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This study presents an electricity market composed of a single energy provider and 

multiple customers to evaluate the effects of energy storage and load-shifting as part of a 

smart grid demand response through the use of Stackelberg game models. In these 

Stackelberg game models, the energy provider is the leader and the customers are the 

followers. The leader moves first and offers price discounts across different time slots to 

motivate customers to shift their consumption away from peak consumption periods. The 

followers respond by deciding whether or not to shift their consumption from their 

nominal demand, and how much of their load they should shift. In this model, the aim of 

the energy provider is to maximize its profits, while the consumers aim to minimize their 

total costs related both to the energy consumption and inconvenience of deviating from 

the nominal demand. Within this setting, a procedure is proposed to obtain equilibrium 

outcomes. We begin by evaluating the effects that different types of customers, a market 

with different degrees of diversity, and a market of different sizes have on the 

equilibrium discounts and the peak-to-average ratios (PAR). We then continue into a 

second model in which we incorporate individual inconvenience costs for each customer 

and each period and evaluate the effects that having a homogeneous market or a 

heterogeneous market has on the equilibrium discount and PAR. Finally, we introduce a 

customer side energy storage and evaluate the effects that this system has on the 



equilibrium discount and PAR in both cases, when it is controlled by the energy provider 

or when it is controlled by the customers. Our results show that price discounts provide 

significant leverage to the energy generator and that the use of energy storage is very 

effective in the reduction of the peak-to-average ratios. The use of both of these tactics 

provides effective ways to improve profits. Furthermore, when the energy provider 

controls the energy storage, it deploys them more effectively and achieves its maximum 

profits and the lowest PAR. When the customers control the energy storage, the 

equilibrium discounts are higher, but the PAR is also higher. Lastly, our results show that 

the use of load-shifting always reduces the customers’ total costs, but this reduction is 

diminished by the implementation of energy storage. 
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 Chapter 1 Introduction 

1.1.  Overview 

 Over the past four decades, there has been a steady growth in electricity 

consumption (U.S. Energy Information Administration 2015) that is expected to continue 

driven by economic growth, population, and the introduction of new technologies, 

especially with the increase in the adoption of electric vehicles (Trigg, Telleen, Boyd, & 

Cuenot, 2013). Moreover, on-peak demand is increasing to a higher rate over the recent 

years, which causes a growing peak-to-average ratios (PAR). Therefore, this increase 

leads to problems for electricity suppliers in order to ensure that their generation capacity 

meets the demand at the on-peak levels. Moreover, the high changes in load levels 

increase the stress that is applied to the electrical infrastructure that may cause brownouts 

or blackouts. Furthermore, the operation with a high PAR is more costly for the suppliers, 

since to meet high peak demand they are often forced to use fuel that is more costly and 

has high carbon emissions (Sims, Rogner, & Gregory, 2003; Soliman & Leon–Garcia, 

2014). When the electricity demand is low, the electricity supplier just operates the base 

load plant such as nuclear sources. As the electricity demand increases to an intermediate 

load, the utility runs the intermediate load plant, which uses fossil fuel and has a high 

carbon emission compared to other sources. The peaking plant is operated when the 

demand reaches its peak (U.S. Energy Information Administration, 2014). Moreover, the 

operating expense for the fossil fuel is 3.7¢/KWH, which is more expensive than the 

nuclear sources, which have operating expenses around 2.5¢/KWH (U.S. Energy 

Information Administration, 2015).  

1 
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 Smart grids, with two-way communication between the supplier and consumer 

have provided tools for the efficient and reliable energy balance and safeguard of the 

electrical system (Sáenz, Celik, Xi, Son, & Asfour, 2013). The smart grid allows sides, 

providers and customers, to be aware of the levels of supply and demand at any given time 

and to respond accordingly. The deployment of smart grids has encouraged energy 

providers and researchers to develop and employ demand-side management (DSM) in 

order to improve the service reliability and reduce costs. 

 DSM has become a remarkable tool to control both the increase in electricity 

demand as well as the fluctuation between different periods. Two popular DSM 

approaches include energy efficiency and demand response (DR). The approach focused 

on energy efficiency provides for lifelong effects in the electricity demand by using 

devices that consume less energy without modifying the consumers’ actions. The DR 

approach focuses on altering the customers’ short-term actions by encouraging them to 

reduce or shift the demand during the peak time (Siano, 2014). 

 The effective deployment of DR will benefit all of the stakeholders in the smart 

grid. Consumers benefit from reduced electricity bills, while electricity suppliers benefit 

from better grid efficiency, reliability, and lower production cost. DR has been defined by 

The US Department of Energy (DOE, 2006, p. v) as “a tariff or program established to 

motivate changes in electric use by end-use customers in response to changes in the price 

of electricity over time, or to give incentive payments designed to induce lower electricity 

use at times of high market prices or when grid reliability is jeopardized.”  

 Electricity consumption varies throughout the day and reaches a consumption 

peak during the afternoon and early evening hours. These hours are considered on-peak 
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while the rest of the day is considered off-peak (DOE, 2006). The use of dynamic pricing 

where an extra tariff is charged during on-peak consumption hours or an incentive 

provided during off-peak hours is one DR approach that encourages customers to reduce 

or shift their consumption from on-peak to off-peak periods. 

 Furthermore, energy storage provides a great alternative as an energy management 

method. When it is employed by energy producers, it uses off-peak generation to meet on-

peak demand, so when it is used by customers it effectively lowers on-peak consumption. 

Furthermore, the use of storage enhances the network’s reliability by effectively 

decreasing the PAR. There are multiple different energy storage technologies that provide 

different benefits that are highlighted by the characteristics of the energy demand, such 

that choosing the right technology is specific to each situation where the efficiency, 

capacity, and response time must all be taken into account. 

 Various mathematical techniques have been used to analyze DR in order to 

provide effective strategies for the reduction of PAR. One technique for this analysis 

involves the use of game theory, and the modelling of the network as a Stackelberg game. 

Using this approach, the optimal dynamic pricing strategy is found through a sequential 

multi-stage game. In this game the leader moves first and makes his decision; then in the 

second stage, the follower responds with their decision to the leader’s decision. 

1.2. Literature Review 

 Recently, game theory approaches have become significant tools for studying the 

interaction between the different objectives of the smart grid stakeholders. A game theory 

models have been applied to DR in order to investigate equilibrium strategies that aim to 

reduce PAR, minimize consumption costs, and maximize the electricity provider’s profit. 
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A review of the application of game theoretical approaches and models for the smart grid 

is provided (Saad et al., 2012), categorizing the applications into three areas: microgrid 

systems, demand side management, and communication within the smart grid.  

 DR management between the electricity provider and consumers has been 

classified by R. Deng, Yang, Chow, and Chen (2015). In their review, they categorized 

the mathematical models used in demand response into three clusters: peak clipping, 

valley filling, and load-shifting. 

 Some works in the first two clusters that apply a game theory include Bu, Yu, and 

Liu (2011), Chai, Chen, Yang, and Zhang (2014), Chen, Li, Low, and Doyle (2010), 

Chen, Yang, and Guan (2012), Y. Chen et al. (2012), Maharjan, Zhu, Zhang, Gjessing, 

and Basar (2013), and Mohsenian–Rad, Wong, Jatskevich, Schober, and Leon-Garcia 

(2010). In these papers, typically, the game had two levels composed of energy providers 

and customers. The energy provider determined the electricity source and/or how much 

energy to buy in order to maximize profit. The customers decided the amount of energy 

they needed to consume in order to maximize their utility functions. Some of these papers 

considered a single provider (Bu et al., 2011; J. Chen et al., 2012; Y. Chen et al., 2012), 

while Maharjan et al. (2013) and Chai et al. (2014) extended the analysis to multiple 

utility companies that competed with each other in a noncooperative game. In this 

noncooperative game, a competition price was set in the first stage by each utility, while 

the customers’ responses regarding how much to buy and from which provider was set in 

the second stage. Some of these papers formulated their models under either a single 

period setting or independently for each time period. While Chen et al. (2010) considered 

energy pricing and customer demand choices over multiple depending periods. 
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 Some of these papers considered the customer preference. Bu et al. (2011) 

provided a multistage Stackelberg game. In this model the total cost function was 

formulated as a linear function where the price was a function of the total electricity 

supply; furthermore, this model did not consider the effects that on-peak and off-peak 

demand has on prices and actual consumption. Another approach that used Stackelberg 

games to evaluate DR techniques is the one presented by J. Chen et al. (2012). The model 

evaluated the effect of on-peak and off-peak consumption. The model was limited by an 

assumption that all of the customers may easily shift their demand at any given moment as 

a response to the incentives provided by the electricity provider. Maharjan et al. (2013) 

proposed a model where Stackelberg games were used to find a point of equilibrium in a 

multi-provider and multi-customer setting. Limitations to this approach arise from the 

different loads to which the electrical grid may be subjected during on-peak and off-peak 

consumption time slots, which were not considered.  

 Another approach using Stackelberg games is presented in Nekouei, Alpcan, and 

Chattophadhyay (2015) where load curtailment was the goal. Here, the game employed 

multiple utilities and a demand response aggregator (DRA). In this case the DRA was the 

leader and provided demand reduction bids; the utilities, as followers, competed to 

maximize their profits based on the reduced demand. Once these decisions were made, 

the interaction between the DRA and the individual customers was modeled as a 

mechanism design problem where the aggregate inconvenience was to be minimized 

while ensuring that the targeted load curtailment was achieved. 

 In contrast, in this study, we studied demand response from the perspective of load 

shifting rather than load shedding. Load shifting has been modeled by the use of explicit 
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appliance schedules as in Chen, Kishore, and Snyder (2011), Meng and Zeng (2013), and 

Mohsenian-Rad et al. (2010) and as part of a satisfaction/dissatisfaction function for the 

demand shifts as in Jiang and Low (2011), Logenthiran, Srinivasan, and Vanessa (2014), 

and Yang, Tang, and Nehorai (2013). Mohsenian–Rad et al. (2010) proposed a model to 

solve the interaction among consumers in an energy system, and the model proposed helps 

to reduce the PAR. However, the proposed model did not consider the consumer type or 

the provider as decision maker. One further approach employed Stackelberg games in 

Meng and Zeng, (2013) to evaluate DR techniques. The model uses the reduction of the 

PAR as a strategy to achieve its objectives and characterizes the demand as shiftable, non-

shiftable and curtailable loads. Chen et al. (2011) proposed a model of a Stackelberg game 

in order to find the equilibrium for the energy provider and the energy consumers. The 

proposed model aimed to maximize the retailer’s profits while minimizing the customers’ 

costs by determining the optimal start time of each of the customers’ appliances. This 

model used an inconvenience cost for the customers who had to shift the start time of their 

appliances from their original desired start to that proposed by the model. This model has 

demonstrated to achieve the optimal schedule for a system with a single customer with a 

single appliance. Meng and Zeng (2013) and Mohsenian–Rad et al. (2010) focused on the 

cost of usage by the customers, while C. Chen et al. (2011) focused on the inconvenience 

caused by shifting the schedules. This study combined consumption cost and 

inconvenience cost. In papers not based on appliance scheduling, in order to match 

electricity supply and demand,  Jiang and Low (2011) present a joint optimization model 

between a single utility and multiple customers; Yang et al. (2013) used a game theoretical 

approach in a model with a single utility and a single customer.. The model considered the 
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gap between the nominal demand and actual consumption of the customer as a cost of 

inconvenience. However, they recognized the difference between total actual consumption 

and the total nominal demand. 

 Logenthiran et al. (2014) formulate optimization model to study the customer 

behavior toward load shifting , where the customer aims to minimizes his total cost of 

energy consumption and load-shifting inconvenience across a finite time horizon. 

However, the energy  provider is not a strategic decision maker. 

Recently, the deployment of energy storage has become a significant area of 

research with literature focusing on the different technologies available for energy storage 

and their application within energy networks. Vazquez, Lukic, Galvan, Franquelo, and 

Carrasco (2010) provided a review of energy storage and considered two kinds of 

applications for its deployment: transport and utility applications. Transport applications 

included road and rail transport, while utility applications included the increase in 

renewable energy penetration, load leveling, and energy arbitrage, among others. Ibrahim, 

Ilinca, and Perron (2008) provided a review of different energy storage technologies with 

their characteristics while also comparing the different storage techniques and their 

application along with renewable energy generation technologies. Dunn, Kamath, and 

Tarascon (2011) categorized the energy storage technologies in terms of the mechanism 

used to store the energy into mechanical, electrical, chemical, and electrochemical storage 

systems. Hittinger, Whitacre, and Apt (2012) proposed an engineering–economic model to 

evaluate energy storage technologies and select the appropriate method for different 

applications in term of cost effectiveness. 
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Multiple sources present models for the application of energy storage as part of 

DR. Kumar Nunna and Doolla (2013) presented an agent-based model for microgrids with 

DR and distributed energy storage. The proposed model aimed to minimize electricity 

costs and reduce on-peak demand by distributed energy, distributed storage, and demand 

response. Huang, Walrand, and Ramchandran (2012) proposed a model that minimized 

the customers’ electricity cost while minimizing a disutility function that measures the 

customers’ comfort. Further, this model considered that customers have a renewable 

energy source and may decide the energy consumption for each slot time separately. 

Wang, Gu, Li, Member, and Bale (2013) provided a model to find the optimal 

balance between energy supply and demand by the deployment of energy storage 

technologies that have shared ownership and control. The model stated that sharing 

ownership of the energy storage is an effective way to minimize the electricity price and to 

reduce the congestion in the energy grid. Zheng, Meinrenken, and Lackner (2014) 

presented an agent-based model and concluded that energy storage has more economic 

viability than DR tariffs for typical households in the US. They also proposed an optimal 

capacity for the storage. 

Some literature focuses on the evaluation of storage levels and the 

charging/discharging during each time slot in order to minimize the electricity cost while 

integrating renewable energy resources. Qin, Chow, Yang, and Rajagopal (2014) 

formulated a stochastic control problem to operate energy storage under uncertain net 

demand and with a marginal electricity cost. Wu, Tazvinga, and Xia (2015) studied a 

demand-side management problem with a model that aimed to find the optimal operation 

management by scheduling the storage to maximize the utilization of the energy that 
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comes from solar resources. This model reduces the amount of energy that the consumers 

draw from the grid as well as their electricity cost. Another storage scheduling problem 

that utilizes renewable energy resources was proposed by Zhou, Pan, and Cai (2014) 

where Lyapunov optimization techniques were employed. Xu and Tong (2015) studied an 

operation problem that aims to find the optimal energy storage levels with storage 

resources controlled by consumers. 

Nakayama, Zhao, Bic, Dillencourt, and Brouwer (2013) proposed a model that 

aimed to minimize the cost of energy storage and the power generation by finding the 

optimal real-time power flow. Yu and van der Schaar (2014) proposed a model that aimed 

to deploy energy storage in order to maximize energy consumption with minimum 

electricity cost. Deng, Liu, Jin, and Wu (2013) employed efficiency Lyapunov 

optimization techniques for a power supply system that employed a datacenter that 

scheduled for the multiple sources of energy. 

There are many game theory models that focus on energy storage where the energy 

provider is not a strategic decision maker. Atzeni, Ordonez, Scutari, Palomar, and 

Fonollosa (2013) elaborated a non-cooperative game model among multiple users based 

on consumers’ abilities to produce energy, store energy, and buy energy from the grid. 

The strategies of each user depended on their energy production and/or storage profiles in 

order to minimize the payoff cost function while meeting their energy demand. In order to 

avoid a high demand when consumers loaded their storage at the same time, Vytelingum, 

Voice, Ramchurn, Rogers, and Jennings (2010) presented an agent-based simulation 

model that employed a game theory framework to adopt efficient storage behaviors. 
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Nguyen, Song, and Han (2012) proposed a non-cooperative game to find the 

equilibrium of the of consumers’ interaction in order to minimize their electricity bills. 

Here, the user’s strategic decisions were based on the optimization of the scheduling of 

energy consumption and storage. Furthermore, in order to minimize the electricity 

consumption cost, Forouzandehmehr, Esmalifalak, Mohsenian–Rad, and Han (2015) 

created a stochastic differential game to study the interaction between the electricity 

market and consumers. The consumers aimed to find the optimal storage level for each 

time slot as well as the optimal air conditioner usage based on the electricity price and 

weather conditions. They considered the comfort of the consumers. Moreover, Wang, 

Saad, Han, Poor, and Basar (2014) presented a system in which an energy storage unit was 

presented as a seller for a microgrid in which different elements acted as buyers. In this 

system a game was used to find the equilibrium amount of energy to be traded, and they 

presented a heuristic that relied on an auction mechanism to find selling prices. 

 All these approaches studied and investigated different aspects of improving the 

electricity market and reducing the total electricity consumption and PAR. However, this 

study focused on the load-shifting aspect, and as such we do not consider demand 

shedding. Rather than providing specific schedules or solutions to the load-shifting 

problem, our goal was to investigate the interactions between cost, price, and load-shifting 

behaviors; and derive insights for the energy market. We formulated a Stackelberg game 

such that the energy provider was a strategic player with multiple customers of varying 

types. This model considers the inconvenience cost that is incurred when there is as 

difference between the nominal intended demand and actual consumption of a customer; 

while ensuring that the total energy consumed during the daily planning horizon is equal 
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to the total nominal demand of said day. We  evaluated the effect of consumer types, the 

diversity and the size of the market, and energy generation cost structure on the 

equilibrium decisions. Additionally, we deployed an energy storage alongside the load 

shifting to evaluate its impact on the electricity market, both when it is controlled by the 

provider and when controlled by the customers. We evaluated the influence of the storage 

capacity and storage efficiency on the equilibrium decisions. 

1.3. Modeling Overview 

  This study introduce a Stackelberg game-based formulation to study the load-

shifting and energy storage problem within the aspect of smart grid demand response for 

an electricity market composed of a single energy provider and multiple customers. In the 

model presented in Chapter 2, the provider acted as the channel leader and offered price 

discounts to affect the behavior of the customers who responded by shifting their 

consumption from on-peak to off-peak hours according to their nominal demand and their 

inconvenience cost incurred by changing their intended behavior. The energy provider 

aimed to maximize profit, while the customers aimed to minimize their total consumption 

cost. We evaluated the effects that customers’ individual inconvenience costs had on the 

overall equilibrium in terms of the energy provider’s profit, customers’ cost, and the 

effectiveness in the PAR. In this chapter, we investigated the model when the customer 

had the same attitude toward load-shifting throughout the day. In Chapter 3, we 

investigated the model when customers’ individual behavior was not necessarily the same 

throughout the day, so that they may have had different attitudes towards load-shifting at 

different times, which and may affect the overall equilibrium of the market. 
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  In Chapter 4, we incorporated an energy storage into the model from Chapter 2 to 

evaluate the effects of deploying energy storage and load-shifting, as energy management 

technologies, to the overall equilibrium. In the first part of this chapter, we analyzed and 

investigated the model when the energy storage was controlled by the customers, while in 

the second half we analyzed and investigated the model when the energy storage was 

controlled by the energy provider.  

 We obtain the equilibrium conditions and present numerical studies to evaluate 

the different models, and derive managerial insights about the effect of factors, 

(consumer types, market diversity, market size, and storage capacity) on the interactions 

between the energy provider and its customers. 

 

 



 Chapter 2 A Game Theoretic Approach For Load-Shifting In The Smart Grid 

2.1. Overview 

 This chapter describes an electricity market composed of a single energy provider 

and multiple consumers in terms of load-shifting. We formulate a Stackelberg game in 

which the energy provider, acting as leader, moves first and offers price discounts across 

a finite time horizon to encourage customers to shift their energy consumption from on-

peak periods. The customers, acting as followers, react by determining their effective 

demand and how much they are willing to shift across periods. In this model, the energy 

provider aims to maximize profit, while the aim of the customers is to minimize their 

total costs related both to the energy consumption and inconvenience of deviating from 

the nominal demand. We proposed a procedure to obtain equilibrium results on the 

interactions between the energy provider and its customers. We investigated the impact 

of various factors, including consumer types, market diversity, and market size. Our 

results show that price discounts may provide significant influence to reduce the PAR 

while improving the energy provider profit and customers’ total cost. Moreover, the 

results show that the equilibrium outcomes are not depending only on the size of the 

demand (market depth) but also on the number of customers (market breadth). 

2.2. System Model and Game Formulation 

 We formulated a Stackelberg game between a single energy provider, as the 

leader, and N customers, as followers, who have nominal energy consumption demands 

across a final time horizon with length T. The energy provider aimed maximize its profit 

by deciding a percentage discount, 𝛾𝛾𝑡𝑡, over a predetermined base price, P, for time slot t 

(𝑡𝑡 = 1. . .𝑇𝑇). The customers aimed to minimize their cost by deciding how much energy 
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to consume during each time slot 𝑡𝑡 and how much consumption to shift from time slots 

with low or no discount to time slots with a higher discount based on the tradeoff 

between price discounts and cost of load-shifting inconvenience.  We let 𝑦𝑦𝑖𝑖𝑖𝑖 denote the 

nominal demand of customers i for electricity in kWh at time slot t, and 𝑥𝑥𝑖𝑖𝑡𝑡 represented 

actual consumption in kWh consumed by consumer i during time slot t. Clearly, the load 

shift for customer i for time slot t is defined as the difference between 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑦𝑦𝑖𝑖𝑖𝑖.   

2.2.1. Energy Provider’s Model 

 In this model, we considered a case in which the long-term electricity base price 

had already been set and short-term incentives (by means of the percentage discount γt) 

were used to control fluctuation in the short-term demand. The establishment of this base 

price, which is usually set as a result of market conditions and long-term aggregate 

demand curves, falls outside the scope of this study. The use of discount schemes on 

nominal prices to manage demand is a common and widespread revenue management 

method in the travel and hospitality industry (Choi & Mattila, 2014; Pachon, Erkoc, & 

Iakovou, 2007). It dampens demand variability in supply chain management (Chopra & 

Meindl, 2016). The electricity provider, as the leader of the Stackleberg game, selected the 

discount rates for all of the periods of the planning horizon in order to maximize their 

profit. As such, the effective price for each period t was then pt = (1 − γt)P, where 

0 < γt ≤ 1. 

 The energy generation cost for the energy provider was convex, increasing with 

the generation amount because the utility provider is using a less expensive energy source 

to produce electricity, as the demand increase it start to use expensive sources to meet the 

demand (Soliman & Leon–Garcia, 2014). As such, the electricity generation cost was 
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convex, increasing with the generation amount. Without loss of generality, the model used 

an electricity generation cost at time t with the following form: 

𝐶𝐶𝑖𝑖(𝑋𝑋𝑖𝑖) = 𝑎𝑎𝑋𝑋𝑖𝑖2 + 𝑏𝑏𝑋𝑋𝑖𝑖 + 𝑐𝑐 (1) 

Here, Xt was the total electricity generated during period t and was equal to the total 

consumption of that period such that Xt = ∑ xit∀N . The increasing return in cost was a 

commonly used approximation for the energy provider (Meng & Zeng, 2013; Mohsenian–

Rad et al., 2010). With this in place, the profit maximization for the energy provider is 

written as follows: 

Maximize Π𝑠𝑠 = ∑
=

−−
T

t
ttt XCPX

1
))()1(( γ  (2) 

                                  s.t.             0 ≤ 𝛾𝛾𝑖𝑖 ≤ 1               ∀𝑡𝑡 ∈ 𝕋𝕋 (3) 

The objective function includes the electricity provider’s net profit based on the given 

aggregate consumption across the planning horizon. The constraint in (3) ensures that the 

percentage discount used by the electricity provider is within 0 and 100 percent.  The total 

consumption for each period was determined by the customers as a response to the 

discounts provided by the electricity provider and was optimized using the consumers’ 

model. We  defined the provider’s feasible strategies space as Ωs = {γt|γt ∈ R, t ∈

 𝕋𝕋, 0 ≤ γt ≤ 1}. 

2.2.2. Customer’s Model 

The goal of the consumers, who acted as followers in the Stackelberg game, was to 

minimize their total cost, both from energy consumption and inconvenience. In order to do 

this, they determined the optimal levels of energy to consume during each time slot by 

shifting their energy usage across the different slots while ensuring that the total energy 

consumed during the daily planning horizon was equal to the total intended demand for 
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said day. Based on the different discounts offered by the energy provider during some of 

the time slots, the customers’ cost of energy consumption depended not only on the 

consumption amount but also on the time slots in which this consumption occurs. With 

this behavior energy customers acted similarly to buyers in a supply chain context who 

have to determine the amounts to procure using forward contracts or delayed 

procurements as a response to price fluctuations. In order to model the customers’ 

disposition towards shifting their consumption across time slots, the inconvenience cost 

was modeled with a quadratic function that increases as the difference between the actual 

consumption 𝑥𝑥𝑖𝑖𝑖𝑖 and nominal demand 𝑦𝑦𝑖𝑖𝑖𝑖 of a time slot deviate (in a fashion similar to that 

of Avci, Erkoc, Rahmani, & Asfour, 2013; Jiang & Low, 2011; Yang et al., 2013). It is 

important to highlight that the obtained results may be easily generalized to any convex 

inconvenience cost function. The individual tolerance to load-shifting of customer 𝑖𝑖 was 

modeled through the use of an inconvenience parameter αi, which is included with the 

quadratic inconvenience cost. 

 With these considerations in place, the optimization model for customer 𝑖𝑖 is as 

follows: 

Min 𝛱𝛱𝑖𝑖 = ∑ �(1 − 𝛾𝛾𝑖𝑖)𝑃𝑃𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖)2�𝑇𝑇
𝑖𝑖=1  (4) 

                         s.t.             ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇

𝑖𝑖=1                      (5) 

                                      𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖                              ∀𝑡𝑡 ∈ 𝕋𝕋 (6) 

Here, the objective function encompasses the total cost for the customers, which was 

driven by the actual consumption during each time slot 𝑥𝑥𝑖𝑖𝑖𝑖, and the deviation from the 

actual consumption and the nominal demand 𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖. The sensitivity of a customer to 

load-shifting depends on 𝛼𝛼𝑖𝑖 such that customers with low values of 𝛼𝛼𝑖𝑖 were flexible and 
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achieved lower total costs by shifting demand, while customers with high values of 𝛼𝛼𝑖𝑖 

were inflexible and did not achieve lower total costs by shifting demand. The first 

constraint of this customers’ optimization model ensures that the total energy consumed 

across all of the time slots is equal to the total energy demand for the time period, while 

the second constraint ensures that the consumption of each time slot is at least the 

minimum required consumption 𝑚𝑚𝑖𝑖, which may not be shifted. 

