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Abstract

Water resource management has immense importance in the modern world. A large

amount of water is wasted due to inefficient management of rivers, lakes and other wa-

ter bodies associated with them. In order to achieve improved management of water

resources, control and decision support systems can be employed

To design control systems for a river, a river model is required. Traditionally, the

Saint Venant equations have been used for modelling purposes. The equations describe

river flows accurately, however, they are complex, non-linear and require many unknown

parameters. It is therefore difficult to use them for control design purposes. On the other

hand, data-based models have proven to be very useful in control design for rivers. In

this thesis, different data-based modelling methods are explored, and they are applied

to the data from the upper part of Murray River in Australia. For each method, the

thesis analyses the ease with which available prior knowledge can be incorporated in the

modelling procedure and the ability of the obtained models to describe the river well.

For efficient river control, forecasts of future water demands and flows in the un-

regulated tributaries are required to be taken into account. A Stochastic Model Predictive

Control (S-MPC) or a randomised version of it can not only accommodate such forecasts,

but it can also handle physical and environmental constraints well. However, due to

uncertainties in the forecasts, the feasibility of optimisation problems cannot always be

guaranteed in the presence of constraints. This thesis proposes an S-MPC based river

control schemes, that not only incorporate the forecasts, but also ensure feasibility of the

optimisation problems. The schemes are successfully applied in simulations to the past

data from the upper part of Murray River.

Another important aspect of river management is to mitigate flood risks. An ideal
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strategy is to reduce the risk of severe floods, and at the same time not being overly

cautious while performing normal river operations. This thesis uses Value-at-Risk (VaR)

as a risk measure and incorporates it into the river control problem, forming a Multiple

Chance-Constrained optimisation Problem (M-CCP), to be solved in an S-MPC setup. A com-

putationally tractable Optimisation and Testing algorithm is developed to find solutions to

M-CCPs, with probabilistic guarantees on the solution. The algorithm is successfully ap-

plied to the historical data from the upper part of Murray River. The simulation results

show better regulation and flood avoidance.
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Chapter 1

Introduction

This thesis addresses the problem of improving water resource management. Water re-

sources include rivers, irrigation channels, and dams and lakes along the rivers. Rivers

play a major role in water distribution, and an efficient water distribution scheme along

with a careful river control strategy can improve the water resource management. To

effectively achieve this goal, the thesis considers three major topics,

1. Development of river models: The models are required to capture the river dy-

namics relevant for control, and they should be simple and easy to use for control

design.

2. Design of an effective river control strategy: The strategy should be able to incorpo-

rate flow forecasts, irrigation demands and their uncertainties. Moreover, it should

also be able to handle physical and environmental constraints.

3. Development of a flood mitigation mechanism: The river control strategy should

assess the risk for a flood event and forecast potential upcoming floods, and it

should take actions trying to avoid such an event.

1.1 Importance of research on water management

Water is a precious resource, and due to the rapid increase in world population and

growth in agriculture sector, demand of water is growing day by day. It has led wa-

ter to be a scarce resource, and the world can face severe water shortage in future if no

remedies are made today. A public-private-civil society group (2030 Water Resources

1
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Group, [5]) claims that if the current practices of water resource management continue,

the world is projected to face a 40% water deficit by 2030 [6].

From a local perspective, water scarcity is a serious concern for Australia. The nation

is considered the driest continent in the world. Moreover, agriculture is one of the major

economic contributors, like for many other countries. These facts motivate the idea of

properly addressing the problem of water resource management.

Currently, there is no shortage of water in Australia. The major concern is to develop

an efficient way to supply water to minimise losses. As a rough measure, the water losses

due to inefficient water distribution in irrigation channels in Australia are reported to be

30% of the supplied water [7]. The losses are mainly due to oversupply, leakage and

seepage. To avoid serious water deficits in future, there is a need to explore new farming

practices and better control strategies for rivers. That would require an interdisciplinary

approach which includes agriculture science, engineering, ecology, hydrology etc. There

has been several attempts made in this regard in the past, e.g. the Farms, Rivers and

Markets (FRM) project. A part of the Rivers component of this project is reported in [8].

Some research work covered in this thesis is a part of Carlton Connect Initiative Fund

(CCIF) project. This project is an initiative to form sustainable societies in Australia. It

has four major areas: energy, water, food and urban future.

As mentioned earlier, rivers play a major role in water distribution as they form links

between storages and irrigation channels to farms. The following points show some of

the importance and challenges involved in river management and control.

• River management subject to constraints: Rivers supply water for farming, ur-

ban and industrial usage. However, there are several ecological and physical con-

straints imposed in order to preserve environment, river structure and its habitats.

All such constraints have to be taken into account during the river operations.

• Efficient use of water: To meet environmental and irrigation demands, water

should be released from the storages in an efficient way to avoid oversupply and/or

undersupply.

• Uncertainties in unregulated flows: Water levels and flows in a river can be highly
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affected by uncertainties in irrigation demands and unregulated inflows e.g. an

inflow from a river with no controllable gates can be highly uncertain. Such uncer-

tainties are required to be taken into account in the decision process.

• Flood avoidance: Apart from normal river operations which include irrigation, en-

vironmental, domestic and industrial supplies, there is a need to continuously as-

sess the risk of a flood and to make amends in-advance to avoid or minimise possi-

ble damage.

Modelling and Control Systems Theory can play a vital role to ensure favourable river

operations and management, and in this thesis we use the theory to demonstrate that.

We consider the upper part of Murray River in Australia as a case study in this thesis. We

describe the river in the next section.

1.2 Upper part of Murray River

Murray River is the longest river in Australia. Fig. 1.1 shows a sketch of the river stretch

from Hume Reservoir to Lake Mulwala which has a river distance of 180 km and a

straight line distance of 65 km. The river stretch are referred to as the ‘upper part of

Murray River’. The release from Hume is measured at Heywoods which is a kilometre

downstream of the Hume Reservoir gates. Fig. 1.2 shows the gates and Fig. 1.3 shows the

measuring station at Heywoods, where pressure sensors are installed to measure water

level.

There are two unregulated rivers that flow into the river stretch (Fig. 1.1): Kiewa

River and Ovens River. Kiewa River joins Murray River just downstream of Heywoods

at Doctors Point as shown in Fig. 1.1. Inflow from the river is measured at Bandiana1.

Kiewa River is fed by several creeks and small water channels. The river also forms an

ana-branch2, which joins the main river from west. Ovens River joins Murray River just

1Strictly speaking, flows are not measured but they are calculated from water level measurements using
rating curves.

2Ana-branch is a branch of a river that diverts from the main river and rejoins the river further down-
stream.
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Figure 1.1: Hume Reservoir to Lake Mulwala on the Murray River (plot not to scale).

Figure 1.2: Hume Reservoir gates.
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Figure 1.3: Measuring station at Heywoods.

upstream of Lake Mulwala as shown in Fig. 1.1. Inflow from the river is measured at

Peechelba. The river is fed by several creeks and regulated and unregulated rivers.

There are several measuring stations on Murray River upstream of Lake Mulwala,

such as Doctors Point, Albury, Howlong and Corowa. Lake Mulwala is the next reservoir

on the Murray River after Hume Reservoir. Both reservoirs play important role in the

regulation of Murray River. The stretch of Murray River from the point where Ovens

River joins Murray to the upstream end of Lake Mulwala has ana-branches (not shown

in Fig. 1.1). The downstream end of the lake has a weir; Yarrawonga Weir, which controls

the release of water from the lake. Fig. 1.4 shows the Yarrawonga Weir. Two irrigation

canals also originate from the lake; Yarrawonga Main Channel and Mulwala Canal. Fig.

1.5 shows the top view of Lake Mulwala, Murray River, Yarrawonga Weir and the two

irrigation channels. The figure is taken from Google Maps.

Discharge and storage capacities in the upper part of Murray River are as follows

(Murray Darling Basin Authority (MDBA) Canberra, personal communication, June

2013),

• Releases from Hume Reservoir can be made through 4 irrigation valves, 2 hydro
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Figure 1.4: Yarrawonga Weir.

Figure 1.5: Top view of Lake Mulwala. Source: Google Maps, 2015.
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turbines or 29 gates in the spillway.

• The maximum discharge from Hume is approximately 600,000 ML/day (⇡ 6,944

m3/sec) at full supply level.

• Water level in Hume Reservoir is required to stay above 169.5 m AHD (meter Aus-

tralian Height Datum, which is relative to sea level) for the hydro plant to operate.

This level corresponds to 250 GL of water storage in the reservoir.

• Lake Mulwala has a storage capacity of 117.5 GL at full supply level, which is 124.9

mAHD.

• The main regulating structure at the downstream end of the lake has 8 steel vertical

lift gates, and the northern regulating structure has 2 similar steel gates. The weir

has two further gated regulating structures and two earthen embankments.

• Discharge capacity of Yarrawonga Main Channel is 3,170 ML/day (⇡ 37 m3/sec).

• Discharge capacity of Mulwala Canal is 10,000 ML/day (⇡ 116 m3/sec).

Major control objectives for the river stretch are,

• To maintain water level in Lake Mulwala between 124.65 mAHD and 124.9 mAHD.

• To timely provide water to the downstream end of Yarrawonga Weir, Yarrawonga

Main Channel and Mulwala Canal.

• To avoid the fall of water level at Heywoods and Doctors Point to exceed 0.20

m/Day and 0.15 m/Day respectively.

• During normal operations the release from Hume Reservoir is only regulated to

achieve the above control objectives and the flow release from Yarrawonga Weir is

kept nearly constant. However, during flood operations both ends of the stretch are

used to regulate water.

The aforementioned specifications and objectives are specific for the upper part of Mur-

ray River, however, the objectives are usually similar for most of the rivers around the
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world. The upper part of Murray River is also vulnerable to floods, mainly due to the

unregulated inflows from Kiewa and Ovens Rivers. It requires better control strategies

that can accommodate uncertainties in flow forecasts and handle constraints, which are

investigated in this thesis. The case study of Murray River covers most of the aspects we

intend to study in this thesis. It is a natural extension to the study carried in [8], where

Broken River was considered, which is a smaller river with few unregulated inflows.

1.3 Key steps to achieve better river management

Based on the above discussions, the thesis considers the following research questions to

ensure better river management,

1. Which modelling technique is suitable for river control purposes?

2. What is a promising river control strategy?

3. How to ensure flood avoidance?

Each question is briefly discussed below.

1.3.1 Modelling

The literature provides both physical and data-based models for open channels3. In this

thesis we use and build only data-based models.

In physical modelling the models are derived from the laws of Physics. The Saint

Venant equations ([9]) can be used to describe river dynamics. The equations are non-

linear Partial Differential Equations (PDEs), and they are derived from mass and mo-

mentum balances, for details see [9]. There is a large literature on the derivation and the

numerical solutions of the Saint Venant equations, see e.g. [9, 10]. The boundary condi-

tions of the PDEs are usually given by the flows at hydraulic structures, e.g. weirs and

overshot gates [11]. The Saint Venant equations provide good insight into the system

but they are complex to derive and require several physical parameters related to rivers

3Open channels have free surface e.g. irrigation channels and rivers.
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which are sometimes not available. Moreover, they are non-linear, which make them

difficult to use for control design.

On the other hand, data-based modelling or empirical modelling can be used because

of widely available operational data from rivers, see e.g. [12–17]. Data-based modelling

builds model from the operational data using system identification techniques [18, 19].

Models built from data are mostly simple and convenient to use for control design pur-

poses, and they are known as ‘black-box models’. If some prior information is available,

it can be accommodated in the model, and such models are called ‘grey-box models’. We

seek grey-box models in this thesis. However, there are certain limitations of data-based

modelling, e.g. the data should be suitable for system identification, i.e. it should have

persistent excitations (see [18]), modelling highly depends on its intended use, for in-

stance a river model obtained from low flow data would not be able to describe the river

well during flooding, and also, travelling time of water varies with flows and it is possi-

ble that a data-based model with constant delays might not work well in such situations.

However, there are a few works that present flow-dependent time delays in data-based

models, e.g. see [20, 21].

In this thesis we have looked at the following problems related to river modelling,

• The literature provides different system identification methods, which are used for

river modelling, we analyse them and compare their performances. We report the

advantages and shortcomings of the identification methods in the context of rivers.

• The river used as the case study in this thesis is wider and larger with longer time

delays between locations with regulating structures. The river is also fed by unreg-

ulated rivers, which are modelled separately.

• We briefly build non-linear river models and compare them with the linear models

in terms of their descriptive performances.

The river modelling is mainly done for control purposes in this thesis.
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1.3.2 Control design

The aim of river control is to keep water levels and flows in the river at required levels,

while satisfying timely delivery to farms and irrigators and avoiding water wastage. It

also includes satisfaction of physical and environmental constraints and consideration of

the uncertainties associated with unregulated inflows and demands. Based on the above

requirements, a river control problem can be defined as an optimisation problem with

several objectives to be met and various constraints to be satisfied. In this thesis we have

carried out the following steps to achieve the above control objectives,

• A Model Predictive Control (MPC, [22]) based strategy can be used to achieve river

control. However, to ensure the incorporation of the unregulated flow forecasts and

their uncertainties, we use a stochastic version of MPC, and define the optimisation

problem as a Chance-Constrained optimisation Problem (CCP) ([23–26]), which is

generally non-solvable. To find an approximate solution to a CCP, we use the sce-

nario approach ([27–30]) and solve the optimisation problem in an MPC set-up.

• In the optimisation problem we optimise over affine control policies, rather than

control values to ensure feedback of the available river information, to generate

suitable control actions.

• Later in Chapter 3, it will be shown that the river optimisation problem can get in-

feasible, as the unregulated inflows can not be bounded from above in a reasonable

way. In order to deal with that, we have proposed optimisation schemes to ensure

the feasibility of the river control problem.

In this thesis we assess our control design through simulations on the historical data of

the upper part of Murray River.

1.3.3 Flood avoidance

Apart from the normal control objectives mentioned in the previous subsection, it is also

required to keep an eye on unregulated inflows to a river and to assess the flood risk.
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However, during normal operations, we do not want to be overly cautious and to de-

grade a control action with unnecessary flood avoidance measures. In this thesis we

have carried out the following steps to achieve these objectives,

• We formulate river control and flood avoidance problems together as a Multiple

Chance-Constrained optimisation Problem (MCCP).

• We propose a computationally efficient algorithm to solve MCCPs. The algorithm

is named as Optimisation and Testing Algorithm.

• The proposed algorithm not only achieves the control objectives, but also, it does

not degrade control actions for unnecessary flood avoidance during normal condi-

tions.

The upper part of Murray River has remained vulnerable to unregulated inflows. Mur-

ray River faced some major floods in 2003, 2010 and 2012 in the recent past. In all these

events, Ovens River contributed significantly to the flood. In Chapter 5, we incorpo-

rate the forecast of the unregulated inflows from Kiewa and Ovens River in the control

problem and demonstrate the flood avoidance in simulations.

1.4 Literature review

The literature covers a large amount of works on modelling and control of open water

channels, such as rivers and irrigation channels. In this thesis, our main emphasis is on

rivers, and in this section, we mention some major works relevant to rivers.

1.4.1 Review on river modelling

A river carries water from a source (e.g. lake, dam or some water reservoir) to a sink (e.g.

farms, sea, ocean etc). To model this channel, we need to establish a relationship between

water level or flow at the sink and flow release from the source.

As mentioned earlier, we aim to model rivers for control purposes, and so this review

does not cover works on rainfall-runoff modelling and catchment modelling, however,
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we briefly mention a few related works. Moreover, works on physical modelling are only

briefly discussed, because we are not pursuing physical modelling either, for a detailed

review see [8]. However, works on data-based (empirical) river modelling are discussed

in some detail, as we use it in this thesis.

Physical modelling for control purposes

As mentioned earlier, it is difficult to use the Saint Venant (SV) equations [9, 31, 32] for

control purposes in their original form, because of their complexity. The equations can be

simplified and linearised, and this approach was first followed in [33], where the authors

assumed uniform flows. However, the assumption of having uniform flows in rivers is

not valid, because rivers experience backwater effects due to obstructions. These effects

were then investigated in [34], where the authors split the dynamics into two parts, i.e. a

part with uniform flows and a part where the flows are affected by the backwater effects.

This work introduced the well known Integrator Delay Model (IDM), which is then widely

used for control design, e.g. see [35, 36].

A few works in the literature used the SV equations in its non-linear form for control

design, e.g. see [37, 38]. However, they did some other simplifications, e.g. viscous

friction was considered to be zero and no lateral inflow was considered, for details see

[9]. The authors extended the work in [39, 40]. In [39], the authors designed a control

which could handle channels with steeper bottom slopes.

Litrico and his co-workers have made a major contribution to the SV equations based

modelling of open channels for control design purposes, see e.g. [41–43]. They also

made some simplifications in the SV equations, either by considering zero lateral flow,

or negligible inertial term, or by linearisation, which transformed the equations to the

diffusive wave equations. The linearisation of the diffusive wave equations are known as

the Hayami model. The obtained models were validated against the operational data of

Baı̈se River in France. They also introduced Integrator Delay Zero (IDZ) model in [44, 45],

which addressed the issues related to the validity of the IDM model in frequency domain.

X. Litrico and his co-workers said that at low frequencies the IDM model described a

channel well, however, it did not remain ideal at high frequencies. Nonetheless, based
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on the fact that the focus is mainly kept on the low frequency components for control

design, the IDM model can still be considered as a valid choice for control purposes.

For a more detailed review on physical modelling of open channel flows, see [8] and

the references therein.

Data-based modelling for control purposes

River operational data can be used to obtain data-based river models, and we have fol-

lowed this approach in this thesis. There is a choice for the model structure to be black-

box or grey-box [18]. The black-box models do not provide any physical insight to the

system. On the other hand, the grey-box models incorporate prior knowledge about the

system, and for water systems, we usually have quite a bit of prior information available,

and thus we adopted this approach in this thesis.

The use of system identification to obtain models of open channels for control design

is recent. The approach gained a lot of popularity after the contribution of Weyer and

his co-workers. In [46], the author obtained a simple grey-box model for the Haughton

Main Channel (HMC), Australia. The identification routine incorporated time delays

and a relationship of gate heights and flows above the gate ([11]) in the model structure.

The model turned out to be very close to a parametrised IDM, which is in agreement

with [34]. The author preferred Output Error (OE)-type model structures, because an

OE model provides better description of low frequency properties of a system, which is

important for control purposes. In [47], the authors extended the work for different gate

structures, the model was validated against the operational data from Coleambally Main

Channel (CMC), Australia. The models were used for control design and the controllers

were implemented on the irrigation channels, for details see [48–50]. Later on, the re-

search group extended the identification methods to rivers, and in [8, 51], the authors

described the modelling of Broken River in Australia, and they also designed centralised

and decentralised controllers for the river, based on the identified models.

The literature also include the contribution of a few other works who used empirical

modelling of rivers for control purposes. In [15], the authors used a grey-box model struc-

ture for Dalälven River in Sweden. The obtained model was also a parametrised IDM. A
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time delay model of Sevier River in USA is presented in [13], and the obtained models

were validated against measured data. A state space model of Red River in Vietnam is

derived from operational data in [14], where the authors used only time delays as prior

information. In [52], the authors considered the Non-linear Auto Regressive with Ex-

ogenous Input (NARX) model to describe river dynamics. However, the model was not

validated, and no further justifications on the selection of a non-linear model structure

were given, apart from the fact that the dynamics of rivers are non-linear.

Young and his co-workers have made major contributions in hydrological modelling,

and their contributions also cover rainfall-runoff modelling, see e.g. [16, 17, 53] and the

references therein. The authors developed the Data Based Mechanistic (DBM) approach

and used it for hydrological modelling, where the non-linearities in the system were

modelled as State Dependent Parameters (SDPs) [54]. This technique has been used by

several other groups, e.g. to model the effect of snow-melt on river flow [55], to model

a reservoir subject to precipitation [56] etc. In this thesis, we have used this technique to

analyse the need of SDPs in a parameterised IDM.

1.4.2 Review on river control

The literature covers a wide range of works on the control of open channels. Both cen-

tralised and decentralised control strategies4 have been used for the control of rivers with

single and multiple reaches over the past years. It is hard to cover all of them here, how-

ever, we mention some major works, along with the control strategies used therein. For

a comprehensive list of references, see [37] and the references therein.

One of the mentionable works from 1980s is the control of a long river stretch [57].

In this work the authors considered a problem of maintaining water flows along the

river at particular set-points. The authors used a switching control mechanism and PI

controllers to fulfil the tasks. In [58], the authors developed an LQG controller for a

dam-river system. The control objectives were again to maintain flow at a set-point and

the assurance of on-time water delivery. The controller was not implemented on any real

4In the centralised configuration, the control actions of all nodes or reaches of a channel are governed by
a central controller, however, in the decentralised controller every reach has its own local controller.
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river. However, in [59], the authors extended the work to control a two-dam river system,

where the authors used an H-infinity control.

With the popularity of Model Predictive Control (MPC), the researchers used MPC

strategies to control rivers, because in MPC it is easy to handle constraints. In [15], the

authors used an MPC set-up to control the Dalälven River in Sweden. Due to the pres-

ence of hydro-power stations, the river experiences large variations in water level and

the control objective was to control the variations. The results showed that the MPC

controller is suitable in this regard.

In [60], a centralised MPC strategy was used to control a four-reach stretch of Aare

River in Switzerland. Again, the objectives were to maintain water level close to set-

points and minimise the variation of water level due to the flow discharge through the

turbine in the river. The variation in water level was used to be large, especially when

the river was used for navigation and the locks were used to by-pass the hydro-power

station, which introduced more variations and turbine wear. Setz and his co-workers

extended the work in [60], and again used an MPC based strategy to control the river

with different control objectives, see [61]. The authors considered soft constraints, and

for this, they introduced slack variables in the criterion.

In [62], a centralised MPC and decentralised PID strategies were considered to control

a three-reach Arrt̂-Darré/Arros system in France. The control objectives included main-

taining the river flows at several locations in the system at desired set-points. In [63], the

authors used a centralised MPC scheme to control North Sea and the Amsterdam-Rhine

Canals in the Netherlands. The control objective was to make the river navigable and

minimise variations in water level. Also, the control objectives included minimisation of

the energy consumption due to water pumping. In [64], the authors used a centralised

MPC strategy to control four reaches of the Elbe River in Germany. The control objectives

were to make the river more navigable by pumping water in the river but also minimising

the power consumptions due to pumping. Similar objectives were met in [65] to control

three reaches of the Moselle River in Germany.

A lot of research has gone into the computational burden of a centralised MPC strat-

egy. Rivers are slow systems, and in general, it is expected that a centralised control
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strategy can suit rivers. However, large number of reaches in a river might create a con-

cern. In [66], the authors considered a decentralised MPC strategy to control a 35-reach

river. The objectives were to minimise the variation of water level in the river in the pres-

ence of flow releases from hydro-power stations. Although no tests were conducted on a

real river.

In [8, 51], both centralised and decentralised strategies were considered to control

Broken River in Australia with multiple reaches. The authors used data-based models

of the river. The decentralised control consisted of PI controllers and the centralised

scheme was made up of MPC. The control system achieved substantial water savings

and improved level of service to irrigators.

In [67], the author considered uncertainties in weather predictions, while designing a

river control by using a tree-based MPC approach. They constructed uncertainty trees,

based on the ensemble data and available information, and then the trees were used in

the MPC based optimisation problems. The developed strategy was tested on the data of

Rhone River in Switzerland and Lake Maggiore at the border between Italy and Switzer-

land. Later, the researchers from the same group used the tree-based MPC approach to

manage a four reservoir system, which is upstream to the Seine River in France, and it

was presented in [68]. The control objective was to manage the reservoirs to avoid occur-

rences of floods or droughts.

Unregulated in- and out-flows from a river carry uncertainty, and it is desirable if a

control scheme can accommodate those uncertainties. To the best of author’s knowledge,

there has been a few such attempts made to design a river control which accommodates

the uncertain behaviour, see e.g. [67–69], including the ones mentioned in the above

paragraph.

1.4.3 Review on flood control

There are various works available in the literature that target flood risk mitigation. In

the last 10-15 years, MPC has been mostly employed by the researchers to achieve such

tasks. We mention a few such works below.

In [70], a centralised MPC strategy was used for the flood regulation in the Demer
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River in Belgium. The authors constrained the water level in the MPC formulation to

avoid river bank spilling. The authors also used the rainfall measurements as inputs in

the MPC problem. They showed successful working of their strategy on the river data

from the year 1998, when the river was hit by a huge flood due to a large amount of

rainfall. Later in 2013, some of the authors of [70] published another paper [71], and pro-

posed a strategy to control floods in a river system with reservoirs. In that strategy, the

controller uses the buffer capacity of a reservoir in an optimal way when there is a risk of

flooding. This strategy was applied to the regulation of Demer River in [72]. The simu-

lation results on the past operational data showed that the strategy clearly outperformed

the existing control scheme at that time. In 2015, the co-authors of [70] reconsidered the

flood control problem in [73], where they used a combination of Genetic Algorithm (GA)

[74] and MPC to achieve the control objectives.

The Wivenhoe Dam along the Brisbane River in Australia was built to safeguard Bris-

bane from flood. However, the dam was unable to prevent the flood event in 2011. In

[75], the authors took the dam as a case study, and developed a flood mitigation strategy

using MPC. The simulation results in [75] shows that the flood could be significantly re-

duced with their control strategy. Later in 2013, another strategy was proposed in [69].

The idea was to tackle the uncertain inflows by considering multiple river models to

represent inflows ranging from low to high flows. Optimal model selection is done in a

minimum mean square sense. The idea was successfully implemented on the operational

data related to the flood event in 2011.

In [76], the authors used MPC to mitigate the flood risks in the Ebro River in Spain. To

tackle floods, the river operators divert water to flood plains through gates. The control

objective was to regulate the gates in an optimal manner to minimise flood risks. The

authors showed simulation results to substantiate their claim.

An MPC based control strategy was also used in [77] where the authors proposed a

control design to open or close different barriers to protect an area against floods. The

Rhine-Meuse Delta in the Netherlands was considered as their case study. They used

the term ‘hybrid MPC’ because the controller either opened or closed the barriers while

the variables as water levels and flows were treated in continuous domain. The control
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objective was to achieve a trade-off between minimising the cost of using the barriers and

the water level exceeding the defined safety reference level. Later in 2015, the co-authors

of [77] published another paper [78], in which they targeted flood control of a low-lying

delta system and their case study was again the Rhine-Meuse Delta in the Netherlands.

In this paper they used MPC and proposed a new ‘large time step’ scheme in order to

save computational time, in which different control variables can have different control

time steps. The simulation results in the paper were promising.

1.5 Thesis overview

The thesis consists of three major sections: river modelling, river control and flood avoid-

ance. We briefly describe them before presenting the thesis organisation.

In this thesis we use empirical modelling to model the upper part of Murray River

in Australia, and we pursue grey-box modelling. We investigate a few system identifi-

cation methods like Prediction Error Method (PEM), Maximum Likelihood (ML) [18,79],

continuous time system identification [80,81], Data-Based Mechanistic (DBM) modelling

[53] and Subspace Identification Method (SIM) [19,35] to find river models. The purpose

of the comparison is to investigate which system identification techniques provide better

river description and ease in incorporating available prior information.

For river control, we propose a Stochastic MPC based approach that can deal with

uncertainties. It involves formulating the problem as a chance-constrained optimisation

problem [23–26]. However, a chance-constrained problem is non-convex in general, and

is difficult to solve. There are a few alternative strategies available in the literature to

find approximate solutions, see e.g. [27–30, 82–85]. We select the scenario-based strategy

[27–30,82] in this thesis, because it seems to be a promising choice as it is computationally

tractable and it does not require any specific assumption on the nature of the disturbance.

For flood avoidance, we use a risk measure (Value at Risk [86]) to find flood risks as-

sociated with a particular control action, and then based on that, the controller decides to

either modify the control action or not. We incorporate the risk measure in the Stochas-

tic MPC control scheme, developed for normal river control operations, and if the risk
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associated with a flood gets high, the controller modifies (improves) the control actions

accordingly. Also, such a strategy prevents the control actions from getting too conserva-

tive during normal operations and avoids unnecessary flood risk mitigation.

In this thesis, we use the scenario based Stochastic MPC approach to control the upper

part of Murray River in Australia, which is affected by unregulated inflows from Kiewa

and Ovens Rivers. The thesis is organised as follows.

Chapter 2 focuses on the data-based modelling of rivers. We obtain models of the

upper part of Murray River. In this chapter we use five different identification methods,

consider multi-input single-output and multi-input multi-output models, and compare

their performances. The ability of the identification methods to incorporate available

prior information and the ease of identifying models are assessed.

Chapter 3 is dedicated to river control design. In this chapter we mathematically for-

mulate the river control optimisation problem and use scenario-based Model Predictive

Control as the control technique. We build schemes that ensure feasibility of the optimi-

sation problems and we use them to control the upper part of Murray River and present

simulation results.

Chapter 4 formulates a general control problem with an inclusion of risk mitigation

as a Multiple Chance-Constrained optimisation Problem (M-CCP). The chapter proposes

a computationally efficient algorithm: Optimisation and Testing algorithm, to find approxi-

mate solutions to M-CCPs.

Chapter 5 includes flood mitigation in the river control problem formulated in Chap-

ter 3. The resulting optimisation problem is an M-CCP with two chance-constraints. We

use the Optimisation and Testing algorithm to solve the problem and ensure flood mitiga-

tion with probabilistic guarantees. Simulations of the Murray River stretch is included in

this chapter with favourable results.

Chapter 6 presents the conclusions and some areas for future works.

1.6 Major contributions of the thesis

The main contributions of the thesis are summarised as below.
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• Data-based modelling of the variables of the upper part of Murray River. The vari-

ables include water level in Lake Mulwala and flow at Doctors Point.

• Comparison of different system identification methods in the context of river con-

trol.

• Formulation of a scenario-based Model Predictive Control (S-MPC) problem for

rivers.

• Formulation of an optimisation scheme that gives feasibility assurance of the opti-

misation problems, involved in the S-MPC problem.

• Assessment of the proposed control strategy by implementing it on the upper part

of Murray River in simulations.

• Formulation of a flood control scheme as a multiple chance-constrained optimisa-

tion problem with two chance-constraints.

• Proposition of a computationally efficient algorithm to find approximate solutions

to multiple chance-constrained optimisation problems.

• Implementation of the proposed algorithm to flood data from the upper part of

Murray River in simulations.



Chapter 2

System Identification Methods
Applied to the Upper Part of Murray

River

Due to the rapid development in sensors and information and communication technol-

ogy, operational data from rivers are now often available, and system identification meth-

ods can be used to find models of large scale open water systems such as irrigation chan-

nels and rivers. The models obtained from system identification are simple ordinary

differential or difference equations and are suitable for control design, prediction and

fault detection purposes.

In this chapter we use several system identification techniques to find models of the

upper part of Murray River in Australia (see the river description in Section 1.2). The

methods we consider are Prediction Error Method (PEM), Maximum Likelihood (ML),

continuous time system identification, Refined Instrumental Variable (RIV) method (used

within the context of Data-Based Mechanistic (DBM) modelling) and Subspace Identifica-

tion Method (SIM). Some of the methods have previously been applied to rivers, e.g. PEM

was used in [12, 51] & [13], SIM was used in [14], and DBM was applied in [15–17, 53].

Important factors in system identification of rivers are the accuracy of the obtained

model and its suitability for the intended purpose, the ability to incorporate prior infor-

mation such as water level-flow relationships [11], the ability to handle multiple inputs

and outputs, and the availability of easy to use software.

The above listed methods have their own advantages and drawbacks. It is relatively

easy to incorporate prior information in PEM and ML based approaches [18] & [79]. The

21
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Data-Based Mechanistic (DBM) approach has been successfully applied to many catch-

ments and rivers (e.g. [16,17,53]), especially if rainfall-runoff effects need to be taken into

account. Subspace identification [19] & [87] is well suited for Multi-Input, Multi-Output

(MIMO) systems, and rivers are often MIMO with inflows from a number of tributaries,

and we are often interested in modelling many flows and water levels along the river.

Continuous time system identification e.g. [81] is also of interest since continuous time

models are often preferred due to easy interpretations and usage. However, each method

has drawbacks too, e.g. for optimisation based methods like PEM and ML, it can get

computationally difficult to estimate a model with many parameters, and for subspace

methods, it becomes challenging to incorporate available prior information if the number

of outputs increases.

In this chapter we compare the above identification techniques, and in particular we

consider (i) simulation performance on validation data, (ii) ability to incorporate avail-

able prior information, and (iii) ease in identifying models. The intended use of the mod-

els is to design controllers, which is considered in the proceeding chapters of this thesis.

The chapter is organised as follows. In Section 2.1 we describe the upper part of

Murray River, the operational objectives and the available prior information. We also

narrow down the phenomena to be modelled either due to lack of data or due to minor

relevance for control. Furthermore we present the dataset used for identification and es-

timate key time delays in the system. In Section 2.2 we briefly discuss each identification

method and apply them to Multi-Input Single-Output (MISO) models of the upper part

of Murray River. Section 2.3 is dedicated to MIMO models. In Section 2.4 we compare

the identified models and give some conclusions.

2.1 Prelude

In this section we discuss the operational objectives of the upper part of Murray River

(Section 1.2) and describe the available prior information. Furthermore, we present the

data used for system identification in this chapter.

For ease, we re-present the sketch of the upper part of Murray River in Fig. 2.1
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Figure 2.1: Hume Reservoir to Lake Mulwala on the Murray River (plot not to scale).

2.1.1 Operational objectives

The two main operational objectives for the river stretch (as described in Section 1.3.2)

are

1. The water level in Lake Mulwala should be kept between 124.65 and 124.9 mAHD

(meter Australian Height Datum, which is relative to sea level). This is required

in order to facilitate gravity fed diversion of water into Mulwala Canal and Yarra-

wonga Main Channel, safe boating and recreational activities in the lake.

2. The rate of fall in the water level at Heywoods and Doctors Point should be less than

0.20 m/Day and 0.15 m/Day respectively, to avoid river bank slumping. Doctors

Point is just downstream of Heywoods (see Fig. 2.1).

During normal operations the river stretch is controlled from Hume Reservoir only,

and the release from Yarrawonga Weir is used to meet downstream operational objec-

tives. However, during flood operations Yarrawonga Weir is also used to achieve the

objectives listed above.

In this chapter we consider Multiple-Input, Single-Output (MISO) models and

Multiple-Input, Multiple-Output (MIMO) models of the water level in Lake Mulwala

and the flow at Doctors Points which are the two most important variables from an oper-

ational perspective. The purpose of the model is to use it for control design, and it is not

intended for flood prediction. Control design is considered in the proceeding chapters of
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this thesis.

2.1.2 Available prior information

The following prior information is available for the upper part of Murray River,

1. The direction of the flows in Murray River as indicated in Fig. 2.1.

2. Flow releases from a storage only affect downstream water levels, downstream

flows and the immediate upstream water level in the storage.

3. Lakes and reservoirs can often be modelled by using a volume balance. E.g. for

Lake Mulwala we can use the following approximate volume balance as a starting

point,

(2.1)
dVLM

dt
= QH (t � ⌧0H ) + QB (t � ⌧0B) + QP (t � ⌧0P ) � QDYW (t) � QYMC (t)

� QMC (t),

which simply says that the net change in volume of the water in the lake (VLM )

is equal to the sum of the inflows (Q) from Heywoods (H), Bandiana (B) and

Peechelba (P) minus the sum of the outflows at (Downstream) Yarrawonga Weir

(DYW), Yarrawonga Main Channel (YMC) and Mulwala Canal (MC). ⌧0H ,⌧
0
B and

⌧0P are the time delays from Heywoods, Bandiana and Peechelba to the lake. We

consider Eq. 2.1 as a starting point for selecting a model class in a system identifi-

cation setting. However, as mentioned in the previous sub-section, water level in

the lake is the important variable in the river stretch, and because of that we want

the water level as the output rather than the volume. Therefore, assuming direct

proportionality between the volume and the water level in the lake, we get

(2.2)
dyLM

dt
= c0HQH (t � ⌧0H ) + c0BQB (t � ⌧0B) + c0PQP (t � ⌧0P )

� c0DYWQDYW (t) � c0YMCQYMC (t) � c0MCQMC (t).

Additionally, we have introduced unknown parameters (c0H , c0B, c0P , c0DYW , c0YMC

and c0MC ) in the model structure to encompass losses and gains due to leaks, evap-

oration, rain or surface water/ground water interactions. However, it should be
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stressed that due to the assumption of the volume to water level proportionality,

we get non-compatible units i.e. m and m3/sec, rather than m3 and m3/sec, and

Eq. 2.2 is not a volume balance any more. So it is difficult to physically interpret

the unknown parameters and the losses and gains from model errors. However,

the model errors will still be functions of these losses and gains. Also, we have not

included any specific term for unaccounted-for losses and gains in Eq. 2.2. In that

sense, one can argue that the models obtained using this model structure will be

of limited use from a general hydrological modelling point of view, but it will be

shown that they represent the dynamic behaviour of the selected river stretch well,

from a control design perspective, which is the main purpose of modelling in this

chapter.

We incorporate the aforementioned information in the river models. However, we do

not consider some other prior information either to avoid modelling dynamics which are

not important for control design or because the relevant measurements are not available.

Such prior information include

1. Rainfall-runoff relationships for the unregulated rivers and Murray River itself. If

rainfall measurements were available in the catchments of the Kiewa and Ovens

Rivers, then the forecast models for the flows at Bandiana and Peechelba could

be identified. However, we do not have the necessary rainfall data, but we have

identified flow models at Bandiana and Peechelba from their upstream flows in

Appendices 2.C & 2.D. Rainfall-runoff relationships have been incorporated in hy-

drological modelling in the literature, e.g. see [16, 53, 88].

2. Evaporation. It can be included in the volume balance for Lake Mulwala, but again

there is a lack of data. Although, the net effect of evaporation is always a water

loss, the variations within a day give rise to high frequency dynamics relative to

the frequency range relevant for control.

3. Non-linearities due to anabranches1. The upper part of Murray River has

anabranches just upstream Lake Mulwala (not shown in Fig. 2.1) which most of

1The branches that divert from the main river and rejoin the river further downstream.



26 System Identification Methods Applied to the Upper Part of Murray River

the time are dry, but fill up during high flows. However, they are not significant for

the flow regime we consider [89].

4. Relationship between water levels and flows at hydraulic structures. Such relation-

ships are available in the literature [11], e.g. for weirs and overshot gates flows can

be approximated by Q(t) = ch3(t), where Q is the flow, c is a gate/weir constant and

h is the head above the gate/weir which is calculated as h(t) = y(t) � p(t), where y is

the water level upstream of the gate/weir and p is the gate/weir position. Such re-

lations can be incorporated in river models, see e.g. [51] & [90]. However, we do not

have data for the gate positions at Yarrawonga Weir, so we have not incorporated

such relationships in Eq. 2.2.

2.1.3 Identification dataset

Not all operational river data are useful for identification purposes. Data can be non-

informative from a system identification point of view for the following reasons

1. In some periods, there are strong correlations in flow data, e.g. the flow at Bandiana

and Peechelba (Fig. 2.1) may follow same patterns. In such cases it is difficult to

estimate the individual contributions from each flow.

2. Flow regimes can be very different from the flow regime a river model is supposed

to capture.

3. There can be missing data and/or data from faulty sensors or inaccurate sensors

which have not been calibrated for a long time.

For the upper part of Murray River we investigated 10 years of data from 2001 to 2010.

In this work we focus on data with an operating range similar to a typical summer. This

is because river management is usually more important in summer, when irrigation de-

mands are high. As a rough estimate, flows at Heywoods and Yarrawonga Weir vary

between 15,000 to 25,000 ML/day and 8,000 to 20,000 ML/day respectively during nor-

mal operations, inflows from the unregulated rivers; Kiewa and Ovens lie between 500
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to 3,000 ML/day and 500 to 4,000 ML/day respectively. Moreover, the irrigation chan-

nels; Yarrawonga Main Channel and Mulwala Canal have releases up to 3,000 and 4,500

ML/day respectively during normal operations, and the water level in Lake Mulwala is

between 124.65 to 124.9 mAHD under such conditions.

The identification dataset is shown in Fig. 2.2. The dataset is taken from the last

three months of 2002, which corresponds to early summer and mid summer seasons in

Australia. The sampling interval of the dataset is one hour. The top two graphs in Fig.

