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كشف التسلل للشبكة ببستخذام التصنيف أحبدي الفئة المعتمذ على 

 الانحراف المعيبري للسلوك الطبيعً للخذمة
 

ملخصال  
 

جسجت إٌّٛ فلاصاي اسزخذاَ شجىبد اٌحبسٛة ٚالإٔزشٔذ ػٍٝ ٔحٛ ِزضا٠ذ فٟ ح١برٕب ا١ِٛ١ٌخ. 

ػٕصشا أسبس١ب  (NIDS) اٌزسًٍ ٌٍشجىخ اٌٙبئً ٌٍٙدّبد ػٍٝ اٌشجىخ، أصجحذ أٔظّخ وشف

أٞ دخٛي غ١ش ِصشذ ِٛاسد اٌشجىخ ِٓ ح١ث رٍؼت دٚساً ح٠ٛ١ب لأِٓ شجىبد اٌحبسٛة ٌحّب٠خ 

ثٗ لذ ٠دّغ ث١بٔبد سش٠خ، أٚ ٠ؤثش ػٍٝ رٛفش اٌخذِخ أٚ رٕزٙه سلاِخ اٌج١بٔبد. اٌىث١ش ِٓ اٌدٙٛد 

ف ػبٌٟ ِٚؼذي إٔزاس وبرة ِٕخفض. ِثب١ٌخ ٌذ٠ٙب ِؼذي اوزشب NIDS اٌجحث١خ ثزٌذ ٔحٛ رص١ُّ

اٌجؼض اسزخذَ أسب١ٌت رم١ٍذ٠خ "اٌىشف ػٓ سٛء اسزخذاَ" اٌّؼزّذ ػٍٝ اٌّؼشفخ اٌّسجمخ ٌٍٙدَٛ، 

إلا أْ ٘زٖ الأسب١ٌت رفشً فٟ اٌىشف ػٓ اٌٙدّبد اٌغ١ش ِؼشٚفخ ٌٚٙزا ٕ٘بن حبخخ ٍِحخ ٌزم١ٕبد 

 .ثذ٠ٍخ ٌىشف اٌزسًٍ

 

بٌْٚٛ حً اٌّشىٍخ ثبسزخذاَ رم١ٕبد اٌزؼٍُ ثب٢ٌخ ِثً اٌزؼٍُ اٌؼذ٠ذ ِٓ اٌجبحث١ٓ لا ٠ضاٌْٛ ٠ح

اٌّسّٝ ٚاٌغ١ش اٌّسّٝ ؛ ِشىٍخ اسزخذاَ اٌزؼٍُ اٌّسّٝ رىّٓ فٟ رىٍفخ إٔزبج ث١بٔبد ِسّبح ٚاٌزٟ 

ٟ٘ أِش ضشٚسٞ ٌزذس٠ت إٌّٛرج، ثبلإضبفخ إٌٝ أْ إٌّٛرج ٠زذسة ػٍٝ ٘دّبد ِؼشٚفخ 

٘دّبد ِخزٍفخ خذ٠ذح. ِٓ ٔبح١خ أخشٜ، ٠ٛاخٗ اٌزؼ١ٍُ  ٚاٌزٟ ِٓ اٌّّىٓ أْ رفشً فٟ ِؼشفخ

ٌذح؛ أ٠ب ِٓ اٌّدّٛػبد طج١ؼ١خ أٚ غ١ش طج١ؼ١خ. رؼبٟٔ  ّٛ اٌغ١ش ِسّٝ ِشىٍخ رس١ّخ اٌّدّٛػبد اٌّ

أسب١ٌت اٌزؼ١ٍُ شجٗ اٌّسّٝ ِٓ ل١ٛد رّٕؼٙب ِٓ اٌزفٛق ػٍٝ اٌزؼ١ٍُ اٌّسّٝ ِب ٌُ ٠ىْٛ اٌّحًٍ 

ً ِٓ ٚخٛد ثؼض اٌؼلا لبد غ١ش ثذ١ٙ٠خ ث١ٓ اٌزٛص٠غ اٌّسّٝ ٚاٌغ١ش اٌّسّٝ. ثسجت ِزأوذ رّبِب

اٌم١ٛد اٌّٛخٛدح فٟ اٌزم١ٕبد اٌسبثمخ ٚٔظشاً ٌزٕٛع ٚرؼذد أّٔبط ٘دّبد اٌشجىخ، رُ اسزخذاَ رم١ٕخ 

ٌزؼٍُ سٍٛن فئخ ٚاحذح، ٟٚ٘ ثبٌؼبدح اٌسٍٛن  (OCC) رؼٍُ ساثؼخ رذػٝ اٌزص١ٕف أحبدٞ اٌفئخ

ػٓ ٘زٖ اٌفئخ. ٌٚىٓ ػٕذ رطج١ك ٘زٖ اٌزم١ٕخ ػٍٝ اٌشجىخ وىً فئٔٙب اٌطج١ؼٟ، لاوزشبف أٞ أحشاف 

ً لذ رٕشأ ِشبوً ػٕذ ٚخٛد اخزلافبد  رؼبٟٔ ِٓ رؼذد ػبٌٟ ١ٌّضاد شجى١خ ِزؼذدح الأثؼبد. ٚأ٠ضب

اٌّؼزّذ ػٍٝ  OCC-NIDS وج١شح فٟ اٌىثبفخ. ٌٍزغٍت ػٍٝ ٘زٖ اٌّشبوً رُ الزشاذ ّٔٛرج

١ؼٟ ٌٍخذِخ.رؼبٍِٕب ِٓ خلاي ٘زا إٌّٛرج ِغ وً خذِخ فٟ الأحشاف اٌّؼ١بسٞ ٌٍسٍٛن اٌطج

اٌشجىخ وفئخ ٚاحذح ثذلا ِٓ اٌزؼبًِ ِغ خ١ّغ خذِبد اٌشجىخ وفئخ ٚاحذح.ِٓ خلاي ٘زا إٌٙح 

اسزخذِٕب ا١ٌّضاد راد اٌصٍخ ثىً خذِخ ػٍٝ حذح، ثبٌزبٌٟ رُ رم١ًٍ اٌزؼذد اٌؼبٌٟ ١ٌّضاد اٌشجىخ 

 .ب ػٍٝ ٔحٛ رمذ٠شٞ رٛص٠غ ِٛحذ فٟ اٌىثبفخٚأ٠ضبً اٌزأوذ ِٓ أْ وً فئخ ٌٙ

 

 KDD Cup'99 لّٕب ثزم١١ُ إٌّٛرج الأٌٟٚ اٌّمزشذ ػٍٝ ث١بٔبد حم١م١خ ٚػٍٝ ث١بٔبد رذػٝ

ِشٙٛسح. أثجذ إٌّٛرج اٌّمزشذ ػٍٝ أٔٗ لبدس ػٍٝ وشف حشوخ اٌشجىخ اٌغ١ش طج١ؼ١خ ثّؼذي 

% ِؼذي اوزشبف 41.89ذ ٔسجخ اوزشبف ػبٌٟ ٚإٔزاس وبرة ِٕخفض، ح١ث حمك إٌّٛرج اٌّمزش

 ث١بٔبد ثبسزخذاَ% ػٍٝ اٌج١بٔبد اٌحم١م١خ. ث١ّٕب 3.80% ِٚؼذي إٔزاس وبرة 41.84ِٚؼذي دلخ 

KDD Cup'99   وبرة ٚصٍذ  إٔزاس% ِغ 99.6% ِؼذي اوزشبف ِٚؼذي دلخ 99.88حمك

 %. 0.77 إٌٝ 
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Abstract 

Computer networks and internet have been increasingly used in our daily life. Due to the 

explosive growth of network attacks, network intrusion detection systems (NIDS) have 

become an essential network component which plays a vital role for computer networks' 

security. The main purpose of NIDS is to protect network resources from any unauthorized 

access that may gather confidential data, affect its availability or violate its data integrity. A 

lot of efforts have been given toward designing a perfect NIDS that has a high detection rate 

and low false alarm rate. Some have used misuse detection technique which fails to detect 

zero-day attacks, such that there is a high demand for alternative detection techniques. 

The problems of using supervised learning is the cost of producing labeled dataset, and also 

the model is trained on known attacks which may fail to detect new variant attacks. On the 

other hand, unsupervised learning has the problem of labeling the generated clusters; which 

cluster is normal or abnormal. Semi-supervised learning techniques suffers from the 

limitation that it cannot outperform supervised classification unless the analyst is absolutely 

certain that there is some nontrivial relationship between labeled and the unlabeled 

distribution. Because of the limitations of previous learning techniques, and because of the 

increasing diversity and polymorphism of network attacks, a fourth learning technique called 

One-Class Classification (OCC) has been used to learn the behavior of single class, which is 

commonly normal traffic, to detect any deviation from it. However when applying  this 

technique on network as a whole it suffers from the high dimensional network feature spaces. 

Also, problems may arise when large differences in density exist. To overcome these 

problems, we proposed a primary OCC-NIDS model based on the standard deviation of 

service's normal behavior. Through this model we dealt with each network service as single 

class instead of dealing with all network services as a single class. By this way we use just the 

relevant features of each service, hence reducing the high dimensional network feature spaces 

and also ensure that each class has - a proximately - uniform distribution. 

We evaluated the proposed primary model on our testbed dataset and on KDD Cup'99 

datasets. The proposed model proved that it has the ability to detect abnormal network traffic 

with high detection rate and low false positive rate. Our proposed model achieved 98.14% 

detection rate and  98.74% accuracy rate with 0.13% false positive rate on our testbed dataset. 

While on KDD Cup'99 dataset our model achieved 99.88% detection rate and  99.6% 

accuracy rate with a false alarm rate reached 0.77% and false positive rate 0.028%. 

Keywords 

Network Intrusion Detection,  Anomaly detection, One-Class Classification learning, 

Standard Deviation, Service's Normal Behavior. 
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Chapter 1: Introduction 

 

In the modern life,  information technology and communications infrastructure  play a critical 

role in people‟s life. The Internet connects thousands of sub-networks and thereby links over 

1billion computers worldwide [1]. The variety of attacks affected computers linked to the 

Internet, ranging from zero-day exploits crafted for stealthy compromises to computer worms 

capable of mass-infections. These attacks put both personal as well as business computer 

systems at risk to be remotely compromised and misused for illegal purpose, (e.g.,  gathering 

of confidential data, affecting services availability or violating data integrity) which are the 

three main components of computer security known as confidential, Integrity, Availability  

(CIA) Triad [2]. 

 

There are two main problems that cause the increase of networks attacks: First, there is a 

deficit of security awareness in software development [3], (e.g. existing of bugs which make 

it a vulnerable for attacks exploitations like stake-overflow). A second reason is due to the 

increasing automation and sophistication of network attacks [4].  A widespread availability of 

generic attack tools that have an amazing range of functionality, including network 

surveillance, polymorphic shellcodes and distributed propagation. As an example, the 

computer worm “Slammer” possess the ability to infect thousands of hosts in a couple of 

minutes [5]. Such capabilities make malicious software and network attacks attractive for 

illegal business, as they allow for abuse of millions of computer systems. Due to the explosive 

growth of the network attacks, intrusion detection systems have become an essential network 

component which plays a vital role for computer networks and security. 

1.1 Intrusion Detection 

Intrusion detection is a branch of computer security originating from a research on securing 

multi-user systems [6]. Formally, computer security deals with the protection of  the 

confidentiality, integrity and availability of resources [7]. Thus,  the definition of 

intrusion/attack in terms of these aspects is any action or set of actions that are attempt to 

compromise the integrity, confidentiality or availability of a resource [8].  

 

There are three security layers to defeat computer attacks [9], the first layer is the prevention 

of attack which aims to block any unauthorized access to the network and systems,  e.g. by 

means of cryptography or access privileges. However, based on the history of security 

violations (e.g. gaining access using stack-overflow like worms attacks), it is impossible to 

block all types of malicious activities Thus, there's a need for a detection of attacks which is 

the goal of the second layer, this layer is known as intrusion detection system that detect the 

attack and send an alarm to the administrator or respond to the attack according to the 

predefined rules. The last layer is known as a recovery layer which aims to alleviate potential 

damage of attacks and ease removal of existing vulnerabilities. Our goal is to design Intrusion 

Detection System (IDS) which is capable to identify unknown attacks that slipped through a 
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preceding prevention layer and thus integrates into the depicted cycle at the detection layer.  

 

IDSs are considered to act as the second defense line against network attacks that failed to be 

addressed by preventive mechanisms  [10]. An Intrusion detection system is defined in [11] as 

“A system that dynamically monitors the events taking place on a system and decides whether 

these events are symptoms of an attack or constitute a legitimate use of the system”. 

 

The intrusion detection system gains its dynamism through its ability of generating real-time 

network instances as shown in Figure 1.1. There are four main stages in intrusion detection 

system, (1) packets sniffing (capturing), (2) network instance generation from raw packets, 

(3) classifying the generated instance into either normal or abnormal instance and (4) 

notifying the network administrator about any abnormal behavior.. 

 

Packets Sniffer
Extract network features 

and application features

Generate statistical features for the 

past 4 seconds of each network flow

Generate  network instance that 

contains network, application and 

statistical features

Storage of each network flow 

packets for the past 4 seconds
Network traffic

One-Class Classifier Is abnormal

Storage of generated 

instances

Report of an abnormal 

behaviourYes

No

Retrieve an instance and 

remove from storage

Administrator

 

Figure 1 Figure 1.1 An Overview of all components that make NIDS dynamic 

As shown in Figure 1.1 the packet sniffer captures packets from the network. These packets 

are the processed to extract its network, application and statistical features. The generated 

network instances are stored for classification purposes. In the classification stage, the 

classifier classifies all the stored instances into either normal or abnormal, and if it is 

abnormal, the network administrator is reported about this instance.  

1.2 Standard Deviation 

The Standard Deviation (SD) (represented by the Greek letter sigma, σ which is the square 

root of the variance σ
2
) measures the amount of variation or dispersion from the average [12]. 

 A low standard deviation indicates that the data points tend to be very close to the mean (also 

called expected value); a high standard deviation indicates that the data points are spread out 

over a large range of values. The variance σ
2
 is the average of the squared differences from 

the Mean. There are two formulas to calculate the standard deviation. The 

"Population Standard Deviation", which is used when we have a complete dataset and the 

http://en.wikipedia.org/wiki/Sigma
http://en.wikipedia.org/wiki/Sigma
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Sigma
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"Sample Standard Deviation", used when we have a sample dataset. In our proposed method 

for calculating the standard deviation we used the sample standard deviation because we don't 

have the a complete normal data. The sample standard deviation is shown in Eq 1.1. 

 

   √  

   
 ∑           

   

 
    --------------- (Eq. 1.1) [12] 

 

1.3 One-Class Classification 

One-Class Classification (OCC) term was coined by Moya and Hush (1996) [13]. It was 

proposed to solve the problem of conventional multi-class classification algorithms that aim 

to classify an unknown object into one of several pre-defined categories. A problem arises 

when the unknown object does not belong to any of those categories[14]. In OCC [15], one of 

the classes (referred to as the positive class or target class) is well characterized by instances 

in the training data. For the other class (non-target), it has either no instances at all, very few 

of them, or they do not form a statistically-representative sample of the negative concept. A 

motivation example to the importance of one-class classification, let us consider the following 

scenario: OCC can be relevant in detecting machine faults, for instance. A classifier should 

detect when the machine is showing abnormal/faulty behavior. Measurements on the normal 

operation of the machine (positive class training data) are easy to obtain. On the other hand, 

most faults will not have occurred so one will have little or no training data for the negative 

class. 

 

Figure 2: Figure 1.2 An illustration of intrusion detection using standard deviation [16] 

The bold-circle instances is the normal behavior's class with standard deviation from center to the first 

inner circle. 

The task in OCC is to define a classification boundary around the positive (or target) class, 

such that it accepts as many objects as possible from the positive class, while it minimizes the 

chance of accepting non-positive (or outlier) objects [17]. As illustrated in Figure 1.2, there 
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are 3 classes, the class with bold-circle instances, which is the biggest scattered one, is the 

normal class and the others, with bold-square and bold-triangle instances, are the abnormal 

instances. It is also harder to decide which attributes should be used to find the best separation 

of the positive and non-positive class objects. In particular, when the boundary of the data is 

long and non-convex, the required number of training objects might be very high. [14].  The 

limitations of this technique is that it often require a large data set to determine the boundary 

accurately [14]. Another limitation exists in high dimensional feature spaces, at which the 

OCC becomes very inefficient [14] where in OCC we have one class, so the deviation from 

this class must be measured using one feature space. Also, problems may arise when large 

differences in density exist. Objects in low-density areas will be rejected although they are 

legitimate objects [14]. 

1.4 Research Motivation 

Due to the explosive growth of network attacks, network intrusion detection systems (NIDS) 

have become an essential network component which plays a vital role for computer networks' 

security to protect network resources from any unauthorized access that may gather 

confidential data, affect its availability or violate its data integrity. A lot of efforts have been 

given toward designing a perfect NIDS that has a high detection rate and low false alarm rate. 

Some [18, 19] have used misuse detection technique which fails to detect zero-day attacks, 

such that there is a high demand for alternative  detection techniques that can reach a high 

detection rate and low false alarm. 

1.5 Statement of the Problem 

Current NIDSs, which based on One Class Classification (OCC) learning technique, suffer 

from the high dimensional network feature spaces. It also suffers from the existence of large 

differences in density which affect the detection accuracy. These drawbacks arise because of 

applying OCC on network instances as a whole and deal with it as a single class. 

1.6 Research Objectives 

The objectives of our research are to overcome the limitations of applying datamining, 

classification or clustering, techniques. These  limitations arise because of the increasing 

diversity and polymorphism of network attacks that have become a great challenge which 

obstruct modeling signatures to be used with misuse detection, or labeling of instances to be 

used with supervised learning or labeling the generated clusters. And because the current 

semi-supervised learning techniques suffers from the limitation that it cannot outperform 

supervised classification when the assumptions made do not hold which make it worse than 

supervised learning.  

1.6.1 Main Objective 

The main objective of this research is to overcome the drawbacks of current NIDSs which use 

OCC learning technique. These drawbacks are the high dimensional network feature spaces, 

and the existence of large differences in density which affect the detection accuracy. We 

proposed a primary OCC model based on the standard deviation of service's normal behavior. 
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1.6.2 Specific Objectives 

The specific objectives of the project are: 

 Collect labeled real network traffic datasets that have both normal and attack 

instances. 

 Separate normal instances in different classes based on service used to build an OCC 

model for each class. 

 Perform feature selection for each service to get the most relevant service's features 

space in order to reduce high dimensional network feature spaces. 

 Build an OCC model based on the standard deviation of service's normal behavior for 

each service to be able to classify the traffic data into normal or abnormal. 

 Test the OCC model on our real dataset called BM-AUN2015 in addition to a 

benchmark dataset to observe the system ability to detect new attacks and store the 

experimental results for evaluation.  

 A Prof of concept Evaluation of the OCC model using confusion matrix to get 

acknowledgment about its detection accuracy. 

 Compare the results obtained from OCC models which performed on KDD Cup'99 

dataset with previous related works models used this dataset in order to be sure that 

our model has achieved its main objective. 

1.7 Significance of the Research 

 Build NID model that can detect unseen before attacks. 

 Allow the network administrator to choose the acceptable false alarm rate for each 

service in order to optimize the overall detection rate. 

 This research can be extended to increase the detection rate and reduce the false 

alarm rate by including the service payload's feature space, where each service has its 

own payload feature space. 

 The detection time is reduced using our model; instead of measuring the distance 

between a new instance and the normal class which include all the network feature 

spaces, we measure the distance between a new service instance with its 

corresponding service class which has its own feature space.  

1.8 Scope and Limitations of the Research 

In this research we built OCC model which is based on the availability of enough normal 

instances dataset. The detection process is done by applying a new OCC learning technique 

based on the standard deviation of each services' normal behavior. Our primary model that we 

built has some limitations and assumptions such as: 
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 The primary model is evaluated on a real dataset called real dataset BM-AUN2015, 

and also on KDD Cup'99 [20] which is a benchmark dataset.  

 The primary model depends mainly on the existence of enough normal instances for 

each service to be built in order to have an accurate standard deviation. 

 The primary model built based on the assumption that most of the computers 

involved in the network data collection process are not infected. 

 The primary model doesn't classify attacks based on attack categories instead of that 

it will notify the administrator about the source of any abnormal behavior in the 

network and provide him information about that abnormal instance. 

1.9 Outline of the Thesis  

This thesis is divided into seven chapters, which are structured around the objectives of the 

research. The thesis was organized as follows:  

 

Chapter 1, in this chapter, intrusion detection system, abnormal definition, main goals for 

detection model, the research statement problem, objectives and outlines were identified.  

 

Chapter 2, in this chapter, literature review such as identifying anomalies, types and 

characteristics were presented. Also intrusion detection techniques, supervised and supervised 

learning, data mining techniques, OCC techniques which used in the model were defined.  

 

Chapter 3, in this chapter, the related works which used data mining classification/clustering 

techniques for detection of network intrusions were presented and discussed. Besides, the 

main advantages and shortages were highlight and discussed.  

 

Chapter 4, in this chapter, the real environment of the  real dataset was described, the tools 

and the attack testing tools were also explained. Statistical graphs and collection scenarios 

were presented in details with explanation. 

 

Chapter 5, in this chapter, the proposed model and methodology was presented. The model 

architectures and scenarios were also presented. There is explanation about our data sets used, 

dataset preprocessing, construct behavior rules, instance identification method. There are 

baseline experiments to choose every parameter, tools used in the model.  

 

Chapters 6, in this chapter, the details of experiments were presented, analyzed the results, 

discussed each experiment, and drew main figures and summaries.  

 

Chapter 7, in this chapter, the conclusion and summary of the research achievement of 

experiments were presented. Finally, future work was suggested. 
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Chapter 2: Theoretical Background 

 

In this chapter, anomalies, types, characteristics, intrusion detection techniques, supervised 

and unsupervised learning definition and data mining classification and clustering techniques 

were explained. 

2.1 Intrusion Definition, Types and Detection 

An intrusion is defined by Heady et al. [21] as any set of actions that attempt to compromise 

the integrity, confidentiality or availability of a resource. 

Attacks can be classified into two major types; attacks based on goal and attacks based on 

protocol used. Figure 2.1 shows the hierarchy chart of network attacks. In the following 

subsections, we presented the attack types and gave a brief description of the attacks of each 

type which we used in training and testing of our model.  

Types of

Network Attack

Attacks Based

on Goal

Attacks Based on

Protocol Used

DoS

Attacks

Probing 

 Attacks

U2R

Attacks

R2L

Attacks

Attacks Targeting

Network Resources

Attacks Targeting

Server Resources

Attacks Targeting

Application Resources

UDP Flood

Attacks

ICMP Flood

Attacks

SYN Flood

Attacks

SockStress

Attacks

SMTP

Attacks

Other Application

Layer Protocols 

Attacks

HTTP

Attacks

 

Figure  3  Figure 2.1 Types of network attacks 

2.1.1 Types of Attack Based on Goal 

Despite the fact that many researchers attempted to classify the computer attacks into suitable 

categories, there is still no adopted standard threats and attacks classification [22] .The most 

widely used classification for attacks in the research communities is the one adopted by [23]. 

This classification categorizes computer attacks, as shown in Figure 2.1, into: 

1- DoS: Denial of service – where an attacker tries to prevent legitimate users from using a 

service. e.g. Syn flooding 

2- Probing: Surveillance and other probing, where an attacker tries to gain information 

about the target host., e.g. port scanning. 
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3- U2R: unauthorized access to local super user (root) privileges, where an attacker has 

local access to the victim machine and tries to gain super user privileges., e.g. buffer 

overflow attacks. 

4- R2L: unauthorized access from a remote machine, where an  attacker does not have an 

account on the victim machine, hence tries to gain access., e.g. password guessing. 

2.1.2 Types of Attack Based on Protocol Used 

Attacks is also classified based on exploited protocol into three main categories (1) Attacks 

targeting network resources, (2) Attacks Targeting Server Resources and (3) Attacks 

Targeting Application Resources [24, 25], as shown in Figure 2.1. 

2.1.2.1 Attacks Targeting Network Resources 

Attacks that target network resources attempt to consume all of a victim's network bandwidth 

by using a large volume of illegitimate traffic to saturate the company's Internet pipe. Attacks 

of this manner, called network floods, are simple yet effective. In a typical flooding attack, 

the offence is distributed among an army of thousands of volunteered or compromised 

computers – a botnet – that simply sends a huge amount of traffic to the targeted site, 

overwhelming its network. This type of attack is also known as network layer attack [26, 27]. 

 

UDP Flood attack [25] does not exploit a specific vulnerability, but rather simply abuses 

normal behavior at a high enough level to cause network congestion for a targeted network. It 

consists of sending a large number of UDP datagrams from potentially spoofed IP addresses 

to different ports on a victim server; the server receiving this traffic is unable to process every 

request, and consumes all of its bandwidth attempting to send ICMP “destination 

unreachable” packet replies to confirm that there was no application listening on the targeted 

ports. User Datagram Protocol (UDP) is a connectionless protocol that uses datagrams 

embedded in IP packets for communication without needing to create a session between two 

devices [RFC 768]. 

 

ICMP Flood [25], also known as Ping Flood, is a non-vulnerability based attack; that is, it 

does not rely on any specific vulnerability to achieve denial-of-service. An ICMP Flood can 

involve any type of ICMP message of echo request; once enough ICMP traffic is sent to a 

target server, it becomes overwhelmed from attempting to process every request, resulting in 

a denial-of-service condition. Internet Control Message Protocol (ICMP) is another 

connectionless protocol used for IP operations, diagnostics, and errors [RFC 777]. 

2.1.2.2 Attacks Targeting Server Resources 
Attacks that target server resources attempt to exhaust a server's processing capabilities or 

memory, potentially causing a denial-of service condition. The idea is that an attacker can 

take advantage of an existing vulnerability on the target server (or a weakness in a 

communication protocol, e.g. TCP protocol) in order to cause the target server to become 

busy handling illegitimate requests so that it no longer has the resources to handle legitimate 

ones. This type of attack is also known as network layer attack [26, 27]. 
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SYN Flood attack is based on exploiting the standard TCP three-way handshake [28]. The 

TCP three-way handshake requires a three-packet exchange to be performed before a client 

can officially use the service. A server, upon receiving an initial SYN (synchronize/start) 

request from a client, sends back a SYN/ACK (synchronize/acknowledge) packet and waits 

for the client to send the final ACK (acknowledge) as shown in Figure 2.2.  

 

Figure 4 Figure 2.2 Overview of a 3-way handshake and a SYN Flood attack [29] 

However, it is possible that the client send more of initial SYN‟s without sending the 

corresponding ACK‟s, essentially leaving the server waiting for the non-existent ACK‟s. 

Considering that the server only has a limited buffer queue for new connections, SYN Flood 

results in the server being unable to process other incoming connections as the queue gets 

overloaded. 

 

Sock Stress attack differs than SYN flood attack that it complete the three-way handshake 

required for open TCP session, but the third ACK packet sent by the client has a TCP window 

size equals zero [30]. Now the server will have to "probe" the client until the zero window 

opens up as shown in Figure 2.3. Through this technique, the attacker bypass IDS through a 

legitimate TCP connection. The result is similar to a connection flood, except that the sockets 

remain open potentially indefinitely and the attacker can in an interval of time to send a 

HTTP payload for example, if he connect to a web server. The Widow Size field in TCP 

protocol indicates how much more room is in the buffer in each point of time. Window size 

set to zero means that there is no more space whatsoever and that the other side should stop 

sending more data until further notice. [RFC 2581]. 

 

 

Figure 5 Figure 2.3 Overview of a 3-way handshake and a Sock stress attack 

2.1.2.3 Attacks Targeting Application Resources 

These attacks are known as application layer attacks [26, 27], the attacker exploits the 
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vulnerability of application layer protocols such as HTTP, POP3, SOAP, FTP, etc... The 

attack categories exploit this layer are DoS, DDoS R2L and U2R attacks. As an example of 

HTTP attacks, a DoS attacks like SlowRead, cross-site scripting (XSS) and SQL-Injection 

which are R2L. Note that the requester couldn't use spoofed IP addresses in this type of 

attacks [26]. In our real dataset collected, described in chapter 4, we considered to perform 

Slowloris, Slowpost, and Slowread attacks as an application layer attacks that attack a web 

server. 

 

Slowloris attack [31] also known as slow headers attack which is an HTTP get-based attack 

that can bring down a Web server using a limited number of machines or even a single 

machine. The attacker sends partial HTTP requests, not a complete set of request headers, that 

continuously and rapidly grow, slowly update, and never close as shown in Figure 2.4. The 

server in this case waiting for a blank line (CRLF: Carriage Return Line Feed) which indicate 

that the HTTP Header end. The attack continues until all available sockets are taken up by 

these requests and the Web server becomes inaccessible. The attacker aims to keep the socket 

opened as long as possible, while he opens many connections to the server to do a DoS attack. 

 

Figure 6 Figure 2.4 Overview of a normal HTTP GET and a Slowloris attack 

Slowpost attack [31] also known as R-U-Dead-Yet (RUDY) attack. The attacker sends 

HTTP post commands slowly to bring down Web server. The attacker sends a complete 

HTTP header that defines the ”content-length” field of the post message body as it sends this 

request for benign traffic. Then it sends the data to fill the message body at a rate of one byte 

every two minutes as an example as shown in Figure 2.5. Hence, the server waits for each 

message body to be completed while Slowpost attack grows rapidly which causes the DoS 

flooding attack on the Web server. The attacker aims to keep the socket opened as long as 

possible, while he opens many connections to the server to do a DoS attack. 
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Figure 7 Figure 2.5 Overview of a normal HTTP POST and a Slowpost attack 

Slowreading attack [31] works by slowly reading the response instead of slowly sending the 

requests. This attack achieves its purpose by setting a smaller receive window-size than the 

target server‟s send buffer. The TCP protocol maintains open connections even if there is no 

data communication as shown in Figure 2.6; hence, the attacker can force the server to keep a 

large number of connections open and eventually causes the DoS flooding attack on the 

server. The attacker aims to keep the socket opened as long as possible, while he opens many 

connections to the server to do a DoS attack. 