2.3. Equilibrium Analysis 

 Backward induction is an appropriate solution concept for calculating the 

Stackelberg equilibrium. In this approach, the later decision’s best response is mapped to 

the actions of the earlier decision. Therefore, we analyzed the consumers’ best responses 

for a known price discount scheme. We used Lagrangian Relaxation in order to analyze 

the consumer’s model. We let λ be the Lagrange multiplier for constraint (5) and μt for 

constraint set given in (6). Thus, the consumer’s objective is equivalent to minimizing the 

following Lagrange function for 𝑥𝑥𝑖𝑖𝑖𝑖 , 𝜆𝜆, and 𝜇𝜇𝑡𝑡: 

𝑀𝑀𝑎𝑎𝑥𝑥 𝐿𝐿𝐿𝐿 = �(1 − 𝛾𝛾𝑖𝑖)𝑃𝑃
𝑇𝑇

𝑖𝑖=1

𝑥𝑥𝑖𝑖,𝑖𝑖 + �𝛼𝛼𝑖𝑖�𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑦𝑦𝑖𝑖,𝑖𝑖�
2
−

𝑇𝑇

𝑖𝑖=1

𝜆𝜆 ��𝑦𝑦𝑖𝑖

𝑇𝑇

𝑖𝑖=1

−�𝑥𝑥𝑖𝑖,𝑖𝑖

𝑇𝑇

𝑖𝑖=1

� 

                    −�𝜇𝜇𝑖𝑖(𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)
12

𝑖𝑖=1

 

(7) 

The Kuhn-Tucker conditions yielded the following set of equations and inequaltities: 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡

= (1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖�𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑦𝑦𝑖𝑖,𝑖𝑖� + 𝜆𝜆 −  𝜇𝜇𝑖𝑖 = 0        ∀𝑡𝑡 (8) 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  ∑ 𝑦𝑦𝑖𝑖,𝑖𝑖12
𝑖𝑖=1 −  ∑ 𝑥𝑥𝑖𝑖,𝑖𝑖12

𝑖𝑖=1 =  0         (9) 

                                             𝑥𝑥𝑖𝑖,𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖                                    ∀𝑡𝑡 (10) 
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                                     𝜇𝜇𝑖𝑖( 𝑥𝑥𝑖𝑖,𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖) = 0                          ∀𝑡𝑡 (11) 

                                                𝜇𝜇𝑖𝑖 ≥ 0                                      ∀𝑡𝑡 (12) 

Proposition 1: At optimality, the consumer’s electricity consumption 𝑥𝑥𝑖𝑖𝑖𝑖∗  is 

 

𝑥𝑥𝑖𝑖,𝑖𝑖∗ = �
𝑦𝑦𝑖𝑖,𝑖𝑖 +  

(𝛾𝛾𝑖𝑖 −  �̅�𝛾)𝑃𝑃
2𝛼𝛼

,                                      𝑦𝑦𝑖𝑖,𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 >
( �̅�𝛾 −  𝛾𝛾𝑖𝑖)𝑃𝑃

2𝛼𝛼

𝑚𝑚𝑖𝑖𝑖𝑖,                                                               𝑦𝑦𝑖𝑖,𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 ≤
( �̅�𝛾 −  𝛾𝛾𝑖𝑖) 𝑃𝑃

2𝛼𝛼

 (13) 

Proof: The solution to the model using equation (7) has two candidate cases: the first 

solution when the constraints from equation (10) are strictly holding, 𝑥𝑥𝑖𝑖,𝑖𝑖 > 𝑚𝑚𝑖𝑖𝑖𝑖 , and the 

second when the constraints from equation (10) are binding, 𝑥𝑥𝑖𝑖,𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑖𝑖. 

 In the first case, we assumed that the customer consumption 𝑥𝑥𝑖𝑖𝑖𝑖 is strictly holding 

during each time slot. In this case, it can clearly be seen from the complementary 

slackness conditions of equation (11) that 𝜇𝜇𝑖𝑖 = 0 because 𝑥𝑥𝑖𝑖,𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 > 0. From equation 

(8) 

𝑥𝑥𝑖𝑖,𝑖𝑖∗ =  𝑦𝑦𝑖𝑖,𝑖𝑖 −  𝜕𝜕−(1−𝛾𝛾𝑡𝑡)𝑃𝑃
2𝛼𝛼

         (14) 

Substituting equation (14) into equation (9) leads to equation (15) where we determined 

the optimal Lagrange multipliers 𝜆𝜆: 

𝜆𝜆 = ( �̅�𝛾 − 1)𝑃𝑃         (15) 

By substituting equation (15) into equation (14), we  derived the optimal consumption 𝑥𝑥𝑖𝑖,𝑖𝑖∗  

for each customer 𝑖𝑖 during each timeslot 𝑡𝑡, to be as shown in equation (16): 

𝑥𝑥𝑖𝑖,𝑖𝑖∗ =  𝑦𝑦𝑖𝑖,𝑖𝑖 +  (𝛾𝛾𝑡𝑡− 𝛾𝛾�) 𝑃𝑃
2𝛼𝛼

         (16) 

By substituting equation (16) into 𝑥𝑥𝑖𝑖,𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 > 0, we had 
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𝑦𝑦𝑖𝑖,𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 >  ( 𝛾𝛾�− 𝛾𝛾𝑡𝑡)𝑃𝑃
2𝛼𝛼

          (17) 

 In the second case, 𝑥𝑥𝑖𝑖,𝑖𝑖 =  𝑚𝑚𝑖𝑖𝑖𝑖 when the constraint in equation (10) is binding, and 

in order to satisfied the complementary slackness conditions in equation (11)  𝜇𝜇𝑖𝑖 ≥ 0, 

from equation (8): 

𝜇𝜇𝑖𝑖 = (1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖�𝑚𝑚𝑖𝑖,𝑖𝑖 − 𝑦𝑦𝑖𝑖,𝑖𝑖� + 𝜆𝜆          (18) 

By substituting equation (15) into equation (18), 

𝜇𝜇𝑖𝑖 = (1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖�𝑚𝑚𝑖𝑖,𝑖𝑖 − 𝑦𝑦𝑖𝑖,𝑖𝑖� + ( �̅�𝛾 − 1)𝑃𝑃          (19) 

By using equation (19), we can rewrite into equation (20) as  

𝑦𝑦𝑖𝑖,𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 ≤  ( 𝛾𝛾�− 𝛾𝛾𝑡𝑡) 𝑃𝑃
2𝛼𝛼

          (20) 

∎ 

Here, �̅�𝛾 is the average discount price offered throughout the planning horizon, 

such that �̅�𝛾 = 1
𝑇𝑇
∑ 𝛾𝛾𝑖𝑖𝑇𝑇
𝑖𝑖=1 , and 𝑥𝑥𝑖𝑖𝑖𝑖∗  is composed of two parts: the nominal demand 𝑦𝑦𝑖𝑖𝑖𝑖 and 

the deviation. This deviation is positive in the time slots in which the offered discount is 

higher than average and negative when the opposite is true. 

If the resultant consumption 𝑥𝑥𝑖𝑖𝑖𝑖∗  from equation (16) are strictly larger than the 

minimum consumption, the constraints given by equation (6) are redundant and the 

solution to the consumer model is given by the values found in equations (15) and (16). 

This situation is more likely to arise in cases when the customers are insensitive to the 

prices and the values of 𝛼𝛼𝑖𝑖 are high. 

Some of the constraints in equation (6) may be binding. This is more likely when the 

consumer is more of a price taker and less sensitive to demand deviation. To analyze this 

case, let 𝐓𝐓𝟏𝟏 be the set of time periods with corresponding constraints in (6) that are 
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strictly holding and 𝚻𝚻𝟐𝟐 be the set of those that are binding. We also defined 𝑇𝑇�  as the 

cardinality of set 𝐓𝐓𝟏𝟏. For a given discount scheme, these sets can be easily obtained by 

solving (4–6) with an over-the-counter nonlinear optimization tool. We can then use (7) 

for this case to generate optimal results from Karush–Kuhn–Tucker conditions. For the 

following results, let �̅�𝛾1 be the mean discount rate for time slots in 𝐓𝐓𝟏𝟏and 𝑥𝑥�𝑖𝑖𝑖𝑖∗  be the 

optimal energy usage values for this case. 

Proposition 2: Given 𝕋𝕋𝑖𝑖1 and 𝕋𝕋𝑖𝑖2, at optimality we get 

 𝑥𝑥�𝑖𝑖𝑖𝑖∗ = �𝑦𝑦𝑖𝑖𝑖𝑖 + 1
𝑇𝑇�

 ∑ (𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇�
�̅�𝑖=1 − 𝑚𝑚𝑖𝑖𝑖𝑖) + (𝛾𝛾𝑡𝑡− 𝛾𝛾�)𝑃𝑃

2𝛼𝛼
                      , 𝑡𝑡 ∈  𝕋𝕋1   

                𝑚𝑚𝑖𝑖𝑖𝑖                                                                 , 𝑡𝑡 ∈  𝕋𝕋2
 (21) 

 𝜆𝜆 = (�̅�𝛾�̂�𝑖 − 1)𝑃𝑃 − 2𝛼𝛼
𝑇𝑇�

 ∑ (𝑦𝑦�̅�𝑖𝑇𝑇�
�̅�𝑖=1 − 𝑚𝑚𝑖𝑖𝑖𝑖)  (22) 

 𝜇𝜇𝑖𝑖,𝑖𝑖∗ = �
                              0                                                                   , 𝑡𝑡 ∈  𝕋𝕋1 
 ( �̅�𝛾1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 − 2𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 +  1

𝑇𝑇�
 ∑  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)𝑖𝑖∈𝕋𝕋2 ) , 𝑡𝑡 ∈  𝕋𝕋2

 (23) 

Proof: Given 𝕋𝕋𝑖𝑖1 and 𝕋𝕋𝑖𝑖2, the Lagrangean relaxation becomes as follows: 

 𝐿𝐿𝐿𝐿 = ∑ (1 − 𝛾𝛾𝑖𝑖)𝑃𝑃𝑇𝑇
𝑖𝑖=1 �∑ 𝑥𝑥𝚤𝚤,𝑖𝑖�𝑖𝑖∈𝕋𝕋1  + ∑ 𝑚𝑚𝚤𝚤𝑖𝑖�𝑖𝑖 𝜖𝜖 𝕋𝕋2 � +  ∑ 𝛼𝛼𝑖𝑖�𝑥𝑥𝚤𝚤,𝑖𝑖� − 𝑦𝑦𝚤𝚤,𝑖𝑖��

2𝑇𝑇�
𝑖𝑖∈𝕋𝕋1     

      + ∑ 𝛼𝛼𝑖𝑖�𝑚𝑚 −  𝑦𝑦𝚤𝚤,𝑖𝑖����
2𝑇𝑇�

𝑖𝑖 𝜖𝜖 𝕋𝕋2 + 𝜆𝜆 � ∑ 𝑥𝑥𝚤𝚤,𝑖𝑖�𝑇𝑇�
�̂�𝑖 +  ∑ 𝑚𝑚𝚤𝚤𝑖𝑖�

𝑇𝑇�
�̅�𝑖 − ∑ 𝑦𝑦𝑖𝑖12

𝑖𝑖=1 �  

      −  ∑ 𝜇𝜇𝑖𝑖 (𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)12
𝑖𝑖=1    

(24) 

At optimality, the following KKT conditions must hold 

 𝜕𝜕𝐿𝐿𝐿𝐿
𝜕𝜕𝑥𝑥𝚤𝚤𝑖𝑖�

= (1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖(𝑥𝑥𝚤𝚤𝑖𝑖� − 𝑦𝑦𝚤𝚤𝑖𝑖� ) + 𝜆𝜆 −  𝜇𝜇�̂�𝑖  =  0            ∀�̂�𝑡 (25) 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 =  ∑ 𝑦𝑦𝑖𝑖,𝑖𝑖12
𝑖𝑖=1 −  � ∑ 𝑥𝑥𝚤𝚤,𝑖𝑖�𝑇𝑇�

�̂�𝑖 +  ∑ 𝑚𝑚𝚤𝚤𝑖𝑖�
𝑇𝑇�
�̅�𝑖 �   =  0 (26) 

                                                𝑥𝑥𝑖𝑖,𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖                                ∀𝑡𝑡 (27) 

                                             𝜇𝜇𝑖𝑖 (𝑥𝑥𝑖𝑖,𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖) = 0                    ∀𝑡𝑡 (28) 
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                                                  𝜇𝜇𝑖𝑖  ≥ 0                                   ∀𝑡𝑡 (29) 

We can rewrite equation (25) as follows: 

(1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖(𝑥𝑥𝚤𝚤𝑖𝑖� − 𝑦𝑦𝚤𝚤𝑖𝑖� ) + 𝜆𝜆 =  𝜇𝜇�̂�𝑖          (30) 

By substituting equation (30) in equation (28), 

(𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)�(1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖(𝑥𝑥𝚤𝚤𝑖𝑖� − 𝑦𝑦𝚤𝚤𝑖𝑖� ) + 𝜆𝜆� = 0 (31) 

When the constraint in equation (27) is strictly , than 𝑥𝑥𝑖𝑖,𝑖𝑖 > 𝑚𝑚𝑖𝑖𝑖𝑖 and 𝜇𝜇�̂�𝑖 = 0 than 

(1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖(𝑥𝑥𝚤𝚤𝑖𝑖� − 𝑦𝑦𝚤𝚤𝑖𝑖� ) + 𝜆𝜆 = 0 (32) 

From equation (32), we can define actual consumption, xı,t�
∗ , as follows: 

 𝑥𝑥𝚤𝚤,𝑖𝑖�
∗ =  𝑦𝑦𝚤𝚤,𝑖𝑖� −  𝜕𝜕−�1−𝛾𝛾𝑡𝑡��𝑃𝑃

2 𝛼𝛼
 (33) 

Substituting equation (33) into equation (26) leads to equation (36), where we 

determined the optimal Lagrange multipliers 𝜆𝜆, which may be developed as shown in 

equation (34) and (35): 

 ∑ 𝑦𝑦𝑖𝑖,𝑖𝑖12
𝑖𝑖=1 −  ∑ �𝑦𝑦𝚤𝚤,𝑖𝑖� −  𝜕𝜕−𝛾𝛾𝑡𝑡�𝑃𝑃

2 𝛼𝛼
�𝑇𝑇�

�̂�𝑖=1 −  ∑ 𝑚𝑚𝚤𝚤𝑖𝑖�
𝑇𝑇�
�̅�𝑖 = 0 (34) 

 ∑ 𝜕𝜕
2 𝛼𝛼

 𝑇𝑇�
�̂�𝑖 =  −∑ 𝑦𝑦𝑖𝑖𝑖𝑖12

𝑖𝑖=1 +  ∑ 𝑦𝑦𝚤𝚤𝑖𝑖� −  ∑ (1−𝛾𝛾𝑡𝑡�)𝑃𝑃
2 𝛼𝛼

+ ∑ 𝑚𝑚𝚤𝚤𝑖𝑖�
𝑇𝑇�
�̅�𝑖  𝑇𝑇�

�̂�𝑖
𝑇𝑇�
�̂�𝑖  (35) 

 𝜆𝜆 = (�̅�𝛾1 − 1)𝑃𝑃 − 2𝛼𝛼
𝑇𝑇�

 ∑  (𝑦𝑦𝚤𝚤𝑖𝑖� − 𝑚𝑚𝚤𝚤𝑖𝑖� )𝑖𝑖∈𝕋𝕋2  (36) 

By substituting equation (36) into equation (33), we  derived the optimal 

consumption 𝑥𝑥𝚤𝚤,𝑖𝑖�
∗  for each customer 𝑖𝑖 during each timeslot 𝑡𝑡, to be as shown in equation 

(37), when 𝑡𝑡 ∈  𝕋𝕋1: 

  𝑥𝑥𝚤𝚤,𝑖𝑖�
∗  = 𝑦𝑦𝚤𝚤,𝑖𝑖� + 1

𝑇𝑇�
 ∑  (𝑦𝑦𝚤𝚤𝑖𝑖� − 𝑚𝑚𝚤𝚤𝑖𝑖� )𝑖𝑖∈𝕋𝕋2 +  (𝛾𝛾𝑡𝑡�  − 𝛾𝛾�1)𝑃𝑃

2 𝛼𝛼
 (37) 

In the second case, when 𝑡𝑡 ∈  𝕋𝕋2, the constraint in equation (27) is binding. Then 

𝑥𝑥𝚤𝚤,𝑖𝑖�
∗  =  𝑚𝑚𝑖𝑖𝑖𝑖 and µt̂  will find it by substituting equation (36) in equation (30): 
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 𝜇𝜇�̂�𝑖 = ( �̅�𝛾1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 − 2𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 + 1
𝑇𝑇�

 ∑  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)𝑖𝑖∈𝕋𝕋2 )  (38) 

                                                                                                                      ∎ 

Here, 𝛾𝛾1�  is the average discount rate for the time slots in 𝕋𝕋1, and 𝑥𝑥�𝑖𝑖𝑖𝑖∗  is the optimal energy 

consumption. 

 The energy provider determines the optimal discount price by inferring the 

customers’ optimal responses, such that the results from equations (15), (16), (21), (22), 

and (23) may be included into the provider’s optimization model. Computing the 

equilibrium optimal discounts may take more than one iteration given that the closed-

form solution from the customers’ stage depends on the constraints from equation (6). 

We proposed a procedure in order to derive the equilibrium solutions. First, we ignored 

constraint (6) and included the consumer best response obtained in (16) into the energy 

provider’s model. The total energy consumption values (i.e., 𝑋𝑋𝑖𝑖) in the energy provider’s 

profit function in (2) are replaced by 

𝑋𝑋𝑖𝑖 = ∑
=

N

i
ity

1
( + (𝛾𝛾𝑖𝑖 − �̅�𝛾)

𝑃𝑃
2𝛼𝛼𝑖𝑖

) (39) 

Definition 1: The point (𝛾𝛾𝑖𝑖∗ , 𝑥𝑥𝑖𝑖𝑖𝑖∗ (𝛾𝛾𝑖𝑖∗)), which satisfied the constraints in (2–3) and (4–6), 

is an equilibrium result of the Stackelberg game 𝐺𝐺 = {ℕ,𝕋𝕋, 𝛱𝛱𝑠𝑠,Πi} if and only if 

𝛱𝛱𝑠𝑠�𝛾𝛾𝑖𝑖∗ , 𝑥𝑥𝑖𝑖𝑖𝑖∗ (𝛾𝛾𝑖𝑖∗)� ≥  𝛱𝛱𝑠𝑠(𝛾𝛾𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖(𝛾𝛾𝑖𝑖) ) ,∀ 𝑡𝑡 ∈  𝕋𝕋 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ∈  ℕ  (40) 

 We can solve energy provider optimization model by using a nonlinear 

optimization tool. The equilibrium results will be obtained only if the optimal price 

discounts lead to a state where constraints in (6) are satisfied for all consumers. 

Otherwise, we need to carry out additional iterations as outlined in Table 1. 
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Table 1: procedure to find equilibrium solution 

1: include the consumer’s best response from equation (39) into the energy 

provider’s model in equation (2–3). 

2: solve energy provider’s model 

3: if 𝑥𝑥𝑖𝑖,𝑖𝑖∗ ≥  𝑚𝑚𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋, then STOP.  

4: else for each consumer for which constraint (6) is violated in any time t   

5: identify and update 𝕋𝕋1 and 𝕋𝕋2 

6: use (21) instead of (39) for these consumers in the energy provider’s          

model 

7: solve the utility firm’s model again including these updates. 

8: go to line 3. 

 

 Clearly, when the nominal demand is uniform across the planning horizon, the 

energy provider does not benefit from load-shifting. In such cases, the energy provider 

will not offer a price discount. The price discounts benefit the provider when there is a 

fluctuation on the nominal demand, which reduce the generation costs. Therefore, the 

price discounts will only be used to shift demand from on-peak periods to relatively off-

peak periods. Consequently, we can make the following conclusion: 

COROLLARY 1. At equilibrium, the price discount will be zero for at least one period.  

The price discount will be applied if and only if there is a fluctuation in the nominal 

demand over the time horizon. Clearly, when there is a peak demand period, the 

supplier’s model will determine no discount to encourage the consumers to shift load 

from the peak period to off-peak periods.∎ 
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2.4. Numerical Analysis 

 In this section we performed a numerical study to evaluate the model under 

different scenarios. We investigated the effect of the consumer types in terms of their 

willingness to shift load on the energy provider’s profits, price discounts, and PARs. We 

are not only concerned in the customers’ willingness levels but also in the diversity in the 

consumer type. Moreover, we investigated the impact of the number of customers 

(market breadth) on the equilibrium outcomes.  

 In all of the scenarios, we divided the time horizon into twelve time slots. For the 

energy generation cost function, we set the parameter a equal to 0.0035 $/KWh2 and b 

and c equal to zero. We assumed mit was zero for all consumers and periods; the base 

price, P, was set to 0.25 $/kWh. Customers had different total nominal demands; the 

numbers for the nominal demands were gathered from a randomly selected residential 

electricity bill. Table 2 shows the aggregate nominal demand that we used for each 

period, and Figure 1 depicts the demand pattern across the planning horizon.  

Table 2: Aggregate demand (kwh) 

Period (t) 1 2 3 4 5 6 7 8 9 10 11 12 

Aggregate 
Demand 10.19 15.72 22.28 29.23 33.31 39.14 73.43 61.27 58.1 37.2 17.53 15.01 
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Figure 1: Aggregate demand across the time horizon. 

 The first scenario focused on the consumer type and considered seven consumers 

with varying types. The base values for the inconvenience factors across seven customers 

(αi) were 0.02, 0.021, 0.00025, 0.00875, 0.0003, 0.0004, and 0.007 with an average of 

0.0082. We scaled these values with a multiplier: z in [1, 15]. Clearly, higher z values 

result in lower sensitivity to price discounts for the consumers. Figure 2 and 3 show the 

effect of consumers’ sensitivity to load-shifting on the equilibrium average discounts (𝛾𝛾) 

and PAR values. 

 We observed three segments in the graph, shown in Figure 2. In the first segment 

when 𝑧𝑧 = 0.5,1,2, the customers were price takers, and some of the constraints in (6) 

were binding for some customers. In this segment, the energy provider had no incentive 

to provide large discounts since the customers achieved a high load-shifting with low 

discount. In the second segment (z is from 3 to 6) as the consumers became more 

resistant to load shifts and the set of constraints (6) are strictly holding, the price 

discounts increased since the provider still can influence the customers’ behavior toward 

load-shifting. After a certain threshold, the price discount began to decrease because 

resistance became sufficiently strong so the energy provider did not benefit from 
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applying high discounts. The PAR on Figure 3 increased as the customers’ inconvenience 

increased. 

The consumption at equilibrium for different consumer markets is shown in 

Figure 4. Here we can see the nominal energy demand and the effects of high 

inconvenience averages (HS) and moderate inconvenience averages (MS). When there 

are moderate inconveniences, the equilibrium is reached with no discounts during only 

four time slots, while when there are high inconveniences, the equilibrium is reached 

with no discounts in 10 of the 12 time slots.  

  

Figure 2: Consumer inconvenience and energy provider’s average price discount. 
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 Figure 3: Consumer inconvenience and PAR values. 

 

Figure 4: Consumer inconvenience and energy consumption. 
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variation (COV) for αi ranged from 0 to 1.05 Figure 5 shows the effect of diversity on the 

equilibrium average discounts and PAR values. 

 

Figure 5: Consumer diversity, equilibrium discounts, and PAR. 

As shown in Figure 5, the average price discount first increased as the COV 

increased until a certain threshold, after which the discount began to decrease. We 

believe this is because when the customers were more similar to one another, their 

behavior was relatively less sensitive to price discount. When the diversity increased, the 

energy provider was incentivized to make load-shifting more attractive as more and more 

customers would react. However, when diversity increased, the customers’ types were 

too distant from each other, and some were price takers while others would not shift their 

loads regardless of the discount. Thus, a lower discount was required to shift the loads of 

the subgroup of customers who were willing to do any load shits. The decrease in the 

discount was significant as some of the constraints in equation (6) become engage. 

 In the third scenario, we evaluated the effects that having multiple customers has 

on the Stackelberg equilibrium. Here, we used a number of customers ranging from 1 to 7 

while keeping the total nominal demand of the system equal to the aggregate demand in 
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Table 2. Furthermore, we assumed that all of the customers had the same inconvenience 

𝛼𝛼 = 0.001 and used the inconvenience multiplier 𝑧𝑧. Figure 6 and 7 show the effects of 

having a different number of customers at different inconvenience levels. 

 

Figure 6: Number of consumers and equilibrium discount averages. 

Clearly, as the number of consumers increased, the load shift for each consumer 

was less costly. This is mainly due to the fact that the inconvenience costs are convex, 

increasing with the deviation between consumption and nominal demand.  

When the consumers were less resistant to load shifting (𝑧𝑧 = 1), the graph had 

two distinct fragments. In the first fragment, the market has up to two customers, and 

price discounts were very effective ways to incentivize load-shifting; thus, high discounts 

(6%) were offered. Past this point, the market had more customers the effects of load 

shifting may be achieved with lower discounts, which decreased as the number of 

customers increased. 

When 𝑧𝑧 = 5 customers were not as sensitive to price discounts, and shifting large 

loads led to high inconvenience. As such, when the market had fewer customers (1 or 2), 
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they were quite price insensitive. As the market grew in number (3 to 7), the individual 

amount of nominal demand that must be shifted by each customer was smaller and thus 

became more price sensitive, and the equilibrium discount increased to high equilibrium 

and discounts of 6.1% were reached.  

When 𝑧𝑧 = 10 customers were price insensitive. In this case the equilibrium 

discount slowly increased as the number of customers increased, but even when the 

market has seven customers, the equilibrium discount only reached 5.4%. 

 When investigating the effect on the PAR, we saw that for every level of 

inconvenience, the increase in the number of customers led to a decrease in the PAR. 

 

Figure 7: Number of consumers and PAR. 
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that price discounts may provide significant influence for achieving lower PARs while 

improving the energy provider’s profits. Furthermore, when the customers were moderate 

and/or the customer population was moderately diverse in terms of their inconvenience 

factors, the provider offered higher discounts. Discounts had a low impact in reducing 

PAR when the customers were mostly alike in their inconvenience factors. Moreover, the 

number of customers (i.e., market breadth) affected the equilibrium discounts and energy 

provider profits. 

 



 

 Chapter 3 Price Discounts and Consumer Load-Shifting Behavior in the Smart 

3.1. Overview 

 Customers’ individual behavior is not necessarily the same throughout the day, so 

they may have different attitudes towards load-shifting at different times, which may 

affect the overall equilibrium of the market. A customer who has a high average 

inconvenience may have a few periods where he or she is eager to shift demand since 

these specific periods are not personally significant (such as when to run a washing 

machine) and thus provide flexibility, while a customer with an average low 

inconvenience may be very resistant to load-shifting during specific periods (such as when 

to cook dinner and use the stove).  

 This chapter studies the impact of consumers’ individual attitudes towards load-

shifting in electricity consumption in an electricity market that includes a single energy 

provider and multiple consumers. Based on the model presented in Chapter 2, a 

Stackelberg game model was formulated in which the provider used price discounts over a 

finite number of periods in order to induce incentives for consumers to shift their peak 

period loads to off-peak periods. Consumers reacted to the proposed discounts by 

determining how much they were willing to shift across periods based on the trade-off 

between their consumption costs and inconvenience costs. We investigated the 

equilibrium outcomes for the proposed model and derived analytical results for this type 

of market where not only the response behaviors of independent consumers are diverse but 

also an individual consumer’s valuation of electricity consumption varies across periods. 

Using both analytical and numerical analyses, we obtained insights regarding the impact 

32 
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of the diversity of the electricity market and the varying attitudes of the consumers on the 

energy provider’s proposed discounts and profits, shifts in electricity consumption across 

the planning period, and PARs. Our results demonstrate that consumer sensitivities to 

price discounts significantly impact price discounts and load-shifts, which are not 

necessarily monotonic. We also observed that a diverse market led to lower peak-to-

average values and provider payoffs compared to a homogenous market unless the latter 

one is composed of consumers with relatively lower inconvenience costs during the peak 

periods. 

3.2. System Model and Game Formulation 

 In order to evaluate the effects of having various different prices on the customers’ 

behavior in a smart grid, we provided a decision-making framework based on a 

Stackelberg game. The game was formulated across finite time horizon with length of T 

periods between a single energy provider and N customers. The set of customers ℕ is 

defined as ℕ ≜ { 1, 2, … , N} and the planning horizon 𝕋𝕋 is defined as 𝕋𝕋 ≜ { 1, 2, … , T}. 