2.2 show all the inflows and the outflows in the river stretch and the bottom graph shows

the water level in the lake.

The measurements of the water level in Lake Mulwala contain high frequency com-

ponents. The blue curve in the bottom graph of Fig. 2.2 depicts this behaviour. Fig. 2.3

shows a plot of the magnitude of the Discrete Fourier Transform (DFT) of the water level

measurements in 2002 on datasets from summer and winter. A peak occurs at the fre-

quency 0.0417 (hour)�1 in the summer dataset. The time period, 1/0.0417 = 23.98 ⇡ 24

hours is most likely associated with evaporation as the peak is more prominent in the

summer dataset. This peak was also observed in summer data from other years. We are

mostly interested in the low frequency dynamics as for control purposes the high fre-

quency components are not important, and hence the data can be low pass filtered before

used for identification. For this purpose we used a second order zero-phase Butterworth

filter with cut off frequency 0.015 (hour)�1 for the Subspace Identification Method in Sec-

tions 2.2 & 2.3. Most of the other identification schemes used in this chapter are based on

Output Error (OE)-type predictors which provide a good description of low frequency

properties [18], and hence low pass filtering was not required for those methods (details

in the following sections). The bottom graph of Fig. 2.2 shows both actual and filtered

water levels.

Due to the large differences in the magnitudes of the input and output data some

identification methods may run into numerical problems. To avoid such problems, the

data was occasionally scaled prior to identification, and in the proceeding sections, the

scaling is mentioned whenever applied to the identification dataset.
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summer and winter datasets.
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2.1.4 Time delay estimation

Most river models contain time delays because flows and water levels are measured at

different locations, and it takes time for the water to travel from one location to another.

These time delays must be incorporated in a model. Time delay estimation is a common

problem in all identification methods, and we chose to estimate them separately and treat

them as a prior knowledge.

Many system identification methods e.g. Prediction Error Methods (PEM) and Maxi-

mum Likelihood (ML) methods ([18] & [79]) are based on solving an optimisation prob-

lem to identify the unknown parameters in a model. Time delays—if considered as un-

known parameters—can also be estimated by solving the optimisation problem. How-

ever, the estimates obtained that way can be unreliable and not in agreement with the

physical reality. One reason for this is that the flows in a river can be approximately con-

stant for long periods of time which makes it difficult to distinguish between different

time delays. Subspace Identification Methods (SIM) [19] & [87], can estimate the order of

a system, and thus the time delays, by analysing the singular values of certain subspaces

related to the system’s state space model. However, SIM often fails to detect the order of

systems with time delays. The reason for this is that the time delays introduce zero eigen-

values and the other eigenvalues of the system are likely to be far away from zero. As a

consequence the overall system becomes stiff, and identifying such a system is difficult

[19].

Constant time delays

In the literature there are a number of methods available for estimating time delays in

open channels and rivers, see e.g. [12, 14, 20, 50, 53, 91]. Most of them are based on cross-

correlation methods which obtain estimates by computing the cross-correlation between

the upstream and downstream flows, and we have followed this approach here since it

usually gives reliable estimates. The literature also provides several methods for con-

stant time delay estimation of linear systems like time domain approximation methods,

frequency domain approximation methods, Laguerre domain approximation methods,
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explicit time delay parameter method, area and moment method (for details see [92] and

the references therein).

Varying time delays

Time delay vary with inflow, and it decreases with an increase in flow. However, it de-

pends on the physical geometry of the river as well. If an inflow keeps on increasing, then

a part of the river bed or a branch that is normally dry may start filling up with water, and

that increases the time delay. There are a few methods available in the literature for incor-

poration of time delay as a function of inflow (see [20]). In the extended cross-correlation

coefficient method (discussed in [20] & [21]) both upstream and downstream flows are

divided into bands corresponding to the percentages (10%,20%, . . . ,100%) of the highest

flows. Different events in data, especially flow peaks, can be used to calculate the corre-

sponding time delays. The trend in the variation of time delay with an inflow can then

be formulated as a linear regression problem. Instead of assuming a linear relation be-

tween the bands, an exponential function can also be used, e.g. ⌧(Qin ) = A + Be�cQin [20],

where A, B and c are unknown parameters. The identification dataset is divided into two

subsets; primary and auxiliary. The primary dataset is used to calibrate the parameters

of the model, and the auxiliary dataset is used to estimate the parameters associated with

the time delay. However, varying time delays are of less interest here since they remain

nearly constant in the low flow regime during summer which we are mainly interested

in.

2.1.5 Estimating time delays: ⌧H , ⌧B and ⌧P

One problem with methods based on cross-correlation is that they fail when the flows at

the upstream and downstream ends are regulated independently. In such cases we can

cross-correlate the upstream flow with an intermediate unregulated flow and extrapolate

the estimated time delay to the downstream end. The extrapolated time delay can be

used to narrow down the range of time delays to be considered in an optimisation based

system identification method. We use such an approach to estimate the time delays from
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Heywoods to Yarrawonga Weir (⌧H ), Bandiana to Yarrawonga Weir (⌧B) and Peechelba

to Yarrawonga Weir (⌧P).

The release from Yarrawonga Weir is independently regulated. Hence there is not

much natural correlation between the flows at Heywoods, Bandiana and Peechelba and

the flow over Yarrawonga Weir, and it is difficult to find the time delays using a cross-

correlation method. However, the flow at Corowa is correlated with the flows at Hey-

woods and Bandiana. To begin with, we estimate the time delays from Heywoods to

Corowa (⌧H!C ) and Bandiana to Corowa (⌧B!C ) and then use this information to nar-

row down the range of time delays to Yarrawonga Weir. The estimate of ⌧H!C is given

by

(2.3)⌧̂H !C (�) = arg max
�

1
N � �

PN
n=�+1[QH (n � �) � QH ][QC (n) � QC ]

�QH�QC

,

where ⌧̂H!C is the time delay estimate, N is the number of data samples, Qi =

1
N

PN
n=1 Qi (n), i = H,C are the average flows and �Qi =

q
1
N

PN
n=1(Qi (n) �Qi )2, i = H,C

are the standard deviations of the flows. We used various hourly sampled datasets from

2001 to 2010 and calculated the time delays using Eq. 2.3. We observed differences in the

estimate of the time delay between high and low flow regimes. It varied from 44 to 55

hours and on average it was ⌧̂H!C = 51 hours. Fig. 2.4 shows an examples of flow plots

with corresponding cross-correlation coefficient. The maximum value gives the time de-

lay estimates from Heywoods to Corowa. Using the same approach we obtained the

estimate ⌧̂B!C = 52 hours for the time delay between Bandiana and Corowa. Fig. 2.5

shows an example of the flow plots with the corresponding cross-correlation coefficient.

The flow at Bandiana which is shown with a blue curve in Fig. 2.5 reveals a periodic

component, especially in the first half of the dataset. This is most likely due to a 24 hour

release cycle from an upstream hydro electric power plant. To find ⌧H and ⌧B we need

to add the travelling time from Corowa to Yarrawonga Weir to ⌧̂H!C and ⌧̂B!C respec-

tively. Based on the distances and elevations we estimated that the time delays ⌧H and

⌧B should be in the range 60 to 80 hours and ⌧P in the range 6 to 18 hours.

The estimates are then further refined using optimisation based system identification

methods in the following sections.
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Figure 2.4: Cross-correlation coefficient, the maximum value gives the estimate of the
time delay from Heywoods to Corowa (data is from 27th Sep, 2002 to 3rd Dec, 2002).
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Figure 2.5: Cross-correlation coefficient, the maximum value gives the estimate of the
time delay from Bandiana to Corowa (data is from 22nd July, 2007 to 20th Sep, 2007).
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2.1.6 Model orders and noise models

In this thesis we only consider first order models. Higher order models have also been

tried but there were little or no improvements, and hence we limit the presentation here

to first order models with constant time delays. Also, we do not consider noise models

because our aim is to obtain models for control purposes.

2.2 Modelling water level in Lake Mulwala

In this section we describe different identification methods and use them to identify

MISO models of the water level in Lake Mulwala followed by a comparison and a discus-

sion of their simulation performance against validation data. We implemented our own

identification routines for all methods except for the continuous time RIV method and for

the State Dependent Parameter (SDP) estimation, where we used the CONTSID[2] and

CAPTAIN [1] toolboxes respectively in Matlab.

2.2.1 Prediction Error Method (PEM)

In PEM [18] & [79] we select a model structureM (✓) parametrised by a parameter vector

✓, and we seek a “good” model by minimizing a non-negative function of the prediction

errors "(t,✓) with respect to ✓. The prediction errors are given by

"(t,✓) = y(t) � ŷ(t |✓), (2.4)

where y(t) is the observed output at time t and ŷ(t |✓) is the predicted output based on the

model parameters ✓.

Model structure and predictor

In PEM it is easy to incorporate prior information in the model structure. We use Eq. 2.2

as a model structure for the water level in Lake Mulwala. Using an Euler approximation
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for the derivative, we obtain the following discrete time model,

(2.5)yLM (n + 1) = yLM (n) + cHQH (n � ⌧H ) + cBQB (n � ⌧B) + cPQP (n
� ⌧P ) + cDYWQDYW (n) + cYMCQYMC (n) + cMCQMC (n).

Here ✓ = [cH cB cP cDYW cYMC cMC ]
| and ⌧ = [⌧H ⌧B ⌧P ]

| are the unknown

parameters. We expect cH , cB and cP to be positive and cDYW , cYMC and cMC to be

negative as they correspond to in- and out-flows respectively. We use Eq. 2.5 to define an

Output Error (OE) type predictor as

(2.6)ŷLM (n + 1|✓,⌧) = ŷLM (n|✓,⌧) + cHQH (n � ⌧H ) + cBQB (n � ⌧B)
+ cPQP (n � ⌧P ) + cDYWQDYW (n) + cYMCQYMC (n) + cMCQMC (n).

We prefer an OE type predictor rather than an ARX type predictor which uses yLM (n)

on the right hand side of Eq. 2.6 instead of ŷLM (n|✓,⌧), since models obtained using

OE predictors provide a better description of the low frequency properties [18] and for

control purposes we are more interested in such descriptions. The parameters ✓ and ⌧ in

the OE model can be estimated using a quadratic criterion function [18] & [79], i.e.

(2.7)(✓̂, ⌧̂) = arg min
✓,⌧

1
N � ⌧max

NX

n=⌧max+1

(yLM (n) � ŷLM (n|✓,⌧))2,

where, ⌧max = max(⌧H ,⌧B,⌧P ). We can use the estimates of the time delays obtained in

Appendix 2.1.5 and modify the optimisation problem in Eq. 2.7. A PEM estimate for ✓

and ⌧ can then be found by solving,

(2.8)(✓̂, ⌧̂) = arg min
✓,

⌧H ,⌧B={60,61, ...,80},
⌧P={6,7, ...,18}.

1
N � ⌧max

NX

n=⌧max+1

(yLM (n) � ŷLM (n|✓,⌧))2.

Eq. 2.8 defines a Mixed Integer Program which in general is difficult to solve. However,

due to a small number of possible values of the delays, we can solve Eq. 2.8 by con-

sidering all possible combinations, and in each combination, ⌧max will be calculated as

max(⌧H ,⌧B,⌧P ).

Identifed model and results on validation data

An OE model was identified using the dataset in Fig. 2.2. The smallest value of the

identification criterion (Eq. 2.8) was achieved with time delays; ⌧H = 70, ⌧B = 71 and
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⌧P = 16 hours, and the parameters ✓̂ = [6.20 ⇥ 10�7 9.63 ⇥ 10�7 5.89 ⇥ 10�7 � 6.13 ⇥
10�7 � 9.73 ⇥ 10�7 � 6.67 ⇥ 10�7]. The first three parameters correspond to the inflows

at Heywoods, Bandiana and Peechelba and the remaining parameters correspond to the

outflows at Yarrawonga Weir, Yarrawonga Main Channel and Mulwala Canal. The signs

of the identified parameters are in agreement with inflows and outflows.

In Fig. 2.6 the model is simulated against data where there are small variations in

the actual water level in Lake Mulwala. In Fig. 2.7 the model is simulated against data

where the water level has relatively larger variations. The corresponding in- and out-

flows of the four data are shown in Appendix 2.A.1. The simulation results show that

the model picks up the trends very well, especially in Fig. 2.7, where the simulations are

carried out for 1200 hours with convincing performance. The predictor model in Eq. 2.6

contains an integrator, and thus the simulated output is expected to drift. This is visible

after around 350 hours (2 weeks) in the second plot of Fig. 2.6. A negative offset occurred

and is carried till the end of the simulation. However, such errors can be avoided by

reinitialising the water level at appropriate times. This is the strategy followed in the

receding horizon approach in Model Predictive Control (MPC) [22], where the water level

is initialised at each time step based on the measurements. Currently, the river operators

are considering 90 to 170 hours (roughly 4 to 7 days) forecasts for this reach when they

are planning the operations, and from the simulation results in Figs. 2.6 & 2.7, we can see

that the identified model is suitable for simulations up to such horizon lengths, because

the simulation lengths in the figures are much more than that with a single initialisation.

The estimated time delays (⌧H = 70, ⌧B = 71 and ⌧P = 16 hours) are in agreement with the

experience of the river operators. However, slight differences in the time delays, e.g. up

to 3-4 hours do not affect the performance of the identified model much. To demonstrate

this, simulations of water level in Lake Mulwala with slight differences in the time delay

from Heywoods (⌧H ), using the identified model, are shown in Appendix 2.A.2.

In PEM it is easy to incorporate available prior information about non-linearities in

the model structure. If the position of a gate is available along with the water level up-

stream of that gate, it can be used to describe the outflow by empirically derived rela-

tionships [11] discussed in Section 2.1.2. Such inclusions can improve the model per-
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Figure 2.6: Simulation results on validation data with small variations in the water level
in Lake Mulwala.

formance. Unfortunately, no information about the gate positions at Hume Dam and

Yarrawonga Weir is stored so it could not be used here. However, the procedure for in-

cluding this information is discussed in [51] & [90], and it has also been used for models

of irrigation channels e.g. see [46], [50] and the references therein.

2.2.2 Maximum Likelihood (ML)

The ML approach [18] & [79] is based on statistical arguments, and in this section we con-

sider this approach to identify a model of the water level in Lake Mulwala. We consider

a noise free model of the water level based on the model structure in Eq. 2.5,

(2.9)xLM (n + 1|✓,⌧) = xLM (n|✓,⌧) + cHQH (n � ⌧H ) + cBQB (n � ⌧B)

+ cPQP (n � ⌧P ) + cDYWQDYW (n) + cYMCQYMC (n) + cMCQMC (n).

We further assume that the measured water level yLM is xLM (n|✓,⌧) corrupted by noise

i.e.

yLM (n) = xLM (n|✓,⌧) + e(n),
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Figure 2.7: Simulation results on validation data with relatively large variations in the
water level in Lake Mulwala.

where {e(n)} is a sequence of independent and identically distributed (i.i.d), normal, zero-

mean random variables with variance �2
e . The prediction errors are given by

"LM (n|✓,⌧) = yLM (n) � xLM (n|✓,⌧), for n = 1,2, . . . ,N,

where N is the number of identification data points. Using the above assumptions the

density function is given by

f",n ("LM (n) |✓,⌧) ⇠ N (0,�2
e ) =

1
p

2⇡�2
e

e
� 1

2�2
e

("LM (n |✓,⌧))2

, (2.10)

from which it follows that the density function of yLM (n) is given by

fy,n (yLM (n) |✓,⌧) ⇠ N (xLM (n|✓,⌧),�2
e ).

Due to the assumption of independence, the likelihood function is given by

L(✓,⌧ |yLM (1), yLM (2), . . . , yLM (N )) =
NY

n=1

fy,n (yLM (n) |✓,⌧),



38 System Identification Methods Applied to the Upper Part of Murray River

⇠
NY

n=1

N (xLM (n|✓,⌧),�2
e ). (2.11)

To estimate ✓ = [cH cB cP cDYW cYMC cMC ]
| and ⌧ = [⌧H ⌧B ⌧P ]

| in Eqs. 2.6

& 2.10, we need to maximise the likelihood function (Eq. 2.11) or equivalently minimise

the negative log of the likelihood function, which is given by

� logL = N
2

log 2⇡ +
N
2

log�2
" +

1
�2
"

(
NX

n=1

(yLM (n) � xLM (n|✓))2), (2.12)

which is equivalent to the optimisation problems in Eqs. 2.7 & 2.8 obtained in the PEM

approach. Thus, we get the same estimates of ✓.

2.2.3 Continuous-Time (CT) identification

There are two major approaches to CT system identification.

1. The indirect approach in which a discrete time (DT) model is identified from the

observed data and converted to a CT model.

2. The direct approach in which a CT model is identified directly from the observed

data [80] &[81].

In this section we use the direct method. We consider the CT volume balance in Eq. 2.2

and obtain a model structure for the noise-free water level xLM

dxLM (t)
dt

= cHQH (t � ⌧0H ) + cBQB (t � ⌧0B) + cPQP (t � ⌧0P )

+ cDYWQDYW (t) + cYMCQYMC (t) + cMCQMC (t). (2.13)

We integrate Eq. 2.13 from an initial time t0 to time t and get

Z t

t0

dxLM (t̄)
dt̄

dt̄ = xLM (t) � xLM (t0) = cH

Z t

t0

QH (t̄ � ⌧0H )dt̄ + cB

Z t

t0

QB (t̄ � ⌧0B)dt̄

+ cP

Z t

t0

QP (t̄ � ⌧0P )dt̄ + cDYW

Z t

t0

QDYW (t̄)dt̄

+ cYMC

Z t

t0

QYMC (t̄)dt̄ + cMC

Z t

t0

QMC (t̄)dt̄ . (2.14)
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We define a CT OE-type predictor from the above equation,

ŷLM (t |✓,⌧) = ŷLM (t0 |✓,⌧) + cH

Z t

t0

QH (t̄ � ⌧0H )dt̄ + cB

Z t

t0

QB (t̄ � ⌧0B)dt̄

+ cP

Z t

t0

QP (t̄ � ⌧0P )dt̄ + cDYW

Z t

t0

QDYW (t̄)dt̄

+ cYMC

Z t

t0

QYMC (t̄)dt̄ + cMC

Z t

t0

QMC (t̄)dt̄, (2.15)

where ✓ = [cH cB cP cDYW cYMC cMC ]
| and ⌧ =

h
⌧0H ⌧0B ⌧0P

i|
are the unknown

parameters.

We use the same hourly sampled dataset for identification as used for PEM (see Fig.

2.2). As the regulated flows are almost constant between samples, a zero order hold (zoh)-

interpolation is used in order to obtain continuous data for the flows at Heywoods (H),

(Downstream) Yarrawonga Weir (DYW), Yarrawonga Main Channel (YMC) and Mul-

wala Canal (MC), while a first order hold (foh)-interpolation is used for the unregulated

flows at Bandiana (B) and Peechelba (P) where there are larger flow variations between

samples. That is for X = H,DYW,Y MC & MC, and for t̄ 2 [t0, t] we have QX (t̄) = QX (t0)

in Eq. 2.15, and for flows at Y = B & P we have QY (t̄) = QY (t0) + (t̄�t0)
(t�t0) (QY (t) � QY (t0)).

For the hourly sampled dataset we have sampling period T = t � t0 = 1, and thus the

predictor becomes

(2.16)
ŷLM (t |✓,⌧) = ŷLM (t � 1|✓,⌧)

+ cHQH (t � 1 � ⌧0H ) +
cB
2

(QB (t � ⌧0B) + QB (t � 1 � ⌧0B)) +
cP
2

(QP (t � ⌧0P )

+ QP (t � 1 � ⌧0P )) + cDYWQDYW (t � 1) + cYMCQYMC (t � 1) + cMCQMC (t � 1),

Compared to the model used in PEM (Eq. 2.6) there are now two delayed values of

the flows at Bandiana and Peechelba in the model, although the number of parameters

remain the same. For simplicity, we used the same time delays as before i.e. ⌧0H = ⌧H = 70,

⌧0B = ⌧B = 71 and ⌧0P = ⌧P = 16. We used the identification dataset in Fig. 2.2 and solved

the following optimisation problem

(2.17)✓̂CT = arg min
✓

1
N

NX

t=1

(yLM (t) � ŷLM (t |✓))2.
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Figure 2.8: Simulation results on validation data with small variations in the water level
in Lake Mulwala.

We got ✓̂CT = [6.20 ⇥ 10�7 9.61 ⇥ 10�7 5.93 ⇥ 10�7 � 6.14 ⇥ 10�7 � 9.74 ⇥ 10�7 �
6.68 ⇥ 10�7]. The signs are in agreement with the inflows and outflows, and the estimates

are almost the same as what we got with PEM in Section 2.2.1, which was expected since

the flows are in most instances slowly varying. Figs. 2.8 and 2.9 show the performance of

the identified OE model on validation data with small and large variations respectively.

The model picks the trend very well and the results are similar to PEM.

2.2.4 Data-Based Mechanistic (DBM) approach

In this section we apply the DBM approach. The approach has been widely used in

hydrological and environmental modelling for many years, see e.g. [16, 17, 53]. Within

the context of this approach, one can identify static non-linearities in a system, which has

been done in many works in the literature, specifically in rainfall-runoff modelling and in

flood forecasting [17] & [93]. In this section, we first identify State Dependent Parameters

(SDP) in a model of the water level in Lake Mulwala, and we have used the CAPTAIN

toolbox [1] for this purpose. Later, we identify a CT OE model of the water level using a

Simplified Refined Instrumental Variable method for Continuous time systems (SRIVC),

within the context of DBM modelling ([80], [94]). There are two toolboxes that support

this method in Matlab; CAPTAIN [1] and CONTSID [2], and we have used the CONTSID
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Figure 2.9: Simulation results on validation data with relatively large variations in the
water level in Lake Mulwala.

toolbox in our work.

State Dependent Parameter (SDP) estimation

The idea of SDP estimation is to consider the parameters of a model to be functions of

past inputs and outputs. One possibility is to let the parameters depend on their corre-

sponding flows i.e.

yLM,n+1 = yLM,n + cH (QH,n�⌧H )QH,n�⌧H + cB (QB,n�⌧B )QB,n�⌧B + cP (QP,n�⌧P )QP,n�⌧P

+ cDYW (QDYW ,n )QDYW ,n + cYMC (QYMC,n )QYMC,n + cMC (QMC,n )QMC,n , (2.18)

where subscripts are used for the time indices for compactness. For convenience we

denote

✓(Q) =

[cH (QH,n�⌧H ) cB (QB,n�⌧B ) cP (QP,n�⌧P ) cDYW (QDYW ,n ) cYMC (QYMC,n ) cMC (QMC,n )].

To estimate vector ✓(Q), we follow the method developed in [54] which is described

below,
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1. We describe the evolution of a parameter by the following state space model

ci (n + 1) = f ici (n) + ⇠i (n), (2.19)

where i = {H,B,P,DYW,Y MC,MC}, f i can be tuned or initialized by some value and

⇠i is zero mean white noise with variance �i . The state evolution is a random walk

(RW) for f i = 1. Different models for the state evolution can also be considered

e.g. generalized random walk (GRW), integrated random walk (IRW) etc. [54]. We

enforce the integrator (in Eq. 2.18) by considering the output zLM (n) = yLM (n) �
yLM (n � 1). Imposing a model structure is not aligned with the DBM modelling

philosophy, however, we have done it here to be consistent with other considered

identification methods. We define a matrix ‘H’ that carries the regression variables

as

H (n) = [QH,n�⌧H QB,n�⌧B QP,n�⌧P QDYW ,n QYMC,n QMC,n].

We can hence form a state space system with the SDPs as states,

c(n + 1) = Fc(n) + ⇠ (n), (2.20)

zLM (n) = H (n)c(n), (2.21)

where F is a diagonal matrix with dimensions equal to the number of parameters.

2. The SDPs are estimated sequentially by applying a Kalman Filter (KF) to Eqs. 2.20

& 2.21, while working through the available data in temporal order. The estimates

obtained from the KF are also improved, using a recursive Fixed Interval Smoother

(FIS) while working through the available data in reverse temporal order [54].

Since the states are SDPs, the changes in the states are expected to be frequent and

abrupt over time. It is unlikely that a RW model captures the temporal variations

in a parameter well. However, the idea presented in [54] can be applied i.e. the

identification dataset can be sorted in an ascending order rather than in temporal

order, and then estimation can be performed. With this approach the SDP variations
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gets smoother, and it is more likely that a RW process can be utilized to describe the

state evolution. However, the data sorting prior to estimation of the states has to

be common for all variables, and to select one reference variable rarely produces

satisfactory results. To cope with this, we calculate ‘partial residual series’ and

estimate the parameters one by one [54], and for each input the effect of all the other

inputs are subtracted from the output [54]. The FIS estimates obtained above are

used as an initial guess, e.g. ĉ1
H (n) is a time varying estimate of the SDP associated

with the flow at Heywoods.

Let k = 1,2, ..., and i = {H,B,P,DYW,Y MC,MC}. Repeat the following procedure

until the time series ĉki (n) converges,

(a) Form the partial residual series zi,kLM (n) = zLM (n) �P
j,i Q j (n)ĉkj (n), i.e. sub-

tract the effect of all inputs, except the ith input, from the output zLM .

(b) Sort both zi,kLM (n) and Qi (n) according to the ascending order of Qi (n). Denote

the sorted variables by zi,kLM (n) and Qi (n). The purpose of the sorting is to

get smoother variations in the associated SDP ĉ
k
i (n), and it is likely that a RW

process can be utilized to describe it.

(c) Run FIS estimation using the partial residual relationship; zi,kLM (n) =

Qi (n)cki (n). From the obtained estimates ĉ
k
i (n), ĉki (n) can be retrieved by un-

sorting the estimated series in the reverse order of what was used in sorting in

the previous step.

3. Finally, from the non-parametric estimates of the SDPs above, we fit suitable non-

linear functions that closely describe the behaviour of the parameters with respect

to the states on which they depend.

We have used the ‘sdp’ function in the CAPTAIN toolbox ([1]) to get non-parametric

estimates of the SDPs in ✓(Q). Fig. 2.10 shows the non-parametric estimates obtained

from the identification dataset in Fig. 2.2. By fitting the estimates to a straight line, we
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get

(2.22)✓̂(Q) =

2666666666666666666664

�9.14 ⇥ 10�25QH + 4.78 ⇥ 10�7

8.16 ⇥ 10�25QB + 3.18 ⇥ 10�7

3.49 ⇥ 10�25QP + 6.59 ⇥ 10�7

2.93 ⇥ 10�25QDYW � 4.64 ⇥ 10�7

8.45 ⇥ 10�25QYMC � 9.16 ⇥ 10�7

�1.87 ⇥ 10�24QMC � 4.38 ⇥ 10�7

3777777777777777777775

T

.

The maximum recorded in- or out-flows in the upper part of Murray River are in the

order of 105 ML/Day (115,740 m3/sec). The coefficients associated with each flow in the

✓̂(Q) vector are in the order of 10�25 to 10�24. So the first term of each component in the

✓̂(Q) vector contributes in the order of 10�20 to 10�19. This is 1012 to 1013 times smaller

than the constant terms (which are in the order of 10�7). So the flow dependent terms

in the ✓̂(Q) vector can be safely ignored. The constant terms are in the same order of

magnitude as we obtained by PEM and CT identification in Sections 2.2.1 & 2.2.3, and

the signs are also in agreement with in- and out-flows. However, as mentioned earlier,

the flows in the identification dataset in Fig. 2.2 do not have large flow range. We next

check the SDPs obtained from identification data with larger variations.

For this, we used identification data from several years after 2000. Table 2.1 shows

the variations in the data we used, the ‘straight-line fits’ of the non-parametric estimates

obtained from the data, and the unexpected behaviours, if any (in blue font). We found

that the non-parametric SDP estimates remain almost constant in about 95 percent of

the cases, and they were similar to the ones shown in Fig. 2.10. The coefficients of the

straight line fits associated with the flows are small in magnitude, and the first terms of

each component in the ✓̂(Q) vectors can be ignored as explained above. Moreover, the

signs and the magnitudes of the constants in the ‘straight line fits’ are in agreement with

the physical structure of the river. These constants are in the same order of magnitude

but their values show variations e.g. the constant part of the ‘straight line fits’ associated

with the flow at Heywoods varies from 2.39 ⇥ 10�7 to 6.42 ⇥ 10�7 in Table 2.1. A bit of

variation in the constant part is expected since there will often be excitation problems

with some data and due to that several flows follow the same pattern.
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Figure 2.10: Non-parametric estimates of the state dependent parameters.
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Case Time
period

Operating range
(1 m3/sec = 86.4 ML/Day) Straight-line fits ✓̂(Q)

1
15th Sep, 01

to
31st Dec, 01

QH : 408 � 24,760 ML/Day,
QB : 445 � 6,500 ML/Day,
QP : 615 � 14,020 ML/Day,

QDYW : 5,060 � 15,400 ML/Day,
QYMC : 305 � 3,200 ML/Day,
QMC : 2,100 � 8,900 ML/Day,
yLM : 124.65 � 125.03 mAHD

26666666666664

�1.28 ⇥ 10�25QH + 4.55 ⇥ 10�7

�2.77 ⇥ 10�25QB + 3.37 ⇥ 10�7

�8.16 ⇥ 10�26QP + 5.87 ⇥ 10�7

�8.03 ⇥ 10�25QDYW � 5.02 ⇥ 10�7

3.61 ⇥ 10�25QYMC � 4.70 ⇥ 10�7

�2.07 ⇥ 10�25QMC � 4.10 ⇥ 10�7

37777777777775

T

2
27th Jul, 02

to
18th Oct, 02

QH : 7,920 � 25,630 ML/Day,
QB : 681 � 3,500 ML/Day,
QP : 969 � 6,138 ML/Day,

QDYW : 5,650 � 15,200 ML/Day,
QYMC : 0 � 3,050 ML/Day,
QMC : 0 � 9,420 ML/Day,

yLM : 122.87 � 125.05 mAHD

26666666666664

1.01 ⇥ 10�25QH + 6.42 ⇥ 10�7

�7.65 ⇥ 10�26QB + 1.41 ⇥ 10�7

�1.79 ⇥ 10�25QP + 7.93 ⇥ 10�7

�1.97 ⇥ 10�25QDYW � 5.33 ⇥ 10�7

�1.28 ⇥ 10�24QYMC � 9.02 ⇥ 10�7

�2.79 ⇥ 10�26QMC � 8.38 ⇥ 10�7

37777777777775

T

3
22nd Oct, 04

to
31st Dec, 04

QH : 1,865 � 18,410 ML/Day,
QB : 430 � 3,645 ML/Day,

QP : 1,100 � 9,330 ML/Day,
QDYW : 8,520 � 13,400 ML/Day,

QYMC : 150 � 2,745 ML/Day,
QMC : 1,770 � 6,200 ML/Day,
yLM : 124.63 � 125.04 mAHD

26666666666664

1.92 ⇥ 10�25QH + 5.96 ⇥ 10�7

�3.06 ⇥ 10�25QB + 8.17 ⇥ 10�7

�2.44 ⇥ 10�25QP + 6.43 ⇥ 10�7

3.78 ⇥ 10�24QDYW � 6.59 ⇥ 10�7

�2.05 ⇥ 10�24QYMC � 7.42 ⇥ 10�7

2.94 ⇥ 10�25QMC � 5.61 ⇥ 10�7

37777777777775

T

4
21st Jan, 05

to
7th Apr, 05

QH : 3,800 � 20,600 ML/Day,
QB : 305 � 6,420 ML/Day,
QP : 410 � 21,475 ML/Day,

QDYW : 7,580 � 24,510 ML/Day,
QYMC : 65 � 2,350 ML/Day,

QMC : 1,490 � 6,700 ML/Day,
yLM : 124.68 � 125.03 mAHD

26666666666664

1.88 ⇥ 10�26QH + 5.85 ⇥ 10�7

5.35 ⇥ 10�25QB + 6.48 ⇥ 10�7

�5.52 ⇥ 10�26QP + 5.43 ⇥ 10�7

�3.26 ⇥ 10�25QDYW � 5.28 ⇥ 10�7

�1.00 ⇥ 10�24QYMC � 10.37 ⇥ 10�7

6.54 ⇥ 10�26QMC � 7.46 ⇥ 10�7

37777777777775

T

5
23th Oct, 05

to
31st Dec, 05

QH : 6,120 � 22,870 ML/Day,
QB : 645 � 16,940 ML/Day,

QP : 1,320 � 17,355 ML/Day,
QDYW : 10,780 � 31,190 ML/Day,

QYMC : 15 � 2,760 ML/Day,
QMC : 530 � 7,930 ML/Day,
yLM : 124.71 � 124.96 mAHD

26666666666664

�2.98 ⇥ 10�25QH + 5.38 ⇥ 10�7

�5.86 ⇥ 10�28QB + 7.23 ⇥ 10�9

�2.80 ⇥ 10�13QP + 9.31 ⇥ 10�7

5.71 ⇥ 10�26QDYW � 5.78 ⇥ 10�7

�3.25 ⇥ 10�23QYMC � 6.05 ⇥ 10�7

�6.18 ⇥ 10�7

37777777777775

T

6
8th Oct, 09

to
31st Dec, 09

QH : 1,640 � 15,050 ML/Day,
QB : 295 � 3,990 ML/Day,
QP : 310 � 9,310 ML/Day,

QDYW : 9,437 � 10,980 ML/Day,
QYMC : 0 � 1,140 ML/Day,
QMC : 465 � 2,180 ML/Day,
yLM : 124.61 � 124.94 mAHD

26666666666664

4.84 ⇥ 10�25QH + 5.44 ⇥ 10�7

�2.60 ⇥ 10�25QB + 2.10 ⇥ 10�7

4.86 ⇥ 10�25QP + 7.30 ⇥ 10�7

3.81 ⇥ 10�24QDYW � 5.55 ⇥ 10�7

7.09 ⇥ 10�23QYMC � 9.74 ⇥ 10�7

�2.09 ⇥ 10�24QMC � 6.05 ⇥ 10�7

37777777777775

T

7
1st Jan, 11

to
7th Apr, 11

QH : 680 � 25,255 ML/Day,
QB : 1,025 � 20,834 ML/Day,
QP : 2,788 � 29,060 ML/Day,

QDYW : 15,965 � 42,685 ML/Day,
QYMC : 1 � 1,525 ML/Day,

QMC : 2,945 � 7,350 ML/Day,
yLM : 124.61 � 124.90 mAHD

26666666666664

3.77 ⇥ 10�26QH + 2.39 ⇥ 10�7

8.53 ⇥ 10�26QB + 2.64 ⇥ 10�7

4.81 ⇥ 10�7

�1.33 ⇥ 10�12QDYW � 2.69 ⇥ 10�7

�6.96 ⇥ 10�25QYMC + 4.78 ⇥ 10�7

�6.45 ⇥ 10�26QMC � 3.31 ⇥ 10�7

37777777777775

T

Table 2.1: SDP estimation from data with different range of variations.
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Figure 2.11: A non-parametric estimate of an SDP with straight-line fitting against a
dataset from 2005.
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Figure 2.12: A non-parametric estimate of an SDP with straight-line fitting against a
dataset from 2011.

Table 2.1 shows two cases with unexpected behaviours. Fig. 2.11 shows the estimate

of the SDP associated with the inflow at Peechelba in case ‘5’. However, the variations

are less than 5 % of the maximum value. Similarly in case ‘7’, we found another such

behaviour, and this time it corresponds to the flows over Yarrawonga Weir. Fig. 2.12

shows the corresponding non-parametric estimate. The change is almost 10 % of the

maximum value. This effect can be explained as follows. QYMC is relatively constant, but

it appears as an inflow instead of an outflow as the corresponding parameter is positive.

The wrong sign is most likely due to the fact that QYMC is relatively smaller than the

other two outflows on this particular dataset, and its effect on the water level is therefore

difficult to estimate. In order to maintain the volume balance cDYW must compensate for

this error. Since cDYW multiplies QDYW , it must take larger values during low flows and

smaller values during high flows in order to compensate for an (approximately) constant

flow.

In conclusion we found that there is no real need to use a non-linear model when the

intended use is control. However, in models for flood prediction [17] & [93], it is benefi-
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cial to incorporate non-linearities. Linear Parameter Varying (LPV) system identification

(e.g. [95]) can also be employed, but the SDPs obtained by the DBM approach suggest

that there is not much improvement expected from using LPV system identification.

CT model identification using SRIVC method

Here we use SRIVC method within the context of DBM modelling to identify a CT OE

model of the water level in Lake Mulwala. As described earlier, an important part of

the DBM modelling approach is to allow the dynamic model to be determined from the

identification dataset without constraining the model parameters or imposing any spe-

cific model structure. Hence the following first order CT OE, MISO model structure was

considered

(2.23)
yLM (t) =

bH

s + aH
QH (t � ⌧0H ) +

bB

s + aB
QB (t � ⌧0B) +

bP

s + aP
QP (t � ⌧0P )

+
bDYW

s + aDYW
QDYW (t) +

bYMC

s + aYMC
QYMC (t) +

bMC

s + aMC
QMC (t).

The parameters ai and bi are to be determined by the SRIVC method, where i =

{H,B,P,DYW,Y MC,MC}. We expect the signs of the numerator coefficients to be in agree-

ment with the directions of the flows and the poles to appear close to the origin. We used

the same time delays as before.

We used the identification dataset in Fig. 2.2. Table 2.2 shows the identified CT trans-

fer functions (TFs) and their discrete time (DT) versions. The estimated parameters of the

CT transfer functions are in the same order of magnitude and the signs of the numerator

coefficients are in agreement with the inflows and outflows. The poles are in the left half

plane close to the origin. An important part of the DBM modelling that differentiates

it from black-box and grey-box modelling is that the identified black-box model should

always be capable of interpretation in physically meaningful terms. In this case, the most

obvious explanation is that there are small unaccounted for losses in the system, but in

full DBM modelling, further analysis would be necessary, possibly using additional data,

in order to confirm this or investigate other possibilities.
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TF corresponding to flows CT TF DT TF

at Heywoods 3.21⇥10�7

s+0.0038 e�70s 3.20⇥10�7

z�0.996 z�70

at Bandiana 2.35⇥10�7

s+0.0032 e�71s 2.34⇥10�7

z�0.996 z�71

at Peechelba 5.47⇥10�7

s+0.0049 e�16s 5.46⇥10�7

z�0.995 z�16

over Yarrawoonga Weir �2.88⇥10�7

s+0.0036
�2.87⇥10�7

z�0.996
to YW main channel �2.12⇥10�6

s+0.0141
�2.10⇥10�6

z�0.986
to Mulwala Canal �5.06⇥10�7

s+0.0048
�5.05⇥10�7

z�0.995

Table 2.2: CT and DT transfer functions corresponding to each inflow and outflow from
Lake Mulwala.
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Figure 2.13: Simulation results on validation data with small variations in the water level
in Lake Mulwala.

We validated the identified model against the same data as used before. Figs. 2.13 and

2.14 show the performance of the identified model. The model picks up the trends well

against the data with small and large variations. We also used the CONTSID toolbox to

identify higher order models but there were no or very little improvements. Some related

results are added in Appendix 2.B.
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Figure 2.14: Simulation results on validation data with relatively large variations in the
water level in Lake Mulwala.

2.2.5 Subspace Identification Method (SIM)

In this section we consider the SIM approach. In the literature there are a number of

subspace identification techniques available (e.g. [19], [96], [97] & [87]). Here we consider

Multi-Variable Output-Error State-sPace (MOESP) method [19] which uses a state space

representation in innovation form

x(k + 1) = Ax(k) + Bu(k) + Ke(k), (2.24)

y(k) = Cx(k) + Du(k) + e(k), (2.25)

where x(k) 2 Rn , u(k) 2 Rm and y(k) 2 Rp . e(k) is white noise and K is the Kalman

Gain.

Multi-Variable Output-Error State-sPace method (MOESP)

In MOESP we estimate the column space of the extended observability matrix, Os =
C| (C A)| · · · (C As�1)|

�|
, where s > n and n is the order of the system. The algo-

rithm works as follows

Column space of the extended observability matrix Os : From Eqs. 2.24 & 2.25 the



2.2 Modelling water level in Lake Mulwala 51

relation between the inputs and the outputs can be written as,

Yi,s,N = OsXi,N + TsUi,s,N +SsEi,s,N , (2.26)

where

Yi,s,N =

2666666664

y(i) · · · y(i + N � 1)
...

