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SUMMARY

A Bayesian adaptive sampling method is developed for highly coupled multi-

disciplinary design problems. The method addresses a major challenge in aerospace

design: exploration of a design space with computationally expensive analysis tools

such as computational fluid dynamics (CFD) or finite element analysis. With a lim-

ited analysis budget, it is often impossible to optimize directly or to explore the design

space with design of experiments (DoE) and surrogate models.

In such cases, the designer can conserve function calls by eliminating ‘bad’ re-

gions within some confidence level. Exploration can then be concentrated in regions

that probably contain a global optimum, in light of current data. However, current

sampling methods, such as design of experiments (DoE), can be inefficient by at-

tempting to represent all regions uniformly. Offline sampling techniques like DoE

require selection of an entire input sample before evaluating any of them. If the

analyses are executed serially, these strategies ignore valuable information since re-

maining sample points cannot be chosen in light of accumulating knowledge. As a

result, such sampling methods can continue to run analyses in a ‘bad’ region long

after there is sufficient certainty about its ‘badness.’ This inefficiency is magnified in

multidisciplinary problems with feedbacks between disciplines since each design point

may require iterative analyses to converge on a compatible solution between different

disciplines.

To address these problems, this thesis describes Bayesian Collaborative Sampling

(BCS). BCS is a bi-level architecture for design space sampling that uses Bayesian

models with online, or adaptive, sampling. Bayesian adaptive sampling methods

already exist, but BCS is tailored for strongly coupled multidisciplinary problems. It

xiii



is novel because it simultaneously does the following:

1. concentrates disciplinary analyses in regions of a design space that are favorable

to a system-level objective

2. guides analyses to regions where interdisciplinary coupling variables are proba-

bly compatible

BCS uses Bayesian sequential learning techniques along with elements of the col-

laborative optimization (CO) architecture for multidisciplinary optimization (MDO).

Like CO, BCS decomposes a multidisciplinary problem into a system level and dis-

cipline level. In addition, it equips both of these levels with Bayesian models. In

particular, BCS can borrow recent advances from machine learning literature and

can use sparse Bayesian models for computational speed. At each iteration, BCS

uses sequential learning criteria called expected improvement and probability of target

match from the Bayesian models to select the next sample point for analysis.

The method is first tested with a subsonic glider wing design problem using low fi-

delity analysis. The results show favorable performance compared to an off-line DoE.

Further performance tests investigate the method’s dependence on coupling band-

width, warm-start sample size, and replication error. Finally, BCS is demonstrated

with CFD in coupled aero-propulsion design of a turbojet engine nacelle. Successful

tests show that the BCS can be used for practical design with high fidelity analysis

codes.

xiv



CHAPTER I

INTRODUCTION

Engineering design often involves tradeoffs between a multitude of disciplines, such

as aerodynamics, structures, and propulsion analysis in aircraft design. Due to in-

teractions between the physics of each discipline, the best design for overall system

performance may be different from the best within each discipline. The goal of mul-

tidisciplinary design is to use discipline-level analyses efficiently and exploit their

interactions to find good system-level performance.

This thesis is motivated by two common challenges that are encountered in many

multidisciplinary design problems:

• the need for computationally expensive, high fidelity physics modeling in early

design

• the large number of analyses required to converge disciplines on physically com-

patible solutions for each individual design (e.g. aerodynamic lift equals struc-

tural weight)

These problems can be illustrated in terms of a modern design example. Recently,

the boundary layer ingesting (BLI) hybrid wing-body (HWB) aircraft concept has re-

ceived both academic and industry attention [12],[107],[115],[122],[126]. One baseline

design from NASA is shown in Figure 1 [50]. The BLI HWB has flush mounted

engine nacelles that ingest boundary layer air. This configuration may achieve aero-

dynamic advantages due to engines re-energizing the boundary layer on the aircraft

upper surface and filling the aircraft wake with exhaust plumes. The tight coupling

between aerodynamics and propulsion physics may be exploited to achieve lower fuel

consumption.

1



Figure 1: Boeing/NASA N2B boundary layer ingesting hybrid wing-body

First, note that the main advantages of the BLI concept inherently rely on complex

compressible and viscous flow physics that are best captured by high fidelity models.

Traditional design processes often begin with combination of historical data and low

fidelity models such as potential flow for early design and then use higher fidelity

models in later, detailed design. However, to fully exploit the advantages of boundary

layer ingestion and the wake filling concept, one must have sufficient fidelity in physics

models even in early stages of design since they influence major design commitments

such as wing area or number of engines. If early aircraft-propulsion sizing is done with

lower order physics models, then the boundary layer and wake advantages can only

be exploited later by minor, detailed design adjustments from a suboptimal baseline.

Unfortunately, in 2011, accurate aerodynamic analysis of a BLI aircraft with tools

like Reynolds-Averaged Navier Stokes (RANS) CFD has a very high computational

cost. Each complete CFD function call can require thousands of CPU hours on a

high-performance supercomputing cluster. There is therefore a need for methods to

bring information from computationally intensive physics models to early design in

cases where the analysis budget is severely limited.

In addition, the BLI HWB aircraft design example shows a second theoretical

challenge related to the coupled physics between disciplines. The main intent of the

2



BLI concept is to exploit a coupling between the external airframe aerodynamics and

the propulsion cycle analysis. The BLI engines ingest “bad” boundary layer air with

significant total pressure loss. The low total pressure at the inlet causes the turbofans

to operate relatively inefficiently and produce less thrust than otherwise. However,

this inefficiency and low thrust is compensated by improved airframe aerodynamics

and lower power dissipation in the plume/wake. (A more thorough description of the

physics will be given in a later chapter.)

Because of this strong aero-propulsion coupling, early design for BLI aircraft can-

not be done with independent aerodynamics and propulsion analyses as is often done

in traditional aircraft design. In a conventional, tube-and-wing aircraft configuration,

the engines are placed under and forward of the wings to minimize the mutual in-

terference between the airframe and engines. The unpowered airframe aerodynamics

can often be analyzed separately to find drag (thrust required). This required thrust

is passed to the propulsion discipline, which may try to optimize engine efficiency

while meeting the required thrust. Mutual influence of the two disciplines may rea-

sonably be ignored in early stages; for example, the plume has little effect on the

airframe aerodynamics, and airframe aerodynamics has little effect on the propulsion

cycle. However, in a BLI aircraft, the airframe lift and drag depend heavily on the

operation of the engine, since the engine is immersed in the boundary layer/wake. At

the same time, the engine depends heavily on the airframe boundary layer and wake

since it ingests sluggish air that has lost energy and total pressure from its free-stream

condition.

In practice, the strong mutual influence between disciplines must be enforced by

iteratively guessing values for coupling variables that link the two until they become

physically consistent. For example, the aerodynamics discipline must guess CFD

boundary conditions that produce mass flow, inlet and nozzle conditions that the

propulsion discipline expects. The propulsion discipline must use this mass flow and
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guess propulsion cycle parameters to match the external aerodynamics boundary con-

ditions. Iterative solutions are required to achieve interdisciplinary compatibility – the

state when coupling variables are consistent between disciplines. This iteration may

require a large number of computationally expensive analyses to find the performance

of a single design.

It may be reasonable to simply assume compatibility with tube-and-wing aircraft

when this coupling is weak. However, the mutual influence is the main source of ben-

efit for the BLI HWB, so interdisciplinary compatibility must be explicitly modeled

and enforced as early as possible in the design process.

1.0.1 Chapter Roadmap

To summarize again, this thesis is motivated by design problems like the boundary

layer ingesting hybrid wing-body where there are:

• a need for computationally intensive, high fidelity physics models in early design

• a need to enforce interdisciplinary compatibility when mutual influence between

disciplines is too significant to be ignored

In the rest of this chapter, each motivation and the shortcomings of current meth-

ods to address it are presented and discussed in further detail. At the end of the

chapter, a general description is given for the thesis’s main method to address them.

Bayesian Collaborative Sampling (BCS) is an adaptive sampling method that guides

disciplinary analyses toward favorable system objectives as well as compatibility be-

tween disciplines. A more detailed, formal description of BCS will be given after

providing theoretical background in Chapter 2.
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1.1 Motivation 1: Harnessing Computationally Expensive
Analysis Codes

A major challenge in multidisciplinary design is the efficient use of computationally

expensive analysis tools in early design phases. Despite major advances in computer

speed and simulation, high fidelity analysis codes like computational fluid dynamics

(CFD) and finite element analysis (FEA) are often too costly for many large-scale

applications. The expense can include not only computer processor time, but also

the time required to set up parametric environments for automated execution and

post-processing, queuing time on a multi-user high performance computing (HPC)

environment, and even the actual monetary expense of multiple software licenses.

Regardless of computational advances, there will almost always exist an “expensive”

analysis tool. Driven by competition, engineers will seek more accurate or thorough

analysis in less time than rivals, as long as additional information can be exploited

for performance advantage.

Currently, computationally intensive tools like CFD are not often used for design

space exploration or optimization in conceptual or preliminary design stages. Instead,

they are usually reserved for detailed design — after the major design decisions have

already been settled and large changes are costly. Early, important decisions must

instead rely on simplified physics, reduced order models or historical data. However,

there are many contemporary engineering problems that are dominated by complex

physics that can only be modeled by computationally expensive codes. Second, revo-

lutionary designs may not be able to call on historical data. It is therefore crucial to

develop ways to use higher fidelity tools efficiently in those early design phases where

high fidelity information can have a larger impact on the final design.

So, with novel concepts like a BLI aircraft, designers may want very expensive,

high-fidelity simulation tools in early design. Other design examples may include

aero-acoustic design of unducted rotors, hypersonic air-breathing propulsion, and
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ultra-low Reynolds number vehicles. To tackle such complex problems, aerospace

design research in recent decades has pursued two main methodological paths: 1)

design space exploration with surrogate modeling and 2) optimization methods.

First, surrogate modeling is the fitting of a simplified equation to a representative

sample of inputs and their analysis outputs (responses) — essentially curve-fitting

to approximate the analysis functions. Surrogate models include simple polynomial

response surfaces or more complicated artificial neural networks (ANN) or support

vector machines (SVM). This method is useful because it provides a global view of

the design space and is often more informative than pure optimization. For example,

if the design space contains no feasible region, optimization would fail. However, a

surrogate model would allow the designer to study the effects of relaxing constraints

on the feasible region or to investigate the effect of technology infusion by including

performance scaling factors in the surrogate.

Second, design research has also focused on optimization methods. This cate-

gory encompasses basic gradient-based optimizers to heuristic/stochastic algorithms

such as genetic algorithms and simulated annealing. The category includes multi-

disciplinary optimization methods that arrange information flow between engineering

disciplines to efficiently minimize an overall objective; it also includes multi-objective

optimization methods that find a Pareto front (a surface of non-dominated solutions

that optimize two or more goals).

Both surrogate modeling and optimization can be useful design tools. However,

both can encounter difficulties when the analysis codes are computationally expensive.

Surrogate models require dense samples to represent an underlying function with

global accuracy. This requirement is magnified by the “curse of dimensionality,”

in which the volume of a design space increases exponentially with the number of

design variables. Adding a single design variable can lead to a very large increase

in the sample size required for the same model accuracy. Direct optimization is also
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affected by this curse of dimensionality and can require a large number of function

calls to converge. In addition, it is difficult to make a prior estimate of the number of

function calls required for an optimization. If the analysis budget is depleted before

finding an optimum, the intermediate result may not be very useful; for example, the

optimizer may not even find a feasible region. Designers can often work around this

problem by relying on low or medium-fidelity tools to narrow the ranges of the design

space. However, this option is not always available, for the main physical phenomena

may be irreducibly complex. For example, in a transonic compressor blade design,

shock-induced flow separation is one of the main physical phenomena that affects

performance. So, the design cannot proceed far without high fidelity analysis of

compressible and viscous fluid mechanics.

In addition to these practical problems of computational cost, there is a perhaps

a more philosophical question of how to use high fidelity analyses in early design.

How useful is an optimum solution or a globally accurate surrogate model in the

conceptual/preliminary design? In these early phases, there is a fundamental lack

of knowledge about the design that limits the certainty of analysis or optimization,

regardless of fidelity level. This lack of knowledge includes both known unknowns

and unknown unknowns. Known unknowns include minor variables that are screened

out from design studies or physical assumptions made during analysis. In a wing de-

sign, for example, wing root fillets and rivet locations might be ignored initially, and

CFD analyses might be conducted only at one of several possible flight conditions.

Such known unknowns may be addressed only later in detailed design, so there exists

uncertainty about final results after the rivets and fillets are added. In the second

category — unknown unknowns — some variables can only be identified after design

knowledge accumulates. For example, preliminary design studies may reveal that

there is no feasible aircraft design that can meet a takeoff field length (TOFL) con-

straint. High lift devices like leading edge slats or boundary layer suction may then
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be introduced. The variables describing the high lift device are unknown unknowns

in early phases, because the designer does not even know that they will be part of

the final wing design.

Given both types of unknowns in early design phases, the results of surrogate

modeling and optimization are highly uncertain in early stages even with perfect

fidelity. Neither can be used as a push-button, automatic tool to select a final design

for production. Rather, the design tools are useful because they reveal important

trends, interactions, and sensitivities. For example, if a wing optimizer converges

on a wing with 15% thickness to chord ratio, that ratio is not certainly the best

(although the final production design will probably have a similar value). However,

it is interesting that the “optimum” wing is so thick. By examining the optimization

process, the designer may discover that a mission range requirement led the optimizer

to select a thick wing for fuel storage volume rather than for aerodynamic reasons.

This sort of qualitative information is often more important than precise values. It

shows the designer that the concept of a thick wing is optimal, even though the 15%

value may be uncertain.

The first main motivation of this research project is, once again, the need to bring

high-fidelity analysis to conceptual and preliminary design. With such computation-

ally expensive tools, it is often impossible to create an accurate surrogate model or

converge on an optimum. However, finding a globally accurate model or a precise op-

timum are not the designer’s main goal—the value of such tools are limited anyway

because of the fundamental lack of knowledge in early design. So, instead of striving

to fit accurate models or find an optimum with fewer function calls, a method is

needed to glean the most information from a very limited budget of function calls.

The Bayesian collaborative sampling (BCS) method addresses this need with a

hybrid of surrogate modeling and MDO. It involves adaptively sampling a multidis-

ciplinary design space, balancing between the exploration of unknown regions and
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exploitation of favorable trends while seeking a dense sample near the global opti-

mum. “Bad” regions are sampled just sufficiently to establish that they are probably

bad. “Good” regions are sampled densely until it is discovered that global opti-

mum probably lies elsewhere. This goal-driven design space exploration progressively

eliminates regions of the design and forms an increasingly accurate estimate of the

feasible, favorable region. BCS may not converge on a single optimum design; nor

will it produce a globally accurate surrogate. However, it will show which regions are

most likely to contain improvements and which regions are probably infeasible or un-

favorable. While the final result is not as satisfying as an accurate surrogate model or

a converged optimization, such probabilistic methods may be a more practical when

other methods are unaffordable. The designer attempts to gain the maximum infor-

mation about the global optimum at any given number of iterations. For example,

if the algorithm is arbitrarily stopped after N function calls, the proposed strategy

aims to give the best probabilistic view of the global optimum that can be purchased

with N function calls.

The current state and limitations of surrogate modeling and MDO are described

before discussing how the present thesis builds on them.

1.1.1 Surrogate Modeling (Metamodeling)

Surrogate modeling is a common approximation technique in aerospace design. A

representative sample of points is selected from a space of design variables, and each

point is evaluated with analysis codes. The resulting sample is then used to fit linear

or non-linear multivariate regression or interpolation equations [103]. These analytic

expressions are surrogate models (or ‘meta-models’), and they can usually be eval-

uated in a fraction of a second. Examples of surrogate models include polynomial

response surfaces, neural networks, Kriging/Gaussian processes, radial basis func-

tions, and support vector machines [81], [139], [142]. Surrogate models provide rapid
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approximations of expensive analysis codes for optimization or other design tasks.

The technique can be more useful than pure optimization alone, because it provides

a global view of the design space. With a surrogate model, the designer can see

the relative importance of design variables, see the effect of relaxing constraints, and

understand general trends.

The quality of the training sample affects the accuracy of the surrogate model.

Design of experiments (DoE)—or a systematic sampling plan—is often used to gener-

ate a data set to reveal the most information about the unknown, underlying function

with the fewest function evaluations. In recent engineering design literature, it is very

common to use DoE in conjunction with surrogate modeling. For current examples,

see [13], [58], [79], [96].

1.1.2 Limitations of DoE and Surrogate Modeling for Computationally
Expensive Applications

The simple, two-step DoE and surrogate modeling method is useful, but it has limi-

tations when attempting MDO with expensive codes.

First, DoE/surrogate modeling is “cheap,” but still not cheap enough — although

it is a relatively efficient method to obtain a global view of a design space with fewer

function calls, it still requires a substantial number of function calls. The method

works well if there is a sufficient sample size to “train” or regress surrogate models to

acceptable accuracy. However, this is often not possible with tools like CFD. In the

author’s experience, for a modest aerospace design problem of about O(10) design

variables, a sample size of O(104) can be insufficient to regress surrogate models

with acceptable model representation errors (standard deviation of less than 5% of

response range). This is particularly true of highly nonlinear responses common in

transonic aerodynamic applications. If the analysis is as expensive as large eddy

simulation (LES) or even a wind tunnel experiment, accurate surrogate modeling

may be impossible.
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Second, DoE/surrogate modeling can be inefficient with function calls by being

unnecessarily accurate in unpromising regions of the design space. A typical DoE

is an ‘offline’ sampling method—in other words, it selects the entire set of sample

input points before any of the points are evaluated. After the points are evaluated,

a surrogate model is then fit to the data with the goal of minimizing error in the

entire domain. Usually, an unfavorable region of the design space may have the

same sampling density as favorable regions. This can be wasteful since only a small

number of sample points are actually required to show with sufficient certainty that

an unfavorable region does not contain an optimum. Note that the designer is not

always concerned about only favorable regions. If there is a sufficient budget of

analysis function calls, it is often desirable to run an DoE to evenly sample both

favorable and unfavorable regions. This allows the designer to study global trends or

to observe the impact of imposing constraints. However, with a limited budget, there

is often little hope of achieving a globally accurate representation of the design space,

and it is often useful to focus on a favorable region.

Figure 2 below shows caricature diagrams of: 1) the DoE/surrogate modeling

approach and 2) an adaptive sampling method that clusters points for accuracy near

the optimum. The dots are the sample points evaluated with the underlying true

function, y. The black curve is a surrogate model, and the shaded region represents

some measure of model uncertainty. For a similar number of points, the example

Figure 2: DoE/surrogate modeling (left) and adaptive sampling (right)

on the right uses analysis function calls more efficiently to represent the function’s

minimum. Even though there are regions of large uncertainty in the model, one
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may be sufficiently certain that they do not contain an optimum. So, more analyses

can be concentrated in the favorable region. Unfortunately, such a strategy is not

possible with an offline sampling method like DoE, since there is no way to discern

the favorable region prior to executing any analyses.

Unlike a DoE, an adaptive sampling method (also called “online sampling,” “infill

sampling,” “sequential learning,” or “query learning”) selects and evaluates each new

sample point based on observed data. The N -th input point is selected by exploiting

information about the location and response values of all N − 1 previous points.

Researchers have studied several types of adaptive sampling, usually in support of

optimization rather than just rich sampling of a favorable region.1 In a recent survey,

Shan and Wang classify these as “metamodel-based design optimization” (MBDO)

strategies [139]. First, a common practice is to alternate between modeling and

optimization. The designer starts with a small sample DoE and surrogate model

with wide ranges on design variables. The optimum of the model is found, the ranges

are reduced around the model optimum, and another DoE and surrogate model are

created. In one recent example of this method, Wang et al. describe the adaptive

response surface method (ARSM), which progressively reduces the design variable

ranges based on whether model response exceeds some threshold value [156]. Another

iterative sampling and optimization method is to 1) fit a surrogate model, 2) optimize

the surrogate model, 3) evaluate the analysis function at that model optimum, and

repeat until model optimum and its actual response converge. For example, Vavalle

and Qin recently used such a strategy in “response surface-based optimization” (RSO)

with polynomial RSEs [155].

These methods have limitations. The chief problem is that they do not explicitly

use model uncertainty to guide adaptive learning and may miss the global optimum

1Depending on one’s point of view, these may be considered optimizer-based sampling or
sampling/model-based optimization.
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in a deceptive problem. Consider the caricature example in Figure 3 with a single

function f of a single variable, x. Starting from the top left, suppose an adaptive

Figure 3: Adaptive sampling with surrogate model

learning/optimization algorithm begins with four initial designs of x evaluated for

the true function f(x). At top right, a surrogate model is fit to these points, and

an optimizer finds the model optimum. This model optimum seems promising for

the true optimum, so at bottom left, that point is evaluated with the true function

(unfilled circle). This true response is slightly different from the model optimum,

so the model is updated, and the adaptive learning process continues. However, at

bottom right, it is apparent that the adaptive learning process has clustered sample

points near a local optimum, but has missed the global optimum.

In this simple example, the problem is that there is a large, unsampled region

where the model prediction is highly uncertain. The example adaptive learning algo-

rithm does not account for the greater possibility that the model is incorrect and that

the region contains a global optimum. It is easily fooled by this deceptive function.

An improved adaptive learning algorithm would balance between exploitation and

exploration. It would exploit regions that are densely sampled and show a favorable
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trend — and also explore regions that may hide an optimum because they are not

well known.

A second type of adaptive sampling strategy involves move limits or trust regions.

A surrogate model is used for optimization until the optimizer moves outside of a re-

gion where the model is considered accurate. Then, more sample points are evaluated

and the model is updated to improve accuracy where it is needed by the optimizer.

For example, Dennis and Torczon discuss a trust region method for pattern search

[39]. Alexandrov et al also describe such approximate model management techniques

to coordinate the use of low and high fidelity analysis in optimization [6]. Other

studies include Serafini [138] and Rodriguez et al [125]. Trust region methods ac-

counts for local accuracy of surrogate models, but does not directly balance between

exploitation and exploration of new regions. In theory, this might be accomplished

by combining trust region methods with some global metaheuristic optimizer like a

genetic algorithm, but the exploration would be stochastic rather than deliberately

aiming for the most informative sample point.

A more recent, third adaptive sampling strategy is to use Bayesian modeling and

inference to guide sampling toward an optimum based on some probabilistic criterion.

A Bayesian model is a class of surrogate models that gives a predictive distribution

on the response of a function. Using such model and its predictive distribution, the

“probably best” next sample point can be inferred from currently observed points.

A Bayesian adaptive algorithm accounts for local uncertainty. Mockus described an

early Bayesian approach that uses conditional probabilities as a sampling criterion

for new points [102], and this method was extended by Cox and John [33]. Jones,

Schonlau and Welch described a similar method called Efficient Global Optimization

(EGO) that uses Kriging (one type of Bayesian model) to calculate an expectation of

improvement as a criterion to guide sampling toward an optimum [77], [131]. Variants

of this Kriging-based method have been discussed by researchers at the University of
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Southampton [52], [53], and others [152], [130].

These Kriging-based Bayesian methods balance between exploration of sparsely

sampled regions and exploitation of accurately sampled regions, and are less likely

than simple adaptive surrogate models to fail in deceptive problems as in Figure 3.

While such methods are attractive for global optimization, they tend to be very

computationally expensive. This is their principle drawback, and most of these studies

have been limited to single blackbox functions rather than multidisciplinary problems.

The present thesis builds on these Kriging-based sampling strategies, adapting

them for computationally cheaper Bayesian models and multidisciplinary problems.

Because Kriging methods are an important pre-cursor to BCS, a more detailed litera-

ture review is given in the next chapter. The large computational expense of Kriging

is addressed in this thesis by faster, sparse Bayesian regression techniques described

in Chapter 3.

1.2 Motivation 2: Reducing the Cost of Interdisciplinary
Compatibility

The previous discussion of sampling of expensive analyses applies generally to design

problems where costly physics modeling is required. Multidisciplinary design analysis

introduces another source of analysis cost in the form of interdisciplinary compatibility.

This poses a special challenge for sampling of expensive codes.

1.2.1 Compatibility and Fixed Point Iteration

This compatibility is the state in which coupling variables passed between disciplines

in a multidisciplinary analysis are converged and physically consistent. For example,

consider an aero-structural analysis of a wing. A given design specifies the external

geometry or outer mold line (OML) as well as the internal structure of spars, skin,

and ribs. CFD analysis is performed on the nominal wing shape at some initial guess

for angle of attack, α. The computed aerodynamic loads are passed to the structures
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discipline. Finite element analysis is performed to compute structural deformations,

and structural weight is estimated from material properties. The deformations are

likely to be inconsistent with the initial shape used in CFD, and the weight may not

balance with the aerodynamic lift. The design analysis suffers from interdisciplinary

incompatibility.

This general type of problem is called fixed point iteration (FPI), which includes

problems of the form x = f(x). In this case, for example, the shape guessed by the

aerodynamics discipline must equal the shape that results in the structures discipline

due to computed aerodynamic loads. This general situation is represented by the

circular path shown in the design structure matrix (DSM) in Figure 4.

Discipline 
2

Discipline 
1

Figure 4: Design structure matrix with fixed point iteration (FPI)

The fixed point iteration problem can be solved by various solution methods. The

simplest is to progressively update the inputs of each discipline from the output of

others, and repeating the process until convergence is achieved. Other well-known

methods include the root-finding methods of Newton or Halley. Note that the FPI

problem must be solved iteratively to find the performance of each candidate design.

In the wing analysis example, CFD must be performed many times on the same design

at different α and deformed shapes just to find the lift/drag ratio of that single wing.

It is this repeated analysis for FPI that makes multidisciplinary design particularly

expensive. A common engineering solution is to simply ignore the FPI problem by
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cutting the feedback loop in the DSM. The feed-forward DSM can then be treated

as a single black-box function, where each total design analysis requires only a single

execution of each discipline.

This strategy is reasonable if the two-way coupling between disciplines is negli-

gible – for example, if the wing is short and relatively rigid, the effect of structural

deformations on the CFD aerodynamic loads can be small enough to be ignored.

However, ignoring the coupling and FPI problem can undermine the basic intent of

a design if the concept inherently exploits coupling of physics between disciplines.

This compatibility or fixed point iteration problem concerns each multidisciplinary

analysis for an individual design. But in recent decades, methods have been devel-

oped to alleviate the problem in the context of optimization. The task of optimization

rather than mere multidisciplinary analysis allows efficient techniques. For example,

compatibility may not be enforced strictly at the beginning of the optimization, but

may be enforced later as the optimum is approached. Such methods in multidis-

ciplinary optimization (MDO) mainly focus on rearranging the flow of information

between disciplines to efficiently enforce compatibility and optimization in concert.

BCS combines Bayesian methods with an MDO technique to address the inter-

disciplinary compatibility problem while adaptively sampling toward a favorable ob-

jective. BCS cannot be directly compared to MDO architectures, because it provides

more information about the design space than a simple optimum. It also need not

converge on an optimum to be useful because it seeks to richly sample the regions

near the optimum. However, BCS exploits many of the same advantages as MDO

architectures and actually uses a particular type — collaborative optimization — to

guide its adaptive sampling. So, the current state-of-the-art and limitations of MDO

architectures are discussed here.
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1.2.2 MDO Architectures - Status and Limitations

MDO architectures are reformulations of an optimization problem for efficient in-

formation flow between analysis disciplines and numerical optimizers. In a typical

engineering firm, the activities are usually split into disciplines of expertise, such as

an aerodynamics group and a structures group. In smaller scale design, an analogous

split may be made into discipline-related analysis codes. The purpose of an MDO

architecture is: 1) to coordinate these separate disciplines in a search for a system-

level optimum design, 2) to eliminate unnecessary information exchange, and 3) to

minimize discipline function calls. Example architectures in recent literature include

optimizer-based design (OBD), concurrent subspace optimization (CSSO), bi-level

integrated system synthesis (BLISS), analytic target cascade (ATC), and collabora-

tive optimization (CO)—see references [146], [121], [147], [100], [22]. Figure 5 shows

notional design structure matrix (DSM) diagrams of OBD and CO architectures for

wing design. The details are unimportant; these snapshots simply illustrate that

MDO architectures provide a structure of information flow rather than the specifics

of numerical algorithms.

Figure 5: Two example architectures for the same aerostructural wing design prob-
lem: Collaborative Optimization (CO), left, and Optimizer Based Design (OBD),
right
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Simple architectures like OBD—also called “all-at-once” (AAO) optimization—

give the control of all design variables to a single, central optimizer. In these archi-

tectures, the disciplines merely execute analysis for candidate designs handed down

to them by the optimizer. Such approaches can be wasteful because they take away

disciplinary autonomy and therefore diminish the value of skill and expertise in the

disciplines. To address this problem, more recent architectures like collaborative

optimization (CO), bi-level system synthesis (BLISS) and concurrent subspace opti-

mization (CSSO) decompose the MDO problem into a system level and a discipline

level. The system level is concerned with pursuing a main objective function (e.g.

mission range, loiter time, return on investment), and it coordinates disciplines (e.g.

aerodynamics, propulsion, structures) to subsidiary goals that support this objective.

This decomposition allows groups in a typical engineering team to work within their

existing organizational structure and also gives them autonomy to exploit their skill

and best practices.

To save analysis cost, these multi-level architectures have recently been modified

to use surrogate models. Some variants also incorporate adaptive learning; in each

iteration, the results of discipline analyses are used to update disciplinary surrogate

models. As the MDO process discovers potentially optimum regions, more disciplinary

analyses are directed to the vicinity, and models are adapted. This can lead to

higher accuracy of surrogate models in favorable regions of the design space. It also

lowers computer costs if the different elements (system level, disciplines) can use

surrogate models from other elements to approximately solve coordination problems.

This strategy has been applied with varying success to CO, CSSO, and BLISS. For

example, I. Sobieski and Kroo use response surface equations with CO [145], as do

Jun et al [78]. Sellar, Batill and Renaud developed an RSE-based CSSO [136], [137]

as well as a variant that uses artificial neural networks [135]. A later version of BLISS

also uses response surface equations to aid parallel computation [147], [86], [36].
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1.2.3 Limitations of Current MDO Architectures with Adaptive Learning

Despite the limited use of surrogate modeling for adaptive learning in MDO architec-

tures, there are no methods that use local uncertainty or probabilistic information as

explicit sampling criteria. As mentioned earlier, there do exist Kriging-based Bayesian

adaptive sampling methods, but these have been applied only to single functions or

single-level, all-at-once optimization.

If the Kriging-based adaptive sampling methods could be combined with multi-

level MDO architectures, the combined framework offers a chance of computational

savings for either design space exploration or optimization. It could benefit from

the specialized features of the MDO architectures (e.g. disciplinary autonomy, easy

distributed computing) with the balanced exploration and exploitation properties of

Bayesian adaptive sampling. In a multidisciplinary design problem, each discipline

could exploit and explore — not to find regions favorable to itself, but rather to aid

the system-level goal.

This can be viewed as a gap in the present literature, whether from the viewpoint

of model-enhanced MDO or MDO-enhanced adaptive sampling. Again, the main

obstacle has likely been computational cost of the Kriging-based Bayesian models as

well as a tendency of Kriging to overfit ‘noisy’ features in analysis functions.

In summary, current multidisciplinary design techniques partially alleviate the

FPI problem but face the following difficulties:

1. DoE and surrogate modeling can waste valuable function calls in unfavorable

regions of the design space. This can be partially alleviated by adaptive learning

models.