Our proposed framework included two decision stages for the Stackelberg game. The first 

level was where the energy provider, acting as the leader, took strategic actions to 

maximize their profit by determining the optimal percentage discount 𝛾𝛾𝑖𝑖 (from a 

predetermined nominal price 𝑃𝑃) for each period within the planning horizon. In the 

second decision stage, customers, acting as the followers, reacted by shifting their 

consumption from their nominal demand across the planning horizon based on the 

tradeoff between the provider’s price discounts and consumers’ cost of load-shifting 

inconvenience. In this setting, consumer i has an original electricity demand in kWh for 

period t, denoted by 𝑦𝑦𝑖𝑖𝑖𝑖.  
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 Given the electricity provider’s price discounts, the consumer’s decision was the 

actual consumption for each period t, as represented by 𝑥𝑥𝑖𝑖𝑖𝑖. As such, the difference 

between 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑖𝑖𝑖𝑖 measured the load-shift for customer i in period t. Since shifting 

incurred an inconvenience cost for the customer, the customer was better off with shifting 

his or her demand only if the price discounts could counterbalance this cost. It is 

important to highlight that customers fulfilled their total original demand throughout the 

planning horizon, that is, ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖∈𝑇𝑇 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖∈𝑇𝑇 . We captured the customers’ inconvenience 

type via 𝛼𝛼𝑖𝑖𝑖𝑖, which denoted the cost coefficient for customer i for period t. The 

coefficient not only varied across customer but also across periods for a given consumer. 

3.2.1. Energy Provider’s Model 

 In this model, the setting of energy provider was similar to the one presented in 

section 2.2.1. In this case, we used the model that present on equation (2)–(3) as follows: 

Maximize Π𝑠𝑠 = ∑
=

−−
T

t
ttt XCPX

1
))()1(( γ  (41) 

                                  s.t.             0 ≤ 𝛾𝛾𝑖𝑖 ≤ 1               ∀𝑡𝑡 ∈ 𝕋𝕋 (42) 

3.2.2. Customer’s Model 

 Customers, as the followers in the Stackelberg game, attempted to minimize their 

total consumption cost by determining how they modified their consumption from their 

nominal demand based on their inconvenience costs and the discounts offered by the 

electricity provider. At the end, the total energy consumption for each customer must 

equal to his or her total demand across the whole time horizon. The following equation 

enforced this constraint: 

  
 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇

𝑖𝑖=1 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1  (43) 
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The balance is analogous to the use of forward and delayed procurements as a response to 

price fluctuations in a supply chain setting. 

 Not all electrical consumption in a given period can be shifted, such as electricity 

consumed by refrigerators or security alarms. Therefore, the customers’ model included a 

minimum required consumption for each customer for period 𝑚𝑚𝑖𝑖𝑖𝑖, which was ensured by 

the following constraint: 

                                      𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖                              ∀𝑡𝑡 ∈ 𝕋𝕋 (44) 

 The adverse effect on the customer of shifting consumption from one period to 

another was captured by the inconvenience cost function 𝜑𝜑(𝑥𝑥𝑖𝑖𝑖𝑖), which was modeled 

using a quadratic function that convex increases as the difference between the actual 

consumption 𝑥𝑥𝑖𝑖𝑖𝑖 and original demand 𝑦𝑦𝑖𝑖𝑖𝑖 increases: 

                                        𝜑𝜑(𝑥𝑥𝑖𝑖𝑖𝑖)  = 𝛼𝛼𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖)2                              ∀𝑡𝑡 ∈ 𝕋𝕋 (45) 

It is important to highlight that any convex inconvenience cost function may be easily 

applied to our methodology without loss of generality in the results. 

 We  modeled heterogeneous customers in terms of their attitudes towards load-

shifting. As such, each customer 𝑖𝑖 had a positive inconvenience coefficient 𝛼𝛼𝑖𝑖𝑖𝑖, which 

drove each customer’s sensitivity to electricity price discounts. Customers were more 

willing to change their consumption in periods with a lower 𝛼𝛼𝑖𝑖𝑖𝑖, as opposed to periods 

with a higher 𝛼𝛼𝑖𝑖𝑖𝑖. Periods that have a low 𝛼𝛼𝑖𝑖𝑖𝑖 were price sensitive, and customers were 

more likely to change their demand in order to achieve lower total costs. Those periods 

may include time periods where customers were not constrained with other tasks in their 

daily lives or did not necessarily need to use particular equipment to the full extent (e.g., 

air conditioning units during the hours their homes are not occupied). However, there 
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were periods where customers were less willing to divert their routines (e.g., laundry, 

dishes, TV). In those periods, the customers employed higher 𝛼𝛼𝑖𝑖𝑖𝑖 values, and as such, 

they were rather insensitive to electricity price discounts. Moreover, not all consumers 

were expected to have the same sensitivity to price and convenience in general. 

Therefore, the inconvenience cost parameters also varied across customers. 

 Each customer’s objective function attempted to minimize the total cost 

composed of consumption costs and load-shifting inconvenience costs. Consequently, the 

overall model can be written as follows: 

Min 𝛱𝛱𝑖𝑖 = ∑ �(1 − 𝛾𝛾𝑖𝑖)𝑃𝑃𝑥𝑥𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖)2�𝑇𝑇
𝑖𝑖=1  (46) 

                         s.t.             ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇

𝑖𝑖=1                      (47) 

                                      𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖                              ∀𝑡𝑡 ∈ 𝕋𝕋 (48) 

We defined the customers’ feasible strategies space as Ω𝑖𝑖 = {𝑥𝑥𝑖𝑖𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖 ∈ 𝐿𝐿, 𝑡𝑡 ∈  𝕋𝕋, 𝑥𝑥𝑖𝑖𝑖𝑖 ≥

𝑚𝑚𝑖𝑖𝑖𝑖,∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇

𝑖𝑖=1 }. Hence, interaction between the electricity provider and the 

customers in the proposed Stackelberg game was summarized by 

𝐺𝐺 = [ 𝛺𝛺𝑠𝑠,𝛱𝛱𝑠𝑠,ℕ, {𝛱𝛱𝑖𝑖}, {𝛺𝛺𝑖𝑖}]. 

3.3. Equilibrium Analysis 

 We obtained the equilibrium price discount and load-shifting strategies using 

backwards induction. As such, we began our analysis with the consumer’s problem for a 

given array of price discounts over the planning horizon. Once this was complete, 

inferring from the consumers’ best responses, the leader, that is the electricity provider, 

decided on the price discounts. To solve the customers’ model, we used Lagrangian 

Relaxation. Here, we let 𝜆𝜆𝑖𝑖 be the Lagrange multiplier for constraint (47) and 𝜇𝜇𝑖𝑖𝑖𝑖 as the 

multiplier for the constraint set given in (48) in consumer i’s model. Thus, the 
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consumer’s objective was equivalent to finding 𝑥𝑥𝑖𝑖𝑖𝑖, 𝜆𝜆𝑖𝑖, and 𝜇𝜇𝑖𝑖𝑖𝑖 that maximized the 

following Lagrangian function: 

𝑀𝑀𝑎𝑎𝑥𝑥 𝐿𝐿𝐿𝐿 = �(1 − 𝛾𝛾𝑖𝑖)𝑃𝑃
𝑇𝑇

𝑖𝑖=1

𝑥𝑥𝑖𝑖,𝑖𝑖 + �𝛼𝛼𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑦𝑦𝑖𝑖,𝑖𝑖�
2
−

𝑇𝑇

𝑖𝑖=1

𝜆𝜆 ��𝑦𝑦𝑖𝑖

𝑇𝑇

𝑖𝑖=1

−�𝑥𝑥𝑖𝑖,𝑖𝑖

𝑇𝑇

𝑖𝑖=1

� 

                    −�𝜇𝜇𝑖𝑖(𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)
12

𝑖𝑖=1

 

(49) 

The Kuhn–Tucker conditions yielded the following set of equations and inequaltities: 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑡𝑡

= (1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖𝑖𝑖�𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑦𝑦𝑖𝑖,𝑖𝑖� + 𝜆𝜆 −  𝜇𝜇𝑖𝑖 = 0        ∀𝑡𝑡 (50) 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  ∑ 𝑦𝑦𝑖𝑖,𝑖𝑖12
𝑖𝑖=1 −  ∑ 𝑥𝑥𝑖𝑖,𝑖𝑖12

𝑖𝑖=1 =  0         (51) 

                                             𝑥𝑥𝑖𝑖,𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖                                    ∀𝑡𝑡 (52) 

                                     𝜇𝜇𝑖𝑖( 𝑥𝑥𝑖𝑖,𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖) = 0                          ∀𝑡𝑡 (53) 

                                                𝜇𝜇𝑖𝑖 ≥ 0                                      ∀𝑡𝑡 (54) 

These conditions led to the following observation: 

Proposition 3: At optimality, the consumer’s electricity consumption 𝑥𝑥𝑖𝑖𝑖𝑖∗  was 

 𝑥𝑥𝑖𝑖,𝑖𝑖∗ = �
𝑦𝑦𝑖𝑖𝑖𝑖 + (𝛾𝛾𝑖𝑖 −  Λ𝑖𝑖𝑖𝑖)

𝑃𝑃
2𝛼𝛼𝑖𝑖𝑡𝑡

,                    𝑦𝑦𝑖𝑖𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 >  (Λ𝑖𝑖𝑖𝑖 −  𝛾𝛾𝑖𝑖)
𝑃𝑃

2𝛼𝛼𝑖𝑖𝑡𝑡
𝑚𝑚𝑖𝑖𝑖𝑖,                                                                     𝑜𝑜/𝑤𝑤

 (55) 

where Λ𝑖𝑖𝑖𝑖 =  
∑ � 𝛾𝛾𝑡𝑡

2𝛼𝛼𝑖𝑖𝑡𝑡
�𝑇𝑇

𝑡𝑡

�∑ 1
2𝛼𝛼𝑖𝑖𝑡𝑡

𝑇𝑇
𝑡𝑡 �  

 

proof: There were two cases for the solution to the system given in (49)–(54). In the first 

case, the constraint in (52) strictly held in period t (i.e., 𝑥𝑥𝑖𝑖𝑖𝑖∗ > 𝑚𝑚𝑖𝑖𝑖𝑖), whereas in the second 

case it was 𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝑚𝑚𝑖𝑖𝑖𝑖. Under the first case, we assumed that consumption 𝑥𝑥𝑖𝑖𝑖𝑖∗  exceeded 

the minimum 𝑚𝑚𝑖𝑖𝑖𝑖 for every period, and thus, 𝜇𝜇𝑖𝑖𝑖𝑖 = 0 as a result of the complimentary 
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slackness condition given in (53). Then, using (50), we  computed the optimal 

consumption 𝑥𝑥𝑖𝑖𝑖𝑖∗ , as a function of 𝜆𝜆𝑖𝑖: 

𝑥𝑥𝑖𝑖,𝑖𝑖∗ =  𝑦𝑦𝑖𝑖,𝑖𝑖 −  𝜕𝜕−(1−𝛾𝛾𝑡𝑡)𝑃𝑃
2𝛼𝛼

         (56) 

We substituted the result of (56) into (51): 

𝜆𝜆𝑖𝑖 = −∑ ((1−𝛾𝛾𝑡𝑡)𝑃𝑃/2𝛼𝛼𝑖𝑖𝑡𝑡)𝑇𝑇
𝑡𝑡
∑ 1/2𝛼𝛼𝑖𝑖𝑡𝑡𝑇𝑇
𝑡𝑡

         (57) 

Once we had the optimal Lagrange multipliers, we could substitute 𝜆𝜆 from equation (57) 

into equation (56), leading to the optimal consumption 𝑥𝑥𝑖𝑖,𝑖𝑖∗  at equation (60), which may 

be developed as shown in Eqs. (58) and (59): 

𝑥𝑥𝑖𝑖,𝑖𝑖∗ =  𝑦𝑦𝑖𝑖,𝑖𝑖 −  
(1 − 𝛾𝛾𝑖𝑖)𝑃𝑃

2𝛼𝛼𝑖𝑖𝑖𝑖
+  
∑ ((1 − 𝛾𝛾𝑖𝑖)𝑃𝑃/2𝛼𝛼𝑖𝑖𝑖𝑖)𝑇𝑇
𝑖𝑖

�∑ 1
2𝛼𝛼𝑖𝑖𝑖𝑖

𝑇𝑇
𝑖𝑖 �  2𝛼𝛼𝑖𝑖𝑖𝑖 

 (58) 

𝑥𝑥𝑖𝑖,𝑖𝑖∗ =  𝑦𝑦𝑖𝑖,𝑖𝑖 +  
𝑃𝑃

2𝛼𝛼𝑖𝑖𝑖𝑖
(−1 + 𝛾𝛾𝑖𝑖 + 

∑ � 1
2𝛼𝛼𝑖𝑖𝑖𝑖

�𝑇𝑇
𝑖𝑖

∑ � 1
2𝛼𝛼𝑖𝑖𝑖𝑖

�𝑇𝑇
𝑖𝑖  

−
∑ � 𝛾𝛾𝑖𝑖

2𝛼𝛼𝑖𝑖𝑖𝑖
�𝑇𝑇

𝑖𝑖

�∑ 1
2𝛼𝛼𝑖𝑖𝑖𝑖

𝑇𝑇
𝑖𝑖 �  

) (59) 

𝑥𝑥𝑖𝑖,𝑖𝑖∗ =  𝑦𝑦𝑖𝑖,𝑖𝑖 + (𝛾𝛾𝑖𝑖 −  
∑ � 𝛾𝛾𝑖𝑖

2𝛼𝛼𝑖𝑖𝑖𝑖
�𝑇𝑇

𝑖𝑖

�∑ 1
2𝛼𝛼𝑖𝑖𝑖𝑖

𝑇𝑇
𝑖𝑖 �  

)
𝑃𝑃

2𝛼𝛼𝑖𝑖𝑖𝑖
 (60) 

 

Substituting (60) in 𝑥𝑥𝑖𝑖𝑖𝑖∗ −  𝑚𝑚𝑖𝑖𝑖𝑖 > 0, yielded 

𝑦𝑦𝑖𝑖𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 >  ( 
∑ � 𝛾𝛾𝑡𝑡

2𝛼𝛼𝑖𝑖𝑡𝑡
�𝑇𝑇

𝑡𝑡

�∑ 1
2𝛼𝛼𝑖𝑖𝑡𝑡

𝑇𝑇
𝑡𝑡 �  

−𝛾𝛾𝑖𝑖)
𝑃𝑃

2𝛼𝛼𝑖𝑖𝑡𝑡
          (61) 

The inequality in (61) is the condition given in (52). Clearly, when this condition does 

not hold, 𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝑚𝑚𝑖𝑖𝑖𝑖, and 𝜇𝜇𝑖𝑖𝑖𝑖 > 0 must hold due to complimentary slackness.  

                                                                                                              ∎ 
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 It is clear from this result that each individual consumer’s consumption decision 

was going to be driven by Λ𝑖𝑖𝑖𝑖. Specifically, if the discount offered by the electricity 

provider in period t, γ𝑖𝑖𝑖𝑖 was greater than Λ𝑖𝑖𝑖𝑖, customer 𝑖𝑖’s consumption for that period 

would be above his or her nominal intended consumption; the converse is true if the 

discount was below this threshold. It is straightforward to notice that the magnitude of 

deviation between the nominal and actual consumption was directly proportional to the 

peak electricity price and inversely proportional to the inconvenience cost coefficient.  

If the actual consumption was strictly larger than the minimum consumption for all 

periods, then the solutions to the consumer model were given by (57) and (60) as the 

constraint set given by (52) became redundant. This was most likely the case when the 

values of 𝛼𝛼𝑖𝑖𝑖𝑖 were sufficiently high, implying that the consumers’ response level to price 

discounts was limited. On the other hand, it was expected that one or more constraints 

defined by (52) would be binding for the price-sensitive consumers. In order to analyze 

and capture the latter case in the solution process further, for each consumer, we 

introduced two subsets of periods, namely, 𝕋𝕋𝑖𝑖1 and 𝕋𝕋𝑖𝑖2, where 𝕋𝕋𝑖𝑖1 was composed of 

periods for which the constraint (52) strictly held and 𝕋𝕋𝑖𝑖2 composed of periods for which 

the constraint (52) was binding. Moreover, we let 𝑇𝑇�𝑖𝑖 denote the cardinality of subset 𝕋𝕋𝑖𝑖1. 

Subsets 𝕋𝕋𝑖𝑖1 and 𝕋𝕋𝑖𝑖2 can be easily identified by solving the problem given by equations 

(46)–(48), using any over-the-counter nonlinear optimization tool. Once this was done, 

we  rewrote the optimal results based on 𝕋𝕋𝑖𝑖1 and 𝕋𝕋𝑖𝑖2. 

Proposition 2: Given 𝕋𝕋𝑖𝑖1 and 𝕋𝕋𝑖𝑖2, at optimality yielded 
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𝑥𝑥�𝑖𝑖𝑖𝑖∗ = �
𝑦𝑦𝑖𝑖𝑖𝑖 +  

𝑃𝑃
2 𝛼𝛼𝑖𝑖𝑖𝑖

�𝛾𝛾𝑖𝑖 −  Λ�𝑖𝑖� +
∑ (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)𝑖𝑖∈𝕋𝕋2

∑ (1/2 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖∈𝕋𝕋1 )2 𝛼𝛼𝑖𝑖𝑖𝑖 
, 𝑡𝑡 ∈  𝕋𝕋1   

                𝑚𝑚𝑖𝑖𝑖𝑖                                                                , 𝑡𝑡 ∈  𝕋𝕋2

 (62) 

 𝜆𝜆𝑖𝑖∗  = − 1
∑ (1/2 𝛼𝛼𝑖𝑖𝑡𝑡𝑡𝑡∈𝕋𝕋1 )

 (∑ ((1− 𝛾𝛾𝑖𝑖)𝑃𝑃/2 𝛼𝛼𝑖𝑖𝑖𝑖) 𝑖𝑖∈𝕋𝕋1 + ∑ (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)𝑖𝑖∈𝕋𝕋2 )  (63) 

 𝜇𝜇𝑖𝑖,𝑖𝑖∗ = �
                              0                                                                   , 𝑡𝑡 ∈  𝕋𝕋1 

 �Λ�𝑖𝑖 − 𝛾𝛾𝑖𝑖�𝑃𝑃 + 2𝛼𝛼𝑖𝑖𝑖𝑖(𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖) −  
∑ (𝑦𝑦𝑖𝑖𝑡𝑡−𝑚𝑚𝑖𝑖𝑡𝑡)𝑡𝑡∈𝕋𝕋2
∑ (1/2 𝛼𝛼𝑖𝑖𝑡𝑡𝑡𝑡∈𝕋𝕋1 ) 

 , 𝑡𝑡 ∈  𝕋𝕋2  (64) 

 

       where Λ�𝑖𝑖 =  
∑ � 𝛾𝛾𝑡𝑡

2𝛼𝛼𝑖𝑖𝑡𝑡
�𝑡𝑡∈𝕋𝕋1

�∑  1
2𝛼𝛼𝑖𝑖𝑡𝑡𝑡𝑡∈𝕋𝕋1 �  

 

proof: Given 𝕋𝕋𝑖𝑖1 and 𝕋𝕋𝑖𝑖2, the Lagrangean relaxation became the following: 

 𝐿𝐿𝐿𝐿 = ∑ (1 − 𝛾𝛾𝑖𝑖)𝑃𝑃𝑇𝑇
𝑖𝑖=1 �∑ 𝑥𝑥𝚤𝚤,𝑖𝑖�𝑖𝑖∈𝕋𝕋1 + ∑ 𝑚𝑚𝚤𝚤𝑖𝑖�𝑖𝑖 𝜖𝜖 𝕋𝕋2 � +  ∑ 𝛼𝛼𝑖𝑖𝑖𝑖�𝑥𝑥𝚤𝚤,𝑖𝑖� − 𝑦𝑦𝚤𝚤,𝑖𝑖��

2𝑇𝑇�
𝑖𝑖∈𝕋𝕋1     

            + ∑ 𝛼𝛼𝑖𝑖𝑖𝑖�𝑚𝑚 −  𝑦𝑦𝚤𝚤,𝑖𝑖����
2𝑇𝑇�

𝑖𝑖 𝜖𝜖 𝕋𝕋2 + 𝜆𝜆 � ∑ 𝑥𝑥𝚤𝚤,𝑖𝑖�𝑇𝑇�
�̂�𝑖 +  ∑ 𝑚𝑚𝚤𝚤𝑖𝑖�

𝑇𝑇�
�̅�𝑖 − ∑ 𝑦𝑦𝑖𝑖12

𝑖𝑖=1 �  

           −  ∑ 𝜇𝜇𝑖𝑖 (𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)12
𝑖𝑖=1    

(65) 

At optimality, the following KKT conditions must hold: 

 𝜕𝜕𝐿𝐿𝐿𝐿
𝜕𝜕𝑥𝑥𝚤𝚤𝑖𝑖�

= (1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖𝑖𝑖(𝑥𝑥𝚤𝚤𝑖𝑖� − 𝑦𝑦𝚤𝚤𝑖𝑖� ) + 𝜆𝜆 −  𝜇𝜇�̂�𝑖  =  0            ∀�̂�𝑡 (66) 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 =  ∑ 𝑦𝑦𝑖𝑖,𝑖𝑖12
𝑖𝑖=1 −  � ∑ 𝑥𝑥𝚤𝚤,𝑖𝑖�𝑇𝑇�

�̂�𝑖 +  ∑ 𝑚𝑚𝚤𝚤𝑖𝑖�
𝑇𝑇�
�̅�𝑖 �   =  0 (67) 

                                                𝑥𝑥𝑖𝑖,𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖                                ∀𝑡𝑡 (68) 

                                             𝜇𝜇𝑖𝑖 (𝑥𝑥𝑖𝑖,𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖) = 0                    ∀𝑡𝑡 (69) 

                                                  𝜇𝜇𝑖𝑖  ≥ 0                                   ∀𝑡𝑡 (70) 

We can rewrite equation (66) as follows: 

(1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖𝑖𝑖(𝑥𝑥𝚤𝚤𝑖𝑖� − 𝑦𝑦𝚤𝚤𝑖𝑖� ) + 𝜆𝜆 =  𝜇𝜇�̂�𝑖          (71) 

By substituting equation (71) in equation (67), 
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((𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)�(1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖𝑖𝑖(𝑥𝑥𝚤𝚤𝑖𝑖� − 𝑦𝑦𝚤𝚤𝑖𝑖� ) + 𝜆𝜆� = 0          (72) 

When the constraint in equation (68) was strictly holding than 𝑥𝑥𝑖𝑖,𝑖𝑖 > 𝑚𝑚𝑖𝑖𝑖𝑖 and 𝜇𝜇�̂�𝑖 = 0, 

then 

(1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖𝑖𝑖(𝑥𝑥𝚤𝚤𝑖𝑖� − 𝑦𝑦𝚤𝚤𝑖𝑖� ) + 𝜆𝜆 = 0          (73) 

From equation (73), we  defined actual consumption, xı,t�
∗ , as follows: 

𝑥𝑥𝚤𝚤,𝑖𝑖�
∗ =  𝑦𝑦𝚤𝚤,𝑖𝑖� −  𝜕𝜕−�1−𝛾𝛾𝑡𝑡��𝑃𝑃

2 𝛼𝛼𝑖𝑖𝑡𝑡
          (74) 

Substituting equation (74) into equation (67) led to equation (77), where we determined 

the optimal Lagrange multipliers 𝜆𝜆, which may be developed as shown in equation (75) 

and (76): 

∑ 𝑦𝑦𝑖𝑖,𝑖𝑖12
𝑖𝑖=1 −  ∑ �𝑦𝑦𝚤𝚤,𝑖𝑖� −  𝜕𝜕−(1−𝛾𝛾𝑡𝑡�)𝑃𝑃

2 𝛼𝛼𝑖𝑖𝑡𝑡
�𝑇𝑇�

�̂�𝑖=1 −  ∑ 𝑚𝑚𝚤𝚤𝑖𝑖�
𝑇𝑇�
�̅�𝑖 = 0         (75) 

 ∑ 𝜕𝜕
2 𝛼𝛼𝑖𝑖𝑡𝑡

 𝑇𝑇�
�̂�𝑖 =  −∑ 𝑦𝑦𝑖𝑖𝑖𝑖12

𝑖𝑖=1 +  ∑ 𝑦𝑦𝚤𝚤𝑖𝑖� −  ∑ (1−𝛾𝛾𝑡𝑡�)𝑃𝑃
2 𝛼𝛼𝑖𝑖𝑡𝑡

+ ∑ 𝑚𝑚𝚤𝚤𝑖𝑖�
𝑇𝑇�
�̅�𝑖  𝑇𝑇�

�̂�𝑖
𝑇𝑇�
�̂�𝑖   (76) 

  𝜆𝜆 = − 1
∑ (1/2 𝛼𝛼𝑖𝑖𝑡𝑡𝑇𝑇�
𝑡𝑡� )

 (∑ ((1 − 𝛾𝛾�̂�𝑖)𝑃𝑃/2 𝛼𝛼𝑖𝑖𝑖𝑖) 𝑇𝑇�
�̂�𝑖 + ∑  (𝑦𝑦𝚤𝚤𝑖𝑖� − 𝑚𝑚𝚤𝚤𝑖𝑖� )𝑖𝑖∈𝕋𝕋2 ) (77) 

By substituting equation (77) into equation (74), we  derived the optimal 

consumption 𝑥𝑥𝚤𝚤,𝑖𝑖�
∗  at equation (78) for each customer 𝑖𝑖 during each timeslot 𝑡𝑡 when 𝑡𝑡 ∈

 𝕋𝕋1: 

 

𝑥𝑥𝚤𝚤,𝑖𝑖�
∗ =  𝑦𝑦𝚤𝚤,𝑖𝑖� +  𝑃𝑃

2 𝛼𝛼𝑖𝑖𝑡𝑡
�𝛾𝛾�̂�𝑖 −  

∑ �
𝛾𝛾𝑡𝑡�
2𝛼𝛼𝑖𝑖𝑡𝑡�

�𝑇𝑇�
𝑡𝑡�

�∑ 1
2𝛼𝛼𝑖𝑖𝑡𝑡�

𝑇𝑇�
𝑡𝑡� �  

� +
∑  (𝑦𝑦𝚤𝚤𝑡𝑡�−𝑚𝑚𝚤𝚤𝑡𝑡� )𝑡𝑡∈𝕋𝕋2
∑ (1/2 𝛼𝛼𝑖𝑖𝑡𝑡𝑇𝑇�
𝑡𝑡� )2 𝛼𝛼𝑖𝑖𝑡𝑡 

          (78) 

In the second case, when 𝑡𝑡 ∈  𝕋𝕋2, the constraint in equation (68) is binding, than 

𝑥𝑥𝚤𝚤𝑖𝑖�
∗  =  𝑚𝑚𝑖𝑖𝑖𝑖 and µt̂  will find it by substituting equation (77) in equation (71): 
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𝜇𝜇𝑖𝑖𝑖𝑖∗ = � 
∑ �

𝛾𝛾𝑡𝑡�
2𝛼𝛼𝑖𝑖𝑡𝑡�

�𝑇𝑇�
𝑡𝑡�

�∑ 1
2𝛼𝛼𝑖𝑖𝑡𝑡�

𝑇𝑇�
𝑡𝑡� �  

− 𝛾𝛾𝑖𝑖�𝑃𝑃 + 2𝛼𝛼𝑖𝑖𝑖𝑖(𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖) −  
∑  (𝑦𝑦𝚤𝚤𝑡𝑡�−𝑚𝑚𝚤𝚤𝑡𝑡� )𝑡𝑡∈𝕋𝕋2
∑ (1/2 𝛼𝛼𝑖𝑖𝑡𝑡𝑇𝑇�
𝑡𝑡� ) 

          (78) 

                                                                                                    ∎ 

 In this case, Λ�𝑖𝑖 is the threshold for customer 𝑖𝑖 in the periods that apply to subset 

𝕋𝕋1. The electricity provider optimized its strategic price discount decision by inferring 

the customers’ optimal responses. As such its decision model incorporated the results 

from equations (57), (60), and (62)–(64). Computing the equilibrium price discounts may 

require multiple iterations as the constraints from equation (52) drove the closed-form 

solution of the consumers’ model. 

In order to find the equilibrium solutions, we followed this proposed procedure. 

