The Islamic University—Gaza B — A ad—) A aalal)

Research and Postgraduate Affairs Ladad) bl pall 5 palad) Cad)) g
Glaglaallliaglgi<id <

Gila glaall oo g guiSS pliala

Faculty of Information Technology

Master of Information Technology

Semantic Web Services Composition Using
Enhanced Beam Stack Search

Bmal) dajad) diSa Giaal) Laj e aladiuals LYY Gugll ciladd asaas

Teejan Tajeddean El-Khazendar

Supervised by

Dr. Rebhi Soliman Baraka

Associate Professor of Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Information Technology

June/2017

L—=

:olgia) Jaad Al Alall asia oLl aégall Ul

Semantic Web Services Composition Using

Beam Stack Search
dajal) daiSa daaslsd alaiiul LYY qugll ciladd auens

Ol cays Lina 4] 5)LaY) o Lo bl c(aldll saga 1 s Laf Alluyll oda adde bl Lo b

Guanie (6 3 Fims gl ale il f dan dail AY) B e pak ol e eia gl Sl JSS ALY o3

Declaration

(oAl Ly Sl daales

I understand the nature of plagiarism, and I am aware of the University’s policy on

this.

The work provided in this thesis, unless otherwise referenced, is the researcher's own

work, and has not been submitted by others elsewhere for any other degree or

qualification.

Student's name: DAl cpall 2 Gl tlUal) o
Signature: DAl las sl
Date: 7/3/20 17 sl

il oA

The Islamic University of Gaza

1150 - odbla il k) 1§ bl e i o i i
Ref: /35/6) C b,
Date:. . 20v1..7/07/q%_,_)m1

‘ » g | o -®
- ikl ding ol (oudi oSl diinid
e pSall diad JS e 555 dlay) Analally Wl cilubally alall Cingdl () il e 5L

Clapleal Loaslpl€idls 3 pivald) dags Jul Jabiall A jla cpadl gL ol /A8l da bl

"5)) A el A Canall A5l 53 alasly Ys Cupgll sk auent
"Semantic Web services Composition Using Enhanced Beam Stack
Search"

Al 22017/07/05 G-8lsal «a1438 JIs—5 10 oLVl asll coai) 4 s8lidd) 2asy
foe A3sSally da g kY1 e oSl Aia) Cuadial dyels e At
L_AA.A.AJJEJ_«J:A 4 Sp Olaal TP YN
il Lddlia el ihas ed e o
.......... ;//7 ’l ...J& " :-'éuA J,-.“* 1.8 A= . JA‘— 4.3
Eebin [alasleal Loaglelals 3 5 salal) Ao Liald) mie Lialll con sl d05)0d) aay,
cilaglaal) L gl giss
by b dass G lgale jiaw s 4ol ag il Ab) o sl lguasT il dajall 50 daiad) Lially
\
“‘M"&\J

Lal) cladally alal) Giagd) ¢ sl syl quils

= +97082644400 & +97082644800 & public@iugaza.edu.ps & www.iugaza.edu.ps €7 iugaza 4 iugaza B mediaiug ®® iugaza
P.O Box 108, Rimal,Gaza,Palestine culauls . 33< . Jlodl 108 w.ue

Abstract

Semantic web services composition is a set of web services and a user request,
we need to find the best applicable sequence of web services satisfying the user's
request, fulfiling his requirements. Each web service has functional and non-functional
requirements. The problem, is finding the web services composition that fulfills the
non-functional requirements automatically without without involvement the user.

In this research, we take into consideration the non-functional properties to form
a quality based web services composition specifically depending on response time and
throughput (the quantity of efficiency produced over time). We enhanced the heuristic
Beam Stack Search algorithm and employed it to search automatically through the web
services search space for a composition satisfying the required qualities.

Number of experiments were conducted to form compositions on several web
services test set sizes; 5000, 10000, and 15000, such that running the Enhanced Beam
Stack Search with different beam width sizes; 120, 150, 300, and 600. The results
indicate the ability of the algorithm to achieve the required compositions with the
respective qualities. The beam width parameter of the algorithm plays an important
role on the quality of the formed composition. As the beam width increases, the
throughput of the formed composition decreases and vice versa, i.e., results obtained
when using the 15000 test set size for optimal solution throughput are 848, 773, 311,
and 192 sequentially by using the mentioned consequent beam widths increasingly.

Results also showed that as the test set size increases, the algorithm performs
better in terms of throughput. If the user wants the minimum response time he will
take the first found solution. While, if he is interested in the best-found throughput, he

will choose the optimal solution.

Keywords: semantic, web services, composition, automatic, Beam Stack Search

oadlall

Judes Juadl slad e Gl sl ladd (e 4o sana Bile (o VAl Cusl) less A<)
JS sy e 5 dantaby Clillie dag Lailllie (323 5 aadiiad) calla by cugll Gled (e anlia
J<h Ada g pall cllbnall ghsy A cugll cledd aaead alayl Jon ASEA Hgaaii ccuy 4
CosS Ldag pual) laall SlaeW) cpe 02l i) e L assind) e Jas (6 0 Salesis]
(Aaie) 558 (PIA Aamial) 5elall) 5ol 5 Alai) (g Basa GadVlsasall e ol Cag Aedd aans
Glaxd xaead e cugll ledd e geas e Gall lgada g g 3l Y daial) AaSa D) ylsa Joaaty Liad
Cugll Fexd Cilasant 0ol Claill (e Ao gane Jons Uil L Sitlegisl IS apgllaal 3350l DL cug
Jlerinly ad LS 15000 10000 5000 ¢lealan] dfiny Cuy ciledd dcsene o ST Jleniandy
Wil prags 5l 600 300 <150 120 ¢diline a3a e Ao Uaeal) Loyl Tuake da))l5a
Lala Do s B loall Asall e ki - Astadl) 5358l dssthaall cilasantll) Jpaa sl daa))53
lend preatl Al 56l U8 Aajall e 213 WS Lal Cugll cilexd paeaisase o 0 Gaa
G i) e pane Jlasind die lgale Ulan) 5 QB s e o GSall 5 058l sl
Jelai Aaja gaje JS o duaadly 192 311 <773 (848 altia 56liS cilael (15000 Leans

elhac) 8 ol Zaa)5)eal) 5o lS ol LS cinl) Ao sana pna ala) LalS 4l mibll <oyl LS
Ja 8 Wl oalaal @ s ol 38k Capen dlaniad ey Bl auy sadiendl S Jla 8 LGl Lalii) 2ad
Al Fae Al ardaad 2 M Jall Sl Cosud ol Juadl b 2iga IS

Ajal) LunSa Gae) o ¢ Silasigl cauand ccus cland o V2 rdialide clals

Epigraph Page

"In the middle of difficulty lies opportunity.”
Albert Einstein

Dedication

“The family is one of nature's masterpieces” -- George Santayana

This thesis is dedicated with love and affection to my family who supported me
through my life journey.

VI

Acknowledgment

First of all, I would like to thank my Master’s Thesis advisor Dr. Rebhi Soliman

Baraka for his support and guidance. Our continually meetings and discussions made
this thesis possible.

I would also like to thank my friends for being always close to me.

Finally, thanks to my family for supporting me and inspiring me to achieve my goal.

Vil

Table of Contents

D =Tod U= 1 o] o PSSP I
ADSTFACT. ... i
EPIGraph Pageccv it \/
D =To [ToF 1 A o] o S RPPRRPR Vi
ACKNOWIEAGMENT......coiiieiece e re e VIl
Table OF CONTENTScciiiiiiieee bbb VI
LiST OF TaDIES ..o X
I TS Ao B 1o U TSR PR Xl
LiSt OF ADDFEVIALIONSvivieiiiieiie et X1l
Chapter 1 INtrOAUCTIONocviiiiiiiiiiieeee e 2
1.1 Background and CONEEXL........cccecvieiieiiiieie e 2
1.2 Statement of the Problem ..o 5
1.3 ODJECLIVES. ...ttt bbbt 6
1.4 Research SignifiCanCecccveiiiiie i 6
1.5 Scope and LimitationS..........ccoeiiieiieiiiie et 7
1.6 Research Methodologycccouiiiieiiiiieiess e 7
1.7 Organization Of the ThESIScuciiiiiie s 9
Chapter 2 Theoretical and Technical Foundation............ccccooeviviiiiievecceiien, 11
2.1 WWED SEIVICES.....ceiiieeiieeie ettt sttt ettt te e sneenre e e sneesneenteaneenrees 11
2.2 WWED SErviCeS DISCOVEIYccuiiuiiiiiiieieieiie sttt 12
2.3 Web Services SEIECHION.........ccoii it 12
2.4 Web Services COMPOSITIONc..eiiiieieieiesie et 13
2.5 Web Services Composition Classificationscccocvevvrieiireniesienieene e 13
2.6 BPEL as a Web Services Composition Languagecccceevveveeieeieeiieeieennnn, 16
2.7 Heuristic Search AlQOrithms..........ccoiiiiiiiiiiiee e, 17
2.8 BEAM SBAICKeeviieie ettt nrees 20
2.9 Beam Stack SEarCh.........ccooiiiiiiiiicee e 20
2.10 Solving Web Services Composition Problem Using Beam Stack Search27
211 SUMIMAIY ..ottt b et b e b e nne s 27
Chapter 3 Related WOKKS........ccoiiiiiiieic ettt 30
3.1 WeED ServiCes DISCOVEIYc.couiiiiiiiiiiiiieieie ettt 30
3.2 Semi-automatic Web Services Composition Approachesc.ccocveveinennn. 31
3.3 Heuristic Automatic Web Services Composition Approaches............c.......... 33

VIl

3.4 Beam Stack Search with Semantic Web Services Composition..................... 37

3.5 SUMMAIY L.ttt e e b et snreas 38
Chapter 4 Composing Web Services Semantically Using Enhanced Beam Stack
SBANCI ...ttt nes 41

4.1 Specification of Web Services COMPOSITIONcocvveeiierieneneneiesesieees 41

4.2 Structure of Web Services Composition Using Enhanced Beam Stack

Search 43

4.3 Enhanced Beam Stack Search AIgorithm ..., 47

4.4 Factors of Web Services QUalityccocviieiieiicic e 51

4.5 Measuring QUAIITIEScccveiuiiieiice e 53

4.6 CaS DESCITPLION ...ttt 53

S TN 110 T YRR SUPTPR 54
Chapter 5 Experimental Results and Evaluationcccccoocevveveiiieiecne e, 56

5.1. Some IMplementation ISSUEScccoeiiriiiriiini e 56

5.2 EXperimental reSUILS..........ooviii e 57

5.3, EVAIUALION ..ot 61

5.4, SUMIMAIY ...ttt sb et b e b nre s 65
Chapter 6 Conclusions and Recommendations.............cccccvevevieeieeriesieseesesie e 67
RETEIENCES ...ttt bbb bbb 69

List of Tables

Table (5. 1): Qualities and quality ratios for 20000 web services test set

Table (5. 2): Qualities and quality ratios for 5000 web services test set ..

Table (5. 3): Qualities and quality ratios for 15000 web services test set

List of Figures

Figure (1. 1): Steps of Research Methodologycccccveveiiieieeie i 9
Figure (2. 1): A decision tree of artificial intelligence solutions for the web service

composition problem (Oh, Lee, & Kumara, 2006)..........c.ccccvevrrieriiereseeseere e 14
Figure (2. 2): BPEL ProCess fIOWcocuoiiiiiiiiiiie e 17
Figure (2. 3): A tree for illustrating levels and expanded nodes.............ccccceevverinennnne 21
Figure (2. 4): Divide and Conquer Beam Stack Search Algorithm.............cc.ccoce.ee. 23
Figure (2. 5): Function Search Used by Beam Stack Search Algorithm. 25
Figure (2. 6): Depth-first and breadth-first search techniques............ccccccoeviieivenns 26
Figure (4. 1): Web services COMPOSItIONc.ccverierieiiierrere e seesie e e esee e e 41
Figure (4. 2): Directed graph composed of candidate ServiCes...........cccooevvrivenvenns 42
Figure (4. 3): Web service design “Enhanced Beam Stack Search”cccocue. 47
Figure (4. 4): Define a graph search tree of web service function...............cc.ccoeee. 49
Figure (4. 5): Beam Stack Search AIgorithm ... 49
Figure (4. 6): Search fUNCLIONccoiiiiii e 51
Figure (4. 7): Throughput eXample..........ccov i 52
Figure (4. 8): Response time eXample ..o 53
Figure (5. 1): First found solution throughputcccooveiiiicie e 63
Figure (5. 2): Optimal found solution throughputcccooiiiiiiiiie 63
Figure (5. 3): Experimental results when the test set size 10000 results.................... 64

Xl

ARA*
BnB
BPEL
DCBSS
ffsT
ffsTH
osT
osTh
OWL
RWA*
SOA
THqr
Tqr
WSCI
WSDL
WSLA
WSMO

List of Abbreviations

Anytime Reparing A*

Branch and Bound

Business Proccess Excution Language
Divide and Conquer Beam Stack Search
First Found Solution Time

First Found Solution Throughput
Optimal Solution Time

Optimal Solution Throughput

Web Ontology Language

Restarting Window A*

Service Oriented Architecture
Throughput Quality Ratio

Time Quality Ratio

Web Service Choreography Interface
Web Service Description Language
Web Service Level Agreement

Web Service Modeling Ontology

Xl

Chapter 1
Introduction

Chapter 1

Introduction

In this chapter, we present an introduction to our research. The first section is
dedicated for the background of our research. The statement of the problem is
introduced in the second section. The focus of the third section is on the main and
specific objectives of the research. The significance of the research is presented in the
fourth section. The scope and limitations of the research are covered in the fifth
section. In the sixth section, a brief description is given to the research methodology.

An overview of the thesis is summarized in the last section.

1.1 Background and Context

Web services is a description for a set of associated functions that is available
over the web through programming. Web services are loosely coupled, allows
dedicated binding, also they are reusable software components. Web services have
three entities that are the service requester, service provider and the registry
(Medjahed, Bouguettaya, & Elmagarmid, 2003).

The procedure of combining several web services into one coarse-grained
service in order to produce more composite functions is called web services
composition (Oh, Lee, & Kumara, 2006). Web service composition gives a unified

service that has some supplementary values.

Web services discovery is concerned with finding out the best applicable service
among functionally similar services that meet the requirements of users, consequently,
we must define a set of well-defined quality of services criteria and user preferences
to help in the web service discovery (Seo, Jeong, & Song, 2005).

