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SUMMARY

The first two decades of the twenty-first century have resulted in numerous
redirections of United States space policy. This frequent redirection has produced
challenges in the design and development of the systems of systems required for
manned space exploration. Ever-changing design requirements leads to a lack of
knowledge in the early phases of the design process. This lack of knowledge results in
two primary challenges: overruns in cost and schedule due to frequent design changes
and combinatorial explosion of alternatives due to large, discrete categorical design
spaces. Due to the significant impact technologies have on the cost and schedule of a
design, they should be considered during the conceptual design of systems of systems
in an effort to reduce this lack of knowledge.

Current methods developed for the exploration of system of systems architectures
and technologies define problems at the system level. However, in order to incorporate
subsystem-level technology evaluation, architectures must also be defined at the sub-
system level. Additionally, current methods developed for the purpose of technology
evaluation do not support the exploration of large system of system design spaces.
Therefore, a gap exists in current methods and frameworks to perform integrated
architecture analysis and technology evaluation defined at the subsystem level.

To integrate architecture analysis and technology evaluation at the subsystem
level, several questions and hypotheses were posed during a discussion of a general
concept exploration process to guide the development of a new framework. However,
in order to test these hypotheses, a digital test bed capable of performing integrated
architecture analysis and technology evaluation at the subsystem level had to be se-

lected. No tools were identified within the space transportation community which met
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this requirement. As a result, the Dynamic Rocket Equation Tool (DYREQT) and a
collection of subsystem-level in-space transportation models were developed to pro-
vide a modeling and simulation environment capable of producing the necessary data
for experimentation. DYREQT provides the capability to integrate user-developed
subsystem models in a tool developed for space transportation architecture analysis
and design.

Results from the experiments designed in response to the research questions and
hypotheses led to conclusions which guided the definition of the Integrated Archi-
tecture and Technology Exploration (IntegrATE) framework. This new framework
fulfills the research objective by providing integrated architecture analysis and tech-
nology evaluation at the subsystem level in an effort to increase design knowledge
during the conceptual design process. IntegrATE provides flexibility such that it can
be tailored to a wide range of problems. It also provides a high degree of transparency
throughout to help reduce the likelihood of bias towards individual architectures or
technologies. Finally, the IntegrATE framework and DYREQT were demonstrated
on a notional manned Mars 2033 design study to highlight the utility of these new

developments.
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CHAPTER 1

MOTIVATION

“With our present knowledge, we can respond to the challenge of stellar
space flight solely with intellectual concepts and purely hypothetical anal-
ysts. Hardware solutions are still entirely beyond our reach and far, far

away.”

— Dr. Wernher von Braun'

Since before man became a spacefaring race, dreams of reaching deep into the vast
unknown filled our imaginations. As technology has progressed to make these dreams
an ever-closer reality, the machines designed and built to carry out such a task grow
larger and more complex. As these designs grow ever greater in complexity, so does
the number of potential designs that may fulfill a given task. The research detailed
within this manuscript focuses on the conceptual phase of design. It is well known
that decisions made early in the design process have disproportionate impacts on the
future cost and schedule of corresponding programs. It is important to understand
the interaction of the mission, the vehicle, and technology on a given architecture
to ensure that all measures are taken such that a suitable architecture is selected to
prevent costly financial and schedule overruns.

The motivations and background come from two main sources, human space ex-
ploration and space transportation architectures. The design of such architectures
presents unique challenges not seen in other related fields and provides the basis for
the research efforts that follow. However, this does not imply that the research herein

is limited to only these motivating sources.

Popular Science, Volume 183, July 1963 (p. 170)



1.1 U.S. Space Exploration Policy in the 21%¢ Century

The dawn of the 215 century has brought drastic changes to space policy. For decades,
deep space exploration was relegated to robotic spacecraft, with manned missions
confined to low earth orbit (LEO). However, the landscape began to change as policy
makers became restless with the status quo and desired a shift to a more ambitious
presence beyond Earth. At the start of the century, only two vehicles were qualified
to fly humans into space, the United States-built Space Shuttle and the Russian-built

Soyuz. The only clear destination in LEO was the International Space Station.
1.1.1 Presidential Remarks on U.S. Space Policy

In 2004, President George W. Bush ordered the retirement of the Space Shuttle fleet
to make way for the development of a new launch vehicle [13]. This order marked the
first major shift in United States space exploration policy in the 21%° century. In his

address, President Bush called for a new focus, stating three primary objectives:
1. Completion of the International Space Station
2. Development of a new manned exploration vehicle
3. Return to the moon as a launching point for missions beyond

Following these objectives, The International Space Station, in development since
1998, was scheduled to have its last major United States component installed by
2010, coinciding with the last flight of the Space Shuttle Program [76]. NASA also
began work on the Constellation program to replace the aging Space Shuttle fleet.
To support the transition process, NASA implemented the Commercial Crew Devel-
opment program to stimulate private development of vehicles capable of launching
humans into low earth orbit. However, budgetary and schedule overruns with the
Constellation program led to a review of manned space flight, commissioned in 2009,

to reassess the plans set forth by President Bush in 2004 [8].



1.1.2 Review of U.S. Human Space Flight Plans Committee

The 2009 Review of U.S. Human Space Flight Plans Committee, commonly referred
to as the Augustine Commission, was officially tasked with developing suitable options

for consideration by NASA regarding a human space flight architecture that would
[3]:

1. Expedite a new U.S. capability to support utilization of the International Space

Station
2. Support missions to the Moon and other destinations beyond LEO
3. Stimulate commercial space flight capability

4. Fit within the current budget profile for NASA exploration activities

Though the review focused heavily on programs and current launch vehicle hard-
ware, it did little for giving clear direction. The report outlines three exploration

paths:

1. Mars First, with a Mars landing, perhaps after a brief test of equipment and

procedures on the Moon.

2. Moon First, with lunar surface exploration focused on developing the capability

to explore Mars.

3. A Flexible Path to inner solar system locations, such as lunar orbit, Lagrange
points, near-Earth objects and the moons of Mars, followed by exploration of

the lunar surface and/or Martian surface.

The review outlined many findings, such as a need for program stability, mission
and funding alignment, and commercial involvement. These findings would become

the basis for a redirection of human exploration efforts moving forward.



1.1.3 NASA Authorization Acts of 2010 & 2017

The NASA Authorization Act of 2010 put into law many of the findings of the Au-
gustine Commission. One of the first things it did was to cancel the Constellation
Program which had been plagued by cost and schedule overruns resulting from years
of budgetary cuts. Figure 1 shows this phenomenon of budget reductions in early
years leading to budget overruns in later years to maintain a fixed schedule. How-
ever, not all elements would be scrapped. From the Constellation program, the Orion
crew vehicle would be redesigned as the Multi-Purpose Crew Vehicle (MPCV). The
act also ordered the development of the Space Launch System (SLS) to replace the
Ares launch vehicles as the nation’s vehicle for access to space [1]. The new vehicle
would utilize commonality from both Space Shuttle and Ares heritage hardware and
designs [95].

The development of this new system would still leave the U.S. with a signifi-
cant time gap in domestic human space flight access, about seven years [8]. To
reduces this gap, NASA was directed to continue investments in commercial entities
to develop independent access to low earth orbit. For this, NASA continued the
Commercial Orbital Transportation Services (COTS) program and the Commercial
Crew Development Program (CCDev). These programs awarded contracts in phases
to companies who developed and provided the requested contract services to NASA.
U.S. companies such as Orbital Sciences, Space Exploration Technologies (SpaceX),
Sierra Nevada Corporation, Blue Origin, and The Boeing Company were selected to
demonstrate launch capabilities to NASA [80, 84].

The NASA Authorization Act of 2010 also redirected the focus of mission destina-
tions. Where the Vision for Space Exploration gave a clear direction of lunar explo-
ration leading to the surface exploration of Mars, the new policy directed NASA to
follow the Flexible Path option from the Augustine Commission. This option was the

most complex and least defined of the options presented. Figure 2 depicts the various
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Figure 1: Constellation budget cuts prior to preliminary design review (PDR) re-
sulted in a budget profile far less than optimal for a development project. The initial
decrease in FY2010 was primarily due to limitations in funding due to Space Shuttle
retirement efforts. The result was a drastic increase in later funding to maintain a
fixed design schedule which ultimately fell behind and became a large factor in the
cancellation of the Constellation program [95].
paths available to reach the final Mars surface destination. Although the concept
was intended to provide, as its name implies, flexibility in destinations to reach the
ultimate goal of Mars surface exploration, the lack of a clear direction would lead to
further redirections. The Augustine Commission stated a need for program stability
to maintain a return on investment [8].

Since the Authorization Act of 2010, the new launch capability, SLS, has had an
unsteady funding profile, as seen in Figure 3. Political tension between the President
and Congress has caused financial instability for the SLS program. Early funding cuts

have led to cost overruns, as explained in Figure 1, as well as schedule slips. The first

flight of SLS was originally scheduled for 2016, but was subsequently rescheduled for
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Figure 2: The Flexible Path option was proposed by The Review of U.S. Human
Spaceflight Plans Committee as a viable exploration strategy for eventual manned
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Figure 3: SLS program funding has seen instability similar to that experienced by the
Constellation program. Polarization between the White House and Congress resulted
in early budgetary cuts which are now manifesting in cost overruns and schedule slips
in the later years of development [79]. This is similar to the phenomenon described

in Figure 1.



November 2018, and is in the process of being rescheduled again for 2019 [1, 2, 3, 112].
NASA, under the Flexible Path Option, has been directed to capture and explore a
Near Earth Asteroid in an effort to develop technologies that will be needed for future
Mars missions [83].

However, in the mid second decade, rejuvenated interest in lunar exploration
by other international partners prompted yet another shift in policy. The NASA
Authorization Act of 2017 directed NASA to reevaluate the value of the Asteroid
Redirect Mission to capture and explore a near Earth asteroid, while also putting
a new emphasis on a mission to Jupiter’s moon, Europa, along with increased cis-
lunar operations[3]. Other legislation also proposes redirecting NASA to return to a
Moon first option in preparation for Mars surface exploration [116]. This continual
redirection, long-lasting uncertainty, and variability that has plagued U.S. manned
space exploration policies of the early 21%* century has produced challenges in design-
ing and developing the systems and architectures that are required for manned deep

space exploration missions.

1.2 Design in a Time of Uncertainty

The task of designing complex architectures is by no means trivial. To do so with such
political instability and uncertainty, which trickles into the programmatics, presents
increased challenges to the designer. This section will discuss relevant terminology, the

process of design, and highlight specific challenges that arise from such uncertainty.
1.2.1 Phases of Design

The process of design and its corresponding phases are applied in a wide variety of
disciplines. Each of these disciplines provides its own view as to what phases should
exist in the process and what milestones mark the boundaries between those phases.

Typically, in the aircraft industry, design is described as having three major phases:



conceptual design, preliminary design, and detailed design [94]. From a systems en-
gineering viewpoint, Arthur Hall describes the phases as: system studies, exploratory
planning, development planning, studies during development, and concurrent engi-
neering [41]. David Ullman uses similar phases when describing his mechanical design
process: project definition and planning, specification definition, conceptual design,
product development, and product support [109].

Focusing on the space industry, some of the key stakeholders include the U.S.
Department of Defense (DoD), the European Space Agency (ESA) and the National
Aeronautics and Space Administration (NASA). A mapping of their respective phases
of design is shown in Figure 4 [63]. This figure highlights the commonality in the
phases of design as described by these key stakeholders. The boundaries between
the phases are reviewed at the bottom of each process. The individual stakeholders
each have their own set of reviews, but there are three they all agree on: the system
requirements review (SRR), the preliminary design review (PDR), and the critical
design review (CDR).

Because the motivational problem for this dissertation is focused on space architec-
tures, the phases of design are defined using NASA’s systems engineering conventions.
NASA defines seven life-cycle phases in the design process ranging from conceptual
studies all the way through operation and closeout. Figure 5 depicts the sequence of
the seven phases along with the associated milestones [82]. The following is a brief
description of the seven phases [77].

Pre-Phase A: Concept Studies — Devise various feasible concepts from which new
projects and programs can be selected.

Phase A: Concept and Technology Development — Fully develop a baseline mission
concept and begin or assume responsibility for the development of needed technolo-
gies.

Phase B: Preliminary Design and Technology Completion — Establish an initial project
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Figure 5: The NASA Project Life Cycle is fundamentally divided between formu-
lation and implementation. The formulation consist of a preparatory Pre-Phase A,
followed by Phase A and Phase B. Implementation consists of Phases C,D,E, and F.
Though both the manned spaceflight and robotic communities have developed slightly
different terms and launch approval processes, the project management life cycles are
essentially the same [82].
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baseline such that system and subsystem-level specification can be derived from
project-level requirements.

Phase C: Final Design and Fabrication — Establish a complete design, fabricate or
produce hardware, and code software in preparation for integration.

Phase D: System Assembly, Integration and Test, Launch — Assembly, integration,
verification, and validation of the system, including testing the system to expected
environments.

Phase E: Operations and Sustainment — Conduct the prime mission and meet the
initially identified need and maintain support for that need.

Phase F: Closeout — Implement system decommissioning disposal planning and ana-

lyze returned data and/or samples.
1.2.2 Design Freedom versus Design Knowledge

Through the course of the design phases, there are several concepts that must be
weighed: cost, design knowledge, and design freedom. Contrary to traditional thought,
cost is not incurred at the time committed, but rather through the process of making
design decisions [27]. Decisions about the design tend to be made early in the design
process. This means that a majority of the cost for a design is committed very early
in the design process, while that cost is not incurred until later in the design pro-
cess. Many studies have examined this behavior. One such study determined that
only 20% of the cost is incurred during the early phases of design, while those same
phases commit 80% of the cost [24]. Figure 6 illustrates this relationship between
cost, ease of change, and design knowledge. Here, ease of change can be interpreted
as a measure of design freedom.

Typically, design decisions are made early in the design process, when knowledge
is relatively low. This can result in uninformed decisions that can lead to costly

design revisions in later phases, particularly during testing. A good example of this
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Figure 6: Cost, design knowledge, and ease of change (design freedom), are all
related in the design process. Contrary to traditional thought, much of the cost of a
design is committed much earlier than it is incurred. This is due to design decisions
made early in the design process. Cost committed and design freedom are inversely
related. Bringing design knowledge forward in the design process will maintain a
higher design freedom longer into the design process, ultimately reducing cost and
schedule overruns. [27].
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behavior is in the development of liquid rocket engines. Glen Havskjold performed
a study on historical development programs from the Pratt & Whitney Rocketdyne
Company [44, 45, 46]. Due to a lack of design knowledge during the initial design
phase of these engines, a pattern of test-fail-fix occurs during the development and
testing. The result is increased costs and schedule of the engines studied. In fact,
73% of the development cost of the F-1, J-2, and Space Shuttle Main Engine were
determined to be due to corrective actions during full-scale testing [44].

These relationships between design knowledge, design freedom, and cost, indicate
the need for well-informed decisions early in the design process. These decisions
are vital to reducing the risk of increased cost and schedule due to design iterations
[34]. Industry and academia have been working towards this goal through various
means [93, 22, 105, 68]. These methods share similar techniques of bringing design
knowledge earlier into the design process in an attempt to maintain design freedom
longer while allowing decision makers to make informed decisions about the design,

leading to reduced cost and schedule.
1.2.3 Challenges

Attempting to design an architecture in an environment of uncertainty can present
many challenges to the designer. This uncertainty can manifest in many forms, such
as changing budgetary constraints, capabilities and requirements creep, and changing
mission [110, 111]. Designers are forced to consider increasingly complex architectures
with growing design spaces to mitigate issues that may arise from these uncertainties.
However, the growth in the architecture space presents new problems in the form of
overruns due to an increased lack of knowledge and the sheer number of alternatives
that exist to fully define the architecture design space. In their work on model-based
systems engineering, Jon Holt and Simon Perry claim that projects fail due to com-

plexity, lack of understanding, and communication issues [49]. Furthermore, these
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underlying reasons do not exist in isolation, but feed upon each other. Complex-
ity issues will lead to lack of understanding and communication problems. A lack
of understanding will lead to communication problems and complexity. Finally, a
breakdown in communication will result in a lack of understanding and unforeseen

complexity.
1.2.3.1 Cost and Schedule Overrun

As was described in this chapter, political uncertainties tend to drive fluctuations in
defined missions, goals, and funding profiles. This constant flux forces designers to
consider ever-growing architecture spaces which become difficult to fully define and
understand. This lack of knowledge of the architecture space has been shown to drive
both cost and schedule overruns in the projects associated with these architectures.
Additionally, incorporation of new technologies has been shown to have a dramatic
impact on the overall cost of programs. Depending on the maturity of incorporated
technologies, costs for a given system can vary by as much as 50%, while total program
costs may grow exponentially with the time to develop a technology [64]. These ob-
servations further support the importance of understanding architecture spaces early
in the design process to account for these potential cost growths and uncertainties.
The initial phases of the design process should capture a large amount of design
knowledge to help mitigate risks associated with such uncertainty. With this, decision
makers are able to make more informed decisions that can reduce the risk of costly
design iterations when traceable, quantitative information is provided. In contrast,
qualitative data can fail to capture trends which may exist that could inform the
decision maker in preventing cost and schedule overruns [62]. This leads to a need for
an intelligent, methodical, comprehensive exploration of the architecture space that

is quantitative in nature.
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1.2.3.2  Combinatorial Explosion

The encyclopedia of Operations Research and Management Science defines combi-
natorial explosion as the phenomenon associated with optimization problems whose
computational difficulty increases exponentially with the size of the problem [35]. The
uncertainties stated earlier that result in these large, complex architecture spaces will
also result in challenges with regard to physical computation and analysis of the
design space.

Peter Schuster claims that combinatorial explosion is a result of assembling ob-
jects from elements by means of predefined combination rules [102]. If architectures
consist of a collection of elements combined to meet a given objective, the design
space defined by the various combinations of these elements is likely to suffer from
this notion of combinatorial explosion. In his development of a method to rapidly
analyze architectures in an attempt to study complex architecture design spaces,
Joseph Tacobucci provides context as to the scale of the number of alternatives that
may exist in complex architecture spaces [50]. Even after considering compatibility
constraints, this number can still be an impractical billions of alternatives to analyze.
However, early phases of the design process may not require every possible combina-
tion of alternatives to be evaluated to achieve a drastic increase in knowledge of the
architecture space. This leads to the second need of gaining an understanding of the
architecture space, through analysis, that provides an increase in design knowledge
which is sufficient such that decision makers are able make informed design decisions

in the early design phases.

1.3 Statement of Purpose

The previously mentioned challenges and needs form the basis and driving force be-

hind this body of work, which is stated as follows:
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Statement of Purpose

To provide a capability to analyze complex systems of systems to an extent
which will provide decision makers in the early phases of design sufficient
information to reduce the risks associated with cost and schedule overruns

due to lack of design knowledge.

1.4 Document Organization

Chapter 2 provides background information relevant to this body of work. Section 2.1
provides clarification of terms typical in the military domain, but which have slight
nuances within the context of space transportation. The methods discussed in Section
2.3, Section 2.4, and Section 2.5, along with the concepts presented in Section 3.3,
will guide the development of research questions and hypotheses related to integrated
architecture and technology exploration at a subsystem level. In order to perform
the experiments designed to test these hypotheses in the domain motivating this
work, new models are developed for space transportation architecting, summarized in
Chapter 4. The research questions developed throughout Chapter 3 will be explored
through experiments presented in Chapter 5, the results of which will be the basis for
defining a formal framework for integrated architecture and technology exploration
at a subsystem level, presented in Section 5.2, and implemented through a notional
case study in Section 5.3. Finally, Chapter 6 summarizes this research, offering a set

of contributions, as well as suggestions for future work.
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in examining relevant information as needed. They are not physically visible due
to guidelines imposed by the Georgia Institute of Technology regarding formatting of

electronic dissertation documents.
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CHAPTER 11

BACKGROUND

This chapter contains background information on existing techniques which represent
possible candidates to address the statement of purpose presented in Chapter 1.
Section 2.1 defines various terms used in the field of architecture design and analysis
and how they are unique to the focus of this research. Section 2.3 and Section 2.4
present overviews on current methods that exist in architecture design and technology
evaluation, respectively. The chapter concludes with a brief overview of Model-Based
Systems Engineering and various developed languages in Section 2.5. The intent of
this chapter is not to provide a comprehensive discussion of each technique, but rather
to provide a brief description of the capabilities of each technique to an unfamiliar

reader such that a discussion of gaps and needs may be discussed in Chapter 3.

2.1 Termainology

It is important to take a moment to define the concepts that exist in the realm of
space systems design. Many readers will be familiar with the terms system, system of
systems, vehicle, mission, technology, architecture, and campaign. There may exist
several accepted definitions for a term. In these instances, the implied definition for
these terms throughout the remainder of this document shall be those presented in

this section.
2.1.1 System

The Merriam-Webster Online Dictionary defines a system as, “A regularly interacting
or interdependent group of items forming a unified whole” [106].

This general definition is intentionally vague to ensure it captures all possible
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cases that may be considered a system. However, for our purpose, a more detailed
description of a system is desired. George Dieter defines a system as, “The entire com-
bination of hardware, information, and people necessary to accomplish some specified
mission” [22]. The International Council on Systems Engineering (INCOSE) defini-
tion for a system is: “A combination of interacting elements organized to achieve one
[or] more stated purposes” and “An integrated set of elements, subsystems, or assem-
blies that accomplish a defined objective” [52]. These definitions help to clarify that
the elements can be products, processes, people, information, techniques, facilities,
services and other support elements.

The U.S. Department of Defense Architecture Framework (DoDAF) defines a sys-
tem as, “A functionally, physically, and/or behaviorally related group of regularly
interacting and interdependent elements” [54]. The same definition appears in the
DoDAF v2 Manager’s Guide [115]. ISO/IEC/IEEE 24765:2010 defines a system as
a, “Combination of interacting elements organized to achieve one or more stated
purposes” [51]. These definitions imply that these elements are not just randomly
assembled, but are related and regularly interacting.

NASA defines a system as, “a construct or collection of different elements that
together produce results not obtainable by the elements alone” [77]. This definition,
along with many of the aforementioned definitions, have a common theme that the
collection of elements is brought together for a purpose, mission or result otherwise
unattainable by the individual elements [77, 22, 52, 51]. To summarize the key con-

cepts of a system:

e A thoughtful, organized assembly of elements
e Regular interaction and interdependence between elements

e Elements can be products, processes, people, information, techniques, facilities,

services, and other support elements
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e Elements are brought together to achieve some stated purpose that is otherwise

unattainable by the individual elements

For the purpose of this research, the word system shall mean an organized set
of regularly interacting and interdependent products, processes, people, information,
techniques, facilities, services, and other support elements, collectively known as sub-

systems, brought together for a stated purpose otherwise unattainable.
2.1.2 System of Systems

Literature provides a plethora of definitions for a system of systems (SoS). However,
different fields have adopted their own, slightly tailored form. For the purpose of this
dissertation, the following concepts and definitions will be considered.

ISO/IEC/IEEE 24765:2010 defines an SoS as, “A large system that delivers unique
capabilities, formed by integrating independently useful systems” [51].

The Defense Acquisition Guidebook defines an SoS as, “a set or arrangement of
systems that results when independent and useful systems are integrated into a larger
system that delivers unique capabilities” [114].

Dimitri Mavris and Charles Dickerson define an SoS as, “a combination of inter-
acting systems [i.e., elements of the SoS] integrated to realize properties, behaviors,
and capabilities that achieve one or more stated purpose(s)” [21].

These definitions generally agree that a system of systems is a set of interacting
independent systems, brought together to achieve unique capabilities. However, they
fail to provide a scale that is typical of an SoS problem. The INCOSE defines an
SoS as, “a system-of-interest whose system elements are themselves systems; typi-
cally, these entail large-scale interdisciplinary problems with multiple, heterogeneous,
distributed systems” [52]. This definition provides insight into the problems that a
system of systems typically aims to solve and their scale.

The U.S. Department of Defense Joint Capabilities Integration and Development
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System (JCIDS) Manual defines an SoS as, “a set or arrangement of interdependent
systems that are related or connected to provide a given capability. The loss of any
part of the system will significantly degrade the performance or capabilities of the
whole” [15]. The statement of impact on the performance capability of the whole if
a component system fails is extremely relevant to space systems.

The previous definitions show general concepts that define a system of systems.
Component systems within a system of systems have a level of independence from
each other. The component systems are not necessarily defined by being included in
a system of systems, but do work together for the purpose of the system of systems
and are autonomous. Systems of systems typically aim to solve large-scale interdis-
ciplinary problems, while Tacobucci states that the effects of a system of systems are
often non-linear [50]. It should be noted, that though the component systems of an
SoS are not necessarily defined by being a part of an SoS, space flight situations typ-
ically lead to component systems that are highly specialized and designed for a given
SoS problem. This can be attributed to extremely unique operational environments,
coupled with a high cost of access to space derived from labor-intensive designs [118].
Section 2.1.6 will define an architecture within the scope of this dissertation and will
lead to a conclusion that an architecture defined by this dissertation is a system of

systems.
2.1.3 Vehicle

NASA defines a vehicle as, “a structure, machine, or device, such as an aircraft or
rocket, designed to carry a burden through air or space”[5]. Though old in origin,
the definition as it pertains to this research is highly relevant. For the purpose
of this dissertation, a vehicle shall be defined as “a structure, machine, or device
designed to carry a burden.” The burden in this definition is typically referred to as

a payload. This payload can be an inert mass, such as another machine or device, as
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well as biological in nature, particularly, humans. It is an important distinction in
the definition of a space vehicle because it implies very different design drivers despite
potentially similar goals.

The term spacecraft is typically used to denote a vehicle designed specifically for
use in space and may be used interchangeably with vehicle in this dissertation. Table
1 lists the traditional spacecraft elements or subsystems. Figure 7 shows the inter-
dependence of the spacecraft subsystems for an unmanned vehicle. On a man-rated
spacecraft, environmental control and life support systems (ECLSS) would have de-
pendencies on the power and thermal control. The interdependencies of the spacecraft
subsystems leads to the conclusion that a spacecraft fits the definition of a system, as

given in Section 2.1.1 and is merely a special case of a system applied to space travel.
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Figure 7: A simplified notional spacecraft block diagram showing the interdependence
of various spacecraft elements for an unmanned vehicle [12].
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Table 1: Common Spacecraft Elements [118, 63, 12]

Element Name

Function

Propulsion

Spacecraft thrust, including fuel storage and
plumbing

Attitude Determination and Control
(ADC) or Attitude Control System
(ACS)

Sensors, actuators, and software necessary
to control the spacecraft orientation

Position and Orbit Determination
and Control

Sensors and software necessary to control
the spacecraft orbit

On Board Processing or Command
and Data Handling (C&DH)

Electronics and software used to receive and
distribute commands and to store and for-
ward payload data and spacecraft telemetry

Telemetry, Tracking, and Command
(TT&C) or RF Communications

Radio and associated hardware, such as ca-
bling and antennas, used to communicate
with the ground or other spacecraft

Power

Electronics, power generation, and power
storage devices, as well as harnessing for
power distribution

Structures and Mechanisms

All the hardware that supports the space-
craft, including the primary structural com-
ponents, brackets, fasteners, and the actu-
ators and mechanisms associated with de-
ployed or movable structures

Thermal Control

All of the hardware necessary to control the
temperature of the spacecraft

Environmental Control and Life
Support System (ECLSS)
Manned Only

All of the hardware necessary to support hu-
man life on board the spacecraft

Extra Vehicular Activity (EVA)
Support and Robotics
Manned Only

All of the hardware necessary to support
human and robotic operations outside the
spacecraft
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2.1.4 Mission

The Merriam-Webster Online Dictionary defines a mission as, “A definite military,
naval, or aerospace task” [75]. Again, this definition is too general and vague for
the purpose of this research. The U.S. Department of Defense clarifies by defining a
mission as, “The task, together with the purpose, that clearly indicates the action to
be taken and the reason therefore” [54, 55]. This definition clarifies that a mission
is not just an arbitrary task, but has a purpose and reason coupled with required

actions.

Charles Brown states that space missions provide seven classes of services [12]:

e Communication

Navigation

Weather

Earth Resources

Astronomy

Planetary Exploration

Manned Spacecraft

From the definition provided by the DoD, the purpose of a mission falls into one
of the seven service classes listed above. The specific tasks are typically described
by the orbits, trajectories, maneuvers, and operations required to achieve the given

purpose.
2.1.5 Technology

The Merriam-Webster Online Dictionary defines a technology as, “The practical ap-

plication of knowledge especially in a particular area” [107]. In the field of engineering,
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this application is typically to develop something new in an effort to achieve some
goal. NASA defines a technology as, “A solution that arises from applying the disci-
pline of engineering science to synthesize a device, process, or subsystem, to enable
a specific capability” [85]. NASA expands the definition further to include processes
and methods, as well as tangible hardware. However, the end goal is the same, to
enable a specific capability, presumably one that could not be achieved before, or in a
more efficient manner than before. The definition as presented by NASA shall be the
implied meaning of the term “technology” in this body of work. This definition has
the implication that a technology is something at the device or subsystem level. In
the discussion to follow in Chapter 3, technology evaluation will be integral in fully
understanding the design space. As such, a scale on which to describe technologies is

crucial.

Table 2: NASA Technology Readiness Level Scale [77]
TRL | Definition

9 Actual system “flight proven” through successful mission operations

8 Actual system completed and “flight qualified” through test and
demonstration (ground or flight)

7 System prototype demonstration in a target/space environment

6 System /subsystem model or prototype demonstration in a relevant en-
vironment (ground or space)

5 Component and/or breadboard validation in relevant environment
4 Component and/or breadboard validation in laboratory environment
3 Analytical and experimental critical function and/or characteristic

proof-of-concept

2 Technology concept and/or application formulated

1 Basic principles observed and reported

NASA developed the concept of the technology readiness level (TRL) scale in

the 1970s as a tool for assessing the maturity of technologies during complex system
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Figure 8: Mapping of technology readiness levels to U.S. Department of Defense
System Acquisition Process. Technologies are expected to achieve TRL 4 by milestone
A, TRL 6 by milestone B, and TRL 7 by milestone C [88, 7].

development. Table 2 lists the state at which a technology is considered to be a specific
TRL. Since the scale’s inception, organizations are increasingly mapping TRL to their
own systems development processes. For example, the U.S. Department of Defense
mapped TRL to their own System Acquisition Process, as shown in Figure 8. This
is done primarily for its shared understanding of technology maturity and risk [88],

not to create a shared common definition of technology across these two domains.
2.1.6 Architecture

The Merriam-Webster Online Dictionary defines an architecture as, “A unifying or
coherent form or structure” [6]. While the DoDAF defines an architecture as, “A
framework or structure that portrays relationships among all the elements of the
subject force, system or activity” [115]. From this, an architecture is known to have
structure and relationship among the constituent components.

ISO/IEC/IEEE 24765:2010 defines an architecture as a, “Fundamental organi-
zation of a system embodied in its components, their relationships to each other,
and to the environment, and the principles guiding its design and evolution” [51].
Though this definition was developed with context to electronics, it is still applicable
here. This definition broadens the relationship aspect of an architecture to not only
include the constituent components, but also with its surrounding environment. En-
vironments can have a drastic impact on the design of a system or SoS, especially in

space applications.
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Mavris and Dickerson build upon this by defining an architecture as, “The fun-
damental organization of a system, embodied in its components, their relationships
to each other and the environment, the principles governing its design and evolution,
its purpose, and its attractiveness” [21]. Here, it is stated that the organization of
components has a purpose and a certain attractiveness that can distinguish it from
another organization of components.

For this dissertation, the definition of an architecture shall be that presented by
Mavris and Dickerson, as well as ISO/IEC/IEEE 24765:2010. The definition makes
no distinction on the form of the system, and as such, may in fact be a system
of systems as defined in Section 2.1.2. This would result in the components being
systems themselves. This link implies that an architecture may be an instance of a
system of systems.

Applying this definition to the realm of space vehicles and missions, a space archi-
tecture can be described as having the elements seen in Table 3. Larson and Pranke
state that a mission concept, along with the functional and physical elements defined
by this concept, form the basis of the space architecture [12]. The body of this work
will focus on exploring the architecture design space, with emphasis on orbits and tra-
jectories, space elements, and surface elements. Further details regarding the specific

research objectives can be found in Section 3.2
2.1.7 Campaign

The Merriam-Webster Online Dictionary defines a campaign as, “A connected series
of operations designed to bring about a particular result” [14].

The U.S. Department of Defense defines a campaign as, “A series of related major
operations aimed at achieving strategic and operational objectives within a given time
and space” [54].

This body of research will consider the definition provided by the DoD to define
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Table 3: Common Space Architecture Elements [63]

Element Name

Examples

Operations Elements

e Communication Operations Concepts

e Operations Functions

e Space Logistics

e Command, Control, and Communication

Orbits and Trajectories

e Earth Orbits

e Interplanetary Transfers

e Planetary Orbits

e Entry, Descent, Landing, and Ascent

Transportation Elements

e Earth-to-Orbit Vehicle
e Launch Facilities

Space Elements

e In-Space Vehicle
e Vehicle for Entry, Descent, Landing, and Ascent

Surface Elements

e Surface Bases
e Surface Vehicles
e In-Situ Resources

Crew
Manned Only

e People as Payload or Operators
e Physiology and Psychology

e Human Factors

e Safety and Reliability

a campaign, specifically focusing on a context to space. An example of a strategic
or operational objective would be the exploration of the Martian surface, or the
construction of a Lunar outpost. The related major operations shall be architectures
as described in Section 2.1.6. To achieve the strategic or operational objective would
require multiple architectures. An architecture within the context of this dissertation
is described as a combination of functional and physical elements defined by a specific
mission. As a result, this dissertation will consider a campaign as a set of missions
and their related functional and physical elements brought together to achieve an
overarching objective. Figure 9 provides a visual description of the structure of a

campaign, and how the terms defined in this section are related to each other for the

purpose of this research.
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2.2 Desired Method Features

In order to bring additional knowledge earlier into the design process, it would be de-
sirable to observe both architectures and technologies together. This allows the effects
due to incorporating technologies into architecture designs to be better understood.
It is known that technologies have a dramatic impact on the overall cost and devel-
opment schedule of designs [62, 99, 64]. This implies a need to consider technologies
alongside architecture design during the conceptual design process to aid in increas-
ing knowledge to reduce cost and schedule overruns. A method or technique should
thereby include the ability to evaluate both architectures and technologies. Due to
the definition of architectures and technologies in this dissertation at the subsystem
level, identified methods and techniques should be capable of defining the problem at
a subsystem level.

Furthermore, during the conceptual design process, considering a wide range of
design alternatives and technologies will help to better understand the trade space.
This will allow decision makers to make well-informed decisions early on during the
design process to mitigate unnecessary cost growth and schedule slips. A method
should be capable of evaluating many different architectures and technologies to-
gether to provide this information. Most real world decisions will present themselves
in a multi-objective form, having multiple competing desires, such as cost and per-
formance. The number of objectives to consider can vary dramatically depending
on the goals of a given study. A method should be flexible enough to allow these
varying objectives to be evaluated across both architectures and technologies. Table
4 summarizes the desired features discussed above.

The remainder of this chapter will focus on discussing modern, relevant methods
and frameworks for the purposes of architecture design and technology evaluation.

The ability of each method to meet the features outlined above will be detailed.
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Table 4: Required Features for an Integrated Architecture Analysis and Technology

Evaluation Framework

Feature

Purpose

Architectures Defined at Subsystem
Level

To enable effects due to technologies de-
fined at the subsystem level to be eval-
uated

Can Evaluate Multiple Architectures

To enable large numbers of architecture

alternatives to be evaluated simultane-
ously within the same trade space

To enable architectures to be compared
against a wide range of customer objec-
tives such as cost, performance, reliabil-
ity, risk, etc.

Multi-objective Architecture Analysis

Defined at Subsystem | To enable subsystem or component level
solutions to technical challenges within

a design

Technologies
Level

To enable large numbers of technologies
to be considered simultaneously within
the same trade space

Can Evaluate Multiple Technologies

To enable technologies to be compared
against a wide range of customer objec-
tives, such as cost, performance, reliabil-
ity, risk, etc., which may be propagated
into the architecture analysis process

Multi-objective Technology Evaluation

2.3 Architecture Design Methods

Recent research is attempting to mitigate the problem of combinatorial explosion in
the design of complex architectures by providing methods capable of quickly ana-
lyzing the design space through novel methods. In the domain of system of systems
architectures, alternatives are typically a set of discrete design decisions that result in
a unique architecture. This discrete nature creates challenges with regard to evaluat-
ing and analyzing the architecture space. The evaluation frameworks of the following
methods are of particular interest and relevance to this dissertation and will be high-

lighted.
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2.3.1 ARCHITECT

The Architecture-Based Technology Evaluation and Capability Tradeoff (ARCHI-
TECT) method proposes using architectures to describe the system of systems design
space and to generate an architectural alternative space from it [39]. The alternatives
are subsequently evaluated in order to generate data from which decision makers can
gain information and insight.

ARCHITECT utilizes various advanced methods to define, evaluate, and assess
the architecture design space. The Relational Oriented Systems Engineering and
Technology Tradeoff Analysis (ROSETTA) environment provides a framework to al-
low decomposition and mapping of the architecture elements to functional and/or
physical requirements [70, 20, 69]. Once analysis is performed, gaps in the current
architecture are identified and the process of describing the alternative space begins.
This is done by utilizing the Technique for the Enumeration of System of Systems Al-
ternatives (TESSA), The Rapid Architecture Alternative Modeling (RAAM) frame-
work, and the Architecture Resource-based Collaborative Network Evaluation Tool
(ARCNET). Combining these methods allows the full set of architectural alterna-
tives across all the defined dimensions to be described. TESSA provides a means of
generating possible tasks, process flows, candidate systems, interface requirements,
and consider organizational constraints [38]. RAAM provides the ability to combine
the system and tasks to create the full set of system portfolios and operational im-
plementations of each of those system portfolios [50]. ARCNET adds the full set of
interface alternatives and force structures for the alternatives generated by RAAM
[23]. Figure 10 provides the process flow diagram of the ARCHITECT method and
how each step of the process maps to a typical engineering process.

ARCHITECT is capable of handling large numbers of alternatives, incorporating
both architectures and technologies, to be evaluated on a multi-objective basis. How-

ever, a key disadvantage to ARCHITECT with regard to the features required of a
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method or framework for this research is the level of definition of architectures and
technologies. ARCHITECT is formulated under the notion of system-level modeling
of architecture elements. This does not meet the needs of a subsystem-level break-
down of an architecture, which is needed to meet the desire to evaluate subsystem-level

technologies concurrently with architectures.
2.3.1.1 RAAM

RAAM provides the physical means by which systems and tasks are combined and
evaluated in the ARCHITECT method. ARCHITECT aims at performing a full fac-
torial analysis of the architecture space. RAAM enables this by providing a simple,
lightweight definition of the input architectures such that the analysis does not re-
quire lengthy computation for any single architecture. This allows a great number of
architectures to be evaluated in a short period of time.

RAAM receives the inputs of the required capabilities of an architecture from
ARCHITECT where the capabilities are combined with the required tasks to create a
full capability hierarchy. RAAM is flexible enough to work with a variety of computer
models to perform the system of systems architecture analysis. Outputs of RAAM are
combined into “portfolios” of architectures. These portfolios can contain architectures
with the same physical system portfolio, as was shown in the canonical example found
in Tacobucci’s development of RAAM [50]. The full RAAM process is depicted in

Figure 11.
2.3.2 STASE

The Set Theory-Influenced Architecture Space Exploration (STASE) method takes a
different approach to architecture space evaluation. Where ARCHITECT performs
a full factorial analysis of the architecture alternative space, STASE attempts to
reduce the number of alternatives that are analyzed by utilizing set theory to define

the system of systems problem. Figure 12 provides a visual representation of the
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Figure 11: The process depicted is a reproduction of the original developed by
Tacobucci [50]. It formalizes the process, inputs, and outputs of the RAAM method-
ology. RAAM provides a method of performing analysis of large system of systems in
a lightweight, memory-efficient environment. The result is the capability to perform
analysis on large numbers of architecture alternatives in a short period of time.
method’s process.

STASE utilizes a technique called Set Theory-influenced System Decomposition
(STSD) to decompose the problem into three primary spaces: the architecture space,
the design space, and the objective space [104]. A morphological approach is taken for
the decomposition of the system of systems, resulting in the architecture space. The

design space consists of all of the design parameters that define an architecture. This

includes parameters defining both physical and functional elements. The objective
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Figure 12: STASE attempts to reduce the challenges associated with large design
spaces for system of systems by defining architectures in a novel way by utilizing set
theory. The architecture is decomposed into 3 spaces which are used to translate
the physical architectures into defined objectives. The intersection of the objective
subsets are analyzed using Pareto analysis to determine optimum designs from the
bounds of these subsets [104].
space consists of parameters which define the desired outcome of an architecture.
Once the problem has been decomposed into the various spaces, alternatives are
generated. These alternatives are derived from the morphological architecture space.
Analysis of the alternatives does not follow the typical full factorial approach used
when a system of systems is decomposed in a discrete manner. STASE utilizes set
theory in an attempt to reduce the number of alternatives that are analyzed.
STASE provides the level of definition and decomposition of architectures desired
for this dissertation. The method allows very large spaces to be explored efficiently

against many objective metrics simultaneously. However, STASE lacks any formal

definition of technologies. This lack of definition may provide a simple means of
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integrating technologies into the method, as opposed to reworking an existing method.
A brief overview of set theory and how it is utilized in STASE in an attempt to

minimize combinatorial explosion follows.
2.3.2.1 Set Theory

Set theory relies on an intersection between individual sets of designs to find the
optimal design, given a set of stated objectives. Consider a notional problem where
the architecture space is divided into two overlapping sets of architectures, A and
B, as shown in Figure 13. If all of the architectures of these two sets are plotted
on an axis consisting of two objective parameters, 1 and 2, whose values decrease
with increasing improvement, a Pareto frontier can be drawn around the intersecting
region. This frontier represents the optimal architectures for the stated objectives
while also meeting the design criteria defined by both architecture sets. A Pareto
finding algorithm can then be used to find this frontier from the interaction of the
two architecture sets. By utilizing the Pareto finding algorithm, one does not need to
perform analysis of every single possible architecture to find this optimum frontier.
Rather, an optimizer is introduced to reduce the number of architectures that are
evaluated to find the optimum design. It is this principle that STASE utilizes in an
attempt to reduce the number of alternatives analyzed for large system of systems

design problems.
2.3.3 MATE-CON

The multi-attribute tradespace exploration and conceptual design (MATE-CON) is
the name given to the joining of the multi-attribute tradespace exploration (MATE)
process and the integrated concurrent design (ICE) process [98, 96, 72]. MATE-CON
breaks the complex system of systems design problem into two levels. The first is
the architecture level, performed by MATE [98, 97]. The second is more detailed

conceptual level design of specific architecture elements, enabled by ICE [72]. The
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Figure 13: STASE utilizes set theory in an attempt to reduce the number of alterna-
tives that must be analyzed to define the architecture space. Here, the architecture
space is described by two architecture sets with an intersecting region. Translating
the architecture space into the objective space, one can observe a Pareto frontier in
the intersecting region, which can be found utilizing a Pareto finding algorithm.

MATE-CON process begins with an initial exploration of a large architecture space
utilizing the MATE process, on the left side of Figure 14. The results of this ini-
tial MATE process feed into the ICE process on the right side of Figure 14. Here,
multiple disciplines are brought together in an integrated design environment where
conceptual-level vehicle designs are evaluated. Each of the disciplines are represented
by some form of model operated by a human in the loop to achieve a result. This
information is maintained via an electronic database which allows each of the dis-
ciplines to retrieve relevant information about other disciplines. This database of
information at the conceptual vehicle design level then feeds back into the MATE

process to further refine the architecture-level analysis.

The MATE process captures the high-level customer objectives and needs, which
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Figure 14: MATE-CON unites multi-attribute tradespace exploration (MATE) and
integrated concurrent engineering (ICE) to provide a capability to assess many design
choices, quantitatively, very early in the design process [72].

are then mapped to specific design variables which a modeling and simulation en-
vironment operates on to calculate the figures of merit. This process populates a
architecture trade space which can be explored to refine the problem to an archi-
tecture or set of architectures with which to move forward. The analysis process
is highly automated, tailored to the problem in question. Results are presented in
a two-dimensional multi-objective space consisting of utility and cost. Utility is a
dimensionless value which represents the overall performance of a design utilizing a
multi-attribute utility process to consolidate multiple figures of merit into a single
utility value. Cost is simply the physical currency cost of a design.

The ICE process aims to capture more of the detailed design information of an ar-
chitecture, typically present in the vehicle element. The various subsystem disciplines
of the design are integrated into a human-in-the-loop physical design environment.
Here, subsystems and technologies may be traded and evaluated. The goal is to

ensure feasibility of a given architecture at the vehicle level. If an infeasible design
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results from this process, an alternative architecture from the MATE process would
be selected and the ICE process restarted.

MATE-CON begins to integrate subsystem-level analysis of elements within an
architecture design framework. However, the method has a disconnect between the
two. The MATE process provides the high-level analysis of architectures against
the customer objectives. At this level, the elements of the design are viewed only
at the system level. It is not until detailed design of the vehicle element, through
the ICE process, that subsystem-level analysis is introduced. Because MATE-CON
performs a down selection of architecture alternatives in the MATE process before
subsystem-level conceptual vehicle design via the ICE process, the interaction between
subsystems and the architecture may be difficult to observe. Additionally, MATE-
CON provides no formal definition of technologies. It is possible to perform technology
evaluations due to the subsystem-level vehicle definition in ICE; however, due to
the down selection of architectures before more detailed conceptual design of vehicle
elements, observing the effects of technologies at the architecture level is challenging.
Finally, MATE-CON does provide a multi-objective analysis of architectures, though
it is consolidated to only two dimensions at the highest level, which may obscure
further exploration of the architecture space when considering subsystem-level design

choices.

2.4 Technology Evaluation Methods

A quick literature search will provide numerous methods developed to perform tech-
nology evaluation. The typical goal of any technology evaluation technique is to
provide a clear understanding of the technologies of interest. This will present deci-
sion makers with an understanding of what technologies may be the best choice for a
potential solution to a given problem. Presented here are a few of the more relevant

methods that have been developed. These methods define technology in a variety of
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ways, some of which differ from the definition of technologies as presented by this
dissertation. However, the approaches that these methods take provide insight into

what will be desirable traits for integrating such a process into a new framework.
2.4.1 TIES

Historically, system design in the aerospace industry held a paradigm where the pri-
mary objective was to maximize performance while minimizing weight. However, as
economic and performance objectives became increasingly strict, focus shifted from a
performance-based design paradigm, to one of affordability and quality [57]. To meet
these strict technical and financial requirements, new technologies had to be con-
sidered as part of the solution. Technology Identification, Evaluation and Selection
(TIES) is one of the initial methods developed to meet this design paradigm shift,
allowing designers to analyze the impact technologies have on baseline designs from
both a performance and economic perspective, while also helping decision makers
with selecting technologies worth investing in. Figure 15 shows the flow of the TIES
methodology.

The initial steps of TIES focus on defining the problem and design space and
analyzing that design space in an attempt to understand whether infusing technology
is required to solve the problem. In these initial steps, many standard engineering
tools are utilized, such as quality function deployment, to aid in translating customer
requirements into engineering metrics, and morphological matrices to understand the
physical breakdown of the design space. Analysis is performed utilizing techniques
such as Response Surface Methodology and Monte Carlo simulations. These tech-
niques allow probabilistics and uncertainty to be included in the analysis of designs
and technologies.

Once feasibility and viability have been determined, the method continues with

technology identification, evaluation, and selection, as its name implies. These steps
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are only performed if it is determined that technologies are required to meet the
customer requirements set forth in the initial steps of the method. By considering
technology compatibilities and impact mappings on specific engineering design met-
rics, the effects of infusing technology into a given design can be modeled and assessed,
including technology impact uncertainties. TIES uses a concept called “K-factors”
as adjustments to the engineering design metrics as a method of inserting technology
impacts into the already existing modeling and simulation framework developed in
the early stages of the methodology. This allows for a quick turnaround on analysis
of a wide range of technologies without a large investment in developing new models.
The final step of the TIES methodology consists of utilizing decision making tech-
niques, such as Multi-Attribute Decision Making (MADM), to aid decision makers in
making final choices on a technology family.

TIES provides a well-formulated and robust means of evaluating technologies at
a subsystem level. It allows many technologies or sets of technologies to be evaluated
side by side, considering a variety of objectives simultaneously. Additional, TTES
allows statistical evaluation of technology performance and risk. The method was
primarily developed for the evaluation of technologies on a specific baseline design.
Additional, designs are not defined at the architecture level as defined by this body

of work.

2.4.1.1 ATIES

Abbreviated Technology Identification, Evaluation, and Selection (ATTES) is a method
developed by A.C. Charania as subset of the TIES methodology to suit the space
transportation industry [17]. ATIES removes the initial steps of TIES relating to
characterizing the mission needs and need for technologies on the basis that these

are generally known to the designer in the space transportation conceptual design
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community. Furthermore, ATIES omits the technology identification step initially in-

tended to identify available technologies for infusion. Again, it was stated that these

technologies are well known to the designer as a requirement for the design [87].

Baseline Concept Determination
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Figure 16: The Abbreviated Technology Identification, Evaluation, and Selection
(ATIES) method is a subset of the larger Technology Identification, Evaluation, and
Selection (TIES) method tailored to the space transportation community. Steps per-
taining to problem, design space, and technology definition are omitted, while main-
taining the core identification, evaluation, and selection steps [17, 87].

ATTES maintains steps related to technology compatibility and impact matrices,
modeling and simulation frameworks utilizing methods such as response surface equa-
tions and Monte Carlo simulation, and final selection through some means of decision
making, typically a weighted combination of figures of merit. ATIES makes an addi-
tion to the TIES method by including a filter which allows technology families that
do not fit within a defined budget to be automatically eliminated in an attempt to
manage the large combination of architectures which exist in space transportation
design problems. A general flow diagram of the ATIES method is provided in Fig-
ure 16. Because ATIES was developed as a subset of the TIES method, it inherits
the advantages and disadvantages with regard to desired features for a method or

framework to meet the statement of purpose of this dissertation.
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2.4.2 TRIPS

Many of the technology evaluation methods currently in use rely on a technology’s
impact on underlying subsystem-level metrics, such as an engine’s thrust or spe-
cific impulse, to provide an overall effect on the subsystem and related systems and
architecture. These “K-factors” provide a simple method for applying technology im-
pacts. However, many of the methods stop at this point, providing little information
about the development of a technology and its impact on a design. The Technol-
ogy Roadmapping and Investment Planning System (TRIPS) attempts to solve this
problem by modeling a technology’s development in a probabilistic manner and then
generating an optimal resource allocation profile given a set of programmatic con-
straints [18]. The goal is to bring information related to the cost, schedule, and
uncertainty of technology development into the design of architectures to supplement
the performance impacts estimated by other methods.

TRIPS models the development of a technology as a discrete time Markov Chain.
Each event is a transition from one TRL to the next. The probability that a technol-
ogy will transition to the next TRL in a single time step of the model is a function
of the monetary investment in that technology. This transition probability is de-
fined using a statistical distribution, such as a triangular or normal distribution of
the likelihood of transition versus the estimated cost. A matrix for each technology
is generated, representing all the probabilities for the developments of a technology
through the nine TRLs. These transition probability matrices populate the proba-
bility catalog. Figure 17 shows the process by which portfolios of technologies are
evaluated, given user-defined funding profiles and architectures. This information is
analyzed to determine feasible portfolios for maturing a desired capability [18].

TRIPS includes the formal definition of architectures within the method. Addi-

tionally, the evaluation of multiple technologies against many objectives is performed.
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However, the level of definition of architectures is not at the subsystem level as re-
quired. The method focuses on high-level architecture objectives to measure the de-
sirability of technologies as well, not meeting the needs for an integrated architecture

design and technology evaluation framework.

Portfolio Manager/ Funding initiation, levels, profiles
. . ®
Genetic Algorithm T
Expected Funding
outcomes Profile
Technology |RD? Nominal funding level °
Database
Enabling/
Architecture F""2"¢1N9
Definition ?
Py Resulting probabilities Probability
Catalog

Figure 17: The Technology Roadmapping and Investment Planning System (TRIPS)
is focused on solving the problem of technology development planning. It approaches
technology development in a probabilistic manner through a discrete Markov Chain
simulation to account for variations in investment funding levels and their effect on
technology development and associated architecture capabilities [18].

2.4.3 TAPP

The Technology Alignment and Portfolio Prioritization (TAPP) technique attempts
to define and assess sets or portfolios of desired technologies while incorporating
organizational structure, available resources, and policies into the analysis. Funaro
recognized the challenges associated with assessing technology for large-scale systems
of systems, claiming that the time-intensive nature of technology evaluation lends

itself well to automation [32]. Because of this, TAPP approaches the problem by
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looking at how technologies align with an organization and its desired missions, in
this case, NASA’s Marshall Space Flight Center. The quantitative and fiscal impact
on technology analysis are left to other evaluation methods such as TIES and TRIPS
as discussed in sections 2.4.1 and 2.4.2, respectively. Figure 18 shows the basic process

of TAPP.
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Figure 18: The Technology Alignment and Portfolio Prioritization (TAPP) is a
method that focuses on determining how well a portfolio of technologies aligns with
a defined organization’s competencies and goals [32]

TAPP requires the definition of four spaces: mission, element, subsystem, and
technology. The mission space is the desired set of missions the organization is in-

terested in performing. The element space is all of the physical systems and systems
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of systems that are available to an organization. The subsystem space is the set of
subsystems required to define all elements in the element space. The technology space
is the set of all considered technologies available to the organization. During technol-
ogy definitions, it is also important to define how the organization’s capabilities align
with each technology. Once these four spaces are defined, mappings must be made to
link the mission space to the technology space, through the elements and subsystems

spaces. To do this, there are three mappings connecting the four spaces:
Mission— Element—Subsystem—Technology

Each mapping has its own set of user-defined weighting parameters. Once all of the
spaces, mappings, and weighting parameters are defined, the technology prioritiza-
tion can be explored based on the desired mission. Because an alignment with each
technology was made with the organization’s capabilities, not only can users explore
how technologies are prioritized for each mission, but also how well the technology
portfolio, and hence associated missions, align with the organization’s capabilities.
This can provide valuable information regarding gaps in an organization’s workforce.

TAPP inherently defines technologies at the subsystem level of the design. How-
ever, the effect of the technology on a physical design is not accounted for. Though
multiple technologies may be evaluated side by side, they are only evaluated on a sin-
gle objective, organizational alignment. This does not meet the needs of a framework
for this research. Additionally, the method does not consider architectures as defined

by this document. Rather, it traces vehicle needs through a specific mission.
2.4.4 QuantUM3

The Quantitative Uncertainty Modeling, Management, and Mitigation (QuantUM?)
method was developed to allow designers the ability to understand the risk associated

with different technologies in an architecture by leveraging uncertainty quantification
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techniques [36]. QuantUM? integrates cost and schedule into the analysis of technolo-
gies through quantitative, probabilistic performance analysis of the risk associated
with the readiness and effectiveness of each technology in a portfolio [36]. The flow

of the QuantUM? methodology is shown in Figure 19.
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Figure 19: The Quantitative Uncertainty Modeling, Management, and Mitigation
(QuantUM?) method focuses on the risk associated with technologies in an architec-
ture through uncertainty quantification techniques [36].

As is seen in the flow diagram, a baseline architecture is selected in phase 1. This
allows technologies to be analyzed from a risk-based performance assessment, while

also including the effects of cost and schedule. This provides a very detailed analysis
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of various technologies for the defined architecture and organizational constraints. Al-
though QuantUM? allows the evaluation of multiple technologies on a multi-objective
basis, it fails to define architectures and technologies at the proper level. Additionally,

the methods focuses on technology evaluation after architecture down selection.

2.5 Model-Based Systems Engineering

Literature provides many formal and informal definitions for the terms Model-Based
Systems Engineering (MBSE). INCOSE provides a formal definition for Model-Based
Systems Engineering as: “...the formalized application of modeling to support system
requirements, design, analysis, verification and validation activities beginning in the
conceptual design phase and continuing throughout development and later life cycle
phases”[48]. Here we see MBSE as a way of formalizing the application of modeling to
support systems engineering tasks. However, the definition provided by The National
Defense Industrial Association helps to clarify by defining MBSE as “An approach to
engineering that uses models as an integral part of the technical baseline that includes
the requirements, analysis, design, implementation, and verification of a capability,
system, and/or product throughout the acquisition life cycle”[9]. In this definition,
it is made much more clear that modeling should be an integral part of the systems
engineering process. Both definitions are clear and specific that this integration should
not just occur in the analysis phase of a design, but rather throughout the entire life
cycle, from requirements formulation, conceptual design, and through the end of life
phases.

The diagram in Figure 20 shows a high-level overview of the MBSE ontology. The

ontology is broken into seven high-level concepts [49]:

e System concepts, which cover the basic concepts associated with System, Sys-

tems of Systems, Constituent Systems, etc.

e Need concepts, which cover all concepts associated with System Needs, such
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as Requirements, Capabilities and Goals.

e Architecture concepts, where the description and structure of Architectures

using Architectural Frameworks are discussed.

e Life Cycle concepts, where different Life Cycles and Life Cycle Models are

discussed, along with the interactions between Life Cycles.

e Process concepts, where the structure, execution and responsibility of Pro-

cesses are discussed.

e Competence concepts, where the ability of people associated with Stakeholder

Roles are defined.

e Project concepts, where Project and Program-related concepts are defined.

These seven high-level concept groups can be seen graphically in Figure 20, as
well as their relation to each other. MBSE shifts from a traditional document-based
record of authority to a more model-centric data-rich environment. This allows teams
and engineers to more quickly and readily understand design changes and how they
impact a design [42]. The overarching objective of MBSE is to provide more systems
engineering depth during design while also reducing acquisition time without increas-
ing cost. However, MBSE is not without its drawbacks. Initializing a model-based
engineering approach requires investment in tools, training, and infrastructure that
is not required by a document-centric system. Also, MBSE does not replace the need
for rigorous, detailed disciplinary design teams [9]. Furthermore, the highly struc-
tured nature of MBSE may provide additional challenges during the early conceptual
design phases where many fundamentally different designs are being considered side
by side.

Beginning in the late 20'" century, modeling languages began to be created to for-

malize how models were developed and integrated within industry. These languages,
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similar to programing languages, provided formal, object-oriented frameworks which
allowed concepts such as MBSE to be implemented in practice. The remainder of
this section is dedicated to providing a high-level overview of three of these lan-
guages: the Unified Modeling Language (UML), the Systems Engineering Modeling
Language (SysML), and the Architecture Analysis Design Language (AADL).

2.5.1 The Unified Modeling Language

UML was developed initially by Grady Booch, Ivar Jacobson, and James Rumgaugh
as a result of the Object Management Group’s (OMG) calling for specification of
a uniform modeling standard in 1996 [103]. UML represents models in the form of
diagrams, which provide a view of a specific part of reality described by a model. They
are a form of functional decomposition of a system. Figure 21 shows the taxonomy
of the various types of diagrams defined in UML.

Through these various diagram types, systems and systems of systems may be
presented in various ways which help to describe them in a way which is consistent
among different teams of people. This allows for communication between different
groups without having to worry as much about language usage and other model
miscommunication, allowing people to focus more on the design. For a detailed
description of the diagrams presented in Figure 21, the reader is referred to Chapter
2, Section 3 of UML@Classroom: An Introduction to Object-Oriented Modeling, by
Seidl et al [103].

Though UML provided the first steps in providing a general framework for defining
and presenting systems which could help communication among designers, it is not
without its flaws. Because UML was developed with the intent of widespread use
among many disciplines, it was intentionally left vague in its description of its various
components such that it could be molded to the user’s specific needs. However, it is

this generality which may give rise to miscommunication as different teams interpret
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Figure 21: Unified Modeling Language Diagram Taxonomy[103]

the vague guidelines differently. Due to this observation, in 2003 the OMG issued
the “UML for Systems Engineering Request for Proposal” following a decision by

INCOSE to customize UML for systems engineering applications [49, 43].
2.5.2 The Systems Engineering Modeling Language

As a result of the OMG’s call for proposals, a broad base of tool vendors, industry
users, government agencies, and professional organizations worked to develop stan-
dards to meet the request. In 2006, the OMG announced the adoption of the SysML
specification and subsequently published v1.0 in 2007 [43]. Up through mid-2017, the
OMG has published a total of 5 revisions to the original specification, the most recent

being published in May of 2017 [86].
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Because SysML was developed as a result of tailoring UML to better suit sys-
tems engineering problems; it is only natural that these two design languages share a
commonality. Figure 21 is a graphical depiction of the relationship between SysML
and UML. As can be seen, SysML makes use of a large portion of UML. Overall,
SysML has a smaller footprint than UML. In all, SysML defines only 9 diagrams,
compared to UML defining 13. Some parts of UML were considered unnecessary for
the systems engineering domain and were left out of the new language. In addition,
SysML adds a few new diagrams and constructs not present in UML to better define
systems engineering problems. Also, those parts of UML used by SysML were sub-
ject to changes to better suit systems engineering paradigms. Figure 23 shows the
relationship between the SysML diagrams, as well as the relations they have to UML
diagrams. For details regarding the various diagrams used in SysML, refer to SysML

for Systems Engineering by Jon Hold and Simon Perry [49].
2.5.3 The Architecture Analysis and Design Language

The Architecture Analysis and Design Language (AADL) was developed indepen-
dently from UML and SysML. In November of 2004, the Society of Automotive
Engineering (SAE) released the aerospace standard AS5506, which defines AADL
[28]. In his introduction to AADL, Peter Feiler states that AADL is “...a textual and
graphical language used to design and analyze the software and hardware architec-
ture of real-time systems and their performance-critical characteristics.”[29] AADL
was developed to support the avionics, aerospace, and automotive industries, used to
describe the structure of such systems as an assembly of software components.
Unlike UML and SysML, the AADL is not as graphical, but rather is written
more like a programming language to describe components and their relationships.