2. Some multi-level MDO architectures have already incorporated adaptive learn-

ing and surrogate models. However, these algorithms do not directly exploit

probabilistic measures of model uncertainty when selecting each new sample
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point.

3. Some Kriging-based optimizers use Bayesian adaptive sampling for single func-

tions. These methods have not been used in multidisciplinary architectures to

exploit the structure of MDO problems.

These issues are especially problematic for computationally expensive codes. A new

combined method that answers these challenges may show more information about

the global optimum for a given number of function calls. This result is not as useful

as an accurate surrogate model or a converged optimal solution, but it is a more

sensible approach when there is no hope of either.

The proposed Bayesian collaborative sampling (BCS) method addresses these

problems and builds on current methods in two ways. First, following the exam-

ple of architectures like BLISS and CSSO, surrogate models are integrated into an

MDO architecture to allow adaptive learning. While this general idea is not new,

BCS is different because it uses fast Bayesian surrogate models. This is not a mere

substitution of one type of model for another, for it allows certain types of statistical

inference that are unavailable to other methods. The theory and use of Bayesian

models are explained in the following theory chapters.

Second, methods of Bayesian inference are used to guide the adaptive refinement of

surrogate models. The proposed method uses the predictive distributions of responses

to calculate quantities like expected improvement and target matching probabilities

of responses. It will be shown that these quantities from Bayesian inference can

guide the adaptive learning in an MDO architecture more effectively than current

methods. These techniques are relatively new; they have been used in single function

optimization but have not been incorporated into MDO architectures.
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1.3 Informal Preview of Bayesian Collaborative Sampling

At this point, it may be helpful to give a rough preview of Bayesian collaborative sam-

pling. Even though a more thorough explanation will follow, it is useful to understand

how the general strategy addresses the motivations.

This loose explanation is best done by analogy. The original collaborative opti-

mization (CO), like many other bi-level methods, has a system level “boss” optimizer

that sets goals for the lower level “employee” discipline optimizers. Imagine that this

boss writes a set of goals on a chalkboard every morning. The employees sit at their

respective cubicles, run their analyses and optimizers and try to match the chalk-

board goals. After a while, they each report a single number that summarizes how

well they met the targets, as well as any numbers that the boss needs to calculate the

overall system objective. The boss then considers the employees’ reports and writes

a new set of goals on the chalkboard on the following day, hoping that the employees

can match them and also compute an improved system objective value. The boss’s

problem is to manipulate these chalkboard goals every day until a feasible optimum

is found.

In BCS, the boss and employees are each equipped with Bayesian models, which

are analogous to their memories or mental impressions based on the results they have

seen up to the present. Each time these people encounter new data or information,

they update their mental impressions.

As in the original CO, the boss writes goals on a chalkboard. However, the em-

ployees do not immediately rush to their cubicles to run analyses and try to match

the chalkboard. Rather, they contemplate their memories (Bayesian models). With-

out running any new analyses, they can infer from previous experiences and make

statements like:

“Based on similar experiences, I think I can very likely match the chalkboard

goal.”
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“I probably cannot match it.”

“I am not sure and must run additional analyses to be certain.”

With Bayesian models, they can even give number values for the probability of

matching the chalkboard goals.

The boss hears these informal responses and considers his/her own system Bayesian

model. Without explicitly knowing the system objective value for the current chalk-

board goal, the boss can still have a rough idea of how it will compare with previous

experiences. Using this guess as well as the employees’ informal statements, the boss

may choose whether some chalkboard goal is worth actually pursuing. If the employ-

ees are very unlikely to match, or if the expectation of system improvement is very

low, then the goal settings are discarded without running any new analyses. On the

other hand, if the goal settings seem sufficiently promising, then the boss directs the

employees to proceed as in the original CO formulation. All results of each iteration

are used to sequentially update the different Bayesian models.

Major cost savings can result from this formulation since

• Effort is not wasted to meet goals that are probably not worth pursuing, and

• Worthy goals are not pursued if they are probably impossible to meet.

As BCS progresses, the employees’ experiences/impressions (disciplinary Bayesian

models) become strongly focused on regions of the design space in which the boss

(system optimizer) is most interested and where the employees are most able to meet

the chalkboard settings.

The following chapter introduces theoretical background before giving a formal

description of Bayesian collaborative sampling.
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CHAPTER II

BRIEF OVERVIEW OF THEORY

A review of theory and current literature is given before describing the specific work-

ings of BCS. The discussion is qualitative for now, and detailed mathematical deriva-

tions are delayed until later chapters. Four key theoretical concepts are reviewed:

1. Bayesian models and inference

2. Expected improvement

3. Target matching probability

4. Collaborative optimization

2.1 Bayesian Modeling and Inference

Bayesian modeling and inference do not refer to a specific type of surrogate model (e.g.

kriging, single-layer perceptron) but rather to ways of interpreting the models and

their uncertainty. Bayesian modeling and inference are best explained in terms of their

difference from the classical, frequentist approach to probability and statistics. The

frequentist view interprets probability as the long-term, relative frequency of some

event. The Bayesian view interprets probability as a quantification of the degree of

knowledge or subjective certainty [20], [11]. The difference between these paradigms

has practical consequences for the BCS architecture. For simplicity, the concepts

are first explained in terms of a simple linear regression model. Notation follows the

conventions of machine learning and statistical pattern recognition literature, such as

texts by Bishop [19] or Duda, Hart, and Stork [47].
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Suppose that t = f(x) is an unknown true response to a design point x. The input

(or design) variable x has dimension M , where each of the M elements represents a

design attribute (wingspan, aspect ratio, etc.). The response t = f(x) is evaluated

at N different design points to collect a response sample T. For example, a single

design be represented as

x =

[
x1, x2, x3, · · · , xM

]
,

and a set of N design points is written as

X =



x(1)

x(2)

...

x(N)


The set of response values is

T =



t
(
x(1)
)

t
(
x(2)
)

...

t
(
x(N)

)



=



t
(
x

(1)
1 , x

(1)
2 , · · · , x(1)

M

)
t
(
x

(2)
1 , x

(2)
2 , · · · , x(2)

M

)
...

t
(
x

(N)
1 , x

(N)
2 , · · · , x(N)

M

)


For convenience, consider D = {X,T} to be one “data set.” Also for simplicity,

assume that the number of design variables M = 1 for now, so each design x is a

scalar.

A surrogate model form is then selected. In this example, consider the simple
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linear model

y(x,w) = wTφ =


w1

...

wL


T 

φ1

...

φL

 = w1φ1(x) + · · ·+ wLφL(x)

where w is a vector of model parameters (weighting coefficients in this case), and φ

is a vector of L basis functions.1 The model output, y, then, is an approximation of

the true response t. That is,

y(x,w) = w1φ1 + · · ·+ wLφL ≈ t(x),

which estimates the response for a single design x. For example, if

x = x and φ =



φ1

φ2

...

φL


=



1

x

...

xL−1


,

then y becomes the familiar polynomial curve fit. Note that the model is linear with

respect to w, rather than φ, so this may still be called a linear regression despite

nonlinear basis functions in φ.

In the frequentist approach, the model may be fit to the training data by finding

a maximum likelihood estimate (MLE) of w or by minimizing an error function, as

in the common least squares method:

E(w) =
1

2

N∑
i=1

[y(x(i),w)− t(i)]2 (1)

One particular parameter estimate ŵ minimizes E(w), in which case the best fit

model for the given data becomes:

y(x, ŵ) = ŵ1φ1 + · · ·+ ŵLφL ≈ t(x)

1 Please note the typographical distinction between boldface vector φ and its elements φi, as the
fonts are unfortunately difficult to distinguish in LATEX: φφφφ.
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Now, given a new candidate design x∗, the model can be used to predict the response:

y∗ = y(x∗, ŵ) ≈ t(x∗)

A key problem is that there is no direct way to infer “true” accuracy of ŵ or

its resulting model y(x, ŵ) based only on observed data D. The frequentist view

assumes that there exists some wideal such that t(x) = y(x,wideal) + ε, where ε is a

random error with some assumed probability distribution. The principal challenge

of this approach is that it is difficult to infer how well wideal is approximated by ŵ,

which is based upon only one particular data set D from an infinite number of possible

realizations of D. If another instance of D were picked, then ŵ might be different.

The frequentist paradigm tends to focus on finding the asymptotic properties of ŵ

as sample size N becomes large. Furthermore, many measures of uncertainty in the

model — such as confidence intervals, prediction intervals, error bars, p-values — are

based upon an imagined distribution of many possible data sets D.

The Bayesian view is fundamentally different. First, the observed D is the only

reality or “true” data. Second, there is no ideal, true value for w. Rather, it is treated

as a random variable. A probability distribution on w characterizes the uncertainty

of the model parameters, given the observed data [11]. It is worth emphasizing

again that the probability distribution does not represent a frequency distribution

(or histogram) of w taking different values but rather the degree of certainty of w

taking those values. This is called the posterior distribution over w given D, written

as p(w|D). The calculation of p(w|D) invokes Bayes’s theorem, a prior distribution

on w, and the sum and product rules of probability; a full derivation will be given in a

later chapter. For now, it will be enough to say that once it is known, the (posterior)

predictive distribution for the response t∗ at a new input point x∗ can be calculated.

For example, given a new aircraft design that has not been analyzed, one can predict

a distribution on its yet unseen drag.

This predictive distribution is the key machinery of the BCS architecture. Instead
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of referring to data set D, return to the notation of sample inputs X and responses

T that comprise data set D. After observing X and T, the posterior distribution

over model parameters p (w|X,T) can be found. Using the sum and product rules of

probability, p (w|X,T) can then be used to compute p (t∗|x∗,X,T), where x∗ is a new

candidate design and t∗ is its response. In certain cases, this predictive distribution

can be found analytically. Figure 6 below shows a cartoon of predictive distributions

for three different values of x∗, with probability density shown in a pseudo-horizontal

direction. The four points represent the sample data set.

Figure 6: Predictive distributions from a Bayesian model
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Summary of Frequentist vs. Bayesian Surrogate Modeling

Given a data set, the frequentist approach to surrogate modeling will give a pre-

dictive value for t∗ given a new point x∗. It addresses uncertainty of this prediction

by imagining many other data sets based on an assumed noise distribution. The

Bayesian approach considers just the observed data set and expresses uncertainty in

terms of a posterior distribution on model parameters. This distribution can be in

turn used to approximate a predictive distribution over t∗ for a new input x∗.

Example of a predictive distribution:

Let x∗ represent an airfoil geometry and t∗ represent its maximum lift to drag ratio.

A training input set X of 500 airfoils is analyzed to find a set T of corresponding

L/Dmax. A Bayesian model is fit to X and T. Given a new airfoil design x∗, the

model can give a predictive distribution, such as: “L/Dmax for some particular x∗ is

predicted to have a Gaussian distribution with a mean of 14 and a variance of 3.”

2.1.1 Bayesian Models: Current Literature

Bayesian models are already being used in engineering design. Efforts in that field

have focused almost exclusively on Kriging—a type of Bayesian Gaussian process

model that is also called Design and Analysis of Computer Experiments (DACE).

Because it has been described in several recent works, a mathematical description

is not given here. Although Kriging was originally developed for geostatistics, the

pioneering work on its use in computer experiments was done by Sacks and Welch

[128], Rasmussen and Williams [120], and later by O’Hagan, Kennedy and Oakley

[108], [83]. Kriging can be interpreted as a Bayesian model for deterministic com-

puter experiments. Often, only the mean of the predictive distribution is used to

predict a response, in which case Kriging is similar to any other response surface

method, as discussed by Simpson and Peplinski [142]. Kriging has been used in MDO

architectures in this simple form, as Kim et al did with BLISS [84]. But several
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studies have directly used the predictive distribution to guide sampling. These in-

clude Nair, Choudhury and Keane [104] and expected improvement-based methods

discussed later.

Kriging has also been used for adaptive sampling in multi-fidelity problems. Typ-

ically, it is used to model a multiplicative or additive correction between a low and

high fidelity code. At each iteration, the point of maximum uncertainty or variance

is used to guide high-fidelity analysis. High fidelity training is called only in regions

where a correction is most needed. This form of Kriging-based adaptive sampling has

been studied intensely in recent years by Keane and associates at the University of

Southampton [79], [82] as well as Gano et al [56], [57], [114], Huang et al [67], Raj-

naryan et al [118], and Rodriguez et al [124]. Other research studies Kriging-based

adaptive sampling in other tasks, such as multi-objective optimization [80].

The chief difficulty with Kriging is its computational expense. For even a simple

single-variable function like y = sin(x), fitting a Kriging model to a sample of 5000

points may take several hours of wall clock time on a typical 2009 desktop computer

using statistical software like JMP R©. This is because maximum likelihood estimation

during model fitting requires repeated factorizations (Cholesky, LU, etc.) of a matrix

whose size is the number of sample points. Nair, Choudhury and Keane describe

this more specifically: if N is the number of training points, the cost of maximum

likelihood estimation of hyperparameters grows as O(N3) while that of posterior

predictive distributions grows as O(N2) [104]. Other authors have noted this very

high cost. For example, in 2004, Leary et al discuss a Kriging variant with adjoint

CFD analysis and recommend using it when N(k + 1)/2 < 1000, where N is the

sample size and k is the number of design variables [90].

For a one-time modeling of a DoE sample, the computation cost may not be a great

problem. But a adaptive learning algorithm requires repeated re-fitting of models—

one for each iteration. Toal et al (2008) also note the high cost of Kriging sequential
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updates for optimization and studied the performance of different hyperparameter

tuning strategies to reduce this cost [151]. For a modest engineering problem of

O(10) variables and O(1000) sample points, the cost of Kriging updates may be far

more expensive than the high fidelity function calls that it is supposed to save.

In addition to speed issues, Bayesian adaptive learning with Kriging often encoun-

ters numerical problems as the algorithm converges or in ‘noisy,’ highly multimodal

problems. These issues will be discussed in later chapters. Some efforts have been

made to modify Kriging-based learning for noisy experiments by regularization [54].

However, these problems may also be avoided by Bayesian learning with alternate

Bayesian models.

The fields of machine learning and pattern recognition have made many advances

in Bayesian learning. Typically, researchers in this field develop Bayesian models for

regression or classification problems. Adaptive learning algorithms often accept a

stream of uncontrolled data and uncover an underlying function or discover a surface

that separates classes of data. Examples include adaptive spam filters and speech

or handwriting recognition. These problems are different from the present concern,

which is a goal-oriented, supervised learning where the experimenter selects each

input point. However, many of the insights from machine learning can be useful

for design optimization. In particular, much research in the past twenty years has

focused on a class of regression and classification models called sparse kernel methods,

such as the Support Vector Machine (SVM) [154], [35], [64]. The SVM is a popular

method in the machine learning community because of its generalization abilities

and speed due to its sparse set of basis functions. These advantages recently led

some aerospace design researchers to explore the use SVM as a surrogate modeling

method, including Ran and Mavris [119], Fan and Dulikravich [48], Clarke [31], and

Forrester, Keane and Sobester[52]. More recently still, Bayesian variants of the sparse

kernel machines have emerged, such as the Relevance Vector Machine (RVM) [150]
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[19]. RVMs have a functional form similar to SVMs but are Bayesian models that

yield predictive distributions rather than just response predictions. This thesis uses

sparse Bayesian models, which are a generalization of RVMs that can use non-kernel

basis functions. Sparse Bayesian models and RVMs use a mechanism called automatic

relevance determination (ARD) to prune unnecessary basis functions from the model,

which leads to greater speed in required for adaptive model fitting. This speed does

incur some serious costs, which are discussed in the next chapter.

Having summarized Bayesian models and predictive distributions, the discussion

turns their use in Bayesian adaptive learning.
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2.2 Expected Improvement

Expected improvement is a criterion for adaptive learning with Bayesian models,

and it is one of the main elements that enable BCS. The idea was developed in

the context of gradient-free optimization of blackbox functions with probabilistic

surrogate models. The general approach is to use the posterior predictive distributions

on the response to show the best new point on which to conduct the next analysis,

given the current observed data.

There are many variations on expected improvement, including Mockus [102], Cox

and John [33], and Jones, Schonlau, and Welch [77]. This thesis will use a version

recently described by Forrester, Keane and Sobester [52]. Consider the example prob-

lem of minimizing t(x) with respect to x, which has one dimension in this example.

Assume that there are N sample points that have already been evaluated by the

analysis code, t(x). These are represented by the four points in Figure 7 below. One

of the points has the best (lowest) response value, tbest.

Figure 7: Expected improvement

Suppose that a Bayesian model has been fit to this training sample of four inputs

and outputs, denoted X =
[
x(1),x(2),x(3),x(4)

]
and T =

[
t(1), t(2), t(3), t(4)

]
. At any

arbitrary new design point x∗, the Bayesian model gives a posterior predictive distri-

bution p (t∗|x∗,X,T). This distribution is shown in the pseudo-horizontal direction
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above. Part of the distribution is lower than the current best response, tbest. The

value of the cumulative distribution function at tbest is represented by the shaded area.

The fraction of this area compared to the area of the entire distribution represents

the probability that t(x∗) is an improvement over the current best response, which is

denoted P [I(x∗)]. The first moment of the probability of improvement over tbest is

the expectation of improvement, E [I(x∗)].

Expected improvement can be used as a sampling criterion for adaptive learning.

In other words, after a Bayesian surrogate model is fit to a sample of N points, the

point of maximum expected improvement can be used to guide the (N + 1)th sample

location. E [I(x∗)] can be very quickly calculated from a Bayesian surrogate model,

so the design space can be searched for its maximum using a genetic algorithm or

similar optimizer. After the new point is evaluated for its true response, the model

is fit again with N + 1 points, and the process continues. This process is shown in a

notional illustration in Figure 8 and Figure 9 below.
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Figure 8: Adaptive learning by expected improvement: Step 1

Figure 9: Adaptive learning by expected improvement: Step 2

First, in Figure 8, the four data points are used to regress a Bayesian model. The

predictive distribution is used to calculate E [I(x∗)]. An optimizer finds the point of

maximum E [I(x∗)] (star). This point, x∗, is evaluated (darkened point).

Then, in Figure 9, the Bayesian model is updated with the new point. Since this
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new point has the lowest response value, it sets the new tbest. E [I(x∗)] assesses im-

provement over the new tbest. Another maximum E [I(x∗)] is found, and the adaptive

learning proceeds.

The maximum E [I(x∗)] points in the two steps above demonstrate the advantage

of sampling by expected improvement. E [I(x∗)] can be high for two reasons: 1)

there is a general trend in the data such that the mean of the predictive distribution

is lower than tbest, or 2) the distribution is uncertain and spread widely so that a

large portion lies below tbest. In Figure 9, the second reason seems to dominate, since

the maximum E [I(x∗)] occurs in a sparsely sampled region. These two mechanisms

tend to automatically balance between exploitation of known regions and exploration

of unknown regions. The balance makes it less likely that sampling scheme will focus

on a deceptive local minimum region without adequately investigating other regions.

In the past ten years, there have been many applications of this method. For

example, Glaz, Friedmann and Liu apply it under Jones, Schonlau and Welch’s “Ef-

ficient Global Optimization” name to helicopter rotor blade design [59]. Jeong et al

apply it to two dimensional airfoil design [73], and Todoroki et al use it to design hat-

stiffened composite panels [152]. Keane further develops the expected improvement

concept to find a Pareto front in a multiobjective design problem [80].

2.3 Goal Seeking and Probability of Target Match

In addition to expected improvement, BCS also uses a adaptive learning criterion

based on the probability that target response value, ttarget, could exist at some point

x∗. This is shown notionally in Figure 10 below.

In practice, the sampling criterion could be computed by

P (ttarget − ε < t < ttarget + ε) (2)

for some small ε.
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Figure 10: Goal seeking adaptive learning by probability of target match

Adaptive learning based on this goal seeking/target matching criterion will tend

to cluster sample points and increase accuracy in locations where ttarget is likely. As

with expected improvement, it will also tend to balance between exploitation of the

known and exploration of the unknown. Forrester et al describe a similar conditional

likelihood criterion for Kriging models in [52]. It hypothesizes a target response value

at some new point x∗, uses this value in likelihood function that is conditional on

observed data, uses maximizes conditional log-likelihood to identify the next sample

point. Details of this method are not repeated here, but the role is similar to Figure 10.

To summarize Bayesian inference and the adaptive learning techniques, Figure 11

demonstrates the two learning criteria in the minimization of a typical test function.

The two input variables are on the horizontal axes. In Figure 11, the top left shows

a modified Rastrigin test function directly evaluated at 70 x 70 grid points. At top

right, a Latin hypercube DoE of 50 points is evaluated. A relevance vector machine

(RVM) is fit to the sample, giving predictive distributions on response t. At bottom

left, this RVM Bayesian model is used to calculate −log E[I(x)] based on the current

best, tbest = 2.2. The negative sign is used to put the adaptive learning problem in the

form of a minimization to follow the convention of optimization problems. The high

plateaus correspond to −log E[I(x)] near zero, where improvement is unlikely. In
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Figure 11: Modified Rastrigin function example

an adaptive learning process, these plateau regions would be ruled out from further

analysis. Note that the plateaus can correspond to either isolated sample points

with high responses or densely sampled regions where responses are even slightly

worse than the current best. Bottom right is the target matching case, showing the

negative probability of the response being within some threshold of the target,

−P (ttarget − ε < t < ttarget + ε),

where ttarget = 3 and ε = 10−2. The lower trench-like regions are more likely to match

the target.

These adaptive sampling criteria will be shown in greater mathematical detail

in Chapter 3. Having briefly described some Bayesian adaptive learning techniques,

attention is shifted to MDO architectures which will incorporate them. There is

no obvious connection between these areas, but they will combine in the final BCS
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formulation.

2.4 Overview of MDO Architectures

Recall that the goal of this thesis is to combine the adaptive learning Bayesian models

with a bi-level MDO architecture, so that disciplinary learning is coordinated toward a

system level optimum while preserving disciplinary autonomy. Recent MDO literature

includes at least four multi-level architectures that might be adapted for this purpose:

collaborative optimization (CO), concurrent subspace optimization (CSSO), bi-level

system synthesis (BLISS), and analytic target cascading (ATC). Among these and

other architectures, CO is chosen as a basis for the present method because of its way

of enforcing interdisciplinary compatibility (or “consistency”). This feature makes

CO well suited to the previously discussed Bayesian adaptive learning techniques. It

may be possible to craft Bayesian adaptive variants of CSSO, BLISS, or ATC, and

this should be considered for future research. But for now, there is a natural and

intuitive fit between Bayesian methods and CO. So, this combination is chosen as a

first, proof-of-concept multidisciplinary sampling scheme.

First, some background on interdisciplinary coupling is given. Then, the original

CO is described. This finally leads to the BCS architecture.

2.4.1 Coupling Variables and Interdisciplinary Compatibility

When multidisciplinary analysis (MDA) is done on a single candidate design, there

are often intermediate variables communicated between the disciplines. These may

be distinct from the actual design variables. These coupling variables (or linking

variables) are a key reason for selecting CO as the framework for adaptive learning.

Consider a design structure matrix (DSM or N2 diagram) of an example multidisci-

plinary problem as shown in Figure 12.

Each contributing analysis (CA) represents a discipline - in this case, aerodynamics

and structures. Connecting lines above the diagonal represent forward information
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Design variables x

coupling 
variables

coupling 
variables

F

Figure 12: Example design structure matrix

flow, while connecting lines below the diagonal represent feedback. In this example,

there are two contributing analyses and loop between from CA2 to CA1. The problem

with this loop is that the coupling variables passed from CA1 to CA2 depends on the

coupling variables passed back from CA2 to CA1. Values for the coupling variables

must be consistent for both CAs to achieve interdisciplinary compatibility. Therefore,

to evaluate a single design, the loop must be repeated until the coupling variables

converge. As described earlier, this is a fixed point iteration (FPI), where relations

of the form

x = f(x)

must be solved. Because of this FPI, several CA function calls are required to evaluate

the overall objective function F (x) for a single design x. This is a very costly method

for achieving interdisciplinary compatibility during design analysis, especially if the

CAs are expensive codes like CFD or finite element method (FEM).

For a more concrete example, consider the problem in Figure 13.

In this case, the coupling variables between the aerodynamics and structures CAs are

load distribution, deformation, and wing weight. The structures CA must provide

both the wing weight and deformation to the aerodynamics CA, but it cannot do this

until external loads are provided by the aerodynamics CA. Aerodynamic analysis

cannot be done without knowing a wing weight because the analysis must correspond

to steady level flight for a known total aircraft weight. Also, aerodynamic analysis
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Figure 13: Example problem: Aero-structural optimization of a wing

must be done on the deformed, in-flight shape of the wing rather than its unloaded

jig shape. To break this impasse, the CAs must make an initial guess at the coupling

variables and conduct fixed point iteration until those variables converge.

Recall that the discussion so far only concerns a single evaluation of the objective

function. In a direct (all-at-once) optimization problem, the entire DSM could be a

blackbox function, which would then be controlled by an external optimizer.

2.4.2 Collaborative Optimization

Decomposition of the MDO problem can alleviate the cost of interdisciplinary consis-

tency in multidisciplinary analysis. CO modifies the original problem into a bi-level

optimization. The optimization is split into a system level and discipline (subspace)

level optimizers, as shown in Figure 14.

The system optimizer sets targets for coupling variables and global/shared vari-

ables. The disciplinary subspace consists of local variables that concern only the

discipline as well as local copies of the target variables. The disciplinary optimiz-

ers manipulate these variables to minimize the discrepancy between local copies of

the targets and the actual targets. The system optimizer searches target settings to
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Figure 14: General structure of collaborative optimization

minimize the main objective function.

Returning to the wing example, imagine that an engineering firm has a system-

level “boss” and disciplinary teams for aerodynamics and for structures. At each

system-level iteration, the boss writes values for target variables on a chalkboard.

These target variables include the coupling variables (load distribution, wing weight,

and deformation) and global/shared variables (wing planform and thickness). The

aerodynamics team trusts that the structures team will somehow match the weight

and deformation goals written on the boss’s chalkboard. The aerodynamics team then

manipulates local aerodynamic variables (airfoil geometry) in order to match the load

distribution target on the chalkboard. If it cannot do this with airfoil geometry alone,

it also manipulates local copies of the target variables to gain extra degrees of freedom.

The discrepancy between actual targets and local copies of the targets is minimized.

Both disciplinary teams perform such an optimization to match the chalkboard

targets. Each team reports to the boss how well they could match the targets - that is,

the amount of discrepancy between the targets and their local copies. If both teams

report zero discrepancy, they achieve interdisciplinary compatibility. The teams also

report any quantities required for system level objectives (drag) or constraints (max-

imum stress, deflection). The boss considers this information and writes new targets

on the chalkboard. The boss must select the targets in a way that minimizes drag —
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subject to the constraint that the teams can match them with zero discrepancy.

Note that the disciplinary teams do not communicate with each other, and each

has autonomy to choose its own optimization methods. Yet, the teams collaborate

toward interdisciplinary consistency by working toward common chalkboard targets.

There are several versions of CO since its original proposal by Braun [22], [23].

These include an RSE-equipped CO by Sobieski and Kroo [145], “enhanced CO”

by Roth and Kroo [127], and “robust CO” by Gu and Renaud [62]. The following

notation is slightly modified from Braun [23]. First, the original optimization problem

is stated as a general, non-linear programming (NLP) problem:

Minimize: F (x)

with respect to: x

subject to: G(x) ≤ 0

H(x) = 0

where G and H are miscellaneous constraints. CO modifies this into a non-convex,

bi-level NLP:

Collaborative Optimization

Assume there are I disciplinary subspaces. Design variable X is decomposed into

shared, coupling, and local variables of the I subspaces:

X =
[
xshared,xcoupling,

(
x

(1)
local,x

(2)
local, . . . ,x

(I)
local

)]T
Let system target vector Z = [xshared,xcoupling]T .
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System Level Problem

Minimize: F (Z)

with respect to: Z

subject to: Qi(Z) = 0 for i = 1, 2, . . . , I

(target discrepancy of each discipline)

G(Z) ≤ 0 (miscellaneous system constraints)

H(Z) = 0

Discipline Level Problem

Let Z
(i)
sys be the elements of Z that are relevant to the i-th discipline.

Let Z
(i)
local copy be a local copy of elements of Z

(i)
sys.

Z
(i)
sys from system level is treated as a fixed parameter, whereas Z

(i)
local copy is a disci-

plinary variable.

For i = 1, 2, . . . , I:

Minimize: Qi

(
Z

(i)
local copy,x

(i)
local

)
=
∥∥∥ Z

(i)
sys − Z

(i)
local copy

∥∥∥2

2

with respect to: Z
(i)
local copy, x

(i)
local

returning to system level: Qi

F (Z), G(Z), H(Z), if calculated in the i-th discipline.

2.5 Bayesian Collaborative Sampling

Having reviewed Bayesian adaptive learning methods and collaborative optimization,

the discussion turns to the Bayesian collaborative sampling (BCS) architecture that

combines all of these elements.
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The formulation of CO is not significantly changed, but Bayesian inference is

added. In other words, BCS poses the a similar two-level problem structure as in the

Section 2.4.2. It still has closed disciplinary analysis, closed design constraints, and

open interdisciplinary consistency constraints. The CO formulation requires a system

and discipline level minimizations, but it does not specify any particular algorithm

for minimization. The BCS method specifies a Bayesian adaptive learning to drive

the CO architecture.

It is similar to the original collaborative optimization architecture, but the sys-

tem and discipline levels are now equipped with Bayesian surrogate models that are

adaptively updated with every new output, as in Figure 15.

System
Sampler

Aero
Opt

Struct
Analysis

Aero
Analysis

Struct
Opt

System
Objective

Aero
Target 

Discrepancy

Structures
Target 

Discrepancy

Bayesian Models

Bayesian models  
updated at every 
system iteration

sequential update

sequential update

Figure 15: adaptive updating of Bayesian models in BCS

At the beginning of each system iteration, the Bayesian models are searched to find a

new system design point Znew that has the highest expected improvement in the sys-

tem objective F while simultaneously maximizing the probability of interdisciplinary

compatibility. This is shown in Figure 16.
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Figure 16: Point with highest expected improvement and probability of compatibility
passed to system optimizer

The latter probability can be calculated by a target matching criterion. Such evalua-

tions of expected, compatible improvement can be done very rapidly with the Bayesian

models, so Znew can be found with an optimizer. Once the best candidate Znew is

selected, this value is passed to the system optimizer, and the original CO proceeds

in one system iteration.

2.5.1 A More Formal Explanation

The BCS formulation is given and explained afterward. The main difference with CO

is that target discrepancy metrics are not just tracked by theQi for I entire disciplines,

but rather individual target discrepancy metrics Jk for each of K individual coupling

variables. Let system target vector Z = [xshared,xcoupling]T .
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Bayesian Collaborative Sampling

System Level Problem

Minimize: F (Z) (including constraint penalties)

by sampling min. of: − logE [I (F (Z))]−
K∑
k

logP (−ε < Jk (Z) < ε)

with respect to: Z (shared design variables and coupling variables)

subject to: Qi(Z) = 0 for i = 1, 2, . . . , I

(target discrepancy of each discipline)

G(Z) ≤ 0

H(Z) = 0

and updating: Bayesian models p(F |Z), p(Jk|Z)

for k = 1, 2, . . . K coupling variables

Discipline Level Problem

Each discipline has produces local outputs Zk, local output that correspond to system

targets for k = 1, 2, ..., K
(i)
local locally relevant coupling variables. For i = 1, 2, . . . , I

disciplines:

Minimize: Qi

(
x

(i)
local

)
=
∑K

(i)
local

k J2
k for Jk = Zk,sys − Zk, local output

with respect to: x
(i)
local

returning: Target discrepancies Jk

F (Z), G(Z), H(Z), if calculated in the i-th discipline.
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2.5.1.1 Explanation of System Level

In the original CO, the system optimizer would search for the minimum F (Z) and

enforce interdisciplinary consistency Q(Z) from each discipline. In the BCS method,

the system level search is indirect; it uses an optimizer to search a Bayesian criterion

to select the best new sample point rather than to trying to directly search for the

optimum. This procedure uses Bayesian predictive distributions on F and on individ-

ual target discrepancies J . In the current methods, F may include penalty functions

on constraints G and H, although G(Z) and H(Z) may be modeled separately.

