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Abstract

Heavy industries such as construction, mining and transport typically have dangerous

work environments, where injuries and fatalities are rampant despite all the rules and

regulations. Such mishaps are largely due to human negligence and improper moni-

toring of the work place. Injuries are also more likely when man and machine operate

together. To ensure safety, a framework is needed capable of tracking moving objects

around a user with centimeter accuracy. The sensor should be small enough to be easily

incorporated in workers safety equipment, and robust against all the random movements

of the user and the objects in the surrounding area. This thesis addresses the issues in

developing a framework of a low cost smart helmet for workers in dangerous work en-

vironments. The techniques developed for safety helmets are also directly applicable to

light-weight navigation systems needed for tiny drones. At its core, we have developed

a framework and algorithms using simple and cheap continuous wave (CW) Doppler

radars to obtain the precise location of static and dynamic obstacles around a user. CW

Doppler radars only provide relative radial velocity, so the first issue is to determine the

conditions under which the position of a target is observable. We have also designed,

compared and analyzed different nonlinear trackers to determine which works better

under certain scenarios. We explore how instantaneous frequency measurements can be

obtained from rate of phase change in returned waves of CW radars. To this end, we

performed various simulations with different order models and results showed that we

can successfully localize walls with sub-centimeter accuracy. Moreover, we show that

random human head movements and walking do not pose much threat to estimation

accuracy and can be easily handled through added noise in the system.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

Autonomous collision avoidance and navigation is a classic problem that is still an active

area of research because of endless opportunities and applications in numerous fields.

One such example is industrial production lines, where computer-guided vehicles are

developed for the automatic flow of materials. Similarly, unmanned surveillance vehicles

are being developed that are capable of navigating themselves while securing a marked

area. Drones are ubiquitous, from recording high definition videos to rescue missions

and urban parcel deliveries. Sensors required for flight control of these drones must be

cheap and accurate, as well as robust enough to survive harsh environments. Though

they seem disparate, all these applications require semi or full autonomous navigation of

a machine with collision avoidance at its core. Research in recent decades has amassed

plethora of literature on this topic. However, following fundamental requirements of an

effective collision avoidance system still needs a feasible solution:

• Localization precision of sub centimeters;

• Low power consumption;

• Robust in both indoor and outdoor environments;

• Low cost of deployment, maintenance and operation;

• Compatible with equipment or systems already in use;

• User friendly.
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2 Introduction

Heavy industries such as construction, mining and transport employ a huge percent-

age of a countrys workforce. These are dangerous work environments, where injuries

and fatalities are common despite strict regulations. Such accidents are largely due to

human error, negligence and improper monitoring of work place environments. This

is exacerbated by tighter deadlines and escalating project costs, meaning employees of-

ten have to work long hours resulting in stress and fatigue, which in turn increases the

likelihood of injuries. Although governments typically regulate site safety inspections, it

is simply too expensive and impractical to ensure continuous monitoring and safety by

human resources on site.

Australian federal and state governments have been collecting and managing work

related injuries and fatalities statistics for the past 10-15 years. Their latest findings were

published in May 2016 [1] - containing work related injuries and claims statistics from

2000 to 2014. These records reported about 12.5 million injured workers. Out of these

about 4.3% injuries occurred in last two years of record keeping . This means even after

rigorous monitoring, control and management, accidents are rampant in industry. Due

to their injuries about 7% of all injured workers changed their jobs. Measuring in number

of persons, there were about 43 per 1000 workers who experienced a work related injury

in the last 12 months. Although it decreased from 53 persons per 1000 workers in 2009-

2010, this decline is clearly very small over a period of 4 years. Of all the Australian states,

Tasmania had the highest injury rate with 66 per 1000 workers in 1 year. The occupations

with the highest number of work related injuries or illnesses are:

• Machinery operators and drivers - 88 per 1000 employees;

• Community and personal service workers - 73 per 1000 employees;

• Technicians and trades workers - 72 per 1000 employees;

• Laborers - 66 per 1000 employees.

On the other hand, the industries with the highest work-related injuries are:

• Manufacturing;
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• Transport, postal and warehousing;

• Agriculture, forestry and fishing;

• Construction.

Of all the 323,700 injured workers, 31% were ’Technicians and trade workers’, 20%

were in Manufacturing, 18% were ’Machinery operators and drivers’ and 16% were in

construction.

Of the 531,800 injured workers, about 20% (106,200) sustained their injury or illness

by ’Hitting: being hit or cut by an object or vehicle’ and 13% (68,200) through ’Fall on

the same level’.

The work-related injury statistics provided above do not include the number of peo-

ple who die each year from work-related injuries. As these statistics are more serious

they are recorded separately. This includes fatalities resulting from a work related ac-

tivity and also as a side-effect of someone elses work activity. In the 13 years from 2003

to 2015, when government started to maintain records, 3,207 workers lost their lives in

work related activities. About two thirds of these worker fatalities involved vehicles. For

example, in 2015 alone, 115 out of 195 (59%) fatalities involved a vehicle collision. An-

other important finding from these statistics is that 76% of bystander fatalities (workers

fatality as a result of someone elses work-related activity) were due to a vehicle collision

or a moving object.

In terms of effecting the project time lines, 61% of the 531,800 injured workers took

some time off work and 15% were no longer working in the job in which the injury or

illness occurred. A particularly alarming fact is that median compensation payments

have increased by 71% since 2000-01.

These statistics show that each year most fatalities occur within Transport, Warehous-

ing, Agriculture, Fishing, Construction and Mining industries. In all industries, work-

ers operate in close proximity to heavy machinery within confined spaces. In 2015 alone,

these industries accounted for 47% fatalities.

A key element in success in any rescue or crisis intervention is the availability of an

accurate and updated map of the area. Such situational awareness can be used to map
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previously unknown areas or update the a-priori map of a place destroyed by natural

calamity. For rescue workers who lose their orientation due to fire or smoke, such real-

time maps could guide them to a safer location. But the successful utilization of such a

system lies in its miniaturization and its smooth integration with equipment already in

use. The feedback from such a system must also be subtle and user friendly to avoid

burdening the user.

A hard hat, being light weight and sturdy, is a key uniform element for workers in

unsafe fields. It is designed to protect the head from injuries in case of a mishap. Our idea

is to make these helmets smart enough to sense the surroundings and alarm the user of

possible dangers. This requires any sensor which goes on the helmet to be small, adding

only negligible weight, and robust enough to withstand rugged environments.

Recent advances in microelectronics and signal processing have provided us with

very small, low cost and high performance Doppler radars. Our idea is to research the

problems associated with placing these Doppler radars on a helmet to detect moving

objects in the surroundings. For example, if the helmet detects a potentially approaching

construction vehicle from the left side, it could alert the user by beeping in the left ear.

Similarly, if the helmet detects something dangerous on the right side it alerts the user

by beeping in the right ear. However, this approach has a number of intrinsic research

issues that must be addressed before this technology can be a viable option.

It must be noted that another important application of such technology is in robots

and UAVs. With advancements everyday it is clear that such autonomous machines will

infiltrate every aspect of human life. Basic ability to self navigate and avoid collisions in

complex and dynamic environments is essential for these machines. Any such collision

avoidance system should be light so as to add only minimal weight. Current technologies

rely mostly on vision sensors, which comparatively consume more power, and are heavy

and delicate.

1.2 Research Objectives

The objective of this research is to develop a smart system with the following properties:
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1. The ability to detect and track moving objects around a user with high accuracy;

2. Light enough to add negligible weight to the user;

3. Ability to withstand rough and rugged environments like construction;

4. Low power consumption;

5. Performance is unaffected by random human movements;

6. Ability to alert the user of imminent danger.

1.3 Organization and Contributions of Thesis

In this thesis we have tackled the issues of designing a low-cost, lightweight and effi-

cient safety system for workers. At its core we have developed algorithms and system

architecture using simple and cheap continuous wave (CW) Doppler radars to obtain the

precise location of static and dynamic obstacles around a user. This thesis is composed of

six chapters as follows.

• Chapter 1 explains the background to the research problem, its motivation and ob-

jectives.

• Chapter 2 contains a detailed review of previous approaches to similar problems

of localization. It also contains a detailed theoretical background of the techniques

used in our research. It primarily introduces the role of estimation theory in track-

ing a target. Additionally, we identify the conditions which make a target observ-

able from an observers point of view. These observability conditions later form the

basis of our trackers.

• Chapter 3 discusses the design of various trackers based on the identified observ-

ability conditions. Given the high non-linear nature of the problem, it also contains

detailed simulation results to show the efficiency as well as limitations in different

scenarios.
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• Chapter 4 then tackles the issue of indoor localization. It discusses the design of

simulation scenarios for indoor environments and associated difficulties in target

state estimation. Then it details the design and simulation results of state estimation

filters.

• Chapter 5 discusses the design and challenges of building a smart helmet. It in-

troduces the idea of how instantaneous frequency measurements can be obtained

from rate of phase change in returned waves of a continuous wave radar. It also

discusses the design of estimation algorithms based on such measurements. Since

these trackers are iterative, they need a reasonable starting point. Another contribu-

tion of this chapter is the proposal of a new initialization strategy for these iterative

trackers. Simulations show significant improvement in convergence time with this

new initialization methodology.

• Chapter 6 discusses the results of our research, conclusions drawn from it and di-

rections for future work.



Chapter 2

Literature Review and Theoretical
Background

2.1 Introduction

Simple localization of targets/objects around a mobile user/platform is a highly desir-

able feature, having fundamental applications in numerous, seemingly diverse areas. The

aerospace industry, for example, has an incessant demand for light weight sensors for lo-

cating targets around a plane. With recent advancements, drones and quadcopters are

ubiquitous. With their small size factor, the demand of light weight localizing sensors is

at its peak. This is because these flying machines have to satisfy strict weight, size and

computational requirements which limit the use of traditional navigational methods. To

improve safety in congested work environments like construction and mining, one needs

light weight sensors that can be simply integrated into equipment already worn, increas-

ing situational awareness.

Doppler radars are simple and cheap sensors that provide valuable information by

measuring Doppler shift of transmitted and reflected radio signals. With recent advance-

ments in microelectronics, frequency measurements can easily be obtained with high

accuracy through cheap Doppler radars. However, given the simplicity of the sensor,

Doppler-only tracking is a complex problem.

In this chapter, we first present the literature review and discuss existing approaches

used by researchers for indoor localization. In the next section, we formulate the problem

mathematically according to our situation. Then we briefly discuss the theory of target

tracking and estimation. Next, we review the fundamental issue of target observabil-

7
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ity from the frequency only measurements. The last section of the chapter contains key

points and conclusions drawn from the literature review, on the basis of which we would

design and develop target trackers.

2.2 Existing Approaches

Determining the relative position of an entity in an indoor environment is an integral task

of navigational applications and numerous building services. A plethora of literature can

be found covering different aspects of this problem [2] [3]. Solutions and systems being

developed offer a wide range of accuracy. In some applications, like controlling the lights

in a room, it is enough to get a rough estimate as to where a person is located. However,

for safety application such as collision avoidance, one needs localization precision of a

few centimeters.

Radio Frequency Identification (RFID) technology uses electromagnetic waves to de-

tect, identify and track objects. These systems are composed of RFID readers which read

the electromagnetic waves generated by tags attached to objects. Depending on the re-

quirements, tags can be active or passive. Active RFID tags provide a detection range of

tens of meters, whereas passive tags can only be detected within 1-2 meters of a reader.

One popular and obvious approach for indoor tracking is to attach a tag to each entity

to be tracked. The authors in [4] developed an inexpensive solution based on this idea

using off-the-shelf components. By analyzing the strength of radio signals received they

were able to localize objects in 3 dimensions. Their system was composed of several base

stations measuring the strength of signal received from an active tag attached to the tar-

get. Then a central server collects this information and estimates the position of the target

through triangulation. The authors claim to have achieved an accuracy of around 3 m.

Besides poor accuracy, the system also takes about 10-20 seconds to get one measure-

ment. A similar solution was offered as LANDMARC [5], which also uses active RFID

tags. However, to reduce the number of readers, the authors used the idea of reference

tags. These are fixed tags at known locations and are referenced for system calibration. It

is reported that the maximum range error is less than 2 m.
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Researchers have also proposed the Ultra Wide Band (UWB) active tags based sys-

tem for indoor localization. These systems employ ultrashort pulses with low duty cycle.

Besides being low powered, they can be used in close proximity to other RF equipment

because each uses a different signal and radio spectrum. UWB systems use the Time of

Arrival (ToA) and Angle of Arrival (AoA) characteristics of these short pulses to achieve

very high accuracy. Several systems based on UWB technology have been presented in

the literature. For example, Ubisense [6] is a commercially available UWB based local-

ization system. It uses active tags that transmits UWB signals to networked receivers. It

then employs both Time Difference of Arrival (TDOA) and AoA to estimate a tag’s posi-

tion. Just like cellular networks, it divides an area to be monitored into sensor cells, with

each cell having four or more readers. High deployment and maintenance costs are the

main drawbacks of this approach.

To reduce costs, scientists have also proposed localizing systems based on wireless

local area networks (WLANs). These use Received Signal Strength (RSS) at different re-

ceivers to determine the target’s location. The RADAR localization system [7], proposed

by Bahl et al., uses a variant of k-nearest-neighbors algorithm with empirical measure-

ment of signal strength at access points to determine a user’s position. Its accuracy is

reported to be between 2-3 m. Given the practicality and cost effectiveness of the sys-

tem, the authors have proposed another variant to improve accuracy [8] using a Viterbi-

algorithm-like approach. Horus systems [9] localize objects using probabilistic modeling

of signal propagation. Different experiments were performed to show that an accuracy

of about 2 m is possible in more than 90% of cases. In [10], the authors developed a

grid-based approach with Bayesian filtering to localize objects within 1.5 m. The com-

mercially available Ekahau system also uses WLAN to track electronic devices such as

tags and laptops. It works by correlating received signal strength with space information

[11]. However, this system has its own drawbacks like requiring a large number of ac-

cess points to cover blind spots in buildings, hence increasing overall costs. [12] presents

a Through-Wall Imaging (TWI) technique, which uses UWB pulses to detect static and

dynamic objects through the walls of a building. It has gained much interest among law

enforcing agencies. Using multiple frequencies, it is possible to obtain very high resolu-
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tion images of the objects [12, 13]. In [14] Y.K. Cho et al. tracked indoor mobile assets

in construction using a UWB wireless network system and also demonstrated that sta-

tistical modeling of errors can significantly improve tracking. On the other hand, 1.5 cm

accuracy was reported by [15] for 2D localization, but within a very small area of about

2x2m. Similarly, J. Teizer et al. [16] tried to estimate 3D location of building resources in

complex construction environments. In [17], T. Cheng et al. continued their research on

evaluating the capabilities of commercially available Radio Frequency ID based systems

in measuring construction site dynamics. From experimentation on real job sites, they

reported the accuracy of a UWB system for tracking mobile resources within 2 meters.

A WiFi based active localization solution is offered by Intel Place Lab [18]. In this

framework, each WiFi enabled device is assigned a unique ID when it connects to an

access point. Then the device is localized by triangulation using different access points

closer to the device. This system can provide accuracy of only up to 20 m and it reduces

even further when there are fewer access points. Its main advantage is that clients do

not require any additional hardware, and companion software is available online free of

charge.

AeroScout [19] is a company that provides indoor localization solutions using WiFi

signals from active tags attached to objects. Depending on room size and environment

to be monitored, it estimates the tag’s position using either Time Difference of Arrival

(TDOA) or Received Signal Strength Indicator (RSSI). The deployment cost can be made

relatively low by using the already existent wireless infrastructure. The feasibility of a

WiFi based tracking and positioning system for construction sites is studied in [20]. In

their research, they tracked the approximate location of labor within 5 m of error, using

Received-Signal-Strength-Information. Hazard prone areas such as those where tools,

materials, or objects could fall down or from above are a major threat to human safety.