We began by inserting the best responses obtained in equation (60) into the electricity 

provider’s model and ignoring the constraints from equation (52), as in the previous 

stage. As such, the electricity provider’s profit function replaced the total energy 

consumption 𝑋𝑋𝑖𝑖 with the following: 

𝑋𝑋𝑖𝑖 = ∑ (𝑦𝑦𝑖𝑖,𝑖𝑖 + (𝛾𝛾𝑖𝑖 −  Λ𝑖𝑖𝑖𝑖)
𝑃𝑃

2𝛼𝛼𝑖𝑖𝑡𝑡
𝑁𝑁
𝑖𝑖 )          (79) 

Definition 2: The Stackleberg game 𝐺𝐺 = [ Ω𝑠𝑠,𝛱𝛱𝑠𝑠,ℕ, {Πi}, {Ω𝑖𝑖}] has an equilibrium result 

at the point (𝛾𝛾𝑖𝑖∗ ,𝑥𝑥𝑖𝑖𝑖𝑖∗ (𝛾𝛾𝑖𝑖∗)) if and only if 

𝛱𝛱𝑠𝑠�𝛾𝛾𝑖𝑖∗ , 𝑥𝑥𝑖𝑖𝑖𝑖∗ (𝛾𝛾𝑖𝑖∗)� ≥  𝛱𝛱𝑠𝑠(𝛾𝛾𝑖𝑖 ,𝑥𝑥𝑖𝑖𝑖𝑖(𝛾𝛾𝑖𝑖) ) ,∀ 𝑡𝑡 ∈  𝕋𝕋 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ∈  ℕ  (80) 

We  solved the electricity provider’s model by using AMPL (but it may be solved using 

any other nonlinear optimization tool). However, only when the constraints from 

equation (52) are met for all the customers, could we say that the solution with this 

characterization of electricity consumption mapping gave us the equilibrium results. If 

this was not the case, we needed to perform iterations, as outlined in Table 3.  
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 It is not hard to see that the electricity provider did not benefit from load-shifting 

if the nominal demand was uniform across the planning horizon. As such, the electricity 

provider was better off without providing any discounts. Price discounts were helpful to 

the electricity provider when they reduced demand variations from period to period, as 

these variations elevated electric generation costs. Thus, price discounts would only be 

used to shift demand from periods with high demand to periods with lower consumption. 

Table 3: Procedure to find equilibrium solution, customer behavior 

1: include the consumers’ best response from equation (79) into the energy 

provider’s model in equation (41–42). 

2: solve energy provider’s model 

3: if 𝑥𝑥𝑖𝑖,𝑖𝑖∗ ≥  𝑚𝑚𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋  then STOP.  

4: else for each consumer for which constraint (52) is violated in any time t   

5: identify and update 𝕋𝕋1 and 𝕋𝕋2 

6: use (62) instead of (79) for these consumers in the energy provider’s          

model 

7: solve the utility firm’s model again including these updates. 

8: go to line 3. 

 

3.4. Numerical Analysis 

 We created numerical scenarios to evaluate the effects of consumer types (in terms 

of their different inconvenience cost profiles) on the equilibrium outcome of the price 

discounts, electricity supplier’s profit, PAR values, load-shift, and the consumers’ total 

cost. We considered a time horizon of 24 hours, which were aggregated into 12 2-hour 
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periods. These periods were arranged into three clusters. The first cluster started at 

midnight and ended at 8:00 a.m. that included low demand or off-peak hours. The second 

cluster started at 8:00 a.m. and ended at 4:00 p.m., and all of the periods in this cluster 

were considered high demand or peak by the electricity supplier. The last cluster started at 

4:00 p.m. and ended at midnight, in which the first two periods were considered high 

demand by the electricity supplier while the last two periods faced relatively lower 

demand. Table 4 shows the aggregate nominal demand that we used for each period, and 

Figure 8 depicted the demand pattern across the planning horizon. 

Table 4: Aggregate demand (kwh), customer behavior 

Cluster 1 2 3 

Period (t) 1 2 3 4 5 6 7 8 9 10 11 12 
Aggregate 
Demand 30 47 67 88 100 117 220 184 174 111 52 45 

 

 

Figure 8: Aggregate demand across the time horizon,  customer behavior 

 In this study, we  included 21 independent consumers whose nominal demand had 
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which expressed their relative willingness to deviate from their nominal demand in any 

given period. Inconvenience factors varied across consumers and time periods.  

 In the electricity supplier’s energy production cost function 𝐶𝐶(𝑋𝑋𝑖𝑖), parameter 𝑎𝑎 

was set to 0.0009 $/KWH2, and parameters 𝑏𝑏 and 𝑐𝑐 were assumed to be zero without loss 

of generality. We also normalized minimal consumption 𝑚𝑚𝑖𝑖𝑖𝑖 to 0 without loss of 

generality. Finally, the base electricity price 𝑃𝑃 was set to 20¢/KWH. 

 We considered four scenarios to study the effect of consumer attitudes towards 

load-shifting so as to analyze their impact on the overall equilibrium profit of the 

electricity provider, the total cost for the consumers, and the PAR. Under scenarios one to 

three, consumers in the market were homogenous in that they exhibit similar behavior as 

response to price discounts. In the first scenario, every consumer had a high level (H) of 

inconvenience during the periods in the first cluster, a medium level (M) of inconvenience 

during the periods in the second cluster, and a low level (L) of inconvenience during the 

periods of the third cluster. As such, we referred to this scenario as the homogenous 

market HM–HML scenario. In the second scenario, every consumer had a low level of 

inconvenience during the periods in the first cluster, a high level of inconvenience during 

the periods in the second cluster, and a medium level of inconvenience during the periods 

of the third cluster. We referred to this scenario as the homogenous market HM–LHM 

scenario. In the third scenario, every consumer had a medium level of inconvenience 

during the periods in the first cluster, a low level of inconvenience during the periods in 

the second cluster, and a high level of inconvenience during the periods of the third 

cluster. We referred to this scenario as the homogenous market HM–MLH scenario.  
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 In the fourth scenario, we considered a market with diverse consumers where the 

consumers were split into three groups, and all groups had the same average of the 

inconvenience factor, which was 0.001377. The first group’s behavior was similar to the 

HM–HML scenario, while the second group’s behavior was similar to the HM–MLH 

scenario. The third group’s behavior was similar to the HM–LHM scenario. These 

inconvenience patterns are illustrated in Table 5. We referred to this situation as the 

diverse market (DM) scenario. In homogenous market and DM scenarios, the average for 

the inconvenience factor (𝛼𝛼𝑖𝑖𝑖𝑖) in the low level was 0.000416. In the medium level, it was 

0.00152, and in the high level 0.003316. The consumer inconvenience levels across the 

clusters of periods under the DM scenario are depicted in Figure 9.  

Table 5: Inconvenience patterns under the DM scenario  

 
Cluster 1 Cluster 2 Cluster 2 

Group 1 H M L 

Group 2 M L H 

Group 3 L H M 

 

 

Figure 9: Consumer inconvenience levels across the clusters of periods  
under the DM scenario, customer behavior 
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 In all scenarios, we used multiplier 𝑧𝑧 to scale the inconvenience factors, such that 

at higher values of 𝑧𝑧, the consumers had lower sensitivity to price discounts and hence 

became more resistant to demand shifts. Specifically, we varied the inconvenience cost 

coefficient (i.e., inconvenience level) by multiplying them by z, whose value varied 

between 0.5 and 15. Figures 10 and 11 depict the impact of consumer attitudes on the 

overall equilibrium average discounts (𝛾𝛾) and PAR. When z was low, consumers were 

more responsive to price discounts in general. In this case, the provider needed to offer 

higher price discounts to the –-LHM consumers to shift their demand away from peak 

periods since these consumers had the highest inconvenience costs during the peak hours. 

As z increased, in general, the responsiveness of the consumers to discounts became so 

low that it was no more economical for the provider to offer deeper discounts. Therefore, 

discounts took a downward trend as observed in Figure 10. Consistent to this observation, 

from Figure 10, we observed that the highest discounts were offered to the HM–MLH 

consumers under high values of z.  

 

Figure 10: Consumer inconvenience levels and electricity provider’s average price 
discount, customer behavior 
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Overall, as illustrated in Figure 11, the PAR values increase with inconvenience levels. 

This was expected since the load shift diminished as consumers became less sensitive to 

price discounts. The PAR levels were higher in the HM–LHM market since the 

consumers had the highest inconvenience levels during the peak periods in this case. On 

the other hand, PAR values were strictly lower for the HM–MLH where consumers were 

the most responsive to price discounts during the peak periods. Typically, PAR and the 

provider's profits were inversely related. As depicted in Figure 12, the provider profits 

were relatively higher with the HM–MLH scenario where the PAR values were the 

lowest. The opposite was true under the HM–LHM scenario. 

Figure 11: Consumer inconvenience and PAR values, customer behavior 
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Figure 12: Consumer inconvenience and profit, customer behavior 

 Interestingly, we observed that although the lowest PAR was attributed to HM–
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demand shift did not always result in lower PAR. In the diverse market, the consumers 

took advantage of the price discounts by shifting their load in varying directions 
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market all consumers reacted to price discounts similarly. As such, price discounts did 
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Consequently, under the HM–MLH scenario, where all consumers were more willing to 

move away from the peak period usage, the electricity provider could dampen the load 

during these periods more than in any other scenario. In fact, we observe in Figure 13 that 
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amounts are the least under the HM–MLH scenario even though this scenario always led 

to the lowest PAR values. This was an indication that the main factor that influenced the 

PAR values was the consumers’ reaction to price discounts during the peak periods. A 

100.0

105.0

110.0

115.0

120.0

125.0

130.0

135.0

0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pr
of

it 

Consumer Inconvenience Multiplier (z) 

HM -HML
HM -LHM
HM -MLH
DM

 



50 

closer look at the consumer responses during the peak period is given in Figure 14, where 

we observe that the peak period consumption changes were always higher under HM–

MLH, where the average inconvenience cost was the lowest during those periods (Cluster 

2). 

 

Figure 13: Consumer inconvenience and load-shift, customer behavior 

 

Figure 14: Load shift during peak periods (Cluster 2). 
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 As expected, price discounts not only alleviated PAR values and helped the 

provider realize better profits, they could also reduce the consumers’ total cost for use of 

electricity. To analyze the trade-off between the consumer inconvenience levels and the 

consumers’ electricity bill amounts further, we compared the equilibrium outcomes 

between the homogenous and the diverse markets. We plotted the average electricity 

usage costs, which were captured by the first term in the consumer objective given in (46), 

for the same seven consumers in both markets in Figure 15. For example, in Figure 15(a) 

we computed and plotted the average usage costs for Group 1 (HML) in the HM–HML 

and DM scenarios. In HM–HML, all consumers were alike in terms of their attitude types 

towards load-shifting whereas the DM was composed of three groups of consumers given 

in Table 5. By this comparison we aimed to capture the impact of market diversity on 

equilibrium consumer costs. We repeated the same process for Groups 2 and 3 in plots 

given by Figures 15(b) and 15(c) respectively.  

 We first noted that in all cases as the inconvenience levels increased, the 

provider’s extended discounts led to lower energy bills up to a certain point. Consistent 

with our observation in Figure 10 p.47, when the inconvenience levels become too high, 

the electricity provider gives up on furthering its price discounts, resulting with an 

increase in energy bills. Consequently, we can conclude that the consumers enjoy lowest 

bills when their inconvenience levels are neither too low nor too high. 
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Figure 15(a): Average consumption costs for Group 1       Figure 15(b): Average consumption costs for Group 2  

 

Figure 15(c): Average consumption costs for Group 3  

Figure 15:Average consumption costs. 

 In the case of Group 1, as illustrated in Figure 15(a), no apparent gap was observed 

for the consumer energy bills across scenarios for relatively low levels of inconvenience. 

However, under relatively higher inconvenience levels, the consumers of this type were 

better off in the DM setting. We noted that for consumers in this group, the lowest 

inconvenience levels were experienced during Cluster 3 where the demand was neither too 

low nor too high. Since the DM setting included other consumers with inconvenience 

levels either low during the on-peak periods or during the off-peak periods, the electricity 

provider’s price discounts were more aggressive compared to the HM–HML market as 

they generated higher returns in profits when z was high.  
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 Similar to Group 1, Group 3 (LHM) consumers experienced larger bills in the 

homogenous market when z was high because under high inconvenience costs the 

provider focused on the Group 2 consumers, thus offering higher discounts in the DM 

setting compared to the HM–LHM setting (see Figure 15c). However, when the overall 

inconvenience scale (i.e., z was small), the opposite occurs. In this case, the electricity 

provider took a more balanced approach in its discounts under the DM, leading to better 

outcomes for Group 3. 

 Consumers of Group 2 (MLH) experienced a different effect than others as 

illustrated in Figure 15(b). When the inconvenience scale was low, these consumers did 

not require high discounts in the HM–MLH since the off-peak resistance was moderate 

and the on-peak resistance was low. As such, they were better off under the DM setting. 

On the other hand, as observed in Figure 10 p.47, the provider was willing to offer higher 

price discounts when z was high to these consumers in the HM–MLH since the return on 

discounts were higher. That is, more consumption would be shifted from the on-peak 

periods with relatively lower inconvenience levels. 

3.5. Conclusions  

 In this paper we proposed a model based on a Stackelberg game to analyze the 

load-shifting problem in the smart grid, where an electricity provider offered price 

discounts across the planning horizon in order to incentivize consumers to rearrange their 

consumption habits. The provider was motivated to offer price discounts due to the high 

costs it incurred during the peak periods. The consumers reacted with their decisions on 

consumption shifts. In order to capture the variations in consumers’ response behaviors 

and their resistance to load-shifting, we modeled consumer types based on a mapping of 
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inconvenience that they suffered by altering their consumption amounts from their 

nominal demand in a period. Specifically, we considered the case where not only do the 

consumers have different types, but their inconvenience levels also varied across the 

planning horizon.  

 In order to investigate the impact of consumer inconvenience and derive 

managerial insights, we  carried out an extensive numerical analysis. We showed that 

when consumers were price takers, that is, their inconvenience costs were low, it was 

relatively easier for the electricity provider to dampen the PAR and enjoy higher payoffs 

with smaller discounts. As the inconvenience levels increase, the provider was compelled 

to offer deeper discounts up to a point. When the inconvenience levels became too high, 

the consumer resistance to load-shifting was too strong to justify price discounts. As such, 

after a point, the provider, in fact, began to cut back on the discounts.  

 In our analysis, we employed a variety of consumer groups who differed in their 

reactions to price discounts at on-peak and off-peak periods. We observed that when the 

overall scale for the inconvenience levels was low, the provider adopted more aggressive 

discounts for a market with consumers who showed relatively higher resistance during the 

on-peak periods and lower discounts for consumers who had lower inconvenience costs 

during the off-peak periods. Consistent with our earlier observation, the opposite occurred 

when the inconvenience scale was very high. In addition, our analysis revealed that the 

structure of the market in terms of consumer diversity and the consumer types jointly 

impacted the equilibrium discounts and PAR levels. In general, a diverse market led to 

lower PAR values and higher provider payoffs compared to a homogenous market unless 
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the latter one was composed of consumers with relatively lower inconvenience costs 

during the peak periods. 

 



 

 Chapter 4 A Game Theoretic Approach for Load-Shifting and Energy Storage  

4.1. Overview 

 This chapter presents an electricity market composed of a single energy provider 

and multiple customers to evaluate the effects of energy storage and load-shifting as part 

of a smart grid demand response. The system was modeled using a Stackelberg game in 

which the energy provider was the leader and the customers were the followers. The 

leader moved first and offered price discounts across different time slots to motivate 

customers to shift their consumption away from peak consumption periods. The followers 

responded by deciding whether or not to shift their consumption from their nominal 

demand and how much of their load to shift. Under this scenario, the goal of the energy 

provider was to maximize their profits, while the goal of the customers was to minimize 

their total cost, both from energy consumption and from the inconvenience generated by 

load-shifting and deviating from their originally intended nominal demand. In this 

particular model, we evaluated and compared the effects that the control of customer-side 

energy storage had on the equilibrium. When the energy storage were controlled by the 

energy generator, they reduced energy generation fluctuations by changing the energy 

generation amounts to different time slots without significantly changing the customers’ 

nominal demand. When these energy storage were controlled by the consumers, they 

were able shift their effective demand to periods with high discounts while keeping the 

nominal demand relatively unchanged. Using this model, we proposed a procedure to 

obtain the equilibrium discount and PAR. Insight was
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gained by evaluating the effects that having different customer types, a different number 

of customers, and different customer attitudes towards load-shifting have on the system. 

Our results show that the use of energy storage was very effective in the reduction of 

PARs, regardless of the customers’ attitude toward load-shifting. Price discounts 

continued to provide significant leverage to the energy generator, and the use of both of 

these mechanisms provided successful ways to improve profits. Furthermore, when the 

energy provider controlled the energy generation systems, it deployed them more 

effectively and achieved its maximum profits and the lowest PAR. When the customers 

controlled the energy storage , the equilibrium discounts were higher, but the PAR was 

also higher. Lastly, our results showed that the use of load-shifting always reduced the 

customers’ total costs, but this reduction was diminished by the implementation of energy 

storage. 

4.2. Energy Storage Setting 

 As part of our model for the storage profile, we defined storage decision variables 

𝑠𝑠𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑖𝑖𝑖𝑖 as the amount of charging and discharging, for customer 𝑖𝑖 during timeslot 𝑡𝑡, 

respectively. Further, we let 𝑤𝑤𝑖𝑖𝑖𝑖 denote the storage level at customer 𝑖𝑖 during time slot 𝑡𝑡 

as 

𝑤𝑤𝑖𝑖𝑖𝑖 =  𝜌𝜌 𝑤𝑤𝑖𝑖,𝑖𝑖−1 + (1 −  𝜏𝜏) 𝑠𝑠𝑖𝑖𝑖𝑖 − ( 1 +  𝛽𝛽)𝑢𝑢𝑖𝑖𝑖𝑖 (81) 

Where 𝜌𝜌, 𝜏𝜏 and 𝛽𝛽 presented the storage, charging, and discharging efficiencies 

respectively ( In a fashion similar to that of (Atzeni et al., 2013) and (Vytelingum et al., 

2010)). These efficiencies determined the energy lost by the use of the energy storage. 

 In order to control the storage profiles and to avoid excesses in the charging and 

discharging of the storage systems, we determined the storage capacity as 𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥 and a 
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minimum stored energy requirement as 𝑧𝑧𝑧𝑧𝑧𝑧𝑜𝑜, so that 𝑤𝑤𝑖𝑖𝑖𝑖 was bound by these conditions 

as 

0 ≤ wit ≤ Wmax (82) 

4.3. Customer Controlled Energy Storage  

4.3.1. Game Formulation 

In order to evaluate the effects of the introduction of energy storage, when these 

systems were controlled by the consumers in a smartgrid we formulated a Stackelberg 

game based on the model provided in Chapter 3. We incorporated energy storage on the 

customer side in order to investigate the effect of the energy storage on the equilibriums 

outcome. In our proposed game there were two levels. The provider, as the leader of the 

game, made the first move in order to maximize its profit by deciding on a percentage 

discount, 𝛾𝛾𝑖𝑖, with a schedule based on the predetermined base price 𝑃𝑃. While the 

customers, acting as followers, responded by making two strategic decisions in order to 

minimize their total cost. First, they chose the amount of the consumption they were 

willing to shift from low or no discount time slots to time slots with a higher discount. 

The second decision was to determine an amount of energy to store or deploy from 

storage for each time slot by charging the system when the discounts were high and 

discharging the system during points of low or no discounts. The customer tradeoff 

between the electricity cost and inconvenience costs, which was incurred by the deviation 

in their consumption from their original intended demand, or the storage cost that 

incurred by storage leak. To model the smartgrid, we let ℕ be the set of customers, 

defined as ℕ ≜ { 1, 2, … ,𝑁𝑁} and 𝕋𝕋 be the set of time slots defined as 𝕋𝕋 ≜ { 1, 2, … ,𝑇𝑇}. 
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4.3.2. Model 

 The goal of the consumers, who acted as followers in the Stackelberg game, was 

to minimize their total cost, both from their energy bill and inconvenience. In order to do 

this, they determined the optimal levels of energy to buy and consume during each time 

slot by shifting their energy usage across the different slots and/or by determining the 

amount of energy to charge or discharge from the storage. Based on the different 

discounts offered by the energy provider during some of the time slots and the effect of 

storage efficiency, the customers’ energy bill depended not only on the consumption 

amount but also on the time slots in which this consumption occurred. We used the same 

inconvenience cost function modeled in section 2.2.2, which is a quadratic function that 

increases as the difference between the actual consumption 𝑥𝑥𝑖𝑖𝑖𝑖 and nominal demand (𝑦𝑦) 

of a time slot deviates. Since the amount that customer 𝑖𝑖 bought from the electricity 

provider was different from the actual consumption during each time 𝑡𝑡. Thus, 𝑎𝑎𝑖𝑖𝑖𝑖 denoted 

the amount of energy that customer 𝑖𝑖 bought from the electricity provider during time slot 

𝑡𝑡. Based on this we  defined 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖+ 𝑠𝑠𝑖𝑖𝑖𝑖 where 𝑥𝑥𝑖𝑖𝑖𝑖 was the actual consumption 

profile for customer 𝑖𝑖 during time slot 𝑡𝑡. 

 By including the condition in equations (81) and (82) to the customer model 

presented in equations (4)–(6), we  rewrote an optimization model for the customer who 

aimed to minimize his total cost as 

Min 𝛱𝛱𝑖𝑖 = ∑ �(1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 𝑎𝑎𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖)2�𝑇𝑇
𝑖𝑖=1  (83) 

         s.t 

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇

𝑖𝑖=1  (84) 

                          𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖                              ∀𝑡𝑡 ∈ 𝕋𝕋 (85) 
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𝑤𝑤𝑖𝑖𝑖𝑖 =  𝜌𝜌 𝑤𝑤𝑖𝑖,𝑖𝑖−1 + (1 −  𝜏𝜏) 𝑠𝑠𝑖𝑖𝑖𝑖 − ( 1 +  𝛽𝛽)𝑢𝑢𝑖𝑖𝑖𝑖     ∀𝑡𝑡 ∈ 𝕋𝕋 (86) 

                          0 ≤ wit ≤ Wmax                              ∀𝑡𝑡 ∈ 𝕋𝕋 (87) 

                               𝑠𝑠𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖 ≥ 0                                    ∀𝑡𝑡∈𝕋𝕋 (88) 

The strategy technique for the electricity provider was identical to that presented in 

section 2.2.1, which offeried a higher price discount when the nominal demand was low 

in order to encourage customers to change their consumption behavior by shifting their 

consumption from the peak time to the off-peak time and/or charging the storage during 

the off-peak time for use during the on-peak time. Since the amount that customer 𝑖𝑖 

bought from the electricity provider was different from the actual consumption during 

each time 𝑡𝑡, we rewrote the optimization model for the electricity provider presented in 

Eqs. (2)–(3) as 

Max 𝛱𝛱𝑠𝑠 = ∑ �(1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 (𝑎𝑎𝑖𝑖𝑖𝑖) − 𝐶𝐶(𝑎𝑎(∑ (𝑎𝑎𝑖𝑖𝑖𝑖)𝑁𝑁
𝑖𝑖=1 )2 + 𝑏𝑏 ∑ (𝑎𝑎𝑖𝑖𝑖𝑖)𝑁𝑁

𝑖𝑖=1 + 𝑐𝑐)�𝑇𝑇
𝑖𝑖=1  (89) 

                                  s.t.             0 ≤ 𝛾𝛾𝑖𝑖 ≤ 1               ∀𝑡𝑡 ∈ 𝕋𝕋 (90) 

4.3.3. Equilibrium Analysis 

 In terms of finding the equilibrium result of the Stackelberg game, we began to 

analyze the customer model using backwards induction. To simplify the customer model, 

we substituted the storage balance constraint, equation (86), in terms of the variable 

decision 𝑠𝑠𝑖𝑖𝑡𝑡 into the objective function, equation (83). We  redefined the customer model 

as follows: 

 𝑀𝑀𝑖𝑖𝑎𝑎 𝛱𝛱𝑖𝑖 =  ∑ ((1− 𝛾𝛾𝑖𝑖) 𝑃𝑃𝑇𝑇
𝑖𝑖=1  (𝑥𝑥𝑖𝑖𝑖𝑖 −  𝑢𝑢𝑖𝑖𝑖𝑖 +  𝑤𝑤𝑖𝑖𝑡𝑡− 𝜌𝜌 𝑤𝑤𝑖𝑖,𝑡𝑡−1 + ( 1+ 𝛽𝛽)𝑢𝑢𝑖𝑖𝑡𝑡

(1− 𝜏𝜏) )  (91) 

                         +𝛼𝛼𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖)2) 

    s.t 
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 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇

𝑖𝑖=1  (92) 

                                         𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖                              ∀𝑡𝑡 ∈ 𝕋𝕋 (93) 

                   𝑤𝑤𝑖𝑖𝑡𝑡− 𝜌𝜌 𝑤𝑤𝑖𝑖,𝑡𝑡−1 + ( 1+ 𝛽𝛽)𝑢𝑢𝑖𝑖𝑡𝑡
(1− 𝜏𝜏)

≥ 0                            ∀𝑡𝑡 ∈ 𝕋𝕋 (94) 

                                      𝑤𝑤𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥                               ∀𝑡𝑡 ∈ 𝕋𝕋 (95) 

                                𝑤𝑤𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖 ≥ 0                                        ∀𝑡𝑡 ∈ 𝕋𝕋 (96) 

We used Lagrangian Relaxation and assigned 𝜆𝜆𝑖𝑖, 𝜇𝜇1𝑖𝑖𝑖𝑖, 𝜇𝜇2𝑖𝑖𝑖𝑖, and 𝜇𝜇3𝑖𝑖𝑖𝑖 as Lagrangian 

multipliers to constraints in equations (92)–(95) respectively. The following Lagrange 

function is equivalent to the customer objective: 

Min 𝐿𝐿𝐿𝐿 = 𝛱𝛱𝑖𝑖 − 𝜆𝜆𝑖𝑖(∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1 − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇

𝑖𝑖=1 ) − ∑ 𝜇𝜇1𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)𝑇𝑇
𝑖𝑖=1   

           −𝜇𝜇2𝑖𝑖𝑖𝑖 �
𝑤𝑤𝑖𝑖𝑡𝑡− 𝜌𝜌 𝑤𝑤𝑖𝑖,𝑡𝑡−1 + ( 1+ 𝛽𝛽)𝑢𝑢𝑖𝑖𝑡𝑡

(1− 𝜏𝜏) �+  𝜇𝜇3𝑖𝑖𝑖𝑖(𝑤𝑤𝑖𝑖𝑖𝑖 −𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥) 
(97) 

The Kuhn-Tucker conditions yielded the following set of equations and inequaltities: 

 𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖𝑡𝑡

= (1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 + 2𝛼𝛼𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖) + 𝜆𝜆𝑖𝑖 −  𝜇𝜇1𝑖𝑖𝑖𝑖 = 0       ∀𝑡𝑡 (98) 

  𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

=  ∑ 𝑦𝑦𝑖𝑖𝑖𝑖12
𝑖𝑖=1 −  ∑ 𝑥𝑥𝑖𝑖𝑖𝑖12

𝑖𝑖=1 =  0 (99) 

                                               𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖                                          ∀𝑡𝑡 (100) 

                                   𝜇𝜇1𝑖𝑖𝑖𝑖( 𝑥𝑥𝑖𝑖𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖) = 0                                   ∀𝑡𝑡 (101) 

      𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖𝑡𝑡

= (1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 �( 1+ 𝛽𝛽)
(1− 𝜏𝜏) − 1� −  ( 1+ 𝛽𝛽)

(1− 𝜏𝜏) 𝜇𝜇2𝑖𝑖𝑖𝑖 ≥ 0                   ∀𝑡𝑡 (102) 

                                             𝑢𝑢𝑖𝑖𝑖𝑖 �
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑡𝑡

� = 0                                           ∀𝑡𝑡 (103) 

               
 𝜕𝜕𝐿𝐿𝐿𝐿𝑖𝑖
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= (1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 �
1

(1 −  𝜏𝜏)� −
(1 − 𝛾𝛾𝑖𝑖+1)𝑃𝑃 �

𝜌𝜌
(1 −  𝜏𝜏)�  +  𝜇𝜇3𝑖𝑖𝑖𝑖

−  
1

(1 −  𝜏𝜏) 𝜇𝜇2𝑖𝑖𝑖𝑖 +  
𝜌𝜌

(1 −  𝜏𝜏) 𝜇𝜇2𝑖𝑖𝑖𝑖+1 ≥ 0                              ∀𝑡𝑡 

(104) 
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                                                    𝑤𝑤𝑖𝑖𝑖𝑖 �
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑡𝑡

� = 0                                          ∀𝑡𝑡 (105) 

                                                  𝑤𝑤𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥                                                 ∀𝑡𝑡 (106) 

                                      𝜇𝜇3𝑖𝑖𝑖𝑖(𝑤𝑤𝑖𝑖𝑖𝑖 −𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥) = 0                                         ∀𝑡𝑡 (107) 

                                   𝑤𝑤𝑖𝑖𝑡𝑡− 𝜌𝜌 𝑤𝑤𝑖𝑖,𝑡𝑡−1 + ( 1+ 𝛽𝛽)𝑢𝑢𝑖𝑖𝑡𝑡
(1− 𝜏𝜏)

≥ 0                                           ∀𝑡𝑡 (108) 

                                         𝜇𝜇2𝑖𝑖𝑖𝑖 �
𝑤𝑤𝑖𝑖𝑡𝑡− 𝜌𝜌 𝑤𝑤𝑖𝑖,𝑡𝑡−1 + ( 1+ 𝛽𝛽)𝑢𝑢𝑖𝑖𝑡𝑡

(1− 𝜏𝜏) � = 0                           ∀𝑡𝑡 (109) 

                                            𝑤𝑤𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖 , 𝜇𝜇1𝑖𝑖𝑖𝑖, 𝜇𝜇2𝑖𝑖𝑖𝑖 and 𝜇𝜇3𝑖𝑖𝑖𝑖  ≥ 0                            ∀𝑡𝑡 (110) 

Since the customers’ actual consumption 𝑥𝑥𝑖𝑖𝑖𝑖 and Lagrange multipliers 𝜆𝜆𝑖𝑖 have the same 

conditions, equations (98)–(100), as that in section 2.3. Thus, we used the result obtained 

in that section. In the case where the equations in set (100) is strictly holding, then 

𝜇𝜇1𝑖𝑖𝑖𝑖 = 0 for all 𝑡𝑡. Thus, we used the result obtained in equations (15) and (16) in order to 

find 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝜆𝜆𝑖𝑖 where 

                          𝑥𝑥𝑖𝑖,𝑖𝑖∗ =  𝑦𝑦𝑖𝑖,𝑖𝑖 +  (𝛾𝛾𝑡𝑡− 𝛾𝛾�) 𝑃𝑃
2𝛼𝛼

 ≥ 0                            ∀𝑡𝑡 (111) 

𝜆𝜆 = ( �̅�𝛾 − 1)𝑃𝑃 (112) 

It is clear from equation (111) that the customer made his or her decision for the actual 

consumption 𝑥𝑥𝑖𝑖,𝑖𝑖∗  depending on the price discount and the inconvenience factor. 

