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The  first  part  of  this  dissertation  studies  a  constrained  simulation-­based  optimization  

problem   over   a   discrete   set   where   noise-­corrupted   observations   of   the   objective   and  

constraints  are  available.  The  problem  is  challenging  because  the  feasibility  of  a  solution  

cannot  be  known  for  certain.  The  uncertainty,  in  turn,  arises  from  the  noisy  measurements  

of   the   constraints.  To   tackle   this   issue,  we  propose   an   innovative  method   that   converts  

constrained  optimization  into  the  unconstrained  optimization  problem  of  finding  a  saddle  

point  of  the  Lagrangian.  The  method  applies  stochastic  approximation  to  the  Lagrangian  

in   search   of   the   saddle   point.   We   prove   that   the   proposed   method   converges   to   the  

optimal  solution  almost  surely  (a.s.)  under  suitable  conditions  as  the  number  of  iterations  

grows.   We   present   the   effectiveness   of   the   proposed   method   numerically   in   four  

examples,  with  applications  in  inventory  control,  call  center  staffing  and  emergency  room  

management.   The   second   part   of   this   dissertation   discusses   the   problem   of   fitting   a  

convex   function   based   on   noisy   data   from   simulation   output.   The   traditional   way   of  

fitting   a   convex   function   to   data,   which   is   done   by   computing   a   convex   function  

minimizing  the  sum  of  least  squares,  takes  too  long  to  compute  the  fit.  It  also  runs  into  an  

“out  of  memory”   issue  when   the  number  of  data  points  exceeds  a   few  hundred.   In   this  



dissertation,  we  propose  a  computationally  efficient  way  by  minimizing  the  sum  of  least  

absolute   deviations   rather   than   the   sum   of   squares.   The   least   absolute   deviations  

estimator  we  introduce  in  this  dissertation  is  posed  via  a  solution  to  a  linear  program  (LP)  

while  the  traditional  least  squares  estimator  is  posed  via  a  solution  to  a  quadratic  program  

(QP).  Furthermore,  our  LP  formulation  has  a  dual  problem  that  exhibits  a  block-­angular  

form   in   its   constraints.   This   enables   one   to   apply   decomposition   techniques   such   as  

Dantzig-­Wolfe   decomposition   to   solve   the   dual   problem.   Thus   the   proposed   estimator  

can   be   computed   faster   and   for   larger   datasets   than   the   least   squares   estimator.   We  

present   numerical   examples   to   illustrate   the   relative   performance   of   the   proposed  

estimator   compared   to   that   of   the   least   squares   estimator.   We   also   establish   the  

consistency  of   the  proposed  estimator   and   its   derivative  by   proving   that,   under  modest  

assumptions,   the   estimator   and   its   derivative   converge   almost   surely   (a.s.)   to   the   true  

values  as  the  number  of  data  points  increases  to  infinity.  The  third  part  of  this  dissertation  

concerns   the   initial   transient   problems   when   running   discrete-­event   simulation   in   our  

simulation-­based   optimization   framework.   When   using   a   discrete   event   simulation   to  

estimate   some   steady-­state   variables   we   are   aiming   to   optimize,   we   deduce   that   it   is  

desirable   to   initialize   the   simulation   according   to   steady-­state   distribution   because   the  

initial  transient  phase  will  be  induced  otherwise.  However,  due  to  the  lack  of  information  

on   steady-­state   distribution,   practitioners   usually   start   the   simulation   in   some   arbitrary  

fashion,  which  results  in  an  initial  transient  phase  prior  to  steady-­state.  In  this  paper,  we  

provide  a  methodology  to  determine  the  length  of  the  initial  transient  phase  of  (possibly  

multi-­dimensional)  simulation  output.  Such  an  elaborated  method  can  be  further  used  to  

devise  an  algorithm  to  compute  better  estimators  for  steady-­state  performance  measures  



by  utilizing  simulation  output  after  the  initial  transient  phase.  The  proposed  methodology  

is  based  on  a  simple  idea  of  dividing  simulation  output  into  several  batches,  observing  the  

way   the  observations  are  distributed   in  each  batch,  and   trying   to   find  a  change   in   these  

distributions.   The   efficiency   of   the   proposed   methodology   is   illustrated   through  

numerical  experiments.  
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Chapter 1

Introduction

Simulation-based optimization has attracted great interest among researchers and en-

gineers in recent years due to its wide applications in system design and operation.

Especially at a time when there has been an increasing trend in system complexity and

uncertainty, traditional optimization techniques cannot be employed directly to han-

dle noises incurred from system performance measurements; in this case, simulation-

based optimization is the best way to obtain sound solutions.

Simulation-based optimization is an emerging research area which integrates two

traditional tracks of operations research: optimization and discrete-event simulation.

