistivity parameter to account for imperfect
interfaces in the FE model, and to accurately predict thermal conductivity, and

• the study of YSZ percolation and introduction of a steady-state modulus in
examining creep in the Ni-YSZ cermet.

 Overall the research met the requirements for a successful analysis of three-phase

cermets. It modeled the interpenetrating microstructures in three dimensions, while

capturing the percolating nature of all three phases. Also important was the ability to

study the stress distributions occurring within the microstructure. To study the internal

stresses in this way allowed conclusions to be drawn about the interactions between

 137

phases and resulting bulk behavior. To that end some significant contributions

concerning cermet behavior are

• changes in porosity are more significant to modulus, than changes in internal
length scales

• changes in length scales of the microstructure will more strongly influence
post-yield and creep behavior than either modulus or CTE,

• the interface of nickel and YSZ is a significant factor for transport properties,
and

• the initial stress in the cermet will have a larger impact on stress relaxation
than temperature.

8.4. Future work

 Further work in this research can take place down several avenues. The accuracy

of voxel reconstructions could be studied for new microstructures, or modified

microstructures could be used to test the realizations’ ability to predict material behavior.

Specific to fuel cell research, further study of post-yielding and fatigue behavior can

provide more insights into failure of the PEN layer. Introduction of an incremental

plasticity model in nickel would allow the accurate modeling of unloading behavior.

First, experimental studies need to be developed to investigate the specific behavior of

nickel, and to a lesser extent YSZ, within the anode. This would lead to more accurate

material data to improve the accuracy of the analysis. Still voxel reconstructions proved

to be an effective way to study three-phase composites and have potential for further

development.

 138

APPENDIX A

PROBABILITY INDEPENDENCE

 139

 The voxel reconstruction used , , and to recreate each realization.

The following formulation, based on a personal communication from Dr. Garmestani at

Georgia Tech [59], proves that the three probability functions completely describe the

microstructure.

(1)
2S (2)

2S (3)
2S

 Global normality requires that

 (A.1)
3 3

()
2

1 1
1ij

i j
S

= =

=∑∑

 Local normality requires that

 (A.2)
3

()
2

1

ij
i

j
S V

=

=∑

 Equations (A.1) and (A.2), provide a complete relationship between the following

probability functions. Accounting for symmetry of the probability functions, if the three

functions used result in an independent matrix then the microstructure is accurately

described.

 For the set of , , and the matrix takes the form in (A.3). (1)
2S (2)

2S (3)
2S

 (A.3)

(11)
2

(22)
2

(33)
2

1 1
1
1 1

S
A S

S

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

1 ⎥
⎥

 Since the determinant of A is greater than zero the solution to the set of equations

is nontrivial. However, for , , and the determinant is equal to zero and

these probability functions do no describe the microstructure, as shown in (A.4).

(11)
2S (12)

2S (22)
2S

(11) (12)
2 2
(12) (22)
2 2

1
det 1 0

1 1 1

S S
S S = (A.4)

 140

APPENDIX B

RECONSTRUCTION CODE

 141

 Table A.1 provides a list of the CPP code used for the voxel reconstruction. The

table starts with the base program, followed with the environment header file. Each

following row lists the subprograms and header files listed in environment.h.

Table A.1. Reconstruction code.
createMatDebye.cpp
#include "environment.h"

int createMat(FileCall&, const SIZE&, vector<Material>&, bool, double, int);

int main() {
 string dir = "//nv//hp4//gtg580j//c_files//datFiles//";
 std::clock_t start = std::clock();
 Material phase1("NI", .35, 1), phase2("YSZ", .43, 2);
 Material phase3 = --(phase1 + phase2);
 vector <Material> phases;
 phases.push_back(phase1);
 phases.push_back(phase2);
 phases.push_back(phase3);
 cout <<"The microstructure is: " <<endl;
 cout <<phase1 <<endl <<phase2 <<endl <<phase3 <<endl;

 SIZE INN(40);
 int numReal = 10;
 queryDefaults(INN, numReal);
 string groupName = convert(INN.W());

 cout <<"Current identifier is " <<groupName <<endl;
 groupName = groupName + queryString();

 double cl;
 cout <<"What is diameter " <<endl;
 cin >>cl;
 int lro;
 cout <<"What is the LRO " <<endl;
 cin >>lro;

 string labelStr;
 for (int i = 0; i < numReal; i++) {
 labelStr = "seq" + convert(i + 1);
 FileCall names(dir, "ranMat", groupName, labelStr, ".dat");
 srand(i * 10);
 createMat(names, INN, phases, true, cl, lro);
 }

 cout <<"Clock time: ";
 cout <<((std::clock()- start)/(double)CLOCKS_PER_SEC) <<'\n';
 return 0; }

int createMat(FileCall& fc, const SIZE& INN, vector<Material>& phases, bool third,
double cl, int lro)
{
 string name = fc.name();
 cout <<"Current file name: " <<name <<endl <<endl;

 FileCall record(fc.getDir(), "log", fc.getDes(), "", ".log");
 string RECORD = record.name();

 //LOG FILE AND INITIALIZE CLOCK TIME
 ofstream log(RECORD.c_str(), ios::app);
 header(log, name, phases, INN);
 log << "The diameter is " <<cl <<endl;

 142

 log << "The long range order is " <<lro <<endl;
 std::clock_t start = std::clock();

 //CREATE SAMPLE
 const SIZE OUT = (INN > 10) ? INN + MAX_BORDER : INN + MIN_BORDER;
 int sample[OUT.S()];
 fillArray(sample, OUT.S(), 1);

 vector<Material>::iterator iter = phases.begin();
 ++iter;
 while (iter != phases.end()) {
 fillCenter(sample, OUT, INN, *iter);
 fillBorder(sample, OUT, INN, *iter);
 ++iter; }

 iter = phases.begin();
 while (iter != phases.end()) {
 log <<*iter;
 ++iter; }

 log <<OUT <<endl <<INN;
 //Ratio of CL's
 double ratioCharLen = 0.66666667;// is ORNL value
 log <<"The ratio of char. lengths is " <<ratioCharLen <<endl;

 //STOCHASTIC INITIALIZATION
 {
 int radius = (int) (2 * lro);
 //Stochastic <Corr Function> name(material, SIZE, radius, per. overlap);
 Stochastic <TwoPoint> stoch1(phases[0], OUT, radius, (int)cl);
 Stochastic <TwoPoint> stoch2(phases[1], OUT, radius, (int)(cl));
 Stochastic <TwoPoint> stoch3(phases[2], OUT, radius, (int)(cl));
 Energy s1(cl, phases[0], 'D');
 Energy s2(ratioCharLen * cl, phases[1], 'D');
 Energy s3(ratioCharLen * cl, phases[2], 'D');
 stoch1.total (sample);
 stoch2.total (sample);
 stoch3.total (sample);

 double eng = 0; double engPrime = 0;
 eng = s1.calc(stoch1.funcOut()) + s2.calc(stoch2.funcOut());
 double factor = 1;

 if (third == true) {
 stoch3.total (sample);
 eng = eng + factor * s3.calc(stoch3.funcOut()); }

 //START LOOP
 Counter c, reject, accept; //Initialize counters
 double acceptRate = 0;
 Schedule deluge(THRESHOLD); //Great Deluge algorithm
 IdLoc pA(3, OUT, INN), pB(3, OUT, INN);
 Coord cA = pA.get_loc(); Coord cB = pB.get_loc();
 VolStatus status;

 while (eng > ERROR) {
 c.incCount();

 pA.rotate();
 pB.rotate();

 std::clock_t startInt = std::clock();

 if (status.get() == true)
 findOnInterface(sample, pA, pB);
 else
 correctVolStatus(sample, pA, pB, status);

 cA = pA.get_loc(); cB = pB.get_loc();

 143

 double endInt = (std::clock() - startInt)/(double)CLOCKS_PER_SEC;

 std::clock_t startStoch = std::clock();
 stoch1.temp(sample, cA, cB);
 stoch2.temp(sample, cA, cB);

 engPrime = s1.calc(stoch1.funcOut()) + s2.calc(stoch2.funcOut());
 //engPrime = s1.calc(stoch1.funcOut());
 if (third == true) {
 stoch3.temp(sample, cA, cB);
 engPrime = engPrime + factor * s3.calc(stoch3.funcOut()); }

 if (deluge.deluge(eng, engPrime) == 1 || reject == INN.S() / 2) {
 eng = engPrime;
 stoch1.accept(cA, cB); stoch2.accept(cA, cB);
 if (third == true) stoch3.accept(cA, cB);
 reject.reset(); accept.incCount();
 if (status.get() == false)
 status.reset();
 else
 status.check(pA, pB);
 }
 else {
 pA.resetId(sample); pB.resetId(sample);
 reject.incCount();
 stoch1.reject(); stoch2.reject();
 if (third == true) stoch3.reject();
 }

 double endStoch = (std::clock() - startStoch)/(double)CLOCKS_PER_SEC;

 if (c % STATUS_COUNT == 0) {
 acceptRate = accept / STATUS_COUNT * 100;
 currentStatus(cout, eng, c, reject, acceptRate);
 currentStatus(log, eng, c, reject, acceptRate);
 accept.reset();
 //cout <<"\t\t" <<endStoch <<"\t\t" <<endInt <<endl;
 }

 if (c > MAX_COUNT) break;
 }
 finalStatus(cout, eng, c, ((std::clock()- start)/(double)CLOCKS_PER_SEC));
 finalStatus(log, eng, c, ((std::clock()- start)/(double)CLOCKS_PER_SEC));
 }
 //SHRINK ARRAY
 int center[INN.S()];
 shrinkArray(sample, center, INN, OUT);
 dataOutput(center, INN, phases, name);
 return 0;}
environment.h
#include "jmath.h"
#include "random.h"
#include "arrayFunctions.h"
#include "dataFiles.h"

#include "Counter.h"
#include "SIZE.h"
#include "Coord.h"
#include "Material.h"
#include "Stochastic1.h"
#include "IdLoc.h"
#include "VolStatus.h"
#include "Schedule.h"
#include "InputPar.h"

#include <ctime>

#include <string>
using std::string;

 144

#include <fstream>
using std::ifstream;
using std::ofstream;

#include <iostream>
using std::cout;
using std::cin;
using std::endl;
using std::ios;

#include <iomanip>
using std::setw;
using std::setprecision;

#include <vector>
using std::vector;
using std::iterator;
const double ERROR = 1e-7;
const double THRESHOLD = .000001;
const int MAX_BORDER = 0;
const int MIN_BORDER = 0;
const int MAX_COUNT = 10000000;
const int STATUS_COUNT = 10000;
jmath.h
#ifndef GUARD_jmath_h
#define GUARD_jmath_h

#include "random.h"
#include "SIZE.h"
#include "Coord.h"
#include "arrayFunctions.h"
#include <cmath>
#include <vector>
using std::vector;
#include <iostream>
using std::cout;
const double PI = acos(-1.0);

double heaviside(double);
double overlapping_sphere(double, double, double);
double debye_oscill(double, double, double, double);
double debye_decay(double, double, double);
double poly(long double, long double, long double, long double, long double, long double,
long double, long double);
int bin(double val);
vector <double> pureTwoPoint(int, SIZE, int*);
vector <double> pureTwoPoint(int, int, SIZE, int*);
#endif
jmath.cpp
#include "jmath.h"

double heaviside(double x)
{
 if (x > 0)
 return 1;
 else if (x == 0)
 return .5;
 else
 return 0;
}
double overlapping_sphere(double dia, double r, double vf)
{
 double g_func;
 double o_func;
 double vf2 = (double) 1 - vf;

 g_func = pow(dia, 2) / 2 *
 (PI - heaviside(dia - r) *
 (acos(r / dia) - (r / dia) * sqrt(fabs(1 - pow (r / dia,
2)))));

 145

 o_func = 1 - 2 * vf2 + pow(vf2 , 4 * g_func / (PI * pow(dia, 2)));

 return o_func;
}
double debye_oscill(double a, double b, double r, double vf)
{
 double o_func;
 double vf2 = (double) 1 - vf;
 double q = 2 * PI / b;
 if (r == 0)
 o_func = vf;
 else
 o_func = vf * vf2 * exp (-r / a) * sin (q * r) / (q * r) + pow(vf,
2);
 return o_func;
}
double debye_decay(double charLength, double r, double vf)
{
 double o_func;

 o_func = (1-vf) * vf * exp (-r / charLength) + vf * vf;

 return o_func;
}
double poly(long double c1, long double c2, long double c3, long double c4, long double
c5, long double c6, long double c7, long double x)

{
 double o_func;

 o_func = c1 * pow(x, 6) + c2 * pow(x, 5) + c3 * pow(x, 4) + c4 * pow(x, 3)
+ c5 * pow(x, 2) + c6 * x + c7;
 return o_func;
}
int bin(double val) {
 double decimal = val - (int) val ;
 if (decimal >= .5)
 return (int)ceil(val);
 else
 return (int)floor(val);
}

vector <double> pureTwoPoint (int mat, SIZE d, int* arr) {
 int maxR = d.min();
 double curR = 0;
 int binR = 0;

 int trials[maxR];
 int hits[maxR];
 double func[maxR];

 for (int i = 0; i < maxR; ++i) {
 trials[i] = 0;
 hits[i] = 0;
 func[i] = 0; }

 int ct = 0;
 while (ct < 1000) {
 Coord a, b;
 a.set(random(d.W()), random(d.H()), random(d.D()));
 b.set(random(d.W()), random(d.H()), random(d.D()));
 curR = distance(a, b);
 binR = bin(curR);
 if (binR < maxR) {
 trials[binR]++;
 if (arr[index(a, d)] == mat && arr[index(b, d)] == mat) {
 hits[binR]++;
 func[binR] = (double)hits[binR] / (double)trials[binR
]; }
 if (binR == 0)
 ct++; }

 146

 if (ct % 10 == 0) {
 //cout <<"Current count " <<ct <<endl;
 ct++; }
 }

 vector<double> temp;
 for (int i = 0; i < maxR; ++i)
 temp.push_back(func[i]);

 return temp;
}
vector <double> pureTwoPoint (int mat1, int mat2, SIZE d, int* arr) {
 int maxR = d.min();
 double curR = 0;
 int binR = 0;

 int trials[maxR];
 int hits[maxR];
 double func[maxR];

 for (int i = 0; i < maxR; ++i) {
 trials[i] = 0;
 hits[i] = 0;
 func[i] = 0; }

 int ct = 0;
 while (ct < 100000) {
 Coord a, b;
 a.set(random(d.W()), random(d.H()), random(d.D()));
 b.set(random(d.W()), random(d.H()), random(d.D()));
 curR = distance(a, b);
 binR = bin(curR);
 if (binR < maxR) {
 trials[binR]++;
 if (arr[index(a, d)] == mat1 && arr[index(b, d)] == mat2)
{
 hits[binR]++;
 func[binR] = (double)hits[binR] / (double)trials[binR
]; }
 if (binR == 0)
 ct++; }
 if (ct % 100 == 0) {
 cout <<"Current count " <<ct <<endl;
 ct++; }
 }

 vector<double> temp;
 for (int i = 0; i < maxR; ++i)
 temp.push_back(func[i]);
 return temp;}}
random.h
#ifndef GUARD_random_h
#define GUARD_random_h
#include <cstdlib>
#include <iostream>
#include <fstream>
using std::ostream;
using std::cout;
using std::endl;

//random....... sends back random value between 0 and b
//random....... sends back random value between a and b
//NOTE: MIN VALUE EQUAL TO a OR 0
//NOTE: MAX VALUE 1 LESS THAN b
//randomDouble. sends back double value between a and b
//randomSeed... seeds random numbers
//NOTE: SOURCE CODE FROM ETTER C++ BOOK

int random(int value);

