
I

Semantic Web Services Composition Using

Enhanced Beam Stack Search

المعززة الحزمةمكدسة البحث زمية خدام خوار باست دلاليا خدمات الويب تجميع

Teejan Tajeddean El-Khazendar

Supervised by

Dr. Rebhi Soliman Baraka

Associate Professor of Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Information Technology

June/2017

 زةــغ – ةــلاميــــــة الإســـــــــامعـالج

 البحث العلمي والدراسات العلياشئون

 تـكــنــولـوجـيـا المـعــلـومـاتة ليــــــك

 تـكــنــولـوجـيـا المـعــلـوماتماجستير

The Islamic University–Gaza

Research and Postgraduate Affairs

Faculty of Information Technology

Master of Information Technology

II

 إقــــــــــــــرار

 أنا الموقع أدناه مقدم الرسالة التي تحمل العنوان:

Semantic Web Services Composition Using

Beam Stack Search

باستخدام خوارزمية مكدسة الحزمة دلاليا تجميع خدمات الويب

ن باستثناء ما تمت الإشارة إليه حيثما ورد، وأأقر بأن ما اشتملت عليه هذه الرسالة إنما هو نتاج جهدي الخاص،

لنيل درجة أو لقب علمي أو بحثي لدى أي مؤسسة الاخرين هذه الرسالة ككل أو أي جزء منها لم يقدم من قبل

 تعليمية أو بحثية أخرى.

Declaration

I understand the nature of plagiarism, and I am aware of the University’s policy on

this.

The work provided in this thesis, unless otherwise referenced, is the researcher's own

work, and has not been submitted by others elsewhere for any other degree or

qualification.

 :Student's name رادنزخلان يدلا جات ناجيت اسم الطالب:

 :Signature ردانخزلا ناجيت التوقيع:

 7/3/2017 التاريخ:
Date:

III

Abstract

Semantic web services composition is a set of web services and a user request,

we need to find the best applicable sequence of web services satisfying the user's

request, fulfiling his requirements. Each web service has functional and non-functional

requirements. The problem, is finding the web services composition that fulfills the

non-functional requirements automatically without without involvement the user.

In this research, we take into consideration the non-functional properties to form

a quality based web services composition specifically depending on response time and

throughput (the quantity of efficiency produced over time). We enhanced the heuristic

Beam Stack Search algorithm and employed it to search automatically through the web

services search space for a composition satisfying the required qualities.

Number of experiments were conducted to form compositions on several web

services test set sizes; 5000, 10000, and 15000, such that running the Enhanced Beam

Stack Search with different beam width sizes; 120, 150, 300, and 600. The results

indicate the ability of the algorithm to achieve the required compositions with the

respective qualities. The beam width parameter of the algorithm plays an important

role on the quality of the formed composition. As the beam width increases, the

throughput of the formed composition decreases and vice versa, i.e., results obtained

when using the 15000 test set size for optimal solution throughput are 848, 773, 311,

and 192 sequentially by using the mentioned consequent beam widths increasingly.

Results also showed that as the test set size increases, the algorithm performs

better in terms of throughput. If the user wants the minimum response time he will

take the first found solution. While, if he is interested in the best-found throughput, he

will choose the optimal solution.

Keywords: semantic, web services, composition, automatic, Beam Stack Search

IV

 الملخص
سلسل خدمات الويب. يتطلب علينا إيجاد أفضل ت إن مشكلة خدمات الويب الدلالية هي عبارة مجموعه من

كل غير وظيفيه ليوجد متطلبات وظيفيه و متطلباته.لبي طلب المستخدم و تحقق مناسب من خدمات الويب ي
ويب. تتمحور المشكلة حول إيجاد تجميع خدمات الويب الذي يحقق المتطلبات الغير وظيفية بشكل خدمه

في هذا البحث، نأخد بعين الاعتبار الصفات الغير وظيفية لتكوين ستخدم. أوتوماتيكي دون أي تدخل من الم
 .)الكفاءة المنتجة خلال فترة زمنية(لإستجابة و الكفاءةجودة زمن اتجميع خدمة ويب بناء على الجودة بالأخص

للبحث عبر مجموعة خدمات الويب عن تجميع خدمات توظيفهاتعديل خوارزمية مكدسة الحزمة الإرشادية و ب قمنا
قمنا بعمل مجموعة من التجارب لتكوين تجميعات خدمة الويب .بشكل أوتوماتيكي ويب يلائم الجودة المطلوبه

، كما قمنا باستعمال 15000، 10000، 5000باستعمال أكثر من مجموعه خدمات ويب بحثية أحجامها؛
. النتائج توضح إمكانية 600، 300، 150، 120لة على عرض حزم مختلفة؛ المعد خوارزمية مكدسة الحزمة

الخوارزمية للوصول إلى التجميعات المطلوبه بالجودة المطلوبة. متغير عرض الحزمة للخوارزمية يلعب دوراً هاماً
لتجميع خدمات حيث يُأثر على جودة تجميع خدمات الويب المُنشأ. كلما إزداد عرض الحزمة، تقل كفاءة الإنتاجية

الويب المتكون و العكس صحيح، على سبيل المثال النتائج التي حصلنا عليها عند استعمال مجموعة البحث التي
 بالتسلسل مع كل عرض حزمة تصاعدياً. 192، 311، 773، 848 ، أعطت كفاءة مثالية15000حجمها

ت كفاءة الخوارزمية أفضل في إعطاء كما أظهرت النتائج أنه كلما ازداد حجم مجموعة البحث، كلما كان
قيمة إنتاجية مثالية. في حال كان المستخدم يريد أقل زمن استجابة، سوف يأخذ أول حل تم إيجاده. أما في حال

 كان مهتم في أفضل كفاء، فسوف يختار الحل المثالي الذي تعطيه الخوارزمية المُعدلة.

 وماتيكي، خوارزمية مكدسة الحزمةدلالي، خدمات ويب، تجميع، أوت كلمات مفتاحية:

V

Epigraph Page

"In the middle of difficulty lies opportunity."

Albert Einstein

VI

Dedication

“The family is one of nature's masterpieces” -- George Santayana

This thesis is dedicated with love and affection to my family who supported me

through my life journey.

VII

Acknowledgment

First of all, I would like to thank my Master’s Thesis advisor Dr. Rebhi Soliman

Baraka for his support and guidance. Our continually meetings and discussions made

this thesis possible.

I would also like to thank my friends for being always close to me.

Finally, thanks to my family for supporting me and inspiring me to achieve my goal.

VIII

Table of Contents

Declaration .. II

Abstract ... III

Epigraph Page .. V

Dedication ... VI

Acknowledgment ... VII

Table of Contents .. VIII

List of Tables .. X

List of Figures ... XI

List of Abbreviations .. XII

Chapter 1 Introduction .. 2

1.1 Background and Context ... 2

1.2 Statement of the Problem .. 5

1.3 Objectives.. 6

1.4 Research Significance ... 6

1.5 Scope and Limitations ... 7

1.6 Research Methodology ... 7

1.7 Organization of the Thesis .. 9

Chapter 2 Theoretical and Technical Foundation ... 11

2.1 Web Services... 11

2.2 Web Services Discovery ... 12

2.3 Web Services Selection ... 12

2.4 Web Services Composition ... 13

2.5 Web Services Composition Classifications .. 13

2.6 BPEL as a Web Services Composition Language .. 16

2.7 Heuristic Search Algorithms ... 17

2.8 Beam Search ... 20

2.9 Beam Stack Search.. 20

2.10 Solving Web Services Composition Problem Using Beam Stack Search 27

2.11 Summary ... 27

Chapter 3 Related Works... 30

3.1 Web Services Discovery ... 30

3.2 Semi-automatic Web Services Composition Approaches 31

3.3 Heuristic Automatic Web Services Composition Approaches 33

IX

3.4 Beam Stack Search with Semantic Web Services Composition 37

3.5 Summary ... 38

Chapter 4 Composing Web Services Semantically Using Enhanced Beam Stack

Search ... 41

4.1 Specification of Web Services Composition .. 41

4.2 Structure of Web Services Composition Using Enhanced Beam Stack

Search 43

4.3 Enhanced Beam Stack Search Algorithm ... 47

4.4 Factors of Web Services Quality .. 51

4.5 Measuring Qualities .. 53

4.6 Case Description ... 53

4.7 Summary ... 54

Chapter 5 Experimental Results and Evaluation .. 56

5.1. Some Implementation Issues .. 56

5.2. Experimental results .. 57

5.3. Evaluation ... 61

5.4. Summary ... 65

Chapter 6 Conclusions and Recommendations .. 67

References .. 69

X

List of Tables

Table (5. 1): Qualities and quality ratios for 10000 web services test set 58

Table (5. 2): Qualities and quality ratios for 5000 web services test set 60

Table (5. 3): Qualities and quality ratios for 15000 web services test set 60

XI

List of Figures

Figure (1. 1): Steps of Research Methodology .. 9

Figure (2. 1): A decision tree of artificial intelligence solutions for the web service

composition problem (Oh, Lee, & Kumara, 2006). ... 14

Figure (2. 2): BPEL process flow .. 17

Figure (2. 3): A tree for illustrating levels and expanded nodes. 21

Figure (2. 4): Divide and Conquer Beam Stack Search Algorithm 23

Figure (2. 5): Function Search Used by Beam Stack Search Algorithm 25

Figure (2. 6): Depth-first and breadth-first search techniques 26

Figure (4. 1): Web services composition ... 41

Figure (4. 2): Directed graph composed of candidate services 42

Figure (4. 3): Web service design “Enhanced Beam Stack Search” 47

Figure (4. 4): Define a graph search tree of web service function 49

Figure (4. 5): Beam Stack Search Algorithm .. 49

Figure (4. 6): Search function .. 51

Figure (4. 7): Throughput example .. 52

Figure (4. 8): Response time example ... 53

Figure (5. 1): First found solution throughput ... 63

Figure (5. 2): Optimal found solution throughput ... 63

Figure (5. 3): Experimental results when the test set size 10000 results 64

XII

List of Abbreviations

ARA* Anytime Reparing A*

BnB Branch and Bound

BPEL Business Proccess Excution Language

DCBSS Divide and Conquer Beam Stack Search

ffsT First Found Solution Time

ffsTH First Found Solution Throughput

osT Optimal Solution Time

osTh Optimal Solution Throughput

OWL Web Ontology Language

RWA* Restarting Window A*

SOA Service Oriented Architecture

THqr Throughput Quality Ratio

Tqr Time Quality Ratio

WSCI Web Service Choreography Interface

WSDL Web Service Description Language

WSLA Web Service Level Agreement

WSMO Web Service Modeling Ontology

1

Chapter 1

Introduction

2

Chapter 1

Introduction

In this chapter, we present an introduction to our research. The first section is

dedicated for the background of our research. The statement of the problem is

introduced in the second section. The focus of the third section is on the main and

specific objectives of the research. The significance of the research is presented in the

fourth section. The scope and limitations of the research are covered in the fifth

section. In the sixth section, a brief description is given to the research methodology.

An overview of the thesis is summarized in the last section.

1.1 Background and Context

Web services is a description for a set of associated functions that is available

over the web through programming. Web services are loosely coupled, allows

dedicated binding, also they are reusable software components. Web services have

three entities that are the service requester, service provider and the registry

(Medjahed, Bouguettaya, & Elmagarmid, 2003).

The procedure of combining several web services into one coarse-grained

service in order to produce more composite functions is called web services

composition (Oh, Lee, & Kumara, 2006). Web service composition gives a unified

service that has some supplementary values.

Web services discovery is concerned with finding out the best applicable service

among functionally similar services that meet the requirements of users, consequently,

we must define a set of well-defined quality of services criteria and user preferences

to help in the web service discovery (Seo, Jeong, & Song, 2005).

Web services composition problem, is such that there are a set of web services

and a user request given, and we want to find the shortest sequence of web services

satisfying the user's request. But since web services composition problem solution

have to discover services that fulfil the functional and non-functional requirements

including the quality of services according to the user request. Therefore, the desired

3

web service composition problem solution, will not be the shortest path, but the web

services composition with the optimal gathered quality of services value (Bartalos &

Bieliková, 2012).

Web service description language (WSDL) is considered as the language used

to define a web service and represents the syntactic description. While WSDL

describes the structure of the input and output, without the meaning of the data, this

makes the automated web service composition challenging (Medjahed, Bouguettaya,

& Elmagarmid, 2003).

A semantic description of web services is required for automatic discovery of

these services, while current web services methods offer the syntactic description, that

are difficult for the requester and the provider to understand the input and output.

Semantic web services consist of both, the mixture of web services and the semantic

web. With regard to the semantic web, Web Ontology Language (OWL) and Web

Service Modeling Ontology (WSMO) are two techniques that can be used for service

composition (Feier, et al., 2005). The use of semantic web services is to combine data

and services from various sources with preserving their meaning. While discovering

and combining web services, a value-added service is provided by semantic web

services to complete the domain tasks (Mirbel & Crescenzo, 2010).

Web services are usually defined based on their functional parameters

(input/output parameters), while the parameters of quality of service are used to

describe the behavior of the service. The quality of service solves the problem of

discovering the best service between the functional similar services, it makes the

selection process depends on the non-functional requirements. That makes the quality

of service capable of being used as the leading factor for ranking the web services.

During the selection procedure, after matching the functional requirements, the web

service with high quality of service value will be chosen firstly (Sivasubramanian,

Ilavarasan, & Vadivelou, 2009). The web service activity sequential order flow can be

expressed using several languages such as BPEL4WS (Andrews, et al., 2003) and

WSCI (Arkin, et al., 2002).

Search algorithms have been used for sometime to solve problems in various

fields such as large scale combination. Trying to solve the problem using the existing

4

search algorithms, which works on finding an optimal solution, it may take long a time

in computations to complete, while this delay is not allowed due to time restrictions

for the customers.

Generally, search algorithms have two significant problems when applied to

large and complex problems. The first one is the problem of memory needs of the

search methods especially the best first methods becomes expensive. The second one

is the problem of time where search algorithms needs a lot of time to reach the best

solution (Vadlamudi, Aine, & Chakrabarti, 2011).