 

 

Figure 8 Figure 2.6 Overview of a normal HTTP read and a SlowRead attack 

2.1.3 Overview of DoS and DDoS Attack 

Denial-of-service (DoS) attack [24] generally consists of efforts to temporarily or 

indefinitely interrupt or suspend services of a host connected to the internet. Denial-of-service 

effect is achieved by sending messages to the target machine such that the “message” 

hampers with its operation and makes it hang, crash, reboot, or do useless work. Also some 

key resources of the target machine such as bandwidth, CPU time, memory, etc can be 

consumed by sending a vast number of packets. One cannot attend to legitimate clients 

because the target application, machine, or network spends all of its critical resources on 

handling the attack traffic. 
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Distributed Denial-of-service (DDoS) attack [24] Distributed is a special kind of DoS 

which goal is to increase the attacks intensity by using a number of computers. DDoS attacks 

are considerably more effective than DoS because they allow to increase the attack intensity 

by simultaneous use of number of computers. DDoS attempt to make a machine or network 

resources unavailable to its intended users. It generally consist of the efforts of one or more 

people to temporarily or indefinitely interrupt or suspend services of a host connected to the 

internet. DDoS attacks are able to take out an entire server in a matter of minutes. To 

overwhelm a service to the point where it no longer works is the goal of any DDoS attack. 

2.1.6 Intrusion Detection Types 

Intrusion detection systems types divided mainly based on their scope into two main types, 

network based (NIDS) and host based (HIDS) intrusion detection systems [32]. Network 

Intrusion Detection Systems (NIDS) are placed at a strategic network point or points within 

the network to monitor and analyze the traffic come from or to all devices on the network in 

order to detect any illegal/abnormal activity. Whereas Host Intrusion Detection Systems 

(HIDS) run on individual hosts or devices on the network. A HIDS monitors the inbound and 

outbound packets from the device only and notify the user or administrator if suspicious 

activity is detected. Our approach is a NIDS. 

2.1.7 Network Intrusion Detection Techniques: 

There are two major techniques of detection in NIDS, signature based and anomaly based. In 

signature based NIDS, the system looks for the characteristics of known network attacks, 

stored in its own database, to detect the existence of such attacks, but it fails to detect novel 

attacks with different characteristics;  this failure is known as zero-day attack. Growing 

number of zero day attacks and the increasing diversity and polymorphism of network attacks 

made anomaly based NIDS more efficient. By using this way it is possible to detect novel and 

unknown network attacks without signatures database of known attacks. Today the challenge 

is to find a way to have fewer false alarms and higher detection rate of complex attacks, 

especially in imbalance network traffic [33, 34]. Our proposed approach is an anomaly 

detection technique which based on measuring the deviation of any network instance from the 

normal behavior of the used service using the standard deviation.  

2.2 Supervised and Unsupervised Learning 

Data mining algorithms can be organized into two major learning methods [35] which are: 

Supervised Methods: The main goal of the supervised methods is to build a predictive model 

(classifier) to classify or label incoming patterns. The classifier has to be trained with labeled 

patterns to be able to classify new unlabeled patterns. The given labeled training patterns are 

use to learn the description of classes. Some supervised methods include support vector 

machines, neural network and genetic algorithms among others [35]. 

Unsupervised Methods: Unsupervised methods take a different approach by grouping 

unlabeled patterns into clusters based on similarities. Patterns within the same clusters are 

more similar to each other than they are to patterns belonging to different clusters. Data 

clustering is very useful when little priori information about the data is available [35]. 
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2.3 Data Mining 

It is non-trivial process of identifying valid, novel, potentially useful, and ultimately 

understandable patterns in data. Also, it is the process of extracting knowledge hidden from 

large volumes of raw data. The knowledge must be new, not obvious, and must be able to use 

it. Many people treat data mining as a synonym for another popularly used term, Knowledge 

Discovery from Data, or KDD. Alternatively, others view data mining as simply an essential 

step in the process of knowledge discovery [36].  

2.3.1 Data Preprocessing 

Knowledge discovery as a process consists of an iterative sequence of processes starting with 

data preprocessing which has the following steps [37]. 

 Data Cleaning:  is the process of removing incomplete, noisy and inconsistent data. 

 Data Integration: where multiple data sources may be combined. These sources may 

include multiple databases, data cubes, or flat files. 

 Data Transformation: where Data is transformed into forms appropriate for mining 

by using methods which include Smoothing, aggregation, generalization and 

normalization. 

 Data Reduction: where data relevant to the analysis task are retrieved from the 

database. So, irrelevant, weakly relevant or redundant attributes may be detected and 

removed the three basic operations in a data-reduction process are delete a column 

(feature selection), delete a row (sampling) , and reduce the number of values in a 

column (Discretization). 

2.3.1.1 Feature Selection 

The process of choosing features (attributes) that are relevant to a data-mining application in 

order to achieve maximum performance with the minimum measurement and processing 

effort [38]. This process includes removing redundant features and irrelevant features which 

contain no information that is useful for the data mining task. 

Finding a good subset of the original attributes is a hard process [38]. Suppose that a dataset 

contains n attributes, then there are 2
n
 possible subsets. Methods like exhaustive search for the 

optimal subset of attributes can be too expensive, especially when n and the number of data 

classes increase. Therefore, heuristic methods that explore a reduced search space are 

commonly used for attribute subset selection. These methods are typically greedy in that, 

while searching through attribute space, they always make what looks to be the best choice at 

the time. Such greedy methods are effective in practice and may come close to estimating an 

optimal solution. The best attributes are typically determined using tests of statistical 

significance, which assume that the attributes are independent of one another. Many other 

attribute evaluation measures can be used such as the information gain measure used in 
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building decision trees for classification [38]. In our methodology we used the greedy method 

in order to find the optimal features subset. 

Information Gain is an attribute selection measure. This measure is based on information 

theory, Let node N hold the tuples of partition D. The attribute with the highest information 

gain is chosen as the splitting attribute for node N. This attribute minimizes the information 

needed to classify the tuples in the resulting partitions and reflects the least randomness or 

“impurity” in these partitions. Such an approach minimizes the expected number of tests 

needed to classify a given tuple [38]. The expected information needed to classify a tuple in D 

is given by equation Eq 2.1 

         ∑            

 

   
  --------------- (Eq. 2.1) [38] 

Where pi is the nonzero probability that an arbitrary tuple in D belongs to class Ci.  

2.3.1.2 Data Normalization 

Normalization or what so-called standardization is a process that attempts to give all attributes 

an equal weight [38]. Normalization is particularly useful for classification algorithms 

involving neural networks or distance measurements such as nearest-neighbor classification 

and clustering [38, 39]. For distance-based methods, normalization helps prevent attributes 

with initially large ranges (e.g., income) from outweighing attributes with initially smaller 

ranges (e.g., binary attributes). It is also useful when given no prior knowledge of the data 

[38, 39].   

There are many methods for data normalization. The most common used methods are min-

max normalization, z-score normalization, and normalization by decimal scaling. For our 

discussion, let A be a numeric attribute with n observed values, v1, v2, …, vn. 

 

Min-Max Normalization performs a linear transformation on the original data. Suppose that 

minA and maxA are the minimum and maximum values of an attribute, A. Min-max 

normalization maps a value, vi, of A to v′i in the range [new_minA, new_maxA] by 

computing equation Eq 2.2, note that min-max normalization will encounter an “out-of-

bounds” error if a future input case for normalization falls outside of the original data range 

for A. 

 

  ′  
       

         
                              ----------- (Eq. 2.2) [38] 

 

Z-score Normalization (or zero-mean normalization), the values for an attribute, A, are 

normalized based on the mean (i.e., average) and standard deviation of A. A value, vi, of A is 

normalized to vi′ by computing equation Eq 2.3, where    and    are the mean and standard 

deviation, respectively, of attribute A. This method of normalization is useful when the actual 

minimum and maximum of attribute A are unknown, or when there are outliers that dominate 
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the min-max normalization. In our model we used this normalization method because the 

network feature values is unpredictable, also the existence of extreme values may occurs. 

 

  ′  
     

  
 --------------- (Eq. 2.3) [38] 

 

 

Normalization by Decimal Scaling normalizes by moving the decimal point of values of 

attribute A. The number of decimal points moved depends on the maximum absolute value of 

A. A value, vi, of A is normalized to vi′ by computing equation Eq 2.4 where j is the smallest 

integer such that max(|vi′|) < 1. Note that this normalization method will encounter an “out-

of-bounds” error if a future input case for normalization greater than the original maximum 

value of A. 

  ′  
  

     --------------- (Eq. 2.4) [38] 

Note that normalization can change the original data quite a bit, especially when using z-score 

normalization or decimal scaling. It is also necessary to save the normalization parameters 

(e.g., the mean and standard deviation if using z-score normalization) so that future data can 

be normalized in a uniform manner. 

Suarez-Alvarez, M.M., et al. [39] proposed a unified statistical approach to normalization of 

all attributes of mixed databases, when different metrics are used for numerical and 

categorical data. It is shown that the classic z-score standardization and the min–max 

normalization are particular cases of the statistical normalization, when the objective function 

is based on the Euclidean or the Tchebycheff (Chebyshev) metrics respectively. In their 

research they proposed and equation based on normalized Euclidean distance for both 

numerical and categorical features. In our model we apply Euclidean distance, shown in 

equation Eq 2.5, on z-score normalized categorical and numerical features. 

        √ ∑              
   

 
 --------------- (Eq. 2.5)  [38] 

2.4 OCC Methodologies  

Khan and Madden [14] classify OCC methodologies used into two main categories, (1) 

Methods based on One Class Support Vector Machine (OCSVM) and (2) methods based on 

non-OCSVM. The methods that are based on OCSVM are based mainly on Gaussian kernel 

function to build the model and determine the class boundaries. Beside the advantages of 

SVMs, they have an important practical problem that is not entirely solved, which is the 

selection of the kernel function parameters - for Gaussian kernels the width parameter σ, 

these parameters are not obtained from the dataset [40, 41]. 

The non-OCSVM methods are based on different techniques, some are based on Gaussian 

kernel function, others based on decision trees [42]. The shortcomings of methods based on 

http://en.wikipedia.org/wiki/Sigma
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decision trees that they required the existence of three sets of examples as an input to 

construct the decision trees which are :(1) as set of labeled examples, (2) a set of positive 

examples and (3) unlabeled examples. 

We proposed a novel method for building OCC based on the standard deviation in our 

previous work [16]. OCC based on standard deviation is illustrated in Figure 1.2, as shown 

the normal boundary from the class center is the first circle which is the standard deviation of 

it and any expanding of this boundary will increase the false alarm and decrease the intrusion 

detection rate based on the approach proposed by us in [16].  As shown in Figure 1.2, we need 

to adjust the class boundary in order to achieve low false alarm rate. We use the term "Tune" 

in our work which means an positive real value added to the normal class's standard 

deviation. 

2.5 NID Using Data mining: 

Data mining classification and clustering techniques have been used in anomaly based NIDS 

and improve the performance of attack detection [43]. There are three categories of data 

mining classification and clustering techniques for NIDS which are supervised; semi-

supervised and unsupervised learning techniques [16, 43, 44] in addition to OCC [14] which 

is a special case of unsupervised learning techniques. Supervised learning technique needs to 

be trained firstly by pre-classified traffic sample to build the classification model and map the 

behavior of the network to find the difference between normal and abnormal state. The 

shortcomings of this technique is that the system is trained on the existing attacks, which may 

fail to detect a novel variant attacks [45], also in most circumstances, labeled data is not 

readily available since it is time consuming and expensive to manually classify it [46-48]. In 

many practical applications there are a massive data which are often unlabeled like mail 

spam. The limited labeled data are not enough to train a supervised classifier with fine 

generalization performance.[49]. 

 

Many researchers have tried to address these problems by using unsupervised learning 

techniques such as clustering [47, 48, 50]; by using clustering techniques, they try to measure 

the deviation of the new instances from the different created clusters. Clustering is the process 

of assigning a set of objects into group or groups (which called cluster) while the objects in 

the same cluster are more similar (in some way) compare to other objects [51]. But labeling 

these clusters is a great problem; which cluster should be labeled as normal and which should 

be labeled as abnormal [52]. Laskov, Düssel et al. [45] carried out an experimental framework 

for comparative study of various supervised and unsupervised approaches for intrusion 

detection. Their results indicate that the problem of unlabeled data being drawn from a 

different distribution remain unsolved within the purely supervised or unsupervised 

techniques and they put their marks on semi-supervised learning approaches that it may 

provide the superior intrusion detection ability. 

 

To overcome the shortcomings of supervised and unsupervised learning techniques, 

especially in applications like intrusion detection systems which manipulate and analyze a 
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huge number of different packets, a third learning strategy which called semi-supervised 

learning is being used [53]. This technique exploits unlabeled data in addition to labeled ones. 

Many researchers have used this technique in intrusion detection [16, 49, 54]. Although this 

learning technique solved the problem of labeling instances and gain the ability of prediction 

based on relatively a few labeled examples, it suffers from the limitation that it cannot 

outperform supervised classification unless the analyst is absolutely certain that there is some 

nontrivial relationship between labeled and the unlabeled distribution [55]. It is also well 

known that the utilization of unlabeled dataset U is not always helpful for semi-supervised 

learning algorithms. In particular, it is not guaranteed that adding U to the training data, T, 

which has a labeled instances L i.e., T = L ∪ U, leads to a situation in which we can improve 

the classification performance [3, 55]. When Semi-Supervised learning assumptions are 

made, but do not hold, it can degrade the performance and can be worse than supervised 

learning [55]. In addition, semi-supervised learning consumes time in labeling process, e.g. 

Self-training algorithm which need more than one iteration to label unlabeled dataset, another 

algorithm known as Co-training which depends on the existing of two classifiers built on 

different features subsets extracted from the main features set [53]. Besides that the classifier 

model is learned on certain attacks, but it may fail to detect novel variant attacks based on the 

classifier used [45]. 

 

Because of the previous mentioned detection techniques limitations and shortcomings, and 

because of the increased diversity of attacks that we can't predict its future behavior, an 

alternative detection technique that can overcome these obstacles is needed. So, we need a 

learning technique that learns just the normal behavior and detect any deviation from it. This 

technique is known as One-Class Classification (OCC). Because of the increasing diversity 

and polymorphism of network attacks which means that very few of these attacks are known, 

or they do not form a statistically-representative sample of the negative concept. So there's an 

urgent need to learn how the positive class behave to detect any deviation from it which may 

be a negative class. 

Many algorithms for intrusion detection based on OCC have been propose [16, 56-59], many 

of them have used One Class Support Vector Machines (OCSVMs) which is based on 

Gaussian Kernel function. Others have used other techniques such as v-SVC [59] and 

standard deviation [16]. Most of the proposed NIDSs that have applied OCC deal with the 

whole network instances as a single class, so their proposed NIDs suffer from the high 

dimensional network feature spaces, and also from the existence of large differences in 

density which affect the detection accuracy. As far as we know almost all of them have not 

considered to detect attacks based on the standard deviation of normal behavior of the used 

service such as HTTP service. 

To overcome these challenging issues in OCC,  we will propose a primary OCC-NIDS model 

based on the standard deviation of network service's normal behavior. Through this model we 

deal with each network service as single class instead of dealing with all network services as a 

single class. By this way we just use the relevant features of each service, hence reducing the 

high dimensional network feature spaces and also ensure that each class has - a proximately - 
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uniform distribution. 

 

Based on the learning techniques which have been mentioned above, little attention has been 

given towards the separation of relevant features from the overall dataset based on the service 

used. Each service has its own feature space and its own characteristics and behavior, and as 

far as we know after deep searching and digging, no one have used the standard deviation in 

detecting the deviation of new network instances from its same service's normal behavior. In 

our recent research [16], we used the standard deviation in detecting the deviation of new 

network instances from its same transport protocol's normal behavior. But we face a problem 

of large differences in density within single transport protocol class, which limited us from 

detecting some attacks. Also the feature space of one class was high because of the existence 

of all services features, and this also affected the distance measurements because we 

calculated the distance between a new service instance with irrelevant features that belong to 

other service. (e.g. feature to tell if SMTP instance initiate communication with HELO is 

irrelevant to other services). 

 

Due to the explosive growth of the network attacks, intrusion detection systems have become 

an essential network component which plays a vital role for computer networks' security. A 

lot of efforts have been given toward designing a perfect NIDS that has a high detection rate 

and low false alarm rate. Some have used misuse detection technique which fails to detect 

zero-day attacks, such that there is a high demand for alternative detection techniques. Many 

researchers are trying to solve the problem by using data mining  classification/clustering 

techniques; the problem of using supervised learning techniques is the cost of producing 

labeled dataset which is essential for training the model and also the model is trained on a 

known attacks which may fail to detect new variant attacks. On the other hand, unsupervised 

learning has the problem of labeling the generated clusters. Semi-supervised learning 

techniques suffers from the limitation that it cannot outperform supervised classification 

unless the analyst is absolutely certain that there is some nontrivial relationship between 

labels and the unlabeled distribution. Because of the limitations of previous techniques, and 

because of the increasing diversity and polymorphism of network attacks, a fourth learning 

technique called OCC has been used. However this technique suffers from the high 

dimensional network feature spaces. Also, problems may arise when large differences in 

density exist. To overcome these problems, we will propose a primary OCC-NIDS model 

based on the standard deviation of service's normal behavior. Through this model we deal 

with each network service as single class instead of dealing with all network services as a 

single class. By this way we use just the relevant features of each service protocol, hence 

reducing the high dimensional network feature spaces and also ensure that each class has - a 

proximately - uniform distribution. 

2.6 KDD Cup'99 Dataset 

KDD Cup'99 is a benchmark used in NIDS researches. We chose it in order to evaluate our 

model. KDD Cup'99 [20] dataset  was prepared and managed by MIT Lincoln Labs. Lincoln 

Labs sat up an environment to acquire nine weeks of raw TCP dump data for a local-area 
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network (LAN) simulating a typical U.S. Air Force LAN. They operated the LAN as if it 

were a true Air Force environment, but peppered it with multiple attacks. The simulated 

network represents thousands of UNIX hosts and hundreds of users. There are three UNIX 

machines designated as victim machines running three different operating systems: SunOS, 

Solaris OS, and Linux [23]. Figure 2.8 shows the test bed block diagram 

The training data was processed to about five million connections records from seven weeks 

of network traffic and two weeks of testing data yielded around two million connection 

records. The training data is made up of 22 different attacks out of the 39 present in the test 

data. The known attack types are those present in the training dataset while the novel attacks 

are the additional attacks in the test datasets not available in the training data sets [20]. The 

attacks types are grouped into four categories [23] which are: DoS attacks, Probing attacks, 

U2R attacks, and R2L attacks. 

  

 
Figure 9 Figure 2.8 Block diagram of KDD Cup'99 test bed [23] 

 

The training dataset consists of 494,021 records among which 97,277 (19.69%) were normal, 

391,458 (79.24%) DOS, 4,107 (0.83%) Probe, 1,126 (0.23%) R2L and 52 (0.01%) U2R 

connections as shown in Table 2.1. In each connection there are 41 attributes describing 

different features of the connection and a label assigned to each either as an attack type or as 

normal. 

 

Table 0-1 Table 2.1 KDD Cup'99 Normal and Abnormal instances distribution of training dataset 

 

 



21 

 

We need to use only the normal data, extracted from 10% training dataset, to build our model 

and the model evaluation will taken place using the 10% testing dataset which means that all 

attacks are new to our model because our model didn't trained on them , it's only trained on 

the normal instances. 

It is important to note that the test data is not from the same probability distribution as the 

straining data, and it includes specific attack types not in the training data.  This makes the 

task more realistic.  Some intrusion experts believe that most novel attacks are variants of 

known attacks and the "signature" of known attacks can be sufficient to catch novel variants.  

The datasets contain a total of 24 training attack types, with an additional 14 types in the test 

data only. 

 

We have used three services to build their OCC from KDD Cup'99 dataset, these services 

have enough normal instances and attack instances. These services are HTTP, ECR_I and 

POP3 services. 

 

HTTP Service 

Hypertext Transfer Protocol (HTTP) [RFC 2616] is an application layer protocol which is the 

most common used protocol on the internet. Its default TCP Port is 80 and it's based on TCP 

protocol which is an network layer protocol. HTTP is used for distributed, collaborative, 

hypermedia information systems [60], HTTP is the foundation of data communication for the 

World Wide Web . 

 

POP3 Service 

Post Office Protocol 3 (POP3)  [RFC 1939] is an application-layer Internet standard protocol with a 

default TCP Port 110, used by local e-mail clients to retrieve e-mail from a remote server over a 

TCP/IP connection [61]. E-mail clients using POP3 generally connect, retrieve all messages, store them 

on the user's PC as new messages, delete them from the server, and then disconnect. 

 

ECR_I Service 

ECR_I [RFC 792] is an Echo-Replay service in ICMP protocol that have an ICMP code 0. 

This service is a replay for an Echo-Request message sent by the requester using ICMP code 

8 [RFC 792]. ICMP Echos are used mostly for troubleshooting. When there are 2 hosts which 

have communication problems, a few simple ICMP Echo requests will show if the 2 hosts 

have their TCP/IP stacks configured correctly and if there are any problems with the routes 

packets are taking in order to get to the other side. The Internet Control Message 

Protocol (ICMP) is one of the main protocols of the Internet Protocol Suite. It is used by 

network devices, like routers, to send error messages indicating, for example, that a requested 

service is not available or that a host or router could not be reached [62]. ICMP [63] differs 

from transport protocols such as TCP and UDP in that it is not typically used to exchange data 

between systems, nor is it regularly employed by end-user network applications with the 

exception of some diagnostic tools like ping and traceroute. Attacks that exploited the three 

services are listed in Table 2.2 [64] 

 

https://en.wikipedia.org/wiki/Internet_Protocol_Suite
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Table 2 Table 2.2 Attacks exploited HTP, POP3, and ECR_I services in KDD Cup'99 dataset 

Type Attack  Service exploited Describtion 
P

ro
p

e
 

saint.,satan. HTTP, ECR_I 

it gathers information about remote hosts and 

networks. These flaws include incorrectly setup or 

configured network services, well-known bugs in 

system or network utilities, and poor policy 

decisions.  

ipsweep. HTTP, ECR_I 
Is a surveillance sweep to determine which hosts 

are listening on a network. 

portsweep. HTTP, ECR_I, POP3 
is a surveillance sweep to determine which ports 

hosts are listening on a network. 

nmap. ECR_I, POP3 

The Nmap program also allows a user to specify 

which ports to scan, how much time to wait 

between each port, and whether the ports should 

be scanned sequentially or in a random order. 

mscan. POP3 

Is a probing tool that uses both DNS zone transfers 

and/or brute force scanning of IP addresses to 

locate machines, and test them for vulnerabilities. 

D
o

S
 

neptune. HTTP, POP3 
A SYN Flood is a denial of service attack to which 

every TCP/IP implementation is vulnerable. 

back. HTTP 

DoS attack against the Apache web server, an 

attacker submits requests with URL's containing 

many front-slashes. As the server tries to process 

these requests it will slow down and becomes 

unable to process other requests.  

apache2. HTTP 

DoS attack against an apache web server where a 

client sends a request with many http headers. If 

the server receives many of these requests it will 

slow down, and may eventually crash. 

smurf. ECR_I 

Attacker sends ICMP echo request packets to the 

broadcast address xxx.xxx.xxx.255 of many 

subnets with the source address spoofed to be that 

of the intended victim. Any machines that are 

listening on these subnets will respond by sending 

ICMP 'echo reply' packets to the victim. The smurf 

attack is effective because the attacker is able to 

use broadcast addresses to amplify what would 

otherwise be a rather innocuous ping flood. 

pod. ECR_I 

The Ping of Death is a denial of service attack that 

affects many older operating systems. Although the 

adverse effects of a Ping of Death could not be 

duplicated on any victim systems used in the 1998 

DARPA evaluation, it has been widely reported that 

some systems will react in an unpredictable fashion 

when receiving oversized IP packets. Possible 

reactions include crashing, freezing, and rebooting. 

R
2

L
 phf. HTTP 

The Phf attack abuses a badly written CGI script to 

execute commands with the privilege level of the 

http server. Any CGI program which relies on the 

CGI function escape_shell_cmd() to prevent 

exploitation of shell-based library calls may be 

vulnerable to attack. In particular, this vulnerability 

is manifested by the "phf" program that is 

distributed with the example code for the Apache 

web server. 

guess_pass. POP3 
In this attack, the attacker try to guess POP3 

account password by sending multiple login quires. 
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2.7 Summary  

In this chapter, intrusion definition, types, characteristics, intrusion detection techniques, 

supervised and unsupervised learning definitions and data mining classification/clustering 

techniques were identified. In addition, main problems for current data mining classification 

/clustering learning approaches were discussed. These problems are: labeling network traffic 

dataset to be used with supervised learning, labeling generated clusters to normal or abnormal 

traffic, and also the existence of high dimensional network feature spaces. OCC was 

discussed and the detection technique using it was explained. KDD Cup'99 dataset was 

described and the services that were included in our model evaluation were presented and 

listed the attacks exploited them with a brief description. 
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Chapter 3: Related Works 

 

Data mining's classification and clustering techniques have been widely used in NIDS and 

improve the performance of attack detection. Three categories of data mining's classification 

and clustering techniques have been used for NIDS which are supervised, semi-supervised 

and unsupervised learning techniques in addition to OCC learning technique which is a 

special case of clustering techniques. In the following subsections we introduce some of these 

researches which related to our research. 

3.1 Supervised NIDS 

Chandolikar and Nandavadekar [65] proposed a model based on feature selection and rule 

induction on a KDD Cup' 99 dataset [20] to get appropriate rules for intrusion detection. Their 

approach is implemented to detect 5 different classes of attacks from the dataset including 

DoS, U2R, Probe, R2L and normal. The experiment show high overall detection rate 96.18%, 

but the detection rate of R2L attacks and U2R attacks is 79% and 0% respectively which are 

unacceptable detection rates for such attacks which are more dangerous than DoS attack 

because of integrity and confidentiality violation. The shortcomings of their model is the need 

of efficient representative data of all possible attacks that may exploit the system in the future, 

but it's impossible to have a representative dataset, this means that their model may fail to 

detect novel attacks with different behavior and distribution. On the other hand it's hard, time 

consuming and expensive to manually classify the dataset in real environment. Moreover, the 

model suffers from high dimensional feature space because of the existence of all relevant 

network features. 

Almutairi and Parish [66] proposed a predictive intrusion detection model that is based on 

usage of classification techniques such as decision tree and Bayesian techniques. The model 

was trained using KDD‟99 [20] intrusion detection dataset. The results showed that decision 

tree algorithm J48 based on C4.5 provides 99.95% of correctly classified instances and was 

better than the Naïve Bayes technique. Also found that false positives using Naïve Bayes was 

high for Probing and Remote to Local attack categories. The shortcoming of their model is 

the inability to detect novel attacks with different distribution than those attacks in the 

training dataset based on classifier used. The feature selection also may eliminate some 

features which are relevant to future attacks. Also it's a problem to have labeled data in real 

environment. 

Xie et al. [67] proposed a new network intrusion detection classification model based on the 

Support vector machine (SVM). Their model used the factor analysis algorithm to convert a 

large number of related features into concise integrated features, and the support vector 

decision function ranking method calculated the contribution of network behavior features. 

Then some important network features were extracted and network behaviors were classified 

consequently. The experimental results showed that the detection rate and the real-time of this 

classification model are satisfying 99.03%-99.7% . The shortcomings of their model is the 

need of labeled dataset in order to build the classifier system which is hard to be obtained in 
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real environment and also their model may fail to detect novel attacks with different behavior 

and distribution. Moreover, the model suffers from the existence of all relevant network 

features which consume time to classify a new instance. Also the time consumed to classify 

an instance is large because of using high number of support vectors. 

Su [68] proposed a method to identify flooding attacks in real-time, based on anomaly 

detection by genetic weighted KNN (K-nearest-neighbor) classifiers. A genetic algorithm is 

used to train an optimal weight vector for features; mean while, an unsupervised clustering 

algorithm is applied to reduce the number of instances in the sampling dataset, in order to 

shorten training and execution time, as well as to promote the systems over all accuracy. 

More precisely, instances in the sampling dataset are replaced by less, but more significant, 

centroids of clusters. According to the proposed method, the system is implemented and 

evaluated by numerous Denial-of-Service (DoS) attacks. With an embedded weighted KNN 

classifier, the proposed system could identify a DoS attack from network traffic within a very 

short time. The experimental results show that the proposed system could achieve 95.86% in 

overall accuracy in the case of 2 -fold cross- validation, and 96.25% in overall accuracy for 

all known attack evaluations, The problem in this model is that they need to determine the 

number of clusters (K) manually. Also the proposed system is not suitable to detect attacks 

other than flooding attacks; it may not detect also some DoS attacks that exploit a system bug 

(e.g. sending malformed packet which break down the system by just one packet). Also, the 

existence of all network features consumes time when measuring the distance between a new 

instance and the other clusters which is a critical issue in NIDS's . 

Dartigue et al. [69] proposed a new data-mining based technique for intrusion detection 

using an ensemble of binary classifiers with feature selection and multiboosting 

simultaneously. Each attack type (DoS, Prope, R2L and U2R) has a binary C4.5 classifier in 

addition to Normal binary C4.5 classifier, and each classifier has its feature subset selected. 

Based on the accurate binary classifiers, their model applied a new ensemble approach which 

aggregates each binary classifier‟s decisions for the same input and decides which class is 

most suitable for a given input. During this process, the potential bias of certain binary 

classifier could be alleviated by other binary classifiers‟ decision. Their model also makes use 

of multi-boosting for reducing both variance and bias. The experimental results on KDD 

Cup'99 dataset [20] show that their approach has low false alarm rate but high false positive 

rate specially in R2L and U2R attacks which are the most dangerous attacks that exploit the 

CIA components, confidentiality and integrity. The overall accuracy of their model is 92.3%. 

The shortcomings of their approach is the cost to classify a new instance which need to be 

passed through the 5 binary classifiers to make decision about its class, in addition, R2L and 

U2R attacks are service dependent attacks which means that their features set varies based on 

the service that they exploit. 

Abd-Eldayem [70] proposed a new HTTP-IDS based on Naїve Bayes classifier. In the 

training phase of the proposed IDS, at first a feature selection technique based on Naїve 

Bayes classifier is used, which used to identify the most important HTTP traffic features that 

can be used to detect HTTP attacks. In the testing and running phases, the proposed IDS 
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classifies the network traffic based on the requested service, then based on the selected 

features, Naїve Bayes classifier is used to analyze the HTTP service based traffic and 

identifies the HTTP normal connections and attacks. The performance of the IDS is measured 

through experiments using KDD Cup'99 dataset [20]. The results show that the detection rate 

of the IDS is about 99%, the false-positive rate is about 5%, and the false-negative rate is 

about 0.6%. The shortcomings of their model is the need of efficient representative data of all 

possible attacks that may exploit the system in the future, but it's impossible to have a 

representative dataset, this means that their model may fail to detect novel attacks with 

different behavior and distribution. On the other hand it's hard, time consuming and expensive 

to manually classify the dataset in real environment. 