Web services composition problem, is such that there are a set of web services
and a user request given, and we want to find the shortest sequence of web services
satisfying the user's request. But since web services composition problem solution
have to discover services that fulfil the functional and non-functional requirements

including the quality of services according to the user request. Therefore, the desired

web service composition problem solution, will not be the shortest path, but the web
services composition with the optimal gathered quality of services value (Bartalos &
Bielikova, 2012).

Web service description language (WSDL) is considered as the language used
to define a web service and represents the syntactic description. While WSDL
describes the structure of the input and output, without the meaning of the data, this
makes the automated web service composition challenging (Medjahed, Bouguettaya,
& Elmagarmid, 2003).

A semantic description of web services is required for automatic discovery of
these services, while current web services methods offer the syntactic description, that
are difficult for the requester and the provider to understand the input and output.
Semantic web services consist of both, the mixture of web services and the semantic
web. With regard to the semantic web, Web Ontology Language (OWL) and Web
Service Modeling Ontology (WSMO) are two techniques that can be used for service
composition (Feier, et al., 2005). The use of semantic web services is to combine data
and services from various sources with preserving their meaning. While discovering
and combining web services, a value-added service is provided by semantic web

services to complete the domain tasks (Mirbel & Crescenzo, 2010).

Web services are usually defined based on their functional parameters
(input/output parameters), while the parameters of quality of service are used to
describe the behavior of the service. The quality of service solves the problem of
discovering the best service between the functional similar services, it makes the
selection process depends on the non-functional requirements. That makes the quality
of service capable of being used as the leading factor for ranking the web services.
During the selection procedure, after matching the functional requirements, the web
service with high quality of service value will be chosen firstly (Sivasubramanian,
Ilavarasan, & Vadivelou, 2009). The web service activity sequential order flow can be
expressed using several languages such as BPEL4WS (Andrews, et al., 2003) and
WSCI (Arkin, et al., 2002).

Search algorithms have been used for sometime to solve problems in various

fields such as large scale combination. Trying to solve the problem using the existing

search algorithms, which works on finding an optimal solution, it may take long a time
in computations to complete, while this delay is not allowed due to time restrictions

for the customers.

Generally, search algorithms have two significant problems when applied to
large and complex problems. The first one is the problem of memory needs of the
search methods especially the best first methods becomes expensive. The second one
is the problem of time where search algorithms needs a lot of time to reach the best
solution (Vadlamudi, Aine, & Chakrabarti, 2011).

A previous study (Shehu, Epiphaniou, & Safdar, 2014) showed a full review of
the techniques that treat this search problem as NP-hard problem. It presents the
concepts of quality of services aware web service composition, concentrating on
quality of services properties, workflow model and quality of services aggregation

functions.

Many researchers have offered different automated methods to solve the
problem of semantic web services composition (Mcllraith & Son, 2002), (Sheshagiri,
DesJardins, & Finin, 2003), and (Wu, Parsia, Sirin, Hendler, & Nau, 2003). An
important study was presented by Kil and Nam (2013) proposes using the heuristic
Beam Stack Search algorithm (described in full details in Section 2.9) in solving
quality of web services aware web services composition problem. This study is the
only study that employed the Beam Stack Search algorithm to solve the problem of
web services composition, while we also used it in our study to use the Beam Stack

Search but in another way in order to perform better results.

The goal of this research is centered around enhancing an algorithm to find a
specific web service among a set of web services under the order of the client meeting
a specific quality criteria and to altimately be part of a composition. Enhanced Beam
Stack Search algorithm enhances forming the web services composition by
reconstructing each time a newly discovered solution. The Beam Stack Search
frequently improves the overall solution by realizing better solutions for web services
composition until finding the optimal solution. While there are two most important
solutions records among the found solutions for the user, they are concentrated on

finding the first fast solution and the solution with the best throughput value. At the

beginning, the Enahnced Beam Stack Search algorithm gives all the possible solutions
where the user can take the first fast solution by terminating the algorithm directly
after finding the first solution. Alternatively, it might complete searching for more
solutions for users who are not interested in time and they can wait to find the solution
with the best throughput. Then after the Enahnced Beam Stack Search algorithm
finishes processing all the possible solutions, it terminates by itself, and returns the
best-found path for forming the composition depending on the best-estimated response
time and throughput. There are many non-functional requirements which the user may
be interested in. In our research, we chose the response time since it is important to
deliver the service in a good time. Also, we chose the throughput variable because it
measures the quantity of efficiency produced over time, throughput is very important

since there is no need for un-efficient web services.

In our research, we applied a number of experiments to form compositions by
running the Enhanced Beam Stack Search using web services test set sizes; 5000,
10000, and 15000, with beam width sizes; 120, 150, 300, and 600. Conducting
experiments on the different used test set sizes and diverse beam width sizes allowed

us to find valuable experimental results.

1.2 Statement of the Problem

A set of web services is given by a service provider and a user request is given.
The user wants to find the best web service composition that meets specific functional
and non-functional requirements. Using automatic search technigues, many solutions
can be formed to solve the web service composition problem fulfilling the functional
requirements but the major challenge is finding a solution that also fulfils the non-
functional requirements according to the user request automatically. This solution
must not only consider the shortest time quality of the composition, but also the

optimal throughput quality of the services forming the composition.

We implemented an Enhanced Beam Stack Search algorithm to process a set of
web services with their functional and non-functional requirements, inorder to
construct a set of web services compositions which are functionally similar but differs

in their non-functional requirements.

1.3 ODbjectives
1.3.1 Main Objective

The main objective of this research is to design an algorithm based on
Beam Stack search algorithm to perform semantic web services composition
automatically using a set of web services to achieve the user's request, taking
into consideration the solution quality. The solution quality of web services
composition depends on the response time and on the throughput of the

composition.

1.3.2 Specific Objectives

The specific objectives of the research are:

1. To collect and analyze a set of web services with their syntactic descriptions
of the functionality they offer, and semantic descriptions utilizing their
qualities.

2. To analyze Beam Stack Search algorithm to propose a suitable modification
to make it applicable to solve the web service composition problem

3. To design the enhanced approach that solves the semantic web service
composition problem based on Beam Stack Search

4. To implement the algorithm and conduct a number of experiments to
measure the quality of the approach

5. To evaluate the algorithm. The ratio of “the throughput of the first fast
solution” to “the best throughput solution”, and “the response time ratio of
the first fast solution” to “the best-found solution”, are used to assess the
algorithm’s efficiency.

1.4 Research Significance

This research solves the problem of web services composition problem taking
into consideration user specified qualities. The user determines his request and chooses
among, e.g., a first found solution or wait for the optimal solution to be discovered by
the Enahnced Beam Stack Search algorithm. Enhanced Beam Stack Search discovers

frequently improved solutions and realizes the optimal solution.

The Enahnced Beam Stack Search algorithm serves two types of customers. The
first type is customers who need the fastest solution, and the other type is customers

who care about composition solution throughput quality

The importance of the research stems from its ability to improve a general search
technique such as Beam Stack Search and then employ it within the area of web
services, particularly, the composition problem.

1.5Scope and Limitations

The quality of web services has a wide range, such as security and other factors.
In this research, we only focus on the factors of throughput and response time for

finding each solution for the required web services by the user.

Results evaluation will be conducted in order to determine the potential
advantages of using the algorithm of Beam Stack Search to solve the web service

composition problem

Regarding the data sets, they are not real web services but rather experimental
sets related to Acme Packet company services collected and prepared by (Blake,
Weise, & Bleul, 2010) as WSDL files for the syntactic description of the services and
their associated web service level agreements (WSLA) files which hold the semantics
of the services including the qualities. More on these data sets can be found in Section
4.5.

1.6 Research Methodology

To achieve the objectives of the research, we follow the following

methodology as shown in Figure 1.1:

Step 1. Reviewing works related to using Beam Stack Search in web services
composition problem, important subjects related to the field of semantic web
services and semantic web services composition problem techniques as well as
related search algorithms.

Step 2. Finding and collecting the suitable web services data which will be used

as the search space by the algorithm during experiments.

http://www.cs.stir.ac.uk/~kjt/research/conformed.html

Step 3. Preparing and processing the collected data to be used in the experiments.
While the data is stored in a web service description language (WSDL) format.
We have to prepare the data as a java file to be ready for use.

Step 4. Studying the original Beam Stack Search algorithm and modify it as
needed to be suitable for our purpose to search through the web services data
set. depending on its original mechanism. It uses backtracking method
depending on a specific beam width suitable to the used web services set size.
In the set of web services, some web services are candidates of specific
functionality but they differ in their non-functional requirements.

Step 5. Preparing service model which is a WSDL file containing the client’s web
service requests to be searched by the algorithm to form the composition.

Step 6. Performing the required experiments using the prepared files to find the
required service by the client file through the set of web services using the

Enhanced Beam Stack Search algorithm.

Step 7. Study the efficiency of the approach based on the Enhanced Beam Stack
Search algorithm (Zhou & Hansen, 2005).

~ ~

/ _‘

.‘f 1. Collect |
‘\ data /
// \\,‘ // 4 \\\
[6.Evaluate | [2.Prepare
\ results J | &process |
v Qa/:
Ve AN 3. Modify~
/5 conduct | / original
! : | . [Beam Stack

7 T

| experiment | Ve N | Search |
\ .
[a.Buld a;g:gggén
J service |

w‘ll

Figure (1. 1): Steps of Research Methodology

1.7 Organization of the Thesis

The thesis is organized as follows. Theoretical and technical foundations are
discussed in Chapter 2. The related works are reviewed in Chapter 3. The proposed
approach is described in Chapter 4. Chapter 5 is devoted to analyze and discuss the

results of the approach. In Chapter 6, conclusion and recommendations are given.

Chapter 2
Theoretical and Technical
Foundation

Chapter 2

Theoretical and Technical Foundation

A substantial amount of research has been done on web services composition.
This chapter covers the theoretical and technical foundations related to web services,
their description, discovery, selection, semantics, and composition. Heuristic search
algorithms, Beam Search and Beam Stack Search and their complexities are explained

and how they are used in the web services composition.

2.1 Web Services

Web services can be any application reachable to other applications through the
web. This definition is open, it says that anything has an URL can be considered as a
web service. For example, any reachable program over the web with a fixed
application programming interfaces, and available with supplementary descriptive
information on some guide can be considered as a web service (UDDI Consortium,
2001).

Web services is given by the world-wide-web consortium (W3C) (Austin et al.,
2004) as “a software application identified by a URI, whose interfaces and bindings
are capable of being defined, described, and discovered as XML artifacts. A Web
service supports direct interactions with other software agents using XML-based
messages exchanged via Internet-based protocols”. This definition stresses how web
services must work, defined, described, and discovered. Web services must be not only
running, but they also have to be described and advertised, so it will be possible to
write clients which link and interact with them. Simply, web services are interoperable
software components that can be used in application integration and component-based
application development and can be integrated into supplementary complex dispersed
applications (Alonso, et al., 2004).

Web service description language (WSDL) is written using XML to describe
web services as endpoints set which is functioning on messages containing
document(s) information or containing procedure(s) information. The processes and

messages are conceptually described in the WSDL file, then engaged to a concrete

11

network protocol and message format inorder to outline an endpoint. Associated
concrete endpoints are joint into services (abstract endpoints). WSDL is a language
that is able to be extended to permit description of endpoints and their messages
irrespective of what is the message formats or network protocols used to connect
(Christensen, et al., 2001).

2.2\Web Services Discovery

As the demand for web services usage is increasing, various questions arise
about the approaches and techniques to determine the more appropriate web service to
use. Actually, there are considerable issues beyond the finding of a web service. Web
services discovery mechanisms have an important role in the cooperation among
business procedures and customers based on accepted web standards (Garofalakis, et
al., 2006). The major subject in web services discovery is finding out the best
applicable service among functionally similar services that meet the requirements of

USers.

Web services discovery can be considered as a match-making process (Sycara,
Klusch, Widoff, & Lu, 1999) or the process of discovering a suitable service provider
for a service requester over an internal proxy (Decker, Sycara, & Williamson, 1997).
Generally, web services discovery starts by service suppliers when they advertise their
abilities to middle brokers (registries). After that, brokers store this information, then
a service client asks the brokers best matching his demanded capabilities. At the end,

the broker efforts to match the client request against the stored advertisements.

Service discovery may be accomplished manually or automatically using
specific mechanisms. While in both cases, the searching interface should be able to
make a comparison between the supplied capabilities and the required functionality
(Booth, et al., 2004).

2.3Web Services Selection

Services from diverse providers should be selected carefully inorder to be
integrated into a composite web service irrespective of their platforms, performance
speeds, or even their locations inorder to carry-out complex business operations and

transactions (Yu, Zhang, & Lin, 2007). The input of web services selection phase is a

12

set of services levels, where each level includes web services with the same
functionalities, but they may differ in other non-functional features like the quality of
services characteristics (Moghaddam & Davis, 2014). The customer may select the
required service manually while the construction of the web service composition time
depends on some extra data resources or choose the service randomly from available
candidates, or may use automated web services composition techniques (Wang &
Vassileva, 2007).

2.4Web Services Composition

A Services Oriented Architecture (SOA) is a set of services connecting with each
other that may contain either simple data or it could contain two or more services
performing some activity (Barry & Associates, 2017). The goal of Service Oriented
Architecture (SOA) is to offer a loosely-coupled combination or/and composition of
web services existing in diverse systems and programmed using various programming
languages. Commonly, web services are platform independent applications which can
be invoked through the internet. Easing the gathering of web services to form
composite web services, is a significant functionality in SOA (HU & Wang, 2008).

Generally, web services composition problem is represented by, that we are
given a set of web services and a user request and we want to find the shortest sequence
of web services fulfilling the user request. The problem of automatically gathering web
services inorder to form compositions that enhance given user priorities is often
denoted as the automated web service composition problem (Doshi, Vembu, & Zhao,
2011). Web services composition needs to find service suppliers that fulfil functional
and non-functional requirements, which takes the quality of web services constraints

in consideration.

2.5Web Services Composition Classifications

Web services composition can be categorized depending on three significant
specifications which depend on automation degree of the composition, the complexity
of the composition and the scale of the composition (Albreshne & Pasquier, 2010) and
(Oh, Lee, & Kumara, 2006).

