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Abstract

High-speed Coherent Optical Orthogonal Frequency-
Division Multiplexing Design and Implementation

by Qi Yang

We have witnessed a dramatic increase of interest in orthogonal frequency-division
multiplexing (OFDM) from optical communication community in recent years. The number
of publications on optical OFDM has grown dramatically since it was proposed as an
attractive modulation format for long-haul transmission either in coherent detection or direct-
detection. Over the last few years, net transmission data rates grew at a factor of 10 per year at
the experimental level. These progresses may eventually lead to realization of commercial
transmission products based on optical OFDM in the future, with the potential benefits of high
spectral efficiency and flexible network design.

As the IP traffic continues to grow at a rapid pace, 100 Gb/s Ethernet is being
considered as the new generation transport standard for IP networks. As the data rate
approaches 100 Gb/s and beyond, the electrical bandwidth required for CO-OFDM would be
at least 15 GHz and may not be cost-effective to implement even with the best commercial
digital-to-analog converters (DAC) and analog-to-digital converters (ADC) in silicon
integrated circuit (IC). To overcome this electrical bandwidth bottleneck, we propose and
demonstrate the concept of OBM-OFDM to divide the entire OFDM spectrum into multiple
orthogonal bands. Due to the inter-band orthogonality, the multiple OFDM bands with zero or
small guard bands can be multiplexed and de-multiplexed without inter-band interference.
With this scheme, transmission of 107 Gb/s CO-OFDM signal over 1000 km (10x100 km)
standard single mode fiber (SSMF) has been realized using only erbium-doped fiber amplifier
(EDFA) and without a need for optical dispersion compensation.

Large amount of optical OFDM studies are reported based on offline processing using
high-speed sampling scope which show many advantages of optical OFDM systems achieving
over 100 Gb/s aggregated data rate and over thousands of km in transmission distance.
However, many lack discussion on the potential implementation difficulties. Special
requirements of optical communication systems such as several order of magnitude higher
data rate than wireless counterpart requires careful studies in feasible real-time

implementation. We demonstrate a field-programmable gate array (FPGA) based real-time



CO-OFDM receiver at a sampling speed of 2.5 GS/s, and show its performance in receiving a
subband of a 53.3 Gb/s multi-band signal. Additionally, by taking advantage of the multi-
band structure of the OFDM signal, we successfully characterize a 53.3 Gb/s CO-OFDM
signal in real-time by measuring one of its subbands at a time (3.55 Gb/s).

Transmission bandwdith of ever-advacing optical transport is one of the important cost-
drivers. To save the transmission bandwidth, using advanced coding to improve system
performance without the bandwidth extension is a promising technique. We show two
approaches with different coding scheme for CO-OFDM - trellis coded modulation (TCM)
and low-density-parity-check (LDPC). Both schemes are demonstrated using CO-OFDM with
higher order moulation format for long haul transmission. The superior system performance
of these two schemes shows that the combination of advanced coding with high-level
modulation may be a promising technique to support high-spectral-efficiency and high-

performance CO-OFDM transmission.
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Chapter 1
Introduction

1 Introduction

1.1 Overview

The Internet traffic from data, voice and video services is driving the bandwidth demand of
telecommunication networks dramatically. This in turn has put much pressure on core
networks. Figure 1 (a) shows the evolution of data traffic where the traffic increases about 5
times within every 3 years [1]. Figure 1(b) and (c) show the fast increase in traffic growth
from Corning [2] and [3]. The 100G Ethernet has been recognized a necessary in the end of
the last decade. Moreover, driven by the rapid advances of CMOS digital signal processing
technologies, 100 Gb/s Ethernet (100 GbE) has become increasingly a commercial reality [4].

( a) (b) Network Traffic Growth Projections
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Figure 1. Growth of the Internet traffic: (a) Evolution of data traffic composition. BB: broadband; SME: small
and medium-sized enterprises; (b) Network traffic growth projections from Corning. (¢) Growth trends in IP
traffic and DWDM system throughput.

In order to meet the demands of high capacity transport network, especially for 100G
Ethernet and beyond, worldwide research and development effort on high-speed transmission
is in full swing. To increase the data rate per wavelength to 100 Gb/s and beyond, the main
issues are identified as follows:

® Bandwidth expansion

One straightforward approach to enhancing the capacity is to increase the transmission
bandwidth per wavelength, electrically or optically. In optical fiber communications, two

techniques for increasing the transmission capacity are widely used: (1) extending the
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bandwidth by adding multiple optical carriers, and (2) extending the electronic bandwidth per
wavelength. The former has already been widely studied and is well known as wavelength
division multiplexing (WDM). Using WDM, the transmission bandwidth can be easily
extended by adding more transceivers for the existing fiber links without installation and
alternation of the fiber link. Such an approach can be considered as one of the most cost
efficient ways to increase the optical link throughput [5]. The latter relies on the state-of-art
CMOS technology. However, the current commercial digital-to-analog converters (DACs) /
analog-to-digital converters (ADCs) in silicon integrated circuit (IC) can only run at a
bandwidth of 6 GHz [6], indicating that to realize 100 Gb/s transmission directly is
challenging in a cost-effective manner [7]. Nevertheless, most recently the high speed
DAC/ADC has achieved more than 30 giga-sample per second (GS/s) with > 20GHz analog
bandwidth, which potentially can support 100 Gb/s transmission [8].
® Spectral efficiency enhancement

