
INTEGRATED ARCHITECTURE ANALYSIS AND
TECHNOLOGY EVALUATION FOR SYSTEMS OF

SYSTEMS MODELED AT THE SUBSYSTEM LEVEL

A Thesis
Presented to

The Academic Faculty

by

Douglas James Trent

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
December 2017

Copyright c© 2017 by Douglas James Trent

INTEGRATED ARCHITECTURE ANALYSIS AND
TECHNOLOGY EVALUATION FOR SYSTEMS OF

SYSTEMS MODELED AT THE SUBSYSTEM LEVEL

Approved by:

Professor Dimitri N. Mavris, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Thomas K. Percy
Advanced Concepts Office
NASA Marshall Space Flight Center

Professor Daniel P. Schrage
School of Aerospace Engineering
Georgia Institute of Technology

Mr. Mark N. Rogers
Advanced Concepts Office
NASA Marshall Space Flight Center

Dr. Alicia M. Sudol
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: November 10, 2017

To my family

For never letting me give up

iii

ACKNOWLEDGEMENTS

I would like to take a moment to acknowledge and thank those who have contributed

to me reaching this point in my life. This was not just six years of dedication and

hard work on my part. It has been a culmination of thirty years of my life, with many

people supporting me along the way.

I would first and foremost like to thank my academic advisor, Dr. Dimitri Mavris,

who I am forever indebted to. You gave me the opportunity to prove I was up to the

challenge of earning my Ph.D.. I would also like to thank the other members of my

committee: Dr. Daniel Schrage, Dr. Alicia Sudol, Dr. Thomas Percy, and Mr. Mark

Rogers. Your time and commitment to my research has helped shape this document

into what it is.

To my colleagues at ASDL and NASA Marshall, thank you for providing me with

an environment that was supportive through the entire process. Specifically, I would

like to thank Mr. Stephen Edwards and Mr. Mark Rogers. Stephen, you helped

to bring me into your division at ASDL, allowing me to work on tasks which were

meaningful to me. You also provided me with technical guidance which was invaluable

during my research. Mark, you brought me into your branch at NASA Marshall and

provided an environment which allowed me to pursue this body of work while also

supporting my professional growth and development. The two of you allowed for

alignment of my academic and professional tasks and goals in a way most can only

dream of.

On a more personal level, I would like to thank my family. Mom and Dad, without

your years of guidance and support, I would never have made it here. You provided me

with the absolute best opportunity to pursue my academic endeavors. You continue

iv

to support and push me to reach for my dreams, whatever they may be, the way

only parents can. My brothers, Chris, Brian, and Greg, you always seem to have the

right “encouragement” for the right time. Chris, you once wrote a blog post titled

“Landing a man on the Moon and returning him safely to Earth”, where you state

“It’s my duty to be his highest hurdle, so that he will not be condemned to mediocrity.

And no brother of mine is mediocre!”. It is words such as these which echo in my

mind and continue to be a driving force in all I do. I thank all of you for being the

best family I could ask for.

I would also like to thank my friends. Nick Simone and Riley Driskel, you two

have been some of my biggest outside supporters through this whole process. You

lifted me up when I was down in the trenches of my everyday research and gave me

encouragement to pick up and keep going, to achieve something greater than average.

Nathan Knisely and Tyler Milner, your friendship and patience during my time at

ASDL proved invaluable. You put up with me and helped me on a daily basis, during

some of the most intense and challenging academic hurdles of my life, without any

personal gain for yourselves. I can never repay that. Thank you.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xi

LIST OF FIGURES . xiv

NOMENCLATURE . xix

SUMMARY . xxvi

I MOTIVATION . 1

1.1 U.S. Space Exploration Policy in the 21st Century 2

1.1.1 Presidential Remarks on U.S. Space Policy 2

1.1.2 Review of U.S. Human Space Flight Plans Committee 3

1.1.3 NASA Authorization Acts of 2010 & 2017 4

1.2 Design in a Time of Uncertainty . 7

1.2.1 Phases of Design . 7

1.2.2 Design Freedom versus Design Knowledge 11

1.2.3 Challenges . 13

1.3 Statement of Purpose . 15

1.4 Document Organization . 16

II BACKGROUND . 18

2.1 Terminology . 18

2.1.1 System . 18

2.1.2 System of Systems . 20

2.1.3 Vehicle . 21

2.1.4 Mission . 24

2.1.5 Technology . 24

2.1.6 Architecture . 26

vi

2.1.7 Campaign . 27

2.2 Desired Method Features . 30

2.3 Architecture Design Methods . 31

2.3.1 ARCHITECT . 32

2.3.2 STASE . 34

2.3.3 MATE-CON . 37

2.4 Technology Evaluation Methods . 40

2.4.1 TIES . 41

2.4.2 TRIPS . 45

2.4.3 TAPP . 46

2.4.4 QuantUM3 . 48

2.5 Model-Based Systems Engineering 50

2.5.1 The Unified Modeling Language 53

2.5.2 The Systems Engineering Modeling Language 54

2.5.3 The Architecture Analysis and Design Language 55

III FRAMEWORK FORMULATION 59

3.1 Gaps In Current Methods . 59

3.2 Research Objective . 61

3.3 General Concept Exploration Framework 62

3.3.1 Phase I: Trade Space Characterization 64

3.3.2 Phase II: Candidate Solution Sets Characterization 77

3.3.3 Phase III: Analysis . 85

3.4 Summary of Research Questions . 92

IV SPACE TRANSPORTATION ARCHITECTURE MODELING . 97

4.1 Basic Modeling and Simulation Concepts 97

4.1.1 Surrogate Modeling . 98

4.1.2 Optimization . 99

4.2 Ontology of Space Transportation Architectures 100

vii

4.2.1 Vehicle . 101

4.2.2 Mission . 102

4.2.3 Architecture . 102

4.3 Existing Tools . 103

4.3.1 BLAST . 104

4.3.2 COPA . 105

4.3.3 Envision . 105

4.3.4 EXAMINE . 106

4.3.5 HExAM . 106

4.4 The DYnamic Rocket EQuation Tool (DYREQT) 107

4.4.1 The DYREQT Problem Class 111

4.4.2 The DYREQT Architecture Class 111

4.4.3 The DYREQT Mission Class 112

4.4.4 The DYREQT Event Class 113

4.4.5 The DYREQT Vehicle Class 114

4.4.6 The DYREQT Element Class 115

4.4.7 The DYREQT SubElement Class 118

4.5 In-Space Transportation Subsystem Modeling 119

4.5.1 Mission Models . 120

4.5.2 Vehicle Models . 123

4.5.3 Costing . 133

4.5.4 Architecture Similarity . 138

4.6 Model Validation . 139

V EXPERIMENTATION & IMPLEMENTATION 142

5.1 Experimentation . 143

5.1.1 Digital Test Bed . 143

5.1.2 Experiment 1: Performing Technology Evaluation Before De-
sign Down-Selection . 149

5.1.3 Experiment 2: Testing Individual Results Scheme 157

viii

5.1.4 Experiment 3: Portfolio Grouping Criteria 167

5.1.5 Experiment 4: Testing Portfolio Results Scheme 177

5.1.6 Observation: Differences in Figures of Merit 181

5.2 Summary of Developed Framework 182

5.2.1 Step 1: Define the Problem 183

5.2.2 Step 2: Decompose Architecture and Technology Spaces . . . 184

5.2.3 Step 3: Identify Modeling and Simulation Environment(s) . . 185

5.2.4 Step 4: Map Design and Objective Spaces 186

5.2.5 Step 5: Evaluate Cases . 187

5.2.6 Step 6: Explore Results . 187

5.3 Implementation: IntegrATE Framework Proof of Concept 189

5.3.1 Step 1: Define the Problem 189

5.3.2 Step 2: Define Architecture and Technology Spaces 191

5.3.3 Step 3: Identify Modeling and Simulation Environment(s) . . 195

5.3.4 Step 4: Map System Spaces 196

5.3.5 Step 5: Evaluate Cases . 200

5.3.6 Step 6: Analyze Results . 200

VI CONCLUSIONS . 214

6.1 Summary of Contributions . 217

6.2 Recommendations for Future Work 219

APPENDIX A — EXAMPLE DYREQT SETUP 222

APPENDIX B — EXAMPLE DYREQT OUTPUT 225

APPENDIX C — MODEL INPUT TABLES 233

APPENDIX D — DEFAULT DYREQT MODEL INPUTS 253

APPENDIX E — LAYERED PARETO FRONTS 261

APPENDIX F — EXPERIMENT 2 SIMILARITY DISTRIBUTION
SUMMARY STATISTICS . 266

ix

APPENDIX G — EXPERIMENT 3 PORTFOLIO DISTRIBUTION
DATA . 280

APPENDIX H — MODEL VALIDATION RESULTS 289

APPENDIX I — MODEL SOURCE CODES 292

REFERENCES . 354

INDEX . 363

VITA . 365

x

LIST OF TABLES

1 Common Spacecraft Elements . 23

2 NASA Technology Readiness Level Scale 25

3 Common Space Architecture Elements 29

4 Required Features for an Integrated Architecture Analysis and Tech-
nology Evaluation Framework . 31

5 Methods Comparison . 60

6 Notional Example Objective Results 80

7 Notional Design Obscuring In Objective Space Portfolios 90

8 Event Type Decomposition . 102

9 Required Features for a Modeling and Simulation Environment 104

10 Analysis Tool Comparison . 109

11 Element Type Decomposition . 116

12 Element Class Inputs . 117

13 Structure Factors . 129

14 Architecture Categories Derived from the Vehicle Trade Space 145

15 Architecture Categories Derived from the Mission Trade Space 146

16 Technology Categories Derived from the Technology Trade Space . . 146

17 Experimentation Objective Metrics 146

18 Architecture Space Parameter To Design Space Attribute Mappings . 148

19 Technology Space Parameter To Design Space Attribute Mappings . . 148

20 Notional Example Results Compared to DYREQT Results 154

21 Technology Impact on Stage Boiloff Rate 176

22 Technology Portfolios Objective Means 180

23 Proof of Concept Objective Space . 191

24 Vehicle Subspace Options . 194

25 Proof of Concept Technology Space Options 195

26 Architecture Space Parameter To Design Space Attribute Mappings . 198

xi

27 Technology Space Parameter To Design Space Attribute Mappings . . 198

28 Objective-Design Space Mappings . 199

29 Shift in Objective Metric Means Due to Technologies 212

30 Event Model Inputs . 234

31 SubElement Model Inputs . 235

32 Cost Model Inputs . 247

33 Number of Stages Option To Design Attribute Value Mappings for
Experiments 1-4 . 248

34 Number of Stages Option To Design Attribute Value Mappings for
Proof of Concept . 248

35 Payload Mass Option To Design Attribute Values Mappings 248

36 MPS Class Option To Design Attribute Value Mappings 248

37 MPS Propellant Option To Design Attribute Value Mappings 249

38 RCS Class Option To Design Attribute Value Mappings 249

39 RCS Propellant Option To Design Attribute Value Mappings 249

40 Pressurant Option To Design Attribute Value Mappings 249

41 Tank Configuration Option To Design Attribute Value Mappings . . . 250

42 Structure Type Option To Design Attribute Value Mappings 250

43 Power System Option To Design Attribute Value Mappings 250

44 MLI Layers Option To Design Attribute Value Mappings 250

45 Communications Type Option To Design Attribute Value Mappings . 250

46 Wireless Sensors Option To Design Attribute Value Mappings 251

47 Low Leak Valves Option To Design Attribute Value Mappings 251

48 High Capacity Energy Storage Option To Design Attribute Value Map-
pings . 251

49 Composite Structures Option To Design Attribute Value Mappings . 251

50 Composite Propellant Tanks Option To Design Attribute Value Mappings251

51 Integrated MPS/RCS Propellant Storage Option To Design Attribute
Value Mappings . 252

52 Autogenous Pressurization Option To Design Attribute Value Mappings252

xii

53 Active Cryocooling Option To Design Attribute Value Mappings . . . 252

54 LPF Layers and Number of Design Points 267

55 Multi-Objective Similarity Distribution Summary 268

56 Mass-Objective Similarity Distribution Summary 272

57 Cost-Objective Similarity Distribution Summary 276

58 Mission Portfolios Distribution Summary Statistics 281

59 Technology Portfolios Distribution Summary Statistics 283

60 Vehicle Portfolios Distribution Summary Statistics 285

61 Mission Model Validation Data . 290

62 Vehicle Subsystem Model Validation Data 291

xiii

LIST OF FIGURES

1 Cost Overrun Due to Budget Reductions 5

2 The Flexible Path Option . 6

3 SLS Program Funding . 6

4 Space Programs Development Phases 9

5 NASA Project Life Cycle . 10

6 Cost and Knowledge Curves in the Design Life Cycle 12

7 Simplified Spacecraft Block Diagram 22

8 TRL - DoD System Acquisition Process Mapping 26

9 Space Exploration Campaign Structure 28

10 ARCHITECT Methodology Flowchart 33

11 RAAM Methodology Flowchart . 35

12 STASE Methodology Flowchart . 36

13 Example of Set Theory Implementation 38

14 MATE-CON Method . 39

15 TIES Methodology Flowchart . 42

16 ATIES Methodology Flowchart . 44

17 TRIPS Methodology Flowchart . 46

18 TAPP Methodology Flowchart . 47

19 QuantUM3 Methodology Flowchart 49

20 MBSE Ontology . 51

21 UML Diagram Taxonomy . 54

22 SysML-UML Relationship . 56

23 SysML Diagram Taxonomy . 56

24 AADL Representations . 58

25 Georgia Tech IPPD Diagram . 63

26 Notional Architecture Bat Chart . 66

27 Interactive Reconfigurable Matrix of Alternatives (IRMA) 67

xiv

28 Design Space Representation . 69

29 Objective Space Representation . 69

30 Notional System Space Mapping Without Technologies 70

31 Notional System Space Mapping With Technologies 72

32 Notional Example of a Simple Space Transportation Architecture Prob-
lem . 79

33 Relationship Between Portfolio Size and Number of Portfolios 88

34 Notional Multi-Level Unified Tradeoff Environment 92

35 Notional Example of Local vs Global Minimum 99

36 Graphical Space Transportation Architecture Ontology 101

37 DYREQT Object Structure . 110

38 DYREQT Problem Class Structure 111

39 DYREQT Architecture Class and Helper Class Structures 112

40 DYREQT Mission Class and Helper Class Structures 113

41 DYREQT Event Class Structure . 114

42 DYREQT Vehicle Class and Helper Class Structures 115

43 DYREQT Element Class and Helper Class Structure 116

44 DYREQT SubElement Class Structure 119

45 Notional Design Envelope Area . 127

46 Notional Structure Configurations . 128

47 Ratio of Radii for Packing Circles . 129

48 Basic Tank Geometries . 131

49 Digital Test Bed for Experimentation 147

50 Experiment 1 Objective Composition 153

51 Experiment 1 Objective Space . 153

52 Experiment 1 Pareto Optimal Architectures (No Technologies) 155

53 Experiment 1 Pareto Optimal Architectures (Active Cryocooling) . . 155

54 Experiment 1 Pareto Optimal Architectures (Composite Tanks) . . . 155

55 Experiment 1 Pareto Optimal Architectures (All Technologies) 155

xv

56 Objective Space Similarity Distribution 160

57 Relationship of Number of Pareto Front Layers to Total Number of
Data Points in the Similarity Distribution 161

58 Objective Space Architecture Density 161

59 Relationship of Number of Pareto Front Layers to Similarity Distribu-
tion Minimum . 163

60 Relationship of Number of Pareto Front Layers to Similarity Distribu-
tion Maximum . 164

61 Relationship of Number of Pareto Front Layers to Similarity Distribu-
tion Range . 164

62 Relationship of Number of Pareto Front Layers to Similarity Distribu-
tion Mean . 165

63 Relationship of Number of Pareto Front Layers to Similarity Distribu-
tion Standard Deviation . 166

64 Correlation in Portfolio Size vs Objective Metric Variance for Vehicle-
based Portfolios . 170

65 Total Vehicle Mass(kg) Distribution of All Architectures 172

66 Total Vehicle Mass(kg) Distribution of Architectures with 1,000 kg
Payload . 172

67 Total Vehicle Mass(kg) Distribution of Architectures with 10,000 kg
Payload . 172

68 Architecture Similarity Distribution of All Architectures 173

69 Architecture Similarity Distribution of Architectures with 1 Stage . . 173

70 Architecture Similarity Distribution of Architectures with 2 Stages . . 173

71 Total Vehicle Cost(kg) Distribution of All Architectures 174

72 Total Vehicle Cost(kg) Distribution of Architectures with 1 Stage . . 174

73 Total Vehicle Cost(kg) Distribution of Architectures with 2 Stages . . 174

74 IntegrATE Framework Flow Diagram 183

75 Mars Fly-By Architecture Bat Chart 193

76 Proof of Concept Spaces Mappings 197

77 Proof of Concept Problem Full Objective Space Distribution by Main
Propulsion System Propellant Type 203

xvi

78 Proof of Concept Problem Invalid Alternatives Distribution by Main
Propulsion System Propellant Type 203

79 Proof of Concept Problem Valid Alternatives Distribution by Main
Propulsion System Propellant Type 203

80 Proof of Concept Problem Pareto Front Alternatives Distribution by
Main Propulsion System Propellant Type 203

81 Proof of Concept Problem Technology Utilization on the Pareto Front 204

82 Proof of Concept Problem Architecture Cost Distributions versus Pro-
pellant Type and Number of Stages 206

83 Proof of Concept Problem Number of Launches Distributions versus
Select Architecture Options . 208

84 Proof of Concept Problem Mean Cost of All Alternatives with Tech-
nological Complexity . 210

85 Proof of Concept Problem Mean Gross Mass of All Alternatives with
Technological Complexity . 210

86 Proof of Concept Problem Mean Number of Launches of All Alterna-
tives with Technological Complexity 210

87 Proof of Concept Problem Mean PMF of All Alternatives with Tech-
nological Complexity . 210

88 Proof of Concept Problem Variation in Mean Gross Mass with Tech-
nological Complexity of Two Distinct Vehicle Groups 211

89 Notional Example of Pareto Front Layers 261

90 Full Objective Space Similarity Distribution 267

91 Multi-Objective Similarity Distributions, 1 to 5 Layered Pareto Front
in Steps of 1 . 269

92 Multi-Objective Similarity Distributions, 10 to 50 Layered Pareto Front
in Steps of 10 . 270

93 Multi-Objective Similarity Distributions, 100 to 500 Layered Pareto
Front in Steps of 100 . 271

94 Mass-Objective Similarity Distributions, N=2, 6, 10, 16, 24 273

95 Mass-Objective Similarity Distributions, N=68, 226, 418, 830, 1328 . 274

96 Mass-Objective Similarity Distributions, N=5090, 17030, 37651, 76937,
135508 . 275

97 Mass-Objective Similarity Distributions, N=2, 6, 10, 16, 24 277

xvii

98 Mass-Objective Similarity Distributions, N=68, 226, 418, 830, 1328 . 278

99 Mass-Objective Similarity Distributions, N=5090, 17030, 37651, 76937,
135508 . 279

100 Correlation in Portfolio Size vs Objective Metric Variance for Mission-
based Portfolios . 282

101 Correlation in Portfolio Size vs Objective Metric Variance for Technology-
based Portfolios . 284

102 Experiment 3 Total Vehicle PMF Distribution 288

103 Total Vehicle PMF Distribution of Architectures with 1 Stage 288

104 Total Vehicle PMF Distribution of Architectures with 2 Stages 288

xviii

NOMENCLATURE

AADL Architecture Analysis and Design Language

ACS Attitude Control System

ADC Attitude Determination and Control

ARCHITECT Architecture-Based Technology Evaluation and Capability Tradeoff

ARCNET Architecture Resource-based Collaborative Network Evaluation Tool

ATIES Abbreviated Technology Identification, Evaluation and Selection

BLAST Beyond LEO Architecture Sizing Tool

CCDev Commercial Crew Development

C&DH Command and Data Handling

CDR Critical Design Review

CER Cost Estimating Relationship

CONOP Concept of Operation

COPA Computerized Orbital Performance Analysis

COTS Commercial Orbital Transportation Services

CPU Central Processing Unit

DoCS Design of Computer Simulations

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

DOE Design of Experiments

DYREQT Dynamic Rocket Equation Tool

ECLSS Environmental Control and Life Support System

ESA European Space Agency

EVA Extravehicular Activity

EXAMINE Exploration Architecture Model for In-Space and Earth-to-Orbit

HExAM Human Exploration Architecture Model

xix

ICE Integrated Concurrent Engineering

INCOSE International Council on Systems Engineering

IntegrATE Integrated Architecture and Technology Exploration

IPPD Integrated Product and Process Development

IRMA Interactive Reconfigurable Matrix of Alternatives

JCIDS Joint Capabilities Integration and Development System

LDHEO Lunar Distant High Earth Orbit

LDRO Lunar Distant Retrograde Orbit

LEO Low Earth orbit

LPF Layered Pareto Front

MADM Multi-Attribute Decision Making

MATE Multi-Attribute, Tradespace Exploration

MBSE Model-Based Systems Engineering

MDAO Multidisciplinary Design, Analysis, and Optimization

MOA Matrix of Alternatives

MPCV Multi-Purpose Crew Vehicle

MT Metric Ton

MYr Man-Years

NAFCOM NASA/Air Force Cost Model

NASA National Aeronautics and Space Administration

NIST National Institute of Standards and Technology

OMG Object Management Group

OV Operational Viewpoint

P-BEAT Process-Based Economic Analysis Tool

PCEC Project Cost Estimating Capability

PDR Preliminary Design Review

PMF Propellant Mass Fraction

xx

QuantUM3 Quantitative Uncertainty Modeling, Management, and Mitigation

RAAM Rapid Architecture Alternative Modeling

ROSETTA Relational Oriented Systems Engineering and Technology Tradeoff
Analysis

RTG Radioisotope Thermoelectric Generator

SAE Society of Automotive Engineering

SEER Software for Evaluating and Estimating Resources

SLS Space Launch System

SoS System of Systems

SRL System Readiness Level

SRR System Requirements Review

STASE Set Theory-Influenced Architecture Space Exploration

STSD Set Theory-Influenced System Decomposition

SV Systems Viewpoint

SysML Systems Engineering Modeling Language

TAPP Technology Alignment and Portfolio Prioritization

TESSA Technique for the Enumeration of System of Systems Alternatives

TIES Technology Identification, Evaluation and Selection

TOPSIS Technique for Order Preferencing by Similarity to Ideal Solution

TRIPS Technology Roadmapping and Investment Planning System

TRL Technology Readiness Level

TT&C Telemetry, Tracking, and Command

UML Unified Modeling Language

UTE Unified Tradeoff Environment

∆mi Change in Inert Mass

∆mp Change in Propellant Mass

∆t Change in Time

xxi

∆V Change in Velocity

εmli Emissivity of Multi Layer Insulation

εrad Emissivity of Radiator Material

ηtr Power Transmission Efficiency

N Average Layer Density

ρrad Radiator Aerial Density

a System-Specific Constant

Ade Design Envelope Area

Amli Surface Area of Multi Layer Insulation

Arad Radiator Area

CD Total Development Cost in Man-Years

CF Total Fabrication Cost in Man-Years

CR Material Radiation Correction Factor

CS Material Conductivity Correction Factor

D Diameter

d Number of Categories

DF Degradation Factor

F Element Fabrication Effort in Man-Years

f0 Project System Engineering and Integration Factor

f1 Technical Development Standard Correlation Factor

f2 Technical Quality Correlation Factor

f3 Team Experience Correlation Factor

f4 Cost Reduction Factor Resulting from Learning Factor Application

f6 Cost Growth Factor for Deviation from Optimum Time Schedule

f7 Cost Growth Factor for Development by Parallel Contractors

f8 Productivity Correction Factor

fk(Xk) Option Frequency of the kth Category of X

xxii

Fs Structure Factor

G Geometry

g0 Earth’s Standard Gravity

H Element Development Effort in Man-Years

Isp Specific Impulse

L Length

M Margin Factor

m Mass

m0 Initial Mass

mIO Tank Inlet/Outlet Mass

mactive Active Thermal Control Hardware Mass

mbac Broad Area Cooling Shield Mass

mbare Bare Tank Mass

mbat Power Storage Mass

mbo Burnout Mass

mcc Cryocooler Mass

mcirc Circulating Pump Mass

mcool Engine Cooling Mass

mcore Nuclear Core Mass

mctrl Thermal Controller Mass

mengines Mass of Engines/Thrusters

mfeed Propellant Feed Mass

mf Final Mass

mgauging Propellant Mass Gauging Device Mass

mgen Power Generator Mass

mi Inert Mass

mlad Liquid Acquisition Device Mass

xxiii

mmisc Mass of Miscellaneous Hardware

mmli Multi Layer Insulation Mass

mnozz Engine Nozzle Mass

mpass Passive Thermal Control Hardware Mass

mpressurant Pressurant Mass

mpropmgt Mass of Propellant Feed Management Hardware

mpwrmgt Mass of Power Management Hardware

mp Propellant Mass

mrad Thermal Radiator Hardware Mass

mreg Power Regulation and Distribution Mass

msa Tank Structural Attachments Mass

msep Tank Separation Mechanism Mass

mshield Radiation Shield Mass

mtpa Turbopump Assembly Mass

mtrap Propellant Trap Mass

mtubing Tubing Mass

mvessel Pressure Vessel Mass

mweld Tank Weld Land Mass

ṁ Mass Flow Rate

n Number of Units

N Number of Design Points

nlayers Number of Multi Layer Insulation Layers

ntanks Number of Propellant Tanks

ntechs Number of Technologies

P Power

p Propellant

Pactive Active Thermal Control Power

xxiv

Pcc Cryocooler Power

Pcirc Circulating Pump Power

Pgauging Propellant Mass Gauging Device Power

Ppass Passive Thermal Control Power

Preq Total Required Power Output

ptank Tank Pressure

Pt Total Power

Q Heat

Qpwr Power Subsystem Heat Load

Qtotal Total Heat Load

r Radius

ravg Average Weighted Tank Radius

Rde Design Envelope Radius

S Similarity

SF Safety Factor

t Thickness

TC Cold Side Temperature

TH Hot Side Temperature

tb Burn Time

U Ultimate Strength

V Volume

W Weight

Wbo Burnout Weight

wk Weighting of the kth Category

X System-Specific Cost-to-Mass Sensitivity Factor

Xk Option of the kth Category of Design X

Yk Option of the kth Category of Design Y

xxv

SUMMARY

The first two decades of the twenty-first century have resulted in numerous

redirections of United States space policy. This frequent redirection has produced

challenges in the design and development of the systems of systems required for

manned space exploration. Ever-changing design requirements leads to a lack of

knowledge in the early phases of the design process. This lack of knowledge results in

two primary challenges: overruns in cost and schedule due to frequent design changes

and combinatorial explosion of alternatives due to large, discrete categorical design

spaces. Due to the significant impact technologies have on the cost and schedule of a

design, they should be considered during the conceptual design of systems of systems

in an effort to reduce this lack of knowledge.

Current methods developed for the exploration of system of systems architectures

and technologies define problems at the system level. However, in order to incorporate

subsystem-level technology evaluation, architectures must also be defined at the sub-

system level. Additionally, current methods developed for the purpose of technology

evaluation do not support the exploration of large system of system design spaces.

Therefore, a gap exists in current methods and frameworks to perform integrated

architecture analysis and technology evaluation defined at the subsystem level.

To integrate architecture analysis and technology evaluation at the subsystem

level, several questions and hypotheses were posed during a discussion of a general

concept exploration process to guide the development of a new framework. However,

in order to test these hypotheses, a digital test bed capable of performing integrated

architecture analysis and technology evaluation at the subsystem level had to be se-

lected. No tools were identified within the space transportation community which met

xxvi

this requirement. As a result, the Dynamic Rocket Equation Tool (DYREQT) and a

collection of subsystem-level in-space transportation models were developed to pro-

vide a modeling and simulation environment capable of producing the necessary data

for experimentation. DYREQT provides the capability to integrate user-developed

subsystem models in a tool developed for space transportation architecture analysis

and design.

Results from the experiments designed in response to the research questions and

hypotheses led to conclusions which guided the definition of the Integrated Archi-

tecture and Technology Exploration (IntegrATE) framework. This new framework

fulfills the research objective by providing integrated architecture analysis and tech-

nology evaluation at the subsystem level in an effort to increase design knowledge

during the conceptual design process. IntegrATE provides flexibility such that it can

be tailored to a wide range of problems. It also provides a high degree of transparency

throughout to help reduce the likelihood of bias towards individual architectures or

technologies. Finally, the IntegrATE framework and DYREQT were demonstrated

on a notional manned Mars 2033 design study to highlight the utility of these new

developments.

xxvii

CHAPTER I

MOTIVATION

“With our present knowledge, we can respond to the challenge of stellar

space flight solely with intellectual concepts and purely hypothetical anal-

ysis. Hardware solutions are still entirely beyond our reach and far, far

away.”

— Dr. Wernher von Braun1

Since before man became a spacefaring race, dreams of reaching deep into the vast

unknown filled our imaginations. As technology has progressed to make these dreams

an ever-closer reality, the machines designed and built to carry out such a task grow

larger and more complex. As these designs grow ever greater in complexity, so does

the number of potential designs that may fulfill a given task. The research detailed

within this manuscript focuses on the conceptual phase of design. It is well known

that decisions made early in the design process have disproportionate impacts on the

future cost and schedule of corresponding programs. It is important to understand

the interaction of the mission, the vehicle, and technology on a given architecture

to ensure that all measures are taken such that a suitable architecture is selected to

prevent costly financial and schedule overruns.

The motivations and background come from two main sources, human space ex-

ploration and space transportation architectures. The design of such architectures

presents unique challenges not seen in other related fields and provides the basis for

the research efforts that follow. However, this does not imply that the research herein

is limited to only these motivating sources.

1Popular Science, Volume 183, July 1963 (p. 170)

1

1.1 U.S. Space Exploration Policy in the 21st Century

The dawn of the 21st century has brought drastic changes to space policy. For decades,

deep space exploration was relegated to robotic spacecraft, with manned missions

confined to low earth orbit (LEO). However, the landscape began to change as policy

makers became restless with the status quo and desired a shift to a more ambitious

presence beyond Earth. At the start of the century, only two vehicles were qualified

to fly humans into space, the United States-built Space Shuttle and the Russian-built

Soyuz. The only clear destination in LEO was the International Space Station.

1.1.1 Presidential Remarks on U.S. Space Policy

In 2004, President George W. Bush ordered the retirement of the Space Shuttle fleet

to make way for the development of a new launch vehicle [13]. This order marked the

first major shift in United States space exploration policy in the 21st century. In his

address, President Bush called for a new focus, stating three primary objectives:

1. Completion of the International Space Station

2. Development of a new manned exploration vehicle

3. Return to the moon as a launching point for missions beyond

Following these objectives, The International Space Station, in development since

1998, was scheduled to have its last major United States component installed by

2010, coinciding with the last flight of the Space Shuttle Program [76]. NASA also

began work on the Constellation program to replace the aging Space Shuttle fleet.

To support the transition process, NASA implemented the Commercial Crew Devel-

opment program to stimulate private development of vehicles capable of launching

humans into low earth orbit. However, budgetary and schedule overruns with the

Constellation program led to a review of manned space flight, commissioned in 2009,

to reassess the plans set forth by President Bush in 2004 [8].

2

1.1.2 Review of U.S. Human Space Flight Plans Committee

The 2009 Review of U.S. Human Space Flight Plans Committee, commonly referred

to as the Augustine Commission, was officially tasked with developing suitable options

for consideration by NASA regarding a human space flight architecture that would

[8]:

1. Expedite a new U.S. capability to support utilization of the International Space

Station

2. Support missions to the Moon and other destinations beyond LEO

3. Stimulate commercial space flight capability

4. Fit within the current budget profile for NASA exploration activities

Though the review focused heavily on programs and current launch vehicle hard-

ware, it did little for giving clear direction. The report outlines three exploration

paths:

1. Mars First, with a Mars landing, perhaps after a brief test of equipment and

procedures on the Moon.

2. Moon First, with lunar surface exploration focused on developing the capability

to explore Mars.

3. A Flexible Path to inner solar system locations, such as lunar orbit, Lagrange

points, near-Earth objects and the moons of Mars, followed by exploration of

the lunar surface and/or Martian surface.

The review outlined many findings, such as a need for program stability, mission

and funding alignment, and commercial involvement. These findings would become

the basis for a redirection of human exploration efforts moving forward.

3

1.1.3 NASA Authorization Acts of 2010 & 2017

The NASA Authorization Act of 2010 put into law many of the findings of the Au-

gustine Commission. One of the first things it did was to cancel the Constellation

Program which had been plagued by cost and schedule overruns resulting from years

of budgetary cuts. Figure 1 shows this phenomenon of budget reductions in early

years leading to budget overruns in later years to maintain a fixed schedule. How-

ever, not all elements would be scrapped. From the Constellation program, the Orion

crew vehicle would be redesigned as the Multi-Purpose Crew Vehicle (MPCV). The

act also ordered the development of the Space Launch System (SLS) to replace the

Ares launch vehicles as the nation’s vehicle for access to space [1]. The new vehicle

would utilize commonality from both Space Shuttle and Ares heritage hardware and

designs [95].

The development of this new system would still leave the U.S. with a signifi-

cant time gap in domestic human space flight access, about seven years [8]. To

reduces this gap, NASA was directed to continue investments in commercial entities

to develop independent access to low earth orbit. For this, NASA continued the

Commercial Orbital Transportation Services (COTS) program and the Commercial

Crew Development Program (CCDev). These programs awarded contracts in phases

to companies who developed and provided the requested contract services to NASA.

U.S. companies such as Orbital Sciences, Space Exploration Technologies (SpaceX),

Sierra Nevada Corporation, Blue Origin, and The Boeing Company were selected to

demonstrate launch capabilities to NASA [80, 84].

The NASA Authorization Act of 2010 also redirected the focus of mission destina-

tions. Where the Vision for Space Exploration gave a clear direction of lunar explo-

ration leading to the surface exploration of Mars, the new policy directed NASA to

follow the Flexible Path option from the Augustine Commission. This option was the

most complex and least defined of the options presented. Figure 2 depicts the various

4

$
in

 M

Figure 1: Constellation budget cuts prior to preliminary design review (PDR) re-
sulted in a budget profile far less than optimal for a development project. The initial
decrease in FY2010 was primarily due to limitations in funding due to Space Shuttle
retirement efforts. The result was a drastic increase in later funding to maintain a
fixed design schedule which ultimately fell behind and became a large factor in the
cancellation of the Constellation program [95].

paths available to reach the final Mars surface destination. Although the concept

was intended to provide, as its name implies, flexibility in destinations to reach the

ultimate goal of Mars surface exploration, the lack of a clear direction would lead to

further redirections. The Augustine Commission stated a need for program stability

to maintain a return on investment [8].

Since the Authorization Act of 2010, the new launch capability, SLS, has had an

unsteady funding profile, as seen in Figure 3. Political tension between the President

and Congress has caused financial instability for the SLS program. Early funding cuts

have led to cost overruns, as explained in Figure 1, as well as schedule slips. The first

flight of SLS was originally scheduled for 2016, but was subsequently rescheduled for

5

Figure 2: The Flexible Path option was proposed by The Review of U.S. Human
Spaceflight Plans Committee as a viable exploration strategy for eventual manned
Mars surface missions [8]. However, the lack of a clear and defined set of missions
can lead to many future redirections down the different mission paths.

1,000.0

1,200.0

1,400.0

1,600.0

1,800.0

2,000.0

2,200.0

2,400.0

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

$
 M

ill
io

n
s

Fiscal Year

SLS Funding

Enacted Requested

Figure 3: SLS program funding has seen instability similar to that experienced by the
Constellation program. Polarization between the White House and Congress resulted
in early budgetary cuts which are now manifesting in cost overruns and schedule slips
in the later years of development [79]. This is similar to the phenomenon described
in Figure 1.

6

November 2018, and is in the process of being rescheduled again for 2019 [1, 2, 3, 112].

NASA, under the Flexible Path Option, has been directed to capture and explore a

Near Earth Asteroid in an effort to develop technologies that will be needed for future

Mars missions [83].

However, in the mid second decade, rejuvenated interest in lunar exploration

by other international partners prompted yet another shift in policy. The NASA

Authorization Act of 2017 directed NASA to reevaluate the value of the Asteroid

Redirect Mission to capture and explore a near Earth asteroid, while also putting

a new emphasis on a mission to Jupiter’s moon, Europa, along with increased cis-

lunar operations[3]. Other legislation also proposes redirecting NASA to return to a

Moon first option in preparation for Mars surface exploration [116]. This continual

redirection, long-lasting uncertainty, and variability that has plagued U.S. manned

space exploration policies of the early 21st century has produced challenges in design-

ing and developing the systems and architectures that are required for manned deep

space exploration missions.

1.2 Design in a Time of Uncertainty

The task of designing complex architectures is by no means trivial. To do so with such

political instability and uncertainty, which trickles into the programmatics, presents

increased challenges to the designer. This section will discuss relevant terminology, the

process of design, and highlight specific challenges that arise from such uncertainty.

1.2.1 Phases of Design

The process of design and its corresponding phases are applied in a wide variety of

disciplines. Each of these disciplines provides its own view as to what phases should

exist in the process and what milestones mark the boundaries between those phases.

Typically, in the aircraft industry, design is described as having three major phases:

7

conceptual design, preliminary design, and detailed design [94]. From a systems en-

gineering viewpoint, Arthur Hall describes the phases as: system studies, exploratory

planning, development planning, studies during development, and concurrent engi-

neering [41]. David Ullman uses similar phases when describing his mechanical design

process: project definition and planning, specification definition, conceptual design,

product development, and product support [109].

Focusing on the space industry, some of the key stakeholders include the U.S.

Department of Defense (DoD), the European Space Agency (ESA) and the National

Aeronautics and Space Administration (NASA). A mapping of their respective phases

of design is shown in Figure 4 [63]. This figure highlights the commonality in the

phases of design as described by these key stakeholders. The boundaries between

the phases are reviewed at the bottom of each process. The individual stakeholders

each have their own set of reviews, but there are three they all agree on: the system

requirements review (SRR), the preliminary design review (PDR), and the critical

design review (CDR).

Because the motivational problem for this dissertation is focused on space architec-

tures, the phases of design are defined using NASA’s systems engineering conventions.

NASA defines seven life-cycle phases in the design process ranging from conceptual

studies all the way through operation and closeout. Figure 5 depicts the sequence of

the seven phases along with the associated milestones [82]. The following is a brief

description of the seven phases [77].

Pre-Phase A: Concept Studies – Devise various feasible concepts from which new

projects and programs can be selected.

Phase A: Concept and Technology Development – Fully develop a baseline mission

concept and begin or assume responsibility for the development of needed technolo-

gies.

Phase B: Preliminary Design and Technology Completion – Establish an initial project

8

Figure 4: The phases of design for various space industry stakeholders have a high
degree of commonality. Critical reviews throughout the design processes are shown
below each respective process. [63].

9

 NASA SPACE FLIGHT PROGRAM AND PROJECT MANAGEMENT HANDBOOK 113

4.1 NASA Projects

KDP C
Project

Life-Cycle

Gates

Documents,

and Major

Events

KDP A

Launch

KDP D KDP B

End of Mission

Final

Archival

of

Data

KDP F

SMSR, LRR

(LV), FRR (LV)

KDP E

DR PLAR MDR5MCR SRR PDR CERR4 SIR MRR

Preliminary
Project
Requirements

SDR CDR/
PRR3

PDR MCR FRR SRR SIR PLAR

SAR6

DR

Supporting
Reviews

ORR

Inspections and

Refurbishment
Re-enters appropriate life-
cycle phase if modi�cation
are needed between lights

End of

Flight

Preliminary

Project

Plan

Baseline

Project

Plan

ORR

ASM
7

Human
Space
Flight Project
Life-Cycle
Reviews1,2

Robotic
Mission
Project Life-
Cycle
Reviews1,2 DRR

DRR

Other
Reviews

FAD FA

NASA

Life-Cycle

Phases

Approval for

Formulation

Approval for

Implementation
FORMULATION IMPLEMENTATION

Life-Cycle

Phases

Pre-Phase A:
Concept
Studies

Phase A:
Concept & Technology

Development

Phase B:
Preliminary Design &

Technology Completion

Phase C:
Final Design &

Fabrication

Phase F:
Closeout

Phase E:
Operations &
Sustainment

Phase D:
System Assembly,

Integration &
Test, Launch & Checkout

Agency
Reviews

Re�ights

CERR4

PFAR

CDR/
PRR3

Peer Reviews, Subsystem PDRs, Subsystem CDRs, and System Reviews

FOOTNOTES

1. Flexibility is allowed as to the timing, number,

and content of reviews as long as the

equivalent information is provided at each

KDP and the approach is fully documented in

the Project Plan.

2. Life-cycle review objectives and expected

maturity states for these reviews attendant

KDPs are contained in Appendix I of

NPR 7120.5 and the maturity tables in

Appendix D of this handbook.

3. PRR is needed only when there are multiple

copies of systems. It does not require an SRB.

Timing is notional.

4. CERRs are established at the discretion of

program oices.

5. For robotic missions, the SRR and the MDR

may be combined.

6. SAR generally applies to human space light.

7. Timing of the ASM is determined by the MDAA.

It may take place at any time during Phase A.

ACRONYMS

ASM—Acquisition Strategy

Meeting

CDR—Critical Design Review

CERR—Critical Events Readiness

Review

DR—Decommissioning Review

DRR—Disposal Readiness Review

FA—Formulation Agreement

FAD—Formulation Authorization

Document

FRR—Flight Readiness Review

KDP—Key Decision Point

LRR—Launch Readiness Review

MDAA—Mission Directorate

Associate Administrator

MCR – Mission Concept Review

MDR—Mission Deinition Review

MRR—Mission Readiness Review

ORR—Operational Readiness Review

PCA—Program Commitment

Agreement

PDR—Preliminary Design Review

PFAR—Post-Flight Assessment Review

PIR—Program Implementation Review

PLAR—Post-Launch Assessment Review

PRR—Production Readiness Review

SAR—System Acceptance Review

SDR—System Deinition Review

SIR—System Integration Review

SMSR—Safety and Mission Success

Review

SRB—Standing Review Board

SRR—System Requirements Review

p	Red triangles represent life-cycle reviews that require SRBs. The Decision

Authority, Administrator, MDAA, or Center Director may request the SRB

conduct other reviews.

Figure 4-1 NASA Project Life Cycle

Figure 5: The NASA Project Life Cycle is fundamentally divided between formu-
lation and implementation. The formulation consist of a preparatory Pre-Phase A,
followed by Phase A and Phase B. Implementation consists of Phases C,D,E, and F.
Though both the manned spaceflight and robotic communities have developed slightly
different terms and launch approval processes, the project management life cycles are
essentially the same [82].

10

baseline such that system and subsystem-level specification can be derived from

project-level requirements.

Phase C: Final Design and Fabrication – Establish a complete design, fabricate or

produce hardware, and code software in preparation for integration.

Phase D: System Assembly, Integration and Test, Launch – Assembly, integration,

verification, and validation of the system, including testing the system to expected

environments.

Phase E: Operations and Sustainment – Conduct the prime mission and meet the

initially identified need and maintain support for that need.

Phase F: Closeout – Implement system decommissioning disposal planning and ana-

lyze returned data and/or samples.

1.2.2 Design Freedom versus Design Knowledge

Through the course of the design phases, there are several concepts that must be

weighed: cost, design knowledge, and design freedom. Contrary to traditional thought,

cost is not incurred at the time committed, but rather through the process of making

design decisions [27]. Decisions about the design tend to be made early in the design

process. This means that a majority of the cost for a design is committed very early

in the design process, while that cost is not incurred until later in the design pro-

cess. Many studies have examined this behavior. One such study determined that

only 20% of the cost is incurred during the early phases of design, while those same

phases commit 80% of the cost [24]. Figure 6 illustrates this relationship between

cost, ease of change, and design knowledge. Here, ease of change can be interpreted

as a measure of design freedom.

Typically, design decisions are made early in the design process, when knowledge

is relatively low. This can result in uninformed decisions that can lead to costly

design revisions in later phases, particularly during testing. A good example of this

11

Figure 6: Cost, design knowledge, and ease of change (design freedom), are all
related in the design process. Contrary to traditional thought, much of the cost of a
design is committed much earlier than it is incurred. This is due to design decisions
made early in the design process. Cost committed and design freedom are inversely
related. Bringing design knowledge forward in the design process will maintain a
higher design freedom longer into the design process, ultimately reducing cost and
schedule overruns. [27].

12

behavior is in the development of liquid rocket engines. Glen Havskjold performed

a study on historical development programs from the Pratt & Whitney Rocketdyne

Company [44, 45, 46]. Due to a lack of design knowledge during the initial design

phase of these engines, a pattern of test-fail-fix occurs during the development and

testing. The result is increased costs and schedule of the engines studied. In fact,

73% of the development cost of the F-1, J-2, and Space Shuttle Main Engine were

determined to be due to corrective actions during full-scale testing [44].

These relationships between design knowledge, design freedom, and cost, indicate

the need for well-informed decisions early in the design process. These decisions

are vital to reducing the risk of increased cost and schedule due to design iterations

[34]. Industry and academia have been working towards this goal through various

means [93, 22, 105, 68]. These methods share similar techniques of bringing design

knowledge earlier into the design process in an attempt to maintain design freedom

longer while allowing decision makers to make informed decisions about the design,

leading to reduced cost and schedule.

1.2.3 Challenges

Attempting to design an architecture in an environment of uncertainty can present

many challenges to the designer. This uncertainty can manifest in many forms, such

as changing budgetary constraints, capabilities and requirements creep, and changing

mission [110, 111]. Designers are forced to consider increasingly complex architectures

with growing design spaces to mitigate issues that may arise from these uncertainties.

However, the growth in the architecture space presents new problems in the form of

overruns due to an increased lack of knowledge and the sheer number of alternatives

that exist to fully define the architecture design space. In their work on model-based

systems engineering, Jon Holt and Simon Perry claim that projects fail due to com-

plexity, lack of understanding, and communication issues [49]. Furthermore, these

13

underlying reasons do not exist in isolation, but feed upon each other. Complex-

ity issues will lead to lack of understanding and communication problems. A lack

of understanding will lead to communication problems and complexity. Finally, a

breakdown in communication will result in a lack of understanding and unforeseen

complexity.

1.2.3.1 Cost and Schedule Overrun

As was described in this chapter, political uncertainties tend to drive fluctuations in

defined missions, goals, and funding profiles. This constant flux forces designers to

consider ever-growing architecture spaces which become difficult to fully define and

understand. This lack of knowledge of the architecture space has been shown to drive

both cost and schedule overruns in the projects associated with these architectures.

Additionally, incorporation of new technologies has been shown to have a dramatic

impact on the overall cost of programs. Depending on the maturity of incorporated

technologies, costs for a given system can vary by as much as 50%, while total program

costs may grow exponentially with the time to develop a technology [64]. These ob-

servations further support the importance of understanding architecture spaces early

in the design process to account for these potential cost growths and uncertainties.

The initial phases of the design process should capture a large amount of design

knowledge to help mitigate risks associated with such uncertainty. With this, decision

makers are able to make more informed decisions that can reduce the risk of costly

design iterations when traceable, quantitative information is provided. In contrast,

qualitative data can fail to capture trends which may exist that could inform the

decision maker in preventing cost and schedule overruns [62]. This leads to a need for

an intelligent, methodical, comprehensive exploration of the architecture space that

is quantitative in nature.

14

1.2.3.2 Combinatorial Explosion

The encyclopedia of Operations Research and Management Science defines combi-

natorial explosion as the phenomenon associated with optimization problems whose

computational difficulty increases exponentially with the size of the problem [35]. The

uncertainties stated earlier that result in these large, complex architecture spaces will

also result in challenges with regard to physical computation and analysis of the

design space.

Peter Schuster claims that combinatorial explosion is a result of assembling ob-

jects from elements by means of predefined combination rules [102]. If architectures

consist of a collection of elements combined to meet a given objective, the design

space defined by the various combinations of these elements is likely to suffer from

this notion of combinatorial explosion. In his development of a method to rapidly

analyze architectures in an attempt to study complex architecture design spaces,

Joseph Iacobucci provides context as to the scale of the number of alternatives that

may exist in complex architecture spaces [50]. Even after considering compatibility

constraints, this number can still be an impractical billions of alternatives to analyze.

However, early phases of the design process may not require every possible combina-

tion of alternatives to be evaluated to achieve a drastic increase in knowledge of the

architecture space. This leads to the second need of gaining an understanding of the

architecture space, through analysis, that provides an increase in design knowledge

which is sufficient such that decision makers are able make informed design decisions

in the early design phases.

1.3 Statement of Purpose

The previously mentioned challenges and needs form the basis and driving force be-

hind this body of work, which is stated as follows:

15

Statement of Purpose

To provide a capability to analyze complex systems of systems to an extent

which will provide decision makers in the early phases of design sufficient

information to reduce the risks associated with cost and schedule overruns

due to lack of design knowledge.

1.4 Document Organization

Chapter 2 provides background information relevant to this body of work. Section 2.1

provides clarification of terms typical in the military domain, but which have slight

nuances within the context of space transportation. The methods discussed in Section

2.3, Section 2.4, and Section 2.5, along with the concepts presented in Section 3.3,

will guide the development of research questions and hypotheses related to integrated

architecture and technology exploration at a subsystem level. In order to perform

the experiments designed to test these hypotheses in the domain motivating this

work, new models are developed for space transportation architecting, summarized in

Chapter 4. The research questions developed throughout Chapter 3 will be explored

through experiments presented in Chapter 5, the results of which will be the basis for

defining a formal framework for integrated architecture and technology exploration

at a subsystem level, presented in Section 5.2, and implemented through a notional

case study in Section 5.3. Finally, Chapter 6 summarizes this research, offering a set

of contributions, as well as suggestions for future work.

16

Note from the author: The officially published electronic version of this document

contains extensive use of hyperlinks. The table of contents, list of figures, and list

of tables link to their respective chapters, sections, figures, and tables throughout the

document. Within the document, references are linked to their respective bibliographic

entry information, and abbreviations are linked to their nomenclature definitions.

Finally, a subject index is provided with active page links. This is to aid the reader

in examining relevant information as needed. They are not physically visible due

to guidelines imposed by the Georgia Institute of Technology regarding formatting of

electronic dissertation documents.

17

CHAPTER II

BACKGROUND

This chapter contains background information on existing techniques which represent

possible candidates to address the statement of purpose presented in Chapter 1.

Section 2.1 defines various terms used in the field of architecture design and analysis

and how they are unique to the focus of this research. Section 2.3 and Section 2.4

present overviews on current methods that exist in architecture design and technology

evaluation, respectively. The chapter concludes with a brief overview of Model-Based

Systems Engineering and various developed languages in Section 2.5. The intent of

this chapter is not to provide a comprehensive discussion of each technique, but rather

to provide a brief description of the capabilities of each technique to an unfamiliar

reader such that a discussion of gaps and needs may be discussed in Chapter 3.

2.1 Terminology

It is important to take a moment to define the concepts that exist in the realm of

space systems design. Many readers will be familiar with the terms system, system of

systems, vehicle, mission, technology, architecture, and campaign. There may exist

several accepted definitions for a term. In these instances, the implied definition for

these terms throughout the remainder of this document shall be those presented in

this section.

2.1.1 System

The Merriam-Webster Online Dictionary defines a system as, “A regularly interacting

or interdependent group of items forming a unified whole” [106].

This general definition is intentionally vague to ensure it captures all possible

18

cases that may be considered a system. However, for our purpose, a more detailed

description of a system is desired. George Dieter defines a system as, “The entire com-

bination of hardware, information, and people necessary to accomplish some specified

mission” [22]. The International Council on Systems Engineering (INCOSE) defini-

tion for a system is: “A combination of interacting elements organized to achieve one

[or] more stated purposes” and “An integrated set of elements, subsystems, or assem-

blies that accomplish a defined objective” [52]. These definitions help to clarify that

the elements can be products, processes, people, information, techniques, facilities,

services and other support elements.

The U.S. Department of Defense Architecture Framework (DoDAF) defines a sys-

tem as, “A functionally, physically, and/or behaviorally related group of regularly

interacting and interdependent elements” [54]. The same definition appears in the

DoDAF v2 Manager’s Guide [115]. ISO/IEC/IEEE 24765:2010 defines a system as

a, “Combination of interacting elements organized to achieve one or more stated

purposes” [51]. These definitions imply that these elements are not just randomly

assembled, but are related and regularly interacting.

NASA defines a system as, “a construct or collection of different elements that

together produce results not obtainable by the elements alone” [77]. This definition,

along with many of the aforementioned definitions, have a common theme that the

collection of elements is brought together for a purpose, mission or result otherwise

unattainable by the individual elements [77, 22, 52, 51]. To summarize the key con-

cepts of a system:

• A thoughtful, organized assembly of elements

• Regular interaction and interdependence between elements

• Elements can be products, processes, people, information, techniques, facilities,

services, and other support elements

19

• Elements are brought together to achieve some stated purpose that is otherwise

unattainable by the individual elements

For the purpose of this research, the word system shall mean an organized set

of regularly interacting and interdependent products, processes, people, information,

techniques, facilities, services, and other support elements, collectively known as sub-

systems, brought together for a stated purpose otherwise unattainable.

2.1.2 System of Systems

Literature provides a plethora of definitions for a system of systems (SoS). However,

different fields have adopted their own, slightly tailored form. For the purpose of this

dissertation, the following concepts and definitions will be considered.

ISO/IEC/IEEE 24765:2010 defines an SoS as, “A large system that delivers unique

capabilities, formed by integrating independently useful systems” [51].

The Defense Acquisition Guidebook defines an SoS as, “a set or arrangement of

systems that results when independent and useful systems are integrated into a larger

system that delivers unique capabilities” [114].

Dimitri Mavris and Charles Dickerson define an SoS as, “a combination of inter-

acting systems [i.e., elements of the SoS] integrated to realize properties, behaviors,

and capabilities that achieve one or more stated purpose(s)” [21].

These definitions generally agree that a system of systems is a set of interacting

independent systems, brought together to achieve unique capabilities. However, they

fail to provide a scale that is typical of an SoS problem. The INCOSE defines an

SoS as, “a system-of-interest whose system elements are themselves systems; typi-

cally, these entail large-scale interdisciplinary problems with multiple, heterogeneous,

distributed systems” [52]. This definition provides insight into the problems that a

system of systems typically aims to solve and their scale.

The U.S. Department of Defense Joint Capabilities Integration and Development

20

System (JCIDS) Manual defines an SoS as, “a set or arrangement of interdependent

systems that are related or connected to provide a given capability. The loss of any

part of the system will significantly degrade the performance or capabilities of the

whole” [15]. The statement of impact on the performance capability of the whole if

a component system fails is extremely relevant to space systems.

The previous definitions show general concepts that define a system of systems.

Component systems within a system of systems have a level of independence from

each other. The component systems are not necessarily defined by being included in

a system of systems, but do work together for the purpose of the system of systems

and are autonomous. Systems of systems typically aim to solve large-scale interdis-

ciplinary problems, while Iacobucci states that the effects of a system of systems are

often non-linear [50]. It should be noted, that though the component systems of an

SoS are not necessarily defined by being a part of an SoS, space flight situations typ-

ically lead to component systems that are highly specialized and designed for a given

SoS problem. This can be attributed to extremely unique operational environments,

coupled with a high cost of access to space derived from labor-intensive designs [118].

Section 2.1.6 will define an architecture within the scope of this dissertation and will

lead to a conclusion that an architecture defined by this dissertation is a system of

systems.

2.1.3 Vehicle

NASA defines a vehicle as, “a structure, machine, or device, such as an aircraft or

rocket, designed to carry a burden through air or space”[5]. Though old in origin,

the definition as it pertains to this research is highly relevant. For the purpose

of this dissertation, a vehicle shall be defined as “a structure, machine, or device

designed to carry a burden.” The burden in this definition is typically referred to as

a payload. This payload can be an inert mass, such as another machine or device, as

21

well as biological in nature, particularly, humans. It is an important distinction in

the definition of a space vehicle because it implies very different design drivers despite

potentially similar goals.

The term spacecraft is typically used to denote a vehicle designed specifically for

use in space and may be used interchangeably with vehicle in this dissertation. Table

1 lists the traditional spacecraft elements or subsystems. Figure 7 shows the inter-

dependence of the spacecraft subsystems for an unmanned vehicle. On a man-rated

spacecraft, environmental control and life support systems (ECLSS) would have de-

pendencies on the power and thermal control. The interdependencies of the spacecraft

subsystems leads to the conclusion that a spacecraft fits the definition of a system, as

given in Section 2.1.1 and is merely a special case of a system applied to space travel.

Figure 7: A simplified notional spacecraft block diagram showing the interdependence
of various spacecraft elements for an unmanned vehicle [12].

22

Table 1: Common Spacecraft Elements [118, 63, 12]

Element Name Function

Propulsion
Spacecraft thrust, including fuel storage and
plumbing

Attitude Determination and Control
(ADC) or Attitude Control System
(ACS)

Sensors, actuators, and software necessary
to control the spacecraft orientation

Position and Orbit Determination
and Control

Sensors and software necessary to control
the spacecraft orbit

On Board Processing or Command
and Data Handling (C&DH)

Electronics and software used to receive and
distribute commands and to store and for-
ward payload data and spacecraft telemetry

Telemetry, Tracking, and Command
(TT&C) or RF Communications

Radio and associated hardware, such as ca-
bling and antennas, used to communicate
with the ground or other spacecraft

Power
Electronics, power generation, and power
storage devices, as well as harnessing for
power distribution

Structures and Mechanisms

All the hardware that supports the space-
craft, including the primary structural com-
ponents, brackets, fasteners, and the actu-
ators and mechanisms associated with de-
ployed or movable structures

Thermal Control
All of the hardware necessary to control the
temperature of the spacecraft

Environmental Control and Life
Support System (ECLSS)
Manned Only

All of the hardware necessary to support hu-
man life on board the spacecraft

Extra Vehicular Activity (EVA)
Support and Robotics
Manned Only

All of the hardware necessary to support
human and robotic operations outside the
spacecraft

23

2.1.4 Mission

The Merriam-Webster Online Dictionary defines a mission as, “A definite military,

naval, or aerospace task” [75]. Again, this definition is too general and vague for

the purpose of this research. The U.S. Department of Defense clarifies by defining a

mission as, “The task, together with the purpose, that clearly indicates the action to

be taken and the reason therefore” [54, 55]. This definition clarifies that a mission

is not just an arbitrary task, but has a purpose and reason coupled with required

actions.

Charles Brown states that space missions provide seven classes of services [12]:

• Communication

• Navigation

• Weather

• Earth Resources

• Astronomy

• Planetary Exploration

• Manned Spacecraft

From the definition provided by the DoD, the purpose of a mission falls into one

of the seven service classes listed above. The specific tasks are typically described

by the orbits, trajectories, maneuvers, and operations required to achieve the given

purpose.

2.1.5 Technology

The Merriam-Webster Online Dictionary defines a technology as, “The practical ap-

plication of knowledge especially in a particular area” [107]. In the field of engineering,

24

this application is typically to develop something new in an effort to achieve some

goal. NASA defines a technology as, “A solution that arises from applying the disci-

pline of engineering science to synthesize a device, process, or subsystem, to enable

a specific capability” [85]. NASA expands the definition further to include processes

and methods, as well as tangible hardware. However, the end goal is the same, to

enable a specific capability, presumably one that could not be achieved before, or in a

more efficient manner than before. The definition as presented by NASA shall be the

implied meaning of the term “technology” in this body of work. This definition has

the implication that a technology is something at the device or subsystem level. In

the discussion to follow in Chapter 3, technology evaluation will be integral in fully

understanding the design space. As such, a scale on which to describe technologies is

crucial.

Table 2: NASA Technology Readiness Level Scale [77]

TRL Definition

9 Actual system “flight proven” through successful mission operations

8 Actual system completed and “flight qualified” through test and
demonstration (ground or flight)

7 System prototype demonstration in a target/space environment

6 System/subsystem model or prototype demonstration in a relevant en-
vironment (ground or space)

5 Component and/or breadboard validation in relevant environment

4 Component and/or breadboard validation in laboratory environment

3 Analytical and experimental critical function and/or characteristic
proof-of-concept

2 Technology concept and/or application formulated

1 Basic principles observed and reported

NASA developed the concept of the technology readiness level (TRL) scale in

the 1970s as a tool for assessing the maturity of technologies during complex system

25

4

Pre-concept Refinement

Concept
Refine-
ment

Technology
Development

System Development &
Demonstration

Production &
Deployment

A B C

TRL 1 TRL 2 TRL 3 TRL 4 TRL 5 TRL 6 TRL 7 TRL 8 TRL 9

Figure 8: Mapping of technology readiness levels to U.S. Department of Defense
System Acquisition Process. Technologies are expected to achieve TRL 4 by milestone
A, TRL 6 by milestone B, and TRL 7 by milestone C [88, 7].

development. Table 2 lists the state at which a technology is considered to be a specific

TRL. Since the scale’s inception, organizations are increasingly mapping TRL to their

own systems development processes. For example, the U.S. Department of Defense

mapped TRL to their own System Acquisition Process, as shown in Figure 8. This

is done primarily for its shared understanding of technology maturity and risk [88],

not to create a shared common definition of technology across these two domains.

2.1.6 Architecture

The Merriam-Webster Online Dictionary defines an architecture as, “A unifying or

coherent form or structure” [6]. While the DoDAF defines an architecture as, “A

framework or structure that portrays relationships among all the elements of the

subject force, system or activity” [115]. From this, an architecture is known to have

structure and relationship among the constituent components.

ISO/IEC/IEEE 24765:2010 defines an architecture as a, “Fundamental organi-

zation of a system embodied in its components, their relationships to each other,

and to the environment, and the principles guiding its design and evolution” [51].

Though this definition was developed with context to electronics, it is still applicable

here. This definition broadens the relationship aspect of an architecture to not only

include the constituent components, but also with its surrounding environment. En-

vironments can have a drastic impact on the design of a system or SoS, especially in

space applications.

26

Mavris and Dickerson build upon this by defining an architecture as, “The fun-

damental organization of a system, embodied in its components, their relationships

to each other and the environment, the principles governing its design and evolution,

its purpose, and its attractiveness” [21]. Here, it is stated that the organization of

components has a purpose and a certain attractiveness that can distinguish it from

another organization of components.

For this dissertation, the definition of an architecture shall be that presented by

Mavris and Dickerson, as well as ISO/IEC/IEEE 24765:2010. The definition makes

no distinction on the form of the system, and as such, may in fact be a system

of systems as defined in Section 2.1.2. This would result in the components being

systems themselves. This link implies that an architecture may be an instance of a

system of systems.

Applying this definition to the realm of space vehicles and missions, a space archi-

tecture can be described as having the elements seen in Table 3. Larson and Pranke

state that a mission concept, along with the functional and physical elements defined

by this concept, form the basis of the space architecture [12]. The body of this work

will focus on exploring the architecture design space, with emphasis on orbits and tra-

jectories, space elements, and surface elements. Further details regarding the specific

research objectives can be found in Section 3.2

2.1.7 Campaign

The Merriam-Webster Online Dictionary defines a campaign as, “A connected series

of operations designed to bring about a particular result” [14].

The U.S. Department of Defense defines a campaign as, “A series of related major

operations aimed at achieving strategic and operational objectives within a given time

and space” [54].

This body of research will consider the definition provided by the DoD to define

27

*M
ul

tip
le

 a
rr

ow
s

in
di

ca
te

 m
ul

tip
le

ite

m
s

Su
bs

ys
te

m

Le
ve

l

Sy
st

em

Le
ve

l

Sy
st

em
-o

f-S
ys

te
m

s
Le

ve
l

F
ig
u
re

9
:

T
h
e

st
ru

ct
u
re

of
a

ca
m

p
ai

gn
as

d
efi

n
ed

in
cl

u
d
es

th
e

va
ri

ou
s

it
em

s
d
es

cr
ib

ed
in

S
ec

ti
on

2.
1.

C
am

p
ai

gn
s

co
n
si

st
of

m
u
lt

ip
le

ar
ch

it
ec

tu
re

s.
A

n
ar

ch
it

ec
tu

re
is

a
m

is
si

on
an

d
th

e
fu

n
ct

io
n
al

an
d

p
h
y
si

ca
l

el
em

en
ts

it
d
efi

n
es

.
T

h
e

fu
n
ct

io
n
al

el
em

en
ts

of
in

te
re

st
fo

r
th

is
re

se
ar

ch
ar

e
th

e
or

b
it

s
an

d
tr

a
je

ct
or

ie
s.

T
h
e

p
h
y
si

ca
l

el
em

en
ts

of
in

te
re

st
fo

r
th

is
re

se
ar

ch
ar

e
th

e
sp

ac
e

el
em

en
ts

,
an

d
su

rf
ac

e
el

em
en

ts
.

T
h
e

sp
ac

e
el

em
en

ts
ar

e
ty

p
ic

al
ly

th
e

ve
h
ic

le
s,

w
h
il
e

th
e

su
rf

ac
e

el
em

en
ts

ar
e

ty
p
ic

al
ly

th
e

p
ay

lo
ad

s.
T

ec
h
n
ol

og
ie

s
ar

e
ap

p
li
ed

to
th

e
su

b
sy

st
em

s
of

th
e

sp
ac

e
an

d
su

rf
ac

e
el

em
en

ts
.

28

Table 3: Common Space Architecture Elements [63]

Element Name Examples

Operations Elements

• Communication Operations Concepts
• Operations Functions
• Space Logistics
• Command, Control, and Communication

Orbits and Trajectories

• Earth Orbits
• Interplanetary Transfers
• Planetary Orbits
• Entry, Descent, Landing, and Ascent

Transportation Elements
• Earth-to-Orbit Vehicle
• Launch Facilities

Space Elements
• In-Space Vehicle
• Vehicle for Entry, Descent, Landing, and Ascent

Surface Elements
• Surface Bases
• Surface Vehicles
• In-Situ Resources

Crew
Manned Only

• People as Payload or Operators
• Physiology and Psychology
• Human Factors
• Safety and Reliability

a campaign, specifically focusing on a context to space. An example of a strategic

or operational objective would be the exploration of the Martian surface, or the

construction of a Lunar outpost. The related major operations shall be architectures

as described in Section 2.1.6. To achieve the strategic or operational objective would

require multiple architectures. An architecture within the context of this dissertation

is described as a combination of functional and physical elements defined by a specific

mission. As a result, this dissertation will consider a campaign as a set of missions

and their related functional and physical elements brought together to achieve an

overarching objective. Figure 9 provides a visual description of the structure of a

campaign, and how the terms defined in this section are related to each other for the

purpose of this research.

29

2.2 Desired Method Features

In order to bring additional knowledge earlier into the design process, it would be de-

sirable to observe both architectures and technologies together. This allows the effects

due to incorporating technologies into architecture designs to be better understood.

It is known that technologies have a dramatic impact on the overall cost and devel-

opment schedule of designs [62, 99, 64]. This implies a need to consider technologies

alongside architecture design during the conceptual design process to aid in increas-

ing knowledge to reduce cost and schedule overruns. A method or technique should

thereby include the ability to evaluate both architectures and technologies. Due to

the definition of architectures and technologies in this dissertation at the subsystem

level, identified methods and techniques should be capable of defining the problem at

a subsystem level.

Furthermore, during the conceptual design process, considering a wide range of

design alternatives and technologies will help to better understand the trade space.

This will allow decision makers to make well-informed decisions early on during the

design process to mitigate unnecessary cost growth and schedule slips. A method

should be capable of evaluating many different architectures and technologies to-

gether to provide this information. Most real world decisions will present themselves

in a multi-objective form, having multiple competing desires, such as cost and per-

formance. The number of objectives to consider can vary dramatically depending

on the goals of a given study. A method should be flexible enough to allow these

varying objectives to be evaluated across both architectures and technologies. Table

4 summarizes the desired features discussed above.

The remainder of this chapter will focus on discussing modern, relevant methods

and frameworks for the purposes of architecture design and technology evaluation.

The ability of each method to meet the features outlined above will be detailed.

30

Table 4: Required Features for an Integrated Architecture Analysis and Technology
Evaluation Framework

Feature Purpose

Architectures Defined at Subsystem
Level

To enable effects due to technologies de-
fined at the subsystem level to be eval-
uated

Can Evaluate Multiple Architectures To enable large numbers of architecture
alternatives to be evaluated simultane-
ously within the same trade space

Multi-objective Architecture Analysis To enable architectures to be compared
against a wide range of customer objec-
tives such as cost, performance, reliabil-
ity, risk, etc.

Technologies Defined at Subsystem
Level

To enable subsystem or component level
solutions to technical challenges within
a design

Can Evaluate Multiple Technologies To enable large numbers of technologies
to be considered simultaneously within
the same trade space

Multi-objective Technology Evaluation To enable technologies to be compared
against a wide range of customer objec-
tives, such as cost, performance, reliabil-
ity, risk, etc., which may be propagated
into the architecture analysis process

2.3 Architecture Design Methods

Recent research is attempting to mitigate the problem of combinatorial explosion in

the design of complex architectures by providing methods capable of quickly ana-

lyzing the design space through novel methods. In the domain of system of systems

architectures, alternatives are typically a set of discrete design decisions that result in

a unique architecture. This discrete nature creates challenges with regard to evaluat-

ing and analyzing the architecture space. The evaluation frameworks of the following

methods are of particular interest and relevance to this dissertation and will be high-

lighted.

31

2.3.1 ARCHITECT

The Architecture-Based Technology Evaluation and Capability Tradeoff (ARCHI-

TECT) method proposes using architectures to describe the system of systems design

space and to generate an architectural alternative space from it [39]. The alternatives

are subsequently evaluated in order to generate data from which decision makers can

gain information and insight.

ARCHITECT utilizes various advanced methods to define, evaluate, and assess

the architecture design space. The Relational Oriented Systems Engineering and

Technology Tradeoff Analysis (ROSETTA) environment provides a framework to al-

low decomposition and mapping of the architecture elements to functional and/or

physical requirements [70, 20, 69]. Once analysis is performed, gaps in the current

architecture are identified and the process of describing the alternative space begins.

This is done by utilizing the Technique for the Enumeration of System of Systems Al-

ternatives (TESSA), The Rapid Architecture Alternative Modeling (RAAM) frame-

work, and the Architecture Resource-based Collaborative Network Evaluation Tool

(ARCNET). Combining these methods allows the full set of architectural alterna-

tives across all the defined dimensions to be described. TESSA provides a means of

generating possible tasks, process flows, candidate systems, interface requirements,

and consider organizational constraints [38]. RAAM provides the ability to combine

the system and tasks to create the full set of system portfolios and operational im-

plementations of each of those system portfolios [50]. ARCNET adds the full set of

interface alternatives and force structures for the alternatives generated by RAAM

[23]. Figure 10 provides the process flow diagram of the ARCHITECT method and

how each step of the process maps to a typical engineering process.

ARCHITECT is capable of handling large numbers of alternatives, incorporating

both architectures and technologies, to be evaluated on a multi-objective basis. How-

ever, a key disadvantage to ARCHITECT with regard to the features required of a

32

F
ig
u
re

1
0
:

A
R

C
H

IT
E

C
T

u
ti

li
ze

s
va

ri
ou

s
m

et
h
o
d
s

in
an

eff
or

t
to

d
es

cr
ib

e
sy

st
em

of
sy

st
em

s
d
es

ig
n

sp
ac

es
b
y

u
si

n
g

ar
ch

it
ec

tu
re

s
[3

9]
.

T
h
es

e
m

et
h
o
d
s

in
cl

u
d
e

R
O

S
E

T
T

A
[7

0,
20

,
69

]
fo

r
th

e
sy

st
em

s
d
efi

n
it

io
n

p
h
as

e,
an

d
T

E
S
S
A

[3
8]

,
A

R
C

N
E

T
[2

3]
,
an

d
R

A
A

M
[5

0]
fo

r
th

e
al

te
rn

at
iv

es
ge

n
er

at
io

n
an

d
ev

al
u
at

io
n

p
h
as

es
.

A
R

C
H

IT
E

C
T

ta
ke

s
st

ro
n
g

in
fl
u
en

ce
fr

om
th

e
m

il
it

ar
y

d
om

ai
n
,

an
d

as
su

ch
,

p
ro

v
id

es
an

op
er

at
io

n
s-

b
as

ed
ap

p
ro

ac
h

to
so

lv
in

g
th

e
sy

st
em

of
sy

st
em

s
p
ro

b
le

m
.

33

method or framework for this research is the level of definition of architectures and

technologies. ARCHITECT is formulated under the notion of system-level modeling

of architecture elements. This does not meet the needs of a subsystem-level break-

down of an architecture, which is needed to meet the desire to evaluate subsystem-level

technologies concurrently with architectures.

2.3.1.1 RAAM

RAAM provides the physical means by which systems and tasks are combined and

evaluated in the ARCHITECT method. ARCHITECT aims at performing a full fac-

torial analysis of the architecture space. RAAM enables this by providing a simple,

lightweight definition of the input architectures such that the analysis does not re-

quire lengthy computation for any single architecture. This allows a great number of

architectures to be evaluated in a short period of time.

RAAM receives the inputs of the required capabilities of an architecture from

ARCHITECT where the capabilities are combined with the required tasks to create a

full capability hierarchy. RAAM is flexible enough to work with a variety of computer

models to perform the system of systems architecture analysis. Outputs of RAAM are

combined into “portfolios” of architectures. These portfolios can contain architectures

with the same physical system portfolio, as was shown in the canonical example found

in Iacobucci’s development of RAAM [50]. The full RAAM process is depicted in

Figure 11.

2.3.2 STASE

The Set Theory-Influenced Architecture Space Exploration (STASE) method takes a

different approach to architecture space evaluation. Where ARCHITECT performs

a full factorial analysis of the architecture alternative space, STASE attempts to

reduce the number of alternatives that are analyzed by utilizing set theory to define

the system of systems problem. Figure 12 provides a visual representation of the

34

Figure 11: The process depicted is a reproduction of the original developed by
Iacobucci [50]. It formalizes the process, inputs, and outputs of the RAAM method-
ology. RAAM provides a method of performing analysis of large system of systems in
a lightweight, memory-efficient environment. The result is the capability to perform
analysis on large numbers of architecture alternatives in a short period of time.

method’s process.

STASE utilizes a technique called Set Theory-influenced System Decomposition

(STSD) to decompose the problem into three primary spaces: the architecture space,

the design space, and the objective space [104]. A morphological approach is taken for

the decomposition of the system of systems, resulting in the architecture space. The

design space consists of all of the design parameters that define an architecture. This

includes parameters defining both physical and functional elements. The objective

35

Figure 12: STASE attempts to reduce the challenges associated with large design
spaces for system of systems by defining architectures in a novel way by utilizing set
theory. The architecture is decomposed into 3 spaces which are used to translate
the physical architectures into defined objectives. The intersection of the objective
subsets are analyzed using Pareto analysis to determine optimum designs from the
bounds of these subsets [104].

space consists of parameters which define the desired outcome of an architecture.

Once the problem has been decomposed into the various spaces, alternatives are

generated. These alternatives are derived from the morphological architecture space.

Analysis of the alternatives does not follow the typical full factorial approach used

when a system of systems is decomposed in a discrete manner. STASE utilizes set

theory in an attempt to reduce the number of alternatives that are analyzed.

STASE provides the level of definition and decomposition of architectures desired

for this dissertation. The method allows very large spaces to be explored efficiently

against many objective metrics simultaneously. However, STASE lacks any formal

definition of technologies. This lack of definition may provide a simple means of

36

integrating technologies into the method, as opposed to reworking an existing method.

A brief overview of set theory and how it is utilized in STASE in an attempt to

minimize combinatorial explosion follows.

2.3.2.1 Set Theory

Set theory relies on an intersection between individual sets of designs to find the

optimal design, given a set of stated objectives. Consider a notional problem where

the architecture space is divided into two overlapping sets of architectures, A and

B, as shown in Figure 13. If all of the architectures of these two sets are plotted

on an axis consisting of two objective parameters, 1 and 2, whose values decrease

with increasing improvement, a Pareto frontier can be drawn around the intersecting

region. This frontier represents the optimal architectures for the stated objectives

while also meeting the design criteria defined by both architecture sets. A Pareto

finding algorithm can then be used to find this frontier from the interaction of the

two architecture sets. By utilizing the Pareto finding algorithm, one does not need to

perform analysis of every single possible architecture to find this optimum frontier.

Rather, an optimizer is introduced to reduce the number of architectures that are

evaluated to find the optimum design. It is this principle that STASE utilizes in an

attempt to reduce the number of alternatives analyzed for large system of systems

design problems.

2.3.3 MATE-CON

The multi-attribute tradespace exploration and conceptual design (MATE-CON) is

the name given to the joining of the multi-attribute tradespace exploration (MATE)

process and the integrated concurrent design (ICE) process [98, 96, 72]. MATE-CON

breaks the complex system of systems design problem into two levels. The first is

the architecture level, performed by MATE [98, 97]. The second is more detailed

conceptual level design of specific architecture elements, enabled by ICE [72]. The

37

Objective 1

O
bj

ec
tiv

e
2

Pareto Frontier

Architecture
Set A

Architecture
Set B

Intersection
A ∩ B

Figure 13: STASE utilizes set theory in an attempt to reduce the number of alterna-
tives that must be analyzed to define the architecture space. Here, the architecture
space is described by two architecture sets with an intersecting region. Translating
the architecture space into the objective space, one can observe a Pareto frontier in
the intersecting region, which can be found utilizing a Pareto finding algorithm.

MATE-CON process begins with an initial exploration of a large architecture space

utilizing the MATE process, on the left side of Figure 14. The results of this ini-

tial MATE process feed into the ICE process on the right side of Figure 14. Here,

multiple disciplines are brought together in an integrated design environment where

conceptual-level vehicle designs are evaluated. Each of the disciplines are represented

by some form of model operated by a human in the loop to achieve a result. This

information is maintained via an electronic database which allows each of the dis-

ciplines to retrieve relevant information about other disciplines. This database of

information at the conceptual vehicle design level then feeds back into the MATE

process to further refine the architecture-level analysis.

The MATE process captures the high-level customer objectives and needs, which

38

MATE

Figure 14: MATE-CON unites multi-attribute tradespace exploration (MATE) and
integrated concurrent engineering (ICE) to provide a capability to assess many design
choices, quantitatively, very early in the design process [72].

are then mapped to specific design variables which a modeling and simulation en-

vironment operates on to calculate the figures of merit. This process populates a

architecture trade space which can be explored to refine the problem to an archi-

tecture or set of architectures with which to move forward. The analysis process

is highly automated, tailored to the problem in question. Results are presented in

a two-dimensional multi-objective space consisting of utility and cost. Utility is a

dimensionless value which represents the overall performance of a design utilizing a

multi-attribute utility process to consolidate multiple figures of merit into a single

utility value. Cost is simply the physical currency cost of a design.

The ICE process aims to capture more of the detailed design information of an ar-

chitecture, typically present in the vehicle element. The various subsystem disciplines

of the design are integrated into a human-in-the-loop physical design environment.

Here, subsystems and technologies may be traded and evaluated. The goal is to

ensure feasibility of a given architecture at the vehicle level. If an infeasible design

39

results from this process, an alternative architecture from the MATE process would

be selected and the ICE process restarted.

MATE-CON begins to integrate subsystem-level analysis of elements within an

architecture design framework. However, the method has a disconnect between the

two. The MATE process provides the high-level analysis of architectures against

the customer objectives. At this level, the elements of the design are viewed only

at the system level. It is not until detailed design of the vehicle element, through

the ICE process, that subsystem-level analysis is introduced. Because MATE-CON

performs a down selection of architecture alternatives in the MATE process before

subsystem-level conceptual vehicle design via the ICE process, the interaction between

subsystems and the architecture may be difficult to observe. Additionally, MATE-

CON provides no formal definition of technologies. It is possible to perform technology

evaluations due to the subsystem-level vehicle definition in ICE; however, due to

the down selection of architectures before more detailed conceptual design of vehicle

elements, observing the effects of technologies at the architecture level is challenging.

Finally, MATE-CON does provide a multi-objective analysis of architectures, though

it is consolidated to only two dimensions at the highest level, which may obscure

further exploration of the architecture space when considering subsystem-level design

choices.

2.4 Technology Evaluation Methods

A quick literature search will provide numerous methods developed to perform tech-

nology evaluation. The typical goal of any technology evaluation technique is to

provide a clear understanding of the technologies of interest. This will present deci-

sion makers with an understanding of what technologies may be the best choice for a

potential solution to a given problem. Presented here are a few of the more relevant

methods that have been developed. These methods define technology in a variety of

40

ways, some of which differ from the definition of technologies as presented by this

dissertation. However, the approaches that these methods take provide insight into

what will be desirable traits for integrating such a process into a new framework.

2.4.1 TIES

Historically, system design in the aerospace industry held a paradigm where the pri-

mary objective was to maximize performance while minimizing weight. However, as

economic and performance objectives became increasingly strict, focus shifted from a

performance-based design paradigm, to one of affordability and quality [57]. To meet

these strict technical and financial requirements, new technologies had to be con-

sidered as part of the solution. Technology Identification, Evaluation and Selection

(TIES) is one of the initial methods developed to meet this design paradigm shift,

allowing designers to analyze the impact technologies have on baseline designs from

both a performance and economic perspective, while also helping decision makers

with selecting technologies worth investing in. Figure 15 shows the flow of the TIES

methodology.

The initial steps of TIES focus on defining the problem and design space and

analyzing that design space in an attempt to understand whether infusing technology

is required to solve the problem. In these initial steps, many standard engineering

tools are utilized, such as quality function deployment, to aid in translating customer

requirements into engineering metrics, and morphological matrices to understand the

physical breakdown of the design space. Analysis is performed utilizing techniques

such as Response Surface Methodology and Monte Carlo simulations. These tech-

niques allow probabilistics and uncertainty to be included in the analysis of designs

and technologies.

Once feasibility and viability have been determined, the method continues with

technology identification, evaluation, and selection, as its name implies. These steps

41

F
ig
u
re

1
5
:

T
h
e

T
IE

S
m

et
h
o
d
ol

og
y

w
as

d
ev

el
op

ed
to

m
ee

t
th

e
in

cr
ea

si
n
g

d
em

an
d

on
d
es

ig
n
er

s
to

p
er

fo
rm

d
es

ig
n

fr
om

a
m

or
e

ec
on

om
ic

ap
p
ro

ac
h
,

as
op

p
os

ed
to

th
e

h
is

to
ri

ca
l

p
er

fo
rm

an
ce

-b
as

ed
ap

p
ro

ac
h
.

T
IE

S
b

eg
in

s
b
y

d
efi

n
in

g
th

e
cu

st
om

er
re

q
u
ir

em
en

ts
an

d
d
es

ig
n

sp
ac

e
th

ro
u
gh

st
an

d
ar

d
en

gi
n
ee

ri
n
g

m
et

h
o
d
s

su
ch

as
q
u
al

it
y

fu
n
ct

io
n

d
ep

lo
y
m

en
t.