 147

int random(int a, int b);
double randomDouble(double a, double b);
void randomSeed(int value);

#endif
random.cpp
// random.cpp

#include "random.h"

int random(int value)
{
 return rand() % value;
}

int random(int a, int b)
{
 return rand() % (b - a + 1) + a;
}

double randomDouble(double a, double b)
{
 return ((double)rand()/RAND_MAX)*(b - a) + a;
}

void randomSeed(int value)
{
 srand(value);
}
arrayFunctions.h

#ifndef GUARD_arrayFunctions_h
#define GUARD_arrayFunctions_h
#include "random.h"
#include "SIZE.h"
#include "Coord.h"
#include "Material.h"
#include <cmath>
#include <iomanip>
using std::setprecision;
#include <iostream>
using std::cout;
using std::endl;
#include <fstream>
using std::ofstream;

//fillArray... initializes 1D array with input value
//fillSpace... inputs value at desired 3D coordinates in 1D array
// overloaded
//fillCenter.. randomly distributes input value throughout center of 1D array
//fillBorder.. randomly distributes input value throughout border of 1D array
//count........ counts number of given input value in 1D array
//screen....... prints 1D array as 3D array
// x -> rows, y -> columns, z -> each block
// starts counting at zero
//screenRow... prints all rows for given y and z
//screenCol... prints all columns for given x and z
//screenDep... prints all depths for given x and y
//refineArray. subdivides 1D array (1 grid to 4)
//shrinkArray. given inner and outer borders creates new 1D array of inner size

void fillArray(int*, const int, int);
void fillSpace(int*, const SIZE, int, int, int, int);
void fillSpace(int*, const SIZE, int, Coord);
void fillCenter(int* arr, const SIZE, const SIZE, Material mat);
void fillBorder(int* arr, const SIZE, const SIZE, Material mat);
int count(int * arr, const SIZE s, int id);
int countBorder(int* arr, const SIZE, const SIZE, int);
void screen(int * arr, const SIZE);
void screenRow(int * arr, const SIZE, int col, int dep);

 148

void screenCol(int * arr, const SIZE, int, int);
void screenDep(int * arr, const SIZE, int, int);
void outputFile(int * arr, const SIZE, string);
//void readFile(string);
void refineArray(int* old, int* new_, const SIZE);
void shrinkArray(int* old, int* new_, const SIZE&, const SIZE&);
#endif
arrayFunctions.cpp
#include "arrayFunctions.h"

int main()
{
 {
 //SET UP CONDITIONS FOR USE
 const SIZE out(30, 4, 4);
 const SIZE in(20, 2, 2);
 cout <<out <<in;

 Material m1("ONE", .5, 6);
 Material m2("TWO", .4, 7);
 Material m3 = --(m1 + m2);
 cout <<m1 <<m2 <<m3;
 cout <<endl;

 //INITIALIZE ARRAY
 int arr[out.S()];

 //TEST OF FILL ARRAY
 cout <<"TEST OF FILL ARRAY";
 fillArray(arr, out.S(), 1);
 screen(arr, out);

 //TEST OF FILL CENTER OF ARRAY
 cout <<"TEST OF FILL CENTER";
 fillCenter(arr, out, in, m1);
 fillCenter(arr, out, in, m2);
 screen(arr, out);

 //TEST OF FILL BORDER OF ARRAY
 cout <<"TEST OF FILL BORDER";
 fillArray(arr, out.S(), 1);
 fillBorder(arr, out, in, m1);
 fillBorder(arr, out, in, m2);
 fillBorder(arr, out, in, m3);
 screen(arr,out);

 //REFILL CENTER OF ARRAY
 cout <<"REFILL CENTER";
 fillCenter(arr, out, in, m1);
 fillCenter(arr, out, in, m2);
 fillCenter(arr, out, in, m3);
 screen(arr, out);

 //TEST COUNT OF EACH ID
 cout <<"TEST COUNT OF EACH ID" <<endl;
 cout <<m1.get_id() <<": " <<count(arr, out, m1.get_id()) <<endl;
 cout <<m2.get_id() <<": " <<count(arr, out, m2.get_id()) <<endl;
 cout <<m3.get_id() <<": " <<count(arr, out, m3.get_id()) <<endl;
 cout <<1 <<": " <<count(arr, out, 1) <<endl;

 //TEST SCREEN PRINTOUTS OF EACH ROW COL AND DEP
 cout <<"TEST SEPERATE SCREEN PRINT OUTS" <<endl;
 cout <<"(0, 0, 1)" <<endl;
 cout <<"ROW: " <<endl;
 screenRow(arr, out, 0, 1);
 cout <<"COL: " <<endl;
 screenCol(arr, out, 0, 1);
 cout <<"DEP: " <<endl;
 screenDep(arr, out, 0, 0);

 149

 //TEST SHRINK ARRAY
 cout <<endl <<"TEST SHRINK ARRAY";
 int arr_shrink[in.S()];
 shrinkArray(arr, arr_shrink, out, in);
 screen(arr_shrink, in);

 //TEST REFINE ARRAY
 cout <<"REFINE ARRAY";
 SIZE large = in * 2;
 int arr_ref[large.S()];
 refineArray(arr, arr_ref, in);
 screen(arr_ref, large);
 }
 //TEST ERROR OUTPUT FOR FILL CENTER
 cout <<"TEST ERROR OUTPUT FOR FILL CENTER" <<endl;
 const SIZE out(30, 4, 4);
 const SIZE in(20, 2, 2);
 cout <<out <<in;

 Material m1("ONE", .1, 6);
 Material m2 = --m1;
 cout <<m1 <<m2;
 cout <<endl;

 //INITIALIZE ARRAY
 int arr[out.S()];
 //TEST OF FILL ARRAY
 fillArray(arr, out.S(), 1);

 //TEST OF FILL CENTER ERROR OF ARRAY
 cout <<"TEST OF ERROR FOR FILL CENTER";
 fillCenter(arr, out, in, m1);
 fillCenter(arr, out, in, m2);
 screen(arr, out);

 //TEST OF FILL BORDER ERROR OF ARRAY
 cout <<"TEST OF ERROR FOR FILL BORDER";
 fillBorder(arr, out, in, m1);
 fillBorder(arr, out, in, m2);
 screen(arr, out);

 return 0;}
dataFiles.h
#ifndef GUARD_dataFiles_h
#define GUARD_dataFiles_h
#include "SIZE.h"
#include "Material.h"
#include "Counter.h"
#include "Stochastic1.h"
#include "SurfArea.h"
#include "InputPar.h"
#include "jmath.h"
#include <ctime>
#include <vector>
using std::vector;
#include <sstream>
#include <string.h>
using std::string;
#include <iomanip>
using std::setw;
using std::setprecision;
#include <iostream>
using std::cerr;
using std::cout;
using std::endl;
using std::cin;
using std::ios;
#include <fstream>
using std::ifstream;
using std::ofstream;

 150

void ansysOutput(int*, const SIZE, const char*, char);
 //Output data to ANSYS Element file
 //Requires input ANSYS element file
void dataOutput(int*, const SIZE&, const vector<Material>&, string);
void dataOutputTwoPhase(int*, const SIZE&, const vector<Material>&, string);
int setSize (const char*);
void dataSort(double*, SIZE& , const char*);
void dataInput(double*, const char* file_name);
void dataInput(int*, SIZE&, vector<Material>&, const char* file_name);
void dataInput(SIZE& s, vector<Material>& p, const char* file_name);
ostream& header(ostream&, string, vector<Material>, SIZE);
ostream& currentStatus(ostream& out, double eng, Counter& total, Counter& reject, double
rate);
ostream& finalStatus(ostream& out, double eng, Counter& total, double time);
ostream& stochFuncs(ostream& , vector<Material>, SIZE, int*, double***);
ostream& stochStat(ostream& out, double*** record, int n, int type, int rad);
ostream& stochHeader(ostream&, vector<Material>);
ostream& areaData(ostream&, vector<Material>, SIZE, string, int*, vector<vector<int> >&
);
ostream& areaStat(ostream& out, vector<vector<int> >& record);
ostream& areaHeader(ostream&, vector<Material>);
ostream& leastSquare(ostream&, vector<Material>, double cl, const SIZE&, double***);
#endif
dataFiles.cpp
#include "dataFiles.h"
void ansysOutput(int* arr, const SIZE dim, const char* file_name, char file_in[40])
{
 int count=0, row = 0, col = 0, dep = 0;
 int j=0, k=1, l=2, m=3, n=4, o=5;
 int p=6, q=7, r=8, s=9, t=10, u=11, v=12, w=13;

 ofstream file_new(file_name);
 ifstream elemdata; // indata is like cin
 int data1; // variable for input value

 elemdata.open(file_in); // opens the file
 if(!elemdata) { // file couldn't be opened
 cerr << "Error: file could not be opened" << endl;
 exit(1); }

 elemdata >> data1;
 while (!elemdata.eof()) { // keep reading until end-of-file
 if (count==j) {file_new << data1 <<","; j=j+14;
}
 if (count==k) {file_new << data1 <<","; k=k+14; }
 if (count==l) {file_new << data1 <<","; l=l+14; }
 if (count==m) {file_new << data1 <<","; m=m+14; }
 if (count==n) {file_new << data1 <<","; n=n+14; }
 if (count==o) {file_new << data1 <<","; o=o+14; }
 if (count==p) {file_new << data1 <<","; p=p+14; }
 if (count==q) {file_new << data1 <<","; q=q+14; }
 if (count==r) {file_new <<arr[row * dim.H() * dim.D() + col * dim.D() +
dep] <<","; r=r+14; }
 if (count==s) {file_new << data1 <<","; s=s+14; }
 if (count==t) {file_new << data1 <<","; t=t+14; }
 if (count==u) {file_new << data1 <<","; u=u+14; }
 if (count==v) {file_new << data1 <<","; v=v+14; }
 if (count==w) {
 file_new << data1 <<"," <<endl;
 w=w+14; row++;
 if (row == dim.W()) {
 row = 0; col++;
 if (col == dim.H()) {
 col = 0; dep++; } } }
 count++;
 elemdata >> data1; // sets EOF flag if no value found
 }
 elemdata.close(); file_new.close();
}

 151

void dataOutput(int* arr, const SIZE& dim, const vector<Material>& p, string file)
{
 ofstream out(file.c_str());
 out <<dim.W() <<", " <<dim.H() <<", " <<dim.D() <<endl;
 out <<p.size() <<endl;
 for (int i = 0; i < p.size(); i++) {
 out <<p[i].get_name() <<endl;
 out <<p[i].get_vf() <<endl <<p[i].get_id() <<endl; }
 out <<endl <<endl;
 for (int i = 0; i < dim.S(); i++)
 out <<arr[i] <<endl;
 out.close();
}
void dataOutputTwoPhase(int* arr, const SIZE& dim, const vector<Material>& p, string
file)
{
 ofstream out(file.c_str());
 out <<dim.W() <<", " <<dim.H() <<", " <<dim.D() <<endl;
 out <<2 <<endl;
 out <<p[0].get_name() <<endl;
 out <<p[0].get_vf() <<endl;
 out <<p[0].get_id() <<endl;
 out <<"Pore" <<endl;
 out <<p[1].get_vf() <<endl;
 out <<3 <<endl;
 out <<endl <<endl;
 for (int i = 0; i < dim.S(); i++) {
 if (arr[i] == 2)
 out <<3 <<endl;
 else
 out <<arr[i] <<endl; }
 out.close();
}
int setSize(const char* file_name) {
 ifstream indata;
 indata.open(file_name);
 if(indata.fail()) { // file couldn't be opened
 cerr << "Error: file could not be opened" << endl;
 exit(1); }
 SIZE s;
 indata >> s;
 indata.close();
 return s.S();
}
void dataSort(double* arr, SIZE& s, const char* file_name)
{
 ifstream indata;
 double var;
 double data[s.S()];
 indata.open(file_name);
 cout <<file_name <<endl;
 if(!indata) {
 cerr << "Error : file could not be opened in dataSort" <<endl;
 exit(1); }
 int i = 0;
 while (indata >> var) {
 data[i] = var;
 i++; }
 i = 0;
 cout <<"total in var is " <<i <<endl;
 for (int n = 0; n < s.S(); n++)
 arr[n]=data[n];
 indata.close();
}
void dataInput(double* arr, const char* file_name)
{
 ifstream indata; // indata is like cin
 double data;
 indata.open(file_name); // opens the file

 152

 if(!indata) { // file couldn't be opened
 cerr << "Error: file could not be opened" << endl;
 exit(1); }
 int i = 0;
 while (indata >> data) {
 *(arr + i) = data;
 i++; }
 indata.close();
}
void dataInput(int* arr, SIZE& s, vector<Material>& p, const char* file_name)
{
 ifstream indata; // indata is like cin
 int data;
 indata.open(file_name); // opens the file
 if(!indata) { // file couldn't be opened
 cerr << "Error: file could not be opened" << endl;
 exit(1); }
 indata >> s;
 int n = 0;
 indata >> n;
 Material temp;
 vector<Material> temp2(n);
 for (int i = 0; i < n; i++) {
 indata >> temp;
 temp2[i] = temp; }
 p = temp2;
 int i = 0;
 while (indata >> data) {
 *(arr + i) = data;
 i++; }
 indata.close();
}
void dataInput(SIZE& s, vector<Material>& p, const char* file_name)
{
 ifstream indata; // indata is like cin
 int data;
 indata.open(file_name); // opens the file
 if(!indata) { // file couldn't be opened
 cerr << "Error: file could not be opened" << endl;
 exit(1); }
 indata >> s;
 int n = 0;
 indata >> n;
 Material temp;
 vector<Material> temp2(n);
 for (int i = 0; i < n; i++) {
 indata >> temp;
 temp2[i] = temp; }
 p = temp2;
 indata.close();
}
ostream& header(ostream& out, string name, vector<Material> p, SIZE d) {
 out <<"Current file name: " <<name;
 time_t rawtime; struct tm * timeinfo;
 time (&rawtime); timeinfo = localtime (&rawtime);
 out <<endl <<"Initial local time and date: " <<asctime (timeinfo);
 std::clock_t start = std::clock();
 out <<"Materials" <<endl;
 for (int i = 0; i < p.size(); i++)
 out <<p[i] <<endl;
 out <<"Dimensions" <<endl;
 out <<d;
 out <<endl;
}
ostream& currentStatus(ostream& out, double eng, Counter& total, Counter& reject, double
rate)
{
 out <<"E = " <<setw(10) <<setprecision(3) <<eng;
 out <<", c = " <<setw(8) <<total <<", r = " <<setw(5) <<reject;
 out <<", AR = " <<setw(4) <<setprecision(2) <<rate <<"%" <<endl;
 return out;