[21] developed a prototype using Ultra Wide Band technology to determine if a worker

is in the close proximity of a predefined potentially dangerous area.

A relatively high accuracy of about 9 cm is reported by AT&T’s Active Bats Sys-

tems [22]. However, once again, high deployment cost, difficulties in scalability and

adjustment are its main drawbacks. It works by sending ultrasonic messages to receivers
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mounted on ceilings at every square meter. Then the system computes a user’s location

using Time of Flight (TOF) based triangulation. Further research has also been done in

discarding measurements arising from multipath reflections of same the message. How-

ever, the high initial cost has limited its application and development.

Regarding safety at work, many researchers have approached the problem in two

steps. First, a detailed analysis of previous accidents and injuries is performed, where all

accident precursors and near-misses are identified and documented. In the second step,

a framework is proposed that tries to eliminate the precursors and related behaviors. S.

Chae et al.[23] performed a detailed analysis of various construction site related injuries

and accidents. They collected previous work-injury data and built a database in order to

identify the major causes of accidents. The crux of the research was that accidents usually

occur for one of the following reasons:

1. Work procedures not set;

2. Circumstances and environment not checked;

3. Restricted areas not maintained;

4. Safety training not provided or enforced.

The authors then developed a Fault Tree Analysis model from the accidents database

and postulated that a collision avoidance system (see below for more details) should have

following three functions:

1. Provide adequate time for emergency avoidance response;

2. Ensure adequate information for situation (task and environment) awareness;

3. Ensure adequate ways of guaranteeing and confirming workers’ attention in situ.

Based on this approach, the authors then proposed a collision avoidance system using

active RFID tags. They estimated the working area of different machines and laborers

on-site wearing these tags. The system then issues warnings whenever working areas of

two entities overlap. Real construction site experiments were performed to measure and

report the feasibility of the system.
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In [24] H. Yang et al. adopted a similar two-step approach and identified the following

three accident precursors:

1. Unauthorized persons or machines in hazardous areas;

2. Lack of regular site, machine and material inspections;

3. Untrained workers not following the right procedures.

In order to minimize these accident precursors, they designed an integrated ZigBee RFID

based sensor network structure.

J. Teizer et al. [25] argued that research on safety in construction is mostly reactive;

i.e., based on data that is being reported after a fatal accident. They emphasize the need

for pro-active systems that work, on near-miss and close-call events. To achieve this, they

developed a RFID Active Tags based solution. In their approach they attached an Equip-

ment Protection Unit (EPU) on all heavy machines and handed a Personal Protection

Unit (PPU) to workers on foot. Whenever a PPU was in proximity of an EPU a warning

message was issued.

Safety is also highly correlated with ease of access to workers bio data such as their

training, authorization and time on job etc. It is also related to quick access to information

about machines such as their inspection schedule, time on job, repair work done, etc. [26–

28]. RFID based access management solutions were presented by [23–25]. They managed

an active database of workers that would grant access to machines and restricted areas

to authorized personnel only.

Blind spot measurements show that equipment operators need visual aid because

of their limited field-of-view. Teizer et al. [29–31] discovered that incidents occur mostly

because of the collision of heavy machinery with workers in the blind spots of the machines. They

used an automatic laser-based tool to measure the blind spot of different construction

machines. Figure 2.1 shows the result of their research [30].

Imaging and Vision techniques have mostly been applied in estimating the difference

between as-planned and as-built infrastructure - to automatically detect defects in con-

struction, for analyzing project time lines and for modelling in augmented reality [32–37].
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Figure 2.1: Blindspot map of a fork lifter

Yang et al. [38] explored two systems, a vision based system and an ultra-wide band

based system, to automatically extract the trajectory of interacting workforce. This in-

formation was then proposed to be used for task scheduling, production analysis and

progress evaluation.

Many site supervisors monitor video streams coming live from construction sites to

evaluate the quality and safety of work. Simultaneously monitoring tens of cameras, if

not impossible, would require huge resources. Memarzadeh et al. [39] marked potential

candidates in video streams for location of workers and equipment in 2D, using His-

togram of Oriented Gradiant and Hue-Saturation Colour Descriptors. To reduce costs,

some have experimented with video cameras to track and detect construction site enti-

ties. M. Park et al. [40] developed a method using background subtraction, histogram

of oriented gradients (HOG), and HSV color histogram to automate the classification of

workers from non-workers. According to [41], about 80-90% of accidents are due to the

workers’ unsafe behaviour. So authors proposed a vision-based framework to detect such

behaviors. In the first trials, they used it to determine unsafe ladder climbing postures.

A similar approach was also researched by [42, 43]. In [44], the authors integrated real

time data obtained from a crane into a 3D model located off site, enabling off site supervi-

sion for safe operations. Others have also experimented with various vision-based algo-

rithms, already tried in different fields, to evaluate their efficacy in construction-related
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tasks [45–48]. There has also been some focus on developing algorithms that work on

live video streams from construction sites, for pose extraction, blob tracking and classifi-

cation. A major purpose of this type of resarch is to monitor the productivity of workers

[49].

In [50, 51], the authors reported working on utilizing information in BIM to enhance

safety-related scheduling and planning activities on construction sites. They also elabo-

rated on the opportunities of promoting safety with better communications through use

of BIM between different parties, such as contractors, safety specialists, healthcare per-

sonnel, etc. The target is to improve occupational safety by embedding safety solutions

in BIM for safer construction planning and scheduling, and better communications and

management of site tasks.

In [52], researchers from MIT Media lab developed a system that infers safety con-

ditions at construction sites. They developed wearable sensors that measure levels of

dangerous gases, noise, light quality, altitude and motion. Similar research is also carried

out for the safety of mine workers in [53, 54]. LukoWicz et al. used microphones and

accelerometers mounted on the users body to classify tasks like sawing, hammering and

turning screws [55, 56].

In [53, 57–59], the authors have tried to improve safety conditions by integrating

miniature positioning devices and communication instruments in compulsory safety equip-

ment worn by all the workers on site; for example, hard hats, jackets, belts, etc. Using the

3-axis accelerometer and gyroscope sensors of a smart phone [60], R. Dzeng et al. devel-

oped and compared three algorithms to evaluate how well a smart phone can be used to

determine falls and fall portents.

The safety of workers is of foremost important. However, technological develop-

ments have mostly been directed towards the tracking and management of valuable as-

sets. Much research is being conducted in scheduling labor or optimizing timely delivery

of prefabricated parts, expensive machinery, construction tools and material, etc. [61–67].
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2.2.1 What is missing?

The Australian government is promoting a culture aimed at ensuring every worker re-

turns home safely - every day. To facilitate this, governments and companies are inviting

innovative solutions to safety issues at dangerous work sites. Realizing the importance of

safety, practitioners around the globe have already started integrating automated tech-

niques, equipment and procedure into their projects. Tools like Building Information

Modelling (BIM), introduced to support architects and engineers in designing buildings,

are now increasingly used in project planning, scheduling, cost reductions, clash detec-

tions, energy analysis, resource-savings, progress tracking, etc. What is missing is how

we can best use this vast amount of prior knowledge to determine potential safety loop-

holes - in situ, in real time. Little effort has been made in integrating real time site statis-

tics with such BIM knowledge bases. The BIM model is meant to work in a collaborative

environment where architects, engineers, contractors, sub-contractors, decision makers,

and all other members of the team can coordinate and share information. With improved

real time information about site safety statistics in BIM, the scope for mistakes can be

reduced to a large extent.

The objective of this research is to develop a framework for workers safety through

efficient use of real time sensed information. Sensing for safety at construction sites is

quite different from apparently similar areas like vehicle or pedestrian collision detection

on roads.

Current solutions also mostly rely on RFID, WIFI, Ultra Wide Band or computer vi-

sion. However, the requirement of attaching a separate tag to each entity usually in

thousands - would limit the applicability of such solutions in large, complex and dy-

namic construction environments. If only a handful of site entities remain untagged such

systems can be quite unreliable, and even dangerous themselves. Besides this, RFID has

only been able to triangulate the position of objects within a 2-5 meter radius, or up to 1

meter with Ultra Wide Band based systems.

Recent developments in radar miniaturization has produced radar-on-a-chip, costing

less than $5 each, making this very attractive for our applications. For example, The Oc-

cupational Health and Safety (OHS) Act 2004 places duties on various parties to ensure
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safety, such as compliance for the prevention of falls. Nevertheless, injuries due to falls

account for more than 1/3rd of all injuries [21, 60]. Surrounding a fall prone area with

a warning tape or scaffolding is not enough. On the other hand, manually monitoring

for safe distance of workers from such pitfalls 24/7 is also infeasible. Therefore, auto-

matic techniques based on radar tracking of objects around hazard prone areas could be

devised, ensuring safety compliance is met in such situations.

Statistics also show that approximately 1/3rd of fatalities or injuries at construction

sites are the result of collision with large hydraulic machines or excavators [23,25–27]. In

the case of cranes, for example, radar could be placed on a crane head, tracking workers

in its surroundings. The crane operator would be updated continuously if there is a

worker or another machine in his blind spots. At the same time, workers can be warned

about the position of cranes in their surroundings.

The OHS Act also demands that particular safety equipment, such as hard hats, must

be worn by all workers at all times. Research could be done to place the radar-on-a-

chip (with RFID personal identification) on hard hats, that continuously provides each

identified worker with information about their surroundings. Additionally, if hard hats

are not worn a person-specific signal could be generated to remind the individual to

wear his hat, etc. Safety compliance checking can also be integrated into the system,

including situation-aware helmets that guarantee a crane load is never closer than 10m

from a construction worker. Similarly, a warning can be issued if a worker is approaching

a prohibited area or is working under suspended loads.

Investing in smarter technology could save thousands of dollars spent each year in

compensating workers claims. At the same time, sensing for safety could also ensure

timely completion of projects by saving the time spent in remunerating serious accidents.

2.3 Mathematical Problem Formulation

In this section, we mathematically & formally formulate our problem of tracking a target

from an observer. To keep things simple, initially we assume that there’s only one target

and observer. Consider a target T moving along a trajectory r̄T(t) and emitting a signal of
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frequency fo, as shown in Fig. 2.2. Initially this frequency is assumed unknown in order

to arrive at a more general result.

Figure 2.2: Observer and target’s geometry for observability analysis

An observer moving along trajectory r̄O(t) makes bearing and frequency measure-

ments of the target and tries to estimate its state. We can obtain the following relation

from the geometry in Fig. 2.2.

r̄T(t) = r̄(t) + r̄O(t) (2.1)

In this work, three measurements sets are considered, namely: bearings-only, frequency-

only and bearing-frequency measurements together. The bearings (θ) and frequency ( f )

measurements satisfy following relationships,

θ = tan−1 r̄y(t)
r̄x(t)

(2.2)

f (t) = fo −
fov̄r(t)

c
(2.3)

= fo

(
1− v̄(t).r̄(t)

c |r̄(t)|

)
(2.4)
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= fo

(
1− |

˙̄r(t)|
c

)
(2.5)

where

• r̄(t) is the relative position vector

• |r̄(t)| is norm of r̄(t)

• | ˙̄r(t)| = d
dt (|r̄(t)|)

• r̄x and r̄y are X and Y components of r̄(t)

• v̄(t) is the relative velocity vector

• c is signal’s velocity

2.4 Bayesian Filtering & Estimation

The task at hand of estimating a target’s state, can be recast into a Probabilistic state

estimation problem of nonlinear system with additive noise [68–70]. It is the problem

of inferring the hidden parameters of a system in an optimal manner using available

noisy measurements. We will describe our discrete-time nonlinear system as a dynamic

state space model. The hidden system state X[k] evolves over time as partially observed

Markov process. It’s initial probability density is given as p(X0) and conditional prob-

ability density is represented as p(X[k]
∣∣X[k − 1]). Observations or measurements are

independent and follow the probability density p(Z[k]
∣∣X[k])

Then dynamic state space model of the problem is described by following set of dif-

ference equations,

Process Equation: X[k] = f (X[k− 1], U[k− 1]) + v[k− 1] (2.6)

Measurement Equations: Z[k] = h(X[k], U[k]) + w[k] (2.7)

where, X[k] ∈ R denotes state of dynamic system at time instant k, f : Rnx ×Rnu → Rnx

and h : Rnx × Rnu → Rnz are nonlinear known functions, U[k] is the known control
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input and Z[k] represents measurement vector. v[k] and w[k] are independent process

and measurement noise sequences, with zero mean and covariances Qvv[k] and Rww[k],

respectively. The state transition probability p(X[k]
∣∣X[k− 1]) is specified by f and pro-

cess noise distribution p(v[k− 1]). On the other hand, observation likelihood p(y[k]
∣∣x[k])

is defined by observation function h and observation noise distribution p(w[k]). This

dynamic state space model of the system with known process and observation noise

statistics and initial system distributions, gives us a probabilistic model of how the sys-

tem evolves over time. It also gives us a framework as how one can estimate the hidden

states or parameters of the system.

The optimal way to recursively update the posterior density p(x[k]
∣∣x[k− 1]) as new

observations arrive is given by recursive Bayesian estimation. In this domain, the esti-

mation problem is designed to recursively build confidence in the system state at time k,

using all measurements until time k Z1:k. Here Z1:k denotes set of measurements history

from time 1 up till k, Z1:k = {Z[1], Z[2], . . . , Z[k]}. To initiate the recursion, an initial esti-

mate about posterior density of system state is assumed. This initial guess depends upon

factors such as geometry of the problem at hand, allowable variances in the quantities

to be estimated, etc. Once this prior initial PDF p(X0
∣∣Z0) is available, then as new mea-

surements arrive at each instant, posterior PDF p(X[k]
∣∣Z1:k) is calculated in two steps:

prediction and update.

• Prediction Step: It involves predicting posterior density of the state at time ’k’

based on information up till time ’k-1’ using system model (2.6) and Chapman-

Kolmogorov equation as,

p(X[k]
∣∣Z1:k−1) =

∫
Rnx

p(X[k]
∣∣X[k− 1])× p(X[k− 1]

∣∣Z1:k−1) dX[k− 1] (2.8)

where, the probablistic model of state transition p(X[k]
∣∣X[k− 1]) is calculated from

system equation (2.6) and known statistics of process noise v[k].

• Time Update Step It involves updating the posterior density at time ’k’ with mea-
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surements at ’k’ using Bayes’ rule as,

p(X[k]
∣∣Z1:k) =

p(X[k]
∣∣Z1:k−1) p(Z[k]

∣∣X[k])
γ[k]

(2.9)

where γ is a normalizing constant that depends upon the liklehood p(Z[k]
∣∣X[k])

defined by measurement model and known statistics of measurement noise w[k].

It’s value is obtained as,

γ[k] = p(Z[k]
∣∣Z1:k−1) =

∫
Rnx

p(X[k]
∣∣Z1:k−1) p(Z[k]

∣∣X[k]) dX[k] (2.10)

This recursive Bayesian filtering solution as presented above provides an optimal so-

lution to nonlinear filtering problem. Problem with above approach is that multidimen-

sional integrals in (2.9) and (2.10) are quite complex and intractable. As a result optimal

solution can’t be guaranteed in all situations.

If system dynamics are linear with Gaussian noise, then the optimal closed-form re-

cursive solution is given by Kalman Filter [68]. However, in case of most real-world

systems, which are nonlinear and non-Gaussian, these multi-dimensional integrals are

intractable and one has to resort to suboptimal approximate solutions.

Depending upon how non-linearity is being handled different approaches have been

proposed in the literature. These approximate methods make some form of simplifying

assumptions about either the form of probability density functions or system dynamics.