3.2 Unsupervised NIDS 

Jiang et al. [50] proposed a new strategy for intrusion detection. It consists of three stages, 

based on clustering training data, then sort clusters according to their outlier factor. Then 

label some clusters that contain percentage e of the data as „normal‟ while labeling the rest of 

the clusters as „attack‟. They regard labeled clusters as model, and detect an object whether it 

is an attack or not by the distance between an object and the nearest cluster. They considered 

the outlier factor of clusters for measuring the deviation degree of a cluster. A novel method 

has been proposed to compute the cluster radius threshold. The data classification has been 

performed by an improved nearest neighbor method. The experiments demonstrated that their 

method outperforms the existing methods in terms of accuracy and detecting unknown 

intrusions. Their proposed method is effective when almost data in the network is a normal, 

but this assumption fails in flooding attacks which outnumbers  the normal traffic. Also the 

number of generated clusters is high which means that it consumes time to classify a new 

instance. 

Amoli and Hamalainen [48] proposed a new Real Time Unsupervised NIDS which monitor 

network flows in two windows with different sizes and detect network attacks by correlating 

outliers from multiple clusters. The proposed NIDS has the ability of detecting different types 

of intrusions in real-time such as DOS, DDOS, scanning, distribution of worms and any other 

network attacks which produce huge amount of network traffic and in the meanwhile it 

detects Bot-Master if the detected attack lunched by Bots. The authors didn't mentioned how 

to distinguish between normal and abnormal packets, also the limitation of this approach is 

the use of DBSCAN algorithm which fails when the density is vary in normal instances. Also 

it can't detect attacks other than flood attacks. Moreover, the model suffers from high 

dimensional feature space because of the existence of all relevant network features. 

Bhuyan et al. [44] proposed an unsupervised IDS using a tree based subspace clustering 

technique for generating clusters in high dimensional large datasets. Their approach exploits a 

specific technique for finding a highly relevant feature set. The clustering technique used 

based on the stability of the obtained cluster. Their approach decrease false alarm, while 

increase the percent of detection rate reaches between 89.3% - 99.1%. The problem in this 

IDS is that the stability of cluster is not exclusive in normal clusters, but also in abnormal 
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clusters such as DoS. In addition, they didn‟t determine the techniques that have been used for 

choosing relative features. 

Hameed and Sulaiman [46] proposed an algorithm for intrusion detection that combines 

both fuzzy C Means (FCM) and FCM for symbolic features algorithms in order to manipulate 

with network traffic data stream that contains symbolic features in addition to the numeric 

features. KDD Cup'99 dataset [20] was used to evaluate their model. Experimental results 

show that the average detection rate of the proposed algorithm was 99%. In this paper, the 

authors consider the distance measurement of a dataset contains numerical and symbolic data 

types, but they didn't mention how they label the resulted clusters. Moreover, the proposed 

algorithm suffers from high dimensional feature space because of the existence of all relevant 

network features. 

Leung and Leckie [47] proposed a density based and grid based clustering algorithm, named 

as fpMAFIA, that uses adaptive grid algorithm adopted from pMAFIA and FP-tree growth 

method for frequent item set mining. They aim to discover clusters from large volume of high 

dimensional input data. Grid-based methods divide the object space into a finite number of 

cells that form a grid structure. All of the clustering operations are performed on the grid 

structure. Once they obtain the set of clusters, they expect that they cover most but not all of 

the data set. Therefore any point that falls inside the clusters will be labeled as normal. The 

small percentages of points that do not belong to any clusters are labeled as abnormal. Their 

solution has the advantage that it can produce clusters of any arbitrary shapes and cover over 

95% of the data set with appropriate values of parameters. They have evaluated the accuracy 

of the new approach and show that it achieves a reasonable detection rate 97.3% while 

maintaining a low positive rate. The problem of their work that they consider the large cluster 

as normal, but DoS attacks has also a large number of similar instances. In addition, they 

assume a small percentage of points that do not belong with any clusters are labeled as 

abnormal, but in the real network this is not always true. Another problem is the consuming 

time for extracting frequent item sets from high dimensional feature space. 

Han [71] proposed an KMIE-IDS based on K-MEANS and information entropy to detect 

anomaly activities. His aim was to improve the detection rate and decrease the false alarm 

rate. KMIE can filter the outliers on the dataset to reduce the negative impact, and indentify 

the initial cluster centers using entropy method. Then, KMIE can use these centers to iterative 

calculate and classify records into different clusters. They used KDD Cup'99 dataset [20] to 

test the performance of KMIE algorithm. The results show that their method has a high 

detection rate 95.9%, and a relatively high false alarm rate 2.4%. The test was done on 

different attacks came from four different classes (a DoS attack, a probe attack, an R2L 

attack, and an U2R attack). The testing results show high false positive rate specially in R2L 

and U2R attacks which are the most dangerous attacks that exploit the CIA components, 

confidentiality and integrity. The author didn't mention how the labeling technique works. 

Moreover, the proposed algorithm include all network features which consumes time for 

labeling a new instance. 
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3.2.1 One-Class Classification 

Barhoom and Matar [16] proposed a novel OCC learning technique based on the standard 

deviation of transport protocol's normal behavior. The transport protocol are TCP, UDP and 

ICMP. By this technique they measured the deviation of any new instance from the same 

transport protocol class. The standard deviation of each transport protocol class is being the 

class radius, if the distance between the new instances and the relative transport protocol's 

class greater than the class standard deviation then the instance is labeled as abnormal else it 

is labeled as normal. The experimental results on KDD Cup'99 dataset [20] show high 

detection rate 87.7%-99.2% with low false alarm 1.16%. This work suffers from the high 

dimensional feature spaces of each transport protocol's class and also each transport protocol's 

class has varying density. These problems arise due to the existence of several network 

services in each class (e.g. HTTP, SMTP in TCP class) which affects the overall detection 

rate and false alarm rate. 

Araki et al. [57] proposed a multistage intrusion detection model based on OCSVM focusing 

on communication interval. The multistage OCSVM uses three sets of traffic, two sets 

retrieved from a traffic archive and one extracted from real network. At the first stage, 

OCSVM learns older archive set and then analyzes newer archive set and one from real 

network. At the second stage, OCSVM learns outlier traffic from the newer archive set and 

analyzes that from the real network. As a result, extracted traffic from outlier of the real 

network which does not exist in the newer set can be extracted. They evaluated their method 

using Kyoto2006+ [72]  Dataset and 6 new features. The results show that their method 

detects attacks with 94% detection rate and 6% false positive rate. The proposed algorithm 

suffers from high dimensional feature spaces. The increase of feature space is due to the 

existence of all network features which affect the detection rate, because of measuring the 

distance between irrelevant service-based features. 

Winter et al. [58] proposed inductive network intrusion detection system. The system 

operates on lightweight network flows and uses One-Class Support Vector Machines for 

analysis. But the system was trained with malicious rather than with normal network data. 

Evaluations brought satisfying results. They achieved 0% false alarm with detection rate 

around 98%. The drawbacks of this work that the attack variations are unlimited, this leads to 

have big differences in class density which affect the detection performance of the OCSVM. 

Also it is impossible to have a representative dataset of all possible attacks that could happen 

in the future.  

Giacinto et al. [59] proposed an unlabeled Network Anomaly IDS based on a modular 

Multiple Classifier System (MCS). Each module is designed to model a particular group of 

similar protocols or network services. The use of a modular MCS allows the designer to 

choose a different model and decision threshold for different (groups of) network services. 

This also allows the designer to tune the false alarm rate and detection rate produced by each 

module to optimize the overall performance of the ensemble. Experimental results on the 

KDD Cup'99 dataset [20] show that the proposed anomaly IDS achieves high attack detection 

rate and low false alarm rate at the same time. They achieve detection rate around 94% with 

false alarm around 9%. Their work is similar to ours but differs in the technique used. They 
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use v-SVM to build their OCC model. Beside the advantages of SVMs, they have an 

important practical problem that is not entirely solved, which is the selection of the kernel 

function parameters - for Gaussian kernels the width parameter σ [40, 41].  

Ma and Dai [73] proposed anomaly detection using dissimilarity-based one-class classifiers 

(DBOCCs) with unsupervised learning approach. Several combinations of DBOCCs scheme 

have also been used. This technique is proposed in order to solve the drawback of traditional 

features-based classifiers which suffer from the improper features selection. The dissimilarity 

based OCCs are constructed on dissimilarity representations (DR). The experimental results 

on KDD Cup'99 [20] dataset show that DBOCCs can achieve high detection rate and low 

false positive rate without large degeneration in performance, as traditional feature-based 

classifiers suffered when different feature subsets have been used. They achieve 95% 

detection rate with individual OCC, and around 98% with combined OCC. They didn't show 

the false alarm rate. The proposed algorithm suffers from high dimensional feature spaces. 

The increase of feature space is due to the existence of all network features which affect the 

detection rate, because of measuring the distance between irrelevant service-based features. 

Zainal et al. [74] proposed an ensemble of one-class classifiers where each adopts different 

learning paradigms. The techniques deployed in this ensemble model were; Linear Genetic 

Programming (LGP), Adaptive Neural Fuzzy Inference System (ANFIS) and Random Forest 

(RF). The strengths from the individual models were evaluated and ensemble rule was 

formulated. Prior to classification, a 2-tier feature selection process was performed to 

expedite the detection process. The feature set is selected for each attack type, DoS, Prope, 

R2L and U2R, in addition to the normal class, and the output is one of the five classes. 

Empirical results on KDD Cup'99 dataset [20] show an improvement in detection accuracy 

for all classes of network traffic; except DoS and U2R with 97.43% and 88% respectively. 

The overall accuracy of their model is 96.57%. The shortcomings of their approach is the cost 

of classifying a new instance which need to be passed through the three OCC to make 

decision about its class, in addition, U2R attacks are service dependent attacks which means 

that their features set varies based on the service that they exploit. 

3.3 Semi-supervised NIDS 

Chen et al. [75] proposed three semi-supervised approaches, from these two are classification 

methods based on (Graph Transducer and Gaussian Fields) and one is clustering method 

based on (MPCK-means). Classification semi-supervised methods are used to detect unknown 

Attacks. Clustering semi-supervised method is used to improve the performances of the 

traditional Purely unsupervised clustering methods. Their experimental analysis show that the 

performances of proposed semi supervised classification methods are superior than those of 

the other supervised learning methods for detection of unknown attacks. The shortcomings of 

the Graph Transducer algorithm is the use of Mincut technique, which has a problem that it 

only gives hard classification without confidence, which means that it may add a misclassified 

instance to the training set which affect the final model [53]. Also there is a need of the 

availability of efficient representative labeled dataset contains both attacks and normal 

http://en.wikipedia.org/wiki/Sigma
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instances which may not be available. Also the model may fail to classify new variant attacks 

that have different distribution, because the model is trained on a specific type of attacks [45]. 

Moreover, all the network features are included in the distance measurement in order to 

classify a new instance which consumes time. 

Li et al. [49] proposed a new semi-supervised SVM algorithm using Tri-training algorithm 

which is an improved version from the standard co-training algorithm, they applied tri-

training to improve SVM. The tri-training algorithm consists of three classifiers. The semi-

supervised SVM makes use of large number of unlabeled data to modify the classifiers 

iteratively. Although tri-training doesn‟t put any constraints on the classifier, the proposed 

method uses three different SVMs as the classification algorithm. Experiments on UCI 

datasets and application to the intrusion anomaly detection show that tri-training can improve 

the classification accuracy of SVM. The shortcomings of this approach is the need of the 

availability efficient representative of labeled dataset contains both attacks and normal 

instances which may not be available, and also the model may fail to classify new variant of 

attacks, because the model is trained on a specific type of attacks [45]. The second issue is the 

time consumed by the three classifiers in order to classify the unlabeled instance in more than 

one iteration to increase the labeling confidence.  Moreover, the existence of all network 

features increase the time needed to classify a new instance. 

Wagh and Kolhe [76] proposed intrusion detection approach using self-learning algorithm 

(SLA). In this algorithm the labeled data are used for training and unlabeled data is used for 

testing. Then the most confident data – based on threshold- with predicted labels from the 

output of the testing phase is selected and added in the labeled data. The learned set 

formulation helps to remove the data redundancy in the labeled data and controlled the size of 

the labeled data. All experiments are carried out with KDD Cup'99 dataset [20]. Accuracy of 

intrusion detection in first iteration is 97.286%, for second iteration it is 99.511% and for 

third iteration it is 99.516%. The final accuracy for DoS, U2R, R2L and Probe is 99.25%, 

66.66%, 70%, and 96.88% respectively. The shortcomings of this technique is that the 

training data must have some instances labeled as attack beside the normal instances for 

building the initial model which may not be available and also the model may fail to classify 

new variant of attacks, based on the classifier used, because the model is trained on a specific 

type of attacks [45]. Another disadvantage is the dependency on the threshold value which 

may affect the overall result because of adding a misclassified instances in the training dataset 

in the subsequent iterations. Beside the problem of time consuming which is consumed by 

multi iteration to obtain the final result. Also including all network features space increase the 

time neede for classifying a new instance. 

Yang et al. [77] used both classification and clustering algorithms for intrusion detection. 

They divided the dataset into different feature vectors according to the service type. They 

used the standard k-means algorithm for clustering. Each generated cluster can be simply 

expressed as a centroid and an effect influence radius. The cluster radius refers to influence 

range of a data point (represented as the Euclidean distance from the centroid), the 

classification is done by measuring the distance between the new instance with every instance 
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in the dataset, if the distance fall in within the Gaussian distribution then increment the 

normal counter f+ if the training instance is normal else increment the attack counter f-, then 

the classification is done by checking if  f+/(f- + f+) > normal threshold then the new instance 

is normal, else if f-/(f- + f+) > attack threshold then the instance is labeled as attack else it is 

labeled as anomaly. There model achieve high detection rate 10%-99.5%  and low false alarm 

0.7% on KDD Cup'99 dataset [20]. The testing results show high false positive rate specially 

in R2L (10.44% detection rate) and U2R (81.14% detection rate) attacks which are the most 

dangerous attacks that exploit the CIA components, confidentiality and integrity. There's 

some shortcomings in this approach. Firstly, there's a lot of parameters which affect the 

overall results which are, the number of clusters for each service, the normal threshold value 

and the attack threshold value. Secondly, the model consumes time in measuring the distance 

between the new instance and every instance in the dataset, which affect the performance of 

IDS. 

Li et al. [78] proposed an intrusion detection algorithm based on semi-supervised fuzzy 

clustering. For training the model, they used a few labeled samples and many unlabeled 

samples as seeds initializing the classifier of the system. Under the constraint of labeled data, 

they used fuzzy C-Means to create clusters. Then used labeled instances for labeling clusters, 

after that they used the unlabeled instances for improving the clusters labeling. Comparing 

with FCM algorithm, the experiment results on data sets KDD Cup'99 dataset [20] show the 

effectiveness of the proposed algorithm, it has higher detection rate 85.50%, but in general 

their accuracy was relatively lower than other semi-supervised learning approaches. 

Mahajan and Verma  [79] proposed a semi supervised machine learning technique. In their 

system a distance based semi-supervised clustering and probabilistic assignment technique is 

used to analyze and implement a network traffic classifier using both labeled and unlabelled 

flows. They used K-means for clustering and probabilistic assignment for labeling the 

generated clusters. The available labeled instances are used to obtain a mapping from the 

clusters to the different known classes. They tested their model using KDD Cup'99 dataset 

[20] and achieved good classification accuracy up 94.7%. The problem in their model, that 

they didn't determine how to achieve the optimal number of clusters to be generated. 

Moreover, the proposed algorithm suffers from high dimensional feature space because of the 

existence of all relevant network features. 

 

3.5 Summary  

A lot of efforts have been given toward designing a perfect NIDS that has a high detection 

rate and low false alarm rate. Many researchers are trying to solve the problem by using 

supervised learning techniques. The problem of using  supervised learning is the cost of 

producing labeled dataset which is essential for training the model [46-48] and also the model 

is trained on known attacks which may fail to detect new variant attacks [45]. Others on other 

hand are trying to use unsupervised learning techniques which has the problem of labeling the 

generated clusters [52]; which cluster is to be normal or abnormal. Semi-supervised learning 
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techniques suffers from the limitation that it cannot outperform supervised classification 

unless the analyst is absolutely certain that there is some nontrivial relationship between 

labeled and the unlabeled distribution [55]. Because of the limitations of previous techniques, 

and because of the increasing diversity and polymorphism of network attacks, a fourth 

learning technique called One-Class Classification (OCC) has been used to learn the behavior 

of single class, which is commonly normal traffic, to detect any deviation from it. However 

when applying this technique on network as a whole it suffers from the high dimensional 

network feature spaces. Also, problems may arise when large differences in density exist. 

To overcome these problems, we proposed a primary OCC model based on the standard 

deviation of service's normal behavior. Through this model we dealt with each network 

service as single class instead of dealing with all network services as a single class. By this 

way we use just the relevant features of each service, hence reducing the high dimensional 

network feature spaces and also ensure that each class has - a proximately - uniform 

distribution.  

We summarized our related works in Table 3.1. 
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Table 3 Table 3.1 Related Works Summary 

Category Related Work Method & Detection technique Detection Rate 
S

u
p

er
v
is

ed
 

Chandolikar [65] Rule induction 96.18% 

Almutairi [66] Decision tree and Bayesian techniques 99.95% 

Xie [67] Support vector machine (SVM) 99.03% 

Su [68] Weighted KNN classifiers 96.25% 

Dartigue [69] Ensemble of C4.5 binary classifiers 92.3% 

Abd-Eldayem [70] Naїve Bayes classifier 99% 

U
n

su
p

er
v
is

ed
 

Amoli [48] Outlier correlation from DBSCAN clusters N/A 

Jiang [50] Outlier factor for cluster labeling 98.5% – 98.6% 

Bhuyan [44] Tree based subspace clustering technique 89.3% - 99.1% 

Hameed [46] Fuzzy C Means (FCM) 99% 

Leung [47] Density based and grid based clustering 97.3% 

Han [71] K-MEANS and information entropy 95.9% 

S
em

i-
S

u
p

er
v
is

ed
 

Chen [75] 

Based on Graph Transducer and Gaussian 

Fields classifiers and MPCK-means clustering 

algorithms 

N/A 

Li [49] Tri-training SVM N/A 

Wagh [76] Self-learning algorithm (SLA) 66.6%-99.25% 

Yang [77] 
K-means clustering and classification based 

on distance 
10.44%-99.5% 

Li [78] Semi-supervised fuzzy C-Means clustering 85.50% 

Mahajan [79] 
K-means for clustering and probabilistic 

assignment for labeling generated clusters 
94.7% 

O
C

C
 

We [16] 
Standard deviation of Transport protocol 

normal class 
87.7%-99.2% 

Araki [57] Multistage OCSVM 94% 

Winter [58] OCSVM based on malicious class 98% 

Giacinto [59] Modular Multiple Classifier System OCSVM 94% 

Ma [73] 
Dissimilarity-based one-class classifiers 

OCSVM 
95%-98% 

Zainal [74] 

ensemble of Genetic Programming (LGP), 

Adaptive Neural Fuzzy Inference System 

(ANFIS) and Random Forest (RF) one-class 

classifiers 

88%-97.43% 
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Chapter 4: Real Dataset Collection 
 

NIDSs, particularly in anomaly-based approaches, suffer from accurate evaluation, 

comparison and deployment which originates from the scarcity of adequate datasets. Many of 

datasets are internal and cannot be shared due to privacy issues, others are heavily 

anonymized and do not reflect current trends, or they lack certain statistical characteristics. 

These deficiencies are primarily the reasons why we need to test and evaluate our primary 

proposed model on a real traffic dataset. 

We have chosen Alaqsa University network to collect the traffic coming to and going from its 

web server, found under http://www.alaqsa.edu.ps. We named this dataset as BM-AUN2015 

which refers to the authors of this dataset who are Barhoom and Matar and AUN2015 refers 

to Alaqsa University Network 2015.  

4.1 Real Traffic Collection 

The first step in our data collection is to collect the real traffic coming from and going to the 

web server which is hosting Alaqsa university website. The web server, as shown in Figure 

4.1, is located in the DMZ (Demilitarized Zone). The operating system of the web server is 

Windows Server 2012 R2 64bit and installed on it IIS 8 web server. The Web Server has 4 

CPU and 8 GB RAM with NIC speed of 1 Gb/s and connected to a 1Gb/s switch. 

A packet sniffer Server has RAM of 4 GB, 2 CPU, 1 Gb/s NIC with promiscuous mode 

enabled and installed on it WireShark  v1.12 software. This server is connected to the mirror 

port of the same switch at which the web server is connected. The Web Server and WireShark 

server are operating in the DMZ behind a hardware firewall, called FortiGate.  

IIS 8 Web Server

Windows Server 2012 R2 64bit

8 GB RAM, 4 CPU

40Mb/s
IPS

WAN

LAN

100 Mb/s

Miror Port

1 Gb/s

1 Gb/s 1 Gb/s

WireShark

FortiGate

 

Figure 10 Figure 4.1 Alaqsa University web server and its network infrastructure 

http://www.alaqsa.edu.ps/
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The FortiGate firewall has three configured terminals, one of them is connected to the WAN 

through a Cisco router and activated on it an Intrusion Prevention System IPs, the second is 

connected to the LAN and the third is connected to the DMZ at which the Web server and 

WireShark Server are located. 

Real traffic is not guaranteed to be free from intrusion traces but we have  a  guarantee  in 

highly percentage that the traffic coming to the Web server is normal because of the IPS, also 

all of the internal PC's have antivirus program installed on them. 

We have captured the traffic that going to and coming from the web server in different days 

and different time and different period as shown in Table 4.1. 

Table 0-1 Table 4.1 Real traffic Capture statistics 

Date Start time End time Capture time #Sessions #Packets 

Day1 2:14:55 PM 2:34:25 PM 0:19:30 703 89,406 

Day2 1:28:31 PM 2:39:54 PM 1:11:23 3,296 475,057 

Day3 8:33:32 AM 2:26:28 PM 5:52:56 13,548 2,132,748 

Day4 11:19:42 AM 2:08:05 PM 2:48:23 10,332 13,62,168 

    27,879 4,059,379 

4.2 Attack Traffic Collection 

In order to collect the packets of an attack traffic and to be sure that these packets are purely 

came from an attack source and because that we cannot perform the attack operations on the 

university production website server, we have prepared a secondary Web Server with the 

same settings and properties as the production Web Server and the same network topology 

and infrastructure. As shown  in Figure 4.2. 

IIS 8 Web Server

Windows Server 2012 R2 64bit

8 GB RAM, 4 CPU

FortiGate

100Mb/s

WireShark

1 Gb/s 1 Gb/s

Miror Port

1Gb/s

 

Figure 11 Figure 4.2 Secondary Web Server to perform attack operations 
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4.2.1 The Performed Attacks 

We have chosen four DoS attack types two of them target the transport protocol and the other 

two types target the application protocol; in our case we chose attacks that target TCP 

protocol as the transport protocol for HTTP protocol and the HTTP protocol as the 

application protocol. 

4.2.1.1 Transport Layer DoS Attacks 

We have choosen two DoS attacks that exploit the vulnerabilities of TCP protocol  which are: 

1. SyncFlood attack 

2. SockStress attack 

These attack types have been chosen because of many reasons depends on the vulnerabilities 

of the TCP protocol that it exploits. The reasons are described for each attack as follows: 

Performing SyncFlood Attack 

SyncFlood attack as mentioned in the literature review in chapter 2 exploits the three-way 

handshake. An incomplete three-way handshaking can occurs normally because of many 

reasons, for example power shortage in the client side, or network failure occurs and other 

situations  may occurs normally without the intention of doing harm to the server from the 

client. But what if the client seeks to exploit this  vulnerability of TCP protocol to take the 

server down from a randomly spoofed IP! So we need to test the ability of our primary 

proposed model of detecting such attacks. 

We have chosen hping3 [80]  testing tool to perform this type of attack. Hping is a command-

line oriented used as packet generator and analyzer for the TCP/IP protocol. It supports TCP, 

UDP, ICMP and RAW-IP protocols. For more information about this tool, please visit its 

official website http://www.hping.org, and for more information about how to use this tool 

visit the following url:  http://www.hping.org/manpage.html  

We have performed two scenarios of SyncFlood attack and collect each scenario packets 

separately.  After each scenario we have restarted the server to clean up any reserved 

resources. These attacks operations have been performed on Ubuntu operating system. 

Scenario 1: performing SyncFlood attack from a single IP 

We have performed SyncFlood attack from a single PC using single IP which target the web 

server. The attack lasts 50 seconds. within this period 1,030,717 packets have been captured 

and 65,540 Sync  messages  have been sent from the client as shown in table 4.2. 

sudo hping3 -c 10000 -d 120 -S -w 64 -p 80 --flood --rand-source 10.10.250.1 
 

Where sudo an Ubuntu command to give permissions to hping3 which is the name of the 

application binary, -c 100000 is the number of packets to send, -d 120  is the size of each 

http://wiki.hping.org/15
http://www.hping.org/
http://www.hping.org/manpage.html
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packet that was sent to target machine, -S means I am sending SYN packets only, -w 64  is 

TCP window size, -p 80 = Destination port (80 being HTTP port). You can use any port here, 

--flood  means Sending packets as fast as possible, without taking care to show incoming 

replies. Flood mode, and 10.10.250.1  is Destination IP address.  

Scenario 2: performing SyncFlood attack from a spoofed IP 

We have performed SyncFlood attack from a single PC using spoofed IP which target the web 

server. The attack lasts 59 seconds. within this period 1,225,823 packets have been captured 

and 462,206 Sync  messages  have been sent from the client as shown in table 4.2. 

sudo hping3 -c 10000 -d 120 -S -w 64 -p 21 --flood --rand-source 10.10.250.1 
 

Where --rand-source means using Random Source IP Addresses. 

Table 0-2 Table 4.2 Attack types and their capture period 

Capture time Attack Type #Sessions #Packets # Instances 

0:03:51 SlowHeader-Senario1 2,949 371,885 2,949 

0:03:56 SlowHeader- Senario2 2,980 375,175 2,980 

0:04:01 SlowHeader - Senario3 20 2,055 218 

0:03:98 SlowHeader - Senario4 5 543 2832 

0:04:03 SlowPost- Senario1 2,977 370,561 2,977 

0:04:01 SlowPost- Senario2 2,983 376,173 2,983 

0:03:57 SlowPost- Senario3 20 2,539 262 

0:04:00 SlowPost- Senario4 5 615 193 

0:03:44 SlowRead- Senario1 2,960 82,593 2,960 

0:04:02 SlowRead- Senario2 2,995 93,706 2,995 

0:04:03 SlowRead- Senario3 20 603 214 

0:04:07 SlowRead- Senario4 5 157 116 

0:00:50 SockStress20thread 1,319 8,560 1,929 

0:08:18 SockStress40thread 5,584 23,640 6,876 

0:00:59 SYNC-FLOOD-SpoofedIP 462,206 1,225,823 462,206 

0:01:18 SYNC-FLOOD 65,540 1,030,717 65,540 

 

Performing SockStress Attack 

SockStress attack as mentioned in the literature review in chapter 2 exploits the TCP window 

size . A zero-window size or a very small window size can occurs normally because of 

network congestion without the intention of doing harm to the server from the client. But 

what if the client seeks to exploit this vulnerability of TCP protocol to take the server down! 

This attack is doing complete three-way handshake, which means that it cannot be performed 
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from a spoofed IP address.  So we need to test the ability of our primary proposed model of 

detecting such attacks. 

We have chosen SockStress testing tool [81] to perform this type of attack. This tools is 

written in Python programming language. We have performed two scenarios of SockStress 

attack and collect each scenario packets separately.  After each scenario we have restarted the 

server to clean up any reserved resources. 

Usage - ./sock_stress.py [Target-IP] [Port Number] [Threads] 

 

 

 

 

 

 

 

Where Threads is the number of connections created every one second. 

These attacks operations have been performed on Ubuntu operating system. 

Scenario 1: performing DoS-SockStress attack using 20 concurrent connections 

We have performed SockStress attack from a single client. The attack last one minute and 59 

seconds. within this period 8,560 packets have been captured and 1,319 TCP sessions have 

been opened from the five clients as shown in table 4.2. 

sudo ./sock_stress.py 10.10.250.1 80 20 

 

 

 

 

 

 

 

Scenario 2: performing DoS-SockStress attack using 40 concurrent connections 

We have performed SockStress attack from a single client. The attack last eight minutes 18 

seconds. within this period 23,640 packets have been captured and 5,584 TCP sessions  have 

been opened from the five clients as shown in table 4.2. 

sudo ./sock_stress.py 10.10.250.1 80 40 

 

 

 

 

 

 

4.2.1.2 Application Layer DoS Attacks 

We have choosen three DoS attacks that exploit the vulnerabilities of HTTP protocol as 

described before in chapter 2 which are: 

1. SlowHeader attack 

2. SlowPost attack 

3. SlowRead attack 

These attack types  raised recently and  have been chosen because of many reasons depends 

on the vulnerabilities of the HTTP protocol that it exploits, the reasons are described for each 

attack. We have chosen testing tool called  SlowHttpTest [82].  For more information about 

this tool please visit the following web page https://code.google.com/p/slowhttptest/ , there 

you can find also test results of popular HTTP servers using this penetration tool. We have 

installed this tool on Ubuntu operating system. The tool installation and usage can be found 

under https://code.google.com/p/slowhttptest/wiki/InstallationAndUsage.  

https://code.google.com/p/slowhttptest/
https://code.google.com/p/slowhttptest/wiki/InstallationAndUsage
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Performing SlowHeader  Attack 

SlowHeader attack as mentioned in the literature review in chapter 2 exploits the HTTP 

header behavior. An incomplete HTTP header can occurs normally, for example when there 

exists large http header that cannot be sent in single packet because of network congestion, or 

other situations  may occurs normally without the intention of doing harm to the server from 

the client. But what if the client seeks to exploit this vulnerability of HTTP protocol to take 

the server down! This attack is doing complete three-way handshake, which means that it 

cannot be performed from a spoofed IP address. So we need to test the ability of our primary 

proposed model of detecting such attacks. We have performed two scenarios of SlowHeader 

attack and collect each scenario packets separately.  After each scenario we have restarted the 

server to clean up any reserved resources. 

 

Scenario 1: performing SlowHeader attack with connection rate 200/sec and max length 

of follow up data of HTTP header payload is 4 bytes. 

We have performed SlowHeader attack from a single PC  which target an Apache web server 

2.2.8, as mentioned before in chapter 2, IIS web server is not vulnerable to this attack. The 

attack last four minutes. within this period 371,885 packets have been captured and 2,949 

sessions  have been opened from the client as shown in table 4.2. 

