
 

THE FORCE REGULATION ON BINDING KINETICS AND 

CONFORMATIONS OF INTEGRIN AND SELECTINS USING A 

BIO-MEMBRANE FORCE PROBE 

 
 
 
 
 
 

A Thesis 
Presented to 

The Academic Faculty 
 

By 
 

Wei Chen 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree  

Doctor of Philosophy in Bioengineering in the 
School of Mechanical Engineering 

 
 
 

 
 
 
 

Georgia Institute of Technology 
May 2009 

 
COPYRIGHT ©WEI CHEN 2009 



 

THE FORCE REGULATION ON BINDING KINETICS AND 

CONFORMATIONS OF INTEGRIN AND SELECTINS USING A 

BIO-MEMBRANE FORCE PROBE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved by:   
   
Dr. Cheng Zhu, Advisor 
School of Biomedical Engineering 
Georgia Institute of Technology 

 Dr. Levent F. Degertekin  
School of Mechanical Engineering 
Georgia Institute of Technology 

   
Dr. Evan A. Evans 
Departments of Physics and Pathology,  
University of British Columbia 

 

 Dr. Nael McCarty 
School of Biology 
Georgia Institute of Technology 

   
Dr. Andres J. Garcia 
School of Mechanical Engineering 
Georgia Institute of Technology 

  

   
  Date Approved: April 1st, 2009 



 

I dedicate this thesis 

to 

 

 

My parents 

 

I am forever indebted to my parents,  (Zichen Chen) and  (Suhua Li).

I would not have been able to finish my Ph.D. thesis without their priceless love, endless 

patience and unconditional supports. 

 

 

 

 My wife 

I am so grateful to my wife, (Weiwei Yin), who was always there to support me 

unconditionally, comfort and encourage me to go through difficult times.  

 

 

 

 

 

 

 



I 

ACKNOWLEDGEMENTS 

I would like to express my gratitude to many people who supported me in the passed 

5 years. Without their helps, I could not believe I could finish my Ph.D. research 

smoothly. 

Firstly, I would like to thank my Ph.D. thesis advisor, Dr. Cheng Zhu. He is the most 

important person to my Ph.D. study and research. I would like to thank him for providing 

me a precious chance to enter this exciting bioengineering field five years ago, and for his 

continuous financial support, helpful guide, and encouragement through my whole Ph.D. 

period. More importantly, I would thank him for teaching me how to do science, for his 

enthusiasm and curiosity to science which lead me to explore this mysterious scientific 

world, for his strictness to the scientific research which taught me to patiently carry out 

and repeat tedious scientific experiments, carefully examine discoveries and thoughtfully 

formalize our interpretation and conclusions.  

Secondly, I would like to thank Dr. Evan Evans. As old saying says, “Standing on the 

Shoulder of Giants.” Dr.Evans is a talented giant, and I’m a dwarf standing on his 

shoulder. His creative invention, the BFP, is my major powerful tool for my Ph.D. 

research. His unconditional technical support helped me so much to quickly build up a 

new BFP in Dr.Zhu’s lab and smoothly finish my thesis works.  His thoughts of the 

essence of scientific research benefit my Ph.D. study and my whole lifetime in future. His 

enthusiasm on science makes me realize that doing science is full of fun.  

In addition to Dr.Evan Evans, I would like to thank his lab members, Andrew Leung 

and Dr. Koji Kinoshita. They are giant’s two arms. They gave me tremendous helps on 

teaching me, building up the BFP and overcoming difficulties in BFP experiments.  

I would like to thank my other thesis committee members, Dr.Andres Garcia, 

Dr.Levent Degertegin and Dr. Nael McCarty for serving as my thesis committee and for 

taking time to make valuable suggestions on my thesis work. I would also like to thank 



II 

Dr. Garcia for his encouragement since my Ph.D. qualify examination and strong support 

on my whole Ph.D. thesis research, Dr. Degertegin for his creativity that impacted my 

research, and Dr. McCarty for introducing and leading me into the biological world.  

I would like to thank Dr. Rodger McEver for kindly proving me many important 

reagents for my Ph.D. research, for guiding me on how to carry out cutting-edge 

scientific research and for greatly supporting my on academic career development. I also 

would like to thank his members as well for supporting my research.  

I would like to thanks technical supporting staff in the Institute of Bioscience and 

Bioengineering and the Mechanical Engineering (ME) at Georgia Tech. I would like to 

thank Mr.John Gramham and his co-op students in ME’s machine shop for taking so 

much effort on manufacturing my designs for the BFP system. I would also like to thank 

Johnafel Crowe for supporting the equipments in the IBB and Dr. Jeffrey Donnell for 

revising my thesis.  

Special thanks to previous and current Zhu lab members. Firstly I would like to thank 

Dr. Kong Fang for helping me so much on solving technical problems when I was setting 

up the BFP, Dr. Jizhong Lou, Dr. Fang Zhang, Dr. Ning Jiang, Dr. Veronica, Wei Chen, Dr. 

Jun Huang and Dr. Tao Wu for their useful discussion on my research works, Larissa 

Doudy for supporting my BFP experiments in the last year of my Ph.D. research, and 

William Madison Parks for his help on revising my thesis. I als  would like to thank my 

friends for their helps in the passed five years.  

Finally, I would like to thank my family for supporting me in the passed five years. 

Especially, I would like to thank my wife and my mother in-law when I am writing this 

Ph.D. thesis. Without your caring and love, it would be much harder to finish my Ph.D. 

works. 

 
 
 
 
 



III 

TABLE OF CONTENTS 

                         Page 

ACKNOWLEDGEMENTS ..............................................................................................I

LIST OF FIGURES ........................................................................................................VI

LIST OF SYMBOLS AND ABBREVIATIONS......................................................... XII

SUMMARY…… ............................................................................................................... 1

CHAPTER 1 OBJECTIVES......................................................................................... 5

1.1 Specific aim 1: to implement a bio-membrane force probe (BFP) and characterize 
its capacity to study specific interactions between receptors and ligands ................... 5
1.2 Specific aim 2: to develop a thermal fluctuation assay to monitor receptor-ligand 
interactions between two opposing surfaces................................................................ 6
1.3 Specific aim 3: to functionally study the force and force history dependent 
lifetimes of selectins-ligand interactions. .................................................................... 7
1.4 Specific aim 4: to characterize the force-dependent dissociation of 
LFA-1/ICAM-1 interaction on a living cell. ................................................................ 8
1.5 Specific aim 5: to probe force-regulated dynamic global conformational change 
of LFA-1 integrin on a living cell. ............................................................................... 9

CHAPTER 2 BACKGROUND................................................................................... 12

2.1 Cell adhesion and cell adhesion molecules (CAMs) ........................................... 12
2.1.1 Selectins and their ligands ......................................................................... 14
2.1.2 Integrins and their ligands.......................................................................... 16
2.1.3 Regulation of LFA-1 activity ..................................................................... 20
2.1.4 Conformational changes of LFA-1 integrin ............................................... 22

2.2 Receptor-ligand binding kinetics ......................................................................... 26
2.2.1 General receptor-ligand kinetics ................................................................ 26
2.2.2 Force-regulated off-rate ............................................................................. 27
2.2.3 Forward association rate (2D-on-rate) of surface-anchored molecules..... 29

2.3 Single molecule techniques and assays................................................................ 30
2.3.1 Single molecule techniques........................................................................ 30
2.3.2 Experimental assays to measure kinetics of receptor-ligand interactions.. 31

CHAPTER 3 MATERIALS AND METHODS ......................................................... 35

3.1 Cells, Proteins and Small Molecules ................................................................... 35
3.1.1 Cell isolation and culture ........................................................................... 35
3.1.2 Proteins, antibodies and small molecule antagonists................................. 36

3.2 Coupling biotins onto RBCs and proteins onto glass beads ................................ 37
3.2.1 Coupling biotins onto RBCs ...................................................................... 38
3.2.2 Coupling proteins onto glass beads via PEG polymer linkage .................. 38
3.2.3 Coupling proteins onto glass beads via biotin-streptavidin’s bond ........... 40



IV 

3.2.4 Coupling Fc-chimera proteins onto IgG coated glasses beads .................. 40
3.3 Measurement of molecular site density ............................................................... 41

3.3.1 Fluorescence staining................................................................................. 41
3.3.2 Data acquisition ......................................................................................... 41
3.3.3 Site density determination.......................................................................... 42

3.4 The BFP system ................................................................................................... 42
3.4 Measurement of binding frequency ..................................................................... 43
3.5 Measurement of bond lifetimes ........................................................................... 43

CHAPTER 4 INSTRUMENTATION AND CHARACTERIZATION  OF THE 

BFP……............ ............................................................................................................... 45

4.1 Instruction ............................................................................................................ 45
4.2 The BFP System................................................................................................... 46

4.2.2 The hardware system of the BFP ............................................................... 46
4.2.3 The software system of the BFP ................................................................ 49

4.3 Characterization of the BFP................................................................................. 50
4.3.1 Characterize spatial precision of the tracking system of the BFP ............. 50
4.3.2 Motion-blur correction on the thermal fluctuation of the BFP.................. 51

CHAPTER 5 MONITORING RECEPTOR-LIGAND INTERACTIONS  

BETWEEN SURFACES BY THERMAL FLUCUTATIONS .................................... 57

5.1 Introduction.......................................................................................................... 57
5.2 Results.................................................................................................................. 59

5.2.1 Change in Thermal Fluctuations Identifies Bond Association or 
Dissociation......................................................................................................... 59
5.2.2 Measuring 2D Kinetic Rates of Receptor-ligand Interactions ................... 66
5.2.3 Comparison between the thermal assay and the adhesion frequency assay
............................................................................................................................. 70

5.3 Discussion ............................................................................................................ 73

CHAPTER 6 FUNCTIONAL STUDY OF FORCE REGULATION ON 

SELECTIN-LIGAND INTERACTIONS ..................................................................... 78

6.1 Introduction.......................................................................................................... 78
6.2 Results.................................................................................................................. 81

6.2.1 L-selectin hinge mutation augmenting catch bonds in low force regimes. 81
6.2.2 Tri-phasic transition of fore-regulated off-rates of selectin-ligand 
interactions.......................................................................................................... 84
6.2.3 Force-history dependent off-rates of L-selectin-ligand interactions.......... 87

6.3 Discussion ............................................................................................................ 89

CHAPTER 7 FORCE REGULATION ON LFA-1-LIGAND INTERACTIONS.. 94

7.1 Instruction ............................................................................................................ 94
7.2 Results.................................................................................................................. 96

7.2.1 Binding specificity in the BFP experiment ................................................ 96



V 

7.2.2 Observation and characterization of catch bonds in the LFA-1/ICAM-1 
interaction ........................................................................................................... 98
7.2.3 Binding of XVA143’s to LFA-1 abolished LFA-1-ICAM-1’s catch bonds
........................................................................................................................... 102

7.3 Discussion .......................................................................................................... 104

CHAPTER 8 PROBE FORCE REGULATED DYNAMIC CONFORMATIONAL 

CHANGES OF LFA-1 INTEGRIN ON A LIVING CELL ....................................... 108

8.1 Introduction........................................................................................................ 108
8.2 Results.................................................................................................................112

8.2.1 Observations of the upward and downward movements of the probe beads 
after the PZT stopped.........................................................................................112
8.2.2 Statistical analysis of probe beads movements reveals integrin’s global 
conformational changes .....................................................................................115
8.2.3 Mechanical analysis further confirmed the observed conformational 
changes of LFA-1 integrin ................................................................................ 122
8.2.4 Characterization of dynamic properties of global conformational changes 
of LFA-1............................................................................................................ 127

8.3 Discussion .......................................................................................................... 129

CHAPTER 9 RECOMMENDATIONS FOR FUTURE WORKS ........................ 136

REFERENCES.............................................................................................................. 142

 



VI 

LIST OF FIGURES 

Figure 2-1  Leukocyte trafficking cascade [2]. ............................................................... 14 

Figure 2-2. Schematic molecular structures of three selectins. ........................................ 16 

Figure 2-3. Integrin Family. Integrin  and  subunits form 24 heterodimers that 
recognize distinct but overlapping ligands. Half of the  subunits contain A 
domains (asterisked) [13, 14]. This figure was adapted from ref.[13] ..................... 17 

Figure 2-4. Integrin architecture. A)  Organization of domains within the primary 
structure. Some  subunits contain an A domain inserted in the position denoted by 
the broken lines. Cysteines and disulphide bonds are shown as lines below the stick 
figures. Red and blue asterisk denote Ca2+- and Mn2+- binding sites, respectively.  
B) Crystal structures of v 3[15] adapted from [16] C)  Arrangement of domains 
within the three-dimensional crystal structure of v 3[15], with an A domain 
added. Each domain is color-coded as in Figure 2-4A. -TD,  tail domain; I-EGF, 
integrin-epidermal growth factor domain; PSI, plexin/S.E.M.aphoring/integrin [14]. 
(A) and (C) are adapted from ref.[14]....................................................................... 18 

Figure 2-5. ICAM-1 Structure and binding to integrin. (A) Schematic of ICAM-1 
structure. L 2 binding site is indicated by the green star. (B) Model of ICAM-1’s 
binding to L A domain[16]. .................................................................................... 20 

Figure 2-6. Ribbon diagram of the crystal structures of open and closed A domain from 
integrin M.[33]. ........................................................................................................ 23 

Figure 2-7. Global and local integrin conformational states [14, 15, 29, 39, 42]. A) EM 
image of negatively stained average projections of clasped X 2, showing bent 
conformation with closed headpiece [42]. B) EM image of negatively stained 
average projections of clasped X 2 integrin in the presence of activating antibody, 
showing extended conformation with closed headpiece[42]; C) EM image of 
negatively stained average projections of unclasped X 2 integrin in the presence of 
activating antibody, showing extended conformation with open headpiece[42]; D) 
Model structure of bent L 2 with the close headpiece[15]. E) Model structure of 
the L 2 intermediate structure with close headpiece and extended conformation. 
The binding site of small allosteric molecule(XVA143) is drawn as three red 
balls[14]. F) Model structure of the L 2 extended conformation with open 
headpiece upon ICAM-1 binding.............................................................................. 25 

Figure 3-1.  Plots of raw BFP lifetime data. (A) Plot of force vs. time in the absence of 
force. (B) Plot of force vs. time in the presence of force.......................................... 44 



VII 

Figure 4-1.  Schematic of the BFP system...................................................................... 47 

Figure 4-2.  Imaging tracking region and intensity profile for the BFP. (A) Image 
analysis region, the bright area, for tracking system, the dark area was blocked out 
not for analyzing. The tracking edge is indicated by the yellow arrow. (B) Intensity 
profile of the bed’s edge in (A). The region in (B) corresponds to a smaller region in 
(A) which is indicated by a red marker. The orange point in (B) is the peak of 
Gaussian distribution fitting to the profile. ............................................................... 50 

Figure 4-3.  Characterization of the tracking precision of the BFP. (A) Comparison of 
the piezo displacements (green, ) and the tracked displacements (red, ). The 
differences between them are shown as blue ( )). (B) Histogram (bars) of the 
differences between the piezo and tracked displacements. It is fitted by a Gaussian 
distribution (curve).................................................................................................... 51 

Figure 4-4.  Illustrations of thermal fluctuations. Tracked displacements of the target 
pipette (A), the force probe (B) and the probe pipette (C) over time during which 
both pipettes were held stationary. (D) Comparison of the 15-point sliding standard 
deviations of the fluctuating displacements in A-C (color-matched). ...................... 53 

Figure 4-5. Calibration of the BFP spring constant. (A and B) The background-subtracted 
drift-free variance var(Xm) of a BFP force probe ( ) is plotted vs. reciprocal 
suction pressure 1/p under which the fluctuating displacements were measured in 
hypotonic (A) or isotonic (B) condition (contributed by Dr.Veronika in Dr.Zhu’s lab) 
and fitted by motion-blur model Eq. 11 (curve). The variances of the target bead (D) 
and the probe pipette ( ) are also plotted in A, which serve as the background. (C 
and D) The motion-blur corrected variance var(X) ( ) is plotted vs. 1/kp calculated 
from Equation 4-5 using parameters from the experiments under which the 
fluctuating displacements were measured in hypotonic (C) or isotonic (D) condition 
and fitted by a straight linear that passes the origin.................................................. 56 

Figure 5-1. Thermal fluctuation method. (A) Photomicrograph of a BFP. (B and C) 
Horizontal position x of the right edge of the probe is plotted vs. time t for a 
representative test cycle measuring the interaction between PSGL-1 coated on the 
probe and L-selectin (B) or P-selectin (C) coated on the target. Two periods of high 
positions in (B) are indicated by arrowheads. (D and E) Sliding standard deviations 

 of 15 consecutive points of the position data in B and C, respectively. (F and G) 
Histograms of the  data in D and E (bars), respectively, each fitted by Equation 5-1 
(solid curves). Also superimposed on each panel are two histograms of  values 
calculated from x(t) data of two unencumbered probes recorded for the same 
duration of time (dotted curves). One unencumbered probe had the same spring 
constant of k = 0.15 pN/nm as the probe used to acquire the data in D and E. The 
other unencumbered probe had spring constant of k = 1.7 (F) or 0.8 (G) pN/nm. All 
histograms were normalized to have a unity area. The vertical dashed line U = 3.8 
nm on each panel is one standard deviation (1.3 nm) to the left from the peak at 5.1 
nm. The vertical solid line  L = 3.15 nm on each panel is 1.5 standard deviation to 
the left from the same peak. These thresholds are marked in D and E as horizontal 
lines to identify bond association and dissociation events, which are marked by the 
respective down and up arrows. Arrowheads indicate intervals deemed indeterminate 



VIII 

as to whether they corresponded to free or bound probes because data lay between 
the two thresholds. .................................................................................................... 60 

Figure 5-2. Comparison between two methods for determining the presence of a bond. A 
total of 812 tests like those in Figure 5-1D for L-selectin-PSGL-1 interactions were 
segregated into two groups. The first group of 87 tests had  values immediately 
prior to the target return that were between the upper threshold  U = 3.8 nm and the 
lower threshold  L = 3.15 nm, which were deemed as indeterminate and excluded. 
The second group of 725 tests were further segregated into four subgroups 
depending on whether they had  values immediately prior to the target return above 
the upper threshold (no decreased fluctuation) or below the lower threshold 
(decreased fluctuation) and whether the returning target produced pulling or no 
pulling of the probe. The number of tests in each subgroup was plotted against the 
four conditions marked on the x-y plane (and also indicated on the top of each bar).
................................................................................................................................... 65 

Figure 5-3. Exponential distributions of waiting times (A) and bond lifetimes (B). Pooled 
ensembles of 156 (L-selectin) or 190 (P-selectin) waiting times (A), defined as 
intervals from a dissociation event to the next association event, and 172 (L-selectin) 
or 240 (P-selectin) bond lifetimes (B), defined as intervals from an association event 
to the next dissociation event, of PSGL-1 respectively interacting with L-selectin ( ) 
or P-selectin ( ) were respectively sorted according to their durations. The natural 
log of the number of events with waiting times > tw (A) or bond lifetimes > tb (B) 
was respectively plotted against tw or tb, respectively, and respectively fitted by a 
straight line (not shown). The negative slopes of the best-fits represent cellular 
on-rate mrmlAckon and off-rate koff, respectively, whose values are indicated. The 
variations in these values are shown by the 95% confident intervals of the best-fit 
(lines). The goodness-of-fit was measured by the R2 values, which are also indicated.
................................................................................................................................... 68 

Figure 5-4. Kinetic parameters. Cellular on-rate (A) and off-rate (B) were plotted vs. 
product of the site densities of the interacting molecules, L-selectin and PSGL-1. 
Data (points, error bar = 95% confident interval) were respectively fitted by a 
straight line that passed the origin (A) to estimate a molecular 2D effective on-rate 
<Ackon> (best-fit equation and R

2 were indicated) or by a horizontal line (B) to 
estimate the average off-rate <koff> (indicated). (C) Comparison of kinetic rates of 
PSGL-1 interacting with L-selectin and P-selectin................................................... 69 

Figure 5-5. Comparison between theory and experiment. Frequencies of adhesion 
mediated by PSGL-1 interacting with L-selectin ( ) or P-selectin ( ) were 
measured at indicated contact times (points, mean ± S.E.M. of three probe-target 
pairs) by averaging the adhesion scores (1 for pulling and 0 for no pulling at the end 
of the contact time of each test cycle) from 100 test cycles per probe-target pair. 
Theoretical adhesion frequencies as functions of contact time were predicted (curves) 
by Equation 5-4 using the kinetic rates from Figure 4-4C and molecular densities 
measured from independent experiments (mrml, = 0.2  0.15 5 μm-4 for the L- 
and P-selectin cases, respectively). ........................................................................... 72 

Figure 6-1. X-Ray structures of  the lectin and EGF domains in P-selectin (A) [8] and 



IX 

L-selectin (contributed by McEver’s lab)(B)............................................................ 80 

Figure 6-2. Binding specificity. ........................................................................................ 83 

Figure 6-3. Bond lifetimes measurement between L-selectin ( or L-selectinN138G mutant) 
and PSGL-1 (A) or  6-Sulfo-sLex (B). The data in A, B represent the mean ± S.E.M. 
of ~500 lifetime measurements................................................................................. 84 

Figure 6-4. Triphasic transition of force-dependent lifetimes of P-selectin-PSGL-1(A), 
E-selectin-sLex(B), L-selectin-PSGL-1 (C) and L-selectin-6sulfo-sLex bonds (D).86 

Figure 6-5. Raw data of lifetimes at the loading rates of 103pN/s (A) and 104pN/s (B). . 87 

Figure 6-6 Lifetimes of L-selectin-PSGL-1 bond (A) and L-selectin-6-sulfo-sLex bonds 
(B) regulated by force loading rates and clamping forces. ....................................... 88 

Figure 6-7. Sliding rebinding model for selectin-ligand interactions[53]. ....................... 91 

Figure 7-1. The BFP experiment. (A) Photomicrograph of a BFP. (B) Functionalization of 
the BFP. ICAM-1-Fc or KIM127 mAb were covalently linked to a 
streptavidin-decorated probe bead via hetero-bifunctional polymers, 
maleimide-PEG3500-NHS. LFA-1 integrins with bent or extended conformations 
were expressed on the Jurkat cell. KIM127’s binding site on a LFA-1(light blue star, 
pointed by the light blue arrow) exposed after LFA-1 extends is on the genu site of 
the  subunit of a LFA-1. The binding site of allosteric small molecule (XVA143, 
dark blue balls) is in the A domain of LFA-1 (pointed by the dark blue arrow). ... 97 

Figure 7-2. Binding specificity. Binding frequencies between a Jurkat cell, expressing 
LFA-1, and a probe bead covalently coated with streptavidin only, streptavidin and 
ICAM-1 or KIM127 mAb, were measured in ~50 tests of each pair of a target cell 
and a probe bead at 1mM Mn2+, 1mM Mn2+, 1mM Mn2+ plus 1μM XVA143, or 
1mM Mn2+ plus 100μg/ml soluble ICAM-1 respectively. Error bars represented as 
mean ± S.E.M. of 3-5 pairs. ...................................................................................... 98 

Figure 7-3. Force-dependent lifetimes of LFA-1/ICAM-1 and LFA-1/KIM127 bonds. (A) 
Plot of lifetimes (mean ± S.E.M.) vs. force of the interaction between ICAM-1 
coated probe bead and the a Jurkat cell at 1mM Mn2+.  This plot shows the catch 
bonds in LFA-1-ICAM-1 bonds. (B) Plot of lifetimes (mean ± S.E.M.) vs. force of 
interactions between a KIM127 mAb coated probe bead and a Jurkat cell at 1mM 
Mn2+ and 100ug/ml soluble ICAM-1. This plots shows slip bonds in LFA-1-KIM127 
bonds. Error bars in both (A) and (B) represent S.E.M.. ........................................ 100 

Figure 7-4. Lifetime analysis. Normalized ln(number of events with a lifetime > t ) versus 
t plots for interactions of LFA-1 with ICAM-1 within catch bonds regime (A) and 



X 

slip bonds regime (B) or with mAb KIM127. Plots in (C) were linearly fitted...... 101 

Figure 7-5. Plot of the fraction of events with a lifetimes >10s within each force bin vs. 
force of the interactions of LFA-1 with ICAM-1.................................................... 102 

Figure 7-6. Force-dependent lifetimes of LFA-1/ICAM-1 bonds upon 1μM XVA143 
binding and analysis on these lifetimes.  (A) Plot of lifetimes as a function of force, 
fitted by Bell model[43]. Error bars represented S.E.M.. (B) Normalized ln(number 
of events with a lifetime > t ) versus t plots for the interactions of LFA-1 with 
ICAM-1 upon 1μM XVA143 binding. Each plot is linearly fitted. ........................ 104 

Figure 8-1. Photo micrograph of the Bio-membrane force probe (BFP). A 
micropipette-aspirated biotinylated RBC with a bead (probe) glued to its apex (left) 
was aligned against a cell (target) aspirated by a target micropipette (right). B) 
Functionalization of the BFP. ICAM-1-Fc, mAbs KIM127 or MEM83 were 
covalently linked on the streptavidin-coated probe bead via 
maleimide-PEG3500-NHS hetero-bifunctional polymers. LFA-1 integrins with bent 
or extended conformations were expressed on the target cell. KIM127’s binding site 
on a LFA-1(light blue star) is on the genu site of the LFA-1’s  subunit. Allosteric 
small molecule (XVA143, dark blue balls) binds to the LFA-1’s A domain, induces 
LFA-1’s extended conformations, but locks the A domain in close conformation 
and low affinity state. The probe bead moved up and down, indicated by a double 
headed arrow next to it.............................................................................................111 