One route to designing such filters is to fix the posterior density to take some a priori

form such as Gaussian, leading us to methods like Extended Kalman Filter (EKF) [71],

Unscented Kalman Filter (UKF) [72,73], Quadrature Kalman Filter (QKF) [74] and Cuba-

ture Kalman Filter (CKF) [75]. These filters maintain and update only first and second

order moments of the probability densities. These filters appear more attractive to re-

searchers for being computationally less expensive.

Another approach to handle non-linearities is through Sequential Monte Carlo (SMC)

methods. In these algorithms no a priori assumption is made about posterior PDF. They

are used for estimation of any nonlinear and non-Gaussian systems. These methods ap-

proximate the integrals with finite sums, where summation is done with sequential im-
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portance sampling of weighted sums picked from a proposed PDF that approximates

the true posterior PDF. Particle filters [76] with their numerous variants fall under this

category. However although these are more accurate but they also suffer from high com-

plexity compared to Gaussian approximate methods.

After the breakthrough introduction of Kalman filter for linear systems, the most

obvious extension to nonlinear systems was to approximate the nonlinear equations

through Taylor series expansion around the current estimate of the system state. This

formed the basis of Extended Kalman Filter (EKF) [71]. Among all the suboptimal meth-

ods that’s been developed in last 50 years or so, EKF is probably most widely used in

nonlinear estimation.

2.4.1 Extended Kalman Filter (EKF)

EKF is based on linearization of nonlinear functions f() and h() in (2.6) and (2.7). More-

over, p(X[k]
∣∣Z1:k) is assumed to be Gaussian(N ).

p(X[k− 1]
∣∣Z1:k−1) ≈ N (X[k− 1]; X̂[k− 1

∣∣k− 1]; P[k− 1
∣∣k− 1]) (2.11)

p(X[k]
∣∣Z1:k−1) ≈ N (X[k]; X̂[k

∣∣k− 1]; P[k
∣∣k− 1]) (2.12)

p(X[k]
∣∣Z1:k) ≈ N (X[k]; X̂[k

∣∣k]; P[k
∣∣k]) (2.13)

Prediction

X̂[k
∣∣k− 1] = f [X̂[k− 1

∣∣k− 1]] + U[k− 1] (2.14)

P[k
∣∣k− 1] = FP[k− 1

∣∣k− 1]FT + Qvv[k− 1] (2.15)

Innovation

e[k] = Z[k]− h[ ˆX[k
∣∣k− 1]] (2.16)

Ree[k] = HP[k1
∣∣k− 1]HT + Rww[k] (2.17)
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Gain

K[k] = P[k
∣∣k− 1] HT R−1

ee [k] (2.18)

Update

X̂[k|k] = X̂[k|k− 1] + K[k] e[k] (2.19)

P[k|k] = [I − K[k] H] P[k
∣∣k− 1] (2.20)

In above algorithm, F and H represents Jacobians of nonlinear functions f() and h()

respectively and are defined as,

F =
d f (X)

dX

∣∣∣∣∣
X=X̂[k−1

∣∣k−1]

(2.21)

H =
dh(X)

dX

∣∣∣∣∣
X=X̂[k

∣∣k−1]

(2.22)

EKF algorithm linearizes using only first derivative in Taylor series expansion of f()

and h(). Although there are variants of Extended Kalman filter which uses higher deriva-

tives in linearization, however, nominal improvement given the additional complexity

has rendered them obsolete.

Although EKF has been successfully applied in many research and commercial non-

linear systems, unfortunately it is based on a suboptimal implementation of Bayesian

estimation. This often leads to divergence of filter i.e. where filter fails to generate a

consistent estimate of estimation error covariance [73]. These and other short comings

of EKF have paved way to a number of variants of approximate Gaussian filters that are

derivativeless and based on deterministic sampling methods for propogation of mean &

covariance of Gaussian PDFs through nonlinear systems.
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2.4.2 Unscented Kalman Filter (UKF)

Another approach to handle nonlinearities in system dynamics is through statistical lin-

earization, giving us the well celebrated Unscented Kalman filter. It works by determin-

istically selecting a set of points that could approximate p(X[k]
∣∣Z1:k). These points are

then propogated through the original non linear function f() and h(). These propogated

points are then used to approximate the parameters of posterior PDF. As with EKF, UKF

also assumes that all probabilities are Gaussian (2.11), (2.12) and (2.13).

State’s Sigma Points and Weights

χo = X̂[k
∣∣k] (2.23)

χi = X̂[k|k] +
(√

(Nχ + κ)P[k
∣∣k])

i
(2.24)

χi+Nx = X̂[k|k]−
(√

(Nχ + κ)P[k
∣∣k])

i
(2.25)

(2.26)

Wo =
κ

Nχ + κ
(2.27)

Wi =
1

2(Nχ + κ)
= Wi+Nχ

(2.28)

(2.29)

State Prediction

χi[k + 1
∣∣k] = f [χi[k

∣∣k]] + U[k] (2.30)

X̂[k + 1
∣∣k] = 2Nx

∑
i=0

Wiχi[k + 1|k] (2.31)

χ̃i[k + 1
∣∣k] = χi[k + 1

∣∣k]− X̂[k + 1
∣∣k] (2.32)

P[k + 1
∣∣k] = 2Nχ

∑
i=0

Wiχ̃i[k + 1
∣∣k]χ̃T

i [k + 1
∣∣k] + Qvv[k] (2.33)
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Measurements’ Sigma Points and Weights

χ̂i[k + 1
∣∣k] = {χi[k + 1

∣∣k], χi[k + 1
∣∣k] + κ

√
Rvv[k], χi[k + 1

∣∣k]− κ
√

Rvv[k]} (2.34)

Measurement Prediction

Zi[k + 1
∣∣k] = h[χ̂i[k + 1

∣∣k]] (2.35)

Ẑ[k + 1
∣∣k] = 2Nχ

∑
i=0

WiZi[k + 1
∣∣k] (2.36)

Residual Prediction

ξ[k + 1
∣∣k] = Zi[k + 1

∣∣k]− Ẑ[k + 1
∣∣k] (2.37)

Rξξ [k + 1
∣∣k] = 2Nχ

∑
i=0

Wiξi[k + 1
∣∣k]ξT

i [k + 1
∣∣k] + Rww[k + 1] (2.38)

(2.39)

Gain

Rχ̃ξ [k + 1
∣∣k] = 2Nχ

∑
i=0

Wiχ̃i[k + 1
∣∣k]ξT

i [k + 1
∣∣k] (2.40)

K[k + 1] = Rχ̃ξ [k + 1
∣∣k]R−1

ξξ [k + 1
∣∣k] (2.41)

State Update

e[k + 1] = Z[k + 1]− Ẑ[k + 1
∣∣k] (2.42)

X̂[k + 1
∣∣k + 1] = X̂[k + 1

∣∣k + 1] +K[k + 1]e(t) (2.43)

P[k + 1
∣∣k + 1] = P[k + 1

∣∣k]−K[k + 1]Rξξ [k + 1
∣∣k]KT[k + 1] (2.44)
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2.4.3 Cubature Kalman Filter (CKF)

CKF numerically computes multivariate integrals using a so-called spherical-radical cu-

bature rule [75]. Using Gaussian approximations, a set of cubature points and weights are

selected to represent the prior PDF. These cubature points are then propagated through

nonlinear functions to approximate the parameters of posterior PDF. Main feature of CKF

is that it’s complexity is claimed to increase linearly with system dimensionality. Main

steps of algorithm are as follows,

State’s Cubature Points

P[k
∣∣k] = S[k

∣∣k]ST[k
∣∣k] (2.45)

χi[k
∣∣k] = S[k

∣∣k]ξi + X̂[k
∣∣k] i = 1 . . . 2Nχ (2.46)

State’s Prediction

χi[k + 1
∣∣k] = f [χi[k

∣∣k], U[k]] i = 1 . . . 2Nχ (2.47)

X̂[k + 1
∣∣k] = 1

m

2Nx

∑
i=1

χi[k + 1|k] (2.48)

P[k + 1
∣∣k] = 1

m

2Nχ

∑
i=1

χi[k + 1
∣∣k]χT

i [k + 1
∣∣k] + X̂[k + 1

∣∣k]X̂T[k + 1
∣∣k] + Qvv[k] (2.49)

Measurement’s Cubature Points

P[k + 1
∣∣k] = S[k + 1

∣∣k]ST[k + 1
∣∣k] (2.50)

χi[k + 1
∣∣k] = S[k + 1

∣∣k]ξi + X̂[k + 1
∣∣k] i = 1 . . . 2Nχ (2.51)
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Measurement Prediction

Zi[k + 1
∣∣k] = h[χi[k

∣∣k], U[k]] i = 1 . . . 2Nχ (2.52)

ẑ[k + 1
∣∣k] = 1

m

2Nx

∑
i=1
Zi[k + 1

∣∣k] (2.53)

P[k + 1
∣∣k] = 1

m

2Nχ

∑
i=1

χi[k + 1
∣∣k]χT

i [k + 1
∣∣k] + X̂[k + 1

∣∣k]X̂T[k + 1
∣∣k] + Qvv[k] (2.54)

Gain

Pzz[k + 1
∣∣k] = 1

m

2Nχ

∑
1
Z [k + 1

∣∣k]Z [k + 1
∣∣k]− ẑ[k + 1

∣∣k]ẑT[k + 1
∣∣k] (2.55)

Pxz[k + 1
∣∣k] = 2Nχ

∑
1

ωi

(
χi[k + 1

∣∣k]ZT[k + 1
∣∣k]− x̂[k + 1

∣∣k]ẑT[k + 1
∣∣k]) (2.56)

K[k + 1] = Pxz[k + 1
∣∣k]P−1

zz [k + 1
∣∣k] (2.57)

State Update

x̂[k + 1
∣∣k + 1] = x̂[k + 1

∣∣k] +K[k + 1]
(
z[k + 1]− ẑ[k + 1

∣∣k]) (2.58)

P[k + 1
∣∣k + 1] = P[k + 1

∣∣k]−K[k + 1]P[k + 1
∣∣k]KT[k + 1] (2.59)

Now problem at hand is to determine under what conditions a unique tracking solu-

tion could be guaranteed. Target state r̄T(t) is considered observable over time interval

[to, t f ] if and only if it can be uniquely determined in that interval. If it is not unique then

it’s called unobservable.

2.5 Target Motion Analysis

Passive target tracking and localization is a widely studied estimation problem, com-

monly known as Target Motion Analysis (TMA). The conventional approach to the prob-
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lem considers a single observer that monitors the movements of a target, subsequently

estimating its position and velocity. Depending upon the nature of target’s dynamics

and resulting measurements, the system could be linear or non-linear. In case of the

bearing and frequency (Doppler) measurements, the measurement equations are nonlin-

ear. Therefore, a unique tracking solution is not always guaranteed. In practice, precise

knowledge of such conditions is required under which a unique solution could be guar-

anteed. In this work, we consider the observability of target’s state from bearing and

Doppler shifted frequency measurement.

Observability deals with the issue that whether state of a dynamic system can be

uniquely determined from its outputs. A given dynamic system is considered observable

if its state can be uniquely determined from its model, inputs and outputs. If the system

state is not uniquely determinable then system is said to be unobservable.

2.5.1 Observability Analysis with Linear Measurements

The notion of observability, though first introduced by Kalman [77, 78], goes back to

method of least squares [79]. A system of equations can be recast in matrix form as,


h11 h12 . . . h1n

h21 h22 . . . h2n
...

...
. . .

...

hn1 hn2 . . . hnn




x1

x2
...

xn

 =


z1

z2
...

zn

 (2.60)

Hx = z (2.61)

Once we have the above system of linear equations, we could consider the problem of

finding an estimate x̂ such that it minimizes the square of estimated measurement error,

ε2(x) = [Hx̂− z]2 (2.62)

This function will achieve its minimum where all its derivative with respect to x̂ are
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zero. Taking such derivative and equating to zero we obtain,

2HT[Hx̂− z] = 0 (2.63)

2HT Hx̂− 2HTz = 0 (2.64)

HT Hx̂ = HTz (2.65)

Solving for x̂, we obtain,

x̂ = [HT H]−1[HTz] (2.66)

Equation 2.66 has a unique solution provided that the matrix [HT H] is invertible or

nonsingular. This matrix is known as Gramian matrix ’G’. If the determinant of Gramian

matrix is zero, then it means that column vectors of H are linearly dependent. Therefore,

x̂ can not be uniquely specified. Conversely, if determinant is nonzero then x̂ can be

uniquely determined.

Observability of a set of unknown variables expressed as equations with some given

constraints deals with the issue that whether value of unknown variables can be uniquely

determined or not. If the constraint equations are linear in the unknown variables then

Gramian matrix must be full rank i.e. nonsingular, for the system to be observable [79,80]

2.5.2 Observability Analysis with Nonlinear Measurements

Target motion analysis is a widely investigated topic; for example in avionics for tracking

planes and missiles, in robotics & machine vision for tracking people & objects of interest,

in underwater environments for tracking submarines & sea fauna, etc. In all these appli-

cations, the uniqueness of tracking solution from measurements must be guaranteed.

Tremendous work has been done regarding the observability analysis of systems with

nonlinear bearing and frequency measurements. Observability is essentially a property

of the given system model. We start by assuming a finite dimensional models for tar-

get and observer dynamics. A single observer then makes bearing and/or frequency
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measurements about target and subsequently tries to estimate its state (position, velocity,

etc.). A number of different approaches have been utilized to obtain various solutions

for this observability problem. For analysis with bearings-only measurements, one of

the widely used method is to transform nonlinear measurements into some linear form,

which then enables the use of theorems from linear systems’ theory for observability anal-

ysis [81,82]. This approach however, leads to complicated nonlinear differential equation

which requires tedious mathematics to obtain a solution. Moreover, results obtained

from this technique are also quite cumbersome to be interpreted for real life. An ele-

gant approach proposed by [83–85] avoids analyzing the observability matrix altogether.

It develops the uniqueness criterion for two-dimensional first-order [86], three dimen-

sional second-order [87] and general three dimensional Nth order target dynamics case

by using simple linear theory approach and geometric analysis.

When only frequency measurements are available, to the best of our knowledge, no

one has yet been able to recast them into linear form [85]. For a constant velocity model,

[88] derives some observability conditions for Doppler tracking. Although it provides

good geometrical insights about when the solution is unique up to a rotation and reflec-

tion in observer’s coordinate system, however, results and discussions are only limited

to a fixed velocity target.

For combined set of bearings and frequency measurements, nonlinear equations are

recast into linear form, leading to necessary and sufficient observability conditions for

two-dimensional first-order dynamics case [89] and Nth-order dynamics case [83–85].

Given the nonlinearity and Nth order dynamics nature of our problem, we adopt the

observability criterion developed in [85], where no restriction is imposed on observer

and target’s motion. In this work, author first determines the set of all the trajectories

that are compatible with the given bearing and frequency measurements. Then using

results from linear algebra necessary and sufficient conditions are subsequently derived

that would reduce this set to a unique tracking solution. Conditions derived using this

method are straight forward to be interpreted physically.
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2.5.3 Observability Criteria For Bearing & Frequency Measurements

First without applying any restriction on target’s motion, we analyze the transformations

that would produce target trajectories compatible with measurements’ history. Next, ob-

servability analysis for constrained target motions (constant velocity, constant accelera-

tion, etc.) can easily be carried out, as it would be a subset of unconstrained motions.

Consider an arbitrary target trajectory r̄′T(t) compatible with measurements obtained.

That is, trajectories r̄T(t) and r̄′T(t) would generate same bearing measurements history,

θ(t) = θ(t)′

where primed variables indicate quantities associated with trajectory r̄′T(t). It is nec-

essary and sufficient for trajectories r̄′T(t) to lead to same measurements history as r̄T(t)

if and only if Line Of Sight (LOS) angle remains constant at all times. Thus

r̄′T(t) = κ(t)r̄(t) + r̄O(t) (2.67)

where κ(t) is an arbitrary scalar function greater than zero.