It is used to find the optimal system configurations that maximize the system per-

formance or minimize the operating cost, where closed-form expressions of the per-

formance functions or cost functions are not available. Typically, this problem is

formulated as follows:

min
θ∈Θ

f(θ), (1.1)

where θ is the design parameter (or configuration) of the system, Θ is the feasible set

for θ, and the objective function f(θ) is usually the expected value of some system

performance measure. In the framework of simulation-based optimization, the system

is often viewed as a “Black box.” Even though we don’t have too much information

1



2

about the system structure, we can run the simulation and obtain the performance

measurements we are interested in, given any input configurations. For instance, the

objective function f(θ) can be estimated by using n independent simulation runs

under the same value of θ,

f̄(θ) =
1

n

n�

i=1

Fi(θ),

where Fi(θ) is a simulation observation of f(θ). The simulation output is then used as

the input of an optimization procedure to generate better solutions. The relationship

between simulation and optimization is illustrated in Figure 1.1.

Simulation  
Model

Optimization  
Procedure

Sy
st
em

  P
er
fr
om

an
ce Design  Param

eter

Figure 1.1: The relationship between simulation and optimization.
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1.1. Motivation

In many practical situations, the design parameters of the system can only take finite

or countably infinite discrete values in the feasible region. For example, when a

hospital designs the staffing level in an emergency room to minimize the operation

cost, the number of nurses scheduled should acquire a non-negative integer value. This

type of problem is usually difficult to solve since the cardinality of the search space

will increase exponentially as the dimension of the input parameter is increasing. In

addition, it is natural to incorporate constraints into simulation-based optimization

problems since most real world systems are constrained by resources. Nevertheless,

if the constraints are also very difficult to measure, i.e., they have to be evaluated

through simulation, the problem becomes more challenging. The operational difficulty

results from uncertainty about solution feasibility, while such an uncertainty is caused

by noisy observations of constraint functions via simulation. Consider, for example, an

inventory system with discrete demand processes. In this instance, we are required to

find the optimal ordering policy by choosing some control parameters, where the goal

is to minimize the average ordering and holding costs per unit time while achieving

a prescribed level of customer service simultaneously. In such a context, the demand

might be random at different time periods and the lead time to receive a order might

also be random. So we cannot build a closed-form mathematical model to describe

the system behavior. As a result, evaluation of the average cost per unit time and the

service level requires the use of a simulation of the system. The optimization of this

simulated system is very changeling because the inventory control parameters may

be restricted to be discrete and a wide range of potential candidates can be selected.

Moreover, the noisy simulation observations of the service level make it very hard

to decide whether an input control parameter is feasible or not, since we employ

stochastic simulation to estimate the true service level and the sample size is quite
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limited. Therefore, we need a more effective method to accommodate the discrete

decision variables and noisy constraints in simulation-based optimization.

For some simulation-based optimization problems, the simulation response func-

tions are often known to have certain shape restriction such as convexity. If this is

the case, a class of simulation response surface methods can be used to construct

a convex function to fit the simulation response and attain the optimal solution by

solving a resulting convex optimization problem. The key part in this procedure is

to build the simulation response surface, i.e., to fit the convex function effectively, so

that the optimization algorithms based on the fitted function can work well to search

for optimal solutions. One popular way to fit the convex function based on noisy

simulation observations is to find a function which minimizes the sum of squared

regression errors and satisfies the convexity constraints by solving a quadratic pro-

gram. While such a convex regression estimator usually enjoys favorable statistical

properties, the computational burden is quite high. When the given number of data

points in the simulation output dataset is very large, the quadratic program becomes

intractable as the number of constraints becomes even larger. As a result, current

available methods can only handle a convex regression problem with a few hundred

input data points. Recent studies show, however, that there is a growing need for

fitting a convex function to large-scale data. For example, the power, gain, or band-

width of integrated circuits is often approximated as a convex, or concave, function

in the sizes of the transistors contained in integrated circuits (del Mar Hershenson

et al., 2001). In this context, more than a few thousand data points can be used

to estimate the performance measure of the integrated circuits as a convex function.

Hence, a computationally efficient way to fit the convex regression is necessary to

address complex problems under real circumstances.

In the simulation-based optimization framework, the measurement of the simula-

tion output has a great effect on the optimization algorithms. In order to make the
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algorithms converge quickly and provide high quality solutions, we often need to get

accurate estimates of the simulation output. Frequently, when applying simulation-

based optimization, we are interested in estimating the steady-state performance of

a system. Due to the lack of information on steady-state distribution, however, prac-

titioners usually start the simulation in some arbitrary fashion. This generally leads

to an initial transient phase prior to steady-state. Consequently, the inclusion of the

initial transient data often leads to bias when estimating stead-state parameters.

The most commonly used method to resolve the initial transient problem is to

allow the system to run for a warm-up period and output data during this period are

not collected. There is, however, a trade-off when deciding how long the warm-up

period should be. If the warm-up period is too short, initialization bias will be intro-

duced to the parameters estimation. If it is too long, the collected data are wasteful

and more observations are needed to ensure estimating precision. Various methods

have been proposed to detect the length of warm-up period in the simulation liter-

ature. These methods usually fall into five categories: graphical methods, heuristic

approaches, statistical methods, initialization bias tests and hybrid methods (Hoad

et al., 2008).