. . .
...

y(i + s � 1) · · · y(i + s + N � 2)

3777777775

,

Ui,s,N =

2666666664

u(i) · · · u(i + N � 1)
...

. . .
...

u(i + s � 1) · · · u(i + s + N � 2)

3777777775

,

Ei,s,N =

2666666664

e(i) · · · e(i + N � 1)
...

. . .
...

e(i + s � 1) · · · e(i + s + N � 2)

3777777775

,

and Xi,N =

x(i) x(i + 1) · · · x(i + N � 1)

�
. Eq. 2.26 is called the “data equation”. Os

is the extended observability matrix, and Ts and Ss are given by

Ts =

26666666666664

D 0 · · · 0

CB D · · · 0
...

...
. . .

...

C As�2B C As�3B · · · D

37777777777775

, Ss =

26666666666664

Ip 0 · · · 0

CK Ip · · · 0
...

...
. . .

...

C As�2K C As�3K · · · Ip

37777777777775

.

To estimate the column space of the matrix Os , we remove the second and the third term

on the right hand side of Eq. 2.26 by multiplying the equation with a projection matrix

u?Ui,s,N
and then by an instrumental variable matrix ZN . For i = s in Eq. 2.26 we get,

(2.27)Ys,s,N u ?
Us,s,N

Z|N = OsXs,N u ?
Us,s,N

Z|N + SsEs,s,N u ?
Us,s,N

Z|N ,

where, u?Us,s,N
= IN �U|s,s,N (Us,s,NU|s,s,N )�1Us,s,N is a projection matrix which projects

onto the orthogonal complement of Us,s,N (removes the second term of Eq. 2.26). ZN is

an instrumental variable matrix [19] comprising past input and past output data. ZN is

ideally chosen, such that limN!1 1
N Es,s,N u?Us,s,N

Z|N = 0 (removes the third term of Eq.
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2.26). Depending on the choice of ZN we have two variants of MOESP, PI-MOESP (ZN

contains past input only, ZN =

U0,s,N

�
) and PO-MOESP (ZN contains both past input

and past output, ZN =

U0,s,N Y0,s,N

�|
).

With the above mentioned properties, we take the limit N ! 1 in Eq. 2.27, and get,

lim
N!1

1
N

Yi,s,N⇧?
Ui,s,N

Z|N = lim
N!1

1
N
OsXi,N⇧

?
Ui,s,N

Z|N . (2.28)

Generally, ZN =

266664

U0,s,N

Y0,s,N

377775
is always used as the choice of the instrumental variable matrix,

because it provides better separation between the system dynamics and the noise [19].

Furthermore, with the following assumption,

rank( lim
N!1

1
N

266664

X0,N

U0,2s,N

377775


X|0,N U|0,2s,N

�
) = n + 2sm, (2.29)

and the application of Sylvester’s Inequality [98] to Eq. 2.28, it can be shown that ([19]),

range( lim
N!1

1
N

Ys,s,N⇧?
Us,s,N

Z|N ) = range(Os ). (2.30)

The column space of the extended observability matrix Os can then be estimated by tak-

ing the Singular Value Decomposition (SVD) of GN =
1
N Ys,s,N u?Us,s,N

Z|N . The SVD gives

GN = UN
P

N V|N , where range(UN ) = range(GN ), which in the limit N ! 1 is equal to

range(Os ). An efficient numerical implementation of the above step is given in [19].

Order and state space matrices of the system: The matrix
P

N in the SVD con-

tains the singular values of the system. The n largest singular values are generated

by the system dynamics and the rest stem from noise. The order of the system can

be estimated by finding the largest gap in the singular values. As Os is given by

C| (C A)| · · · (C As�1)|

�|
, C and A can be estimated up to a similarity transform

T . Using MATLAB notation we express the estimates of CT as,

bCT = bOs (1 : p,1 : n).
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An estimate of AT can be found by solving

bOs (1 : p(s � 1),1 : n) bAT = bOs (p + 1 : ps,1 : n), (2.31)

in a least squares sense with respect to bAT . After the estimates of the A and C matrices

are obtained, Eqs. 2.24 & 2.25 can be used to formulate a linear regression problem from

which the B and D matrices can be estimated together with the initial states x(0).

Prior information in SIM

In SIM it is difficult to exploit the prior knowledge fully since we cannot fix a particular

basis for the state space model during identification, especially when the data is noisy.

However, we use techniques similar to those in [99] & [100] to incorporate the structure

and time delays in the next subsection and in Section 2.3.4.

Validation results

We used the identification dataset in Fig. 2.2 where the delays were incorporated

i.e. {[QH (k � ⌧H ),QB (k � ⌧B),QP (k � ⌧P ),QDYW (k),QYMC (k),QMC (k)], [yLM (k)]}Nk=⌧max
.

⌧max = max(⌧H ,⌧B,⌧P ) is the maximum time delay . The time delays from Section 2.2.1

were used, i.e. ⌧H = 70, ⌧B = 71 and ⌧P = 16 hours. With s = 5 in Eq. 2.26, we got the

singular values


592.02 0.055 0.0012 1.26 ⇥ 10�5 9.41 ⇥ 10�8

�
.

We chose a first order model since the biggest gap is between the first and second singular

values. The matrices of the identified state space model were,

A =

1
�
, C =


�10.88

�
,

B =
h
�5.73 ⇥ 10�8 � 6.07 ⇥ 10�8 � 7.66 ⇥ 10�8 5.78 ⇥ 10�8 9.20 ⇥ 10�8 6.10 ⇥ 10�8

i
.
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Figure 2.15: Simulation results on validation data with small variations in the water level
in Lake Mulwala.

The actual value of the element in matrix A was 0.99999841, which we rounded off to 1,

such that the system has an integrator. The fact that the model should contain an inte-

grator can also be incorporated by considering yLM (n + 1) � yLM (n) as the output. The D

matrix was forced to be zero as there is no direct coupling between the inputs and the out-

put. This was achieved by simply removing the regression vectors corresponding to the

unknown entries in the D matrix in the least squares problem for the estimation of B, D

and the initial state. A similar approach is considered in [99] & [100] to enforce structure

and prior information in subspace identification. If we compute the transfer function of

the SIM based model above, we get ✓̂SS = [6.23 ⇥ 10�7 6.61 ⇥ 10�7 8.34 ⇥ 10�7 � 6.29 ⇥
10�7 � 10.01 ⇥ 10�7 � 6.64 ⇥ 10�7] as the parameter vector for the predictor model in

Eq. 2.6. ✓̂SS is close to the values obtained with the other methods.

The validation results are shown in Figs. 2.15 & 2.16. The model picks up the trends

in the data well. In Fig. 2.15 the gap between the actual and the simulated water level is

increasing. Again, the reason is that the model contains an integrator and the errors are

accumulated over time.



2.2 Modelling water level in Lake Mulwala 55

100 200 300 400 500 600 700 800 900 1000 1100

124.8

125

125.2

Time (hours), 15th Feb, 2002 to 3rd Apr, 2002

W
a

te
r 

le
ve

l (
m

A
H

D
) 

SIM based simulations on validation data with relatively large variations in water level

 

 

Actual water level at Lake Mulwala

Simulated water level from PO−MOESP model

200 400 600 800 1000 1200
124.75

124.8

124.85

124.9

Time (hours), 11th Oct, 2006 to 1st Dec, 2006 

W
a

te
r 

le
ve

l (
m

A
H

D
) 

 

 
Actual water level at Lake Mulwala

Simulated water level from PO−MOESP model

Figure 2.16: Simulation results on validation data with relatively large variations in the
water level in Lake Mulwala.

2.2.6 Comparison of results

In Figs. 2.17 & 2.18 the simulation results of the identified models from Sections 2.2.1,

2.2.3, 2.2.4 & 2.2.5 are plotted together. The identified models pick up the trends in the

validation data well. The simulation results of PEM and CT OE models are almost the

same and that is why yPEM is hidden under yCT OE on some figures. The Sum of the

Squared Prediction Errors (SSPE) on validation data are shown in Table 2.3. The SSPE is

given by

SSPE =
1
N

NX

t=1

(yLM (t) � ŷLM (t,✓))2. (2.32)

It is hard to nominate any technique as the best for the MISO case, however, PEM and CT

OE models performed consistently well on the validation data.

All methods could incorporate and capture the available prior information, and the

signs of the identified model parameters were in agreement with the flow directions. In

DBM we did not a-priori incorporate the prior information since the DBM modelling

philosophy is to allow the dynamic model structure to be identified directly from the

available data, and constraining the data and imposing a particular model structure are

usually not in agreement with the DBM modelling philosophy. No major computational
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Figure 2.17: Simulation results on validation data with small variations in the water level
in Lake Mulwala.

Dataset PEM CT OE SRIVC (DBM) SIM
2002 1.50 ⇥ 10�3 1.90 ⇥ 10�3 3.50 ⇥ 10�3 2.10 ⇥ 10�3

2003 0.97 ⇥ 10�4 0.98 ⇥ 10�4 2.60 ⇥ 10�4 4.02 ⇥ 10�4

2004 1.80 ⇥ 10�4 1.75 ⇥ 10�4 2.71 ⇥ 10�4 6.85 ⇥ 10�4

2006 3.81 ⇥ 10�4 3.27 ⇥ 10�4 1.10 ⇥ 10�3 4.98 ⇥ 10�4

Table 2.3: SSPE for the water level simulations in Lake Mulwala.

issues were observed while solving optimisation problems in PEM or CT methods be-

cause the optimisation problems were small scale and convex in the parameters. SIM is

reliable in terms of computational complexity as it is a non-iterative technique which is

not based on solving an optimisation problem.

The obtained models can be used in model based control techniques such as Model

Predictive Control (MPC), and we will use the PEM based model in the proceeding chap-

ters to control water level in Lake Mulwala.
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Figure 2.18: Simulation results on validation data with relatively large variations in the
water level in Lake Mulwala.

2.3 Modelling water level in Lake Mulwala and flow at Doctors
Point

The water level at Doctors Point is another important variable in the upper part of Mur-

ray River. The rate of fall of the water level at Doctors Point has to be kept below 15

cm/Day to avoid river bank slumping. In this section we consider the identification

methods described in Section 2.2 to identify a MIMO model with the water level in Lake

Mulwala yLM , and the flow at Doctors Point QDP , as output variables. The water level at

Doctors Point is then obtained from the flow using the rating curve shown in Fig. 2.19.

We implemented our own identification routines for all methods except for the continu-

ous time state space model, where we used CONTSID toolbox [2] in Matlab. In Section

2.4 we compare the models obtained in this section and discuss their simulation perfor-

mance.

2.3.1 PEM approach

In PEM we prefer to identify models for each output separately. It becomes more dif-

ficult when the models have common parameters, but in this case the models can be
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Figure 2.19: Rating curve between the flow and water level at Doctors Point.

parametrised independently. For the water level in Lake Mulwala we use the same model

as before. From Fig. 2.1 the flow at Doctors Point can be described by the following OE

model,

(2.33)Q̂DP (n|✓) = ↵Q̂DP (n � 1|✓) + �HQH (n � ⌧0H ) + �BQB (n � ⌧0B),

where QH and QB are the flows at Heywoods and Bandiana, and �H and �B are the

parameters associated with them. ⌧0H and ⌧0B are the time delays from Heywoods and

Bandiana to Doctors Point respectively. ✓ = [↵ �H �B ]
| is the unknown parameter

vector.

The cross-correlation method was used to estimate the time delays ⌧0H and ⌧0B. For this

case we estimated the time delay from Doctors Point to Corowa (⌧D!C ) (see Fig. 2.1), and

obtained estimates of ⌧0H and ⌧0B by subtracting ⌧̂D!C from the time delay estimates from

Heywoods to Corowa (⌧̂H!C = 51 hours) and from Bandiana to Corowa (⌧̂B!C = 52

hours) found in Appendix 2.1.5. Using this approach we got ⌧̂0H = 1 hour and ⌧̂0B = 2

hours. The parameters in the ✓ vector are estimated by minimising

✓̂ = arg min
✓

1
N � ⌧0max

NX

n=⌧0max+1

(QDP (n) � Q̂DP (n|✓))2, (2.34)
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Figure 2.20: Identification dataset.

where ⌧0max = max(⌧̂0H , ⌧̂
0
B). Using the identification dataset in Fig. 2.20, the estimates

↵̂ = 0.318, �̂H = 0.663 and �̂B = 0.679 were obtained. This seems reasonable as the model

represents lowpass filters with DC gains close to 1. Validation results are shown in Fig.

2.21. The rating curve in Fig. 2.19 was used to calculate the water level at Doctors Point.

The results for the same data for the water level in Lake Mulwala can be found in the

upper and lower graphs of Figs. 2.6 & 2.7 respectively.

2.3.2 ML approach

In this section we extend the Maximum Likelihood (ML) approach from Section 2.2.2 to

the MIMO case. We consider noise free models of water level in Lake Mulwala xLM and

flow at Doctors Point xDP ,

(2.35)xLM (n + 1|✓) = xLM (n|✓) + cHQH (n � ⌧H ) + cBQB (n � ⌧B)
+ cPQP (n � ⌧P ) + cDYWQDYW (n) + cYMCQYMC (n) + cMCQMC (n),

(2.36)xDP (n|✓) = ↵xDP (n � 1|✓) + �HQH (n � ⌧0H ) + �BQB (n � ⌧0B),
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Figure 2.21: Simulation results on validation data.

where the unknown parameter vector is

✓ =

cH cB cP cDYW cYMC cMC ↵ �H �B

�
,

and time delay estimates obtained in Sections 2.2.1 & 2.3.1 are considered as prior knowl-

edge. We further assume that the measured water level in the lake yLM and the measured

flow at Doctors Point QDP are noisy versions of xLM and xDP respectively i.e.

yLM (n) = xLM (n|✓) + eLM (n),

QDP (n) = xDP (n|✓) + eDP (n),

where {eLM (n)} and {eDP (n)} are sequences of independent and identically distributed

(i.i.d), normal and zero-mean random variables with covariance matrix⇤. The prediction

errors are given by

"(n|✓) =
266664

"LM (n|✓)

"DP (n|✓)

377775
=

266664

yLM (n) � xLM (n|✓)

QDP (n) � xDP (n|✓)

377775
, for n = 1,2, . . . ,N, (2.37)
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where N is the number of identification data points. Using the above assumptions the

joint density function of the prediction errors at time n is given by

f",n ("(n) |✓) ⇠ N ([0 0]|,⇤) =
1

p
(2⇡)2 |⇤|

e
⇣
� 1

2 (" (n |✓)|⇤�1" (n |✓))
⌘
, (2.38)

where |⇤| is the determinant of ⇤. The negative log-likelihood function is (see [18]),

� logL = constant +
N
2

log|⇤|+1
2

NX

n=1

"| (n|✓)⇤�1"(n|✓). (2.39)

Apart from the parameters in ✓, the elements in the covariance matrix⇤ are also regarded

as unknown parameters, and the estimates are given by

(2.40)(✓̂,⇤̂) = arg min
✓,⇤

1
N � ⌧max

NX

n=⌧max+1

"| (n|✓)⇤�1"(n|✓) +
N � ⌧max

2
log|⇤|,

where ⌧max = max(⌧H ,⌧B,⌧P ,⌧0H ,⌧
0
B) = 71. If ⇤ is unknown and not parametrised through

✓, then it is possible to minimise Eq. 2.40 analytically with respect to ⇤ for every fixed ✓,

and the solution is given by [18]

⇤̂(✓) =
1

N � 71

NX

n=72
"(n|✓)"| (n|✓). (2.41)

A numerical scheme which iteratively estimates the error covariance matrix (using Eq.

2.41) and the parameters in the ✓ vector until they converge works as follows

Let ⇤̂0 =

266664

1 0

0 1

377775
. Compute for i = 1,2, . . ., till k ✓̂i � ✓̂i�1 k< ✏ , where ✏ is a small

number.

1. Parameters estimate,

✓̂i = arg min
✓

1
N � 71

NX

n=72
"| (n|✓)⇤̂�1

i�1"(n|✓).

2. Covariance matrix estimate,

⇤̂i =
1

N � 71

NX

n=72
"(n|✓̂i )"| (n|✓̂i ).
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The dataset in Fig. 2.2 along with the flow data at Doctors Point shown in Fig. 2.20

was used for identification. In the output dataset there is an order of magnitude differ-

ence in the numerical values for the water level in Lake Mulwala and the flow at Doctors

Point. To avoid numerical problems, we scaled the flows and water levels as below,

• All flows in the dataset were divided by the maximum flow value of the dataset.

This helped in scaling the flows between 0 and 1.

• The mean of the water level in the dataset was subtracted from the water levels,

which spread the data values around zero.

We used the above mentioned iterative scheme, and the scheme converged quickly,

i.e. with in a few iterations (3 to 5), there was no significant change in the estimated

parameters ✓̂i . The estimate of the parameters corresponding to unscaled data was

[6.25 ⇥ 10�7 9.66 ⇥ 10�7 5.92 ⇥ 10�7 � 6.20 ⇥ 10�7 � 9.80 ⇥ 10�7 � 6.69 ⇥ 10�7

0.33 0.65 0.69].

The inverse error covariance matrix was

⇤̂�1 =

266664

2.95 ⇥ 10�4 2.90 ⇥ 10�6

2.90 ⇥ 10�6 3.58 ⇥ 10�4

377775
.

The first six parameters of the parameter vector ✓̂ML belong to the predictor in Eq. 2.6

(based on Eq. 2.35) and the last three parameters belong to the predictor in Eq. 2.33 (based

on Eq. 2.36). The signs of the parameters support the physical structure of the river, and

they are in agreement with the results obtained by PEM. Moreover, the covariance matrix

is nearly diagonal, which shows that the ML estimate of ✓ should be nearly the same as

the PEM estimate, and from Sections 2.2.1 & 2.3.1, we can see that the parameter estimates

are numerically close. Figs. 2.22 & 2.23 show the performance of the identified model.

The models pick up the trends in the data well.
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Figure 2.22: Simulation results on validation data.
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Figure 2.23: Simulation results on validation data.
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2.3.3 Continuous Time (CT) identification

In this section we use CT identification techniques to find a MIMO model. There are a few

techniques developed in CT system identification which can identify MIMO state space

models. Here we used the canonical state space (SS) model identification via Poisson

Moment Functional (PMF) which is implemented in the CONTSID toolbox [2]. Later in

this section, we also identify a separate CT MISO model for the flow at Doctors Point.

The details of the SS-PMF are available in [101]. The method consists of two steps

1. The differential equation representing a dynamical system is first converted into

simple algebraic equations through PMF transforms.

2. The unknown parameters are then estimated by the standard least squares (LS), or

instrumental variable (IV) methods. The unknown parameters are the elements in

the matrices of a CT state space model.

The function sslsgpmf in CONTSID toolbox [2] finds a controllable canonical state

space model from the given data and uses the LS approach to find the unknown param-

eters. We used the same identification dataset as before and scaled the flows and water

levels as in the previous section. The time delays were taken as prior knowledge. We

found a second order CT state space model with the following matrices. The subscript C

represents continuous time,

AC =

266664

�1.07 ⇥ 10�7 2.23 ⇥ 10�6

�1.65 ⇥ 10�5 �2.69 ⇥ 10�4

377775
, CC =

266664

1 0

0 1

377775
,

BC =

266664

8.12 ⇥ 10�7 �6.98 ⇥ 10�8 3.99 ⇥ 10�6 �3.12 ⇥ 10�6 �4.76 ⇥ 10�6 �2.86 ⇥ 10�6

2.76 ⇥ 10�4 3.29 ⇥ 10�4 1.37 ⇥ 10�5 1.40 ⇥ 10�6 �8.55 ⇥ 10�5 �3.67 ⇥ 10�5

377775
.

The identified matrices are not in agreement with physical reality. E.g. the second output

i.e. the flow at Doctors Point cannot depend on the flows at the downstream end, and

hence the last four entries of the second row in matrix BC should be zero. Similarly, in

matrix AC the element at location (2,1) should be zero as well. In principle we could refor-

mulate the LS problem formulation and force certain entries in the AC and BC matrices to
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zero. However, this was not possible as we did not have access to the internal variables

of the functions in the CONTSID toolbox. Nonetheless, the process is straightforward

and is described in Section 2.3.4 where we use SIM to identify a MIMO model.

We next find a separate CT MISO model for the flow at Doctors Point in order to avoid

models which are not in agreement with physical reality. We consider the following first

order differential equation to derive a predictor for the flow at Doctors Point,

dQDP (t)
dt

+ ↵0QDP (t) = �0HQH (t � 1) + �0BQB (t � 2), (2.42)

The unknown parameter vector is ✓ =

↵0 �0H �0B

�
, and the solution of Eq. 2.42 is

QDP (t) = e↵
0 (t0�t )QDP (t0) + �0H

 
QH (t0 � 1)

(1 � e↵
0 (t0�t ) )
↵0

!

+ �0B

  
QB (t0 � 2)

↵0 � QB (t � 2) �QB (t0 � 2)
(t � t0)↵02

!
(1 � e↵

0 (t0�t ) ) +
QB (t � 2) �QB (t0 � 2)

↵0

!
.

where we have assumed piecewise constant flows at Heywoods (zoh) and piecewise lin-

ear flows at Bandiana (foh). With a sampling interval of T = 1 hour, we get the following

OE-type predictor (t = t0 + 1)

Q̂DP (t |✓) = e�↵
0
Q̂DP (t � 1|✓) + �0H

 
QH (t � 2)

(1 � e�↵
0 )

↵0

!

+ �0B

  
QB (t � 3)

↵0 � QB (t � 2) �QB (t � 3)
↵02

!
(1 � e�↵

0
) +

QB (t � 2) �QB (t � 3)
↵0

!
.

(2.43)

The parameters in the ✓ vector are then estimated by minimising the sum of the squared

prediction errors i.e.

✓̂ = arg min
✓

1
N � 2

NX

t=3
(QDP (t) � Q̂DP (t |✓))2. (2.44)

We got the estimate of the parameter vector as ✓̂ =

1 0.972 0.998

�
. Table 2.4 shows

the identified CT transfer functions (TFs) corresponding to the inflows at Heywoods

and Bandiana. The table also shows the DT approximation of the CT-TFs with zoh-
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TF corresponding to inflows CT-TF DT-TF (zoh) DT-TF (foh)
at Heywoods 0.972

s+1
0.615

z�0.368 –
at Bandiana 0.998

s+1
0.631

z�0.368
0.367z+0.264

z�0.368

Table 2.4: CT and DT transfer functions corresponding to the inflows at Heywoods and
Bandiana.
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Figure 2.24: Simulation results on validation data.

approximation applied to both the transfer functions, and foh-approximation applied

to the TF corresponding to the flows at Bandiana. The identified TFs are reasonable as

they represent lowpass filters with DC gains close to 1. Moreover, as per expectations the

parameters in the zoh approximation of the CT-TFs are similar to the parameter estimates

obtained by PEM and ML in Sections 2.3.1 & 2.3.2 respectively.

We used the identified SS-PMF based MIMO model and the CT-OE model (Eq. 2.43)

on different validation data. Figs. 2.24 & 2.25 show the simulation results, and in general

the models pick up the trends in the data well. Although the SS-PMF method did not

give parameters in agreement with physical reality and the model did not perform very

well on the dataset from 2003, however, it still gave a good simulation performance on

the dataset from 2006, see Fig. 2.25.
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Figure 2.25: Simulation results on validation data.

2.3.4 SIM approach

The identification dataset in Fig. 2.2 was used along with the flow at Doctors Point shown

in Fig. 2.20. The inputs and outputs were taken as {[QH (k � 70),QB (k � 71),QP (k �
16),QDYW (k),QYMC (k),QMC (k)], [yLM (k),QDP (k � 69)]}Nk=72. To avoid numerical prob-

lems, all flows and water levels were scaled as in Section 2.3.2. In the PO-MOESP algo-

rithm (Section 2.2.5) we used s = 5, and we found the first five singular values [7.672

3.055 0.371 0.081 0.044]. There are no large gaps between the singular values, but the

relative gap between the second and the third is the largest, and we chose a second order

model. As expected, the identified matrices A, B and C had no zero entries, while the D

matrix was forced to be zero in the same way as we did in Section 2.2.5. We obtained the

following matrices

A =
266664

1.0008 0.0125

�0.0472 0.9103

377775
, C =

266664

�0.7862 0.0063

0.0142 �0.3398

377775
,

B =
266664

0.017 0.02 �0.025 0.019 0.031 0.016

�0.23 �0.13 �0.076 �0.044 �0.025 0.030

377775
.
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The system matrices above and in the rest of this section correspond to the scaled dataset.

The model has no or little physical explanation of the states. As system matrices are

only given up to a similarity transform, it is very rare that they describe the physical

structure of the river. We noticed this behaviour in Section 2.3.3 as well. As there are only

two states, it is relatively easy to find a transform which incorporates most of the prior

knowledge but as the number of states increases, it gets harder. In order to give physical

meaning to the states using the prior information we followed two strategies.

Strategy 1

After estimating the A and C matrices, we chose a transformation matrix T which gave a

diagonal matrix CT . The reason for finding a diagonal C was to decouple the states such

that each state represents an output. Many such transformation matrices exist, and we

picked one which diagonalized the C matrix and gave a small value in element (2,1) of

the AT matrix. The transformation matrix was

T =
266664

0.1199 0.0500

0.0050 6.2331

377775
.

After adjusting AT and CT we formulated the linear regression problem (which provides

BT and DT ) such that the downstream flows did not affect the flow at Doctors Point. To

achieve this, certain elements of the BT matrix was forced to zero in the same way as the

DT matrix was forced to zero above. After the adjustments we got the following system

matrices

AT =

266664

1.002 0.6879

�0.00098 0.9094

377775
, CT =

266664

�0.0943 0

0 �2.117

377775
,

BT =

266664

0.189 0.299 �0.277 0.113 0.229 0.161

�0.042 �0.038 0 0 0 0

377775
.

The first entry in the first row of the matrix AT indicates the existence of an integrator

and the first entry in the second row is small so that the water level in Lake Mulwala

hardly influences the flow at Doctors Point. The eigenvalues of the matrix AT are 0.993
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and 0.917 which shows that the model is stable. All the entries in the second row of the

matrix BT which correspond to the downstream flows are zero as they cannot affect the

flow at Doctors Point. The corresponding transfer functions are no longer integrator-

delay models, but they are “close”. E.g. the transfer function model between the flow at

Peechelba and the water level in Lake Mulwala is

yLM (z)
QP (z)

=
0.026z � 0.024

z2 � 1.911z + 0.912
z�16

=
0.026(z � 0.923)

(z � 0.987)(z � 0.924)
z�16 ⇡ 0.026

(z � 0.987)
z�16.

There is a near pole-zero cancellation and a pole close to one. Next we propose another

strategy which enforces an integrator in the model.

Strategy 2

After estimating the A and C matrices, we chose a transformation matrix T
0 such that

CT
0
= I2 which decouples the states. The transformation matrix was

T
0
=

266664

�1.272 �0.024

�0.053 �2.944

377775
,

and then we applied the transformation to the extended observability matrix (in the PO-

MOESP algorithm) so that the new A matrix is AT 0 = T
0�1 AT

0 . We further modified

the least squares problem in Eq. 2.31 such that the first column in the AT 0 matrix was

[1 0]|, reflecting that the flow at Doctors Point does not depend on the water level in Lake

Mulwala, and enforcing an integrator. The linear regression problem (which provides BT 0

and DT 0 ) was then formulated as above such that the downstream flows did not affect

the flow at Doctors Point. We got the following system matrices

AT 0 =

266664

1 0.011

0 0.911

377775
, CT 0 =

266664

1 0

0 1

377775
,



70 System Identification Methods Applied to the Upper Part of Murray River

100 200 300 400 500 600

124.65

124.7

124.75

124.8

124.85

Time (hours), 8th Jan,2003 to 4th Feb, 2003

W
a
te

r 
le

ve
l (

m
A

H
D

) 

SIM based simulations of water level in Lake Mulwala

 

 

100 200 300 400 500 600
3

3.1

3.2

3.3

3.4

Time (hours), 8th Jan,2003 to 4th Feb, 2003

W
a
te

r 
le

ve
l (

m
) 

SIM based simulations of water level at Doctors Point

 

 

Actual water level in Lake Mulwala

Simulated water level (MIMO PO−MOESP Str. 1)

Simulated water level (MIMO PO−MOESP Str. 2)

Actual water level at Doctors Point

Simulated water level (MIMO PO−MOESP Str. 1)

Simulated water level (MIMO PO−MOESP Str. 2)

Figure 2.26: Simulation results on validation data.

BT 0 =

266664

0.003 0.007 0.018 �0.014 �0.021 �0.016

0.086 0.094 0 0 0 0

377775
.

The signs of the entries in the first row of the BT 0 matrix reflect the physical reality as the

entries associated with the inflows and outflows are positive and negative respectively.

The signs of the entries (in AT , BT and CT matrices) obtained in the first strategy also re-

flect the physical reality (easy to see when converted to transfer function representation),

except the sign associated with the inflows from Bandiana appeared to be negative.

Figs. 2.26 & 2.27 show results of the MIMO PO-MOESP models on validation data.

The simulation results are generally good, however, the model obtained from the second

strategy did not perform as well against the water level in Lake Mulwala in Fig. 2.27 as

the model obtained from the first strategy.

2.4 Comparison of results

In this section we continue the discussion from Section 2.2.6, and we compare the models

and simulation results obtained in Section 2.3.
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Figure 2.27: Simulation results on validation data.

Year PEM ML CT-SS-PMF CT-OE SIM (Str. 1) SIM (Str. 2)
LM (2003) 9.74 ⇥ 10�5 1.82 ⇥ 10�4 7.95 ⇥ 10�4 9.98 ⇥ 10�5 2.97 ⇥ 10�4 2.63 ⇥ 10�4

LM (2006) 3.81 ⇥ 10�4 2.36 ⇥ 10�4 1.37 ⇥ 10�4 3.27 ⇥ 10�4 4.62 ⇥ 10�4 14.01 ⇥ 10�4

DP (2003) 2.44 ⇥ 10�4 2.18 ⇥ 10�4 3.30 ⇥ 10�4 2.43 ⇥ 10�4 4.65 ⇥ 10�4 5.52 ⇥ 10�4

DP (2006) 2.52 ⇥ 10�4 1.37 ⇥ 10�4 5.32 ⇥ 10�4 2.53 ⇥ 10�4 2.59 ⇥ 10�4 2.41 ⇥ 10�4

Table 2.5: SSPE of water level simulations in Lake Mulwala and at Doctors Point.

2.4.1 Simulation performance and suitability for control

In Figs. 2.28 & 2.29 the simulation results of the identified models from Sections 2.3.1 –

2.3.4 are plotted together. The identified models pick up the trends in the validation data

well. Almost all models behave similar with a few exceptions. The SIM based MIMO

model (Strategy 2) did not simulate water level in Lake Mulwala against the validation

dataset from 2006 as well as it did against the other dataset. Similarly, the CT SS-PMF

model did not perform well against the validation dataset from 2003. This can be seen

in Table 2.5 as well. The table gives the SSPEs (Eq. 2.32) corresponding to the simulation

results in Figs. 2.28 & 2.29.

The identified models can be used in model based control techniques such as Model

Predictive Control (MPC). To illustrate this, we used the MISO models of the water level
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Figure 2.28: Simulation results on validation data.
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Figure 2.29: Simulation results on validation data.
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Model 2002 2003 2004 2006
PEM (Avg. SSPE) 3.40 ⇥ 10�4 1.35 ⇥ 10�4 7.40 ⇥ 10�5 2.95 ⇥ 10�5

PEM (SSPE-LS) 8.30 ⇥ 10�4 1.40 ⇥ 10�4 1.15 ⇥ 10�4 2.53 ⇥ 10�5

CT-OE (Avg. SSPE) 3.42 ⇥ 10�4 1.35 ⇥ 10�4 7.36 ⇥ 10�5 2.95 ⇥ 10�5

CT-OE (SSPE-LS) 8.07 ⇥ 10�4 1.40 ⇥ 10�4 1.14 ⇥ 10�4 2.52 ⇥ 10�5

SRIVC (Avg. SSPE) 9.44 ⇥ 10�4 2.09 ⇥ 10�4 7.52 ⇥ 10�5 6.27 ⇥ 10�5

SRIVC (SSPE-LS) 18.01 ⇥ 10�4 2.19 ⇥ 10�4 7.82 ⇥ 10�5 1.14 ⇥ 10�4

SIM (Avg. SSPE) 4.22 ⇥ 10�4 4.40 ⇥ 10�4 2.35 ⇥ 10�4 7.90 ⇥ 10�5

SIM (SSPE-LS) 9.92 ⇥ 10�4 11.01 ⇥ 10�4 5.79 ⇥ 10�4 1.72 ⇥ 10�4

Table 2.6: Average SSPEs of 7 days simulation of water level in Lake Mulwala.

in Lake Mulwala obtained in Section 2.2, and simulated them for a horizon of 7 days start-

ing from every hour (sample) of the four validation data used in Sections 2.2 & 2.3. Table

2.6 shows the average SSPEs corresponding to those simulations. In each case the SSPE

is in the range of 10�5 to 10�4. Table 2.6 also shows the sum of the squared prediction

errors corresponding to the last simulation step (SSPE-LS) i.e. at the end of the 7th day.

Again, the results are in the order of 10�4 on average i.e. the error in the water level after

seven days open loop simulations is only a few centimetres. This is quite good taking

into account the fact that the model contains an integrator such that error accumulates.

Fig. 2.30 shows the bode (magnitude) plots of the transfer functions from flows at

Heywoods, Bandiana, Peechelba, (Downstream) Yarrawonga Weir, Yarrawonga Main

Channel and Mulwala Canal to water level in Lake Mulwala (obtained in Section 2.2).

The magnitude plots of the transfer functions obtained from PEM, CT-OE model, SRIVC

and SIM are all close. The maximum difference between these models is about 6 dB ex-

cept the magnitude plot of the SRIVC model displays a 12 dB lower gain for the transfer

function from the flow at Bandiana as compared to the other models. Moreover, since the

SRIVC model does not have poles at the origin (Table 2.2), the corresponding magnitude

curves are approximately constant at very low frequencies (less than 10�6 rad/hour).

Fig. 2.31 shows the bode plots of the transfer functions from the flows at Heywoods

and Bandiana to the flow at Doctors Point. The magnitude and the phase plots of the

transfer functions of the PEM, ML and CT-OE models are all close. The plots of the SIM

based model is different with the cut-off frequency nearly a decade lower. The slower
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Figure 2.30: Transfer function plots from each input flows to water level in Lake Mulwala.

dynamics of the SIM model can also be seen in its simulation performance against the

water level at Doctors Point in Fig. 2.26.

PEM, ML and CT-OE models gave consistently good performance in all aspects, and

are in the authors’ view good candidates as initial identification methods.

2.4.2 Prior knowledge

In optimisation based methods such as PEM and ML it is relatively easy to incorporate

prior information about the direction of the flow by constraining parameters to be posi-

tive or negative, but it is difficult to do this in SIM and LS-PMF. Incorporation of known

non-linearities are easy in methods which allows the user to freely select the model struc-

ture, but it becomes difficult in SIM. All methods considered can incorporate that lakes

and reservoirs are often modelled as integrators either by explicitly including an integra-

tor in the model structure or by considering y(n) � y(n � 1) as the output of the system.
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Figure 2.31: Transfer function plots from each input flows to flow at Doctors Point.

2.4.3 Model type

State space models are often preferred due to the availability of useful techniques for

control, estimation and filtering for such models. SIM has an advantage in this respect as

it produces MIMO state space models. The drawback is that there is usually no physical

interpretation of the states as they are only given up to a similarity transform. In the

case considered here it is easy to convert the obtained input-output models to state space

form, and also, MIMO models can be constructed by combining the MISO models.

2.4.4 Computational and software issues

With optimisation based methods one can encounter difficulties finding a solution, while

SIM is better in this regard since it is fast, non-iterative and has no local minima problems.

However, no convergence issues or numerical issues were encountered in the optimisa-

tion based methods discussed in this paper.
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Appendix

2.A Additional figures

This appendix contains some additional figures which are referred in the main text, and

they are for detailed analyses.

2.A.1 Flows of the validation data in Section 2.2

Figs. 2.32, 2.33, 2.34 & 2.35 show the flows at Heywoods, Bandiana, Peechelba, Down-

stream Yarrawonga Weir, Yarrawonga Main Channel and Mulwala Canal (Fig. 2.1), cor-

responding to the four validation data used in Section 2.2. The flows at Heywoods and

Downstream Yarrawonga Weir are shown separately, because the flows at these locations

are relatively higher than at other locations. The flow range of these validation data is

almost similar to the flow range of the identification dataset in Fig. 2.2, except for the

dataset in Fig. 2.34, where the flows at Heywoods and Mulwala Canal are relatively

higher.

2.A.2 Simulation of the model in Eq. 2.6 with slight differences in ⌧H

Slight differences in time delays do not affect the performance of the identified models

much. We found that the estimated delays in this chapter could perform reasonably well

with a change of time delays up to 3-4 hours.

To demonstrate this, we simulated water level in Lake Mulwala with different time

delays from Heywoods, which is usually the largest of the in- and out-flows. We consid-

ered time delays of 67, 70 (the one used in this thesis) and 73 hours using the PEM-based

77
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Figure 2.32: Validation dataset from year 2003.
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Figure 2.33: Validation dataset from year 2004.
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Figure 2.34: Validation dataset from year 2002.
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Figure 2.35: Validation dataset from year 2006.
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estimated model in Section 2.2.1. Fig. 2.36 shows the simulation results. From the figure

we can see that the simulation performance of the three models (with different time de-

lays from Heywoods) is quite similar. Moreover, we can observe that there is hardly any

difference in the performance for the first 300 hours (roughly 2 weeks).
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Figure 2.36: Simulation of PEM based model.

2.B DBM based higher order model of water level in Lake Mul-
wala

In this appendix we use Simplified Refined Instrumental Variable method for Continuous

time systems (SRIVC), within the context of Data-Based Mechanistic (DBM) modelling,

to identify a CT OE model of the water level in Lake Mulwala. However, different from

Section 2.2.4, here we use the following CT OE model structure with extra parameter(s)

in the numerator of the transfer function(s),

(2.45)
yLM (t) =

b1
H s + b0

H

s + aH
QH (t � ⌧0H ) +

b1
Bs + b0

B

s + aB
QB (t � ⌧0B) +

b1
P s + b0

P

s + aP
QP (t � ⌧0P )

+
b1
DYW s + b0

DYW

s + aDYW
QDYW (t) +

b1
YMC s + b0

YMC

s + aYMC
QYMC (t) +

b1
MC s + b0

MC

s + aMC
QMC (t).

The parameters ai and bki are to be determined by the SRIVC method, where i =

{H,B,P,DYW,Y MC,MC} and k = {0,1}. We used the same time delays as used in Sec-

tion 2.2.4, i.e. ⌧0H = 70, ⌧0B = 71 and ⌧0P = 16 hours. We have added a parameter in the
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TF corresponding to flows CT TFs

at Heywoods �9.48⇥10�6s+3.39⇥10�7

s+0.0086 e�70s

at Bandiana �1.81⇥10�5s+3.11⇥10�8

s+0.0034 e�71s

at Peechelba �1.20⇥10�5s+8.37⇥10�7

s+0.0099 e�16s

over Yarrawoonga Weir �4.30⇥10�6s�2.69⇥10�7

s+0.0097
to YW main channel 5.71⇥10�6s�2.49⇥10�6

s+0.029
to Mulwala Canal �3.20⇥10�7�4.65⇥10�7

s+0.0070

Table 2.7: CT transfer functions corresponding to each inflow and outflow from Lake
Mulwala.

numerator to observe improvements in the validation results, compared to the results in

Figs. 2.13 & 2.14, and to see whether it accommodates any missing dynamics.

We used the identification dataset in Fig. 2.2 and the CONTSID toolbox ([2]) to es-

timate the parameters in Eq. 2.45. The identified CT transfer functions (TFs) are shown

in Table 2.7. The signs of the DC gains corresponding to each transfer function are in

agreement with the in- and out-flows, i.e. they are positive for inflows and negative for

outflows. The poles are in the left half plane and close to the origin, rather than at the

origin. An interpretations of this in the DBM framework could be that there are small

unaccounted-for losses in the system.

We validated the identified model against the same data as used in Section 2.2.4. Figs.