Figure 8-2. Experimental observations of abrupt position changes of the probe bead after 
the PZT stopped. Plots of the position as a function of time (grey circle), showing 
that the probe bead move up 21nm (A) or move down in ~18 nm (B) after the PZT 
stopped. The solid gray curve is the smoothed plot of extension vs. time curve. C)-D) 
Plots of the binding forces measured by the BFP (blue circle) as a function of time, 
showing force decreases (C) or increases (D) after PZT-driven target pipette stopped 
(the moment is marked by vertical, dashed and grey line). The solid blue curve is the 
smoothed force-vs.-time plot. After the PZT stopped, time to force-drop (D) or time 
to force-increase (D) and the switching time are defined as t0 and tsw respectively.
..................................................................................................................................114 

Figure 8-3. Scatter plots of position changes of the probe bead upward movements (A) or 
downward movement (C) after the PZT stopped versus force. These two plots show 
that the displacements of position changes of BFP’s probe beads were not dependent 
on binding forces between LFA-1 and ICAM-1. The average of the position changes 
of upward or downward movements of the probe bead (solid line) and one 

 standard deviation (dashed lines) are superimposed on the scatter plots. On left 
side of each scatter plot is the corresponding histogram of the position changes fitted 
with Gaussian distribution (solid grey line) (B, D)..................................................116 

Figure 8-4. Comparison of the mean displacements of upward or downward movements 
of the BFP probe bead. The probe bead coated ICAM-1 were tested with three 
different types of cells (K562, PMN and Jurkat cells), and all of them expressed 
LFA-1, Error bars represent S.E.M.. ........................................................................118 



XI 

Figure 8-5. Comparison of occurrence frequencies of upward and downward movements 
of probe beads. A) Comparison of the occurrence frequencies of upward or 
downward movements of the BFP probe bead between LFA-1 integrin and its ligand 
(e.g., ICAM-1) at different conditions (2mM Mg2+/EGTA, 1mM Mn2+) or between 
LFA-1 and mAbs MEM83 (at 2mM Mg2+/EGTA or 1mM Mn2+) or KIM127 (at 
1mM Mn2+ plus 100μg/ml sICAM-1). B) XVA143’s dose-dependent occurrence 
frequencies of upward or downward movements of the BFP probe beads. XVA143’s 
does ranges from 0 nM to 1000 nM........................................................................ 121 

Figure 8-6. Plot of force vs. extension for measuring molecular compliance. The slope of 
red dashed line provides the cellular compliance kc, while the slope of the blue 
dashed line provides the effective compliance (keff ) which represents two springs in 
serial. ....................................................................................................................... 123 

Figure 8-7. Histograms of molecular spring constants of LFA-1-ICAM-1 complex at the 
condition of 2mM Mg2+/EGTA (A) or at the condition of 1mM Mn2+. Two 
sub-populations of the histograms were fitted by Gaussian distribution (red and blue 
solid line in (A) and dashed line in (B) respectively............................................... 124 

Figure 8-8. Plots of spring constants of LFA-1-ICAM-1 bonds versus XVA143’s doses at 
the conditions of Mg2+/EGTA (bottom dashed line), Mn2+ without or with different 
concentrations of small alloestric molecule, XVA143, and spring constants of 
LFA-1-KIM127 bonds at the conditions of 1mM Mn2+and 100μg/ml soluble 
ICAM-1(upper dashed line). Error bars represent S.E.M....................................... 125 

Figure 8-9. Histograms of molecular spring constants of LFA-1-1-ICAM-1 bonds of 
increased (gray) or decreased (yellow) displacements. Each histogram was fitted by 
different Gaussian distributions. The blue one (solid line) fits the histogram of 
increased displacements (gray), and the peak of this fitting is about 0.16 pN/nm. 
While the red one (dashed line) fits the histogram of decreased displacements 
(yellow), and the peak of this fitting is about 0.97 pN/nm. .................................... 127 

Figure 8-10. Characterization of the conformational changes of LFA-1 integrins. A) Plots 
of switching times of conformational changes of LFA-1 integrins as a function of 
binding force. B) Comparison of average switching times between extension or 
bent-back of LFA-1 integrins on K562, PMN and Jurkat Cells. Error bars represent 
S.E.M.. C) Comparison of t0, time to conformational changes after the PZT stops 
between extension or bent-back of LFA-1s on K562, PMN and Jurkat Cells. Error 
bars represent S.E.M.. ............................................................................................. 129 

 
 
 



XII 

LIST OF SYMBOLS AND ABBREVIATIONS 

6-Sulfo-sLex 6-sulfo-sialyl-lewis x 

Ac Contact area 

AFM Atomic force microscopy 

BFP Bio-membrane force probe 

BSA Bovine serum albumin 

CR Consensus repeat 

DFS Dynamic force spectroscopy 

EDTA Ethylene diamine tetraacetate 

ECM Extracellular matrix 

EM Electronic microscopy 

GPCR G-protein coupled receptor 

HBSS Hanks balanced salt solution 

ICAM Intercellular cell adhesion molecule 

Ka Affinity 

KD Dissociation constant 

koff, kon Off-rate (reverse rate) and on-rate (forward rate) 

LFA-1 Lymphocyte function-associated antigen-1 

mAb Monoclonal antibody 

MHC The major histocompatibility complex 

ml ,mr Site density of ligand, receptor 

nm Nanometer 

OT Optical tweezers 

Pa Adhesion probability (frequency) 

PBS Phosphate buffer saline 

PE Phycoerythrin 

PMN Polymorphonuclear leukocyte (neutrophil) 

pN Pico-Newton 

PSGL-1 P-selectin glycoprotein ligand-1 

RT Room temperature 

S.E.M Standard error of the mean 

sLex Sialyl-Lewis x 

TCR T cell receptor 

VCAM Vascular cell adhesion molecule 



1 

SUMMARY  

The ability of these adhesion molecules to function in this complex, mechanically 

stressful environment has been attributed to their very special force-dependent kinetics, 

which are tightly tied to their molecular structures. It has been well demonstrated that 

shear flow could enhance leukocyte’s tethering, and that catch bonds could regulate 

leukocytes rolling by prolong bond lifetimes of selectin/ligand interactions. Similarly, 

shear stress has also been known to regulate leukocyte adhesions by altering integrin’s 

adhesiveness to its ligands.  It is believed that the force-dependent kinetics of selectin 

and integrin interacting with their ligands are regulated through conformational changes 

in their molecular structures. Thus, the central theme of this thesis is to investigate the 

relation between force and kinetics rates and to dissect its mechanism on molecular basis.  
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In order to study the relation between force, kinetic rates and structural 

conformational changes, an advanced single molecule instrument, the bio-membrane 

force probe (BFP), was implemented to explore these fundamental biological questions. 

The spatial and temporal precisions of this newly implemented the BFP were about 3nm 

and 0.8 ms respectively. The spring constant of the BFP force probe was able to be set 

over a large range from 0.1 pN/nm ~ 1.2 pN/nm by adjusting aspirating pressures on the 

force probe. The BFP spring constant was calibrated using the equipartition theorem with 

motion blur correction. The calibration results suggested that the estimate of the BFP 

spring constant by Evans’ model was accurate enough at hypotonic but not isotonic 

conditions.  Thus, this instrument allowed us to measure force-dependent lifetimes of 

individual molecular bonds with a force sensitivity of ~1 pN and to detect molecular 

conformational changes larger than ~5 nm.  

Since few convenient assays existed for scientists to directly measure 2D association 

rates of surface-anchored receptor-ligand interactions, we developed a new thermal 

fluctuation assay to monitor P-, L-selectin and PSGL-1 interactions between two 

opposing surfaces and to estimate their 2D on-rate and off-rates simultaneously. This 

assay used the deduction/resumption of the thermal fluctuations of the force probe to 

determine individual bond formation and association and then to estimate the kinetic rates 

by analyzing waiting times between two consecutive bond formations and the lifetimes of 

each bond. Compared to the adhesion frequency assay, this new thermal fluctuation assay 

is more efficient and convenient at estimating 2D kinetic parameters of surface-anchored 

receptor ligand interactions. The differences between estimates of 2D kinetic rates using 

the thermal fluctuation assay and the adhesion frequency assay were very small.  
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Using this new BFP, the relation between force and force history of selectin-ligand 

interactions was investigated. Based on the sliding rebinding model, the flexibility of 

L-selectin is an important factor regulating selectin’s catch bonds. The lifetimes of bonds 

between the L-selectin hinge domain mutant (L-selectinN138G) and ligands were 

measured. The lifetime results showed that increasing the flexibility of the lectin domain 

by eliminating a hydrogen bond in the inter-domain hinge augmented the bond lifetimes 

in catch bond regimes. More interestingly, one more slip bond regime was observed in all 

three selectins at lower forces where previous experiments had never measured. All three 

selectins exhibited tri-phasic transition of force-dependent off-rates in interacting with 

their ligands. This tri-phasic transition could further support the sliding rebinding model 

as this model had predicted that breaking the interactions between the lectin and EGF 

domains before the lectin domain’s pivoting could result in a typical slip bond, as 

postulated by G. Bell.  In addition to regulation of catch bonds by biochemical factors, 

our results showed that biophysical factors (e.g., force loading rates) could also change 

the catch bonds’ behavior. That is, as loading rates increased, L-selectin-PSGL-1’s catch 

bonds gradually shifted to lower force and were completely converted to slip bonds once 

force loading rate increased to 104 pN/s. However, catch bonds in L-selectin-6-sulfo-sLex 

interactions were not changed by these increased loading rates. The mechanism of force 

loading rating regulation on catch bonds still remains elusive. More deep analysis and 

experiments are needed to reveal the mechanism. 

The BFP was also used to characterize force-dependent lifetimes of LFA-1-ICAM-1 

interactions. It has been hypothesized that catch bonds might also exist in 

LFA-1-ICAM-1 bonds due to the multiple affinity states of LFA-1’s ligand binding 
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domain ( A domain). The experiments on the bond lifetimes between ICAM-1 and 

LFA-1 expressed on Jurkat cells showed that LFA-1/ICAM-1 bonds indeed behaved as 

catch bonds. As a control, the lifetimes of LFA-1 and anti-LFA-1 mAb (KIM127) showed 

slip bonds. Lifetime distributions of catch bonds revealed a two-state transition, while 

those of slip bonds did not. More importantly, LFA-1-ICAM-1’s catch bonds were 

abolished by the binding of the small allosteric molecule, XVA143, to LFA-1 and 

converted to slip bonds. This abolishment provided a structural mechanism for catch 

bonds in LFA-1-ICAM-1 interactions, that is, the downward movement of 7 helix in A 

domain adjusted the MIDAS in A domain to a high affinity state by mechanical forces; 

such movement may prolong bond lifetimes in lower force regimes.  

Finally, the BFP was applied to dynamically probe the global conformational 

changes of LFA-1 and to characterize force-regulated transitions among different 

conformational states on a living cell. Our results showed that dynamic transitions of 

LFA-1 between extended and bent conformations were probed on living cells by the 

measurement of force-independent distance changes of the BFP probe beads, by 

examining the frequencies with which these changes occur (they were modulated by 

cations, small allosteric molecule, XVA143, and different antibodies( i.e., KIM127 and 

MEM83)), and by mechanical analysis of LFA-1-ICAM-1 complexes in the above 

conditions. The observed average distance change of LFA-1’s extensions was about 

18nm, while that of the contraction was only about 14nm.  Finally, our results showed 

that forces could facilitate extension but they slow down contraction of LFA-1. The 

observed transition time of extension was <=0.1s, while that of contraction was >0.2s.  

In summary, our observations here are the first in-situ evidence to demonstrate how 

integrins dynamically transit different conformations and how force regulates these 

transitions.   
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CHAPTER 1  

OBJECTIVES 

The overall objective of this study was to characterize the kinetic and mechanical 

properties of selectins-ligands as well as LFA-1-ICAM-1 interactions, and to understand 

how their molecular structures regulate these kinetic and mechanical properties. A 

bio-membrane force probe (BFP) was implemented and a new thermal fluctuation assay 

was developed to estimate two dimensional kinetics (2D kinetics) between single 

receptors and ligands anchored on opposing surfaces. Kinetic and mechanical 

measurements combined with various statistical analyses were applied to examine 

force-dependent bond lifetimes and protein conformational changes.   

 

1.1 Specific aim 1: to implement a bio-membrane force probe (BFP) and 

characterize its capacity to study specific interactions between receptors and ligands 

The BFP, an ingenious instrument invented by Dr.Evans, is a very advanced and 

sensitive technique to probe surface anchored receptor and ligand interactions. It requires 

very stable and friendly designs of hardware and software systems as well as rigorous 

tests and characterization. The following sub-aims were used to fulfill specific aim 1.   

1.1a. Implementation of the BFP, essentially adapted from the latest version of the BFP in 

Dr.Evans’ lab. This implementation process mainly includes hardware designs and 
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assembly of the mechanical system, electrical system and optical system, development of 

several software programs with user-friendly human interfaces for complicated data 

analysis, and critical dimensional measurements for calculating the BFP’s spring 

constant.  

1.1b. Characterization of the spatial and temporal precision of the BFP for estimating its 

capacity to measure receptor and ligand interactions at the single molecule level.  

1.1c. Calibration of the BFP spring constants using the equipartition theorem and motion 

blur corrections to evaluate the accuracy of the spring constant estimation.  

 

1.2 Specific aim 2: to develop a thermal fluctuation assay to monitor receptor-ligand 

interactions between two opposing surfaces. 

Surface anchored receptor-ligand interactions are mediated by their two dimensional 

(2D) kinetics, association rates (on-rates) and dissociation rates (off-rates). To date, few 

assays have been published to estimate the 2D on-rates.  But these assays are too 

complicated to estimate 2D on-rates with very large uncertainties. Thus, in this specific 

aim, we took advantage of the low stiffness of the BFP force probe to develop a new 

assay, using the thermal fluctuation changes of the force probe’s position, to detect bond 

formation and dissociation between surface anchored selectins and their ligands.  This 

development included the following sub-aims: 

1.2a. Characterization of the thermal fluctuations of the BFP force probe; 

1.2b. Validation of the BFP‘s ability to report bond formation and dissociation 

respectively; 

1.2c. Measurement of the 2D kinetics of selectin-ligand interactions using this new 
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thermal fluctuation assay. Waiting times between two consecutive bond formations and 

lifetimes of formed bonds were measured based on the thermal fluctuation changes. 2D 

on-rates and off-rates were then estimated from these waiting times and lifetimes by 

kinetic models of second order irreversible association and first order irreversible 

dissociation respectively. 

1.2d. Comparison of 2D kinetics measurements between the thermal fluctuation assay 

and the adhesion frequency assay. 

 

1.3 Specific aim 3: to functionally study the force and force history dependent 

lifetimes of selectins-ligand interactions. 

“Catch bonds”, a counter intuitive phenomenon of force prolonged lifetimes, were 

first observed in P-selectin-PSGL-1 interactions. In the following years, this unusual 

behavior was reported in many other molecular interactions, such as L-selectin/ligand and 

GPIb/VWF interactions. However, the structural mechanism of regulating “catch bonds” 

in molecular structures still remains elusive. Based on the structural differences of the 

interdomain hinge between crystal structures of P-selectin and L-selectin , Lou et al. 

proposed a sliding rebinding model to explain the structural basis of catch bonds. To test 

this model and to investigate the force and force history dependence of selectin-ligand 

interactions, the following sub-aims were used.  

1.3a. BFP investigation of the effect of the hinge mutation (L-selectinN138G) on the 

force-dependent lifetimes of selectin-ligand interactions. Based on the sliding rebinding 

model, this N138G mutation should slow the dissociation in the catch bond regimes due 

to its effect on increasing the flexibility of the lectin domain.  
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1.3b. BFP investigation of tri-phasic force-dependent lifetimes of P-,E- and L-selectin 

and ligands interactions. Two factors motivate this investigation. First, the sliding 

rebinding model predicted a slip bond regime should exist in very low force regime. 

Second, discrepancies existed between published zero-force off-rates from SPR 

measurments and from the extrapolation of catch bonds of selectin-ligand interactions.  

We hypothesized that another slip bond should exist in the very low force regime where 

previous the AFM and the BFP experiments had not measured.  

1.3c. Characterization of force-history dependent lifetimes of L-selectin/ligand 

interactions. Not only could biochemical mutation affect catch bonds, it was also 

hypothesized that biophysical factors, such as force and force history, could do so as well.  

 

1.4 Specific aim 4: to characterize the force-dependent dissociation of 

LFA-1/ICAM-1 interaction on a living cell.  

Many published works have been already suggested the potential existence of catch 

bonds in integrin/ligand interactions. However, previous DFS studies failed to reveal the 

catch bonds in integrin/ligand interactions due to their incorrect assumptions. Based on 

the published crystal structures of the A domain and other published experimental 

results, we hypothesized that the downward movement of the 7 helix in the A domain 

adjusting the metal ion dependent binding site (MIDAS) in the A domain to a high 

affinity state by mechanical forces may prolong bond lifetimes in lower force regimes. 

Thus, we used the BFP to measure force-dependent bond lifetimes to investigate this 

hypothesis by the following steps.  
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1.4a. Characterization of the force-dependent lifetimes of LFA-1/ICAM-1 interactions on 

a living Jurkat cell. It was hypothesized that catch bonds existed in this interaction.  

1.4b. Characterization of the force-dependent lifetimes of the interactions between 

KIM127 (anti-LFA-1 mAbs) and LFA-1 integrins. It was hypothesized that the 

force-dependent dissociation of this interaction should behave as slip bonds.  

1.4c. Characterization of force-dependent lifetimes of LFA-1/ICAM-1 interactions upon 

XVA143’s binding to LFA-1. We hypothesized that XVA143’s binding abolished catch 

bonds in LFA-1/ICAM-1 interactions, as this binding blocked the downward movement 

of the 7 helix so that it locked the A domain in close and low affinity conformation.  

1.4d. Analysis of lifetime distributions in the catch bonds regime in LFA-1-ICAM-1 

interactions and the slip bonds regimes in KIM127-LFA-1 interactions as well as in 

LFA-1-ICAM-1 interactions upon XVA143’s binding. It was hypothesized that two 

binding states may exist in catch bonds while only one state may exist in slip bonds.  

 

1.5 Specific aim 5: to probe force-regulated dynamic global conformational change 

of LFA-1 integrin on a living cell.  

Switch-blade global conformational changes of integrins have been observed in 

many different integrins by negatively stained EM images. However, these observation 

were all static and at stress-free conditions. The dynamic properties of these global 

conformational changes were still not very clear. How mechanical force regulated this 

dynamic transition also remains elusive. Here, the BFP was used to probe this large scale 

global conformational change on a living Jurkat cell. The following sub-aims were 
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carried out for the first time to reveal dynamic transition of LFA-1 integrins between 

different conformational states.  

1.5a Observation of two unusual movements (upward and downward movements) of 

probe beads after the PZT stopped. It was hypothesized that these upward and downward 

movements corresponded to LFA-1’s extension and contraction respectively.  

1.5b Characterization of upward and downward movements of probe beads to support the 

hypothesis. The distribution of the distance changes of these movements and the force 

regulation of their distributions were investigated.  

1.5c Characterization of the occurrence frequency of these upward and downward 

movements of probe beads to support the hypothesis. Occurrence frequencies measured 

at different metal ion conditions were characterized, as different metal ions should have 

different effects on LFA-1 global conformations.  

1.5d Characterization of the effect of XVA143’s binding to LFA-1 on the two unusual 

movements. Since XVA143 could extend LFA-1, the occurrence frequency of moving up 

and moving down events should be different from that at XVA143 free condition.  As 

well, XVA143-doses dependent occurrence frequencies were also characterized to 

support our main hypothesis.  

1.5e Characterization of the effects of different anti-LFA-1 antibodies’ binding to LFA-1 

on the occurrence frequencies of upward and downward movements. Based on the known 

epitopes of KIM127 and MEM83 on LFA-1, it was hypothesized that with KIM127 

coated probe beads it would be harder to observe moving up and moving down events, 

while with MEM83 coated probe beads we would be able to detect unusual movements.  

1.5f Mechanical analysis on LFA-1-ICAM-1 and LFA-1-KIM127 molecular complexes 
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at different conditions (different metal ions or different doses of XVA143) as well as in 

the cases when upward and downward movements occurred.  

1.5g Characterization of force-regulated global conformational changes of LFA-1. 

Switching times and times to switch were characterized. 
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CHAPTER 2  

BACKGROUND 

2.1 Cell adhesion and cell adhesion molecules (CAMs) 

 include selectins, integrins, 

cadherins and members of the immunoglobin superfamily (IgSF). The process of 

receptor-ligand mediated cell adhesions is a dynamic process, which can be regulated by 

many intracellular and/or extracellular factors, such as affinity of intracellular or 

extracellular biological activating signals or mechanical stress. All these factors can 

regulate the binding affinity of a receptor to its ligand or the densities of receptor and 

ligand locally or they can globally mediate cell’s adhesiveness to other cells or ECM. 

Thus, adhesion molecules not only stick a cell to a right location, but also form physical 
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linkages between the extracellular environment and the internal structures of cells and 

transmit important biological and mechanical signals bi-directionally across the cell 

membrane.  

The leukocyte trafficking cascade has six steps that are mediated by several different 

receptor-ligand interactions.  Since the typical leukocyte trafficking cascade of three 

steps, rolling, activation and arrest, was proposed in 1994 [1], it has been updated to 

seven steps supported by numerous published works in this field [2]. These seven steps 

include capture (or tethering), slow rolling, adhesion strengthening and spreading, 

intravascular crawling, and paracellular or transcellular transmigration (Figure 2-1) [2]. 

The selectin family mainly mediates the first two steps, tethering and slow rolling, while 

the integrin family ( L 2, 4 1, M 2, etc) mediates the other steps. 
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Figure 2-1  Leukocyte trafficking cascade [2]. 

 

2.1.1 Selectins and their ligands 
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Crystal structures of the lectin and EGF domains of P- 

and E-selectin have been published [7, 8]. The ligand-binding region is at the top of the 

lectin domain opposite to where the EGF domain is attached [8]. This region includes a 

Ca2+-coordination site that is shared with the fucose in sialyl Lewis x (sLex, 

NeuAc 2-3Gal 1-4[Fuc 1-3]GlcNAc 1-R), a capping structure on glycans of selectin 

ligands. The lectin domain forms other contacts with sialic acid and galactose and with 

sulfated components of some glycoproteins. P- and L-selectin bind to the N-terminal 

region of the leukocyte mucin P-selectin glycoprotein ligand-1 (PSGL-1) through 

cooperative interactions with sLex capping a core 2 O-glycan and with adjacent sulfated 

tyrosines and other amino acids [8-10]. L-selectin also binds to peripheral node addressin, 

a group of mucins on high endothelial venules of lymph nodes. The major binding 

determinant on the O-glycans of these mucins is 6-sulfo-sLex, a form of sLex with a 

sulfate ester attached to the C-6 position of GlcNAc [11]. 
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Figure 2-2. Schematic molecular structures of three selectins. 

2.1.2 Integrins and their ligands 

Integrin Family 

Integrins are a large family of cell trans-membrane receptors that play important 

roles in mediating cell-ECM and cell-cell adhesion, cell migration and cell differentiation. 

To date, at least 18 different  subunits and 8  subunits have been identified in 

vertebrates to form at least 24 heterodimers (Figure 2-3)[12, 13]. Half of integrins contain 

A domain (e.g., L 2) which is the only ligand binding domain, while the other half 

lacks A domains (e.g., 4 1).   
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Figure 2-3. Integrin Family. Integrin  and  subunits form 24 heterodimers that recognize 

distinct but overlapping ligands. Half of the  subunits contain A domains (asterisked) [13, 14]. 

This figure was adapted from ref.[13] 

 
 

a L 2 (CD11a/CD18) is also known as lymphocyte function-associated antigen-1 or 

LFA-1 [4].  L 2, together with M 2 (CD11b/CD18, Mac-1), , X 2 (CD11c/CD18, 

P150,95), and D 2 (CD11d/CD18) constitute 2 integrin family, also called leukocyte 

integrins (Figure 2-3)[13]. All of 2 integrins contain A domain, the only ligand binding 

domain. This 2 integrin family mainly mediated leukocyte’s functions in many 

physiological processes, such as leukocyte trafficking and immunological synapse 

formation during antigen  T lymphocyte.  The discovery of the genetic 

basis of an inherited disease called leukocyte adhesion deficiency (LAD) syndrome, 

which manifests as defect in leukocyte adhesion and is caused by the lack of expression 

of 2 integrins on the cell surface[13].  
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Architecture of the L 2 integrin structure 

LFA-1 is a heterodimeric glycoprotein with multiple domains. It comprises two 

non-covalently-associated type-I transmembrane glycoprotein  subunit (~120–180 kDa) 

and  subunit (~90-120 kDa). Each subunit contains a large extracellular domain, a single 

transmembrane domain and a short cytoplasmic tail (Figure 2-4). The N-terminal portions 

of each subunit combine to form a globular ligand-binding “head” connected to the 

membrane by a longstalk (~170Å).  

  

 

Figure 2-4. Integrin architecture. A)  Organization of domains within the primary structure. 

Some  subunits contain an A domain inserted in the position denoted by the broken lines. 