1.2. Contribution

To address the challenging issues of applying simulation-based optimization to solve

practical problems, we propose methods to handle optimizing with discrete decision

variables and noisy constraints, to compute the convex response surface function,

and to detect the initial transient period in steady-state simulation. In particular,

the main contributions of this dissertation can be summarized as follows.
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1.2.1 A dual framework and domain extension

To handle discrete decision variables and noisy constraints arising from simulation-

based optimization, we investigate the optimization problem of the form:

min
θ∈C∩Zd

f 0(θ) (1.2)

s/t f i(θ) ≤ 0, 1 ≤ i ≤ r,

where C is a nonempty closed convex subset of Rd, and f i : Zd → R (0 ≤ i ≤ r) has

no analytic form and thus must be computed only through simulation at each θ in

Zd. Such functions f i often arise in the setting of a complex stochastic system where

one performance measure is described by f 0 and the other performance measures are

denoted by f i (1 ≤ i ≤ r).

In order to overcome the obstacle of evaluating the constraints based on noisy

simulation observations, we seek to incorporate the constraints into the objective

function by using the Lagrangian formulation, i.e., the dual formulation, of the orig-

inal constrained problem:

max
λ∈Rr

+

min
θ∈C∩Zd

L(θ, λ), (1.3)

where the Lagrangian function L(θ, λ) is defined by

L(θ, λ) = f 0(θ) +
r�

i=1

λif i(θ)

for θ ∈ Zd and λ = (λ1, . . . , λr) ∈ Rr

+. We observe that the minimizer of the

constrained problem (1.2) can be found by finding the optimal solution of (1.3), i.e.,

the saddle point of L(θ, λ). Since (1.3) is an unconstrained max − min problem,

we can use a gradient-based method to solve it. In particular, we wish to apply

stochastic approximation to L (and hence update θ in the steepest descent direction
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and λ in the steepest ascent direction in each iteration) in search of the saddle point

of L. We notice that stochastic approximation requires gradient estimates of L in

each iteration, but θ is integer-valued; therefore, the gradient of L with respect to

θ cannot be defined in a traditional way. To overcome this obstacle, we extend f i

from a discrete domain to a continuous domain, use the extended f is to construct the

extended L, and then compute the gradient of the extended L in the usual way. The

gradient of the extended L is then used in each iteration of stochastic approximation

in search of the solution to (1.3). We prove that this procedure is convergent to

the optimal solution of the original problem (1.2) almost surely (a.s.) under suitable

conditions.

1.2.2 A least absolute deviations based convex estimator

To overcome the computational inefficiency of the least squared errors-based convex

regression estimator, we propose to use a formulation which minimizes the sum of

absolute deviations instead of the sum of squared errors. This formulation is benefi-

cial from a computational point of view since we can reduce the problem to a linear

program, which is easier to handle than a quadratic program. Another advantage of

using this formulation is that the resulting convex estimator can provide more robust

results when many outliers are present in the input dataset. In this dissertation,

we investigate how to build a linear program based on the least absolute deviations

criterion. We also provide an efficient algorithm based on the Dantzig-Wolfe decom-

position principle to compute the convex estimator. We then establish the statistical

consistency of the least absolute deviations estimator by giving a complete proof.

1.2.3 A statistical test based procedure

In this dissertation, we consider the problem of computing the steady-state mean

of a system performance in the situation where it is not clear how to initialize the
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simulation. In this case, the simulation may start at some arbitrary position which is

usually atypical of steady-state behavior. This particular initialization will induce an

initial transient phase that introduces a severe bias in the point and interval estimates.

To overcome this problem, we will allow the system to warm up before output data

are collected and thus eliminate the observations until steady-state behavior becomes

apparent. We then compute the arithmetic mean of the remaining observations as an

estimate of the steady-state mean.

In our proposed method, the truncation point after which the observations are

retained for steady-state analysis will be chosen according to the following techniques:

1. Divide the simulation output into small batches.

2. Obtain the empirical distribution function within each batch.

3. Compare these empirical distribution functions for a change in distribution func-

tions.

1.3. Organization

The dissertation is organized as follows.

Chapter 2 gives a literature review on simulation-based optimization methods

with continuous decision variables, discrete decision variables, and noisy constraints.

We also provide reviews on some popular methods to fit convex functions and detect

the initial transient period in steady-state simulation.

Chapter 3 presents the details of our proposed dual formulation to deal with the

stochastic constraints in simulation-based optimization. We also discuss some possible

ways to extend the optimization program from a discrete domain to a continuous

domain and give a specific algorithm to iteratively search the optimal solution based

on stochastic approximation. We prove the convergence of our proposed algorithm
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and demonstrate its applications in practical problems. Examples will be given,

including, but not limited to: optimizing the ordering policy in a stochastic inventory

system; staffing a call center, and staffing an emergency room with random service

times and a complex arrival process.