Sudo ./slowhttptest -c 3000 -H my_header_stats –l 240 -i 2 -r 200 –w 512 –y 

1024 -t GET -x 4 -p 3 -u http://10.10.250.1/default.aspx 

 

 

 

 

 

 

Where -c 3000 is the max number of opened connections, -H my_header_stats is  to perform 

SlowHeader attack, -l 240 is the test duration in seconds, -i 2 is interval between follow up 

data in seconds, per connection, -r 200 is the number of creating connections every one 

second Initial SYN packet for every connection would have random advertised window size 

value between -w 512 and -y 1024. -t GET is the HTTP method type, -x 4 is the max length 

in bytes of follow up data and -p 3 is timeout to wait for HTTP response on probe connection, 

after which server is considered inaccessible. 

Scenario 2: performing SlowHeader attack with connection rate 50/sec and max length 

of follow up data of HTTP header payload is 8 bytes. 

We have performed SlowHeader attack from a single PC  which target an Apache web server 

2.2.8. The attack last four minutes. within this period 375,175 packets have been captured and 

2980 sessions  have been opened from the client as shown in table 4.2. 

Sudo ./slowhttptest -c 3000 -H my_header_stats –l 240 -i 2 -r 50 –w 512 –y 

1024 -t GET -x 8 -p 3 -u http://10.10.250.1/default.aspx 

 

 

 

 

 

 

Scenario 3: performing SlowHeader attack with connection rate 1/sec, max length of 

follow up data of HTTP header payload is 4 bytes and maximum of 20 connections. 

We have performed SlowHeader attack from a single PC  which target an Apache web server 

2.2.8. The attack last four minutes, through this period a new connection opened each second 

with 20 maximum opened connections. Within this period 2,055 packets have been captured 

and 20 sessions  have been opened from the client as shown in table 4.2. 
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Sudo ./slowhttptest -c 20 -H my_header_stats –l 240 -i 2 -r 1 –w 512 –y 1024 

-t GET -x 4 -p 3 -u http://10.10.250.1/default.aspx 

 

 

 

 

 

 

Scenario 4: performing SlowHeader attack with connection rate 1/sec, max length of 

follow up data of HTTP header payload is 4 bytes and maximum of 5 connections. 

We have performed SlowHeader attack from a five PC's  which target an Apache web server 

2.2.8. The attack last four minutes, through this period a new connection opened each second 

with 5 maximum opened connections.. within this period 543 packets have been captured and 

5 sessions  have been opened from the client as shown in table 4.2. 

Sudo ./slowhttptest -c 5 -H my_header_stats –l 240 -i 2 -r 1 –w 512 –y 1024 

-t GET -x 4 -p 3 -u http://10.10.250.1/default.aspx 

 

 

 

 

 

 

Performing SlowPost  Attack 

SlowPost attack as mentioned in the literature review in chapter 2 exploits the HTTP body 

behavior. Time required to complete HTTP body varies depends on the body size, e.g. attach 

a large file, also it depends on the network congestion which is specified by window size in 

the TCP protocol. These situations can occur normally without any intention of doing harm to 

the server from the client. But what if the client seeks to exploit this vulnerability of HTTP 

protocol to take the server down by reserve its resources for long time! This attack is doing 

complete three-way handshake, which means that it cannot be performed from a spoofed IP 

address. So we need to test the ability of our primary proposed model of detecting such 

attacks. We have performed two scenarios of SlowPost attack and collect each scenario 

packets separately.  After each scenario we have restarted the server to clean up any reserved 

resources. 

 

Scenario 1: performing SlowPost attack with connection rate 200/sec and length of 

follow up data of HTTP body payload is 1 byte. 

We have performed SlowPost attack using single pc which target the web server. The attack 

is configured to creates 200 connections each second. Each established http session waits 2 

seconds between each packet before sending the next payload. The attack last four  minutes. 

within this period 370,561 packets have been captured and 2,977 sessions  have been opened 

from the client as shown in table 4.2. 

Sudo ./slowhttptest -c 3000 -B my_body_stats –l 240 -i 2 -r 200 –w 512 –y 1024 

-s 8192 -t POST -x 1 -p 3 -u http://10.10.250.1/default.aspx 

 

 

 

 

 

 

Where -c 3000 is the max number of opened connections, -B my_body_stats is  to perform 

SlowPost attack, -l 300 is the test duration in seconds, -i 2 is interval between follow up data 

in seconds, per connection, -r 200 is the number of creating connections every one second. 

Initial SYN packet for every connection would have random advertised window size value 

between -w 512 and -y 1024. -s 8192  is the value of Content-Length header, -t POST is the 
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HTTP method type, -x 1 is the max length of follow up data which is one byte and -p 3 is 

timeout to wait for HTTP response on probe connection, after which server is considered 

inaccessible.  

Scenario 2: performing SlowPost attack with connection rate 50/sec and max length of 

follow up data of HTTP body payload is 32 bytes. 

We have performed SlowPost attack using single pc which target the web server. The attack 

is configured to creates 50 connections each second. Each established http session waits 2 

seconds between each packet before sending the next payload. The attack last four  minutes. 

within this period 376,173 packets have been captured and 2,983 sessions  have been opened 

from the client as shown in table 4.2. 

Sudo ./slowhttptest -c 3000 -B my_body_stats –l 240 -i 2 -r 50 –w 512 –y 1024  

-s 8192 -t POST -x 32 -p 3 -u http://10.10.250.1/default.aspx 

 

 

 

 

 

 

Scenario 3: performing SlowPost attack with connection rate 1/sec, max length of follow 

up data of HTTP body payload is 1 bytes and maximum of 20 connections. 

We have performed SlowPost attack using single pc which target the web server. The attack 

is configured to creates one connection each second with 20 maximum opened connections.. 

Each established http session waits 2 seconds between each packet before sending the next 

payload. The attack last four  minutes. within this period 2,539 packets have been captured 

and 20 sessions  have been opened from the client as shown in table 4.2. 

Sudo ./slowhttptest -c 20 -B my_body_stats –l 240 -i 2 -r 1 –w 512 –y 1024  -s 

8192 -t POST -x 1 -p 3 -u http://10.10.250.1/default.aspx 

 

 

 

 

 

 

Scenario 4: performing SlowPost attack with connection rate 1/sec, max length of follow 

up data of HTTP body payload is 1 bytes and maximum of 5 connections. 

We have performed SlowPost attack using single pc which target the web server. The attack 

is configured to creates one connection each second with 5 maximum opened connections. 

Each established http session waits 2 seconds between each packet before sending the next 

payload. The attack last four  minutes. within this period 615 packets have been captured and 

5 sessions  have been opened from the client as shown in table 4.2. 

Sudo ./slowhttptest -c 5 -B my_body_stats –l 240 -i 2 -r 1 –w 512 –y 1024  -s 

8192 -t POST -x 1 -p 3 -u http://10.10.250.1/default.aspx 

 

 

 

 

 

 

Performing SlowRead Attack 

SlowRead attack as mentioned in the literature review in chapter 2 exploits the HTTP request 

behavior. Time required to complete HTTP file retrieve varies depends on the file size, e.g.  a 

large file, also it depends on the network congestion which is specified by window size in the 

TCP protocol. These situations can occur normally without any intention of doing harm to the 

server from the client. But what if the client seeks to exploit this vulnerability of HTTP 
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protocol to take the server down by reserve its resources for long time! This attack is doing 

complete three-way handshake, which means that it cannot be performed from a spoofed IP 

address. So we need to test the ability of our primary proposed model of detecting such 

attacks. We have performed two scenarios of SlowPost attack and collect each scenario 

packets separately.  After each scenario we have restarted the server to clean up any reserved 

resources. 

 

Scenario 1: performing SlowRead attack with connection rate 200/sec and 32 bytes to 

read from receive buffer with single read() operation. 

We have performed SlowRead attack using single pc which target the web server. The attack 

is configured to creates a total of 3000 connections, with 200 connections every one second. 

The attack last four  minutes. within this period 82,593 packets have been captured and 2,960 

TCP sessions have been opened as shown in table 4.2. 

Sudo ./slowhttptest -c 3000 -X slow_read_stats –l 240 -r 200 –w 512 –y 1024 –

n 5 –z 32 -p 3 -u http://10.10.250.1/default.aspx 

 

Where slow_read_stats  is to enable slow read mode, -X starts Slow Read test with –c 3000 

connections, creating –r 200 connections per second. Initial SYN packet for every connection 

would have random advertised window size value between -w 512 and -y 1024, and 

application would read -z 32 bytes every -n 5 seconds from each socket's receive buffer. To 

multiply overall response size. Probe connection would consider server DoSed, if no response 

was received after -p 3 seconds. 

Scenario 2: performing SlowRead attack with connection rate 50/sec and 64 bytes to 

read from receive buffer with single read() operation. 

We have performed SlowRead attack using single pc which target the web server. The attack 

is configured to creates a total of 3000 connections, with 50 connections every one second. 

The attack last four  minutes. within this period 93.7046 packets have been captured and 

2,995 TCP sessions have been opened as shown in table 4.2. 

Sudo ./slowhttptest -c 3000 -X slow_read_stats –l 240 -r 50 –w 512 –y 1024 –n 

5 –z 64 -p 3 -u http://10.10.250.1/default.aspx 

 

Scenario 3: performing SlowRead attack with connection rate 1/sec, 32 bytes to read 

from receive buffer with single read() operation and maximum of 20 connections. 

We have performed SlowRead attack using single pc which target the web server. The attack 

is configured to creates a total of 20 connections, with 1 connection every one second. The 

attack last four  minutes. within this period 603 packets have been captured and 20 TCP 

sessions have been opened as shown in table 4.2. 

Sudo ./slowhttptest -c 20 -X slow_read_stats –l 240 -r 1 –w 512 –y 1024 –n 5 

–z 32 -p 3 -u http://10.10.250.1/default.aspx 
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Scenario 4: performing SlowRead attack with connection rate 1/sec, 32 bytes to read 

from receive buffer with single read() operation and maximum of 5 connections. 

We have performed SlowRead attack using single pc which target the web server. The attack 

is configured to creates a total of 5 connections, with 1 connection every one second. The 

attack last four  minutes. within this period 157 packets have been captured and 5 TCP 

sessions have been opened as shown in table 4.2. 

Sudo ./slowhttptest -c 5 -X slow_read_stats –l 240 -r 1 –w 512 –y 1024 –n 5 –

z 32 -p 3 -u http://10.10.250.1/default.aspx 
 

We have performed the previous mentioned attacks in different period depends on packets 

generated/second. For example SYNC-FLOOD-SpoofedIP  is performed for just 59 second 

which generate 1,225,823 packets and 462,206 sessions within just 59 second as listed in 

Table 4.2. 

4.3 Importing PCAP Files into Oracle Database 

 The captured packets using Wireshark program are saved as  PCAP files, we need to extract 

packets from these files and import them to Oracle database in order to generate the required 

features. To do so we have coded JAVA classes that use jNetPcap v1.4 [83] package which 

aim to extract the packets from PCAP files.  Also we have used  a package to parse HTTP 

protocol in order to extract HTTP entities, this package is called ApacheHttpcomponents 

v4.4.1 [84]. We have extracted the TCP and HTTP attributes and also other generated 

attributes and stored them in Oracle database table. These attributes are listed in Table 4.2. 

The java classes can be seen in Appendix A 

Table 0-3 Table 4.3 database table of fileds extracted from the Packets in the PCAP file 

# Column name Data type Description 

1 FLOWKEY Number TCP session ID 

2 PACKET_NUMBER Number Packet Number 

3 PACKET_TIME_STAMP Timestamp Packet time stamp 

4 SOURCE_IP String Packet source IP 

5 SRC_PORT Number Packet source port 

6 DESTINATION_IP String Packet destination IP 

7 DST_PORT Number Packet destination port 

8 PACKET_SIZE Number Packet size 

9 IS_CHECKSUM_VALID Boolean TCP packet checksum valid? 

10 TCP_FLAGS_PSH Boolean Does TCP PSH flag is set 

11 TCP_FLAGS_ACK Boolean Does TCP ACK flag is set 

12 TCP_FLAGS_RST Boolean Does TCP RST flag is set 

13 TCP_FLAGS_SYN Boolean Does TCP SYN flag is set 

14 TCP_FLAGS_FIN Boolean Does TCP FIN flag is set 

15 TCP_WINDOW_SIZE Number TCP window size 

16 IS_HTTP_SESSION Boolean Does client initiate HTTP session 

17 HTTP_HEADER_LENGTH Number The length of the HTP header 
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18 HTTP_PAYLOAD_LENGTH Number The length of the HTTP body 

19 HTTP_REQ_REFERER String HTTP Request referrer 

20 HTTP_USER_AGENT String The client user-agent 

23 HTTP_RESPONSE_CODE Number 
The response code received from the 

server 

24 TCP_PAYLOAD_LENGTH Number The TCP payload length 

25 PACKET_TIME_NANO_SEC Number The time in Nano second  

26 AVG_TIME_HTTP_HEADER_COMPLETE Real 
The avg time to complete HTTP header  

in current TCP session 

27 NUMBER_OF_HTTP_HEADERS Number 
Number of HTTP headers sent from 

client in current TCP session 

28 IS_HTTP_HEADER_END Boolean 
Does client HTTP header sent 

completely 

29 SERVER_TIME_WINDOW_2SEC String 
A unique Time window label for every 

2Sec 

30 SERVER_TIME_WINDOW_4SEC String  
A unique Time window label for every 

4Sec 

31 Label String Type of packet, Normal/Attack type 

4.4 Collected Traffic Statistics 

In this section we have generate some charts which show the connection behavior and number 

of connections established with the server per second, we also show another charts that 

presents the cumulative  number of  open connections with the server. We have also figure 

out the normal user's connection behavior. The reason of traffic statistics' charts is to 

understand the normal and attack behavior. 

4.4.1 Normal Traffic Connection's Behavior 

We have collected traffic coming from and going to production web server of Alaqsa 

university in different four days as shown in Table 4.1. The following figures show the 

connections per second established with web server and also the cumulative of active 

connections opened through time in seconds in web server. Figure 4.3, Figure 4.4, Figure 4.5 

and Figure 4.6 show the connections established with the production web server  through time 

in seconds in the days Day1,Day2, Day3 and Day4 respectively. Figure 4.7 shows the normal 

connection's behavior to the web server from a single user. 

As shown in Figure 4.3, which presents the connections to the server through time in seconds, 

the number of connections established concurrently per second ranging from 3 to 10 

connections in average as shown in Figure 4.3(A). Note the gapes in the second timeline in 

Figure 4.3(A) which means that there's zero connections at this moment. The cumulative of 

active connections through time is presented in Figure 4.3(B) is ranging from 0 to 10 

connections in average which means that at any given time we can find just 1 to 20 

connection opened. This capture, as shown in Table 4.1, was taken in 20 minutes period of 

time at 14:15 which is the last hour of the working day. 
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Figure12 Figure 4.3 Histogram of Normal connections in Day1 

(A) Connections created per second, (B) Cumulative of active connections in seconds 

Figure 4.4 shows the connections to the server captured in a period of one hour began at 

13:20 in the second day. From the figure we can see that the number of connections 

established concurrently per second ranging from 0 to 10 connections in average as shown in 

Figure 4.4(A). The cumulative of the opened connections through time is presented in Figure 

4.4(B)  ranging from 1 to 20 connections in average which means that at any given time we 

can find just 5 to 20 connection opened. 

 

Figure 13 Figure 4.4 Histogram of Normal connections in Day2 

(A) Connections created per second, (B) Cumulative of active connections in seconds 

Figure 4.5 also presents the connections established in the third working day, which have 

been captured in a period of six hours began at 08:30. From the figure we can see that the 

number of connections established concurrently per second ranging from 0 to 15 connections 

in average as shown in Figure 4.5(A). The cumulative of the opened connections through time 

is presented in Figure 4.5(B)  ranging also from 0 to 10 connections in average which means 

that at any given time we can find just 1 to 20 connection opened. 
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Figure  41  Figure 4.5 Histogram of Normal connections in Day3 

(A) Connections created per second, (B) Cumulative of active connections in seconds 

The connections established in the fourth day which have been capture at 11:19 for a period 

of three hours is shown in Figure 4.6.  The number of connections established concurrently 

per second ranging from 0 to 10 connections in average as shown in Figure 4.6 (A). The 

cumulative of the opened connections through time is presented in Figure 4.6 (B)  ranging 

also from 0 to 10 connections in average which means that at any given time we can find just 

1 to 25 connection opened. 

 
Figure  41  Figure 4.6 Histogram of Normal connections in Day4 

(A) Connections created per second, (B) Cumulative of active connections in seconds 

The normal behavior of a single user connect to the web server is shown in Figure 4.7. As 

shown in the Figure 4.7 (A) , the user connect to the web server at different periods of time, 

and the concurrent connections per second ranging from 1 to 6,  also  the average TCP session  

time doesn't exceeds 20 seconds.  
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Figure  16Figure 4.7 Histogram of Normal connections of single user 

(A) Connections created per second, (B) Cumulative active connections in seconds 

4.4.2 Attack Traffic Connection's Behavior 

In this section we figure out the connection behavior of the attacks performed at the web 

server as described in section 4.2. 

4.4.2.1 Network  Layer Attacks' Behavior 

SYNC-FLOOD DoS attack connection's behavior as shown in Figure 4.8 has significant 

difference compared with the connection's behavior of the normal traffic.  

 
Figure  17  Figure 4.8 Histogram of SYNC-FLOOD connections 

(A) Connections created per second, (B) Cumulative of active connections in seconds 

The number of connections established by the client per second is very high ranging from 

5000 to 8000 connection per second as shown in Figure 4.8 (A) and the accumulative opened 

sessions in average exceeds 6000 connections at any given time as shown in Figure 4.8 (B). 

The drop of the number of open connections at the last few seconds happened because of 

ending the attack which closes the opened connections. 
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Figure  18  Figure 4.9 Histogram of SYNC-FLOOD Spoofed IP connections 

(A) Connections created per second, (B) Cumulative of active connections in seconds 

SYNC-FLOOD using spoofed IP  attack has also a significant difference compared with 

normal connection's behavior. As shown in Figure 4.9, the number of connections per 

second to the server is extremely high, which range from 13,000 to 15,000 connections 

per second as shown in Figure 4.9 (A). On the other hand, the cumulative opened sessions 

on the server reaches 17,000 open connections per second as shown in Figure 4.9 (B). 

The drop of the number of open connections at the last few seconds happened because of 

ending the attack which closes the opened connections. 

 
Figure 19 Figure 4.10 Histogram of SockStress20thread connections 

(A) Connections created per second, (B) Cumulative of active connections in seconds 

SockStress attack differs in behavior than Sync-Flood attack that SockStress attack does a 

complete three-way handshaking as described in chapter 2. As shown in Figure 4.10 (A), the 

number of established connections per second ranges from 20 to 30 connections per second 

and the cumulative number of opened sessions ranges from 40 to 50 sessions at any given 

time as shown in Figure 4.10 (B). This attack opened a 20 threads each of them creates it own 

connections and handle its connections. Note that based on the connection behavior of normal 



48 

 

traffic, SockStress using 20 threads behaves as the normal connection traffic except that it 

don't establish HTTP session. 

A second SockStress attack scenario, this attack used 40 threads to perform the attack. As 

shown in Figure 4.11 (A), the number of established connections per second ranges from 30 

to 40 connections per second and the cumulative number of opened sessions ranges from 60 

to 80 sessions at any given time as shown in Figure 4.11 (B). 

 
Figure 20 Figure 4.11 Histogram of SockStress40thread connections 

(A) Connections created per second, (B) Cumulative of active connections in seconds 

4.4.2.1 Application Layer Attacks' Behavior 

Application layer attacks' behavior differs than network layer attacks' behavior that it 

performs legitimate operations but it intends to keep the session open as long as possible as 

described in chapter 2.  

Figure 4.12 shows the connection behavior of a scenario of SlowPost attack. This scenario is 

described in subsection 4.2.1.2. As shown in Figure 4.12 (A), it seems that it sends a burst of 

approximately 200 connections every 45 seconds. Figure 4.12 (B) shows the cumulative 

opened sessions per time of seconds; as shown, the number of opened sessions exceeds every 

45 seconds and reaches 1800 concurrent opened sessions.  

Figure 4.13 presents the connection activity of a single SlowPost2Sec attack connection, as 

shown the connection sends in average one packet every 2 seconds to the server in order to 

keep the connection open as long as possible. 
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 Figure  21  Figure 4.12 Histogram of SlowPost connections 

(A) Connections created per second, (B) Cumulative of active connections in seconds 

 
Figure 22 Figure 4.13 Histogram of single SlowPost connection activity 

4.5 Features Generation 

In order to identify the behavior of a client if it behaves normal or abnormal , we  need to 

generate instances with statistics features from both  TCP and HTTP protocols in addition to 

some basic features, these features are generated from Table 4.3. A list of generated features 

is listed below, these features have been generated using Oracle PL/SQL . These features 

have been chosen based on the behavior of performed attacks described in chapter 2.  
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Table 0-4 Table 4.4 Real dataset generated features 

# Feature Name Data type Description 

1 FLOWKEY Integer The TCP Session ID 

2 CLIENT_REPLY_ACK Boolean Does Client complete the handshaking 

3 CLIENT_TIME_TO_REPLY_ACK Integer The time to replay at Server SYNC Ack 

4 NUMBER_OF_SERVER_ACK Integer Number of Server Ack to Sync message 

5 TCP_SESSION_TIME Integer The total time of the TCP session 

6 HTTP_SESSION_TIME Integer The total time of the HTTP session 

7 IS_HTTP_SESSION Boolean Does this session include an Http session? 

8 IS_HTTP_HEADER_END Boolean Does Http Request headers ended? 

9 AVG_TIME_HTTP_HEADER_COMPLETE Real 
Average time to complete Request HTTP 

header. 

10 NUMBER_OF_CLIENT_HTTP_HEADERS Integer # of headers in the same TCP session 

11 IS_CLIENT_FIN_TCP_CONNECTION Bolean Does the client end the TCP session 

12 NUMBER_OF_CLIENT_TCP_PSH Integer # of client packets with PSHflag set. 

13 AVG_TCP_PAYLOAD_LENGTH Real 
The average length of TCP packet 

payload. 

14 AVG_CLNT_TCP_WINDOW_SIZE Real 
The average size of the client TCP 

window 

15 CURRENT_CONNECTIONS_2SEC Integer # of connections 2 sec time window 

16 CURRENT_CONNECTIONS_4SEC Integer # of connections 4 sec time window 

17 USER_AGENTS_2SEC Integer # of distinct user agents used in 2 sec 

18 NUMBER_OF_CIENT_FLOW_SYNC Integer # of SYNC sent in current TCP session 

19 NUMBER_ZERO_WINDOW_PKTS Integer # of client zero window size packets 

20 CLASS_TYPE String Instance class 

 

Before we extract the most relevant features we need to look at the difference between normal 

traffic and attack traffic based on these generated features to understand their behavior. We 

categorize the comparison between these features based on the protocol used. The total 

number of instances generated are listed in Table 4.5.  

As shown in Table 4.5, the total number of normal instances is 27,879 instances, while the 

total number of attack is 555,611 instances. We have divide these instances into two datasets, 

one for training and the other for testing purposes as shown in Table 4.6. the remaining 

normal instances and attack instances shown in Table 4.1 and Table 4.2 which summarized in 

Table 4.5 are used for model testing purposes. 
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Table 0-5 Table 4.5 BM-AUN2015 dataset's instances 

 Normal Attack 

 

Day1 Day2 Day3 Day4 

Application layer attack Network layer attack 

 Slow 

Read 

Slow 

Post 

Slow 

Header 

Sock 

Stress 

SYNC-

Flood 

# instances 703 3296 13548 10332 6360 6415 6285 8805 527746 

∑ 27,879 555,611 

 

Table 0-6 Table 4.6 BM-AUN2015 training dataset 

 Normal Attack 

 
Day3 

SlowPost- 

Scenario1 

SlowHeader- 

Scenario1 

SlowRead- 

Scenario1 

# instances 13,548 2,977 2,949 2,960 

∑ 13,548 8,886 

 

As shown in Table 4.6, we chose Day3 for the model training because it contains workday 

activates, as shown in Table 4.1, this day is a collection of 6 hours working  day. We also 

include just the first scenario of application layer attacks. Note that our model is a OCC that 

need just the normal instances to be learned on, but the attack instances is needed here just to 

help us to select the most relevant features. 

4.5.1 Network Layer Attack Features 

In this subsection we look deep at the differences between normal traffic and network layer 

attack traffic, e.g.  Sync-flood attack. 

CLIENT_REPLY_ACK 

This feature indicate whether the client send an acknowledgment to the server to complete the 

three-way handshaking. As described in chapter 2 SyncFlood attacks exploit this vulnerability 

to keep server waiting for this acknowledgment to establish connection.  

 

Figure 23 Figure 4.14 Distribution of CLIENT_REPLY_ACK feature in TCP attacks 
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As shown in Figure 4.14, the average of client acknowledgment reply in SyncFlood attack 

traffic is zero but it's one in normal traffic and also in Sockstress attack traffic. 

CLIENT_TIME_TO_REPLY_ACK 

This feature give us information about the amount of time elapsed before the client complete 

the three-way handshaking. 

 

Figure 24 Figure 4.15 Distribution of CLIENT_TIME_TO_REPLY_ACK feature in TCP attacks 

As shown in Figure 4.15 the average time elapsed to reply acknowledgment by the client in 

normal traffic is close to zero where it's close to 1 second in SockStress attack which means 

that SockStress attack waste the server time for 1 second before sending its acknowledgment 

to complete the three-way handshaking. In SyncFlood attack, the average time elapsed to send 

acknowledgment is zero which means that SyncFlood didn't send its acknowledgment.  

NUMBER_OF_SERVER_ACK 

This features counts the number of times the server sends sync acknowledgment to the client, 

which indicates that the client didn't send the last three-way handshaking to establish 

connection. As shown in Figure 4.16, the number of server Sync acknowledgment in normal 

traffic is close to zero while in SyncFlood attack it is significantly large, which reaches five 

acknowledgment for each connection in average, it is also large in SockStress which reaches  

approximately 3 times in average. As described in chapter 2, SockStress attack complete the 

three-way handshaking but the  large number of server Sync acknowledgment is due to the 

elapsed time before the client send the last acknowledgment to establish the connection as 

shown in Figure 4.15. 

 
Figure 25 Figure4.16 Distribution of NUMBER_OF_SERVER_ACK feature in TCP attacks 
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TCP_SESSION_TIME 

TCP session time is the time of the connection before it is closed. As shown in Figure 4.17 

the average TCP session time of a single connection of the normal traffic is 86.6 seconds, 

while it is smaller in SyncFlood and SockStress attacks because it depends on the connection 

timeout limit in configured on server side. 

 

Figure 26 Figure 4.17 Distribution of TCP_SESSION_TIME feature in TCP attacks 

IS_CLIENT_FIN_TCP_CONNECTION 

This features indicate if the client close the connection normally or not. As shown Figure 4.18 

both SyncFlood and SockStress attacks didn't close connection normally whereas 83% of the 

normal connections closed its connection normally.  

 

Figure 27 Figure 4.18 Distribution of IS_CLIENT_FIN_ CONNECTION feature in TCP attacks 

AVG_TCP_PAYLOAD_LENGTH  

This features holds the average size of the TCP payload packet. As shown in Figure 4.18, the 

average of TCP payload length in both attacks is zero byte, and this is logical because there's 

no data exchange before or after connection establishment. In the other hand, normal traffic 

average TCP payload length is 377 bytes. 

 

AVG_CLNT_TCP_WINDOW_SIZE 

This features show the client TCP window size, which indicate the packet size that need to be 

sent by the server to the client, low window size indicates high network congestion. As shown 

in Figure 4.19, the average window size of SockStress attack is close to zero, also it's small in 

SyncFlood attack, whereas in normal traffic it's extremely high compared with both attacks. 
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Figure 28 Figure 4.18 Distribution of  AVG_TCP_PAYLOA_LENGTH feature in TCP attacks 

 

Figure 29 Figure 4.19 Distribution of AVG_CLNT_WINDOW_SIZE feature in TCP attacks 

CURRENT_CONNECTIONS_2SEC 

This features shows the number of opened connections in a time window of 2 seconds. 

SynFlood attack has a significant difference compared with both normal and SockStress 

attack where there's 14,364 opened connections in average within 2 seconds as shown in 

Figure 4.20 whereas in normal traffic just 8 open connections in average in a 2 seconds 

window time. In SockStress attack traffic the number of opened connections in a time 

window of 2 seconds reached 33 opened connection. For more detail about the connection's 

behavior of both normal and attack traffic take a look at the previous subsections 4.4.1 and 

4.4.2.1 respectively. 

CURRENT_CONNECTIONS_4SEC 

This features shows the number of opened connections in a time window of 4 seconds. As 

shown in Figure 4.21 the number of connections is duplicated as expected compared with a 

time window of 2 seconds shown in Figure 4.20, but the normal traffic is not duplicated 

which means that the DoS attack traffic is consistent. 

NUMBER_OF_CIENT_FLOW_SYNC 

Using the same source port to send multiple SyncFlood attacks is happened only in direct 

SyncFlood attacks, the attack send RST message to the SYN-Acknowledgment came from the 

server then send a new SYN message. The average  number of    SYNC messages initiated 

using the same source port exceeds 5 in direct SyncFlood attack while it is one in  both 

normal traffic and SockStress attack  as shown in Figure 4.22. 
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Figure 30 Figure 4.20 Distribution CURRENT_CONNECTIONS_2SEC feature in TCP attacks 

 

Figure 31 Figure 4.21 Distribution of  CURRENT_CONNECTIONS_4SEC feature in TCP attacks 

 

IS_HTTP_SESSION 

This feature indicates whether HTTP session is initiated or not, as shown in Figure 4.23 88% 

in average of the normal traffic initiated HTTP session whereas in both SynFlood and 

SockStress attacks the HTTP session is not initiated at all.  

 

 

Fig 32 Figure 4.22 Distribution of NUM_OF_CLIENT_FLOW_SYNC feature in TCP attacks 
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Figure 33Figure 4.23 Distribution of IS_HTTP_SESSION feature in TCP attacks 

4.5.1 Application Layer Attack Features 

In this subsection we look deep at the differences between normal traffic and application  

protocol attack traffic, e.g.  SlowPost attack. 

TCP_SESSION_TIME 

As shown in Figure 4.24 the attack TCP session connection's time exceeds 120 seconds in 

average seconds which is greater than the normal connection's time which is 86.6 seconds  in 

average. This indicates that SlowPost and SlowHeader attacks have long connection time than 

normal traffic, which aim to preserve the server resources as long as possible. 