The AADL defines three distinct sets of component categories:

1. Application Software
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Figure 22: SysML and UML share a common root of diagrams. However, SysML
omits diagrams less relevant to system engineering problems,; while also extending
the base functionality of UML to improve modeling of systems engineering problems

(49, 43].
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Figure 23: Systems Engineering Modeling Language Diagram Taxonomy [31, 43].
As can be seen, SysML and UML share a common set of diagrams. However, SysML
makes modifications to a few diagrams, while also add a few new diagrams, making

the language more suited for the systems engineering domain.
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(a) Thread: a schedulable unit of concurrent execution

(b) Thread Group: a compositional unit for organizing threads
(c) Process: a protected address space

(d) Data: data types and static data in source text

(e) Subgroup: callable sequentially executable code
2. Execution Platform

(a) Processor: components that execute threads
(b) Memory: components that store data and code

(c) Device: components that interface with and represent the external envi-

ronment

(d) Bus: components that provide access among execution platform compo-

nents
3. Composite

(a) System: a composite of software, execution platform, or system compo-

nents

Components have type declarations and implementations, which help to define a
component’s externally visible characteristics and its internal structure, respectively
[28]. These components are brought together to form a full representation in the
AADL. The model can be expressed textually, graphically, or as an extensible markup
language (XML) document. Figure 24 summarizes the alternative representations,
showing samples of each. For further details regarding AADL and components, refer
to The Architecture Analysis & Design Language (AADL): An Introduction by Feiler
et al. [28].
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AADL Textual
thread data_processing
features
raw_speed_in: in data port;
speed_out: out data port;
Properties

Period => 20 ms;
end data_processing;

AADL Graphical

G- - - -

I

4 data_processing ’-

I

— o — ]

I

XML

<threadType name="data_processing">
<features>
<dataPort name="raw_speed_in"/>
<dataPort name="speed_out"
direction="out"/>
</features>

Figure 24: Notional Architecture Analysis & Design Language Model Representa-
tions [28]
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CHAPTER II1

FRAMEWORK FORMULATION

This chapter will explore the gaps in current methods in meeting the needs of an
architecture evaluation method which fulfills the statement of purpose of this research.
These gaps will form the primary research objective of this dissertation, as well as
the driving needs of a new method which will be developed through a discussion of
topics relevant to such a methodology. Throughout this chapter, research questions

and hypotheses will be developed, forming the structure of this research.

3.1 Gaps In Current Methods

Based on the definitions for architectures and technologies, combined with the gen-
eral statement of purpose of this dissertation, a set of required features for evaluating
methods and techniques may be developed. The statement of purpose for this disser-

tation is reprinted below for reference.

Statement of Purpose

To provide a capability to analyze complex systems of systems to an extent
which will provide decision makers in the early phases of design sufficient
information to reduce the risks associated with cost and schedule overruns

due to lack of design knowledge.

In Chapter 2, a collection of methods and frameworks was discussed, along with
potential advantages and disadvantages with regard to the desirable features of a
method or framework capable of meeting the needs posed by the statement of pur-

pose of this dissertation. This information is summarized in Table 5, showing each
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method’s ability to meet the required features list. It becomes self-evident that no one
method meets all the feature requirements identified by this research. The deficiencies
among these methods and techniques in meeting the primary statement of purpose
of this research highlights the important characteristics desirable for a new method
to be developed. The following gaps have been identified within the set of methods
described, outlining a set of desired characteristics for a new framework to integrate
architecture analysis and technology evaluation at a subsystem level. Though none
of the identified methods and techniques fully meet the feature requirements outlined
in this section, components from them may provide a good starting point for defining
a new framework which meets the required features. This will be discussed in further

detail throughout the remainder of this chapter.

Table 5: Methods Comparison

Methods
ARCHITECT STASE MATE-CON TIES ATIES TRIPS TAPP Quantum®
Architectures Defined at
Subsystem Level x « x x X X - X
Can Evaluate Multiple
Architectures J J J x x x - x
n Multi-objective Architecture
g Analysis V “ J x x x - X
=
© Technologies Defined at
< Subsystem Level X - - J J x “ X
Can Evaluate Multiple
Technologies ~/ - - ‘/ ~/ ~/ J ~/
Multi-objective Technology
Analysis ~/ - - J ~/ J x V
s/ = Met X = Unmet === = Undefined

1. In the space transportation domain, missions are typically selected well before
physical systems and technologies are developed. The architecture and tech-
nology evaluation methods presented propose selecting a baseline design in the

initial steps.
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2. In the space transportation domain, architectures typically consist of many
systems concurrently being designed. This produces a very large architecture
alternative space. Due to the discrete nature of defining a large system of
systems, architecture analysis typically focuses on analyzing the full set of design

alternatives. This is impractical for the large number of alternatives that exist.

3. Typically, architecture design methods which incorporate technologies define
them as an entire system, and do not fit the definition of a technology as
provided in this body of work. Technology evaluation methods which define
technologies in a similar manner to this research typically consider a fixed ar-

chitecture when evaluating technologies.

4. Technology evaluation methods tend to focus on a single aspect of how tech-

nologies affect a design.

3.2 Research Objective

Section 1.2.3 outlines the primary challenges associated with the design space ex-
ploration of complex architectures. These challenges were primarily attributed to a
lack of design knowledge in the early phases of design due to technical and political
uncertainty. The level of design freedom decreases rapidly during the early phases
of design, while committed cost rapidly increases, as shown in Figure 6. The act
of bringing design knowledge earlier into the design phases will help to reduce cost
and schedule overruns associated with a lack of design knowledge. However, in an
effort to incorporate this design knowledge into earlier phases of design, the system
of systems spaces that must be explored become impractically large to analyze. Sec-
tion 3.1 outlined gaps in the current methods for performing architecture design and
technology evaluation under the definitions provided. Refining the overarching state-
ment of purpose based on these gaps leads to the primary research objective of this

dissertation:
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Research Objective
To integrate architecture analysis and technology evaluation at the sub-
system level to provide a quantitative framework in an effort to increase

design knowledge early in the design process.

3.3 General Concept Exploration Framework

Many models exist in literature for the purpose of concept exploration and refinement.
Each are unique and vary in details, but as defined by the United States Air Force,

they follow three major steps [113]:

e Trade space characterization
e Candidate solution sets characterization

e Analysis

Trade space characterization requires converting needs into quantifiable bound-
aries while collecting potential solution ideas. Characterizing the candidate solution
sets consists of refining the trade space boundaries into realizable concepts that may
represent solutions to the problem. The analysis step requires evaluating the candi-
date solutions on a common basis such that trends can be observed and a decision
made. One such model is the Georgia Institute of Technology’s Integrated Product
and Process Development (IPPD) model, as seen in Figure 25.

Under this model, trade space characterization consists of establishing a need,
typically done through quality engineering methods to gather customer needs and
requirements, which are then converted to a set of functional requirements. These
drive the definition of the problem followed by a decomposition of the trade space and

an establishment of the value metrics and figures of merit. Characterizing candidate
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COMPUTER-INTEGRATED ENVIRONMENT

SYSTEMS
ENGINEERING METHODS

QUALITY
ENGINEERING METHOD

DECISION SUPPORT PROCESS

PROCESS DESIGN DRIVEN
NIAIMA NOIS3A LONA0Hd

Figure 25: The Georgia Tech Integrated Product and Process Development
model[101] mapped to the three major steps of a concept exploration framework
as defined by the United States Air Force[113]: (1) Trade Space Characterization, (2)

Candidate Solution Sets Characterization, (3) Analysis

solution sets consists of generating feasible alternatives in the trade space. Finally,
analysis comprises evaluating the alternatives through system analysis and making
a final decision by means of a multi-criteria decision making approach. There have
been many methods developed to perform architecture design and analysis which fit
a model similar to Georgia Tech’s IPPD just described. In Section 2.3, two such
methods, ARCHITECT and STASE, were discussed.

The primary research objective of this dissertation is not to develop an entirely
new method for technology evaluation and architecture analysis. Rather, it is to
integrate architecture analysis and technology evaluation at the subsystem level such
that the effects of this integration may be studied. However, because there is no

single method identified to meet the needs of this body of work, a basic framework
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for evaluating these architectures and technologies will need to be developed. In doing
so, if literature provides suitable methods currently in existence that may serve as
elements of this framework, then it will be desirable to integrate those elements into
the required framework to achieve the main research objective. The remainder of this
section will discuss the main processes required for concept exploration and how they
relate to architecture design and technology evaluation. The application of relevant
methods and concepts from Chapter 2 and their appropriateness as a framework for
a new method will be highlighted. The research questions for this dissertation will

be developed throughout the remainder of this chapter.

3.3.1 Phase I: Trade Space Characterization

Trade Space Candidate Solution Analysis

Characterization Sets Characterization

The first of the three major steps in concept exploration consist of trade space char-
acterization through definition and decomposition of the problem. This will provide
insight into the relationships which exist within a design space. Because this re-
search aims to integrate technology evaluation and architecture analysis into a single

framework, the first logical research question is as follows:

Research Question 1

What is the relationship between architectures and technologies?

There exist many methods and techniques for decomposing a problem. Trade
trees, morphological analysis, network theory, and product family design are a few
examples of current methods. As is seen in Table 5, STASE is the only architec-
ture design method which defines architectures in a similar manner to that which is

required by a new framework. The method in which Jonathan Sharma decomposes
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the problem is called set theory-influenced system decomposition (STSD). Different
system spaces—the architecture space, design space, and objective space—are defined
and mapped to each other [104]. Though the technique was originally proposed for
mapping spaces defined as mathematical sets, the general concept will hold for de-
signs which are a general collection of options and parameters and does not require
the strict definition of mathematical sets. The following is a brief summary of STSD
and how it relates to this research. Details can be found in Section 3.1.2 of Sharma’s

dissertation on set theory-influenced architecture space exploration [104].
3.3.1.1 Defining System Spaces

The DoD Architecture Framework provides details on different ways of looking at an
architecture. These viewpoints, as defined in version 2.0 of the document, consider
many different ways of organizing data to facilitate understanding of complex system
of systems architectures. Of them, the Operational Viewpoint (OV) and Systems
Viewpoint (SV) are most relevant to this body of research. The most relevant SV
when decomposing the problem is SV-1, the systems interface description. This view-
point can be used to depict systems and subsystems of an architecture [115]. The
most relevant OVs when decomposing the problem are OV-2, the operational resource
flow description, and OV-5a, the operational activity decomposition tree. Whereas
OV-ba focuses on the operational activities, OV-2 focuses on the operational activities
in relation to locations. These two OVs are typically developed together due to the
relationship between location and operation [115]. These viewpoints provide a way
of organizing the missions of an architecture in a form that can easily be integrated
into the physical systems decomposition described by SV-1. These viewpoints may
be captured via morphological analysis of the problem, and are typically viewed at
a high level in the form of a bat chart, which capture each of these viewpoints in a

single image representing the architecture. An example bat chart is shown in Figure
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26 of a notional Mars mission from NASA’s Design Reference Architecture 5.0.

ISRU / propellant
production for MAV

AC / EDL of MDAV / Cargo Lander e

k) MAV ascent to orbit

Crew: Jettison DM &

Habitat Lander AC consumables prior to TEI

into Mars Orbit J5 - e -

Crew: Use Orion/SM to
transfer to Hab Lander; then
EDL on Mars

Crew: Jettison drop
tank after TMI; ~180
days out to Mars

@ Crew: ~180 days
Crewed back to Earth

0 Ares-| Crew Launch
e 3 Ares-V Cargo Launches

4 Ares-V Cargo
Launches

~30 .

months
> @ Orion direct
Earth return

Figure 26: A notional architecture bat chart of manned Mars exploration represent-
ing the primary viewpoints, OV and SV, of an architecture defined by DoDAF 2.0
(78, 115].

Morphological analysis is a leading technique for decomposing problems which
have minimal design knowledge, such as those during the early phases of design [104].
Through morphological decomposition, an architecture space is defined which consists
of the potential discrete options that exist in the physical architecture as a collection
of parameters, along with options within each parameter. A matrix of alternatives
(MOA), similar to the example shown in Figure 27, is typically used to represent the
architecture space.

Recall from Section 2.1.6, an architecture is defined as the fundamental organi-
zation of a system of systems embodied by its systems and their relationships to
each other and the environment. A system is defined as a set of regularly interacting

subsystems, as stated in Section 2.1.1. Finally, a technology, as defined in Section

66



Possible Combinations
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Figure 27: A notional Interactive Reconfigurable Matrix of Alternatives (IRMA)
representing the architecture space [25].

2.1.5, is a device or subsystem developed to enable a specific capability. Through
these definitions, technologies clearly operate on or as part of the physical architec-
ture and appear as parameters with options during morphological decomposition.
Unfortunately, this will only exacerbate the problem of combinatorial explosion, to
be addressed later in this chapter. However, these definitions lead to the following

conjecture:

Conjecture 1.1
Based on the definitions of an architecture and technology provided by this
body of work, technologies affect an architecture by acting at the subsystem

level of that architecture.

The design space consists of all design attributes and their feasible ranges. Typi-

cally, these become known once an analysis environment has been selected, as these
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design attributes are typically the inputs of the analysis environment. Groups of
ranges for a given design attribute can be combined to form an overall range for that
design attribute. Figure 28 is a notional representation of a design space.

The objective space is an n-dimensional space consisting of a collection of metrics
which define the overall “goodness” of an architecture. An individual architecture is
represented as a single point in the objective space. Typically, these metrics are values
such as performance, cost, schedule, reliability, and other figures of merit. Figure 29
is a notional representation of a design space. Determining the specific objectives to
include in the objective space will be discussed further in Section 3.3.1.3 and Section

3.3.3.
3.83.1.2  Mapping System Spaces

Consider the notional set of system spaces in Figure 30. Here, the architecture space
parameters are mapped to at least one of the design space attributes. STSD defines
these spaces as sets, and as such, the transformations are mappings from one set to
another. The mappings, fp, and fp,, translate parameter options in the architec-
ture space to values or subsets of the design space attributes. There is no limit to
the number of design space attributes a parameter is mapped to. These mappings
may be considered a form of transformation, specifically, a step function. For exam-
ple, consider Pp in Figure 30 to be the type of engine(s), consisting of two options,
P}, as liquid oxygen engine(s) and P3 as storable engine(s). Pp is mapped to the
design space attributes D and D¢, representing specific impulse and boiloff rate,

respectively. The mapping fp, would then be a step function of the form:

DLUDL if Pl
fPB = (1)
DLUDZ if P2

where D} may define a subset of Dy in the range (300 : 450) seconds, D% may
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Figure 28: A design space consists of a collection of design attributes. Each design
attribute may be a group of ranges to form an overall range for that attribute [104].

0 4%

O4

Figure 29: A notional three-dimensional objective space consisting of three indepen-
dent objectives [104].
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Figure 30: A notional mapping of the system spaces as described in STSD. The
mappings between the architecture space and design space take the form of step
functions where each architecture space option is mapped to at least one subset of a
design space attribute. The mapping between the design space and the objective space
is typically performed by a modeling and simulation environment which evaluates the
set of design space attributes to provide the specific objective space metrics.
define a subset of Dp in the range (275 : 350) seconds, D, may define a subset
of D¢ in the range (5.0 : 10.0) kilogram of propellant loss per day, and D2 may
define a value of D¢ of 0.0 kilogram of propellant loss per day. This also provides
an example of confounding of the design space. Here, specific impulses in the range
(300 : 350) seconds cannot be strictly identified as being derived from the liquid
oxygen or storable engine types. This effect can also be seen in Figure 28 where
design attribute D4 consist of overlapping subranges DY and D%. Each of these
subranges may be mapped to individual architecture parameter options. It would be
impossible to know which architecture option a value in the overlapping design space
attribute subset maps to.

In the notional example of engine type mapped to specific impulse, the selection
of the range of specific impulse values mapped to an engine type is very subjective

in nature, defined by a subject matter expert, systems engineer, or architect. The

mapping between the design space and the objective space is typically much less
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subjective in nature, but also less transparent. Rather, the mapping between the
design space and the objective space is typically fulfilled by a modeling and simulation

environment. The relationship takes the form:
g=0(D) (2)

The modeling and simulation environment is selected or developed for the purpose of
translating design space attributes into objective space metrics. For example, if one
of the objective space metrics is inert mass of the design, a modeling and simulation
environment may utilize inputs such as specific impulse, delta-V, and mission dura-
tion as design attributes to calculate the inert mass. Obviously, complex systems of
systems will contain many systems being sized simultaneously with multiple figures of
merit in the objective space, requiring much more complex modeling and simulation
environments. However, the idea that the modeling and simulation environment acts
as the mapping between the design space and the objective space still holds.

The discussion of mapping system spaces up to this point has not taken into con-
sideration the concept of technologies. This dissertation defines technologies at the
subsystem level. Typically, these technologies will act on a design by modifying the
inputs or outputs of an analysis environment. This technique of infusing technologies
into a design is typically referred to as K-factor analysis. This is the technique utilized
by many of the technology evaluation methods discussed in Section 2.4. However, to
maintain a broad scope and flexibility during concept exploration, the way technolo-
gies are infused into the design should not be limited to just a single technique. Figure
31 illustrates a potential concept for introducing technologies into the system decom-
position and mapping derived from STSD. Here the basic concept presented earlier
is maintained, but with the addition of a new system space, the technology space,
T. The technology space should contains all technologies identified during problem
formulation. Each technology contains two options, active and inactive. The per-

formance of a technology and its effect on a design are accounted for through the
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Figure 31: A modified notional mapping of the system spaces as described in STSD,
with the addition of a technology space. Note that the mappings between the archi-
tecture space, design space, and objective space are now functions of the technology
space.
mappings between the architecture space to the design space and the technology
space to the design space. The notional system spaces in Figure 31 illustrate the
different ways in which technologies may affect a design. For instance, the mapping
fp, 1s now a function of the technology 7). However, technologies are not limited to
interacting with a design through architecture space parameters mapped to design
space attributes. Technologies may interact directly with design space attributes, as
is indicated by the mapping fr,. Finally, the effect of technologies may also interact
with the mappings between the design space and the objective space, indicated in
Figure 31 as ¢(7).

To better illustrate these concepts, the example stated earlier shall be revisited.
Recall the mapping of architecture space parameter Pp representing type of engine(s)
to the design space attributes Dg and D¢, representing specific impulse and boiloff

rate. Now define the technology space parameter, 77, as boiloff mitigation. The

72



mapping fp, now takes the following form:

)
DpUDg if PRUTY
D3 UDg if PRUTY

frs (Th) = (3)
Dyu D if PLUT!

Dy UDE if PAUTY
\

The subranges Dg, D%, Dt, and D% all maintain the same definition as described
before, as these would be the design attributes when the technology T} is inactive,
indicated by 7Y. The subranges D%, D%, D, and DZ would then represent the
design attributes with technology T} active, indicated by T}. For instance, if the
technology has no effect on the specific impulse, D% and D% would maintain the
same ranges defined by the inactive technology scenario. However, D¢, and D¢ may
define a value of 0.0 kilogram of propellant loss per day due to the active technology.
Furthermore, Figure 31 shows a direct mapping between the technology space and
the design space, seen by the mapping fr,. This could be utilized in a scenario where
a technology affects the design through an attribute which has no mapping from the
architecture space. For instance, consider technology T, to be low leak valves for
engines and design space attribute Dp to be propellant leakage of the engine. Here,
propellant leakage is unaffected by any architecture space parameters, but is directly

affected by the technology 7,. The mapping fr, would have the form:

D}) if T20
sz - (4)
DY i T

Where D}, may be the a leak rate of 50 kilograms of propellant per engine start and

stop cycle and D% may be a zero leak rate of propellant per engine start and stop
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cycle. Again, the values associated with these subsets are subjective, determined by
the technologies, systems engineer, architect, etc. This notional example considered
fixed ranges and values. However, these subsets may be estimated utilizing K-factor
analysis on nominal design attribute ranges, through functions of the specific archi-
tecture and technology space options, or other techniques for infusing the effect of
technologies on design attributes.

The notional set of system spaces also shows the mapping between the design

space and the objective space to be a function of T7. This would then take the form:

9=0(D,T) ()

As an example, assume the objective O 4 represents the inert mass of the design and
the mapping ¢ (T') represents the modeling and simulation environment as described
earlier. If the activation of technology 77 results in a mass growth of the burnout

mass of the design, then an element of the mapping ¢ (T') may take the form:

Mo (D) + Myrop (D) if 77
O — prop 1 (©)

k1 % mpo (D) + mypep (D) if T}

Where k; represents the effect due to 77. This value would again defined by the
technologist, systems engineer, or architect. The element Oy4 of the transformation
shown utilizes a form of K-factor analysis to evaluate technologies. However, this is
not a strict requirement, but rather an illustration used for the purpose of explaining
the basic concept of mapping the design space to the objective space. In reality, these
mappings may take a variety of forms.

Utilizing STSD, a new system space, the technology space, may be added which
contains the technologies and their settings. These are derived during problem formu-

lation and decomposition of the problem at the same time, and in a similar manner
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as, the architecture space. This modification to STSD allows the decompositions
of complex system of systems spaces which define and integrate technologies and

architectures at the subsystem level. This leads to the following conjecture:

Conjecture 1.2

Based on the assumed decomposition derived from STSD, a technology
space should be included as a new system space. The transformations
between the architecture space, design space, and objective space shall be

functions of the new technology space.

3.3.1.3 FEstablishing Value

Once a problem has been defined and decomposed, the final step in characterizing
the trade space requires establishing value for the trade space. This value will be
determined by the metrics chosen as measures of “goodness” of the designs. In Section
2.4, several technology evaluation methods were presented which assign value to a
design in various ways. Table 5 summarizes these methods and the approaches taken
for evaluating technologies. Of the five technology evaluation methods presented,
TIES, ATIES, TRIPS, and TAPP represent technologies as a subsystem of the design,
which aligns with how technologies are considered in this body of work. Collectively,
these methods evaluate technologies on the basis of performance, cost, schedule, and
organizational alignment. However, no single method evaluates technologies across
all of these metrics.

Additionally, it is known that technologies may have a profound impact on many
of these metrics. Such observations have led to the development of metrics to assess an
overall readiness of a design as a function of the maturity of incorporated technologies
and their respective links between other systems and technologies [99]. This leads to

the following research question:
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Research Question 2
What technology impact metrics should be considered in determining the

overall “goodness” of the results such that they may be ranked?

Because technologies impact an architecture at the subsystem level and interact
with the analysis environment through the system space transformation functions,
technologies can only interact with metrics which already exist within the architecture
analysis environment. The metrics of interest for architecture analysis are determined
based on the customer’s desires and trade studies of interest. Furthermore, it has
been argued that metrics developed for assessing the readiness of designs, such as
the System Readiness Level (SRL) developed by Sauser et al., may be misleading in
meaning. In his analysis of Sauser’s SRL, Edouard Kujawski concludes the following

62]:

1. It utilizes invalid arithmetic operations on ordinal data

2. Inputs do not provide information on risk and effort required for achieving

higher readiness levels

3. Filters out microscopic information needed in managing specific risk areas

These observations supports the requirement to be multi-objective in nature, not
relying on a single utility metric or readiness value. Typically high-level design studies
are not performed by a specific subject matter expert or technologist, but rather a
systems engineer or architect. These individuals are generally less biased towards
any one architecture or technology. However, they are still people and will impose a
level of bias on the study. Transparency throughout the design decomposition and
evaluation processes helps to alleviate this bias. However, the validity of potential

metrics for evaluating the overall “goodness” of designs is not within the scope of
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this research. The task of identifying techniques to reduce bias in the selection of

technologies is left for future research. This leads to the following conjecture:

Conjecture 2
The technology impact metrics considered should align with the metrics of
interest for measuring the “goodness” of an architecture, without introduc-

ing unnecessary bias.

3.3.2 Phase II: Candidate Solution Sets Characterization

Trade Space Candidate Solution Analysis

Characterization Sets Characterization

The second phase of concept exploration requires characterizing candidate solution
sets, otherwise known as alternatives. When evaluating technologies on the architec-
ture scale, new concerns arise unique to problems at this level. Typically, technology
evaluation is performed only after a baseline design is selected, optimized, and deter-
mined infeasible or inviable without incorporating new technologies. This paradigm
is prevalent in modern methods for architecture analysis and technology evaluation.
Many of the methods presented in Chapter 2 require selecting and defining a baseline
design. However, during the early phases of design, and indeed, following the decom-
position of the problem as described in Section 3.3.1, many different architectures

exist which must be evaluated. This leads to the following research question:

Research Question 3
Is the paradigm of down-selecting to a baseline design on which to perform

technology analysis sufficient for the exploration of complex architectures?
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A simple, notional problem shall help formulate a hypothesis. Consider the prob-
lem of selecting the best in-space propulsion stage. The objective is to minimize inert
mass of the design, measured in kilograms. Assume there are two competing architec-
tures, a storable propellant propulsion module and a methane propellant propulsion
module. There is also a propellant boiloff mitigation technology which may be infused

into the design. This results in a total of four alternatives to be evaluated:

—_

. Storable Propulsion Module

2. Methane Propulsion Module

w

. Storable Propulsion Module with Boiloff Mitigation Technology

4. Methane Propulsion Module with Boiloff Mitigation Technology

The architecture space contains two parameters, mission and propulsion system.
The mission is assumed fixed with only one option. Propulsion system contains
two options, storable or methane. All alternatives will assume the same burnout
mass of 2000 kilograms and an identical mission definition with a transit of 330 days
followed by a single impulsive AV burn of 4,000 meters per second. The technology
space consists of a single technology, a boiloff mitigation technology which eliminates
propellant boiloff with a 5% growth in burnout mass. The design space consists of
four parameters, impulsive delta-V, mission duration, specific impulse, and boiloff
rate. The objective space consist of a single metric, inert mass. Figure 32 provides a
graphical representation of the system spaces and mappings for this notional example.

The mappings fas1 and fprepsys take the following forms:

favr = Day U Darp (7)
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;

1 1 : Storable
DISP U DBOR if PPropSys

2 2 : Methane
DISP U DBOR if PPropSys

fPropS'ys (T) =
Dl

Isp

U D}pp  if Pplorele U Boiloff Mitigation

PropSys

2 4 e DMeth : RS
\DIS,, UDpor if Ppoéne U Boiloff Mitigation

Day and Dar are defined as 4,000 m/s and 330 days, respectively. D}Sp is defined as
300 seconds and D}Sp is defined 350 seconds. Finally, Dy p, is defined as 5 kilograms
of propellant loss per day, while D%, D%, and Dy 5 are defined as zero kilograms
of propellant loss per day. The mapping from the design space to the objective space,

g (T) is represented by equations 9 - 12.

Impulsive
AV
P ful(T
Mission 1 Ml( ) O
Mission
P Isi Duration
roputsion oo o o
System aT) QPN A A
Storable  Methane f M Inert Mass
O O PropSys Specific
Impulse
T Boil Of f
Boil Off Rate
Mitigation

Figure 32: Notional Example of a Simple Space Transportation Architecture Problem

Mpurned = mburnout(eAV/gOIsp - 1) (9)

Mpoited = Rpoit AT (10)
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My = Mpurned + Mipoiled (1]-)

my + 1.05 * Mpyrnoue  if Boiloft Mitigation
Minert = (12)

My + Mburnout otherwise

Table 6: Notional Example Objective Results

Architecture | Inert Mass(kg)
Storable 7789.4
Methane 8064.3

Storable w/ Tech 7889.4
Methane w/ Tech 6514.3

Analysis of the architectures results in performance values as seen in Table 6. Fol-
lowing the paradigm of optimizing a design before analyzing technologies, the storable
architecture would be selected for technology evaluation with a performance of 1.712
over the methane architecture’s performance of 1.548. However, the methane archi-
tecture with technology enhancements performs better than any other architecture,
at 2.079. Following the traditional paradigm of optimizing a design before perform-
ing technology evaluation results in this architecture being overlooked. This occurred
because under the traditional technology evaluation paradigm, it is assumed that
the impact of a technology on the design is consistent across the alternatives being
optimized. However, in the design of architectures, the underlying systems are not
consistent. Since technologies act upon these underlying systems, the overall effect of
technologies on architectures is not consistent across designs. This notional example

leads to the following hypothesis:
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Hypothesis 3

The paradigm of down-selecting to a baseline design and then performing
technology analysis will not be sufficient in performing architecture design.
This paradigm assumes that the systems a technology acts upon remain
constant throughout the down-selection process. Because these systems
vary between architectures, the effects of technologies will be inconsistent

among these architectures.

The notional example just discussed showed that the design of complex archi-
tectures and technologies will require many additional design alternatives to fully
characterize the problem because technologies must be evaluated for each alternative
before down-selection. The large combinatorial space will likely lead to prohibitively

long analysis times. This leads to the following research question:

Research Question 4
How is combinatorial explosion of the number of alternatives affected by

different types of system spaces?

To overcome challenges due to large numbers of alternatives due to combinatorial
explosion, Design of Experiments (DOE) may be used. DOE is a technique by which a
set of experiments is selected to maximize information while minimizing experimental

effort [65]. This technique lends itself to various uses:

1. Comparative: Assessing the impacts on the process as a whole as a result of

changes in a single input factor

2. Characterization: Understanding the importance of various input factors on

the process as a whole

3. Modeling: Obtaining input/output sets in an attempt at estimating a process
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through some mathematical function

4. Optimization: Determining optimal settings of the input factors to obtain an

optimal process response

There are many different ways of generating these “sets” of experiments. Before
the widespread use of computers, Taguchi utilized orthogonal arrays to determine
sets of experiments. However, today, software packages such as JMP®) Statistical
Discovery from SAS can create custom designs quickly and easily. Historically, DOE
was developed as a method for creating sets of inputs for physical experiments in an
effort to minimize randomness in the sets such that responses to changes in those
inputs could be accurately estimated. Another term used specifically for creating sets
of experiments when working with computational experiments is Design of Computer
Simulations (DoCS). The goal of DoCS is similar to DOE, obtaining maximum in-
formation through minimal effort. However, the sets of experiments are tailored to
be more suitable for deterministic computational analysis tools. The most notable
difference between physical experimentation and computational experimentation is
the number of factors involved. Typically computational experiments contain many
more factors for testing [67]. In practice, DoCS and DOE are generally understood to
have similar meaning and may be used interchangeably. System spaces can be broken

into one of three types:

1. Continuous/Discrete Ordinal: All input variables can be ordered in the

ranges being considered

2. Discrete Categorical: All input variables cannot be ordered in the ranges

being considered

3. Mixed: Both ordinal and categorical input variables exist in the ranges being

considered
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An architecture alternative space will almost always be a mixed space, containing
both ordinal and categorical design variables. A simple example proves this to be
self-evident. Consider the design of a single stage rocket with three design variables:
engine propellant, engine specific impulse and number of engines. Engine propellant
options are discrete categorical in nature because there is no inherent ordering to
propellant types such as LOX/Methane versus Storable. However, engine specific
impulse is a continuous ordinal variable because the values that represent the variable
have inherent order. For example, a specific impulse of 350 seconds is greater than
300 seconds. Finally, the number of engines is a discrete variable but is ordinal in
nature. Three engines is greater than two engines, but a design may not contain 2.5
engines. Mixed design spaces are typically understood to require a full factorial DOE
on the categorical variables, while other DOEs can be used for the ordinal variables
[67]. However, because of the large, complex nature of architecture design problems,
there exist prohibitively large numbers of alternatives to consider. Performing a full
factorial DOE on even a portion of the design space can be a challenge.

Suppose a vehicle space is defined by a vehicle having up to four stages. Each
of these stages is described by five discrete parameters with two levels each. This
results in millions of unique vehicle definitions. Likewise, if we consider a mission
space defined by ten unique missions, each described by 5 individual events, with
each event having four discrete parameters containing two levels, this produces on
the order of tens of millions of unique mission definitions. If an architecture consists
of a unique mission-vehicle combination, then there are on the order of 10'® possible
architecture alternatives in this notional architecture space. Remember that the
vehicle and mission definitions only contain the discrete variables and do not account
for any continuous variables which may exist in a mixed space. This means in our
objective space, each of these architectures would appear as a single point, but in

reality, is a cloud of points dependent on the ranges of the continuous variables of the
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design. However, because the continuous variables are not considered in this example,
they are assumed to take default values, collapsing the cloud of points to a single point
in the objective space. This act of selecting default values for the continuous space
may be a viable solution to reducing the overall number of potential designs which
must be analyzed. However, study of this option is outside the scope of this body of
work.

Also note, our architectures do not account for technologies in any way, which will
further increase the complexity and number of design alternatives. If it is assumed
that an architecture analysis environment exists that can perform its task in one
second per architecture per central processing unit (CPU) core, then it would take
44,984 years to complete analysis of all alternatives in this notional design space
on a standard 8-core personal computer. Even utilizing all 246,048 CPU cores of
the Pleiades supercomputer would take 1.46 years to analyze all the alternatives.
This phenomenon is what is referred to as combinatorial explosion. The typically
understood assumption of requiring full factorial DOEs for the discrete categorical
variables of a mixed design space, on top of other DOEs for the ordinal variables, is
impractical for a realistic design study. However, minimizing combinatorial explosion
is outside the scope of this research. To minimize the effect due to combinatorial

explosion, the following conjecture is made:

Conjecture 4

Subsets of the discrete architecture and technology space parameters will
be selected, along with assumed values for continuous parameters, depen-
dent on the discrete options, to minimize combinatorial explosion such that
effects due to integrating technologies and architectures at the subsystem

level in a single method can be studied.
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3.3.3 Phase III: Analysis

Trade Space
Characterization

Candidate Solution
Sets Characterization

Analysis

The final step in the general concept exploration framework consists of analyzing the

alternatives. The end results of analysis are numerical values of the figures of merit

selected for ranking designs. These figures of merit will help decision makers come to

final conclusions regarding the overall design. As was shown in the previous section,

large numbers of alternatives exist in such a complex architecture space. Care must

be taken to ensure that useful results are observable among so much data. Including

technologies into the architecture design problem only complicates the presentation

of results by creating ever larger numbers of alternatives as well as figures of merit to

consider. This leads to the following research question:

Research Question 5

How shall results be presented to allow decision makers clear, concise

choices in selecting architectures and technologies?

3.3.8.1 Individual Architecture Scheme

In an individual architecture scheme, each alternative analyzed is presented in the

final results. With a potential for billions of alternatives or more, it is not difficult to

imagine subtle details in trends of the results being washed out and difficult to observe

with so much data to present. This leads to the following research sub-question:

Research Question 5.1

Would utilizing an individual architecture presentation scheme prevent

high-level effects of architecture design decisions from being observed?
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The highly discrete nature of architecture design means that there will more than
likely be grouping of the results corresponding to discrete decisions in the matrix
of alternatives. If a given option in the matrix of alternatives drives extraordinary
results for a subset of the alternatives, that subset of alternatives would be ranked
higher than any of the other subsets. However, during early phases of design, decision
makers are typically more interested in how architecture design decisions, such as
applying a certain technology or basic propulsion types, may affect the performance
of an architecture compared to the others. However, it could be challenging to see this
type of information with so many results of a subset of alternatives flooding the top
rankings of the results. In essence, by narrowing the amount of data being observed
by only relying on a top N individual architectures scheme, a poor cross section of
the whole objective space will be observed.

As an example, suppose a decision maker is interested in understanding how the
selection between four different propulsion systems may affect the resulting architec-
tures. Assume there are 1000 architectures in the space, 250 for of each propulsion
type, and that the top 10 performing individual architectures will be presented. It is
probable that all 10 top architectures may be of a single propulsion type. However, if
the decision maker wishes to perform comparative analysis of the different propulsion
types in the objective space, this information cannot be observed due to only a single
propulsion type from the architecture space flooding the chosen objective space. The
top 10 architectures resulted in an objective space with a poor cross section of the

original architecture space. This logic leads to the following hypothesis:

Hypothesis 5.1
The presentation of individual architectures will obscure high-level effects

due to flooding of the top results with similar individual designs.
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3.3.3.2  Portfolio Scheme

In the previous section, it was observed that selecting optimal designs from an ob-
jective space containing individual architectures may result in a poor cross-section
of the architecture space actually being studied and observed. However, because the
architecture space is so discrete in nature, portfolios of designs may be formed to
observe cross sections that are more representative of the architecture space. In a
portfolio scheme, results of the alternatives may be grouped in some manner in an
attempt to simplify the presentation of results in situations where there is an unman-
ageable amount of individual data points to present. In his work on developing a
rapid architecture analysis model, Ilacobucci states that common tools used for data
exploration are not designed to handle extremely large data sets [50]. In his work,
portfolios were created based off of unique sets of systems. Architectures containing
the same constituent systems were grouped together into portfolios. Similarly, meth-
ods such as TIES use sets of active technologies to act as grouping criteria for the
objective space. However, details about how grouping criteria are selected in these
methods are undefined. There has been no study of how these grouping criteria may

affect the resulting portfolios. This leads to the following research question:

Research Question 5.2
How do the grouping criteria used for forming portfolios of architectures

affect the variance of the resulting portfolios?

The concept behind this research question is illustrated by Figure 33. Here, group-
ing criteria can be selected in many ways to either form a few large portfolios or many
small portfolios spanning the objective space.

If portfolios are defined in such a way that they contain large numbers of architec-

ture alternatives, it is expected that there will be many different architecture concepts

87



Few Large Portfolios

Many Small Portfolios

Figure 33: Relationship Between Portfolio Size and Number of Portfolios

grouped together, creating a large variation in architectures within a given portfolio.
If the individual architecture objectives are rolled up into portfolio-level objectives, it
is expected that the variations in these rolled up metrics will be greater compared to
if the objective space were broken into many smaller portfolios. However, when the
scope of an individual portfolio is narrowed down, the number of possible portfolios
increases. With more focused architecture grouping criteria, variation between the
grouped architectures in a portfolio will be reduced compared to the large portfolios.

These ideas are summarized in the following hypothesis:
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Hypothesis 5.2
Variance of the objective metrics within and between portfolios will corre-
late positively with the size of the portfolios, measured by the number of

grouped architectures.

However, the act of grouping criteria together to form portfolios of architectures
spanning the objective space may leads to potential problems with observing results
and selecting optimal designs. Because architectures are grouped together with the
performance of portfolios being compared as opposed to individual designs, there
may exist a scenario where a high-performing optimal design is obscured in a lower-

performing portfolio, formalized in the following research question:

Research Question 5.3
Would utilizing a portfolio scheme for grouping architectures obscure high-

performing outlier architectures?

As a notional example, consider the simple single objective space containing 20
total designs, represented by Table 7. Two portfolios of designs are created with the
simple grouping criteria of the first 10 designs and the remaining 10 designs. Here we
see the optimal design, denoted by the maximum objective value, resides in portfolio
two. However, by creating a portfolio-level metric as the mean of the 10 contained
design objective values, portfolio two has an overall objective value of 0.46. The
same overall objective for portfolio one is 0.67. If a decision is made to only consider
designs contained within the optimal portfolio, the true optimal design is obscured
within the suboptimal portfolio. In order to more easily develop an experiment around

this research question, a null hypothesis will be set up. This leads to the following:
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Table 7: Notional Design Obscuring In Objective Space Portfolios
Objective
0.766211
0.804294
0.759173
0.730905
0.574270
0.620439 | |
0.618472
0.654051
0.245305
0.914338
0.372797
0.654160
0.147452
0.087135
0.480864
0.328384 | |
0.934477
0.916002
0.155315
0.498400

P1=0.67

Designs

P2=0.46

Hypothesis 5.3

High-performing outlier architectures will not be obscured using a portfo-
lio evaluation scheme because they will be contained in a portfolio with
other similar architectures which will exhibit similar behavior, raising the

performance of the entire portfolio.

3.3.3.3  Effects on Establishing Value

Due to the sheer number of potential alternatives which may exist in the concept
exploration of complex architectures and technologies, presentation of the results will
provide new challenges. The way in which the results are presented could dramatically

alter the metrics of interest. This is formalized in the following research question:
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Research Question 6
Does the presentation scheme of the results affect the metrics that should

be utilized to establish the value of a portfolio?

At the core of all of the information available to a decision maker during archi-
tecture evaluation is the analysis environment. The environment dictates what infor-
mation is available for use as figures of merit in ranking architectures or portfolios
of architectures, as well as producing DoDAF-based viewpoints of the architecture.
Because of this, it is not possible to obtain different sets of metrics Dependant on
the presentation scheme. Rather, the set of metrics is fixed based on the analysis
environment. Also, since a portfolio would be a grouping of similar architectures,
it follows that the portfolio results will have the same figures of merit as those of
the individual architectures. An aggregate of the metric can be calculated for an
entire group of alternatives. However, by grouping architectures together, high-level
architecture decisions can be observed through the variation in the individual archi-
tectures in a portfolio. Whereas presenting architectures independently can make it
difficult to perform the required analysis to observe these effects, portfolios provide a
logical, predefined subgroup to make studying high-level architecture choices concise.
Furthermore, through the use of a multi-level Unified Tradeoff Environment (UTE)
similar to the notional example shown in Figure 34, simultaneous trades between the
architecture, design, objective, and technology spaces can be performed [10]. Weight-
ings among these spaces and their attributes can be selected to study the effects on

a portfolio scheme. This is summarized in the following hypothesis:
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Conjecture 6
A portfolio scheme should include new figures of merit relating to the
portfolio metric variances, portfolio composition, and portfolio objective

weightings.
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Figure 34: A notional multi-level Unified Tradeoff Environment (UTE) of forward
ground support through strategic airlift architectures [10]

3.4 Summary of Research Questions

This chapter has proceeded through a general process for concept exploration, and in
doing so produced a set of research questions and hypotheses relating to integrating
technology evaluation and architecture analysis into a single framework. The following

is a summary of those questions and hypotheses:
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Statement of Purpose

To provide a capability to analyze complex systems of systems to an extent
which will provide decision makers in the early phases of design sufficient
information to reduce the risks associated with cost and schedule overruns

due to lack of design knowledge.

Research Objective
To integrate architecture analysis and technology evaluation at the sub-
system level to provide a quantitative framework in an effort to increase

design knowledge early in the design process.

Research Question 1

What is the relationship between architectures and technologies?

Conjecture 1.1
Based on the definitions of an architecture and technology provided by this
body of work, technologies affect an architecture by acting at the subsystem

level of that architecture.

Conjecture 1.2

Based on the assumed decomposition derived from STSD, a technology
space should be included as a new system space. The transformations
between the architecture space, design space, and objective space shall be

functions of the new technology space.

93




Research Question 2
What technology impact metrics should be considered in determining the

overall “goodness” of the results such that they may be ranked?

Conjecture 2
The technology impact metrics considered should align with the metrics of
interest for measuring the “goodness” of an architecture, without introduc-

ing unnecessary bias.

Research Question 3
Is the paradigm of down-selecting to a baseline design on which to perform

technology analysis sufficient for the exploration of complex architectures?

Hypothesis 3

The paradigm of down-selecting to a baseline design and then performing
technology analysis will not be sufficient in performing architecture design.
This paradigm assumes that the systems a technology acts upon remain
constant throughout the down-selection process. Because these systems
vary between architectures, the effects of technologies will be inconsistent

among these architectures.

Research Question 4
How is combinatorial explosion of the number of alternatives affected by

different types of system spaces?
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Conjecture 4

Subsets of the discrete architecture and technology space parameters will
be selected, along with assumed values for continuous parameters, depen-
dent on the discrete options, to minimize combinatorial explosion such that
effects due to integrating technologies and architectures at the subsystem

level in a single method can be studied.

Research Question 5
How shall results be presented to allow decision makers clear, concise

choices in selecting architectures and technologies?

Research Question 5.1
Would utilizing an individual architecture presentation scheme prevent

high-level effects of architecture design decisions from being observed?

Hypothesis 5.1
The presentation of individual architectures will obscure high-level effects

due to flooding of the top results with similar individual designs.

Research Question 5.2
How do the grouping criteria used for forming portfolios of architectures

affect the variance of the resulting portfolios?
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Hypothesis 5.2
Variance of the objective metrics within and between portfolios will corre-
late positively with the size of the portfolios, measured by the number of

grouped architectures.

Research Question 5.3
Would utilizing a portfolio scheme for grouping architectures obscure high-

performing outlier architectures?

Hypothesis 5.3

High-performing outlier architectures will not be obscured using a portfo-
lio evaluation scheme because they will be contained in a portfolio with
other similar architectures which will exhibit similar behavior, raising the

performance of the entire portfolio.

Research Question 6
Does the presentation scheme of the results affect the metrics that should

be utilized to establish the value of a portfolio?

Conjecture 6
A portfolio scheme should include new figures of merit relating to the
portfolio metric variances, portfolio composition, and portfolio objective

weightings.
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CHAPTER IV

SPACE TRANSPORTATION ARCHITECTURE
MODELING

Performing architecture and technology trades on space systems is a difficult problem
because, by definition, they are system of systems problems as outlined in Chapter
2. The large system of systems gives rise to extremely large trade spaces suffering
from analysis issues such as combinatorial explosion, as described in Chapter 3. In
order to perform analysis on the large combinatorial trade space, there needs to be
a way of quickly evaluating different architecture concepts. In the context of space-
flight, there are many new concepts that need to be modeled under various scenarios,
usually utilizing physics-based analysis due to a lack of historical data to populate
the vast design space. This chapter will investigate the basic analysis concepts, on-
tology, and existing tools in the domain of space transportation architecture analysis.
A shortcoming in current tools will lead to a discussion of a new subsystem-level,
multidisciplinary design, analysis, and optimization (MDAQ) framework for space
transportation architecting, as well as spacecraft subsystem models developed for the

purpose of this body of work.

4.1 Basic Modeling and Simulation Concepts

Before describing space transportation analysis and design, it would be advantageous
to discuss a few basic concepts in modeling and simulation and how they apply
to space transportation architecture analysis. The two concepts of interest in this
discussion are surrogate modeling and optimization, as their implementation can have

dramatic impacts on the performance of analysis tools. The goal of this section is to
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make the reader aware that these concepts were considered during the formulation
and creation of the framework and models discussed later in Section 4.4 and Section
4.5. However, no formal research questions or hypotheses were formed with regard to
basic modeling and simulation concepts, and is considered outside the scope of this

body of work.
4.1.1 Surrogate Modeling

Surrogate modeling is a technique by which complex physics-based models are ap-
proximated by means of some independent mathematical construct such as response
surface equations, neural networks, or even simple algebraic equations, to name a
few. Literature provides a multitude of different surrogate modeling techniques. A
discussion of the different modeling techniques and their applicability to systems of
systems problems is outside of the scope of this research. The key principles behind
these surrogate models are two-fold. The first is to speed up the process of evaluation.
The second is the ability to obscure proprietary source codes as well as providing the
ability to create frameworks that are tool independent [66]. Typically, complex multi-
physics-based analysis tools are considered too slow to be utilized in an automated
design framework, and many organizations are unwilling to make proprietary models
open and available. Surrogate modeling then becomes a key enabler to creating fast
and highly accurate models to be utilized in frameworks to aid in the early stages of
design. It allows large numbers of designs to be evaluated and analyzed with relative
ease and speed, while focusing only on relevant data. Typically, the process of creating
surrogate models relies on utilizing a DOE to intelligently gather the large amounts
of data from these complex, slow, proprietary analysis tools necessary to generate the
surrogate models. Due to the discrete nature of architectures defined in this disserta-
tion, creating surrogate models of the upper-level system of systems cannot be done.

For architectures defined in this way, surrogate models are typically created around
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physics-based subsystem or component models. It is these surrogate models which
are then brought together in an analysis framework to perform architecture design

and analysis.
4.1.2 Optimization

Dieter defines optimization as “the process of maximizing a desired quantity or min-
imizing an undesired one.” [22] In the context of numerical analysis of designs, opti-
mization is typically a logical approach to design automation [117]. Typically, these
logical approaches are in the form of algorithms which explore a design space method-
ically to reach a desired result. Again, literature provides a variety of algorithms for
this purpose. However, an exploration of the many different optimization techniques
is outside of the scope of this dissertation and is left for future work. Typically, these
techniques are broken into two main types, local optimizers and global optimizers.
Figure 35 provides a notional example of these differences. In this example, the opti-
mum is a minimum. Obviously, one can observe that different optimizers can provide
drastically different results in solutions, both at a subsystem and system of systems

level.

f@

Local Minimum

Objective Value

Global Minimum

Figure 35: Notional Example of Local vs Global Minimum
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The analysis of complex architectures requires multiple levels of optimization to
achieve a final optimized result. This is due to the multi-level, multi-model structure
of architecture design problems. In fact, there is an entire field dedicated to per-
forming multi-level optimization tasks, called collaborative optimization. However, a
study of collaborative optimization and how it applies to space transportation archi-
tecture analysis is beyond the scope of this research and shall be left for future work.
It is important to note that the type of optimizers, as well as their implementation
in an analysis framework, can have dramatic impacts on the analysis speed as there
are many evaluations taking place throughout an architecture’s subsystems to reach a
single solution. Even though individual subsystem models may run quickly, depend-
ing on the level of nested optimizers, a high-level architecture optimization task may
require lower-level subsystem models to be evaluated thousands of times for every

high-level optimizer evaluation.

4.2 Ontology of Space Transportation Architectures

Space systems architecting is a complex exercise in closing designs, converging on
multiple vehicles and the elements of which they are composed. However, there is a
hierarchical, structured order used to describe each vehicle, its elements, and what
actions it takes. That is, there is an ontology that describes the architecture. Using
the definitions discussed in Chapter 2.1 and applying them to space transportation ar-
chitectures, the ontology’s most basic terms and definitions, as well as their hierarchy,

are defined as follows:

e Campaign: a unique combination of architectures assembled to achieve an

overarching objective

— Architecture: a unique pairing of a Vehicle to a Mission

* Vehicle: a unique combination of Elements
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- Element: a system composed of one or more subelements

+ Subelement: a basic building block, representing a physical or

functional decomposition

x Mission: a combination of CONOPs with Trajectories, manifesting

as a unique sequence of events
- CONOP: a planned non-trajectory-related action or activity

- Trajectory: a physical path to be taken

When a vehicle is composed of elements, and is sized to a mission, an architecture
is realized. Therefore, when multiple architectures are defined, a campaign is realized.

Figure 36 represents this structure graphically.
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Figure 36: Graphical Space Transportation Architecture Ontology

4.2.1 Vehicle

Each element represents a building block of the vehicle. These elements are used to
represent physical systems such as payloads and propulsive stages. These elements
are in turn composed of subelement(s). At least one subelement is required to define
the element, however, there is no limit to the number of subelements which may be

used to define an element. Elements are sized based on various parameters. These
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sizing parameters may be parameters such as AV, mission duration, number of crew,
and operating environment of the mission, as well as parameters from other vehicle
elements and subelements, including but not limited to power requirements, thermal

loads, and volume.
4.2.2 Mission

To size an architecture correctly, the vehicle must be sized to a sequence of events
as defined by the Mission. Any event of interest can be categorized as a CONOP or
Trajectory-related event. A CONOP event is a change in inert mass (Am;) and/or a
change in propellant mass (Am,). A Trajectory event is a change in velocity (AV)
and/or a passage of time (At). Table 8 provides a summary. It is important to note
that CONOP events include both positive or negative changes, whereas Trajectory

events are always positive.

Table 8: Event Type Decomposition

Event Type Event

CONOP | Am;, Am,,
Trajectory AV, At

This mission ontology allows architects to define any event of interest by using
these event types in combination, e.g. docking with a propellant depot for refueling
(a Amy,), boiloff (a Am,, throughout a At), dropping a drop tank (Am,; with residual

Amy), a burn (AV in a At), a coast event (At), etc.
4.2.3 Architecture

An architecture combines a unique vehicle and mission, where the vehicle and mission
are defined as described above. The design of the architecture can be posed as an

optimization problem. Consider the standard form for an optimization problem as
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minf () objective function

subject to :

IN

g;(%) <0 inequality constraints
hi(Z) =0  equality constraints

rb <z; <2V side constraints

n

As a simple example: f(Z) = Y myross; Where f is the inert mass at LEO and

Mgross;, are the masses of the Vehiclé_élements. Z is the AV each propulsive element is
responsible for, g; and hj, define the minimum and maximum stage size constraints,
and each x¥ and z¥ defines the upper and lower bounds, respectively, on each of the
AVs. Each element is composed of many subelements, which can be external codes
or univariate or multivariate equations. These subelements are then sized according

to & and any other inputs to the models. Through this process an entire system of

systems space architecture is sized as an aggregate of its component subsystems.

4.3 FExisting Tools

In order to test the hypotheses discussed in the previous chapter, a modeling and
simulation environment must be identified to act as a digital test bed for the pur-
pose of evaluating architectures at the subsystem level while incorporating the effects
due to technologies. Because the motivating field behind this research is in the space
architecting domain, a digital test bed environment capable of evaluating space trans-
portation architectures and technologies is desired. Table 9 provides a list of desirable
features and their purpose in selecting a modeling and simulation environment to be
utilized in a digital test bed for this research.

In a literature search for applicable tools to model space systems architectures, the
following NASA tools were identified as potential candidates. Other tools may exist
within the private sector, however, these tools are typically withheld as proprietary

software and not made publicly available. The following is a brief description of each
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Table 9: Required Features for a Modeling and Simulation Environment

Feature

Purpose

Subsystem-Level Sizing Models

To enable the ability to evaluate en-
tire architectures down to the subsys-
tem level for the purpose of evaluating
subsystem-level technologies

Ability to Integrate User-Provided Sub-
system Models

To enable the use of user-trusted models
to alleviate concerns regarding modeling
technique employed by any one software
package, as well as provide a flexible tool
to evaluate a wide range of architectures
which may not be considered initially

Ability to Analyze the Effects of Tech-
nologies

To enable the ability to evaluate the
effects of infusing subsystem-level tech-
nologies at the architecture level of de-
sign

Integrated Vehicle and Trajectory Opti-
mization

To enable evaluation of space trans-
portation architectures as defined, con-
sisting of both a mission and a vehicle

of the identified NASA architecture sizing tool.

4.3.1 BLAST

Beyond LEO Architecture Sizing Tool (BLAST) is a tool developed by Zero Point

Frontiers in cooperation with NASA’s Johnson Space Center to in order to rapidly

generate mass estimates for in-space transportation vehicles and architectures for hu-

man exploration missions [122]. The underlying mass estimating relations are histor-

ical data-based regressions ranging from the Apollo era up to space assets as of 2012,

when the tool was released. Mass estimating relations are integrated into the tool to

provide a user-friendly interface; however, this limits user visibility to the underlying

regressions, as well as the ability to integrate new regressions. BLAST provides a

platform for setting up and conducting trade studies and sensitivity analyses on the

architecture.
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4.3.2 COPA

The Computerized Orbital Performance Analysis (COPA) tool began development
in the early 1990’s as a FORTRAN-based architecture analysis tool. The tool was
developed by NASA Marshall Space Flight Center’s Advanced Concepts Office as a
means to evaluate multiple architectures simultaneously. It has since been extended
into a Microsoft Excel-based spreadsheet in the early 2000’s and a Java extended
application in 2012 to provide a simple user interface to the original FORTRAN code
[71]. Vehicle elements are sized by element-level scaling equations of a fixed form with

user-defined scaling parameters as follows:

Wy = A+ Bx W, +C xW,? (13)
where:
A = weight of all components not dependent on propellant capacity
B = weight of components directly proportional to propellant capacity

C = weight of components that vary with the square of the propellant capacity

COPA has the ability to track multiple separate vehicles simultaneously. These
separate vehicles may be split and recombined in any fashion, where COPA manages
tracking of which elements are on which vehicle. Propellant boiloff is calculated
as either a fixed propellant mass per month or a percentage of the propellant load
per month. Missions are defined by a fixed set of actions, namely, adding/dropping

elements and specifying AV maneuvers subject to the ideal rocket equation:

m
AV = go* I, % In (m—i) (14)

4.3.3 Envision

The Envision Exploration Vehicle System Estimation tool began development in 2001
to aid in quick-turnaround responses to mission and vehicle concept feasibility studies

[26]. Envision is a Microsoft Excel-based tool developed by NASA’s Johnson Space
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Flight Center. It is composed of three primary layers: the main input layer, the system
sizer layer, and the vehicle summary layer. Envision computes mass, volume, and
power requirements for various subsystems, such as propulsion, structures, thermal
protection, power generation, thermal control, life support, and avionics. Sizing of
these subsystems is performed by either integrated physics-based models or internal
mass estimating relationships based on historical data for each of the subsystems.

The user is limited to the models provided in the Envision environment.
4.3.4 EXAMINE

The Exploration Architecture Model for In-space and Earth-to-orbit (EXAMINE)
tool was developed by NASA’s Langley Research Center. It aids in architecture def-
inition and assessment prior to, or during, program formulation. It was developed in
an effort to enable larger fractions of an architecture trade space to be assessed in a
short time frame, while also allowing complex interactions between elements and sys-
tems to be quantitatively explored [60]. EXAMINE is a collection of Microsoft Excel
workbooks utilizing the inherent features of Excel and Visual Basic for Applications
to perform sizing and analysis. EXAMINE utilizes a collection of element parametric
sizing models capable of sizing launch vehicles, hypersonic cruise and acceleration
vehicles, in-space transfer stages, landers, entry vehicles, transfer habitats, orbital
platforms, surface habitats, and other surface elements. New models are capable
of being integrated due to EXAMINE’s high level of modularity. Mission modeling
is integrated into the EXAMINE tool and is capable of providing high-thrust and

low-thrust trajectory estimations through its internal trajectory tool.
4.3.5 HExAM

The Human Exploration Architecture Model (HExAM) is a Microsoft Excel-based
tool developed by NASA’s Marshall Space Flight Center aimed at providing level-

zero evaluation of various architecture options for manned exploration missions [91].
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Vehicle elements are sized based on a mixed-form scaling equation with user-defined

scaling parameters of the form:

A

=T+ B/mC )

Mpo

This equation was found to fit the general scaling trends of in-space transportation
stages very well. The scaling parameters A, B, and C are determined by fitting data
of historical designs. The mission events which size an element’s propellant mass are
subject to the ideal rocket equation of the form:

my=m s 1= eap (=21 )] (16)

Jo * ]sp

Propellant boiloff is handled as a percentage of the total propellant lost per day.
HExAM was later ported to the Python programing language utilizing a Qt-based
user interface for quick and easy formation and manipulation of missions and vehicle
element definitions. It also provides the ability to set up batches of cases where

specified input parameters may be varied over user-defined ranges automatically.

4.4 The DYnamic Rocket EQuation Tool (DYREQT)

An analysis tool must be selected to meet the research objective of this dissertation by
conforming to the space transportation architecture ontology outlined in Section 4.2.
The analysis tool needs to be capable of evaluating architectures at a subsystem level
as defined by the ontology. This will require a collection of subsystem-level models to
define architectures. Subsystem-level models are typically found independent of other
subsystem models in literature. As such, the tool will need the ability to integrate
various models developed outside of the tool itself. Additionally, the tool needs to
have the ability to analyze the effects of technologies defined at the subsystem or
component level, as described in Chapter 2. Finally, the ontology outlined shows
that architectures integrate a mission containing a set of trajectories, and a physical

vehicle composed of various elements, which must be analyzed and optimized together.
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Within the industry, no single analysis tool or framework was identified which is
agreed upon for the purpose of space transportation architecture design and analysis.
Typically, each group or organization utilizes a different in-house developed tool with
collections of models to perform architecture analysis. Each have their pros and
cons; however, no tool meets the criteria of an analysis environment which meets
the needed features discussed above. Table 10 summarizes the capabilities of the
tools identified in this chapter against basic modeling and simulation environment
requirements based on this research. BLAST has a simple and effective user interface.
However, because of its compiled nature, integrating new subsystem models is not
possible. This also limits the ability for a user to view the details of an underlying
model and assumptions. COPA and HExAM both perform sizing at a system level
utilizing various forms of equations to scale elements. This makes the sizing problem
very simple and transparent, preventing any kind of subsystem level trades to be
performed due to their very high-level nature. Envision and EXAMINE provide
higher fidelity modeling on both the mission and vehicle sizing aspects of sizing an
architecture. They are both modular Microsoft Excel tools, which allow for additional
subsystem models to be integrated into the tools. However, this integration is not
trivial and requires a substantial investment in time in order to properly integrate
new models into the framework. These shortcomings prompt the formulation of a
new space architecture design and analysis tool to meet the research objectives of
this body of work.

At the Georgia Institute of Technology Aerospace Systems Design Lab, a team
of researchers are working to develop a proof-of-concept MDAQO environment for the
design of space transportation architectures at the subsystem level. In its final state,
the tool will be capable of integrating various user-provided surrogate models and

physics-based tools together for sizing full architectures, while also providing fully
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Table 10: Analysis Tool Comparison
Tools

BLAST COPA Envision EXAMINE HExAM

X v | Vv X
X

Integrated Vehicle and Trajectory

Optimization x x x

& = Met = Partial > = Unmet

Subsystem Level Sizing Models

Ability to Integrate User-Provided
Subsystem Models
Ability to Analyze Effect of
Technologies

Features

X X |X|4

X|X|X

integrated trajectory analysis and optimization concurrent with vehicle sizing. Sim-
plicity is a primary focus, allowing users to integrate various models with ease. The
purpose for this development is to introduce the ability to perform technology eval-
uations of large scale, complex, architectures in the space transportation domain,
while providing integration and optimization of mission analysis and vehicle sizing
unattainable with currently existing tools.

The Dynamic Rocket Equation Tool (DYREQT) is being developed to meet the
goal outlined previously. This software will be utilized for performing experiments to
test the research questions of this dissertation due to its unique capability to analyze
architectures at the subsystem level with easy-to-integrate, user-provided subsystem
level models used to define the vehicle, mission, and technology spaces. DYREQT
is being developed in the Python programming language, utilizing modules such as
SciPy and NASA Glenn Research Center’s OpenMDAO to simplify the development
of an MDAO engine for the framework [56, 37]. Together, these two modules allow
much of the tedious work of connecting models to be automated, while also providing

high levels of flexibility and modularity for modeling and optimization.
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In its current state, as of mid-2017, DYREQT closely follows the ontology out-
lined in Figure 36. However, because DYREQT is incomplete, certain portions of
the ontology are not fully realized, primarily, the trajectory portion of the mission.
Rather, missions are purely a function of a series of events, which encompass both the
action and path definitions of the basic ontology. However, the rest of the ontology is
in place in the framework, with vehicles being a collection of elements, which are in

turn a collection of subelements. Figure 37 shows the object dependence implemented

in DYREQT.