Chapter 4 describes an alternative formulation of the convex regression problem.

We show how the proposed least absolute deviations-based estimator can be computed

from an equivalent linear program. Furthermore, we study the unique property of

this linear program by considering its dual problem, which exhibits a block-angular

form in its constraints. Then we discuss the solution of this linear program based

on a Dantzig-Wolfe decomposition procedure. We present numerical examples to

illustrate the relative performance of the proposed estimator compared to that of the

least squares estimator. We also establish the consistency of the proposed estimator

and its derivative by proving that, under modest assumptions, the estimator and its

derivative converge almost surely (a.s.) to the true values as the number of data

points increases to infinity.

Chapter 5 introduces a framework of using the Kolmogorov-Smirnov test method

to detect the warm-up period in steady-state simulation and provide better estima-

tors for simulation performance measures. We display the efficiency of the proposed

method by comparing it with some widely used initialization procedures. The com-

parisons are conducted using examples from queueing systems and inventory systems.

Chapter 6 summarizes the contribution of this dissertation and outlines some

interesting future research directions.



Chapter 2

Literature Review

In this chapter, we give a comprehensive review on popular simulation-based opti-

mization techniques. A brief discussion on the convex regression problem and its

potential application in simulation-based optimization is also provided. Since the

initial transient problem is common in most stead-state simulations, we also review

some widely used methods to detect the initial transient phase.

2.1. Simulation-based Optimization

Simulation-based optimization is one of the fastest growing research areas in the

operations research society during the past two decades. Numerous studies have

been conducted to obtain optimal or good enough solutions for simulation-based

optimization problems efficiently with limited computation efforts.

Simulation-based optimization methods can be categorized based on the nature of

the problem structure. If the feasible region of the optimization problem is a continu-

ous set, then it may be possible to use a metamodel-based optimization method or a

gradient-based method such as stochastic approximation (Robbins and Monro, 1951)

to search the solution iteratively. If the decision variable is discrete and the solution

space is large, then random search method (Andradóttir, 1995) and metaheuristics

10
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(Ólafsson, 2006) may be appropriate to solve the desired problem. If the feasible

region has a small number of candidate solutions, say less than 100, then some sta-

tistical analysis based methods such as ranking and selection (Goldsman and Nelson,

1998) can be applied to find the best solution with the smallest mean objective value.

Figure 2.1 shows the classification of simulation-based optimization methods based

on problem structure. For more comprehensive reviews on general simulation-based

optimization methods, see Henderson and Nelson (2006), Ólafsson and Kim (2002),

Fu (2002), Nelson (2010), Carson and Maria (1997), Hong and Nelson (2009), and

Swisher et al. (2004).

Simulation-­‐based  
Optimization

Random  Search
Metaheuristics

Ranking  and  
Selection

Metamodel-­‐based  
Optimization

Gradient-­‐based  
Method

Discrete  
Optimization

Continuous  
Optimization

  is  small  
and  finite   is  large

Figure 2.1: Simulation-based optimization method classification

In this chapter, we briefly review some popular simulation-based optimization

methods according to the above classification criteria. Section 2.1.1 and Section
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2.1.2 present methods designed for solving both continuous and discrete simulation-

based optimization problems, respectively. In Section 2.1.3, we focus on methods to

solve simulation-based optimization problems with noisy constraints. The purpose

of this chapter is to show that although many efficient methods are available for

general simulation optimization problems, few of them address the situation when

noisy constraints present. The presence of noisy constraints do increase the difficulty

of simulation-based optimization problems. Specialized algorithms and theories are

needed to fill the gap between unconstrained simulation-based optimization methods

and constrained simulation-based optimization methods.

2.1.1 Continuous Simulation-based Optimization Methods

Simulation-based optimization with continuous decision variables is one of the most

frequently studied area in the literature. Some methods fall into the category of

gradient-based methods, which try to obtain gradient information through simulation

directly, while others use an indirect strategy, which constructs a metamodel based

on simulation observations and computes gradient estimates through the metamodel.

Since our main focus is the discrete simulation-based optimization problem, we briefly

review some popular methods in both categories. Nonetheless, we want to point out

that our proposed method is based on the framework of gradient-based methods,

even though our method is designed to treat discrete decision variables and noisy

constraints. Accordingly, we also present the general procedures and formulations of

some gradient-based methods for later reference.

2.1.1.1 Gradient-based Method

Gradient-based optimization methods are widely adopted in deterministic optimiza-

tion to iteratively search for a minimum of the objective function. When applying

this method to simulation-based optimization problems, one faces the difficulty of
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estimating the stochastic gradient since the simulation output is random. Fu (2006)

surveys the main approaches available in the literature, including finite differences,

simultaneous perturbations, perturbation analysis, the likelihood ratio/score function

method, and weak derivatives.