One of the most critical figure-of-merits in optical communications is spectral efficiency,
which is defined as the information capacity per unit bandwidth. The existing optical network
mainly utilizes intensity modulation and direct detection (IM/DD) for the transmission. Most
of them use binary modulation, which reduces the complexity of transmitter and receiver.
However, using binary modulation, regardless of detection techniques, spectral efficiency
cannot exceed 1 bit/s/Hz [9]. Recently, in order to increase the system capacity, many
advanced modulation formats in amplitude, phase, and polarization of the signal have been
widely studied. With advanced modulation formats combined with the coherent detection
technology, spectral efficiency with several bit/s/Hz can be easily achieved [10]. The recent
surge of the interests in advanced modulation formats began from multilevel phase/amplitude
modulation to polarization division multiplexing. Although the research on optical OFDM can
be traced back ten years ago [11], it only started to receive great attention after it was
proposed as an attractive modulation format for long-haul transmission either in coherent
detection [ 12] or direct-detection [ 13,14]. The synergies between coherent optical
communications and OFDM are two-fold. The coherent system brings OFDM a much needed
linearity in RF-to-optical (RTO) upconversion and optical-to-RF (OTR) downconversion.
OFDM brings coherent system computation efficiency and ease of channel and phase
estimation [15]. In spite of the fact that all the current coherent optical OFDM (CO-OFDM)
experimental demonstrations use off-line signal processing [16-21], the complementary

metal-oxide semiconductor (CMOS) application-specific integrated circuit (ASIC) chips
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recently have demonstrated for single carrier coherent systems [22,23] signify that the current
silicon speed can support 40 Gbit/s OFDM transmission systems. Because of its superior
scalability with the bit rate of the transmission systems, CO-OFDM is well-positioned to be
an attractive choice of modulation format for the next generation of 100 Gb/s transmission.

Although great number of optical OFDM studies are reported based on offline
processing using high-speed sampling scopes demonstrating many advantages of optical
OFDM systems at 100 Gb/s aggregated data rate over thousands of kilometers in transmission
distance [16-21], many lack discussion on the possible implementation difficulties. Special
requirement of optical communication system such as several order of magnitude higher data
rate than wireless counterpart requires careful study on feasible real-time implementation of
the high-speed optical OFDM systems. As of the time of this writing, several demonstrations
of real-time reception have been reported for both coherent single-carrier [6,24,25] and CO-
OFDM signals [26-29]. With the state-of-art ASIC technology, 40 Gb/s and 100 Gb/s optical
OFDM transceivers are foreseeable in the near future.

As the line rate has reached up to 1 Tb/s using off-line signal processing, and real-time
demonstration has shown to support beyond 40 Gb/s, many other attractive research topics are
currently being investigated, such as nonlinearities of optical OFDM, high spectral efficiency,
etc. Among these topics, the advanced coding is a promising technique to achieve enhanced
optical transmission performance. Traditionally, forward error correction (FEC) requires
extending the signal bandwidth to fill the coding overhead. As signal spectrum efficiency (SE)
becomes greatly valuable nowadays, researchers are seeking some approaches to improve the
system performance while main the SE.

Therefore, this thesis will be laid out according to the above-mentioned aspects: (i)
demonstration of 107 Gb/s optical OFDM over 1000 km standard signal mode fiber (SSMF);
(i1) implementation of real-time optical OFDM; (iii) advanced coding for coherent optical
OFDM. Additionally, some other techniques to improve the optical OFDM performance

based on channel estimation will be also discussed in a separate section.

1.2 Motivations of the Thesis

In this section, the motivations for the research in the thesis are shown, organized into four
parts. Firstly, the motivations for the 100 Gb/s optical transmission aided by the electronic
DSP is presented. So far, the research on optical OFDM has achieved up to 10 Tb/s

transmission data rate over tens of thousands kilometers reaches [30]. However, most of the
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reports are based on offline processing. Thus the real-time investigation is highly desired,
which is discussed in the 1.2.2. In section 1.2.3, the aim of using advanced coding to improve
the system performance is presented. In the last section 1.2.4, some advanced techniques for
CO-OFDM will be presented, such as bit and power loading, and a special channel estimation

algorithm.

1.2.1 100 Gb/s coherent optical OFDM transmission

Optical fiber communications has several advantages over the RF counterpart, such as
low transmission loss and enormous bandwidths, etc. However, when the optical signal is
transmitted or received in the electrical domain, the limitation of the RF bandwidth will
dominate. For instance, a 107 Gb/s optical OFDM signal needs ~30-GHz optical bandwidth
including the 7% FEC overhead. Using coherent detection, the minimum required electrical
bandwidth is ~15 GHz [7]. However, by the year of 2008, the best commercial DACs/ADCs
in silicon integrated circuit were only run at a bandwidth of 6 GHz [6]. Thus, to implement
100 Gb/s OFDM transmission is challenging in a cost-effective manner. Therefore, the
following questions need to be answered for 100 Gb/s CO-OFDM implementation and
transmission:

® (Can 100 Gb/s signals be generated/received using the state-of-art electronic DSP?

®  What is the impact of multiband portioning on CO-OFDM generation and detection?

1.2.2 Multi-gigabit/s real-time coherent optical OFDM transmission

Real-time coherent optical single carrier demonstration was first proposed in 2006
[31,32]. In the single-carrier scheme, the main digital signal processing is based on constant-
modulus algorithm (CMA) and finite impulse response (FIR) digital filters. Such filters can be
easily implemented on ASICs. In contrast, OFDM is based on frame and symbol structure.
Time-domain and frequency-domain conversion are essential for OFDM. Like FFT, some
digital signal processing procedures require complex computation in ASIC design, such as
complex number multiplication. Consequently, to implement real-time optical OFDM, the

following three restricts must be carefully considered:

° Optical OFDM transmitter and receiver setup
Unlike single-carrier counterpart, OFDM requires DAC to generate OFDM time-domain
signal like an arbitrary wave generation (AWG) at the transmitter part. Compared to offline

processing, the real-time requires that signal be processed in multiple ‘channels’. Currently,
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the digital signal processor only can run at a few hundreds of megahertz, while the fast
DAC/ADC can be operated at a few Gigahertzes. Thus signal has to be parallel processed
within multiple channels in the processor. The high speed signal has to be firstly multiplexed
into high speed serial data in the transmitter, and lastly de-multiplexed for the digital signal
processing in the receiver. Furthermore, precise alignment in the high speed interface is

essential.

° Efficient digital signal processing algorithms

In OFDM scheme, there are several main signal processing procedures, such as window
synchronization, (inverse) discrete Fourier transform, channel estimation, phase estimation,
etc. To implement those procedures into one chip, the algorithms have to be efficient in

resource consumption, and suitable for parallel channel processing.