M
et

h
o
d
s

su
ch

as
re

sp
on

se
su

rf
ac

e
eq

u
at

io
n
s

an
d

M
on

te
C

ar
lo

si
m

u
la

ti
on

ar
e

em
p
lo

ye
d

to
an

al
y
zi

n
g

th
e

ex
is

ti
n
g

d
es

ig
n

sp
ac

e
to

d
et

er
m

in
e

w
h
et

h
er

te
ch

n
ol

og
y

in
fu

si
on

is
n
ec

es
sa

ry
.

O
n
ce

d
ee

m
ed

n
ec

es
sa

ry
,

te
ch

n
ol

og
ie

s
ar

e
in

fu
se

d
in

to
th

e
d
es

ig
n

an
d

th
ei

r
im

p
ac

t
an

al
y
ze

d
an

d
q
u
an

ti
fi
ed

to
re

ac
h

a
fi
n
al

d
ec

is
io

n
on

a
te

ch
n
ol

og
y
-i

n
fu

se
d

d
es

ig
n

[5
7]

.

42

are only performed if it is determined that technologies are required to meet the

customer requirements set forth in the initial steps of the method. By considering

technology compatibilities and impact mappings on specific engineering design met-

rics, the effects of infusing technology into a given design can be modeled and assessed,

including technology impact uncertainties. TIES uses a concept called “K-factors”

as adjustments to the engineering design metrics as a method of inserting technology

impacts into the already existing modeling and simulation framework developed in

the early stages of the methodology. This allows for a quick turnaround on analysis

of a wide range of technologies without a large investment in developing new models.

The final step of the TIES methodology consists of utilizing decision making tech-

niques, such as Multi-Attribute Decision Making (MADM), to aid decision makers in

making final choices on a technology family.

TIES provides a well-formulated and robust means of evaluating technologies at

a subsystem level. It allows many technologies or sets of technologies to be evaluated

side by side, considering a variety of objectives simultaneously. Additional, TIES

allows statistical evaluation of technology performance and risk. The method was

primarily developed for the evaluation of technologies on a specific baseline design.

Additional, designs are not defined at the architecture level as defined by this body

of work.

2.4.1.1 ATIES

Abbreviated Technology Identification, Evaluation, and Selection (ATIES) is a method

developed by A.C. Charania as subset of the TIES methodology to suit the space

transportation industry [17]. ATIES removes the initial steps of TIES relating to

characterizing the mission needs and need for technologies on the basis that these

are generally known to the designer in the space transportation conceptual design

43

community. Furthermore, ATIES omits the technology identification step initially in-

tended to identify available technologies for infusion. Again, it was stated that these

technologies are well known to the designer as a requirement for the design [87].

Baseline Concept Determination
Requirements = Objectives x Constraints

A

Technology Alternatives

Technology Identification

Technology Evaluation

Physicsfbased Modeling and
Simulation Environment

%ROSETTA MODELS

Physicsfbased Modeling and
Simulation Environment

%ROSETTA MODELS

B

E

Technology Mixes Deterministic or
Stochastic

Impact Factors

Technology Selection
F

Pugh Evaluation Matrix ,PEM0

TOPSIS: Best Alternatives
Rank Alternatives for

Desired Weighting

Individual Technology
Comparison for

Resource Allocation

Technology Compatibility Matrix (TCM)

Technology Compatibility

C

Technology Impact Matrix (TIM)

Technology Impact

D

I RI IRIR I I

I RI IRIR I I

I RI IRIR I I

I RI IRIR I I

I RI IRIR I I

I RI IRIR I I

I RI IRIR I I

I RI IRIR I I

L RLR LLLL

L RLR LLLL

L RLR LLLL

L RLR LLLL

L RLR LLLL

L RLR LLLL

L RLR LLLL

L RLR LLLL

Metric I Metric , …GG MetricX
_lternative I d d …GG d
_lternative , d d …GG d
_lternative f d d …GG d

G
G
G

G
G
G

G
G
G

G
G
G

G
G
G

_lternative , n d d …GG d

F r e q u e n c y C h a r t

lb

.000

.008

.016

.024

.032

0

8

16

24

32

42p500 46p875 51p250 55p625 60p000

1 J 0 0 0 T r i a l s 0 O u t l i e r s

F o r e c a s t : D r y W e i g h t

0, 1, 3, 4, 6,

J 8 8

Vehicle
Influence

Factors ,VIF0

Technologies
Symmetric Matrix impact factors

Technologies

Technologies
_lternatives

I , f
Main Cruise Stage Propulsion Solar Electric Chemical rocket Solar Thermal
Main Communications X band Orbiter link UHF
Main Power Solar Nuclear Chemical VatteriesC

ha
ra

ct
er

is
tic

s

Main Landing System _irbags Rocket thrusters Glider

CompatibilityMatrix
(1:compatible,0:incompatible)

C
om

po
si

te
W

in
g

C
om

po
si

te
Fu

se
la

ge

C
ir

cu
la

tio
n

C
on

tr
ol

H
L

FC

E
nv

ir
on

m
en

ta
lE

ng
in

es

Fl
ig

ht
D

ec
k

Sy
st

em
s

Pr
op

ul
si

on
M

at
er

ia
ls

In
te

gr
al

ly
yS

tif
fe

ne
d

_
lu

m
in

um
_

ir
fr

am
e

St
ru

ct
ur

es
ww

in
gN

Sm
ar

tW
in

g
St

ru
ct

ur
es

w_
ct

iv
e

_
er

oe
la

st
ic

C
on

tr
ol

N

_
ct

iv
e

Fl
ow

C
on

tr
ol

_
co

us
tic

C
on

tr
ol

TI T, Tf T(T) T4 T5 T6 T7 TID TII

CompositeWing I I I D I I I D D D D

CompositeFuselage I I I I I I I I I I

CirculationControl I I I I I I I I I

HLFC I I I I D D D I

EnvironmentalEngines I I I I I I D

FlightDeckSystems I I I D I I

PropulsionMaterials I D I I I

IntegrallyyStiffened_luminum_irframe
StructureswwingN

I D I I

SmartWingStructuresw_ctive
_eroelasticControlN

I I I

_ctiveFlowControl I I

_cousticControl I

_ircraftMorphing

_
ir

cr
af

tM
or

ph
in

g

SymmetricMatrix

C
om

po
si

te
W

in
g

C
om

po
si

te
Fu

se
la

ge

C
ir

cu
la

tio
n

C
on

tr
ol

H
L

FC

E
nv

ir
on

m
en

ta
lE

ng
in

es

Fl
ig

ht
D

ec
k

Sy
st

em
s

Pr
op

ul
si

on
M

at
er

ia
ls

In
te

gr
al

ly
yS

tif
fe

ne
d

_
lu

m
in

um
_

ir
fr

am
e

St
ru

ct
ur

es
ww

in
gN

Sm
ar

tW
in

g
St

ru
ct

ur
es

w_
ct

iv
e

_
er

oe
la

st
ic

C
on

tr
ol

N

_
ct

iv
e

Fl
ow

C
on

tr
ol

_
co

us
tic

C
on

tr
ol

TI T, Tf T(T) T4 T5 T6 T7 TID TII

WingWeight R,DU L)U RIDU R)U L,U
FuselageWeight R,)U RI)U
EngineWeight LIU L(DU RIDU L)U
ElectricalWeight L)U LIU L,U L)U L)U L,U L,U

_vionicsWeight L)U L,U L)U L,U L)U L,U
SurfaceControlsWeight R)U L)U L)U
HydraulicsWeight R)U L)U
NoiseSuppression RIDU RIU RIDU
SubsonicDrag R,U R,U RIDU R)U

SupersonicDrag R,U R,U RI)U R)U
SubsonicFuelFlow LIU LIU R,U R(U LIU
SupersonicFuelFlow LIU R,U R(U
MaximumLiftCoefficient LI)U
OHS L,U L,U L,U L,U L,U L,U R,U L,U L,U LIU
RDTHE L(U L(U L,U L,U L(U L,U L(U L)U L)U L)U

Productioncosts L6U L6U LfU L)U L,U LIU LfU RfU RfU RfU RfU

_ircraftMorphing

TechnicalK_FactorVector

Figure 16: The Abbreviated Technology Identification, Evaluation, and Selection
(ATIES) method is a subset of the larger Technology Identification, Evaluation, and
Selection (TIES) method tailored to the space transportation community. Steps per-
taining to problem, design space, and technology definition are omitted, while main-
taining the core identification, evaluation, and selection steps [17, 87].

ATIES maintains steps related to technology compatibility and impact matrices,

modeling and simulation frameworks utilizing methods such as response surface equa-

tions and Monte Carlo simulation, and final selection through some means of decision

making, typically a weighted combination of figures of merit. ATIES makes an addi-

tion to the TIES method by including a filter which allows technology families that

do not fit within a defined budget to be automatically eliminated in an attempt to

manage the large combination of architectures which exist in space transportation

design problems. A general flow diagram of the ATIES method is provided in Fig-

ure 16. Because ATIES was developed as a subset of the TIES method, it inherits

the advantages and disadvantages with regard to desired features for a method or

framework to meet the statement of purpose of this dissertation.

44

2.4.2 TRIPS

Many of the technology evaluation methods currently in use rely on a technology’s

impact on underlying subsystem-level metrics, such as an engine’s thrust or spe-

cific impulse, to provide an overall effect on the subsystem and related systems and

architecture. These “K-factors” provide a simple method for applying technology im-

pacts. However, many of the methods stop at this point, providing little information

about the development of a technology and its impact on a design. The Technol-

ogy Roadmapping and Investment Planning System (TRIPS) attempts to solve this

problem by modeling a technology’s development in a probabilistic manner and then

generating an optimal resource allocation profile given a set of programmatic con-

straints [18]. The goal is to bring information related to the cost, schedule, and

uncertainty of technology development into the design of architectures to supplement

the performance impacts estimated by other methods.

TRIPS models the development of a technology as a discrete time Markov Chain.

Each event is a transition from one TRL to the next. The probability that a technol-

ogy will transition to the next TRL in a single time step of the model is a function

of the monetary investment in that technology. This transition probability is de-

fined using a statistical distribution, such as a triangular or normal distribution of

the likelihood of transition versus the estimated cost. A matrix for each technology

is generated, representing all the probabilities for the developments of a technology

through the nine TRLs. These transition probability matrices populate the proba-

bility catalog. Figure 17 shows the process by which portfolios of technologies are

evaluated, given user-defined funding profiles and architectures. This information is

analyzed to determine feasible portfolios for maturing a desired capability [18].

TRIPS includes the formal definition of architectures within the method. Addi-

tionally, the evaluation of multiple technologies against many objectives is performed.

45

However, the level of definition of architectures is not at the subsystem level as re-

quired. The method focuses on high-level architecture objectives to measure the de-

sirability of technologies as well, not meeting the needs for an integrated architecture

design and technology evaluation framework.

Figure 17: The Technology Roadmapping and Investment Planning System (TRIPS)
is focused on solving the problem of technology development planning. It approaches
technology development in a probabilistic manner through a discrete Markov Chain
simulation to account for variations in investment funding levels and their effect on
technology development and associated architecture capabilities [18].

2.4.3 TAPP

The Technology Alignment and Portfolio Prioritization (TAPP) technique attempts

to define and assess sets or portfolios of desired technologies while incorporating

organizational structure, available resources, and policies into the analysis. Funaro

recognized the challenges associated with assessing technology for large-scale systems

of systems, claiming that the time-intensive nature of technology evaluation lends

itself well to automation [32]. Because of this, TAPP approaches the problem by

46

looking at how technologies align with an organization and its desired missions, in

this case, NASA’s Marshall Space Flight Center. The quantitative and fiscal impact

on technology analysis are left to other evaluation methods such as TIES and TRIPS

as discussed in sections 2.4.1 and 2.4.2, respectively. Figure 18 shows the basic process

of TAPP.

Visualization

Environment

Database

Environment

Define Mission,

Element,
Subsystem, &

Technology
Spaces

Map Mission

Space to Element
Space & Assign

Weightings

Map Subsystem

Space to
Technology Space

& Assign
Weightings

Map Element

Space to
Subsystem Space

& Assign
Weightings

Explore Mission/

Technology
Prioritizations

Figure 18: The Technology Alignment and Portfolio Prioritization (TAPP) is a
method that focuses on determining how well a portfolio of technologies aligns with
a defined organization’s competencies and goals [32]

TAPP requires the definition of four spaces: mission, element, subsystem, and

technology. The mission space is the desired set of missions the organization is in-

terested in performing. The element space is all of the physical systems and systems

47

of systems that are available to an organization. The subsystem space is the set of

subsystems required to define all elements in the element space. The technology space

is the set of all considered technologies available to the organization. During technol-

ogy definitions, it is also important to define how the organization’s capabilities align

with each technology. Once these four spaces are defined, mappings must be made to

link the mission space to the technology space, through the elements and subsystems

spaces. To do this, there are three mappings connecting the four spaces:

Mission−→Element−→Subsystem−→Technology

Each mapping has its own set of user-defined weighting parameters. Once all of the

spaces, mappings, and weighting parameters are defined, the technology prioritiza-

tion can be explored based on the desired mission. Because an alignment with each

technology was made with the organization’s capabilities, not only can users explore

how technologies are prioritized for each mission, but also how well the technology

portfolio, and hence associated missions, align with the organization’s capabilities.

This can provide valuable information regarding gaps in an organization’s workforce.

TAPP inherently defines technologies at the subsystem level of the design. How-

ever, the effect of the technology on a physical design is not accounted for. Though

multiple technologies may be evaluated side by side, they are only evaluated on a sin-

gle objective, organizational alignment. This does not meet the needs of a framework

for this research. Additionally, the method does not consider architectures as defined

by this document. Rather, it traces vehicle needs through a specific mission.

2.4.4 QuantUM3

The Quantitative Uncertainty Modeling, Management, and Mitigation (QuantUM3)

method was developed to allow designers the ability to understand the risk associated

with different technologies in an architecture by leveraging uncertainty quantification

48

techniques [36]. QuantUM3 integrates cost and schedule into the analysis of technolo-

gies through quantitative, probabilistic performance analysis of the risk associated

with the readiness and effectiveness of each technology in a portfolio [36]. The flow

of the QuantUM3 methodology is shown in Figure 19.

Figure 19: The Quantitative Uncertainty Modeling, Management, and Mitigation
(QuantUM3) method focuses on the risk associated with technologies in an architec-
ture through uncertainty quantification techniques [36].

As is seen in the flow diagram, a baseline architecture is selected in phase 1. This

allows technologies to be analyzed from a risk-based performance assessment, while

also including the effects of cost and schedule. This provides a very detailed analysis

49

of various technologies for the defined architecture and organizational constraints. Al-

though QuantUM3 allows the evaluation of multiple technologies on a multi-objective

basis, it fails to define architectures and technologies at the proper level. Additionally,

the methods focuses on technology evaluation after architecture down selection.

2.5 Model-Based Systems Engineering

Literature provides many formal and informal definitions for the terms Model-Based

Systems Engineering (MBSE). INCOSE provides a formal definition for Model-Based

Systems Engineering as: “...the formalized application of modeling to support system

requirements, design, analysis, verification and validation activities beginning in the

conceptual design phase and continuing throughout development and later life cycle

phases”[48]. Here we see MBSE as a way of formalizing the application of modeling to

support systems engineering tasks. However, the definition provided by The National

Defense Industrial Association helps to clarify by defining MBSE as “An approach to

engineering that uses models as an integral part of the technical baseline that includes

the requirements, analysis, design, implementation, and verification of a capability,

system, and/or product throughout the acquisition life cycle”[9]. In this definition,

it is made much more clear that modeling should be an integral part of the systems

engineering process. Both definitions are clear and specific that this integration should

not just occur in the analysis phase of a design, but rather throughout the entire life

cycle, from requirements formulation, conceptual design, and through the end of life

phases.

The diagram in Figure 20 shows a high-level overview of the MBSE ontology. The

ontology is broken into seven high-level concepts [49]:

• System concepts, which cover the basic concepts associated with System, Sys-

tems of Systems, Constituent Systems, etc.

• Need concepts, which cover all concepts associated with System Needs, such

50

1
..

*1

1
1

1
..

*

1
..

*

1

1

*
1

1
1

1
..

*
1

..
*

1
..

*1

1
..

*

1

1
..

*

1
..

*

1

1

1
..

*

1
..

*

1

1
..

*

1
..

*

1
1

..
*

1
..

*

1
..

*
1

1 1

1

1
..

*

1
1

..
*

1
..

*1

1
..

*

1
1

..
*

1

1
..

*

1

1
1

 d
e

s
c
ri
b

e
s

1
..

1
*

1
..

*1

1
..

*

1

1

1
..

*

1

1
..

*

1

1
..

*

1
..

*

«
b

lo
c
k
»

S
c

e
n

a
ri

o

«
b

lo
c
k
»

N
e

e
d

{A
bs

tra
ct

}

«
b

lo
c
k
»

U
s

e
 C

a
s

e

«
b

lo
c
k
»

C
o

n
s

ti
tu

e
n

t
S

y
s

te
m

«
b

lo
c
k
»

S
y

s
te

m
 E

le
m

e
n

t

«
b

lo
c
k
»

O
rg

a
n

is
a
ti

o
n

«
b

lo
c
k
»

C
o

n
te

x
t

«
b

lo
c
k
»

S
y

s
te

m

«
b

lo
c
k
»

A
rc

h
it

e
c

tu
re

«
b

lo
c
k
»

L
if

e
 C

y
c

le

«
b

lo
c
k
»

S
ta

k
e

h
o

ld
e

r
R

o
le

«
b

lo
c
k
»

S
ta

g
e

«
b

lo
c
k
»

P
ro

c
e

s
s

 E
x

e
c

u
ti

o
n

G
ro

u
p

«
b

lo
c
k
»

P
ro

c
e

s
s

«
b

lo
c
k
»

A
c

ti
v

it
y

«
b

lo
c
k
»

A
rt

e
fa

c
t

«
b

lo
c
k
»

P
e

rs
o

n

«
b

lo
c
k
»

S
y

s
te

m
 o

f
S

y
s

te
m

s

«
b

lo
c
k
»

A
rc

h
it

e
c

tu
ra

l
F

ra
m

e
w

o
rk

«
b

lo
c
k
»

P
ro

je
c

t

«
b

lo
c
k
»

P
ro

g
ra

m
m

e

«
b

lo
c
k
»

L
if

e
 C

y
c

le
 M

o
d

e
l

«
b

lo
c
k
»

P
ro

d
u

c
t

«
b

lo
c
k
»

S
e

rv
ic

e

«
b

lo
c
k
»

C
o

m
p

e
te

n
c

e

d
e

s
c
ri
b

e
s

1
..

*
1

..
*

v
a

lid
a

te
s

in
te

ra
c
ts

 w
it
h

is
 r

e
a

lis
e

d
 a

s

in
te

ra
c
ts

 w
it
h

e
x
h

ib
it
s

re
a

lis
e

s

ru
n

s s
h

o
w

s
 t
h

e
 o

rd
e

r
o

f
e

x
e

c
u

ti
o

n
 o

f

p
ro

d
u

c
e

s

in
te

ra
c
ts

 w
it
h

1

re
p

re
s
e

n
ts

 n
e

e
d

 f
o

r

1

re
p

re
s
e

n
ts

 n
e

e
d

 f
o

r

re
p

re
s
e

n
ts

 n
e

e
d

 f
o

r

p
ro

d
u

c
e

s
/c

o
n

s
u

m
e

s

1
..

*
1

d
e

s
c
ri
b

e
s
 s

tr
u

c
tu

re
 o

f

1

d
e

s
c
ri
b

e
s
 t
h

e
 e

v
o

lu
ti
o

n
 o

f

s
h

o
w

s
 b

e
h

a
v
io

u
r

o
f

in
te

rf
a

c
e

s
 w

it
h

d
e

s
c
ri
b

e
s
 t
h

e
 e

v
o

lu
ti
o

n
 o

f

1

in
te

ra
c
ts

 w
it
h

is
 e

x
e

c
u

te
d

 d
u

ri
n

g

1
..

*

is
 e

x
e

c
u

te
d

 d
u

ri
n

g

11

h
o

ld
s

is
 r

e
s
p

o
n

s
ib

le
 f
o

r

1
..

*

1
..

*

1
..

*

1
..

*

«
b

lo
c
k
»

O
rg

a
n

is
a

ti
o

n
a

l

U
n

it

1

F
ig

ur
e

3.
1

T
he

hi
gh

-l
ev

el
M

B
SE

O
nt

ol
og

y
us

ed
th

ro
ug

ho
ut

th
is

bo
ok

F
ig

u
re

2
0
:

T
h
e

h
ig

h
-l

ev
el

M
o
d
el

-B
as

ed
S
y
st

em
s

E
n
gi

n
ee

ri
n
g

O
n
to

lo
gy

[4
9]

51

as Requirements, Capabilities and Goals.

• Architecture concepts, where the description and structure of Architectures

using Architectural Frameworks are discussed.

• Life Cycle concepts, where different Life Cycles and Life Cycle Models are

discussed, along with the interactions between Life Cycles.

• Process concepts, where the structure, execution and responsibility of Pro-

cesses are discussed.

• Competence concepts, where the ability of people associated with Stakeholder

Roles are defined.

• Project concepts, where Project and Program-related concepts are defined.

These seven high-level concept groups can be seen graphically in Figure 20, as

well as their relation to each other. MBSE shifts from a traditional document-based

record of authority to a more model-centric data-rich environment. This allows teams

and engineers to more quickly and readily understand design changes and how they

impact a design [42]. The overarching objective of MBSE is to provide more systems

engineering depth during design while also reducing acquisition time without increas-

ing cost. However, MBSE is not without its drawbacks. Initializing a model-based

engineering approach requires investment in tools, training, and infrastructure that

is not required by a document-centric system. Also, MBSE does not replace the need

for rigorous, detailed disciplinary design teams [9]. Furthermore, the highly struc-

tured nature of MBSE may provide additional challenges during the early conceptual

design phases where many fundamentally different designs are being considered side

by side.

Beginning in the late 20th century, modeling languages began to be created to for-

malize how models were developed and integrated within industry. These languages,

52

similar to programing languages, provided formal, object-oriented frameworks which

allowed concepts such as MBSE to be implemented in practice. The remainder of

this section is dedicated to providing a high-level overview of three of these lan-

guages: the Unified Modeling Language (UML), the Systems Engineering Modeling

Language (SysML), and the Architecture Analysis Design Language (AADL).

2.5.1 The Unified Modeling Language

UML was developed initially by Grady Booch, Ivar Jacobson, and James Rumgaugh

as a result of the Object Management Group’s (OMG) calling for specification of

a uniform modeling standard in 1996 [103]. UML represents models in the form of

diagrams, which provide a view of a specific part of reality described by a model. They

are a form of functional decomposition of a system. Figure 21 shows the taxonomy

of the various types of diagrams defined in UML.

Through these various diagram types, systems and systems of systems may be

presented in various ways which help to describe them in a way which is consistent

among different teams of people. This allows for communication between different

groups without having to worry as much about language usage and other model

miscommunication, allowing people to focus more on the design. For a detailed

description of the diagrams presented in Figure 21, the reader is referred to Chapter

2, Section 3 of UML@Classroom: An Introduction to Object-Oriented Modeling, by

Seidl et al [103].

Though UML provided the first steps in providing a general framework for defining

and presenting systems which could help communication among designers, it is not

without its flaws. Because UML was developed with the intent of widespread use

among many disciplines, it was intentionally left vague in its description of its various

components such that it could be molded to the user’s specific needs. However, it is

this generality which may give rise to miscommunication as different teams interpret

53

2.3 Diagrams 15

2.3 Diagrams

In UML, a model is represented graphically in the form of diagrams. A Diagram

diagram provides a view of that part of reality described by the model.
There are diagrams that express which users use which functionality
and diagrams that show the structure of the system but without specify-
ing a concrete implementation. There are also diagrams that represent
supported and forbidden processes. In the current version 2.4.1, UML
offers 14 diagrams that describe either the structure or the behavior of a
system.

Diagram

Structure Diagram

Component

Diagram

Deployment

Diagram

Composition Structure

Diagram

Class

Diagram

Object

Diagram

Package

Diagram

Profile

Diagram

Behavior Diagram

State Machine

Diagram

Timing

Diagram

Sequence

Diagram

Activity

Diagram

Use Case

Diagram

Interaction

Diagram

Interaction Overview

Diagram

Communication

Diagram

Figure 2.1

UML diagrams

Figure 2.1 shows a taxonomy of the 14 UML diagrams [35], giv-
ing a very rough categorization. As the figure shows, we differentiate
between structure diagrams and behavior diagrams. The behavior di-
agrams include the interaction diagrams, which in turn consist of four
diagrams (see Chapter 6).

A diagram is usually enclosed by a rectangle with a pentagon in the Notation for diagram

frametop left-hand corner. This pentagon contains the diagram type and the
name of the diagram. Optionally, parameters may be specified following
the name which then can be used within the diagram. Figure 2.2 con-

Figure 21: Unified Modeling Language Diagram Taxonomy[103]

the vague guidelines differently. Due to this observation, in 2003 the OMG issued

the “UML for Systems Engineering Request for Proposal” following a decision by

INCOSE to customize UML for systems engineering applications [49, 43].

2.5.2 The Systems Engineering Modeling Language

As a result of the OMG’s call for proposals, a broad base of tool vendors, industry

users, government agencies, and professional organizations worked to develop stan-

dards to meet the request. In 2006, the OMG announced the adoption of the SysML

specification and subsequently published v1.0 in 2007 [43]. Up through mid-2017, the

OMG has published a total of 5 revisions to the original specification, the most recent

being published in May of 2017 [86].

54

Because SysML was developed as a result of tailoring UML to better suit sys-

tems engineering problems, it is only natural that these two design languages share a

commonality. Figure 21 is a graphical depiction of the relationship between SysML

and UML. As can be seen, SysML makes use of a large portion of UML. Overall,

SysML has a smaller footprint than UML. In all, SysML defines only 9 diagrams,

compared to UML defining 13. Some parts of UML were considered unnecessary for

the systems engineering domain and were left out of the new language. In addition,

SysML adds a few new diagrams and constructs not present in UML to better define

systems engineering problems. Also, those parts of UML used by SysML were sub-

ject to changes to better suit systems engineering paradigms. Figure 23 shows the

relationship between the SysML diagrams, as well as the relations they have to UML

diagrams. For details regarding the various diagrams used in SysML, refer to SysML

for Systems Engineering by Jon Hold and Simon Perry [49].

2.5.3 The Architecture Analysis and Design Language

The Architecture Analysis and Design Language (AADL) was developed indepen-

dently from UML and SysML. In November of 2004, the Society of Automotive

Engineering (SAE) released the aerospace standard AS5506, which defines AADL

[28]. In his introduction to AADL, Peter Feiler states that AADL is “...a textual and

graphical language used to design and analyze the software and hardware architec-

ture of real-time systems and their performance-critical characteristics.”[29] AADL

was developed to support the avionics, aerospace, and automotive industries, used to

describe the structure of such systems as an assembly of software components.

Unlike UML and SysML, the AADL is not as graphical, but rather is written

more like a programming language to describe components and their relationships.

The AADL defines three distinct sets of component categories:

1. Application Software

55

UML has been increasingly adopted for use outside the software field, and is now
widely used for such things as systems engineering and process modelling.

Despite this growing use of UML for systems engineering there was still a
perceived need for a tailored version of UML that was aimed specifically at systems
engineers, with some of the elements and diagrams of UML considered to be aimed
more at software systems removed. The result of this perceived need is the SysML,
which has 9 diagrams compared to the 13 of UML.

So what is the relationship between SysML and UML? Figure 4.6 illustrates
the overlap between the two languages.

As can be seen in Figure 4.6, SysML makes use of much of the UML.
However, some parts of the UML were considered to be not required by SysML.
In particular the following diagrams are not used: object diagram, deployment
diagram, component diagram, communication diagram, timing diagram and
interaction overview diagram.

In addition, SysML adds some new diagrams and constructs not found in
UML: the parametric diagram, the requirement diagram, required and provided
features and flow properties. Those parts of the UML that are reused by UML are
also subject to some changes to make the notation more suitable for systems
engineering, for example replacing the concept of the class with that of the block.

Although the object diagram does not exist in SysML, instance specifications
(the SysML term for UML objects) can be shown on a block definition diagram.
Also, although component diagrams and components do not exist in SysML, the
SysML block has aspects of both the class and the component, and the block

UML not

required by

SysML

SysML

Extensions

to UML

UML 2

SysML

UML

Reused by

SysML

Figure 4.6 The relationship between SysML and UML

84 SysML for systems engineering

Figure 22: SysML and UML share a common root of diagrams. However, SysML
omits diagrams less relevant to system engineering problems, while also extending
the base functionality of UML to improve modeling of systems engineering problems
[49, 43].

Figure 2: UML/OMG SysML Relationships
The sets of language constructs that comprise the UML and OMG SysML languages are shown as the

circles marked “UML 2” and “SysML”, respectively. The intersection of the two circles, shown by the region
marked “UML Reused,” indicates the UML modelling constructs that OMG SysML re-uses. The specification
lists the UML packages that an OMG SysML tool must reuse in order to implement OMG SysML. The region
marked “SysML Extensions to UML” indicates the new modelling constructs defined for OMG SysML which
extend existing UML constructs. Note that there is also a part of UML 2 that is not required to implement OMG
SysML, which is shown by the region marked “UML Not Required by SysML”.

Compliance. Compliance requirements for tools are also defined in the specification. This is also now in the
UML specification (OMG, 2006). Compliance with OMG SysML requires that the subset of UML required for
OMG SysML is implemented and the extensions to the UML subset required for OMG SysML are
implemented. In order to fully comply with OMG SysML, a tool must implement both the concrete syntax
(notation) and abstract syntax (metamodel) for the required UML subset and the OMG SysML extensions. UML
has three compliance levels (L1, L2 and L3) that OMG SysML applies to the subset in the UML4SysML
package. Compliance to a higher level (e.g., L3) requires compliance to the lower levels. In addition to UML,
further units of compliance for OMG SysML are the sub packages of the SysML profile. Tool vendors will be
required to state whether their support is full compliance, partial or no compliance for each unit of compliance.

Diagram Summary. The OMG SysML diagram Taxonomy is shown in Figure 3.

Figure 3: OMG SysML Diagram Taxonomy
OMG SysML includes diagrams that can be used to specify system requirements, behaviour, structure and

parametric relationships. These are known as the four pillars of OMG SysML.

SysML
Diagram

Requirement
Diagram

Activity
Diagram

Sequence
Diagram

State
Diagram

Use Case
Diagram

Block Definition
Diagram

Internal Block
Diagram

Package
Diagram

Same as UML 2

Modified from UML 2

New diagram type

Parametric
Diagram

Behaviour
Diagram

Structure
Diagram

UML
Not Required

by SysML

UML

UML Reused
SysML

Extensions
to UML

SysML Profile

SysML
UML4SysML

Figure 23: Systems Engineering Modeling Language Diagram Taxonomy [31, 43].
As can be seen, SysML and UML share a common set of diagrams. However, SysML
makes modifications to a few diagrams, while also add a few new diagrams, making
the language more suited for the systems engineering domain.

56

(a) Thread: a schedulable unit of concurrent execution

(b) Thread Group: a compositional unit for organizing threads

(c) Process: a protected address space

(d) Data: data types and static data in source text

(e) Subgroup: callable sequentially executable code

2. Execution Platform

(a) Processor: components that execute threads

(b) Memory: components that store data and code

(c) Device: components that interface with and represent the external envi-

ronment

(d) Bus: components that provide access among execution platform compo-

nents

3. Composite

(a) System: a composite of software, execution platform, or system compo-

nents

Components have type declarations and implementations, which help to define a

component’s externally visible characteristics and its internal structure, respectively

[28]. These components are brought together to form a full representation in the

AADL. The model can be expressed textually, graphically, or as an extensible markup

language (XML) document. Figure 24 summarizes the alternative representations,

showing samples of each. For further details regarding AADL and components, refer

to The Architecture Analysis & Design Language (AADL): An Introduction by Feiler

et al. [28].

57

Section 4: AADL System Models and Specifications

CMU/SEI-2006-TN-011 11

4 AADL System Models and Specifications

An AADL system model describes the architecture and runtime environment of an
application system in terms of its constituent software and execution platform (hardware)
components and their interactions. An AADL model is captured in a specification consisting
of syntactically and semantically correct AADL declarations. A complete AADL system
model includes all of the declarations required to instantiate a runtime instance of an
application system that the specification represents (e.g., an aircraft’s flight control system).

From a user perspective, an AADL specification and its constituent declarations can be
expressed textually, graphically, in a combination of those representations, or as Extensible
Markup Language (XML). The AADL textual and graphical notations are defined by the
SAE AADL standard and its extensions [SAE 06a]. The XML form is defined in Extensible
Markup Language (XML) 1.0 (Third Edition) [W3C 04]. Figure 4-1 summarizes the
alternative representations of an AADL specification, showing sample textual, graphical, and
XML representations.

Figure 4-1: AADL Representations

 XML
<threadType name="data_processing">
<features>
 <dataPort name="raw_speed_in"/>
 <dataPort name="speed_out"
direction="out"/>
 </features>

thread data_processing
features
raw_speed_in: in data port;
speed_out: out data port;
Properties
Period => 20 ms;
end data_processing;

 AADL Graphical

data_processing

AADL Textual
20 ms

Figure 24: Notional Architecture Analysis & Design Language Model Representa-
tions [28]

58

CHAPTER III

FRAMEWORK FORMULATION

This chapter will explore the gaps in current methods in meeting the needs of an

architecture evaluation method which fulfills the statement of purpose of this research.

These gaps will form the primary research objective of this dissertation, as well as

the driving needs of a new method which will be developed through a discussion of

topics relevant to such a methodology. Throughout this chapter, research questions

and hypotheses will be developed, forming the structure of this research.

3.1 Gaps In Current Methods

Based on the definitions for architectures and technologies, combined with the gen-

eral statement of purpose of this dissertation, a set of required features for evaluating

methods and techniques may be developed. The statement of purpose for this disser-

tation is reprinted below for reference.

Statement of Purpose

To provide a capability to analyze complex systems of systems to an extent

which will provide decision makers in the early phases of design sufficient

information to reduce the risks associated with cost and schedule overruns

due to lack of design knowledge.

In Chapter 2, a collection of methods and frameworks was discussed, along with

potential advantages and disadvantages with regard to the desirable features of a

method or framework capable of meeting the needs posed by the statement of pur-

pose of this dissertation. This information is summarized in Table 5, showing each

59

method’s ability to meet the required features list. It becomes self-evident that no one

method meets all the feature requirements identified by this research. The deficiencies

among these methods and techniques in meeting the primary statement of purpose

of this research highlights the important characteristics desirable for a new method

to be developed. The following gaps have been identified within the set of methods

described, outlining a set of desired characteristics for a new framework to integrate

architecture analysis and technology evaluation at a subsystem level. Though none

of the identified methods and techniques fully meet the feature requirements outlined

in this section, components from them may provide a good starting point for defining

a new framework which meets the required features. This will be discussed in further

detail throughout the remainder of this chapter.

Table 5: Methods Comparison

 Method
 Metric ARCHITECT STASE MATE-CON TIES ATIES TRIPS TAPP QuantUM3

Architectures Defined at
Subsystem Level

Can Evaluate Multiple
Architectures

Multi-objective Architecture
Analysis

Technologies Defined at
Subsystem Level

Can Evaluate Multiple
Technologies

Multi-objective Technology
Analysis

Methods

Fe
at

ur
es

= Met = Unmet = Undefined

1. In the space transportation domain, missions are typically selected well before

physical systems and technologies are developed. The architecture and tech-

nology evaluation methods presented propose selecting a baseline design in the

initial steps.

60

2. In the space transportation domain, architectures typically consist of many

systems concurrently being designed. This produces a very large architecture

alternative space. Due to the discrete nature of defining a large system of

systems, architecture analysis typically focuses on analyzing the full set of design

alternatives. This is impractical for the large number of alternatives that exist.

3. Typically, architecture design methods which incorporate technologies define

them as an entire system, and do not fit the definition of a technology as

provided in this body of work. Technology evaluation methods which define

technologies in a similar manner to this research typically consider a fixed ar-

chitecture when evaluating technologies.

4. Technology evaluation methods tend to focus on a single aspect of how tech-

nologies affect a design.

3.2 Research Objective

Section 1.2.3 outlines the primary challenges associated with the design space ex-

ploration of complex architectures. These challenges were primarily attributed to a

lack of design knowledge in the early phases of design due to technical and political

uncertainty. The level of design freedom decreases rapidly during the early phases

of design, while committed cost rapidly increases, as shown in Figure 6. The act

of bringing design knowledge earlier into the design phases will help to reduce cost

and schedule overruns associated with a lack of design knowledge. However, in an

effort to incorporate this design knowledge into earlier phases of design, the system

of systems spaces that must be explored become impractically large to analyze. Sec-

tion 3.1 outlined gaps in the current methods for performing architecture design and

technology evaluation under the definitions provided. Refining the overarching state-

ment of purpose based on these gaps leads to the primary research objective of this

dissertation:

61

Research Objective

To integrate architecture analysis and technology evaluation at the sub-

system level to provide a quantitative framework in an effort to increase

design knowledge early in the design process.

3.3 General Concept Exploration Framework

Many models exist in literature for the purpose of concept exploration and refinement.

Each are unique and vary in details, but as defined by the United States Air Force,

they follow three major steps [113]:

• Trade space characterization

• Candidate solution sets characterization

• Analysis

Trade space characterization requires converting needs into quantifiable bound-

aries while collecting potential solution ideas. Characterizing the candidate solution

sets consists of refining the trade space boundaries into realizable concepts that may

represent solutions to the problem. The analysis step requires evaluating the candi-

date solutions on a common basis such that trends can be observed and a decision

made. One such model is the Georgia Institute of Technology’s Integrated Product

and Process Development (IPPD) model, as seen in Figure 25.

Under this model, trade space characterization consists of establishing a need,

typically done through quality engineering methods to gather customer needs and

requirements, which are then converted to a set of functional requirements. These

drive the definition of the problem followed by a decomposition of the trade space and

an establishment of the value metrics and figures of merit. Characterizing candidate

62

Figure 25: The Georgia Tech Integrated Product and Process Development
model[101] mapped to the three major steps of a concept exploration framework
as defined by the United States Air Force[113]: (1) Trade Space Characterization, (2)
Candidate Solution Sets Characterization, (3) Analysis

solution sets consists of generating feasible alternatives in the trade space. Finally,

analysis comprises evaluating the alternatives through system analysis and making

a final decision by means of a multi-criteria decision making approach. There have

been many methods developed to perform architecture design and analysis which fit

a model similar to Georgia Tech’s IPPD just described. In Section 2.3, two such

methods, ARCHITECT and STASE, were discussed.

The primary research objective of this dissertation is not to develop an entirely

new method for technology evaluation and architecture analysis. Rather, it is to

integrate architecture analysis and technology evaluation at the subsystem level such

that the effects of this integration may be studied. However, because there is no

single method identified to meet the needs of this body of work, a basic framework

63

for evaluating these architectures and technologies will need to be developed. In doing

so, if literature provides suitable methods currently in existence that may serve as

elements of this framework, then it will be desirable to integrate those elements into

the required framework to achieve the main research objective. The remainder of this

section will discuss the main processes required for concept exploration and how they

relate to architecture design and technology evaluation. The application of relevant

methods and concepts from Chapter 2 and their appropriateness as a framework for

a new method will be highlighted. The research questions for this dissertation will

be developed throughout the remainder of this chapter.

3.3.1 Phase I: Trade Space Characterization

Trade Space
Characterization

Candidate Solution
Sets Characterization Analysis

The first of the three major steps in concept exploration consist of trade space char-

acterization through definition and decomposition of the problem. This will provide

insight into the relationships which exist within a design space. Because this re-

search aims to integrate technology evaluation and architecture analysis into a single

framework, the first logical research question is as follows:

Research Question 1

What is the relationship between architectures and technologies?

There exist many methods and techniques for decomposing a problem. Trade

trees, morphological analysis, network theory, and product family design are a few

examples of current methods. As is seen in Table 5, STASE is the only architec-

ture design method which defines architectures in a similar manner to that which is

required by a new framework. The method in which Jonathan Sharma decomposes

64

the problem is called set theory-influenced system decomposition (STSD). Different

system spaces–the architecture space, design space, and objective space–are defined

and mapped to each other [104]. Though the technique was originally proposed for

mapping spaces defined as mathematical sets, the general concept will hold for de-

signs which are a general collection of options and parameters and does not require

the strict definition of mathematical sets. The following is a brief summary of STSD

and how it relates to this research. Details can be found in Section 3.1.2 of Sharma’s

dissertation on set theory-influenced architecture space exploration [104].

3.3.1.1 Defining System Spaces

The DoD Architecture Framework provides details on different ways of looking at an

architecture. These viewpoints, as defined in version 2.0 of the document, consider

many different ways of organizing data to facilitate understanding of complex system

of systems architectures. Of them, the Operational Viewpoint (OV) and Systems

Viewpoint (SV) are most relevant to this body of research. The most relevant SV

when decomposing the problem is SV-1, the systems interface description. This view-

point can be used to depict systems and subsystems of an architecture [115]. The

most relevant OVs when decomposing the problem are OV-2, the operational resource

flow description, and OV-5a, the operational activity decomposition tree. Whereas

OV-5a focuses on the operational activities, OV-2 focuses on the operational activities

in relation to locations. These two OVs are typically developed together due to the

relationship between location and operation [115]. These viewpoints provide a way

of organizing the missions of an architecture in a form that can easily be integrated

into the physical systems decomposition described by SV-1. These viewpoints may

be captured via morphological analysis of the problem, and are typically viewed at

a high level in the form of a bat chart, which capture each of these viewpoints in a

single image representing the architecture. An example bat chart is shown in Figure

65

26 of a notional Mars mission from NASA’s Design Reference Architecture 5.0.

 5

Figure 2-2. Mars Design Reference Architecture 5.0 mission sequence summary (NTR reference).

2.1 Surface Reference Mission

Several different surface architectures were assessed during the formulation of the Mars DRA 5.0, each of which
emphasized different exploration strategies that were embodied in the combination of duration of in the field, range
of exploration reach, and depth of subsurface access. The nominal surface mission scenario adopted for DRA 5.0 is
the so-called “Commuter” reference architecture, which would have a centrally located, monolithic habitat (figure 2-
3), two small pressurized rovers, and two unpressurized rovers (roughly equivalent to the lunar rover vehicle (LRV)
that was used in the Apollo missions to the moon). This combination of habitation and surface mobility capability
would allow the mission assets to land in relatively flat and safe locations, yet provides the exploration range that would
be necessary to reach nearby regions of greater geologic diversity (figure 2-4). Power for these systems would be
supplied by a nuclear power plant that was previously deployed with the DAV and used to make a portion of the
ascent propellant. Traverses would be a significant feature of the exploration strategy that would be used in this
scenario, but these traverses would be constrained by the capability of the small pressurized rover. In this scenario,
these rovers have been assumed to have a modest capability, notionally a crew of two, 100 km total distance before
being re-supplied, and 1- to 2-week duration. Thus, on-board habitation capabilities would be minimal in these
rovers. However, these rovers are assumed to be nimble enough to place the crew in close proximity to features of
interest (i.e., close enough to view from inside the rover or within easy extravehicular activity (EVA) walking distance
of the rover). Not all crew members would deploy on a traverse, so there would always be some portion of the crew
in residence at the habitat. The pressurized rovers would carry (or tow) equipment that would be capable of drilling
to moderate depths – from tens to hundreds of meters – at the terminal end of several traverses.

Candidate surface sites would be chosen based on the best possible data available at the time of the selection, the
operational difficulties associated with that site, and the collective merit of the science and exploration questions that
could be addressed at the site. Information available for site selection would include remotely gathered data sets plus
data from any landed mission(s) in the vicinity plus interpretive analyses based on these data.

Crewed
MTV

Crew: Jettison drop
tank after TMI; ~180
days out to Mars

MAV ascent to orbit

Crew: ~180 days
back to Earth

Cargo:
~350 days
to Mars

4 Ares-V Cargo
Launches

Ares-I Crew Launch

~26
months

~30
months

1

2

4

6

7

8

9

11

13

Crew: Use Orion/SM to
transfer to Hab Lander; then
EDL on Mars

Orion direct
Earth return

14

3
Habitat Lander AC

into Mars Orbit

5
ISRU / propellant

production for MAV

10 ~500 days on Mars

Cargo
MTVs

AC / EDL of MDAV / Cargo Lander
Crew: Jettison DM &

consumables prior to TEI
12

3 Ares-V Cargo Launches

Figure 26: A notional architecture bat chart of manned Mars exploration represent-
ing the primary viewpoints, OV and SV, of an architecture defined by DoDAF 2.0
[78, 115].

Morphological analysis is a leading technique for decomposing problems which

have minimal design knowledge, such as those during the early phases of design [104].

Through morphological decomposition, an architecture space is defined which consists

of the potential discrete options that exist in the physical architecture as a collection

of parameters, along with options within each parameter. A matrix of alternatives

(MOA), similar to the example shown in Figure 27, is typically used to represent the

architecture space.

Recall from Section 2.1.6, an architecture is defined as the fundamental organi-

zation of a system of systems embodied by its systems and their relationships to

each other and the environment. A system is defined as a set of regularly interacting

subsystems, as stated in Section 2.1.1. Finally, a technology, as defined in Section

66

3
American Institute of Aeronautics and Astronautics

II. Distinguishing Characteristics of IRMA
An IRMA extends the concept of a matrix of alternatives to include several features that enable this reduction:
• Compatibility Matrices: Hidden matrices that describe the allowable interdependencies between items in

the same row and across rows. For example, “high wing” and “low wing” are mutually exclusive. Also,
selecting “Ramjet” in the “Engine Type” row eliminates the entire “Compressor Type” row.

• Filters: Top-level techniques to reduce the number of combinations. Likely top-level filters include the
allowable technology readiness level, risk, or compatibility with existing systems. Activating a filter will
automatically reduce the number of total combinations by eliminating incompatible product features.

• Multi-Attribute Decision Making (MADM): Each product feature should have a justifiable reason for its
selection. While some rows may require little deliberation, others may be more contentious. A MADM
technique for product features in each row and across multiple rows provides designers an objective means
to select better options.

• Calculation of Designs and Time to Compute: To give the designer a feel for the scope of the problem,
an IRMA calculates the total number of designs described by the matrix and identifies the time necessary to
analyze each design assuming that a design can be analyzed in one second, one minute, or one hour. Of
course, this is not the case as the setup of an analysis environment to analyze a single case could take days
or weeks.

• Fast and Collaborative: To facilitate collaborative design with an IRMA, calculations are performed in
real-time to allow trade studies to be performed with various subject matter experts to ensure that product
features selected at each row meet with the satisfaction of all members of an Integrated Product Team
(IPT).

• Standardized, Flexible and Reconfigurable: Standardized formulas, formatting and locations make
creating a new IRMA for different or changing products easy. More detailed MADM methods and data can
be plugged in quickly to existing setups to keep up with the design process and customize to the problem at
hand.

This paper will summarize the creation of a testbed tool to demonstrate the IRMA concept for a Long Range Strike
aircraft. To keep the example manageable, the designers have chosen to look at a platform firing a powered missile.
Further complexity is added when multiple domains (sea, air, land, space) are considered and non-traditional
product features are extensively used. A reduced version of the demonstration version is shown in Figure 2.

Figure 2: Condensed Example IRMA Implementation

D
ow

nl
oa

de
d

by
 G

E
O

R
G

IA
 I

N
ST

 O
F

T
E

C
H

N
O

L
O

G
Y

 o
n

O
ct

ob
er

 1
3,

 2
01

6
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/6
.2

00
7-

11
94

Figure 27: A notional Interactive Reconfigurable Matrix of Alternatives (IRMA)
representing the architecture space [25].

2.1.5, is a device or subsystem developed to enable a specific capability. Through

these definitions, technologies clearly operate on or as part of the physical architec-

ture and appear as parameters with options during morphological decomposition.

Unfortunately, this will only exacerbate the problem of combinatorial explosion, to

be addressed later in this chapter. However, these definitions lead to the following

conjecture:

Conjecture 1.1

Based on the definitions of an architecture and technology provided by this

body of work, technologies affect an architecture by acting at the subsystem

level of that architecture.

The design space consists of all design attributes and their feasible ranges. Typi-

cally, these become known once an analysis environment has been selected, as these

67

design attributes are typically the inputs of the analysis environment. Groups of

ranges for a given design attribute can be combined to form an overall range for that

design attribute. Figure 28 is a notional representation of a design space.

The objective space is an n-dimensional space consisting of a collection of metrics

which define the overall “goodness” of an architecture. An individual architecture is

represented as a single point in the objective space. Typically, these metrics are values

such as performance, cost, schedule, reliability, and other figures of merit. Figure 29

is a notional representation of a design space. Determining the specific objectives to

include in the objective space will be discussed further in Section 3.3.1.3 and Section

3.3.3.

3.3.1.2 Mapping System Spaces

Consider the notional set of system spaces in Figure 30. Here, the architecture space

parameters are mapped to at least one of the design space attributes. STSD defines

these spaces as sets, and as such, the transformations are mappings from one set to

another. The mappings, fPA
and fPB

, translate parameter options in the architec-

ture space to values or subsets of the design space attributes. There is no limit to

the number of design space attributes a parameter is mapped to. These mappings

may be considered a form of transformation, specifically, a step function. For exam-

ple, consider PB in Figure 30 to be the type of engine(s), consisting of two options,

P 1
B as liquid oxygen engine(s) and P 2

B as storable engine(s). PB is mapped to the

design space attributes DB and DC , representing specific impulse and boiloff rate,

respectively. The mapping fPB
would then be a step function of the form:

fPB
=

D1

B ∪D1
C if P 1

B

D2
B ∪D2

C if P 2
B

(1)

where D1
B may define a subset of DB in the range (300 : 450) seconds, D2

B may

68

��������
Combined Range

�� �� ��

�
�
�
�

�

Figure 28: A design space consists of a collection of design attributes. Each design
attribute may be a group of ranges to form an overall range for that attribute [104].�

�

�

�

Figure 29: A notional three-dimensional objective space consisting of three indepen-
dent objectives [104].

69

P
fPA

fPB g

𝑃𝑃𝐴𝐴

𝑃𝑃𝐵𝐵

Figure 30: A notional mapping of the system spaces as described in STSD. The
mappings between the architecture space and design space take the form of step
functions where each architecture space option is mapped to at least one subset of a
design space attribute. The mapping between the design space and the objective space
is typically performed by a modeling and simulation environment which evaluates the
set of design space attributes to provide the specific objective space metrics.

define a subset of DB in the range (275 : 350) seconds, D1
C may define a subset

of DC in the range (5.0 : 10.0) kilogram of propellant loss per day, and D2
C may

define a value of DC of 0.0 kilogram of propellant loss per day. This also provides

an example of confounding of the design space. Here, specific impulses in the range

(300 : 350) seconds cannot be strictly identified as being derived from the liquid

oxygen or storable engine types. This effect can also be seen in Figure 28 where

design attribute DA consist of overlapping subranges D1
A and D2

A. Each of these

subranges may be mapped to individual architecture parameter options. It would be

impossible to know which architecture option a value in the overlapping design space

attribute subset maps to.

In the notional example of engine type mapped to specific impulse, the selection

of the range of specific impulse values mapped to an engine type is very subjective

in nature, defined by a subject matter expert, systems engineer, or architect. The

mapping between the design space and the objective space is typically much less

70

subjective in nature, but also less transparent. Rather, the mapping between the

design space and the objective space is typically fulfilled by a modeling and simulation

environment. The relationship takes the form:

g = O (D) (2)

The modeling and simulation environment is selected or developed for the purpose of

translating design space attributes into objective space metrics. For example, if one

of the objective space metrics is inert mass of the design, a modeling and simulation

environment may utilize inputs such as specific impulse, delta-V, and mission dura-

tion as design attributes to calculate the inert mass. Obviously, complex systems of

systems will contain many systems being sized simultaneously with multiple figures of

merit in the objective space, requiring much more complex modeling and simulation

environments. However, the idea that the modeling and simulation environment acts

as the mapping between the design space and the objective space still holds.

The discussion of mapping system spaces up to this point has not taken into con-

sideration the concept of technologies. This dissertation defines technologies at the

subsystem level. Typically, these technologies will act on a design by modifying the

inputs or outputs of an analysis environment. This technique of infusing technologies

into a design is typically referred to as K-factor analysis. This is the technique utilized

by many of the technology evaluation methods discussed in Section 2.4. However, to

maintain a broad scope and flexibility during concept exploration, the way technolo-

gies are infused into the design should not be limited to just a single technique. Figure

31 illustrates a potential concept for introducing technologies into the system decom-

position and mapping derived from STSD. Here the basic concept presented earlier

is maintained, but with the addition of a new system space, the technology space,

T . The technology space should contains all technologies identified during problem

formulation. Each technology contains two options, active and inactive. The per-

formance of a technology and its effect on a design are accounted for through the

71

P
fPA

fPB
(T1)

g(T1)

𝑃𝑃𝐴𝐴

𝑃𝑃𝐵𝐵

T
𝑇𝑇1 𝑇𝑇2 fT2

Figure 31: A modified notional mapping of the system spaces as described in STSD,
with the addition of a technology space. Note that the mappings between the archi-
tecture space, design space, and objective space are now functions of the technology
space.

mappings between the architecture space to the design space and the technology

space to the design space. The notional system spaces in Figure 31 illustrate the

different ways in which technologies may affect a design. For instance, the mapping

fPB
is now a function of the technology T1. However, technologies are not limited to

interacting with a design through architecture space parameters mapped to design

space attributes. Technologies may interact directly with design space attributes, as

is indicated by the mapping fT2 . Finally, the effect of technologies may also interact

with the mappings between the design space and the objective space, indicated in

Figure 31 as g(T).

To better illustrate these concepts, the example stated earlier shall be revisited.

Recall the mapping of architecture space parameter PB representing type of engine(s)

to the design space attributes DB and DC , representing specific impulse and boiloff

rate. Now define the technology space parameter, T1, as boiloff mitigation. The

72

mapping fPB
now takes the following form:

fPB
(T1) =

D1
B ∪D1

C if P 1
B ∪ T 0

1

D2
B ∪D2

C if P 2
B ∪ T 0

1

D3
B ∪D3

C if P 1
B ∪ T 1

1

D4
B ∪D4

C if P 2
B ∪ T 1

1

(3)

The subranges D1
B, D2

B, D1
C , and D2

C all maintain the same definition as described

before, as these would be the design attributes when the technology T1 is inactive,

indicated by T 0
1 . The subranges D3

B, D4
B, D3

C , and D4
C would then represent the

design attributes with technology T1 active, indicated by T 1
1 . For instance, if the

technology has no effect on the specific impulse, D3
B and D4

B would maintain the

same ranges defined by the inactive technology scenario. However, D3
C and D4

C may

define a value of 0.0 kilogram of propellant loss per day due to the active technology.

Furthermore, Figure 31 shows a direct mapping between the technology space and

the design space, seen by the mapping fT1 . This could be utilized in a scenario where

a technology affects the design through an attribute which has no mapping from the

architecture space. For instance, consider technology T2 to be low leak valves for

engines and design space attribute DD to be propellant leakage of the engine. Here,

propellant leakage is unaffected by any architecture space parameters, but is directly

affected by the technology T2. The mapping fT2 would have the form:

fT2 =

D1

D if T 0
2

D2
D if T 1

2

(4)

Where D1
D may be the a leak rate of 50 kilograms of propellant per engine start and

stop cycle and D2
D may be a zero leak rate of propellant per engine start and stop

73

cycle. Again, the values associated with these subsets are subjective, determined by

the technologies, systems engineer, architect, etc. This notional example considered

fixed ranges and values. However, these subsets may be estimated utilizing K-factor

analysis on nominal design attribute ranges, through functions of the specific archi-

tecture and technology space options, or other techniques for infusing the effect of

technologies on design attributes.

The notional set of system spaces also shows the mapping between the design

space and the objective space to be a function of T1. This would then take the form:

g = O (D,T1) (5)

As an example, assume the objective OA represents the inert mass of the design and

the mapping g (T) represents the modeling and simulation environment as described

earlier. If the activation of technology T1 results in a mass growth of the burnout

mass of the design, then an element of the mapping g (T) may take the form:

OA =

mbo (D) +mprop (D) if T 0

1

k1 ∗mbo (D) +mprop (D) if T 1
1

(6)

Where k1 represents the effect due to T1. This value would again defined by the

technologist, systems engineer, or architect. The element OA of the transformation

shown utilizes a form of K-factor analysis to evaluate technologies. However, this is

not a strict requirement, but rather an illustration used for the purpose of explaining

the basic concept of mapping the design space to the objective space. In reality, these

mappings may take a variety of forms.

Utilizing STSD, a new system space, the technology space, may be added which

contains the technologies and their settings. These are derived during problem formu-

lation and decomposition of the problem at the same time, and in a similar manner

74

as, the architecture space. This modification to STSD allows the decompositions

of complex system of systems spaces which define and integrate technologies and

architectures at the subsystem level. This leads to the following conjecture:

Conjecture 1.2

Based on the assumed decomposition derived from STSD, a technology

space should be included as a new system space. The transformations

between the architecture space, design space, and objective space shall be

functions of the new technology space.

3.3.1.3 Establishing Value

Once a problem has been defined and decomposed, the final step in characterizing

the trade space requires establishing value for the trade space. This value will be

determined by the metrics chosen as measures of “goodness” of the designs. In Section

2.4, several technology evaluation methods were presented which assign value to a

design in various ways. Table 5 summarizes these methods and the approaches taken

for evaluating technologies. Of the five technology evaluation methods presented,

TIES, ATIES, TRIPS, and TAPP represent technologies as a subsystem of the design,

which aligns with how technologies are considered in this body of work. Collectively,

these methods evaluate technologies on the basis of performance, cost, schedule, and

organizational alignment. However, no single method evaluates technologies across

all of these metrics.

Additionally, it is known that technologies may have a profound impact on many

of these metrics. Such observations have led to the development of metrics to assess an

overall readiness of a design as a function of the maturity of incorporated technologies

and their respective links between other systems and technologies [99]. This leads to

the following research question:

75

Research Question 2

What technology impact metrics should be considered in determining the

overall “goodness” of the results such that they may be ranked?

Because technologies impact an architecture at the subsystem level and interact

with the analysis environment through the system space transformation functions,

technologies can only interact with metrics which already exist within the architecture

analysis environment. The metrics of interest for architecture analysis are determined

based on the customer’s desires and trade studies of interest. Furthermore, it has

been argued that metrics developed for assessing the readiness of designs, such as

the System Readiness Level (SRL) developed by Sauser et al., may be misleading in

meaning. In his analysis of Sauser’s SRL, Edouard Kujawski concludes the following

[62]:

1. It utilizes invalid arithmetic operations on ordinal data

2. Inputs do not provide information on risk and effort required for achieving

higher readiness levels

3. Filters out microscopic information needed in managing specific risk areas

These observations supports the requirement to be multi-objective in nature, not

relying on a single utility metric or readiness value. Typically high-level design studies

are not performed by a specific subject matter expert or technologist, but rather a

systems engineer or architect. These individuals are generally less biased towards

any one architecture or technology. However, they are still people and will impose a

level of bias on the study. Transparency throughout the design decomposition and

evaluation processes helps to alleviate this bias. However, the validity of potential

metrics for evaluating the overall “goodness” of designs is not within the scope of

76

this research. The task of identifying techniques to reduce bias in the selection of

technologies is left for future research. This leads to the following conjecture:

Conjecture 2

The technology impact metrics considered should align with the metrics of

interest for measuring the “goodness” of an architecture, without introduc-

ing unnecessary bias.

3.3.2 Phase II: Candidate Solution Sets Characterization

Trade Space
Characterization

Candidate Solution
Sets Characterization Analysis

The second phase of concept exploration requires characterizing candidate solution

sets, otherwise known as alternatives. When evaluating technologies on the architec-

ture scale, new concerns arise unique to problems at this level. Typically, technology

evaluation is performed only after a baseline design is selected, optimized, and deter-

mined infeasible or inviable without incorporating new technologies. This paradigm

is prevalent in modern methods for architecture analysis and technology evaluation.

Many of the methods presented in Chapter 2 require selecting and defining a baseline

design. However, during the early phases of design, and indeed, following the decom-

position of the problem as described in Section 3.3.1, many different architectures

exist which must be evaluated. This leads to the following research question:

Research Question 3

Is the paradigm of down-selecting to a baseline design on which to perform

technology analysis sufficient for the exploration of complex architectures?

77

A simple, notional problem shall help formulate a hypothesis. Consider the prob-

lem of selecting the best in-space propulsion stage. The objective is to minimize inert

mass of the design, measured in kilograms. Assume there are two competing architec-

tures, a storable propellant propulsion module and a methane propellant propulsion

module. There is also a propellant boiloff mitigation technology which may be infused

into the design. This results in a total of four alternatives to be evaluated:

1. Storable Propulsion Module

2. Methane Propulsion Module

3. Storable Propulsion Module with Boiloff Mitigation Technology

4. Methane Propulsion Module with Boiloff Mitigation Technology

The architecture space contains two parameters, mission and propulsion system.

The mission is assumed fixed with only one option. Propulsion system contains

two options, storable or methane. All alternatives will assume the same burnout

mass of 2000 kilograms and an identical mission definition with a transit of 330 days

followed by a single impulsive ∆V burn of 4,000 meters per second. The technology

space consists of a single technology, a boiloff mitigation technology which eliminates

propellant boiloff with a 5% growth in burnout mass. The design space consists of

four parameters, impulsive delta-V, mission duration, specific impulse, and boiloff

rate. The objective space consist of a single metric, inert mass. Figure 32 provides a

graphical representation of the system spaces and mappings for this notional example.

The mappings fM1 and fPropSys take the following forms:

fM1 = D∆V ∪D∆T (7)

78

fPropSys (T) =

D1
Isp
∪D1

BOR if P Storable
PropSys

D2
Isp
∪D2

BOR if PMethane
PropSys

D1
Isp
∪D3

BOR if P Storable
PropSys ∪ Boiloff Mitigation

D2
Isp
∪D4

BOR if PMethane
PropSys ∪ Boiloff Mitigation

(8)

D∆V and D∆T are defined as 4,000 m/s and 330 days, respectively. D1
Isp

is defined as

300 seconds and D1
Isp

is defined 350 seconds. Finally, D1
BOR is defined as 5 kilograms

of propellant loss per day, while D2
BOR, D3

BOR, and D4
BOR are defined as zero kilograms

of propellant loss per day. The mapping from the design space to the objective space,

g (T) is represented by equations 9 - 12.

g(T)

D

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆

𝐵𝐵𝐵𝐵𝑆𝑆𝐼𝐼 𝑂𝑂𝑆𝑆𝑆𝑆
𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆

T
Boil Off

Mitigation

fPropSys(T)

O
𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝑅𝑅 𝑀𝑀𝑅𝑅𝐼𝐼𝐼𝐼

P
𝑃𝑃𝐼𝐼𝐵𝐵𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝐵𝐵𝐼𝐼
𝑆𝑆𝑆𝑆𝐼𝐼𝑅𝑅𝑆𝑆𝐼𝐼

𝑆𝑆𝑅𝑅𝐵𝐵𝐼𝐼𝑅𝑅𝑆𝑆𝐼𝐼𝑆𝑆 𝑀𝑀𝑆𝑆𝑅𝑅𝑀𝑅𝑅𝐼𝐼𝑆𝑆

𝑀𝑀𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆𝐵𝐵𝐼𝐼 1
𝑀𝑀𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆𝐵𝐵𝐼𝐼
𝐷𝐷𝐼𝐼𝐼𝐼𝑅𝑅𝑅𝑅𝑆𝑆𝐵𝐵𝐼𝐼

𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝑆𝑆
Δ𝑉𝑉

fM1(T)

Figure 32: Notional Example of a Simple Space Transportation Architecture Problem

mburned = mburnout(e
∆V/g0Isp − 1) (9)

mboiled = Rboil∆T (10)

79

mp = mburned +mboiled (11)

minert =

mp + 1.05 ∗mburnout if Boiloff Mitigation

mp +mburnout otherwise

(12)

Table 6: Notional Example Objective Results
Architecture Inert Mass(kg)

Storable 7789.4
Methane 8064.3

Storable w/ Tech 7889.4
Methane w/ Tech 6514.3

Analysis of the architectures results in performance values as seen in Table 6. Fol-

lowing the paradigm of optimizing a design before analyzing technologies, the storable

architecture would be selected for technology evaluation with a performance of 1.712

over the methane architecture’s performance of 1.548. However, the methane archi-

tecture with technology enhancements performs better than any other architecture,

at 2.079. Following the traditional paradigm of optimizing a design before perform-

ing technology evaluation results in this architecture being overlooked. This occurred

because under the traditional technology evaluation paradigm, it is assumed that

the impact of a technology on the design is consistent across the alternatives being

optimized. However, in the design of architectures, the underlying systems are not

consistent. Since technologies act upon these underlying systems, the overall effect of

technologies on architectures is not consistent across designs. This notional example

leads to the following hypothesis:

80

Hypothesis 3

The paradigm of down-selecting to a baseline design and then performing

technology analysis will not be sufficient in performing architecture design.

This paradigm assumes that the systems a technology acts upon remain

constant throughout the down-selection process. Because these systems

vary between architectures, the effects of technologies will be inconsistent

among these architectures.

The notional example just discussed showed that the design of complex archi-

tectures and technologies will require many additional design alternatives to fully

characterize the problem because technologies must be evaluated for each alternative

before down-selection. The large combinatorial space will likely lead to prohibitively

long analysis times. This leads to the following research question:

Research Question 4

How is combinatorial explosion of the number of alternatives affected by

different types of system spaces?

To overcome challenges due to large numbers of alternatives due to combinatorial

explosion, Design of Experiments (DOE) may be used. DOE is a technique by which a

set of experiments is selected to maximize information while minimizing experimental

effort [65]. This technique lends itself to various uses:

1. Comparative: Assessing the impacts on the process as a whole as a result of

changes in a single input factor

2. Characterization: Understanding the importance of various input factors on

the process as a whole

3. Modeling: Obtaining input/output sets in an attempt at estimating a process

81

through some mathematical function

4. Optimization: Determining optimal settings of the input factors to obtain an

optimal process response

There are many different ways of generating these “sets” of experiments. Before

the widespread use of computers, Taguchi utilized orthogonal arrays to determine

sets of experiments. However, today, software packages such as JMP R© Statistical

Discovery from SAS can create custom designs quickly and easily. Historically, DOE

was developed as a method for creating sets of inputs for physical experiments in an

effort to minimize randomness in the sets such that responses to changes in those

inputs could be accurately estimated. Another term used specifically for creating sets

of experiments when working with computational experiments is Design of Computer

Simulations (DoCS). The goal of DoCS is similar to DOE, obtaining maximum in-

formation through minimal effort. However, the sets of experiments are tailored to

be more suitable for deterministic computational analysis tools. The most notable

difference between physical experimentation and computational experimentation is

the number of factors involved. Typically computational experiments contain many

more factors for testing [67]. In practice, DoCS and DOE are generally understood to

have similar meaning and may be used interchangeably. System spaces can be broken

into one of three types:

1. Continuous/Discrete Ordinal: All input variables can be ordered in the

ranges being considered

2. Discrete Categorical: All input variables cannot be ordered in the ranges

being considered

3. Mixed: Both ordinal and categorical input variables exist in the ranges being

considered

82

An architecture alternative space will almost always be a mixed space, containing

both ordinal and categorical design variables. A simple example proves this to be

self-evident. Consider the design of a single stage rocket with three design variables:

engine propellant, engine specific impulse and number of engines. Engine propellant

options are discrete categorical in nature because there is no inherent ordering to

propellant types such as LOX/Methane versus Storable. However, engine specific

impulse is a continuous ordinal variable because the values that represent the variable

have inherent order. For example, a specific impulse of 350 seconds is greater than

300 seconds. Finally, the number of engines is a discrete variable but is ordinal in

nature. Three engines is greater than two engines, but a design may not contain 2.5

engines. Mixed design spaces are typically understood to require a full factorial DOE

on the categorical variables, while other DOEs can be used for the ordinal variables

[67]. However, because of the large, complex nature of architecture design problems,

there exist prohibitively large numbers of alternatives to consider. Performing a full

factorial DOE on even a portion of the design space can be a challenge.

Suppose a vehicle space is defined by a vehicle having up to four stages. Each

of these stages is described by five discrete parameters with two levels each. This

results in millions of unique vehicle definitions. Likewise, if we consider a mission

space defined by ten unique missions, each described by 5 individual events, with

each event having four discrete parameters containing two levels, this produces on

the order of tens of millions of unique mission definitions. If an architecture consists

of a unique mission-vehicle combination, then there are on the order of 1013 possible

architecture alternatives in this notional architecture space. Remember that the

vehicle and mission definitions only contain the discrete variables and do not account

for any continuous variables which may exist in a mixed space. This means in our

objective space, each of these architectures would appear as a single point, but in

reality, is a cloud of points dependent on the ranges of the continuous variables of the

83

design. However, because the continuous variables are not considered in this example,

they are assumed to take default values, collapsing the cloud of points to a single point

in the objective space. This act of selecting default values for the continuous space

may be a viable solution to reducing the overall number of potential designs which

must be analyzed. However, study of this option is outside the scope of this body of

work.

Also note, our architectures do not account for technologies in any way, which will

further increase the complexity and number of design alternatives. If it is assumed

that an architecture analysis environment exists that can perform its task in one

second per architecture per central processing unit (CPU) core, then it would take

44,984 years to complete analysis of all alternatives in this notional design space

on a standard 8-core personal computer. Even utilizing all 246,048 CPU cores of

the Pleiades supercomputer would take 1.46 years to analyze all the alternatives.

This phenomenon is what is referred to as combinatorial explosion. The typically

understood assumption of requiring full factorial DOEs for the discrete categorical

variables of a mixed design space, on top of other DOEs for the ordinal variables, is

impractical for a realistic design study. However, minimizing combinatorial explosion

is outside the scope of this research. To minimize the effect due to combinatorial

explosion, the following conjecture is made:

Conjecture 4

Subsets of the discrete architecture and technology space parameters will

be selected, along with assumed values for continuous parameters, depen-

dent on the discrete options, to minimize combinatorial explosion such that

effects due to integrating technologies and architectures at the subsystem

level in a single method can be studied.

84

3.3.3 Phase III: Analysis

Trade Space
Characterization

Candidate Solution
Sets Characterization Analysis

The final step in the general concept exploration framework consists of analyzing the

alternatives. The end results of analysis are numerical values of the figures of merit

selected for ranking designs. These figures of merit will help decision makers come to

final conclusions regarding the overall design. As was shown in the previous section,

large numbers of alternatives exist in such a complex architecture space. Care must

be taken to ensure that useful results are observable among so much data. Including

technologies into the architecture design problem only complicates the presentation

of results by creating ever larger numbers of alternatives as well as figures of merit to

consider. This leads to the following research question:

Research Question 5

How shall results be presented to allow decision makers clear, concise

choices in selecting architectures and technologies?

3.3.3.1 Individual Architecture Scheme

In an individual architecture scheme, each alternative analyzed is presented in the

final results. With a potential for billions of alternatives or more, it is not difficult to

imagine subtle details in trends of the results being washed out and difficult to observe

with so much data to present. This leads to the following research sub-question:

Research Question 5.1

Would utilizing an individual architecture presentation scheme prevent

high-level effects of architecture design decisions from being observed?

85

The highly discrete nature of architecture design means that there will more than

likely be grouping of the results corresponding to discrete decisions in the matrix

of alternatives. If a given option in the matrix of alternatives drives extraordinary

results for a subset of the alternatives, that subset of alternatives would be ranked

higher than any of the other subsets. However, during early phases of design, decision

makers are typically more interested in how architecture design decisions, such as

applying a certain technology or basic propulsion types, may affect the performance

of an architecture compared to the others. However, it could be challenging to see this

type of information with so many results of a subset of alternatives flooding the top

rankings of the results. In essence, by narrowing the amount of data being observed

by only relying on a top N individual architectures scheme, a poor cross section of

the whole objective space will be observed.

As an example, suppose a decision maker is interested in understanding how the

selection between four different propulsion systems may affect the resulting architec-

tures. Assume there are 1000 architectures in the space, 250 for of each propulsion

type, and that the top 10 performing individual architectures will be presented. It is

probable that all 10 top architectures may be of a single propulsion type. However, if

the decision maker wishes to perform comparative analysis of the different propulsion

types in the objective space, this information cannot be observed due to only a single

propulsion type from the architecture space flooding the chosen objective space. The

top 10 architectures resulted in an objective space with a poor cross section of the

original architecture space. This logic leads to the following hypothesis:

Hypothesis 5.1

The presentation of individual architectures will obscure high-level effects

due to flooding of the top results with similar individual designs.

86

3.3.3.2 Portfolio Scheme

In the previous section, it was observed that selecting optimal designs from an ob-

jective space containing individual architectures may result in a poor cross-section

of the architecture space actually being studied and observed. However, because the

architecture space is so discrete in nature, portfolios of designs may be formed to

observe cross sections that are more representative of the architecture space. In a

portfolio scheme, results of the alternatives may be grouped in some manner in an

attempt to simplify the presentation of results in situations where there is an unman-

ageable amount of individual data points to present. In his work on developing a

rapid architecture analysis model, Iacobucci states that common tools used for data

exploration are not designed to handle extremely large data sets [50]. In his work,

portfolios were created based off of unique sets of systems. Architectures containing

the same constituent systems were grouped together into portfolios. Similarly, meth-

ods such as TIES use sets of active technologies to act as grouping criteria for the

objective space. However, details about how grouping criteria are selected in these

methods are undefined. There has been no study of how these grouping criteria may

affect the resulting portfolios. This leads to the following research question:

Research Question 5.2

How do the grouping criteria used for forming portfolios of architectures

affect the variance of the resulting portfolios?

The concept behind this research question is illustrated by Figure 33. Here, group-

ing criteria can be selected in many ways to either form a few large portfolios or many

small portfolios spanning the objective space.

If portfolios are defined in such a way that they contain large numbers of architec-

ture alternatives, it is expected that there will be many different architecture concepts

87

P2P1 P3

Few Large Portfolios

P2P1 P3
●
●
●

P5P4 P6 P7 P9P8 P10

P12P11 P13 P15P14 P16 P17 P19P18 P20

Many Small Portfolios

Figure 33: Relationship Between Portfolio Size and Number of Portfolios

grouped together, creating a large variation in architectures within a given portfolio.

If the individual architecture objectives are rolled up into portfolio-level objectives, it

is expected that the variations in these rolled up metrics will be greater compared to

if the objective space were broken into many smaller portfolios. However, when the

scope of an individual portfolio is narrowed down, the number of possible portfolios

increases. With more focused architecture grouping criteria, variation between the

grouped architectures in a portfolio will be reduced compared to the large portfolios.

These ideas are summarized in the following hypothesis:

88

Hypothesis 5.2

Variance of the objective metrics within and between portfolios will corre-

late positively with the size of the portfolios, measured by the number of

grouped architectures.

However, the act of grouping criteria together to form portfolios of architectures

spanning the objective space may leads to potential problems with observing results

and selecting optimal designs. Because architectures are grouped together with the

performance of portfolios being compared as opposed to individual designs, there

may exist a scenario where a high-performing optimal design is obscured in a lower-

performing portfolio, formalized in the following research question:

Research Question 5.3

Would utilizing a portfolio scheme for grouping architectures obscure high-

performing outlier architectures?

As a notional example, consider the simple single objective space containing 20

total designs, represented by Table 7. Two portfolios of designs are created with the

simple grouping criteria of the first 10 designs and the remaining 10 designs. Here we

see the optimal design, denoted by the maximum objective value, resides in portfolio

two. However, by creating a portfolio-level metric as the mean of the 10 contained

design objective values, portfolio two has an overall objective value of 0.46. The

same overall objective for portfolio one is 0.67. If a decision is made to only consider

designs contained within the optimal portfolio, the true optimal design is obscured

within the suboptimal portfolio. In order to more easily develop an experiment around

this research question, a null hypothesis will be set up. This leads to the following:

89

Table 7: Notional Design Obscuring In Objective Space Portfolios
Objective
0.766211
0.804294
0.759173
0.730905
0.574270
0.620439
0.618472
0.654051
0.245305
0.914338

P
1
=

0
.6

7

0.372797
0.654160
0.147452
0.087135
0.480864
0.328384
0.934477
0.916002
0.155315

D
e
si

g
n
s

0.498400

P
2
=

0
.4

6

Hypothesis 5.3

High-performing outlier architectures will not be obscured using a portfo-

lio evaluation scheme because they will be contained in a portfolio with

other similar architectures which will exhibit similar behavior, raising the

performance of the entire portfolio.

3.3.3.3 Effects on Establishing Value

Due to the sheer number of potential alternatives which may exist in the concept

exploration of complex architectures and technologies, presentation of the results will

provide new challenges. The way in which the results are presented could dramatically

alter the metrics of interest. This is formalized in the following research question:

90

Research Question 6

Does the presentation scheme of the results affect the metrics that should

be utilized to establish the value of a portfolio?

At the core of all of the information available to a decision maker during archi-

tecture evaluation is the analysis environment. The environment dictates what infor-

mation is available for use as figures of merit in ranking architectures or portfolios

of architectures, as well as producing DoDAF-based viewpoints of the architecture.

Because of this, it is not possible to obtain different sets of metrics Dependant on

the presentation scheme. Rather, the set of metrics is fixed based on the analysis

environment. Also, since a portfolio would be a grouping of similar architectures,

it follows that the portfolio results will have the same figures of merit as those of

the individual architectures. An aggregate of the metric can be calculated for an

entire group of alternatives. However, by grouping architectures together, high-level

architecture decisions can be observed through the variation in the individual archi-

tectures in a portfolio. Whereas presenting architectures independently can make it

difficult to perform the required analysis to observe these effects, portfolios provide a

logical, predefined subgroup to make studying high-level architecture choices concise.

Furthermore, through the use of a multi-level Unified Tradeoff Environment (UTE)

similar to the notional example shown in Figure 34, simultaneous trades between the

architecture, design, objective, and technology spaces can be performed [10]. Weight-

ings among these spaces and their attributes can be selected to study the effects on

a portfolio scheme. This is summarized in the following hypothesis:

91

Conjecture 6

A portfolio scheme should include new figures of merit relating to the

portfolio metric variances, portfolio composition, and portfolio objective

weightings.

4
American Institute of Aeronautics and Astronautics

 Using neural network surrogate models, the hierarchical modeling and simulation environment
consisting of vehicle propulsion system models, aircraft (platform) synthesis and sizing codes,
and the top-level military campaign analysis were approximated and integrated into a multi-level
Unified Tradeoff Environment (UTE) [2] that allows simultaneous trades between design
variables, requirements, and technologies at each hierarchical level as shown in Figure 1.

Figure 1: Hierarchical, Surrogate Modeling Environment for Systems-of-Systems Analysis.

 While this integrated modeling and simulation environment uses a suite of surrogate models,
the surrogates must be created from parametric, physics-based design tools. Another major
challenge was the identification of design tools with the appropriate fidelity, degrees of freedom,
and availability for this research. Instead of acquiring the proprietary tools of collaborative
entities from industry, the approach used due to the short time for the study was the use public-
domain tools to create surrogate models of the respective systems and subsystems with
validation from industry partners. A wide variety of models were required to effectively perform
the necessary campaign simulation to assess effectiveness against capabilities. First, a parametric
aircraft model was developed using the energy-based sizing formulation advocated by Mattingly
[3] and the Breguet range equation for vehicle sizing. The energy-based equation for thrust-to-
weight ratio as a function of aircraft design parameters is of the form:

++

++

+

=

o
D

TOTO

TOTO

SL

g
Vh

dt
d

VqS
RC

S
W

q
nK

S
W

q
nK

W
qS

W
T

o 2
1 2

2

2

1
ββ

βα
β

The above parameters are defined in detail in Reference 3. Due to the prevalence of enemy SAM
sites on the battlefield, a parametric weapon model was developed using the methods in

Figure 34: A notional multi-level Unified Tradeoff Environment (UTE) of forward
ground support through strategic airlift architectures [10]

3.4 Summary of Research Questions

This chapter has proceeded through a general process for concept exploration, and in

doing so produced a set of research questions and hypotheses relating to integrating

technology evaluation and architecture analysis into a single framework. The following

is a summary of those questions and hypotheses:

92

Statement of Purpose

To provide a capability to analyze complex systems of systems to an extent

which will provide decision makers in the early phases of design sufficient

information to reduce the risks associated with cost and schedule overruns

due to lack of design knowledge.

Research Objective

To integrate architecture analysis and technology evaluation at the sub-

system level to provide a quantitative framework in an effort to increase

design knowledge early in the design process.

Research Question 1

What is the relationship between architectures and technologies?

Conjecture 1.1

Based on the definitions of an architecture and technology provided by this

body of work, technologies affect an architecture by acting at the subsystem

level of that architecture.

Conjecture 1.2

Based on the assumed decomposition derived from STSD, a technology

space should be included as a new system space. The transformations

between the architecture space, design space, and objective space shall be

functions of the new technology space.

93

Research Question 2

What technology impact metrics should be considered in determining the

overall “goodness” of the results such that they may be ranked?

Conjecture 2

The technology impact metrics considered should align with the metrics of

interest for measuring the “goodness” of an architecture, without introduc-

ing unnecessary bias.

Research Question 3

Is the paradigm of down-selecting to a baseline design on which to perform

technology analysis sufficient for the exploration of complex architectures?

Hypothesis 3

The paradigm of down-selecting to a baseline design and then performing

technology analysis will not be sufficient in performing architecture design.

This paradigm assumes that the systems a technology acts upon remain

constant throughout the down-selection process. Because these systems

vary between architectures, the effects of technologies will be inconsistent

among these architectures.

Research Question 4

How is combinatorial explosion of the number of alternatives affected by

different types of system spaces?

94

Conjecture 4

Subsets of the discrete architecture and technology space parameters will

be selected, along with assumed values for continuous parameters, depen-

dent on the discrete options, to minimize combinatorial explosion such that

effects due to integrating technologies and architectures at the subsystem

level in a single method can be studied.

Research Question 5

How shall results be presented to allow decision makers clear, concise

choices in selecting architectures and technologies?

Research Question 5.1

Would utilizing an individual architecture presentation scheme prevent

high-level effects of architecture design decisions from being observed?

Hypothesis 5.1

The presentation of individual architectures will obscure high-level effects

due to flooding of the top results with similar individual designs.

Research Question 5.2

How do the grouping criteria used for forming portfolios of architectures

affect the variance of the resulting portfolios?

95

Hypothesis 5.2

Variance of the objective metrics within and between portfolios will corre-

late positively with the size of the portfolios, measured by the number of

grouped architectures.