Sub- Sub- Sub- Sub-
Element Element ***| Element Element

Element Element

Vehicle

Mission

Architecture
DYREQTProblem

Figure 37: DYREQT Object Structure

Because DYREQT is built upon the MDAO framework, OpenMDAOQO, it is use-
ful to understand the basic structure of some OpenMDAQO concepts pertaining to
modeling. OpenMDAQ’s primary structure consists of the Component, Group, and
Problem classes. The Problem class is the top-level class for defining a root system
to be solved. In OpenMDAO, the System class is the base class for the Group and
Component classes. Groups are OpenMDAO Systems which contain other OpenM-

DAO Systems, either Groups or Components. Components are the most fundamental
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OpenMDAO.Problem

DYREQT.Problem

options:dict()
root:DYREQT.Architecture()

Figure 38: DYREQT Problem Class Structure

class, where basic models are written or wrapped. Components have sets of param-
eters and unknowns, where parameters are model inputs, and unknowns are model
outputs. As mentioned previously, DYREQT allows for the automation of connecting
models. This can be achieved by the use of basic naming conventions between models.

Classes in DYREQT are strongly related to the structure just described, as most
DYREQT classes are subclasses of the OpenMDAO classes. The following sections
are descriptions of the basic classes of DYREQT shown in Figure 37. This will help
understand how DYREQT functions internally and differs from architecture sizing
tools in existence. For a notional problem solved using DYREQT, see Appendix A

for the setup and evaluation, and Appendix B for the output.

4.4.1 The DYREQT Problem Class

The DYREQT Problem class is a subclass to the OpenMDAQO Problem class, as
seen in Figure 38. This class provides the main entry point for creating and solving
an MDAO problem. The main root system for the DYREQT Problem class is an
instance of the DYREQT Architecture class. The Problem class also provides high-

level options for control of file IO, console printing, optimizers, and numerical solvers.
4.4.2 The DYREQT Architecture Class

The DYREQT Architecture class is a subclass to the OpenMDAO Group class, which
is in turn a subclass of the OpenMDAO System base class, as seen in Figure 39. Cre-

ation of an instance of this class provides the root system for the Problem class. The
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OpenMDAO.System OpenMDAO.System
OpenMDAO.Group OpenMDAO.Component
DYREQT.Architecture DYREQT.ArchitectureOptimization
arch_def:dict() options:dict()
systems:[ constraints:dict()

DYREQT.Mission(),
DYREQT.Vehicle(),
DYREQT.ArchitectureOptimization()

]

Figure 39: DYREQT Architecture Class and Helper Class Structures

DYREQT Architecture class contains three DYREQT class instances: DYREQT
Mission, Vehicle, and ArchitectureOptimization objects. The Mission and Vehicle
classes are described in detail in Section 4.4.3 and Section 4.4.5, respectively. The
Architecture class takes three inputs: the mission definitions, the vehicle definition,
and the CONOPs definition. Each of these inputs is a dictionary of key:value pairs
defining each of the architecture components. These inputs are then parsed and used
to feed the inputs to the DYREQT Mission and Vehicle classes. The Architecture-
Optimization class provides architecture-level parameters such as the main objective
value and high-level constraints on these parameters. Its class structure is seen in

Figure 39.
4.4.3 The DYREQT Mission Class

The DYREQT Mission class is a subclass to the OpenMDAO Group class, which is in
turn a subclass of the OpenMDAO System base class, as seen in Figure 40. The Mis-
sion class takes inputs provided by the Architecture class to create a set of DYREQT
Event class instances and a MissionUtilities class instance. A detailed description of
the DYREQT Event class can be found in Section 4.4.4. The MissionUtilities class

provides mission-level parameters such as mission duration, as well as constraints on
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OpenMDAO.System OpenMDAO.System
OpenMDAO.Group OpenMDAO.Component
DYREQT.Mission DYREQT.MissionUtilities
mission_def:dict() options:dict()
systems:[ constraints:dict()
DYREQT.MissionUtilities(),
DYREQT.Event(),
DYREQT.Event(),
]

Figure 40: DYREQT Mission Class and Helper Class Structures

these parameters. Its class structure is seen in Figure 40.

4.4.4 The DYREQT Event Class

The DYREQT Event class is a subclass to the OpenMDAO Component class, which
is in turn a subclass of the OpenMDAO System base class, as seen in Figure 41. The
Event class is a base class for users to integrate external models with the DYREQT
framework for the purpose of evaluating the defined mission. Inputs to these models
flow from the original Architecture class inputs, through the Mission class, which
parses the individual event inputs to the proper user model. The base Event class also
allows inputs for constraints on event-level parameters. The DYREQT Event base
class provides a collection of basic internal data, as well as basic model parameters,
and unknowns shared with all events, regardless of type. The internal data includes
a base name, total number of mission events, the current event number, and a list
of active elements for the event, and parent mission object. The base parameters
include vehicle gross mass and total payload. The base unknowns are initial and final
mass at the beginning and end of the event, respectively. The user is able to link

any other required model parameters and assign unknowns. If commonality exists

113



OpenMDAO.System

OpenMDAO.Component

DYREQT.Event

model_select:str()
options:dict()
constraints:dict()

|

UserModels.Model

model_inputs:dict()

Figure 41: DYREQT Event Class Structure

between model parameters and unknowns anywhere in DYREQT, they will be linked
automatically by DYREQT and will be available for other user models to interact
with. There is no limit to the type of external model which may be integrated to
perform mission-level calculations. Event models developed and integrated for the
purpose of evaluating the experiments for this body of work can be found in Section

4.5.1.
4.4.5 The DYREQT Vehicle Class

The DYREQT Vehicle class is a subclass to the OpenMDAO Group class, which is in
turn a subclass of the OpenMDAO System base class, as seen in Figure 42. The Vehi-
cle class takes inputs provided by the Architecture class to create a set of DYREQT
Element class instances and a VehicleUtilities class instance. A detailed description of
the DYREQT Element class can be found in Section 4.4.6. The VehicleUtilities class
provides vehicle-level parameters such as vehicle gross mass, as well as constraints on

these parameters. Its class structure is seen in Figure 42.
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OpenMDAO.System OpenMDAO.System
OpenMDAO.Group OpenMDAO.Component
DYREQT.Vehicle DYREQT.VehicleUtilities
vehicle_def:dict() options:dict()
systems:[ constraints:dict()
DYREQT.VehicleUtilities(),
DYREQT.Element(),
DYREQT.Element(),
]

Figure 42: DYREQT Vehicle Class and Helper Class Structures

4.4.6 The DYREQT Element Class

The DYREQT Element class is a subclass to the OpenMDAQO Group class, which
is in turn a subclass of the OpenMDAQO System base class, as seen in Figure 43.
The Element class takes inputs provided by the Architecture class to create a set
of DYREQT SubElement class instances and an ElementUtilities subclass instance.
A detailed description of the DYREQT SubElement class can be found in Section
4.4.7. Here, the ElementUtilities class is a base class for two subclasses, the Stage
and Payload classes. These utility classes were convenient to separate as they have
dramatically different structures and requirements for sizing purposes. These two
class structures can be seen in Figure 42. Though they have dramatically different
structures and requirements for sizing, they are delineated by a single descriptor.
If the element is sized by a propellant mass parameter, then it is a stage element
utilizing the Stage utility subclass, otherwise, it is considered a payload element
utilizing the Payload utility subclass, shown in Table 11. The ElementUtilities class
is unique from the other helper class in that it provides unique inputs for the Stage

and Payload subclasses, summarized in Table 12.
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OpenMDAO.System

OpenMDAO.Group

DYREQT.Element

element_def:dict()

systems:[
DYREQT.ElementUtilities(),
DYREQT.SubElement(),

DYREQT.SubElement (),
]

OpenMDAO.System

OpenMDAO.Component

DYREQT.ElementUtilities

element_type:str()

DYREQT.Stage

DYREQT.Payload

options:dict()
constraints:dict()

options:dict()

constraints:dict()

Figure 43: DYREQT Element Class and Helper Class Structure

Table 11: Element Type Decomposition

?

Element Type | Sized by mqp
Stage True
Payload False
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Stage elements are sized by the entire set of parameters available within DYREQT.
Of primary importance is their ability to be sized by a propellant mass parameter, cal-
culated from a total burn time for the element from the mission, coupled with thrust
and specific impulse parameters of the element. These extra parameters and links to
the mission greatly complicate sizing calculations compared to that of a payload. It
also means that to define a stage element, one of its subelements must define a thrust
and specific impulse parameter. Because of this extra complexity, it was desirable to
separate stages and payloads to save computational effort during calculations. Pay-
load elements are sized by the same set of parameters as stage elements, but with the
absence of being linked to a mission change in velocity requirement. This means they
will not require the unique set of parameters required by a stage, greatly simplifying

their sizing.
4.4.7 The DYREQT SubElement Class

The DYREQT SubElement class is a subclass of the OpenMDAO Component class,
which is in turn a subclass of the OpenMDAO System base class, as seen in Figure
44. The SubElement class is a base class for users to integrate external models with
the DYREQT framework for the purpose of evaluating a defined vehicle element.
Inputs to these models flow from the original Architecture class inputs, through the
Element class, which parses the individual subelement inputs to the proper user
model. The base SubElement class also allows for inputs for constraints on subelement
level parameters. The DYREQT SubElement base class provides a collection of basic
internal data and unknowns shared with all subelements, regardless of type. The
internal data includes a base name, the subelement number, type, and parent element
object. The unknown is an inert mass for the subelement. The user is able to link
any other required model parameters and assign unknowns. If commonality exists

between model parameters and unknowns anywhere in DYREQT, they will be linked
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OpenMDAO.System

OpenMDAO.Component

DYREQT.SubElement

model_select:str()
options:dict()
constraints:dict()

A

UserModels.Model

model_inputs:dict()

Figure 44: DYREQT SubElement Class Structure

automatically by DYREQT and will be available for other user models to interact
with. There is no limit to the type of external model which may be integrated to
perform vehicle element subsystem calculations. Vehicle subsystem models developed
and integrated for the purpose of evaluating the experiments for this body of work

can be found in Section 4.5.1.

4.5 In-Space Transportation Subsystem Modeling

In order to perform the experiments set forth in this dissertation, a new analysis tool
was needed, such that a digital test bed could be developed to perform experiments on
the hypotheses. DYREQT was created to meet the need for an architecture analysis
tool capable of integrating and evaluating user subsystem models. It integrates vehicle
and mission optimization such that technologies and their effect on the high-level ar-
chitecture space may be studied. However, because a tool of this nature did not exist
within industry, the underlying models which need to be integrated into DYREQT for
the purpose of evaluating technologies have not been developed in literature. Because
of this, simple models which provide subsystem-level space element and mission sizing

were developed which then could be integrated using DYREQT so that the primary
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research objective could be met. The following section details the models developed
as DYREQT Event and SubElement subclasses. In addition to DYREQT, additional
analysis is needed to provide metrics not provided by DYREQT, namely, an architec-
ture cost metric and a distance metric between discrete architectures. Development

of these analysis modules are documented in the following section as well.
4.5.1 Mission Models

DYREQT requires user models to be integrated for the purpose of mission analysis.
This is done at the event level, as a subclass to the base DYREQT Event class. To
model missions for this body of work, five mission event models were developed: burn,
idle, mass delta, drop, and connect. These models are described below. For a table

of available inputs to each model, refer to Table 30 in Appendix C.
4.5.1.1 Burn

The burn model is a subclass of the DYREQT Event base class. It is a model to
represent changes in velocity of the vehicle. The model is developed around impulsive
burn assumptions, utilizing the rocket equation. The concept of an “equivalent stage”,
a functional representation of all active stage elements for the event, is utilized to
determine a total burn time for the event. This calculated burn time is then passed,
by DYREQT, to each of the active stage elements for the event. The purpose of
generating a functional stage element, rather than directly using the physical stage
elements, is because it allows the model to easily represent burn events with any
number of active physical stage elements, also known as a parallel burn. In order to
determine the total burn time of the functional equivalent stage, the following system
of equations is employed:
mp

by = (17)

Myotal
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The form of the rocket equation, Equation 18, is implemented because the problem
is solved in reverse mission event order. A final mass is known, and an initial mass
is calculated based upon the final mass and propellant mass. This allows for in-
creased stability internally in the optimizers by limiting the occurrence of negative
values during the iteration process which can result from poor initial conditions for
mass estimates when solving in forward event order. The model is also capable of
accounting for a flight performance reserve and attitude control maneuvers which
may be required during the main burn. Both the flight performance reserve and atti-
tude control factors are a correction to the input event AV parameters of the model.

Appendix 1.7 is the developed burn event model.
4.5.1.2 Idle

The idle model is a subclass of the DYREQT Event base class. It is a model to
represent the flow of time during a mission. This allows time-based effects, such as
propellant boiloff and crew consumables, to be modeled in vehicle elements. This is
achieved by connecting the input At to the At parameter of the DYREQT Element

class. Appendix 1.10 is the developed idle event model.
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4.5.1.83 Mass Delta

The mass delta model is a subclass of the DYREQT Event base class. It is a model to
represent discrete mass changes to the vehicle during the mission. These discrete mass
changes may be due to loading or offloading. This allows the modeling of discrete mass
changes such as propellant reloading, garbage dumps, consumable resupply, and sci-
entific payload loading. When acting as a propellant resupply event, the model allows
for an automated resupply calculations where DYREQT will determine the proper
amount of propellant required by the element for the mission without overloading it.
This is done by connecting to the top_off input parameter of the DYREQT Stage
class. The model is also capable of removing element subsystem masses during the
mission through the use of a subelement index input for the specified active elements.

Appendix I.11 is the developed mass delta event model.
4.5.1.4  Drop

The drop model is a subclass of the DYREQT Event base class. It is a model to
allow the removal of full elements from the vehicle. Elements which are removed via
this model are maintained in memory within DYREQT and can be reconnected to

the vehicle. Appendix 1.9 is the developed drop event model.
4.5.1.5 Connect

The connect model is a subclass of the DYREQT Event base class. It is a model to
allow the addition of full elements to the vehicle. In order to connect an element, it
must have been initialized during problem setup. This model does not allow the addi-
tion of entirely new elements not defined before problem initialization. For instance,
to model a scenario where a vehicle attaches to a pre-deployed element, the element
must be defined during the initial problem setup, then removed from the vehicle at
the start of the mission via the Drop model. Appendix 1.8 is the developed connect

event model.
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4.5.2 Vehicle Models

DYREQT requires user models to be integrated for the purpose of vehicle sizing. This
is done at the subsystem level, as a subclass to the base DYREQT SubElement class.
To model representative vehicles with the proper level of detail to allow technology
impacts on the framework to be studied, six subsystem models were developed: avion-
ics, engines, power, structures, tanks, and thermal. Each of the subsystems calculates
an inert mass, power requirement, and thermal load that can be connected to other
subsystem models to account for subsystem interdependence. The inert masses of all
SubElement models in a DYREQT Element get added to become the total inert mass
of that Element. These models are described below. For a table of available inputs

to each model, refer to Table 31 in Appendix C.
4.5.2.1 Avionics

The avionics model provides sizing of hardware associated with sensing, actuating,
and communication for the element. The model is derived from mass and power
data of flight-certified, commercially available hardware [118]. The model allows
the selection of a set of actuators, sensors, and communications packages from a
predefined list to be used on the element. Actuators are scaled with element mass,
while sensors are scaled by a user accuracy factor. The communications package is
scaled based on the operational distance from earth. The model also allows the input
of additional devices not defined by the model. The user must only specify a fixed
mass and power requirement, and it will be added to the subsystem mass. Finally,
the model accounts for wireless sensor technologies by applying a factor for cabling
reduction to the overall mass of the subsystem. Total power requirement and heat
load unknowns are defined for linking to other subsystem models. The developed

avionics model is available in Appendix I.1.
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ms — Mactuators + Msensors + Mecoms + Mother
P =

fcable

(22)

Ptotal - Pactuators + Psensors + Pcoms + Pothe’r (23)

4.5.2.2  Engines

The engines model provides sizing of hardware associated with the physical engines of
the propulsion system and associated plumbing. The model is capable of estimating
the mass and power of a variety of engine classes: liquids, solids, nuclear, and electric.
It is assumed that engines have negligible thermal loads on the spacecraft. Appendix
[.2 contains the full engines subsystem model developed for this body of work. For
liquid engines, the power required to drive the engine is not considered. The mass
estimate is achieved via sets of scaling equations provided in Space Propulsion Anal-
ysis and Design, Section 5.3.1 [120]. These equations scale engine mass as a function

of thrust as follows:

m; = mengines + mpropmgt + Monisc (24>
T/(T\ "
engines — llengines ™ —— | 71~ 25
Mens Hengines * 90 (W) (25)
where:
Monopropellants:
T —10 (4 —7 (3 —4 (2
7 = 37405 10 (T*) +7.1685 % 107" (T°) — 5.221  10~* (T?)
+ 0.18761 (T') — 0.039763 (26)
Bipropellants:
T 74 .
W 6.098 « 107" (7") + 13.44  if T'< 50 kN (27)
T
W 25.2 xlog (T") — 80.7 otherwise (28)

124



Similar to liquid engines, solid rocket motors assume no power requirement. The
motor masses are modeled by a curve fit of historical data provided in Section 6.3 of
Space Propulsion Analysis and Design [120]. The trends in the data show an increase
in the propellant mass fraction with increasing propellant for smaller motors. Large
motors have a tendency to have decreasing mass fractions with increased propellant
loads due to large joints and thrust vector control hardware. This tipping point occurs

at 10,000 kg of propellant. The system of equations for solid rocket motors is:

ms = m, % (i _ 1) (29)

fp
Where:
{ f, = 0.0181 xlog (m,) + 0.7962  if m, < 10,000 kg (30)
fp, = 0.0181 x log (m,) + 0.7962  otherwise (31)

Nuclear rocket engines are sized from level-zero physics equations found in Space
Propulsion Analysis and Design [120]. The power required to operate the engine is
assumed to be zero. The engine mass consists of the core and its related components.
Tanks are not considered to be part of the engine. The model assumes an expander
cycle for the turbopump assembly, with redundant turbopumps for reliability. The to-
tal inert mass of the nuclear engine is calculated as a sum of seven major components,

shown by Equation 32.
M = Meore T Minozz T Moyessel T M feed + Meool T Mishield + Mpa, (32>

For details of the mass calculation for each of the seven components, refer to the
nuclear method of the Engine class, found in Appendix [.2. Some of the components
require detailed fluid calculations for gases at temperature and pressure. A fluids def-
inition class and associated property calculations methods were developed primarily
based on data from the National Institute of Standards and Technology Chemistry
(NIST) WebBook [92]. Material properties for these definitions were obtained from

the NIST WebBook as well as other sources [92, 108]. The developed fluids definition

125



model can be found in Appendix 1.12.
Electric engines are sized from a set of level-zero physics equations. The inert mass
of the electric engine is calculated as the sum of 4 components, shown by Equation

33.

My = Myhrusters T mpropmgt + mpwrmgt + Munise (33>

The user provides parameters such as, thruster specific mass, thruster efficiency,
thruster power, thruster specific impulse, total thrust, and power management sys-
tems specific mass, used for sizing of an electric engine package. The total power
requirement for the electric engines is calculated from the total number of engines
required to meet the total thrust and thruster power inputs to the model. In addition
to the physics-based equations for sizing thrusters, mass associated with propellant
management and other miscellaneous hardware is estimated based on model fits of

historical data [118].

4.5.2.3  Power

The power model sizes a spacecraft power generation system based on a total power
required. The model has three primary components, the generator, power storage,
and regulation/distribution. The model is capable of estimating the mass of two
types of generators, either photovoltaic solar arrays or radioisotope thermoelectric
generators (RTGs). Solar array mass is calculated from level-zero physics equations
[118]. RTGs are scaled based on historical data [12]. The total mass and thermal
load of the model are given by Equation 34 and Equation 35 respectively. Appendix
[.3 contains the model developed for this dissertation and contains details about the

sizing of the different components.

m; = Mgyen + Mpat + Myeg (34>

Qtotal - Preq * (1 - ntr) (35)

126



4.5.2.4  Structures

The structures model sizes primary spacecraft structural mass based on the design
envelope area of the element. This model can be found in its entirety in Appendix I.4.
This design envelope area is the surface area of the design volume of the spacecraft,

shown notionally by Figure 45.

Design Volume Design Envelope Area
2nur(r+h)

nr2h

=

Figure 45: Notional Design Envelope Area

The design envelope area may be specified directly by the user, or left to the
model to estimate based on a general form of the structure. The general form of the
structure depends on the number of tanks specified by the design. If there are more
than two tanks, the structure is assumed to be a disk. If there are exactly two tanks,
the structure is assumed to be stacked. If there is only a single tank, the user specifies
whether it has a truss or drop configuration. If none is specified, the model assumes
a drop configuration. Figure 46 provides notional geometries for the basic structural
configurations just described.

A cylinder is assumed to estimate the design envelope area for all configurations.
For stacked, truss, and drop configurations, the radius of the structure cylinder is
the radius of the largest tank, and the height of the structure is total height of the
tank(s). To estimate the truss configuration, a density factor is applied to the cylinder

to account for empty space in the truss. The disk configuration requires determining
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Structure

Stacked Disk Truss Drop

Figure 46: Notional Structure Configurations

the radius of a disk which will fit all the tanks. To do this, a weighted average tank
radius is calculated based on the radius and number of each tank type. The concept
of circle packing is utilized, where the radius of a circle which contains N equal circles
within it becomes the design envelope radius. The ratio of the design envelope radius,
Rge, over the average tank radius, 7.4, is related to the number of tanks, n/nis, by
Equation 36, a logarithmic fit of the data found in Kravitz’s work on cylinder packing
[61]. The height of the disk structure is a weighted average tank height.

Once the design envelope area is determined or provided, the inert mass of the
structure is estimated based on the relationships given by Equation 37 [47], where
Age is in ft2 and m; is in Ibm. The leading structure factor is determined based on

the type of structure being estimated, shown in Table 13.
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Figure 47: Ratio of Radii for Packing Circles [61]
Rie/Tavg = 1.1655 In (n4gnks) + 0.9571 (36)
m; = Fyx (Age)"" (37)
Table 13: Structure Factors
Structure Type | Fj
Disk/Stacked | 1.27
Truss/Drop | 0.71
Manned 2.0
Adapter 0.99
4.5.2.5 Tanks

The tanks model sizes the propellant storage devices for the main propulsion sys-

tem and reaction control system by Equation 38. This model uses inputs such as
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propellant mass, propellant types, propellant properties, pressurant type, number of
tanks, and tank material properties to estimate the mass of all propellant storage
devices. This is done using level-zero physics calculations for determining propel-
lant volumes, and wall thickness of pressure vessels [16]. Assumptions are made for
additional hardware such as inlet/outlet flanges, weld lands, brackets, and propel-
lant /pressurant separation devices as seen in Equation 39. The model calculates the
mass of pressurant required to expel all propellant from the tanks and accounts for
isentropic expansion of a pressurized gas where necessary. Tank volumes are deter-
mined based on propellant properties estimated using the developed fluid definitions
model in Appendix .12 [92, 108]. The model is capable of assuming an integrated ve-
hicle fluid management system where propellant between the reaction control system
and main propulsion system is supplied via shared propellant storage tanks. This
assumption removes the need for separate propellant tanks for the two propulsion

systems, but adds additional mass to account for new hardware such as pumps and

accumulators.
Ntanks
m; = Mpropmgt + Mipisc + Mpressurant + Mirap + § Miank; (38)
=1
Miank = Mbare T Muweld T M0 + Mg + Mgep (39>

Sizing of the mass of the tanks assumes ideal pressure vessels of either oblate
spheroid, sphere, or capsule shapes. The general shape of the tank is determined by
a user-specified length over diameter ratio, shown in Figure 48. The tank’s dimen-
sions are then calculated based on this ratio and the required propellant volume by
Equation 40 or Equation 41. A tank wall thickness is then calculated based on a
user-supplied tank pressure and material properties by Equation 42. With a tank
wall thickness and radius, an overall bare tank mass is calculated based on the mate-

rial properties specified. Finally, additional mass is calculated for weld lands, inlets
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and outlets, structural attach points, and gas separation devices. The fully-developed

N

tank model can be found in Appendix I.5.

L/D<1 L/D=1 L/D>1

Figure 48: Basic Tank Geometries

([ exv 17
r= . if L/D <1 (40)
™ (35— 1)
- 1/3
12
r=|— * VL 5 otherwise (41)
(. L™> (3 +(5) >
F
t:ptank*s *T (42)

2xU

4.5.2.6 Thermal

The thermal model provides sizing of thermal control systems for a spacecraft. Cal-
culations are separated into three parts, passive cooling, active cooling, and heat
rejection. Appendix 1.6 is the full thermal subsystem model developed through this
dissertation. The total thermal control inert mass and power requirements are calcu-

lated by Equation 43 and Equation 44, respectivel.

mi = Mpassive + Mactive + Mrad (4?))

Ptotal = Ppassive + Pactive (44)
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In the model, passive thermal control contains three primary components: multi-
layer insulation, a liquid acquisition device, and a mass gauging device. The mass
and power of passive thermal control are shown by Equation 45 and Equation 46,
respectively. Multi layer insulation mass is a function of the number of insulation
layers and either spacecraft geometry or tank geometry, depending if the tanks are
internal or external to the primary structure of the spacecraft, respectively. The mass
gauging and liquid acquisition device masses are estimates based on tank geometry
[40, 19]. The mass gauging device is the only component of passive thermal control

which requires power. The power required is a function of tank geometry [40].

Mpassive = Mimli + Migd + Mgauging = f (G> nlayers) (45)

Prassive = Pyauging = [ (G) (46)

Active thermal control contains a collection of devices for rejecting excess heat in
the propellant of the spacecraft to limit propellant loss through boiloff. The model
assumes two primary components and associated hardware for this purpose, cryocool-
ers and broad area cooling shields, along with power controllers, circulating pumps,
and tubing. The mass and power relations for the active thermal control components

are shown by Equation 45 through Equation 46.

Mactive = Mee T Metrl + Meire + Mpae + Miubing = f (G; Pactive) (47>

Pactz’ve = Fee T+ Pcirc = f (G,p, Q) (48)

Calculating the mass and power of the active thermal control components requires
calculation of the heat which must be removed from the propellant to maintain zero
boiled propellant. It is assumed that the amount of heat being deposited by internal
sources is negligible compared to external radiation sources. To determine the exter-

nal heat, the Lockheed Equation, Equation 49, is utilized to determine the amount of
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heat which passes through the multi layer insulation [30]. The cold side temperature
is determined by spacecraft geometry and propellant vapor temperature. Propellant
properties are determined by the developed fluid definitions model in Appendix 1.12.
The hot side temperature is calculated from the amount of heat being deposited from

the external environment [73, 118].

1
lei = Amli * M x DF %

*
Niayers

[C’S * 15 (Thug) * N (Ter — Te) + Cr * € (T — TC4'67)] (49)

k(T)=0.017+7%107°(800 — T) + 0.0228 * In (T') (50)

Ty + 1T

Tavg = 9

(51)

The final major component estimated by the model is the mass of the thermal
radiators used to reject excess heat to the environment, given by Equation 52. This
requires estimating the area of the radiator, determined by Equation 53, which in
turn requires calculating the total heat applied to the spacecraft from the external

environment, along with any internal heat loads generated by the spacecraft [73, 63].

Myad = Arad * Prad (52)

Arad - f (Qtotala 67"ad) (53)

4.5.3 Costing

Many of the assessments to be performed on the developed hypotheses require a

multidimensional objective space. DYREQT and the developed mission and vehicle
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models, despite their advances in modeling space architectures, only provide a lim-
ited number of objectives, namely various masses of the architecture. It is desirable
to generate cost metrics for the architectures such that there is a two-dimensional
objective space of mass and cost. Many cost models exist in literature. This section
will provide a brief overview of relevant cost models before selecting one to act as the

model to provide cost data.

4.5.8.1 NASA/Air Force Cost Model

The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for
space hardware [121]. The model utilizes historical data from NASA’s Resource
Data Storage and Retrieval Library and is primarily used during the early phases of
development of projects. The model allows for the cost estimation at the subsystem
or component level. Costing of the components follows the form shown by Equation
54. NAFCOM also allows process-based scheduling estimates, and time phasing of
cost. The model provides a graphical user interface for inputting user information.
NAFCOM does have the ability to output estimates to Excel spreadsheets where
the original inputs may be manipulated for integration with external applications;
however, if the basic form of the architecture is different, a new NAFCOM model

must be manually set up and evaluated.
Cost = C x Weight" x Inheritance™ s Technology® * Management? (54)
4.5.3.2  Project Cost Estimating Capability

The Project Cost Estimating Capability (PCEC) cost model began development in
2013 to be a replacement to NAFCOM [4]. The underlying cost estimating relations
(CERs) are derived from normalized data. Statistics about the underlying CERs
within PCEC are publicly available; however, the CERs themselves, along with the
underlying data are, unavailable to the public. Development of the initial set of

underlying CERs was broken into two categories:
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e Robotic Spacecraft
e Crewed and Space Transportation Systems

The robotic spacecraft CERs are multi-variable power equations developed using
ordinary least squares regression of log-transformed data. The parameters selected
were derived from principal component analysis of the original data set. The crewed
and space transportation systems CERs are mostly single-variable regressions of mass.
These two sets of CERs allow PCEC to evaluate cost estimates for systems such
as earth-orbiting satellites, planetary probes, rovers, multi-stage rockets, liquid and
solid engines, crew capsules, orbiters, and habitats. Currently, PCEC is not suited for
estimating the cost of designs such as CubeSats, balloons, aircraft, nanosat launchers,
or human hardware elements. Interfacing with PCEC is achieved via an Excel add-in
and is heavily dependent on a user-in-the-loop to generate cost estimates. This type

of interface is not well-suited for an automated and parametric design environment.
4.5.3.83  Process-Based Economic Analysis Tool

The Process-Based Economic Analysis Tool (P-BEAT) leverages complexity-driven
CERs as opposed to mass-based CERs. Costs are estimated based on an activity
build-up based on complexity of the component and the particular activity needed
to transform the raw materials into a finished product [74]. The model is highly
detailed, comprising over 50 development processes and 700 manufacturing processes
[100]. The interface to P-BEAT is graphically-based, relying on a user in the loop
to input data for all of these processes. Although providing a bottom-up approach
to estimating a full life-cycle cost of a system based on how it is built could be
advantageous, the level of information required to operate this model, along with its

external interface, is not well-suited to the scope of this research.
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4.5.3.4  Software for Fvaluating and Estimating Resources

The Software for Evaluating and Estimating Resources (SEER) suite of tools was
developed for estimating cost at a component level [33]. SEER estimates cost,
scheduling, and reliability by comparing user entries with similar items in a historical
database. The CERs are entirely obscured behind the tool. The user interface is
highly complex and detailed, allowing modeling of nearly any system or component.
However, this level of detail make it difficult to integrating SEER into an automated

environment where a large variety of components are being estimated.
4.5.8.5  TransCost

TransCost is a system-level, historical mass-based cost estimation model for the cost
estimation of space transportation vehicles [59]. The model uses a unique cost metric
independent of annual currency changes. The form of the CERs in TransCost are
single-variable power regressions of mass, similar to PCEC. TransCost breaks the
cost of a vehicle into two components, the development cost and the fabrication cost.
The total development cost, in man-years (MYr), takes the form shown by Equation
55. Each element and engine in the vehicle has a development effort, H in man-years,
associated with it, given by Equation 56. Each element is scaled by the system-specific
constant, a, and system-specific cost-to-mass sensitivity, X. Other scaling factors, f,
account for project systems engineering, technical development standards, technical

quality, team experience, schedule, parallel contracting, and productivity.

CD:fO*<ZH>*f6*f7 (55)

H=axm™x%fi* fax fy* fs (56)

The total fabrication cost, in man-years, takes the form shown by Equation 57.

Each element and engine in the vehicle has a fabrication effort, F' in man-years,
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associated with it, given by Equation 58. Each element is scaled by the system-
specific constant, a, and system-specific cost-to-mass sensitivity, X. Other scaling

factors, f, account for project systems engineering and learning rate.

Cr=fox (3 F) (57)

F=nxaxm®™*f, (58)
4.5.83.6 Cost Analysis Module

The developed cost analysis module is based on TransCost 7.1 and can be found
in Appendix 1.13. This model was selected due to its open nature, with all of its
sizing relations available in the public domain [58], making integration with the level
of data provided by DYREQT simple. It allows a custom module to be developed
which utilizes a simple form of historical mass-based CERs which then can be operated
in an automated fashion. The complexity, detail, and relative obscurity of the other
models described become hindrances for the purposes of this research.

Inputs to the developed model are provided in Table 32 of Appendix C. The model
is capable of estimating the development, production, and gross costs of the engines
and vehicle subsystems of each stage of a vehicle, up to three stages. The model
also estimates the total development, production, and gross cost of the entire vehicle.
The cost of technology development is accounted for in the development standard
factor, fi. The engines and vehicle subsystem treat technologies independently. For
instance, technologies applied to the structures subsystem will not affect the cost of
the engines. However, the effects of utilizing multiple technologies are not accounted
for in the implementation of the TransCost model utilized in this work. A fixed value
for fi was utilized, regardless of number of technologies or the type of technology
being considered. Also, though the TransCost model contains a cost growth factor for

deviation from optimum time schedules, it was not considered in the implementation
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utilized by this work.
4.5.4 Architecture Similarity

Many of the research objectives of this dissertation require defining a metric which
can be used to describe a level of similarity between a set of categorical options which
define an architecture. With continuous and ordinal data, similarity is simple to
define as a physical cardinal distance from one design to another. However, with
categorical data, a physical distance cannot be directly interpreted, and hence a
similarity becomes difficult to define. In 2008, Shyam Boriah performed a comparative
evaluation of various techniques for defining a similarity measure between categorical
data [11]. Each technique’s effectiveness was determined by its ability to correctly
identify outlier data points form the data set. Different techniques were well-suited
for different data sets. Based on his conclusion, the Occurrence Frequency technique
was selected due to its robustness in determining outlier data points across a wide
range of data sets.

The principal concept of Occurrence Frequency is to evaluate a similarity between
two discrete design points. The weighted sum of each category’s similarity is the
overall similarity of the two points, given by Equation 59. The weighting of each
category can be defined in any manner; however, for simplicity, an even weighting for
each category is used, given by Equation 60. For matching options within a category,
a similarity of one is assigned, while mismatches are given a value less than one.
Mismatches on less frequent options in a category within the data set are assigned
a lower value than those on more frequent options. This relationship is given by

Equation 61.

S(X,Y) =) wy* S (X, Vi) (59)

k=1
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Sk ( Xk, Yi) = (61)

—1
1+ log % x log %] otherwise

Multiple different design points can have the same similarity measure from a shared
baseline. This is a result of the non-Euclidean nature of categorical data. There is no
reason to say one option within a category is greater or less than another. Two differ-
ent options, provided they have the same baseline option and frequency of occurrence,
will result in the same similarity value for that category, despite being two different
options. This phenomenon will make it difficult with large architecture spaces to eval-
uate the similarity between any two architectures. One could theoretically calculate
a relative similarity to every other design point in a data set and compose that infor-
mation into an overall similarity of the design point to the design set, but with the
number of alternatives being considered by this research, the number of evaluations
becomes unmanageable. For example, if a design set contains 100 designs, each of
the 100 points must be evaluated against the other 99 design points. This results in
a total of 9900 similarity evaluations, scaling roughly as N2, where N is the number
of design points. For this research, a single, randomly selected, design point from the
data set acts as a common baseline to all architectures for the purpose of estimating

architecture similarity.

4.6 Model Validation

The development of DYREQT and the subsystem models throughout this chapter
provide the ability to create a digital test bed on which the hypotheses of this dis-

sertation may be tested. The development of DYREQT and these models represents
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a significant contribution to the space architecture community. The digital test bed
environment has suffered from the lack of utilization of industry standard tools. Prov-
ing a level of validity of these models and tools is critical in establishing the analogs
nature of these new tools and models to accepted industry data.

The mission models are simple, only relying on manipulations of the rocket equa-
tion, mass addition, mass subtraction, and time additions. It was determined that
these models do not require detailed validation against literature data, but rather
verification through simple use cases. To do this, simplified vehicle models were em-
ployed to mimic the functionality of HExAM. Identical missions were evaluated with
both tools to determine validity of the mission models developed. Results between
both tools were within 0.02% across mission events. Differences are likely due to
rounding errors between the two tools. Validation results can be found in Appendix
H.

For subsystem models which employed regressions from literature, outputs were
verified to match those of the original regression from their respective literature
sources. However, due to a lack of detailed mass breakdown data of stage elements in
literature, level-zero physics-based subsystem models were difficult to validate inde-
pendently. Instead, validation of the underlying subsystem models is implied by using
the collection of developed models to estimate the mass of a variety of stage types
spanning the capability of the subsystem models. DYREQT was utilized to integrate
the various models discussed in this chapter. Differences in the burnout mass of the
vehicle elements were within 5% of the validation designs in most cases. In some
extreme cases, differences in estimation were as high as 25%; however, variations in
the mass estimates from literature data are explained by observation of assumptions
made by the underlying subsystem models. For instance, the Centaur upper stage

is a particularly structurally mass efficient design for the type of stage. The models
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developed do not estimate outlier designs. However, the model can be forced to esti-
mate the Centaur structural mass, which then brings the overall error in inert mass
estimation to within 5%. The other validation point that was estimated with a high
difference was the methane cryogenic propulsion stage. This can be explained by the
uncharacteristically high structural mass of the reference design. However, the mod-
els are accurate for performing conceptual design across many different architecture
concepts while capturing general trends due to these architecture choices. The full

set of validation results can be found in Appendix H.
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CHAPTER V

EXPERIMENTATION & IMPLEMENTATION

In general, experimentation can be thought of as having three main phases, described

as follows:

1. Thought Experiment: Initial concepts and ideas are explored through the
use of simple logic and small notional problems aimed at providing evidence in
support of further investigation through formal experimentation. This process

is typically initialized via an exhaustive literature search.

2. Experimental Design: Once a research question has been deemed worthy of
further investigation through thought experiments, formal experiments must be
developed to test the hypothesis developed. This typically requires physically

developing models and setting up physical experiments.

3. Design of Experiments: After it is known what the experiment will con-
sist of, a logical set of inputs must be selected in order to observe and obtain
information such that the research question and hypothesis can be answered.

Throughout Chapter 3, thought experiments were described which aided in de-

veloping research questions and hypotheses which make up the body of work of this
dissertation. To further examine these hypotheses, rigorous testing shall be per-
formed. In order to perform this testing, experiments will be developed such that a
design of experiments may be performed to study the research questions. The follow-
ing subsections are a description of the experimental design, design of experiments,

and results to each hypothesis in Section 3.4.
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5.1 FExperimentation

Utilizing the models developed in Chapter 4.5, combined with the DYREQT tool
developed in Chapter 4.4, the scope of the trade space available for experimentation
is very large. The approximately 105 inputs to the various subsystem models and
DYREQT were mapped to 45 high-level architecture parameter and 10 technologies.
These architecture and technology space options were selected based on the available
design space inputs derived from the developed subsystem models discussed in Chap-
ter 4.5. This original full factorial DOE resulted in a total of 4.810 * 10! compatible
alternatives, far too many to evaluate. This is a result of the combinatorial problem
discussed in Chapter 3.3.2. To reiterate, the problem of combinatorial explosion is
outside of the scope of this research. As such, the conjecture to Research Question 4
states that subsets of the architecture space will be selected to minimize combinatorial

explosion such that the main objective of this body of work may be performed.
5.1.1 Digital Test Bed

The architecture trade space was reduced to contain approximately 30 categories.
Down-selection focused on maintaining vehicle options while reducing mission op-
tions from the architecture space due to the simple mission event models developed
through this body of work. Because the vehicle options account for most of the de-
sign variability, the simplest way to reduce the number of alternatives was to reduce
the number of independent stage elements. Each stage element is defined by 10 pa-
rameters, and each individual element may be paired with any other element in a
multi-stage vehicle. Due to the relatively simple mission modeling developed for this
dissertation, a small mission subset was chosen. Seven technologies were selected, re-
sulting in nine technology combinations: each-one-on(7), all-on(1), all-off(1). These
sets were selected to further reduce the total number of alternatives being evaluated.

The reduced architecture space contains a total of 8,946,432 architectures, fully within

143



the capability of DYREQT. The final vehicle space utilized as a starting point for
experimentation is represented by Table 14. The mission space considered for all ex-
periments consists of the options listed in Table 15. Finally, the technology space and
its options is represented by Table 16. The collection of the options in these tables
constitute the entire architecture and technology spaces considered throughout the
experimentation of this dissertation. Each experiment further narrows the scope of
these spaces to focus the resulting data such that specific observations may be made.

In order to obtain meaningful data for the purpose of observation and analysis,
objective metrics identified through the hypotheses must be evaluated. Table 17 pro-
vides a summary of the objective space metrics required by each of the experiments,
identified by a mark in the respective cells. The selection of these objective metrics
will be examined in further detail in the sections that follow. For the current dis-
cussion, it is sufficient to know that these are the objective metrics which must be
evaluated for each of the architecture alternatives.

Figure 49 provides the basic structure of the digital test bed developed for this
dissertation. The architecture and technology spaces, together, feed the inputs to the
design space, which contains the modeling and simulation environment. The modeling
and simulation environment identified consists of DYREQT and the subsystem models
discussed in Chapter 4.4 and Chapter 4.5, respectively. These provide the capability
to integrate architecture sizing and technology evaluation at the subsystem level in
the space transportation domain.

The final step to allow the examination of the hypotheses of this body of work
is to establish the connections between the various system spaces of the digital test
bed. The architecture and technology space options enumerated in Table 14 through
Table 16 must be mapped to the design space attributes, defined by the modeling
and simulation environment. Additionally, outputs from the modeling and simulation

environment must be mapped to the objective space metrics listed in Table 17. These
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Table 15: Architecture Categories Derived from the Mission Trade Space

Category Options

Destination Duration Long Short

Inbound Correction Maneuver | Small Large

Table 16: Technology Categories Derived from the Technology Trade Space

Category Options

Wireless Sensors TRUE FALSE
Low Leak Valves TRUE FALSE
High Capacity Energy Storage TRUE FALSE
Composite Structures TRUE FALSE
Composite Propellant Tanks TRUE FALSE
Integrated MPS/RCS Propellant Storage | TRUE FALSE
Active Cryocooling TRUE FALSE

Table 17: Experimentation Objective Metrics

Experiment
Objective Metric 1 2 3 4
Vehicle Gross Mass (kg) X X X X
Vehicle Gross Cost (MYr) X X X X
Similarity X X
Vehicle PMF X X
Stage Boiloff Rate (kg/day) X
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Figure 49: Digital Test Bed for Experimentation

mappings of the system spaces follow the technique described in Chapter 3.3.1.2.
Table 18 provides the mapping of the architecture space parameters to the design
space attributes. The various options of the architecture parameters specify values
of these attributes within the design space. The specific values of the design space
attributes based on the architecture space parameter options can be found in Table
33 through Table 45 of Appendix C. Similarly, Table 19 provides the mapping of the
technology space parameters to the design space attributes. The various options of the
technology parameters specify values of these attributes within the design space. The
specific values of the design space attributes based on the technology space parameter
options can be found in Table 46 through Table 53 of Appendix C.

The mapping of the design space to the objective space is straightforward in
this case. The mappings of the technology options simply connect directly to the

activation flags within the modeling and simulation environment. This is because the

147



Table 18: Architecture Space Parameter To Design Space Attribute Mappings

Architecture Space Parameter

Design Space Attributes(s)

Vehicle

Number of Stages

event_list, element_list

Payload Mass mass
Stage(s)
MPS Class start_penalty_mps, total thrust_mps,

MPS Propellant
RCS Class

RCS Propellant
Pressurant

Tank Configuration
Structures Type
Power System

MLI Layers
Communication Type

engine_thrust_mps

isp_mps, mixture_ratio_mps
start_penalty_rcs, total thrust_rcs,
engine_thrust_rcs

isp_rcs, mixture_ratio_rcs
pressurant

num_fuel_tanks mps, num_ox_tanks_mps
manned

generator_type

mli_layers_mps, mli_layers_rcs
comms_type

Table 19: Technology Space Parameter To Design Space Attribute Mappings

Technology Space Parameter

Design Space Attributes(s)

Wireless Sensors

Low Leak Valves

High Capacity Energy Storage
Composite Structures
Composite Propellant Tanks

Integrated MPS/RCS Propellant
Storage
Active Cryocooling

wireless_sensors

start_penalty _mps, start_penalty rcs
storage_specific_energy

composite

composite_fuel_tanks_mps,
composite_ox_tanks_mps,
composite_fuel tanks_rcs,
composite_ox_tanks_rcs

ivfm

active_cooling_mps, active_cooling_rcs
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modeling and simulation environment selected provides analysis of technologies within
the various subsystem models. The effects of technologies are calculated directly
within the subsystem model, which then are propagated to the objective metrics. This
is in contrast to the more traditional technique of utilizing K-factors on specific inputs
and outputs of the analysis to account for technology impacts. The performance of
the various technologies is incorporated into the subsystem models.

The digital test bed described above will be utilized by each of the experiments
to follow. Each experiment contains different subsets of the architecture, technology,
and objective spaces described above. However, the mapping of the architecture and
technology parameters to the design attributes, and from the design space outputs
to the objective space metrics is consistent. For each of the experiments, any post-
processing in the form of filtering and data exploration was performed using SASg,

JMP g software package, for its ability to handle large data sets.

5.1.2 Experiment 1: Performing Technology Evaluation Before Design
Down-Selection

Research Question 3
Is the paradigm of down-selecting to a baseline design on which to perform

technology analysis sufficient for the exploration of complex architectures?

The purpose of experiment 1 is to determine if the traditional paradigm for tech-
nology evaluation holds for the system of systems problem. Traditional, technology
evaluation calls for design down-selection and optimization before actually analyzing
technologies. However, this paradigm assumes that the overarching design of interest
is a system which technologies are applied to, as opposed to a system of systems.
A notional example was examined in Section 3.3.2 providing good evidence for the

hypothesis repeated below:
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Hypothesis 3

The paradigm of down-selecting to a baseline design and then performing
technology analysis will not be sufficient in performing architecture design.
This paradigm assumes that the systems a technology acts upon remain
constant throughout the down-selection process. Because these systems
vary between architectures, the effects of technologies will be inconsistent

among these architectures.

5.1.2.1 Procedure

The first part of this experiment shall be to test the four alternatives from the no-
tional example in Section 3.3.2, utilizing the larger, more complex models developed
to observe whether the assumptions made during the notional example are indeed
observable. This is important because the notional example makes many unrealistic
assumptions, namely, the interdependence of subsystems in the vehicle. To test this,
similar vehicles to those discussed in the notional example will be set up and evalu-
ated using DYREQT and the model developed in Chapter 4.5. This will validate the
notion that down-selection can indeed limit the best observable architecture.

Once this has been established, fully testing the hypothesis requires observing the
composition of optimal architectures in the resulting objective space. Because the
objective space is two-dimensional, consisting of architecture mass and architecture
cost, there will exist a two-dimensional Pareto front of designs which are optimal. The
architecture space consists of all compatible single-stage options from Table 14 and
Table 15. The technology spaces to be tested in this experiment will focus on the all-
off, all-on, composite propellant tanks, and active cryocooling technology sets. Table
33 through Table 53 in Appendix C provide the specific design space attribute values

associated with the options for each of the architecture and technology space options.
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Appendix D provides the default set of values for unmapped design space attributes
within the modeling and simulation environment. The observation will be the number
of architectures with a given main propulsion system propellant type in the set of
Pareto optimal architectures in the objective space. A shift in the distribution of
architectures with certain propellant types in the Pareto optimal set will be strong
evidence in support of Hypothesis 3, as this will indicate that technologies indeed
have an impact on the optimal architectures and should be considered before down-
selection.

The trade space considered will focus on single stage architectures, limiting the
propellant types to liquid bipropellants, nuclear, or electric. The reason for removing
solid rocket propellants is because they tend to dominate the Pareto optimal set of the
objective space due to their relative simplicity and lower mass, coupled with lower
cost. This is not to say that there is an issue with the model, but rather, for the
narrow mission space selected, solids tend to dominate. Because the hypothesis deals
with observing shifts in the composition of architectures in the Pareto front, solids
were removed from the trade space to allow a more competitive mix of alternatives

to be studied based on the missions being tested.
5.1.2.2  Results

The architecture space evaluated consists of a total of 18,432 architectures. Figure
50 shows the distributions of architectures by the main propulsion system propellant
type among the entire objective space. The LH,; and Xenon propellants have fewer
architectures due to compatibilities in the architecture space which results in lower
numbers of alternatives for those specific architecture types. Figure 51 is the objective
space for experiment 1. The overall architecture mass is limited to 500,000 kg for
visualization purposes. One will notice that there are no Xenon-based architectures

in the objective space when limited to this mass. This is due to poor assumptions in
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the default vehicle which requires power to the electric engines to be fully supplied
by batteries in the power subsystem during an eclipse cycle, grossly oversizing the
battery mass. In a real design, there would be mission constraints limiting electric
engine operation during eclipses to limit this interaction.

The four case notional example presented in Chapter 4.5 was evaluated using
DYREQT and the developed subsystem models. The results from the original exam-
ple are reprinted, along with the results from DYREQT, shown in Table 20. Overall,
the performance of a specific architecture was lower when calculated by DYREQT
compared to the notional calculations. This is not an error in DYREQT, but rather
a result of its ability to account for subsystem interactions. Where the notional
calculations assume no subsystem interaction, DYREQT is able to account for inter-
actions such as growth in the propellant tanks due to varying propellant loads, which
in turn affects the structural mass, or growth in the power subsystem to account
for the increased power requirements imposed by the technology-enhanced thermal
control subsystem. The ability to account for these interactions while introducing
technologies at the subsystem level was the initial motivation behind the develop-
ment of DYREQT. However, despite these kinds of interactions being accounted for
in DYREQT, a similar trend described by the notional example is observed in the
results from DYREQT. In both cases, without technology, the storable architecture
had the lowest of the two inert masses. Under the traditional paradigm, the storable
architecture would be selected to move forward with technology evaluation. However,
in both cases, the technology-enhanced methane architecture performs best, indicated
by the lowest inert mass of any alternative. This architecture would be overlooked
under the traditional paradigm of architecture down-selection before technology eval-
uation.

This notional example is just one example of a shift in the compositions of ar-

chitectures in the objective space due to technologies. However, this observation is
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Table 20: Notional Example Results Compared to DYREQT Results

Notional DYREQT
Architecture Inert Mass(kg) Inert Mass(kg)
Storable 7789.4 12458.6
Methane 8064.3 13242.5
Storable w/ Tech 7889.4 12458.6
Methane w/ Tech 6514.3 10422.2

not just a random occurrence among these four select architectures. When looking at
the over 18,000 cases evaluated for this experiment, similar shifts in the architecture
types in the optimal objective space may be observed when introducing technologies.
Figure 52 shows the distribution of architectures with a given main propulsion system
propellant type which exist on the Pareto front of the objective space when no tech-
nologies are included. As a result, storable architectures with an NTO/MMH-based
main propulsion system account for 73% of the architectures in the Pareto front of the
objective space, while cryogenic architectures with a LOX/LCH,-based main propul-
sion system account for 16%, and cryogenic architectures with a LOX/LHa-based
main propulsion system account for only 9%. However, when active cryocooling tech-
nology is introduced, the distribution of these architectures on the Pareto front of
the objective space shifts, as seen in Figure 53. Here, the cryogenic propellant based
architectures now account for a majority of the Pareto front. This shows that the
examples seen by the four selected architectures was not just a random occurrence,
but a repeated trend: technologies have a marked impact on the resulting objective
space and the types of architectures on the Pareto front.

However, this is the case with a single specific technology. What about a differ-
ent single technology? Figure 54 shows the result of applying advanced composite
materials to tanks. Here, there is no shift in the resulting composition of the Pareto
front of the objective space. This is because the technology has a similar impact on

all architectures in the space. All architectures have propellant tanks and they all
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gain the same benefits from applying the technology, and as a result, no shift occurs.
For this technology, evaluating technologies before down-selection does not make a
difference. In fact, it would cost additional computation time. Finally, consider the
case of activating all technologies simultaneously, with the results shown by Figure
55. Here, it seems logical to assume that because more technologies are activated,
there will be greater shifts in the composition of architectures in the Pareto front of
the objective space. However, this is not the result. By activating all technologies,
there is indeed a shift in the composition of the Pareto front, but it is muted in com-
parison to the effect seen in Figure 53 by applying a select, single technology. This
is because technologies, such as composite materials for tanks, which have a uniform

effect, mask the effects of other technologies, like active cryocooling.
5.1.2.3 Conclusion

The results observed through the notional example were confirmed to occur with
more detailed models which are able to account for interactions among subsystems.
This proves that there are at least a few cases where down-selection before technology
assessment may indeed exclude a truly optimal architecture from the objective space.
Not performing technology evaluation alongside architecture down-selection would
have resulted in selection of the suboptimal design. This result was also shown to
be a trend across the entire objective space and not just a select few architectures,
resulting in dramatic shifts in the composition of the Pareto front of the objective
space. However, this is not the case with every technology and set of technologies. It
was shown that technologies have an inconsistent, and sometimes unpredictable effect
on the resulting objective space. Had technologies not been considered alongside the
down-selection of architectures, improper conclusions regarding the most preferred

design would be made. Due to these results, Hypothesis 3 shall be accepted.
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5.1.3 Experiment 2: Testing Individual Results Scheme

Research Question 5.1
Would utilizing an individual architecture presentation scheme prevent

high-level effects of architecture design decisions from being observed?

As was discussed in Chapter 1.2.3 and shown through a notional example in Chap-
ter 3.3.2, combinatorial explosion will result in very large design spaces with many
architectures. The purpose of experiment two is to determine if presenting results
of individual architectures for these large spaces would prevent high-level design de-
cisions from being studied. It is expected that high-level architecture trends will
be difficult to observe, if at all, due to such large numbers of a single architecture
type in the optimal objective space, resulting in poor cross sections of the original

architecture space. These ideas are summed up by the following hypothesis:

Hypothesis 5.1
The presentation of individual architectures will obscure high-level effects

due to flooding of the top results with similar individual designs.

5.1.3.1 Procedure

The architecture space for experiment two contains 8,921,088 unique architectures
consisting of all two stage vehicle variations from the architecture space presented
in Table 14, along with all mission and technology options from Table 15 and Table
16 respectively. Data for these alternatives was generated utilizing the digital test
bed described in Section 5.1.1. A baseline architecture to determine the similarity
value of all other architectures was selected from this architecture space with no active

technologies. Utilizing the similarity metric described in Chapter 4.5.4, an experiment
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is then formulated in which distributions of the similarity of the top performing
architectures can be quantified and observed. There are many ways to determine
the top performing architectures, either a single objective figure of merit or a multi-
objective method. In a multi-objective scenario, the top architectures form a frontier
of optimal points, called a Pareto front. These points are all considered optimal as
they are undominated by any other point in the objective space. However, the “best”
design depends on the relative weightings of the various figures of merit of the multi-
objective space. Also, the number of points on the Pareto front is not selectable, as
the front is purely based on the results of analysis of the architecture space. In order
to vary the number of individual architectures being observed, multiple layers of the
Pareto front are observed, known as a Layered Pareto Front (LPF). For details on
analyzing an LPF, refer to Appendix E. The following procedures were applied for

this experiment:

1. The combined number of alternatives in the problem shall be on the order of
1 million, varying mission, vehicle, and technology options of the architecture
space, allowing the potential for individual architecture options to flood the top

results.

2. Multiple objective spaces will be analyzed to observe effects due to different sets
of figures of merit on the measures of architecture similarity distributions. Single
objective spaces consisting of a total mass and cost metric will be evaluated,
along with a two-dimensional multi-objective space consisting of both total mass

and total cost simultaneously with even weightings.

3. The number of alternatives returned will range from [2:100000] architectures.
For a multi-objective space, this requires varying the number of layers in the

LPF to achieve the desired number of points.

4. Distributions of the similarity of architectures will be recorded and summarized
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for each objective type and number of alternatives in the objective space.

Distributions of the similarity metric of the top architectures have narrow sum-
mary statistics compared to those of a distribution of the similarity metric of all
architectures in the objective space. This implies that a poor cross section of the
original objective space is being observed and any effects in the objective space due
to high-level architecture decisions will be difficult to observe, supporting Hypothesis
5.1. However, distributions with summary statistics similar to those of a distribution
of all architectures in the objective space implies that there is a broad sampling of
architecture concepts in the observed objective space that are representative of the
entire objective space. This implies that observed effect due to high-level architecture

design decisions will be well-represented, refuting Hypothesis 5.1.
5.1.3.2  Results

The distribution of architecture similarities for all cases is relatively normal with
a mean of 0.9079 and a standard deviation of 0.007495. The maximum similarity
value in the objective space is 0.9285 and the minimum is 0.8805, resulting in a total
range of 0.4795. Through analysis of the results, it was determined that the smallest
variation in similarity due to any single attribute is 0.0012324. All technology options
account for 0.008627 variation in similarity where each technology option accounts
for 0.0012324 variation in the similarity metric. All mission options account for
0.0024648 variation in similarity where each mission option accounts for 0.0012324
variation in similarity. The vehicle space options accounts for the remaining 0.4684
variation of similarity. It is clear that the vehicle space accounts for a large majority
of architecture variation, primarily due to combinatorial explosion when including
multiple stages. These statistics and observations are the baseline for evaluating the
summary statistics while varying the numbers of Pareto fronts and dimensionality of

the objective space, and are summarized in Figure 56.
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Quantiles Summary Statistics

maximum 0.928456 Mean 0.9079202
minimum 0.880507  Std Dev 0.0074955
Std Err Mean 2.5095e-6

Upper 95% Mean 0.9079251

Lower 95% Mean 0.9079153

N 8921088
0.88 0.89 0.9 0.905 0.915 0.925

Figure 56: Objective Space Similarity Distribution

The growth in the total number of observed design points from the objective space
with increasing number of layers in the LPF is not consistent across the different
objective spaces considered in the experiment, shown in Figure 57. The number
of architectures in the LPF depends on the number of layers and the local density
of architectures in the objective space for each layer. For the architecture space
considered in this experiment, Figure 58 shows the density of architectures along
both the total vehicle mass and total vehicle cost metrics. The inconsistency in
density of alternatives in the objective space is due to the discrete categorical nature
of the architecture and technology spaces. Here, darker regions represent areas in the
objective space which are more densely packed with alternatives. These increased
densities will result in a greater number of alternatives on a given Pareto front which
passes through that region of the objective space. Each Pareto front passes through
different regions within the density plot. Because the density of architectures along
each dimension of the objective space is not uniform, the relationship between the
number of layers and the number of observed architectures is highly nonlinear, as
indicated by Figure 57.

Though increasing the number of observed design points may help to give a more
representative set of architectures from the objective space, it alone does not defini-
tively imply a more representative cross section of the entire objective space. The
designs may still be highly focused around a specific subset of architectures. It is

important to consider other metrics when determining the quality of the observed
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portion of the objective space being represented by the subset of architectures on
an LPF. Collectively, the subset distribution’s mean, standard deviation, minimum,
maximum, and range of architecture similarity can provide indications as to the qual-
ity of representation of all cases in the objective space. However, because the number
of architectures contained in the subset is not consistent with the number of layers in
the LPF across different objectives, similarity distribution metrics are plotted against
the total number of architectures in the LPF.

All distribution parameters of the set of architectures in the LPF appear to ap-
proach the parameters of the baseline objective space distribution of architecture
similarity in a logarithmic trend. For each of the distribution metrics, the specific
objective has little effect on the variation in the metric, as is visible by a noticeable
overlap in the data for the three different objectives considered in this experiment,
shown in Figure 59 through Figure 63. The solid red line in these plots is the met-
ric value of the baseline distribution for all architectures, while the dashed red line
represents the fifty percent mark between the metric for a distribution of an LPF
with two architectures and the baseline similarity distribution’s metric. Obviously,
this low number of architectures in the observed objective space would be a very
poor representation of the whole objective space and provides a lower boundary for
determining these 50% marks.

The minimum value of the distribution of architecture similarity with respect to
the number of observed architectures in the LPF is represented in Figure 59. The
baseline similarity distribution has a minimum of 0.880507 while an LPF of one layer
has a minimum of 0.893173. The 50% value between the minimum similarity of these
two distributions is 0.88684. The data shows that an LPF containing on the order
of 100 points is able to reduce a majority of the difference in minimum similarity
between a distribution of an LPF containing two points and the baseline distribution.

The maximum value of the distribution of architecture similarity with respect to
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the number of observed architectures in the LPF is represented in Figure 60. The
baseline similarity distribution has a maximum of 0.928456 while an LPF with one
layer has a maximum of 0.894712. The 50% value between the minimum similarity
of these two distributions is 0.911584. An LPF containing on the order of 1,000
points is able to reduce a majority of the difference in maximum similarity between
a distribution of an LPF containing two points and the baseline’s distribution.

The range of the distribution of architecture similarity with respect to the number
of observed architectures in the LPF is represented in Figure 61. The baseline simi-
larity distribution has a range of 0.047949 while an LPF with one layer has a range of
0.001539. The 50% value between the range of similarity of these two distributions is
0.024744. An LPF containing on the order of 50 points is able to reduce a majority of
the difference in the range of similarity between a distribution of an LPF containing
two points and the baseline distribution.

The mean of the distribution of architecture similarity with respect to the number
of observed architectures in the LPF is represented in Figure 62. The baseline simi-

larity distribution has a mean of 0.90792 while an LPF with one layer has a mean of
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0.893943. The 50% value between the range of similarity of these two distributions
is 0.899881. An LPF containing on the order of 100,000 points is able to reduce a
majority of the difference in the mean of similarity between a distribution of an LPF
containing two points and the baseline distribution. The shift in mean towards the
baseline is slower with increased number of points compared to the other metrics
considered.

The standard deviation of the distribution of architecture similarity with respect
to the number of observed architectures in the LPF is represented in Figure 63.
The baseline similarity distribution has a standard deviation of 0.007496 while an
LPF with one layer has a standard deviation of 0.001088. The 50% value between
the standard deviation of similarity of these two distributions is 0.004292. An LPF
containing on the order of 100 points is able to reduce a majority of the difference in
the standard deviation of similarity between a distribution of an LPF containing two
points and the baseline distribution.

The full set of data analyzed in this experiment can be found in Appendix F,

including distributions for all of the LPF's tested in this experiment.
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5.1.3.3 Conclusion

The results from this experiment indicate that flooding of top results of the objec-
tive space can occur, represented by large deviations in the summary statistics of
the distributions of architecture similarity between the subset of top results and the
entire objective space. Observation of extremely small subsets of the results in the
objective space will result in poor representation of the true objective space. These
observations result in the acceptance of Hypothesis 5.1. However, this observation is
limited to small subsets of the objective space. It is possible to increase the quality
of representation of the original objective space by increasing the total number of
architectures in the top subset. Overall, it was determined that the representation of
the entire objective space by the subset of the top N architectures increases in a log-
arithmic trend. Relatively low numbers of top architectures from the objective space
may adequately represent the entire objective space. These observations were found
to be true across various objectives with dissimilar distributions of points within indi-

vidual figures of merit. Further work is needed to confirm these results across higher
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dimensional objective spaces spanning additional problem domains.