On the other hand if only frequency measurements are available, then for trajectories

r̄′T(t) to lead to same measurements history as r̄T(t), we have

f (t) = f ′(t)

fo

(
1− v̄(t).r̄(t)

c |r̄(t)|

)
= f ′o

(
1− v̄′(t).r̄′(t)

c
∣∣r̄′(t)∣∣

)
(2.68)

where, as before, primed variables indicates quantities associated with trajectory r̄′T(t).

Rearranging above equation we obtain

foc |r̄(t)| − fo(v̄(t).r̄(t))
c |r̄(t)| =

f ′oc
∣∣r̄′(t)∣∣− f ′o(v̄′(t).r̄′(t))

c
∣∣r̄′(t)∣∣

foc
|r̄(t)|
|r̄(t)| − fo

(
v̄(t).

r̄(t)
|r̄(t)|

)
= f ′oc

∣∣r̄′(t)∣∣∣∣r̄′(t)∣∣ − f ′o

(
v̄′(t).

r̄′(t)∣∣r̄′(t)∣∣
)

foc− fo | ˙̄r(t)| = f ′oc− f ′o
∣∣∣ ˙̄′r(t)

∣∣∣
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c( fo − f ′o) = fo | ˙̄r(t)| − f ′o
∣∣∣ ˙̄′r(t)

∣∣∣ (2.69)

Integrating from to to t we obtain,

∫ t

to

c( fo − f ′o)dt =
∫ t

to

(
fo | ˙̄r(t)| − f ′o

∣∣∣ ˙̄′r(t)
∣∣∣) dt

c( fo − f ′o)(t− t′o) = fo (|r̄(t)| − r̄o)− f ′o
(∣∣r̄′(t)∣∣− r̄′o

)
Rearranging above equation we can obtain,

∣∣r̄′(t)∣∣ = β |r̄(t)|+ α + c(1− β)(t− to) (2.70)

where

α = r′o − βro (2.71)

β =
fo

f ′o
(2.72)

This means that if r̄(t) satisfies 2.70, trajectories r̄T(t) and r̄′T(t) can’t be distinguished

form each other on the basis of frequency measurements alone. Using Eq. 2.67 and Eq.

2.70, we can obtain the set of compatible trajectories as,

r̄′T(t) = D(t)
[

β +
α + c(1− β)(t− to)

|r̄(t)|

]
r̄(t) + r̄O(t) (2.73)

Here D(t) is an arbitrary orthogonal transformation. In case if the signal frequency is

known then fo = f ′o or β = 1. Putting this β value in Eq. 2.73 yields,

r̄′T(t) = D(t)
[

1 +
α

|r̄(t)|

]
r̄(t) + r̄O(t) (2.74)

This means that even in known frequency case there are compatible trajectories, pa-

rameterized by α, which produces same frequency measurements history.

Considering both bearing and frequency measurements, compatible trajectories must

belong to intersection of two sets of trajectories as defined by equations (2.67) and (2.73).

With additional bearing measurements at hand, the ambiguity of orthogonal transforma-
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tion in (2.73) is removed. Therefore, in this case it is necessary and sufficient for r̄T(t) to

lead to same measurement history as r̄′T(t) if following relation is satisfied,

r̄′T(t) =
[

β +
α + c(1− β)(t− to)

|r̄(t)|

]
r̄(t) + r̄O(t) (2.75)

Equations (2.67), (2.73) and (2.75) show that true trajectory is always embedded in a

set of compatible trajectories with no restrictions being applied on target/observer dy-

namics. This also shows that question of observability would only make sense for con-

strained motion cases, revealing special conditions that could effect target’s observability.

2.5.4 Nth-Order Dynamics Model

By modeling the system as Nth order dynamics, [81–83] avoided analyzing the observ-

ability matrix. This formulation enables direct derivation of observability conditions. In

similar fashion, we model target and observer states as Nth order dynamics over the

observation interval [to, t f ] as

r̄T(t) =
N

∑
i=0

r̄i
T(to)

i!
(t− to)

i (2.76)

r̄O(t) =
M

∑
i=0

r̄i
O(to)

i!
(t− to)

i (2.77)

where r̄i represents the ith time derivative. This restriction of finite order dynamics

thus reduces the set of compatible trajectories in (2.67), (2.73) and (2.75). Furthermore,

since r̄T(t) is an N degree vector polynomial, r̄′T(t) must also be a N degree vector poly-

nomial. If system is observable then set of compatible trajectories shrinks to only one

trajectory and r̄′T(t) = r̄T(t).

To simplify further analysis, let’s represent class of Nth order vector polynomials as,

PN =
N

∑
i=0

āi(t− to)
i = At̄ (2.78)
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āi =
r̄i

T(to)

i!
(2.79)

where A = [āo, ā1, . . . , āN ] is an arbitrary 3x(N+1) matrix of coefficients independent

of t and t̄ =
[
1, (t− to), (t− to)2, . . . , (t− to)N]T.

2.5.5 Observability Analysis for Bearings-only Measurements

Subtracting Eq. (2.1) and (2.67) to remove observer motion, we get,

r̄′T(t)− r̄T(t) = (κ(t)− 1)r̄(t) (2.80)

When κ = 1, we get true target motion as in eq (2.67). However, since we are inter-

ested in compatible target trajectories that are different from (2.67), let κ 6= 1. Rearranging

above equation to obtain,

r̄(t) =
1

(κ(t)− 1)
(r̄′T(t)− r̄T(t))

r̄(t) = Kb(t) At̄ (2.81)

where Kb = (κ − 1)−1. Since r̄T ∈ PN and r̄′T ∈ PN , their difference must also be in PN ,

i.e. (r̄′T(t) − r̄T(t)) ∈ PN . Thus (r̄′T(t) − r̄T(t)) must be of the form At̄ as in Eq. (2.78).

Eq. (2.81) is therefore the necessary and sufficient condition of unobservability in class of

Nth-order dynamics targets.

For Kb(t) = 1, Eq (2.81) establishes the well known fact that in absence of maneuver,

target is not observable. Note that in general maneuvering means existence of one or

more non-zero derivatives of order higher than the order of target model dynamics to be

estimated. However, only those maneuvers that satisfy Eq (2.81) are allowed. As another

example, consider the case of estimating the position of a stationary target from a constant

velocity moving observer. As long as, observer moves along a constant LOS trajectory,

target remains unobservable. This can be verified by selecting A = (1r, 03, . . . , 03), where

03 is a three-dimensional null vector and 1r =
r̄(t)
|r̄(t)| is a constant unit vector in direction
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of LOS. Choosing Kb(t) = |r̄(t)|, (2.81) becomes,

r̄(t) = |r̄(t)|


r̄x(t)
|r̄(t)| 0

r̄y(t)
|r̄(t)| 0

r̄z(t)
|r̄(t)| 0


1

t



r̄(t) =


r̄x(t) 0

r̄y(t) 0

r̄z(t) 0


1

t

 (2.82)

2.5.6 Observability Condition

With bearings only measurements, target state is observable if and only if LOS angle be-

tween observer and target does not remain constant. This means either target or observer

must maneuver.

2.5.7 Observability Analysis for Frequency-only Measurements

Similarly, as in previous section, subtracting Eq. (2.1) and (2.73) to eliminate the observer

motion vector, we obtain,

r̄′T(t)− r̄T(t) = D(t)
[

β +
α + c(1− β)(t− to)

|r̄(t)|

]
r̄(t) + r̄O(t)− r̄(t)− r̄O(t)

=

[
D(t)

[
β +

α + c(1− β)(t− to)

|r̄(t)|

]
− I
]

r̄(t)

As before, (r̄′T(t)− r̄T(t)) ∈ PN . Thus (r̄′T(t)− r̄T(t)) must be of the form At̄ as in Eq.

(2.78). Hence above equation becomes,

At̄ =
[

D(t)
[

β +
α + c(1− β)(t− to)

|r̄(t)|

]
− I
]

r̄(t) (2.83)
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Rearranging above equation, we can write

r̄(t) =
[

D(t)
[

β +
α + c(1− β)(t− to)

|r̄(t)|

]
− I
]−1

At̄ (2.84)

= K f (t) At̄ (2.85)

where,

K f (t) =
[

D(t)
[

β +
α + c(1− β)(t− to)

|r̄(t)|

]
− I
]−1

For A 6= 0, Eq. (2.84) is the necessary and sufficient condition for unobservability with

frequency measurements, i.e. as long as relative distance satisfies (2.84), Nth-order target

dynamics remain unobservable.

2.5.8 Constant Line of Sight Targets

In this case it is sufficient to show that for constant LOS targets there always exists an

Nth-order target trajectory r̄′T(t) 6= r̄T(t) which is compatible with the frequency mea-

surements. For example, one such compatible trajectory can be obtained by selecting

D(t) = I, β = 1 and α 6= 0 and A = (1r, 03, . . . , 03), in Eq. (2.73) as,

r̄′T(t) = r̄(t) + α
r̄(t)
|r̄(t)| + r̄O(t)

= r̄(t) + α1̄r + r̄O(t)

= r̄T(t) + α1̄r (2.86)

where 1r is a unit vector along r̄(t).

2.5.9 Non-Constant LOS Targets

As constant LOS results in unobservability in any case, therefore, we now assume that

relative motion between target and observer is not along a constant LOS. Furthermore,

these motions are confined to vector polynomial of order N and M, as shown in Eq. (2.76)
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and (2.77). Then as stated before, relative motion is also a vector polynomial, given as,

r̄(t) =
L

∑
i=0

r̄i(to)

i!
(t− to)

i (2.87)

where

L = max(M, N) (2.88)

r̄i(to) = r̄i
T(to)− r̄i

O(to); (2.89)

Let us now investigate the degree of norm of relative motion vector r̄(t). As discussed

previously that in case of unobservability, the norms of relative distances, |r̄′(t)| and

|r̄(t)|, are functionally related by Eq. (2.70). Note that |r̄(t)|2 = (rx(t)2 + ry(t)2 + rz(t)2)

is a polynomial of degree 2L. Squaring both sides of Eq. (2.70) and rearranging to obtain

|r̄′(t)|2 − β2 |r̄(t)|2 − [α + c(1− β)(t− to)]
2 = 2β |r̄(t)| [α + c(1− β)(t− to)] (2.90)

Left hand side of above equation consists of two polynomials of degree 2L and a

polynomial of degree 1. As left hand side of Eq (2.90) is a polynomial therefore right

hand side must also be a polynomial. This right hand side consists of a product of |r̄(t)|

and a polynomial. Using a simplified notation, Eq (2.90) can be written as,

P2L = |r̄(t)|P1 (2.91)

where Px denotes a polynomial of degree x. Rearranging yields

|r̄(t)| = P2L

P1
for α 6= 0 and β 6= 1 (2.92)

Squaring boths sides of above equation,

|r̄(t)|2 =
P2

2L
P2

1
(2.93)

However, since |r̄(t)|2 is a polynomial therefore it implies that P2
1 divides P2

2m without
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a remainder. Moreover, factorizing above equation as follows,

|r̄(t)|2 =
P2LP2L

P1P1
(2.94)

further implies that P1 divides P2m without a remainder as well. Consequently, Eq.

(2.92) implies that |r̄(t)| is a polynomial. However, |r̄(t)| can be a polynomial if and only

if 1̄r =
r̄(t)
|r̄(t)| is constant. To prove this, consider the definition,

r̄(t) = |r̄(t)|1̄r (2.95)

From above equation it’s clear that degree of r̄(t) would equal |r̄(t)| if and only if 1̄r

is constant. On the contrary if it would have at least one degree higher than zero, then

this would render a contradiction in equality of Eq. (2.95).

However, for unobservability LOS can’t be constant. Hence, if |r̄(t)| is not a polyno-

mial then the only way that the left hand side of Eq. (2.90) can still be a polynomial is

if

α = 0

β = 1 (2.96)

Inserting (2.96) in (2.72), we can thus obtain that,

f ′o = fo (2.97)

|r̄′(t)| = |r̄(t)| (2.98)

and also ,

D(t)
[

β +
α + c(1− β)(t− to)

|r̄(t)|

]
= D(t) (2.99)

This means that with frequency only measurements as long as LOS is not constant we

can observe target uptill it’s relative distance from observer. Thus target state ambiguity

can only result from the dot product in definition Eq. (2.4). Moreover, Eq. (2.83) now
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becomes,

[D(t)− I]r̄(t) = At̄ (2.100)

Now, since r̄(t) and At̄ are vector polynomials, D(t)r̄(t) must also be a vector poly-

nomial. However, it’s shown in Apendix B of [85] that under this condition the time

dependent orthogonal transformation D(t) becomes a constant orthogonal transforma-

tion D.

(D− I)r̄(t) = At̄ (2.101)

r̄(t) = (D− I)−1At̄

This implies that, in case of finite order dynamics, target state is unobservable with frequency

measurements alone if and only if relative distance r̄(t) satisfies Eq. (2.101). Here At̄ ∈ PN and

N being degree of target dynamics polynomial. Hence as long as relative distance is of

order of target dynamics then target state is unobservable.

The set of compatible target trajectories can be obtained from Eq. (2.73) by putting

α = 0 and β = 1 as,

r̄′T(t) = Dr̄(t) + r̄O(t) (2.102)

As stated before, for frequency only measurements, when LOS is not constant then

set of trajectories, compatible with measurement history, arises because of the ambiguity

associated with direction or dot product. This means if besides frequency, we have ad-

ditional angle measurements this ambiguity could be resolved. We shall investigate this

point in next section.

Next logical question at this point would be how to make target observable. Let’s

investigate (2.101) further to find out how can observability be achieved. Using Eq. (2.78)

and vector polynomial definition of r̄(t) (2.87) in Eq (2.101)

(D− I)
L

∑
i=0

r̄i(to)

i!
(t− to)

i =
N

∑
i=0

āi(t− to)
i (2.103)
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where L = max(M, N). Depending upon the degree of observer’s motion following

cases should be considered.

Observer’s Motion is of Lower Order Than Target’s Motion (M ≤ N)

In this case, L = N. Selecting (D − I)r̄(to) = āi, (2.103) trivially can be satisfied by

any orthogonal transformation D. Therefore, if observer motion is of a dynamics order

less than or equal to that of target M < N then target state is unobservable. The set of

compatible trajectories is given by (2.102) and target state can only be determined up to

rotations and reflections in the observer’s coordinate system.

Observer’s Motion is of Higher Order Than Target’s Motion (M > N)

In this case, L = M. Now condition (2.103) could only be met if and only if all the

derivatives higher than N are zero,

(D− I)r̄i(to) = 0∀i > N (2.104)

Using (2.89)

(D− I)[r̄i
T(to)− r̄i

O(to)] = 0∀i > N (2.105)

However, by assumption r̄i
T(to) = 0∀i > N,

(D− I)r̄i
O(to) = 0∀i > N

Dr̄i
O(to) = r̄i

O(to) (2.106)

Condition (2.106) is fulfilled if and only if all initial non-zero vectors r̄i
O(to)∀(i > N)

are parallel to each other and D is a rotation R about one of them.

At this point, two subclasses M = N + 1 and M > N + 1 should be distinguished.

If M = N + 1 then condition (2.106) can always be satisfied. This means that target

state is unobservable if observer motion is of order M = N + 1. On the other hand, if
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M ≥ N + 1 then according to condition (2.106) target state is unobservable if and only if

all initial observer state derivatives (r̄i
O∀(i > N)) are parallel to each other. Conversely

stated, target state is observable if and only if there exits at least two initial observer state

derivatives which are not parallel to each other (r̄i1
O 6= 0 and r̄i2

O 6= 0 for (i1, i2 > N)). In

case of unobservability the set of compatible trajectories is given by,

r̄′T(t) = Rr̄(t) + r̄O(t) (2.107)

where R is rotation about r̄i
O(to) with i > N. This means that target state can only be

determined up to a rotation of r̄(t) about the direction of parallel non-zero vectors r̄i
O(to).