Research Question 5.3

Would utilizing a portfolio scheme for grouping architectures obscure high-

performing outlier architectures?

Hypothesis 5.3

High-performing outlier architectures will not be obscured using a portfo-

lio evaluation scheme because they will be contained in a portfolio with

other similar architectures which will exhibit similar behavior, raising the

performance of the entire portfolio.

Research Question 6

Does the presentation scheme of the results affect the metrics that should

be utilized to establish the value of a portfolio?

Conjecture 6

A portfolio scheme should include new figures of merit relating to the

portfolio metric variances, portfolio composition, and portfolio objective

weightings.

96

CHAPTER IV

SPACE TRANSPORTATION ARCHITECTURE

MODELING

Performing architecture and technology trades on space systems is a difficult problem

because, by definition, they are system of systems problems as outlined in Chapter

2. The large system of systems gives rise to extremely large trade spaces suffering

from analysis issues such as combinatorial explosion, as described in Chapter 3. In

order to perform analysis on the large combinatorial trade space, there needs to be

a way of quickly evaluating different architecture concepts. In the context of space-

flight, there are many new concepts that need to be modeled under various scenarios,

usually utilizing physics-based analysis due to a lack of historical data to populate

the vast design space. This chapter will investigate the basic analysis concepts, on-

tology, and existing tools in the domain of space transportation architecture analysis.

A shortcoming in current tools will lead to a discussion of a new subsystem-level,

multidisciplinary design, analysis, and optimization (MDAO) framework for space

transportation architecting, as well as spacecraft subsystem models developed for the

purpose of this body of work.

4.1 Basic Modeling and Simulation Concepts

Before describing space transportation analysis and design, it would be advantageous

to discuss a few basic concepts in modeling and simulation and how they apply

to space transportation architecture analysis. The two concepts of interest in this

discussion are surrogate modeling and optimization, as their implementation can have

dramatic impacts on the performance of analysis tools. The goal of this section is to

97

make the reader aware that these concepts were considered during the formulation

and creation of the framework and models discussed later in Section 4.4 and Section

4.5. However, no formal research questions or hypotheses were formed with regard to

basic modeling and simulation concepts, and is considered outside the scope of this

body of work.

4.1.1 Surrogate Modeling

Surrogate modeling is a technique by which complex physics-based models are ap-

proximated by means of some independent mathematical construct such as response

surface equations, neural networks, or even simple algebraic equations, to name a

few. Literature provides a multitude of different surrogate modeling techniques. A

discussion of the different modeling techniques and their applicability to systems of

systems problems is outside of the scope of this research. The key principles behind

these surrogate models are two-fold. The first is to speed up the process of evaluation.

The second is the ability to obscure proprietary source codes as well as providing the

ability to create frameworks that are tool independent [66]. Typically, complex multi-

physics-based analysis tools are considered too slow to be utilized in an automated

design framework, and many organizations are unwilling to make proprietary models

open and available. Surrogate modeling then becomes a key enabler to creating fast

and highly accurate models to be utilized in frameworks to aid in the early stages of

design. It allows large numbers of designs to be evaluated and analyzed with relative

ease and speed, while focusing only on relevant data. Typically, the process of creating

surrogate models relies on utilizing a DOE to intelligently gather the large amounts

of data from these complex, slow, proprietary analysis tools necessary to generate the

surrogate models. Due to the discrete nature of architectures defined in this disserta-

tion, creating surrogate models of the upper-level system of systems cannot be done.

For architectures defined in this way, surrogate models are typically created around

98

physics-based subsystem or component models. It is these surrogate models which

are then brought together in an analysis framework to perform architecture design

and analysis.

4.1.2 Optimization

Dieter defines optimization as “the process of maximizing a desired quantity or min-

imizing an undesired one.” [22] In the context of numerical analysis of designs, opti-

mization is typically a logical approach to design automation [117]. Typically, these

logical approaches are in the form of algorithms which explore a design space method-

ically to reach a desired result. Again, literature provides a variety of algorithms for

this purpose. However, an exploration of the many different optimization techniques

is outside of the scope of this dissertation and is left for future work. Typically, these

techniques are broken into two main types, local optimizers and global optimizers.

Figure 35 provides a notional example of these differences. In this example, the opti-

mum is a minimum. Obviously, one can observe that different optimizers can provide

drastically different results in solutions, both at a subsystem and system of systems

level.

Local Minimum

O
b

je
ct

iv
e

V
al

u
e

Global Minimum

𝑓 𝑥

Figure 35: Notional Example of Local vs Global Minimum

99

The analysis of complex architectures requires multiple levels of optimization to

achieve a final optimized result. This is due to the multi-level, multi-model structure

of architecture design problems. In fact, there is an entire field dedicated to per-

forming multi-level optimization tasks, called collaborative optimization. However, a

study of collaborative optimization and how it applies to space transportation archi-

tecture analysis is beyond the scope of this research and shall be left for future work.

It is important to note that the type of optimizers, as well as their implementation

in an analysis framework, can have dramatic impacts on the analysis speed as there

are many evaluations taking place throughout an architecture’s subsystems to reach a

single solution. Even though individual subsystem models may run quickly, depend-

ing on the level of nested optimizers, a high-level architecture optimization task may

require lower-level subsystem models to be evaluated thousands of times for every

high-level optimizer evaluation.

4.2 Ontology of Space Transportation Architectures

Space systems architecting is a complex exercise in closing designs, converging on

multiple vehicles and the elements of which they are composed. However, there is a

hierarchical, structured order used to describe each vehicle, its elements, and what

actions it takes. That is, there is an ontology that describes the architecture. Using

the definitions discussed in Chapter 2.1 and applying them to space transportation ar-

chitectures, the ontology’s most basic terms and definitions, as well as their hierarchy,

are defined as follows:

• Campaign: a unique combination of architectures assembled to achieve an

overarching objective

– Architecture: a unique pairing of a Vehicle to a Mission

∗ Vehicle: a unique combination of Elements

100

· Element: a system composed of one or more subelements

+ Subelement: a basic building block, representing a physical or

functional decomposition

∗ Mission: a combination of CONOPs with Trajectories, manifesting

as a unique sequence of events

· CONOP: a planned non-trajectory-related action or activity

· Trajectory: a physical path to be taken

When a vehicle is composed of elements, and is sized to a mission, an architecture

is realized. Therefore, when multiple architectures are defined, a campaign is realized.

Figure 36 represents this structure graphically.

Campaign

Architecture

Vehicle

Element

Sub-
element

Sub-
element

… …

Element

Sub-
element

Sub-
element

…

Mission

CONOPS

Action Action… …

Trajectory

Path Path…

Architecture

Vehicle

Element

Sub-
element

Sub-
element

… …

Element

Sub-
element

Sub-
element

…

Mission

CONOPS

Action Action… …

Trajectory

Path Path…

Figure 36: Graphical Space Transportation Architecture Ontology

4.2.1 Vehicle

Each element represents a building block of the vehicle. These elements are used to

represent physical systems such as payloads and propulsive stages. These elements

are in turn composed of subelement(s). At least one subelement is required to define

the element, however, there is no limit to the number of subelements which may be

used to define an element. Elements are sized based on various parameters. These

101

sizing parameters may be parameters such as ∆V , mission duration, number of crew,

and operating environment of the mission, as well as parameters from other vehicle

elements and subelements, including but not limited to power requirements, thermal

loads, and volume.

4.2.2 Mission

To size an architecture correctly, the vehicle must be sized to a sequence of events

as defined by the Mission. Any event of interest can be categorized as a CONOP or

Trajectory-related event. A CONOP event is a change in inert mass (∆mi) and/or a

change in propellant mass (∆mp). A Trajectory event is a change in velocity (∆V)

and/or a passage of time (∆t). Table 8 provides a summary. It is important to note

that CONOP events include both positive or negative changes, whereas Trajectory

events are always positive.

Table 8: Event Type Decomposition

Event Type Event

CONOP ∆mi, ∆mp

Trajectory ∆V , ∆t

This mission ontology allows architects to define any event of interest by using

these event types in combination, e.g. docking with a propellant depot for refueling

(a ∆mp), boiloff (a ∆mp throughout a ∆t), dropping a drop tank (∆mi with residual

∆mp), a burn (∆V in a ∆t), a coast event (∆t), etc.

4.2.3 Architecture

An architecture combines a unique vehicle and mission, where the vehicle and mission

are defined as described above. The design of the architecture can be posed as an

optimization problem. Consider the standard form for an optimization problem as

102

minf(~x) objective function

subject to :

gj(~x) ≤ 0 inequality constraints

hk(~x) = 0 equality constraints

xLi ≤ xi ≤ xUi side constraints

As a simple example: f(~x) =
n∑

i=1

mgrossi where f is the inert mass at LEO and

mgrossi are the masses of the vehicle elements. ~x is the ∆V each propulsive element is

responsible for, gj and hk define the minimum and maximum stage size constraints,

and each xLi and xUi defines the upper and lower bounds, respectively, on each of the

∆V s. Each element is composed of many subelements, which can be external codes

or univariate or multivariate equations. These subelements are then sized according

to ~x and any other inputs to the models. Through this process an entire system of

systems space architecture is sized as an aggregate of its component subsystems.

4.3 Existing Tools

In order to test the hypotheses discussed in the previous chapter, a modeling and

simulation environment must be identified to act as a digital test bed for the pur-

pose of evaluating architectures at the subsystem level while incorporating the effects

due to technologies. Because the motivating field behind this research is in the space

architecting domain, a digital test bed environment capable of evaluating space trans-

portation architectures and technologies is desired. Table 9 provides a list of desirable

features and their purpose in selecting a modeling and simulation environment to be

utilized in a digital test bed for this research.

In a literature search for applicable tools to model space systems architectures, the

following NASA tools were identified as potential candidates. Other tools may exist

within the private sector, however, these tools are typically withheld as proprietary

software and not made publicly available. The following is a brief description of each

103

Table 9: Required Features for a Modeling and Simulation Environment

Feature Purpose

Subsystem-Level Sizing Models To enable the ability to evaluate en-
tire architectures down to the subsys-
tem level for the purpose of evaluating
subsystem-level technologies

Ability to Integrate User-Provided Sub-
system Models

To enable the use of user-trusted models
to alleviate concerns regarding modeling
technique employed by any one software
package, as well as provide a flexible tool
to evaluate a wide range of architectures
which may not be considered initially

Ability to Analyze the Effects of Tech-
nologies

To enable the ability to evaluate the
effects of infusing subsystem-level tech-
nologies at the architecture level of de-
sign

Integrated Vehicle and Trajectory Opti-
mization

To enable evaluation of space trans-
portation architectures as defined, con-
sisting of both a mission and a vehicle

of the identified NASA architecture sizing tool.

4.3.1 BLAST

Beyond LEO Architecture Sizing Tool (BLAST) is a tool developed by Zero Point

Frontiers in cooperation with NASA’s Johnson Space Center to in order to rapidly

generate mass estimates for in-space transportation vehicles and architectures for hu-

man exploration missions [122]. The underlying mass estimating relations are histor-

ical data-based regressions ranging from the Apollo era up to space assets as of 2012,

when the tool was released. Mass estimating relations are integrated into the tool to

provide a user-friendly interface; however, this limits user visibility to the underlying

regressions, as well as the ability to integrate new regressions. BLAST provides a

platform for setting up and conducting trade studies and sensitivity analyses on the

architecture.

104

4.3.2 COPA

The Computerized Orbital Performance Analysis (COPA) tool began development

in the early 1990’s as a FORTRAN-based architecture analysis tool. The tool was

developed by NASA Marshall Space Flight Center’s Advanced Concepts Office as a

means to evaluate multiple architectures simultaneously. It has since been extended

into a Microsoft Excel-based spreadsheet in the early 2000’s and a Java extended

application in 2012 to provide a simple user interface to the original FORTRAN code

[71]. Vehicle elements are sized by element-level scaling equations of a fixed form with

user-defined scaling parameters as follows:

Wbo = A+B ∗Wp + C ∗Wp
2 (13)

where:

A = weight of all components not dependent on propellant capacity

B = weight of components directly proportional to propellant capacity

C = weight of components that vary with the square of the propellant capacity

COPA has the ability to track multiple separate vehicles simultaneously. These

separate vehicles may be split and recombined in any fashion, where COPA manages

tracking of which elements are on which vehicle. Propellant boiloff is calculated

as either a fixed propellant mass per month or a percentage of the propellant load

per month. Missions are defined by a fixed set of actions, namely, adding/dropping

elements and specifying ∆V maneuvers subject to the ideal rocket equation:

∆V = g0 ∗ Isp ∗ ln

(
m0

mf

)
(14)

4.3.3 Envision

The Envision Exploration Vehicle System Estimation tool began development in 2001

to aid in quick-turnaround responses to mission and vehicle concept feasibility studies

[26]. Envision is a Microsoft Excel-based tool developed by NASA’s Johnson Space

105

Flight Center. It is composed of three primary layers: the main input layer, the system

sizer layer, and the vehicle summary layer. Envision computes mass, volume, and

power requirements for various subsystems, such as propulsion, structures, thermal

protection, power generation, thermal control, life support, and avionics. Sizing of

these subsystems is performed by either integrated physics-based models or internal

mass estimating relationships based on historical data for each of the subsystems.

The user is limited to the models provided in the Envision environment.

4.3.4 EXAMINE

The Exploration Architecture Model for In-space and Earth-to-orbit (EXAMINE)

tool was developed by NASA’s Langley Research Center. It aids in architecture def-

inition and assessment prior to, or during, program formulation. It was developed in

an effort to enable larger fractions of an architecture trade space to be assessed in a

short time frame, while also allowing complex interactions between elements and sys-

tems to be quantitatively explored [60]. EXAMINE is a collection of Microsoft Excel

workbooks utilizing the inherent features of Excel and Visual Basic for Applications

to perform sizing and analysis. EXAMINE utilizes a collection of element parametric

sizing models capable of sizing launch vehicles, hypersonic cruise and acceleration

vehicles, in-space transfer stages, landers, entry vehicles, transfer habitats, orbital

platforms, surface habitats, and other surface elements. New models are capable

of being integrated due to EXAMINE’s high level of modularity. Mission modeling

is integrated into the EXAMINE tool and is capable of providing high-thrust and

low-thrust trajectory estimations through its internal trajectory tool.

4.3.5 HExAM

The Human Exploration Architecture Model (HExAM) is a Microsoft Excel-based

tool developed by NASA’s Marshall Space Flight Center aimed at providing level-

zero evaluation of various architecture options for manned exploration missions [91].

106

Vehicle elements are sized based on a mixed-form scaling equation with user-defined

scaling parameters of the form:

mbo =
A

1 +B/mp
C

(15)

This equation was found to fit the general scaling trends of in-space transportation

stages very well. The scaling parameters A, B, and C are determined by fitting data

of historical designs. The mission events which size an element’s propellant mass are

subject to the ideal rocket equation of the form:

mp = m0 ∗
[
1− exp

(
−∆V

g0 ∗ Isp

)]
(16)

Propellant boiloff is handled as a percentage of the total propellant lost per day.

HExAM was later ported to the Python programing language utilizing a Qt-based

user interface for quick and easy formation and manipulation of missions and vehicle

element definitions. It also provides the ability to set up batches of cases where

specified input parameters may be varied over user-defined ranges automatically.

4.4 The DYnamic Rocket EQuation Tool (DYREQT)

An analysis tool must be selected to meet the research objective of this dissertation by

conforming to the space transportation architecture ontology outlined in Section 4.2.

The analysis tool needs to be capable of evaluating architectures at a subsystem level

as defined by the ontology. This will require a collection of subsystem-level models to

define architectures. Subsystem-level models are typically found independent of other

subsystem models in literature. As such, the tool will need the ability to integrate

various models developed outside of the tool itself. Additionally, the tool needs to

have the ability to analyze the effects of technologies defined at the subsystem or

component level, as described in Chapter 2. Finally, the ontology outlined shows

that architectures integrate a mission containing a set of trajectories, and a physical

vehicle composed of various elements, which must be analyzed and optimized together.

107

Within the industry, no single analysis tool or framework was identified which is

agreed upon for the purpose of space transportation architecture design and analysis.

Typically, each group or organization utilizes a different in-house developed tool with

collections of models to perform architecture analysis. Each have their pros and

cons; however, no tool meets the criteria of an analysis environment which meets

the needed features discussed above. Table 10 summarizes the capabilities of the

tools identified in this chapter against basic modeling and simulation environment

requirements based on this research. BLAST has a simple and effective user interface.

However, because of its compiled nature, integrating new subsystem models is not

possible. This also limits the ability for a user to view the details of an underlying

model and assumptions. COPA and HExAM both perform sizing at a system level

utilizing various forms of equations to scale elements. This makes the sizing problem

very simple and transparent, preventing any kind of subsystem level trades to be

performed due to their very high-level nature. Envision and EXAMINE provide

higher fidelity modeling on both the mission and vehicle sizing aspects of sizing an

architecture. They are both modular Microsoft Excel tools, which allow for additional

subsystem models to be integrated into the tools. However, this integration is not

trivial and requires a substantial investment in time in order to properly integrate

new models into the framework. These shortcomings prompt the formulation of a

new space architecture design and analysis tool to meet the research objectives of

this body of work.

At the Georgia Institute of Technology Aerospace Systems Design Lab, a team

of researchers are working to develop a proof-of-concept MDAO environment for the

design of space transportation architectures at the subsystem level. In its final state,

the tool will be capable of integrating various user-provided surrogate models and

physics-based tools together for sizing full architectures, while also providing fully

108

Table 10: Analysis Tool Comparison

 Method
 Metric BLAST COPA Envision EXAMINE HExAM

Subsystem Level Sizing Models

Ability to Integrate User-Provided
Subsystem Models

Ability to Analyze Effect of
Technologies

Integrated Vehicle and Trajectory
Optimization

Tools
Fe

at
ur

es

= Met = Partial = Unmet

integrated trajectory analysis and optimization concurrent with vehicle sizing. Sim-

plicity is a primary focus, allowing users to integrate various models with ease. The

purpose for this development is to introduce the ability to perform technology eval-

uations of large scale, complex, architectures in the space transportation domain,

while providing integration and optimization of mission analysis and vehicle sizing

unattainable with currently existing tools.

The Dynamic Rocket Equation Tool (DYREQT) is being developed to meet the

goal outlined previously. This software will be utilized for performing experiments to

test the research questions of this dissertation due to its unique capability to analyze

architectures at the subsystem level with easy-to-integrate, user-provided subsystem

level models used to define the vehicle, mission, and technology spaces. DYREQT

is being developed in the Python programming language, utilizing modules such as

SciPy and NASA Glenn Research Center’s OpenMDAO to simplify the development

of an MDAO engine for the framework [56, 37]. Together, these two modules allow

much of the tedious work of connecting models to be automated, while also providing

high levels of flexibility and modularity for modeling and optimization.

109

In its current state, as of mid-2017, DYREQT closely follows the ontology out-

lined in Figure 36. However, because DYREQT is incomplete, certain portions of

the ontology are not fully realized, primarily, the trajectory portion of the mission.

Rather, missions are purely a function of a series of events, which encompass both the

action and path definitions of the basic ontology. However, the rest of the ontology is

in place in the framework, with vehicles being a collection of elements, which are in

turn a collection of subelements. Figure 37 shows the object dependence implemented

in DYREQT.

DYREQTProblem

Architecture

Vehicle

Element

Sub-
Element

Sub-
Element

… …

Element

Sub-
Element

Sub-
Element

…

Mission

Event

…

Event

Figure 37: DYREQT Object Structure

Because DYREQT is built upon the MDAO framework, OpenMDAO, it is use-

ful to understand the basic structure of some OpenMDAO concepts pertaining to

modeling. OpenMDAO’s primary structure consists of the Component, Group, and

Problem classes. The Problem class is the top-level class for defining a root system

to be solved. In OpenMDAO, the System class is the base class for the Group and

Component classes. Groups are OpenMDAO Systems which contain other OpenM-

DAO Systems, either Groups or Components. Components are the most fundamental

110

DYREQT.Problem

options:dict()
root:DYREQT.Architecture()

OpenMDAO.Problem

Figure 38: DYREQT Problem Class Structure

class, where basic models are written or wrapped. Components have sets of param-

eters and unknowns, where parameters are model inputs, and unknowns are model

outputs. As mentioned previously, DYREQT allows for the automation of connecting

models. This can be achieved by the use of basic naming conventions between models.

Classes in DYREQT are strongly related to the structure just described, as most

DYREQT classes are subclasses of the OpenMDAO classes. The following sections

are descriptions of the basic classes of DYREQT shown in Figure 37. This will help

understand how DYREQT functions internally and differs from architecture sizing

tools in existence. For a notional problem solved using DYREQT, see Appendix A

for the setup and evaluation, and Appendix B for the output.

4.4.1 The DYREQT Problem Class

The DYREQT Problem class is a subclass to the OpenMDAO Problem class, as

seen in Figure 38. This class provides the main entry point for creating and solving

an MDAO problem. The main root system for the DYREQT Problem class is an

instance of the DYREQT Architecture class. The Problem class also provides high-

level options for control of file IO, console printing, optimizers, and numerical solvers.

4.4.2 The DYREQT Architecture Class

The DYREQT Architecture class is a subclass to the OpenMDAO Group class, which

is in turn a subclass of the OpenMDAO System base class, as seen in Figure 39. Cre-

ation of an instance of this class provides the root system for the Problem class. The

111

DYREQT.Architecture

arch_def:dict()
systems:[

DYREQT.Mission(),
DYREQT.Vehicle(),
DYREQT.ArchitectureOptimization()

]

OpenMDAO.Group

OpenMDAO.System

DYREQT.ArchitectureOptimization

options:dict()
constraints:dict()

OpenMDAO.Component

OpenMDAO.System

Figure 39: DYREQT Architecture Class and Helper Class Structures

DYREQT Architecture class contains three DYREQT class instances: DYREQT

Mission, Vehicle, and ArchitectureOptimization objects. The Mission and Vehicle

classes are described in detail in Section 4.4.3 and Section 4.4.5, respectively. The

Architecture class takes three inputs: the mission definitions, the vehicle definition,

and the CONOPs definition. Each of these inputs is a dictionary of key:value pairs

defining each of the architecture components. These inputs are then parsed and used

to feed the inputs to the DYREQT Mission and Vehicle classes. The Architecture-

Optimization class provides architecture-level parameters such as the main objective

value and high-level constraints on these parameters. Its class structure is seen in

Figure 39.

4.4.3 The DYREQT Mission Class

The DYREQT Mission class is a subclass to the OpenMDAO Group class, which is in

turn a subclass of the OpenMDAO System base class, as seen in Figure 40. The Mis-

sion class takes inputs provided by the Architecture class to create a set of DYREQT

Event class instances and a MissionUtilities class instance. A detailed description of

the DYREQT Event class can be found in Section 4.4.4. The MissionUtilities class

provides mission-level parameters such as mission duration, as well as constraints on

112

DYREQT.Mission

mission_def:dict()
systems:[

DYREQT.MissionUtilities(),
DYREQT.Event(),
…
DYREQT.Event(),

]

OpenMDAO.Group

OpenMDAO.System

DYREQT.MissionUtilities

options:dict()
constraints:dict()

OpenMDAO.Component

OpenMDAO.System

Figure 40: DYREQT Mission Class and Helper Class Structures

these parameters. Its class structure is seen in Figure 40.

4.4.4 The DYREQT Event Class

The DYREQT Event class is a subclass to the OpenMDAO Component class, which

is in turn a subclass of the OpenMDAO System base class, as seen in Figure 41. The

Event class is a base class for users to integrate external models with the DYREQT

framework for the purpose of evaluating the defined mission. Inputs to these models

flow from the original Architecture class inputs, through the Mission class, which

parses the individual event inputs to the proper user model. The base Event class also

allows inputs for constraints on event-level parameters. The DYREQT Event base

class provides a collection of basic internal data, as well as basic model parameters,

and unknowns shared with all events, regardless of type. The internal data includes

a base name, total number of mission events, the current event number, and a list

of active elements for the event, and parent mission object. The base parameters

include vehicle gross mass and total payload. The base unknowns are initial and final

mass at the beginning and end of the event, respectively. The user is able to link

any other required model parameters and assign unknowns. If commonality exists

113

DYREQT.Event

model_select:str()
options:dict()
constraints:dict()

OpenMDAO.Component

UserModels.Model

model_inputs:dict()

OpenMDAO.System

Figure 41: DYREQT Event Class Structure

between model parameters and unknowns anywhere in DYREQT, they will be linked

automatically by DYREQT and will be available for other user models to interact

with. There is no limit to the type of external model which may be integrated to

perform mission-level calculations. Event models developed and integrated for the

purpose of evaluating the experiments for this body of work can be found in Section

4.5.1.

4.4.5 The DYREQT Vehicle Class

The DYREQT Vehicle class is a subclass to the OpenMDAO Group class, which is in

turn a subclass of the OpenMDAO System base class, as seen in Figure 42. The Vehi-

cle class takes inputs provided by the Architecture class to create a set of DYREQT

Element class instances and a VehicleUtilities class instance. A detailed description of

the DYREQT Element class can be found in Section 4.4.6. The VehicleUtilities class

provides vehicle-level parameters such as vehicle gross mass, as well as constraints on

these parameters. Its class structure is seen in Figure 42.

114

OpenMDAO.Group

OpenMDAO.System

DYREQT.Vehicle

vehicle_def:dict()
systems:[

DYREQT.VehicleUtilities(),
DYREQT.Element(),
…
DYREQT.Element(),

]

DYREQT.VehicleUtilities

options:dict()
constraints:dict()

OpenMDAO.Component

OpenMDAO.System

Figure 42: DYREQT Vehicle Class and Helper Class Structures

4.4.6 The DYREQT Element Class

The DYREQT Element class is a subclass to the OpenMDAO Group class, which

is in turn a subclass of the OpenMDAO System base class, as seen in Figure 43.

The Element class takes inputs provided by the Architecture class to create a set

of DYREQT SubElement class instances and an ElementUtilities subclass instance.

A detailed description of the DYREQT SubElement class can be found in Section

4.4.7. Here, the ElementUtilities class is a base class for two subclasses, the Stage

and Payload classes. These utility classes were convenient to separate as they have

dramatically different structures and requirements for sizing purposes. These two

class structures can be seen in Figure 42. Though they have dramatically different

structures and requirements for sizing, they are delineated by a single descriptor.

If the element is sized by a propellant mass parameter, then it is a stage element

utilizing the Stage utility subclass, otherwise, it is considered a payload element

utilizing the Payload utility subclass, shown in Table 11. The ElementUtilities class

is unique from the other helper class in that it provides unique inputs for the Stage

and Payload subclasses, summarized in Table 12.

115

OpenMDAO.Group

OpenMDAO.System

DYREQT.Element

element_def:dict()
systems:[

DYREQT.ElementUtilities(),
DYREQT.SubElement(),
…
DYREQT.SubElement (),

]

DYREQT.ElementUtilities

element_type:str()

OpenMDAO.Component

DYREQT.Payload

options:dict()
constraints:dict()

DYREQT.Stage

options:dict()
constraints:dict()

OpenMDAO.System

Figure 43: DYREQT Element Class and Helper Class Structure

Table 11: Element Type Decomposition

Element Type Sized by mprop?

Stage True

Payload False

116

T
a
b
le

1
2
:

E
le

m
en

t
C

la
ss

In
p
u
ts

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
sc

ri
p
ti

o
n

S
ta

ge
/

P
ay

lo
ad

au
to

d
ro

p
b

o
ol

T
R

U
E

,
F
A

L
S
E

–
el

em
en

t
is

re
m

ov
ed

fr
om

th
e

ve
h
ic

le
u
p

on
th

e
co

m
p
le

-
ti

on
of

it
s

te
rm

in
al

ev
en

t

S
ta

ge
/

P
ay

lo
ad

m
ga

fl
oa

t
[0

:
10

0]
–

m
as

s
gr

ow
th

al
lo

w
an

ce
as

a
p

er
ce

n
ta

ge
of

d
ry

m
as

s

S
ta

ge
/

P
ay

lo
ad

p
m

r
fl
oa

t
[0

:
10

0]
–

p
ro

gr
am

m
an

ag
er

’s
re

se
rv

e
as

a
p

er
ce

n
ta

ge
of

d
ry

m
as

s

S
ta

ge
m

p
s

re
se

rv
e

fl
oa

t
[0

:
10

0]
–

p
er

ce
n
ta

ge
of

b
u
rn

ed
an

d
b

oi
le

d
p
ro

p
el

la
n
t

to
b

e
ad

d
ed

to
th

e
si

ze
d

m
ai

n
p
ro

p
u
ls

io
n

sy
st

em
p
ro

p
el

la
n
t

lo
ad

as
a

re
se

rv
e

S
ta

ge
rc

s
re

se
rv

e
fl
oa

t
[0

:
10

0]
–

p
er

ce
n
ta

ge
of

b
u
rn

ed
an

d
b

oi
le

d
p
ro

p
el

la
n
t

to
b

e
ad

d
ed

to
th

e
si

ze
d

re
ac

ti
on

co
n
tr

ol
sy

st
em

p
ro

p
el

la
n
t

lo
ad

as
a

re
se

rv
e

S
ta

ge
b

oi
lo

ff
m

o
d
el

st
ri

n
g

[’
st

an
d
ar

d
’,

’H
E

x
A

M
’,

’c
on

st
an

t-
ra

te
’]

–
p
ro

p
el

la
n
t

b
oi

lo
ff

m
o
d
el

se
le

ct
or

117

Stage elements are sized by the entire set of parameters available within DYREQT.

Of primary importance is their ability to be sized by a propellant mass parameter, cal-

culated from a total burn time for the element from the mission, coupled with thrust

and specific impulse parameters of the element. These extra parameters and links to

the mission greatly complicate sizing calculations compared to that of a payload. It

also means that to define a stage element, one of its subelements must define a thrust

and specific impulse parameter. Because of this extra complexity, it was desirable to

separate stages and payloads to save computational effort during calculations. Pay-

load elements are sized by the same set of parameters as stage elements, but with the

absence of being linked to a mission change in velocity requirement. This means they

will not require the unique set of parameters required by a stage, greatly simplifying

their sizing.

4.4.7 The DYREQT SubElement Class

The DYREQT SubElement class is a subclass of the OpenMDAO Component class,

which is in turn a subclass of the OpenMDAO System base class, as seen in Figure

44. The SubElement class is a base class for users to integrate external models with

the DYREQT framework for the purpose of evaluating a defined vehicle element.

Inputs to these models flow from the original Architecture class inputs, through the

Element class, which parses the individual subelement inputs to the proper user

model. The base SubElement class also allows for inputs for constraints on subelement

level parameters. The DYREQT SubElement base class provides a collection of basic

internal data and unknowns shared with all subelements, regardless of type. The

internal data includes a base name, the subelement number, type, and parent element

object. The unknown is an inert mass for the subelement. The user is able to link

any other required model parameters and assign unknowns. If commonality exists

between model parameters and unknowns anywhere in DYREQT, they will be linked

118

DYREQT.SubElement

model_select:str()
options:dict()
constraints:dict()

OpenMDAO.Component

UserModels.Model

model_inputs:dict()

OpenMDAO.System

Figure 44: DYREQT SubElement Class Structure

automatically by DYREQT and will be available for other user models to interact

with. There is no limit to the type of external model which may be integrated to

perform vehicle element subsystem calculations. Vehicle subsystem models developed

and integrated for the purpose of evaluating the experiments for this body of work

can be found in Section 4.5.1.

4.5 In-Space Transportation Subsystem Modeling

In order to perform the experiments set forth in this dissertation, a new analysis tool

was needed, such that a digital test bed could be developed to perform experiments on

the hypotheses. DYREQT was created to meet the need for an architecture analysis

tool capable of integrating and evaluating user subsystem models. It integrates vehicle

and mission optimization such that technologies and their effect on the high-level ar-

chitecture space may be studied. However, because a tool of this nature did not exist

within industry, the underlying models which need to be integrated into DYREQT for

the purpose of evaluating technologies have not been developed in literature. Because

of this, simple models which provide subsystem-level space element and mission sizing

were developed which then could be integrated using DYREQT so that the primary

119

research objective could be met. The following section details the models developed

as DYREQT Event and SubElement subclasses. In addition to DYREQT, additional

analysis is needed to provide metrics not provided by DYREQT, namely, an architec-

ture cost metric and a distance metric between discrete architectures. Development

of these analysis modules are documented in the following section as well.

4.5.1 Mission Models

DYREQT requires user models to be integrated for the purpose of mission analysis.

This is done at the event level, as a subclass to the base DYREQT Event class. To

model missions for this body of work, five mission event models were developed: burn,

idle, mass delta, drop, and connect. These models are described below. For a table

of available inputs to each model, refer to Table 30 in Appendix C.

4.5.1.1 Burn

The burn model is a subclass of the DYREQT Event base class. It is a model to

represent changes in velocity of the vehicle. The model is developed around impulsive

burn assumptions, utilizing the rocket equation. The concept of an “equivalent stage”,

a functional representation of all active stage elements for the event, is utilized to

determine a total burn time for the event. This calculated burn time is then passed,

by DYREQT, to each of the active stage elements for the event. The purpose of

generating a functional stage element, rather than directly using the physical stage

elements, is because it allows the model to easily represent burn events with any

number of active physical stage elements, also known as a parallel burn. In order to

determine the total burn time of the functional equivalent stage, the following system

of equations is employed:

tb =
mp

ṁtotal

(17)

120

mp = mf ∗
[
exp

(
∆V

g0 ∗ Isp

)
− 1

]
(18)

Isp =
Ttotal

g0 ∗ ṁtotal

(19)

Ttotal = T1 + T2 + · · ·+ Tn (20)

ṁtotal =
1

g0

(
T1

Isp1
+

T2

Isp2
+ · · ·+ Tn

Ispn

)
(21)

The form of the rocket equation, Equation 18, is implemented because the problem

is solved in reverse mission event order. A final mass is known, and an initial mass

is calculated based upon the final mass and propellant mass. This allows for in-

creased stability internally in the optimizers by limiting the occurrence of negative

values during the iteration process which can result from poor initial conditions for

mass estimates when solving in forward event order. The model is also capable of

accounting for a flight performance reserve and attitude control maneuvers which

may be required during the main burn. Both the flight performance reserve and atti-

tude control factors are a correction to the input event ∆V parameters of the model.

Appendix I.7 is the developed burn event model.

4.5.1.2 Idle

The idle model is a subclass of the DYREQT Event base class. It is a model to

represent the flow of time during a mission. This allows time-based effects, such as

propellant boiloff and crew consumables, to be modeled in vehicle elements. This is

achieved by connecting the input ∆t to the ∆t parameter of the DYREQT Element

class. Appendix I.10 is the developed idle event model.

121

4.5.1.3 Mass Delta

The mass delta model is a subclass of the DYREQT Event base class. It is a model to

represent discrete mass changes to the vehicle during the mission. These discrete mass

changes may be due to loading or offloading. This allows the modeling of discrete mass

changes such as propellant reloading, garbage dumps, consumable resupply, and sci-

entific payload loading. When acting as a propellant resupply event, the model allows

for an automated resupply calculations where DYREQT will determine the proper

amount of propellant required by the element for the mission without overloading it.

This is done by connecting to the top off input parameter of the DYREQT Stage

class. The model is also capable of removing element subsystem masses during the

mission through the use of a subelement index input for the specified active elements.

Appendix I.11 is the developed mass delta event model.

4.5.1.4 Drop

The drop model is a subclass of the DYREQT Event base class. It is a model to

allow the removal of full elements from the vehicle. Elements which are removed via

this model are maintained in memory within DYREQT and can be reconnected to

the vehicle. Appendix I.9 is the developed drop event model.

4.5.1.5 Connect

The connect model is a subclass of the DYREQT Event base class. It is a model to

allow the addition of full elements to the vehicle. In order to connect an element, it

must have been initialized during problem setup. This model does not allow the addi-

tion of entirely new elements not defined before problem initialization. For instance,

to model a scenario where a vehicle attaches to a pre-deployed element, the element

must be defined during the initial problem setup, then removed from the vehicle at

the start of the mission via the Drop model. Appendix I.8 is the developed connect

event model.

122

4.5.2 Vehicle Models

DYREQT requires user models to be integrated for the purpose of vehicle sizing. This

is done at the subsystem level, as a subclass to the base DYREQT SubElement class.

To model representative vehicles with the proper level of detail to allow technology

impacts on the framework to be studied, six subsystem models were developed: avion-

ics, engines, power, structures, tanks, and thermal. Each of the subsystems calculates

an inert mass, power requirement, and thermal load that can be connected to other

subsystem models to account for subsystem interdependence. The inert masses of all

SubElement models in a DYREQT Element get added to become the total inert mass

of that Element. These models are described below. For a table of available inputs

to each model, refer to Table 31 in Appendix C.

4.5.2.1 Avionics

The avionics model provides sizing of hardware associated with sensing, actuating,

and communication for the element. The model is derived from mass and power

data of flight-certified, commercially available hardware [118]. The model allows

the selection of a set of actuators, sensors, and communications packages from a

predefined list to be used on the element. Actuators are scaled with element mass,

while sensors are scaled by a user accuracy factor. The communications package is

scaled based on the operational distance from earth. The model also allows the input

of additional devices not defined by the model. The user must only specify a fixed

mass and power requirement, and it will be added to the subsystem mass. Finally,

the model accounts for wireless sensor technologies by applying a factor for cabling

reduction to the overall mass of the subsystem. Total power requirement and heat

load unknowns are defined for linking to other subsystem models. The developed

avionics model is available in Appendix I.1.

123

mi =
mactuators +msensors +mcoms +mother

fcable
(22)

Ptotal = Pactuators + Psensors + Pcoms + Pother (23)

4.5.2.2 Engines

The engines model provides sizing of hardware associated with the physical engines of

the propulsion system and associated plumbing. The model is capable of estimating

the mass and power of a variety of engine classes: liquids, solids, nuclear, and electric.

It is assumed that engines have negligible thermal loads on the spacecraft. Appendix

I.2 contains the full engines subsystem model developed for this body of work. For

liquid engines, the power required to drive the engine is not considered. The mass

estimate is achieved via sets of scaling equations provided in Space Propulsion Anal-

ysis and Design, Section 5.3.1 [120]. These equations scale engine mass as a function

of thrust as follows:

mi = mengines +mpropmgt +mmisc (24)

mengines = nengines ∗
T

g0

(
T

W

)−1

(25)

where:

Monopropellants:

T

W
= −3.7405 ∗ 10−10

(
T 4
)

+ 7.1685 ∗ 10−7
(
T 3
)
− 5.221 ∗ 10−4

(
T 2
)

+ 0.18761 (T)− 0.039763 (26)

Bipropellants:
T

W
= 6.098 ∗ 10−4 (T) + 13.44 if T < 50 kN (27)

T

W
= 25.2 ∗ log (T)− 80.7 otherwise (28)

124

Similar to liquid engines, solid rocket motors assume no power requirement. The

motor masses are modeled by a curve fit of historical data provided in Section 6.3 of

Space Propulsion Analysis and Design [120]. The trends in the data show an increase

in the propellant mass fraction with increasing propellant for smaller motors. Large

motors have a tendency to have decreasing mass fractions with increased propellant

loads due to large joints and thrust vector control hardware. This tipping point occurs

at 10,000 kg of propellant. The system of equations for solid rocket motors is:

mi = mp ∗
(

1

fp
− 1

)
(29)

Where: {
fp = 0.0181 ∗ log (mp) + 0.7962 if mp < 10,000 kg (30)

fp = 0.0181 ∗ log (mp) + 0.7962 otherwise (31)

Nuclear rocket engines are sized from level-zero physics equations found in Space

Propulsion Analysis and Design [120]. The power required to operate the engine is

assumed to be zero. The engine mass consists of the core and its related components.

Tanks are not considered to be part of the engine. The model assumes an expander

cycle for the turbopump assembly, with redundant turbopumps for reliability. The to-

tal inert mass of the nuclear engine is calculated as a sum of seven major components,

shown by Equation 32.

mi = mcore +mnozz +mvessel +mfeed +mcool +mshield +mtpa (32)

For details of the mass calculation for each of the seven components, refer to the

nuclear method of the Engine class, found in Appendix I.2. Some of the components

require detailed fluid calculations for gases at temperature and pressure. A fluids def-

inition class and associated property calculations methods were developed primarily

based on data from the National Institute of Standards and Technology Chemistry

(NIST) WebBook [92]. Material properties for these definitions were obtained from

the NIST WebBook as well as other sources [92, 108]. The developed fluids definition

125

model can be found in Appendix I.12.

Electric engines are sized from a set of level-zero physics equations. The inert mass

of the electric engine is calculated as the sum of 4 components, shown by Equation

33.

mi = mthrusters +mpropmgt +mpwrmgt +mmisc (33)

The user provides parameters such as, thruster specific mass, thruster efficiency,

thruster power, thruster specific impulse, total thrust, and power management sys-

tems specific mass, used for sizing of an electric engine package. The total power

requirement for the electric engines is calculated from the total number of engines

required to meet the total thrust and thruster power inputs to the model. In addition

to the physics-based equations for sizing thrusters, mass associated with propellant

management and other miscellaneous hardware is estimated based on model fits of

historical data [118].

4.5.2.3 Power

The power model sizes a spacecraft power generation system based on a total power

required. The model has three primary components, the generator, power storage,

and regulation/distribution. The model is capable of estimating the mass of two

types of generators, either photovoltaic solar arrays or radioisotope thermoelectric

generators (RTGs). Solar array mass is calculated from level-zero physics equations

[118]. RTGs are scaled based on historical data [12]. The total mass and thermal

load of the model are given by Equation 34 and Equation 35 respectively. Appendix

I.3 contains the model developed for this dissertation and contains details about the

sizing of the different components.

mi = mgen +mbat +mreg (34)

Qtotal = Preq ∗ (1− ηtr) (35)

126

4.5.2.4 Structures

The structures model sizes primary spacecraft structural mass based on the design

envelope area of the element. This model can be found in its entirety in Appendix I.4.

This design envelope area is the surface area of the design volume of the spacecraft,

shown notionally by Figure 45.

Design Volume
πr2h

Design Envelope Area
2πr(r+h)

Figure 45: Notional Design Envelope Area

The design envelope area may be specified directly by the user, or left to the

model to estimate based on a general form of the structure. The general form of the

structure depends on the number of tanks specified by the design. If there are more

than two tanks, the structure is assumed to be a disk. If there are exactly two tanks,

the structure is assumed to be stacked. If there is only a single tank, the user specifies

whether it has a truss or drop configuration. If none is specified, the model assumes

a drop configuration. Figure 46 provides notional geometries for the basic structural

configurations just described.

A cylinder is assumed to estimate the design envelope area for all configurations.

For stacked, truss, and drop configurations, the radius of the structure cylinder is

the radius of the largest tank, and the height of the structure is total height of the

tank(s). To estimate the truss configuration, a density factor is applied to the cylinder

to account for empty space in the truss. The disk configuration requires determining

127

Structure

Fuel

Oxidizer

Structure

Oxidizer Fuel
Fuel

St
ru

ct
ur

e

Structure

Fuel

Stacked Disk Truss Drop

Figure 46: Notional Structure Configurations

the radius of a disk which will fit all the tanks. To do this, a weighted average tank

radius is calculated based on the radius and number of each tank type. The concept

of circle packing is utilized, where the radius of a circle which contains N equal circles

within it becomes the design envelope radius. The ratio of the design envelope radius,

Rde, over the average tank radius, ravg, is related to the number of tanks, ntanks, by

Equation 36, a logarithmic fit of the data found in Kravitz’s work on cylinder packing

[61]. The height of the disk structure is a weighted average tank height.

Once the design envelope area is determined or provided, the inert mass of the

structure is estimated based on the relationships given by Equation 37 [47], where

Ade is in ft3 and mi is in lbm. The leading structure factor is determined based on

the type of structure being estimated, shown in Table 13.

128

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14

R
d
e/
r a
vg

ntanks

Figure 47: Ratio of Radii for Packing Circles [61]

Rde/ravg = 1.1655 ln (ntanks) + 0.9571 (36)

mi = Fs ∗ (Ade)
1.15 (37)

Table 13: Structure Factors

Structure Type Fs

Disk/Stacked 1.27

Truss/Drop 0.71

Manned 2.0

Adapter 0.99

4.5.2.5 Tanks

The tanks model sizes the propellant storage devices for the main propulsion sys-

tem and reaction control system by Equation 38. This model uses inputs such as

129

propellant mass, propellant types, propellant properties, pressurant type, number of

tanks, and tank material properties to estimate the mass of all propellant storage

devices. This is done using level-zero physics calculations for determining propel-

lant volumes, and wall thickness of pressure vessels [16]. Assumptions are made for

additional hardware such as inlet/outlet flanges, weld lands, brackets, and propel-

lant/pressurant separation devices as seen in Equation 39. The model calculates the

mass of pressurant required to expel all propellant from the tanks and accounts for

isentropic expansion of a pressurized gas where necessary. Tank volumes are deter-

mined based on propellant properties estimated using the developed fluid definitions

model in Appendix I.12 [92, 108]. The model is capable of assuming an integrated ve-

hicle fluid management system where propellant between the reaction control system

and main propulsion system is supplied via shared propellant storage tanks. This

assumption removes the need for separate propellant tanks for the two propulsion

systems, but adds additional mass to account for new hardware such as pumps and

accumulators.

mi = mpropmgt +mmisc +mpressurant +mtrap +

ntanks∑
i=1

mtanki (38)

mtank = mbare +mweld +mIO +msa +msep (39)

Sizing of the mass of the tanks assumes ideal pressure vessels of either oblate

spheroid, sphere, or capsule shapes. The general shape of the tank is determined by

a user-specified length over diameter ratio, shown in Figure 48. The tank’s dimen-

sions are then calculated based on this ratio and the required propellant volume by

Equation 40 or Equation 41. A tank wall thickness is then calculated based on a

user-supplied tank pressure and material properties by Equation 42. With a tank

wall thickness and radius, an overall bare tank mass is calculated based on the mate-

rial properties specified. Finally, additional mass is calculated for weld lands, inlets

130

and outlets, structural attach points, and gas separation devices. The fully-developed

tank model can be found in Appendix I.5.

L/D < 1 L/D = 1 L/D > 1

Figure 48: Basic Tank Geometries

r =

[
6 ∗ V

π
(
3 L
D
− 1
)]1/3

if L/D ≤ 1 (40)

r =

 12 ∗ V

π L
D

(
3 +

(
L
D

)2
)
1/3

otherwise (41)

t =
ptank ∗ SF ∗ r

2 ∗ U
(42)

4.5.2.6 Thermal

The thermal model provides sizing of thermal control systems for a spacecraft. Cal-

culations are separated into three parts, passive cooling, active cooling, and heat

rejection. Appendix I.6 is the full thermal subsystem model developed through this

dissertation. The total thermal control inert mass and power requirements are calcu-

lated by Equation 43 and Equation 44, respectivel.

mi = mpassive +mactive +mrad (43)

Ptotal = Ppassive + Pactive (44)

131

In the model, passive thermal control contains three primary components: multi-

layer insulation, a liquid acquisition device, and a mass gauging device. The mass

and power of passive thermal control are shown by Equation 45 and Equation 46,

respectively. Multi layer insulation mass is a function of the number of insulation

layers and either spacecraft geometry or tank geometry, depending if the tanks are

internal or external to the primary structure of the spacecraft, respectively. The mass

gauging and liquid acquisition device masses are estimates based on tank geometry

[40, 19]. The mass gauging device is the only component of passive thermal control

which requires power. The power required is a function of tank geometry [40].

mpassive = mmli +mlad +mgauging = f (G, nlayers) (45)

Ppassive = Pgauging = f (G) (46)

Active thermal control contains a collection of devices for rejecting excess heat in

the propellant of the spacecraft to limit propellant loss through boiloff. The model

assumes two primary components and associated hardware for this purpose, cryocool-

ers and broad area cooling shields, along with power controllers, circulating pumps,

and tubing. The mass and power relations for the active thermal control components

are shown by Equation 45 through Equation 46.

mactive = mcc +mctrl +mcirc +mbac +mtubing = f (G,Pactive) (47)

Pactive = Pcc + Pcirc = f (G, p,Q) (48)

Calculating the mass and power of the active thermal control components requires

calculation of the heat which must be removed from the propellant to maintain zero

boiled propellant. It is assumed that the amount of heat being deposited by internal

sources is negligible compared to external radiation sources. To determine the exter-

nal heat, the Lockheed Equation, Equation 49, is utilized to determine the amount of

132

heat which passes through the multi layer insulation [30]. The cold side temperature

is determined by spacecraft geometry and propellant vapor temperature. Propellant

properties are determined by the developed fluid definitions model in Appendix I.12.

The hot side temperature is calculated from the amount of heat being deposited from

the external environment [73, 118].

Qmli = Amli ∗M ∗DF ∗
1

nlayers

∗[
Cs ∗ κ (Tavg) ∗N

2.36
(TH − TC) + CR ∗ εmli

(
TH

4.67 − TC4.67
)]

(49)

κ (T) = 0.017 + 7 ∗ 10−6 (800− T) + 0.0228 ∗ ln (T) (50)

Tavg =
TH + TC

2
(51)

The final major component estimated by the model is the mass of the thermal

radiators used to reject excess heat to the environment, given by Equation 52. This

requires estimating the area of the radiator, determined by Equation 53, which in

turn requires calculating the total heat applied to the spacecraft from the external

environment, along with any internal heat loads generated by the spacecraft [73, 63].

mrad = Arad ∗ ρrad (52)

Arad = f (Qtotal, εrad) (53)

4.5.3 Costing

Many of the assessments to be performed on the developed hypotheses require a

multidimensional objective space. DYREQT and the developed mission and vehicle

133

models, despite their advances in modeling space architectures, only provide a lim-

ited number of objectives, namely various masses of the architecture. It is desirable

to generate cost metrics for the architectures such that there is a two-dimensional

objective space of mass and cost. Many cost models exist in literature. This section

will provide a brief overview of relevant cost models before selecting one to act as the

model to provide cost data.

4.5.3.1 NASA/Air Force Cost Model

The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for

space hardware [121]. The model utilizes historical data from NASA’s Resource

Data Storage and Retrieval Library and is primarily used during the early phases of

development of projects. The model allows for the cost estimation at the subsystem

or component level. Costing of the components follows the form shown by Equation

54. NAFCOM also allows process-based scheduling estimates, and time phasing of

cost. The model provides a graphical user interface for inputting user information.

NAFCOM does have the ability to output estimates to Excel spreadsheets where

the original inputs may be manipulated for integration with external applications;

however, if the basic form of the architecture is different, a new NAFCOM model

must be manually set up and evaluated.

Cost = C ∗WeightW ∗ InheritanceX ∗ TechnologyY ∗ManagementZ (54)

4.5.3.2 Project Cost Estimating Capability

The Project Cost Estimating Capability (PCEC) cost model began development in

2013 to be a replacement to NAFCOM [4]. The underlying cost estimating relations

(CERs) are derived from normalized data. Statistics about the underlying CERs

within PCEC are publicly available; however, the CERs themselves, along with the

underlying data are, unavailable to the public. Development of the initial set of

underlying CERs was broken into two categories:

134

• Robotic Spacecraft

• Crewed and Space Transportation Systems

The robotic spacecraft CERs are multi-variable power equations developed using

ordinary least squares regression of log-transformed data. The parameters selected

were derived from principal component analysis of the original data set. The crewed

and space transportation systems CERs are mostly single-variable regressions of mass.

These two sets of CERs allow PCEC to evaluate cost estimates for systems such

as earth-orbiting satellites, planetary probes, rovers, multi-stage rockets, liquid and

solid engines, crew capsules, orbiters, and habitats. Currently, PCEC is not suited for

estimating the cost of designs such as CubeSats, balloons, aircraft, nanosat launchers,

or human hardware elements. Interfacing with PCEC is achieved via an Excel add-in

and is heavily dependent on a user-in-the-loop to generate cost estimates. This type

of interface is not well-suited for an automated and parametric design environment.

4.5.3.3 Process-Based Economic Analysis Tool

The Process-Based Economic Analysis Tool (P-BEAT) leverages complexity-driven

CERs as opposed to mass-based CERs. Costs are estimated based on an activity

build-up based on complexity of the component and the particular activity needed

to transform the raw materials into a finished product [74]. The model is highly

detailed, comprising over 50 development processes and 700 manufacturing processes

[100]. The interface to P-BEAT is graphically-based, relying on a user in the loop

to input data for all of these processes. Although providing a bottom-up approach

to estimating a full life-cycle cost of a system based on how it is built could be

advantageous, the level of information required to operate this model, along with its

external interface, is not well-suited to the scope of this research.

135

4.5.3.4 Software for Evaluating and Estimating Resources

The Software for Evaluating and Estimating Resources (SEER) suite of tools was

developed for estimating cost at a component level [33]. SEER estimates cost,

scheduling, and reliability by comparing user entries with similar items in a historical

database. The CERs are entirely obscured behind the tool. The user interface is

highly complex and detailed, allowing modeling of nearly any system or component.

However, this level of detail make it difficult to integrating SEER into an automated

environment where a large variety of components are being estimated.

4.5.3.5 TransCost

TransCost is a system-level, historical mass-based cost estimation model for the cost

estimation of space transportation vehicles [59]. The model uses a unique cost metric

independent of annual currency changes. The form of the CERs in TransCost are

single-variable power regressions of mass, similar to PCEC. TransCost breaks the

cost of a vehicle into two components, the development cost and the fabrication cost.

The total development cost, in man-years (MYr), takes the form shown by Equation

55. Each element and engine in the vehicle has a development effort, H in man-years,

associated with it, given by Equation 56. Each element is scaled by the system-specific

constant, a, and system-specific cost-to-mass sensitivity, X. Other scaling factors, f ,

account for project systems engineering, technical development standards, technical

quality, team experience, schedule, parallel contracting, and productivity.

CD = f0 ∗
(∑

H
)
∗ f6 ∗ f7 (55)

H = a ∗mX ∗ f1 ∗ f2 ∗ f3 ∗ f8 (56)

The total fabrication cost, in man-years, takes the form shown by Equation 57.

Each element and engine in the vehicle has a fabrication effort, F in man-years,

136

associated with it, given by Equation 58. Each element is scaled by the system-

specific constant, a, and system-specific cost-to-mass sensitivity, X. Other scaling

factors, f , account for project systems engineering and learning rate.

CF = f0 ∗
(∑

F
)

(57)

F = n ∗ a ∗mX ∗ f4 (58)

4.5.3.6 Cost Analysis Module

The developed cost analysis module is based on TransCost 7.1 and can be found

in Appendix I.13. This model was selected due to its open nature, with all of its

sizing relations available in the public domain [58], making integration with the level

of data provided by DYREQT simple. It allows a custom module to be developed

which utilizes a simple form of historical mass-based CERs which then can be operated

in an automated fashion. The complexity, detail, and relative obscurity of the other

models described become hindrances for the purposes of this research.

Inputs to the developed model are provided in Table 32 of Appendix C. The model

is capable of estimating the development, production, and gross costs of the engines

and vehicle subsystems of each stage of a vehicle, up to three stages. The model

also estimates the total development, production, and gross cost of the entire vehicle.

The cost of technology development is accounted for in the development standard

factor, f1. The engines and vehicle subsystem treat technologies independently. For

instance, technologies applied to the structures subsystem will not affect the cost of

the engines. However, the effects of utilizing multiple technologies are not accounted

for in the implementation of the TransCost model utilized in this work. A fixed value

for f1 was utilized, regardless of number of technologies or the type of technology

being considered. Also, though the TransCost model contains a cost growth factor for

deviation from optimum time schedules, it was not considered in the implementation

137

utilized by this work.

4.5.4 Architecture Similarity

Many of the research objectives of this dissertation require defining a metric which

can be used to describe a level of similarity between a set of categorical options which

define an architecture. With continuous and ordinal data, similarity is simple to

define as a physical cardinal distance from one design to another. However, with

categorical data, a physical distance cannot be directly interpreted, and hence a

similarity becomes difficult to define. In 2008, Shyam Boriah performed a comparative

evaluation of various techniques for defining a similarity measure between categorical

data [11]. Each technique’s effectiveness was determined by its ability to correctly

identify outlier data points form the data set. Different techniques were well-suited

for different data sets. Based on his conclusion, the Occurrence Frequency technique

was selected due to its robustness in determining outlier data points across a wide

range of data sets.

The principal concept of Occurrence Frequency is to evaluate a similarity between

two discrete design points. The weighted sum of each category’s similarity is the

overall similarity of the two points, given by Equation 59. The weighting of each

category can be defined in any manner; however, for simplicity, an even weighting for

each category is used, given by Equation 60. For matching options within a category,

a similarity of one is assigned, while mismatches are given a value less than one.

Mismatches on less frequent options in a category within the data set are assigned

a lower value than those on more frequent options. This relationship is given by

Equation 61.

S (X, Y) =
d∑

k=1

wk ∗ Sk (Xk, Yk) (59)

138

wk =
1

d
(60)

Sk (Xk, Yk) =

1 if Xk = Yk[
1 + log N

fk(Xk)
∗ log N

fk(Yk)

]−1

otherwise

(61)

Multiple different design points can have the same similarity measure from a shared

baseline. This is a result of the non-Euclidean nature of categorical data. There is no

reason to say one option within a category is greater or less than another. Two differ-

ent options, provided they have the same baseline option and frequency of occurrence,

will result in the same similarity value for that category, despite being two different

options. This phenomenon will make it difficult with large architecture spaces to eval-

uate the similarity between any two architectures. One could theoretically calculate

a relative similarity to every other design point in a data set and compose that infor-

mation into an overall similarity of the design point to the design set, but with the

number of alternatives being considered by this research, the number of evaluations

becomes unmanageable. For example, if a design set contains 100 designs, each of

the 100 points must be evaluated against the other 99 design points. This results in

a total of 9900 similarity evaluations, scaling roughly as N2, where N is the number

of design points. For this research, a single, randomly selected, design point from the

data set acts as a common baseline to all architectures for the purpose of estimating

architecture similarity.

4.6 Model Validation

The development of DYREQT and the subsystem models throughout this chapter

provide the ability to create a digital test bed on which the hypotheses of this dis-

sertation may be tested. The development of DYREQT and these models represents

139

a significant contribution to the space architecture community. The digital test bed

environment has suffered from the lack of utilization of industry standard tools. Prov-

ing a level of validity of these models and tools is critical in establishing the analogs

nature of these new tools and models to accepted industry data.

The mission models are simple, only relying on manipulations of the rocket equa-

tion, mass addition, mass subtraction, and time additions. It was determined that

these models do not require detailed validation against literature data, but rather

verification through simple use cases. To do this, simplified vehicle models were em-

ployed to mimic the functionality of HExAM. Identical missions were evaluated with

both tools to determine validity of the mission models developed. Results between

both tools were within 0.02% across mission events. Differences are likely due to

rounding errors between the two tools. Validation results can be found in Appendix

H.

For subsystem models which employed regressions from literature, outputs were

verified to match those of the original regression from their respective literature

sources. However, due to a lack of detailed mass breakdown data of stage elements in

literature, level-zero physics-based subsystem models were difficult to validate inde-

pendently. Instead, validation of the underlying subsystem models is implied by using

the collection of developed models to estimate the mass of a variety of stage types

spanning the capability of the subsystem models. DYREQT was utilized to integrate

the various models discussed in this chapter. Differences in the burnout mass of the

vehicle elements were within 5% of the validation designs in most cases. In some

extreme cases, differences in estimation were as high as 25%; however, variations in

the mass estimates from literature data are explained by observation of assumptions

made by the underlying subsystem models. For instance, the Centaur upper stage

is a particularly structurally mass efficient design for the type of stage. The models

140

developed do not estimate outlier designs. However, the model can be forced to esti-

mate the Centaur structural mass, which then brings the overall error in inert mass

estimation to within 5%. The other validation point that was estimated with a high

difference was the methane cryogenic propulsion stage. This can be explained by the

uncharacteristically high structural mass of the reference design. However, the mod-

els are accurate for performing conceptual design across many different architecture

concepts while capturing general trends due to these architecture choices. The full

set of validation results can be found in Appendix H.

141

CHAPTER V

EXPERIMENTATION & IMPLEMENTATION

In general, experimentation can be thought of as having three main phases, described

as follows:

1. Thought Experiment: Initial concepts and ideas are explored through the

use of simple logic and small notional problems aimed at providing evidence in

support of further investigation through formal experimentation. This process

is typically initialized via an exhaustive literature search.

2. Experimental Design: Once a research question has been deemed worthy of

further investigation through thought experiments, formal experiments must be

developed to test the hypothesis developed. This typically requires physically

developing models and setting up physical experiments.

3. Design of Experiments: After it is known what the experiment will con-

sist of, a logical set of inputs must be selected in order to observe and obtain

information such that the research question and hypothesis can be answered.

Throughout Chapter 3, thought experiments were described which aided in de-

veloping research questions and hypotheses which make up the body of work of this

dissertation. To further examine these hypotheses, rigorous testing shall be per-

formed. In order to perform this testing, experiments will be developed such that a

design of experiments may be performed to study the research questions. The follow-

ing subsections are a description of the experimental design, design of experiments,

and results to each hypothesis in Section 3.4.

142

5.1 Experimentation

Utilizing the models developed in Chapter 4.5, combined with the DYREQT tool

developed in Chapter 4.4, the scope of the trade space available for experimentation

is very large. The approximately 105 inputs to the various subsystem models and

DYREQT were mapped to 45 high-level architecture parameter and 10 technologies.

These architecture and technology space options were selected based on the available

design space inputs derived from the developed subsystem models discussed in Chap-

ter 4.5. This original full factorial DOE resulted in a total of 4.810 ∗ 1021 compatible

alternatives, far too many to evaluate. This is a result of the combinatorial problem

discussed in Chapter 3.3.2. To reiterate, the problem of combinatorial explosion is

outside of the scope of this research. As such, the conjecture to Research Question 4

states that subsets of the architecture space will be selected to minimize combinatorial

explosion such that the main objective of this body of work may be performed.

5.1.1 Digital Test Bed

The architecture trade space was reduced to contain approximately 30 categories.

Down-selection focused on maintaining vehicle options while reducing mission op-

tions from the architecture space due to the simple mission event models developed

through this body of work. Because the vehicle options account for most of the de-

sign variability, the simplest way to reduce the number of alternatives was to reduce

the number of independent stage elements. Each stage element is defined by 10 pa-

rameters, and each individual element may be paired with any other element in a

multi-stage vehicle. Due to the relatively simple mission modeling developed for this

dissertation, a small mission subset was chosen. Seven technologies were selected, re-

sulting in nine technology combinations: each-one-on(7), all-on(1), all-off(1). These

sets were selected to further reduce the total number of alternatives being evaluated.

The reduced architecture space contains a total of 8,946,432 architectures, fully within

143

the capability of DYREQT. The final vehicle space utilized as a starting point for

experimentation is represented by Table 14. The mission space considered for all ex-

periments consists of the options listed in Table 15. Finally, the technology space and

its options is represented by Table 16. The collection of the options in these tables

constitute the entire architecture and technology spaces considered throughout the

experimentation of this dissertation. Each experiment further narrows the scope of

these spaces to focus the resulting data such that specific observations may be made.

In order to obtain meaningful data for the purpose of observation and analysis,

objective metrics identified through the hypotheses must be evaluated. Table 17 pro-

vides a summary of the objective space metrics required by each of the experiments,

identified by a mark in the respective cells. The selection of these objective metrics

will be examined in further detail in the sections that follow. For the current dis-

cussion, it is sufficient to know that these are the objective metrics which must be

evaluated for each of the architecture alternatives.

Figure 49 provides the basic structure of the digital test bed developed for this

dissertation. The architecture and technology spaces, together, feed the inputs to the

design space, which contains the modeling and simulation environment. The modeling

and simulation environment identified consists of DYREQT and the subsystem models

discussed in Chapter 4.4 and Chapter 4.5, respectively. These provide the capability

to integrate architecture sizing and technology evaluation at the subsystem level in

the space transportation domain.

The final step to allow the examination of the hypotheses of this body of work

is to establish the connections between the various system spaces of the digital test

bed. The architecture and technology space options enumerated in Table 14 through

Table 16 must be mapped to the design space attributes, defined by the modeling

and simulation environment. Additionally, outputs from the modeling and simulation

environment must be mapped to the objective space metrics listed in Table 17. These

144

T
a
b
le

1
4
:

A
rc

h
it

ec
tu

re
C

at
eg

or
ie

s
D

er
iv

ed
fr

om
th

e
V

eh
ic

le
T

ra
d
e

S
p
ac

e

C
a
te

g
o
ry

O
p
ti

o
n
s

V
e
h
ic

le

N
u
m

b
er

of
S
ta

ge
s

1
2

P
ay

lo
ad

M
as

s(
k
g)

10
00

10
00

0

E
le

m
e
n
t n

(R
ep

ea
t
fo
r
E
ac
h
S
ta
ge
)

M
P

S
C

la
ss

L
iq

u
id

S
ol

id
N

u
cl

ea
r

E
le

ct
ri

c

M
P

S
P

ro
p

el
la

n
t

L
O

X
/L

H
2

L
O

X
/L

C
H

4
N

T
O

/M
M

H
X

en
on

L
H

2
N

2
/H

4
S
ol

id

R
C

S
C

la
ss

L
iq

u
id

R
C

S
P

ro
p

el
la

n
t

N
T

O
/M

M
H

N
2
/H

4

P
re

ss
u
ra

n
t

H
el

iu
m

T
an

k
C

on
fi
gu

ra
ti

on
S
ta

ck
ed

D
is

k
S
in

gl
e

S
tr

u
ct

u
re

T
y
p

e
M

an
n
ed

U
n
m

an
n
ed

P
ow

er
S
y
st

em
S
ol

ar
R

T
G

M
L

I
L

ay
er

s
20

60

C
om

m
u
n
ic

at
io

n
T

y
p

e
N

ea
r

E
ar

th
D

ee
p

S
p
ac

e

145

Table 15: Architecture Categories Derived from the Mission Trade Space

Category Options

Destination Duration Long Short

Inbound Correction Maneuver Small Large

Table 16: Technology Categories Derived from the Technology Trade Space

Category Options

Wireless Sensors TRUE FALSE

Low Leak Valves TRUE FALSE

High Capacity Energy Storage TRUE FALSE

Composite Structures TRUE FALSE

Composite Propellant Tanks TRUE FALSE

Integrated MPS/RCS Propellant Storage TRUE FALSE

Active Cryocooling TRUE FALSE

Table 17: Experimentation Objective Metrics

Experiment

Objective Metric 1 2 3 4

Vehicle Gross Mass (kg) × × × ×
Vehicle Gross Cost (MYr) × × × ×
Similarity × ×
Vehicle PMF × ×
Stage Boiloff Rate (kg/day) ×

146

Design Space

Mission

Vehicle

DYREQT

Cost

O
bj

ec
tiv

e
Sp

ac
e

Ar
ch

ite
ct

ur
e

Sp
ac

e
Te

ch
no

lo
gy

 S
pa

ce
Similarity

Figure 49: Digital Test Bed for Experimentation

mappings of the system spaces follow the technique described in Chapter 3.3.1.2.

Table 18 provides the mapping of the architecture space parameters to the design

space attributes. The various options of the architecture parameters specify values

of these attributes within the design space. The specific values of the design space

attributes based on the architecture space parameter options can be found in Table

33 through Table 45 of Appendix C. Similarly, Table 19 provides the mapping of the

technology space parameters to the design space attributes. The various options of the

technology parameters specify values of these attributes within the design space. The

specific values of the design space attributes based on the technology space parameter

options can be found in Table 46 through Table 53 of Appendix C.

The mapping of the design space to the objective space is straightforward in

this case. The mappings of the technology options simply connect directly to the

activation flags within the modeling and simulation environment. This is because the

147

Table 18: Architecture Space Parameter To Design Space Attribute Mappings

Architecture Space Parameter Design Space Attributes(s)

Vehicle

Number of Stages event list, element list

Payload Mass mass

Stage(s)

MPS Class start penalty mps, total thrust mps,
engine thrust mps

MPS Propellant isp mps, mixture ratio mps

RCS Class start penalty rcs, total thrust rcs,
engine thrust rcs

RCS Propellant isp rcs, mixture ratio rcs

Pressurant pressurant

Tank Configuration num fuel tanks mps, num ox tanks mps

Structures Type manned

Power System generator type

MLI Layers mli layers mps, mli layers rcs

Communication Type comms type

Table 19: Technology Space Parameter To Design Space Attribute Mappings

Technology Space Parameter Design Space Attributes(s)

Wireless Sensors wireless sensors

Low Leak Valves start penalty mps, start penalty rcs

High Capacity Energy Storage storage specific energy

Composite Structures composite

Composite Propellant Tanks composite fuel tanks mps,
composite ox tanks mps,
composite fuel tanks rcs,
composite ox tanks rcs

Integrated MPS/RCS Propellant
Storage

ivfm

Active Cryocooling active cooling mps, active cooling rcs

148

modeling and simulation environment selected provides analysis of technologies within

the various subsystem models. The effects of technologies are calculated directly

within the subsystem model, which then are propagated to the objective metrics. This

is in contrast to the more traditional technique of utilizing K-factors on specific inputs

and outputs of the analysis to account for technology impacts. The performance of

the various technologies is incorporated into the subsystem models.

The digital test bed described above will be utilized by each of the experiments

to follow. Each experiment contains different subsets of the architecture, technology,

and objective spaces described above. However, the mapping of the architecture and

technology parameters to the design attributes, and from the design space outputs

to the objective space metrics is consistent. For each of the experiments, any post-

processing in the form of filtering and data exploration was performed using SAS R©

JMP R© software package, for its ability to handle large data sets.

5.1.2 Experiment 1: Performing Technology Evaluation Before Design
Down-Selection

Research Question 3

Is the paradigm of down-selecting to a baseline design on which to perform

technology analysis sufficient for the exploration of complex architectures?

The purpose of experiment 1 is to determine if the traditional paradigm for tech-

nology evaluation holds for the system of systems problem. Traditional, technology

evaluation calls for design down-selection and optimization before actually analyzing

technologies. However, this paradigm assumes that the overarching design of interest

is a system which technologies are applied to, as opposed to a system of systems.

A notional example was examined in Section 3.3.2 providing good evidence for the

hypothesis repeated below:

149

Hypothesis 3

The paradigm of down-selecting to a baseline design and then performing

technology analysis will not be sufficient in performing architecture design.

This paradigm assumes that the systems a technology acts upon remain

constant throughout the down-selection process. Because these systems

vary between architectures, the effects of technologies will be inconsistent

among these architectures.

5.1.2.1 Procedure

The first part of this experiment shall be to test the four alternatives from the no-

tional example in Section 3.3.2, utilizing the larger, more complex models developed

to observe whether the assumptions made during the notional example are indeed

observable. This is important because the notional example makes many unrealistic

assumptions, namely, the interdependence of subsystems in the vehicle. To test this,

similar vehicles to those discussed in the notional example will be set up and evalu-

ated using DYREQT and the model developed in Chapter 4.5. This will validate the

notion that down-selection can indeed limit the best observable architecture.

Once this has been established, fully testing the hypothesis requires observing the

composition of optimal architectures in the resulting objective space. Because the

objective space is two-dimensional, consisting of architecture mass and architecture

cost, there will exist a two-dimensional Pareto front of designs which are optimal. The

architecture space consists of all compatible single-stage options from Table 14 and

Table 15. The technology spaces to be tested in this experiment will focus on the all-

off, all-on, composite propellant tanks, and active cryocooling technology sets. Table

33 through Table 53 in Appendix C provide the specific design space attribute values

associated with the options for each of the architecture and technology space options.

150

Appendix D provides the default set of values for unmapped design space attributes

within the modeling and simulation environment. The observation will be the number

of architectures with a given main propulsion system propellant type in the set of

Pareto optimal architectures in the objective space. A shift in the distribution of

architectures with certain propellant types in the Pareto optimal set will be strong

evidence in support of Hypothesis 3, as this will indicate that technologies indeed

have an impact on the optimal architectures and should be considered before down-

selection.

The trade space considered will focus on single stage architectures, limiting the

propellant types to liquid bipropellants, nuclear, or electric. The reason for removing

solid rocket propellants is because they tend to dominate the Pareto optimal set of the

objective space due to their relative simplicity and lower mass, coupled with lower

cost. This is not to say that there is an issue with the model, but rather, for the

narrow mission space selected, solids tend to dominate. Because the hypothesis deals

with observing shifts in the composition of architectures in the Pareto front, solids

were removed from the trade space to allow a more competitive mix of alternatives

to be studied based on the missions being tested.

5.1.2.2 Results

The architecture space evaluated consists of a total of 18,432 architectures. Figure

50 shows the distributions of architectures by the main propulsion system propellant

type among the entire objective space. The LH2 and Xenon propellants have fewer

architectures due to compatibilities in the architecture space which results in lower

numbers of alternatives for those specific architecture types. Figure 51 is the objective

space for experiment 1. The overall architecture mass is limited to 500,000 kg for

visualization purposes. One will notice that there are no Xenon-based architectures

in the objective space when limited to this mass. This is due to poor assumptions in

151

the default vehicle which requires power to the electric engines to be fully supplied

by batteries in the power subsystem during an eclipse cycle, grossly oversizing the

battery mass. In a real design, there would be mission constraints limiting electric

engine operation during eclipses to limit this interaction.

The four case notional example presented in Chapter 4.5 was evaluated using

DYREQT and the developed subsystem models. The results from the original exam-

ple are reprinted, along with the results from DYREQT, shown in Table 20. Overall,

the performance of a specific architecture was lower when calculated by DYREQT

compared to the notional calculations. This is not an error in DYREQT, but rather

a result of its ability to account for subsystem interactions. Where the notional

calculations assume no subsystem interaction, DYREQT is able to account for inter-

actions such as growth in the propellant tanks due to varying propellant loads, which

in turn affects the structural mass, or growth in the power subsystem to account

for the increased power requirements imposed by the technology-enhanced thermal

control subsystem. The ability to account for these interactions while introducing

technologies at the subsystem level was the initial motivation behind the develop-

ment of DYREQT. However, despite these kinds of interactions being accounted for

in DYREQT, a similar trend described by the notional example is observed in the

results from DYREQT. In both cases, without technology, the storable architecture

had the lowest of the two inert masses. Under the traditional paradigm, the storable

architecture would be selected to move forward with technology evaluation. However,

in both cases, the technology-enhanced methane architecture performs best, indicated

by the lowest inert mass of any alternative. This architecture would be overlooked

under the traditional paradigm of architecture down-selection before technology eval-

uation.

This notional example is just one example of a shift in the compositions of ar-

chitectures in the objective space due to technologies. However, this observation is

152

6LQJOH6WDJH���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

��

���

���

���

���

���

���

���

���

���

����

�
�2

EM
HF

WL
YH

�6
SD

FH

���

��� ��� ���

���

OK� OR[�OFK� OR[�OK� QWR�PPK [HQRQ

6WDJH���036�3URSHOODQWV

Figure 50: Experiment 1 Objective Composition

Figure 51: Experiment 1 Objective Space

153

Table 20: Notional Example Results Compared to DYREQT Results

Architecture
Notional

Inert Mass(kg)
DYREQT

Inert Mass(kg)

Storable 7789.4 12458.6

Methane 8064.3 13242.5

Storable w/ Tech 7889.4 12458.6

Methane w/ Tech 6514.3 10422.2

not just a random occurrence among these four select architectures. When looking at

the over 18,000 cases evaluated for this experiment, similar shifts in the architecture

types in the optimal objective space may be observed when introducing technologies.

Figure 52 shows the distribution of architectures with a given main propulsion system

propellant type which exist on the Pareto front of the objective space when no tech-

nologies are included. As a result, storable architectures with an NTO/MMH-based

main propulsion system account for 73% of the architectures in the Pareto front of the

objective space, while cryogenic architectures with a LOX/LCH4-based main propul-

sion system account for 16%, and cryogenic architectures with a LOX/LH2-based

main propulsion system account for only 9%. However, when active cryocooling tech-

nology is introduced, the distribution of these architectures on the Pareto front of

the objective space shifts, as seen in Figure 53. Here, the cryogenic propellant based

architectures now account for a majority of the Pareto front. This shows that the

examples seen by the four selected architectures was not just a random occurrence,

but a repeated trend: technologies have a marked impact on the resulting objective

space and the types of architectures on the Pareto front.

However, this is the case with a single specific technology. What about a differ-

ent single technology? Figure 54 shows the result of applying advanced composite

materials to tanks. Here, there is no shift in the resulting composition of the Pareto

front of the objective space. This is because the technology has a similar impact on

all architectures in the space. All architectures have propellant tanks and they all

154

6XEVHW�RI�6LQJOH6WDJH���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

��
���

���

���

���

���

���

���

���

���
����

�
�R
I�3

DU
HW
R�
)U
RQ

W�
LQ
�2

EM
HF

WL
YH

�6
SD

FH

���

��

���

OR[�OFK� OR[�OK� QWR�PPK

6WDJH���036�3URSHOODQWV

Figure 52: Experiment 1 Pareto Optimal
Architectures (No Technologies)

6XEVHW�RI�6LQJOH6WDJH���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

��
���

���

���

���

���

���

���

���

���
����

�
�R
I�3

DU
HW
R�
)U
RQ

W�
LQ
�2

EM
HF

WL
YH

�6
SD

FH

���

���

���

OR[�OFK� OR[�OK� QWR�PPK

6WDJH���036�3URSHOODQWV

Figure 53: Experiment 1 Pareto Optimal
Architectures (Active Cryocooling)

6XEVHW�RI�6LQJOH6WDJH���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

��
���

���

���

���

���

���

���

���

���
����

�
�R
I�
3D

UH
WR
�)
UR

QW
�LQ

�2
EM
HF

WL
YH

�6
SD

FH

���

��

���

OR[�OFK� OR[�OK� QWR�PPK

6WDJH���036�3URSHOODQWV

Figure 54: Experiment 1 Pareto Optimal
Architectures (Composite Tanks)

6XEVHW�RI�6LQJOH6WDJH���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

��
���

���

���

���

���

���

���

���

���
����

�
�R
I�
3D

UH
WR
�)
UR

QW
�LQ

�2
EM
HF

WL
YH

�6
SD

FH

��� ���

���

OR[�OFK� OR[�OK� QWR�PPK

6WDJH���036�3URSHOODQWV

Figure 55: Experiment 1 Pareto Optimal
Architectures (All Technologies)

155

gain the same benefits from applying the technology, and as a result, no shift occurs.

For this technology, evaluating technologies before down-selection does not make a

difference. In fact, it would cost additional computation time. Finally, consider the

case of activating all technologies simultaneously, with the results shown by Figure

55. Here, it seems logical to assume that because more technologies are activated,

there will be greater shifts in the composition of architectures in the Pareto front of

the objective space. However, this is not the result. By activating all technologies,

there is indeed a shift in the composition of the Pareto front, but it is muted in com-

parison to the effect seen in Figure 53 by applying a select, single technology. This

is because technologies, such as composite materials for tanks, which have a uniform

effect, mask the effects of other technologies, like active cryocooling.

5.1.2.3 Conclusion

The results observed through the notional example were confirmed to occur with

more detailed models which are able to account for interactions among subsystems.

This proves that there are at least a few cases where down-selection before technology

assessment may indeed exclude a truly optimal architecture from the objective space.

Not performing technology evaluation alongside architecture down-selection would

have resulted in selection of the suboptimal design. This result was also shown to

be a trend across the entire objective space and not just a select few architectures,

resulting in dramatic shifts in the composition of the Pareto front of the objective

space. However, this is not the case with every technology and set of technologies. It

was shown that technologies have an inconsistent, and sometimes unpredictable effect

on the resulting objective space. Had technologies not been considered alongside the

down-selection of architectures, improper conclusions regarding the most preferred

design would be made. Due to these results, Hypothesis 3 shall be accepted.

156

5.1.3 Experiment 2: Testing Individual Results Scheme

Research Question 5.1

Would utilizing an individual architecture presentation scheme prevent

high-level effects of architecture design decisions from being observed?

As was discussed in Chapter 1.2.3 and shown through a notional example in Chap-

ter 3.3.2, combinatorial explosion will result in very large design spaces with many

architectures. The purpose of experiment two is to determine if presenting results

of individual architectures for these large spaces would prevent high-level design de-

cisions from being studied. It is expected that high-level architecture trends will

be difficult to observe, if at all, due to such large numbers of a single architecture

type in the optimal objective space, resulting in poor cross sections of the original

architecture space. These ideas are summed up by the following hypothesis:

Hypothesis 5.1

The presentation of individual architectures will obscure high-level effects

due to flooding of the top results with similar individual designs.

5.1.3.1 Procedure

The architecture space for experiment two contains 8,921,088 unique architectures

consisting of all two stage vehicle variations from the architecture space presented

in Table 14, along with all mission and technology options from Table 15 and Table

16 respectively. Data for these alternatives was generated utilizing the digital test

bed described in Section 5.1.1. A baseline architecture to determine the similarity

value of all other architectures was selected from this architecture space with no active

technologies. Utilizing the similarity metric described in Chapter 4.5.4, an experiment

157

is then formulated in which distributions of the similarity of the top performing

architectures can be quantified and observed. There are many ways to determine

the top performing architectures, either a single objective figure of merit or a multi-

objective method. In a multi-objective scenario, the top architectures form a frontier

of optimal points, called a Pareto front. These points are all considered optimal as

they are undominated by any other point in the objective space. However, the “best”

design depends on the relative weightings of the various figures of merit of the multi-

objective space. Also, the number of points on the Pareto front is not selectable, as

the front is purely based on the results of analysis of the architecture space. In order

to vary the number of individual architectures being observed, multiple layers of the

Pareto front are observed, known as a Layered Pareto Front (LPF). For details on

analyzing an LPF, refer to Appendix E. The following procedures were applied for

this experiment:

1. The combined number of alternatives in the problem shall be on the order of

1 million, varying mission, vehicle, and technology options of the architecture

space, allowing the potential for individual architecture options to flood the top

results.

2. Multiple objective spaces will be analyzed to observe effects due to different sets

of figures of merit on the measures of architecture similarity distributions. Single

objective spaces consisting of a total mass and cost metric will be evaluated,

along with a two-dimensional multi-objective space consisting of both total mass

and total cost simultaneously with even weightings.

3. The number of alternatives returned will range from [2:100000] architectures.

For a multi-objective space, this requires varying the number of layers in the

LPF to achieve the desired number of points.

4. Distributions of the similarity of architectures will be recorded and summarized

158

for each objective type and number of alternatives in the objective space.

Distributions of the similarity metric of the top architectures have narrow sum-

mary statistics compared to those of a distribution of the similarity metric of all

architectures in the objective space. This implies that a poor cross section of the

original objective space is being observed and any effects in the objective space due

to high-level architecture decisions will be difficult to observe, supporting Hypothesis

5.1. However, distributions with summary statistics similar to those of a distribution

of all architectures in the objective space implies that there is a broad sampling of

architecture concepts in the observed objective space that are representative of the

entire objective space. This implies that observed effect due to high-level architecture

design decisions will be well-represented, refuting Hypothesis 5.1.