A previous study (Shehu, Epiphaniou, & Safdar, 2014) showed a full review of

the techniques that treat this search problem as NP-hard problem. It presents the

concepts of quality of services aware web service composition, concentrating on

quality of services properties, workflow model and quality of services aggregation

functions.

Many researchers have offered different automated methods to solve the

problem of semantic web services composition (McIlraith & Son, 2002), (Sheshagiri,

DesJardins, & Finin, 2003), and (Wu, Parsia, Sirin, Hendler, & Nau, 2003). An

important study was presented by Kil and Nam (2013) proposes using the heuristic

Beam Stack Search algorithm (described in full details in Section 2.9) in solving

quality of web services aware web services composition problem. This study is the

only study that employed the Beam Stack Search algorithm to solve the problem of

web services composition, while we also used it in our study to use the Beam Stack

Search but in another way in order to perform better results.

The goal of this research is centered around enhancing an algorithm to find a

specific web service among a set of web services under the order of the client meeting

a specific quality criteria and to altimately be part of a composition. Enhanced Beam

Stack Search algorithm enhances forming the web services composition by

reconstructing each time a newly discovered solution. The Beam Stack Search

frequently improves the overall solution by realizing better solutions for web services

composition until finding the optimal solution. While there are two most important

solutions records among the found solutions for the user, they are concentrated on

finding the first fast solution and the solution with the best throughput value. At the

5

beginning, the Enahnced Beam Stack Search algorithm gives all the possible solutions

where the user can take the first fast solution by terminating the algorithm directly

after finding the first solution. Alternatively, it might complete searching for more

solutions for users who are not interested in time and they can wait to find the solution

with the best throughput. Then after the Enahnced Beam Stack Search algorithm

finishes processing all the possible solutions, it terminates by itself, and returns the

best-found path for forming the composition depending on the best-estimated response

time and throughput. There are many non-functional requirements which the user may

be interested in. In our research, we chose the response time since it is important to

deliver the service in a good time. Also, we chose the throughput variable because it

measures the quantity of efficiency produced over time, throughput is very important

since there is no need for un-efficient web services.

In our research, we applied a number of experiments to form compositions by

running the Enhanced Beam Stack Search using web services test set sizes; 5000,

10000, and 15000, with beam width sizes; 120, 150, 300, and 600. Conducting

experiments on the different used test set sizes and diverse beam width sizes allowed

us to find valuable experimental results.

1.2 Statement of the Problem

A set of web services is given by a service provider and a user request is given.

The user wants to find the best web service composition that meets specific functional

and non-functional requirements. Using automatic search techniques, many solutions

can be formed to solve the web service composition problem fulfilling the functional

requirements but the major challenge is finding a solution that also fulfils the non-

functional requirements according to the user request automatically. This solution

must not only consider the shortest time quality of the composition, but also the

optimal throughput quality of the services forming the composition.

We implemented an Enhanced Beam Stack Search algorithm to process a set of

web services with their functional and non-functional requirements, inorder to

construct a set of web services compositions which are functionally similar but differs

in their non-functional requirements.

6

1.3 Objectives

1.3.1 Main Objective

The main objective of this research is to design an algorithm based on

Beam Stack search algorithm to perform semantic web services composition

automatically using a set of web services to achieve the user's request, taking

into consideration the solution quality. The solution quality of web services

composition depends on the response time and on the throughput of the

composition.

1.3.2 Specific Objectives

The specific objectives of the research are:

1. To collect and analyze a set of web services with their syntactic descriptions

of the functionality they offer, and semantic descriptions utilizing their

qualities.

2. To analyze Beam Stack Search algorithm to propose a suitable modification

to make it applicable to solve the web service composition problem

3. To design the enhanced approach that solves the semantic web service

composition problem based on Beam Stack Search

4. To implement the algorithm and conduct a number of experiments to

measure the quality of the approach

5. To evaluate the algorithm. The ratio of “the throughput of the first fast

solution” to “the best throughput solution”, and “the response time ratio of

the first fast solution” to “the best-found solution”, are used to assess the

algorithm’s efficiency.

1.4 Research Significance

This research solves the problem of web services composition problem taking

into consideration user specified qualities. The user determines his request and chooses

among, e.g., a first found solution or wait for the optimal solution to be discovered by

the Enahnced Beam Stack Search algorithm. Enhanced Beam Stack Search discovers

frequently improved solutions and realizes the optimal solution.

7

The Enahnced Beam Stack Search algorithm serves two types of customers. The

first type is customers who need the fastest solution, and the other type is customers

who care about composition solution throughput quality

The importance of the research stems from its ability to improve a general search

technique such as Beam Stack Search and then employ it within the area of web

services, particularly, the composition problem.

1.5 Scope and Limitations

The quality of web services has a wide range, such as security and other factors.

In this research, we only focus on the factors of throughput and response time for

finding each solution for the required web services by the user.

Results evaluation will be conducted in order to determine the potential

advantages of using the algorithm of Beam Stack Search to solve the web service

composition problem

Regarding the data sets, they are not real web services but rather experimental

sets related to Acme Packet company services collected and prepared by (Blake,

Weise, & Bleul, 2010) as WSDL files for the syntactic description of the services and

their associated web service level agreements (WSLA) files which hold the semantics

of the services including the qualities. More on these data sets can be found in Section

4.5.

1.6 Research Methodology

To achieve the objectives of the research, we follow the following

methodology as shown in Figure 1.1:

Step 1. Reviewing works related to using Beam Stack Search in web services

composition problem, important subjects related to the field of semantic web

services and semantic web services composition problem techniques as well as

related search algorithms.

Step 2. Finding and collecting the suitable web services data which will be used

as the search space by the algorithm during experiments.

http://www.cs.stir.ac.uk/~kjt/research/conformed.html

8

Step 3. Preparing and processing the collected data to be used in the experiments.

While the data is stored in a web service description language (WSDL) format.

We have to prepare the data as a java file to be ready for use.

Step 4. Studying the original Beam Stack Search algorithm and modify it as

needed to be suitable for our purpose to search through the web services data

set. depending on its original mechanism. It uses backtracking method

depending on a specific beam width suitable to the used web services set size.

In the set of web services, some web services are candidates of specific

functionality but they differ in their non-functional requirements.

Step 5. Preparing service model which is a WSDL file containing the client`s web

service requests to be searched by the algorithm to form the composition.

Step 6. Performing the required experiments using the prepared files to find the

required service by the client file through the set of web services using the

Enhanced Beam Stack Search algorithm.

9

Step 7. Study the efficiency of the approach based on the Enhanced Beam Stack

Search algorithm (Zhou & Hansen, 2005).

Figure (1. 1): Steps of Research Methodology

1.7 Organization of the Thesis

The thesis is organized as follows. Theoretical and technical foundations are

discussed in Chapter 2. The related works are reviewed in Chapter 3. The proposed

approach is described in Chapter 4. Chapter 5 is devoted to analyze and discuss the

results of the approach. In Chapter 6, conclusion and recommendations are given.

1. Collect
data

2. Prepare
& process

data

3. Modify
original

Beam Stack
Search

algorithm
as needed

4. Build
service
model

5. Conduct
experiment

6. Evaluate
results

10

Chapter 2

Theoretical and Technical

Foundation

11

Chapter 2

Theoretical and Technical Foundation

A substantial amount of research has been done on web services composition.

This chapter covers the theoretical and technical foundations related to web services,

their description, discovery, selection, semantics, and composition. Heuristic search

algorithms, Beam Search and Beam Stack Search and their complexities are explained

and how they are used in the web services composition.

2.1 Web Services

Web services can be any application reachable to other applications through the

web. This definition is open, it says that anything has an URL can be considered as a

web service. For example, any reachable program over the web with a fixed

application programming interfaces, and available with supplementary descriptive

information on some guide can be considered as a web service (UDDI Consortium,

2001).

Web services is given by the world-wide-web consortium (W3C) (Austin et al.,

2004) as “a software application identified by a URI, whose interfaces and bindings

are capable of being defined, described, and discovered as XML artifacts. A Web

service supports direct interactions with other software agents using XML-based

messages exchanged via Internet-based protocols”. This definition stresses how web

services must work, defined, described, and discovered. Web services must be not only

running, but they also have to be described and advertised, so it will be possible to

write clients which link and interact with them. Simply, web services are interoperable

software components that can be used in application integration and component-based

application development and can be integrated into supplementary complex dispersed

applications (Alonso, et al., 2004).

Web service description language (WSDL) is written using XML to describe

web services as endpoints set which is functioning on messages containing

document(s) information or containing procedure(s) information. The processes and

messages are conceptually described in the WSDL file, then engaged to a concrete

12

network protocol and message format inorder to outline an endpoint. Associated

concrete endpoints are joint into services (abstract endpoints). WSDL is a language

that is able to be extended to permit description of endpoints and their messages

irrespective of what is the message formats or network protocols used to connect

(Christensen, et al., 2001).

2.2 Web Services Discovery

As the demand for web services usage is increasing, various questions arise

about the approaches and techniques to determine the more appropriate web service to

use. Actually, there are considerable issues beyond the finding of a web service. Web

services discovery mechanisms have an important role in the cooperation among

business procedures and customers based on accepted web standards (Garofalakis, et

al., 2006). The major subject in web services discovery is finding out the best

applicable service among functionally similar services that meet the requirements of

users.

Web services discovery can be considered as a match-making process (Sycara,

Klusch, Widoff, & Lu, 1999) or the process of discovering a suitable service provider

for a service requester over an internal proxy (Decker, Sycara, & Williamson, 1997).

Generally, web services discovery starts by service suppliers when they advertise their

abilities to middle brokers (registries). After that, brokers store this information, then

a service client asks the brokers best matching his demanded capabilities. At the end,

the broker efforts to match the client request against the stored advertisements.

Service discovery may be accomplished manually or automatically using

specific mechanisms. While in both cases, the searching interface should be able to

make a comparison between the supplied capabilities and the required functionality

(Booth, et al., 2004).

2.3 Web Services Selection

Services from diverse providers should be selected carefully inorder to be

integrated into a composite web service irrespective of their platforms, performance

speeds, or even their locations inorder to carry-out complex business operations and

transactions (Yu, Zhang, & Lin, 2007). The input of web services selection phase is a

13

set of services levels, where each level includes web services with the same

functionalities, but they may differ in other non-functional features like the quality of

services characteristics (Moghaddam & Davis, 2014). The customer may select the

required service manually while the construction of the web service composition time

depends on some extra data resources or choose the service randomly from available

candidates, or may use automated web services composition techniques (Wang &

Vassileva, 2007).

2.4 Web Services Composition

A Services Oriented Architecture (SOA) is a set of services connecting with each

other that may contain either simple data or it could contain two or more services

performing some activity (Barry & Associates, 2017). The goal of Service Oriented

Architecture (SOA) is to offer a loosely-coupled combination or/and composition of

web services existing in diverse systems and programmed using various programming

languages. Commonly, web services are platform independent applications which can

be invoked through the internet. Easing the gathering of web services to form

composite web services, is a significant functionality in SOA (HU & Wang, 2008).

Generally, web services composition problem is represented by, that we are

given a set of web services and a user request and we want to find the shortest sequence

of web services fulfilling the user request. The problem of automatically gathering web

services inorder to form compositions that enhance given user priorities is often

denoted as the automated web service composition problem (Doshi, Vembu, & Zhao,

2011). Web services composition needs to find service suppliers that fulfil functional

and non-functional requirements, which takes the quality of web services constraints

in consideration.

2.5 Web Services Composition Classifications

Web services composition can be categorized depending on three significant

specifications which depend on automation degree of the composition, the complexity

of the composition and the scale of the composition (Albreshne & Pasquier, 2010) and

(Oh, Lee, & Kumara, 2006).

14

Figure (2. 1): A decision tree of artificial intelligence solutions for the web

service composition problem (Oh, Lee, & Kumara, 2006).

Figure 2.1 illustrates the web services composition as a decision tree of artificial

intelligence solutions classifications in a simple flowchart. We identify briefly these

classifications as follows:

2.5.1.Composition Automation Degree

Composition can be manual, automatic or semi-automatic. A manual

composition has to be performed by domain experts because it is zero automated,

so it relies on the user experience. While automatic composition is performed using

software programs so ordinary users can use it.

 Manual composition approach: is the traditional approach where users must be

familiar with the domain, they choose suitable web services and include them

into a coherent workflow. Users might depend on a GUI based software to

make the composition easy, even though, it requires expertise and is

susceptible to errors. Processes are defined by a process execution language

like BPEL. Many existing tools have plug-ins for enabling manual composition

such as Net-Beans (NetBeans.org, 2016), and JOpera (JOpera, 2016). This

approach is not easy to be used because it requests a lot of knowledge by the

user and it comes to be more and more challenging with the explosion of web

15

services resources, so it is not suitable for large-scale web service composition

problems.

 Automatic composition approach: we work in this path. This approach works

without user participation, it is used when the user has a set of restrictions and

priorities and he has no method pattern. It depends on discovering services for

performing abstract processes which are defined previously. The automatic

tools, try to find the available web services that semantically correspond as

much as possible to the user’s requirements.

 Semi-automatic composition approach: which is also called the interactive

composition approach, in this type of composition, the system often supports

users to discover, filter and combine automatically the wanted services through

matching the user’s requests for the existing services. Furthermore, it allows

end users to be involved all the time throughout the composition process.

2.5.2.Composition Operators

Web services composition can be performed using either simple or complex

operators. Simple operators web service composition searches using a sequence of

AND operators. For example, “web service a2, AND web service b6, AND web

service c9, AND ...” also, it does not contain any restrictions. Complex operators

web service composition use additional operators (such as OR, XOR and NOT

operators) or restrictions (for example, request r prefers web services located in

Europe to those located in Asia).

2.5.3.Composition Scale

There is small and large scale web services composition. Exhaustive search

algorithms could only work for small scale web service composition problem. Large

scale problems, estimated algorithms which find sub-optimal solutions are preferred

(Sivasubramanian, Ilavarasan, & Vadivelou, 2009).

Various methods can be used to solve the web services composition problem

automatically such as heuristic search algorithms, linear programming, and Genetic

algorithm.

16

Based on the artificial intelligence methods shown in Figure 2.1 and thinking

about web services composition as a large scale scenario, we need to use simple search

operators through the composition process with the various available candidates. This

is why we are using a heuristic algorithm without thinking about Genetic methods.