13

Manual

{Pre-defined
workflow required)

Automatic
[Syntactic or Semantic Web ‘Methods
enabled)

|'/-l
\ } -Facet

Workflow
methods

~Hepler
Proteus
-METEOR-S Small
SEIVICEes
{
\ Operator
simple complex simple complex
Heuri_stil:: Search Satisfiability algorithm -Graphplan, Partial order
algorithm -3ATPlan + WalkSAT planning
-A* variants Local h ~Theorem proving
algorithms ocal searc *Rule based planning
*Tabu search, -Integer linear programmmin;
-Genetic algorithm etc. prog 9

Figure (2. 1): A decision tree of artificial intelligence solutions for the web
service composition problem (Oh, Lee, & Kumara, 2006).

Figure 2.1 illustrates the web services composition as a decision tree of artificial
intelligence solutions classifications in a simple flowchart. We identify briefly these

classifications as follows:

2.5.1.Composition Automation Degree

Composition can be manual, automatic or semi-automatic. A manual
composition has to be performed by domain experts because it is zero automated,
so it relies on the user experience. While automatic composition is performed using
software programs so ordinary users can use it.

e Manual composition approach: is the traditional approach where users must be
familiar with the domain, they choose suitable web services and include them
into a coherent workflow. Users might depend on a GUI based software to
make the composition easy, even though, it requires expertise and is
susceptible to errors. Processes are defined by a process execution language
like BPEL. Many existing tools have plug-ins for enabling manual composition
such as Net-Beans (NetBeans.org, 2016), and JOpera (JOpera, 2016). This
approach is not easy to be used because it requests a lot of knowledge by the

user and it comes to be more and more challenging with the explosion of web

14

services resources, so it is not suitable for large-scale web service composition
problems.

e Automatic composition approach: we work in this path. This approach works
without user participation, it is used when the user has a set of restrictions and
priorities and he has no method pattern. It depends on discovering services for
performing abstract processes which are defined previously. The automatic
tools, try to find the available web services that semantically correspond as
much as possible to the user’s requirements.

e Semi-automatic composition approach: which is also called the interactive
composition approach, in this type of composition, the system often supports
users to discover, filter and combine automatically the wanted services through
matching the user’s requests for the existing services. Furthermore, it allows

end users to be involved all the time throughout the composition process.
2.5.2.Composition Operators

Web services composition can be performed using either simple or complex
operators. Simple operators web service composition searches using a sequence of
AND operators. For example, “web service az, AND web service bs, AND web
service cg, AND ...” also, it does not contain any restrictions. Complex operators
web service composition use additional operators (such as OR, XOR and NOT
operators) or restrictions (for example, request r prefers web services located in

Europe to those located in Asia).

2.5.3.Composition Scale

There is small and large scale web services composition. Exhaustive search
algorithms could only work for small scale web service composition problem. Large
scale problems, estimated algorithms which find sub-optimal solutions are preferred

(Sivasubramanian, Illavarasan, & Vadivelou, 2009).

Various methods can be used to solve the web services composition problem
automatically such as heuristic search algorithms, linear programming, and Genetic

algorithm.

15

Based on the artificial intelligence methods shown in Figure 2.1 and thinking
about web services composition as a large scale scenario, we need to use simple search
operators through the composition process with the various available candidates. This
is why we are using a heuristic algorithm without thinking about Genetic methods.
Specifically, the used heuristic technique in this research to solve the web services
composition problem is the Beam Stack Search algorithm.

In Section 2.7, we present various concepts related to heuristic search
algorithms, Beam Search, Beam Search, Beam Stack Search and using them in the

composition of web services.

2.6 BPEL as a Web Services Composition Language

Performing web services composition can be done through BPEL orchestration.
Orchestration is the technique that is used to combine web services, while the
concerned web services are restrained and controlled by a single endpoint essential
process which is simply another web service. Web services can be combined without
being aware that they are playing a part in a larger business process (Albreshne, Fuhrer,
& Pasquier, 2009).

Business Process Execution Language for Web Services (BPEL, WS-BPEL,
BPEL4WS) which is commonly referred to by BPEL, is the new standard for outlining
business procedures with services composition. It is the foundation stone of Service
Oriented Architecture (SOA).

A BPEL process flow expresses the order in which the involved web services in

a composition are composed, either in sequence or in parallel.

16

Step 1

Sequential Flow

Step 2

Step
3B

Figure (2. 2): BPEL process flow

Parallel Flow

Figure 2.2 illustrates how BPEL process flow in its two flow types, Sequential
flow, and the Parallel flow type.

A BPEL process consists of a set of actions. It interacts with exterior associate
services through a WSDL mediator. A BPEL process, defines the execution order,
conditional behaviours, and activities. Additionally, it defines the namespace, ports,
operations, partner link types, and messages that are needed to determine the process
actions. WSDL files are required in order to generate an effective, executable BPEL
definition (Albreshne, Fuhrer, & Pasquier, 2009).

2.7 Heuristic Search Algorithms

Heuristic search algorithms solve optimizing problems through finding a regular
fast suboptimal solution, then working on finding enhanced solutions when given
additional time. For a fast solution, anytime search algorithms are characteristically
greedy with respect to the heuristic cost h. There are various heuristic search

algorithms (referred to an anytime A* method) as we review some of them.

Likhachev, Gordon, and Thrun (2003) Anytime Repairing A* (ARA*) algorithm
adopts an allowable heuristic and minimizes the weight w each time, to be used in the

cost function as follows:

fm)=gmn)+w=xh(n), w>1 (3.1)

ARA* works by executing A* several times, starting with a large w and scaling
down w value before each execution until w = 1. Consequently, after each individual
search, a solution is ensured to be by a factor w of finest solution which assign the
denotation of optimality for the solution. ARA* algorithm, proves w acceptability of
the present solution. This indirectly prunes the search space like that no state has ever
expanded whose f’-value is bigger than the value of the present solution. When
decreasing the value of w, ARA* changes the correspondig f’-values of all the states
in “Open” set approbate to the new weight. Additionally, ARA* eschews reexpanding
states through search round, while each round is the part of search among two weight
changes. Each time a shorter path to a specific state is found, and that state has
previously been expanded in the present search round, the state is not expanded again
directly. Alternatively it is stored in a separate list, which will be put in the “Open”set
only at the launch of the following round. The logical basis beyond this, is that even
without reexpanding states, the subsequent found solution is definite to be in the
current sub optimality bound (ARA* algorithm). As this method concentrates on
finding sub-optimal solution, the composition of web services does not benefit from
it.

The heuristic Beam Stack Search algorithm (Zhou & Hansen, 2005), is based on
breadth-first search. In Beam Stack Search algorithm, just the maximum talented nodes
in each level of the search space are expanded, where the beam width w is given by
the user. The algorithm recollects which nodes have not until now been expanded and
gets back to them in a subsequent time. However, beam-stack search discovers the
whole search space beneath the selected states before it backtracks on its resolution.
We can say that Beam Stack Search makes the Beam Search into a complete search
algorithm by applying a backtracking mechanism, simply it iterates the beam

algorithm to find all the candidate solutions. Discussed widely in Section 2.9.

Additional iterative anytime heuristic search algorithm called anytime Window
A* algorithm (Aine, Chakrabarti, & Kumar, 2007) that is also based on breadth-first
search like the beamstack search do. In this method, the expansion of each node is

restricted through a “sliding window” involving levels of the search graph, which

18

means that the sliding window moves downwards in a depth first manner, each time a
state in a higher level than the earlier expanded one ,the window slides down to that
level of the exploration space. Only states in that level and the h levels above can be
expanded, while h is the height of the sliding window. Initially h=0, and it increases
by one every time a new solution is found. This algorithm can suffer from its strong
depth first concentration if the heuristic approximations are inexact and vary

significantly far away.

Another heuristic search algorithm is called “The Joy of Forgetting: Faster
Anytime Search via Restarting” (Richter, Thayer, & Ruml, 2010), a suitable name for
the proper technique since it works on initiating the search from the initial node

whenever a new solution found.

The searchers advice to restart Window A* algorithm. Therefore, this algorithm
is referred to as Restarting Window A* algorithm (RWA¥*). Simply, we can describe
RWA* algorithm as it iteratively runs the Window A* algorithm with reducing weight,

constantly reexpanding states once it finds a cheaper path.

RWA* differs from ARA*algorithm and Anytime Window A* algorithm, that
it does not preserve the “Open” list between phases. Each time an improved solution
is created,the search empties the “Open” list and start over from the initial state. This
algorithm as unusual addes another third list to the ordinary “Open” and “Closed” lists
found in the previous algorithms, which is called “Seen”. When a new search phase
starts, the states from the old “Closed” list are moved to the “Seen” list. This algorithm
will behave typically such as the Window A* algorithm if a generated state in the new
search has never been generated before bymeans that it does not belong to any list
(neither “Open” nor “Closed” nor “Seen”), which means that RWA* then will
calculate the heuristic value of the state and insert it into the “Open” list. Also, it will
behave again as the Window A* if the state has been came across before in this search
phase (it is either in “Open” list or “Closed” list). Then RWA* will reinsert the state
into the “Open” list only if it found a shorter path to the goal state. While there is a
thired case for reached state, which that this state has been came across in previous
search phases but not in the present phase bymeans that it belongs to “Seen” list. Then

RWA* will have another behavior, it will find the heuristic value of this state from the

19

phase which it was previousely came by across, rather than calculating heuristic value
again. Also, the RWA* algorithm examinations the previously found path to the state
is cheaper or it found a new better path inorder to keep the better one. Finaly it moves
the state from “Seen” list to the “Open” list. We can conclude that this algorithm
prevents calculating the heuristic value of a state more than one time, and previous
effort (Window A* algorthim) is used in making usage of the best path to a goal state
found. However RWA* algorithm’s restarts gives additional flexibility in finding
different solutions, but it may reexpand many states that were previously expanded in

earlier phases which will waste memory and time

Through this section we can conclude that, Beam Stack Search algorithm
prevents from states rexpandings which preserve time and memory space. Also, it
calculates the heuristic values for states just one time through the algorithm which
makes us think more better about depending on in our project to solve the web services
composition problem. Depending on Beam Stack Search we can find a fast sub-
optimal solution wich will be the first found solution, and whenever the user has more

time the search algorithm will keep on going until finding the best solution.

2.8 Beam Search

Beam Search is considered as a modification of branch-and-bound (BnB) search.
It uses an inadmissible pruning rule. The Beam Search selects only the most promising
nodes for more branching at each level of the search graph using heuristic, while the
remaining nodes are pruned forever. Beam denotes the nodes that will be explored in
each level and the beam width w denotes the size of search in the beam (humber of
nodes to be explored). Beam search expands nodes in breadth-first order and uses a
fixed beam width, Beam Search method is alike best-first search mechanism
(Wikimedia Foundation, Beam search, 2017)

2.9 Beam Stack Search

Although the Beam Search algorithm can find a prompt solution, it may bypass
the optimal solution. This is due to the method of the Beam Search. In this method

only picked points are examined in each level.

20

https://en.wikipedia.org/wiki/Best-first_search

Zhou and Hansen (Zhou & Hansen, 2005) developed an algorithm named Beam
Stack Search in order to optimize the Beam Search algorithm using divide and conquer
technique. In the Beam Stack Search algorithm, the optimal solution is found by

reiterating the Beam Search.

Shown in Figure 2.4, when the Beam Stack Search finishes one iteration of the
Beam Search, it archives the search advancement and goes on to the following iteration
to catch an enhanced solution. To follow the nodes which have been called, the Beam
Stack Search processes the beam stack which encompasses an element for every level.
The element of the beam stack determines the range of the cost [fmin ; fmax) SO that only
successor nodes having cost in this range are saved in the next level. The algorithm
rejects any successor nodes with a cost less than the lower bound fmin Or greater than
or equal to the upper bound fmax, when expanding nodes in a level related to an element
in the range [fmin ; fmax). The element of level zero having one start node is saved at the
bottom of the beam stack. However, the element related to the presently expanding
level is saved at the top of the beam stack (line 18 in Function Search shown in Figure
2.5). When the algorithm make its first expansion for a node in a level, it sets the first
element of the equivalent level to have the range [0,U) (line 4 in Algorithm DCBSS),
where U is the present upper bound of the cost. If the level size becomes larger than
the beam width (line 19 in Function Search), then the Beam Stack Search do an
inadmissible pruning for nodes with the maximum cost (line 21 to 27 in Function

Search) to save space for new nodes.

[fmin ; fmax) Level 1

SOOOOD— =

Nodes with R sign are nodes which have just been pruned

Figure (2. 3): A tree for illustrating levels and expanded nodes.

21

In Figure 2.3, it is assumed that the beam width is equal to three, and Level 2
holds the expanded nodes from Level 1. Each pruned node in Figure 3 has a cost
greater than the cost of the other nodes that have B sign inside, then the three nodes

with smaller costs are not pruned.

At the moment that the search algorithm prunes nodes in a level, it varies the fmax
of the element in the previous level to have the value of the minimum cost of the pruned
nodes. This guarantees that the search algorithm will not produce any successor node
having a cost exceeds or equals to the minimum cost of the pruned nodes which indeed

became the Upper cost.

When search algorithm arrives a level all its successor nodes have a cost larger

than U, we name it an empty level.

When search algorithm backtracks, it deletes from the top of the beam stack
successive elements with an fmax larger than or equal to U (line 12 and 13 in Algorithm
DCBSS).

Search algorithm back-tracks the level linked to the element on the top of the
beam stack stand for the lowest level which comprises specific node(s) having one or

more pruned successors.

Each time the search algorithm backtracks to a level, the Beam Search is obliged
to allow a variant set of successor nodes by modifying the range of the element [fmin;
fmax) saved in the beam stack element linked with the level. When the algorithm
backtracks to a level, the new fmin will have the value of the present fmax (line 18 in
Algorithm DCBSS) and the new fmax will have the value of the upper bound U (line 19
in Algorithm DCBSS). This means that the range [fmin, fmax) is shifted to [fmax, U). The

search will not stop until all the nodes in the present level are expanded.

To create new successor nodes that might have been inadmissibly pruned in the
prior visit of the level, the expansion of the nodes that were expanded in the latest visit
of this level should be repeated.

Once the fmax of beam stack element of the level is larger than or equal to the
upper bound when all nodes in the level have been expanded, it can be said that the

backtracking of the level is complete. This implies that successor nodes with cost

22

within the range [fmin,U) has not been pruned meanwhile the pervious time the search
algorithm backtracked to the level. Consequently, successor nodes with cost in the

range [0;U) should have been created for the level.