5.1.3.2 Results

The distribution of architecture similarities for all cases is relatively normal with

a mean of 0.9079 and a standard deviation of 0.007495. The maximum similarity

value in the objective space is 0.9285 and the minimum is 0.8805, resulting in a total

range of 0.4795. Through analysis of the results, it was determined that the smallest

variation in similarity due to any single attribute is 0.0012324. All technology options

account for 0.008627 variation in similarity where each technology option accounts

for 0.0012324 variation in the similarity metric. All mission options account for

0.0024648 variation in similarity where each mission option accounts for 0.0012324

variation in similarity. The vehicle space options accounts for the remaining 0.4684

variation of similarity. It is clear that the vehicle space accounts for a large majority

of architecture variation, primarily due to combinatorial explosion when including

multiple stages. These statistics and observations are the baseline for evaluating the

summary statistics while varying the numbers of Pareto fronts and dimensionality of

the objective space, and are summarized in Figure 56.

159

WKHVLVGDWD���'LVWULEXWLRQ�RI�6LPLODULW\ 3DJH���RI��

'LVWULEXWLRQV

6LPLODULW\

���� ���� ��� ����� ����� �����

4XDQWLOHV
PD[LPXP
PLQLPXP

��������
��������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
���������
���������
�������

Figure 56: Objective Space Similarity Distribution

The growth in the total number of observed design points from the objective space

with increasing number of layers in the LPF is not consistent across the different

objective spaces considered in the experiment, shown in Figure 57. The number

of architectures in the LPF depends on the number of layers and the local density

of architectures in the objective space for each layer. For the architecture space

considered in this experiment, Figure 58 shows the density of architectures along

both the total vehicle mass and total vehicle cost metrics. The inconsistency in

density of alternatives in the objective space is due to the discrete categorical nature

of the architecture and technology spaces. Here, darker regions represent areas in the

objective space which are more densely packed with alternatives. These increased

densities will result in a greater number of alternatives on a given Pareto front which

passes through that region of the objective space. Each Pareto front passes through

different regions within the density plot. Because the density of architectures along

each dimension of the objective space is not uniform, the relationship between the

number of layers and the number of observed architectures is highly nonlinear, as

indicated by Figure 57.

Though increasing the number of observed design points may help to give a more

representative set of architectures from the objective space, it alone does not defini-

tively imply a more representative cross section of the entire objective space. The

designs may still be highly focused around a specific subset of architectures. It is

important to consider other metrics when determining the quality of the observed

160

1

10

100

1000

10000

100000

1000000

0 100 200 300 400 500

N
u

m
b

er
 o

f
P

o
in

ts

Layers

Number of Points vs. Layers

Multi

Mass

Cost

Objective

Figure 57: Relationship of Number of Pareto Front Layers to Total Number of Data
Points in the Similarity Distribution

Figure 58: Objective Space Architecture Density

161

portion of the objective space being represented by the subset of architectures on

an LPF. Collectively, the subset distribution’s mean, standard deviation, minimum,

maximum, and range of architecture similarity can provide indications as to the qual-

ity of representation of all cases in the objective space. However, because the number

of architectures contained in the subset is not consistent with the number of layers in

the LPF across different objectives, similarity distribution metrics are plotted against

the total number of architectures in the LPF.

All distribution parameters of the set of architectures in the LPF appear to ap-

proach the parameters of the baseline objective space distribution of architecture

similarity in a logarithmic trend. For each of the distribution metrics, the specific

objective has little effect on the variation in the metric, as is visible by a noticeable

overlap in the data for the three different objectives considered in this experiment,

shown in Figure 59 through Figure 63. The solid red line in these plots is the met-

ric value of the baseline distribution for all architectures, while the dashed red line

represents the fifty percent mark between the metric for a distribution of an LPF

with two architectures and the baseline similarity distribution’s metric. Obviously,

this low number of architectures in the observed objective space would be a very

poor representation of the whole objective space and provides a lower boundary for

determining these 50% marks.

The minimum value of the distribution of architecture similarity with respect to

the number of observed architectures in the LPF is represented in Figure 59. The

baseline similarity distribution has a minimum of 0.880507 while an LPF of one layer

has a minimum of 0.893173. The 50% value between the minimum similarity of these

two distributions is 0.88684. The data shows that an LPF containing on the order

of 100 points is able to reduce a majority of the difference in minimum similarity

between a distribution of an LPF containing two points and the baseline distribution.

The maximum value of the distribution of architecture similarity with respect to

162

0.878

0.88

0.882

0.884

0.886

0.888

0.89

0.892

0.894

1 10 100 1000 10000 100000

M
in

im
u

m
 S

im
ila

ri
ty

Number of Points

Minimum Similarity vs. Number of Points

Multi

Mass

Cost

Objective

Figure 59: Relationship of Number of Pareto Front Layers to Similarity Distribution
Minimum

the number of observed architectures in the LPF is represented in Figure 60. The

baseline similarity distribution has a maximum of 0.928456 while an LPF with one

layer has a maximum of 0.894712. The 50% value between the minimum similarity

of these two distributions is 0.911584. An LPF containing on the order of 1,000

points is able to reduce a majority of the difference in maximum similarity between

a distribution of an LPF containing two points and the baseline’s distribution.

The range of the distribution of architecture similarity with respect to the number

of observed architectures in the LPF is represented in Figure 61. The baseline simi-

larity distribution has a range of 0.047949 while an LPF with one layer has a range of

0.001539. The 50% value between the range of similarity of these two distributions is

0.024744. An LPF containing on the order of 50 points is able to reduce a majority of

the difference in the range of similarity between a distribution of an LPF containing

two points and the baseline distribution.

The mean of the distribution of architecture similarity with respect to the number

of observed architectures in the LPF is represented in Figure 62. The baseline simi-

larity distribution has a mean of 0.90792 while an LPF with one layer has a mean of

163

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

1 10 100 1000 10000 100000

M
ax

im
u

m
 S

im
ila

ri
ty

Number of Points

Maximum Similarity vs. Number of Points

Multi

Mass

Cost

Objective

Figure 60: Relationship of Number of Pareto Front Layers to Similarity Distribution
Maximum

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 100 1000 10000 100000

R
an

ge
 o

f
Si

m
ila

ri
ty

Number of Points

Range of Similarity vs. Number of Points

Multi

Mass

Cost

Objective

Figure 61: Relationship of Number of Pareto Front Layers to Similarity Distribution
Range

164

0.89

0.892

0.894

0.896

0.898

0.9

0.902

0.904

0.906

0.908

0.91

1 10 100 1000 10000 100000

M
ea

n
 S

im
ila

ri
ty

Number of Points

Mean Similarity vs. Number of Points

Multi

Mass

Cost

Objective

Figure 62: Relationship of Number of Pareto Front Layers to Similarity Distribution
Mean

0.893943. The 50% value between the range of similarity of these two distributions

is 0.899881. An LPF containing on the order of 100,000 points is able to reduce a

majority of the difference in the mean of similarity between a distribution of an LPF

containing two points and the baseline distribution. The shift in mean towards the

baseline is slower with increased number of points compared to the other metrics

considered.

The standard deviation of the distribution of architecture similarity with respect

to the number of observed architectures in the LPF is represented in Figure 63.

The baseline similarity distribution has a standard deviation of 0.007496 while an

LPF with one layer has a standard deviation of 0.001088. The 50% value between

the standard deviation of similarity of these two distributions is 0.004292. An LPF

containing on the order of 100 points is able to reduce a majority of the difference in

the standard deviation of similarity between a distribution of an LPF containing two

points and the baseline distribution.

The full set of data analyzed in this experiment can be found in Appendix F,

including distributions for all of the LPFs tested in this experiment.

165

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1 10 100 1000 10000 100000

St
an

d
ar

d
 D

ev
ia

ti
o

n
 in

 S
im

ila
ri

ty

Number of Points

Standard Deviation in Similarity vs. Number of Points

Multi

Mass

Cost

Objective

Figure 63: Relationship of Number of Pareto Front Layers to Similarity Distribution
Standard Deviation

5.1.3.3 Conclusion

The results from this experiment indicate that flooding of top results of the objec-

tive space can occur, represented by large deviations in the summary statistics of

the distributions of architecture similarity between the subset of top results and the

entire objective space. Observation of extremely small subsets of the results in the

objective space will result in poor representation of the true objective space. These

observations result in the acceptance of Hypothesis 5.1. However, this observation is

limited to small subsets of the objective space. It is possible to increase the quality

of representation of the original objective space by increasing the total number of

architectures in the top subset. Overall, it was determined that the representation of

the entire objective space by the subset of the top N architectures increases in a log-

arithmic trend. Relatively low numbers of top architectures from the objective space

may adequately represent the entire objective space. These observations were found

to be true across various objectives with dissimilar distributions of points within indi-

vidual figures of merit. Further work is needed to confirm these results across higher

166

dimensional objective spaces spanning additional problem domains.

5.1.4 Experiment 3: Portfolio Grouping Criteria

Research Question 5.2

How do the grouping criteria used for forming portfolios of architectures

affect the variance of the resulting portfolios?

The purpose of experiment 3 is to determine how grouping parameters on which

to form sets of architectures affect the resulting figures of merit of those portfolios.

This will help guide a more structured approach to selecting grouping criteria for

large architecture spaces to aid in creating clear and concise presentation of results,

while minimizing loss of information about the overarching objective space.

Hypothesis 5.2

Variance of the objective metrics within and between portfolios will corre-

late positively with the size of the portfolios, measured by the number of

grouped architectures.

5.1.4.1 Procedure

The architecture space for experiment three consists of all vehicle variations from

the architecture space presented in Table 14, along with all mission and technology

options from Table 15 and Table 16 respectively. Again, data for each of the archi-

tectures was generated utilizing the digital test bed described in Section 5.1.1. The

objective space is filtered to architectures with a total vehicle gross mass of no more

than 100,000 kg to prevent outlier architectures from skewing observed distributions.

To construct portfolios of varying size, discrete architecture space and technology

167

space options will be selected independently as grouping criteria to reduce interac-

tions between the two spaces. Within the architecture space, options relating to the

vehicle and mission space will be selected independently to reduce interaction ef-

fects between the two groups of architecture options. The selection of these grouping

criteria shall be selected at random from their respective spaces.

Variance between portfolios will be measured through numerous objective space

metrics: architecture similarity, vehicle total mass in kilograms (kg), vehicle propel-

lant mass fraction (PMF), and vehicle total cost in man-years (MYr). The variance

in the objective space metrics of the architectures within a portfolio, as well as the

variance in the aggregate objective space metrics between each portfolio, will be ana-

lyzed. Large variances between portfolio-level aggregate objectives, along with small

variances between architectures within a portfolio for small portfolios support the

claims of Hypothesis 5.3.

5.1.4.2 Results

Figure 64 show the variance in architecture similarity, vehicle gross mass, vehicle gross

cost, and vehicle PMF for portfolios formed from vehicle options in the architecture

space. Portfolios of varying size are formed from various sets of the following randomly

selected vehicle options:

• Tank Configuration

• Structures Type

• Power System

• MLI Layers

Figure 64 shows a positive correlation in variance of the architecture similarity

across the vehicle portfolios, denoted by the slope of the 95% ellipse around the data.

Variance in the architecture similarity between portfolios appears to be positively

168

correlated with the size of the portfolio. This is observed by the relative distance be-

tween points for a given portfolio size. Both of these observations support Hypothesis

5.3. However, these observation do not hold for other metrics in the objective space.

Variance in the total vehicle gross mass, total vehicle cost, and vehicle PMF all seem

to have no correlation with the size of portfolios, denoted by the nearly zero slope of

the 95% ellipse around these sets of data. Moreover, the observation of variance be-

tween portfolios does not hold true, as there are large differences in variance between

portfolios of a given size, large and small. This is best observed in the variance of

vehicle gross cost, where there is a relatively large difference in the variance regardless

of portfolio size. These observations are in clear opposition to Hypothesis 5.3. The

distribution summary statistics for each of the portfolios is provided in Table 60 of

Appendix G.

Figure 100 in Appendix G shows the variance in architecture similarity, vehicle

gross mass, vehicle gross cost, and vehicle PMF for portfolios formed from mission

options in the architecture space. Portfolios of varying size are formed from various

sets of the following mission options:

• Destination Duration

• Inbound Correction Maneuver

Similarly, Figure 101 in Appendix G shows the variance in architecture similarity,

vehicle gross mass, vehicle gross cost, and vehicle PMF for portfolios formed from

technology packages in the technology space. Portfolios of varying size are formed via

the following criteria:

• No Active Technologies

• Single Active Technology

• All Technologies Active

169

Si
m

ila
rit

y
Va

ria
nc

e
G

ro
ss

 M
as

s
Va

ria
nc

e
G

ro
ss

 C
os

t V
ar

ia
nc

e
Ve

hi
cl

e
PM

F
Va

ria
nc

e

0 500000 1000000 1500000 2000000

Portfolio Size

2500000 3000000 3500000

Figure 64: Correlation in Portfolio Size vs Objective Metric Variance for Vehicle-
based Portfolios

170

Data for these portfolio schemes show similar observations, refuting Hypothesis

5.3. Many of the metrics show very little to no correlation between portfolio size and

variance of a given metric. Some show even a slight negative correlation, in direct

opposition to Hypothesis 5.3. Also, differences in the variance of a given metric do not

seem to be correlated to the size of the portfolio. The distribution summary statistics

for the mission and technology portfolios are provided in Table 58 and Table 59 of

Appendix G respectively.

It is apparent that the variation in a given objective space metric for the architec-

tures contained in a portfolio is not necessarily correlated to the size of a portfolio.

Sizes of portfolios are a result of the various grouping criteria, but have little to do

with the variation of objective metrics. Rather, the variation is due to the grouping

criteria which form the portfolios themselves. Figure 66 and Figure 67 illustrate the

distribution of architecture vehicle gross mass for portfolios formed by varying the

payload mass in the architecture space. These two distributions clearly show that

vehicle payload mass is the primary cause of the bimodal distribution of vehicle gross

mass across all architectures observed in Figure 65.

Similar observations can be made in the distributions of architecture similarity

across different portfolio grouping criteria. Figure 68 is the distribution of architecture

similarity for the entire architecture space of this experiment, while Figure 69 is the

distributions for all single stage vehicles and Figure 70 is the distributions for all two

stage vehicles. Again, it is clear that the number of stages in the vehicle has a large

impact in skewing the distributions of architecture similarity in the objective space.

However, unlike in the portfolios formed by payload mass options, these portfolios

exhibit drastically different portfolios sizes. This is because there are many more

combinations of two stage vehicles than single stage vehicles in the architecture space.

In fact, the single stage portfolio has a lower variance in architecture similarity than

the larger two stage vehicle portfolio, in direct opposition to Hypothesis 5.3.

171

H[S�BGDWD���'LVWULEXWLRQ 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�*URVV�0DVV�NJ�

���� ����� ����� ����� ����� ����� �����

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
���������
���������
���������
�������

9HKLFOH�*URVV�&RVW�0<U�

� ����� ����� ����� ������ ������

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
��������

���������
���������
���������
�������

9HKLFOH�30)

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

4XDQWLOHV
PD[LPXP
PLQLPXP

������������
������������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
��������
������H��
���������
���������
�������

6LPLODULW\

���� ����� ���� ����� ���� ����� ���� ����� �

4XDQWLOHV
PD[LPXP
PLQLPXP

�
��������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
��������

���������
�������

Figure 65: Total Vehicle Mass(kg) Distribution of All ArchitecturesH[S�BGDWD���'LVWULEXWLRQ 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�*URVV�0DVV�NJ�

���� ����� ����� ����� ����� ����� �����

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
���������
���������
���������
�������

9HKLFOH�*URVV�&RVW�0<U�

� ����� ����� ����� ������ ������

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
���������
���������
���������
�������

9HKLFOH�30)

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

4XDQWLOHV
PD[LPXP
PLQLPXP

������������
������������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
���������
���������
�������

6LPLODULW\

���� ����� ���� ����� ���� ����� ���� ����� �

4XDQWLOHV
PD[LPXP
PLQLPXP

�
��������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
��������

���������
�������

Figure 66: Total Vehicle Mass(kg) Distribution of Architectures with 1,000 kg Pay-
loadH[S�BGDWD���'LVWULEXWLRQ 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�*URVV�0DVV�NJ�

���� ����� ����� ����� ����� ����� �����

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
��������

���������
���������
��������
�������

9HKLFOH�*URVV�&RVW�0<U�

� ����� ����� ����� ������ ������

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
���������
���������
���������
�������

9HKLFOH�30)

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

4XDQWLOHV
PD[LPXP
PLQLPXP

������������
���������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
���������
���������
�������

6LPLODULW\

���� ����� ���� ����� ���� ����� ���� ����� �

4XDQWLOHV
PD[LPXP
PLQLPXP

��������
��������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
��������

���������
�������

Figure 67: Total Vehicle Mass(kg) Distribution of Architectures with 10,000 kg
Payload

172

H[S�BGDWD���'LVWULEXWLRQ 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�*URVV�0DVV�NJ�

���� ����� ����� ����� ����� ����� �����

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
���������
���������
���������
�������

9HKLFOH�*URVV�&RVW�0<U�

� ����� ����� ����� ������ ������

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
��������

���������
���������
���������
�������

9HKLFOH�30)

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

4XDQWLOHV
PD[LPXP
PLQLPXP

������������
������������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
��������
������H��
���������
���������
�������

6LPLODULW\

���� ����� ���� ����� ���� ����� ���� ����� �

4XDQWLOHV
PD[LPXP
PLQLPXP

�
��������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
��������

���������
�������

Figure 68: Architecture Similarity Distribution of All Architectures

H[S�BGDWD���'LVWULEXWLRQ 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�*URVV�0DVV�NJ�

���� ����� ����� ����� ����� ����� �����

4XDQWLOHV
PD[LPXP
PLQLPXP

�������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
��������

���������
���������

�����

9HKLFOH�*URVV�&RVW�0<U�

� ����� ����� ����� ������ ������

4XDQWLOHV
PD[LPXP
PLQLPXP

�������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

��������
���������
���������
���������
���������

�����

9HKLFOH�30)

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

4XDQWLOHV
PD[LPXP
PLQLPXP

������������
������������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
���������
���������
���������

�����

6LPLODULW\

���� ����� ���� ����� ���� ����� ���� ����� �

4XDQWLOHV
PD[LPXP
PLQLPXP

�
��������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
���������
���������

�����

Figure 69: Architecture Similarity Distribution of Architectures with 1 Stage

H[S�BGDWD���'LVWULEXWLRQ 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�*URVV�0DVV�NJ�

���� ����� ����� ����� ����� ����� �����

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

��������
���������
���������
���������
���������
�������

9HKLFOH�*URVV�&RVW�0<U�

� ����� ����� ����� ������ ������

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
���������
���������
���������
�������

9HKLFOH�30)

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

4XDQWLOHV
PD[LPXP
PLQLPXP

������������
������������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
���������
��������
�������

6LPLODULW\

���� ����� ���� ����� ���� ����� ���� ����� �

4XDQWLOHV
PD[LPXP
PLQLPXP

��������
��������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
��������

���������
�������

Figure 70: Architecture Similarity Distribution of Architectures with 2 Stages

173

H[S�BGDWD���'LVWULEXWLRQ 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�*URVV�0DVV�NJ�

���� ����� ����� ����� ����� ����� �����

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
���������
���������
���������
�������

9HKLFOH�*URVV�&RVW�0<U�

� ����� ����� ����� ������ ������

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
��������

���������
���������
���������
�������

9HKLFOH�30)

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

4XDQWLOHV
PD[LPXP
PLQLPXP

������������
������������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
��������
������H��
���������
���������
�������

6LPLODULW\

���� ����� ���� ����� ���� ����� ���� ����� �

4XDQWLOHV
PD[LPXP
PLQLPXP

�
��������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
��������

���������
�������

Figure 71: Total Vehicle Cost(kg) Distribution of All ArchitecturesH[S�BGDWD���'LVWULEXWLRQ�RI�9HKLFOH�*URVV�&RVW�0<U� 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�*URVV�&RVW�0<U�

� ����� ����� ����� ������ ������

4XDQWLOHV
PD[LPXP
PLQLPXP

�������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

��������
���������
���������
���������
���������

�����

Figure 72: Total Vehicle Cost(kg) Distribution of Architectures with 1 StageH[S�BGDWD���'LVWULEXWLRQ�� 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�*URVV�&RVW�0<U�

� ����� ����� ����� ������ ������

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
���������
���������
���������
�������

Figure 73: Total Vehicle Cost(kg) Distribution of Architectures with 2 Stages

174

Trends in the full objective space may be difficult to observe due to the large

number of alternatives in the objective space from a subset of the architecture space.

However, by grouping architectures into portfolios, observations which could not be

made in the full objective space with all architectures combined may now become

visible. This type of behavior can be seen by again forming portfolios based on the

number of vehicle stages and observing the distributions of vehicle gross cost and

vehicle PMF. Figure 71 shows the distribution of vehicle gross cost in the objective

space for all architectures. Because the two stage vehicle options are so numerous

compared to the single stage vehicle options, the two stage vehicle options drive this

distribution, as is seen by comparing the distributions in Figure 73 and Figure 71.

However, by observing the distributions of vehicle gross cost for only single stage

vehicles, shown by Figure 72, one can see a clear skew towards lower cost for single

stage vehicles compared to two stage vehicles. Similar observations may be made

in vehicle PMF with vehicle number of stages. A single stage vehicle will typically

have a higher PMF compared to a typical two stage vehicle. Logically, this makes

sense, considering a two stage vehicle will require two sets of engines, plumbing,

tanks, structures, etc. which drive the PMF of the whole vehicle down. Distributions

illustrating this observation are shown by Figure 102 through Figure 104 in Appendix

G.

Portfolios of the technology space is a common way of viewing the objective space.

Table 21 shows the mean boiloff rate of the first and second stages in kilograms

of propellant per day for each of the technology portfolios listed. Observation of

these portfolio grouping criteria provides insight into which technology, or group

of technologies may aid in reducing boiloff of cryogenic propellant for space vehicles.

Here, the active cryocooling technology reduces the boiloff rate of both stages to zero,

while the portfolio containing all technologies will obviously have the same benefit of

the single technology, provided no negative interactions exist.

175

Table 21: Technology Impact on Stage Boiloff Rate

Portfolio Description
Mean Stage 1

Boiloff Rate(kg/day)
Mean Stage 2

Boiloff Rate(kg/day)

No Technologies 10.024 5.317

Wireless Sensors 10.017 5.317

Composite Structures 9.600 5.935

Composite Tanks 9.969 5.322

Active Cryocooling 0.0 0.0

Integrated MPS/RCS 10.052 5.312

Low Leak Valves 9.912 5.277

High Capacity Batteries 9.960 5.311

All Technologies 0.0 0.0

5.1.4.3 Conclusion

The observation of the distributions of objective space metrics for portfolios of ar-

chitectures across different grouping criteria showed that the size of the resulting

portfolios has little impact on the resulting variance of those objective space metrics.

Any observed correlation is coincidental in nature. Variation in these metrics between

portfolios also was observed to be unrelated to the size of the portfolios. However,

further observation of the data from this experiment provided valuable insight into

trends in the objective space with regard to the physical architecture space. By form-

ing portfolios of architectures from these physical architecture space options, new

trends in metrics such as gross mass, gross cost, similarity, and vehicle PMF were

observable. However, the grouping criteria utilized for observing results may lead

to different conclusions regarding the effects of technologies on architectures. Only

focusing on a single portfolio grouping criterion will result in conclusions being made

without full understanding of the trends which may exist in the problem. The results

from this experiment lead to the rejection of Hypothesis 5.3, but also leads to the

following conjecture:

176

Conjecture 5.2

Variance in the objective space metrics within and between portfolios are

influenced by the grouping criteria derived from options in the architecture

space.

5.1.5 Experiment 4: Testing Portfolio Results Scheme

Research Question 5.3

Would utilizing a portfolio scheme for grouping architectures obscure high-

performing outlier architectures?

The purpose of Experiment 4 is to determine if implementing a portfolio scheme

for grouping architectures when large numbers of alternatives exist has the potential

of obscuring optimal designs. This could occur if the highest performing design is

hidden within a portfolio with an aggregate performance less than another portfolio,

as was shown by a notional example during the formulation of the research question

and hypothesis. However, testing all potential grouping criteria to be certain that

no obscuring will exist is impractical, and as such, a null hypothesis, shown below,

was formed where only one case of design obscuring is enough to disprove the null

hypothesis, leading to the conclusion that obscuring of design may indeed exist.

Hypothesis 5.3

High-performing outlier architectures will not be obscured using a portfo-

lio evaluation scheme because they will be contained in a portfolio with

other similar architectures which will exhibit similar behavior, raising the

performance of the entire portfolio.

177

5.1.5.1 Procedure

The hypothesis assumes that due to the large number of design alternatives in such

a large and complex space, there will not be single outlier designs. Rather, there

will be groups of designs. It would be logical to assume that these collections of

outlier designs would be grouped together in a portfolio scheme due to their relative

similarity in physical systems and/or operations. These natural groups of outliers

would bring the performance of the entire portfolio up.

This experiment utilizes the same architecture space from Experiment 3, consist-

ing of all vehicle variations from the architecture space presented in Table 14, along

with all mission and technology options from Table 15 and Table 16 respectively. This

results in the same data set utilized in Experiment 3. Again, the objective space is

filtered to architectures with a total vehicle gross mass of no more than 100,000 kg to

prevent under-performing and oversized architecture outliers from skewing observed

distributions. The metrics for which portfolios and the optimal design will be evalu-

ated against are total vehicle mass in kilograms (kg), total vehicle cost in man-years

(MYr), and vehicle PMF. Initially, the results of Experiment 3 will be examined for

any cases resulting in a single optimal architecture being obscured in a lower perform-

ing portfolio. If this occurs, then Hypothesis 5.3 will be rejected, thus proving that

optimal designs may become obscured when grouping architectures into portfolios.

However, if the results of Experiment 3 prove inconclusive with regard to this

research question, further experimentation will be performed in an attempt to observe

an obscured optimal design. Variations to the portfolio grouping scheme will be

selected by combining related selections from multiple spaces simultaneously. If these

further cases still do not result in optimal design obscuring, sets of randomly selected

grouping criteria based on architecture and technology space options combined will

be selected in an attempt to observe an obscured design.

178

5.1.5.2 Results

Based on the architecture space for this experiment, the single-objective optimal

designs for each of the three figures of merit are listed below:

Mass: two stage all solid propellant architecture with all technologies applied

resulting in a total vehicle mass of 6290.82 kg

Cost: single stage solid propellant architecture with all technologies applied

resulting in a total vehicle cost of 730.3 MYr

PMF: single stage LO2/LCH4 propellant architecture with the composite

structures technology applied resulting in a PMF of 0.866

Results from experiment 3 provided one such case of obscured optimal designs

within suboptimal portfolios. Nine portfolios result when the objective space is broken

into portfolios based on the following grouping criteria:

• No Active Technologies

• Single Active Technology

• All Technologies Active

The nine portfolios along with their means for each of the figures of merit in the

objective space are provided in Table 22. Here, the best portfolio for reducing mass

is to apply all available technologies, the best portfolio for reduced cost is to apply

no technologies, and the best portfolio to increase PMF is to apply the composite

structures technology.

Observation of these results shows that the optimal portfolio to reduce cost is to

apply no technologies; however, the best in class architecture for cost is one which

applies all technologies. This is likely due to the fact that cost is such a strong

function of mass in the TransCost model selected and developed for this body of work.

179

Table 22: Technology Portfolios Objective Means

Description N
µmgross

(kg)
µ Cgross

(MYr) µ PMF

No Techs 708506 3.894e+4 4.009e+4 6.612e-1
Wireless Sensors Only 708554 3.890e+4 4.417e+4 6.613e-1
Composite Structures Only 719846 3.715e+4 4.325e+4 6.661e-1
Composite Tanks Only 709442 3.857e+4 4.402e+4 6.617e-1
Active Cryocooling Only 768338 3.861e+4 4.634e+4 6.309e-1
Integrated MPS/RCS Only 708338 3.924e+4 4.104e+4 6.612e-1
Low Leak Valves Only 709001 3.843e+4 4.336e+4 6.571e-1
High Capacity Batteries Only 708817 3.859e+4 4.188e+4 6.616e-1
All Techs 795728 3.527e+4 4.854e+4 6.299e-1

The cost gain associated with applying technologies for the specific architecture was

outweighed by the cost savings resulting from the reduction in overall mass due to

those technologies for the specific architecture.

5.1.5.3 Conclusion

The results from experiment 3 provided at least one case where the optimal design for

a specific single-objective metric was obscured within a suboptimal portfolio for that

same metric. This results in the rejection of the null hypothesis stated by Hypothesis

5.3, supporting the claim that grouping architectures into portfolios of designs indeed

has the potential to obscure designs. Caution must be taken to ensure that high-

performing designs of interest are not ignored due to an employed portfolio scheme.

Only relying on results presented in portfolios of alternatives has the potential to ob-

scure optimal designs. Rather, exploration of the objective space should be performed

across a variety of portfolio schemes, as well as individual alternatives to ensure a full

understanding of the objective space and the optimal designs. It is important to

note that this experiment focused primarily on one-dimensional objective spaces of

various figures of merit. However, with multi-dimensional objective spaces, multiple

design points are considered optimal. This complicates the otherwise trivial concept

of optimal design obscuring considered in this experiment. Further work is needed to

180

study how designs may be obscured in multi-objective scenarios.

5.1.6 Observation: Differences in Figures of Merit

Experiments 1 through 4 can be observed to make note of differences in the metrics

being utilized. Over the course of these four experiments defined in this chapter, anal-

ysis results have focused on both individual architecture presentation of the data, as

well as portfolios of architectures. An observation of the metrics used in these exper-

iments can lead to a conclusion about whether similar metrics are utilized between

these two presentation schemes. It is expected that utilizing a form of results group-

ing will naturally lead to the use of additional metrics relating to group composition

and statistical distribution summary metrics.

5.1.6.1 Results

The experiments presented in this body of work relied heavily on making observations

of groups of architectures. Experiment 1 observed the composition of the total objec-

tive space by the main propulsion system employed by the architectures to observe

shifts in the overarching objective space due to technologies. In Experiment 2, subsets

of the objective space were observed by only observing the top designs. This was done

on a single-objective and multi-objective basis. In both ways, summary statistics of

the distribution of figures of merit for the subsets were used to determine how well a

given subset represented the total objective space. Statistics such as minimum, max-

imum, range, mean, and standard deviation of the distribution of the similarity of

architectures of the subsets from the objective space provided insight into the quality

of the cross section of the total objective space being observed. Finally, Experiment

3 and Experiment 4 focused on breaking the objective space into portfolios of designs

grouped together by a set of grouping criteria. The resulting portfolios were studied

by comparing means and variance of specific figures of merit for the architectures

contained within a portfolio.

181

Through these experiments, it is clear that when groups of architectures were

being studied or observed, regardless of whether the groups were portfolios or sub-

sets based on varying criteria, each group was summarized through distributions of

the constituent architectures. This supports Hypothesis 6, that additional metrics

summarizing the performance and composition of groups of architectures need to be

included when establishing value of a problem.

Similarly, it is important to note the relative weightings of figures of merit when

considering a multi-objective space should be included as additional metrics to con-

sider. The experiments in this research implicitly assumed even weightings to figures

of merit, regardless of how groups of architectures may have been formed. However,

it is well known that some weighting must be applied to any multi-objective problem,

whether it is implicitly assumed or stated during problem formulation.

5.1.6.2 Conclusion

These observations support the claim made by Conjecture 6, that additional metrics

should be considered when studying results as groups of architectures. These metrics

should consist of summaries of the figures of merit of the architectures contained in

the groups themselves, as well as metrics which describe the composition of a given

group and how specific figures of merit were weighted when forming those groups.

5.2 Summary of Developed Framework

From this body of research, a flexible framework is presented, focusing on integrating

architecture analysis and technology evaluation at a subsystem level for the purpose

of exploring large design spaces in an attempt to better understand the underly-

ing system spaces and their potential interactions. The framework shall be referred

to as the Integrated Architecture and Technology Exploration (IntegrATE) frame-

work. The process of the framework is shown in Figure 74. Many of the underlying

components of this framework employ previously developed techniques and methods

182

which suit the overarching goal of integrating architecture analysis and technology

evaluation at a subsystem level. Concepts and techniques such as quality function

deployment, DoD viewpoints, and set theory-influenced system decomposition are

utilized to perform many of the steps outlined in the IntegrATE framework. How-

ever, IntegrATE does not dictate which methods or techniques shall be utilized for

the purpose of flexibility. This section summarizes the basic steps required by the

IntegrATE framework developed as a result of the experiments discussed in Section

5.1. The steps that follow will typically be arbitrated by architects who gather the

necessary information from technologists and subject matter experts. This will help

to eliminate bias in the technologies and architectures represented within a problem,

as this architect should represent a neutral party with no particular bias for specific

architectures or technologies, but who is primarily interested in providing a broad

representation for the problem being studied.

AnalysisCandidate Solution Set CharacterizationTrade Space Characterization

Define
Problem

Decompose
Spaces

Identify
M & S

Map
Spaces

Evaluate
Cases

Analyze
Results

21 3 4 5 6

D
et

ai
le

d
D

es
ig

n

Conceptual Design

Figure 74: IntegrATE Framework Flow Diagram

5.2.1 Step 1: Define the Problem

The first step of IntegrATE is to define the problem by taking the requirements from

the customer and translating them into quantifiable engineering metrics. Typically,

some customer or societal need is what prompts the design of a new product, often

referred to as the “voice of the customer” [57]. The customer requirements should

capture all aspects of the design including, but not limited to physical performance,

183

budgetary constraints, and schedule. However, typically these requirements are sub-

jective in nature and must be translated into quantifiable metrics, often referred to

as the “voice of the engineer”. There exist many techniques in literature for perform-

ing this task. One such technique employed extensively in many methods is quality

function deployment. This technique was chosen for the initial formulation of Inte-

grATE, but designers could use other methods for translating customer requirements

into engineering metrics if preferred.

The objective space of the problem is defined by the engineering metrics mapped

to the customer requirements during quality function deployment. Typically this is

an n-dimensional space where n is the number of customer requirements tied to en-

gineering metrics. It is important during this step of the framework to capture not

only the customer requirements, but also the relative importance of each requirement

to the customer. This translates into weighting metrics which will be required when

performing multi-objective analysis of the results in step 6. Additionally the trans-

lation of customer requirements to engineering metrics should not include any bias

toward a specific architecture or technology.

5.2.2 Step 2: Decompose Architecture and Technology Spaces

The second step of IntegrATE is to decompose the problem into an architecture

space and associated technology space. These spaces define the physical and func-

tional breakdown of potential designs to meet the customer requirements from step 1.

Again, the selection of potential architectures and technologies should be broad, not

focusing on individual options. The goal is to provide a broad set of options within

the architecture and technology spaces which may meet the stated objectives by the

customer. In Chapter 3.3.1, various viewpoints from the DoD Architecture Frame-

work were selected to aid in visualization of the system of systems decomposition,

184

specifically, the operational resource flow, OV-2, the operational activity decomposi-

tion, OV-5a, and the physical systems decomposition, SV-1. An example of OV-2 and

OV5a within the space architecture domain is the bat chart, a graphical representa-

tion of the major physical vehicle elements and their relative location throughout the

mission.

In addition to OV-2 and OV-5a, used to represent high-level operations of an

architecture, techniques such as morphological analysis are used to break down the

physical subsystems and the available options which may be combined to form ar-

chitectures. Morph matrices, the typical result of morphological analysis, are a good

example of SV-1. The combination of OV-2, OV-5a, and SV-1 are used to fully

populate the architecture space and technology space defined by STSD.

5.2.3 Step 3: Identify Modeling and Simulation Environment(s)

The third step of IntegrATE is to identify the modeling and simulation environ-

ment(s) which may be required to evaluate the potential designs and technologies

defined in the architecture and technology spaces from step 2. Because the architec-

ture and technology spaces are defined at the subsystem level, the models collected

and developed must be at the subsystem level. This will require a simulation envi-

ronment capable of integrating many subsystem-level models. Industry provides such

simulation environments for this purpose, such as Phoenix Integration’s ModelCenter

software, a graphically-based simulation environment, or the OpenMDAO project’s

Python module, a code-based simulation environment. The core requirement of the

modeling and simulation environment(s) is to provide the ability to integrate many

subsystem-level models to allow automated analysis of many different architectures

and technologies simultaneously capable of translating the architecture and technol-

ogy space options into the objective space figures of merit. The collection of inputs

and outputs to the modeling and simulation environment(s) form the design space

185

of the problem. Considerations of case run time and parallelization should be made

during this step due to the potential for large numbers of cases which may need to

be evaluated, discussed in step 5.

5.2.4 Step 4: Map Design and Objective Spaces

The fourth step of IntegrATE is to map the various spaces developed during steps 1-3.

The mapping concept of the various spaces was discussed in Chapter 3.3.1. These

mappings are a form of transformation between the various spaces. They are typically

subjective in nature, defined by a subject matter expert, technologies, architect, etc.

Each option in the architecture and technology spaces is mapped to at least one of

the input metrics in the design space. These options may be mapped to more than

one design space attribute. This implies that the design space attributes may be

functions of multiple architecture and technology options. The output metrics of the

design space are then mapped to the figures of merit in the objective space. The

technology space options may also map to the objective space as well. Combinations

of design space outputs may be combined to form a single objective space figure of

merit. Unmapped design space inputs will need to have assumptions applied to create

default inputs. Not all outputs from the design space must be mapped to the objective

space. However, these unmapped design space metrics are not required and represent

losses in performance of the analysis environment. This may warrant revisiting step 3

to further refine the modeling and simulation environment(s) to perform analysis more

efficiently since the number of alternatives, and hence computational requirements,

are typically of concern. Organizational techniques, such as an N-squared diagram,

may be helpful in organizing and mapping inputs and outputs among the various

models within the modeling and simulation environment.

186

5.2.5 Step 5: Evaluate Cases

The fifth step of IntegrATE is to perform evaluation of the design alternatives and

technologies described by the combined architecture and technology spaces. Typi-

cally, the number of alternatives to be evaluated will be substantial due to the dis-

crete, categorical nature of system of system architectures and technologies requiring

full factorial DOEs. Also, issues of combinatorial explosion which frequently occur

when designing complex systems of systems further exacerbate the issue of large num-

bers of alternatives. Further research and development is required regarding this step

to better handle the large numbers of alternatives that typically exist. Currently,

if the number of alternatives of the full factorial DOE is prohibitively large, it may

be necessary to return to step 2 and further scope the architecture and technology

spaces to reach a number of alternatives the modeling and simulation environment

is able to handle. There is no fixed number of alternatives that can be suggested

due to variability in computational effort required by the modeling and simulation

environment. For instance, environments with run times of less than one second per

design will be capable of analyzing many more designs for a fixed amount of compu-

tational capability compared to environments with run times of minutes. Obviously,

increasing the computational capability allows for a greater number of designs to be

run in a fixed amount of time. This may prompt high levels of parallelization of the

modeling and simulation environment(s) to allow for evaluation of the most cases.

5.2.6 Step 6: Explore Results

The final step of IntegrATE is to explore the results and make final decisions. The

primary goal of this step is to explore the objective space for trends and interactions

which otherwise may have been overlooked by traditional methods. The individual

observation of very large sets of alternatives simultaneously may be limited by the

187

capability of visualization software and techniques. However, observation of individ-

ual alternatives may provide useful information relating to the frequency of certain

high-level design decisions which meet a specific criteria, or the distribution of opti-

mal designs based on specific technologies. Observation of the results as portfolios

has the potential to lose information about individual architectures. Optimal alter-

natives may be obscured in portfolios deemed suboptimal. However, exploration of

the results should not be limited to individual alternatives.

Large numbers of alternatives may be grouped together in portfolios to better

observe trends and relationships in the objective space due to the options within the

architecture and technology spaces. Traditionally, methods choose a relatively narrow

and fixed set of grouping criteria to form these portfolios. For instance, a technology

method may choose to only observe results in the form of technology portfolios, or

an architecture design method may focus on physical architecture options on which

alternatives are grouped into portfolios. Because IntegrATE performs both architec-

ture design and technology evaluations simultaneously, no single grouping criteria is

suited to analyzing the results. Rather, various grouping criteria should be evaluated

to explore the objective space in an attempt to reveal trends due to the combined

architecture and technology spaces. This also provides the ability to study inter-

actions between the technology and architecture spaces unachievable by traditional

methods due to the subsystem-level nature of IntegrATE. For instance, a technology’s

ability to shift a subset of the architecture space within the objective space may be

observed, or relationships between seemingly unrelated technologies and architecture

subsystems may be revealed and observed. Exploring results in this manner requires

summarizing portfolios of alternatives in the form of distributions of the figures of

merit for the portfolio.

Typically, solutions to a customer’s original need resulting in the design of new

188

products culminates in some final decision with regard to the original customer re-

quirements. However, the highly subjective nature of conceptual design results in

large variations in the “best” design or family of designs as a solution. The customer

weightings on the specific figures of merit in the objective space are extremely subjec-

tive and highly influential in determining a final result. There exist many structured

techniques for the purpose of decision making: technique for order preferencing by

similarity to ideal solution (TOPSIS), technology frontier, and resource allocation are

a few. IntegrATE is flexible enough to allow a variety of decision making techniques

to be utilized which may be geared towards a specific problem.

5.3 Implementation: IntegrATE Framework Proof of Con-
cept

Manned Mars missions have been studied since the mid 20th century. In the early

21st century, manned missions to Mars have garnered increased interest as increas-

ing capabilities have developed over the decades. The Integrated Architecture and

Technology Exploration (IntegrATE) framework was applied to a 2033 crewed Mars

flyby study as a proof of concept. This study is a good benchmark for the IntegrATE

framework due to the large variability in potential architectures for performing a

manned Mars flyby as well as the substantial number of new technologies which must

be developed to achieve the objective.

5.3.1 Step 1: Define the Problem

Since the end of the United States Apollo Program, manned space flight has been lim-

ited to low earth orbit operation. With NASA’s retirement of the aging Space Shuttle

fleet, the Space Launch System (SLS) is being developed to enable human exploration

of deep space. Through the development and operation of various space laboratories

such as Skylab, Mir, the International Space Station, and Tiangong, humans have

begun to research and develop the technologies required for manned, long-duration,

189

deep-space missions. These technologies, coupled with the new capabilities provided

by the SLS, provide the basic requirements to begin moving human presence beyond

low earth orbit. However, to achieve the goal of manned Mars exploration, further

development is required.

Before sending humans to the surface of Mars, a manned Mars flyby mission is

proposed to further refine and develop technologies and capabilities required for a full

manned surface mission to Mars. Based on the development of the SLS, the 2033

launch window for Mars allows ample time to develop the basic systems required to

send humans on a flyby mission to Mars. However, the specific forms of many of

these systems are still in the conceptual design phases with many potential options.

One such component is the in-space transportation vehicle. There are many designs

which may provide the necessary capabilities to send humans to Mars. The goal of

this proof of concept study is to explore the potential in-space transportation options

for a manned Mars flyby in 2033.

5.3.1.1 Objective Space

Typically, the four primary objective categories for evaluating space architectures are

performance, cost, risk, and schedule. For this study, performance, cost, and risk are

of primary importance. The figures of merit on which to evaluate alternatives will be

total number of launches, architecture mass, gross vehicle propellant mass fraction,

gross vehicle cost, and technological complexity. These figures of merit define a five-

dimensional objective space, shown in Table 23. Because each launch vehicle has an

inherent cost associated with it which is typically very high, reducing this metric is

most favored and given the greatest weighting in the objective space. Additionally,

the cost of developing and manufacturing the transportation elements themselves is of

interest. Total architecture mass is of little importance on its own because the total

number of launches is a function of this metric. However, given two architectures

190

which have identical values for all other metrics, the lowest mass alternative will be

selected. A metric for defining the structural efficiency of the architecture is provided

in the form of the propellant mass fraction of the architecture. Higher PMF values

indicate a more structurally efficient design. Both mass and PMF will be considered

such that the effects of technologies on both the physical structure, as well as the

propellant loads of an alternative may be observed. Finally, technological complexity

is a direct function of the number of active technologies applied from the technology

space.

Table 23: Proof of Concept Objective Space

Objective Metric Weight Target Units

Number of Launches 0.4 Minimize

Architecture Gross Mass 0.1 Minimize MT

Gross Vehicle PMF 0.1 Maximize

Gross Vehicle Cost 0.2 Minimize MYr

Technological Complexity 0.2 Minimize

5.3.2 Step 2: Define Architecture and Technology Spaces

As described by the IntegrATE framework, the trade space for this notional problem

consists of all options from the architecture and technology spaces. The architecture

space is broken into two primary sets consisting of the vehicle options and the mission

options. The technology space will be a set of technologies which interact with specific

vehicle and mission options. The following sections describe these options for the

proof of concept problem being explored.

5.3.2.1 Architecture Space

Within the architecture space are all options pertaining to both the vehicle and

mission. The mission is assumed fixed to a single 2033 Mars flyby trajectory and

CONOPs. This fixed mission and CONOPs are graphically represented by the bat

chart shown in Figure 75. The series of mission events consists of a buildup of elements

191

in a lunar distant retrograde orbit (LDRO), followed by a transfer to a lunar distant

high Earth orbit (LDHEO) where the crew will launch from earth and rendezvous

before performing a trans-Mars injection burn of 629 meters per second. The transfer

from cis-lunar space to LDHEO shall take 200 days. Transit to Mars assumes a 262

day duration and 40 meters per second of correction maneuvers. A single powered fly

burn of 1,290 meters per second is performed at Mars to achieve an Earth intercept

trajectory. Transit back to Earth is assumed to require 318 days with 40 meters

per second of correction maneuvers. Upon reaching Earth, the transport vehicle will

perform an Earth orbit insertion burn of 1,072 meters per second to place the transit

habitat into LDHEO. The crew returns to Earth and the transit habitat is transferred

into an LDRO for storage. Disposal of any vehicle elements along the mission assumes

a five meter per second burn.

In order to allow a more robust set of space transportation vehicle options within

the architecture space to be studied, it is assumed that the launch vehicle for placing

the required elements into orbit will be the SLS with a payload capability of 54 metric

tons to cis-lunar trajectories. Any crew transport to and from Earth is performed by

Orion and SLS. The Mars transit habitat is assumed to be a fixed design with a dry

mass of 20 metric tons (MT) along with 12 MT of logistics.

The black boxes in Figure 75 represent transportation vehicle to be designed.

The vehicle options are limited to no more than three propulsive stages. The main

propulsion systems for these stages are limited to either liquid bipropellant engines or

nuclear engines. Other vehicle options consist of propellant pressurization, propellant

types for both the main propulsion system and reaction control system, tank configu-

ration, power generation, and passive thermal control multi-layer insulation thickness.

These options are summarized in Table 24. 162 unique vehicle stage alternatives exist

after considering incompatibilities within the stage options.

Transportation vehicles shall be limited to only utilizing common stages with

192

M
oo

n

LD
RO

M
ar

s

EA
RT

H

LD
HE

O

O
rio

n
(N

o
Cr

ew
)

?

Fl
y-

By

?

?

?

O
rio

n
(W

ith
 C

re
w

)

?

?

?

Bu
ild

up

14
5+

 d
ay

s

LD
HE

O
 T

ra
ns

fe
r

ΔV
 =

 2
20

 m
/s

LD
RO

 T
ra

ns
fe

r
ΔV

 =
 2

20
 m

/s

Di
sp

os
al

ΔV
 =

 5
m

/s

Di
sp

os
al

ΔV
 =

 5
 m

/sPo
w

er
ed

 F
ly

-B
y

ΔV
 =

 1
29

0
m

/s

EO
I

ΔV
 =

 1
07

2
m

/s

TM
I

ΔV
 =

 6
29

 m
/s

TC
M

 1
ΔV

 =
 4

0
m

/s

TC
M

 2
ΔV

 =
 4

0
m

/s

O
ut

bo
un

d
Tr

an
si

t
26

2
da

ys

In
bo

un
d

Tr
an

si
t

31
8

da
ys

?

?

?
Di

sp
os

al
ΔV

 =
 5

 m
/s

LD
HE

O
 T

ra
ns

it
20

0
da

ys

LD
RO

 T
ra

ns
it

20
0

da
ys

F
ig

u
re

7
5
:

M
ar

s
F

ly
-B

y
A

rc
h
it

ec
tu

re
B

at
C

h
ar

t

193

Table 24: Vehicle Subspace Options

Category Options

Vehicle

Number of Stages 1 2 3

Stage(s)

MPS Class Liquid Nuclear

MPS Propellant LO2/LH2 LO2/LCH4 NTO/MMH LH2 N2H4

RCS Propellant LO2/LCH4 NTO/MMH N2H4

Tank Configuration Stacked Disk Single

Power System Solar RTG

MLI Layers 10 30 50

identical stage options. This results in a total of 486 vehicle alternatives. Due to

the fixed mission along with the assumptions provided earlier, the architecture space

consist of only these 486 vehicle alternatives. Finally, because schedule is of little

importance in this study, it will be assumed that development of the transportation

elements is complete by the 2033 flyby date. No analysis shall be performed on

development time of vehicle elements.

5.3.2.2 Technology Space

The technology space shall consist of eight technologies across six vehicle subsystems:

engines, tanks, structures, power, thermal, and avionics. The engines subsystem

technology is a low leak valve technology which limits propellant leak during en-

gine start and stop. The tanks subsystem technologies are composite materials for

propellant storage to minimize tank mass, integrated propellant storage systems for

the main propulsion system and reaction control system to minimize the need for

additional tanks for the reaction control system, and autogenous pressurization to

reduce pressurant masses. The structures subsystem consists of a composite mate-

rial technology to reduce the overall mass of the structures subsystem. The power

subsystem technology is high capacity energy storage devices which reduce the size

and mass of batteries in the power subsystem. The thermal subsystem technology is

194

active cryocooling which mitigates propellant loss at the cost of additional hardware

mass and power requirements. Finally, the avionics subsystem technology is wireless

sensors which reduce the need for physical cabling, reducing the overall mass of the

subsystem. These technologies are summarized in Table 25.

Table 25: Proof of Concept Technology Space Options

Category Options

Wireless Sensors TRUE FALSE

Low Leak Valves TRUE FALSE

High Capacity Energy Storage TRUE FALSE

Composite Structures TRUE FALSE

Composite Propellant Tanks TRUE FALSE

Integrated MPS/RCS Propellant Storage TRUE FALSE

Autogenous Pressurization TRUE FALSE

Active Cryocooling TRUE FALSE

Each technology has only two options for its activation state on the architecture,

either True or False. The performance of a given technology is considered to be static,

meaning there is no variability in the performance of a given technology. Similar to

the vehicle options, because schedule is of little importance in this study, it will be

assumed that development of any applied technologies are complete by the 2033 flyby

date. No analysis shall be performed on development time of technologies. The

assumptions made throughout the architecture and technology spaces will maintain

a manageable number of total alternatives to be evaluated in this proof of concept

study.

5.3.3 Step 3: Identify Modeling and Simulation Environment(s)

As was discussed in Chapter 4, no tool exists for the purpose of performing subsystem-

level analysis of architectures and technologies in the space transportation domain.

As such, the developed tool, DYREQT, and the various models described through-

out Chapter 4 shall be utilized as the modeling and simulation environment for this

195

proof of concept. Cost values will be estimated based on the implementation of the

TransCost 7.1 model discussed in Section 4.5.3.6. To reiterate, this cost model is a

historical mass-based costing model. Both development and production cost are esti-

mated based on mass and specific architecture options. The infusion of technologies

is also included in the costing of the design. However, all technologies incur the same

cost penalty. Additionally, the time, cost, and risk associated with infusing multiple

technologies simultaneously is not considered. The resulting digital test bed utilized

for this proof of concept is of similar form as that developed for the experimentation

of this dissertation, described in Section 5.1.1. The primary differences between the

two are in the definition of a scoped architecture space for this proof of concept, along

with a more broad set of technology combinations evaluated, and a different set of

figures of merit in the objective space.

5.3.3.1 Design Space

Sizing is performed over six vehicle subsystems: engines, tanks, structures, power,

thermal, and avionics. These six subsystem models are integrated with DYREQT to

provide mass, power, and heat load estimates for each subsystem of each stage, as well

as total burnout and propellant masses for each stage. Cost data is estimated using

the TransCost 7.1 historical weights-based cost estimation model. The cost model

utilizes outputs from DYREQT to estimate the development, production, and gross

cost of each stage and the entire vehicle. The design space consists of the collection

of outputs from DYREQT and the cost model. The tables in Appendix C provide a

list and description of the various inputs to the design space.

5.3.4 Step 4: Map System Spaces

The modeling environment identified in step three resides within the design space.

The architecture and technology spaces identified in step two feed the inputs required

by the design space. The outputs of the design space supply metrics to the figures

196

of merit in the objective space. Figure 76 provides a graphical overview of these

mappings.

Design Space

Mission

Vehicle

DYREQT

Cost

O
bj

ec
tiv

e
Sp

ac
e

Ar
ch

ite
ct

ur
e

Sp
ac

e
Te

ch
no

lo
gy

 S
pa

ce

Figure 76: Proof of Concept Spaces Mappings

The architecture and technology space categories are mapped to specific design

space parameters, shown in Table 26 and Table 27 respectively. A description of

the design space parameters and default input values can be found in Appendix C.

The number of vehicle stages and architecture contains has overarching effects on the

number of events, event sequencing and CONOPs, as well as the total number of

vehicle elements defined. For instance, a vehicle with only one stage will have fewer

events related to dropping of spent stages compared to a three-stage vehicle. Simi-

larly, the MPS class architecture category affects the mission event sequencing and

element subsystem composition. Particularly, the nuclear MPS class option consists

of drop tank and in line tank configurations which warrant special treatment in the

197

Table 26: Architecture Space Parameter To Design Space Attribute Mappings

Architecture Space Parameter Design Space Attribute(s)

Vehicle

Number of Stages event list, element list

Stage(s)

MPS Class event list, start penalty mps, total thrust mps,
engine thrust mps

MPS Propellant isp mps, mixture ratio mps

RCS Propellant isp rcs, mixture ratio rcs

Tank Configuration num fuel tanks mps, num ox tanks mps

Power System generator type

MLI Layers mli layers mps, mli layers rcs

Table 27: Technology Space Parameter To Design Space Attribute Mappings

Technology Space Parameter Design Space Attribute(s)

Wireless Sensors wireless sensors

Low Leak Valves start penalty mps, start penalty rcs

High Capacity Energy Storage storage specific energy

Composite Structures composite

Composite Propellant Tanks composite fuel tanks mps,
composite ox tanks mps,
composite fuel tanks rcs,
composite ox tanks rcs

Integrated MPS/RCS Propellant
Storage

ivfm

Autogenous Pressurization pressurant

Active Cryocooling active cooling mps, active cooling rcs

mission event sequencing and CONOPs. For the purposes of maintaining a manage-

able number of total cases to be evaluated, fixed values were assigned to the design

space parameters for each of the architecture and technology space options. However,

the values do not have to be fixed and may take on continuous ranges where appli-

cable. For instance, to study the effects of technologies and subsystem performance,

architecture and technology space options may be mapped to continuous design space

parameters to account for performance uncertainties. Appendix D.3 and Appendix

D.4 are the default mission and vehicle inputs to DYREQT within the design space.

198

Table 28: Objective-Design Space Mappings

Objective Space Metric Design Space Attribute(s)

Number of Launches num stages, total payload,
element(#) gross mass,
element(#) burnout mass

Architecture Gross Mass vehicle gross mass

Gross Vehicle PMF element(#) gross mass,
element(#) propellant mass mps,
element(#) propellant mass rcs

Gross Vehicle Cost vehicle gross cost

Technological Complexity element0 mps start penalty,
element0 storage specific energy,
element0 composites,
element0 composite fuel tanks mps,
element0 ivfm, element0 pressurant,
element0 active cooling mps,
element0 wireless sensors

For unmapped design space parameters, these values are the defaults utilized during

analysis. For mapped design space attributes, values are determined based on the

options selected from the architecture and technology spaces. The values associated

with these options can be found in Table 33 through Table 53 in Appendix C.

The objective space metrics are mapped to at least one of the design space pa-

rameters. Table 28 shows the mapping of each objective space metric to the design

space. Entries with the # symbol denote multiple stage elements dependent on the

selections in the architecture space defining the number of vehicle stages. For the

number of launches objective space metric, assumptions regarding the launch vehicle

capability are used along with the design space parameters to estimate the objective

value. Technology complexity is a factor dependent on the number of active tech-

nologies. It is assumed that when a technology is active, it is applied everywhere on

the vehicle where applicable. Because all architecture alternatives contain at least

one stage, only the first stage design space parameters are utilized in determining the

technology complexity metric. Technological complexity for this study is defined as

199

an integer representing the total number of technologies utilized by a given design al-

ternative. The higher the number of utilized technologies, the higher the technological

complexity.

5.3.5 Step 5: Evaluate Cases

Because the architecture and technology space options are mapped to fixed values

of the design space parameters, a full factorial DOE is performed over the combined

architecture and technology space with no need for additional DOEs due to continuous

architecture and technology space options. This results in a total of 486 architectures

and 256 different sets of technologies which may be applied to those architectures,

resulting in a total of 124,416 alternatives. Utilizing an Intel R© CoreTM i7-4810MQ at

2.80 GHz, the average case evaluation time was on the order of 1.5 seconds requiring

2.16 days of processing time. Utilizing seven processing threads resulted in about

7.5 hours of wall clock analysis time. These statistics show how parallelization of

the modeling and simulation environment can drastically improve the throughput of

alternatives as the total number of alternatives grows due to combinatorial explosion.

A modeling and simulation environment capable of parallelization, such as DYREQT,

coupled with access to high-performance computing clusters, results in the ability to

evaluate very large alternative spaces in the relatively short periods of time typically

available during the conceptual design phases.

5.3.6 Step 6: Analyze Results

The initial set of alternatives consisted of a mostly even mix of alternatives grouped by

main propulsion system propellant type. Liquid hydrogen monopropellant-based al-

ternatives were only compatible with nuclear-based alternatives resulting in its under

representation in the objective spaces, as seen in Figure 77. The analysis results were

filtered to limit total architecture mass to less than 200,000 kg to remove outlier de-

signs which skew distributions during analysis. Also, designs which contain elements

200

which are not capable of being launched on the 54 MT launch vehicle limit were

omitted from the final analysis of results. These criteria reduced the total number

of alternatives from 124,416 to 95,127. Figure 78 shows the resulting distributions

of invalid alternatives by main propulsion system propellant type, while Figure 79

shows the valid alternatives distribution. These two figures show the disproportion-

ate level of cryogenic propellant based alternatives which are deemed invalid for this

study. For liquid bipropellant alternatives, this is likely due to very large propellant

mass requirements as a result of propellant boiloff during the 1125 day long mis-

sion. LH2-based alternatives represent a large portion of invalid alternatives despite

their relatively low representation in the original objective space due to both propel-

lant boiloff and increased burnout mass of nuclear propulsion systems utilizing this

propellant type.

Making a final decision is typically aided by the implementation of formal decision

making techniques. The IntegrATE framework provides no single recommendation

for choosing a decision making technique. Due to its simplicity, TOPSIS was em-

ployed to evaluate the multi-objective space utilizing customer weights identified in

step one. Only alternatives which exist on the Pareto front of the five-dimensional

objective space were evaluated using TOPSIS. The distribution of architecture alter-

natives by main propulsion system propellant type are shown by Figure 80. Liquid

oxygen/liquid methane propellant based architectures make up a significant portion

of the Pareto front. This is a result of the increased propulsion performance of engines

utilizing this propellant compared to storable options, while having better properties

for long duration storage compared to liquid hydrogen based architectures. Despite

this majority, results from the TOPSIS analysis yield a single stage liquid storable ar-

chitecture as the highest ranked design among the 197 alternatives which exist on the

Pareto front. The alternative has a very low technological complexity. This coupled

201

with a low stage count and non-cryogenic propulsion results in a very low cost-to-

performance ratio making the alternative highly attractive for the objective weights

stated during problem formulation. However, the weighting values can be adjusted to

observe how the top ranked alternative changes. For instance, if there is a lower em-

phasis on minimizing the technological complexity and cost, three-stage nuclear-based

alternatives become highly attractive due to their very high performance compared to

liquid bipropellant architectures. Alternatively, liquid cryogenic bipropellant based

architectures become particularly attractive when increased performance is desired

while limiting the technological complexity.

For the 197 alternatives which exist on the Pareto front of the objective space,

the utilization of the eight technologies in the technology space is shown by Figure

81. Autogenous pressurization is utilized by nearly one quarter of all alternatives

on the Pareto front, making it the most utilized technology among these designs.

Composite tanks and structures are also highly utilized among the alternatives on

the Pareto front. However, active cryocooling has a relatively low utilization given

the fact that the majority of alternatives on the Pareto front are cryogenic propellant

based designs. This is likely a result of the boiloff rates being estimated in the model.

The estimated propellant loss rate may be low enough that the total mass savings

resulting from active cryocooling are not as significant as the mass savings by elim-

inating the propellant tank pressurization components in autogenous pressurization.

Active cryocooling technologies typically have a large impact on other subsystems

such as power, resulting in mass growth which offsets the propellant mass savings.

Conversely, autogenous pressurization does not incur a large growth in subsystem

masses, potentially making it a more advantageous technology to pursue.

However, IntegrATE enables greater exploration of the objective space compared

to traditional architecture analysis and technology evaluation techniques and methods

by integrating technology evaluation and architecture analysis at subsystem levels.

202

FRQFHSWBSUREBGDWD���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

��

���

���

���

���

���

���

���

���

���

����

�
�R
I�2

EM
HF
WLY

H�
6S

DF
H

���

���

��� ��� ���

K\GUD]LQH OK� OR[�OFK� OR[�OK� QWR�PPK

036�3URSHOODQWV

Figure 77: Proof of Concept Prob-
lem Full Objective Space Distribution by
Main Propulsion System Propellant Type

FRQFHSWBSUREBGDWD���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

��

���

���

���

���

���

���

���

���

���

����

�
�R
I�,
QY

DO
LG
�$
OWH

UQ
DW
LY
HV

��

���
���

���

��

K\GUD]LQH OK� OR[�OFK� OR[�OK� QWR�PPK

036�3URSHOODQWV

Figure 78: Proof of Concept Problem In-
valid Alternatives Distribution by Main
Propulsion System Propellant Type

FRQFHSWBSUREBGDWD���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

��

���

���

���

���

���

���

���

���

���

����

�
�R
I�9

DO
LG
�$
OWH

UQ
DW
LY
HV

���

��

��� ���
���

K\GUD]LQH OK� OR[�OFK� OR[�OK� QWR�PPK

036�3URSHOODQWV

Figure 79: Proof of Concept Problem
Valid Alternatives Distribution by Main
Propulsion System Propellant Type

6XEVHW�RI�FRQFHSWBSUREBGDWD���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

��

���

���

���

���

���

���

���

���

���

����

�
�R
I�3

DU
HW
R�
)U
RQ

W

��� ��

���

��� ���

K\GUD]LQH OK� OR[�OFK� OR[�OK� QWR�PPK

036�3URSHOODQWV

Figure 80: Proof of Concept Problem
Pareto Front Alternatives Distribution by
Main Propulsion System Propellant Type

203

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%
24%
26%

%
 A

lte
rn

at
iv

e
U

til
iza

tio
n

Figure 81: Proof of Concept Problem Technology Utilization on the Pareto Front

When the architecture space is defined at the subsystem level, it allows high-level

objectives to be viewed in various ways allowing new information to be obtained

linking these high-level objectives to subsystem options. For instance, when observing

the distribution of architecture cost over the entire objective space, it is difficult to

reach conclusions about how cost is affected by various criteria. However, grouping

the objective space by both the basic propellant type and number of vehicle stages,

trends in cost become immediately evident. Figure 5.3.6 shows the distributions of

architecture cost for the entire objective space on the left, as well as six groups of

alternatives by grouping them by either storable or cryogenic propellant options and

the number of stages in the vehicle. Just observing the overall distribution on the left,

it is evident that there are some trends driving the response of cost. By observing

the distributions for the six groups, one can see how these options shift the cost of

204

alternatives to form the overall objective space distribution.

Similarly, the number of launches objective can be observed for various alternative

grouping criteria. Figure 5.3.6 groups architectures by number of stages, main propul-

sion system class, and technological complexity. Observation of the distribution of

the number of launches for these architectures reveals trends which may be useful

to decision makers. For instance, the number of vehicle stages has an effect on the

number of launches, but not necessarily in the way one would expect. It is generally

known that increasing the number of stages may increase performance by allowing

the architecture to shed excess mass during the mission resulting in reduced mass.

However, a lower number of vehicle stages shows a reduction in earth to orbit number

of launches for the given architecture. This is likely due to the fact that there is a

greater total burnout mass of vehicle elements which may not be packaged as well in

a launch vehicle. The number of launches assumes that the burnout mass of a vehicle

element must fit within the 54 MT launch vehicle limit, but the propellant mass may

be distributed among other launch vehicles. This allows relatively efficient packing

of total architecture mass compared to having multiple vehicle elements which must

be packaged in launch vehicles, as well as their propellant. Obviously, if one assumes

the propellant must be preloaded in the vehicle element, then this trend will change

dramatically. Nuclear based-architectures also exhibit a reduced number of launches

compared to liquid-based alternatives. Though nuclear architectures typically have a

much greater burnout mass compared to liquid-based alternatives, the much greater

efficiency of nuclear propellant alternatives resulting in reduced propellant mass leads

to overall less inert mass to position in orbit, requiring fewer Earth to orbit launch

vehicles. Finally, technologies have a strong impact on reducing the overall number

of launches required for an architecture. By utilizing more technologies, resulting in

a high technological complexity, the gross architecture mass decreases dramatically

205

1
St

ag
e

2
St

ag
e

3
St

ag
e

1
St

ag
e

2
St

ag
e

3
St

ag
e

St
or

ab
le

 P
ro

pe
lla

nt
Cr

yo
ge

ni
c

Pr
op

el
la

nt

Gross Vehicle Cost (Myr) F
ig

u
re

8
2
:

P
ro

of
of

C
on

ce
p
t

P
ro

b
le

m
A

rc
h
it

ec
tu

re
C

os
t

D
is

tr
ib

u
ti

on
s

ve
rs

u
s

P
ro

p
el

la
n
t

T
y
p

e
an

d
N

u
m

b
er

of
S
ta

ge
s

206

which in turn reduces the total number of launches required. Though the distribu-

tions in Figure 5.3.6 would suggest a highly technical single stage nuclear vehicle for

minimizing the total number of launches, the launch vehicle payload constraint of

54 MT would likely limit this choice, as single stage nuclear-based architectures will

exhibit large burnout masses which do not fit within the 54 MT constraint.

IntegrATE enables new information to be observed with regard to how technolo-

gies impact architecture design by including technologies in the initial phases of design

before down-selection of alternatives. Figure 84 shows the relationship between total

architecture cost versus technological complexity. Infusing technologies has an initial

negative impact on overall architecture cost. However, as technological complexity is

increased by infusing more technologies, the average cost of alternatives begins to de-

cline. This is counterintuitive to traditional thinking, but can be explained logically.

By only utilizing a few technologies, the overall mass savings for a given design does

not offset the cost of infusing the technologies, but as more technologies are infused,

the reduction in the overall mass of the design begins to outweigh the cost of infusing

additional technologies resulting in a net cost reduction. This trend is likely a result

of a purely mass-based cost estimating model used in the study. Utilizing other cost

models would likely result in very different observations in mean architecture cost.

Figure 85 and Figure 86 show trends which are generally expected. The mean

gross mass, and as a result, the mean number of launches reduces as technological

complexity increases. Both appear to exhibit relatively linear trends. Figure 87 shows

the trend in mean propellant mass fraction with technological complexity. The ob-

served trend again seems counterintuitive. Typically, higher propellant mass fractions

indicate a better design with greater performance because there is less burnout mass

for a given amount of propellant. However, the trends show the opposite. As the

number of technologies utilized is increased, indicated by an increasing technological

complexity, the mean propellant mass fraction of designs decreases. This is due to

207

1
St

ag
e

2
St

ag
e

3
St

ag
e

Li
qu

id
N

uc
le

ar
Lo

w
 Te

ch
Hi

gh
 T

ec
h

Number of Launches

F
ig

u
re

8
3
:

P
ro

of
of

C
on

ce
p
t

P
ro

b
le

m
N

u
m

b
er

of
L

au
n
ch

es
D

is
tr

ib
u
ti

on
s

ve
rs

u
s

S
el

ec
t

A
rc

h
it

ec
tu

re
O

p
ti

on
s

208

two possibilities:

1. The selected technologies lead to a burnout mass growth resulting in reduced

performance measured by the PMF.

2. Technologies in general reduce the overall burnout mass of architecture alterna-

tives which in turn will result in decreased propellant masses. However, for the

fixed Mars fly by mission being studied, the total propellant mass reduces faster

than the burnout mass resulting in decreased vehicle propellant mass fractions

overall.

However, measuring performance of an architecture or technology only by propellant

mass fraction can lead to improper conclusions regarding optimal designs. Despite

reduced propellant mass fraction values, technologies have a net positive impact on

architectures, as indicated by reduced gross vehicle masses and number of launches.

Although the overall mean gross mass of design alternatives appears to reduce

linearly with increasing technological complexity, this observation may not hold for

specific groups in the architecture space. Figure 88 shows the reduction in mean gross

mass versus technological complexity for two groups of vehicles, liquid-based propul-

sion systems and nuclear-based propulsion systems. The liquid-based alternatives

follow a similar trend to that seen in Figure 85. However, nuclear-based alternatives

have a highly nonlinear trend. This indicates that technologies have dramatically

different impacts on different alternatives from the architecture space. Here, just a

few technologies have the ability to drastically reduce the gross mass of nuclear-based

alternatives. This highly nonlinear trend indicates that there are strong interactions

between technologies which affect nuclear-based alternatives more than liquid-based

alternatives. The fact that the liquid-based alternatives exhibit a trend similar to

that seen in Figure 85 of all alternatives is likely due to the fact that liquid-based

alternatives account for a much larger portion of the total number of architecture

209

60000.00

62000.00

64000.00

66000.00

68000.00

70000.00

72000.00

74000.00

76000.00

78000.00

80000.00

0 1 2 3 4 5 6 7 8

M
ea

n
Co

st
 (M

Yr
)

Technological Complexity

Figure 84: Proof of Concept Problem
Mean Cost of All Alternatives with Tech-
nological Complexity

115.00

120.00

125.00

130.00

135.00

140.00

145.00

0 1 2 3 4 5 6 7 8

M
ea

n
Gr

os
s

M
as

s(
M

T)

Technological Complexity

Figure 85: Proof of Concept Problem
Mean Gross Mass of All Alternatives with
Technological Complexity

3.45

3.50

3.55

3.60

3.65

3.70

3.75

3.80

3.85

3.90

3.95

0 1 2 3 4 5 6 7 8

M
ea

n
N

um
be

r o
f L

au
nc

he
s

Technological Complexity

Figure 86: Proof of Concept Problem
Mean Number of Launches of All Alter-
natives with Technological Complexity

0.8300

0.8400

0.8500

0.8600

0.8700

0.8800

0.8900

0.9000

0 1 2 3 4 5 6 7 8

M
ea

n
PM

F

Technological Complexity

Figure 87: Proof of Concept Problem
Mean PMF of All Alternatives with Tech-
nological Complexity

210

100

110

120

130

140

150

160

170

180

190

0 1 2 3 4 5 6 7 8

M
ea

n
 G

ro
ss

 M
as

s(
M

T)

Technological Complexity

Liquid Bipropellant Nuclear

Figure 88: Proof of Concept Problem Variation in Mean Gross Mass with Techno-
logical Complexity of Two Distinct Vehicle Groups

alternatives.

Further observations of the performance of individual technologies can be observed

across the entire set of alternatives and all objective space metrics. Table 29 shows

the shift in the mean of each objective space metric between the set of alternatives

utilizing no technologies and the sets of alternatives with each individual technol-

ogy utilized. The first observation is with regard to active cryocooling, which has the

greatest reduction in mean architecture gross mass. This technology is also associated

with the highest shift in the mean cost. This is due to active cryocooling having a

very large power requirement, impacting the power subsystem substantially. The to-

tal burnout mass of these designs is typically higher, resulting in increased propellant

mass fractions, and because the cost model employed is mass-based, cost increases as

well. However, the technology also drastically reduces propellant requirements, off-

setting the increased burnout mass, resulting in a net reduction in gross mass. This

is seen by the reduction in propellant mass fraction of these alternatives. Conversely,

211

autogenous pressurization provides a much smaller performance gain compared to

active cryocooling, but also results in a net cost saving compared to increased cost

due to active cryocooling. The cost savings is a result of the removal of pressur-

ization tanks in the burnout mass of these designs which is then offset by increased

propellant loads, seen by an overall increase in propellant mass fractions of these

alternatives. It is because of its cost savings combined with slight mass savings that

autogenous pressurization was shown to be a highly-ranked technology during the

initial TOPSIS analysis, while active cryocooling was ranked relatively low despite

its high effectiveness at reducing mass and number of launches but at a great cost

penalty. Integrated main propulsion system and reaction control system propellant

was observed to be highly ineffective. It simultaneously increases cost and mass due

to the addition of hardware at little to no savings by removing hardware associated

with separate systems. These observations show that the performance of a technol-

ogy needs to be considered at the higher architecture level. Traditionally, technologies

are considered at the subsystem level, independent of the higher architecture level.

Ignoring this connection would show certain technologies having negative impacts at

the subsystem level, resulting in improper technology selection. Utilizing IntegrATE

provides evidence for the importance of evaluating technologies at the architecture

level as opposed to only the subsystem level.

Table 29: Shift in Objective Metric Means Due to Technologies
Mean Shift

Description
Cost

(MYr)
Mass
(kg) PMF Launches

Low Leak Valves -3131.84 -266.51 -0.0001 -0.01
High Capacity Batteries 8174.16 -332.31 0.0009 0.00
Composite Structures 7488.31 -1475.84 0.0038 -0.01
Composite Tanks 7886.46 -962.96 0.0027 -0.01
Integrated MPS/RCS 9469.97 2417.35 -0.0078 0.03
Autogenous Pressurization -2522.74 -2136.48 0.0043 -0.06
Active Cryocooling 24912.64 -12323.25 -0.0733 -0.23
Wireless Sensors 8508.78 -42.97 0.0001 0.00

212

Obviously, these observations are just a select few. Certain binning criteria, such

as by main propulsion system propellant type, technology complexity, and number

of vehicle stages, were selected to bring out specific observations regarding these de-

sign choices. Selecting different binning criteria may lead to alternate conclusions

compared to those presented in this section. IntegrATE enables a wide variety of ob-

servations to be made by integrating architecture analysis and technology evaluation

at the subsystem level. It improves early knowledge with regard to the interaction

between the architectures and technologies available to prevent improper design down-

selection during the conceptual design phases. Additionally, the level of observations

is determined by the objective space metrics defined during problem formulation.

This conceptual study utilized several high-level architecture design metrics such as

number of launches, gross architecture mass, and gross cost. However, studies of

subsystem interactions and technology effects on vehicle subsystems across many al-

ternatives could be performed as well by defining objective metrics during problem

formulation and corresponding design space outputs to evaluate the objective metrics.

This study was primarily focused on high-level effects of technologies on the architec-

ture space. Also, the effectiveness of a given technology was not studied, but is well

within the capability of the IntegrATE framework. Overall, without utilizing Inte-

grATE, improper conclusions regarding the optimal architecture for the mission would

be reached. Additionally, without utilizing IntegrATE, the effects of technologies on

the architecture design would not be fully understood. Observation of reduced PMF

with certain technologies would traditionally indicate a poor-performing technology.

However, IntegrATE allows the causes of this trend to be observed, leading to new

conclusions regarding technology performance when traced to high-level architecture

objectives.

213

CHAPTER VI

CONCLUSIONS

Traditional design methods for complex systems of systems, such as the design of space

transportation architectures, has historically relied heavily on subject matter experts

during the early phases of design to scope the initial problem to a small set of designs

which then become the basis for technology evaluation. However, ever-changing cus-

tomer requirements and shifting political interests create a lack of understanding and

knowledge of the design space, leading to potential cost and schedule overruns due

to frequent design changes and combinatorial explosion of alternatives in the design

space. These observations led to the primary research objective:

Research Objective

To integrate architecture analysis and technology evaluation at the sub-

system level to provide a quantitative framework in an effort to increase

design knowledge early in the design process.

To integrate architecture analysis and technology evaluation at the subsystem

level, several questions and hypotheses were posed during a discussion of a general

concept exploration process to guide the development of a new framework. However,

in order to test these hypotheses, a digital test bed capable of performing integrated

architecture analysis and technology evaluation at the subsystem level had to be se-

lected. No tools were identified within the space transportation community which met

this requirement. As a result, the Dynamic Rocket Equation Tool (DYREQT) and a

collection of subsystem-level in-space transportation models were developed to pro-

vide a modeling and simulation environment capable of producing the necessary data

214

for experimentation. DYREQT provides the capability to integrate user-developed

subsystem models in a tool developed for space transportation architecture analysis

and design.

The first research question aimed to establish the relationship between architec-

ture and technologies as defined by this dissertation. Once established, a technique

for decomposing a problem was selected which met the needs of subsystem-level in-

tegrated architectures and technologies. Research question two further guided the

decomposition and definition of a problem by examining the figures of merit which

should guide technology evaluations. It was determined that, due to the relationship

between technologies and architectures established by research question one, similar

figures of merit should be utilized for evaluating technologies.

The third research question considered the validity of the traditional paradigm of

design down-selection prior to technology evaluation for systems of systems problems.

Experiment one concluded that technologies can have profound impacts on specific

subsets of architecture alternatives which may have otherwise been down-selected

under traditional processes. These results warrant a shift in the paradigm by in-

corporating technology evaluation prior to architecture down-selection. However, it

was recognized that this solution only exacerbates the already problematic concept

of combinatorial explosion which exists in systems of systems design problems. As

such, the remainder of the questions focused on how results from such large sets of

alternatives should be explored.

Research question five focused on examining the effects of exploring results of

architecture analysis and technology evaluation from two primary viewpoints: indi-

vidual alternatives and groups, or portfolios, of alternatives. Experiment two focused

on exploring the individual alternative representation of results. It was determined

that very small subsets will provide inaccurate representation of the true objective

space. However, subsets of the results which are still relatively small in relation to

215

the full objective space may provide adequate representation for observing high-level

design decisions. Conversely, experiment three focused on examining the grouping

criteria for forming portfolios of designs and how they affect the observations in the

results. The original hypothesis that portfolio-level metrics are related to portfolio

size was proven incorrect, but it was shown that these portfolio metrics are more di-

rectly influenced by the options in the architecture and technology spaces. The final

experiment focused on determining if grouping sets of alternatives into portfolios has

the potential to obscure the true optimal design. It was shown that these optimal

individual designs may become obscured within suboptimal portfolios, supporting a

broad exploration of the objective space considering both individual and portfolio

viewpoints. The final research question examined the trends in figures of merit uti-

lized throughout the experiments of this dissertation to make a conjecture regarding

the need for additional summary metrics when evaluating results from a portfolio

viewpoint.

These questions and their results helped guide the development of IntegrATE, a

new framework for the purpose of integrating architecture analysis and technology

evaluation at the subsystem level. IntegrATE is an initial point of departure from

traditional architecture design and technology evaluation methods aimed at increas-

ing knowledge during the conceptual design phase through the study of interactions

between architectures and technologies. The IntegrATE framework does this by al-

lowing large numbers of architecture alternatives and technologies to be evaluated

concurrently, before down-selection, to allow decisions makers to fully explore sys-

tems of systems design spaces. This does however only exacerbate the combinatorial

problem already present in the design of complex systems of system. Issues such

as these are why IntegrATE is classified as a framework, as opposed to a method,

indicating an initial step which warrants further study and development.

To clearly demonstrate the new framework and provide solid evidence for the

216

benefits it provides over traditional architecture analysis and technology evaluation

methods, a notional manned Mars 2033 design study was performed utilizing Inte-

grATE and DYREQT. The study showed how various grouping criteria can help to

highlight trends at the architecture level, both due to architecture design options and

technologies. Additionally, it was shown that IntegrATE allows technologies to be

evaluated from a high-level architecture perspective, as opposed to focusing only at

the subsystem level a technology interacts with. Traditional figures of merit for eval-

uating the impact of individual technologies, such as PMF, were shown to provide

false negative performances when viewed at the subsystem level, despite having a net

positive impact on high-level architecture performance metrics which are typically

used for evaluating and selecting space transportation designs.

6.1 Summary of Contributions

This body of research has produced several new capabilities and advancements in

the field of complex system of systems design and technology evaluation, specifically

in the space architecting communities. As a result of formulating a new, integrated,

approach to architecture design and technology evaluation, the IntegrATE framework

was established as a point of departure from traditional system of systems design and

technology evaluation methods to guide future development. Through the develop-

ment of this framework, a new subsystem-level space architecture analysis tool, along

with associated subsystem models, were developed.

The flexibility of the IntegrATE framework allows a wide variety of techniques

to be employed such that the process of problem formulation and decision making

may be tailored to the specific problem and customer requirements. The framework

helps to disarm concerns regarding architecture and technology biases by providing

a highly transparent framework for evaluation and exploration. Due to the high-

level, integrated nature of the framework, the process will help to eliminate bias in

217

the technologies and architectures represented within a problem, as this architect

should represent a neutral party with no particular bias for specific architectures or

technologies. Rather, he should be primarily interested in providing a broad repre-

sentation for the problem being studied. The largest shift the IntegrATE framework

makes is with regard to the traditional paradigm of design down selection before

technology evaluation. Rather, IntegrATE brings technology evaluations into the

conceptual design process alongside physical architecture design and analysis. The

purpose for this shift is due to the potential that technologies have to dramatically

shift the composition of the objective space, which under traditional methods may

result in designs being overlooked as suboptimal during traditional design down se-

lection. This is performed through the utilization of a modified set theory system

decomposition technique which includes the addition of a technology space which

affect design attributes through system space mappings.

Exploring results individually has the advantage of allowing clear decisions with

regard to optimal designs to be made. However, by integrating architecture design

and technology evaluation, the resulting objective space becomes extremely large and

may be difficult to analyze. Traditional methods and techniques typically employ

some form of grouping designs together to simplify the analysis of results. However,

there has been little study into how these groupings may affect the results observed.

Typically, groupings are formed based on the particular study being performed. Dur-

ing the formulation of the IntegrATE framework, multiple experiments focused on

better understanding how these grouping criteria may affect the results analysis pro-

cess to guide future methodology development.

In order to perform the necessary experiments to formulate the IntegrATE frame-

work in the domain of space architecture design, new tools and models were required.