 153

}
ostream& finalStatus(ostream& out, double eng, Counter& total, double time)
{
 out <<endl;
 out <<"The final energy is " <<setprecision(3) <<eng <<" at " <<total <<"."
<<endl;
 out <<"The total Clock time was " <<time <<"." <<endl;
 return out;
}

ostream& stochFuncs(ostream& out, vector<Material> p, SIZE d, int* grid, double***
record) {
 static int staticCt(0);

 int ct = 0;
 vector<double> t;
 vector<Material>::iterator itMat = p.begin();
 while (itMat != p.end()) {
 //Initialize
 Stochastic<TwoPoint> twoPt(*itMat, d, d.W()); twoPt.total(grid);
 cout <<".";
 Stochastic<LinealChord> linCd(*itMat, d, d.W()); linCd.total(grid);
 cout <<".";
 Stochastic<ClusterFunc> clusFunc(*itMat, d, d.W()); clusFunc.total(grid
);
 //Stochastic<MixedPhase> clusFunc((itMat == --p.end()) ? p.front() :
*(itMat + 1), *itMat, d, d.W());
 clusFunc.total(grid);
 cout <<".";
 Stochastic<MixedPhase> mixPh(*itMat, (itMat == --p.end()) ? p.front() :
*(itMat + 1), d, d.W());
 //mixPh.setMat(*itMat /*(itMat == --p.end()) ? p.front() : *(itMat + 1)*/
);
 mixPh.total(grid);
 cout <<".";
 t = pureTwoPoint(p[ct].get_id(), d, grid);

 //Input into output
 for (int i = 0; i < d.W(); i++) {
 record[staticCt][ct * 5 + 0][i] = twoPt.get_func(i);
 record[staticCt][ct * 5 + 1][i] = t[i];
 record[staticCt][ct * 5 + 2][i] = clusFunc.get_func(i);
 record[staticCt][ct * 5 + 3][i] = linCd.get_func(i);
 record[staticCt][ct * 5 + 4][i] = mixPh.get_func(i); }
 ct++;
 ++itMat; }

 for (int j = 0; j < d.W(); j++) {
 out <<j <<", ";
 for (int i = 0; i < p.size() * 5; i++)
 out <<setprecision(3) <<record[staticCt][i][j] <<", ";
 out <<endl; }

 staticCt++;
 return out;
}
ostream& stochStat(ostream& out, double*** record, int n, int type, int rad) {

 double ave, aveDev, stDev, var, skew, curt;
 vector<double> dummy(n);

 out <<"average" <<endl;
 for (int k = 0; k < rad; k++) {
 for (int j = 0; j < type; j++) {
 for (int i = 0; i < n; i++)
 dummy[i] = record[i][j][k];
 statData (dummy, ave, aveDev, stDev, var, skew, curt);
 if (j == 0)
 out <<k <<", ";
 out <<setprecision(3) <<ave <<", ";
 }

 154

 out <<endl; }

 out <<endl <<endl <<"standard deviation" <<endl;
 for (int k = 0; k < rad; k++) {
 for (int j = 0; j < type; j++) {
 for (int i = 0; i < n; i++)
 dummy[i] = record[i][j][k];
 statData (dummy, ave, aveDev, stDev, var, skew, curt);
 if (j == 0)
 out <<k <<", ";
 out <<setprecision(3) <<stDev <<", ";
 }
 out <<endl; }
 return out;
}

ostream& stochHeader(ostream& out, vector<Material> p) {
 vector<Material>::iterator itMat = p.begin();
 string dummy, dummy1;
 out <<"Radius" <<", " ;
 for (int i = 0; i < p.size(); i++){
 dummy = p[i].get_name();
 dummy1 = (i == p.size() - 1) ? p[0].get_name() : p[i + 1].get_name();
 if (dummy.size() > 3)
 dummy = dummy.substr(0, 2);
 if (dummy1.size() > 3)
 dummy1 = dummy1.substr(0, 2);
 out <<dummy <<", " <<dummy <<", " <<dummy <<", " <<dummy <<", " <<dummy +
dummy1 <<", "; }
 out <<endl <<"Type" <<", ";
 itMat = p.begin();
 while (itMat != p.end()) {
 out <<"TwoPt" <<", " <<"Pure" <<", " <<"Clus" <<", " <<"LinCd" <<", "
<<"MxPh" <<", ";
 ++itMat; }
 out <<endl;
 return out;
}

ostream& areaData(ostream& out, vector<Material> p, SIZE d, string label, int* grid,
vector<vector<int> >& record) {

 static int staticCt(0);
 int localCt(0);
 int blank;
 out <<label <<", ";
 vector<Material>::iterator itMat = p.begin();
 while (itMat != p.end()) {
 SurfArea sa(SurfArea(d, *itMat));
 blank = sa.areaTotal(grid);
 out <<blank <<", ";
 record[staticCt][localCt] = blank;
 localCt++;
 ++itMat; }

 itMat = p.begin();
 Material dummy;
 while (itMat != p.end()) {
 SurfArea sa(SurfArea(d, *itMat));
 dummy = (itMat == --p.end()) ? p.front() : *(itMat + 1);
 blank = sa.areaInterface(grid, dummy.get_id());
 out <<blank <<", ";
 record[staticCt][localCt] = blank;
 localCt++;
 ++itMat; }

 itMat = p.begin();
 while (itMat != p.end()) {
 SurfArea sa(SurfArea(d, *itMat));
 vector <int> bs = sa.areaBoundary(grid);
 vector <int>::iterator iter = bs.begin();

 155

 while (iter != bs.end()) {
 out <<*iter <<", ";
 record[staticCt][localCt] = *iter;
 localCt++;
 ++iter;
 }
 ++itMat; }
 out <<endl;
 staticCt++;
 return out;
}
ostream& areaStat(ostream& out, vector<vector<int> >& record) {

 double ave, aveDev, stDev, var, skew, curt;
 vector<double> dummy;
 int maxCol = record.size() * 2 + record.size() * 3;
 int maxRow = record.size();
 out <<"ave, aveDev, stDev, var, skew, curt" <<endl;
 for (int j = 0; j < maxCol; j++) {
 for (int i = 0; i < maxRow; i++)
 dummy.push_back((double)record[i][j]);
 statData (dummy, ave, aveDev, stDev, var, skew, curt);
 out <<setprecision(4);
 out <<ave <<", " <<aveDev <<", " <<stDev <<", " <<var <<", " <<skew <<", "
<<curt <<endl;
 dummy.clear(); }

 return out;
}
ostream& areaHeader(ostream& out, vector<Material> p) {
 out <<"label" <<", ";
 for (int i = 0; i < p.size(); ++i)
 out << p[i].get_name().substr(0, 3) <<", ";
 for (int i = 0; i < p.size(); ++i)
 out << p[i].get_name().substr(0, 3) + p[(i == p.size() - 1) ? 0 : i +
1].get_name().substr(0, 3) <<", ";
 for (int i = 0; i < p.size(); ++i)
 out << "R." + p[i].get_name().substr(0, 3) <<", "
 << "T." + p[i].get_name().substr(0, 3) <<", "
 << "F." + p[i].get_name().substr(0, 3) <<", ";
 out <<endl;
}
ostream& leastSquare(ostream& out, vector<Material> p, double cl, const SIZE& d,
double*** record) {

 Energy ni(cl, p[0]), ysz(cl, p[1]);
 string name = p[2].get_name() + convert(d.D()) + ".dat";
 Energy comp(name.c_str());

 int half = d.D() / 2;
 double niTotal[d.D()]; double yszTotal[d.D()]; double coTotal[d.D()];
 double niFirst[half]; double yszFirst[half];
 double coFirst[half];

 cout <<"Char length: " <<half <<", " <<half <<", " <<half <<endl;

 out <<d <<endl;
 string header = "Num, niTot, ni" + convert(half) + ", yszTot," +
 "ysz"
+ convert(half) + ", coTot, " +
 "co"
+ convert(half);
 out <<header <<endl;
 double niMax(0), yszMax(0), coMax(0), niMin(1), yszMin(1), coMin(1);
 double niMaxI(0), yszMaxI(0), coMaxI(0), niMinI(1), yszMinI(1), coMinI(1);
 for (int i = 0; i < d.W(); i++) {

 for (int j = 0; j < d.D(); j++) {
 niTotal[j] = record[i][0][j];
 yszTotal[j] = record[i][5][j];
 coTotal[j] = record[i][10][j]; }

 156

 for (int j = 0; j < half; j++) {
 niFirst[j] = record[i][0][j];
 yszFirst[j] = record[i][5][j];
 coFirst[j] = record[i][10][j]; }
 out <<i <<", ";
 out <<ni.calc(niTotal, d.D()) <<", " <<ni.calc(niFirst, half) <<", ";
 out <<ysz.calc(yszTotal, d.D()) <<", " <<ysz.calc(yszFirst, half) <<", ";
 out <<comp.calc(coTotal, d.D()) <<", " <<comp.calc(coFirst, half) <<endl;

 if (ni.calc(niTotal, d.D()) > niMax)
 niMax = ni.get_eng();
 if (ysz.calc(yszTotal, d.D()) > yszMax)
 yszMax = ysz.get_eng();
 if (comp.calc(coTotal, d.D()) > coMax)
 coMax = comp.get_eng();
 if (ni.calc(niTotal, d.D()) < niMin)
 niMin = ni.get_eng();
 if (ysz.calc(yszTotal, d.D()) < yszMin)
 yszMin = ysz.get_eng();
 if (comp.calc(coTotal, d.D()) < coMin)
 coMin = comp.get_eng();

 if (ni.calc(niFirst, half) > niMaxI)
 niMaxI = ni.get_eng();
 if (ysz.calc(yszFirst, half) > yszMaxI)
 yszMaxI = ysz.get_eng();
 if (comp.calc(coFirst, half) > coMaxI)
 coMaxI = comp.get_eng();
 if (ni.calc(niFirst, half) < niMinI)
 niMinI = ni.get_eng();
 if (ysz.calc(yszFirst, half) < yszMinI)
 yszMinI = ysz.get_eng();
 if (comp.calc(coFirst, half) < coMinI)
 coMinI = comp.get_eng();
 }

 out <<endl <<endl;
 out <<"max, " <<niMax <<", " <<niMaxI <<", " <<yszMax <<", " <<yszMaxI <<", "
<<coMax <<", " <<coMaxI <<endl;
 out <<"min, " <<niMin <<", " <<niMinI <<", " <<yszMin <<", " <<yszMinI <<", "
<<coMin <<", " <<coMinI <<endl;

 out <<"avg" <<endl;
 double ave1(0), ave2(0), ave3(0), a(0);
 vector<double> dummy1(d.W()), dummy2(d.W()), dummy3(d.W());
 for (int k = 0; k < d.D(); k++) {
 int j1(0), j2(5), j3(10);
 for (int i = 0; i < d.W(); i++) {
 dummy1[i] = record[i][j1][k];
 dummy2[i] = record[i][j2][k];
 dummy3[i] = record[i][j3][k]; }
 statData (dummy1, ave1, a, a, a, a, a);
 statData (dummy2, ave2, a, a, a, a, a);
 statData (dummy3, ave3, a, a, a, a, a);
 niTotal[k] = ave1;
 yszTotal[k] = ave2;
 coTotal[k] = ave3;
 }
 for (int j = 0; j < half; j++)
 niFirst[j] = niTotal[j];
 for (int j = 0; j < half; j++)
 yszFirst[j] = yszTotal[j];
 for (int j = 0; j < half; j++)
 coFirst[j] = coTotal[j];

 out <<"avg, ";
 out <<ni.calc(niTotal, d.D()) <<", " <<ni.calc(niFirst, half) <<", ";
 out <<ysz.calc(yszTotal, d.D()) <<", " <<ysz.calc(yszFirst, half) <<", ";
 out <<comp.calc(coTotal, d.D()) <<", " <<comp.calc(coFirst, half) <<endl;

 return out; }

 157

Counter.h
#ifndef GUARD_Counter_h
#define GUARD_Counter_h

// Counter.h
/* Class members:
 int count
 Member functions:
 Counter a(): default constructor -> 0
 Counter a(value): constructor to integer value
 inc_count(): increment count
 reset(): reset count
 get_count(): get count
 bool_count(): bool determine if equal to integer value
 Friend functions:
 Overloaded << for output to screen
*/

#include <iostream>
#include <fstream>
using std::ostream;
using std::cout;
using std::endl;

class Counter
{
private:
 unsigned int count;
public:
 Counter() : count(0) { }
 Counter(int value) : count(value) { }
 void incCount() { count++; }
 void reset() { count = 0; }
 int get_count() const { return count; }
 bool operator == (int value) { return count == value; }
 bool operator > (int value) { return count > value; }
 bool operator < (int value) { return count < value; }
 double operator /(Counter c) { return (double)count / c.get_count(); }
 int operator %(int value) { return count % value; }
 friend ostream& operator <<(ostream& os, const Counter& c);
};

#endif
Counter.cpp
#include "Counter.h"
ostream& operator <<(ostream& os, const Counter& c)
{
 os <<c.count;
 return os;
}
SIZE.h
#ifndef GUARD_SIZE_h
#define GUARD_SIZE_h

#include <cmath>
#include <stdexcept>
using std::domain_error;
#include <iomanip>
using std::setw;
#include <iostream>
#include <fstream>
using std::ostream;
using std::istream;
using std::cout;
using std::endl;

//Constructors Default is 0
// (n) sets all equal to n
// (w, y, z) sets each equal
// each one calculate NUM

 158

//Destructor
//Accessors
//Manipulators
// DW, DH, DD calculates difference between inner and outer
// sizes. Order in functions does not matter
// min finds smallest dimension and outputs
//Operators
// * multiplies by scaler
// > boolean test > relationship for each dimension
// will output error
//Output
// >> one line prints all data members
//Friends
// borderTest boolean tells if coordinates are on border between
// two sizes

class SIZE {
private:
 int WIDTH;
 int HEIGHT;
 int DEPTH;
 int NUM;
public:
 SIZE () : WIDTH(0), HEIGHT(0), DEPTH(0) {
 NUM = WIDTH * HEIGHT * DEPTH; }
 SIZE (int n) : WIDTH(n), HEIGHT(n), DEPTH(n) {
 NUM = WIDTH * HEIGHT * DEPTH; }
 SIZE (int w, int h, int d) : WIDTH(w), HEIGHT(h), DEPTH(d) {
 NUM = WIDTH * HEIGHT * DEPTH; }
 ~SIZE() { }
 int W() const { return WIDTH; }
 int H() const { return HEIGHT; }
 int D() const { return DEPTH; }
 int S() const { return NUM; }
 int DW(const SIZE& s) {return (int) fabs(s.W() - WIDTH) / 2; }
 int DH(const SIZE& s) {return (int) fabs(s.H() - HEIGHT) / 2; }
 int DD(const SIZE& s) {return (int) fabs(s.D() - DEPTH) / 2; }
 int min();
 SIZE operator *(int n) const;
 SIZE operator +(int n) const;
 bool operator >(SIZE s) const;
 friend ostream& operator <<(ostream& os, const SIZE& s);
 friend istream& operator >>(istream&, SIZE&);
 friend bool borderTest(int, int, int, SIZE s, SIZE p);
};

#endif
SIZE.cpp

#include "SIZE.h"
//CONSTRUCTORS - header file
//DESTRUCTORS - header file
//ACCESSORS - header file
//MANIPULATORS
int SIZE::min()
{
 int temp = DEPTH;
 if (WIDTH < DEPTH) { temp = WIDTH; }
 if (HEIGHT < temp) { temp = HEIGHT; }
 return temp;
}
//OVERLOADED OPERATORS
SIZE SIZE:: operator *(int n) const
{
 SIZE temp(n * WIDTH, n * HEIGHT, n * DEPTH);
 return temp;
}
SIZE SIZE:: operator +(int n) const
{
 SIZE temp(n + WIDTH, n + HEIGHT, n + DEPTH);