Specifically, the used heuristic technique in this research to solve the web services

composition problem is the Beam Stack Search algorithm.

In Section 2.7, we present various concepts related to heuristic search

algorithms, Beam Search, Beam Search, Beam Stack Search and using them in the

composition of web services.

2.6 BPEL as a Web Services Composition Language

Performing web services composition can be done through BPEL orchestration.

Orchestration is the technique that is used to combine web services, while the

concerned web services are restrained and controlled by a single endpoint essential

process which is simply another web service. Web services can be combined without

being aware that they are playing a part in a larger business process (Albreshne, Fuhrer,

& Pasquier, 2009).

Business Process Execution Language for Web Services (BPEL, WS-BPEL,

BPEL4WS) which is commonly referred to by BPEL, is the new standard for outlining

business procedures with services composition. It is the foundation stone of Service

Oriented Architecture (SOA).

A BPEL process flow expresses the order in which the involved web services in

a composition are composed, either in sequence or in parallel.

17

Figure (2. 2): BPEL process flow

Figure 2.2 illustrates how BPEL process flow in its two flow types, Sequential

flow, and the Parallel flow type.

A BPEL process consists of a set of actions. It interacts with exterior associate

services through a WSDL mediator. A BPEL process, defines the execution order,

conditional behaviours, and activities. Additionally, it defines the namespace, ports,

operations, partner link types, and messages that are needed to determine the process

actions. WSDL files are required in order to generate an effective, executable BPEL

definition (Albreshne, Fuhrer, & Pasquier, 2009).

2.7 Heuristic Search Algorithms

Heuristic search algorithms solve optimizing problems through finding a regular

fast suboptimal solution, then working on finding enhanced solutions when given

additional time. For a fast solution, anytime search algorithms are characteristically

greedy with respect to the heuristic cost h. There are various heuristic search

algorithms (referred to an anytime A* method) as we review some of them.

Likhachev, Gordon, and Thrun (2003) Anytime Repairing A* (ARA*) algorithm

adopts an allowable heuristic and minimizes the weight w each time, to be used in the

cost function as follows:

Step 1

Sequential Flow

Step

3A

Step

3B

Step

3C

Step 2

Parallel Flow

18

𝑓(𝑛) = 𝑔(𝑛) + 𝑤 ∗ ℎ(𝑛) , 𝑤 > 1 (3.1)

ARA* works by executing A* several times, starting with a large w and scaling

down w value before each execution until w = 1. Consequently, after each individual

search, a solution is ensured to be by a factor w of finest solution which assign the

denotation of optimality for the solution. ARA* algorithm, proves w acceptability of

the present solution. This indirectly prunes the search space like that no state has ever

expanded whose f’-value is bigger than the value of the present solution. When

decreasing the value of w, ARA* changes the correspondig f’-values of all the states

in “Open” set approbate to the new weight. Additionally, ARA* eschews reexpanding

states through search round, while each round is the part of search among two weight

changes. Each time a shorter path to a specific state is found, and that state has

previously been expanded in the present search round, the state is not expanded again

directly. Alternatively it is stored in a separate list, which will be put in the “Open”set

only at the launch of the following round. The logical basis beyond this, is that even

without reexpanding states, the subsequent found solution is definite to be in the

current sub optimality bound (ARA* algorithm). As this method concentrates on

finding sub-optimal solution, the composition of web services does not benefit from

it.

The heuristic Beam Stack Search algorithm (Zhou & Hansen, 2005), is based on

breadth-first search. In Beam Stack Search algorithm, just the maximum talented nodes

in each level of the search space are expanded, where the beam width w is given by

the user. The algorithm recollects which nodes have not until now been expanded and

gets back to them in a subsequent time. However, beam-stack search discovers the

whole search space beneath the selected states before it backtracks on its resolution.

We can say that Beam Stack Search makes the Beam Search into a complete search

algorithm by applying a backtracking mechanism, simply it iterates the beam

algorithm to find all the candidate solutions. Discussed widely in Section 2.9.

Additional iterative anytime heuristic search algorithm called anytime Window

A* algorithm (Aine, Chakrabarti, & Kumar, 2007) that is also based on breadth-first

search like the beamstack search do. In this method, the expansion of each node is

restricted through a “sliding window” involving levels of the search graph, which

19

means that the sliding window moves downwards in a depth first manner, each time a

state in a higher level than the earlier expanded one ,the window slides down to that

level of the exploration space. Only states in that level and the h levels above can be

expanded, while h is the height of the sliding window. Initially h=0, and it increases

by one every time a new solution is found. This algorithm can suffer from its strong

depth first concentration if the heuristic approximations are inexact and vary

significantly far away.

Another heuristic search algorithm is called “The Joy of Forgetting: Faster

Anytime Search via Restarting” (Richter, Thayer, & Ruml, 2010), a suitable name for

the proper technique since it works on initiating the search from the initial node

whenever a new solution found.

The searchers advice to restart Window A* algorithm. Therefore, this algorithm

is referred to as Restarting Window A* algorithm (RWA*). Simply, we can describe

RWA* algorithm as it iteratively runs the Window A* algorithm with reducing weight,

constantly reexpanding states once it finds a cheaper path.

RWA* differs from ARA*algorithm and Anytime Window A* algorithm, that

it does not preserve the “Open” list between phases. Each time an improved solution

is created,the search empties the “Open” list and start over from the initial state. This

algorithm as unusual addes another third list to the ordinary “Open” and “Closed” lists

found in the previous algorithms, which is called “Seen”. When a new search phase

starts, the states from the old “Closed” list are moved to the “Seen” list. This algorithm

will behave typically such as the Window A* algorithm if a generated state in the new

search has never been generated before bymeans that it does not belong to any list

(neither “Open” nor “Closed” nor “Seen”), which means that RWA* then will

calculate the heuristic value of the state and insert it into the “Open” list. Also, it will

behave again as the Window A* if the state has been came across before in this search

phase (it is either in “Open” list or “Closed” list). Then RWA* will reinsert the state

into the “Open” list only if it found a shorter path to the goal state. While there is a

thired case for reached state, which that this state has been came across in previous

search phases but not in the present phase bymeans that it belongs to “Seen” list. Then

RWA* will have another behavior, it will find the heuristic value of this state from the

20

phase which it was previousely came by across, rather than calculating heuristic value

again. Also, the RWA* algorithm examinations the previously found path to the state

is cheaper or it found a new better path inorder to keep the better one. Finaly it moves

the state from “Seen” list to the “Open” list. We can conclude that this algorithm

prevents calculating the heuristic value of a state more than one time, and previous

effort (Window A* algorthim) is used in making usage of the best path to a goal state

found. However RWA* algorithm’s restarts gives additional flexibility in finding

different solutions, but it may reexpand many states that were previously expanded in

earlier phases which will waste memory and time

Through this section we can conclude that, Beam Stack Search algorithm

prevents from states rexpandings which preserve time and memory space. Also, it

calculates the heuristic values for states just one time through the algorithm which

makes us think more better about depending on in our project to solve the web services

composition problem. Depending on Beam Stack Search we can find a fast sub-

optimal solution wich will be the first found solution, and whenever the user has more

time the search algorithm will keep on going until finding the best solution.

2.8 Beam Search

Beam Search is considered as a modification of branch-and-bound (BnB) search.

It uses an inadmissible pruning rule. The Beam Search selects only the most promising

nodes for more branching at each level of the search graph using heuristic, while the

remaining nodes are pruned forever. Beam denotes the nodes that will be explored in

each level and the beam width w denotes the size of search in the beam (number of

nodes to be explored). Beam search expands nodes in breadth-first order and uses a

fixed beam width, Beam Search method is alike best-first search mechanism

(Wikimedia Foundation, Beam search, 2017)

2.9 Beam Stack Search

Although the Beam Search algorithm can find a prompt solution, it may bypass

the optimal solution. This is due to the method of the Beam Search. In this method

only picked points are examined in each level.

https://en.wikipedia.org/wiki/Best-first_search

21

Zhou and Hansen (Zhou & Hansen, 2005) developed an algorithm named Beam

Stack Search in order to optimize the Beam Search algorithm using divide and conquer

technique. In the Beam Stack Search algorithm, the optimal solution is found by

reiterating the Beam Search.

Shown in Figure 2.4, when the Beam Stack Search finishes one iteration of the

Beam Search, it archives the search advancement and goes on to the following iteration

to catch an enhanced solution. To follow the nodes which have been called, the Beam

Stack Search processes the beam stack which encompasses an element for every level.

The element of the beam stack determines the range of the cost [fmin ; fmax) so that only

successor nodes having cost in this range are saved in the next level. The algorithm

rejects any successor nodes with a cost less than the lower bound fmin or greater than

or equal to the upper bound fmax, when expanding nodes in a level related to an element

in the range [fmin ; fmax). The element of level zero having one start node is saved at the

bottom of the beam stack. However, the element related to the presently expanding

level is saved at the top of the beam stack (line 18 in Function Search shown in Figure

2.5). When the algorithm make its first expansion for a node in a level, it sets the first

element of the equivalent level to have the range [0,U) (line 4 in Algorithm DCBSS),

where U is the present upper bound of the cost. If the level size becomes larger than

the beam width (line 19 in Function Search), then the Beam Stack Search do an

inadmissible pruning for nodes with the maximum cost (line 21 to 27 in Function

Search) to save space for new nodes.

Nodes with R sign are nodes which have just been pruned

Figure (2. 3): A tree for illustrating levels and expanded nodes.

[fmin;fmax)

 B B B

Level 1

Level 2 R R R

22

In Figure 2.3, it is assumed that the beam width is equal to three, and Level 2

holds the expanded nodes from Level 1. Each pruned node in Figure 3 has a cost

greater than the cost of the other nodes that have B sign inside, then the three nodes

with smaller costs are not pruned.

At the moment that the search algorithm prunes nodes in a level, it varies the fmax

of the element in the previous level to have the value of the minimum cost of the pruned

nodes. This guarantees that the search algorithm will not produce any successor node

having a cost exceeds or equals to the minimum cost of the pruned nodes which indeed

became the Upper cost.

When search algorithm arrives a level all its successor nodes have a cost larger

than U, we name it an empty level.

When search algorithm backtracks, it deletes from the top of the beam stack

successive elements with an fmax larger than or equal to U (line 12 and 13 in Algorithm

DCBSS).

Search algorithm back-tracks the level linked to the element on the top of the

beam stack stand for the lowest level which comprises specific node(s) having one or

more pruned successors.

Each time the search algorithm backtracks to a level, the Beam Search is obliged

to allow a variant set of successor nodes by modifying the range of the element [fmin;

fmax) saved in the beam stack element linked with the level. When the algorithm

backtracks to a level, the new fmin will have the value of the present fmax (line 18 in

Algorithm DCBSS) and the new fmax will have the value of the upper bound U (line 19

in Algorithm DCBSS). This means that the range [fmin, fmax) is shifted to [fmax, U). The

search will not stop until all the nodes in the present level are expanded.

To create new successor nodes that might have been inadmissibly pruned in the

prior visit of the level, the expansion of the nodes that were expanded in the latest visit

of this level should be repeated.

Once the fmax of beam stack element of the level is larger than or equal to the

upper bound when all nodes in the level have been expanded, it can be said that the

backtracking of the level is complete. This implies that successor nodes with cost

23

within the range [fmin,U) has not been pruned meanwhile the pervious time the search

algorithm backtracked to the level. Consequently, successor nodes with cost in the

range [0;U) should have been created for the level.

The search algorithm does not terminate immediately when it discovers a

solution, it goes on to explore better solutions. The algorithm will finish when the

beam stack is blank (all levels are backtracking-complete). It is simply showed that the

best solution found must be optimal, then Beam Stack Search is an anytime algorithm

that discovers an early solution, and goes on to find better solutions until meeting an

optimal solution (line 7 and 8 in Algorithm DCBSS). Note that the search algorithm

updates U the upper bound every time it discovers a better solution (line 9 in Algorithm

DCBSS).

Next is the pseudocode for the Beam Stack Search algorithm as presented by

Zhou and Hansen (2005).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Algorithm DCBSS: Divide and Conquer Beam Stack Search (Node start, Node

goal, Real U, Integer relay)

Beam_stack = Ø;

Beam_stack.push([0,U)); // initialize beam stack

bestPath = null; // initialize optimal solution path

while Beam_stack.top() ≠ null;

solution-path = Search(start, goal, U, relay);

if solution-path ≠ null then

best_path = solution-path;

U = Cost(solution-path);

Print (solution-path);

While Beam_stack.top().fmax > || = U do // fmax upper bound of cost

Beam_stack.pop();

End while

If Beam_stack.isEmpty() then

Return bestPath;

Print(bestPath + " is the optimal path ");

Beam_stack.top().fmin= Beam_stack.top().fmax; // fmin lower bound of cost

Beam_stack.top().fmax=U;

End while

Figure (2. 4): Divide and Conquer Beam Stack Search Algorithm

24

The above divide and conquer Beam Stack Search algorithm uses the following

search algorithm (Zhou & Hansen, 2005) and iterate over it to find the solution as

required.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Function Search(Node start, Node goal, Real U, Integer relay)

best_goal = null;

open[0] = {start};

l =0; // start level while l is the index of layer

open[l] = Ø;// index of level

closed[0] = Ø;

while open[l] ≠ Ø or open[l +1] ≠ Ø; do

 while open[l] ≠ Ø; do // the current level is not empty

node = argminn{ cost(n) | n ϵ open[l] } // expand node

open[l] = open[l]\{node} // remove the expanded node from the open set

closed[l] = closed[l] Ս {node} // add the expanded node to the closed set

if (node = goal)

then best_goal = node;

set U = g(best_goal); /* g(node) is the cost of the best_goal path from

the start node to the goal node */

End;

Else

Node.expand(beam-stack.top()) // top level workflow automatically

If layerSize(l +1)>w then

Keep = keep the best w nodes ϵ open[l +1];

Prune = {n | n ϵ open[l +1] && n ∉ Keep };

Beam_stack.top().fmax = min(cost(n) | n ϵ prune };

For each n ϵ Prune do

 open[l +1] = open[l +1] \ n

 delete n

then Keep = open[l +1]; // after the pruning

End

End while;

if 1 < l ≤ relay or l > relay + 1 then

 for each n∈ Closed[l −1] do /* delete previous layer */

 Closed[l −1]←Closed[l −1]\{n}

 delete n

 end for

l = l +1; // move to the next level

Open[l +1] = Ø

Closed[l] = Ø

 Beam_stack.push([0,U)); // new item in the stack

untill

If best_goal ≠ null; then // delayed solution reconstruction

25

40

41

42

43

44

Return solutionReconstruction(best_goal); /* solutionReconstruction is divide-

and- conquer solution reconstruction technique */

Else

Return null;

End if

Figure (2. 5): Function Search Used by Beam Stack Search Algorithm

It has been hypothesized that all the successor nodes have variant costs, which

permits the use of the costs of successor nodes to decide in which order to prune nodes

when memory is complete. The importance of assembling nodes according to the cost

is that the search algorithm discovers nodes with the minimum cost initially. This

implies that the algorithm primarily discovers the best encouraging nodes. However,

some nodes may have the same cost, at this case a tie breaking rule must be used to

execute a whole ordering on nodes.