2.37 and 2.38 show the performance of the identified model. The model picks up the

trends well against the data with small and relatively large variations, however, there

is no visible improvement in the results compared to Figs. 2.13 & 2.14. The Sum of

the Squared Prediction Errors (SSPEs) of the validation results in Figs. 2.37 & 2.38 were

2.16 ⇥ 10�4, 3.77 ⇥ 10�4 and 2.80 ⇥ 10�3, 3.68 ⇥ 10�4 respectively, which are (also) almost

similar to the SSPEs corresponding to the results in Figs. 2.13 & 2.14, presented in Table

2.3. We also considered second order polynomials in the denominators of the model

structure in Eq. 2.45, but the validation results got worse. Thus, these results validate

that there is no need for a higher order model for this particular river stretch.
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Figure 2.37: Simulation results on validation data with small variations in the water level
in Lake Mulwala.
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Figure 2.38: Simulation results on validation data with relatively large variations in the
water level in Lake Mulwala.
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Figure 2.39: Kiewa River (plot not to scale).

2.C Kiewa River modelling

Kiewa River originates in the forest of Alpine National Park and Bogong High Planes in

Victoria, Australia. It has several storages on its way e.g. Rocky Valley Storage, Lake

Guy and Regulation Pondage. The storages have hydro-power plants and water release

is regulated. Kiewa River has an ana-branch and it joins the main river from west. The

ana-branch usually remains dry, however, when it rains, the branch contributes high

peaks to the main river. Time delays along the ana-branch are larger because the channel

gets wet first, and then water flows in it. There are several creeks that join Kiewa River,

and Yackandandah Creek is one of the major creeks. It also contributes some high peaks

to the main river. Time delays along the creek are smaller because the channel is straight

and it usually remains wet. Some minor creeks enter Kiewa River from the mountains in

the east, and the river experiences high flows in August and October.

We are interested in the upstream end of Kiewa River, especially the river stretch

shown in Fig. 2.39, and we want to model flows at Bandiana. Based on the river sketch,

flow at Bandiana is contributed by the inflows at Kiewa Mainstream (KMS), Kiewa Ana-

branch (KAB) and Osbornes Flat (O). First, we consider the following model structure for
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the flow at Bandiana,

QB (n) = cKMSQKMS (n � ⌧KMS ) + cK ABQK AB (n � ⌧K AB) + cOQO (n � ⌧O), (2.46)

where the parameters ✓B = {cKMS ,cK AB,cO} and the time delays ⌧B = {⌧KMS ,⌧K AB,⌧O}
are unknown. An OE-type predictor can be derived from Eq. 2.46 as,

Q̂B (n|✓B,⌧B) = cKMSQKMS (n � ⌧KMS ) + cK ABQK AB (n � ⌧K AB) + cOQO (n � ⌧O). (2.47)

We used correlation co-efficient method to find the time delays. We considered low and

high flow data, and on average we obtained the time delays as ⌧KMS = 13, ⌧K AB = 19

and ⌧O = 5 hours. An estimate of the parameter vector ✓̂B can be obtained by solving the

following optimisation problem,

✓̂B = arg min
✓B

1
N � ⌧K AB

NX

n=⌧KAB+1

(QB (n) � Q̂B (n|✓B,⌧B))2, (2.48)

where N is the number of identification data-points. We used an identification dataset

form year 2001, shown in Fig. 2.40. We can see that the major contribution to the flows

at Bandiana (shown in the lower graph) is from the main stream of Kiewa River (shown

in the upper graph). The flows in the ana-branch (QK AB) are approximately negligible

in this dataset (the green curve in the upper graph, almost on the x-axis), but we cannot

ignore this input, because as mentioned earlier, QK AB has contributed flow peaks in the

past. We solved Problem (2.48) in MATLAB, and the parameters identified were as fol-

lows: ✓̂B = {0.99,1.50,1.17}, where the parameters were restricted between 0 and 1.5. We

did this, because the parameter corresponding to the flows in the ana-branch (cK AB) was

picking a large value when it was not constrained, because the flows are negligible.

Figs. 2.41 & 2.42 show the simulations of the identified model against validation data

from years 2003 and 2008, and the simulation results are good. There is a visible periodic

behaviour in the flows at Bandiana in Fig. 2.42 between 2000th and 2500th sampling

instants of the simulations. This is most likely due to a 24 hours release cycle from an

upstream hydro electric power plant.
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Figure 2.40: Identification dataset.
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Figure 2.41: Simulation results on a validation dataset.
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Figure 2.42: Simulation results on a validation dataset.

We also considered the following first order model structure for the flows at Bandiana,

QB (n + 1) = c0BQB (n) + c0KMSQKMS (n � ⌧KMS ) + c0K ABQK AB (n � ⌧K AB) + c0OQO (n � ⌧O).

(2.49)

The model structure in Eq. 2.49 is inspired from the model structure of the flow at

Doctors Point, used in Section 2.3.1. We define the corresponding parameter vector as

✓0B = {c0B,c0KMS ,c
0
K AB,c

0
O}. An OE-type predictor can be derived from Eq. 2.49 as

(2.50)Q̂B (n + 1|✓0B,⌧B) = c0BQ̂B (n|✓0B,⌧B) + c0KMSQKMS (n

� ⌧KMS ) + c0K ABQK AB (n � ⌧K AB) + c0OQO (n � ⌧O),

where ⌧B = {⌧KMS ,⌧K AB,⌧O} = {13,19,5}, as used before. Again, the parameters were

estimated by solving the optimisation Problem (2.48), using the predictor in Eq. 2.50. We

used the same identification dataset from 2001 (Fig. 2.40). The parameters identified were

as follows: ✓0B = {0.115,0.880,1,1}, where the parameters were constrained between 0

and 1, because if they were kept unconstrained, they were picking negative or physically

inexplicable values. Figs. 2.43 & 2.44 show the simulations of the identified model against

the validation data from years 2003 and 2008, as used above. The simulation results are

good and quite similar to the results shown in Figs. 2.41 & 2.42, and thus, both models

are acceptable for this particular river stretch in Fig. 2.39.
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Figure 2.43: Simulation results on a validation dataset.
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Figure 2.44: Simulation results on a validation dataset.
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2.D Ovens River modelling

Ovens River flows into Murray River just upstream to Lake Mulwala (shown in Fig. 2.1).

The river contributes as an unregulated inflow to the upper part of Murray River. The

river experiences a lot of flow variations. In 2003, 2010 and 2012 Murray River had major

flood events and one of the main reasons was the unregulated high inflow from Ovens

River. Fig. 2.45 shows a rough sketch of the downstream end of the Ovens River. After

Bright three rivers enter Ovens River: Buckland River, Buffalo River and King River. The

flows in Buffalo River and King River are regulated at Lake Buffalo and Lake William

Hovell respectively, and the inflows from these rivers are measured at Harris Lane and

Cheshunt respectively. Fifteen Mile Creek enters Ovens River at Wangaratta, and the

inflow is measured at Greta South. Several minor creeks also enter the river as shown in

Fig. 2.45 with dashed lines. The combined flow in Ovens River is measured at Wangaratta

and Peechelba, and from Peechelba there is a 28 km of river distance to Murray River.

Also, the river has multiple ana-branches between Wangaratta and Peechelba (not shown

in Fig. 2.45).

We want to model flow at Peechelba as it is a good indicator of the inflows from

Ovens River to Murray River. From Fig. 2.45, we can see that the flow is contributed

by the inflows at Bright (B), Harris Lane (H), Buffalo River (BR), Cheshunt (C) and Greta

South (G). First, we propose the following model structure based on this information,

QP (n) = cBQB (n� ⌧B) + cHQH (n� ⌧H ) + cBRQBR (n� ⌧BR) + cCQC (n� ⌧C ) + cGQG (n� ⌧G),

(2.51)

where the parameters ✓P = {cB,cH ,cBR ,cC ,cG } and time delays ⌧P = {⌧B,⌧H ,⌧BR ,⌧C ,⌧G }
are unknown. An OE-type predictor can be derived from Eq. 2.51 as,

(2.52)Q̂P (n|✓P ,⌧P ) = cBQB (n � ⌧B) + cHQH (n � ⌧H )
+ cBRQBR (n � ⌧BR) + cCQC (n � ⌧C ) + cGQG (n � ⌧G).

We used correlation coefficient method to calculate the time delays ⌧P . We considered

low and high flow data, and on average we got ⌧B = 66, ⌧H = 67, ⌧BR = 63, ⌧C = 70 and

⌧G = 60 hours. The estimates of the parameter vector ✓̂P can be obtained by solving the
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Figure 2.45: Ovens River (plot not to scale).
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Figure 2.46: Identification dataset.

following optimization problem,

✓̂P = arg min
✓P

1
N � ⌧C

NX

n=⌧C+1

(QP (n) � Q̂P (n|✓P ,⌧P ))2, (2.53)

where N is the number of identification data-points. We used an identification dataset

from year 2006, shown in Fig. 2.46. Flows at Buffalo River and Cheshunt carry high

frequency components, however, we are interested in the low frequency dynamics, so

we lowpass filtered the flow measurements using a second order zero-phase Butter-

worth filter with cut off frequency 0.035 (hour)�1. Fig. 2.46 shows filtered versions

of the flows. We solved Problem (2.53), and the parameters identified were as follows

✓̂B = {1.5,1.5,0.67,1.5,1.5}, which were constrained between 0 and 1.5, because other-

wise, they were picking some large values. The parameters were expected to be close to

1. The most likely explanation of this difference can be due to unaccounted-for non-linear

effects of the multiple ana-branches and water pumping along the river. Figs. 2.47 & 2.48

show the simulation of the identified model against validation data from years 2003 and

2004. The identified model performed well against the data with different range of flows.
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Figure 2.47: Simulation results on a validation dataset.
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Figure 2.48: Simulation results on a validation dataset.
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Figure 2.49: Simulation results on a validation dataset.

We also considered the following first order model structure for the flows at

Peechelba,
(2.54)QP (n + 1) = c0PQP (n) + c0BQB (n � ⌧B) + c0HQH (n � ⌧H )

+ c0BRQBR (n � ⌧BR) + c0CQC (n � ⌧C ) + c0GQG (n � ⌧G).

The model structure in Eq. 2.54 is inspired from the model structure of the flow at

Doctors Point, used in Section 2.3.1. We define the corresponding parameter vector as

✓0P = {c0P ,c0B,c0H ,c0BR ,c
0
C ,c

0
G }. An OE-type predictor can be derived from Eq. 2.54 as

(2.55)Q̂P (n + 1|✓0P ,⌧P ) = c0PQ̂P (n|✓0P ,⌧P ) + c0BQB (n � ⌧B) + c0HQH (n
� ⌧H ) + c0BRQBR (n � ⌧BR) + c0CQC (n � ⌧C ) + c0GQG (n � ⌧G),

where ⌧P = {⌧B,⌧H ,⌧BR ,⌧C ,⌧G } = {66,67,63,70,60}, as used before. Again, the param-

eters were estimated by solving the optimisation Problem (2.53), using the predictor in

Eq. 2.55. We used the same identification dataset from 2006 (Fig. 2.46). The parameters

identified were as follows: ✓0B = {0.926,0.154,0.076,0.062,0.010,0.571}, where the param-

eters were constrained between 0 and 1, because if they were kept unconstrained, a few

of them were picking negative values, which is physically inexplicable because all inputs

are inflows. Figs. 2.49 & 2.50 show the simulations of the identified model against the

validation data from years 2003 and 2004, as used above. The simulation results are good

and quite similar to the results shown in Figs. 2.47 & 2.48, and thus, both models are

acceptable for this particular river stretch in Fig. 2.45.
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Figure 2.50: Simulation results on a validation dataset.
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Chapter 3

Scenario-based Stochastic Model
Predictive Control (S-MPC) for Rivers

In Chapter 2 we considered different data-based methods to model rivers, and we iden-

tified models mainly for control purposes. We used the upper part of Murray River in

Australia as a case study. In this chapter and in Chapter 5, we use river models to design

controllers for the rivers, and we consider both normal river operations and flood opera-

tions. This chapter focuses on the normal river operations, and during these operations,

river operators aim to achieve certain objectives, e.g. water level in a reservoir and flow

release from the reservoir should be kept within safe limits. Similarly, the change in flows

and water levels should be less than given thresholds. In this chapter we give a math-

ematical framework for control design for rivers, and we apply the developed control

strategy to the upper part of Murray River in simulations.

Rivers have large distances between the locations where flows can be regulated and

where controlled variables are measured. The large distances cause large time delays,

and because of that, forecasts of the unregulated flows are required. Such forecasts are

uncertain, and it makes the river control problem a challenging task [12]. Moreover,

rivers have several physical and environmental constraints which are important and

must be considered while designing controllers. Model Predictive Control (MPC) [22]

has gained popularity in the past 15-20 years, and it can be considered as a natural choice

in such situations, because of its ability to take constraints explicitly into account in the

problem formulation. However, to incorporate the uncertainties, a Stochastic Model Pre-

dictive Control (S-MPC) based strategy can be considered, and it is explored in this thesis.

S-MPC requires knowledge of statistical properties of the uncertain elements in the

95
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problem. A chance-constrained optimisation based control strategy can be used in such

cases, where one can consider an average cost function with a set of probabilistic con-

straints, see e.g. [23–26]. In this strategy, violation of the constraints is accepted but for a

few disturbance realisations only. However, the chance-constrained problems are gener-

ally non-convex and hence difficult to solve. Randomised strategies in [27–30,82–85,102]

provide computationally tractable approximate solutions to such problems, especially

the scenario approach introduced in [27–30, 102] is promising because of its simplicity. It

is computationally tractable and it does not require any specific assumption on the nature

of the disturbance, e.g. the distribution of the disturbance to be Gaussian or log concave

etc.

For the above reasons, a scenario-based MPC approach suits the river control prob-

lem. However, feasibility of the optimisation problems (used in the MPC set-up) cannot

be guaranteed, especially with tight constraint limits. To ensure feasibility, in this chapter,

we present two schemes for river control problem where we relax the constraints. The

first scheme is borrowed from [103], and formulated for rivers. The scheme provides a

user chosen trade-off between performance and feasibility. The second scheme is devel-

oped in such a way that it does not require any user chosen parameter. Both schemes are

applied to data from the upper part of Murray River in Australia.

The chapter is organised as follows. In Sections 3.1 & 3.2, we describe Model Predic-

tive Control (MPC) and its stochastic versions for a general linear system. Sections 3.3

& 3.4 are dedicated to the formulation of the river control problem, where we develop a

Stochastic MPC based control strategy for rivers. To solve the control problem, we pro-

pose scenario-based optimisation schemes in Section 3.5. The schemes ensure feasibility

of the optimisation problem, and they are applied to the Murray River data in Section

3.6.

3.1 Model Predictive Control (MPC)

In this section we briefly describe Model Predictive Control (MPC), which is an on-line

control technique. It solves an optimisation problem at each time step n = 1,2, . . ., using a
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predicted behaviour of the system over a finite horizon of M steps, and generates control

sequences for the finite horizon, i.e. {un ,un+1, . . . ,un+M�1}, where u 2 Rm . Only the first

control action, un , is implemented. At the next time step, n + 1, new measurements are

obtained and the optimisation problem is solved again, and the process continues.

Next, we formulate an optimisation problem that can be solved in an MPC setting.

Consider a linear state space system,

x(n + 1) = Ax(n) + Bu(n), (3.1)

y(n) = Cx(n), (3.2)

where x 2 Rns and y 2 Rp are the states and outputs of the system respectively. For an

objective criterion J, the optimisation problem at time n can be formulated as,

min.
{un,un+1, ...,un+M�1 }

J (u), (3.3)

s.t. x(i + 1) = Ax(i) + Bu(i), ymin  Cx(i)  ymax,

umin  u(i)  umax, for i = n,n + 1, . . . n + M � 1,

where i is a time index, umin, ymin and umax, ymax are the minimum and maximum allowed

values of the inputs and outputs respectively. The constraints on u(i) and y(i) can also be

described as u(i) 2 U and y(i) = Cx(i) 2 Y, whereU and Y are the sets to which u and y

can belong, but we use the former formulation in this work. Quadratic cost functions are

commonly used, and here we focus on the criterion functions of the type,

J =
n+M�1X

i=n

[(x(i + 1) � xr )|Q0(x(i + 1) � xr ) + u(i)|R0u(i) + �u(i)|S0�u(i)], (3.4)

where xr is a (constant) reference state vector, �u(i) = u(i) � u(i � 1) is the change in

control actions, Q0 and R0 are positive definite weighting matrices and S0 is a positive

semi-definite weighting matrix. With J as in Eq. 3.4, we minimise deviation of the states

from their reference values, the control actions and the change in control actions in Prob-

lem 3.3, and the problem is a convex optimisation problem [104], provided
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• J is convex function1 with respect to the optimisation variables u.

• All equality and inequality constraints in the problem are convex in u.

• U and Y are convex sets2, if u(i) 2 U and y(i) 2 Y are used as the constraints on

inputs and outputs.

3.2 Stochastic MPC

In this section we describe stochastic versions of the MPC problem introduced in the

previous section. We also describe how an approximate solution of a chance-constrained

optimisation problem can be obtained in an MPC set-up.

As described earlier, MPC uses a model of the system to predict its future behaviour.

In many applications, it is difficult to obtain an exact deterministic model, especially

when there are external disturbances acting on the system which are difficult to describe.

E.g. in rivers, unregulated flows are usually uncertain and it is difficult to encompass

phenomenon like evaporation, rain and ground water-surface water interactions in a sim-

ple river model, aimed for control design purposes. In most of the cases, we model the

system with an additional disturbance term w 2 Rns , such that Eqs. 3.1 & 3.2 become

x(n + 1) = Ax(n) + Bu(n) + w(n), (3.5)

y(n) = Cx(n). (3.6)

In this thesis we assume the disturbances w(n),w(n + 1), . . . are independent and iden-

tically distributed. The literature provides two MPC approaches to control the above

system: Robust MPC and Stochastic MPC. The two approaches depend on whether the

disturbance term w can be bounded in a sensible way.

In Robust MPC [105–110], we assume that the disturbance term is bounded, and the

MPC computes control actions that satisfy every possible disturbance realisation. Usu-

1A function f : X ! R is a convex function, if for all x1, x2 2 X and ↵ 2 [0,1], then f (↵x1 + (1 � ↵)x2) 
↵ f (x1) + (1 � ↵) f (x2).

2A set X is said to be convex, if for all x1, x2 2 X and ↵ 2 [0,1], then the point ↵x1 + (1 � ↵)x2 also belongs
to X.
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ally a min-max approach [104] is considered, where we minimise the objective function

against the worst possible disturbance realisation, and therefore the approach is con-

sidered conservative in this way, because it may significantly degrade the overall con-

troller performance. Moreover, the distribution of the uncertain terms (disturbances) is

not taken into account in this approach, and all disturbance realisations are treated as

equally likely.

The literature also provides an alternative MPC approach to control stochastic sys-

tems, which is called Stochastic MPC (S-MPC) [23–26, 111, 112]. In this approach, w(n) is

a random variable, and the constraints are probabilistic constraints, which means that vi-

olations are accepted. However, they must happen for few disturbance realisations only.

In this way S-MPC can avoid infeasibility of the constraints when the disturbance has an

unbounded support. In S-MPC the objective criterion is the expected (average) value of

the cost function in Eq. 3.4, i.e.

JE = E[
n+M�1X

i=n

((x(i + 1) � xr )|Q0(x(i + 1) � xr ) + u(i)|R0u(i) + �u(i)|S0�u(i))], (3.7)

where E is the conditional expectation over the disturbance terms given the initial state

xn . We assume that w belongs to a set W, and a probability measure PW is defined on W.

Depending on the application, alternative formulations of the cost function can also be

considered.

In this thesis, we consider S-MPC for the river control problem and we assume

no bounded support on disturbances (which correspond to unregulated in- and out-

flows). We use the expected value of the cost function (as the criterion) and probabilistic

constraints, and such problems are called Chance-Constrained optimisation Problems

(CCPs) [23–26]. Probabilistic constraints are generally non-convex with respect to the op-

timisation variables, and thus a CCP is difficult to solve, since it does not lead to a convex

optimisation problem.

Next, we formulate the control problem in a compact way. We introduce a feedback

based control setting, and we formally state probabilistic constraints and the CCP prob-

lem. Also, we will describe an approximate method to find a solution of a CCP, which is
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followed in this thesis.

3.2.1 State space representation for a finite time horizon

In this section we stack the states, outputs, control actions and disturbances of the system

(Eqs. 3.5 & 3.6) over a finite horizon M , in vectors. The purpose is to form a compact

representation of the system which will be used in the problem formulation ahead. Also,

we use time indices in subscripts for compactness.

The relationship between the states at time n and n + i can be obtained by using Eq.

3.5 in a recursive way,

(3.8)xn+i = Ai xn +

Ai�1B . . . B

�
2666666664

un

...

un+i�1

3777777775

+

Ai�1 . . . I

�
2666666664

wn

...

wn+i�1

3777777775

.

For a finite time horizon M , let the vectors of states, control actions, disturbances and

outputs be xn+1 =

xn+1 xn+2 . . . xn+M

�|
, un =


un un+1 . . . un+M�1

�|
, wn =


wn wn+1 . . . wn+M�1

�|
and yn =


yn yn+1 . . . yn+M�1

�|
respectively, and wn is

assumed to belong to a set W =WM .

Using Eq. 3.8 with i = 1,2, . . . ,M , we obtain the following model for xn+1,

(3.9)xn+1 = Fxn + Gun + Hwn ,

with

F =

26666666666664

A

A2

...

AM

37777777777775|{z}
(Mns ⇥ns )

, G =

26666666666664

B 0 . . . 0

AB B . . . 0
...

...
. . .

...

AM�1B AM�2B . . . B

37777777777775|                                 {z                                 }
(Mns ⇥Mm)

, H =

26666666666664

I 0 . . . 0

A I . . . 0
...

...
. . .

...

AM�1 AM�2 . . . I

37777777777775|                           {z                           }
(Mns ⇥Mns )

,

where ns is the number of states and m is the number of control inputs. Also, from Eq.

3.6, yn is given by,

yn = Cxn , (3.10)
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where C =

26666666666664

C 0 . . . 0

0 C . . . 0
...
...
. . .

...

0 0 . . . C

37777777777775|                {z                }
(Mp⇥Mns )

, and C is the output matrix in Eq. 3.6.

3.2.2 Feedback based control policy

Problem (3.3) generates a sequence of control actions over the finite horizon by optimis-

ing the criterion with respect to control values. For stochastic systems, it is advisable to

optimise the criterion over control policies rather than control values in order to incorpo-

rate more feedback related to the the disturbances acting on the system. In this section

we define a feedback based control policy for the system in Eq. 3.9.

A state feedback approach is a natural choice of control policy. Assuming the states

xn are available at time n, then we can generate control inputs at time n as

un = K xn + gn , (3.11)

where K is typically chosen off-line and gn can be selected on-line [113], [114], [115] &

[116]. However, a single value of K , chosen off-line, might not work for applications

where the constraints in the system affect the set of allowed K values. We can use a time-

varying affine state feedback control policy as un = Kn xn + gn , and with the knowledge

of prior states, we can modify and improve the control policy as [115]

un =

nX

i=0
Kn, i xi + gn , (3.12)

where Kn, i 2 Rm⇥ns and gn 2 Rm . Thus, with such a control policy, the vector of control

actions un can be described as

un = Knxn + gn , (3.13)
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where

Kn =

26666666666664

Kn,0 0 . . . 0

Kn+1,0 Kn+1,1 . . . 0
...

...
. . .

...

Kn+M�1,0 Kn+M�1,1 . . . Kn+M�1,M�1

37777777777775|                                                       {z                                                       }
(Mm⇥Mns )

, gn =

26666666666664

gn

gn+1
...

gn+M�1

37777777777775|      {z      }
(Mm⇥1)

.

However, if we substitute Eq. 3.13 in Eq. 3.9 we get

xn = (qI �GKn )�1(Fxn + Ggn + Hwn ),

where q is the time shift operator, and the control actions from Eq. 3.13 becomes,

un = Kn (qI �GKn )�1(Fxn + Ggn + Hwn ) + gn .

The above equations give a non-linear mapping from Kn and gn to xn and un , because

Kn appears in an inverse matrix expression. Hence, optimisation over Kn and gn is likely

to be difficult, since the parametrisation is non-convex in Kn . Thus, it cannot be incorpo-

rated in a standard convex optimisation problem [115]. The same conclusions are drawn

in [114] with a slightly different interpretation.

Alternatively, the control policies can be parametrised as an affine function of past

disturbances [114, 115], which are linearly related to the current states (Eqs. 3.5 & 3.9).

By (recursively) using Eq. 3.5 in the state feedback policy un = Kn xn , we get the control

policy in terms of initial states and past disturbances as

(3.14)un = Kn

n�1Y

i=0
(A + BKi )x0 +

n�1X

j=1

Kn

n�1Y

i= j

(A + BKi )w j�1 + Knwn�1.

Such a control policy can be parametrised as

un = �n + ✓n,0w0 + ✓n,1w1 + . . . ✓n,n�1wn�1, (3.15)

where ✓n, i 2 Rm⇥ns and �n 2 Rm . For a finite horizon M , a vector of control policies is
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given by

un = ⇥nwn + �n , (3.16)

where

�n =

26666666666664

�n

�n+1
...

�n+M�1

37777777777775|      {z      }
(Mm⇥1)

, ⇥n =

26666666666664

0 0 . . . 0

✓n+1,0 0 . . . 0
...

...
. . .

...

✓n+M�1,0 ✓n+M�1,1 . . . 0

37777777777775|                                    {z                                    }
(Mm⇥Mns )

. (3.17)

If we substitute Eq. 3.16 in Eq. 3.9 we get

xn = Fxn + G�n + (G⇥n + H)wn .

In the above equation and in Eq. 3.16, the mapping from ⇥n and �n to xn and un is linear.

Hence, this choice of parametrisation leads to a convex problem formulation [114, 115].

The control policy also ensures causality as the control action at time n is defined in terms

of the disturbances at time n � 1 and earlier.

To use Eq. 3.16 as a control policy, we need, at time n, the value of wn�1 (see Eq. 3.15),

which can be obtained from the state measurements at time n using Eq. 3.5

wn�1 = xn � Axn�1 � Bun�1. (3.18)

The parametrisation in Eq. 3.17 has in-total mM + mnsM (M � 1)/2 parameters. This

parametrisation is applicable if the whole state vector xn is measurable. However, when

the whole state vector is not measurable, then the parametrisation requires slight modi-

fications. Effectively, the parameter entries in ✓i, js (in the ⇥n matrix)—corresponding to

the disturbances which are not computable—are set to zero, and this does not affect the

convexity results discussed above.

There are other parametrisation rules for �n and ⇥n matrices (in Eq. 3.16) suggested

in [27], e.g.
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1. ⇥n only has k non-zero sub-diagonals, where k < M � 1,

�n =

2666666666666666666664

�n

�n+1
...

�n+k
...

�n+M�1

3777777777777777777775

, ⇥n =

2666666666666666666664

0 0 . . . . . . 0 0

✓n+1,0 0 . . . . . . 0 0
...

. . . . . . . . .
...

...

✓n+k,0
. . .

. . . . . .
...

...
...

. . .
. . .

. . .
...

...

0 0 ✓n+M�1,M�1�k . . . ✓n+M�1,M�1 0

3777777777777777777775

.

The number of parameters d in this parametrisation are

d = mM + mns (k (k � 1)/2 + k (M � 1 � k)).

In comparison with the parametrisation in Eq. 3.17, here the ⇥n matrix has

mns (M (M � 1 � 2k) + k (k + 3))/2 less parameters, which is computationally better,

when used in an optimisation problem. In this parametrisation, the parameters

in the ⇥n matrix, corresponding to disturbances wn in Eq. 3.16, are different for

different time instants.

2. We can further reduce the number of parameters by using fixed parameters on the

sub-diagonals of the ⇥n matrix in Eq. 3.17,

�n =

266666666666666664

�n

�n+1
...

�n+M�2

�n+M�1

377777777777777775

, ⇥n =

266666666666666664

0 0 . . . 0 0

✓n+1 0 . . . 0 0
...

. . . . . .
...

...

✓n+M�2
. . .

. . .
...

...

✓n+M�1 ✓n+M�2 . . . ✓n+1 0

377777777777777775

. (3.19)

In this case the number of parameters d are,

d = mM + mns (M � 1). (3.20)

In this parametrisation, the parameters in the ⇥n matrix, corresponding to the con-
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trol variables ui and disturbances wi�� in Eq. 3.16, for i = n + 1,n + 2, . . . ,n + M � 1

and � = 1,2 . . . , i � n, are kept the same. It means that the parameters correspond-

ing to the disturbances and control variables which are � time steps away from each

other are kept the same. In this thesis, in order to reduce the computational burden,

we will use this parametrisation in the river control problem.

3.2.3 Probabilistic constraints and Chance-Constrained optimisation Problem
(CCP)

In this section we describe different kinds of probabilistic constraints and then state a

CCP problem which can be solved in a Stochastic MPC setting.

A hard constraint on the state vector xn (in Eq. 3.9) or on the output vector yn (in

Eq. 3.10) can lead to infeasibilities. The reason for the infeasibilities is that the distur-

bance vector wn is additive in Eq. 3.9, and it may have unbounded support. To avoid

this, we consider soft (probabilistic) constraints, which means that some violations of the

constraint are allowed. However, such probabilistic constraints must hold on the set of

disturbance realisations W, with probability at least ‘1 � ✏ ’, where ✏ 2 (0,1) is a user cho-

sen parameter. The disturbance vector wn also appears multiplicatively in the feedback

control policy (Eq. 3.16), but a hard constraint on the control input vector does not lead

to infeasibility, because the ⇥n matrix in Eq. 3.16 can be set to zero. This leads to the

following two categories of constraints setting [103],

• ‘Hard and soft’ i.e. hard constraints on inputs and soft constraints on state vari-

ables. Now, we consider the constraints on the input and output in Problem (3.3)

over the finite horizon M . Let k·k1 be the infinity norm, which gives the maximum

value of a variable or a vector. We use the infinity norm on the state and control

input vectors to define the constraints in Problem (3.3) in a compact and ‘hard and

soft’ format as below,

umin  kun (wn )k1 umax,

P{wn 2W : ymin  kCxn (wn )k1 ymax} � 1 � ✏ .
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• ‘Soft and soft’ i.e. soft constraints on both inputs and state variables i.e.

P{wn 2W : umin  kun (wn )k1 umax \ ymin  kCxn (wn )k1 ymax} � 1 � ✏ ,
(3.21)

where P = PM
W denotes the probability measure on the set of disturbance W. In many

applications we also constrain the change of inputs, un (wn ) � un�1(wn�1) = �un (wn ), as

�umin  k�un (wn )k1 �umax, where �umin and �umax are the lower and upper limits on

the change of inputs. This constraint can also be considered as hard or soft, however, in

this thesis we consider all constraints as soft constraints.

Using the above constraints and the objective function JE from Eq. 3.7 we define a

CCP which can be solved in an S-MPC setting,

min.
⇥,�

E[(xn+1 � xr )|Q(xn+1 � xr ) + u|nRun + �u|nS�un], (3.22)

s.t. P{wn 2W : umin  kun (wn )k1 umax \ �umin  k�un (wn )k1 �umax \
ymin  kCxn (wn )k1 ymax} � 1 � ✏ ,

subject to the system dynamics, xn+1 in Eq. 3.9, and the control policy, un in Eq. 3.16.

Q, R and S are block diagonal matrices with the Q0, R0 and S0 matrices (Eq. 3.7) on

the block diagonals respectively. xr is a vector with M reference state vectors xr (Eq.

3.7) stacked together. In a Stochastic MPC setting, we solve Problem (3.22) in a reced-

ing horizon fashion. However, the problem is difficult to solve, because in general, a

probabilistic constraint is non-convex with respect to the optimisation variables3. E.g.

‘P{wn 2 W : umin  kun (wn )k1 umax} � 1 � ✏ ’, in general, is non-convex with respect

to the optimisation variables (⇥ and �), even if ‘umin  kun (wn )k1 umax’ is convex in ⇥

and �.

On the other hand, the randomised strategies in [27–30, 82–85, 102] provide com-

putationally tractable approximate solutions to CCPs. We use the scenario approach

[27–30, 102] in this thesis, and it is described in the next section.

3There are some cases when a CCP is convex, e.g. when wn is normally distributed with linear inequality
constraints in the problem, or when the distribution of wn is log-concave [104].
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3.2.4 Scenario-based approach to CCPs

As mentioned in the previous sub-section, it is hard to solve CCPs. To find an approxi-

mate solution to a CCP, we employ a scenario based randomised approach [27–30, 102].

Here, we first illustrate the idea of the approach using Problem (3.22), before stating the

scenario theorem.

To find a scenario based approximate solution of Problem (3.22), we generate Nr re-

alisations of the disturbance wn according to a given probability distribution, which is

assumed to be available (i.e. the probability measure P in Problem (3.22) is assumed to

be known), and then we replace Problem (3.22) with

min.
⇥,�

E[(xn+1 � xr )|Q(xn+1 � xr ) + u|nRun + �u|nS�un], (3.23)

s.t. umin  kun (w(k )
n )k1 umax, �umin  k�un (w(k )

n )k1 �umax,

ymin  kCxn (w(k )
n )k1 ymax, for k = 1,2, . . . ,Nr ,

i.e. we replace every probabilistic constraint in Problem (3.22) with Nr constraints, each

corresponding to an independent realisation of the disturbance vector wn . Problem (3.23)

is a scenario problem, and it is a computationally tractable approximation of Problem (3.22).

Moreover, according to the scenario theorem ([117]) stated below, the scenario solution

provides with high confidence a feasible solution to the chance-constrained Problem

(3.22), provided Nr is chosen large enough.

Theorem 3.1. If the number of scenarios Nr used in a scenario problem satisfies

d�1X

i=0

 
Nr

i

!
✏ i (1 � ✏ )Nr�i  �, (3.24)

where ✏ 2 (0,1), � 2 (0,1) and d is the number of optimisation variables, then the scenario

solution is feasible for the original chance-constrained optimisation problem with confidence at

least 1 � �.

The proof of Theorem 3.1 is available in [117]. To explain the theorem in the context

of Problems (3.22 - 3.23), let the solution of Problem (3.23) be u⇤ (which is obtained from
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the optimised variables, say ⇥⇤ and �⇤). If the number of scenarios Nr used in Problem

(3.23) satisfies Eq. 3.24, then the following holds true

PNr
�

P{ umin  ku⇤k1  umax \ �umin  k�u⇤k1  �umax

\ ymin  kCxn (u⇤)k1  ymax } � 1 � ✏  � 1 � �,

where PNr denotes a probability measure on the Nr extracted samples of wn and � is a

confidence parameter. The solution u⇤ is stochastic, because it depends on the Nr drawn

scenarios of wn in Problem (3.23).

The parameter � can be explained as follows: we cannot guarantee that the scenario

solution is always feasible for Problem (3.22), because it might happen that the Nr ex-

tracted realisations are not representative enough. However, if we meet the criterion in

Eq. 3.24, then the probability of such an event is less than �, and the feasibility of the

scenario solution is ensured with a confidence 1 � �. In [118], it is shown that Eq. 3.24

holds true whenever Nr satisfies the explicit expression,

Nr � d + 1 + ln(1/�) +
p

2(d + 1)ln(1/�)
✏

. (3.25)

The above expression explains the relationship between Nr and �, where Nr depends

logarithmically on �, and hence � can be chosen very small (e.g. 10�6) without increas-

ing Nr too much. The scenario-based optimisation problems can be solved by standard

convex optimisation solvers as e.g. used by YALMIP [3], CVX [119] etc.

3.3 State space representation of rivers

In this section we express the river model structures from Chapter 2 as state space models,

to be used in the S-MPC setting developed in Section 3.1.

3.3.1 State space model for a general river reach

In Chapter 2, a river is modelled as a cascade of time delays and integrators, where each

river reach is modelled as a transport delay and each storage along the river, e.g. a lake
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or a dam is modelled as an integrator. In this chapter we consider a general river, and

based on Eq. 2.5 we propose the following model structure for a general river reach,

y j (n + 1) = y j (n) + T
ncsX

i=1

ccs, iQcs, i (n � ⌧cs, i ) + T
nusX

i=1

cus, iQus, i (n � ⌧us, i )

+ T
ncrX

i=1

ccr, iQcr, i (n � ⌧cr, i ) + T
nurX

i=1

cur, iQur, i (n � ⌧ur, i ), (3.26)

where j = 1,2, . . . ,nst , nst is the total number of storages in the river and y j is the water

level in the j th storage. To simplify notation, we have omitted the subscript ‘ j’ form

the flow variables and parameters. ncs and ncr are the number of regulated in- and

out-flows, and nus and nur are the number of unregulated in- and out-flows. Qcs and

Qcr are the regulated in- and out-flows. Similarly, Qus and Qur are the unregulated in-

and out-flows. The flows are divided into regulated or unregulated groups because, for

control problems, we need to distinguish between the flows that we can manipulate (the

regulated flows) and those which we cannot (the unregulated flows). The regulated flows

are mostly measured, however, the unregulated flows can be measured or unmeasured,

and based on the availability of measurements, forecast models of the unregulated flows

may be required for control purposes. ⌧, in Eq. 3.26, represents time delay from a source

or sink to the storage, and T is the sampling interval.

For simplicity, we consider nst = ncs = nus = ncr = nur = 1, and construct a state space

model from Eq. 3.26. The extension to the general case is straightforward. The state space

model is constructed below by defining the states as delayed in- and out-flows, with the

first state as the water level in the storage. For compact notations, time indicies are given

in subscripts,

x1,n+1 = x1,n + ccs x2,n + cus x⌧cs+2,n + ccr x⌧cs+⌧us+2,n + cur x⌧cs+⌧us+⌧cr+2,n ,

xi,n+1 = xi+1,n , for i = 2, . . . ,⌧cs ,

x⌧cs+1,n+1 = Qcs,n ,

xi,n+1 = xi+1,n , for i = ⌧cs + 2, . . . ,⌧cs + ⌧us ,

x⌧cs+⌧us+1,n+1 = Qus,n ,



110 Scenario-based Stochastic Model Predictive Control (S-MPC) for Rivers

xi,n+1 = xi+1,n , for i = ⌧cs + ⌧us + 2, . . . ,⌧cs + ⌧us + ⌧cr ,

x⌧cs+⌧us+⌧cr+1,n+1 = Qcr,n ,

xi,n+1 = xi+1,n , for i = ⌧cs + ⌧us + ⌧cr + 2, . . . ,⌧cs + ⌧us + ⌧cr + ⌧ur ,

x⌧cs+⌧us+⌧cr+⌧ur+1,n+1 = Qur,n ,

and thus the state vector is given as,

xn = [x1,n x2,n . . . x⌧cs+1,n x⌧cs+2,n . . . x⌧cs+⌧us+1,n x⌧cs+⌧us+2,n . . .

x⌧cs+⌧us+⌧cr+1,n x⌧cs+⌧us+⌧cr+2,n . . . x⌧cs+⌧us+⌧cr+⌧ur+1,n]|

= [y j,n Qcs,n�⌧cs . . . Qcs,n�1 Qus,n�⌧us . . . Qus,n�1 Qcr,n�⌧cr . . .

Qcr,n�1 Qur,n�⌧ur . . . Qur,n�1]|, (3.27)

and the input vector is un = [Qcs,n Qus,n Qcr,n Qur,n]|. We get

xn+1 = Axn + Bun , (3.28)

as a state space model of Eq. 3.26, where

A =

266666666666666666666666666666664

1 ccs 0⌧0cs cus 0⌧0us
ccr 0⌧0cr cur 0⌧0ur

0⌧0cs 0 I 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0⌧0us
0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0 0

0⌧0cr 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 0 0

0⌧0ur 0 0 0 0 0 0 0 I

0 0 0 0 0 0 0 0 0

377777777777777777777777777777775

, B =

266666666666666666666666666666664

0 0 0 0

0⌧0cs 0 0 0

1 0 0 0

0⌧0us
0 0 0

0 1 0 0

0⌧0cr 0 0 0

0 0 1 0

0⌧0ur 0 0 0

0 0 0 1

377777777777777777777777777777775

,

where ⌧0
x = ⌧x � 1 and the bold elements indicate a vector or a matrix. The dimensions

of the matrix blocks are indicated in the first row and column of the A matrix, and in the

first column of the B matrix.
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As mentioned above, we distinguish between the regulated and unregulated flows,

so we rearrange and partition the columns in B (and the corresponding flows) as B =

BC BU

�
, leading to the following model,

xn+1 = Axn + BCuC,n + BUuU,n , (3.29)

where uC,n and uU,n contain the regulated and unregulated flows respectively. In the

general case, the number of columns of matrices BC and BU are equal to ncs + ncr and

nus + nur respectively.