Cysteines and disulphide bonds are shown as lines below the stick figures. Red and blue asterisk 

denote Ca2+- and Mn2+- binding sites, respectively.  B) Crystal structures of v 3[15] adapted 

from [16] C)  Arrangement of domains within the three-dimensional crystal structure of 

v 3[15], with an A domain added. Each domain is color-coded as in Figure 2-4A. -TD,  tail 

domain; I-EGF, integrin-epidermal growth factor domain; PSI, plexin/S.E.M.aphoring/integrin 

[14]. (A) and (C) are adapted from ref.[14].  
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Ligands of LFA-1 ( L 2) integrin 

Physiological ligands of LFA-1 include intercellular adhesion molecule (ICAM)-1,-2, 

and -3 [6, 7]. Two additional ligands, ICAM-4 and -5 have also been shown to bind 

specifically to LFA-1, but their physiological function is currently not clear [6, 8]. 

ICAM-1, -2, and -3 are structurally related glycoproteins that belong to the 

immunoglobulin superfamily (IgSF). Among them, ICAM-1 (CD54) is the major ligand 

for L 2. Its binding to L 2 mediates most biological functions of leukocytes.  

ICAM-1, a Type-I transmembrane glycoprotein of 85–110 KDa, composed of five 

IgSF domains (D1-5), a trans-membrane domain, and a short cytoplasmic tail that binds 

actin (Figure 2-5A) [17]. It is expressed at relatively low basal levels on leukocytes and 

several other cell types, such as endothelial cells, but the expression is induced or greatly 

increased by various pro-inflammatory cytokines, phorbol esters or even shear stress [10, 

11].  ICAM-1 is important for leukocyte trafficking and the development of specific 

immunological synapse in antigen recognition of T lymphocyte [12, 18].  Among the 

five Ig-like domains of ICAM-1, only the structure of domains 1-2 has been solved in 

X-ray crystallography (Figure 2-5B). The most important residue in ICAM-1 for binding 

to L 2 is Glu-34, which has been shown to ligate the Mg2+ in the MIDAS of the I 

domain[19](Figure 2-5B).  
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Figure 2-5. ICAM-1 Structure and binding to integrin. (A) Schematic of ICAM-1 structure. 

L 2 binding site is indicated by the green star. (B) Model of ICAM-1’s binding to L A 

domain[16]. 

 
 

2.1.3 Regulation of LFA-1 activity 

LFA-1 integrin usually keeps in an inactive state on leukocyte surfaces. In inactive 

state, it is not very adhesive to its ligand and does not transmit downstream signals into 

the leukocyte. Its activity and adhesiveness need both local and global spatial and 

temporal regulations, which are very important for biological functions of LFA-1. During 

leukocyte trafficking in blood vessel, it is critical that LFA-1 remain inactive and 

non-adhesive to ICAM-1 on the surfaces to avoid unnecessary inflammation response. As 

well, when lymphocyte migrate inside of lymph node, LFA-1’s adhesiveness needs to be 

shut down to help lymphocyte searching for cognate antigen. Once receiving correct 

signals (e.g., mechanical force or inside out signaling from chemokines receptors), 

LFA-1 can be [20] rapidly activated to high affinity state to allow proper immune 
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functions. Defects in either have pathological consequences and thereafter caused 

diseases. Therefore, the regulation of LFA-1 activity has become therapeutic targets for 

inflammatory diseases, autoimmune diseases, and cancer [32].  

Even though within these years tremendous efforts have been made for studying 

LFA-1, the mechanism of how LFA-1’s activity is regulated still remains elusive. But it 

is believed that molecular conformation or redistribution of the molecule in cell 

membrane seems most likely contributing to regulate LFA-1’s affinity or avidity 

respectively. The affinity change is resulted by the conformation changes in a single 

molecule, while the avidity changes by LFA-1’s redistribution on cell surfaces. 

Dynamic regulation of LFA-1 activity requires integration of signals initiated by a 

wide range of biological or physical stimuli. Two main signaling pathways for integrins 

have been identified, termed “inside-out” and “outside-in” signaling pathways. 

“Inside-out” signaling transduction happens from the inside to the outside of cell, and 

activating signal is initiated by other receptors, such as T-cell receptor or G protein 

coupled receptor (GPCR)[18], and then transmitted through several adaptor proteins (e.g., 

talin) along cytoskeleton to the cytoplasmic tails of LFA-1 integrins. After receiving 

activating signals on its tails, LFA-1 separates its transmembrane and intracellular 

regions [21] and rearranges its extra-cellular domains to adopt high affinity 

conformations to its ligands [12]. In contrast, outside-in signaling is induced by ligand 

binding outside the cell membrane and then transmitted into the cell. Since ICAM-1 

exists in multivalent manner, LFA-1’s ligation to it may result in clustering of LFA-1 on 

cell surface, and thus enable the recruitment of signaling molecules to LFA-1’s 

cytoplasmic tail to initiate downstream signaling events [20]. Outside-in signals could 
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also induce global conformational changes of LFA-1 and separation of LFA-1’s tails 

followed by a series of downstream signaling.  

 

2.1.4 Conformational changes of LFA-1 integrin 

Conformational changes in A domain 

Isolated A domain exists in two conformations, closed and open conformations 

(Figure 2-6), which equate respectively with the low- and high- affinity states of ligand 

binding [22-26]. All three MIDAS loops rearrange as the domain switches from the close 

to the open state (Figure 2.5). This appears to be driven by a major restructuring of the 

6- 7 loop and is associated with a 10Å downward movement of the 7 helix. The 

rearranged contacts of the 6- 7 loop with the hydrophobic core lead to a 2Å inward pull 

of 1 helix, resulting in the open MIDAS configuration.  The hydrophobic core plays a 

critical role on locking the 6- 7 loop at different states. The axial downward movement 

of the 7 helix allosterically changes the conformation of MIDAS. Some mutations that 

stabilize the closed or open conformation have exhibited constitutively low or high 

affinity for ligand, respectively [23, 27-31].  Mechanical force could also stabilize 7 

helix in high affinity position after pulling the 7 helix down so that force potentially 

could increase bond lifetime (so-called “catch bonds”) [32]. But, to date,  “catch bonds” 

have not been observed in integrin/ligand interactions. 
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Figure 2-6. Ribbon diagram of the crystal structures of open and closed A domain from 

integrin M.[33].  

 
 

Global conformational changes of LFA-1 integrin 

In addition to the conformational changes in A domain, LFA-1 has larger scale 

global conformational changes like a switch-blade. Since the crystal structures of V 3 

extracellular segment alone[15] and with RGD peptide[34] provided us a surprising 

feature of knee-bent V shape conformation of V 3 integrin, subsequent research has 

confirmed that this conformation exists naturally in V 3 integrin as well as in other 

integrins: 1)  recombinant integrin image visualized by electron microscopy (EM) in the 

presence of Ca2+ (Figure 2-7 A) [35, 36] revealed a bent form, consistent with the bent 

crystal structure (Figure 2-7 D); 2) exposure of epitopes which are buried in the genu or 

knee region[37] also showed the bent form; 3) observation between integrin bearing 

fluorescent ligands and lipid bilayers on cell surface by FRET [38] suggests that ligand 

binding site is within ~100Å of the lipid bilayers, consistent with the observed bent 
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structure. Further, the extended conformation was also observed under ligand binding 

condition or Mn2+ by EM[39] and FRET[38, 40]. But whether such bent conformation 

representing the low affinity state is still debatable, since another EM study of V 3 and 

its ligand complex [36] published a different view that is a bent conformation of V 3 

can still stably bind to its ligand.  

It is well believed that at least three different conformational states of integrins 

co-exist on cell surfaces but with different distributions[39] at different stimulating 

conditions. These three different confirmations are termed bent close headpiece 

conformation (Figure 2-7A and D), extended form with close headpiece (intermediate 

states) (Figure 2-7B and E), and extended form with open headpiece (Figure 2-7 C , F 

and G).  Integrins can switch between any of these two conformations upon binding to 

different stimuli. For example, when small allosteric molecule (XVA143) binds to LFA-1  

on the MIDAS of A domain, it can induce about 20nm extension in LFA-1 and make the 

A domain adopts high affinity conformation by swinging out the hybrid domain. But 

XVA143’s binding also blocks the 7 helix downward movement and binding to A 

domain so that it locks the A domain in close and low-affinity conformations (Figure 

2-7 F) [14]. Based to EM images of L 2 and X 2 and model structures of L 2, 

L 2 extends about 20nm from bent to extended conformation.  

To date, most of published works about single integrin global conformational 

changes are static, and all experiments were done in stress free condition. Even though it 

has been know that force could enhance LFA-1’s adhesiveness upon chemokine’s 

activation[18, 41], no any publish work has ever shown that how force regulates this 

large scale global conformational changes and whether force can strengthen the 
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LFA-1/ICAM-1 interactions and how. As well, the dynamic properties of these 

conformational changes still remain unknown.  

 

 

 

Figure 2-7. Global and local integrin conformational states [14, 15, 29, 39, 42]. A) EM image 

of negatively stained average projections of clasped X 2, showing bent conformation with 

closed headpiece [42]. B) EM image of negatively stained average projections of clasped X 2 

integrin in the presence of activating antibody, showing extended conformation with closed 

headpiece[42]; C) EM image of negatively stained average projections of unclasped X 2 

integrin in the presence of activating antibody, showing extended conformation with open 

headpiece[42]; D) Model structure of bent L 2 with the close headpiece[15]. E) Model structure 

of the L 2 intermediate structure with close headpiece and extended conformation. The binding 

site of small allosteric molecule(XVA143) is drawn as three red balls[14]. F) Model structure of 

the L 2 extended conformation with open headpiece upon ICAM-1 binding.  
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2.2 Receptor-ligand binding kinetics  

2.2.1 General receptor-ligand kinetics 

For a receptor-ligand interaction, we usually use standard chemical kinetics 

framework to model it. For example, the following simple reversible reaction scheme 

models binding between a free receptor R and a free ligand L to form a bond B:  

  
R + L

k
f

k
r

B ,        Equation 2-1  

where kf and kr are the respective on-rate (forward rate) and off-rate (reverse rate) 

constants. These two kinetic rate constants regulate cell adhesion, since these parameters 

describe how rapidly receptor and ligand associates and how long remain bound [67]. 

The time rate of the change of the bond concentration [B] is dependent on these two rate 

constants as well as the free receptor concentration [R] and the free ligand concentration 

[L]. Their relation is:  

,                    Equation 2-2  

At equilibrium, the concentration of B is constant, as the amount of dissociation of B to R 

and L is equal to the amount of the newly formed B from the association of R and L, that 

is, d[B]/dt = 0. Therefore, the dissociation constant  

,                        Equation 2-3  

The affinity constant is KA, KA=1/KD. 
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2.2.2 Force-regulated off-rate 

In cell adhesion, receptor-ligand interactions behave more complicated than previous 

described common chemical reactions. Unlike the constant off-rates in chemical reactions, 

these rates could be regulated by many factors (e.g., forces) in the receptor ligand 

interactions during cell adhesions process. To date, two types of force regulation of 

dissociation rates have been identified; one is called slip bonds, in which force shortens 

bond lifetimes, and the other one is called catch bonds, in which force prolongs bond 

lifetimes[43, 44].  

Slip bond 

Slip bonds, a phenomenological term to describe force-regulated receptor-ligand 

dissociation rate, were first postulated by George Bell in 1978 [43]. His model indicated 

that the off-rate of receptor-ligand interactions was exponentially related to the force 

exerted on the receptor-ligand bond. From the viewpoint of the energy landscape, 
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the 

work done on the bond

Catch bonds 

Unlike slip bonds, catch bonds, a counter-intuitive phenomenon, described that 

lifetimes increase as applied force increases. Dembo et al. first introduced this concept[44] 

in 1988, but catch bonds were first observed in P-selectin and PSGL-1 interactions in 

2003 by Marshall et al.[47]. So far catch bonds have been reported in the interactions of 

selecint/ligand[47, 48], glycoprotein Ib (GPIb) and von Willebrand factor (VWF) [49], 

actin and myosin [50] and FimH receptor and mannose [51]. Essentially catch bonds are 

thought to closely relate to the molecular structures of the receptor and ligands. Some 

structural models have been proposed to explained corresponding catch bonds [52-54]. 

From the biophysical point of view, two path ways model has been proposed by Evans et 

al. to explained catch bonds in P-selectin/PSGL-1[55] and FimH and manose bonds[54]. 

Whether catch bonds also exist in other molecule interactions, such as interactions 

between integrins and their ligand, remains unclear and needs more experimental works 
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to verify.  

2.2.3 Forward association rate (2D-on-rate) of surface-anchored molecules 

Forward association rates included two types, 2 dimensions (2D) and 3 dimensions 

(3D). 3D forward rates describe the association rate of molecules in solution without any 

restrictions of any surface. Unlike 3D forward rate, the 2D forward kinetic rate describes 

how fast two molecules that are surface-anchored can bind to each other to form a bond. 

Essentially, 2D forward rate are more relevant to cell adhesion molecules, because 

majority of cell adhesion molecules are expressed on the cell membrane.  

Many factors can regulated the 2D forward rate, such as the movements and 

mechanical properties of the surfaces where these molecules are anchored, density of 

molecules on the surfaces, distance and contact area between to two molecules, 

temperature, and intrinsic on-rate and flexibility of molecules, which is largely dependent 

on molecular structure, etc.  

Because of this complexity, so far very few assays have been developed to measure 

this important kinetic rate. Chesla et al. [56] developed a adhesion frequency assay to 

indirectly measure the 2D on-rate by measuring the binding affinity and off-rate of 

molecular interactions and then divided binding affinity by the off-rate to calculate the 

on-rate. Yago et.al [57]was trying to use flow chamber assay to characterize this on-rate 

by measuring the tethering rate of cells to a surface. But both methods are not very 

accurate and efficient to estimate the molecular association rate, because of two reasons: 

1) large uncertainty of the on-rates from adhesion frequency assay, as the on-rates is from 

the measured affinity and off-rate which were obtained from nonlinear fitting a 

complicated model; 2) too many factors lumped together in the flow chamber assay to 
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accurately estimate the on-rates[57, 58]. Thus, it is necessary to develop a new assay to 

easily characterize this 2D on-rate as it is very important for understanding bio-molecular 

interactions. 

 

2.3 Single molecule techniques and assays 

2.3.1 Single molecule techniques 

In the past two decades, with the fast development of science and technology, many 

advanced techniques have sprung out for scientists to study biomolecular interactions at 

single molecule level. All of these techniques utilized ultrasensitive probes: 1) the atomic 

force microscopy[47, 59] (AFM) where the force is sensed by detecting the deflection of 

a micro-fabricated cantilever; 2) the bio-membrane force probe (BFP) [45, 60-62], used 

in this thesis work, where the force is sensed by tracking axial movement of a glass bead 

that is glued the apex of a aspirated red blood cell; 3) optical tweezers [59, 63, 64] (OT), 

where the force is sensed by tracking the position of a bead trapped in a narrowly focused 

beam of laser light; 4) magnetic tweezers, where the force is sensed by tracking the 

position of a bead trapped by a magnetic field. Each of these force probe acts as an 

ultra-soft spring, the spring constant of which ranges from ~0.01pN/nm~1nN/nm. AFM’s 

spring constant is about 10pN/nm~1nN/nm, BFP’s is about 0.1~1pN/nm, while OT’s and 

MT’s are even softer than the BFP’s, <0.01pN/nm[45].  
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2.3.2 Experimental assays to measure kinetics of receptor-ligand interactions 

Adhesion frequency assay 

The adhesion frequency assay was originally developed by Chesla et al. in 1998[56] 

to characterize 2D kinetics of receptor-ligand interactions. In brief, Chesla et al. 

developed a model of the binding frequencies measured at different contact durations 

between surface-anchored receptor and ligand. This model is described as:  

,           Equation 2-5 

where Pa the adhesion frequency, Ac is the contact area and tc is the contact duration, mr 

and ml are receptor and ligand surface densities, respectively, AcKa is the binding affinity, 

and koff is the dissociation rates. kon can be calculated by Ka*koff.  

Equation 2-5 states that the likelihood of observing adhesion, Pa, depends on the time 

when the observation is made relative to the time when the contact is initiated, i.e., the 

contact duration, tc. If the adhesion frequency is measured over a range of contact 

durations, fitting Equation 2-5 to the measured Pa vs. tc binding curve then allows 

estimation of the 2D kinetic rates and binding affinity, provided that the receptor and 

ligand densities are measured from independent experiments. 
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Dynamic force spectroscopy (DFS) 

Dynamic force spectroscopy was firstly developed by Evans et al. in 1997 [65]. DFS 

measured rupture forces under various steady loading speeds. When bonds are pulled 

until rupture, koff  becomes a function of time as the force on the bond is equal to the 

loading rate(rf ) multiplied by time t.  The probability of remaining in a bound state is no 

longer a simple exponential, and it can be described as  

,           Equation 2-6            

The probability density for a bond to be ruptured by a force is then given by: 

,           Equation 2-7            

The peak rupture force is found when  .  If a Bell model relationship is 

used to describe the force dependence of koff, from Equation 2-7,  a relationship between 

peak rupture force and loading rate is found: 

,                  Equation 2-8 

The equation predicts a linear relationship between the most probable rupture force 

and log of the loading rate shown by Equation 2-8.  The Bell model parameters ( , 

and ) can be derived from fitting the peak rupture force versus log loading rate graph 

with a straight line.  Most likely the unbinding pathway consists of multiple energy 

barriers with different linear segments representing different energy barriers.  Each 

separate linear regime in the peak rupture force vs. the loge loading rate graph can be 

attributed to a separate set of Bell model parameters for that energy barrier.  This 
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method has been applied to a number of molecular interactions with most bonds being 

described by an energy landscape consisting of two energy barriers [66-68]. 

 

Flow Chamber Assay 

Flow chamber assay has been widely used to study receptor-ligand association 

and dissociation, especially for leukocyte adhesion molecules, such as selectins and 

integrins, as flow chamber environment mimics the blood vessel. Many groups [69, 70] 

have applied the constant force analysis to these experiments to measure the tethering 

lifetimes in order to determine the off-rate of selectins and integrins as a function of force.  

Most of reported off rates have been found to be dependent on force in a pattern followed 

by Bell model.. 

Additionally, a number of interesting observations have been made.  The shear 

stress could enhance leukocyte’s rolling and tethering which were mediated by 

selectin-ligand interactions [47, 48, 53].  As well, shear stress has been reported to 

greatly enhance L 2’s adhesiveness to ICAM-1[41].  Even though catch bonds have 

been reported to explain the shear threshold phenomenon and the enhancement of 

leukocyte’s rolling under shear, no clearly molecular mechanism to explain the share 

stress regulation on the enhancement of L 2’s adhesiveness.  

Flow chamber experiment is unable to directly and accurately control the binding 

event.  The BFP allows measurement of single bonds with direct control over the 

applied force, the duration of the contact, the contact force, and the approach and 

retraction velocities. The BFP directly measures the applied force and bond lifetimes.  
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The BFP will be utilized to characterize the selectin-ligand and L 2-ICAM-1 

interactions in a force range below the level used in flow chamber experiments. 
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CHAPTER 3  

MATERIALS AND METHODS 

 
 

3.1 Cells, Proteins and Small Molecules 

3.1.1 Cell isolation and culture 

Isolation of Human Red Blood Cell (RBC)  

Human RBCs were isolated from a drop of fresh whole blood via a finger prick. The 

RBCs were then washed three times with the carbonate/bi-carbonnate buffer (pH 8.4, 

~180 mOsm). In each wash, the centrifuging speed was 2000g for 30 seconds to 1 minute. 

Finally these washed RBCs were stored in the 100μl carbonate/bi-carbonate buffer for a 

few minutes for the following biotinylation of RBCs. 

Isolation of human neutrophils  

Human neutrophils were isolated from a drop of whole blood via a finger prick. The 

RBCs were lysed by brief hypotonic shock with 500μl of dH2O for 10 seconds. The 

solution of the lysis was then recovered to isotonic condition by adding 500μl of 1.7% 

NaCl. The left blood cells were spinned down and re-suspended in 40 μl of Hepes buffer 

(pH 7.4, ~300mOsm) with 1% human serum albumin (HSA, ZLB Plasma, Boca Raton, 

FL).  
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Culture of K562 cell line 

Human erythroleukemia cell line K562 stably transfected with WT LFA-1 integrin 

was a generous gift of Dr. Timothy Springer (Harvard Medical School, Boston, MA) [23, 

71]. The cells were cultured in RPMI with 10% fetal calf serum with L-glutamine (4mM) 

and penicillin/streptomycin (0.1mg/ml). Puromycin (4μg/ml) was used as a selection 

agent for K562 cells expressing LFA-1. Maximum cell densities were ~5x105/ml. 

Culture of Jurkat cell line 

Jurkat cell line was established from the peripheral blood of a 14 year old boy who 

had acute T cell leukemia[72] (American Type Culture Collection(ATCC), MA). The 

cells were cultured in RPMI with 10% fetal calf serum with L-glutamine (4mM) and 

penicillin/streptomycin (0.1mg/ml). Maximum cell densities were ~5x105/ml. 

 

3.1.2 Proteins, antibodies and small molecule antagonists 

Selectin- related reagents 

The following selectin-related reagents were all generously provided by Dr.Roger.P 

McEver.  L-selectin-Ig, L-selectin mutant-Ig (N138G) and P-selectin-Ig containing the 

lectin domain, EGF domain, and two or nine consensus repeats of human L- or P-selectin 

fused to the Fc portion of human IgG1 was expressed as described [73]. 6-sulfo-sLex has 

also been described[73]. Soluble recombinant monomeric PSGL-1 has also been 

described[73]. Soluble E-selectin has been described[74]. The blocking anti-L-selectin 
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mAb DREG56 and the blocking anit-P-selectin mAb PL-1 have been previously 

described[75, 76].  

The following fluoresce-conjugated monoclonal antibodies were used to measure the 

site densities of L-selectin-Ig, L-selectin-mutants-Ig and P-selectin-Ig that were coated on 

glass beads. The PE-labeled mouse-anti-human mAbs were purchased: anti-PSGL-1 mAb 

PL1 (Santa Cruz Biotechnology, Santa Cruz, CA), anti-L-selectin mAb DREG-56 

(eBioscience, San Diego, CA), and anti-P-selectin mAb AK-4 (eBioscience). Goat 

anti-human IgG polyclonal antibody was purchased from Chemicon International 

(Temecula, CA). 

 

Integrin-related reagents 

The human ICAM-1-Fc chimera was purchased from R&D Systems. Small molecule 

antagonists XVA143 was generously provided by Dr. Timothy Springer. The mAb 

MEM83 was from Abcam (Cambridge, MA) [77]. The mAb KIM127, kindly provided by 

M. Robinson (Celltech, Slough, U.K.), was used as a conformation reporting 

antibody[78]. 

 

3.2 Coupling biotins onto RBCs and proteins onto glass beads 

These covalent link protocols were kindly taught by Dr.Evan Evans and his lab 

members, Andrew Leung and Koji Kinoshita. 
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3.2.1 Coupling biotins onto RBCs 

Biotinylation of RBCs was used to provide strong linkage on the RBC to connect a 

streptavidin-coated glass bead. To biotinylated RBCs, a drop of whole blood via finger 

prick was washed 3 times (2000g, ~30 seconds) with carbonate/bi-carbonate buffer (pH 

8.4, ~180mOsm). 2~3mg of the hetero-bi-functional polymer of SGA-PEG-Biotin (MW 

~3500Da, JenKemUSA, TX) were measured and mixed with carbonate/bi-carbonate 

buffer to make a PEG polymer solution of 6mg/ml. To avoid hydrolyzing SGA functional 

group in the polymer (half-life of hydrolysis of the SGA, ~17minutes), after PEG 

polymer were diluted in buffer, 50 μl of polymer solution should be quickly taken out to  

be mixed with 3μl of packed RBC pellets and 847μl of carbonate/bi-carbonate buffer. 

This mixture was then incubated at room temperature for 30 minutes on a rotator. After 

the incubation, the RBCs were washed 2 times with carbonate/bi-carbonate, and then 

were washed once with Hepes buffer (pH 7.4, ~300mOsm). Finally the RBCs were 

re-suspended in 100μl of Hepes buffer (pH 7.4, ~300mOsm) with 0.1% BSA for the BFP 

experiments.  

 

3.2.2 Coupling proteins onto glass beads via PEG polymer linkage 

Step 1: Silanization of glass beads 

In order to covalently link proteins via PEG polymer onto glasses beads, glass beads had 

to be silanized.  First of all, glass bead’s surface was required to be modified from 

hydrophobic to hydrophilic in order to enhance protein’s coating ratio in the following 

steps. To do so, glass beads (5mg) were washed with a boiling liquid of H2O2 (30%) and 
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NH4OH (99%). Glass beads were then cooled down via washing with 50ml dH2O. These 

beads were then three more time with methanol (99%) and re-suspended in 100μl 

methanol (Sigma). After washing, these beads were incubated in a 50ml Cornical tube 

with 48.1ml methanol, 5ml acetic acid (99%), 1ml dH2O and 1.5ml MTPMS (United 

Chemicals) on a rotator. Having been incubated for 3 hours at RT, these beads were 

washed 3 times with methanol, and then re-suspended in 500μl methanol. This 500μl of 

beads solution was then divided into 20 glass vials for the following drying step. To dry 

these beads, each glass vial was exposed to blowing argon for less than 1 minute (try to 

make glass beads stick on the wall, not on the bottom of the glass vial). All these glass 

vials with beads were then placed in a pre-heated drying oven for 5 minutes. The 

temperature of the drying oven was set at 120 oC. Finally, all the glass vials were moved 

into a vacuumed desiccator for overnight cooling. This desiccators was covered a 

aluminum foil to prevent lights exposure.  