At each system iteration, an optimizer searches these models for Z that maximizes

the expectation that F (including constraint penalties) will improve—while simulta-

neously maximizing the probability of interdisciplinary consistency and feasibility.

These quantities to be maximized are:

E [I (F (Z))] (3)

P (−ε < Jk (Z) < ε) for k = 1, 2, . . . K coupling variables (4)

for some small ε. BCS may optionally use an alternate form of Eq.4 rewritten as

P
(
J2
k (Z) < ε

)
for k = 1, 2, . . . K (5)

since J2 is always nonnegative. In practice, it may be assumed that the improvement

and constraint distributions are independent. So, instead of maximizing the three

quantities separately, the sum of negative logarithms are minimized for numerical

convenience. The system sampling criterion can be collected in a single expression:

− logE [I (F (Z))]−
∑
k

logP (−ε < Jk (Z) < ε) (6)

After this objective is minimized with respect to Z, the resulting “most promising”

system target Z∗ is passed to the discipline level.
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2.5.1.2 Discipline Level

The discipline level is similar to the original CO with three differences. The Z
(k)
local copy

term in CO is not directly manipulated by an optimizer in BCS — only the local design

variables x
(i)
local are varied. However, it can alternately be included in the discipline

problem with no major theoretical difference. Second, each time the disciplinary

optimization is completed, individual target discrepancies Jk are passed back to the

system level instead of the aggregate Qi as in the original CO. Third, the predictive

distribution from this model can be used to find x
(i)∗
local that minimizes P (−ε < Jk < ε)

for the k values relevant to discipline i, and this point can be used as an initial guess

for the disciplinary optimization. This last technique is optional. In preliminary

experiments, its benefit over the original CO disciplinary optimization appears to

depend heavily on the optimizer and disciplinary function.

The BCS process can be “warm-started” by evaluating an initial sparse DoE of

the system target variables Z for F and Js. The warm-start sample size is discussed

in later chapters. After this initial DoE, Bayesian surrogate models are fit to the data

sets.

In practice, the system level step of minimizing

− logE [I (F (Z))]−
∑
k

logP (ε < Jk (Z) < ε) (7)

can be done by a global optimizer such as a genetic algorithm or other metaheuristic

optimizer. Note that this formulation can be slightly modified to include Bayesian

modeling of constraints G(Z):

− logE [I (F (Z))]−
∑
k

logP (G (Z) < ε)−
∑
k

logP (ε < Jk (Z) < ε) (8)

Also, note that the probability of target match in Eq.7 can alternately be expressed

as

P
(
J2
k (Z) < ε

)
(9)
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Both the alternative forms with constraint model of G (Z) and J2
k (Z) were used in

some early tests of BCS.

The discussion up to this point has assumed that quantities like Eq.7 can be

evaluated quickly. It also assumes that the model updates at every iteration are

computationally affordable so that timemodel fit << timeanalysis. The next chapter

elaborates on Bayesian theory and ends with a sparse Bayesian model that is practical

for this purpose.

2.5.2 Practical Implementation

The steps for a practical computer implementation of BCS are described. This con-

sists of two distinct parts: 1) the implementation of a computer code for BCS in

general and 2) its use on a particular engineering problem.

2.5.2.1 Setting Up a BCS Code

For this thesis, the entire BCS environment was created in Matlab. The general BCS

code contains four major elements:

1. System analysis function that passes relevant system variables to each discipline

and recovers Jk and F information

2. Disciplinary optimizers to minimize local discrepancy Jk from system targets

3. Bayesian model fitting and updating for target discrepancy Jk and system ob-

jective F

4. System optimizer to find candidate system design Z that minimizes the Bayesian

sampling criterion

The first element, the system analysis function, essentially wraps around the dis-

ciplinary optimizers and passes inputs and receives outputs from them. Assume that

the designer has decomposed a design problem into a bi-level problem for BCS. The
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system analysis function assigns particular system variables to particular disciplines.

For example, consider the aero-structural design of a wing. The system function is

set up to pass shared/global variables such as wing thickness and aspect ratio to both

aerodynamics and structures disciplines. It passes somewhat different system target

variables to each discipline: it passes an aerodynamics load distribution as a target

for the aerodynamics discipline, whereas it passes this load distribution as an input

parameter for the structures discipline. Similarly, variables describing the deformed

shape of the wing are passed to the aerodynamics discipline as inputs used for bound-

ary conditions, but the same variables are sent as targets for structural optimization.

After the disciplinary optimizers do their work, they pass target discrepancies and

information for computing the objective to the system function. These discrepancies

Jk and the objective function are the main outputs of the system function.

The second element in the BCS code consists of disciplinary optimizers. Each dis-

cipline receives system targets and shared design variables from the system analysis

function. However, each discipline also may have local variables that only exist in

that discipline. For example, the system function may pass wing area and thickness

to the structures discipline, but variables like the internal spar thickness are purely

structural variables that do not exist in the aerodynamics design subspace. Each

discipline optimizer is arranged to minimize discrepancy from system targets, Jk, by

manipulating such local variables. If there are no local variables, then the discipline

problem is simply one of evaluating the system target discrepancies. In many cases,

a discipline may have multiple relevant system targets. For example, the aerody-

namics discipline may have to match targets for several parameters describing a load

distribution. The discipline level optimization can minimize a single objective by col-

lecting discrepancies for several targets in one aggregate criterion for the discipline,

Q, which can be defined as the sum of squares of target discrepancies for the i-th

discipline. Even though the optimization is done on this Q, note that it is the Jk
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values rather than the minimum Q that are the main outputs that are returned to the

system analysis function. The choice of optimization method depends on the prob-

lem. For example, if the disciplinary objective Jk is known to be relatively smooth

and unimodal, then gradient-based optimizers may be used. However, such optimiz-

ers may show poor convergence for non-smooth, ‘noisy’ analysis functions that have

internal solver tolerances and errors. For this thesis, a simplex-based method or a

golden-section search (if performing a single variable line search) are used.

The third element is Bayesian model fitting. After each system iteration, there

is a need to fit or update Bayesian models for each of the target discrepancies Jk

and the objective F . The Bayesian modeling function takes an input of the current

sample and responses and fits model parameters (or hyperparameters). It does not

return a particular output value, but rather a fit model that allows rapid evaluation

of the Bayesian sampling criteria: expected improvement and probability of target

match. Note that the BCS formulation does not require a particular model form so

long as the model provides Bayesian predictive distributions. In later chapters, the

choice of Bayesian model implementation will be discussed in greater detail.

Fourth, a system-level optimizer is created to minimize the combined Bayesian

sampling criterion (expected improvement of the objective and probability of target

match) with respect to system design variables. After the Bayesian models have been

fit using the third element, the Bayesian predictive quantities can be evaluated very

rapidly. A genetic algorithm, for example, can be used as this optimizer. In summary,

the fourth element takes current Bayesian models for Jk and F and minimizes a

sampling criterion to finds the most promising system design for the next system

analysis.

The four elements of the BCS code are organized as in Figure 17.
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Figure 17: Generic BCS computer code requires four main elements (shaded)

2.5.2.2 Running BCS for a Particular Design Problem

Once the general computer code for BCS has been created, it must be adapted for

a particular multidisciplinary engineering problem. The order of steps are described

for modifying a new problem for BCS, setting up codes, providing this initial data,

and then executing a BCS code.

1. Bi-level Decomposition of Design Problem

(a) Restate the original multidisciplinary design problem as a bi-level formu-

lation with system and discipline level variables

2. Set Up Discipline Analysis Codes

(a) ‘Wrap’ and automate discipline analysis codes to accept inputs and post-

process outputs required by the discipline level problem defined above
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3. Initialization

(a) Generate a warm-start DoE of system variables Z

(b) For each DoE point Z, execute system analysis

• Pass relevant system design variables and targets to each discipline

• Run disciplinary optimization to minimize target discrepancies, Jk,

with respect to local variables

• Information required for the system objective is also computed

(c) Fit Bayesian model to system objective and each target discrepancy with

respect to system variables

4. Adaptive Sampling (Execute BCS Code)

(a) Using an optimizer, search Bayesian models to find the most promising

system design Z∗ that minimizes the Bayesian sampling criterion

(b) At Z∗, execute one system analysis

• As before, run discipline optimizers to minimize Jk

• Compute system objective

(c) Re-fit Bayesian models of the system objective and each target discrepancy

(d) If computational budget is not depleted, go to Step 4 (a)

When the computational analysis budget runs out and the BCS procedure is

complete, the designer is left with two products: the Bayesian models and the final

sample points. The following section describes how these results can be used in a

complete design process.
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Figure 18: Procedure for setting up and running BCS for a particular problem

2.6 Use of BCS in a Design Process

BCS is not a complete design solution, but it is a tool that can aid a designer in the

broader context of early design. One practical design process using BCS is described.

First, a design problem and its requirements are formulated into an objective func-

tion and constraints. Currently, BCS only addresses single objective functions; if there

are multiple objectives, these must be collected into an overall evaluation criterion

by a weighted sum. Then, candidate design variables and their ranges are identified.

Based on the physics of the problem, the minimum fidelity levels for analysis codes

are selected. Next, depending on the computational budget and the physics of the

problem, the designer chooses a manageable subset of design variables. This can be

done by experience, physical intuition, or statistical screening techniques such as anal-

ysis of variance (ANOVA), although this may consume some of the computational

budget. After this, a design structure matrix is created, mapping the relationship
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among disciplines and the flow of information.

The DSM, design variables, and analysis codes are considered together to select

the design strategy. If all of the codes are relatively cheap, then established techniques

of DoE and surrogate modeling can be used. Although inefficient, such methods are

simple to set up and provide the designer with a global view of the design space.

If the design space topology is expected to be relatively simple (smooth, unimodal,

convex, etc.), then direct optimization may also be done using one of the existing

MDO architectures.

However, the computer codes may be expensive because of irreducibly complex

physics. Then, neither DoE nor direct optimization are practical. The designer

can choose to do adaptive sampling, to get the most information out of a budget of

function calls. First, he/she must examine the DSM. If the matrix is upper triangular,

there are no feedbacks. Since there is need for fixed point iteration, the entire DSM

can be treated as a single blackbox function. In this relatively rare case, there is

no need to decompose the original problem into a new, multilevel problem. The

multidisciplinary design space can be explored with existing, single-function, Bayesian

adaptive sampling methods like EGO. The designer might also choose this if the

computational cost is dominated by one discipline, for there may be little profit in

decomposition architectures compared to fixed point iteration. However, if the codes

are expensive and there is a FPI problem, then BCS is recommended.

There are at least two strategies for using BCS, although one does not exclude the

other. First, the design space is reduced with BCS before finishing with an optimizer.

Fractions of the computational budget are reserved for each. After BCS depletes

its function calls, the final Bayesian models may show relatively clear results, as in

Figure 19, which is taken from a wing design example.
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Figure 19: System sampling criterion after 5000 aerodynamic function calls

Here, the system level sampling criterion is shown with respect to two design variables;

lower values correspond to higher expectation of improvement and probability of

compatibility. Most of the design space is ruled out (red plateaus) based on the

current best design. At this point, the design variable ranges may be constricted to

the most promising region and the current best design can be used as an initial point

for direct optimization.

The second option is to use the entire budget for BCS. The Bayesian models re-

sulting from BCS can be used in ways similar to current DoE/surrogate modeling

methods. They can give the designer qualitative information about favorable regions

of the design space, such as objective and constraint sensitivities. In the end, the cur-

rent best design is selected, and designer proceeds to the next stage, adding detailed

design variables that had previously been screened out.

It is not necessary to choose one of these BCS strategies in advance. One great

advantage of BCS is that it can be easily stopped, inspected, and restarted. For

example, before BCS depletes its budget, it may be observed that Bayesian model

variances are very low, the sample concentrates densely in one region, and there are
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few exploratory excursions outside the region. This scenario tends to happen with

simple function shapes with little numerical noise, such as algebraic test functions.

The designer may become highly confident that BCS has learned enough and wish to

stop prematurely and proceed to direct optimization. Alternately, he/she may simply

take the current best point and proceed to detailed design.

Figure 20 summarizes the practical use of BCS in early design phases.
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Figure 20: Conceptual/preliminary design method using BCS
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CHAPTER III

BAYESIAN INFERENCE AND MODELING

In the previous chapter, Bayesian models were described only briefly before showing

their use in the BCS architecture. It was assumed that a model could somehow be

created and provide a posterior predictive distribution, which could then be used

to compute useful quantities like expected improvement. This chapter gives a more

detailed theoretical account of Bayesian inference and modeling. The end goal is to

describe a sparse Bayesian model, which is based on a model type called a Relevance

Vector Machine (RVM). These Bayesian models are also well-documented in machine

learning and pattern recognition textbooks such as Bishop [19], and even a Matlab

code for RVM is available from its original author under GNU public license [149].

Their theoretical development is not a contribution of this thesis, but their novel usage

for adaptive sampling of design problems is. If a detailed mathematical derivation

and theoretical justification is not required, then the reader may wish skip to the next

chapter.

The general BCS architecture can notionally work with any generic Bayesian

model, but computational expense is a major practical concern. In the sequential

sampling scheme, the models are used to inexpensively select the most promising

sample points for an expensive analysis. However, if the model training and eval-

uation are expensive compared to the analysis codes, there is no purpose to using

BCS. Recall that although existing Kriging-based methods may be useful for modest

single-level design problems, the modeling cost can become too high for larger scale,

multi-level, multidisciplinary problems. Sparse Bayesian kernel machines have certain

properties that make them efficient and well-suited for practical BCS.
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The chapter covers the following:

1. Philosophy of Bayesian inference and modeling

2. Frequentist and Bayesian views of linear regression

3. Sparse Bayesian regression and the relevance vector machine (RVM)

4. Sampling criteria for adaptive learning

3.1 The Philosophy of Bayesian Inference and Models

The Bayesian paradigm has been explained in detail by authoritative sources. The

purpose here is not to repeat their rigorous development of the subject, but to high-

light the main philosophical reasons why Bayesian probability is appropriate for se-

quential sampling in design problems.

We can begin by defining a random variable. Strictly speaking, “random” is the

opposite of “deterministic” [24]. However, in the Bayesian context, deterministic can

mean predictable or known rather than having a unique outcome. So, any variable

that is unknown or unpredictable is a random variable. Even if a variable is an output

of a repeatable computer experiment, the observing subject (the experimenter) lacks

knowledge of the precise output before running an analysis. This lack of knowledge

makes the response variable random. The subject’s belief in the value of a random

variable can be expressed as a number: the subjective probability. The term subjec-

tive probability can be used interchangeably with Bayesian probability.

This notion of probability is often more intuitive than the frequentist perspective,

where probability is a long-term relative frequency of an event in an asymptotically

infinite series of observations. For example, if a person were to say, “I am 50% certain

that Thomas Bayes was a minister,” it is a Bayesian probability. Bayes’s occupation

is not a random event with replication error, where repeated observations will show
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that he is a minister in half of all cases. Rather, the 50% probability indicates the

speaker’s equal uncertainty about the statement being true or false.

But what does it mean to say that there is a 70% probability that Thomas Bayes

was a minister? The precise number seems to depend too much on the opinion of

the observer, especially since the statement cannot be falsified by a large number

of repeated experiments. In practice, it is the relative degree of knowledge that is

more important than the particular number. If we know that one candidate aircraft

design has a 70% probability of aero-structural compatibility and another design has

an 80% probability, we will pick the latter and not worry about the precise meaning

of “80%.” Compared to 70%, it is closer to certain compatibility (100%) and farther

from certain incompatibility (0%).

Despite this common-sense view of relative certainties, it is not an arbitrary choice

to treat uncertainty with the formal mathematics of probability. For example, a fa-

mous 1946 work by Cox showed that a few, common-sense axioms about the numerical

values of belief led to rules for the manipulation of these quantities that obey the rules

of classical probability [34]. Other authors over the past seventy years have proposed

different axioms for codifying degrees of belief, and they have also shown that these

result in rules that are equivalent to probability [72]. Therefore, it is both intu-

itive and mathematically valid to think of degree of knowledge in terms of Bayesian

probability.

This idea of probability is used in Bayesian inference and modeling. Inference

is the estimation of parameters for a distribution after observing data from that

distribution; modeling involves fitting a simplified expression to represent observed

data. In this context, “Bayesian” methods are not sharply defined set but are rather

a collection of related ideas and tools that tend to be used in inference and modeling.

The first of these is subjective probability. Other common themes include:

• Bayes’s theorem on posterior probability
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• Marginalization (integrating out ‘nuisance’ parameters in probability distribu-

tions)

• Treatment of model parameters as random variables

• Improvement of a model by sequential observation and re-fitting

• “Ockham’s razor” (a preference for models with low complexity)

Bayesian methods have become increasingly important in supervised learning tasks

in the fields of machine learning and statistical pattern recognition. Supervised learn-

ing is essentially similar to surrogate modeling in engineering design: the learning

algorithm is presented with a training data set D that consists of input variables X

and outputs T, using the notation from the previous chapter. Given a new input x∗,

the goal of supervised learning is to predict the corresponding response t∗ using a

predictive model based on observations D. The predictive model has parameters w

that are fit to the training data, and the challenge is to do this without overfitting

the model to D so that the predictions generalize well to yet unseen data. With

limited training data, however, there is uncertainty in the prediction. The frequentist

paradigm tends to focus on uncertainty due to noise in the response t. However, the

Bayesian paradigm focuses on the uncertainty of model parameters w or model form.

In a general case, the uncertainty in w is represented in two ways. First, there is

a prior distribution p(w) that represents our assumptions about w before observing

any data. After the data D is observed, we can quantify how much of D is explained

by different values of w. This conditional probability is denoted p(D|w), and can

be considered a function of w. A distribution like p(D|w) that is interpreted as a

functions of parameters w is conventionally called a likelihood function. The prior

and likelihood can be used to find the posterior uncertainty on w through Bayes’s

theorem:

p(w|D) =
p(D|w) p(w)

p(D)
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or

posterior =
likelihood× prior

normalizing factor

Once the posterior p(w|D) is known, it can be used to find a posterior prediction

p(t∗| x∗,D). The process of going from prior to likelihood to posterior to a posterior

prediction is at the heart of Bayesian modeling. The following section steps through

a linear regression example of the different levels of Bayesian treatment of p(D|w)

and p(t∗| x∗,D). It first starts with a frequentist approach and progressively adds

Bayesian elements, building up to the sparse Bayesian method.

3.2 From Frequentist to Bayesian Linear Regression

In Chapter 2, the frequentist approach to linear regression was explained in terms

of minimizing an error function. The same procedure is now explained in terms of

likelihood in order to build up an explanation of Bayesian modeling. The following

discussion closely follows the notation and explanations in Duda, Hart, and Stork [47],

Tipping and Smola [150], [149], Bishop [19], MacKay [95], and other common texts

in pattern recognition and machine learning. In particular, the order of presentation

is influenced by Tipping.

As before, we are given a data set

D = {X,T}

where

X =



x(1)

x(2)

...

x(N)
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and

T =



t
(
x(1)
)

t
(
x(2)
)

...

t
(
x(N)

)


.

A model form is also assumed:

y(x,w) = wTφ ≈ t(x)

where the basis vector φ is a column vector of L elements. A matrix Φ is also defined

such that each row corresponds to basis functions evaluated at an observed sample

point.

Φ =



φ(x(1))T

φ(x(2))T

...

φ(x(N))T


Thus, if each basis vector φ has L basis functions and there are N observed data

points, then Φ is N × L.

Earlier, we fit the model by minimizing with respect to w:

E(w) =
1

2

N∑
i=1

[y(x(i),w)− t(i)]2

This time, the curve fitting is explained in terms of maximizing a likelihood function

p(D|w). Note that in this case, p(D|w) will be written as p(T|w) to be consistent

with the cited literature. It is assumed that the inputs X that comprise part of D are

fixed points (for example, from a DoE) rather than a stream of uncontrolled, observed

data. X can optionally be dropped from the notation, and “observed data” will refer

to T.
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3.2.1 Maximum Likelihood Estimation (MLE)

Maximum likelihood is a popular frequentist technique for model fitting. We assume

that the model y(x) correctly represents the underlying phenomenon t(x) of which T

is a sample, and any discrepancy from the model is random error with zero mean and

unknown variance σ2. For simplicity, this noise is assumed to be Gaussian, so that

t(x) = y(x,w) + ε

where ε ∼ N (0, β−1). Following the convention of machine learning literature, the

inverse variance β = (σ2)−1 is called the precision. An alternate notation emphasizes

that the uncertainty is over the response t,

p (t|x,w, β) = N
(
t|y(x,w), β−1

)
(10)

If each sample point in the data set is assumed to be an independent observation from

this distribution, then the probability of seeing all N elements of T is the product of

the probabilities of each observation. This is expressed as

p
(
T|X,w, β−1

)
∼

N∏
i=1

N
(
t(i)|y(x(i),w), β−1

)
(11)

In the present context, p (T|X,w, β−1) is called the likelihood, similar to the more

general p(D|w) mentioned earlier. For this distribution, we can assume a Gaussian

with the general form

N (z| µ, σ2) =
1√

2πσ2
exp

[
− 1

2σ2
(z − µ)2

]
(12)

This expression is substituted into the likelihood function of Eq.(11). For later con-

venience, the logarithm of the likelihood function is used, yielding:

ln p (T|X,w, β) = −β
2

N∑
i=1

[
y(x(i),w)− t(i)

]2
+
N

2
ln β − N

2
ln (2π) (13)
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To estimate the “true” value of w, the maximum of (13) is found with respect to w.

The latter two terms do not depend on w, and the coefficient β in the first term does

not influence that stationary point. Without explicitly taking the derivative of the

log-likelihood, we see that maximum likelihood solution wML is the same as the ŵ

that minimized the sum-of-squares error function given earlier in (1):

E(w) =
1

2

N∑
i=1

[y(x(i),w)− t(i)]2

The other model parameter is the noise precision β. Taking the derivative of the

log-likelihood with respect to β and setting it equal to zero, we find the maximum

likelihood estimate βML is given by

1

βML

=
1

N

N∑
i=1

[
y(x(i),wML)− t(i)

]2
(14)

At this stage, wML and βML can be taken as point estimates for a surrogate model

t(x) ≈ y(x,wML) = wT
MLφ (15)

with error variance β−1
ML. However, taking a slightly Bayesian point of view, we can

intepret this as a predictive distribution

p (t∗| x∗,wML, βML) ∼ N
(
t∗| y(x∗,wML), β−1

ML

)
. (16)

Next, we introduce some Bayesian elements to this method as an intermediate step.

3.2.2 Maximum a Posteriori (MAP) Estimation

The maximum a posteriori method introduces a prior distribution on the model

parameters w and hyperparameters. It is still not a full Bayesian treatment, but it

is an intermediate step that illustrates many of the important principles.

With MLE, the distribution over t depends on a point estimate of w. In the

Bayesian setting, w is uncertain, depending on a distribution over w with precision
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α. For this example, it is assumed to be Gaussian:

p(w| α) = N
(
w| 0, α−1 I

)
=
( α

2π

)M/2

exp
[
−α

2
wTw

]
(17)

where M is the number of basis functions φ or elements of w. For now, α is assumed

to be known.

Earlier, a single value of w influenced a distribution on T. In this case, a single

value of α influences a distribution on w, which in turn influences a distribution on

T. This can be used to find a posterior distribution on w through Bayes’s theorem:

posterior =
likelihood× prior

normalizing factor

p (w|T, α, β) =
p (T|w, β) p (w| α)

p(T| α, β)
(18)

Thus, the posterior distribution over w depends on the likelihood function (similar to

the previous result from MLE) as well as a prior belief about w given some parameter

α. A parameter like α that influences the distribution of another model parameter is

called a hyperparameter.

Since we have assumed a Gaussian prior and likelihood, the posterior on w is also

Gaussian, given by

p (w|T, α, β) ∼ N (w|m,S) (19)

where

m =

(
ΦTΦ +

α

β
I

)−1

φTT (20)

S =
1

β

(
ΦTΦ +

α

β
I

)−1

(21)

Earlier, MLE found a point estimate of a single w, but now there is a whole

distribution of possible values. A full Bayesian account would integrate over this

distribution to take a weighted sum of all possible values of w. But for now, we will

show a partially Bayesian ‘shortcut’ method.
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The maximum a posteriori (MAP) method finds the most probable w at the peak

of the posterior distribution of (18). Since the denominator has no dependence on

w, the MAP method amounts to maximizing the numerator with respect to w. Once

again, it is more convenient to maximizing the logarithm of the probabilities rather

than the probabilities themselves. Substituting (13) and (17) into (18), it is found

that maximizing the log-posterior is equivalent to minimizing an error function

EMAP (w) =
1

N

N∑
i=1

[
y(x(i),w)− t(i)

]2
+

α

2β
wTw. (22)

The solution for minimum EMAP is denoted wMAP . Note that EMAP is the sum-of-

squares error with an added term that penalizes non-zero values in w. The coefficient

α
2β

acts as a penalty weight (or regularization parameter). Note that when the prior

precision α is high, then curve fitting tends to favor models with elements of w close

to zero—in other words, it favors turning basis functions ‘off’ and prefers less complex

models. This foreshadows a mechanism of parsimony in sparse Bayesian models that

will be described later.

3.2.3 Marginalization and the Posterior Predictive Distribution

The MAP technique has introduced some Bayesian elements such as a likelihood

and prior distribution on w as well as Bayes’s theorem and the hyperparameter α.

However, it has not reached the goal of a predictive distribution on the response

p(t∗| x∗,T) for a new point x∗. To do this, we must reach into the Bayesian toolbox

for marginalization — the technique of integrating out parameters that are not of

main concern. Marginalization requires the sum and product rules of probability.

p(X) =
∑
Y

p(X, Y ) (Sum Rule)

p(X, Y ) = p(X|Y ) p(Y ) (Product Rule)
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Applying these rules to (10) and (19) yields

p (t∗| x∗,T, α, β) =

∫
p (t∗| x∗,w) p (w|T, α, β) dw.

The next section will explain the estimation of α and β. For now, they are still

assumed to be known constants, so they are temporarily dropped from the notation,

following the convention of Bishop [19]:

p (t∗| x∗,T) =

∫
p (t∗| x∗,w) p(w|T) dw (23)

The result of marginalization is that parameters w do not appear in the posterior

predictive distribution on the left side. In the current example, (23) contains two

Gaussians in the integrand, so the solution is also Gaussian:

p (t∗| x∗,T) = N
(
t∗|µ(x∗), σ2(x∗)

)
(24)

where mean µ(x∗) and variance σ2(x∗) are

µ(x∗) = β φ(x∗)TH
N∑
i=1

[
φ(x(i)) t(i)

]
(25)

σ2(x∗) = β−1 + φ(x∗)TH φ(x∗) (26)

and where

H =

[
α I + β

N∑
i=1

φ(x(i)) φ(x(i))T

]−1

. (27)

In (26), the β−1 term represents variance due to noise present in the data while the

second term represents uncertainty due to the model.

3.2.4 Full Bayesian Treatment

In the previous section, the posterior predictive distribution had an analytic solution.

However, it was still not a fully Bayesian account, because the hyperparameters α

and β were assumed constants. Also, for greater generality, we wish to use a vector
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of hyperparameters α. There is an αi and independent Gaussian prior p(wi| αi)

associated with each weight wi. The total weight prior is given by

p(w|α) =
M∏
i=1

N
(
wi| 0, α−1

i

)
. (28)

To compute a fully Bayesian posterior prediction, we could mirror the steps of the

previous section, create hyperpriors over α and β, and marginalize over parameters

and hyperparameters to give a full posterior prediction for t∗.

p (t∗| x∗,X,T) =

∫∫∫
p (t∗| x∗,w, β) p (w,α, β|T) dw dα dβ (29)

This requires a posterior over all model parameters and hyperparameters, which

is the second term in the integrand. By Bayes’s theorem, this is given by

p (w,α, β|T) =
p (T|w, β) p (w|α) p (α) p (β)

p(T)
(30)

where the denominator is found by marginalizing the probability of the data over all

parameters and hyperparameters:

p (T) =

∫∫∫
p (T|w, β) p (w|α) p (α) p (β) dw dα dβ (31)

Unfortunately, (31) is usually analytically intractable. Recent research in machine

learning has focused on approximate techniques, including the Laplace method, vari-

ational methods, and Type II maximum likelihood estimation [19]. The last method

is used in this study because of its simplicity.

3.2.5 Type-II Maximum Likelihood (Evidence Approximation)

Since (31) is intractable, the full posterior over parameters in (30) is factorized:

p (w,α, β|T) = p (w|T,α, β) p (α, β|T) (32)

Substituting this result into Eq.(29), the posterior predictive distribution can be

rewritten as

p (t∗| x∗,T) =

∫∫∫
p (t∗| x∗,w, β) p (w|T,α, β) p (α, β|T) dw dα dβ. (33)
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The first term in the integrand is (10). The second term is similar to the weight

posterior (19) from earlier, except for some modification because of the vector α:

p (w|T,α, β) = N (w|m,S) (34)

where

m = βSΦTT (35)

S =
(
A + βΦTΦ

)−1
(36)

A = diag(αi) (37)

However, the third term in the integrand of (33) is difficult to compute and must be

approximated. The hyperparameter posterior p (α, β|T) is replaced by a δ-function

at its most probable values, αMP and βMP . These most probable values can be

approximated more easily if the hyperparameter posterior is expanded with Bayes’s

theorem.

p(α, β|T) =
p(T|α, β) p(α) p(β)

p(T)
. (38)

Eq.(38) must be maximized with respect to α and β. The denominator has no α

or β dependence and is ignored. The hyperpriors p(α) and p(β) can be set to an

arbitrary form. If they are set to flat, uninformative distributions, then only the

first term in the numerator must be maximized. This term, p(T| α, β) is called the

‘marginal likelihood,’ since it is a likelihood function in terms of hyperparameters

where the weights w have been integrated out. The marginal likelihood is also called

the ‘hyperparameter evidence’ in machine learning literature, such as MacKay [95].

In the special case of log-uniform hyperpriors, the marginal likelihood can be
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expressed analytically:

p(T|α, β) =

∫
p(T|w, β) p(w|α)dw (39)

= (2π)−
N
2

∣∣β−1I + ΦA−1ΦT
∣∣− 1

2 exp

[
−1

2
TT
(
β−1I + ΦA−1ΦT

)−1
T

]
.