° Resource consumption

In addition to the DSP algorithms that can be implemented, other important
considerations for real-time optical OFDM are the hardware limitation, resource usage, and
FPGA/ASIC capacity. For instance, the resolution of ADC has the influences on the system
performance, and also affects the entire hardware resources. Some limited resources, such as
number of multipliers, must be carefully considered. It is the main limitation for the real-time

CO-OFDM implementation using FPGA.

1.2.3 Advanced coding for CO-OFDM transmission without bandwidth

extension

One of the main advantages of coherent optical OFDM is the high spectral efficiency. In 2009,
the transmission with QPSK modulation has achieved 1-Tb/s net rate with spectrum
efficiency of 3.3 bit/s/Hz [19,20]. To further increase the transmission rate, two approaches
are widely used: (i) to occupy wider optical bandwidth; (ii) to use higher order modulation,
and increase the spectrum efficiency. As the fiber transmission bandwidth is constrained by
the EDFA bandwidth, only a small fraction of the overall fiber bandwidth can be used (~70
nm). Thus, approach (ii) is becoming more attractive. Nowadays researches have started to
employ the whole C and L band in the fiber communication with up to 32-QAM constellation
mapping [33,34]. Up to now, the optical spectrum efficiency has broken 10 bit/s/Hz with 128-
QAM in dual polarizations [35]. However, higher order modulation leads to sacrifice of the

OSNR. In a nutshell, to improve the system performance with the same bandwidth has
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become a promising technique.

1.2.4 Some advanced techniques for CO-OFDM based on channel
estimation

In CO-OFDM, channel estimation is essential as it affects the transmission system
performance. The information transmission can also be adapted according to the channel
characteristics. Traditionally, time-domain channel estimation algorithm requires several
training symbols to obtain the channel transfer function. This will introduce a small overhead
over the entire net rate. Consequently, a channel estimation algorithm that can have the same
performance while reducing the overhead from training symbols will be desirable for CO-
OFDM transmission. Moreover, when the channel information is feedback to the transmitter,
the transmit signal can be modified to fit the channel transmission characteristics. The
subcarriers with better performance can be loaded with higher modulation. By doing so, the
net rate can be increased. Suitable power loading adjustment can help to further improve the

transmission performance.

1.3 Thesis outline

The organization of this thesis is laid out as follows:
Chapter 1: Introduction

Overview of coherent optical OFDM development and introduction of the thesis is presented

in this chapter.

Chapter 2: Basics of Optical OFDM

Before discussing the designs and implementations, the basics of optical OFDM are firstly
shown in this chapter. Several main aspects in optical OFDM are discussed, such as
orthogonality, discrete Fourier transform, and cyclic prefix. Two flavors of optical OFDM are
briefly discussed: direct-detection optical OFDM (DDO-OFDM) and Coherent optical OFDM
(CO-OFDM).

Chapter 3: 107 Gb/s CO-OFDM long haul transmission
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In this chapter, the implementation of 107 Gb/s CO-OFDM over 1000 km is fully discussed.
Using orthogonal-band-multiplexing, the electrical bandwidth limitation can be overcome.

The influence of multi-band detection for CO-OFDM will also be discussed.

Chapter 4: Real-time CO-OFDM Implementation

This chapter shows the implementation of real-time CO-OFDM based on FPGA. Several
digital signal processing algorithms for real-time implementation are discussed. Moreover,
some important implementation issues, such as resource restrictions will be shown in this

chapter.

Chapter 5: Advanced Coding for CO-OFDM Without Bandwidth Extending
In this chapter, two schemes based on advanced coding for CO-OFDM are presented. The
transmission performances are much improved for both back-to-back and long haul

transmission cases while the signal bandwidth remains the same.

Chapter 6: Some Advanced Techniques for CO-OFDM Based On Channel Estimation

Two advanced techniques for CO-OFDM based on channel estimation are shown in this
chapter. Firstly, a channel estimation based on frequency-domain averaging algorithm is
discussed. Secondly, the bit and power loading algorithms for optical OFDM are proposed,

which can increase the transmission net rate or improve the receiver sensitivity.

Chapter 7: Conclusion
This chapter summaries the described design and implementation for coherent optical OFDM
in this thesis. All the demonstrations show that the coherent optical OFDM is being an

attractive modulation format, which may be widely used for next generation networks.

1.4 Contribution of the thesis

The contributions of the thesis are listed as follows:
Chapter 3

® We propose a novel approach, namely orthogonal-band-multiplexed (OBM) OFDM,
which can subdivide the entire OFDM spectrum into multiple orthogonal bands in order

to avoid the electrical bandwidth bottleneck.
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® We show the world-first experiment of 107 Gb/s coherent optical OFDM through optical
realization of OBM-OFDM. A numerical simulation for both single channel and WDM
transmission is conducted to verify the feasibility of the demonstrated OBM-OFDM

experiment system.

® Guard band influence of OBM-OFDM is discussed. It is observed that when the
orthogonality between OFDM subcarriers or sub-bands is maintained, no penalties are

observed for OBM-OFDM signals.
Chapter 4

® We experimentally demonstrate the world-first experiment of real-time demonstration
with 3.6 Gb/s per single subband for optical OFDM. Additionally, using the concept of
OBM-OFDM, net rate up to 54 Gb/s can be achieved.

® We analyze various practical optical OFDM algorithms for real-time implementation.

® Several practical considerations over real-time CO-OFDM are shown, such as bit-

resolution and hardware resource, etc.
Chapter 5

® We theoretically study the trellis coded modulation for CO-OFDM transmission, and
experimentally demonstrate the CO-OFDM with trellis coded 32-QAM. The system
sensitivity is much improved by expanding the constellation, while the transmission

bandwidth remains the same.

® We also demonstrate 428 Gb/s low-density-parity-check coded 16-QAM. Combined with
rate 2 low-density parity-check (LDPC) coding, both high spectrum efficiency and

improved sensitivity are achieved without the signal bandwidth extension.
Chapter 6

® We experimentally demonstrate the effectiveness of the CO-OFDM transmission based
on frequency-domain averaging channel estimation algorithm. Compared to time-domain
averaging, frequency-domain averaging channel estimation algorithm shows comparable

performance with much reduced overhead.