Moreover, he or she will decide whenever to get the actual consumption directly from the 

grid, 𝑥𝑥𝑖𝑖,𝑖𝑖∗ −  𝑢𝑢𝑖𝑖𝑖𝑖 , and/or to get it from the storage, 𝑢𝑢𝑖𝑖𝑖𝑖. 

 Since the inconvenience cost function was quadratic, increasing with the 

deviation between the nominal demand and actual consumption, the energy storage 

helped reduce the cost without significantly changing the nominal demand. This situation 

occurred most often when the customer had a high inconvenience factor 𝛼𝛼𝑖𝑖, where the 

load-shifting increased his or her payoff significantly. However, due to the high energy 
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waste, the efficiency of the energy storage had a direct impact on the customer’s decision. 

When the storage efficiency was low, getting the energy from storage may be more 

expensive compared to taking the demand directly from the grid.  

 When customers were more sensitive to the price changes, some of the constraints 

from equation (100) may not have been satisfied. In order to optimize this case, the time 

slots were separated into two subsets, 𝕋𝕋1 and 𝕋𝕋2, and T� was defined as the cardinality of 

subset 𝕋𝕋1. Here, the time slots in which the constraint from equation (100) simply held 

were placed in subset 𝕋𝕋1 and those in which the constraint was binding were placed in set 

𝕋𝕋2. In this case, we used the result obtained in equations (21), (22), and (23) in order to 

find 𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜆𝜆𝑖𝑖 and 𝜇𝜇1𝑖𝑖𝑖𝑖, where 

𝑥𝑥�𝑖𝑖𝑖𝑖∗ = �𝑦𝑦𝑖𝑖𝑖𝑖 +
1
𝑇𝑇�

 �(𝑦𝑦𝑖𝑖𝑖𝑖

𝑇𝑇�

�̅�𝑖=1

− 𝑚𝑚𝑖𝑖𝑖𝑖) +
(𝛾𝛾𝑖𝑖 −  �̅�𝛾)𝑃𝑃

2𝛼𝛼
             , 𝑡𝑡 ∈  𝕋𝕋1   

                𝑚𝑚𝑖𝑖𝑖𝑖                                                        , 𝑡𝑡 ∈  𝕋𝕋2

 (113) 

 𝜆𝜆 = (�̅�𝛾�̂�𝑖 − 1)𝑃𝑃 − 2𝛼𝛼
𝑇𝑇�

 ∑ (𝑦𝑦�̅�𝑖𝑇𝑇�
�̅�𝑖=1 − 𝑚𝑚𝑖𝑖𝑖𝑖)  (114) 

 𝜇𝜇𝑖𝑖,𝑖𝑖∗ = �
                              0                                                                   , 𝑡𝑡 ∈  𝕋𝕋1 
 ( �̅�𝛾1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 − 2𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 +  1

𝑇𝑇�
 ∑  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)𝑖𝑖∈𝕋𝕋2 ) , 𝑡𝑡 ∈  𝕋𝕋2

 (115) 

 

 The electricity provider needed to infer the customer strategies in order to find the 

optimal discount. Thus, equations (111)–(115) and the KKT conditions in equations 

(102)–(110) must be included into the electricity provider’s decision model. Since some 

constraints in equation (100) may not hold, the procedure proposed in Table 1 (p.23) can 

be used to derive the equilibrium solution. By adding equations (102)–(110) to the 

procedure, Table 6 presents the outline of the algorithm. 
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Definition 3: The point (𝛾𝛾𝑖𝑖∗ , 𝑥𝑥𝑖𝑖𝑖𝑖∗ (𝛾𝛾𝑖𝑖∗),𝑢𝑢𝑖𝑖𝑖𝑖∗  , 𝑠𝑠𝑖𝑖𝑖𝑖∗ ,𝑤𝑤𝑖𝑖𝑖𝑖
∗ ), which satisfied the constraints in (89)–

90) and (83)–(88), was an equilibrium result of the Stackelberg game 𝐺𝐺 = {ℕ,𝕋𝕋,

𝛱𝛱𝑠𝑠,Πi} if and only if 

𝛱𝛱𝑠𝑠(𝛾𝛾𝑖𝑖∗ , 𝑥𝑥𝑖𝑖𝑖𝑖∗ (𝛾𝛾𝑖𝑖∗),𝑢𝑢𝑖𝑖𝑖𝑖∗  , 𝑠𝑠𝑖𝑖𝑖𝑖∗ ,𝑤𝑤𝑖𝑖𝑖𝑖
∗  ) ≥  𝛱𝛱𝑠𝑠�𝛾𝛾𝑖𝑖 ,𝑥𝑥𝑖𝑖𝑖𝑖(𝛾𝛾𝑖𝑖),𝑢𝑢𝑖𝑖𝑖𝑖  , 𝑠𝑠𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑖𝑖𝑖𝑖 �,∀ 𝑡𝑡 ∈ 𝕋𝕋 𝑎𝑎𝑎𝑎𝑎𝑎 ∈  ℕ (116) 

 

Table 6: Procedure to find equilibrium solution, storage is controlled by customer 

1: include equation (111) and (102)–(110) into the electricity provider’s model 

in equation (89–90). 

2: solve energy provider’s model 

3: if 𝑥𝑥𝑖𝑖,𝑖𝑖∗ ≥  𝑚𝑚𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋  then STOP.  

4: else for each consumer for which constraint (100) is violated in any time t   

5: identify and update 𝕋𝕋1 and   𝕋𝕋2 

6: use (113) instead of (111) for these consumers in the energy provider’s          

model 

7: solve the utility firm’s model again including these updates. 

8: go to line 3 

 

 The leader strategic on the price discount technique depended on the consumers’ 

inconvenience coefficient α, the distribution of the nominal demand across the planning 

horizon, and storage system efficiency parameters. The price discount technique helped 

reduce the demand fluctuations if the customers were sensitive to price discounts and 

were willing to shift. Otherwise, if the customers had high resistance, the utility did not 

receive any added benefits from this strategy. Moreover, the energy provider may have 
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still benefitted from offering a high discount during off-peak times in order to encourage 

customers to charge the storage during off-peak times and use the stored energy during 

on-peak times. However, the electricity provider more conservative on offering the 

discount, especially when the customers were not willing to shift and the storage have 

high efficiency and large capacity. This meant that if the energy provider offerred a high 

discount, the customers’ response may have moved the on-peak time to another time slot. 

Thus, the energy provider, as leader of the game, offered discount prices that controlled 

the customer’s selfish reaction. 

Proposition 5: The customer cannot charge and discharge the storage system during the 

same timeslot 𝑡𝑡: 

                                         𝑢𝑢𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖 = 0                                ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋 (117) 

Proof: Using Lagrange Relaxation for the customer model in equations (83)–(88), where 

𝜆𝜆𝑖𝑖, 𝜇𝜇1𝑖𝑖𝑖𝑖, 𝜇𝜇3𝑖𝑖𝑖𝑖, and 𝛿𝛿𝑖𝑖𝑖𝑖 as Lagrangian multipliers to constraints in equations (92)–(95) 

respectively 

Min 𝐿𝐿𝐿𝐿 = 𝛱𝛱𝑖𝑖 − 𝜆𝜆𝑖𝑖(∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1 − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇

𝑖𝑖=1 ) − ∑ 𝜇𝜇1𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)𝑇𝑇
𝑖𝑖=1  

                          −𝛿𝛿𝑖𝑖𝑖𝑖 �𝑤𝑤𝑖𝑖𝑖𝑖 −  𝜌𝜌 𝑤𝑤𝑖𝑖,𝑖𝑖−1 − (1 −  𝜏𝜏)𝑠𝑠𝑖𝑖𝑖𝑖  ( 1 +  𝛽𝛽)𝑢𝑢𝑖𝑖𝑖𝑖� 

                            + 𝜇𝜇3𝑖𝑖𝑖𝑖(𝑤𝑤𝑖𝑖𝑖𝑖 −𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥) 

(118) 

The Kuhn–Tucker conditions that are related to 𝑠𝑠𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑖𝑖𝑖𝑖 are as follows: 

    𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖𝑡𝑡

= (1 − 𝛾𝛾𝑖𝑖) 𝑃𝑃 + 𝛿𝛿𝑖𝑖 (1 −  𝜏𝜏)   ≥ 0           ∀𝑡𝑡 ∈ 𝕋𝕋 (119) 

    𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖𝑡𝑡

=  −(1 − 𝛾𝛾𝑖𝑖) 𝑃𝑃 −  𝛿𝛿𝑖𝑖( 1 +  𝛽𝛽)   ≥ 0   ∀𝑡𝑡 ∈ 𝕋𝕋 (120) 

                       𝑠𝑠𝑖𝑖𝑖𝑖 �
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑡𝑡

� = 0                       ∀𝑡𝑡 ∈ 𝕋𝕋 (121) 
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                         𝑢𝑢𝑖𝑖𝑖𝑖 �
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑡𝑡

� = 0                                       ∀𝑡𝑡 ∈ 𝕋𝕋 (122) 

To prove the statement, we must satisfy the following: 

(I). 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖𝑡𝑡

= 0  and  𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖𝑡𝑡

≠ 0, or  

(II). 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖𝑡𝑡

≠ 0  and  𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖𝑡𝑡

= 0 

Assuming that 𝑠𝑠𝑖𝑖𝑖𝑖 > 0, so to satisfy the slackness condition on equation (121) 

𝜕𝜕𝐿𝐿𝐿𝐿 𝜕𝜕⁄ 𝑠𝑠𝑖𝑖𝑖𝑖 = 0. It follows from equation (119) and (121) that 𝜕𝜕𝐿𝐿𝐿𝐿 𝜕𝜕⁄ 𝑠𝑠𝑖𝑖𝑖𝑖  ≠  𝜕𝜕𝐿𝐿𝐿𝐿 𝜕𝜕⁄ 𝑢𝑢𝑖𝑖𝑖𝑖. 

Therefore, to satisfy the slackness condition from equation (122), 𝑢𝑢𝑖𝑖𝑖𝑖 = 0. ∎ 

4.3.4. Numerical Analysis 

 In this section, we evaluate the effects that the availability of energy storage for 

the customers have on the Stackelberg equilibrium, the total costs for both the energy 

supplier and the individual customers, the PAR, and the average discount offered by the 

energy supplier. In order to do this, we expanded on the case study presented in Section 

2.4, to which we added an energy storage with a capacity of 5 KWh and an efficiency 

𝜌𝜌 = 0.99, 𝜏𝜏 = 0.01 and 𝛽𝛽 = 0.01 for every customer. 

Just as in the previous case study, the planning horizon was divided into twelve 

slots; the energy production cost function 𝐶𝐶(𝑎𝑎𝑖𝑖) had parameters 𝑎𝑎 = 0.0035 $/𝐾𝐾𝑊𝑊ℎ2, 

𝑏𝑏 = 0 $/𝐾𝐾𝑊𝑊ℎ, and 𝑐𝑐 = 0 $. We assumed the minimum required consumption 𝑚𝑚𝑖𝑖 = 0 

for every customer and period. The base price was set to 𝑃𝑃 = 0.25 $/𝑘𝑘𝑊𝑊ℎ, and we 

generated the nominal demand from residential electricity bills gathered randomly, as 

seen in Table 7 and Figure 16. 

 

 



67 

Table 7: Aggregate demand (kwh), storage is controlled by customers 

Period (t) 1 2 3 4 5 6 7 8 9 10 11 12 
Aggregate 
Demand 10.19 15.72 22.28 29.23 33.31 39.14 73.43 61.27 58.1 37.2 17.53 15.01 

 

 

Figure 16: Aggregate demand across the time horizon; storage controlled by customers. 

In this setting, we evaluated the effects of having different customer types (in 

terms of their nominal demands and willingness to shift load), the effects of having 

markets with different sizes (market breadth), and the effects that the capacity of the 

energy storage had on the equilibrium outcomes. 

In the first scenario, we focused on the effects of having consumers of different 

types. We used four customers and an inconvenience multiplier 𝑧𝑧, which ranged from 0.5 

to 15 and scaled the inconvenience factor 𝛼𝛼𝑖𝑖. The individual inconvenience factors were 

0.02, 0.021, 0.00025, 0.00875, 0.0003, 0.0004, and 0.007, respectively. Clearly, as the 

value of z increased, the customers’ willingness to shift their nominal demand decreased. 

Figures 17 and 18 show the effect of consumers’ sensitivity to load-shifting on the 

equilibrium average discounts (𝛾𝛾) and the PAR values. 

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10 11 12

Co
ns

um
er

 A
gg

re
ga

t D
em

an
d 

Time Period 

 



68 

Figure 17 reveals that when the customers were price takers (𝑧𝑧 ∈ [1
2

, 2]), the 

equilibrium discount increased sharply with increases in the inconvenience multiplier, as 

the incentives provided by higher discounts were very effective at incentivizing customer 

load-shifting. 

 

Figure 17: Consumer inconvenience and energy provider’s average price discount;  

storage controlled by customers 

Past this point (𝑧𝑧 ∈ [3,12]), the effects of customer discounts were not effective, 

and thus the equilibrium discount plateaued at 4%. Once the point of inflexibility on 

behalf of customers was reached (𝑧𝑧 ∈ [13,15]), the discounts were very ineffective and 

higher profits were achieved by lowering discounts. 

Figure 18 reflects the effects of these three customer behaviors on the PAR. When 

the customers were price takers (𝑧𝑧 ∈ [1
2

, 2]), it was more effective for customers to shift 

their loads and take all of their demand directly from the grid; thus, there was a small 

increase in the PAR as the inconvenience multiplier increased. Customers began to 

benefit from their ability to store energy past this point (𝑧𝑧 ∈ [3,12]), and as such when 
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𝑧𝑧 = 4 there was a drop in the PAR to a minimum of 1.272. In this fragment of the graph, 

the PAR increased as the inconvenience multiplier increased as less loads were shifted. In 

the final fragment, once the point of inflexibility on behalf of customers was reached 

(𝑧𝑧 ∈ [13,15]), the PAR shifted from 1.825 to 2.025 as the discounts decreased and the 

equilibrium storage also decreased. 

 

Figure 18: Consumer inconvenience and PAR values; storage controlled by customers. 

The behavior reflected in Figures 17 and 18 can be attributed to the effects of the 

constraints from equation (85). In the first three cases (𝑧𝑧 ∈ [1
2

, 2]), some of these 

constraints were binding as consumers were very sensitive to price discounts and there 

was no incentive for the electricity provider to offer high discounts. As such, the optimal 

way for customers to meet their needs was through the use of extensive load-shifting and 

buying all of their electricity directly from the grid. 

Past this point, (𝑧𝑧 ∈ [3,12]), some of the constraints in equation (85) become 

strictly holding, but the discounts still continued to affect load-shifting. Customers began 

to take advantage of the energy storage and there was a drop in the PAR from 1.452 when 

𝑧𝑧 = 3 to 1.272 when 𝑧𝑧 = 4. During this segment the price discounts reached their 
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maximum effectiveness and maximal storage was reached with discounts of 4%. In this 

segment, the PAR increased as the inconvenience multiplier increased, since less loads 

were being shifted. 

In the final segment, (𝑧𝑧 ∈ [13,15]), the customers were very insensitive to price 

discounts and as such the electricity provider did better to lower discounts and increase 

revenues as its ability to influence the PAR diminished. This shift in the PAR (from 

1.825 to 2.025) led to higher costs for the electricity supplier and lower profits. 

In the second scenario, we evaluated the effects of the customers’ attitude toward 

load-shifting (market diversity). In order to do this, we introduced change to the 

individual inconvenience factors 𝛼𝛼𝑖𝑖 while keeping the average inconvenience at 0.0125 

(as in the prior case). We set the coefficient of variation (𝐶𝐶𝐶𝐶𝐶𝐶 ∈ [0,1.05]) for 𝑎𝑎𝑖𝑖, so that 

a higher 𝐶𝐶𝐶𝐶𝐶𝐶 constituted higher diversity in the consumer market. Figure 19 shows the 

effects of different 𝐶𝐶𝐶𝐶𝐶𝐶 levels on the average discounts, the PAR, and the energy storage 

levels.  

There are three distinct segments to the graph shown in Figure 19. In the first 

segment (𝐶𝐶𝐶𝐶𝐶𝐶 ∈ [0,0.15]), there is very low market diversity and all of the customers 

had the same behavior in terms of load-shifting and energy storage. In this segment the 

high discount leads to the use of energy storage on behalf of the customers but the low 

market diversity leads to low load shifting. 

In the second segment (𝐶𝐶𝐶𝐶𝐶𝐶 ∈ [0.3,0.9]), as market diversity increased, there 

were more and more customers willing to shift more of their loads, and as such the 

equilibrium discount was lower. This low equilibrium discount did not promote the use of 
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energy storage on behalf of the customers; thus, there was the shift in PAR from 1.644 to 

1.812. 

In the final segment (𝐶𝐶𝐶𝐶𝐶𝐶 > 0.9), there is great diversity in the market such that 

some customers were very price sensitive and some customers were very price 

insensitive. At this point the electricity supplier had a very large incentive to encourage 

load-shifting through the use of high discounts. Furthermore, these high discounts also 

encouraged the use of energy storage. As such, at this point there was a shift in the 

equilibrium discount from 3.7% to 4% while the PAR continued to decrease. Out of all of 

the scenarios we studied, this was the one where the electricity provider achieved the 

highest profits. 

 

Figure 19: Consumer diversity, equilibrium discounts, and PAR;  

storage controlled by customers. 

In our third scenario, we evaluated the effects that having multiple customers had 

on the Stackelberg equilibrium. Here, we used a number of customers ranging from 1 to 

7, while keeping the total nominal demand and total storage capacity of the system equal. 

Furthermore, we assumed that all of the customers had the same inconvenience 𝛼𝛼 =
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0.001 and used the inconvenience multiplier 𝑧𝑧. Figures 20 and 21 show the effects of 

having a different number of customers at different inconvenience levels. 

When 𝑧𝑧 = 1 and customers were price sensitive, the graph has two distinct 

fragments. In the first fragment, the market had up to 4 customers, and price discounts 

were very effective ways to incentivize load-shifting. Thus, high discounts (4%) are 

offered. 

 

Figure 20: Number of consumers and equilibrium discount averages;  

storage controlled by customers 

Past this point, the market has more customers the effects of load-shifting may be 

achieved with lower discounts, which decreased as the number of customers increased. 

When 𝑧𝑧 = 5 customers were not as sensitive to price discounts, and shifting large 

loads led to high inconvenience. As such, when the market had fewer customers (1 or 2), 

they were quite price insensitive. As the market grew in number (3, 4, or 5), the 

individual amount of nominal demand that had to be shifted by each customer was 

smaller; thus, they became more price sensitive and the equilibrium discount increased. 
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After this, customers were fairly price sensitive, and high equilibrium discounts of 4% 

were reached. 

When 𝑧𝑧 = 10 customers were price insensitive. In this case the equilibrium 

discount slowly increased as the number of customers increased, but even when the 

market had 7 customers, the equilibrium discount only reached 3.5%. 

 

Figure 21: Number of consumers and PAR; storage controlled by customers. 

When evaluating the PAR, we can see that for every level of inconvenience the 

increase in the number of customers led to a decrease in the PAR. However, it is 

important to point out the role that load-shifting and energy storage had on these effects. 

When there were high discounts (i.e., discounts greater than 3.9%), energy storage 

became part of the optimal strategy for the customers, and as such the PAR was lowered. 

This explained the increase in the PAR when the customers were price sensitive and the 

market grew from 4 to 5 customers, since at this point the size of the market led to an 

optimal discount that does not incentivize the use of energy storage. 
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In the final scenario, we evaluated the effects that having energy storage of 

different capacities had on the Stackelberg equilibrium. We used a market with 7 

independent customers with an 𝑎𝑎𝑖𝑖 that averaged 0.0082 and an aggregate total nominal 

demand equal to the demand shown in Table 7 p. 67. Furthermore, we used the 

inconvenience multiplier 𝑧𝑧 at 3 different levels (𝑧𝑧 = 1, 5, 13) and had the storage capacity 

range from 0 to 12KW. 

In the first case in which customers were price takers (z=1), the storage capacity 

was irrelevant to the Stackelberg equilibrium. Customers were very eager to shift their 

nominal demand with low discounts, and as such the discount offered by the electricity 

supplier never reached the threshold needed for energy storage to become a feasible 

alternative. 

In the second case, when customers could still be influenced by the energy 

discounts provided by the electricity supplier (𝑧𝑧 = 5), the storage capacity became a 

binding constraint whenever it was below 4KW. In this segment the Stackelberg 

equilibrium led to relatively high discounts (i.e., greater than 4%) in which case 

customers would store the maximum electricity possible. Past this point, the customers 

had enough storage capacity to achieve the maximum possible shift in their nominal 

demand through energy storage, and as such the discount provided by the electricity 

supplier plateaued at 4.00%. 

In the case where customers were very reluctant to shift their nominal demand 

(𝑧𝑧 = 13), the Stackelberg equilibrium behaved similarly to the case where the electricity 

provider still had some influence on the customers (𝑧𝑧 = 5). However, in this case the 

equilibrium discount was lower and stabilized at 3.73%, while the PAR achieved a 
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minimum of 1.87 when there was a relatively small energy storage capacity (1KW). This 

response from the PAR may be explained by the lower discounts when the storage 

capacity is of 1KW. The equilibrium discount achieved actually led to some load-shifting 

as well as maximum storage; thus, the PAR was lowered. However, past this point, since 

the nominal load shifts were minimized and the maximum benefit from the use of energy 

storage had been achieved, there were not enough incentives for the electricity supplier to 

provide high discounts. As such the PAR stabilized at 2.02. 

 

Figure 22:Storage capacity and equilibrium discount averages;  

storage controlled by customers. 
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Figure 23: Storage capacity and equilibrium PAR; storage controlled by customers. 

4.4. Provider Controlled Energy Storage 

4.4.1. Model  

 Our proposed game had three levels. In the first level, the provider first decided 

the price discount to offer the customers in order to encourage them to shift loads from 

time slots with high demand to off-peak times. In the second level, the customers first 

decided their consumption for each time slot based on the announced discount and on the 

inconvenience generated by shifting demand. In the final level, the supplier made energy 

storage decisions, which depended on how consumers responded to the price discount. To 

model the smartgrid, we let ℕ be the set of customers, defined as ℕ ≜ { 1, 2, … ,𝑁𝑁} and 𝕋𝕋 

be the set of time slots defined as 𝕋𝕋 ≜ { 1, 2, … ,𝑇𝑇}. 

As a strategy for short-term demand management, the energy provider employed 

two techniques: energy storage and price discount. Energy storage was employed to shift 

the generation amount throughout the different time slots, while percentage discounts 

were used to shift the consumers’ nominal consumption. To model the first decision 
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taken by the energy provider, we defined 𝛾𝛾𝑖𝑖 as the percentage discount applied to the 

base price during time slot 𝑡𝑡. 

Further, 𝑙𝑙𝑖𝑖𝑖𝑖 denoted the amount of energy produced by the energy provider for 

each customer 𝑖𝑖 during time slot 𝑡𝑡. Based on this we can see that 𝑙𝑙𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖+ 𝑠𝑠𝑖𝑖𝑖𝑖, and 

we can define the total energy produced in each time slot 𝑡𝑡 as 𝐿𝐿𝑖𝑖, where 𝐿𝐿𝑖𝑖 = ∑ 𝑙𝑙𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1 . 