 159

 return temp;
}
bool SIZE:: operator >(SIZE s) const
{
 bool a = WIDTH > s.W();
 bool b = HEIGHT > s.H();
 bool c = DEPTH > s.D();
 if (!((a == b) && (b == c)))
 throw domain_error("Sizes contradict");
 if (WIDTH > s.W())
 return true;
 else
 return false;
}
//OUTPUT
ostream& operator <<(ostream& os, const SIZE& s)
{
 os <<"WIDTH = " <<s.WIDTH <<", ";
 os <<"HEIGHT = " <<s.HEIGHT <<", ";
 os <<"DEPTH = " <<s.DEPTH <<", ";
 os <<"NUM = " <<s.NUM <<endl;
 return os;
}
istream& operator >>(istream& in, SIZE& s) {
 char ch;
 in >> s.WIDTH >>ch >>s.HEIGHT >>ch >>s.DEPTH;
 s.NUM = s.WIDTH * s.HEIGHT * s.DEPTH;
 return in;
}

//FRIENDS
bool borderTest(int w, int h, int d, SIZE s, SIZE p)
{
 bool a = w < s.DW(p);
 bool b = h < s.DH(p);
 bool c = d < s.DD(p);
 bool e = w >= ((s.WIDTH > p.WIDTH) ? s.WIDTH - s.DW(p) : p.WIDTH - s.DW(p));
 bool f = h >= ((s.HEIGHT > p.HEIGHT) ? s.HEIGHT - s.DH(p) : p.HEIGHT - s.DH(p));
 bool g = d >= ((s.DEPTH > p.DEPTH) ? s.DEPTH - s.DD(p) : p.DEPTH - s.DD(p));
 if (a || b || c || e || f || g)
 return true;
 else
 return false;}

Coord.h
#ifndef GUARD_Coord_h
#define GUARD_Coord_h

#include "SIZE.h"
#include <cmath>
#include <vector>
using std::vector;
#include <iomanip>
using std::setw;
#include <iostream>
#include <fstream>
using std::ostream;
using std::cout;
using std::endl;

//Constructors Default 0
// (n) sets all to n
// (x, y, z) sets each one
//Destructor
//Accessors .getvariablename
//Manipulator
// set.. setvariablename each one
// set(x,y,z) will set all
//Outputs
// << (x,y,z) to line

 160

//Friends
// index returns 3D index value for given Coord and SIZE
// anyEqual boolean if any coordinates are equal to another
// distance calculates distance between two coordinates

class Coord {
private:
 int x;
 int y;
 int z;
public:
 Coord () : x(0), y(0), z(0) { }
 Coord (int n) : x(n), y(n), z(n) { }
 Coord (int i, int j, int k) : x(i), y(j), z(k) { }
 ~Coord() { }
 int getx() { return x; }
 int gety() { return y; }
 int getz() { return z; }
 int setx(int);
 int sety(int);
 int setz(int);
 void set(int, int, int);
 bool operator == (Coord& c) { return (x == c.x && y == c.y && z == c.z); }
 friend ostream& operator <<(ostream& os, const Coord& c);
 friend int index(const Coord&, const SIZE&);
 friend bool anyEqual(const Coord&, const Coord&);
 friend bool anyNext(const Coord&, const Coord&);
 friend bool anyNext(const Coord&, vector<Coord>);
 friend double distance(const Coord& b, const Coord& c);
};
#endif
Coord.cpp
#include "Coord.h"
//CONSTRUCTORS - header file
//DESTRUCTOR - header file
//ACCESSORS - header file
//MANIPULATOR FUNCTIONS
int Coord::setx(int value) {
 return x = value; }
int Coord::sety(int value) {
 return y = value; }
int Coord::setz(int value) {
 return z = value; }
void Coord::set(int a, int b, int c) {
 x = a; y = b; z = c;
}
//OUTPUT FUNCTIONS
ostream& operator <<(ostream& os, const Coord& c) {
 os <<"(" <<c.x <<", " <<c.y <<", " <<c.z <<")";
}
//FRIEND FUNCTIONS
int index(const Coord& c, const SIZE& s) {
 return c.x * s.H() * s.D() + c.y * s.D() + c.z;
}
bool anyEqual(const Coord& a, const Coord& b) {
 return (a.x == b.x) || (a.y == b.y) || (a.z == b.z);
}
bool anyNext(const Coord& a, const Coord& b) {
 int e = a.x - b.x; int f = a.y - b.y; int g = a.z - b.z;
 return (abs(e) + abs(f) + abs(g) <= 1) ;
}
bool anyNext(const Coord& a, vector<Coord> b) {
 bool temp = false;
 vector<Coord>::iterator iter = b.begin();
 for (iter = b.begin(); iter != b.end(); ++iter) {
 if (anyNext(a, *iter) == true)
 temp == true;
 cout <<*iter <<endl;
 }
 return temp;

 161

}
double distance (const Coord& b, const Coord& c) {
 return sqrt(pow(b.x-c.x,2) + pow(b.y-c.y,2) + pow(b.z-c.z,2));
}
Material.h
#ifndef GUARD_Material_h
#define GUARD_Material_h

#include <iostream>
using std::cerr;
using std::cout;
using std::endl;
using std::cin;

#include <fstream>
using std::ifstream;
using std::istream;
using std::ostream;

#include <string>
using std::string;

#include <stdexcept>
using std::domain_error;

//Constructors Default is "blank", .5, 1
// or specify name, vf, and id
//Destructor
//Accessors get_(variable name)
//Private Func
// Error Checks vf is between 0 and 1
//Operators
// + adds vf of Materials
// -- finds complement of vf and increments id
//Output
// >> Name, VF, and ID to one line
//Input
// << Input name, VF, and ID

class Material {
private:
 string name;
 double vf;
 int id;
 void error();
public:
 Material ();
 Material (string, double, int);
 ~Material();
 string get_name() const;
 double get_vf() const;
 int get_id() const;
 Material operator +(const Material& old);
 Material operator --();
 //OUTPUT FUNCTION
 friend ostream& operator <<(ostream& out, const Material& m);
 friend istream& operator >>(istream& in, Material& m);
};

#endif
Material.cpp
#include "Material.h"

// CONSTRUCTOR FUNCTIONS
Material::Material(): name("blank"), vf(.5), id(1) {
}
Material::Material(string n, double v, int i) : name(n), vf(v), id(i) {
 error();
}

 162

// DESTRUCTOR FUNCTIONS
Material::~Material() {
}

// PRIVATE FUNCTIONS
void Material::error()
{
 if (vf > 1 || vf < 0)
 throw domain_error("Volume fractions is not between 1 and 0.");
}

// ACCESSOR FUNCTIONS
string Material::get_name() const { return name; }
double Material::get_vf() const { return vf; }
int Material::get_id() const { return id; }
// OVERLOADED OPERATORS
Material Material::operator +(const Material& old)
{
 Material temp("temp", 1, 1);
 temp.vf = vf + old.vf;
 (id > old.id)?temp.id = id:temp.id = old.id;
 temp.error();
 return temp;
}

Material Material::operator --()
{
 Material temp("Complement", 1, id + 1);
 temp.vf = 1 - vf;
 temp.error();
 return temp;
}
// OUTPUT FUNCTIONS
ostream& operator<<(ostream& out, const Material& m)
{
 out << "Name: " <<m.name;
 out << ", VF: " <<m.vf;
 out << ", ID: " <<m.id;
 return out;
}
//INPUT FUNCTIONS
istream& operator>>(istream& in, Material& m)
{
 in >>m.name >>m.vf >>m.id;
 int ct = 0;
 while ((m.vf > 1 || m.vf < 0) && ct < 5) {
 cout <<"Volume fraction must be in decimals." <<endl;
 cin >>m.vf;
 ct++; }
 m.error();
 return in;}
Stochastic1.h
#ifndef GUARD_Stochastic1_h
#define GUARD_Stochastic1_h

#include "jmath.h"
#include "SIZE.h"
#include "Coord.h"
#include "Material.h"

#include <iostream>
using std::cerr;
using std::cout;
using std::endl;
using std::cin;

#include <fstream>
using std::ifstream;
using std::ofstream;

 163

#include <vector>
using std::vector;

class Hits {
private:
 int*** row;
protected:
 SIZE dim;
 int dir;
 int per;
 int sz;
 int temp;
 int indexTwo;
 int indexThree;
 int (Hits::*pt2indexes)(int);
 virtual bool criteria(int, int, int) = 0;
public:
 void initialize(int, int, int, SIZE);
 ~Hits();
 int get(int, int, int);
 int indexRow(int);
 int indexCol(int);
 int indexDep(int);
 virtual void updateIndex(int, int, int);
 virtual int accept(int);
 virtual int accept(int, int, int, int);
 virtual int add(int*, int, int) = 0;
 virtual int setMat(Material&) = 0;
 friend ostream& operator <<(ostream& out, const Hits& h);
};

class TwoPoint : public Hits {
protected:
 bool criteria(int, int, int);
public:
 int add(int*, int, int);
 int setMat(Material&);
};
class LinealChord : public TwoPoint {
public:
 int add(int*, int, int);
};
class MixedPhase : public TwoPoint {
 int n;
public:
 void initialize(int r, int p, int o, SIZE d) {
 Hits::initialize(r, p, o, d);
 int i = 0; n = i; }
 int setMat(Material& mat);
 bool criteria(int, int, int);
};
class ClusterFunc : public Hits {
 int current;
 vector<Coord> all;
 int* coordMap;
 Coord (ClusterFunc::*pt2coords)(int);
public:
 ClusterFunc() : current(0) { }
 void initialize(int r, int p, int o, SIZE d);
 Coord coordRow(int);
 Coord coordCol(int);
 Coord coordDep(int);
 int setMat(Material&) { return 0; }
 void fillAll(int*, int mat);
 void updateIndex(int, int, int);
 bool criteria(int, int, int);
 bool criteria(Coord&, Coord&);
 int add(int* arr, int r, int mat);
};

class Energy {

 164

private:
 double eng;
 double r_func[400];
 double charLength;
public:
 Energy();
 Energy(double, const Material);
 Energy(double, const Material, char);
 Energy(double, double, const Material, char);
 Energy(long double, long double, long double, long double, long double, long
double, long double, double, long double);
 Energy(const char*);
 ~Energy();
 double get_eng() const;
 double get_cl() const;
 double calc(const vector<double>);
 double calc(const double*, int);
 friend ostream& operator <<(ostream&, const Energy&);
};

template<class H>
class Stochastic {
private:
 int radius;
 int per;
 Material mat;
 SIZE dim;
 int* trials;
 double* func; //function is always current even to temp changes
 double* o_func;
 vector<int> hist;
 void calcRadius();
 void initialize();
protected:
 H width, height, depth;
public:
 Stochastic();
 Stochastic(Material m, SIZE d, int radius = 25, int per = 1);
 Stochastic(Material m, Material n, SIZE d, int radius = 25, int per = 1);
 Stochastic(int id, double vf, int X, int Y, int Z);
 ~Stochastic();
 int get_radius();
 double get_func(int r = 0);
 vector<double> funcOut();
 void total(int*);
 void temp(int*, Coord&, Coord&);
 void accept(Coord&, Coord&);
 void reject();
 void statusHits(int, Coord&, Coord&);
 friend ostream& operator <<(ostream& out, const Stochastic<H>& s) {
 out <<s.mat <<s.dim;
 out << "Radius: " <<s.radius <<endl;
 return out; }
};
//
//STOCHASTIC CLASS
//
//CONSTRUCTOR FUNCTIONS
template <class H>
Stochastic<H>::Stochastic() : radius(25), per(0), mat("DEFAULT", .5, 1), dim(30)
{
 initialize();
}
template <class H>
Stochastic<H>::Stochastic(Material m, SIZE d, int r, int p) : mat(m), dim(d)
{
 radius = r;
 per = p;
 initialize();
}
template <class H>

 165

Stochastic<H>::Stochastic(Material m, Material n, SIZE d, int r, int p) : mat(m), dim(d)
 radius = r;
 per = p;
 initialize();
 width.setMat(n);
 height.setMat(n);
 depth.setMat(n);
}
template <class H>
Stochastic<H>::Stochastic(int id, double vf, int X, int Y, int Z)
{
 Material blank("BLANK", vf, id);
 SIZE blank1(X, Y, Z);
 mat = blank; dim = blank1;
 radius = X;
 per = (int)(radius / 2);
 initialize();
}
//PRIVATE FUNCTIONS
template <class H>
void Stochastic<H>::calcRadius() {
 if (radius > dim.min() && dim.min() >= 10) {
 radius = dim.min() - 5;
 cout <<"The radius has been changed to " <<radius <<endl; }
 else if (radius > dim.min()) {
 radius = 5;
 cout <<"The radius has been changed to " <<radius <<endl; }
}
template <class H>
void Stochastic<H>::initialize()
{
 calcRadius();
 trials = new int[radius];
 func = new double[radius];
 o_func = new double[radius];
 for (int i = 0; i < radius; i++) {
 func[i] = 0; o_func[i] = 0;
 trials[i] = (dim.W()- i) * dim.H() * dim.D()
 + dim.W() * (dim.H() - i) * dim.D()
 + dim.W() * dim.H() * (dim.D() - i);
 }
 for (int i = 0; i < per; i++)
 trials[i] = dim.S() + dim.S() + dim.S();
 width.initialize(radius, per, 1, dim);
 height.initialize(radius, per, 2, dim);
 depth.initialize(radius, per, 3, dim);
}
template <class H>
Stochastic<H>::~Stochastic() { }
//ACCESSOR FUNCTIONS
template <class H>
int Stochastic<H>::get_radius() {
 return radius; }
template <class H>
double Stochastic<H>::get_func(int r) {
 return func[r]; }
template <class H>
vector<double> Stochastic<H>::funcOut() {
 vector<double> temp;
 for (int i = 0; i < radius; i++)
 temp.push_back(func[i]);
 return temp; }
//MANIPULATOR FUNCTIONS
template <class H>
void Stochastic<H>::total(int* arr)
{
 for (int r = 0; r < radius; r++) {
 int total_Hits = 0;
 for (int col = 0; col < dim.H(); col++) {
 for (int dep = 0; dep < dim.D(); dep++) {
 width.updateIndex(col, dep, 0);

 166

 width.add(arr, r, mat.get_id());
 total_Hits = total_Hits + width.accept(r); }
 }
 for (int row = 0; row < dim.W(); row++) {
 for (int dep = 0; dep < dim.D(); dep++) {
 height.updateIndex(row, dep, 0);
 height.add(arr, r, mat.get_id());
 total_Hits = total_Hits + height.accept(r); }
 }
 for (int row = 0; row < dim.W(); row++) {
 for (int col = 0; col < dim.H(); col++) {
 depth.updateIndex(row, col, 0);
 depth.add(arr, r, mat.get_id());
 total_Hits = total_Hits + depth.accept(r); }
 }
 //cout <<"Totat hits: " <<total_Hits <<" at r " <<r <<endl;
 func[r] = (double)total_Hits / trials[r];
 }
}
template <class H>
void Stochastic<H>::temp(int* arr, Coord& a, Coord& b)
{
 hist.clear();
 int old, new_;

 int r1 = a.getx(); int c1 = a.gety(); int d1 = a.getz();
 int r2 = b.getx(); int c2 = b.gety(); int d2 = b.getz();

 for (int r = 0; r < radius; r++) {

 old = width.get(r, c1, d1) + width.get(r, c2, d2) +
 height.get(r, r1, d1) + height.get(r, r2, d2) +
 depth.get(r, r1, c1) + depth.get(r, r2, c2);

 width.updateIndex(c1, d1, r1);
 hist.push_back(width.add(arr, r, mat.get_id()));
 width.updateIndex(c2, d2, r2);
 hist.push_back(width.add(arr, r, mat.get_id()));
 height.updateIndex(r1, d1, c1);
 hist.push_back(height.add(arr, r, mat.get_id()));
 height.updateIndex(r2, d2, c2);
 hist.push_back(height.add(arr, r, mat.get_id()));
 depth.updateIndex(r1, c1, d1);
 hist.push_back(depth.add(arr, r, mat.get_id()));
 depth.updateIndex(r2, c2, d2);
 hist.push_back(depth.add(arr, r, mat.get_id()));

 new_ = hist[0+6*r] + hist[1+r*6] + hist[2+r*6]
 + hist[3+r*6] + hist[4+r*6] + hist[5+r*6];
 o_func[r] = func[r];
 func[r] = (func[r] * trials [r] + new_ - old) / trials[r];
 //if (r == 0)
 //cout <<width <<endl;
 }
}
template <class H>
void Stochastic<H>::accept(Coord& a, Coord& b)
{
 int r1 = a.getx(); int c1 = a.gety(); int d1 = a.getz();
 int r2 = b.getx(); int c2 = b.gety(); int d2 = b.getz();
 for (int r = 0; r < radius; r++) {
 width.accept(r, c1, d1, hist[0+6*r]);
 width.accept(r, c2, d2, hist[1+6*r]);
 height.accept(r, r1, d1, hist[2+6*r]);
 height.accept(r, r2, d2, hist[3+6*r]);
 depth.accept(r, r1, c1, hist[4+6*r]);
 depth.accept(r, r2, c2, hist[5+6*r]);
 }
 hist.clear();
}
template <class H>