Chapter 1
Introduction

® We show the experiment demonstration of CO-OFDM systems with bit and power
loading. The net rate can be increased without modifying the channel bandwidth and
launch power. The system performance is further improved through optimal power

loading into each modulation band.
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2 Basics of Optical OFDM

Before discussing the main designs and implementations in the thesis, it is necessary to
conduct some literature review and basics of coherent optical OFDM. In recent years, we
have witnessed a dramatic increase of interest in orthogonal frequency-division multiplexing
(OFDM) from optical communication community. The number of publications on optical
OFDM has grown dramatically since it was proposed as an attractive modulation format for
long-haul transmission either in coherent detection [7] or direct-detection [36,37 ]. Over the
last few years, net transmission data rates grew at a factor of 10 per year at the experimental
level. To date, experimental demonstration of up to 10 Tb/s transmission in a single channel
[30] has been accomplished whereas demonstration of real-time optical OFDM with digital
signal processing has surpassed 40 Gb/s [28]. These progresses may eventually lead to the
realization of commercial transmission products based on optical OFDM in the future, with

the potential benefits of high spectral efficiency and flexible network design.

2.1 Historical perspective of OFDM

OFDM plays a significant role in the modem telecommunications for both wireless and wired
communications. The history of frequency division multiplexing (FDM) began in 1870s when
the telegraph was used to carry information through multiple channels [38]. The fundamental
principle of orthogonal frequency division multiplexing was proposed by Chang [39] as a way
to overlap multiple channel spectra within a limited bandwidth without interference,
considering the effects of both filter and channel characteristic. Since then, many researchers
have investigated and refined the technique over the years and it has been successfully
adopted in many standards. Table 1 shows some of the key milestones of the OFDM

technique in RF domain.

Table 1. Historical development of RF-domain OFDM.

1966 R. Chang, foundation work on OFDM [39]

1971 S. B. Weinstein and P. M. Ebert, DFT implementation of OFDM [40]

1980 R. Peled and A. Ruiz, Introduction of cyclic prefix [41]

1985 L. Cimini, OFDM for mobile communications [42]

1995 DSL formally adopted Discrete Multi-tone (DMT), a variation of OFDM.
1995 (1997) | ETSI Digital Audio (Video) Broadcasting Standard, DAB(DVB)

13




Chapter 2
Basics of Optical OFDM

1999 (2002) | Wireless LAN standard, 802.11 a (g), Wi-Fi

2004 Wireless MAN standard, 802.16, WiMax

2009 Long Time Evolution (LTE), 4 G Mobile standard

Although OFDM has been studied in RF domain for over four decades, the research of
OFDM in optical communication began only in the late 1990s [11]. The fundamental
advantages of OFDM in an optical channel were first disclosed in [43]. In the late 2000s,
long-haul transmission by optical OFDM has been investigated by a few groups. Two major
research directions appeared, direct-detection optical OFDM (DDO-OFDM) [44,45] looking
into a simple realization based on low-cost optical components and coherent optical OFDM
(CO-OFDM) [7] aiming to achieve high spectral efficiency and receiver sensitivity. Since
then, the interest in optical OFDM increases dramatically. In 2007, the world’s first coherent
optical OFDM experiment with line rate of 8 Gb/s was reported [46]. In the last few years, the
transmission capacity continued to grow about 10 times per year. In 2009, up to 1 Tb/s optical
OFDM was successfully experimentally demonstrated [19,20,21]. Table 2 shows the
development of optical OFDM in the last two decades.

Table 2 Progress of optical OFDM
1996 Pan and Green, OFDM for CATV [11]

2001 You and Kahn, OFDM in direct modulation (DD) systems [47]
Dixon et al., OFDM over multimode fiber [43]

2005 Jolley et al., experiment of 10 Gb/s optical OFDM over multimode fiber
(MMF) [48]
Lowery and Armstrong, power efficient optical OFDM in DD systems [49]

2006 Lowery and Armstrong [44], and Djordjevic and Vasic [45], long-haul
direct-detection optical OFDM (DDO-OFDM)
Shieh and Athaudage, long-haul coherent optical OFDM (CO-OFDM) [46]

2007 Shich et al.[46], 8 Gb/s CO-OFDM transmission over 1000 km

2008 Yang et al., [16], Jansen et al., [17], Yamada et al., [18], >100 Gb/s per
single channel CO-OFDM transmission over 1000 km

2009 Ma et al., [19], Dischler et al., [20], Chandrasekhar et al [21] , >1Tb/s CO-

OFDM long-haul transmission
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Besides offline digital signal processing, from 2009 onwards, a few research groups
started to investigate real-time optical OFDM transmission. The first real-time optical OFDM
demonstration took place in 2009 [26], three years later than real-time single-carrier coherent
optical reception [24,25]. The pace of real-time OFDM development is fast, with the net rate
crossing 10 Gb/s and 40Gb/s within one year [28,29]. Moreover, by using orthogonal-band-
multiplexing (OBM), which is a key advantage for OFDM, up to 54 Gb/s [26] and 110 Gb/s
[50] over 600 km standard signal mode fiber (SSMF) was successfully demonstrated. Most
recently, 41.25 Gb/s per single-band was reported in [28]. As evidenced by the
commercialization of single-carrier coherent optical receivers, it is foreseeable that real-time
optical OFDM transmission with much higher net rate will materialize in the near future

based on state-of-the-art ASIC design.

2.2 OFDM fundamentals

Before moving onto the description of optical OFDM transmission, this section will review
the basics of OFDM itself, including some fundamental concepts and mathematic expressions.
It is well known that OFDM is a special class of multi-carrier modulation (MCM), a generic
implementation of which is depicted in Figure 2. The structure of a complex multiplier (I/Q
modulator/demodulator), which is commonly used in MCM systems, is also shown in the

Figure 2. The key concept of OFDM is the orthogonality of the individual subcarriers.
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Figure 2. Conceptual diagram for a multi-carrier modulation (MCM) system, such as OFDM.