River operators use forecasts of the unregulated in- and out-flows to make decisions.

The forecasts are uncertain since they depend on weather prediction, upstream or down-

stream flows and a few other factors. The unregulated flows are therefore modelled as

uU,n = u f
U,n + wn , (3.30)

where u f
U,n is a forecast ( f ) of the unregulated flows at time n and wn is a stochastic

random variable used to model the uncertainty, which reflects the quality of the forecast.

Forecast models are briefly discussed in the next subsection.

Substituting Eq. 3.30 in Eq. 3.29 gives

xn+1 = Axn + BCuC,n + BU (u f
U,n + wn ). (3.31)

Finally let

wU,n = BU (u f
U,n + wn ), (3.32)

and Eq. 3.31 becomes

xn+1 = Axn + BCuC,n + wU,n , (3.33)

Instead of rearranging and partitioning the columns in matrix B (and the correspond-

ing flows) in Eq. 3.28, into just regulated and unregulated categories, as in Eq. 3.31,

we can use an alternative and elaborated description, where we partition the B matrix
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into four categories. The categories are based on the associated flows, which can be reg-

ulated, unregulated-measured, unregulated-unmeasured-forecasted, and unregulated-

unmeasured-unforecasted. Such a partition will lead to the following model,

xn+1 = Axn + BCuC,n + Bm
U um

U,n + B f
U (u f

U,n + w f
n ) + BX

U uX
U,n , (3.34)

where um
U,n is a measurement (m) of the unregulated flows that can be measured at time

n, u f
U,n is a forecast ( f ) of the unregulated flows that are not measured at time n, wn is

a stochastic random variable used to model the uncertainty in the forecast and uX
U,n is a

vector of unregulated flows that are neither measured nor forecasted, and Bm
U , B f

U and

BX
U are the corresponding matrices that further partition the columns of BU matrix in Eq.

3.31. With this formulation and by letting

wU,n = B f
U (u f

U,n + w f
n ) + BX

U uX
U,n , (3.35)

we get the equivalent river description as,

xn+1 = Axn + BCuC,n + Bm
U um

U,n + wU,n . (3.36)

However, we do not pursue this formulation in this thesis, because mostly unregulated

flows are either measured or forecasted. Also, usually forecasts of most of the unregu-

lated flows are required due to the time delays in the system, which cause the unavailabil-

ity of the relevant measurements at the required time. So we assume only two categories

to partition B matrix in this work: regulated and unregulated, where we assume the un-

regulated flows are forecasted, and Eqs. 3.31, 3.32 & 3.33 provide the formulation for all

such cases. Alternatively, formulation with Eqs. 3.34, 3.35 & 3.36 can also be pursued

ahead with minor modifications.

Eq. 3.33 has the same form as Eq. 3.5, and a description over a finite horizon M , as in

Eq. 3.9, is given by,
(3.37)xn+1 = Fxn + GuC,n + HwU,n ,
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where xn+1 =

xn+1 xn+2 . . . xn+M

�|
, uC,n =


uC,n uC,n+1 . . . uC,n+M�1

�|
and

wU,n =

wU,n wU,n+1 . . . wU,n+M�1

�|
respectively. The matrices F, G and H are given

by

F =

26666666666664

A

A2

...

AM

37777777777775

, G =

26666666666664

BC 0 . . . 0

ABC BC . . . 0
...

...
. . .

...

AM�1BC AM�2BC . . . BC

37777777777775

, H =

26666666666664

I 0 . . . 0

A I . . . 0
...

...
. . .

...

AM�1 AM�2 . . . I

37777777777775

.

Furthermore, for S-MPC based control for rivers, we use the control policy given in Eq.

3.16, i.e.

uC,n = ⇥nwU,n + �n , (3.38)

and we select the parametrisation of �n and ⇥n matrices given in Eq. 3.19. To use Eq. 3.38

as a control policy, we need the value of wU,n�1 in wU,n matrix, at time n, which can be

obtained from the state measurements at time n using Eq. 3.33 as,

wU,n�1 = xn � Axn�1 � BCuC,n�1.

The above expression is computable, only if the measurement of the full state vector, xn ,

in Eq. 3.27 is available. We assume the measurements are available in this work, because

in rivers, the control variables (e.g. water level in a lake) and the variables which affect

the control variables (regulated and unregulated in- and out-flows) are usually measured.

3.3.2 Unregulated flow forecast

As described earlier, we need to distinguish between the flows that can and cannot be

regulated for control purposes. The unregulated flows act like disturbances and their

forecasts are usually required, e.g. they are needed when deciding the amount of wa-

ter that should be released from storages to meet farmers and environmental demands

and/or to avoid flooding. We built flow forecast models of unregulated rivers in Ap-

pendices 2.C & 2.D. In this section we briefly describe some basic model structures for
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unregulated flow forecasts and their uncertainties.

In Eq. 3.32, u f
U,n =


Q f

us,n Q f
ur,n

�|
is a vector of forecasts of unregulated flows.

An unregulated inflow Qus,n can be forecast as a weighted sum of its upstream flows,

provided their measurements are available i.e.

(3.39)Q f
us,n = �

1
usQ

1
us,n�⌧1

us
+ �2

usQ
2
us,n�⌧2

us
+ . . . + �nuus

us Qnuus

us,n�⌧nuus
us
,

where Qi
us,n�⌧ i

us
is the ith upstream flow contributing to the unregulated inflow at time

n � ⌧ius , with i = 1, . . . ,nuus , and nuus is the number of upstream flows contributing to the

unregulated inflow Qus,n . ⌧ius is the time delay from the ith upstream flow, and �ius is a

parameter associated with the ith upstream flow. Rainfall and weather forecasts can also

be incorporated in the flow forecast, but they are not considered here.

An unregulated outflow Qur,n is usually a diversion to an irrigation channel. How-

ever, in general, it includes all uncertain demands, e.g. demands from farmers (f), en-

vironment (e) and some others (r), which could be small water supplies etc. For nur

unregulated outflows we can model Q f
ur,n as,

(3.40)Q f
ur,n =  

f
ur D f

ur,n +  e
ur De

ur,n +  r
ur Dr

ur,n ,

where Dur,n is a flow demand at time n and  f
ur ,  e

ur and  r
ur are the parameters associ-

ated with the demands, which can be estimated from past operational data.

The vector wn =

wus,n wur,n

�|
in Eq. 3.32 represents the uncertainty in the fore-

casts. They can be modelled as independent disturbances, or disturbances correlated in

time and (or) space e.g. by using an Auto-Regressive (AR) process (used in [120]). In

the latter case, the assumption of independent and identically distributed disturbance

will not remain valid. However, an AR process with temporal correlation can naturally

describe some of the uncertainty, e.g. it is more likely to be a rainy or sunny day tomor-

row, if it is rainy or sunny today. Parameters in an AR model can also be estimated from

historical data.

Flow forecasting is not a part of this thesis, and the above material is included just

to illustrate that various types of flow forecasts can be easily incorporated within the

proposed control formulation.

In Appendix 3.A we discuss two additional topics on feedback control policies that

can be pursued in river control. We discuss (i) a control policy that can use forecasts of
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the disturbance term wU,n , (ii) how to incorporate an integral action in the developed

formulation.

3.4 Stochastic MPC for rivers

In this section we discuss common constraints and objectives in river operations and state

them mathematically, before we use them to formulate a river optimisation problem that

can be solved in an S-MPC setting.

3.4.1 Common constraints in rivers

A typical river observes the following restrictions due to physical and environmental

constraints.

• In water storages, flow regulation is usually available at the downstream end of the

storages by means of hydraulic structures. The flow regulation is used for general

management of the storage and other water resources, downstream of the storage.

The excessive flow release is restricted to avoid flooding, and a minimum release is

usually observed for environmental purposes.

• Diversions to irrigation channel or wetlands are mostly regulated, because the wa-

ter is mostly diverted only to meet farmers or environmental demands.

• Rapid changes in river flows should be avoided to preserve the river bank and

avoid river bank slumping, where the mud beneath the river bank is forcefully

dragged along with the water flow.

Next, we state these constraints mathematically. For the regulated inflows we have

the following constraints

Qmin
cs, i  Qcs, i,n  Qmax

cs, i , (3.41)

�Qmin
cs, i  Qcs, i,n �Qcs, i,n�1  �Qmax

cs, i , (3.42)
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for all i = 1,2, . . . ,ncs at each time step n, i.e. all regulated inflows and their change in

time are restricted between upper and lower limits. Moreover, the upper and lower limits

can be time varying as well. The regulated outflows impose similar constraints,

Qmin
cr, i  Qcr, i,n  Qmax

cr, i , (3.43)

�Qmin
cr, i  Qcr, i,n �Qcr, i,n�1  �Qmax

cr, i , (3.44)

for all i = 1,2, . . . ncr at each time step n, i.e. all regulated outflows and their change in

time are restricted between upper and lower limits. Similarly, water level in a storage is

also maintained within limits i.e.

ymin
i  yi,n  ymax

i , (3.45)

for all i = 1,2, . . . nst at each time step n.

As explained earlier in Section 3.2.3, a hard constraint on the output (water level)

is not advisable as the disturbance wU,n (Eq. 3.33) is additive, and we assume an un-

bounded support on the disturbance. To compensate for that, we consider ‘soft and soft’

category of constraints in which the constraints on the output and control inputs are both

kept soft (probabilistic), e.g. see Eq. 3.21. Next, we express the above constraints (Eqs.

3.41, 3.42, 3.43, 3.44 & 3.45) probabilistically, in a compact way, for the finite horizon M .

We partition uC,n in Eq. 3.29 as,

uC,n =

266664

Qcs, i,n

Qcr, j,n

377775

i=ncs, j=ncr

i=1, j=1

.

Thus, for a finite horizon M , the vector uC,n =

uC,n uC,n+1 . . . uC,n+M�1

�|
in Eq. 3.37

can be constrained as,

umin  uC,n  umax, (3.46)
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where

umin =

266664

Qmin
cs, i

Qmin
cr, i

377775

i=ncs, j=ncr

i=1, j=1

, umax =

266664

Qmax
cs, i

Qmax
cr, i

377775

i=ncs, j=ncr

i=1, j=1

,

and the inequality ‘’ in Eq. 3.46 is interpreted element by element. Similarly, Eqs. 3.42

& 3.44 can be written as,

�umin  uC,n � uC,n�1  �umax, (3.47)

where

�umin =

266664

�Qmin
cs, i

�Qmin
cr, i

377775

i=ncs, j=ncr

i=1, j=1

, �umax =

266664

�Qmax
cs, i

�Qmax
cr, i

377775

i=ncs, j=ncr

i=1, j=1

.

The probabilistic constraints on control policies (as in Eq. 3.21) can be collectively given

from Eqs. 3.46 & 3.47 as below,

(3.48)P{wU,n 2W : umin  uC,n (wU,n )  umax \ �umin  �uC,n (wU,n )  �umax} � 1� ✏ ,

where W is a convex set to which the disturbances wU,n belong, P is a probability mea-

sure on the set W, �uC,n (wU,n ) = uC,n (wU,n ) � uC,n�1(wU,n�1) and ✏ 2 (0,1) is a user

chosen probability level.

Similarly, to write Eq. 3.45 probabilistically, in a compact way, for the finite horizon

M (for a single storage, i.e. i = 1 in Eq. 3.45), consider

yref =
ymin + ymax

2
, (3.49)

and ym = ymax � yref = yref � ymin. yref is going to be used in the water level constraints,

rather than ymin and ymax, because it helps in making the formulation of the optimisation

schemes (in Section 3.5) easier.

The constraints on the output can be written as

yref � ym  kCxn k1 yref + ym , (3.50)
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where the infinity norm gives the maximum absolute value of the element in the vector,

xn is given by Eq. 3.37 and C = diag(C, . . . ,C), and for a single storage the matrix C has

the first element equal to 1 with rest equal to zero. The probabilistic constraint on the

states (as in Eq. 3.21) can be given as
(3.51)P{wU,n 2W : yref � ym  kCxn (wU,n )k1  yref + ym } � 1 � ✏ .

Eqs. 3.48 & 3.51 cover most of the physical and environmental constraints associated with

rivers, and we use them to define a river optimisation problem in the next sub-section.

3.4.2 Objective function

In this section, we use the objective function considered in Eq. 3.7 (or in Problem (3.23))

and present the river optimisation problem. The objective function in Problem (3.23) ac-

commodates most of the control objectives of a typical river, which include minimisation

of

• Deviation of states from their reference values, e.g. minimisation of the deviation

of water levels from their set points. Water levels in lakes along the river are con-

trolled, and they are required to be maintained between upper and lower limits

(Eq. 3.45), determined by river operators. A reference set point can be obtained by

taking the mean of these limits (Eq. 3.49).

• Variation in control inputs, i.e. to reduce changes in flow release. This is important

to preserve the river bank structure.

• Control inputs themselves, i.e. to minimise flow release from storages to avoid

waste of water.

It is therefore natural to consider the following objective function for the river control

problem,
J (⇥n ,�n ) = E[(xn+1 � xr )|Q(xn+1 � xr ) + u|C,nRuC,n + (uC,n � uC,n�1)|S(uC,n � uC,n�1)],

(3.52)

where E is the conditional expectation over the disturbance term wU,n given the initial

state xn . xr is a vector of reference state values which contain the reference water level,

and the matrices Q, R and S are described earlier, in Eq. 3.7 and Problem (3.23)).
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Next, we accommodate the expressions of the states xn+1 and the control policy uC,n

from Eqs. 3.37 and 3.38 in the objective function (Eq. 3.52), and obtain

(3.53)

J (⇥n ,�n ) = (Fxn + G�n � xr )|Q(Fxn + G�n � xr ) + 2(Fxn + G�n � xr )|Q(H
+ G⇥n ) · E[wU,n] + tr[(H + G⇥n )|Q(H + G⇥n ) · E[wU,nw|U,n]]
+ (�n � �n�1)|R(�n � �n�1) + 2(�n � �n�1)|R(⇥n � ⇥n�1)
· E[wU,n] + tr[(⇥n � ⇥n�1)|R(⇥n � ⇥n�1) · E[wU,nw|U,n]]
+ �|n S�n + 2�|n S⇥n · E[wU,n] + tr[⇥|nS⇥n · E[wU,nw|U,n]],

where, corresponding to the parametrisation in Eq. 3.17, �n�1 and ⇥n�1 are given as

�n�1 =

266666666666666664

u⇤
C,n�1

�n

�n+1
...

�n+M�2

377777777777777775|      {z      }
(Mm⇥1)

, ⇥n�1 =

266666666666666664

0 0 . . . 0

0 0 . . . 0

✓n+1,0 0 . . . 0
...

...
. . .

...

✓n+M�2,0 ✓n+M�2,1 . . . 0

377777777777777775|                                    {z                                    }
(Mm⇥Mns )

, (3.54)

where u⇤
C,n�1 is the control action applied at time n � 1, and from Eq. 3.32 we have

E[wU,n] =

2666666664

BU (u f
U,n + E[wn])
...

BU (u f
U,n+M�1 + E[wn+M�1])

3777777775

,

where E[wn] is the mean value of disturbance w at time n. Similarly, E[wU,nw|U,n] can be

computed by taking expectation of the product of wU,n with its transpose.

Finally, using the river constraints (Eqs. 3.48 & 3.51) and the objective function

(Eq. 3.53), we define the river optimisation problem at time n as the following chance-

constrained optimisation problem (CCP),

min.
⇥n,�n

J (⇥n ,�n ), (3.55)

s.t. P{wU,n 2W : umin  uC,n (wU,n )  umax \ �umin  �uC,n (wU,n )  �umax

\ yref�ym  kCxn (wU,n )k1 yref + ym } � 1 � ✏ ,
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where the system dynamics xn is given in Eq. 3.37 and the control policy uC,n is given in

Eq. 3.38.

We aim to solve Problem (3.55) in an MPC set-up. However, as mentioned earlier

a CCP is difficult to solve, as a probabilistic constraints are generally non-convex with

respect to optimisation variables. To find an approximate solution to Problem (3.55), we

employ the scenario approach (Section 3.2.4) and we get the following scenario version

of Problem (3.55), which is convex with respect to the optimisation variables (⇥n ,�n),

min.
⇥n,�n

J (⇥n ,�n ), (3.56)

s.t. umin  uC,n (w(k )
U,n )  umax, �umin  �uC,n (w(k )

U,n )  �umax

yref � ym  kCxn (w(k )
U,n )k1 yref + ym , for k = 1, . . . ,Nr ,

where Nr is the number of the disturbance (wU,n) realisations, which can be obtained

from Eq. 3.24 by using ✏ in Problem (3.55) and selecting a very small confidence param-

eter � (e.g. 10�6). Problem (3.56) is a convex optimisation problem, and it can be solved

by standard convex optimisation solvers as e.g. used by YALMIP [3], CVX [119] etc.

Even with the convexity assurance, the feasibility of the scenario Problem (3.56) is still

not guaranteed, because of the presence of the unbounded disturbance terms w(k )
U,n in the

constraints, where k = 1,2, . . . ,Nr . The feasibility issues can be critical, especially when

ym is a small number. In the next section we introduce two optimisation schemes for the

river control problem that ensure feasibility, and we can apply the scenario approach to

solve them.

3.5 Stochastic MPC schemes for rivers with feasibility assurance

In this section we consider the river control Problem (3.55), and formulate two alternative

chance-constrained optimisation schemes that ensure feasibility and which can be solved

using the scenario approach (Section 3.2.4).

As a general idea, we replace ym in Eq. 3.51 with a decision variable, h, to ensure

feasibility. However, we have to specify an appropriate trade-off between performance,
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as measured by the value of J in Eq. 3.52, and feasibility. In this section we formulate two

MPC schemes based on this idea. For river problems, such an arrangement is acceptable

as water level often crosses the lower and upper limits (yref � ym and yref � ym), and setting

ym as a decision variable h will allow room for that, however, the optimisation schemes

will penalise such events. Scheme 1 is borrowed from [103], which is based on a user

chosen trade-off between performance and feasibility. Scheme 2 is an automated option

which does not require any user input.

Scheme 1 (a two-step approach with a tuning parameter)

In this scheme two optimisation problems are solved. In the first problem the objective

function J is minimised subject to the constraints on the input only. In the second prob-

lem constraint satisfaction is improved by minimising the bound h, subject to constraints

on both the input and the states, and a constraint that defines the maximum allowed

degradation of the objective value achieved in the previous problem by means of a tun-

ing parameter ↵.

Problem 1

min.
⇥n,�n

J (⇥n ,�n ), (3.57)

s.t. P{wU,n 2W : umin  uC,n (wU,n )  umax \ �umin  �uC,n (wU,n )  �umax} � 1 � ✏ ,

subject to the dynamics given by Eqs. 3.37 & 3.38. Suppose J⇤ is the optimal value

achieved by solving this problem

Problem 2

min.
⇥n,�n,h

h, (3.58)

s.t. P{wU,n 2W : umin  uC,n (wU,n )  umax \ �umin  �uC,n (wU,n )  �umax

\ yref � h kCxn (wU,n )k1 yref + h} � 1 � ✏ ,
J (⇥n ,�n )  J⇤ (1 + ↵),
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where ↵ � 0 is a tuning parameter that determines the trade-off between performance (J)

and feasibility (h). In this scheme we can define a percentage degradation of the objective

value by selecting ↵ = 10%, 20% etc.

Scheme 2 (an automated two-step approach)

This scheme also consists of two optimisation problems. However, it does not require

selection of any user chosen parameters. In the first problem, we ignore the objective

function J and minimise h subject to the chance constraints on states and input. Then we

check the program feasibility by comparing the achieved bound with a strict bound, h =

ym (as in Eq. 3.50). If the program is feasible, then the objective function J is minimised

in the second optimisation problem subject to the original chance constraints. Otherwise,

the solution of the first problem: (⇥I,�I,hI) is used.

Problem 1

min.
⇥n,�n,h

h, (3.59)

s.t. P{wU,n 2W : umin  uC,n (wU,n )  umax \ �umin  �uC,n (wU,n )  �umax

\ yref � h kCxn (wU,n )k1 yref + h} � 1 � ✏ ,

subject to the dynamics given by Eqs. 3.9 & 3.16. If hI > h, return the solution (⇥I,�I,hI),

otherwise, proceed to the next problem where the performance is improved by minimis-

ing J.

Problem 2

min.
⇥n,�n

J (⇥n ,�n ), (3.60)

s.t. P{wU,n 2W : umin  uC,n (wU,n )  umax \ �umin  �uC,n (wU,n )  �umax

\ yref � h kCxn (wU,n )k1 yref + h} � 1 � ✏ .

In the second problem, the original bound h is used. The solution (⇥II,�II) is returned.
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3.5.1 Scenario approach applied to the optimisation schemes

The scenario approach (Section 3.2.4) is applied to Schemes 1 and 2 below.

Scenario version of Scheme 1 (Problems (3.57 - 3.58))

The scenario version of Problem (3.57) can be obtained by replacing every constraint of

the problem with Nr constraints, each corresponding to a realisation of the disturbance

term wU,n as below,

Problem 1

min.
⇥n,�n

J (⇥n ,�n ), (3.61)

s.t. umin  uC,n (w(k )
U,n )  umax, �umin  �uC,n (w(k )

U,n )  �umax

for k = 1, . . . ,Nr .

Suppose J⇤ is the optimal value achieved by solving the above problem. The scenario

version of Problem (3.58) is then given by,

Problem 2

min.
⇥n,�n,h

h, (3.62)

s.t. umin  uC,n (w(k )
U,n )  umax, �umin  �uC,n (w(k )

U,n )  �umax,

yref�h  kCxn (w(k )
U,n )k1 yref + h, J (⇥n ,�n )  J⇤ (1 + ↵),

for k = 1, . . . ,Nr ,

where ↵ � 0 is the user chosen tuning parameter (selected in Problem (3.58)). Note that,

we use the same noise realisations w(k )
U in the two problems, where k = 1, . . . ,Nr .

Scenario version of Scheme 2 (Problems (3.59 - 3.60)

Similarly, the scenario version of Problem (3.59) can be obtained by replacing every con-

straint of the problem with Nr constraints, each corresponding to a realisation of the
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disturbance term wU,n as below,

Problem 1

min.
⇥n,�n,h

h, (3.63)

s.t. umin  uC,n (w(k )
U,n )  umax, �umin  �uC,n (w(k )

U,n )  �umax

yref � h  kCxn (w(k )
U,n )k1 yref + h, for k = 1, . . . ,Nr .

If (⇥I,�I,hI) is the solution of the above problem, and hI � h̄, where h̄ = ym (Eq. 3.50), then

the solution is returned. Otherwise, the solution is improved by solving the following

scenario version of Problem (3.60) and its solution is returned.

Problem 2

min.
⇥n,�n

J (⇥n ,�n ), (3.64)

s.t. umin  uC,n (w(k )
U,n )  umax, �umin  �uC,n (w(k )

U,n )  �umax

yref � h̄  kCxn (w(k )
U,n )k1 yref + h̄, for k = 1, . . . ,Nr .

Note that, we use the same noise realisations w(k )
U in the two problems, where k =

1, . . . ,Nr .

3.5.2 Feasibility of the scenario bases schemes

The scenario based schemes are feasible by design, however, due to the cascaded nature,

the confidence bound, �, on the scenario solution does not remain valid for the corre-

sponding schemes with chance-constraints [103]. We discuss each scheme separately,

Feasibility of the scenario version of Scheme 1 (Problems (3.61 - 3.62))

In the scenario Problem (3.62) J⇤ depends on w(k )
U , since it is found by solving Problem

(3.61), and J⇤ should be precisely written as J⇤ (w(1)
U ,w

(2)
U , . . . ,w

(N )
U ). Hence there is a

single constraint, ‘J (⇥n ,�n )  J⇤ (w(1)
U ,w

(2)
U , . . . ,w

(N )
U )(1 + ↵)’, in the scenario Problem

(3.62), which depends on all of the scenarios, w(k )
U , and such situations are not covered
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by Theorem 3.1. However, in practice, the solution is usually feasible for the original

probabilistic constraints [103].

Feasibility of the scenario version of Scheme 2 (Problems (3.63 - 3.64))

The confidence bound � does not remain valid for Scheme 2 either, however, we have the

following result based on Theorem 3.1.

Corollary 3.1. Let (⇥†,�†,h†) be the solution of the cascade of Problems (3.63 - 3.64), which is

assumed to always exist and be unique. For a user selected h, and any ✏ 2 (0,1) and � 2 (0,1),

the probability of drawing scenarios w(k )
U,n , where k = 1,2, . . . ,Nr and Nr is as in Eq. 3.24, such

that either h† > h̄ and (⇥†,�†,h†) is infeasible for Problem (3.59) or h†  h̄ and (⇥†,�†,h†) is

infeasible for Problem (3.60), is at most 2�.

A proof of Corollary 3.1 is given in Appendix 3.B, and according to the corollary, the

solution of the cascade of Problems (3.63 - 3.64) is feasible for the cascade of Problems

(3.59 - 3.60), with probability at least 1 � 2�.

3.6 Application of the proposed schemes to the upper part of
Murray River

In this section we apply the proposed scenario-based MPC schemes to the upper part of

Murray River in Australia using historical data of the unregulated in- and out-flows. For

ease, we re-present the sketch of the upper part of Murray River in Fig. 3.1. The figure

shows the river stretch from Hume reservoir to Lake Mulwala. During normal operations

the water level is controlled from Hume only. We briefly summarise the control objectives

from Sections 1.3.2 & 2.1.1.

1. The water level in Lake Mulwala should be kept between 124.65 to 124.9 mAHD

(meter Australian Height Datum—relative to sea level).

2. To avoid river bank slumping, the rate of fall in the flow release from Hume should

be limited. The formal requirement is to keep the rate of fall in the water level
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Figure 3.1: Hume Reservoir to Lake Mulwala on the Murray River (plot not to scale).

at Heywoods and Doctors Point below 0.20 m/Day and 0.15 m/Day respectively.

However, in this work, we roughly approximate the requirement into the rate of

fall in the flow at Heywoods, which should be below 500 ML/Day (where 1 m3/sec

= 86.4 ML/Day). This approximation is obtained from historical data and the avail-

able rating curves at these locations. We found that this much flow variation at

Heywoods keeps the rate of fall in the water level at Heywoods and Doctors Point

below their allowed limits (most of the time).

3. The release from Hume Reservoir should be kept between 2,500 and 30,000

ML/Day.

For the MPC problem, we use the following model of water level in Lake Mulwala (ob-

tained in Section 2.2.1),

yLM (n + 1) = yLM (n) + 6.20 ⇥ 10�7QH (n � 70) + 9.63 ⇥ 10�7QB (n � 71) + 5.89 ⇥ 10�7

QP (n � 16) � 6.13 ⇥ 10�7QDYW (n) � 9.73 ⇥ 10�7QYMC (n) � 6.67 ⇥ 10�7QMC (n), (3.65)

where QH , QB and QP are the inflows from Heywoods, Bandiana and Peechelba, and

QDYW , QYMC and QMC are the releases to downstream of Yarrawonga Weir, Yarrawonga

Main Channel and Mulwala Canal. As mentioned in Section 3.3.1, the MPC strategy uses

river models in state space form, and in this section, we will use an equivalent state space

model of Eq. 3.65 (shown in Appendix 3.C).
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3.6.1 Control design

To test the performance of the proposed optimisation schemes, we used two different

data with low and high inflows from the unregulated rivers (Kiewa and Ovens Rivers).

To be precise, we picked one dataset from 7th Oct., 2006 to 20th Dec., 2006, and the other

from 19th Sep., 2001 to 16th Nov., 2001, both sampled at Ts = 8 hours. We used a predic-

tion horizon M = 20 units in the MPC problem, which is equal to 6.67 days (⇡ 1 week).

Based on the control objectives, we considered probabilistic versions of the following

constraints,

• 124.65  yi,LM  124.9, for i = 1,2, . . . ,M ,

• 2,500  Qi,H  30,000, for i = 1,2, . . . ,M ,

• �500  Qi,H �Qi�1,H  1,200, for i = 1,2, . . . ,M .

The upper limit of the constraint on the change of flow at Heywoods is kept as 1,200

ML/Day, which is acceptable as the river operators put a constraint on the rate of fall in

water level only. We have estimated the upper limit from historical data. The matrices Q

and S in the objective function J (⇥n ,�n ) (Eq. 3.52) are selected as block diagonal matrices

with M copies of the Q
0 and S

0 matrices on the block diagonals respectively, where

Q
0
=

266664

10 01,ns�1

0ns�1,1 0ns�1,ns�1,

377775
S
0
= 10�11,

ns = 21 is the number of states, and the first state corresponded to the water level in

Lake Mulwala (Appendix 3.C). The large magnitude difference in the weights of Q
0 and

S
0 matrices is due to large magnitude differences in the flow values and water levels at

Heywoods and Lake Mulwala respectively. Q
0 and S

0 were tuned based on experiments

on historical data. We used R = 0 (in Eq. 3.52), since the change in flow at Heywoods is

already subjected to constraints.

We used the parametrisation of �n and ⇥n matrices (in Eq. 3.38) as in Eq. 3.19, to keep

the number of optimisation variables, d, small. For the scenario MPC, we found that the

number of scenarios must be Nr � 1,250 using Eq. 3.24, in order to meet the requirements:



128 Scenario-based Stochastic Model Predictive Control (S-MPC) for Rivers

✏ = 0.1 and � = 1 ⇥ 10�6, for d = 78. The requirements are set as follows. The violation

probability ✏ is selected experimentally by observing violations at each MPC step and by

keeping the corresponding computational burden affordable. The confidence parameter

� is selected to be a very small number. The number of optimisation variables d is com-

puted from Eq. 3.20 with m = 6 and M = 20, but ns = 21 is replaced with 3 in Eq. 3.20,

because an entry in a ✓i, j matrix in the ⇥n matrix (Eq. 3.19) that turns out to be zero,

after multiplication with the disturbance variable wU,n (in wU,n matrix in Eq. 3.38), can

be set to zero to begin with, to further reduce the number of optimisation variables d. We

replaced ns in Eq. 3.20 with 3, because BU has only 3 non-zero rows in Eq. 3.70, which

defines the non-zero rows in the disturbance variable wU,n as BU (u f
U,n + wn ) (Eq. 3.32).

With these values, we get d = 77 from Eq. 3.20, and then we increment another variable,

on top, corresponding to the h variable, used in the optimisation schemes (Section 3.5).

We used the optimisation schemes in Section 3.5 on the selected river data. In the first

scheme we considered ↵ = 0.1, i.e. 10% degradation of the performance J is allowed in

the second optimisation problem of the scheme. For simulations, we selected the follow-

ing three situations:

• Situation 1: We considered unregulated inflows from Kiewa and Ovens Rivers were

unknown, however, we assumed the demands from irrigation channels and down-

stream Yarrawonga Weir were exactly known. Forecasts for the flows at Bandiana

and Peechelba were based on Eq. 3.39, and we used the forecast models obtained in

Appendices 2.C & 2.D. Uncertainties wB and wP in the flow forecasts were selected

to be independent and identically distributed Gaussian random variables with zero

means and 30 ML/Day standard deviations each.

• Situation 2: We considered all unregulated in- and out-flows were unknown except

the release from Yarrawonga Weir. Flow forecasts at Bandiana and Peechelba were

done the same way as in Situation 1. The demands to irrigation channels were

considered to be constants over the finite horizon M . Precisely, we picked two

cases: (i) the demand values for the whole horizon were considered to be the first

value of the actual demands, (ii) the demand values for the whole horizon were

considered to be the average value of the actual demands over the horizon.
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• Situation 3: We repeated Situation 1 for the dataset with high inflows from Kiewa

and Ovens Rivers. Flow forecasts at Bandiana and Peechelba were done the same

way as in Situation 1, however, for the uncertainties wB and wP in the flow forecasts,

we increased the standard deviations of the random variables from 30 ML/Day to

50 ML/Day for wB and 200 ML/Day for wP .

The optimisation problems were solved by running YALMIP [115] over SDPT3 [4].

3.6.2 Performance of Situation 1: (unknown unregulated inflows)

Simulations in this section were carried on the dataset from 7th Oct., 2006 to 20th Dec.,

2006. Figs. 3.2 & 3.3 show the performance of Scheme 1. In Fig. 3.2 the black curve

shows the actual historical water level, the blue curve shows the response of Scheme 1,

and the magenta curve is the simulation of the model in Eq. 3.65 using the historical

input data. We can observe that the model is quite accurate since the black and magenta

curves are close. The blue curve, which shows the controlled water level obtained from

the optimisation scheme, demonstrates that the control scheme not only restricted the

water level to be with in the limits, but also kept it close to the mean of the limits.

The model simulation seems to drift away from the actual historical water level to-

wards the end. It is because the model has an integrator and the errors accumulate with

time. However, it does not affect the MPC scheme much as we initialise the model at

each time step based on the measurements at the previous time step.

Fig. 3.3 shows the regulated and the unregulated flows. The top graph shows the

regulated flow at Hume (the outcome of Scheme 1), and the corresponding actual flow

release. Due to the drop in the release to Mulwala Canal and Yarrawonga Main Channel

at 80th and 110th time samples (shown in the lower graph of Fig. 3.3, and separately

shown in Fig. 3.4 for clarity), the scheme reduced the release from Hume roughly at the

70th and 100th times samples (see the upper graph of Fig. 3.3). This avoided a rise in the

water level which is present in the actual water level with peaks at 90th and 120th times

samples (see Fig. 3.2). However, this is not a fair comparison since we had access to the

exact future water demands and we adjusted the flow release every 8 hours while the

operators only adjusted the flow every 24 hours.
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Figure 3.2: Controlled water level using Scheme 1.
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Figure 3.3: Regulated and unregulated flows using Scheme 1.
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Figure 3.4: Zoomed outflows to Yarrawonga Main Channel and Mulwala Canal.
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Figure 3.5: Controlled water level using Scheme 2.

Figs. 3.5 & 3.6 show the performance of Scheme 2. This scheme also performed well,

with similar results to the previous one. The controlled release from Hume (Fig. 3.6)

shows some fluctuations, which are not present in Fig. 3.3. However, we can avoid the

fluctuation by considering a non zero R matrix in the objective criterion J (⇥,�) (Eq. 3.52).

For this, we selected R as an M ⇥ M diagonal matrix with R0 = 1 ⇥ 10�7 in the diagonal.

Figs. 3.7 & 3.8 show the performance of Scheme 2 with the above selection of R matrix

in the objective function. In Fig. 3.8, we can see that the fluctuations in the flow release

are removed compared to the flow release shown in Fig. 3.6. Moreover, the behaviour

of the water level is almost similar in both cases, see Figs. 3.5 & 3.7. In the remaining

simulations of this chapter, we selected a zero R matrix for Scheme 1 and the non-zero R

(specified above) for Scheme 2.

In Scheme 1, the user can manipulate the trade-off (↵) between performance and fea-

sibility. On the other hand, Scheme 2 is an automated option and is computationally less

expensive if water level crosses the hard limits, since Problem 3.64 is then skipped. Both

schemes have performed well in controlling the water level in the lake. In the next sub-

section we see their performance for the case when demands from the irrigation channels

along with the inflows from unregulated rivers were unknown.
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Figure 3.6: Regulated flows using Scheme 2.
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Figure 3.7: Controlled water level using Scheme 2 with a non-zero R matrix in the objec-
tive function.
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Figure 3.8: Regulated flows using Scheme 2 with a non-zero R matrix in the objective
function.
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Figure 3.9: Controlled water level using Scheme 1 with unknown demands from irriga-
tion channels.

3.6.3 Performance of Situation 2: (unknown unregulated in- and out-flows)

Simulations in this section were carried on the river dataset from 7th Oct., 2006 to 20th

Dec., 2006. As described earlier, in the simulations here, the flow forecasts at Bandiana

and Peechelba were obtained from the models in Appendices 2.C & 2.D, and for the

unknown demands from Yarrawonga Main Channel and Mulwala Canal, we considered

the following two cases,

• Case 1: The forecasted demands for the whole horizon were equal to the first value

of the actual demands over the finite horizon (M = 20 units). The actual demands

are shown in Fig. 3.4. The simulation results corresponding to this case are shown

with blue curves in Figs. 3.9, 3.10 & 3.11, 3.12, corresponding to Scheme 1 and

Scheme 2 respectively.

• Case 2: The forecasted demands for the whole horizon were equal to the average

value of the actual demands over the finite horizon (M = 20 units). The simulation

results corresponding to this case are shown with magenta dashed-dotted curves

in Figs. 3.9, 3.10 & 3.11, 3.12, corresponding to Scheme 1 and Scheme 2 respectively.

The recorded water levels in Lake Mulwala and flows at Heywoods are shown with black

dashed-dotted and black dashed curves respectively in the figures.

As expected, the controlled water level in Lake Mulwala (obtained from both

schemes, see Figs. 3.9 & 3.11) was not close to the desired water level set-point of 124.775
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Figure 3.10: Regulated flows using Scheme 1 with unknown demands from irrigation
channels.
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Figure 3.11: Controlled water level using Scheme 2 with unknown demands from irriga-
tion channels.

mAHD. This is because of the errors in the demand forecasts, and especially, the perfor-

mance of case 1 is poorer compared to case 2, because of larger errors in the forecasts.

However, the water levels still stayed within the limits (124.65 and 124.9 mAHD), which

shows that the selected control strategy is robust for the selected flow ranges. Figs. 3.10

& 3.12 show the corresponding flow release from Hume reservoir for both cases and

control schemes. The flows adhered to the constraints well, and again as expected, the

performance of case 2 seems to be better than case 1, as shown in the figures.

The above cases were purposely selected with poor forecasts to see the performance of

the developed schemes in unfavourable situations. In practice, river operators are usually

aware of the demand profiles for the next 3 to 4 days. To demonstrate the performance of

the control schemes with a more realistic demand forecast from the irrigation channels,
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Figure 3.12: Regulated flows using Scheme 2 with unknown demands from irrigation
channels.
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Figure 3.13: Controlled water level in Lake Mulwala with a realistic forecast of demands
from irrigation channels.

we considered the following case. We assumed that we knew the demand profile for

the first 10 steps (about 3 1
2 days) of the finite horizon, and for the remaining 10 steps,

we used the average value of the actual demands on those remaining 10 steps, for each

step. Figs. 3.13 & 3.14 show the performance of both control schemes, and we can see

that the schemes performed almost similar to each other. Fig. 3.13 show the controlled

water level in Lake Mulwala, which ideally stays close to 124.775 mAHD, throughout

the simulations, and the corresponding regulated flow release at Heywoods is shown in

Fig. 3.14. From the simulation results, we can say that the performance of the control

schemes, with a realistic demand forecast, is acceptable for the given river.
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Figure 3.14: Regulated flows at Heywoods with a realistic forecast of demands from irri-
gation channels.

3.6.4 Performance of Situation 3: (high unregulated inflows)

In this section we examine the control of water level in Lake Mulwala when the unreg-

ulated inflows (from Kiewa and Ovens Rivers) are above their normal operating range.

The schemes are designed to provide feasible solutions for a wide range of inflows, but

we are interested to see whether their control performance (found from the value of J) is

also acceptable or not.

We picked the dataset from 19th Sep., 2001 to 16th Nov., 2001, sampled at Ts = 8 hours.

Fig. 3.15 shows the inflows and the outflows, and we can see that the unregulated inflows

from Kiewa and Ovens Rivers (i.e. at Bandiana (B) and Peechelba (P)) are high compared

to Fig. 3.4. Again, we use the forecast models (of flows at Bandiana and Peechelba) in Eqs.

2.47 & 2.52. Fig. 3.16 shows the simulations of the flows at Bandiana and Peechelba for

the selected dataset. The blue curves show the actual recorded data and the red dashed

curves show the simulation of the forecast models. The simulation results of the flows

at Bandiana are good, however, for the flows at Peechelba, the model picks the trends

well, but at flow peaks, the simulated flows are off by several hundred ML/Day from

the actual flows. Due to high inflows, we expect high uncertainty in their forecasts, and

because of this reason we increased the standard deviations of the additive Gaussian

distributed noise terms wB and wP to 50 ML/Day and 200 ML/Day respectively.