The search algorithm does not terminate immediately when it discovers a
solution, it goes on to explore better solutions. The algorithm will finish when the
beam stack is blank (all levels are backtracking-complete). It is simply showed that the
best solution found must be optimal, then Beam Stack Search is an anytime algorithm
that discovers an early solution, and goes on to find better solutions until meeting an
optimal solution (line 7 and 8 in Algorithm DCBSS). Note that the search algorithm
updates U the upper bound every time it discovers a better solution (line 9 in Algorithm
DCBSS).

Next is the pseudocode for the Beam Stack Search algorithm as presented by
Zhou and Hansen (2005).

1 Algorithm DCBSS: Divide and Conguer Beam Stack Search (Node start, Node
2 goal, Real U, Integer relay)

3 Beam_stack = &;

4 Beam_stack.push([0,U)); // initialize beam stack

5 bestPath = null; // initialize optimal solution path

6 while Beam_stack.top() # null;

7 solution-path = Search(start, goal, U, relay);

8 if solution-path # null then

9 best _path = solution-path;

10 U = Cost(solution-path);

11 Print (solution-path);

12 While Beam_stack.top().fmax> || = U do // fmax upper bound of cost

13 Beam_stack.pop();

14 End while

15 If Beam_stack.isEmpty() then

16 Return bestPath;

17 Print(bestPath + " is the optimal path ");

18 Beam_stack.top().fmin= Beam_stack.top().fmax; // fmin lower bound of cost
19 Beam_stack.top().fmax=U;

20 End while

Figure (2. 4): Divide and Conquer Beam Stack Search Algorithm

23

The above divide and conquer Beam Stack Search algorithm uses the following
search algorithm (Zhou & Hansen, 2005) and iterate over it to find the solution as

required.
1 Function Search(Node start, Node goal, Real U, Integer relay)
2 best_goal = null;
3 open[0] = {start};
4 /=0; // start level while /is the index of layer
5 open[] = @;// index of level
6 closed[0] = @;
7 while open[] # @ or open[/+1] # @; do
8 while open[/] # &; do // the current level is not empty
9 node = argminy{ cost(n) | n € open[/] } // expand node
10 open[] = open[]\{node} // remove the expanded node from the open set
11 closed[] = closed[] U {node} // add the expanded node to the closed set
12 if (node = goal)
13 then best_goal = node;
14 set U = g(best_goal); /* g(node) is the cost of the best_goal path from
15 the start node to the goal node */
16 End;
17 Else
18 Node.expand(beam-stack.top()) // top level workflow automatically
19 If layerSize(/+1)>w then
20 Keep = keep the best w nodes € open[/+1];
21 Prune = {n | n € open[/+1] && n ¢ Keep };
22 Beam_stack.top().fmax = min(cost(n) | n € prune };
23 For each n € Prune do
24 open[/+1] = open[/+1] \ n
25 delete n
26 then Keep = open[/+1]; // after the pruning
27 End

28 End while;
29 if 1 </<relay or /> relay + 1 then

30 for each n& Closed[/—1] do /* delete previous layer */
31 Closed[/—1]<—Closed[/—1]\{n}

32 delete n

33 end for

34 /=17+1; I/ move to the next level

35 Open[/+1] =@

36 Closed[/] =@

37 Beam_stack.push([0,U)); // new item in the stack

38 untill

39 If best_goal # null; then // delayed solution reconstruction

24

40 Return solutionReconstruction(best_goal); /* solutionReconstruction is divide-
41 and- conguer solution reconstruction technique */

42 Else

43 Return null;

44 End if

Figure (2. 5): Function Search Used by Beam Stack Search Algorithm

It has been hypothesized that all the successor nodes have variant costs, which
permits the use of the costs of successor nodes to decide in which order to prune nodes
when memory is complete. The importance of assembling nodes according to the cost
Is that the search algorithm discovers nodes with the minimum cost initially. This
implies that the algorithm primarily discovers the best encouraging nodes. However,
some nodes may have the same cost, at this case a tie breaking rule must be used to

execute a whole ordering on nodes.

There are many options to manage the case in which some nodes have the same
cost. The search algorithm can break ties depending on the state encoding of a node,
to ensure the uniqueness of the cost. Or the Beam Stack Search may use domain-
specific information. For multiple sequence alignment, an entire assembling, can be
depended on the coordinate of a node in an n-dimensional hypercube (n: number of
aligned sequences).

Beam Stack Search permits some unbroken ties, as long as the number of ties in
a level is smaller than the beam width. It runs under bounded memory and is
guaranteed to find an optimal solution, it uses open and closed sets to store all the
generated nodes of a search graph in memory (Open set is used to store boundary

search nodes, and the Closed set is used to store previously expanded nodes).

It is important to know that the first part of Beam Stack Search, before any
backtracking is applied through the algorithm, is the same as the Beam Search; often
it finds a first solution very fast, then it is an anytime algorithm that explores a

sequence of enhanced solutions before reaching to optimality.

Beam Stack Search contains both breadth-first branch-and-bound BFBnB search
and depth-first branch-and-bound DFBNB search as exceptional cases. As when the

beam width is:

25

1. one, beam-stack search is equivalent to depth-first search branch-and-bound
search

2. larger than or equal to the size of the largest level, beam-stack search is
equivalent to breadth-first branch-and bound search, and no backtracking

occurs

In the other cases, it utilizes a hybrid strategy in the search processes that
combines BFBNnB search and DFBnB search and offers an elastic tradeoff between
existing memory and the time overhead of backtracking. Figure 2.6 gives a simple
illustration for the depth-first search and the breadth-first search techniques (O'Keefe
& Costa, 2015).

R (o 550
/@3@}8@%@

Figure (2. 6): Depth-first and breadth-first search techniques

For allowing divide-and-conquer solution reconstruction in the described
algorithm, relay node technique is used. In the relay node technique, each node pasts
the midpoint supplies an indicator to the start node, that is reserved in memory. For
uncomplicatedness, all of the relay nodes are stored in the same layer, called the relay
layer. The algorithm stores four layers; the relay layer, the presently expanding layer,

its descendant layer, and its previous layer.

For each found goal node, a comparison between the costs of the current found
one and the saved best solution. In case the cost of the newly found node is better that
the best solution, it will be set as the best solution and its cost will be the upper cost
(line 12 to 16 in Function Search).

26

2.10 Solving Web Services Composition Problem Using Beam Stack
Search

As presented in Section 2.5, we explained why our study is using the heuristic
type of search algorithms which is formalizes as the A* alternative algorithms of the
artificial intelligence. Studying the Beam Stack Search, and realizing the flexibility to
edit it to search through set of web services, led us to take the step in our project for
discovering web services compositions depending on the Beam Stack Search
algorithm. The advantage of using Beam Stack Search algorithm that it searches level
by level, so web services set will be used as subsets in levels, while each level contains
a subset of web services performing the same functionality, but differ in the quality
(the non-functional requirements for the service), which demonstrates the meaning of
web services selection (Section 2.3). The advantage of using it, that in each level the
technique works on examining the top number of web services in quality under the
range of the specified beam width that is given by the user. After that, it moves to the
next level and apply the same method of choosing the best specific number of web
services in the level, while it keeps the rest of web services from each level to be
examined in another loop until it passes over all of the possible and available solutions,
referring to that keeping the rest services in a stack to examine it the next loop prevent
the re-expanding of nodes which takes additional time for processing. For sure as
mentioned about the algorithm previously (Section 2.8) each newly found solution is
stored, and when a new solution is found it is compared with the previous one. If the
quality was better, then it will be used for comparing the next solutions, while if not,
the previously found one will be hold to continue comparing with it to discover the

rest possible solutions. This way we can be sure that we will get the optimal solution.

2.11 Summary

Web services discovery and selection is important for solving the web services
composition problem inorder to find the best applicable service among similar web
services that meet the customer's needs. Web services composition problem is re-using
discovered and existing web services and combining them in a process, while web
services composition is classified based on three major factors which are the

automation degree, operators type (simple or complex), and search set size.

27

Beam Stack Search algorithm is a heuristic search algorithm that helps in solving
the web services composition problem. |It rebuilds each time a new solution is found,
which upgrades the solution by discovering better solutions until finding the optimal
solution. The cost of response time and the throughput are used to for measuring the
complexity of the Enahnced Beam Stack Search algorithm by calculating ratios of time
and throughput.

28

Chapter 3
Related Works

29

Chapter 3
Related Works

Various research efforts contributed in solving the problem of web services
composition depending in different approaches and methods ranging from manual to
automatic, syntactic to semantic, non-heuristic to heuristic depending on algorithms
such as Beam Stack Search.

In this chapter, we review works related to web services discovery (Section 3.1),
web services composition with algorithms that can help in guiding service composition
including semi-automatic web services composition approaches (Section 3.2),
automatic web services composition approaches (Section 3.3) and using Beam Stack

Search algorithm with semantic web services composition (Section 3.4).

3.1Web Services Discovery

While the web service technology is as well adopted by information technology
practitioners and designers, the amount of existing web services is constantly
increasing. So, the need of the usual web service discovery method which is based on
UDDI record lists, demands more time and persistence by the developer or customer.
However, this method is not efficient in many situations because it needs to be able to
elect among a great quantity of delivered web services.

Sycara, Klusch, Widoff, and Lu (1999) propose an overview about the dynamic
service matchmaking between proxies in exposed information environments. They
performed the matchmaking using LARKS in JAVA for proxy advertisements and
requests. They implemented the user interface which traces the path of the result set of
a request using matchmakers’ filters. The filters can be arranged by selecting a
checkbox under the desired filters (under control of user). The authors used five
different filters in their developed system. The result set pass through the filters from
one to another. Upon their study, they concluded that the service matchmaking among
heterogeneous software proxies on the internet is frequently done dynamically and
must be efficacious.

El Kholy and Elfatatry (2015) present a solution for the web service discovery

in service oriented systems using the concept of multi level search. Briefly, we can

30

describe their system that it receives the customer requirements as an XML file. After
that, the requirements pass through three levels of search, where the first level is
keyword search which is applied to discover the nominee service. If no matching
arised, after that the second level converts the user requirements to formal English
language, this phase resolves the problem of unclear sentence building which may be
involved in the user requirements. Finally, the third level is that formal sentences are
passed to an ontology provider which converts the syntactic words to its domain
ontology word. So, the user requirements are reassigned from syntactic to semantic
and the second level of semantic search previously takes place. In this search, services
are registered with their semantic description.

As Sycara, Klusch, Widoff, and Lu (1999) trace the resulting path using
matchmaker’s filters, our matchmaking filter is the Beam Stack Search as it discovers
the new solution path and filters all the found solutions to decide the best-found
solution.

El Kholy and Elfatatry (2015) utilize a keyword search to discover nominee
service, while in our research the next nominees are expanded from the current node a
level and the WSLA file contains the semantic data ready to use and no need for any

conversions from syntactic to semantics.

3.2 Semi-automatic Web Services Composition Approaches

Many previous studies have studied solving web service composition problem

using semi-automatic approaches. We present some previous studies as follows.

A semi-automatic approach is presented by Wang, et al. (2011), that includes
data mediation and service proposition algorithms to compose web services into an
operation by giving service propositions. They define an input/output directed acyclic
graph in order to formulate an input/output schema of a web service procedure. Data
mediation resolves the heterogeneities between the input and output structures, also
transforms a subset of the output structure to the input structure. They developed three
data mediation algorithms for output to input matching (leaf-based, structure-based
and path-based) to resolve data heterogeneities in the method design. The researchers

established a data mediation approach that attempts to automatically discover the best

31

mappings between outputs and inputs, concluding that path-based data mediation
algorithm is the best to use.

Another semi-automatic method (Hu & Wang, 2008) has the advantage of taking
the least possible quantity of essential data from the user and saves them in a relational
model (relational model uses the basic impression of table as columns and rows), then
takes the necessary data to make the composition. At the end of the algorithm a
transformation algorithm is applied to map all of the taken data from relational to
BPEL model.

Another study (Chan & Lyu, 2008) gives a new semi-automatic approach, it
proves the perfection and verifies the correctness of the composed web service by
building the model of the web service to be deadlock free. The approach uses WSDL
and WSCI (Web Service Choreography Interface) web service files as the base for the
method, it takes the information from them to create the web services. The WSDL file
defines the login points for each available web service while the WSCI is used for
describing the interactions between WSDL operations to accomplish the web service

composition using the obtained information.

Another research (Cotfas, Diosteanu, & Smeureanu, 2010) presents a semi-
automatic approach where the composition is prepared in a fractal way by using
present web service chains that are able to be integrated easily into new web service
chains, all web service chains are used as building blocks to create new service chains
while they are described using Web Service Business Process Execution Language
(WS-BPEL). This way makes it easy generate new and extra complex web service

chains.

These methods are semi-automatic while our research applies an automatic
algorithm for solving the web services composition problem. Wang, et al. (2011) are
using cylicic graph (number of vertices connected in a closed chain) and study the
mapping between the web services inputs and outputs to form the composition, while
we are not using cylicic graph and we prepare web services associated files having the
required data to perform the composition without the need of resolving data
heterogeneities. HU and Wang (2008) uses a rational model for data and transform the
data from rational to BPEL, while our data are prepared as a graph and Beam Stack

32

Search heuristic search is used to make the composition. While we used WSDL file as
Chan and Lyu (2008) but thy required WSCI file to describe the interactions between
web services, while in our study we describe the web services with their functional
requirements in the WSDL file only. Cotfas, Diosteanu, and Smeureanu (2010) create
blocks of web services chains as BPELS to generate an extra complex web services
chains, while we discover a set of separated compositions using the heuristic Beam

Stack Search algorithm.

3.3 Heuristic Automatic Web Services Composition Approaches

A lot of previous studies tried to solve semantic web services composition
problem automatically such as (Mcllraith & Son, 2002), (Sheshagiri, DesJardins, &
Finin, 2003), and (Wu, Parsia, Sirin, Hendler, & Nau, 2003). Kil and Nam (2013)
proposes using the heuristic Beam Stack Search algorithm (described in full details in

Section 2.7) in solving quality aware web services composition problem.

Heuristic, is a function that rates solution path candidates in search algorithms
at each branching phase depending on existing data to determine which branch to
pursue (Likhachev, Gordon, & Thrun, 2003).

The approaches mentioned in Section 3.2 give a solution where the user has to
select the desired service according to quality preferences manually. The reason is that
these types of approaches only have the syntactic description of the web services and
has no semantic data. Therefore, there is a need to develop the web service composition
with the help of the semantic description, which gives the automatic detection for the
web services quality for the automatic selection. This led the researchers to start using

semantics in their approaches and techniques in different ways.