 

Step 2: Hetero-bifunctionalizing silanized beads 

After the silanization of glass beads, next step is to covalently link proteins onto 

glass beads via hetero-bifunctional PEG polymers, such as malimide-PEG3500-NHS 

polymers (MW ~3500Da, JenKemUSA, TX). Firstly, proteins, such as human IgG1 or 

ICAM-1, were covalently linked with the polymers. To do so, a certain amount of 

polymers and proteins were mixed with carbonate/bicarbonate buffer (pH ~8.5) and then 

incubated for ~30mins at RT. Usually the molar ratio of polymer to proteins was about 

10:1. But this ratio was adjusted to suitable coating site densities of proteins in order to 

make binding frequencies of single molecule experiments on the BFP less than ~20%. 
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After the incubation, certain amount silanized beads and PBS buffer (pH~6.8) were 

added into the mixture. This mixture were then Incubated for overnight at RT. During this 

incubation, the mixture were kept stirring. After the incubation, the mixture was washed 

with PBS buffer (pH~6.8) twice and hepes buffer (pH ~7.4, 150mOsm) once. Finally 

these protein-coated beads were re-suspended with hepes (pH ~7.4, 150mOsm).  

 

3.2.3 Coupling proteins onto glass beads via biotin-streptavidin’s bond 

Streptavidin-malimide (Sigma) were covalently linked on to silanized glass beads. 

Firstly, streptavidin-malimide solution (66.7uM) and silanized beads were mixed together 

with PBS buffer (pH~6.8) at RT, and then incubated on a rotator for overnight. During 

this incubation, the mixture was kept stirring in a 50ml conical tube which was mounted 

on a rotator. After the overnight incubation, the mixture was washed with PBS buffer 

(pH~6.8) twice and Hepes buffer (pH ~7.4, 150mOsm) once. Next, these protein-coated 

beads were re-suspended with Hepes (pH ~7.4, 150mOsm). Secondly, streptavinidated 

(S.A.) glass beads were incubated with biotinylated proteins (i.e., biotinylated PSGL-1, 

6-sulfo-sLex or sLex) for 1 hour at RT. Following this incubation, the beads was washed 

three times with Hepes buffer (pH~7.4). Finally, these beads was re-suspendered in 

Hepes buffer (pH~7.4).  

 

3.2.4 Coupling Fc-chimera proteins onto IgG coated glasses beads 

To prepare Ig-chimera proteins-coated beads, such as L-, P-selectin-Ig, and 

L-selectin-mutants-Ig,etc, IgG-coated beads (prepared in 3.2.1) were incubated with 
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Ig-chimera protein in hepes buffer (pH 7.4,~150 mOsm) at 4 °C for overnight. In the 

second day, these beads was washed with hepes for three times and then re-suspended in 

hepes buffer (pH~7.4, ~150 mOsm). 

 

3.3 Measurement of molecular site density  

3.3.1 Fluorescence staining 

Beads coupled with L-selectin/mutants, P-selectin, or PSGL-1 were respectively 

incubated with PE-labeled DREG-56, AK-4, or PL1 or irrelevant mouse IgG1 (isotype 

control) (eBiosciences, CA) for 30 min at RT. Normally, the incubating concentration of 

these primary mAbs was saturating concentrations (usually 10μg/ml of purified mAb or 

follow the manufacturer’s instruction). 

 

3.3.2 Data acquisition 

Site densities of samples were acquired by a BD LSR flowcytometer with FACS 

DiVa 3.1 software (BD Biosciences). Before running samples, standard beads were 

prepared and run through firstly for quantification of MESF (molecules of equivalent 

soluble fluorophore). To obtain the mean intensities of calibrated microbeads with five 

different molecular site densities, five 2D gates were created to gate on the histogram plot 

of fluorescene intensities vs. # of events. After completing the calibration procedure, the 

samples were run through the flow cytometer to measure the mean values of fluorescence. 

Generally, 5,000 events per sample were recorded. 
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3.3.3 Site density determination 

To determine the site densities of samples, the measured fluorescence intensities 

were compared to standard calibration beads (BD Quantibrite™ PE Beads, BD 

Biosciences). The recorded five intensities of fluorescence of calibration beads were 

plotted as a function of numbers of PE fluorofore from BD biosciences. Linear fitting this 

plot generated the value of the slope, which was used to calculate the numbers of the 

molecules on samples. The site density was calculated as following equation: 

      Equation 3-1 

 

3.4 The BFP system 

 BFP’s setup is described in detail in chapter 4. In brief, the instrument of the BFP 

system was built up on a biological inverted microscope with 40X/0.75 objective lens 

(Zeiss). The BFP uses swollen biotinylated human RBC as a force sensor. A probe bead 

coated with streptavidin and ligand proteins was bonded onto the apex of the aspirated 

RBC by a micromanipulator. The adhesion force was determined by the deformation and 

the spring constant of RBC. The deformation of the RBC was from the axial movement 

of the probe bead tracked by a high-speed camera (SensiCam, Cooke).  The spring 

constant of the BFP was estimated by Evans’ spring constant model. Basically, this spring 

constant was dependent on radius of the probe pipette, the RBC and the contact area 

between probe bead and the RBC. The target bead or cell was aspirated on the target 

pipette. This target pipette’s the steady and accurate movement was driven by a PZT 
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controlled by a computer.  

 

3.4 Measurement of binding frequency  

To measure binding frequency, the target bead or cell were driven by the PZT to 

touch the probe bead and then retract away. Upon retraction, an adhesion was detected 

mechanically by the observation of the rupture force events. This contact-retraction cycle 

was repeated 100 times to generate a random sequence of binary adhesion scores (1 for 

adhesion and 0 for no adhesion). An adhesion frequency was calculated from the sum of 

the adhesion scores divided by the number of repeated tests in a series. Usually these 

binding frequency measurements were repeated on 3-5 pairs of probe beads and target 

beads/cells to obtain the average adhesion frequency. 

 

3.5 Measurement of bond lifetimes 

The dissociation kinetics of receptor and ligand interactions were characterized by 

measuring the bond lifetime under a given force using the BFP.  A lifetime experiment 

consisted of the following steps.  A receptor coated bead or a receptor expressed cell 

aspirated by the target pipette was brought to approach to and then contact with ligand 

coated probe bead by the program-controlled PZT.  The impingement of the BFP 

signified the contact.  The compressive force and contact duration were controlled by 

software program.  At the end of the contact duration, the PZT retracted target bead or 

cell away from the probe bead by a fixed distance.  An axial deformation of the RBC 

toward the target pipette signified an adhesion.  This deformation was detected by the 
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high speed camera. In the presence of an adhesion, the fixed distance imparted a constant 

mean force on the bond.  While in the absence of an adhesion, this fixed distance did not 

generate a binding force on the molecular bond. Since the thermal fluctuation of the BFP 

(±1-2pN), the mean force was determined from the difference between the two mean 

positions of the edge between the RBC and the probe bead (Figure 3-1).  The bond 

lifetime measurement was recorded from the moment the PZT retraction stopped until the 

target bead or cell dissociated from the probe. This cycle was repeated many times to 

obtain a collection of adhesion lifetimes.  The holding force was varied over a range to 

forces.  At each force, multiple measurements were made to generate a collection of 

lifetimes. 

 

 

Figure 3-1.  Plots of raw BFP lifetime data. (A) Plot of force vs. time in the absence of force. 

(B) Plot of force vs. time in the presence of force.  
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CHAPTER 4  

INSTRUMENTATION AND CHARACTERIZATION  

OF THE BFP 

 

4.1 Instruction 

The BFP, an extremely smart invention for single molecule study, was originally 

invented by Evans et al. in 1995[61]. Compared to other advanced techniques (AFM, OT) 

of sensing forces at single molecule level, the BFP is very unique as it uses a red blood 

cell aspirated by micropipette as a very soft force sensor. This soft spring enables itself to 

probe very weak biomolecular interactions at the pico-newton (pN,10-12 Newton ) level. 

It can also be adjusted from 0.1pN/nm~1pN/nm so that the BFP can probe very wide 

range of force from 1pN to 1000pN as well as very wide range of force loading rates 

from 10 pN/s to 104 pN/s. These two force-related features are very useful to study 

various receptor-ligand interactions, for example, to probe their chemical energy 

landscapes [46]. Moreover, with its very soft spring, we can utilize BFP’s thermal 

fluctuation to study molecular association and dissociation and to measure the kinetic 

parameters.  As the amplitude of the fluctuation reduces very more than stiffer sensor, 

such as AFM, the BFP is more suitable to detect molecular bond formation. Based on this 

idea, a thermal fluctuation assay was developed and was discussed in detail in the next 

chapter. the BFP could be utilized directly study the membrane proteins that are directly 

expressed on cells, for instance, Evans et al. used it to directly study the membrane tether 
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formation and interactions between cytoplasmic domains of membrane proteins and 

adaptor proteins or cytoskeleton [60].  

4.2 The BFP System 

With very kind and important technical support and help from Dr.Evans and his lab 

members (Andrew Leung, Dr.Koji Kinoshita), we duplicated a latest version of the BFP 

in Dr.Evans’ lab in a short time. The BFP consisted of hardware system (optical, 

mechanical and electrical components) and a software system developed with Labview. 

The optical system was mainly to magnify the sample by ~200X. The mechanical 

hardware system was to steadily hold the micropipette on the microscope, manually and 

coarsely adjust the micropipettes’ positions, and, most importantly, isolate vibration from 

the environment. The electrical system was the most important part of the BFP. It 

consisted of one high speed camera for tracking probe bead’s movement, one normal 

speed camera for measuring required dimensions, four PZTs and their controllers, and a 

fast computer that run control program. Software program mainly analyzed the grabbed 

images from the high speed camera to generate, store and analyze the data, and feedback 

control the PZT movement. Each system was described in detail in the following parts.   

 

4.2.2 The hardware system of the BFP 

BFP’s hardware system was the key component, as it needed to provide a stable but 

convenient stage to run the force measurement experiment at single molecular level. 

Hardware system consisted of optical, mechanical and electrical components (Figure 4-1). 

Optical components were comprised of an inverted biological microscope (Zeiss Axiovert 
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100) with 40X/NA0.75 objective lens and a condenser with a top lens, the maximum 

numerical aperture of which is 0.8. Two video tubes were used to mount high speed 

camera and normal speed camera onto the camera ports on the microscope and provided 

4X magnifications. The magnifications of these two video tubes were from the 

combination of a 0.25X tube lens with 16X eyepieces. The light source was a mercury 

lamp, which provided abundant light for high speed camera’s grabbing. Due to the 

dynamic range limitations on both cameras, different neutral density filters were placed 

on the light path from the lamp to the camera to reduce the brightness. To reduce 

chromatic abbreviation of RBC, a band pass filter (560nm±20nm) only allowing green 

light to pass through was mounted on the top of the condenser.  

 

 

 

Figure 4-1.  Schematic of the BFP system. 

 

The mechanical system included several components: 1) a optical table supporting 
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the whole microscope and isolating the mechanical vibrations from the environment; 2) 

two 3D X-Y-Z mechanical stages (Newport and PI) holding and positioning 

micropipettes, the 3D stage on the probe side only use micrometers to position the 

micropipette coarsely, but the other one could adjust the target pipette’s positions finely 

with three PZTs of nanometer precision; 3) a one dimension freedom PZT stage (PI) with 

capacitive feedback control and sub nanometer precision, driving the target pipette to 

move along the  axial direction; 4) pneumatic micromanipulator with a pneumatic 

joystick to position the probe bead onto the apex of the red cell; 5) customized 

microscope steel stage with a chamber holder, built with steal so that this stage was heavy 

enough to reduce the vibration transmission to the chamber in which the BFP experiment 

runs; 6) customized manometer to control the aspirating pressure on the three 

micropipettes, and the one controlling the probe pipette had a pressure sensor to 

accurately measure and indicated the pressure difference for correctly determining the 

RBC’s spring constant.  

 The electrical system consisted of an imaging grabbing module and a PZT control 

module. The imaging grabbing module was composed of a high-speed camera (~1500 fps, 

Sensicam, or ~1800 fps, Procilica) for tracking the deflection of RBC and a normal speed 

camera (~30 fps, Dage MTI) for measuring the dimension and monitoring the 

experiments process. Both cameras’ images were grabbed by framegrabbers installed in a 

PC. The frame grabber for the high-speed camera was much more powerful than the one 

for the normal-speed camera, since it had to handle much large amount of image data.  

The PZT control module included a PZT stages, a PZT controller and a wave-board 

installed in the PC. The wave-board output signals and transferred to the PZT controller. 
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The PZT controller amplified the signal and output voltage signals (0-100V) to control 

the PZT’s steady movement.  

4.2.3 The software system of the BFP 

The software system for the BFP consisted of an imaging grabbing module, an 

imaging analysis module, a PZT control module and a data analysis module. The imaging 

grabbing module mainly handled grabbing images from the high speed camera and  

pre-processed grabbed images for following imaging analysis. The imaging analysis 

program was used to analyze the grabbed images and to extract the position information 

of the edge between the probe beads and RBC as shown in (Figure 4-2A, indicated by 

yellow arrow). To speed up the process of the image analysis and increased the frame 

rates, only center 27 lines of the whole view field were analyzed by binning into one line 

(Figure 4-2A, bright area), other lines of images were completely block out by a slit 

(Figure 4-2A, dark area). The new model of the high speed camera, using CMOS chip, 

could directly readout the images from the region of interest without a blocking slit. To 

obtain the edge position, the binned grey line, the intensity profile of which is shown in 

Figure 4-2B, was fit by Gaussian distribution. The peak of fitting curve (orange dot in 

Figure 4-2B) provided the position of the edge.  

To determine the spring constant of the BFP, the radius of probe pipette, RBC and 

contact area were measured by the software program customizedly written by Labview 

8.5. The tracking data were stored in the hard disk during the experiment. Next, all the 

stored data were analyzed by the data analysis program that is customizedly written with 

Labview 8.5.  

 



50 

 

Figure 4-2.  Imaging tracking region and intensity profile for the BFP. (A) Image analysis 

region, the bright area, for tracking system, the dark area was blocked out not for analyzing. The 

tracking edge is indicated by the yellow arrow. (B) Intensity profile of the bead’s edge in (A). 

The region in (B) corresponds to a smaller region in (A) which is indicated by a red marker. The 

orange point in (B) is the peak of Gaussian distribution fitting to the profile.  

 

4.3 Characterization of the BFP 

4.3.1 Characterize spatial precision of the tracking system of the BFP 

Since our BFP was custom-designed by Dr. Evan Evans, who helped us assemble it 

in our laboratory, we characterized of our new BFP apparatus here. To determine the 

spatial precision of our BFP, we compared the displacements of the target bead tracked by 

the image tracking system (Figure 4-3A, red circles, left ordinate) with the displacements 

of the PZT that drove the right pipette on which the target bead was aspirated (Figure 

4-3A, green squares, left ordinate). The PZT used an integrated capacitive feedback 

control to achieve sub-nanometer spatial precision and was programmed to travel back 
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and forth in a quasi-rectangular waveform. It is evident that the tracked displacements 

followed the programmed displacements very well (Figure 4-3A). The differences 

between the two (Figure 4-3A, blue triangles, right ordinate) were analyzed by histogram 

(Figure 4-3B), which follows a Gaussian distribution with a standard deviation of ~3 nm. 

This analysis establishes that the spatial precision of our image tracking system is ±3 nm.  

 

 

 

Figure 4-3.  Characterization of the tracking precision of the BFP. (A) Comparison of the 

piezo displacements (green, ) and the tracked displacements (red, ). The differences between 

them are shown as blue ( )). (B) Histogram (bars) of the differences between the piezo and 

tracked displacements. It is fitted by a Gaussian distribution (curve). 

 

4.3.2 Motion-blur correction on the thermal fluctuation of the BFP 

The BFP (Figure 4-2A) uses a pressurized RBC as an ultrasensitive force transducer. 

The 3-nm spatial precision of the BFP’s image tracking system can be translated to 

sub-piconewton force sensitivity by multiplying the axial deflection of the RBC force 

transducer by its “spring constant”, kp. Several approximate expressions for kp have been 

derived based on membrane mechanics, for example, the equation by Evans et al.[60] 
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reads  

,
                   Equation 4-1 

where p is the suction pressure and Rp, R0, and Rc are the respective radii of the pipette 

lumen, the spherical portion of the aspirated RBC, and the adhesive contact between the 

RBC and the probe bead (cf. Figure 4-2A). 

Calibration of the BFP spring constant can be done using thermal fluctuation analysis, 

which is based on the equipartition theorem,  

,
                          Equation 4-2 

where var(X) is the variance of the thermally-excited random displacements X of the 

force probe, kB is the Boltzmann constant and T is the absolute temperature. Figure 4-4 

compares the time courses of displacements of the target bead (Figure 4-4A), the probe 

bead (Figure 4-4B), and the left pipette mouth on which the RBC was mounted (Figure 

4-4C) while the two pipettes were held stationary. It is evident that the force probe 

displacements exhibit significantly larger fluctuations than those of the other two sites, 

indicating that the large fluctuations are caused by thermal excitation of the force probe 

confined by a very soft spring. 
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Figure 4-4.  Illustrations of thermal fluctuations. Tracked displacements of the target pipette 

(A), the force probe (B) and the probe pipette (C) over time during which both pipettes were held 

stationary. (D) Comparison of the 15-point sliding standard deviations of the fluctuating 

displacements in A-C (color-matched). 

Due to the finite temporal resolution (limited by the camera speed), the measured 

displacements Xm are an average of X over the time window during which a single frame 

of image is acquired. This causes a so-called “motion-blur” effect, as discussed by Wong 

et al.[79] and references therein, that reduces the measured variance var(Xm) from var(X) 

by a factor of S( ), i.e.,  

.          Equation 4-3 

S( ) is the motion-blur correction function,[79] 

       ,                 Equation 4-4 

where a is the ratio of the camera exposure time to the characteristic fluctuation time of 

the BFP, represented by the ratio of its spring constant to its friction coefficient. Thus,  

= Akp where A is proportional to the camera exposure time but inversely proportional to 

the BFP friction coefficient. Since kp = C p from Equation 4-1, it follows from 
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substituting Equations 4-2 and 4-4 into Equation 4-3 that 

    Equation 4-5 

To correct for low frequency drifts, we calculated a series of var(Xm) values after passing 

the displacement data through a series high-pass filters and extrapolated the “drift-free” 

variance from the var(Xm) vs. filter frequency plot[79].  

Two sets of drift-free var(Xm) were plotted vs. 1/ p, one measured in hypotonic 

condition (Figure 4-5A) and the other in isotonic condition (Figure 4-5B). As expected, 

the var(Xm) of the force probe increased as the suction pressure decreased. By comparison, 

the control var(Xm) measured from the target bead and the left pipette mouth did not 

response to the changes of the suction pressure and was very small (< 2 nm2), indicating a 

very low noise level of our system. Equation 4-5 was nonlinearly fit to the 

background-subtracted var(Xm) vs. 1/ p data, which returns two parameters, A and C. 

This allows for calculation of the corrected var(X) from var(Xm) using Equations 4-3 and 

4-4 with  = AC p, which is plotted vs. 1/kp calculated from Equation 4-1 for hypotonic 

(Figure 4-5C) and isotonic (Figure 4-5D) conditions. Both data sets display a linear trend, 

as predicted by Equation 4-2. The linear fit to the data in Figure 4-5C has a slope of 4.0 

pN-nm, in excellent agreement with the kBT value at room temperature, supporting the 

validity of Equation 4-1 in the hypotonic condition. By comparison, fitting the data in 

Figure 4-5D with a straight line returns a slope of 2.5 pN-nm, significantly smaller than 

the 4.1 pN-nm value predicted by the equipartition theorem, suggesting that Equation 4-1 

is not valid in the isotonic condition. The assumptions underlying the analysis that yield 

Equation 4-1 are reasonable when the RBC is swelled in hypotonic medium and forms a 
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sphere after being aspirated by a pipette of 2-3 μm inner diameter to form a short cell 

tongue inside the pipette (cf. Figure 4-2A). These assumptions break down when isotonic 

medium is used. RBCs have a biconcave discoid shape in isotonic medium. To form a 

sphere from part of the cell requires the use of a smaller pipette to aspirate the rest of the 

cell into the pipette to form a much longer cell tongue, which greatly increases the 

friction between the pipette wall and the cell membrane, invalidating the frictionless 

assumption required for the analysis. Nevertheless, we should still be able to directly use 

the value C obtained by fitting Equation 4-5 to Figure 4-5B to calculate kp = C p for the 

spring constant for a BFP in the isotonic condition.  
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Figure 4-5. Calibration of the BFP spring constant. (A and B) The background-subtracted 

drift-free variance var(Xm) of a BFP force probe ( ) is plotted vs. reciprocal suction pressure 1/p 

under which the fluctuating displacements were measured in hypotonic (A) or isotonic (B) 

condition (contributed by Dr.Veronika in Dr.Zhu’s lab) and fitted by motion-blur model Eq. 11 

(curve). The variances of the target bead (D) and the probe pipette ( ) are also plotted in A, 

which serve as the background. (C and D) The motion-blur corrected variance var(X) ( ) is 

plotted vs. 1/kp calculated from Equation 4-5 using parameters from the experiments under which 

the fluctuating displacements were measured in hypotonic (C) or isotonic (D) condition and fitted 

by a straight linear that passes the origin. 
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CHAPTER 5  

MONITORING RECEPTOR-LIGAND INTERACTIONS  

BETWEEN SURFACES BY THERMAL FLUCUTATIONS 

 

5.1 Introduction 

Cells communicate with their environment via receptors that bind to soluble ligands 

in the fluid phase (three-dimensional or 3D binding) or to tethered ligands on surfaces of 

other cells or in the extracellular matrix (two dimensional or 2D binding). 2D binding 

mediates critically important cell adhesion and signaling events in diverse tissues [80]. 

The force dependence of 2D dissociation off-rates of receptor-ligand interactions have 

been studied by several approaches, including lifetime measurements of single bonds or 

single-cell tethers [47] and rupture force measurements by dynamic force spectroscopic 

analysis [55]. By comparison, few assays have measured how receptors and ligands 

associate in two dimensions. Tether rates in a flow chamber measure a lumped parameter 

that multiples on-rate with collision frequency, encounter duration, and contact time [57, 

81]. The adhesion frequency assay extracts kinetic information from the dependence of 

adhesion frequency on contact time [82]. In the latter case, adhesion is measured 

mechanically using an ultrasensitive force transducer such as a BFP [61], which detects 

the presence of a receptor-ligand bond at the end of a contact but not when a bond forms 

or dissociates. Therefore, kinetics of molecular interaction must be inferred from the 
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contact time dependence of adhesion frequency [82]. Here, we develop a method that 

uses decrease/resumption of thermal fluctuations of a BFP to pinpoint 

association/dissociation events at the single-bond level during the contact period. This 

greatly enhances the quantity, quality, and reliability of the information obtained, which 

makes kinetic measurements much simpler and more robust. 

As a model system, we study the interactions of L-selectin, expressed on 

leukocytes, and P-selectin, expressed on activated platelets and endothelial cells, with 

their common leukocyte ligand, P-selectin glycoprotein ligand-1 (PSGL-1) [83]. These 

rapidly reversible interactions mediate rolling adhesion of leukocytes on vascular 

surfaces during inflammation. L- and P-selectin bind to the same N-terminal region of 

PSGL-1 but with different affinities in 3D assays. Here, we use the thermal fluctuation 

method to directly compare the 2D association and dissociation rates for interactions of 

L- and P-selectin with PSGL-1. The formation of an L-selectin-PSGL-1 bond decreases 

the BFP thermal fluctuations more than a P-selectin-PSGL-1 bond, as predicted by the 

higher stiffness of L-selectin than P-selectin [84]. The new method can be extended to 

measure cell adhesion mediated by several receptor-ligand pairs that bind independently 

or cooperatively, the initiation and termination of cell signaling, and other complex 2D 

interactions of purified macromolecules or of live cells. 
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5.2 Results 

5.2.1 Change in Thermal Fluctuations Identifies Bond Association or Dissociation 

We used BFP to monitor interactions between PSGL-1 coated on the probe glued to 

the apex of a RBC pressurized by micropipette suction (Figure 5-1A, left) and L-selectin 

or P-selectin coated on the target aspirated by an apposed micropipette (Figure 5-1A, 

right). The experimental procedure is illustrated by a representative probe position x vs. 

time t plot for PSGL-1 interacting with L-selectin (Figure 5-1B) or P-selectin (Figure 

5-1C). The target was driven by a computer-programmed piezoelectric translator with 

capacitive feedback control to approach the probe, which pushed it to a compressive 

position (x << 0) upon contact. The target was retracted by exactly the same distance as it 

was used to push the probe, thereby allowing the probe to spring back to a null position (x 

 0). The target was then held in that position to allow the probe and the target to contact 

via thermal fluctuations but not by compression, thereby providing an opportunity for 

selectin and PSGL-1 to interact. At the end of the holding period the target returned to its 

starting position, which might (Figure 5-1C) or might not (Figure 5-1B) pull the probe to 

a tensile position (x >> 0), depending on whether a bond(s) was present at that instant. 