(40)

This is a Gaussian and can be rewritten as

p(T|α, β) ∼ N (T| 0,C) (41)

where

C = β−1I + ΦA−1ΦT . (42)

Eq.(40) can be numerically optimized with respect to hyperparameters to yield

the most probable values, αMP and βMP . The process is called “Type-II Maximum

Likelihood” due to its similarity with the earlier MLE method, which optimized a

likelihood function with respect to w. Previous research in machine learning has

described several methods for optimization, and they will not be repeated here [19],

[149]. Once the most probable values are found, the marginal likelihood (evidence)

can be approximated by δ-functions at its mode:

p(T|α, β) ≈ δ(αMP , βMP ). (43)

This procedure is also known as “evidence approximation” [95].

At this point, we have analytic solutions or estimates for all of the terms in the

full posterior predictive distribution (33). Substituting terms, we get:

p (t∗| x∗,X,T) ≈
∫∫∫

p (t∗| x∗,w, β) p (w|T,α, β) δ(αMP , βMP )dw dα dβ

=

∫
p (t∗| x∗,w, βMP ) p (w|T,αMP , βMP ) dw. (44)

The integrand again contains two Gaussians, so the solution is Gaussian:

p (t∗| x∗,T) ∼ N
(
t∗(x∗)| y(x∗), σ2(x∗)

)
(45)
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where

y(x∗) = mTφ(x∗) (46)

σ2(x∗) = β−1
MP + φ (x∗)TSφ(x∗) (47)

and

S =
(
βMPΦTΦ + A

)−1
(48)

m = βMP S ΦTT (49)

A = diag(α
MP,i

) (50)

In the predictive variance of Eq.(47), the β−1
MP term can be considered a global uncer-

tainty that cannot be explained by any of the basis functions, and the φ (x∗)TSφ(x∗)

represents a local uncertainty associated with the basis functions and observed data.

3.3 Sparse Bayesian Modeling

The evidence approximation procedure maximizes the evidence with respect to hyper-

parameters αi. However, this optimization often causes many αi to tend to infinity.

Recall that prior for an individual weight parameter is

p(wi| αi) = N
(
wi| 0, α−1

i

)
(51)

and the posterior over wi is

p(wi|T, αi, β) ∝ p(T| wi, β) p(wi| αi). (52)

As αi becomes large, the probability mass of this posterior concentrates around wi =

0. For practical Bayesian modeling, wi is simply set equal to zero if αi exceeds some

threshold (like 108). This has the effect of pruning the basis function φi, which makes

the model sparse.

There are many possible basis functions and algorithms for the Bayesian evidence

procedure. Many of them use operations on matrices whose sizes depend on the
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number of basis functions M , the sample size N , or both. Kriging and many kernel-

based models have parameters or bases fixed to sample points, so M = N . As can

be seen by expressions like (48), the modeling procedure may require factorization

or even inversion of such M -dimensional matrices. Since the computational expense

typically scales between O(M2) and O(M3), there is a major advantage in pruning

unnecessary basis functions.

The mechanism behind this pruning is called automatic relevance determination

(ARD). During the evidence procedure, each candidate basis function is implicitly

compared with isotropic, zero-mean noise. If the basis does not improve the evidence

more than this simple noise, it is rejected and the global noise level (represented

by β) is adjusted by an appropriate amount. The sparse Bayesian models therefore

have a built-in complexity control that avoids overfitting and an excessive number of

parameters. This may be considered a form of “Ockham’s razor,” or the principle of

parsimonious explanation.

A particular sparse Bayesian model called a relevance vector machine (RVM) is

first described to motivate a more detailed explanation of ARD and sparsity.

3.3.1 The Relevance Vector Machine

The relevance vector machine (RVM) is a Bayesian model that uses the evidence

procedure of the previous section to train a sparse set of basis functions [150]. RVM

bases are kernels functions k(x,x(i)):

y(x) =
N∑
i=1

wik(x,x(i)) + w0. (53)

Although many kernel types can be used, the present study uses kernels of the form

k(x,x′) = exp

[
−
(
‖x− x′‖

c

)p ]
. (54)

The case where p = 2 is a Gaussian kernel and p = 1 is a Laplace kernel, named

for their similarity to the respective distributions. In this sparse Bayesian model, the

kernels that remain after pruning are called “relevance vectors.”
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Note that (54) with p = 2 has nothing to do with a Gaussian probability density

function despite its form and name. It is only a bump-shaped basis function that

expresses the influence or similarity between two points. Typically, these functions

are fixed to sample points. Second, even though the model form of (53) and (54) is

identical to a Gaussian radial basis function, it is different because Bayesian evidence

procedure is used to find a predictive distribution.

The c term is a characteristic width of the kernel function. In intuitive terms,

it is a length scale at which the response at a sample point influences the response

at a new point. It is the only ‘nuisance’ parameter that must be tuned outside of

the evidence procedure, so it is set by direct minimization of the RMS error of the

predictive mean, computed by k -fold cross-validation.

The main advantage of the RVM is its speed compared to Kriging. The following

three figures show an example using the ‘sinc’ function corrupted with synthetic

Gaussian noise: y = sin(x)/x + ε with ε ∼ N (0, 0.05). The figures show the true

function and 100 data points, and then the predictive distributions with Kriging and

RVM, respectively.
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Figure 21: sin(x)/x+ ε
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Figure 22: Kriging predictive distribution, ±σ
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Figure 23: RVM predictive distribution, ±σ

In Figure 22 and 23, the curves show contours of σ = 1. In the Kriging example,

the predictive variances are so small that it may be difficult to distinguish upper and

lower ±σ contours. In figure 23, the circled points represent the relevance vectors—

kernel functions at other points are inactive.

Table 1 shows the model training times for various sample sizes. The models were

fit using Matlab 2009a on an Intel i7 with 2.93 GHz, 12GB RAM.

Table 1: Model training times

Sample size Kriging RVM
10 0.24 s 0.30 s

500 180 0.26
2000 2200 0.0000097
5000 14000 4.2

Even with a single design variable, Kriging requires over three hours to fit a sample

of 5000. For practical design problems of O(10) design variables and sample sizes

of O(103), the computational cost of Kriging can be comparable to the cost of high

fidelity analysis and may not even be possible on a typical desktop PC. Also recall that
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the BCS method requires models for the objective function and every compatibility

condition. These models must be updated at every iteration. A comparison of the

other merits of Kriging and RVM in BCS is almost moot in some cases, since Kriging

can be impractically expensive.

Nonetheless, there are some differences in the models’ predictions that have con-

sequences for adaptive sampling. In Figure 22, it can be seen that Kriging is an

interpolator — the model passes through every observed point, and the predictive

variance shrinks to zero at each point. On the other hand, RVM is a regression,

and the predictive variance merely constricts in regions of high certainty. In ‘noisy’

regions1, the automatic relevance determination (ARD) mechanism causes variance

to increase rather than using complicated features in the model to achieve a close fit.

In informal terms: “If the sample data show ‘squiggles’ that look a lot like pattern-

less noise, then simply call them noise and don’t try too hard to explain every local

feature.” ARD is described in the following section.

Two main consequences result from these differences between Kriging and RVM.

First, Kriging tends to overfit a ‘noisy’ function. Even small scale features from

noisy data are resolved, so a Kriging-based adaptive learning algorithm can easily

become trapped in false local minima. Such functions are common in applications

like CFD, where gridding or roundoff error can lead to non-smoothness unrelated

to the governing physics. The RVM-based method is relatively insensitive to noisy

functions. Second, the predictive variance of RVM does not monotonically decrease as

sample density increases in a region. Because of this, a RVM-based adaptive sampling

algorithm usually cannot act as an optimizer. As long as the RVM predictive variance

detects isotropic noise (1/βMP ), there will remain some irreducible uncertainty even

in very densely sampled region containing an optimum.

1In the context of deterministic computer experiments, “noise” loosely refers to non-smooth,
multimodal features due to numerical error rather than replication error.
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In summary, the tradeoff for not converging on false optima due to noise is that

the adaptive sampling will not converge at all. The lack of convergence is not nec-

essarily a problem for an adaptive sampling scheme, for it will simply continue its

exploration/exploitation of the design space. A corollary to this discussion is that if

the analysis functions are very smooth (e.g. algebraic functions), then an RVM-based

adaptive sampler can act as an optimizer. This behavior is demonstrated in the next

chapter.

As a side note, Table 1 shows a curious phenomenon where the speed of RVM does

not vary monotonically with sample size. There are two trends that affect training

speed. First, as the sample size increases, it is easier for RVM to ascribe ‘noise-

like’ features to the global uncertainty level represented by β−1
MP , prune excess basis

functions earlier, and quickly fit the remaining bases. However, as the sample size

increases, the cost of initially large matrix operations overtakes the savings from early

pruning.

3.3.2 Automatic Relevance Determination

After introducing a particular type of sparse Bayesian model, a general principle

called automatic relevance determination can be explained. This is the mechanism

by which basis functions are pruned to produce a sparse model.

The main step of the evidence procedure is to maximize the marginal likelihood.

That is, the hyperparameters α and β are adjusted so to maximize the probability of

the vector of observed responses T. Again, the marginal likelihood is given by (41)

and (42) as:

p(T|α, β) ∼ N (T| 0,C)

where

C = β−1I + ΦA−1ΦT .
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The covariance matrix C has two parts. The first term depends only on β and is an

isotropic variance that represents equal uncertainty in all directions in T-space. The

second term represents uncertainty in the model prediction, given α settings.

Figure 24: Mechanism for sparsity

Figure 24 shows a plot in RN , where each of N dimensions corresponds to each

sample response. For simplicity, the example shows a sample of N = 2 designs. The

vector T shown by the star represents the responses for these two designs. The el-

lipse represents a contour of unit Mahalanobis distance2 of the marginal likelihood

p(T|α, β) ∼ N (T|0,C). The goal of the evidence maximization is to adjust this dis-

tribution by manipulating α, β until the most probability mass lies near the observed

responses T.

The arrows represent the directions and weighted effects of basis functions φ

2 The Mahalanobis distance is a distance from the mean of a distribution normalized in terms
of the covariance matrix. For a vector X and a distribution with mean µ and covariance C, the
Mahalanobis distance is given by:

DM =
√

(X− µ)C−1(X− µ).

For the simple case with no covariance (if the covariance matrix has only diagonal terms), the
Mahalanobis distance is Euclidean distance where length in each dimension is normalized by its
standard deviation.
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given the sample inputs. They indirectly affect the marginal likelihood through the

ΦA−1ΦT term of C, and the strength of each φi’s influence is controlled by its hy-

perparameter αi. As the value of αi approaches zero, the ellipse tends to stretch in

the direction of φi. If αi becomes very large, φi has little effect on the ellipse.

Part of the ellipse shape is due to an inner circle (darkened). This circle repre-

sents the contribution to C from its first term β−1I. Again, this is the directionless

uncertainty that cannot be explained by any basis function. During the evidence

maximization procedure, the effect of adjusting each αi is compared to the effect of

increasing β. That is, the effect of stretching the ellipse along the direction of φi is

compared to the effect of increasing its circular component. If adjusting the αi cannot

make the data set T more likely than simply increasing the circle, then the i-th basis

function is dropped and the circle radius is adjusted by a new β. In the figure, φ1 is

not closely aligned to the data set T as are φ2 and φ3. Stretching the ellipse in the φ1

direction will not make T more likely than inflating the circular component, so the

evidence procedure will probably increase α1 beyond some threshold value and the

the basis function will likely be dropped. This mechanism is called automatic rele-

vance determination, and it can be implemented along with the evidence procedure

by enforcing a cutoff theshold on high values of α.

Sparse Bayesian methods and RVMs use ARD to achieve faster speeds than other

methods like Kriging. This mechanism is a type of Ockham’s razor—or in a stronger

form, the principle of parsimony. The principle of parsimony is a heuristic rule of

preferring the simplest explanation for an observation. In the present case, the basis

functions are candidate explanations for the data. If a basis cannot explain data

better than random noise, then using that basis in a model could result in unnecessary

complexity and possible overfitting, so it is therefore pruned.
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3.3.2.1 Consequences of Sparsity

Consider again the predictive distributions on the response t that results from such a

Bayesian model. Repeating Equations 45 through 47 from earlier, the prediction for

response t∗ at a new point x∗ is given by:

p (t∗| x∗,T) ∼ N
(
t∗(x∗)| y(x∗), σ2(x∗)

)
(55)

where

y(x∗) = mTφ(x∗) (56)

σ2(x∗) = β−1
MP + φ (x∗)TSφ(x∗) (57)

In the variance in 57, the βMP is associated with the isotropic uncertainty shown as

a circle in Figure 24 and the latter term is due to the basis functions that remain

after pruning. Figure 25 shows a more intuitive view of the these two elements in

terms of the predictive variance of input x and output t. The figure shows 50 sample

points of the test function t = sin(x)/x + ε, where the uniform random distribution

ε ∼ U(0, 0.2) is used to make the function less smooth and more like a typical, “noisy”

engineering analysis code. The solid red lines show the mean prediction with ± 1 pre-

dictive standard deviation. The dashed blue lines show only the contribution to this

standard deviation of the βMP term. It can be seen that this isotropic term associ-

ated with the circle in the earlier Figure 24 appears as a constant, global component

of predictive uncertainty in the dashed blue lines. The consequence of this constant

uncertainty associated with βMP is that the sparse Bayesian model is not an inter-

polator like simple Kriging, but rather a regression method. The predictive variance

does not constrict to zero at observed points, but has a global, minimum width. The

consequence of this is that adaptive sampling based on a sparse Bayesian model often

cannot converge as an optimizer. Another consequence is that unfavorable regions

are not easily eliminated after a few sample points, because some global uncertainty
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Figure 25: Predictive distribution for sinc function: predictive mean (black solid
line), predictive uncertainty (mean ±1 standard deviation, red solid line), isotropic
contribution to uncertainty (mean ±1 standard deviation, blue dashed line)

typically remains. Thus, adaptive sampling based on a sparse model has a tendency

to be less ‘greedy’ and more exploratory than Kriging-like interpolators. However,

this is a price that is often justified when computational speed is crucial, such as in

BCS, where many models must be updated at every system iteration.

3.3.3 Practical Use of Sparse Bayes and RVM for Predictive Uncertainty

While the sparse Bayesian method is appealing for fast prediction of uncertainty, there

are practical difficulties when using existing codes. To clarify naming conventions,

“relevance vector machine” refers to a specific type of sparse Bayesian model that

uses kernels as its basis function, and a “sparse Bayesian” model is one that uses

the ARD principle to reduce the number of basis functions from some initial basis.

The most common sparse Bayesian model is an RVM, which is popular because it is

useful for regression and classification problems in machine learning and also because

of its similarity with a famous, non-Bayesian kernel method called a support vector

machine (SVM) [150].

There are difficulties in using the pure, kernel-based RVM for adaptive sampling.
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The kernel functions typically take the form of radial basis functions that depend

on the distance between two points (there is a further description of kernels in the

Appendix). For example, the Gaussian kernel has the form

k(xi,xj) = exp

(
−D

2

c2

)
(58)

where D is the Euclidean distance ‖xi − xj‖ and c is a length scale parameter. Con-

ventionally, kernels are centered at data points. An issue arises because kernel values

decay rapidly as the distance D increases. Recall that the predictive variance arises

because of uncertainty in the model weights w for linear models wTφ, where φ is the

kernel function in this case. No matter what the posterior predictive weight distribu-

tion p(w|T), if the kernel basis functions at some point x∗ have values approaching

zero, the predictive variance also approaches zero.

If there is a region in a design space that is very sparsely sampled, the predictive

variance should be high to reflect the lack of knowledge. However, because points

in the region are far from any kernel basis centers, the variances will be very low

— this is exactly the opposite of what is intuitive and desirable. This undesirable,

low variance is not a failure of the Bayesian approach, but rather the inability to

express high uncertainty in that region due to the limited form of the basis functions.

To choose a set of basis functions is to select a handful of ways in which observed

data can be explained. Common kernel functions of the form of Eq. 58 are limited

in their ability to represent high uncertainty in unsampled regions. This results in

overconfident predictions in those regions.

This problem is also described in Quinonero et al [117]. The authors propose

a technique of normalization and decorrelation of the basis functions to allow RVM

to show higher uncertainty in unsampled regions. However, the present thesis uses a

much simpler method: parametric functions are included in the basis. These functions

may include terms like x, x2, sin(x), where x is an element of a design vector X. The

simplest basis term would be the constant bias, 1. Inclusion of these terms allows
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the Bayesian model to express uncertainty through its posterior weights p(w|T) even

in unsampled regions. Even the addition of the bias term is sufficient in many cases

to correct the overconfidence in these regions. For example, Figures 26 and 27 show

surface plots of RVM predictive standard deviation where blue is low and red is high.

Figure 26: Predictive variance with no bias

Figure 27: Predictive variance with bias

There is no bias basis function 1 in the first case, but there is in the second case.

It can be seen in the second case, uncertainty increases with distance from observed

data points, while the opposite is true of the case without a bias.

Strictly speaking, an RVM is a sparse Bayesian model with only kernel functions;

conventionally, an RVM with a bias is still called an RVM. In this thesis, this naming

convention is followed.
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In addition to a bias term and parametric basis functions, the strength of influ-

ence of a kernel in unsampled regions can be affected by kernel form. Recalling the

Gaussian kernel form, consider the general form

k(xi,xj) = exp

[
−
(
D

c

)p]
(59)

where D = ‖xi − xj‖2, c is a length scale, and exponent p is a tunable parameter.

p = 2 is the Gaussian case, and p = 1 is the Laplace kernel. As p decreases, the kernel

function becomes more peaked at its center where D = 0. With a sharply peaked

kernel centered on a data point, the influence of the data point decays sharply with

distance. For this reason, most of the examples in this thesis use a Laplace kernel

with p = 1 or p = 0.5. Combined with the parametric basis functions such as 1, x, x2,

x3, sin(πx), and sin(2πx), these sharply peaked kernels tend to show high confidence

near observed points and low confidence in unobserved regions, satisfying an intuitive

view of uncertainty.

Note once again: the models used in this thesis are generalized sparse Bayesian

linear models, which include both kernel functions (like RVM) and parametric func-

tions. Simple RVM with only common kernel functions may not perform well in the

BCS application.

3.4 Criteria for Sequential Learning

After discussing sparse Bayesian modeling methods, the focus shifts to how their

predictive distributions can be used with for adaptive sampling. Chapter 2 mentioned

expected improvement and goal seeking/target matching criteria. These are explained

in greater detail here.

3.4.1 Expected Improvement

The expected improvement can be computed in terms of the posterior predictive

distribution from a sparse Bayesian model. Recall that the predictive distribution is
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given by Eq.(45) through (49):

p (t∗| x∗,X,T) ∼ N
(
t∗(x∗)| y(x∗), σ2(x∗)

)
where

y(x∗) = mTφ(x∗)

σ2(x∗) = β−1
MP + φ (x∗)TSφ(x∗)

and

S =
(
βMPΦTΦ + A

)−1

m = βMP S ΦTT

A = diag(α
MP,i

)

If tmin is the minimum (or best) response observed so far, we can define improvement

as

I(x∗) ≡

 tmin − t∗(x∗) if t∗ < tmin

0 otherwise
(60)

The expected improvement is the centered first moment of I(x∗) over the predictive

distribution of the response t∗(x∗):

E [I(x∗)] =

∫ ∞
−∞

I(x∗)p (ξ| x∗,X,T) dξ

=

∫ tmin

−∞
(tmin − ξ) p (ξ| x∗,X,T) dξ +

∫ ∞
tmin

(0) p (ξ| x∗,X,T) dξ

=

∫ tmin

−∞
(tmin − ξ)

1√
2πσ2(x∗)

exp

{
−(ξ − y(x∗))2

2σ2(x∗)

}
dξ (61)

where ξ is a dummy variable standing in for t∗(x∗). Integrating by parts, the solution

is:

E [I(x∗)] = (tmin − y(x∗))

[
1

2
+

1

2
erf

(
tmin − y(x∗)

σ
√

2

)]
+ σ

1√
2π

exp

[
−(tmin − y(x)∗)2

2σ2

]
. (62)
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3.4.2 Goal Seeking

The goal-seeking (or target-matching) criterion can also be calculated from the poste-

rior predictive distribution of Eq.(45). Let ttarget the target response. The probability

of target match is the predictive distribution integrated over the integral ttarget ± ε,

where ε is some small tolerance like 10−5. This integration has a simple closed form

because the predictive distribution is Gaussian.

P (ttarget − ε < t∗(x∗) < ttarget + ε) =

∫ ttarget+ε

ttarget−ε
p (ξ| x∗,X,T) dξ

=
1

2

[
erf

(
ttarget + ε− y(x∗)

σ
√

2

)
− erf

(
ttarget − ε− y(x∗)

σ
√

2

)]
(63)

3.4.2.1 Caveat: Alternate Forms of Goal Seeking Criterion

In some problems, the target is ttarget = 0. This is the case in BCS when adaptively

sampling the system target discrepancy Jk in BCS and trying to drive it to zero. One

can use goal seeking criterion as

P (0− ε < Jk(x
∗) < 0 + ε) (64)

Alternate forms of Eq.64 may be used if different forms are used for the target

discrepancy. In early trials of BCS, J2
k or even

∑
k logJ

2
k were minimized instead of

driving Jk to zero. In these early trials (described in Chapter 5), a slightly different

form of Eq.64 was used to reflect a BCS formulation of driving J2
k rather than Jk to

zero.

P
(
J2
k (x∗) < ε

)
(65)

Ultimately, there was no major performance advantage in using the form in Eq.65,
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so the simple Eq.64 was adopted for the later test cases in this thesis. The details are

reported in each test case.
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CHAPTER IV

RESEARCH METHODOLOGY

4.1 Research Questions, Hypotheses, and Predictions

This dissertation investigates a practical solution for a common problem faced by de-

signers. It aims to craft an engineering method rather than to explain a phenomenon

or discern a physical law. However, the thesis also looks at the general concept of

adaptive sampling for multidisciplinary design — of which BCS is a proof-of-concept

example. So, while having a practical goal of improving designers’ tradecraft, the

thesis follows a scientific procedure. The following subsections describe three sets of

research questions, hypotheses and predictions to test.

First, a very general research question, hypothesis, and prediction are stated to

frame the entire thesis. These are deliberately general in order to set a research

agenda rather than to pose specific tests.

Research Question 1: (General)

How can high fidelity analyses be used for multidisciplinary design if they are too

expensive to create a globally accurate surrogate model or to perform direct opti-

mization?

Hypothesis 1: (General)

A Bayesian adaptive sampling method can concentrate sample points in ‘favorable’

regions of the design space with feasible, low objective values and interdisciplinary

compatibility. It can do this by sampling unfavorable regions only enough to establish

that they are probably unfavorable.

Prediction 1: (General)
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At least one such adaptive sampling method can be demonstrated in a practical

multidisciplinary problem.

Thus, the strategy is to show one practical, working example of the general ap-

proach. Whether the BCS is the most refined, ideal implementation is not the point.

More basically, can the idea of adaptive sampling based on an objective as well as

compatibility be done at all? This first set will naturally be answered during the

course of studying later, detailed questions.

The second research question/hypothesis/prediction is concerned with the BCS

method in particular and defines metrics for its performance.

Research Question 2:

Does the particular method, Bayesian collaborative sampling (BCS), serve as an

example of the general sampling strategy described in Hypothesis 1?

Hypothesis 2:

The Bayesian collaborative sampling (BCS) method behaves as in Hypothesis 1 –

it concentrates sample points in regions of favorable objective and interdisciplinary

compatibility.

Prediction 2:

In a representative design problem, BCS shows higher certainty about a global, com-

patible optimum than a typical DoE in a test problem. Assume that Bayesian models

of the system objective t(x) are fit to DoE and BCS samples of equal size, so that

each gives a predictive distribution P (t(x)). A compatible global optimum t̂(x̂) is

also independently calculated by optimization with direct fixed point iteration. Let

δ95% be a measure of Bayesian confidence defined by the probability

P
[
t̂− δ95% < t (x̂) < t̂+ δ95%

]
= .95 (66)
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Figure 28: δ95%, DoE as a measure of Bayesian confidence at the optimum

as shown in Fig. 28. Then, δ95%, BCS < δ95%, DoE. Lower δ95% is better; it indicates

more certainty at the optimum.

There are many other possible metrics to test whether BCS operates as intended,

but this prediction will adequately capture the essential features of concentrating

samples in the favorable, compatible region. The metric δ95% will penalize both high

confidence in inaccurate mean predictions and low confidence about accurate means.

Note that an expensive direct optimization with FPI is required to provide the

reference point to evaluate the metric and compare BCS and a DoE. Therefore, the

test of Prediction 2 must be done on a realistic but relatively inexpensive test problem

– a subsonic glider wing. Even though the BCS method is intended for efficient use

of expensive high fidelity analyses, a much cheaper analysis is needed to allow direct

optimization to provide a reference point for studying BCS performance.

At this point, there is a general methodological challenge that affects many MDO

research problems. For the researcher, there is a danger of unintentionally tuning

optimizers or sampling methods to the test problem. Despite the best intentions of the

researcher, it is nearly impossible to make this test a truly unbiased and representative

measure of a method’s general performance. First, because of the complexity of
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realistic engineering problems, most researchers can only afford to focus on one or

two design applications. With such a small sample, it is difficult to generalize a

method’s performance to entire classes of MDO problems. Second, it is very difficult

to avoid tuning the test problem to the method. While implementing a method in a

practical computer code, many arbitrary parameters must be set and errors must be

debugged. Design variable ranges must be selected, and numerical solver parameters

must be set. If initial tests fail, the code must be debugged and improved over many

trials.

The problem is that the computer implementation unintentionally becomes tuned

to the test problem. A common error among MDO researchers is to use, for example,

10,000 function calls to test and debug an algorithm and then only count the 500

iterations of a final test. The true performance of the MDO method actually depended

on 10,500 iterations with human intervention.

Therefore, the reader should be wary of interpreting good performance of BCS

in the test problem as a promise of good performance in general. There is no real

surprise if it performs well; the test problem was deliberately tuned to perform well.

This is methodologically reasonable because the main focus of the second hypothesis

and prediction is whether BCS works at all and whether it works for the hypothesized

reasons. The hypothesis is a falsifiable proposition with a limited, testable prediction.

It will be shown that a test case supports Hypothesis 2. Hypotheses cannot be

proved, and single cases usually do not provide strong evidence. However, since it is

very unlikely that the prediction could be confirmed if the hypothesis were untrue,

then even the single case raises one’s confidence in the hypothesis. For example, sup-

pose that one hypothesizes a new thermodynamic cycle. If one builds a working en-

gine that demonstrably operates on that principle, confidence in the thermodynamic

cycle increases substantially since it is unlikely that a complicated engine works by

mere chance. Similarly, even a single case of working BCS can raise confidence in its
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underlying principle.

If one is reasonably confident that BCS works as hypothesized, the next task is

to characterize its function. At first glance, an obvious test might be to compare its

performance with many other benchmark methods. However, such a test suffers from

the same difficulties as in Hypothesis 2. It is almost impossible to avoid tuning the

algorithm to the test problem. Most MDO or sampling methods contain arbitrary

parameters that must be set. These include relaxation factors, choices of internal

solvers, variable ranges, convergence tolerances, warm start sample size. Often, the

performance of these algorithms depend heavily on these arbitrary choices. If BCS is

compared to another method, the results of such a contest may be reversed by small

changes in these settings.

This was indeed the case in early experiments. A Bayesian expected improvement

(EI) adaptive sampling algorithm with simple looping fixed point iteration (FPI) was

used on the glider test problem as a benchmark. The FPI proved to be extremely

expensive, often requiring several hundred discipline function calls to achieve compat-

ibility for a single design. In some cases, the EI/FPI method would become trapped

in FPI in which coupling variables would oscillate indefinitely. By any metric, BCS

was more efficient. To provide a more reasonable benchmark, a relaxation factor was

introduced to the FPI and variable ranges were adjusted. This too was unreliable

and expensive, so an adaptive relaxation factor was also introduced, and convergence

tolerances were further adjusted. Finally, after tuning with over O(105) function calls,

the benchmark method functioned reliably. But because of this high dependence on

human-in-the-loop tuning, it is difficult to make pronouncements that BCS or EI/FPI

is “better.”

This difficulty in comparing optimization or sampling methods is a serious and

general methodological problem in MDO research. The best option would be to

create a large test suite of different engineering examples. This would alleviate the
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problem of over-tuning a method to an example and the resulting credibility problem.

If a method were tuned to perform well on a dozen test problems without individual

adjustment, the tuning would take on the more benign character of a heuristic rule

of thumb. There would be some confidence that the same rule of thumb would

lead to good performance on a new application. Unfortunately, the MDO research

community currently lacks an authoritative, common test suite, and it is well beyond

the scope of a single thesis to develop one.

Despite this difficulty, it is still possible to ask well-posed questions to characterize

the performance of BCS. The designer’s general question is “when should I use this

method?” First, qualitative reasons for using BCS have been described. Recall that

the decoupling of disciplines means that BCS is useful when communication between

discipline designers is difficult or even undesirable. For example, an engine company

and an airframe company may wish to cooperate more easily but without sharing

propietary analysis codes. The bi-level decomposition makes it easier to preserve

disciplinary autonomy; existing expertise and best practices in each discipline can be

preserved without interference or excessively tight control from a central leadership.

A designer may become interested in BCS for these reasons, but wonder if there

are cases where BCS has disadvantages that outweigh these benefits. This thesis will

investigate one important mechanism that may make BCS perform badly. Specifically,

BCS may become less useful as coupling bandwidth between disciplines increases.

Coupling bandwidth refers to the number of coupling variables passed between

disciplines. This is distinct from coupling strength, which is the influence of input

coupling variables on the output of a discipline. The bi-level problem decomposition

in BCS or the original collaborative optimization requires that coupling variables

become system level target variables. The purpose of this bi-level decomposition is to

avoid costly fixed point iteration. But the main cost is a larger system design space,

which is subject to the “curse of dimensionality.”
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It is not possible to generally characterize this tradeoff, and the answer is prob-

ably problem-dependent. For now, a more modest goal is to study whether this

phenomenon occurs and if it is significant in a representative design problem. A sim-

ple EI/FPI benchmark is also run alongside BCS as coupling variables are increased

in the same glider test case used in Hypothesis 2. The purpose of the benchmark

is not to study say whether one method works better. For stability and reliability,

the benchmark method is heavily tuned to the glider problem, so such a comparison

may be misleading. The real purpose is to show how relative performance changes

as coupling bandwidth changes. For this, the benchmark will provide some reference

for the effect of unavoidably adding physical complexity to the test case. Coupling

variables are added to the glider example by increasing the resolution of load and

deflection information passed between disciplines. This additional resolution and

physical complexity might degrade BCS performance independent of the coupling

bandwidth effect. The EI/FPI benchmark may help to screen out the effect since it is

also affected by the greater physical complexity. To foreshadow results in later chap-

ters, this EI/FPI benchmark proved to be too noisy and patternless to be very useful,

but it only serves an optional or subsidiary role in the following research questions

and hypotheses.

The third research problem is described below. Note once again that it character-

izes one important mechanism by which BCS may perform worse, rather than trying

to generally compare BCS performance to other methods. It focuses on coupling

bandwidth, which is the number of coupling variables.

Research Question 3:

What are major factors that affect BCS performance?

Hypothesis 3:

Coupling bandwidth has a major effect on BCS performance. As the number of of
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coupling variables increases, the system level of BCS increases in dimension and incurs

the “curse of dimensionality.”

Prediction 3:

BCS performance degrades as coupling bandwidth increases in one engineering test

problem. Performance is measured by δ95%, BCS and ε95%, BCS. ε95%, BCS is measured

by

Pcompatibility(ε95%) ≈
K∏
k

P (−ε95% < Jk(Z) < ε95%) = 0.95 (67)

for system design Z and target discrepancies Jk for k = 1, 2, . . . , K coupling variables.