Figs. 3.17 & 3.18 show the performance of Scheme 1. Fig. 3.17 shows water level in

Lake Mulwala. The blue curve in the figure shows the controlled water level, the black

curve shows the actual recorded water level and the magenta curve shows the simulation
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Figure 3.15: Inflows and outflows in the dataset.
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of the model in Eq. 3.65 using the measured input data. The model performed reasonably

well and picked the main trends in the data. Again, the model simulation seems to drift

away from the actual recorded data, but this is because of the integrator in the model

that accumulates errors. However, it does not affect the MPC schemes as we initialise the

model at each time step, based on the measurement at the previous time step.

The performance of the controlled water level in Fig. 3.17 is better than the actual

recorded data, but it is not a desirable one, because the water level crossed the upper

allowed limit (124.9 mAHD) twice. It crossed only a little at 45th time sample, however,

it stayed outside the allowed limit from 75th to 97th time sample. This can be explained

from the corresponding flow release at Heywoods, shown in Fig. 3.18. During this time

window, the flow release at Heywoods stayed at the lower flow limit (i.e. 2,500 ML/Day).

However, the recorded flow data (red curve) show that the operators reduced the flows

even below 2,500 ML/Day and they hit a level of 600 ML/Day, which are outside the

normal operating range and they correspond to flood operating range, which is a regime

outside the scope of this chapter. Even with such actions, the recorded water level in Fig.

3.17 stayed higher than what we obtained from the control scheme. It can be explained

by looking at the events in Figs. 3.17 & 3.18,

• The peak of the controlled flow release at around 5th time sample, which is above

the recorded flow release, caused the controlled water level to rise above the

recorded water level between 12th and 30th time samples, but the controlled wa-

ter level dropped below the recorded water level after that. This is achieved by

decreasing the controlled flows at the maximum allowed rate, i.e. �500 ML/Day,

from roughly 6th to 16th sampling instant.

• The recorded flow release stayed 2,000 ML/Day to 4,000 ML/Day higher than the

controlled flow release between 15th and 25th sampling time, which caused the

recorded water level to cross the upper limit (124.9 mAHD) and it got roughly 8 cm

higher than the controlled water level.

• Furthermore, higher flow release in the recorded data between 40th and 50th time

samples kept the recorded water level above the controlled water level and the
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Figure 3.17: Controlled water level using Scheme 1.

upper limit (124.9 mAHD).

• Finally, the high unregulated inflow at Peechelba around the 70th time sample

(shown in Fig. 3.15) caused the controlled and the recorded flow release to be

reduced at the maximum allowed rate (�500 ML/Day), but this was not enough

to prevent the water level to cross the upper limit. The rate of increase of the con-

trolled water level is higher as the constraint on the lower limit of the corresponding

flow release at Heywoods was adhered to in the optimisation problem. However,

the operators decreased the flow below the lower limit at that time to avoid rapid

increase in the recorded water level, but still it increased due to the high inflow at

Peechelba.

Figs. 3.19 & 3.20 show the performance of Scheme 2 (with R = 0) on the same dataset

with the same control parameters as used in Scheme 1. The performance of the scheme

is similar to Figs. 3.17 & 3.18, and can be explained the same way as above. The only

difference is that in this case, the controlled water level exceeded the upper limit a little

less between 75th and 95th time samples as shown in Fig. 3.19, as compared to Fig. 3.17.

The reason is that the water level exceeded the limit a little more between 40th and 50th

time samples, the controlled flows at Heywoods were dropped further at around 53rd

time samples, compared to what they were in Fig. 3.18.

The increase in the flow release at Heywoods from 77th to 86th time samples in Fig.
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Figure 3.18: Regulated flows at Heywoods using Scheme 1.
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Figure 3.19: Controlled water level using Scheme 2.

10 20 30 40 50 60 70 80 90 100

2000

4000

6000

8000

10000

12000

14000

Samples (T
s
 =  8 hours)

F
lo

w
 (

M
L
/D

a
y)

 

Comparison of flow release from Hume reservoir

 

 

Controlled Flow at Heywoods

Recorded flow at Heywoods

Lower limit on the flows at Heywoods

Figure 3.20: Regulated flows at Heywoods using Scheme 2.
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3.20 looks suspicious, if compared with the water levels in Lake Mulwala during this pe-

riod in Fig. 3.19, which are already above the upper limit (124.9 mAHD). This behaviour

is also evident in the recorded flows in Fig. 3.20 (shown with the red dashed curve), from

87th to 90th time samples. However, this can be explained by taking the time delays in

the system into account and observing the flows and water levels in Figs. 3.15, 3.16, 3.19

& 3.20 during this time period. The optimisation problem at 77th time step anticipated

the rise in the rapid release from Yarrawonga Weir from 92nd time step onward (see Fig.

3.15). Activities at Yarrawonga Weir are 9 steps ahead in time due to the time delays, and

the forecasts in the finite horizon, which is additional 20 steps, helped the controller to

anticipate the rapid release from the weir. During this period, the inflows from Ovens

Rivers were also forecasted to decrease till roughly 96th time sample (as in Fig. 3.16, the

red dashed curve). Therefore to compensate the expected sudden fall in water level in

the lake, the flow release from Hume was increased, and even with it, we can still see

the rapid decrease in water level from 95th to 103rd time samples. However, the flows at

Heywooods were later decreased again to the lowest allowed value (2,000 ML/Day), be-

cause the water level in the lake got increased due to the rapid increase in the forecasted

inflow from Ovens River from 97th time sample onwards, as shown in Fig. 3.16.

To sum up, the control schemes performed better than the recorded data but there is

a need of a control strategy which can handle unregulated flows in a better way, which

should be able to mitigate flood risks and provide probabilistic guarantees on the solu-

tion. Also, we found that when water level is expected to exceed the upper limit (e.g.

124.9 mAHD in our case), we can reduce the flow release from the storages below the

lower limit to avoid major damage. With this knowledge, we will propose and use a

flood risk mitigation strategy in the next two chapters.
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Appendix

3.A Additional topics on control policies

3.A.1 A control policy which accommodates forecasts

The forecast models in Section 3.3.2 can improve a control policy. As mentioned in Section

3.2.2, the parameters in the ⇥n matrix (Eq. 3.16) corresponding to the disturbances which

are not measured or computable, at a given time n, should be set to zero. However, with

the availability of the forecast models, the wU,n entries in the wU,n matrix in Eq. 3.16

can be replaced by BUu f
U,n , where the flow forecasts u f

U,n are given by Eqs. 3.39 & 3.40.

Also, we can use the forecasts of all future disturbances in the finite horizon M to define

a control policy. Based on Eq. 3.16 we have

un = ⇥nwU,n + �n +⇥
0
n


BUu f

U,n BUu f
U,n+1 . . . BUu f

U,n+M�1

�|
, (3.66)

where ⇥n and �n matrices are as before (Eq. 3.16), and

⇥
0
n =

26666666666664

✓
0
n,0 ✓

0
n,1 . . . ✓

0
n,M�1

0 ✓
0
n+1,1 . . . ✓

0
n+1,M�1

...
...

. . .
...

0 0 . . . ✓
0
n+M�1,M�1

37777777777775

,

provided all ✓i, j entries in the lower triangle of ⇥n matrix (Eq. 3.16) are non-zero, other-

wise, the corresponding ✓0
i, j entries in the lower triangle of matrix ⇥0

n are kept non-zero,

and are considered as optimisation parameters. A control policy based on Eq. 3.66 in-
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creases the number of parameters more than double the parameters in Eq. 3.16, and it is

computationally more expensive to use such a control policy in an optimisation problem.

In this chapter we consider the control policy in Eq. 3.16, however, the policy in Eq. 3.66

is also applicable. Moreover, the policy does not affect the convexity of the control opti-

misation problems in Sections 3.4 & 3.5 with respect to the optimisation variables (�n , ⇥n ,

⇥
0
n)

3.A.2 Incorporating an integral action

A typical control objective for a river is to maintain a water level or flow between an

upper and lower limit in a storage or at a particular point along the river. However, it

can be required to keep a water level or flow at a specific set-point. For such cases, we

can add integral action to the control policy to avoid steady state errors. To achieve this,

we augment an extra state with the state space system (Eq. 3.28). The purpose of the

state is to accumulate (integrate) the deviations in the water level from a reference point,

say yref, and then the state value can be minimised in an optimisation problem. From Eq.

3.28, we have

xn+1 = Axn + Bun . (3.67)

We introduce a state that accumulates the deviation of water level from the reference

point

⇠n+1 = ⇠n + Cxn � yref, (3.68)

where the dimension of the matrix C is 1 ⇥ ns (for the single water level output), and

C =

1 0 0 . . . 0

�
, since the first state in Eq. 3.67 is the water level. This gives the

augmented system

xau,n+1 =

266664

xn+1

⇠n+1

377775
=

266664

A 0

C 1

377775

266664

xn

⇠n

377775
+
266664

B 0

0 �1

377775

266664

un

yref

377775
,
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where the subscript ‘au’ represents augmented states. The above equation can be written

as

xau,n+1 = Aauxau,n + Bau


un yref

�|
. (3.69)

We can treat Eq. 3.69 the same way as we treated Eqs. 3.1 & 3.28 in this chapter. Also, the

augmentation does not affect convexity, and is applicable to a general river.

The above formulation can suffer with integrator windup problems when constraints

become active (i.e. when actuators hit a saturation). However, as described earlier, we do

not require set-point tracking in rivers in general, and therefore an integral action is not

needed. Nevertheless, if its necessary, it is advisable to add an anti-windup mechanism

to the integral action formulation, see [121].

3.B Proof of Corollary 3.1

Fig. 3.21 (a) shows an illustration of an N dimensional set ‘WN ’. Each element of the set

is a possible ‘multiple sample extraction’: (w1
U,n ,w

2
U,n , . . . ,w

N
U,n ), where wk

U,n is an Mns

dimensional vector, where ns is the number of states. Assume the blue portion of the set

(shown with blue circles) consists of multi-samples that give a solution with h1 > h̄, and

the black portion (shown with black squares) consists of those that give a solution with

h1  h̄. The portions are separated with a blue dashed line. The dashed region in Fig.

3.21 (a) shows a bad set of multi-samples that give a solution to the scenario version of

Problem (3.59) which is not feasible for Problem (3.59). According to the scenario theory

[117], the probability measure of this region is  �. Note that the dashed region can be

in both the blue and black portions ofWN . On the other hand, our randomised solution

can fall in this bad set only if h1 > h̄, because if h1  h̄, then we proceed and solve the

scenario version of Problem (3.60). The green dashed region in Fig. 3.21 (b) shows a

new bad set corresponding to the multi-samples that give a solution that satisfies h1  h̄,

but is not feasible for Problem (3.60). According to [102] & [117], this bad set has also a

probability � at most. In any case, when we solve the scenario version of the cascade of

Problems (3.59) & (3.60), the bad set, where either h1 > h̄ and the solution is not feasible

for Problem (3.59) or h1  h̄ and the solution is not feasible for Problem (3.60), is at most
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Figure 3.21: Interpretation of the scenario theorem applied to scheme 3.

the union of the blue (say ‘A’) and green (say ‘B’) dashed regions; then, we have

P(A[ B)  P(A) + P(B)  2�.

i.e. the solution is feasible with confidence at least 1 � 2�.

⇤

3.C State space model of the water level in Lake Mulwala

A discrete time state space model of the water level in Lake Mulwala (yLM ), obtained

from the procedure described in Section 3.3.1, using the model in Eq. 3.65, is given below.



3.C State space model of the water level in Lake Mulwala 147

The model has ns = 21 states with the step size of 8 hours.

xn+1 =

2666666666666666666666664

1 cH 01⇥8 cB 01⇥8 cP 0

08⇥1 08⇥1 I8⇥8 08⇥1 08⇥8 08⇥1 08⇥1

0 0 01⇥8 0 01⇥8 0 0

08⇥1 08⇥1 08⇥8 08⇥1 I8⇥8 08⇥1 08⇥1

0 0 01⇥8 0 01⇥8 0 0

0 0 01⇥8 0 01⇥8 0 1

0 0 01⇥8 0 01⇥8 0 0

3777777777777777777777775

xn

+

2666666666666666666666664

0 0 0 cDYW cYMC cMC

08⇥1 08⇥1 08⇥1 08⇥1 08⇥1 08⇥1

1 0 0 0 0 0

08⇥1 08⇥1 08⇥1 08⇥1 08⇥1 08⇥1

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

3777777777777777777777775

2666666666666666666664

QH

QB

QP

QDYW

QYMC

QMC

3777777777777777777775

,

xn+1 = Axn + Bun ,

where the B matrix can be partitioned into regulated and unregulated parts, correspond-

ing to regulated and unregulated flows as,

xn+1 = Axn + BCuC,n + BUuU,n ,

where BC corresponds to flows at Heywoods and BU corresponds to the rest unregulated

flows, i.e.

(3.70)BC =

2666666666666666666666664

0

08⇥1

1

08⇥1

0

0

0

3777777777777777777777775

, BU =

2666666666666666666666664

0 0 cDYW cYMC cMC

08⇥1 08⇥1 08⇥1 08⇥1 08⇥1

0 0 0 0 0

08⇥1 08⇥1 08⇥1 08⇥1 08⇥1

1 0 0 0 0

0 0 0 0 0

0 1 0 0 0.

3777777777777777777777775
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The output (water level in Lake Mulwala) equation is given below,

yLM,n =

1 01⇥20

�
xn .

The elements in the matrices in the above equations are either scalars or matrices (di-

mensions are provided in the subscripts), where cH = 6.20 ⇥ 10�7, cB = 9.63 ⇥ 10�7,

cP = 5.89 ⇥ 10�7, cDYW = �6.13 ⇥ 10�7, cYMC = �9.73 ⇥ 10�7 and cMC = �6.67 ⇥ 10�7.



Chapter 4

A Randomised Approach to Multiple
Chance-Constrained Problems

To effectively control a system, the system’s physical and operational constraints are very

important, and they must be taken into account, e.g. in a control optimisation problem.

However, in some systems, a hard constraint is not advisable, as it might not only de-

grade the performance of the solution, but it can also cause infeasibility of the optimisa-

tion problem.

We dealt with a similar problem in Chapter 3, where we developed a Stochastic MPC

based control strategy for rivers with probabilistic constraints on water level and feed-

back based control policies to avoid infeasibilities. We selected such a strategy because

the system disturbances, which are composed of unregulated in- and out-flows, cannot

be bounded in a sensible way, and they mostly act additively on the water level. Depend-

ing on a system’s requirements, these probabilistic constraints (or chance-constraints) are

required to be satisfied with a certain probability, and it is possible that a system can

have chance-constraints with different probability of assurance requirements. An opti-

misation problem with such multiple chance-constraints is known as Multiple Chance-

Constrained optimisation Problem (M-CCP) [122], and in this chapter we propose an

algorithm to find approximate solutions to such problems.

As an example, the control Problem (3.55) deals with normal river operations only,

which include keeping flows, water levels and their change within acceptable limits. The

control problem does not take flood avoidance into account, and the flood risk mitigation

should also be done with a higher assurance probability. An additional chance-constraint

in Problem (3.55), related to flood risks mitigation can serve this purpose well.

149
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In general, a system can have two modes of control operations: normal operations

and operations for exceptional situations (e.g. flood avoidance in rivers). The normal

operations are usually carried out always, however, at exceptional situations, we often

give up on them to avoid damage (e.g. minimum flow release from storages when there

is a high flood risk). Such a control problem can be represented as an M-CCP with two

chance-constraints: one related to the normal operations and the other related to risk

mitigation. For risk mitigation, we also need a way to measure the risk. There are several

risk measuring tools available in the literature, we briefly discuss Value-at-Risk (VaR)

and Conditional Value-at-Risk (CVaR) [86] in this chapter, and we use VaR in the control

problem, because it can conveniently describe the second chance-constraint.

As described in Chapter 3, the scenario-based approach (Section 3.2.4, [27, 117]) can

be used to find approximate solutions to chance-constrained problems, and the approach

can also be extended to M-CCPs [122]. However, due to the high probability assurance

requirement of the risk mitigation chance-constraint, it is expected that the scenario ap-

proach will add a very large number of constraints in the optimisation problem, and the

problem can become computationally very expensive.

In this chapter we propose an Optimisation and Testing algorithm that uses the scenario

approach together with ideas borrowed from validation set methods [118, 123–125] to

find approximate solutions to M-CCPs. The algorithm works in three steps: optimisation,

testing and improving. In the optimisation step, the algorithm solves an optimisation prob-

lem with the chance-constraint associated with the normal operations only. In the testing

phase, the algorithm tests the solution against the chance-constraint associated with risk

mitigation, which is computationally very inexpensive. No further optimisation is per-

formed if the test is passed, otherwise, the solution is improved in a computationally

cheap way by solving a one-dimensional scenario problem to satisfy the latter chance-

constraint in the improving phase. The proposed algorithm is non-iterative, it is a com-

putationally effective way to solve M-CCPs, and it is extendible to problems with more

than two chance-constraints. A basic idea of such an extension is also presented towards

the end of this chapter.

The chapter is organised as follows. In Section 4.1 we discuss preliminary concepts
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which are used in this chapter, and then we state the M-CCP with two chance-constraints.

A discussion on some existing ideas to solve M-CCPs are given in Section 4.2. The Optimi-

sation and Testing algorithm to solve such M-CCPs is presented in Section 4.3. The chapter

concludes with an algorithm to extend the optimisation and testing idea to solve M-CCPs

with any finite number of chance-constraints in Section 4.5.

4.1 Preliminary concepts and problem statement

In this section we describe some preliminary concepts and give definitions, which are

later used to define some commonly used risk measures and the Multiple Chance-

Constrained optimisation Problem (M-CCP), that we seek to solve in this chapter.

4.1.1 Loss function and loss distribution

We consider a system S, which is described by the following state space model,

xn+1 = Axn + Bun + wn , (4.1)

yn = Cxn , (4.2)

where x 2 Rns is a state vector, u 2 U ⇢ Rd is a vector of input variables, w 2 W ⇢ Rns

is a vector of uncertain variables, and y 2 Rp is a vector of outputs of the system S. We

assume that the system S has normal control operations and some control operations

related to risk mitigation. Furthermore, we assume the disturbances wn ,wn+1, . . . are in-

dependent and identically distributed.

A loss function g(u,w), related to the risks associated with S, is a function of the input

variables u and the uncertain variables w. The loss function g(u,w) may or may not be the

same as the (loss) objective function related to the normal operations of the system, say

J (u,w). For generality, we consider the loss function g(u,w) to be different from J (u,w) in

this work. Furthermore, we intend to keep the loss function g(u,w) in the constraints of

the control optimisation problem, because we want to be concerned about it only when

a risk related to S appears. We do not want to degrade the control performance by in-
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corporating g(u,w) alongside the objective function of the optimisation problem (J (u,w)),

and being overly cautious about risks all the time.

We assume the uncertainty wn is governed by a probability measure PW on the set W ,

and the distribution  (u, ⇣ ), corresponding to the loss function g(u,w), can be described

as

 (u, ⇣ ) = PW {w 2 W |g(u,w)  ⇣ }, 8u 2 U, (4.3)

where ⇣ quantifies loss.  (u, ⇣ ) is described as the loss distribution, as it gives the proba-

bility that the loss g(u,w) is less than or equal to ⇣ .

4.1.2 Risk measures

There are various risk measures available in the literature. In this work we discuss Value-

at-Risk (VaR) and Conditional Value-at-Risk (CVaR), as they can be easily incorporated in

an optimisation problem. Especially, VaR suits our intended M-CCP framework, because

it can be incorporated as a chance-constraint. VaR and CVaR are the commonly used risk

measures in banking and finance, e.g. see [86, 126] and the references there-in.

Value-at-Risk (VaR)

↵-VaR (⇣↵ (u)) is the ↵th percentile of a loss distribution, where ↵ 2 (0,1). It is the smallest

value, say ⇣ ⇤, such that the loss exceeds ⇣ ⇤ with a probability at most 1 � ↵. ↵-VaR can be

expressed as [86],

⇣↵ (u) = min{⇣ | (u, ⇣ ) � ↵}, (4.4)

corresponding to the decision u, where  (u, ⇣ ) is a loss distribution defined in Eq. 4.3.

Fig. 4.1 shows ↵-VaRs corresponding to the two distribution curves shown in red and

blue. ↵-VaR corresponding to the red curve is smaller than the one corresponding to the

blue curve. The distribution curves shown in Fig. 4.1 are both continuous and strictly

increasing. In such cases VaR can be conveniently and uniquely determined by solving

the following expression for ⇣

 (u, ⇣ ) = ↵. (4.5)
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Figure 4.1: An example of loss distribution function.

However, when a probability distribution is non-continuous, e.g. an empirical distribu-

tion derived from operational data, then it can have jumps and constant segments. In

such cases, we do not expect Eq. 4.5 to have a (unique) solution. Moreover, the con-

vexity of Eq. 4.4, with respect to u, is not guaranteed in general, and it can have many

extremums, especially, for discrete loss-distributions [86]. However, VaR can be incor-

porated in a problem as a chance-constraint, e.g. consider the following constraint on

↵-VaR,

⇣↵ (u)  �, (4.6)

where � is a user chosen loss value corresponding to the user chosen ↵ 2 (0,1), � should

be selected carefully, and it should not be too conservative to affect the system during

normal operations. We can reformulate the above VaR constraint as the following chance-

constraint

PW {w 2 W : g(u,w)  �} � ↵. (4.7)

Eq. 4.7 is a chance-constraint, and it can be added to a chance-constrained optimisation

problem to form an M-CCP, for which we seek approximate solutions in this chapter.
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Figure 4.2: An example of a probability density function of loss for a given decision.

Conditional Value-at-Risk (CVaR)

↵-CVaR (�↵ (u)) is the expected value of the ↵-tail distribution of a loss function g(u,w)

[86]. The ↵-tail distribution is given by

 ↵ (u, ⇣ ) =

8
>>><
>>>:

0 8⇣ < ⇣↵ (u),

 (u, ⇣ ) � ↵
1 � ↵ 8⇣ � ⇣↵ (u),

(4.8)

for a loss distribution  (u, ⇣ ) (Eq. 4.3). It is also described as the mean loss beyond ↵-VaR.

Fig. 4.2 shows an example of a loss Probability Density Function (PDF), with ↵-VaRs and

↵-CVaRs corresponding to two regions with high losses. The portions in the figure with

blue circles and red squares are the regions with high losses, and the losses occur with

probability 0.15 and 0.05 respectively. ⇣1 and ⇣2 are the VaRs with ↵1 = 0.85 and ↵2 = 0.95

corresponding to the portions with blue circles and red squares, and ↵1-CVaR and ↵2-

CVaR are the mean losses in those regions.

In addition to CVaR, the functions “upper CVaR” (CVaR+) and “lower CVaR”

(CVaR�) [86] can be defined as,

↵-CVaR+ = �+
↵ (u) = E{g(u,w) |g(u,w) > ⇣↵ (u)},

↵-CVaR� = ��↵ (u) = E{g(u,w) |g(u,w) � ⇣↵ (u)}.

In parallel to the definition of ↵-CVaR with reference to Eq. 4.8, we can define ↵-CVaR+
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Figure 4.3: A non-continuous loss distribution function and its normalised tails.

and ↵-CVaR� as the mean of the following two tail distributions respectively

 +
↵ (u, ⇣ ) =

8
>>>><
>>>>:

0 8⇣ < ⇣↵ (u),

 (u, ⇣ ) � ↵+(u)
1 � ↵+(u)

8⇣ � ⇣↵ (u),

 �
↵ (u, ⇣ ) =

8
>>>><
>>>>:

0 8⇣ < ⇣↵ (u),

 (u, ⇣ ) � ↵� (u)
1 � ↵� (u)

8⇣ � ⇣↵ (u),

where ↵+(u) =  (u, ⇣↵ (u)) = PW {w 2 W |g(u,w)  ⇣ } and ↵� (u) =  (u, ⇣↵ (u)�) = PW {w 2
W |g(u,w) < ⇣ } define the upper and lower ends of a discrete step in the loss distribution,

for more details, see [86]. Fig. 4.3 shows a non-continuous loss distribution  (u, ⇣ ) and

its tails corresponding to CVaR, CVaR+ and CVaR� . Moreover, VaR  CVaR�  CVaR 
CVaR+ [86].
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Discussion

CVaR is convex with respect to u, provided the loss function g(u,w) is convex with respect

to u [86]. Moreover, CVaR accounts for losses that correspond to VaR and the losses

exceeding VaR. On the other hand, VaR does not take into account the losses exceeding

it.

However, system operators are concerned about events with high risks, and in many

applications, the loss functions are selected in such a way that the losses associated with

such events usually correspond to high ↵th percentiles of the loss distributions, e.g. ↵ =

0.999. In such cases, having a constraint on the high ↵th percentile, or having a constraint

on the mean losses beyond that ↵th percentile is almost similar, except for a rare case

when there is a high probability atom sitting beyond the ↵th percentile. This is because

once a risk threshold is crossed, there is very little that can be done to avoid its effects,

e.g. once a certain flood limit is reached in a river, the damage is done. Therefore, we

use VaR as a risk indicator in this thesis. Also, VaR can be easily accommodated in the

intended M-CCP formulation, as described earlier.

4.1.3 Stochastic MPC based optimisation problem

In this section we state the type of optimisation problem (a Multiple Chance-Constrained

optimisation Problem (M-CCP)) that we intend to solve in a receding horizon fashion in

a Stochastic MPC setting.

The states representation of the system S (Eqs. 4.1 & 4.2) over a finite horizon M is

given below (for details, see Section 3.2.1),

(4.9)x = Fxn + Gu + Hw,

with

F =

26666666666664

A

A2

...

AM

37777777777775

, G =

26666666666664

B 0 . . . 0

AB B . . . 0
...

...
. . .

...

AM�1B AM�2B . . . B

37777777777775

, H =

26666666666664

I 0 . . . 0

A I . . . 0
...

...
. . .

...

AM�1 AM�2 . . . I

37777777777775

,
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where x =

xn+1 xn+2 . . . xn+M

�|
, u =


un un+1 . . . un+M�1

�|
, w =


wn wn+1 . . . wn+M�1

�|
, and w 2 W = W M . For notational simplicity, we do not

write time indices with these vectors in this chapter. Furthermore, as mentioned earlier,

we assume the disturbances wn ,wn+1, . . . are independent and identically distributed.

Next, we first introduce the two chance-constraints, i.e. the one related to normal op-

erations and the other related to risk mitigation, and then we present the M-CCP problem

that we aim to solve.

Chance-constraint related to normal operations: We consider that the following chance-

constraint is related to the normal control operations of the system S,

P{w 2W : u 2 U \ f (u,w)  0} � 1 � ✏ , (4.10)

where P = PM
W , U = UM and f (u,w) denotes the infinity norm on a vector of functions

(f(u,w)) defined over the finite time horizon M , i.e. f (u,w) = kf(u,w)k1, where f(u,w)

is given by,

f(u,w) = [ fn (un ,wn ) � �n fn+1(un+1,wn+1) � �n+1 . . .

. . . fn+M�1(un+M�1,wn+M�1) � �n+M�1]|, (4.11)

�i is an upper limit on a function f i (ui ,wi ) (related to the normal control operations,

which depends on the input variables ui and uncertain variables wi), i.e. ‘ f i (ui ,wi ) � �i 
0’ or ‘ f i (ui ,wi )  �i ’, where i = n,n + 1, . . . ,n + M � 1, and i denotes the time index over

the finite horizon M . Therefore, f (u,w) is the maximum deviation of the function f (u,w)

from its limits over the finite horizon. ✏ 2 (0,1) in Eq. 4.10 is the allowed violation

probability.

Chance-constraint related to risk mitigation: We consider that the following chance-

constraint is related to the risk mitigation operations of the system S,

P{w 2W : g(u,w)  0} � 1 � ✏V , (4.12)

where g(u,w) denotes the infinity norm on a vector of functions (g(u,w)) defined over
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the finite time horizon M , i.e. g(u,w) = kg(u,w)k1, where g(u,w) is given by,

g(u,w) = [gn (un ,wn ) � �n gn+1(un+1,wn+1) � �n+1 . . .

. . . gn+M�1(un+M�1,wn+M�1) � �n+M�1]|, (4.13)

g(u, x) is the loss function associated with system risks (see Section 4.1.1), �i is an upper

limit on the function gi (ui ,wi ) (see Eq. 4.7), i.e. ‘gi (ui ,wi ) � �i  0’ or ‘gi (ui ,wi )  �i ’,

where i = n,n + 1, . . . ,n + M � 1. Therefore, g(u,w) is the maximum deviation of the

function g(u,w) from its limits over the finite horizon M . ✏V 2 (0,1) in Eq. 4.12 is the

allowed violation probability, where 1 � ✏V = ↵ (from Eq. 4.7). We replaced ↵ with 1 � ✏V
in Eq. 4.7 to maintain notational consistency between the two chance-constraints (Eqs.

4.10 & 4.12). Also, based on the priority given to the satisfaction of the risk mitigation

operations, we assume ✏V ⌧ ✏ .

To state the optimisation problem for Stochastic MPC, we use Eq. 3.52 as the objective

function J (u,w) of the normal control operations, which includes deviation of states x

from a reference xr , inputs u and change in the inputs. Eq. 3.52 and the constraints in

Eqs. 4.10 & 4.12 form the following M-CCP, which can be solved in a Stochastic MPC

setting,

min.
�,⇥

J (u,w), (4.14)

s.t. P{w 2W : u(w) 2 U \ f (u,w)  0} � 1 � ✏ ,
P{w 2W : g(u,w)  0} � 1 � ✏V ,

subject to the states dynamics, x in Eq. 4.9, and the parametrisation of control policies u

in w, e.g. an affine parametrisation in w, as stated ahead in Eq. 4.15. We intend to in-

corporate the states dynamics in the objective function J (u,w) (e.g. see Eqs. 3.52 & 3.53).

Problem (4.14) is an M-CCP with two chance-constraints, and we make the following

assumptions related to this problem,

• U and W are convex sets1.
1A set X is said to be convex, if for all x1, x2 2 X and ↵ 2 [0,1], then the point ↵x1 + (1 � ↵)x2 also belongs

to X.
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• The functions f (u,w), g(u,w) and J (u,w) are convex2 with respect to u, where u

is assumed to be a vector of control policies parametrised in w, and we use the

following affine parametrisation of the control policies (as in Eq. 3.16),

u = ⇥w + �, (4.15)

where ⇥ and � are the parameter matrices (for details see Section 3.2.2), and they

are the optimisation variables of Problem (4.14). In this chapter, we denote the

solutions of problems, derived from Problem (4.14), as e.g. u⇤ and ū⇤, which will be

the values of the vector u, obtained from Eq. 4.15 using different ⇥ and � matrices.

We also assumed that the first chance-constraint of Problem (4.14) is associated with

normal control operations and the second chance-constraint is associated with risk mit-

igation. However, this categorisation into normal operations and risk mitigation is not

necessary. The proposed algorithm in this chapter is valid for solving any M-CCP with

two chance-constraints with the allowed violation probabilities satisfying ✏V < ✏ , how-

ever, it is developed specifically for the case ✏V ⌧ ✏ . The proposed algorithm is also

generalisable to an M-CCP with any finite number of chance constraints, which will be

discussed in Section 4.5.

4.2 Randomised approaches to solve an M-CCP with two
chance-constraints

In this section we first discuss some alternative ways, available in the literature, to find

an approximate solution to Problem (4.14), and then we present an intuitive idea behind

the proposed Optimisation and Testing algorithm to solve the problem. The algorithm is

formally presented in the next section.

4.2.1 Some possible ways to solve Problem (4.14)

There are several randomised ways to solve Problem (4.14),
2A function f : X ! R is a convex function, if for all x1, x2 2 X and ↵ 2 [0,1], then f (↵x1 + (1 � ↵)x2) 

↵ f (x1) + (1 � ↵) f (x2).
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• A feasible solution to a chance-constrained problem can be found by resorting to the

scenario approach, see Section 3.2.4. A naive application of the scenario approach

to the multiple chance-constrained Problem (4.14) is to set ✏ = ✏V . However, the

small value of ✏V ⌧ ✏ , would require a very large number of constraints in the

scenario problem according to Eq. 3.24. The computational effort is therefore large,

and thus this is not a viable option in general.

• There are some recent results on the scenario approach presented in [122], that tar-

get specifically multiple chance-constrained problems. The results in [122] suggests

to apply the scenario approach individually to each chance-constraint. Those re-

sults improve on the naive approach only if the chance-constraints are sufficiently

decoupled, i.e. each chance-constraint involves different decision variables. How-

ever, still a small value of ✏V in the second chance-constraint would lead to a large

computational effort in solving the corresponding scenario problem.

• In [127], we proposed an iterative optimisation and testing algorithm to find ap-

proximate solutions to M-CCPs. The algorithm uses the scenario approach together

with ideas borrowed from validation set methods [118, 123–125] to provide com-

putationally tractable solutions to M-CCPs. It performs an optimisation with the

chance-constraint corresponding to normal operations only, and then test the solu-

tion against the risk mitigation chance-constraint. The test decides whether an im-

provement is required or not. However, the selection of certain parameters in the

improving phase, including the number of iterations are based on heuristics. More-

over, the satisfaction of the required probabilistic guarantees can demand many

iterations, which can be computationally expensive.

In this chapter we propose an improved non-iterative Optimisation and Testing algorithm,

and remove the drawbacks in our previous proposal [127]. The algorithm provides a

solution, if it exists, in a fixed and finite number of steps with rigorous probabilistic guar-

antees. The algorithm is formally described in the next section. In the next subsection, we

provide the basic idea. However, before that, we first introduce the concept of a default

solution which is used in the algorithm.
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Default solution

A default solution refers to a possible solution which can be used, e.g. when a given or

found solution does not satisfy the required constraints. The default solution does not

necessarily has to be an outcome of an optimisation problem. It can possibly belong to a

set larger than U (in Problem (4.14)), e.g. it can belong to a set U 0, where U ✓ U 0. The

idea is to have a backup solution, which in terms of objective criterion may give a poor

performance, but is the safest option when the situations takes a turn for the worse. E.g.

in case of river flooding, the solution might refer to shutting or opening the storage gates

completely. This is how river operators proceed when necessary. Different application

will have different types of default solution. We assume that such a solution exists, and

denote it as u⇤
0 .

4.2.2 Intuitive description of the Optimisation and Testing algorithm

The Optimisation and Testing algorithm has three main steps,

1. Optimisation: We first solve an optimisation problem with only the first chance-

constraint (the chance-constraint related to normal operations) in Problem (4.14),

i.e.

min.
�,⇥

J (u,w), (4.16)

s.t. P{w 2W : u(w) 2 U \ f (u,w)  0} � 1 � ✏ .

To find an approximate solution of Problem (4.16), we employ the scenario ap-

proach (Theorem 3.1). We generate Nr independent realisations of the disturbance

w, according to a given probability distribution (Eq. 3.24), and replace Problem

(4.16) with the following scenario problem,

min.
�,⇥

J (u,w), (4.17)

s.t. u(w(k ) ) 2 U , f (u,w(k ) )  0,

for k =1, . . . ,Nr .
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We solve Problem (4.17) and find a scenario solution, say u⇤.

2. Testing: In the second step, we test the solution u⇤ of Problem (4.17) against the sec-

ond chance-constraint (the chance-constraint related to risk mitigation) in Problem

(4.14), by resorting to a Monte-Carlo sample of NT new scenarios. This is com-

putationally cheap since no optimisation is performed. If the number of scenarios

violating the constraint is below a selected threshold, we use the solution (u⇤) and

provide a certificate with a probabilistic guarantee that the solution satisfies both

chance-constraints. Otherwise, we improve the obtained solution.

3. Improving: If the scenario solution u⇤ fails the aforementioned test, we test the

default solution (u⇤
0 2 U 0), against the second chance-constraint for the same NT

scenarios. If the violations are less than the selected threshold, then we solve a one-

dimensional scenario problem, and improve feasibility of the scenario solution u⇤,

by moving it in the direction of the default solution u⇤
0 along the line (1 � ↵)u⇤ +

↵u⇤
0 , where ↵ 2 (0,1]. In the scenario problem, we minimise the value of ↵, and

consider the scenarios w 2 W that violate the risk-mitigation (second) constraint

with u⇤ to ensure improvement, but satisfy the constraint with u⇤
0 to ensure the

feasibility of the scenario problem. Moreover, we relax the constraint on the control

action u in the improvement phase. However, if the default solution fails the test

against the second chance-constraint, then we exit the algorithm and inform system

operators, which initiates emergency operations. E.g. for rivers, flood operations

can be pursued at such an occasion. The emergency operations are outside the

scope of this thesis.

Nr and NT are computed in such a way that the solution obtained from the algo-

rithm comes with precise probabilistic guarantees. In particular, if the algorithm success-

fully ends after the testing procedure, a certificate is delivered that states that both the

chance-constraints in Problem (4.14) are satisfied with high confidence. Otherwise, the

first chance-constraint (of Problem (4.14)) can be tested with the improved solution, and

depending on that, a certificate with the satisfaction of both chance-constraints or a cer-

tificate guaranteeing only the second chance-constraint is delivered. Fig. 4.4 summarises
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Figure 4.4: Optimisation and Testing algorithm (basic idea).

the idea of the algorithm with an emphasis on the computational advantages that it pro-

vides in comparison to the alternative approaches mentioned above.

4.3 Optimisation and Testing algorithm to solve an M-CCP with
2 chance-constraints

In this section we provide technical explanation of various steps in the algorithm and

state auxiliary procedures and terms, which we later use to formally state the Optimisation

and Testing algorithm.

4.3.1 Auxiliary terms and procedures

For each procedure, we describe the need and the background of that procedure, before

formally stating it in italics.

1. Number of Scenarios (Nr ) required to find an approximate solution of a chance-

constrained (CC) problem; Find N CC(✏ , �,d):

We use the scenario approach (Section 3.2.4) to get an approximate solution of a

chance-constrained problem. This procedure is defined to find the number of sce-

narios Nr required in the scenario problem, whose solution will be feasible for the
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original chance-constrained problem with a confidence 1 � �, where � 2 (0,1) is a

confidence parameter.

The procedure Find N CC(✏ , �,d) takes in the desired violation probability ✏ 2 (0,1) (of the

chance-constraint), the desired confidence parameter � 2 (0,1) and the number of decision

variables d, and uses Eq. 3.24 to find the required minimum number of scenarios Nr for the

scenario problem.

In practice, Find N CC(✏ , �,d) can be computed easily, see e.g. the bisection algo-

rithms in [128, 129].

2. Number of Scenarios (NT ) required to test a solution against a chance-constraint

that must be satisfied with probability 1 � ✏V ; Find N Test(✏V , %, �V ):

As mentioned in Section 4.2.2, we find a scenario solution, u⇤, to Problem (4.17),

and then we test the solution against the second chance-constraint (the chance-

constraint related to risk mitigation) in Problem (4.14). Here, we first describe the

background of the testing procedure, then present a mechanism to determine num-

ber of scenarios NT required for testing, and then state the procedure formally

Background of the testing procedure:

We test the solution u⇤ against the chance-constraint ‘P{w 2 W : g(u⇤,w)  0} �
1 � ✏V ’ in a randomised way, by doing NT Bernoulli trials. In a Bernoulli trial,

we evaluate the constraint ‘g(u⇤,w(k ) )  0’ with an independently drawn realisa-

tion w(k ) 2 W. If the constraint is violated, the corresponding Bernoulli random

variable, say Bk , takes the value equal to 1, and if the constraint is satisfied, the

corresponding Bk takes the value equal to 0, i.e.

Bk = 1{g(u⇤,w(k ) ) > 0}, for k = 1,2, . . . ,NT ,

where 1{·} denotes the indicator function. The probability (p) of the variable Bk to

be 1 is: P(Bk = 1) = P{w(k ) 2 W : g(u⇤,w(k ) ) > 0}, i.e., it is equal to the violation

probability of the constraint ‘g(u⇤,w)  0’ for a realisation of w 2W, which is what

we want to estimate. An empirical estimate of the required violation probability,
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say p̂, can be obtained as,

p̂ =
1

NT

NTX

k=1

Bk =
1

NT

NTX

k=1

1{g(u⇤,w(k ) ) > 0}. (4.18)

Eq. 4.18 states p̂ as the fraction of the drawn realisations of w 2 W, that violate

the constraint ‘g(u⇤,w)  0’. After calculating p̂, we compare it with the allowed

violation probability ✏V . We declare the test to be passed and the chance-constraint

to be satisfied, if p̂  ✏V � %, where % 2 (0, ✏V ) is a safety margin (e.g. % = 1
2 ✏V ).