 By including the condition in equations (81) and (82) in the energy provider 

model present in equations (89)–(90), we can reach an optimization model for the energy 

provider that maximizes profit as 

Max 𝛱𝛱𝑠𝑠 = ∑ �(1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 (𝑋𝑋𝑖𝑖𝑖𝑖) − 𝐶𝐶(𝑎𝑎(∑ (𝐿𝐿𝑖𝑖𝑖𝑖)𝑁𝑁
𝑖𝑖=1 )2 + 𝑏𝑏 ∑ (𝐿𝐿𝑖𝑖𝑖𝑖)𝑁𝑁

𝑖𝑖=1 + 𝑐𝑐)�𝑇𝑇
𝑖𝑖=1  (123) 

        s.t 

                        0 ≤ 𝛾𝛾𝑖𝑖 ≤ 1               ∀𝑡𝑡 ∈ 𝕋𝕋 (124) 

     𝑤𝑤𝑖𝑖𝑖𝑖 =  𝜌𝜌 𝑤𝑤𝑖𝑖,𝑖𝑖−1 + (1 −  𝜏𝜏) 𝑠𝑠𝑖𝑖𝑖𝑖 − ( 1 +  𝛽𝛽)𝑢𝑢𝑖𝑖𝑖𝑖        ∀𝑡𝑡 ∈ 𝕋𝕋                        (125) 

                                  0 ≤ wit ≤ Wmax                      ∀𝑡𝑡 ∈ 𝕋𝕋 (126) 

                                     𝑠𝑠𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖 ≥ 0                              ∀𝑡𝑡 ∈ 𝕋𝕋 (127) 

As the strategy decision that make by the customer is the same as it present in 

section 2.2.2. Where optimization model for customer 𝑖𝑖 is as follows: 

Min 𝛱𝛱𝑖𝑖 = ∑ �(1 − 𝛾𝛾𝑖𝑖)𝑃𝑃𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖)2�𝑇𝑇
𝑖𝑖=1  (128) 

                         s.t.             ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑇𝑇

𝑖𝑖=1                      (129) 

                                      𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖                              ∀𝑡𝑡 ∈ 𝕋𝕋 (130) 

4.4.2. Equilibrium Analysis 

 In order to solve the formulated game, we used the Stackelberg equilibrium. This 

equilibrium was calculated using backwards induction, an approach in which the later 

decision’s best response is mapped to the actions of the prior decision. In this way the 
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optimal storage decision was included in the customer’s optimization problem, and the 

customers’ optimal decisions were included into the energy supplier’s price discount 

optimization problem. Then the equilibrium point was calculated. If we analyze the 

provider’s payoff, which is in equation (123), we can find the gross profit earned by 

using the electricity storage system, so that in the final stage of the game, the electricity 

storage system optimization problem was as follows: 

Max 𝛱𝛱𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 = ∑ �(1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1 − ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑁𝑁

𝑖𝑖=1
𝐶𝐶(𝜕𝜕𝑡𝑡)
𝜕𝜕𝑡𝑡
�𝑇𝑇

𝑖𝑖=1  (131) 

        s.t 

                       𝑤𝑤𝑖𝑖𝑖𝑖 =  𝜌𝜌 𝑤𝑤𝑖𝑖,𝑖𝑖−1 + (1 −  𝜏𝜏) 𝑠𝑠𝑖𝑖𝑖𝑖 − ( 1 +  𝛽𝛽)𝑢𝑢𝑖𝑖𝑖𝑖     ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋 (132) 

                             0 ≤ 𝑤𝑤𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥                         ∀ 𝑖𝑖∈ℕ,𝑡𝑡∈𝕋𝕋 (133) 

                                   𝑠𝑠𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖 ≥ 0                          ∀ 𝑖𝑖∈ℕ,𝑡𝑡∈𝕋𝕋 (134) 

 Since the storage decision taken by the energy provider did not affect the solution 

of the customer optimization model, we did not need to input the best response of the 

electricity storage decisions into the consumers’ model. Because of this, we  combined 

the electricity storage system optimization problem with the price discount model, as is 

present in equation (123) into equation (127). As such, we first analyzed the customers’ 

optimal response to a given energy discount scheme. We used Lagrangian Relaxation to 

analyze the consumers’ model, so that 𝜆𝜆 became the Lagrange multiplier for the 

constraint in equation (129), and 𝜇𝜇𝑖𝑖 for the constraints given by equation (130). 

Therefore, minimizing the consumers’ optimization model was equivalent to minimizing 

the following Lagrange function for 𝑥𝑥𝑖𝑖𝑖𝑖, 𝜆𝜆, and 𝜇𝜇𝑖𝑖: 
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𝑀𝑀𝑎𝑎𝑥𝑥 𝐿𝐿𝐿𝐿 = �(1 − 𝛾𝛾𝑖𝑖)𝑃𝑃
𝑇𝑇

𝑖𝑖=1

𝑥𝑥𝑖𝑖,𝑖𝑖 + �𝛼𝛼𝑖𝑖�𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑦𝑦𝑖𝑖,𝑖𝑖�
2
−

𝑇𝑇

𝑖𝑖=1

𝜆𝜆 ��𝑦𝑦𝑖𝑖

𝑇𝑇

𝑖𝑖=1

−�𝑥𝑥𝑖𝑖,𝑖𝑖

𝑇𝑇

𝑖𝑖=1

� 

                    −�𝜇𝜇𝑖𝑖(𝑥𝑥𝑖𝑖,𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)
12

𝑖𝑖=1

 

(135) 

 In the first case, we assumed that the customer consumption 𝑥𝑥𝑖𝑖𝑖𝑖 was strictly 

holding during each time slot, in this case 𝜇𝜇𝑖𝑖 = 0, and we used the result obtained in 

equations (15) and(16) in order to find 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝜆𝜆𝑖𝑖 where 

                          𝑥𝑥𝑖𝑖,𝑖𝑖∗ =  𝑦𝑦𝑖𝑖,𝑖𝑖 +  (𝛾𝛾𝑡𝑡− 𝛾𝛾�) 𝑃𝑃
2𝛼𝛼

 ≥ 0                            ∀𝑡𝑡 (136) 

𝜆𝜆 = ( �̅�𝛾 − 1)𝑃𝑃 (137) 

 In the second case, the constraint in equation (130) was binding, so 𝑥𝑥𝑖𝑖,𝑖𝑖 =  𝑚𝑚𝑖𝑖𝑖𝑖 

and 𝜇𝜇𝑖𝑖 ≥ 0. In order to optimize this case, we used the same procedure that presented in 

section 2.3 where time slots were separated into two subsets, 𝕋𝕋1 and 𝕋𝕋2. Here, the time 

slots in which the constraint from equation (130) simply held were placed in subset 𝕋𝕋1, 

and those in which the constraint was were are placed in set 𝕋𝕋2. In this case, we used the 

result obtained in Proposition 2 in order to find 𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜆𝜆𝑖𝑖 and 𝜇𝜇1𝑖𝑖𝑖𝑖: 

𝑥𝑥�𝑖𝑖𝑖𝑖∗ = �𝑦𝑦𝑖𝑖𝑖𝑖 +
1
𝑇𝑇�

 �(𝑦𝑦𝑖𝑖𝑖𝑖

𝑇𝑇�

�̅�𝑖=1

− 𝑚𝑚𝑖𝑖𝑖𝑖) +
(𝛾𝛾𝑖𝑖 −  �̅�𝛾)𝑃𝑃

2𝛼𝛼
                      , 𝑡𝑡 ∈  𝕋𝕋1   

                𝑚𝑚𝑖𝑖𝑖𝑖                                                                 , 𝑡𝑡 ∈  𝕋𝕋2

 (138) 

 𝜆𝜆 = (�̅�𝛾�̂�𝑖 − 1)𝑃𝑃 − 2𝛼𝛼
𝑇𝑇�

 ∑ (𝑦𝑦�̅�𝑖𝑇𝑇�
�̅�𝑖=1 − 𝑚𝑚𝑖𝑖𝑖𝑖)  (139) 

 𝜇𝜇𝑖𝑖,𝑖𝑖∗ = �
                              0                                                                   , 𝑡𝑡 ∈  𝕋𝕋1 
 ( �̅�𝛾1 − 𝛾𝛾�̂�𝑖)𝑃𝑃 − 2𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖𝑖𝑖 −  𝑚𝑚𝑖𝑖𝑖𝑖 +  1

𝑇𝑇�
 ∑  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖)𝑖𝑖∈𝕋𝕋2 ) , 𝑡𝑡 ∈  𝕋𝕋2

 (140) 

The equilibrium for the system was reached when the constraints given by equation (130) 

were satisfied for all customers 𝑖𝑖 in each timeslot 𝑡𝑡. We found an initial answer to the 
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consumers’ best response by relaxing these constraints in equation (130) and then 

inputting equation (136) into the supplier’s model, for which nonlinear optimization tools 

could be used to determine the optimal solution. Once the solution for the supplier model 

was found, if the constraints from equation (130) were satisfied ∀ 𝑖𝑖 ∈ ℕ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 ∈ 𝕋𝕋, then 

the equilibrium point is reached. Otherwise, the use the proposed algorithm that been 

used. Table 1 p. 23. gives additional iterations in order to find the equilibrium solution. 

Table 8 presents the outline of the algorithm. 

Definition 4: The point (𝛾𝛾𝑖𝑖∗ , 𝑥𝑥𝑖𝑖𝑖𝑖∗ (𝛾𝛾𝑖𝑖∗),𝑢𝑢𝑖𝑖𝑖𝑖∗  , 𝑠𝑠𝑖𝑖𝑖𝑖∗ ,𝑤𝑤𝑖𝑖𝑖𝑖
∗ ), which satisfied the constraints in 

(123–127) and (128–130), is an equilibrium result of the Stackelberg game 𝐺𝐺 = {ℕ,𝕋𝕋,

𝛱𝛱𝑠𝑠,Πi} if and only if 

𝛱𝛱𝑠𝑠(𝛾𝛾𝑖𝑖∗ , 𝑥𝑥𝑖𝑖𝑖𝑖∗ (𝛾𝛾𝑖𝑖∗),𝑢𝑢𝑖𝑖𝑖𝑖∗  , 𝑠𝑠𝑖𝑖𝑖𝑖∗ ,𝑤𝑤𝑖𝑖𝑖𝑖
∗  ) ≥  𝛱𝛱𝑠𝑠�𝛾𝛾𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖(𝛾𝛾𝑖𝑖),𝑢𝑢𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑖𝑖𝑖𝑖 ,𝑤𝑤𝑖𝑖𝑖𝑖 � ,∀ 𝑡𝑡 

∈  𝕋𝕋 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ∈  ℕ 
(141) 

 The leader stratgy on the price discount technique depeneds on the consumers’ 

inconvenience coefficient α, the distribution of the nominal demand across the planning 

horizon and storage system efficiency parameters. The price discount technique helped 

reduce the demand fluctuations, if the customers were sensitive to price discounts and 

willing to shift. Otherwise, if the consumers had high resistance, the utility did not 

receive any added benefits from this strategy. 

Moreover, the utility has another possible technique to reduce demand fluctuations by 

using an energy storage. The energy storage helped reduce the PAR, which means that 

the fluctuation in the generation amount was reduced. The energy storage was charged, 

by amount of 𝑠𝑠𝑖𝑖𝑖𝑖  , when the nominal demand was low, and discharged by amount of 𝑢𝑢𝑖𝑖𝑖𝑖   
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when the nominal demand was high. Moreover, the storage system decision depended on 

the consumer willingness to perform load-shifting.   

Table 8: Procedure to find equilibrium solution, Storage is controlled by provider 

1: include the consumers’ best response from equation (136) into the energy 

provider’s model in equation (123–127). 

2: solve energy provider’s model 

3: if 𝑥𝑥𝑖𝑖,𝑖𝑖∗ ≥  𝑚𝑚𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋  then STOP.  

4: else for each consumer for which constraint (130) is violated in any time t   

5: identify and update 𝕋𝕋1 and   𝕋𝕋2 

6: use (138) instead of (136) for these consumers in the energy provider’s          

model 

7: Solve the utility firm’s model again including these updates. 

8: Go to line 3 

  

Proposition 6: The energy provider could not charge and discharge the storage system 

during the same timeslot 𝑡𝑡. 

                                         𝑢𝑢𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖 = 0                                ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋 (142) 

Proof: We assumed that the customers, as followers, were not too sensitive to the price 

discount, and on every time slot 𝑡𝑡 equation (130) was strictly holding. From equation 

(136), we take the derivative of 𝑥𝑥𝑖𝑖𝑖𝑖 with respect to γt: 

         𝜕𝜕𝑥𝑥𝑖𝑖𝑡𝑡
𝜕𝜕𝛾𝛾𝑡𝑡

=  𝑃𝑃
2 𝛼𝛼

 � 1 − 1
𝑇𝑇
� =  ∆                                 (143) 

Using Lagrange multipliers for the supplier model, 
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         𝑀𝑀𝑎𝑎𝑥𝑥 𝐿𝐿𝐿𝐿 =  ∑ ((1− 𝛾𝛾𝑖𝑖)𝑃𝑃 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1   − (𝑎𝑎(∑ (𝑥𝑥𝑖𝑖𝑖𝑖 −  𝑢𝑢𝑖𝑖𝑖𝑖  +  𝑠𝑠𝑖𝑖𝑖𝑖 )𝑁𝑁

𝑖𝑖=1 )2 

                           +𝑏𝑏∑ (𝑥𝑥𝑖𝑖𝑖𝑖 −  𝑢𝑢𝑖𝑖𝑖𝑖  +  𝑠𝑠𝑖𝑖𝑖𝑖)𝑁𝑁
𝑖𝑖=1   + 𝑐𝑐 ) 

                        +  𝛿𝛿𝑖𝑖𝑖𝑖 (𝑤𝑤𝑖𝑖𝑖𝑖 −  𝜌𝜌 𝑤𝑤𝑖𝑖,𝑖𝑖−1 − (1 −  𝜏𝜏)𝑠𝑠𝑖𝑖𝑖𝑖 + ( 1 +  𝛽𝛽)𝑢𝑢𝑖𝑖𝑖𝑖) 

                        + 𝜎𝜎 (𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑤𝑤𝑖𝑖𝑖𝑖) +  𝜇𝜇𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖𝑖𝑖 + 𝜇𝜇𝛾𝛾𝑖𝑖𝛾𝛾𝑖𝑖 +  𝜇𝜇𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑤𝑤𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖 ) 

(144) 

The Kuhn–Tucker conditions related to 𝑠𝑠𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑖𝑖𝑖𝑖 are as follows: 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖𝑡𝑡

= − 2 𝑎𝑎  � 𝑦𝑦𝑖𝑖,𝑖𝑖 +  (𝛾𝛾𝑡𝑡− 𝛾𝛾�)𝑃𝑃
2𝛼𝛼

−  𝑢𝑢𝑖𝑖𝑖𝑖  + 𝑠𝑠𝑖𝑖𝑖𝑖� −  𝑏𝑏 − 𝛿𝛿 (1 −  𝜏𝜏)   ≤ 0            (145) 

    𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖𝑡𝑡

=  2 𝑎𝑎  � 𝑦𝑦𝑖𝑖,𝑖𝑖 +  (𝛾𝛾𝑡𝑡− 𝛾𝛾�)𝑃𝑃
2𝛼𝛼

−  𝑢𝑢𝑖𝑖𝑖𝑖  + 𝑠𝑠𝑖𝑖𝑖𝑖� +  𝑏𝑏 +  𝛿𝛿( 1 +  𝛽𝛽)   ≤ 0   (146) 

                       𝑠𝑠𝑖𝑖𝑖𝑖 �
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑡𝑡

� = 0                      (147) 

                         𝑢𝑢𝑖𝑖𝑖𝑖 �
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑡𝑡

� = 0                                        (148) 

To prove the statement, we must satisfy the following: 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖𝑡𝑡

= 0  and  𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖𝑡𝑡

≠ 0, or  

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖𝑡𝑡

≠ 0  and  𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖𝑡𝑡

= 0 

Assume that 𝑠𝑠𝑖𝑖𝑖𝑖 > 0, so to satisfy the slackness condition on equation (147) 𝜕𝜕𝐿𝐿𝐿𝐿 𝜕𝜕⁄ 𝑠𝑠𝑖𝑖𝑖𝑖 =

0. It follows from equation (145) and (146) that 𝜕𝜕𝐿𝐿𝐿𝐿 𝜕𝜕⁄ 𝑠𝑠𝑖𝑖𝑖𝑖  ≠  𝜕𝜕𝐿𝐿𝐿𝐿 𝜕𝜕⁄ 𝑢𝑢𝑖𝑖𝑖𝑖. Therefore, to 

satisfy the slackness condition from equation (148), uit = 0. ∎ 

Proposition 7: The energy storage usage will increase when the customers are more 

reluctant to load-shifting. 

 As we define the Lagrange function in equation (144) , When 𝑠𝑠𝑖𝑖𝑖𝑖 > 0   the 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖𝑡𝑡

= 0, equation (145). So the function optimal charging decision is: 

  𝑠𝑠𝑖𝑖𝑖𝑖 =  − 𝑦𝑦𝑖𝑖,𝑖𝑖 −  (𝛾𝛾𝑡𝑡− 𝛾𝛾�)𝑃𝑃
2𝛼𝛼

 − 𝑏𝑏
2 𝑚𝑚

− 𝛿𝛿
2 𝑚𝑚

 (1 −  𝜏𝜏)                            ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋 (149) 
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Here, 𝑣𝑣 represented the amount of change from the nominal demand, which is (𝛾𝛾𝑡𝑡− 𝛾𝛾�)𝑃𝑃
2𝛼𝛼

. 

The charging decision and amount of change were negatively correlated because 

𝜕𝜕𝑠𝑠𝑖𝑖𝑖𝑖 𝜕𝜕𝑣𝑣 < 0⁄ . Moreover, 𝑢𝑢𝑖𝑖𝑖𝑖 > 0 when the demand reached the peak and the 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖𝑡𝑡

= 0, so 

the function optimal discharging decision 𝑢𝑢𝑖𝑖𝑖𝑖 was 

         𝑢𝑢𝑖𝑖𝑖𝑖  =    𝑦𝑦𝑖𝑖,𝑖𝑖 +  (𝛾𝛾𝑡𝑡− 𝛾𝛾�)𝑃𝑃
2𝛼𝛼

+ 𝑏𝑏
2 𝑚𝑚

+  𝛿𝛿
2 𝑚𝑚

( 1 +  𝛽𝛽)                    ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋 (150) 

In this case, the price discount was less than the average discount, so the amount of 

change was negative. So when the amount of change decreased, the discharging amount 

increased, and the opposite was true. Since the 𝜕𝜕𝑠𝑠𝑖𝑖𝑖𝑖 𝜕𝜕𝑣𝑣 < 0⁄  and 𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖 𝜕𝜕𝑣𝑣 < 0⁄ , the 

energy storage profile increased when the consumers’ willingness to shift decreased. ∎ 

 The possibility of using energy storage was greatly affected by their efficiency. If 

there was a significant difference between the amounts of energy used to charge the 

system and the energy actually stored, as well as the energy available at the time for 

discharge and the energy effectively output by the storage system, the system had low 

possibilities of implementation due to the high energy waste. Furthermore, the overall 

efficiency of the storage system was also affected by the storage efficiency, 𝜌𝜌, which 

relates to the energy lost to the environment as it was kept in storage for multiple periods. 

As the storage became more efficient, the PAR was high, or the customers were more 

reluctant to load-shifting. The storage capacity limitation became a significant factor in 

improving the supplier payoff. 

Proposition 8: The storage capacity, 𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥 became a significant factor that impacted the 

supplier payoff if and only if 

(1+𝛽𝛽)
𝜌𝜌

� 𝑦𝑦𝑖𝑖,𝑖𝑖 +  (𝛾𝛾𝑡𝑡− 𝛾𝛾�)𝑃𝑃
2𝛼𝛼

+   𝑏𝑏
2𝑚𝑚
� >  𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥             ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋 (151) 
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Proof: Let time 𝑡𝑡′, where 𝑡𝑡′  ∈  𝕋𝕋 denoted a peak demand timeslot where the discharging 

amount 𝑢𝑢𝑖𝑖𝑖𝑖′ need was equal to the total storage capacity. Because of that, the constraint in 

equation (126) on 𝑡𝑡′ − 1 was binding, 𝑤𝑤𝑖𝑖𝑖𝑖′−1 =  𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥. Taking into account Proposition 

6, the supplier could not charge the storage in time 𝑡𝑡′  so that 𝑠𝑠𝑖𝑖𝑖𝑖′ = 0 , 𝑤𝑤𝑖𝑖𝑖𝑖′ = 0. equation 

(126) became the following: 

                                         𝑢𝑢𝑖𝑖𝑖𝑖′
∗ = 𝜌𝜌 𝑊𝑊𝑚𝑚𝑚𝑚𝑥𝑥/( 1 +  𝛽𝛽)                  ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋 (152) 

After that, we relaxed the binding constraints in equation (126) ∀𝑡𝑡 ∈ 𝕋𝕋 and resolved the 

𝑢𝑢𝑖𝑖𝑖𝑖′, assuming that 𝑢𝑢𝑖𝑖𝑖𝑖′  would consume all the available energy in the storage. Moreover, 

you substituted the storage balance constraint, equation (125), in terms of the variable 

decision 𝑠𝑠𝑖𝑖𝑡𝑡 into the objective function equation (123). We redefined the model as 

follows: 

        Max Π = ∑ ((1 − 𝛾𝛾𝑖𝑖)𝑃𝑃 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇
𝑖𝑖=1   

                    − (𝑎𝑎 �∑ �𝑥𝑥𝑖𝑖𝑖𝑖 −  𝑢𝑢𝑖𝑖𝑖𝑖  +   𝑤𝑤𝑖𝑖𝑡𝑡− 𝜌𝜌 𝑤𝑤𝑖𝑖,𝑡𝑡−1 + +( 1+ 𝛽𝛽)𝑢𝑢𝑖𝑖𝑡𝑡
(1− 𝜏𝜏)

 �𝑁𝑁
𝑖𝑖=1 �

2
     

                    + 𝑏𝑏 ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 −  𝑢𝑢𝑖𝑖𝑖𝑖  +  𝑤𝑤𝑖𝑖𝑡𝑡− 𝜌𝜌 𝑤𝑤𝑖𝑖,𝑡𝑡−1 + +( 1+ 𝛽𝛽)𝑢𝑢𝑖𝑖𝑡𝑡
(1− 𝜏𝜏)

�𝑁𝑁
𝑖𝑖=1   + 𝑐𝑐 ))  

(153) 

s.t. 

                                         0 ≤ 𝛾𝛾𝑖𝑖 ≤ 1                                ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋 (154) 

                                     𝑠𝑠𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑖𝑖 ≥ 0                              𝑖𝑖∈ℕ,𝑡𝑡∈𝕋𝕋 (155) 

Since we assumed that 𝑢𝑢𝑖𝑖𝑖𝑖′ would consume all the available energy in the storage, by 

using Lagrange Relaxation, than Kuhn–Tucker condition 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖𝑡𝑡′

= 0, which presented as 

  𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖𝑡𝑡′

= − 2 𝑎𝑎 �1+ 𝛽𝛽
1−𝜏𝜏

− 1�  � 𝑦𝑦𝑖𝑖,𝑖𝑖 +  (𝛾𝛾𝑡𝑡− 𝛾𝛾�)𝑃𝑃
2𝛼𝛼

−  𝑢𝑢𝑖𝑖𝑖𝑖 � −  𝑏𝑏 �1+ 𝛽𝛽
1−𝜏𝜏

− 1� = 0                                 (156) 

We rewrote the equation (156) as 𝑢𝑢𝑖𝑖𝑖𝑖′
𝜕𝜕  function: 
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                       𝑢𝑢𝑖𝑖𝑖𝑖′
𝜕𝜕 =   𝑦𝑦𝑖𝑖,𝑖𝑖 +  (𝛾𝛾𝑡𝑡− 𝛾𝛾�)𝑃𝑃

2𝛼𝛼
+  𝑏𝑏

2𝑚𝑚
                                ∀ 𝑖𝑖 ∈ ℕ, 𝑡𝑡 ∈ 𝕋𝕋 (157) 

When 𝑢𝑢𝑖𝑖𝑖𝑖′
𝜕𝜕  was greater than 𝑢𝑢𝑖𝑖𝑖𝑖′

∗ , the optimal storage capacity was larger than the 

maximum installed capacity, and thus the capacity needed to increase. ∎ 

 Since the cost function was convex, increasing with the generation amount, the 

utility was better off as the fluctuation in generation was reduced. The deployment of an 

energy storage would help reduce this fluctuation without a significant change to the 

nominal demand. Consequently, the supplier may reach similar reductions in generation 

fluctuation without the need to apply the same price discount as it would if this energy 

storage were not deployed. However, the efficiency of the energy storage had a direct 

impact on the price discount decision, and the price discount increased when the 

efficiency of the energy storage was low. The utility may decide to use one or both of the 

techniques for PAR reduction. However, the price discount and energy storage were 

unprofitable to the utility firm if the nominal demand was uniform across the planning 

horizon. 

4.4.3. Numerical Analysis 

In this section, we performed a numerical analysis by using a case study and 

applying our model to different scenarios. We examined the utility firm’s profits, price 

discounts, energy storage decisions, and PARs under the influence of different consumer 

types in terms of their nominal demand and willingness to shift load. In this study, we 

investigated the consumers’ willingness levels and the diversity in the consumer portfolio 

with this respect. Furthermore, we considered how the number of customers (market 

breadth) influenced the equilibrium outcomes.  
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 We divided the time horizon into twelve slots for all of the scenarios. For the 

energy production cost function 𝐶𝐶(𝐿𝐿𝑖𝑖), we set the parameter 𝑎𝑎 to 0.0035 $/𝐾𝐾𝑊𝑊ℎ2, and 

we assumed that parameters 𝑏𝑏 and 𝑐𝑐 were zero. Moreover, we assumed that the energy 

storage efficiencies ρ, τ, and β were 0.99, 0.01 and 0.01, respectively. For every 

consumer and period, we assumed that the minimum required consumption 𝑚𝑚𝑖𝑖 was zero. 

The base price, 𝑃𝑃, was set to 0.25 $/𝑘𝑘𝑊𝑊ℎ. We gathered the nominal demand randomly 

from residential electricity bills, which show in Table 9 and Figure 24. 

Table 9: Aggregate demand (kwh), Storage is controlled by provider 

Period (t) 1 2 3 4 5 6 7 8 9 10 11 12 
Aggregate 
Demand 10.19 15.72 22.28 29.23 33.31 39.14 73.43 61.27 58.1 37.2 17.53 15.01 

 

 

Figure 24: Aggregate demand across the time horizon; storage controlled by provider. 

 In our first scenario, we focused on the effects of different consumer types given 

by their willingness to shift load. We used 4 customers and a multiplier z, ranging from .0 

to 15, to scale the inconvenience factor 𝛼𝛼𝑖𝑖. The individual (𝛼𝛼𝑖𝑖) factors were 0.02, 0.021, 

0.00025, 0.00875, 0.0003, 0.0004, and 0.007 respectively. Clearly, as the value of z 

increased the customers’ willingness to shift load decreased. Figures 25 and 26 show the 
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effect of consumers’ sensitivity to load-shifting on the equilibrium average discounts (𝛾𝛾) 

and the PAR values. 

 
Figure 25: Consumer inconvenience and energy provider’s average price discount; 

storage controlled by provider. 

 
Figure 26: Consumer inconvenience and PAR values; storage controlled by provider. 

We can see that in the first three cases (z in [0.5,2]) some of the constraints from 

equation (130)  were binding. The utility firm had no incentive to apply a high discount 

or a high use of the energy storage since consumers were too sensitive to price discount. 

Consequently, the small price discount and the low use of the energy storage had an 

effective way to reduce the fluctuation in the generation amount. Past these points the 
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constraints from equation (130) stopped being binding, and the discounts continued to 

increase since they still influenced customer behavior and a point of diminishing returns 

(z=7) had not been reached. Furthermore, as the inconvenience multiplier increased, the 

sensitivity to price decreased and the energy storage became more cost efficient. 

After this, discounts persistently decreased since their effect on the customers was 

weaker every time and the use of energy storage was more effective in the reduction of 

the PAR. Furthermore, there were very small amounts of load-shifting and the effects on 

overall PAR reduction decrease and the supplier became more dependent on the storage, 

so that the PAR was 1.4 when z = 7 and increased to 1.5 when z = 15.  

In order to evaluate the effects of the customers’ attitude toward load-shifting, we 

changed the individual inconvenience factors 𝛼𝛼𝑖𝑖 while keeping the average 

inconvenience at 0.0082 as in the prior case) We set the coefficient of variation (COV) 

for 𝛼𝛼𝑖𝑖 between 0 to 1.05, so that a higher COV constituted higher diversity in the 

consumer market. Figure 27 showed the effects of different COV levels on the average 

discounts and the PAR.  