The experiments are also run on EI/FPI for reference.

The product in Eq.67 is the probability that the system design Z will result in

all K target discrepancies Jk simultaneously falling within an ε95% tolerance of zero,

assuming that all Jk are independent. In practice, this value can be computed as

follows. After Bayesian models are regressed to Jk(Z), a Gaussian predictive mean

mk and variance s2
k can be computed. Given some tolerance ε, the probability of

compatibility can be computed by:

Pcompatibility(ε) =
K∏
k

1

2

1 + erf

ε−mk,predictive√
2s2

k,predictive

− 1

2

1 + erf

−ε−mk,predictive√
2s2

k,predictive


(68)

Eq. 68 is varied with respect to ε to solve for Pcompatibility(ε95%) = 0.95.

Finally, recall that the original motivation behind BCS is the efficient use of

expensive, high fidelity analysis for early design in highly coupled problems. Perhaps

the obvious, final test is to demonstrate BCS in such an expensive, coupled problem.

For this, a formal hypothesis and prediction will not be stated, for the question is

inherently open-ended.
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Research Question 4:

Can BCS be implemented practically with high fidelity codes like CFD?

If BCS works with inexpensive codes, it may seem obvious that it will likely work

with expensive codes. However, there are many new challenges for high fidelity. For

example, if the disciplinary analysis requires numerical solution of discretized differ-

ential equations as with CFD, the size of residuals compared to BCS compatibility

tolerances may affect the function of BCS. Or, for example, there may be more or less

efficient ways to reuse volume meshes or converged solutions from previous simulations

to accelerate new simulations. The last research question is therefore left open-ended

to allow for serendipitous discoveries and to learn practical lessons rather than to

pose formal tests. Because of the expense of high fidelity codes, it is not possible to

do thorough comparisons with other methods or with an optimum. For example, the

previous hypotheses involved certainty at the optimum, so the problem must actually

be optimized at considerable expense. In contrast, a high fidelity demonstration need

not involve such expensive tests and is only concerned with practical implementation.

For this purpose, the Boeing/NASA N2B boundary layer ingesting hybrid wing

body was originally selected as the test case. The example was well suited for a

BCS demonstration because the concept inherently relies on coupled aero-propulsion

physics, which in turn may require high fidelity CFD even for early sizing decisions.

However, during the course of thesis research, CFD sensitivity studies showed that

analysis cost for the boundary layer ingesting aircraft was unexpectedly high. It

became doubtful that BCS could be successfully demonstrated within the thesis’s

computing budget. Instead, a much simpler example was used: aero-propulsion design

of an axisymmetric turbojet engine nacelle. Despite this, the incomplete N2B case

is still important because it reveals lessons and pitfalls during high fidelity BCS

implementation. This experience is important to document for future researchers

who may study similar cases for multidisciplinary sampling. Both the incomplete
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N2B and the engine nacelle will be discussed in detail in Chapter 6.

BCS is implemented in MATLAB for these case studies. For the Bayesian model,

a sparse Bayesian code was written in Python for early studies. However, the NASA

Ames supercomputing cluster used for this thesis did not support the SciPy scien-

tific computing modules required by the Python code. So for large scale tests, the

BCS code instead relies on a modified MATLAB-based code written by the relevance

vector machine’s (RVM) original author. This code is available under GNU public

license from Michael Tipping; a description of this code is given in [19], [149], and

[150]. An additional benefit of using the author’s public code is that it makes BCS

more transparent and credible, especially since much of previous literature on RVM

performance is based on this code. The code is modified to include parametric basis

functions in addition to the kernel functions and to output posterior predictive vari-

ances. The model is therefore a general sparse Bayesian linear model rather than a

kernel-based RVM.

BCS was first tested on simple test functions, then low-fidelity wing design, and

finally for high fidelity engine nacelle design.

4.2 Algebraic Test Problem

For Hypothesis 2 (concerned with the basic function of BCS), the first set of test prob-

lems used algebraic expressions for system and discipline-level functions. Typically,

MDO studies often focus on canonical algebraic test functions for initial develop-

ment. Unfortunately, these experiments are of limited use for BCS because it was

found that they do not test the Hypothesis 2 predictions in a realistic manner. The

very smooth algebraic functions often allow Bayesian kernel models to fit with very

small uncertainty, often with isotropic noise variances close to zero (< 10−6). In such

cases, the adaptive learning algorithm behaves as a optimizer, and BCS reduces to

an efficient variant of the original CO method. Of course, the original test was to
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compare BCS and a DoE in their performance as sampling schemes. This comparison

sometimes yields spectacular results for BCS, but the manner of these successes does

not generalize well to more realistic, noisy engineering analysis codes.

One of these algebraic examples is discussed here. Note that this particular ex-

ample and its good results are not supposed to be representative, but rather to show

basic BCS behavior and also to demonstrate why such algebraic problems are not

suitable tests.

The system-level objective function Fsys is a modified version of the well-known

Rastrigin test function (the “egg-carton” function) in three dimensions. The two

discipline-level functions a1 and a2 are functions of local design variables x1 and x2,

respectively, as well as a shared/global design variable s1 and the output of the other

discipline.

Minimize: Fsys = a2
1 + a2

2 + s2
1 + cos(4a1) + cos(4a2) + cos(4s1)

with respect to: x1, x2, s1

where: a1 = a1(a2, s1, x1)

a2 = a2(a1, s1, x2)

subject to: a1 = 2x2
1 − x1 − a2 − s1 − 2

a2 = 2x2
2 − x2 − a2

1 + s2
1 − 2

g1 = x1 + a2 − 2s1 + 3 ≤ 0

g2 = 2x2 − a1 − s1 + 3 ≤ 0

Figure 29 shows a design structure matrix for the test problem. Note the feedback

from a2 to a1. This loop requires fixed point iteration to ensure that a2,guess that is

an input to the a1 function converges to a2,actual output from the a2 function.
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Figure 29: DSM of algebraic test problem

4.2.1 Results

The original intent of the experiment was to produce samples with 500, 1000, 2000,

and 5000 function calls using a Latin hypercube DoE and BCS. The same type of

Bayesian model would be fit to both DoE and BCS samples. The certainty of each

model would be compared at a known optimum. The optimum response of 0.95 was

found by running over 60 trials of genetic algorithms (GAs) with different population

sizes and MDO architectures. However, the BCS method actually converged on the

optimum in 8 of 10 trials and was several orders of magnitude faster than the GAs.

This means that there is little benefit in comparing its predictive accuracy at that

point with a DoE-based model, since the point is known with very high certainty.

Both the smoothness and low order of the functions mean that they are closely

approximated by the Gaussian kernels used in the sparse Bayesian models. Because

the noise precision β estimated by the model is relatively high (i.e. the variance is low),

most of the design space can be ruled out quickly and with high certainty, causing

BCS to rapidly converge on an optimum without having to double-check unfavorable

regions. The method may not converge on an optimum so readily with analysis codes

like CFD or FEA with imperfect discretization and convergence tolerances.
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Nonetheless, BCS performance as a global optimizer is worth noting. Four ar-

chitectures are compared: an individual discipline feasible (IDF) method; a direct

fixed point iteration (FPI) method, also known as multidisciplinary feasible (MDF);

collaborative optimization (CO); and BCS. The IDF and FPI methods used genetic

algorithms in Matlab within their respective architectures. Because the FPI method

enforces compatibility directly for every design – and also because the method con-

sistently converged on the best optimum value in all ten trials – the FPI optimizer

was assumed to be the “truth model” or reference method.

Table 2 shows comparison with other optimizers where each row represents ten

trials for each setting. In the second column, the genetic algorithm population is given

for methods that use the optimizer internally. If a method performs poorly, the GA

population was varied to check if the results are sensitive to the optimizer. The third

column is ‘global optimization success fraction,’ which is the fraction of ten repeated

trials in which the method successfully converged on the global optimum. The last

column is the performance metric of most concern to the designer: the number of

function calls. It can be seen that BCS converged relatively consistently (80% of

the time) with substantially fewer function calls than the other methods. The IDF

method tended to converge at local optima and thus has a lower success fraction. The

direct FPI method consistently converged on the global optimum, but was relatively

Table 2: Results on algebraic test problem — ten trials each

GA global opt avg discipline
Method population success fraction function calls

IDF (GA) 50 20% 2.06× 104

100 30% 2.86× 104

200 10% 4.72× 104

500 20% 1.05× 105

1000 40% 2.19× 105

FPI (GA) 150 100% 1.13× 105

CO (gradient-based) — 0% —
BCS — 80% 795
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costly in terms of function calls. The CO formulation and converged only on local

optima. It was suspected that this may be due to its internal use of gradient-based

optimizers. However, using genetic algorithms did not improve its performance, but

this could be due to the particular implementation in Matlab. The performance may

depend on default genetic algorithm parameters such as recombination probabilities,

but such issues were not investigated for this minor test.

Figures 30 and 31 show the sampling criterion

− logE [I (F (Z))]−
∑
h

logP (Gh (Z) ≤ ε)−
∑
k

logP
(
J2
k (Z) ≤ ε

)
(69)

plotted against system variables Z = [a1 a2]. The dark dimple (circled) in the low

Figure 30: Sampling criterion after 20 system iterations

Figure 31: Sampling criterion after 70 system iterations

region of Figure 31 contains the global optimum. The raised plateaus are regions that

are infeasible, have a high objective value or have low probability of compatibility.

104



Other informal tests were also done with other test functions at the system level:

the Branin function, Shekel function, and the Rosenbrock “banana” function. Poly-

nomials of varying order were used for the disciplinary functions. The number of dis-

ciplines, system and disciplinary variables, coupling variables, and constraints were

varied. In all of these cases, sampling proceeds until the estimated isotropic noise

variance becomes close to zero, and BCS behaves as an EGO-type optimizer.

This low estimated isotropic variance (or high precision β) suggests the underly-

ing reason for this seemingly excellent performance of BCS. The smoothness of the

analytic test functions and the similarity of the basis functions to them allowed BCS

to quickly fit accurate approximations and optimize them. For example, suppose

that the BCS Bayesian models use polynomial bases and the actual test function is

a paraboloid. Because the bases would be fit with very little error, and BCS would

converge near the true optimum in a very small number of iterations. For this rea-

son, smooth test functions give a very unrealistic view of how BCS would work in

a realistic engineering problem. Typical engineering codes are “noisy,” with internal

solver tolerances and roundoff errors. For a more realistic test of BCS, a low speed

glider wing test problem is investigated in the next chapter.
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CHAPTER V

GLIDER WING TEST PROBLEM

Hypothesis 2 is concerned with whether BCS works at all – will it concentrate sample

points in regions of favorable objectives and probable compatibility? It was found

that smooth mathematical test functions give unrealistically favorable results for BCS

because the form of the Bayesian model basis functions are able to closely match the

shapes of the test functions. Therefore, the next test problem is a realistic engineering

test case using low fidelity analysis tools. While simple, they have internal solver

tolerances and discretized differential equations and can therefore represent the non-

smoothness typical of many engineering analysis codes. Most of the theory and

performance tests in this thesis are performed on this low fidelity example.

The problem is the aerostructural design of a small glider wing using potential

flow with boundary layer modeling and the Euler beam equation. The glider wing

was chosen because its physics are in regimes where the low fidelity, linear models

are most accurate. For example, the wings tend to be thin, high aspect ratio wings

in low subsonic flow where vortex lattice methods tend to most accurate. Likewise, a

long, thin spar with small deflections is accurately modeled by Euler beam theory. A

simple yet reasonable construction method was assumed so that wing weight could be

estimated and checked with physical examples. Despite the simplicity of the example,

it was expected to have enough noisy features due to discretization and non-linear

physics due to boundary layer effects so that it would provide a realistic test of BCS

versus a DoE.
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This chapter will first give a detailed description of the unmodified multidisci-

plinary test problem. Next, it will give a step-by-step description of the implementa-

tion of BCS following four major steps: 1) bi-level formulation, 2) setup of analysis

codes, 3) initialization, and 4) adaptive sampling. Then, results of performance tests

are given to address the research hypotheses.

5.1 Glider Wing Design Problem Statement

The design problem is stated as follows.

Minimize: Fsys = −L/Dmax, maximum lift to drag ratio

with respect to: aspect ratio

camber

thickness/chord ratio

chordwise location of maximum camber

chordwise location of maximum thickness

leading edge radius

root sparcap width

cruise speed

subject to: g1 = sinkrate− 1.0 ft/s ≤ 0

g2 = deflectionmax − 0.1 span ≤ 0

g3 = sparcap stressmax − 0.5 σyield, carbon ≤ 0

given: 1 lb aircraft weight without wing

10 ft span

150 lbf maneuver load at 120 ft/s

steady level flight for L/Dmax

Fig. 37 shows the design structure matrix for the design problem.
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Aero

Struct

weight
deformation

load distribution

max L/D

aspect ratio
camber

thickness/chord
max camber location

max thickness location
leading edge radius

root sparcap width
cruise speed

sysF

max stress

Figure 32: Wing design structure matrix

The coupling variables are weight, load distribution, and deformation. The load

distribution and deformation are computed during a 150 lbf lift maneuver. Only loads

and deformations in the transverse direction (orthogonal to span and free stream)

are considered. Load and deformation distributions are also assumed to vary only

spanwise and act along a single wing spar. Inertial effects due to the mass distribution

along the wing are ignored. This simple load scenario actually corresponds to a radio

controlled glider being launched with a towline and winch. To further reduce coupling

bandwidth, a polynomial equation is fit to the load distribution so that the load can

be expressed in terms of three weighting coefficients. Likewise, the deformation is

expressed as two transverse deflections at each of two spanwise stations.

Three inequality constraints are given, and these are enforced as penalties on the

objective function. The sinkrate constraint is included because early tests showed

that unconstrained minimization of the L/D ratio leads to very thick wings and wide

spar caps. The physical reason is that the high weight acts as ballast so that the glider

achieves high L/D ratios at high speeds and Reynolds numbers. This is unrealistic

because most gliders or sailplanes do not merely cruise at optimal glide angles but

also have minimum sink tasks. Therefore, a 1.0 ft/s sink rate constraint is imposed.
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The wing tip deflection constraint is imposed because the linear beam theory model

is unreliable for high deflections. The maximum sparcap stress constraint is imposed

with the simplifying assumption that the spar cap will not buckle but will fail in

spanwise compression. A safety factor of 2 is therefore imposed with constraint g3.

Because of the feedback in Figure 32 from the aerodynamics discipline to the

structures discipline, the design problem implicitly requires a set of compatibility

conditions:

h1 = structural weight− lift = 0

h(1+i) = deformation parameteri,aero − deformation parameteri,structures = 0

for i = 1, 2

h(4+j) = load distribution parameterj,aero − load distribution parameterj,structures = 0

for j = 1, 2, 3

In the unmodified design problem, these equality constraints for compatibility

must be enforced by fixed point iteration. For each design, all h constraints must be

minimized with respect to the coupling variables for weight, deformation and load

distribution. If any h cannot be driven to zero (or a small tolerance about zero), then

the design is incompatible. This FPI process can be accomplished by simple looping

– guessing initial values for the coupling variables and updating them sequentially –

or by numerical root finding algorithms. For simplicity, a simple looping method with

a manually tuned relaxation factor is used in this thesis as a reference method. In

most cases, the FPI costs between 5 and 10 function calls in each discipline, although

certain designs may require hundreds of function calls. Again, note that the foregoing

describes the unmodified design problem. The problem is later restated as a bi-level

problem for BCS to avoid FPI and make efficient use of a limited budget of function

calls.
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After stating the unmodified glider test problem and selecting the analysis codes,

the designer can see in this case that many analysis function calls will be expended

in fixed point iteration on the aerodynamic load distribution, weight, and structural

deformation. To avoid this cost while making the most of a limited analysis budget,

the designer turns to BCS. The following sections step through four major steps in

implementing BCS for the glider problem.

5.2 Bi-level Decomposition for BCS

Figure 33: Bi-level decomposition is the first step in implementing BCS

The first step in implementing BCS is to decompose the original problem into

a system level and discipline level. There are three sets of variables, for system,

aerodynamics, and structures:
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Zsys =



wing area

aspect ratio

camber

thickness/chord ratio

chordwise location of maximum camber

chordwise location of maximum thickness

root sparcap width

cruise speed

weight

load distribution parameter1

load distribution parameter2

load distribution parameter3

deformation parameter1

deformation parameter2



Xaero =

 deformation parameter 1,local

deformation parameter 2,local



Xstruct =



weight

load distribution parameter 1,local

load distribution parameter 2,local

load distribution parameter 3,local

root sparcap width
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Each discipline has a locally relevant set of system target variables Z
(discipline)
sys and

their locally computed equivalents, Z
(discipline)
local . For example, there is a Zstruct

local and

Zstruct
sys , where

Zstruct
local =


weight

deformation parameter 1,local

deformation parameter 2,local


and Zstruct

sys takes the values for the same elements assigned by Zsys. Note that in this

case, the structures discipline has an extra degree of freedom, root sparcap width,

which it can optimize to minimize the discrepancy between the system targets and

their local equivalents, Zstruct
sys and Zstruct

sys . On the other hand, the aerodynamics

discipline lacks this extra degree of freedom, so the disciplinary problem is simply

one of evaluating the target discrepancies.

In summary, the original glider test problem can be restated as a bi-level BCS

problem:
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SYSTEM LEVEL

Minimize: F = −L/Dmax + constraint penalties

with respect to: Zsys

subject to: Qaero(Zsys) = 0

Qstruct(Zsys) = 0

g1 = sinkrate− 1.0 ft/s ≤ 0

g2 = wingtip deflectionmax − 0.1 span ≤ 0

g3 = sparcap stressmax − 0.5 σmax, carbon ≤ 0

given: aircraft weight without wing

150 lbf maneuver load at 120 ft/s

steady, level flight for L/Dmax

by sampling:

− logE [I (F (Z))]−
∑
k

logP
(
J2
k (Z) ≤ ε

)
for k = 1, 2, . . . 6 coupling variables

and updating: Bayesian models p(F |Z), p(Jk|Z)

for k = 1, 2, . . . 6 coupling variables

AERODYNAMICS DISCIPLINE

Evaluate: Qaero (Xaero) =
K

(i)
local∑
k

J2
k

for Jk = Zk,sys − Zk, local output

STRUCTURES DISCIPLINE

Minimize: Qstruct (Xstruct) =
K

(i)
local∑
k

J2
k

with respect to: Xstruct
local
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5.3 Setup of Discipline Analysis Codes

The next step of implementing BCS is to select discipline analysis codes and arrange

them to accept inputs and yield outputs according to the new bi-level problem. The

Figure 34: Bi-level decomposition is the first step in implementing BCS

analysis codes for the aerodynamics and structures disciplines are described in detail.

5.3.1 Low Fidelity Aerodynamic Analysis

Aerodynamic analysis is done with Athena Vortex Lattice (AVL) and XFOIL by

Mark Drela and Harold Youngren of MIT [42], [40]. Figure 35 shows a sample wing

model in AVL. To account for separation and other boundary layers effects, profile

drag is computed with XFOIL, which is a two dimensional potential flow solver with

boundary layer interaction. After running a sweep of Cl vs. Cd for around 10 points

(depending on the number of converged analyses), a parabola is fit to the drag polar

by least squares. This polynomial fit is then passed to AVL. This approximation is

used to add profile drag to induced drag computed by the vortex lattice code. In other

words, AVL is first used to calculate local induced angles of attack and lift coefficients

at spanwise stations, and these are in turn used to approximate the local profile drag.

This method assumes that profile drag and induced drag are independent, which is
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reasonable for high aspect ratio wings. An AG-24 sailplane airfoil is used as a baseline,

and thickness, camber, leading edge radius, and other design variables are adjusted

in a geometry design module of XFOIL to create new airfoils.

Figure 35: AVL model of high aspect ratio glider wing

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
D

C
L

 

 

experimental results
AVL/XFOIL prediction

Figure 36: Validation of drag polar — Clark Y airfoil (t/c=12%), AR=6, Re=149000

Figure 36 shows validation data for AVL/XFOIL with NACA wind tunnel tests on

a finite wing of similar geometry and flight regime [85]. AVL/XFOIL is expected to be

accurate for thin airfoils and high aspect ratio wings, and the BCS test problem uses

thickness/chord of 8 to 12% and aspect ratios between 8 to 16. An experimental case

was deliberately chosen to be relatively ill-suited to the analysis codes — it has a thick

Clark-Y airfoil (12%) and a low aspect ratio of 6. Despite this, AVL/XFOIL matches
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wind tunnel data closely. The NACA report does not include enough information to

determine uncertainty ranges for the empirical data, but this level of validation may

be sufficient to proceed with the BCS test problem. After this validation, however, it

was found that the XFOIL code tends to be unstable at low Reynolds numbers and

for thick airfoils. In some later tests in this thesis, a neural net surrogate model had

to be fit to a large sample of on airfoil variables from XFOIL for stability reasons.

The neural nets were fit in Matlab with O(1000) points and validated with 10%

random holdout data with model representation error under 5% of the response range.

Recall, however, that the AVL/XFOIL combination used in the validation does not

use XFOIL directly either and passes a response surface from XFOIL to AVL, so

there is no major theoretical difference.

5.3.2 Low Fidelity Structural and Weight Analysis

Structural analysis is done with the Euler-Bernoulli thin beam equation:

∂ 2

∂x2

(
EI

∂u2

∂x2

)
= w

where u is the transverse deflection, E is the elastic modulus, I is the cross sectional

area moment of inertia, and w is the applied force per length. The equation is nu-

merically integrated in Matlab. The Matlab calculations were verified by comparison

to analytic solutions of well-known examples, such as a uniformly loaded cantilevered

beam. Based on these comparisons, the wing spar is discretized into 200 segments.

It is assumed that most of the weight of the aircraft is in the fuselage and that

a single spar is the main load-bearing member in the wing. The wing spar is then

modeled as a cantilever beam fixed at its root. For further simplification, a sufficient

thickness of fiberglass wrap shear web and vertical grain spar core are assumed to

ensure that they will not fail before the spar caps. It is assumed that the web will

not fail in shear and the spar core will not crush due to transverse compressive loads.

Therefore, only the spar caps play a significant role in the structural design of the
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wing. Figure 37 shows details of the wing construction.

foam core

vertical grain
core material

fiberglass wrap
shear web

uni-directional
carbon spar cap

aramid skin

Figure 37: Wing construction

This construction method is also used for structural weight estimations. These

estimates assume material properties using common commercially available products.

For example, the aramid wing skin is assumed to be a 1.8 oz/yd2 Kevlar 120 layup

in an equal weight of epoxy. The foam core is Dow HiLoad 60 (R) high density

polystyrene at 2.2 lb/ft3, and the spar core is 8.0 lb/ft3 material like Rohacell(R) or

end-grain balsa wood. These assumptions match the construction of several small

glider examples included as tutorial cases included with AVL software.

Figure 38 shows the converged geometry and load vectors after fixed point iteration

between aerodynamic loads and structural deformation.

The third and fourth steps of implementing BCS are the warm-start and the

adaptive sampling, as in Figure 39. However, the details such as warm-start sample

size and solver choices are best explained in the context of the formal tests in the

following sections. This is because many of the BCS parameters are set in order

to give a fair tests. The first test is a comparison of BCS and an off-line DoE. In
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Figure 38: AVL model with converged loading and deflection at maneuver condition

later sections, the BCS implementation is modified further to test individual aspects

affecting performance, such as coupling bandwidth or warm-start size.

Figure 39: Bi-level decomposition is the first step in implementing BCS

5.4 Comparison of BCS and an Off-Line DoE

Recall that the second hypothesis concerns whether BCS works according to the

general strategy of adaptive sampling by a system objective and interdisciplinary

compatibility. To this end, the second prediction requires a test: does BCS provide

higher certainty at the true, compatible optimum compared to a simple off-line DoE.

This is not intended to be a very difficult test of performance; it is rather to show
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that BCS works and that it works because of the hypothesized principles. The steps

of this test are:

1. Run a simple optimizer on the original problem with FPI to find the true opti-

mum for reference

2. Run a Latin hypercube off-line DoE on the original problem formulation

3. Run BCS on the bi-level formulation

4. Evaluate the predictive uncertainties of BCS and the DoE at the reference

optimum

Recall that the predictive uncertainty is measured by δ95% defined in the last chapter

– a lower value is better, since it indicates a more accurate prediction at the true

optimum. If δ95% is lower for BCS, this test supports Hypothesis 2: BCS does in fact

concentrate points according to a system objective and compatibility.

5.4.1 Implementation Details of BCS vs. DoE Test

The BCS method is compared with a Latin hypercube DoE. The DoE uses fixed

point iteration to enforce aerostructural compatibility for each design. Each design

point in the DoE requires a number of FPI iterations that is not precisely known

beforehand. The DoE is adjusted such that resulting total number of aerodynamics

discipline function calls are roughly the same as that used in BCS. Since many aero-

dynamics function calls are required for every structural function call, a limit of 5000

aerodynamic function calls are used for both DoE and BCS.

The DoE is a Latin hypercube on the eight design variables of the original prob-

lem: wing area, aspect ratio, camber, thickness ratio, maximum camber location,

maximum thickness location, root sparcap width and cruise speed. Interdisciplinary

compatibility is enforced by fixed point iteration with simple looping with a relax-

ation factor. A second sample is created with BCS. BCS was warm-started with a
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Latin hypercube sample of 50 points at the system level. In both cases, the total

sample size is determined by a limit of 5000± 10 aerodynamics function calls.1 The

same Bayesian model type is fit to both the DoE and BCS sample. A sparse Bayesian

model with a Gaussian kernel function and a bias term is used. The kernel width

parameters are selected by optimizing RMS model fit error of the predictive mean

using 20-fold cross-validation. Note that BCS models are fit not only to the design

variables listed earlier but also to coupling variables (load and deflection distributions,

weight), so the model input dimensions are higher than for the DoE.

Next, the actual optimum is located to provide a reference point for comparing

DoE and BCS. A genetic algorithm in Matlab is used for this direct optimization. For

each design evaluation, FPI is used to enforce interdiscipline compatibility. Using a

GA population size of 100, about 22000 aerodynamics and 17000 structural function

calls are required to converge. The GA optimization is performed five times and

repeated once with simulated annealing to confirm the optimum.

5.4.2 Results of BCS vs. Latin Hypercube DoE

Using the GA and simulated annealing optimizers, the reference optimum design

point, xopt is:

1The sample size can only be limited approximately, because the number of disciplinary iterations
to converge each FPI or BCS iteration cannot be accurately predicted beforehand.

120



aspect ratio: 11.6

thickness/chord: 0.0885

camber/chord: 0.0207

chordwise maximum thickness location: 0.312

chordwise maximum camber location: 0.355

normalized leading edge radius: 0.810

root sparcap thickness: 0.0619 ft

cruise speed: 26.6 ft/s

The optimum response is L/Dopt = 28.1, and two of three constraints are active:

maximum deflection and minimum sinkrate.

How certain is the designer’s knowledge of L/D near xopt based on the DoE and

BCS samples? The Bayesian models fit to the two samples each give a predictive

distribution at xopt shown in Table 3. The δ95% characterizes a 95% Bayesian confi-

dence interval above and below L/Dopt predicted at xopt, as shown earlier in Figure

28. These results show that the BCS-based model gives more certain predictions at

the GA optimum.

Table 3: Comparison of DoE and BCS-based model predictions at GA optimum

DoE BCS
Aerodynamics function calls 5000 5000

Best feasible L/D value 25.47 26.64
Predicted L/D mean at GA optimum 22.10 27.42

Predicted L/D st.dev. at GA optimum 9.44 0.027
Bayesian confidence interval δ95% 11.03 0.93

The reason for this higher confidence can be seen by from the sample. Figure 40 shows

the sample points in the system-level design space of the BCS problem. Note that

the figure shows only three of the twelve system design variables. The GA optimum
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point is shown as a red asterisk, and the BCS sample points are clustered near it.

Figure 41 shows these points with the objective function −L/Dmax on the vertical

axis. The points are concentrated in a band that includes the optimum.
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Figure 40: System sample points

Figure 41: Objective function, −L/Dmax

The band also tends to lie in regions interdisciplinary compatibility, as can be seen in

Figures 42 and 43. These show points plotted for sum of squares of target discrepancy

metrics Jk in each discipline — basically, an aggregate measure of compatibility in

aerodynamics and structures, respectively. The points cluster in regions of low target

discrepancy (or high compatibility).
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The mechanism for this accumulation of compatible and favorable design points

can be shown by graphing the BCS system-level sampling criterion, repeated from

Eq. (7):

Ysampling = − logE [I (F (Z))]−
∑
k

logP
(
J2
k (Z) ≤ ε

)
where ε = 10−2 and i represents each discipline. Figure 44 shows Ysampling after a

maximum of 2000 aerodynamics or structures function calls, plotted against two of

the design variables, with all other variables set to the GA optimum value. Figure 45

124



shows the same surface after a maximum of 5000 disciplinary function calls. Three

factors account for the differences in the two plots. First, the current best objective

value used to compute E [I (F (Z))] has changed. Second, dense sampling near this

2-dimensional slice of the design space has reduced the predictive variance, resulting

in more sharply-resolved features. Third, there is higher certainty of the compatibility

in the region. This can be shown by decomposing the sampling criterion and plot-

ting only
∏

i P (Ji (Z) ≤ ε) versus aspect ratio and thickness, setting all other design

variables to the GA optimum values. See Figure 46. The optimum design falls in

the region with high predicted probability of compatibility. The scale of probability

masses shown in the figure are very small because of a small value of ε.
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Figure 44: System sampling criterion after 2000 disciplinary function calls
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Figure 45: System sampling criterion after 5000 disciplinary function calls
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Figure 46: Interdisciplinary compatibility after 5000 disciplinary function calls

At this point, the designer can rapidly view plots like Figures 44 through 46 for

different sections of the design space. When reviewing the probabilities of compatibil-

ity and expectations of improvement, it is important to remember that these are all

based on subjective probability. The plots are only believable insofar as the designer

accepts the assumptions of the Bayesian model and choice of basis functions. If the

designer believes (based on experience or physical intuition) that models fit the under-

lying physical phenomena, then these plots can be used to constrict the design space

around a small region. For example, in this case, the mostly linear physical equations

make it unlikely that the objective function is highly multimodal or contains hidden

optima. So, it would be reasonable for the designer to trust the Bayesian models and

reject the plateau regions in the plot of expected compatible improvement in Figure

45. A smaller design space can then be used for other tasks like direct optimization.

In the worst case, the designer has low confidence that the calculated expected im-

provement or probability of compatibility correspond to reality. BCS still provides

a feasible, compatible, current best solution. The designer can simply accept this
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design as the best that can be done with a limited analysis budget. He/she could use

wing design and move on to the next design stage, adding detailed variables such as

control surfaces, nacelles, tip shapes and root fillets.

At this stage, the second hypothesis and prediction have been addressed for a

single test case. While this example cannot prove general statements about BCS

performance, it supports the claim the BCS concentrates sample points by favorable

objective values and interdisciplinary compatibility. Next, the third research ques-

tion/hypothesis/prediction is examined to characterize when BCS works well. There

are perhaps an unlimited number of ways by which BCS may not work well, so the

following section focuses on one of the most important factors that could affect its

performance.