Traditional modeling tools in this field typically rely on high-level models which do

not allow subsystem-level trades or technologies to be introduced. Tools developed

218

which utilize subsystem-level models are typically highly integrated and difficult to

introduce user-defined models or parameters to account for the effects due to technol-

ogy integration. These shortcomings led to the development of the Dynamic Rocket

Equation Tool (DYREQT), a multi-discipline design, analysis, and optimization tool

to aid in the integration of subsystem-level models for the purpose of space architec-

ture design and analysis. This in turn allows subsystem-level technology integration

such that technology impacts may be observed at the architecture level during the

conceptual design phases.

6.2 Recommendations for Future Work

Frequent design changes and combinatorial explosion of the design space are two of

the primary factors which lead to lack of knowledge of the design space, leading to cost

and schedule overruns. This research has focused primarily on the lack of knowledge

due to frequent design changes by bringing as much information about architecture

design and technology evaluation into the conceptual design phases. However, this

only works to exacerbate the combinatorial explosion which exists in typical system

of systems problems. Additional research needs to focus on ways of handling com-

binatorial explosion. Historically, the most efficient way of reducing combinatorial

explosion was to utilize subject matter experts to reduce the design space to a man-

ageable region. To combat the growing uncertainties which exist in conceptual design

of systems of systems, this down-selected design region is being opened up at the cost

of analysis effort. Fortunately, advancements in computational capability enable large

regions of the design space to be studied. However, this increase in computational

capability is outweighed by the issue of combinatorial explosion as the design space

is opened up. New techniques need to be developed and studied which allow the

broader design space to be considered while managing the growth in combinatorial

explosion in an effort to align computational effort with computational capabilities.

219

This challenge is out of scope for the IntegrATE framework. IntegrATE incorporates

a step to scope the various trade spaces to manageable sizes before moving forward

with analysis, much like current down selection processes in current methods.

Additionally, further work is required to develop the IntegrATE framework into

a full methodology. This requires more study into the application of specific tech-

niques and tools to fulfill specific tasks within the framework. Up to this point, a

full study of available techniques for each phase of the framework has not been per-

formed. Rather, single, appropriate techniques and tools which provided the essential

capabilities to meet the primary research objective of this body of work were selected,

with little study of competing techniques and tools. For instance, Set Theory Sys-

tem Decomposition was selected as a means for decomposing the problem in a way

suitable for integrating technology analysis and architecture design at a subsystem

level. However, other decomposition methods may be better suited to the task of de-

composing these complex systems of systems. The integration of certain model-based

system engineering techniques and paradigms is highly applicable to the system of

systems nature posed by architecture design and technology evaluation. The inte-

gration of these techniques and their ability to clearly define and relate system of

systems requirements, design, and analysis can prove valuable throughout the devel-

opment of new methods based on the IntegrATE framework. The experiments in this

dissertation provide insight into analyzing the complex objective spaces which result

from integrated architecture analysis and technology evaluation. By observing how

the objective space of subsets or groups of design are affected by such parameters as

subset size and grouping criteria, new techniques and procedures may be developed

for processing evaluated results. However, further research into potential data anal-

ysis techniques may aid in implementing findings from this study to better explore

these complex objective spaces. Finally, no consideration was given to implementing

technology uncertainty into IntegrATE. There is no limitation inherent to IntegrATE

220

which prevents uncertainties from being considered. It was simply outside of the

scope of this body of work. However, technology uncertainty is an important part of

the selection process and should be an integral part of a fully-developed, integrated

architecture analysis and technology evaluation methodology.

Development of the IntegrATE design framework required the development of a

multi-discipline design, analysis, and optimization tool due to a gap in current analy-

sis capabilities. The development of the Dynamic Rocket Equation Tool (DYREQT)

is a valuable step forward for an end-to-end analysis capability for complex space

architectures. The tool provides the ability to integrate various user-developed mod-

els in an environment specifically tailored for the space architecture design domain.

However, further effort is required to integrate high fidelity trajectory modeling tools

into DYREQT to provide more detailed and automated mission modeling. In addi-

tion to increasing the fidelity and integration of trajectory optimization with vehicle

sizing, further research into the implementation of collaborative optimization may

help to increase computational capability by increasing analysis performance for the

large systems of systems problems formulated using DYREQT.

221

APPENDIX A

EXAMPLE DYREQT SETUP

Note: the models used in this notional example are not provided in this document,
as this is here for the purpose of demonstrating the basic problem input structure,
DYREQT setup, and evaluation initiation. The actual calculations are irrelevant.

append DYREQT directory to path so it can be imported

import os,sys

from copy import deepcopy

sys.path.append(os.path.join(os.getcwd(),".."))

import DYREQT classes

from Problems import DYREQTProblem

import other packages

import sqlitedict

import numpy as np

set numpy array printing

np.set_printoptions(threshold=np.nan)

######################

SETUP INPUTS

######################

vehicle input

sub0 = {'subelement_type':'PMFCom',

'params':{'pmf':0.6,

'mps_isp':{'val':300.0,'units':'s'},

'rcs_isp':{'val':250.0,'units':'s'}}}

sub2 = {'subelement_type':'FixedStage',

'params':{'mass':{'val':98.0,'units':'kg'},

'mps_isp':{'val':298.0,'units':'s'}}}

sub3 = {'subelement_type':'FixedMass',

'params':{'mass':{'val':1000.0,'units':'kg'}}}

Booster1 = {'element_type':'Stage','subelement_list':[sub0],

'params':{'auto_drop':False}}

Booster2 = {'element_type':'Stage','subelement_list':[deepcopy(sub0)],

'params':{'auto_drop':False}}

Lander = {'element_type':'Stage','subelement_list':[deepcopy(sub0)],

'params':{'auto_drop':False}}

Kick = {'element_type':'Stage','subelement_list':[sub2],

'params':{'auto_drop':False}}

Payload1 = {'element_type':'Payload','subelement_list':[sub3],

'params':{'auto_drop':False}}

element_list = [Booster1,Booster2,Kick,Lander,Payload1]

vehicle = {'element_list':element_list}

mission input

event0 = {'event_type':'Drop','params':{}}

event1 = {'event_type':'Burn',

'params':{'dv':{'val':1500.0,'units':'m/s'}}}

event2 = {'event_type':'Drop','params':{}}

event3 = {'event_type':'Burn',

'params':{'dv':{'val':42.5,'units':'m/s'},

'system':'rcs'}}

event4 = {'event_type':'Burn',

'params':{'dv':{'val':850.0,'units':'m/s'}}}

event5 = {'event_type':'Burn',

222

'params':{'dv':{'val':42.5,'units':'m/s'},

'system':'rcs'}}

event6 = {'event_type':'Drop','params':{}}

event7 = {'event_type':'Connect','params':{}}

event8 = {'event_type':'MassDelta',

'params':{'mass_type':'prop','top_off':True}}

event9 = {'event_type':'Burn',

'params':{'dv':{'val':1000.0,'units':'m/s'}}}

event10 = {'event_type':'Drop','params':{}}

event_list = [event0,event1,event2,event3,event4,event5,event6,

event7,event8,event9,event10]

mission = {'event_list':event_list}

conops input (links mission and vehicle)

conops = [[{'active_elements':[4]}],

[{'active_elements':[0,1]}],

[{'active_elements':[0,1]}],

[{'active_elements':[3]}],

[{'active_elements':[2]}],

[{'active_elements':[3]}],

[{'active_elements':[2]}],

[{'active_elements':[4]}],

[{'active_elements':[3]}],

[{'active_elements':[3]}],

[{'active_elements':[4]}]]

architecture_definition = {'vehicle':vehicle,

'mission':mission,

'conops':conops}

######################

SETUP/RUN MODEL

######################

create problem

prob = DYREQTProblem(architecture_definition)

set options

options={'disp':0,

'opt_tol':1e-2,

'fd_step':1e-4,

'n2':0,

'times':True,

'file':'baseline'}

setup problem

prob.setup_problem(options=options)

solve problem

prob.solve_problem()

######################

PRINT RESULTS

######################

unpack results from database file and print to console

db = sqlitedict.SqliteDict(prob.options['file']+'.db', 'iterations')

data = list(db.items())[-1][1]

u = data['Unknowns']

p = data['Parameters']

obj = u['objective_value']

print('final objective value: {0}'.format(obj))

print('')

print('*'*79)

print('PARAMETERS')

print('*'*79)

for name,val in sorted(p.items()):

print('{0}: {1}'.format(name,val))

223

print('')

print('*'*79)

print('UNKNOWNS')

print('*'*79)

for name,val in sorted(u.items()):

print('{0}: {1}'.format(name,val))

224

APPENDIX B

EXAMPLE DYREQT OUTPUT

RUN TIME STATS

Total Run Time: 1.169 s

Init: 0.010 s

Setup: 0.421 s

Solution: 0.151 s

Cleanup: 0.587 s

final objective value: 3.3091343229661314

PARAMETERS

mission.event0.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

mission.event0.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

mission.event1.element0_inert_mass: [369.63139727 369.63139727 369.63139727

0. 0. 0. 0.

0. 0. 0. 0.

0.]

mission.event1.element0_isp_mps: 300.0

mission.event1.element0_isp_rcs: 250.0

mission.event1.element0_mass_flowrate_mps: 33.990540432597605

mission.event1.element0_mass_flowrate_rcs: 40.78864851911713

mission.event1.element0_terminal_event: (10, 0)

mission.event1.element1_inert_mass: [369.63139727 369.63139727 369.63139727

0. 0. 0. 0.

0. 0. 0. 0.

0.]

mission.event1.element1_isp_mps: 300.0

mission.event1.element1_isp_rcs: 250.0

mission.event1.element1_mass_flowrate_mps: 33.990540432597605

mission.event1.element1_mass_flowrate_rcs: 40.78864851911713

mission.event1.element1_terminal_event: (10, 0)

mission.event1.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

mission.event1.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

mission.event10.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

mission.event10.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

mission.event2.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

mission.event2.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

225

mission.event3.element3_inert_mass: [369.63125456 369.63125456 369.63125456

369.63125456 369.63125456 369.63125456

369.63125456 369.63125456 369.63125456

369.63125456 369.63125456 369.63125456]

mission.event3.element3_isp_mps: 300.0

mission.event3.element3_isp_rcs: 250.0

mission.event3.element3_mass_flowrate_mps: 33.990540432597605

mission.event3.element3_mass_flowrate_rcs: 40.78864851911713

mission.event3.element3_terminal_event: (10, 0)

mission.event3.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

mission.event3.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

mission.event4.element2_inert_mass: [98. 98. 98. 98. 98. 98. 98. 0. 0.

0. 0. 0.]

mission.event4.element2_isp_mps: 298.0

mission.event4.element2_isp_rcs: 1.0

mission.event4.element2_mass_flowrate_mps: 0.0003421866486503115

mission.event4.element2_mass_flowrate_rcs: 0.10197162129779283

mission.event4.element2_terminal_event: (10, 0)

mission.event4.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

mission.event4.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

mission.event5.element3_inert_mass: [369.63125456 369.63125456 369.63125456

369.63125456 369.63125456 369.63125456

369.63125456 369.63125456 369.63125456

369.63125456 369.63125456 369.63125456]

mission.event5.element3_isp_mps: 300.0

mission.event5.element3_isp_rcs: 250.0

mission.event5.element3_mass_flowrate_mps: 33.990540432597605

mission.event5.element3_mass_flowrate_rcs: 40.78864851911713

mission.event5.element3_terminal_event: (10, 0)

mission.event5.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

mission.event5.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

mission.event6.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

mission.event6.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

mission.event7.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

mission.event7.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

mission.event8.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

mission.event8.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

mission.event9.element3_inert_mass: [369.63125456 369.63125456 369.63125456

369.63125456 369.63125456 369.63125456

369.63125456 369.63125456 369.63125456

369.63125456 369.63125456 369.63125456]

mission.event9.element3_isp_mps: 300.0

mission.event9.element3_isp_rcs: 250.0

mission.event9.element3_mass_flowrate_mps: 33.990540432597605

226

mission.event9.element3_mass_flowrate_rcs: 40.78864851911713

mission.event9.element3_terminal_event: (10, 0)

mission.event9.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

mission.event9.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

optimization.total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

optimization.vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

vehicle.element0.element_utilities.element0_burn_time_mps_event1_0: 13.567190791698499

vehicle.element0.element_utilities.element0_burn_time_rcs_event1_0: 0.0

vehicle.element1.element_utilities.element1_burn_time_mps_event1_0: 13.567190791698499

vehicle.element1.element_utilities.element1_burn_time_rcs_event1_0: 0.0

vehicle.element2.element_utilities.element2_burn_time_mps_event4_0: 469396.7726970796

vehicle.element2.element_utilities.element2_burn_time_rcs_event4_0: 0.0

vehicle.element3.element_utilities.element3_burn_time_mps_event3_0: 0.0

vehicle.element3.element_utilities.element3_burn_time_mps_event5_0: 0.0

vehicle.element3.element_utilities.element3_burn_time_mps_event9_0: 16.31180055203983

vehicle.element3.element_utilities.element3_burn_time_rcs_event3_0: 0.27284071287463163

vehicle.element3.element_utilities.element3_burn_time_rcs_event5_0: 0.20047596651912505

vehicle.element3.element_utilities.element3_burn_time_rcs_event9_0: 0.0

vehicle.element3.element_utilities.element3_inert_mass_delta_event8_0: 0.0

vehicle.element3.element_utilities.element3_propellant_mass_delta_event8_0: 0.0

vehicle.element3.element_utilities.element3_top_off_event8_0: True

UNKNOWNS

element0_auto_drop: False

element0_burn_time_mps: 13.5672022002112

element0_burn_time_mps_event1_0: 13.567190791698499

element0_burn_time_rcs: 0.0

element0_burn_time_rcs_event1_0: 0.0

element0_burnout_mass: 369.63131241762227

element0_dry_mass: [369.63131242 369.63131242 369.63131242

0. 0. 0. 0.

0. 0. 0. 0.

0.]

element0_eet: 0.0

element0_element_type: Stage

element0_inert_mass: [369.63139727 369.63139727 369.63139727

0. 0. 0. 0.

0. 0. 0. 0.

0.]

element0_isp_mps: 300.0

element0_isp_rcs: 250.0

element0_loaded_mass: 830.7878473611283

element0_mass_flowrate_mps: 33.990540432597605

element0_mass_flowrate_rcs: 40.78864851911713

element0_max_propellant_mass_mps: 461.156534943506

element0_max_propellant_mass_rcs: 0.0

element0_max_single_burn_prop_mass_mps: 849.1337914791708

element0_max_single_burn_prop_mass_rcs: 10.197162129779283

element0_mga_mass: 0.0

element0_payload_mass: [2478.34647561 1478.34647561 1017.18994066

0. 0. 0. 0.

0. 0. 0. 0.

0.]

element0_pmr_mass: 0.0

element0_propellant_mass_boiled_mps: 0.0

element0_propellant_mass_boiled_rcs: 0.0

element0_propellant_mass_burned_mps: 461.156534943506

element0_propellant_mass_burned_rcs: 0.0

227

element0_propellant_mass_leak_mps: 0.0

element0_propellant_mass_leak_rcs: 0.0

element0_propellant_mass_mps: [461.15653494 461.15653494 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.]

element0_propellant_mass_rcs: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.]

element0_propellant_mass_reserve_mps: 0.0

element0_propellant_mass_reserve_rcs: 0.0

element0_terminal_event: (10, 0)

element0_thrust_mps: 100000.0

element0_thrust_rcs: 100000.0

element0sub0_inert_mass: 369.63139727421384

element0sub0_mps_isp: 300.0

element0sub0_pmf: 0.6

element0sub0_rcs_isp: 250.0

element1_auto_drop: False

element1_burn_time_mps: 13.5672022002112

element1_burn_time_mps_event1_0: 13.567190791698499

element1_burn_time_rcs: 0.0

element1_burn_time_rcs_event1_0: 0.0

element1_burnout_mass: 369.63131241762227

element1_dry_mass: [369.63131242 369.63131242 369.63131242

0. 0. 0. 0.

0. 0. 0. 0.

0.]

element1_eet: 0.0

element1_element_type: Stage

element1_inert_mass: [369.63139727 369.63139727 369.63139727

0. 0. 0. 0.

0. 0. 0. 0.

0.]

element1_isp_mps: 300.0

element1_isp_rcs: 250.0

element1_loaded_mass: 830.7878473611283

element1_mass_flowrate_mps: 33.990540432597605

element1_mass_flowrate_rcs: 40.78864851911713

element1_max_propellant_mass_mps: 461.156534943506

element1_max_propellant_mass_rcs: 0.0

element1_max_single_burn_prop_mass_mps: 849.1337914791708

element1_max_single_burn_prop_mass_rcs: 10.197162129779283

element1_mga_mass: 0.0

element1_payload_mass: [2478.34647561 1478.34647561 1017.18994066

0. 0. 0. 0.

0. 0. 0. 0.

0.]

element1_pmr_mass: 0.0

element1_propellant_mass_boiled_mps: 0.0

element1_propellant_mass_boiled_rcs: 0.0

element1_propellant_mass_burned_mps: 461.156534943506

element1_propellant_mass_burned_rcs: 0.0

element1_propellant_mass_leak_mps: 0.0

element1_propellant_mass_leak_rcs: 0.0

element1_propellant_mass_mps: [461.15653494 461.15653494 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.]

element1_propellant_mass_rcs: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.]

element1_propellant_mass_reserve_mps: 0.0

element1_propellant_mass_reserve_rcs: 0.0

element1_terminal_event: (10, 0)

element1_thrust_mps: 100000.0

element1_thrust_rcs: 100000.0

element1sub0_inert_mass: 369.63139727421384

element1sub0_mps_isp: 300.0

element1sub0_pmf: 0.6

element1sub0_rcs_isp: 250.0

element2_auto_drop: False

228

element2_boiloff_rate_mps: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

element2_boiloff_rate_rcs: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

element2_burn_time_mps: 469396.69810629345

element2_burn_time_mps_event4_0: 469396.7726970796

element2_burn_time_rcs: 0.0

element2_burn_time_rcs_event4_0: 0.0

element2_burnout_mass: 98.0

element2_dry_mass: [98. 98. 98. 98. 98. 98. 98. 0. 0.

0. 0. 0.]

element2_eet: 0.0

element2_element_type: Stage

element2_inert_mass: [98. 98. 98. 98. 98. 98. 98. 0. 0.

0. 0. 0.]

element2_isp_mps: 298.0

element2_isp_rcs: 1.0

element2_loaded_mass: 258.6212830125146

element2_mass_flowrate_mps: 0.0003421866486503115

element2_mass_flowrate_rcs: 0.10197162129779283

element2_max_propellant_mass_mps: 160.62128301251457

element2_max_propellant_mass_rcs: 0.0

element2_max_single_burn_prop_mass_mps: 337.8842861640941

element2_max_single_burn_prop_mass_rcs: 0.10197162129779283

element2_mga_mass: 0.0

element2_mps_start_penalty: 0.0

element2_payload_mass: [3050.51303995 2050.51303995 1128.19997007

388.93734523 377.80853953 377.80853953

369.63139727 0. 0. 0.

0. 0.]

element2_pmr_mass: 0.0

element2_propellant_mass_boiled_mps: 0.0

element2_propellant_mass_boiled_rcs: 0.0

element2_propellant_mass_burned_mps: 160.62128301251457

element2_propellant_mass_burned_rcs: 0.0

element2_propellant_mass_leak_mps: 0.0

element2_propellant_mass_leak_rcs: 0.0

element2_propellant_mass_mps: [160.62128301 160.62128301 160.62128301

160.62128301 160.62128301 0. 0.

0. 0. 0. 0.

0.]

element2_propellant_mass_rcs: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.]

element2_propellant_mass_reserve_mps: 0.0

element2_propellant_mass_reserve_rcs: 0.0

element2_terminal_event: (10, 0)

element2_thrust_mps: 1.0

element2_thrust_rcs: 1.0

element2sub0_inert_mass: 98.0

element2sub0_mass: 98.0

element2sub0_mps_isp: 298.0

element3_auto_drop: False

element3_burn_time_mps: 16.311799541429384

element3_burn_time_mps_event3_0: 0.0

element3_burn_time_mps_event5_0: 0.0

element3_burn_time_mps_event9_0: 16.31180055203983

element3_burn_time_rcs: 0.4733166863348766

element3_burn_time_rcs_event3_0: 0.27284071287463163

element3_burn_time_rcs_event5_0: 0.20047596651912505

element3_burn_time_rcs_event9_0: 0.0

element3_burnout_mass: 369.63139727421384

element3_dry_mass: [369.63139727 369.63139727 369.63139727

369.63139727 369.63139727 369.63139727

369.63139727 369.63139727 369.63139727

369.63139727 369.63139727 369.63139727]

element3_eet: 0.0

element3_element_type: Stage

element3_inert_mass: [369.63125456 369.63125456 369.63125456

369.63125456 369.63125456 369.63125456

369.63125456 369.63125456 369.63125456

229

369.63125456 369.63125456 369.63125456]

element3_inert_mass_delta_event8_0: 0.0

element3_isp_mps: 300.0

element3_isp_rcs: 250.0

element3_loaded_mass: 924.0782791155964

element3_mass_flowrate_mps: 33.990540432597605

element3_mass_flowrate_rcs: 40.78864851911713

element3_max_propellant_mass_mps: 554.4468818413825

element3_max_propellant_mass_rcs: 19.305947957146493

element3_max_single_burn_prop_mass_mps: 1350.7316985998618

element3_max_single_burn_prop_mass_rcs: 18.37085441886237

element3_mga_mass: 0.0

element3_payload_mass: [2920.19697773 1920.19697773 997.88390785

258.62128301 258.62128301 98. 98.

0. 1000. 1000. 1000.

0.]

element3_pmr_mass: 0.0

element3_propellant_mass_boiled_mps: 0.0

element3_propellant_mass_boiled_rcs: 0.0

element3_propellant_mass_burned_mps: 554.4468818413825

element3_propellant_mass_burned_rcs: 19.305947957146493

element3_propellant_mass_delta_event8_0: 0.0

element3_propellant_mass_leak_mps: 0.0

element3_propellant_mass_leak_rcs: 0.0

element3_propellant_mass_mps: [0. 0. 0. 0.

0. 0. 0. 0.

0. 554.44688184 0. 0.]

element3_propellant_mass_rcs: [19.30594796 19.30594796 19.30594796

19.30594796 8.17714225 8.17714225 0.

0. 0. 0. 0.

0.]

element3_propellant_mass_reserve_mps: 0.0

element3_propellant_mass_reserve_rcs: 0.0

element3_terminal_event: (10, 0)

element3_thrust_mps: 100000.0

element3_thrust_rcs: 100000.0

element3_top_off_event8_0: True

element3sub0_inert_mass: 369.6312545609217

element3sub0_mps_isp: 300.0

element3sub0_pmf: 0.6

element3sub0_rcs_isp: 250.0

element4_auto_drop: False

element4_dry_mass: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

element4_eet: 0.0

element4_element_type: Payload

element4_inert_mass: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

element4_loaded_mass: 1000.0

element4_mga_mass: 0.0

element4_payload_mass: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.]

element4_pmr_mass: 0.0

element4_terminal_event: (10, 0)

element4sub0_inert_mass: 1000.0

element4sub0_mass: 1000.0

equivalent_stage_1_0_burn_time_acs: 0.0

equivalent_stage_1_0_burn_time_main: 13.567190791698499

equivalent_stage_1_0_dv: 1500.0

equivalent_stage_1_0_final_mass: 1386.8212530791195

equivalent_stage_1_0_initial_mass: 2309.133547403107

equivalent_stage_1_0_isp_acs: 250.0

equivalent_stage_1_0_isp_main: 300.0

equivalent_stage_1_0_jettison_mass: 0.0

equivalent_stage_1_0_mass_flowrate_acs: 81.57729703823426

equivalent_stage_1_0_mass_flowrate_main: 67.98108086519521

equivalent_stage_1_0_t2w: 8.832024584500271

equivalent_stage_1_0_thrust_acs: 200000.0

230

equivalent_stage_1_0_thrust_main: 199999.99999999997

equivalent_stage_3_0_burn_time_acs: 0.0

equivalent_stage_3_0_burn_time_main: 0.27284071287463163

equivalent_stage_3_0_dv: 42.5

equivalent_stage_3_0_final_mass: 636.4298225377794

equivalent_stage_3_0_initial_mass: 647.5586264769281

equivalent_stage_3_0_isp_acs: 250.0

equivalent_stage_3_0_isp_main: 250.0

equivalent_stage_3_0_jettison_mass: 0.0

equivalent_stage_3_0_mass_flowrate_acs: 40.78864851911713

equivalent_stage_3_0_mass_flowrate_main: 40.78864851911713

equivalent_stage_3_0_t2w: 15.747087156042383

equivalent_stage_3_0_thrust_acs: 100000.0

equivalent_stage_3_0_thrust_main: 100000.0

equivalent_stage_4_0_burn_time_acs: 0.0

equivalent_stage_4_0_burn_time_main: 469396.7726970796

equivalent_stage_4_0_dv: 850.0

equivalent_stage_4_0_final_mass: 475.80853952526473

equivalent_stage_4_0_initial_mass: 636.4298480617504

equivalent_stage_4_0_isp_acs: 1.0

equivalent_stage_4_0_isp_main: 298.0

equivalent_stage_4_0_jettison_mass: 0.0

equivalent_stage_4_0_mass_flowrate_acs: 0.10197162129779283

equivalent_stage_4_0_mass_flowrate_main: 0.0003421866486503115

equivalent_stage_4_0_t2w: 0.00016022444831641352

equivalent_stage_4_0_thrust_acs: 1.0

equivalent_stage_4_0_thrust_main: 1.0

equivalent_stage_5_0_burn_time_acs: 0.0

equivalent_stage_5_0_burn_time_main: 0.20047596651912505

equivalent_stage_5_0_dv: 42.5

equivalent_stage_5_0_final_mass: 467.63139727421384

equivalent_stage_5_0_initial_mass: 475.8085410090927

equivalent_stage_5_0_isp_acs: 250.0

equivalent_stage_5_0_isp_main: 250.0

equivalent_stage_5_0_jettison_mass: 0.0

equivalent_stage_5_0_mass_flowrate_acs: 40.78864851911713

equivalent_stage_5_0_mass_flowrate_main: 40.78864851911713

equivalent_stage_5_0_t2w: 21.43122968779246

equivalent_stage_5_0_thrust_acs: 100000.0

equivalent_stage_5_0_thrust_main: 100000.0

equivalent_stage_9_0_burn_time_acs: 0.0

equivalent_stage_9_0_burn_time_main: 16.31180055203983

equivalent_stage_9_0_dv: 1000.0

equivalent_stage_9_0_final_mass: 1369.631397274214

equivalent_stage_9_0_initial_mass: 1924.0783134667918

equivalent_stage_9_0_isp_acs: 250.0

equivalent_stage_9_0_isp_main: 300.0

equivalent_stage_9_0_jettison_mass: 0.0

equivalent_stage_9_0_mass_flowrate_acs: 40.78864851911713

equivalent_stage_9_0_mass_flowrate_main: 33.990540432597605

equivalent_stage_9_0_t2w: 5.299764598149906

equivalent_stage_9_0_thrust_acs: 100000.0

equivalent_stage_9_0_thrust_main: 99999.99999999999

event0_final_mass: 2309.1343229661315

event0_initial_mass: 3309.1343229661315

event10_final_mass: 369.63139727421384

event10_initial_mass: 1369.631397274214

event1_0_dt: 13.567190791698499

event1_dv: 1500.0

event1_final_mass: 1386.8212530791195

event1_initial_mass: 2309.133547403107

event1_propellant_mass_acs: 0.0

event1_propellant_mass_main: 922.3122943239874

event1_sized_dv: 1500.0

event2_final_mass: 647.558628243875

event2_initial_mass: 1386.8212530791195

event3_0_dt: 0.27284071287463163

event3_dv: 42.5

231

event3_final_mass: 636.4298225377794

event3_initial_mass: 647.5586264769281

event3_propellant_mass_acs: 0.0

event3_propellant_mass_main: 11.128803939148705

event3_sized_dv: 42.5

event3_system: rcs

event4_0_dt: 469396.7726970796

event4_dv: 850.0

event4_final_mass: 475.80853952526473

event4_initial_mass: 636.4298480617504

event4_propellant_mass_acs: 0.0

event4_propellant_mass_main: 160.62130853648569

event4_sized_dv: 850.0

event5_0_dt: 0.20047596651912505

event5_dv: 42.5

event5_final_mass: 467.63139727421384

event5_initial_mass: 475.8085410090927

event5_propellant_mass_acs: 0.0

event5_propellant_mass_main: 8.177143734878886

event5_sized_dv: 42.5

event5_system: rcs

event6_final_mass: 369.63139727421384

event6_initial_mass: 467.63139727421384

event7_final_mass: 1369.631397274214

event7_initial_mass: 369.63139727421384

event8_final_mass: 1924.0782791155964

event8_initial_mass: 1369.631397274214

event8_mass_type: prop

event8_top_off: True

event9_0_dt: 16.31180055203983

event9_dv: 1000.0

event9_final_mass: 1369.631397274214

event9_initial_mass: 1924.0783134667918

event9_propellant_mass_acs: 0.0

event9_propellant_mass_main: 554.4469161925778

event9_sized_dv: 1000.0

num_elements: 5

num_events: 11

objective_value: 3.3091343229661314

total_payload: [1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

vehicle_gross_mass: [3309.13432297 2309.13432297 1386.82125308

647.55862824 636.42982254 475.80853953

467.63139727 369.63139727 1369.63139727

1924.07827912 1369.63139727 369.63139727]

232

APPENDIX C

MODEL INPUT TABLES

The following tables present the set of input parameters to the various models de-

veloped through this body of work. Table 30 consists of mission inputs for the event

models and Table 31 consists of the vehicle inputs for the subsystem models. Each

input contains a brief description, the type of data expected as the input, the allow-

able range of input data, units where applicable, and the default value utilized for

the experiments and proof of concept problem. Table 33 through Table 53 provide

the mappings of the high-level architecture and technology space parameter options

to the design space attribute values.

233

T
a
b
le

3
0
:

E
ve

n
t

M
o
d
el

In
p
u
ts

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

B
u
rn

ac
s

fa
ct

or
fl
oa

t
[0

:
10

0]
–

4.
0

A
tt

it
u
d
e

C
on

tr
ol

S
y
st

em
(A

C
S
)

fa
ct

or
as

a
p

er
ce

n
ta

ge
of

th
e

to
ta

l
ev

en
t

d
v

(i
n
cl

u
d
-

in
g

F
P

R
)

to
b

e
ad

d
ed

as
an

at
ti

tu
d
e

co
n
-

tr
ol

d
v

u
ti

li
zi

n
g

on
ly

th
e

R
C

S

B
u
rn

ac
s

sp
li
t

fl
oa

t
[0

:
10

0]
–

50
.0

p
er

ce
n
ta

ge
of

th
e

A
C

S
m

an
eu

ve
r

d
v

to
p

er
fo

rm
b

ef
or

e
th

e
m

ai
n

b
u
rn

B
u
rn

d
v

fl
oa

t
[0

:
+
∞

)
m

/s
1.

0
th

e
im

p
u
ls

iv
e

ch
an

ge
in

ve
lo

ci
ty

B
u
rn

fp
r

fl
oa

t
[0

:
10

0]
–

0.
0

F
li
gh

t
P

er
fo

rm
an

ce
R

es
er

ve
(F

P
R

)
as

a
p

er
ce

n
ta

ge
of

th
e

in
p
u
t

d
v

B
u
rn

sy
st

em
st

ri
n
g

[’
M

P
S
’,
’R

C
S
’]

–
M

P
S

p
ro

p
u
ls

io
n

sy
st

em
fo

r
th

e
ev

en
t

Id
le

d
t

fl
oa

t
[0

:
+
∞

)
d
ay

s
1.

0
ti

m
e

la
p
se

d

M
as

s
D

el
ta

d
m

fl
oa

t
(−
∞

:
+
∞

)
k
g

0.
0

ty
p

e
of

m
as

s
to

ad
d
/s

u
b
tr

ac
t

fr
om

th
e

ac
ti

ve
el

em
en

ts

M
as

s
D

el
ta

m
as

s
ty

p
e

st
ri

n
g

[’
in

er
t’

,’
p
ro

p
el

la
n
t’

]
–

in
er

t
p
ro

p
u
ls

io
n

sy
st

em
fo

r
th

e
ev

en
t

M
as

s
D

el
ta

to
p

off
b

o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

al
lo

w
th

e
so

lv
er

to
op

ti
m

iz
e

p
ro

p
el

la
n
t

re
lo

ad
in

g
of

th
e

ac
ti

ve
el

em
en

ts

234

T
a
b
le

3
1
:

S
u
b
E

le
m

en
t

M
o
d
el

In
p
u
ts

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

A
v
io

n
ic

s
ac

cu
ra

cy
fl
oa

t
[0

:
1]

–
1.

0
fa

ct
or

to
d
et

er
m

in
e

se
n
so

r
ac

cu
ra

cy
fo

r
sc

al
in

g
m

as
s,

w
h
er

e
h
ig

h
er

va
lu

es
co

rr
e-

sp
on

d
to

h
ig

h
er

ac
cu

ra
cy

,
re

su
lt

in
g

in
in

-
cr

ea
se

d
m

as
s

an
d

p
ow

er
re

q
u
ir

em
en

ts

A
v
io

n
ic

s
ac

tu
at

or
s

li
st

se
e

d
es

cr
ip

ti
on

–
[0

,2
,2

,2
]

ty
p

e
of

at
ti

tu
d
e

co
n
tr

ol
d
ev

ic
e(

s)
as

a
li
st

of
in

te
ge

rs
in

th
e

ra
n
ge

[0
:

2]

A
v
io

n
ic

s
ad

d
it

io
n
al

d
ev

ic
es

li
st

se
e

d
es

cr
ip

ti
on

–
[[
0.

1,
15

.]
]

li
st

of
ad

d
it

io
n
al

av
io

n
ic

s
d
ev

ic
es

,
w

h
er

e
ea

ch
it

em
is

a
li
st

d
efi

n
in

g
a

th
e

m
as

s(
k
g)

an
d

p
ow

er
re

q
u
ir

em
en

t(
W

)
fo

r
th

e
d
e-

v
ic

e,
in

th
e

fo
rm

[m
,P

]

A
v
io

n
ic

s
co

m
m

s
ty

p
e

in
t

[0
:

2]
–

2
ty

p
e

of
co

m
m

u
n
ic

at
io

n
s

p
ac

ka
ge

A
v
io

n
ic

s
se

n
so

rs
li
st

se
e

d
es

cr
ip

ti
on

–
[4

,1
,1

,1
,

1,
1,

1,
5,

0,
0,

0]

ty
p

e
of

se
n
so

r
d
ev

ic
e(

s)
as

a
li
st

of
in

te
-

ge
rs

in
th

e
ra

n
ge

[0
:

5]

A
v
io

n
ic

s
w

ir
el

es
s

se
n
so

rs
b

o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

w
ir

el
es

s
tr

an
sm

is
si

on
of

d
at

a
fo

r
se

n
so

rs
w

it
h
in

th
e

ve
h
ic

le

E
n
gi

n
es

co
re

ty
p

e
st

ri
n
g
[’
P

B
R

’,
’C

E
R

M
E

T
’]

–
C

E
R

M
E

T
ty

p
e

of
n
u
cl

ea
r

co
re

E
n
gi

n
es

en
gi

n
e

th
ru

st
m

p
s

fl
oa

t
[0

:
+
∞

)
k
N

25
.0

th
ru

st
p

er
en

gi
n
e

of
th

e
m

ai
n

p
ro

p
u
ls

io
n

sy
st

em

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

235

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

E
n
gi

n
es

en
gi

n
e

th
ru

st
rc

s
fl
oa

t
[0

:
+
∞

)
k
N

0.
45

th
ru

st
p

er
en

gi
n
e

of
th

e
re

ac
ti

on
co

n
tr

ol
sy

st
em

E
n
gi

n
es

is
p

m
p
s

fl
oa

t
[0

:
+
∞

)
se

c
35

0.
0

th
e

sp
ec

ifi
c

im
p
u
ls

e
of

th
e

m
ai

n
p
ro

p
u
l-

si
on

sy
st

em
en

gi
n
es

E
n
gi

n
es

is
p

rc
s

fl
oa

t
[0

:
+
∞

)
se

c
30

0.
0

th
e

sp
ec

ifi
c

im
p
u
ls

e
of

th
e

re
ac

ti
on

co
n
-

tr
ol

sy
st

em
en

gi
n
es

E
n
gi

n
es

m
ix

tu
re

ra
ti

o
m

p
s

fl
oa

t
[0

:
+
∞

)
–

3.
5

m
as

s
ra

ti
o

of
th

e
ox

id
iz

er
to

fu
el

of
th

e
m

ai
n

p
ro

p
u
ls

io
n

sy
st

em
en

gi
n
es

E
n
gi

n
es

m
ix

tu
re

ra
ti

o
rc

s
fl
oa

t
[0

:
+
∞

)
–

3.
5

m
as

s
ra

ti
o

of
th

e
ox

id
iz

er
to

fu
el

of
th

e
re

ac
ti

on
co

n
tr

ol
sy

st
em

en
gi

n
es

E
n
gi

n
es

m
p
s

cl
as

s
st

ri
n
g

[’
li
q
u
id

’,
’s

ol
id

’,
’n

u
cl

ea
r’

,
’e

le
ct

ri
c’

,
’m

as
sl

es
s’

]

–
li
q
u
id

m
ai

n
p
ro

p
u
ls

io
n

sy
st

em
cl

as
s

E
n
gi

n
es

P
ch

am
b

er
fl
oa

t
[1

:
10

]
M

P
a

3.
5

ch
am

b
er

p
re

ss
u
re

fo
r

n
u
cl

ea
r

en
gi

n
es

E
n
gi

n
es

p
ow

er
m

gm
t

sp
ec

ifi
c

m
as

s
m

p
s

fl
oa

t
[0

:
+
∞

)
k
g/

k
W

6.
0

m
as

s
p

er
u
n
it

p
ow

er
of

th
e

p
ow

er
m

an
-

ag
em

en
t

sy
st

em
fo

r
el

ec
tr

ic
m

ai
n

p
ro

p
u
l-

si
on

sy
st

em
s

E
n
gi

n
es

p
ow

er
m

gm
t

sp
ec

ifi
c

m
as

s
rc

s
fl
oa

t
[0

:
+
∞

)
k
g/

k
W

6.
0

m
as

s
p

er
u
n
it

p
ow

er
of

th
e

p
ow

er
m

an
-

ag
em

en
t

sy
st

em
fo

r
el

ec
tr

ic
re

ac
ti

on
co

n
-

tr
ol

sy
st

em
s

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

236

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

E
n
gi

n
es

p
ro

p
el

la
n
ts

m
p
s

st
ri

n
g

se
e

d
es

cr
ip

ti
on

–
L

O
X

/
L

C
H

4
th

e
ox

id
iz

er
an

d
F

u
el

of
th

e
p
ro

p
u
ls

io
n

sy
st

em
,

se
p
ar

at
ed

b
y

a
fo

rw
ar

d
sl

as
h

(/
),

m
on

op
ro

p
el

la
n
t

on
ly

sp
ec

if
y

a
fu

el
w

it
h

n
o

sl
as

h
(/

),
fl
u
id

s
m

u
st

b
e

d
efi

n
ed

in
th

e
fl
u
id

s
d
efi

n
it

io
n
s

m
o
d
el

E
n
gi

n
es

p
ro

p
el

la
n
ts

rc
s

st
ri

n
g

se
e

d
es

cr
ip

ti
on

–
N

2H
4

th
e

ox
id

iz
er

an
d

F
u
el

of
th

e
p
ro

p
u
ls

io
n

sy
st

em
,

se
p
ar

at
ed

b
y

a
fo

rw
ar

d
sl

as
h

(/
),

m
on

op
ro

p
el

la
n
t

on
ly

sp
ec

if
y

a
fu

el
w

it
h

n
o

sl
as

h
(/

),
fl
u
id

s
m

u
st

b
e

d
efi

n
ed

in
th

e
fl
u
id

s
d
efi

n
it

io
n
s

m
o
d
el

E
n
gi

n
es

rc
s

cl
as

s
st

ri
n
g

[’
li
q
u
id

’,
’e

le
ct

ri
c’

,
’m

as
sl

es
s’

]
–

li
q
u
id

re
ac

ti
on

co
n
tr

ol
sy

st
em

cl
as

s

E
n
gi

n
es

re
d
u
n
d
an

cy
m

p
s

fl
oa

t
[0

:
+
∞

)
–

0.
2

re
d
u
n
d
an

cy
of

el
ec

tr
ic

th
ru

st
er

s
in

th
e

m
ai

n
p
ro

p
u
ls

io
n

sy
st

em
,

w
h
er

e
a

va
lu

e
of

1
co

rr
es

p
on

d
s

to
d
u
al

re
d
u
n
d
an

cy

E
n
gi

n
es

re
d
u
n
d
an

cy
rc

s
fl
oa

t
[0

:
+
∞

)
–

0.
2

re
d
u
n
d
an

cy
of

el
ec

tr
ic

th
ru

st
er

s
in

th
e

re
-

ac
ti

on
co

n
tr

ol
sy

st
em

,
w

h
er

e
a

va
lu

e
of

1
co

rr
es

p
on

d
s

to
d
u
al

re
d
u
n
d
an

cy

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

237

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

E
n
gi

n
es

st
ar

t
p

en
al

ty
m

p
s

fl
oa

t
[0

:
+
∞

)
k
g

40
.0

m
as

s
of

p
ro

p
el

la
n
t

lo
st

d
u
ri

n
g

en
gi

n
e

st
ar

tu
p

of
th

e
m

ai
n

p
ro

p
u
ls

io
n

sy
st

em

E
n
gi

n
es

st
ar

t
p

en
al

ty
rc

s
fl
oa

t
[0

:
+
∞

)
k
g

1.
0

m
as

s
of

p
ro

p
el

la
n
t

lo
st

d
u
ri

n
g

en
gi

n
e

st
ar

tu
p

of
th

e
re

ac
ti

on
co

n
tr

ol
sy

st
em

E
n
gi

n
es

T
ch

am
b

er
fl
oa

t
va

ri
es

K
28

00
.0

ch
am

b
er

te
m

p
er

at
u
re

of
th

e
n
u
cl

ea
r

en
-

gi
n
es

,
ra

n
ge

va
ri

es
b
as

ed
on

p
ro

p
el

la
n
t

ty
p

e

E
n
gi

n
es

th
ru

st
er

effi
ci

en
cy

m
p
s

fl
oa

t
[0

:
1]

–
0.

5
el

ec
tr

ic
th

ru
st

er
effi

ci
en

cy
of

th
e

m
ai

n
p
ro

p
u
ls

io
n

sy
st

em

E
n
gi

n
es

th
ru

st
er

effi
ci

en
cy

rc
s

fl
oa

t
[0

:
1]

–
0.

5
el

ec
tr

ic
th

ru
st

er
effi

ci
en

cy
of

th
e

re
ac

ti
on

co
n
tr

ol
sy

st
em

E
n
gi

n
es

th
ru

st
er

p
ow

er
m

p
s

fl
oa

t
[0

:
+
∞

)
k
W

1.
0

in
p
u
t

p
ow

er
re

q
u
ir

ed
p

er
th

ru
st

er
of

th
e

m
ai

n
p
ro

p
u
ls

io
n

sy
st

em

E
n
gi

n
es

th
ru

st
er

p
ow

er
rc

s
fl
oa

t
[0

:
+
∞

)
k
W

1.
0

in
p
u
t

p
ow

er
re

q
u
ir

ed
p

er
th

ru
st

er
of

th
e

re
ac

ti
on

co
n
tr

ol
sy

st
em

E
n
gi

n
es

th
ru

st
er

sp
ec

ifi
c

m
as

s
m

p
s

fl
oa

t
[0

:
+
∞

)
k
g/

k
W

7.
0

el
ec

tr
ic

th
ru

st
er

m
as

s
p

er
u
n
it

p
ow

er
of

th
e

m
ai

n
p
ro

p
u
ls

io
n

sy
st

em

E
n
gi

n
es

th
ru

st
er

sp
ec

ifi
c

m
as

s
rc

s
fl
oa

t
[0

:
+
∞

)
k
g/

k
W

7.
0

el
ec

tr
ic

th
ru

st
er

m
as

s
p

er
u
n
it

p
ow

er
of

th
e

re
ac

ti
on

co
n
tr

ol
sy

st
em

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

238

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

E
n
gi

n
es

to
ta

l
th

ru
st

m
p
s

fl
oa

t
[0

:
+
∞

)
k
N

10
0.

0
to

ta
l

th
ru

st
of

th
e

m
ai

n
p
ro

p
u
ls

io
n

sy
s-

te
m

E
n
gi

n
es

to
ta

l
th

ru
st

rc
s

fl
oa

t
[0

:
+
∞

)
k
N

1.
8

to
ta

l
th

ru
st

of
th

e
re

ac
ti

on
co

n
tr

ol
sy

st
em

P
ow

er
ar

ra
y

d
en

si
ty

fl
oa

t
[0

:
+
∞

)
k
g/

m
2

3.
5

ae
ri

al
d
en

si
ty

of
th

e
so

la
r

ar
ra

y,
in

cl
u
d
in

g
P

V
ce

ll
s

an
d

ar
ra

y
st

ru
ct

u
re

P
ow

er
ce

ll
d
eg

ra
d
at

io
n

fl
oa

t
[0

:
10

0]
%

/y
ea

r
3.

75
d
ec

re
as

e
in

ce
ll

p
ow

er
p
ro

d
u
ct

io
n

P
ow

er
ce

ll
effi

ci
en

cy
fl
oa

t
[0

:
1]

–
0.

17
5

effi
ci

en
cy

of
th

e
P

V
ce

ll
at

co
n
ve

rt
in

g
so

-
la

r
en

er
gy

to
el

ec
tr

ic
al

en
er

gy

P
ow

er
d
is

ch
ar

ge
d
ep

th
fl
oa

t
[0

:
1]

–
0.

2
d
ep

th
of

d
is

ch
ar

ge
of

th
e

b
at

te
ry

st
or

ag
e

sy
st

em
as

a
fr

ac
ti

on
of

th
e

st
or

ag
e

ca
p
ac

-
it

y

P
ow

er
en

er
gy

tr
ac

k
in

g
st

ri
n
g

[’
d
ir

ec
t’

,
’p

ea
k
-t

ra
ck

in
g’

]
–

p
ea

k
-

tr
ac

k
in

g
en

er
gy

tr
ac

k
in

g
sc

h
em

e
fo

r
th

e
so

la
r

ar
ra

y
sy

st
em

P
ow

er
ge

n
er

at
or

ty
p

e
st

ri
n
g

[’
p
v
’,

’r
tg

’,
’n

on
e’

]
–

p
v

ty
p

e
of

p
ow

er
ge

n
er

at
io

n

P
ow

er
lo

w
ar

ra
y

d
eg

ra
d
at

io
n

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

re
d
u
ce

s
so

la
r

ar
ra

y
d
eg

ra
d
at

io
n

d
u
e

to
as

se
m

b
ly

,
co

n
fi
gu

ra
ti

on
(s

h
ad

ow
in

g)
,

an
d

op
er

at
io

n
al

te
m

p
er

at
u
re

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

239

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

P
ow

er
m

ax
ec

li
p
se

fl
oa

t
va

ri
es

h
ou

rs
0.

5
m

ax
im

u
m

ec
li
p
se

ti
m

e
d
u
ri

n
g

th
e

m
is

si
on

fo
r

w
h
ic

h
b
at

te
ri

es
m

u
st

p
ro

v
id

e
p

ow
er

,
m

u
st

b
e

le
ss

th
an

or
b
it

p
er

io
d

P
ow

er
m

is
si

on
d
u
ra

ti
on

fl
oa

t
[0

:
+
∞

)
ye

ar
s

0.
5

th
e

d
u
ra

ti
on

of
th

e
m

is
si

on

P
ow

er
op

s
d
is

ta
n
ce

fl
oa

t
[0

:
+
∞

)
A

U
1.

0
so

la
r

d
is

ta
n
ce

fr
om

th
e

su
n

of
th

e
w

or
st

ca
se

op
er

at
io

n
al

en
v
ir

on
m

en
t

P
ow

er
or

b
it

p
er

io
d

fl
oa

t
[0

:
+
∞

)
h
ou

rs
2.

0
th

e
or

b
it

p
er

io
d

re
la

ti
n
g

to
th

e
ec

li
p
se

p
e-

ri
o
d

P
ow

er
st

or
ag

e
sp

ec
ifi

c
en

er
gy

fl
oa

t
[0

:
+
∞

)
W

h
/k

g
30

.0
en

er
gy

d
en

si
ty

of
th

e
p

ow
er

st
or

ag
e

sy
s-

te
m

P
ow

er
tr

an
sm

is
si

on
effi

ci
en

cy
fl
oa

t
[0

:
1)

–
0.

9
effi

ci
en

cy
of

tr
an

sm
it

ti
n
g

p
ow

er
fr

om
th

e
ge

n
er

at
or

/p
ow

er
st

or
ag

e
to

th
e

lo
ad

S
tr

u
ct

u
re

s
A

d
e

fl
oa

t
[0

:
+
∞

)
m

2
-1

.0
su

rf
ac

e
ar

ea
of

d
es

ig
n
-e

n
ve

lo
p

vo
lu

m
e

of
th

e
el

em
en

t

S
tr

u
ct

u
re

s
ad

ap
te

r
b

o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

si
ze

s
an

ad
ap

te
r

in
st

ea
d

of
a

p
ri

-
m

ar
y
/s

ec
on

d
ar

y
st

ru
ct

u
re

,
ov

er
ri

d
in

g
th

e
’m

an
n
ed

’
or

’t
ru

ss
’

in
p
u
t

se
tt

in
gs

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

240

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

S
tr

u
ct

u
re

s
co

m
p

os
it

e
b

o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

re
d
u
ce

s
ov

er
al

l
m

as
s

b
y

30
%

fo
r

co
m

p
os

-
it

e
st

ru
ct

u
re

s

S
tr

u
ct

u
re

s
m

an
n
ed

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

si
ze

st
ru

ct
u
re

s
fo

r
m

an
-r

at
ed

ve
h
ic

le
s

S
tr

u
ct

u
re

s
tr

u
ss

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

as
su

m
e

a
tr

u
ss

st
ru

ct
u
re

fo
r

a
si

n
gl

e
ta

n
k
,

ot
h
er

w
is

e,
as

su
m

e
an

in
-l

in
e

ta
n
k

st
ru

c-
tu

re

T
an

k
s

co
m

p
os

it
e

fu
el

ta
n
k
s

m
p
s

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

u
ti

li
ze

s
co

m
p

os
it

e
m

at
er

ia
ls

fo
r

th
e

M
P

S
fu

el
ta

n
k
s

T
an

k
s

co
m

p
os

it
e

fu
el

ta
n
k
s

rc
s

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

u
ti

li
ze

s
co

m
p

os
it

e
m

at
er

ia
ls

fo
r

th
e

R
C

S
fu

el
ta

n
k
s

T
an

k
s

co
m

p
os

it
e

ox
ta

n
k
s

m
p
s

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

u
ti

li
ze

s
co

m
p

os
it

e
m

at
er

ia
ls

fo
r

th
e

M
P

S
ox

id
iz

er
ta

n
k
s

T
an

k
s

co
m

p
os

it
e

ox
ta

n
k
s

rc
s

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

u
ti

li
ze

s
co

m
p

os
it

e
m

at
er

ia
ls

fo
r

th
e

R
C

S
ox

id
iz

er
ta

n
k
s

T
an

k
s

co
p
v

p
re

ss
u
ra

n
t

ta
n
k
s

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

u
ti

li
ze

s
co

m
p

os
it

e
ov

er
w

ra
p

p
re

ss
u
re

ve
s-

se
ls

fo
r

th
e

p
re

ss
u
ra

n
t

ta
n
k
s

T
an

k
s

fu
el

p
re

ss
u
re

m
p
s

fl
oa

t
(0

:
+
∞

)
M

P
a

40
.0

m
ai

n
p
ro

p
u
ls

io
n

sy
st

em
fu

el
ta

n
k

p
re

s-
su

re
s

T
an

k
s

fu
el

p
re

ss
u
re

rc
s

fl
oa

t
(0

:
+
∞

)
M

P
a

40
.0

re
ac

ti
on

co
n
tr

ol
sy

st
em

fu
el

ta
n
k

p
re

s-
su

re
s

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

241

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

T
an

k
s

iv
fm

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

in
te

gr
at

ed
ve

h
ic

le
fl
u
id

m
an

ag
em

en
t

T
an

k
s

ld
ra

ti
o

fu
el

ta
n
k
s

m
p
s

fl
oa

t
(0

:
+
∞

)
–

1.
0

ra
ti

o
of

th
e

le
n
gt

h
ov

er
th

e
d
ia

m
et

er
of

th
e

m
ai

n
p
ro

p
u
ls

io
n

sy
st

em
fu

el
ta

n
k
s

T
an

k
s

ld
ra

ti
o

fu
el

ta
n
k
s

rc
s

fl
oa

t
(0

:
+
∞

)
–

1.
0

ra
ti

o
of

th
e

le
n
gt

h
ov

er
th

e
d
ia

m
et

er
of

th
e

re
ac

ti
on

co
n
tr

ol
sy

st
em

fu
el

ta
n
k
s

T
an

k
s

ld
ra

ti
o

ox
ta

n
k
s

m
p
s

fl
oa

t
(0

:
+
∞

)
–

1.
0

ra
ti

o
of

th
e

le
n
gt

h
ov

er
th

e
d
ia

m
et

er
of

th
e

m
ai

n
p
ro

p
u
ls

io
n

sy
st

em
ox

id
iz

er
ta

n
k
s

T
an

k
s

ld
ra

ti
o

ox
ta

n
k
s

rc
s

fl
oa

t
(0

:
+
∞

)
–

1.
0

ra
ti

o
of

th
e

le
n
gt

h
ov

er
th

e
d
ia

m
et

er
of

th
e

re
ac

ti
on

co
n
tr

ol
sy

st
em

ox
id

iz
er

ta
n
k
s

T
an

k
s

m
at

er
ia

l
d
en

si
ty

fl
oa

t
(0

:
+
∞

)
k
g/

m
3

26
85

.0
d
en

si
ty

of
th

e
ta

n
k

m
at

er
ia

l

T
an

k
s

m
at

er
ia

l
st

re
n
gt

h
fl
oa

t
(0

:
+
∞

)
M

P
a

53
8.

0
u
lt

im
at

e
st

re
n
gt

h
of

th
e

ta
n
k

m
at

er
ia

l

T
an

k
s

n
u
m

fu
el

ta
n
k
s

m
p
s

in
t

[0
:

+
∞

)
–

2
n
u
m

b
er

of
fu

el
ta

n
k
s

fo
r

th
e

m
ai

n
p
ro

p
u
l-

si
on

sy
st

em

T
an

k
s

n
u
m

fu
el

ta
n
k
s

rc
s

in
t

[0
:

+
∞

)
–

1
n
u
m

b
er

of
fu

el
ta

n
k
s

fo
r

th
e

re
ac

ti
on

co
n
-

tr
ol

sy
st

em

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

242

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

T
an

k
s

n
u
m

ox
ta

n
k
s

m
p
s

in
t

[0
:

+
∞

)
–

2
n
u
m

b
er

of
ox

id
iz

er
ta

n
k
s

fo
r

th
e

m
ai

n
p
ro

p
u
ls

io
n

sy
st

em

T
an

k
s

n
u
m

ox
ta

n
k
s

rc
s

in
t

[0
:

+
∞

)
–

1
n
u
m

b
er

of
ox

id
iz

er
ta

n
k
s

fo
r

th
e

re
ac

ti
on

co
n
tr

ol
sy

st
em

T
an

k
s

n
u
m

ta
n
k
s

p
re

ss
u
ra

n
t

in
t

[0
:

+
∞

)
–

2
n
u
m

b
er

of
ta

n
k
s

fo
r

th
e

p
re

ss
u
ra

n
t

T
an

k
s

ox
p
re

ss
u
re

m
p
s

fl
oa

t
(0

:
+
∞

)
M

P
a

50
.0

m
ai

n
p
ro

p
u
ls

io
n

sy
st

em
ox

id
iz

er
ta

n
k

p
re

ss
u
re

s

T
an

k
s

o x
p
re

ss
u
re

rc
s

fl
oa

t
(0

:
+
∞

)
M

P
a

50
.0

re
ac

ti
on

co
n
tr

ol
sy

st
em

ox
id

iz
er

ta
n
k

p
re

ss
u
re

s

T
an

k
s

p
re

ss
u
ra

n
t

st
ri

n
g

se
e

d
es

cr
ip

ti
on

–
H

2
p
re

ss
u
ra

n
t

fl
u
id

fo
r

th
e

p
ro

p
u
ls

io
n

sy
s-

te
m

s,
m

u
st

b
e

d
efi

n
ed

in
th

e
fl
u
id

d
efi

-
n
it

io
n
s

T
an

k
s

p
re

ss
u
ra

n
t

p
re

ss
u
re

fl
oa

t
(0

:
+
∞

)
M

P
a

41
.3

in
it

ia
l

p
re

ss
u
re

of
th

e
p
re

ss
u
ra

n
t

ta
n
k
s

T
an

k
s

se
p
ar

at
or

ty
p

e
m

p
s

st
ri

n
g

[’
p
m

d
’,

’p
ed

’]
–

p
m

d
ty

p
e

of
d
ev

ic
e

u
se

d
to

se
p
ar

at
e

p
re

ss
u
r-

an
t

ga
s

an
d

li
q
u
id

p
ro

p
el

la
n
t

in
th

e
m

ai
n

p
ro

p
u
ls

io
n

sy
st

em
p
ro

p
el

la
n
t

ta
n
k
s

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

243

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

T
an

k
s

se
p
ar

at
or

ty
p

e
rc

s
st

ri
n
g

[’
p
m

d
’,

’p
ed

’]
–

p
m

d
ty

p
e

of
d
ev

ic
e

u
se

d
to

se
p
ar

at
e

p
re

ss
u
ra

n
t

ga
s

an
d

li
q
u
id

p
ro

p
el

la
n
t

in
th

e
re

ac
ti

on
co

n
tr

ol
sy

st
em

p
ro

p
el

la
n
t

ta
n
k
s

T
an

k
s

ta
n
k

ld
ra

ti
o

p
re

ss
u
ra

n
t

fl
oa

t
(0

:
+
∞

)
–

1.
0

ra
ti

o
of

th
e

le
n
gt

h
ov

er
th

e
d
ia

m
et

er
of

th
e

p
re

ss
u
ra

n
t

ta
n
k
s

T
h
er

m
al

ac
ti

ve
co

ol
in

g
m

p
s

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

in
cl

u
d
e

an
ac

ti
ve

co
ol

in
g

sy
st

em
to

re
d
u
ce

p
ro

p
el

la
n
t

b
oi

l
off

to
ze

ro
fo

r
th

e
m

ai
n

p
ro

p
u
ls

io
n

sy
st

em

T
h
er

m
al

ac
ti

ve
co

ol
in

g
rc

s
b

o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

in
cl

u
d
e

an
ac

ti
ve

co
ol

in
g

sy
st

em
to

re
d
u
ce

p
ro

p
el

la
n
t

b
oi

l
off

to
ze

ro
fo

r
th

e
re

ac
ti

on
co

n
tr

ol
sy

st
em

T
h
er

m
al

al
b

ed
o

fl
oa

t
[0

:
1]

–
0.

12
b

on
d

al
b

ed
o

of
th

e
or

b
it

ed
b

o
d
y,

If
n
ot

or
b
it

in
g

a
b

o
d
y,

se
t

th
is

va
lu

e
to

ze
ro

an
d

an
y

va
lu

e
fo

r
or

b
it

al
t

an
d

or
b
it

ra
d
iu

s

T
h
er

m
al

d
ee

p
sp

ac
e

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

ig
n
or

e
ra

d
ia

ti
on

aff
ec

t
n
ea

r
an

or
b
it

ed
b

o
d
y

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

244

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

T
h
er

m
al

ex
te

rn
al

ta
n
k
s

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

p
ro

p
el

la
n
t

ta
n
k
s

ar
e

as
su

m
ed

ex
te

rn
al

to
th

e
m

ai
n

el
em

en
t

st
ru

ct
u
re

an
d

ar
e

d
ir

ec
tl

y
aff

ec
te

d
b
y

ex
te

rn
al

ra
d
ia

ti
on

so
u
rc

es
su

ch
as

th
e

S
u
n

an
d
/o

r
or

b
it

ed
b

o
d
ie

s.
M

L
I

m
as

s
an

d
en

er
gy

le
ak

w
il
l

b
e

ca
lc

u
la

te
d

b
as

ed
on

ta
n
k

ge
om

et
ry

.
If

F
al

se
,

M
L

I
m

as
s

an
d

en
er

gy
le

ak
ar

e
ca

l-
cu

la
te

d
b
as

ed
on

as
su

m
ed

el
em

en
t

ge
om

-
et

ry

T
h
er

m
al

h
i

effi
ci

en
cy

ra
d
ia

to
rs

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
F
A

L
S
E

u
se

s
h
i-

effi
ci

en
cy

ra
d
ia

to
rs

w
it

h
h
ig

h
em

is
si

v
it

y
an

d
h
ig

h
fi
n

effi
ci

en
cy

to
ra

d
i-

at
e

h
ea

t
at

a
gr

ea
te

r
ra

te
fo

r
an

eq
u
iv

al
en

t
ra

d
ia

to
r

ar
ea

T
h
er

m
al

m
li

la
ye

rs
m

p
s

in
t

[1
0

:
+
∞

)
–

60
n
u
m

b
er

of
la

ye
rs

in
th

e
M

L
I

b
la

n
ke

ts
fo

r
th

e
m

ai
n

p
ro

p
u
ls

io
n

sy
st

em
ta

n
k
s

T
h
er

m
al

m
li

la
ye

rs
rc

s
in

t
[1

0
:

+
∞

)
–

60
n
u
m

b
er

of
la

ye
rs

in
th

e
M

L
I

b
la

n
ke

ts
fo

r
th

e
re

ac
ti

on
co

n
tr

ol
sy

st
em

ta
n
k
s

T
h
er

m
al

op
s

d
is

ta
n
ce

fl
oa

t
[0

:
+
∞

)
A

U
1.

0
so

la
r

d
is

ta
n
ce

fr
om

th
e

su
n

of
th

e
w

or
st

ca
se

op
er

at
io

n
al

en
v
ir

on
m

en
t

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

245

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

E
v
e
n
t

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
fa

u
lt

D
e
sc

ri
p
ti

o
n

T
h
er

m
al

or
b
it

al
t

fl
oa

t
[0

:
+
∞

)
k
m

50
0.

0
or

b
it

al
ti

tu
d
e

of
th

e
el

em
en

t
ab

ov
e

th
e

or
b
it

ed
b

o
d
y

in
th

e
w

or
st

th
er

m
al

en
v
i-

ro
n
m

en
t

T
h
er

m
al

r
b

o
d
y

fl
oa

t
(0

:
+
∞

)
k
m

17
37

.0
ra

d
iu

s
of

th
e

or
b
it

ed
b

o
d
y

T
h
er

m
al

ra
d
ia

to
r

d
en

si
ty

fl
oa

t
[0

:
+
∞

)
k
g/

m
2

4.
5

ae
ri

al
d
en

si
ty

of
th

e
th

er
m

al
ra

d
ia

to
rs

T
h
er

m
al

T
b

o
d
y

fl
oa

t
(0

:
+
∞

)
K

27
0.

0
av

er
ag

e
te

m
p

er
at

u
re

of
th

e
or

b
it

ed
b

o
d
y

246

T
a
b
le

3
2
:

C
os

t
M

o
d
el

In
p
u
ts

In
p
u
t

T
y
p

e
R

a
n
g
e

U
n
it

s
D

e
sc

ri
p
ti

o
n

n
u
m

st
ag

es
in

t
[1

:
3]

–
n
u
m

b
er

of
ve

h
ic

le
st

ag
es

cl
as

s
st

r
–

–
th

e
cl

as
s

of
ea

ch
st

ag
e

p
ro

p
el

la
n
t

st
r

–
–

p
ro

p
el

la
n
t

ty
p

e
of

th
e

m
ai

n
p
ro

p
u
ls

io
n

sy
s-

te
m

of
ea

ch
st

ag
e

p
ro

p
m

as
s

fl
oa

t
(0

:
+
∞

)
k
g

m
as

s
of

p
ro

p
el

la
n
t

fo
r

ea
ch

st
ag

e

n
u
m

en
gi

n
es

in
t

[0
:

+
∞

)
–

n
u
m

b
er

of
en

gi
n
es

in
th

e
m

ai
n

p
ro

p
u
ls

io
n

sy
st

em
of

ea
ch

st
ag

e

en
gi

n
es

m
as

s
fl
oa

t
[0

:
+
∞

)
k
g

to
ta

l
m

as
s

of
th

e
en

gi
n
es

su
b
sy

st
em

b
u
rn

ou
t

m
as

s
fl
oa

t
[0

:
+
∞

)
k
g

to
ta

l
m

as
s

of
ea

ch
st

ag
e

le
ss

b
u
rn

ed
p
ro

p
el

-
la

n
t

st
ru

ct
u
re

ty
p

e
st

r
–

–
ty

p
e

of
p
ri

m
ar

y
st

ru
ct

u
re

of
ea

ch
st

ag
e,

ei
-

th
er

m
an

n
ed

or
u
n
m

an
n
ed

en
gi

n
e

te
ch

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
lo

gi
ca

l
co

n
tr

ol
fo

r
ap

p
li
ed

en
gi

n
e

te
ch

n
ol

og
ie

s

ve
h

te
ch

b
o
ol

T
R

U
E

,
F
A

L
S
E

–
lo

gi
ca

l
co

n
tr

ol
fo

r
ot

h
er

ap
p
li
ed

ve
h
ic

le
te

ch
-

n
ol

og
ie

s

247

Table 33: Number of Stages Option To Design Attribute Value Mappings for Exper-
iments 1-4

Attribute Values

Parameter Option event list element list

1 default minus events 4 and 7 [s0,payload]

2 default minus event 7 [s0,s1,payload]

3 default [s0,s1,payload]

Table 34: Number of Stages Option To Design Attribute Value Mappings for Proof
of Concept

Attribute Values

Parameter Option event list element list

1 default minus events 4, 11, 23, 24, 25,
26, 27, and 28

[s0,payload]

2 default minus events 4, 11, 23, 24, 25,
26, 27, and 28 if MPS Class is nuclear
otherwise default minus events 4, 11,
26, 27, and 28

[s0,s1,payload]

3 default minus events 11, 23, 24, 25, 26,
27, and 28 if MPS Class is nuclear
otherwise default

[s0,s1,s3,payload]

Table 35: Payload Mass Option To Design Attribute Values Mappings

Attribute Value

Parameter Option mass (kg)

1000 1000.0

10000 10000.0

Table 36: MPS Class Option To Design Attribute Value Mappings

Attribute Values

Parameter Option
start penalty mps

(kg)
total thrust mps

(kN)
engine thrust mps

(kN)

liquid 40.0 100.0 25.0

solid 0.0 100.0 100.0

nuclear 40.0 300.0 100.0

electric 1.0 0.1 –

248

Table 37: MPS Propellant Option To Design Attribute Value Mappings

Attribute Values

Parameter Option
isp mps

(s) mixture ratio mps

LOX/LH2 425.0 6.0

LOX/LCH4 350.0 3.5

NTO/MMH 300.0 2.16

Xenon 1000.0 1.0

LH2 900.0 1.0

N2/H4 275.0 1.0

Table 38: RCS Class Option To Design Attribute Value Mappings

Attribute Values

Parameter Option
start penalty rcs

(kg)
total thrust rcs

(kN)
engine thrust rcs

(kN)

liquid 1.0 1.8 0.45

electric 0.1 0.001 –

Table 39: RCS Propellant Option To Design Attribute Value Mappings

Attribute Values

Parameter Option
isp mps

(s) mixture ratio mps

LOX/LH2 400.0 6.0

LOX/LCH4 300.0 3.5

NTO/MMH 290.0 2.16

Xenon 2000.0 1.0

N2/H4 275.0 1.0

Table 40: Pressurant Option To Design Attribute Value Mappings

Attribute Values

Parameter Option pressurant

Helium helium

Nitrogen nitrogen

None none

249

Table 41: Tank Configuration Option To Design Attribute Value Mappings

Attribute Values

Parameter Option num fuel tanks mps num ox tanks mps

Stacked 1 1

Disk 2 2

Single 1 0

Table 42: Structure Type Option To Design Attribute Value Mappings

Attribute Values

Parameter Option manned

Manned TRUE

Unmanned FALSE

Table 43: Power System Option To Design Attribute Value Mappings

Attribute Values

Parameter Option generator type

Solar solar

RTG rtg

Table 44: MLI Layers Option To Design Attribute Value Mappings

Attribute Values

Parameter Option mli layers mps mli layers rcs

10 10 10

20 20 20

30 30 30

50 50 50

60 60 60

Table 45: Communications Type Option To Design Attribute Value Mappings

Attribute Values

Parameter Option comms type

None 0

Near Earth 1

Deep Space 2

250

Table 46: Wireless Sensors Option To Design Attribute Value Mappings

Attribute Values

Parameter Option wireless sensors

TRUE TRUE

FALSE FALSE

Table 47: Low Leak Valves Option To Design Attribute Value Mappings

Attribute Values

Parameter Option
start penalty mps

(kg)
start penalty rcs

(kg)

TRUE 0.0 0.0

FALSE no change no change

Table 48: High Capacity Energy Storage Option To Design Attribute Value Map-
pings

Attribute Values

Parameter Option
storage specific energy

(kWh/kg)

TRUE 125.0

FALSE 30.0

Table 49: Composite Structures Option To Design Attribute Value Mappings

Attribute Values

Parameter Option composite

TRUE TRUE

FALSE FALSE

Table 50: Composite Propellant Tanks Option To Design Attribute Value Mappings

Attribute Values

Parameter Option
composite fuel

tanks mps
composite ox

tanks mps
composite fuel

tanks rcs
composite ox

tanks rcs

TRUE TRUE TRUE TRUE TRUE

FALSE FALSE FALSE FALSE FALSE

251

Table 51: Integrated MPS/RCS Propellant Storage Option To Design Attribute
Value Mappings

Attribute Values

Parameter Option ivfm

TRUE TRUE

FALSE FALSE

Table 52: Autogenous Pressurization Option To Design Attribute Value Mappings

Attribute Values

Parameter Option pressurant

TRUE none

FALSE no change

Table 53: Active Cryocooling Option To Design Attribute Value Mappings

Attribute Values

Parameter Option active cooling mps active cooling rcs

TRUE TRUE TRUE

FALSE FALSE FALSE

252

APPENDIX D

DEFAULT DYREQT MODEL INPUTS

The following are default inputs provided to DYREQT for the experiments and the

proof of concept performed for this dissertation. The experiments utilized a notional

round-trip Mars mission performed by a vehicle with up to three unique stages. The

proof of concept utilized a notional manned 2033 Mars fly-by mission with up to a

three-stage vehicle. For both the experiments and the proof of concept, these default

inputs are altered based on the specific architecture and technology space options

to represent a variety of mission/vehicle combinations to be evaluated. Alternatives

are limited to a maximum of three stages in both the experiments and the proof of

concept, but may contain fewer stages. The values represented in these default inputs

are those used for design space attributes which are not mapped to any architecture

space parameters.

D.1 Experimentation Default Mission Inputs
###################

MISSION DEF

###################

default mission/conops description

DESC = 'Roundtrip'

default mission input

TDI = [{'event_type':'Burn','params':{'dv':{'val':1000.,'units':'m/s'},

'system':'MPS','acs_factor':4.0}}, #TDI burn

{'event_type':'Idle','params':{'dt':{'val':20.,'units':'d'}}}, # transit

{'event_type':'Burn','params':{'dv':{'val':50.,'units':'m/s'},

'system':'RCS'}}, # course correction

{'event_type':'Idle','params':{'dt':{'val':20.,'units':'d'}}}, # transit

{'event_type':'Drop','params':{}}] # drop TDI stage

DOI = [{'event_type':'Burn','params':{'dv':{'val':1500.,'units':'m/s'},

'system':'MPS','acs_factor':4.0}}, # DOI burn

{'event_type':'Idle','params':{'dt':{'val':50.,'units':'d'}}},

{'event_type':'Drop','params':{}}] # drop DOI stage

TRI = [{'event_type':'Burn','params':{'dv':{'val':800.,'units':'m/s'},

'system':'MPS','acs_factor':4.0}}, #TRI burn

{'event_type':'Idle','params':{'dt':{'val':20.,'units':'d'}}}, # transit

{'event_type':'Burn','params':{'dv':{'val':50.,'units':'m/s'},

'system':'RCS'}}, # course correction

{'event_type':'Idle','params':{'dt':{'val':20.,'units':'d'}}}] # transit

253

ROI = [{'event_type':'Burn','params':{'dv':{'val':600.,'units':'m/s'},

'system':'MPS','acs_factor':4.0}},

{'event_type':'Drop','params':{}}] # drop TRI/ROI stage

event_list = TDI + DOI + TRI + ROI

MISSION = {'event_list':event_list}

default conops input

TDI = [[{'active_elements':[0]}],

[{'active_elements':[]}],

[{'active_elements':[0]}],

[{'active_elements':[]}],

[{'active_elements':[0]}]]

DOI = [[{'active_elements':[1]}],

[{'active_elements':[]}],

[{'active_elements':[1]}]]

TRI = [[{'active_elements':[2]}],

[{'active_elements':[]}],

[{'active_elements':[2]}],

[{'active_elements':[]}]]

ROI = [[{'active_elements':[2]}],

[{'active_elements':[2]}]]

CONOPS = TDI + DOI + TRI + ROI

254

D.2 Experimentation Default Vehicle Inputs
###################

VEHICLE DEF

###################

default mission/conops description

DESC = 'Default'

vehicle input

avionics = {'subelement_type':'AvionicsPhD',

'params':{'actuators':[0,2,2,2], # 1 reaction wheel and 3 mag torquers

'sensors':[4,1,1,1,1,1,1,5,0,0,0], # 1 horizon sensor, 1 magnetometer, 3 gyros,

6 sun sensors↪→
'comms_type':2, # deep space

'accuracy':1., # highest accuracy

'wireless_sensors':False,

'additional_devices':[[0.1,15.]] # main cpu

}

}

engines = {'subelement_type':'EnginesPhD',

'params':{'mps_class':'liquid',

'rcs_class':'liquid',

'propellants_mps':'lox/lch4',

'propellants_rcs':'hydrazine',

'start_penalty_mps':{'val':40.,'units':'kg'},

'start_penalty_rcs':{'val':1.,'units':'kg'},

'total_thrust_mps':{'val':100.,'units':'kN'},

'total_thrust_rcs':{'val':1.8,'units':'kN'},

'isp_mps':{'val':350.,'units':'s'},

'isp_rcs':{'val':300.,'units':'s'},

'engine_thrust_mps':{'val':25.,'units':'kN'},

'engine_thrust_rcs':{'val':0.45,'units':'kN'},

'mixture_ratio_mps':3.5,

'mixture_ratio_rcs':3.5,

'core_type':'cermet',

'T_chamber':{'val':2800.,'units':'K'},

'P_chamber':{'val':3.5,'units':'MPa'},

'thruster_efficiency_mps':0.5,

'thruster_efficiency_rcs':0.5,

'thruster_specific_mass_mps':{'val':7.,'units':'kg/kW'},

'thruster_specific_mass_rcs':{'val':7.,'units':'kg/kW'},

'thruster_power_mps':{'val':1.,'units':'kW'},

'thruster_power_rcs':{'val':1.,'units':'kW'},

'redundancy_mps':0.2,

'redundancy_rcs':0.2,

'power_mgmt_specific_mass_mps':{'val':6.,'units':'kg/kW'},

'power_mgmt_specific_mass_rcs':{'val':6.,'units':'kg/kW'},

}

}

power = {'subelement_type':'PowerPhD',

'params':{'generator_type':'PV',

'transmission_efficiency':0.9,

'cell_efficiency':0.175,

'cell_degradation':{'val':3.75,'units':'1/yr'},

'array_density':{'val':3.5, 'units':'kg/m**2'},

'discharge_depth':0.2,

'storage_specific_energy':{'val':30.,'units':'W*h/kg'},

'energy_transfer':'peak-tracking',

'low_array_degradation':False,

'orbit_period':{'val':2.,'units':'h'}, # low lunar orbit

'max_eclipse':{'val':0.5,'units':'h'}, # low lunar orbit

'ops_distance':{'val':1.,'units':'AU'}, # low lunar orbit

'mission_duration':{'val':0.5,'units':'yr'}

}

}

structures = {'subelement_type':'StructuresPhD',

'params':{'manned':False,

'truss':False,

255

'adapter':False,

'composite':False,

'A_de':-1.

}

}

tanks = {'subelement_type':'TanksPhD',

'params':{'num_fuel_tanks_mps':2,

'num_ox_tanks_mps':2,

'fuel_pressure_mps':{'val':40.,'units':'psi'},

'ox_pressure_mps':{'val':50.,'units':'psi'},

'ld_ratio_fuel_tanks_mps':1.,

'ld_ratio_ox_tanks_mps':1.,

'separator_type_mps':'pmd',

'num_fuel_tanks_rcs':1,

'num_ox_tanks_rcs':1,

'fuel_pressure_rcs':{'val':40.,'units':'psi'},

'ox_pressure_rcs':{'val':50.,'units':'psi'},

'ld_ratio_fuel_tanks_rcs':1.,

'ld_ratio_ox_tanks_rcs':1.,

'separator_type_rcs':'pmd',

'pressurant':'Helium',

'pressurant_pressure':{'val':6000.,'units':'psi'},

'num_tanks_pressurant':2,

'tank_ld_ratio_pressurant':1.0,

'material_strength':{'val':538.,'units':'MPa'},

'material_density':{'val':2685.,'units':'kg/m**3'},

'copv_pressurant_tank':False,

'composite_fuel_tanks_mps':False,

'composite_ox_tanks_mps':False,

'composite_fuel_tanks_rcs':False,

'composite_ox_tanks_rcs':False,

'ivfm':False,

}

}

thermal = {'subelement_type':'ThermalPhD',

'params':{'mli_layers_mps':60,

'mli_layers_rcs':60,

'active_cooling_mps':False,

'active_cooling_rcs':False,

'radiator_density':{'val':4.5,'units':'kg/m**2'},

'external_tanks':False,

'hi_efficiency_radiators':False,

'ops_distance':{'val':1.0,'units':'AU'},

'deep_space':False,

'orbit_alt':{'val':500.,'units':'km'}, # low lunar

'r_body':{'val':1737.,'units':'km'}, # moon

'T_body':{'val':270.,'units':'K'}, # moon

'albedo':0.12 # moon

}

}

fixed mass subsystem for payload

submass = {'subelement_type':'FixedMass',

'params':{'mass':{'val':1000.0,'units':'kg'}}}

stage = {'element_type':'Stage',

'subelement_list':[avionics,engines,power,structures,tanks,thermal],

'params':{'auto_drop':False,'mps_reserve':3.,'rcs_reserve':3.,

'boiloff_model':'constant-rate','mga':20.0}}

s0 = deepcopy(stage)

s1 = deepcopy(stage)

s2 = deepcopy(stage)

payload = {'element_type':'Payload','subelement_list':[submass],}

element_list = [s0,s1,s2,payload]

VEHICLE = {'element_list':element_list}

256

D.3 Proof of Concept Default Mission Inputs
###################

MISSION DEF

###################

mission input, 2033 flight

E00 = {'event_type':'Idle','params':{'dt':{'val':145.,'units':'d'}}}

E01 = {'event_type':'Burn','params':{'dv':{'val':220.,'units':'m/s'},'system':'RCS'}} # TCMDRO_33

E02 = {'event_type':'Idle','params':{'dt':{'val':200.,'units':'d'}}}

E03 = {'event_type':'Burn','params':{'dv':{'val':629.,'units':'m/s'},'system':'MPS'}} # TMI_33_1

E04 = {'event_type':'Drop','params':{}} # drop TMI_33

E05 = {'event_type':'Idle','params':{'dt':{'val':130.,'units':'d'}}}

E06 = {'event_type':'Burn','params':{'dv':{'val':40.,'units':'m/s'},'system':'RCS'}} # TCM1_33

E07 = {'event_type':'Idle','params':{'dt':{'val':131.,'units':'d'}}}

E08 = {'event_type':'Drop','params':{}} # drop ConMOI_33

E09 = {'event_type':'Idle','params':{'dt':{'val':1.,'units':'d'}}}

E10 = {'event_type':'Burn','params':{'dv':{'val':1290.,'units':'m/s'},'system':'MPS'}} # Flyby_33

E11 = {'event_type':'Drop','params':{}} # drop FlyBy_33

E12 = {'event_type':'Idle','params':{'dt':{'val':159.,'units':'d'}}}

E13 = {'event_type':'Burn','params':{'dv':{'val':40.,'units':'m/s'},'system':'RCS'}} # TCM2_33

E14 = {'event_type':'Idle','params':{'dt':{'val':159.,'units':'d'}}}

E15 = {'event_type':'Drop','params':{}} # drop ConEOI_33

E16 = {'event_type':'Burn','params':{'dv':{'val':1072.,'units':'m/s'},'system':'MPS'}} # EOI_33

E17 = {'event_type':'Drop','params':{}} # drop ConRd_33

E18 = {'event_type':'Burn','params':{'dv':{'val':220.,'units':'m/s'},'system':'RCS'}} # EOI_33

E19 = {'event_type':'Idle','params':{'dt':{'val':200.,'units':'d'}}}

E20 = {'event_type':'Drop','params':{}} # drop DSH

E21 = {'event_type':'Burn','params':{'dv':{'val':5.,'units':'m/s'},'system':'RCS'}} # EOI_33 Disposal

E22 = {'event_type':'Drop','params':{}} # drop EOI_33

E23 = {'event_type':'Connect','params':{}} # connect Flyby_33

E24 = {'event_type':'Burn','params':{'dv':{'val':5.,'units':'m/s'},'system':'RCS'}} # Flyby_33

Disposal↪→
E25 = {'event_type':'Drop','params':{}} # drop Flyby_33_33

E26 = {'event_type':'Connect','params':{}} # connect TMI_33

E27 = {'event_type':'Burn','params':{'dv':{'val':5.,'units':'m/s'},'system':'RCS'}} # TMI_33 Disposal

E28 = {'event_type':'Drop','params':{}} # drop TMI_33_33

E29 = {'event_type':'Connect','params':{}} # connect DSH

2033 mission

event_list = [E00,E01,E02,E03,E04,E05,E06,E07,E08,E09,E10,E11,E12,E13,E14,

E15,E16,E17,E18,E19,E20,E21,E22,E23,E24,E25,E26,E27,E28,E29]

MISSION = {'event_list':event_list}

2033 conops

CONOPS = [[{'active_elements':[]}], # E00

[{'active_elements':[0]}], # E01

[{'active_elements':[]}], # E02

[{'active_elements':[0]}], # E03

[{'active_elements':[0]}], # E04

[{'active_elements':[]}], # E05

[{'active_elements':[1]}], # E06

[{'active_elements':[]}], # E07

[{'active_elements':[5]}], # E08

[{'active_elements':[]}], # E09

[{'active_elements':[1]}], # E10

[{'active_elements':[1]}], # E11

[{'active_elements':[]}], # E12

[{'active_elements':[2]}], # E13

[{'active_elements':[]}], # E14

[{'active_elements':[6]}], # E15

[{'active_elements':[2]}], # E16

[{'active_elements':[4]}], # E17

[{'active_elements':[2]}], # E18

[{'active_elements':[]}], # E19

[{'active_elements':[3]}], # E20

[{'active_elements':[2]}], # E21

[{'active_elements':[2]}], # E22

[{'active_elements':[1]}], # E23

257

[{'active_elements':[1]}], # E24

[{'active_elements':[1]}], # E25

[{'active_elements':[0]}], # E26

[{'active_elements':[0]}], # E27

[{'active_elements':[0]}], # E28

[{'active_elements':[3]}], # E29

]

default vehicle

index | 0| 1| 2| 3 | 4 | 5 | 6 |

element_list = [s0,s1,s2,DSH,ConRd_33,ConMOI_33,ConEOI_33]

258

D.4 Proof of Concept Default Vehicle Inputs
###################

VEHICLE DEF

###################

vehicle input

avionics = {'subelement_type':'AvionicsPhD',

'params':{'actuators':[0,2,2,2], # 1 reaction wheel and 3 mag torquers

'sensors':[4,1,1,1,1,1,1,5,0,0,0], # 1 horizon sensor, 1 magnetometer, 3 gyros,

6 sun sensors↪→
'comms_type':2, # deep space

'accuracy':1., # highest accuracy

'wireless_sensors':False,

'additional_devices':[[0.1,15.]] # main cpu

}

}

engines = {'subelement_type':'EnginesPhD',

'params':{'mps_class':'liquid',

'rcs_class':'liquid',

'propellants_mps':'lox/lch4',

'propellants_rcs':'hydrazine',

'start_penalty_mps':{'val':40.,'units':'kg'},

'start_penalty_rcs':{'val':1.,'units':'kg'},

'total_thrust_mps':{'val':100.,'units':'kN'},

'total_thrust_rcs':{'val':1.8,'units':'kN'},

'isp_mps':{'val':350.,'units':'s'},

'isp_rcs':{'val':300.,'units':'s'},

'engine_thrust_mps':{'val':25.,'units':'kN'},

'engine_thrust_rcs':{'val':0.45,'units':'kN'},

'mixture_ratio_mps':3.5,

'mixture_ratio_rcs':3.5,

'core_type':'cermet',

'T_chamber':{'val':2800.,'units':'K'},

'P_chamber':{'val':3.5,'units':'MPa'},

'thruster_efficiency_mps':0.5,

'thruster_efficiency_rcs':0.5,

'thruster_specific_mass_mps':{'val':7.,'units':'kg/kW'},

'thruster_specific_mass_rcs':{'val':7.,'units':'kg/kW'},

'thruster_power_mps':{'val':1.,'units':'kW'},

'thruster_power_rcs':{'val':1.,'units':'kW'},

'redundancy_mps':0.2,

'redundancy_rcs':0.2,

'power_mgmt_specific_mass_mps':{'val':6.,'units':'kg/kW'},

'power_mgmt_specific_mass_rcs':{'val':6.,'units':'kg/kW'},

}

}

power = {'subelement_type':'PowerPhD',

'params':{'generator_type':'PV',

'transmission_efficiency':0.9,

'cell_efficiency':0.175,

'cell_degradation':{'val':3.75,'units':'1/yr'},

'array_density':{'val':3.5, 'units':'kg/m**2'},

'discharge_depth':0.2,

'storage_specific_energy':{'val':30.,'units':'W*h/kg'},

'energy_transfer':'peak-tracking',

'low_array_degradation':False,

'orbit_period':{'val':2.,'units':'h'}, # low lunar orbit

'max_eclipse':{'val':0.5,'units':'h'}, # low lunar orbit

'ops_distance':{'val':1.,'units':'AU'}, # low lunar orbit

'mission_duration':{'val':0.5,'units':'yr'}

}

}

structures = {'subelement_type':'StructuresPhD',

'params':{'manned':False,

'truss':False,

'adapter':False,

'composite':False,

259

'A_de':-1.