2.2.1  Orthogonality between OFDM subcarriers and subbands

The MCM transmitted signal s(¢) is represented as

+oo Ny
s)=D. D cus, (1—iT,) (1)

i=—0 k=1
s, (£) =T1(r) "> @)

1, (0<¢<T)
I1(¢)= °
(1) {O, (1<0,6>T) )
where cy; 18 the ith information symbol at the kth subcarrier, s, is the waveform for the kth

subcarrier, N, is the number of subcarriers, f;is the frequency of the subcarrier, and 75 is the

symbol period, I1(z)is the pulse shaping function. The optimum detector for each subcarrier

could use a filter that matches the subcarrier waveform, or a correlator matched to the

subcarrier as shown in Figure 2. Therefore, the detected information symbol ¢, at the output

of the correlator is given by
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where r(t) is the received time-domain signal. The classical MCM uses non-overlapped

band-limited signals, and can be implemented with a bank of large number of oscillators and
filters at both transmit and receive end [51,52]. The major disadvantage of MCM is that it
requires excessive bandwidth. This is because in order to design the filters and oscillators
cost-effectively, the channel spacing has to be multiple of the symbol rate, greatly reducing
the spectral efficiency. A novel approach called orthogonal frequency-division multiplexing
(OFDM) was investigated by employing overlapped yet orthogonal signal set [53]. This
orthogonality originates from straightforward correlation between any two subcarriers, given

by

s

T,
Iexp ]27[ t)dt
0

sin(ﬂ(fk—f,)Ts) (5)
z(fi =),

It can be seen that if the following condition
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N

is satisfied, then the two subcarriers are orthogonal to each other. This signifies that these
orthogonal subcarrier sets, with their frequencies spaced at multiple of inverse of the symbol
rate can be recovered with the matched filters in (5) without inter-carrier interference (ICI), in

spite of strong signal spectral overlapping.

This shows that the orthogonality condition holds for any pair of subcarriers within in an
OFDM signal. Moreover, the concept of this orthogonality can be extended to combine
multiple OFDM bands into a signal with much larger spectral width. Such approach was first
introduced by [16] to flexibly multiply the capacity of a single wavelength. This method of
sub-dividing OFDM spectrum into multiple orthogonal bands is so called ‘orthogonal-band-
multiplexed OFDM’ (OBM-OFDM), which will be fully discussed in chapter 3.
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2.2.2 Discrete Fourier transform (DFT) implementation of OFDM

We change the expression of (1) as:

N-1 .
§(t)=ZAl. exp(j27zit+¢l.), 0<¢t<T
= d ™)

which is the complex form of the OFDM baseband signal.

If we sample the complex signal with a sample rate of 1/T, and add a normalizing factor

1/N, then

N-1 .
S, = 4 exp(j2m—n), n=0,1,.,N—I
= N ®)

This is exactly the expression of inverse discrete Fourier transform (IDFT). It means that
the OFDM baseband signal can be implemented by IDFT. The pre-coded signals are in the
frequency domain, and output of the IDFT is in the time domain. In contrast, at the receiver

side, the data is recovered by discrete Fourier transform (DFT), which is given by:

N-1 l

4=)8, exp(—j27rﬁn), n=0,1,...N—1
i=0 ©)

There are two fundamental advantages of DFT/IDFT implementation of OFDM. First,

because they can be very efficiently implemented by (inverse) fast Fourier transform (I)FFT,
2

algorithm, the number of complex multiplications for (I)DFT/IDFT is reduced from N o

(N/2)-log, (N ), almost linearly with the number of subcarrier, N [54]. Second, a large

number of orthogonal subcarriers can be generated and demodulated without resorting to very
complex RF oscillators and filters. This leads to a relatively simple architecture for OFDM

implementation when large number of subcarriers is required.

2.2.3 Cyclic prefix for OFDM

In addition to modulation and demodulation of many orthogonal subcarriers via (I)FFT, one
has to mitigate dispersive channel effects such as chromatic and polarization mode
dispersions for good performance. In this respect, one of the enabling techniques for OFDM is
the insertion of cyclic prefix [55,56]. Let us first consider two consecutive OFDM symbols

that undergo a dispersive channel with a delay spread of #;. For simplicity, each OFDM
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symbol includes only two subcarriers with the fast delay and slow delay spread at ¢,
represented by ‘fast subcarrier’ and ‘slow subcarrier’, respectively. Figure 3 (a) shows that
inside each OFDM symbol, the two subcarriers, and ‘fast subcarrier’ and ‘slow subcarrier’ are
aligned upon the transmission. Figure 3 (b) shows the same OFDM signals upon the reception
where the ‘slow subcarrier’ is delayed by #; against the ‘fast subcarrier’. We select a DFT
window containing a complete OFDM symbol for the ‘fast subcarrier’. It is apparent that due
to the channel dispersion, the ‘slow subcarrier’ has crossed the symbol boundary leading to
the interference between neighboring OFDM symbols, formally, the so-called inter-symbol-
interference (ISI). Furthermore, because the OFDM waveform in the DFT window for ‘slow
subcarrier’ is incomplete, the critical orthogonality condition for the subcarriers is lost,

resulting in an inter-carrier-interference (ICI) penalty.
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Figure 3. OFDM signals (a) without cyclic prefix at the transmitter, (b) without cyclic prefix at the receiver, (c)
with cyclic prefix at the transmitter, and (d) with cyclic prefix at the receiver.

Cyclic prefix was proposed to resolve the channel dispersion induced ISI and ICI [57].