Mcllraith and Son (2002) tackle the problem of automated web service
composition and execution for the semantic web. They provided high-level generic
actions and modified constraints to address the web service composition problem. As
a contribution on an existing ConGolog interpreter, the authors built their
implementation and verified the correctness of their work. They use Golog in their
study as a natural formalism for solving web service composition problem. Their

approach was designed in such a way that it has a possibility to extremely decrease the

33

search space, also their technique is easy for the usual web user to use and modify.
This method has an amplified ability to Golog, which is about allowing to include
modifying user constraints. This method contains a programming concept called
“order” which gives the ability to relax the notion of sequence and enable the insert
process of actions to accomplish the qualification for the next action to perform it by
the program inorder to simplify the customization and permitted more generic actions.

Sheshagiri, DesJardins, and Finin (2003) present a planner that composes atomic
and basic services which are described using DAML-S into a composite service. While
DAML-S is a DAML+OIL that can be employed to supply the semantic description
for web services. DAML-S, be made up of a set of ontologies that offer a vocabulary
to describe services. A set of services and goal service are given as an input. This
planner can dynamically re-plan if a service fails, also the planner is able to produce

emergency plans to frustrate such failures.

Wu, Parsia, Sirin, Hendler, and Nau (2003) also uses DAML-S to automate the
solution of web services composition problem but composing the planner is in a
different way. This system totally plans over sets of DAML-S descriptions using a
planner. Consequently, the system accomplishes the subsequent plans over the web.
The planner always performs output producing actions as it plans. But this is
sometimes is not suitable in some cases such as implementing some web services may
take a very long time and the work would be better if the planner continues planning

while waiting for this information.

Zhang, Arpinar, and Aleman-Meza (2003) propose a solution for the problem of
web services composition. It integrates the use of web services ontologies to help in
discovering possible matching between inputs and outputs. Also, this technique is
Human-Assisted Automatic Composition system that supplement the Interface-
Matching Automatic Service Composition technique through qualifying human
participation when the composition cannot continue automatically or when there exist

doubts in matching services.

Talantikite, Aissani, and Boudjlida (2009) gives an automatic model for web
services discovery and composition problem. This study depends on semantic

annotation for web service discovery and composition, inorder to give an

34

understandable description since it is about assigning names, characteristics, and
descriptions. The authors used in their approach an inter connected network
representation form for the services set, the semantic web services is represented in
OWL-S, and the similarity between two concepts of two services is represented by a
connecting edge. Using the similarity measure between the concepts to mark edges,
like pellet before any submitted request. To assemble the composition outline of
services which satisfies a client's request, the semantic network is discovered in
backward chaining and depth-first in a single pass. Finally, a number of composition
plans fulfilling the request are obtained, while just one optimal composition plan using
quality of services is turned back to the requester. Mainly, this technique decreases the
complexity of finding the composition at first, then it decreases the time needed to
make the composition design to select the best quality (similarity, time and memory

space).

Paikari, Livani, and Moshirpour (2011) presents an automatic frame of work for
web service composition P2P network which outlays from an algorithm based on a
phased algorithm. This algorithm can match the output of semantic web services of
the previous phase with a new one which its inputs must be able to be matched. Multi-
agent System Engineering methodology is used to model the frame of work, it is a
famous agent directed methodology and a top-down approach. It consists of four
agents: Ul Provider, Service Finder, Service Provider and Composer. An OWL file
has been used to describe web services. The composition procedure is accomplished
through a number of steps while the composer directs its request for a suitable next
web service to a service finder at each step. The researchers in this study only showed
the high-level design and initial implementation of the system and they did not

evaluate the performance of the system in a real-world case study.

Other contributors (Qi, Tang, & Chen, 2012) proposed a mechanism to classify
web services into diverse categories based on automatic function, then they designed
a web service composition system based on service classification and artificial
intelligence planning approach which is used for automatic web service composition.
The mechanism consists of two main parts: the first part is the service management
sub-system which is based on the service classification management mechanism, while

the second part is the service provision sub-system, which is used to meet the need of

35

users’ request by artificial intelligence planning. The researchers also concentrated on
the classification of web services. In this operation, they compared a single instance of
web service with the existing web service categories, by calculating their similarity
and comparing their semantic descriptions. After that they developed a design of a
service administrative system which is a part of their web service composition system.
Finally, referring to the user’s request as the input, using artificial intelligence planning
engine they created an appropriate composition plan to meet the user’s request. This
system combines service classification and artificial intelligence planning and
workflow, but they did not apply it on the real word or give an implementation results
to prove their study by an example.

Another proposed dynamic web service composition algorithm is built based on
quality of web services (Yan, Zhijian, & Guiming, 2010), where the use of web
services quality component is fundamental since it states the non-functional
requirements of service which allow them to work through presenting a hierarchical
quality of web services ontology QoSHONt composed of three layers (upper, middle
and lower). While the upper layer outlines the basic impression for defining the
specification, context, parameter and relations for the quality of services. The
algorithm selects the best service depending on the weight of the quality of web service
factory to get the best web service. For arbitrary web service request, the researchers
worked on getting the best immediate descendant web service or service set by
invoking a function that works on getting the maximum quality of service in the service
composition map. In this study, there was an absence for relevant standard platform
and standard test data sets, therefore the researchers used a random replicating web
service as a test case, they also chose six data sets (300, 600,900,1200,1500 and 1800
service) with 30 random requests for each data set to make the composition of web
service. Also, they used average time of the combination to calculate the experiment
results of web service composite efficiency.

A study presented by Yan, Xue, and Yao (2009) that explores web services
ontology and Ant Colony algorithm. The researchers here, proposed a method of web
services composition that is based on Ant Colony algorithm which helps to ensure to
get the best composition of web services in a less time. This project has two benefits,

the first one that it has a high successful rate of services composition, while the second

36

benefit that it ensures the quality of composition and the efficiency for the composition
of web services which is based on the users’ requests in the field of dynamic
composition of web services. The researchers used OWL-S for the description of web
services and their relationships. They converted the composition of web services into
a classic graph theory problem, and solved the composition problem by using the
benefits of Ant Colony algorithm. They showed that the algorithm is fruitful to
compose guaranteed quality and efficient web services. They concluded that they need
to enhance the Ant Colony algorithm, parallel composition of web services and the
services quality of services control problems so that the algorithm may be well
adjusted to a parallel composition of web services.

Another study also used the Ant Colony algorithm for solving web services
composition problem is due to Srour, Othman, and Hamdan (2013). This study
presented a user amiable and efficient automatic web services composition model
using Ant Colony System. Their model depends on four core components (Visual
Services modeling, User Query Generator, Semantic Composer and Workflow
Generator). The model works on automating the composition procedure with taking
into account the end user viewpoint seeking to decrease the exploration space of
candidate Web services, and it also improves Web Services composition usability and
efficiency. The researchers applied backward discovery strategy for web services
selection and Ant Colony System for web services composition process to make the
web services composition automatically, but they did not make any evaluation of the

model.

3.4Beam Stack Search with Semantic Web Services Composition

Some studies (Marshall, 2016) referred to heuristic search methods as methods
which might not always find the best solution, but these methods try to find a good
solution under a practical time by deciding which choice might be the best one. Kil
and Nam (2013), as disscussed next, adopted this idea and used specific time
thresholds to study efficiency.

Kil and Nam (2013) propose a solution for the web service composition problem
using the Beam Stack Search algorithm. This study gives a dynamic search

methodology to solve the web services composition problem using the time quality

37

factor. They implemented the algorithm using some computations to give different
beam widths through the search process that change as a trio form which is different
from Beam Stack Search which uses a fixed beam width. Kil and Nam used C++
language to program the algorithm, also they used specific time thresholds in their
experiment to study the efficiency of their work using four different thresholds in
seconds.

In our study we use the Beam Stack Search algorithm with different fixed beam
width sizes to solve the problem of semantic web services composition. We suppose
that the heuristic search algorithm passes through all of the levels of search tree and is
able to discover all of the possible paths of solutions and terminates itself regardless
of the additional time. We try to find the best solution among all the available candidate
solutions inorder to measure the efficiency through taking the quality ratio between

the first found solution and the optimal solution.

In our work, the quality factor will be wider than the previous search algorithm
investigated by Kil and Nam (2013). The quality factor depends on time and
throughput so that it can be used to find two quality ratios which are the ratio of “the
first fast solution throughput” to “the best throughput solution” as well as the ratio of
“the first fast solution time” to “the best throughput solution's time” are used to assess
the Enahnced Beam Stack Search algorithm efficiency which help us to study the
efficient of waiting more time inorder to get better throughput value for web service

composition problem solution.

Kil and Nam (2013) study web services on large scale sets, they use six different
sets of web services with sizes 50, 100, 100, 500, 1000, and 1500. In our case, we
consider a larger sets of web services. We apply the Enahnced Beam Stack Search
algorithm on sets of 5000, 10000, and 15000 web services with four different beam
widths in our experiments (120, 150, 300, and 600).

3.5Summary

The usual web service discovery methods such as (Sycara, Klusch, Widoff, &
Lu, 1999) and (El Kholy & Elfatatry, 2015), request from the customer or the

developer a supplementary time and persistence. Therefore, we cannot depend on these

38

methods all the time since they request to be able to choose among excessive delivered

web services.

Semi-automatic approaches such as (Wang, et al., 2011), (Hu & Wang, 2008),
(Chan & Lyu, 2008), and (Cotfas, Diosteanu, & Smeureanu, 2010) do not adapt to
choose the best web service under the user constraints without a human involvement
in the part of web services semantics. Automatic approaches such as (Mcllraith & Son,
2002), (Sheshagiri, DesJardins, & Finin, 2003), (Wu, Parsia, Sirin, Hendler, & Nau,
2003), and (Kil & Nam, 2013) use web services semantics to find a solution under the

specific time constraints of the algorithm.

In the next chapter, we present our enhancement on Beam Stack Search
algorithm with diverse fixed beam width sizes to solve the problem of semantic web

services composition and record the spent time with the discovered optimal solution.

39

Chapter 4
Composing Web Services
Semantically Using
Enhanced Beam Stack
Search

40

Chapter 4
Composing Web Services Semantically Using Enhanced Beam Stack

Search

In this chapter, we present the approach for composing web services based on
their syntactic as well as semantic descriptions using Beam Stack Search. The
composition is formed based on user’s goal, i.e., a less optimal fast solution, or an

optimal slower solution.

Section 4.1 presents a specification of the web service composition. Section 4.2
briefly covers the structure of the web services composition approach using Enhanced
Beam Stack Search algorithm. Section 4.3 describes the Enhanced Beam Stack Search
algorithm, while the factors of web services quality are defined in Section 4.4. Section
4.5 shows the base of measuring qualities of the experimental results. Finally, Section

4.6 describes the case study used in the experiments.

4.1 Specification of Web Services Composition

Web services composition consists of n number of required services tasks
expressed as (Services, Servicey, ..., Servicen) as shown in Figure 4.1 where Servicer
is considered as the start node and Servicen is the goal node which we have to set them

in our Enahnced Beam Stack Search algorithm application.

Figure (4. 1): Web services composition

As discussed in Section 2.5, composition can be based on large scale set of web
services using simple operators. The set web services is represented as a graph to form

the web service composition using such simple operators as shown in Figure 4.2:

41

<« Servicey
start node

OO

Candidates
Services
Candidates

Service

\@ Service, Goal

Figure (4. 2): Directed graph composed of candidate services

There are n candidate automatic services with the same functions but different
qualities for each service task which are generally known by the non-functional
requirements. The problem of web services composition can be resolved by a graph
with different candidate services paths. Finding the optimal web services composition
is the problem of finding the optimal path in the graph. The composite web service
that is composed of the optimal path, should be the best path meeting the requirements
of the user. User requirements are usually the non-functional requirements such as
response time, security, throughput. In our research, we focused on the response time

and throughput to study the results of our experiments depending on them.

The goal node (Sn) can be reached through multiple paths using Beam Stack
Search algorithm. We have to notice that by increasing the beam width, the algorithm
may prune some node (service) at early level while this node has the possibility to give
a path with higher quality value. For example, if the beam width for the graph in Figure
4.2 is 3, and Sz throughput is 5 but the highest path throughput under this node is 10,
but Sap throughput is 3 which will be expanded after Sxc and it may have a path to Szt

42

with a higher quality which will not be taken into account since Szf was previously
discovered through Sac. In the other hand if the used beam width is 2 then it will take
the path discovered by Sz, because it is discovered before the path from Syc. This

indicates that a smaller beam width leads to a better solution.

The quality measure, either throughput or response time, is calculated for each
transition from one service to another until discovering all of the possible web services

compositions. The total quality measure of the composition is calculated by:
Yi=1 Transition(S;, S;.1) 4.1)

Equation 4.1 calculates the summation of all the transitions between web
services nodes in each web services composition flowing from the first service S; to

the goal service S.

Based on the specification of web services composition, we present our approach

to accomplish this composition using a modified version of Beam Stack Search.

4.2 Structure of Web Services Composition Using Enhanced Beam Stack
Search
In this section, we present our proposed web services composition solution using
Enhanced Beam Stack Search. We start by giving an overall description of how the

approach works. Then we explain in detail each part of the approach.

Figure 4.3 illustrates the proposed approach for web services composition. In the
set of web services, each service has two descriptions; syntactic description (in WSDL)
and a semantic description (in WSLA), specifically the qualities. The throughput and
the response time are used as the quality measures. The throughput is recorded from
the semantic description (WSLA) and measured by Equation 4.1. The transition in the
equation is considered as the quality factor. Thus Equation 4.1 is used as
Y.i=1 Throughput (S;, $;,1) which sums the throughput values for all nodes used in
the composition. The response time is the required time spent to move from the start
web service node to the next one until reaching the goal web service node, which is

calculated based on Equation 4.1 as };1-, Time (S;, Si+1)-

43

The Beam Stack Search algorithm is a search graph which means that it must be
able to search as a graph of web services. Each node of the graph has an ID which

represents a web service with its corresponding semantics.

Our enhancement on the Beam Stack Search is about extending it to able to deal
with web services based on their syntactic descriptons in terms of WSDL and in terms
of their semantic description in terms of WSLA organized in what is called web
services pool. In the service pool, each web service is represented with a special ID

(based on a hashmap structure).

The Enahnced Beam Stack Search algorithm creates the solution search space as
a graph of web services like the graph shown in Figure 4.2 which is processed by the
Enahnced Beam Stack Search algorithm in order to start solving the problem of web
services composition and find a set of candidate solutions which meets the user

request.