5.1.4 Experiment 3: Portfolio Grouping Criteria

Research Question 5.2
How do the grouping criteria used for forming portfolios of architectures

affect the variance of the resulting portfolios?

The purpose of experiment 3 is to determine how grouping parameters on which
to form sets of architectures affect the resulting figures of merit of those portfolios.
This will help guide a more structured approach to selecting grouping criteria for
large architecture spaces to aid in creating clear and concise presentation of results,

while minimizing loss of information about the overarching objective space.

Hypothesis 5.2
Variance of the objective metrics within and between portfolios will corre-
late positively with the size of the portfolios, measured by the number of

grouped architectures.

5.1.4.1 Procedure

The architecture space for experiment three consists of all vehicle variations from
the architecture space presented in Table 14, along with all mission and technology
options from Table 15 and Table 16 respectively. Again, data for each of the archi-
tectures was generated utilizing the digital test bed described in Section 5.1.1. The
objective space is filtered to architectures with a total vehicle gross mass of no more
than 100,000 kg to prevent outlier architectures from skewing observed distributions.

To construct portfolios of varying size, discrete architecture space and technology
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space options will be selected independently as grouping criteria to reduce interac-
tions between the two spaces. Within the architecture space, options relating to the
vehicle and mission space will be selected independently to reduce interaction ef-
fects between the two groups of architecture options. The selection of these grouping
criteria shall be selected at random from their respective spaces.

Variance between portfolios will be measured through numerous objective space
metrics: architecture similarity, vehicle total mass in kilograms (kg), vehicle propel-
lant mass fraction (PMF), and vehicle total cost in man-years (MYr). The variance
in the objective space metrics of the architectures within a portfolio, as well as the
variance in the aggregate objective space metrics between each portfolio, will be ana-
lyzed. Large variances between portfolio-level aggregate objectives, along with small
variances between architectures within a portfolio for small portfolios support the

claims of Hypothesis 5.3.
5.1.4.2 Results

Figure 64 show the variance in architecture similarity, vehicle gross mass, vehicle gross
cost, and vehicle PMF for portfolios formed from vehicle options in the architecture
space. Portfolios of varying size are formed from various sets of the following randomly

selected vehicle options:

Tank Configuration

Structures Type

Power System

MLI Layers

Figure 64 shows a positive correlation in variance of the architecture similarity
across the vehicle portfolios, denoted by the slope of the 95% ellipse around the data.

Variance in the architecture similarity between portfolios appears to be positively
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correlated with the size of the portfolio. This is observed by the relative distance be-
tween points for a given portfolio size. Both of these observations support Hypothesis
5.3. However, these observation do not hold for other metrics in the objective space.
Variance in the total vehicle gross mass, total vehicle cost, and vehicle PMF all seem
to have no correlation with the size of portfolios, denoted by the nearly zero slope of
the 95% ellipse around these sets of data. Moreover, the observation of variance be-
tween portfolios does not hold true, as there are large differences in variance between
portfolios of a given size, large and small. This is best observed in the variance of
vehicle gross cost, where there is a relatively large difference in the variance regardless
of portfolio size. These observations are in clear opposition to Hypothesis 5.3. The
distribution summary statistics for each of the portfolios is provided in Table 60 of
Appendix G.

Figure 100 in Appendix G shows the variance in architecture similarity, vehicle
gross mass, vehicle gross cost, and vehicle PMF for portfolios formed from mission
options in the architecture space. Portfolios of varying size are formed from various

sets of the following mission options:

e Destination Duration

e Inbound Correction Maneuver

Similarly, Figure 101 in Appendix G shows the variance in architecture similarity,
vehicle gross mass, vehicle gross cost, and vehicle PMF for portfolios formed from
technology packages in the technology space. Portfolios of varying size are formed via

the following criteria:
e No Active Technologies
e Single Active Technology

e All Technologies Active
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Figure 64: Correlation in Portfolio Size vs Objective Metric Variance for Vehicle-
based Portfolios
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Data for these portfolio schemes show similar observations, refuting Hypothesis
5.3. Many of the metrics show very little to no correlation between portfolio size and
variance of a given metric. Some show even a slight negative correlation, in direct
opposition to Hypothesis 5.3. Also, differences in the variance of a given metric do not
seem to be correlated to the size of the portfolio. The distribution summary statistics
for the mission and technology portfolios are provided in Table 58 and Table 59 of
Appendix G respectively.

It is apparent that the variation in a given objective space metric for the architec-
tures contained in a portfolio is not necessarily correlated to the size of a portfolio.
Sizes of portfolios are a result of the various grouping criteria, but have little to do
with the variation of objective metrics. Rather, the variation is due to the grouping
criteria which form the portfolios themselves. Figure 66 and Figure 67 illustrate the
distribution of architecture vehicle gross mass for portfolios formed by varying the
payload mass in the architecture space. These two distributions clearly show that
vehicle payload mass is the primary cause of the bimodal distribution of vehicle gross
mass across all architectures observed in Figure 65.

Similar observations can be made in the distributions of architecture similarity
across different portfolio grouping criteria. Figure 68 is the distribution of architecture
similarity for the entire architecture space of this experiment, while Figure 69 is the
distributions for all single stage vehicles and Figure 70 is the distributions for all two
stage vehicles. Again, it is clear that the number of stages in the vehicle has a large
impact in skewing the distributions of architecture similarity in the objective space.
However, unlike in the portfolios formed by payload mass options, these portfolios
exhibit drastically different portfolios sizes. This is because there are many more
combinations of two stage vehicles than single stage vehicles in the architecture space.
In fact, the single stage portfolio has a lower variance in architecture similarity than

the larger two stage vehicle portfolio, in direct opposition to Hypothesis 5.3.
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Vehicle Gross Mass(kg)

Quantiles Summary Statistics

maximum 100000  Mean 38151.693

minimum 6290.82  Std Dev 23058.586
Std Err Mean 9.0189858

Upper 95% Mean 38169.369

Lower 95% Mean 38134.016

N 6536570
5000 20000 35000 50000 65000 80000 95000

Figure 65: Total Vehicle Mass(kg) Distribution of All Architectures

Vehicle Gross Mass(kg)
Quantiles Summary Statistics
maximum 100000 Mean 18887.709
minimum 6290.82 Std Dev 13195.302
Std Err Mean 7.2041085

Upper 95% Mean 18901.829

Lower 95% Mean 18873.589

N 3354889
5000 20000 35000 50000 65000 80000 95000

Figure 66: Total Vehicle Mass(kg) Distribution of Architectures with 1,000 kg Pay-
load

Vehicle Gross Mass(kg)

Quantiles Summary Statistics

maximum 100000 Mean 58464.391

minimum 359322  Std Dev 10239.04
Std Err Mean 5.7402516

Upper 95% Mean 58475.642

Lower 95% Mean  58453.14

N 3181681
5000 20000 35000 50000 65000 80000 95000

Figure 67: Total Vehicle Mass(kg) Distribution of Architectures with 10,000 kg
Payload
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Similarity

Quantiles Summary Statistics

maximum 1 Mean 0.9091657

minimum 0.880507  Std Dev 0.0082428
Std Err Mean 3.2241e-6

Upper 95% Mean  0.909172
Lower 95% Mean 0.9091594
T N 6536570
0.88 0.895 091 0.925 094 0955 0.97 0985 1

Figure 68: Architecture Similarity Distribution of All Architectures

Similarity
Quantiles Summary Statistics
maximum 1 Mean 0.9825808
minimum 0.963096  Std Dev 0.0055789
Std Err Mean 4.0358e-5

Upper 95% Mean 0.9826599

Lower 95% Mean 0.9825017

N 19109
0.88 0.895 091 0.925 094 0.955 097 0985 1

Figure 69: Architecture Similarity Distribution of Architectures with 1 Stage

Similarity
Quantiles Summary Statistics
maximum 0.928456 Mean 0.9089505
minimum 0.880507  Std Dev 0.0072252
Std Err Mean 2.8302e-6

Upper 95% Mean  0.908956

Lower 95% Mean 0.9089449

N 6517461
0.88 0.895 091 0.925 094 0.955 097 0985 1

Figure 70: Architecture Similarity Distribution of Architectures with 2 Stages

173



Vehicle Gross Cost(MYr)

Quantiles Summary Statistics

maximum 158866 Mean 43722.196

minimum 730.255  Std Dev 22892.64
Std Err Mean 8.9540788

Upper 95% Mean 43739.746

Lower 95% Mean 43704.647

N 6536570
0 20000 50000 80000 110000 140000

Figure 71: Total Vehicle Cost(kg) Distribution of All Architectures

Vehicle Gross Cost(MYr)

Quantiles Summary Statistics

maximum 3423.25 Mean 21837.52

minimum 1460.78  Std Dev 16443.695
Std Err Mean 118.95438

Upper 95% Mean 22070.681

Lower 95% Mean 21604.359

N 19109
0 20000 50000 80000 110000 140000

Figure 72: Total Vehicle Cost(kg) Distribution of Architectures with 1 Stage

Vehicle Gross Cost(MYr)

Quantiles Summary Statistics

maximum 158866 Mean 43786.362

minimum 1460.78 Std Dev 22878.121
Std Err Mean 8.9615087

Upper 95% Mean 43803.926

Lower 95% Mean 43768.797

N 6517461
0 20000 50000 80000 110000 140000

Figure 73: Total Vehicle Cost(kg) Distribution of Architectures with 2 Stages
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Trends in the full objective space may be difficult to observe due to the large
number of alternatives in the objective space from a subset of the architecture space.
However, by grouping architectures into portfolios, observations which could not be
made in the full objective space with all architectures combined may now become
visible. This type of behavior can be seen by again forming portfolios based on the
number of vehicle stages and observing the distributions of vehicle gross cost and
vehicle PMF. Figure 71 shows the distribution of vehicle gross cost in the objective
space for all architectures. Because the two stage vehicle options are so numerous
compared to the single stage vehicle options, the two stage vehicle options drive this
distribution, as is seen by comparing the distributions in Figure 73 and Figure 71.
However, by observing the distributions of vehicle gross cost for only single stage
vehicles, shown by Figure 72, one can see a clear skew towards lower cost for single
stage vehicles compared to two stage vehicles. Similar observations may be made
in vehicle PMF with vehicle number of stages. A single stage vehicle will typically
have a higher PMF compared to a typical two stage vehicle. Logically, this makes
sense, considering a two stage vehicle will require two sets of engines, plumbing,
tanks, structures, etc. which drive the PMF of the whole vehicle down. Distributions
illustrating this observation are shown by Figure 102 through Figure 104 in Appendix
G.

Portfolios of the technology space is a common way of viewing the objective space.
Table 21 shows the mean boiloff rate of the first and second stages in kilograms
of propellant per day for each of the technology portfolios listed. Observation of
these portfolio grouping criteria provides insight into which technology, or group
of technologies may aid in reducing boiloff of cryogenic propellant for space vehicles.
Here, the active cryocooling technology reduces the boiloff rate of both stages to zero,
while the portfolio containing all technologies will obviously have the same benefit of

the single technology, provided no negative interactions exist.
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Table 21: Technology Impact on Stage Boiloff Rate

Mean Stage 1 Mean Stage 2

Portfolio Description Boiloff Rate(kg/day) Boiloff Rate(kg/day)
No Technologies 10.024 5.317
Wireless Sensors 10.017 8.2
Composite Structures 9.600 5.935
Composite Tanks 9.969 5.322
Active Cryocooling 0.0 0.0
Integrated MPS/RCS 10.052 553112
Low Leak Valves 9.912 5.277
High Capacity Batteries 9.960 5.311
All Technologies 0.0 0.0

5.1.4.8 Conclusion

The observation of the distributions of objective space metrics for portfolios of ar-
chitectures across different grouping criteria showed that the size of the resulting
portfolios has little impact on the resulting variance of those objective space metrics.
Any observed correlation is coincidental in nature. Variation in these metrics between
portfolios also was observed to be unrelated to the size of the portfolios. However,
further observation of the data from this experiment provided valuable insight into
trends in the objective space with regard to the physical architecture space. By form-
ing portfolios of architectures from these physical architecture space options, new
trends in metrics such as gross mass, gross cost, similarity, and vehicle PMF were
observable. However, the grouping criteria utilized for observing results may lead
to different conclusions regarding the effects of technologies on architectures. Only
focusing on a single portfolio grouping criterion will result in conclusions being made
without full understanding of the trends which may exist in the problem. The results
from this experiment lead to the rejection of Hypothesis 5.3, but also leads to the

following conjecture:
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Conjecture 5.2
Variance in the objective space metrics within and between portfolios are
influenced by the grouping criteria derived from options in the architecture

space.

5.1.5 Experiment 4: Testing Portfolio Results Scheme

Research Question 5.3
Would utilizing a portfolio scheme for grouping architectures obscure high-

performing outlier architectures?

The purpose of Experiment 4 is to determine if implementing a portfolio scheme
for grouping architectures when large numbers of alternatives exist has the potential
of obscuring optimal designs. This could occur if the highest performing design is
hidden within a portfolio with an aggregate performance less than another portfolio,
as was shown by a notional example during the formulation of the research question
and hypothesis. However, testing all potential grouping criteria to be certain that
no obscuring will exist is impractical, and as such, a null hypothesis, shown below,
was formed where only one case of design obscuring is enough to disprove the null

hypothesis, leading to the conclusion that obscuring of design may indeed exist.

Hypothesis 5.3

High-performing outlier architectures will not be obscured using a portfo-
lio evaluation scheme because they will be contained in a portfolio with
other similar architectures which will exhibit similar behavior, raising the

performance of the entire portfolio.
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5.1.5.1 Procedure

The hypothesis assumes that due to the large number of design alternatives in such
a large and complex space, there will not be single outlier designs. Rather, there
will be groups of designs. It would be logical to assume that these collections of
outlier designs would be grouped together in a portfolio scheme due to their relative
similarity in physical systems and/or operations. These natural groups of outliers
would bring the performance of the entire portfolio up.

This experiment utilizes the same architecture space from Experiment 3, consist-
ing of all vehicle variations from the architecture space presented in Table 14, along
with all mission and technology options from Table 15 and Table 16 respectively. This
results in the same data set utilized in Experiment 3. Again, the objective space is
filtered to architectures with a total vehicle gross mass of no more than 100,000 kg to
prevent under-performing and oversized architecture outliers from skewing observed
distributions. The metrics for which portfolios and the optimal design will be evalu-
ated against are total vehicle mass in kilograms (kg), total vehicle cost in man-years
(MYr), and vehicle PMF. Initially, the results of Experiment 3 will be examined for
any cases resulting in a single optimal architecture being obscured in a lower perform-
ing portfolio. If this occurs, then Hypothesis 5.3 will be rejected, thus proving that
optimal designs may become obscured when grouping architectures into portfolios.

However, if the results of Experiment 3 prove inconclusive with regard to this
research question, further experimentation will be performed in an attempt to observe
an obscured optimal design. Variations to the portfolio grouping scheme will be
selected by combining related selections from multiple spaces simultaneously. If these
further cases still do not result in optimal design obscuring, sets of randomly selected
grouping criteria based on architecture and technology space options combined will

be selected in an attempt to observe an obscured design.
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5.1.5.2 Results

Based on the architecture space for this experiment, the single-objective optimal

designs for each of the three figures of merit are listed below:

Mass: two stage all solid propellant architecture with all technologies applied

resulting in a total vehicle mass of 6290.82 kg

Cost: single stage solid propellant architecture with all technologies applied

resulting in a total vehicle cost of 730.3 MYr

PMF: single stage LOy/LCH, propellant architecture with the composite

structures technology applied resulting in a PMF of 0.866

Results from experiment 3 provided one such case of obscured optimal designs
within suboptimal portfolios. Nine portfolios result when the objective space is broken

into portfolios based on the following grouping criteria:
e No Active Technologies
e Single Active Technology
e All Technologies Active

The nine portfolios along with their means for each of the figures of merit in the
objective space are provided in Table 22. Here, the best portfolio for reducing mass
is to apply all available technologies, the best portfolio for reduced cost is to apply
no technologies, and the best portfolio to increase PMF is to apply the composite
structures technology.

Observation of these results shows that the optimal portfolio to reduce cost is to
apply no technologies; however, the best in class architecture for cost is one which
applies all technologies. This is likely due to the fact that cost is such a strong

function of mass in the TransCost model selected and developed for this body of work.
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Table 22: Technology Portfolios Objective Means

l’l‘mgross l'l'CgToss
Description N (kg) (MYr) pPMF
No Techs 708506 3.894e+4 4.009e+4 6.612e-1
Wireless Sensors Only 708554 3.890e+4 4.417e+4 6.613e-1
Composite Structures Only 719846 3.715e+4 4.325e+4 6.661e-1
Composite Tanks Only 709442 3.857e+4 4.402e+4 6.617e-1
Active Cryocooling Only 768338 3.86le+4 4.634e+4 6.309e-1
Integrated MPS/RCS Only 708338 3.924e+4 4.104e+4 6.612e-1
Low Leak Valves Only 709001 3.843e+4 4.336e+4 6.571e-1
High Capacity Batteries Only | 708817 3.859e+4 4.188e+4 6.616e-1
All Techs 795728 3.527e+4 4.854e+4 6.299e-1

The cost gain associated with applying technologies for the specific architecture was
outweighed by the cost savings resulting from the reduction in overall mass due to

those technologies for the specific architecture.
5.1.5.83  Conclusion

The results from experiment 3 provided at least one case where the optimal design for
a specific single-objective metric was obscured within a suboptimal portfolio for that
same metric. This results in the rejection of the null hypothesis stated by Hypothesis
5.3, supporting the claim that grouping architectures into portfolios of designs indeed
has the potential to obscure designs. Caution must be taken to ensure that high-
performing designs of interest are not ignored due to an employed portfolio scheme.
Only relying on results presented in portfolios of alternatives has the potential to ob-
scure optimal designs. Rather, exploration of the objective space should be performed
across a variety of portfolio schemes, as well as individual alternatives to ensure a full
understanding of the objective space and the optimal designs. It is important to
note that this experiment focused primarily on one-dimensional objective spaces of
various figures of merit. However, with multi-dimensional objective spaces, multiple
design points are considered optimal. This complicates the otherwise trivial concept

of optimal design obscuring considered in this experiment. Further work is needed to
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study how designs may be obscured in multi-objective scenarios.
5.1.6 Observation: Differences in Figures of Merit

Experiments 1 through 4 can be observed to make note of differences in the metrics
being utilized. Over the course of these four experiments defined in this chapter, anal-
ysis results have focused on both individual architecture presentation of the data, as
well as portfolios of architectures. An observation of the metrics used in these exper-
iments can lead to a conclusion about whether similar metrics are utilized between
these two presentation schemes. It is expected that utilizing a form of results group-
ing will naturally lead to the use of additional metrics relating to group composition

and statistical distribution summary metrics.
5.1.6.1 Results

The experiments presented in this body of work relied heavily on making observations
of groups of architectures. Experiment 1 observed the composition of the total objec-
tive space by the main propulsion system employed by the architectures to observe
shifts in the overarching objective space due to technologies. In Experiment 2, subsets
of the objective space were observed by only observing the top designs. This was done
on a single-objective and multi-objective basis. In both ways, summary statistics of
the distribution of figures of merit for the subsets were used to determine how well a
given subset represented the total objective space. Statistics such as minimum, max-
imum, range, mean, and standard deviation of the distribution of the similarity of
architectures of the subsets from the objective space provided insight into the quality
of the cross section of the total objective space being observed. Finally, Experiment
3 and Experiment 4 focused on breaking the objective space into portfolios of designs
grouped together by a set of grouping criteria. The resulting portfolios were studied
by comparing means and variance of specific figures of merit for the architectures

contained within a portfolio.
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Through these experiments, it is clear that when groups of architectures were
being studied or observed, regardless of whether the groups were portfolios or sub-
sets based on varying criteria, each group was summarized through distributions of
the constituent architectures. This supports Hypothesis 6, that additional metrics
summarizing the performance and composition of groups of architectures need to be
included when establishing value of a problem.

Similarly, it is important to note the relative weightings of figures of merit when
considering a multi-objective space should be included as additional metrics to con-
sider. The experiments in this research implicitly assumed even weightings to figures
of merit, regardless of how groups of architectures may have been formed. However,
it is well known that some weighting must be applied to any multi-objective problem,

whether it is implicitly assumed or stated during problem formulation.
5.1.6.2 Conclusion

These observations support the claim made by Conjecture 6, that additional metrics
should be considered when studying results as groups of architectures. These metrics
should consist of summaries of the figures of merit of the architectures contained in
the groups themselves, as well as metrics which describe the composition of a given

group and how specific figures of merit were weighted when forming those groups.

5.2  Summary of Developed Framework

From this body of research, a flexible framework is presented, focusing on integrating
architecture analysis and technology evaluation at a subsystem level for the purpose
of exploring large design spaces in an attempt to better understand the underly-
ing system spaces and their potential interactions. The framework shall be referred
to as the Integrated Architecture and Technology Exploration (IntegrATE) frame-
work. The process of the framework is shown in Figure 74. Many of the underlying

components of this framework employ previously developed techniques and methods
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which suit the overarching goal of integrating architecture analysis and technology
evaluation at a subsystem level. Concepts and techniques such as quality function
deployment, DoD viewpoints, and set theory-influenced system decomposition are
utilized to perform many of the steps outlined in the IntegrATE framework. How-
ever, IntegrATE does not dictate which methods or techniques shall be utilized for
the purpose of flexibility. This section summarizes the basic steps required by the
IntegrATE framework developed as a result of the experiments discussed in Section
5.1. The steps that follow will typically be arbitrated by architects who gather the
necessary information from technologists and subject matter experts. This will help
to eliminate bias in the technologies and architectures represented within a problem,
as this architect should represent a neutral party with no particular bias for specific
architectures or technologies, but who is primarily interested in providing a broad

representation for the problem being studied.
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Figure 74: IntegrATE Framework Flow Diagram

5.2.1 Step 1: Define the Problem

The first step of IntegrATE is to define the problem by taking the requirements from
the customer and translating them into quantifiable engineering metrics. Typically,
some customer or societal need is what prompts the design of a new product, often
referred to as the “voice of the customer” [57]. The customer requirements should

capture all aspects of the design including, but not limited to physical performance,
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budgetary constraints, and schedule. However, typically these requirements are sub-
jective in nature and must be translated into quantifiable metrics, often referred to
as the “voice of the engineer”. There exist many techniques in literature for perform-
ing this task. One such technique employed extensively in many methods is quality
function deployment. This technique was chosen for the initial formulation of Inte-
grATE, but designers could use other methods for translating customer requirements
into engineering metrics if preferred.

The objective space of the problem is defined by the engineering metrics mapped
to the customer requirements during quality function deployment. Typically this is
an n-dimensional space where n is the number of customer requirements tied to en-
gineering metrics. It is important during this step of the framework to capture not
only the customer requirements, but also the relative importance of each requirement
to the customer. This translates into weighting metrics which will be required when
performing multi-objective analysis of the results in step 6. Additionally the trans-
lation of customer requirements to engineering metrics should not include any bias

toward a specific architecture or technology.
5.2.2 Step 2: Decompose Architecture and Technology Spaces

The second step of IntegrATE is to decompose the problem into an architecture
space and associated technology space. These spaces define the physical and func-
tional breakdown of potential designs to meet the customer requirements from step 1.
Again, the selection of potential architectures and technologies should be broad, not
focusing on individual options. The goal is to provide a broad set of options within
the architecture and technology spaces which may meet the stated objectives by the
customer. In Chapter 3.3.1, various viewpoints from the DoD Architecture Frame-

work were selected to aid in visualization of the system of systems decomposition,
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specifically, the operational resource flow, OV-2, the operational activity decomposi-
tion, OV-ba, and the physical systems decomposition, SV-1. An example of OV-2 and
OVba within the space architecture domain is the bat chart, a graphical representa-
tion of the major physical vehicle elements and their relative location throughout the
mission.

In addition to OV-2 and OV-5a, used to represent high-level operations of an
architecture, techniques such as morphological analysis are used to break down the
physical subsystems and the available options which may be combined to form ar-
chitectures. Morph matrices, the typical result of morphological analysis, are a good
example of SV-1. The combination of OV-2, OV-5a, and SV-1 are used to fully

populate the architecture space and technology space defined by STSD.
5.2.3 Step 3: Identify Modeling and Simulation Environment(s)

The third step of IntegrATE is to identify the modeling and simulation environ-
ment(s) which may be required to evaluate the potential designs and technologies
defined in the architecture and technology spaces from step 2. Because the architec-
ture and technology spaces are defined at the subsystem level, the models collected
and developed must be at the subsystem level. This will require a simulation envi-
ronment capable of integrating many subsystem-level models. Industry provides such
simulation environments for this purpose, such as Phoenix Integration’s ModelCenter
software, a graphically-based simulation environment, or the OpenMDAO project’s
Python module, a code-based simulation environment. The core requirement of the
modeling and simulation environment(s) is to provide the ability to integrate many
subsystem-level models to allow automated analysis of many different architectures
and technologies simultaneously capable of translating the architecture and technol-
ogy space options into the objective space figures of merit. The collection of inputs

and outputs to the modeling and simulation environment(s) form the design space
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of the problem. Considerations of case run time and parallelization should be made
during this step due to the potential for large numbers of cases which may need to

be evaluated, discussed in step 5.
5.2.4 Step 4: Map Design and Objective Spaces

The fourth step of IntegrATE is to map the various spaces developed during steps 1-3.
The mapping concept of the various spaces was discussed in Chapter 3.3.1. These
mappings are a form of transformation between the various spaces. They are typically
subjective in nature, defined by a subject matter expert, technologies, architect, etc.
Each option in the architecture and technology spaces is mapped to at least one of
the input metrics in the design space. These options may be mapped to more than
one design space attribute. This implies that the design space attributes may be
functions of multiple architecture and technology options. The output metrics of the
design space are then mapped to the figures of merit in the objective space. The
technology space options may also map to the objective space as well. Combinations
of design space outputs may be combined to form a single objective space figure of
merit. Unmapped design space inputs will need to have assumptions applied to create
default inputs. Not all outputs from the design space must be mapped to the objective
space. However, these unmapped design space metrics are not required and represent
losses in performance of the analysis environment. This may warrant revisiting step 3
to further refine the modeling and simulation environment(s) to perform analysis more
efficiently since the number of alternatives, and hence computational requirements,
are typically of concern. Organizational techniques, such as an N-squared diagram,
may be helpful in organizing and mapping inputs and outputs among the various

models within the modeling and simulation environment.
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5.2.5 Step 5: Evaluate Cases

The fifth step of IntegrATE is to perform evaluation of the design alternatives and
technologies described by the combined architecture and technology spaces. Typi-
cally, the number of alternatives to be evaluated will be substantial due to the dis-
crete, categorical nature of system of system architectures and technologies requiring
full factorial DOEs. Also, issues of combinatorial explosion which frequently occur
when designing complex systems of systems further exacerbate the issue of large num-
bers of alternatives. Further research and development is required regarding this step
to better handle the large numbers of alternatives that typically exist. Currently,
if the number of alternatives of the full factorial DOE is prohibitively large, it may
be necessary to return to step 2 and further scope the architecture and technology
spaces to reach a number of alternatives the modeling and simulation environment
is able to handle. There is no fixed number of alternatives that can be suggested
due to variability in computational effort required by the modeling and simulation
environment. For instance, environments with run times of less than one second per
design will be capable of analyzing many more designs for a fixed amount of compu-
tational capability compared to environments with run times of minutes. Obviously,
increasing the computational capability allows for a greater number of designs to be
run in a fixed amount of time. This may prompt high levels of parallelization of the

modeling and simulation environment(s) to allow for evaluation of the most cases.
5.2.6 Step 6: Explore Results

The final step of IntegrATE is to explore the results and make final decisions. The
primary goal of this step is to explore the objective space for trends and interactions
which otherwise may have been overlooked by traditional methods. The individual

observation of very large sets of alternatives simultaneously may be limited by the
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capability of visualization software and techniques. However, observation of individ-
ual alternatives may provide useful information relating to the frequency of certain
high-level design decisions which meet a specific criteria, or the distribution of opti-
mal designs based on specific technologies. Observation of the results as portfolios
has the potential to lose information about individual architectures. Optimal alter-
natives may be obscured in portfolios deemed suboptimal. However, exploration of
the results should not be limited to individual alternatives.

Large numbers of alternatives may be grouped together in portfolios to better
observe trends and relationships in the objective space due to the options within the
architecture and technology spaces. Traditionally, methods choose a relatively narrow
and fixed set of grouping criteria to form these portfolios. For instance, a technology
method may choose to only observe results in the form of technology portfolios, or
an architecture design method may focus on physical architecture options on which
alternatives are grouped into portfolios. Because IntegrATE performs both architec-
ture design and technology evaluations simultaneously, no single grouping criteria is
suited to analyzing the results. Rather, various grouping criteria should be evaluated
to explore the objective space in an attempt to reveal trends due to the combined
architecture and technology spaces. This also provides the ability to study inter-
actions between the technology and architecture spaces unachievable by traditional
methods due to the subsystem-level nature of IntegrATE. For instance, a technology’s
ability to shift a subset of the architecture space within the objective space may be
observed, or relationships between seemingly unrelated technologies and architecture
subsystems may be revealed and observed. Exploring results in this manner requires
summarizing portfolios of alternatives in the form of distributions of the figures of
merit for the portfolio.

Typically, solutions to a customer’s original need resulting in the design of new
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products culminates in some final decision with regard to the original customer re-
quirements. However, the highly subjective nature of conceptual design results in
large variations in the “best” design or family of designs as a solution. The customer
weightings on the specific figures of merit in the objective space are extremely subjec-
tive and highly influential in determining a final result. There exist many structured
techniques for the purpose of decision making: technique for order preferencing by
similarity to ideal solution (TOPSIS), technology frontier, and resource allocation are
a few. IntegrATE is flexible enough to allow a variety of decision making techniques

to be utilized which may be geared towards a specific problem.

5.3 Implementation: IntegrATE Framework Proof of Con-
cept
Manned Mars missions have been studied since the mid 20" century. In the early
215% century, manned missions to Mars have garnered increased interest as increas-
ing capabilities have developed over the decades. The Integrated Architecture and
Technology Exploration (IntegrATE) framework was applied to a 2033 crewed Mars
flyby study as a proof of concept. This study is a good benchmark for the IntegrATE
framework due to the large variability in potential architectures for performing a
manned Mars flyby as well as the substantial number of new technologies which must

be developed to achieve the objective.
5.3.1 Step 1: Define the Problem

Since the end of the United States Apollo Program, manned space flight has been lim-
ited to low earth orbit operation. With NASA’s retirement of the aging Space Shuttle
fleet, the Space Launch System (SLS) is being developed to enable human exploration
of deep space. Through the development and operation of various space laboratories
such as Skylab, Mir, the International Space Station, and Tiangong, humans have

begun to research and develop the technologies required for manned, long-duration,
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deep-space missions. These technologies, coupled with the new capabilities provided
by the SLS, provide the basic requirements to begin moving human presence beyond
low earth orbit. However, to achieve the goal of manned Mars exploration, further
development is required.

Before sending humans to the surface of Mars, a manned Mars flyby mission is
proposed to further refine and develop technologies and capabilities required for a full
manned surface mission to Mars. Based on the development of the SLS, the 2033
launch window for Mars allows ample time to develop the basic systems required to
send humans on a flyby mission to Mars. However, the specific forms of many of
these systems are still in the conceptual design phases with many potential options.
One such component is the in-space transportation vehicle. There are many designs
which may provide the necessary capabilities to send humans to Mars. The goal of
this proof of concept study is to explore the potential in-space transportation options

for a manned Mars flyby in 2033.
5.3.1.1 Objective Space

Typically, the four primary objective categories for evaluating space architectures are
performance, cost, risk, and schedule. For this study, performance, cost, and risk are
of primary importance. The figures of merit on which to evaluate alternatives will be
total number of launches, architecture mass, gross vehicle propellant mass fraction,
gross vehicle cost, and technological complexity. These figures of merit define a five-
dimensional objective space, shown in Table 23. Because each launch vehicle has an
inherent cost associated with it which is typically very high, reducing this metric is
most favored and given the greatest weighting in the objective space. Additionally,
the cost of developing and manufacturing the transportation elements themselves is of
interest. Total architecture mass is of little importance on its own because the total

number of launches is a function of this metric. However, given two architectures

190



which have identical values for all other metrics, the lowest mass alternative will be
selected. A metric for defining the structural efficiency of the architecture is provided
in the form of the propellant mass fraction of the architecture. Higher PMF values
indicate a more structurally efficient design. Both mass and PMF will be considered
such that the effects of technologies on both the physical structure, as well as the
propellant loads of an alternative may be observed. Finally, technological complexity
is a direct function of the number of active technologies applied from the technology

space.

Table 23: Proof of Concept Objective Space

Objective Metric Weight Target Units
Number of Launches 0.4 Minimize
Architecture Gross Mass 0.1 Minimize  MT
Gross Vehicle PMF 0.1 Maximize

Gross Vehicle Cost 0.2 Minimize  MYr
Technological Complexity 0.2 Minimize

5.3.2 Step 2: Define Architecture and Technology Spaces

As described by the IntegrATE framework, the trade space for this notional problem
consists of all options from the architecture and technology spaces. The architecture
space is broken into two primary sets consisting of the vehicle options and the mission
options. The technology space will be a set of technologies which interact with specific
vehicle and mission options. The following sections describe these options for the

proof of concept problem being explored.
5.8.2.1 Architecture Space

Within the architecture space are all options pertaining to both the vehicle and
mission. The mission is assumed fixed to a single 2033 Mars flyby trajectory and

CONOPs. This fixed mission and CONOPs are graphically represented by the bat

chart shown in Figure 75. The series of mission events consists of a buildup of elements
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in a lunar distant retrograde orbit (LDRO), followed by a transfer to a lunar distant
high Earth orbit (LDHEO) where the crew will launch from earth and rendezvous
before performing a trans-Mars injection burn of 629 meters per second. The transfer
from cis-lunar space to LDHEO shall take 200 days. Transit to Mars assumes a 262
day duration and 40 meters per second of correction maneuvers. A single powered fly
burn of 1,290 meters per second is performed at Mars to achieve an Earth intercept
trajectory. Transit back to Earth is assumed to require 318 days with 40 meters
per second of correction maneuvers. Upon reaching Earth, the transport vehicle will
perform an Earth orbit insertion burn of 1,072 meters per second to place the transit
habitat into LDHEO. The crew returns to Earth and the transit habitat is transferred
into an LDRO for storage. Disposal of any vehicle elements along the mission assumes
a five meter per second burn.

In order to allow a more robust set of space transportation vehicle options within
the architecture space to be studied, it is assumed that the launch vehicle for placing
the required elements into orbit will be the SLS with a payload capability of 54 metric
tons to cis-lunar trajectories. Any crew transport to and from Earth is performed by
Orion and SLS. The Mars transit habitat is assumed to be a fixed design with a dry
mass of 20 metric tons (MT) along with 12 MT of logistics.

The black boxes in Figure 75 represent transportation vehicle to be designed.
The vehicle options are limited to no more than three propulsive stages. The main
propulsion systems for these stages are limited to either liquid bipropellant engines or
nuclear engines. Other vehicle options consist of propellant pressurization, propellant
types for both the main propulsion system and reaction control system, tank configu-
ration, power generation, and passive thermal control multi-layer insulation thickness.
These options are summarized in Table 24. 162 unique vehicle stage alternatives exist
after considering incompatibilities within the stage options.

Transportation vehicles shall be limited to only utilizing common stages with
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Table 24: Vehicle Subspace Options

Category Options

Vehicle

Number of Stages 1 2 3

Stage(s)

MPS Class Liquid Nuclear

MPS Propellant LOy/LHy  LOo/LCHy NTO/MMH LHy; NyHy
RCS Propellant LOy/LCHy NTO/MMH NyH,

Tank Configuration Stacked Disk Single

Power System Solar RTG

MLI Layers 10 30 50

identical stage options. This results in a total of 486 vehicle alternatives. Due to
the fixed mission along with the assumptions provided earlier, the architecture space
consist of only these 486 vehicle alternatives. Finally, because schedule is of little
importance in this study, it will be assumed that development of the transportation
elements is complete by the 2033 flyby date. No analysis shall be performed on

development time of vehicle elements.
5.3.2.2  Technology Space

The technology space shall consist of eight technologies across six vehicle subsystems:
engines, tanks, structures, power, thermal, and avionics. The engines subsystem
technology is a low leak valve technology which limits propellant leak during en-
gine start and stop. The tanks subsystem technologies are composite materials for
propellant storage to minimize tank mass, integrated propellant storage systems for
the main propulsion system and reaction control system to minimize the need for
additional tanks for the reaction control system, and autogenous pressurization to
reduce pressurant masses. The structures subsystem consists of a composite mate-
rial technology to reduce the overall mass of the structures subsystem. The power
subsystem technology is high capacity energy storage devices which reduce the size

and mass of batteries in the power subsystem. The thermal subsystem technology is
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active cryocooling which mitigates propellant loss at the cost of additional hardware
mass and power requirements. Finally, the avionics subsystem technology is wireless
sensors which reduce the need for physical cabling, reducing the overall mass of the

subsystem. These technologies are summarized in Table 25.

Table 25: Proof of Concept Technology Space Options

Category Options

Wireless Sensors TRUE FALSE
Low Leak Valves TRUE FALSE
High Capacity Energy Storage TRUE FALSE
Composite Structures TRUE FALSE
Composite Propellant Tanks TRUE FALSE
Integrated MPS/RCS Propellant Storage | TRUE FALSE
Autogenous Pressurization TRUE FALSE
Active Cryocooling TRUE FALSE

Each technology has only two options for its activation state on the architecture,
either True or False. The performance of a given technology is considered to be static,
meaning there is no variability in the performance of a given technology. Similar to
the vehicle options, because schedule is of little importance in this study, it will be
assumed that development of any applied technologies are complete by the 2033 flyby
date. No analysis shall be performed on development time of technologies. The
assumptions made throughout the architecture and technology spaces will maintain
a manageable number of total alternatives to be evaluated in this proof of concept

study.
5.3.3 Step 3: Identify Modeling and Simulation Environment(s)

As was discussed in Chapter 4, no tool exists for the purpose of performing subsystem-
level analysis of architectures and technologies in the space transportation domain.
As such, the developed tool, DYREQT, and the various models described through-

out Chapter 4 shall be utilized as the modeling and simulation environment for this
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proof of concept. Cost values will be estimated based on the implementation of the
TransCost 7.1 model discussed in Section 4.5.3.6. To reiterate, this cost model is a
historical mass-based costing model. Both development and production cost are esti-
mated based on mass and specific architecture options. The infusion of technologies
is also included in the costing of the design. However, all technologies incur the same
cost penalty. Additionally, the time, cost, and risk associated with infusing multiple
technologies simultaneously is not considered. The resulting digital test bed utilized
for this proof of concept is of similar form as that developed for the experimentation
of this dissertation, described in Section 5.1.1. The primary differences between the
two are in the definition of a scoped architecture space for this proof of concept, along
with a more broad set of technology combinations evaluated, and a different set of

figures of merit in the objective space.
5.3.83.1 Design Space

Sizing is performed over six vehicle subsystems: engines, tanks, structures, power,
thermal, and avionics. These six subsystem models are integrated with DYREQT to
provide mass, power, and heat load estimates for each subsystem of each stage, as well
as total burnout and propellant masses for each stage. Cost data is estimated using
the TransCost 7.1 historical weights-based cost estimation model. The cost model
utilizes outputs from DYREQT to estimate the development, production, and gross
cost of each stage and the entire vehicle. The design space consists of the collection
of outputs from DYREQT and the cost model. The tables in Appendix C provide a

list and description of the various inputs to the design space.
5.3.4 Step 4: Map System Spaces

The modeling environment identified in step three resides within the design space.
The architecture and technology spaces identified in step two feed the inputs required

by the design space. The outputs of the design space supply metrics to the figures
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of merit in the objective space. Figure 76 provides a graphical overview of these

mappings.
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Figure 76: Proof of Concept Spaces Mappings

The architecture and technology space categories are mapped to specific design
space parameters, shown in Table 26 and Table 27 respectively. A description of
the design space parameters and default input values can be found in Appendix C.
The number of vehicle stages and architecture contains has overarching effects on the
number of events, event sequencing and CONOPs, as well as the total number of
vehicle elements defined. For instance, a vehicle with only one stage will have fewer
events related to dropping of spent stages compared to a three-stage vehicle. Simi-
larly, the MPS class architecture category affects the mission event sequencing and
element subsystem composition. Particularly, the nuclear MPS class option consists

of drop tank and in line tank configurations which warrant special treatment in the
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Table 26: Architecture Space Parameter To Design Space Attribute Mappings

Architecture Space Parameter

Design Space Attribute(s)

Vehicle

Number of Stages

event _list, element _list

Stage(s)

MPS Class

MPS Propellant
RCS Propellant
Tank Configuration
Power System

MLI Layers

event_list, start_penalty_mps, total_thrust_mps,
engine_thrust_mps

isp_mps, mixture_ratio_mps

isp_rcs, mixture_ratio_rcs

num_fuel tanks_mps, num_ox_tanks_mps
generator_type

mli_layers_mps, mli_layers_rcs

Table 27: Technology Space Parameter To Design Space Attribute Mappings

Technology Space Parameter

Design Space Attribute(s)

Wireless Sensors

Low Leak Valves

High Capacity Energy Storage
Composite Structures
Composite Propellant Tanks

Integrated MPS/RCS Propellant
Storage

Autogenous Pressurization

Active Cryocooling

wireless_sensors

start_penalty_mps, start_penalty_rcs
storage_specific_energy

composite

composite_fuel _tanks_mps,
composite_ox_tanks_mps,
composite_fuel_tanks_rcs,
composite_ox_tanks_rcs

ivim

pressurant

active_cooling mps, active_cooling rcs

mission event sequencing and CONOPs. For the purposes of maintaining a manage-

able number of total cases to be evaluated, fixed values were assigned to the design

space parameters for each of the architecture and technology space options. However,

the values do not have to be fixed and may take on continuous ranges where appli-

cable. For instance, to study the effects of technologies and subsystem performance,

architecture and technology space options may be mapped to continuous design space

parameters to account for performance uncertainties. Appendix D.3 and Appendix

D.4 are the default mission and vehicle inputs to DYREQT within the design space.
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Table 28: Objective-Design Space Mappings
Objective Space Metric Design Space Attribute(s)

Number of Launches num _stages, total_payload,
element (#)_gross_mass,
element(#)_burnout_mass
Architecture Gross Mass vehicle_gross_mass

Gross Vehicle PMF element(#)_gross_mass,
element(#)_propellant_mass_mps,
element(#)_propellant_mass_rcs
Gross Vehicle Cost vehicle_gross_cost

Technological Complexity element0_mps_start_penalty,
element(0_storage_specific_energy,
element0_composites,
element0_composite_fuel tanks mps,
element(0_ivfm, element0_pressurant,
element0_active_cooling mps,
element(_wireless_sensors

For unmapped design space parameters, these values are the defaults utilized during
analysis. For mapped design space attributes, values are determined based on the
options selected from the architecture and technology spaces. The values associated
with these options can be found in Table 33 through Table 53 in Appendix C.

The objective space metrics are mapped to at least one of the design space pa-
rameters. Table 28 shows the mapping of each objective space metric to the design
space. Entries with the # symbol denote multiple stage elements dependent on the
selections in the architecture space defining the number of vehicle stages. For the
number of launches objective space metric, assumptions regarding the launch vehicle
capability are used along with the design space parameters to estimate the objective
value. Technology complexity is a factor dependent on the number of active tech-
nologies. It is assumed that when a technology is active, it is applied everywhere on
the vehicle where applicable. Because all architecture alternatives contain at least
one stage, only the first stage design space parameters are utilized in determining the

technology complexity metric. Technological complexity for this study is defined as
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an integer representing the total number of technologies utilized by a given design al-
ternative. The higher the number of utilized technologies, the higher the technological

complexity.
5.3.5 Step 5: Evaluate Cases

Because the architecture and technology space options are mapped to fixed values
of the design space parameters, a full factorial DOE is performed over the combined
architecture and technology space with no need for additional DOEs due to continuous
architecture and technology space options. This results in a total of 486 architectures
and 256 different sets of technologies which may be applied to those architectures,
resulting in a total of 124,416 alternatives. Utilizing an Intel® Core™ i7-4810MQ at
2.80 GHz, the average case evaluation time was on the order of 1.5 seconds requiring
2.16 days of processing time. Utilizing seven processing threads resulted in about
7.5 hours of wall clock analysis time. These statistics show how parallelization of
the modeling and simulation environment can drastically improve the throughput of
alternatives as the total number of alternatives grows due to combinatorial explosion.
A modeling and simulation environment capable of parallelization, such as DYREQT,
coupled with access to high-performance computing clusters, results in the ability to
evaluate very large alternative spaces in the relatively short periods of time typically

available during the conceptual design phases.
5.3.6 Step 6: Analyze Results

The initial set of alternatives consisted of a mostly even mix of alternatives grouped by
main propulsion system propellant type. Liquid hydrogen monopropellant-based al-
ternatives were only compatible with nuclear-based alternatives resulting in its under
representation in the objective spaces, as seen in Figure 77. The analysis results were
filtered to limit total architecture mass to less than 200,000 kg to remove outlier de-

signs which skew distributions during analysis. Also, designs which contain elements
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which are not capable of being launched on the 54 MT launch vehicle limit were
omitted from the final analysis of results. These criteria reduced the total number
of alternatives from 124,416 to 95,127. Figure 78 shows the resulting distributions
of invalid alternatives by main propulsion system propellant type, while Figure 79
shows the valid alternatives distribution. These two figures show the disproportion-
ate level of cryogenic propellant based alternatives which are deemed invalid for this
study. For liquid bipropellant alternatives, this is likely due to very large propellant
mass requirements as a result of propellant boiloff during the 1125 day long mis-
sion. LHs-based alternatives represent a large portion of invalid alternatives despite
their relatively low representation in the original objective space due to both propel-
lant boiloff and increased burnout mass of nuclear propulsion systems utilizing this
propellant type.

Making a final decision is typically aided by the implementation of formal decision
making techniques. The IntegrATE framework provides no single recommendation
for choosing a decision making technique. Due to its simplicity, TOPSIS was em-
ployed to evaluate the multi-objective space utilizing customer weights identified in
step one. Only alternatives which exist on the Pareto front of the five-dimensional
objective space were evaluated using TOPSIS. The distribution of architecture alter-
natives by main propulsion system propellant type are shown by Figure 80. Liquid
oxygen/liquid methane propellant based architectures make up a significant portion
of the Pareto front. This is a result of the increased propulsion performance of engines
utilizing this propellant compared to storable options, while having better properties
for long duration storage compared to liquid hydrogen based architectures. Despite
this majority, results from the TOPSIS analysis yield a single stage liquid storable ar-
chitecture as the highest ranked design among the 197 alternatives which exist on the

Pareto front. The alternative has a very low technological complexity. This coupled
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with a low stage count and non-cryogenic propulsion results in a very low cost-to-
performance ratio making the alternative highly attractive for the objective weights
stated during problem formulation. However, the weighting values can be adjusted to
observe how the top ranked alternative changes. For instance, if there is a lower em-
phasis on minimizing the technological complexity and cost, three-stage nuclear-based
alternatives become highly attractive due to their very high performance compared to
liquid bipropellant architectures. Alternatively, liquid cryogenic bipropellant based
architectures become particularly attractive when increased performance is desired
while limiting the technological complexity.

For the 197 alternatives which exist on the Pareto front of the objective space,
the utilization of the eight technologies in the technology space is shown by Figure
81. Autogenous pressurization is utilized by nearly one quarter of all alternatives
on the Pareto front, making it the most utilized technology among these designs.
Composite tanks and structures are also highly utilized among the alternatives on
the Pareto front. However, active cryocooling has a relatively low utilization given
the fact that the majority of alternatives on the Pareto front are cryogenic propellant
based designs. This is likely a result of the boiloff rates being estimated in the model.
The estimated propellant loss rate may be low enough that the total mass savings
resulting from active cryocooling are not as significant as the mass savings by elim-
inating the propellant tank pressurization components in autogenous pressurization.
Active cryocooling technologies typically have a large impact on other subsystems
such as power, resulting in mass growth which offsets the propellant mass savings.
Conversely, autogenous pressurization does not incur a large growth in subsystem
masses, potentially making it a more advantageous technology to pursue.

However, IntegrATE enables greater exploration of the objective space compared
to traditional architecture analysis and technology evaluation techniques and methods

by integrating technology evaluation and architecture analysis at subsystem levels.

202



100% 100%

90%- 90%-
%)
g 80%- 'g 80%-
8 70%- 'é 70%
wv f=
g 60% ‘_9 60%-|
'g 50%-| _<° 50%-|
'-g 40%- TE 40% 38%
S 30%- =
° 22% 22% 22% 22% S
N o
20% ©
11% °
10%-
0%
hydrazine 1h2 lox/Ich4  lox/lh2 nto/mmh hydrazine 1h2 lox/Ich4  lox/lh2 nto/mmh
MPS Propellants MPS Propellants

Figure 77: Proof of Concept Prob- Figure 78: Proof of Concept Problem In-
lem Full Objective Space Distribution by valid Alternatives Distribution by Main
Main Propulsion System Propellant Type Propulsion System Propellant Type

46%

(7]

(]

2 -

H 6

£ £

- []

— L

< 50%- 9 50%
©

2 g
(T

> o

w— 30% 27% 26% o

<) N

x

hydrazine Ih2 lox/Ich4  lox/Ih2  nto/mmh hydrazine Ih2 lox/Ich4  lox/Ih2  nto/mmh
MPS Propellants MPS Propellants

Figure 79: Proof of Concept Problem Figure 80: Proof of Concept Problem

Valid Alternatives Distribution by Main Pareto Front Alternatives Distribution by
Propulsion System Propellant Type Main Propulsion System Propellant Type

203



26%

24%
< 22%
= 20%
N 18%
= 16%
p 14%
= 12%
o 10%
o 8%
= 6%
X 4%
2%
0%
Qo S S e S &
S ¢ K @S
a2 < X S P S
QW Ke X 9 & &
& A o RS
&(;) Qo") "&‘0 &S & Q>Q/‘9 Q(_,\
O \ xS N
o R & 9 &
Q/(\ (Joé\ () v <b
P CbQ &
N AN &
\é\\%

Figure 81: Proof of Concept Problem Technology Utilization on the Pareto Front

When the architecture space is defined at the subsystem level, it allows high-level
objectives to be viewed in various ways allowing new information to be obtained
linking these high-level objectives to subsystem options. For instance, when observing
the distribution of architecture cost over the entire objective space, it is difficult to
reach conclusions about how cost is affected by various criteria. However, grouping
the objective space by both the basic propellant type and number of vehicle stages,
trends in cost become immediately evident. Figure 5.3.6 shows the distributions of
architecture cost for the entire objective space on the left, as well as six groups of
alternatives by grouping them by either storable or cryogenic propellant options and
the number of stages in the vehicle. Just observing the overall distribution on the left,
it is evident that there are some trends driving the response of cost. By observing

the distributions for the six groups, one can see how these options shift the cost of
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alternatives to form the overall objective space distribution.

Similarly, the number of launches objective can be observed for various alternative
grouping criteria. Figure 5.3.6 groups architectures by number of stages, main propul-
sion system class, and technological complexity. Observation of the distribution of
the number of launches for these architectures reveals trends which may be useful
to decision makers. For instance, the number of vehicle stages has an effect on the
number of launches, but not necessarily in the way one would expect. It is generally
known that increasing the number of stages may increase performance by allowing
the architecture to shed excess mass during the mission resulting in reduced mass.
However, a lower number of vehicle stages shows a reduction in earth to orbit number
of launches for the given architecture. This is likely due to the fact that there is a
greater total burnout mass of vehicle elements which may not be packaged as well in
a launch vehicle. The number of launches assumes that the burnout mass of a vehicle
element must fit within the 54 MT launch vehicle limit, but the propellant mass may
be distributed among other launch vehicles. This allows relatively efficient packing
of total architecture mass compared to having multiple vehicle elements which must
be packaged in launch vehicles, as well as their propellant. Obviously, if one assumes
the propellant must be preloaded in the vehicle element, then this trend will change
dramatically. Nuclear based-architectures also exhibit a reduced number of launches
compared to liquid-based alternatives. Though nuclear architectures typically have a
much greater burnout mass compared to liquid-based alternatives, the much greater
efficiency of nuclear propellant alternatives resulting in reduced propellant mass leads
to overall less inert mass to position in orbit, requiring fewer Earth to orbit launch
vehicles. Finally, technologies have a strong impact on reducing the overall number
of launches required for an architecture. By utilizing more technologies, resulting in

a high technological complexity, the gross architecture mass decreases dramatically
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which in turn reduces the total number of launches required. Though the distribu-
tions in Figure 5.3.6 would suggest a highly technical single stage nuclear vehicle for
minimizing the total number of launches, the launch vehicle payload constraint of
54 MT would likely limit this choice, as single stage nuclear-based architectures will
exhibit large burnout masses which do not fit within the 54 MT constraint.
IntegrATE enables new information to be observed with regard to how technolo-
gies impact architecture design by including technologies in the initial phases of design
before down-selection of alternatives. Figure 84 shows the relationship between total
architecture cost versus technological complexity. Infusing technologies has an initial
negative impact on overall architecture cost. However, as technological complexity is
increased by infusing more technologies, the average cost of alternatives begins to de-
cline. This is counterintuitive to traditional thinking, but can be explained logically.
By only utilizing a few technologies, the overall mass savings for a given design does
not offset the cost of infusing the technologies, but as more technologies are infused,
the reduction in the overall mass of the design begins to outweigh the cost of infusing
additional technologies resulting in a net cost reduction. This trend is likely a result
of a purely mass-based cost estimating model used in the study. Utilizing other cost
models would likely result in very different observations in mean architecture cost.
Figure 85 and Figure 86 show trends which are generally expected. The mean
gross mass, and as a result, the mean number of launches reduces as technological
complexity increases. Both appear to exhibit relatively linear trends. Figure 87 shows
the trend in mean propellant mass fraction with technological complexity. The ob-
served trend again seems counterintuitive. Typically, higher propellant mass fractions
indicate a better design with greater performance because there is less burnout mass
for a given amount of propellant. However, the trends show the opposite. As the
number of technologies utilized is increased, indicated by an increasing technological

complexity, the mean propellant mass fraction of designs decreases. This is due to
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two possibilities:

1. The selected technologies lead to a burnout mass growth resulting in reduced

performance measured by the PMF.

2. Technologies in general reduce the overall burnout mass of architecture alterna-
tives which in turn will result in decreased propellant masses. However, for the
fixed Mars fly by mission being studied, the total propellant mass reduces faster
than the burnout mass resulting in decreased vehicle propellant mass fractions

overall.

However, measuring performance of an architecture or technology only by propellant
mass fraction can lead to improper conclusions regarding optimal designs. Despite
reduced propellant mass fraction values, technologies have a net positive impact on
architectures, as indicated by reduced gross vehicle masses and number of launches.

Although the overall mean gross mass of design alternatives appears to reduce
linearly with increasing technological complexity, this observation may not hold for
specific groups in the architecture space. Figure 88 shows the reduction in mean gross
mass versus technological complexity for two groups of vehicles, liquid-based propul-
sion systems and nuclear-based propulsion systems. The liquid-based alternatives
follow a similar trend to that seen in Figure 85. However, nuclear-based alternatives
have a highly nonlinear trend. This indicates that technologies have dramatically
different impacts on different alternatives from the architecture space. Here, just a
few technologies have the ability to drastically reduce the gross mass of nuclear-based
alternatives. This highly nonlinear trend indicates that there are strong interactions
between technologies which affect nuclear-based alternatives more than liquid-based
alternatives. The fact that the liquid-based alternatives exhibit a trend similar to
that seen in Figure 85 of all alternatives is likely due to the fact that liquid-based

alternatives account for a much larger portion of the total number of architecture

209



80000.00 145.00

78000.00 o o
* .
76000.00 . ? o 14000 o
s .
T 74000.00 i 2 13500 {
= 72000.00 3
= = .
) « 130.
8 70000.00 g 30.00 3
§ 68000.00 35 .
oy
= 66000.00 o 125.00 .
=
64000.00 ¢ 120.00 *
62000.00 .
60000.00 115.00
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Technological Complexity Technological Complexity

Figure 84: Proof of Concept Problem Figure 85: Proof of Concept Problem
Mean Cost of All Alternatives with Tech- Mean Gross Mass of All Alternatives with

nological Complexity Technological Complexity
3.95 0.9000
390 ¢
" 0.8900 #
$ 385 +
g 3.80 . 0.8800
8 w .
5 375 ) > 0.8700
@ 3.70 * c *
£ © 0.8600
E 3565 . s
> *
c 3.60 * 0.8500
o L 2
s 3.55 * .
3.50 . 0.8400 PY
. o
3.45 0.8300
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Technological Complexity Technological Complexity

Figure 86: Proof of Concept Problem Figure 87: Proof of Concept Problem
Mean Number of Launches of All Alter- Mean PMF of All Alternatives with Tech-
natives with Technological Complexity  nological Complexity

210



X Liquid Bipropellant  © Nuclear

190
180 <
170
160
150
140 X
130 ad &
120

X<

OX
X

Mean Gross Mass(MT)

& X
X

110 02

100 <
0 1 2 3 4 5 6 7 8

Technological Complexity

Figure 88: Proof of Concept Problem Variation in Mean Gross Mass with Techno-
logical Complexity of Two Distinct Vehicle Groups
alternatives.

Further observations of the performance of individual technologies can be observed
across the entire set of alternatives and all objective space metrics. Table 29 shows
the shift in the mean of each objective space metric between the set of alternatives
utilizing no technologies and the sets of alternatives with each individual technol-
ogy utilized. The first observation is with regard to active cryocooling, which has the
greatest reduction in mean architecture gross mass. This technology is also associated
with the highest shift in the mean cost. This is due to active cryocooling having a
very large power requirement, impacting the power subsystem substantially. The to-
tal burnout mass of these designs is typically higher, resulting in increased propellant
mass fractions, and because the cost model employed is mass-based, cost increases as
well. However, the technology also drastically reduces propellant requirements, off-
setting the increased burnout mass, resulting in a net reduction in gross mass. This

is seen by the reduction in propellant mass fraction of these alternatives. Conversely,
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autogenous pressurization provides a much smaller performance gain compared to
active cryocooling, but also results in a net cost saving compared to increased cost
due to active cryocooling. The cost savings is a result of the removal of pressur-
ization tanks in the burnout mass of these designs which is then offset by increased
propellant loads, seen by an overall increase in propellant mass fractions of these
alternatives. It is because of its cost savings combined with slight mass savings that
autogenous pressurization was shown to be a highly-ranked technology during the
initial TOPSIS analysis, while active cryocooling was ranked relatively low despite
its high effectiveness at reducing mass and number of launches but at a great cost
penalty. Integrated main propulsion system and reaction control system propellant
was observed to be highly ineffective. It simultaneously increases cost and mass due
to the addition of hardware at little to no savings by removing hardware associated
with separate systems. These observations show that the performance of a technol-
ogy needs to be considered at the higher architecture level. Traditionally, technologies
are considered at the subsystem level, independent of the higher architecture level.
Ignoring this connection would show certain technologies having negative impacts at
the subsystem level, resulting in improper technology selection. Utilizing IntegrATE
provides evidence for the importance of evaluating technologies at the architecture

level as opposed to only the subsystem level.

Table 29: Shift in Objective Metric Means Due to Technologies

Mean Shift
Cost Mass
Description (MYr) (kg) PMF  Launches
Low Leak Valves -3131.84 -266.51  -0.0001 -0.01
High Capacity Batteries 8174.16 -332.31  0.0009 0.00
Composite Structures 7488.31 -1475.84  0.0038 -0.01
Composite Tanks 7886.46 -962.96  0.0027 -0.01
Integrated MPS/RCS 9469.97 2417.35  -0.0078 0.03
Autogenous Pressurization -2522.74 -2136.48  0.0043 -0.06
Active Cryocooling 24912.64 -12323.25 -0.0733 -0.23
Wireless Sensors 8508.78 -42.97  0.0001 0.00
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Obviously, these observations are just a select few. Certain binning criteria, such
as by main propulsion system propellant type, technology complexity, and number
of vehicle stages, were selected to bring out specific observations regarding these de-
sign choices. Selecting different binning criteria may lead to alternate conclusions
compared to those presented in this section. IntegrATE enables a wide variety of ob-
servations to be made by integrating architecture analysis and technology evaluation
at the subsystem level. It improves early knowledge with regard to the interaction
between the architectures and technologies available to prevent improper design down-
selection during the conceptual design phases. Additionally, the level of observations
is determined by the objective space metrics defined during problem formulation.
This conceptual study utilized several high-level architecture design metrics such as
number of launches, gross architecture mass, and gross cost. However, studies of
subsystem interactions and technology effects on vehicle subsystems across many al-
ternatives could be performed as well by defining objective metrics during problem
formulation and corresponding design space outputs to evaluate the objective metrics.
This study was primarily focused on high-level effects of technologies on the architec-
ture space. Also, the effectiveness of a given technology was not studied, but is well
within the capability of the IntegrATE framework. Overall, without utilizing Inte-
grATE, improper conclusions regarding the optimal architecture for the mission would
be reached. Additionally, without utilizing IntegrATE, the effects of technologies on
the architecture design would not be fully understood. Observation of reduced PMF
with certain technologies would traditionally indicate a poor-performing technology.
However, IntegrATE allows the causes of this trend to be observed, leading to new
conclusions regarding technology performance when traced to high-level architecture

objectives.
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CHAPTER VI

CONCLUSIONS

Traditional design methods for complex systems of systems, such as the design of space
transportation architectures, has historically relied heavily on subject matter experts
during the early phases of design to scope the initial problem to a small set of designs
which then become the basis for technology evaluation. However, ever-changing cus-
tomer requirements and shifting political interests create a lack of understanding and
knowledge of the design space, leading to potential cost and schedule overruns due
to frequent design changes and combinatorial explosion of alternatives in the design

space. These observations led to the primary research objective:

Research Objective
To integrate architecture analysis and technology evaluation at the sub-
system level to provide a quantitative framework in an effort to increase

design knowledge early in the design process.