Figure 3 (c) shows insertion of a cyclic prefix by cyclic extension of the OFDM waveform
into the guard interval A.. As shown in Figure 3 (c), the waveform in the guard interval is

essentially an identical copy of that in the DFT window, with time-shifted by ‘¢z’ forward.
Figure 3 (d) shows the OFDM signal with the guard interval upon reception. Let us assume
that the signal has traversed the same dispersive channel, and the same DFT window is
selected containing a complete OFDM symbol for the ‘fast subcarrier’ waveform. It can be
seen from Figure 3 (d), a complete OFDM symbol for ‘slow subcarrier’ is also maintained in
the DFT window, because a proportion of the cyclic prefix has moved into the DFT window
to replace the identical part that has shifted out. As such, the OFDM symbol for ‘slow
subcarrier’ is an ‘almost’ identical copy of the transmitted waveform with an additional phase
shift. This phase shift is dealt with through channel estimation and will be subsequently
removed for symbol decision. The important condition for ISI-free OFDM transmission is

given by:
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l, < AG (10)

It can be seen that after insertion of the guard interval greater than the delay spread, two
critical procedures must be carried out to recover the OFDM information symbol properly,
namely, (i) selection of an appropriate DFT window, called DFT window synchronization,
and (i1) estimation of the phase shift for each subcarrier, called channel estimation or
subcarrier recovery. Both signal processing procedures are actively-pursued research topics,

and the research on these topics can be found in both books and journal papers [57,58].

T,, OFDM Symbol Period

A
|

t., Observation Period

\

|

I
I I
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Identical Copy

Figure 4. Time-domain OFDM signal for one complete OFDM symbol.

The corresponding time-domain OFDM symbol is illustrated in Figure 4, which shows
one complete OFDM symbol comprised of observation period and cyclic prefix. The
waveform within the observation period will be used to recover the frequency-domain

information symbols.

2.3 Flavors of optical OFDM

One of the major strengths of OFDM modulation format is its rich variation and ease of
adaption to a wide range of applications. In wireless systems, OFDM has been incorporated in
wireless LAN (IEEE 802. 11a/g, or better known as WiFi), wireless WAN (IEEE 802.16e, or
better known as WiMax), and digital radio/video systems (DAB/DVB) adopted in most parts
of the world. In RF cable systems, OFDM has been incorporated in Asymmetric Digital
Subscriber Line (ADSL) and very-high-rate digital subscriber line (VDSL) broadband access
via telephone copper wiring or power line. This rich variation has something to do with the

intrinsic advantages of OFDM modulation including dispersion robustness, ease of dynamic
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channel estimation and mitigation, high spectral efficiency and capability of dynamic bit and
power loading. Recent progress in optical OFDM is of no exception. We have witnessed
many novel proposals and demonstrations of optical OFDM systems from different areas of
the applications that aim to benefit from the afore-mentioned OFDM advantages. Despite the
fact that OFDM has been extensively studied in the RF domain, it is rather surprising that the
first report on optical OFDM in the open literature only appeared in 1998 by Pan et al. [11]
where they presented in-depth performance analysis of hybrid AM/OFDM subcarrier-
multiplexed (SCM) fiber-optic systems. The lack of interest in optical OFDM in the past is
largely due to the fact the silicon signal processing power had not reached the point where

sophisticated OFDM signal processing can be performed in a CMOS integrated circuit.

Optical OFDM is mainly classified into two main categories: coherent detection and
direct detection according to their underlying techniques and applications. While direct
detection has been the mainstay for optical communications over the last two decades, the
recent progress in forward-looking research has unmistakably pointed to the trend that the

future of optical communications is the coherent detection.

Direct-detection optical OFDM (DDO-OFDM) has much more variants than the
coherent counter part. This mainly stems from the broader range of applications for direct-
detection optical OFDM due to its lower cost. For instance, the first report of the DDO-
OFDM [11] takes advantage of that the OFDM signal is more immune to the impulse clipping
noise in the (Cable TV) CATV network. Other example is the single-side-band (SSB)-OFDM
which has been recently proposed by Lowery et al. and Djordjevic et al. for long-haul
transmission [36, 37]. Tang et. al. have proposed an adaptively modulated optical OFDM
(AMOOFDM) that uses bit and power loading showing promising results for both multimode
fiber and short-reach SMF fiber link [59, 60]. The common feature for DDO-OFDM is of
course using the direct-detection at the receiver, but we classify the DDO-OFDM into two
categories according to how optical OFDM signal is being generated: (i) linearly-mapped
DDO-OFDM (LM-DDO-OFDM) where \the optical OFDM spectrum is a replica of baseband
OFDM, and (ii) nonlinearly-mapped DDO-OFDM (NLM-DDO-OFDM) where the optical
OFDM spectrum does not display a replica of baseband OFDM [61].

Coherent optical OFDM (CO-OFDM) represents the ultimate performance in receiver
sensitivity, spectral efficiency and robustness against polarization dispersion, but yet requires

the highest complexity in transceiver design. In the open literature, CO-OFDM was first
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proposed by Shieh and Authaudage [12], and the concept of the coherent optical MIMO-
OFDM was formalized by Shieh et al. in [62]. The early CO-OFDM experiments were carried
out by Shieh et al. for a 1000 km SSMF transmission at 8 Gb/s [46], and by Jansen et al. for
4160 km SSMF transmission at 20 Gb/s [63]. Another interesting and important development
is the proposal and demonstration of the no-guard interval CO-OFDM by Yamada et. al. in
[64] where optical OFDM is constructed using optical subcarriers without a need for the
cyclic prefix. Nevertheless, the fundamental principle of CO-OFDM remains the same, which
is to achieve high spectral efficiency by overlapping subcarrier spectrum yet avoid the
interference by using coherent detection and signal set orthogonality. This thesis focuses on

coherent optical OFDM.