Two solutions in the set of solutions are the most special for a user, the first one
is the first found solution which a user choose it when he is interested in the time
quality and do not want to waste time, while the other solution is the optimal solution
that has the best-found throughput quality among all of the possible found candidate
solutions in the set of solutions which is preferred for users who have flexibility in
time and they care about throughput quality.

Next, we elaborate each part of the Enhanced Beam Stack Search algorithm

structure to fully discuss it:

4.2.1 Defining the set of web services with their semantic descriptions

The dashed part in Figure 4.3 represents this part of the approach. Firstly, we use
a set of web services with syntactic descriptions (in WSDL format) together with their
associated quality information (in the WSLA format). This quality information
includes the throughput of the service. The set of these services form a pool of web
services arranged such that each web service has an ID refering to its full available
data. This way we prepare these web services in a way to be ready to form a graph to
be searched by the Beam Stack Search as a solution search space.

44

4.2.2 Forming the web services Graph

The web services still need some arrangement to be ready for use in the Beam
Stack Search algorithm since the algorithm can not decide which web service comes
before or after the other one. We perform this step of forming web services tree graph
as an important phase to be added to the algorithm. The Beam Stack Search algorithm
is working with simple operators as a tree graph. We develop a tree graph of web
services using IDs from the service pool to denote each node. The graph nodes have
input instances, output instances and throughput quality for each service while the
response time is calculated through processing the search procedure. We discussed

such a graph in the specification of the composition of web services in Section 4.1

4.2.3 Composition problem

Web services composition problem is about composing a sequence of services
that give a final service for the client under his specified requirements as specified in
Section 4.1 (Specification of Web Services Composition). The client request contains
the required web service descriptions (as WSDL). Figure 4.3 shows that there is a
relationship between the set of web services Service(input instances, output instances,
quality) and the composition problem, this relation comes from that the required
services is originally a subset of the set of web services. This set of web services and
the formed graph are given as parameter to the Beam Stack Search algorithm to match
instances from the two sets in finding the solution.

4.2.4 Beam Stack Search

Our study aims to solve the web services composition problem by discovering
and selecting web services automatically. As from the previous steps now we have an
automatically formed search graph of web services and a search problem which needs
to be solved. Then, we are now prepared to use the heuristic Beam Stack Search
algorithm to solve the problem of web services composition. We discuss these details

in a separate section due to its importance (see Section 4.3).

4.2.5 Proposed solutions

45

The Enahnced Beam Stack Search algorithm discovers a set of candidate
composite solutions which all have the same functional requirements but differ in their
non-functional requirements, specifically the throughput, all of the found solutions are
correct and the user can take any one of them, but only two solutions are special. The
first one is the first found solution since it is considered as the fastest solution. Also,
the Enahnced Beam Stack Search algorithm filters all of the found solutions and
specify the optimal solution which is the solution with the best non-functional
requirements (best quality) and this is considered as the second special solution among
the rest of found solutions because it overcomes all of the rest solutions with its non-

functional requirements.

The user can choose the first solution if he is concerned with time by terminating
the Enahnced Beam Stack Search algorithm after giving the first solution. If the user
Is more interested in the non-functional requirements and he has the ability to wait for
more time, he will choose to wait for the algorithm to continue processing and filtering
until finding the optimal solution. The Enahnced algorithm stops by printing the
candidate solutions with their calculated qualities, throughput and response time.

Figure 4.3 gives an illustration of the approach structure.

46

Service (input
WSDL + WSLA instances, output
instance, quality)

1
1
1
1
1
1
1
1 1
1
v Search graph 1 A 4 :
Beam Stack construction to 1 1
N Search Algorithm view data in the ' Pool of web servi !
composition > < form appropriate 00 (_)hwe s_er\élces :
problem to process it 1 .\;V't retquwe d |
L ; | information an |
Filtering using the 1 qualities 1
algorithm 1 \
1 -
hashmap(id, !
1
Graph(V, TreeMap) ' Service) :
1 1
e J
Proposed
solutions to
composition
A

Abbreviations: V = number of vertixes of the graph, TreeMap= inputs of the graph
using data from the service pool

Figure (4. 3): Web service design “Enhanced Beam Stack Search”

Next, we present the Enhanced Beam Stack Search algorithm (as a continuation
to Section (4.2.4) together with its usage in finding the solution of the composition

problem.

4.3 Enhanced Beam Stack Search Algorithm

For the Beam Stack Search algorithm to be suitable to solve the web services
composition problem, it has to be enhanced to deal with the composition problem as
well as the web services syntactic as well as semantic descriptions in terms of WSDL
and WSLA. Therefore, the Enahnced Beam Stack Search algorithm considers the

following issues:

1. Web services pool: creating a pool of web services include, their non-
functional requirements, i.e., their syntactic as well as semantic
descriptions in terms of WSDL and WSLA

47

2. Input graph: represents web services in the web services pool and
creates a search space which is formed as a search graph for the Beam
Stack Search algorithm.

3. Solving the composition as a search problem: searching through the
graph of web services to form a composition using Beam Stack Search.

4. Solutions: extract a set of possible solutions based on the user request
and filter the set of solutions to find the optimal solution (best throughput
value). The user can choose the first found solution if he prefers to

preserve time.

The Enhanced Beam Stack Search algorithm automatically processes the web
services while solving the composition problem. Function DGS, shown in Figure 4.4,
is used by the search function, showin in Figure 4.6, to build a graph search tree of
web services. The search function, then, is used by the Beam Stack Search algorithm
(Figure 4.5) to find the required composition solution.

The inputs of “Define a graph search tree of web services” function are the web
services data in WSDL and its associated WSLA (line 2 in Figure 4.4). The function
process these syntactic and semantic description of the web services (line 4 in Figure
4.4).

After obtaining the required data, the function stores them in a service pool (line
5) with each web service having an ID referring to it. By executing this in Function
DGS, we achieve the dashed part in Figure 4.3 (which illustrates the design of the
Enhanced Beam Stack Search) additionally with the part of the next step of the search
graph construction. To form the web services graph in line 10 at Figure 4.4 (also see
Figure 4.2) it depends on matching each web service output instance with the suitable

input instances among the available web services in the servies set.

Now, in order to execute the search graph part, the function prepares for this step
by setting the graph nodes at first as the service ID (line 7 in Function DGS). After
that, the function maps from each node to the next possible nodes (line 8 in Function
DGS) to form the search graph (line 9 in Function DGS) which will be used by the
function Search, in the Beam Stack Search (see Figure 4.6).

Next, Figure 4.4 includes the pseudocode for the dashed part of Figue 4.3

48

O© 0o NOo 0o WN B

el ol
w N Rk o

Function DGS: Define a graph search tree of web services
Input WSDL and WSLA files
Output pool of web service generated as a graph search tree
Translate WSDL and WSLA to Service(input instance, output instances, quality)
service-pool = hashmap(id,Service)
While Services is not null
then
vertex v;
v = service(id)
Map = forms a graph from each v to the next neighbor vertices // as edges from v to v
Else
Return Graph(V, Map)
End

Figure (4. 4): Define a graph search tree of web service function

The output of this function in Figure 4.4 is used in the inputs of the search

function specified in Figure 4.6.

The Beam Stack Search algorithm is executed on the resulting graph as shown

in Figure 4.5.
1 Algorithm BSS: Beam Stack Search (set webServices, Service requiredService,
2 Real U)
3 Output: The first found solution and the optimal solution with their non-functional
4 requirements
5 Beam_stack = &;
6 Beam_stack.push([0,U)); // initialize beam stack
7 bestPath = null; // initialize optimal solution path
8 while Beam_stack.top() # null;
9 solution-path = Search(webServices, start, goal, U, beamWidth);
10 if goal-path # null then // solution path
11 best-path = goal-path;
12 U = Cost(goal-path);
13 return goal-path;
14 While Beam_stack.top().fmax> || = U do
15 Beam_stack.pop();
16 End while
17 If Beam_stack.isEmpty() then
18 return bestPath is the optimal solution
19 Beam_stack.top().fmin= Beam_stack.top().fmax;
20 Beam_stack.top().fmax=U;
21 End while

Figure (4. 5): Beam Stack Search Algorithm

49

The inputs (line 1 in Algorithm BSS) are the set of web services, required
service, and the upper bound U (the upper limit for the quality, i.e., response time).
Also, at line 6 in Algorithm BSS (where it uses the search function), we need to look
at the inputs of Function Search where it uses the graph prepared in Function DGS as
an input, besides the start node of the search, the goal node, the upper bound U, and
the beam width value. The goal node is the required web service by the user. The cost
function at line 12 in Figure 4.5 represents the total quality measure which is calcuated
using Equation 4.1 which calculates the summation of all the transitions between web
services nodes in each web services composition from the first service to the goal

service.

The Beam width plays a big role in the search results, it affects the quality values
(response time and throughput). A smaller beam width size makes the response time
of the first found solution shorter. For an optimal solution, beam width size impacts
the throughput quality value such as increasing the beam width decreases the
throughput while decreases the response time. In this case, the user who cares about

throughput quality ignores this time decreasing.

The beam width value is important in the search process and choosing it is
critical depeding on the user. A user who cares about time and intends to choose the
first found solution prefers to use smaller beam width size to get a faster composition.
While a user who cares about throughput and intends to choose the optimal found
solution, the smaller beam width is also the best choice. This is proved by the

experiments preseted in Chapter 5.

1 Function Search: Search (Graph webServices, Node start, Node goal, Real U,
2 Integer beamWidth)

3 Best-goal = null;

4 open[0] = {start};

5 /=0; // start level while /is the index of layer
6 open[] = @;// index of level

7 closed[0] = &;

8 w = beamWidth;

9 while open[/] # @; do

10 node = argmin,{ cost(n) | n € open[] }
11 open[/] = open[]\{node}

12 closed[] = closed[] U {node}

13 if (node = goal)

50

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45

if cost(node-path) < cost(best_ composition)
then best-goal = node;
set U = g(best-goal); // g(node) is the cost of the best-goal path from
the start node to the goal node
End;
Else
Node.expand(beam-stack.top()) // top level workflow automatically
If layerSize(/+1)>w then
Keep = keep the best w nodes € open[/+1];
Prune = {n | n € open[/+1] && n ¢ Keep };
Beam_stack.top().fmax = min(cost(n) | n € prune };
For each n € Prune do
open[/+1] = open[/+1] \ n
delete n
then Keep = open[/+1]; // after the pruning
End
End while;
if 1 </<relay or /> relay + 1 then
for each ne Closed[/—1] do /* delete previous layer */
Closed[/—1]«<Closed[/—1]\{n}
delete n
end for
/=17+1; // move to the next level
Open[/+1] =@
Closed[/] =@
Beam_stack.push([0,U)); // new item in the stack
till
If best-goal # null; then
Return best-goal-path;
Else
Return null;

End if

algorithm to solve the web services composition problem according to the user request.

Figure (4. 6): Search function

By these three parts together, we developed an Enhanced Beam Stack Search

4.4 Factors of Web Services Quality

for solving the problem, we focus on two major factors which are response time and

Through studying the different available web services composition candidates

throughput. They are defined as follows:

51

4.4.1. Throughput

Throughput is the quantity of efficiency produced over time through a test.
Also, it’s expressed as the degree of clarity that can be handled by a web service.
Throughput values are gathered from the related WSLA file for the web services
non-functional requirements. The user may specify a throughput goal that he
needs before starting a test and search for it or he may search for the best possible

found throughput as we do in our research.

As an example, on the throughput from WSLA file at Figure 4.7 where it
shows that the throughput value for the web service is “20” throughput.

<Metric name="ThroughputMefric" type="long" unit=" Throughput”=
<MeasurementDirective name="Throughput” resultType="long"
xsi:type="GenericQoSDimension”>

<Value=20<Nalue=

=/MeasurementDirective=

=/Metnc>

Figure (4. 7): Throughput example

4.4.2. Response Time

Response time is the elapsed time between the start of the search and
finding the required web service. In our study, the Enahnced Beam Stack Search
algorithm calculates automatically the response time of finding each solution

separately to use it in the evaluation for each found solution.

As an example, on the response time from WSLA file at Figure 4.8 where
it shows that the unit of response time value for the web service is “5”

milliseconds.

52

<Metric name="ResponseTimeMetric” type="long" unit=" milliseconds">
<MeasurementDirective name="ResponseTime" resultType="long"
¥sitype="GenericlosDimension”>

<Value>3</Value>

</MeasurementDirective>

</Metric=

Figure (4. 8): Response time example

Next, we describe the case to be used in the experiments and evaluation covered
later (in Chapter 5). There we perform a number of experiments and use the results in

evaluating the quality of the throughput and the quality of response time.

4.5 Measuring Qualities

The cost of response time and throughput are used to measure the qualities of a
given web services composition solution. This is done by taking the ratio of time as
well as throughput between the first found solution and the optimal solution as shown
in Equations 2.1 and 2.2. This shows how the proposed solution improves finding the
optimal solution. The Enahnced Beam Stack Search algorithm finds a fast solution
followed by a number of candidate solutions until finding the best solution, the user
can take the first solution or wait for the best solution to be found. The other candidate
solutions can be used as sub-optimal solutions which are for sure better than the first

found solution but not the optimal.

Optimal solution throughput

Quality RatioThroughput = (2.1)

First Found solution throughput

Optimal solution response time

Quality Ratioriyme = (2.2)

First Found solution response time

4.6 Case Description

We used sets of web services with their functional and non-functional properties
collected and prepared by Blake, Weise, and Bleul (2010) for the Acme Packet

company services to represent our case. Acme Packet provides control functions to

53

deliver trusted, interactive communications voice, video and multimedia sessions

across IP network borders (Wikimedia Foundation, Acme packet, 2016).

Each set of web services has its functional requirements in terms of WSDL and
their associated non-functional requirements in terms of WSLA. We use three different
test set sizes in our experiments: 5000,10000, and 15000. Each test set has a user
request in terms of WSDLs which forms the composition problem. We use four
different beam width sizes: 120, 150, 300, and 600 inorder to study the impact of small
and big beam width sizes on the quality of web services (the non-functional

requirements).

4.7 Summary

Web services composition consists of n number of required services tasks
expressed as (Services, Servicey, ... , Servicen) Where Service; refers to the start node

and Servicen refers to the goal node.

The enhancement on the Beam Stack Search is made to allow the algorithm to
deal with web services based on their syntactic (WSDL) and semantic (WSLA)
representations stored in web services pool. The Enahnced Beam Stack Search
algorithm creates the solution search space as a graph of web services that is processed
by the algorithm in order to solve the problem of web services composition by finding

a set of candidate solutions which meets the user request.
Two important solutions in the set of solutions are special for the user:

e The first found solution, users choose it when they are interested in
response time quality

e The optimal solution, that has the best-found throughput quality among
all of the possible found candidates of solutions in the set of solutions.
This solution is preferred for users who have flexibility in time and they

care about throughput quality.