 167

void Stochastic<H>::reject() {
 for (int r = 0; r < radius; r++)
 func[r] = o_func[r];
}
template <class H>
void Stochastic<H>::statusHits(int r, Coord& a, Coord& b) {
 cout <<"Width: " <<width;
 cout <<"Height: " <<height;
 cout <<"Depth: " <<depth;
}
#endif
Stochastic1.cpp
#include "Stochastic1.h"
//
//HITS CLASS
//
//CONSTRUCTOR FUNCTIONS
void Hits::initialize(int r, int p, int o, SIZE d)
{
 dim = d;
 dir = o;
 per = p;
 switch (dir) {
 case 1 :
 pt2indexes = &Hits::indexRow;
 sz = dim.W();
 indexTwo = dim.H(); indexThree = dim.D();
 break;
 case 2 :
 pt2indexes = &Hits::indexCol;
 sz = dim.H();
 indexTwo = dim.W(); indexThree = dim.D();
 break;
 case 3 :
 pt2indexes = &Hits::indexDep;
 sz = dim.D();
 indexTwo = dim.W(); indexThree = dim.H();
 break;
 default:
 pt2indexes = &Hits::indexRow;
 sz = dim.W();
 indexTwo = dim.H(); indexThree = dim.D();
 break;
 }
 row = new int**[r];
 for (int i = 0; i < r; i++)
 (row + i) = new int[indexTwo];
 for (int i = 0; i < r; i++) {
 for (int j = 0; j < indexTwo ; j++)
 ((row + i) + j) = new int[indexThree]; }
 for (int i = 0; i < r; i++) {
 for (int j = 0; j < indexTwo; j++) {
 for (int k = 0; k < indexThree; k++) {
 row[i][j][k] = 0;
}}}
}
//DESTRUCTOR FUNCTION
Hits::~Hits() {}
//ACCESSOR FUNCTIONS
int Hits::get(int r, int i2, int i3) {
 return row[r][i2][i3]; }
//MANIPULATOR FUNCTION
int Hits::indexRow(int row_) {
 return row_ * dim.H() * dim.D() + indexTwo * dim.D() + indexThree;
}
int Hits::indexCol(int col) {
 return indexTwo * dim.H() * dim.D() + col * dim.D() + indexThree;
}
int Hits::indexDep(int dep) {
 return indexTwo * dim.H() * dim.D() + indexThree * dim.D() + dep;

 168

}
void Hits::updateIndex(int i_2, int i_3, int) {
 indexTwo = i_2;
 indexThree = i_3;
}
int Hits::accept(int r) {
 row[r][indexTwo][indexThree] = temp;
 return temp;
}
int Hits::accept(int r, int i2, int i3, int val) {
 row[r][i2][i3] = val;
 return val;
}
//FRIENDS
ostream& operator <<(ostream& out, const Hits& h)
{
 /*for (int i = 0; i < 1; i++) {
 out <<endl;
 for (int j = 0; j < 10; j++) {
 out <<endl;
 for (int k = 0; k < 10; k++) {
 out <<h.row[i][j][k] <<" ";
 }}}
 out <<endl;*/
 out <<"Index 2: " <<h.indexTwo <<", ";
 out <<"Index 3: " <<h.indexThree <<", ";
 out <<"Temp Hits: " <<h.temp <<endl;
 return out;
}

//TWO POINT CORRELATION FUNCTION
bool TwoPoint::criteria(int id1, int id2, int mat) {
 return (id1 == mat && id2 == mat);
}
int TwoPoint::add(int* arr, int r, int mat) {
 temp = 0;
 int ct = 0; int spacer = ct + r;
 int space_1, space_2;

 int totCt = 0;

 while (totCt < sz /*spacer < sz*/)
 {
 //cout <<"In loop " <<ct <<endl;
 //Periodic
 if (r < per && spacer >= sz)
 spacer = spacer - sz;
 //End Periodic
 space_1 = arr[(*this.*pt2indexes)(ct)];
 space_2 = arr[(*this.*pt2indexes)(spacer)];
 if (criteria (space_1, space_2, mat) == true)
 temp++;
 //if (r == 1)
 //cout <<"1: " <<ct <<" 2: " <<spacer <<" : " <<criteria (space_1,
space_2, mat) <<endl;
 ct++;
 spacer = ct + r;
 if (r < per)
 totCt = ct;
 else
 totCt = spacer; }
 return temp;
}
int TwoPoint::setMat(Material& c) {
 return 0;
}
//LINEAL CHORD FUNCTION
int LinealChord::add(int* arr, int r, int mat) {

 temp = 0;
 int ct = 0;

 169

 int spacer = ct + r;
 int center = ct + 1;
 int center1 = ct + 1;
 bool query = false;
 int space_1, space_2;

 int totCt = 0;

 while (totCt < sz) {//(spacer < sz) {
 if (r < per && spacer >= sz)
 spacer = spacer - sz;
 space_1 = arr[(*this.*pt2indexes)(ct)];
 space_2 = arr[(*this.*pt2indexes)(spacer)];
 if (criteria(space_1, space_2, mat) == true) {
 center = ct + 1;
 center1 = ct + 1;
 if (r < per && spacer >= sz) {
 center = ct + 1 - sz;
 center1 = ct + 1 - sz; }
 //center1 = ct + 1;
 while (center1 < spacer) {
 if (arr[(*this.*pt2indexes)(center1)] != mat) {
 //added center1 above
 query = true; break; }
 center1++; }
 if (query == false) temp++; }
 ct++;
 spacer = ct + r;
 query = false;
 if (r < per)
 totCt = ct;
 else
 totCt = spacer;
 }
 return temp;
}

//MIXED PHASE FUNCTION
bool MixedPhase::criteria(int id1, int id2, int mat) {
 return (id1 == mat && id2 == n); // || (id1 == n && id2 == mat)
 // || (id1 == mat && id2 == mat) || (id1 == n && id2 == n) ;
}
int MixedPhase::setMat(Material& mat) {
 n = mat.get_id();
 return 0; }

//CLUSTER FUNCTION
void ClusterFunc::initialize(int r, int p, int o, SIZE d) {
 Hits::initialize(r, p, o, d);
 switch (dir) {
 case 1 :
 pt2coords = &ClusterFunc::coordRow;
 break;
 case 2 :
 pt2coords = &ClusterFunc::coordCol;
 break;
 case 3 :
 pt2coords = &ClusterFunc::coordDep;
 break;
 default:
 pt2coords = &ClusterFunc::coordRow;
 break; }
 coordMap = new int[dim.S()];
 for (int i = 0; i < dim.S(); i++)
 coordMap[i] = 0;
}
Coord ClusterFunc::coordRow(int row_) {
 Coord dummy(row_, indexTwo, indexThree);
 return dummy; }
Coord ClusterFunc::coordCol(int col) {
 Coord dummy(indexTwo, col, indexThree);

 170

 return dummy; }
Coord ClusterFunc::coordDep(int dep) {
 Coord dummy(indexTwo, indexThree, dep);
 return dummy; }
void ClusterFunc::fillAll(int* arr, int mat) {

 Coord temp;
 for (int i = 0; i < dim.W(); i++) {
 for (int j = 0; j < dim.H(); j++) {
 for (int k = 0; k < dim.D(); k++) {
 temp.set(i, j, k);
 if (arr[index(temp , dim)] == mat)
 all.push_back(temp);
 }}}

 int ct = 1, c = 0; //counter of clusters
 vector<Coord> cluster;
 vector<Coord> dummy = all;
 vector<Coord>::iterator itDummy = dummy.begin();
 bool status = false;

 while (!dummy.empty()) {
 cluster.push_back(*(dummy.begin()));
 c = 0;
 while (c < cluster.size()) {
 itDummy = dummy.begin();
 temp = *(cluster.begin() + c);
 while (itDummy != dummy.end()) {
 if (anyNext(temp, *itDummy) == true) {
 cluster.push_back(*itDummy);
 coordMap[index(*itDummy, dim)] = ct;
 itDummy = dummy.erase(itDummy);
 status = true;
 }
 else
 itDummy++; }
 c++; }
 if (status == false)
 coordMap[index(*(itDummy - 1), dim)] = ct;
 status = false;
 ct++;
 cluster.clear();
 }
}
void ClusterFunc::updateIndex(int i_2, int i_3, int d) {
 indexTwo = i_2;
 indexThree = i_3;
 current = d;
}
bool ClusterFunc::criteria(int id1, int id2, int mat) {
 return (id1 == mat && id2 == mat);
}
bool ClusterFunc::criteria(Coord& a, Coord& b) {
 return (coordMap[index(a, dim)] == coordMap[index(b, dim)]); }
int ClusterFunc::add(int* arr, int r, int mat) {

 if (all.size() == 0)
 fillAll(arr, mat);

 temp = 0;
 int ct = 0; int spacer = ct + r;
 Coord pt_1, pt_2;
 int space_1, space_2;
 while (spacer < sz)
 {
 pt_1 = (*this.*pt2coords)(ct);
 pt_2 = (*this.*pt2coords)(spacer);
 space_1 = arr[(*this.*pt2indexes)(ct)];
 space_2 = arr[(*this.*pt2indexes)(spacer)];
 if (criteria (space_1, space_2, mat) == true
 && criteria (pt_1, pt_2) == true)

 171

 temp++;
 ct++;
 spacer = ct + r;
 }
 return temp;
}

//ENERGY FUNCTIONS
//CONSTRUCTOR FUNCTIONS
Energy::Energy() : eng(0) { }
Energy::Energy(double dia, const Material m) : eng(0) {
 charLength = dia;
 for (int i = 0; i <= dia; i++)
 r_func[i] = overlapping_sphere(dia, i, m.get_vf());
 for (int i = (int)dia + 1; i < 400; i++)
 r_func[i] = m.get_vf() * m.get_vf();
}
Energy::Energy(double dia, const Material m, char debye) : eng(0) {
 charLength = dia;
 for (int i = 0; i < 400; i++) {
 r_func[i] = debye_decay(charLength, i, m.get_vf());
 //if (i < 20)
 // cout <<r_func[i] <<"\t" <<charLength <<"\t" <<m.get_vf() <<endl;
 }
}
Energy::Energy(double dia, double osc, const Material m, char debye) : eng(0) {
 charLength = dia;
 for (int i = 0; i < 400; i++) {
 r_func[i] = debye_oscill(charLength, osc, i, m.get_vf());
 }
}
Energy::Energy(long double c1, long double c2, long double c3, long double c4, long
double c5, long double c6, long double c7, double length, long double conv) : eng(0)
 for (int i = 0; i < 400; i++) {
 if (i*conv > (int)length)
 r_func[i] = 0;
 else
 r_func[i] = poly(c1, c2, c3, c4, c5, c6, c7, conv * i);
 //if (i < 100)
 /*cout <<i <<"\t" <<conv*i <<"\t" <<r_func[i] <<endl;*/
}
Energy::Energy(const char* name) : eng(0) {
 ifstream indata; indata.open(name);
 if(!indata) {
 cerr << "Error: file could not be opened" <<endl;
 exit(1); }
 int i = 0;
 while (!indata.eof()) {
 indata >> * (r_func + i);
 i++; }
 indata.close();

 double prev = 0;
 double delta = 0;
 i = 0;
 while (i < 50) {
 delta = fabs(prev - r_func[i]) * 100 / r_func[i] ;
 if (delta <= 2) {
 charLength = i;
 break; }
 prev = * (r_func + i);
 i++; }
}
//DESTRUCTOR FUNCTION
Energy::~Energy() {}
//ACCESSOR FUNCTIONS
double Energy::get_eng() const { return eng; }
double Energy::get_cl() const { return charLength; }
//MANIPULATOR
double Energy::calc(const vector<double> func) {
 double e = 0;

 172

 for (int r = 0; r < func.size(); r++)
 e = e + pow(func[r] - r_func[r],2);
 eng = e;
 return eng;
}
double Energy::calc(const double* arr, int rad) {
 double e = 0;
 for (int r = 0; r < rad; r++)
 e = e + pow(arr[r] - r_func[r],2);
 eng = e;
 return eng;
}
ostream& operator <<(ostream& out, const Energy& e)
{
 for (int i = 0; i < 100; i++)
 out <<e.r_func[i] <<endl;
 return out;
}
IdLoc.h
#ifndef GUARD_IdLoc_h
#define GUARD_IdLoc_h

#include "random.h"
#include "SIZE.h"
#include "Coord.h"

#include <vector>
using std::vector;

#include <iostream>
using std::endl;
using std::cout;
using std::cin;

//Constructors default 2 phases
// input number phases and dimensions
// sets up both sequences for rotating numbers
//Destructor
//Accessors get_variablename
//Private function
// findLowerLimits finds indices of 3 bottom arrays
// findUpperLimits finds indices of 3 top arrays
//Manipulator functions
// rotate shifts sequence numbers
// findId finds first index in array and then sets internal ids
// findId finds index that does not match given input value
// findNextId finds index that will not overlap on given IdLoc
// setId sets index and ids for the current location
// switchId changes value in given array to id2
// resetId restores value in given array to id1
//Boolean Functions
// onInterface true if on interface
// onBorder true if on border
//OUTPUT
// << Outputs location and id switch
//FRIENDS
// findOnInterface finds a two indexes on interface using findID and
// findNextId

class IdLoc {
private:
 SIZE out;
 SIZE inn;
 vector<int> seq1;
 vector<int> seq2;
 Coord loc;
 int num;
 int id1;
 int id2;

 173

 Coord findLowerLimits();
 Coord findUpperLimits();
public:
 IdLoc();
 IdLoc(int, const SIZE&, const SIZE&);
 ~IdLoc();
 int get_id1() const { return id1; }
 int get_id2() const { return id2; }
 int get_current(int* arr) const { return arr[index(loc,out)]; }
 Coord get_loc() const { return loc; }
 void rotate();
 void findId(int*);
 void findId(int*, int);
 void findNextId(int*, const IdLoc&);
 void setId(int*, int);
 void switchId(int*);
 void resetId(int*);
 bool onInterface(int*);
 bool onBorder();
 friend void findOnInterface(int* arr, IdLoc&, IdLoc&);
 friend ostream& operator <<(ostream& os, const IdLoc& id);
};