2.5.10 Observability Condition

With only frequency measurements, target state is observable if and only if,

• LOS angle between observer and target does not remain constant. This means either

target or observer must maneuver.

• Dynamics order of Observer’s motion is of two or more degrees higher than target’s

motion. Moreover, at least two of these higher derivatives must not be parallel to

each other.

2.5.11 Observability Analysis With Bearings & Frequency Measurements

Equipped with the results for angle-only and frequency-only measurements, observabil-

ity analysis when both sets are available simultaneously is a trivial task. As mentioned

earlier, that with frequency measurements when LOS angles are changing then only am-

biguity is in orthogonal transformation D(t). However, now with additional angle mea-

surements D(t) becomes identity transformation. Therefore, updating Eq. (2.83)) we ob-

tain,

At̄ =
[

β +
α + c(1− β)(t− to)

|r̄(t)| − 1
]

r̄(t) (2.108)



2.5 Target Motion Analysis 41

where At̄ ∈ PN as before. Rearranging above equation as,

r̄(t) =
[

β +
α + c(1− β)(t− to)

|r̄(t)| − 1
]−1

At̄ (2.109)

= Kb f At̄ (2.110)

where,

Kb f =

[
β +

α + c(1− β)(t− to)

|r̄(t)| − 1
]−1

for A 6= 0, this is the necessary and sufficient condition for unobservability of Nth-

order dynamics. As a target is unobservable for constant LOS with angle-only and

frequency-only measurements, consequently it would be unobservable with angle & fre-

quency measurements together. When LOS is not constant then as shown earlier, the

operator Kb f becomes unity and hence set of compatible trajectories Eq. (2.75) becomes,

r̄′T(t) = r̄(t) + r̄O(t)

r̄′T(t) = r̄T(t)

That is all trajectories shrink to one original trajectory and hence target state is ob-

servable.

2.5.12 Observability Conditions

With both angle and frequency measurements, target state is observable if and only if

LOS angle between observer and target does not remain constant. Unlike previous two

cases, observer does not require higher degree dynamics or maneuvers. Infact observ-

ability is guaranteed even for stationary observer.





Chapter 3

Target Tracking with Doppler Radars

3.1 Introduction

Problem in indoor localization problems are inherently different from those encountered

in the outdoor localization. In the latter case, there’s been a lot of development in GPS

based positioning and navigation. A GPS can track the position of a user with high

accuracy. However, its signals are only accessible in outdoor environments - limiting

their indoor applications. Despite the plethora of research regarding indoor navigation

systems, a feasible and economical solution is still missing. In previous chapter, we have

derived the observability conditions for the Doppler measurements. These conditions,

when met, guarantee us a unique solution to the estimation problem. In this chapter, we

discuss the development of Doppler frequency measurements based target localization

system. We discuss the formulation of the target’s state estimation as a Kalman filtering

problem. Hereby, we design different trackers, catering various indoor scenarios and

comparing them.

3.2 Target State Estimation

Consider an observer/user moving around in a small confined room. The observer

would be possibly surrounded by people, objects and walls. Now, relative to this ob-

server everything else is a target. Our aim is to localize and track everything surrounding

the observer. However, to keep things simple and to establish a base framework, we first

assume the case of one observer and one target contained in a small area. Then design a

43
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Figure 3.1: Observer and target’s geometry for observability analysis

framework for localization in 2 dimensions (2D). Thereafter, extension for 3D scenarios

is straightforward study. Furthermore, it is assumed that observer is focusing on target

at all times - getting its bearings and Doppler measurements. To this end, consider the

observer target geometry shown in Fig 2.2.

Although we are mainly concerned with building a Doppler-only tracker, however, at

the same time we would also develop and consider Bearings-only and Bearings-Doppler

trackers for sense of completion, comparisons and further developments in later chapters.

3.2.1 Problem Formulation

In this section, we mathematically formulate the problem of tracking a target from an

observer. We use the same observer-target geometry as before and shown in Fig. 2.2,

duplicated in Fig 3.1 for ease. Consider a target T moving along a trajectory r̄T(t) and

emitting a signal of frequency fo.

An observer moving along trajectory r̄O(t) makes bearing and frequency measure-

ments of the target and tries to estimate its state. We can obtain the following relation

from the geometry in Fig. 2.2.
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R̄T(t) = R̄(t) + R̄O(t) (3.1)

In this work, three measurements sets are considered, namely: bearings-only, frequency-

only and bearing-frequency measurements together. The bearings (θ) and Doppler fre-

quency ( fd) measurements [90] satisfy following relationships,

θ = tan−1 Ry(t)
Rx(t)

(3.2)

V̄R =
λ fd

2
(3.3)

where

• Rx and Ry are X and Y components of r̄(t)

• VR is the radial velocity vector

• λ is signal’s wavelength

• fd is Doppler frequency

Radial velocity can also be expressed as

V̄R = |V̄| cos(θR) (3.4)

V̄R =
RxV̄x + RyV̄y√

R2
x + R2

y

=
V̄.R̄
|R̄|

(3.5)

where

• θR is the angle between radial direction and velocity vector.

3.2.2 CASE-1: Single Stationary Target & Maneuvering Observer

In this first scenario, consider a point-like stationary target and a dynamic observer in a

(5× 5)m2 area. Target is located at coordinates x = 5m and y = 5m. For the target to be

observable we need to meet following criterion:
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Figure 3.2: Simulation scenario of a stationary target at (5,5) and moving
observer (blue track)

• Bearings-Only Measurements: LOS angle should not remain constant.

• Dopper-Only measurements: LOS angle between them should not be constant and

Observer’s dynamics should be at least two degrees higher than target’s motion.

• Bearing & Doppler Measurements: LOS angle should not remain constant

Consider now that observer starts at coordinates x = 1m, y = 1m and moves with

velocity 10 km/h (2.8 m/s). Although observer moves with constant velocity, however,

it exhibits 90o maneuvers from time to time [91], as follows,

• From 90o to 0o at time t = (20 + 200k)Tsec, k = [0, 1, 2, ...]

• From 0o to 90o at time t = (100 + 200k)Tsec, k = [0, 1, 2, ...]

where T is sampling time. The target-observer geometry for this scenario is shown in

Fig 3.2.

Let XT[k] and XO[k] denote target’s and observer’s state at time instant k. Position
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and velocity components in XT[k] and XO[k] are arranged as,

XO[k] =


x position

x velocity

y position

y velocity

 =


x

Vx

y

vy

 (3.6)

For constant velocity scenario, observer’s dynamics can be modeled as a Constant

Velocity model [92], also known as Piecewise-Constant White Acceleration model [70].

It assumes that the target moves with constant velocity where small perturbations in

velocity being modeled as independent acceleration noise. It is given as,

XO[k + 1] = FXO[k] + U[k] + Gv[k] (3.7)

where, F is state transition matrix defined as,

F =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 (3.8)

U[k] is the deterministic input vector, which accounts for the effect of observer accel-

erations. U[k] is deterministic since we assume that we have the knowledge of observer

state XO at every instant of time. The Gain matrix G is

G =



T2

2 0

T 0

0 T2

2

0 T


(3.9)

v(k) is zero-mean white Gaussian process noise with variance σv. The covariance of
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process noise multiplied by gain G is given as,

Q = E[Gv(k)v(k)G′] (3.10)

= σ2
v GG′ (3.11)

= σ2
v



T4

4
T3

2 0 0

T3

2 T2 0 0

0 0 T4

4
T3

2

0 0 T3

2 T2


(3.12)

We can now introduce the relative state vector as,

X[k] = XT − XO (3.13)

The corresponding state equation for relative state vector is,

X[k + 1] = FX[k]−U[k] + Gv[k] (3.14)

Measurement vector Z[k] is related to state X[k] through nonlinear function h() as,

Z[k] = h(X[k]) + w(k) (3.15)

where w(k) is zero mean white Gaussian observation noise with variance σw. h(.) is

a nonlinear function of the state, whose value depends upon the measurements being

considered.

• For bearings only measurements, angle θ is measured counter-clockwise from pos-

itive X-axis.

h(x[k]) = θ = tan−1
(

Ry(t)
Rx(t)

)
(3.16)
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• For Doppler or relative velocity (VR) only measurements,

h(x[k]) = V̄R =
RxV̄x + RyV̄y√

R2
x + R2

y

(3.17)

• For bearings and velocity (VR) measurements together,

h(x[k]) = [θ, VR]
T (3.18)

where superscript T means transpose.

Covariance matrix Rww of measurement noise is given by σ2
w I, where I is the identity

matrix whose size depends upon h(x[k]), σw is standard deviation of measurement noise.

The optimal Bayesian solution to the problem formulated would require computing

posterior density p(x[k]|z[k]). However, the optimal solution for this problem cannot

be obtained because measurement equation is nonlinear (4.6). Therefore, we will have

to suffice for suboptimal solutions and use filters developed for nonlinear systems as

described earlier, i.e EKF, UKF, & CKF, etc.

In general, for reliable performance of non-linear filters, proper initialization is very

critical [69,70,93]. Thus some a priori knowledge of target’s range and speed is quite help-

ful. At this stage, suppose we have some a priori knowledge of the mean of initial range

as µr and its variance σ2
r . Also, suppose that mean of relative velocity is less than smax

with variance σ2
v . With these assumptions, the state and its covariance can be initialized

as

ˆX[0|0] = [µr, 0, µr, 0] (3.19)

P[0|0] = diag[σ2
r , σ2

v , σ2
r , σ2

v ] (3.20)

Performance comparisons are based on a set of Monte-Carlo (MC) runs [93–95]. All

metrics are computed after M MC runs. Let ri and r̂i denote the true and estimated

ranges at ith MC run. Then the performance metrics used in our analysis are Root-Mean-

Square (RMS) error and number of divergent tracks in M MC runs. A track is classified
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as divergent if at any time, the estimated position error of the target exceeds a preset

threshold. The threshold is set depending upon the geometry of the problem at hand.

RMS position error is only computed for non-divergent tracks.

Considering the geometry of our scenario and constraints of observer and target dy-

namics, all filters are initialized with an initial range of 5m. Standard deviations of range

and velocity are chosen to be σr = 3m and σv = 1.673m/s2. Standard deviation for pro-

cess noise is σv = 0.5m/s2, whereas, for bearing and Doppler measurements it is chosen

to be σθ = 1o and σVr = 0.5m/s.

3.2.3 Simulation Results

We used Extended Kalman filter to obtain the solution for nonlinear filter equations de-

signed above. Figure 3.3 shows the tracking results for three different trackers designed

above, namely: Bearings-Only, Doppler-Only and Bearing-Doppler trackers. All of these

results were obtained after 1000 MC runs and excluding the divergent tracks. Each run

simulates 2.5 seconds of the scenario, allowing the observer to finish about 6 maneuvers.

As mentioned earlier a track is considered divergent if its RMS position error exceeds a

certain threshold. For this simulation, divergence threshold was set at 20 m.

After 1000 MC runs, we found out that, on average EKF converged about 85% of

all the runs. It can be seen from Figure 3.3a that for Bearing-only tracker, RMS posi-

tion error decreases with each maneuver, reaching to just about 1 m in 2.5 seconds. For

Doppler-only measurements, RMS position error apparently also decreases continuously

from its initial value to about 1 m in about 2.5 seconds. As expected, when both Bearings

and Doppler measurements were taken into account, filter’s RMS error converged much

faster, reaching to 1 m in about 1 second. This error dropped even further, reaching below

500 cm in 2.5 seconds as shown in Figure 3.3c. Figure 3.3 also shows RMS velocity error

for the three cases discussed.
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(a) Bearings-Only Tracking

(b) Doppler-Only Tracking

(c) Bearings-Doppler Tracking

Figure 3.3: Position & velocity error comparisons for different EKF trackers
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3.2.4 Non-linear Kalman Filters’ Comparisons

As mentioned earlier, Kalman filter gives us the optimal solution if underlying statistics

are Gaussian and system is linear. However, in case of nonlinear system, one has to resort

to approximate solutions. Since its inception nearly 40 years ago, Extended Kalman Fil-

ter has been everybody’s go-to option for nonlinear systems. However, its inaccuracies in

estimating system statistics cannot be overstated. Extended Kalman Filter works by lin-

earizing the nonlinear state space equations using first-order truncation of Taylor series.

However, this approximation would be only useful if all the second order and higher

derivatives are effectively zero [72, 73]. If it is not the case, then resulting statistics which

are linearly calculated would not be accurate. One major drawback with EKF is that

during linearization process, it fails to take into account that X is a random variable. It

ignores the probabilistic spread of X modeled as covariance PXX, and linearizes it around

a single point. This introduces large errors in later stages and effects the consistency of

the filter. Posterior mean and covariance calculated by the filter doesn’t represent the

actual scenario and more than often filter ends up diverging.

To overcome these and other shortcomings of EKF, researchers have developed nu-

merous approximations of Kalman filter for nonlinear systems. These algorithms are

closely related as how they handle multi-modal integrals in Bayes formula. Instead of

linearizing the nonlinear equations these algorithms depends upon deterministic sam-

pling methods for the propagation of Gaussian random variables through nonlinear sys-

tems. Unscented Kalman Filter (UKF) [73] uses scaled unscented transformation to compute

the points that can capture the current statistics of Gaussian Random Variables. Then it

uses these points through the nonlinear systems thus avoiding the requirement of Taylor

Series truncation. In more recent developments, Cubature Kalman Filter (CKF) was in-

troduced as a more robust and stable version to handle the multi-model Bayes integrals.

Underlying idea is same as that of Unscented Kalman Filter, however, it uses Cubature

rules to handle the integrals.

In this section, we implemented and compared Extended Kalman Filter with Un-

scented Kalman Filter and Cubature Kalman Filter. These results are obtained after 1000

MC runs and excluding the divergent tracks. As before, a track is considered as divergent
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if RMS position errors becomes greater than 20 m at any time.

Figure 3.4 shows the comparison results of the three Gaussian approximate filters.

From Fig 3.4a, we can see that both UKF and CKF can localize a target within few cm

in about 2 seconds. Same is the case for Doppler-only filter as shown in Figure 3.4b.

However, we have even better results with Bearing-Doppler filter, where error reduces

to less than 1 m in about 1 second as shown in Figure 3.4c. This error keeps on reducing,

reaching less than 100 cms in 2.5 seconds. RMS Position and velocity error comparisons

in Fig. 3.4(a), (b) and (c) clearly shows that error becomes smaller after each maneuver

and reaching almost a steady value after about 3 maneuvers. Out of 1000 MC runs,

EKF diverged about 200 times whereas UKF and CKF diverged about 4 and 5 times,

respectively. As expected, both UKF and CKF performed consistently better than EKF.
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(a) Bearings-Only Tracking

(b) Doppler-Only Tracking

(c) Bearings-Doppler Tracking

Figure 3.4: Position & velocity error comparisons for different Gaussian
approximate filters
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3.2.5 CASE-2: Single Stationary Target and Circular Moving Observer

In the last section, we observed that target’s localization gets better with each 90o ma-

neuver. However, such abrupt maneuvers are unrealistic in real life where observer’s

dynamics are constrained and limited. Therefore, in this second simulation scenario, the

observer now moves on a circular trajectory while taking measurements of the target.

Target is again assumed to be stationary at coordinates (5,5). Target-Observer track ge-

ometry in this case is shown in Fig 3.5.