54

Chapter 5
Experimental Results and
Evaluation

55

Chapter 5

Experimental Results and Evaluation

While the Enahnced Beam Stack Search algorithm gives a set of solutions, the
first found solution is defined as the main focus besides the optimal solution. The user
can choose between both of them, since he can take the first found solution with less
response time when he does not have time to wait for the Enahnced Beam Stack Search
algorithm to continue the computations until finding the optimal solution. This is
considered a good solution but the throughput quality value predefined in Section 4.4
is not be the best. In case the user has enough time to wait for the Enahnced Beam
Stack Search algorithm to finish computations, the optimal solution could be his
choice.

In this chapter, we talk about some implementation issues in Section 5.1. While
in Section 5.2 we view our experimental results, and give an evaluation for these

results in Section 5.3

5.1. Some Implementation Issues

Beam Stack Search algorithm is employed in this study to solve the problem of
web services composition automatically. The algorithm searches through a large set of
web services and finds a set of candidate solutions using a stack that helps in reducing
the used memory space. It avoids nodes re-expansion in each loop by storing the
unused values of the expanded nodes in the closed list in order to use them the next
loop. Reducing the re-expansions help in reducing the required time in computations.

Web services are designed using WSDL orchestration, while there are two used
WSDL files; the first one contains the set of web services, and the other one contains
the client’s web service request which is a subset of the first full file. The WSDL file
contains the syntactic description of the services and has an associated WSLA file for

the services semantic data.

These WSDL and WSLA files were generated previously by Blake, Weise, and
Bleul (2010). These WSDL and WSLA files are interpreted to Java using JDOM parser
in order to use them in our implementation. The data is processed after that using

Service Java file class to describe each service and the associated data, then all of the

56

web services data are stored from the Service in a ServicePool generated to hold the
web services data associating each web service with a special ID which is used as

nodes in the search graph after that.

We use a WSDLParser.java class which depends on using the SAXBuilder
(Hunter & McLaughlin, Class SAXBuilder, 2015) to read the data from the WSDL
file, the SAXBuilder is implemented by the jdom.jar (Hunter & McLaughlin, JDOM,
2000) build library which we use in our implementation. WSDLParser.java class
mainly loads the data from the set of services WSDL file to a file input stream with
the help of the SAXBuilder then we used another class calling it as the service pool
class to load the data in a map to arrange the web services with their IDs.

Each web service is connected with multiple web services in the next level of
the search graph, all having similar functional requirements but differ in the non-

functional requirements. The algorithm uses them as candidates to find the solution.

The WSDL composition problem file which contains the required web service
requirements is also read to Java using the Service Java file because this Java class
describes it well as a subset of the set of web services, then the required service is used

by the Beam Stack Search algorithm as the input to be search for.

5.2. Experimental results

Several experiments are performed to the Enahnced Beam Stack Search
algorithm using 10000 web services set and 4 different beam widths; 120, 150, 300,
and 600 respectively. We set the upper cost limit in our experiment to null since we
are searching for the highest throughput value. This gives a throughput qualities for
the first found solution 9, 9, 5, and 7 respectively with response times 1212, 1900,
2199, and 2889 milliseconds correspondingly. This can be an accepted solution when
the user is interested in a short response time. Having a look at the response time
quality, in the case of using the first found solution, time quality value is high while
the throughput quality is low. For the user who is interested in throughput quality, the
Enahnced Beam Stack Search algorithm continues processing until concluding with
the optimal solution. In our experiments using the same consequent beam widths 120,
150, 300, and 600, the obtained throughput values are 796, 639, 301, and 180

57

respectively as optimal solutions’ throughput values for each used beam width size
correspondingly. The values of the throughput quality are decreasing when increasing
the beam width value as shown in the results. While the response times are 307573,
301167, 312150, and 361757 respectively for each beam width which results in
consuming more time to get the solution of the problem because it needs to do more
computations which require additional time. Although the user who is concerned with
throughput quality is also interested in the response time, but he has to give some
compromise in this case by accepting the additionally spent time in calculations in

order to get the best throughput quality.

Quality ratios give better understanding for the results based on the following

equations:

Optimal solution throughput

Quality Ratiorproughpur = (5.1)

First Found solution throughput

Optimal solution response time

Quality Ratiotiyme = (5.2)

First Found solution response time

A higher difference between the first found solution and the optimal solution
means that we have a high throughput quality ratio. The larger is the throughput quality
ratio, the better experimental results. This is because searching for the optimal solution
gives a better reward than the first found solution which means that it worth searching
for. So, whenever we have an optimal solution throughput quality higher than the first
found solution throughput quality.

On the other hand, having a high time quality ratio is not preferred, but it does
not affect the results as we get a better throughput quality ratio through the increased
time. In short, when the user prefers high throughput he naturally spends more

processing time.

Table (5. 1): Qualities and quality ratios for 10000 web services test set

Results and calculations

Beam width test set size ffsTH osTH ffsT osT THgr Tqr
120 10000 9 796 1212 307573 88.44 253.77
150 10000 9 639 1900 301167 71 158.50
300 10000 5 301 2199 312150 60.2 141.95
600 10000 7 180 2889 361757 25 125.218

58

Table 5.1 includes the quality ratios calculated for the experiments using the
different beam widths. We use some abbreviations in the table such as: ffsTH denotes
to first found solution throughput, osTH denotes to optimal solution throughput, ffsT
denotes to first found solution response time, osT denotes to optimal solution response
time, THqr denotes to throughput quality ratio, and Tqr denotes to response time
quality ratio. Time is calculated in milliseconds.

Here is an example of calculating quality ratios for a test set size of 10000 with
a beam width of 120. The first found solution throughput is 9 with first found solution
response times of 1212 milliseconds and the optimal solution throughput is 796 with
optimal solution response times of 307573 milliseconds.

Quality Ratiorproughpur = 7:%6 =88.44

Quality Ratiogy,, = 12 = 253.77

Calculating the quality ratios for each used beam width of 120, 150, 300, and
600 with the 10000 test set size, give throughput quality ratios of 88.4, 71, 60.2, and
25 respectively which show that increasing the beam width decreases the throughput
quality ratio. The response time quality ratios are 253.77, 158.50, 141.95, and 125.218
which is decreasing respectively by increasing the beam width, when response time
quality ratio is high this means that we wait for a long additional time after finding the
first found solution. Since the optimal found solution throughput values deserves

waiting for, then it is not considered a weakness in our results.

The Beam Stack Search is designed to solve big size problems, we use different
test set sizes to obtain all kinds of results and checks the efficiency in solving the web
services composition problem. This is performed by repeating the experiment with the
same variable values of the beam width sizes and with different test set sizes. We get,
analyze and compare the results of using smaller or bigger web services test sets in
giving better or worst throughput values and response time by the Enahnced Beam
Stack Search algorithm.

By performing the experiments on the 5000 and 15000 test set sizes, each result

could be analyzed separately for the sequential test set sizes 5000, 10000, 15000.

59

Using same beam widths of 120, 150, 300, and 600. The first found solution
throughputs using the 5000 test set size are 6, 5, 4, and 4 respectively. The optimal
solution throughput values are 723, 470, 285, and 161 correspondingly. On the other
hand, using the 15000 test set size gives a first found solution throughput values as 10,
10, 9, and 10 while the optimal solution throughput values are 848, 773, 311, and 192
with the same used consequent beam widths.

Table (5. 2): Qualities and quality ratios for 5000 web services test set

Results and calculations

Beam width test setsize ffsTH osTH ffsT osT THaqr Tqgr
120 5000 6 723 1745 198795 241 251.06
150 5000 5 470 2809 212376 1175 156.57
300 5000 4 285 3236 214878 57 136.24
600 5000 4 161 3650 287068 40.25 123.67

Table (5. 3): Qualities and quality ratios for 15000 web services test set

Results and calculations

Beam width test setsize ffsTH osTH ffsST osT THqr Tqr
120 15000 10 848 780 438105 8438 254.87
150 15000 10 773 1091 439812 773 194.66
300 15000 9 311 1272 440877 3455 168.93
600 15000 10 192 2138 451384 192 134.27

The full detailed throughput values are displayed in Table 5.2 and Table 5.3
related to the corresponding response time values at each beam width for 5000 and
1500 test set size respectively with their throughput quality ratios and time quality

ratios.

In all the cases of test set sizes the first found solution response time is trivial
which do not make problems even when changed. For the optimal solution, the real
waiting time keep increasing by the size of the set test, this is because as an example
the 15000 test set size requires more processing rounds which require more time, but
this additional time is spent to give better solution throughput values meeting the user

requirements of better throughput.

60

The differences between the throughput values of the first found solution cannot
be noticed for the different used beam widths, even sometimes they have similar values

with a little difference in the response time.

5.3. Evaluation

Comparing the results related to the test set size using two close beam width
values such as 120 and 150. In the case of using 10000 test set size, as shown in Figure
5.1 that the first found solution throughputs were the same quality equaling 9 with
response times 1212, and 1900 milliseconds for each beam width respectively. In the
case of using 5000 test set size, as shown in Figure 5.2 that the first found solution
throughputs equals 6 and 5 with response times of 1745 and 2809 milliseconds for
each beam width respectively. In the case of using 15000 test set size, as shown in
Figure 5.3 that the first found solution throughputs were the same quality equaling 10
with response times of 780 and 1091 milliseconds for each beam width respectively.
For the first found solution, two different closed beam width values give a nearby or
even the same first found solution throughput values, and the value for the smaller
beam width size is obtained faster. For the optimal solution throughput values,
increasing the beam width with small amount affects throughput badly by decreasing
it, while the response time decreases when increasing the beam width. The user who
cares about throughput quality value will ignore this decrease in time. Choosing the
beam width plays a big role in the search process for each user. A user who cares about
time and intends to choose the first found solution will prefer to use less beam width
to get it faster. While who cares about throughput value and intends to choose the
optimal found solution, the less beam width will be the best choice to get the higher
throughput value.

Studying two numbers as 300 and a double number as 600 for beam width
values, the first found solution throughput values using the 10000 set size as shown in
Figure 5.1, gives 5 and 7 consequently with response times 2199 and 2889
respectively. Using a 5000 test set size as shown in Figure 5.2, gives the same
throughput value equaling 4 while the response time at beam width 300 is 285
milliseconds and decreased to 161 milliseconds using 600 beam width size. Also, the

15000 test set size results as shown in Figure 5.3, were compatible with our previous

61

results since they gave a throughput of 9 at 311 milliseconds with 300 beam width
size, and 10 first found throughput value at 192 milliseconds with 600 beam width
size. The results indicate that a beam width of 600 with higher throughput value, is not

a big difference to force the user to choose it.

Viewing the optimal solution results using 300 and 600 beam widths, for the
10000 test set size the throughput values as shown in Figure 5.1 are 301 and 180 with
response times 312150 and 361757 respectively. For the 5000 test set size as shown in
Figure 5.2, the throughput values are 258 and 161 with response times 214878 and
287068 respectively. For the 15000 test set size as shown in Figure 5.3, the throughput
values are 311 and 192 with response times 440877 and 451384 respectively.

The results show that doubling the beam width give about half of the throughput
value with a higher time which is not preferred while it is decreasing the throughput
also is not favored for the response time to be increased, then choosing a smaller beam
width is also better in this case.

Generally, decreasing the beam width takes more time in computations since the
number of loops in the Enahnced Beam Stack Search algorithm increases, but it gives

higher throughput quality meeting the user requirements.

For clarifying the various throughput results in the experiments through the
different used web services test set sizes, we summarize them in Figure 5.1 which
shows the first found solution throughput results among the different used variables in
our study for the beam width size and test set size. Figure 5.1 clearly shows how using
a smaller beam width size increases the throughput value while the overall line of

throughput rises as we are using greater web services test set size.

We notice from Figure 5.1 that the throughput quality value decreases when
decreasing the beam width from 600 to 300 for the 10000 test set size in a more clear
way than for the 15000 test set size. Also, using a smaller test set of size 5000 do not
show any difference in the throughput quality value by decreasing the beam width
from 600 to 300. This proves that using bigger test set is indeed more efficient to apply

with the Enahnced Beam Stack Search algorithm.

62

12

o e

S g T TS
© | Test set sizes |
Z | |
3 6 ! 5000 |
| |
= \ [
3 | ==@=10000 |
hat 4 | |
= | g=15000 |
| |

2

0

600 300 150 120

Beam width size

Figure (5. 1): First found solution throughput

Figure 5.2 illustrates the optimal found solution throughput workflow among the
different used values of beam width size and test set size which shows that the
throughput value decreases as the beam width decreases and performs better by using
a bigger web services test set size.

900
800
700
0 S]
500

400

Throughput value

300
200 L

100

600 300 150 120
Beam width size

Figure (5. 2): Optimal found solution throughput

63

Results shown in Figures 5.1 and 5.2, show how the Enahnced Beam Stack
Search algorithm performs better with bigger test set sizes and performs better using

smaller beam width size.

Quality ratio values indicate the inverse relationship between the beam width
and the throughput of the web services composition solution. Figure 5.3 illustrates the
experiment quality ratio results using the records from the test set of size 10000 as an
example from the experiments. This shows that increasing the beam width decreases
the quality ratio for both the throughput and the response time which is good for the
throughput in case of choosing the optimal solution and good for response time in case
of choosing the first found solution.

300
250

200

150

Quality Ratio

100
50
600 300 150 120
Beam Width

THqr =@=Tqr
Figure (5. 3): Experimental results when the test set size 10000 results

Figure 5.3 shows the fact that decreasing the beam width decreases the
complexity of the Enahnced Beam Stack Search algorithm because it gives better

throughput quality regardless of increasing the response time.

Increasing the beam width decreases the chance of finding the optimal solution.
For example, going back to Figure 4.2 and thinking as Ssc can be reached by S», and
Sac and they have different qualities and let’s say that Sxc has better quality but reaching
Sac by Sac does not give the optimal solution. Now the path through S22 which holds

64

the optimal solution is ignored because of preferring Sy at an early stage. So, choosing
large beam width leads to ignoring some paths which hold the optimal solution for the
user. While decreasing the beam width, allows the Enahnced Beam Stack Search
algorithm to discover the highest number of possible paths for solving the web services

composition problem.