2.4 Conclusion

In this chapter, we first reviewed the historical perspective of OFDM. It starts with literature
overview of OFDM in wireless research area. The development of OFDM in optical research
area is then listed. Moreover, we reviewed the real-time optical OFDM demonstrations in the
recent a few years. In the section 2.2, the fundamentals of OFDM are given. There are three
key points in the OFDM structure: (a) orthogonality, (b) discrete Fourier transforms, and (c)
usage of cyclic prefix. These three points are fully discussed using mathematic models and
expressions. Two flavors of optical OFDM are listed in the following section, direction
detection optical OFDM and coherent optical OFDM. Due to benefits of coherent detection,

in the thesis, coherent optical OFDM is mainly discussed.
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3 107 Gb/s CO-OFDM Long Haul

Transmission

3.1 Overview

Orthogonal frequency-division multiplexing has been extensively studied to combat RF
microwave multipath fading and has emerged as the leading modulation technology for the
wireless and wire-line systems in RF domain. An optical equivalent of RF OFDM called
coherent optical OFDM has been proposed [12] and has become a promising technique for
high spectral efficiency and dispersion resilient transmission [63,65]. As the IP traffic
continues to grow at a rapid pace, the 100 Gb/s Ethernet is being the transport standard for IP
networks [4]. As the data rate approaches 100 Gb/s and beyond, the electrical bandwidth
required for CO-OFDM would be at least 15 GHz [7] and is not cost-effective to implement
even with the best commercial DAC and ADC in silicon integrated circuit[6]. To overcome
this electrical bandwidth bottleneck, we propose and demonstrate the concept of OBM-
OFDM to divide the entire OFDM spectrum into multiple orthogonal bands. Due to the inter-
band orthogonality, the multiple OFDM bands with zero or small guard bands can be
multiplexed and de-multiplexed without inter-band interference. With this scheme,
transmission of 107 Gb/s CO-OFDM signal over 1000 km (10x100 km) SSMF has been
realized using only erbium-doped fiber amplifier (EDFA) and without a need for optical
dispersion compensation. Although several transmission experiments at 100 Gb/s and above
have been demonstrated at longer distance relying on dispersion compensation module and
Raman Amplification (RA) in each span [66,67], our work has achieved the 1000 km
transmission without optical dispersion compensation and without RA beyond 100 Gb/s. The
107 Gb/s OBM-OFDM can be also considered as 5x21.4 Gb/s WDM channels without
frequency guard band, occupying 32 GHz optical bandwidth, implying a high spectral
efficiency of 3.3 bit/s/Hz using only 4-QAM encoding.

By multiplexing and demulitpelxing multiple OFDM bands, OBM-OFDM has the
following advantages: (i) high spectral efficiency can be achieved by allowing for zero or
small guard band, (ii)) OBM-OFDM offers the flexibility of demodulating two OFDM sub-
bands simultaneously with just one FFT whereas three (I)FFTs would be otherwise needed for

the same purpose, (iii)) OBM-OFDM can be readily partitioned with electrical anti-alias filters,
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and subsequently processed with lower-speed DAC/ADCs , and (iv) the required cyclic prefix
length is shortened due to the sub-banding of the overall spectrum.

In this chapter, we show implementation of 107 Gb/s OBM-OFDM transmission
experiment, and substantiate the experiment with numerical simulation. This chapter is
organized as follows. In Section 3.2, the principle of OBM-OFDM is presented where a
complete OFDM spectrum is partitioned into multiple orthogonal bands. In Section 3.3, two
implementations of OBM-OFDM in RF domain and optical domain are illustrated. The RF
implementation can be realized in a mixed-signal CMOS ASIC design. A detailed description
of OBM-OFDM experimental setup is described in Section 3.4. In Section 3.5, we discuss the
experimental results with a focus on the OSNR sensitivity and nonlinearity performance. In
Section 3.6, the influence of frequency guard band is investigated by varying the amount of
the guard band up to 10 times of the subcarrier spacing. Insignificant penalty is observed
when the guard band equals to multiple times of the subcarrier spacing, namely, when the
condition of the orthogonality is satisfied. To corroborate the experimental results, numerical
simulation is conducted to investigate 107 Gb/s CO-OFDM transmission in both single-

channel and WDM systems in Section 3.7. Finally, in Section 3.8 we draw the conclusions.

3.2 Principle of orthogonal-band-multiplexed OFDM
The basic principle of OBM-OFDM is to partition the OFDM into multiple sub-bands, while

maintaining their orthogonal property. As shown in Figure 5, the entire OFDM spectrum

comprises N OFDM bands, each with the subcarrier spacing of Af , and band frequency guard

spacing of A The subcarrier spacing Af is identical for each band due to using the same
sampling clock within one circuit. From the equation (6), the orthogonal condition between

the different bands is given by
Afg =mAf (11)

Namely, the guard band is multiple (m times) of subcarrier spacing. In doing so, the

orthogonality condition is satisfied for any two subcarriers inside the complete OFDM

spectrum. For instance, the subcarrier 7 in band 1 is orthogonal to another subcarrier J; in
different OFDM band (band 2). Especially, when 7 equals to 1 in (11) the OFDM bands can
be multiplexed/de-multiplexed even without guard band, despite the fact that they originate
from different bands. We call this method of sub-dividing OFDM spectrum into multiple

orthogonal bands as ‘orthogonal-band-multiplexed OFDM’ (OBM-OFDM). An identical
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bandwidth-scalable and spectral-efficient multiplexing scheme for CO-OFDM has been first
proposed in [68] where it is called cross-channel OFDM (XC-OFDM). We adopt the term of
OBM-OFDM to stress the bandwidth reduction through sub-banding the OFDM spectrum.
Using such a scheme, each OFDM sub-band can be de-multiplexed using an anti-alias
filter slightly wider than the signal band. To detect OBM-OFDM, two approaches can be used.
First, the receiver laser is tuned to the center of each band. Each band is detected separately
by using an ‘anti-alias filter I’ that low-passes only one-band RF signal. Second, the local
laser is tuned to the center of the guard band. Two bands are detected by using an ‘anti-alias
filter II’ that low-passes two-band RF signal simultaneously. In either case, the inter-band
interference can be avoided because of the orthogonality between the neighboring bands,

despite the leakage of the subcarriers from neighboring bands.

€=-===== Complete OFDM Spectrum = = = = =— >
Anti-alias Filter Il | I
N el e e e -~ Anti-alias Filter |
N —_— -
" Af Af‘? \ ¢ - \
’ < <> ‘ [ B B ] ' \
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Band 1 T T Band 2 Frequency Band N
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Figure 5. Conceptual diagram of OBM-OFDM. Anti-alias filters / and // correspond to two detection
approaches illustrated in Section II.