5.5 BCS Performance and the Effect of Coupling Band-
width

The number of coupling variables compared to design variables can be expected to

affect the performance of BCS. The major advantage of the bi-level decomposition

in the original collaborative optimization (CO) and BCS is the avoidance of fixed

point iteration (FPI). Recall that the coupling variables in the original MDO problem

become system level variables in BCS. BCS trades the expense of FPI in exchange for

additional system-level variables, which increases the dimension of the design space.

So, BCS would tend to show less of an advantage compared to direct FPI problem as

the system level design space becomes large, and this tendency is magnified if the FPI

problem is relatively simple and converges easily. The glider problem was modified

to artificially vary the coupling bandwidth. The predictions from Hypothesis 3 state

that a performance measure of BCS is expected to drop (compared to a baseline)

as bandwidth increases. The tests in this section support the conclusion that BCS

performance does degrade with coupling bandwidth, subject to the limitations of a

single test case.
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For this study, it is helpful — although not logically required — to observe some

baseline method as the coupling bandwidth varies. There are many possible bench-

mark methods, but pure EI sampling with FPI is used because it is simple and an

obvious default. Note that searching for good objective values while directly enforc-

ing interdisciplinary compatibility with FPI for each individual design is also called a

multidisciplinary feasible (MDF) architecture in the MDO literature. The the point

of comparing BCS with EI/FPI is not to gauge BCS performance compared to a rival

method but to track changes in relative performance as coupling bandwidth increases.

The relative performance of the benchmark EI/FPI is heavily dependent on inter-

nal tuning parameters, such as relaxation factors, variable ranges, and convergence

tolerances. Slight changes in relaxation can increase the number of function calls per

design by an order of magnitude. Unfortunately, it is extremely difficult to select

credible, neutral, unbiased settings, and the tuning parameters must be set arbitrar-

ily set to something. Furthermore, some tuning of EI/FPI is unavoidable simply to

make the algorithm stable enough for hundreds of design iterations. Therefore, the

methodological strategy is to simply choose the other extreme: to explicitly tune the

benchmark and not even try to make a neutral performance comparison. Thus, the

EI/FPI algorithm thus serves an optional reference for the effect of physical com-

plexity as coupling variables increase. This masking effect is quite imperfect, but it

at least addresses the issue. If BCS performs much worse than EI/FPI as coupling

bandwidth increases, there is increased confidence that this bandwidth affects per-

formance by a system level curse of dimensionality. If the EI/FPI method fails, the

conclusion can still be valid, though it would not be as strong.

The measures of performance are the δ95% and ε95% defined in the previous chapter.

They are both evaluated at the optimum. Recall that ε95% is a metric for accuracy
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of the prediction of compatibility, and it is defined by Equation 70

Pcompatibility(ε95%) ≈
K∏
k

P (−ε95% < Jk(Z) < ε95%) = 0.95 (70)

where K is the number of coupling variables, Jk is the target discrepancy between

disciplinary subspace and system target, and Z is a system design. ε95% is only applied

to BCS, since target discrepancies are not computed in the EI/FPI reference method.

The actual optimum of the glider problem is required to compute both metrics,

δ95% and ε95%. Optimization was tried in Matlab using the fminsearch (gradient-free

simplex-based optimizer), fmincon (trust region reflective), and a genetic algorithm.

The genetic algorithm with default settings proved to be too expensive. Using an Intel

i7 2.93 GHz desktop computer, the genetic algorithm would not converge after wall-

clock times of several days and O(105) aerodynamic function calls. Instead of using a

global optimizer, the fminsearch was used with random initial points. Because of the

chance of finding only local optima, the search was repeated five times, with typical

cost of O(104) aerodynamic function calls. In certain trials, even this was not enough,

and BCS located a better objective value than the optimizers. In these cases, the

best result from BCS was used as an initial point for Matlab’s fmincon optimizer and

used to confirm the optimum. Although there is no guarantee of a global optimum,

this was considered sufficient for the present purpose, especially since the Bayesian

methods would provide some additional assurance that a global optimum is lurking

in some unexplored region of the design space.

While running the two adaptive samplers, all Bayesian inference was done using

sparse Bayesian models. Each of these experiments was warm-started with 200 aero-

dynamics function calls from a Latin hypercube design for BCS and approximately

200 random function calls for EI/FPI. Random points were used for EI/FPI because

it was difficult to predict how many system designs are required to produce 200 aero-

dynamics function calls, and it is therefore difficult to generate a Latin hypercube

with the correct guess for the required number of system design points. The 200
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function call warm-start sample size is arbitrary and the experiments’ dependence

on this sample size is explored in a later section. If the warm-start is set to a very

small number, BCS tends to sample the corners of the design space — it essentially

performs an exhaustive full factorial experimental design at low and high extremes

of each variable. In informal experience, it was found that 200 warm-start points

provided sufficient assurance that BCS would have enough information to sample in

the interior of the space and not become stuck sampling corners. Experiments later

in this chapter show that this was indeed a reasonable choice.

A number of parameters in the sparse Bayesian models had to be set arbitrarily.

These tuning parameters can certainly affect the performance of BCS or EI/FPI, yet

they have to be set to some value. The best that could be done was to keep those

values constant throughout the tests, recalling that the main purpose of these tests

is not a contest of general performance. The basis functions were set to Laplace

kernels as well as parametric functions: Z, Z2, Z3, sin(πZ), sin(2πZ), and sin(4πZ).

The Laplace kernel widths were set to 0.3. The width was determined by performing

10-fold cross validation on the first warm-start sample and finding the width that

minimized error of the mean prediction. The width was then approximately halved

to account for the higher resolution required for more tightly clustered sample that

the adaptive sampling schemes would create. These settings were kept constant for

three tests each of BCS and EI/FPI. Note that this is different from other BCS tests

in this thesis, where the kernel widths are automatically tuned by optimizing RMS

error by k-fold cross-validation. In those experiments, the “hands-off” performance

and elimination of arbitrary parameters are important to show BCS performance

with credibility. In this case, however, the width is frozen to try to isolate the effect

of coupling bandwidth. In other words, if BCS performance suffers in these present

tests, we want to know if it is due to coupling bandwidth, rather than incidental

differences in the automatic tuning of Bayesian models.
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Note that the Bayesian models for BCS and EI/FPI have different system design

sample sizes and design space dimensions, although the number of aerodynamics

function calls were kept approximately constant. The EI/FPI input variables include

only the true design variables, while the coupling variables were used only within

the FPI process. Each design evaluation required several fixed point iterations, so

the number of recorded outputs is substantially less than the number of aerodynamic

function calls. On the other hand, BCS uses an augmented design space that includes

both the true design variables as well as coupling variables. The purely local discipline

variables (such as structural spar cap width) are considered only in the disciplinary

sub-optimization, and are thus removed from the system design space. Also, BCS

records system level responses like the objective function and compatibility metrics

only for each system iteration. Finally, BCS does not enforce compatibility strictly

at each outer/system iteration, but gradually moves sampling to regions of probable

or approximate compatibility. In contrast EI/FPI attempts to enforce compatibility

at every design.

Since models fit to BCS and EI/FPI are based on different sample sizes and input

dimensions, is this not comparing “apples to oranges?” Is the comparison of δ95% for

different input dimensions meaningful? First, philosophically, recall that designer is

mainly concerned about learning about favorable regions or having certainty near the

optimum. Regardless of whether compatibility closure is enforced at every data point

or how big the input space is, the designer simply wants a confident approximation

near the optimum. Secondly, recall that we are not actually comparing apples to

oranges, but using one to mask certain effects while studying the other. We are

not trying to compare BCS and EI/FPI performance as such, but using EI/FPI

performance to benchmark physical complexity while studying the effect of coupling

bandwidth in BCS. Therefore, it is assumed that the difference in sample sizes and

input dimensions does not confound the study of Hypothesis and Prediction 3. The

132



final uncertainty near the compatible, optimum region is what matters to the designer.

In the tests, the previous glider example was reused with minor alterations. The

cruise velocity was removed from the design space and set to a constant 25 ft/s for

the sake of computational cost.

The coupling bandwidth was varied by increasing the resolution of wing defor-

mation. The deformation of the wing was expressed as discontinuous, polyhedral

breaks instead of a continuous curve. This was done so that the curved wing could

be approximated in the vortex lattice code by a polyhedral wing with multiple, flat

wing panels. The deformation coupling variable is simply the transverse displacement

at these spanwise discontinuities. The number of polyhedral breaks was used to in-

crease coupling bandwidth. It is also possible to increase the coupling bandwidth by

increasing resolution of aerodynamic loads passed from the aerodynamics to struc-

tures discipline. In this example, the spanwise distribution of transverse loads were

parametrized as a third order polynomial. Increasing the order of this polynomial

could increase the coupling bandwidth. However, such coupling variables were not

added in order to control changes in physical complexity while changing bandwidth.

In this example, the number of aerodynamics function calls is used as the cost

metric because the aerodynamics simulation is more costly than the structural code,

which is but a simple integration of the Euler beam equation. BCS and EI/FPI were

run to 2000 aerodynamics iterations and the performance metrics were recorded at

500, 1000, and 2000 iterations. This is a smaller number than the 5000 iterations

used in Hypothesis 2, which was used to answer a more basic question of whether

BCS works at all.

In all the following examples, the Bayesian sampling criterion is composed of the

simple EI and target matching probabilities (recall that the previous example used a

133



J2
k term that was deemed an unnecessary complication).

− logE [I (F (Z))]−
∑
k

logP (ε < Jk (Z) < ε) (71)

5.5.1 Coupling Bandwidth Test Results

The results of this analysis are shown in Figure 47 as well as Tables 4 through 9. The

BCS trials show that the uncertainty at the optimum of both the objective and com-

patibility (δ95% and ε95%) increases (uncertainty increases) with number of coupling

variables — if comparing for similar numbers of aerodynamics function calls. This

provides some limited support for Hypothesis 3: as coupling bandwidth increases,

BCS accuracy at the optimum degrades due to the increased dimensions of the sys-

tem level search space. The tests cannot rule out other confounding factors, but they

are strongly suggestive.

On the other hand, the EI/FPI trials do not show a clear trend and are not so

useful even as a reference baseline. Detailed examination of the EI/FPI tests show

that variation in δ95% is strongly influenced by the internal FPI solver performance.

The cost in disciplinary iterations of the simple looping FPI algorithm with adaptive

relaxation rate was highly variable, so that some designs required 4 iterations to

converge coupling variables while others required as many as 600. The performance

of EI/FPI was strongly influenced by the stability and efficiency of FPI, since a single

design FPI could consume a large share of the entire computational budget. As a

consequence, the performance is highly sensitive to the initial sample. For this reason,

the EI/FPI was not a very useful benchmark. Nonetheless, the BCS trials alone show

some trends that support Hypothesis 3: performance measured by δ95% and ε95% show

a dependence on coupling bandwidth.
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Figure 47: BCS performance with varying coupling bandwidth for 500, 1000, and
2000 aerodynamics function calls

Table 4: BCS for 6 coupling variables; optimum = 27.4

Aerodynamics function calls 500 1000 2000
Structures function calls 5179 10103 19844

Best compatible objective value 26.27 26.72 27.21
Predicted objective mean at optimum 26.64 27.03 26.99

Predicted objective st.dev. at optimum 0.161 0.326 0.162
BCS confidence for objective, δ95% 1.035 0.917 0.686

BCS confidence for compatibility, ε95% 0.038 0.022 0.019

Table 5: EI/FPI for 6 coupling variables; optimum = 27.4

Aerodynamics function calls 505 1003 2006
Structures function calls 505 1003 2006

Best compatible objective value 25.23 25.23 25.23
Predicted objective mean at optimum 25.50 24.59 33.78

Predicted objective st.dev. at optimum 27.42 4.99 3.54
BCS confidence for objective, δ95% 54.00 18.05 12.40

Table 6: BCS for 7 coupling variables; optimum = 27.4

Aerodynamics function calls 500 1000 2000
Structures function calls 5146 10103 19844

Best compatible objective value 26.15 26.73 26.98
Predicted objective mean at optimum 26.93 26.89 26.94

Predicted objective st.dev. at optimum 0.191 0.279 0.294
Confidence for objective at optimum, δ95% 0.790 0.975 0.949

Confidence for compatibility at optimum, ε95% 0.0472 0.0408 0.0325
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Table 7: EI/FPI for 7 coupling variables; optimum = 27.4

Aerodynamics function calls 759 1175 2169
Structures function calls 759 1175 2169

Best compatible objective value 22.30 22.30 22.30
Predicted objective mean at optimum 21.71 21.13 22.78

Predicted objective st.dev. at optimum 142.96 0.92 1.03
BCS confidence for objective, δ95% 75.49 7.67 6.19

Table 8: BCS for 8 coupling variables; optimum = 27.4

Aerodynamics function calls 500 1000 2000
Structures function calls 5090 9877 19643

Best compatible objective value 26.124 26619 27.101
Predicted objective mean at optimum 26.66 26.79 26.92

Predicted objective st.dev. at optimum 0.208 0.264 0.602
Confidence for objective at optimum, δ95% 1.092 1.056 1.480

Confidence for compatibility at optimum, ε95% 0.0763 0.0851 0.0537

Table 9: EI/FPI for 8 coupling variables; optimum = 27.4

Aerodynamics function calls 640 1373 2061
Structures function calls 640 1373 2061

Best compatible objective value 24.51 24.51 24.51
Predicted objective mean at optimum 21.63 10.80 33.66

Predicted objective st.dev. at optimum 3.33 17.66 22.70
BCS confidence for objective, δ95% 45.50 21.20 45.97

The almost patternless results of EI/FPI are due to a highly variable internal FPI

algorithm. The first EI/FPI case was tuned for reliable performance, and most designs

converged with less than ten disciplinary iterations. The same tuning parameters were

used with 7 and 8 coupling variables. In the final case with 8 coupling variables, the

number of FPI function calls per individual design ranged from 4 to 230. This led to

a small EI/FPI sample of converged designs that was very dependent on the random

warm-start sample.

The results also show a peculiarity for BCS for a fixed setting of coupling band-

width. How can the uncertainty metric δ95% increase as the number of samples in-

creases in some cases? See the circled column of points with 7 coupling variables in

Figure 48.
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Figure 48: BCS performance with varying coupling bandwidth for 500, 1000, and
2000 aerodynamics function calls

The answer may lie with the sparse Bayesian model. In the regression process, not

all of the basis functions are activated due to automatic relevance determination. If a

nearby basis function happens to be activated, then the predictive variance at nearby

regions tends to be smaller. Similarly, if many of the parametric functions are inactive,

then the model has fewer available modes with which to express uncertainty, leading

to inconsistent trends in predictions. While this phenomenon is certainly undesirable,

the effect is relatively small in these examples – it is part of the cost paid for the speed

of sparse regression. The effect would tend to diminish as more sample points and

bases are added to the model.

Again, recall that the foregoing is only a single test problem, and perhaps the

only way to study this hypothesis about coupling bandwidth with high certainty is to

gather data for a large number of engineering problems. Also, because of the depen-

dence on random warm start samples, these experiments should ideally be replicated

many times to test the hypothesis very completely. However, the extent of the study

is limited by computational cost and the potential impact of its findings for the hy-

pothesis. Despite the very high speed of sparse Bayesian models compared to Kriging,
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each BCS trial requires days of wall-clock time to complete. The optimization to find

the reference point for performance measure requires closer to a week due to the need

for multiple trials with different initial points. Realistically, it is most likely that

a small number of practictioners may choose to use the experimental BCS method

based on qualitative reasons, such as disciplinary autonomy. It will be the weight of

accumulating experience that shows whether coupling bandwidth is the crucial crite-

rion for using BCS. The modest purpose of coupling bandwidth tests with the glider

problem is to show that this mechanism is plausible.

5.5.2 Sensitivity to Warm-Start Sample Size

Although it is not a central point, a limited investigation of the size of the warm-start

population was also performed. In the above study of coupling bandwidth, a Latin

hypercube sample of 200 points was used to initialize BCS. This number was chosen

from experience but was still arbitrary. How sensitive is BCS to this initial sample?

What are the risks of selecting the “wrong” warm-start size?

Assume that the Bayesian models used in BCS have a form in which predictive

variance increases with distance from observed points. This is true of simple Kriging.

It is also true of sparse Bayesian kernel models that have parametric basis functions,

such as x, x2 or sin(x), along with kernel function centered on data points. Again,

pure kernel models such as RVM often do not have this desirable quality, because

the value of the kernels decays with distance, so the basis functions are incapable of

expressing high variance far from sample points.

With such Bayesian models, suppose that an adaptive sampling algorithm is warm-

started with a relatively small sample. New points in the interior regions of the design

space will tend to have more nearby points and lower variance than at the edges or

corners of the design space. This tendency is greatly magnified as design dimensions

increase. Consider a hypercube (multidimensional cube) design space for K design
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variables, where design ranges are of length 2 for simplicity. For K = 2, the ratio

of distance from a corner (vertex) to the square center compared to distance of a

face(side) center to the square center is
√

2
1

. Generally, this ratio of distances is
√
K and, of course, limK→∞

√
K = ∞. The corners are far from the center, and

this distance increases with hypercube dimensions. By similar argument, distances

between corners that do not share an edge of the hypercube also increase as dimensions

increase.

With an insufficient warm-start, there is often large uncertainty in the corners

of a design space, because they tend to be far from other points. Assume that the

adaptive sampling algorithm first places a new sample point in a corner. At higher

dimensions, corners are far from one another, so the sampling of one corner has

weak influence on the uncertainty at another corner. At each iteration, the sampling

algorithm may select the point farthest from all others, and will tend to place new

sample points sequentially in corners. The problem is that there are many corners —

2K of them. The Bayesian sampling method tends to behave like a full factorial design

of experiments with two settings (high/low) for each design variable. This tendency

continues until there is enough information for patterns to emerge, to regress basis

functions to have wide influence, or to activate parametric basis functions such as 1,

x, and x2.

With a sufficient warm-start sample, enough information about the underlying

function is detected from the data so that variance is relatively low at the extremities

of the design space. Whatever the sampling criterion is, the variance at the extremities

must small enough to avoid becoming mired by the corner-sampling phenomenon. The

ideal warm-start size is very problem-dependent and model-dependent. For example,

if using sparse Bayesian models on a linear function with very little noise, a small

sample size will establish the general form of the underlying function and decrease

variance at the extremities of the design space.
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The consequences of an excessively large warm-start sample are comparatively

benign. In the extreme, the adaptive sampling becomes an offline DoE. Simply, there

is not much remaining budget with which to exploit accumulating information.

An informal study of warm-start sample size was done with the glider test case.

In each trial, the warm-start was done with a Latin hypercube sample created in

Matlab. Latin hypercube generation depends on random seeds, so if more computer

resources were available, each trial should be replicated many times. However, BCS

sensitivity to the warm-start likely depends strongly on the particular problem, so

there is limited benefit in very precisely characterizing this sensitivity in a large scale

experiment. The results in Table 10 simply show that there can be a dependence on

warm-start samples. In the table, warm-start sample size is expressed in terms of the

number of initial aerodynamics function calls. The last column with a warm-start of

1000 function calls is the degenerate case where the entire budget is used for a Latin

hypercube DoE. The “best objective value’ field is empty for this case because no

compatible designs were found. Figure 49 shows the same information in a graph.

As one might expect, BCS suffers at small warm start values because it must

establish general patterns in the underlying function; in the opposite extreme, per-

formance suffers with excessively large warm-starts that are too similar to complete

off-line sampling.

Table 10: Comparison of BCS Performance with Variable Warm-Start Sample Size

Warm-start sample size 10 100 200 500 1000
Final aero fn calls 1000 1000 1000 1000 1000

Final struct fn calls 9329 9992 10103 19844 10764
Best objective value 26.85 27.30 26.72 26.01 —

Pred mean at opt 26.97 27.03 27.02 26.06 24.81
Pred stdev at opt 0.98 0.253 0.286 0.530 0.024

δ95% 1.98 0.60 0.67 2.02 2.43
ε95% 0.0727 0.0051 0.0074 0.0517 0.0860
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Figure 49: Comparison of BCS Performance with Variable Warm-Start Sample Size

What is the designer to do? As an informal rule of thumb, one might devote 10-

30% of the total analysis budget to the warm-start sample, as was done successfully in

the glider case and the following engine nacelle case. But the total budget will vary for

different engineering projects. The best advice may be to begin with a modest warm-

start, fit the Bayesian models, and check uncertainties at design space extremities

to see if there is excessive uncertainty. If so, then more random warm-start points

may be added. The same can be done if BCS initially exhibits the corner-sampling

phenomenon. Although Bayesian adaptive sampling and BCS are sensitive to warm-

start sample size, there is relatively low practical risk, since more random warm-start

points can be added if a difficulty arises.

5.5.3 Replication Error

The warm-start tests show that the initial sample before adaptation plays a significant

role in the performance of BCS. In all trials, a Latin hypercube sample was used

for the warm-start. Because such samples are generated from a random seed (in

Matlab), there is variation in replicated trials. In addition to this variation, there

is also replication error due to the stochastic optimizers (genetic algorithms) used to

optimize the Bayesian sampling criterion at every system iteration.

To estimate this error, the BCS case with six coupling variables and 200 initial

aerodynamic warm-start function calls was repeated eight times. Each test requires

several days of wall-clock time, so the sample size is relatively small but sufficient
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to show the general idea. Results are shown in Table 11. The results show that

Table 11: Sample statistics for performance of 8 replicated BCS trials, 6 coupling
variables, 200 point warm-start

δ95% ε95%

sample mean 0.864 0.0356
sample st.dev. 0.276 0.0251

there is significant variation across trials. This is not surprising because a 200 point

warm-start sample likely covers a very small subspace of the 13-dimensional design

space. Randomly generated DoEs of that size will yield very different Bayesian models

and predictive distributions to begin the BCS adaptive sampling. This is likely an

unavoidable difficulty in performing BCS with small sample sizes. However, the

replication error would tend to be alleviated as the BCS sample size increases.

5.5.4 Conclusions

The low fidelity glider test problem was used to explore performance and theoretical

issues of BCS. Despite the use of fast potential flow and beam theory models, the BCS

tests were still expensive with turnaround times on the order of days. But the simple

aero-structural case allowed variation of problem to test predictions of Hypothesis 2

and 3. There is preliminary support for the claims that: 1) BCS concentrates points

based on a probably favorable objective and probable compatibility, and 2) coupling

bandwidth is a key factor that affects BCS performance.

This investigation of specific mechanisms of BCS in a realistic problem may guide

practitioners who consider BCS or similar Bayesian approaches for their problem. The

next chapter turns to Research Question 4, which is even more explicitly concerned

with practical tradecraft: can BCS be implemented for a high fidelity code like CFD

in a realistic and more physically complex problem?
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CHAPTER VI

PRACTICAL BCS IN HIGH FIDELITY ANALYSIS

Research Question 4 asks whether BCS can be used in a practical, high fidelity engi-

neering problem. While less interesting from a purely theoretical perspective, a large

part of the research effort is devoted to this question because of its importance to the

designer’s trade. The question is deliberately open-ended, without formal hypotheses

or prediction testing as in the previous chapter. The ‘methodology’ is simply to apply

BCS to a high fidelity engineering problem and discover pitfalls and lessons.

The high fidelity example is the aero-propulsion design of an isolated engine na-

celle. This test case is selected mainly because it contains many of the essential

characteristics of a boundary layer ingesting aircraft aero-propulsion design while be-

ing computationally feasible for this thesis. A meridional view (radial-axial plane)

of the engine is shown with Mach numbers in Figure 50. The CFD costs of such

Figure 50: Powered engine nacelle

simulations are high because of high flow gradients and viscous and compressible

phenomena in the inlet and nozzle. However, the engine is axisymmetric, CFD costs

are substantially lower than, for example, an entire aircraft. This allowed a full BCS

demonstration with a thousand CFD function calls as well as several thousand more

calls while debugging and solving BCS implementation problems.

In addition to the engine nacelle example, preliminary studies were done with the

Boeing/NASA N2B hybrid wing-body (HWB) with boundary layer ingestion (BLI).
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This example was discussed in the introductory chapter because it showcases both

the need for high-fidelity analysis in early design stages as well as the challenge of

interdisciplinary compatibility. As will be shown, the computational requirements for

demonstrating BCS with BLI HWB proved to be beyond the budget of this thesis,

but the example is described in this chapter to report lessons from the preliminary

efforts and to provide a record for future researchers.

Figure 51 shows an initial baseline design for the BLI HWB aircraft concept.

Figure 51: Boeing/NASA N2B hybrid wing-body

This chapter first describes the engine nacelle problem and its BCS implementa-

tion and results. Then, it describes the challenges of the BLI HWB design problem.

6.1 Powered Engine Nacelle

The main high fidelity BCS demonstration was done with a powered nacelle exam-

ple. More specifically, it focused on aero-propulsion design of a nacelle, inlet, nozzle,

and the propulsion cycle of a turbojet engine. This example was chosen primarily

because the coupled design problem has similarities with the BLI aircraft example,

yet is computationally inexpensive. CFD was used for the external flow as well as
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Figure 53: DSM for engine nacelle

inlet and nozzle duct flow. A numerical propulsion cycle code was used to model

the internal engine components, from compressor inlet to turbine exit. There is an

interdisciplinary coupling in which the nacelle and inlet aerodynamics provide a mass

flow and total pressure recovery to the engine’s compressor, and the propulsion cycle

produces inlet back pressure and nozzle conditions that determine the exhaust plume

in the aerodynamics discipline.

The plume may not affect the nacelle aerodynamics as significantly as it affects

BLI HWB airframe aerodynamics, so the two-way coupling is not as strong. However,

if one views the entire HWB as an “inlet” for its engines, it is apparent that the

design problems are not so different. The design structure matrix (DSM) is shown

in Figure 53. The nacelle problem can be considered as a surrogate problem for

the more expensive BLI HWB problem. Despite the similarities of the nacelle and

HWB design problems, the nacelle example is computationally much cheaper due to

axisymmetry. The CFD simulation is essentially two dimensional, considering only
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Figure 54: Meridional section view of engine/nacelle

axial and radial flow on a 2◦ circumferential slice, with periodic boundary conditions

in the circumferential direction. On the other hand, this cost saving is offset by a

much more detailed study of the internal inlet and nozzle flow of the engine.

A subsonic turbojet example was chosen for simplicity. Turbojets are not com-

monly used in modern aircraft because turbofans tend to have higher propulsive

efficiencies, especially in subsonic applications. However, a turbojet was used to

demonstrate BCS and the essential features of coupled aero-propulsion design while

avoiding the complexities of a turbofan. These complexities include multiple exhaust

streams and the computational cost of modeling the shear flow in the mixing core

and bypass streams. A turbofan would increase complexity without adding clarity to

the BCS demonstration. Of course, the sampling method can later be generalized to

a turbofan or other coupled aero-propulsion problems.

The simple, baseline turbojet design bears some similarities to the Pratt & Whit-

ney J-57 turbojet engine, which was used on the Boeing 707 subsonic transport and

military aircraft such as the B-52 bomber. The propulsion cycle model assumes tech-

nology levels of the 1950-60s. It is a single spool engine with baseline mass flow

of around 200 lbm/s, thrust of around 10,000 lbf, thrust-specific fuel consumption

(TSFC) of around 1.2 lbm/lbf-hr. Design ranges include a maximum burner temper-

ature (T4) of 2400◦R and maximum overall pressure ratio (OPR) of 12.0.

Figure 54 shows the key regions and reference dimensions of the engine nacelle.

Table 12 shows design variables, coupling variables, and their ranges. The major

surfaces are created with cubic splines and Laplacian smoothing in a Python script

and with Chimera Grid Tools. The parameterization of nacelle, inlet, and nozzle is
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Table 12: Engine/nacelle design variables and ranges

Design Variable Lower Bound Upper Bound
inlet throat area 1.0 1.4

inlet area ratio 0.9 1.2
nozzle area ratio 1.5 2.5

mass flow 150 lbm/s 250 lbm/s
inlet total pressure recovery 0.9 1.0

inlet back pressure 1.0 1.5
overall pressure ratio 6.0 12.0

burner static temperature 1800◦R 2400◦R
nozzle total pressure 2.0 5.0

nozzle total temperature 2.0 5.0

done with an emphasis on physically meaningful design variables. Many of the design

variables are normalized or non-dimensionalized by reference quantities calculated by

one-dimensional flow models. Total pressures and temperatures are normalized by

free-stream static values. The variable called “inlet throat area” is actually the ratio

of the throat area with the streamtube capture area for the design Mach number

and target mass flow. The inlet area ratio is the ratio of the aerodynamic interface

plane (AIP) or to the throat area. The nozzle area ratio is the exit area divided by

the critical (choke) throat area given nozzle plenum total conditions and target mass

flow. It was found that the critical area in RANS CFD is reliably predicted by 0.735

of the value from a one-dimensional, isentropic flow model using total conditions at

the nozzle plenum.

design nozzle area ratio =
Aexit

A∗
=

nozzle exit area

nozzle throat area
(72)

nozzle throat area = A∗ =
0.735 (mass flow target)√

γ Pt,nozzle plenum ρt,nozzle plenum

(
2

γ+1

)((γ+1)/(γ−1))
(73)

Here, γ is the ratio of specific heats, Pt,nozzle plenum is the stagnation pressure at the

nozzle plenum, and ρt,nozzle plenum is the total density. This simple test case assumes

a calorically perfect gas, and γ is assumed to be a constant 1.4. A more realistic

simulation would likely have a lower value due to high temperature effects. The
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working fluid is also assumed to be standard air, with no adjustment for fuel mass

and combustion products.

For realism, a inlet cone/spinner is added with an arbitrary maximum radius of

40% of the compressor (or AIP) tip radius. A circular nacelle lip shape is assumed,

allowing for ingestion of a constricting streamtube at starting conditions. To ensure

realistic compressor performance, a constraint penalty was applied to Mach numbers

at the AIP outside of the range 0.4 - 0.55. Other physical and geometric assumptions

are listed in Table 13.

Table 13: Miscellaneous nacelle design settings

Design Settings Value
cruise Mach number, M∞ = 0.8

T∞ = 411.69◦R
ρ∞ = 8.89528e-4 slug/ft3

nacelle length = 10.0 ft
inlet length = 2.0 ft

nozzle length = 3.0 ft
spinner cone length = 0.7 inlet length

spinner radius = 0.4 compressor tip radius
nacelle wall thickness = 0.15 compressor tip radius

nacelle lip radius = 0.5 nacelle wall thickness
nacelle plenum area = 1.3 nacelle throat area

6.1.1 Note on Nozzle Design and Analysis

The nozzle duct geometry was originally not intended to be designed. The flow was

originally intended to be modeled in the propulsion cycle code with empirical nozzle

loss models to yield the thermodynamic conditions at the nozzle exit plane. These

were then to be modeled in CFD as a disc-shaped boundary condition patch that

produced an exhaust plume with total temperature and total pressure specified by

coupling information from the propulsion discipline. (As a side note, the boundary

condition for an engine nozzle outflow is called a CFD inflow ; the flow enters the CFD

domain, even though it exits the engine in reality.) It was found that this inflow patch
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can cause severe convergence problems, especially during early time-stepping from an

initial uniform flowfield. The sluggish outer shear flow from the nacelle boundary

layer mixes with the very energetic exhaust plume. This can cause numerical as well

as physical instabilities. The velocity shear may lead to physical Kelvin-Helmholtz

instabilities, particularly if the uniform exhaust boundary conditions are imposed,

with no radial variation of axial velocity to alleviate the sudden discontinuity. The

high flowfield gradients may also cause numerical instabilities. To counter the latter,

higher order numerical schemes or dense meshes can be used in that region. However,

these tend to strongly limit the time step for stable Courant-Friedrichs-Lewy (CFL)

numbers. Secondly, even though the turbojet engine is intended for subsonic cruise

speeds, it is not uncommon for nozzle flow on such engines to be supersonic. Sampling

within the design variable ranges can cause the plume to switch from subsonic to

supersonic flow, and the Mach number may also fluctuate about unity as a single CFD

solution evolves. The problem is that certain CFD inflow boundary conditions are

stable and accurate according to the Mach regime. For example, one common inflow

boundary setting uses characteristic boundary conditions to enforce total temperature

and pressure while extrapolating mass flow and other properties from the rest of the

flowfield. Such a method only works accurately for subsonic flow, since characteristic

information is carried upstream from the plume back to the nozzle boundary. On

the other hand, supersonic inflow boundary conditions might require specification of

many more properties since flow information is carried only downstream. Setting a

nozzle boundary condition in a regime where Mach number may vary substantially

leads to instabilities and crashes in the BCS sampling method.