To integrate architecture analysis and technology evaluation at the subsystem
level, several questions and hypotheses were posed during a discussion of a general
concept exploration process to guide the development of a new framework. However,
in order to test these hypotheses, a digital test bed capable of performing integrated
architecture analysis and technology evaluation at the subsystem level had to be se-
lected. No tools were identified within the space transportation community which met
this requirement. As a result, the Dynamic Rocket Equation Tool (DYREQT) and a
collection of subsystem-level in-space transportation models were developed to pro-

vide a modeling and simulation environment capable of producing the necessary data
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for experimentation. DYREQT provides the capability to integrate user-developed
subsystem models in a tool developed for space transportation architecture analysis
and design.

The first research question aimed to establish the relationship between architec-
ture and technologies as defined by this dissertation. Once established, a technique
for decomposing a problem was selected which met the needs of subsystem-level in-
tegrated architectures and technologies. Research question two further guided the
decomposition and definition of a problem by examining the figures of merit which
should guide technology evaluations. It was determined that, due to the relationship
between technologies and architectures established by research question one, similar
figures of merit should be utilized for evaluating technologies.

The third research question considered the validity of the traditional paradigm of
design down-selection prior to technology evaluation for systems of systems problems.
Experiment one concluded that technologies can have profound impacts on specific
subsets of architecture alternatives which may have otherwise been down-selected
under traditional processes. These results warrant a shift in the paradigm by in-
corporating technology evaluation prior to architecture down-selection. However, it
was recognized that this solution only exacerbates the already problematic concept
of combinatorial explosion which exists in systems of systems design problems. As
such, the remainder of the questions focused on how results from such large sets of
alternatives should be explored.

Research question five focused on examining the effects of exploring results of
architecture analysis and technology evaluation from two primary viewpoints: indi-
vidual alternatives and groups, or portfolios, of alternatives. Experiment two focused
on exploring the individual alternative representation of results. It was determined
that very small subsets will provide inaccurate representation of the true objective

space. However, subsets of the results which are still relatively small in relation to
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the full objective space may provide adequate representation for observing high-level
design decisions. Conversely, experiment three focused on examining the grouping
criteria for forming portfolios of designs and how they affect the observations in the
results. The original hypothesis that portfolio-level metrics are related to portfolio
size was proven incorrect, but it was shown that these portfolio metrics are more di-
rectly influenced by the options in the architecture and technology spaces. The final
experiment focused on determining if grouping sets of alternatives into portfolios has
the potential to obscure the true optimal design. It was shown that these optimal
individual designs may become obscured within suboptimal portfolios, supporting a
broad exploration of the objective space considering both individual and portfolio
viewpoints. The final research question examined the trends in figures of merit uti-
lized throughout the experiments of this dissertation to make a conjecture regarding
the need for additional summary metrics when evaluating results from a portfolio
viewpoint.

These questions and their results helped guide the development of IntegrATE, a
new framework for the purpose of integrating architecture analysis and technology
evaluation at the subsystem level. IntegrATE is an initial point of departure from
traditional architecture design and technology evaluation methods aimed at increas-
ing knowledge during the conceptual design phase through the study of interactions
between architectures and technologies. The IntegrATE framework does this by al-
lowing large numbers of architecture alternatives and technologies to be evaluated
concurrently, before down-selection, to allow decisions makers to fully explore sys-
tems of systems design spaces. This does however only exacerbate the combinatorial
problem already present in the design of complex systems of system. Issues such
as these are why IntegrATE is classified as a framework, as opposed to a method,
indicating an initial step which warrants further study and development.

To clearly demonstrate the new framework and provide solid evidence for the
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benefits it provides over traditional architecture analysis and technology evaluation
methods, a notional manned Mars 2033 design study was performed utilizing Inte-
grATE and DYREQT. The study showed how various grouping criteria can help to
highlight trends at the architecture level, both due to architecture design options and
technologies. Additionally, it was shown that IntegrATE allows technologies to be
evaluated from a high-level architecture perspective, as opposed to focusing only at
the subsystem level a technology interacts with. Traditional figures of merit for eval-
uating the impact of individual technologies, such as PMF, were shown to provide
false negative performances when viewed at the subsystem level, despite having a net
positive impact on high-level architecture performance metrics which are typically

used for evaluating and selecting space transportation designs.

6.1 Summary of Contributions

This body of research has produced several new capabilities and advancements in
the field of complex system of systems design and technology evaluation, specifically
in the space architecting communities. As a result of formulating a new, integrated,
approach to architecture design and technology evaluation, the IntegrATE framework
was established as a point of departure from traditional system of systems design and
technology evaluation methods to guide future development. Through the develop-
ment of this framework, a new subsystem-level space architecture analysis tool, along
with associated subsystem models, were developed.

The flexibility of the IntegrATE framework allows a wide variety of techniques
to be employed such that the process of problem formulation and decision making
may be tailored to the specific problem and customer requirements. The framework
helps to disarm concerns regarding architecture and technology biases by providing
a highly transparent framework for evaluation and exploration. Due to the high-

level, integrated nature of the framework, the process will help to eliminate bias in
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the technologies and architectures represented within a problem, as this architect
should represent a neutral party with no particular bias for specific architectures or
technologies. Rather, he should be primarily interested in providing a broad repre-
sentation for the problem being studied. The largest shift the IntegrATE framework
makes is with regard to the traditional paradigm of design down selection before
technology evaluation. Rather, IntegrATE brings technology evaluations into the
conceptual design process alongside physical architecture design and analysis. The
purpose for this shift is due to the potential that technologies have to dramatically
shift the composition of the objective space, which under traditional methods may
result in designs being overlooked as suboptimal during traditional design down se-
lection. This is performed through the utilization of a modified set theory system
decomposition technique which includes the addition of a technology space which
affect design attributes through system space mappings.

Exploring results individually has the advantage of allowing clear decisions with
regard to optimal designs to be made. However, by integrating architecture design
and technology evaluation, the resulting objective space becomes extremely large and
may be difficult to analyze. Traditional methods and techniques typically employ
some form of grouping designs together to simplify the analysis of results. However,
there has been little study into how these groupings may affect the results observed.
Typically, groupings are formed based on the particular study being performed. Dur-
ing the formulation of the IntegrATE framework, multiple experiments focused on
better understanding how these grouping criteria may affect the results analysis pro-
cess to guide future methodology development.

In order to perform the necessary experiments to formulate the IntegrATE frame-
work in the domain of space architecture design, new tools and models were required.
Traditional modeling tools in this field typically rely on high-level models which do

not allow subsystem-level trades or technologies to be introduced. Tools developed
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which utilize subsystem-level models are typically highly integrated and difficult to
introduce user-defined models or parameters to account for the effects due to technol-
ogy integration. These shortcomings led to the development of the Dynamic Rocket
Equation Tool (DYREQT), a multi-discipline design, analysis, and optimization tool
to aid in the integration of subsystem-level models for the purpose of space architec-
ture design and analysis. This in turn allows subsystem-level technology integration
such that technology impacts may be observed at the architecture level during the

conceptual design phases.

6.2 Recommendations for Future Work

Frequent design changes and combinatorial explosion of the design space are two of
the primary factors which lead to lack of knowledge of the design space, leading to cost
and schedule overruns. This research has focused primarily on the lack of knowledge
due to frequent design changes by bringing as much information about architecture
design and technology evaluation into the conceptual design phases. However, this
only works to exacerbate the combinatorial explosion which exists in typical system
of systems problems. Additional research needs to focus on ways of handling com-
binatorial explosion. Historically, the most efficient way of reducing combinatorial
explosion was to utilize subject matter experts to reduce the design space to a man-
ageable region. To combat the growing uncertainties which exist in conceptual design
of systems of systems, this down-selected design region is being opened up at the cost
of analysis effort. Fortunately, advancements in computational capability enable large
regions of the design space to be studied. However, this increase in computational
capability is outweighed by the issue of combinatorial explosion as the design space
is opened up. New techniques need to be developed and studied which allow the
broader design space to be considered while managing the growth in combinatorial

explosion in an effort to align computational effort with computational capabilities.

219



This challenge is out of scope for the IntegrATE framework. IntegrATE incorporates
a step to scope the various trade spaces to manageable sizes before moving forward
with analysis, much like current down selection processes in current methods.
Additionally, further work is required to develop the IntegrATE framework into
a full methodology. This requires more study into the application of specific tech-
niques and tools to fulfill specific tasks within the framework. Up to this point, a
full study of available techniques for each phase of the framework has not been per-
formed. Rather, single, appropriate techniques and tools which provided the essential
capabilities to meet the primary research objective of this body of work were selected,
with little study of competing techniques and tools. For instance, Set Theory Sys-
tem Decomposition was selected as a means for decomposing the problem in a way
suitable for integrating technology analysis and architecture design at a subsystem
level. However, other decomposition methods may be better suited to the task of de-
composing these complex systems of systems. The integration of certain model-based
system engineering techniques and paradigms is highly applicable to the system of
systems nature posed by architecture design and technology evaluation. The inte-
gration of these techniques and their ability to clearly define and relate system of
systems requirements, design, and analysis can prove valuable throughout the devel-
opment of new methods based on the IntegrATE framework. The experiments in this
dissertation provide insight into analyzing the complex objective spaces which result
from integrated architecture analysis and technology evaluation. By observing how
the objective space of subsets or groups of design are affected by such parameters as
subset size and grouping criteria, new techniques and procedures may be developed
for processing evaluated results. However, further research into potential data anal-
ysis techniques may aid in implementing findings from this study to better explore
these complex objective spaces. Finally, no consideration was given to implementing

technology uncertainty into IntegrATE. There is no limitation inherent to IntegrATE
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which prevents uncertainties from being considered. It was simply outside of the
scope of this body of work. However, technology uncertainty is an important part of
the selection process and should be an integral part of a fully-developed, integrated
architecture analysis and technology evaluation methodology.

Development of the IntegrATE design framework required the development of a
multi-discipline design, analysis, and optimization tool due to a gap in current analy-
sis capabilities. The development of the Dynamic Rocket Equation Tool (DYREQT)
is a valuable step forward for an end-to-end analysis capability for complex space
architectures. The tool provides the ability to integrate various user-developed mod-
els in an environment specifically tailored for the space architecture design domain.
However, further effort is required to integrate high fidelity trajectory modeling tools
into DYREQT to provide more detailed and automated mission modeling. In addi-
tion to increasing the fidelity and integration of trajectory optimization with vehicle
sizing, further research into the implementation of collaborative optimization may
help to increase computational capability by increasing analysis performance for the

large systems of systems problems formulated using DYREQT.
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APPENDIX A

EXAMPLE DYREQT SETUP

Note: the models used in this notional example are not provided in this document,
as this is here for the purpose of demonstrating the basic problem input structure,
DYREQT setup, and evaluation initiation. The actual calculations are irrelevant.

# append DYREQT directory to path so it can be imported
import os,sys

from copy import deepcopy
sys.path.append(os.path.join(os.getcwd(),".."))
# wmport DYREQT classes

from Problems import DYREQTProblem

# import other packages

import sqlitedict

import numpy as np

# set numpy array printing

np.set_printoptions (threshold=np.nan)

# SETUP INPUTS

# wvehicle input
sub0 = {'subelement_type':'PMFCom',
'params’':{'pmf':0.6,
'mps_isp':{'val':300.0, 'units':"'s"'},
'rcs_isp':{'val':250.0, 'units':'s'}}}
sub2 = {'subelement_type':'FixedStage',
'params’':{'mass':{'val':98.0, 'units': 'kg'},
'mps_isp':{'val':298.0, 'units':'s'}}}
sub3 = {'subelement_type':'FixedMass',
'params’':{'mass':{'val':1000.0, 'units': 'kg'}}}
Boosterl = {'element_type':'Stage', 'subelement_list':[sub0],
'params':{'auto_drop':False}}
Booster2 = {'element_type':'Stage','subelement_list':[deepcopy(sub0)],
'params':{'auto_drop':False}}
Lander = {'element_type':'Stage', 'subelement_list':[deepcopy(sub0)],
'params':{'auto_drop':False}}
Kick = {'element_type':'Stage', 'subelement_list': [sub2],
'params’':{'auto_drop':False}}
Payloadl = {'element_type':'Payload','subelement_list': [sub3],
'params' :{'auto_drop':False}}
element_list = [Boosterl,Booster2,Kick,Lander,Payloadi]
vehicle = {'element_list':element_list}

# mission input

event0 = {'event_type':'Drop', 'params':{}}

eventl = {'event_type':'Burn',
'params':{'dv':{'val':1500.0, 'units': 'm/s'}}}

event2 = {'event_type':'Drop', 'params':{}}

event3 = {'event_type':'Burn',
'params':{'dv':{'val':42.5, 'units': 'm/s'},
'system':'rcs'}}

event4 = {'event_type':'Burn',
'params':{'dv':{'val':850.0, 'units': 'm/s'}}}

eventb = {'event_type':'Burn',
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'params':{'dv':{'val':42.5, 'units"':'m/s'},
'system':'rcs'}}

event6 = {'event_type':'Drop', 'params':{}}

event7 = {'event_type':'Connect', 'params’':{}}

event8 = {'event_type':'MassDelta',
'params':{'mass_type': 'prop', 'top_off':True}}

event9 = {'event_type':'Burn',
'params':{'dv':{'val':1000.0, 'units': 'm/s'}}}

event10 = {'event_type':'Drop', 'params':{}}

event_list = [eventO,eventl,event2,event3,eventd,event5,event6,

event7,event8,event9,event10]
mission = {'event_list':event_list}

# conops input (links mission and vehicle)

conops = [[{'active_elements':[4]}],
[{'active_elements':[0,1]1}],
[{'active_elements':[0,1]1}],
[{'active_elements':[3]}],
[{'active_elements':[2]1}],
[{'active_elements':[3]1}],
[{'active_elements':[2]1}],
[{'active_elements':[4]}],
[{'active_elements':[3]1}],
[{'active_elements':[3]1}],
[{'active_elements':[4]1}]]

architecture_definition = {'vehicle':vehicle,
'mission':mission,
'conops':conops}

# SETUP/RUN MODEL

# create problem
prob = DYREQTProblem(architecture_definition)

# set options

options={'disp':0,
'opt_tol':le-2,
'fd_step':1le-4,
'n2':0,
'times':True,
'file':'baseline'}

# setup problem
prob.setup_problem(options=options)

# solve problem
prob.solve_problem()

HHHH IR

# PRINT RESULTS

# unpack results from database file and print to console
db = sqlitedict.SqliteDict(prob.options['file']+'.db', 'iterations')
data = list(db.items())[-1][1]
u = data['Unknowns']
p = datal['Parameters']
obj = u['objective_value']
print('final objective value: {0}'.format(obj))
print('")
print ('*'*79)
print ('PARAMETERS')
print ('*'*79)
for name,val in sorted(p.items()):
print('{0}: {1}'.format(name,val))
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print('")

print ('*'*79)

print ('UNKNOWNS')

print ('*'*79)

for name,val in sorted(u.items()):
print('{0}: {1}'.format(name,val))
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APPENDIX B

EXAMPLE DYREQT OUTPUT

3k >k 3k >k 3k >k 3k 3k ok 3k ok 3k ok >k ok >k 3k >k 3k >k 3k k >k 3k >k 3k >k 3k >k 5k ok >k 3k >k 3k >k 3k ok >k ok >k 3k >k 3k >k 3k %k >k 5k >k 3k >k 5k >k 5k >k >k 3k >k 3k >k >k >k >k >k >k 3k >k 3k >k >k >k >k %k >k %k %k %k %

RUN TIME STATS

3k >k 3k >k 5k 3k 5k 3k >k 3k ok 3k >k >k 3k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k 5k >k >k 3k >k 3k >k 3k >k >k 3k >k 3k >k 3k >k 5k %k >k 3k >k 3k >k 5k >k >k >k >k 3k >k 3k >k >k >k >k >k >k 3k >k 3k >k >k %k >k %k >k %k *k >k %

Total Run Time: 1.169 s
Init: 0.010 s
Setup: 0.421 s
Solution: 0.151 s
Cleanup: 0.587 s

final objective value: 3.3091343229661314

3k >k 3k >k 3k ok 3k 3k Sk 3k ok 3k ok ok ok sk 3k ok 3k ok 3k ok sk 3k ok 3k ok 3k ok sk ok 3k 3k Sk 3k ok 3k ok ok ok sk k ok 3k ok sk ok sk 3k ok 3k ok sk ok sk ok sk 3k Sk 3k ok Sk ok K ok 3k k ok 3k ok 3k ok ok 3k >k 3k %k k%

PARAMETERS

sk sk ok ok sk ok o sk ok ok ok o sk o sk ok ok sk sk sk ok ok sk sk o sk o ok sk sk sk o ok ok s sk s ok ok sk sk ke sk sk sk sk o ok sk sk sk e sk ok sk sk o ok ok ok
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mission.event2.

0. 0.

mission.event2.vehicle_gross_mass:
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0.
0.

0.
0.

elementO_isp_mps: 300.0
elementO_isp_rcs: 250.0

elementO_mass_flowrate_mps: 33.990540432597605

elementO_mass_flowrate_rcs:

elementO_terminal_event:
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.vehicle_gross_mass:

636.42982254

369.63139727

1369.63139727
total_payload:
1000. 1000.

636.42982254
369.63139727
1369.63139727

475
1369
369

[ 1000.

1000.

475
1369
369

0.]

[ 3309.13432297 2309.13432297

.808539
.631397
.631397

0.]
.808539

.631397
.631397

0.

0. 0. 0.

53
27
27]
0. 0.

53
27
27]
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[ 3309.13432297 2309.13432297

0.

0.

[ 3309.13432297 2309.13432297

1386.82125308

0.

1386.82125308

1386.82125308



mission.event3.

369.63125456
369.63125456
369.63125456
mission.
mission.
mission.
mission.
mission.
mission.event3
0. 0.
mission.event3

647 .55862824
467.63139727
1924.07827912
mission.event4.
0. 0. 0.
event4.
event4.
event4.
event4.
event4.

mission.
mission.
mission.
mission.
mission.
mission.event4d

0. 0.
mission.event4d

647.55862824
467.63139727
1924.07827912

mission.eventb
369.63125456
369.63125456
369.63125456
mission.
mission.
mission.
mission.
mission.
mission.eventb
0. 0.
mission.eventb

647.55862824
467.63139727
1924.07827912

mission.event6
0. 0.
mission.event6

647.55862824
467.63139727
1924.07827912

mission.event7
0. 0.
mission.event7

647.55862824
467.63139727
1924.07827912

mission.event8
0. 0.
mission.event8

647.55862824
467.63139727
1924.07827912

mission.event9
369.63125456
369.63125456
369.63125456
mission.event9
mission.event9
mission.event9

event3.
event3.
event3.
event3.
event3.

eventb.
eventb.
eventb.
eventb.
eventb.

element3_inert_mass:
369.63125456 369.63125456
369.63125456 369.63125456
369.63125456 369.63125456]
element3_isp_mps: 300.0
element3_isp_rcs: 250.0

element3_mass_flowrate_rcs:

element3_terminal_event: (10, 0)
.total_payload: [ 1000. 0. 0.
1000. 1000. 1000. 0.]

.vehicle_gross_mass: [ 3309.13432297
636.42982254  475.80853953
369.63139727 1369.63139727

1369.63139727  369.63139727]

element2_inert_mass: [ 98. 98.

]

element2_isp_mps: 298.0

element2_isp_rcs: 1.0

element2_mass_flowrate_rcs:

element2_terminal_event: (10, 0)
.total_payload: [ 1000. 0. 0.
1000. 1000. 1000. 0.]

.vehicle_gross_mass: [ 3309.13432297
636.42982254  475.80853953
369.63139727 1369.63139727

1369.63139727  369.63139727]

.element3_inert_mass:
369.63125456 369.63125456
369.63125456 369.63125456
369.63125456 369.63125456]

element3_isp_mps: 300.0

element3_isp_rcs: 250.0

element3_mass_flowrate_rcs:
element3_terminal_event: (10, 0)
.total_payload:
1000. 1000. 1000.
.vehicle_gross_mass: [
636.42982254  475.
369.63139727 1369.
1369.63139727  369.
.total_payload:
1000. 1000. 1000.
.vehicle_gross_mass: [
636.42982254  475.80853953
369.63139727 1369.63139727
1369.63139727  369.63139727]
.total_payload:
1000. 1000. 1000.
.vehicle_gross_mass: [
636.42982254  475.
369.63139727 1369.
1369.63139727  369.
.total_payload:
1000. 1000. 1000. 0.]
.vehicle_gross_mass: [ 3309.13432297
636.42982254  475.80853953
369.63139727 1369.63139727
1369.63139727  369.63139727]
.element3_inert_mass: [ 369.63125456
369.63125456 369.63125456
369.63125456 369.63125456
369.63125456 369.63125456]
.element3_isp_mps: 300.0
.element3_isp_rcs: 250.0

0.]
3309.13432297
80853953
63139727
63139727]

0.]
3309.13432297

0.]
3309.13432297
80853953
63139727
631397271

98.

[ 1000. 0. 0.

[ 1000. 0. 0.

[ 1000. 0. 0.

[ 1000. 0. 0.

element3_mass_flowrate_mps: 33.990540432597605
40.78864851911713

0. 0.

2309.13432297

98. 98.

element2_mass_flowrate_mps: 0.0003421866486503115
0.10197162129779283

0. 0.

2309.13432297

element3_mass_flowrate_mps: 33.990540432597605
40.78864851911713

0. 0.

2309.13432297

0. 0.

2309.13432297

2309.13432297

0. 0.

2309.13432297

98.

[ 369.63125456 369.63125456 369.63125456

1386.82125308

98. 0. 0.

1386.82125308

[ 369.63125456 369.63125456 369.63125456

1386.82125308

1386.82125308

1386.82125308

1386.82125308

369.63125456 369.63125456

.element3_mass_flowrate_mps: 33.990540432597605
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mission.event9.element3_mass_flowrate_rcs: 40.78864851911713
mission.event9.element3_terminal_event: (10, 0)
mission.event9.total_payload: [ 1000. 0. 0. 0. 0. 0.
0. 0. 1000. 1000. 1000. 0.]

mission.event9.vehicle_gross_mass: [ 3309.13432297 2309.13432297 1386.82125308

647.55862824  636.42982254  475.80853953

467.63139727  369.63139727 1369.63139727

1924.07827912 1369.63139727  369.63139727]
optimization.total_payload: [ 1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

optimization.vehicle_gross_mass: [ 3309.13432297 2309.13432297 1386.82125308

647.55862824  636.42982254  475.80853953

467.63139727  369.63139727 1369.63139727

1924.07827912 1369.63139727  369.63139727]
vehicle.elementO.element_utilities.elementO_burn_time_mps_eventl_0: 13.567190791698499
vehicle.elementO.element_utilities.elementO_burn_time_rcs_event1_0: 0.0
vehicle.elementl.element_utilities.elementl_burn_time_mps_event1_0: 13.567190791698499
vehicle.elementl.element_utilities.elementl_burn_time_rcs_eventl_0: 0.0
vehicle.element2.element_utilities.element2_burn_time_mps_event4_0: 469396.7726970796
vehicle.element2.element_utilities.element2_burn_time_rcs_event4_0: 0.0
vehicle.element3.element_utilities.element3_burn_time_mps_event3_0: 0.0
vehicle.element3.element_utilities.element3_burn_time_mps_event5_0: 0.0
vehicle.element3.element_utilities.element3_burn_time_mps_event9_0: 16.31180055203983
vehicle.element3.element_utilities.element3_burn_time_rcs_event3_0: 0.27284071287463163
vehicle.element3.element_utilities.element3_burn_time_rcs_event5_0: 0.20047596651912505
vehicle.element3.element_utilities.element3_burn_time_rcs_event9_0: 0.0
vehicle.element3.element_utilities.element3_inert_mass_delta_event8_0: 0.0
vehicle.element3.element_utilities.element3_propellant_mass_delta_event8_0: 0.0
vehicle.element3.element_utilities.element3_top_off_event8_0: True

ok ok ok ok ok ok oK K K K K K K o o o ok ok ok ok ok ok ok ok ok K K K K K K o o o o o o ok ok ok ok ok ok ok K 3k K K K K o o o o ok ok ok ok ok ok ok ok K ok K K K 3k ko ok
UNKNOWNS

e ok ok ok ok ok ok ok K K K K ko o o ok ok ok ok ok ok ok K K K K ko o o o ok ok ok ok ok ok ok K ok K K K K ok ok ok ok ok ok ok ok oK ok K K Kk ok
elementO_auto_drop: False

elementO_burn_time_mps: 13.5672022002112

elementO_burn_time_mps_eventl_0: 13.567190791698499

elementO_burn_time_rcs: 0.0

elementO_burn_time_rcs_eventl1_0: 0.0

elementO_burnout_mass: 369.63131241762227

elementO_dry_mass: [ 369.63131242 369.63131242 369.63131242

0. 0. 0. 0.
0. 0. 0. 0.
0. ]

elementO_eet: 0.0
elementO_element_type: Stage
elementO_inert_mass: [ 369.63139727 369.63139727 369.63139727

0. 0. 0. 0.
0. 0. 0. 0.
0. ]

elementO_isp_mps: 300.0

elementO_isp_rcs: 250.0

elementO_loaded_mass: 830.7878473611283
elementO_mass_flowrate_mps: 33.990540432597605
elementO_mass_flowrate_rcs: 40.78864851911713
elementO_max_propellant_mass_mps: 461.156534943506
elementO_max_propellant_mass_rcs: 0.0
elementO_max_single_burn_prop_mass_mps: 849.1337914791708
elementO_max_single_burn_prop_mass_rcs: 10.197162129779283
elementO_mga_mass: 0.0

elementO_payload_mass: [ 2478.34647561 1478.34647561 1017.18994066

0. 0. 0. 0.
0. 0. 0. 0.
0. ]

elementO_pmr_mass: 0.0
elementO_propellant_mass_boiled_mps: 0.0
elementO_propellant_mass_boiled_rcs: 0.0
elementO_propellant_mass_burned_mps: 461.156534943506
elementO_propellant_mass_burned_rcs: 0.0
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elementO_propellant_mass_leak_mps: 0.0
elementO_propellant_mass_leak_rcs: 0.0
elementO_propellant_mass_mps: [ 461.15653494 461.15653494 0.

0. 0. 0. 0.
0. 0. 0. 0. ]
elementO_propellant_mass_rcs: [ 0. 0. 0. 0. 0. 0. 0. 0. O.

0.]
elementO_propellant_mass_reserve_mps: 0.0
elementO_propellant_mass_reserve_rcs: 0.0
elementO_terminal_event: (10, 0)
elementO_thrust_mps: 100000.0
elementO_thrust_rcs: 100000.0
elementOsubO_inert_mass: 369.63139727421384
elementOsubO_mps_isp: 300.0
elementOsubO_pmf: 0.6
elementOsubO_rcs_isp: 250.0
elementl_auto_drop: False
elementl_burn_time_mps: 13.5672022002112
elementl_burn_time_mps_eventl1_0: 13.567190791698499
elementl_burn_time_rcs: 0.0
elementl_burn_time_rcs_event1_0: 0.0
elementl_burnout_mass: 369.63131241762227
elementl_dry_mass: [ 369.63131242 369.63131242 369.63131242

0. 0. 0. 0.
0. 0. 0. 0.
0. ]

elementl_eet: 0.0
elementl_element_type: Stage
elementl_inert_mass: [ 369.63139727 369.63139727 369.63139727

0. 0. 0. 0.
0. 0. 0. 0.
0. ]

elementl_isp_mps: 300.0

elementl_isp_rcs: 250.0

elementl_loaded_mass: 830.7878473611283
elementl_mass_flowrate_mps: 33.990540432597605
elementl_mass_flowrate_rcs: 40.78864851911713
elementl_max_propellant_mass_mps: 461.156534943506
elementl_max_propellant_mass_rcs: 0.0
elementl_max_single_burn_prop_mass_mps: 849.1337914791708
elementl_max_single_burn_prop_mass_rcs: 10.197162129779283
elementl_mga_mass: 0.0

elementl_payload_mass: [ 2478.34647561 1478.34647561 1017.18994066

0. 0. 0. 0.
0. 0. 0. 0.
0. 1

elementl_pmr_mass: 0.0

elementl_propellant_mass_boiled_mps: 0.0
elementl_propellant_mass_boiled_rcs: 0.0
elementl_propellant_mass_burned _mps: 461.156534943506
elementl_propellant_mass_burned_rcs: 0.0
elementl_propellant_mass_leak_mps: 0.0
elementl_propellant_mass_leak_rcs: 0.0
elementl_propellant_mass_mps: [ 461.15653494 461.15653494 0.

0. 0. 0. 0.
0. 0. 0. 0. ]
elementl_propellant_mass_rcs: [ 0. 0. 0. 0. 0. 0. 0. 0. O.

0.]
elementl_propellant_mass_reserve_mps: 0.0
elementl_propellant_mass_reserve_rcs: 0.0
elementl_terminal_event: (10, 0)
elementl_thrust_mps: 100000.0
elementl_thrust_rcs: 100000.0
elementlsubO_inert_mass: 369.63139727421384
element1lsubO_mps_isp: 300.0
elementisubO_pmf: 0.6
elementlsubO_rcs_isp: 250.0
element2_auto_drop: False
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element2_boiloff_rate_mps: [ 0. 0. 0. 0. 0. O0. 0. 0. 0. O.
element2_boiloff_rate_rcs: [ 0. 0. 0. 0. 0. 0. 0. 0. 0. O.
element2_burn_time_mps: 469396.69810629345
element2_burn_time_mps_event4_0: 469396.7726970796
element2_burn_time_rcs: 0.0
element2_burn_time_rcs_event4_0: 0.0
element2_burnout_mass: 98.0
element2_dry_mass: [ 98. 98. 98. 98. 98. 98. 98. 0. 0.
0. 0. 0.]
element2_eet: 0.0
element2_element_type: Stage
element2_inert_mass: [ 98. 98. 98. 98. 98. 98. 98. 0. 0.
0. 0. 0.]
element2_isp_mps: 298.0
element2_isp_rcs: 1.0
element2_loaded_mass: 258.6212830125146
element2_mass_flowrate_mps: 0.0003421866486503115
element2_mass_flowrate_rcs: 0.10197162129779283
element2_max_propellant_mass_mps: 160.62128301251457
element2_max_propellant_mass_rcs: 0.0
element2_max_single_burn_prop_mass_mps: 337.8842861640941
element2_max_single_burn_prop_mass_rcs: 0.10197162129779283
element2_mga_mass: 0.0
element2_mps_start_penalty: 0.0
element2_payload_mass: [ 3050.51303995 2050.51303995 1128.19997007
388.93734523  377.80853953  377.80853953
369.63139727 0. 0. 0.
0. 0. ]
element2_pmr_mass: 0.0
element2_propellant_mass_boiled_mps: 0.0
element2_propellant_mass_boiled_rcs: 0.0
element2_propellant_mass_burned_mps: 160.62128301251457
element2_propellant_mass_burned_rcs: 0.0
element2_propellant_mass_leak_mps: 0.0
element2_propellant_mass_leak_rcs: 0.0
element2_propellant_mass_mps: [ 160.62128301 160.62128301 160.62128301

o o
P

160.62128301 160.62128301 0. 0.
0. 0. 0. 0.
0. ]

element2_propellant_mass_rcs: [ 0. 0. 0. 0. 0. 0. 0. 0. 0. O.
0.]
element2_propellant_mass_reserve_mps: 0.0
element2_propellant_mass_reserve_rcs: 0.0
element2_terminal_event: (10, 0)
element2_thrust_mps: 1.0
element2_thrust_rcs: 1.0
element2subO_inert_mass: 98.0
element2sub0_mass: 98.0
element2subO_mps_isp: 298.0
element3_auto_drop: False
element3_burn_time_mps: 16.311799541429384
element3_burn_time_mps_event3_0: 0.0
element3_burn_time_mps_event5_0: 0.0
element3_burn_time_mps_event9_0: 16.31180055203983
element3_burn_time_rcs: 0.4733166863348766
element3_burn_time_rcs_event3_0: 0.27284071287463163
element3_burn_time_rcs_event5_0: 0.20047596651912505
element3_burn_time_rcs_event9_0: 0.0
element3_burnout_mass: 369.63139727421384
element3_dry_mass: [ 369.63139727 369.63139727 369.63139727
369.63139727 369.63139727 369.63139727
369.63139727 369.63139727 369.63139727
369.63139727 369.63139727 369.63139727]
element3_eet: 0.0
element3_element_type: Stage
element3_inert_mass: [ 369.63125456 369.63125456 369.63125456
369.63125456 369.63125456 369.63125456
369.63125456 369.63125456 369.63125456
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369.63125456 369.63125456 369.63125456]
element3_inert_mass_delta_event8_0: 0.0
element3_isp_mps: 300.0
element3_isp_rcs: 250.0
element3_loaded_mass: 924.0782791155964
element3_mass_flowrate_mps: 33.990540432597605
element3_mass_flowrate_rcs: 40.78864851911713
element3_max_propellant_mass_mps: 554.4468818413825
element3_max_propellant_mass_rcs: 19.305947957146493
element3_max_single_burn_prop_mass_mps: 1350.7316985998618
element3_max_single_burn_prop_mass_rcs: 18.37085441886237
element3_mga_mass: 0.0
element3_payload_mass: [ 2920.19697773 1920.19697773  997.88390785

258.62128301  258.62128301 98. 98.
0. 1000. 1000. 1000.
0. 1

element3_pmr_mass: 0.0
element3_propellant_mass_boiled_mps: 0.0
element3_propellant_mass_boiled_rcs: 0.0
element3_propellant_mass_burned_mps: 554.4468818413825
element3_propellant_mass_burned_rcs: 19.305947957146493
element3_propellant_mass_delta_event8_0: 0.0
element3_propellant_mass_leak_mps: 0.0
element3_propellant_mass_leak_rcs: 0.0

element3_propellant_mass_mps: [ 0. 0. 0.
0. 0. 0. 0.
0. 554.44688184 0. 0 ]

element3_propellant_mass_rcs: [ 19.30594796 19.30594796 19.30594796
19.30594796  8.17714225  8.17714225 0.
0. 0. 0. 0.
0. ]
element3_propellant_mass_reserve_mps: 0.0
element3_propellant_mass_reserve_rcs: 0.0
element3_terminal_event: (10, 0)
element3_thrust_mps: 100000.0
element3_thrust_rcs: 100000.0
element3_top_off_event8_0: True
element3subO_inert_mass: 369.6312545609217
element3subO_mps_isp: 300.0
element3subO_pmf: 0.6
element3subO_rcs_isp: 250.0
element4_auto_drop: False
element4_dry_mass: [ 1000. 0. 0. 0. 0. 0.
0. 0. 1000. 1000. 1000. 0.]
element4_eet: 0.0
element4_element_type: Payload
element4_inert_mass: [ 1000. 0. 0. 0. 0. 0.
0. 0. 1000. 1000. 1000. 0.]
element4_loaded_mass: 1000.0
element4_mga_mass: 0.0
element4_payload_mass: [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O.
0.1
element4_pmr_mass: 0.0
element4_terminal_event: (10, 0)
element4subO_inert_mass: 1000.0
element4subO_mass: 1000.0
equivalent_stage_1_0_burn_time_acs: 0.0
equivalent_stage_1_O_burn_time_main: 13.567190791698499

equivalent_stage_1_0_dv: 1500.0

equivalent_stage_1_0_final_mass: 1386.8212530791195

equivalent_stage_1_0_initial_mass: 2309.133547403107

equivalent_stage_1_0_isp_acs: 250.0

equivalent_stage_1_0_isp_main: 300.0

equivalent_stage_1_0_jettison_mass: 0.0
equivalent_stage_1_0O_mass_flowrate_acs: 81.57729703823426

equivalent_stage_1_0_mass_flowrate_main: 67.98108086519521

equivalent_stage_1_0_t2w: 8.832024584500271

equivalent_stage_1_0_thrust_acs: 200000.0
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equivalent_stage_1_O_thrust_main: 199999.99999999997

equivalent_stage_3_0_burn_time_acs: 0.0
equivalent_stage_3_O_burn_time_main: 0.27284071287463163

equivalent_stage_3_0_dv: 42.5

equivalent_stage_3_0_final_mass: 636.4298225377794

equivalent_stage_3_0_initial_mass: 647.5586264769281

equivalent_stage_3_0_isp_acs: 250.0

equivalent_stage_3_0O_isp_main: 250.0
equivalent_stage_3_0_jettison_mass: 0.0

equivalent_stage_3_O_mass_flowrate_acs: 40.78864851911713

equivalent_stage_3_0O_mass_flowrate_main: 40.78864851911713

equivalent_stage_3_0_t2w: 15.747087156042383

equivalent_stage_3_O_thrust_acs: 100000.0

equivalent_stage_3_O_thrust_main: 100000.0

equivalent_stage_4_O_burn_time_acs: 0.0
equivalent_stage_4_O_burn_time_main: 469396.7726970796

equivalent_stage_4_0_dv: 850.0

equivalent_stage_4_0_final_mass: 475.80853952526473

equivalent_stage_4_0O_initial_mass: 636.4298480617504

equivalent_stage_4_0_isp_acs: 1.0

equivalent_stage_4_O_isp_main: 298.0

equivalent_stage_4_0_jettison_mass: 0.0
equivalent_stage_4_0_mass_flowrate_acs: 0.10197162129779283

equivalent_stage_4_0_mass_flowrate_main: 0.0003421866486503115

equivalent_stage_4_0_t2w: 0.00016022444831641352

equivalent_stage_4_O_thrust_acs: 1.0

equivalent_stage_4_O_thrust_main: 1.0

equivalent_stage_5_0_burn_time_acs: 0.0

equivalent_stage_5_0_burn_time_main: 0.20047596651912505
equivalent_stage_5_0_dv: 42.5

equivalent_stage_5_0_final_mass: 467.63139727421384

equivalent_stage_5_0_initial_mass: 475.8085410090927

equivalent_stage_5_0_isp_acs: 250.0

equivalent_stage_5_0_isp_main: 250.0

equivalent_stage_5_0_jettison_mass: 0.0
equivalent_stage_5_0_mass_flowrate_acs: 40.78864851911713
equivalent_stage_5_0_mass_flowrate_main: 40.78864851911713

equivalent_stage_5_0_t2w: 21.43122968779246

equivalent_stage_5_0_thrust_acs: 100000.0

equivalent_stage_5_0_thrust_main: 100000.0

equivalent_stage_9_0_burn_time_acs: 0.0

equivalent_stage_9_O_burn_time_main: 16.31180055203983
equivalent_stage_9_0_dv: 1000.0
equivalent_stage_9_0_final_mass: 1369.631397274214

equivalent_stage_9_0_initial_mass: 1924.0783134667918

equivalent_stage_9_0_isp_acs: 250.0

equivalent_stage_9_0_isp_main: 300.0

equivalent_stage_9_0_jettison_mass: 0.0

equivalent_stage_9_0O_mass_flowrate_acs: 40.78864851911713
equivalent_stage_9_0_mass_flowrate_main: 33.990540432597605
equivalent_stage_9_0_t2w: 5.299764598149906

equivalent_stage_9_O_thrust_acs: 100000.0

equivalent_stage_9_O_thrust_main: 99999.99999999999
eventO_final_mass: 2309.1343229661315
eventO_initial_mass: 3309.1343229661315
event10_final_mass: 369.63139727421384
event10_initial_mass: 1369.631397274214
eventl_0_dt: 13.567190791698499

eventl_dv: 1500.0

eventl_final_mass: 1386.8212530791195
eventl_initial_mass: 2309.133547403107
eventl_propellant_mass_acs: 0.0
eventl_propellant_mass_main: 922.3122943239874
eventl_sized_dv: 1500.0

event2_final_mass: 647.558628243875
event2_initial_mass: 1386.8212530791195
event3_0_dt: 0.27284071287463163

event3_dv: 42.5
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event3_final_mass: 636.4298225377794

event3_initial_mass: 647.5586264769281

event3_propellant_mass_acs: 0.0

event3_propellant_mass_main: 11.128803939148705

event3_sized_dv: 42.5

event3_system: rcs

event4_0_dt: 469396.7726970796

event4_dv: 850.0

event4_final_mass: 475.80853952526473

event4_initial_mass: 636.4298480617504

event4_propellant_mass_acs: 0.0

event4_propellant_mass_main: 160.62130853648569

event4_sized_dv: 850.0

event5_0_dt: 0.20047596651912505

eventb_dv: 42.5

eventb_final_mass: 467.63139727421384

event5_initial_mass: 475.8085410090927

eventb_propellant_mass_acs: 0.0

eventb5_propellant_mass_main: 8.177143734878886

eventb_sized_dv: 42.5

eventb_system: rcs

event6_final_mass: 369.63139727421384

event6_initial_mass: 467.63139727421384

event7_final_mass: 1369.631397274214

event7_initial_mass: 369.63139727421384

event8_final_mass: 1924.0782791155964

event8_initial_mass: 1369.631397274214

event8_mass_type: prop

event8_top_off: True

event9_0_dt: 16.31180055203983

event9_dv: 1000.0

event9_final_mass: 1369.631397274214

event9_initial_mass: 1924.0783134667918

event9_propellant_mass_acs: 0.0

event9_propellant_mass_main: 554.4469161925778

event9_sized_dv: 1000.0

num_elements: 5

num_events: 11

objective_value: 3.3091343229661314

total_payload: [ 1000. 0. 0. 0. 0. 0.

0. 0. 1000. 1000. 1000. 0.]

vehicle_gross_mass: [ 3309.13432297 2309.13432297 1386.82125308
647.55862824  636.42982254  475.80853953
467 .63139727 369.63139727 1369.63139727
1924.07827912 1369.63139727 369.63139727]
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APPENDIX C

MODEL INPUT TABLES

The following tables present the set of input parameters to the various models de-
veloped through this body of work. Table 30 consists of mission inputs for the event
models and Table 31 consists of the vehicle inputs for the subsystem models. Each
input contains a brief description, the type of data expected as the input, the allow-
able range of input data, units where applicable, and the default value utilized for
the experiments and proof of concept problem. Table 33 through Table 53 provide
the mappings of the high-level architecture and technology space parameter options

to the design space attribute values.
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Table 33: Number of Stages Option To Design Attribute Value Mappings for Exper-

iments 1-4

Parameter Option

event_list

Attribute Values

element _list

1
2
3

default

default minus events 4 and 7
default minus event 7

s0,payload]
[s0,s1,payload]
[s0,s1,payload]

Table 34: Number of Stages Option To Design Attribute Value Mappings for Proof

of Concept

Parameter Option

Attribute Values

event_list

element_list

1

default minus events 4, 11, 23, 24, 25,

26, 27, and 28

default minus events 4, 11, 23, 24, 25,
26, 27, and 28 if MPS Class is nuclear
otherwise default minus events 4, 11,

26, 27, and 28

default minus events 11, 23, 24, 25, 26,
27, and 28 if MPS Class is nuclear

otherwise default

[s0,payload]

[s0,s1,payload]

[s0,s1,83,payload]

Table 35: Payload Mass Option To Design Attribute Values Mappings

Attribute Value
Parameter Option mass (kg)
1000 1000.0
10000 10000.0

Table 36: MPS Class Option To Design Attribute Value Mappings

start_penalty_mps

Attribute Values
total_thrust_mps

engine_thrust_mps

Parameter Option (ke) (kN) (kN)
liquid 40.0 100.0 25.0
solid 0.0 100.0 100.0
nuclear 40.0 300.0 100.0
electric 1.0 0.1 -
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Table 37: MPS Propellant O

tion To Design Attribute Value Mappings

Attribute Values
isp_mps
Parameter Option (s) mixture_ratio_mps
LOX/LH, 425.0 6.0
LOX/LCH, 350.0 3.5
NTO/MMH 300.0 2.16
Xenon 1000.0 1.0
LH, 900.0 1.0
N, /H, 275.0 1.0

Table 38: RCS Class Option To Design Attribute Value Mappings

Attribute Values

start_penalty_rcs total_thrust_rcs engine_thrust_rcs
Parameter Option (kg) (kN) (kN)
liquid 1.0 1.8 0.45
electric 0.1 0.001 -

Table 39: RCS Propellant Option To Design Attribute Value Mappings

Attribute Values
isp_mps
Parameter Option (s) mixture_ratio_mps
LOX/LH, 400.0 6.0
LOX/LCH, 300.0 3.5
NTO/MMH 290.0 2.16
Xenon 2000.0 1.0
N, /H, 275.0 1.0

Table 40: Pressurant Option To Design Attribute Value Mappings

Attribute Values
Parameter Option pressurant
Helium helium
Nitrogen nitrogen
None none
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Table 41: Tank Configuration Option To Design Attribute Value Mappings

Parameter Option

num_fuel tanks mps num_ox_tanks mps

Attribute Values

Stacked
Disk
Single

1
2
1

1
2
0

Table 42: Structure Type Option To Design Attribute Value Mappings

Attribute Values
Parameter Option manned
Manned TRUE
Unmanned FALSE

Table 43: Power System Option To Design Attribute Value Mappings

Parameter Option

Attribute Values
generator_type

Solar

RTG

solar

rtg

Table 44: MLI Layers Option To Design Attribute Value Mappings

Parameter Option

10
20
30
50
60

Attribute Values
mli_layers_ mps mli_layers_rcs
10 10
20 20
30 30
50 50
60 60

Table 45: Communications Type Option To Design Attribute Value Mappings

Parameter Option

Attribute Values
comms_type

None
Near Earth
Deep Space

0
1
2
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Table 46: Wireless Sensors Option To Design Attribute Value Mappings

Attribute Values
Parameter Option wireless_sensors
TRUE TRUE
FALSE FALSE

Table 47: Low Leak Valves Option To Design Attribute Value Mappings

Attribute Values

start_penalty_mps start_penalty_rcs

Parameter Option (kg) (kg)
TRUE 0.0 0.0
FALSE no change no change

Table 48: High Capacity Energy Storage Option To Design Attribute Value Map-

pings

Attribute Values
storage_specific_energy

Parameter Option (kWh/kg)
TRUE 125.0
FALSE 30.0

Table 49: Composite Structures Option To Design Attribute Value Mappings

Attribute Values
Parameter Option composite
TRUE TRUE
FALSE FALSE

Table 50: Composite Propellant Tanks Option To Design Attribute Value Mappings

composite_fuel composite_ox

Attribute Values

composite_fuel composite_ox

Parameter Option | _tanks_mps _tanks_mps _tanks_rcs _tanks_rcs
TRUE TRUE TRUE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE
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Table 51: Integrated MPS/RCS Propellant Storage Option To Design Attribute

Value Mappings

Table 52: Autogenous Pressurization Option To Design Attribute Value Mappings

Table 53: Active Cryocooling Option To Design Attribute Value Ma

Attribute Values
Parameter Option ivfm
TRUE TRUE
FALSE FALSE

Attribute Values
Parameter Option pressurant
TRUE none
FALSE no change

ppings

Attribute Values

Parameter Option

active_cooling_mps

active_cooling_rcs

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE
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APPENDIX D

DEFAULT DYREQT MODEL INPUTS

The following are default inputs provided to DYREQT for the experiments and the
proof of concept performed for this dissertation. The experiments utilized a notional
round-trip Mars mission performed by a vehicle with up to three unique stages. The
proof of concept utilized a notional manned 2033 Mars fly-by mission with up to a
three-stage vehicle. For both the experiments and the proof of concept, these default
inputs are altered based on the specific architecture and technology space options
to represent a variety of mission/vehicle combinations to be evaluated. Alternatives
are limited to a maximum of three stages in both the experiments and the proof of
concept, but may contain fewer stages. The values represented in these default inputs
are those used for design space attributes which are not mapped to any architecture

space parameters.

D.1 FExperimentation Default Mission Inputs

# MISSION DEF

# default mission/conops description
DESC = 'Roundtrip'

# default mission input
TDI = [{'event_type':'Burn','params':{'dv':{'val':1000., " 'units':'m/s'},
'system':'MPS','acs_factor':4.0}}, #IDI burn
{'event_type':'Idle', 'params':{'dt':{'val':20., 'units':'d'}}}, # transit
{'event_type':'Burn', 'params':{'dv':{'val':50., 'units':'m/s'},
'system':'RCS'}}, # course correction
{'event_type':'Idle', 'params':{'dt':{'val':20., 'units':'d'}}}, # transit
{'event_type':'Drop', 'params':{}}] # drop IDI stage
[{'event_type':'Burn', 'params':{'dv':{'val':1500., 'units':'m/s'},
'system':'MPS', 'acs_factor':4.0}}, # DOI burn
{'event_type':'Idle', 'params':{'dt':{'val':50., 'units':'d'}}},
{'event_type':'Drop', 'params':{}}] # drop DOI stage
TRI = [{'event_type':'Burn','params':{'dv':{'val':800., 'units': 'm/s'},
'system':'MPS','acs_factor':4.0}}, #TRI burn
{'event_type':'Idle', 'params':{'dt':{'val':20., 'units':'d'}}}, # transit
{'event_type':'Burn', 'params':{'dv':{'val':50., 'units':'m/s'},
'system':'RCS'}}, # course correction
{'event_type':'Idle', 'params':{'dt':{'val':20., 'units':'d'}}}] # transit

DOI
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ROI = [{'event_type':'Burn','params':{'dv':{'val':600., 'units’
'system':'MPS', 'acs_factor':4.0}},
{'event_type':'Drop', 'params':{}}] # drop TRI/ROI stage

event_list = TDI + DOI + TRI + ROI
MISSION = {'event_list':event_list}

# default conops input

TDI = [[{'active_elements':[0]}],
[{'active_elements':[]1}],
[{'active_elements':[0]}],
[{'active_elements':[]1}],
[{'active_elements':[0]}]]

DOI = [[{'active_elements':[1]1}],
[{'active_elements':[]}],
[{'active_elements':[1]1}]1]

TRI = [[{'active_elements':[2]}],
[{'active_elements':[1}],
[{'active_elements':[2]1}],
[{'active_elements':[1}]]

ROI = [[{'active_elements':[2]}],
[{'active_elements':[2]}]1]

CONOPS = TDI + DOI + TRI + ROI
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D.2 Experimentation Default Vehicle Inputs

# VEHICLE DEF

# default mission/conops description
DESC = 'Default'

# vehicle input
avionics = {'subelement_type':'AvionicsPhD',
'params' :{'actuators':[0,2,2,2], #
'sensors':[4,1,1,1,1,1,1
<~ 6 sun sensors
'comms_type':2, # deep space
'accuracy':1., # highest accuracy
'wireless_sensors':False,
'additional_devices':[[0.1,15.]1] # main cpu
}

1 reaction wheel and 3 mag torquers
,56,0,0,0], # 1 horizon sensor, 1 magnetometer, 3 gyros,

}
engines = {'subelement_type':'EnginesPhD',
'params’':{'mps_class':'liquid’',
'rcs_class':'liquid',
'propellants_mps':'lox/lch4',
'propellants_rcs':'hydrazine',
'start_penalty_mps':{'val':40.,'units':'kg'},
'start_penalty_rcs':{'val':1.,'units':'kg'},
'total_thrust_mps':{'val':100.,'units':'kN'},
'total_thrust_rcs':{'val':1.8,'units':'kN'},
'isp_mps':{'val':350., 'units':'s'},
'isp_res':{'val':300.,'units':'s'},
'engine_thrust_mps':{'val':25., 'units':'kN'},
'engine_thrust_rcs':{'val':0.45, 'units':'kN'},
'mixture_ratio_mps':3.5,
'mixture_ratio_rcs':3.5,
'core_type':'cermet',
'"T_chamber':{'val':2800., 'units':'K'},
'P_chamber':{'val':3.5, 'units':'MPa'},
'thruster_efficiency_mps':0.5,
'thruster_efficiency_rcs':0.5,
'thruster_specific_mass_mps':{'val':7.,'units': 'kg/kW'},
'thruster_specific_mass_rcs':{'val':7.,'units': 'kg/kW'},
'thruster_power_mps':{'val':1.,'units':'kW'},
'thruster_power_rcs':{'val':1.,'units':'kW'},
'redundancy_mps':0.2,
'redundancy_rcs':0.2,
'power_mgmt_specific_mass_mps':{'val':6., 'units': 'kg/kW'},
'power_mgmt_specific_mass_rcs':{'val':6., 'units': 'kg/kW'},
}
}
power = {'subelement_type':'PowerPhD',
'params' :{'generator_type':'PV',
'transmission_efficiency':0.9,
'cell_efficiency':0.175,
'cell_degradation':{'val':3.75, 'units':'1/yr'},
'array_density':{'val':3.5, 'units':'kg/m**2'},
'discharge_depth':0.2,
'storage_specific_energy':{'val':30., 'units':'Wxh/kg'},
'energy_transfer':'peak-tracking',
'low_array_degradation':False,
'orbit_period':{'val':2.,'units':'h'}, # low lunar orbit
'max_eclipse':{'val':0.5, 'units':'h'}, # low lunar orbit
'ops_distance':{'val':1.,'units':'AU'}, # low lunar orbit
'mission_duration':{'val':0.5, 'units':'yr'}
}
}
structures = {'subelement_type':'StructuresPhD',
'params':{'manned’':False,
'truss':False,
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'adapter' :False,
'composite':False,
'A_de':-1.
}
}
tanks = {'subelement_type':'TanksPhD',
'params’' :{'num_fuel_tanks_mps':2,
'num_ox_tanks_mps':2,
'fuel_pressure_mps':{'val':40., 'units':'psi'},
'ox_pressure_mps':{'val':50., 'units':'psi'},
'ld_ratio_fuel_tanks_mps':1.,
'ld_ratio_ox_tanks_mps':1.,
'separator_type_mps':'pmd',
'num_fuel_tanks_rcs':1,
'num_ox_tanks_rcs':1,
'fuel_pressure_rcs':{'val':40., 'units':'psi'},
'ox_pressure_rcs':{'val':50.,'units':'psi'},
'ld_ratio_fuel_tanks_rcs':1.,
'ld_ratio_ox_tanks_rcs':1.,
'separator_type_rcs':'pmd',
'pressurant’':'Helium',
'pressurant_pressure':{'val':6000., 'units':'psi'},
'num_tanks_pressurant':2,
'tank_ld_ratio_pressurant':1.0,
'material_strength':{'val':538., 'units':'MPa'},
'material_density':{'val':2685., 'units': 'kg/m**3'},
'copv_pressurant_tank':False,
'composite_fuel_tanks_mps':False,
'composite_ox_tanks_mps':False,
'composite_fuel_tanks_rcs':False,
'composite_ox_tanks_rcs':False,
'ivfm':False,
}
}
thermal = {'subelement_type':'ThermalPhD',
'params’':{'mli_layers_mps':60,
'mli_layers_rcs':60,
'active_cooling_mps':False,
'active_cooling_rcs':False,
'radiator_density':{'val':4.5, 'units': 'kg/m**2'},
'external _tanks':False,
'hi_efficiency_radiators':False,
'ops_distance':{'val':1.0, 'units':'AU'},
'deep_space':False,
'orbit_alt':{'val':500.,'units':'km'}, # low lunar
'r_body':{'val':1737.,'units':'km'}, # moon
'T_body':{'val':270.,'units':'K'}, # moon
'albedo':0.12 # moon
}
}
# fized mass subsystem for payload
submass = {'subelement_type':'FixedMass',
'params':{'mass':{'val':1000.0, 'units': 'kg'}}}
stage = {'element_type':'Stage',
'subelement_list': [avionics,engines,power,structures,tanks,thermal],
'params’' :{'auto_drop':False, 'mps_reserve':3.,'rcs_reserve':3.,
'boiloff_model':'constant-rate', 'mga':20.0}}
sO = deepcopy(stage)
sl = deepcopy(stage)
s2 = deepcopy (stage)
payload = {'element_type':'Payload', 'subelement_list':[submass],}
element_list = [s0,s1,s2,payload]
VEHICLE = {'element_list':element_list}
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D.3 Proof of Concept Default Mission Inputs

# MISSION DEF

# mission input, 2033 flight

EO0 = {'event_type':'Idle', 'params':{'dt':{'val':145., 'units':'d'}}}

EO1 = {'event_type':'Burn', 'params':{'dv':{'val':220., 'units':'m/s'}, 'system':'RCS'}} # TCMDRO_33

EO2 = {'event_type':'Idle', 'params':{'dt':{'val':200., 'units':'d'}}}

E03 = {'event_type':'Burn', 'params':{'dv':{'val':629., 'units':'m/s'}, 'system':'MPS'}} # TMI_33_1

EO4 = {'event_type':'Drop', 'params':{}} # drop TMI_33

EO5 = {'event_type':'Idle', 'params':{'dt':{'val':130., 'units':'d'}}}

EO6 = {'event_type':'Burn','params':{'dv':{'val':40., 'units':'m/s'}, 'system':'RCS'}} # TCM1_33

EO7 = {'event_type':'Idle', 'params':{'dt':{'val':131., 'units':'d'}}}

EO8 = {'event_type':'Drop', 'params':{}} # drop ConMOI_33

E09 = {'event_type':'Idle', 'params':{'dt':{'val':1.,'units':'d'}}}

E10 = {'event_type':'Burn', 'params':{'dv':{'val':1290., 'units':'m/s'}, 'system':'MPS'}} # Flyby_33

E11 = {'event_type':'Drop', 'params':{}} # drop FlyBy_33

E12 = {'event_type':'Idle', 'params':{'dt':{'val':159., 'units':'d'}}}

E13 = {'event_type':'Burn', 'params':{'dv':{'val':40., 'units':'m/s'}, 'system':'RCS'}} # TCM2_33

E14 = {'event_type':'Idle', 'params':{'dt':{'val':159., 'units':'d'}}}

E15 = {'event_type':'Drop', 'params':{}} # drop ConE0OI_33

E16 = {'event_type':'Burn', 'params':{'dv':{'val':1072.,'units': 'm/s'}, 'system':'MPS'}} # EOI_33

E17 = {'event_type':'Drop', 'params':{}} # drop ConRd_33

E18 = {'event_type':'Burn', 'params':{'dv':{'val':220., 'units':'m/s'}, 'system':'RCS'}} # EOI_33

E19 = {'event_type':'Idle', 'params':{'dt':{'val':200., 'units':'d'}}}

E20 = {'event_type':'Drop', 'params':{}} # drop DSH

E21 = {'event_type':'Burn', 'params':{'dv':{'val':5.,'units':'m/s'}, 'system':'RCS'}} # EOI_33 Disposal

E22 = {'event_type':'Drop', 'params':{}} # drop EOI_33

E23 = {'event_type':'Connect', 'params':{}} # connect Flyby_33

E24 = {'event_type':'Burn', 'params':{'dv':{'val':5., 'units':'m/s'}, 'system':'RCS'}} # Flyby_33

— Disposal

E25 = {'event_type':'Drop', 'params':{}} # drop Flyby_33_33

E26 = {'event_type':'Connect', 'params':{}} # connect TMI_33

E27 = {'event_type':'Burn', 'params':{'dv':{'val':5.,'units':'m/s'}, 'system':'RCS'}} # TMI_33 Disposal

E28 = {'event_type':'Drop', 'params':{}} # drop TMI_33_33

E29 = {'event_type':'Connect','params':{}} # connect DSH

# 2033 mission

event_list = [E00,E01,E02,E03,E04,E05,E06,E07,E08,E09,E10,E11,E12,E13,E14,
E15,E16,E17,E18,E19,E20,E21,E22,E23,E24,E25,E26 ,E27 ,E28,E29]

MISSION = {'event_list':event_list}

# 2033 conops

CONOPS = [[{'active_elements':[]1}], # E00
[{'active_elements':[0]}], # EO1
[{'active_elements':[]1}], # E02
[{'active_elements':[0]}], # E03
[{'active_elements': [0]}], # E04
[{'active_elements':[]}], # EO5
[{'active_elements':[1]}], # E06
[{'active_elements':[]1}], # EO7
[{'active_elements':[5]}], # EO8
[{'active_elements':[1}], # E09
[{'active_elements':[1]}], # E10
[{'active_elements':[1]1}], # E11
[{'active_elements':[]1}], # E12
[{'active_elements':[2]}], # E13
[{'active_elements':[]1}], # E14
[{'active_elements':[6]}], # E15
[{'active_elements':[2]}], # E16
[{'active_elements':[4]}], # E17
[{'active_elements':[2]1}], # E18
[{'active_elements':[]1}], # E19
[{'active_elements':[3]1}], # E20
[{'active_elements':[2]}], # E21
[{'active_elements':[2]}], # E22
[{'active_elements':[1]1}], # E23
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[{'active_elements':[1]1}], # E2/

[{'active_elements':[1]}], # E25

[{'active_elements':[0]}], # E26

[{'active_elements':[0]}], # E27

[{'active_elements':[0]1}], # E28

[{'active_elements':[3]}], # E29
1

# default vehicle
# index [ ol 112 3] 4 / 5 / 6 /
# element_list = [s0,s1,s2,DSH,ConRd_33,ConMOI_33,ConEOI_33]
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D.4 Proof of Concept Default Vehicle Inputs

# VEHICLE DEF

# vehicle input
avionics = {'subelement_type':'AvionicsPhD',
'params':{'actuators':[0,2,2,2], # I reaction wheel and 3 mag torquers
'sensors':[4,1,1,1,1,1,1,5,0,0,0], # 1 horizon sensor, 1 magnetometer, 3 gyros,
— 6 sun sensors
'comms_type':2, # deep space
'accuracy':1., # highest accuracy
'wireless_sensors':False,
'additional_devices':[[0.1,15.]1] # main cpu
}
}
engines = {'subelement_type':'EnginesPhD',
'params’':{'mps_class':'liquid’',
'rcs_class':'liquid',
'propellants_mps':'lox/lch4',
'propellants_rcs':'hydrazine',
'start_penalty_mps':{'val':40.,'units':'kg'},
'start_penalty_rcs':{'val':1.,'units':'kg'},
'total_thrust_mps':{'val':100.,'units':'kN'},
'total_thrust_rcs':{'val':1.8,'units':'kN'},
'isp_mps':{'val':350., 'units':'s'},
'isp_res':{'val':300., 'units':'s'},
'engine_thrust_mps':{'val':25., 'units':'kN'},
'engine_thrust_rcs':{'val':0.45, 'units':'kN'},
'mixture_ratio_mps':3.5,
'mixture_ratio_rcs':3.5,
'core_type':'cermet',
'T_chamber':{'val':2800., 'units':'K'},
'P_chamber':{'val':3.5, 'units':'MPa'},
'thruster_efficiency_mps':0.5,
'thruster_efficiency_rcs':0.5,
'thruster_specific_mass_mps':{'val':7.,'units': 'kg/kW'},
'thruster_specific_mass_rcs':{'val':7.,'units': 'kg/kW'},
'"thruster_power_mps':{'val':1.,'units':'kW'},
'thruster_power_rcs':{'val':1.,'units':'kW'},
'redundancy_mps':0.2,
'redundancy_rcs':0.2,
'power_mgmt_specific_mass_mps':{'val':6.,'units': 'kg/kW'},
'power_mgmt_specific_mass_rcs':{'val':6.,'units': 'kg/kW'},
}
}
power = {'subelement_type':'PowerPhD',
'params’' :{'generator_type':'PV',
'transmission_efficiency':0.9,
'cell_efficiency':0.175,
'cell_degradation':{'val':3.75, 'units':"'1/yr'},
'array_density':{'val':3.5, 'units':'kg/m**2'},
'discharge_depth':0.2,
'storage_specific_energy':{'val':30., 'units':'Wxh/kg'},
'energy_transfer': 'peak-tracking',
'low_array_degradation':False,
'orbit_period':{'val':2.,'units':'h'}, # low lunar orbit
'max_eclipse':{'val':0.5,'units':'h'}, # low lunar orbit
'ops_distance':{'val':1.,'units':'AU'}, # low lunar orbit
'mission_duration':{'val':0.5, 'units':'yr'}
}
}
structures = {'subelement_type':'StructuresPhD',
'params':{'manned’':False,
'truss':False,
'adapter' :False,
'composite':False,
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'A_de':-1.
}
}
tanks = {'subelement_type':'TanksPhD',
'params’' :{'num_fuel_tanks_mps':2,
'num_ox_tanks_mps':2,
'fuel_pressure_mps':{'val':40., 'units':'psi'},
'ox_pressure_mps':{'val':50., 'units':'psi'},
'ld_ratio_fuel_tanks_mps':1.,
'ld_ratio_ox_tanks_mps':1.,
'separator_type_mps':'pmd',
'num_fuel_tanks_rcs':1,
'num_ox_tanks_rcs':1,
'fuel_pressure_rcs':{'val':40.,'units':'psi'},
'ox_pressure_rcs':{'val':50.,'units':'psi'},
'ld_ratio_fuel_tanks_rcs':1.,
'ld_ratio_ox_tanks_rcs':1.,
'separator_type_rcs':'pmd',
'pressurant’':'Helium',
'pressurant_pressure':{'val':6000., 'units':'psi'},
'num_tanks_pressurant':2,
'tank_ld_ratio_pressurant':1.0,
'material_strength':{'val':538., 'units':'MPa'},
'material_density':{'val':2685., 'units’': 'kg/m**3'},
'copv_pressurant_tank':False,
'composite_fuel_tanks_mps':False,
'composite_ox_tanks_mps':False,
'composite_fuel_tanks_rcs':False,
'composite_ox_tanks_rcs':False,
'ivfm':False,
}
}
thermal = {'subelement_type':'ThermalPhD',
'params’':{'mli_layers_mps':60,
'mli_layers_rcs':60,
'active_cooling_mps':False,
'active_cooling_rcs':False,
'radiator_density':{'val':4.5, 'units': 'kg/m**2'},
'external_tanks':False,
'hi_efficiency_radiators':False,
'ops_distance':{'val':1.0, 'units':'AU'},
'deep_space':False,
'orbit_alt':{'val':500.,'units':'km'}, # low lunar
'r_body':{'val':1737.,'units':'km'}, # moon
'T_body':{'val':270.,'units':'K'}, # moon
'albedo':0.12 # moon
}
}
# fized mass subsystem for payload
submass = {'subelement_type':'FixedMass', 'params':{'mass':{'val':1000.0, 'units': 'kg'}}}
stage = {'element_type':'Stage', 'subelement_list':[engines,power,structures,tanks,thermal,avionics],
'params’' :{'auto_drop':False, 'mps_reserve':3.,'rcs_reserve':3.,
'boiloff_model':'constant-rate', 'mga':20.0}}
sO = deepcopy(stage)
s1 = deepcopy(stage)
s2 = deepcopy(stage)
# general payload element definitions
payload = {'element_type':'Payload', 'subelement_list':[submass], 'params':{'auto_drop':Falsel}}
DSH = deepcopy(payload); DSH['subelement_list'][0]['params']['mass'] = 20000.
ConRd_33 = deepcopy(payload); ConRd_33['subelement_list'][0]['params']['mass'] = 9000.
ConMOI_33 = deepcopy(payload); ConMOI_33['subelement_list'][0]['params']['mass'] = 2000.
ConEOI_33 = deepcopy(payload); ConEOI_33['subelement_list'][0]['params']['mass'] = 1000.
element_list = [s0,s1,s2,DSH,ConRd_33,ConM0I_33,ConE0I_33]
VEHICLE = {'element_list':element_list}
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APPENDIX E

LAYERED PARETO FRONTS

A Pareto front is a set of undominated data points in a multi-objective space. Figure
89 illustrates the concept of Pareto front layers for a two-dimensional objective space
where both objectives or minimized. For each layer, the set of design points are
undominated by any design points of a higher layer. The layered Pareto front consists
of the combination of all points in each layer up to and including the desired layer
number. For instance, a three-layered Pareto front would consist of the combination

of all the points on layers one, two, and three in Figure 89.