}

}

tanks = {'subelement_type':'TanksPhD',

'params':{'num_fuel_tanks_mps':2,

'num_ox_tanks_mps':2,

'fuel_pressure_mps':{'val':40.,'units':'psi'},

'ox_pressure_mps':{'val':50.,'units':'psi'},

'ld_ratio_fuel_tanks_mps':1.,

'ld_ratio_ox_tanks_mps':1.,

'separator_type_mps':'pmd',

'num_fuel_tanks_rcs':1,

'num_ox_tanks_rcs':1,

'fuel_pressure_rcs':{'val':40.,'units':'psi'},

'ox_pressure_rcs':{'val':50.,'units':'psi'},

'ld_ratio_fuel_tanks_rcs':1.,

'ld_ratio_ox_tanks_rcs':1.,

'separator_type_rcs':'pmd',

'pressurant':'Helium',

'pressurant_pressure':{'val':6000.,'units':'psi'},

'num_tanks_pressurant':2,

'tank_ld_ratio_pressurant':1.0,

'material_strength':{'val':538.,'units':'MPa'},

'material_density':{'val':2685.,'units':'kg/m**3'},

'copv_pressurant_tank':False,

'composite_fuel_tanks_mps':False,

'composite_ox_tanks_mps':False,

'composite_fuel_tanks_rcs':False,

'composite_ox_tanks_rcs':False,

'ivfm':False,

}

}

thermal = {'subelement_type':'ThermalPhD',

'params':{'mli_layers_mps':60,

'mli_layers_rcs':60,

'active_cooling_mps':False,

'active_cooling_rcs':False,

'radiator_density':{'val':4.5,'units':'kg/m**2'},

'external_tanks':False,

'hi_efficiency_radiators':False,

'ops_distance':{'val':1.0,'units':'AU'},

'deep_space':False,

'orbit_alt':{'val':500.,'units':'km'}, # low lunar

'r_body':{'val':1737.,'units':'km'}, # moon

'T_body':{'val':270.,'units':'K'}, # moon

'albedo':0.12 # moon

}

}

fixed mass subsystem for payload

submass = {'subelement_type':'FixedMass','params':{'mass':{'val':1000.0,'units':'kg'}}}

stage = {'element_type':'Stage','subelement_list':[engines,power,structures,tanks,thermal,avionics],

'params':{'auto_drop':False,'mps_reserve':3.,'rcs_reserve':3.,

'boiloff_model':'constant-rate','mga':20.0}}

s0 = deepcopy(stage)

s1 = deepcopy(stage)

s2 = deepcopy(stage)

general payload element definitions

payload = {'element_type':'Payload','subelement_list':[submass],'params':{'auto_drop':False}}

DSH = deepcopy(payload); DSH['subelement_list'][0]['params']['mass'] = 20000.

ConRd_33 = deepcopy(payload); ConRd_33['subelement_list'][0]['params']['mass'] = 9000.

ConMOI_33 = deepcopy(payload); ConMOI_33['subelement_list'][0]['params']['mass'] = 2000.

ConEOI_33 = deepcopy(payload); ConEOI_33['subelement_list'][0]['params']['mass'] = 1000.

element_list = [s0,s1,s2,DSH,ConRd_33,ConMOI_33,ConEOI_33]

VEHICLE = {'element_list':element_list}

260

APPENDIX E

LAYERED PARETO FRONTS

A Pareto front is a set of undominated data points in a multi-objective space. Figure

89 illustrates the concept of Pareto front layers for a two-dimensional objective space

where both objectives or minimized. For each layer, the set of design points are

undominated by any design points of a higher layer. The layered Pareto front consists

of the combination of all points in each layer up to and including the desired layer

number. For instance, a three-layered Pareto front would consist of the combination

of all the points on layers one, two, and three in Figure 89.

Layered Pareto Fronts

Figure 89: Notional Example of Pareto Front Layers

Each layer is obtained by excluding the previous layer from the objective space and

evaluating a new Pareto front. This process of exclusion and reevaluation continues

for the desired number of layers. This process may continue until all design points

261

of the entire objective space are returned. The following JMP add-in was developed

for the purpose of providing a simple interface for selecting these multi-layer Pareto

fronts from a set of multi-objective data for this thesis.

E.1 JSL Layred Pareto Front Analysis Script
//Layered Pareto Fronts

//By Douglas J. Trent

// douglas.trent@nasa.gov

Names Default To Here(1);

get_settings = function({cols},

setwin = New Window("Layered Pareto Fronts for "||Char(dt << Get Name())||"",

<< modal,

Panel Box("Select dominant high values",

Text Box("Check boxes to maximize."),

Text Box("Uncheck boxes to minimize."),

spacer box(size (275,5)),

cb_rol = Checkbox(cols)

),

Panel Box("Options",

Lineup Box(

N Col(3),

Text Box("Select number of (Pareto) Dominant layers:"),

nb = Number Edit Box(1 , 3), nb << Set Increment(1),

sb = Spin Box(

Function({value},

if(value >= 1,

nb << Increment(value),

value <= -1,

if(nb << Get() > 1, nb << Increment(value))

)

)

)

),

H List Box(

Spacer Box(size(98,0)),

Text Box("Create subset data table:"),

cb_sub = Check Box("")

),

H List Box(

Spacer Box(size(125,0)),

Text Box("Save script to table:"),

cb_scr = Check Box("")

),

H List Box(

Spacer Box(size(93,0)),

Text Box("Hide non-dominant rows:"),

cb_h = Check Box("")

),

H List Box(

Spacer Box(size(78,0)),

Text Box("Exclude non-dominant rows:"),

cb_e = Check Box("")

)

),

Spacer Box(size(0,10)),

H List Box(

Spacer Box(size(163,0)),

Button Box("OK",

b = 1;

262

l = nb << Get();

if(l < 1, l = 1);

s = cb_sub << Get();

sc = cb_scr << Get();

h = cb_h << Get();

e = cb_e << Get();

r = {};

for(i=1, i<=nitems(cols), i++,

r[i] = cb_rol << Get(i);

);

),

Button Box("Cancel",

b = 0;

l = 1;

s = 0;

r = {};

sc = 0;

h = 0;

e = 0

)

)

);

return(evalList({b,l,s,r,sc,h,e}))

);

get_cols = function({dt},

colwin = New Window("Layered Pareto Fronts for "||Char(dt << Get Name())||"",

<< modal,

Text Box("Select columns for (Pareto) Dominant points"),

Spacer Box(size(0,10)),

columnList = Col List Box(dt,

all,

width(250),

nlines(30)

),

Spacer Box(size(0,10)),

H List Box(

Spacer Box(size(145,0)),

Button Box("OK",

c = columnList << Get Selected();

if(nitems(c)>0,

b = 1,

b = 2

)

),

Button Box("Cancel",

b = 0;

c = {};

l = 1;

s = 0;

r = {};

sc = 0;

h = 0;

e = 0;

)

)

);

if(b==1,

{b,l,s,r,sc,h,e} = get_settings(c)

);

return(evalList({b,c,l,s,r,sc,h,e}));

);

263

Select Layered Dominant = function({cols={},roles={},layers=1,subset=0,hide=0,exclude=0},

// get the data table

dt = Current Data Table();

// select columns

if(cols != {} & nitems(roles) == nitems(cols) & layers > 0, button=1; scr=0;,

{button,cols,layers,subset,roles,scr,hide,exclude} = get_cols(dt)

);

// parse user selection

if(button>0 & nitems(cols) > 0,

// get the included row

rows = dt << Select Where(Excluded(Row State()) != 1) << Get Selected Rows();

nrows = nrows(rows);

StatusMsg("# of included rows: "||Char(nrows)||"");

StatusMsg("performing lpf on "||Char(nitems(cols))||" columns");

// run lpf

pfs = {};

for(i=1, i<=layers, i++,

StatusMsg("Calculating layer "||Char(i)||"");

dt << Select Dominant({cols}, roles);

dt << Exclude;

dt << Label;

//lpf(cols, roles, dt);

);

// reset row states of lpfs

dt << Select Where(Labeled(Row State()) == 1) << Exclude << Label;

// create subset table of Pareto front

if(subset > 0,

dt << Subset(Output Table(""||Char(layers)||"-Layered Pareto Front Analysis"),

Selected Rows, All Columns)↪→
);

// hide all other rows

if(hide > 0,

dt << Invert Row Selection << Hide;

dt << Invert Row Selection

);

// exclude all other rows

if(exclude > 0,

dt << Invert Row Selection << Exclude;

dt << Invert Row Selection

);

// create table script

if(scr == 1,

lpfscript = "

include(\!"$ADDIN_HOME(com.trent.lpf)\lpf.jsl\!");

cols = "||Char(cols)||";

roles = "||Char(roles)||";

layers = "||Char(layers)||";

subset = "||Char(subset)||";

hide = "||Char(hide)||";

exclude = "||Char(exclude)||";

Select Layered Dominant(cols,roles,layers,subset,hide,exclude);

";

eval(parse("dt<<New Script(\!"LPFs\!","||lpfscript||");"));

);

StatusMsg("operation complete"),

264

button == 0,

StatusMsg("operation canceled by user"),

StatusMsg("no columns selected, operation aborted");

/*

new window("Error Message",

<<modal,

VList Box(align("center"),

Text Box("No columns selected"),

Text Box("Operation aborted"),

Spacer Box(size(0,10)),

Button Box("OK")

)

)

*/

);

);

265

APPENDIX F

EXPERIMENT 2 SIMILARITY DISTRIBUTION

SUMMARY STATISTICS

The purpose of Experiment 2 is to determine if presenting results of individual archi-

tectures for these large spaces would prevent high-level design decisions from being

studied. It is expected that high-level architecture trends will be difficult to observe

when limiting the top results due to such large numbers of a single architecture type

in the optimal objective space. The similarity metric described in Chapter 4.5.4 was

utilized as a measure of likeness of alternatives. The distributions of this similar-

ity metric of the alternatives for the top N design points were examined to reach

conclusions with regard to Hypothesis 5.1. The following set of data supports the

observations detailed in Chapter 5.1.3.

Data was collected for a variety of objective spaces: single-objective in cost, single-

objective in mass, and multi-objective in cost and mass. This was due to the incon-

sistency between number of alternatives with number of Pareto front layers based on

the defined objective space. For each of these objective spaces, varying-sized sets of

top alternatives were examined for similarity of alternatives. The tables summarize

the distribution statistics for each of the sets, while the graphs provide visualization

of the distributions. These distributions of the top N alternative subsets can be com-

pared to the distribution of similarity for all alternatives in Figure 90 to determine the

quality of representation of the full set of alternatives provided by the top N subset

distribution.

266

Table 54: LPF Layers and Number of Design Points

N

of Layers Multi-Objective Mass-Objective Cost-Objective

1 2 2 2

2 6 4 4

3 10 6 6

4 16 8 8

5 24 10 10

10 68 20 20

20 226 40 40

30 418 60 62

40 830 80 88

50 1328 100 108

100 5090 200 218

200 17030 402 458

300 37651 604 708

400 76937 806 974

500 135508 1008 1230

WKHVLVGDWD���'LVWULEXWLRQ�RI�6LPLODULW\ 3DJH���RI��

'LVWULEXWLRQV

6LPLODULW\

���� ���� ��� ����� ����� �����

4XDQWLOHV
PD[LPXP
PLQLPXP

��������
��������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
���������
���������
�������

Figure 90: Full Objective Space Similarity Distribution

267

Table 55: Multi-Objective Similarity Distribution Summary

N Max Min Range µ σ

2 0.894712 0.893173 0.001539 0.8939425 0.0010882

6 0.894712 0.889739 0.004973 0.8922850 0.0017542

10 0.894712 0.889739 0.004973 0.8929480 0.0016448

16 0.894712 0.888201 0.006511 0.8918409 0.0020614

24 0.902106 0.888201 0.013905 0.8929012 0.0031756

68 0.902106 0.888201 0.013905 0.8944559 0.0043119

226 0.903339 0.886662 0.016677 0.8944350 0.0045575

418 0.903339 0.885123 0.018216 0.8940312 0.0045128

830 0.909622 0.885123 0.024499 0.8946365 0.0046238

1328 0.909622 0.885123 0.024499 0.8949155 0.0047745

5090 0.909622 0.883585 0.026037 0.8960166 0.0046291

17030 0.916179 0.882046 0.034133 0.8969876 0.0047947

37651 0.916395 0.882046 0.034349 0.8982201 0.0052000

76937 0.920666 0.882046 0.038620 0.8997035 0.0055028

135508 0.921899 0.882046 0.039853 0.9008529 0.0058279

8921088 0.928456 0.880507 0.047949 0.9079200 0.0074960

268

WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� �WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� �WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� ��WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� ��WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� ��

F
ig

u
re

9
1
:

M
u
lt

i-
O

b
je

ct
iv

e
S
im

il
ar

it
y

D
is

tr
ib

u
ti

on
s,

1
to

5
L

ay
er

ed
P

ar
et

o
F

ro
n
t

in
S
te

p
s

of
1

269

WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� ��WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��

�WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��

�WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��

�WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

��
��

��
��

�
��
��

��
��

�
��

��

F
ig

u
re

9
2
:

M
u
lt

i-
O

b
je

ct
iv

e
S
im

il
ar

it
y

D
is

tr
ib

u
ti

on
s,

10
to

50
L

ay
er

ed
P

ar
et

o
F

ro
n
t

in
S
te

p
s

of
10

270

WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�

�
��
��

��
��

�
��
��

��
��

�
��

��WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�

�
��
��

��
��

�
��
��

��
��

�
��

��
�WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��

��
�WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�

�
��
��

��
��

�
��
��

��
��

�
��

��
�WK
HV
LV
GD

WD
���
'
LV
WUL
EX

WLR
Q

3
DJ

H�
��
RI
��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

UL
W\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WL
FV

0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8
SS

HU
��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�

�
��
��

��
��

��
��

��
��

�
��

��
��

F
ig

u
re

9
3
:

M
u
lt

i-
O

b
je

ct
iv

e
S
im

il
ar

it
y

D
is

tr
ib

u
ti

on
s,

10
0

to
50

0
L

ay
er

ed
P

ar
et

o
F

ro
n
t

in
S
te

p
s

of
10

0

271

Table 56: Mass-Objective Similarity Distribution Summary

N Max Min Range µ σ

2 0.894712 0.893173 0.001539 0.8939425 0.0010882

6 0.894712 0.889739 0.004973 0.8922850 0.0017542

10 0.894712 0.888201 0.006511 0.8919535 0.0022143

16 0.894712 0.888201 0.006511 0.8914563 0.0020993

24 0.894712 0.888201 0.006511 0.8918706 0.0020328

68 0.902106 0.888201 0.013905 0.8949466 0.0042156

226 0.902106 0.885123 0.016983 0.8933503 0.0045252

418 0.902228 0.885123 0.017105 0.8936429 0.0044170

830 0.909622 0.885123 0.024499 0.8939707 0.0048318

1328 0.909622 0.883585 0.026037 0.8944469 0.0051703

5090 0.909622 0.883585 0.026037 0.8959993 0.0050216

17030 0.916179 0.882046 0.034133 0.8975037 0.0052876

37651 0.919829 0.882046 0.037783 0.8987812 0.0056004

76937 0.920666 0.882046 0.038620 0.9001654 0.0059191

135508 0.927223 0.882046 0.045177 0.9013363 0.0060132

8921088 0.928456 0.880507 0.047949 0.9079200 0.0074960

272

H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� �H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� �H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� ��H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� ��H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

��
��

��
��

� ��

F
ig

u
re

9
4
:

M
as

s-
O

b
je

ct
iv

e
S
im

il
ar

it
y

D
is

tr
ib

u
ti

on
s,

N
=

2,
6,

10
,

16
,

24

273

H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

��
��

��
��

� ��H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

��
��

��
��

�
��
��

��
��

�
��

�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

��
��

��
��

��
��

��
��

�
��
��

��
��

�
��

�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��

�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��

��

F
ig

u
re

9
5
:

M
as

s-
O

b
je

ct
iv

e
S
im

il
ar

it
y

D
is

tr
ib

u
ti

on
s,

N
=

68
,

22
6,

41
8,

83
0,

13
28

274

H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�
�

��
��

��
��

�
��
��

��
��

�
��

��H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�
�

��
��

��
��

�
��
��

��
��

�
��

��
�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�
�

��
��

��
��

�
��
��

��
��

�
��

��
�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

�H
��

��
��

��
��

�
��
��

��
��

�
��

��
�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�
�

��
��

��
��

�
��
��

��
��

�
��

��
��

F
ig

u
re

9
6
:

M
as

s-
O

b
je

ct
iv

e
S
im

il
ar

it
y

D
is

tr
ib

u
ti

on
s,

N
=

50
90

,
17

03
0,

37
65

1,
76

93
7,

13
55

08

275

Table 57: Cost-Objective Similarity Distribution Summary

N Max Min Range µ σ

2 0.894712 0.893173 0.001539 0.8939425 0.0010882

6 0.894712 0.889739 0.004973 0.8922850 0.0017542

10 0.894712 0.889739 0.004973 0.8929480 0.0016448

16 0.894712 0.888201 0.006511 0.8918409 0.0020614

24 0.902106 0.888201 0.013905 0.8929012 0.0031756

68 0.902106 0.888201 0.013905 0.8944559 0.0043119

226 0.903339 0.886662 0.016677 0.8944350 0.0045575

418 0.903339 0.885123 0.018216 0.8940312 0.0045128

830 0.909622 0.885123 0.024499 0.8946365 0.0046238

1328 0.909622 0.885123 0.024499 0.8949155 0.0047745

5090 0.909622 0.883585 0.026037 0.8960166 0.0046291

17030 0.916179 0.882046 0.034133 0.8969876 0.0047947

37651 0.916395 0.882046 0.034349 0.8982201 0.0052000

76937 0.920666 0.882046 0.038620 0.8997035 0.0055028

135508 0.921899 0.882046 0.039853 0.9008529 0.0058279

8921088 0.928456 0.880507 0.047949 0.9079200 0.0074960

276

H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� �H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� �H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

��
��

��
��

��
��

��
��

�
��
��

��
��

� ��H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

��
��

��
��

� ��H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
� ��

F
ig

u
re

9
7
:

M
as

s-
O

b
je

ct
iv

e
S
im

il
ar

it
y

D
is

tr
ib

u
ti

on
s,

N
=

2,
6,

10
,

16
,

24

277

H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

� ��H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��

�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��

�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��

�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��
��

��
��

�
��

��

F
ig

u
re

9
8
:

M
as

s-
O

b
je

ct
iv

e
S
im

il
ar

it
y

D
is

tr
ib

u
ti

on
s,

N
=

68
,

22
6,

41
8,

83
0,

13
28

278

H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�
�

��
��

��
��

�
��
��

��
��

��
��H[

S�
BG

DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�
�

��
��

��
��

�
��
��

��
��

�
��

��
�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

�H
��

��
��

��
��

�
��
��

��
��

�
��

��
�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�
�

��
��

��
��

�
��
��

��
��

�
��

��
�H[
S�

BG
DW
D�
��'

LV
WUL
EX

WLR
Q

3D
JH

��
�R
I��

'
LV
WU
LE
XW
LR
QV

6L
P
LOD

ULW
\

��
��

��
��

�

��
��

��
��

�

��
�

��
��

�

��
��

��
��

�

��
��

��
��

�

��
��

4
XD

QW
LOH

V
P
D[

LP
XP

P
LQ
LP

XP
��
��

��
��

��
��

��
��

6X
P
P
DU
\�
6W
DW
LV
WLF

V
0
HD

Q
6W
G�
'
HY

6W
G�
(U
U�0

HD
Q

8S
SH

U��
��

�0
HD

Q
/R

Z
HU
��
��

�0
HD

Q
1

��
��

��
��

�
��
��

��
��

�
��
��

��
H�
�

��
��

��
��

�
��
��

��
��

�
��

��
��

F
ig

u
re

9
9
:

M
as

s-
O

b
je

ct
iv

e
S
im

il
ar

it
y

D
is

tr
ib

u
ti

on
s,

N
=

50
90

,
17

03
0,

37
65

1,
76

93
7,

13
55

08

279

APPENDIX G

EXPERIMENT 3 PORTFOLIO DISTRIBUTION DATA

The purpose of experiment 3 is to determine how parameters on which to group sets

of architectures into portfolios affect the resulting figures of merit of those portfolios.

Hypothesis 5.2 claims that the size of the portfolio is related to the variation of portfo-

lio aggregate metrics, as well as the variation of various metrics between alternatives

within a portfolio. Chapter 5.1.4 observed this hypothesis to be false, supported by

observations in the variance of various objective parameters for different grouping

criteria. This appendix provides detailed data for the distribution statistics of the

portfolios formed by these grouping criteria supporting the observations detailed in

Chapter 5.1.4.

280

T
a
b
le

5
8
:

M
is

si
on

P
or

tf
ol

io
s

D
is

tr
ib

u
ti

on
S
u
m

m
ar

y
S
ta

ti
st

ic
s

D
e
sc

ri
p
ti

o
n

N
µ
m

g
r
o
s
s

(k
g
)

σ
m

g
r
o
s
s

(k
g
)

µ
C

g
r
o
s
s

(M
Y

r)
σ
C

g
r
o
s
s

(M
Y

r)
µ
P
M
F
σ
P
M
F
µ
S

σ
S

L
on

g
S
ta

y
31

62
88

9
3.

85
6e

+
4

5.
33

9e
+

8
4.

34
4e

+
4

5.
28

8e
+

8
6.

56
7e

-1
6.

32
5e

-3
9.

08
3e

-1
6.

78
7e

-5
S
h
or

t
S
ta

y
33

73
68

1
3.

77
7e

+
4

5.
29

3e
+

8
4.

39
9e

+
4

5.
19

5e
+

8
6.

51
5e

-1
7.

15
4e

-3
9.

10
0e

-1
6.

65
3e

-5
L

ar
ge

C
or

re
ct

io
n

32
49

60
8

3.
97

6e
+

4
5.

71
4e

+
8

4.
40

1e
+

4
5.

31
2e

+
8

6.
62

6e
-1

6.
46

8e
-3

9.
08

4e
-1

6.
71

6e
-5

S
m

al
l

C
or

re
ct

io
n

32
86

96
2

3.
65

6e
+

4
4.

87
4e

+
8

4.
34

3e
+

4
5.

16
8e

+
8

6.
45

5e
-1

6.
90

2e
-3

9.
09

9e
-1

6.
75

0e
-5

L
on

g
L

ar
ge

15
74

76
4

4.
02

8e
+

4
5.

77
7e

+
8

4.
37

9e
+

4
5.

38
2e

+
8

6.
65

4e
-1

6.
04

6e
-3

9.
07

5e
-1

6.
70

4e
-5

L
on

g
S
m

al
l

15
88

12
5

3.
68

5e
+

4
4.

84
6e

+
8

4.
30

9e
+

4
5.

19
2e

+
8

6.
48

1e
-1

6.
45

3e
-3

9.
09

0e
-1

6.
74

8e
-5

S
h
or

t
L

ar
ge

16
74

84
4

3.
92

6e
+

4
5.

64
9e

+
8

4.
42

2e
+

4
5.

24
5e

+
8

6.
60

0e
-1

6.
85

1e
-3

9.
09

2e
-1

6.
57

9e
-5

S
h
or

t
S
m

al
l

16
98

83
7

3.
63

0e
+

4
4.

89
9e

+
8

4.
37

6e
+

4
5.

14
4e

+
8

6.
43

1e
-1

7.
31

0e
-3

9.
10

8e
-1

6.
60

2e
-5

281

Si
m

ila
rit

y
Va

ria
nc

e
G

ro
ss

 M
as

s
Va

ria
nc

e
G

ro
ss

 C
os

t V
ar

ia
nc

e
Ve

hi
cl

e
PM

F
Va

ria
nc

e

0 500000 1000000 1500000 2000000

Portfolio Size

2500000 3000000 3500000

Figure 100: Correlation in Portfolio Size vs Objective Metric Variance for Mission-
based Portfolios

282

T
a
b
le

5
9
:

T
ec

h
n
ol

og
y

P
or

tf
ol

io
s

D
is

tr
ib

u
ti

on
S
u
m

m
ar

y
S
ta

ti
st

ic
s

D
e
sc

ri
p
ti

o
n

N
µ
m

g
r
o
s
s

(k
g
)

σ
m

g
r
o
s
s

(k
g
)

µ
C

g
r
o
s
s

(M
Y

r)
σ
C

g
r
o
s
s

(M
Y

r)
µ
P
M
F
σ
P
M
F
µ
S

σ
S

N
o

T
ec

h
s

70
85

06
3.

89
4e

+
4

5.
42

6e
+

8
4.

00
9e

+
4

4.
37

5e
+

8
6.

61
2e

-1
5.

89
9e

-3
9.

11
1e

-1
6.

23
7e

-5
W

ir
el

es
s

S
en

so
rs

O
n
ly

70
85

54
3.

89
0e

+
4

5.
42

4e
+

8
4.

41
7e

+
4

5.
21

6e
+

8
6.

61
3e

-1
5.

90
3e

-3
9.

09
9e

-1
6.

23
9e

-5
C

om
p

os
it

e
S
tr

u
ct

u
re

s
O

n
ly

71
98

46
3.

71
5e

+
4

5.
03

0e
+

8
4.

32
5e

+
4

4.
86

9e
+

8
6.

66
1e

-1
5.

90
7e

-3
9.

09
9e

-1
6.

25
9e

-5
C

om
p

os
it

e
T

an
k
s

on
ly

70
94

42
3.

85
7e

+
4

5.
33

5e
+

8
4.

40
2e

+
4

5.
15

9e
+

8
6.

61
7e

-1
5.

89
2e

-3
9.

09
9e

-1
6.

24
8e

-5
A

ct
iv

e
C

ry
o
co

ol
in

g
O

n
ly

76
83

38
3.

86
1e

+
4

5.
34

0e
+

8
4.

63
4e

+
4

5.
87

5e
+

8
6.

30
9e

-1
8.

80
0e

-3
9.

10
0e

-1
6.

09
1e

-5
In

te
gr

at
ed

M
P

S
/R

C
S

O
n
ly

70
83

38
3.

92
4e

+
4

5.
51

0e
+

8
4.

10
4e

+
4

4.
38

5e
+

8
6.

61
2e

-1
5.

87
3e

-3
9.

09
9e

-1
6.

23
1e

-5
L

o w
L

ea
k

V
al

ve
s

O
n
ly

70
90

01
3.

84
3e

+
4

5.
43

1e
+

8
4.

33
6e

+
4

5.
34

5e
+

8
6.

57
1e

-1
6.

02
6e

-3
9.

09
9e

-1
6.

24
4e

-5
H

ig
h

C
ap

ac
it

y
B

at
te

ri
es

O
n
ly

70
88

17
3.

85
9e

+
4

5.
43

4e
+

8
4.

18
8e

+
4

4.
80

8e
+

8
6.

61
6e

-1
5.

96
6e

-3
9.

09
9e

-1
6.

24
0e

-5
A

ll
T

ec
h
s

79
57

28
3.

52
7e

+
4

4.
85

0e
+

8
4.

85
4e

+
4

6.
36

9e
+

8
6.

29
9e

-1
8.

53
3e

-3
9.

02
7e

-1
6.

09
6e

-5
O

n
e

T
ec

h
50

32
33

6
3.

85
0e

+
4

5.
36

0e
+

8
4.

34
7e

+
4

5.
12

8e
+

8
6.

56
8e

-1
6.

49
3e

-3
9.

09
9e

-1
6.

22
1e

-5
P

ow
er

T
ec

h
s

15
04

54
5

3.
68

3e
+

4
5.

15
2e

+
8

4.
54

0e
+

4
5.

74
4e

+
8

6.
44

8e
-1

7.
57

5e
-3

9.
06

1e
-1

7.
43

5e
-5

E
n
gi

n
e

T
ec

h
s

15
04

72
9

3.
67

6e
+

4
5.

14
8e

+
8

4.
61

0e
+

4
5.

95
3e

+
8

6.
42

7e
-1

7.
53

6e
-3

9.
06

1e
-1

7.
43

7e
-5

T
an

k
T

ec
h
s

22
13

50
8

3.
76

0e
+

4
5.

24
8e

+
8

4.
46

9e
+

4
5.

44
3e

+
8

6.
50

1e
-1

7.
06

5e
-3

9.
07

3e
-1

7.
36

3e
-5

S
tr

u
ct

u
re

s
T

ec
h
s

15
15

57
4

3.
61

6e
+

4
4.

94
4e

+
8

4.
60

2e
+

4
5.

72
6e

+
8

6.
47

0e
-1

7.
61

2e
-3

9.
06

2e
-1

7.
46

5e
-5

A
v
io

n
ic

s
T

ec
h
s

15
04

28
2

3.
69

8e
+

4
5.

15
3e

+
8

4.
64

8e
+

4
5.

87
3e

+
8

6.
44

7e
-1

7.
54

0e
-3

9.
06

1e
-1

7.
43

4e
-5

T
h
er

m
al

T
ec

h
s

15
64

06
6

3.
69

1e
+

4
5.

11
8e

+
8

4.
74

6e
+

4
6.

13
8e

+
8

6.
30

4e
-1

8.
66

4e
-3

9.
06

3e
-1

7.
43

1e
-5

283

Si
m

ila
rit

y
Va

ria
nc

e
G

ro
ss

 M
as

s
Va

ria
nc

e
G

ro
ss

 C
os

t V
ar

ia
nc

e
Ve

hi
cl

e
PM

F
Va

ria
nc

e

0 500000 1000000 1500000 2000000

Portfolio Size

2500000 3000000 3500000

Figure 101: Correlation in Portfolio Size vs Objective Metric Variance for
Technology-based Portfolios

284

T
a
b
le

6
0
:

V
eh

ic
le

P
or

tf
ol

io
s

D
is

tr
ib

u
ti

on
S
u
m

m
ar

y
S
ta

ti
st

ic
s

D
e
sc

ri
p
ti

o
n

N
µ
m

g
r
o
s
s

(k
g
)

σ
m

g
r
o
s
s

(k
g
)

µ
C

g
r
o
s
s

(M
Y

r)
σ
C

g
r
o
s
s

(M
Y

r)
µ
P
M
F
σ
P
M
F
µ
S

σ
S

M
an

n
ed

32
65

27
7

3.
85

1e
+

4
5.

39
5e

+
8

5.
24

0e
+

4
5.

13
5e

+
8

6.
50

1e
-1

6.
81

3e
-3

9.
08

4e
-1

6.
68

4e
-5

U
n
m

an
n
ed

32
71

29
3

3.
77

9e
+

4
5.

23
7e

+
8

3.
50

6e
+

4
3.

84
5e

+
8

6.
57

9e
-1

6.
67

6e
-3

9.
09

9e
-1

6.
78

3e
-5

M
an

n
ed

&
P

V
16

33
14

0
3.

83
1e

+
4

5.
38

2e
+

8
5.

22
4e

+
4

5.
13

5e
+

8
6.

52
7e

-1
6.

62
2e

-3
9.

09
2e

-1
6.

63
9e

-5
M

an
n
ed

&
R

T
G

16
32

13
7

3.
87

1e
+

4
5.

40
7e

+
8

5.
25

6e
+

4
5.

13
4e

+
8

6.
47

5e
-1

6.
99

0e
-3

9.
07

6e
-1

6.
61

0e
-5

U
n
m

an
n
ed

&
P

V
16

36
03

5
3.

76
0e

+
4

5.
22

5e
+

8
3.

52
3e

+
4

3.
86

8e
+

8
6.

60
6e

-1
6.

48
6e

-3
9.

10
7e

-1
6.

73
5e

-5
U

n
m

an
n
ed

&
R

T
G

16
35

25
8

3.
79

9e
+

4
5.

24
8e

+
8

3.
48

9e
+

4
3.

82
1e

+
8

6.
55

3e
-1

6.
85

2e
-3

9.
09

2e
-1

6.
71

2e
-5

M
an

n
ed

&
P

V
&

20
M

L
I

81
61

40
3.

85
5e

+
4

5.
43

6e
+

8
5.

23
6e

+
4

5.
19

5e
+

8
6.

53
4e

-1
6.

59
7e

-3
9.

10
9e

-1
6.

33
3e

-5
M

an
n
ed

&
P

V
&

60
M

L
I

81
70

00
3.

80
6e

+
4

5.
32

8e
+

8
5.

21
2e

+
4

5.
07

4e
+

8
6.

52
0e

-1
6.

64
6e

-3
9.

07
4e

-1
6.

35
7e

-5
M

an
n
ed

&
R

T
G

&
20

M
L

I
81

55
36

3.
90

2e
+

4
5.

47
4e

+
8

5.
27

5e
+

4
5.

23
6e

+
8

6.
47

8e
-1

7.
10

7e
-3

9.
09

3e
-1

6.
30

3e
-5

M
an

n
ed

&
R

T
G

&
60

M
L

I
81

66
01

3.
84

0e
+

4
5.

33
7e

+
8

5.
23

6e
+

4
5.

03
2e

+
8

6.
47

2e
-1

6.
87

2e
-3

9.
05

9e
-1

6.
33

1e
-5

U
n
m

an
n
ed

&
P

V
&

20
M

L
I

81
76

87
3.

78
2e

+
4

5.
26

5e
+

8
3.

52
4e

+
4

3.
86

9e
+

8
6.

61
4e

-1
6.

47
2e

-3
9.

12
4e

-1
6.

41
3e

-5
U

n
m

an
n
ed

&
P

V
&

60
M

L
I

81
83

48
3.

73
8e

+
4

5.
18

3e
+

8
3.

52
2e

+
4

3.
86

8e
+

8
6.

59
8e

-1
6.

49
9e

-3
9.

09
0e

-1
6.

47
1e

-5
U

n
m

an
n
ed

&
R

T
G

&
20

M
L

I
81

71
97

3.
82

7e
+

4
5.

30
0e

+
8

3.
48

9e
+

4
3.

81
8e

+
8

6.
55

6e
-1

6.
98

4e
-3

9.
10

9e
-1

6.
39

4e
-5

U
n
m

an
n
ed

&
R

T
G

&
60

M
L

I
81

80
61

3.
77

2e
+

4
5.

19
4e

+
8

3.
48

9e
+

4
3.

82
3e

+
8

6.
54

9e
-1

6.
72

0e
-3

9.
07

5e
-1

6.
44

5e
-5

M
an

n
ed

&
P

V
&

20
M

L
I&

N
E

40
80

83
3.

85
2e

+
4

5.
43

7e
+

8
5.

22
6e

+
4

5.
21

0e
+

8
6.

54
0e

-1
6.

60
6e

-3
9.

11
6e

-1
6.

27
4e

-5
M

an
n
ed

&
P

V
&

20
M

L
I&

D
S

40
80

57
3.

85
9e

+
4

5.
43

5e
+

8
5.

24
7e

+
4

5.
18

0e
+

8
6.

52
9e

-1
6.

58
7e

-3
9.

10
1e

-1
6.

27
4e

-5
M

an
n
ed

&
P

V
&

60
M

L
I&

N
E

40
85

16
3.

80
3e

+
4

5.
32

9e
+

8
5.

20
1e

+
4

5.
08

8e
+

8
6.

52
6e

-1
6.

65
4e

-3
9.

08
2e

-1
6.

30
1e

-5
M

an
n
ed

&
P

V
&

60
M

L
I&

D
S

40
84

84
3.

81
0e

+
4

5.
32

6e
+

8
5.

22
2e

+
4

5.
05

9e
+

8
6.

51
4e

-1
6.

63
7e

-3
9.

06
7e

-1
6.

29
3e

-5
M

an
n
ed

&
R

T
G

&
20

M
L

I&
N

E
40

77
86

3.
89

7e
+

4
5.

47
6e

+
8

5.
26

1e
+

4
5.

25
3e

+
8

6.
48

6e
-1

7.
11

9e
-3

9.
10

1e
-1

6.
25

1e
-5

M
an

n
ed

&
R

T
G

&
20

M
L

I&
D

S
40

77
50

3.
90

7e
+

4
5.

47
3e

+
8

5.
28

9e
+

4
5.

21
9e

+
8

6.
47

0e
-1

7.
09

4e
-3

9.
08

6e
-1

6.
23

6e
-5

M
an

n
ed

&
R

T
G

&
60

M
L

I&
N

E
40

83
19

3.
83

5e
+

4
5.

33
9e

+
8

5.
22

2e
+

4
5.

04
8e

+
8

6.
48

0e
-1

6.
88

1e
-3

9.
06

7e
-1

6.
27

1e
-5

M
an

n
ed

&
R

T
G

&
60

M
L

I&
D

S
40

82
82

3.
84

5e
+

4
5.

33
6e

+
8

5.
25

0e
+

4
5.

01
6e

+
8

6.
46

4e
-1

6.
86

2e
-3

9.
05

1e
-1

6.
27

2e
-5

U
n
m

an
n
ed

&
P

V
&

20
M

L
I&

N
E

40
88

58
3.

77
8e

+
4

5.
26

6e
+

8
3.

52
5e

+
4

3.
87

0e
+

8
6.

62
0e

-1
6.

48
1e

-3
9.

13
2e

-1
6.

35
4e

-5
U

n
m

an
n
ed

&
P

V
&

20
M

L
I&

D
S

40
88

29
3.

78
5e

+
4

5.
26

4e
+

8
3.

52
3e

+
4

3.
86

9e
+

8
6.

60
9e

-1
6.

46
2e

-3
9.

11
7e

-1
6.

35
4e

-5
U

n
m

an
n
ed

&
P

V
&

60
M

L
I&

N
E

40
91

89
3.

73
5e

+
4

5.
18

5e
+

8
3.

52
3e

+
4

3.
86

8e
+

8
6.

60
4e

-1
6.

50
7e

-3
9.

09
8e

-1
6.

41
2e

-5
(c

on
ti

n
u
ed

on
n
ex

t
p
ag

e)

285

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

D
e
sc

ri
p
ti

o
n

N
µ
m

g
r
o
s
s

(k
g
)

σ
m

g
r
o
s
s

(k
g
)

µ
C

g
r
o
s
s

(M
Y

r)
σ
C

g
r
o
s
s

(M
Y

r)
µ
P
M
F
σ
P
M
F
µ
S

σ
S

U
n
m

an
n
ed

&
P

V
&

60
M

L
I&

D
S

40
91

59
3.

74
1e

+
4

5.
18

2e
+

8
3.

52
2e

+
4

3.
86

7e
+

8
6.

59
2e

-1
6.

49
1e

-3
9.

08
2e

-1
6.

41
2e

-5
U

n
m

an
n
ed

&
R

T
G

&
20

M
L

I&
N

E
40

86
20

3.
82

2e
+

4
5.

30
1e

+
8

3.
49

0e
+

4
3.

81
9e

+
8

6.
56

4e
-1

6.
99

5e
-3

9.
11

7e
-1

6.
33

7e
-5

U
n
m

an
n
ed

&
R

T
G

&
20

M
L

I&
D

S
40

85
77

3.
83

2e
+

4
5.

29
8e

+
8

3.
48

8e
+

4
3.

81
8e

+
8

6.
54

8e
-1

6.
97

1e
-3

9.
10

1e
-1

6.
33

2e
-5

U
n
m

an
n
ed

&
R

T
G

&
60

M
L

I&
N

E
40

90
45

3.
76

7e
+

4
5.

19
6e

+
8

3.
49

0e
+

4
3.

82
4e

+
8

6.
55

7e
-1

6.
72

9e
-3

9.
08

2e
-1

6.
38

6e
-5

U
n
m

an
n
ed

&
R

T
G

&
60

M
L

I&
D

S
40

90
16

3.
77

6e
+

4
5.

19
3e

+
8

3.
48

8e
+

4
3.

82
3e

+
8

6.
54

1e
-1

6.
71

1e
-3

9.
06

7e
-1

6.
38

5e
-5

1
S
ta

ge
19

10
9

4.
17

2e
+

4
7.

14
5e

+
8

2.
18

4e
+

4
2.

70
4e

+
8

7.
28

5e
-1

8.
67

6e
-3

9.
82

6e
-1

3.
11

2e
-5

2
S
ta

ge
65

17
46

1
3.

81
4e

+
4

5.
31

1e
+

8
4.

37
9e

+
4

5.
23

4e
+

8
6.

53
8e

-1
6.

73
8e

-3
9.

09
0e

-1
5.

22
0e

-5
1

S
ta

ge
L

iq
u
id

14
50

9
4.

32
5e

+
4

7.
67

3e
+

8
2.

34
7e

+
4

2.
64

3e
+

8
7.

57
6e

-1
1.

90
3e

-3
9.

84
4e

-1
2.

34
9e

-5
1

S
ta

ge
N

u
cl

ea
r

22
96

4.
16

7e
+

4
3.

91
2e

+
8

2.
70

9e
+

4
2.

67
5e

+
8

5.
05

7e
-1

3.
61

9e
-3

9.
76

9e
-1

1.
29

0e
-5

1
S
ta

ge
so

li
d

23
04

3.
20

8e
+

4
5.

96
6e

+
8

6.
32

9e
+

3
2.

70
0e

+
7

7.
66

9e
-1

8.
49

5e
-5

9.
76

9e
-1

1.
28

7e
-5

2
S
ta

ge
L

iq
u
id

40
26

07
4

3.
90

5e
+

4
5.

78
0e

+
8

4.
74

0e
+

4
5.

33
5e

+
8

6.
79

9e
-1

2.
71

7e
-3

9.
13

0e
-1

2.
38

6e
-5

2
S
ta

ge
N

u
cl

ea
r

73
72

8
3.

96
6e

+
4

2.
16

3e
+

8
4.

76
9e

+
4

3.
28

0e
+

8
4.

17
2e

-1
3.

31
7e

-3
8.

94
3e

-1
1.

28
7e

-5
2

S
ta

ge
S
ol

id
73

72
8

2.
81

5e
+

4
4.

21
2e

+
8

1.
18

9e
+

4
4.

91
7e

+
7

7.
20

4e
-1

1.
53

2e
-4

8.
94

3e
-1

1.
28

7e
-5

2
S
ta

ge
L

iq
u
id

-N
u
cl

ea
r

58
92

34
4.

37
0e

+
4

3.
34

7e
+

8
5.

06
6e

+
4

4.
71

9e
+

8
5.

56
3e

-1
3.

05
6e

-3
9.

02
0e

-1
2.

31
8e

-5
2

S
ta

ge
L

iq
u
id

-S
ol

id
58

98
24

3.
01

8e
+

4
4.

45
5e

+
8

2.
96

8e
+

4
2.

75
9e

+
8

6.
64

1e
-1

2.
59

2e
-3

9.
00

2e
-1

2.
31

7e
-5

2
S
ta

ge
N

u
cl

ea
r-

L
iq

u
id

51
25

62
3.

69
5e

+
4

4.
32

7e
+

8
4.

51
0e

+
4

4.
09

7e
+

8
5.

31
7e

-1
4.

99
3e

-3
9.

05
3e

-1
1.

35
0e

-5
2

S
ta

ge
N

u
cl

ea
r-

S
ol

id
73

72
8

2.
86

3e
+

4
2.

91
1e

+
8

2.
69

7e
+

4
1.

32
7e

+
8

4.
89

8e
-1

7.
37

5e
-3

8.
94

3e
-1

1.
28

7e
-5

2
S
ta

ge
S
ol

id
-L

iq
u
id

50
48

55
3.

70
9e

+
4

5.
65

3e
+

8
3.

02
1e

+
4

3.
19

1e
+

8
7.

29
4e

-1
9.

87
7e

-4
9.

05
3e

-1
1.

35
2e

-5
2

S
ta

ge
S
ol

id
-N

u
cl

ea
r

73
72

8
4.

14
1e

+
4

3.
22

1e
+

8
3.

28
3e

+
4

2.
20

3e
+

8
5.

92
3e

-1
1.

92
2e

-3
8.

94
3e

-1
1.

28
7e

-5
20

M
L

I
32

66
56

0
3.

84
1e

+
4

5.
37

1e
+

8
4.

38
0e

+
4

5.
29

4e
+

8
6.

54
6e

-1
6.

81
4e

-3
9.

10
9e

-1
6.

48
1e

-5
60

M
L

I
32

70
01

0
3.

78
9e

+
4

5.
26

2e
+

8
4.

36
4e

+
4

5.
18

7e
+

8
6.

53
5e

-1
6.

70
5e

-3
9.

07
5e

-1
6.

52
1e

-5
S
m

al
l

P
ay

lo
ad

33
54

88
9

1.
88

9e
+

4
1.

74
1e

+
8

4.
05

8e
+

4
4.

69
2e

+
8

6.
45

7e
-1

8.
11

3e
-3

9.
10

0e
-1

6.
70

2e
-5

L
ar

ge
P

ay
lo

ad
31

81
68

1
5.

84
6e

+
4

1.
04

8e
+

8
4.

70
3e

+
4

5.
60

5e
+

8
6.

62
9e

-1
5.

18
1e

-3
9.

08
3e

-1
6.

74
2e

-5
P

V
32

69
17

5
3.

79
5e

+
4

5.
30

5e
+

8
4.

37
3e

+
4

5.
22

4e
+

8
6.

56
7e

-1
6.

57
0e

-3
9.

09
9e

-1
6.

74
8e

-5
R

T
G

32
67

39
5

3.
83

5e
+

4
5.

32
8e

+
8

4.
37

1e
+

4
5.

25
7e

+
8

6.
51

4e
-1

6.
93

6e
-3

9.
08

4e
-1

6.
72

2e
-5

(c
on

ti
n
u
ed

on
n
ex

t
p
ag

e)

286

(c
on

ti
n
u
ed

fr
om

p
re

v
io

u
s

p
ag

e)

D
e
sc

ri
p
ti

o
n

N
µ
m

g
r
o
s
s

(k
g
)

σ
m

g
r
o
s
s

(k
g
)

µ
C

g
r
o
s
s

(M
Y

r)
σ
C

g
r
o
s
s

(M
Y

r)
µ
P
M
F
σ
P
M
F
µ
S

σ
S

D
is

k
26

00
40

8
4.

02
5e

+
4

5.
74

6e
+

8
4.

70
2e

+
4

5.
80

4e
+

8
6.

54
0e

-1
4.

59
4e

-3
9.

09
1e

-1
5.

33
1e

-5
S
in

gl
e

13
16

92
9

3.
64

5e
+

4
4.

66
4e

+
8

3.
58

8e
+

4
4.

15
3e

+
8

6.
13

1e
-1

1.
45

4e
-2

9.
03

1e
-1

5.
34

8e
-5

S
ta

ck
ed

26
19

23
3

3.
69

3e
+

4
5.

14
6e

+
8

4.
43

9e
+

4
4.

80
7e

+
8

6.
74

7e
-1

3.
73

0e
-3

9.
12

3e
-1

6.
17

6e
-5

M
an

n
ed

&
D

is
k

12
97

80
6

4.
09

3e
+

4
5.

88
0e

+
8

5.
74

7e
+

4
5.

54
2e

+
8

6.
46

9e
-1

4.
77

7e
-3

9.
08

3e
-1

5.
14

7e
-5

M
an

n
ed

&
S
in

gl
e

65
84

63
3.

64
5e

+
4

4.
66

5e
+

8
4.

35
3e

+
4

4.
16

8e
+

8
6.

13
1e

-1
1.

45
3e

-2
9.

02
3e

-1
5.

28
8e

-5
M

an
n
ed

&
S
ta

ck
ed

13
09

00
8

3.
71

4e
+

4
5.

18
3e

+
8

5.
18

3e
+

4
4.

56
3e

+
8

6.
72

0e
-1

3.
76

9e
-3

9.
11

5e
-1

6.
11

1e
-5

U
n
m

an
n
ed

&
D

is
k

13
02

60
2

3.
95

6e
+

4
5.

60
2e

+
8

3.
66

2e
+

4
3.

89
4e

+
8

6.
61

0e
-1

4.
31

1e
-3

9.
09

9e
-1

5.
38

9e
-5

U
n
m

an
n
ed

&
S
in

gl
e

65
84

66
3.

64
5e

+
4

4.
66

4e
+

8
2.

82
3e

+
4

2.
96

5e
+

8
6.

13
1e

-1
1.

45
4e

-2
9.

03
9e

-1
5.

28
8e

-5
U

n
m

an
n
ed

&
S
ta

ck
ed

13
10

22
5

3.
67

1e
+

4
5.

10
9e

+
8

3.
69

5e
+

4
3.

94
3e

+
8

6.
77

4e
-1

3.
67

6e
-3

9.
13

0e
-1

6.
12

1e
-5

287

H[S�BGDWD���'LVWULEXWLRQ 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�*URVV�0DVV�NJ�

���� ����� ����� ����� ����� ����� �����

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
���������
���������
���������
�������

9HKLFOH�*URVV�&RVW�0<U�

� ����� ����� ����� ������ ������

4XDQWLOHV
PD[LPXP
PLQLPXP

������
�������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
��������

���������
���������
���������
�������

9HKLFOH�30)

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

4XDQWLOHV
PD[LPXP
PLQLPXP

������������
������������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
��������
������H��
���������
���������
�������

6LPLODULW\

���� ����� ���� ����� ���� ����� ���� ����� �

4XDQWLOHV
PD[LPXP
PLQLPXP

�
��������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
��������

���������
�������

Figure 102: Experiment 3 Total Vehicle PMF Distribution

H[S�BGDWD���'LVWULEXWLRQ�RI�9HKLFOH�30) 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�30)

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

4XDQWLOHV
PD[LPXP
PLQLPXP

������������
������������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
���������
���������
���������

�����

Figure 103: Total Vehicle PMF Distribution of Architectures with 1 Stage

H[S�BGDWD���'LVWULEXWLRQ 3DJH���RI��

'LVWULEXWLRQV

9HKLFOH�30)

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

4XDQWLOHV
PD[LPXP
PLQLPXP

������������
������������

6XPPDU\�6WDWLVWLFV
0HDQ
6WG�'HY
6WG�(UU�0HDQ
8SSHU�����0HDQ
/RZHU�����0HDQ
1

���������
���������
������H��
���������
��������
�������

Figure 104: Total Vehicle PMF Distribution of Architectures with 2 Stages

288

APPENDIX H

MODEL VALIDATION RESULTS

The following tables contain validation data for the models developed through this

body of work. Table 61 shows the calculated mass of a notional vehicle through-

out a set of mission events. The difference is between the calculation when utilizing

DYREQT and the mission event models developed for this dissertation compared to

an industry-developed tool of similar fidelity, HExAM. Table 62 provides the sizing

calculations for 10 propulsive stages, ranging from designs built and flown to concep-

tual designs. Sizing utilized the set of subsystem models developed and discussed in

Chapter 4.5.2 of this dissertation. Differences were recorded for both the inert mass

and the propellant mass fraction.

289

T
a
b
le

6
1
:

M
is

si
on

M
o
d
el

V
al

id
at

io
n

D
at

a
In

it
ia

l
M

a
ss

(k
g
)

F
in

a
l

M
a
ss

(k
g
)

M
E

T
(d

)
E

v
e
n
t

H
E

x
A

M
E

st
im

a
te

d
%

D
iff

.
H

E
x
A

M
E

st
im

a
te

d
%

D
iff

.

2
L

au
n
ch

C
le

an
U

p
30

71
30

71
.0

0.
00

30
19

30
19

.2
0.

01

5
P

ow
er

ed
L

G
A

30
19

30
19

.2
0.

01
28

17
28

16
.8

-0
.0

1

7
T

ar
ge

t
D

R
O

28
17

28
16

.8
-0

.0
1

28
03

28
02

.5
-0

.0
2

9
D

R
O

In
se

rt
io

n
28

03
28

02
.5

-0
.0

2
26

15
26

14
.7

-0
.0

1

12
C

le
an

U
p

26
15

26
14

.7
-0

.0
1

26
10

26
10

.2
0.

01

12
D

ro
p

A
d
ap

te
r

26
10

26
10

.2
0.

01
24

60
24

60
.2

0.
01

12
D

ro
p

P
ay

lo
ad

24
60

24
60

.2
0.

01
14

60
14

60
.2

0.
01

12
D

is
p

os
al

14
60

14
60

.2
0.

01
14

50
14

50
.3

0.
02

12
D

ro
p

S
ta

ge
14

50
14

50
.3

0.
02

0
0.

0
0.

00

12
C

on
n
ec

t
P

ay
lo

ad
0

0.
0

0.
00

10
00

10
00

.0
0.

00

290

T
a
b
le

6
2
:

V
eh

ic
le

S
u
b
sy

st
em

M
o
d
el

V
al

id
at

io
n

D
at

a

In
e
rt

M
a
ss

(k
g
)

P
M

F

E
le

m
e
n
t

R
e
f.

D
e
sc

ri
p
ti

o
n
s

L
it

.
E

st
.

%
D

iff
.

L
it

.
E

st
.

%
D

iff
.

S
-I

V
B

[1
19

]
la

rg
e

L
O

X
/L

H
2

cr
yo

ge
n
ic

st
ag

e
12

90
0

13
04

0.
7

1.
09

0.
90

0.
90

0.
00

S
E

P
[8

9]
la

rg
e

X
en

on
so

la
r-

el
ec

tr
ic

st
ag

e
10

04
2

95
67

.9
-4

.7
2

0.
59

0.
61

3.
39

M
C

P
S

[9
0]

la
rg

e
ac

ti
ve

co
ol

ed
L

O
X

/L
C

H
4

cr
yo

ge
n
ic

st
ag

e
10

51
4.

8
93

05
.6

-1
1.

50
0.

82
0.

84
2.

44

N
T

P
[8

1]
ce

rm
et

co
re

n
u
cl

ea
r

th
er

m
al

p
ro

p
u
ls

io
n

st
ag

e
33

45
0

32
14

5.
1

-3
.9

0
0.

65
0.

67
3.

08

C
en

ta
u
r1

[5
3]

sm
al

l
p
as

si
ve

co
ol

ed
L

O
X

/L
H

2
cr

yo
ge

n
ic

st
ag

e
22

47
27

90
.8

24
.2

0
0.

92
0.

88
-4

.3
5

C
en

ta
u
r2

[5
3]

sm
al

l
p
as

si
ve

co
ol

ed
L

O
X

/L
H

2
cr

yo
ge

n
ic

st
ag

e
24

62
30

79
.1

25
.0

6
0.

91
0.

87
-4

.4
0

S
S
P

S
3

[5
3]

sm
al

l
N

2
/O

4
/A

er
oz

in
e

50
st

or
ab

le
u
p
p

er
st

ag
e

95
0

99
7.

6
5.

01
0.

86
0.

86
0.

00

S
S
P

S
4

[5
3]

sm
al

l
p
as

si
ve

co
ol

ed
L

O
X

/L
H

2
cr

yo
ge

n
ic

st
ag

e
28

50
27

61
.9

-3
.0

9
0.

88
0.

88
0.

00

S
S
P

S
5

[5
3]

sm
al

l
p
as

si
ve

co
ol

ed
L

O
X

/L
H

2
cr

yo
ge

n
ic

st
ag

e
34

90
34

02
.2

-2
.5

2
0.

89
0.

89
0.

00

E
P

S
-5

E
[5

3]
sm

al
l

N
2
/O

4
/M

M
H

st
or

ab
le

u
p
p

er
st

ag
e

12
00

12
29

.8
2.

48
0.

89
0.

89
0.

00

1
si
n
gl
e
en

gi
n
e

2
tw

in
en

gi
n
e

3
D
el
ta

II
u
p
p
er

st
ag

e
4
D
el
ta

IV
-M

u
p
p
er

st
ag

e
5
D
el
ta

IV
-H

u
p
p
er

st
a
ge

291

APPENDIX I

MODEL SOURCE CODES

This appendix provides the source code for the models developed for use throughout

this dissertation. This includes: vehicle subsystem models, mission event models,

fluids models, and the TransCost model, utilized in both the experiments and proof

of concept. Descriptions of each model, its inputs/outputs, and references can be

found throughout the source code. The source code is written in Python 3. The

classes defined in these models inherit from DYREQT, which in turn inherits much

of its structure and functionality from the OpenMDAO module, with the exception

of the cost model. DYREQT source code is not provided in this dissertation.

I.1 Avionics SubElement Model
-*- coding: utf-8 -*-

"""

Description:

A DYREQT Avionics subelement for Douglas Trent's PhD

Written by:

Douglas J. Trent

NASA Marshall Space Flight Center

Advanced Concept Office

douglas.trent@nasa.gov

Created: 04/06/2017

Revised: 04/19/2017

"""

import DYREQT Subelement base class

from SubElements import SubElement

from numpy import zeros

create the structures subelement

class AvionicsPhD(SubElement):

"""Estimates the mass of a power subsystem. Much of the mass of the

components are derived from Space Mission Engineering: The new SMAD by

James R. Wertz et. al.

Input Params

actuators : list

The type of attitude control device(s). For multiples of the same

sensor, include the number multiple times.

0 = Reaction Wheels

292

1 = Control Moment Gyros

2 = Magnetic Torquers

sensors : list

A list of predefined avionics sensor(s). For multiples of the same

sensor, include the number multiple times.

0 = Gyros

1 = Sun Sensor

2 = Star Sensor (scanner)

3 = Star Sensor (fixed)

4 = Horizon Sensor

5 = Magnetometer

comms_type : int

The type of communications package.

0 = None

1 = Near Earth

2 = Deep Space

accuracy : float

A factor to determine sensor accuracy for scaling mass. A value ranging

from 0.0 to 1.0. Higher values correspond to higher accuracy, resulting

in increased mass and power requirements.

wireless_sensors : bool(False)

If True, assumes wireless transmission of data without the need for

cables, reducing cable mass.

additional_devices : list

A list of other additional fixed devices to include in the system. Each

item in the list is a list which defines a the mass(kg) and

power required(W) of the device, in the form [m,P]

Inherited Params

dry_mass : array

The dry mass of the element (kg) for scaling actuators

Outputs

inert_mass : float

The inert mass of the subelement (kg)

heat_loads : array

The amount of heat generated by other subsystems to be dissipated by

the radiators (W)

power_req : array

The power required from each element subsystems (W)

"""

def __init__(self,**kwargs):

super().__init__(**kwargs)

user model inputs

self.add_param(self.base_name+'_actuators', val=list())

self.add_param(self.base_name+'_sensors', val=list())

self.add_param(self.base_name+'_comms_type', val=int(0))

293

self.add_param(self.base_name+'_accuracy', val=float(1))

self.add_param(self.base_name+'_wireless_sensors', val=False)

self.add_param(self.base_name+'_additional_devices', val=list())

parameters from the element (DYREQT internal or from other subelements)

self.add_param(self.element.base_name+'_dry_mass', val=zeros(self.element.num_events+1),

units='kg')↪→
outputs used by the parent element or subelements

self.add_output(self.base_name+'_heat_load', val=float(0), units='W')

self.add_output(self.base_name+'_power_req', val=float(0), units='W')

self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')

def pre_setup(self,problem):

pass

def post_setup(self, problem):

"""Check inputs after final connections have been made

"""

actuators = self.params[self.base_name+'_actuators']

sensors = self.params[self.base_name+'_sensors']

comms_type = self.params[self.base_name+'_comms_type']

accuracy = self.params[self.base_name+'_accuracy']

add_devices = self.params[self.base_name+'_additional_devices']

if accuracy < 0. or accuracy > 1.:

msg = ('accuracy must be a value between 0.0 and 1.0')

raise Exception(msg)

for val in actuators:

if val not in [0,1,2]:

msg = ('invalid control device. values must be in the range [0:2]')

raise Exception(msg)

for val in sensors:

if val not in [0,1,2,3,4,5]:

msg = ('invalid sensor device. values must be in the range [0:5]')

raise Exception(msg)

if comms_type not in [0,1,2]:

msg = ('invalid comms_type selection. must be either 0 for None, '

'1 for near earth, or 2 for deep space')

raise Exception(msg)

for idx,device in enumerate(add_devices):

if len(device) != 2:

msg = ('additional devices must define a mass and power property')

raise Exception(msg)

for val in device:

if type(val) != float and type(val) != int:

msg = ('invalid additional device {0}, mass and power '

'definitions must be of type float or int'.format(idx))

raise Exception(msg)

def solve_nonlinear(self, params, unknowns, resids):

actuators = self.params[self.base_name+'_actuators']

sensors = self.params[self.base_name+'_sensors']

comms_type = self.params[self.base_name+'_comms_type']

accuracy = self.params[self.base_name+'_accuracy']

wireless_sensors = self.params[self.base_name+'_wireless_sensors']

add_devices = self.params[self.base_name+'_additional_devices']

element_mass = max(params[self.element.base_name+'_dry_mass'])

actuator_mass = 0.

actuator_pwr = 0.

for val in actuators:

m_range = [0.,0.]; P_range = [0.,0.]

if val == 0:

294

m_range = [2.,20.]; P_range = [10.,100.]

elif val == 1:

m_range = [0.1,10.]; P_range = [90.,150.]

elif val == 2:

m_range = [0.4,50.]; P_range = [0.6,16.]

if element_mass < 10000.:

comp_mass = ((m_range[1]-m_range[0])/10000.)*element_mass + m_range[0]

comp_pwr = ((P_range[1]-P_range[0])/10000.)*element_mass + P_range[0]

else:

comp_mass = m_range[1]

comp_pwr = P_range[1]

actuator_mass += comp_mass

actuator_pwr += comp_pwr

sensor_mass = 0.

sensor_pwr = 0.

for val in sensors:

m_range = [0.,0.]; P_range = [0.,0.]

if val == 0:

m_range = [0.1,15.]; P_range = [0.6,16.]

elif val == 1:

m_range = [0.1,2.]; P_range = [0.,3.]

elif val == 2:

m_range = [2.,5.]; P_range = [0.6,16.]

elif val == 3:

m_range = [1.,4.]; P_range = [5.,10.]

elif val == 4:

m_range = [0.5,3.5]; P_range = [0.3,5.]

elif val == 5:

m_range = [0.3,1.2]; P_range = [0.0,1.]

comp_mass = ((m_range[1]-m_range[0]))*accuracy + m_range[0]

comp_pwr = ((P_range[1]-P_range[0]))*accuracy + P_range[0]

sensor_mass += comp_mass

sensor_pwr += comp_pwr

comms_mass = 0.

comms_pwr = 0.

if comms_type == 0:

pass

elif comms_type == 1:

comms_mass = 20.7

comms_pwr = 104.0

elif comms_type == 2:

comms_mass = 42.0

comms_pwr = 165.0

add_devices_mass = 0.

add_devices_pwr = 0.

for device in add_devices:

add_devices_mass += device[0]

add_devices_pwr += device[1]

accounts for 4% cable mass

cable_factor = 0.96

if wireless_sensors:

cable_factor = 0.99

inert_mass = (actuator_mass + sensor_mass + comms_mass + add_devices_mass) / cable_factor

total_power = actuator_pwr + sensor_pwr + comms_pwr + add_devices_pwr

heat_load = 0.9*total_power

assign unknowns

unknowns[self.base_name+'_heat_load'] = heat_load

unknowns[self.base_name+'_power_req'] = total_power

unknowns[self.base_name+'_inert_mass'] = inert_mass

295

I.2 Engine SubElement Model
-*- coding: utf-8 -*-

"""

Description:

A DYREQT Engine subelement for Douglas Trent's PhD

Written by:

Douglas J. Trent

NASA Marshall Space Flight Center

Advanced Concept Office

douglas.trent@nasa.gov

Created: 04/06/2017

Revised: 07/31/2017

"""

import DYREQT Subelement base class

from SubElements import SubElement

from Constants import G0

import other modules

import FluidsDef as fluids

from numpy import zeros, floor, ceil, pi, log, log10, exp, sqrt, tan

from scipy.optimize import brentq

create the structures subelement

class EnginesPhD(SubElement):

"""Liquid engine sizer from equations in Space Propulsion Analysis and

Design, by Ronald W. Humble, et. al. Sec. 5.3.1

Input Params

mps_class : str('liquid')

The class of the main propulsion system.

One of ['liquid','solid','nuclear','electric']

propellants_mps : str('lox/lh2')

The oxidizer and Fuel of the propulsion system, separated by a forward

slash (/). For mono-propellant, only specify a fuel with no slash (/).

This input is ignored when mps_class is set to 'solid'.

total_thrust_mps : float(100 kN)

The total thrust of the main propulsion system (kN)

isp_mps : float(350 s)

The specific impulse of the main propulsion system (s)

mixture_ratio_mps : float(1) (optional, required if mps_class is 'liquid')

The mass ratio of the oxidizer to fuel of the main propulsion system.

This will be ignored if a mono-propellant is specified in the

propellants_mps input.

start_penalty_mps : float(0.0 kg)

A mass of propellant lost during engine startup of the main propulsion

system (kg)

engine_thrust_mps : float(25 kN)

The thrust per engine of the main propulsion system (kN)

core_type : str('CERMET') (optional, required if mps_class is 'nuclear')

The type of nuclear core, one of ['PBR','CERMET']

T_chamber : str(2800 K) (optional, required if mps_class is 'nuclear')

The maximum chamber temperature of the engine which the propellant will

be heated to (K)

P_chamber : str(3.5 MPa) (optional, required if mps_class is 'nuclear')

The pressure of the propellant in the reactor chamber (MPa)

296

thruster_efficiency_mps = float(0.5) (optional, required if mps_class is 'electric')

The electric thruster efficiency of the main propulsion system. Ideal

thrusters have an efficiency of 1.

thruster_specific_mass_mps = float(7 kg/kW) (optional, required if mps_class is 'electric')

The electric thruster mass per unit power (kg/kW) of the main propulsion

system.

thruster_power_mps = float(1 kW) (optional, required if mps_class is 'electric')

The input power required per thruster of the main propulsion system (kW)

redundancy_mps = float(0.2) (optional, required if mps_class is 'electric')

The redundancy of electric thrusters in the main propulsion system.

A value of 1 corresponds to 100% redundancy.

power_mgmt_specific_mass_mps = float(6 kg/kW) (optional, required if mps_class is 'electric')

The mass per unit power of the power management system for the main

propulsion system (kg/kW)

rcs_class : str('liquid')

The class of the reaction control system.

One of ['liquid','electric']

propellants_rcs : str('hydrazine')

The oxidizer and Fuel of the propulsion system, separated by a forward

slash (/). For mono-propellant, only specify a fuel with no slash (/).

total_thrust_rcs : float(1 kN)

The total thrust of the reaction control system (kN)

isp_rcs : float(300 s)

The specific impulse of the reaction control system (s)

mixture_ratio_rcs : float(1) (optional, required if rcs_class is 'liquid')

The mass ratio of the oxidizer to fuel of the reaction control system.

This will be ignored if a mono-propellant is specified in the

propellants_rcs input.

start_penalty_rcs : float(0.0 kg)

A mass of propellant lost during engine startup of the reaction control

system (kg)

engine_thrust_rcs : float(0.25 kN)

The thrust per engine of the reaction control system (kN)

thruster_efficiency_rcs = float(0.5) (optional, required if rcs_class is 'electric')

The electric thruster efficiency of the reaction control system. Ideal

thrusters have an efficiency of 1.

thruster_specific_mass_rcs = float(7 kg/kW) (optional, required if rcs_class is 'electric')

The electric thruster mass per unit power (kg/kW) of the reaction

control system.

thruster_power_rcs = float(1 kW) (optional, required if rcs_class is 'electric')

The input power required per thruster of the reaction control system(kW)

redundancy_rcs = float(0.2) (optional, required if rcs_class is 'electric')

The redundancy of electric thrusters in the reaction control system.

A value of 1 corresponds to 100% redundancy.

power_mgmt_specific_mass_rcs = float(6 kg/kW) (optional, required if rcs_class is 'electric')

The mass per unit power of the power management system for the reaction

control system (kg/kW)

Inherited Params

max_propellant_mass_mps : float

The total amount of propellant required for all impulsive maneuvers

297

performed by the main propulsion system (kg)

Outputs

propellants_mps : str

The oxidizer and Fuel of the propulsion system, separated by a forward

slash (/). For mono-propellant, only specify a fuel with no slash (/).

isp_mps : float

The specific impulse of the main propulsion system (s)

thrust_mps : float

The total thrust of the main propulsion system (kN)

mixture_ratio_mps : float

The mixture ratio of the main propulsion system propellants

mps_start_penalty : float

A mass of propellant lost during engine startup of the main propulsion

system (kg)

propellants_rcs : str

The oxidizer and Fuel of the propulsion system, separated by a forward

slash (/). For mono-propellant, only specify a fuel with no slash (/).

isp_rcs : float

The specific impulse of the reaction control system (s)

thrust_rcs : float

The total thrust of the reaction control system (kN)

mixture_ratio_rcs : float

The mixture ratio of the reaction control system propellants

rcs_start_penalty : float

A mass of propellant lost during engine startup of the reaction control

system (kg)

power_req : array

The power required for the thermal subelement (W)

inert_mass : float

The inert mass of the subelement (kg)

"""

def __init__(self,**kwargs):

super().__init__(**kwargs)

user model inputs

self.add_param(self.base_name+'_mps_class', val=str('liquid'))

self.add_param(self.base_name+'_rcs_class', val=str('liquid'))

self.add_param(self.base_name+'_propellants_mps', val=str('lox/lh2'))

self.add_param(self.base_name+'_propellants_rcs', val=str('hydrazine'))

self.add_param(self.base_name+'_total_thrust_mps', val=float(100), units='kN')

self.add_param(self.base_name+'_total_thrust_rcs', val=float(1), units='kN')

self.add_param(self.base_name+'_isp_mps', val=float(350), units='s')

self.add_param(self.base_name+'_isp_rcs', val=float(300), units='s')

self.add_param(self.base_name+'_mixture_ratio_mps', val=float(1))

self.add_param(self.base_name+'_mixture_ratio_rcs', val=float(1))

self.add_param(self.base_name+'_start_penalty_mps', val=float(0), units='kg')

self.add_param(self.base_name+'_start_penalty_rcs', val=float(0), units='kg')

self.add_param(self.base_name+'_engine_thrust_mps', val=float(25.), units='kN')

self.add_param(self.base_name+'_engine_thrust_rcs', val=float(0.25), units='kN')

self.add_param(self.base_name+'_thruster_efficiency_mps', val=float(0.5))

self.add_param(self.base_name+'_thruster_efficiency_rcs', val=float(0.5))

self.add_param(self.base_name+'_thruster_specific_mass_mps', val=float(7), units='kg/kW')

self.add_param(self.base_name+'_thruster_specific_mass_rcs', val=float(7), units='kg/kW')

self.add_param(self.base_name+'_thruster_power_mps', val=float(1), units='kW')

self.add_param(self.base_name+'_thruster_power_rcs', val=float(1), units='kW')

298

self.add_param(self.base_name+'_redundancy_mps', val=float(0.2))

self.add_param(self.base_name+'_redundancy_rcs', val=float(0.2))

self.add_param(self.base_name+'_power_mgmt_specific_mass_mps', val=float(6), units='kg/kW')

self.add_param(self.base_name+'_power_mgmt_specific_mass_rcs', val=float(6), units='kg/kW')

self.add_param(self.base_name+'_core_type', val=str('cermet'))

self.add_param(self.base_name+'_T_chamber', val=float(2800.), units='K')

self.add_param(self.base_name+'_P_chamber', val=float(3.5), units='MPa')

parameters from the element (DYREQT internal or from other subelements)

self.add_param(self.element.base_name+'_max_propellant_mass_mps', val=float(0), units='kg')

outputs inherited by the element (for use by other subelements or DYREQT)

self.add_output(self.element.base_name+'_propellants_mps', val=str('lox/lh2'))

self.add_output(self.element.base_name+'_propellants_rcs', val=str('lox/lh2'))

self.add_output(self.element.base_name+'_thrust_mps', val=float(1), units='kN')

self.add_output(self.element.base_name+'_thrust_rcs', val=float(1), units='kN')

self.add_output(self.element.base_name+'_isp_mps', val=float(1), units='s')

self.add_output(self.element.base_name+'_isp_rcs', val=float(1), units='s')

self.add_output(self.element.base_name+'_mixture_ratio_mps', val=float(1))

self.add_output(self.element.base_name+'_mixture_ratio_rcs', val=float(1))

self.add_output(self.element.base_name+'_mps_start_penalty', val=float(0), units='kg')

self.add_output(self.element.base_name+'_rcs_start_penalty', val=float(0), units='kg')

outputs used by the parent element of subelement

self.add_output(self.base_name+'_power_req', val=float(0), units='W')

self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')

def pre_setup(self,problem):

pass

def post_setup(self, problem):

"""Check inputs after final connections have been made

"""

for propsys in ['mps','rcs']:

engine_class = self.params[self.base_name+'_'+propsys+'_class'].lower()

if not engine_class:

msg = ('must specify a system class for the {0}'.format(propsys))

raise Exception(msg)

elif engine_class not in ['liquid','solid','electric','nuclear','massless']:

msg = ('{0}_class {1} is an undefined class'.format(propsys,engine_class))

raise Exception(msg)

if engine_class != 'solid':

propellants = self.params[self.base_name+'_propellants_'+propsys].lower()

if not propellants:

msg = ('must specify propellants_{0} with system class "{1}"'.format(

propsys,engine_class))

raise Exception(msg)

if propsys == 'rcs' and engine_class not in ['liquid','electric']:

msg = ("'{0}' is an invalid class for the RCS, choose one of "

"['liquid','electric']".format(engine_class))

raise Exception(msg)

if engine_class == 'electric':

thruster_efficiency = self.params[self.base_name+'_thruster_efficiency_'+propsys]

redundancy = self.params[self.base_name+'_redundancy_'+propsys]

if thruster_efficiency > 1:

msg = ('thruster_efficiency_{0} must be a value between '

'zero and one'.format(propsys))

raise Exception(msg)

if redundancy < 0:

msg = ('redundancy_{0} must be non-negative'.format(propsys))

raise Exception(msg)

the nuclear engine model performs its own input checks

def solve_nonlinear(self, params, unknowns, resids):

299

inert_mass = 0.

power_req = 0.

for propsys in ['mps','rcs']:

engine_class = params[self.base_name+'_'+propsys+'_class'].lower()

propellants = params[self.base_name+'_propellants_'+propsys].lower()

total_thrust = params[self.base_name+'_total_thrust_'+propsys]

isp = params[self.base_name+'_isp_'+propsys]

mixture_ratio = params[self.base_name+'_mixture_ratio_'+propsys]

start_penalty = params[self.base_name+'_start_penalty_'+propsys]

size the engine subelement for the prop system

mass = 0.

power = 0.

if engine_class == 'liquid':

engine_thrust = params[self.base_name+'_engine_thrust_'+propsys]

mass,power = _liquid(total_thrust, engine_thrust, propellants)

elif engine_class == 'solid':

prop_load = params[self.element.base_name+'_max_propellant_mass_mps']

mass,power = _solid(prop_load)

elif engine_class == 'electric':

thruster_efficiency = params[self.base_name+'_thruster_efficiency_'+propsys]

thruster_specific_mass = params[self.base_name+'_thruster_specific_mass_'+propsys]

thruster_power = params[self.base_name+'_thruster_power_'+propsys]

redundancy = params[self.base_name+'_redundancy_'+propsys]

power_mgmt_specific_mass = params[self.base_name+'_power_mgmt_specific_mass_'+propsys]

mass,power = _electric(isp, total_thrust, thruster_efficiency,

thruster_specific_mass, thruster_power,

redundancy,power_mgmt_specific_mass)

elif engine_class == 'nuclear':

propellant = propellants

engine_thrust = params[self.base_name+'_engine_thrust_'+propsys]

core_type = params[self.base_name+'_core_type'].lower()

T_chamber = params[self.base_name+'_T_chamber']

P_chamber = params[self.base_name+'_P_chamber']

mass,power = _nuclear(isp, total_thrust, engine_thrust, propellant, core_type,

T_chamber,P_chamber)

adjust engine mass for RCS to include 3 additional off axis thrusters

for a total of 4 thrusters per thrust pod

if propsys == 'rcs':

mass = 4*mass

inert_mass += mass

power_req += power

assign system unknowns

unknowns[self.element.base_name+'_propellants_'+propsys] = propellants

unknowns[self.element.base_name+'_thrust_'+propsys] = total_thrust

unknowns[self.element.base_name+'_isp_'+propsys] = isp

unknowns[self.element.base_name+'_mixture_ratio_'+propsys] = mixture_ratio

unknowns[self.element.base_name+'_'+propsys+'_start_penalty'] = start_penalty

assign unknowns

unknowns[self.base_name+'_power_req'] = power_req

unknowns[self.base_name+'_inert_mass'] = inert_mass

def _liquid(total_thrust, engine_thrust, propellants):

"""Liquid engine sizer from equations in Space Propulsion Analysis and

Design, by Ronald W. Humble, et. al. Sec. 5.3.1

Args

total_thrust : float

Total thrust of the propulsion system (kN)

300

engine_thrust : float

The thrust per engine (kN)

propellants : str

The propellants of the propulsion system, separated by a forward slash (/)

Returns

inert_mass : float

The inert mass of the the engine system (kg)

power_req : float

The required power (W)

"""

inert_mass = 0.

power_req = 0.

G0.convert_to_unit('m/s**2')

num_engines = ceil(total_thrust / engine_thrust)

thrust = engine_thrust*1000

if propellants.count('/') == 0: # mono-propellant

engine_mass = thrust / G0.value / (-3.7405e-10*thrust**4 + 7.1685e-7*thrust**3 +

-5.2221e-4*thrust**2 + 0.18761*thrust +

-0.039763)

elif propellants.count('/') == 1: # bi-props

if thrust < 50000:

engine_mass = thrust / G0.value / (6.098e-4*thrust + 13.44)

else:

engine_mass = thrust / G0.value / (25.2*log10(thrust) - 80.7)

else:

raise Exception('may only specify up to two propellants')

engine_mass = engine_mass * num_engines

prop_mgmt_mass = 0.1 * engine_mass # valves, regulators, filters, transducers, etc.

miscellaneous_hardware = 0.15 * (engine_mass + prop_mgmt_mass) # plumbing, brackets, insulation,

inert_mass = engine_mass + prop_mgmt_mass + miscellaneous_hardware

return inert_mass, power_req

def _solid(prop_load):

"""Solid motor sizer based on data points from Space Propulsion Analysis

and Design, by Ronald W. Humble, et. al. Sec. 6.3. This model is a spline

of two linear curve fits of the data. This is due to larger motors

being built with joints and large thrust vector control mechanisms which

drive the mass fractions of these larger motors back down with increasing

prop loads.

Args

prop_load : float

The propellant load of the solid motor, in kg.

Returns

inert_mass : float

The inert mass of the the engine system (kg)

power_req : float

The required power (W)

"""

inert_mass = 0.

power_req = 0.