#endif
IdLoc.cpp
#include "IdLoc.h"
//CONSTRUCTOR FUNCTIONS
IdLoc::IdLoc() :
 num(2), out(100), inn(100), loc(0), id1(0), id2(0) {
 seq1.push_back(1); seq1.push_back(2);
 seq2.push_back(2); seq2.push_back(1);
}

IdLoc::IdLoc(int p, const SIZE& o, const SIZE& i)
: num(p), out(o), inn(i), loc(0), id1(0), id2(0) {
 seq1.push_back(num); //Set [0] to max id
 seq2.push_back(num - 1); //Set [0] to max id - 1

 for (int i = 1; i < num; i++) {
 seq1.push_back(i); //pattern should be 3, 1, 2
 seq2.push_back(seq1[i - 1]); //pattern should be 2, 3, 1
 }
}
//DESTRUCTOR FUNCTION
IdLoc::~IdLoc() { }

//PRIVATE FUNCTIONS
Coord IdLoc::findLowerLimits() {
 Coord temp(0, 0, 0);
 if (loc.getx() != 0)
 temp.setx(loc.getx() - 1);
 if (loc.gety() != 0)
 temp.sety(loc.gety() - 1);
 if (loc.getz() != 0)
 temp.setz(loc.getz() - 1);
 return temp;
}
Coord IdLoc::findUpperLimits() {
 Coord temp(loc.getx()+2, loc.gety()+2, loc.getz()+2);
 if (loc.getx() >= out.W() - 1)
 temp.setx(out.W());
 if (loc.gety() >= out.H() - 1)
 temp.sety(out.H());
 if (loc.getz() >= out.D() - 1)
 temp.setz(out.D());
 return temp;
}

//ACCESSOR FUNCTIONS IN HEADER
//MANIPULATOR FUNCTIONS

 174

void IdLoc::rotate() {
 int temp;
 for (int i = 0; i < num; i++) {
 temp = seq1[i];
 seq1[i] = seq2[i];
 seq2[i] = temp; }
}
void IdLoc::findId(int* arr) {
 loc.set(random(out.W()), random(out.H()), random(out.D()));
 id1 = arr[index(loc, out)];
 int i = 0;
 while (id1 != seq1[i])
 i++;
 id2 = seq2[i];
}
void IdLoc::findId(int* arr, int id)
{
 loc.set(random(out.W()), random(out.H()), random(out.D()));
 id1 = arr[index(loc, out)];
 while (id1 == id) {
 loc.set(random(out.W()), random(out.H()), random(out.D()));
 id1 = arr[index(loc, out)];
 }
 int i = 0;
 while (id1 != seq1[i])
 i++;
 id2 = seq2[i];}
void IdLoc::findNextId(int* arr, const IdLoc& id)
{
 char check = 'N';
 int ct = 0;
 while (check == 'N') {
 ct++;
 loc.set(random(out.W()), random(out.H()), random(out.D()));
 while (anyEqual(loc, id.get_loc()))
 loc.set(random(out.W()), random(out.H()), random(out.D()));

 if (arr[loc.getx()*out.H()*out.D()+loc.gety()*out.D()+loc.getz()] ==
id.get_id2()) {
 id1 = id.get_id2();
 id2 = id.get_id1();
 check = 'Y'; }
 if (ct++ > 1000000000) {
 throw domain_error("Phases incorrect");
 break; }}}

void IdLoc::setId(int* arr, int id) {
 id1 = arr[index(loc,out)];
 id2 = id;
 arr[index(loc,out)] = id2; }
void IdLoc::switchId(int* arr) {
 arr[index(loc,out)] = id2; }
void IdLoc::resetId(int* arr) {
 arr[index(loc, out)] = id1; }
//BOOLEAN FUNCTIONS
bool IdLoc::onInterface(int* arr) {

 Coord lower = findLowerLimits();
 Coord upper = findUpperLimits();
 Coord current(0, 0, 0);
 int ct=0, tot=0;

 for (int i = lower.getx(); i < upper.getx(); i++) {
 for (int j = lower.gety(); j < upper.gety(); j++) {
 for (int k = lower.getz(); k < upper.getz(); k++) {
 current.set(i, j, k);
 if (arr[index(current, out)] == arr[index(loc, out)])
 ct++;
 tot++;}}}
 return (ct != tot);}
bool IdLoc::onBorder() {

 175

 return
 loc.getx() < out.DW(inn) || loc.getx() >= out.W()-out.DW(inn) ||
 loc.gety() < out.DH(inn) || loc.gety() >= out.H()-out.DH(inn) ||
 loc.getz() < out.DD(inn) || loc.getz() >= out.D()-out.DD(inn);}
//OUTPUT FUNCTIONS
ostream& operator <<(ostream& os, const IdLoc& id)
{
 /*os <<"Current Material conversion: " <<endl;
 for (int i = 0; i < id.num; i++) {
 os <<"Mat " <<id.seq1[i] <<"->" <<id.seq2[i] <<endl;
 }*/
 os <<"Current location: " <<id.loc;
 os <<" for Material " <<id.id1;
 os <<" -> " <<id.id2 <<endl;
 return os;}
//FRIENDS
void findOnInterface(int* arr, IdLoc& a, IdLoc& b)
{
 a.findId(arr); //Select first Id
 while (a.onInterface(arr) == 0) //Check interface
 a.findId(arr);
 b.findNextId(arr, a);
 int c = 0;
 while (b.onInterface(arr) == 0) {
 b.findNextId(arr, a);
 c++;
 if (c > 1000000) break; }
 a.switchId(arr);
 b.switchId(arr); }
VolStatus.h
#ifndef GUARD_VolStatus_h
#define GUARD_VolStatus_h
#include "IdLoc.h"
#include <iostream>
using std::cerr;
using std::cout;
using std::endl;
using std::cin;

//Data members
// id1, id2 are current materials of IdLoc
// border_stat_1,2 states if id1 or 2 are on border
// boolean (true if volume fractions changed between
// border and center)
//Constructors booleans default to true
//Destructors
// reset sets status back to true
// check sets status to true if both a and b are in center
// or on the border. Also sets id1 and id2
//Output outputs volume status
//Friend
// correctVolStatus
// finds new index on border and center and
// change accordingly

class VolStatus
{
private:
 int id1;
 int id2;
 bool border_stat_1;
 bool border_stat_2;
 bool status;
public:
 VolStatus();
 ~VolStatus();
 bool get() const { return status; }
 void reset();
 bool check(IdLoc&, IdLoc&);
 friend ostream& operator <<(ostream& os, const VolStatus&);

 176

 friend void correctVolStatus(int*, IdLoc&, IdLoc&, VolStatus&); };

#endif
VolStatus.cpp
#include "VolStatus.h"
//CONSTRUCTORS
VolStatus::VolStatus()
 : status(1), border_stat_1(1), border_stat_2(1), id1(0), id2(0) { }
//DESTRUCTORS
VolStatus::~VolStatus() { }
//ACCESSORS
//MANIPULATORS
void VolStatus::reset() {
 status = true;}
//BOOLEANS
bool VolStatus::check(IdLoc& a, IdLoc& b)
{
 if (a.onBorder() == b.onBorder())
 status = true;
 else
 status = false;

 id1 = a.get_id2(); id2 = b.get_id2(); //Sets to previous Material
 border_stat_1 = a.onBorder();
 border_stat_2 = b.onBorder();
 return status;}
//OUTPUT
ostream& operator <<(ostream& os, const VolStatus& v) {
 os <<"ID 1: " <<v.id1 <<" and Border Status: " <<v.border_stat_1;
 os <<" (1 - Border, 0 - Center) " <<endl;
 os <<"ID 2: " <<v.id2 <<" and Border Status: " <<v.border_stat_2 <<endl;
 os <<"Volume Status: " <<v.status;
 os <<" (1 - Status Good, 0 - Volume Changed) " <<endl;
 return os;}
//FRIEND FUNCTIONS
void correctVolStatus(int* arr, IdLoc& a, IdLoc& b, VolStatus& v)
{
 a.findId(arr); b.findId(arr);
 while (a.onBorder() != v.border_stat_1
 || a.get_id1() != v.id1)
 a.findId(arr);

 while (b.onBorder() != v.border_stat_2
 || b.get_current(arr) != v.id2
 || anyEqual(a.get_loc(), b.get_loc()) == true) {
 b.findId(arr);}

 a.setId(arr, v.id2);
 b.setId(arr, v.id1); }
Schedule.h
#ifndef GUARD_Schedule_h
#define GUARD_Schedule_h

//Data members
// probability probability of acceptence
// threshold determines rate of acceptence
//Constructors threshold default .0001
//Destructor
//Manipulators
// deluge deluge acceptence algorithm

class Schedule
{
private:
 double probability;
 double threshold;
public:
 Schedule(double threshold = .0001);
 ~Schedule();
 double deluge(double, double); };

 177

#endif
Schedule.cpp
#include "Schedule.h"
//CONSTRUCTORS
Schedule::Schedule(double n) : probability(0) {
 threshold = n;}
//DESTRUCTORS
Schedule::~Schedule() {}
//MANIPULATORS
double Schedule::deluge(double old, double new_) {

 if (new_ < threshold * old + old)
 probability = 1;
 else
 probability = 0;

 return probability; }
InputPar.h
#ifndef GUARD_InputPar_h
#define GUARD_InputPar_h
#include "SIZE.h"
#include <iostream>
using std::cout;
using std::cin;
using std::endl;
#include <fstream>
using std::ostream;
using std::istream;
#include <string>
using std::string;

string convert(int);
void queryDefaults(SIZE&, int&);
string queryString();

class InputPar {
public:
 bool queryStatus();
 SIZE inputSize();
 int inputNum(); };
class Label {
 bool type;
 char charLabel;
 int intLabel;
 int ct;
public:
 Label();
 void setType();
 void incLabel();
 string getLabel();
};
class FileCall {
private:
 string dir;
 string id;
 string des;
 string inc;
 string ext;
public:
 FileCall();
 FileCall(string, string, string, string inc = "", string ext = ".dat");
 void updateId(string n) { id = n; }
 void updateInc(string n) { inc = n; }
 string getDir() { return dir; }
 string getId() { return id; }
 string getDes() { return des; }
 string getInc() { return inc; }
 string getExt() { return ext; }
 string name();};

 178

#endif
InputPar.cpp
#include "InputPar.h"

string convert(int num) {

 string temp("0");
 int dig(1), factor(10);
 while (num % factor != num) {
 dig++;
 factor = 10 * factor;
 temp.push_back('0'); }

 int var = num;
 char x;
 for (int i = 0; i < dig ; i ++) {
 x = var % 10 + 48;
 temp[dig - 1 - i] = x;
 var = (var - var % 10) / 10;}
 return temp;}

bool InputPar::queryStatus() {
 char inp;
 cout <<"Use default parameters Y/N" <<endl;
 cin >>inp;
 if (inp == 'Y' || inp == 'y')
 return false;
 else
 return true; }

SIZE InputPar::inputSize() {
 int num;
 cout <<"Input size as integer" <<endl;
 cin >>num;
 SIZE temp(num);
 return temp; }

int InputPar::inputNum() {
 int num;
 cout <<"Input desired number of realizations" <<endl;
 cin >>num;
 return num; }

Label::Label(): type(false), charLabel('a'), intLabel(1), ct(0) { }
void Label::setType() {
 char inp;
 cout <<"Input Y/y for seq or N/n for char: " <<endl;
 cin >> inp;
 if (inp == 'Y' || inp == 'y')
 type = false;
 else
 type = true;}
void Label::incLabel() {
 charLabel++;
 intLabel++;
 if (ct == 26)
 charLabel = 'a';
 ct++; }
string Label::getLabel() {
 string temp("blank");
 if (type == true) {
 temp = charLabel;
 if (ct > 26)
 temp = temp + charLabel; }
 else if (type == false)
 temp = "seq" + convert(intLabel);

 return temp; }
FileCall::FileCall() : dir(""), id("cfiles"), des(""), inc(""), ext(".dat") {
}

 179

FileCall::FileCall(string d, string i, string ds, string in, string ex) : dir(d),
id(i), des(ds), inc(in), ext(ex) {
}
string FileCall::name() {
 string temp = dir + id + des + inc + ext;
 return temp; }
void queryDefaults(SIZE& dim, int& num) {
 InputPar ip;
 cout <<dim;
 cout <<"Realizations: " <<num <<endl;
 if (ip.queryStatus() == true) {
 dim = ip.inputSize();
 num = ip.inputNum(); }}
string queryString() {
 char inp; string temp;
 cout <<"Input string Y/N" <<endl;
 cin >>inp;
 if (inp == 'Y' || inp == 'y')
 cin >>temp;
 else
 temp = "";
 return temp; }

 180

APPENDIX C

DATA FITTING

 181

 The data from this work was fit to equations using the software, SigmaPlot 11.0.

In Table B.1 these equations are listed. For more information refer to the SigmaPlot help

information [102].

Table B.1. Equations for data fitting.

Type Equation Parameters

oy y ax= + oy , a Linear

by ax= a, b Power

2

exp 0.5 ox xy a
b

⎡ ⎤⎡ ⎤−⎛ ⎞= −⎢ ⎥⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

a, b, c, ox Gaussian

() 2
ln

exp 0.5 o
o

x x
y y a

b

⎡ ⎤⎡ ⎤⎛ ⎞⎢ ⎥⎢ ⎥= + − ⎜ ⎟
⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

oy , a, b, ox Weibull

 182

APPENDIX D

MATERIAL PROPERTIES

 183

 This appendix lists the Abaqus property files used in the analysis. All the

material behaviors are listed, although every property was not necessarily implemented in

each analysis. For information about scripting and keywords for Abaqus refer to Abaqus

help manuals [98].

YSZ Property Data

*Material, name=YSZ
** ---------------------------------------
** UNITS: watts / (mm * C)
*Conductivity
.002,
** ---------------------------------------
** UNITS: g/mm^3
*Density
 0.0590,
** ---------------------------------------
** UNITS: (N/mm^2), -
*Elastic
 216000, 0.315
** ---------------------------------------
** UNITS: % volumetric
*Electrical Conductivity
.252,
** ---------------------------------------
** UNITS: mm/(mm * °C)
*Expansion
8.27e-6, 0
8.5e-6, 100
10.5e-06, 950
*Concrete Damaged Plasticity
56., 0.,500., 1., 0.
*Concrete Compression Hardening
69000., 0.
 0., 0.01
*Concrete Tension Stiffening
345.00, 0.00E+00
247.69, 2.50E-03
177.83, 5.00E-03
127.67, 7.50E-03
91.66, 1.00E-02
65.81, 1.25E-02
47.25, 1.50E-02
33.92, 1.75E-02
24.35, 2.00E-02
17.48, 2.25E-02
12.55, 2.50E-02
9.01, 2.75E-02
6.47, 3.00E-02
4.65, 3.25E-02
*Concrete Tension Damage
0.00, 0.000
0.272, 0.003
0.475, 0.005
0.620, 0.008
0.724, 0.010
0.799, 0.013

 184

0.853, 0.015
0.892, 0.018
0.919, 0.020
0.939, 0.023
0.954, 0.025
0.964, 0.028
0.971, 0.030
0.977, 0.033

Argon/Porosity Property Data

*Material, name=PORE
** ---------------------------------------
** UNITS: watts / (mm * C)
*Conductivity
.000016
** ---------------------------------------
** UNITS: g/mm^3
*Density
.001293, 0
.001205, 20
.001127, 40
.001067, 60
.001, 80
.000946, 100
.000898, 120
.000854, 140
.000815, 160
.000779, 180
.000746, 200
.000675, 300
.000566, 350
.000524, 400
** ---------------------------------------
** UNITS: (N/mm^2), -
*Elastic
 1, 0.315
** ---------------------------------------

Nickel Property Data

*Material, name=NICKEL
** ---------------------------------------
** UNITS: watts / (mm * C)
*Conductivity
 0.0775, 127.
 0.07, 227.
 0.0624393, 307.
 0.0623511, 309.
 0.0622021, 311.
 0.0621209, 313.
 0.0619969, 315.
 0.0619025, 317.
 0.0617648, 319.
 0.0616734, 321.
 0.0615556, 323.
 0.0614642, 325.
 0.0613448, 327.
 0.0612319, 329.
 0.0611418, 331.
 0.0610027, 333.
 0.0608483, 335.