Layered Pareto Fronts

Layer

W ods o =

Objective B

Objective A

Figure 89: Notional Example of Pareto Front Layers

Each layer is obtained by excluding the previous layer from the objective space and
evaluating a new Pareto front. This process of exclusion and reevaluation continues

for the desired number of layers. This process may continue until all design points
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of the entire objective space are returned. The following JMP add-in was developed
for the purpose of providing a simple interface for selecting these multi-layer Pareto

fronts from a set of multi-objective data for this thesis.

E.1 JSL Layred Pareto Front Analysis Script

//Layered Pareto Fronts
//By Douglas J. Trent
// douglas.trent@nasa.gov

Names Default To Here( 1 );
get_settings = function({cols},

setwin = New Window("Layered Pareto Fronts for "||Char(dt << Get Name(Q))I|[|"",
<< modal,
Panel Box("Select dominant high values",
Text Box("Check boxes to maximize."),
Text Box("Uncheck boxes to minimize."),
spacer box(size (275,5)),
cb_rol = Checkbox( cols )
),
Panel Box("Options",
Lineup Box(
N Col( 3 ),
Text Box("Select number of (Pareto) Dominant layers:"),
nb = Number Edit Box( 1 , 3), nb << Set Increment(1),

sb = Spin Box(
Function( {value},
if (value >= 1,
nb << Increment( value ),
value <= -1,
if(nb << Get() > 1, nb << Increment( value ) )
)
)
)
),
H List Box(
Spacer Box(size(98,0)),
Text Box("Create subset data table:"),
cb_sub = Check Box( "" )
))
H List Box(
Spacer Box(size(125,0)),
Text Box("Save script to table:"),
cb_scr = Check Box( "" )
),
H List Box(
Spacer Box(size(93,0)),
Text Box("Hide non-dominant rows:"),
cb_h = Check Box( "" )
),
H List Box(
Spacer Box(size(78,0)),
Text Box("Exclude non-dominant rows:"),
cb_e = Check Box( "" )
)
),
Spacer Box(size(0,10)),
H List Box(

Spacer Box(size(163,0)),
Button Box("OK",
b =1;
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1 = nb << Get();

if(l <1, 1 =1);

s = cb_sub << Get();

sc = cb_scr << Get();

h = cb_h << Get();

e cb_e << Get();

r ={};

for(i=1, i<=nitems(cols), i++,
r[i] = cb_rol << Get(i);

);

),

Button Box("Cancel",
b = 0;
1l=1;
s = 0;
r={}
sc = 0;
h = 0;
e=0

)

);
return(evallist({b,1,s,r,sc,h,e}))
)3
get_cols = function({dt},
colwin = New Window("Layered Pareto Fronts for "||Char(dt << Get Name())||"",
<< modal,
Text Box("Select columns for (Pareto) Dominant points"),

Spacer Box(size(0,10)),
columnList = Col List Box(dt,

all,
width(250),
nlines(30)
)’
Spacer Box(size(0,10)),
H List Box(
Spacer Box(size(145,0)),
Button Box("OK",
c = columnList << Get Selected();
if (nitems(c)>0,
b=1,
b=2
)
),
Button Box("Cancel",
b =0;
c =1}
1=1;
s = 0;
r={};
sc = 0;
h = 0;
e = 0;
)
)
)
if (b==1,
{b,1,s,r,sc,h,e} = get_settings(c)
);

return(evallList ({b,c,1,s,r,sc,h,e}));
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Select Layered Dominant = function({cols={},roles={},layers=1,subset=0,hide=0,exclude=0},

// get the data table
dt = Current Data Table();

// select columns
if(cols != {} & nitems(roles) == nitems(cols) & layers > 0, button=1; scr=0;,
{button,cols,layers,subset,roles,scr,hide,exclude} = get_cols(dt)

)

// parse user selection
if (button>0 & nitems(cols) > O,

// get the included row

rows = dt << Select Where( Excluded(Row State()) != 1 ) << Get Selected Rows();
nrows = nrows(rows);

StatusMsg("# of included rows: "||Char(nrows)||"");

StatusMsg("performing 1pf on "||Char(nitems(cols))||" columns");

// run lpf

pfs = {};

for(i=1, i<=layers, i++,
StatusMsg("Calculating layer "||Char(i)||"");
dt << Select Dominant( {cols}, roles );
dt << Exclude;
dt << Label;
//1pf(cols, roles, dt);
);

// reset row states of lpfs
dt << Select Where( Labeled(Row State()) == 1 ) << Exclude << Label;

// create subset table of Pareto front

if (subset > 0,
dt << Subset(Output Table(""||Char(layers)||"-Layered Pareto Front Analysis"),
< Selected Rows, All Columns)

);

// hide all other rows

if (hide > 0,
dt << Invert Row Selection << Hide;
dt << Invert Row Selection

)

// exclude all other rows

if (exclude > 0,
dt << Invert Row Selection << Exclude;
dt << Invert Row Selection

);

// create table script

if(scr == 1,
lpfscript = "
include (\!"$ADDIN_HOME(com.trent.lpf)\1lpf.jsl\!");
cols = "||Char(cols)||";
roles = "||Char(roles)||";
layers = "||Char(layers)||";
subset = "||Char(subset)||";
hide = "||Char(hide) | |";
exclude = "||Char(exclude)||";

Select Layered Dominant(cols,roles,layers,subset,hide,exclude);
n.

eval (parse("dt<<New Script(\!"LPFs\!","||lpfscript||");"));
);

StatusMsg("operation complete"),
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button == O,

StatusMsg("operation canceled by user"),

StatusMsg("no columns selected, operation aborted");
/*
new window("Error Message",
<<modal,
VList Box(align("center"),
Text Box("No columns selected"),
Text Box("Operation aborted"),
Spacer Box(size(0,10)),
Button Box("O0K")

*/
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APPENDIX F

EXPERIMENT 2 SIMILARITY DISTRIBUTION

SUMMARY STATISTICS

The purpose of Experiment 2 is to determine if presenting results of individual archi-
tectures for these large spaces would prevent high-level design decisions from being
studied. It is expected that high-level architecture trends will be difficult to observe
when limiting the top results due to such large numbers of a single architecture type
in the optimal objective space. The similarity metric described in Chapter 4.5.4 was
utilized as a measure of likeness of alternatives. The distributions of this similar-
ity metric of the alternatives for the top N design points were examined to reach
conclusions with regard to Hypothesis 5.1. The following set of data supports the
observations detailed in Chapter 5.1.3.

Data was collected for a variety of objective spaces: single-objective in cost, single-
objective in mass, and multi-objective in cost and mass. This was due to the incon-
sistency between number of alternatives with number of Pareto front layers based on
the defined objective space. For each of these objective spaces, varying-sized sets of
top alternatives were examined for similarity of alternatives. The tables summarize
the distribution statistics for each of the sets, while the graphs provide visualization
of the distributions. These distributions of the top N alternative subsets can be com-
pared to the distribution of similarity for all alternatives in Figure 90 to determine the
quality of representation of the full set of alternatives provided by the top N subset

distribution.
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Table 54: LPF Layers and Number of Design Points

N
# of Layers Multi-Objective Mass-Objective Cost-Objective
1 2 2 2
2 6 4 4
3 10 6 6
4 16 8 8
) 24 10 10
10 68 20 20
20 226 40 40
30 418 60 62
40 830 80 88
50 1328 100 108
100 5090 200 218
200 17030 402 458
300 37651 604 708
400 76937 806 974
500 135508 1008 1230
Quantiles Summary Statistics

maximum 0.928456  Mean 0.9079202

minimum 0.880507  Std Dev 0.0074955

Std Err Mean 2.5095e-6

Upper 95% Mean 0.9079251

Lower 95% Mean 0.9079153

N 8921088

0.88 0.89 0.9 0.905 0.915 0.925

Figure 90: Full Objective Space Similarity Distribution
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Table 55: Multi-Objective Similarity Distribution Summary

N

Max

Min

Range

u

o

2

6

10

16

24

68

226
418
830
1328
5090
17030
37651
76937
135508
8921088

0.894712
0.894712
0.894712
0.894712
0.902106
0.902106
0.903339
0.903339
0.909622
0.909622
0.909622
0.916179
0.916395
0.920666
0.921899
0.928456

0.893173
0.889739
0.889739
0.888201
0.888201
0.888201
0.886662
0.885123
0.885123
0.885123
0.883585
0.882046
0.882046
0.882046
0.882046
0.880507

0.001539
0.004973
0.004973
0.006511
0.013905
0.013905
0.016677
0.018216
0.024499
0.024499
0.026037
0.034133
0.034349
0.038620
0.039853
0.047949

0.8939425
0.8922850
0.8929480
0.8918409
0.8929012
0.8944559
0.8944350
0.8940312
0.8946365
0.8949155
0.8960166
0.8969876
0.8982201
0.8997035
0.9008529
0.9079200

0.0010882
0.0017542
0.0016448
0.0020614
0.0031756
0.0043119
0.0045575
0.0045128
0.0046238
0.0047745
0.0046291
0.0047947
0.0052000
0.0055028
0.0058279
0.0074960
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Table

56: Mass-Objective Similarity Distribution Summary

N

Max

Min

Range

u

o

2

6

10

16

24

68

226
418
830
1328
5090
17030
37651
76937
135508
8921088

0.894712
0.894712
0.894712
0.894712
0.894712
0.902106
0.902106
0.902228
0.909622
0.909622
0.909622
0.916179
0.919829
0.920666
0.927223
0.928456

0.893173
0.889739
0.888201
0.888201
0.888201
0.888201
0.885123
0.885123
0.885123
0.883585
0.883585
0.882046
0.882046
0.882046
0.882046
0.880507

0.001539
0.004973
0.006511
0.006511
0.006511
0.013905
0.016983
0.017105
0.024499
0.026037
0.026037
0.034133
0.037783
0.038620
0.045177
0.047949

0.8939425
0.8922850
0.8919535
0.8914563
0.8918706
0.8949466
0.8933503
0.8936429
0.8939707
0.8944469
0.8959993
0.8975037
0.8987812
0.9001654
0.9013363
0.9079200

0.0010882
0.0017542
0.0022143
0.0020993
0.0020328
0.0042156
0.0045252
0.0044170
0.0048318
0.0051703
0.0050216
0.0052876
0.0056004
0.0059191
0.0060132
0.0074960
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Table 57: Cost-Objective Similarity Distribution Summary

N

Max

Min

Range

u

o

2

6

10

16

24

68

226
418
830
1328
5090
17030
37651
76937
135508
8921088

0.894712
0.894712
0.894712
0.894712
0.902106
0.902106
0.903339
0.903339
0.909622
0.909622
0.909622
0.916179
0.916395
0.920666
0.921899
0.928456

0.893173
0.889739
0.889739
0.888201
0.888201
0.888201
0.886662
0.885123
0.885123
0.885123
0.883585
0.882046
0.882046
0.882046
0.882046
0.880507

0.001539
0.004973
0.004973
0.006511
0.013905
0.013905
0.016677
0.018216
0.024499
0.024499
0.026037
0.034133
0.034349
0.038620
0.039853
0.047949

0.8939425
0.8922850
0.8929480
0.8918409
0.8929012
0.8944559
0.8944350
0.8940312
0.8946365
0.8949155
0.8960166
0.8969876
0.8982201
0.8997035
0.9008529
0.9079200

0.0010882
0.0017542
0.0016448
0.0020614
0.0031756
0.0043119
0.0045575
0.0045128
0.0046238
0.0047745
0.0046291
0.0047947
0.0052000
0.0055028
0.0058279
0.0074960
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APPENDIX G

EXPERIMENT 3 PORTFOLIO DISTRIBUTION DATA

The purpose of experiment 3 is to determine how parameters on which to group sets
of architectures into portfolios affect the resulting figures of merit of those portfolios.
Hypothesis 5.2 claims that the size of the portfolio is related to the variation of portfo-
lio aggregate metrics, as well as the variation of various metrics between alternatives
within a portfolio. Chapter 5.1.4 observed this hypothesis to be false, supported by
observations in the variance of various objective parameters for different grouping
criteria. This appendix provides detailed data for the distribution statistics of the
portfolios formed by these grouping criteria supporting the observations detailed in

Chapter 5.1.4.

280



G0z09'9 1-9801°6 £20T€L I9IECH9 S+OFFI'S FH09LEF 8+0668F F+00£9°¢ LESSEIT [[eWg 3107
G96L5'0 1-9G60°6 £°198°9 1-0009'9 S+OGHE'S FHoCchy $+96¥9°C F40926'¢ FHSPLIT oBrer] 310Yg
G-08FL'0 1-9060'6 £0£GF9 TOI8F'9 8+0C6T'S F+o608F S+09¥8F F+0G89°¢ GZISSST [[ewg Suory
GOF0L'9 T9GL0'6 £09F0'9 T-9FG9°9 §+078E'C P+HO6LET 8+0LLL'G F+9820F FILVLST o8rer Suor]
G00GL'9 1906606 £0706'9 T9GGH'9 8+0891°C P+oghed 8+0FL8F F+0969°C 796987E UOT}O0II0)) [[BUIS
G09TL'9 T-9F80°6 £089F'9 1-9929°9 S+0GIE'S F+Hol0FF S+oVIL'C F409L6'¢ 8096F3E UO130110)) 08T
G9£G9'9 1-0001°6 €OFSTL T9GIG'9 S+OGET'S FHO66EF S+0862°C FHoLLL'E TS9LLEE Aeyg y10Yg
G-0,8L°0 T-9¢80°6 £GZE'9 T9LIG9 8+9887'G FHOFFET 8+968€°C F10958°¢ 638291 Aeyg Buor

so gl gWwdodamnwd” (AN) (IAN) (8) (8) N uonpdrioseq

m.m.osm.o 0 m.m.o&m.o i m.m.osms o) m.m.osms 1

SO19STYR)G ATewing UOIINLIISI(] SOI[0J1I0] UOISSI[N :8G 9[qel,

281



Similarity Variance
|
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Gross Cost Variance
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0 500000 1000000 1500000 2000000 2500000 3000000 3500000
Portfolio Size

Figure 100: Correlation in Portfolio Size vs Objective Metric Variance for Mission-
based Portfolios

282



G-OTEY'L T9€90°6 €9°799'8 T1-970¢'9 8+98ET'9 ¥H+O9¥LF S+98IT'G T+9169°¢ 99079GT SUI9], [RULIDY ],
G-9FET'L 191906 €-907S'L TOLVF'9 8+9EL8'G ¥1+98F9F 8+9¢GT'G 71+9869°¢ CRCVOST =10 Rl ) LIS
G-9G97°L T-9290°6 €-9CT9°L T-90LV'9 8+99CL°G ¥+9209F 8+9FF6 TV ¥+9919°¢ TLEGTGT ST, SoIMIOILILG
G-9¢9¢°L T-9¢L0°6 €-9G90°L T-9T0G'9 S+9CTF'G V19697V 8+98YC'G ¥+909L°¢ 80SETTT SUI9], Hue],
G-OLEV'L TOT190°6 €99€G°L T9LZV'9 8+9¢G6'¢ ¥1+2019F 81+98YT'SG ¥1+99L9°€ 6CLVOST STPA, OUITU
G-9GET'L T-OT90°6 €9GLGL T-98FF'9 8+9FPL'S ¥H30VS¥ 8+9CST'S 7+9¢89°¢ GPSv0GT S, L2l
G-9TCT'9 196606 €9¢67'9 T-989¢'9 8+98CT'C THOLVET S+909¢°¢ T+90G8°C 9¢€CE0S U929, 9UQ
G-9960'9 T-9LZ06 £9¢ES'8 T-966C'9 81+969¢'9 ¥+oVGRF S+90G8F ¥+9LTG'EC 8TLG6L SURL IV
G-90%7C'9 196606 £°996°¢ T1-99T9'9 8+9808F ¥+O88TF S+OVEF'S T+9648°C LISR0L ATuQ sotyreq Ayoede)) YSiH
G-9Y¥¢'9 196606 €°9¢0°9 ToTILE9 8+OGYVE'G ¥199EET 8+9IEY'S T1H9E¥8'E€ T0060L ATUQ) soATeA eI MOT]
G-9TET'9 196606 €9¢LRG T-9CT9'9 8+9GRET THOV0TY S8+901G°G T+97C6'¢ SEER0L A[uO SOY/SAIN payersajuy
G-9T60'9 T-900T°6 £2°008'8 T-960¢'9 8+9GLRC THOVEYT S+0VE'G T+9T198°C SEERIL ATuQ SUI00D04AI]) SATOY
G-98FC'9 T-9660°6 £9C68°G T-OLT99 8+96ST'S ¥HOC0V'F S+9GEE'S T+9LGRC TTP60L Auo syyueg, 9j1soduro))
G-96GC°9 196606 £2°L06'G T-9T99'9 8+9698F ¥+OGCEH S+9060°¢ T+OGIL'EC 9VS6TL ATuQ semionng ajsodurop)
G-96£2°9 196606 €9¢06'G T-9€19'9 8+991¢'S THILIV'Y 8+9VCY'S 7+9068°¢ ¥74580L ATU(Q SI0SUDG SSI[OIIAN
G-9LEC'9 TORITT'6 €°668'G T-9G19'9 8+9GLEY T1+2600F S+99¢F'S 7+9768°¢ 905804 SY29L, ON

so s gWNdoANWd" (IAN) (IAIN) (81) (81) N uorpdrdso(q

m.m.oso.ob m.m.osmoi wmosmgb mmosmgi

$O19811R)G ATewImIng UoINALIISI(] SOI[0J3I0] AS0[OUyd9], :6G O[qel,

283



Similarity Variance

Gross Mass Variance

Gross Cost Variance

Vehicle PMF Variance

N I I I I I I 1
0 500000 1000000 1500000 2000000 2500000 3000000 3500000
Portfolio Size

Figure 101: Correlation in Portfolio Size vs Objective Metric Variance for
Technology-based Portfolios
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Vehicle PMF

Quantiles Summary Statistics

maximum 0.8659680349 Mean 0.6540273

minimum 0.2938305038 Std Dev 0.082217
Std Err Mean 3.2158e-5

Upper 95% Mean 0.6540903

Lower 95% Mean 0.6539643

N 6536570
0.27 0.33 0.39 0.45 0.51 0.57 0.63 0.69 0.75 0.81 0.87

Figure 102: Experiment 3 Total Vehicle PMF Distribution

Vehicle PMF

Quantiles Summary Statistics

maximum 03678466147  Mean 0.7284669

minimum 02938305038  Std Dev 0.0931467
Std Err Mean 0.0006738

Upper 95% Mean 0.7297877

Lower 95% Mean 0.7271462

N 19109
0.27 0.33 0.39 0.45 0.51 0.57 0.63 0.69 0.75 0.81 0.87

Figure 103: Total Vehicle PMF Distribution of Architectures with 1 Stage

Vehicle PMF

Quantiles Summary Statistics

maximum 0.8498267227  Mean 0.6538091

minimum 0.2938305038  Std Dev 0.0820836
Std Err Mean 3.2153e-5

Upper 95% Mean 0.6538721

Lower 95% Mean  0.653746

N 6517461
0.27 0.33 0.39 0.45 0.51 0.57 0.63 0.69 0.75 0.81 0.87

Figure 104: Total Vehicle PMF Distribution of Architectures with 2 Stages
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APPENDIX H

MODEL VALIDATION RESULTS

The following tables contain validation data for the models developed through this
body of work. Table 61 shows the calculated mass of a notional vehicle through-
out a set of mission events. The difference is between the calculation when utilizing
DYREQT and the mission event models developed for this dissertation compared to
an industry-developed tool of similar fidelity, HExAM. Table 62 provides the sizing
calculations for 10 propulsive stages, ranging from designs built and flown to concep-
tual designs. Sizing utilized the set of subsystem models developed and discussed in
Chapter 4.5.2 of this dissertation. Differences were recorded for both the inert mass

and the propellant mass fraction.
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APPENDIX I

MODEL SOURCE CODES

This appendix provides the source code for the models developed for use throughout
this dissertation. This includes: vehicle subsystem models, mission event models,
fluids models, and the TransCost model, utilized in both the experiments and proof
of concept. Descriptions of each model, its inputs/outputs, and references can be
found throughout the source code. The source code is written in Python 3. The
classes defined in these models inherit from DYREQT, which in turn inherits much
of its structure and functionality from the OpenMDAQO module, with the exception

of the cost model. DYREQT source code is not provided in this dissertation.

I.1 Awvionics SubFElement Model

# —*- coding: utf-8 —*-
Description:
A DYREQT Avionics subelement for Douglas Trent's PhD

Written by:
Douglas J. Trent
NASA Marshall Space Flight Center
Advanced Concept Office
douglas. trent@nasa. gov

Created: 04/06/2017

Revised: 04/19/2017

mnimmn

# amport DYREQT Subelement base class
from SubElements import SubElement
from numpy import zeros

# create the structures subelement

class AvionicsPhD(SubElement) :
"""Estimates the mass of a power subsystem. Much of the mass of the
components are derived from Space Mission Engineering: The new SMAD by
James R. Wertz et. al.

Input Params

actuators : list
The type of attitude control device(s). For multiples of the same
sensor, include the number multiple times.

0 = Reaction Wheels
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1 = Control Moment Gyros
2 = Magnetic Torquers
sensors : list
A list of predefined avionics sensor(s). For multiples of the same
sensor, include the number multiple times.
0 = Gyros
1 = Sun Sensor
2 = Star Sensor (scanner)
3 = Star Sensor (fized)
4 = Horizon Sensor
5 = Magnetometer
comms_type : int
The type of communications package.
0 = None
1 = Near Earth

2

Deep Space

accuracy : float
A factor to determine sensor accuracy for scaling mass. A wvalue ranging
from 0.0 to 1.0. Higher values correspond to higher accuracy, resulting
in increased mass and power requirements.

wireless_sensors : bool(False)
If True, assumes wireless transmission of data without the need for
cables, reducing cable mass.

additional_devices : list
A list of other additional fized devices to include in the system. Each
item in the list is a list which defines a the mass(kg) and
power required(W) of the device, in the form [m,P]

Inherited Params
dry_mass :@ array
The dry mass of the element (kg) for scaling actuators

inert_mass : float
The inert mass of the subelement (kg)

heat_loads : array
The amount of heat generated by other subsystems to be dissipated by
the radiators (W)

power_req : array

The power required from each element subsystems (W)
mmnn

def __init__(self,**kwargs):
super () .__init__ (**kwargs)
# user model inputs
self.add_param(self.base_name+' _actuators', val=list())
self.add_param(self.base_name+'_sensors', val=list())
self.add_param(self.base_name+'_comms_type', val=int(0))
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self.add_param(self.base_name+'_accuracy', val=float(1))
self.add_param(self.base_name+'_wireless_sensors‘, val=False)
self.add_param(self.base_name+'_additional_devices', val=list())

# parameters from the element (DYREQT internal or from other subelements)
self.add_param(self.element.base_name+'_dry_mass', val=zeros(self.element.num_events+1),
— units='kg')

# outputs used by the parent element or subelements
self.add_output(self.base_name+'_heat_load', val=float(0), units='W")
self.add_output(self.base_name+'_power_req', val=float(0), units='W')
self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')

def pre_setup(self,problem):
pass

def post_setup(self, problem):

"""Check inputs after final connections have been made
nmmn

actuators = self.params[self.base_name+'_actuators']

sensors = self.params[self.base_name+'_sensors']

comms_type = self.params[self.base_name+'_comms_type']

accuracy = self.params[self.base_name+'_accuracy']

add_devices = self.params[self.base_name+'_additional_devices']

if accuracy < 0. or accuracy > 1.:
msg = ('accuracy must be a value between 0.0 and 1.0')
raise Exception(msg)

for val in actuators:
if val not in [0,1,2]:
msg = ('invalid control device. values must be in the range [0:2]')
raise Exception(msg)

for val in sensors:
if val not in [0,1,2,3,4,5]:
msg = ('invalid sensor device. values must be in the range [0:5]')
raise Exception(msg)

if comms_type not in [0,1,2]:
msg = ('invalid comms_type selection. must be either O for None, '
'l for near earth, or 2 for deep space')
raise Exception(msg)

for idx,device in enumerate(add_devices):
if len(device) != 2:
msg = ('additional devices must define a mass and power property')
raise Exception(msg)
for val in device:
if type(val) != float and type(val) != int:
msg = ('invalid additional device {0}, mass and power
'definitions must be of type float or int'.format(idx))
raise Exception(msg)

def solve_nonlinear(self, params, unknowns, resids):

actuators = self.params[self.base_name+'_actuators']

sensors = self.params[self.base_name+'_sensors']

comms_type = self.params[self.base_name+'_comms_type']

accuracy = self.params[self.base_name+' _accuracy']
wireless_sensors = self.params[self.base_name+'_wireless_sensors']
add_devices = self.params[self.base_name+'_additional_devices']
element_mass = max(params[self.element.base_name+' _dry_mass'])

actuator_mass = O.

actuator_pwr = O.

for val in actuators:
m_range = [0.,0.]; P_range = [0.,0.]
if val ==
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m_range = [2.,20.]; P_range = [10.,100.]
elif val == 1:

m_range = [0.1,10.]; P_range = [90.,150.]
elif val == 2:

m_range = [0.4,50.]; P_range = [0.6,16.]

if element_mass < 10000.:
comp_mass = ((m_range[1]-m_range[0])/10000.)*element_mass + m_range[0]
comp_pwr = ((P_range[1]-P_range[0])/10000.)*element_mass + P_range[0]
else:
comp_mass = m_range[1]
comp_pwr = P_range[1]
actuator_mass += comp_mass
actuator_pwr += comp_pwr

sensor_mass = 0.
sensor_pwr = 0.
for val in sensors:
m_range = [0.,0.]; P_range = [0.,0.]

if val == 0:

m_range = [0.1,15.]; P_range = [0.6,16.]
elif val == 1:

m_range = [0.1,2.]; P_range = [0.,3.]
elif val == 2:

m_range = [2.,5.]; P_range = [0.6,16.]
elif val == 3:

m_range = [1.,4.]; P_range = [5.,10.]
elif val == 4:

m_range = [0.5,3.5]; P_range = [0.3,5.]
elif val == 5:

m_range = [0.3,1.2]; P_range = [0.0,1.]

comp_mass = ((m_range[1]-m_range[0]))*accuracy + m_range[0]
comp_pwr = ((P_range[1]-P_range[0]))*accuracy + P_range[0]
sensor_mass += comp_mass

SEensor_pwr += Comp_pwr

comms_mass = 0.

comms_pwr = 0.

if comms_type ==
pass

elif comms_type ==
comms_mass = 20.7
comms_pwr = 104.0

elif comms_type ==
comms_mass = 42.0
comms_pwr = 165.0

add_devices_mass = 0.

add_devices_pwr = 0.

for device in add_devices:
add_devices_mass += device[0]
add_devices_pwr += devicel[1]

# accounts for 4/ cable mass
cable_factor = 0.96
if wireless_sensors:
cable_factor = 0.99
inert_mass = (actuator_mass + sensor_mass + comms_mass + add_devices_mass) / cable_factor
total_power = actuator_pwr + sensor_pwr + comms_pwr + add_devices_pwr
heat_load = 0.9*total_power

# assign unknowns

unknowns [self.base_name+'_heat_load'] = heat_load
unknowns [self.base_name+'_power_req'] = total_power
unknowns [self.base_name+'_inert_mass'] = inert_mass
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1.2 Engine SubElement Model

# —*- coding: utf-8 —*-
mnimn
Description:
A DYREQT Engine subelement for Douglas Trent's PhD

Written by:
Douglas J. Trent
NASA Marshall Space Flight Center
Advanced Concept Office
douglas. trent@nasa.gov

Created: 04/06/2017

Revised: 07/31/2017

mnmnn

# import DYREQT Subelement base class

from SubElements import SubElement

from Constants import GO

# import other modules

import FluidsDef as fluids

from numpy import zeros, floor, ceil, pi, log, loglO, exp, sqrt, tan
from scipy.optimize import brentq

# create the structures subelement

class EnginesPhD(SubElement) :
"""Liquid engine sizer from equations in Space Propulsion Analysis and
Design, by Ronald W. Humble, et. al. Sec. 5.3.1

Input Params
mps_class : str('liquid’')
The class of the main propulsion system.
One of ['liquid’, 'solid’, 'nuclear’, 'electric']

propellants_mps : str('loz/lh2')
The oztidizer and Fuel of the propulsion system, separated by a forward
slash (/). For mono-propellant, only specify a fuel with no slash (/).
This input is ignored when mps_class is set to 'solid'.

total_thrust_mps : float (100 kN)
The total thrust of the main propulsion system (kN)

isp_mps : float (350 s)
The spectific impulse of the matin propulstion system (s)

mizture_ratio_mps : float(1) (optional, required if mps_class is 'liquid')
The mass ratio of the ozidizer to fuel of the main propulsion system.
This wtll be ignored if a mono-propellant is specified in the
propellants_mps input.

start_penalty_mps : float(0.0 kg)
A mass of propellant lost during engine startup of the main propulsion

system (kg)

engine_thrust_mps : float (25 kN)
The thrust per engine of the main propulsion system (kN)

core_type : str('CERMET') (optional, required if mps_class is 'nuclear')
The type of nuclear core, one of ['PBR', 'CERMET']

T_chamber : str(2800 K) (optional, required if mps_class is 'nuclear')

The mazimum chamber temperature of the engine which the propellant will

be heated to (K)

P_chamber : str(3.5 MPa) (optional, required if mps_class is 'nuclear')
The pressure of the propellant in the reactor chamber (MPa)
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thruster_efficiency_mps = float(0.5) (optional, required if mps_class is 'electric')
The electric thruster efficiency of the main propulsion system. Ideal
thrusters have an efficiency of 1.

thruster_specific_mass_mps = float(7 kg/kW) (optional, required if mps_class is 'electric')
The electric thruster mass per unit power (kg/kW) of the main propulsion
system.

thruster_power_mps = float(1 kW) (optional, required if mps_class is 'electric')
The input power required per thruster of the main propulsion system (kW)

redundancy_mps = float(0.2) (optional, required if mps_class is 'electric')
The redundancy of electric thrusters in the main propulsion system.
A value of 1 corresponds to 100 redundancy.

power_mgmt_specific_mass_mps = float(6 kg/kW) (optional, required if mps_class is 'electric')
The mass per unit power of the power management system for the main
propulsion system (kg/kW)

res_class @ str('liquid’)
The class of the reaction control system.
One of ['liquid’, 'electric']

propellants_rcs : str('hydrazine')
The oztdizer and Fuel of the propulsion system, separated by a forward
slash (/). For mono-propellant, only specify a fuel with no slash (/).

total_thrust_rcs : float(1 kN)
The total thrust of the reaction control system (kN)

isp_rcs @ float (300 s)
The specific impulse of the reaction control system (s)

mizture_ratio_rcs : float(1) (optional, required if rcs_class is 'liquid')
The mass ratio of the oxidizer to fuel of the reaction control system.
This wtll be ignored if a mono-propellant is specified in the
propellants_rcs input.

start_penalty_rcs : float(0.0 kg)
A mass of propellant lost during engine startup of the reaction control
system (kg)

engine_thrust_rcs : float(0.25 kN)
The thrust per engine of the reaction control system (kN)

thruster_efficiency_rcs = float(0.5) (optional, required if rcs_class is 'electric')
The electric thruster efficiency of the reaction control system. Ideal
thrusters have an efficiency of 1.

thruster_specific_mass_rcs = float(7 kg/kW) (optional, required if rcs_class is 'electric')
The electric thruster mass per unit power (kg/kW) of the reaction
control system.

thruster_power_rcs = float(1 kW) (optional, required if rcs_class is 'electric')
The input power required per thruster of the reaction control system(kW)

redundancy_rcs = float(0.2) (optional, required if rcs_class is 'electric')
The redundancy of electric thrusters in the reaction control system.
A value of 1 corresponds to 100/ redundancy.

power_mgmt_specific_mass_rcs = float(6 kg/kW) (optional, required if rcs_class ts 'electric')
The mass per unit power of the power management system for the reaction
control system (kg/kW)

Inherited Params

maz_propellant_mass_mps : float
The total amount of propellant required for all impulsive maneuvers
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performed by the main propulsion system (kg)

Outputs

propellants_mps : str
The ozidizer and Fuel of the propulsion system, separated by a forward
slash (/). For mono-propellant, only specify a fuel with no slash (/).

1sp_mps : float
The spectific impulse of the matin propulston system (s)

thrust_mps : float
The total thrust of the main propulsion system (kN)

mizture_ratio_mps : float
The mizture ratio of the main propulsion system propellants

mps_start_penalty : float
A mass of propellant lost during engine startup of the main propulsion
system (kg)

propellants_rcs : str
The oztdizer and Fuel of the propulsion system, separated by a forward

slash (/). For mono-propellant, only specify a fuel with mo slash (/).

isp_rcs : float
The specific impulse of the reaction control system (s)

thrust_rcs : float

The total thrust of the reaction control system (kN)

mizture_ratio_rcs : float
The mizture ratio of the reaction control system propellants

rcs_start_penalty : float
A mass of propellant lost during engine startup of the reaction control
system (kg)

power_req :

array

The power required for the thermal subelement (W)

inert_mass : float
The inert mass of the subelement (kg)

mwn

def

__init__(self,**kwargs):

super () .__init__ (**kwargs)
# user model inputs

self.add_param(self.base_name+'_mps_class', val=str('liquid'))
self.add_param(self.base_name+'_rcs_class', val=str('liquid'))
self.add_param(self.base_name+'_propellants_mps', val=str('lox/1h2'))
self.add_param(self.base_name+'_propellants_rcs', val=str('hydrazine'))
self.add_param(self.base_name+'_total_thrust_mps', val=float(100), units='kN')
self.add_param(self.base_name+'_total_thrust_rcs', val=float(l), units='kN')
self.add_param(self.base_name+'_isp_mps', val=float(350), units='s')
self.add_param(self.base_name+'_isp_rcs', val=float(300), units='s')
self.add_param(self.base_name+' _mixture_ratio_mps', val=float(1))
self.add_param(self.base_name+' _mixture_ratio_rcs', val=float(1))
self.add_param(self.base_name+'_start_penalty_mps', val=float(0), units='kg')
self.add_param(self.base_name+'_start_penalty_rcs', val=float(0), units='kg')
self.add_param(self.base_name+'_engine_thrust_mps', val=float(25.), units='kN')
self.add_param(self.base_name+'_engine_thrust_rcs', val=float(0.25), units='kN')
self.add_param(self.base_name+'_thruster_efficiency_mps', val=float(0.5))
self.add_param(self.base_name+'_thruster_efficiency_rcs', val=float(0.5))
self.add_param(self.base_name+'_thruster_specific_mass_mps', val=float(7), units='kg/kW')
self.add_param(self.base_name+'_thruster_specific_mass_rcs', val=float(7), units='kg/kW')
self.add_param(self.base_name+'_thruster_power_mps', val=float(l), units='kW')
self.add_param(self.base_name+'_thruster_power_rcs', val=float(l), units='kW')
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self.add_param(self.base_name+'_redundancy_mps', val=float(0.2))
self.add_param(self.base_name+'_redundancy_rcs', val=float(0.2))
self.add_param(self.base_name+'_power_mgmt_specific_mass_mps', val=float(6), units='kg/kW')
self.add_param(self.base_name+'_power_mgmt_specific_mass_rcs', val=float(6), units='kg/kW')
self.add_param(self.base_name+'_core_type', val=str('cermet'))
self.add_param(self.base_name+'_T_chamber', val=float(2800.), units='K')
self.add_param(self.base_name+'_P_chamber', val=float(3.5), units='MPa')

# parameters from the element (DYREQT internal or from other subelements)
self.add_param(self.element.base_name+'_max_propellant_mass_mps', val=float(0), units='kg')
# outputs inherited by the element (for use by other subelements or DYREQT)
self.add_output(self.element.base_name+' _propellants_mps', val=str('lox/1h2'))
self.add_output(self.element.base_name+'_propellants_rcs', val=str('lox/1h2'))
self.add_output(self.element.base_name+'_thrust_mps', val=float(l), units='kN')
self.add_output(self.element.base_name+'_thrust_rcs', val=float(1l), units='kN')
self.add_output(self.element.base_name+'_isp_mps', val=float(1l), units='s')
self.add_output(self.element.base_name+' _isp_rcs', val=float(l), units='s')
self.add_output(self.element.base_name+' _mixture_ratio_mps', val=float(1))
self.add_output(self.element.base_name+' _mixture_ratio_rcs', val=float(1))
self.add_output(self.element.base_name+' _mps_start_penalty', val=float(0), units='kg')
self.add_output(self.element.base_name+' _rcs_start_penalty', val=float(0), units='kg')

# outputs used by the parent element of subelement
self.add_output(self.base_name+'_power_req', val=float(0), units='W')
self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')

def pre_setup(self,problem):
pass

def post_setup(self, problem):

"""Check inputs after final connections have been made
win

for propsys in ['mps','rcs']:

engine_class = self.params[self.base_name+'_'+propsys+'_class'].lower()

if not engine_class:
msg = ('must specify a system class for the {0}'.format(propsys))
raise Exception(msg)

elif engine_class not in ['liquid','solid','electric', 'nuclear', 'massless']:
msg = ('{0}_class {1} is an undefined class'.format(propsys,engine_class))
raise Exception(msg)

if engine_class != 'solid':
propellants = self.params[self.base_name+'_propellants_'+propsys].lower ()
if not propellants:
msg = ('must specify propellants_{0} with system class "{1}"'.format(
propsys,engine_class))
raise Exception(msg)

if propsys == 'rcs' and engine_class not in ['liquid','electric']:
msg = ("'{0}' is an invalid class for the RCS, choose one of "
"['liquid','electric']".format (engine_class))
raise Exception(msg)

if engine_class == 'electric':
thruster_efficiency = self.params[self.base_name+'_thruster_efficiency_'+propsys]
redundancy = self.params[self.base_name+'_redundancy_'+propsys]
if thruster_efficiency > 1:
msg = ('thruster_efficiency_{0} must be a value between '
'zero and one'.format(propsys))
raise Exception(msg)
if redundancy < O:
msg = ('redundancy_{0} must be non-negative'.format(propsys))
raise Exception(msg)

# the nuclear engine model performs its own input checks

def solve_nonlinear(self, params, unknowns, resids):
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inert_mass = 0.
power_req = O.

for propsys in ['mps','rcs']:

engine_class = params[self.base_name+'_'+propsys+'_class'].lower()
propellants = params[self.base_name+'_propellants_'+propsys].lower()
total_thrust = params[self.base_name+'_total_thrust_'+propsys]

isp = params[self.base_name+'_isp_'+propsys]

mixture_ratio = params[self.base_name+'_mixture_ratio_'+propsys]
start_penalty = params[self.base_name+'_start_penalty_'+propsys]

# size the engine subelement for the prop system

mass = 0.

power = 0.

if engine_class == 'liquid':
engine_thrust = params[self.base_name+'_engine_thrust_'+propsys]
mass,power = _liquid(total_thrust, engine_thrust, propellants)

elif engine_class == 'solid':
prop_load = params[self.element.base_name+' _max_propellant_mass_mps']
mass,power = _solid(prop_load)

elif engine_class == 'electric':

thruster_efficiency = params[self.base_name+'_thruster_efficiency_'+propsys]

thruster_specific_mass = params[self.base_name+'_thruster_specific_mass_'+propsys]

thruster_power = params[self.base_name+'_thruster_power_'+propsys]
redundancy = params[self.base_name+'_redundancy_'+propsys]

power_mgmt_specific_mass = params[self.base_name+'_power_mgmt_specific_mass_'+propsys]

mass,power = _electric(isp, total_thrust, thruster_efficiency,
thruster_specific_mass, thruster_power,
redundancy ,power_mgmt_specific_mass)

elif engine_class == 'nuclear':

propellant = propellants

engine_thrust = params[self.base_name+'_engine_thrust_'+propsys]

core_type = params[self.base_name+'_core_type'].lower()

T_chamber = params[self.base_name+'_T_chamber']

P_chamber = params[self.base_name+'_P_chamber']

mass,power = _nuclear(isp, total_thrust, engine_thrust, propellant, core_type,

T_chamber,P_chamber)

# adjust engine mass for RCS to include 3 additional off axis thrusters
# for a total of 4 thrusters per thrust pod
if propsys == 'rcs':

mass = 4*mass

inert_mass += mass
power_req += power

# assign system unknowns

unknowns [self.element.base_name+'_propellants_'+propsys] = propellants
unknowns [self.element.base_name+'_thrust_'+propsys] = total_thrust

unknowns [self.element.base_name+'_isp_'+propsys] = isp

unknowns [self.element.base_name+' _mixture_ratio_'+propsys] = mixture_ratio
unknowns [self.element.base_name+'_'+propsys+'_start_penalty'] = start_penalty

# assign unknowns
unknowns [self.base_name+'_power_req'] = power_req
unknowns [self.base_name+'_inert_mass'] = inert_mass

def _liquid(total_thrust, engine_thrust, propellants):
"""Liquid engine sizer from equations in Space Propulsion Analysis and
Design, by Ronald W. Humble, et. al. Sec. 5.3.1

Args

total_thrust : float
Total thrust of the propulsion system (kN)
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engine_thrust : float
The thrust per engine (kN)

propellants : str
The propellants of the propulsion system, separated by a forward slash (/)

Returns
inert_mass : float
The inert mass of the the engine system (kg)

power_req : float
The required power (W)

mwnn

inert_mass = 0.
power_req = O.
GO.convert_to_unit('m/s**2")

num_engines = ceil(total_thrust / engine_thrust)
thrust = engine_thrust*1000

if propellants.count('/') == 0: # mono-propellant
engine_mass = thrust / GO.value / (-3.7405e-10*thrust**4 + 7.1685e-7*thrust**3 +
-5.2221e-4*thrust**2 + 0.18761*thrust +
-0.039763)
elif propellants.count('/') == 1: # bi-props
if thrust < 50000:
engine_mass = thrust / GO.value / (6.098e-4*thrust + 13.44)
else:
engine_mass = thrust / GO.value / (25.2x1loglO(thrust) - 80.7)
else:
raise Exception('may only specify up to two propellants')

engine_mass = engine_mass * num_engines

prop_mgmt_mass = 0.1 * engine_mass # walves, regulators, filters, transducers, etc.
miscellaneous_hardware = 0.15 * (engine_mass + prop_mgmt_mass) # plumbing, brackets, insulation,

inert_mass = engine_mass + prop_mgmt_mass + miscellaneous_hardware
return inert_mass, power_req

def _solid(prop_load):
"""Solid motor sizer based on data points from Space Propulsion Analysis
and Design, by Ronald W. Humble, et. al. Sec. 6.3. This model is a spline
of two linear curve fits of the data. This <s due to larger motors
being built with joints and large thrust wvector control mechanisms which
drive the mass fractions of these larger motors back down with increasing
prop loads.

Args
prop_load : float
The propellant load of the solid motor, in kg.

Returns
inert_mass : float
The inert mass of the the engine system (kg)

power_req : float
The required power (W)

wnn

inert_mass = 0.
power_req = O.
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if prop_load < 10000:
if prop_load <= O:
f_prop = 1.
else:
f_prop = 0.0181*log(prop_load) + 0.7962
else:
f_prop = 0.95%exp(-le-7*prop_load)

inert_mass = (prop_load / f_prop) - prop_load
return inert_mass, power_req

def _electric(isp, total_thrust, thruster_efficiency,
thruster_specific_mass, thruster_power, redundancy,
power_mgmt_specific_mass):
All empirical parameters are inputs
Calculations are purely physics-based, so no applicability limits
Source; LevelO EP tool from Dan Thomas (NASA Marshall Space Flight Center,
Advanced Concepts Office), with some adaptations.

Args
isp : float
specific impulse (sec)

total_thrust : float
Total thrust of the propulsion system (kN)

thruster_efficiency : float
thruster efficiency (dimensionless)

thruster_specific_mass : float
thruster specific mass (mass/input power) (kg/kW)

thruster_power : float
input power required for one thruster (kW)

redundancy :@ int
fraction of total number of thrusters

power_mgmt_specific_mass : float
power management system specific mass (kg/kW)

inert_mass : float
total mass of the thruster system (kg)

power_req : float
total power required by the thruster system (W)

o

inert_mass = 0.
power_req = O.
GO.convert_to_unit('m/s**2")

#calculation of single-thruster parameters

exhaust_velocity = GO.valuexisp # m/s

thruster_mass = thruster_specific_mass * thruster_power # kg/thruster
jet_power_per_thruster = thruster_efficiency * thruster_power # kl/
thrust_per_thruster = 1000 * 2 * jet_power_per_thruster / exhaust_velocity # IV

#calculation of system parameters

num_operating_thrusters = ceil(total_thrust * 1000. / thrust_per_thruster)
power_req = num_operating_thrusters * thruster_power * 1000.
num_total_thrusters = ceil(num_operating_thrusters * (1 + redundancy))
engine_mass = thruster_mass * num_total_thrusters # kg
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# power management sizer

# default value from Space Mission Engineering: The New SMAD,
# sec. 18.6.3.2, p.550

power_mgmt_mass = power_mgmt_specific_mass * power_req / 1000.

# range from 5-10 kg as a function of total number of thrusters,

# adapted from mass range estimate from Space Mission Engineering: The New

# SMAD, sec. 18.6.3.2, p.550

prop_mgmt_mass = 5 * (1 + (1 - (1/num_total_thrusters)))

miscellaneous_hardware = 0.15 * (engine_mass + prop_mgmt_mass) # plumbing, brackets, insulation,

inert_mass = engine_mass + prop_mgmt_mass + power_mgmt_mass + miscellaneous_hardware
return inert_mass, power_req

def _nuclear(isp, total_thrust, engine_thrust, propellant, core_type, T_chamber,
P_chamber) :
"""Nuclear engine sizer from level O physics-based equation from equations
in Space Propulsion Analysis and Design, by Ronald W. Humble, et. al.
Estimated mass s of the engine core and related components (no tanks,
Support structure, pressurant, etc.) This model assumes an ezpander cycle
for the turbopump assembly, with redundant turbopump assemblies.

Args
total_thrust : float
The thrust of the engine (kN)

engine_thrust : float
The thrust per engine (kN)

isp : float
The specific impulse of the engine (s)

propellant : str
The propellant of the engine

core_type : str
The core type, one of ['PBR', 'CERMET']

T_chamber : float
The chamber temperature of the reactor core (K)

P_chamber : float
The chamber pressure of the reactor core (MPa)

Returns
inert_mass : float
The inert mass of the the engine system (kg)

power_req : float
The required power (W)

nwnn

inert_mass = 0.
power_req = O.
GO.convert_to_unit('m/s**2"')

if propellant.count('/') != O:
msg = ('may only specify a single propellant for nuclear engines')
raise Exception(msg)

if not fluids.check_def (propellant):

msg = ('"{0}" is not a defined fluid'.format(propellant))
raise Exception(msg)
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# input checking
if type(core_type) != str:
msg = ('core_type must be a string')
raise Exception(msg)
else:
if core_type.lower() not in ['pbr','cermet']:
msg = ("invalid core type, must be one of ['PBR','CERMET']")
raise Exception(msg)

if P_chamber < 1 or P_chamber > 10:
msg = ('chamber pressure, P_chamber, must be in the range [1:10]')
raise Exception(msg)

num_cores = ceil(total_thrust / engine_thrust)

m_dot = engine_thrust * 1000. / GO.value / isp # kg/s

TO = fluids.tvap(propellant,P_chamber)

hvap = fluids.get_property(propellant, 'Hvap') * 1000.

# From Eq. 8.8 in SPAD

P_core = m_dot * (hvap + quad(_prop_cp,TO,T_chamber,args=(propellant,))[0]) / 1e6 # MWV

if P_core > 2000.:
msg = ('Core power must be less than 2000 MW. '
'Try decreasing "engine_thrust" and/or "T_chamber"')
raise Exception(msg)

# reactor dimensions and mass, Eq. 8.44 - 8.49 in SPAD
if core_type == 'pbr':
rho_core = 1600. # kg/m"3
if P_core < 250:
# 7 element core
R_core = 9.0958e-10*P_core**4 - 1.3261e-6*P_core**3 + 7.1665e-4*P_core**2 - 0.1735%P_core
— + 47.625 # cm
H_core = -0.000283*P_core**2 + 0.5203*P_core + 26.06 # cm
elif P_core > 750:
# 37 element core
R_core = 4.905e-11*P_core*x*4 - 2.881le-7*P_core**3 + 6.2522e-4*P_core**2 - 0.5992*P_core +
— 252.28 # cm
H_core = -4.027e-5*P_core**2 + 0.1427*P_core + 17.9883 # cm
else:
# 19 element core
R_core = -2.655e-12%P_core**5 + 8.946e-9*P_corex*4 - 1.1703e-5*P_core**3
—  +7.427e-3%P_core**2 - 2.2956*%P_core + 313.34 # cm
H_core = -6.502e-6*P_corex*2 + 0.05009*P_core + 18.335 # cm
elif core_type == 'cermet':
rho_core = 8500. # kg/m"3
R_core = 0.0034*P_core + 20.79
H_core = 0.0067*P_core + 41.418
R_core = R_core / 100. # cm > m
H_core = H_core / 100. # cm > m

V_core = pi * R_core**2 * H_core
m_core = num_cores * rho_core * V_core

# nozzle calculations

# thermochemistry

R_spec = fluids.rspec(propellant)

heat_ratio = fluids.heat_ratio(propellant,T_chamber)

# Eq. 5.12 in SPAD for characteristic ezhaust velocity (m/s)

combustion_efficiency = 0.999

nozzle_efficiency = 0.99

P_amb = 0. # (MPa) assumes in-space engine

# c_star in (m/s)

c_star = (combustion_efficiency * sqrt(heat_ratio*R_spec*T_chamber) /

(heat_ratio*(2/(heat_ratio + 1))+**((heat_ratio + 1)/(2¢heat_ratio - 2))))

isp_max = nozzle_efficiency * (c_star * heat_ratio / GO.value * sqrt((2 / (heat_ratio - 1))*
(2 / (heat_ratio + 1))#**((heat_ratio + 1)/(heat_ratio - 1))))

isp_max = floor(0.98 * isp_max)

isp_min = ceil(isp_max * (1 - 0.3))
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# check isp input for feasibility based on flow parameters. This is because

# the mach calculation is very sensitive to the target isp

if isp > isp_max or isp < isp_min:
msg = ('isp is outside of feasible bounds: [{0}:{1}] s'.format(isp_min,isp_max))
raise Exception(msg)

mach = brentq(_mach_calc,1.,100.,args=(isp,P_chamber,P_amb,heat_ratio,c_star,nozzle_efficiency))
expansion_ratio = (1/mach) * ((2 / (heat_ratio + 1))*(1 + ((heat_ratio - 1)/2 *
< mach**2)))#**((heat_ratio + 1)/(heat_ratio - 1))

A_throat = m_dot * c_star / (P_chamber * 1e6) # Equation 5.10 from SPAD, (m)
d_throat = 2*sqrt(A_throat/pi)
d_exit = 2*sqrt(expansion_ratio*A_throat/pi)

throat_thick = 3. * P_chamber * (d_throat/2.) / 310. # assumes a material Ut = 310 MPa
1_nozz = (d_exit - d_throat) / (2*tan(0.261799)) # assumes nozzle half angle of 15 deg (0.261799
—  rad)

et_ratio = 1. # exzit thickness ratio, assumed 0 -> nozzle extit wall thickmness = 0

x1 = ((et_ratio*throat_thick)-throat_thick)/1_nozz

x2 = (0.5*%(d_exit-d_throat))/1_nozz

# assumes a material density of 8500. kg/m~3

m_nozz =

< num_cores*2*pi*8500.*1_nozz* (((1/3)*x1*x2*(1_nozz**2))+(((0.5%(x1*0.5+d_throat))+(0.5%(x2*throat_thick)))*1_noz

V_vessel = V_core + ((4/3) * pi * R_core*x*3) # core volume + hemispherical end caps

# uses the Pu/W method for calculating a pressure vessel mass, sec. 5.4.4 of SPAD

m_vessel = 2 * (P_chamber * le6) * V_vessel / GO.value / 2500. # assumes a tank factor of 2500 for
— all metallic tank

# cooling + feed system

# estimates based on 40J for nozzle and combustion chamber, 35.1} for cooling, and 24.9J for
— injector/feed

# these numbers are from SPAD p. 504 in the nuclear engine case study

m_thrust_chamber = (m_nozz + m_vessel) / 0.4 # kg

m_feed = num_cores * m_thrust_chamber * 0.249 # kg

m_cool = num_cores * m_thrust_chamber * 0.351 # kg

# shield calculations

shield_area = pi * R_core**2

shied_aerial_density = 3500. # kg/m2, based on baseline in sec. 8.5 of SPAD
m_shield = num_cores * shied_aerial_density * shield_area

# pump calculations
num_tpas = 2 # redundant tpa
rho = fluids.density(propellant)
# this is a fit of data for the turbine/pump power balance from Larry's
# spread sheet. It assumes a fized turbine inlet temperature of 315.5 K
turbine_inlet_temp = 315.5 # K, assumed, provides longest turbine life and most conservative mass
— estimates
turbine_efficiency = 0.70 # assumed
pump_efficiency = 0.75 # assumed pump efficiency
Cp = fluids.cp(propellant,turbine_inlet_temp)
heat_ratio = fluids.heat_ratio(propellant,turbine_inlet_temp)
args = (turbine_inlet_temp, turbine_efficiency,pump_efficiency,Cp,
heat_ratio, P_chamber,m_dot,rho)
turbine_pressure_ratio = brentq(_tpa_power_ballance,l.,2.5,args=args)
# 1.2 and 1.05 are factors for pressure drop in reactor and cooling, 0.05 is pressure drop in the
— feed lines
delta_ P = 1.2 * (1.05 * P_chamber * turbine_pressure_ratio) + 0.05
pump_head = delta_P * 1e6 / GO.value / rho
pump_power = pump_head * m_dot * GO.value / pump_efficiency # W, f(m_dot,P_chamber)
Q_dot = m_dot / rho
pump_speed = 2 * pump_head*x*.75 / sqrt(Q_dot) # rad/s, f(P_chamber)
tau = pump_power / pump_speed # N-m
A =2.6; B=0.667 # mazimum values for parameters from SPAD, p. 266
m_tpa = num_tpas * 1.25 * Axtau**B # kg, adds 25/ additional mass for spool up
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def

def

def

inert_mass = m_core + m_nozz + m_vessel + m_feed + m_cool + m_shield + m_tpa # kg
return inert_mass, power_req

_tpa_power_balance(turbine_pressure_ratio, turbine_inlet_temp,
turbine_efficiency, pump_efficiency, Cp, heat_ratio,
P_chamber, m_dot, rho):

"""This power balance for the turbopump assembly (TPA) assumes a pump and

turbine in series with the reactor core (expander cycle), meaning all of

the propellant flows through both the pump and turbine.

nwnn

turbine_power = m_dot * turbine_efficiency * turbine_inlet_temp * Cp * (1 -

— (1/turbine_pressure_ratio)**((heat_ratio - 1)/heat_ratio))

delta_P = 1.2 * (1.05 * P_chamber * turbine_pressure_ratio) + 0.05

pump_head = delta_P * le6 / GO.value / rho

pump_power = pump_head * m_dot * GO.value / pump_efficiency # I, f(m_dot,P_chamber)

return turbine_power - pump_power

_mach_calc(mach, isp_target, P_chamber, P_amb, heat_ratio, c_star,
nozzle_efficiency):
"""This function ts for estimating the mach of the propellant flow
through the nozzle by matching the desired isp of the engine
mmn
if mach < O:
mach = 0.1

P_chamber = P_chamber * 1e6 # Pa
P_amb = P_amb * 1le6 # Pa

P_exit = P_chamber * (1 + ((heat_ratio - 1)/2 * mach#*#*2))**(heat_ratio / (1 - heat_ratio))

expansion_ratio = (1/mach) * ((2 / (heat_ratio + 1))*(1 + ((heat_ratio - 1)/2 *

—  mach**2)))**((heat_ratio + 1)/(2*heat_ratio - 2))

isp_calc = nozzle_efficiency * (c_star * heat_ratio / GO.value * sqrt((2 / (heat_ratio - 1))*
(2 / (heat_ratio + 1))#*x((heat_ratio + 1)/(heat_ratio - 1)) *
(1 - (P_exit/P_chamber)**((heat_ratio - 1) / heat_ratio))) +
c_star * expansion_ratio * (P_exit - P_amb) / GO.value /
< P_chamber)

return isp_calc - isp_target
_prop_cp(T,prop):

return fluids.cp(prop,T)

1.3 Power SubFElement Model

# —-*- coding: utf-8 —*-

wun

Description:

A DYREQT Power subelement for Douglas Trent's PhD

Written by:

Douglas J. Trent

NASA Marshall Space Flight Center
Advanced Concept Office
douglas.trent@nasa.gov

Created: 04/06/2017
Revised: 07/31/2017

wun

# import DYREQT Subelement base class
from SubElements import SubElement
from numpy import cos
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# create the structures subelement

class PowerPhD(SubElement) :
"""Estimates the mass of a power subsystem, including structures where
needed (solar arrays)

Input Params
generator_type : str('pv')
The type of power generation for the element, one of ['puv', 'rtg']

transmission_efficiency : float(0.9)
The effictency of transmitting power from the gemerator/power storage
to the load.

cell_efficiency : float(0.148)
The efficiency of the PV cell at converting solar energy to electrical
energy. A wvalue between 0.0 and 1.0

cell_degradation : float(3.75 J/year)
The decrease in cell power production (}/year)

array_density : float (3.5 kg/m**2)
The aerial density of the solar array, including PV cells and array
structures (kg/m**2)

discharge_depth : float(0.2)
The depth of discharge of the battery storage system as a fraction of
the storage capacity

storage_specific_energy : float (30 Wxh/kg)
The energy density of the power storage system (W*h/kg)

energy_tracking : str('peak-tracking')
The energy tracking scheme for the solar array system. One of
['direct, 'peak-tracking'].

low_array_degradation : bool (False)
If True, reduces solar array degradation due to assembly and
configuration (shadowing), and operational temperature, reducing the
array mass for a given power output.

orbit_period : float(1.6467 h)
The orbital period (h)

maz_eclipse : float(0.588 h)
The mazimum eclipse time during the mission for which batteries must
provide the power_required (h)

ops_distance : float(1 AU)
The solar distance from the sun of the worst operational environment (AU)

mission_duration : float(5 years)
The duration of the mission (y)

Inherited Params
power_req : array
The power required from each element subsystems (W)

Outputs
inert_mass : float
The inert mass of the subelement (kg)

heat_loads : array

The amount of heat generated by other subsystems to be dissipated by
the radiators (W)
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def __init__(self,**kwargs):

super () .__init__ (**kwargs)
# user model inputs
self.add_param(self.base_name+'_generator_type', val=str('pv'))
self.add_param(self.base_name+'_transmission_efficiency', val=float(0.9))
self.add_param(self .base_name+'_cell_efficiency', val=float(0.148))
self.add_param(self.base_name+'_cell_degredation', val=float(3.75), units='1/yr')
self.add_param(self .base_name+'_array_density', val=float(3.5), units='kg/m**2')
self.add_param(self.base_name+'_discharge_depth', val=float(0.2))
self.add_param(self.base_name+'_storage_specific_energy', val=float(30), units='Wxh/kg')
self.add_param(self.base_name+'_energy_transfer', val=str('peak-tracking'))
self.add_param(self.base_name+'_low_array_degridation', val=False)
self.add_param(self.base_name+'_orbit_period', val=float(1.6467), units='h') # will eventually
— be inherited from DYREQT mission
self.add_param(self .base_name+'_max_eclipse', val=float(0.588), units='h') # will eventually
— be inherited from DYREQT mission
self.add_param(self.base_name+'_ops_distance', val=float(l), units='AU') # will eventually be
— 1nherited from DYREQUT mission
self.add_param(self.base_name+' _mission_duration', val=float(5), units='yr') # will eventually
— be inherited from DYREQT mission
# outputs used by the parent element
self.add_output(self.base_name+'_heat_load', val=float(0), units='W")
self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')
# power requirement from all other subelements in the parent element
for subnum in range(self.element.num_subelements):

if subnum != self.subelement_num:

self.add_param('element{0}sub{1}_power_req'.format(self.element.element_num,subnum),
— val=float(0), units='W')

def pre_setup(self,problem):

self.add_param(self.base_name+'_engine_power_req‘, val=0., units='W')
for subelement in self.element.components():
if isinstance(subelement,SubElement) :
if 'engine' in subelement.subelement_type.lower():

— self.element.connect(self.base_name+'_engine_power_req','element'+str(self.element.element_num)

def post_setup(self, problem):
"""Check inputs after final conmnections have been made

wn

generator_type = self.params[self.base_name+' _generator_type'].lower()
transmission_efficiency = self.params[self.base_name+'_transmission_efficiency']
cell_efficiency = self.params[self.base_name+'_cell_efficiency']
cell_degradation = self.params[self.base_name+'_cell_degredation'] / 100.
discharge_depth = self.params[self.base_name+'_discharge_depth']

ops_distance = self.params[self.base_name+'_ops_distance']

orbit_period = self.params[self.base_name+'_orbit_period']

max_eclipse = self.params[self.base_name+' _max_eclipse']

mission_duration = self.params[self.base_name+' _mission_duration']

if generator_type not in ['pv','rtg','none']:
msg = ("undefined generator type. must be one of ['pv','rtg','none']l")
raise Exception(msg)

if orbit_period < max_eclipse:
msg = ('orbit period must be greater than the max eclipse duration')
raise Exception(msg)

for name,value in {'cell_efficiency':cell_efficiency,
'cell _degradation':cell_degradation,
'discharge_depth':discharge_depth,
'transmission_efficiency':transmission_efficiency}.items():
if value < 0 or value > 1:
msg = ('{0} must be a value between zero and 1'.format(name))
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raise Exception(msg)

for name,value in {'ops_distance':ops_distance,
'orbit_period':orbit_period,
'max_eclipse':max_eclipse,
'mission_duration':mission_duration}.items():
if value < O:
msg = ('{0} must be a positive value'.format(name))
raise Exception(msg)

def solve_nonlinear(self, params, unknowns, resids):

# unpack params to local wvariables

generator_type = params[self.base_name+'_generator_type'].lower()
transmission_efficiency = params[self.base_name+'_transmission_efficiency']
cell_efficiency = params[self.base_name+'_cell_efficiency']
cell_degradation = params[self.base_name+'_cell_degradation']

array_density = params[self.base_name+'_array_density']
low_array_degradation = params[self.base_name+'_low_array_degradation']
discharge_depth = params[self.base_name+'_discharge_depth']
storage_specific_energy = params[self.base_name+'_storage_specific_energy']
energy_transfer = params[self.base_name+'_energy_transfer']

ops_distance = params[self.base_name+'_ops_distance']

orbit_period = params[self.base_name+' _orbit_period']

max_eclipse = params[self.base_name+' _max_eclipse']

mission_duration = params[self.base_name+' _mission_duration']

P_engine = params[self.base_name+'_engine_power_req']

power_required = 0.
for subnum in range(self.element.num_subelements):
if subnum != self.subelement_num:
power_required +=
« params['element{O}sub{1}_power_req'.format(self.element.element_num,subnum) ]

Pe = Pd = power_required # (W)
Te = max_eclipse # (h)
n = transmission_efficiency # transmission efficiency from battery/generator to load

# size the generator
gen_mass = O.
if generator_type == 'pv': # PV generator
To = orbit_period # (h)
Td = To - Te # (h)
if energy_transfer == 'direct':
Xbase = 0.85 # from Space Mission Engineering: The New SMAD, sec. 21.2.2
else:
Xbase = 0.8 # from Space Mission Engineering: The New SMAD, sec. 21.2.2
Xbase*n # accounts for losses for power coming from batteries
Xbase

Xe
Xd

Psa = (PexTe/Xe + Pd*Td/Xd)/Td # (W), Space Mission Engineering: The New SMAD, eq. 21-6

solar_flux = 1368.0 * (1/ops_distance**2) # I//m"2 # inverse square law relation
# from Space Mission Engineering: The New SMAD, Fig. 21-24

Po = solar_flux * cell_efficiency

# can bring in degradation factors as technology inputs
if low_array_degradation:
Id = 0.95 * 0.95 # inherent degradation due to design, assembly, and thermal
else:
Id = 0.85 * 0.85 # <nherent degradation due to design, assembly, and thermal
# cycling. Space Mission Engineering: The New SMAD, Sec. 21.2.2, Step 4, Table 21-14

theta = 0. # radians, assume orbit plane equals solar ecliptic plane
# (i.e. no incidence angle losses)

P_BOL = Po * Id * cos(theta) # Power beginning of life (W/m"2)
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D = cell_degradation / 100.