There are many options to manage the case in which some nodes have the same

cost. The search algorithm can break ties depending on the state encoding of a node,

to ensure the uniqueness of the cost. Or the Beam Stack Search may use domain-

specific information. For multiple sequence alignment, an entire assembling, can be

depended on the coordinate of a node in an n-dimensional hypercube (n: number of

aligned sequences).

Beam Stack Search permits some unbroken ties, as long as the number of ties in

a level is smaller than the beam width. It runs under bounded memory and is

guaranteed to find an optimal solution, it uses open and closed sets to store all the

generated nodes of a search graph in memory (Open set is used to store boundary

search nodes, and the Closed set is used to store previously expanded nodes).

It is important to know that the first part of Beam Stack Search, before any

backtracking is applied through the algorithm, is the same as the Beam Search; often

it finds a first solution very fast, then it is an anytime algorithm that explores a

sequence of enhanced solutions before reaching to optimality.

Beam Stack Search contains both breadth-first branch-and-bound BFBnB search

and depth-first branch-and-bound DFBnB search as exceptional cases. As when the

beam width is:

26

1. one, beam-stack search is equivalent to depth-first search branch-and-bound

search

2. larger than or equal to the size of the largest level, beam-stack search is

equivalent to breadth-first branch-and bound search, and no backtracking

occurs

In the other cases, it utilizes a hybrid strategy in the search processes that

combines BFBnB search and DFBnB search and offers an elastic tradeoff between

existing memory and the time overhead of backtracking. Figure 2.6 gives a simple

illustration for the depth-first search and the breadth-first search techniques (O'Keefe

& Costa, 2015).

For allowing divide-and-conquer solution reconstruction in the described

algorithm, relay node technique is used. In the relay node technique, each node pasts

the midpoint supplies an indicator to the start node, that is reserved in memory. For

uncomplicatedness, all of the relay nodes are stored in the same layer, called the relay

layer. The algorithm stores four layers; the relay layer, the presently expanding layer,

its descendant layer, and its previous layer.

For each found goal node, a comparison between the costs of the current found

one and the saved best solution. In case the cost of the newly found node is better that

the best solution, it will be set as the best solution and its cost will be the upper cost

(line 12 to 16 in Function Search).

Figure (2. 6): Depth-first and breadth-first search techniques

27

2.10 Solving Web Services Composition Problem Using Beam Stack

Search

As presented in Section 2.5, we explained why our study is using the heuristic

type of search algorithms which is formalizes as the A* alternative algorithms of the

artificial intelligence. Studying the Beam Stack Search, and realizing the flexibility to

edit it to search through set of web services, led us to take the step in our project for

discovering web services compositions depending on the Beam Stack Search

algorithm. The advantage of using Beam Stack Search algorithm that it searches level

by level, so web services set will be used as subsets in levels, while each level contains

a subset of web services performing the same functionality, but differ in the quality

(the non-functional requirements for the service), which demonstrates the meaning of

web services selection (Section 2.3). The advantage of using it, that in each level the

technique works on examining the top number of web services in quality under the

range of the specified beam width that is given by the user. After that, it moves to the

next level and apply the same method of choosing the best specific number of web

services in the level, while it keeps the rest of web services from each level to be

examined in another loop until it passes over all of the possible and available solutions,

referring to that keeping the rest services in a stack to examine it the next loop prevent

the re-expanding of nodes which takes additional time for processing. For sure as

mentioned about the algorithm previously (Section 2.8) each newly found solution is

stored, and when a new solution is found it is compared with the previous one. If the

quality was better, then it will be used for comparing the next solutions, while if not,

the previously found one will be hold to continue comparing with it to discover the

rest possible solutions. This way we can be sure that we will get the optimal solution.

2.11 Summary

Web services discovery and selection is important for solving the web services

composition problem inorder to find the best applicable service among similar web

services that meet the customer's needs. Web services composition problem is re-using

discovered and existing web services and combining them in a process, while web

services composition is classified based on three major factors which are the

automation degree, operators type (simple or complex), and search set size.

28

Beam Stack Search algorithm is a heuristic search algorithm that helps in solving

the web services composition problem. |It rebuilds each time a new solution is found,

which upgrades the solution by discovering better solutions until finding the optimal

solution. The cost of response time and the throughput are used to for measuring the

complexity of the Enahnced Beam Stack Search algorithm by calculating ratios of time

and throughput.

29

Chapter 3

Related Works

30

Chapter 3

Related Works

Various research efforts contributed in solving the problem of web services

composition depending in different approaches and methods ranging from manual to

automatic, syntactic to semantic, non-heuristic to heuristic depending on algorithms

such as Beam Stack Search.

In this chapter, we review works related to web services discovery (Section 3.1),

web services composition with algorithms that can help in guiding service composition

including semi-automatic web services composition approaches (Section 3.2),

automatic web services composition approaches (Section 3.3) and using Beam Stack

Search algorithm with semantic web services composition (Section 3.4).

3.1 Web Services Discovery

While the web service technology is as well adopted by information technology

practitioners and designers, the amount of existing web services is constantly

increasing. So, the need of the usual web service discovery method which is based on

UDDI record lists, demands more time and persistence by the developer or customer.

However, this method is not efficient in many situations because it needs to be able to

elect among a great quantity of delivered web services.

Sycara, Klusch, Widoff, and Lu (1999) propose an overview about the dynamic

service matchmaking between proxies in exposed information environments. They

performed the matchmaking using LARKS in JAVA for proxy advertisements and

requests. They implemented the user interface which traces the path of the result set of

a request using matchmakers’ filters. The filters can be arranged by selecting a

checkbox under the desired filters (under control of user). The authors used five

different filters in their developed system. The result set pass through the filters from

one to another. Upon their study, they concluded that the service matchmaking among

heterogeneous software proxies on the internet is frequently done dynamically and

must be efficacious.

El Kholy and Elfatatry (2015) present a solution for the web service discovery

in service oriented systems using the concept of multi level search. Briefly, we can

31

describe their system that it receives the customer requirements as an XML file. After

that, the requirements pass through three levels of search, where the first level is

keyword search which is applied to discover the nominee service. If no matching

arised, after that the second level converts the user requirements to formal English

language, this phase resolves the problem of unclear sentence building which may be

involved in the user requirements. Finally, the third level is that formal sentences are

passed to an ontology provider which converts the syntactic words to its domain

ontology word. So, the user requirements are reassigned from syntactic to semantic

and the second level of semantic search previously takes place. In this search, services

are registered with their semantic description.

As Sycara, Klusch, Widoff, and Lu (1999) trace the resulting path using

matchmaker’s filters, our matchmaking filter is the Beam Stack Search as it discovers

the new solution path and filters all the found solutions to decide the best-found

solution.

El Kholy and Elfatatry (2015) utilize a keyword search to discover nominee

service, while in our research the next nominees are expanded from the current node a

level and the WSLA file contains the semantic data ready to use and no need for any

conversions from syntactic to semantics.

3.2 Semi-automatic Web Services Composition Approaches

Many previous studies have studied solving web service composition problem

using semi-automatic approaches. We present some previous studies as follows.

A semi-automatic approach is presented by Wang, et al. (2011), that includes

data mediation and service proposition algorithms to compose web services into an

operation by giving service propositions. They define an input/output directed acyclic

graph in order to formulate an input/output schema of a web service procedure. Data

mediation resolves the heterogeneities between the input and output structures, also

transforms a subset of the output structure to the input structure. They developed three

data mediation algorithms for output to input matching (leaf-based, structure-based

and path-based) to resolve data heterogeneities in the method design. The researchers

established a data mediation approach that attempts to automatically discover the best

32

mappings between outputs and inputs, concluding that path-based data mediation

algorithm is the best to use.

Another semi-automatic method (Hu & Wang, 2008) has the advantage of taking

the least possible quantity of essential data from the user and saves them in a relational

model (relational model uses the basic impression of table as columns and rows), then

takes the necessary data to make the composition. At the end of the algorithm a

transformation algorithm is applied to map all of the taken data from relational to

BPEL model.

Another study (Chan & Lyu, 2008) gives a new semi-automatic approach, it

proves the perfection and verifies the correctness of the composed web service by

building the model of the web service to be deadlock free. The approach uses WSDL

and WSCI (Web Service Choreography Interface) web service files as the base for the

method, it takes the information from them to create the web services. The WSDL file

defines the login points for each available web service while the WSCI is used for

describing the interactions between WSDL operations to accomplish the web service

composition using the obtained information.

Another research (Cotfas, Diosteanu, & Smeureanu, 2010) presents a semi-

automatic approach where the composition is prepared in a fractal way by using

present web service chains that are able to be integrated easily into new web service

chains, all web service chains are used as building blocks to create new service chains

while they are described using Web Service Business Process Execution Language

(WS-BPEL). This way makes it easy generate new and extra complex web service

chains.

These methods are semi-automatic while our research applies an automatic

algorithm for solving the web services composition problem. Wang, et al. (2011) are

using cylicic graph (number of vertices connected in a closed chain) and study the

mapping between the web services inputs and outputs to form the composition, while

we are not using cylicic graph and we prepare web services associated files having the

required data to perform the composition without the need of resolving data

heterogeneities. HU and Wang (2008) uses a rational model for data and transform the

data from rational to BPEL, while our data are prepared as a graph and Beam Stack

33

Search heuristic search is used to make the composition. While we used WSDL file as

Chan and Lyu (2008) but thy required WSCI file to describe the interactions between

web services, while in our study we describe the web services with their functional

requirements in the WSDL file only. Cotfas, Diosteanu, and Smeureanu (2010) create

blocks of web services chains as BPELs to generate an extra complex web services

chains, while we discover a set of separated compositions using the heuristic Beam

Stack Search algorithm.

3.3 Heuristic Automatic Web Services Composition Approaches

A lot of previous studies tried to solve semantic web services composition

problem automatically such as (McIlraith & Son, 2002), (Sheshagiri, DesJardins, &

Finin, 2003), and (Wu, Parsia, Sirin, Hendler, & Nau, 2003). Kil and Nam (2013)

proposes using the heuristic Beam Stack Search algorithm (described in full details in

Section 2.7) in solving quality aware web services composition problem.

 Heuristic, is a function that rates solution path candidates in search algorithms

at each branching phase depending on existing data to determine which branch to

pursue (Likhachev, Gordon, & Thrun, 2003).

The approaches mentioned in Section 3.2 give a solution where the user has to

select the desired service according to quality preferences manually. The reason is that

these types of approaches only have the syntactic description of the web services and

has no semantic data. Therefore, there is a need to develop the web service composition

with the help of the semantic description, which gives the automatic detection for the

web services quality for the automatic selection. This led the researchers to start using

semantics in their approaches and techniques in different ways.

McIlraith and Son (2002) tackle the problem of automated web service

composition and execution for the semantic web. They provided high-level generic

actions and modified constraints to address the web service composition problem. As

a contribution on an existing ConGolog interpreter, the authors built their

implementation and verified the correctness of their work. They use Golog in their

study as a natural formalism for solving web service composition problem. Their

approach was designed in such a way that it has a possibility to extremely decrease the

34

search space, also their technique is easy for the usual web user to use and modify.

This method has an amplified ability to Golog, which is about allowing to include

modifying user constraints. This method contains a programming concept called

“order” which gives the ability to relax the notion of sequence and enable the insert

process of actions to accomplish the qualification for the next action to perform it by

the program inorder to simplify the customization and permitted more generic actions.

Sheshagiri, DesJardins, and Finin (2003) present a planner that composes atomic

and basic services which are described using DAML-S into a composite service. While

DAML-S is a DAML+OIL that can be employed to supply the semantic description

for web services. DAML-S, be made up of a set of ontologies that offer a vocabulary

to describe services. A set of services and goal service are given as an input. This

planner can dynamically re-plan if a service fails, also the planner is able to produce

emergency plans to frustrate such failures.

Wu, Parsia, Sirin, Hendler, and Nau (2003) also uses DAML-S to automate the

solution of web services composition problem but composing the planner is in a

different way. This system totally plans over sets of DAML-S descriptions using a

planner. Consequently, the system accomplishes the subsequent plans over the web.

The planner always performs output producing actions as it plans. But this is

sometimes is not suitable in some cases such as implementing some web services may

take a very long time and the work would be better if the planner continues planning

while waiting for this information.

Zhang, Arpinar, and Aleman-Meza (2003) propose a solution for the problem of

web services composition. It integrates the use of web services ontologies to help in

discovering possible matching between inputs and outputs. Also, this technique is

Human-Assisted Automatic Composition system that supplement the Interface-

Matching Automatic Service Composition technique through qualifying human

participation when the composition cannot continue automatically or when there exist

doubts in matching services.

Talantikite, Aissani, and Boudjlida (2009) gives an automatic model for web

services discovery and composition problem. This study depends on semantic

annotation for web service discovery and composition, inorder to give an

35

understandable description since it is about assigning names, characteristics, and

descriptions. The authors used in their approach an inter connected network

representation form for the services set, the semantic web services is represented in

OWL-S, and the similarity between two concepts of two services is represented by a

connecting edge. Using the similarity measure between the concepts to mark edges,

like pellet before any submitted request. To assemble the composition outline of

services which satisfies a client's request, the semantic network is discovered in

backward chaining and depth-first in a single pass. Finally, a number of composition

plans fulfilling the request are obtained, while just one optimal composition plan using

quality of services is turned back to the requester. Mainly, this technique decreases the

complexity of finding the composition at first, then it decreases the time needed to

make the composition design to select the best quality (similarity, time and memory

space).