 

Figure 34 Figure 4.24 Distribution of TCP_SESSION_TIME feature in HTTP attacks 

HTTP_SESSION_TIME 

This feature is different than TCP_SESSION_TIME which indicates the time taken to 

complete HTTP session which includes the client requests and server responses  in the same 

TCP session. As shown in Figure 4.25 the HTTP session time in normal traffic doesn't exceed 

33 seconds in average whereas it is higher in both SlowPost and SlowHeader attacks which 

exceeds 119 seconds in average. This could happen normally when uploading a big file in a 

slow network connection. 

 

IS_HTTP_HEADER_END  

This feature indicates whether the HTTP header is completed or not. Figure 4.26 shows that 

SlowHeader attack didn't complete HTTP header which is expected as described in chapter 2.  

 



57 

 

 

Figure 35 Figure 4.25 Distribution of HTTP_SESSION_TIME feature in HTTP attacks 

 
Figure  36  Figure 4.26 Distribution of IS_HTTP_HEADER_END feature in HTTP attacks 

On the other hand it is close to one in both normal traffic and SlowPost traffic which indicates 

that the HTP header is completed. In normal traffic 89% of connections completed HTTP 

header where as 11% didn't send HTTP header, see feature IS_HTTP_SEESION. 

 

AVG_TIME_HTTP_HEADER_COMPLETE 

This feature holds the time it takes while sending HTTP header which is expected to be large 

in SlowHeader attack as shown in Figure 4.27, sending HTTP header takes 126 seconds 

without complete based on Figure 4.26, whereas it  takes 0 seconds to be completed in both 

normal traffic and SlowPost traffic which indicates that the HTTP header have been send in 

just one packet. 

 
Figure 37 Figure 4.27 Distribution of AVG_HTTP_HEADER_COMPLETE feature in HTTP attacks 
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NUMBER_OF_CLIENT_HTTP_HEADERS 

SlowPost and SlowHeader attacks initiate HTTP session by sending only one HTTP header as 

shown in Figure 4.28, but normally multiple HTTP headers is need to browse a web page 

where in most web sites pages there's related files like CSS and JS needed to be retrieved to 

view the web page as shown in normal traffic. One HTTP header request in normal 

connections could happen normal e.g. downloading a file. 

 

Figure 38 Figure 4.28 Distribution of Number_of_Client_HTTP_Header feature in HTTP attacks 

IS_CLIENT_FIN_TCP_CONNECTION 

Normally a TCP FIN message is sent by the client to end the TCP connection as shown in 

normal traffic in Figure 4.29. Whereas SlowPost and SlowHeader attack there's no TCP FIN 

message is sent. 

 

Figure 39 Figure 4.29 Distribution of IS_CLNT_FIN_TCP_CONN feature in HTTP attacks 

NUMBER_OF_CLIENT_TCP_PSH 

TCP PSH message is sent by the client to tell the server to push the TCP payload up to the 

application. Normally each http header is embedded in one packet which needs one TCP 

PSH. The number of TCP PSH in normal traffic could be large when for example uploading a 

large file, so there's a need to send TCP PSH message after amount number of bytes is sent to 

tell the server to flush the buffer and sending the data to the web application for further 

processing. 
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Figure 40 Figure 4.30 Distribution of NUMBER_OF_CLIENT_TCP_PSH feature in HTTP attacks 

In Figure 4.30 the average number of TCP PSH messages reached 5 messages whereas there's 

a significant difference appeared in SlowPost and SlowHeader attack's traffic. The difference 

between the increase number of TCP PSH in normal and attacks traffic is given by the TCP 

payload length where it's very small in both SlowPost and SlowHeader attacks whereas it's 

large in normal traffic as shown in the next feature which is AVG_TCP_PAYLOAD length. 

AVG_TCP_PAYLOAD_LENGTH 

As described in chapter 2, SlowPost and SlowHeaders send a small payload as shown in 

Figure 4.31, whereas in normal traffic there is significant difference. 

 

Figure 41 Figure 4.31 Distribution of AVG_TCP_PAYLOAD_LENGTH feature in HTTP attacks 

AVG_CLNT_TCP_WINDOW_SIZE 

Client TCP window size as shown in Figure 4.32 is large which indicates normal behavior of 

both SlowHeader and SlowPost attacks. 

 

Figure 42 Figure 4.32 Distribution of AVG_CLNT_TCP_WINDOW_SIZE feature in HTTP attacks 
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CURRENT_CONNECTIONS_2SEC 

This features shows the number of opened connections in a time window of 2 seconds. 

SlowPost and SlowHeader attacks have a significant difference compared with normal traffic 

where there's 890 and 1580 opened connections in average respectively within 2 seconds as 

shown in Figure 4.33. Whereas in normal traffic just 8 open connections in average in a 2 

seconds window time. For more detail about the connection's behavior of both normal and 

attack traffic take a look at the previous subsections 4.4.1 and 4.4.2.2 respectively. 

 

Figure 43 Figure 4.33 Distribution of CURRENT_CONNECTIONS_2SEC feature in HTTP attacks 

CURRENT_CONNECTIONS_4SEC 

This features shows the number of opened connections in a time window of 4 seconds. As 

shown in Figure 4.34 the number of connections is not duplicated like network layer attacks, 

take a look at  Figure 4.33, but the number of increased open connections is larger than the 

increase of opened connections in normal traffic. The reason of lower increase of opened 

connections in both attacks is due to the connection behavior of both attacks as described in 

subsection 4.4.2.2. 

 

Figure 44 Figure 4.34 Distribution of CURRENT_CONNECTIONS_4SEC feature in HTTP attacks 

USER_AGENTS_2SEC 

Both SlowPost and SlowHeader attacks send a random user agent to behave that the 

connections came from different user agents not from single agent. As shown in Figure 4.35 

the number of user agents reaches 20 user agents in average while in normal traffic it is close 

to single user agent. 
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Figure 45 Figure 4.35 Distribution of USER_AGENTS_2SEC feature in HTTP attacks 

NUMBER_ZERO_WINDOW_PKTS 

This features appeared in two attacks type, SockStress attack and SlowRead attack. Compared 

with SockStress attack, SlowRead attack has an average of 9.75 zero window packets in a 

single TCP session, as shown in Figure 4.36 the number of zero window packets is almost 

zero in normal instances.  

 

Figure 46Figure 4.36 Distribution of NUMBER_ZERO_WINDOW_PKTS feature in HTTP  
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4.7 Summary 

 Real dataset was collected from Alaqsa university network traffic which is going to and 

coming from its website server.  The traffic packets was captured using Wireshark software 

which was installed on a standalone server in the Alaqsa university DMZ and was connected 

to a switch mirror port and the  wireshark server NIC promiscuous mode was enabled. 

We captured the normal traffic going to and coming from the production server while the 

attack traffic was captured from a website-like server which is located in an isolated network. 

We performed two major types of DoS attacks, which are network layer attack and 

application layer attack. For instance we chose SYNC-Flood and SockStres attacks for 

network layer attack, on the other hand SlowPost, SlowHeaders and SlowRead were chosen 

for application layer attack. List of features were generated and analyzed.  
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Chapter 5: Research Proposal and Methodology 

 

In this chapter, the proposed model methodology is presented and explained. The chapter 

organized into five sections. Section one, presents methodology steps to achieve our primary 

model. Section two gives a description of the collected data sets and description of their 

features. Section three describes the preprocessing steps and feature selection of each dataset. 

The fourth section contained the process of building the model including the baseline 

experiments to select the optimal feature sets and equations which was used for building the 

model. In the fifth section, the measurements of proof of concept evaluation to evaluate the 

performance of our model is presented. 

5.1 Methodology Steps 

To implement and evaluate this model we need to follow the following two main phases as 

shown in Figure 5.2. An overview of the OCC NIDS based service's normal behavior is 

illustrated in Figure 5.1; each new instance is forwarded to its relevant OCC based on the 

service that it used. 

Training phase: The purpose of this phase is to select the optimal features set for 

each service and to obtain their standard deviations. 

In this phase, the optimal features set for each service is selected and normalized, the service's 

centroid table is built and the standard deviation of each service's normal class is obtained, as 

shown in Figure 5.2 (a). 

 Step 1: Download KDD Cup „99 dataset [20] which is a common used dataset. We also 

collected a real network traffic of HTTP service from Alaqsa University Network (BM-

AUN2015), because HTTP is becoming a universal transport protocol and much data access 

occurs via HTTP. These reasons lead it to become a common exploit target [85, 86]. For 

detailed information about this dataset take a look at Chapter 4. 

Step 2: Retrieve the normal instances from training dataset. This step needs a lot of concerns. 

The challenges of applying normal based detection model in networks are difficult because 

we can't guarantee that the existing normal activity is absolutely free from attack traces.  To 

overcome this issue we need to apply essential steps including outlier elimination in which we 

will be highly guaranteed that the normal activity may have a neglected percentage of attacks. 

These steps is based on the assumption that most of the computers are not infected and also 

"The attack traffic is statistically different from normal traffic" [87, 88]. 

Step 3: Divide normal instances into subsets based on service used, each subset is used as the 

class of OCC model. 

Step 4: Normalize each service's normal dataset features (e.g. packet size, duration,..) and also 

the testing dataset features which depends on the normalization factor of training dataset 

using Z-Score normalization which is discussed in data normalization in subsection 2.3.1.2. 
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Step 5: Each service's dataset is considered as class. Generate a centroid table for each class. 

The purpose of creating different normal classes based on service type is that each service 

(e.g. HTTP) has its own behavior's characteristics and features. This means that each class has 

its own relevant feature space which differs than other classes. 

Step 6: Extract the most relevant features for each service, which will be used to build the 

model. Each service has its own features subset that differs than other services. 

Step 7: Calculate the class's standard deviation. The standard deviation of each class is used 

as the class radius or the class boundary.  The standard deviation of each service's class is 

derived by computing the distance of each instance in the service's normal dataset, from its 

service's class centroid using Euclidean distance. Then applying the Sample Standard 

Deviation to get the standard deviation of the class [16]. The equations needed for this step 

are shown in Eq. 5.1 and Eq. 5.2 in subsection 5.4.1.1. 

Development phase: The purpose of this phase is to calculate the model accuracy 

at different Tune values using a subset of features. 

Step 1: Retrieve a new instance from training dataset and Calculate the instance distance 

from its relevant service's class centroid table. 

Step 2: Check whether the instance is normal or abnormal. The instance is labeled as 

abnormal if the distance is greater than the class's standard deviation, else it as labeled as 

normal. 

Step 3: Calculate the overall accuracy at the selected Tune value. The tune value is a real 

number added to the standard deviation in order to increase the service class's boundary [16].  

Step 4:  Check if all predefined tune values are applied.  

Testing Phase: The purpose of this phase is to test the model and evaluate its 

testing results. 

In this phase, OCC model of each service is tested using the testing dataset of Bm-AUN2015 

and KDD Cup'99 and evaluated using confusion matrix, as shown in Figure 5.2 (b). 

Step 1: Retrieve a new instance from testing dataset, and normalize its features using the 

service's normal class normalization factor obtained from training phase (step 4). 

Step 2: Calculate the new instance distance from its relevant service's class centroid table. 

Step 3: Check whether the new instance is normal or abnormal. The instance is labeled as 

Abnormal if the distance is greater than the class's standard deviation, else it as labeled as 

Normal. 

Step 4: Calculate the overall accuracy, detection rate, false alarm rate, and detection time.. 

Step 5: Compare our results with some previous related works. 
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Figure  47Figure 5.1 An overview of the OCC NIDS based service's normal behavior 
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Figure  48  Figure 5.2 The proposed model, (A) Training Phase, (B) Development Phase, (C) Testing Phase 
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5.2 Datasets of Model 

In this section, data sets are presented, collected and described. The main categories, data 

sample and attack types are also described. 

5.2.1 Datasets Collection: 

We used two datasets to evaluate our primary model. The first dataset is a real dataset which 

was collected from Alaqsa University Network (BM-AUN2015), and have been described in 

detail in chapter 4. KDD Cup'99 [20] is the second dataset which also was used to evaluate 

our primary model. 

The reasons of using these datasets is that, BM-AUN2015 is a real dataset which have been 

collected from a real traffic, and have a recent attacks that is not exists in KDD Cup'99. We 

consider HTTP service attacks in this dataset. Also KDD Cup'99 [20] dataset is used as a 

benchmarking for intrusion detection systems, and it is widely used and accepted in the 

academic community. 

5.2.2 Datasets Description: 

BM-AUN2015 dataset features is listed in Table 4.4 and also is described in chapter 4. The 

dataset contains of 19 features in addition to the class type. The number of normal and 

abnormal instances is shown in Table 4.5 and the training dataset instances is listed in Table 

4.6. 

KDD Cup'99 dataset has 41 features for each connection record plus one class label [20]. 

These features are grouped into four categories: 

Basic Features: which can be derived from packet headers without inspecting the payload as 

shown in Table 5.1. 

Content Features: Is a domain knowledge feature which is used to access the payload of the 

original TCP packets. This includes features such as number of failed login attempts as shown 

in Table 5.2.  

Time-based Traffic Features: These features are designed to capture properties that mature 

over a 2 second temporal window. One example of such a feature would be the number of 

connections to the same host over the 2 second interval as shown in Table 5.3. 

Host-based Traffic Features: Utilize a historical window estimated over the number of 

connections instead of time. Host-based features are designed to access attacks, which span 

intervals longer than 2 seconds as shown in Table 5.4. 

 

Table 0-1 Table 5.1 Basic features of individual TCP connections 

# Feature name Description  Data type 

1 Duration length (number of seconds) of the connection Continuous 

2 protocol_type type of the protocol, e.g. tcp, udp, etc. Polynominal 

3 Service 
network service on the destination, e.g., http, telnet, 

etc. 
Polynominal 

4 src_bytes number of data bytes from source to destination Continuous 
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5 dst_bytes number of data bytes from destination to source Continuous 

6 Flag normal or error status of the connection Polynominal 

7 Land 
1 if connection is from/to the same host/port; 0 

otherwise 
Binominal 

8 wrong_fragment number of wrong fragments Continuous 

9 Urgent number of urgent packets Continuous 
 

Table 0-2 Table 5.2 Content features within a connection suggested by domain knowledge 

# Feature name Description  Data type 

10 Hot number of "hot" indicators Continuous 

11 num_failed_logins number of failed login attempts Continuous 

12 logged_in 1 if successfully logged in; 0 otherwise Binominal 

13 num_compromised number of "compromised" conditions Continuous 

14 root_shell 1 if root shell is obtained; 0 otherwise Binominal 

15 su_attempted 1 if "su root" command attempted; 0 otherwise Binominal 

16 num_root number of "root" accesses Continuous 

17 num_file_creations number of file creation operations Continuous 

18 num_shells number of shell prompts •  Continuous 

19 num_access_files number of operations on access control files Continuous 

20 num_outbound_cmds number of outbound commands in an ftp session Continuous 

21 is_hot_login 1 if the login belongs to the ``hot'' list; 0 

otherwise 

Binominal 

22 is_guest_login 1 if the login is a ``guest''login; 0 otherwise Binominal 

 

Table 0-3 Table 5.3 Traffic features computed using a two-second time window 

# Feature name Description  Data type 

23 Count 
number of connections to the same host as the 

current connection in the past two seconds 
Continuous 

24 serror_rate % of connections that have ``SYN'' errors Continuous 

25 rerror_rate % of connections that have ``REJ'' errors Continuous 

26 same_srv_rate % of connections to the same service Continuous 

27 diff_srv_rate % of connections to different services Continuous 

28 srv_count 
number of connections to the same service as the 

current connection in the past two seconds 
Continuous 

29 srv_serror_rate % of connections that have ``SYN'' errors Continuous 

30 srv_rerror_rate % of connections that have ``REJ'' errors Continuous 

31 srv_diff_host_rate % of connections to different hosts Continuous 
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Table 0-4 Table 5.4 Host-based traffic features 

# Feature name Description  Data type 

32 dst host count 
Count of connections having the same destination 

host 
Continuous 

33 dst host srv count 
Count of connections having the same destination 

host and using the same service 
Continuous 

34 
dst host same srv 

rate 

% of connections having the same destination host 

and using the same service 
Continuous 

35 dst host diff srv rate % of different services on the current host Continuous 

36 
dst host same src 

port rate 

% of connections to the current host having the 

same src port 
Continuous 

37 
dst host srv diff 

hostrate 

% of connections to the same service coming from 

different hosts 
Continuous 

38 dst host serror rate 
% of connections to the current host that have an 

S0 error 
Continuous 

39 
dst host srv serror 

rate 

% of connections to the current host and specified 

service that have an S0 error 
Continuous 

40 dst host rerror rate 
% of connections to the current host that have an 

RST error 
continuous 

41 
dst host srv rerror 

rate 

% of connections to the current host and specified 

service that have an RST error 
Continuous 

5.2.3 Datasets Sample: 

Sample of data sets was chosen randomly as shown in Table 5.5 and Table 5.6 for BM-

AUN2015  and KDD cup'99 datasets respectively. We chose some features because of limited 

space. For more information about BM-AUN2015 full features generated and its description 

see Table 4.4. 

 

Table 0-5 Table 5.5 BM-AUN2015 dataset sample 
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Y Y Y 0 18 418.6 62672.76 4 0 Normal 

Y Y Y 0 10 377.47 64224.06 20 0 Normal 

Y Y Y 0 3 25.75 458.41 1 0 Normal 

N N N 0 0 0 0 1 0 SYN-FLOOD-RandomIP 

N N N 0 0 0 0 15639 0 SYN-FLOOD-SingleIP 

Y N N 0 0 0 0 27 1 SockStress20Thread 

Y N N 0 0 0 0 44 1 SockStress40Thread 
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Y Y Y 0 87 3.42 16333.52 416 0 SlowPost 

Y Y N 124.4 83 18.51 16329.26 998 0 SlowHeader 

Y Y Y 0 0 23.5 355 250 5 SlowRead 

 

Table 0 -6  Table 5.6 KDD Cup'99 dataset sample 

Duration Protocol_type Service Flag Src_bytes Dst_bytes type 

0 Tcp http SF 181 5450 normal. 

0 Tcp http SF 217 2032 normal. 

0 Icmp ecr_i SF 1932 0 smurf. 

0 Tcp Private S0 0 0 neptune. 

2 Tcp Smtp SF 1572 437 normal. 

2 Udp Domain_u SF 93 37 normal. 

 

5.3 Preprocessing Datasets and Features Selection:  

In this section preprocessing data sets, outlier removing, normalization and features selection 

have been explained.  

5.3.1 Datasets  Preprocessing:  

Preprocessing of dataset is necessary step to make it a suitable input for the classification 

process. The nominal/symbolic features have been converted to binary values which is 

suitable for distance measurements, also outliers have been removed from the normal dataset 

which is needed to build the model.  

Outlier Detection and Remove 

In order to remove outliers from the normal dataset we used the Local Outlier Probability 

(LoOP)  [89] to detect the abnormal instances in the normal dataset and eliminate all the 

instances which have an outlier probability greater than 0.7. 

LoOP, which is proposed by Kriegel et al [89],  is a method derived from Local Outlier Factor 

(LOF) but using inexpensive local statistics to become less sensitive to the choice of the 

parameter k,  in addition, the resulting values are scaled to a value range of [0:1] which 

calculates the outlier score based on Local Outlier Probability. 

Z-Score Normalization 

By using this normalization method, the values for an attribute A are normalized based on 

mean and standard deviation of A. This method is used when the actual minimum and 

maximum of an attribute  is unknown , and to avoid the outliers that dominate the min-max 

normalization. Z-score normalization equation is shown in Eq. 2.3 in subsection 2.3.1.2. 

We used Z-score normalization because the maximum values of some features like packet 

payload is not bounded and also some network features such as packet payload, TCP window  
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size, and number of concurrent connections in 4 sec may have big number compared with 

other features such as number of different user agents used in 4 sec.  

5.3.2.1 Preprocessing of BM-AUN2015 Dataset 

For more information about BM-AUN2015 dataset features and their description please refer 

to Chapter 4 Table 4.4. 

Conversion of Nominal Features: 

As shown in Table 4.4, BM-AUN2015 dataset contains 4 binominal features which needed to 

be converted to numerical features in order to be used with numerical distance measurement. 

These features are CLIENT_REPLY_ACK, IS_HTTP_SESSION, IS_HTTP_HEADER_END, 

IS_CLIENT_FIN_TCP_CONNECTION. Table 5.7 shows BM-AUN2015 dataset features after 

conversion. 

 

Table 0-7 Table 5.7 BM-AUN2015 dataset with nominal features converted to numerical 

# Feature Name Type Description 

1 FLOWKEY Integer The TCP Session ID. 

2 CLIENT_REPLY_ACK_TRUE Integer Client complete the handshaking. 

3 CLIENT_REPLY_ACK_FALSE Integer Client don't complete the handshaking. 

4 CLIENT_TIME_TO_REPLY_ACK Integer The time after the last Server SYNC ACK. 

5 NUMBER_OF_SERVER_ACK Integer Number of Server Ack to Sync message. 

6 TCP_SESSION_TIME Integer The total time of the TCP session. 

7 HTTP_SESSION_TIME Integer The total time of the HTTP session. 

8 IS_HTTP_SESSION_TRUE Integer this session include an HTP session. 

9 IS_HTTP_SESSION_FALSE Integer this session not include an HTTP session. 

10 IS_HTTP_HEADER_END_TRUE Integer HTTP Request headers is ended. 

11 IS_HTTP_HEADER_END_FALSE Integer HTTP Request headers isn't ended. 

12 AVG_TIME_HTTP_HEADER_COMPLETE Real Average time to complete HTTP header. 

13 NUMBER_OF_CLIENT_HTTP_HEADERS Integer # headers sent  in the same TCP session. 

14 IS_CLIENT_FIN_TCP_CONNECTION_TRUE Bolean the client end the TCP session. 

15 IS_CLIENT_FIN_TCP_CONNECTION_FALSE Bolean the client didn't end the TCP session. 

16 NUMBER_OF_CLIENT_TCP_PSH Integer Total  # of client packets with PSHflag set. 

17 AVG_TCP_PAYLOAD_LENGTH Real The average length of TCP packet payload. 

18 AVG_CLNT_TCP_WINDOW_SIZE Real The average size of the client TCP window. 

19 CURRENT_CONNECTIONS_2SEC Integer #  of connections 2 sec time window. 
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20 CURRENT_CONNECTIONS_4SEC Integer # of connections 4 sec time window. 

21 USER_AGENTS_2SEC Integer # of distinct user agents used in 2 sec. 

22 NUMBER_OF_CIENT_FLOW_SYNC Integer # of  SYNC sent in current TCP session. 

23 NUMBER_ZERO_WINDOW_PKTS Integer # of client zero window size packets 

24 CLASS_TYPE String Instance class. 

Features Selection 

We chose Weight by Information Gain Ratio operator in RapidMiner, which calculates the 

weight of attributes with respect to the label attribute by using the information gain ratio. The 

higher the weight of an attribute, the more relevant it is considered as shown in Table 5.8.  

Based on Table 5.8 we try to find the optimal feature set in the following subsection 5.4. 

Table 0-8 Table 5.8 BM-AUN2015 features' information gain ration 

# Feature Name Dependency 

1 IS_CLIENT_FIN_TCP_CONNECTION 0.73087585 

2 NUMBER_OF_CIENT_FLOW_SYNC 0.83498221 

3 IS_HTTP_HEADER_END 0.84154597 

4 HTTP_SESSION_TIME 0.85990159 

5 IS_HTTP_SESSION 0.86017857 

6 NUMBER_OF_CLIENT_HTTP_HEADERS 0.86589317 

7 AVG_TCP_PAYLOAD_LENGTH 0.86589317 

8 TCP_SESSION_TIME 0.88021912 

9 CLIENT_REPLY_ACK 0.98938716 

10 CLIENT_TIME_TO_REPLY_ACK 0.98938716 

11 NUMBER_OF_CLIENT_TCP_PSH 0.99464652 

12 NUMBER_OF_SERVER_ACK 0.99759336 

13 AVG_CLNT_TCP_WINDOW_SIZE 0.9996767 

14 NUMBER_ZERO_WINDOW_PKTS 0.9999731 

15 AVG_TIME_HTTP_HEADER_COMPLETE 1 

16 AVG_CURRENT_CONNECTIONS_2SEC 1 

17 AVG_CURRENT_CONNECTIONS_4SEC 1 

18 AVG_USER_AGENTS_2SEC 1 

5.3.2.2 Preprocessing KDD Cup'99 dataset 

For more information about KDD Cup '99 dataset features and their description please refer to 

subsection 5.2.2. 

Conversion of Nominal Features: 

As shown in Table 5.1 and Table 5.2, KDD Cup'99 dataset contains 9 discrete features which 

needed to be converted to numerical features in order to be used with numerical distance 

measurement. Three features are polynominal and the others are binominal. These features 
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are protocol_type, service, flag, land, logged_in, root_shell, su_attempted, is_hot_login, 

is_guest_login. In our model, the service and protocol_type feature will be eliminated because 

the model is based on the service type which operates on a specific protocol type. 

Features Selection 

Features selection was chosen based on Rough Set which has been performed by Olusola et-al 

in [90]. They presented the relevance of each feature in KDD ‟99 intrusion detection dataset 

to the detection of each class. Rough set degree of dependency and dependency ratio of each 

class were employed to determine the most discriminating features for each class. 

Rough Set [91] is a useful mathematical tool to deal with imprecise and insufficient 

knowledge, reduce data sets size, find hidden patterns and generate decision rules. Rough set 

theory contributes immensely to the concept of reducts. Reducts is the minimal subsets of 

attributes with most predictive outcome. Rough sets are very effective in removing redundant 

features from discrete data sets. Rough set concept is based on a pair of conventional sets 

called lower and upper approximations. The lower approximation is a description of objects 

which are known in certainty to belong to the subject of interest, while upper approximation 

is a description of objects which possibly belong to the subset. 

The training set employed for the analysis was the “10% KDD” dataset. Since the degree of 

dependency was calculated for features based on entropy, redundant records from the dataset 

were removed since rough set does not require duplicate instances to classify and identify 

discrimination [90]. They listed features for which the class is selected most relevant for 

every type of attack and normal case. We chose three services, which are ECR_I, HTTP and 

POP3. These services have an enough normal instances for training and testing  and also the 

includes  most of the attack types and most sensitive services used by most users. Based on 

the selected features results in [90] we tried to find the most relevant features for each of the 

selected services that we chose. Note that the Probe attacks have a few instances per 

service which may not be effective in the overall model accuracy, so we need to 

increase these instances, we included all the probe and neptune attacks that exploited 

TCP protocol into HTTP and POP3 datasets, while those that exploited ICMP 

protocol was included into ECR_I dataset. 

HTTP service  

The  number of normal instances of HTTP service exists in the 10% training dataset is 61,886 

instances, where as the number of  normal instances of HTTP service exists in the 10% testing 

dataset is 39,247 instances. Table 5.9 shows the attack types that exploit this service, their 

main category and the number of examples of each type.  
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Table 0-9 Table 5.9 Attack types exists in KDD Cup'99 HTTP Service 

10% training dataset 

has 61,886 normal instances 

10% testing dataset 

has 39,247 normal instances 

Attack  Count Type Attack Count Type 

satan. 1416 Probe apache2. 794 DoS 

neptune. 107,201 DoS neptune. 58001 DoS 

portsweep. 1039 Probe portsweep. 354 Prope 

phf. 4 R2L phf. 2 R2L 

ipsweep. 94 Probe saint. 607 Prope 

back. 2203 DoS back. 1098 DoS 

ECR_I service 

The  number of normal instances of ECR_I service exists in the 10% training dataset is 345 

instances, where as the number of normal instances of ECR_I service exists in the 10% 

testing dataset is 173 instances. 

Table 0-10 Table 5.10 Attack types exploit KDD Cup'99 ECR_I Service 

10% training dataset 

has 345 normal instances 

10% testing dataset 

has 173 normal instances 

Full dataset 

has 3,456 normal instances 

Attack Count Type Attack Count Type Attack Count Type 

ipsweep. 1153 Probe ipsweep. 306 Probe ipsweep. 11557  Probe 

pod. 259 DoS pod. 81 DoS pod. 259  DoS 

portsweep. 1 Probe saint. 102 Probe portsweep. 6  Probe 

smurf. 280790 DoS smurf. 164091 DoS smurf. 2807886  DoS 

nmap. 103 Probe    nmap 1032  Probe 

      satan. 37  Probe 

 

Table 5.10 shows the attack types that exploit this service, their main category and the 

number of examples of each type.  

POP3 service 

The number of normal instances of POP3 service exists in the 10% training dataset is 79 

instances, while the number of  normal instances of POP3 service exists in the 10% testing 

dataset is 15 instances. Table 5.11 shows the attack types that exploit this service, their main 

category and the number of examples of each type. 

Table 0-11 Table 5.11 Attack types exploit KDD Cup'99 POP3 Service 

10% training dataset 

has 79 normal instances 

10% testing dataset 

has 15 normal instances 

Attack Count Type Attack Count Type 

neptune. 107201 DoS neptune. 58001 DoS 
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portsweep. 1039 Probe guess_pass. 3642 R2L 

satan. 1416 Probe mscan. 1053 Probe 

nmap. 231 Probe    

 

5.4 Design and Building the Model 

In this section, the base line experiments are discussed to design and build the model. Two 

main stages which are required to build the model are discussed. The first stage is 

determining the OCC feature set, the second stage is calculating the standard deviation of the 

service's normal instances and choose the most accurate  deviation from normal that has lower 

false positive rate and higher detection rate. In this work the positive class is the normal class 

while the negative class is the attack class. 

5.4.1 The Base Line Experiment 

These experiments were performed on BM-AUN2015 and KDD Cup'99 datasets separately. 

The main goal from these experiments is to determine the most relevant features set and the 

most accurate deviation from the normal standard deviation which is calculated based on the 

selected feature of each experiment. 

5.4.1.1 Standard Deviation of Normal Service's Class Calculation 

Before performing this stage we need to perform the data preprocessing as described in 

section 5.3.1.  The  standard deviation, as described on chapter 2, is used to measure the 

normal distribution of the instances, the normal instances in our case. The standard deviation 

of each service class is derived by computing the distance of each instance in the service's 

normal dataset from the service normal class's centroid using the Euclidean distance equation 

shown in Eq 2.5, shown in subsection 2.3.1.2, then applying the Sample Standard Deviation 

to get the standard deviation of the service class as shown in the general equation Eq. 1.1, in 

subsection 2.3.1.2 The Eucliden distance is calculated using the following formula as shown 

in Eq. 5.1:  

       √ ∑            
   

 
 --------------- (Eq. 5.1)  [38] 

Where Xdist is the distance of instance X from the service class's centroid C,  Xi is the feature 

i of the instance, Ci is the feature i in the class centroid and F is the total number of features 

of the instance based on its protocol type.  After calculating the distances of all the instances 

from the desired class based on the service type, we use Eq.5.2 to get the sample standard 

deviation of the service normal class, which is used as the boundary or radius of the class.  