Note that the total number of violations, say v, in NT Bernoulli trials is a Binomial

random variable. We denote the random variable as V , and the probability of V = v

is

P(V = v,p) =
 
NT

v

!
pv (1 � p)NT �v , (4.19)

where the above probability is a function of the actual (unknown) violation proba-

bility p.

How to determine number of scenarios NT :

For the testing procedure described above, we need a mechanism to find the number

NT and to provide probabilistic guarantees on the test, and for that we proceed as

follows. We bound the probability of passing the test (i.e. p̂  ✏V � %), when the

actual probability p > ✏V , by a user chosen confidence parameter �V 2 (0,1), i.e.

P(p̂  ✏V � %|p > ✏V )  �V , (4.20)

where �V should be ideally very small (e.g. 10�6), and P is a measure on the set

W to which w belongs. The expression P(p̂  ✏V � %) can be obtained by using the

Binomial Cumulative Distribution Function (Binom-CDF), because it is equivalent

to check the cumulative probability of the Binomial random variable, V = NT p̂, to

stay below the required number of violations, NT (✏V � %). For a given p = µ, we get
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the following expression from the definition of Binom-CDF,

P(p̂  ✏V � %|p = µ) =
bNT (✏V �%)cX

i=0

 
NT

i

!
µi (1 � µ)NT �i , (4.21)

i.e. we add the probabilities of all Binomial random variables (Eq. 4.19) with viola-

tions less than or equal to NT (✏V � %), and we can further say

P(p̂  ✏V � %|p = µ > ✏V )  sup
µ>✏V

bNT (✏V �%)cX

i=0

 
NT

i

!
µi (1 � µ)NT �i ,

=

bNT (✏V �%)cX

i=0

 
NT

i

!
✏ iV (1 � ✏V )NT �i .

The last equality holds true because the expression on the right hand side of the

equation is monotonically decreasing with respect to µ, and µ = ✏V provides the

supremum. As stated earlier, we want to bound this expression by �V (Eq. 4.20) i.e.

P(p̂  ✏V � %|p > ✏V ) 
bNT (✏V �%)cX

i=0

 
NT

i

!
✏ iV (1 � ✏V )NT �i  �V . (4.22)

We use the above expression to find the minimum number of scenarios NT required

to test the second chance-constraint in Problem (4.14), which can be violated with

probability at most ✏V � %, with confidence at least 1 � �V , i.e.

min{NT 2 N :
bNT (✏V �%)cX

i=0

 
NT

i

!
✏ iV (1 � ✏V )NT �i  �V }, (4.23)

where N is a set of natural numbers.

The procedure Find N Test(✏V , %, �V ) takes in the allowed violation probability ✏V 2
(0,1), a suitable additive margin % 2 (0, ✏V ) and the desired confidence parameter �V 2
(0,1), and uses Eq. 4.23 to provide the minimum number of scenarios NT , required to test

a chance-constraint, based on the selected parameters, in a randomised way.

The above results are also concluded in the following theorem,

Theorem 4.1. The number of scenarios (NT ) of the uncertain variable w 2 W required
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to certify the validity of a w-dependent constraint, that can be violated with probability at

most ✏V 2 (0,1), with confidence 1 � �V , can be determined by the following expression

min{NT 2 N :
bNT (✏V �%)cX

i=0

 
NT

i

!
✏ iV (1 � ✏V )NT �i  �V }, (4.24)

where �V 2 (0,1) is a confidence parameter, % < ✏V is a safety margin and N is a set of

natural numbers.

3. Upper bound ( ˆ̄✏) on a violation probability p, based on its estimate p̂; Up-

per Bound(p̂, � ˆ̄✏ ,NT ):

In the proposed algorithm (in Section 4.3.2), we need to calculate upper bounds on

violation probabilities (e.g. p in the previous procedure). Here, we first provide

the background and a technical discussion that will lead to this requirement, before

describing a procedure to calculate an upper bound and stating it formally.

Background:

If the solution, u⇤, of Problem (4.17) does not satisfy the second chance-

constraint in Problem (4.14), based on the test described in the previous proce-

dure (Find N Test(✏V , %, �V )), then we test the default solution, u⇤
0 , against the second

chance-constraint, by using the procedure Find N Test(✏V , %, �V ). Let p̂0 denote the

empirical estimate of the violation probability of u⇤
0 (similar to Eq. 4.18),

p̂0 =
1

NT

NTX

k=1

1{g(u⇤
0 ,w

(k ) ) > 0}, (4.25)

If p̂0  ✏V � %, i.e. the above mentioned test passes, and the default solution satisfies

the second chance-constraint, then we improve the feasibility of the scenario solu-

tion u⇤, by solving a one-dimensional scenario problem. In the scenario problem,

we move u⇤ in the direction of the default solution, u⇤
0 , along the line (1� ↵)u⇤ +↵u⇤

0 ,

while minimising the value of ↵, as follows,

min.
↵

J (ū,w), (4.26)
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s.t. ū(w(k ) ) 2 U 0, g(ū,w(k ) )  0,

for k = 1,2, . . . ,N↵ , w(k ) 2 T ,

where ↵ 2 (0,1] and ū = (1 � ↵)u⇤ + ↵u⇤
0 . In the above problem we minimise the

value of ↵, because we want to stay as close as possible to the scenario solution u⇤.

If ↵⇤ is a solution of Problem (4.26), then the improved solution is ū⇤ = (1 � ↵⇤)u⇤ +

↵⇤u⇤
0 . Also, note that while improving, we only include the constraint related to risk

mitigation. The set T and the number of scenarios N↵ , used in Problem (4.26), are

discussed next. We define

T = {w 2W | g(u⇤,w) > 0^ g(u⇤
0 ,w)  0} ✓W, (4.27)

which is important for improvement purposes. It contains realisations of w 2 W,

that satisfy the second chance-constraint with u⇤
0 to ensure the feasibility of Problem

(4.26), but does not satisfy the second chance-constraint with u⇤ to ensure improve-

ment. The practice of sampling w from a set of interest (e.g. T ✓ W, with small

probability) bears similarities with ‘importance sampling’ (see e.g. [130]). In our

case it is easy to find such a set, because we generate NT scenarios of w and per-

form tests on the two solutions before solving Problem (4.26), so during the testing

procedure we can construct a set, say Q ✓ T , by saving all such scenarios in that

set.

The number of scenarios N↵ is calculated by calling the procedure

Find N CC(✏↵ , �↵ ,1), where �↵ is a confidence parameter, ideally very small

(e.g. 10�6) and ✏↵ is the allowed (conditional) violation probability for the chance-

constrained problem corresponding to the scenario Problem (4.26). We added the

word ‘conditional’, because ✏↵ is the violation probability, conditioned on the set

T inside W. It is calculated by the following expression,

✏↵ =
✏V � ✏̂0

✏̂T
, (4.28)

where ˆ̄✏0 is an upper bound on the probability of a w 2W realisation to violate the
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the second chance-constraint in Problem (4.14) with u⇤
0 , and ˆ̄✏T is an upper bound

on the probability of a w 2 W realisation to violate the chance-constraint with u⇤

only. We describe a procedure to calculate these upper bounds ahead. Eq. 4.28

is obtained from Theorem 4.2 stated below. Let VS(u⇤
0 ) be the set, VS(u⇤

0 ) = {w 2
W | g(u⇤

0 ,w) > 0}.

Theorem 4.2. If P(T )  ˆ̄✏T and P(VS(u⇤
0 ))  ˆ̄✏0, and if the number of scenarios N↵ for

Problem (4.26) is computed from Find N Scenario(✏↵ , �↵ ,1), with

✏↵  ✏V � ✏̂0

✏̂T
, (4.29)

and the scenarios are sampled from the set T , then the control action ū⇤ = (1 � ↵⇤)u⇤ +

↵⇤u⇤
0 , obtained from the solution of Problem (4.26), violates the constraint ‘g(ū⇤,w)  0’

with a probability, no more than ✏V , with a confidence 1 � �↵ .

A proof of this theorem, with its explanation, is in Appendix 4.A. Eq. 4.29 supports

the fact that the larger the violation bound ✏̂0 of the default solution is, the smaller

will be the allowed violation probability ✏↵ , and in turn it will require a higher

number of scenarios N↵ for Problem (4.26) and vice versa. Similarly, the larger the

violation bound ✏̂T of the scenario solution u⇤ is, the smaller ✏↵ will be, and in

turn it will also require a higher number of scenarios N↵ for Problem (4.26) and vice

versa. Next, we describe a way to find an upper bound on the violation probabilities

discussed here and in the previous procedure.

A procedure to find an upper bound on a violation probability:

An upper bound on a violation probability, e.g. p, can be obtained from the testing

procedure (Find N Test(✏V , %, �V )) as p̂ + %, because there we ensure p̂  ✏V � %with

confidence 1 � �V , where % is a safety margin. This can be conservative at times, es-

pecially, when we have very small probability values, because we will always add

the fixed % (e.g. ✏V /2) to the estimate p̂, to find an upper bound. Such relatively

large upper bounds will give smaller ✏↵ in Eq. 4.28, which will cost more compu-

tational power to solve Problem (4.26). Therefore, we use the following alternative

approach, that uses the estimate p̂ and the number of scenarios used in testing, NT ,
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Violations v Probabilities P(V = v,p) Empirical estimate of p (p̂)

0 P(V = 0,p) =
⇣
NT

0

⌘
p0(1 � p)NT 0

NT

1 P(V = 1,p) =
⇣
NT

1

⌘
p1(1 � p)NT �1 1

NT

2 P(V = 2,p) =
⇣
NT

2

⌘
p2(1 � p)NT �2 2

NT

· · ·
· · ·

NT � 1 P(V = NT � 1,p) =
⇣

NT

NT �1

⌘
pNT �1(1 � p)1 NT �1

NT

NT P(V = NT ,p) =
⇣
NT

NT

⌘
pNT (1 � p)0 NT

NT

Table 4.1: Binomial random variable V with its possible outcomes and probabilities.

and provide an improved upper bound, ˆ̄✏ , compared to p̂ + %, again with the help

of Binomial Cumulative Distribution Function (Binom-CDF).

In the testing procedure, we test the solution, u⇤, against the constraint ‘g(u⇤,w(k ) ) 
0’, for k = 1,2, . . . ,NT . As described in the previous procedure, the number of

violations, v, in the NT Bernoulli trials is a Binomial random variable, V , where

v 2 {0,1,2, . . . ,NT }. The random variable V can pick one of the NT + 1 outcomes

in Table 4.1, and the associated probability, P(V = v,p), is a function of the actual

(unknown) probability of violation, p (Eq. 4.19).

The Binom-CDF can be used to find the upper bound ˆ̄✏ , with the available informa-

tion of the number of violations v, number of Bernoulli trials NT and a user selected

confidence parameter � ˆ̄✏ , which is ideally very small (e.g. 10�6). We define the

Binom-CDF as below (see Table 4.1),

F(
v

NT
,p) = P(p̂  v

NT
,p) =

vX

i=0
P(V = i,p).

The function F( v
NT
,p) is non-increasing with respect to p. It is equal to 1, when p is

equal to 0, for any value of v, and it is equal to 0, when p is equal to 1, for any value

of v except when v = NT , and in that case the function F( v
NT
,p) is equal to 1 for all

values of p. Our requirement is to keep F( v
NT
,p) = P(p̂  v

NT
,p) � � ˆ̄✏ , and we want

to include all values on the p axis in an interval where P(p̂  v
NT
,p) � � ˆ̄✏ , and the

right limit of that interval will provide the upper bound. If we plot the function
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0 1

1

p

Pv
i=0 P(V = i, p)

�✏̂

✏̂

Figure 4.5: A plot of F( v
NT
,p) against p.

F( v
NT
,p) against p (for an example, see the plot in Fig. 4.5), then the value on the

p axis, where the curve intersects � ˆ̄✏ is the required upper bound, ˆ̄✏ , on the actual

violation probability. This is because up till this value on the p axis, the requirement
Pv

i=0 P(V = i,p) � � ˆ̄✏ is satisfied, and the curve
Pv

i=0 P(V = i,p) lies above � ˆ̄✏ up till

this value, as shown in Fig. 4.5.

Therefore, an upper bound ˆ̄✏ can be found by solving the following equation for p,

vX

i=0
P(V = i,p) =

vX

i=0

 
NT

i

!
pi (1 � p)NT �i = � ˆ̄✏ , (4.30)

and then assigning the solution to ˆ̄✏ . The actual probability p will lie in the interval

[0, ˆ̄✏], with confidence 1 � � ˆ̄✏ .

The procedure Upper Bound(p̂, � ˆ̄✏ ,NT ) takes in the violation probability estimate (p̂ =

v/NT ) and the number of scenarios (NT ) used to find p̂. It solves Eq. 4.30 for p and returns

the upper bound ˆ̄✏ on the actual violation probability with confidence 1 � � ˆ̄✏ .

The bound ˆ̄✏ can be found by using Matlab ‘binofit’ function as follows,

[p̂, Interval] = binofit(v,NT ,2� ˆ̄✏ ),

where Interval = [lower bound, ˆ̄✏]. There are two outputs of the Matlab function:

the first output is the estimated probability p̂ = v/NT , and the second output is the
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interval where the actual probability p lies. The interval also provides the lower

bound, but we do not need it for our work. The first two inputs of the function

are the number of violations v and the number of scenarios NT used in the test.

The third input (2� ˆ̄✏) of the function is the user selected probability of the event

where p lies outside the computed interval (Interval). It provides the confidence:

(1 � 2� ˆ̄✏ ) ⇥ 100%, that p lies in the computed interval. The function uses half of the

probability 2� ˆ̄✏ in the calculation of the lower bound and half for the calculation

of the upper bound. Although we are just interested in the upper bound, but to

calculate that bound using the function binofit, we need to put 2� ˆ̄✏ as the third

input, instead of � ˆ̄✏ . The literature provides a method that estimates the exact same

interval as described above, using the Binomial distribution functions, which is

called as Clopper-Pearson (CP) method. For details on the CP method, see [131]

and the references therein.

4. Overall Probability Of Failure (POF):

� is the overall violation probability or the overall POF of the algorithm. It is the

probability of an event when the algorithm delivers a wrong certificate. It is set

prior to the use of algorithm, and it should be kept very low, e.g. 10�8. A wrong

certificate can be issued, e.g. if a scenario solution of a scenario problem in the al-

gorithm is not feasible for its corresponding chance-constrained optimisation prob-

lem, or when a test result is not correct, or when an upper bound obtained from the

Upper Bound(p̂, � ˆ̄✏ ,NT ) procedure is not true.

4.3.2 Optimisation and Testing algorithm

As discussed in Section 4.2.2, the algorithm consists of three major steps, and we name

them A, B & C. For each step, we first prescribe its sub-steps and then we add the details

in remarks.

To begin with, select the margin % 2 (0, ✏V ) (e.g. % = ✏V /2), and the overall POF (�) of

the optimisation algorithm (e.g. � = 10�8).
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Step A (Find a scenario solution u⇤ of Problem (4.16))

1. Use the violation probability ✏ (from Problem (4.16)) and the desired confidence

parameter � = �
7 in the procedure Find N CC(✏ , �,d), to determine the required

number of scenarios Nr for the scenario Problem (4.17), where d is the number of

optimisation variables in Problem (4.17).

2. Find the solution, u⇤, of Problem (4.17).

Remarks:

1. The POF corresponding to this step will be �A = �. It is set to be �
7 , as there are in

total seven � terms in the algorithm.

2. There is a possibility that a few scenarios might lead to infeasibility of the sce-

nario Problem (4.17). In such circumstances, the optimisation schemes introduced

in Chapter 3 (Section 3.5) can be used.

Step B (Test the solution u⇤ against the VaR constraint, and if required, check whether
the solution can be improved)

1. Use the violation probability ✏V (from Problem (4.14)), the desired confidence pa-

rameter �V = �
7 and the margin term % in the procedure Find N Test(✏V , %, �V ), to

determine the required number of scenarios NT for the test ahead.

2. Generate NT scenarios of w 2 W, and compute the following violation probability

estimate,

p̂ =
1

NT

NTX

k=1

1{g(u⇤,w(k ) ) > 0}, (4.31)

where 1(·) denotes the indicator function.

3. Check if p̂  ✏V � %, i.e. whether the test is passed, if yes, then exit the algorithm
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and forward the following solution,

8
>>>>>>>><
>>>>>>>>:

u⇤

with a certificate: “P{w 2W : u⇤ 2 U \ f (u⇤,w)  0} � 1 � ✏ ,
P{wU 2W : g(u⇤,w)  0} � 1 � ✏V .”

Otherwise, test the validity of the default solution u⇤
0 2 U 0 (see Section 4.2.1) against

the constraint ‘g(u⇤
0 ,w

(k ) )  0’, for k = 1,2, . . . ,NT , by computing the following

violation probability estimate,

p̂0 =
1

NT

NTX

k=1

1{g(u⇤
0 ,w

(k ) ) > 0}. (4.32)

If the test passes, i.e. p̂0  ✏V � %, then proceed to the next step. Otherwise, exit the

algorithm and inform the system operators.

4. Save, in a set Q, the w-scenarios which violate the constraint ‘g(u,w)  0’ with u⇤,

but satisfy the constraint with u⇤
0 , i.e. Q = {w(k ) |g(u⇤,w(k ) ) > 0^ g(u⇤

0 ,w
(k ) )  0} for

k = 1,2, . . . ,NT .

5. Compute the following probability estimate,

p̂T =
|Q|
NT
, (4.33)

where |Q| is the cardinality of the set Q.

6. Calculate the upper bounds ˆ̄✏T and ˆ̄✏0 on the violation probabilities pT and p0

using the estimates p̂T and p̂0, i.e. ˆ̄✏T = Upper Bound(p̂T ,�/7,NT ) and ˆ̄✏0 = Up-

per Bound(p̂0,�/7,NT ).

Remarks:

1. The POF of this step corresponding to the two tests and two upper bounds will be

�B =
4
7�.
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2. The set Q, in Step B-4, will be used in the next step. It is a subset of the set T = {w 2
W | g(u⇤,w) > 0^ g(u⇤

0 ,w)  0} (for details, see Eq. 4.27, and its explanation).

3. The probability estimate p̂T , in Step B-5, is the fraction of the NT drawn w-samples,

which violates the constraint, ‘g(u,w(k ) )  0’ with u = u⇤, but satisfy with u = u⇤
0 .

4. The upper bounds in Step B-6 ensure that P(pT < ˆ̄✏T ) � 1 � �/7 and P(p0 < ˆ̄✏0) �
1 � �/7, and they will also be used in the next step.

5. If the algorithm exits in Step B-3, then the control can be shifted to an emergency

operation depending on the given application.

Step C (Improve the solution u⇤ in the direction of u⇤
0 [125])

1. Use Eq. 4.34 to calculate the allowed (conditional) violation probability, ✏↵3, for the

chance-constrained problem corresponding to the one-dimensional scenario Prob-

lem (4.26), that improves the solution u⇤ in the direction of u⇤
0 .

✏↵ =
✏V � ✏̂0

✏̂T
. (4.34)

(Eq. 4.34 is obtained from Theorem 4.2, stated in Section 4.3.1).

2. Use the violation probability ✏↵ and the desired confidence parameter �↵ =
�
7 in

the procedure Find N CC(✏↵ , �↵ ,1) to determine the required number (N↵) of sce-

narios, w 2 Q, for the scenario Problem (4.26).

3. If N↵ > |Q|, then generate N↵ � |Q| realisations of w 2 W, such that the constraint

g(u⇤,w)  0 is violated, but g(u⇤
0 ,w)  0 is satisfied. Include the newly generated

realisations of w in Q.

4. Define a variable ↵ 2 (0,1] (the optimisation variable of Problem (4.26)), and

consider a straight line that connects the two solutions: u⇤ and u⇤
0 , i.e. ū =

3✏↵ is the allowed violation probability, conditioned on a set inside W, where each w violates g(u⇤ ,w) 
0, but satisfies g(u⇤

0 ,w)  0.
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(1 � ↵)u⇤ + ↵u⇤
0 . Solve Problem (4.26) by replacing T with Q, and save the solu-

tion in ↵⇤.

5. Calculate the improved solution as ū⇤ = (1 � ↵⇤)u⇤ + ↵⇤u⇤
0 .

(Next, check the validity of the solution ū⇤ against the first chance-constraint of

Problem (4.14), as it was not included in the scenario Problem (4.26) while improv-

ing, and provide the final certificate on the solution).

6. Use the violation probability ✏ (from Problem (4.14)), the desired confidence param-

eter � = �
7 and the margin term % in the procedure Find N Test(✏ , %, �), to determine

the required number of scenarios NI for the test ahead.

7. Generate NI scenarios of w 2 W, and compute the following violation probability

estimate,

p̂I =
1

NI

NIX

k=1

1{ f (ū⇤,w(k ) ) > 0}. (4.35)

8. Check if p̂I  ✏ � %, i.e. whether the test is passed, if yes, then exit the algorithm

and forward the following solution,

8
>>>>>>>><
>>>>>>>>:

ū⇤

with a certificate: “P{w 2W : ū⇤ 2 U 0 \ f (ū⇤,w)  0} � 1 � ✏ ,
P{w 2W : g(ū⇤,w)  0} � 1 � ✏V ,”

otherwise, exit the algorithm with the following solution,

8
>>>><
>>>>:

ū⇤

with a certificate: “P{w 2W : ū⇤ 2 U 0 \ g(ū⇤,w)  0} � 1 � ✏V .”

Remarks:

1. The POF of this step corresponding to the scenario problem and the test will be

�C =
2
7�.
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Find u⇤
POF = �

A

C

Improve u⇤
POF = �↵

POF = �A = �

POF = �C = �↵ + �

Overall POF � = �A + �B + �C

Test ū⇤
POF = �

B

Test u⇤
POF = �T

Test u⇤
0

POF = �T

Pass

Fail

Forward u⇤

Compute ✏̂0
POF = �✏̂0

Compute ✏̂T
POF = �✏̂T

Generate warning,
notify operators

POF = �B = �T + �T + �✏̂0
+ �✏̂T

Fail
Pass

Figure 4.6: Optimisation and Testing algorithm.

2. We use Eq. 4.34 to find the allowed violation probability ✏↵ for the chance-

constrained problem, corresponding to the one-dimensional scenario Problem

(4.26). In a rare occasion, it might happen that ✏↵ comes out to be very small, which

will correspond to a very large number of scenarios N↵ , based on Eq. 3.24. If N↵ is

more than the maximum number of computationally allowed constraints in the one

dimensional Problem (4.26), say Nmax, then we replace N↵ with Nmax. However, in

such circumstances, the final solution is tested against the second (risk mitigation)

chance-constraint of Problem (4.14). If the solution passes the test, then the proba-

bilistic guarantees of the solution of Problem (4.26) will be valid, otherwise, we will

lose the guarantees. It is a rare case as Problem (4.26) is a one-dimensional prob-

lem and Nmax is expected to be large. However, Nmax and the computational power

required to solve the one-dimensional Problem (4.26) is different for different sys-

tems. It also depends on factors such as the number of states in the state-space

description of the system (Eq. 4.1), horizon length M etc.

Fig. 4.6 summarises the algorithm steps and their POFs. The overall POF of the

algorithm, as indicated in Fig. 4.6, will be the sum of the POFs of each step, i.e. � =

�A + �B + �C = 7�.
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General remarks and benefits

The following remarks can be made on the proposed algorithm to find an approximate

solution to M-CCPs,

1. The chance-constraints in Problem (4.14) can require strong probabilistic bounds,

e.g. ✏V can be very small, in the order of 10�3. It will then require a large number of

scenarios to solve the problem by the scenario approach which can be computation-

ally expensive. To compensate for that, this algorithm performs a relatively faster

optimisation (Problem (4.17), i.e. without the second chance-constraint in Problem

(4.14)), does some computationally cheap tests and solves a one dimensional opti-

misation problem (Problem (4.26)). These steps together are expected to be faster

than the time to solve Problem (4.14) using other techniques. This is because the

other techniques apply the scenario approach to the second chance-constraint as

well (with the small probabilistic bound ✏V ), and the corresponding scenario opti-

misation problem will then require a large number of constraints and demand high

computational power.

2. ✏ and ✏V are the allowed violation probabilities over the time horizon M , used in the

S-MPC based Problem (4.14). In practice, the selection is not easy, because operators

are usually more interested and experienced to provide the violation probabilities

over a much longer period, e.g. a year. Moreover, due to the dependence between

the S-MPC problems solved at each time step, there is no easy way to infer ✏ and

✏V from the available information on the violation probability bounds for a longer

period. Thus the selection of these probabilities, in practice, is more of a guess

work, and it improves with experiments.

3. A sampling-and-discarding approach ([29]) can be easily introduced in the pro-

posed algorithm to deal with possible conservatism in ensuring feasibility of the

scenario problem constraints, at the price of cost function. In this approach, the

constraints of the problem can be removed, to further minimise the cost function,

with a decrease in feasibility up to an allowed limit, which can be obtained from

the bounds ✏ and ✏V .
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4.4 M-CCPs with more than two chance-constraints - an exten-
sion

The algorithm in Section 4.3.2 is developed for M-CCPs with two (2) chance-constraints.

However, the idea of optimisation, testing and improving, can be extended to an M-CCP

with any finite number of chance-constraints, and it is discussed in this section. The idea

of the extension and the associated algorithm are built upon the results and procedures

in Section 4.3.

An M-CCP problem with nC chance-constraints is given by,

min.
�,⇥

J (u,w), (4.36)

s.t. P{w 2W : u(w) 2 U \ f 1(u,w)  0} � 1 � ✏1,

P{w 2W : f i (u,w)  0} � 1 � ✏ i , for i = 2,3, . . . ,nC ,

subject to the states dynamics, x in Eq. 4.9, and the parametrisation of control policies,

u in Eq. 4.15. The notations are the same as in Problem (4.14), and we assume f i (u,w)

(where i = 1,2, . . . ,nC ) are convex functions with respect to the optimisation variables

(� and ⇥), that define the control policy u(w), see Eq. 4.15. Also, we assume the states

dynamics are incorporated in the objective function J (u,w) (e.g. see Eqs. 3.52 & 3.53).

Furthermore, we assume ✏nC < ✏nC�1 < · · · < ✏1.

The intuition behind the extension is as follows: we first solve the scenario version

of Problem (4.36) with the first chance-constraint only4 (i.e. the constraint on u(w) and

f 1(u,w) only), and then test the obtained solution, u⇤
1 , against the other nC � 1 chance-

constraints. The first chance-constraint is used in the scenario problem, because ✏1 is the

largest allowed violation probability among the ✏ is, where i = 1,2, . . . ,nC . ✏1 will require

the least number of constraints in the scenario problem. The number of scenarios can be

found using the procedure Find N CC(✏1, �,d) in Section 4.3.1. For testing, we use the

procedure Find N Test(✏ i , %, �) in Section 4.3.1 (where i = 2,3, . . . ,nC and % 2 (0, ✏nC ) is

a safety margin), to calculate the number of realisations (NTi ) of w, required to test the

4There is a possibility that a few scenarios might lead to infeasibility of the scenario problem. In such
circumstances, the optimisation schemes introduced in Chapter 3 (Section 3.5) can be used.
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ith chance-constraint, and then calculate the empirical violation probabilities p̂i for each

chance-constraint. There can be 2nC�1 possible outcomes of the tests,

P1P2P3 · · · PnC

P1P2P3 · · · FnC

...

P1F2F3 · · · PnC

P1F2F3 · · · FnC

where Pi or Fi , for i = 1,2, . . . ,nC , are the components of the test outcome. Pi indicates

that the ith chance-constraint has passed the test and Fi indicates that it has failed the

test. The first component of the outcome (i.e. P1) is assumed to be always P at this stage,

because we solved the scenario optimisation problem prior to testing, to make sure that

the first chance-constraint is satisfied.

We prioritise the chance-constraints (CC) in the following order,

CCnC > CCnC�1 > · · · > CC2 > CC1, (4.37)

i.e. the priority of satisfying the nth
C chance-constraint in Problem (4.36) is the highest5.

Let us denote the test output, corresponding to the solution u⇤
1 , as P1

1 X1
2 X1

3 · · · X1
nC , where

X1
i can be P1

i or F1
i , and the superscript ‘1’ will be used in the improving phase below. If we

have X1
i = P1

i , 8 i = 2,3, . . . ,nC , then we exit the algorithm, and return the solution with a

certificate guaranteeing satisfaction of all chance-constraints, otherwise, we improve the

solution.

For improving, we first test the default solution u⇤
0 2 U 0 (whereU ✓ U 0, for details see

Section 4.2.1) against the last nC � 1 chance-constraints of Problem (4.36) in the same way

as we tested u⇤
1 above. Let us denote the test output as P1D2D3 · · · DnC , where again, Di

can be Pi or Fi based on whether the ith chance-constraint passed or failed the test with

u⇤
0 . If Di = Fi , 8 i = 2,3, . . . ,nC , it means that the default solution failed the tests against

5In the following algorithm, we can use any user-chosen priority, but the components of the test outcome
are required to be written in the order of increasing priority.
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every chance-constraint in the problem, and there is no room for improvement. We exit

the algorithm and some emergency or exceptional operations are followed. Otherwise,

we will try to improve the chance-constraints, which failed the test with u⇤
1 , but passed

the test with u⇤
0 , starting with the highest numbered chance-constraint (CC), i.e. based

on their priority (Eq. 4.37). If we need to improve, e.g. `th chance-constraint, then we

use Step-C of the Optimisation and Testing algorithm for improving, and in Eq. 4.34, we

replace ✏V with ✏ `. We calculate the required number of scenarios N↵ (using the proce-

dure Find N CC(✏↵ , �,1)), for the one-dimensional (improving) scenario problem, similar

to Problem (4.26), with the `th chance-constraint of Problem (4.36). After the improve-

ment is made, we test the improved solution, u⇤
2 , against all the other chance-constraints

in Problem (4.36), in the same way as we tested u⇤
1 before. Let us denote the test output

as X2
1 X2

2 X2
3 · · · X2

nC , where again, X2
i can be P2

i or F2
i , based on whether the ith chance-

constraint in Problem (4.36) passed or failed the test with u⇤
2 .

The solution can be further analysed and improved in an iterative way. Considering

k as the iteration index, whereas in the last improvement k was 1. There are the follow-

ing three possibilities related to the test outcomes on the improved solutions, with their

corresponding actions, in these iterations,

1. If we achieve X k+1
i = Pk+1

i , 8 i = 2,3, . . . ,nC and k � 1, then we exit the algorithm,

and return the solution u⇤
k , with a certificate guaranteeing satisfaction of all chance-

constraints.

2. If we achieve a test outcome where any higher numbered chance-constraint’s com-

ponent changes from P to F, we exit the algorithm, and return the solution ob-

tained in the previous step, i.e. u⇤
k . This is done to preserve the priorities of the

chance-constraints (CC), as in Eq. 4.37. The solution is returned with a certificate

guaranteeing satisfaction of the chance-constraints, whose related components in

the corresponding test outcome, i.e. X k
1 X k

2 X k
3 · · · X k

nC , were P.

3. If we achieve a test outcome where no higher numbered chance-constraint’s com-

ponent changes from P to F, then we consider the next highest numbered chance-

constraint (compared to the one which we improved in the previous iteration) for



182 A Randomised Approach to Multiple Chance-Constrained Problems

improvement, among the chance-constraints which were identified for possible im-

provement in the test outcome, i.e. they failed the test with u⇤
k , but passed the

test with u⇤
0 . The improvement is then followed by re-testing, with an incremented

k value in the test outcome. However, if there is no such chance-constraint left

for improvement, then we exit the algorithm and return the solution u⇤
k , with a

certificated guaranteeing satisfaction of the chance-constraints, whose related com-

ponents in the corresponding test outcome, i.e. X k
1 X k

2 X k
3 · · · X k

nC , were P. If the

algorithm does not exit, then the iterations continue and the algorithm can have, by

design, at most nC � 1 iterations.

The confidence parameter �, corresponding to a scenario problem, test, or the calcu-

lation of an upper bound (Section 4.3.1) in the algorithm can be calculated as, � =

�/((nC � 1)2 + 5(nC � 1) + 1), where � is the overall Probability Of Failure (POF) of the al-

gorithm (see Section 4.3.1). The expression ‘� = ((nC � 1)2 + 5(nC � 1) + 1) �’ is explained

next. The algorithm consists of the the following number of � terms in the order of their

occurrences,

• 1 term for the first scenario problem, i.e. the scenario problem corresponding to

Problem (4.36) with the first chance-constraint only.

• 2(nC � 1) terms for 2(nC � 1) tests on the remaining nC � 1 constraints of Problem

(4.36) with u⇤
1 and u⇤

0 respectively.

• (nC � 1)(2 + 1 + (nC � 1)) terms for at most nC � 1 improvements, where in each im-

provement 2 upper bounds are computed, 1 one-dimensional scenario problem is

solved and nC � 1 tests are performed against ū⇤
k+1, where k is the index of improve-

ment, and 1  k < nC .

The total number of � terms in the algorithm are therefore equal to ((nC � 1)2 + 5(nC �
1) + 1). Next, we present the algorithm formally.
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Algorithm

1. Select the overall POF, �, to be a very small value (e.g. 10�8), and define the confi-

dence parameter, � = �/((nC � 1)2 + 5(nC � 1) + 1).

2. Compute Nr = Find N CC(✏1, �,d), where ✏1 is the allowed violation of the first

chance-constraint in Problem (4.36) and d is the number of optimisation variables

in the problem.

3. Solve the scenario version of Problem (4.36) with the first chance-constraint only, i.e.

consider the constraints: u(w( j ) ) 2 U and f 1(u(w( j ) ),w( j ) )  0, for j = 1,2, . . . ,Nr ,

in the scenario problem. Save the solution in u⇤
1 .

4. Compute NTi = Find N Test(✏ i , %, �), where ✏ i , for i = 2,3, . . . ,nC , are the allowed

violation probabilities of the last nC � 1 chance-constraints in Problem (4.36), and

% 2 (0, ✏nC ) is a safety margin (e.g. % = ✏nC /2).

5. Generate NTnC
realisations of w 2W for testing purposes.

6. Compute p̂i = 1
NTi

PNTi

k=1 1{ f i (u⇤
1 ,w

(k ) ) > 0}, for i = 2,3, . . . ,nC .

7. If p̂i  ✏ i � %i , assign X1
i = P1

i in the test outcome, otherwise, assign X1
i = F1

i . Save

the test outcome as P1
1 X1

2 X1
3 · · · X1

nC .

8. If X1
i = P1

i , 8 i = 2,3, . . . ,nC , then exit the algorithm and return the solution u⇤
1 , with

a certificate guaranteeing satisfaction of all chance-constraints in Problem (4.36).

9. Otherwise, if there is an F component in the test outcome, test the default solution,

u⇤
0 against the last nC � 1 constraints in Problem (4.36), the same way as u⇤

1 was

tested above in Step 7. Save the computed violation probability estimates as p̂0i , for

i = 2,3, . . . ,nC , and the test outcome as P1D2D3 · · · DnC .

10. If Di = Fi , 8 i = 2,3, . . . ,nC , then exit the algorithm and alert the operators to

initiate emergency or exceptional operations, because the default solution failed all

the chance-constraints and therefore there is no possible room of improvement on

u⇤
1 .
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11. Otherwise, if there are Pi components, with i > 1, in the test outcome,

P1D2D3 · · · DnC , improvement can be made on the solution u⇤
1 . Initialise ` to be

the index of the first F component in the test outcome, P1
1 X1

2 X1
3 · · · X1

nC , from

right to left, provided the corresponding `th component in the test outcome,

P1D2D3 · · · DnC , is a P, i.e.

` = max{i |X1
i = F ^ Di = P},

where i = 2,3, . . . ,nC .

12. Initialise k = 1 as the index of improvement, and run the following steps in a while

loop, with the true condition: ` > 1.

(a) Compute ✏↵ using Eq. 4.34, with ✏V = ✏ `, ✏̂T = ✏̂T` = Upper Bound(p̂`, �,NT` ),

and ✏̂0 = ✏̂0` = Upper Bound(p̂0` , �,NT` ).

(b) Compute N↵ = Find N CC(✏↵ , �,1).

(c) Improve u⇤
k in the direction of u⇤

0 by solving the following one dimensional

(improving) scenario problem (similar to Problem (4.26)),

min.
↵

J (ū), (4.38)

s.t. u(w( j ) ) 2 U 0, f ` (u,w( j ) )  0,

for j = 1,2, . . . ,N↵ , w( j ) 2 Q,

where u = (1 � ↵)u⇤
k + ↵u⇤

0 and Q = {w( j ) | f ` (u⇤
k ,w

( j ) ) > 0 ^ f ` (u⇤
0 ,w

( j ) )  0},
for j = 1,2, . . . ,NT` . If |Q|< N↵ , where |Q| is the cardinality of the set Q, then

generate the remaining N↵ � |Q| realisations of w 2W and put them in Q,

(d) Use the problem output, ↵⇤, to define the improved solution, uk+1 = (1 �
↵⇤)u⇤

k + ↵⇤u⇤
0 .

(e) Test the solution u⇤
k+1 against the ith chance-constraints in Problem (4.36),

where i = {1,2, . . . ,nC } \ `, the same way as u⇤
1 was tested above in Step 7.

Generate the test outcome as X k+1
1 X k+1

2 X k+1
3 · · · X k+1

nC .
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(f) If X k+1
i = Pk+1

i , 8 i = {1,2, . . . ,nC } \ `, then exit the algorithm and return

the solution uk+1, with a certificate guaranteeing satisfaction of all chance-

constraints in Problem (4.36).

(g) If any Pk
i component changes to Fk+1

i , for i > `, then exit the algorithm and

return the solution u⇤
k , obtained prior to the improvement, with a certificate

guaranteeing satisfaction of those chance-constraints in Problem (4.36), whose

components in the test outcome, X k
1 X k

2 X k
3 · · · X k

nC , were P. (This is done to

preserve priorities of the chance-constraints (CC), as in Eq. 4.37).

(h) Otherwise, rewrite ` to be the index of the first F component in the test out-

come, X k+1
1 X k+1

2 X k+1
3 · · · X k+1

nC , to the left of X k+1
` , provided the corresponding

`th component in the test outcome, P1D2D3 · · · DnC is a P, i.e.

` = max{i |X k+1
i = F ^ Di = P},

where i = 2,3, . . . ,` � 1.

(i) Increment k (k = k + 1), and check the while loop condition, i.e. if ` > 1, jump

to Step 12-a, otherwise, exit the loop.

13. Return the solution u⇤
k , with with a certificate guaranteeing satisfaction of

those chance-constraints in Problem (4.36), whose components in the test come

X k
1 X k

2 X k
3 · · · X k

nC are P.

The algorithm solves M-CCPs with a finite number of chance-constraints, using the

results and procedures in Section 4.3. The algorithm can also be used in an MPC setting,

and it provides probabilistic guarantees on the solutions. All optimisation problems in

the algorithm are assumed to be feasible, however, if required and as discussed earlier,

the feasibility assurance schemes introduced in Chapter 3 can be used. All (improving)

scenario problems in the algorithm, which are at max nC � 1, are one dimensional prob-

lems. Therefore, they are also expected to keep the computational burden of the algo-

rithm reasonable.
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4.5 A simulation based example

In this section we address a simple control problem with two chance-constraints. We

consider a linear system with one output y (units m) and three inputs uA, uB and uC

(units m3/sec). The inputs and the output are related by the following discrete time

(data-based) model,

y(n + 1) = y(n) + 5.57 ⇥ 10�3[uA(n � 2) + uB (n � 1) � uC (n)], (4.39)

where the input uA is regulated and it acts with a delay of two time steps (one time

step Ts = 1,200 sec), the input uB is unregulated, forecast-able and measurable, it acts

with a unit step delay, and uC is a constant input. Our aim is to control the output, y,

between an upper and a lower limit in the presence of a large unregulated input uB. We

formulate the control problem as an M-CCP with two chance-constraints, based on the

control objectives (stated below), and use the Optimisation and Testing algorithm (Section

4.3.2) to solve the M-CCP within a Stochastic MPC setting.

4.5.1 Control objectives and control design

Here we first describe the two chance-constraints and the objective function related to

the control problem, which form an M-CCP, and then parametrise the Optimisation and

Testing algorithm to solve the M-CCP.