To avoid these difficulties, an artificial nozzle chamber and converging-diverging

nozzle is created. The nozzle flow begins at a nozzle plenum where the flow is known

to be subsonic. The subsonic flow constricts to a sonic throat and expands to become

supersonic. In the majority of design cases, the nozzle exit flow is supersonic and
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exhibits Mach discs in the plume (analogous to shock diamonds in two dimensional

flow). These are shown in Figure 55. This may seem strange to engineeers accustomed

to modern high bypass ratio turbofans for subsonic applications, which typically

have only a converging nozzle for slightly underexpanded subsonic nozzle exit flow.

However, the supersonic exhaust is reasonable for the simple subsonic turbojets, which

tend to have much higher nozzle pressure ratios.

Figure 55: Turbojet with converging-diverging nozzle and shock diamonds (near-field
view)

Having described the basic engine nacelle design problem, its implementation in

BCS is described in the following sections. As in the glider problem, the steps are

described in terms of the four items: bi-level formulation, setup of analysis codes,

initialization, and adaptive sampling. Then, BCS results are shown and discussed.
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6.1.2 Bi-Level Decomposition for BCS

The first step of bi-level decomposition is highlighted in Figure 56.

Figure 56: Bi-level decomposition is the first step in implementing BCS

As before, the original problem is decomposed into a bi-level BCS problem, shown

in Figure 57.

TSFC

mass flow
inlet recovery

nozzle Pt ratio
nozzle Tt ratio

installed thrust
target discrepancy

inlet throat area
inlet area ratio
nozzle area ratio
mass flow target
inlet recovery target
nozzle Pt ratio target
nozzle Tt ratio target

PropAero

Prop
Opt

Aero
Opt

System

inlet back pressure OPR
burner temperature

fuel burn rate
target discrepancy

mass flow and
inlet recovery 
targets

nozzle Pt and 
Tt targets

sys geometry
sys geometry

Figure 57: DSM for engine nacelle BCS

Note that there are many alternative ways to do the bi-level decomposition. For
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mass flow
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Opt
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burner temperature
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mass flow target
inlet recovery target
nozzle Pt ratio target
nozzle Tt ratio target

nozzle Pt and
Tt targets

Figure 58: Alternate DSM for engine nacelle BCS

example, most of the nacelle geometry variables could be designed in the local aero-

dynamic subspace. This would result in a problem formulation like Figure 58. The

reason for choosing the first bi-level decomposition has to do with the efficient reuse of

CFD meshes and initial solutions. Mesh generation and connectivity comprise a sig-

nificant fraction of the total CFD cost. Also, the initial start-up of the CFD inlet and

nozzle boundary conditions is computationally expensive. Because of the very high

flow gradients, the inlet and nozzle flows often require slow local time stepping and

gradual enforcement of boundary conditions. For example, the nozzle plenum pres-

sure may have to be started at free-stream values and gradually increased to nominal

values. To establish basic flow features such as the exhaust plume, external shocks

and inlet separation, the CFD may have to run for several flow-through times (time

required to traverse the flow domain at freestream velocity). This may be alleviated

using multi-grid and grid cycling techniques, but it is still a major cost for problems

with strong inlet and outlet flows. The Python scripts controlling OVERFLOW runs

contains routines to set time steps and CFL numbers and adjust them in response to
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convergence problems that typically occured in the early iterations of a simulation.

If all of the geometry variables are at the system level, the local search at the

aerodynamic discipline subspace only changes flow boundary conditions, such as in-

let back pressure and nozzle plenum temperature. The discipline level search only

requires a single grid based on system variables and a single initial solution. Once

major CFD flow structures are established, the same grid and solution may be reused

with modified flow conditions for several disciplinary iterations in a given system it-

eration. This is much more efficient than re-gridding and initializing a solution for

every single CFD function call.

In a (very approximate) analogy, one may think of the cost of starting a physical

turbine engine from free stream conditions; it may be difficult to coax the engine to

life and establish running steady conditions. Once the engine is running smoothly,

it may be relatively easy to change its operating conditions. Since CFD also has

a major numerical starting cost but can have its flow boundary conditions changed

relatively easily, there are more or less efficient ways to exploit this in the choice of

bi-level decomposition.

The BCS bi-level decomposition of variables is given below.

Zsystem =



inlet throat area

inlet area ratio

nozzle area ratio

mass flow target

inlet total pressure recovery target

nozzle plenum total pressure target

nozzle plenum total temperature target
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Xaero =


inlet AIP static back pressure

nozzle plenum total pressure local

nozzle plenum total temperature local



Xprop =


weight

burner temperature local

overall pressure ratio local


Recall that each discipline takes system variables and computes local, discipline-

level values for certain system target variables. For example, in the aerodynamics

discipline, inputs include copies of system targets Zaero
system: mass flow and inlet Pt

recovery targets. The local outputs Zaero
local are actual mass flow and inlet Pt recovery

from CFD. Then, the bi-level design formulation becomes:
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System Level

Minimize: Fsys = installed thrust-specific fuel consumption (TSFC)

with constraint penalties

by sampling min. of: − logE [I (F (Zsys))]−
K∑
k

logP (−ε ≤ Jk (Zsys) ≤ ε)

with respect to: Zsys

subject to: h1 = thrust− 10, 000 lbf = 0

h2 = inlet mass flow− nozzle mass flow = 0

0.40 ≤ MachAIP ≤ 0.55

and updating: Bayesian models p(F |Zsys), p(Jk|Zsys)

for k = 1, 2, . . . K coupling variables

given: Mach∞ = 0.8, steady cruise

altitude = 30, 000 ft

Aerodynamics Discipline

Minimize: Qaero =
K

(i)
local∑
k

J2
k

with respect to: Xaero
local

Propulsion Discipline

Minimize: Qprop =
K

(i)
local∑
k

J2
k

with respect to: Xprop
local
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After formulating the bi-level problem, the next step is to describe the setup of

discipline analysis codes, as highlighted in Figure 59.

Figure 59: Bi-level decomposition is the first step in implementing BCS

6.1.3 Aerodynamics Analysis

CFD is done with the NASA OVERFLOW version 2.2b overset CFD code. Meshing

is automated in Chimera Grid Tools using a Python script. Overset mesh connec-

tivity information is computed using NASA’s Pegasus 5.1. A Roe flux difference

splitting upwind scheme and a Liou AUSM+ scheme were tried, but these proved

to be sensitive to solver settings in the design space for this particular problem. In

other words, settings that results in a stable solution at one design point may not

produce a converged solution when used for another point in some other region of

the design space. These settings include limiters for upwind Euler terms, dissipa-

tion, and smoothing parameters. Despite the higher potential accuracy of upwind

schemes, a simple centered difference for Euler terms is used because of its robustness

across the design space. This leads to more reliable convergence for different engine

designs, provided that there are relatively high density meshes in plume/wake mixing

regions and other high gradient regions. As before, a one equation Spalart-Allmaras
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Table 14: OVERFLOW grid sensitivity for powered nacelle test case

mesh nodes (103) ηp error in ηp thrust (lbf) error in thrust
74 0.9409 -0.48% 9405.84 -0.97%
87 0.9371 0.01% 9486.88 -0.12%

153 0.9359 -0.05% 9499.50 0.01%
198 0.9357 -0.08% 9496.31 -0.02%
257 0.9360 -0.04% 9497.88 -0.005%
596 0.9364 — 9498.35 —

turbulence model was used. Figure 60 shows an example mesh.

Figure 60: Chimera overset nacelle mesh (near-field view)

6.1.3.1 Grid Sensitivity

In the absence of public, experimental validation data, only a simple grid sensitivity

study was done. The number of mesh nodes was varied primarily by increasing the

boundary layer mesh density, the near field density, and the farfield distance. In all

meshes, a maximum mesh expansion ratio of 1.2 was enforced. The most expensive

case used a wall grid spacing of y+ = 1 in the boundary layer, but this was increased

in the coarser grids. Table 14 shows sensitivity information. The 87,000 node mesh

was chosen for the BCS study. Figure 61 shows an example of such a mesh. The

mesh is 13 body lengths in the axial direction (9 body lengths aft of the engine) and

3 lengths in the radial direction.
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Figure 61: Engine nacelle mesh with 87,000 nodes

6.1.3.2 CFD Post-processing of System Level Outputs and Coupling Variables

Substantial effort was required to set up automated post-processing of CFD results.

The installed thrust of the engine is computed by integrating the pressure, viscous

stress, and momentum flux on a control volume enclosing the entire nacelle, AIP,

and nozzle plenum and duct. This integration is again done with a dedicated Python

script as well as the FOMOCO utility in OVERFLOW. Note that this approach does

not distinguish between notions such as ram drag, uninstalled thrust, nacelle spillage

drag, etc.

The main output coupling variables from the aerodynamics discipline are mass

flow and inlet total pressure recovery. In CFD, two mass flows must actually be

computed – for inlet and nozzle – and equality between the two must be enforced.

The mass flow at the inlet is computed by integrating at the aerodynamic interface

plane (AIP) in front of the compressor face. The inlet mass flow is controlled by a

static back pressure condition at the AIP and calculated by a Python post-processing

script. The nozzle mass flow is a more curious case. As mentioned earlier, given

the throat area A* and plenum stagnation temperature and pressure, the nozzle mass

flow reliably obeys a constant ratio of 0.735 with the one-dimensional isentropic value

— to within three significant digits. Therefore, the nozzle mass flow is set by simply

computing the isentropic critical throat area and enforcing this ratio.

Mass flow balance between the inlet and nozzle is enforced with a constraint
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penalty added to the system objective function. This penalty is simply

(nozzle mass flow− inlet mass flow)2/nozzle mass flow

multiplied by a penalty weight (set to 10). As BCS progressively searches for lower

system objectives, the mass flow imbalance is driven close to zero.

OVERFLOW and its force and moment integration utility (FOMOCO) do contain

a convenient feature to enforce inlet-nozzle mass flow balance, but this feature is not

used. In this feature, the inlet boundary conditions are automatically varied to make

the inlet mass flow pursue the nozzle match flow. However, this feature cannot be

easily used for BCS because the inlet-nozzle mass flow match may be physically

infeasible for many of the sampled designs. For example, the inlet flow may choke

so that its maximum value is below the nozzle mass flow. Then, the automatic

inlet/outlet matching method in OVERFLOW/FOMOCO may not converge because

the match is physically impossible. However, the adaptive sampling method requires

some converged solution to advance the sequential learning process, even if it the

inlet and nozzle mass flows do not match. For this reason, the inlet and nozzle mass

boundaries are decoupled within the CFD analysis, but the mass flow balance is

enforced outside of the CFD solver by a constraint penalty on the system objective.

The second major coupling variable is inlet total pressure recovery. The propulsion

literature discusses several methods for expressing average Pt recovery over the AIP.

Each of these have advantages and disadvantages, such as in the ways they conserve

momentum or preserve entropy [123]. A mass average is chosen for its simplicity.

Total pressure recovery ηp =

∫
AIP

Pt (ρuA) dA∫
AIP

(ρuA) dA
(74)

where Pt is total pressure, ρu is mass flux, and A is a dummy variable for area on the

aerodynamic interface plane.
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6.1.4 Propulsion Analysis

Engine cycle analysis is done with NASA’s Numerical Propulsion System Simulation

(NPSS). The code performs a “0-D” analysis that solves for properties, efficiencies,

or conditions at stations in an engine’s flowpath by enforcing mass, momentum, and

energy conservation laws. The code is 0-D because it does not solve spatially dis-

cretized differential equations for the flow, but rather rather links flow components

together and models the losses in each component by semi-empirical methods.

NPSS has a relatively flexible, object-oriented architecture that allows the solution

of user-determined dependent variables with respect to independent variables. For

this reason, the original DSM shown in Figure 53 is somewhat artificial. NPSS can be

used to solve for output variables of nozzle total temperature and pressure given input

variables of mass flow and inlet total pressure recovery. However, solver conditions can

be changed so that nozzle stagnation conditions are enforced as inputs. This would

lead to a one-way, feed-forward coupling, or an upper triangular DSM. Without a two-

way coupling, the multidisciplinary analysis would not feature a fixed point iteration

problem, removing the need for BCS altogether. Figure 62 shows the DSM with and

without this two-way coupling.

However, the relatively simple design example is meant to represent more general,

high-fidelity coupled aero-propulsion problems. If the propulsion cycle model uses

high fidelity component models, then it would be much more difficult to fix nozzle

conditions for and solve for dependents required for feed-forward multidisciplinary

analysis. If the engine components were modeled using CFD, then this would require

solution of an expensive inverse problem. For example, the inverse problem of finding

a turbine geometry that results in a desired nozzle total temperature and pressure

would likely involve an iterative solution with many CFD function calls.

The upper DSM in Figure 62 with the feedback is more representative of a typical,

high fidelity aero-propulsion design problem. This structure is therefore used even
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Figure 62: DSM for engine nacelle with and without feedback loop

though the complications of FPI could be averted by rearranging independent and

dependent variables in NPSS.

6.1.4.1 Additional Coupling Mechanisms for Future Aero-Propulsion Examples

The powered nacelle example was chosen for its simplicity and similarity to the

BLI aircraft example. Unfortunately for the goal of demonstrating BCS, the aero-

propulsion coupling is weaker for the nacelle example. For example, the exhaust

plume probably does not exert as strong an influence on the drag of nacelle body as

it might on the airframe of the HWB. The axisymmetric nacelle inlet shape probably

does not affect the total pressure recovery as strongly as the 3D HWB airframe and

inlet geometry affect recovery and distortion.

In future work, additional important coupling effects could be included in a pow-

ered nacelle example if propulsion analysis includes higher fidelity models (either CFD
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or empirical performance maps). First, the AIP Mach number likely has a strong in-

fluence on compressor efficiency. Currently, this influence is handled by assessing

a penalty on the TSFC objective function for AIP/compressor face Mach numbers

outside of a certain range. Second, the radial variation of properties on the AIP is

likely an important coupling variable. Currently, the inlet total pressure recovery is

expressed as a single, mass-flow average at the AIP. The inlet static back pressure is

also enforced as a constant property over the AIP. Ignoring the radial variation may

be acceptable for this simple demonstration, but it does not adequately capture an

important mechanism for inlet total pressure loss. Figure 63 shows recirculating flow

with stagnation pressure normalized by p∞ near the inlet wall and AIP.

Figure 63: Recirculating flow and normalized stagnation pressure in inlet

As the air flow enters the inlet, the streamlines near the central axis encounter

a pressure rise as they approach a stagnation point on the inlet cone/spinner. Most
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of the compression of this air occurs externally due to this effect. From the stag-

nation region, this high pressure air encounters a relatively low pressure gradient as

it approaches the compressor face. On the other hand, streamlines near the inlet

lip encounter a sudden turn away from the original flow direction and then face a

high adverse pressure gradient while approaching the compressor. This often leads

to separation and a large loss of total pressure. In more realistic, high-fidelity design,

the inlet back pressure would be parametrized to show radial variation. This reflects

actual, physical designs, where the compressor blades would likely be designed to

create radial pressure and mass flux variation to avoid the problems in Figure 63.

For these reasons, the designs sampled in this current study typically have rela-

tively low inlet pressure recoveries, in the 90-93% range. However, the BCS method

could still be used in future cases by adding radial variation to the coupling variables.

6.1.5 Warm-Start and Adaptive Sampling Details

After setting up the discipline analysis codes, the next steps are to initialize and run

BCS until a computational budget is depleted.

Figure 64: Warm-start and execution of BCS
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While setting up the aerodynamics and propulsion codes and disciplinary optimiz-

ers, it was found that the propulsion code requires around three times more function

calls to converge on minimum target discrepancies. However, the aerodynamics anal-

ysis is much more expensive, so it is again used as the main metric for computational

cost.

The warm-start was done with a Latin hypercube DoE generated in Matlab. Be-

cause the number of CFD function calls per system call is not known a priori, a guessed

value of 15 initial system DoE points was used because it was estimated to result in

around 200 aerodynamics function calls. This proved to be a reasonable guess, as the

DoE actually required 193 aerodynamics function calls and 743 propulsion function

calls.

After this initialization, adaptive sampling with BCS was done until a budget

of 1000 CFD function calls was depleted. This allowed 66 additional system sample

points. Including the warm-start function calls, the final sample was 81 system sample

points based on 1000 OVERFLOW CFD and 2944 NPSS function calls.

6.1.6 Engine Nacelle BCS Results and Discussion

Results from the BCS run are shown in this section. Recall that the intent of the last

research question is to explore how BCS can be practically implemented with high

fidelity, not to quantify its performance. In the absence of a very expensive direct

optimization, there is no metric to show how accurately BCS performed. For example,

the confidence measure δ95% is evaluated at the true optimum, which required 105

aerodynamic function calls in the earlier glider example.

CFD wall clock times were quite variable, but typically required several CPU

minutes on Intel Westmere or i7 processors. On the other hand, a NPSS function call

required less than a CPU second. Because the NPSS propulsion code is much faster

than CFD, a relatively expensive but accurate settings for the optimizer (Matlab
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fminsearch, simplex-based) were used for the propulsion disciplinary sub-problem, as

opposed to a golden section line search for aerodynamics.

Figure 65 shows the BCS sample in terms of three normalized system-level design

variables. This shows 40 system sample points (a snapshot taken when the BCS trial

was half complete); circled points are adaptively sampled with BCS while 15 uncircled

points are the warm-start points. The 40 system iterations required 511 CFD and

1676 NPSS function calls. Figure 66 shows the final sample of 81 system points that

correspond to 1000 CFD and 2944 NPSS function calls.

165



Figure 65: Sample of normalized design variables after 40 total system iterations (511
CFD, 1676 NPSS function calls); 15 blue dots are from warm-start, 35 red circled
points are adaptively sampled

Figure 66: Sample of normalized design variables after after 81 total system iterations
(1000 CFD, 2944 NPSS function calls); 15 blue warm-start points, 35 red circled
adaptively sampled points

From Figure 66, it can be seen that sample points are concentrating in a region

of the design space. Two dimensional Figures 67 to 69 show the sample in terms of

one system design variable concentrating in regions of low objective values. Figures
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70 through 73 show that most of the adaptively sampled points are concentrated in

regions where target discrepancies Jk are small. These are but a few representative

figures. Not all system targets and variables are shown because of the large number of

combinations. Note that the points in these plots show adaptively sampled (circled)

points clustering near Jk = 0, indicating low target discrepancy.

Figure 67: Objective vs. mass flow (normalized) for 81 system sample points (1000
CFD function calls)
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Figure 68: Objective vs. inlet throat area (normalized) for 81 system sample points
(1000 CFD function calls)

Figure 69: Objective vs. nozzle exit area (normalized) for 81 system sample points
(1000 CFD function calls)
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Figure 70: System-level mass flow target discrepancy vs. discipline-level inlet Pt
recovery (normalized) for 81 system sample points (1000 CFD function calls)

Figure 71: System-level mass flow target discrepancy vs. discipline-level inlet area
ratio (normalized) for 81 system sample points (1000 CFD function calls)
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Figure 72: System-level inlet Pt recovery target discrepancy vs. discipline-level local
mass flow (normalized) for 81 system sample points (1000 CFD function calls)

Figure 73: System-level inlet Pt recovery target discrepancy vs. discipline-level inlet
throat area (normalized) for 81 system sample points (1000 CFD function calls)
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Viewing the sample points gives the designer confidence that BCS is concentrating

analysis resources according the intended criteria of 1) favorable objective and 2) low

system target discrepancy. Note that a designer would have no guarantee that the

concentrated regions are near the true compatible optimum. However, considerable

insight about the design can be gained by Bayesian inference. The following figures

show the compatible expected improvement criterion from the sparse Bayesian models

of objective F and target discrepancies Jk:

− logE [I (F (Z))]−
∑
k

logP (−ε ≤ Jk (Z) ≤ ε) (75)

Plots are shown for two input variables in Figures 74 and 75. All other input variables

that are not shown are set to the last sample point.
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Figure 74: System-level sampling criterion (500 CFD function calls)

Figure 75: System-level sampling criterion (1000 CFD function calls)

It can be seen that the low, favorable region is relatively sharply defined by 500

CFD function calls. This region shifts slightly in the 1000 function call case in Figure

75 mainly because the other design variables (not shown) have slightly different set-

tings. Suppose that with 1000 points, the engineer has depleted the computational

budget for CFD. At this stage in the design process, there may be neither hope nor
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need for finding the true optimum. The low, blue region in Figure 75 may be the

best that can be done with 1000 points, balancing between local accuracy and global

exploration. The designer can next study the favorable region and dissect the physical

trends that create this low trough.

This dissection is easy because the BCS process requires separate Bayesian models

for F and each target discrepancy Jk used in Equation 75. The engineer might view

only the probability of compatibility, or the negative log probability that all target

discrepancies lie within some tolerance, as in Eq. 76. In the case of Figure 76, the

tolerance is set to ε = 10−3.

−
∑
k

logP (−ε ≤ Jk (Z) ≤ ε) (76)

Figure 76: Probability of compatibility (1000 CFD function calls)

In addition, the designer may view an individual target discrepancy, Jk. For

example, Figure 77 shows the predictive probability of mass flow discrepancy Jmass flow

with ± 1 standard deviation.
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Figure 77: Predictive probability on mass flow discrepancy, p(Jmass flow), for ± 1
standard deviation (1000 CFD function calls)

After viewing these plots, the designer may want to learn about the physical

causes of incompatibility or target discrepancy. For example, viewing sample points

from regions of high mass flow discrepancy Jmass flow reveals that designs with high

system mass flow targets and small inlet throats tend to have choked inlet flow.

Investigating regions of high discrepancy Jrecovery show that high inlet area ratios

and high inlet Pt recovery targets are incompatible, because these designs often have

separated/recirculating flow and small shock waves in the inlet. Figure 63, the figure

of recirculating flow that was shown earlier, is one such example.

Often, the close examination of the compatible regions and neighboring incom-

patible points will reveal unfavorable physical phenomena that are based on a bad

choice of parameterization of the design problem. For example, the recirculating flow

may point to an incompatible combination of mass flow, inlet throat, inlet area ratio,

or AIP back pressures. However, it may be due to design parameterization or bad
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default settings of detailed variables. This is similar to the problem encountered ear-

lier in the BLI aircraft example, where nacelle shape parameters can influence shock

formation that affects the entire aircraft. After investigating the results of BCS, the

designer may select a particular design that resides in the favorable regions or adjust

design ranges and add more detailed variables.

The BCS demonstration with a powered engine nacelle shows how an adaptive

sampling for both a favorable objective and compatibility can help the designer narrow

the design space and see the physical mechanisms for interdisciplinary compatibility.

Much information about early design can be gleaned from a relatively meager budget

of 500 to 1000 CFD function calls. The earlier glider test case suggests that a similar

amount of information might not be gained from off-line DoE/surrogate modeling or

direct optimization. This engine nacelle study showcases the practical implementation

and advantages of the Bayesian approach.

Having described the results and insights from the engine nacelle test case, the

discussion shifts to preliminary work on a boundary layer ingesting aircraft. This

example is much more complex and computationally costly than the engine example,

and the initial setup of the problem for BCS reveals some important final lessons for

the designer.

6.2 Preliminary Findings: Boundary Layer Ingesting (BLI)
Hybrid Wing-Body

Hybrid wing-body aircraft have wings that blend into a center body that also pro-

duces significant aerodynamic lift. In the recent years, design and research groups

such as NASA, Boeing, MIT and Georgia Institute of Technology have studied the

hybrid wing-body (or “blended wing body”) concept as a replacement for current

tube-and-wing configuration for subsonic cargo/transport aircraft [107], [74]. Poten-

tial advantages of this concept are greater cargo volume and higher lift/drag ratio.

Boundary layer ingestion technology may further improve HWB aerodynamics to
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increase fuel efficiency.

6.2.1 Boundary Layer Ingestion

BLI engines improve aircraft propulsive efficiency by re-energizing the wake. The

following description is influenced by explanations by [12], [41], and [144].

Consider the idealized cases of (1) a podded engine well separated from the aero-

dynamic body, and (2) a boundary layer ingesting that is completely immersed in

the wake of the body. In Figure 78, the grey regions represent wakes and the blue

shaded regions represent velocity differences from freestream velocity at the Trefftz

plane — the plane perpendicular to the wake and far downstream. In the first case,

the wake of the aircraft leaves a velocity (or momentum) defect far downstream, while

the engine plume leaves a velocity (or momentum) surplus. In the second case with

the ideal wake-filling, BLI engine, this defect and surplus cancel out. This effect is

described in greater detail.

podded

BLI

Figure 78: Podded and BLI aircraft and wakes
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First consider the podded engine.

Let u∞ = freestream velocity

u jet = average jet velocity

uwake = average aircraft wake velocity

ṁ = mass flow rate

The thrust-drag balance of the entire podded configuration is given by

Trequired = Daircraft

ṁ (u jet − u∞) = ṁ (u∞ − uwake) (77)

and the useful power for overcoming drag at freestream speed is

Puseful = Daircraft u∞

= Trequired u∞

= ṁ (u jet − u∞)u∞ (78)

The rate of work done by the engine on the ingested streamtube equals the change

in kinetic energy of the air as it accelerates from freestream to jet speed.

Ppodded =
1

2
ṁu2

jet −
1

2
ṁu2
∞

Substituting the Trequired from (77), we have

Ppodded =
1

2
Trequired (u jet + u∞) (79)
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Note that this amounts to the engine thrust multiplied by the average of streamtube

velocity fore and aft of the engine. The propulsive efficiency η prop is the ratio of useful

power to engine power:

η prop, podded =
Puseful

Ppodded

(80)

Now consider the BLI case. For simplicity, assume that the ideal case where

engine ingests the entire wake of the aircraft and accelerates it exactly to freestream

velocity, such that u jet = u∞. Unlike the podded case in Eq (79), since the ingested

streamtube is accelerated from wake speed to freestream speed. So the BLI engine

power is

PBLI =
1

2
ṁu2
∞ −

1

2
ṁu2

wake

However, if we assume the aircraft drag is the same as before, then Trequired from

Eq.(77) remains the same. Substituting, we get

PBLI =
1

2
Trequired (uwake + u∞) (81)

Now, compare (79) and (81):

Ppodded =
1

2
Trequired

(
u jet︸︷︷︸+u∞

)
versus PBLI =

1

2
Trequired

(
uwake︸ ︷︷ ︸+u∞

)
Since u jet > uwake, we can see that Ppodded > PBLI. For the same aircraft drag,

the podded configuration requires more power. This can also be seen in terms of

η prop,podded < η prop,BLI. This can also be understood intuitively: thrust is produced

by imparting momentum (or velocity) to air. For the same velocity increase, it is

more energy-efficient to increase velocity over a lower average value because energy

depends on velocity squared.

The foregoing discussion is highly idealized, and it assumes that drag of the aircraft

is well-defined and distinct from engine losses. However, if airframe and engine are
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tightly integrated, it is often unclear where the airframe starts and the engine begins.

The thrust-drag distinction is less meaningful and losses from airframe versus engine

are mainly a matter of accounting. For example, it is unclear if the main advantage

of BLI should be described as 1) engine plume filling the wake to reduce drag and

required thrust for a given engine power, or 2) the wake decelerating air entering the

engine to decrease power requirement for given drag and thrust. Recent work by Drela

introduces a unified method of accounting for aerodynamic and propulsion losses in

terms of mechanical power dissipation, avoiding arbitary separation of thrust and

drag [41].

The wake ingestion principle is already used in some cruise missiles and torpedos,

and is almost universal for ship propulsion. It is relatively difficult to exploit this

effect in aircraft, because the wake is spread out due to dispersed wing and fuselage,

and it is difficult to capture this wake in the streamtube of an engine. In addition,

it has been difficult to devise design methods that exploit this phenomenon in early

design to have a significant impact on final aircraft performance.

The propulsive advantage of BLI is countered by costs in thermodynamic effi-

ciency. The main mechanisms for this cost are total pressure recovery and distortion

at the fan or compressor face. Total pressure recovery ηp is defined as the ratio of

total pressure Pt at the fan face and the freestream total pressure.

ηp =
Pt, fan face

Pt,∞
(82)

It is a common measure of engine inlet efficiency. It is similar to a ratio of kinetic

energies at the fan face and freestream, but it is conventionally used for compressible

flows because of its ease of measurement and computation. Inlet total pressure re-

covery has a significant effect on the propulsion cycle, thermodynamic efficiency, and

ultimately the thrust-specific fuel consumption (TSFC).

Inlet distortion is another major cost of BLI on engine performance. Distortion
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typically refers to the variation of total pressure (or other property) at some aerody-

namic interface plane (AIP) immediately in front of the fan or compressor face. One

definition from Seddon and Goldsmith [134] is:

Distortion =
Pt,max − Pt,min

Pt,mean

where Pt is total pressure. Distortion can refer to dynamic or steady effects, which

both affect the propulsion cycle. In the context of BLI aircraft design, the term often

focuses on circumferential variation. Distortion directly affects the thermodynamic

cycle of the engine but also causes losses through unsteady effects on fan blades as

they travel through a full revolution. This tends to decrease fan efficiency and can

raise structural requirements because the fan blades encounter oscillating aerody-

namic loads in the distorted air. Distortion is one of the main design challenges for

BLI aircraft or combat aircraft for which inlet, engine, and airframe must be tightly

integrated in a limited volume [68], [157]. Several recent papers such as Plas et al

[12] and Florea et al [51] have investigated the impact of distortion and mitigation

methods for BLI applications.

6.2.2 Aero-Propulsion Design of a BLI Aircraft

The boundary layer ingestion (BLI) concept involves engines placed close to the air-

craft body in order to ingest boundary layer air. By ingesting the sluggish air into the

engine and exhausting energized air into the aircraft wake, the concept can potentially

achieve higher propulsive efficiency than conventional designs. This may outweight

thermodynamic penalties for the propulsion cycle and yield greater fuel efficiency.

However, BLI leads to complications in traditional methods for conceptual/preliminary

design of aircraft. In typical, traditional sizing and synthesis methods, constant lift-

drag polars are often assumed. A mild aero-propulsion coupling occurs because the

engine fuel burn affects weight lapse and required lift. Using empirical models or data

for engine performance (an ‘engine deck’), fuel weights can be varied to iteratively
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solve for weight, drag, and thrust at various phases of a mission. For sizing, energy

balance methods can also be used to estimate performance constraints for various

mission phases or maneuver conditions, as described by authors such as Mattingly

[70]. In such methods, aircraft aerodynamics and propulsion are highly decoupled to

simplify early analysis.