L mission_duration

Ld = (1 - D)*xL # life degradation

P_EOL = P_BOL * Ld # end of life power (W/m°2)
Asa = Psa / P_EOL # array surface area (m"2)

Msa = Asa * array_density # solar array mass (kg)
gen_mass = Msa # kg

elif generator_type == 'rtg': # RIG generator
gen_mass = 0.3801 * power_required * (2 - n) # kg
# this is a linear curve fit of data from Element of Spacecraft Design
# by Charles D. Brown, Sec 6.3 Table 6.13, p. 350

# size the power storage
storage_mass = 0. # kg

if generator_type != 'rtg': # using solar arrays, need storage during eclipse periods
N = 1 # number of batteries required
DoD = discharge_depth

batt_capacity = (Pe-P_engine)*Te / (DoD*N*n) # (W/-hr)
batt_mass = batt_capacity / storage_specific_energy # kg
storage_mass = batt_mass * (N+1) # kg, redundancy for battery failure

# size regulation/distribution

# this is just an estimate based on the general mass breakdown of power

# systems provided in Space Mission Engineering: The New SMAD, Fig. 21-6, p.641
reg_dist_mass = (0.17/0.83) * (gen_mass + storage_mass) # kg

inert_mass = gen_mass + storage_mass + reg_dist_mass # kg
heat_load = power_required * (1 - n) # W, heat from power regulation/distribution

# assign unknowns
unknowns [self.base_name+'_heat_load'] = heat_load
unknowns [self.base_name+'_inert_mass'] = inert_mass

1.4 Structures SubElement Model

# —*- coding: utf-8 —*-
Description:
A DYREQT Structures subelement for Douglas Trent's PhD

Written by:
Douglas J. Trent
NASA Marshall Space Flight Center
Advanced Concept Office
douglas.trent@nasa. gov

Created: 04/06/2017

Revised: 07/31/2017

mimmn

# amport DYREQT Subelement base class
from SubElements import SubElement
from numpy import pi, log
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# create the structures subelement

class StructuresPhD(SubElement):
"""Estimates the structural mass of an element. Sizing is based on the
design-envelope area of the element, which t1s estimated based on the size
of the propellant tanks. The relation for structure mass to design-envelope
area is from NASA document JSC-26098, "Mass Estimating and Forecasting for
Aerospace Vehicles Based on Historical Data” by Willie Heineman, Jr.

Input Params

A_de : float(1 m**2)
The design-envelop area of the structure (m**2). This is the surface
area of the design-envelop wolume of the element. If this walue s
provided all other inputs will be ignored. This acts as a static
override for the scaling of the structures.

manned : bool (False)
If the element is a manned vehicle. Increases the leading coefficient
in the relationship to increase overall mass.

composite : bool(False)
If True, reduces overall mass by 30 for composite structures.

truss : bool(False)
If True, assume a truss structure for a single tank, otherwise, assume
an in-line tank structure. If num_tanks is greater than 1, this input s
ignored. This input overrides the 'manned’ input setting

adapter : bool(False)
If True, sizes an adapter instead of a primary/secondary structure.
This setting overrides the 'manned’' or 'truss' input settings

Inherited Params

num_fuel_tanks_mps : float
The number of fuel tanks in the main propulsion system

diameter_fuel_tanks_mps : float
The diameter of the fuel tanks in the main propulsion system (m)

length_fuel_tanks_mps : float
The length of the fuel tanks in the main propulsion system (m)

num_ox_tanks_mps : float
The number of oxzidizer tanks in the main propulsion system

diameter_oz_tanks_mps : float
The diameter of the ozidizer tanks in the main propulsion system (m)

length_oz_tanks_mps : float
The length of the oztdizer tanks in the matin propulsion system (m)

num_fuel_tanks_mps : float
The number of fuel tanks in the main propulsion system

diameter_fuel_tanks_rcs : float
The diameter of the fuel tanks in the reaction control system (m)

length_fuel_tanks_rcs : float
The length of the fuel tanks in the reaction control system (m)

num_ox_tanks_rcs : float
The number of ozidizer tanks in the reaction control system

diameter_oz_tanks_rcs : float
The diameter of the ozidizer tanks in the reaction control system (m)

length_ox_tanks_rcs : float
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The length of the oztidizer tanks in the reaction control system (m)

Outputs

inert_mass : float

o

def

def

def

def

The estimated inert mass of the structures (kg). This includes
primary and secondary structures.

__init__(self,*xkwargs):

super () .__init__ (**kwargs)

# user model inputs

self.add_param(self.base_name+'_A_de', val=float(-1), units='m**2')
self.add_param(self.base_name+'_manned', val=False)
self.add_param(self.base_name+'_composite', val=False)
self.add_param(self.base_name+'_truss', val=False)
self.add_param(self.base_name+'_addapter', val=False)

# parameters from the element (DYREQT internal or from other subelements)
self.add_param(self.element.base_name+'_num_fuel_tanks_mps', val=int(0))
self.add_param(self.element.base_name+'_diameter_fuel_tanks_mps', val=float(0), units='m')
self.add_param(self.element.base_name+'_length_fuel_tanks_mps', val=float(0), units='m')
self.add_param(self.element.base_name+'_num_ox_tanks_mps', val=int(0))
self.add_param(self.element.base_name+'_diameter_ox_tanks_mps', val=float(0), units='m')
self.add_param(self.element.base_name+'_length_ox_tanks_mps', val=float(0), units='m')
self.add_param(self.element.base_name+'_num_fuel_tanks_rcs', val=int(0))
self.add_param(self.element.base_name+'_diameter_fuel_tanks_rcs', val=float(0), units='m')
self.add_param(self.element.base_name+'_length_fuel_tanks_rcs', val=float(0), units='m')
self.add_param(self.element.base_name+'_num_ox_tanks_rcs', val=int(0))
self.add_param(self.element.base_name+'_diameter_ox_tanks_rcs', val=float(0), units='m')
self.add_param(self.element.base_name+'_length_ox_tanks_rcs', val=float(0), units='m')
# outputs used by the parent element

self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')

pre_setup(self,problem):
pass

post_setup(self, problem):
"""Check inputs after final connections have been made

nwnn

mps_tanks = (self.params[self.element.base_name+' _num_fuel_tanks mps'] +
self .params[self.element.base_name+'_num_ox_tanks_mps'])
rcs_tanks = (self.params[self.element.base_name+' _num_fuel_tanks_rcs'] +
self .params[self.element.base_name+'_num_ox_tanks_rcs'])
A_de = self.params[self.base_name+'_A_de']

if mps_tanks + rcs_tanks ==
if A_de == -1:
msg = ('must specify a design envelope area, A_de, for '
'element {0} with no tanks'.format(self.element.element_num))
raise Exception(msg)

if A_de < 0 and A_de != -1:
msg = ('design envelope area, A_de, for element {0} must be '
'greater than zero'.format(self.element.element_num))
raise Exception(msg)

solve_nonlinear(self, params, unknowns, resids):

A_de = params[self.base_name+'_A_de']

truss = params[self.base_name+'_truss']

manned = params[self.base_name+'_manned']
adapter = params[self.base_name+' _adapter']
composite = params[self.base_name+'_composite']

tank_diameters = [params[self.element.base_name+'_diameter_fuel_tanks mps'],

params [self.element.base_name+'_diameter_ox_tanks_mps'],
params [self.element.base_name+'_diameter_fuel_tanks_rcs'],
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params [self.element.base_name+'_diameter_ox_tanks_rcs']]

tank_lengths = [params[self.element.base_name+'_length_fuel_tanks_mps'],
params [self.element.base_name+'_length_ox_tanks_mps'],
params [self.element.base_name+'_length_fuel_tanks_rcs'],
params [self.element.base_name+'_length_ox_tanks_rcs']]

num_tanks = [params[self.element.base_name+'_num_fuel_tanks_mps'],
params [self.element.base_name+' _num_ox_tanks_mps'],
params [self.element.base_name+' _num_fuel_tanks_rcs'],
params [self.element.base_name+' _num_ox_tanks_rcs']]

if A_de == -1: # mno value specified by user, estimate it from tank geometries
d_tanks = O.
1_tanks = 0.

for i in range(0,2):
if tank_diameters[i] > O.:
d_tanks += tank_diameters[i]*#*2 / sum(tank_diameters)
1_tanks += tank_lengths[i]#*2 / sum(tank_lengths)

if sum(num_tanks[0:2]) > 2: # assume disk shape
# diameter of a circle which fits the 120 diameter tanks
d_de = (1.2%d_tanks)*(1.1655%1log(sum(num_tanks))+0.9571)
# surface area of a cylinder with d_de and 1=120) tank diameter
A_de = 2xpix(d_de/2)**2 + 2xpix(d_de/2)*(1.2x1_tanks)
elif sum(num_tanks[0:2]) == 2: # assume two stacked mps tanks
d_de = d_tanks
A_de = 2xpix(d_de/2)#**2 + 2xpi*(d_de/2)*(sum(num_tanks[0:2])*1_tanks)
else: # assume truss/drop tank
d_de = d_tanks
if truss:
truss_density_factor = 0.425 # m~3/m"3
A_de = truss_density_factor * (pi*(d_de/2)**2 + pix(d_de/2)*(1l_tanks))
else:
A_de = 2xpix(d_de/2)**2 + 2xpix*(d_de/2)*(1l_tanks)

SF = 1.27 # scaling factor based on type

SF =0.71

if manned:
SF = 2.0

if truss or sum(num_tanks[0:2]) == 1:
SF = 0.71

if adapter:
SF = 0.99

inert_mass = SF*(A_dex10.7639)**(1.15) # 10.7639 conversion from m~3 -> f°3

if composite:
inert_mass = 0.7*inert_mass

inert_mass = inert_mass * 0.453592 # kg

# assign unknowns
unknowns [self.base_name+'_inert_mass'] = inert_mass

1.5 Tanks SubFElement Model

# —*- coding: utf-8 —*-
mnimn
Description:
A DYREQT Tanks subelement for Douglas Trent's PhD

Written by:

Douglas J. Trent
NASA Marshall Space Flight Center
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Advanced Concept Office
douglas.trent@nasa. gov

Created: 04/06/2017

Revised: 08/31/2017

mnimn

import sys

sys.path.append (DYREQT_DIR)

# import DYREQT Subelement base class
from SubElements import SubElement
# amport other modules

import FluidsDef as fluids

from numpy import array, pi, zeros
from copy import deepcopy

# create the structures subelement

class TanksPhD(SubElement) :
"""Sizes a set of tanks based on the user inputs for a propulsive stage.
Sizing is done mostly from level-0 physics based equation, with correction
factors for isentropic fluid expansion and composite materials.

Input Params

num_fuel_tanks_mps : int (1)
The number of main propulstion system fuel tanks.

num_oz_tanks_mps : int(1)
The number of main propulsion system oxidizer tanks.

fuel_pressures_mps : float (0.3 MPa)
The matin propulston system fuel tank pressures (MPa).

oz_pressures_mps : float(0.3 MPa)
The main propulsion system ozidizer tank pressures (MPa).

ld_ratio_fuel_tanks_mps : float(1.0)
The matin propulston system fuel tank L/D ratio.

ld_ratio_ox_tanks_mps : float(1.0)
The matin propulstion system ozidizer tank L/D rattio.

separator_type_mps : str('pmd’', 'ped’,"'')
The type of device used to separate pressurant gas and liquid

propellant in the main propulsion system propellant tank

num_fuel_tanks_rcs : int (1)
The number of reaction control system fuel tanks.

num_oz_tanks_rcs : int(1)
The number of reaction control system oxidizer tanks.

fuel_pressures_rcs : float (0.3 MPa)
The reaction control system fuel tank pressures (MPa).

oz_pressures_rcs : float(0.3 MPa)
The reaction control system oxzidizer tank pressures (MPa).

ld_ratio_fuel_tanks_rcs : float(1.0)
The reaction control system fuel tank L/D ratio.

ld_ratio_oz_tanks_rcs : float(1.0)
The reaction control system ozidizer tank L/D ratio.

separator_type_rcs : str('pmd', 'ped’,'"')
The type of device used to separate pressurant gas and liquid

propellant in the reaction control system propellant tank

pressurant :@ str
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The pressurant for tanks

pressurant_pressure : float
The initial pressure of the pressurant tanks (MPa)

num_tanks_pressurant : int
The number of pressurant tanks to size

tank_ld_ratio_pressurant : float
The L/D ratio of the pressurant tank

material_density : float
The density of the tank material (kg/m~3)

material_strength : float
The ultimate strength of the tank material (MPa)

copu_pressurant_tanks : bool(False, True)

If True, utilizes composite overwrap pressure vessels for the pressurant

tanks

composite_fuel_tanks_mps : bool
If True, utilizes composite materials for the MPS fuel tanks
resulting in a 30) mass reduction from Aluminum-Lithium tanks.

composite_ox_tanks_mps : bool
If True, utilizes composite materials for the MPS ozidizer tanks
resulting in a 30/ mass reduction from Aluminum-Lithium tanks.

composite_fuel_tanks_rcs : bool
If True, utilizes composite materials for the RCS fuel tanks
resulting in a 30/ mass reduction from Aluminum-Lithium tanks.

composite_oxz_tanks_rcs : bool
If True, utilizes composite materials for the RCS oztidizer tanks

resulting in a 30/ mass reduction from Aluminum-Lithium tanks.

tvfm : bool

If True, assumes integrated vehicle fluid management, which will combine

the RCS and MPS propellant systems into a single system, reducing

the number of tanks and overall mass of the propellant storage system

Inherited Params
propellants_mps : str
The propellants for the main propulsion system

propellants_rcs : str
The propellants for the reaction system

mizture_ratio_mps : float
The mizture ratio of the main propulsion system propellants

mizture_ratio_rcs : float
The mizture ratio of the reaction control system propellants

maz_propellant_mass_mps : float
The total amount of propellant required for all impulsive maneuvers
performed by the main propulsion system (kg)

maz_propellant_mass_rcs : float
The total amount of propellant required for all impulsive maneuvers

performed by the reaction control system (kg)

propellant_mass_mps : array

The propellant required for each impulsive maneuver the parent element

performs (kg)
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propellant_mass_rcs

: array

The propellant required for each impulsive maneuver the parent element
performs (kg)

Outputs

num_fuel_tanks_mps : float
The number of fuel tanks in the main propulsion system

diameter_fuel_tanks_mps : float
The diameter of the fuel tanks in the main propulsion system (m)

length_fuel_tanks_mps : float
The length of the fuel tanks in the main propulsion system (m)

pressure_fuel_tanks_mps : float
The pressure of the fuel tanks in the matin propulsion system (MPa)

num_ox_tanks_mps : float

The number of ozidizer tanks in the main propulsion system

diameter_oz_tanks_mps : float
The diameter of the ozidizer tanks in the main propulsion system (m)

length_oz_tanks_mps : float
The length of the oztdizer tanks in the matin propulsion system (m)

pressure_ox_tanks_mps : float
The pressure of the ozidizer tanks in the main propulsion system (MPa)

num_fuel_tanks_mps : float
The number of fuel tanks in the main propulsion system

dtameter_fuel_tanks_rcs : float
The diameter of the fuel tanks in the reaction control system (m)

length_fuel_tanks_rcs : float
The length of the fuel tanks in the reaction control system (m)

pressure_fuel_tanks_rcs : float
The pressure of the fuel tanks in the reaction control system (MPa)

num_ox_tanks_rcs : float

The number of ozidizer tanks in the reaction control system

dtameter_oz_tanks_rcs : float
The diameter of the ozidizer tanks in the reaction control system (m)

length_oxz_tanks_rcs : float
The length of the oxzidizer tanks in the reaction control system (m)

pressure_ox_tanks_rcs : float
The pressure of the ozidizer tanks in the reaction control system (MPa)

inert_mass : float
The estimated tnert mass of the propellant tanks (kg). This includes
the mass of the dry tanks, miscellaneous hardware, pressurant, and

propellant trap.

nwun

def

__init__(self,**kwargs):
super () .__init__(**kwargs)
# user model inputs

self.

self
self

add_param(self

.add_param(self
.add_param(self
self.
self.

add_param(self
add_param(self

.base_name+'_num_fuel_tanks_mps', val=int(1))
.base_name+'_num_ox_tanks_mps', val=int(1))
.base_name+'_fuel_pressure_mps', val=float(0.3), units='MPa')
.base_name+' _ox_pressure_mps', val=float(0.3), units='MPa')
.base_name+'_1ld_ratio_fuel_tanks_mps', val=float(1))
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self.add_param(self.base_name+'_ld_ratio_ox_tanks_mps', val=float(1l))
self.add_param(self.base_name+'_seperator_type_mps', val=str('pmd'))
self.add_param(self.base_name+'_num_fuel_tanks_rcs', val=int(0))
self.add_param(self.base_name+'_num_ox_tanks_rcs', val=int(0))
self.add_param(self.base_name+'_fuel_pressure_rcs', val=float(0.3), units='MPa')
self.add_param(self.base_name+'_ox_pressure_rcs', val=float(0.3), units='MPa')
self.add_param(self.base_name+'_ld_ratio_fuel_tanks_rcs', val=float(1))
self.add_param(self.base_name+'_ld_ratio_ox_tanks_rcs', val=float(1))
self.add_param(self.base_name+'_seperator_type_rcs', val=str('pmd'))
self.add_param(self.base_name+'_pressurant', val=str('He'))
self.add_param(self.base_name+'_pressurant_pressure', val=float(l), units='MPa')
self.add_param(self.base_name+'_num_tanks_pressurant', val=int(1))
self.add_param(self.base_name+'_tank_ld_ratio_pressurant', val=float(1))
self.add_param(self.base_name+' _material_strength', val=float(1l), units='MPa')
self.add_param(self .base_name+'_material_density', val=float(1l), units='kg/m**3')
self.add_param(self.base_name+'_copv_pressurant_tank', val=False)
self.add_param(self.base_name+'_composite_fuel_tanks_mps', val=False)
self.add_param(self.base_name+'_composite_ox_tanks_mps', val=False)
self.add_param(self.base_name+'_composite_fuel_tanks_rcs', val=False)
self.add_param(self.base_name+'_composite_ox_tanks_rcs', val=False)
self.add_param(self.base_name+'_ivfm', val=False)

# parameters from the element (DYREQT internal or from other subelements)
self.add_param(self.element.base_name+'_propellants_mps', val=str())
self.add_param(self.element.base_name+'_propellants_rcs', val=str())
self.add_param(self.element.base_name+'_mixture_ratio_mps', val=float(1))
self.add_param(self.element.base_name+' _mixture_ratio_rcs', val=float(1))
self.add_param(self.element.base_name+'_max_propellant_mass_mps', val=float(0), units='kg')
self.add_param(self.element.base_name+'_max_propellant_mass_rcs', val=float(0), units='kg')
self.add_param(self.element.base_name+'_max_single_burn_prop_mass_rcs', val=float(0),

< units='kg')

self.add_param(self.element.base_name+'_propellant_mass_mps',

— val=zeros(self.element.num_events+1), units='kg')
self.add_param(self.element.base_name+'_propellant_mass_rcs',

— val=zeros(self.element.num_events+1), units='kg')

# outputs inherited by the parent element (for use by other subelements or DYREQT)
self.add_output(self.element.base_name+' _num_fuel_tanks_mps', val=int(1))
self.add_output(self.element.base_name+'_diameter_fuel_tanks_mps', val=float(0), units='m')
self.add_output(self.element.base_name+'_length_fuel_tanks_mps', val=float(0), units='m')
self.add_output(self.element.base_name+' _pressure_fuel_tanks_mps', val=float(0.3),

< units='MPa')

self.add_output(self.element.base_name+' _num_ox_tanks_mps', val=int(1))
self.add_output(self.element.base_name+'_diameter_ox_tanks_mps', val=float(0), units='m')
self.add_output(self.element.base_name+'_length_ox_tanks_mps', val=float(0), units='m')
self.add_output(self.element.base_name+' _pressure_ox_tanks_mps', val=float(0.3), units='MPa')
self.add_output(self.element.base_name+' _num_fuel_tanks_rcs', val=int(0))
self.add_output(self.element.base_name+'_diameter_fuel_tanks_rcs', val=float(0), units='m')
self.add_output(self.element.base_name+'_length_fuel_tanks_rcs', val=float(0), units='m')
self.add_output(self.element.base_name+' _pressure_fuel_tanks_rcs', val=float(0.3),

< units='MPa')

self.add_output(self.element.base_name+' _num_ox_tanks_rcs', val=int(0))
self.add_output(self.element.base_name+'_diameter_ox_tanks_rcs', val=float(0), units='m')
self.add_output(self.element.base_name+'_length_ox_tanks_rcs', val=float(0), units='m')
self.add_output(self.element.base_name+' _pressure_ox_tanks_rcs', val=float(0.3), units='MPa')
# outputs used by the parent element

self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')

def pre_setup(self,problem):
pass

def post_setup(self, problem):
"""Check inputs after final connections have been made

for propsys in ['mps','rcs']:

props = self.params[self.element.base_name+'_propellants_'+propsys]
num = props.count('/') + 1

if num == 1 and not props:
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msg = ('must specify at least one propellant for the {0}'.format(propsys.upper()))
raise Exception(msg)

def solve_nonlinear(self, params, unknowns, resids):
ivfm = deepcopy(params[self.base_name+'_ivfm'])

if ivim:
if params[self.element.base_name+'_propellants_mps'] !=
< params[self.element.base_name+'_propellants_rcs']:
ivfm = False

# set local wvariables from params

pres_tank_pressure = params[self.base_name+'_pressurant_pressure']
num_pressurant_tanks = params[self.base_name+'_num_tanks_pressurant']
pres_tank_ld_ratio = params[self.base_name+'_tank_ld_ratio_pressurant']
copv_pressurant_tanks = params[self.base_name+'_copv_pressurant_tank']
material_strength = params[self.base_name+' _material_strength']
material_density = params[self.base_name+' _material_density']

inert_mass = []
for propsys in ['mps','rcs']:

# set local wvariables from params
pressurant = params[self.base_name+'_pressurant']
if propsys == 'mps':
if ivfm:
usable_prop = (params[self.element.base_name+'_max_propellant_mass_mps'] +
params [self.element.base_name+'_max_propellant_mass_rcs'])
burn_props = (params[self.element.base_name+' _propellant_mass_mps'] +
params [self.element.base_name+'_propellant_mass_rcs'])
else:
usable_prop = params[self.element.base_name+'_max_propellant_mass_mps']
burn_props = params[self.element.base_name+'_propellant_mass_mps']
propellants = params[self.element.base_name+'_propellants_mps']
mixture_ratio = params[self.element.base_name+' _mixture_ratio_mps']
separator_type = params[self.base_name+'_separator_type_mps']
num_ox_tanks = params[self.base_name+'_num_ox_tanks_mps']
num_fuel_tanks = params[self.base_name+'_num_fuel_tanks_mps']
ox_tank_pressure = params[self.base_name+'_ox_pressure_mps']
fuel_tank_pressure = params[self.base_name+'_fuel_pressure_mps']
ox_tank_ld_ratio = params[self.base_name+'_ld_ratio_ox_tanks_mps']
fuel_tank_ld_ratio = params[self.base_name+'_1ld_ratio_fuel_tanks_mps']
composite_ox_tanks = params[self.base_name+'_composite_ox_tanks_mps']
composite_fuel_tanks = params[self.base_name+'_composite_fuel_tanks_mps']
# assign static outputs
unknowns [self.element.base_name+'_num_fuel_tanks_mps'] = num_fuel_tanks

unknowns[self.element.base_name+‘_pressure_fuel_tanks_mps‘] = fuel_tank_pressure

unknowns [self.element.base_name+'_num_ox_tanks_mps'] = num_ox_tanks

unknowns [self.element.base_name+'_pressure_ox_tanks_mps'] = ox_tank_pressure
elif propsys == 'rcs':

if ivfm:

usable_prop = 0.

num_ox_tanks = O.

num_fuel_tanks = 0.
else:

usable_prop = params[self.element.base_name+' _max_propellant_mass_rcs']

num_ox_tanks = params[self.base_name+'_num_ox_tanks_rcs']

num_fuel_tanks = params[self.base_name+' _num_fuel_tanks_rcs']
burn_props = params[self.element.base_name+'_propellant_mass_rcs']
propellants = params[self.element.base_name+'_propellants_rcs']
mixture_ratio = params[self.element.base_name+‘_mixture_ratio_rcs‘]
separator_type = params[self.base_name+'_separator_type_rcs']
ox_tank_pressure = params[self.base_name+'_ox_pressure_rcs']
fuel_tank_pressure = params[self.base_name+'_fuel_pressure_rcs']
ox_tank_ld_ratio = params[self.base_name+'_ld_ratio_ox_tanks_rcs']
fuel_tank_ld_ratio = params[self.base_name+'_ld_ratio_fuel_tanks_rcs']
composite_ox_tanks = params[self.base_name+'_composite_ox_tanks_rcs']
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composite_fuel_tanks = params[self.base_name+'_composite_fuel_tanks_rcs']
# assign static outputs
unknowns [self.element.base_name+'_num_fuel_tanks_rcs'] = num_fuel_tanks

unknowns [self.element.base_name+'_pressure_fuel_tanks_rcs'] = fuel_tank_pressure

unknowns [self.element.base_name+'_num_ox_tanks_rcs'] = num_ox_tanks
unknowns [self.element.base_name+'_pressure_ox_tanks_rcs'] = ox_tank_pressure

prop_trap = 0.01 * usable_prop
sized_prop = usable_prop + prop_trap
props_list = propellants.replace(' ','').lower().split('/")

ox = None

fuel = None

if len(props_list) >1:
ox = props_list[0]
fuel = props_list[1]

else:
fuel = props_list[0]

# perform some input checks
prop_types = []
for i,propellant in enumerate([fuel,ox]):
if propellant:
prop_types.append (None)
if propellant == 'solid':
prop_types[i] = 'solid'
prop_trap = O.

else:

res,fluid_def = fluids.check_def (propellant)

if res:
prop_types[i] = fluid_def['type']

else:
msg = ('"{0}" is not a defined fluid'.format(propellant))
raise Exception(msg)

if len(prop_types) > 1 and any(True for x in prop_types if x == 'electric'):

msg = ('may only select a single propellant when selecting an electric '
'engine propellant')
raise Exception(msg)

if pressurant:
if pressurant.lower() '= 'none':
if not fluids.check_def (pressurant):
raise Exception('"{0}" is not a defined fluid'.format(pressurant))
else:
pressurant = ''
else:
pressurant = "'
if pressurant:
if pres_tank_pressure <= 2*max([fuel_tank_pressure,ox_tank_pressure]):
msg = ('pressurant tank initial pressure must be at least twice '
'the maximum propellant tank operating pressure')
raise Exception(msg)

for prop_type in prop_types:
if prop_type != 'cryogenic':
pressurant = 'He'

if separator_type:
if separator_type.lower() != 'none':
if separator_type.lower() not in ['pmd','ped']:
msg = ('separator_type must be one of "{0}"'.format())
raise Exception(msg)
else:
separator = ''

else:
separator = ''
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ox_volume = O.

ox_tank_mass = O.

fuel_volume = O.

fuel_tank_mass = 0.
pressurant_tank_mass = O.
pressurant_mass = O.
AL2195_density = 2685.0 # kg/m"3
AL2195_strength = 628.6 # MPa

# determine the mass of fuel and oxtdizer
if fuel and ox:
fuel_mass = sized_prop / (mixture_ratio + 1)
ox_mass = (sized_prop*mixture_ratio) / (mixture_ratio + 1)
else:
fuel_mass = sized_prop
ox_mass = 0.
# size tanks
if fuel and num_fuel_tanks and prop_types[0] != 'solid':
# determine fuel volume
if prop_types[0] == 'electric':

fuel_density = fluids.density(fuel,liquid=False,P=fuel_tank_pressure) # kg/m 3

else:
fuel_density = fluids.density(fuel) # kg/m"3
fuel_volume = fuel_mass / fuel_density # m~3
if not pressurant and prop_types[0] != 'electric':
# add volume for autogenous pressurization

fuel_density_gas = fluids.density(fuel, liquid=False, P=fuel_tank_pressure)

res = fuel_volume
fuel_volume_new = O.
pressurization_fuel = 1.
while pressurization_fuel > le-3:
pressurization_fuel = res * fuel_density_gas
fuel_mass += pressurization_fuel
fuel_volume_new = fuel_mass/fuel_density
res = abs(fuel_volume_new - fuel_volume)
fuel_volume = fuel_volume_new
fuel_volume = fuel_volume * 1.05 # 5/ ullage
# design the tank
volume = fuel_volume/num_fuel_tanks
ld_ratio = fuel_tank_ld_ratio
pressure = fuel_tank_pressure
separator = separator_type
if composite_fuel_tanks:
density = AL2195_density
strength = AL2195_strength
fuel_tank_mass,fuel_tank_radius =
« self._tank_mass(density,strength,volume,ld_ratio,

pressure,separator,1.5)

fuel_tank_mass = 0.7*fuel_tank_mass
else:
density = material_density
strength = material_strength
fuel_tank_mass,fuel_tank_radius =
« self._tank_mass(density,strength,volume,ld_ratio,

pressure,separator,1.5)

# assign calculated outputs

if propsys == 'mps':
unknowns [self.element.base_name+'_diameter_fuel_tanks_mps']
unknowns [self.element.base_name+'_length_fuel_tanks_mps'] =
— 2*fuel_tank_radius*fuel_tank_ld_ratio

elif propsys == 'rcs':
unknowns [self.element.base_name+'_diameter_fuel_tanks_rcs']
unknowns [self.element.base_name+'_length_fuel_tanks_rcs'] =
— 2*fuel_tank_radius*fuel_tank_ld_ratio

if ox and num_ox_tanks:
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# determine ox volume
if prop_types[1] == 'electric':
ox_density = fluids.density(ox,liquid=False,P=ox_tank_pressure) # kg/m"3
else:
ox_density = fluids.density(ox) # kg/m~3
ox_volume = ox_mass / ox_density # m~3
if not pressurant and prop_types[0] != 'electric':
# add volume for autogenous pressurization
ox_density_gas = fluids.density(ox, liquid=False, P=ox_tank_pressure)
res = ox_volume
ox_volume_new = O.
pressurization_ox = 1.
while pressurization_ox > le-3:
pressurization_ox = res * ox_density_gas
ox_mass += pressurization_ox
ox_volume_new = ox_mass/ox_density
res = abs(ox_volume_new - ox_volume)
ox_volume = ox_volume_new
ox_volume = ox_volume * 1.05 # 5/ ullage
# design the tank
volume = ox_volume/num_ox_tanks
ld_ratio = ox_tank_ld_ratio
pressure = ox_tank_pressure
separator = separator_type
if composite_ox_tanks:
density = AL2195_density
strength = AL2195_strength
ox_tank_mass,ox_tank_radius = self._tank_mass(density,strength,volume,ld_ratio,
pressure,separator,1.5)
ox_tank_mass = 0.7+*fuel_tank_mass
else:
density = material_density
strength = material_strength
ox_tank_mass,ox_tank_radius = self._tank_mass(density,strength,volume,ld_ratio,
pressure,separator,1.5)
# assign calculated outputs
if propsys == 'mps':
unknowns [self.element.base_name+'_diameter_ox_tanks_mps'] = 2*ox_tank_radius
unknowns [self.element.base_name+'_length_ox_tanks_mps'] =
— 2%ox_tank_radius*ox_tank_ld_ratio
elif propsys == 'rcs
unknowns [self.element.base_name+'_diameter_ox_tanks_rcs'] = 2*ox_tank_radius
unknowns [self.element.base_name+'_length_ox_tanks_rcs'] =
— 2*ox_tank_radius*ox_tank_ld_ratio

if pressurant and not (ivfm and propsys == 'rcs'):
# determine pressurant mass and wvolume
prop_tank_pressure = max([fuel_tank_pressure,ox_tank_pressure])
pres_density_init = fluids.density(pressurant, liquid=False, P=pres_tank_pressure)
isentropic = False
if usable_prop:
if max(burn_props) / usable_prop > 0.1: # more than 10/ total prop in a single
— burn
isentropic = True
if isentropic:
CF = (2*prop_tank_pressure/pres_tank_pressure)**0.2227
pres_density_final = fluids.density(pressurant, liquid=False,
— P=prop_tank_pressure, T=CF*293.0)
else:
pres_density_final = fluids.density(pressurant, liquid=False,
— P=prop_tank_pressure)
pres_density_res = fluids.density(pressurant, liquid=False, P=prop_tank_pressure*2)
pres_mass = (fuel_volume + ox_volume) * pres_density_final
new_pres_mass = pres_mass
old_pres_mass = O.
res = 1.
while res > le-3:
pres_volume = new_pres_mass / pres_density_init # m"3
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res_pres_mass = pres_volume * pres_density_res
new_pres_mass = pres_mass + res_pres_mass
res = abs(old_pres_mass - new_pres_mass)
old_pres_mass = new_pres_mass
pres_mass = new_pres_mass * 1.1 # add a contingency of 10/ mass
pressurant_mass = pres_mass
pres_volume = pres_mass / pres_density_init
# design the tank
volume = pres_volume/num_pressurant_tanks
density = material_density
strength = material_strength
ld_ratio = pres_tank_ld_ratio
pressure = pres_tank_pressure
separator = ''
pressurant_tank_mass,_ = self._tank_mass(density,strength,volume,ld_ratio,
pressure,separator,l.S)

# modify tank masses for autogenous pressurization

if prop_types[0].lower() != 'electric' and not pressurant:
fuel_tank _mass = 1.1*fuel_tank_mass
ox_tank_mass = 1.1*ox_tank_mass

if copv_pressurant_tanks:
pressurant_tank_mass = 0.7*pressurant_tank_mass

total_tank_mass = (ox_tank_mass * num_ox_tanks +
fuel_tank_mass * num_fuel_tanks +
pressurant_tank_mass * num_pressurant_tanks)

miscellaneous_hardware = 0.15 * total_tank_mass # plumbing, brackets, wnsulation,

if ivfm and propsys == 'rcs':
# mass for accumulator pumps (15 kg each, 2 for each accumulator tank)
# and 15, for associated hardware/plumbing

miscellaneous_hardware += 1.15%(bool(num_ox_tanks)+bool (num_fuel_tanks))*2%15.
inert_mass.append(total_tank_mass + miscellaneous_hardware + pressurant_mass + prop_trap)

# assign calculated outputs
unknowns [self.base_name+'_inert_mass'] = sum(inert_mass)

def _tank_mass(self,material_density,material_strength,volume,ld_ratio,
tank_pressure,separator_type,safety_factor):
"""Calculates the mass of a tank based on a volume, pressure, and material
properties. Including assumptions for weld lands, inlet/outlet flanges,
structural attach points, and a separator device, when required.

Args

material_density : float
Density of the tank material (kg/m~3)

material_strength : float
Ultimate strength of the tank matertal (MPa)

volume : float
Volume of the tank (m~3)

ld_ratio : float
Ratio of the length over the diameter of the tank

tank_pressure : float
Pressure in the tank (MPa)

separator_type : str
The type of separator used in the tank, one of ["pmd", "ped"]

safety_factor : float
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Safety factor on the stress in the tank

Returns

dry_mass : float
The dry mass of the sized tank (kg)

r : float

The tank outer radius (m)
mmnn

dry_mass=0.

r = 0.
t = 0.
if volume != O:

# bare tank mass
if ld_ratio >= 1: # sphere or capsule

r = 0.5%(12+volume/ (pi* (3*1d_ratio-1)))**(1/3)
else: # spherical caps

r = 0.5%(24*volume/(pi*ld_ratio*(3 + ld_ratio**2)))**x(1/3)
t = tank_pressure*safety_factor*r/(2*material_strength)
if t < 0.000254: # m

t = 0.000254
if ld_ratio >= 1:

endcaps_mass = 4/3.*pi*((r+t)**3-r*+*3)*material_density
else:

A = r+t

H = ld_ratio*(r+t)

V_capl = (pi/6)*H*(3*(r+t)**2 + H**2)
A=r
H = ld_ratio*r

V_cap2 = (pi/6)*H*(3*A**2 + H¥*2)

endcaps_mass = 2*(V_capl - V_cap2)*material_density
barrel_mass = 0.
if ld_ratio > 1: # capsule shape

1_tank = ld_ratio*2+*r

1_barrel = 1_tank - (2*r)

barrel_mass = pi*1l_barrel*((r+t*2)+**2-r**2)+*material_density
bare_tank_mass = endcaps_mass + barrel_mass
dry_mass += bare_tank_mass

# weld lands mass
if 1ld_ratio ==
weld_lands_mass = 0. # assume monolithic, no welds
else:
weld_width = 0.1 # m
weld_lands_mass = 2*pi*r*t*weld_width*material_density#*2
dry_mass += weld_lands_mass

# inlet and outlet flange mass

let_radius = 0.2*r # m

flange_width = .0508 # m(2 in.)

flange_height = 0.00635 # m(0.25 in)

inlet_outlet_mass = (pi*((let_radius+flange_width)**2-let_radius**2)*
flange_height*material_density*2)

dry_mass += inlet_outlet_mass

# structural attachment points mass
structural_attach_mass = 0.02 * dry_mass

dry_mass += structural_attach_mass

# separation device mass

if separator_type.lower() == 'pmd':
separator_mass = 0.2 * dry_mass
elif separator_type.lower() == 'ped':

separator_mass = 0.3 * dry_mass
elif not separator_type:
separator_mass = 0.
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dry_mass += separator_mass

return dry_mass, r+t

I.6 Thermal SubElement Model

# —*- coding: utf-8 —*-
Description:
A DYREQT Thermal subelement for Douglas Trent's PhD

Written by:
Douglas J. Trent
NASA Marshall Space Flight Center
Advanced Concept Office
douglas. trent@nasa.gov

Created: 04/06/2017

Revised: 07/30/2017

# import DYREQT Subelement base class

from SubElements import SubElement

from Constants import Is, SB

# amport other modules

import FluidsDef as fluids

from numpy import zeros, pi, log, cos, arcsin

# create the structures subelement

class ThermalPhD(SubElement) :
"""Estimates the mass of a thermal control subsystem. Many of the scaling
equations and mass estimates are derived from references used in development
of the CryoSim tool by Steve Sutherlin of NASA MSFC and Wesley Johnson of
NASA KSC, as well as Human Spaceflight Mission Analysis and Design by W. Larson
and Space Vehicle Design, 2nd ed. by Michael D. Griffin and James R. French

Input Params

mli_layers_mps : int (20)
The number of layers in the MLI blankets for the main propulsion system
tanks.

mli_layers_rcs : int (20)
The number of layers in the MLI blankets for the reaction control
system tanks.

active_cooling_mps : bool(False)
If True, include and active cooling system to reduce propellant boil
off to zero for the main propulsion system.

active_cooling_mps : bool(False)
If True, include and active cooling system to reduce propellant boil
off to zero for the reaction control system.

radiator_density : float (4.5 kg/m#*2)
The aerial density of the radiator (kg/m"2)

external_tanks : bool (True)
If True, propellant tanks are assumed external to the main element
structure and are directly affected by external radiation sources such
as the Sun and/or orbited bodies. MLI mass and energy leak will be
calculated based on tank geometry. If False, MLI mass and energy leak
are calculated based on assumed element geometry.

hi_efficiency_radiators : bool (False)

If True, uses hi-efficiency radiators with high emissivity and high
fin efficiency to radiate heat at a greater rate for an equivalent

324



radiator area.

ops_distance : float (1.0 AU)
The solar distance from the sun of the worst operational environment (AU)

deep_space : bool (False)
If True, ignore radiation affect near an orbited body.

orbit_alt : float (1000. km)
The orbit altitude of the element above the body (km). If mot orbiting
a body, set albedo to zero to ignore body reflections.

r_body : float (6371. km)
The radius of the orbited body (km). If not orbiting a body, set albedo
to zero to ignore body reflections.

T_body : float (290. K)
The average temperature of the orbited body (K) for radiation
calculations.

albedo : float (0.3)
The bond albedo of the orbited body. If not orbiting a body, set this
value to zero and any value for orbit_alt and orbit_radius.

Inherited Params

maz_propellant_mass_mps : float
The mass of propellant for the main propulsion system (kg)

maz_propellant_mass_rcs : float
The mass of propellant for the reaction control system (kg)

propellants : str
The propellants of the propulsion system, separated by a forward slash (/)

mizture_ratio : float
The mass mizture ratio of propellants for the propulsion system

heat_loads : array
The amount of heat generated by other subsystems to be dissipated by
the radiators (W)

num_fuel_tanks : int
The number of fuel tanks

diameter_fuel_tanks : float
The diameter of the fuel tanks (m)

length_fuel_tanks : float
The length of the fuel tanks (m)

pressure_fuel_tanks : float
The pressure of the fuel tank (MPa)

num_ox_tanks : int
The number of ozidizer tanks

diameter_oz_tanks : float
The diameter of the ozidizer tanks (m)

length_ox_tanks : float
The length of the ozidizer tanks (m)

pressure_oz_tanks : float
The pressure of the oztidizer tank (MPa)

Outputs
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power_req :

array

The power required for the thermal subelement (W)

inert_mas

s : float

The inert mass of the subelement (kg)

o

def

__init__(self,**kwargs):

super () .__init__ (**kwargs)

# use
self
self.
self
self.
self.
self.
self
self
<

r model inputs

.add_param(self

add_param(self

.add_param(self

add_param(self
add_param(self
add_param(self

.add_param(self
.add_param(self
inherited from DYREQT misstion

.base_name+' _mli_layers_mps', val=int(20))

.base_name+'_mli_layers_rcs', val=int(20))
.base_name+'_active_cooling mps', val=False)
.base_name+'_active_cooling_rcs', val=False)
.base_name+'_radiator_density', val=float(4.5), units='kg/m**2')
.base_name+'_external_tanks', val=True)
.base_name+'_hi_efficiency_radiators', val=False)

.base_name+' _ops_distance', val=float(1l), units='AU') # will eventually be

self.add_param(self.base_name+'_deep_space', val=False) # will eventually be inherited from
< DYREQT mission
self.add_param(self.base_name+'_orbit_alt', val=float(1000), units='km') # will eventually be

—

inherited from DYREQT mission

self.add_param(self.base_name+'_r_body', val=float(6371), units='km') # will eventually be

—

inherited from DYREQT misstion

self.add_param(self.base_name+'_T_body', val=float(290), units='K') # will eventually be

—

tnhertted from DYREQYT mission

self.add_param(self.base_name+'_albedo', val=float(0.3)) # will eventually be inherited from
< DYREQT mission
# parameters from the element (DYREQT internal or from other subelements)

self
self
self.
self.
self.
self.
self.
self
self
self.
self.
self.
self.
self.
self
self.
self.
self.
self.
self.
self
self

.add_param(self.
.add_param(self.
add_param(self.
add_param(self.
add_param(self.
add_param(self.
add_param(self.
.add_param(self.
.add_param(self.
add_param(self.
add_param(self.
add_param(self.
add_param(self.
add_param(self.
.add_param(self.
add_param(self.
add_param(self.
add_param(self.
add_param(self.
add_param(self.
.add_param(self.
.add_param(self.

# outputs inherited
self.add_output(self.element.base_name+'_boiloff_rate_mps',

—

element .base_name+' _max_propellant_mass_mps', val=float(0), units='kg')
element .base_name+'_propellants_mps', val=str())

element.base_name+' _mixture_ratio_mps', val=float(1))

element .base_name+' _num_fuel_tanks_mps', val=int(1))
element.base_name+'_diameter_fuel_tanks_mps', val=float(0), units='m')
element .base_name+'_length_fuel_tanks_mps', val=float(0), units='m')
element .base_name+'_pressure_fuel_tanks_mps', val=float(0.3), units='MPa')
element .base_name+' _num_ox_tanks_mps', val=int(1))

element .base_name+'_diameter_ox_tanks_mps', val=float(0), units='m')
element.base_name+'_length_ox_tanks_mps', val=float(0), units='m')
element.base_name+'_pressure_ox_tanks_mps', val=float(0.3), units='MPa')
element.base_name+'_max_propellant_mass_rcs', val=float(0), units='kg')
element .base_name+'_propellants_rcs', val=str())

element .base_name+' _mixture_ratio_rcs', val=float(1))

element .base_name+'_num_fuel_tanks_rcs', val=int(0))

element .base_name+'_diameter_fuel_tanks_rcs', val=float(0), units='m')
element.base_name+'_length_fuel_tanks_rcs', val=float(0), units='m')
element .base_name+'_pressure_fuel_tanks_rcs', val=float(0.3), units='MPa')
element .base_name+'_num_ox_tanks_rcs', val=int(0))

element .base_name+'_diameter_ox_tanks_rcs', val=float(0), units='m')
element .base_name+'_length_ox_tanks_rcs', val=float(0), units='m')
element .base_name+' _pressure_ox_tanks_rcs', val=float(0.3), units='MPa')

by the element (for use by other subelements or DYREQT)

val=zeros(self.element.num_events), units='1/d")

self.add_output(self.element.base_name+'_boiloff_rate_rcs',

—

val=zeros(self.element.num_events), units='1/d")

# outputs used by the parent element

self.add_output(self.base_name+'_power_req', val=float(0), units='W')

self.add_output(self.base_name+'_inert_mass', val=float(0), units='kg')

# heat requirement from all other subelements in the parent element

for subnum in range(self.element.num_subelements):

if subnum != self.subelement_num:
self.add_param('element{0}sub{1}_heat_load'.format(self.element.element_num,subnum),

—

val=float(0), units='W")

def pre_setup(self, problem):

pass
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def post_setup(self, problem):
pass

def solve_nonlinear(self, params, unknowns, resids):
# convert constants to proper units
Is.convert_to_unit ('W/m**2"')
SB.convert_to_unit ('W/m**2/K**4')

# gather params

active_cooling mps = params[self.base_name+'_active_cooling mps']
active_cooling_rcs = params[self.base_name+'_active_cooling_rcs']

mli_layers_mps = params[self.base_name+'_mli_layers_mps']

mli_layers_rcs = params[self.base_name+' _mli_layers_rcs']

radiator_density = params[self.base_name+'_radiator_density']

external_tanks = params[self.base_name+'_external_tanks']

hieff_rad = params[self.base_name+'_hi_efficiency_radiators']

ops_distance = params[self.base_name+'_ops_distance']

deep_space = params[self.base_name+'_deep_space']

orbit_alt = params[self.base_name+' _orbit_alt']

r_body = params[self.base_name+'_r_body']

T_body = params[self.base_name+'_T_body']

albedo = params[self.base_name+'_albedo']

propellants_mps = params[self.element.base_name+' _propellants_mps']

mr_mps = params[self.element.base_name+' _mixture_ratio_mps']

num_fuel_tanks_mps = params[self.element.base_name+'_num_fuel_tanks_mps']
diameter_fuel_tanks_mps = params[self.element.base_name+'_diameter_fuel_tanks_mps']
length_fuel_tanks_mps = params[self.element.base_name+'_length_fuel_tanks_mps']
pressure_fuel_tanks_mps = params[self.element.base_name+'_pressure_fuel_tanks_mps']
num_ox_tanks_mps = params[self.element.base_name+' _num_ox_tanks_mps']
diameter_ox_tanks_mps = params[self.element.base_name+'_diameter_ox_tanks_mps']
length_ox_tanks_mps = params[self.element.base_name+'_length_ox_tanks_mps']
pressure_ox_tanks_mps = params[self.element.base_name+'_pressure_ox_tanks_mps']
propellants_rcs = params[self.element.base_name+'_propellants_rcs']

mr_rcs = params[self.element.base_name+' _mixture_ratio_rcs']

num_fuel_tanks_rcs = params[self.element.base_name+'_num_fuel_tanks_rcs']
diameter_fuel_tanks_rcs = params[self.element.base_name+'_diameter_fuel_tanks_rcs']
length_fuel_tanks_rcs = params[self.element.base_name+'_length_fuel_tanks_rcs']
pressure_fuel_tanks_rcs = params[self.element.base_name+'_pressure_fuel_tanks_rcs']
num_ox_tanks_rcs = params[self.element.base_name+'_num_ox_tanks_rcs']
diameter_ox_tanks_rcs = params[self.element.base_name+‘_diameter_ox_tanks_rcs']
length_ox_tanks_rcs = params[self.element.base_name+'_length_ox_tanks_rcs']
pressure_ox_tanks_rcs = params[self.element.base_name+'_pressure_ox_tanks_rcs']

heat_load = 0.
for subnum in range(self.element.num_subelements):
if subnum != self.subelement_num:
heat_load +=
« params['element{O}sub{1}_heat_load'.format(self.element.element_num,subnum)]

tank_diameters = [diameter_fuel_tanks_mps,
diameter_ox_tanks_mps,
diameter_fuel_tanks_rcs,
diameter_ox_tanks_rcs]

tank_lengths = [length_fuel_tanks_mps,
length_ox_tanks_mps,
length_fuel_tanks_rcs,
length_ox_tanks_rcs]

num_tanks = [num_fuel_tanks_mps,
num_ox_tanks_mps,
num_fuel_tanks_rcs,
num_ox_tanks_rcs]

d_tanks = 0.

1_tanks = 0.
for i in range(0,4):

327



d_tanks += tank_diameters[i] * num_tanks[i]/sum(num_tanks)
1_tanks += tank_lengths[i] * num_tanks[i]/sum(num_tanks)

if sum(num_tanks[0:2]) == 2: # assume two stacked stanks
d_sc = d_tanks
1_sc = 1_tanks

else: # assume disk shape
# diameter of a circle which fits the 120) diameter tanks
d_sc = (1.2%d_tanks)*(1.1655%log(sum(num_tanks))+0.9571)
l_sc = 1.2*1_tanks

Asc = max(d_sc * 1l_sc,pi*(d_sc/2)*%*2) # spacecraft cross section area, assumes worst case
— ortentation

solar_flux = Is.value * (1/ops_distance**2) # l//m 2 # inverse square law rTelation
Tsc = 280. # K, assumed spacecraft temperature

if not deep_space:
sub_angle = arcsin(r_body/(r_body + orbit_alt)) # the subtended angle of the body
F_sb = 2*pi*(1-cos(sub_angle)) / (4*pi) # wiew factor of orbited body to spacecraft
else:
F_sb

0.

Qthermal 0.
mass_passive = 0.
mass_active = 0.
power_passive = 0.
power_active = 0.
boiloff_rate_mps = O.
boiloff_rate_rcs = O.
sc_flag = False

for sysname in ['mps','rcs']:

if sysname == 'mps':
propellants = propellants_mps
mixture_ratio = mr_mps
geom_fuel_tanks = [diameter_fuel_tanks_mps,length_fuel_tanks_mps]
geom_ox_tanks = [diameter_ox_tanks_mps,length_ox_tanks_mps]
num_fuel_tanks = num_fuel_tanks_mps
num_ox_tanks = num_ox_tanks_mps
tank_pressure = [pressure_fuel_tanks_mps,pressure_ox_tanks_mps]
active_cooling = active_cooling_mps
mli_layers = mli_layers_mps

elif sysname == 'rcs
propellants = propellants_rcs
mixture_ratio = mr_rcs
geom_fuel_tanks = [diameter_fuel_tanks_rcs,length_fuel_tanks_rcs]
geom_ox_tanks = [diameter_ox_tanks_rcs,length_ox_tanks_rcs]
num_fuel_tanks = num_fuel_tanks_rcs
num_ox_tanks = num_ox_tanks_rcs
tank_pressure = [pressure_fuel_tanks_rcs,pressure_ox_tanks_rcs]
active_cooling = active_cooling_rcs
mli_layers = mli_layers_rcs

if propellants:
props_list = propellants.replace(' ','').lower().split('/")

ox = None
fuel = None
if len(props_list) >1:

ox = props_list[0]

fuel = props_list[1]
else:

if props_list[0]:

fuel = props_list[0]
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# perform some input checks
prop_types = []
for i,propellant in enumerate([fuel,ox]):
if propellant:
prop_types.append(None)
if propellant == 'solid':
prop_types[il = 'solid'
else:
res,fluid_def = fluids.check_def (propellant)
if not res:
msg = ('"{0}" is not a defined propellant'.format(propellant))
raise Exception(msg)
else:
prop_types[i] = fluid_def['type'l]

# determine the mass of fuel and ozidizer
if fuel and ox:
pass
else:
if prop_types[0] == 'solid':
continue # skip sizing passive/active for this system and move to the next

# passive TCS sizing
L e L

Qmli_fuel = O.
Qmli_ox = O.
SA_mli = 0.
SA_tanks = 0.
n = mli_layers

if external_tanks:
Qmli = [0.,0.]
Tc_props = [None,None]
tank_geoms = [geom_fuel_tanks,geom_ox_tanks]
num_tanks = [num_fuel_tanks,num_ox_tanks]
for idx,prop in enumerate([fuel,ox]):
if prop:
geom_tanks = tank_geoms [idx]
num_prop_tanks = num_tanks [idx]
if num_prop_tanks > O:
# assume tanks are either spheres or cylinders only
if geom_tanks[1] > geom_tanks[0]:
1_barrel = geom_tanks[1] - geom_tanks[0]
sa_prop = 4*pi*(geom_tanks[0]/2)**2 +
— 2xpi*geom_tanks[0]/2%1_barrel
cs_prop = 2xpi*geom_tanks[0]/2 + (geom_tanks[0]*1_barrel)
else:
sa_prop = 4xpix*(geom_tanks[0]/2)**2
cs_prop = 2xpi*geom_tanks[0]/2
sa_prop = sa_prop * num_prop_tanks

SA_tanks += sa_prop
SA_mli += sa_prop

n = mli_layers # number of mli layers

alpha_mli = 0.1 # assumed based on vapor deposited aluminum sheets in
— MLT
emis_mli = 0.34%(1/(1+n))

# radiation equations from Space Vehicle Design, 2nd ed. by Michael D.
— Griffin

# and James R. French, sec. 9.5.2, p. 463-465

Qbref = albedo*alpha_mli*F_sb*cs_prop+*solar_flux # orbited body

— reflected heat
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Qbrad = SB.value*cs_prop*F_sb*(T_body**4 - Tsc**4) # orbited body

— radiated heat

Qsun = alpha_mli*cs_prop*solar_flux # heat absorbed by the spacecraft
— from the sun

Th = ((Qbref + Qbrad + Qsun) / (SB.value*emis_mli*sa_prop))**(0.25) #
<~ hot side mli temp

if prop_types[idx] == 'cryogenic':
Tc = fluids.tvap(prop,tank_pressure[idx])
Tc_props[idx] = Tc

else:
Tc_props[idx] = Tsc # K

if Th < Tc:
Th = Tc+1

# W, The Lockheed Equation for estimating heat penetration through an
— MLI blanket
try:
Qmli[idx] = sa_prop * (2.4e-4%(.017 + 7e-6%(800 - (Th-Tc)/2) +
— .0228%1og((Th-Tc)/2))*15%*2.63*(Th-Tc) +
< 4.944e-10*emis_mlix(Th**4.67 - Tc**4.67)) / n
except Exception:

pass

Qmli_fuel = Qmlil[0]
Qmli_ox = Qmlil[1]

Tc_fuel = Tc_props[0]
Tc_ox = Tc_props[1]
else:
tank_geoms = [geom_fuel_tanks,geom_ox_tanks]
num_tanks = [num_fuel_tanks,num_ox_tanks]
for idx,prop in enumerate([fuel,ox]):
if prop:
geom_tanks = tank_geoms [idx]
num_prop_tanks = num_tanks [idx]
if num_prop_tanks > O:
# assume tanks are either spheres or cylinders only
if geom_tanks[1] > geom_tanks[0]:
1_barrel = geom_tanks[1] - geom_tanks[0]
sa_prop = 4*pix*(geom_tanks[0]/2)**2 +
— 2*pi*geom_tanks[0]/2*1_barrel
cs_prop = 2xpi*geom_tanks[0]/2 + (geom_tanks[0]*1_barrel)
else:
sa_prop = 4*pi*(geom_tanks[0]/2)**2
cs_prop = 2pi*geom_tanks[0]/2
sa_prop = sa_prop * num_prop_tanks

SA_tanks += sa_prop
SA_mli = 2#pi*(d_sc/2)**2 + (2+pixd_sc/2)*1_sc

if any([True for prop_type in prop_types if prop_type == 'cryogenic'l):
CS = Asc

n = mli_layers # number of mli layers

alpha_mli = 0.1 # assumed based on vapor deposited aluminum sheets in MLI
emis_mli = 0.34%(1/(1+n))

# radiation equations from Space Vehicle Design, 2nd ed. by Michael D. Griffin
# and James R. French, sec. 9.5.2, p. 463-465

Qbref = albedo*alpha_mli*F_sb*CS*solar_flux # orbited body reflected heat
Qbrad = SB.value*CS*F_sb*(T_body**4 - Tsc**4) # orbited body radiated heat
Qsun = alpha_mli*CS#*solar_flux # heat absorbed by the spacecraft from the sun
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Tc = Tsc # K

if SA_mli:
Th = ((Qbref + Qbrad + Qsun) / (SB.valuek*emis_mli*SA_mli))#**(0.25) # hot
— stde mli temp

if Th < Tc:
Th = Tc+1
else:
Th = Tsc+1

# W, The Lockheed Equation for estimating heat penetration through an MLI
— blanket
try:
Qmli = SA_mli * (2.4e-4%(.017 + 7e-6%(800 - (Th-Tc)/2) +
— .0228%1og((Th-Tc)/2))*15%%2.63*(Th-Tc) + 4.944e-10*emis_mli* (Th**4.67
— - Tc*x4.67)) / n
except Exception:
Qmli = 0.

if fuel:
if prop_types[0] == 'cryogenic':
Qmli_fuel = Qmli
Tc_fuel = fluids.tvap(fuel,tank_pressure[idx])

if ox:
if prop_types[1] == 'cryogenic':
Qmli_ox = Qmli
Tc_ox = fluids.tvap(ox,tank_pressure[idx])
if sc_flag:
SA_mli = O.
else:

sc_flag = True
mass_mli = 1.1 * (SA_mli * 0.018 * n) # 0.018 kg/m"2/layer, 1.1 for hardware mass

mass_lad = SA_tanks*0.57 # 0.57 kg/square meter of LAD weight for wanes,
< Debreceini (1997), Tam(1998)

# based on Haberbusch, et al., "Reduced-Gravity Cryo-Tracker System",

# AIAA, January 2009.

TankLongestDim = max(geom_fuel_tanks + geom_ox_tanks)

PenetrationMass = 10. # Approzimate mass of penetration assembly, kg

AvionicsMass = 10. # Approzimate mass of associated avionics, kg

VariableMass = 1.*TankLongestDim # Mass per unit tank dimension for cabling, etc, kg
mass_gauging = PenetrationMass+AvionicsMass+VariableMass # Total mass gauging system
— mass, kg

NominalPower = 100. # Nominal power for primary & backup gauge systems, W
VariablePower = 1.*TankLongestDim # Power per unit tank dimension for losses, etc, W
power_gauging = NominalPower+VariablePower # Total gauge system power, W

mass_passive += mass_mli + mass_lad + mass_gauging
power_passive += power_gauging

# calculate passive boiloff rates
boiloff_rate_fuel = 0.
boiloff_rate_ox = 0.

if fuel:
if prop_types[0] == 'cryogenic':
Hvap_fuel = fluids.get_property(fuel, 'Hvap') * 1000. # J/kg, propellant
— dependent
boiloff_rate_fuel = Qmli_fuel * 86400 / Hvap_fuel # kg/d

if ox:
if prop_types[1] == 'cryogenic':
Hvap_ox = fluids.get_property(ox, 'Hvap') * 1000. # J/kg, propellant dependent
boiloff_rate_ox = Qmli_ox * 86400 / Hvap_ox # kg/d
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boiloff_rate_prop = (1 / (mixture_ratio + 1)) * boiloff_rate_fuel + (mixture_ratio /
— (mixture_ratio + 1)) * boiloff_rate_ox # kg/d

# active TCS sizing

if active_cooling:
boiloff_rate_prop = O.