Figure 3.5: Simulation scenario of a stationary target at (5,5) and moving
observer (blue track)

In this case, observer’s motion is better modeled as coordinated turn model [92, 96,

97]. We assume that observer moves with a known constant speed and turn rate (ω). In

case of known turn rate, state vector remains the same as in (3.6). The state transition
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matrix in Eq. (3.7) now becomes,

F =


1 sin(ωT)

ω 0 − 1−cos(ωT)
ω

0 cos(ωT) 0 − sin(ωT)

0 1−cos(ωT)
ω 1 sin(ωT)

ω

0 sin(ωT) 0 cos(ωT)

 (3.21)

and covariance matrix Q (3.10) now becomes,

Q =



2(ωT−sin(ωT))
ω3

1−cos(ωT)
ω2 0 ωT−sin(ωT)

ω2

1−cos(ωT)
ω2 T −ωT−sin(ωT)

ω2 0

0 −ωT−sin(ωT)
ω2

2(ωT−sin(ωT))
ω3

1−cos(ωT)
ω2

ωT−sin(ωT)
ω2 0 1−cos(ωT)

ω2 T

 (3.22)

Remaining algorithm and settings remain same as in previous section.

3.2.6 Simulation Results

For a stationary target, an observer moving on a circular path meets all the observabil-

ity conditions mentioned earlier for Bearings-only, Doppler-only and Bearings-Doppler

measurements, therefore, target’s state will be observable. Figure 3.6 illustrates the track-

ing results for different filters considered. As before, results are obtained by averaging

1000 MC runs. As expected, UKF and CKF shows very promising behavior by localizing

position within few centimeters in less than half a second. Extended Kalman Filter, on the

other hand, showed quite poor performance in this scenario for all three measurement

sets. Out of 1000 MC runs, EKF diverged about 200 times, whereas, UKF and CKF did

not diverge at all.

Unlike linear filters, the nonlinear ones are quite sensitive to initial conditions. In our

case, filters with Doppler-Only measurements are quite sensitive to the initial velocity

values. However, filters based on Bearings-Doppler measurements together, perform

much better even with improper initialization.
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(a) Bearings-Only Tracking

(b) Doppler-Only Tracking

(c) Bearings-Doppler Tracking

Figure 3.6: Position & velocity error comparisons for different CT trackers
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3.2.7 CASE-3: Multiple Stationary Targets & Maneuvering Observer

In previous section, we assumed one observer and one target in a small area of 5× 5 m.

With observer moving on a circular path, to meet the observability criteria, we were able

to localize the single target within approximately 500 cm radius. In this next step, we

would move one step forward by trying to localize randomly scattered multiple targets.

The observer moves on a circular path and targets are all assumed to be in an area of

7× 7 m. To keep things simple at this stage, it is further assumed that observer can detect

targets and obtain their angle and/or frequency measurements. The observer-targets

geometry for this scenario is shown in Figure 3.7,

Figure 3.7: Simulation scenario of a single moving observer (blue track)
and multiple targets (Crosses) around observer

As shown in the figure, blue circle indicates the path of the observer moving in anti-

clockwise direction. Five crosses in the figure indicates the locations of the targets around

observer. As before, all the targets are assumed to be stationary, whereas observer moves

with a constant velocity of 2.8 m/s. Observer’s motion is modeled using Coordinated

turn model as given in Eq. 3.21 and 3.22. Whole simulation lasts for 2.5 seconds and
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results are averaged after 1000 MC runs. A track is considered as divergent if its RMS

position error exceeds a threshold of 10 m. Divergent tracks are not considered in final

error computations but number of divergent tracks is recorded.

Although, we are mainly interested in Doppler based trackers but we would consider

and compare all Bearing and Doppler filters for sense of completion and for further de-

velopments in next chapters. As we showed in previous sections that out of all Gaussian

approximate filters, Unscented Kalman Filter (UKF) gives us most promising results, in

terms of lower localization errors and divergent tracks. Therefore, in this section we only

considered tracking results for Unscented Kalman Filter only.

Figure 3.8 contains the RMS position and velocity error results averaged after 1000

MC runs. From figures it is clear that observer has been able to successfully localize all

targets, since it is meeting all the observability requirements. With bearings only mea-

surements, RMS errors are bit high and targets were localized within 1.5 m radius. From

Figure 3.8a it appears that filter converged to a steady state within 0.5 seconds but for

some targets error remained more than 1 m. Figure 3.8b contains RMS errors for Doppler

only case. This simulation shows very promising results, as for all targets filter was able

to localize them within 50 cm radius in about 2.5 seconds. Also velocity errors are smaller

than compared to Bearings only case. Finally Figure 3.8c contains the simulation errors

for filter taking into account both Bearing and Doppler measurements. As with single

target case, we have been able to localize all targets with very high accuracy in very short

amount of time. As shown in the Figure 3.8c localization error reduces to less than 50 cm

in about .75 seconds. Then this error continues to fall, reaching less than 20 cm for all

targets in about 1 s.

From these and previous experiments, simulations and comparisons, we can con-

clude that it is possible to achieve high precision localization with Doppler only mea-

surements. Moreover, this accuracy increases even further when we also start taking

Bearing measurements into account besides Doppler measurements. This proves the ef-

ficacy of this Doppler only tracking technique. In next chapter, we would look into how

these results can be exploited to our original problem of achieving inexpensive indoor

localization.
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(a) Bearings-Only Tracking

(b) Doppler-Only Tracking

(c) Bearings-Doppler Tracking

Figure 3.8: Position & velocity error comparisons for different CT trackers



Chapter 4

Indoor Localization with Doppler
Radar

4.1 Introduction

In previous chapters, we have focused our attention in finding the observability con-

ditions based on Doppler-only and Bearing-Doppler measurements. Then formulated

our problem in terms of Kalman Filter framework and tried to localize point-like targets.

While localizing such targets, we assumed that radar can focus on them for all times dur-

ing the localization process. In this chapter, we design systems and algorithms to localize

walls and objects around a user. We start by mathematically formulating the problem

and then figure out a solution to it. Once a frame work is defined, we discuss different

scenarios of locating walls and doors in a generic room and measuring the performance

of our algorithms.

4.2 Indoor Localization With a Doppler Radar

Assume a Continuous Wave (CW) Doppler radar is located inside a room with an area of

5× 5 m. There’s nothing inside the room and just four walls surrounding the observer.

Based on available measurements and observability criteria, we want to find distance of

surrounding walls from the observer. Once all the walls around observer are localized

with high precision, further decisions like collision avoidance for inattentive worker or

route-planning for robots/drones can be made. This scenario is depicted in Fig 4.1, where

arrowhead shows the antenna direction in which beam is focused at any time instant.
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Figure 4.1: Observer and target’s geometry for observability analysis

As shown before in Fig 2.2, observer moving along trajectory r̄O(t) makes bearing (θ)

(2.2) and frequency ( f ) (2.4) measurements of the target and tries to estimate its state. In

order to localize walls, using only the frequency measurements, observer has to move

around in a specialized manner, such that observability conditions are met. In previous

chapter, we noticed that abrupt 900 maneuvers are not feasible in real world. However,

we also showed that if observer moves in a circular pattern then all the observability

conditions for bearing & frequency measurements are met. Therefore, in current scenario,

let’s assume that our CW Doppler radar is fixed on top of drone/UAV, which flies around

in the room in a circular pattern. As drone flies around, the CW radar keeps on taking

Doppler measurements. Figure 4.2 shows this scenario of a CW radar mounted drone

flying in a 5 × 5 m room. Figure 4.3a shows the corresponding true range profile of

walls from radar with respect to time, depending upon current position of radar in the

room. Similarly, Fig 5.6 and 5.6 shows the Doppler velocity and bearing measurements

obtained.
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Figure 4.2: Example of drone with Doppler radar flying in circular pattern
inside a 5× 5 m room
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(a) True range of walls from radar as
drone flies around

(b) Doppler velocity measurements

(c) Bearing measurements

Figure 4.3: True range profile, Doppler velocity and bearing measurements
obtained as radar flies around in circular pattern inside a 5× 5

m room
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Looking at Fig 4.3a, we realize that target being tracked is highly non linear. To track

such targets, we could incorporate higher derivatives in system’s state space model such

as ’acceleration = d2 r̄(t)
dt2 ’ [70, 92] or ’jerk = d3 r̄(t)

dt3 ’ [92, 98, 99]. One commonly used model

for maneuvering targets is Wiener-sequence acceleration model. It assumes that tar-

get moves with some acceleration, where increments in this acceleration are modeled as

independent white noise process. The state space model for this case therefore can be

written as,

X[k + 1] = FaX[k] + Gav[k] (4.1)

where, Fa is state transition matrix. It is defined as,

Fa =


Faa 03×3 03×3

03×3 Faa 03×3

03×3 03×3 Faa

 , Faa =


1 T T2

2

0 1 T

0 0 1

 (4.2)

where 0n×m is a n×m matrix of all zeros. The Gain matrix Ga is

Ga =

 Gaa 03×1

03×1 Gaa

 Gaa =


T2

2

T

1

 (4.3)

v(k) is zero-mean white Gaussian process noise with variance σv. The covariance of pro-

cess noise multiplied by gain G is given as,

Qa = E[Gav(k)v(k)G′a]

= σ2
v GaG′a

= σ2
v


Qaa 03×3 03×3

03×3 Qaa 03×3

03×3 03×3 Qaa

 (4.4)



66 Indoor Localization with Doppler Radar

Qaa =


T4

4
T3

2
T2

2

T3

2
T2

2 T

T2

2 T 1

 (4.5)

Note that, as observer (radar) moves around, its line of sight angle keeps on changing.

Moreover, because of radar’s circular movement, the relative motion between the two

also meets the required observability criteria. Therefore, we should be able to uniquely

estimate target’s range.

As before, measurement vector Z[k] is related to state X[k] through nonlinear function

h() as,

Z[k] = h(X[k]) + w(k) (4.6)

where w(k) is zero mean white Gaussian observation noise with variance σw. h(.) is

a nonlinear function of the state, whose value depends upon the measurements being

considered.

• For Doppler or velocity (VR) only measurements,

h(x[k]) = [V̄R] (4.7)

• For bearings and velocity (VR) measurements together,

h(x[k]) = [θ, V̄R]
T (4.8)

where superscript T means transpose.

Covariance matrix Rww of measurement noise is given by σ2
w I, where I is the identity

matrix whose size depends upon h(x[k]), σw is standard deviation of measurement noise.

As before, the optimal Bayesian solution to the problem formulated would require

computing posterior density p(x[k]|z[k]). However, the optimal solution for this problem

cannot be obtained because measurement equation is nonlinear (4.6). Therefore, we will
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have to suffice for suboptimal solutions and use filters developed for nonlinear systems

as described earlier, i.e EKF, UKF, & CKF, etc. As shown in previous chapters that UKF

consistently performed better, therefore we have used Unscented Kalman filter to track

this accelerated target, first using Doppler measurements only and then using Bearing-

Doppler measurements.

For simulations, we consider a generic room of 5× 5 m with an observer randomly

located at some point inside the room. The observer moves around in a circular path and

takes Bearing and Doppler measurements. This scenario is depicted in Figure 4.4. Blue

circular line shows observer’s trajectory and arrow head shows the direction in which

observer is looking at the moment. Note that Bearing measurements in this case would be

the direction in which observer is currently looking or pointing. As walls are surrounding

observer from all sides, so we would only consider that portion of wall as target which is

in front of observer antenna at any given moment.

Figure 4.4: Randomly located Observer’s trajectory inside a 5× 5 m room

For an observer moving on a circular path and with changing Line of Sight (LOS)

angle, it meets the basic observability requirement of both Doppler-Only and Bearing-

Doppler case. Figure 4.5 contains the localization results for filter with Doppler-only

measurements, whereas, Figure 4.6 contains results for filter with Bearing-Doppler mea-

surements. Results are obtained after 1000 Monte-Carlo runs. Both filters converge to

within few centimeters range error in only couple of seconds. Moreover, Bearing-Doppler

filter converges faster than Doppler-only filter, as well as it has lower localization RMS

errors. Although range error shoots a bit around corners but it also quickly reduces as
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(a) Estimated range compared to true range

(b) RMS Position Error

Figure 4.5: Dynamic observer & static wall-targets: Error Comparisons for
Constant Acceleration Doppler-only filter

new measurements arrive.
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(a) Estimated range compared to true range

(b) RMS Position Error

Figure 4.6: Dynamic observer & static wall-targets: Error comparisons for
Constant Acceleration Bearing-Doppler filter
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4.3 Indoor Localization of Walls & Doors

We now turn to a more realistic situation of localizing walls as well as a door in the room

and design filters that can better handle the nonlinearities in this case. Observer could

move in any pattern inside the room to localize the walls and figure out the position of

walls and door, as precisely as possible. A Doppler radar provides radial velocity de-

pending upon relative dynamics between observer and target. In classical case, Doppler

radar is stationary at a point, whereas, target being scanned moves towards or away from

radar. On the other hand, in our case, walls and furniture in room is stationary whereas,

radar moves around to create a relative motion between them. Now if radar moves in

such pattern so that order of this relative dynamics meets the observability conditions,

then true range of targets can be estimated just from Doppler-only measurements.

4.3.1 Constant-Acceleration Tracker Design

Consider the scenario of a (5× 5)m2 room with a 1 m wide door that opens up into a

long gallery, as shown in 4.7b. In this scenario, observer consists of a radar on a drone

and pointing towards north-east corner of the room, whereas, target obviously consists

of stationary walls surrounding the observer. The radar keeps on scanning and collect-

ing measurements as the drone flies around. We know from our previous discussion

that frequency measurements obtained from a circular moving Doppler radar meets all

observability conditions. Therefore, in this scenario again we move radar in the circular

pattern. Now as radar moves and scans from point A to B on the wall, it receives and

detects Doppler velocity from the wall because of the relative motion between the two.

Then at point B target would appear to make a sharp 90o maneuver towards point C and

so on.

With Bearings and Doppler measurements together, target is observable as long as

LOS angle between observer and target doesn’t remain constant. In our case, when radar

starts scanning the walls, say in counter clockwise pattern, then obviously LOS angle

keeps on changing. Moreover, since we know how radar is rotating, we can also find the

relative bearing with high accuracy. In this case, it would be simply the bearing at which
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the radar is pointing. This means that we could design a filter based on this inverse

bearing and Doppler measurements, which would meet all observability requirements

and we don’t have to worry about target’s dynamics order as well.

(a) Simulated room with door leading to a gallery on left

side

(b) True range of walls w.r.t observer as it moves around in

the room

Figure 4.7: Dynamic observer & static wall-targets scenario
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In simulations, we assume that a radar with a narrow beam scans the room in counter

clockwise direction, starting at 0o with respect to X-axis. Room’s geometry for this case

is shown in Figure 4.7a. It contains three walls on top, bottom and right hand side. A

door leading into a gallery is assumed on left hand side. Arrow at observer’s location

indicates the direction in which radar is currently pointing. Figure 4.7b shows the true

relative range of walls from radar as its beam scans in counter clockwise direction.

As before, angle is measured from positive x-axis. Note that in circular room’s case,

walls might appear as constant acceleration target and we could use either Piecewise-

Constant-Accelration Model Eq. (3.8) or Coordinated Turn Model Eq. (3.21), as de-

scribed in previous chapter. However, since in general rooms are rectangular, therefore,

wall-targets would appear to maneuver at corners. To track such highly maneuvering

targets, we could incorporate higher derivatives in system’s state space model such as

’acceleration = d2 r̄(t)
dt2 ’ [70, 92] or ’jerk = d3 r̄(t)

dt3 ’ [92, 98, 99].