 

   √  

   
 ∑         

  
   

 
    --------------- (Eq. 5.2)  [16] 

Where N is the number of all service's normal instances. We have created a function which 

return the standard deviation of the normal class. This function is listed in Appendix A. 
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5.4.1.2 Extracting the Most Relevant Service's Feature Set 

In the following subsections we discuss the experiments that we conducted on BM-AUN2015 

and KDD Cup'99 datasets in order to select the most relevant feature set of the service class. 

Also to find the most suitable deviation value from the service's standard deviation to achieve 

a lower false positive rate and higher detection rate. 

BM-AUN2015 Dataset's Features Extraction and Model Building 
Based on the information gain ratio of BM-AUN2015 dataset, as shown Table 5.8, we 

performed 15 experiments, each experiment was performed on different combination of 

features, and each experiment also was applied using 17 different tune value. The tune value 

is a real number added to the standard deviation in order to increase the service class's 

boundary [16]. 

We chose Day3, shown in Table 4.1, as the service normal class and measured its standard 

deviation using Eq.5.2. The train was done on three types of application layer attacks which 

are SlowHeader-Senario1, SlowPost- Senario1 and SlowRead- Senario1 and on Day3 normal 

instances. For more information about the settings of these attacks please refer to subsection 

4.2.1.2. The training dataset used in feature selection and base line experiment is shown in 

Table 4.6. 

Table 0-12 Table 5.12 BM-AUN2015 OCC feature selection experiments' accuracy results 

The standard deviation of this HTTP OCC model built on experiment 15 is 2.698. 

TUNE Experiment Id 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 88.3 88.3 83.5 82.6 80.5 80.3 81.6 87 80.5 81.9 81.4 84.9 84.8 85.1 85.6 

1 80.6 80.1 80.1 79.2 90.8 90.4 93.1 83.9 91 92.2 92.6 94.1 92.1 94.6 92.6 

2 84.3 85 85.4 85.4 95.6 95.9 96.9 85.3 96.9 97.7 97.7 97.6 96.7 97.7 97.7 

3 82.6 82.6 82.6 82.8 93.5 94.5 97.7 84 97 98.4 98.4 98.1 98 98.3 98.4 

4 80.6 80.8 80.8 80.7 90.8 90 98 81.2 95 98.5 98.7 98.1 98.5 98.4 98.9 

5 76.6 76.7 76.7 76.7 86.8 86.4 97.9 76.9 94.5 98.4 98.4 98 98.5 98.1 98.9 

6 74.1 74.2 74.2 74.1 84.5 84.5 98 74.4 93.2 98.2 98.2 97.8 98.5 98.1 98.9 

7 73.6 73.6 73.6 73.6 84.3 84.4 98.1 73.9 91.5 98.1 98.1 97.8 98.7 98.1 98.9 

8 73.7 73.7 73.7 73.7 83.8 83.8 97.4 73.8 87.7 98.5 98.5 97.5 98.9 97.4 99.9 

9 73.7 73.7 73.7 73.7 83.1 82.8 96.4 73.7 84.2 97.8 97.8 96.8 98.9 96.4 99.9 

10 73.6 73.6 73.6 73.6 81.2 80.2 93.4 73.6 81.7 96.9 96.9 96 99 93.4 99.9 

12 74.3 74.3 74.3 74.3 75.2 74.9 88.8 74.3 75.3 94.4 94.4 93.5 99 88.8 99.9 

14 73.7 73.7 73.7 73.4 73.6 73.5 88.5 73.6 74.6 94.1 94.1 94.2 99.9 88.4 99.8 

16 72.5 72.5 72.5 72.2 72.3 72.3 88.4 72.3 74.5 94.1 94.1 94.2 99.9 88.3 99.8 

20 71.8 71.8 71.8 71.8 71.9 71.9 88.2 71.8 72.4 94 94 94.1 99.8 88.2 99.8 

24 71.6 71.6 71.6 71.6 71.7 71.7 87.8 71.6 71.9 93.8 93.8 93.8 99.6 87.8 99.6 

26 71.5 71.5 71.5 71.5 71.6 71.6 87.7 71.5 71.9 93.8 93.8 93.8 99.6 87.6 99.6 

30 71.3 71.3 71.3 71.2 71.4 71.4 87.4 71.2 71.8 93.6 93.6 93.8 99.6 87.4 99.5 
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As shown in the experiments results in Table 5.12, the fifteen and thirteen experiments 

appeared to have the highest accuracy rate 99.9% at the tune values 8,9,10 and 12 in 

experiment 15 and tune values 14,16 in experiment 13. We chose experiment 15 because the 

number of features used is 11 features which are less than experiment 13 as  listed in Table 

5.13, whereas experiment 13 has 12 features used. Also another reason is that experiment 15 

appears to be more robust than experiment 13, the accuracy of experiment 15 didn't decrease 

rapidly as the tune value increase compared with experiment 13. 

The results of this experiment, shown in Table 5.14, show that the selected features in Table 

5.13 achieved high accuracy rate. Where the detection accuracy of the normal instances 

reaches 99.9% and the detection accuracy of attack instances stay 100% without any decrease 

as the tune value increase. We show the tune values at which there were changes in detection 

rates. 

Table 0-13 Table 5.13 BM-AUN2015 OCC selected feature set 

# Feature Name # Feature Name 

1 CLIENT_REPLY_ACK 6 AVG_TCP_PAYLOAD_LENGTH 

2 NUMBER_OF_SERVER_ACK 7 AVG_CLNT_TCP_WINDOW_SIZE 

3 IS_HTTP_SESSION 8 CURRENT_CONNECTIONS_4SEC 

4 IS_HTTP_HEADER_END 9 USER_AGENTS_2SEC 

5 NUMBER_OF_CLIENT_TCP_PSH 10 NUMBER_ZERO_WINDOW_PKTS 

 

The plot of Table 5.14 is shown in Figure 5.3, as shown, the accuracy of the normal class is 

increase whenever the tune value is increase, which means that the attack instances are far 

away from the normal class boundary. 

Table 0-14 Table 5.14 BM-AUN2015 base line experiment results 

 
Tune value 

Label 0 1 2 3 4 5 9 10 14 16 30 

Normal 0.712 0.853 0.954 0.969 0.979 0.98 0.998 0.999 0.9992 0.9994 0.9996 

SlowHeader-Scenario1 1 1 1 1 1 1 1 1 1 1 1 

SlowPost-Scenario1 1 1 1 1 1 1 1 1 1 1 1 

SlowRead-Scenario1 1 1 1 1 1 1 1 1 1 1 1 

 

As shown in Figure 5.3 the detection accuracy of normal instances is increased in every 

expanding value of its standard deviation using the tune parameter. Table 5.14 shows that the 

detection accuracy of normal instances was 71.2%  without any expanding value of its normal 

class standard deviation, which means that 71.2% of normal instances fall within the standard 

deviation and the other instances outer this boundary are relatively have an extreme values 
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which need to be included in the normal class boundary by increasing the tune value 

parameter. 

 

Figure 49 Figure 5.3 BM-AUN2015 base line experiment result chart 

On the other hand, attack instances are far away from the normal class's boundary because of  

some features which have an abnormal pattern (e.g. CURRENT_CONNECTIONS_4SEC) . For 

more information about these features, please take a look at the following features figures: 

Figure 4.26, 4.27, 4.30, 4.31, 4.32,4.34, 4.35, 4.36. 

KDD Cup'99  Dataset's Features Extraction and Model Building 

Based on the results of selected features that are relevant with each label in [90] ,  we 

performed multiple experiments for each service,  for each experiment the model was built on 

different combination of features, and applied on different tune values. In the following 

subsections we presented the feature selection of each service and the base line experiment 

results. We chose 10% training dataset, shown in Table 2.1, in the feature selection process. 

Feature Selection and Model Building of KDD Cup'99  HTTP Service Dataset 

The dataset used to perform the base line experiment is shown in Table 5.9. As shown in the 

experiments results in Table 5.15, the eight experiment appeared to have the highest accuracy 

rate 99.85% at the tune value 15. We chose the dataset features of experiment 8 to build OCC 

model for the KDD Cup'99 HTTP service. 

The selected features, shown in Table 5.16, have achieved high accuracy rate as shown in 

Table 5.17.  Where the detection accuracy of the normal instances reaches 97.73%. 

Table 15 Table 5.15 KDD Cup'99 HTTP OCC feature selection experiments' accuracy results 

The standard deviation of HTTP OCC model built on experiment 8 is 3.78. 

TUNE 
Experiment Id 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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0 90.34 89.85 89.11 89.09 90.39 90.33 91.76 94.26 90.97 91.08 91.04 91.02 91.09 91.46 92.39 

1 96.17 94.39 92.58 92.56 93.30 93.73 94.25 95.36 93.67 93.69 93.67 93.66 93.54 94.43 94.74 

1.5 97.27 97.14 96.85 96.84 97.26 97.27 97.77 95.59 97.37 97.40 97.55 97.56 97.41 98.69 99.43 

2 97.90 97.86 97.66 97.65 97.96 97.97 98.24 96.16 98.06 98.09 98.11 98.09 97.98 99.41 98.77 

3 98.87 98.86 98.71 98.71 98.92 98.92 98.98 96.46 98.83 98.84 98.85 98.86 98.75 98.59 98.55 

4 98.53 98.70 98.71 98.71 98.84 98.85 99.02 96.56 99.17 99.19 99.20 99.22 99.33 98.35 98.28 

5 98.06 98.20 98.32 98.32 98.41 98.41 98.56 97.78 98.61 98.62 98.62 98.62 98.77 98.08 98.03 

6 97.90 97.97 97.98 97.97 98.04 98.04 98.11 98.94 98.17 98.18 98.18 98.18 98.26 98.05 98.04 

7 97.88 97.97 97.98 97.98 98.04 98.04 98.05 99.49 98.05 98.06 98.06 98.06 98.06 98.04 98.03 

8 97.89 97.97 97.97 97.97 98.02 98.02 98.03 99.70 98.03 98.04 98.04 98.04 98.04 98.04 98.03 

9 97.91 97.97 97.99 97.99 98.03 98.03 98.03 99.73 98.03 98.04 98.04 98.04 98.04 98.04 98.03 

10 97.97 98.01 97.99 97.99 98.03 98.03 98.03 99.80 98.03 98.04 98.04 98.04 98.04 97.98 97.96 

11 97.90 97.99 97.93 97.93 98.03 98.03 98.03 99.81 98.05 97.98 97.98 97.98 98.00 97.93 98.01 

12 97.89 97.93 97.90 97.90 97.99 97.99 97.99 99.82 97.99 97.93 97.93 97.93 97.93 97.89 97.95 

13 97.86 97.92 97.86 97.86 97.95 97.95 97.95 99.84 97.95 97.89 97.89 97.89 97.91 97.87 97.93 

14 97.83 97.88 97.82 97.82 97.91 97.91 97.93 99.84 97.93 97.87 97.87 97.87 97.87 97.83 97.89 

15 97.84 97.86 97.80 97.80 97.89 97.89 97.89 99.85 97.89 97.83 97.83 97.83 97.83 97.83 97.89 

 

Table 16 Table 5.16 KDD Cup'99 HTTP OCC selected feature set 

# Feature Name # Feature Name 

1 Flag 11 srv_rerror_rate 

2 logged_in 12 same_srv_rate 

3 src_bytes 13 srv_diff_host_rate 

4 Hot 14 diff_srv_rate 

5 num_compromised 15 dst_host_count 

6 count_v 16 dst_host_srv_count 

7 serror_rate 17 dst_host_diff_srv_rate 

8 srv_serror_rate 18 dst_host_same_src_port 

 

Based on the plot of Table 5.17, shown in Figure 5.4, the detection accuracy of normal class 

is increased whenever the tune value is increased and the detection accuracy of attacks is 

decreased. 

As shown in Table 5.17 and Figure 5.4, the optimal tune value equals 6 at which we have 

97.73% detection rate for normal class, and 100% detection rate for attack classes. At tune 

value 7 the detection rate of  ipsweep, and portsweep attacks became decreasing. An R2L 

attack called phf. stay in 100% detection rate until the tune value 22, it decreased rapidly to 

25%. 

Table 17 Table 5.17 KDD Cup'99 base line experiment results of HTTP service 

Label Tune Value 
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0 1 3 5 6 7 10 15 21 22 23 25 

normal. 0.8389 0.8698 0.9004 0.9378 0.9773 0.9856 0.9944 0.9958 0.9965 0.9969 0.9970 0.9971 

back. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

ipsweep. 1.0000 1.0000 1.0000 1.0000 1.0000 0.9787 0.9681 0.9681 0.9681 0.9681 0.9681 0.9681 

neptune. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

phf. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.2500 0.0000 0.0000 

portsweep. 1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9971 0.9933 0.9875 0.9875 0.9875 0.9827 

satan. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

 
Figure  15 Figure 5.4 KDD Cup'99 HTTP service's base line experiment result chart 

The optimal tune value based on ROC curve found at a false positive rate equals 0% as shown 

in Figure 5.5.  At that point the true positive rate was 97.73% which is the best detection rate 

compared with the false positive rate. The increase of false positive rate was due to the 

decrease of both Probe attacks portsweep and ipsweep. 
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Figure 51 Figure 5.5 KDD Cup'99 HTTP service's ROC chart of base line experiment 

Feature Selection and Model Building of ECR_I Service 

The dataset used to perform the base line experiment is shown in Table 5.10. As shown in the 

experiments results in Table 5.18, the nine experiment appeared to have the highest accuracy 

rate 99.99% at the tune value 15. We chose the dataset features of experiment 9 to build OCC 

model for the KDD Cup'99 ECR_I service. 

 

Table 18 Table 5.18 KDD Cup'99 ECR_I OCC feature selection experiments' accuracy results 

The standard deviation of ECR_I OCC model built on experiment 9 is 1.414. 

TUNE 
Experiment Id 

1 2 3 4 5 6 7 8 9 

0 87.246 92.029 93.768 92.029 92.029 87.246 87.246 87.246 93.623 

1 95.362 95.507 95.507 95.507 95.507 95.794 95.794 95.362 96.957 

2 95.942 95.942 95.942 95.942 95.942 96.374 96.374 95.942 97.681 

3 96.087 96.087 96.087 96.087 96.087 96.374 96.374 96.232 98.261 

4 96.231 96.231 96.231 96.231 96.231 96.808 96.808 97.681 99.130 

5 97.536 97.536 97.681 97.536 97.536 97.967 97.967 98.550 99.130 

6 98.260 98.260 98.260 98.260 98.260 98.690 98.690 98.840 99.130 

7 98.550 98.695 98.695 98.695 98.695 99.124 99.124 99.130 99.130 

8 98.985 98.984 98.984 98.984 98.984 99.552 99.552 99.130 99.130 

11 98.984 98.984 98.984 98.984 98.984 99.545 99.545 99.129 99.129 

12 98.984 98.984 98.984 98.984 98.984 99.544 99.544 99.129 99.129 

13 98.984 98.984 98.984 98.984 98.984 99.689 99.689 99.129 99.129 

14 99.564 99.564 99.564 99.564 99.564 99.675 99.675 99.419 99.419 

15 99.564 99.564 99.564 99.564 99.564 99.675 99.675 99.709 99.999 
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The selected features, shown in Table 5.19, have achieved high accuracy rate as shown in 

Table 5.20.  Where the detection accuracy of the normal instances reaches 98.26%. 

Table 19 Table 5.19 KDD Cup'99 ECR_I OCC selected feature set 

# Feature Name # Feature Name 

1 src_bytes 4 serror_rate 

2 dst_bytes 5 diff_srv_rate 

3 wrong_fragment 6 dst_host_count 

 

Based on the plot of Table 5.20, shown in Figure 5.6, the detection accuracy of normal class 

is increased whenever the tune value is increased and the detection accuracy of attacks is 

decreased. As shown in Figure 5.6, the DoS attacks, smurf and pod, never decreased even if 

the normal instances reached 100% detection rate. 

As shown in Table 5.20 and Figure 5.6, the optimal tune value equals 4 at which we have 

98.26% detection rate for normal class, and 100% detection rate for attack classes At tune 

value 5 the detection rate of the probe attacks, ipsweep dropped to70.9% , followed by 

portsweep, and nmap which have a detection rate of 0.0% at tune value 9, while the detection 

DoS attacks remained approximately 100%. 

Table 20 Table 5.20 KDD Cup'99 base line experiment results of ECR_I service 

Label 
Tune Value 

0 1 2 3 4 5 8 9 13 14 15 

normal. 0.8725 0.9391 0.9536 0.9652 0.9826 0.9826 0.9826 0.9826 0.9826 0.9884 1.0000 

ipsweep. 1.0000 1.0000 1.0000 1.0000 1.0000 0.7095 0.7095 0.0000 0.0000 0.0000 0.0000 

nmap. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 

pod. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

portsweep. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 

smurf. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 
Figure 52 Figure 5.6 KDD Cup'99 ECR_I service's base line experiment result chart 
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Figure 53 Figure 5.7 KDD Cup'99 ECR_I service's ROC chart of base line experiment 

 

The optimal tune value based on ROC curve found at a false positive rate equals 0% as shown 

in Figure 5.7.  At that point the true positive rate was 98.26% which is the best detection rate 

compared with the false positive rate. As shown in Figure 5.7, the false positive rate 

increasing without any increasing in true positive rate. This means that 1.74% of normal 

instances are far away from the normal class boundary. 

Feature Selection and Model Building of POP3 Service 

The dataset used to perform the base line experiment is shown in Table 5.11. As shown in the 

experiments results in Table 5.21, experiment 13 appeared to have the highest accuracy rate 

98.78% at the tune value 5. Although experiments 12 and 14 achieved a detection rate of 

87.78, we discard them because experiment 13 achieved a higher accuracy rate at a minimum 

increase in tune value which equals 1. We chose the dataset features of experiment 13 to build 

OCC model for the KDD Cup'99 POP3 service. 

The selected features, shown in Table 5.22, achieved high accuracy rate as shown in Table 

5.23.  Where the detection accuracy of the normal instances reaches 97.21% at tune value 1. 

 

Table 21 Table 5.21 KDD Cup'99 POP3 OCC feature selection experiments' accuracy results 

The standard deviation of POP3 OCC model built on experiment 13 is 2.236. 

TUNE 
Experiment Id 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 86.08 86.08 86.08 86.08 90.51 93.04 89.24 87.34 89.24 88.61 89.87 90.51 90.51 92.41 

1 92.41 92.41 92.41 91.77 94.94 94.76 92.86 92.41 93.67 88.79 95.57 95.57 97.21 95.62 

1.5 93.04 93.04 93.04 93.04 96.43 96.02 94.12 93.90 96.84 89.88 97.47 96.84 97.51 96.25 

2 93.67 93.67 93.67 93.67 96.43 96.02 94.12 95.16 97.06 92.41 97.69 97.06 97.51 96.25 

2.5 93.67 93.67 93.67 93.67 96.43 96.02 94.12 95.16 97.06 92.23 98.33 98.33 97.51 96.25 

3 93.67 93.67 93.67 93.67 97.06 96.02 95.39 95.16 97.06 91.42 98.55 97.92 97.51 96.25 

3.5 93.67 93.67 93.67 93.67 97.06 96.66 95.39 95.16 97.06 90.20 98.55 97.92 97.51 96.25 
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4 95.57 95.57 95.57 95.57 97.06 96.66 95.39 96.43 97.06 90.83 98.55 97.92 97.51 97.51 

4.5 96.84 96.84 96.84 96.20 97.92 97.29 97.29 97.29 97.92 90.83 98.55 98.55 97.51 97.23 

5 97.47 97.47 97.47 97.47 97.92 98.55 97.29 98.55 97.92 90.65 97.97 98.78 98.78 98.15 

5.5 97.47 97.47 97.47 97.47 98.55 98.15 96.88 98.55 98.55 90.65 97.97 98.78 98.78 98.78 

6 98.10 98.10 98.10 98.10 98.55 98.15 96.88 98.55 98.55 90.65 97.97 98.78 98.78 98.78 

6.5 98.73 98.73 98.73 98.73 98.15 98.15 96.88 98.15 98.15 90.65 97.97 98.78 98.78 98.78 

7 98.73 98.73 98.73 98.73 98.73 98.73 97.51 98.71 98.73 90.24 97.97 98.78 98.78 98.78 

7.5 98.73 98.73 98.73 98.73 98.73 98.73 97.51 98.71 98.73 90.24 97.97 98.78 98.78 98.78 

8 98.73 98.73 98.73 98.73 98.73 98.73 97.51 98.71 98.73 90.24 97.97 98.78 98.78 98.78 

8.5 98.73 98.73 98.73 98.73 98.73 98.73 97.51 98.71 98.73 90.24 97.97 98.78 98.78 98.78 

9 98.73 98.73 98.73 98.73 98.73 98.73 97.51 98.72 98.73 90.24 97.97 98.78 98.78 98.78 

9.5 98.73 98.73 98.73 98.73 98.73 98.73 97.51 98.72 98.73 90.24 97.97 98.78 98.78 98.78 

10 98.73 98.73 98.73 98.73 98.73 98.73 97.51 98.72 98.73 90.24 97.97 98.78 98.78 98.78 

 

Table 22 Table 5.22 KDD Cup'99 POP3 OCC selected feature set 

# Feature Name # Feature Name 

1 Flag 7 srv_rerror_rate 

2 num_failed_logins 8 srv_diff_host_rate 

3 count_v 9 dst_host_count 

4 serror_rate 10 dst_host_srv_count 

5 srv_serror_rate 11 dst_host_srv_diff_host_rate 

6 rerror_rate 12 dst_host_srv_serror_rate 

 

Based on the plot of Table 5.23, shown in Figure 5.8, the detection accuracy of normal class 

is increased whenever the tune value is increased and the detection accuracy of attacks is 

decreased. As shown in Figure 5.8, the neptune attack, which is a DoS attack, never decreased 

and the normal detection rate increased until reached 100% detection rate. While a probe 

attack called portsweep decrease rapidly from 99.5% then 34.94% then 10.11 % at tune 

values 0,1 and 1.5 respectively. 

Table 23 Table 5.23 KDD Cup'99 base line experiment results of POP3 service 

Label 
Tune Value 

0 1 1.5 2 3 4 5 6 7 8 9 

normal. 0.8101 0.9721 0.9747 0.9747 0.9747 0.9747 1.0000 1.0000 1.0000 1.0000 1.0000 

neptune. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

nmap. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

portsweep. 0.9952 0.3494 0.1011 0.1011 0.1011 0.1011 0.1011 0.1011 0.1011 0.1001 0.1001 

satan. 1.0000 0.9993 0.9993 0.9993 0.9979 0.9979 0.9965 0.9965 0.9965 0.9965 0.9965 
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Figure 54 Figure 5.8 KDD Cup'99 POP3 service's base line experiment result chart 

As shown in Table 5.23 and Figure 5.8, the optimal tune value equals 1 at which we have 

97.2 detection rate for normal class, and 100% detection rate for attack classes except for 

portsweep attack which is a probe attack that achieved 34.94% detection rate. At tune value 

1.5 the detection rate of the probe attack  portsweep became 10.22%, while the detection DoS 

attack, neptune, remained approximately  100%. 

 

The optimal tune value based on ROC curve found at a false positive rate equals 0.617% as 

shown in Figure 5.9.  At that point the true positive rate was 97.2% which is the best detection 

rate compared with the false positive rate. The next false positive rate found on ROC was 

0.85% which is a high rate raised because of  a drop in detection rate of portsweep probe 

attack which reached 10.11% which decreased at tune value equals 1.5. 

 

Figure 55 Figure 5.9 KDD Cup'99 POP3 service's ROC chart of base line experiment 
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5.5Proof of Concept Evaluation of the Model 

The effectiveness of the model is evaluated by its capability to make accurate predictions. 

According to the real nature of a given event compared to the prediction from the model, four 

possible outcomes are shown in Table 5.24, known as the Confusion Matrix [92]. 

Confusion Matrix is used to evaluate the model. Columns and rows of the matrix represent 

actual label and the instance of predicate label, respectively. 

The following four parameters define the member of matrix:  

 True positive (TP) is shown in (Eq. 5.3). 

 True negative (TN) is shown in (Eq. 5.4).  

 False positive (FP) is shown in (Eq. 5.5).  

 False negative (FN) is shown in (Eq. 5.6).  

 

The accuracy of the model is considered to be the most commonly measurement used to 

evaluate the performance. Accuracy (Eq. 5.8), detection rate (Eq. 5.7), false positive rate 

(Eq.5.5)  and false alarm rate (Eq. 5.6) were used in this research for model evaluation.  

Confusion Matrix: is created after classification process. The main elements in the matrix are 

shown in Table 5.24. 

True positive (TP) refers to positive instances that correctly labeled by the classifier (When 

normal data detected as normal).  

 

True Positive rate  = TP / ( TP + FN ) ………………… (Eq. 5.3). 

Table 0-24 Table 5.24 Confusion Matrix Structure 

 

Actual (True) Class 

Actual Normal 

(Positive) 

Actual Abnormal 

(Negative) 

Predicate Class 

Predicate Normal 

(Positive) 
True positive (TP) False positive (FP) 

Predicate Abnormal 

(Negative) 
False negative (FN) True negative (TN) 

 

True negative (TN) refers to negative instances that correctly labeled the classifier (when 

abnormal data detected as abnormal).  

True Negative rate = TN / ( TN + FP )  …………………..(Eq. 5.4).  

 

False Positive (FP) is the negative instances that were incorrectly labeled (when abnormal 

data detected as normal)  
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False Positive rate = FP / ( FP + TN ) ………………….(Eq. 5.5). 

 

False Negative (FN)/ False Alarm Rate (FAR)   is the positive instances that were 

incorrectly labeled (when  normal data detected as abnormal)  

False Positive rate = FN / ( FN + TP ) …………………..(Eq. 5.6). 

 

Detection Rate (DR) is the percentage of positive instances that correctly labeled by the 

classifier (i.e. the proportion of true positives which are correctly identified and the proportion 

of true negative which are correctly identified). Assume that N: number of normal, 

A:number of abnormal. 

Detection Rate = (TP*N + TN*A) / (N + A) …….......... (Eq. 5.7). 

 

Accuracy is the percentage of test set tuples that are correctly classified by classifier (i.e. the 

proportion of true results in the population).  

Accuracy = (TP + TN) / (TP + TN + FP +FN) ………..... (Eq. 5.8).  

 

F-measure: refer to the harmonic mean of precision and recall 

F-Measure = 2*TP/(2*TP+FP+FN)  ------------ (Eq. 5.9) 

 

Correlation: is a measure of how predictions correlate with actual data. This ranges from -1 

to 1 where a correlation coefficient of 1 corresponds to predictions that perfectly match class 

labels, and a coefficient of 0 corresponds to random guessing. 

             
           

√                               
  ------------ (Eq. 5.10) 

An applied example of how to calculate these measurements, suppose we have the following  

Table 5.25  filled from the classification results. 

 

Table 0-25 Table 5.25  Confusion Matrix Example 

 

Actual (True) Class 

Actual Normal 

(Positive) 

Actual Abnormal 

(Negative) 

Predicate Class 

Predicate Normal 

(Positive) 
6954 46 

Predicate Abnormal 

(Negative) 
412 588 

 

True Positive rate = TP/(TP+FN)= 6954/(6954+412) =0.94  

True Negative rate = TN/(TN+FP) = 588/(588+46) =0.927  

Accuracy = (TP + TN) / (TP + TN + FP +FN) = (6854 + 588)/7542= 0.9867 
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5.6 summary 

In this chapter, the proposed model methodology was presented and explained. We also 

presented the methodology steps to achieve our primary model. Then we gave a description of 

the collected datasets (BM-AUN2015 and KDD Cup'99), and a description of their features. 

After that, the preprocessing steps and feature selection of each dataset were described. 

Feature selection experiments were performed and listed their results and chose the optimal 

features set of each service, then the standard deviation of each service is built based on the 

selected features. Baseline experiments were performed to obtain the optimal tune value by 

which we need to validate the model in the testing phase in the next chapter. The 

measurements needed to evaluate the accuracy of our model was presented.  
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Chapter 6: Experimental Results Discussion and Evaluation 

 

 

In this chapter, the experiments results of both dataset, KDD Cup'99 and BM-AUN2015, 

were presented and analyzed. The tools, requirements and environments used in our model 

were explained. Main evaluation measurements such as accuracy, detection rate and false 

alarm were calculated after each experiment and an overall measurements of these metric 

were also performed. 

6.1 Experiments Setup: 

This section describes the experiments environment and tools used to measure and evaluate 

the performance of the proposed model. 

6.1.1 Experimental Environments and Tools: 

The experiments were conducted using an Intel® Core™2 Duo CPU 1.8GHz with 2.5GB 

RAM. Special programs were used for constructing the model and implementation of model 

functions, such as 

RapidMiner Studio Program: RapidMiner [93] is an international open-source data mining 

framework. It enables users to model complex knowledge discovery processes as it supports 

nested operator chains. Graphical User Interface feature of RapidMiner enables it to be used 

for complex process modeling. Moreover, it can be used as a library in other programs.  

RapidMiner is commonly used as a data mining tool for many reasons. First, it has many data 

loading, modeling, preprocessing and visualization methods that avoid the trouble of 

preprocessing data sets and help to visualize the results. It is easy to use the currently robust 

graphical user interface that facilitates the modeling of different complex processes. Second, 

it is modular and thus allows using some functionalities for the extension, for example, using 

distance measurements for anomaly detection operators. Finally, it is easily extensible and 

was used for clustering data and construct network traffic behavior using K-Means algorithm 

and Decision Tree, respectively. 

Oracle Database10g (SQL+PL/SQL): Oracle Software [94] was used for normal service 

behavior's standard deviation calculation and labeling process. The main evaluations 

measurements equations were implemented. Testing  PL/SQL code is listed in Appendix A. 

6.1.2 Experimental Measurements: 

The evaluation measures of our model performance are based on Confusion Matrix. Accuracy 

rate, detection rate and false alarm were used. These measures have been described in section 

5.5. 
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6.2  BM-AUN2015 Experiments Cases and Results: 

Four experiments cases were conducted. Three of these experiments were performed on three 

different application layer attacks and the fourth experiment were performed on network layer 

attacks in addition to the normal dataset ,Day1, Day2, Day4, as shown in Table 4.5. Day3 

were used as the normal service behavior which was used to build the service centroid table. 

The service centroid table was built and the standard deviation of it was calculated as 

described in base line experiment in section 5.4.1. The process of preparing our model is 

shown in Figure 5.3 (a). 

6.2.1 Experiment Case 1, SlowRead Attack: 

This experiment is performed on SlowRead attack, which is one of the application layer 

attacks. This attack was performed in different scenarios as shown in section 4.2.1.2. we used 

Day3 normal dataset as the model centroid table and Day1,Day2 and Day4 were used for 

testing as shown in Table 6.1. 