Stochastic approximation (SA) is the stochastic version of the steepest descent

method in nonlinear optimization. It iteratively searches from one solution to another

in the direction of the estimated gradient, since the closed form of the gradient doesn’t

exist. First invented by Robbins and Monro (1951) and Kiefer and Wolfowitz (1952)

as a root-finding procedure, the method has received extensive attention in the past

five decades. For a detailed study of SA method and its application, see Kushner and

Yin (2003) and Fu (2006).

In general, the SA method uses the following recursion to update solution itera-

tively:

θn+1 = ΠΘ

�
θn − an �∇f(θn)

�
,

where θn is the solution at iteration n, an is a sequence of positive real numbers,

�∇f(θn) is a gradient estimate of the objective function f with respect to θ at θn,

and ΠΘ is an operator which projects a solution outside of the feasible region Θ

back into Θ. It is well known that SA type methods have nice convergent properties

under certain assumptions (e.g.,
�

∞

n=1 an = ∞ and
�

∞

n=1 a
2
n
< ∞). But in practice,

the performance of SA method relies on the choice of an. If an is too small, the

algorithm converges very slowly, i.e., θn obtained at iteration n does not change too

much comparing with θn−1. On the other hand, if an is too large, the algorithm

becomes quite unstable since oscillations occur (Fu, 2006). Another important issue

associated with the performance of SA method is the quality of gradient estimates.

There are several ways to estimate the gradient without any prior knowledge about

the simulated system structure. Two of the most famous ones are the finite differences
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(FD) method and the simultaneous perturbation stochastic approximation (SPSA)

method.

2.1.1.1.1 Finite Differences The FD method was first introduced by Kiefer

and Wolfowitz (1952) to determinate the gradient in the SA algorithm. It uses a

straightforward way to estimate the gradient by taking small perturbations at each

dimension of decision variable θ. The perturbation can be taken for either one side

or both sides. A one-sided forward difference gradient estimator of ∇f(θ) can be

denoted by

�∇f(θ) =
1

h





F (θ + he1)− F (θ)

F (θ + he2)− F (θ)

...

F (θ + hed)− F (θ)





,

where h is a small positive value, ei is a unit vector with a 1 in the ith position and

0’s elsewhere. For the forward FD formulation, d + 1 simulation runs are needed to

obtain one such estimator. A two-sided FD estimator can be denoted by

�∇f(θ) =
1

2h





F (θ + he1)− F (θ − he1)

F (θ + he2)− F (θ − he2)

...

F (θ + hed)− F (θ − hed)





For the two-sided FD estimator, 2d simulation runs are required to compute one such

estimate.

When optimizing a complex stochastic system, the dimension of θ, i.e, d, is often

very large. Obviously, the FD method is not an efficient way to estimate the gradi-

ent, since the number of simulation runs required to obtain one gradient estimate is

proportional to the dimension of θ.



15

2.1.1.1.2 Simultaneous Perturbation Stochastic Approximation To over-

come the inefficiency of the FD estimator for large dimensional problems, Spall (1992)

designs a simultaneous perturbation stochastic approximation method which requires

only 2 simulation runs to compute a gradient estimate no matter how large d is. In

the SPSA method, the ith component of the gradient estimator can be obtained by

�∇if(θ) =
F (θ + h∆)− F (θ − h∆)

2h∆i

where ∆ = (∆1, . . . ,∆d) is a d-dimensional vector, ∆is are independent and identi-

cally distributed (i.i.d.) random variables taking values +1 or −1 with equal proba-

bility. Thus, the SPSA estimator only requires two simulation runs, i.e., at θ + h∆

and θ − h∆, to compute the gradient estimate. Since the evaluation of performance

functions is quite expensive in most simulation-based optimization problems, SPSA

has been considered an efficient way to estimate the gradient when direct information

about the gradient is unavailable. It has been shown that the SPSA algorithm and

the FD stochastic approximation algorithm can achieve the same level of statistical

accuracy under some general conditions and a given number of iterations, while the

number of function evaluations in SPSA is only 1/d times of that in the FD stochas-

tic approximation algorithm (Spall, 2003). For a detailed study of SPSA method for

simulation-based optimization, see Spall (1998, 1999), Fu and Hill (1997).

In addition to indirect gradient estimation method such as FD and SPSA, there

are some direct methods in the literature which take advantages of the structural

knowledge of the simulation model to acquire more gradient information. Such ex-

amples include Perturbation Analysis (PA) (Ho and Cao, 1983; Fu and Hu, 1997)

and Likehood Ratio (Reiman, 1989; Glynn, 1990). For a comprehensive review of the

research for these methods, see Fu (2008).
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2.1.1.2 Metamodel-based Method

Metamodel-based method is a general simulation-based optimization method which

attempts to find an approximation to fit the simulation input-output response func-

tion. Since the approximation is constructed based on simulation experiments, it

is often referred to as metamodel (Kleijnen, 1975, 2008b). Once the metamodel is

constructed based on some simulation observations, the simulation-based optimiza-

tion problem is actually simplified to a deterministic optimization problem, which

subsequently can be solved by many efficient deterministic optimization algorithms.