One commonly used model for maneuvering targets is Wiener-sequence acceleration

model. It assumes that target moves with some acceleration, where increments in this

acceleration are modeled as independent white noise process. The state space model

remains same as in Eq. (3.7), which is repeated here for convenience ,

X[k + 1] = FaX[k] + Gav[k] (4.9)

where, Fa is state transition matrix. It is defined as,

Fa =


Faa 03×3 03×3

03×3 Faa 03×3

03×3 03×3 Faa

 , Faa =


1 T T2

2

0 1 T

0 0 1

 (4.10)

where 0n×n is a n× n all zeros matrix. The Gain matrix Ga is

Ga =

 Gaa 03×1

03×1 Gaa

 Gaa =


T2

2

T

1

 (4.11)
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v(k) is zero-mean white Gaussian process noise with variance σv. The covariance of pro-

cess noise multiplied by gain G is given as,

Qa = E[Gav(k)v(k)G′a]

= σ2
v GaG′a

= σ2
v


Qaa 03×3 03×3

03×3 Qaa 03×3

03×3 03×3 Qaa

 (4.12)

Qaa =


T4

4
T3

2
T2

2

T3

2
T2

2 T

T2

2 T 1

 (4.13)

In order to compare the two filters, namely Doppler-only measurements based and

Bearing-Doppler measurements based, initial conditions for both filters were kept same.

System is initialized with range along X and Y coordinates as 10m with Std. Dev. of

5m, velocity of 2m/s with Std. Dev. 2m/s, acceleration of 1m/s2 with standard deviation

(Std. Dev.) 2m/s2. Process noise Std. Dev. is 5× 10−2. Bearing and Doppler measurement

noise Std. Dev is 0.5o and 0.01m/s, respectively.

Figure 4.8a shows the results for Doppler-only tracking. In the figure, broken-green

line shows the true range where as solid-blue line shows the estimated range. Figure 4.8b

shows RMS position errors. As expected, the range error reduces to less than a meter

within 1 second as filter converges. RMS results were obtained for 100 MC runs. There

were zero divergent tracks in 100 MC runs, where divergence threshold was selected as

10m.

Figure 4.9a shows the results for Bearing-Doppler filter as radar scans the room. In

this case, Bearing-Doppler tracker converges to within 1 meter of true range in about 1s,

as well. Results for RMS position errors computed using 100 MC runs are shown in Fig-

ure 4.9b. There were zero divergent tracks in 100 MC runs, where divergence threshold

was selected as 10m.
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(a) Estimated range compared to true range

(b) RMS Position Error

Figure 4.8: Indoor Walls & Door Localization: Error Comparisons for
Constant Acceleration Doppler-only filter
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(a) Estimated range compared to true range

(b) RMS Position Error

Figure 4.9: Indoor Walls & Door Localization: Error Comparisons for
Constant Acceleration Bearing-Doppler filter
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4.3.2 Constant-Jerk Tracker Design

As we noted in previous section, corners in the room present themselves as highly ma-

neuvering targets. This adds severe higher order derivatives in relative dynamics which

can’t be ignored. In previous design, we only considered dynamics model uptill 2 de-

grees i.e. velocity and acceleration. Although, we tried to handle the higher order effects

as noise in the state space model, it appears that errors can only be reduced so much.

In this section, we design another tracker that incorporates one more derivative of mo-

tion i.e. jerk. The model so obtained is referred to as constant jerk model in literature

[92][98][99] and has been tried in some applications of tracking highly maneuvering tar-

gets.

State transition matrix for this model is given as,

Fj =


Fjj 04×4 04×4

04×4 Fjj 04×4

04×4 04×4 Fjj

 , Fjj =



1 T T2

2
T3

6

0 1 T T2

2

0 0 1 T

0 0 0 1


(4.14)

where 04×4 is 4× 4 matrix of all zeros. Covariance matrix equivalently now becomes,

Qj = σ2
v


Qjj 04×4 04×4

04×4 Qjj 04×4

04×4 04×4 Qjj

 (4.15)

Qjj =



T7

252
T6

72
T5

30
T4

24

T6

72
T5

20
T4

8
T3

6

T5

30
T4

8
T3

3
T2

2

T4

24
T3

6
T2

2 T


(4.16)

Rest of the design and conditions remains same as mentioned in previous tracker’s

case. Simulation results of tracking wall position relative to observer are shown in Figure
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4.10a, where estimated range (solid-blue line) is compared with true range (broken-green

line). RMS position errors are shown in Fig. 4.10b. As expected, errors are considerably

smaller with constant jerk model. In this case, range error even reduces to less than 100

cm. Results were averaged after 100 MC runs. Moreover, there were zero divergent tracks

out of the 100 MC runs.
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(a) Estimated range compared to true range

(b) RMS Position Error

Figure 4.10: Indoor Walls & Door Localization: Error Comparisons for
Constant Jerk Bearing-Doppler filter
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4.3.3 Coordinated-Turn Tracker Design

Upon close observation of true relative range profile in Figure 4.7b, curves and arcs are

obvious. In traditional target tracking, this type of range profile is obtained when target

is under coordinated turn maneuver [92]. Many dynamic models have been proposed

to track such targets. Out of these models, ones that have survived the test of time are

Coordinated turn models with either known or unknown target-turn rates[92][96][97].

These can be further classified as in Cartesian or Polar form. Thorough research on these

models have enabled the deep understanding of their applicability and usage.

We can model our system using Coordinated turn model. For problem at hand, since

turn rate is unknown therefore we can augment it as another parameter to be estimated

in the state space model. Let x and y denote target’s position in Cartesian coordinates; Vx

and Vy denote velocity components along x and y axis; h denote the heading angle and

ω denote the turn rate.

h = atan2(Vy, Vx) (4.17)

ω =
dh
dt

(4.18)

State vector in this model now becomes,

X[k] =



x position

y position

speed

heading angle

turn rate


=



x

y

v

h

ω


(4.19)

Corresponding differential equation for this case is given as,

X[k + 1] = fp(X[k]) + G(X[k])v[k] (4.20)

Z[k] = h(X[k]) + w(k) (4.21)
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where fp(x) is,

fp(x) =



x + 2v
ω sin(ωT

2 ) cos(h = ωT
2 )

y + 2v
ω sin(ωT

2 ) sin(h = ωT
2 )

v

h + ωT

ω


(4.22)

Equation (4.19) and (4.22) are described in much detail in [70][92][96][97]. Rest of the

design and conditions remains the same as mentioned in previous case studies. Sim-

ulation results of tracking walls relative to observer are shown in Figure 4.11a, where

estimated range (solid-blue line) is compared with true range (broken-green line). RMS

position errors are shown in Fig. 4.11b. As expected, errors are considerably smaller

with this model. Results were averaged after 100 MC runs. Moreover, there were zero

divergent tracks out of the 100 MC runs.
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(a) Estimated range compared to true range

(b) RMS Position Error

Figure 4.11: Indoor Walls & Door Localization: Error Comparisons for
Coordinated-Turn Bearing-Doppler filter





Chapter 5

Smart Helmets: Sensing for Safety

5.1 Introduction

Information and communication technologies have entered every aspect of our daily

lives - changing forever the way people interact, communicate and work. With stakes be-

ing invested everyday, much has been accomplished in increasing the productivity and

quantity of work. However, unfortunately little has been done in improving a worker’s

safety. The importance of following work procedures and regulations at such places can-

not be over stressed. Nevertheless accidents, injuries and claims are rampant, resulting

in ever increasing compensations and work delays.

All the statistics and analysis point out an important fact that manual implementa-

tion of OHS rules and regulations is not enough. ICT technologies must be involved and

integrated into a worker’s daily life specifically targeting their safety. According to Occu-

pational Health and Safety (OHS) regulations [100–103], workers must wear specialized

personal protective equipment (PPE) whenever they are on work sites. Aim of this re-

search is to figure out a way to integrate specialized sensors in this safety equipment -

enhancing workers’ situational awareness. Since PPE is already heavy enough, therefore,

one target is that these sensors should be light enough so as not to add any more weight.

Moreover, these should be robust enough to handle the different rough and rugged work

conditions.

In this chapter, we look at challenges of developing such sensors and possibilities

of integrating them into safety equipment. We perform various simulations, to check

out the localization performance of our framework. In previous chapters, we have de-

83
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rived the observability conditions for Nth-order dynamics systems in case of Bearings

and Doppler measurements. Then we designed different filters meeting the observabil-

ity criteria and developed case studies to gauge their performance. Simulation analysis

verified the theoretical claims about observability. Moreover, Unscented Kalman Filter

consistently performed better, in sense of lower RMS error and lesser divergent tracks. In

this chapter, we now turn to our attention towards a more practical application of sensing

for workers’ safety in dangerous work environments.

Requirements of Sensing for Safety

Personal Protective Equipment (PPE) refers to the safety clothing, helmet, goggles, ear

muffins or other protective gear that workers must wear on dangerous work environ-

ments. Some examples of PPE include high visibility reflective clothing such as vests,

wide brimmed hats and hard hats to minimize bodily damage. Ear plugs or ear muffs

are commonly used to minimize the risk of exposure to excessive noise. These are the

lowest order control steps in the hierarchy of safety measures and are used as increased

protection from the hazard. However, PPE relies only on the awareness and proper fit of

the user and does nothing to minimize the danger or hazard itself. This means that the

users require thorough training and active supervision to ensure compliance and effec-

tiveness.

Hazard localization

As mentioned earlier that some of the main reasons of injuries and fatalities are

• Collision with a moving object (Vehicle, crane, etc)

• Falling from heights (marked, monitored or unmonitored)

Regardless of being in use for decades, PPEs are not smartly designed. For example,

consider the scenario of a construction site, where a dumper is reversing with workers

working nearby, Figure [5.1]. Although heavy machinery like a dumper or excavator

uses high pitched beeping tone when moving around but then OHS regulations requires
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workers to wear ear muffs when working in a noisy environment. Contradiction like this

leads to numerous fatalities each year.

Figure 5.1: Unaware worker in blind spot of a reversing dumper

To minimize a hazard, first step is to localize it accurately & precisely. In previous

chapters, we successfully localized surrounding walls and targets using CW Doppler

radars. To this end, a drone carrying the radar had to fly around to create relative Doppler

frequency, between itself and targets. Our aim in this research is to add and integrate

these tiny CW Doppler radars on the already used PPEs so that,

• it can enhance a Workers’ situational awareness

• it should only add negligible weight to PPE

• it should only add negligible cost to overall PPE cost

• it can provide feedback to a worker in face of eminent danger

• it used should be rugged enough to withstand rough condition of dangerous work-

ing environments

First logical question should be as where on a worker to put this miniature radar?

According to OHS regulations, everyone on the dangerous work sites must wear a hard
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hat. At the moment, these hats are only made up of hard plastic, with sole purpose

to avoid an injury to head in case of an accident. Our idea is to make these helmets

smart by adding radars to sense the surrounding environment and providing feedback

to user in case of danger. Being lightweight, these CW radars won’t add any significant

weight to these hats. Moreover, being cheap, they won’t add any significant cost for mass

production.

5.2 Smart Helmets

Target localization using CW radar placed on a worker’s hard hat has two main chal-

lenges,

• How to place Doppler radar on a hard hat to localize objects surrounding the user?

• How to provide feedback to the user in case of imminent danger?

After localizing the targets, providing feedback to the user is also a major research

and design problem. One possible way could be play a beeping sound in left ear if some-

thing is approaching at high speed from left. In case of rescue operations in low visibility,

a rescue worker could be handed a smartphone which shows the sensed environment.

However, providing feedback and related work will be handled in future. In this chapter,

we focus our attention to localizing targets by assuming that radar is fixed on a hardhat.

This means that a person wearing the hardhat can randomly move around, wobbling his

head. The question is that under such random movements is it still possible to localize

targets? We already know that if observer moves around in circular pattern, obtaining

Doppler frequency measurements from stationary surrounding targets then, we can es-

timate true range. However, that would not be a very feasible situation for workers. In

next section we propose a method of obtaining instantaneous frequency measurements

from changing phase of the returned waveforms in a CW radar.
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5.3 Radar Phase Rate

Consider a continuous wave radar that’s transmitting towards and receiving back echoes

from a room wall, as shown in the Figure 5.2.

Figure 5.2: Radar transmitting towards a wall and receiving back echoes.

If R is the distance from radar to a point A on the wall then total number of wave-

lengths λ contained in the two-way path is given as,

Total wavelengths between radar and wall = N =
2R
λ

(5.1)

One wavelength corresponds to an angular distance of 2π radians. Now as electro-

magnetic wave moves during its transit to and from the wall, it covers a total of 2πN

radians. Therefore,

Phase = φ = 2π
(2R

λ

)
(5.2)

Now as in classical case, if target is moving then its distance R from radar and phase

φ are continuously changing. A change in phase with respect to time is called angular
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frequency. In case of moving target it is the well-known Doppler angular frequency.

However, in our case wall is not moving.

On the other hand, if the radar rotates and focuses now on point B then total dis-

tance between radar and target has changed again, as shown in Figure 5.2. This in turn

leads to a change in phase. As before when considered with respect to time, it gives us

instantaneous angular frequency ωφ,

ωφ =
dφ

dt

ωφ =
4π

λ

dR
dt

ωφ =
4π

λ
Vφ

2π fφ =
4π

λ
Vφ

fφ =
2Vφ

λ
(5.3)

where Vφ represents range rate and fφ represents the frequency obtained because of

rate of change of phase.

Figure 5.3a shows a simulation of a CW radar inside a 5x5 meter room. Arrow head

depicts the direction in which radar is currently pointing. As radar beam sweeps around,

the phase of the returned wave keeps on changing, generating a frequency fφ and phase

velocity vφ. Although similar in expression to Doppler frequency-velocity relation, here

we obtained a frequency-velocity relation that is dependent upon radar’s rotation rate.

Figure 5.3b shows the range profile obtained with respect to radar as its antenna rotates,

whereas, figure 5.3c shows the corresponding phase velocity profile.
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(a) Estimated Range Comparison

(b) RMS Position Error

(c) RMS Velocity Error

Figure 5.3
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Note that we not only have frequency measurements of the target but also the bearing

measurements. It’s because in this case target bearing at a given instant would be the

angle at which radar antenna is pointing. Figure 5.4 shows the corresponding bearing

profile that we obtain from our simulation of the rotating radar.

Figure 5.4: Radar transmitting towards a wall and receiving back echoes.

Now that we have frequency and bearing measurements, we can use this information

to estimate a target’s true range.

5.4 Design of Smart Helmet

Sensing the environment using a light-weight & inexpensive CW radar, by attaching it

to a worker’s hard hat, has some very intriguing issues. For example, instead of putting

one rotating antenna on top of the hat, one can use a phased-array antenna with elements

around the hat’s brim, as shown in Figure 5.5. Then we can trigger each antenna element

sequentially one after the other. This way we can get 3600 measurements easily without

any moving part plus we can easily control the rate of rotation.
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Figure 5.5: Example of a CW radar mounted on a worker’s hat with
phased array antenna elements around the brim of the hat

Human head movements could act as a potential source of noise during phase com-

parison of the returned waveform. However, we have assumed that such movements

would not effect our phase measurements. It is because during normal movements, hu-

man head typically can move about 2-3 cm in any direction. If we consider a typical

indoor distance of say 10m, then an electromagnetic radar wave would take only about

66.67 ns to return to the radar after reflection from wall. Now even if the radar spends

say 150ns at one point measuring the phase and then 150 ns at next point, then in 300

ns human head could only have moved negligible distance. Hence we can ignore such

movements at this stage.

5.5 Indoor localization with CW Radar

Without the loss of generality, assume a point-like observer ’O’ and target ’T’. We assume

observer to be located inside a room of size 5× 5 m, having a door leading to a hallway

on left hand side. It is assumed that radar is fixed on top of a worker’s hard hat. The

worker itself moves around randomly, whereas, the radar on top of observer takes 360o

measurements (Bearings and Doppler Frequency) of its surroundings. This means that

we now have to consider the following movements as well,

• user’s head movements and wobbliness

• user’s walking or running movements

Everything surrounding the observer would be a potential target. From the observ-

ability conditions and filters designed in previous chapters, we now have a framework of
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localizing the walls and objects around an observer. Measurement vector Z[k] is related

to state X[k] through nonlinear function h() as,

Z[k] = h(X[k]) + w(k) (5.4)

where w(k) is zero mean white Gaussian observation noise with variance σw. h(.) is a

nonlinear function of the state and for bearing & phase velocity measurements, it is given

as,

h(x[k]) = [θ, V̄φ]
T (5.5)

Simulation Results: Randomly moving worker with CW radar

Average walking speed of humans is about 3mph or 5kmph. However, we should note

that a worker can randomly start moving from anywhere between standing-still at one

second to running at the next. Therefore, the idea in this simulation is to allow observer

to move randomly at average human speed with variance of about 5kmph. We use the

Constant-Acceleration Tracker [4.3.1] designed in previous chapter, based on Wiener-

sequence acceleration model. Observer is also moving randomly with velocity standard

deviation of 5kmph. Rest of the simulation settings and parameters remains the same as

in previous chapter.