Paikari, Livani, and Moshirpour (2011) presents an automatic frame of work for

web service composition P2P network which outlays from an algorithm based on a

phased algorithm. This algorithm can match the output of semantic web services of

the previous phase with a new one which its inputs must be able to be matched. Multi-

agent System Engineering methodology is used to model the frame of work, it is a

famous agent directed methodology and a top-down approach. It consists of four

agents: UI Provider, Service Finder, Service Provider and Composer. An OWL file

has been used to describe web services. The composition procedure is accomplished

through a number of steps while the composer directs its request for a suitable next

web service to a service finder at each step. The researchers in this study only showed

the high-level design and initial implementation of the system and they did not

evaluate the performance of the system in a real-world case study.

Other contributors (Qi, Tang, & Chen, 2012) proposed a mechanism to classify

web services into diverse categories based on automatic function, then they designed

a web service composition system based on service classification and artificial

intelligence planning approach which is used for automatic web service composition.

The mechanism consists of two main parts: the first part is the service management

sub-system which is based on the service classification management mechanism, while

the second part is the service provision sub-system, which is used to meet the need of

36

users’ request by artificial intelligence planning. The researchers also concentrated on

the classification of web services. In this operation, they compared a single instance of

web service with the existing web service categories, by calculating their similarity

and comparing their semantic descriptions. After that they developed a design of a

service administrative system which is a part of their web service composition system.

Finally, referring to the user’s request as the input, using artificial intelligence planning

engine they created an appropriate composition plan to meet the user’s request. This

system combines service classification and artificial intelligence planning and

workflow, but they did not apply it on the real word or give an implementation results

to prove their study by an example.

Another proposed dynamic web service composition algorithm is built based on

quality of web services (Yan, Zhijian, & Guiming, 2010), where the use of web

services quality component is fundamental since it states the non-functional

requirements of service which allow them to work through presenting a hierarchical

quality of web services ontology QoSHOnt composed of three layers (upper, middle

and lower). While the upper layer outlines the basic impression for defining the

specification, context, parameter and relations for the quality of services. The

algorithm selects the best service depending on the weight of the quality of web service

factory to get the best web service. For arbitrary web service request, the researchers

worked on getting the best immediate descendant web service or service set by

invoking a function that works on getting the maximum quality of service in the service

composition map. In this study, there was an absence for relevant standard platform

and standard test data sets, therefore the researchers used a random replicating web

service as a test case, they also chose six data sets (300, 600,900,1200,1500 and 1800

service) with 30 random requests for each data set to make the composition of web

service. Also, they used average time of the combination to calculate the experiment

results of web service composite efficiency.

A study presented by Yan, Xue, and Yao (2009) that explores web services

ontology and Ant Colony algorithm. The researchers here, proposed a method of web

services composition that is based on Ant Colony algorithm which helps to ensure to

get the best composition of web services in a less time. This project has two benefits,

the first one that it has a high successful rate of services composition, while the second

37

benefit that it ensures the quality of composition and the efficiency for the composition

of web services which is based on the users’ requests in the field of dynamic

composition of web services. The researchers used OWL-S for the description of web

services and their relationships. They converted the composition of web services into

a classic graph theory problem, and solved the composition problem by using the

benefits of Ant Colony algorithm. They showed that the algorithm is fruitful to

compose guaranteed quality and efficient web services. They concluded that they need

to enhance the Ant Colony algorithm, parallel composition of web services and the

services quality of services control problems so that the algorithm may be well

adjusted to a parallel composition of web services.

Another study also used the Ant Colony algorithm for solving web services

composition problem is due to Srour, Othman, and Hamdan (2013). This study

presented a user amiable and efficient automatic web services composition model

using Ant Colony System. Their model depends on four core components (Visual

Services modeling, User Query Generator, Semantic Composer and Workflow

Generator). The model works on automating the composition procedure with taking

into account the end user viewpoint seeking to decrease the exploration space of

candidate Web services, and it also improves Web Services composition usability and

efficiency. The researchers applied backward discovery strategy for web services

selection and Ant Colony System for web services composition process to make the

web services composition automatically, but they did not make any evaluation of the

model.

3.4 Beam Stack Search with Semantic Web Services Composition

Some studies (Marshall, 2016) referred to heuristic search methods as methods

which might not always find the best solution, but these methods try to find a good

solution under a practical time by deciding which choice might be the best one. Kil

and Nam (2013), as disscussed next, adopted this idea and used specific time

thresholds to study efficiency.

Kil and Nam (2013) propose a solution for the web service composition problem

using the Beam Stack Search algorithm. This study gives a dynamic search

methodology to solve the web services composition problem using the time quality

38

factor. They implemented the algorithm using some computations to give different

beam widths through the search process that change as a trio form which is different

from Beam Stack Search which uses a fixed beam width. Kil and Nam used C++

language to program the algorithm, also they used specific time thresholds in their

experiment to study the efficiency of their work using four different thresholds in

seconds.

In our study we use the Beam Stack Search algorithm with different fixed beam

width sizes to solve the problem of semantic web services composition. We suppose

that the heuristic search algorithm passes through all of the levels of search tree and is

able to discover all of the possible paths of solutions and terminates itself regardless

of the additional time. We try to find the best solution among all the available candidate

solutions inorder to measure the efficiency through taking the quality ratio between

the first found solution and the optimal solution.

In our work, the quality factor will be wider than the previous search algorithm

investigated by Kil and Nam (2013). The quality factor depends on time and

throughput so that it can be used to find two quality ratios which are the ratio of “the

first fast solution throughput” to “the best throughput solution” as well as the ratio of

“the first fast solution time” to “the best throughput solution's time” are used to assess

the Enahnced Beam Stack Search algorithm efficiency which help us to study the

efficient of waiting more time inorder to get better throughput value for web service

composition problem solution.

Kil and Nam (2013) study web services on large scale sets, they use six different

sets of web services with sizes 50, 100, 100, 500, 1000, and 1500. In our case, we

consider a larger sets of web services. We apply the Enahnced Beam Stack Search

algorithm on sets of 5000, 10000, and 15000 web services with four different beam

widths in our experiments (120, 150, 300, and 600).

3.5 Summary

The usual web service discovery methods such as (Sycara, Klusch, Widoff, &

Lu, 1999) and (El Kholy & Elfatatry, 2015), request from the customer or the

developer a supplementary time and persistence. Therefore, we cannot depend on these

39

methods all the time since they request to be able to choose among excessive delivered

web services.

Semi-automatic approaches such as (Wang, et al., 2011), (Hu & Wang, 2008),

(Chan & Lyu, 2008), and (Cotfas, Diosteanu, & Smeureanu, 2010) do not adapt to

choose the best web service under the user constraints without a human involvement

in the part of web services semantics. Automatic approaches such as (McIlraith & Son,

2002), (Sheshagiri, DesJardins, & Finin, 2003), (Wu, Parsia, Sirin, Hendler, & Nau,

2003), and (Kil & Nam, 2013) use web services semantics to find a solution under the

specific time constraints of the algorithm.

In the next chapter, we present our enhancement on Beam Stack Search

algorithm with diverse fixed beam width sizes to solve the problem of semantic web

services composition and record the spent time with the discovered optimal solution.

40

Chapter 4

Composing Web Services

Semantically Using

Enhanced Beam Stack

Search

41

Chapter 4

Composing Web Services Semantically Using Enhanced Beam Stack

Search

In this chapter, we present the approach for composing web services based on

their syntactic as well as semantic descriptions using Beam Stack Search. The

composition is formed based on user’s goal, i.e., a less optimal fast solution, or an

optimal slower solution.

Section 4.1 presents a specification of the web service composition. Section 4.2

briefly covers the structure of the web services composition approach using Enhanced

Beam Stack Search algorithm. Section 4.3 describes the Enhanced Beam Stack Search

algorithm, while the factors of web services quality are defined in Section 4.4. Section

4.5 shows the base of measuring qualities of the experimental results. Finally, Section

4.6 describes the case study used in the experiments.

4.1 Specification of Web Services Composition

Web services composition consists of n number of required services tasks

expressed as (Service1, Service2, … , Servicen) as shown in Figure 4.1 where Service1

is considered as the start node and Servicen is the goal node which we have to set them

in our Enahnced Beam Stack Search algorithm application.

Figure (4. 1): Web services composition

As discussed in Section 2.5, composition can be based on large scale set of web

services using simple operators. The set web services is represented as a graph to form

the web service composition using such simple operators as shown in Figure 4.2:

nService 2Service 1Service

42

.

.

.

Figure (4. 2): Directed graph composed of candidate services

There are n candidate automatic services with the same functions but different

qualities for each service task which are generally known by the non-functional

requirements. The problem of web services composition can be resolved by a graph

with different candidate services paths. Finding the optimal web services composition

is the problem of finding the optimal path in the graph. The composite web service

that is composed of the optimal path, should be the best path meeting the requirements

of the user. User requirements are usually the non-functional requirements such as

response time, security, throughput. In our research, we focused on the response time

and throughput to study the results of our experiments depending on them.

The goal node (Sn) can be reached through multiple paths using Beam Stack

Search algorithm. We have to notice that by increasing the beam width, the algorithm

may prune some node (service) at early level while this node has the possibility to give

a path with higher quality value. For example, if the beam width for the graph in Figure

4.2 is 3, and S2c throughput is 5 but the highest path throughput under this node is 10,

but S2b throughput is 3 which will be expanded after S2c and it may have a path to S3f

1S

2aS 2bS 2cS

3bS 3cS 3aS 3dS 3eS 3fS

nS

1 Service

start node

2 Service

Candidates

3 Service

Candidates

Goal n Service

Service

43

with a higher quality which will not be taken into account since S3f was previously

discovered through S2c. In the other hand if the used beam width is 2 then it will take

the path discovered by S2b because it is discovered before the path from S2c. This

indicates that a smaller beam width leads to a better solution.

The quality measure, either throughput or response time, is calculated for each

transition from one service to another until discovering all of the possible web services

compositions. The total quality measure of the composition is calculated by:

∑ 𝑻𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏(𝑺𝒊, 𝑺𝒊+𝟏)𝒏
𝒊=𝟏 (4.1)

Equation 4.1 calculates the summation of all the transitions between web

services nodes in each web services composition flowing from the first service S1 to

the goal service Sn.

Based on the specification of web services composition, we present our approach

to accomplish this composition using a modified version of Beam Stack Search.

4.2 Structure of Web Services Composition Using Enhanced Beam Stack

Search

In this section, we present our proposed web services composition solution using

Enhanced Beam Stack Search. We start by giving an overall description of how the

approach works. Then we explain in detail each part of the approach.

Figure 4.3 illustrates the proposed approach for web services composition. In the

set of web services, each service has two descriptions; syntactic description (in WSDL)

and a semantic description (in WSLA), specifically the qualities. The throughput and

the response time are used as the quality measures. The throughput is recorded from

the semantic description (WSLA) and measured by Equation 4.1. The transition in the

equation is considered as the quality factor. Thus Equation 4.1 is used as

∑ Throughput (𝑺𝒊, 𝑺𝒊+𝟏)𝒏
𝒊=𝟏 which sums the throughput values for all nodes used in

the composition. The response time is the required time spent to move from the start

web service node to the next one until reaching the goal web service node, which is

calculated based on Equation 4.1 as ∑ Time (𝑺𝒊, 𝑺𝒊+𝟏)𝒏
𝒊=𝟏 .

44

The Beam Stack Search algorithm is a search graph which means that it must be

able to search as a graph of web services. Each node of the graph has an ID which

represents a web service with its corresponding semantics.

Our enhancement on the Beam Stack Search is about extending it to able to deal

with web services based on their syntactic descriptons in terms of WSDL and in terms

of their semantic description in terms of WSLA organized in what is called web

services pool. In the service pool, each web service is represented with a special ID

(based on a hashmap structure).

The Enahnced Beam Stack Search algorithm creates the solution search space as

a graph of web services like the graph shown in Figure 4.2 which is processed by the

Enahnced Beam Stack Search algorithm in order to start solving the problem of web

services composition and find a set of candidate solutions which meets the user

request.

Two solutions in the set of solutions are the most special for a user, the first one

is the first found solution which a user choose it when he is interested in the time

quality and do not want to waste time, while the other solution is the optimal solution

that has the best-found throughput quality among all of the possible found candidate

solutions in the set of solutions which is preferred for users who have flexibility in

time and they care about throughput quality.

Next, we elaborate each part of the Enhanced Beam Stack Search algorithm

structure to fully discuss it:

4.2.1 Defining the set of web services with their semantic descriptions

The dashed part in Figure 4.3 represents this part of the approach. Firstly, we use

a set of web services with syntactic descriptions (in WSDL format) together with their

associated quality information (in the WSLA format). This quality information

includes the throughput of the service. The set of these services form a pool of web

services arranged such that each web service has an ID refering to its full available

data. This way we prepare these web services in a way to be ready to form a graph to

be searched by the Beam Stack Search as a solution search space.

45

4.2.2 Forming the web services Graph

The web services still need some arrangement to be ready for use in the Beam

Stack Search algorithm since the algorithm can not decide which web service comes

before or after the other one. We perform this step of forming web services tree graph

as an important phase to be added to the algorithm. The Beam Stack Search algorithm

is working with simple operators as a tree graph. We develop a tree graph of web

services using IDs from the service pool to denote each node. The graph nodes have

input instances, output instances and throughput quality for each service while the

response time is calculated through processing the search procedure. We discussed

such a graph in the specification of the composition of web services in Section 4.1

4.2.3 Composition problem

Web services composition problem is about composing a sequence of services

that give a final service for the client under his specified requirements as specified in

Section 4.1 (Specification of Web Services Composition). The client request contains

the required web service descriptions (as WSDL). Figure 4.3 shows that there is a

relationship between the set of web services Service(input instances, output instances,

quality) and the composition problem, this relation comes from that the required

services is originally a subset of the set of web services. This set of web services and

the formed graph are given as parameter to the Beam Stack Search algorithm to match

instances from the two sets in finding the solution.