The results show the importance of the Enhanced Beam Stack Search algorithm
in finding the required web service that meets non-functional requirements of the user's
request. As it clarifies the defference between using bigger test set size and smaller
one, besides showing the defference between using smaller beam width and bigger
one. Also, this enhancement finds the optimal solution inorder to reach the user’s

request.

5.4. Summary

Based on the results of the expermintes, a higher difference between the first
found solution and the optimal solution means that we have a high throughput quality
ratio. The larger is the throughput quality ratio, the better experimental results. Quality
ratio values indicate the inverse relationship between the beam width and the
throughput of the web services composition solution. The throughput value decreases
as the beam width decreases and performs better by using a bigger web services test

set size.

Decreasing the beam width decreases the complexity of the Enahnced Beam
Stack Search algorithm because it gives better throughput quality regardless of
increasing the response time. Decreasing the beam width allows the Enahnced Beam
Stack Search algorithm to discover the highest number of possible paths for solving
the web services composition problem. Using bigger test set is indeed more efficient
to apply with the Enhanced Beam Stack Search algorithm.

65

Chapter 6
Conclusions and
Recommendations

66

Chapter 6

Conclusions and Recommendations

Through this work, we have studied the problem of web services composition
with quality constraints in particular the response time and the throughput. The
Enhanced Beam Stack Search algorithm is used to solve the web services composition

problem.

It iterates over all of the web services, formed as a search graph, to discover the
possible solutions and each time it finds a new solution with better throughput quality.
The Enahnced Beam Stack Search algorithm is flexible, where the user can terminate
it after discovering the first solution to get the fastest one and it allows the user to
terminate it anytime and to choose the reached solution. On the other hand, when it
continues searching it performs filtering for the found solutions to return the best one
at the end.

We used 5000, 10000, and 15000 web services test set files with their associated
syntactic (WSDL) and semantic (WSLA) descriptions, as we applied the experiment
on them with four different beam widths 120, 150, 300, and 600.

The results show that increasing the beam width decreases the throughput of the
optimal solution which is not preferred while decreasing the beam width increases the
throughput. Also, if the user is satisfied with the first found solution, smaller beam
width performs faster in returning the first found solution. At the same time the

Enahnced Beam Stack Search algorithm performs better with bigger test set size.

The quality ratio for the throughput increases while the beam width decreases
and the response time quality ratio has a reverse relationship with the throughput
quality ratio. This is not considered a weakness in our approach because the optimal
found solution throughput results deserve waiting for more time especially for users

who can compromise optimal solution with time.

Therefore, the Beam Stack Search results a quality solution for the composition
problem and decreasing the beam width in the Enahnced Beam Stack Search algorithm
contributes in decreasing its complexity and discovers a better solution for the web

services composition problem that meet the requirements of the user request.

67

Our work is the only study that uses an enhancement of the Beam Stack Search
algorithm depending on finding the optimal solution and uses different test set sizes
with different beam widths to solve the web services composition problem and study
the results of finding the required web service that meets non-functional requirements

of the user's request.

The Enhanced Beam Stack Search algorithm solves the composition problem
depending on decreasing the complexity of the search space through the different
levels by decreasing the beam width. But there is a limitation when a node is expanded
and reaches a solution, it is pruned and cannot be reached by a previous level again
since a simple operator algorithm is used in solving the problem. We suggest a future
work to solve this in the algorithm by making a combination between the Enhanced
Beam Stack Search algorithm and the Genetic algorithm. This is to combine the benefit
of decreasing the complexity through the limited beam width with the advantage of
Genetic algorithm to use complex operators in the search process. Also, we propose to
apply the enhanced Beam Stack Search algorithm with a wider search space and study
the efficiency of the algorithm and the quality of the solution. This can be combined

with extra different beam width sizes.

68

References

Aine, S., Chakrabarti, P. P., & Kumar, R. (2007). A window constrained anytime
heuristic search algorithm. 1JCAI, 2250-2255.

Albreshne, A., & Pasquier, J. (2010). Semantic based semi-automatic web
service composition. Switzerland: computer Department.

Albreshne, A., Fuhrer, P., & Pasquier, J. (2009). Web services orchestration and
composition.

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web services. In G.
Alonso, F. Casati, H. Kuno, & V. Machiraju, Web Services (pp. 123-149). Springer
Berlin Heidelberg.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S. (2003). Business
process execution language for web services.

Arkin, A., Askary, S., Fordi, S., Jekeli, W., Kawaguchi, K., Orchard, D.,
Pogliani, S., Riemer, K., Struble, S., Takacsi-Nagy, P., Trickovic, I., Zimek, S. (2002).
Web service choreography interface (WSCI) 1.0. W3C.

Austin, D., Barbir, A., Ferris, C., & Garg, S. (2004). Web services architecture
requirements. W3C Working Group Notes, 22.

Barry, D. (2017). Service architecture. Retrieved June 20, 2017, from
www.service-architecture.com: http://www.service-architecture.com/articles/web-
services/service-oriented_architecture_soa_definition.html

Bartalos, P., & Bielikova, M. (2012). Automatic dynamic web service
composition: A survey and problem formalization. Computing and Informatics,
30(4), 793-827.

Blake, B. M., Weise, T., & Bleul, S. (2010). Wsc-2010: Web services
composition and evaluation. Service-Oriented Computing and Applications (SOCA),
2010 IEEE International Conference (pp. 1-4). Perth, WA, Australia: IEEE.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., &
Orchard, D. (2004, Febreuary 11). Web services architecture. Retrieved June 20, 2017,
from W3C Working Group Note: https://www.w3.org/TR/ws-arch/

Chan, P. P., & Lyu, M. R. (2008). Dynamic web service composition: A new

approach in building reliable web service. 22nd International Conference on Advanced
Information Networking and Applications (pp. 20-25). Aina: IEEE.

69

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web
services description language (WSDL). 1(1).

Oasis Committees (2016). OASIS UDDI Specification TC. Retrieved June 20,
2017, from oasis-open.org: https://www.0asis-
open.org/committees/tc_home.php?wg_abbrev=uddi-spec

Cotfas, L. A., Diosteanu, A., & Smeureanu, |. (2010). Fractal web service
composition framework. Communications (COMM), 2010 8th International
Conference (pp. 405-408). IEEE.

Decker, K., Sycara, K., & Williamson, M. (1997, August). Middle-agents for the
internet. In IJCAI, 1, pp. 578-583.

Doshi, P., Vembu, N., & Zhao, H. (2011, May 24). Web service composition.
Retrieved June 20, 2017, from http://thinc.cs.uga.edu/:
http://thinc.cs.uga.edu/thinclabwiki/index.php/Web_Service_Composition

Dumas, M., & Wohed , P. (2011). BPEL evaluation results. Retrieved June 20,
2017, from Workflow Patterns Initiative:
http://www.workflowpatterns.com/evaluations/standard/bpel.php

El Kholy, M., & Elfatatry, A. (2015). Intelligent broker a knowledge based
approach for semantic web services discovery. Evaluation of Novel Approaches to
Software Engineering (ENASE), 2015 International Conference (pp. 39-44). IEEE.

Feier, C., Polleres, A., Dumitru, R., Domingue, J., Stollberg, M., & Fensel, D.
(2005). Towards intelligent web services: The web service modeling ontology
(WSMO).

Garofalakis, J., Panagis, Y., Sakkopoulos, E., & Tsakalidis, A. (2006).
Contemporary web service discovery mechanisms. Journal of Web Engineering, 5(3),
265-290.

Hu, Y., & Wang, H. (2008). Constraints in web services composition. 2008 4th
International Conference on Wireless Communications, Networking and Mobile
Computing (pp. 1-4). IEEE.

Hunter, J., & McLaughlin, B. (2015). Class SAXBuilder. Retrieved June 20,
2017, from http://www.jdom.org/:
http://www.jdom.org/docs/apidocs/org/jdom2/input/SAXBuilder.html

Hunter, J., & McLaughlin, B. (2000). JDOM. Retrieved June 20, 2017, from
www.java2s.com: http://jdom.org/

JOpera. (2016). JOpera for Eclipse. Retrieved June 20, 2017, from jopera:
http://www.jopera.org/

70

Kil, H., & Nam, W. (2013). Efficient anytime algorithm for large-scale QoS-
aware web service composition. International Journal of Web and Grid Services, 9(1),
82-106.

Likhachev, M., Gordon, G. J., & Thrun, S. (2003). ARA*: Anytime A* with
provable bounds on sub-optimality. Advances in Neural Information Processing
Systems.

Marshall, D. (2016). Heuristic search. Retrieved June 20, 2017, from
users.cs.cf.ac.uk: http://users.cs.cf.ac.uk/Dave.Marshall/Al2/node23.html

Mcllraith, S., & Son, T. C. (2002). Adapting Golog for composition of semantic
web Services. KR, 2, 482-493.

Medjahed, B., Bouguettaya, A., & Elmagarmid, A. K. (2003). Composing web
services on the semantic web. The VLDB Journal—The International Journal on Very
Large Data Bases, 12(4), 333-351.

Mirbel, 1., & Crescenzo, P. (2010). From end-user’s requirements to web
services retrieval: A semantic and intention-driven approach. International
Conference on Exploring Services Science (pp. 30-44). Springer Berlin Heidelberg.

Moghaddam, M., & Davis, J. G. (2014). Service selection in web service
composition: A comparative review of existing approaches. Web Services Foundations
(pp. 321-346). Springer New York.

NetBeans.org. (2016). Archived NetBeans IDE documentation, NetBeans 6.1
SOA docs archive. Retrieved June 20, 2017, from NetBeans:
https://netbeans.org/kb/archive/

Oh, S.-C., Lee, D., & Kumara, S. R. (2006). A comparative illustration of Al
planning-based web services composition. ACM SIGecom Exchanges, 5(5), 1-10.

O'Keefe, R., & Costa, V. S. (2015, December 10). Graph algorithms. Retrieved
June 20, 2017, from http://www.softpanorama.org/:
http://www.softpanorama.org/Algorithms/graph_algorithms.shtml

Paikari, E., Livani, E., & Moshirpour, M. (2011). Multi-Agent system for
semantic web service composition. International Conference on Knowledge Science,
Engineering and Management (pp. 305-317). Springer Berlin Heidelberg.

Qi, S., Tang, X., & Chen, D. (2012). An automated web services composition
system based on service classification and Al planning. Cloud and Green Computing
(CGC), 2012 Second International Conference (pp. 537-540). IEEE.

Richter, S., Thayer, J. T., & Ruml, W. (2010). The joy of forgetting: Faster

anytime search via restarting. International Conference on Automated Planning and
Scheduling (ICAPS), (pp. 137-144).

71

Seo, Y.-J., Jeong, H.-Y., & Song, Y.-J. (2005). Best web service selection based
on the decision making between QoS criteria of service. International Conference on
Embedded Software and Systems (pp. 408-419). Springer Berlin Heidelberg.

Shehu, U., Epiphaniou, G., & Safdar, G. A. (2014). A survey of QoS-aware web
service composition techniques. International Journal of Computer Applications.

Sheshagiri, M., DesJardins, M., & Finin, T. (2003). A planner for composing
services described in DAML-S. International Conference on Automated Planning and
Scheduling (ICAPS) 2003 Workshop on planning for web services.

Sivasubramanian, S. P., llavarasan, E., & Vadivelou, G. (2009). Dynamic web
service composition: Challenges and techniques. Intelligent Agent & Multi-Agent
Systems, 2009. IAMA 2009 (pp. 1-8). International Conference on. IEEE.

Srour, A. I, Othman, Z. A., & Hamdan, A. (2013). An automatic web services
composition model using Ant-Colony system. International Journal of Innovation,
Management and Technology, 4(4), 435-438.

Sycara, K., Klusch, M., Widoff, S., & Lu, J. (1999). Dynamic service
matchmaking among agents in open information environments. COMPUTER
SCIENCE PUBLICATIONS, 28(1), pp. 47-53. Retrieved June 20, 2017, from
http://scholar.uwindsor.ca/computersciencepub/6

Talantikite, H. N., Aissani, D., & Boudjlida, N. (2009). Semantic annotations for
web services discovery and composition. Computer Standards & Interfaces, 31(6),
1108-1117.

UDDI Consortium. (2001). Uddi executive white paper.

Vadlamudi, S. G., Aine, S., & Chakrabarti, P. P. (2011). A memory-bounded
anytime heuristic-search algorithm. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 41(3), 725-735.

Wang, R., Guttula, C., Panahiazar, M., Yousaf, H., Miller, J. A., Kraemer, E. T.,
& Kissinger, J. C. (2011). Web service composition using service suggestions. 2011
IEEE World Congress on Services (pp. 482-489). IEEE.

Wang, Y., & Vassileva, J. (2007, June). A review on trust and reputation for web
service selection. Distributed Computing Systems Workshops ICDCSW'07. 27th
International Conference (pp. 25-25). IEEE.

Wikimedia Foundation, I. (2016, December 6). Acme packet. Retrieved June 20,
2017, from wikipedia: https://en.wikipedia.org/wiki/Acme_Packet

Wikimedia Foundation, I. (2017, January). Beam search. Retrieved June 20,
2017, from www.wikipedia.org: https://en.wikipedia.org/wiki/Beam_search

72

Wu, D., Parsia, B., Sirin, E., Hendler, J., & Nau, D. (2003). Automating DAML-
S web services composition using SHOP2. International Semantic Web Conference
(pp. 195-210). Springer Berlin Heidelberg.

Yan, H., Zhijian, W., & Guiming, L. (2010). A novel semantic web service
composition algorithm based on QoS ontology. Computer and Communication
Technologies in Agriculture Engineering (CCTAE), 2010 International Conference. 2,
pp. 166-168. IEEE.

Yan, K., Xue, G., & Yao, S.-w. (2009). An optimization ant colony algorithm
for composition of semantic web services. Computational Intelligence and Industrial
Applications, 2009. PACIIA 2009. Asia-Pacific Conference. 2, pp. 262-265. IEEE.

Yu, T., Zhang, Y., & LIN, K.-J. (2007, May). Efficient algorithms for web
Services selection with end-to-end QoS constraints. ACM Transactions on the Web
(TWEB), 1(1), 6.

Zhang, R., Arpinar, I. B., & Aleman-Meza, B. (2003). Automatic composition
of semantic web services. ICWS, 3, 38-41.

Zhou, R., & Hansen, E. A. (2005). Beam-Stack search: Integrating backtracking

with Beam search. International Conference on Automated Planning and Scheduling
(ICAPS), (pp. 90-98).

73