This approach-push-retract-hold-return test cycle was then repeated many times to 

acquire an ensemble of data for statistical analysis. 
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Figure 5-1. Thermal fluctuation method. (A) Photomicrograph of a BFP. (B and C) Horizontal 

position x of the right edge of the probe is plotted vs. time t for a representative test cycle 

measuring the interaction between PSGL-1 coated on the probe and L-selectin (B) or P-selectin 

(C) coated on the target. Two periods of high positions in (B) are indicated by arrowheads. (D 

and E) Sliding standard deviations  of 15 consecutive points of the position data in B and C, 

respectively. (F and G) Histograms of the  data in D and E (bars), respectively, each fitted by 

Equation 5-1 (solid curves). Also superimposed on each panel are two histograms of  values 

calculated from x(t) data of two unencumbered probes recorded for the same duration of time 

(dotted curves). One unencumbered probe had the same spring constant of k = 0.15 pN/nm as the 
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probe used to acquire the data in D and E. The other unencumbered probe had spring constant of 

k = 1.7 (F) or 0.8 (G) pN/nm. All histograms were normalized to have a unity area. The vertical 

dashed line U = 3.8 nm on each panel is one standard deviation (1.3 nm) to the left from the peak 

at 5.1 nm. The vertical solid line  L = 3.15 nm on each panel is 1.5 standard deviation to the left 

from the same peak. These thresholds are marked in D and E as horizontal lines to identify bond 

association and dissociation events, which are marked by the respective down and up arrows. 

Arrowheads indicate intervals deemed indeterminate as to whether they corresponded to free or 

bound probes because data lay between the two thresholds.  

 
 
 
 
 
 

The probe position x(t) exhibited significant fluctuations even when neither the 

probe nor the target was moved by the micropipette (Figure 5-1 B and C). These reflect 

thermal fluctuations from the ultra soft RBC membrane because the position of the target 

tracked by the same image analysis software displayed substantially lower fluctuations 

(data not shown). Three periods in Figure 5-1B can be identified (arrowheads) where the 

average probe positions appear higher (x ~ 10-12 nm), suggesting that the probe was 

pulled by a small force (~1-2 pN) due to the presence of an L-selectin-PSGL-1 bond(s). 

This hypothesis predicts reduced thermal fluctuations in these periods because bond 

formation is equivalent to adding a molecular spring in parallel to the force transducer 

spring to stiffen the system [84, 85]. While qualitative evidence for this prediction can be 

directly observed from Figure 5-1B, quantitative data are shown in Figure 5-1D where 

the sliding standard deviation  was plotted vs. time t;  was calculated from every 15 

consecutive points of the position x(t) data in Figure 5-1B to gauge the level of thermal 

fluctuations. It is evident that the three periods with high average positions correspond to 

three periods of low standard deviations (Figure 5-1 B and D). 
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 Bond formation is not expected to pull the fluctuating probe to a new equilibrium 

position closer to the target if the target was retracted to and held at a position so close to 

the probe that the mean distance between the two surfaces was comparable to the length 

of a molecular crossbridge [84]. This might be the case in Figure 5-1C, which shows 

reduced thermal fluctuations but the x(t) data appear to have similar levels as the null 

position (x  0). The corresponding (t) data are shown in Figure 5-1E, which clearly 

reveal two periods of reduced thermal fluctuations. 

 The  data in Figure 5-1 D and E were analyzed by histograms (Figure 5-1 F and G, 

bars) to see if the reduced BFP thermal fluctuations caused by the formation of putative 

bonds could be separated from those expected from an unencumbered BFP. Only  data 

from 1.0-6.0 s were included because the low  values from 0.8-0.9 s (Figure 5-1D) or 

0.6-0.7 s (Figure 5-1E) corresponded to the time when the target was impinged against 

the probe, which suppressed the thermal fluctuations (Figure 5-1 D and E). Data from 

5.5-6.0 s in Figure 5-1E were also excluded because they corresponded to the time when 

the probe was pulled by the target, which produced nonrandom long-distance travels and 

resulted in artificially large  values. It is evident that the  values are clustered into two 

subpopulations in the histograms, which were well fitted by the following dual Gaussian 

distributions (Figure 5-1 F and G, solid curves): 

  Equation 5-1 

where  (1.6 or 5.3 nm in Figure 5-1F and 2.2 or 5.0 nm in Figure 5-1G, for i = 1 or 2) 

and i (0.35 or 0.99 nm in Figure 5-1F and 0.35 or 0.0.77 nm in Figure 5-1G, for i = 1 

or 2) denote the mean and standard deviation of the ith Gaussian distribution. Ai (0.27 or 
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0.73 in Figure 5-1F and 0.54 or 0.42 in Figure 5-1G, for i = 1 or 2) is the area under the 

ith Gaussian distribution curve; A1 + A2 = 1 as required by normalization. 

To identify the origins of the two subpopulations in the histograms, we 

superimposed two histograms of  values on each panel of Figure 5-1 F and G (dotted 

curves), which were calculated from x(t) data of two unencumbered probes recorded for 

the same duration of time. These were used as calibration for the BFP spring constant k 

according to the equipartition theorem, 0.5k< 2> = 0.5kBT, where < 2> is average of 2 

over the entire population, kB is the Boltzmann constant, and T is the absolute 

temperature. One unencumbered probe had the same spring constant of k = 0.15 pN/nm 

as the probe used to acquire the data in Figure 5-1 D and E; the histogram of its  values 

matched that of the subpopulation peaked at  = 5.3 (Figure 5-1F) or 5.0 (Figure 

5-1G) nm, indicating that the right subpopulation corresponded to periods when the probe 

was free. The spring constant of the other unencumbered probe was tuned to k = 1.7 

(Figure 5-1F) or 0.8 (Figure 5-1G) pN/nm in order to generate a histogram to match that 

of the subpopulation peaked at  = 1.6 (Figure 5-1F) or 2.2 (Figure 5-1G) nm, 

indicating that the left subpopulation corresponded to periods when L-selectin (Figure 

5-1F) or P-selectin (Figure 5-1G) on the probe was bound to PSGL-1 on the target. 

The two subpopulations in the histograms in Figure 5-1 F and G overlap. To 

assign a given data point to a particular subpopulation, we chose U = 3.8 nm, one 

standard deviation (1.3 nm) to the left from the peak at 5.1 nm, as the upper threshold 

above which data were considered to correspond to a free probe (Figure 5-1 F and G, 

vertical dashed lines) and L = 3.15 nm, 1.5 standard deviation to the left from the same 
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peak, as the lower threshold below which data were considered to correspond to a bound 

probe (Figure 5-1 F and G, vertical solid lines). These thresholds are also marked in 

Figure 5-1 D and E as horizontal lines to identify bond association (when the data curve 

runs downward across the solid line) and dissociation (when the data curve runs upward 

across the dashed line) events, which are marked by the respective down and up arrows. 

Arrowheads indicate intervals deemed indeterminate as to whether they correspond to a 

free or bound probe because data lie between the two thresholds. 

The threshold method identified two intervals in Figure 5-1E where a bond was 

present despite the fact that no mean force was detected by the BFP (Figure 5-1C). The 

suggested presence of a bond immediately prior to the end of the holding phase was 

confirmed by the pulling of the probe upon the target return (Figure 5-1C). Likewise, in 

Figure 5-1D the  values were above the upper threshold prior to the target return 

indicating the absence of any bond, which was confirmed by the fact that no pulling was 

observed upon the target return (Figure 5-1B). 

The validity of using reduction/resumption in  as an identifier for bond 

association/dissociation event (thermal fluctuation method) was tested by examining the 

correlation of (or the lack thereof) its results with those determined by an independent 

method: the presence or absence of probe pulling during the target return (pulling 

method). A total of 812 tests like those in Figure 5-1 D and E were analyzed. Of these, 87 

were discarded because their  values immediately prior to the target return were in 

between the upper and lower thresholds. Remarkably, a very strong correlation was 

found: in >96% of the remaining 725 tests the thermal fluctuation method reported 

correctly for either having (159 tests) or not having (541 tests) a bond as confirmed by 
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the pulling method (Figure 5-2). Only 13 tests were scored as having a bond by the 

thermal fluctuation method but not confirmed by the pulling method (false positive) and 

only 12 tests were scored as not having a bond by the thermal fluctuation method but 

shown to have a bond by the pulling method (false negative) (Figure 5-2), which would 

give rise to a <3.5% error. These might be bond association/dissociation events that 

occurred at the beginning of the target return, which might have been missed due to 

insufficient temporal resolution of the thermal fluctuation method. These data 

demonstrate the reliability of using the reduced thermal fluctuations to report the 

presence of bonds.  

 
 

 

Figure 5-2. Comparison between two methods for determining the presence of a bond. A 

total of 812 tests like those in Figure 5-1D for L-selectin-PSGL-1 interactions were segregated 

into two groups. The first group of 87 tests had  values immediately prior to the target return 

that were between the upper threshold  U = 3.8 nm and the lower threshold  L = 3.15 nm, which 

were deemed as indeterminate and excluded. The second group of 725 tests were further 
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segregated into four subgroups depending on whether they had  values immediately prior to the 

target return above the upper threshold (no decreased fluctuation) or below the lower threshold 

(decreased fluctuation) and whether the returning target produced pulling or no pulling of the 

probe. The number of tests in each subgroup was plotted against the four conditions marked on 

the x-y plane (and also indicated on the top of each bar). 

 
 
 

5.2.2 Measuring 2D Kinetic Rates of Receptor-ligand Interactions 

Many applications can be envisioned for our thermal fluctuation method for identifying 

bond formation/dissociation events in two dimensions. To exemplify this, we next 

demonstrate the application of this method to measurement of 2D binding kinetics of 

receptor-ligand interactions. To do that, we realized that the period from the instant of 

dissociation of an existing bond to the instant of association of the next bond, termed 

waiting time tw, contains on-rate ( ) information because the faster the on-rate, the 

shorter the expected waiting time. It should also depend on the site densities of 

s ( ), because the higher the density, the greater the chance for receptors 

to find ligands, and the shorter the expected waiting time. Waiting times were measured 

from a large number of test cycles, pooled, and analyzed by a model for the first-order 

kinetics of irreversible association of single bonds [57]: 

                Equation 5-2 

where  Pa is the probability for forming a bond before tw. 

Taking the natural log of (1 – Pa) linearizes the exponential waiting time distribution 

given by Equation 5-2, a prediction supported by data in Figure 5-3A, which align quite 

well along a straight line. This indicates that intervals from an abrupt resumption to the 

next abrupt reduction in thermal fluctuations indeed distribute as waiting times for single 
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bond formation. It follows from Equation 5-2 that the negative slope of the ln(# of events 

with a waiting time  tw) vs. tw plot equals mrmlAckon, which can be thought of as a 

cellular on-rate [57]. 

Similarly, we realized that the period from the instant of bond association to the 

instant of bond dissociation, termed bond lifetime tb, contains off-rate ( ) information 

because the faster the off-rate, the shorter the expected bond lifetime. Bond lifetimes 

were measured using data collected from the same test cycles as those used to obtain 

waiting times, pooled, and analyzed by a model for the first-order kinetics of irreversible 

dissociation of single bonds [47]: 

                   Equation 5-3 

where Pb is the probability for a bond formed at time 0 to remain bound at time tb. Taking 

the natural log of Pb linearizes the exponential bond lifetime distribution given by 

Equation 5-3, a prediction supported by data in Figure 5-3B, which align quite well along 

a straight line. This indicates that intervals between an abrupt reduction and an abrupt 

resumption in thermal fluctuations indeed distribute as single bond lifetimes. It follows 

from Equation 5-2 that koff can be estimated from the negative slope of the ln(# of events 

with a lifetime  tb) vs. tb plot [47].  
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Figure 5-3. Exponential distributions of waiting times (A) and bond lifetimes (B). Pooled 

ensembles of 156 (L-selectin) or 190 (P-selectin) waiting times (A), defined as intervals from a 

dissociation event to the next association event, and 172 (L-selectin) or 240 (P-selectin) bond 

lifetimes (B), defined as intervals from an association event to the next dissociation event, of 

PSGL-1 respectively interacting with L-selectin ( ) or P-selectin ( ) were respectively sorted 

according to their durations. The natural log of the number of events with waiting times > tw (A) 

or bond lifetimes > tb (B) was respectively plotted against tw or tb, respectively, and respectively 

fitted by a straight line (not shown). The negative slopes of the best-fits represent cellular on-rate 

mrmlAckon and off-rate koff, respectively, whose values are indicated. The variations in these values 

are shown by the 95% confident intervals of the best-fit (lines). The goodness-of-fit was 

measured by the R2 values, which are also indicated. 

 

 

If the negative slopes of the linear fits to the data in Figure 3 A and B indeed 

represent respective cellular on-rates and off-rates, then the former should increase 

linearly with, and the latter should be independent of, the site densities of the receptors 

and ligands, provided that the observed events reflect predominately single bonds. To test 

this prediction, we measured the 2D kinetics of L-selectin-PSGL-1 interaction using four 

different site densities. The cellular on-rate constant, mrmlAckon, was found to be 

proportional to the site densities of L-selectin and PSGL-1 (Figure 5-4A), as expected 
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from the 2nd order forward reaction (Equation 5-2), supporting our prediction. The slope 

of the linear fit to the data is the effective average on-rate, <Ackon> = 5.9  10-5 μm4s-1. 

By comparison, the off-rate constant was found to be independent of the site densities 

(Figure 5-4B), as expected from Equation 5-3, again supporting our prediction. The mean 

off-rate is <koff> = 10.2 s-1. 

 

 

Figure 5-4. Kinetic parameters. Cellular on-rate (A) and off-rate (B) were plotted vs. product of 

the site densities of the interacting molecules, L-selectin and PSGL-1. Data (points, error bar = 

95% confident interval) were respectively fitted by a straight line that passed the origin (A) to 

estimate a molecular 2D effective on-rate <Ackon> (best-fit equation and R2 were indicated) or by 

a horizontal line (B) to estimate the average off-rate <koff> (indicated). (C) Comparison of kinetic 

rates of PSGL-1 interacting with L-selectin and P-selectin. 
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If the negative slopes of the linear fits to the data in Figure 5-3 A and B indeed 

represent respective cellular on-rates and off-rates, then they should depend on the 

molecular interaction tested. To test this prediction, we measured 2D kinetics of two 

molecular interactions: L- and P-selectin respectively interacting with PSGL-1 at 

comparable site densities. Distributions of waiting times and lifetimes of these two 

interactions are compared in Figure 5-3, which clearly show that PSGL-1 has a faster 

on-rate, but a slower off-rate, with P-selectin than L-selectin. Previous  surface plasmon 

resonance experiments show that P-selectin binds PSGL-1 with higher 3D affinity and 

slower off-rate than binding of L-selectin to glycosylation-dependent cell-adhesion 

molecule-1 [86, 87], not withstanding the fact that this technique did not have sufficient 

temporal resolution to accurately determine the fast off-rate of L-selectin [86, 87]. Figure 

5-4C represents the first quantitative evidence that P-selectin has a higher 2D on-rate than 

L-selectin for the same ligand. 

 

5.2.3 Comparison between the thermal assay and the adhesion frequency assay  
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   Equation 5-4 

Using the same BFP, same reagents, same site densities, and experiments prepared 

the same way as those in the thermal fluctuation method, we measured adhesion 

frequencies in a range of contact durations for both L-selectin and P-selectin interacting 

with PSGL-1. The Pa vs. tc data (points) are shown in Figure 5-5. Also shown are 

predictions of Equation 5-4 (curves) using the values of Ackon and koff estimated 

previously from the thermal fluctuation method (Figure 5-4C) and the known site 

densities . It is evident that the predictions agree with the data reasonably well 

for both the L-selectin and P-selectin cases (Figure 5-5), further supporting the validity of 

the thermal fluctuation method. 
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Figure 5-5. Comparison between theory and experiment. Frequencies of adhesion mediated 

by PSGL-1 interacting with L-selectin ( ) or P-selectin ( ) were measured at indicated contact 

times (points, mean ± S.E.M. of three probe-target pairs) by averaging the adhesion scores (1 for 

pulling and 0 for no pulling at the end of the contact time of each test cycle) from 100 test cycles 

per probe-target pair. Theoretical adhesion frequencies as functions of contact time were 

predicted (curves) by Equation 5-4 using the kinetic rates from Figure 4-4C and molecular 

densities measured from independent experiments (mrml, = 0.2  0.15 5 μm-4 for the L- and 

P-selectin cases, respectively). 
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5.3 Discussion 

In this chapter we developed a method for monitoring 2D receptor-ligand 

interactions based on thermal fluctuations of a BFP probe. The ability of our method to 

identify events of bond association/dissociation has been demonstrated by rigorous 

control experiments (Figure 5-1 and 5-2) and kinetic experiments (Figure 5-3). The 

control experiments included: 1. matching the periods with higher mean positions (x > 0) 

and those with reduced standard deviations (  < 3.15 nm) (Figure 5-1 B and D); 2. 

matching the two subpopulations in the histograms of  values with those of a free probe 

with the same spring constant and an increased spring constant (Figure 5-1 F and G), 

respectively; and 3. correlating the thermal fluctuation method with the pulling method 

for determining the presence/absence of a bond (Figure 5-2). The kinetic experiments 

included: 1. independently measuring on-rate and off-rate as well as their dependence on 

the interacting molecules from separate data of the same experiment (Figure 5-3); 2. 

confirming the mass action effect on the cellular on-rate mrmlAckon and the lack of such 

effect on the off-rate koff (Figure 5-4); and 3. comparing the theoretical Pa vs. tc curves 

predicted using kinetic rates obtained by the thermal fluctuation method with the 

experimental data measured directly by the adhesion frequency assay (Figure 5-5). 

Collective data from all these tests provide convincing evidence for the validity of the 

new method. 

 We have demonstrated the utility of the thermal fluctuation method by 2D kinetics 

measurement, which is an extension of our previous adhesion frequency method [82]. 

Both assays employ the same experimental procedures (Figure 5-1 B and C). However, 

the adhesion frequency assay acquires only one bit of information: whether adhesion is 
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present or not at the end of the contact time. By comparison, the thermal fluctuation assay 

measures when bonds form and dissociate, which greatly increases the quantity, quality, 

and variety of information. For example, the adhesion frequency assay obtained a binary 

adhesion score, 0 or 1, for each of the two test cycles shown in Figure 5-1 B and C. By 

comparison, we learned from the thermal fluctuation assay that bonds formed six (Figure 

5-1B) or two (Figure 5-1C) times, respectively, at 2.75, 3.15, 3.48, 3.76, 4.82, and 5.56 s 

(Figure 5-1B) or 2.07 and 2.93 s (Figure 5-1C), respectively, which dissociated at 2.80, 

3.25, 3.54, 3.86, 5.31, and 5.83 s (Figure 5-1B) or 2.35 and 5.8 s (Figure 5-1C), 

respectively. Simple processing of these data yields 0.35, 0.23, 0.22, 0.96, and 0.25 s 

(Figure 5-1B) or 0.58 s (Figure 5-1C) waiting times and 0.05, 0.10, 0.06, 0.10, 0.49, and 

0.27 s (Figure 5-1B) or 0.28 s (Figure 5-1C) bond lifetimes, respectively. 

 Compared to the adhesion frequency assay, the thermal fluctuation assay acquires 

more data in a shorter time and improves the reliability of the estimated kinetic rates. The 

kinetic rates are evaluated by a two-parameter fit of Equation 5-4 to the Pa vs. tc data in 

the adhesion frequency assay [82], which may use errors in one parameter to compensate 

for errors in the other parameter to achieve an apparently good fit. By comparison, the 

bond formation and dissociation events can be visualized individually in the thermal 

fluctuation assay, which enables segregation of waiting times from bond lifetimes to 

allow their respective analysis with two separate single-parameter fits, one for on-rate 

(Equation 5-2) and the other for off-rate (Equation 5-3), which are much more robust.  

Careful inspection of Figure 5-5 reveals that the theoretical predictions slightly 

underestimate the experimental data. Fitting Equation 5-4 to the data returns a larger 

cellular on-rate mrmlAckon than, but a similar off-rate koff to, their respective counterparts 
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measured from the thermal fluctuation method. A possible explanation is that in the 

adhesion frequency assay, the probe and the target are pressed against each other, 

resulting in a larger contact area Ac than that in the thermal fluctuation method where the 

two surfaces are in contact via thermal fluctuation but not by compression. In fact, the 

data of higher mean positions when a bond was formed, as observed in Figure 5-1B, 

suggest that the two surfaces were separated by an average distance greater than the 

molecular length of the receptor-ligand complex by 10-12 nm. Although thermal 

fluctuations did bring the probe into contact with the target to enable bond formation, 

such contact was likely transient and discontinuous. In other words, the holding time of 

the approach-push-retract-hold-return cycle was likely broken down into interlude 

periods of contact and noncontact [57]. This is in contrast to the case of the adhesion 

frequency assay where the two surfaces were more likely to be in continuous contact. 

The above reasoning suggests that the thermal fluctuation method can be used to 

measure not only on-rate but also its dependence on the mean distance xm between the 

two surfaces. Increasing this gap distance is expected to reduce the mean collision 

frequency, encounter duration, and contact area, thereby decreasing the rate of bond 

formation. Furthermore, thermal fluctuations of the probe are Brownian motion confined 

in an energy well U = 0.5k(x –xm) with an equilibrium position at xm and a curvature 

defined by the BFP spring constant k. Tuning the spring constant stiffer is expected to 

reduce the probe thermal fluctuations, thereby decreasing the rate of bond formation. 

Thus, our method can be used to measure the mechanical regulation of on-rate by 

separation distance between the probe and target and by the BFP stiffness. 

The thermal fluctuation method measures both on- and off-rates by sorting 
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different intervals from the same time course into waiting times and bond lifetimes. 

Increasing the separation distance will affect not only on-rate as described above, but also 

off-rate because the bonds so formed will be subjected to a force f, as visualized in Figure 

5-1B. Lifetimes of bonds of P-selectin [47] and L-selectin [48] with PSGL-1 have been 

measured as functions of force for f > 5-10 pN by atomic force microscopy [47, 48] and 

by the BFP [53]. Extrapolating these koff vs. f data to zero force yields values much 

greater than those actually measured here, suggesting that there may be unexpected 

changes in the range of 0 < f < 5 pN. The thermal fluctuation method should be ideal for 

such studies.  

Measuring mechanically regulated 2D kinetics is only one of many possible 

applications of the thermal fluctuation method. Different receptor-ligand complexes 

exhibit different mechanical properties, which are predicted to reduce thermal 

fluctuations by different amounts [84]. Indeed, preliminary support for this prediction has 

already been seen in the histogram analysis of  data (Figure 5-1 F and G). It is evident 

that the peak of the subpopulation of  values that corresponded to the probe bound to the 

target by an L-selectin bond (Figure 5-1F,  = 1.6 nm) was left-shifted relative to that 

by a P-selectin bond (Figure 5-1G,  = 2.2 nm). These data suggest that we may be 

able to identify the type of bonds formed/dissociated in addition to when they are 

formed/dissociated. This expanded capability can be used to study how multiple species 

of receptor-ligand interactions cooperate to mediate adhesion not only between two beads 

but also between a bead and a live cell to allow study of signaling. 

Finally, we note that the thermal fluctuation method can be implemented using an 

optical trap or laser tweezers. In fact, optical trap was used as a force sensor to monitor 
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the mean bead position change as an identifier for antibody-antigen dissociation and 

association events in a manner similar to those observed in Figure 5-1B (arrowheads) 

[88]. Thus, our newly developed method should have broad applications because it can 

measure a wide variety of parameters for interacting receptors and ligands using 

commercially available instruments. 
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CHAPTER 6  

FUNCTIONAL STUDY OF FORCE REGULATION ON 

SELECTIN-LIGAND INTERACTIONS 

 

6.1 Introduction 

The interactions of selectins with their ligands mediate leukocyte tethering to and 

rolling on endothelial surfaces during inflammation and immune responses [89, 90]. But 

their interactions do not only depend on their own structures; they also heavily depend on 

the hydrodynamic environment of the circulation to impose kinetic and mechanical 

stresses. It has been well known that mechanical force applied to these bonds affects their 

dissociation rates and hence their lifetimes [47, 48]. 

L-selectin requires a counterintuitive threshold shear to mediate both tethering and 

rolling [91, 92]. As flow increases to an optimal level, more cells tether and the cells roll 

more slowly. Above the flow optimum, fewer cells tether and the cells roll more rapidly. 

Distinct physical mechanisms regulate flow-enhanced tethering and rolling. Three 

mechanisms have been postulated to explain how transport augments tethering: sliding of 

the cell bottom on the surface, Brownian motions of the cell, and rotational diffusion of 

L-selectin and its ligand[93]. As well, mechanical force enhances the leukocytes’ rolling 

by decreasing the rate of L-selectin’s dissociation from its ligands. Normally, forces 

shorten the lifetimes of receptor-ligand interactions (slip bonds) [94]. However, at low 
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levels force paradoxically prolongs the lifetimes of selectin-ligand interactions (catch 

bonds) before they convert to slip bonds at higher forces [95, 96]. Catch bonds are 

particularly evident for L-selectin [96] as well as for P-selectin [47]. As flow increases 

from the threshold to an optimal value, rolling becomes slower and more regular as force 

prolongs the lifetimes of L-selectin, so-called catch bonds [97]. Above the flow optimum, 

rolling becomes faster and less regular as higher forces shorten the lifetimes of slip bonds. 

Several models to explain transitions from catch bonds to slip bonds have been proposed 

[98]. However, little is known about the structural basis for catch bonds.  