Qlift_fuel = Qmli_fuel
Qlift_ox = Qmli_ox

# the following equations for scaling power and mass of ATC are from

# Preliminary Study of Lunar Lander Descent Stage Active Thermal Control Systems
# by J. R. Feller of NASA Ames Research Center, 21 March 2011 (unpublished)
power_cc = O.

mass_cc = 0.

Qlift = O.

if Qlift_fuel > 0. and num_fuel_tanks:

power_cc_fuel = Qlift_fuel * 10. * (Tc_fuel#*0.61 / 90.%*0.6)**-2.066
mass_cc_fuel = 1.5 * 0.0711 * power_cc_fuel**0.905

power_cc += power_cc_fuel
mass_cc += mass_cc_fuel
Qlift += Qlift_fuel

if Qlift_ox > 0. and num_ox_tanks:

power_cc_ox = Qlift_ox * 10. * (Tc_ox**0.61 / 90.%*0.6)**-2.066
mass_cc_ox = 1.5 * 0.0711 * power_cc_ox**0.905

power_cc += pOWer_cC_OX
mass_cC += mass_cc_oxX
Qlift += Qlift_ox
mass_controller = 1.5 * 0.01 * power_cc

power_circ = 0.72 * Qlift

mass_circ = 0.042 * power_circ

mass_shield 1.5 * SA_tanks * 0.42

I
-
”
*

mass_tubing SA_tanks * 0.018

mass_active += mass_cc + mass_controller + mass_circ + mass_shield + mass_tubing
power_active += power_cc + power_circ

Qthermal += Qlift

if sysname == 'mps':
boiloff_rate_mps = boiloff_rate_prop
elif sysname == 'rcs':

boiloff_rate_rcs = boiloff_rate_prop

# spacecraft energy balancer and radiator sizing

alpha_sc = 0.1 # average absorptivity of the spacecraft, Assumes single
# layer mli over exzposed surfaces

# radiation equations from Space Vehicle Design, 2nd ed. by Michael D. Griffin
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# and James R. French, sec. 9.5.2, p. 463-465
Qbref = albedo*alpha_sc*F_sb*Asc*solar_flux # orbited body reflected heat
Qbrad = SB.value*Asc*F_sb*(T_body**4 - Tsc**4) # orbited body radiated heat

Qin = heat_load + Qthermal # internal heat loads generated by spacecraft
Qss = alpha_sc*Asc*solar_flux # heat absorbed by the spacecraft from the sun
Qsb = Qbref + Qbrad # heat absorbed by the spacecraft from the orbited body

Q = Qin + Qss + Qsb # total heat input that must be radiated by the radiator

constants assumed from typical wvalues given in Human Spaceflight
Mission Analysis and Design, p. 521
can bring these parameters in as technology controls for high
effictency radiators
if hieff_rad:
emis_rad = 0.9
fin_efficiency = 0.95
else:
emis_rad = 0.8
fin_efficiency = 0.85
Tspace = 2.7 # K
Trad = 250.0 # K assumed radiator surface temperature

#
#
#
#

# Eq. 16-4 from Human Spaceflight Mission Analysis and Design, p. 521

# Assumes radiators have very low absorptivity, resulting in negligible

# solar absorption.

Arad = Q / (SB.value * emis_rad * fin_efficiency * (Trad**4 - Tspace**4))

mass_rad = Arad * radiator_density
inert_mass = mass_passive + mass_active + mass_rad
power_req = power_passive + power_active

# assign unknowns

unknowns [self.element.base_name+'_boiloff_rate_mps'].fill(boiloff_rate_mps)
unknowns [self.element.base_name+'_boiloff_rate_rcs'].fill(boiloff_rate_rcs)
unknowns [self.base_name+'_power_req'] = power_req

unknowns [self.base_name+'_inert_mass'] = inert_mass

1.7 Burn FEvent Model

class Burn(Event):
"""An Event subclass to account for impulsive delta-V maneuvers. Parallel
burning elements result in an average Isp based on the performance of all
active elements.

Input Params

dv : float(1 m/s)
The impulsive delta-V of the event.

system : str('MPS', 'RCS')
The propulsion system of the active element(s) to use for the burn

fpr : float(0.0)
The Flight Performance Reserve (FPR) as a percentage of the event
delta-V input to be added to the required event delta-V.

acs_factor : float(0.0)
Attitude Control System (ACS) factor as a percentage of the event
delta-V (including FPR) to be added as an attitude control dv. The
attitude control burn always utilizes the RCS propulsion and is split
before and after the main event burn. Use the 'acs_split' setting to
adjust the fraction of the ACS maneuver performed before and after the
main event burn.

acs_split : float(50.0)
Percentage of the ACS maneuver to perform BEFORE the main event burn.
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Args

nwnn

def

def

def

__init__(self,**kwargs):

super () .__init__ (¥*kwargs)

self.Setup_Elements(self.element_list)

self.add_param(self.base_name+'_dv', val = 1.0, units='m/s')

self.add_param(self .base_name+'_system', val = 'mps')

self.add_param(self.base_name+'_fpr', val = 0.0)

self.add_param(self.base_name+'_acs_factor', val = 0.0)

self.add_param(self.base_name+'_acs_split', val = 50.0)

self .Build_Equivalent_Stages()

for idx in range(len(self.element_list)-1):
self.add_param('opt_var_'+str(idx)+'_dv_'+self.base_name, val = 0.5)

self.defined_thrust = [] # same shape as element_list

for segment_num in range(len(self.element_list)):
self.add_output(self.base_name+'_'+str(segment_num)+'_dt', val=0.0, units='s')

self.add_output(self.base_name+‘_propellant_mass_main', val=0.0, units='kg')

self.add_output(self.base_name+'_propellant_mass_acs', val=0.0, units='kg')

self.add_output(self.base_name+'_sized_dv', val=1.0, units='m/s')

Setup_Elements(self,element_list):
"""Sets up the element. This method %is called during intitialization of
the object

Args
element_list : list
A list of event segment active element lists. Each event segment
active element list contains integers referencing an element
index.
elements_already_mapped = []
for idx,element in enumerate(element_list):
base_name = self.base_name+'_'+str(idx)
for sub_idx,sub_element in enumerate(element):
target_name = 'element'+str(sub_element)
if sub_element not in elements_already_mapped:
self.add_param(target_name+'_isp_mps', val = 1.0, units='s')
self.add_param(target_name+'_isp_rcs', val = 1.0, units='s')
self.add_param(target_name+' _mass_flowrate_mps', val = 1.0, units='kg/s')
self.add_param(target_name+' _mass_flowrate_rcs', val = 1.0, units='kg/s')
self.add_param(target_name+'_inert_mass', val=ones(self.num_events+1), units='kg',
< pass_by_obj=True)
self.add_param(target_name+'_terminal_event', val=(0,0))
elements_already_mapped.append (sub_element)
self.add_output(target_name+'_burn_time_mps_'+base_name, val=1.0, units='s')
self.add_output(target_name+'_burn_time_rcs_'+base_name, val=1.0, units='s')

Build_Equivalent_Stages(self):

"""Adds outputs to the component to create equivalent stages,

a representations of multiple burning propulsive stages into a single

propulsive stage.

nmn

for idx,_ in enumerate(self.element_list):
self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_thrust_main',
< val=1.0, units='N")
self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_thrust_acs',
< val=1.0, units='N")

self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_mass_flowrate_main',

.
— val=1.0, units='kg/s')

self.add_output('equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_mass_flowrate_acs',

N
— val=1.0, units='kg/s')
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self.add_output('equivalent_stage'+'_'+str(self.
— val=1.0, units='s")
self.add_output('equivalent_stage'+'_'+str(self.
— val=1.0, units='s")
self.add_output('equivalent_stage'+'_'+str(self.
val=1.0, units='kg')
self.add_output('equivalent_stage'+'_'+str(self.
— val=1.0, units='kg')
self.add_output('equivalent_stage'+'_'+str(self.
— val=1.0, units='kg')
self.add_output('equivalent_stage'+'_'+str(self
self.add_output('equivalent_stage'+'_'+str(self.
— units='m/s')
self.add_output('equivalent_stage'+'_'+str(self.
< val=1.0, units='s')
self.add_output('equivalent_stage'+'_'+str(self.
< val=1.0, units='s")

—

def Calculate_Equivalent_Stages(self,params,unknowns) :

event_num)+'_'+str(idx)+'_isp_main',
event_num)+'_'+str(idx)+'_isp_acs',
event_num)+'_'+str(idx)+'_jettison_mass',
event_num)+'_'+str(idx)+'_initial_mass',

event_num)+'_'+str(idx)+'_final_mass',

.event_num)+'_'+str(idx)+'_t2w', val=1.0)

event_num)+'_'+str(idx)+'_dv', val=1.0,
event_num)+'_'+str(idx)+'_burn_time_main'

event_num)+'_'+str(idx)+'_burn_time_acs',

"""Calculates parameters to define an equivalent stage, such as the

combined thrust, flow rate,
constituent stages.
win
GO.convert_to_unit('m/s**2"')
for idx,element in enumerate(self.element_list):
base_name
unknowns [base_name+'_thrust_main'] 0.0
unknowns [base_name+' _thrust_acs'] = 0.0
unknowns [base_name+' _mass_flowrate_main'] = 0.0
unknowns [base_name+' _mass_flowrate_acs'] 0.0
unknowns [base_name+' _isp_main'] = 0.0
unknowns [base_name+'_isp_acs'] = 0.0
unknowns [base_name+'_jettison_mass'] = 0.0
system = params[self.base_name+'_system'].lower(
if system not in ['mps','recs']:

1sp, etc. of the equivalent stage from its

'equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)

)

raise Exception('Invalid system setting input. Must be one of ["mps","rcs"]')

for parallel_element in element:
target_name 'element'+str(parallel_element
unknowns [base_name+' _thrust_main'] += params

)

[target_name+'_mass_flowrate_'+system] *

— params[target_name+'_isp_'+system] * GO.value
unknowns [base_name+'_thrust_acs'] += params[target_name+'_mass_flowrate_rcs'] *
< params[target_name+'_isp_rcs'] * GO.value

unknowns [base_name+'_mass_flowrate_main'] +=

— params[target_name+'_mass_flowrate_'+system]

unknowns [base_name+' _mass_flowrate_acs']

if params[target_name+'_terminal_event']
unknowns [base_name+'_jettison_mass']

— params[target_name+'_inert_mass'][se
unknowns [base_name+'_isp_main']

+=

<
unknowns [base_name+'_isp_acs']

—

def Allocate_DeltaV(self,params,unknowns):

+= params[target_name+'_mass_flowrate_rcs']

(self.event_num,idx):

1f.event_num]

unknowns [base_name+' _thrust_main'] /
unknowns [base_name+'_mass_flowrate_main'] / GO.value

unknowns [base_name+' _thrust_acs'] /
unknowns [base_name+'_mass_flowrate_acs'] / GO.value

print ('{0},{1}'. format (unknowns [base_name+'_isp_

main'],unknowns [base_name+'_isp_acs']))

"""Allocate delta-V to the equivalent stages based on the optimization
variables for delta-V allocation. This allocation can be fized by
defining a fized optimization variable at the architecture level.

win

dv_remaining = params[self.base_name+'_dv'] * (1 + params[self.base_name+'_fpr']/100.)

unknowns [self.base_name+'_sized_dv'] = dv_remaining

# sometimes, Gauss-Seidel likes to try wery small numbers just past
# the user defined range. In the event the users specifies a lower
# bound on a dv range as 0.0, this will help stabilize the problem
# when Gauss-Seidel tries a -0.0001 dv.
if dv_remaining < 0.:

dv_remaining = O.
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""" setup delta-V assignments '''
for idx in range(len(self.element_list)-1):
base_name = 'equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)
dv_increment = params['opt_var_'+str(idx)+'_dv_'+self.base_name] * dv_remaining
unknowns [base_name+'_dv'] = dv_increment
dv_remaining -= dv_increment
unknowns ['equivalent_stage'+'_'+str(self.event_num)+'_'+str(len(self.element_list)-1)+'_dv'] =
— dv_remaining

def Calculate_Burn_Times(self,params,unknowns):
"""Calculates the burn time required of an equivalent stage based on
a required delta-V via the tdeal rocket equation.
nmn
GO.convert_to_unit('m/s**2")
current_mass = params['vehicle_gross_mass'] [self.event_num+1]
unknowns [self.base_name+'_final _mass'] = current_mass
for idx in reversed(range(len(self.element_list))):
base_name = 'equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)
acs_dv = unknowns[base_name+'_dv'] * params[self.base_name+'_acs_factor'] / 100.
current_mass += unknowns[base_name+'_jettison_mass']
unknowns [base_name+'_final_mass'] = current_mass
# pre-acs burn
acs_propellant_mass_0 = current_mass * (exp(acs_dv*params[self.base_name+' _acs_split'] /
— 100. / unknowns[base_name+'_isp_acs'] / GO.value) - 1)
current_mass += acs_propellant_mass_O
# main event burn
main_propellant_mass = current_mass * (exp(unknowns[base_name+'_dv'] /
< unknowns [base_name+'_isp_main'] / GO.value) - 1)
current_mass += main_propellant_mass
# post-acs burn
acs_propellant_mass_1 = current_mass * (exp(acs_dv * (100. -
<« params[self.base_name+'_acs_split']) / 100. / unknowns[base_name+'_isp_acs'] /
— GO.value) - 1)
current_mass += acs_propellant_mass_1
acs_propellant_mass = acs_propellant_mass_O + acs_propellant_mass_1
unknowns [base_name+' _burn_time_main'] = main_propellant_mass /
< unknowns[base_name+'_mass_flowrate_main']
unknowns [base_name+' _burn_time_acs'] = acs_propellant_mass /
<s unknowns [base_name+'_mass_flowrate_acs']
unknowns [self.base_name+'_'+str(idx)+'_dt'] = unknowns[base_name+' _burn_time_main']

unknowns [base_name+'_initial_mass'] = current_mass
unknowns [base_name+'_t2w'] = unknowns[base_name+'_thrust_main'] / current_mass / GO.value
unknowns [self .base_name+'_initial_mass'] = current_mass

unknowns [self.base_name+'_propellant_mass_main'] = main_propellant_mass
unknowns [self.base_name+'_propellant_mass_acs'] = acs_propellant_mass

def Assign_Burn_Times(self,params,unknowns) :
"""Assigns the calculated burn time of the equivalent stages to their
associated physical stages for sizing.
nin
for idx,element in enumerate(self.element_list):
base_name = self.base_name+'_'+str(idx)
for parallel_element in element:
target_name = 'element'+str(parallel_element)
unknowns[target_name+'_burn_time_mps_‘+base_name] = 0.
unknowns [target_name+' _burn_time_rcs_'+base_name] = 0.
system = params[self.base_name+'_system'].lower()
unknowns [target_name+'_burn_time_'+system+'_'+base_name] =
— unknowns['equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+' _burn_time_main']
unknowns [target_name+' _burn_time_rcs_'+base_name] +=
< unknowns['equivalent_stage'+'_'+str(self.event_num)+'_'+str(idx)+'_burn_time_acs']

def solve_nonlinear(self,params,unknowns,resids):
"""Allocate event delta-V, calculate equivalent stage burn times and
assign those burn times to the associated physical stages for sizing.
self.Calculate_Equivalent_Stages(params,unknowns)
self.Allocate_DeltaV(params,unknowns)
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self.Calculate_Burn_Times (params,unknowns)
self.Assign_Burn_Times (params,unknowns)

1.8 Connect Fvent Model

class Connect(Event):
"""An Event subclass to account for full element mass additions to the vehicle
during the mission.

Input Params

Args

o

def __init__(self,**kwargs):
super () .__init__(**kwargs)
self.setup_elements(self.element_list)

def setup_elements(self, element_list):
"""Sets up the element. This method %is called during inttialization of
the object

Args

element_list : list
A list of event segment active element lists. Each event segment
active element list is a list of integers referencing an element
index.

nwun

pass

def solve_nonlinear(self, params, unknowns, resids):
# calculate initial and final mass
initial_mass = params['vehicle_gross_mass'] [self.event_num]
unknowns [self.base_name+'_initial_mass'] = initial_mass
unknowns [self.base_name+'_final _mass'] = params['vehicle_gross_mass'][self.event_num+1]
for segment_active_elements in self.element_list:
for element_num in segment_active_elements:
pass

1.9 Drop Event Model

class Drop(Event):
"""An Event subclass to account for full element mass drops off the wvehicle
during the mission.

Input Params

Args

nwnn

def __init__(self,**kwargs):
super () .__init__ (**kwargs)
self.setup_elements(self.element_list)

def setup_elements(self, element_list):
"""Sets up the element. This method is called during initialization of

the object

Args
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def

element_list : list
A list of event segment active element lists. Each event segment
active element list is a list of integers referencing an element
index.

nwun

pass

solve_nonlinear(self, params, unknowns, resids):
# calculate initial and final mass
initial_mass = params['vehicle_gross_mass'] [self.event_num]
unknowns [self.base_name+'_initial_mass'] = initial_mass
unknowns [self.base_name+'_final _mass'] = params['vehicle_gross_mass'] [self.event_num+1]
for segment_active_elements in self.element_list:

for element_num in segment_active_elements:

pass

I1.10 Idle Fvent Model

class Idle(Event):
"""An Event subclass to account for time-based mission effect such as
propellant boil off, crew consumables, etc.

Input Params

dt:

Args

float (1 day)
The <dle duration for the event.

o

def

def

def

__init__(self,*xkwargs):
super () .__init__ (**kwargs)
self.Setup_Elements(self.element_list)

self.add_param(self.base_name+'_dt', val=0., units='d')

Setup_Elements(self,element_list):
"""Sets up the element. This method is called during initialization of
the object

Args

element_list : list
A list of event segment active element lists. Each event segment
active element list is a list of integers referencing an element

indezx.
win

for segment_num,active_elements in enumerate(element_list):
base_name = self.base_name+'_'+str(segment_num)
for element_num in active_elements:
target_name = 'element'+str(element_num)
self.add_output(target_name+'_idle_time_'+base_name, val=0.0, units='d')

solve_nonlinear(self,params,unknowns,resids):
# calculate initial and final event masses
unknowns [self.base_name+'_initial_mass'] = params['vehicle_gross_mass'] [self.event_num]
unknowns [self.base_name+'_final mass'] = params['vehicle_gross_mass'] [self.event_num+1]
# set idle times to be fed to respective elements
for segment_num,active_elements in enumerate(self.element_list):
base_name = self.base_name+'_'+str(segment_num)
for element_num in active_elements:
target_name = 'element'+str(element_num)
unknowns [target_name+'_idle_time_'+base_name] = params[self.base_name+'_dt']
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I.11 MassDelta Event Model

class MassDelta(Event):
"""Discrete mass changes to the wvehicle during the mission. These discrete
changes may be due to loading or unloading mass
(propellant, consumables, etc.). Maybe also could be used to set certain
vehicle parameters mid flight such as number of engines
(dumping engine mass) or other operational possibilities.

Input Params
dm : float(0 kg)
The mass delta of the active elements of this event
sub : list
The subelement number(s) of the subelement inert mass to Temove
mass_type : str('inert’', 'propellant’)
The type of mass to add/subtract from the active elements
top_off : bool(False,True)
Logical control flag which allows the solver to determine the amount
of propellant to be added to a Stage element to allow it to perform
1ts required mission segments without any excess propellant. If this
flag is true, any value provided in 'dm' will be ignored. This flag has
an effect on Stage elements types.

Args

nwun

def __init__(self,**kwargs):
self.sub = []
if 'sub' in kwargs.keys():
self.sub = kwargs.pop('sub')
super () .__init__(**kwargs)
self.setup_elements(self.element_list)

self.add_param(self.base_name+'_dm', val=0., units='kg')
self.add_param(self.base_name+'_sub', val=-1)
self.add_param(self.base_name+'_mass_type', val='inert')
self.add_param(self.base_name+'_top_off', val=False)

def setup_elements(self, element_list):
"""Sets up the element. This method is called during initialization of
the object

Args
element_list : list
A list of event segment active element lists. Each event segment
active element list is a list of integers referencing an element
index.
sub : int
The subelement index of the subelement inert mass to remove
for segment_num,active_elements in enumerate(element_list):
base_name = self.base_name+'_'+str(segment_num)
for element_num in active_elements:
target_name = 'element'+str(element_num)
self.add_output(target_name+'_propellant_mass_delta_'+base_name, val=0.0, units='kg')
self.add_output(target_name+'_inert_mass_delta_'+base_name, val=0.0, units='kg')
self.add_output(target_name+'_top_off_'+base_name, val=False, pass_by_obj=True)
for subidx in self.sub:
self.add_param(target_name+'sub'+str(subidx)+'_inert_mass', val=0.0, units='kg')

def solve_nonlinear(self,params,unknowns,resids):
# calculate inittal and final event masses
unknowns [self.base_name+'_initial_mass'] = params['vehicle_gross_mass'] [self.event_num]
final_mass = params['vehicle_gross_mass'] [self.event_num+1]
unknowns [self.base_name+'_final mass'] = final_mass
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# set inert/prop mass deltas to be fed to respective elements
for segment_num,active_elements in enumerate(self.element_list):
base_name = self.base_name+'_'+str(segment_num)
for element_num in active_elements:
target_name = 'element'+str(element_num)
mass_type = params[self.base_name+' _mass_type']
unknowns [target_name+'_top_off_'+base_name] = params[self.base_name+'_top_off']
if mass_type.lower() in ['prop','propellant','mp']:
unknowns [target_name+' _propellant_mass_delta_'+base_name] =
< params[self.base_name+'_dm']
elif mass_type.lower() in ['inert','fixed','structure', 'mi']:
unknowns [target_name+'_inert_mass_delta_'+base_name] =
— params[self.base_name+'_dm']
for subidx in self.sub:
unknowns [target_name+'_inert_mass_delta_'+base_name] -=
— params[target_name+'sub'+str(subidx)+'_inert_mass']

1.12 Fluids Definitions Model

# —*- coding: utf-8 —*-

mmnn

Description: helper functions for fluid definitions for the propulsion and
thermal subsystem models

Written by:
Douglas J. Trent
NASA Marshall Space Flight Center
Advanced Concept Office
douglas.trent@nasa. gov

Created: 04/03/2017

Revised: 04/06/2017

mnimn

# import DYREQT Subelement base class
from Constants import R as R_PQ

from math import log, exp

from scipy.optimize import brentq

R = R_PQ.value

# units in the propellant defs:
liquid_density - kg/m**3
M - g/mol
Tc - K
Pc - bar
Hvap - kJ/kg
Tref - K
Pref - Atm.
fluid_defs = {
'02':{'type':'cryogenic','alias':['lox'],'liquid_density':1141.0,'M':31.9988,'Tc':154.58,
'Pc':50.0343, 'air_CF':None, 'Hvap':212.9, 'Tref':90.,'Pref':1.0, 'Cp_coeff':None},
'h2':{'type':'cryogenic','alias':['1h2'],'liquid_density':70.8,'M':2.016,'Tc':33.145,
'Pc':12.964, 'air_CF':None, 'Hvap':461.0, 'Tref':20.,'Pref':1.0,
'Cp_coeff':{J
< 1000:[33.066178,-11.363417,11.432816,-2.772874,-0.158558,-9.980797,172.707974,0.],
2500: [18.563083,12.257357,-2.859786,0.268238,1.977990,-1.147438,156.288133,0.],
6000: [43.413560,-4.293079,1.272428,-0.096876,-20.533862,-38.515158,162.0813541}},
'ch4':{'type':'cryogenic','alias':['lch4', 'methane'],'liquid_density':421.0,'M':16.0425,
'Tc':190.6,'Pc':46.1, 'air_CF' :None, 'Hvap':537.5, 'Tref':111.,'Pref':1.0,
'Cp_coeff':{J
— 1300:[-0.703029,108.4773,-42.52157,5.862788,0.678565,-76.84376,158.713,-74.87310] ,

B ORHOR W W R R

6000: [85.81217,11.26467,-2.114146,0.138190,-26.42221,-153.5327,224.4143,-74.87310] }},

'mon':{'type':'storable','alias':[],'liquid_density':1370.0,'M':None, 'Tc' :None,
'Pc':None, 'air_CF':None, 'Hvap' :None, 'Tref ' :None, 'Pref':None, 'Cp_coeff':Nonel},

'udmh':{'type':'storable','alias':[],'liquid_density':793.0,'M':60.0983, 'Tc':523.15,
'Pc':54.2,'air_CF':None, 'Hvap':None, 'Tref':None, 'Pref' :None, 'Cp_coeff':None},
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'mmh':{'type':'storable','alias':[],'liquid_density':880.0,'M':46.0717,'Tc':5685.15,
'Pc':82.4,'air_CF':None, 'Hvap' :None, 'Tref ' :None, 'Pref':None, 'Cp_coeff':Nonel},
'n20':{'type': 'storable','alias':['nitrousoxide'],'liquid_density':912.0,'M':44.013, 'Tc':309.55,
'Pc':72.38, 'air_CF':None, 'Hvap' :None, 'Tref' :None, 'Pref' :None, 'Cp_coeff':None},
'n204':{'type':'storable','alias':['nto'], " 'liquid_density':1450.0,'M':92.0110, 'Tc"':431.,
'Pc':101.,'air_CF':None, 'Hvap' :None, 'Tref':None, 'Pref':None, 'Cp_coeff':None},
'nitrcacid':{'type':'storable','alias':[],'liquid_density':1510.0,'M':63.0128,'Tc':None,
'Pc':None, 'air_CF':None, 'Hvap' :None, 'Tref':None, 'Pref':None, 'Cp_coeff':Nonel},
'rpl':{'type':'storable','alias':['kerosene'], 'liquid_density':810.0,'M':None, 'Tc':None,
'Pc':None, 'air_CF':4.5, 'Hvap' :None, 'Tref' :None, 'Pref':None, 'Cp_coeff':None},
'n2h4':{'type': 'monoprop','alias':['hydrazine'],'liquid_density':1008.0,'M':32.0452, 'Tc':653.15,
'Pc':14.186,'air_CF':None, 'Hvap':None, 'Tref ' :None, 'Pref':None, 'Cp_coeff':Nonel},
'h202':{'type': 'monoprop','alias':['hydrogenperoxide'],'liquid_density':1390.0,'M':34.0147,
'Tc':728.0,'Pc':220.0, 'air_CF':None, 'Hvap' :None, 'Tref' :None, 'Pref' :None, 'Cp_coeff' :None},
'isopropylnitrate':{'type': 'monoprop','alias':[],'liquid_density':1040.0,'M':105.0926,'Tc' :None,
'Pc':None, 'air_CF':None, 'Hvap' :None, 'Tref ' :None, 'Pref':None, 'Cp_coeff':None},
'he':{'type': 'pressurant','alias':['helium'],'liquid_density':None,'M':4.0026,'Tc':5.195,
'Pc':2.275, 'air_CF':None, 'Hvap':20.7,'Tref':4.2,'Pref':1.0,'Cp_coeff' :None},
'n2':{'type':'pressurant','alias':['nitrogen'],'liquid_density':None,'M':28.0134,'Tc':126.192,
'Pc':3.3958, 'air_CF':None, 'Hvap':199.2, 'Tref':77.4,'Pref':1.0, 'Cp_coeff':None},
'xe':{'type':'electric','alias':['xenon'], 'liquid_density':None, 'M':131.293,'Tc"':289.74,
'Pc':58.42,'air_CF':None, 'Hvap':96.3, 'Tref':165.,'Pref':1.0, 'Cp_coeff':None},
'ar':{'type':'electric','alias':['argon'],'liquid_density':None, 'M':39.948,'Tc':150.86,
'Pc':48.63,'air_CF':None, 'Hvap':162.7, 'Tref':87.3, 'Pref':1.0,'Cp_coeff':None},
'kr':{'type':'electric','alias':['krypton'],'liquid_density':None,'M':83.798,'Tc':209.48,
'Pc':55.25,'air_CF':None, 'Hvap':107.6, 'Tref':391.,'Pref':1.0, 'Cp_coeff' :None},
}

def check_def (fluid):
"""Check for the existence of the given fluid in the fluid def

Args
fluid : str
The string name of the fluid to check.

Returns

res : bool
The result of the definitions check. True if the fluid exists, False
otherwise.

fluid_def : dict
The fluid definition

nwun

res = False
fluid_def = dict()

for name,mdata in fluid_defs.items():
if fluid.lower() in mdatal['alias']+[name]:
res = True
fluid_def = mdata
break

return res, fluid_def

def tvap(fluid,pressure):
"""Returns the vaporization temperature (boiling temp) of the fluid at
the given pressure

Args

fluid : str
The string name of the fluid

pressure : float
The pressure to calculate the wvapor temperature at (MPa)
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Returns
temp : float

The wvaporization temperature (K)
mimmn

def_flag,fluid_def = check_def(fluid)

if def_flag:

# extract required params

Pref = fluid_def['Pref'] * 0.101325 # MPa

Tref = fluid_def['Tref']

Hvap = fluid_def['Hvap'] * 1000. # J/kg

M = fluid_def['M'] * 1le-3 # kg/mol

Rspec = R / M # J/kg-K

# Clausius-Clapeyron Equation

temp = (Rspec * log(Pref/pressure) / Hvap + (1/Tref))x*-1
else:

raise Exception('"{0}" is not a defined fluid'.format(fluid))

return temp

def get_property(fluid,name):
"""Get fluid properties from the fluid defintition

Args
fluid : str
The string name of the fluid

name : str
The property name to return

Returns : wariable
The property value of interest. If the property does not exist, a None

value will be returned.
mnmnn

def_flag,fluid_def = check_def (fluid)

if def_flag:
if name in fluid_def.keys():
val = fluid_def [name]
else:
val = None
else:
raise Exception('"{0}" is not a defined fluid'.format(fluid))

return val

def pvap(fluid,temp):
"""Returns the wvapor pressure of the fluid at the given temperature

Args
fluid : str
The string name of the fluid

temp : float
The temperature to calculate the vapor pressure at (K)

Returns
pressure : float
The wvapor pressure of the fluid (MPa)

mwnn
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def_flag,fluid_def = check_def (fluid)

if def_flag:

# extract required params

Pref = fluid_def['Pref'] * 0.101325 # MPa

Tref = fluid_def['Tref']

Hvap = fluid_def['Hvap'l * 1000. # J/kg

M = fluid_def['M'] * 1le-3 # kg/mol

Rspec = R / M # J/kg-K

# Clausius-Clapeyron Equation

pressure = Pref * exp(Hvap/Rspec*(Tref#*-1 - temp#**-1))
else:

raise Exception('"{0}" is not a defined fluid'.format(fluid))

return pressure

def rspec(fluid):
"""Returns the specific gas constant for a fluzd

Args
fluid : str
The string name of the fluid

Returns
r_spec : float
The specific gas constant of the fluid (J/kg-K)

nwun

def_flag,fluid_def = check_def(fluid)

if def_flag:
# extract required params
M = fluid_def['M'] * 1le-3 # kg/mol
r_spec =R / M # J/kg-K
else:
raise Exception('"{0}" is not a defined fluid'.format(fluid))

return r_spec

def _vanderwaals(rho,T,P,Tc,Pc,M):
"""Van Der Waals equation for estimating the density of a fluid. Does
not perform well near the critical temperature. A fized point iterator is
used to solve the equation for the density.

Args

rho : float
The fluid density (kg/m~3)

T : float
The temperature of the fluid (K)

P : float
The pressure of the fluid (MPa)

Tc : float
The critical temperature of the fluid (K)

Pc : float
The critical pressure of the fluid (bar)

M : float
The molar mass of the fluid (g/mol)

nwun

# convert units
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M =M/ 1000. # g/mol -> kg/mol
Pc = Pcxleb # bar -> Pa
P = Pxle6 # MPa -> Pa

Vm = M / rho

a = (27*(R*¥Tc)**2) / (64%Pc)

b = (R*Tc) / (8%Pc)

return (P + a / Vm**2) * (Vm - b) - Rx*T

density(fluid,liquid=True,T=293.,P=0.344738):
"""Calculates the fluid density of a given propellant in the fluid

definitions.
Args
fluid : str

The fluid density of interest

liquid : bool(True,False)
Return the liquid liquid density of the propellant if True, else return
the gas density at the specified state

T : float(293.0)
Temperature to calculate propellant density at, in degrees Kelvin

P : float(0.344738)
Pressure to calculate propellant density at, in Megapascals

Returns
rho : float
Calculated fluid density (kg/m"3)

o

def_flag,fluid_def = check_def(fluid)

if def_flag:
# extract required params
Tc = fluid_def['Tc']
Pc = fluid_def['Pc']
M = fluid_def['M']
air_cf = fluid_def['air_CF']
rho_1 = fluid_def['liquid_density']
if liquid:
if rho_1:
rho = rho_l
else:
raise Exception('liquid density not defined for fluid "{0}"'.format(fluid))
else:
if Tc and Pc and M:
rho = brentq(_vanderwaals, 0.1, 5000., args=(T,P,Tc,Pc,M)) # returned density is in

—  kg/m**3
elif air_cf:
rho = []

for prop in ['02','n2','ar']: # air
Tc = fluid_defs[prop]l ['Tc']
Pc = fluid_defs[prop] ['Pc']
M = fluid_defs[prop] ['M']
rho.append (brentq(_vanderwaals, 0.1, 5000., args=(T,P,Tc,Pc,M))) # returned
— density is in kg/m**3
rho = sum([rho[i]*fraction for i,fraction in enumerate([0.21,0.78,0.01]1)])*air_cf
else:
raise Exception('insufficient definition for density calculation of fluid
—  "{0}"'.format (fluid))

else:
raise Exception('"{0}" is not a defined fluid'.format(fluid))
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return rho

def heat_ratio(fluid,temp):
"""Calculates the fluid specific heat ratio at a temperature

Args
fluzd : str
The fluid density of interest

temp : float(293.0)
Temperature to calculate fluid specific heat ratio at (K)

Returns
gama : float

The specific heat ratio
mwnn

# don't need to check first, other functions will do that

# extract required params
Cp = cp(fluid,temp) # J/kg-K
Rspec = rspec(fluid) # J/kg-K

# calc
gama = Cp / (Cp - Rspec)

return gama

def cp(fluid,T):
"""Calculates the flutid specific heat at a temperature

Args
fluid : str
The fluid density of interest

T : float(293.0)
Temperature to calculate flutd specific heat at (K)

Returns
Cp : float
The specific heat (J/kg-K)

wnn

def_flag,fluid_def = check_def(fluid)

# extract required params
Cp_coeff = fluid_def['Cp_coeff']
M = fluid_def['M']

if not def_flag:
msg = ('{0} is not a defined fluid'.format(fluid))
raise Exception(msg)

if not Cp_coeff:
msg = ('{0} does not have defined coefficients required to calculate '
'specific heat'.format(fluid))
raise Exception(msg)

# equation from NIST webbook

T_flag = False

for T_max,coeff in Cp_coeff.items():
if T <= T_max:
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= coeff[0]
= coeff[1]
= coeff[2]
coeff [3]
= coeff[4]
_flag = True
break

if not T_flag:

msg = ('cannot calculate specific heat for T={0} K. Tmax={1}'.format(T,max(Cp_coeff.keys())))

raise Exception(msg)

H Mmoo QW=
]

t = T/1000.
Cp = A + Bkt + Ckt**2 + Dxt**3 + E/t**2 # J/mol-K

Cp =Cp /M * 1000. # J/kg-K

return Cp # J/kg-K

1.13 Costing Model

# —*- coding: utf-8 —*-
Description: functions for estimating cost of space transportation vehicles
based on the TRANSCOST v7.1 model

Written by:
Douglas J. Trent
NASA Marshall Space Flight Center
Advanced Concept Office
douglas.trent@nasa.gov

Created:05/16/2017
Revised:08/25/2017

nwun

from math import log, exp
def collect_inps(sizing_outs):

# initialize cost inputs

cost_ins = {'num_stages':None,
'sl_class':None,
'sl_propellant':None,
'sl_prop_mass':None,
'sl_num_engines':None,
'sl_feed':None,
'sl_engines_mass':None,
'sl_engine_mass':None,
'sl_veh_manned':None,
'sl_veh_noengines_dry_mass':None,
'sl_veh_burnout_mass':None,
's2_class':None,
's2_propellant':None,
's2_prop_mass':None,
's2_num_engines':None,
's2_feed':None,
's2_engines_mass':None,
's2_engine_mass':None,
's2_veh_manned':None,
's2_veh_noengines_dry_mass':None,
's2_veh_burnout_mass':None,
's3_class':None,
's3_propellant':None,
's3_prop_mass':None,
's3_num_engines' :None,
's3_feed' :None,
's3_engines_mass':None,
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's3_engine_mass' :None,
's3_veh_manned':None,
's3_veh_noengines_dry_mass':None,
's3_veh_burnout_mass':None,
'engine_tech':False,
'veh_tech':False

}

# set cost inputs from sizing outputs

# veh inputs

cost_ins['num_stages'] = sizing_outs['Num Stages']

# stage 1

cost_ins['sl_class'] = sizing_outs['Stage 1 MPS Class']

if sizing_outs['Stage 1 MPS Propellants'].find('/') >= 0O:
# biprops
if any([True for prop in ['lox','lh2','lch4'] if prop in sizing_outs['Stage 1 MPS
— Propellants']]):

# cryo

cost_ins['sl_propellant'] = 'cryo'
else:

# storable

cost_ins['sl_propellant'] = 'storable'

else:

# monoprop
cost_ins['si_propellant'] = 'monoprop'

cost_ins['sl_prop_mass'] = sizing_outs['Stage 1 MPS Propellant Mass(kg)'] + sizing_outs['Stage 1
— RCS Propellant Mass(kg)']
if cost_ins['sl_class'] == 'liquid':
num_engines = 4
if cost_ins['sl_propellant'] == 'cryo':
feed = 'pump'
else:
feed = 'pressure'
elif cost_ins['sl_class'] == 'electric':
num_engines = 1
feed = 'pressure'
elif cost_ins['sl_class'] == 'nuclear':
num_engines = 3
feed = 'pump'
elif cost_ins['sl_class'] == 'solid':
num_engines = 1
feed = None
cost_ins['sl_num_engines'] = num_engines
cost_ins['sl_feed'] = feed
cost_ins['sl_engines_mass'] = sizing_outs['Stage 1 Engines Mass(kg)']
cost_ins['sl_engine_mass'] = cost_ins['sl_engines_mass'] / num_engines
try:
cost_ins['si_veh_manned'] = sizing_outs['Stage 1 Structures Type']
except KeyError:
cost_ins['sl_veh_manned'] = 'unmanned'
cost_ins['sl_veh_noengines_dry_mass'] = sum([sizing_outs['Stage
sizing_outs['Stage
sizing_outs['Stage 1 Structures Mass(kg)'],
sizing_outs['Stage 1 Tanks Mass(kg)'],
sizing_outs['Stage 1 Thermal Mass(kg)'l])
cost_ins['sl_veh_burnout_mass'] = sizing_outs['Stage 1 Burnout Mass(kg)']
# stage 2
if cost_ins['num_stages'] > 1:
cost_ins['s2_class'] = sizing_outs['Stage 2 MPS Class']
if sizing_outs['Stage 2 MPS Propellants'].find('/') >= 0:
# biprops
if any([True for prop in ['lox','lh2','lch4'] if prop in sizing_outs['Stage 2 MPS
« Propellants']]):

Avionics Mass(kg)'l,
Power Mass(kg)'],

# cryo

cost_ins['s2_propellant'] = 'cryo'
else:

# storable

cost_ins['s2_propellant'] = 'storable'
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else:
# monoprop
cost_ins['s2_propellant'] = 'monoprop'
cost_ins['s2_prop_mass'] = sizing_outs['Stage 2 MPS Propellant Mass(kg)'] + sizing_outs['Stage
< 2 RCS Propellant Mass(kg)']
if cost_ins['s2_class'] == 'liquid':
num_engines = 4
if cost_ins['s2_propellant'] == 'cryo':
feed = 'pump'
else:
feed = 'pressure'
elif cost_ins['s2_class'] == 'electric':
num_engines = 1
feed = 'pressure'
elif cost_ins['s2_class'] in ['nuclear', 'massless']:
num_engines = 3
feed = 'pump'
elif cost_ins['s2_class']
num_engines = 1
feed = None
cost_ins['s2_num_engines'] = num_engines
cost_ins['s2_feed'] = feed
cost_ins['s2_engines_mass'] = sizing_outs['Stage 2 Engines Mass(kg) ']
cost_ins['s2_engine_mass'] = cost_ins['s2_engines_mass'] / num_engines
try:
cost_ins['s2_veh_manned'] = sizing_outs['Stage 2 Structures Type'l]
except KeyError:
cost_ins['s2_veh_manned'] = 'unmanned'
if cost_ins['s2_class'] == 'massless':
cost_ins['s2_veh_noengines_dry_mass'] = sum([sizing_outs['Stage
sizing_outs['Stage
sizing_outs['Stage
sizing_outs['Stage

'solid':

Power Mass(kg)'l,
Structures Mass(kg)'],
Tanks Mass(kg) '],
Thermal Mass(kg)']])
else:
cost_ins['s2_veh_noengines_dry_mass'] = sum([sizing_outs['Stage
sizing_outs['Stage
sizing_outs['Stage 2 Structures Mass(kg)'],
sizing_outs['Stage 2 Tanks Mass(kg)'],
sizing_outs['Stage 2 Thermal Mass(kg)'l])
cost_ins['s2_veh_burnout_mass'] = sizing_outs['Stage 2 Burnout Mass(kg)']
# stage 3
if cost_ins['num_stages'] > 2:
cost_ins['s3_class'] = sizing_outs['Stage 3 MPS Class']
if sizing_outs['Stage 3 MPS Propellants'].find('/') >= 0:
# biprops
if any([True for prop in ['lox','lh2','lch4'] if prop in sizing_outs['Stage 3 MPS
« Propellants']]):

Avionics Mass(kg)'l,
Power Mass(kg)'],

NN NN

# cryo

cost_ins['s3_propellant'] = 'cryo'
else:

# storable

cost_ins['s3_propellant'] = 'storable'

else:

# monoprop
cost_ins['s3_propellant'] = 'monoprop'

cost_ins['s3_prop_mass'] = sizing_outs['Stage 3 MPS Propellant Mass(kg)'] + sizing_outs['Stage
— 3 RCS Propellant Mass(kg)']
if cost_ins['s3_class'] == 'liquid':
num_engines = 4
if cost_ins['s3_propellant'] == 'cryo':
feed = 'pump'
else:
feed = 'pressure'
elif cost_ins['s3_class'] == 'electric':
num_engines = 1
feed = 'pressure'
elif cost_ins['s3_class'] in ['nuclear', 'massless']:
num_engines = 3
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feed = 'pump'
elif cost_ins['s3_class'] == 'solid':

num_engines = 1

feed = None
cost_ins['s3_num_engines'] = num_engines
cost_ins['s3_feed'] = feed

cost_ins['s3_engines_mass'] = sizing_outs['Stage 3 Engines Mass(kg)'
cost_ins['s3_engine_mass'] = cost_ins['s3_engines_mass'] / num_engines

try:

cost_ins['s3_veh_manned'] = sizing_outs['Stage 3 Structures Type'l]

except KeyError:
cost_ins['s3_veh_manned'] = 'unmanned'
if cost_ins['s3_class'] == 'massless':
cost_ins['s3_veh_noengines_dry_mass'] = sum([sizing_outs['Stage
sizing_outs['Stage
sizing_outs['Stage
sizing_outs['Stage
else:
cost_ins['s3_veh_noengines_dry_mass'] = sum([sizing_outs['Stage
sizing_outs['Stage
sizing_outs['Stage
sizing_outs['Stage
sizing_outs['Stage

]

3
3
3
3

3
3
3
3

3

Power Mass(kg) '],
Structures Mass(kg)'],
Tanks Mass(kg)'],
Thermal Mass(kg)']])

Avionics Mass(kg)'l,
Power Mass(kg)'],
Structures Mass(kg) '],
Tanks Mass(kg) '],
Thermal Mass(kg)']])

cost_ins['s3_veh_burnout_mass'] = sizing_outs['Stage 3 Burnout Mass(kg)']

# techs
othertechs = [sizing_outs['Wireless Sensors'],
sizing_outs['Composite Structures'],
sizing_outs['Composite Tanks'],
sizing_outs['Integrated MPS/RCS Prop'],
sizing_outs['Active Cryo Cooling']
]
if sizing_outs['Low Leak Valves']:
cost_ins['engine_tech'] = False
else:
cost_ins['engine_tech'] = True
if sizing_outs['High Capacity Energy Storage'] == True:
cost_ins['veh_tech'] = True
elif any([tech for tech in othertechs]):
cost_ins['veh_tech'] = True

return cost_ins

estimate_costs(cost_ins):

# initialize outputs

cost_outs = {'Vehicle Gross Cost(MYr)':0.,

'Vehicle Gross Prod Cost(MYr)':0.,
'Vehicle Gross Dev Cost(MYr)':0.,

'Stage 1 Gross Cost(MYr)':0.,

'Stage 1 Gross Prod Cost(MYr)':0.,
'Stage 1 Engines Prod Cost(MYr)':0.,
'Stage 1 Vehicle Prod Cost(MYr)':0.,
'Stage 1 Gross Dev Cost(MYr)':0.,
'Stage 1 Engines Dev Cost(MYr)':0.,
'Stage 1 Vehicle Dev Cost(MYr)':0.,
'Stage 2 Gross Cost(MYr)':0.,

'Stage 2 Gross Prod Cost(MYr)':0.,
'Stage 2 Engines Prod Cost(MYr)':0.,
'Stage 2 Vehicle Prod Cost(MYr)':0.,
'Stage 2 Gross Dev Cost(MYr)':0.,
'Stage 2 Engines Dev Cost(MYr)':0.,
'Stage 2 Vehicle Dev Cost(MYr)':0.,
'Stage 3 Gross Cost(MYr)':0.,

'Stage 3 Gross Prod Cost(MYr)':0.,
'Stage 3 Engines Prod Cost(MYr)':0.,
'Stage 3 Vehicle Prod Cost(MYr)':0.,
'Stage 3 Gross Dev Cost(MYr)':0.,

3

'Stage 3 Engines Dev Cost(MYr)':0.,
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'Stage 3 Vehicle Dev Cost(MYr)':0.,
}

# cost stage 1
# engines
(cost_outs['Stage 1 Engines Dev Cost(MYr)'],
cost_outs['Stage 1 Engines Prod Cost(MYr)']) = cost_engines(cost_ins['sl_engine_mass'],
cost_ins['engine_tech'],
cost_ins['sl_num_engines'],
cost_ins['sl_class'],
cost_ins['sl_feed'],
cost_ins['sl_propellant'])
# vehicle
(cost_outs['Stage 1 Vehicle Dev Cost(MYr)'l,
cost_outs['Stage 1 Vehicle Prod Cost(MYr)']) = cost_stage(cost_ins['sl_veh_noengines_dry_mass'],
cost_ins['sl_veh_burnout_mass'],
cost_ins['sl_engines_mass'],
cost_ins['sl_prop_mass'],
cost_ins['veh_tech'],
cost_ins['sl_class'],
cost_ins['sl_veh_manned'],
cost_ins['sl_propellant'])
# totals
cost_outs['Stage 1 Gross Dev Cost(MYr)'] = (cost_outs['Stage 1 Engines Dev Cost(MYr)'] +
cost_outs['Stage 1 Vehicle Dev Cost(MYr)'])
cost_outs['Stage 1 Gross Prod Cost(MYr)'] = (cost_outs['Stage 1 Engines Prod Cost(MYr)'] +
cost_outs['Stage 1 Vehicle Prod Cost(MYr)'])
cost_outs['Stage 1 Gross Cost(MYr)']l = (cost_outs['Stage 1 Gross Dev Cost(MYr)'] +
cost_outs['Stage 1 Gross Prod Cost(MYr)'])

if cost_ins['num_stages'] > 1:
# cost stage 2
# engines
(cost_outs['Stage 2 Engines Dev Cost(MYr)'l,
cost_outs['Stage 2 Engines Prod Cost(MYr)'l) = cost_engines(cost_ins['s2_engine_mass'],
cost_ins['engine_tech'],
cost_ins['s2_num_engines'],
cost_ins['s2_class'],
cost_ins['s2_feed'],
cost_ins['s2_propellant'])
# vehicle
(cost_outs['Stage 2 Vehicle Dev Cost(MYr)'],
cost_outs['Stage 2 Vehicle Prod Cost(MYr)'l) =
— cost_stage(cost_ins['s2_veh_noengines_dry_mass'],
cost_ins['s2_veh_burnout_mass'],
cost_ins['s2_engines_mass'],
cost_ins['s2_prop_mass'],
cost_ins['veh_tech'],
cost_ins['s2_class'],
cost_ins['s2_veh_manned'],
cost_ins['s2_propellant'])
#totals
cost_outs['Stage 2 Gross Dev Cost(MYr)'] = (cost_outs['Stage 2 Engines Dev Cost(MYr)'] +
cost_outs['Stage 2 Vehicle Dev Cost(MYr)'])
cost_outs['Stage 2 Gross Prod Cost(MYr)'l = (cost_outs['Stage 2 Engines Prod Cost(MYr)']l +
cost_outs['Stage 2 Vehicle Prod Cost(MYr)'])
cost_outs['Stage 2 Gross Cost(MYr)'] = (cost_outs['Stage 2 Gross Dev Cost(MYr)'l +
cost_outs['Stage 2 Gross Prod Cost(MYr)'l)

if cost_ins['num_stages'] > 2:

# cost stage 3

# engines

(cost_outs['Stage 3 Engines Dev Cost(MYr)'],

cost_outs['Stage 3 Engines Prod Cost(MYr)']) = cost_engines(cost_ins['s3_engine_mass'],
cost_ins['engine_tech'],
cost_ins['s3_num_engines'],
cost_ins['s3_class'],
cost_ins['s3_feed'],
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cost_ins['s3_propellant'])
# vehicle
(cost_outs['Stage 3 Vehicle Dev Cost(MYr)'],
cost_outs['Stage 3 Vehicle Prod Cost(MYr)'l) =
— cost_stage(cost_ins['s3_veh_noengines_dry_mass'],
cost_ins['s3_veh_burnout_mass'],
cost_ins['s3_engines_mass'],
cost_ins['s3_prop_mass'],
cost_ins['veh_tech'],
cost_ins['s3_class'],
cost_ins['s3_veh_manned'],
cost_ins['s3_propellant'])
#totals
cost_outs['Stage 3 Gross Dev Cost(MYr)'] = (cost_outs['Stage 3 Engines Dev Cost(MYr)'] +
cost_outs['Stage 3 Vehicle Dev Cost(MYr)'])
cost_outs['Stage 3 Gross Prod Cost(MYr)'l = (cost_outs['Stage 3 Engines Prod Cost(MYr)']l +
cost_outs['Stage 3 Vehicle Prod Cost(MYr)'])
cost_outs['Stage 3 Gross Cost(MYr)']l = (cost_outs['Stage 3 Gross Dev Cost(MYr)'] +
cost_outs['Stage 3 Gross Prod Cost(MYr)'l)

# cost totals

(cost_outs['Vehicle Gross Dev Cost(MYr)'],

cost_outs['Vehicle Gross Prod Cost(MYr)'],

cost_outs['Vehicle Gross Cost(MYr)']) = cost_veh(cost_ins['num_stages'],
cost_outs['Stage 1 Gross Dev Cost(MYr)'],
cost_outs['Stage 1 Gross Prod Cost(MYr)'],
cost_outs['Stage 2 Gross Dev Cost(MYr)'],
cost_outs['Stage 2 Gross Prod Cost(MYr)'l,
cost_outs['Stage 3 Gross Dev Cost(MYr)'],
cost_outs['Stage 3 Gross Prod Cost(MYr)'])

return cost_outs
def cost_stage(mass_dry,mass_burnout,mass_engines,mass_prop,tech,stage_class,manned,prop) :
dev = 0.

prod = 0.
M = mass_dry # in kg

Mn = mass_burnout # in kg
Me = mass_engines # in kg
Mp = mass_prop # in kg

# set factors
n =1 # number of items produced
if tech:
f1
else:
f1 = 1.0 # development standards factor, state of the art design similar to current designs
£f3 = 0.8 # team experience factor, team has performed development of similar project
p = 0.0113 * log(M) + 0.852 # learning factor, production rate of 2 stages per year
if p > 1:
p=1
f4 = (1/n) * sum([i**(log(p)/log(2)) for i in range(l,n+1)]) # production cost reduction factor

1.2 # development standards factor, assumes some new technical/operational features

if manned:
# crewed space system
f2 = 1. # technical quality factor
x_dev = 0.37 # development CER sensitivity factor for
a_dev = 1220. # development CER scaling factor
x_prod = 0.98 # production CER sensitivity factor for
a_prod = 0.16 # production CER scaling factor
else:
if stage_class == 'solid':
# prop module
f2 = 1. # technical quality factor
x_dev = 0.55 # development CER sensitivity factor for
a_dev = 15.4 # development CER scaling factor
x_prod = 0.49 # production CER sensitivity factor for
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a_prod = 4.65 # production CER scaling factor
else:
# expendable ballistic stage
x_dev = 0.555 # development CER sensitivity factor for
a_dev = 98.6 # development CER scaling factor
x_prod = 0.65 # production CER sensitivity factor for
keff = (Mn - Me) / Mp # specific net mass fraction
if prop == 'cryo':
# average reference net mass fraction for cryo stages
kref = exp(-1.471159 - 0.2061181%1log(Mp/1e3) +
0.0459295%(log(Mp/1e3)-3.98104) **2 -
0.0053711*(log(Mp/1e3)-3.98104)*%3)
2 = kref / keff # technical quality factor
a_prod = 1.30 # production CER scaling factor
else:
# average reference net mass fraction for storable stages
kref = exp(-1.257492 - 0.3925932*log(Mp/1e3) +
0.0486939%(log(Mp/1e3)-2.86218)**2 -
0.0006765%(log(Mp/1e3)-2.86218)*%*3)
f2 = kref / keff # technical quality factor
a_prod = 0.83 # production CER scaling factor

# cost stage development
dev = a_dev * M ** x_dev * f1 * f2 * £3

# cost stage production
prod = a_prod * n * M ** x_prod * f4

return dev,prod
cost_engines(mass,tech,num_engines,stage_class,feed,prop):
dev = 0.

prod =

M = mass # in kg

# set factors
n = num_engines # number of items produced

if tech:

f1 = 1.2 # development standards factor, assumes some new technical/operational features
else:

f1 = 1.0 # development standards factor, state of the art design similar to current designs

£3 = 0.8 # team exzperience factor, team has performed development of similar project
p = 0.0126 * log(M) + 0.8037 # learning factor, production rate of 10 engines per year
if p > 1:

p=1

= (1/n) * sum([i**(log(p)/log(2)) for i in range(l,n+1)]) # production cost reduction factor

if stage_class == 'solid':
f2 = 1. # technical quality factor
x_dev = 0.53 # development CER sensitivity factor for
a_dev = 19.2 # development CER scaling factor
x_prod = 0.395 # production CER sensitivity factor for
a_prod = 2.42 # production CER scaling factor
else:
if feed == 'pump':
x_dev = 0.52 # development CER sensitivity factor for
a_dev = 1975.0 # development CER scaling factor
if prop == 'cryo':
x_prod = 0.45 # production CER sensitivity factor for
a_prod = 5.16 # production CER scaling factor
elif prop == 'storable':
x_prod = 0.535 # production CER sensitivity factor for
a_prod 1.9 # production CER scaling factor
elif prop == 'monoprop':
# nuclear engine, use cryo settings
x_prod = 0.45 # production CER sensitivity factor for
a_prod = 5.16 # production CER scaling factor
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if stage_class == 'nuclear':
Nq = 10 # number of dev and qual
else:
# all others (liquids, electric)
Nq = 500 # number of dev and qual
else:
x_dev = 0.365 # development CER sensitivity factor for
a_dev = 155.0 # development CER scaling factor
if prop == 'storable':
x_prod = 0.535 # production CER sensitivity factor for
a_prod = 1.9 # production CER scaling factor
elif prop == 'monoprop':
x_prod = 0.535 # production CER sensitivity factor for
a_prod = 1.13 # production CER scaling factor
Nq = 500 # number of dev and qual
£2 = 0.026 * log(Nq)**2 # technical quality factor

# cost stage development
dev = a_dev * M ** x_dev * f1 * f2 * £3

# cost stage production
prod = a_prod * n * M ** x_prod * f4

return dev,prod

def cost_veh(num_stages, sl_dev_cost, sl_prod_cost, s2_dev_cost, s2_prod_cost, s3_dev_cost,
— s3_prod_cost):

dev = 0.
prod = 0.
total = O.

# set factors

fO_dev = 1.04**num_stages

fO_prod = 1.02 # assumed minimum from handbook

f6 = 1. # schedule cost growth factor at 100 baseline schedule
£f7 = 1. # cost growth factor for single contractor program

£f8 = 1. # productivity correction factor for USA

# calculate dev cost
dev = fO_dev * (sl_dev_cost + s2_dev_cost + s3_dev_cost) * f6 * f7 * f8 # M/r

# calculate prod cost
prod = fO_prod * num_stages * (sl_prod_cost + s2_prod_cost + s3_prod_cost) # Mir

# calculate total cost
total = dev + prod # MYr

return dev,prod,total
def transcost(sizing_outs):

# get cost inputs from sizing outputs
cost_ins = collect_inps(sizing_outs)

# estimate cost outputs
cost_outs = estimate_costs(cost_ins)

# clean up outputs
for key in cost_outs.keys():
if cost_outs[key] ==
cost_outs[key] = None

all_data = dict(**sizing_outs,**cost_outs)

return all_data
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