 The average equilibrium price discount increased as the COV increased up to a 

certain point, after which the discount started to decrease. We believe this is because 

when the customers’ were more alike, their behavior was relatively less sensitive to price 

incentives. As the diversity increased, the utility fir was incentivized to make load-

shifting more attractive as more and more customers reacted. However, a level in 

diversity may be reached when customers are too distant from each other and some are 

very sensitive to low discounts and will not shift their load regardless of the discount. 

Thus, a lower discount would be required to shift the loads of the subset of customers 

 



89 

who are actually willing to do any load shits. The drop in the discount was significant as 

some of the constraints in equation (130) become binding. 

 Something that we found interesting is that the PAR consistently reduced as the 

COV increased, which, in turn, drives lower needs for energy storage, and there was a 

point in which increases in the COV led to decreases in all the discount levels and PAR. 

This can be seen in Figures 27, and we believe this was because of the constant increase 

in customers who were highly sensitive to price incentives, which led to increasing in the 

load-shifting amount. 

 

Figure 27: Consumer diversity, equilibrium discounts, and PAR;  
storage controlled by provider. 

 In the third scenario, we evaluated the effects of different market sizes on the 

different discounts, based on the number of customers. In order to single out only the 

impact of having a different number of customers, we considered customers of identical 

types. We generated different instances by varying the number of customers between 1 

and 7 with inconvenience factors at 0.001 and the inconvenience multipliers at 1, 5, and 

10. In order to keep the market volume constant, we kept the total nominal demand and 

total storage capacity of the system equal and distributed it equally among the different 
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customers. The effects of the number of customers on the equilibrium result can be seen 

in Figures 28 and 29. 

 We can see in Figure 28 that the number of customers had a significant effect on 

the equilibrium discount, such that when customers were less resistant to load-shifting 

(when z=1), the discounts decreased as the number of customers increased. When 

customers are more resistant to load-shifting (z = 1, 10), the opposite was true; the 

discounts increased as the number of customers increased. We believe this effect is a 

result of the fact that the inconvenience costs were convex, increasing with the deviation 

between nominal demand and consumption, as well as the fact that as the number of 

customers increased it was less costly for the utility firm to shift each of the individual 

customer’s demand. 

 

Figure 28:Number of consumers and equilibrium discount averages;  
storage controlled by provider. 

 In terms of PAR, we can see that an increase in the number of customers always 

led to a reduction, as individual customers became less significant and their individual 

load-shifting became less costly as their share of the market decreased. 
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Figure 29: Number of consumers and PAR; storage controlled by provider. 

Finally, we evaluated the effects that having different storage capacity had on the 

Stackelberg equilibrium. We had 7 independent customers with an 𝑎𝑎𝑖𝑖 that averaged 

0.0082, deployed an energy storage with a capacity that ranged from 0 to 12 KW, and 

evaluated the results using three different levels of the inconvenience multiplier 𝑧𝑧 

(𝑧𝑧 = 1, 5, 13). 

 Figure 30 has two distinct segments: a first segment in which the average discount 

decreased as the storage capacity increased and a second segment in which the average 

discount stabilized. In the first segment, the energy provider took advantage of the 

increasing energy storage capacity to decrease the average discount and maximize their 

profit. This behavior from the equilibrium discount may be explained by the structure of 

the demand peaks, as the energy supplier may take advantage of the off-peak periods 

before the peak of demand to charge the storage system. After the peak has occurred the 

storage is no longer available, and the supplier’s discounts incentivized load-shifting to 
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these latter periods. In terms of the PAR, there was a decrease as the storage capacity 

increased in the first segment; while in the second segment, the PAR became stable as the 

storage system reached the maximum capacity, as shown in Figure 31.  

 

Figure 30:Storage capacity and equilibrium discount averages;  

storage controlled by provider. 

 

Figure 31:Storage capacity and equilibrium PAR; storage controlled by provider. 

4.5. Comparison and coordination 
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load-shifting with supplier-controlled storage. In the first model, equilibrium was 

achieved with an optimal discount in which the electricity provider maximized its profit 

after taking into account the customers’ reaction to a proposed discount. In the second 

model, we built on the first model by adding the availability of electricity storage for each 

customer who then decided how much to shift his or her nominal consumption and how 

much energy to store as a reaction to the discounts proposed by the electricity supplier. In 

the third model, the energy storage available at each customer was placed under the 

control of the electricity provider who then decided in which periods it wanted to store 

and unload the energy storage. We evaluated these three models in terms of the optimal 

payoff for each of the players and the effects on the PAR. 

Conjecture 1: At the equilibrium point, the PAR will be lower when the energy storage is 

controlled by the electricity provider. 

 Since the electricity provider was the leader of the game, their strategic decisions 

controlled the game path. The electricity provider aimed to maximize its profit, and when 

it controlled the energy storage, it had more degrees of freedom in order to maximize this 

profit. In order to minimize the electricity production cost, the electricity provider was 

better off when the fluctuations in electricity generation were reduced since the cost 

function was convex, increasing with respect to the generation amount. Moreover, since 

the game was non-cooperative, the players were selfish in their decisions, which led the 

provider to be more conservative in its strategies. This means that if the electricity 

supplier offered a high discount, the customers’ reactions may move the on-peak time 

entirely to another time slot (a slot where the high incentive provided by the discount led 

both to load-shifting and energy storage)  ∎. 
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 We have observed that in some cases, when the customers are in control of the 

energy storage, alternative optimal solutions arise for the customer model. In these cases, 

there are more than one set of decision variables (for both energy consumption and 

storage) that lead to the same minimum cost. These cases pose a non-trivial challenge to 

the energy provider as they can have significantly different levels of PAR, and thus lead 

to significantly different profits. We believe that these cases arise when the discount 

offered by the energy provider makes the customers indifferent between using the 

electricity from the grid for consumption or for charging of the energy storage, during the 

off-peak periods. However, since they are indifferent to which of the multiple solutions to 

employ, we assume that the customers will react in the same way that the equilibrium 

results display. Therefore, this possibility is another disadvantage for the energy supplier, 

when the customers control the energy storage. 

 When the customer controlled the energy storage, we observed that the customer 

may respond with alternative optimal solution. The alternative optimal solutions mean 

that the customer may have two or more solutions equal in the total cost, but they are 

different on the decision variables.  We believed that the alternative solution occurred 

because the supplier offered a discount that made indifferent on the peak time for the 

customer to get his or her actual consumption directly from the grid or charging the 

storage on the off-peak time then using it during on-peak time. Since the alternative 

solutions were indifferent for the customer, we assumed that the customer reacted same 

as it obtained on the equilibrium results. However, in reality, if the customer reacted with 

an alternative solution, the PAR may change, which affected the electricity generation 

cost. That consider as disadvantage of make the storage controlled by the customer.  
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Figure 32:Comparison consumer inconvenience and average price discount. 

 

Figure 33:Comparison consumer inconvenience and PAR. 

 Figure 32 reflects the effects of these three models the PAR. There are three 
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2

, 2] where the customers 

were price takers and the minimum consumption constraints were binding during some 

periods. In this segment, there was no difference on the PAR in the cases of no storage 
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1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PA
R 

Consumer inconvenience (z) 
 

nonstorage

storage supplier side

storage customer side

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

av
er

ag
e 

D
is

co
un

t 

Consumer inconvenience (z) 

nonstorage

storage supplier side

storage customer side

 



96 

While in the third case, storage controlled by the supplier, the PAR was lower since the 

energy storage was being employed. 

 Past this point (𝑧𝑧 ∈ [3,12]), the minimum consumption constraints started to 

become strictly holding Eqs. (6), (85), and (130). As such, the PAR of the first two cases 

started to become different since the customers started to store energy. However, these 

amounts of energy storage were lower than those achieved in the third case, and the PAR 

was higher. After the point (𝑧𝑧 > 12), the customers become highly resistant to price 

incentives and, as such, the optimal price discount dropped. This drop in the price 

discount led to no energy being stored by the customers, less shifting than in the case 

with no energy storage available, and a higher PAR. 

  Looking from the customers’ point of view, we can see that average price 

discount decreased as energy storage was added to the system, as shown in Figure 33. 

This is because as storage was introduced into the system, the utility firm had a tool that 

decreased the generation fluctuations without having to incentivize load shifts via 

discounts as heavily. 

Conjecture 2. In equilibrium, if the utility firm does not employ an energy storage, it will 

provide higher percentage discounts than if it employs an energy storage. 

 We define the Kuhn–Tucker condition, which is the derivative of the Lagrange 

function on equation (144) with respect to γt, as follows: 

𝜕𝜕𝐿𝐿𝐿𝐿
𝜕𝜕𝛾𝛾𝑖𝑖

=  −𝑃𝑃  ( 𝑦𝑦𝑖𝑖,𝑖𝑖 + 
(𝛾𝛾𝑖𝑖 −  �̅�𝛾)𝑃𝑃

2𝛼𝛼
) +  𝑃𝑃 (1 − 𝛾𝛾𝑖𝑖)∆  −  2 𝑎𝑎 ∆ ( 𝑦𝑦𝑖𝑖,𝑖𝑖 + 

(𝛾𝛾𝑖𝑖 −  �̅�𝛾)𝑃𝑃
2𝛼𝛼

 

         − 𝑢𝑢𝑖𝑖𝑖𝑖  + 𝑠𝑠𝑖𝑖𝑖𝑖) −  𝑏𝑏∆ ≤ 0 

(158) 

If we solve the supplier model without storage, as in Erkoc, Al-Ahmadi, Celik, and Saad, 

(2015), we will find 
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𝜕𝜕𝐿𝐿𝐿𝐿
𝜕𝜕𝛾𝛾𝑖𝑖

=  −𝑃𝑃  ( 𝑦𝑦𝑖𝑖,𝑖𝑖 +  
(𝛾𝛾𝑖𝑖 −  �̅�𝛾)𝑃𝑃

2𝛼𝛼
) +  𝑃𝑃 (1 − 𝛾𝛾𝑖𝑖)∆  

− 2 𝑎𝑎 ∆ ( 𝑦𝑦𝑖𝑖,𝑖𝑖 +  
(𝛾𝛾𝑖𝑖 −  �̅�𝛾)𝑃𝑃

2𝛼𝛼
) −  𝑏𝑏∆ ≤ 0 

(159) 

 When we compare the difference between equation (158) and equation (159), we 

can find the impact of the charging and discharging decisions in the price discount. As 

the supplier decided to charge the storage, 𝑠𝑠𝑖𝑖𝑖𝑖 > 0, the price discount decreased because 

they were negatively correlated, as shown in equation (158). On the other hand, when the 

energy storage was discharged, uit > 0, the price discount increased. However, if the 

discharging decision occurred during the peak time, the price discount was bound by the 

non-negativity constraint, and most of the time it remained binding even after adding the 

storage energy to the system. Therefore, the discharging decision did not have a 

significant impact on the price discount, which changed from zero to zero. ∎ 

 Since the utility firm’s cost function was convex, increasing with the generation 

amount, it perceived the highest benefits as the generation fluctuation was minimized. 

The implementation of energy storage into the system allowed the utility firm to reduce 

generation fluctuation without a significant change to the nominal demand; consequently, 

the need for price discounts diminished. The effect of this can be seen in Figure 33. 

Furthermore, our analyses show that as the utility firm deployed the energy storage in the 

system, the PAR ,and discounts decreased compared to the case with no storage. 

Finally, the energy provider’s profits increased as energy storage was introduced 

to the system. This is because energy storage allowed the utility firm to participate in 

Energy Arbitrage, which is “earning a profit by charging ESS with cheap electricity when 

the demand is low and selling the stored energy at a higher price when the demand is 
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high” (Vazquez et al., 2010). This can be seen in Figure 35 where the scenarios with 

storage and no storage were compared. 

 

Figure 34:Comparison consumer inconvenience and energy provider’s profit. 

When there is a central authority that wants the lowest energy prices and PAR, 

regulating the market, we propose the following procedure to reach the equilibrium:  

1. Find the optimal price discount and the actual consumptions for customers 

using the model with no storage from the Algorithm in Table 1. 

2. Set the price discount and the customer actual consumption from step 1 as a 

fixed and substitute it into the model from equations (123)–(127) in order to 

find the storage decision variables. 

The results from this procedure are shown in Figures 36, 37, 38 and 39, where we can see 

that the lowest PAR is achieved when the set of the minimum consumption constraints 

(𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖𝑖𝑖) are not binding and the energy provider’s profits decrease around 2.9%. 

While the price discount and the customers total cost is that of the model with no storage. 
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Figure 35:Customer inconvenience multiplier and PAR, coordination. 

 

Figure 36: Customer inconvenience multiplier and energy provider’ profit, coordination. 
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Figure 37: Customer inconvenience multiplier and average discount, coordination 

 

Figure 38: Customer inconvenience multiplier and customers total cost, coordination 

4.6. Conclusions 

 In this chapter, we have evaluated the use of energy storage as part of a strategy 
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energy provider along with the use of price discounts led to more effective PAR 

reductions than when the customers control the energy storage. As such, the deployment 

of energy storage led to lower discounts and higher profits for the energy provider. 

Furthermore, when customers were more sensitive to price changes, there was less 

reliability on the energy storage at equilibrium, but as customers became less sensitive to 

price, the reliance on energy storage increased. 

 



 Chapter 5 Conclusions and Future Work 

5.1. Conclusions  

 We have used Stackelberg game models to study an electricity market composed 

of a single energy provider and multiple customers and evaluated the effects of energy 

storage and load-shifting as part of a smart grid demand response. In these Stackelberg 

game models, the energy provider was the leader and the customers were the followers as 

they intended to maximize their profits and minimize their costs, respectively. The 

customer optimal cost included the consumption cost and inconvenience cost. A 

technique to reach the equilibrium discount prices has been detailed. We built three 

separate models to evaluate the effects that having different types of customers, a market 

with different degrees of diversity and a market of different sizes, a homogeneous or 

heterogeneous market, and energy storage have on the equilibrium discount and PAR. 

 In the first model, we studied the characteristics of load-shifting with no energy 

storage. The game had two levels, in the first level the provider makes his strategic 

decisions by determining the price discount; and then, in the second level, the customers 

respond to the announced discounts by shifting some of their consumption from On-peak 

time slots to Off-peak. Moreover, we investigated the model when customers had the 

same attitude towards load-shifting and when the customers had different attitudes and 

the customers’ inconvenience level varied across the planning horizon. 

 In the second model, we studied the aspect of load-shifting with energy storage. 

We introduced an energy storage to the customer’s model, in which the customers are in 

control of the energy storage. Again, we formulate the game with two levels, the provider 

moves first by deciding a price discount in each time slot on order to encourage 
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customers to shift their consumption from the On-peak time slots to Off-peak, and/or 

charge the storage system in the Off-peak time slots and deploy it on the On-peak time 

slots. In the second level, customers react to the announced discounts by making two 

strategic decisions, the actual consumption and the storage profiles for each time slot. 

 In third model, we investigated and studied the effects on the equilibrium, profits 

and PAR, when the energy storage are controlled by the energy provider. In this game 

there are three levels. In the first level, the provider decides the price discounts; in the 

second level the customers, respond to the announced discount by shifting their nominal 

demand; and in the third level, the provider makes his storage decisions depending on the 

customer’s response to the price discounts.  

 Our results showed that higher discounts were needed when customer 

inconvenience levels were moderate and/or the consumer population was moderately 

diverse in terms of their customer types. Further, discounts were not as effective in 

reducing PAR when the customer population was small or customer types werte alike. 

Moreover, when consumers were price takers, it was relatively easier for the electricity 

provider to dampen the PAR and enjoy higher payoffs with smaller discounts. However, 

when the inconvenience levels became too high, the consumer resistance to load-shifting 

was too strong to justify price discounts. As such, after a point, the provider, in fact, 

began to cut back on the discounts. Finally, the results showed that the use of energy 

storage was very effective in the reduction of the PARs, and the uses of both of these 

tactics (i.e., price discounts and energy storage) provided effective ways to improve 

profits. Moreover, in terms of which controlling the storage, our result showed the PAR 

is lower when the provider controlled the storage, while the price discount was higher 
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when the storage was controlled by the customers. Furthermore, results showed that the 

use of load-shifting always reduced the customers’ total costs, but this reduction was 

diminished by the implementation of energy storage. 

 In terms of the equilibrium results of the three models, the PAR is lowest when 

the energy storage is controlled by the energy provider; while the average discount price 

is highest when there is no energy storage. Because of this we propose the use of 

coordination in order to maximize discounts and minimize the PAR simultaneously. For 

this the model with no storage is run to find the optimal discount and actual consumption 

during each period. These levels are then input to the model with provider controlled 

storage to find the storage profile decisions. Our results show that this method lead to the 

lowest PAR, while the price discount is that of the model with no storage. This proposal 

leads to a slightly lower profit for the energy provider, compared to the model where he 

controls the energy storage and uses it as part of the discount optimization, however this 

difference is very small, and we believe that in the long run the lower PAR achieved from 

the coordination model may lead to greater benefits, especially if future possible 

regulations are taken into account. 

5.2. Future Work  

 In our future work, a possible research direction involves combining renewable 

energy sources to the customers’ model, studying and evaluating of the effects of the 

uncertainty of renewable energy on the discount price and the PAR. Furthermore, each 

customer may become an interactive part of the microgrid where he or she can produce 

some electricity needs and also buy and sell to the electricity market depending on their 

nominal demand and inconvenience cost. This model can combine two games: a 
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Stackelberg game between the provider and customers and a Nash equilibrium game for 

each of the customers. 

 Another approach considered as future work is the use of price discrimination 

where the level of consumption pricing and the time of consumption pricing are 

combined. In each time slot, the energy provider offers a two-discount price. The two 

discounts work by use of a defined threshold. The first discount is offered to all 

customers, while the second is offered to the customers who are more willing to shift 

demand beyond the threshold. Moreover, defining the inconvenience factor is another 

avenue for future study, by investigating and analyzing the factors that impact the 

customer inconvenience. 

Other avenues for future research include the use of a simulated game, in which 

agent based simulation is employed to evaluate the behavior of both the energy provider 

and the customers, and their real-time response to the provided discounts. Furthermore, 

the proposed framework may be evaluated with an empirical study by employing a 

selected group of customers to whom discounts are offered during different periods of the 

day. Their behavior can be evaluated and compared with their historical usage and to other 

control users, who are not offered discounts. 
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APPENDIX A 

Model’s file (Load shifting with no energy storage) – Using Ampl 

param T:= 12;   # timeslot 

param N := 7;   # Number of Customers 

param p:= 0.25;   # base price 

param alpha {1..N};      # inconvenience factor 

param y {1..T,1..N};    # The original amount of electricity demanded   

param a {1..T};          # parameter of the generation cost function 

param b {1..T};          # parameter of the generation cost function 

param c {1..T};          # parameter of the generation cost function 

param m {1..T,1..N};      # Minimum consumption that cannot be shifted to another 

timeslot 

var discount {t in 1..T} >= 0, <= 1;         # price discounts 

var x {1..T,1..N};                         # actual consumption 

maximize Total_Profit: 

sum {t in 1..T} ((1 - discount[t]) * p * sum {n in 1..N} x[t,n]  

                    - a[t] * (sum {n in 1..N} x[t,n])^2 - b[t] * (sum {n in 1..N} x[t,n]) - c[t]); 

subject to demand {t in 1..T,n in 1..N}: 

 x[t,n] = y[t,n] + ((discount[t] - ((sum {k in 1..T} discount[k])/T)) * p/(2* alpha[n]));  

Run’s file (Load shifting with no energy storage) – Using Ampl 

model Load_shifting_with_no_storage.mod; 

param cost1 {1..N};  # consumption cost 

param cost2 {1..N};  # Inconvenience cost 
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param shift {1..N}; 

## Reading the data from Excel file###  

table pdiscount "ODBC" "load_shifting_with_no_storage_data.xlsx" "Timeslots": 

    [T], a IN, b IN, c IN, 

   discount OUT; 

table consumers "ODBC" "load_shifting_with_no_storage_data.xlsx" "Customers": 

    [N], alpha IN, cost1 OUT, cost2 OUT, shift OUT; 

table amount "ODBC" "load_shifting_with_no_storage_data.xlsx" "Consumptions": 

   [T,N], y IN, 

   x OUT; 

read table pdiscount; 

read table consumers; 

read table amount; 

solve; 

param h {i in 1..T,j in 1..N};   #Loop parameter 

param q;                          #Loop parameter 

param v {1..T};                   #Loop parameter 

param k {1..N};  # T hat 

param tbar {1..N}; 

subject to demand1 {t in 1..T,n in 1..N: h[t,n] > 0}: 

x[t,n] = y[t,n] + tbar[n]/ k[n] + (discount[t] - ((sum {i in 1..T} if h[i,n] > 0  then 

discount[i] else 0)/ k[n])) * p/2/alpha[n] ; 

subject to demand2 {t in 1..T,n in 1..N: h[t,n] <= 0}: 
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x[t,n] = 0; 

problem subopt: discount, x, Total_Profit, demand2, demand1; 

repeat optimal_loop { 

let {i in 1..T,j in 1..N} h[i,j]:= x[i,j]; 

for {i in 1..T} { let v[i]:= 0; 

}; 

for {i in 1..T} {for {j in 1..N} {if h[i,j] >= 0 then {let v[i]:= v[i] + 1;   # step2 

};};}; 

let q:= sum{i in 1..T} v[i]; 

if q = N * T then break optimal_loop;    # step2 

for {i in 1..N} { let k[i]:= 0; 

}; 

for {i in 1..N} {for {j in 1..T} {if h[j,i] > 0 then {let k[i]:= k[i] + 1; 

};};}; 

let {j in 1..N} tbar[j]:= sum {i in 1..T} if h[i,j] <= 0 then y[i,j] else 0; 

solve subopt; } ; 

let {j in 1..N} cost1[j]:= sum {i in 1..T} x[i,j] * (1- discount[i]) * p; 

let {j in 1..N} cost2[j]:= sum {i in 1..T} (x[i,j] - y[i,j])^2 * alpha[j] ; 

let {j in 1..N} shift[j]:= sum {i in 1..T} if  (y[i,j]- x[i,j]) > 0 then (y[i,j]- x[i,j]) else 0  ; 

write table pdiscount; 

write table amount; 

write table consumers; 
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Table 10: “Consumptions” table from the data file when number of customers is two – no 
energy storage 

T N y x 
1 1 1.71 3.50 
1 2 1.53 3.36 
2 1 2.38 3.53 
2 2 2.03 3.21 
3 1 3.34 3.74 
3 2 3.01 3.42 
4 1 4.16 3.76 
4 2 4.32 3.91 
5 1 4.51 3.66 
5 2 4.77 3.89 
6 1 5.67 4.82 
6 2 5.59 4.71 
7 1 10.66 9.81 
7 2 10.54 9.66 
8 1 8.58 7.73 
8 2 8.96 8.08 
9 1 8.10 7.25 
9 2 8.43 7.55 
10 1 5.17 4.32 
10 2 5.27 4.39 
11 1 2.36 3.31 
11 2 2.56 3.53 
12 1 2.40 3.63 
12 2 2.10 3.37 

 
Table 11: “Customers” table from the data file when number of customers is two – no 

energy storage 

N alpha cost1 cost2 shift 
1 0.008139 14.169280258 0.094695461 5.520829090 
2 0.00794 14.211110408 0.097061139 5.658750236 
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Table 12:“Timeslots” table from the data file when number of customers is two– no 
energy storage 

T a b c discount 
1 0.0035 0 0 0.179822152 
2 0.0035 0 0 0.130824399 
3 0.0035 0 0 0.072700475 
4 0.0035 0 0 0.011121027 
5 0.0035 0 0 0.000000000 
6 0.0035 0 0 0.000000000 
7 0.0035 0 0 0.000000000 
8 0.0035 0 0 0.000000000 
9 0.0035 0 0 0.000000000 
10 0.0035 0 0 0.000000000 
11 0.0035 0 0 0.114787160 
12 0.0035 0 0 0.137115250 

  



 

APPENDIX B 

Model’s file (Load shifting with no energy storage- inconvenience varies across time 

periods) – Using Ampl: 

param T:= 12;    # timeslot 

param N := 21;   # Number of Customers 

param p:= 0.25;   # base price 

param alpha {1..T,1..N};   # inconvenience factor 

param y {1..T,1..N};    # The original amount of electricity demanded   

param a {1..T};          # parameter of the generation cost function 

param b {1..T};          # parameter of the generation cost function 

param c {1..T};          # parameter of the generation cost function 

param m {1..T,1..N};      # Minimum consumption that cannot be shifted to another 

timeslot 

var discount {t in 1..T} >= 0, <= 1;      # price discounts 

var x {1..T,1..N};                        # actual consumption 

maximize Total_Profit: 

sum {t in 1..T} ((1 - discount[t]) * p * sum {n in 1..N} x[t,n] - a[t] * (sum {n in 1..N} 

x[t,n])^2 - b[t] * (sum {n in 1..N} x[t,n]) - c[t]); 

subject to demand {t in 1..T,n in 1..N}: 

 x[t,n] = y[t,n] - (1-discount[t])* p/(2* alpha[t,n]) +  (sum {k in 1..T} (1-discount[k])* p 

/(2* alpha[k,n]))/ (sum {s in 1..T} 1/(2* alpha[s,n]))/ (2* alpha[t,n]) ; 
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Run’s file (Load shifting with no energy storage- inconvenience varies across time 

periods) – Using Ampl: 

model model_different_alpha.mod; 

param cost1 {1..N};  # cosumption cost 

param cost2 {1..N};  # Inconvenience cost 

param shift {1..N}; 

table pdiscount "ODBC" "different_alpha_data.xlsx" "Timeslots": 

    [T], a IN, b IN, c IN,discount OUT; 

table consumers "ODBC" "different_alpha_data.xlsx" "Customers": 

    [T,N], alpha IN ; 

table consumers1 "ODBC" "different_alpha_data.xlsx" "cost": 

    [N], cost1 OUT, cost2 OUT, shift OUT; 

table amount "ODBC" "different_alpha_data.xlsx" "Consumptions": 

   [T,N], y IN,x OUT; 

read table pdiscount; 

read table consumers; 

read table amount; 

solve; 

param h {i in 1..T,j in 1..N};   #Loop parameter 

param q;                          #Loop parameter 

param v {1..T};                   #Loop parameter 

param k {1..N};  # T hat 

param tbar {1..N}; 
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subject to demand1 {t in 1..T,n in 1..N: h[t,n] > 0}: 

 x[t,n] = y[t,n]  - (1-discount[t])* p/(2* alpha[t,n])  

      + (1/(sum {s in 1..T} if h[s,n] > 0  then  1/(2* alpha[s,n]) else 0) / (2* alpha[t,n]))* 