For a detailed introduction to this method, see Barton and Meckesheimer (2006) and

Kleijnen (2008b).

One major task of metamodel-based method is to create the so-called metamodel.

One of the most well-known metamodels is the response surface metamodel. It was

first brought forth by Box and Wilson (1951) for the purpose of designing the optimal

operating conditions for some chemical processes. This type of metamodels uses first

or second-order polynomial functions to fit the simulation observations. Therefore, it

is more appropriate for local approximation in most situations (Barton, 1992; Barton

and Meckesheimer, 2006). More recently, many researchers have successfully applied

spatial correlation (kriging) metamodels for both deterministic simulations (Simpson

et al., 1998; Booker et al., 1999) and stochastic simulations (Mitchell and Morris, 1992;

Ankenman et al., 2010) to overcome the limitations of response surface metamodels

and provide more flexible modeling techniques. Barton and Meckesheimer (2006)

summarize some commonly used metamodel functions for simulation optimization

along with comments on experiment designs and global and local properties (Barton,

2009).

Typically, after choosing the metamodel form, one needs to design simulation

experiments to obtain observations, fit the metamodel using data, and conduct op-

timization using the metamodel (Barton and Meckesheimer, 2006). Two strategies
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have been often suggested to conduct metamodel-based optimization: iterated local

metamodels and global metamodel fits. The former strategy uses linear or quadratic

regression models to find the response function for local data. The response func-

tion is then employed to estimate the search direction toward optimum response and

establish a new local area. The global metamodel fit strategy usually uses spline, krig-

ing metamodel, natural network or radial basis function to accommodate the global

data. Deterministic global optimization method is then applied to detect the global

optima based on the metamodel. Instead of conducting the optimization procedure

iteratively, the global strategy only runs the optimization one time.

2.1.2 Discrete Simulation-based Optimization Methods

The problem of minimizing an unconstrained function over a discrete set has gained

a considerable amount of attention from the research community, and a number of

methods are proposed in the literature; see Goldsman and Nelson (1994) Andradóttir

(1995), Yan and Mukai (1992), Ho and Vakili (1992), Shi and Ólafsson (2000), Hong

and Nelson (2006), Kleywegt et al. (2001), Gelfand and Mitter (1989), Glover (1989),

Liepins and Hilliard (1989), Gerencsér et al. (1999), Gokbayrak and Cassandras

(2002), Dupač and Herkenrath (1983), and Prudius and Andradóttir (2009) for ex-

ample. For more comprehensive surveys, see Nelson (2010), Henderson and Nelson

(2006), Swisher et al. (2004), and Fu (2002).

2.1.2.1 Ranking-and-Selection

Ranking-and-selection (R&S) methods are designed to solve simulation-based opti-

mization problems when the number of alternative systems is finite and small. The

main focus of this method is to select a system with the best expected value of perfor-

mance based on a pre-specified probability of correct selection. See Kim and Nelson

(2006), Hong and Nelson (2009), and Nelson (2010) for a detailed introduction.
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In this method, k ≥ 2 feasible solutions, θ1, θ2, . . . , θk are considered. The jth

simulation observation at θi, Fj(θi), is assumed to be normally distributed with mean

f(θi) and standard deviation σ2
i
. Denoting the index of the best and the second best

system by k and k − 1 respectively, R&S methods are valid if

Pr{select solution θk|f(θk) ≤ f(θk−1)− δ} ≥ 1− α,

where δ ≥ 0 is the indifference-zone(IZ) parameter and 1 − α is the pre-specified

probability of correct selection. δ is used to decide the simulation runs required

to achieve the 1 − α significance level. The earliest and simplest R&S method is

Bechhofer’s procedure (Bechhofer 1954), which uses a sample size

n = �
2h2σ2

δ2
�,

for each θi. h in the above formula denotes the 1 − α quantile of the maximum of

a multivariate normal random vector (Z1, Z2, . . . , Zk−1) with means 0 and variances

1. σ2 is assumed to be known and σ2
1 = σ2

2 = . . . = σ2
k
= σ2. The procedure

then computes the sample mean of Fj(θi) and selects the one with the best mean

performance. When the variance σ2 is unknown to us, some two-stage procedures are

often used, where the first stage estimates the variances based on some preliminary

samples. Such procedures include Rinott’s procedure (Rinott, 1978), Nelson and

Matejcik’s procedure (Nelson and Matejcik, 1995) and NSGS procedure (Nelson et al.,

2001). What’s more, when the simulation data samples are collected sequentially,

some full-sequential procedures are also proposed (Paulson, 1964; Kim and Nelson.,

2001; Kim and Nelson, 2006). Such procedures usually maintain a solution pool and

take one observation for each solution that is in the pool at each iteration. Then the

mean performance is evaluated at each solution based on all the observations obtained

so far. The procedures then drop some solutions from the pool by comparing their
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mean performances with a calculated deviation bound. The iteration continues until

there is only one solution left in the pool.