4.2.4 Beam Stack Search

Our study aims to solve the web services composition problem by discovering

and selecting web services automatically. As from the previous steps now we have an

automatically formed search graph of web services and a search problem which needs

to be solved. Then, we are now prepared to use the heuristic Beam Stack Search

algorithm to solve the problem of web services composition. We discuss these details

in a separate section due to its importance (see Section 4.3).

4.2.5 Proposed solutions

46

The Enahnced Beam Stack Search algorithm discovers a set of candidate

composite solutions which all have the same functional requirements but differ in their

non-functional requirements, specifically the throughput, all of the found solutions are

correct and the user can take any one of them, but only two solutions are special. The

first one is the first found solution since it is considered as the fastest solution. Also,

the Enahnced Beam Stack Search algorithm filters all of the found solutions and

specify the optimal solution which is the solution with the best non-functional

requirements (best quality) and this is considered as the second special solution among

the rest of found solutions because it overcomes all of the rest solutions with its non-

functional requirements.

The user can choose the first solution if he is concerned with time by terminating

the Enahnced Beam Stack Search algorithm after giving the first solution. If the user

is more interested in the non-functional requirements and he has the ability to wait for

more time, he will choose to wait for the algorithm to continue processing and filtering

until finding the optimal solution. The Enahnced algorithm stops by printing the

candidate solutions with their calculated qualities, throughput and response time.

Figure 4.3 gives an illustration of the approach structure.

47

Figure (4. 3): Web service design “Enhanced Beam Stack Search”

Next, we present the Enhanced Beam Stack Search algorithm (as a continuation

to Section (4.2.4) together with its usage in finding the solution of the composition

problem.

4.3 Enhanced Beam Stack Search Algorithm

For the Beam Stack Search algorithm to be suitable to solve the web services

composition problem, it has to be enhanced to deal with the composition problem as

well as the web services syntactic as well as semantic descriptions in terms of WSDL

and WSLA. Therefore, the Enahnced Beam Stack Search algorithm considers the

following issues:

1. Web services pool: creating a pool of web services include, their non-

functional requirements, i.e., their syntactic as well as semantic

descriptions in terms of WSDL and WSLA

Beam Stack
Search Algorithm

Filtering

composition
problem

Proposed
solutions to
composition

Search graph
construction to
view data in the

appropriate form
to process it

using the
algorithm

Pool of web services
with required

information and
qualities

Graph(V, TreeMap)
hashmap(id,

Service)

WSDL + WSLA
Service (input

instances, output

instance, quality)

Abbreviations: V = number of vertixes of the graph, TreeMap= inputs of the graph

using data from the service pool

48

2. Input graph: represents web services in the web services pool and

creates a search space which is formed as a search graph for the Beam

Stack Search algorithm.

3. Solving the composition as a search problem: searching through the

graph of web services to form a composition using Beam Stack Search.

4. Solutions: extract a set of possible solutions based on the user request

and filter the set of solutions to find the optimal solution (best throughput

value). The user can choose the first found solution if he prefers to

preserve time.

The Enhanced Beam Stack Search algorithm automatically processes the web

services while solving the composition problem. Function DGS, shown in Figure 4.4,

is used by the search function, showin in Figure 4.6, to build a graph search tree of

web services. The search function, then, is used by the Beam Stack Search algorithm

(Figure 4.5) to find the required composition solution.

The inputs of “Define a graph search tree of web services” function are the web

services data in WSDL and its associated WSLA (line 2 in Figure 4.4). The function

process these syntactic and semantic description of the web services (line 4 in Figure

4.4).

After obtaining the required data, the function stores them in a service pool (line

5) with each web service having an ID referring to it. By executing this in Function

DGS, we achieve the dashed part in Figure 4.3 (which illustrates the design of the

Enhanced Beam Stack Search) additionally with the part of the next step of the search

graph construction. To form the web services graph in line 10 at Figure 4.4 (also see

Figure 4.2) it depends on matching each web service output instance with the suitable

input instances among the available web services in the servies set.

Now, in order to execute the search graph part, the function prepares for this step

by setting the graph nodes at first as the service ID (line 7 in Function DGS). After

that, the function maps from each node to the next possible nodes (line 8 in Function

DGS) to form the search graph (line 9 in Function DGS) which will be used by the

function Search, in the Beam Stack Search (see Figure 4.6).

Next, Figure 4.4 includes the pseudocode for the dashed part of Figue 4.3

49

1

2

3

4

5

6

7

8

9

10

11

12

13

Function DGS: Define a graph search tree of web services

Input WSDL and WSLA files

Output pool of web service generated as a graph search tree

 Translate WSDL and WSLA to Service(input instance, output instances, quality)

 service-pool = hashmap(id,Service)

While Services is not null

 then

 vertex v;

 v = service(id)

 Map = forms a graph from each v to the next neighbor vertices // as edges from v to v

Else

Return Graph(V, Map)

End

Figure (4. 4): Define a graph search tree of web service function

The output of this function in Figure 4.4 is used in the inputs of the search

function specified in Figure 4.6.

The Beam Stack Search algorithm is executed on the resulting graph as shown

in Figure 4.5.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Algorithm BSS: Beam Stack Search (set webServices, Service requiredService,

Real U)

Output: The first found solution and the optimal solution with their non-functional

requirements

Beam_stack = Ø;

Beam_stack.push([0,U)); // initialize beam stack

bestPath = null; // initialize optimal solution path

while Beam_stack.top() ≠ null;

solution-path = Search(webServices, start, goal, U, beamWidth);

if goal-path ≠ null then // solution path

best-path = goal-path;

U = Cost(goal-path);

return goal-path;

While Beam_stack.top().fmax > || = U do

Beam_stack.pop();

End while

If Beam_stack.isEmpty() then

return bestPath is the optimal solution

Beam_stack.top().fmin= Beam_stack.top().fmax;

Beam_stack.top().fmax=U;

End while

Figure (4. 5): Beam Stack Search Algorithm

50

The inputs (line 1 in Algorithm BSS) are the set of web services, required

service, and the upper bound U (the upper limit for the quality, i.e., response time).

Also, at line 6 in Algorithm BSS (where it uses the search function), we need to look

at the inputs of Function Search where it uses the graph prepared in Function DGS as

an input, besides the start node of the search, the goal node, the upper bound U, and

the beam width value. The goal node is the required web service by the user. The cost

function at line 12 in Figure 4.5 represents the total quality measure which is calcuated

using Equation 4.1 which calculates the summation of all the transitions between web

services nodes in each web services composition from the first service to the goal

service.

The Beam width plays a big role in the search results, it affects the quality values

(response time and throughput). A smaller beam width size makes the response time

of the first found solution shorter. For an optimal solution, beam width size impacts

the throughput quality value such as increasing the beam width decreases the

throughput while decreases the response time. In this case, the user who cares about

throughput quality ignores this time decreasing.

The beam width value is important in the search process and choosing it is

critical depeding on the user. A user who cares about time and intends to choose the

first found solution prefers to use smaller beam width size to get a faster composition.

While a user who cares about throughput and intends to choose the optimal found

solution, the smaller beam width is also the best choice. This is proved by the

experiments preseted in Chapter 5.

1

2

3

4

5

6

7

8

9

10

11

12

13

Function Search: Search (Graph webServices, Node start, Node goal, Real U,

Integer beamWidth)

Best-goal = null;

open[0] = {start};

l =0; // start level while l is the index of layer

open[l] = Ø;// index of level

closed[0] = Ø;

w = beamWidth;

 while open[l] ≠ Ø; do

node = argminn{ cost(n) | n ϵ open[l] }

open[l] = open[l]\{node}

closed[l] = closed[l] Ս {node}

if (node = goal)

51

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

if cost(node-path) < cost(best_ composition)

then best-goal = node;

set U = g(best-goal); // g(node) is the cost of the best-goal path from

the start node to the goal node

End;

Else

Node.expand(beam-stack.top()) // top level workflow automatically

If layerSize(l +1)>w then

Keep = keep the best w nodes ϵ open[l +1];

Prune = {n | n ϵ open[l +1] && n ∉ Keep };

Beam_stack.top().fmax = min(cost(n) | n ϵ prune };

For each n ϵ Prune do

 open[l +1] = open[l +1] \ n

 delete n

then Keep = open[l +1]; // after the pruning

End

End while;

if 1 < l ≤ relay or l > relay + 1 then

 for each n∈ Closed[l −1] do /* delete previous layer */

 Closed[l −1]←Closed[l −1]\{n}

 delete n

 end for

l = l +1; // move to the next level

Open[l +1] = Ø

Closed[l] = Ø

 Beam_stack.push([0,U)); // new item in the stack

till

If best-goal ≠ null; then

Return best-goal-path;

Else

Return null;

End if

Figure (4. 6): Search function

By these three parts together, we developed an Enhanced Beam Stack Search

algorithm to solve the web services composition problem according to the user request.

4.4 Factors of Web Services Quality

Through studying the different available web services composition candidates

for solving the problem, we focus on two major factors which are response time and

throughput. They are defined as follows:

52

4.4.1. Throughput

Throughput is the quantity of efficiency produced over time through a test.

Also, it’s expressed as the degree of clarity that can be handled by a web service.

Throughput values are gathered from the related WSLA file for the web services

non-functional requirements. The user may specify a throughput goal that he

needs before starting a test and search for it or he may search for the best possible

found throughput as we do in our research.

As an example, on the throughput from WSLA file at Figure 4.7 where it

shows that the throughput value for the web service is “20” throughput.

Figure (4. 7): Throughput example

4.4.2. Response Time

Response time is the elapsed time between the start of the search and

finding the required web service. In our study, the Enahnced Beam Stack Search

algorithm calculates automatically the response time of finding each solution

separately to use it in the evaluation for each found solution.

As an example, on the response time from WSLA file at Figure 4.8 where

it shows that the unit of response time value for the web service is “5”

milliseconds.

53

Figure (4. 8): Response time example

Next, we describe the case to be used in the experiments and evaluation covered

later (in Chapter 5). There we perform a number of experiments and use the results in

evaluating the quality of the throughput and the quality of response time.

4.5 Measuring Qualities

The cost of response time and throughput are used to measure the qualities of a

given web services composition solution. This is done by taking the ratio of time as

well as throughput between the first found solution and the optimal solution as shown

in Equations 2.1 and 2.2. This shows how the proposed solution improves finding the

optimal solution. The Enahnced Beam Stack Search algorithm finds a fast solution

followed by a number of candidate solutions until finding the best solution, the user

can take the first solution or wait for the best solution to be found. The other candidate

solutions can be used as sub-optimal solutions which are for sure better than the first

found solution but not the optimal.

𝑸𝒖𝒂𝒍𝒊𝒕𝒚 𝑹𝒂𝒕𝒊𝒐𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐭𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭

𝐅𝐢𝐫𝐬𝐭 𝐅𝐨𝐮𝐧𝐝 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐭𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭
 (2.1)

𝑸𝒖𝒂𝒍𝒊𝒕𝒚 𝑹𝒂𝒕𝒊𝒐𝑻𝒊𝒎𝒆 =
𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 𝐭𝐢𝐦𝐞

𝐅𝐢𝐫𝐬𝐭 𝐅𝐨𝐮𝐧𝐝 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 𝐭𝐢𝐦𝐞
 (2.2)

4.6 Case Description

We used sets of web services with their functional and non-functional properties

collected and prepared by Blake, Weise, and Bleul (2010) for the Acme Packet

company services to represent our case. Acme Packet provides control functions to

54

deliver trusted, interactive communications voice, video and multimedia sessions

across IP network borders (Wikimedia Foundation, Acme packet, 2016).

Each set of web services has its functional requirements in terms of WSDL and

their associated non-functional requirements in terms of WSLA. We use three different

test set sizes in our experiments: 5000,10000, and 15000. Each test set has a user

request in terms of WSDLs which forms the composition problem. We use four

different beam width sizes: 120, 150, 300, and 600 inorder to study the impact of small

and big beam width sizes on the quality of web services (the non-functional

requirements).

4.7 Summary

Web services composition consists of n number of required services tasks

expressed as (Service1, Service2, … , Servicen) where Service1 refers to the start node

and Servicen refers to the goal node.

The enhancement on the Beam Stack Search is made to allow the algorithm to

deal with web services based on their syntactic (WSDL) and semantic (WSLA)

representations stored in web services pool. The Enahnced Beam Stack Search

algorithm creates the solution search space as a graph of web services that is processed

by the algorithm in order to solve the problem of web services composition by finding

a set of candidate solutions which meets the user request.

Two important solutions in the set of solutions are special for the user:

 The first found solution, users choose it when they are interested in

response time quality

 The optimal solution, that has the best-found throughput quality among

all of the possible found candidates of solutions in the set of solutions.

This solution is preferred for users who have flexibility in time and they

care about throughput quality.

55

Chapter 5

Experimental Results and

Evaluation

56

Chapter 5

Experimental Results and Evaluation

While the Enahnced Beam Stack Search algorithm gives a set of solutions, the

first found solution is defined as the main focus besides the optimal solution. The user

can choose between both of them, since he can take the first found solution with less

response time when he does not have time to wait for the Enahnced Beam Stack Search

algorithm to continue the computations until finding the optimal solution. This is

considered a good solution but the throughput quality value predefined in Section 4.4

is not be the best. In case the user has enough time to wait for the Enahnced Beam

Stack Search algorithm to finish computations, the optimal solution could be his

choice.

In this chapter, we talk about some implementation issues in Section 5.1. While

in Section 5.2 we view our experimental results, and give an evaluation for these

results in Section 5.3

5.1. Some Implementation Issues

Beam Stack Search algorithm is employed in this study to solve the problem of

web services composition automatically. The algorithm searches through a large set of

web services and finds a set of candidate solutions using a stack that helps in reducing

the used memory space. It avoids nodes re-expansion in each loop by storing the

unused values of the expanded nodes in the closed list in order to use them the next

loop. Reducing the re-expansions help in reducing the required time in computations.