(tbar[n]+ (sum {i in 1..T} if h[i,n] > 0 then (1-discount[i])* p /(2* alpha[i,n]) else 0)) ;  

subject to demand2 {t in 1..T,n in 1..N: h[t,n] <= 0}: 

x[t,n] = 0; 

problem subopt: discount, x, Total_Profit, demand2, demand1; 

repeat optimal_loop { 

let {i in 1..T,j in 1..N} h[i,j]:= x[i,j]; 

for {i in 1..T} { let v[i]:= 0;}; 

for {i in 1..T} {for {j in 1..N} {if h[i,j] >= 0 then {let v[i]:= v[i] + 1; };};};  # step2 

let q:= sum{i in 1..T} v[i]; 

if q = N * T then break optimal_loop;    # step2 

for {i in 1..N} { let k[i]:= 0;}; 

for {i in 1..N} {for {j in 1..T} {if h[j,i] > 0 then {let k[i]:= k[i] + 1; };};}; 

let {j in 1..N} tbar[j]:= sum {i in 1..T} if h[i,j] <= 0 then y[i,j] else 0; 

solve subopt; } ; 

let {j in 1..N} cost1[j]:= sum {i in 1..T} x[i,j] * (1- discount[i]) * p; 

let {j in 1..N} cost2[j]:= sum {i in 1..T} (x[i,j] - y[i,j])^2 * alpha[i,j] ; 

let {j in 1..N} shift[j]:= sum {i in 1..T} if  (y[i,j]- x[i,j]) > 0 then (y[i,j]- x[i,j]) else 0  ; 

write table pdiscount; 

write table amount; 

write table consumers1; 
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Table 13: “Consumptions” table from the data file for number of customers is two – 

inconvenience varies across time periods 

T N y x 
1 1 1.71 3.90 
1 2 1.53 3.18 
2 1 2.38 3.97 
2 2 2.03 3.23 
3 1 3.34 4.23 
3 2 3.01 3.68 
4 1 4.16 4.31 
4 2 4.32 4.42 
5 1 4.51 4.05 
5 2 4.77 4.43 
6 1 5.67 4.40 
6 2 5.59 4.67 
7 1 10.66 8.57 
7 2 10.54 9.04 
8 1 8.58 6.49 
8 2 8.96 7.46 
9 1 8.10 5.15 
9 2 8.43 6.54 

10 1 5.17 3.81 
10 2 5.27 4.39 
11 1 2.36 4.82 
11 2 2.56 4.11 
12 1 2.40 5.35 
12 2 2.10 3.96 
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Table 14: “Customers” table from the data file for two customers – inconvenience varies 
across time periods 

T N alpha 
1 1 0.003567 
1 2 0.004687 
2 1 0.003567 
2 2 0.004687 
3 1 0.003567 
3 2 0.004687 
4 1 0.003567 
4 2 0.004687 
5 1 0.002767 
5 2 0.003887 
6 1 0.002767 
6 2 0.003887 
7 1 0.002767 
7 2 0.003887 
8 1 0.002767 
8 2 0.003887 
9 1 0.001967 
9 2 0.003087 
10 1 0.001967 
10 2 0.003087 
11 1 0.001967 
11 2 0.003087 
12 1 0.001967 
12 2 0.003087 

 
Table 15: “cost” table from the data file for two customers – inconvenience varies across 

time periods 

N cost1 cost2 shift 
1 31.83771 0.107972 10.224287 
2 31.95995 0.074560 7.037451 
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Table 16: “Timeslots” table from the data file– inconvenience varies across time periods 

T a b c discount 
1 0.0009 0 0 0.049411216 
2 0.0009 0 0 0.041739349 
3 0.0009 0 0 0.032638545 
4 0.0009 0 0 0.022996687 
5 0.0009 0 0 0.016397388 
6 0.0009 0 0 0.008309326 
7 0.0009 0 0 0.000000000 
8 0.0009 0 0 0.000000000 
9 0.0009 0 0 0.000000000 
10 0.0009 0 0 0.011357074 
11 0.0009 0 0 0.038645614 
12 0.0009 0 0 0.042141654 

 

  



 

APPENDIX C 

Model’s file (Load shifting with customers controlled storage) – Using Ampl: 

param T:= 12;    # timeslot 

param N := 7;   # Number of Customers 

param p:= 0.25;   # base price 

param alpha {1..N};      # inconvenience factor 

param y {1..T,1..N};    # The original amount of electricity demanded   

param a {1..T};          # parameter of the generation cost function 

param b {1..T};          # parameter of the generation cost function 

param c {1..T};          # parameter of the generation cost function 

param m {1..T,1..N};      # Minimum consumption that cannot be shifted to another 

timeslot 

param ro:= 0.99; # storage efficiency 

param tau:= 0.01; # charging efficiency 

param beta:= 0.01; # discharging efficiency 

param cap:= 12;  # storage capacity 

var discount {t in 1..T} >= 0, <= 1;       # price discounts 

var x {1..T,1..N};                         # actual consumption 

var xcharge {1..T,1..N} >=0;     #amount of charging  

var xstored {1..T,1..N} >=0, <=cap; # storage level  

var mu2 {1..T,1..N} >= 0;   #lagrangian multiplier for discharged non-negativity 

constraints 

var mu3 {1..T,1..N} >= 0;   #lagrangian multiplier for the storage capacity constraints 
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maximize Total_Profit: 

(1 - discount[1]) * p * ( sum {n in 1..N} (x[1,n] + xcharge[1,n] - (- xstored[1,n] + (1- tau) 

* xcharge[1,n])/(1+ beta))) 

                                      - a[1] * (sum {n in 1..N} (x[1,n] + xcharge[1,n] - (- xstored[1,n] + 

(1- tau) * xcharge[1,n])/(1+ beta)))^2  

                                        - b[1] * ( sum {n in 1..N} (x[1,n] + xcharge[1,n] - (- xstored[1,n] 

+ (1- tau) * xcharge[1,n])/(1+ beta))) - c[1] 

+ sum {t in 2..T} ((1 - discount[t]) * p * ( sum {n in 1..N} (x[t,n] + xcharge[t,n] - (-

xstored[t,n]+ ro * xstored[t-1,n] + (1 - tau) * xcharge[t,n])/(1+ beta))) 

                                      - a[t] * (sum {n in 1..N} (x[t,n] + xcharge[t,n] - (-xstored[t,n]+ ro 

* xstored[t-1,n] + (1 - tau) * xcharge[t,n])/(1+ beta)))^2  

                                        - b[t] * ( sum {n in 1..N} (x[t,n] + xcharge[t,n] - (-xstored[t,n]+ 

ro * xstored[t-1,n] + (1 - tau) * xcharge[t,n])/(1+ beta)))- c[t]); 

subject to demand {t in 1..T,n in 1..N}:  

x[t,n] = y[t,n] + ((discount[t] - ((sum {k in 1..T} discount[k])/T)) * p/(2* alpha[n])) ;  

subject to charge {t in 1..T,n in 1..N}: 

 (1 - discount[t]) * p * (1 - (1- tau)/(1+ beta)) - mu3[t,n] * (1- tau)/(1+ beta) >= 0; 

subject to charge_s {t in 1..T,n in 1..N}: 

 xcharge[t,n] * ((1 - discount[t]) * p * (1 - (1- tau)/(1+ beta)) - mu3[t,n] * (1- tau)/(1+ 

beta)) = 0; 

#t=12 

subject to stored12 {n in 1..N}: 

(1 - discount[12]) * p/(1 + beta) + (1/(1+ beta)) * mu3[12,n]  
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              + mu2[12,n] >= 0; 

subject to s512 {n in 1..N}: 

((1 - discount[12]) * p/(1 + beta) + (1/(1+ beta)) * mu3[12,n]  

              + mu2[12,n]) * xstored[12,n]= 0; 

#t=1 

subject to stored1 {n in 1..N}: 

(1 - discount[1]) * p/(1 + beta) - (1 - discount[2]) * p * ro/ (1 + beta)   

         + (1/(1+ beta)) * mu3[1,n] - (ro/(1 + beta)) * mu3[2,n]  

              + mu2[1,n] >= 0;  

subject to s51 {n in 1..N}: 

((1 - discount[1]) * p/(1 + beta) - (1 - discount[2]) * p * ro/ (1 + beta)   

         + (1/(1+ beta)) * mu3[1,n] - (ro/(1 + beta)) * mu3[2,n]  

              + mu2[1,n]) * xstored[1,n]= 0; 

subject to stored222 {n in 1..N}: 

(1 - discount[2]) * p/(1 + beta) - (1 - discount[3]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[2,n] - (ro/(1 + beta)) * mu3[3,n]  

              + mu2[2,n] >= 0;  

subject to s52 {n in 1..N}: 

((1 - discount[2]) * p/(1 + beta) - (1 - discount[3]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[2,n] - (ro/(1 + beta)) * mu3[3,n]  

              + mu2[2,n]) * xstored[2,n]= 0; 

#t=3 
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subject to stored3 {n in 1..N}: 

(1 - discount[3]) * p/(1 + beta) - (1 - discount[4]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[3,n] - (ro/(1 + beta)) * mu3[4,n]  

              + mu2[3,n] >= 0;  

subject to s53 {n in 1..N}: 

((1 - discount[3]) * p/(1 + beta) - (1 - discount[4]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[3,n] - (ro/(1 + beta)) * mu3[4,n]  

              + mu2[3,n]) * xstored[3,n]= 0; 

#t=4 

subject to stored4 {n in 1..N}: 

(1 - discount[4]) * p/(1 + beta) - (1 - discount[5]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[4,n] - (ro/(1 + beta)) * mu3[5,n]  

              + mu2[4,n] >= 0;  

subject to s54 {n in 1..N}: 

((1 - discount[4]) * p/(1 + beta) - (1 - discount[5]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[4,n] - (ro/(1 + beta)) * mu3[5,n]  

              + mu2[4,n]) * xstored[4,n]= 0; 

#t=5 

subject to stored5 {n in 1..N}: 

(1 - discount[5]) * p/(1 + beta) - (1 - discount[6]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[5,n] - (ro/(1 + beta)) * mu3[6,n]  

              + mu2[5,n] >= 0;  
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subject to s55 {n in 1..N}: 

((1 - discount[5]) * p/(1 + beta) - (1 - discount[6]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[5,n] - (ro/(1 + beta)) * mu3[6,n]  

              + mu2[5,n]) * xstored[5,n]= 0; 

#t=6 

subject to stored6 {n in 1..N}: 

(1 - discount[6]) * p/(1 + beta) - (1 - discount[7]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[6,n] - (ro/(1 + beta)) * mu3[7,n]  

              + mu2[6,n] >= 0; 

subject to s56 {n in 1..N}: 

((1 - discount[6]) * p/(1 + beta) - (1 - discount[7]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[6,n] - (ro/(1 + beta)) * mu3[7,n]  

              + mu2[6,n]) * xstored[6,n]= 0; 

#t=7 

subject to stored7 {n in 1..N}: 

(1 - discount[7]) * p/(1 + beta) - (1 - discount[8]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[7,n] - (ro/(1 + beta)) * mu3[8,n]  

              + mu2[7,n] >= 0;  

subject to s57 {n in 1..N}: 

((1 - discount[7]) * p/(1 + beta) - (1 - discount[8]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[7,n] - (ro/(1 + beta)) * mu3[8,n]  

              + mu2[7,n]) * xstored[7,n]= 0; 

#t=8 
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subject to stored8 {n in 1..N}: 

(1 - discount[8]) * p/(1 + beta) - (1 - discount[9]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[8,n] - (ro/(1 + beta)) * mu3[9,n]  

              + mu2[8,n] >= 0;  

subject to s58 {n in 1..N}: 

((1 - discount[8]) * p/(1 + beta) - (1 - discount[9]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[8,n] - (ro/(1 + beta)) * mu3[9,n]  

              + mu2[8,n]) * xstored[8,n]= 0; 

#t=9 

subject to stored9 {n in 1..N}: 

(1 - discount[9]) * p/(1 + beta) - (1 - discount[10]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[9,n] - (ro/(1 + beta)) * mu3[10,n]  

              + mu2[9,n] >= 0;  

subject to s59 {n in 1..N}: 

((1 - discount[9]) * p/(1 + beta) - (1 - discount[10]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[9,n] - (ro/(1 + beta)) * mu3[10,n]  

              + mu2[9,n]) * xstored[9,n]= 0; 

#t=10 

subject to stored10 {n in 1..N}: 

(1 - discount[10]) * p/(1 + beta) - (1 - discount[11]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[10,n] - (ro/(1 + beta)) * mu3[11,n]  

              + mu2[10,n] >= 0;  

subject to s510 {n in 1..N}: 
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((1 - discount[10]) * p/(1 + beta) - (1 - discount[11]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[10,n] - (ro/(1 + beta)) * mu3[11,n]  

              + mu2[10,n]) * xstored[10,n]= 0; 

#t=11 

subject to stored11 {n in 1..N}: 

(1 - discount[11]) * p/(1 + beta) - (1 - discount[12]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[11,n] - (ro/(1 + beta)) * mu3[12,n]  

              + mu2[11,n] >= 0;  

subject to s511 {n in 1..N}: 

((1 - discount[11]) * p/(1 + beta) - (1 - discount[12]) * p * ro/ (1 + beta)   

          + (1/(1+ beta)) * mu3[11,n] - (ro/(1 + beta)) * mu3[12,n]  

              + mu2[11,n]) * xstored[11,n]= 0; 

subject to s2 {t in 1..T,n in 1..N}:  

mu2[t,n]*(cap- xstored[t,n]) = 0; 

subject to maxcap {t in 1..T,n in 1..N}:  

   xstored[t,n] <= cap; 

subject to nonnegtive_discharged1 {n in 1..N}: 

(- xstored[1,n] + (1- tau) * xcharge[1,n])/(1+ beta) >= 0; 

subject to nonnegtive_discharged1_S {n in 1..N}: 

mu3[1,n] * ((- xstored[1,n] + (1- tau) * xcharge[1,n])/(1+ beta)) = 0; 

subject to nonnegtive_discharged {t in 2..T,n in 1..N}: 

(-xstored[t,n]+ ro * xstored[t-1,n] + (1 - tau) * xcharge[t,n])/(1+ beta) >= 0; 

subject to nonnegtive_discharged_S {t in 2..T,n in 1..N}: 
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mu3[t,n] * ((-xstored[t,n]+ ro * xstored[t-1,n] + (1 - tau) * xcharge[t,n])/(1+ beta)) = 0; 

Run’s file (Load shifting with customers controlled storage) – Using Ampl: 

model Storage_customer_controlled_mod.mod; 

option omit_zero_rows 1; 

option display_1col 0; 

option display_eps .0000000001; 

param cost1 {1..N};  # consumption cost 

param cost2 {1..N};  # Inconvenience cost 

param shift {1..N}; 

param storage {1..N}; 

table pdiscount "ODBC" "Storage_customer_controlled_data.xlsx" "Timeslots": 

    [T], a IN, b IN, c IN, discount OUT; 

table consumers "ODBC" "Storage_customer_controlled_data.xlsx" "Customers": 

    [N], alpha IN, cost1 OUT, cost2 OUT, shift OUT, storage OUT;  

table amount "ODBC" "Storage_customer_controlled_data.xlsx" "Consumptions": 

   [T,N], y IN, x OUT,  xcharge OUT,  xstored OUT , mu3 OUT, mu2 OUT   ; 

read table pdiscount; 

read table consumers; 

read table amount; 

solve; 

param h {i in 1..T,j in 1..N};   #Loop parameter 

param q;                          #Loop parameter 

param v {1..T};                   #Loop parameter 
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param k {1..N};  # T hat 

param tbar {1..N}; 

subject to demand1 {t in 1..T,n in 1..N: h[t,n] > 0}: 

 x[t,n] = y[t,n] + tbar[n]/ k[n] + (discount[t] - ((sum {i in 1..T} if h[i,n] > 0  then 

discount[i] else 0)/ k[n])) * p/2/alpha[n] ; 

subject to demand2 {t in 1..T,n in 1..N: h[t,n] <= 0}: 

x[t,n] = 0; 

problem subopt: discount, x, Total_Profit, demand2, demand1, xcharge, xstored, mu2 , 

mu3, 

                  charge, charge_s, stored12, s512, stored1, s51, stored222, s52, stored3, s53, 

                     stored4, s54,  stored5, s55, stored6, s56, stored7, s57, 

                         stored8, s58, stored9, s59, stored10, s510, stored11, s511, 

                             s2, maxcap, nonnegtive_discharged1, nonnegtive_discharged1_S,         

nonnegtive_discharged, nonnegtive_discharged_S ; 

repeat optimal_loop { 

let {i in 1..T,j in 1..N} h[i,j]:= x[i,j]; 

for {i in 1..T} { let v[i]:= 0;}; 

for {i in 1..T} {for {j in 1..N} {if h[i,j] >= 0 then {let v[i]:= v[i] + 1;   # step2 

};};}; 

let q:= sum{i in 1..T} v[i]; 

if q = N * T then break optimal_loop;    # step2 

for {i in 1..N} { let k[i]:= 0;}; 

for {i in 1..N} {for {j in 1..T} {if h[j,i] > 0 then {let k[i]:= k[i] + 1; 
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};};}; 

let {j in 1..N} tbar[j]:= sum {i in 1..T} if h[i,j] <= 0 then y[i,j] else 0; 

solve subopt; } ; 

let {n in 1..N} cost1[n]:= (1 - discount[1]) * p * ( x[1,n] + xcharge[1,n] - (- xstored[1,n] + 

(1- tau) * xcharge[1,n])/(1+ beta)) + sum {t in 2..T} ((1 - discount[t]) * p * (x[t,n] + 

xcharge[t,n]  

- (-xstored[t,n]+ ro * xstored[t-1,n] + (1 - tau) * xcharge[t,n])/(1+ beta))); 

let {j in 1..N} cost2[j]:= sum {i in 1..T} (x[i,j] - y[i,j])^2 * alpha[j] ; 

let {j in 1..N} shift[j]:= sum {i in 1..T} if  (y[i,j]- x[i,j]) > 0 then (y[i,j]- x[i,j]) else 0  ; 

let {j in 1..N} storage[j]:= sum {i in 1..T} xstored[i,j]  ;  

let {t in 2..T, n in 1..N} xdischarge[t,n] := (- xstored[t,n] + (1 - tau) * xcharge[t,n] + ro * 

xstored[t-1,n])/(1+beta); 

let {n in 1..N} xdischarge[1,n] := (- xstored[1,n] + (1 - tau) * xcharge[1,n] )/(1+beta); 

write table pdiscount; 

write table amount; 

write table consumers; 
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Table 17: “Consumptions” table from the data file for number of customers is two – 
Storage is controlled by customers 

T N y x xcharge xstored mu2 mu3 
1 1 1.71 10.01 4.44946 4.40496 0 0.00460 
1 2 1.53 1.77 0.00000 0.00000 0 0.00460 
2 1 2.38 9.15 0.00000 4.36091 0 0.00465 
2 2 2.03 2.23 3.08187 3.05105 0 0.00465 
3 1 3.34 8.56 0.00 4.32 0 0.00 
3 2 3.01 3.17 0.801509 3.814031 0 0.004697 
4 1 4.16 7.81 0 4.274132 0 0.004745 
4 2 4.32 4.43 1.22E-08 3.77589 0 0.004745 
5 1 4.51 6.58 0.276209 4.504837 0 0.004793 
5 2 4.77 4.84 0.921573 4.650488 0 0.004793 
6 1 5.67 6.14 0.40 4.86 0 0.00 
6 2 5.59 5.61 0.01 4.61 0 0.00 
7 1 10.66 6.26 0.00 0.00 0 0.00 
7 2 10.54 10.42 0.00 0.00 0 0.00 
8 1 8.58 2.52 0.00 0.00 0 0.00 
8 2 8.96 8.79 0.00 0.00 0 0.00 
9 1 8.10 2.02 0.00 0.00 0 0.00 
9 2 8.43 8.26 0.00 0.00 0 0.00 
10 1 5.17 0.00 0.00 0.00 0 0.00 
10 2 5.27 5.09 0.00 0.00 0 0.00 
11 1 2.36 0.00 0.00 0.00 0 0.00 
11 2 2.56 2.45 0.00 0.00 0 0.00 
12 1 2.40 0.00 0.00 0.00 0 0.00 
12 2 2.10 2.04 0.00 0.00 0 0.00 

 
Table 18: “Customers” table from the data file for two customers – Storage is controlled 

by customers 

N alpha cost1 cost2 shift storage 
1 0.00075 13.920752 0.218258 26.480295 26.719231 
2 0.02625 14.390253 0.006785 0.800339 19.900891 
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Table 19: “Timeslots” table from the data file– Storage is controlled by customers 

T a b c discount 
1 0.0035 0 0 0.088415300 
2 0.0035 0 0 0.079207374 
3 0.0035 0 0 0.069906438 
4 0.0035 0 0 0.060511554 
5 0.0035 0 0 0.051021771 
6 0.0035 0 0 0.041436133 
7 0.0035 0 0 0.012193138 
8 0.0035 0 0 0.002215290 
9 0.0035 0 0 0.002098202 
10 0.0035 0 0 0.000000000 
11 0.0035 0 0 0.013646749 
12 0.0035 0 0 0.024202800 

  



 

APPENDIX D 

Model’s file (Load shifting with provider controlled storage) – Using Ampl: 

param T:= 12;    # timeslot 

param N := 7;   # Number of Customers 

param p:= 0.25;   # base price 

param alpha {1..N};      # inconvenience factor 

param y {1..T,1..N};    # The original amount of electricity demanded   

param a {1..T};          # parameter of the generation cost function 

param b {1..T};          # parameter of the generation cost function 

param c {1..T};          # parameter of the generation cost function 

param m {1..T,1..N};      # Minimum consumption that cannot be shifted to another 

timeslot 

param ro:= 0.99; # storage efficiency 

param tau:= 0.01; # charging efficiency 

param beta:= 0.01; # discharging efficiency 

param cap:= 12;  # storage capacity 

var discount {t in 1..T} >= 0, <= 1;       # price discounts 

var x {1..T,1..N};                         # actual consumption 

var xcharge {1..T,1..N} >=0;     #amount of charging  

var xdischarge {1..T,1..N} >=0;  #amount of discharging  

var xstored {1..T,1..N} >=0, <=cap; # storage level  

maximize Total_Profit: 

sum {t in 1..T} ((1 - discount[t]) * p * sum {n in 1..N} x[t,n]  

133 
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                - a[t] * (sum {n in 1..N} (x[t,n]-xdischarge[t,n]+xcharge[t,n]))^2  

                   - b[t] * (sum {n in 1..N} (x[t,n]-xdischarge[t,n]+xcharge[t,n])) - c[t]); 

subject to demand {t in 1..T,n in 1..N}: 

x[t,n] = y[t,n] + ((discount[t] - ((sum {k in 1..T} discount[k])/T)) * p/(2* alpha[n]));  

## Storage balance constirants## 

subject to xini_CB {i in 1..N}: 

(1-tau)*xcharge[1,i]-(1+beta)*xdischarge[1,i]-xstored[1,i]=0; 

subject to xC_Balance {t in 2..T, i in 1..N}: 

ro*xstored[t-1,i]+(1-tau)*xcharge[t,i]-(1+beta)*xdischarge[t,i]-xstored[t,i]=0;   

Run’s file (Load shifting with provider controlled storage) – Using Ampl 

model Load_shifting_w_provider_controlled_storage.mod; 

param cost1 {1..N};  # cosumption cost 

param cost2 {1..N};  # Inconvenience cost 

param shift {1..N}; 

param storage {1..N}; 

table pdiscount "ODBC" "Load_shifting_w_provider_controlled_storage.xlsx" 

"Timeslots": 

    [T], a IN, b IN, c IN, 

   discount OUT; 

table consumers "ODBC" "Load_shifting_w_provider_controlled_storage.xlsx" 

"Customers": 

    [N], alpha IN, cost1 OUT, cost2 OUT, shift OUT, storage OUT; 
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table amount "ODBC" "Load_shifting_w_provider_controlled_storage.xlsx" 

"Consumptions": 

   [T,N], y IN, 

   x OUT, xcharge OUT, xdischarge OUT, xstored OUT  ; 

read table pdiscount; 

read table consumers; 

read table amount; 

option omit_zero_rows 1; 

option display_1col 0; 

option display_eps .000001; 

solve; 

param h {i in 1..T,j in 1..N};   #Loop parameter 

param q;                          #Loop parameter 

param v {1..T};                   #Loop parameter 

param k {1..N};  # T hat 

param tbar {1..N}; 

subject to demand1 {t in 1..T,n in 1..N: h[t,n] > 0}: 

x[t,n] = y[t,n] + tbar[n]/ k[n] + (discount[t] - ((sum {i in 1..T} if h[i,n] > 0  then 

discount[i] else 0)/ k[n])) * p/2/alpha[n] ; 

subject to demand2 {t in 1..T,n in 1..N: h[t,n] <= 0}: 

x[t,n] = 0; 

problem subopt: discount, x, Total_Profit, demand2, demand1, xini_CB, xC_Balance, 

xcharge, xdischarge, xstored  ; 
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repeat optimal_loop { 

let {i in 1..T,j in 1..N} h[i,j]:= x[i,j]; 

for {i in 1..T} { let v[i]:= 0;}; 

for {i in 1..T} {for {j in 1..N} {if h[i,j] >= 0 then {let v[i]:= v[i] + 1;   # step2 

};};}; 

let q:= sum{i in 1..T} v[i]; 

if q = N * T then break optimal_loop;    # step2 

for {i in 1..N} { let k[i]:= 0;}; 

for {i in 1..N} {for {j in 1..T} {if h[j,i] > 0 then {let k[i]:= k[i] + 1; 

};};}; 

let {j in 1..N} tbar[j]:= sum {i in 1..T} if h[i,j] <= 0 then y[i,j] else 0; 

solve subopt;  

} ; 

let {j in 1..N} cost1[j]:= sum {i in 1..T} x[i,j] * (1- discount[i]) * p; 

let {j in 1..N} cost2[j]:= sum {i in 1..T} (x[i,j] - y[i,j])^2 * alpha[j] ; 

let {j in 1..N} shift[j]:= sum {i in 1..T} if  (y[i,j]- x[i,j]) > 0 then (y[i,j]- x[i,j]) else 0  ; 

let {j in 1..N} storage[j]:= sum {i in 1..T} xstored[i,j]  ;  

write table pdiscount; 

write table amount; 

write table consumers; 
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Table 20: “Consumptions” table from the data file when number of customers is two – 
Storage is controlled by provider 

T N y x xcharge xdischarge xstored 
1 1 1.71 6.95 5.05 0.00 5.00 
1 2 1.53 1.68 2.87 0.00 2.84 
2 1 2.38 5.79 0.05 0.00 5.00 
2 2 2.03 2.13 2.21 0.00 5.00 
3 1 3.34 4.71 0.05 0.00 5.00 
3 2 3.01 3.05 0.05 0.00 5.00 
4 1 4.16 3.41 0.05 0.00 5.00 
4 2 4.32 4.30 0.05 0.00 5.00 
5 1 4.51 2.20 0.05 0.00 5.00 
5 2 4.77 4.70 0.05 0.00 5.00 
6 1 5.67 1.57 0.05 0.00 5.00 
6 2 5.59 5.47 0.05 0.00 5.00 
7 1 10.66 6.56 0.00 4.90 0.00 
7 2 10.54 10.42 0.00 4.90 0.00 
8 1 8.58 4.48 0.00 0.00 0.00 
8 2 8.96 8.84 0.00 0.00 0.00 
9 1 8.10 4.00 0.00 0.00 0.00 
9 2 8.43 8.31 0.00 0.00 0.00 
10 1 5.17 3.23 0.00 0.00 0.00 
10 2 5.27 5.21 0.00 0.00 0.00 
11 1 2.36 7.59 0.00 0.00 0.00 
11 2 2.56 2.71 0.00 0.00 0.00 
12 1 2.40 8.54 0.00 0.00 0.00 
12 2 2.10 2.28 0.00 0.00 0.00 

 

Table 21: “Customers” table from the data file when number of customers is two – 
Storage is controlled by provider 

N alpha cost1 cost2 shift storage 
1 0.00075 14.28786 0.13716 21.39331 30.00000 
2 0.02625 14.58101 0.00392 0.61124 27.84238 
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Table 22: “Timeslots” table from the data file when number of customers is two– Storage 
is controlled by provider 

T a b c discount 
1 0.0035 0 0 0.056020394 
2 0.0035 0 0 0.045059047 
3 0.0035 0 0 0.032839592 
4 0.0035 0 0 0.020115395 
5 0.0035 0 0 0.010725773 
6 0.0035 0 0 0.000000000 
7 0.0035 0 0 0.000000000 
8 0.0035 0 0 0.000000000 
9 0.0035 0 0 0.000000000 
10 0.0035 0 0 0.012948395 
11 0.0035 0 0 0.055947938 
12 0.0035 0 0 0.061456777 
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