3.3 Implementation of OBM-OFDM

OBM-OFDM can be implemented either in electrical or optical domain. As mentioned earlier,
OBM-OFDM is particularly suitable to realize with mixed-signal ICs to resolve ADC/DAC
bandwidth bottleneck, while the optical realization of OBM-OFDM serves as an alternative to
the other spectrally efficient multiplexing schemes including coherent WDM [69], all-optical
OFDM [70] and electro-optically subcarrier-multiplexed OFDM [71].
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3.3.1 Electrical implementation of OBM-OFDM
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Figure 6. Schematic of OBM-OFDM implementation in mixed-signal circuits for (a) the transmitter, (b) the
receiver, and (¢) the I/Q modulator/demodulator. Both the output from the transmitter in (a) and the input to the
receiver in (b) are complex signals with real and imaginary components.

Figure 6 shows the conceptual diagrams for implementing the OBM-OFDM using
mixed-signal circuits. In Figure 6 (a), each OFDM baseband transmitter is implemented using
digital IC design. The subsequent up-conversion, band-filtering and RF amplification can be
implemented in RF IC design. The output of the OFDM baseband transmitter will be filtered

through an anti-alias filter and up-convert to appropriate RF band with the center frequency
from /1 to Iy using an I/Q modulator or a complex multiplexer, the structure of which is

shown in Figure 6 (c). The range of fi to Iy is centered around zero, given by
fi=0-A, le[-L,L] (12)

where fi is the center frequency of the /th OFDM band, A is the band spacing, L is the
maximum band number. The output of each I/Q modulator is a complex value that has real
and imaginary parts as shown in Figure 6 (c). These complex signals are further summed up at
the output, namely, real and imaginary parts are added up in separate parallel paths. The
combined complex OFDM signal will be used to drive an optical I/Q modulator to be up-

converted to optical domain [68,72]. At the receive end as shown in Figure 6 (b), the
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incoming signal is split into multiple sub bands and down-converted to baseband using I/Q
demodulators. Anti-alias filters should be used to remove unwanted high frequency
components at the output of the demodulators. In such a way, the DAC/ADC only needs to
operate at the bandwidth of each OFDM band, which is approximately scaled down by a
factor equal to the number of sub bands from the original complete OFDM spectrum. For
instance, the bandwidth of 107 Gb/s data rate with QPSK modulation and polarization
multiplexing is around 35GHz. If the number of sub bands is five, each OFDM band will only
need to cover about 7 GHz optical bandwidth. The electrical bandwidth required is 3.5 GHz,
or half of the OFDM band spectrum if direct conversion is used at transmit and receive ends.
The DAC/ADC with bandwidth of 3.5 GHz can be implemented in today’s technology [6]
and using a wider bandwidth for each OFDM band will reduce the number of the OFDM

bands further down to two or three.

3.3.2 Optical implementation of OBM-OFDM

The OBM-OFDM could be realized using either subcarrier multiplexing [73] or wavelength
multiplexing to patch multiple orthogonal bands into a complete OFDM spectrum (Figure 5).
The OBM-OFDM can be also optically implemented by transmitting OFDM data through
many WDM channels and locking all the lasers to the common optical standard such as an
optical comb [74]. In doing so, the orthogonality condition is satisfied for all subcarriers
across the entire WDM channels. This form of OFDM transmission is called XC-OFDM[68].
An optical filter with bandwidth slightly larger than the channel bandwidth can be used to
select the desired channel. Consequently, no frequency guard band is necessary between

neighboring WDM channels.

3.4 Experimental setup and description
Although the electronic OBM-OFDM is more cost-effective solution, the related research

work will involve expensive high-speed mixed signal design, foundry run, and chip testing.
We choose optical multiplexing to obtain OBM-OFDM for proof-of-concept demonstration at
107 Gb/s. Figure 7 shows the experimental setup for 107 Gb/s CO-OFDM transmission.
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Figure 7. Experimental setup for 107 Gb/s OBM-OFDM systems.

3.4.1 CO-OFDM transmitter

The 107 Gb/s OBM-OFDM signal is generated by multiplexing 5 OFDM (sub) bands. In each
band, 21.4 Gb/s OFDM signals are transmitted in both polarizations. The multi-frequency
optical source spaced at 6406.25MHz is generated by cascading two intensity modulators
(IM). When a single frequency RF signal with certain power is fed into the intensity
modulator, it can be used to generate three tones, in which the middle tones are un-suppressed
carrier, while the two-side optical tones are generated due to double sideband modulation. So
if such tones are fed into the next intensity modulator or phase modulator, more tones will
expanded. By properly tuning the bias voltage, five tones with even power can be produced.
The guard band equals to just one subcarrier spacing (m=1 in (11) ). Figure 8 shows the
multiple tones generated by this cascaded architecture using two IMs which is different than

previous setup using one IM and one phase modulator (PM) [7,75]. The new setup enables
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better flatness across the five bands, and less leakage spectrum out of the intended five bands.
Only the middle five tones with large and even power are used for performance evaluation.
The transmitted signal is generated off-line by MATLAB program with a length of 2"°-1
PRBS and mapped to 4-QAM constellation. The digital time domain signal is formed after
IFFT operation. The total number of OFDM subcarriers is 128, and guard interval is 1/8 of the
observation window. The middle 82 subcarriers out of 128 are filled, from which 4 pilot
subcarriers are used for phase estimation. The I and Q components of the time domain signal
is uploaded onto Tektronix Arbitrary Waveform Generator (AWG), which provides the
analog signals at 10 GS/s for both I and Q parts. Figure 9 (a) shows the electrical spectrum of
the 1/Q channel at the output of AWG. It can be seen that the aliasing components of OFDM
signal are present above 6 GHz. When combining multiple OFDM sub-bands, such aliasing
frequency components will degrade the signals in the adjacent bands. A 3-GHz low-pass
electrical filter is used to eliminate the aliasing OFDM components. Figure 9 (b) shows the

electrical spectrum after low-pass filtering, where the aliasing spectrum components are

removed.
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Figure 8. Multiple tones generated by two cascaded intensity modulators.
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Figure 9. The electrical spectrum for (a) directly at the output of the