During normal operations, the following constraints are required to be satisfied with

probability at least 1 � ✏ , where ✏ is 0.1,

• 20  uA(n)  70, i.e. the input uA can vary between 20–70 m3/sec,

• �5  uA(n) � uA(n � 1)  5, i.e. the change in the input uA should be less than 5

m3/sec,

• 4.75  y(n)  5.65, i.e. the output should stay between 4.75–5.65 m. Ideally, it

should stay at the mean value, i.e. 5.2 m.
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Similarly, we consider the following constraint to be satisfied with a higher probability,

i.e. at least 1 � ✏V , where ✏V is 0.001. The constraint is a risk mitigation constraint,

• y(n)  5.85.

uC is a fixed input of 85 m3/sec, and we consider the default solution, u⇤
A,0 = 10 m3/sec,

i.e. we are allowed to reduce uA below the lower limit of 20 m3/sec in order to avoid the

output, y, to cross a higher risk related limit of 5.85 m.

In a Stochastic MPC setting, we solve an optimisation problem over a finite time hori-

zon in the future. Therefore, in the current control problem, we would need a forecast of

the unregulated input uB. In the following simulations we considered the forecast, u f
B, as

the lowpass filtered version of the actual input uB, and relate them as

uB (n) = u f
B (n) + wB (n),

where we used the filter as a first order, zero-phase Butterworth filter with cut off fre-

quencey 0.03 (Ts )�1. The disturbance term wB is generated from a first order AR process

wB (n + 1) = awB (n) + e(n), with a = 0.9, and {e(n)} is a sequence of independent and

identically distributed zero mean Gaussian noises with standard deviation � = 2 m3/sec.

In the M-CCP we use the following objective function (similar to Eq. 3.52 with S = 0),

(4.40)J (uA(wB)) = E[
i+M�1X

n=i

((y(n) � yr )|Q(y(n) � yr ) + uA(n)|RuA(n))],

where M = 10 is the horizon length, yr = 5.2 is the reference output

value. wB is a vector of wB values over the finite horizon M , i.e. wB =

wB (n) wB (n + 1) . . . wB (n + M � 1)

�|
. The notations are followed from Section 3.2.1,

and from now on, all bold variables are vectors of the same variable defined over the

finite horizon, M , like wB defined above. The notation uA(wB) shows that the objective

function is minimised over a set of control policies parametrised in wB. We use the affine

parametrisation of uA in wB, as in Eq. 4.15, i.e. uA = ⇥wB + �, where ⇥ and � matri-

ces form the optimisation variables. We selected Q and R matrices in Eq. 4.40 as block

diagonal matrices with Q = 10 and R = 5 ⇥ 10�4 on the diagonals.
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In the Optimisation and Testing algorithm, we selected the Overall POF, � = 1 ⇥ 10�6,

and thus � = �/7. For M = 10, we got d = 20 optimisation variables while using the

parametrisation of ⇥ and � matrices as in Eq. 3.19, for more details on how to calculate

d, see the example in Section 3.6.1. The number of scenarios Nr for the scenario problem

in the optimisation step (similar to Problem (4.16), where we ignore the risk related con-

straint) should be at least 730 (from Eq. 3.24). After finding the scenario solution, u⇤
A,

we tested the risk related constraint, i.e. ‘y(u⇤
A,w̃

(k )
B ) > 5.85’, where k = 1, . . . ,NT and we

used NT new realisations of the wB variable. We selected % = 0.0005, and with ✏V = 0.001,

we got NT = 873,918 (from Eq. 4.23). If the test passed, we forwarded the solution. Oth-

erwise, we tested the default solution u⇤
A,0 = 10 m3/sec, and if the test passed (which

always happened in the following simulations), we solved a one dimensional problem

(similar to Problem (4.38)) to improve the solution u⇤
A in the direction of u⇤

A,0. In the one

dimensional problem we minimised the same objective function J (ūA) (Eq. 4.40, where

ūA(n) = (1 � ↵)u⇤
A(n) + ↵u⇤

A,0), with respect to ↵, subject to the following constraints,

• 10  ūA(n)  80, i.e. we relaxed the lower limit on the input uA by 10 m3/sec,

• �5  ūA(n) � ūA(n � 1)  5,

• 4.75  y(n)  5.85, where the upper limit on the output, y, is now 5.85.

The number of scenarios, N↵ , for this problem was selected based on the relation in Eq.

4.29, for details see ‘Background’ in the third procedure in Section 4.3.1. All optimisation

problems were solved by running YALMIP [3] over SDPT3 [4].

4.5.2 Simulation results

Here we compare the simulation results (Fig. 4.7) of the controlled output, with and

without the use of the Optimisation and Testing algorithm. In the top graph of Fig. 4.7, the

black straight line shows the desired output, yr = 5.2 m, and the blue and red dotted

straight lines show the normal limits (4.75–5.65 m) and the higher risk related limit (5.85

m) on the output, y, respectively. The bottom graph shows the unregulated input, uB,

with a black curve, and we can see that due to the high input between the 70th and 120th
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Figure 4.7: Control of the output y.

time steps, the controlled output (without the Optimisation and Testing algorithm, the red

dashed curve in the top graph) shows an undesirable response. The output rises above

the allowed limit, i.e. 5.65 m, and even above the risk related limit, i.e. 5.85 m. However,

the blue dash-dotted curve shows the controlled output obtained from the algorithm,

and the output stayed close to the reference value, i.e. 5.2 m, and is well within the limits

throughout the simulations.

The bottom graph in the figure also shows the regulated input uA. The blue and

red dotted straight lines show the original and relaxed limits on uA respectively. With the

original constraints, in order to avoid the rise in the output y, due to the high unregulated

input uB, the input uA was reduced to minimum. However, with the relaxed constraints,

we had a choice to further reduce the input uA by 10 m3/sec, which was effective as shown

in the bottom graph of Fig. 4.7 between 70th and 90th time steps, where the solution u⇤
A

failed the test against the risk related constraint, and the default solution u⇤
A,0 was used
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Figure 4.8: Alpha values computed by the algorithm (Section 4.3.2).

for improvement. Fig. 4.8 shows the values of ↵ obtained during the simulation. There

are non-zero values of ↵ at the time steps where the improvements have been made.

Moreover, the period where these improvements are made corresponds to the period

when there are large uB inputs, as shown in the bottom graph of Fig. 4.7.



Appendix

4.A Proof of Theorem 4.2

Fig. 4.9(a) shows the space W from where we draw noise realisations w. Let ‘VS(u⇤)’

denotes the set that includes all realisations of w 2 W that violate the constraint

‘g(u⇤,w)  0’, where u⇤ is a solution of Problem (4.17). In Fig. 4.9(a) the set VS(u⇤) is

shown as the blue area represented with dots. Similarly, we denote ‘VS(u⇤
0)’ as the set

that includes all realisations of w 2W that violate the constraint ‘g(u⇤
0 ,w)  0’, where u⇤

0

is the default solution. In Fig. 4.9(a) the set VS(u⇤
0) is shown as the green area represented

with crosses. Note that, VS(u⇤
0) is not necessarily contained in VS(u⇤). Fig. 4.9 shows

both scenarios, in (a) the set {VS(u⇤
0)\VS(u⇤)} is non-empty, while in (b) the set VS(u⇤

0) is

contained in the set VS(u⇤). The proof ahead is valid for both situations.

We define a set T = {VS(u⇤) \ VS(u⇤
0)} (Eq. 4.27) that contains all realisations of w that

strictly cause u⇤ to violate the constraint ‘g(u⇤,w)  0’ and u⇤
0 satisfies the corresponding

constraint. In Problem (4.26), we specifically sample w from the set T and seek a solution

↵⇤ that improves the numerical value of the solution u⇤ in the direction of u⇤
0 . The set Q

(in Step B-4 of the algorithm) is included in the set T . The improved solution is obtained

as ū⇤ = (1 � ↵⇤)u⇤ + ↵⇤u⇤
0 . We define ‘VS(ū⇤)’ as the set that includes all realisations of

w 2 W that cause the improved solution (ū⇤) to violate the constraint ‘g(ū⇤,w)  0’. In

Fig. 4.9 the set VS(ū⇤) is shown with a red area represented with squares. By convexity,

there is no realisation of w for which the constraint ‘g(u,w)  0’ is satisfied by both u⇤

and u⇤
0 and is violated by ū⇤. However, there can be realisations of w that violate the

aforementioned constraint with u⇤ and/or u⇤
0 but satisfy with ū⇤. The area representing

191



192 A Randomised Approach to Multiple Chance-Constrained Problems

VS(ū⇤) in Fig. 4.9 depicts such properties. Mathematically, we can represent it as

VS(ū⇤) = {VS(ū⇤) \ T } [ {VS(ū⇤) \ T }, (4.41)

where T = {VS(u⇤) \ VS(u⇤
0)}. Again, by the convexity argument stated above, if we

subtract the set T from VS(ū⇤), the resulting set will be contained inside VS(u⇤
0), because

there is no realisation of w for which the constraint ‘g(u,w)  0’ is satisfied by both u⇤ and

u⇤
0 and is violated by ū⇤. Mathematically, we can represent it as {VS(ū⇤) \ T } ✓ VS(u⇤

0 ),

which is also supported by Fig. 4.9, and that gives us

VS(ū⇤) ✓ VS(u⇤
0 ) [ {VS(ū⇤) \ T }. (4.42)

We can further write the probability of the set VS(ū⇤) using Eq. 4.42 as

P(VS(ū⇤))  P(VS(u⇤
0 )) + P(VS(ū⇤) \ T ),

i.e.

P(VS(ū⇤))  P(VS(u⇤
0 )) + P(VS(ū⇤) |T )P(T ), (4.43)

P(VS(ū⇤))  ✏̂0 + P(VS(ū⇤) |T )✏̂T , (4.44)

considering P(VS(u⇤
0 ))  ˆ̄✏0 and P(T )  ˆ̄✏T . If we use the procedure

Find N Scenario(✏↵ , �↵ ,1) to find the required number of scenarios N↵ for Problem

(4.26), then the scenario solution (↵⇤) of Problem (4.26), that gives the control input as

ū⇤ = (1 � ↵⇤)u⇤ + ↵⇤u⇤
0 , satisfies P(VS(ū⇤) |T )  ✏↵ with a confidence 1 � �↵ . Using

✏↵  ✏V � ✏̂0

✏̂T
, (4.45)

the theorem follows from Eq. 4.44.

⇤



4.A Proof of Theorem 4.2 193

(a) (b)

W VS(u⇤
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Figure 4.9: A pictorial description of violation sets.
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Chapter 5

Application of the Optimisation and
Testing Algorithm to Flood Control

In Chapter 3 we presented control schemes for normal river operations, and the objectives

were that water level in a reservoir and flow release from the reservoir should be kept

within safe limits, while the change in flows and water levels should also be less than

given thresholds. We also emphasised the fact that there are large distances between the

points where the flows can be regulated in a river, and as a consequence, forecasts of

the unregulated flows are required. Such forecasts are uncertain, and the control prob-

lem can be formulated as an optimisation problem with probabilistic constraints, such

that a chance-constrained optimisation problem [24, 26] is obtained (see Problem (3.55)).

However, there is also a need to measure and mitigate flood risks, besides achieving nor-

mal river operations. Incorporation of flood risk mitigation in the existing river control

problem is one of the aims of this chapter.

In Chapter 4 we formulated a Multiple Chance-Constrained optimisation Problem

(M-CCP), where the control problem takes into account normal operations and the oper-

ations related to risk mitigation. We used Value-at-Risk (VaR) [86] as the risk measure.

Constraints related to both operations were represented in two chance-constraints.

In this chapter we incorporate flood risk mitigation in the river control problem, for-

mulated in Chapter 3, using the formulation of M-CCP with two chance-constraints, de-

veloped in Chapter 4. We use one chance-constraint to accommodate constraints related

to normal river operations and the other chance-constraint corresponds to the VaR con-

straint which keeps the flood risks below a user-chosen threshold. We use the Optimi-

sation and Testing algorithm, proposed in Section 4.3.2, to solve the M-CCP in an S-MPC
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setting. The strategy of the algorithm, i.e. optimisation, testing and improving, suits flood

risk mitigation problem well, because we do not want to be overly cautious about flood

risks, since most of the time there is no or very little risk of flooding. In the algorithm,

the chance-constraint associated with flooding is tested using the control actions/control

policies obtained for normal operations. If the flood risk, detected by testing, is above

the given threshold, we priorities flood risk mitigation over normal river operations, and

modify the control actions/control policies.

We apply the algorithm to the historical operational data of the upper part of Murray

River in Australia. We show that the algorithm not only achieves satisfactory normal

river operations, but also mitigates flood risks from unregulated inflows, in a computa-

tionally cheap way.

The chapter is organised as follows. In Section 5.1 we consider a loss function for

the flood control problem, and use it to develop a flood risk measure, which is later

incorporated in the river control problem that tackles both normal river operations and

flood risk mitigation. We then apply the developed formulation and the Optimisation and

Testing algorithm to the operational data of the upper part of Murray River in Section 5.2.

5.1 Flood risk measure and mitigation

In this section we describe a loss function and a risk measure, which can be used for

floods. We later use them to formulate a flood avoidance optimisation problem which

can be solved in a Stochastic MPC setting.

5.1.1 Value-at-Risk as a flood risk measure

As described in Section 4.1.1, a loss function g(uC ,wU ) is given in terms of de-

cision variables uC 2 U and uncertain variables wU 2 W . For rivers, uC,n =

[Qcs,1(n � ⌧cs,1), . . . ,Qcs,ncs (n � ⌧cs,ncs ),Qcr,1(n � ⌧cr,1), . . . ,Qcr,ncr (n � ⌧cr,ncr )]|, and

wU,n = [Qus,1(n � ⌧us,1), . . . ,Qus,ncs (n � ⌧us,nus ),Qur,1(n � ⌧ur,1), . . . ,Qur,nur (n � ⌧ur,nur )]|,

where Qcs (n) and Qcr (n) denote regulated in- and out-flows, and Qus (n) and Qur (n)

denote unregulated in- and out-flows. U and W are convex sets to which uC and wU be-
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long, and ⌧ represents the time delays corresponding to regulated and unregulated flows.

Moreover, we consider a loss function, g(uC ,wU ), related to flooding, different from the

(loss) objective function related to normal river operations (e.g. JE in Eq. 3.7).

Under normal river conditions, water level in a storage y usually stays close to a

reference value yr . The water level is a measure of how severe a flood is, and the amount

of damage caused by the flood increases with the water level. So for flooding, the water

level itself can be considered as a suitable loss function. We assume the uncertainty wU

is governed by a probability measure PW on W , and the loss distribution can then be

described from Eq. 4.3

 (uC , ⇣ ) = PW {wU 2 W |y(uC ,wU )  ⇣ }, 8uC 2 U, (5.1)

where y quantifies the loss.  (uC , ⇣ ) is described as the loss distribution, as it defines the

probability measure on the sets inside W , where the loss, water level y(uC ,wU ), is less

than and equal to ⇣ .

As mentioned earlier, we use Value-at-Risk (VaR, Section 4.1.2) as a flood risk mea-

sure. A constraint on VaR associated with flooding, using water level as the loss function,

can be obtained from Eq. 4.7,

PW {wU 2 W : y(uC ,wU )  yFL} � 1 � ✏ f , (5.2)

where yFL is a critical flood limit that should not be crossed with a high probability 1� ✏ f ,

where ✏ f 2 (0,1) is a small value (e.g. 10�3). If y crosses yFL, then the flood risk is larger

than what we are willing to accept. However, yFL should be selected carefully, and it

should not be too conservative to affect the river during normal conditions.

We use VaR as a flood risk measure, rather than CVaR (Section 4.1.2). Note that if the

economic cost of the flood is strictly increasing with the maximum water level, then there

is no difference between using a VaR constraint on the water level and a VaR constraint

on the economic cost. For rivers this is often natural, since “the damage has been done”,

once the river exceeds the rivers banks or reaches a particular flood level, and the VaR

constraint will ensure that such an event has a very small probability.



198 Application of the Optimisation and Testing Algorithm to Flood Control

5.1.2 Stochastic MPC problem for flood avoidance

In this section we use the river control problem formulation developed in Chapter 3

(Problem (3.55)), and extend it to include flood mitigation, leading to a Multiple Chance-

Constrained optimisation Problem (M-CCP), which can be solved in a Stochastic MPC

setting. For ease of reading, we restate Problem (3.55) below,

min.
⇥n,�n

J (⇥n ,�n ),

s.t. P{wU,n 2W : umin  uC,n (wU,n )  umax \ �umin  �uC,n (wU,n )  �umax

\ yref�ym  kCxn (wU,n )k1 yref + ym }  1 � ✏ ,

where J is the objective function given in Eqs. 3.52 & 3.53, the states dynamics xn are

given in Eq. 3.37 and the control policy uC,n is given in Eq. 3.38. ⇥n and �n are the optimi-

sation variables (see Eq. 3.38). xn =

xn . . . xn+M�1

�|
, uC,n =


uC,n . . . uC,n+M�1

�|

and wU,n =

wU,n . . . wU,n+M�1

�|
, where n is the time index, M is the horizon length

and k·k1 is the infinity norm over the finite horizon, which gives the maximum value

in the vector. Let W = W M , and let P be the product measure (PM
W

) over W. For more

details, see Section 3.4.

For compactness, we let yn = kCxn (wU,n )k1, and let yref � ym = yLL (Lower Limit) and

yref + ym = yUL (Upper Limit). With these notations, the above problem and the constraint

on VaR (Eq. 5.2) can be represented as,

min.
⇥n,�n

J (⇥n ,�n ), (5.3)

s.t. P{wU,n 2W : umin  uC,n (wU,n )  umax \ �umin  �uC,n (wU,n )  �umax

\ yLL  yn (uC,n ,wU,n )  yUL}  1 � ✏ .
P{wU,n 2W : yn (uC,n ,wU,n )  yFL} � 1 � ✏ f ,

subject to the states dynamics, xn in Eq. 3.37, and the control policy, uC,n in Eq. 3.38. ✏ 2
(0,1) and ✏ f 2 (0,1) are user chosen probability levels, yLL and yUL are the recommended

lower and upper limits on the water level respectively, which can be occasionally violated
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with probability ✏ , without much harm. yFL is the critical flood level limit that should

only be exceeded with a very low probability ✏ f ⌧ ✏ over the time horizon.

Problem (5.3) is an M-CCP with two chance-constraints. The first chance-constraint

is associated with normal operations, and the second chance-constraint is the VaR con-

straint related to flood risk mitigation. Problem (5.3) is non-convex in general, even

if the constraints: ‘umin  uC,n (wU,n )  umax’, ‘�umin  �uC,n (wU,n )  �umax’,

‘yLL  yn (uC,n ,wU,n )  yUL’ and ‘yn (uC,n ,wU,n )  yFL’ are convex. The problem is

in the same form as Problem (4.14), stated in Chapter 4, and the algorithm proposed in

Section 4.3.2 to find an approximate solution to Problem (4.14), is applicable to Problem

(5.3). In the next section we will use this algorithm for flood mitigation in the upper part

of Murray River in simulations.

The probabilities in Problem (5.3) are associated with the flow forecasts, and the quan-

tiles of the distributions, particularly the very high ones are only approximately known,

even in cases when plenty of the relevant historical data are available. Moreover, ✏ and

✏ f in Problem (5.3), give the probability of violation over the time horizon used in the

S-MPC problem, whereas in practice, one would be more interested in the probability

over a much larger period. Due to the dependency between the S-MPC problems solved

at each time instant, there is no easy way to infer such information e.g. a bound on the

probability of a flood over a five years period. So, to some extent, ✏ and ✏ f will be tuning

parameters which can be adjusted based upon the experience of river operators.

5.2 Application of the proposed algorithm to the upper part of
Murray River

In this section we apply the Optimisation and Testing algorithm, proposed in Section 4.3.2,

to the upper part of Murray River in Australia, using historical data. For ease, we re-

present the sketch of the upper part of Murray River in Fig. 5.1. The figure shows the

river stretch from Hume reservoir to Lake Mulwala. In Section 3.6 we applied optimi-

sation schemes, developed in Section 3.5, to the river stretch to achieve normal control

objectives of the stretch. In Section 3.6.4, we found that the schemes did not show satis-
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Figure 5.1: Hume Reservoir to Lake Mulwala on the Murray River (plot not to scale).

factory results when the unregulated inflows were high, because there was no flood risk

mitigation strategy incorporated in the schemes. Now, we consider the flood avoidance

Problem (5.3) for the same case, and apply the proposed algorithm (Section 4.3.2) to solve

the problem and show that flood risk mitigation can be achieved while fulfilling normal

control objectives.

5.2.1 Control design

To test the performance of the proposed algorithm, we picked the dataset with high in-

flows from the unregulated rivers (Kiewa and Ovens Rivers), as used in Section 3.6.4.

Precisely, we used the dataset from 19th Sep., 2001 to 16th Nov., 2001, sampled at Ts = 8

hours. As before, we used a prediction horizon of M = 20 units in the MPC problem,

which is roughly one week. We considered the following constraints to constitute the

normal river operations requirement,

• 124.65  yi,LM  124.9, for i = 1,2, . . . ,M ,

• 2,500  Qi,H  30,000, for i = 1,2, . . . ,M ,

• �500  Qi,H �Qi�1,H  1,200, for i = 1,2, . . . ,M .

These constraints are required to be satisfied with a probability at least 1 � ✏ = 1 � 0.1 =

0.9. Apart from the above constraints, we considered the following constraint to consti-

tute the flood operations requirement, and it is required to be satisfied with a probability
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at least 1 � ✏ f = 1 � 0.01 = 0.99,

• yi,LM  125, for i = 1,2, . . . ,M ,

where ✏ and ✏ f refer to the allowed violation probabilities in Problem (5.3). The above

constraint forms the VaR constraint in the current problem. We set the default solution

(Section 4.2.1) to be QH,0 = 1,000 ML/Day, which is non-zero, because some release is

necessary for riparian and in-stream environmental needs.

For ease of reading, we briefly restate the control design parameters set in Section

3.6.1. We selected the matrices Q and S in the objective function J (⇥n ,�n ) (Eq. 3.52) as

block diagonal matrices with M copies of Q
0 and S

0 matrices, where

Q
0
=

266664

100 01,ns�1

0ns�1,1 0ns�1,ns�1

377775
S
0
= 10�11,

ns = 21 is the number of states, and the first state corresponded to the water level in

Lake Mulwala (Appendix 3.C). We used R = 0 (in Eq. 3.52), since the change in flow

at Heywoods is already subjected to constraints. We used the parametrisation of �n and

⇥n matrices (in Eq. 3.38) as in Eq. 3.19, to keep the number of optimisation variables d

small. We got d = 78 decision variables in the optimisation Problem (5.3), for details see

Section 3.6.1. We selected the overall POF (Probability Of Failure) of the algorithm to be

� = 1 ⇥ 10�6, which makes � = 1
7 ⇥ 10�6, and we fixed the safety margin % =

✏ f
2 = 0.005.

For simulations, we selected the following two situations:

• Situation 1: We considered the unregulated inflows from Kiewa and Ovens River to

be unknown, however, we assumed the demands from irrigation channels: Yarra-

wonga Main Channel (YMC) and Mulwala Canal (MC) and from Downstream

Yarrawonga Weir (DYW) to be exactly known. Forecasts for the flows at Bandiana

(B) and Peechelba (P) are based on Eq. 3.39, and we used the forecast models ob-

tained in Appendices 2.C & 2.D. We selected the uncertainties in the flow forecasts

wB and wP as independent and identically distributed Gaussian random variables

with zero means, and 50 ML/Day and 200 ML/Day standard deviations respec-

tively.
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• Situation 2: We considered the unregulated in- and out-flows to be partially known,

except the release from Yarrawonga Weir, which was known completely. Flow fore-

casts at Bandiana and Peechelba were done the same way as in Situation 1. How-

ever, the demands to the irrigation channels were considered to be known for the

first ten steps of the horizon M = 20, and for the next ten steps, we considered the

average value of the actual demands in those 10 steps. Such a demand profile is

close to reality, because river operators are usually aware of the demands for 3 to 4

days in future.

The optimisation problems in the algorithm were solved by running YALMIP [115] over

SDPT3 [4].

5.2.2 Performance of Situation 1: (unknown unregulated inflows)

For ease of reading, we show the flows at Heywoods (H), Bandiana (B), Peechelba (P),

Downstream Yarrawonga Weir (DYW), Yarrawonga Main Channel (YMC) and Mulwala

Canal (MC), once again in Fig. 5.2. Fig. 5.3 shows the simulations of the flows at Bandiana

and Peechelba for the selected dataset. The blue curves show the actual recorded data

and the red dashed curves show the simulation of the forecast models. The simulation

results of the flows at Bandiana are good, however, for the flows at Peechelba, the model

picks the trends well, but at flow peaks, the simulated flows are off by several hundred

ML/Day from the actual flows. For this reason we selected relatively higher standard

deviation of the additive noise term wP .

Fig. 5.4 shows the controlled water level in Lake Mulwala. The blue curve in the

figure shows the controlled water level, the black curve shows the actual recorded water

level and the magenta curve shows the simulation of the model in Eq. 3.65, using the

measured input data. The model performed reasonably well and picked the main trends

in the selected dataset.

The water level was controlled well within 124.65 and 124.9 mAHD through out the

simulation (Fig. 5.4). However, it was about to hit the boundary (124.9 mAHD) at the

42nd time instant. It can be explained from the regulated flows at Heywoods. In Fig. 5.5,

the red curve shows the actual recorded flow release at Heywoods and the blue curve
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Figure 5.2: Inflows and outflows in the dataset.
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Figure 5.4: Controlled water level in Lake Mulwala.

shows the flow release obtained from the proposed strategy. From the sampling instant

22nd to 37th , the flows were decreased at the maximum allowed rate, i.e. �500 ML/Day.

The restriction, on the rate of flow decrease, caused the water level to rise in the lake as

shown in Fig. 5.4. In Fig. 5.5, the flows at Heywoods went below 2,500 ML/Day twice

(2,500 ML/Day corresponds to the upper black dashed curve in the figure). These were

the events when the test in Step B-3 of the algorithm (Section 4.3.2), with ✏V = ✏ f , failed.

In the test, the water level crossed 125 mAHD more than 44 times out of NT = 8,798

different noise scenarios, and the improvement procedure was called. The value NT =

8,798 was obtained from the procedure Find N Test(✏ f = 0.01, % = 0.005, �T = 1⇥10�6

7 ) (for

details, see Section 4.3.1), and the number 44 was obtained from (✏ f � %)NT . The flows

were decreased up to 1,000 ML/Day (default solution, QH,0) at those events, as shown in

Fig. 5.5 (1,000 ML/Day corresponds to the lower black dashed curve in the figure).

Fig. 5.6 shows the ↵ values obtained from Problem (4.26) in the algorithm. A non-

zero ↵ value indicates an event, where the improving phase of the algorithm was called,

and ↵ = 1 indicates the instants when the flows were reduced to 1,000 ML/Day, i.e. the

default solution was used. Fig. 5.6 shows that the improving routine has been called in

roughly 30% of the total simulation steps. It shows that for the rest of the time, there was

no need to solve Problem (4.26), and a solution of Problem (5.3) was available at the end

of the optimisation phase of the algorithm.

Fig. 5.5 shows a couple of non-smooth changes in the regulated flow release from
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Figure 5.7: Controlled water level in Lake Mulwala with non-zero R in the objective
function.

Hume Reservoir. This can be smoothed down by considering a non zero R matrix in the

objective criterion J (⇥n ,�n ) (Eq. 3.52). For this, we selected the R matrix as an M ⇥ M

diagonal matrix with R0 = 5 ⇥ 10�8 in the diagonal. Figs. 5.7 & 5.8 show the correspond-

ing results. Fig. 5.8 shows that with this change the control action changed smoothly,

as compared to what we obtained in Fig. 5.5. In this case, we did not experience any

rise in the water level close to the 42nd time instant, as we saw before in Fig. 5.4. The

explanation can be seen in Fig. 5.8, where the flows did not get very high around the

22nd sampling instant, as compared to the flow behaviour in Fig. 5.5, where it got really

high (up to 15,000 ML/Day) around the 22nd sampling instant. The performance of the

algorithm for the rest of the time was almost similar in the two cases, and the water level

was well maintained between its upper and lower limits, as shown in Figs. 5.4 & 5.7.

Fig. 5.9 shows the corresponding ↵ values obtained from Problem (4.26), which indicates

that the number of calls to the improving phase was almost similar to what it was in the

previous case (Fig. 5.6), where R was selected as 0.

In this section we have seen that with the application of Optimisation and Testing algo-

rithm, we managed to keep the water level within safe limits, even when we have large

unregulated inflows. As mentioned earlier, the comparison with the recorded data is not

completely fair, because we had access to the exact future water demands and we ad-

justed the flow release every 8 hours while the operators only adjusted the flow every 24
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Figure 5.8: Regulated flows at Heywoods with non-zero R in the objective function.
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the objective function.



208 Application of the Optimisation and Testing Algorithm to Flood Control

hours. To see the response of the algorithm in a more realistic setting, we repeated the

same simulations in the next section, with partially known future demands

5.2.3 Performance of Situation 2: (partially known future water demands)

As we did in Section 3.6.3, here also we consider the case when water demands from the

irrigation channels (Yarrawonga Main Channel and Mulwala Canal) are unknown. We

mentioned in Section 3.6.3 that the river operators mostly know the water demands for

3 to 4 days in future. So in the following simulations, we considered the case where we

knew the water demands for the first 10 steps (roughly 3.5 days) of the finite horizon

M = 20, and for the next 10 steps, we assumed the demands to be the average value of

the demands over those 10 steps. Also, in these simulations we have used a non zero R

matrix (in Eq. 3.52), and we selected it as an M ⇥ M diagonal matrix with R0 = 5 ⇥ 10�8

on the diagonal.

Figs. 5.10 & 5.11 show the corresponding control results obtained by using the Op-

timisation and Testing algorithm. As expected, they are similar to the previous simulation

results, because in this particular dataset, the inflows from the unregulated rivers are

large (see Fig. 5.2), and in such cases the uncertainty in the inflows forecast is expected

to be higher than the uncertainty in the future demands. This effect dominated the simu-

lation results as well, and the uncertainties in the future demands stayed hidden.

The simulation results can be explained the same way as we did before. Fig. 5.10

shows the water level in Lake Mulwala, and again the control algorithm kept the wa-

ter level (shown with the blue curve) between 124.65 and 124.9 mAHD, through out the

simulations. However, the actual water level (shown with the black dashed-dotted curve)

exceeded the upper limit multiple times, and it also crossed the flood limit (125 mAHD).

As observed earlier, the water level close to the 45th time instant got closer to the upper

limit, and this was due to the high inflow from Peechelba at around 33rd time instant,

shown in Fig. 5.2. To compensate for that, the algorithm reduced the flow release from

Hume Reservoir from 20th to 36th time instant, shown by the blue curve in Fig. 5.11. Dur-

ing this period, the flow was reduced at the maximum allowed rate (i.e. �500 ML/Day),

and it could not go below that, which caused the water level in the lake to rise.
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Figure 5.12: ↵ values obtained in the improving phase (Problem (4.26)).

Fig. 5.11 shows that the flows were reduced up to the default solution level (1,000

ML/Day) multiple times, in the second half of the simulations. At those instants, the

chance-constraint corresponding to the flood limit failed the test, and again, it was due

to the high inflows from the unregulated rivers (Kiewa and Ovens Rivers), shown in Fig.

5.2. Timely reduction in the flow release from Hume Reservoir prevented the water level

in Lake Mulwala to cross the upper limit, and this is what we have seen in the previous

simulations as well. Fig. 5.12 shows the corresponding ↵ values, used by the algorithm

in each MPC step. Again, a zero value corresponds to the events when the improving

phase was not called, and the algorithm called the improving phase only 30-40 percent

times during the whole simulation, which is computationally very favourable.

The simulation results confirm that formulating the flood mitigation problem as an

M-CCP with two chance constraints (Problem (5.3)) achieves normal control objectives,

during normal conditions, and avoids flooding whenever flood risks appear, with an aid

of the default solution. Also, the proposed algorithm (Section 4.3.2) finds approximate

solution of the M-CCP problem in a computationally affordable way.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

The main objective of this thesis is to model and control rivers. We prefer data-based

modelling due to the availability of operational data from rivers, and also the obtained

models are simple and easy to use for control purposes. The aim of the control part is

to design river control, using the developed models, which should perform both normal

river operations and flood avoidance.

In Chapter 2 we have used the upper part of Murray River in Australia as a case

study, and compared different system identification methods. Particularly, in this the-

sis, we modelled water level in Lake Mulwala and flows at Doctors Point, Bandiana and

Peechelba, which are the important variables of the river stretch and the catchment. The

models were identified and validated against different data. In most cases the models

performed well, and they were found suitable for control and simulation purposes. In

particular, optimisation based methods, where prior information can easily be incorpo-

rated, performed very well on the river example.

To effectively control a river, we need to consider all regulated and unregulated in-

and out-flows in the river stretch. Moreover, forecasts of the unregulated in- and out-

flows are also required. These forecasts carry uncertainties, which we also want to ac-

commodate in the control strategy. In Chapter 3 we showed that Stochastic Model Predic-

tive Control (S-MPC) is a promising control strategy, since it can accommodate forecasts.

Moreover, MPC in general, is a suitable technique to incorporate constraints, and rivers

have many physical, environmental and operational constraints. However, due to the
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presence of the uncertainties, constraints are not always satisfied and the feasibility of the

river control (optimisation) problem is not guaranteed. To compensate for that, the river

control problem is formulated as a Chance-Constrained optimisation Problem (CCP), to

be solved in an S-MPC setup. A CCP consists of a probabilistic constraint, which is non-

convex in the optimisation variables in general, and we use the scenario approach to find

approximate solutions of CCPs. A randomised version of such an S-MPC is then used to

propose two optimisation schemes that provide feasibility assurance of the river control

problem. The first scheme requires a user specified trade-off between performance (in

terms of meeting control objectives) and constraint relaxation, while the second scheme

is an automated option. Both schemes were successfully applied in simulations to control

the water level in Lake Mulwala on Murray River.

To further improve the river control, so that it can also incorporate a flood mitiga-

tion strategy in the developed control schemes, we proposed Value-at-Risk as a flood

risk measure, and incorporated it in the river control formulation as a second chance-

constraint. This leads to a Multiple Chance-Constrained optimisation Problem (M-CCP)

with two chance-constraints. Chapter 4 is dedicated to find solutions of M-CCPs with two

or any finite number of chance-constraints, in a computationally affordable way within

an S-MPC setting. We proposed Optimisation and Testing algorithm to find approximate

solutions of such M-CCPs.

The proposed algorithm is applicable to river control problems, which ensure flood

avoidance without leading to conservative results during normal conditions. The algo-

rithm is applied, in simulations, to control the water level in Lake Mulwala on Murray

River with high unregulated inflows in Chapter 5. The comparison of the results with

the historical data and with the control strategies, where flood mitigation was not con-

sidered, shows a clear improvement in performance of the proposed strategy.

6.2 Future works

The work in this thesis can be extended in several directions. A few of them are given

below,
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1. Phenomena like rainfall-runoff, evaporation and ground water-surface water inter-

action can be incorporated in river models, provided the relevant measurements

are available. Such models can be very useful for simulation and forecasting pur-

poses, and it will be interesting to see how much improvement they can provide for

control purposes, if compared with the performance of the river models presented

in this thesis.

2. Unregulated tributaries can be modelled in a more sophisticated way, where they

might also require incorporation of phenomena like rainfall-runoff, evaporation

and ground water-surface water interaction. Moreover, it will be ideal if the models

could cover a wide range of flows. For the upper part of Murray River, it is impor-

tant to have a better forecast model for Ovens River, because it has contributed to

many floods in the past

3. Implementation of the proposed S-MPC strategy in Chapters 3 & 5 to an actual

river can be pursued, e.g. the designed controllers in this thesis can be applied to

the upper part of Murray River.

4. The river stretch considered in this thesis consists of a single long reach. It will be

useful to see the performance of the proposed schemes on multiple reaches of a

river, e.g. the stretch between Yarrawonga Weir and Turrumbarry Weir (which is

further downstream, along the Murray River) can also be included in the control

design.

5. More sophisticated environmental aspects can be considered in the modelling and

control procedures, e.g. ensuring reduction in channel erosion, safe fish habitat and

avoidance of sedimentation and bank degradation.

6. The proposed Optimisation and Testing algorithm can be further improved in terms

of computational cost of finding approximate solutions of general M-CCPs.
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[95] R. Tóth. Modeling and identification of linear parameter-varying systems, volume 214.

Springer, 2010.

[96] A. Chiuso. The role of vector autoregressive modeling in predictor-based subspace

identification. Automatica, 43(6):1034–1048, 2007.

[97] W.E. Larimore. Canonical Variate Analysis in identification, filtering, and adaptive

control. In Proceedings of the 29th IEEE Conference on Decision and Control, 1990, pages

596–604.

[98] T. Kailath. Linear systems. Prentice-Hall Englewood Cliffs, NJ, 1980.

[99] A. Alenany, H. Shang, M. Soliman, and I. Ziedan. Improved subspace identifi-

cation with prior information using constrained least squares. Control Theory &

Applications, IET, 5(13):1568–1576, 2011.

[100] P. Trnka and V. Havlena. Subspace like identification incorporating prior informa-

tion. Automatica, 45(4):1086–1091, 2009.

[101] H. Garnier, P. Sibille, and A. Richard. Continuous-time canonical state-space model

identification via Poisson Moment Functionals. In Proceedings of the 34th IEEE Con-

ference on Decision and Control, volume 3, pages 3004–3009. IEEE, 1995.



BIBLIOGRAPHY 225

[102] G.C. Calafiore. Random convex programs: Dealing with the non-existing solution

nuisance. In 49th Conference on Decision and Control (CDC), pages 1939–1944. IEEE,

2010.

[103] L. Deori, S. Garatti, and M. Prandini. Stochastic constrained control: trading per-

formance for state constraint feasibility. In European Control Conference (ECC), pages

2740–2745. IEEE, 2013.

[104] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,

2004.

[105] A. Bemporad, F. Borrelli, and M. Morari. Min-max control of constrained uncertain

discrete-time linear systems. IEEE Transactions on Automatic Control, 48(9):1600–

1606, 2003.

[106] A. Bemporad and M/ Morari. Robust model predictive control: A survey. In

Robustness in identification and control, pages 207–226. Springer, 1999.

[107] D. la Pena, D. Munoz, T. Alamo, and A. Bemporad. A decomposition algorithm for

feedback min-max model predictive control. In Conference on Decision and Control

and European Control Conference, CDC-ECC-05, pages 5126–5131. IEEE, 2005.

[108] M.V. Kothare, V. Balakrishnan, and M. Morari. Robust constrained model predic-

tive control using linear matrix inequalities. Automatica, 32(10):1361–1379, 1996.

[109] D.M. Raimondo, D. Limon, M. Lazar, L. Magni, and E.F. Camacho. Min-max model

predictive control of nonlinear systems: A unifying overview on stability. European

Journal of Control, 15(1):5–21, 2009.

[110] P. Scokaert and D. Mayne. Min-max feedback model predictive control for con-

strained linear systems. IEEE Transactions on Automatic Control, 43(8):1136–1142,

1998.

[111] M. Cannon, B. Kouvaritakis, and X. Wu. Model predictive control for systems

with stochastic multiplicative uncertainty and probabilistic constraints. Automatica,

45(1):167–172, 2009.



226 BIBLIOGRAPHY

[112] D. Van Hessem and O. Bosgra. Stochastic closed-loop model predictive control of

continuous nonlinear chemical processes. Journal of Process Control, 16(3):225–241,

2006.

[113] G.C. Calafiore and L. Fagiano. Robust model predictive control via scenario opti-

mization. IEEE Transactions on Automatic Control, 58(1):219–224, 2013.

[114] P.J. Goulart, E.C. Kerrigan, and J.M. Maciejowski. Optimization over state feedback

policies for robust control with constraints. Automatica, 42(4):523–533, 2006.

[115] J. Lofberg. Approximations of closed-loop minimax MPC. In 42nd Conference on

Decision and Control (CDC), volume 2, pages 1438–1442. IEEE, 2003.

[116] D.Q. Mayne, M.M. Seron, and S.V. Raković. Robust model predictive control of
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