301

if prop_load < 10000:

if prop_load <= 0:

f_prop = 1.

else:

f_prop = 0.0181*log(prop_load) + 0.7962

else:

f_prop = 0.95*exp(-1e-7*prop_load)

inert_mass = (prop_load / f_prop) - prop_load

return inert_mass, power_req

def _electric(isp, total_thrust, thruster_efficiency,

thruster_specific_mass, thruster_power, redundancy,

power_mgmt_specific_mass):

"""

All empirical parameters are inputs

Calculations are purely physics-based, so no applicability limits

Source; Level0 EP tool from Dan Thomas (NASA Marshall Space Flight Center,

Advanced Concepts Office), with some adaptations.

Args

isp : float

specific impulse (sec)

total_thrust : float

Total thrust of the propulsion system (kN)

thruster_efficiency : float

thruster efficiency (dimensionless)

thruster_specific_mass : float

thruster specific mass (mass/input power) (kg/kW)

thruster_power : float

input power required for one thruster (kW)

redundancy : int

fraction of total number of thrusters

power_mgmt_specific_mass : float

power management system specific mass (kg/kW)

Returns

inert_mass : float

total mass of the thruster system (kg)

power_req : float

total power required by the thruster system (W)

"""

inert_mass = 0.

power_req = 0.

G0.convert_to_unit('m/s**2')

#calculation of single-thruster parameters

exhaust_velocity = G0.value*isp # m/s

thruster_mass = thruster_specific_mass * thruster_power # kg/thruster

jet_power_per_thruster = thruster_efficiency * thruster_power # kW

thrust_per_thruster = 1000 * 2 * jet_power_per_thruster / exhaust_velocity # N

#calculation of system parameters

num_operating_thrusters = ceil(total_thrust * 1000. / thrust_per_thruster)

power_req = num_operating_thrusters * thruster_power * 1000.

num_total_thrusters = ceil(num_operating_thrusters * (1 + redundancy))

engine_mass = thruster_mass * num_total_thrusters # kg

302

power management sizer

default value from Space Mission Engineering: The New SMAD,

sec. 18.6.3.2, p.550

power_mgmt_mass = power_mgmt_specific_mass * power_req / 1000.

range from 5-10 kg as a function of total number of thrusters,

adapted from mass range estimate from Space Mission Engineering: The New

SMAD, sec. 18.6.3.2, p.550

prop_mgmt_mass = 5 * (1 + (1 - (1/num_total_thrusters)))

miscellaneous_hardware = 0.15 * (engine_mass + prop_mgmt_mass) # plumbing, brackets, insulation,

inert_mass = engine_mass + prop_mgmt_mass + power_mgmt_mass + miscellaneous_hardware

return inert_mass, power_req

def _nuclear(isp, total_thrust, engine_thrust, propellant, core_type, T_chamber,

P_chamber):

"""Nuclear engine sizer from level 0 physics-based equation from equations

in Space Propulsion Analysis and Design, by Ronald W. Humble, et. al.

Estimated mass is of the engine core and related components (no tanks,

Support structure, pressurant, etc.) This model assumes an expander cycle

for the turbopump assembly, with redundant turbopump assemblies.

Args

total_thrust : float

The thrust of the engine (kN)

engine_thrust : float

The thrust per engine (kN)

isp : float

The specific impulse of the engine (s)

propellant : str

The propellant of the engine

core_type : str

The core type, one of ['PBR','CERMET']

T_chamber : float

The chamber temperature of the reactor core (K)

P_chamber : float

The chamber pressure of the reactor core (MPa)

Returns

inert_mass : float

The inert mass of the the engine system (kg)

power_req : float

The required power (W)

"""

inert_mass = 0.

power_req = 0.

G0.convert_to_unit('m/s**2')

if propellant.count('/') != 0:

msg = ('may only specify a single propellant for nuclear engines')

raise Exception(msg)

if not fluids.check_def(propellant):

msg = ('"{0}" is not a defined fluid'.format(propellant))

raise Exception(msg)

303

input checking

if type(core_type) != str:

msg = ('core_type must be a string')

raise Exception(msg)

else:

if core_type.lower() not in ['pbr','cermet']:

msg = ("invalid core type, must be one of ['PBR','CERMET']")

raise Exception(msg)

if P_chamber < 1 or P_chamber > 10:

msg = ('chamber pressure, P_chamber, must be in the range [1:10]')

raise Exception(msg)

num_cores = ceil(total_thrust / engine_thrust)

m_dot = engine_thrust * 1000. / G0.value / isp # kg/s

T0 = fluids.tvap(propellant,P_chamber)

hvap = fluids.get_property(propellant,'Hvap') * 1000.

From Eq. 8.8 in SPAD

P_core = m_dot * (hvap + quad(_prop_cp,T0,T_chamber,args=(propellant,))[0]) / 1e6 # MW

if P_core > 2000.:

msg = ('Core power must be less than 2000 MW. '

'Try decreasing "engine_thrust" and/or "T_chamber"')

raise Exception(msg)

reactor dimensions and mass, Eq. 8.44 - 8.49 in SPAD

if core_type == 'pbr':

rho_core = 1600. # kg/m^3

if P_core < 250:

7 element core

R_core = 9.0958e-10*P_core**4 - 1.3261e-6*P_core**3 + 7.1665e-4*P_core**2 - 0.1735*P_core

+ 47.625 # cm↪→
H_core = -0.000283*P_core**2 + 0.5203*P_core + 26.06 # cm

elif P_core > 750:

37 element core

R_core = 4.905e-11*P_core**4 - 2.881e-7*P_core**3 + 6.2522e-4*P_core**2 - 0.5992*P_core +

252.28 # cm↪→
H_core = -4.027e-5*P_core**2 + 0.1427*P_core + 17.9883 # cm

else:

19 element core

R_core = -2.655e-12*P_core**5 + 8.946e-9*P_core**4 - 1.1703e-5*P_core**3

+7.427e-3*P_core**2 - 2.2955*P_core + 313.34 # cm↪→
H_core = -6.502e-6*P_core**2 + 0.05009*P_core + 18.335 # cm

elif core_type == 'cermet':

rho_core = 8500. # kg/m^3

R_core = 0.0034*P_core + 20.79

H_core = 0.0067*P_core + 41.418

R_core = R_core / 100. # cm -> m

H_core = H_core / 100. # cm -> m

V_core = pi * R_core**2 * H_core

m_core = num_cores * rho_core * V_core

nozzle calculations

thermochemistry

R_spec = fluids.rspec(propellant)

heat_ratio = fluids.heat_ratio(propellant,T_chamber)

Eq. 5.12 in SPAD for characteristic exhaust velocity (m/s)

combustion_efficiency = 0.999

nozzle_efficiency = 0.99

P_amb = 0. # (MPa) assumes in-space engine

c_star in (m/s)

c_star = (combustion_efficiency * sqrt(heat_ratio*R_spec*T_chamber) /

(heat_ratio*(2/(heat_ratio + 1))**((heat_ratio + 1)/(2*heat_ratio - 2))))

isp_max = nozzle_efficiency * (c_star * heat_ratio / G0.value * sqrt((2 / (heat_ratio - 1))*

(2 / (heat_ratio + 1))**((heat_ratio + 1)/(heat_ratio - 1))))

isp_max = floor(0.98 * isp_max)

isp_min = ceil(isp_max * (1 - 0.3))

304

check isp input for feasibility based on flow parameters. This is because

the mach calculation is very sensitive to the target isp

if isp > isp_max or isp < isp_min:

msg = ('isp is outside of feasible bounds: [{0}:{1}] s'.format(isp_min,isp_max))

raise Exception(msg)

mach = brentq(_mach_calc,1.,100.,args=(isp,P_chamber,P_amb,heat_ratio,c_star,nozzle_efficiency))

expansion_ratio = (1/mach) * ((2 / (heat_ratio + 1))*(1 + ((heat_ratio - 1)/2 *

mach**2)))**((heat_ratio + 1)/(heat_ratio - 1))↪→

A_throat = m_dot * c_star / (P_chamber * 1e6) # Equation 5.10 from SPAD, (m)

d_throat = 2*sqrt(A_throat/pi)

d_exit = 2*sqrt(expansion_ratio*A_throat/pi)

throat_thick = 3. * P_chamber * (d_throat/2.) / 310. # assumes a material Ut = 310 MPa

l_nozz = (d_exit - d_throat) / (2*tan(0.261799)) # assumes nozzle half angle of 15 deg (0.261799

rad)↪→

et_ratio = 1. # exit thickness ratio, assumed 0 -> nozzle exit wall thickness = 0

x1 = ((et_ratio*throat_thick)-throat_thick)/l_nozz

x2 = (0.5*(d_exit-d_throat))/l_nozz

assumes a material density of 8500. kg/m^3

m_nozz =

num_cores*2*pi*8500.*l_nozz*(((1/3)*x1*x2*(l_nozz**2))+(((0.5*(x1*0.5*d_throat))+(0.5*(x2*throat_thick)))*l_nozz)+(0.5*throat_thick*d_throat))↪→

V_vessel = V_core + ((4/3) * pi * R_core**3) # core volume + hemispherical end caps

uses the Pv/W method for calculating a pressure vessel mass, sec. 5.4.4 of SPAD

m_vessel = 2 * (P_chamber * 1e6) * V_vessel / G0.value / 2500. # assumes a tank factor of 2500 for

all metallic tank↪→

cooling + feed system

estimates based on 40% for nozzle and combustion chamber, 35.1% for cooling, and 24.9% for

injector/feed↪→
these numbers are from SPAD p. 504 in the nuclear engine case study

m_thrust_chamber = (m_nozz + m_vessel) / 0.4 # kg

m_feed = num_cores * m_thrust_chamber * 0.249 # kg

m_cool = num_cores * m_thrust_chamber * 0.351 # kg

shield calculations

shield_area = pi * R_core**2

shied_aerial_density = 3500. # kg/m2, based on baseline in sec. 8.5 of SPAD

m_shield = num_cores * shied_aerial_density * shield_area

pump calculations

num_tpas = 2 # redundant tpa

rho = fluids.density(propellant)

this is a fit of data for the turbine/pump power balance from Larry's

spread sheet. It assumes a fixed turbine inlet temperature of 315.5 K

turbine_inlet_temp = 315.5 # K, assumed, provides longest turbine life and most conservative mass

estimates↪→
turbine_efficiency = 0.70 # assumed

pump_efficiency = 0.75 # assumed pump efficiency

Cp = fluids.cp(propellant,turbine_inlet_temp)

heat_ratio = fluids.heat_ratio(propellant,turbine_inlet_temp)

args = (turbine_inlet_temp, turbine_efficiency,pump_efficiency,Cp,

heat_ratio, P_chamber,m_dot,rho)

turbine_pressure_ratio = brentq(_tpa_power_ballance,1.,2.5,args=args)

1.2 and 1.05 are factors for pressure drop in reactor and cooling, 0.05 is pressure drop in the

feed lines↪→
delta_P = 1.2 * (1.05 * P_chamber * turbine_pressure_ratio) + 0.05

pump_head = delta_P * 1e6 / G0.value / rho

pump_power = pump_head * m_dot * G0.value / pump_efficiency # W, f(m_dot,P_chamber)

Q_dot = m_dot / rho

pump_speed = 2 * pump_head**.75 / sqrt(Q_dot) # rad/s, f(P_chamber)

tau = pump_power / pump_speed # N-m

A = 2.6; B = 0.667 # maximum values for parameters from SPAD, p. 266

m_tpa = num_tpas * 1.25 * A*tau**B # kg, adds 25% additional mass for spool up

305

inert_mass = m_core + m_nozz + m_vessel + m_feed + m_cool + m_shield + m_tpa # kg

return inert_mass, power_req

def _tpa_power_balance(turbine_pressure_ratio, turbine_inlet_temp,

turbine_efficiency, pump_efficiency, Cp, heat_ratio,

P_chamber, m_dot, rho):

"""This power balance for the turbopump assembly (TPA) assumes a pump and

turbine in series with the reactor core (expander cycle), meaning all of

the propellant flows through both the pump and turbine.

"""

turbine_power = m_dot * turbine_efficiency * turbine_inlet_temp * Cp * (1 -

(1/turbine_pressure_ratio)**((heat_ratio - 1)/heat_ratio))↪→
delta_P = 1.2 * (1.05 * P_chamber * turbine_pressure_ratio) + 0.05

pump_head = delta_P * 1e6 / G0.value / rho

pump_power = pump_head * m_dot * G0.value / pump_efficiency # W, f(m_dot,P_chamber)

return turbine_power - pump_power

def _mach_calc(mach, isp_target, P_chamber, P_amb, heat_ratio, c_star,

nozzle_efficiency):

"""This function is for estimating the mach of the propellant flow

through the nozzle by matching the desired isp of the engine

"""

if mach < 0:

mach = 0.1

P_chamber = P_chamber * 1e6 # Pa

P_amb = P_amb * 1e6 # Pa

P_exit = P_chamber * (1 + ((heat_ratio - 1)/2 * mach**2))**(heat_ratio / (1 - heat_ratio))

expansion_ratio = (1/mach) * ((2 / (heat_ratio + 1))*(1 + ((heat_ratio - 1)/2 *

mach**2)))**((heat_ratio + 1)/(2*heat_ratio - 2))↪→
isp_calc = nozzle_efficiency * (c_star * heat_ratio / G0.value * sqrt((2 / (heat_ratio - 1))*

(2 / (heat_ratio + 1))**((heat_ratio + 1)/(heat_ratio - 1)) *

(1 - (P_exit/P_chamber)**((heat_ratio - 1) / heat_ratio))) +

c_star * expansion_ratio * (P_exit - P_amb) / G0.value /

P_chamber)↪→

return isp_calc - isp_target

def _prop_cp(T,prop):

return fluids.cp(prop,T)

I.3 Power SubElement Model
-*- coding: utf-8 -*-

"""

Description:

A DYREQT Power subelement for Douglas Trent's PhD

Written by:

Douglas J. Trent

NASA Marshall Space Flight Center

Advanced Concept Office

douglas.trent@nasa.gov

Created: 04/06/2017

Revised: 07/31/2017

"""

import DYREQT Subelement base class

from SubElements import SubElement

from numpy import cos

306

create the structures subelement

class PowerPhD(SubElement):

"""Estimates the mass of a power subsystem, including structures where

needed (solar arrays)

Input Params

generator_type : str('pv')

The type of power generation for the element, one of ['pv','rtg']

transmission_efficiency : float(0.9)

The efficiency of transmitting power from the generator/power storage

to the load.

cell_efficiency : float(0.148)

The efficiency of the PV cell at converting solar energy to electrical

energy. A value between 0.0 and 1.0

cell_degradation : float(3.75 %/year)

The decrease in cell power production (%/year)

array_density : float(3.5 kg/m**2)

The aerial density of the solar array, including PV cells and array

structures (kg/m**2)

discharge_depth : float(0.2)

The depth of discharge of the battery storage system as a fraction of

the storage capacity

storage_specific_energy : float(30 W*h/kg)

The energy density of the power storage system (W*h/kg)

energy_tracking : str('peak-tracking')

The energy tracking scheme for the solar array system. One of

['direct,'peak-tracking'].

low_array_degradation : bool(False)

If True, reduces solar array degradation due to assembly and

configuration (shadowing), and operational temperature, reducing the

array mass for a given power output.

orbit_period : float(1.6467 h)

The orbital period (h)

max_eclipse : float(0.588 h)

The maximum eclipse time during the mission for which batteries must

provide the power_required (h)

ops_distance : float(1 AU)

The solar distance from the sun of the worst operational environment (AU)

mission_duration : float(5 years)

The duration of the mission (y)

Inherited Params

power_req : array

The power required from each element subsystems (W)

Outputs

inert_mass : float

The inert mass of the subelement (kg)

heat_loads : array

The amount of heat generated by other subsystems to be dissipated by

the radiators (W)

307

"""

def __init__(self,**kwargs):

super().__init__(**kwargs)

user model inputs

self.add_param(self.base_name+'_generator_type', val=str('pv'))

self.add_param(self.base_name+'_transmission_efficiency', val=float(0.9))

self.add_param(self.base_name+'_cell_efficiency', val=float(0.148))

self.add_param(self.base_name+'_cell_degredation', val=float(3.75), units='1/yr')

self.add_param(self.base_name+'_array_density', val=float(3.5), units='kg/m**2')

self.add_param(self.base_name+'_discharge_depth', val=float(0.2))

self.add_param(self.base_name+'_storage_specific_energy', val=float(30), units='W*h/kg')

self.add_param(self.base_name+'_energy_transfer', val=str('peak-tracking'))

self.add_param(self.base_name+'_low_array_degridation', val=False)

self.add_param(self.base_name+'_orbit_period', val=float(1.6467), units='h') # will eventually

be inherited from DYREQT mission↪→
self.add_param(self.base_name+'_max_eclipse', val=float(0.588), units='h') # will eventually

be inherited from DYREQT mission↪→
self.add_param(self.base_name+'_ops_distance', val=float(1), units='AU') # will eventually be

inherited from DYREQT mission↪→
self.add_param(self.base_name+'_mission_duration', val=float(5), units='yr') # will eventually

be inherited from DYREQT mission↪→
outputs used by the parent element

self.add_output(self.base_name+'_heat_load', val=float(0), units='W')

self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')

power requirement from all other subelements in the parent element

for subnum in range(self.element.num_subelements):

if subnum != self.subelement_num:

self.add_param('element{0}sub{1}_power_req'.format(self.element.element_num,subnum),

val=float(0), units='W')↪→

def pre_setup(self,problem):

self.add_param(self.base_name+'_engine_power_req', val=0., units='W')

for subelement in self.element.components():

if isinstance(subelement,SubElement):

if 'engine' in subelement.subelement_type.lower():

self.element.connect(self.base_name+'_engine_power_req','element'+str(self.element.element_num)+'sub'+str(subelement.subelement_num)+'_power_req')↪→

def post_setup(self, problem):

"""Check inputs after final connections have been made

"""

generator_type = self.params[self.base_name+'_generator_type'].lower()

transmission_efficiency = self.params[self.base_name+'_transmission_efficiency']

cell_efficiency = self.params[self.base_name+'_cell_efficiency']

cell_degradation = self.params[self.base_name+'_cell_degredation'] / 100.

discharge_depth = self.params[self.base_name+'_discharge_depth']

ops_distance = self.params[self.base_name+'_ops_distance']

orbit_period = self.params[self.base_name+'_orbit_period']

max_eclipse = self.params[self.base_name+'_max_eclipse']

mission_duration = self.params[self.base_name+'_mission_duration']

if generator_type not in ['pv','rtg','none']:

msg = ("undefined generator type. must be one of ['pv','rtg','none']")

raise Exception(msg)

if orbit_period < max_eclipse:

msg = ('orbit period must be greater than the max eclipse duration')

raise Exception(msg)

for name,value in {'cell_efficiency':cell_efficiency,

'cell_degradation':cell_degradation,

'discharge_depth':discharge_depth,

'transmission_efficiency':transmission_efficiency}.items():

if value < 0 or value > 1:

msg = ('{0} must be a value between zero and 1'.format(name))

308

raise Exception(msg)

for name,value in {'ops_distance':ops_distance,

'orbit_period':orbit_period,

'max_eclipse':max_eclipse,

'mission_duration':mission_duration}.items():

if value < 0:

msg = ('{0} must be a positive value'.format(name))

raise Exception(msg)

def solve_nonlinear(self, params, unknowns, resids):

unpack params to local variables

generator_type = params[self.base_name+'_generator_type'].lower()

transmission_efficiency = params[self.base_name+'_transmission_efficiency']

cell_efficiency = params[self.base_name+'_cell_efficiency']

cell_degradation = params[self.base_name+'_cell_degradation']

array_density = params[self.base_name+'_array_density']

low_array_degradation = params[self.base_name+'_low_array_degradation']

discharge_depth = params[self.base_name+'_discharge_depth']

storage_specific_energy = params[self.base_name+'_storage_specific_energy']

energy_transfer = params[self.base_name+'_energy_transfer']

ops_distance = params[self.base_name+'_ops_distance']

orbit_period = params[self.base_name+'_orbit_period']

max_eclipse = params[self.base_name+'_max_eclipse']

mission_duration = params[self.base_name+'_mission_duration']

P_engine = params[self.base_name+'_engine_power_req']

power_required = 0.

for subnum in range(self.element.num_subelements):

if subnum != self.subelement_num:

power_required +=

params['element{0}sub{1}_power_req'.format(self.element.element_num,subnum)]↪→

Pe = Pd = power_required # (W)

Te = max_eclipse # (h)

n = transmission_efficiency # transmission efficiency from battery/generator to load

size the generator

gen_mass = 0.

if generator_type == 'pv': # PV generator

To = orbit_period # (h)

Td = To - Te # (h)

if energy_transfer == 'direct':

Xbase = 0.85 # from Space Mission Engineering: The New SMAD, sec. 21.2.2

else:

Xbase = 0.8 # from Space Mission Engineering: The New SMAD, sec. 21.2.2

Xe = Xbase*n # accounts for losses for power coming from batteries

Xd = Xbase

Psa = (Pe*Te/Xe + Pd*Td/Xd)/Td # (W), Space Mission Engineering: The New SMAD, eq. 21-6

solar_flux = 1368.0 * (1/ops_distance**2) # W/m^2 # inverse square law relation

from Space Mission Engineering: The New SMAD, Fig. 21-24

Po = solar_flux * cell_efficiency

can bring in degradation factors as technology inputs

if low_array_degradation:

Id = 0.95 * 0.95 # inherent degradation due to design, assembly, and thermal

else:

Id = 0.85 * 0.85 # inherent degradation due to design, assembly, and thermal

cycling. Space Mission Engineering: The New SMAD, Sec. 21.2.2, Step 4, Table 21-14

theta = 0. # radians, assume orbit plane equals solar ecliptic plane

(i.e. no incidence angle losses)

P_BOL = Po * Id * cos(theta) # Power beginning of life (W/m^2)

309

D = cell_degradation / 100.

L = mission_duration

Ld = (1 - D)**L # life degradation

P_EOL = P_BOL * Ld # end of life power (W/m^2)

Asa = Psa / P_EOL # array surface area (m^2)

Msa = Asa * array_density # solar array mass (kg)

gen_mass = Msa # kg

elif generator_type == 'rtg': # RTG generator

gen_mass = 0.3801 * power_required * (2 - n) # kg

this is a linear curve fit of data from Element of Spacecraft Design

by Charles D. Brown, Sec 6.3 Table 6.13, p. 350

size the power storage

storage_mass = 0. # kg

if generator_type != 'rtg': # using solar arrays, need storage during eclipse periods

N = 1 # number of batteries required

DoD = discharge_depth

batt_capacity = (Pe-P_engine)*Te / (DoD*N*n) # (W-hr)

batt_mass = batt_capacity / storage_specific_energy # kg

storage_mass = batt_mass * (N+1) # kg, redundancy for battery failure

size regulation/distribution

this is just an estimate based on the general mass breakdown of power

systems provided in Space Mission Engineering: The New SMAD, Fig. 21-6, p.641

reg_dist_mass = (0.17/0.83) * (gen_mass + storage_mass) # kg

inert_mass = gen_mass + storage_mass + reg_dist_mass # kg

heat_load = power_required * (1 - n) # W, heat from power regulation/distribution

assign unknowns

unknowns[self.base_name+'_heat_load'] = heat_load

unknowns[self.base_name+'_inert_mass'] = inert_mass

I.4 Structures SubElement Model
-*- coding: utf-8 -*-

"""

Description:

A DYREQT Structures subelement for Douglas Trent's PhD

Written by:

Douglas J. Trent

NASA Marshall Space Flight Center

Advanced Concept Office

douglas.trent@nasa.gov

Created: 04/06/2017

Revised: 07/31/2017

"""

import DYREQT Subelement base class

from SubElements import SubElement

from numpy import pi, log

310

create the structures subelement

class StructuresPhD(SubElement):

"""Estimates the structural mass of an element. Sizing is based on the

design-envelope area of the element, which is estimated based on the size

of the propellant tanks. The relation for structure mass to design-envelope

area is from NASA document JSC-26098, "Mass Estimating and Forecasting for

Aerospace Vehicles Based on Historical Data" by Willie Heineman, Jr.

Input Params

A_de : float(1 m**2)

The design-envelop area of the structure (m**2). This is the surface

area of the design-envelop volume of the element. If this value is

provided all other inputs will be ignored. This acts as a static

override for the scaling of the structures.

manned : bool(False)

If the element is a manned vehicle. Increases the leading coefficient

in the relationship to increase overall mass.

composite : bool(False)

If True, reduces overall mass by 30% for composite structures.

truss : bool(False)

If True, assume a truss structure for a single tank, otherwise, assume

an in-line tank structure. If num_tanks is greater than 1, this input is

ignored. This input overrides the 'manned' input setting

adapter : bool(False)

If True, sizes an adapter instead of a primary/secondary structure.

This setting overrides the 'manned' or 'truss' input settings

Inherited Params

num_fuel_tanks_mps : float

The number of fuel tanks in the main propulsion system

diameter_fuel_tanks_mps : float

The diameter of the fuel tanks in the main propulsion system (m)

length_fuel_tanks_mps : float

The length of the fuel tanks in the main propulsion system (m)

num_ox_tanks_mps : float

The number of oxidizer tanks in the main propulsion system

diameter_ox_tanks_mps : float

The diameter of the oxidizer tanks in the main propulsion system (m)

length_ox_tanks_mps : float

The length of the oxidizer tanks in the main propulsion system (m)

num_fuel_tanks_mps : float

The number of fuel tanks in the main propulsion system

diameter_fuel_tanks_rcs : float

The diameter of the fuel tanks in the reaction control system (m)

length_fuel_tanks_rcs : float

The length of the fuel tanks in the reaction control system (m)

num_ox_tanks_rcs : float

The number of oxidizer tanks in the reaction control system

diameter_ox_tanks_rcs : float

The diameter of the oxidizer tanks in the reaction control system (m)

length_ox_tanks_rcs : float

311

The length of the oxidizer tanks in the reaction control system (m)

Outputs

inert_mass : float

The estimated inert mass of the structures (kg). This includes

primary and secondary structures.

"""

def __init__(self,**kwargs):

super().__init__(**kwargs)

user model inputs

self.add_param(self.base_name+'_A_de', val=float(-1), units='m**2')

self.add_param(self.base_name+'_manned', val=False)

self.add_param(self.base_name+'_composite', val=False)

self.add_param(self.base_name+'_truss', val=False)

self.add_param(self.base_name+'_addapter', val=False)

parameters from the element (DYREQT internal or from other subelements)

self.add_param(self.element.base_name+'_num_fuel_tanks_mps', val=int(0))

self.add_param(self.element.base_name+'_diameter_fuel_tanks_mps', val=float(0), units='m')

self.add_param(self.element.base_name+'_length_fuel_tanks_mps', val=float(0), units='m')

self.add_param(self.element.base_name+'_num_ox_tanks_mps', val=int(0))

self.add_param(self.element.base_name+'_diameter_ox_tanks_mps', val=float(0), units='m')

self.add_param(self.element.base_name+'_length_ox_tanks_mps', val=float(0), units='m')

self.add_param(self.element.base_name+'_num_fuel_tanks_rcs', val=int(0))

self.add_param(self.element.base_name+'_diameter_fuel_tanks_rcs', val=float(0), units='m')

self.add_param(self.element.base_name+'_length_fuel_tanks_rcs', val=float(0), units='m')

self.add_param(self.element.base_name+'_num_ox_tanks_rcs', val=int(0))

self.add_param(self.element.base_name+'_diameter_ox_tanks_rcs', val=float(0), units='m')

self.add_param(self.element.base_name+'_length_ox_tanks_rcs', val=float(0), units='m')

outputs used by the parent element

self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')

def pre_setup(self,problem):

pass

def post_setup(self, problem):

"""Check inputs after final connections have been made

"""

mps_tanks = (self.params[self.element.base_name+'_num_fuel_tanks_mps'] +

self.params[self.element.base_name+'_num_ox_tanks_mps'])

rcs_tanks = (self.params[self.element.base_name+'_num_fuel_tanks_rcs'] +

self.params[self.element.base_name+'_num_ox_tanks_rcs'])

A_de = self.params[self.base_name+'_A_de']

if mps_tanks + rcs_tanks == 0:

if A_de == -1:

msg = ('must specify a design envelope area, A_de, for '

'element {0} with no tanks'.format(self.element.element_num))

raise Exception(msg)

if A_de < 0 and A_de != -1:

msg = ('design envelope area, A_de, for element {0} must be '

'greater than zero'.format(self.element.element_num))

raise Exception(msg)

def solve_nonlinear(self, params, unknowns, resids):

A_de = params[self.base_name+'_A_de']

truss = params[self.base_name+'_truss']

manned = params[self.base_name+'_manned']

adapter = params[self.base_name+'_adapter']

composite = params[self.base_name+'_composite']

tank_diameters = [params[self.element.base_name+'_diameter_fuel_tanks_mps'],

params[self.element.base_name+'_diameter_ox_tanks_mps'],

params[self.element.base_name+'_diameter_fuel_tanks_rcs'],

312

params[self.element.base_name+'_diameter_ox_tanks_rcs']]

tank_lengths = [params[self.element.base_name+'_length_fuel_tanks_mps'],

params[self.element.base_name+'_length_ox_tanks_mps'],

params[self.element.base_name+'_length_fuel_tanks_rcs'],

params[self.element.base_name+'_length_ox_tanks_rcs']]

num_tanks = [params[self.element.base_name+'_num_fuel_tanks_mps'],

params[self.element.base_name+'_num_ox_tanks_mps'],

params[self.element.base_name+'_num_fuel_tanks_rcs'],

params[self.element.base_name+'_num_ox_tanks_rcs']]

if A_de == -1: # no value specified by user, estimate it from tank geometries

d_tanks = 0.

l_tanks = 0.

for i in range(0,2):

if tank_diameters[i] > 0.:

d_tanks += tank_diameters[i]**2 / sum(tank_diameters)

l_tanks += tank_lengths[i]**2 / sum(tank_lengths)

if sum(num_tanks[0:2]) > 2: # assume disk shape

diameter of a circle which fits the 120% diameter tanks

d_de = (1.2*d_tanks)*(1.1655*log(sum(num_tanks))+0.9571)

surface area of a cylinder with d_de and l=120% tank diameter

A_de = 2*pi*(d_de/2)**2 + 2*pi*(d_de/2)*(1.2*l_tanks)

elif sum(num_tanks[0:2]) == 2: # assume two stacked mps tanks

d_de = d_tanks

A_de = 2*pi*(d_de/2)**2 + 2*pi*(d_de/2)*(sum(num_tanks[0:2])*l_tanks)

else: # assume truss/drop tank

d_de = d_tanks

if truss:

truss_density_factor = 0.425 # m^3/m^3

A_de = truss_density_factor * (pi*(d_de/2)**2 + pi*(d_de/2)*(l_tanks))

else:

A_de = 2*pi*(d_de/2)**2 + 2*pi*(d_de/2)*(l_tanks)

SF = 1.27 # scaling factor based on type

SF = 0.71

if manned:

SF = 2.0

if truss or sum(num_tanks[0:2]) == 1:

SF = 0.71

if adapter:

SF = 0.99

inert_mass = SF*(A_de*10.7639)**(1.15) # 10.7639 conversion from m^3 -> f^3

if composite:

inert_mass = 0.7*inert_mass

inert_mass = inert_mass * 0.453592 # kg

assign unknowns

unknowns[self.base_name+'_inert_mass'] = inert_mass

I.5 Tanks SubElement Model
-*- coding: utf-8 -*-

"""

Description:

A DYREQT Tanks subelement for Douglas Trent's PhD

Written by:

Douglas J. Trent

NASA Marshall Space Flight Center

313

Advanced Concept Office

douglas.trent@nasa.gov

Created: 04/06/2017

Revised: 08/31/2017

"""

import sys

sys.path.append(DYREQT_DIR)

import DYREQT Subelement base class

from SubElements import SubElement

import other modules

import FluidsDef as fluids

from numpy import array, pi, zeros

from copy import deepcopy

create the structures subelement

class TanksPhD(SubElement):

"""Sizes a set of tanks based on the user inputs for a propulsive stage.

Sizing is done mostly from level-0 physics based equation, with correction

factors for isentropic fluid expansion and composite materials.

Input Params

num_fuel_tanks_mps : int(1)

The number of main propulsion system fuel tanks.

num_ox_tanks_mps : int(1)

The number of main propulsion system oxidizer tanks.

fuel_pressures_mps : float(0.3 MPa)

The main propulsion system fuel tank pressures (MPa).

ox_pressures_mps : float(0.3 MPa)

The main propulsion system oxidizer tank pressures (MPa).

ld_ratio_fuel_tanks_mps : float(1.0)

The main propulsion system fuel tank L/D ratio.

ld_ratio_ox_tanks_mps : float(1.0)

The main propulsion system oxidizer tank L/D ratio.

separator_type_mps : str('pmd','ped','')

The type of device used to separate pressurant gas and liquid

propellant in the main propulsion system propellant tank

num_fuel_tanks_rcs : int(1)

The number of reaction control system fuel tanks.

num_ox_tanks_rcs : int(1)

The number of reaction control system oxidizer tanks.

fuel_pressures_rcs : float(0.3 MPa)

The reaction control system fuel tank pressures (MPa).

ox_pressures_rcs : float(0.3 MPa)

The reaction control system oxidizer tank pressures (MPa).

ld_ratio_fuel_tanks_rcs : float(1.0)

The reaction control system fuel tank L/D ratio.

ld_ratio_ox_tanks_rcs : float(1.0)

The reaction control system oxidizer tank L/D ratio.

separator_type_rcs : str('pmd','ped','')

The type of device used to separate pressurant gas and liquid

propellant in the reaction control system propellant tank

pressurant : str

314

The pressurant for tanks

pressurant_pressure : float

The initial pressure of the pressurant tanks (MPa)

num_tanks_pressurant : int

The number of pressurant tanks to size

tank_ld_ratio_pressurant : float

The L/D ratio of the pressurant tank

material_density : float

The density of the tank material (kg/m^3)

material_strength : float

The ultimate strength of the tank material (MPa)

copv_pressurant_tanks : bool(False,True)

If True, utilizes composite overwrap pressure vessels for the pressurant

tanks

composite_fuel_tanks_mps : bool

If True, utilizes composite materials for the MPS fuel tanks

resulting in a 30% mass reduction from Aluminum-Lithium tanks.

composite_ox_tanks_mps : bool

If True, utilizes composite materials for the MPS oxidizer tanks

resulting in a 30% mass reduction from Aluminum-Lithium tanks.

composite_fuel_tanks_rcs : bool

If True, utilizes composite materials for the RCS fuel tanks

resulting in a 30% mass reduction from Aluminum-Lithium tanks.

composite_ox_tanks_rcs : bool

If True, utilizes composite materials for the RCS oxidizer tanks

resulting in a 30% mass reduction from Aluminum-Lithium tanks.

ivfm : bool

If True, assumes integrated vehicle fluid management, which will combine

the RCS and MPS propellant systems into a single system, reducing

the number of tanks and overall mass of the propellant storage system

Inherited Params

propellants_mps : str

The propellants for the main propulsion system

propellants_rcs : str

The propellants for the reaction system

mixture_ratio_mps : float

The mixture ratio of the main propulsion system propellants

mixture_ratio_rcs : float

The mixture ratio of the reaction control system propellants

max_propellant_mass_mps : float

The total amount of propellant required for all impulsive maneuvers

performed by the main propulsion system (kg)

max_propellant_mass_rcs : float

The total amount of propellant required for all impulsive maneuvers

performed by the reaction control system (kg)

propellant_mass_mps : array

The propellant required for each impulsive maneuver the parent element

performs (kg)

315

propellant_mass_rcs : array

The propellant required for each impulsive maneuver the parent element

performs (kg)

Outputs

num_fuel_tanks_mps : float

The number of fuel tanks in the main propulsion system

diameter_fuel_tanks_mps : float

The diameter of the fuel tanks in the main propulsion system (m)

length_fuel_tanks_mps : float

The length of the fuel tanks in the main propulsion system (m)

pressure_fuel_tanks_mps : float

The pressure of the fuel tanks in the main propulsion system (MPa)

num_ox_tanks_mps : float

The number of oxidizer tanks in the main propulsion system

diameter_ox_tanks_mps : float

The diameter of the oxidizer tanks in the main propulsion system (m)

length_ox_tanks_mps : float

The length of the oxidizer tanks in the main propulsion system (m)

pressure_ox_tanks_mps : float

The pressure of the oxidizer tanks in the main propulsion system (MPa)

num_fuel_tanks_mps : float

The number of fuel tanks in the main propulsion system

diameter_fuel_tanks_rcs : float

The diameter of the fuel tanks in the reaction control system (m)

length_fuel_tanks_rcs : float

The length of the fuel tanks in the reaction control system (m)

pressure_fuel_tanks_rcs : float

The pressure of the fuel tanks in the reaction control system (MPa)

num_ox_tanks_rcs : float

The number of oxidizer tanks in the reaction control system

diameter_ox_tanks_rcs : float

The diameter of the oxidizer tanks in the reaction control system (m)

length_ox_tanks_rcs : float

The length of the oxidizer tanks in the reaction control system (m)

pressure_ox_tanks_rcs : float

The pressure of the oxidizer tanks in the reaction control system (MPa)

inert_mass : float

The estimated inert mass of the propellant tanks (kg). This includes

the mass of the dry tanks, miscellaneous hardware, pressurant, and

propellant trap.

"""

def __init__(self,**kwargs):

super().__init__(**kwargs)

user model inputs

self.add_param(self.base_name+'_num_fuel_tanks_mps', val=int(1))

self.add_param(self.base_name+'_num_ox_tanks_mps', val=int(1))

self.add_param(self.base_name+'_fuel_pressure_mps', val=float(0.3), units='MPa')

self.add_param(self.base_name+'_ox_pressure_mps', val=float(0.3), units='MPa')

self.add_param(self.base_name+'_ld_ratio_fuel_tanks_mps', val=float(1))

316

self.add_param(self.base_name+'_ld_ratio_ox_tanks_mps', val=float(1))

self.add_param(self.base_name+'_seperator_type_mps', val=str('pmd'))

self.add_param(self.base_name+'_num_fuel_tanks_rcs', val=int(0))

self.add_param(self.base_name+'_num_ox_tanks_rcs', val=int(0))

self.add_param(self.base_name+'_fuel_pressure_rcs', val=float(0.3), units='MPa')

self.add_param(self.base_name+'_ox_pressure_rcs', val=float(0.3), units='MPa')

self.add_param(self.base_name+'_ld_ratio_fuel_tanks_rcs', val=float(1))

self.add_param(self.base_name+'_ld_ratio_ox_tanks_rcs', val=float(1))

self.add_param(self.base_name+'_seperator_type_rcs', val=str('pmd'))

self.add_param(self.base_name+'_pressurant', val=str('He'))

self.add_param(self.base_name+'_pressurant_pressure', val=float(1), units='MPa')

self.add_param(self.base_name+'_num_tanks_pressurant', val=int(1))

self.add_param(self.base_name+'_tank_ld_ratio_pressurant', val=float(1))

self.add_param(self.base_name+'_material_strength', val=float(1), units='MPa')

self.add_param(self.base_name+'_material_density', val=float(1), units='kg/m**3')

self.add_param(self.base_name+'_copv_pressurant_tank', val=False)

self.add_param(self.base_name+'_composite_fuel_tanks_mps', val=False)

self.add_param(self.base_name+'_composite_ox_tanks_mps', val=False)

self.add_param(self.base_name+'_composite_fuel_tanks_rcs', val=False)

self.add_param(self.base_name+'_composite_ox_tanks_rcs', val=False)

self.add_param(self.base_name+'_ivfm', val=False)

parameters from the element (DYREQT internal or from other subelements)

self.add_param(self.element.base_name+'_propellants_mps', val=str())

self.add_param(self.element.base_name+'_propellants_rcs', val=str())

self.add_param(self.element.base_name+'_mixture_ratio_mps', val=float(1))

self.add_param(self.element.base_name+'_mixture_ratio_rcs', val=float(1))

self.add_param(self.element.base_name+'_max_propellant_mass_mps', val=float(0), units='kg')

self.add_param(self.element.base_name+'_max_propellant_mass_rcs', val=float(0), units='kg')

self.add_param(self.element.base_name+'_max_single_burn_prop_mass_rcs', val=float(0),

units='kg')↪→
self.add_param(self.element.base_name+'_propellant_mass_mps',

val=zeros(self.element.num_events+1), units='kg')↪→
self.add_param(self.element.base_name+'_propellant_mass_rcs',

val=zeros(self.element.num_events+1), units='kg')↪→
outputs inherited by the parent element (for use by other subelements or DYREQT)

self.add_output(self.element.base_name+'_num_fuel_tanks_mps', val=int(1))

self.add_output(self.element.base_name+'_diameter_fuel_tanks_mps', val=float(0), units='m')

self.add_output(self.element.base_name+'_length_fuel_tanks_mps', val=float(0), units='m')

self.add_output(self.element.base_name+'_pressure_fuel_tanks_mps', val=float(0.3),

units='MPa')↪→
self.add_output(self.element.base_name+'_num_ox_tanks_mps', val=int(1))

self.add_output(self.element.base_name+'_diameter_ox_tanks_mps', val=float(0), units='m')

self.add_output(self.element.base_name+'_length_ox_tanks_mps', val=float(0), units='m')

self.add_output(self.element.base_name+'_pressure_ox_tanks_mps', val=float(0.3), units='MPa')

self.add_output(self.element.base_name+'_num_fuel_tanks_rcs', val=int(0))

self.add_output(self.element.base_name+'_diameter_fuel_tanks_rcs', val=float(0), units='m')

self.add_output(self.element.base_name+'_length_fuel_tanks_rcs', val=float(0), units='m')

self.add_output(self.element.base_name+'_pressure_fuel_tanks_rcs', val=float(0.3),

units='MPa')↪→
self.add_output(self.element.base_name+'_num_ox_tanks_rcs', val=int(0))

self.add_output(self.element.base_name+'_diameter_ox_tanks_rcs', val=float(0), units='m')

self.add_output(self.element.base_name+'_length_ox_tanks_rcs', val=float(0), units='m')

self.add_output(self.element.base_name+'_pressure_ox_tanks_rcs', val=float(0.3), units='MPa')

outputs used by the parent element

self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')

def pre_setup(self,problem):

pass

def post_setup(self, problem):

"""Check inputs after final connections have been made

"""

for propsys in ['mps','rcs']:

props = self.params[self.element.base_name+'_propellants_'+propsys]

num = props.count('/') + 1

if num == 1 and not props:

317

msg = ('must specify at least one propellant for the {0}'.format(propsys.upper()))

raise Exception(msg)

def solve_nonlinear(self, params, unknowns, resids):

ivfm = deepcopy(params[self.base_name+'_ivfm'])

if ivfm:

if params[self.element.base_name+'_propellants_mps'] !=

params[self.element.base_name+'_propellants_rcs']:↪→
ivfm = False

set local variables from params

pres_tank_pressure = params[self.base_name+'_pressurant_pressure']

num_pressurant_tanks = params[self.base_name+'_num_tanks_pressurant']

pres_tank_ld_ratio = params[self.base_name+'_tank_ld_ratio_pressurant']

copv_pressurant_tanks = params[self.base_name+'_copv_pressurant_tank']

material_strength = params[self.base_name+'_material_strength']

material_density = params[self.base_name+'_material_density']

inert_mass = []

for propsys in ['mps','rcs']:

set local variables from params

pressurant = params[self.base_name+'_pressurant']

if propsys == 'mps':

if ivfm:

usable_prop = (params[self.element.base_name+'_max_propellant_mass_mps'] +

params[self.element.base_name+'_max_propellant_mass_rcs'])

burn_props = (params[self.element.base_name+'_propellant_mass_mps'] +

params[self.element.base_name+'_propellant_mass_rcs'])

else:

usable_prop = params[self.element.base_name+'_max_propellant_mass_mps']

burn_props = params[self.element.base_name+'_propellant_mass_mps']

propellants = params[self.element.base_name+'_propellants_mps']

mixture_ratio = params[self.element.base_name+'_mixture_ratio_mps']

separator_type = params[self.base_name+'_separator_type_mps']

num_ox_tanks = params[self.base_name+'_num_ox_tanks_mps']

num_fuel_tanks = params[self.base_name+'_num_fuel_tanks_mps']

ox_tank_pressure = params[self.base_name+'_ox_pressure_mps']

fuel_tank_pressure = params[self.base_name+'_fuel_pressure_mps']

ox_tank_ld_ratio = params[self.base_name+'_ld_ratio_ox_tanks_mps']

fuel_tank_ld_ratio = params[self.base_name+'_ld_ratio_fuel_tanks_mps']

composite_ox_tanks = params[self.base_name+'_composite_ox_tanks_mps']

composite_fuel_tanks = params[self.base_name+'_composite_fuel_tanks_mps']

assign static outputs

unknowns[self.element.base_name+'_num_fuel_tanks_mps'] = num_fuel_tanks

unknowns[self.element.base_name+'_pressure_fuel_tanks_mps'] = fuel_tank_pressure

unknowns[self.element.base_name+'_num_ox_tanks_mps'] = num_ox_tanks

unknowns[self.element.base_name+'_pressure_ox_tanks_mps'] = ox_tank_pressure

elif propsys == 'rcs':

if ivfm:

usable_prop = 0.

num_ox_tanks = 0.

num_fuel_tanks = 0.

else:

usable_prop = params[self.element.base_name+'_max_propellant_mass_rcs']

num_ox_tanks = params[self.base_name+'_num_ox_tanks_rcs']

num_fuel_tanks = params[self.base_name+'_num_fuel_tanks_rcs']

burn_props = params[self.element.base_name+'_propellant_mass_rcs']

propellants = params[self.element.base_name+'_propellants_rcs']

mixture_ratio = params[self.element.base_name+'_mixture_ratio_rcs']

separator_type = params[self.base_name+'_separator_type_rcs']

ox_tank_pressure = params[self.base_name+'_ox_pressure_rcs']

fuel_tank_pressure = params[self.base_name+'_fuel_pressure_rcs']

ox_tank_ld_ratio = params[self.base_name+'_ld_ratio_ox_tanks_rcs']

fuel_tank_ld_ratio = params[self.base_name+'_ld_ratio_fuel_tanks_rcs']

composite_ox_tanks = params[self.base_name+'_composite_ox_tanks_rcs']

318

composite_fuel_tanks = params[self.base_name+'_composite_fuel_tanks_rcs']

assign static outputs

unknowns[self.element.base_name+'_num_fuel_tanks_rcs'] = num_fuel_tanks

unknowns[self.element.base_name+'_pressure_fuel_tanks_rcs'] = fuel_tank_pressure

unknowns[self.element.base_name+'_num_ox_tanks_rcs'] = num_ox_tanks

unknowns[self.element.base_name+'_pressure_ox_tanks_rcs'] = ox_tank_pressure

prop_trap = 0.01 * usable_prop

sized_prop = usable_prop + prop_trap

props_list = propellants.replace(' ','').lower().split('/')

ox = None

fuel = None

if len(props_list) >1:

ox = props_list[0]

fuel = props_list[1]

else:

fuel = props_list[0]

perform some input checks

prop_types = []

for i,propellant in enumerate([fuel,ox]):

if propellant:

prop_types.append(None)

if propellant == 'solid':

prop_types[i] = 'solid'

prop_trap = 0.

else:

res,fluid_def = fluids.check_def(propellant)

if res:

prop_types[i] = fluid_def['type']

else:

msg = ('"{0}" is not a defined fluid'.format(propellant))

raise Exception(msg)

if len(prop_types) > 1 and any(True for x in prop_types if x == 'electric'):

msg = ('may only select a single propellant when selecting an electric '

'engine propellant')

raise Exception(msg)

if pressurant:

if pressurant.lower() != 'none':

if not fluids.check_def(pressurant):

raise Exception('"{0}" is not a defined fluid'.format(pressurant))

else:

pressurant = ''

else:

pressurant = ''

if pressurant:

if pres_tank_pressure <= 2*max([fuel_tank_pressure,ox_tank_pressure]):

msg = ('pressurant tank initial pressure must be at least twice '

'the maximum propellant tank operating pressure')

raise Exception(msg)

for prop_type in prop_types:

if prop_type != 'cryogenic':

pressurant = 'He'

if separator_type:

if separator_type.lower() != 'none':

if separator_type.lower() not in ['pmd','ped']:

msg = ('separator_type must be one of "{0}"'.format())

raise Exception(msg)

else:

separator = ''

else:

separator = ''

319

ox_volume = 0.

ox_tank_mass = 0.

fuel_volume = 0.

fuel_tank_mass = 0.

pressurant_tank_mass = 0.

pressurant_mass = 0.

AL2195_density = 2685.0 # kg/m^3

AL2195_strength = 628.6 # MPa

determine the mass of fuel and oxidizer

if fuel and ox:

fuel_mass = sized_prop / (mixture_ratio + 1)

ox_mass = (sized_prop*mixture_ratio) / (mixture_ratio + 1)

else:

fuel_mass = sized_prop

ox_mass = 0.

size tanks

if fuel and num_fuel_tanks and prop_types[0] != 'solid':

determine fuel volume

if prop_types[0] == 'electric':

fuel_density = fluids.density(fuel,liquid=False,P=fuel_tank_pressure) # kg/m^3

else:

fuel_density = fluids.density(fuel) # kg/m^3

fuel_volume = fuel_mass / fuel_density # m^3

if not pressurant and prop_types[0] != 'electric':

add volume for autogenous pressurization

fuel_density_gas = fluids.density(fuel, liquid=False, P=fuel_tank_pressure)

res = fuel_volume

fuel_volume_new = 0.

pressurization_fuel = 1.

while pressurization_fuel > 1e-3:

pressurization_fuel = res * fuel_density_gas

fuel_mass += pressurization_fuel

fuel_volume_new = fuel_mass/fuel_density

res = abs(fuel_volume_new - fuel_volume)

fuel_volume = fuel_volume_new

fuel_volume = fuel_volume * 1.05 # 5% ullage

design the tank

volume = fuel_volume/num_fuel_tanks

ld_ratio = fuel_tank_ld_ratio

pressure = fuel_tank_pressure

separator = separator_type

if composite_fuel_tanks:

density = AL2195_density

strength = AL2195_strength

fuel_tank_mass,fuel_tank_radius =

self._tank_mass(density,strength,volume,ld_ratio,↪→
pressure,separator,1.5)

fuel_tank_mass = 0.7*fuel_tank_mass

else:

density = material_density

strength = material_strength

fuel_tank_mass,fuel_tank_radius =

self._tank_mass(density,strength,volume,ld_ratio,↪→
pressure,separator,1.5)

assign calculated outputs

if propsys == 'mps':

unknowns[self.element.base_name+'_diameter_fuel_tanks_mps'] = 2*fuel_tank_radius

unknowns[self.element.base_name+'_length_fuel_tanks_mps'] =

2*fuel_tank_radius*fuel_tank_ld_ratio↪→
elif propsys == 'rcs':

unknowns[self.element.base_name+'_diameter_fuel_tanks_rcs'] = 2*fuel_tank_radius

unknowns[self.element.base_name+'_length_fuel_tanks_rcs'] =

2*fuel_tank_radius*fuel_tank_ld_ratio↪→

if ox and num_ox_tanks:

320

determine ox volume

if prop_types[1] == 'electric':

ox_density = fluids.density(ox,liquid=False,P=ox_tank_pressure) # kg/m^3

else:

ox_density = fluids.density(ox) # kg/m^3

ox_volume = ox_mass / ox_density # m^3

if not pressurant and prop_types[0] != 'electric':

add volume for autogenous pressurization

ox_density_gas = fluids.density(ox, liquid=False, P=ox_tank_pressure)

res = ox_volume

ox_volume_new = 0.

pressurization_ox = 1.

while pressurization_ox > 1e-3:

pressurization_ox = res * ox_density_gas

ox_mass += pressurization_ox

ox_volume_new = ox_mass/ox_density

res = abs(ox_volume_new - ox_volume)

ox_volume = ox_volume_new

ox_volume = ox_volume * 1.05 # 5% ullage

design the tank

volume = ox_volume/num_ox_tanks

ld_ratio = ox_tank_ld_ratio

pressure = ox_tank_pressure

separator = separator_type

if composite_ox_tanks:

density = AL2195_density

strength = AL2195_strength

ox_tank_mass,ox_tank_radius = self._tank_mass(density,strength,volume,ld_ratio,

pressure,separator,1.5)

ox_tank_mass = 0.7*fuel_tank_mass

else:

density = material_density

strength = material_strength

ox_tank_mass,ox_tank_radius = self._tank_mass(density,strength,volume,ld_ratio,

pressure,separator,1.5)

assign calculated outputs

if propsys == 'mps':

unknowns[self.element.base_name+'_diameter_ox_tanks_mps'] = 2*ox_tank_radius

unknowns[self.element.base_name+'_length_ox_tanks_mps'] =

2*ox_tank_radius*ox_tank_ld_ratio↪→
elif propsys == 'rcs':

unknowns[self.element.base_name+'_diameter_ox_tanks_rcs'] = 2*ox_tank_radius

unknowns[self.element.base_name+'_length_ox_tanks_rcs'] =

2*ox_tank_radius*ox_tank_ld_ratio↪→

if pressurant and not (ivfm and propsys == 'rcs'):

determine pressurant mass and volume

prop_tank_pressure = max([fuel_tank_pressure,ox_tank_pressure])

pres_density_init = fluids.density(pressurant, liquid=False, P=pres_tank_pressure)

isentropic = False

if usable_prop:

if max(burn_props) / usable_prop > 0.1: # more than 10% total prop in a single

burn↪→
isentropic = True

if isentropic:

CF = (2*prop_tank_pressure/pres_tank_pressure)**0.2227

pres_density_final = fluids.density(pressurant, liquid=False,

P=prop_tank_pressure, T=CF*293.0)↪→
else:

pres_density_final = fluids.density(pressurant, liquid=False,

P=prop_tank_pressure)↪→
pres_density_res = fluids.density(pressurant, liquid=False, P=prop_tank_pressure*2)

pres_mass = (fuel_volume + ox_volume) * pres_density_final

new_pres_mass = pres_mass

old_pres_mass = 0.

res = 1.

while res > 1e-3:

pres_volume = new_pres_mass / pres_density_init # m^3

321

res_pres_mass = pres_volume * pres_density_res

new_pres_mass = pres_mass + res_pres_mass

res = abs(old_pres_mass - new_pres_mass)

old_pres_mass = new_pres_mass

pres_mass = new_pres_mass * 1.1 # add a contingency of 10% mass

pressurant_mass = pres_mass

pres_volume = pres_mass / pres_density_init

design the tank

volume = pres_volume/num_pressurant_tanks

density = material_density

strength = material_strength

ld_ratio = pres_tank_ld_ratio

pressure = pres_tank_pressure

separator = ''

pressurant_tank_mass,_ = self._tank_mass(density,strength,volume,ld_ratio,

pressure,separator,1.5)

modify tank masses for autogenous pressurization

if prop_types[0].lower() != 'electric' and not pressurant:

fuel_tank_mass = 1.1*fuel_tank_mass

ox_tank_mass = 1.1*ox_tank_mass

if copv_pressurant_tanks:

pressurant_tank_mass = 0.7*pressurant_tank_mass

total_tank_mass = (ox_tank_mass * num_ox_tanks +

fuel_tank_mass * num_fuel_tanks +

pressurant_tank_mass * num_pressurant_tanks)

miscellaneous_hardware = 0.15 * total_tank_mass # plumbing, brackets, insulation,

if ivfm and propsys == 'rcs':

mass for accumulator pumps (15 kg each, 2 for each accumulator tank)

and 15% for associated hardware/plumbing

miscellaneous_hardware += 1.15*(bool(num_ox_tanks)+bool(num_fuel_tanks))*2*15.

inert_mass.append(total_tank_mass + miscellaneous_hardware + pressurant_mass + prop_trap)

assign calculated outputs

unknowns[self.base_name+'_inert_mass'] = sum(inert_mass)

def _tank_mass(self,material_density,material_strength,volume,ld_ratio,

tank_pressure,separator_type,safety_factor):

"""Calculates the mass of a tank based on a volume, pressure, and material

properties. Including assumptions for weld lands, inlet/outlet flanges,

structural attach points, and a separator device, when required.

Args

material_density : float

Density of the tank material (kg/m^3)

material_strength : float

Ultimate strength of the tank material (MPa)

volume : float

Volume of the tank (m^3)

ld_ratio : float

Ratio of the length over the diameter of the tank

tank_pressure : float

Pressure in the tank (MPa)

separator_type : str

The type of separator used in the tank, one of ["pmd","ped"]

safety_factor : float

322

Safety factor on the stress in the tank

Returns

dry_mass : float

The dry mass of the sized tank (kg)

r : float

The tank outer radius (m)

"""

dry_mass=0.

r = 0.

t = 0.

if volume != 0:

bare tank mass

if ld_ratio >= 1: # sphere or capsule

r = 0.5*(12*volume/(pi*(3*ld_ratio-1)))**(1/3)

else: # spherical caps

r = 0.5*(24*volume/(pi*ld_ratio*(3 + ld_ratio**2)))**(1/3)

t = tank_pressure*safety_factor*r/(2*material_strength)

if t < 0.000254: # m

t = 0.000254

if ld_ratio >= 1:

endcaps_mass = 4/3.*pi*((r+t)**3-r**3)*material_density

else:

A = r+t

H = ld_ratio*(r+t)

V_cap1 = (pi/6)*H*(3*(r+t)**2 + H**2)

A = r

H = ld_ratio*r

V_cap2 = (pi/6)*H*(3*A**2 + H**2)

endcaps_mass = 2*(V_cap1 - V_cap2)*material_density

barrel_mass = 0.

if ld_ratio > 1: # capsule shape

l_tank = ld_ratio*2*r

l_barrel = l_tank - (2*r)

barrel_mass = pi*l_barrel*((r+t*2)**2-r**2)*material_density

bare_tank_mass = endcaps_mass + barrel_mass

dry_mass += bare_tank_mass

weld lands mass

if ld_ratio == 1:

weld_lands_mass = 0. # assume monolithic, no welds

else:

weld_width = 0.1 # m

weld_lands_mass = 2*pi*r*t*weld_width*material_density*2

dry_mass += weld_lands_mass

inlet and outlet flange mass

let_radius = 0.2*r # m

flange_width = .0508 # m(2 in.)

flange_height = 0.00635 # m(0.25 in)

inlet_outlet_mass = (pi*((let_radius+flange_width)**2-let_radius**2)*

flange_height*material_density*2)

dry_mass += inlet_outlet_mass

structural attachment points mass

structural_attach_mass = 0.02 * dry_mass

dry_mass += structural_attach_mass

separation device mass

if separator_type.lower() == 'pmd':

separator_mass = 0.2 * dry_mass

elif separator_type.lower() == 'ped':

separator_mass = 0.3 * dry_mass

elif not separator_type:

separator_mass = 0.

323

dry_mass += separator_mass

return dry_mass, r+t

I.6 Thermal SubElement Model
-*- coding: utf-8 -*-

"""

Description:

A DYREQT Thermal subelement for Douglas Trent's PhD

Written by:

Douglas J. Trent

NASA Marshall Space Flight Center

Advanced Concept Office

douglas.trent@nasa.gov

Created: 04/06/2017

Revised: 07/30/2017

"""

import DYREQT Subelement base class

from SubElements import SubElement

from Constants import Is, SB

import other modules

import FluidsDef as fluids

from numpy import zeros, pi, log, cos, arcsin

create the structures subelement

class ThermalPhD(SubElement):

"""Estimates the mass of a thermal control subsystem. Many of the scaling

equations and mass estimates are derived from references used in development

of the CryoSim tool by Steve Sutherlin of NASA MSFC and Wesley Johnson of

NASA KSC, as well as Human Spaceflight Mission Analysis and Design by W. Larson

and Space Vehicle Design, 2nd ed. by Michael D. Griffin and James R. French

Input Params

mli_layers_mps : int (20)

The number of layers in the MLI blankets for the main propulsion system

tanks.

mli_layers_rcs : int (20)

The number of layers in the MLI blankets for the reaction control

system tanks.

active_cooling_mps : bool(False)

If True, include and active cooling system to reduce propellant boil

off to zero for the main propulsion system.

active_cooling_mps : bool(False)

If True, include and active cooling system to reduce propellant boil

off to zero for the reaction control system.

radiator_density : float (4.5 kg/m**2)

The aerial density of the radiator (kg/m^2)

external_tanks : bool (True)

If True, propellant tanks are assumed external to the main element

structure and are directly affected by external radiation sources such

as the Sun and/or orbited bodies. MLI mass and energy leak will be

calculated based on tank geometry. If False, MLI mass and energy leak

are calculated based on assumed element geometry.

hi_efficiency_radiators : bool (False)

If True, uses hi-efficiency radiators with high emissivity and high

fin efficiency to radiate heat at a greater rate for an equivalent

324

radiator area.

ops_distance : float (1.0 AU)

The solar distance from the sun of the worst operational environment (AU)

deep_space : bool (False)

If True, ignore radiation affect near an orbited body.

orbit_alt : float (1000. km)

The orbit altitude of the element above the body (km). If not orbiting

a body, set albedo to zero to ignore body reflections.

r_body : float (6371. km)

The radius of the orbited body (km). If not orbiting a body, set albedo

to zero to ignore body reflections.

T_body : float (290. K)

The average temperature of the orbited body (K) for radiation

calculations.

albedo : float (0.3)

The bond albedo of the orbited body. If not orbiting a body, set this

value to zero and any value for orbit_alt and orbit_radius.

Inherited Params

max_propellant_mass_mps : float

The mass of propellant for the main propulsion system (kg)

max_propellant_mass_rcs : float

The mass of propellant for the reaction control system (kg)

propellants : str

The propellants of the propulsion system, separated by a forward slash (/)

mixture_ratio : float

The mass mixture ratio of propellants for the propulsion system

heat_loads : array

The amount of heat generated by other subsystems to be dissipated by

the radiators (W)

num_fuel_tanks : int

The number of fuel tanks

diameter_fuel_tanks : float

The diameter of the fuel tanks (m)

length_fuel_tanks : float

The length of the fuel tanks (m)

pressure_fuel_tanks : float

The pressure of the fuel tank (MPa)

num_ox_tanks : int

The number of oxidizer tanks

diameter_ox_tanks : float

The diameter of the oxidizer tanks (m)

length_ox_tanks : float

The length of the oxidizer tanks (m)

pressure_ox_tanks : float

The pressure of the oxidizer tank (MPa)

Outputs

325

power_req : array

The power required for the thermal subelement (W)

inert_mass : float

The inert mass of the subelement (kg)

"""

def __init__(self,**kwargs):

super().__init__(**kwargs)

user model inputs

self.add_param(self.base_name+'_mli_layers_mps', val=int(20))

self.add_param(self.base_name+'_mli_layers_rcs', val=int(20))

self.add_param(self.base_name+'_active_cooling_mps', val=False)

self.add_param(self.base_name+'_active_cooling_rcs', val=False)

self.add_param(self.base_name+'_radiator_density', val=float(4.5), units='kg/m**2')

self.add_param(self.base_name+'_external_tanks', val=True)

self.add_param(self.base_name+'_hi_efficiency_radiators', val=False)

self.add_param(self.base_name+'_ops_distance', val=float(1), units='AU') # will eventually be

inherited from DYREQT mission↪→
self.add_param(self.base_name+'_deep_space', val=False) # will eventually be inherited from

DYREQT mission↪→
self.add_param(self.base_name+'_orbit_alt', val=float(1000), units='km') # will eventually be

inherited from DYREQT mission↪→
self.add_param(self.base_name+'_r_body', val=float(6371), units='km') # will eventually be

inherited from DYREQT mission↪→
self.add_param(self.base_name+'_T_body', val=float(290), units='K') # will eventually be

inherited from DYREQT mission↪→
self.add_param(self.base_name+'_albedo', val=float(0.3)) # will eventually be inherited from

DYREQT mission↪→
parameters from the element (DYREQT internal or from other subelements)

self.add_param(self.element.base_name+'_max_propellant_mass_mps', val=float(0), units='kg')

self.add_param(self.element.base_name+'_propellants_mps', val=str())

self.add_param(self.element.base_name+'_mixture_ratio_mps', val=float(1))

self.add_param(self.element.base_name+'_num_fuel_tanks_mps', val=int(1))

self.add_param(self.element.base_name+'_diameter_fuel_tanks_mps', val=float(0), units='m')

self.add_param(self.element.base_name+'_length_fuel_tanks_mps', val=float(0), units='m')

self.add_param(self.element.base_name+'_pressure_fuel_tanks_mps', val=float(0.3), units='MPa')

self.add_param(self.element.base_name+'_num_ox_tanks_mps', val=int(1))

self.add_param(self.element.base_name+'_diameter_ox_tanks_mps', val=float(0), units='m')

self.add_param(self.element.base_name+'_length_ox_tanks_mps', val=float(0), units='m')

self.add_param(self.element.base_name+'_pressure_ox_tanks_mps', val=float(0.3), units='MPa')

self.add_param(self.element.base_name+'_max_propellant_mass_rcs', val=float(0), units='kg')

self.add_param(self.element.base_name+'_propellants_rcs', val=str())

self.add_param(self.element.base_name+'_mixture_ratio_rcs', val=float(1))

self.add_param(self.element.base_name+'_num_fuel_tanks_rcs', val=int(0))

self.add_param(self.element.base_name+'_diameter_fuel_tanks_rcs', val=float(0), units='m')

self.add_param(self.element.base_name+'_length_fuel_tanks_rcs', val=float(0), units='m')

self.add_param(self.element.base_name+'_pressure_fuel_tanks_rcs', val=float(0.3), units='MPa')

self.add_param(self.element.base_name+'_num_ox_tanks_rcs', val=int(0))

self.add_param(self.element.base_name+'_diameter_ox_tanks_rcs', val=float(0), units='m')

self.add_param(self.element.base_name+'_length_ox_tanks_rcs', val=float(0), units='m')

self.add_param(self.element.base_name+'_pressure_ox_tanks_rcs', val=float(0.3), units='MPa')

outputs inherited by the element (for use by other subelements or DYREQT)

self.add_output(self.element.base_name+'_boiloff_rate_mps',

val=zeros(self.element.num_events), units='1/d')↪→
self.add_output(self.element.base_name+'_boiloff_rate_rcs',

val=zeros(self.element.num_events), units='1/d')↪→
outputs used by the parent element

self.add_output(self.base_name+'_power_req', val=float(0), units='W')

self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')

heat requirement from all other subelements in the parent element

for subnum in range(self.element.num_subelements):

if subnum != self.subelement_num:

self.add_param('element{0}sub{1}_heat_load'.format(self.element.element_num,subnum),

val=float(0), units='W')↪→

def pre_setup(self, problem):

pass

326

def post_setup(self, problem):

pass

def solve_nonlinear(self, params, unknowns, resids):

convert constants to proper units

Is.convert_to_unit('W/m**2')

SB.convert_to_unit('W/m**2/K**4')

gather params

active_cooling_mps = params[self.base_name+'_active_cooling_mps']

active_cooling_rcs = params[self.base_name+'_active_cooling_rcs']

mli_layers_mps = params[self.base_name+'_mli_layers_mps']

mli_layers_rcs = params[self.base_name+'_mli_layers_rcs']

radiator_density = params[self.base_name+'_radiator_density']

external_tanks = params[self.base_name+'_external_tanks']

hieff_rad = params[self.base_name+'_hi_efficiency_radiators']

ops_distance = params[self.base_name+'_ops_distance']

deep_space = params[self.base_name+'_deep_space']

orbit_alt = params[self.base_name+'_orbit_alt']

r_body = params[self.base_name+'_r_body']

T_body = params[self.base_name+'_T_body']

albedo = params[self.base_name+'_albedo']

propellants_mps = params[self.element.base_name+'_propellants_mps']

mr_mps = params[self.element.base_name+'_mixture_ratio_mps']

num_fuel_tanks_mps = params[self.element.base_name+'_num_fuel_tanks_mps']

diameter_fuel_tanks_mps = params[self.element.base_name+'_diameter_fuel_tanks_mps']

length_fuel_tanks_mps = params[self.element.base_name+'_length_fuel_tanks_mps']

pressure_fuel_tanks_mps = params[self.element.base_name+'_pressure_fuel_tanks_mps']

num_ox_tanks_mps = params[self.element.base_name+'_num_ox_tanks_mps']

diameter_ox_tanks_mps = params[self.element.base_name+'_diameter_ox_tanks_mps']

length_ox_tanks_mps = params[self.element.base_name+'_length_ox_tanks_mps']

pressure_ox_tanks_mps = params[self.element.base_name+'_pressure_ox_tanks_mps']

propellants_rcs = params[self.element.base_name+'_propellants_rcs']

mr_rcs = params[self.element.base_name+'_mixture_ratio_rcs']

num_fuel_tanks_rcs = params[self.element.base_name+'_num_fuel_tanks_rcs']

diameter_fuel_tanks_rcs = params[self.element.base_name+'_diameter_fuel_tanks_rcs']

length_fuel_tanks_rcs = params[self.element.base_name+'_length_fuel_tanks_rcs']

pressure_fuel_tanks_rcs = params[self.element.base_name+'_pressure_fuel_tanks_rcs']

num_ox_tanks_rcs = params[self.element.base_name+'_num_ox_tanks_rcs']

diameter_ox_tanks_rcs = params[self.element.base_name+'_diameter_ox_tanks_rcs']

length_ox_tanks_rcs = params[self.element.base_name+'_length_ox_tanks_rcs']

pressure_ox_tanks_rcs = params[self.element.base_name+'_pressure_ox_tanks_rcs']

heat_load = 0.

for subnum in range(self.element.num_subelements):

if subnum != self.subelement_num:

heat_load +=

params['element{0}sub{1}_heat_load'.format(self.element.element_num,subnum)]↪→

tank_diameters = [diameter_fuel_tanks_mps,

diameter_ox_tanks_mps,

diameter_fuel_tanks_rcs,

diameter_ox_tanks_rcs]

tank_lengths = [length_fuel_tanks_mps,

length_ox_tanks_mps,

length_fuel_tanks_rcs,

length_ox_tanks_rcs]

num_tanks = [num_fuel_tanks_mps,

num_ox_tanks_mps,

num_fuel_tanks_rcs,

num_ox_tanks_rcs]

d_tanks = 0.

l_tanks = 0.

for i in range(0,4):

327

d_tanks += tank_diameters[i] * num_tanks[i]/sum(num_tanks)

l_tanks += tank_lengths[i] * num_tanks[i]/sum(num_tanks)

if sum(num_tanks[0:2]) == 2: # assume two stacked stanks

d_sc = d_tanks

l_sc = l_tanks

else: # assume disk shape

diameter of a circle which fits the 120% diameter tanks

d_sc = (1.2*d_tanks)*(1.1655*log(sum(num_tanks))+0.9571)

l_sc = 1.2*l_tanks

Asc = max(d_sc * l_sc,pi*(d_sc/2)**2) # spacecraft cross section area, assumes worst case

orientation↪→

solar_flux = Is.value * (1/ops_distance**2) # W/m^2 # inverse square law relation

Tsc = 280. # K, assumed spacecraft temperature

if not deep_space:

sub_angle = arcsin(r_body/(r_body + orbit_alt)) # the subtended angle of the body

F_sb = 2*pi*(1-cos(sub_angle)) / (4*pi) # view factor of orbited body to spacecraft

else:

F_sb = 0.

Qthermal = 0.

mass_passive = 0.

mass_active = 0.

power_passive = 0.

power_active = 0.

boiloff_rate_mps = 0.

boiloff_rate_rcs = 0.

sc_flag = False

for sysname in ['mps','rcs']:

if sysname == 'mps':

propellants = propellants_mps

mixture_ratio = mr_mps

geom_fuel_tanks = [diameter_fuel_tanks_mps,length_fuel_tanks_mps]

geom_ox_tanks = [diameter_ox_tanks_mps,length_ox_tanks_mps]

num_fuel_tanks = num_fuel_tanks_mps

num_ox_tanks = num_ox_tanks_mps

tank_pressure = [pressure_fuel_tanks_mps,pressure_ox_tanks_mps]

active_cooling = active_cooling_mps

mli_layers = mli_layers_mps

elif sysname == 'rcs':

propellants = propellants_rcs

mixture_ratio = mr_rcs

geom_fuel_tanks = [diameter_fuel_tanks_rcs,length_fuel_tanks_rcs]

geom_ox_tanks = [diameter_ox_tanks_rcs,length_ox_tanks_rcs]

num_fuel_tanks = num_fuel_tanks_rcs

num_ox_tanks = num_ox_tanks_rcs

tank_pressure = [pressure_fuel_tanks_rcs,pressure_ox_tanks_rcs]

active_cooling = active_cooling_rcs

mli_layers = mli_layers_rcs

if propellants:

props_list = propellants.replace(' ','').lower().split('/')

ox = None

fuel = None

if len(props_list) >1:

ox = props_list[0]

fuel = props_list[1]

else:

if props_list[0]:

fuel = props_list[0]

328

perform some input checks

prop_types = []

for i,propellant in enumerate([fuel,ox]):

if propellant:

prop_types.append(None)

if propellant == 'solid':

prop_types[i] = 'solid'

else:

res,fluid_def = fluids.check_def(propellant)

if not res:

msg = ('"{0}" is not a defined propellant'.format(propellant))

raise Exception(msg)

else:

prop_types[i] = fluid_def['type']

determine the mass of fuel and oxidizer

if fuel and ox:

pass

else:

if prop_types[0] == 'solid':

continue # skip sizing passive/active for this system and move to the next

###

passive TCS sizing

###

Qmli_fuel = 0.

Qmli_ox = 0.

SA_mli = 0.

SA_tanks = 0.

n = mli_layers

if external_tanks:

Qmli = [0.,0.]

Tc_props = [None,None]

tank_geoms = [geom_fuel_tanks,geom_ox_tanks]

num_tanks = [num_fuel_tanks,num_ox_tanks]

for idx,prop in enumerate([fuel,ox]):

if prop:

geom_tanks = tank_geoms[idx]

num_prop_tanks = num_tanks[idx]

if num_prop_tanks > 0:

assume tanks are either spheres or cylinders only

if geom_tanks[1] > geom_tanks[0]:

l_barrel = geom_tanks[1] - geom_tanks[0]

sa_prop = 4*pi*(geom_tanks[0]/2)**2 +

2*pi*geom_tanks[0]/2*l_barrel↪→
cs_prop = 2*pi*geom_tanks[0]/2 + (geom_tanks[0]*l_barrel)

else:

sa_prop = 4*pi*(geom_tanks[0]/2)**2

cs_prop = 2*pi*geom_tanks[0]/2

sa_prop = sa_prop * num_prop_tanks

SA_tanks += sa_prop

SA_mli += sa_prop

n = mli_layers # number of mli layers

alpha_mli = 0.1 # assumed based on vapor deposited aluminum sheets in

MLI↪→
emis_mli = 0.34*(1/(1+n))

radiation equations from Space Vehicle Design, 2nd ed. by Michael D.

Griffin↪→
and James R. French, sec. 9.5.2, p. 463-465

Qbref = albedo*alpha_mli*F_sb*cs_prop*solar_flux # orbited body

reflected heat↪→

329

Qbrad = SB.value*cs_prop*F_sb*(T_body**4 - Tsc**4) # orbited body

radiated heat↪→
Qsun = alpha_mli*cs_prop*solar_flux # heat absorbed by the spacecraft

from the sun↪→

Th = ((Qbref + Qbrad + Qsun) / (SB.value*emis_mli*sa_prop))**(0.25) #

hot side mli temp↪→

if prop_types[idx] == 'cryogenic':

Tc = fluids.tvap(prop,tank_pressure[idx])

Tc_props[idx] = Tc

else:

Tc_props[idx] = Tsc # K

if Th < Tc:

Th = Tc+1

W, The Lockheed Equation for estimating heat penetration through an

MLI blanket↪→
try:

Qmli[idx] = sa_prop * (2.4e-4*(.017 + 7e-6*(800 - (Th-Tc)/2) +

.0228*log((Th-Tc)/2))*15**2.63*(Th-Tc) +

4.944e-10*emis_mli*(Th**4.67 - Tc**4.67)) / n

↪→
↪→

except Exception:

pass

Qmli_fuel = Qmli[0]

Qmli_ox = Qmli[1]

Tc_fuel = Tc_props[0]

Tc_ox = Tc_props[1]

else:

tank_geoms = [geom_fuel_tanks,geom_ox_tanks]

num_tanks = [num_fuel_tanks,num_ox_tanks]

for idx,prop in enumerate([fuel,ox]):

if prop:

geom_tanks = tank_geoms[idx]

num_prop_tanks = num_tanks[idx]

if num_prop_tanks > 0:

assume tanks are either spheres or cylinders only

if geom_tanks[1] > geom_tanks[0]:

l_barrel = geom_tanks[1] - geom_tanks[0]

sa_prop = 4*pi*(geom_tanks[0]/2)**2 +

2*pi*geom_tanks[0]/2*l_barrel↪→
cs_prop = 2*pi*geom_tanks[0]/2 + (geom_tanks[0]*l_barrel)

else:

sa_prop = 4*pi*(geom_tanks[0]/2)**2

cs_prop = 2*pi*geom_tanks[0]/2

sa_prop = sa_prop * num_prop_tanks

SA_tanks += sa_prop

SA_mli = 2*pi*(d_sc/2)**2 + (2*pi*d_sc/2)*l_sc

if any([True for prop_type in prop_types if prop_type == 'cryogenic']):

CS = Asc

n = mli_layers # number of mli layers

alpha_mli = 0.1 # assumed based on vapor deposited aluminum sheets in MLI

emis_mli = 0.34*(1/(1+n))

radiation equations from Space Vehicle Design, 2nd ed. by Michael D. Griffin

and James R. French, sec. 9.5.2, p. 463-465

Qbref = albedo*alpha_mli*F_sb*CS*solar_flux # orbited body reflected heat

Qbrad = SB.value*CS*F_sb*(T_body**4 - Tsc**4) # orbited body radiated heat

Qsun = alpha_mli*CS*solar_flux # heat absorbed by the spacecraft from the sun

330

Tc = Tsc # K

if SA_mli:

Th = ((Qbref + Qbrad + Qsun) / (SB.value*emis_mli*SA_mli))**(0.25) # hot

side mli temp↪→
if Th < Tc:

Th = Tc+1

else:

Th = Tsc+1

W, The Lockheed Equation for estimating heat penetration through an MLI

blanket↪→
try:

Qmli = SA_mli * (2.4e-4*(.017 + 7e-6*(800 - (Th-Tc)/2) +

.0228*log((Th-Tc)/2))*15**2.63*(Th-Tc) + 4.944e-10*emis_mli*(Th**4.67

- Tc**4.67)) / n

↪→
↪→

except Exception:

Qmli = 0.

if fuel:

if prop_types[0] == 'cryogenic':

Qmli_fuel = Qmli

Tc_fuel = fluids.tvap(fuel,tank_pressure[idx])

if ox:

if prop_types[1] == 'cryogenic':

Qmli_ox = Qmli

Tc_ox = fluids.tvap(ox,tank_pressure[idx])

if sc_flag:

SA_mli = 0.

else:

sc_flag = True

mass_mli = 1.1 * (SA_mli * 0.018 * n) # 0.018 kg/m^2/layer, 1.1 for hardware mass

mass_lad = SA_tanks*0.57 # 0.57 kg/square meter of LAD weight for vanes,

Debreceini(1997), Tam(1998)↪→

based on Haberbusch, et al., "Reduced-Gravity Cryo-Tracker System",

AIAA, January 2009.

TankLongestDim = max(geom_fuel_tanks + geom_ox_tanks)

PenetrationMass = 10. # Approximate mass of penetration assembly, kg

AvionicsMass = 10. # Approximate mass of associated avionics, kg

VariableMass = 1.*TankLongestDim # Mass per unit tank dimension for cabling, etc, kg

mass_gauging = PenetrationMass+AvionicsMass+VariableMass # Total mass gauging system

mass, kg↪→

NominalPower = 100. # Nominal power for primary & backup gauge systems, W

VariablePower = 1.*TankLongestDim # Power per unit tank dimension for losses, etc, W

power_gauging = NominalPower+VariablePower # Total gauge system power, W

mass_passive += mass_mli + mass_lad + mass_gauging

power_passive += power_gauging

calculate passive boiloff rates

boiloff_rate_fuel = 0.

boiloff_rate_ox = 0.

if fuel:

if prop_types[0] == 'cryogenic':

Hvap_fuel = fluids.get_property(fuel,'Hvap') * 1000. # J/kg, propellant

dependent↪→
boiloff_rate_fuel = Qmli_fuel * 86400 / Hvap_fuel # kg/d

if ox:

if prop_types[1] == 'cryogenic':

Hvap_ox = fluids.get_property(ox,'Hvap') * 1000. # J/kg, propellant dependent

boiloff_rate_ox = Qmli_ox * 86400 / Hvap_ox # kg/d

331

boiloff_rate_prop = (1 / (mixture_ratio + 1)) * boiloff_rate_fuel + (mixture_ratio /

(mixture_ratio + 1)) * boiloff_rate_ox # kg/d↪→

###

active TCS sizing

###

if active_cooling:

boiloff_rate_prop = 0.

Qlift_fuel = Qmli_fuel

Qlift_ox = Qmli_ox

the following equations for scaling power and mass of ATC are from

Preliminary Study of Lunar Lander Descent Stage Active Thermal Control Systems

by J. R. Feller of NASA Ames Research Center, 21 March 2011 (unpublished)

power_cc = 0.

mass_cc = 0.

Qlift = 0.

if Qlift_fuel > 0. and num_fuel_tanks:

power_cc_fuel = Qlift_fuel * 10. * (Tc_fuel**0.61 / 90.**0.6)**-2.066

mass_cc_fuel = 1.5 * 0.0711 * power_cc_fuel**0.905

power_cc += power_cc_fuel

mass_cc += mass_cc_fuel

Qlift += Qlift_fuel

if Qlift_ox > 0. and num_ox_tanks:

power_cc_ox = Qlift_ox * 10. * (Tc_ox**0.61 / 90.**0.6)**-2.066

mass_cc_ox = 1.5 * 0.0711 * power_cc_ox**0.905

power_cc += power_cc_ox

mass_cc += mass_cc_ox

Qlift += Qlift_ox

mass_controller = 1.5 * 0.01 * power_cc

power_circ = 0.72 * Qlift

mass_circ = 0.042 * power_circ

mass_shield = 1.5 * SA_tanks * 0.42

mass_tubing = 1.5 * SA_tanks * 0.018

mass_active += mass_cc + mass_controller + mass_circ + mass_shield + mass_tubing

power_active += power_cc + power_circ

Qthermal += Qlift

if sysname == 'mps':

boiloff_rate_mps = boiloff_rate_prop

elif sysname == 'rcs':

boiloff_rate_rcs = boiloff_rate_prop

###

spacecraft energy balancer and radiator sizing

###

alpha_sc = 0.1 # average absorptivity of the spacecraft, Assumes single

layer mli over exposed surfaces

radiation equations from Space Vehicle Design, 2nd ed. by Michael D. Griffin

332

and James R. French, sec. 9.5.2, p. 463-465

Qbref = albedo*alpha_sc*F_sb*Asc*solar_flux # orbited body reflected heat

Qbrad = SB.value*Asc*F_sb*(T_body**4 - Tsc**4) # orbited body radiated heat

Qin = heat_load + Qthermal # internal heat loads generated by spacecraft

Qss = alpha_sc*Asc*solar_flux # heat absorbed by the spacecraft from the sun

Qsb = Qbref + Qbrad # heat absorbed by the spacecraft from the orbited body

Q = Qin + Qss + Qsb # total heat input that must be radiated by the radiator

constants assumed from typical values given in Human Spaceflight

Mission Analysis and Design, p. 521

can bring these parameters in as technology controls for high

efficiency radiators

if hieff_rad:

emis_rad = 0.9

fin_efficiency = 0.95

else:

emis_rad = 0.8

fin_efficiency = 0.85

Tspace = 2.7 # K

Trad = 250.0 # K assumed radiator surface temperature

Eq. 16-4 from Human Spaceflight Mission Analysis and Design, p. 521

Assumes radiators have very low absorptivity, resulting in negligible

solar absorption.