 185

Nickel Property Data (cont.)
 0.060694, 337.
 0.0605368, 339.
 0.0603904, 341.
 0.0602668, 343.
 0.0600925, 345.
 0.0599263, 347.
 0.0598322, 348.
 0.0597391, 349.
 0.0596443, 350.
 0.0595442, 351.
 0.0594663, 352.
 0.0594074, 352.5
 0.0593553, 353.
 0.0593085, 353.5
 0.0592492, 354.
 0.0592072, 354.5
 0.0591474, 355.
 0.0590818, 355.5
 0.0590826, 356.
 0.0591082, 356.5
 0.0591426, 357.
 0.059175, 357.5
 0.059184, 357.6
 0.0592082, 357.7
 0.0592384, 357.8
 0.0592889, 357.9
 0.0593419, 358.
 0.0593853, 358.05
 0.0594239, 358.1
0.0594722, 358.15
 0.0595289, 358.2
 0.0595776, 358.25
 0.0596161, 358.3
 0.0596566, 358.35
 0.05969, 358.4
 0.059751, 358.45
 0.05983, 358.5
 0.059931, 358.55
 0.059932, 358.6
 0.059932, 358.65
 0.05989, 358.7
 0.059805, 358.75
 0.0597009, 358.8
 0.059646, 358.85
 0.0595883, 358.9
 0.059548, 358.95
 0.0595163, 359.
 0.0594632, 359.1
 0.0594338, 359.2
 0.059422, 359.3
 0.0594072, 359.4
 0.059389, 359.5
 0.0593548, 360.
 0.0593138, 360.5
 0.0592937, 361.
 0.0593483, 361.5
 0.05934, 362.
 0.0593504, 362.5
 0.0593519, 363.
 0.0593498, 363.5
 0.0593658, 364.
 0.0593492, 364.5

 186

Nickel Property Data (cont.)
 0.0593559, 365.
 0.0593519, 365.5
 0.0593564, 366.
 0.0593706, 366.5
 0.0593776, 367.
 0.059378, 367.5
 0.0593907, 368.
 0.0594734, 369.
 0.0595204, 370.
 0.0595708, 371.
 0.0596163, 373.
 0.0597148, 375.
 0.0597824, 377.
 0.0598622, 379.
 0.0599589, 381.
 0.0600192, 383.
 0.0601024, 385.
 0.0601916, 387.
 0.0602695, 389.
 0.0603566, 391.
 0.0604732, 393.
 0.0605628, 395.
 0.0619, 527.
 0.0638, 627.
 0.0658, 727.
 0.0679, 827.
 0.0697, 927.
 0.0716, 1027.
 0.0735, 1127.
** ---------------------------------------
** UNITS: g/mm^3
*Density
 0.0888,
** ---------------------------------------
** UNITS: (N/mm^2), -
*Elastic
206617.7014,0.31,25
200297.1506,0.31,100
191700.5364,0.31,200
183001.416,0.31,300
174244.8267,0.31,400
165452.8412,0.31,500
161047.5731,0.31,550
156637.5281,0.31,600
152223.4775,0.31,650
147806.0356,0.31,700
143385.6971,0.31,750
138962.8651,0.31,800
134537.8713,0.31,850
130110.9911,0.31,900
125682.4551,0.31,950
121252.4577,0.31,1000
116821.1642,0.31,1050
112388.7158,0.31,1100
107955.2339,0.31,1150
103520.8235,0.31,1200
** ---------------------------------------
** UNITS: mm/(mm * °C)
*Expansion
1.22672E-05, 0
1.24804E-05, 20
1.26951E-05, 40

 187

Nickel Property Data (cont.)
1.29117E-05, 60
1.31304E-05, 80
1.33514E-05, 100
1.35752E-05, 120
1.38022E-05, 140
1.40331E-05, 160
1.42687E-05, 180
 1.451E-05, 200
1.47586E-05, 220
 1.5017E-05, 240
1.52887E-05, 260
1.55801E-05, 280
1.59039E-05, 300
1.62916E-05, 320
1.68817E-05, 340
 1.7163E-05, 345
1.72447E-05, 346
1.73452E-05, 347
1.74789E-05, 348
1.76903E-05, 349
1.71806E-05, 351
1.69251E-05, 352
1.67713E-05, 353
1.66611E-05, 354
1.65754E-05, 355
1.60128E-05, 375
 1.5895E-05, 395
1.58817E-05, 415
1.59174E-05, 435
1.59821E-05, 455
1.60659E-05, 475
1.61633E-05, 495
 1.6271E-05, 515
1.63867E-05, 535
1.65089E-05, 555
1.66363E-05, 575
1.67681E-05, 595
1.69037E-05, 615
1.70425E-05, 635
1.71842E-05, 655
1.73282E-05, 675
1.74745E-05, 695
1.76228E-05, 715
1.77728E-05, 735
1.79243E-05, 755
1.80773E-05, 775
1.82317E-05, 795
1.83872E-05, 815
1.85438E-05, 835
1.87015E-05, 855
 1.886E-05, 875
1.90195E-05, 895
1.91798E-05, 915
1.93408E-05, 935
1.95026E-05, 955
0.000019665, 975
1.98281E-05, 995
1.99917E-05, 1015
2.01559E-05, 1035
2.03206E-05, 1055
2.04858E-05, 1075
2.06515E-05, 1095

 188

Nickel Property Data (cont.)
2.08177E-05, 1115
2.09843E-05, 1135
2.11513E-05, 1155
2.13186E-05, 1175
2.14864E-05, 1195
2.16545E-05, 1215
2.18229E-05, 1235
2.19916E-05, 1255
2.21607E-05, 1275
2.23301E-05, 1295
2.24997E-05, 1315
2.26697E-05, 1335
2.28398E-05, 1355
2.30103E-05, 1375
 2.3181E-05, 1395
2.33519E-05, 1415
 2.3523E-05, 1435
** ---------------------------------------
** UNITS: kJ/kg*K
*Specific Heat
0.420074, -16.27
 0.425094, -7.41
 0.428776, 1.81
0.435136, 11.34
 0.44183, 20.99
 0.448943, 29.98
 0.574008, 307.
 0.575541, 309.
 0.576563, 311.
 0.578266, 313.
 0.579629, 315.
 0.581332, 317.
 0.582695, 319.
 0.584568, 321.
 0.586272, 323.
 0.588315, 325.
 0.590189, 327.
 0.592233, 329.
 0.594618, 331.
 0.596662, 333.
 0.598706, 335.
 0.60092, 337.
 0.603304, 339.
 0.60603, 341.
 0.609266, 343.
 0.612332, 345.
 0.615909, 347.
 0.617782, 348.
 0.619826, 349.
 0.622041, 350.
 0.624425, 351.
 0.627321, 352.
 0.628683, 352.5
 0.630216, 353.
 0.63192, 353.5
 0.633623, 354.
 0.635667, 354.5
 0.637711, 355.
 0.639925, 355.5
 0.643161, 356.
 0.647079, 356.5
 0.651678, 357.

 189

Nickel Property Data (cont.)
 0.657299, 357.5
 0.658832, 357.6
 0.660024, 357.7
 0.661727, 357.8
 0.663771, 357.9
 0.665985, 358.
 0.667348, 358.05
 0.668711, 358.1
 0.670244, 358.15
 0.671947, 358.2
 0.67365, 358.25
 0.675353, 358.3
 0.677227, 358.35
 0.67893, 358.4
 0.679612, 358.45
 0.678419, 358.5
 0.671606, 358.55
 0.659172, 358.6
 0.64265, 358.65
 0.63209, 358.7
 0.624936, 358.75
 0.619997, 358.8
 0.616931, 358.85
 0.614205, 358.9
 0.61148, 358.95
 0.609947, 359.
 0.606541, 359.1
 0.603815, 359.2
 0.602112, 359.3
 0.599557, 359.4
 0.597684, 359.5
 0.5907, 360.
 0.58542, 360.5
 0.581332, 361.
 0.578607, 361.5
 0.575711, 362.
 0.573327, 362.5
 0.571112, 363.
 0.569068, 363.5
 0.567365, 364.
 0.565491, 364.5
 0.563958, 365.
 0.562425, 365.5
 0.561063, 366.
 0.559871, 366.5
 0.558678, 367.
 0.557486, 367.5
 0.556464, 368.
 0.555101, 369.
 0.553568, 370.
 0.552206, 371.
 0.54931, 373.
 0.547266, 375.
 0.545222, 377.
 0.543519, 379.
 0.542156, 381.
 0.540623, 383.
 0.539431, 385.
 0.538409, 387.
 0.537387, 389.
 0.536536, 391.
 0.536025, 393.

 190

Nickel Property Data (cont.)
 0.535343, 395.
 0.534832, 397.
 0.534492, 399.
 0.533981, 401.
 0.53364, 403.
 0.533299, 405.
 0.533129, 407.
 0.53597, 537.9
 0.54141, 593.5
 0.546849, 649.
 0.55187, 704.6
 0.557309, 760.1
 0.562748, 815.7
 0.568187, 871.3
** ---------------------------------------
*Plastic
179.8,0.00E+00,25
185.56,7.41E-05,25
200.46,3.07E-04,25
220.13,7.19E-04,25
241.53,1.32E-03,25
263.17,2.13E-03,25
284.39,3.13E-03,25
304.95,4.34E-03,25
324.78,5.75E-03,25
343.89,7.36E-03,25
362.33,9.18E-03,25
380.12,1.12E-02,25
397.33,1.34E-02,25
** ---------------------------------------
** UNITS: A (/s) , n, t, TEMP (ºC)
*Creep
 3.22e-48, 4.6, 0., 25.
 7.85e-36, 4.6, 0., 128.57
 1.76e-28, 4.6, 0., 232.14
 1.35e-23, 4.6, 0., 335.71
 4.28e-20, 4.6, 0., 439.29
 1.89e-17, 4.6, 0., 542.86
 2.28e-15, 4.6, 0., 646.43
 1.12e-13, 4.6, 0., 750.
** ---------------------------------------

 191

REFERENCES

1. Teagan, W.P., et al. Current and future cost structures of fuel cell technology
alternatives. 2000. Oberrohrdorf, Switzerland: European Fuel Cell Forum.

2. Feuer, H. and J. Margalit, SOFCs-too hot to handle? American Ceramic Society
Bulletin, 2004. 83(7).

3. Ferguson, J.R., J.M. Fiard, and R. Herbin, Three-dimensional numerical
simulation for various geometries of solid oxide fuel cells. Journal of Power
Sources, 1996. 58(2): p. 109-122.

4. Stolten, D., D. Froning, and L.G.J. De Haart. Modelling of planar anode-
supported thin-layer SOFC stacks. 2000. Oberrohrdorf, Switzerland: European
Fuel Cell Forum.

5. Yakabe, H. and T. Sakurai, 3D simulation on the current path in planar SOFCs.
Solid State Ionics, Diffusion & Reactions, 2004. 174(1-4): p. 295-302.

6. Yakabe, H., et al., 3D model calculation for planar SOFC. Journal of Power
Sources, 2001. 102(1-2): p. 144-154.

7. Roos, M., et al., Efficient simulation of fuel cell stacks with the volume averaging
method. Journal of Power Sources, 2003. 118(1-2): p. 86-95.

8. Recknagle, K.P., et al., Three-dimensional thermo-fluid electrochemical modeling
of planar SOFC stacks. Journal of Power Sources, 2003. 113(1): p. 109-14.

9. Kakaç, S., A. Pramuanjaroenkij, and X.Y. Zhou, A review of numerical modeling
of solid oxide fuel cells. International Journal of Hydrogen Energy, 2007. 32(7): p.
761-786.

10. Khaleel, M.A., et al., A finite element analysis modeling tool for solid oxide fuel
cell development: coupled electrochemistry, thermal and flow analysis in
MARC®. Journal of Power Sources, 2004. 130(1-2): p. 136-148.

11. Liu, H.-C., et al., Performance simulation for an anode-supported SOFC using
Star-CD code. Journal of Power Sources, 2007. 167(2): p. 406-412.

12. Leng, Y.J., et al., Performance evaluation of anode-supported solid oxide fuel
cells with thin film YSZ electrolyte. International Journal of Hydrogen Energy,
2004. 29(10): p. 1025-33.

13. Tao, Z., et al., Stress field and failure probability analysis for the single cell of
planar solid oxide fuel cells. Journal of Power Sources, 2008. 182(2): p. 540-5.

 192

14. Nakajo, A., et al., Simulation of thermal stresses in anode-supported solid oxide
fuel cell stacks. Part I: Probability of failure of the cells. Journal of Power
Sources, 2009. 193(1): p. 203-15.

15. Chih-Kuang, L., et al., Thermal stress analysis of planar solid oxide fuel cell
stacks: effects of sealing design. Journal of Power Sources, 2009. 192(2): p. 515-
24.

16. Chih-Kuang, L., et al., Thermal stress analysis of a planar SOFC stack. Journal of
Power Sources, 2007. 164(1): p. 238-51.

17. Xiaohua, D. and A. Petric, Geometrical modeling of the triple-phase-boundary in
solid oxide fuel cells. Journal of Power Sources, 2005. 140(2): p. 297-303.

18. Kim, J.H., W.K. Liu, and C. Lee, Multi-scale solid oxide fuel cell materials
modeling. Computational Mechanics, 2009. 44(5): p. 683-703.

19. Singhal, S.C. and K. Kendall, High Temperature Solid Oxide Fuel Cells:
Fundamentals, Design, and Applications. 2003, Oxford, UK: Elsevier Advanced
Technology. 405.

20. Dees, D.W., et al., Conductivity of porous Ni/ZrO2-Y2O3 cermets. Journal of the
Electrochemical Society, 1987. 134(9): p. 2141.

21. Lee, C.-H., et al., Microstructure and anodic properties of Ni/YSZ cermets in solid
oxide fuel cells. Solid State Ionics, 1997. 98(1-2): p. 39.

22. Ji Haeng, Y., et al., Microstructural effects on the electrical and mechanical
properties of Ni-YSZ cermet for SOFC anode. Journal of Power Sources, 2007.
163(2): p. 926.

23. San Ping, J. and C. Siew Hwa, A review of anode materials development in solid
oxide fuel cells. Journal of Materials Science, 2004. 39(14): p. 4405.

24. Malzbender, J., E. Wessel, and R.W. Steinbrech, Reduction and re-oxidation of
anodes for solid oxide fuel cells. Solid State Ionics, 2005. 176(29-30): p. 2201.

25. Radovic, M. and E. Lara-Curzio, Elastic properties of nickel-based anodes for
solid oxide fuel cells as a function of the fraction of reduced NiO. Journal of the
American Ceramic Society, 2004. 87(12): p. 2242-6.

26. Mori, M., et al., Thermal expansion of nickel-zirconia anodes in solid oxide fuel
cells during fabrication and operation. Journal of the Electrochemical Society,
1998. 145(4): p. 1374.