All three selectins share similar structures but there are different numbers of 

consensus repeats [89, 90]. There are only a few non-covalent interactions between the 

lectin and EGF domains, most of which are conserved among the three selectins. Two 

P-selectin structures have been described, one with a more open angle between the two 

domains [8] (Figure 6-1A). The structures suggest that the P-selectin lectin domain can 

pivot on a hinge over the EGF domain. Compared to P-selectin’s structure, x-ray 

structures of lectin and EGF domain of L-selectin showed closer angles (contributed by 

Dr. McEver’s lab). Thus, we postulated that this conformational change is common to all 

three selectins and that it plays an important role in regulating the kinetic off-rate of 

selectin-ligand interactions. The sliding-rebinding model[52] predicts that substituting 

Gly for Asn138 in L-selectin (L-selectinN138G) will reduce the force required to elicit 

catch bonds, prolong their lifetimes, and lower the force where catch bonds convert to 

slip bonds even with molecularly distinct ligands.  Here, we show that eliminating a 

hydrogen bond by N138G mutation to increase flexibility of the inter-domain hinge in 
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L-selectin indeed augments catch bonds in the low force region by the BFP lifetime 

measurements.  

 

Figure 6-1. X-Ray structures of the lectin and EGF domains in P-selectin (A) [8] and 

L-selectin (contributed by McEver’s lab)(B).  

 
 
 

In addition to the external forces, the history of applied force can also regulate the 

dissociation of selectin-ligand interactions. Previous P-selectin-PSGL-1 AFM studies 

have shown that off-rate (inverse of bond lifetime) depends not just on the instantaneous 

force value (Bell model), but, in fact, it also depends on the entire history of force 

application [99]. Here, we used a new and different assay that was originally invented by 

S. Krishnna (previous graduate student in Dr.Zhu’s lab) to measure L-selectin-ligand 

bond lifetimes at different loading rates and at different forces. This is a little difference 

from the widely used  DFS analyses[65], in which the bonds were loaded continuously 

with different loading rates till rupture. S.Krishnna et al. first observed this force-history 

dependent transition of bond lifetimes in L-selectin/ligand interactions (S.Krishnna et al. 
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published data). Here, the BFP was used to confirm the force history effect on the catch 

bonds.  

Regarding no-force off-rates, discrepancies exist between the published zero-force 

off-rates of P-, and L-selectin and ligand interactions measured by SPR [100, 101] and by 

extrapolation to zero-force from the catch bonds measured by AFM[47, 48]. The sliding 

rebinding model predicted that another slip bond region may exist in the very low force 

region in which the interaction between lectin and EGF domain has not been broken yet. 

Thus, to further support this model as well as to reconcile the discrepancies, the BFP and 

lifetime measurement were used to identify the potential existence of slip bonds in the 

lower force regime where previous the BFP and AFM experiments had not touched.  

 
 

6.2 Results 

6.2.1 L-selectin hinge mutation augmenting catch bonds in low force regimes 

To confirm and support the sliding rebinding model [52], we measured how force 

affected the lifetimes of interactions of recombinant L-selectin-Ig and L-selectinN138G 

–Ig with two different ligands, PSGL-1 and 6-sulfo-sLex. The BFP was used to obtain 

lifetimes. In the BFP experiments, interactions of L-selectin or L-selectinN138G coated 

on a target bead with PSGL-1 or 6-sulfo-sLex coated on a probe bead were stressed 

through a red blood cell to allow lifetime measurements at various levels of constant 

forces.  

Before measuring lifetime experiments, binding specificity was determined firstly to 

make sure we were indeed measuring the interactions between L-selectin and its ligand. 
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To ensure that the binding between L-selectin and ligand was at single molecular level, 

we coated molecules on beads at very dilute concentration to keep the binding frequency 

less than 20%. When testing the probe bead without PSGL-1, we found very low binding 

frequency (< 20%) as shown in Figure 6-2.  Since L-selectin and their ligand binding is 

Ca2+ dependent, we added 5mM EDTA into the experimental buffer to remove the Ca2+ 

and measured the binding frequency again between target and probe beads. We found that 

the binding frequency greatly dropped to ~ 3%, which should be from non-specific 

binding. Further more, we added 10ug/ml anti-L-selectin mAb DREG56 to block the 

ligand binding site on L-selectin and then measured binding between target and probe 

bead again.  We found that the binding frequency also dropped to ~3%, just like the 

condition with 5mM EDTA. The decrease in the binding frequency to a very low level 

following the addition of EDTA or DREG56 mAb clearly suggested that our 

measurements between L-selectin coated target bead and PSGL-1 coated probe bead were 

highly specific (Figure 6-2).  
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Figure 6-2. Binding specificity. 

 
 
 

In lifetime experiments, a large number of lifetime measurements were used to 

derive the mean lifetime (which equals the reciprocal off-rate 1/koff for first-order 

dissociation of single bonds) for each interaction at each tensile force. As observed 

previously [97], the lifetimes of L-selectin interactions with both ligands demonstrated a 

biphasic pattern characteristic of transitions from catch to slip bonds . Initial increases in 

force prolonged mean lifetimes until an optimal value was reached; further increases in 

force shortened lifetimes. Although L-selectinN138G interactions with both ligands also 

exhibited transitions between catch and slip bonds (Figure 6-3), the lifetimes in the catch 

bond regime were significantly longer and the transitions to slip bonds occurred at lower 

forces. In contrast, there was little difference in the lifetimes of L-selectin and 

L-selectinN138G interactions in the slip bond regime. 
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Figure 6-3. Bond lifetimes measurement between L-selectin ( or L-selectinN138G mutant) 

and PSGL-1 (A) or  6-Sulfo-sLe
x
 (B). The data in A, B represent the mean ± S.E.M. of ~500 

lifetime measurements.  

 
 
 

6.2.2 Tri-phasic transition of fore-regulated off-rates of selectin-ligand interactions 

The sliding rebinding model predicted the existence of slip bonds in the lower force 

regime (<10pN) before the interactions between lectin and EGF domain broke, and it 

predicted the existence of discrepancies between reported zero-force off-rates measured 

by SPR and extrapolated off-rates from catch bonds by the AFM and the BFP.  Based on 

these observations, we highly suspected that another slip bond regime may exist in the 

very low force regime where the AFM and the BFP had not ever touched before. Flow 

chamber studies of E-selectin-ligand interactions have already shown tri-phasic pattern 

(Wayman A. et al. unpublished data), which highly increased the possibility of observing 

tri-phasic transition in selectins/ligands interaction by the BFP.  Thus, to test this 

hypothesis, we first measured force-dependent lifetimes of P-selectin-PSGL-1 bond. As 
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shown in Figure 6-4A, in the force regime above 5pN, P-selectin-PSGL-1bonds show 

catch-slip transitions measured by the BFP that are similar to those measured by AFM 

before [47], even though the optimal forces were a little bit different. More interestingly, 

the BFP detected another slip bond regime existing in the force regime below 5pN, where 

AFM was unable to detect due to its stiffer force sensor and much lower force sensitivity. 

The average lifetime at the lowest force (~1pN) was about 0.55s, which is much closer to 

the reported zero-force lifetime by SPR, 0.7s[100]. As three selectins share similar 

structures, we also highly suspected that other two selectins (E- and L-selectin) and their 

ligand interactions might have the tri-phasic transitions of force-regulated bond lifetimes 

observed in P-selectin-PSGL-1 bonds. Thus, we measured force-dependent lifetimes of 

E-, L-selectin and their ligands interactions. As expected, all of these three interactions 

indeed showed slip-catch-slip tri-phasic transitions of force-regulated bond lifetimes 

(Figure 6-4 B, C and D). Our results showed that the lifetime at 1pN of L-selectin and its 

ligands interactions were about ~0.1s, which is very close to the reported zero-force 

lifetime (  0.1 s) measured by SPR [101].  
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Figure 6-4. Triphasic transition of force-dependent lifetimes of P-selectin-PSGL-1(A), 

E-selectin-sLex(B), L-selectin-PSGL-1 (C) and L-selectin-6sulfo-sLex bonds (D). Each point 

in every plot has at least 50 measured lifetimes.  
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6.2.3 Force-history dependent off-rates of L-selectin-ligand interactions 

Unlike the lifetime assay used in the L-selectin hinge mutant experiments, here, we 

varied both clamping force and loading rates. The clamping force ranged from 10 pN~80 

pN, and the three loading rates were used, 103pN/s, 3x103pN/s and 104pN/s. The raw 

lifetime data of 103 pN/s and 104 pN/s loading rates are shown in Figure 6-5.  

 

 

 

Figure 6-5. Raw data of lifetimes at the loading rates of 10
3
pN/s (A) and 10

4
pN/s (B). 

 

 

We only characterized the interactions between L-selectin and PSLG-1 with different 

force loading rates. Interestingly, we found as force loading rates increase, the optimum 

lifetime gradually shifted leftwards to the lower force regime, and finally catch bonds 

behavior was abolished and completely replaced by slip bonds once the force loading rate 
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was increased to 104 pN/s (Figure 6-6 A). These results showed that increasing loading 

rates augmented the bond lifetimes in the low force regime of catch bond, but they 

shorten bond lifetimes in the high force slip bonds regime (Figure 6-6A). In contrast, the 

L-selectin-6-sulfo-sLex bond was quite resistant to loading rates; that is, as loading rates 

increased, the optimum force did not shift to lower force, and the lifetimes in catch bonds 

regime were not enhanced (Figure 6-6B).  

 

 

 

 

Figure 6-6 Lifetimes of L-selectin-PSGL-1 bond (A) and L-selectin-6-sulfo-sLe
x
 bonds (B) 

regulated by force loading rates and clamping forces.  
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6.3 Discussion 

In this study, we used the BFP to carry out functional studies of selectin-ligand 

interactions by characterizing how catch bonds were regulated by biochemical and 

biophysical factors in order to reveal the mechanism of catch bonds. First, we 

characterized how a single residue mutation, specifically substituting Asn for Gly on the 

residue 138 at the inter-domain hinge between lectin and EGF domain of L-selectin, 

regulated the catch bonds between L-selectin and ligand interactions. At the putative 

hinge region of P-selectin, Tyr37 of the lectin domain is located close to Gly138 of the 

EGF domain (Figure 6-1A). As previously proposed [8], the lack of a side chain in 

Gly138 should favor flexibility between the domains. By contrast, E- and L-selectin have 

an Asn at residue 138, and published structures of E-selectin reveal a hydrogen bond 

between Tyr37 and the side chain of Asn138 in a closed-angle conformation [7, 8]. With a 

solved but unpublished crystal structure of the lectin and EGF domains of L-selectin 

(P.M., V. Oganesyan, S. Terzyan, T. Mather, and R.P.M, unpublished data), we found that 

there was a hydrogen bond between Tyr37 and Asn138 in a closed-angle conformation 

(Figure 6-2B). This one residue difference may bring about a difference in flexibility of 

the lectin domain, which could result in intrinsic on-rates and off-rates that differ from 

L-selectin’s ligand based on the sliding rebinding model proposed by Lou et al.[52]. But 

how could this flexibility cause these differences in ligand binding kinetics? 

 According to the sliding rebinding model, “catch” results from the forced opening of 

an interdomain hinge that tilts the binding interface, allowing the two sides of the contact 

to slide against each other. This sliding promotes formation of new interactions and even 

rebinding to the original state, thereby slowing dissociation and prolonging bond 
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lifetimes [52, 53](Figure 6-7). L-selectinN138G mutation made the lectin domain more 

flexible by eliminating one hydrogen bond. This mutation tilts the lectin domain’s angle 

to favor open configuration than L-selectin, so more sliding and rebinding takes place 

between the ligand and lectin domain interfaces even at lower force regime. Therefore, at 

lower force regime, L-selectinN138G mutant-ligand bond lifetimes were longer and the 

optimal force was smaller than L-seletin-ligand’s. Once the inter-domain angle is fully 

open, further increases in force can no longer increase rebinding, resulting in transition 

from catch bonds to slip bonds. 
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Figure 6-7. Sliding rebinding model for selectin-ligand interactions[53]. 
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 The tri-phasic transitions of force dependent lifetimes of selectin-ligand interactions 

were observed in all three selectins. This tri-phasic transition was predicted by the sliding 

rebinding model. Two threshold forces are critical in this sliding rebinding model. The 

lower one is the force to break the interactions between lectin and EGF domain to release 

the lectin domain and allow it to rotate to an open configuration. The higher one is the 

force to fully open the lectin domain. When the force is below the lower threshold, no 

sliding and rebinding occur at the ligand binding interface, so the dissociation follows the 

Bell model, which is single exponential decay, for so-called slip bonds. As force increases 

further, the selectin’s lectin domain starts to open to allow more sliding and rebinding to 

occur, as mentioned previously. Our observed tri-phasic transitions not only reconcile the 

discrepancies between data measured by SPR and AFM, but also further support the 

sliding rebinding model, which provides a very nice structural basis to explain the 

counter-intuitive “catch bond” behavior in selectin ligand interactions. Whether this 

model could also be applied to other catch bonds in other molecular systems needs 

further careful investigation and more experiments.  

 In addition to the ability of biochemical mutation on the selectin structure to alter 

catch-slip bond transition, biophysical factors could also regulate this transition. By 

increasing force loading rates, both AFM and AFM (S.K.K.’s unpublished data) results 

showed that the catch bonds gradually shift to the lower force regime and finally convert 

to slip bond. From the biophysical view, the two states model has nicely explained the 

catch bond in P-selectin and its ligand interactions[55].This two state model suggests that 

P-selectin could dissociate along two different pathways with different dissociation rates. 

It was assumed that initially ligand binding has two states with different subpopulations, 
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and that it can convert between two binding states in equilibrium. Mechanical force 

loading rates could select different subpopulations of two binding states to dissociate 

along two different pathways. Therefore, our force history data suggested that different 

loading rates may be able to pre-select pathway to dissociate. The higher loading rate 

may select the slow dissociating pathway but may completely block the fast pathway so 

that force dependent lifetimes at the loading rate of 104 pN/s behaved with only single 

exponential decay.  Using the view of molecular structure to explain this interesting 

phenomenon, we were still not very clear as to how loading rates regulated the hinge 

domain rotation. Since ligand dissociation rates not only depend on the hinge site but are 

also heavily dependent on the ligand binding site, the change of loading rates might 

greatly alter the conformation on the ligand binding site and strengthen binding. This 

strengthening might cause single exponential decay on the force-dependent lifetimes. The 

lifetimes of L-selectin-6-sulfo-sLex were highly resistant to the loading rates. Since this 

binding does not involve peptide binding, we suspect that the peptide binding part may be 

important for changing the binding site’s conformation.  
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CHAPTER 7  

FORCE REGULATION ON LFA-1-LIGAND INTERACTIONS 

 

7.1 Instruction 

Integrins, a large family of cell adhesion receptors, mainly mediate cell adhesion to 

other cells or to extracellular matrix. They behave as mechano-chemical transducers 

transmitting mechanical and biochemical signals bi-directionally across the cell 

membrane in various cellular processes [12, 13]. For example, the bindings of LFA-1 to 

ICAM-1 mediate leukocytes’ rolling on and firm adhesion to inflamed endothelial beds 

during leukocyte trafficking, they regulate T lymphocyte’s rest in the T-cell zone of 

secondary lymph node tissues, and they modulate the immunological synapse formation. 

Integrins’ functions in these cellular processes are tightly regulated by the affinity of 

binding to their ligands[18]. However, most of time LFA-1s are kept in an inactive and 

low affinity state so that they are not very adhesive to their ligands. Once activated by 

inside-out signals from other receptors (i.e., GPCR, TCR) or by outside-in signals from 

its ligands, LFA-1 rapidly switches to a high affinity state and becomes very adhesive 

[12].  These activation processes are believed to be facilitated by mechanical forces[18]. 

Integrin’s binding affinity is known to be controlled by its local and global 

conformational changes[12].  Global conformational rearrangements mainly include 

large scale switch-blade like extensions of integrins. In the inactive and low affinity state, 

two subunits of a hetero-dimeric integrin are highly compact, and their headpieces stay 
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close and bent toward cell membrane[13]. Upon activation, an integrin dramatically 

extends its headpiece away from the cell membrane, like a switch-blade. Companied with 

these large scale global conformational changes, local conformational rearrangements 

occur in the A domain of all integrins as well as in A domain if an integrin contains an 

A domain, i.e., LFA-1. The key component of the local conformational changes in 

LFA-1’s A domain is the downward movement of c-terminus 7 helix. This downward 

movement allosterically rearranges the conformation of MIDAS in the A domain to the 

open and high affinity state with longer bond lifetimes in binding with LFA-1’s ligands. 

This is caused by the downward movement of the 7 helix, the Glu127 at end of the 7 

helix anchors onto the MIDAS of the A domain and it acts as its intrinsic ligand [12]. 

Thus, most of time, these local conformational changes in the A domain always were 

accompanied by global conformational changes. But some small allosteric molecules, 

such as XVA143, can separate these global and local conformational changes; that is, 

such molecules induce extension of LFA-1 but prevent the binding of the 7 helix in the 

A domain to the MIDAS in the A domain so that the A domain is locked in close and 

low affinity state[19]. 

Considering the mechanical environment where integrins work, mechanical force 

plays a critical role in facilitating global and local conformational changes of integrins to 

activate integrins to a high affinity state by substantially increasing bond lifetimes. 

Experimentally, recent studies have demonstrated force-enhanced integrin’s functions 

[102, 103]. Also, by steered molecular dynamics simulations, researchers have suggested 

how force-activation of an integrin might occur [104, 105]. Thus, it is reasonable to 
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speculate that catch bonds, a counter-intuitive phenomenon of increasing bond lifetimes 

with increasing forces, exist in integrin/ligand bonds. To date, catch bonds have been 

observed in many molecular interactions, such as interactions between selectins and 

ligands [95, 106], glycoprotein Ib (GPIb) and von Willebrand factor (VWF) [49], actin 

and myosin [50], FimH receptor and mannose [51]. However, catch bonds for 

integrin/ligand interactions were not observed by loading rate-dependent rupture force 

measurements with AFM’s force-ramp experiments and DFS analysis [107-109], nor did 

cell tether lifetime measurements with a flow chamber [110]. Here, we used the BFP to 

measure bond lifetimes of LFA-1/ICAM-1 bonds at single molecule level. Catch bonds 

were observed in 5pN~15pN range. More importantly, we observed that XVA143’s 

binding to LFA-1 abolished its catch bonds in interacting with ICAM-1. Therefore, this 

abolishment by XVA143 may provide a structural mechanism to explain the catch bonds 

in the interactions between A domain containing integrins and their ligands. 

 

 

7.2 Results 

7.2.1 Binding specificity in the BFP experiment 

Using the BFP (Figure 7-1A), we directly measured the interactions between 

ICAM-1-Fc coated on a probe bead and LFA-1 expressed on a Jurkat cell. As shown in 

Figure 7-1, the Jurkat cell was aspirated on a micropipette driven by the PZT to approach 

and contact the probe bead (Figure 7-1). As described previously in chapter 3, the 

absence (Figure 3-1A) or presence (Figure 3-1B) of adhesion was detected upon the 

retraction of the target micropipette by the PZT to a desired force for a lifetime 
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measurement (Figure 3-1B). 

 

 

 

Figure 7-1. The BFP experiment. (A) Photomicrograph of a BFP. (B) Functionalization of the 

BFP. ICAM-1-Fc or KIM127 mAb were covalently linked to a streptavidin-decorated probe bead 

via hetero-bifunctional polymers, maleimide-PEG3500-NHS. LFA-1 integrins with bent or 

extended conformations were expressed on the Jurkat cell. KIM127’s binding site on a 

LFA-1(light blue star, pointed by the light blue arrow) exposed after LFA-1 extends is on the 

genu site of the  subunit of a LFA-1. The binding site of allosteric small molecule (XVA143, 

dark blue balls) is in the A domain of LFA-1 (pointed by the dark blue arrow). 

 
 
 
 
 

To ensure that the interaction between ICAM-1 and LFA-1 was specific, the binding 

frequencies were measured between a Jurkat cell and a probe bead coated with or without 

ICAM-1. As shown in Figure 7-2, the binding was highly specific, for it was almost 

suppressed when the probe bead was coated without ICAM-1 but only with streptavidin. 

In order to have majority (>90%) of adhesion events from a single ICAM-1/LFA-1 bond, 

the coating densities of ICAM-1 on the probe bead were specifically adjusted at Mn2+ or 

Mn2+ plus XVA143 (Mn2+/XVA143) to keep the adhesion frequency low enough, e.g., 
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15%~20%. The adhesion frequency was also kept in the same range in the lifetime 

measurement of the interactions between KIM127 mAb and LFA-1.  

 

 
 

 

Figure 7-2. Binding specificity. Binding frequencies between a Jurkat cell, expressing LFA-1, 

and a probe bead covalently coated with streptavidin only, streptavidin and ICAM-1 or KIM127 

mAb, were measured in ~50 tests of each pair of a target cell and a probe bead at 1mM Mn2+, 

1mM Mn2+, 1mM Mn2+ plus 1μM XVA143, or 1mM Mn2+ plus 100μg/ml soluble ICAM-1 

respectively. Error bars represented as mean ± S.E.M. of 3-5 pairs. 

 
 
 
 

7.2.2 Observation and characterization of catch bonds in the LFA-1/ICAM-1 

interaction  

Mechanical regulation of the dissociation of ICAM-1 from LFA-1 on Jurkat cells was 

quantified by measuring the force-dependent lifetimes of single ICAM-1/LFA-1 bonds at 
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a 1mM Mn2+ condition. With hundreds of lifetimes at different force levels, mean 

lifetimes were plotted as a function of binding forces. As expected, our results clearly 

show that LFA-1/ICAM-1’s binding exhibited catch bonds in low force regime and then 

transited to slip bonds once forces were beyond ~15pN. At ~15pN, the optimal force, the 

binding was strengthened to the optimal level and of the longest mean bond lifetime, 

~2.5s (Figure 7-3A).  

To further reinforce the observed catch bonds, force-dependent lifetimes of the 

interactions of LFA-1 with its antibody KIM127 were also measured. Since KIM127’s 

binding required the exposure of KIM127’s epitope in LFA-1 [111] (Figure 7-1B), Jurkat 

cells were incubated in HBSS- buffer (pH~7.4, ~150mOsm) with 1mMn2+ and 100μg/ml 

soluble ICAM-1. As shown in Figure 7-3 B, the mean lifetimes of the interaction between 

LFA-1 and KIM127 exhibited slip bonds. This was consistent with the force-dependent 

lifetimes of typical antigen-antibody interactions modeled by Bell[43]. Compared to the 

catch bonds in the LFA-1/CAM-1 interaction, this slip bond observation implies that the 

catch bonds observed previously were real, and that the catch bonds really depended on 

the binding of ICAM-1. 
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Figure 7-3. Force-dependent lifetimes of LFA-1/ICAM-1 and LFA-1/KIM127 bonds. (A) 

Plot of lifetimes (mean ± S.E.M.) vs. force of the interaction between ICAM-1 coated probe bead 

and the a Jurkat cell at 1mM Mn2+.  This plot shows the catch bonds in LFA-1-ICAM-1 bonds. 

(B) Plot of lifetimes (mean ± S.E.M.) vs. force of interactions between a KIM127 mAb coated 

probe bead and a Jurkat cell at 1mM Mn2+ and 100ug/ml soluble ICAM-1. This plots shows slip 

bonds in LFA-1-KIM127 bonds. Error bars in both (A) and (B) represent S.E.M..  

 

 

Besides different patterns of the transitions of force-regulated mean lifetimes in the 

above two interactions, the distributions of lifetimes of these two interactions at all force 

levels also exhibited different orders of exponential decay. To analyze a lifetime 

distribution, ln(# of events with a lifetime > t) versus t was plotted. As the minimum 

threshhold set in the lifetime measurements was 10s, only those lifetimes shorter than 10s 

were included in this analysis.  As shown in Figure 7-4A, LFA-1-ICAM-1 bonds 

exhibited a two-slope pattern in the plots of ln(# of events with a lifetime > t) versus t of 

each force in both the catch bonds regime (Figure 7-4A) and the slip bonds regime 

(Figure 7-4B). This two-slope pattern suggested a second order of exponential decay, 

which implied the coexistence of two binding states in the LFA-1/ICAM-1interaction. 

This two state binding observation suggested that ICAM-1 may dissociate from LFA-1 



101 

along two different pathways with two different dissociation rates. In contrast, the 

LFA-1-KIM127 bond exhibited the one-slope pattern of lifetime distributions, consistent 

with first order dissociation kinetics (Figure 7-4C). Furthermore, the lifetime distributions 

of LFA-1-ICAM-1 bonds clearly showed that in the low force regime (< 14pN) as force 

increased the plot of each lifetime distribution gradually swung rightwards (Figure 7-4A), 

indicating catch bonds; while in the high force regime (>14 pN) as force increased the 

plot of each lifetime distribution gradually swung leftwards, indicating slip bonds (Figure 

7-4B and C).  

 

 

 

Figure 7-4. Lifetime analysis. Normalized ln(number of events with a lifetime > t ) versus t plots 

for interactions of LFA-1 with ICAM-1 within catch bonds regime (A) and slip bonds regime (B) 

or with mAb KIM127. Plots in (C) were linearly fitted.  