However, BLI inherently relies on strong aero-propulsion coupling to achieve a

performance benefit. From the propulsion engineer’s point of view, the engine ingests

“dirty” air, which results in a less efficient propulsion cycle. But due to the aerody-

namic benefits of wake-filling, lower power is required, so there is lower absolute fuel

burn. On the other hand, from the aerodynamicist’s point of view, the drag polars’

shapes depend on the engine’s performance (assuming that airframe lift-drag polars

can even be distinguished from engine thrust effects). The disciplines are mutually

dependent so that, even if they show disadvantages in isolation, the combined effect

can be advantageous for the entire system.

To maximize the benefits of BLI, the close coupling should be exploited in early

design, when most expensive design commitments are made. This may include design

decisions such as the number of engines, wing area or aspect ratio. But to capture

the coupling effects, there must be accurate modeling of high fidelity physics. After

all, to exploit boundary layer ingestion, it is helpful to have a boundary layer in one’s

physics model.

For these reasons, the BLI HWB can make a very good demonstration of BCS

in particular and also show generally how to use expensive codes efficiently in highly

coupled early design. Some recent efforts include low fidelity conceptual design efforts

at NASA [107] as well as higher fidelity work by researchers at MIT [74],[12], and

Rodriguez at Stanford [123]. The last author used CFD and a propulsion cycle code

with fixed point iteration (FPI) for direct optimization of BLI and podded engine

HWBs. The study uses direct, high-fidelity modeling of the boundary layer ingestion

181



and wake filling physics and their interactions with the engine cycle. But despite

its recent publication date, the research work was conducted in the early 1990s with

CFD meshes of about 600,000 cells. These meshes are relatively coarse compared to

what computational budgets allow in 2011, so this valuable research can be extended

by further study. Thus, it would be useful to study the BLI HWB both as a platform

for BCS as well as for investigating the aircraft concept itself.

6.2.3 Computational Cost of BLI HWB Aerodynamics Analysis

A baseline N2B geometry was provided by Boeing and NASA under the NASA GSRP

fellowship. A CAD model was refined before section coordinates were extracted and

smoothed using a Python script. The HWB was represented parametrically as an air-

foil stack with section sweep angles, dihedral angles, local twists and section spans.

Winglets were not included, since they are detailed features that are usually de-

signed for particular operating regimes. The parametric HWB geometry generator

was linked to another series of Python scripts that control generation of a complete

set of overset CFD meshes, mesh connectivity, and a CFD run file. The entire envi-

ronment was run on the NASA Advanced Supercomputing (NAS) cluster, Pleiades,

at NASA Ames Research Center. Typical CFD simulations used from 16 to 128 Intel

Xeon Harpertown, Nehalem, or Westmere processors for O(10) hours of wall clock

time.

The structured, overset meshes were generated with Chimera Grid Tools (CGT)

and overset mesh connectivity was computed with Pegasus 5.1 from NASA Ames.

An example of the overset mesh is shown in Figure 79. The OVERFLOW 2.2 solver

was used with a Roe upwind scheme, a Beam-Warming block tridiagonal scheme,

and a one equation Spalart-Allmaras turbulence model. These tools have previously

been validated in a variety of examples, including the transonic aircraft of the NASA

Common Research Model (CRM) [133].
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Figure 79: BLI HWB overset mesh

Table 15: OVERFLOW grid sensitivity for HWB clean configuration

mesh nodes (106) CL CD change in CD
1.5 0.107 0.00611 —
6.9 0.116 0.00727 +19%

10.7 0.116 0.00652 -10%
17.0 0.115 0.00601 -8%

A grid sensitivity study was done on only the clean configuration (no engine

nacelle) to gauge the required computational cost. Results are shown in Table 15,

where CD error refers to the percent error compared to the most expensive mesh. In

all cases, boundary layer mesh thicknesses were set by a flat plate y+ = 1 estimate

based on Reynolds number Rex of the average chord, assuming the entire HWB is

a wing. The simulations were run until CD varied by less than 0.1% in the last 100

iterations. In all cases, residuals dropped by at least three orders of magnitude in the

near-field grids (body, outer wing, wing tip). Load integration was performed using

the FOMOCO utility in the OVERFLOW suite.

Note that in the last case with 17 million nodes, the solution was still very sensitive

to mesh size. This case required 1088 CPU hours on 32 Intel Xeon E5472 Harpertown
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3.0 GHz processors. In wall clock time, this cost 34 hours in addition to about 20

hours of queue time. Other tests with up to 34 million mesh nodes were attempted,

requiring over 2000 hours without full convergence. Further tests were halted due

to this extreme cost, as it was apparent that there were not enough hours to do

a full BCS test. Parallel efficiency is expected to fall as more processors are used.

Faster Westmere processors may have been significantly faster due to superior memory

bandwidth, but the NASA supercomputing facility would have charged proportionally

more from the computing budget (by a factor of 2.2). Based on the results, it is not

unreasonable to guess that a high quality N2B solution with powered nacelle and

exhaust plume will require over 1500 CPU hours. The wallclock time is even more

sensitive to computational cost, because queue time for multi-user high performance

computing resources usually depends on the size of the job.

The computational budget for this NASA-sponsored research was 200,000 CPU

hours, so there was a budget for only a few hundred function calls, with no room

to accomodate mistakes. It was decided that this budget was insufficient to give a

practical demonstration of BCS or to learn clear results about the N2B design.

6.2.4 Preliminary Insights: High Fidelity and Geometric Detail

Although the HWB analysis was too computationally expensive, there are some in-

sights from the example that are useful both for general Bayesian sampling of high

fidelity analysis as well as for the particular BLI-HWB application. One of the main

insights is the problem of arbitrary, detailed geometry features having a strong influ-

ence on early design.

First consider the example of a general aircraft design. For conceptual design, one

may be concerned with very general variables such as wingloading and thrustloading.

Or, if considering slightly more detail, one may also design wing area and aspect ratio.

One may assume that the precise airfoil camber and thickness distribution are less
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important than these conceptual or preliminary design variables. But assume that

the physics of the problem are complicated, so that high fidelity analysis must be

used. High fidelity analysis usually requires a commensurate geometric fidelity. For

example, for energy-based sizing and synthesis, a point-mass “geometry” model may

be used for the aircraft. If using potential flow, the wing may be treated as a Prandtl

lifting line or vortex lattice on a camber line. But if using CFD, a complete surface

geometry or outer mold line (OML) must be specified. There are many detailed

variables like wing root fillets and tip surfaces that are assumed to be less important.

But because of the detailed geometry requirement for high fidelity analysis, these

detailed variables must be set to some default value rather than no value at all. If

the design problem is well understood, it is relatively easy to set these defaults. For

example, wing airfoils may be set to common transonic test sections such as the

RAE 2822 or NACA six digit series airfoils. However, if the problem is a new design

concept, the arbitrary settings may be crucial. If transonic wing design was a novel

problem, setting an arbitrary airfoil to a flat plate would yield very bad performance,

and this “unimportant” variable may overwhelm the influence of aspect ratio or wing

area. When using high fidelity codes in early design, the designer faces a challenge

to artfully minimize or mask the effect of these arbitrary, detailed settings.

In the glider example, the simplicity of the potential flow and beam theory analysis

matched the lack of geometric detail. For example, there was no issue of how to set

a default wing tip shape, because the wing was modeled as a thin vortex lattice

along the mean camber line. But when CFD analysis was used in the HWB case, the

discrepancy between high fidelity analysis and low fidelity geometry became apparent.

In the case of the BLI HWB, preliminary design may include variables such as:

• wing area and aspect ratio

• inlet and nozzle area and aspect ratio
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• nacelle length and position

• mass flow

• fan pressure ratio

BCS or another coupled analysis method could be done with CFD and a propulsion

cycle analysis code to size the airframe and engine. The inlet and nozzle areas and

aspect ratios are included so that the main boundary layer ingestion phenomenon can

be adequately captured in early sizing. The designer may wish to find out whether

the nacelles must have low or high inlet aspect ratio (e.g. a flat “mail slot” inlet) in

order to realize the theorized BLI benefits, and also to know whether a propulsion

cycle can be designed for such a nacelle.

The initial plan was to set a default nacelle geometry. For example, the nacelle

inlet and nozzle exit faces were ellipses. The nacelle lip shape was parametrized with a

parabola. The outer surface of the nacelle was formed with splines that were blended

using Laplacian smoothing. This design parameterization was intended to create a

reasonable nacelle shape with a small number of important variables.

In actual execution, the impact of the default detailed shape may be quite sig-

nificant. Figure 80 shows Mach number near the nacelle on a plane orthogonal to

the span. (Jagged edges represent fringes of trimmed overset grids. The edges and

different color transparencies are due to TecPlot software’s representation of overset

CFD solutions.) A strong shock is visible above the nacelle. The following pictures

use medium grids of less than 6 million nodes because they are intended to show a

possible effect rather than physically accurate solutions. The shock tends to occur

as air that has accelerated around the nacelle lip decelerates back toward free stream

conditions. As with transonic airfoils, the detailed shape of the leading edge and top

surface play a strong role in controlling the amount of overspeed and shock strength.
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Figure 80: HWB; Mach number near nacelle

The shock is influenced by default detailed settings, but it affects the entire sys-

tem’s performance. Figure 81 shows normalized density near the aircraft surface.

The effect of the shockwave is visible on outboard regions of the wing. Such shocks

can cause a sudden adverse pressure gradient and induce boundary layer separation

on the wing surface far from the nacelle. Figure 82 shows the same plot for a clean

configuration without a nacelle, where the shock has different strength and structure

on the wing surface. Such shocks tend to have a strong influence on drag because they

can induce boundary layer separation. In this particular case, the nacelle shape has

a significant influence on the aircraft performance, and this influence may be greater

than simply the effects of boundary layer ingestion.

Once again, these solutions are not necessarily physically accurate (due to com-

putational cost), and it is not known whether such shocks are typical in the design

space. Yet the example notionally shows the problem that arises when high fidelity in

early design requires high geometric detail that is not yet available for an immature
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Figure 81: HWB with nacelle – density near surface

Figure 82: HWB clean configuration – density near surface
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design. Because arbitrary settings for these details may come to dominate the design

performance, part of the designer’s art must be to creatively devise ways to minimize

their influence. The mere availability of high fidelity features should not tempt the

designer to use all of them.

For example, the main physics for early BLI HWB design may have been better

captured by an actuator disc instead of a true nacelle geometry. Such a mesh patch

could have boundary conditions that add total pressure and temperature to represent

a nozzle and a static back pressure boundary condition to represent an inlet. Another

option may be to add a nacelle shape with no lip or thickness and a frictionless slip

wall to minimize the influence of the detailed nacelle shape. Still a third option

might even be to deliberately choose local grid and solver settings that are highly

diffusive to artificially smear out the influence of shocks. This may include the use

of wall functions instead of dense boundary layer grids to minimize shock induced

separation. Such options may or may not work. But the main point is that, if done

carefully, a deliberately hobbled physics or geometry model may be more useful for

early design than the highest available fidelity and geometric detail.

The BLI HWB is a promising concept that will likely continue to receive attention

from the aerospace industry in the coming decades. It would be useful for future

researchers to use BCS or a similar Bayesian sampling method to study early design.

With rapid advances in computers, it is likely that a complete study with steady

RANS CFD will be within the reach of academic researchers in a few years.
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CHAPTER VII

CONCLUSIONS

7.1 General Remarks

After studying detailed, practical issues of BCS in a high fidelity example, it is neces-

sary to take a broad perspective and recall the main point of this dissertation. This

section steps through the four sets of research questions, hypotheses and predictions

of this thesis; they are also summarized in an Appendix.

7.1.1 Research Question, Hypothesis, and Prediction 1

The basic motivation was to investigate a common challenge faced by designers: how

can one use computationally expensive high fidelity analysis in early design? Common

solutions such as off-line sampling and direct optimization are often too expensive, and

strongly coupled disciplinary physics may magnify this expense. This first hypothesis

is very general: such problems can be addressed by conducting adaptive sampling

based on an objective function as well as interdisciplinary compatibility. To test the

hypothesis, there is a general prediction: is it possible to show one working example

of a design method that works according that principle?

Notice that the term “Bayesian collaborative sampling” is not yet mentioned, and

there are no specific tests. But the subsequent tests on BCS show that it is indeed

an example of the general strategy, and thereby satisfy the general prediction.

7.1.2 Research Question, Hypothesis, and Prediction 2

The second research question directly continues from Prediction 1. Does Bayesian

collaborative sampling serve as a proof-of-concept method of the general strategy of

adaptive sampling based on a system objective and interdisciplinary compatibility?
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Note that this question is not concerned with whether BCS is the most efficient

possible implementation of the strategy. Future work may build on BCS and improve

performance and computational efficiency with alternate Bayesian sampling criteria

or problem decomposition. However, this thesis uses BCS as the first example of a

new type of multidisciplinary sampling methods.

Hypothesis 2 is essentially that BCS behaves according to the general principles

claimed in Hypothesis 1: concentrating points in a compatible and favorable region

by adaptive sampling. The detailed investigations show that BCS does work and

that it works according to the principles claimed. Prediction 2 poses a specific test

using Bayesian confidence metric δ95%. The metric measures the predictive certainty

of a Bayesian model fit to some sample, and it is evaluated at the optimum that is

computed independently. Samples are produced using a reference Latin hypercube

DoE and BCS. It is predicted that δ95% is lower for BCS than for the DoE. In other

words, after separately using a direct optimizer to find the true, compatible optimum

of a design problem, BCS leads to a more certain and accurate prediction at that

reference point compared to an off-line DoE.

The results from a canonical glider wing test example confirm the prediction and

thereby support Hypothesis 2. Because δ95% is lower for BCS than the DoE at the

compatible optimum design, it is convincing that BCS works according to the general

strategy of concentrating sample points according to both a system-level goal as

well as interdisciplinary compatibility. The machinery of Bayesian inference makes

this process possible by balancing between exploitation of high certainty regions and

exploration of low certainty regions of the design space.

After addressing Hypothesis 2 and establishing that BCS works as claimed, the

thesis turned to a third level of inquiry.
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7.1.3 Research Question, Hypothesis, and Prediction 3

Research Question 3 asks: “What are major factors that affect BCS performance?”

This question was asked instead of: “How well does BCS perform compared to other

multidisciplinary design methods?” As discussed in Chapter 5, the direct comparison

between BCS and other methods was avoided because such a contest would inherently

be ill-posed.

This is an example of a general methodological problem that affects much of

the contemporary research in the multidisciplinary analysis and optimization field.

When comparing design methods, there are usually many internal parameters for

each method, such as the choice of internal solvers or tunable parameters such as

relaxation factors or the size of finite difference steps. Because of the large number of

such parameters within each design method, the question of relative performance is

usually underdetermined and has infinite possible answers. Stated differently, because

of the number of arbitrary parameter choices required to implement each method,

the amount of performance variation within each method may be comparable to

that between methods. So, if BCS performs “better” than a single-level expected

improvement method with direct fixed point iteration, it is difficult to establish how

much of this difference is due to the essential formulation of each method rather

than user-selected parameters. This methodological difficulty is magnified because it

is often difficult for the researcher to avoid unintentionally tuning his/her proposed

method to a engineering test problem. For example, even adjusting design variable

ranges may accidentally favoring one method.

For these reasons, the thesis investigated more modest yet tractable questions

about factors that affect BCS performance. The intention was to provide credible

tests for limited questions that may aid a practitioner in deciding whether or not to

use BCS for some application.

Hypothesis 3 therefore focuses on the effect of coupling bandwidth (number of
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coupling variables) on the performance of BCS. This particular effect is investigated

in detail because the bi-level decomposition in based on coupling variables becoming

system variables is the hallmark feature of BCS and its parent method, collaborative

optimization. It is hypothesized that as the number of coupling variables in the

original design problem increase, these variables become system design variable and

eventually incur the “curse of dimensionality.”

The prediction that flows from Hypothesis 3 is that BCS performance decreases as

the number of coupling variables increase. In addition to the δ95% metric from earlier,

another metric, ε95%, was introduced to explicitly measure the predictive uncertainty

about interdisciplinary compatibility at the true optimum. For both metrics, lower

values indicate better performance (lower uncertainty at the optimum). The previous

glider test problem was repeated in slightly modified form. The coupling bandwidth

was varied by the number of structural deflection parameters. This test was somewhat

artificial, but the manner of varying coupling bandwidth had to be carefully chosen

to have a minimum change on the essential physics of the problem. In other words,

coupling variables cannot be haphazardly added in a way that changes the reference

optimum. The results of these tests support the hypothesis that BCS performance

degrades with coupling bandwidth significantly for a representative engineering prob-

lem.

In addition to the main coupling bandwidth test, additional tests were done to

identify factors that affect BCS performance. The results show that the initial warm-

start sample size has a strong influence. At one extreme, a very small warm-start

results in BCS to perform badly because there are no initial trends on which to

adapt. The adaptive sampling tends to behave as a sequential space-filling sampling

algorithm or prefers vertices of the design space until enough patterns emerge to

exploit effectively. At the other extreme, a very large warm-start sample tends to

degenerate into an off-line DoE, because there is only a small remaining budget for
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adaptive sampling. In the glider test problem, a good balance between these two

trends was achieved at an intermediate warm-start size, but in general, the optimum

warm-start size is likely to be highly problem dependent. The more important finding

is that BCS dependence on the warm-start size shows the expected trade-off.

Finally, additional tests were done to investigate replication error. Because the

initial warm-start sample is randomly generated and also because the particular BCS

implementation uses an internal genetic algorithm, BCS yields different results for

replicated trials. This is not surprising in cases like the glider problem, where O(100)

initial points are randomly distributed over a large design space of over ten dimen-

sions. The repeated trials show that there is significant replication error, but this is

likely an unavoidable consequence of doing adaptive sampling with a small number of

analysis function calls in a relatively large design space. This replication error would

tend to be alleviated as the BCS sample size increases.

7.1.4 Research Question 4

The last research question was relatively open-ended: “Can BCS be implemented

practically with high fidelity codes like CFD?” No specific hypotheses or predictions

were tested; instead, a realistic example using CFD was used to demonstrate practical

implementation of BCS and learn lessons of practical tradecraft for the designer.

For earlier research questions, the glider wing example was used as a low-cost

platform for theoretical tests, because many of these tests required computation-

ally expensive optimizations to provide reference values. Such theoretical tests with

canonical examples are crucial, but MDO practitioners often encounter promising

algorithms that thrive in the greenhouse of academic tests but wither in a practical

engineering environment. A high fidelity CFD example was studied to address this

concern. The turbojet engine nacelle example shows that the general strategy of BCS

can be made to work with high fidelity codes with complications of grid generation,
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solver stability, and numerical noise. Even without a reference optimum to compute

metrics like δ95% and ε95%, the engine example shows qualitatively that BCS can con-

centrate sample points based on a system objective and compatibility. The example

also demonstrates how a practitioner can use the final sample and Bayesian models

for early design. In particular, the Bayesian models can be decomposed according to

individual compatibility metrics. For example, the designer can see predictive proba-

bilities for designs meeting mass flow or total pressure recovery targets. By dissecting

the sample points that correspond to low probability of compatibility or system target

match, the designer can explore the physical reasons for incompatibility. This type

of qualitative information is often more useful to the designer in early design rather

than the actual optimum value.

In addition to the engine nacelle problem, a preliminary study of a boundary layer

ingesting (BLI) hybrid wing-body (HWB) was done to prepare it for a BCS test. A

CFD mesh sensitivity study showed that BCS on the BLI HWB example would likely

exceed the computational resources for this thesis. Nonetheless, there are important

lessons from preliminary work. The main insight involves the relationship between

physical fidelity and geometric detail, which is a general concern when using high

fidelity codes in early design. Higher fidelity analysis usually requires a commensu-

rate level of geometric detail. In early stages, a design is immature and has many

unknowns. The designer typically focuses on a few important variables like wing as-

pect ratio; “unimportant” variables such as airfoils must be set to reasonable default

values. In a truly novel design problem, reasonable default values may not be known

a priori. Yet, these variables must be set to some value, since the physics analysis

may require a complete geometry, such as a water-tight surface grid. In cases like

the nacelle of a transonic BLI HWB aircraft, seemingly minor variables may have

an unexpectedly strong physical influence on the system performance. Therefore, it

must be part of the designer’s art to carefully arrange high-fidelity analysis in early
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design to mask the effect of such minor variables. While setting up codes like CFD

for methods like BCS, the designer may even need to deliberately hobble the physical

model or sacrifice fidelity to keep arbitrary detailed variable settings from obscuring

the main trends in the system objective and interdisciplinary compatibility.

7.2 Risks for the Practitioner

Having reviewed the research questions, hypotheses, and predictions, the formal tests

of this thesis have been summarized. However, the following remarks may be helpful

to the practioner who must weigh the risks of using BCS or a similar method for

a real design problem. These apply not just to the particular BCS method, but to

uncertainty-based adaptive sampling in general.

The engine nacelle design example is different from the earlier glider examples

because a direct optimization was not performed. For the glider tests, the metrics

δ95% and ε95% were evaluated at the optimum, which required expensive direct opti-

mization. These metrics can give us some confidence that the adaptive sampling was

indeed finding favorable, compatible regions of the design space. In the engine nacelle

example, direct optimization is computationally out of reach. There is no assurance

that the “promising” regions shown in the final Bayesian models actually correspond

to the true optimum region. This is a more realistic situation that a designer would

face.

The greatest risk of an adaptive sampling strategy is that the algorithm may

cluster points in a favorable region that is far from the true optimum. The densely

sampled region may have acceptable performance, but the real problem is that sample

points are drawn away from the true optimum, giving lower certainty in the region

than may be achieved with a simple DoE. The earlier glider tests may give some ten-

tative assurance. But, it should also be noted that this risk is notionally similar to the

risk of an optimizer converging on the wrong value or on a local minimum. Bayesian
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adaptive sampling additionally has a mechanism for exploiting current trends and

exploring uncertain regions, so it may have an intermediate level of risk between an

off-line DoE and a pure optimizer.

A second type of risk has to do with the complexity of adaptive sampling methods

leading to either human mistakes or unexpected behavior that is sensitive to human

choices. For example, in the first two attempts at using BCS on the engine nacelle

example, more than 2000 CFD function calls were wasted due to minor BCS setup

mistakes and data parsing errors. Bayesian adaptive sampling is unavoidably more

complicated than an off-line DoE, so there is more chance for human errors. Even

with a mature adaptive sampling code, there would be many human-tuned parameters

(such as the basis width or choice of kernels) that could lead to pathological behavior

of the sampling algorithm. For example, a bad choice of basis functions may cause

the sampling algorithm to strongly prefer vertices of the design space.

This risk due to complexity and human choices is significant. However, the risk

due to human error can also be offset by human attention. In this thesis, the test cases

were conducted in a “hands-off” manner, using the minimal amount of intervention

for methodological credibility. The Bayesian models were not manually retuned even

when sample points were obviously clustering in the wrong region (in the designer’s

opinion). However, the same research methodology requirements do not apply to

the actual activity of design. Recall that the motivation behind adaptive sampling

is to use expensive, high fidelity codes efficiently when accurate global models and

precise optimization are too expensive. In practice, very expensive experiments or

function calls tend to be monitored carefully by the experimenters. For example, the

a full aircraft RANS CFD analysis can require O(1000) CPU hours per function call.

In the author’s experience, it is somewhat implausible that a CFD engineer would

begin a Bayesian sampling script and return several weeks later to view only the final

results of several million CPU hours. Furthermore, Bayesian methods like BCS tend
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to be transparent during the sampling process. Similar to the figures in the nacelle

example, a designer can pause the sampling process midcourse and view the current

Bayesian models and sample points. He/she can dissect predictive probabilities on

either system outputs or individual target discrepancies. If this dissection reveals

errors in the sampling process or model predictions that contradict physical intuition,

the designer can manually adjust the Bayesian sampler or simply revert to a space-

filling DoE. This flexibility may offset the risks of Bayesian sampling.

To summarize, even though the complexity of Bayesian adaptive sampling in-

creases the risk of wasting computationally expensive function calls, the very expense

of the function calls usually means heavy scrutiny and human-in-the-loop intervention

for practical design. The skill and the expertise of the engineer thus plays a strong

role in the true risk when using Bayesian adaptive sampling for early design.

7.3 Sparse Bayesian Models

In this thesis, much effort was devoted to describing Bayesian inference and sparse

Bayesian models in particular. The BCS method does not formally rely on any specific

Bayesian model type — in theory, it could work with Kriging or simple linear Bayesian

models, for example. However, the speed of sparse Bayesian models and their mech-

anism of Ockham’s razor is a key enabler for adaptive sampling in relatively large

design problems. Kriging-based Bayesian adaptive methods have been well studied

in engineering design literature, but computational expense is a major obstacle when

extending MDO research to multi-disciplinary, multi-fidelity, or multi-objective prob-

lems. The sparse Bayesian models or relevance vector machine discussed in this thesis

are not proposed as a comprehensive solution or “silver bullet.” Like many statistical

models, they can be highly sensitive to internal tuning parameters or choice of basis

functions, and therefore rely on the engineer’s experience for effective use. Kriging

or other models may be a better choice for many applications. However, this thesis
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investigated the sparse modeling method as a promising strategy for achieving speed

while yielding reasonable overall performance of the BCS method.

7.4 Future Research Directions

While this dissertation makes contributions to Bayesian sampling of highly coupled

multidisciplinary problems, its preliminary nature must be emphasized. BCS is by no

means the most efficient implementation that is possible, nor is it globally applicable

to all problems. Future research directions may lie along three major axes: research

into different architectures, different sampling methods, and different applications.

First, recall that BCS was created by combining Bayesian adaptive sampling (pio-

neered by Kriging-based methods) and a particular MDO architecture, collaborative

optimization (CO). Other architectures may perform better in different problems.

Some candidate architectures may include concurrent subspace optimization (CSSO)

[136], BLISS2000 [147], and analytic target cascading [100]. The designer’s choice of

architecture will likely depend on qualitative features rather than raw performance

in test problems. For example, the BCS method is particularly appealing because of

the autonomy of its disciplines. Like CO, the method may be preferable in scenarios

where the existing structure of a design organization needs to be preserved, and the

autonomy of skilled discipline-level experts is critical. Every practical design problem

has unique features and challenges, so investigating Bayesian sampling methods with

alternate architectures is a promising avenue of research.

Second, there is room for further research in Bayesian models (or even models

that yield predictive distributions). A promising path may be to simply improve

the speed of Kriging models, or create Kriging fitting algorithms that allow efficient

parallel computing. Another path may be to extend the sparse Bayesian framework

to model forms other than the linear y = wTφ form used in the present research.
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Third, BCS or similar methods can be used to study important engineering appli-

cations. Many recent, promising aerospace concepts rely on strongly coupled physics

to achieve performance advantages. The boundary layer ingesting aircraft is one ex-

ample, but there are others. For example, the design of unducted transonic rotors

relies on highly interdependent aerodynamics, structures, and acoustics disciplines.

Amongs these, aero-acoustics in particular may rely on high fidelity physics, which

makes the Bayesian adaptive sampling approach appealing. In a more detailed de-

sign application, the serpentine duct of an embedded nacelle of a BLI aircraft can

be coupled with the design of turbofan blades to minimize the thermodynamic losses

and distortion. Other important highly coupled design problems include hypersonic

air-breathing aero-propulsion design and the aero-thermal-structures design of cooled

turbine blades. As computer technology and high fidelity simulation develop, design-

ers will likely explore many new design concepts that exploit interactions between

engineering disciplines.
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APPENDIX A

BAYESIAN COLLABORATIVE SAMPLING (BCS)

The following is a summary of the BCS formulation, which decomposes a multidis-

ciplinary design problem into a system and discipline level. Z is the system design

variable that includes the design variables of the original design problem as well as

compatibility targets for each discipline.

System Level Problem

Minimize: F (Z) (including constraint penalties)

by sampling min. of: − logE [I (F (Z))]−
K∑
k

logP (−ε < Jk (Z) < ε)

with respect to: Z (shared design variables and coupling variables)

subject to: Qi(Z) = 0 for i = 1, 2, . . . , I

(target discrepancy of each discipline)

G(Z) ≤ 0

H(Z) = 0

and updating: Bayesian models p(F |Z), p(Jk|Z)

for k = 1, 2, . . . K coupling variables

Discipline Level Problem

Each discipline has produces local outputs Zk, local output that correspond to system

targets Zk,sys for k = 1, 2, ..., K
(i)
local locally relevant coupling variables. For each of
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i = 1, 2, . . . , I disciplines:

Minimize: Qi

(
x

(i)
local

)
=
∑K

(i)
local

k J2
k for Jk = Zk,sys − Zk, local output

with respect to: x
(i)
local

returning: Target discrepancies Jk

F (Z), G(Z), H(Z), if calculated in the i-th discipline.
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APPENDIX B

RESEARCH QUESTIONS, HYPOTHESES, AND

PREDICTIONS

The first research question, hypothesis, and prediction are general and do not lead

to formal tests. They set out a general strategy for multidisciplinary design. Note

that Bayesian collaborative sampling is not yet mentioned, since it is a particular

implementation.

Research Question 1: (General)

How can high fidelity analyses be used for multidisciplinary design if they are too

computationally expensive to create a globally accurate surrogate model or to perform

direct optimization?

Hypothesis 1: (General)

A Bayesian adaptive sampling method can concentrate sample points in ‘favorable’

regions of the design space with feasible, low objective values and interdisciplinary

compatibility. It can do this by sampling unfavorable regions only enough to establish

that they are probably unfavorable.

Prediction 1: (General)

At least one such adaptive sampling method can be demonstrated in a practical

multidisciplinary problem.

The second set examines Bayesian collaborative sampling as a particular example

that satisfies Prediction 1.

Research Question 2:
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Does the particular method, Bayesian collaborative sampling (BCS), serve as an

example of the general sampling strategy described earlier?

Hypothesis 2:

The Bayesian collaborative sampling (BCS) method behaves as in Hypothesis 1 –

it concentrates sample points in regions of favorable objective and interdisciplinary

compatibility.

Prediction 2:

In a representative design problem, BCS shows higher certainty about a global, com-

patible optimum than a typical DoE in a test problem. Assume that Bayesian models

of the system objective t(x) are fit to DoE and BCS samples of equal size, so that

each gives a predictive distribution P (t(x)). A compatible global optimum t̂(x̂) is also

calculated by optimization with direct fixed point iteration. Let δ95% be a measure

of Bayesian confidence defined by the probability

P
[
t̂− δ95% < t (x̂) < t̂+ δ95%

]
= .95 (83)

as shown in Fig. 83. Then δ95%, BCS < δ95%, DoE.

95 %

95% 95%

95%

95%

Figure 83: δ95%, DoE as a measure of Bayesian confidence at the optimum
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Research Question 3:

What are major factors that affect BCS performance?

Hypothesis 3:

Coupling bandwidth has a major effect on BCS performance. As the number of

coupling variables increases, the system level of BCS increases in dimension and

incurs the “curse of dimensionality.”

Prediction 3:

BCS performance degrades as coupling bandwidth increases in one engineering test

problem. Performance is measured by δ95%, BCS and ε95%, BCS. ε95%, BCS is measured

by

Pcompatibility(ε95%) ≈
K∏
k

P (−ε95% < Jk(Z) < ε95%) = 0.95 (84)

for system design Z and target discrepancies Jk for k = 1, 2, . . . , K coupling variables.

Research Question 4:

Can BCS be implemented practically with high fidelity codes like CFD?

This last research question does not lead to formal hypothesis. It is deliberately

open-ended and requires a practical implementation to learn lessons for the designer.
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