Although R&S method is originally designed to find the best system among a

small and finite alternatives, it has been embedded in other simulation-based op-

timization algorithms in order to improve their performances. For example, many

discrete simulation-based optimization algorithms require sampling good candidate

solutions from the neighbourhood of the current solution, where the neighbourhood

is often small and R&S might be used to select the best candidate (Pichitlamken

et al., 2006). Another application of R&S is to select the best solution among all

the solutions visited by an iterative simulation-based optimization algorithm (Boesel

et al., 2003).

2.1.2.2 Random Search

Random search method is one of the most widely used methods to solve discrete

simulation-based optimization problems when the feasible region Θ is large or count-

able infinite. See Andrad̈ı¿1
2ttir (1998), Swisher et al. (2004), Andrad̈ı¿1

2ttir (2006)

and Hong and Nelson (2009) for a comprehensive survey.

The basic idea of this method is to sample a few candidates from the neighbour-

hood of the current best solution and simulate the performance. The solution with

the best mean performance then is chosen for the next iteration. The general proce-

dure of such method is shown as follows:

Generic random search algorithm for simulation optimization (Andrad̈ı¿1
2ttir,

2006):

Step 0. Initialize: Choose the initial sampling strategy S1. Set n = 0.
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Step 1. Sample: Select θ(1)n , . . . , θ(Mn)
n ∈ Θ according to the sampling strategy

Sn.

Step 2. Simulate: Estimate f(θi
n
), for i = 1, . . . ,Mn, using simulation.

Step 3. Update: Use the simulation results obtained so far in Step 2 to com-

pute an estimate of the optimal solution θ∗
n
and to choose an updated sampling

strategy Sn+1. Let n = n+ 1 and go to Step 1.

There are multiple versions of random search methods in the literature. These

available algorithms can be categorized based on the neighbourhood structure, sam-

pling distribution, evaluation scheme and the method of estimating the optimal solu-

tion (Hong and Nelson, 2009).

Yan and Mukai (1992) propose the stochastic ruler method which samples a po-

tential solution by comparing its mean performance with a uniform random variable

(stochastic ruler). The method is proved to converge in probability but the finite-time

performance is not desirable due to increasing simulation efforts. Alrefaei and An-

drad̈ı¿1
2ttir (2001) introduce a modified stochastic ruler method that uses the number

of times the method visits every state to estimate the optimal solution. Instead of

using an increasing number of estimates of the objective function values per iteration,

this method sets a fixed number of such estimates at each iteration. And the authors

also show that the algorithm converges almost surely to the set of global optimal

solutions under more general conditions.

Andradóttir (1995) utilizes a random walk approach to develop a simulation-based

optimization algorithm over a large discrete feasible region. In each iteration of this

algorithm, the values of the objective function at the current point and neighbouring

feasible points are estimated via simulation, and the alternative that yields the better
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estimate is used for the next iteration. The author also shows the local convergence of

this algorithm when adopting the feasible alternative that has been visited most often

in the iteration process to estimate the optimal solution. And the globally convergent

version of this algorithm is presented in Andrad̈ı¿1
2ttir (1996).

Alrefaei and Andrad̈ı¿1
2ttir (1999) present a simulated annealing method with con-

stant temperature and use the the most frequently visited solution by the algorithm

as an estimate for the optimal solution to increase the convergence speed. Gong et al.

(1999) propose the stochastic comparison algorithm to handle discrete simulation-

based optimization problems with unstructured solution space. Unlike the simulated

annealing method, this method does not require well designed neighbourhood struc-

tures to guarantee the convergence. Andrad̈ı¿1
2ttir (1999) submits a variant of the

stochastic comparison method and uses the solution with the best estimated objective

value as the estimate for the optimal solution.

Shi and Ólafsson (2000) introduce the idea of searching in the most promising

region and propose the nested partitions (NP) method. At each iteration of this

method, the current most promising region is partitioned into several subregions. The

method then randomly takes samples from each subregion and the entire surrounding

region and evaluates the performances based on simulation. After calculating the

promising index for each region, the method either chooses one subregion as the new

most promising region or moves backward to a larger region that contains the old

most promising region. This method is proved to converge almost surely.

Hong and Nelson (2006) propose a version of random search methods called

Convergent Optimization via Most-Promising-Area Stochastic Search (COMPASS),

which utilizes a unique neighbourhood structure and results in a provably convergent

algorithm to a local optimal solution. In this method, the most promising area is

defined as the region where feasible solutions are closer to the current best solution
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than to other solutions that the algorithm has visited so far based on Euclidean dis-

tance measure. Such an area is fully adaptive. Hong et al. (2010) suggest using a

coordinate sampling strategy to speed up COMPASS algorithm for high-dimensional

problems, where a new sampled solution differs from the current solution in only one

dimension.