 

More interestingly, the fractions of all lifetimes longer than 10s were also dependent 

on the binding force between LFA-1 and ICAM-1. As shown in Figure 7-5, as force 

increased in the low force range, the fractions increased first but decreased when force 

was further increased.  This biphasic transition pattern of the force-dependent fractions 

of long-lived lifetimes suggested that mechanical force could strengthen the 
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LFA-1-ICAM-1 bond by shifting more short-lived LFA-1-ICAM-1 bonds to long-lived 

bond lifetimes. Thus, this shifting of bond lifetimes further supported previously 

observed catch bonds.  

 

 

 

Figure 7-5. Plot of the fraction of events with a lifetimes >10s within each force bin vs. force 

of the interactions of LFA-1 with ICAM-1. 

 
 
 

7.2.3 Binding of XVA143’s to LFA-1 abolished LFA-1-ICAM-1’s catch bonds 

Having observed catch bonds between LFA-1 and ICAM-1 by previous lifetime 

analysis, we were more interested in the structural mechanism by which force regulates 

LFA-1’s catch bonds. Related two-state transitions of bond lifetimes with closed and 

open conformations in LFA-1’s A domain, it was reasonable to hypothesize that the 

downward movement of the 7 helix in the A domain regulated the catch bonds in the 

LFA-1-ICAM-1 interaction. To test this hypothesis, a small allosteric molecule, XVA143, 
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that induced LFA-1 switch-blade extension but locked A domain in the close 

conformation, was used in the lifetime measurements of LFA-1-ICAM-1 interactions. As 

before, the force-dependent lifetimes of LFA-1-ICAM-1 bonds were measured and 

quantified upon XVA143’s binding to LFA-1. As expected, our results showed that 

XVA143’s binding to LFA-1 completely abolished catch bonds in the interactions 

between LFA-1 and ICAM-1 at 1mM Mn2+, and the lifetimes of LFA-1-ICAM-1 bonds 

exhibited only slip bonds, decreasing from the maximum, ~0.3s, at the lowest force, ~8 

pN (Figure 7-6A). More interestingly, the two-slope pattern did not exist in the plots of 

ln(# of events with a lifetime > t) versus t.(Figure 7-6B) at this condition. Instead, these 

plots only exhibited single exponential decay, suggesting that LFA-1 dissociated from 

ICAM-1 along a single pathway that might overlap with the fast dissociating pathway in 

the catch bonds. These lifetimes of LFA-1-ICAM-1 bonds upon XVA143’s binding not 

only provided a control to further support the observed catch bonds, but also, more 

importantly, might reveal a structural mechanism to explain the catch bonds.   

 

 



104 

Figure 7-6. Force-dependent lifetimes of LFA-1/ICAM-1 bonds upon 1μM XVA143 binding 

and analysis on these lifetimes.  (A) Plot of lifetimes as a function of force, fitted by Bell 

model[43]. Error bars represented S.E.M.. (B) Normalized ln(number of events with a lifetime > t 

) versus t plots for the interactions of LFA-1 with ICAM-1 upon 1μM XVA143 binding. Each 

plot is linearly fitted. 

7.3 Discussion 

Many molecular interactions, such as selectin-ligand [47, 48], GPIb/VWF[49] 

actin/myosin[50], and FimH/mannose [51] interactions, have exhibited counter-intuitive 

catch bonds phenomena. It has been also speculated for a few years that integrin/ligand 

interactions may also behave as catch bonds based on integrin’s special structures and on 

models of their global and local conformational changes. However, previous published 

works did not reveal the existence of catch bonds in integrin/ligand interactions, because 

in these works researchers used DFS, assuming that dissociation occurred along a single 

exponential pathway and that bond lifetime decreased exponentially with increasing 

forces [107-109] as modeled by Bell [43], to analyze rupture forces from force-ramping 

experiments. In this chapter, using the BFP lifetime experiments, the catch bonds were 

observed in-situ in the interaction between LFA-1 and ICAM-1.  

Catch bonds have been believed to tightly relate to the molecular structures of 

receptors, especially the ligand binding domain. Structural models have been proposed 

for the catch bonds between selectins and ligands [112], FimH and mannose [51], and 

GPIb and VWF [49]. Whether is global or local conformational changes required for 

LFA-1/ICAM-1’s catch bonds? It has been known that extending an integrin could 

change integrins from a bent and low affinity state with short bond lifetimes to an 

extended and high affinity state with long bond lifetimes. Extension of the A domain 
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containing integrin, i.e., LFA-1, could rearrange the local conformations of the A 

domain by pulling down C-terminus 7 helix. The downward movement of this 7 helix 

allosterically opened up the A domain to a high affinity state. Thus, mechanical forces 

could stabilize the position of the 7 helix in the position where the A domain adopted 

high affinity state so that force could prolong bond lifetimes in a low force regime. This 

structural mechanism of the stabilization by mechanical force could be supported by our 

observed catch bonds in ICAM-1/LFA-1 interactions and slip bonds upon XVA143’s 

binding to LFA-1. Upon XVA143’s binding, the lifetimes of LFA-1-ICAM-1 become 

much shorter than those of catch bonds. This was consistent with a previous observation 

that XVA143’s binding to LFA-1 could only support K562’s rolling but not firm 

adhesion on ICAM-1 coated surface in flow chamber experiments[113]. This 

abolishment of catch bonds further supported our hypothesis and clearly suggested one 

possible structural mechanism of catch bonds in ICAM-1/LFA-1 interactions. This 

structural mechanism might be that force facilitated the 7 helix downward movement, 

allosterically opened up the MIDAS in the A domain, and stabilized the MIDAS in high 

affinity state. So the higher force could result in a better stabilization of open 

conformations of the MIDAS so that it prolonged bond lifetimes between LFA-1 and 

ICAM-1. However, XVA143 blocked this 7 helix downward movement toward and 

binding to the MIDAS in the A domain so that the A domain was kept in the low 

affinity state under stressed condition[19]. As the 7 helix in the A domain behaved in a 

manner similar to that in the A domain[114], it is reasonable to speculate that catch 

bonds should exist in the A domain bond lacking integrins and their ligands, and that 
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movement of the 7 helix in the A domain might be the key to unravel the mechanism 

of A domain lacking integrin’s catch bonds.  

In addition to this structural explanation, catch bonds could also be explained from 

the biophysical view of point. Without XVA143, the distributions of lifetimes of 

LFA-1-ICAM-1 bonds at each force level did not follow first order kinetic of single bond 

dissociation, single exponential decay. Instead, two-slope patterns, suggesting dual 

exponential decays, were very pronounced in both the catch-bond regime (Figure 7-4A) 

and the slip-bond regime of LFA-1-ICAM-1 bonds (Figure 7-4B). The dual exponential 

distribution of lifetimes suggested that two binding states may co-exist in the 

LFA-1-ICAM-1 bonds, and these bonds could switch between these two states, like 

interactions between selectins and their ligands [48, 55]. Upon force-activation, 

mechanical force can shift some subpopulation of LFA-1-ICAM-1 bonds from the state 

with low affinity and short lifetime to the other with high affinity and longer lifetimes. 

Phenomenologically, this shift results in increasing the mean lifetimes as force increased 

in low force regimes, so-called “catch bonds”. Once all bonds were shifted to the high 

affinity state, further increasing force could not prolong lifetimes any more; lifetimes 

would instead decrease as the Bell model predicted. XVA143’s binding to LFA-1 

converted catch bonds to slip bonds in the LFA-1/ICAM-1 interaction, implying that this 

binding shifted all bonds to the low affinity state and blocked the transitions between 

these two states at the same time.  

As a mechnotransducer, integrins transmit both mechanical and biochemical signals 

bi-directionally across the cell membrane via either inside-out or outside-in signaling 

pathway. Since mechanical forces are very complicated in the biological environment, 
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integrins should be able to respond differently to various mechanical stimuli. For example, 

LFA-1 behaves completely differently at an inflamed vascular site where shear stress 

exists from at lymph nodes where shear stress is free. This ability to strengthen bonds 

with forces may be important for LFA-1/ligands bonds for regulating leukocyte rolling 

and firm adhesion during leukocyte trafficking. As well, the ability to greatly reduce 

lifetimes of the LFA-1/ICAM-1 bond in order to shut down the adhesiveness of LFA-1 is 

very important for a leukocyte searching for its cognate antigens inside the secondary 

lymphatic organs. Therefore, catch bonds provide a mechanical mechanism at the 

molecular level for the cell to regulate adhesion by applying different forces externally or 

internally as desired. 
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CHAPTER 8  

PROBE FORCE REGULATED DYNAMIC CONFORMATIONAL 

CHANGES OF LFA-1 INTEGRIN ON A LIVING CELL 

 

8.1 Introduction 

Integrin, heterodimeteric membrane proteins (e.g., LFA-1 or L 2 ), play a critical 

role in the interactions between cells and cells or between cells and extracellular matrix 

(ECM) in various cellular processes. For example, LFA-1 ( L 2 integrin), containing an 

A domain where ligands (e.g., ICAM-1) bind, mainly mediates leukocyte rolling on and 

firm adhesions to endothelial beds at inflamed sites during leukocyte trafficking. 

Integrins regulate their physiological functions by changing their conformations between 

multiple states.  

To date, multiple conformational states of integrins have been identified by many 

groups with various advanced high-resolution techniques. Using crystallography, the first 

crystal structure of integrin V 3  was published by Xiong et al. in 2001, showing an 

unexpected V-shape bent conformation in 2001[15]. Later, EM was utilized by some 

groups to probe integrin’s conformations with nanometer resolution. For example, 

Springer’s group at Harvard utilized negative stained EM to identify multiple 

conformations of integrins 5 1[115, 116], IIb 3[39, 117], x 2 and L 2[42]. All 

these integrins have been reported to be able to switch between bent and extended 
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conformations, like a switchblade, upon different extracellular or intracellular stimuli, 

such as RGD peptide, cations (Mn2+), activating mAbs, signaling from other receptors 

(e.g., TCR or GPCR) and small allosteric molecules [39, 42], such as XVA143. XVA143 

is believed to act on the MIDAS of the A domain and to lead to the A activation by 

swinging out the hybrid domain while preventing downward movement of the 7 helix in 

the A domain and locking it in the close and low affinity state[14]. Once the integrin is 

extended, the ligand binding site of the top of the integrin would pivot away from the cell 

membrane by about 15nm for A domain lacking integrin, such as 5 1, v 3 and 

IIb 3, or ~20nm for the A domain containing integrins, such as x 2 and L 2, 

based on the EM studies [36, 39, 115, 116].  

Since majority of integrins behave as mechano-chemical sensors, they could transmit 

both mechanical and biochemical signals bi-directionally across the cell membrane. 

External and internal mechanical forces are believed to be a very important regulator on 

changing integrin’s conformations. For example, during leukocyte trafficking, shear 

stress could up-regulate L 2 and 4 1 integrin’s adhesiveness to their ligands by 

changing integrin’s conformations after the T lymphocytes received chemokine signals. 

Behaving like external forces, it has been postulated that internal forces from the 

myosin’s pulling on the cytoskeleton might also be able to change L 2 integrin’s 

conformations in order to activate them in the immunological synapse formation[18].  

All previous experiments reported only static conformational states of integrins 

under stress-free condition, but the dynamic properties of these conformational changes 

and the way that external forces facilitate these transitions remain elusive. With the FRET 

technique, Chigave et al. detected population conformational changes of integrins 4 1 
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that were expressed on cells and reported some temporal information concerning 4 1 

integrin’s conformational changes[118, 119], but their results were still collected in a 

stress-free environment, and the behavior of a single integrin under forces was still not 

clear. Here, using the BFP (Figure 8-1A), the interaction was directly measured between 

ICAM-1-Fc, mAb MEM83 or KIM127 coated on a probe bead and LFA-1 expressed on a 

Jurkat cell. As shown in Figure 8-1A, a Jurkat cell was aspirated on a micropipette driven 

by the PZT to approach and contact the probe bead that was covalently linked with 

ICAM-1. The processes of the dynamic transitions of LFA-1 integrin between extended 

and bent conformations on living Jurkat cells were demonstrated by the 

force-independent position changes of the BFP probe beads, by the frequencies at which 

of these changes are modulated by cations (e.g., Mn2+ and Mg2+, small allosteric 

molecule, XVA143, and different antibodies (e.g., mAb KIM127 or MEM83), and by the 

mechanical analysis on LFA-1-ICAM-1 complexes in the above conditions. Our results 

showed that the observed mean distance change of LFA-1’s extension was about 18nm, 

while that of contraction was about 14nm.  Finally, the way the external forces 

facilitated the extending and contracting processes was characterized by the BFP.  
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Figure 8-1. Photo micrograph of the Bio-membrane force probe (BFP). A 

micropipette-aspirated biotinylated RBC with a bead (probe) glued to its apex (left) was aligned 

against a cell (target) aspirated by a target micropipette (right). B) Functionalization of the BFP. 

ICAM-1-Fc, mAbs KIM127 or MEM83 were covalently linked on the streptavidin-coated probe 

bead via maleimide-PEG3500-NHS hetero-bifunctional polymers. LFA-1 integrins with bent or 

extended conformations were expressed on the target cell. KIM127’s binding site on a 

LFA-1(light blue star) is on the genu site of the LFA-1’s  subunit. Allosteric small molecule 

(XVA143, dark blue balls) binds to the LFA-1’s A domain, induces LFA-1’s extended 

conformations, but locks the A domain in close conformation and low affinity state. The probe 

bead moved up and down, indicated by a double headed arrow next to it. 
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8.2 Results 

8.2.1 Observations of the upward and downward movements of the probe beads 

after the PZT stopped 

Using the BFP to measure the LFA-1/ICAM-1 interaction, we observed unusual 

upward and downward movements of the probe bead at different force levels (Figure 

8-1B). Since our results showed that the distances of these movements seemed to be 

narrowly distributed in a 20 nm range, we hypothesized that these position changes of the 

probe bead might result from the global conformational changes of LFA-1. To test this 

hypothesis, the distance distributions of the probe bead’s upward and downward 

movements were firstly characterized at different levels of binding forces, and the 

occurrence frequencies of these movements at different modulating conditions were also 

measured.  

In order to probe these position changes of probe beads, the BFP was run at a 

distance-clamp mode. In this mode, the target pipette, holding the LFA-1 expressing cells, 

was driven to approach to and then contact the ICAM-1 (or other mAbs, e.g., MEM83 or 

KIM127) coated probe bead; it was then retracted away from the probe bead to a certain 

distance, and held at that position for ~30s. Since the target cell’s position was clamped, 

any distance changes between two surfaces linked by a molecular bond could possibly 

result in upward or downward movements on the probe bead. After the distance-clamp 

phase, the target pipette was fully retracted back to the initial position, and the BFP 

recovered to the unstressed state. Repeating this cycle many times, the occurrence 

frequencies of the upward and downward events of probe bead’s position changes were 

measured. In order to ensure the measurements at single molecule level, the adhesion 
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frequencies were kept lower than 15%~20%.  

To acquire the distances changes of these upward and downward movements, the 

plots of the displacements of the probe bead movements as a function of time (Figure 8-2 

A and C) were carefully analyzed. The first type of position change of the probe bead was 

an increased displacement, so-called upward movement; that is, the probe bead was 

moving up after the PZT stopped. This upward movement of the probe bead might 

indicate an extension of LFA-1, this speculation needed further investigation. As shown 

in Figure 8-2A, after the PZT stopped, the position of the bead was at 40nm for about 0.1 

second, and it was then suddenly increased by ~21nm. This position change of the probe 

bead resulted in a ~7pN force drop from ~35pN (Figure 8-2C).  Contrary to the first 

type of position changes, the other type of observed position change was of a decreased 

displacement, so-called downward movement, that is, the probe bead moved down after 

the PZT stopped. As shown in Figure 8-2 B and D, initially the LFA-1-ICAM-1 bond was 

loaded to ~20pN (Figure 8-2D), and then the position of the probe bead moved down 

~16nm (Figure 8-2B) after the PZT stopped. This downward movement of the probe bead 

resulted in ~7pN force increment from ~18pN (Figure 8-2D).  
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Figure 8-2. Experimental observations of abrupt position changes of the probe bead after 

the PZT stopped. Plots of the position as a function of time (grey circle), showing that the probe 

bead move up 21nm (A) or move down in ~18 nm (B) after the PZT stopped. The solid gray 

curve is the smoothed plot of extension vs. time curve. C)-D) Plots of the binding forces 

measured by the BFP (blue circle) as a function of time, showing force decreases (C) or increases 

(D) after PZT-driven target pipette stopped (the moment is marked by vertical, dashed and grey 

line). The solid blue curve is the smoothed force-vs.-time plot. After the PZT stopped, time to 

force-drop (D) or time to force-increase (D) and the switching time are defined as t0 and tsw 

respectively.  
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8.2.2 Statistical analysis of probe beads movements reveals integrin’s global 

conformational changes 

To further investigate whether these upward and downward movements of the probe 

beads were indeed caused by the global conformational changes of LFA-1 integrins, a 

series of experiments and statistical analyses were carried out to test this hypothesis. 

Firstly, the impact of binding force on these up and down movement was characterized. 

As shown in Figure 8-2, that distance changes of upward and downward movements were 

narrowly distributed as Gaussian around 18nm±3nm (SD) and 14nm±4nm (SD) 

respectively (Figure 8-2 C and D), and they were independent of the binding forces 

between LFA-1 and ICAM-1 (Figure 8-2 A and B). Since the distances of these 

movements were much shorter than cellular movements, which should be hundreds of 

nanometers, it was reasonable to exclude the possibility of cellular movement.   

Furthermore, the force-independent displacements of these movements suggested that 

these movements were not caused by the membrane tether extrusion, for the extrusions 

were strongly dependent on pulling forces [120]. 
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Figure 8-3. Scatter plots of position changes of the probe bead upward movements (A) or 

downward movement (C) after the PZT stopped versus force. These two plots show that the 

displacements of position changes of BFP’s probe beads were not dependent on binding forces 

between LFA-1 and ICAM-1. The average of the position changes of upward or downward 

movements of the probe bead (solid line) and one  standard deviation (dashed lines) are 

superimposed on the scatter plots. On left side of each scatter plot is the corresponding histogram 

of the position changes fitted with Gaussian distribution (solid grey line) (B, D).  
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To further exclude the possibility that these movements were caused by the cell’s 

motions, the same experiments were repeated on three different types of cells (K562, 

PMN and Jurkat cells). All of these cells expressed LFA-1 integrins. If these movements 

indeed were caused by LFA-1’s conformational changes, the distances of probe bead’s 

movements should be consistent on all of three different cells. Comparison of data 

collected from three different types of cells showed that the mean distances of upward 

and downward movements of the probe bead were statistically similar on all of the three 

different cells (Figure 8-4). This similarity strongly suggested that these upward and 

downward movements were not dependent on cell types but were more likely dependent 

on adhesion molecules, LFA-1.  Thus, these cell types’ independent and 

force-independent position changes of the probe beads with narrow distributions around 

10~20nm ruled out the possibility of cell movements and also supported our hypotheses 

that these displacements more likely were molecular behaviors. The most likely candidate 

was integrin’s conformational changes, as the displacement changes of upward and 

downward movements fit very well in the range of LFA-1’s conformational changes, 

15nm~20nm, observed by EM [42].  
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Figure 8-4. Comparison of the mean displacements of upward or downward movements of 

the BFP probe bead. The probe bead coated ICAM-1 were tested with three different types of 

cells (K562, PMN and Jurkat cells), and all of them expressed LFA-1, Error bars represent 

S.E.M.. 

 
 
 
 

If these upward and downward movements of probe beads were indeed caused by 

LFA-1’s global conformational changes, the occurrence frequencies of these movements 

should be dependent on the stimulating conditions, which could cause LFA-1 integrins to 

switch to different conformations. To test this hypothesis, firstly, occurrence frequencies 

of upward and downward movements of the ICAM-1 coated probe bead were measured 

at 2mMg2+/EGTA or 1mM Mn2+ condition. Our data showed that the occurrence 

frequency of the downward movements of the probe beads at the Mn2+ condition was 

statistically greater than that at 2mMg2+/EGTA, while the occurrence frequency of 

upward movements was very similar (Figure 8-4A). Related to published data [39, 42] 

that Mn2+ could greatly shift inactive and bent integrins to extended conformations, our 
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data suggested that the differences of the occurrence frequencies of downward 

movements should be caused by changing cations, Mg2+/EGTA to Mn2+, and these 

differences clearly implied that the movements of the probe bead were very possibly 

resulted by LFA-1’s global conformational changes.  

Instead of using LFA-1’s ligand, ICAM-1, to probe the probe bead movements, 

anti-LFA-1 mAb was next used to test with forces whether these antibodies could also 

induce LFA-1 conformational changes, which would then result in the probe bead’s 

movements after the PZT stopped. Two antibodies were utilized, one was mAb MEM83, 

binding to LFA-1’s A domain[111, 121], and the other one was mAb KIM127, which 

binds to the genu region of LFA-1’s  subunit only when LFA-1 adopts the extended 

conformation[111] (Figure 8-1B). Because the binding sites of these two mAbs on LFA-1 

were different, we hypothesized that using MEM83 mAb coated beads to probe cells 

should result in similar upward and downward movements on probe beads as those 

movements observed by ICAM-1 coated probe beads, while KIM127 should not. As 

shown in Figure 8-5, our data clearly showed that with the MEM83 coated probe bead, 

not only were upward and downward movements of probe beads observed after the PZT 

stopped, but also the occurrence frequency of these movements depended on the cations 

in the solution. Figure 8-5A showed that Mn2+ raised the occurrence frequency of upward 

movements compared to that at the Mg2+ condition when the MEM83 coated bead was 

used.  However, the occurrence frequencies of such movements dropped to almost zero 

and were not affected by changing metal ions when the KIM127 probe bead was used 

(Figure 8-5A). This was reasonable, because the KIM127’s epitope is located on the genu 

region, so the global conformational changes should not affect its position. Unlike 
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KIM127’s epitope, MEM83’s is located on the A domain so that the global 

conformational changes of LFA-1 could induce its upward or downward movements. 

Thus, the results of using mAbs MEM-83 or KIM127 probe beads strongly supported our 

hypotheses that the upward and downward movements of the probe bead was caused by 

the large scale, switchblade-like globe conformational changes of LFA-1.  

More interestingly, the binding of the small allosteric molecule (XVA143) to LFA-1 

suppressed the occurrence frequencies of probe bead’s movements. It was believed that 

XVA143, binding to A domain, could extend LFA-1 integrins to the straight 

conformation[14]. The same distance clamped experiments were run at different 

incubating conditions for Jurkat cells; that is, all Jurkat cells were incubated with 1mM 

Mn2+ and XVA143 at varied concentrations from 0 nM to the saturating condition of 

XVA143, 1000 nM. Our data showed that at the condition of 1000 nM XVA143, upward 

and downward movements of the probe bead did not occur at all (Figure 8-5 B). 

According to the XVA143’s functions, this abolishment suggested that XVA143 not only 

extended the majority of LFA-1 integrins, but also locked them at extended conformation 

so that it abolished LFA-1’s ability to bend back. However, when XV143’s concentration 

was gradually reduced to 0 nM, the occurrence frequencies of upward and downward 

movements of probe beads gradually recovered to the level where no XVA143 was found 

but only 1mM Mn2+ (Figure 8-5B). This XVA143-dose-dependent occurrence frequency 

clearly showed that the reduction of the XVA143 caused upward and downward 

movements of the probe beads more frequently. It is reasonable to speculate that recovery 

of these movements were caused by the recovery of LFA-1’s dynamic global 

conformation when XVA143 was reduced, since different doses of XVA143 could shift 
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different amounts of LFA-1s to extended conformation and could lock them to different 

extents. Therefore, combined with distances data and occurrence frequencies data, these 

observed movements of the probe beads were very likely caused by global 

conformational changes of LFA-1 integrins. Therefore, the upward movement of the 

probe might reflect LFA-1’s extension from the bent state, while the downward 

movement might indicate LFA-1’s contraction from the extended conformation. 

 

 

 

Figure 8-5. Comparison of occurrence frequencies of upward and downward movements of 

probe beads. A) Comparison of the occurrence frequencies of upward or downward movements 

of the BFP probe bead between LFA-1 integrin and its ligand (e.g., ICAM-1) at different 

conditions (2mM Mg2+/EGTA, 1mM Mn2+) or between LFA-1 and mAbs MEM83 (at 2mM 

Mg2+/EGTA or 1mM Mn2+) or KIM127 (at 1mM Mn2+ plus 100μg/ml sICAM-1). B) XVA143’s 

dose-dependent occurrence frequencies of upward or downward movements of the BFP probe 

beads. XVA143’s does ranges from 0 nM to 1000 nM. 
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8.2.3 Mechanical analysis further confirmed the observed conformational changes of 

LFA-1 integrin 

The above analysis of the distances and occurrence frequencies of the probe 

beads’ movements have strongly suggested the possible observations of dynamic and 

switchblade-like conformational changes of LFA-1. To further reinforce that these 

observations were dynamic switches of LFA-1, the mechanical stiffness of LFA-ICAM-1 

complex different conditions was next analyzed, as bent and extended integrins may be of 

different stiffness. The method used to measure molecular spring constants was the 

stretching method [122], by which the slope of the ascending phase (Figure 8-6, blue or 

red dashed line) of force vs. molecular extension plot (Figure 8-6) was measured. Two 

segments were presented in the ascending phase, as shown in Figure 8-6. During the 

BFP’s impingement, linear fitting on the slope of the ascending phase (red dashed line, 

Figure 8-6) provides the cellular stiffness, kc. Our results showed that the average cellular 

compliance was around 0.25 pN/nm at the condition of 1mMMn2+ and 0.2 pN/nm at the 

condition of 2mM Mg2+/EGTA. After binding force occurred, linear fitting in the ramping 

phase provided the effective compliance keff, the product of two springs in series. These 

two springs consisted of the spring (km) of the LFA-1-ICAM-1 complex and the spring (kc) 

from the cell. Since these two springs were in series, they had the following relation,  

1/ keff = 1/ km +1/ kc ,       Equation 8-1  

With Equation 8-1, kc could be calculated, given km and keff.  
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Figure 8-6. Plot of force vs. extension for measuring molecular compliance. The slope of red 

dashed line provides the cellular compliance kc, while the slope of the blue dashed line provides 

the effective compliance (keff ) which represents two springs in serial. 