Figure [5.6a] shows result of one of the possible worker’s trajectories. In the figure,

blue line depicts worker’s trajectory whereas, surrounding walls are depicted in green.

As the worker moves around, CW radar rotates 360o obtaining bearing and phase mea-

surements simultaneously.

Figure [5.6b] shows the actual distance of walls from observer at each point compared

with estimated distance. We can see that the range error is quite large at start but it starts

decreasing - reaching within few cms after 2-3 seconds. Figure [5.6c] shows RMS position

errors for 100 MC runs. We can also notice some estimation errors around door. It’s
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because the door appears as high maneuvering target to the tracker, but given that we

are meeting observability conditions, filter converges to the original range quickly.
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(a) Worker (Blue) wearing smarthat and

randomly moving inside a room (Green)

(b) Estimated range compared to true range

(c) RMS Position Error

Figure 5.6: Error Comparisons for randomly moving worker using Tracker-1
(Section-4.3.1)
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By looking range profile of walls with respect to radar, it appears that surrounding

walls present themselves as highly maneuvering targets to a dynamic observer whose

head is also randomly moving. In section [4.3.2], we derived a Constant-Jerk model to

handle such nonlinearities in target motion and to get better range estimation - lowering

RMS errors. Observer and target’s state space equation and simulation parameters re-

main same as before. However, tracker’s state space model now incorporates 3rd deriva-

tive of position, as shown in Eq. 4.14. Remaining simulation parameters and setting are

same as in previous simulation. Fig. 5.7 below shows the results, where Figure [5.7a]

is just another example of possible random movements in the room. However, looking

at RMS Position Error plot in Figure [5.7b], the improvement in estimation by including

the Jerk parameter is pretty obvious. Not only the filter converges to within few cms of

actual range in less than a second but also it remains low even after high nonlinearities

near doorways.
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(a) Worker (Blue) wearing smarthat and

randomly moving inside a room (Green)

(b) Estimated range compared to true range

(c) RMS Position Error

Figure 5.7: Error Comparisons for randomly moving worker using Tracker-2
(Section-4.3.2)
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Although random human motions and movements add vulnerabilities to our track-

ers but simulations verify that such random movements can be handled easily through

added noise in system, therefore filters converge to true values. Just as before Constant-

Jerk filter outperforms the Constant-Acceleration filter. However, former also has more

computations and added complexity. It then depends upon the final system and it’s ap-

plication as to prefer accuracy vs computational complexity. One point to note is that

constant jerk filter also converges much faster than the constant acceleration filter, where

the former takes less than a second whereas, later takes 3 seconds on average in our case

studies.

5.6 Performance Improvement using Amplitude of Received Sig-
nal

As Kalman filter based algorithms are recursive, so they need a starting point to initiate

the recurrence. If estimation errors of such filtering algorithm are compatible with those

represented by covariance matrix then filter is said to be consistent [70]. Consistency as

defined here also implies that the mean and covariance estimate of the posterior PDF

satisfy [73],

trace
[

PXX − E
[
(X− X̂)(X− X̂)T

]]
≥ 0 (5.6)

where (X − X̂) represents the state estimation error. Therefore, at initialization it is

just as important that filter’s covariance associated with the initial estimate efficiently

reflects its accuracy. In Bayesian estimation, initial state is a random variable and it is

assumed to have Gaussian distribution with known mean and covariance. In case of lin-

ear systems with Gaussian noise, initial conditions doesn’t really effect stability of the

filter, other than that it delays the convergence. This initialization can be achieved in a

variety of different ways, for example, through geometric or probabilistic approaches. In

its original implementation Kalman assumed that mean and covariance of initial state

are known. In case where true initial state parameters are not known and one randomly

makes the initial variance too large then filter would take a large time to converge. Espe-



98 Smart Helmets: Sensing for Safety

cially if observations are themselves noisy and are not frequently available.

Unlike their linear counterparts, convergence and stability of nonlinear filters is quite

sensitive to proper initialization. If covariance matrix is initialized with large values than

nonlinear filters in general and Extended Kalman filter in specific easily diverges or con-

verge to a wrong estimate. One remedy to this divergence issue is to restart the algorithm

as soon as covariance matrix values becomes too large, but obviously this is not a solu-

tion. In many application, filters are initialized using a different sensor which provides a

good enough starting point. Or in some cases, algorithms use first few measurements to

get an estimate of starting point. In most cases, researchers derive the initial conditions

depending upon geometry of the problem. As mentioned earlier, in our case we assumed

that observer and target are located in a 5x5 m room. Therefore, we initialized the filters

with a range variance of about 9 m. Results with this initialization were discussed in

previous section. Of all the Gaussian approximate methods that we implemented, EKF

diverged about 20%, whereas, UKF and CKF only diverged only about 0.4% of all runs.

Although our initialization strategy worked pretty well, but obviously one assump-

tion about a general room size would not suit all environments. Therefore, we need

another strategy to initialize the filter. As mentioned earlier, now a days with advance-

ment in electronics and fabrication technology, one can easily get a CW Doppler radar

for few dollars, either online or off the counter. In our system, we are already using one

radar to obtain radial velocity information. The power of the signal received by the radar

is inversely proportional to the range of the target as follows [90]

PR1 =
PTG2λ2σ

(4π)3R4
1

(5.7)

where,

• PR1 is Power received at the radar,

• PT is Power transmitted by the radar,

• G is the antenna gain
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• λ is the radar operating wavelength

• σ is the radar cross section of the target

• R1 is the range of target from radar

Now assume another CW radar placed side by side with our first radar and displaced

by a small distance ∆r. If we assume that two Doppler radars are identical, then the

power received at this second Doppler radar from the same target at the same instant

could be obtained as,

PR2 =
PTG2λ2σ

(4π)3R4
2
=

PTG2λ2σ

(4π)3(R1 + ∆r)4 (5.8)

where,

• PR2 is Power received at radar 2,

• R2 is the range of target from radar

From equations 5.7 and 5.8 we can write that,

PR1

PR2

=
PTG2λ2σ(4π)3(R1 + ∆r)4

PTG2λ2σ(4π)3R4
1

=
(R1 + ∆r)4

R4
1

(5.9)

We can use Binomial theorem to expand the powered Binomial term in equation 5.6.

The formal expression for Binomial theorem is given as,

(a + b)n =
n

∑
k=0

(
n
k

)
an−kbk (5.10)(

n
k

)
=

n!
(n− k)!k!

(5.11)

Using Binomial theorem to expand the fourth powered term in numerator, we can



100 Smart Helmets: Sensing for Safety

write,

PR1

PR2

=

4
∑

k=0
(4

k)R4−k
1 (∆r)k

R4
1

PR1

PR2

=
R4

1 + 4R3
1(∆r) + 6R2

1(∆r)2 + 4R1(∆r)3 + (∆r)4

R4
1

PR1

PR2

= 1 +
4

R1
+

6
R2

1
+

4
R3

1
+

1
R4

1
(5.12)

Ignoring 2nd and higher order terms and rearranging the above equation, we can

obtain R1 as follows,

R1 =
4∆r

PR1
PR2
− 1

(5.13)

This shows that we can use the amplitude information in the returned radar signals

to derive pretty close estimate about initial range by using only one additional radar.

This rough estimate when used to initialize the filters to begin the recursion, reduces the

convergence time significantly. Figures [5.8] & [5.9] shows the tracking results after incor-

porating the above method of initialing the trackers. Looking at the range and velocity

RMS error plots in Figures [5.8a] & [5.8b], we can easily see the effect of proper initial-

ization in case of Constant Acceleration Model based trackers. Previously tracker was

taking 3 seconds on average to converge within 100 cms of true range. Now it is only

taking a fraction of the first second. Similar is the case for Constant-Jerk model based

trackers as shown in Figure [5.9]

.
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(a) Estimated Range Comparison

(b) RMS Position Error

Figure 5.8: Errors Comparisons for 100 MC runs of a randomly moving
worker using Tracker-1 (Section-4.3.1) with Initialization
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(a) Estimated Range Comparison

(b) RMS Position Error

Figure 5.9: Errors Comparisons for 100 MC runs of a randomly moving
worker using Tracker-2 (Section-4.3.2) with Initialization



Chapter 6

Conclusions

6.1 Summary of Results

THIS thesis has addressed the problem of improving the safety of workers in un-

safe work environments such as construction and mining. By looking at all the

requirements and constraints, we noted the significant weight of the safety gear already

worn by workers. This means any new safety proposal needs be innovative in adding

only negligible weight to a workers uniform, having low power consumption and being

robust under harsh treatment. We addressed these issues by proposing the design of a

smart helmet for workers using cheap radars.

To this end, we have proposed the idea of using CW Doppler radars for sensing

the environment. With advancement in technology and microelectronics, CW radars are

available for a couple of dollars off the shelf. As mentioned earlier, a Doppler radar can

only provide relative radial velocity information of targets. So, the first issue to tackle

was figuring out if the range is observable from Doppler measurements or not. While

working on this issue we realized that environment sensing is the same problem faced

by the drone community in designing its navigation system.

For the target to be observable with either or both bearing and frequency measure-

ments, LOS angle between the observer and the target must not remain constant. And

with frequency-only measurements, the range is observable if and only if the dynamics

order of the observers motion is of two or more degrees higher than the targets motion.

To verify this observability analysis, we designed an estimation framework using

Kalman filters with nonlinear frequency and bearing measurements. Simulation results

103
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verified that RMS range and velocity errors decreased with each 900 maneuvers that

the observer made. However, such sudden maneuvers are not practical in real life with

drones or UAVs. Therefore, we suggested the idea of circular motion by the observer, as

all observability conditions are met with such motion. Simulation results further verified

this and range estimates converged to actual values within a couple of the observers ro-

tations. Unscented Kalman filters consistently performed better in terms of lower RMS

errors and fewer divergent tracks. Then we extended our idea from localizing single

point-like targets to detecting walls and doors of a room. Our assumption was that the

radar would be fixed on a drone flying in a pattern, attempting to localize the surround-

ings so it can find its way. To this end, we showed that if a drone/UAV, equipped with a

simple CW radar, flies in a circle within a closed room it can accurately localize surround-

ing walls. One main difference between localizing targets with drones and with workers

is that, while a drone can move in any pattern, we cannot ask a worker to move in a pat-

tern to localize his surroundings. To tackle this issue, we developed the idea of obtaining

frequency measurements from rate of change of phase of reflected radar waves. This

way even if person is stationary at a point, the radar can simply sweep the room, mea-

sure rate of phase change and calculate frequency. We presented the design of a smart

helmet based on this idea using CW radars and phased array antennas with its antenna-

elements around the hats brim. This way a worker wearing the smart helmet would not

have to move around, and using a rotating beam we could obtain frequency and bearing

measurements of surrounding targets. We designed various simulations with filters of

varying model complexities and results showed that we can successfully localize walls

within a few cm of the actual location.

One of the main research questions in using CW radars on helmets was how random

human head movements would affect estimation results. We showed in our research

and simulations that random human head movements and walking do not pose much

threat to estimation accuracy, as they could easily be handled through added noise in the

system. This is because the range and distances under consideration are quite small com-

pared to the velocity of EM waves. These can leave the radar and return after reflection

before a person can move significantly.
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Kalman filter based algorithms are recursive and need a good starting point to initial-

ize the system. Since our system is highly non-linear, initializations significantly effect

the estimations results. Poor and improper initializations also lead to filter divergence.

In our work, we introduced the idea of placing two CW radars, side by side, and showed

how we can leverage the power of returned waveform to estimate initial target range.

Simulations further showed that this methodology decreased the filter convergence time

significantly.

6.2 Future Research Direction

The design of a smart helmet consists of two parts. The first is understanding the en-

vironment and localizing targets around the user. The second is updating the user by

providing feedback about the location and nature of events. In this thesis, we have tack-

led the first issue. One important research direction is to figure out ways to provide

feedback to the inattentive worker. Should this be audial or visual? One idea is to sound

a beep in either ear depending on the location of the target, but only if it approaches at

high speed or if the worker himself is about to hit an obstacle. How to alarm the worker

in such a way that the beep appears to come from the actual geospatial location of the

target is itself an interesting research problem.

If only a single target is present in the environment it can be localized based on de-

lay measurements at receivers. However, the radars accuracy in indoor environments is

effected by reflections (multi-path) from multiple moving targets. In some cases, a di-

rect path between the radar and the target might be blocked, but an indirect path arising

from multiple propagations and reflections might be available. If a targets directional

information is available this problem becomes easier. In this case, multiple targets can be

separated based on their associated angle information. A plethora of research has been

done on this multi target separation issue, producing many useful algorithms. An im-

portant research issue is to tackle this in our smart helmet use case. We have proposed

a system utilizing phased array antennas around the helmets brim. Then a targets an-

gle is the direction in which the antennas beam is directed. This information needs to
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be further investigated to differentiate between direct and indirect path reflection and

separating multiple targets.

The ambition to build an autonomous car, seamlessly guiding itself towards its des-

tination, has inspired the automotive industry for decades. The progress in millimeter

wave semiconductor technology along with sophisticated waveform designs and signal

processing techniques have led to many breakthroughs in the last few years. Now self

driving cars use a multitude of sensors like radars, lidars, cameras, GPS, Ultrasound,

etc. to implement Advance Driving Assistance Systems (ADAS). An ADAS can increase

drivers capabilities in many ways, including assisting in parking, generating cross traffic

alerts, lane changing alerts, blind spot detections and rear collision warnings. Radars are

being used for estimating range, velocity and direction of moving objects. Over time the

automotive industry has developed solutions based mostly on Pulsed Continuous Wave

or Frequency Modulated Continuous Wave (FMCW) radars. Although range observabil-

ity is not an issue with these radars, they have complex mathematics which require more

processing power as well as sophisticated waveform designs to obtain range-velocity

profiles. When we started this research, integrated FMCW radar chips were not available.

However, with high demand from the automotive industry these chips have started to

appear in the last 1-2 years. Compared to humans, cars can carry more weight and have

stronger batteries that can easily run powerful computer processors to implement math-

ematics required for FMCW radars. But in our safety and drones case, we are limited

by the radars weight, the power required and the harsh treatment it has to withstand.

Although FMCW radars chips now available on the market can provide much accurate

range and velocity information, they are also expensive, require more processing power

and have waveform design issues. One important research area is to check the feasibility

of mounting these new FMCW radar chips on a workers helmet. Ultimately, we must

compare the two competing radar technologies (CW and FMCW) to figure out which

is better suited for drones and helmets: the expensive and sophisticated FMCW radar,

which would avoid observability issues, or the cheaper and simpler CW radar, with its

observability difficulties. The problem is designing a radar that is optimized to our par-

ticular workers safety use case: i.e. a light weight, single chip, low power radar, using
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fewer computations and having a special waveforms library optimized for indoor mea-

surements.

Another interesting future research direction would be to create an Internet-of-Helmets

and connect it with a central database which updates the map of the construction site in

real time. Supervisors could view the location of each worker and/or machine to manage

them properly. By capturing the relative positive of each radar in the network, the cen-

tral database could run sophisticated and more powerful Machine Learning and Graph

algorithms to analyze this network, predicting accidents and threats.
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