Table 26 Table 6.1 BM-AUN2015 experiment case1, SlowRead attack dataset 

 

Experiment Results 

The results of this experiment, shown in Table 6.2, shows that the detection rate of attack 

instances is 100% with 0.0% false positive and 2.39 % false negative at tune value 5.5.  The 

optimal tune value of this experiment is at tune value equals 7 where  the true positive rate 

reaches 99.913% with false negative rate 0.086% where as the true negative rate reaches 

99.966% with false positive rate 0.033% as shown in Table 6.3. 

Figure 6.1 shows an extreme drop in detection rate at tune value equals 10 for SlowRead 

scenario3 and scenario4 attacks, which are a type of DDoS attacks, and decrease rapidly until 

it reaches 0.0% true negative rate .  The drop in attack detection rate begins from the tune 

value 9.Table 27 Table 6.2 BM-AUN2015 experiment case1, SlowRead attack results 

 
Detection Rate 

Label/Tune Value 0 2 4 6 7 8 9 10 14 16 30 

Normal 0.843 0.959 0.977 0.978 0.999 0.999 0.999 0.999 0.999 1.000 1.000 

SlowRead-Scenario1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

SlowRead-Scenario2 1.000 1.000 1.000 1.000 0.999 0.997 0.997 0.994 0.985 0.980 0.951 

SlowRead-Scenario3 1.000 1.000 1.000 1.000 1.000 1.000 0.897 0.780 0.449 0.042 0.000 

 Normal Attack 

 
Day3 

Centroid 
Day1 Day2 Day4 

Application layer attack 

 SlowRead 

Scenario1 

SlowRead 

Scenario2 

SlowRead 

 Scenario3 

SlowRead 

Scenario4 

# instances 13,548 703 3,296 10,332 2,960 2,995 214 116 

∑ 13,548 14,331 6,285 
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SlowRead-Scenario4 1.000 1.000 1.000 1.000 1.000 0.991 0.826 0.730 0.435 0.026 0.000 

As shown in Figure 6.1, the drop of attack detection rate begins from a tune value of 9. This 

means that there's an instance similarity between normal  and attack instances at this 

expanding value of normal class boundary and greater. 

 

Figure 56 Figure 6.1 BM-AUN2015 experiment case 1, SlowRead attack results chart 

Experiment Evaluation 

Table 6.3 shows the confusion matrix results at the tune value 7 which is the optimal standard 

deviation expanding value with high correlation rate. Based on Table 6.3, the model has 

achieved 99.92% detection rate, 99.94% accuracy rate and a false positive rate 0.033% with a 

correlation rate reaches 99.9% and F-Measure equals to 99.9%. 

Table 28 Table 6.3 BM-AUN2015 experiment case1, SlowRead attack confusion matrix results 

TUNE TPR FPR TNR FNR Detection% Class. Err. Accuracy Correl. F-Measure 

0 84.328 0.000 100.000 15.672 86.866 7.836 92.164 0.854 0.915 

2 95.927 0.000 100.000 4.073 96.586 2.037 97.963 0.960 0.979 

3 97.053 0.000 100.000 2.947 97.531 1.473 98.527 0.971 0.985 

4 97.718 0.000 100.000 2.282 98.087 1.141 98.859 0.977 0.988 

5.5 97.761 0.000 100.000 2.239 98.124 1.119 98.881 0.978 0.989 

6 97.761 0.017 99.983 2.239 98.119 1.128 98.872 0.978 0.989 

7 99.913 0.033 99.967 0.087 99.917 0.060 99.940 0.999 0.999 

8 99.913 0.284 99.716 0.087 99.904 0.185 99.815 0.996 0.998 

9 99.928 7.001 92.999 0.072 99.766 3.537 96.463 0.934 0.967 

10 99.928 12.372 87.628 0.072 99.622 6.222 93.778 0.887 0.945 

14 99.942 28.299 71.701 0.058 99.191 14.179 85.821 0.762 0.889 

16 99.957 48.797 51.203 0.043 98.697 24.420 75.580 0.559 0.834 

30 99.986 51.219 48.781 0.014 98.462 25.617 74.383 0.484 0.827 
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Experiment Results Discussion 

The number of normal instances that fall out of the normal class boundary at tune value 

equals 7 are 8 instances listed in Table 6.4. These instances have a distance greater than the 

expanded standard deviation which is 10.698. As shown in Table 6.4, the shaded bold cells 

have extreme values based on BM-AUN2015 dataset analysis as shown in section 4.5. Note 

that SlowRead-scenario3 and SlowRead-scenario4 attacks, based on the standard deviation of 

normal class, have a minimum distance from normal class= 11.42 up to = 23.68. 

Table 29 Table 6.4 BM-AUN2015 experiment case1, extreme normal instances in SlowRead dataset 

The standard deviation = 2.698 + 8 = 10.698 

FLOWKEY NUMBER 

OF SERVER 

ACK 

IS HTTP 

SESSION 

IS HTTP 

HEADER 

END 

NUMBER 

OF CLIENT 

TCP PSH 

AVG TCP 

PAYLOAD 

LENGTH 

AVG CURRENT 

CONNECTIONS 

4SEC 

NUMBER 

ZERO 

WINDOW 

PKTS 

DISTANCE 

76926 1 1 1 2 673 2 77 112.98 

80015 3 0 0 0 0 1 0 45.63 

75357 3 0 0 0 0 4 0 45.48 

83669 2 1 1 2 400 12 0 22.69 

82931 2 1 1 3 397 11 0 22.68 

84633 1 1 1 112 1395.105 3 0 17.97 

84691 1 1 1 87 1297.605 5 0 14.14 

83099 1 1 1 73 1394.762 2 0 12.31 

 

As shown in Table 6.4, Flowkeys 80015, 75357, 83669 and 82931 didn't complete the three 

way handshaking, they seem like SYNC attack but generally they are normal to happen 

because of network congestion as an example. On the other hand Flowkey 76926 looks like it 

has a congestion problem because of the number of Zero TCP WINDOW SIZE packets. The 

last three instances, 84633, 84691 and 83099, are normal instances, but because of the 

extreme number of client TCP-PSH flag compared with the average TCP payload length their 

distance is raised from the normal class. 

6.2.2 Experiment Case 2, SlowPost Attack: 

This experiment was performed on SlowPost attack, which is one of the application layer 

attacks. This attack was performed in different scenarios as shown in subsection 4.2.1.2. 

Table 30 Table 6.5 BM-AUN2015 experiment case2, SlowPost attack dataset 

 Normal Attack 

 
Day3 

Centroid 
Day1 Day2 Day4 

Application layer attack 

 SlowPost 

Scenario1 

SlowPost 

Scenario2 

SlowPost 

Scenario3 

SlowPost 

Scenario4 

#instances 13,548 703 3,296 10,332 2,977 2,983 262 193 
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We used Day3 normal dataset as the model centroid's table and Day1,Day2 and Day4 were 

used for testing as shown in Table 6.5. 

Experiment Results 

The results of this experiment, shown in Table 6.6, shows that the detection rate of attack 

instances is 100% with 0.0% false positive and 3.58 % false negative.  The optimal tune value 

of this experiment is at tune value equals 3.3 where  the true positive rate reaches 97.62% 

with false negative rate 2.38% where as the true negative rate reaches 99.52% with false 

positive rate 0.484% as shown in Table 6.7. 

Table 31 Table 6.6 BM-AUN2015 experiment case2, SlowPost attack results 

 
Detection Rate 

Label/Tune Value 0 2 3 3.3 6 8 10 12 16 24 30 

Normal 0.843 0.959 0.971 0.976 0.978 0.999 0.999 0.999 1.000 1.000 1.000 

SlowPost-Scenario1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

SlowPost -Scenario2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.989 0.969 0.956 

SlowPost -Scenario3 1.000 1.000 1.000 0.996 0.885 0.718 0.347 0.046 0.000 0.000 0.000 

SlowPost -Scenario4 1.000 1.000 0.995 0.984 0.870 0.710 0.347 0.052 0.000 0.000 0.000 

 

Figure 6.2 shows an extreme drop in detection rate at tune value equals 5 for SlowPost 

scenario3 and scenario4 attacks and decrease rapidly until it reaches 0.0% true negative rate. 

These attacks scenarios category is classified under DDoS attacks categories.   

As shown in Figure 6.2, the drop of attack detection rate begins from a tune value of 5. This 

means that there's an instance similarity between normal  and attack instances at the tune 

value 5 and greater. 

Figure 57 
Figure 6.2 BM-AUN2015 experiment case 2, SlowPost attack results chart 

∑ 13,548 14,331 6,415 
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Experiment Evaluation 

Table 6.7 shows the confusion matrix results at the tune value 3.3 which is the optimal 

standard deviation expanding value with high correlation rate. Based on Table 6.7, the model 

has achieved 97.999% detection rate, 98.566% accuracy rate and a false positive rate 0.484% 

with a correlation rate reaches 97.2% and F-Measure equals to 98.6%. 

Table 32 Table 6.7 BM-AUN2015 experiment case2, SlowPost attack confusion matrix results 

TUNE TPR FPR TNR FNR Detection% Class. Err. Accuracy Correl. F-Measure 

0 84.328 0.000 100.000 15.672 86.935 7.836 92.164 0.854 0.915 

2 95.927 0.000 100.000 4.073 96.604 2.037 97.963 0.960 0.979 

2.5 96.418 0.000 100.000 3.582 97.014 1.791 98.209 0.965 0.982 

2.6 96.447 0.130 99.870 3.553 97.034 1.841 98.159 0.964 0.981 

3 97.053 0.130 99.870 2.947 97.540 1.538 98.462 0.970 0.984 

3.1 97.082 0.259 99.741 2.918 97.561 1.588 98.412 0.969 0.984 

3.3 97.617 0.484 99.516 2.383 97.999 1.434 98.566 0.972 0.986 

4 97.718 2.345 97.655 2.282 98.024 2.314 97.686 0.954 0.977 

6.5 99.740 7.355 92.645 0.260 99.553 3.808 96.192 0.928 0.964 

7 99.913 9.986 90.014 0.087 99.613 5.037 94.963 0.907 0.954 

12 99.942 47.568 52.432 0.058 98.437 23.813 76.187 0.577 0.839 

 

Experiment Results Discussion 

The number of normal instances that fall out of the normal class boundary at tune value 5 are 

164 instances included instances listed in Table 6.4. We have listed a representation of these 

instances  in Table 6.8. These instances have a distance greater than the expanded standard 

deviation which is 6.698. As shown in Table 6.8, the shaded bold cells have extreme values 

based on BM-AUN2015 dataset analysis as shown in section 4.5. Note that SlowPost-

scenario3 and SlowPost-scenario4 attacks, based on the standard deviation of normal class, 

have a minimum distance from normal class= 5.94 up to = 16.75. 

** We have noted that the Flowkey 83004 shown in Table 6.8 has an extreme number of 

concurrent connections reaches 107 connections in a window of 2 second these connections 

after deep investigations came from a mobile user agent called "Nokia306/2.0 (03.63) 

Profile/MIDP-2.1 Configuration/CLDC-1.1 UCWEB/2.0 (Java; U; MIDP-2.0; ar-SA; 

Nokia306) U2/1.0.0 UCBrowser/9.5.0.449 U2/1.0.0 Mobile". This user agent open parallel 

connections to request the web page files to speed up its browsing. The number of instances 

of this case was 155 instance, we have listed one of them in Table 6.8 under Flowkey 83304. 

The relative extreme values of the other instances was number of TCP-PSH flag and TCP 

WINDOW SIZE. Two instances have an unusual increase in number of zero TCP WINDOW 

SIZE, it was may be due to network congestion.  
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Table 33 Table 6.8 BM-AUN2015 experiment case2,  extreme normal instances in SlowPost dataset 

The standard deviation = 2.698 + 4 = 6.698 

FLOWKEY NUMBER 

OF 

SERVER 

ACK 

IS HTTP 

SESSION 

IS HTTP 

HEADER 

END 

NUMBER 

OF 

CLIENT 

TCP PSH 

AVG TCP 

PAYLOAD 

LENGTH 

AVG 

CLNT 

TCP 

WINDOW 

SIZE 

AVG CURRENT 

CONNECTIONS 

4SEC 

NUMBER 

ZERO 

WINDOW 

PKTS 

DISTANCE 

79832 1 1 1 70 408.04 916.74 3 0 10.39 

82333 1 1 1 3 444.33 4589.88 3 7 10.28 

83004 1 1 1 2 802.00 732.89 106 0 9.73 

75781 1 1 1 56 657.23 1808.42 2 0 8.29 

75478 1 1 1 53 673.08 990.63 2 0 7.84 

80710 1 1 1 50 435.46 6537.67 3 2 7.79 

82623 1 1 1 48 365.35 8226.45 3 0 6.91 

83918 1 1 1 47 452.85 2487.87 3 0 6.77 

6.2.3 Experiment Case 3, SlowHeader Attack: 

This experiment was performed on SlowHeader attack, which is one of the application layer 

attacks. This attack was performed in different scenarios as shown in section 4.2.1.2. we  used 

Day3 normal dataset as the model centroid table and Day1,Day2 and Day4 were used for 

testing as shown in Table 6.9. 

Experiment Results 

The results of this experiment, shown in Table 6.10, shows that the detection rate of attack 

instances is 100% with 0.0% false positive rate at tune value equals 7.  

Table 34 Table 6.9 BM-AUN2015 experiment case3, SlowHeader attack dataset 

 

Tune value 7 is the optimal tune value of this experiment where  the true positive rate reaches 

99.962% with false negative rate  0.038 % where as the true negative rate reaches 99.91% 

with false positive rate 0.00% as shown in Table 6.11. 

Figure 6.3 shows an increase in normal instances accuracy labeling as we increase the tune 

value with a drop decrease in attack detection rate started at tune value equals 8. 

 

 Normal Attack 

 
Day3 

Centroid 
Day1 Day2 Day4 

Application layer attack 

 SlowHeader 

Scenario1 

SlowHeader 

Scenario2 

SlowHeader 

Scenario3 

SlowHeader 

Scenario4 

#instances 13,548 703 3,296 10,332 2,949 2,980 212 213 

∑ 13,548 14,331 6,360 
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Table 35 Table 6.10 BM-AUN2015 experiment case3, SlowHeader attack results 

 
Detection Rate 

Label/ Tune Value 0 3 4 5 6 7 8 9 10 12 30 

Normal 0.843 0.971 0.977 0.978 0.978 0.999 0.999 0.999 0.999 0.999 1.000 

SlowHeader-Scenario1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

SlowHeader-Scenario2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.953 

SlowHeader-Scenario3 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.922 0.601 0.069 0.000 

SlowHeader-Scenario4 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.901 0.643 0.038 0.000 

 

Figure 58 Figure 6.3 BM-AUN2015 experiment case 3, SlowHeader attack results chart 

Experiment Evaluation 

Table 6.11 shows the confusion matrix results at the tune value 7 which is the optimal 

standard deviation expanding value with 99.99% correlation rate. 

Table 36 Table 6.11 BM-AUN2015 experiment case3, SlowHeader attack confusion matrix results 

TUNE TPR FPR TNR FNR Detection% Class. Err. Accuracy Correl. F-Measure 

0 84.328 0.000 100.000 15.672 86.914 7.836 92.164 0.854 0.915 

1 94.078 0.000 100.000 5.922 95.055 2.961 97.039 0.942 0.969 

2 95.927 0.000 100.000 4.073 96.599 2.037 97.963 0.960 0.979 

3 97.053 0.000 100.000 2.947 97.540 1.473 98.527 0.971 0.985 

4 97.718 0.000 100.000 2.282 98.094 1.141 98.859 0.977 0.988 

5 97.761 0.000 100.000 2.239 98.131 1.119 98.881 0.978 0.989 

6 97.761 0.000 100.000 2.239 98.131 1.119 98.881 0.978 0.989 

7 99.913 0.000 100.000 0.087 99.928 0.043 99.957 0.999 0.9996 

8 99.913 0.232 99.768 0.087 99.921 0.159 99.841 0.997 0.998 

9 99.928 4.414 95.586 0.072 99.807 2.243 97.757 0.957 0.979 

10 99.928 18.897 81.103 0.072 99.369 9.485 90.515 0.835 0.920 

16 99.957 50.310 49.690 0.043 98.361 25.177 74.823 0.489 0.832 

30 99.986 51.166 48.834 0.014 98.128 25.590 74.410 0.484 0.828 
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Based on Table 6.11, the model has achieved 99.93% detection rate, 99.96% accuracy rate 

and a false positive rate 0.0% with a F-Measure rate reaches 100%. 

Experiment Results Discussion 

As shown in Table 6.12, the instances distance is so far from the normal class boundary 

which have a maximum distance 32.698. This is due to the extreme values of  shaded cells 

features especially AVG_TIME_HTTP_HEADER_COMPLETE feature which is zero in 

normal instances and also due to AVG_TCP_PAYLOAD_LENGTH feature  which is 377 

bytes in average, as shown in Figure 4.31 and Figure 4.27 respectively. Our model shows that 

it has the ability to detect SlowHeader DDoS attacks.  

 

Table 37 Table 6.12 BM-AUN2015 experiment case3, SlowHeader attack instances 

The standard deviation = 2.698 + 7 = 9.698 

NUMBER 

OF 

SERVER 

ACK 

IS HTTP 

HEADER 

END 

NUMBER 

OF 

CLIENT 

TCP PSH 

AVG TCP 

PAYLOAD 

LENGTH 

AVG CLNT 

TCP 

WINDOW 

SIZE 

AVG CURRENT 

CONNECTIONS 

4SEC 

CLASS 

TYPE 

NUMBER ZERO 

WINDOW PKTS DISTANCE 

1 0 83 4 5687.05 361.66 Scenario1 0 129.78 

1 0 79 4 6436.24 404.71 Scenario1 0 129.77 

1 0 70 8 12621.69 345.02 Scenario2 0 124.32 

1 0 78 8 14204.37 343.37 Scenario2 0 124.21 

1 0 83 4 6431.65 5.00 Scenario4 0 10.93 

1 0 79 4 14073.81 20.00 Scenario3 0 10.87 

1 0 78 4 6044.69 19.69 Scenario3 0 10.83 

6.2.4 Experiment Case 4, Network Layer Attacks: 

This experiment was performed on SYNC-Flood and SockStress attacks, which are one of the 

network layer attacks.. These attacks were performed in different scenarios as shown in 

section 4.2.1.2. We used Day3 normal dataset as the model centroid table and Day1,Day2 and 

Day4 were used for testing as shown in Table 6.13. 

Experiment Results 

The results of this experiment, shown in Table 6.14, shows that the detection rate of attack 

instances is 99.83% with 0.0% false positive rate and false negative rate = 4.91 at tune value . 

Table 38 Table 6.13 BM-AUN2015 experiment case4, network layer attacks dataset 

 Normal Attack 

 
Day3 

Centroid 
Day1 Day2 Day4 

Network layer attack 

 SockStress 

20Thread 

SockStress 

40Thread 

SYNC-FLOOD 

SingleIP 

SYNC-FLOOD 

SpoofedIP 

#instances 13,548 703 3,296 10,332 1,929 6,876 65,540 462,206 

∑ 13,548 14,331 536,551 
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 The optimal tune value of this experiment is at tune value equals 12 where  the true positive 

rate reaches 99.942% with false negative rate  0.057 % where as the true negative rate reaches 

99.6% with false positive rate 0.398% as shown in Table 6.15. 

Figure 6.4 shows an increase in normal instances accuracy labeling as we increase the tune 

value. The detection accuracy decreased in sockstress attack scenarios specially 

sockstress20thread where its detection accuracy start decreasing at tune value 3 until it 

suddenly decreased to 93.68% at tune value 30 whereas the other attacks stay approximately 

at a steady state. 

Table 39 Table 6.14 BM-AUN2015 experiment case4, network layer attack results 

 
Detection Rate 

Label/Tune Value 0 3 4 5 6 7 8 9 12 16 30 

Normal 0.712 0.969 0.979 0.980 0.980 0.980 0.999 0.999 0.999 0.999 0.9996 

SYNC-FLOOD-SpofedIP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

SYNC-FLOOD-SingleIP 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

SockStress-40Thread 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9962 0.9856 

SockStress-20Thread 1.0000 0.9995 0.9995 0.9855 0.9855 0.9855 0.9855 0.9855 0.9855 0.9855 0.9368 

 

 

Figure 59 Figure 6.4 BM-AUN2015 experiment case 4, network layer attack results chart 
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Experiment Evaluation 

Table 6.15 shows the confusion matrix results at the tune value 12 which is the optimal 

standard deviation expanding value. Based on Table 6.15, the model has achieved 99.87% 

detection rate, 99.77% accuracy rate and a false positive rate 0.399% with a correlation rate 

reaches 99.6% and F-Measure=99.77% . 

Table 40 Table 6.15 BM-AUN2015 experiment case4, network layer attack confusion matrix results 

TUNE TPR FPR TNR FNR Detection% Class. Err. Accuracy Correl. F-Measure 

0 84.3276 0.0000 100.0000 15.6724 90.6076 7.8362 92.1638 0.8538 0.9150 

1 94.0777 0.0000 100.0000 5.9223 96.4508 2.9611 97.0389 0.9424 0.9695 

2 95.9266 0.0270 99.9730 4.0734 97.5483 2.0502 97.9498 0.9598 0.9791 

3 97.0533 0.0490 99.9510 2.9467 98.2167 1.4979 98.5021 0.9705 0.9848 

4 97.7178 0.0490 99.9510 2.2822 98.6148 1.1656 98.8344 0.9769 0.9882 

5 97.7611 0.3989 99.6011 2.2389 98.5645 1.3189 98.6811 0.9738 0.9867 

6 97.7611 0.3989 99.6011 2.2389 98.5645 1.3189 98.6811 0.9738 0.9867 

7 99.9133 0.3989 99.6011 0.0867 99.8542 0.2428 99.7572 0.9952 0.9976 

8 99.9133 0.3989 99.6011 0.0867 99.8542 0.2428 99.7572 0.9952 0.9976 

9 99.9278 0.3989 99.6011 0.0722 99.8628 0.2356 99.7644 0.9953 0.9977 

12 99.9422 0.3989 99.6011 0.0578 99.8715 0.2284 99.7716 0.9955 0.9977 

16 99.9567 0.4898 99.5102 0.0433 99.8349 0.2666 99.7334 0.9947 0.9973 

30 99.9856 1.9735 98.0265 0.0144 99.4544 0.9940 99.0060 0.9806 0.9903 

 

Experiment Results Discussion 

The HTTP OCC didn't train on network layer attacks, and despite of that it detected them in a 

high accuracy percentage.  SYNC-Flood attacks specially with spoofed IP attack have been 

detected in 100% despite the increase in tune value which means that they have a distance so 

far from the boundary of normal class, note that the number of concurrent connections of this 

type of attacks is just one. On the other hand sockstress attack have been detected but there's 

0.058% of their instances have been identified as normal. After investigation about these 

instances we found that there's 28 instance out of 1929 instances for sockstree20thread is 

labeled as normal and 1 instance out of 6876 for sockstress40thread is labeled as normal.  

They are labeled as normal because of the feature NUMBER_OF_SERVER_ACK which was 

1. This happened because the packet capturing process was stopped without waiting the 

server to close all connections. We can conclude that the model can detect network attacks 

with a detection rate of 100%. 

6.2.5 BM-AUN2015 HTTP OCC Overall Evaluation 

On the previous experiment cases which was conducted on different types of attacks, we have 

provided different accuracy results based on the attack types to evaluate the model accuracy 

for each attack type. In this section we need to evaluate the overall accuracy of the BM-

AUN2015 HTTP OCC model and determine the optimal tune value. 
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We have introduced different tune values for each experiment case. SlowRead attack 

experiment  has an optimal tune value equals 7, SlowPost attack experiment has an optimal 

tune value equals 3.3, SlowHeader attack has an optimal tune value equals 7 and network 

attacks experiment has an optimal tune value equals 12. So the optimal tune value is the 

smallest one which is 3.3 at which most of attacks are detected in high detection rate, but also 

it has high false alarm rate as shown in Table 6.16 below. There's no comparisons with other 

models on BM-AUN2015 dataset because this dataset is a real dataset collected by us.  

Table 41 Table 6.16 BM-AUN2015 HTTP OCC overall confusion matrix results 

TUNE TPR FPR TNR FNR Detection% Class. Err. Accuracy Correl. F-Measure 

0 84.328 0.000 100.000 15.672 87.830 8.502 92.164 0.854 0.915 

2 95.927 0.007 99.993 4.073 96.834 2.083 97.960 0.960 0.979 

3 97.053 0.045 99.955 2.947 97.707 1.518 98.504 0.970 0.985 

3.3 97.617 0.133 99.867 2.383 98.141 1.275 98.742 0.975 0.987 

3.8 97.703 0.477 99.523 2.297 98.197 1.411 98.613 0.972 0.986 

6.3 98.570 1.806 98.194 1.430 98.812 1.701 98.382 0.969 0.984 

7 99.913 2.605 97.395 0.087 99.828 1.487 98.654 0.975 0.988 

9 99.928 7.906 92.094 0.072 99.687 4.702 96.011 0.928 0.965 

12 99.942 27.815 72.185 0.058 99.083 25.039 86.063 0.753 0.901 

30 99.986 38.866 61.134 0.014 98.527 38.216 80.560 0.608 0.868 

 

As shown in Figure 6.5 the optimal tune value of BM-AUN2015 HTTP OCC is at tune =3.3 

 

Figure 60 Figure 6.5 BM-AUN2015 performance ROC curve 

6.3  KDD Cup'99  Experiments Cases and Results: 

Six experiment cases were conducted, two for each service, which are HTTP, ECR_I and 

POP3 services which were explained in Chapter 2. The OCC model of each service was built 

as described in section 5.4.1.2. The dataset used for each experiment is 10% testing KDD 
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Cup'99 dataset as shown in Table 5.10, 5.11, 5.12  for the services HTTP, ECR_I and POP3 

respectively. 

6.3.1 HTTP Service Experiment: 

This experiment was performed on HTTP service dataset which was extracted from 10% 

testing KDD Cup'99 dataset as listed in Table 5.10. Table 5.10 shows the number of attack 

instances, attack type and attack name. The model was built using HTTP 10% training KDD 

Cup'99 dataset at tune value=6. MIT Lincoln Labs [20] provide a 10% corrected dataset from 

the full dataset. This dataset, as they described, is not from the same probability distribution 

as the training data, and it includes specific attack types not in the training data. 

 

Experiment Results 

The results of this experiment, shown in Table 6.17, achieved high detection accuracy with 

low false positive rate based on the optimal tune value of HTTP OCC model which equals 6. 

The true positive rate at tune value 6 reaches 99.3% with false negative rate  0.706 %, where 

as the true negative rate reaches 99.9950% with 0.0049% false positive rate as shown in Table 

6.18. 

Table 42  Table 6.17 KDD Cup'99 HTTP service testing  experiment results 

Label/Tune  
Detection Rate 

0 1 2 3 4 6 7 11 16 23 24 25 

normal. 0.9175 0.9521 0.9799 0.9884 0.9911 0.9929 0.9934 0.9954 0.9961 0.9968 0.9969 0.9970 

apache2. 0.9987 0.9962 0.9962 0.9962 0.9962 0.9962 0.9962 0.9836 0.9836 0.9761 0.9748 0.9748 

back. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

neptune. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

phf. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5000 0.5000 0.5000 0.0000 0.0000 0.0000 

portsweep. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9972 0.9689 0.9576 0.9576 0.9576 

saint. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Figure 6.6 shows an increase in normal instances detection accuracy as the tune value 

increased. The detection accuracy of three attacks of different types has been affected. These 

attacks are apache2 which is a DoS attack, the other is phf which is R2L attack and portsweep 

which is a probe attack. The detection accuracy of phf attack, as shown in Figure 6.6, 

decrased to 50% at tune value of 7. As described in chapter 2, R2L attacks are hard to be 

detected because of their near normal behaviour. The apache2 attack decreased with a 

relativly small amount.  
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Figure 61 Figure 6.6 KDD Cup'99 HTTP service experiment results chart 

Experiment Evaluation 

Table 6.18 shows the confusion matrix results at the tune value 6 which is the optimal 

standard deviation expanding value. 

Table 43 Table 6.18 KDD Cup'99 HTTP experiment optimal confusion matrix results 

TUNE TPR FPR TNR FNR Detection% Class. Err. Accuracy Correl. F-Measure 

0 91.755 0.002 99.998 8.245 96.766 4.301 95.877 0.921 0.957 

1 95.212 0.005 99.995 4.788 98.120 2.455 97.604 0.953 0.975 

1.5 96.015 0.005 99.995 3.985 98.435 2.036 98.005 0.961 0.980 

2 97.992 0.005 99.995 2.008 99.210 1.017 98.994 0.980 0.990 

3 98.841 0.005 99.995 1.159 99.542 0.586 99.418 0.988 0.994 

4 99.111 0.005 99.995 0.889 99.648 0.449 99.553 0.991 0.996 

5 99.215 0.005 99.995 0.785 99.689 0.396 99.605 0.992 0.996 

6 99.294 0.005 99.995 0.706 99.720 0.357 99.645 0.993 0.996 

7 99.343 0.007 99.993 0.657 99.738 0.333 99.668 0.993 0.997 

8 99.378 0.012 99.988 0.622 99.749 0.318 99.683 0.994 0.997 

9 99.394 0.015 99.985 0.606 99.753 0.312 99.689 0.994 0.997 

10 99.526 0.023 99.977 0.474 99.800 0.249 99.752 0.995 0.998 

11 99.539 0.025 99.975 0.461 99.804 0.244 99.757 0.995 0.998 

15 99.605 0.038 99.962 0.395 99.822 0.217 99.784 0.996 0.998 
 

 

Class Attack TN# FP# TN% FP% 

DoS 

neptune. 58001 0 100 0 

apache2. 791 3 99.62 0.379 

back. 1098 0 100 0 

Probe 
saint. 607 0 100 0 

portsweep. 354 0 100 0 

R2L phf. 2 0 100 0 
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Based on Table 6.18, our model has achieved 99.72% detection rate, 99.644% accuracy rate 

and a false positive rate 0.00493% with a correlation rate reaches 0.9929. 

Experiment Results Discussion 

The standard deviation of this HTTP OCC model is 3.78 which have been calculated based on 

experiment 8 shown in Table 5.17. The number of normal instances  that are labeled as attack 

are 277 out of 39247 which were  exceeded the expanded boundary value which is 3.78+6= 

9.37. After investigation we found that the features that are responsible of this increase in 

distance are three features which are, src_bytes, num_compromised and 

dst_host_diff_srv_rate. These features contribute in the increasing distance because of their 

extreme values in these instances.  As an example the normal average length of src_bytes in 

training dataset found is 238 but we found an existence of 23 instances that have a src_bytes 

value above 1000. Our model was perfect in detecting these extreme instances. 