27. Radovic, M., et al., Thermo-physical properties of Ni-YSZ as a function of
temperature and porosity. Ceramic Engineering and Science Proceedings, 2006.
27(4): p. 79-85.

 193

28. Kumar, A.N. and B.F. Sorensen, Fracture resistance and stable crack-growth
behavior of 8-mol%-yttria-stabilized zirconia. Journal of the American Ceramic
Society, 2000. 83(5): p. 1199.

29. Kumar, A.N. and B.F. Sorensen, Fracture energy and crack growth in surface
treated Yttria stabilized Zirconia for SOFC applications. Materials Science and
Engineering A, 2002. 333(1-2): p. 380.

30. Sorensen, B.F. and A.N. Kumar, Fracture resistance of 8 mol% yttria stabilized
zirconia. Bulletin of Materials Science, 2001. 24(2): p. 111.

31. Radovic, M. and E. Lara-Curzio, Mechanical properties of tape cast nickel-based
anode materials for solid oxide fuel cells before and after reduction in hydrogen.
Acta Materialia, 2004. 52(20): p. 5747.

32. Radovic, M., et al., Effect of thickness and porosity on the mechanical properties
of planar components for solid oxide fuel cells. Ceramic Engineering and Science
Proceedings, 2003. 24(3): p. 329-336.

33. Radovic, M. and E. Lara-Curzio, Fracture toughness and slow crack growth
behavior of Ni-YSZ and YSZ as a function of porosity and temperature. Ceramic
Engineering and Science Proceedings, 2006. 27(4): p. 373-381.

34. Lara-Curzio, E., et al., Effect of thermal cycling and thermal aging on the
mechanical properties of, and residual Stresses in, Ni-YSZ/YSZ Bi-layers.
Ceramic Engineering and Science Proceedings, 2006. 27(4): p. 383-391.

35. Gutierrez-Mora, F., J.M. Ralph, and J.L. Routbort, High-temperature mechanical
properties of anode-supported bilayers. Solid State Ionics, Diffusion & Reactions,
2002. 149(3-4): p. 177.

36. Johnson, J. and J. Qu, Effective modulus and coefficient of thermal expansion of
Ni-YSZ porous cermets. Journal of Power Sources, 2008. 181(1): p. 85-92.

37. Gokhale, A. and S. Zhang, ORNL Sample Analysis, Microstructure images and
probability functions. 2008, Georgia Institute of Technology: Atlanta, GA.

38. Pyrz, R., Quantitative description of the microstructure of composites. Part I:
morphology of unidirectional composite systems. Composites Science and
Technology, 1994. 50(2): p. 197.

39. Lee, K., S. Moorthy, and S. Ghosh, Multiple scale computational model for
damage in composite materials. Computer Methods in Applied Mechanics and
Engineering, 1999. 172(1-4): p. 175.

40. Li, M., et al., Three dimensional characterization and modeling of particle
reinforced metal matrix composites part II: damage characterization. Materials
Science & Engineering A, 1999. A266(1-2): p. 221.

 194

41. Ghosh, S., K. Lee, and P. Raghavan, A multi-level computational model for multi-
scale damage analysis in composite and porous materials. International Journal
of Solids and Structures, 2001. 38(14): p. 2335.

42. Raghavan, P. and S. Ghosh, Adaptive multi-scale computational modeling of
composite materials. Computer Modeling in Engineering and Sciences, 2004.
5(2): p. 151.

43. Raghavan, P., S. Li, and S. Ghosh, Two scale response and damage modeling of
composite materials. Finite Elements in Analysis and Design, 2004. 40(12): p.
1619.

44. Swaminathan, S., S. Ghosh, and N.J. Pagano, Statistically equivalent
representative volume elements for unidirectional composite microstructures:
Part I - Without damage. Journal of Composite Materials, 2006. 40(7): p. 583.

45. Shan, Z. and A.M. Gokhale, Micromechanics of complex three-dimensional
microstructures. Acta Materialia, 2001. 49: p. 2001-2015.

46. Shan, Z. and A.M. Gokhale, Representative volume element for non-uniform
micro-structure. Computational Materials Science, 2002. 24(3): p. 361.

47. Shan, Z. and A.M. Gokhale, Digital image analysis and microstructure modeling
tools for microstructure sensitive design of materials. International Journal of
Plasticity, 2004. 20: p. 1347-1370.

48. Tewari, A., et al., Quantitative characterization of spatial clustering in three-
dimensional microstructures using two-point correlation functions. Acta
Materialia, 2004. 52(2): p. 307.

49. Mao, Y., A.M. Gokhale, and J. Harris, Computer simulations of realistic
microstructures of coarse constituent particles in a hot-rolled aluminum alloy.
Computational Materials Science, 2006. 37(4): p. 543.

50. Singh, H., et al., Computer simulations of realistic microstructures of
discontinuously reinforced aluminum alloy (DRA) composites. Acta Materialia,
2006. 54(8): p. 2131.

51. Singh, H., et al., Application of digital image processing for implementation of
complex realistic particle shapes/morphologies in computer simulated
heterogeneous microstructures. Modelling and Simulation in Materials Science
and Engineering, 2006(3): p. 351.

52. Cannillo, V. and W.C. Carter, A stochastic model of damage accumulation in
complex microstructures. Journal of Materials Science, 2005. 40(15): p. 3993.

53. Rintoul, M.D. and S. Torquato, Reconstruction of the structure of dispersions.
Journal of Colloid And Interface Science, 1997. 186(2): p. 467-476.

 195

54. Yeong, C.L.Y. and S. Torquato, Reconstructing random media. Physical Review
E, 1998. 57(1): p. 495.

55. Manwart, C. and R. Hilfer, Reconstruction of random media using Monte Carlo
methods. Physical Review E, 1999. 59(5): p. 5596.

56. Cule, D. and S. Torquato, Generating random media from limited microstructural
information via stochastic optimization. Journal of Applied Physics, 1999. 86(6):
p. 3428.

57. Yeong, C.L.Y. and S. Torquato, Reconstructing random media. II. Three-
dimensional media from two-dimensional cuts. Physical Review E, 1998. 58(1): p.
224.

58. Rozman, M.G. and M. Utz, Efficient reconstruction of multi-phase morphologies
from correlation functions. Physical Review E, 2001. 63: p. 8.

59. Garmestani, A., Indepedence of Probability Functions, J. Johnson, Personal
Communication. 2007: Atlanta, GA.

60. GCC, GCC, the GNU Compiler Collection, Computer Program. 2008. open
source computing software.

61. Debye, P. and A.M. Bueche, Scattering by an inhomogeneous solid. Journal of
Applied Physics, 1949. 20: p. 518-525.

62. Debye, P., H.R. Anderson, Jr., and H. Brumberger, Scattering by an
inhomogeneous solid. II. The correlation function and its application. Journal of
Applied Physics, 1957. 28(6): p. 679-683.

63. Torquato, S., Random Heterogeneous Materials: Microstructure and
Macroscopic Properties. Interdisciplinary Applied Mathematics. Vol. 16. 2002,
New York: Springer. 699.

64. Torquato, S., J.D. Beasley, and Y.C. Chiew, Two-point cluster function for
continuum percolation. Journal of Chemical Physics, 1988. 88(10): p. 6540-7.

65. Lee, S.B. and S. Torquato, Measure of clustering in continuum percolation:
computer-simulation of the two-point cluster function. Journal of Chemical
Physics, 1989. 91(2): p. 1173-8.

66. Sang Bub, L. and S. Torquato, Pair connectedness and mean cluster size for
continuum-percolation models: computer-simulation results. Journal of Chemical
Physics, 1988. 89(10): p. 6427-33.

67. Lee, S.B., Connectedness and clustering of two-phase disordered media for
adhesive sphere model. Journal of Chemical Physics, 1993. 98(10): p. 8119-8119.

 196

68. Yi, Y.B. and A.M. Sastry, Analytical approximation of the two-dimensional
percolation threshold for fields of overlapping ellipses. Physical Review E -
Statistical, Nonlinear, and Soft Matter Physics, 2002. 66(6): p. 1-8.

69. Feng, S., B.I. Halperin, and P.N. Sen, Transport properties of continuum systems
near the percolation threshold. Physical Review B (Condensed Matter), 1987.
35(1): p. 197-214.

70. Systat Software, I., SigmaPlot for Windows, Computer program. 2008. scientific
graphics tool.

71. Garboczi, E.J. and A.R. Day, An algorithm for computing the effective linear
elastic properties of heterogeneous materials: three-dimensional results for
composites with equal phase Poisson ratios. Journal Mechanical Physical Solids,
1995. 43(9): p. 1349-1362.

72. Drugan, W.J. and J.R. Willis, Micromechanics-based nonlocal constitutive
equation and estimates of representative volume element size for elastic
composites. Journal of the Mechanics and Physics of Solids, 1996. 44(4): p. 497.

73. Kanit, T., et al., Apparent and effective physical properties of heterogeneous
materials: Representativity of samples of two materials from food industry.
Computer Methods in Applied Mechanics and Engineering, 2006. 195(33-36): p.
3960.

74. Gitman, I.M., M.B. Gitman, and H. Askes, Quantification of stochastically stable
representative volumes. Archive of Applied Mechanics, 2006. 75(2-3): p. 79.

75. Hashin, Z. and S. Shtrikman, A variational approach to the theory of the elastic
behavior of multiphase materials. Journal Mechanical Physical Solids, 1963.
11(127-140).

76. Corson, P.B., Correlation functions for predicting properties of heterogeneous
materials. III. Effective elastic moduli of two-phase solids. Journal of Applied
Physics, 1974. 45(7): p. 3171.

77. Torquato, S. and G. Stell, Bounds on the effective thermal conductivity of a
dispersion of fully penetrable spheres. International Journal of Engineering
Science, 1985. 23(3): p. 375.

78. Garmestani, H., et al., Statistical continuum theory for large plastic deformation
of polycrystalline materials. Journal of the Mechanics and Physics of Solids,
2001. 49(3): p. 589.

79. Segurado, J., C. Gonzalez, and J. Llorca, A numerical investigation of the effect of
particle clustering on the mechanical properties of composites. Acta Materialia,
2003. 51(8): p. 2355.

 197

80. Schmauder, S., U. Weber, and E. Soppa, Computational mechanics of
heterogeneous materials - Influence of residual stresses. Computational Materials
Science, 2003. 26(SUPPL.): p. 142-153.

81. Terada, K., T. Miura, and N. Kikuchi. Digital image-based modeling applied to
the homogenization analysis of intermetallic composites. in Computer Aided
Assessment and Control of Localized Damage. 1996. Fukuoka, Jpn:
Computational Mechanics Inc, Billerica, MA, USA.

82. Takano, N., et al., Multi-scale analysis and microscopic stress evaluation for
ceramics considering the random microstructures. JSME International Journal,
Series A: Solid Mechanics and Material Engineering, 2003. 46(4): p. 527.

83. Kumar, H., C.L. Briant, and W.A. Curtin, Using microstructure reconstruction to
model mechanical behavior in complex microstructures. Mechanics of Materials,
2006. 38(8-10): p. 818.

84. Mishnaevsky, L., Jr., U. Weber, and S. Schmauder, Numerical analysis of the
effect of microstructures of particle-reinforced metallic materials on the crack
growth and fracture resistance. International Journal of Fracture, 2004. 125(1-2):
p. 33.

85. Mishnaevsky Jr, L.L., Automatic voxel-based generation of 3D microstructural
FE models and its application to the damage analysis of composites. Materials
Science and Engineering A, 2005. 407(1-2): p. 11.

86. Mishnaevsky, L., Jr., K. Derrien, and D. Baptiste, Effect of microstructure of
particle reinforced composites on the damage evolution: probabilistic and
numerical analysis. Composites Science and Technology, 2004. 64(12): p. 1805.

87. Selcuk, A. and A. Atkinson, Strength and toughness of tape-cast yttria-stabilized
zirconia. Journal of the American Ceramic Society, 2000. 83(8): p. 2029.

88. Faisst, T.A., Determination of the critical exponent of the linear thermal
expansion coefficient of nickel by neutron diffraction. Journal of Physics:
Condensed Matter, 1989. 1(33): p. 5805.

89. Touloukian, Y.S., et al., Thermal Expansion: Metallic Elements and Alloys.
Thermophysical Properties of Matter. Vol. 12. 1975, New York: Purdue Research
Foundation.

90. Kocks, U.F. and C. Shuh Rong, On the two distinct effects of thermal activation
on plasticity: application to nickel. Physica Status Solidi A, 1992. 131(2): p. 403-
13.

91. Davis, J.R.J.R. and A.I.H. Committee., eds. Metals Handbook: Vol 2 Properties
and Selection: Nonferrous Alloys and Special-Purpose Materials Metals
Handbook. Vol. 2. 1990, ASM International 1521.

 198

92. Binkele, L., Significance of discrete Lorenz function levels at high temperatures
resulting from new metallic conductivity measurements. High Temperatures -
High Pressures, 1986. 18(6): p. 599-607.

93. Toolbox, E. Argon. 2009 cited; Available from:
http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html.

94. Connelly, D.L., J.S. Loomis, and D.E. Mapother, Specific heat of nickel near the
Curie temperature. Physical Review B (Solid State), 1971. 3(3): p. 922-32.

95. Ghosh, S., J. Bai, and P. Raghavan, Concurrent multi-level model for damage
evolution in microstructurally debonding composites. Mechanics of Materials,
2007. 39(3): p. 241.

96. Gonzalez, C., J. Segurado, and J. Llorca, Numerical simulation of elasto-plastic
deformation of composites: Evolution of stress microfields and implications for
homogenization models. Journal of the Mechanics and Physics of Solids, 2004.
52(7): p. 1573.

97. Zimmermann, A., W.C. Carter, and E.R. Fuller, Jr., Damage evolution during
microcracking of brittle solids. Acta Materialia, 2001. 49(1): p. 127.

98. Pyrz, R., Correlation of microstructure variability and local stress field in two-
phase materials. Materials Science & Engineering A (Structural Materials:
Properties, Microstructure and Processing), 1994. A177(1-2): p. 253.

99. Simulia, Abaqus 6.8.1, Computer Program. 2009. finite element.

100. Thompson, A.W., Effect of grain size on work hardening in nickel. Acta
Metallurgica, 1977. 25(1): p. 83.

101. Thompson, A.W., Yielding in nickel as a function of grain or cell size. Acta
Metallurgica, 1975. 23: p. 6.

102. Srinivas, M., G. Malakondaiah, and R. Rao, Fracture toughness of F.C.C. nickel
and strain agening B.C.C. iron in the temperature range 77-773K. Acta metall.
mater, 1993. 41(4): p. 1301-1312.

103. Yakabe, H., et al., Evaluation of residual stresses in a SOFC stack. Journal of
Power Sources, 2004. 131(1-2): p. 278-284.

104. Luton, M.J. and C.M. Sellars, Dynamic recrystallization in nickel and nickel-iron
alloys during high temperature deformation. Acta Metallurgica, 1969. 17(8): p.
1033.

105. Weertman, J. and P. Shahinian, Creep of polycrystalline nickel. Journal of Metals,
1956. 8(10, Sec 2): p. 1223.

 199

http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html

106. Blum, W. and B. Reppich, On stress dependence of stationary deformation rate.
1969. 17(8): p. 959.

107. Freed, A.D. and K.P. Walker, Viscoplasticity with creep and plasticity bounds.
International Journal of Plasticity, 1993. 9(2): p. 213.

108. Norman, E.C. and S.A. Duran, Steady-state creep of pure polycrystalline nickel
from 0.3 to 0.55 Tm. Acta Metallurgica, 1970. 18(6): p. 723-731.

 200

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8