 

LFA-1-ICAM-1 complex’s compliances were affected by the divalent cations. As 

shown in Figure 8-7, at the Mg2+ condition, the majority of the LFA-1-ICAM-1’s spring 

constants tightly distributed below 0.5 pN/nm. While more than 70% of spring constants 

were smaller 0.25 pN/nm (Figure 8-7A, red solid fitting by Gaussian), and the rest were 

between 0.25 pN/nm and 0.5 pN/nm (Figure 8-7A, blue solid fitting by Gaussian). 

However, once the cations were switched to the 1mM Mn2+, our data showed that both 

sub-populations of spring constants shifted rightwards to the stiffer side. The softer 

sub-population distributed around 0.25 pN/nm (Figure 8-7B, red dashed fitting by 

Gaussian ), very close to that at Mg2+/EGTA condition; while the stiffer one distributed 

around 1 pN/nm (Figure 8-7B, blue dashed fitting by Gaussian), becoming more 

pronounced than that in Mg2+/EGTA condition. These shifts clearly corresponded to 
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metal ion changes and suggested that more LFA -1s adopting extended conformation at 

Mn2+ resulted the right shift of spring constant histogram. This data implied that extended 

integrin seemed much stiffer than a bent one.  

 

 

Figure 8-7. Histograms of molecular spring constants of LFA-1-ICAM-1 complex at the 

condition of 2mM Mg
2+

/EGTA (A) or at the condition of 1mM Mn
2+

. Two sub-populations of 

the histograms were fitted by Gaussian distribution (red and blue solid line in (A) and dashed line 

in (B) respectively. 

 

If extensions of LFA-1 could cause stiffening of LFA-1-ICAM-1 complex, adding 

various concentrations of XVA143 should also augment the stiffness of the complex to 

different extent. To test this hypothesis, the spring constants of LFA-1-ICAM-1 complex 

at the different concentrations of XVA143 were also characterized. As shown in Figure 

8-8, the spring constants of LFA-1-ICAM-1 complex increased as the concentration of 

XVA143 was increased, strongly suggesting that the extended LFA-1 was stiffer than 

bent one. As a control, the spring constants of KIM127-LFA-1 complex were also 

measured. The results showed that this complex was even stiffer than LFA-1-ICAM-1 

complex at the condition of Mn2+ plus 1μM XVA143.  It is reasonable because of two 
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reasons, 1) KIM127 was a more compact protein than ICAM-1 so that KIM127 should be 

stiffer than ICAM-1, and 2) KIM127 bound to the genu of  subunit of LFA-1 so that the 

effective spring constant from the leg regimes of LFA-1 was stiffer than the whole of 

LFA-1, as the number of domains contributing to the complex stiffness was much less 

than that of whole LFA-1[122]. Therefore, these stiffness data strongly suggest that an 

extended LFA-1 is much stiffer than the bent one.  

 

 

 

 

Figure 8-8. Plots of spring constants of LFA-1-ICAM-1 bonds versus XVA143’s doses at the 

conditions of Mg
2+

/EGTA (bottom dashed line), Mn
2+ 

without or with different 

concentrations of small alloestric molecule, XVA143, and spring constants of 

LFA-1-KIM127 bonds at the conditions of 1mM Mn
2+

and 100μg/ml soluble ICAM-1(upper 

dashed line). Error bars represent S.E.M.. 
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Relating this stiffness data with previous data of probe bead’s upward and 

downward movements, we thought that if bead’s movements indeed were caused by 

LFA-1’s global conformational changes, prior to the conformational changes, the 

stiffness of the LFA-1-ICAM-1 complex from the ramping phase should tell us whether 

the LFA-1 was bent or extended.  Thus, two different groups of stiffness data were 

pooled together.  One group of stiffness data was from the ramping phase prior to the 

probe bead’s moving up, i.e., more likely extension of LFA-1, and the other ones were 

from the ramping phase right prior to the probe bead’s moving down, more likely 

LFA-1’s contraction. As shown in Figure 8-9, the majority of spring constants prior to 

upward movements of the probe beads were below 0.25 pN/nm and distributed around 

0.16 pN/nm (gray histogram fitted by blue solid line), while those prior to downward 

movements of the probe beads were ~5 times stiffer and distributed around 1 pN/nm 

(yellow histogram fitted by red dashed line) (Figure 8-9). Since it has been known that an 

extended LFA-1 was stiffer than a bent one, these results strongly suggest that LFA-1 

were bent prior to the probe bead’s moving up which was caused by the extension of 

LFA-1, while LFA-1 was extended prior to the probe bead’s moving down caused by the 

contraction of LFA-1. Thus, this stiffness analysis of the events of upward and downward 

movement of the probe bead further supported and strengthened our main hypothesis that 

these probe bead movements were indeed caused by LFA-1 global conformational 

changes.  
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Figure 8-9. Histograms of molecular spring constants of LFA-1-1-ICAM-1 bonds of 

increased (gray) or decreased (yellow) displacements. Each histogram was fitted by different 

Gaussian distributions. The blue one (solid line) fits the histogram of increased displacements 

(gray), and the peak of this fitting is about 0.16 pN/nm. While the red one (dashed line) fits the 

histogram of decreased displacements (yellow), and the peak of this fitting is about 0.97 pN/nm. 

 
 
 
 

8.2.4 Characterization of dynamic properties of global conformational changes of 

LFA-1  

Having shown the in-situ observation of LFA-1 dynamic conformational changes, 

we next characterized the dynamic properties of LFA-1’s transitions between different 

conformational states. Interestingly, our results showed that these dynamic transitions 

were dependent on the binding force exerted on the LFA-ICAM-1’s bond but not on cell 

types. First of all, the average switching times of single LFA-1 from the bent state to the 

extended or from the extended to the bent were characterized. The switching time was 

defined as the time from the moment the extension change started to the moment the 
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extension change of the single LFA-1 ended, as shown in (Figure 8-2 A and C). As shown 

in Figure 8-10A, it was statistically significant that LFA-1 took much more time to 

contract back than to extend, and this difference was consistent on three different types of 

cells (K562, PMN and Jurkat cells). Similarly, a time to switch, defined as a time from 

the moment the PZT stopped to the moment the extension change of LFA-1 started, was 

also characterized. The results of times to switch suggested that LFA-1 took much more 

time to start contracting than to extend (Figure 8-10B). More interestingly, our results 

revealed that LFA-1 switching from the bent state to the extended state became faster as 

binding forces increased, while the contraction of LFA-1 from the extended conformation 

became slower as binding forces increased. Thus, these data strongly implied that 

switching times of conformational changes were strongly dependent on the binding 

forces exerted on LFA-1 integrin-ICAM-1 bond (Figure 8-10C). Especially over the 

threshold of 30 pN, the contractions events were rarely observed. This threshold implied 

that LFA-1 could overcome small external forces but not large forces to contract back, 

and that external forces could facilitate the LFA-1 switchblade-like extension and lock it 

in the extended conformation when forces are large enough..  
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Figure 8-10. Characterization of the conformational changes of LFA-1 integrins. A) Plots of 

switching times of conformational changes of LFA-1 integrins as a function of binding force. B) 

Comparison of average switching times between extension or bent-back of LFA-1 integrins on 

K562, PMN and Jurkat Cells. Error bars represent S.E.M.. C) Comparison of t0, time to 

conformational changes after the PZT stops between extensions or bent-back of LFA-1s on K562, 

PMN and Jurkat Cells. Error bars represent S.E.M.. 

 
 
 

8.3 Discussion 

Dynamic switchblade-like conformational changes of integrins have been proposed 

for a few years[37]. But this model was only based on static EM images, crystal 

structures and antibody epitope’s mapping under stress-free conditions. [15, 37, 39, 42, 

123]. Our observation described previously was the first to provide a clear picture of how 

mechanical force regulates the dynamic process of integrin’s conformational changes at 

the single molecular level on a living cell. Our findings greatly strengthen and extend the 

current framework of integrin’s conformational changes. 

Excluding possible cellular motions that may cause the probe bead’s movements, to 

justify that our observations were indeed due to integrin’s conformational changes was 
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very necessary, as a living cell is was a very complicated environment for studying 

receptor-ligand interactions at the single molecular level. Any motions on the cell surface, 

for example, tether extrusion by force or cell membrane polarization could bring 

tremendous noise into our system, which would greatly bias our judgments on the 

measurements. In order to ensure that our observations of upward and downward 

movement of the probe beads were essentially caused by LFA-1’s conformational 

changes, we carried out a series of vigorous mechanical analyses on the molecular spring 

constants and statistical analysis on the distributions of probe beads’ movements, on the 

mechanical force’s effect, and on cations and XVA143’s modulations on the probe bead’s 

movements. Narrow distributions of distances changes of the probe bead’s movements in 

10~20nm ranges helped us to exclude cellular level motion. Force-independent 

displacements further ruled out the membrane tether extrusion.  

In addition to the cellular motion, the dissociation of double LFA-1-ICAM-1 bond 

could also cause similar extension changes, especially force-down events. Because 

ICAM-1-Fc is a chimerical molecule, there was about 10% probability of forming two 

LFA-1-ICAM-1 bonds at the same time. In this case, the dissociation of one ICAM-1 

from the target cell could cause the force-down events, which might be resulted from the 

15nm molecular extension increment. This extension changes phenomenologically 

similar to LFA-1’s unbending.  However, our data can exclude this possibility. First of 

all, our force-up events do not favor the possibility of double bonds, since double 

LFA-1-ICAM-1 bonds could not be able to induce force-up event. Secondly, the 

occurrence frequencies of force-up and force-down events were really dependent on the 

metal ion conditions and XVA143’s doses. This observation strongly does not favor the 
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double bond possibility. Moreover, the molecular stiffness analysis further weakens this 

possibility. Our data show that the LFA-1-ICAM-1 complex was much softer before 

force-drop events than before force-up events. If force-drop was caused by the 

dissociation of one arm of ICAM-1-Fc chimera from the target cell, there should be two 

bonds stretched in parallel. Thus, the molecular stiffness in this case should be stiffer than 

one bond case, such as force-up event. But our data exhibit an opposite scenario. 

Therefore, the double bond possibility is not supported by our data from multiple aspects.  

Cations have been known for regulating LFA-1 integrin’s conformations. They have 

been widely used in many experiments, such as EM studies for observing integrin’s 

global conformational changes[39, 42] and flow chamber assays for studying 

integrin-mediated cell rolling and firm adhesion [113]. Mg2+/EGTA and Mn2+ were 

well-known potent stimuli activating integrin’s affinity. Mn2+ had also shown its strong 

ability to induce LFA-1’s extension, while Mg2+’s effect on that was still not very clear. 

According to our results, very few downward movements occurred at the Mg2+ condition, 

and this suggested that the majority of LFA-1 adopted the bent conformation, which was 

consistent with reported results[124] that exposure of KIM127’s epitope at Mg2+ 

condition was very close to the basal level. However, LFA-1 still exhibited strong binding 

to its ligand ICAM-1, which suggested that at the Mg2+ condition LFA-1 adopted a bent 

conformation with open headpiece caused by the hybrid domain’s swing out [36, 114] 

and open MIDAS caused by the downward movement of 7 helix in A domain [12, 

114]. While upon Mn2+ activation, our occurrence frequencies and mechanical analysis 

results strongly suggested that large sub-population of LFA-1 integrins shifted to the 

extended conformation. The contraction events of LFA-1 at this condition suggested that 
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even though Mn2+ could shift more LFA-1 to extended conformation, for individual 

integrin, it still kept dynamically switching between bent and extended states so that we 

were able to observe those contraction events. This dynamic switching was so called 

“breath” has already predicted a few years ago by Salas et al. [113].  

Antibody epitope exposures have been widely used to determine the extension of 

integrins. So reporting mAb KIM127 was also utilized to probe LFA-1’s extension 

changes. Since the epitope of KIM127 was not affected by the swing out of the 

headpieces of LFA-1, KIM127’s probing could provide a very meaning clue to inspect 

the LFA-1 conformational changes.  However, the binding of KIM127 to LFA-1 was 

detected only when LFA-1 inegrins were activated by 1mM Mn2+ and 100μg/ml 

sICAM-1 but very weakly by Mg2+. This activation requirement suggested that outside-in 

signaling by Mn2+ and sICAM-1 were potent enough to extend LFA-1 integrins. Further, 

no upward or downward movements occurred when using KIM127 coated probe beads to 

probe LFA-1. This observation was exactly as we expected and was also very reasonable, 

as the epitope of KIM127 is in the genu region, and no large-scale displacement on this 

epitope could be caused by the global conformational changes of LFA-1. However, mAb 

MEM83’s probe behaved differently from KIM127’s. Since MEM83’s epitope is located 

on the A domain at the top of LFA-1, once LFA-1 changed its conformation, the epitope 

would move along with the headpiece. Our MEM83’s data clearly supported this idea. 

Furthermore, since MEM83 was an activating antibody, it could activate integrins to a 

high affinity state accompanied by the extension of LFA-1[125]. That was why we 

observed some contraction events even at Mg2+ condition. While the occurrence 

frequencies of extending LFA-1 when using MEM83 beads were lower than those when 
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usingICAM-1 bead, this may imply that LFA-1 ligand, ICAM-1, was more potent on 

regulating LFA-1’s conformations.  

The binding of the small allosteric molecule, XVA143, to LFA-1 has been known for 

extending LFA-1 but for locking the A domain in a close and low affinity state. In the 

proposed model of XVA143, the allosteric function was that its binding to the MIDAS in 

the A domain resulted in extending LFA-1, opening the headpiece by swinging out the 

hybrid domain but locking the A domain in a close conformation. This locking function 

was performed by preventing the downward movement of the 7 helix and blocking 

Glu127 at the end of the 7 helix to the A MIDAS [14, 42]. Our spring constant data 

strongly suggested that the majority of LFA-1 extended upon 1μM XVA143’s binding, 

and our occurrence frequencies data suggested that XVA143 could strongly lock LFA-1 

in the extended conformation and almost abolish LFA-1’s ability to dynamically switch 

between bent and extended states. The mean spring constant of LFA-1-ICAM-1 complex 

became softer, and the occurrence frequencies gradually recovered as XVA143’s doses 

were reduced. This XVA143’s dose dependent spring constant of LFA-1-ICAM-1 

complex further indicated that the extended LFA-1 was stiffer than the bent ones. The 

possible reason for this was that the headpiece of LFA-1 was more flexible when LFA-1 

was bent than when it was extended. With this observation, we further confirmed that 

LFA-1 was bent prior to the abrupt upward movement of the probe bead, while it was 

extended prior to downward movement of the probe bead. 

Force facilitating LFA-1 conformational change has been proposed in other 

published papers, based on indirect observations[18, 41]. Our experiment was the first 

one to directly demonstrate this dynamic processes of LFA-1 conformational changes 
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in-situ and was the first one to clearly depict that how force regulated these dynamic 

processes. The contraction of LFA-1 only occurred more frequently in the low forces and 

became less frequent as binding force increased. As well, it was reasonable that the 

contraction process took much more time than the extension process, as LFA-1 needed to 

overcome the binding forces in the contraction process, unlike the extension process. The 

extension was actually facilitated by the binding forces. Furthermore, the observed 

switching times were very similar on three different cell types and also fell in the 

predicted sub-second range[18, 124]. This similarity further showed that these abrupt 

movements of probe beads were not caused by cellular movements but by molecular 

conformational changes.  

However, the energy source that drives the bending of LFA-1 integrin is still not clear. 

The energy barrier for the LFA-1 to bend back is about 150 nm•pN (about 40 kBT at RT), 

which is very large. Thermal energy in the environment could not be large enough to 

drive this bending process. Thus, there must be other energy source to drive this process. 

One possible energy source is from the non-muscle myosin II. It may somehow regulate 

the tail of LFA-1 integrins through a series adapter protein, such as talin. To test this 

hypothesis, we can treat cells with blebbistatin or myosin light chain kinase inhibitor, 

ML-7, to inhibit myosin’s activity.  

The in-situ probing of dynamic switches between different conformations of LFA-1 

integrin is not only consistent with previous multiple static conformations of purified 

integrin observed by EM[39, 42], but also for the first time clearly depicted a dynamic 

process of how A containing integrin switched between bent and extended states under 

external forces. These data also confirmed the prediction that force facilitates the integrin 
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extension but slows down the contraction process, and it accurately showed how fast 

these switches were under stress conditions. Force-dependent conformational changes of 

integrin may provide molecular mechanisms to explain the catch bonds in integrin/ligand 

interactions. Contraction of integrins under external or internal forces could provide some 

cues to understand how the immunological synapse forms and how LFA-1’s contraction 

helps T-cell receptors to overcome the distance limit to interact MHC peptide on the 

antigen presenting cell[126].  As well, these force-dependent observations and 

contractions may provide a molecular mechanism to explain how integrins’ 

conformational changes allow cells to sense the substrate stiffness, and therefore affect 

cell behaviors, such as migration, differentiation, and other cellular functions[18, 126, 

127].   
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CHAPTER 9  

RECOMMENDATIONS FOR FUTURE WORKS 

 

The most exciting element of fundamental scientific research is that numerous 

interesting topics and questions always pop out during the exploration of current 

questions. In the preceding pages, a new thermal fluctuations assay was developed to 

estimate 2D on rates and off-rates of the interactions between surface-anchored molecules; 

experiments revealed the structural basis for force and force history dependent catch 

bonds in selectin/ligand and LFA-1/ICAM-1 bonds and depicted dynamical 

conformational changes of LFA-1 on a living cell. 

However, using only force as a tool to probe biological interactions is not enough; we 

should combine other techniques, such as fluorescence, with the BFP to study cellular 

behavior inside the cell. It is said that fluorescence is the “King” in biological research. A 

few months ago, the 2008 Nobel Prize in chemistry was awarded to three major scientists 

for their contributions on green fluorescence protein (GFP). From this award, we can 

clearly see that how huge the impact of fluorescent techniques is on biological research. 

If fluorescent techniques, such as biosensor techniques and FRET, could be combined 

with the BFP, the new version of the BFP would be more powerful to directly in-situ 

observe how mechanical force regulates surface molecules’ clustering, molecular 

conformational changes and downstream signaling cascades. It would reveal a very 

intriguing movie of molecular interactions on membranes and inside of cell membranes. 

Furthermore, if the BFP could be combined with a single molecule tracking technique, 
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individual molecules’ behavior under mechanical forces would be clearly viewed by high 

resolution single molecule tracking. Therefore, a combination of the BFP with fluorescent 

techniques would open a very challenging but extremely interesting area of 

mechano-biology, the curtain of which has started being raised up [128, 129].  

The newly developed thermal fluctuation assay adds a new tool to scientist’s toolbox 

for studying receptor-ligand interactions. But this new tool still can be improved  for 

studying more complicated problems, such as better estimation of the 2D kinetics of 

receptor-ligand interactions. For example, since distances between two surfaces affect 2D 

on-rates measurement very much, adding one more edge tracking on the target pipette 

side would provide a more accurate estimation of these distances. Further, drifting of the 

BFP would cause tracking errors; thus, adding feedback control system to compensate for 

drifting would be very helpful for measuring receptor-ligand interactions with slow 

dissociation or association (i.e., waiting times or lifetimes > 2 minutes). One more 

important improvement is to limit the rotation of the probe bead, since this rotation could 

bias the 2D on-rate very much. For reference, a new laser trap [130] developed by 

Volkmar et al. used trap energy to limit the rotation of the tracked bead. Finally, it would 

be very useful study multi-receptors’ cooperation (e.g., cooperation between selectin and 

integrins or T cell receptor and CD8/CD4) if we could improve the sensitivity of thermal 

fluctuation to discriminate different types of molecular bonds based on the reduction of 

thermal fluctuation. 

Developments of new techniques always could greatly advance scientific research, 

but the central core of scientific research is to understand the essence of the unknown 

world. Biology is an old field, but the majority of this field remains unexplored. Related 
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with the biological questions studied in previous chapters, more research could be carried 

out to extend our understanding of selectins and integrins.  

The structural basis of the on-rates and force, force history dependent off-rates of 

selectin-ligand interactions is still not very clear.  The sliding rebinding model has 

already predicted that flexibility of lectin domain can enhance the intrinsic on-rate of a 

selectin to its ligands. This prediction has been partially supported by flow chamber 

data[53]. It would be more interesting to use the thermal fluctuation assay to directly 

measure the 2D on-rate at the single molecule level. If this model is correct, can mutating 

P-selectin hinge to L-selectin?  Will this mutation greatly suppress P-selectin’s on-rate 

and augment off-rates in low forces? Will this mutation affect P-selectin mediating 

leukocyte rolling on PSGL-1 coated surfaces? Another important question is about the 

mechanism of force history dependent off-rates of L-selectin/ligand interactions. Our 

results showed that only L-selectin/PSGL-1 but not L-selectin/6-sulfo-sLex interaction 

was affected by force-loading rates. What is the structural basis for this difference? The 

direct answer would be that PSLG-1’s binding sites are different from 6-sulfo-sLex. 

PSGL-1’s binding including both the peptide interactions and the sugar interactions that 

6-sulfo-sLex only has. What if a mutation to the L-selectin binding pockets abolishes the 

PSGL-1’s peptides binding? Will it abolish the force-history effects?  

Compared to selectins, integrins’ functions are more complicated and seem to 

present more interesting questions to be addressed by experimental works in future. First 

of all, LFA-1 has been known to be activated by E-selectin (Zhang et al. unpublished data) 

through an inside-out signaling pathway. But, how fast can the signals be transmitted 

from the moment of E-selectin’s binding to the moment of activating LFA-1? It might be 
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possible to use improved thermal fluctuation assay (described at the beginning of this 

chapter) to discriminate the E-selectin binding and LFA-1 binding so that we could 

characterize dynamic process (i.e., waiting times measurements) between these two 

different bindings. These waiting times may provide useful dynamic information about 

E-selectin’s activation on LFA-1. Other than this dynamic information, spatial activation 

of E-selectin on LFA-1 is another interesting topic. Whether E-selectin‘s activation on 

LFA-1 is global or local is still not clear. If we have the new techniques of combining the 

BFP with fluorescence detection and biosensors, we would be able to clearly view the 

dynamic process of LFA-‘s activation by E-selectin and to reveal whether this activation 

occurs globally or locally. Meanwhile, the same experiments can be applied to study 

chemokine’s activation on LFA-1 to better understand the whole process of how fast and 

how spatially chemokine activates LFA-1 and communicates between these two receptors, 

and also to explore the force regulated cross-talk between LFA-1 and TCR or any two 

cooperating membrane molecules.  

This thesis has studied how force regulates integrin/ligand interactions, but how 

force regulates integrin’s clustering on cell membrane is still not clear. With fluorescence 

techniques and the BFP, it would be very possible to dissect this interesting issue. It 

would be very useful to view the dynamic process of the clustering of integrins under 

stress. This proposed force regulated integrin’s clustering may provide a molecular 

mechanism to explain the force regulation on LFA-1 mediated leucocytes adhesiveness to 

substrates through avidity regulation. 

Dynamic conformations of LFA-1, especially contractions of LFA-1, have been 

observed in this thesis work. The extension of LFA-1 is known to regulate LFA-1 to a 
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high affinity state, while the physiological significance of the contractions is still not very 

clear. One possible explanation of the contraction may be recovering LFA-1 to its resting 

state. But a more interesting hypothesis is that LFA-1’s contraction can help cells to sense 

the substrate rigidity by transmitting mechanical forces inside the cell through the 

cytoskeleton, and also can shorten the distance between TCR and MHC molecules to 

facilitate their interactions during immunological synapse formation. To test these 

hypotheses, a simple experiment is to use XVA143 to lock LFA-1 in extended 

conformation and then to test the cell’s responses to different substrates of varied 

stiffness and to examine whether this addition of XVA143 would slow down the 

immunological synapse formation. Or we could mutate LFA-1 on the region between 

headpiece and leg domains to lock LFA-1 in either bent or extended conformation, and 

we could then test this mutation’s effect on cell’s rigidity sensing and immunological 

synapse formations.  

The last but not the least, in a broader context, involves the automation of biological 

research with the assistance of computer-related technologies and program-controlled 

machines.  Automation is very necessary to advance bioscience exploration in a very 

highly efficient and high-yield manner. Microarrays and DNA and protein chips are very 

good examples. However, in the 21st century, too much labor is still wasted in bioscience 

research by repeating low level procedures which could be completely done by 

program-controlled “robotics”. By doing so, researchers could be released from 

time-consuming and boring bench tasks, and they could pay more attentions to hard 

thinking of scientific problems and to designing smart experiments to investigate these 

problems.   
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The sooner this day comes, the sooner human beings may disclose the buried secrets 

of biology; the sooner this day comes, the sooner we may be able to conquer fatal 

diseases to save numerous precious lives; the sooner this day comes, the sooner we may 

benefit from these fundamental bio-scientific research to improve our life. I hope this day 

comes soon!! 
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