Web services are designed using WSDL orchestration, while there are two used

WSDL files; the first one contains the set of web services, and the other one contains

the client’s web service request which is a subset of the first full file. The WSDL file

contains the syntactic description of the services and has an associated WSLA file for

the services semantic data.

These WSDL and WSLA files were generated previously by Blake, Weise, and

Bleul (2010). These WSDL and WSLA files are interpreted to Java using JDOM parser

in order to use them in our implementation. The data is processed after that using

Service Java file class to describe each service and the associated data, then all of the

57

web services data are stored from the Service in a ServicePool generated to hold the

web services data associating each web service with a special ID which is used as

nodes in the search graph after that.

We use a WSDLParser.java class which depends on using the SAXBuilder

(Hunter & McLaughlin, Class SAXBuilder, 2015) to read the data from the WSDL

file, the SAXBuilder is implemented by the jdom.jar (Hunter & McLaughlin, JDOM,

2000) build library which we use in our implementation. WSDLParser.java class

mainly loads the data from the set of services WSDL file to a file input stream with

the help of the SAXBuilder then we used another class calling it as the service pool

class to load the data in a map to arrange the web services with their IDs.

Each web service is connected with multiple web services in the next level of

the search graph, all having similar functional requirements but differ in the non-

functional requirements. The algorithm uses them as candidates to find the solution.

The WSDL composition problem file which contains the required web service

requirements is also read to Java using the Service Java file because this Java class

describes it well as a subset of the set of web services, then the required service is used

by the Beam Stack Search algorithm as the input to be search for.

5.2. Experimental results

Several experiments are performed to the Enahnced Beam Stack Search

algorithm using 10000 web services set and 4 different beam widths; 120, 150, 300,

and 600 respectively. We set the upper cost limit in our experiment to null since we

are searching for the highest throughput value. This gives a throughput qualities for

the first found solution 9, 9, 5, and 7 respectively with response times 1212, 1900,

2199, and 2889 milliseconds correspondingly. This can be an accepted solution when

the user is interested in a short response time. Having a look at the response time

quality, in the case of using the first found solution, time quality value is high while

the throughput quality is low. For the user who is interested in throughput quality, the

Enahnced Beam Stack Search algorithm continues processing until concluding with

the optimal solution. In our experiments using the same consequent beam widths 120,

150, 300, and 600, the obtained throughput values are 796, 639, 301, and 180

58

respectively as optimal solutions’ throughput values for each used beam width size

correspondingly. The values of the throughput quality are decreasing when increasing

the beam width value as shown in the results. While the response times are 307573,

301167, 312150, and 361757 respectively for each beam width which results in

consuming more time to get the solution of the problem because it needs to do more

computations which require additional time. Although the user who is concerned with

throughput quality is also interested in the response time, but he has to give some

compromise in this case by accepting the additionally spent time in calculations in

order to get the best throughput quality.

Quality ratios give better understanding for the results based on the following

equations:

𝑸𝒖𝒂𝒍𝒊𝒕𝒚 𝑹𝒂𝒕𝒊𝒐𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐭𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭

𝐅𝐢𝐫𝐬𝐭 𝐅𝐨𝐮𝐧𝐝 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐭𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭
 (5.1)

𝑸𝒖𝒂𝒍𝒊𝒕𝒚 𝑹𝒂𝒕𝒊𝒐𝑻𝒊𝒎𝒆 =
𝐎𝐩𝐭𝐢𝐦𝐚𝐥 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 𝐭𝐢𝐦𝐞

𝐅𝐢𝐫𝐬𝐭 𝐅𝐨𝐮𝐧𝐝 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞 𝐭𝐢𝐦𝐞
 (5.2)

A higher difference between the first found solution and the optimal solution

means that we have a high throughput quality ratio. The larger is the throughput quality

ratio, the better experimental results. This is because searching for the optimal solution

gives a better reward than the first found solution which means that it worth searching

for. So, whenever we have an optimal solution throughput quality higher than the first

found solution throughput quality.

On the other hand, having a high time quality ratio is not preferred, but it does

not affect the results as we get a better throughput quality ratio through the increased

time. In short, when the user prefers high throughput he naturally spends more

processing time.

Table (5. 1): Qualities and quality ratios for 10000 web services test set

 Results and calculations

 Tqr THqr osT ffsT osTH ffsTH Beam width test set size

 253.77 88.44 307573 1212 796 9 10000 120

 158.50 71 301167 1900 639 9 10000 150

 141.95 60.2 312150 2199 301 5 10000 300

 125.218 25 361757 2889 180 7 10000 600

59

Table 5.1 includes the quality ratios calculated for the experiments using the

different beam widths. We use some abbreviations in the table such as: ffsTH denotes

to first found solution throughput, osTH denotes to optimal solution throughput, ffsT

denotes to first found solution response time, osT denotes to optimal solution response

time, THqr denotes to throughput quality ratio, and Tqr denotes to response time

quality ratio. Time is calculated in milliseconds.

Here is an example of calculating quality ratios for a test set size of 10000 with

a beam width of 120. The first found solution throughput is 9 with first found solution

response times of 1212 milliseconds and the optimal solution throughput is 796 with

optimal solution response times of 307573 milliseconds.

𝑸𝒖𝒂𝒍𝒊𝒕𝒚 𝑹𝒂𝒕𝒊𝒐𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝟕𝟗𝟔

𝟗
 = 88.44

𝑸𝒖𝒂𝒍𝒊𝒕𝒚 𝑹𝒂𝒕𝒊𝒐𝑻𝒊𝒎𝒆 =
𝟑𝟎𝟕𝟓𝟕𝟑

𝟏𝟐𝟏𝟐
= 253.77

Calculating the quality ratios for each used beam width of 120, 150, 300, and

600 with the 10000 test set size, give throughput quality ratios of 88.4, 71, 60.2, and

25 respectively which show that increasing the beam width decreases the throughput

quality ratio. The response time quality ratios are 253.77, 158.50, 141.95, and 125.218

which is decreasing respectively by increasing the beam width, when response time

quality ratio is high this means that we wait for a long additional time after finding the

first found solution. Since the optimal found solution throughput values deserves

waiting for, then it is not considered a weakness in our results.

The Beam Stack Search is designed to solve big size problems, we use different

test set sizes to obtain all kinds of results and checks the efficiency in solving the web

services composition problem. This is performed by repeating the experiment with the

same variable values of the beam width sizes and with different test set sizes. We get,

analyze and compare the results of using smaller or bigger web services test sets in

giving better or worst throughput values and response time by the Enahnced Beam

Stack Search algorithm.

By performing the experiments on the 5000 and 15000 test set sizes, each result

could be analyzed separately for the sequential test set sizes 5000, 10000, 15000.

60

Using same beam widths of 120, 150, 300, and 600. The first found solution

throughputs using the 5000 test set size are 6, 5, 4, and 4 respectively. The optimal

solution throughput values are 723, 470, 285, and 161 correspondingly. On the other

hand, using the 15000 test set size gives a first found solution throughput values as 10,

10, 9, and 10 while the optimal solution throughput values are 848, 773, 311, and 192

with the same used consequent beam widths.

Table (5. 2): Qualities and quality ratios for 5000 web services test set

 Results and calculations

 Tqr THqr osT ffsT osTH ffsTH Beam width test set size

 251.06 241 198795 1745 723 6 5000 120

 156.57 117.5 212376 2809 470 5 5000 150

 136.24 57 214878 3236 285 4 5000 300

 123.67 40.25 287068 3650 161 4 5000 600

Table (5. 3): Qualities and quality ratios for 15000 web services test set

 Results and calculations

 Tqr THqr osT ffsT osTH ffsTH Beam width test set size

 254.87 84.8 438105 780 848 10 15000 120

 194.66 77.3 439812 1091 773 10 15000 150

 168.93 34.55 440877 1272 311 9 15000 300

 134.27 19.2 451384 2138 192 10 15000 600

The full detailed throughput values are displayed in Table 5.2 and Table 5.3

related to the corresponding response time values at each beam width for 5000 and

1500 test set size respectively with their throughput quality ratios and time quality

ratios.

In all the cases of test set sizes the first found solution response time is trivial

which do not make problems even when changed. For the optimal solution, the real

waiting time keep increasing by the size of the set test, this is because as an example

the 15000 test set size requires more processing rounds which require more time, but

this additional time is spent to give better solution throughput values meeting the user

requirements of better throughput.

61

The differences between the throughput values of the first found solution cannot

be noticed for the different used beam widths, even sometimes they have similar values

with a little difference in the response time.

5.3. Evaluation

Comparing the results related to the test set size using two close beam width

values such as 120 and 150. In the case of using 10000 test set size, as shown in Figure

5.1 that the first found solution throughputs were the same quality equaling 9 with

response times 1212, and 1900 milliseconds for each beam width respectively. In the

case of using 5000 test set size, as shown in Figure 5.2 that the first found solution

throughputs equals 6 and 5 with response times of 1745 and 2809 milliseconds for

each beam width respectively. In the case of using 15000 test set size, as shown in

Figure 5.3 that the first found solution throughputs were the same quality equaling 10

with response times of 780 and 1091 milliseconds for each beam width respectively.

For the first found solution, two different closed beam width values give a nearby or

even the same first found solution throughput values, and the value for the smaller

beam width size is obtained faster. For the optimal solution throughput values,

increasing the beam width with small amount affects throughput badly by decreasing

it, while the response time decreases when increasing the beam width. The user who

cares about throughput quality value will ignore this decrease in time. Choosing the

beam width plays a big role in the search process for each user. A user who cares about

time and intends to choose the first found solution will prefer to use less beam width

to get it faster. While who cares about throughput value and intends to choose the

optimal found solution, the less beam width will be the best choice to get the higher

throughput value.

Studying two numbers as 300 and a double number as 600 for beam width

values, the first found solution throughput values using the 10000 set size as shown in

Figure 5.1, gives 5 and 7 consequently with response times 2199 and 2889

respectively. Using a 5000 test set size as shown in Figure 5.2, gives the same

throughput value equaling 4 while the response time at beam width 300 is 285

milliseconds and decreased to 161 milliseconds using 600 beam width size. Also, the

15000 test set size results as shown in Figure 5.3, were compatible with our previous

62

results since they gave a throughput of 9 at 311 milliseconds with 300 beam width

size, and 10 first found throughput value at 192 milliseconds with 600 beam width

size. The results indicate that a beam width of 600 with higher throughput value, is not

a big difference to force the user to choose it.

Viewing the optimal solution results using 300 and 600 beam widths, for the

10000 test set size the throughput values as shown in Figure 5.1 are 301 and 180 with

response times 312150 and 361757 respectively. For the 5000 test set size as shown in

Figure 5.2, the throughput values are 258 and 161 with response times 214878 and

287068 respectively. For the 15000 test set size as shown in Figure 5.3, the throughput

values are 311 and 192 with response times 440877 and 451384 respectively.

The results show that doubling the beam width give about half of the throughput

value with a higher time which is not preferred while it is decreasing the throughput

also is not favored for the response time to be increased, then choosing a smaller beam

width is also better in this case.

Generally, decreasing the beam width takes more time in computations since the

number of loops in the Enahnced Beam Stack Search algorithm increases, but it gives

higher throughput quality meeting the user requirements.

For clarifying the various throughput results in the experiments through the

different used web services test set sizes, we summarize them in Figure 5.1 which

shows the first found solution throughput results among the different used variables in

our study for the beam width size and test set size. Figure 5.1 clearly shows how using

a smaller beam width size increases the throughput value while the overall line of

throughput rises as we are using greater web services test set size.

We notice from Figure 5.1 that the throughput quality value decreases when

decreasing the beam width from 600 to 300 for the 10000 test set size in a more clear

way than for the 15000 test set size. Also, using a smaller test set of size 5000 do not

show any difference in the throughput quality value by decreasing the beam width

from 600 to 300. This proves that using bigger test set is indeed more efficient to apply

with the Enahnced Beam Stack Search algorithm.

63

Figure (5. 1): First found solution throughput

Figure 5.2 illustrates the optimal found solution throughput workflow among the

different used values of beam width size and test set size which shows that the

throughput value decreases as the beam width decreases and performs better by using

a bigger web services test set size.

Figure (5. 2): Optimal found solution throughput

0

2

4

6

8

10

12

600 300 150 120

Th
ro

u
gh

p
u

t
va

lu
e

Beam width size

Test set sizes

5000

10000

15000

0

100

200

300

400

500

600

700

800

900

600 300 150 120

Th
ro

u
gh

p
u

t
va

lu
e

Beam width size

Test set sizes

5000

10000

15000

64

Results shown in Figures 5.1 and 5.2, show how the Enahnced Beam Stack

Search algorithm performs better with bigger test set sizes and performs better using

smaller beam width size.

Quality ratio values indicate the inverse relationship between the beam width

and the throughput of the web services composition solution. Figure 5.3 illustrates the

experiment quality ratio results using the records from the test set of size 10000 as an

example from the experiments. This shows that increasing the beam width decreases

the quality ratio for both the throughput and the response time which is good for the

throughput in case of choosing the optimal solution and good for response time in case

of choosing the first found solution.

Figure (5. 3): Experimental results when the test set size 10000 results

Figure 5.3 shows the fact that decreasing the beam width decreases the

complexity of the Enahnced Beam Stack Search algorithm because it gives better

throughput quality regardless of increasing the response time.

Increasing the beam width decreases the chance of finding the optimal solution.

For example, going back to Figure 4.2 and thinking as S3c can be reached by S2a and

S2c and they have different qualities and let’s say that S2c has better quality but reaching

S3c by S2c does not give the optimal solution. Now the path through S2a which holds

0

50

100

150

200

250

300

600 300 150 120

Q
u

al
it

y
R

at
io

Beam Width

THqr Tqr

65

the optimal solution is ignored because of preferring S2c at an early stage. So, choosing

large beam width leads to ignoring some paths which hold the optimal solution for the

user. While decreasing the beam width, allows the Enahnced Beam Stack Search

algorithm to discover the highest number of possible paths for solving the web services

composition problem.

The results show the importance of the Enhanced Beam Stack Search algorithm

in finding the required web service that meets non-functional requirements of the user's

request. As it clarifies the defference between using bigger test set size and smaller

one, besides showing the defference between using smaller beam width and bigger

one. Also, this enhancement finds the optimal solution inorder to reach the user’s

request.