Our model prove that it is able to detect unknown attacks which doesn't exist in training 

dataset, see Table 5.10. These attacks are apache2 , a DoS attack, which has been 99.6%  

detected and saint attack, a probe attack, which has been 100% detected. 

6.3.2 ECR_I Service Experiment: 

We conducted two experiment cases. The first experiment was performed on ECR_I service 

dataset which was extracted from 10% testing KDD Cup'99 dataset as listed in Table 5.11. 

Table 5.11 shows the number of attack instances, attack type and attack name. The second 

experiment was performed on ECR_I service dataset extracted from the full KDD Cup'99 

dataset which also listed in Table 5.11. The model was built using ECR_I 10% training KDD 

Cup'99 dataset at tune value=4. 

ECR_I OCC Model Validation using 10% testing KDD Cup'99 Dataset 
 

MIT Lincoln Labs [20] provide a 10% corrected dataset from the full dataset. This dataset, as 

they described, is not from the same probability distribution as the training data, and it 

includes specific attack types not in the training data. 

 

Experiment Results 

The results of this experiment, shown in Table 6.19, doesn't achieved a high detection 

accuracy of normal instances based on the optimal tune value of ECR_I OCC model which 

equals 4 even if we increase the tune value, the increment of detection accuracy of normal 

instances is relatively small . The   true positive rate at tune value 4 reached 79.19% with 

false negative rate 20.809 %, where as the true negative rate reaches 99.938% with 0.061% 

false positive rate as shown in Table 6.20.  

 

Based on the result of the base line experiment, shown in Table 5.22, the normal detection 

rate results of test experiment is unexpected and extremely differ than the base line 

experiment. We will apply this model to the complete dataset to validate our model accuracy 

after discussing the main problems that affect this result. 
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Table 44 Table 6.19 KDD Cup'99 ECR_I service testing  experiment results 

Label/TuneValue 
Detection Rate 

0 1 4 5 6 9 10 15 20 30 3000 

normal. 0.6994 0.7919 0.7919 0.7919 0.7919 0.7919 0.7919 0.8150 0.8208 0.8208 0.9191 

ipsweep. 1.0000 1.0000 1.0000 0.1797 0.1732 0.0131 0.0098 0.0098 0.0098 0.0098 0.0000 

pod. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 

saint. 1.0000 1.0000 0.0098 0.0098 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

smurf. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 

 

Experiment Evaluation 

Table 6.20 shows the confusion matrix results at the tune value 4 which is the optimal 

standard deviation expanding value.  

 
Figure 62 Figure 6.7 KDD Cup'99 ECR_I service experiment results chart 

Based on Table 6.20, our model has achieved 99.916% detection rate, 89.6% accuracy rate 

and a false positive rate 0.061% with a correlation rate reaches 88.4%. 

Table 45 Table 6.20 KDD Cup'99 ECR_I experiment optimal confusion matrix results 

TUNE TPR FPR TNR FNR Detection% Class. Err. Accuracy Correl. F-Measure 

0 69.942 0.000 100.000 30.058 99.968 17.687 84.971 0.733 0.823 

3 79.191 0.000 100.000 20.809 99.978 11.613 89.595 0.810 0.884 

4 79.191 0.061 99.939 20.809 99.917 11.651 89.565 0.809 0.884 

5 79.191 0.214 99.786 20.809 99.764 11.746 89.488 0.807 0.883 

7 79.191 0.216 99.784 20.809 99.763 11.747 89.488 0.807 0.883 

15 81.503 0.246 99.754 18.497 99.735 10.341 90.628 0.826 0.897 

20 82.081 0.246 99.754 17.919 99.735 9.990 90.917 0.831 0.900 

30 82.081 0.246 99.754 17.919 99.735 9.990 90.917 0.831 0.900 

100 82.081 0.246 99.754 17.919 99.735 9.990 90.917 0.831 0.900 
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Class Attack TN# FP# TN% FP% 

DoS 
smurf. 164091 0 100 0 

pod. 81 0 100 0 

Probe 
ipsweep. 306 0 100 0 

saint. 1 101 100 0 

 

Experiment Results Discussion 

Figure 6.7 shows a very slow increment of normal instances' detection accuracy even we 

move far away from the normal class boundaries.  After investigation from the testing dataset 

results we found that 36 out of 173 instances are labeled as attack. The main contributor of 

this problem was the src_bytes feature. The average length of src_bytes feature found in 

normal class is 32 but we found 37 instances that have more than the double of normal length. 

We found 31 instances have src_bytes value above 1480 and the rest which are 5 instances 

have src_bytes value above 64. This could happen only by the network administrator for 

network diagnostic operations. 

ECR_I OCC Model Validation using Full KDD Cup'99 Dataset 

In order to validate the robustness of KDD Cup'99 ECR_I OCC model, we need to test it on 

the full ECR_I dataset listed in Table 5.11. Table 5.11 shows the number of attack instances, 

attack type and attack name. The model was built using ECR_I 10% training KDD Cup'99 

dataset.  

Experiment Results 

The results of this experiment, shown in Table 6.21, achieved high detection accuracy of both 

normal and attack instances at tune value equals 4. The  true positive rate at tune value 4 

reached 98.408% with false negative rate 1.591% where as the true negative rate reaches 

99.999% with 0.00074% false positive rate as shown in Table 6.22. 

 

Figure 6.8 shows an increase in normal instances detection accuracy as we increase the tune 

value. Whereas three Prope attacks' detection accuracy were decrease as we increase the tune 

value. Satan attack appears to be hard to be detected by the model, its detection accuracy 

droped extremely at a tune value 4. The second Prope attack, ipsweep, was little hard than 

satan attack to be detected by the model, its detection accuracy droped extremely at a tune 

value 5. The last Prope attack which is nmap attack was relatively weak, its detection 

accuracy also droped extremely to zero at tune value 9 which is far away from the model 

optimal tune value which equals to 4. 
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Table 46 Table 6.21 KDD Cup'99 full ECR_I service dataset testing experiment results 

Label/TuneValue 
Detection Rate 

0 1 2 3 4 5 6 9 10 15 

normal. 0.8715 0.9447 0.9592 0.9711 0.9841 0.9841 0.9841 0.9841 0.9841 1.0000 

ipsweep. 1.0000 1.0000 1.0000 1.0000 1.0000 0.7085 0.7085 0.0000 0.0000 0.0000 

nmap. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

pod. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

portsweep. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6667 0.0000 0.0000 

satan. 1.0000 1.0000 0.9189 0.9189 0.4324 0.2703 0.0000 0.0000 0.0000 0.0000 

smurf. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 
Figure 63 Figure 6.8 KDD Cup'99 full ECR_I service dataset experiment results chart 

Experiment Evaluation 

Table 6.22 shows the confusion matrix results at the tune value 4 which is the optimal 

standard deviation expanding value. Based on Table 6.22, our model has achieved 99.997% 

detection rate, 99.203% accuracy rate and a false positive rate 0.00074% with a correlation 

rate reached 0.992%. 

Experiment Results Discussion 

As shown in Figure 6.8, ECR_I OCC on full dataset shows that it can achieved a high 

detection accuracy rate of both normal and attack instances.  After investigation about the 

false negative instances from the full ECR_I dataset results we found that 55 out of 3401 are 

labeled as attack.  
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Table 47 Table 6.22 KDD Cup'99 full ECR_I dataset experiment optimal confusion matrix results 

TUNE TPR FPR TNR FNR Detection% Class. Err. Accuracy Correl. F-Measure 

0 87.153 0.000 100.000 12.847 99.984 6.865 93.576 0.879 0.931 

1 94.473 0.000 100.000 5.527 99.993 2.842 97.237 0.946 0.972 

2 95.920 0.000 100.000 4.080 99.995 2.082 97.960 0.960 0.979 

3 97.106 0.000 100.000 2.894 99.996 1.468 98.553 0.971 0.985 

4 98.409 0.001 99.999 1.591 99.997 0.802 99.204 0.984 0.992 

5 98.409 0.120 99.880 1.591 99.878 0.863 99.144 0.983 0.991 

6 98.409 0.121 99.879 1.591 99.877 0.863 99.144 0.983 0.991 

7 98.409 0.121 99.879 1.591 99.877 0.863 99.144 0.983 0.991 

8 98.409 0.121 99.879 1.591 99.877 0.863 99.144 0.983 0.991 

9 98.409 0.448 99.552 1.591 99.551 1.030 98.980 0.980 0.990 

10 98.409 0.448 99.552 1.591 99.551 1.030 98.980 0.980 0.990 

11 98.409 0.448 99.552 1.591 99.551 1.030 98.980 0.980 0.990 

12 98.409 0.448 99.552 1.591 99.551 1.030 98.980 0.980 0.990 
 

 

Class Attack TN# FP# TN% FP% 

DoS 
smurf. 2807886 0 100 0 

pod.. 259 0 100 0 

Probe 

ipsweep. 11557 0 100 0 

portsweep. 6 0 100 0 

satan. 16 21 43.24 56.76 

nmap. 1032 0 100 0 

 

The main contributor of this problem was the same as we described before in 10% ECR_I 

testing dataset experiment results discussion. These extreme instances are rare to happen 

because the src_bytes of ECR_I service, as described in chapter 2, is in general relatively 

small compared with the 1.59% instances that have a large src_bytes value. This is normally 

happens by network administrator just for testing purposes. Our model also detected unknown 

probe attack that doesn't exists in training dataset which is satan in a low percentage 43.24% 

detection rate. 

6.3.3 POP3 Service Experiment: 
 

The experiment was performed on POP3 service dataset which was extracted from 10% 

testing KDD Cup'99 dataset as listed in Table 5.12. Table 5.12 shows the number of attack 

instances, attack type and attack name. The model was built using POP3 10% training KDD 

Cup'99 dataset at tune value=1. MIT Lincoln Labs [20] provide a 10% corrected dataset from 

the full dataset. This dataset, as they described, is not from the same probability distribution 

as the training data, and it includes specific attack types not in the training data. 

 

Experiment Results 

The results of this experiment, shown in Table 6.23, achieved high detection accuracy with 

low false positive rate based on the optimal tune value of POP3 OCC model which equals 1. 
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The  true positive rate at tune value 1 reacheD100% with false negative rate  0.0 %, where as 

the true negative rate reached 99.923% with 0.0765% false positive rate as shown in Table 

6.24. 

Table 48 Table 6.23 KDD Cup'99 POP3 service testing experiment results 

Label/TuneValue 
Detection Rate 

0 1 1.5 2 3 4 5 6 7 8 

normal.  0.933 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

guess_passwd. 0.995 0.990 0.989 0.988 0.987 0.986 0.985 0.985 0.984 0.984 

mscan.  1.000 0.989 0.977 0.971 0.95 0.934 0.914 0.896 0.880 0.856 

neptune. 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.999 

 

Figure 6.9 shows an increase in normal instances detection accuracy as we increase the tune 

value. The detection accuracy of two attacks of different types has been affected. These 

attacks are guess_passwd which is R2L attack and the other is mscan attack which is Probe 

attack. The detection accuracy of mscan attack deceased relatively rapidly compared with 

gues_passwd attack . As described in chapter 2, Probe attacks are hard to be detected because 

of their near normal behaviour. The guess_passwd attack decreased with a relativly small 

amount as we increase the tune value. 

 
Figure 64 Figure 6.9 KDD Cup'99 POP3 service experiment results chart 

  

Experiment Evaluation 

Table 6.24 shows the confusion matrix results at the tune value 1 which is the optimal 

standard deviation expanding value. Based on Table 6.24, our model has achieved 99.923% 

detection rate, 99.962% accuracy rate and a false positive rate 0.0765% with a correlation rate 

reaches 0.9992 at tune value 1. 
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Table 49 Table 6.24 KDD Cup'99 POP3 experiment optimal confusion matrix results 

TUNE TPR FPR TNR FNR Detection% Class. Err. Accuracy Correl. F-Measure 

0 93.333 0.032 99.968 6.667 99.967 3.465 96.651 0.935 0.965 

1 100.000 0.077 99.923 0.000 99.923 0.038 99.962 0.999 1.000 

1.5 100.000 0.104 99.896 0.000 99.896 0.052 99.948 0.999 0.999 

2 100.000 0.120 99.880 0.000 99.880 0.060 99.940 0.999 0.999 

3 100.000 0.164 99.836 0.000 99.836 0.082 99.918 0.998 0.999 

4 100.000 0.195 99.805 0.000 99.805 0.097 99.903 0.998 0.999 

5 100.000 0.234 99.766 0.000 99.766 0.117 99.883 0.998 0.999 

6 100.000 0.268 99.732 0.000 99.732 0.134 99.866 0.997 0.999 

7 100.000 0.298 99.702 0.000 99.702 0.149 99.851 0.997 0.999 

8 100.000 0.343 99.657 0.000 99.657 0.172 99.829 0.997 0.998 

9 100.000 0.375 99.625 0.000 99.625 0.188 99.813 0.996 0.998 
 

 

Class  TN# FP# TN% FP% 

DoS neptune. 58000 1 99.998 0.0017 

Probe mscan. 1041 12 98.86 1.1396 

R2L guess_passwd. 3607 35 99.038 0.962 

 

Experiment Results Discussion 

Compared with the baseline experiment shown in Table 5.25, the test experiment achieved 

100% high positive rate, where in baseline experiment it is 97.2%. In the baseline experiment 

exist 2 instances out of 77 instances identified as attacks. These two instances have distances 

6.7 and 7.22 which is so far from the boundary of the OCC normal class based on the model 

standard deviation shown in Table 5.23, which is 2.236 +1 tune value = 3.236. Two features 

have a contribution of this increase which are dst_host_srv_serror_rate and count_v which 

have extreme values compared with the normal instances. These two features have high 

values in neptune attack. But in the testing dataset, there's no existence of  such these 

instances. Our model prove its ability on detecting unknown attack which doesn't exists in the 

training dataset these attacks are guess_pass. which is R2L attack that detected in 99.038% 

and mscan. which is a probe attack that detected in 98.86%. 

6.4 Running Time 

The experiments were conducted using an Intel® Core™2 Duo CPU 1.8GHz with 2.5GB 

RAM. The time consumed for the three services of KDD Cup'99 , where are HTTP, POP3 

and ECR_I , are differs depends on the number of features that included in the distances 

measurement. Table 6.25 listed the number of instances, average time consumed for all 

instance of a service and the number of features of each service. Note that the number of 

features of HTTP and POP3 services, shown in Table 5.16,  5.22 respectively, are differs than 

their number of features at the running time because of converting categorical and binary 

features into multiple features, these features are flag, logged_in features. 
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Table 50 Table 6.25 KDD Cup'99 OCC Models running time 

 

# Instances Avg time(Sec) Time/Instance (Micro-Sec) # Features 

HTTP 102,459 8.49 82.83 27 

POP3 64,975 3.21 49.33 22 

ECR_I 164,754 5.86 35.58 6 

 

As shown in Table 6.25, as number of features increased, the execution time is also increased.  

6.5 Comparison with Other Models 

Based on our experiments that were carried out using KDD Cup'99. We chose only three 

services which are HTTP, POP3 and ECR_I services because of the existence of enough 

normal instances and varying types of attacks that exploited these services, but we still didn't 

represent the overall attacks exists in KDD Cup'99 dataset. Because of this limitation we 

decide to compare our results based on the attack type detection rate with the available related 

work models that present their experiment results based on attack type detection rate. We 

chose five models that apply different data mining learning techniques using supervised, 

unsupervised, semi-supervised and OCC learning techniques. 

As shown in Table 6.26, we achieved higher detection rates in all DoS attacks, specially 

apache2 attach.   

Table 51 Table 6.26 Comparison with other models 

Model normal neptune Smurf pod back apache2 Approach 

Our Model 99.26 99.998 100 100 100 99.6 OCC-Service 

Almutairi [66] 99.3 99.98 99.8 98.7 98.4 N/A Naïve-Bayes 

Yang [77] 99.3 99.97 100 98.85 99.36 58.94 Classification/Clustering 

Jiang [50] 99.83 100 99.89 18.18 3.29 N/A Clustering/Outlier factor 

Abd-Eldayem [70] 99.4 100 N/A N/A 100 95 HTTP- Naïve-Bayes 

Barhoom and Matar [16] 98.84 100 100 98.9 99 97.5 OCC-Transport Protocols 

 

The bar chart of this comparison is shown in Figure 6.10. We have thre DoS attacks that are 

detected in 100% detection rate while other models don't reached this detection rate. This is 

because we accept relatively high false alarm in order to not miss R2L and probe attacks  and 

to detect all attacks in a high detection rate. Note that as we increase the tune value the false 

alarm is decreased whereas the attack detection rate is decreased, specially R2L and Probe 

attacks. 
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Figure 65 Figure 6.10 Comparison with other models chart 

6.5 Summary 

Many experiments was performed on two datasets, BM-AUN2015 and KDD Cup'99. We 

performed four experiments on BM-AUN2015 dataset, three for application layer attacks and 

one for network layer attacks. Each experiment has four scenarios, two scenarios for DoS 

attacks and two scenarios for DDoS attacks. Also we performed four experiments on KDD 

Cup'99, one experiment for HTTP service, one experiment for POP3 service and two 

experiments for ECR_I service, one experiment on 10% ECR_I dataset and the other 

experiment was performed using the full ECR_I dataset.  We evaluate and discussed each 

experiment results. 

The results showed that the proposed model has achieved a higher accuracy and detection rate 

with low false alarm and low false positive rates as shown in Table 6.27. 

Table 52 Table 6.27 OCC Models performance summary 

Dataset Detection% Accuracy% False Positive% False Alarm% 

SlowRead 99.917% 99.940% 0.033% 0.087% 

SlowPost 97.999% 98.566% 0.484% 2.383% 

SlowHeader 99.928% 99.957% 0.0% 0.087% 

NetworkLayer 99.872% 99.772% 0.399% 0.057% 

BM-AUN2015 HTTP 98.141% 98.742% 0.133% 2.383% 

KDD Cup'99  HTTP 10% 99.299% 99.616% 0.063% 0.706% 

KDD Cup'99 ECR_I 10% 86.251% 89.595% 0.0% 20.809% 

KDD Cup'99 ECR_I 100% 97.630% 98.553% 0.0% 2.894% 

KDD Cup'99 POP3 10% 99.446% 99.716% 0.568% 0.0% 

 

 As shown in Table 6.27 there's four OCC models, an HTTP OCC model was built using BM-

AUN2015 dataset and three services which are HTTP OCC, ECR_I OCC, and POP3 OCC, 

were built using KDD Cup'99 10% dataset except ECR_I OCC model which has two OCC, 
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the first was built on KDD Cup'99 10% dataset and the second was built using full KDD 

Cup'99 dataset for evaluation. 

The SlowPost-DDoS attack, as shown in Table 6.27 and Table 6.6, has low detection rate, 

97.999%, and high false alarm rate, 2.38% . This gives us an indication that the SlowPost-

DDoS attack appeared to be hard for detection. This is because that 2.3% cases of normal 

instances have the same pattern like SlowPost attack as described subsection 6.2.2. 

 

In KDD Cup'99 ECR_I 10%, we found that , as shown in Table 6.27 and Table 6.19, this 

service has low detection rate, 86.251%, and high false alarm rate, 20.809%. We explained 

the main problem of this in subsection 6.3.2. The model evaluation of this service was carried 

out using the full dataset, which achieved relatively high detection rate and low false alarm.  

 

We observed from the results of training phase and testing phase that our model was very 

robust against DoS attacks and perform well with Probe attacks although that the Probe 

attacks are a stealthy attacks which are hard to be detected. 

 

The limitation of our primary model is the determination of most relevant  features of a 

certain service. In chapter 5 we used the training datasets, BM-AUN2015 and KDD Cup'99, 

that include attacks and normal instances in order to select the optimal features set which 

gives high accuracy rate. But in a real environment these datasets are not available.      
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Chapter 7: Conclusion and Future work 
 

This chapter concludes the work, its results and discussion. The future work directions were 

remarked. 

7.1 Discussion and Summary: 

 These days, abnormal network traffic is a critical threat on computer network. There are 

several researches have been proposed to manipulate this problem. In this research, we 

proposed an efficient model using OCC technique based on the standard deviation of service's 

normal behavior. Through this model we dealt with each network service as single class 

instead of dealing with all network services as a single class. By this way we use just the 

relevant features of each service, hence reducing the high dimensional network feature spaces 

and also ensure that each class has - a proximately - uniform distribution. The instance is 

considered to be labeled as Abnormal if the distance between the new instance and its 

relevant service's centroid table is greater than the service's class standard deviation, else it as 

labeled as Normal. The model consists of three main phases:  

 

Phase 1, Dataset collection and preparation: To build and evaluate our model we used two 

datasets. KDD Cup „99 dataset [20] was used. Three services, HTTP, POP3 and ECR_I, were 

extracted from this dataset, the most relevant features for each service were selected. Another 

dataset, called BM-AUN2015 was used. This dataset is a real dataset which was collected 

from the traffic came from and going to Alaqsa University web server. For more information 

about this dataset please refer to chapter 4. 

 

Phase 2, Building OCC model: In this phase, we used the predefined datasets from phase1. 

Four datasets were in hand, which are BM-AUN2015, KDD Cup'99 HTTP, KDD Cup'99 

POP3, and KDD Cup'99 ECR_I. The normal instances were extracted from datasets and were 

preprocessed separately, e.g. sampling, over-sampling, outlier elimination, categorical 

features conversion and z-score normalization. Each normal dataset was dealt as a the class of 

the OCC model. A centroid table was generated for each class. Based on the generated 

centroid tables, the standard deviation of each class was obtained. Multiple experiments for 

each dataset were performed. The purpose of these experiments is to select the most relevant 

features for each service's class. Based on the optimal features set of each class, a baseline 

experiments  for each class were conducted and the optimal tune value was determined. 

 

Phase 3, OCC model evaluation: In this phase, we performed four experiments on BM-

AUN2015 dataset, three for application layer attacks and one for network layer attacks. Each 

experiment has four scenarios, two scenarios for DoS attacks and two scenarios for DDoS 

attacks. Also we performed four experiments on KDD Cup'99, one experiment for HTTP 

service, one experiment for POP3 service and two experiments for ECR_I service.  We 

evaluate and discussed each experiment results. 
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The results showed that the proposed model has achieved a higher accuracy and detection rate 

with low false alarm and low false positive rates. As shown in Table 7.1, BM-AUN2015 

HTTP OCC achieved 98.14% detection rate, 98.74 accuracy rate, false positive rate 0.133%, 

and 2.38% false alarm rate. While KDD Cup'99 HTTP OCC achieved 99.299% detection rate, 

99.616%, with false positive rate 0.063% and false alarm rate 0.706%. POP3 service in KDD 

Cup'99 achieved 99.446% detection rate, and 99.716% accuracy rate, with 0.568% false 

positive rate and 0.0% false alarm rate. 
Table 53  

Table 54 Table 7.1 OCC Models performance / Service 

Dataset Detection% Accuracy% False Positive% False Alarm% 

BM-AUN2015 HTTP 98.141% 98.742% 0.133% 2.383% 

KDD Cup'99  HTTP 10% 99.299% 99.616% 0.063% 0.706% 

KDD Cup'99 ECR_I 10% 86.251% 89.595% 0.0% 20.809% 

KDD Cup'99 ECR_I 100% 97.630% 98.553% 0.0% 2.894% 

KDD Cup'99 POP3 10% 99.446% 99.716% 0.568% 0.0% 

  

We observed that ECR_I service in KDD Cup'99 10% didn‟t achieved an acceptable detection 

rate due to some normal instances that have similar pattern as attack instances, these normal 

instances, as described in subsection 6.3.2, could be happened by network administrator as a 

diagnosis operations. We evaluate the ECR_I  OCC model using KDD Cup'99 full dataset 

which prove that these extreme normal instances are rare to be happen. As shown in Table 7.1 

ECR_I OCC using complete KDD Cup'99 dataset achieved 97.63% detection rate and 

98.554% accuracy rate were the false positive rate was 0% and false alarm rate was 2.89%. 

7.2 Future Work 

- Find a suitable One-Class features selection method based on the normal instances. 

- Evaluate OCC based on the standard deviation of normal behavior  on content based 

attacks such as SQL Injection. 

- Evaluate OCC based on the standard deviation of normal behavior on worms. 

- Evaluate the OCC based on the standard deviation of normal behavior on applications 

other than IDS such as detection computer viruses. 
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Appendix A: Model Proof of concept's code 
 

/** 

 This function is used to retrieve the standard deviation of normal class 

**/ 

CREATE OR REPLACE FUNCTION get_AUN_normal_std_dev RETURN NUMBER AS 

-- Author: Ramzi A.M Mata 

total_record  number; 

std_dev number; 

BEGIN 

  select count(*) into total_record from AUN_FLOW_CLUSTER_NORMAL_TB; 

 

  select sqrt(sum(power(sqr_distance,2))/(total_record-1)) into std_dev 

from( 

  SELECT 

       sqrt( 

          power(n.CLIENT_REPLY_ACK_TRUE - C.CLIENT_REPLY_ACK_TRUE,2) 

        + power(n.CLIENT_REPLY_ACK_FALSE - C.CLIENT_REPLY_ACK_FALSE,2) 

        + power(n.NUMBER_OF_SERVER_ACK - C.NUMBER_OF_SERVER_ACK ,2) 

        + power(n.IS_HTTP_SESSION_TRUE - C.IS_HTTP_SESSION_TRUE,2) 

        + power(n.IS_HTTP_SESSION_FALSE - C.IS_HTTP_SESSION_FALSE,2) 

        + power(n.IS_HTTP_HEADER_END_TRUE - C.IS_HTTP_HEADER_END_TRUE,2) 

        + power(n.IS_HTTP_HEADER_END_FALSE - C.IS_HTTP_HEADER_END_FALSE,2) 

        + power(n.AVG_TIME_HTTP_HEADER_COMPLETE - 

C.AVG_TIME_HTTP_HEADER_COMPLETE ,2) 

 

      + power(n.NUMBER_OF_CLIENT_TCP_PSH - C.NUMBER_OF_CLIENT_TCP_PSH ,2) 

      + power(n.AVG_TCP_PAYLOAD_LENGTH  - C.AVG_TCP_PAYLOAD_LENGTH ,2) 

      + power(n.AVG_CLNT_TCP_WINDOW_SIZE - C.AVG_CLNT_TCP_WINDOW_SIZE ,2) 

      + power(n.AVG_CURRENT_CONNECTIONS_4SEC - 

C.AVG_CURRENT_CONNECTIONS_4SEC ,2) 

 

      + power(n.AVG_USER_AGENTS_2SEC - C.AVG_USER_AGENTS_2SEC,2) 

      + power(n.NUMBER_ZERO_WINDOW_PKTS - c.NUMBER_ZERO_WINDOW_PKTS,2) 

 

  )  as sqr_distance 

  from AUN_FLOW_CLUSTER_NORMAL_TB n, AUN_FLOW_CLUSTER_CENTROID_TB c 

  ); 

 

  return std_dev; 

 

END; 

/ 

/** 

 This function is used to test the model **/ 

CREATE OR REPLACE FUNCTION test_AUN_data(TUNE_V NUMBER) return number AS 

 

std_dev number; 

true_chk_v number; 

false_chk_v number; 

tmp_v number; 

BEGIN 

 

    std_dev := get_AUN_normal_std_dev; 

 

FOR lbl in ( select distinct CLASS_TYPE from AUN_FLOW_CLUSTER_TEST_TB) loop 

    true_chk_v:=0; 

    false_chk_v:=0; 

 

    for xx in ( 

              select count(std) as cnt,std from( 

                    select distance, case 

                          when distance> std_dev + tune_v then 0 

                          else 1 end as std from( 
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                  SELECT  CLASS_TYPE, 

       sqrt( 

          power(n.CLIENT_REPLY_ACK_TRUE - C.CLIENT_REPLY_ACK_TRUE,2) 

        + power(n.CLIENT_REPLY_ACK_FALSE - C.CLIENT_REPLY_ACK_FALSE,2) 

        + power(n.NUMBER_OF_SERVER_ACK - C.NUMBER_OF_SERVER_ACK ,2) 

        + power(n.IS_HTTP_SESSION_TRUE - C.IS_HTTP_SESSION_TRUE,2) 

        + power(n.IS_HTTP_SESSION_FALSE - C.IS_HTTP_SESSION_FALSE,2) 

        + power(n.IS_HTTP_HEADER_END_TRUE - C.IS_HTTP_HEADER_END_TRUE,2) 

        + power(n.IS_HTTP_HEADER_END_FALSE - C.IS_HTTP_HEADER_END_FALSE,2) 

 

      + power(n.NUMBER_OF_CLIENT_TCP_PSH - C.NUMBER_OF_CLIENT_TCP_PSH ,2) 

      + power(n.AVG_TCP_PAYLOAD_LENGTH  - C.AVG_TCP_PAYLOAD_LENGTH ,2) 

      + power(n.AVG_CLNT_TCP_WINDOW_SIZE - C.AVG_CLNT_TCP_WINDOW_SIZE ,2) 

      + power(n.AVG_CURRENT_CONNECTIONS_4SEC - 

C.AVG_CURRENT_CONNECTIONS_4SEC ,2) 

 

      + power(n.AVG_USER_AGENTS_2SEC - C.AVG_USER_AGENTS_2SEC,2) 

      + power(n.NUMBER_ZERO_WINDOW_PKTS - c.NUMBER_ZERO_WINDOW_PKTS,2) 

 

    )  as distance 

  from AUN_FLOW_CLUSTER_TEST_TB n, AUN_FLOW_CLUSTER_CENTROID_TB c 

                    where n.CLASS_TYPE=lbl.CLASS_TYPE 

     ) 

       ) group by  std 

 ) loop 

 

    if xx.std = 1 then 

      false_chk_v:=xx.cnt; 

   else 

    true_chk_v:=xx.cnt; 

 end if; 

 

 end loop; 

     if lbl.CLASS_TYPE='Normal' then 

         tmp_v:=false_chk_v; 

         false_chk_v:=true_chk_v; 

         true_chk_v:=tmp_v; 

     end if; 

 

     INSERT INTO AUN_TEST_RESULT_TB (LABEL, TRUE_CHECK, FALSE_CHECK, 

TOTAL_RECORD, ACCURACY,tune) 

     VALUES (lbl.CLASS_TYPE, true_chk_v, false_chk_v, 

false_chk_v+true_chk_v, true_chk_v/(false_chk_v+true_chk_v),tune_v); 

 

   end loop; 

 

 commit; 

 

 return 0; 

END; 

/ 

 