Arad = Q / (SB.value * emis_rad * fin_efficiency * (Trad**4 - Tspace**4))

mass_rad = Arad * radiator_density

inert_mass = mass_passive + mass_active + mass_rad

power_req = power_passive + power_active

assign unknowns

unknowns[self.element.base_name+'_boiloff_rate_mps'].fill(boiloff_rate_mps)

unknowns[self.element.base_name+'_boiloff_rate_rcs'].fill(boiloff_rate_rcs)

unknowns[self.base_name+'_power_req'] = power_req

unknowns[self.base_name+'_inert_mass'] = inert_mass

I.7 Burn Event Model
class Burn(Event):

"""An Event subclass to account for impulsive delta-V maneuvers. Parallel

burning elements result in an average Isp based on the performance of all

active elements.

Input Params

dv : float(1 m/s)

The impulsive delta-V of the event.

system : str('MPS','RCS')

The propulsion system of the active element(s) to use for the burn

fpr : float(0.0)

The Flight Performance Reserve (FPR) as a percentage of the event

delta-V input to be added to the required event delta-V.

acs_factor : float(0.0)

Attitude Control System (ACS) factor as a percentage of the event

delta-V (including FPR) to be added as an attitude control dv. The

attitude control burn always utilizes the RCS propulsion and is split

before and after the main event burn. Use the 'acs_split' setting to

adjust the fraction of the ACS maneuver performed before and after the

main event burn.

acs_split : float(50.0)

Percentage of the ACS maneuver to perform BEFORE the main event burn.

333

Args

"""

def __init__(self,**kwargs):

super().__init__(**kwargs)

self.Setup_Elements(self.element_list)

self.add_param(self.base_name+'_dv', val = 1.0, units='m/s')

self.add_param(self.base_name+'_system', val = 'mps')

self.add_param(self.base_name+'_fpr', val = 0.0)

self.add_param(self.base_name+'_acs_factor', val = 0.0)

self.add_param(self.base_name+'_acs_split', val = 50.0)

self.Build_Equivalent_Stages()

for idx in range(len(self.element_list)-1):

self.add_param('opt_var_'+str(idx)+'_dv_'+self.base_name, val = 0.5)

self.defined_thrust = [] # same shape as element_list

for segment_num in range(len(self.element_list)):

self.add_output(self.base_name+'_'+str(segment_num)+'_dt', val=0.0, units='s')

self.add_output(self.base_name+'_propellant_mass_main', val=0.0, units='kg')

self.add_output(self.base_name+'_propellant_mass_acs', val=0.0, units='kg')

self.add_output(self.base_name+'_sized_dv', val=1.0, units='m/s')

def Setup_Elements(self,element_list):

"""Sets up the element. This method is called during initialization of

the object

Args

element_list : list

A list of event segment active element lists. Each event segment

active element list contains integers referencing an element

index.

"""

elements_already_mapped = []

for idx,element in enumerate(element_list):

base_name = self.base_name+'_'+str(idx)

for sub_idx,sub_element in enumerate(element):

target_name = 'element'+str(sub_element)

if sub_element not in elements_already_mapped:

self.add_param(target_name+'_isp_mps', val = 1.0, units='s')

self.add_param(target_name+'_isp_rcs', val = 1.0, units='s')

self.add_param(target_name+'_mass_flowrate_mps', val = 1.0, units='kg/s')

self.add_param(target_name+'_mass_flowrate_rcs', val = 1.0, units='kg/s')

self.add_param(target_name+'_inert_mass', val=ones(self.num_events+1), units='kg',

pass_by_obj=True)↪→
self.add_param(target_name+'_terminal_event', val=(0,0))

elements_already_mapped.append(sub_element)

self.add_output(target_name+'_burn_time_mps_'+base_name, val=1.0, units='s')

self.add_output(target_name+'_burn_time_rcs_'+base_name, val=1.0, units='s')

def Build_Equivalent_Stages(self):

"""Adds outputs to the component to create equivalent stages,

a representations of multiple burning propulsive stages into a single

propulsive stage.

"""

for idx,_ in enumerate(self.element_list):

self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_thrust_main',

val=1.0, units='N')↪→
self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_thrust_acs',

val=1.0, units='N')↪→

self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_mass_flowrate_main',

val=1.0, units='kg/s')

↪→
↪→

self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_mass_flowrate_acs',

val=1.0, units='kg/s')

↪→
↪→

334

self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_isp_main',

val=1.0, units='s')↪→
self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_isp_acs',

val=1.0, units='s')↪→
self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_jettison_mass',

val=1.0, units='kg')↪→
self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_initial_mass',

val=1.0, units='kg')↪→
self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_final_mass',

val=1.0, units='kg')↪→
self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_t2w', val=1.0)

self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_dv', val=1.0,

units='m/s')↪→
self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_burn_time_main',

val=1.0, units='s')↪→
self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_burn_time_acs',

val=1.0, units='s')↪→

def Calculate_Equivalent_Stages(self,params,unknowns):

"""Calculates parameters to define an equivalent stage, such as the

combined thrust, flow rate, isp, etc. of the equivalent stage from its

constituent stages.

"""

G0.convert_to_unit('m/s**2')

for idx,element in enumerate(self.element_list):

base_name = 'equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)

unknowns[base_name+'_thrust_main'] = 0.0

unknowns[base_name+'_thrust_acs'] = 0.0

unknowns[base_name+'_mass_flowrate_main'] = 0.0

unknowns[base_name+'_mass_flowrate_acs'] = 0.0

unknowns[base_name+'_isp_main'] = 0.0

unknowns[base_name+'_isp_acs'] = 0.0

unknowns[base_name+'_jettison_mass'] = 0.0

system = params[self.base_name+'_system'].lower()

if system not in ['mps','rcs']:

raise Exception('Invalid system setting input. Must be one of ["mps","rcs"]')

for parallel_element in element:

target_name = 'element'+str(parallel_element)

unknowns[base_name+'_thrust_main'] += params[target_name+'_mass_flowrate_'+system] *

params[target_name+'_isp_'+system] * G0.value↪→
unknowns[base_name+'_thrust_acs'] += params[target_name+'_mass_flowrate_rcs'] *

params[target_name+'_isp_rcs'] * G0.value↪→
unknowns[base_name+'_mass_flowrate_main'] +=

params[target_name+'_mass_flowrate_'+system]↪→
unknowns[base_name+'_mass_flowrate_acs'] += params[target_name+'_mass_flowrate_rcs']

if params[target_name+'_terminal_event'] == (self.event_num,idx):

unknowns[base_name+'_jettison_mass'] +=

params[target_name+'_inert_mass'][self.event_num]↪→
unknowns[base_name+'_isp_main'] = unknowns[base_name+'_thrust_main'] /

unknowns[base_name+'_mass_flowrate_main'] / G0.value↪→
unknowns[base_name+'_isp_acs'] = unknowns[base_name+'_thrust_acs'] /

unknowns[base_name+'_mass_flowrate_acs'] / G0.value↪→
print('{0},{1}'.format(unknowns[base_name+'_isp_main'],unknowns[base_name+'_isp_acs']))

def Allocate_DeltaV(self,params,unknowns):

"""Allocate delta-V to the equivalent stages based on the optimization

variables for delta-V allocation. This allocation can be fixed by

defining a fixed optimization variable at the architecture level.

"""

dv_remaining = params[self.base_name+'_dv'] * (1 + params[self.base_name+'_fpr']/100.)

unknowns[self.base_name+'_sized_dv'] = dv_remaining

sometimes, Gauss-Seidel likes to try very small numbers just past

the user defined range. In the event the users specifies a lower

bound on a dv range as 0.0, this will help stabilize the problem

when Gauss-Seidel tries a -0.0001 dv.

if dv_remaining < 0.:

dv_remaining = 0.

335

''' setup delta-V assignments '''

for idx in range(len(self.element_list)-1):

base_name = 'equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)

dv_increment = params['opt_var_'+str(idx)+'_dv_'+self.base_name] * dv_remaining

unknowns[base_name+'_dv'] = dv_increment

dv_remaining -= dv_increment

unknowns['equivalent_stage'+'_'+str(self.event_num)+'_'+str(len(self.element_list)-1)+'_dv'] =

dv_remaining↪→

def Calculate_Burn_Times(self,params,unknowns):

"""Calculates the burn time required of an equivalent stage based on

a required delta-V via the ideal rocket equation.

"""

G0.convert_to_unit('m/s**2')

current_mass = params['vehicle_gross_mass'][self.event_num+1]

unknowns[self.base_name+'_final_mass'] = current_mass

for idx in reversed(range(len(self.element_list))):

base_name = 'equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)

acs_dv = unknowns[base_name+'_dv'] * params[self.base_name+'_acs_factor'] / 100.

current_mass += unknowns[base_name+'_jettison_mass']

unknowns[base_name+'_final_mass'] = current_mass

pre-acs burn

acs_propellant_mass_0 = current_mass * (exp(acs_dv*params[self.base_name+'_acs_split'] /

100. / unknowns[base_name+'_isp_acs'] / G0.value) - 1)↪→
current_mass += acs_propellant_mass_0

main event burn

main_propellant_mass = current_mass * (exp(unknowns[base_name+'_dv'] /

unknowns[base_name+'_isp_main'] / G0.value) - 1)↪→
current_mass += main_propellant_mass

post-acs burn

acs_propellant_mass_1 = current_mass * (exp(acs_dv * (100. -

params[self.base_name+'_acs_split']) / 100. / unknowns[base_name+'_isp_acs'] /

G0.value) - 1)

↪→
↪→
current_mass += acs_propellant_mass_1

acs_propellant_mass = acs_propellant_mass_0 + acs_propellant_mass_1

unknowns[base_name+'_burn_time_main'] = main_propellant_mass /

unknowns[base_name+'_mass_flowrate_main']↪→
unknowns[base_name+'_burn_time_acs'] = acs_propellant_mass /

unknowns[base_name+'_mass_flowrate_acs']↪→
unknowns[self.base_name+'_'+str(idx)+'_dt'] = unknowns[base_name+'_burn_time_main']

unknowns[base_name+'_initial_mass'] = current_mass

unknowns[base_name+'_t2w'] = unknowns[base_name+'_thrust_main'] / current_mass / G0.value

unknowns[self.base_name+'_initial_mass'] = current_mass

unknowns[self.base_name+'_propellant_mass_main'] = main_propellant_mass

unknowns[self.base_name+'_propellant_mass_acs'] = acs_propellant_mass

def Assign_Burn_Times(self,params,unknowns):

"""Assigns the calculated burn time of the equivalent stages to their

associated physical stages for sizing.

"""

for idx,element in enumerate(self.element_list):

base_name = self.base_name+'_'+str(idx)

for parallel_element in element:

target_name = 'element'+str(parallel_element)

unknowns[target_name+'_burn_time_mps_'+base_name] = 0.

unknowns[target_name+'_burn_time_rcs_'+base_name] = 0.

system = params[self.base_name+'_system'].lower()

unknowns[target_name+'_burn_time_'+system+'_'+base_name] =

unknowns['equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_burn_time_main']↪→
unknowns[target_name+'_burn_time_rcs_'+base_name] +=

unknowns['equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_burn_time_acs']↪→

def solve_nonlinear(self,params,unknowns,resids):

"""Allocate event delta-V, calculate equivalent stage burn times and

assign those burn times to the associated physical stages for sizing.

"""

self.Calculate_Equivalent_Stages(params,unknowns)

self.Allocate_DeltaV(params,unknowns)

336

self.Calculate_Burn_Times(params,unknowns)

self.Assign_Burn_Times(params,unknowns)

I.8 Connect Event Model
class Connect(Event):

"""An Event subclass to account for full element mass additions to the vehicle

during the mission.

Input Params

Args

"""

def __init__(self,**kwargs):

super().__init__(**kwargs)

self.setup_elements(self.element_list)

def setup_elements(self, element_list):

"""Sets up the element. This method is called during initialization of

the object

Args

element_list : list

A list of event segment active element lists. Each event segment

active element list is a list of integers referencing an element

index.

"""

pass

def solve_nonlinear(self, params, unknowns, resids):

calculate initial and final mass

initial_mass = params['vehicle_gross_mass'][self.event_num]

unknowns[self.base_name+'_initial_mass'] = initial_mass

unknowns[self.base_name+'_final_mass'] = params['vehicle_gross_mass'][self.event_num+1]

for segment_active_elements in self.element_list:

for element_num in segment_active_elements:

pass

I.9 Drop Event Model
class Drop(Event):

"""An Event subclass to account for full element mass drops off the vehicle

during the mission.

Input Params

Args

"""

def __init__(self,**kwargs):

super().__init__(**kwargs)

self.setup_elements(self.element_list)

def setup_elements(self, element_list):

"""Sets up the element. This method is called during initialization of

the object

Args

337

element_list : list

A list of event segment active element lists. Each event segment

active element list is a list of integers referencing an element

index.

"""

pass

def solve_nonlinear(self, params, unknowns, resids):

calculate initial and final mass

initial_mass = params['vehicle_gross_mass'][self.event_num]

unknowns[self.base_name+'_initial_mass'] = initial_mass

unknowns[self.base_name+'_final_mass'] = params['vehicle_gross_mass'][self.event_num+1]

for segment_active_elements in self.element_list:

for element_num in segment_active_elements:

pass

I.10 Idle Event Model
class Idle(Event):

"""An Event subclass to account for time-based mission effect such as

propellant boil off, crew consumables, etc.

Input Params

dt: float(1 day)

The idle duration for the event.

Args

"""

def __init__(self,**kwargs):

super().__init__(**kwargs)

self.Setup_Elements(self.element_list)

self.add_param(self.base_name+'_dt', val=0., units='d')

def Setup_Elements(self,element_list):

"""Sets up the element. This method is called during initialization of

the object

Args

element_list : list

A list of event segment active element lists. Each event segment

active element list is a list of integers referencing an element

index.

"""

for segment_num,active_elements in enumerate(element_list):

base_name = self.base_name+'_'+str(segment_num)

for element_num in active_elements:

target_name = 'element'+str(element_num)

self.add_output(target_name+'_idle_time_'+base_name, val=0.0, units='d')

def solve_nonlinear(self,params,unknowns,resids):

calculate initial and final event masses

unknowns[self.base_name+'_initial_mass'] = params['vehicle_gross_mass'][self.event_num]

unknowns[self.base_name+'_final_mass'] = params['vehicle_gross_mass'][self.event_num+1]

set idle times to be fed to respective elements

for segment_num,active_elements in enumerate(self.element_list):

base_name = self.base_name+'_'+str(segment_num)

for element_num in active_elements:

target_name = 'element'+str(element_num)

unknowns[target_name+'_idle_time_'+base_name] = params[self.base_name+'_dt']

338

I.11 MassDelta Event Model
class MassDelta(Event):

"""Discrete mass changes to the vehicle during the mission. These discrete

changes may be due to loading or unloading mass

(propellant, consumables, etc.). Maybe also could be used to set certain

vehicle parameters mid flight such as number of engines

(dumping engine mass) or other operational possibilities.

Input Params

dm : float(0 kg)

The mass delta of the active elements of this event

sub : list

The subelement number(s) of the subelement inert mass to remove

mass_type : str('inert','propellant')

The type of mass to add/subtract from the active elements

top_off : bool(False,True)

Logical control flag which allows the solver to determine the amount

of propellant to be added to a Stage element to allow it to perform

its required mission segments without any excess propellant. If this

flag is true, any value provided in 'dm' will be ignored. This flag has

an effect on Stage elements types.

Args

"""

def __init__(self,**kwargs):

self.sub = []

if 'sub' in kwargs.keys():

self.sub = kwargs.pop('sub')

super().__init__(**kwargs)

self.setup_elements(self.element_list)

self.add_param(self.base_name+'_dm', val=0., units='kg')

self.add_param(self.base_name+'_sub', val=-1)

self.add_param(self.base_name+'_mass_type', val='inert')

self.add_param(self.base_name+'_top_off', val=False)

def setup_elements(self, element_list):

"""Sets up the element. This method is called during initialization of

the object

Args

element_list : list

A list of event segment active element lists. Each event segment

active element list is a list of integers referencing an element

index.

sub : int

The subelement index of the subelement inert mass to remove

"""

for segment_num,active_elements in enumerate(element_list):

base_name = self.base_name+'_'+str(segment_num)

for element_num in active_elements:

target_name = 'element'+str(element_num)

self.add_output(target_name+'_propellant_mass_delta_'+base_name, val=0.0, units='kg')

self.add_output(target_name+'_inert_mass_delta_'+base_name, val=0.0, units='kg')

self.add_output(target_name+'_top_off_'+base_name, val=False, pass_by_obj=True)

for subidx in self.sub:

self.add_param(target_name+'sub'+str(subidx)+'_inert_mass', val=0.0, units='kg')

def solve_nonlinear(self,params,unknowns,resids):

calculate initial and final event masses

unknowns[self.base_name+'_initial_mass'] = params['vehicle_gross_mass'][self.event_num]

final_mass = params['vehicle_gross_mass'][self.event_num+1]

unknowns[self.base_name+'_final_mass'] = final_mass

339

set inert/prop mass deltas to be fed to respective elements

for segment_num,active_elements in enumerate(self.element_list):

base_name = self.base_name+'_'+str(segment_num)

for element_num in active_elements:

target_name = 'element'+str(element_num)

mass_type = params[self.base_name+'_mass_type']

unknowns[target_name+'_top_off_'+base_name] = params[self.base_name+'_top_off']

if mass_type.lower() in ['prop','propellant','mp']:

unknowns[target_name+'_propellant_mass_delta_'+base_name] =

params[self.base_name+'_dm']↪→
elif mass_type.lower() in ['inert','fixed','structure','mi']:

unknowns[target_name+'_inert_mass_delta_'+base_name] =

params[self.base_name+'_dm']↪→
for subidx in self.sub:

unknowns[target_name+'_inert_mass_delta_'+base_name] -=

params[target_name+'sub'+str(subidx)+'_inert_mass']↪→

I.12 Fluids Definitions Model
-*- coding: utf-8 -*-

"""

Description: helper functions for fluid definitions for the propulsion and

thermal subsystem models

Written by:

Douglas J. Trent

NASA Marshall Space Flight Center

Advanced Concept Office

douglas.trent@nasa.gov

Created: 04/03/2017

Revised: 04/06/2017

"""

import DYREQT Subelement base class

from Constants import R as R_PQ

from math import log, exp

from scipy.optimize import brentq

R = R_PQ.value

units in the propellant defs:

liquid_density - kg/m**3

M - g/mol

Tc - K

Pc - bar

Hvap - kJ/kg

Tref - K

Pref - Atm.

fluid_defs = {

'o2':{'type':'cryogenic','alias':['lox'],'liquid_density':1141.0,'M':31.9988,'Tc':154.58,

'Pc':50.0343,'air_CF':None,'Hvap':212.9,'Tref':90.,'Pref':1.0,'Cp_coeff':None},

'h2':{'type':'cryogenic','alias':['lh2'],'liquid_density':70.8,'M':2.016,'Tc':33.145,

'Pc':12.964,'air_CF':None,'Hvap':461.0,'Tref':20.,'Pref':1.0,

'Cp_coeff':{ c
1000:[33.066178,-11.363417,11.432816,-2.772874,-0.158558,-9.980797,172.707974,0.],↪→
2500:[18.563083,12.257357,-2.859786,0.268238,1.977990,-1.147438,156.288133,0.],

6000:[43.413560,-4.293079,1.272428,-0.096876,-20.533862,-38.515158,162.081354]}},

'ch4':{'type':'cryogenic','alias':['lch4','methane'],'liquid_density':421.0,'M':16.0425,

'Tc':190.6,'Pc':46.1,'air_CF':None,'Hvap':537.5,'Tref':111.,'Pref':1.0,

'Cp_coeff':{ c
1300:[-0.703029,108.4773,-42.52157,5.862788,0.678565,-76.84376,158.713,-74.87310],↪→

6000:[85.81217,11.26467,-2.114146,0.138190,-26.42221,-153.5327,224.4143,-74.87310]}},

'mon':{'type':'storable','alias':[],'liquid_density':1370.0,'M':None,'Tc':None,

'Pc':None,'air_CF':None,'Hvap':None,'Tref':None,'Pref':None,'Cp_coeff':None},

'udmh':{'type':'storable','alias':[],'liquid_density':793.0,'M':60.0983,'Tc':523.15,

'Pc':54.2,'air_CF':None,'Hvap':None,'Tref':None,'Pref':None,'Cp_coeff':None},

340

'mmh':{'type':'storable','alias':[],'liquid_density':880.0,'M':46.0717,'Tc':585.15,

'Pc':82.4,'air_CF':None,'Hvap':None,'Tref':None,'Pref':None,'Cp_coeff':None},

'n2o':{'type':'storable','alias':['nitrousoxide'],'liquid_density':912.0,'M':44.013,'Tc':309.55,

'Pc':72.38,'air_CF':None,'Hvap':None,'Tref':None,'Pref':None,'Cp_coeff':None},

'n2o4':{'type':'storable','alias':['nto'],'liquid_density':1450.0,'M':92.0110,'Tc':431.,

'Pc':101.,'air_CF':None,'Hvap':None,'Tref':None,'Pref':None,'Cp_coeff':None},

'nitrcacid':{'type':'storable','alias':[],'liquid_density':1510.0,'M':63.0128,'Tc':None,

'Pc':None,'air_CF':None,'Hvap':None,'Tref':None,'Pref':None,'Cp_coeff':None},

'rp1':{'type':'storable','alias':['kerosene'],'liquid_density':810.0,'M':None,'Tc':None,

'Pc':None,'air_CF':4.5,'Hvap':None,'Tref':None,'Pref':None,'Cp_coeff':None},

'n2h4':{'type':'monoprop','alias':['hydrazine'],'liquid_density':1008.0,'M':32.0452,'Tc':653.15,

'Pc':14.186,'air_CF':None,'Hvap':None,'Tref':None,'Pref':None,'Cp_coeff':None},

'h2o2':{'type':'monoprop','alias':['hydrogenperoxide'],'liquid_density':1390.0,'M':34.0147,

'Tc':728.0,'Pc':220.0,'air_CF':None,'Hvap':None,'Tref':None,'Pref':None,'Cp_coeff':None},

'isopropylnitrate':{'type':'monoprop','alias':[],'liquid_density':1040.0,'M':105.0926,'Tc':None,

'Pc':None,'air_CF':None,'Hvap':None,'Tref':None,'Pref':None,'Cp_coeff':None},

'he':{'type':'pressurant','alias':['helium'],'liquid_density':None,'M':4.0026,'Tc':5.195,

'Pc':2.275,'air_CF':None,'Hvap':20.7,'Tref':4.2,'Pref':1.0,'Cp_coeff':None},

'n2':{'type':'pressurant','alias':['nitrogen'],'liquid_density':None,'M':28.0134,'Tc':126.192,

'Pc':3.3958,'air_CF':None,'Hvap':199.2,'Tref':77.4,'Pref':1.0,'Cp_coeff':None},

'xe':{'type':'electric','alias':['xenon'],'liquid_density':None,'M':131.293,'Tc':289.74,

'Pc':58.42,'air_CF':None,'Hvap':96.3,'Tref':165.,'Pref':1.0,'Cp_coeff':None},

'ar':{'type':'electric','alias':['argon'],'liquid_density':None,'M':39.948,'Tc':150.86,

'Pc':48.63,'air_CF':None,'Hvap':162.7,'Tref':87.3,'Pref':1.0,'Cp_coeff':None},

'kr':{'type':'electric','alias':['krypton'],'liquid_density':None,'M':83.798,'Tc':209.48,

'Pc':55.25,'air_CF':None,'Hvap':107.6,'Tref':391.,'Pref':1.0,'Cp_coeff':None},

}

def check_def(fluid):

"""Check for the existence of the given fluid in the fluid def

Args

fluid : str

The string name of the fluid to check.

Returns

res : bool

The result of the definitions check. True if the fluid exists, False

otherwise.

fluid_def : dict

The fluid definition

"""

res = False

fluid_def = dict()

for name,mdata in fluid_defs.items():

if fluid.lower() in mdata['alias']+[name]:

res = True

fluid_def = mdata

break

return res, fluid_def

def tvap(fluid,pressure):

"""Returns the vaporization temperature (boiling temp) of the fluid at

the given pressure

Args

fluid : str

The string name of the fluid

pressure : float

The pressure to calculate the vapor temperature at (MPa)

341

Returns

temp : float

The vaporization temperature (K)

"""

def_flag,fluid_def = check_def(fluid)

if def_flag:

extract required params

Pref = fluid_def['Pref'] * 0.101325 # MPa

Tref = fluid_def['Tref']

Hvap = fluid_def['Hvap'] * 1000. # J/kg

M = fluid_def['M'] * 1e-3 # kg/mol

Rspec = R / M # J/kg-K

Clausius-Clapeyron Equation

temp = (Rspec * log(Pref/pressure) / Hvap + (1/Tref))**-1

else:

raise Exception('"{0}" is not a defined fluid'.format(fluid))

return temp

def get_property(fluid,name):

"""Get fluid properties from the fluid definition

Args

fluid : str

The string name of the fluid

name : str

The property name to return

Returns : variable

The property value of interest. If the property does not exist, a None

value will be returned.

"""

def_flag,fluid_def = check_def(fluid)

if def_flag:

if name in fluid_def.keys():

val = fluid_def[name]

else:

val = None

else:

raise Exception('"{0}" is not a defined fluid'.format(fluid))

return val

def pvap(fluid,temp):

"""Returns the vapor pressure of the fluid at the given temperature

Args

fluid : str

The string name of the fluid

temp : float

The temperature to calculate the vapor pressure at (K)

Returns

pressure : float

The vapor pressure of the fluid (MPa)

"""

342

def_flag,fluid_def = check_def(fluid)

if def_flag:

extract required params

Pref = fluid_def['Pref'] * 0.101325 # MPa

Tref = fluid_def['Tref']

Hvap = fluid_def['Hvap'] * 1000. # J/kg

M = fluid_def['M'] * 1e-3 # kg/mol

Rspec = R / M # J/kg-K

Clausius-Clapeyron Equation

pressure = Pref * exp(Hvap/Rspec*(Tref**-1 - temp**-1))

else:

raise Exception('"{0}" is not a defined fluid'.format(fluid))

return pressure

def rspec(fluid):

"""Returns the specific gas constant for a fluid

Args

fluid : str

The string name of the fluid

Returns

r_spec : float

The specific gas constant of the fluid (J/kg-K)

"""

def_flag,fluid_def = check_def(fluid)

if def_flag:

extract required params

M = fluid_def['M'] * 1e-3 # kg/mol

r_spec = R / M # J/kg-K

else:

raise Exception('"{0}" is not a defined fluid'.format(fluid))

return r_spec

def _vanderwaals(rho,T,P,Tc,Pc,M):

"""Van Der Waals equation for estimating the density of a fluid. Does

not perform well near the critical temperature. A fixed point iterator is

used to solve the equation for the density.

Args

rho : float

The fluid density (kg/m^3)

T : float

The temperature of the fluid (K)

P : float

The pressure of the fluid (MPa)

Tc : float

The critical temperature of the fluid (K)

Pc : float

The critical pressure of the fluid (bar)

M : float

The molar mass of the fluid (g/mol)

"""

convert units

343

M = M / 1000. # g/mol -> kg/mol

Pc = Pc*1e5 # bar -> Pa

P = P*1e6 # MPa -> Pa

Vm = M / rho

a = (27*(R*Tc)**2) / (64*Pc)

b = (R*Tc) / (8*Pc)

return (P + a / Vm**2) * (Vm - b) - R*T

def density(fluid,liquid=True,T=293.,P=0.344738):

"""Calculates the fluid density of a given propellant in the fluid

definitions.

Args

fluid : str

The fluid density of interest

liquid : bool(True,False)

Return the liquid liquid density of the propellant if True, else return

the gas density at the specified state

T : float(293.0)

Temperature to calculate propellant density at, in degrees Kelvin

P : float(0.344738)

Pressure to calculate propellant density at, in Megapascals

Returns

rho : float

Calculated fluid density (kg/m^3)

"""

def_flag,fluid_def = check_def(fluid)

if def_flag:

extract required params

Tc = fluid_def['Tc']

Pc = fluid_def['Pc']

M = fluid_def['M']

air_cf = fluid_def['air_CF']

rho_l = fluid_def['liquid_density']

if liquid:

if rho_l:

rho = rho_l

else:

raise Exception('liquid density not defined for fluid "{0}"'.format(fluid))

else:

if Tc and Pc and M:

rho = brentq(_vanderwaals, 0.1, 5000., args=(T,P,Tc,Pc,M)) # returned density is in

kg/m**3↪→
elif air_cf:

rho = []

for prop in ['o2','n2','ar']: # air

Tc = fluid_defs[prop]['Tc']

Pc = fluid_defs[prop]['Pc']

M = fluid_defs[prop]['M']

rho.append(brentq(_vanderwaals, 0.1, 5000., args=(T,P,Tc,Pc,M))) # returned

density is in kg/m**3↪→
rho = sum([rho[i]*fraction for i,fraction in enumerate([0.21,0.78,0.01])])*air_cf

else:

raise Exception('insufficient definition for density calculation of fluid

"{0}"'.format(fluid))↪→

else:

raise Exception('"{0}" is not a defined fluid'.format(fluid))

344

return rho

def heat_ratio(fluid,temp):

"""Calculates the fluid specific heat ratio at a temperature

Args

fluid : str

The fluid density of interest

temp : float(293.0)

Temperature to calculate fluid specific heat ratio at (K)

Returns

gama : float

The specific heat ratio

"""

don't need to check first, other functions will do that

extract required params

Cp = cp(fluid,temp) # J/kg-K

Rspec = rspec(fluid) # J/kg-K

calc

gama = Cp / (Cp - Rspec)

return gama

def cp(fluid,T):

"""Calculates the fluid specific heat at a temperature

Args

fluid : str

The fluid density of interest

T : float(293.0)

Temperature to calculate fluid specific heat at (K)

Returns

Cp : float

The specific heat (J/kg-K)

"""

def_flag,fluid_def = check_def(fluid)

extract required params

Cp_coeff = fluid_def['Cp_coeff']

M = fluid_def['M']

if not def_flag:

msg = ('{0} is not a defined fluid'.format(fluid))

raise Exception(msg)

if not Cp_coeff:

msg = ('{0} does not have defined coefficients required to calculate '

'specific heat'.format(fluid))

raise Exception(msg)

equation from NIST webbook

T_flag = False

for T_max,coeff in Cp_coeff.items():

if T <= T_max:

345

A = coeff[0]

B = coeff[1]

C = coeff[2]

D = coeff[3]

E = coeff[4]

T_flag = True

break

if not T_flag:

msg = ('cannot calculate specific heat for T={0} K. Tmax={1}'.format(T,max(Cp_coeff.keys())))

raise Exception(msg)

t = T/1000.

Cp = A + B*t + C*t**2 + D*t**3 + E/t**2 # J/mol-K

Cp = Cp / M * 1000. # J/kg-K

return Cp # J/kg-K

I.13 Costing Model
-*- coding: utf-8 -*-

"""

Description: functions for estimating cost of space transportation vehicles

based on the TRANSCOST v7.1 model

Written by:

Douglas J. Trent

NASA Marshall Space Flight Center

Advanced Concept Office

douglas.trent@nasa.gov

Created:05/16/2017

Revised:08/25/2017

"""

from math import log, exp

def collect_inps(sizing_outs):

initialize cost inputs

cost_ins = {'num_stages':None,

's1_class':None,

's1_propellant':None,

's1_prop_mass':None,

's1_num_engines':None,

's1_feed':None,

's1_engines_mass':None,

's1_engine_mass':None,

's1_veh_manned':None,

's1_veh_noengines_dry_mass':None,

's1_veh_burnout_mass':None,

's2_class':None,

's2_propellant':None,

's2_prop_mass':None,

's2_num_engines':None,

's2_feed':None,

's2_engines_mass':None,

's2_engine_mass':None,

's2_veh_manned':None,

's2_veh_noengines_dry_mass':None,

's2_veh_burnout_mass':None,

's3_class':None,

's3_propellant':None,

's3_prop_mass':None,

's3_num_engines':None,

's3_feed':None,

's3_engines_mass':None,

346

's3_engine_mass':None,

's3_veh_manned':None,

's3_veh_noengines_dry_mass':None,

's3_veh_burnout_mass':None,

'engine_tech':False,

'veh_tech':False

}

set cost inputs from sizing outputs

veh inputs

cost_ins['num_stages'] = sizing_outs['Num Stages']

stage 1

cost_ins['s1_class'] = sizing_outs['Stage 1 MPS Class']

if sizing_outs['Stage 1 MPS Propellants'].find('/') >= 0:

biprops

if any([True for prop in ['lox','lh2','lch4'] if prop in sizing_outs['Stage 1 MPS

Propellants']]):↪→
cryo

cost_ins['s1_propellant'] = 'cryo'

else:

storable

cost_ins['s1_propellant'] = 'storable'

else:

monoprop

cost_ins['s1_propellant'] = 'monoprop'

cost_ins['s1_prop_mass'] = sizing_outs['Stage 1 MPS Propellant Mass(kg)'] + sizing_outs['Stage 1

RCS Propellant Mass(kg)']↪→
if cost_ins['s1_class'] == 'liquid':

num_engines = 4

if cost_ins['s1_propellant'] == 'cryo':

feed = 'pump'

else:

feed = 'pressure'

elif cost_ins['s1_class'] == 'electric':

num_engines = 1

feed = 'pressure'

elif cost_ins['s1_class'] == 'nuclear':

num_engines = 3

feed = 'pump'

elif cost_ins['s1_class'] == 'solid':

num_engines = 1

feed = None

cost_ins['s1_num_engines'] = num_engines

cost_ins['s1_feed'] = feed

cost_ins['s1_engines_mass'] = sizing_outs['Stage 1 Engines Mass(kg)']

cost_ins['s1_engine_mass'] = cost_ins['s1_engines_mass'] / num_engines

try:

cost_ins['s1_veh_manned'] = sizing_outs['Stage 1 Structures Type']

except KeyError:

cost_ins['s1_veh_manned'] = 'unmanned'

cost_ins['s1_veh_noengines_dry_mass'] = sum([sizing_outs['Stage 1 Avionics Mass(kg)'],

sizing_outs['Stage 1 Power Mass(kg)'],

sizing_outs['Stage 1 Structures Mass(kg)'],

sizing_outs['Stage 1 Tanks Mass(kg)'],

sizing_outs['Stage 1 Thermal Mass(kg)']])

cost_ins['s1_veh_burnout_mass'] = sizing_outs['Stage 1 Burnout Mass(kg)']

stage 2

if cost_ins['num_stages'] > 1:

cost_ins['s2_class'] = sizing_outs['Stage 2 MPS Class']

if sizing_outs['Stage 2 MPS Propellants'].find('/') >= 0:

biprops

if any([True for prop in ['lox','lh2','lch4'] if prop in sizing_outs['Stage 2 MPS

Propellants']]):↪→
cryo

cost_ins['s2_propellant'] = 'cryo'

else:

storable

cost_ins['s2_propellant'] = 'storable'

347

else:

monoprop

cost_ins['s2_propellant'] = 'monoprop'

cost_ins['s2_prop_mass'] = sizing_outs['Stage 2 MPS Propellant Mass(kg)'] + sizing_outs['Stage

2 RCS Propellant Mass(kg)']↪→
if cost_ins['s2_class'] == 'liquid':

num_engines = 4

if cost_ins['s2_propellant'] == 'cryo':

feed = 'pump'

else:

feed = 'pressure'

elif cost_ins['s2_class'] == 'electric':

num_engines = 1

feed = 'pressure'

elif cost_ins['s2_class'] in ['nuclear','massless']:

num_engines = 3

feed = 'pump'

elif cost_ins['s2_class'] == 'solid':

num_engines = 1

feed = None

cost_ins['s2_num_engines'] = num_engines

cost_ins['s2_feed'] = feed

cost_ins['s2_engines_mass'] = sizing_outs['Stage 2 Engines Mass(kg)']

cost_ins['s2_engine_mass'] = cost_ins['s2_engines_mass'] / num_engines

try:

cost_ins['s2_veh_manned'] = sizing_outs['Stage 2 Structures Type']

except KeyError:

cost_ins['s2_veh_manned'] = 'unmanned'

if cost_ins['s2_class'] == 'massless':

cost_ins['s2_veh_noengines_dry_mass'] = sum([sizing_outs['Stage 2 Power Mass(kg)'],

sizing_outs['Stage 2 Structures Mass(kg)'],

sizing_outs['Stage 2 Tanks Mass(kg)'],

sizing_outs['Stage 2 Thermal Mass(kg)']])

else:

cost_ins['s2_veh_noengines_dry_mass'] = sum([sizing_outs['Stage 2 Avionics Mass(kg)'],

sizing_outs['Stage 2 Power Mass(kg)'],

sizing_outs['Stage 2 Structures Mass(kg)'],

sizing_outs['Stage 2 Tanks Mass(kg)'],

sizing_outs['Stage 2 Thermal Mass(kg)']])

cost_ins['s2_veh_burnout_mass'] = sizing_outs['Stage 2 Burnout Mass(kg)']

stage 3

if cost_ins['num_stages'] > 2:

cost_ins['s3_class'] = sizing_outs['Stage 3 MPS Class']

if sizing_outs['Stage 3 MPS Propellants'].find('/') >= 0:

biprops

if any([True for prop in ['lox','lh2','lch4'] if prop in sizing_outs['Stage 3 MPS

Propellants']]):↪→
cryo

cost_ins['s3_propellant'] = 'cryo'

else:

storable

cost_ins['s3_propellant'] = 'storable'

else:

monoprop

cost_ins['s3_propellant'] = 'monoprop'

cost_ins['s3_prop_mass'] = sizing_outs['Stage 3 MPS Propellant Mass(kg)'] + sizing_outs['Stage

3 RCS Propellant Mass(kg)']↪→
if cost_ins['s3_class'] == 'liquid':

num_engines = 4

if cost_ins['s3_propellant'] == 'cryo':

feed = 'pump'

else:

feed = 'pressure'

elif cost_ins['s3_class'] == 'electric':

num_engines = 1

feed = 'pressure'

elif cost_ins['s3_class'] in ['nuclear','massless']:

num_engines = 3

348

feed = 'pump'

elif cost_ins['s3_class'] == 'solid':

num_engines = 1

feed = None

cost_ins['s3_num_engines'] = num_engines

cost_ins['s3_feed'] = feed

cost_ins['s3_engines_mass'] = sizing_outs['Stage 3 Engines Mass(kg)']

cost_ins['s3_engine_mass'] = cost_ins['s3_engines_mass'] / num_engines

try:

cost_ins['s3_veh_manned'] = sizing_outs['Stage 3 Structures Type']

except KeyError:

cost_ins['s3_veh_manned'] = 'unmanned'

if cost_ins['s3_class'] == 'massless':

cost_ins['s3_veh_noengines_dry_mass'] = sum([sizing_outs['Stage 3 Power Mass(kg)'],

sizing_outs['Stage 3 Structures Mass(kg)'],

sizing_outs['Stage 3 Tanks Mass(kg)'],

sizing_outs['Stage 3 Thermal Mass(kg)']])

else:

cost_ins['s3_veh_noengines_dry_mass'] = sum([sizing_outs['Stage 3 Avionics Mass(kg)'],

sizing_outs['Stage 3 Power Mass(kg)'],

sizing_outs['Stage 3 Structures Mass(kg)'],

sizing_outs['Stage 3 Tanks Mass(kg)'],

sizing_outs['Stage 3 Thermal Mass(kg)']])

cost_ins['s3_veh_burnout_mass'] = sizing_outs['Stage 3 Burnout Mass(kg)']

techs

othertechs = [sizing_outs['Wireless Sensors'],

sizing_outs['Composite Structures'],

sizing_outs['Composite Tanks'],

sizing_outs['Integrated MPS/RCS Prop'],

sizing_outs['Active Cryo Cooling']

]

if sizing_outs['Low Leak Valves']:

cost_ins['engine_tech'] = False

else:

cost_ins['engine_tech'] = True

if sizing_outs['High Capacity Energy Storage'] == True:

cost_ins['veh_tech'] = True

elif any([tech for tech in othertechs]):

cost_ins['veh_tech'] = True

return cost_ins

def estimate_costs(cost_ins):

initialize outputs

cost_outs = {'Vehicle Gross Cost(MYr)':0.,

'Vehicle Gross Prod Cost(MYr)':0.,

'Vehicle Gross Dev Cost(MYr)':0.,

'Stage 1 Gross Cost(MYr)':0.,

'Stage 1 Gross Prod Cost(MYr)':0.,

'Stage 1 Engines Prod Cost(MYr)':0.,

'Stage 1 Vehicle Prod Cost(MYr)':0.,

'Stage 1 Gross Dev Cost(MYr)':0.,

'Stage 1 Engines Dev Cost(MYr)':0.,

'Stage 1 Vehicle Dev Cost(MYr)':0.,

'Stage 2 Gross Cost(MYr)':0.,

'Stage 2 Gross Prod Cost(MYr)':0.,

'Stage 2 Engines Prod Cost(MYr)':0.,

'Stage 2 Vehicle Prod Cost(MYr)':0.,

'Stage 2 Gross Dev Cost(MYr)':0.,

'Stage 2 Engines Dev Cost(MYr)':0.,

'Stage 2 Vehicle Dev Cost(MYr)':0.,

'Stage 3 Gross Cost(MYr)':0.,

'Stage 3 Gross Prod Cost(MYr)':0.,

'Stage 3 Engines Prod Cost(MYr)':0.,

'Stage 3 Vehicle Prod Cost(MYr)':0.,

'Stage 3 Gross Dev Cost(MYr)':0.,

'Stage 3 Engines Dev Cost(MYr)':0.,

349

'Stage 3 Vehicle Dev Cost(MYr)':0.,

}

cost stage 1

engines

(cost_outs['Stage 1 Engines Dev Cost(MYr)'],

cost_outs['Stage 1 Engines Prod Cost(MYr)']) = cost_engines(cost_ins['s1_engine_mass'],

cost_ins['engine_tech'],

cost_ins['s1_num_engines'],

cost_ins['s1_class'],

cost_ins['s1_feed'],

cost_ins['s1_propellant'])

vehicle

(cost_outs['Stage 1 Vehicle Dev Cost(MYr)'],

cost_outs['Stage 1 Vehicle Prod Cost(MYr)']) = cost_stage(cost_ins['s1_veh_noengines_dry_mass'],

cost_ins['s1_veh_burnout_mass'],

cost_ins['s1_engines_mass'],

cost_ins['s1_prop_mass'],

cost_ins['veh_tech'],

cost_ins['s1_class'],

cost_ins['s1_veh_manned'],

cost_ins['s1_propellant'])

totals

cost_outs['Stage 1 Gross Dev Cost(MYr)'] = (cost_outs['Stage 1 Engines Dev Cost(MYr)'] +

cost_outs['Stage 1 Vehicle Dev Cost(MYr)'])

cost_outs['Stage 1 Gross Prod Cost(MYr)'] = (cost_outs['Stage 1 Engines Prod Cost(MYr)'] +

cost_outs['Stage 1 Vehicle Prod Cost(MYr)'])

cost_outs['Stage 1 Gross Cost(MYr)'] = (cost_outs['Stage 1 Gross Dev Cost(MYr)'] +

cost_outs['Stage 1 Gross Prod Cost(MYr)'])

if cost_ins['num_stages'] > 1:

cost stage 2

engines

(cost_outs['Stage 2 Engines Dev Cost(MYr)'],

cost_outs['Stage 2 Engines Prod Cost(MYr)']) = cost_engines(cost_ins['s2_engine_mass'],

cost_ins['engine_tech'],

cost_ins['s2_num_engines'],

cost_ins['s2_class'],

cost_ins['s2_feed'],

cost_ins['s2_propellant'])

vehicle

(cost_outs['Stage 2 Vehicle Dev Cost(MYr)'],

cost_outs['Stage 2 Vehicle Prod Cost(MYr)']) =

cost_stage(cost_ins['s2_veh_noengines_dry_mass'],↪→
cost_ins['s2_veh_burnout_mass'],

cost_ins['s2_engines_mass'],

cost_ins['s2_prop_mass'],

cost_ins['veh_tech'],

cost_ins['s2_class'],

cost_ins['s2_veh_manned'],

cost_ins['s2_propellant'])

#totals

cost_outs['Stage 2 Gross Dev Cost(MYr)'] = (cost_outs['Stage 2 Engines Dev Cost(MYr)'] +

cost_outs['Stage 2 Vehicle Dev Cost(MYr)'])

cost_outs['Stage 2 Gross Prod Cost(MYr)'] = (cost_outs['Stage 2 Engines Prod Cost(MYr)'] +

cost_outs['Stage 2 Vehicle Prod Cost(MYr)'])

cost_outs['Stage 2 Gross Cost(MYr)'] = (cost_outs['Stage 2 Gross Dev Cost(MYr)'] +

cost_outs['Stage 2 Gross Prod Cost(MYr)'])

if cost_ins['num_stages'] > 2:

cost stage 3

engines

(cost_outs['Stage 3 Engines Dev Cost(MYr)'],

cost_outs['Stage 3 Engines Prod Cost(MYr)']) = cost_engines(cost_ins['s3_engine_mass'],

cost_ins['engine_tech'],

cost_ins['s3_num_engines'],

cost_ins['s3_class'],

cost_ins['s3_feed'],

350

cost_ins['s3_propellant'])

vehicle

(cost_outs['Stage 3 Vehicle Dev Cost(MYr)'],

cost_outs['Stage 3 Vehicle Prod Cost(MYr)']) =

cost_stage(cost_ins['s3_veh_noengines_dry_mass'],↪→
cost_ins['s3_veh_burnout_mass'],

cost_ins['s3_engines_mass'],

cost_ins['s3_prop_mass'],

cost_ins['veh_tech'],

cost_ins['s3_class'],

cost_ins['s3_veh_manned'],

cost_ins['s3_propellant'])

#totals

cost_outs['Stage 3 Gross Dev Cost(MYr)'] = (cost_outs['Stage 3 Engines Dev Cost(MYr)'] +

cost_outs['Stage 3 Vehicle Dev Cost(MYr)'])

cost_outs['Stage 3 Gross Prod Cost(MYr)'] = (cost_outs['Stage 3 Engines Prod Cost(MYr)'] +

cost_outs['Stage 3 Vehicle Prod Cost(MYr)'])

cost_outs['Stage 3 Gross Cost(MYr)'] = (cost_outs['Stage 3 Gross Dev Cost(MYr)'] +

cost_outs['Stage 3 Gross Prod Cost(MYr)'])

cost totals

(cost_outs['Vehicle Gross Dev Cost(MYr)'],

cost_outs['Vehicle Gross Prod Cost(MYr)'],

cost_outs['Vehicle Gross Cost(MYr)']) = cost_veh(cost_ins['num_stages'],

cost_outs['Stage 1 Gross Dev Cost(MYr)'],

cost_outs['Stage 1 Gross Prod Cost(MYr)'],

cost_outs['Stage 2 Gross Dev Cost(MYr)'],

cost_outs['Stage 2 Gross Prod Cost(MYr)'],

cost_outs['Stage 3 Gross Dev Cost(MYr)'],

cost_outs['Stage 3 Gross Prod Cost(MYr)'])

return cost_outs

def cost_stage(mass_dry,mass_burnout,mass_engines,mass_prop,tech,stage_class,manned,prop):

dev = 0.

prod = 0.

M = mass_dry # in kg

Mn = mass_burnout # in kg

Me = mass_engines # in kg

Mp = mass_prop # in kg

set factors

n = 1 # number of items produced

if tech:

f1 = 1.2 # development standards factor, assumes some new technical/operational features

else:

f1 = 1.0 # development standards factor, state of the art design similar to current designs

f3 = 0.8 # team experience factor, team has performed development of similar project

p = 0.0113 * log(M) + 0.852 # learning factor, production rate of 2 stages per year

if p > 1:

p = 1

f4 = (1/n) * sum([i**(log(p)/log(2)) for i in range(1,n+1)]) # production cost reduction factor

if manned:

crewed space system

f2 = 1. # technical quality factor

x_dev = 0.37 # development CER sensitivity factor for

a_dev = 1220. # development CER scaling factor

x_prod = 0.98 # production CER sensitivity factor for

a_prod = 0.16 # production CER scaling factor

else:

if stage_class == 'solid':

prop module

f2 = 1. # technical quality factor

x_dev = 0.55 # development CER sensitivity factor for

a_dev = 15.4 # development CER scaling factor

x_prod = 0.49 # production CER sensitivity factor for

351

a_prod = 4.65 # production CER scaling factor

else:

expendable ballistic stage

x_dev = 0.555 # development CER sensitivity factor for

a_dev = 98.6 # development CER scaling factor

x_prod = 0.65 # production CER sensitivity factor for

keff = (Mn - Me) / Mp # specific net mass fraction

if prop == 'cryo':

average reference net mass fraction for cryo stages

kref = exp(-1.471159 - 0.2061181*log(Mp/1e3) +

0.0459295*(log(Mp/1e3)-3.98104)**2 -

0.0053711*(log(Mp/1e3)-3.98104)**3)

f2 = kref / keff # technical quality factor

a_prod = 1.30 # production CER scaling factor

else:

average reference net mass fraction for storable stages

kref = exp(-1.257492 - 0.3925932*log(Mp/1e3) +

0.0486939*(log(Mp/1e3)-2.86218)**2 -

0.0006765*(log(Mp/1e3)-2.86218)**3)

f2 = kref / keff # technical quality factor

a_prod = 0.83 # production CER scaling factor

cost stage development

dev = a_dev * M ** x_dev * f1 * f2 * f3

cost stage production

prod = a_prod * n * M ** x_prod * f4

return dev,prod

def cost_engines(mass,tech,num_engines,stage_class,feed,prop):

dev = 0.

prod = 0.

M = mass # in kg

set factors

n = num_engines # number of items produced

if tech:

f1 = 1.2 # development standards factor, assumes some new technical/operational features

else:

f1 = 1.0 # development standards factor, state of the art design similar to current designs

f3 = 0.8 # team experience factor, team has performed development of similar project

p = 0.0126 * log(M) + 0.8037 # learning factor, production rate of 10 engines per year

if p > 1:

p = 1

f4 = (1/n) * sum([i**(log(p)/log(2)) for i in range(1,n+1)]) # production cost reduction factor

if stage_class == 'solid':

f2 = 1. # technical quality factor

x_dev = 0.53 # development CER sensitivity factor for

a_dev = 19.2 # development CER scaling factor

x_prod = 0.395 # production CER sensitivity factor for

a_prod = 2.42 # production CER scaling factor

else:

if feed == 'pump':

x_dev = 0.52 # development CER sensitivity factor for

a_dev = 1975.0 # development CER scaling factor

if prop == 'cryo':

x_prod = 0.45 # production CER sensitivity factor for

a_prod = 5.16 # production CER scaling factor

elif prop == 'storable':

x_prod = 0.535 # production CER sensitivity factor for

a_prod = 1.9 # production CER scaling factor

elif prop == 'monoprop':

nuclear engine, use cryo settings

x_prod = 0.45 # production CER sensitivity factor for

a_prod = 5.16 # production CER scaling factor

352

if stage_class == 'nuclear':

Nq = 10 # number of dev and qual

else:

all others (liquids, electric)

Nq = 500 # number of dev and qual

else:

x_dev = 0.365 # development CER sensitivity factor for

a_dev = 155.0 # development CER scaling factor

if prop == 'storable':

x_prod = 0.535 # production CER sensitivity factor for

a_prod = 1.9 # production CER scaling factor

elif prop == 'monoprop':

x_prod = 0.535 # production CER sensitivity factor for

a_prod = 1.13 # production CER scaling factor

Nq = 500 # number of dev and qual

f2 = 0.026 * log(Nq)**2 # technical quality factor

cost stage development

dev = a_dev * M ** x_dev * f1 * f2 * f3

cost stage production

prod = a_prod * n * M ** x_prod * f4

return dev,prod

def cost_veh(num_stages, s1_dev_cost, s1_prod_cost, s2_dev_cost, s2_prod_cost, s3_dev_cost,

s3_prod_cost):↪→

dev = 0.

prod = 0.

total = 0.

set factors

f0_dev = 1.04**num_stages

f0_prod = 1.02 # assumed minimum from handbook

f6 = 1. # schedule cost growth factor at 100% baseline schedule

f7 = 1. # cost growth factor for single contractor program

f8 = 1. # productivity correction factor for USA

calculate dev cost

dev = f0_dev * (s1_dev_cost + s2_dev_cost + s3_dev_cost) * f6 * f7 * f8 # MYr

calculate prod cost

prod = f0_prod * num_stages * (s1_prod_cost + s2_prod_cost + s3_prod_cost) # MYr

calculate total cost

total = dev + prod # MYr

return dev,prod,total

def transcost(sizing_outs):

get cost inputs from sizing outputs

cost_ins = collect_inps(sizing_outs)

estimate cost outputs

cost_outs = estimate_costs(cost_ins)

clean up outputs

for key in cost_outs.keys():

if cost_outs[key] == 0:

cost_outs[key] = None

all_data = dict(**sizing_outs,**cost_outs)

return all_data

353

REFERENCES

[1] 111th Congress of the United States of America, “NASA Authoriza-
tion Act of 2010,” October 2010.

[2] 114th Congress of the United States of America, “Commerce, justice,
science, and related agencies appropriations bill, 2017,” March 2016.

[3] 115th Congress of the United States of America, “NASA Autheriza-
tion Act of 2017,” March 2017.

[4] Alford, B. and Prince, A., “NASA project cost estimating capability: New
analyses for spacecraft estimating,” 2016.

[5] Allen, W. H., “Dictionary of technical terms for aerospace use.” NASA Head-
quarters, 1965. NASA SP-7.

[6] Architecture, “Merriam-webster online dictionary,” June
2016. Retrieved June 21, 2016, from http://www.merriam-
webster.com/dictionary/architecture.

[7] Assistant Secretary of Defense for Research and Engineering,
Technology Readiness Assessment (TRA) Guidance. U.S. Department of De-
fense, April 2011. Revised 13 May 2011.

[8] Augustine, N. R., Austin, W. M., Bajmuk, B. I., Chiao, L., Chyba,
C., Crawley, E. F., Greason, J. K., Kennel, C. F., Lyles, L. L., and
others, Seeking a human spaceflight program worthy of a great nation. Review
of U.S. Human Spaceflight Plans Committee, 2009.

[9] Bergenthal, J., “Final report mode-based engineering (MBE) subcommit-
tee,” 2011. NDIA Systems Engineering Division, M&S Committee.

[10] Biltgen, P. T., Ender, T., and Mavris, D. N., “Development of a collabo-
rative capability-based tradeoff environment for complex system architectures,”
American Institute of Aeronautics and Astronautics, 2006.

[11] Boriah, S., Chandola, V., and Kumar, V., “Similarity measures for cat-
egorical data: A comparative evaluation,” in Proceedings of the 2008 SIAM
International Conference on Data Mining, pp. 243–254, SIAM, 2008.

[12] Brown, C. D., Elements of Spacecraft Design. AIAA Education Series, Amer-
ican Institute of Aeronautics and Astronautics, 2002.

[13] Bush, G. W., “President Bush delivers remarks on U.S. space policy,” January
2004. Public Speech Transcripts.

354

[14] Campaign, “Merriam-webster online dictionary,” June 2016. Retrieved June
21, 2016, from http://www.merriam-webster.com/dictionary/campaign.

[15] Chairman of the Joint Chiefs of Staff, Manual for The Operation of
the Joint Capabilities Integration and Development Systems, February 2015.
Instruction CJCSI 3170.01 I.

[16] Chapman, J. M., “Intro to rocket science: Sizing an in-space pressure regu-
lated hypergolic propulsion system,” 2016. NASA Marshall Space Flight Center.
Lecture.

[17] Charania, A., “Prioritization of advanced space transportation technologies
utilizing the abbreviated technology identification, evaluation, and selection
(ATIES) methodology for a reusable launch vehicle (RLV),” Master’s thesis,
Georgia Institute of Technology, 2000.

[18] Clark, I. G. and Olds, J. R., “The technology roadmapping and investment
planning system (trips),” AIAA, 2005.

[19] Debreceni, M. J., Lay, W. D., Jaekle Jr, D. E., and Graffer, A. C.,
“Design and development of the axaf-ips pmd & pmd integration,” American
Institute of Aeronautics and Astronautics, 1997.

[20] Dickerson, C. and Mavris, D., “Relational oriented systems engineering
(ROSE): Preliminary report.,” 2011 6th International Conference on System of
Systems Engineering (SoSE), p. 149, 2011.

[21] Dickerson, C. and Mavris, D. N., Architecture and Principles of Systems
Engineering. CRC Press, 2010.

[22] Dieter, G. E., Engineering Design: A Materials and Processing Approach.
McGraw-Hill series in mechanical engineering, McGraw-Hill, 2000.

[23] Domercant, J. C., ARC-VM: An architecture real options complexity-based
valuation methodology for military systems-of-systems acquisitions. PhD thesis,
Georgia Institute of Technology, 2011.

[24] Emblemsvag, J., Life-Cycle Costing: Using Activity-Based Costing and
Monte Carlo Methods to Manage Future Costs and Risks. John Wiley & Sons,
2003.

[25] Engler, W., Biltgen, P. T., and Mavris, D. N., “Concept selection using
an interactive reconfigurable matrix of alternatives (IRMA),” in 45th AIAA
Aerospace Sciences Meeting and Exhibit, vol. 10, 2007.

[26] Exploration Systems Mission Directorate, “Lunar architecture focused
trade study final report, rev a.” NASA Headquarters, 2005. ESMD-RQ-0005.

355

[27] Fabrycky, W. J. and Blanchard, B. S., Life-cycle Cost and Economic
Analysis. Prentice Hall, 1991.

[28] Feiler, P. H., Gluch, D. P., and Hudak, J. J., “The architecture analysis
& design language (AADL): An introduction,” tech. rep., Carnegie-Mellon Univ
Pittsburgh PA Software Engineering Inst, 2006.

[29] Feiler, P. H., Lewis, B., Vestal, S., and Colbert, E., An Overview of
the SAE Architecture Analysis & Design Language (AADL) Standard: A Basis
for Model-Based Architecture-Driven Embedded Systems Engineering, pp. 3–15.
Boston, MA: Springer US, 2005.

[30] Feller, J. R., “Preliminary study of lunar lander descent stage active thermal
control systems.” NASA Ames Research Center, 2011.

[31] Friedenthal, S., Moore, A., and Steiner, R., “OMG systems model-
ing language (OMG SysML) tutorial,” in INCOSE International Symposium,
vol. 18, pp. 1731–1862, Wiley Online Library, 2008.

[32] Funaro, G. V. and Alexander, R. A., “Technology alignment and portfolio
prioritization (TAPP),” American Institute of Aeronautics and Astronautics,
2015.

[33] Galorath, “SEER University,” 2017. http://seer-university.galorath.com/.

[34] Gass, S. I., Decision Making, Models and Algorithms. Krieger Publishing
Comapny, 1991.

[35] Gass, S. I. and Harris, C. M., Encyclopedia of operations research and
management science. Springer Science & Business Media, 2012.

[36] Gatian, K. N., A Quantitative, Model-Driven Approach to Technology Selec-
tion and Development Through Epistemic Uncertainty Reduction. PhD thesis,
Georgia Institute of Technology, 2015.

[37] Gray, J., Moore, K. T., and Naylor, B. A., “OpenMDAO: An open source
framework for multidisciplinary analysis and optimization,” 2010–. [Online;
accessed 2016-10-18].

[38] Griendling, K. and Mavris, D., “An architecture-based approach to iden-
tifying system-of-systems alternatives,” in System of Systems Engineering
(SoSE), 2010 5th International Conference on, IEEE, 2010.

[39] Griendling, K. A., ARCHITECT: The Architecture-Based Technology Eval-
uation and Capability Tradeoff Method. PhD thesis, Georgia Institute of Tech-
nology, 2011.

[40] Haberbusch, M., Lawless, B., Ickes, J., and Walls, L., “Reduced grav-
ity cryo-tracker system,” in 47th AIAA Aerospace Sciences Meeting including
The New Horizons Forum and Aerospace Exposition, p. 1599, 2009.

356

[41] Hall, A. D., A Methodology for Systems Engineering. van Nostrand, 1962.

[42] Hart, L. E., “Introduction to model-based systems engineering (MBSE) and
SysML,” 2015. Presented at the Delaware Valley INCOSE Chapter Meeting
July 30, 2015.

[43] Hause, M. and others, “The SysML modelling language,” in Fifteenth Eu-
ropean Systems Engineering Conference, vol. 9, 2006.

[44] Havskjold, G., “Developing innovative products on budget and on schedule–
part 1: Identifying and measuring cost drivers correlates technical uncertainty
with rework cycles,” in 45th AIAA/ASME/SAE/ASEE Joint Propulsion Con-
ference & Exhibit, p. 5436, 2009.

[45] Havskjold, G., “Developing innovative products on budget and on schedule–
part 2: Using prodecol charts to control development of an innovative advanced
technology system,” in 45th AIAA/ASME/SAE/ASEE Joint Propulsion Con-
ference & Exhibit, p. 5437, 2009.

[46] Havskjold, G., “Developing innovative products on budget and on schedule–
part 3: Generating the prodecol diagram,” in 45th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference & Exhibit, p. 5437, 2009.

[47] Heineman, W., “Design mass properties ii: Mass estimating and forecasting
for aerospace vehicles based on historical data,” NASA JSC-26098, Nov, 1994.

[48] Holt, J., UML for Systems Engineering: watching the wheels, vol. 4. IET,
2004.

[49] Holt, J. and Perry, S., SysML for Systems Engineering - A Model-Based
Approach (2nd Edition). Institution of Engineering and Technology, 2014.

[50] Iacobucci, J. V., Rapid Architecture Alternative Modeling (RAAM): A
Framework for Capability-Based Analysis of System of Systems Architectures.
PhD thesis, Georgia Institute of Technology, 2012.

[51] IEEE Standards Board, “Systems and software engineering – vocabulary,”
ISO/IEC/IEEE 24765:2010(E), pp. 20,357,360, Dec 2010.

[52] International Council on Systems Engineering and Haskins, Ce-
cilia, Systems Engineering Handbook: A Guide for System Life Cycle Processes
and Activities. International Council of Systems Engineering, 3 ed., 2006.

[53] Isakowitz, S. J., Hopkins, J. B., and Jr., J. P. H., International Refer-
ence Guide to Space Launch Systems. American Institute of Aeronautics and
Astronautics, 4th edition ed., 2004.

[54] Joint Chiefs of Staff, Joint Publication 1-02: Department of Defense Dic-
tionary of Military and Associated Terms. U.S. Department of Defense, Novem-
ber 2010. As amended through 15 February 2016.

357

[55] Joint Chiefs of Staff, Joint Publication 3-0: Joint Operations. U.S. De-
partment of Defense, August 2011.

[56] Jones, E., Oliphant, T., Peterson, P., and others, “SciPy: Open source
scientific tools for Python,” 2001–. [Online; accessed 2016-10-18].

[57] Kirby, M. R., A Methodology for Technology Identification, Evaluation, and
Selection in Conceptual and Preliminary Aircraft Design. PhD thesis, Georgia
Institute of Technology, 2001.

[58] Koelle, D. E., Handbook of Cost Engineering For Space Transportation Sys-
tems with Transcost 7.1 Statistical-Analytical Model for Cost Estimation and
Economical Optimization of Launch Vehicles. TransCostSystems, 2003. Report
No. TCS-TR-175.

[59] Koelle, D. E., “The TransCost model for launch vehicle cost estimation and
its application to future systems analysis,” Acta Astronautica, vol. 11, no. 12,
pp. 803 – 817, 1984.

[60] Komar, D., Hoffman, J., Olds, A., and Seal, M., “Framework for
the parametric system modeling of space exploration architectures,” in AIAA
SPACE 2008 Conference & Exposition, p. 7845, 2008.

[61] Kravitz, S., “Packing cylinders into cylindrical containers,” Mathematics
Magazine, vol. 40, no. 2, pp. 65–71, 1967.

[62] Kujawski, E., “Analysis and critique of the system readiness level,” Systems,
Man, and Cybernetics: Systems, IEEE Transactions on, vol. 43, pp. 979–987,
July 2013.

[63] Larson, W. and Pranke, L., Human Spaceflight: Mission Analysis and De-
sign. McGraw-Hill Companies, October 1999.

[64] Malone, P., Smoker, R., Apgar, H., and Wolfarth, L., “The appli-
cation of TRL metrics to existing cost prediction models,” pp. 1–12, IEEE
Publishing, March 2011.

[65] Mavris, D., “Design of experiments for practical applications in modeling, sim-
ulation, and analysis,” 2011. Georgia Institute of Technology, Daniel Guggen-
heim School of Aerospace Engineering. Lecture.

[66] Mavris, D., “A ’paradigm shift’ in complex system design: Enabling technolo-
gies for strategic decision making of advanced design concepts,” 2011. Georgia
Institute of Technology, Daniel Guggenheim School of Aerospace Engineering.
Lecture.

[67] Mavris, D. and Griendling, K., “SoS modeling and simulation fundamen-
tals,” 2015. Georgia Institute of Technology, Daniel Guggenheim School of
Aerospace Engineering. Lecture.

358

[68] Mavris, D. N., DeLaurentis, D. A., Bandte, O., and Hale, M. A., “A
stochastic approach to multi-disciplinary aircraft analysis and design,” in 36th
Aerospace Sciences Meeting & Exhibit, Reno, NV, 1998.

[69] Mavris, D. N., Dickerson, C. E., and Griendling, K., “Relational-
oriented systems engineering and technology tradeoff analysis framework,”
Journal of Aircraft, vol. 50, no. 5, pp. 1564 – 1575, 2013.

[70] Mavris, D. and Griendling, K., “Relational oriented systems engineering
and technology tradeoff analysis (ROSETTA) environment.,” in 6th Interna-
tional Conference on System of Systems Engineering, 2011.

[71] McCarter, J. and Mulqueen, J., “Computerized orbital performance anal-
ysis (COPA) user’s manual,” 2012.

[72] McManus, H. L., Hastings, D. E., and Warmkessel, J. M., “New meth-
ods for rapid architecture selection and conceptual design,” Journal of Space-
craft and Rockets, vol. 41, no. 1, pp. 10–19, 2004.

[73] Michael D. Griffin, J. R. F., Space Vehicle Design. American Institute of
Aeronautics and Astronautics, second ed., 2004.

[74] Milner, T. R., A Risk-Informed Manufacturing Influenced Design Framework
For Affordable Launch Vehicles. PhD thesis, Georgia Institute of Technology,
2016.

[75] Mission, “Merriam-webster online dictionary,” June 2016. Retrieved June 21,
2016, from http://www.merriam-webster.com/dictionary/mission.

[76] NASA, “NASA fiscal year 2005 budget request.” NASA
Headquarters, 2004. Retrieved June 8, 2016, from
http://www.nasa.gov/about/budget/FY05 budget.html.

[77] NASA, “NASA system engineering handbook.” Washington D.C., December
2007. NASA/SP-2007-6105 Rev1.

[78] NASA, “Human exploration of Mars: Design reference architecture 5.0.” NASA
Headquarters, 2009. SP-2009-566.

[79] NASA, “NASA fiscal year budget requests.” NASA Headquarters, 2011-2018.
Retrieved July 5, 2017, from http://www.nasa.gov/news/budget/index.html.

[80] NASA, “Commercial orbital transportation service: A new era in spaceflight.”
NASA Lyndon B. Johnson Space Center, 2014. SP-2014-617.

[81] NASA, “Human exploration of Mars: Design reference architecture 5.0, adden-
dum 2.” NASA Johnson Space Center, 2014. NASA/SP-2009-566-ADD2.

[82] NASA, “NASA space flight program and project management handbook.”
NASA Headquarters, 2014. NASA/SP-2014-3705.

359

[83] NASA, “NASA strategic plan.” NASA Headquarters, 2014. NP-2014-01-964-
HQ.

[84] NASA, “NASA’s commercial crew program facts sheet.” NASA John F.
Kennedy Space Center, 2014. FS-2014-010-284-KSC.

[85] NASA, “NASA technology roadmaps: Introduction, crosscutting technologies,
and index.” NASA Office of the Chief Technologist, July 2015. Retrieved June
22, 2016, from http://www.nasa.gov/offices/oct/home/roadmaps/index.html.

[86] Object Managment Group, “OMG Systems Modeling
LanguageTM(SysML R©),” 2017. Accessed July 8, 2017, from
http://www.omg.org/spec/SysML/index.htm.

[87] Olds, J. R., “A review of technology assessment methods for space trans-
portation systems,” in Georgia Tech Space Systems Engineering Conference,
2005.

[88] Olechowski, A., Eppinger, S. D., and Joglekar, N., “Technology readi-
ness levels at 40: a study of state-of-the-art use, challenges, and opportunities,”
in Management of Engineering and Technology (PICMET), 2015 Portland In-
ternational Conference on, pp. 2084–2094, IEEE, 2015.

[89] Percy, T., McGuire, M., and Polsgrove, T., “In-space transportation
for NASAs evolvable Mars campaign,” AIAA SPACE Conference, 2015.

[90] Percy, T. K., Polsgrove, T., Turpin, J., and Alexander, L., “De-
sign and development of a methane cryogenic propulsion stage for human Mars
exploration,” AIAA SPACE Conference, 2016.

[91] Percy, T., “Human exploration architecture model (HExAM) user guide,”
2015.

[92] P.J. Linstrom, W. M., ed., NIST Chemistry WebBook, NIST Standard Ref-
erence Database Number 69. National Institute of Standards and Technology,
2015. (Retrieved March 2017).

[93] Pugh, S., Total design: integrated methods for successful product engineering.
Addison-Wesley Wokingham, 1991.

[94] Raymer, D. P., Aircraft Design: A Conceptual Approach. AIAA Education
Series, American Institute of Aeronautics and Astronautics, 4th ed., 2006.

[95] Rhatigan, J. L., “Constellation program lessons learned,” 2011.

[96] Ross, A. M., Diller, N., and Hastings, D., “Multi-attribute tradespace
exploration with concurrent design for space system conceptual design,” in st
Aerospace Sciences Meeting, AIAA2003-1328. Reno, NV: January, pp. 6–9,
2003.

360

[97] Ross, A. M., Hastings, D. E., Warmkessel, J. M., and Diller, N. P.,
“Multi-attribute tradespace exploration as front end for effective space system
design,” Journal of Spacecraft and Rockets, vol. 41, no. 1, pp. 20–28, 2004.

[98] Ross, A. M., Multi-attribute tradespace exploration with concurrent design as
a value-centric framework for space system architecture and design. PhD thesis,
Massachusetts Institute of Technology, 2003.

[99] Sauser, B., Verma, D., Ramirez-Marquez, J., and Gove, R., “From
TRL to SRL: The concept of systems readiness levels,” 2006.

[100] Schankman, M. and Reynolds, J., “Advancing the art of technology cost
estimating: A collaboration between NASA and Boeing,” in ISPA/SCEA In-
ternational Conference, 2010.

[101] Schrage, D. and Mavris, D., “Integrated product/process de-
sign/development (ippd) through robust design simulation-the key for
affordable systems,” in Aircraft Engineering, Technology, and Operations
Congress, p. 3892, 1995.

[102] Schuster, P., “Taming combinatorial explosion,” Proceedings of the National
Academy of Sciences, vol. 97, no. 14, pp. 7678–7680, 2000.

[103] Seidl, M., Scholz, M., Huemer, C., and Kappel, G., UML @ Classroom:
An Introduction to Object-Oriented Modeling. Springer International Publish-
ing, 2015.

[104] Sharma, J. L., STASE: Set Theory-Influenced Architecture Space Exploration.
PhD thesis, Georgia Institute of Technology, 2014.

[105] Sobek II, D. K. and Liker, J. K., “Another look at how Toyota integrates
product development,” Harvard business review, vol. 76, no. 4, pp. 36–47, 1998.

[106] System, “Merriam-webster online dictionary,” June 2016. Retrieved June 20,
2016, from http://www.merriam-webster.com/dictionary/system.

[107] Technology, “Merriam-webster online dictionary,” June 2016. Retrieved
June 21, 2016, from http://www.merriam-webster.com/dictionary/technology.

[108] Theodore Gray, Nick Mann, M. W., “Online periodic table of elements
database,” 2013. (http://periodictable.com, Retrieved March 2017).

[109] Ullman, D. G., The mechanical design process. McGraw-Hill New York,
3rd ed., 2003.

[110] United States Government Accountability Office, “Defense acqui-
sition: Improvements needed in space systems acquisiton management policy,”
September 2003.

361

[111] United States Government Accountability Office, “Space acquisi-
tion: Stronger development practices and investment planning needed to ad-
dress continuing problems,” July 2005.

[112] United States Government Accountability Office, “Nasa human
space exploration: Delay likely for first exploration mission,” April 2017.

[113] U.S. Air Force, “Early systems engineering guidebook,” 2009.

[114] U.S. Department of Defense, Defense Acquisition Guidebook. Defense
Acquistion University, 2013.

[115] U.S. Department of Defense Architecture Framework Working
Group, U.S. Department of Defense Architecture Framework Version 2.0. U.S.
Department of Defense, May 2009.

[116] U.S. House Committee on Commerce, Justice, and Science, “Chart-
ing a course: Expert perspectives on NASA’s human exploration proposals,”
February 2016.

[117] Vanderplaats, G. N., Multidiscipline Design Optimization. Vanderplaats
Research and Development Inc., 1st ed., 2007.

[118] Wertz, J., Everett, D., and Puschell, J., Space Mission Engineering:
The New SMAD. Microcosm Press, 2011.

[119] Whitehead, J., “Mass breakdown of the Saturn V,” in 36th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, p. 3141,
2000.

[120] Wiley J. Larson, Ronald W. Humble, G. N. H., Space Propulsion Anal-
ysis and Design. The McGraw-Hill Companies, Inc., first ed., 1995.

[121] Winn, S. D. and Hamcher, J. W., “NASA/Air Force Cost Model: NAF-
COM,” 2002.

[122] Zero Point Frontiers, “Beyond LEO architecture sizing tool (BLAST) user
guide,” 2016.

362

INDEX

A
ARCHITECT . 32
Architecture

Definition . 27
ATIES . 44
Augustine Commision. . .see Review of

Human Space Flight

B
Braun, Wernher von.1

C
Campaign

Definition . 29
Conbinatorial Explosion. . .15, 31, 158,

160, 188, 201, 221

D
DYREQT. .108

Class Descriptions.112
Ontology . 111

E
Experimentation

phases of . 143

I
IntegrATE . 184

M
MATE-CON . 37
MBSE . 49
Mission

Definition . 24
Modeling. .121

Modeling. .98
Cost . 134

NAFCOM.135
P-BEAT . 136
PCEC . 135
SEER . 137
TransCost137

Mission . 121
Vehicle . 124

Avionics . 124
Engines . 125
Power . 127
Structures.128
Tanks . 130
Thermal . 132

N
NASA. .2

2010 Authorization Act.4
2017 Authorization Act.4
CCDEV . 4
COTS. 4
Flexible Path. 6
Review of Human Space Flight . . 3
SLS see Space Launch System

O
Ontology

DYREQT . 111
Space Transportation 101

Optimization. .100

Q
QuantUM3 . 49

R
RAAM. .34
Review of Human Space Flight 3

S
Space Launch System 4

Funding . 6
STASE . 34, 64
STSD 65, 71, 73, 75
Surrogate Modeling 99
System

Definition . 20
System of Systems

Definition . 20

363

T

TAPP. .46

Technology

Definition . 24

TIES. .41

TRIPS . 45

V
Vehicle

Definition . 21
Modeling. .124

364

VITA

Douglas J. Trent was born on January 6, 1987 in Sacramento, California where he

earned the rank of Eagle Scout in 2003, graduated high school from Elk Grove High

School in 2005, and went on to attend the California State University, Sacramento.

During his undergraduate career, Douglas achieved the Deans Honor list all but two

semesters and graduated Magna Cum Laude with a Bachelors in Mechanical En-

gineering in 2011. He also supported the Associated Students Inc. as an outdoor

adventure guide where he was awarded by the university an official commendation

for bravery and heroism during his duties. He pursued his postgraduate studies in

Aerospace Engineering at the Georgia Institute of Technology, where he joined the

Aerospace Systems Design Laboratory (ASDL) under Dr. Dimitri Mavris. During his

time with ASDL, Douglas worked on a wide range of projects ranging from orbital de-

bris mitigation, counter-directed energy weapons, the DARPA META program, and

space transportation architecture design for NASA Marshall Space Flight Center,

earning a Masters of Aerospace Engineering in 2014. While at the Georgia Institute

of Technology, Douglas also Joined NASA’s Marshall Space Flight Center under the

Pathways Intern Employment Program. As a Pathways intern for NASA, Douglas

received a range of experience in the fields of environmental control and life sup-

port systems, thermal analysis and design, nuclear fuels development, and advanced

concepts design.

365

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Summary
	Chapter 1 — Motivation
	U.S. Space Exploration Policy in the 21st Century
	Presidential Remarks on U.S. Space Policy
	Review of U.S. Human Space Flight Plans Committee
	NASA Authorization Acts of 2010 & 2017

	Design in a Time of Uncertainty
	Phases of Design
	Design Freedom versus Design Knowledge
	Challenges
	Cost and Schedule Overrun
	Combinatorial Explosion

	Statement of Purpose
	Document Organization

	Chapter 2 — Background
	Terminology
	System
	System of Systems
	Vehicle
	Mission
	Technology
	Architecture
	Campaign

	Desired Method Features
	Architecture Design Methods
	ARCHITECT
	RAAM

	STASE
	Set Theory

	MATE-CON

	Technology Evaluation Methods
	TIES
	ATIES

	TRIPS
	TAPP
	QuantUM3

	Model-Based Systems Engineering
	The Unified Modeling Language
	The Systems Engineering Modeling Language
	The Architecture Analysis and Design Language

	Chapter 3 — Framework Formulation
	Gaps In Current Methods
	Research Objective
	General Concept Exploration Framework
	Phase I: Trade Space Characterization
	Defining System Spaces
	Mapping System Spaces
	Establishing Value

	Phase II: Candidate Solution Sets Characterization
	Phase III: Analysis
	Individual Architecture Scheme
	Portfolio Scheme
	Effects on Establishing Value

	Summary of Research Questions

	Chapter 4 — Space Transportation Architecture Modeling
	Basic Modeling and Simulation Concepts
	Surrogate Modeling
	Optimization

	Ontology of Space Transportation Architectures
	Vehicle
	Mission
	Architecture

	Existing Tools
	BLAST
	COPA
	Envision
	EXAMINE
	HExAM

	The DYnamic Rocket EQuation Tool (DYREQT)
	The DYREQT Problem Class
	The DYREQT Architecture Class
	The DYREQT Mission Class
	The DYREQT Event Class
	The DYREQT Vehicle Class
	The DYREQT Element Class
	The DYREQT SubElement Class

	In-Space Transportation Subsystem Modeling
	Mission Models
	Burn
	Idle
	Mass Delta
	Drop
	Connect

	Vehicle Models
	Avionics
	Engines
	Power
	Structures
	Tanks
	Thermal

	Costing
	NASA/Air Force Cost Model
	Project Cost Estimating Capability
	Process-Based Economic Analysis Tool
	Software for Evaluating and Estimating Resources
	TransCost
	Cost Analysis Module

	Architecture Similarity

	Model Validation

	Chapter 5 — Experimentation & Implementation
	Experimentation
	Digital Test Bed
	Experiment 1: Performing Technology Evaluation Before Design Down-Selection
	Procedure
	Results
	Conclusion

	Experiment 2: Testing Individual Results Scheme
	Procedure
	Results
	Conclusion

	Experiment 3: Portfolio Grouping Criteria
	Procedure
	Results
	Conclusion

	Experiment 4: Testing Portfolio Results Scheme
	Procedure
	Results
	Conclusion

	Observation: Differences in Figures of Merit
	Results
	Conclusion

	Summary of Developed Framework
	Step 1: Define the Problem
	Step 2: Decompose Architecture and Technology Spaces
	Step 3: Identify Modeling and Simulation Environment(s)
	Step 4: Map Design and Objective Spaces
	Step 5: Evaluate Cases
	Step 6: Explore Results

	Implementation: IntegrATE Framework Proof of Concept
	Step 1: Define the Problem
	Objective Space

	Step 2: Define Architecture and Technology Spaces
	Architecture Space
	Technology Space

	Step 3: Identify Modeling and Simulation Environment(s)
	Design Space

	Step 4: Map System Spaces
	Step 5: Evaluate Cases
	Step 6: Analyze Results

	Chapter 6 — Conclusions
	Summary of Contributions
	Recommendations for Future Work

	Appendix A — Example DYREQT Setup
	Appendix B — Example DYREQT Output
	Appendix C — Model Input Tables
	Appendix D — Default DYREQT Model Inputs
	Experimentation Default Mission Inputs
	Experimentation Default Vehicle Inputs
	Proof of Concept Default Mission Inputs
	Proof of Concept Default Vehicle Inputs

	Appendix E — Layered Pareto Fronts
	JSL Layred Pareto Front Analysis Script

	Appendix F — Experiment 2 Similarity Distribution Summary Statistics
	Appendix G — Experiment 3 Portfolio Distribution Data
	Appendix H — Model Validation Results
	Appendix I — Model Source Codes
	Avionics SubElement Model
	Engine SubElement Model
	Power SubElement Model
	Structures SubElement Model
	Tanks SubElement Model
	Thermal SubElement Model
	Burn Event Model
	Connect Event Model
	Drop Event Model
	Idle Event Model
	MassDelta Event Model
	Fluids Definitions Model
	Costing Model

	References
	Index
	Vita