5.4. Summary

Based on the results of the expermintes, a higher difference between the first

found solution and the optimal solution means that we have a high throughput quality

ratio. The larger is the throughput quality ratio, the better experimental results. Quality

ratio values indicate the inverse relationship between the beam width and the

throughput of the web services composition solution. The throughput value decreases

as the beam width decreases and performs better by using a bigger web services test

set size.

Decreasing the beam width decreases the complexity of the Enahnced Beam

Stack Search algorithm because it gives better throughput quality regardless of

increasing the response time. Decreasing the beam width allows the Enahnced Beam

Stack Search algorithm to discover the highest number of possible paths for solving

the web services composition problem. Using bigger test set is indeed more efficient

to apply with the Enhanced Beam Stack Search algorithm.

66

Chapter 6

Conclusions and

Recommendations

67

Chapter 6

Conclusions and Recommendations

Through this work, we have studied the problem of web services composition

with quality constraints in particular the response time and the throughput. The

Enhanced Beam Stack Search algorithm is used to solve the web services composition

problem.

It iterates over all of the web services, formed as a search graph, to discover the

possible solutions and each time it finds a new solution with better throughput quality.

The Enahnced Beam Stack Search algorithm is flexible, where the user can terminate

it after discovering the first solution to get the fastest one and it allows the user to

terminate it anytime and to choose the reached solution. On the other hand, when it

continues searching it performs filtering for the found solutions to return the best one

at the end.

We used 5000, 10000, and 15000 web services test set files with their associated

syntactic (WSDL) and semantic (WSLA) descriptions, as we applied the experiment

on them with four different beam widths 120, 150, 300, and 600.

The results show that increasing the beam width decreases the throughput of the

optimal solution which is not preferred while decreasing the beam width increases the

throughput. Also, if the user is satisfied with the first found solution, smaller beam

width performs faster in returning the first found solution. At the same time the

Enahnced Beam Stack Search algorithm performs better with bigger test set size.

The quality ratio for the throughput increases while the beam width decreases

and the response time quality ratio has a reverse relationship with the throughput

quality ratio. This is not considered a weakness in our approach because the optimal

found solution throughput results deserve waiting for more time especially for users

who can compromise optimal solution with time.

Therefore, the Beam Stack Search results a quality solution for the composition

problem and decreasing the beam width in the Enahnced Beam Stack Search algorithm

contributes in decreasing its complexity and discovers a better solution for the web

services composition problem that meet the requirements of the user request.

68

Our work is the only study that uses an enhancement of the Beam Stack Search

algorithm depending on finding the optimal solution and uses different test set sizes

with different beam widths to solve the web services composition problem and study

the results of finding the required web service that meets non-functional requirements

of the user's request.

The Enhanced Beam Stack Search algorithm solves the composition problem

depending on decreasing the complexity of the search space through the different

levels by decreasing the beam width. But there is a limitation when a node is expanded

and reaches a solution, it is pruned and cannot be reached by a previous level again

since a simple operator algorithm is used in solving the problem. We suggest a future

work to solve this in the algorithm by making a combination between the Enhanced

Beam Stack Search algorithm and the Genetic algorithm. This is to combine the benefit

of decreasing the complexity through the limited beam width with the advantage of

Genetic algorithm to use complex operators in the search process. Also, we propose to

apply the enhanced Beam Stack Search algorithm with a wider search space and study

the efficiency of the algorithm and the quality of the solution. This can be combined

with extra different beam width sizes.

69

References

Aine, S., Chakrabarti, P. P., & Kumar, R. (2007). A window constrained anytime

heuristic search algorithm. IJCAI, 2250-2255.

Albreshne, A., & Pasquier, J. (2010). Semantic based semi-automatic web

service composition. Switzerland: computer Department.

Albreshne, A., Fuhrer, P., & Pasquier, J. (2009). Web services orchestration and

composition.

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web services. In G.

Alonso, F. Casati, H. Kuno, & V. Machiraju, Web Services (pp. 123-149). Springer

Berlin Heidelberg.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,

K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S. (2003). Business

process execution language for web services.

Arkin, A., Askary, S., Fordi, S., Jekeli, W., Kawaguchi, K., Orchard, D.,

Pogliani, S., Riemer, K., Struble, S., Takacsi-Nagy, P., Trickovic, I., Zimek, S. (2002).

Web service choreography interface (WSCI) 1.0. W3C.

Austin, D., Barbir, A., Ferris, C., & Garg, S. (2004). Web services architecture

requirements. W3C Working Group Notes, 22.

Barry, D. (2017). Service architecture. Retrieved June 20, 2017, from

www.service-architecture.com: http://www.service-architecture.com/articles/web-

services/service-oriented_architecture_soa_definition.html

Bartalos, P., & Bieliková, M. (2012). Automatic dynamic web service

composition: A survey and problem formalization. Computing and Informatics,

30(4), 793-827.

Blake, B. M., Weise, T., & Bleul, S. (2010). Wsc-2010: Web services

composition and evaluation. Service-Oriented Computing and Applications (SOCA),

2010 IEEE International Conference (pp. 1-4). Perth, WA, Australia: IEEE.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., &

Orchard, D. (2004, Febreuary 11). Web services architecture. Retrieved June 20, 2017,

from W3C Working Group Note: https://www.w3.org/TR/ws-arch/

Chan, P. P., & Lyu, M. R. (2008). Dynamic web service composition: A new

approach in building reliable web service. 22nd International Conference on Advanced

Information Networking and Applications (pp. 20-25). Aina: IEEE.

70

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web

services description language (WSDL). 1(1).

Oasis Committees (2016). OASIS UDDI Specification TC. Retrieved June 20,

2017, from oasis-open.org: https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=uddi-spec

Cotfas, L. A., Diosteanu, A., & Smeureanu, I. (2010). Fractal web service

composition framework. Communications (COMM), 2010 8th International

Conference (pp. 405-408). IEEE.

Decker, K., Sycara, K., & Williamson, M. (1997, August). Middle-agents for the

internet. In IJCAI, 1, pp. 578-583.

Doshi, P., Vembu, N., & Zhao, H. (2011, May 24). Web service composition.

Retrieved June 20, 2017, from http://thinc.cs.uga.edu/:

http://thinc.cs.uga.edu/thinclabwiki/index.php/Web_Service_Composition

Dumas, M., & Wohed , P. (2011). BPEL evaluation results. Retrieved June 20,

2017, from Workflow Patterns Initiative:

http://www.workflowpatterns.com/evaluations/standard/bpel.php

El Kholy, M., & Elfatatry, A. (2015). Intelligent broker a knowledge based

approach for semantic web services discovery. Evaluation of Novel Approaches to

Software Engineering (ENASE), 2015 International Conference (pp. 39-44). IEEE.

Feier, C., Polleres, A., Dumitru, R., Domingue, J., Stollberg, M., & Fensel, D.

(2005). Towards intelligent web services: The web service modeling ontology

(WSMO).

Garofalakis, J., Panagis, Y., Sakkopoulos, E., & Tsakalidis, A. (2006).

Contemporary web service discovery mechanisms. Journal of Web Engineering, 5(3),

265-290.

Hu, Y., & Wang, H. (2008). Constraints in web services composition. 2008 4th

International Conference on Wireless Communications, Networking and Mobile

Computing (pp. 1-4). IEEE.

Hunter, J., & McLaughlin, B. (2015). Class SAXBuilder. Retrieved June 20,

2017, from http://www.jdom.org/:

http://www.jdom.org/docs/apidocs/org/jdom2/input/SAXBuilder.html

Hunter, J., & McLaughlin, B. (2000). JDOM. Retrieved June 20, 2017, from

www.java2s.com: http://jdom.org/

JOpera. (2016). JOpera for Eclipse. Retrieved June 20, 2017, from jopera:

http://www.jopera.org/

71

Kil, H., & Nam, W. (2013). Efficient anytime algorithm for large-scale QoS-

aware web service composition. International Journal of Web and Grid Services, 9(1),

82-106.

Likhachev, M., Gordon, G. J., & Thrun, S. (2003). ARA*: Anytime A* with

provable bounds on sub-optimality. Advances in Neural Information Processing

Systems.

Marshall, D. (2016). Heuristic search. Retrieved June 20, 2017, from

users.cs.cf.ac.uk: http://users.cs.cf.ac.uk/Dave.Marshall/AI2/node23.html

McIlraith, S., & Son, T. C. (2002). Adapting Golog for composition of semantic

web Services. KR, 2, 482-493.

Medjahed, B., Bouguettaya, A., & Elmagarmid, A. K. (2003). Composing web

services on the semantic web. The VLDB Journal—The International Journal on Very

Large Data Bases, 12(4), 333-351.

Mirbel, I., & Crescenzo, P. (2010). From end-user’s requirements to web

services retrieval: A semantic and intention-driven approach. International

Conference on Exploring Services Science (pp. 30-44). Springer Berlin Heidelberg.

Moghaddam, M., & Davis, J. G. (2014). Service selection in web service

composition: A comparative review of existing approaches. Web Services Foundations

(pp. 321-346). Springer New York.

NetBeans.org. (2016). Archived NetBeans IDE documentation, NetBeans 6.1

SOA docs archive. Retrieved June 20, 2017, from NetBeans:

https://netbeans.org/kb/archive/

Oh, S.-C., Lee, D., & Kumara, S. R. (2006). A comparative illustration of AI

planning-based web services composition. ACM SIGecom Exchanges, 5(5), 1-10.

O'Keefe, R., & Costa, V. S. (2015, December 10). Graph algorithms. Retrieved

June 20, 2017, from http://www.softpanorama.org/:

http://www.softpanorama.org/Algorithms/graph_algorithms.shtml

Paikari, E., Livani, E., & Moshirpour, M. (2011). Multi-Agent system for

semantic web service composition. International Conference on Knowledge Science,

Engineering and Management (pp. 305-317). Springer Berlin Heidelberg.

Qi, S., Tang, X., & Chen, D. (2012). An automated web services composition

system based on service classification and AI planning. Cloud and Green Computing

(CGC), 2012 Second International Conference (pp. 537-540). IEEE.

Richter, S., Thayer, J. T., & Ruml, W. (2010). The joy of forgetting: Faster

anytime search via restarting. International Conference on Automated Planning and

Scheduling (ICAPS), (pp. 137-144).

72

Seo, Y.-J., Jeong, H.-Y., & Song, Y.-J. (2005). Best web service selection based

on the decision making between QoS criteria of service. International Conference on

Embedded Software and Systems (pp. 408-419). Springer Berlin Heidelberg.

Shehu, U., Epiphaniou, G., & Safdar, G. A. (2014). A survey of QoS-aware web

service composition techniques. International Journal of Computer Applications.

Sheshagiri, M., DesJardins, M., & Finin, T. (2003). A planner for composing

services described in DAML-S. International Conference on Automated Planning and

Scheduling (ICAPS) 2003 Workshop on planning for web services.

Sivasubramanian, S. P., Ilavarasan, E., & Vadivelou, G. (2009). Dynamic web

service composition: Challenges and techniques. Intelligent Agent & Multi-Agent

Systems, 2009. IAMA 2009 (pp. 1-8). International Conference on. IEEE.

Srour, A. I., Othman, Z. A., & Hamdan, A. (2013). An automatic web services

composition model using Ant-Colony system. International Journal of Innovation,

Management and Technology, 4(4), 435-438.

Sycara, K., Klusch, M., Widoff, S., & Lu, J. (1999). Dynamic service

matchmaking among agents in open information environments. COMPUTER

SCIENCE PUBLICATIONS, 28(1), pp. 47-53. Retrieved June 20, 2017, from

http://scholar.uwindsor.ca/computersciencepub/6

Talantikite, H. N., Aissani, D., & Boudjlida, N. (2009). Semantic annotations for

web services discovery and composition. Computer Standards & Interfaces, 31(6),

1108-1117.

UDDI Consortium. (2001). Uddi executive white paper.

Vadlamudi, S. G., Aine, S., & Chakrabarti, P. P. (2011). A memory-bounded

anytime heuristic-search algorithm. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 41(3), 725-735.

Wang, R., Guttula, C., Panahiazar, M., Yousaf, H., Miller, J. A., Kraemer, E. T.,

& Kissinger, J. C. (2011). Web service composition using service suggestions. 2011

IEEE World Congress on Services (pp. 482-489). IEEE.

Wang, Y., & Vassileva, J. (2007, June). A review on trust and reputation for web

service selection. Distributed Computing Systems Workshops ICDCSW'07. 27th

International Conference (pp. 25-25). IEEE.

Wikimedia Foundation, I. (2016, December 6). Acme packet. Retrieved June 20,

2017, from wikipedia: https://en.wikipedia.org/wiki/Acme_Packet

Wikimedia Foundation, I. (2017, January). Beam search. Retrieved June 20,

2017, from www.wikipedia.org: https://en.wikipedia.org/wiki/Beam_search

73

Wu, D., Parsia, B., Sirin, E., Hendler, J., & Nau, D. (2003). Automating DAML-

S web services composition using SHOP2. International Semantic Web Conference

(pp. 195-210). Springer Berlin Heidelberg.

Yan, H., Zhijian, W., & Guiming, L. (2010). A novel semantic web service

composition algorithm based on QoS ontology. Computer and Communication

Technologies in Agriculture Engineering (CCTAE), 2010 International Conference. 2,

pp. 166-168. IEEE.

Yan, K., Xue, G., & Yao, S.-w. (2009). An optimization ant colony algorithm

for composition of semantic web services. Computational Intelligence and Industrial

Applications, 2009. PACIIA 2009. Asia-Pacific Conference. 2, pp. 262-265. IEEE.

Yu, T., Zhang, Y., & LIN, K.-J. (2007, May). Efficient algorithms for web

Services selection with end-to-end QoS constraints. ACM Transactions on the Web

(TWEB), 1(1), 6.

Zhang, R., Arpinar, I. B., & Aleman-Meza, B. (2003). Automatic composition

of semantic web services. ICWS, 3, 38-41.

Zhou, R., & Hansen, E. A. (2005). Beam-Stack search: Integrating backtracking

with Beam search. International Conference on Automated Planning and Scheduling

(ICAPS), (pp. 90-98).