2.1.2.3 Metaheuristics

Metaheuristic is an iterative method aimed at improving the search based on some

solution quality measures. Methods used in this category usually do not presume

any structure knowledge on the problem to optimize and can solve those problems

with large feasible region. However, there is no guarantee that this type of method

can converge to the optimal solution. But they might find a sound solution very

quickly and perform quite well in practice. Although metaheuristics are designed

to solve deterministic combinatorial optimization problems, they have been success-

fully applied to solve simulation-based optimization problems. Some metaheuristic

methods include genetic algorithm (GA), tabu search (TS), scatter search (SS), and

particle swarm optimization (PSO). For a comprehensive review on metaheuristics

for simulation-based optimization, see Ólafsson (2006) and April et al. (2003).

Genetic algorithm was invented by Holland (1975) as a global optimization ap-

proach. GA uses the general framework of random search method and adopts an

innovative way to construct the neighbourhood. The algorithm begins with a popu-

lation of solutions instead of a single solution. At each iteration, a number of solutions

in the population are selected based on a fitness function defined by some pre-specified

strategies (e.g., top n strategy and roulette strategy). These selected solutions are

then used to generate new candidates based on crossover and mutation operators.

The crossover operator chooses two solutions with high fitness values as parents, ran-

domly selects a segment from each parent and then exchanges the segment. The
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mutation operator chooses only one solution and randomly modifies one sub-segment

of this solution. Examples of using GA in the simulation-based optimization set-

ting include Tompkins and Azadivar (1995), Ishibuchi and Murata (1996), Vavak and

Fogarty (1996), Paul and Chanev (1998), etc. Note that GA is widely used in many

commercial simulation-based optimization software packages, including AutoStat for

AutoMode and SimuRunner for ProModel (Fu, 2002).

Tabu search is another popular metaheuristic used for simulation-based optimiza-

tion (Glover and Laguna, 1997). It differs from the traditional random search method

by maintaining a tabulist. This tabulist stores the solutions that have been visited in

the recent k iterations and is updated iteration by iteration. When one decides the

best candidate from the neighbourhood of current solution, all solutions in the neigh-

bourhood are evaluated and the one with the best simulated performance is selected.

The algorithm then moves to this best candidate as long as it is not in the tabulist,

even though this candidate solution might be inferior to the current solution. This

feature enables the search to escape local optima and prevents cycling. It is notable

that the tabu search method has been integrated to some commercial simulation-

based optimization software such as OptQuest (April et al., 2003) and Optimizer for

WITNESS (Fu, 2002).

Scatter search (Glover, 1977) is another population based metaheuristic and is

often used with the tabu search method together. The basic idea is to select a

population of solutions from previous solution efforts and use them as reference points.

New feasible solutions are then generated by using the linear combinations of the

reference points and mapping them into the feasible region. This method is also

embedded in some modern commercial software, e.g., OptQuest (Fu, 2002).

Like GA and SS, particle swarm optimization (PSO) is another population based

simulation-based optimization method. It was originally proposed by Kennedy and

Eberhart (1995) and inspired by social behavior of animals, e.g., bird flocking and
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fish schooling. It also begins with a population of randomly selected solutions. Each

potential solution, which is called a particle, computes its coordinate relative to the

best solution (fitness) obtained so far. A particle can also share information of its best

position with other particles in the neighbourhood and then change its own velocity

towards the best local position. As a result, when a particle takes all other solutions

in the population as topological neighbouring solutions, the best local solution is

also the global best solution. For a detailed study of PSO in the simulation-based

optimization context, see Kennedy et al. (2001).

2.1.3 Simulation-based Optimization Methods with Con-

straints

Although many methods have been proposed to solve the general simulation-based

optimization problems, a limited number of methods are available in the literature to

deal with noisy constraints.

In the presence of one stochastic constraint, Andradóttir et al. (2005) and An-

dradóttir and Kim (2010) propose a two-phase R&S procedure where the first phase

identifies all feasible solutions or near-feasible solutions with a pre-specified probabil-

ity of correct identification, and the second phase solves the problem of interest with

the solutions identified in the first phase. Batur and Kim (2001) then extend the

R&S procedure to the case of multiple constraints while Pujowidianto et al. (2009)

address how to allocate computer time in an optimal way among the solutions in or-

der to maximize the probability of correctly identifying the optimal solution. These

methods have a requirement that all the solutions must be simulated as least once, so

they are more appropriate to the setting where the domain of f 0 is finite and contains

a small number of elements.

In the presence of multiple constraints, the idea of replacing a constrained op-

timization problem with an unconstrained one by adding a penalty function to the
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objective function has been investigated; Li et al. (2009) combine a penalty function

type method with a random search scheme, and Whitney et al. (2001) incorporate

a penalty function type method into a gradient-based search scheme. Hill et al.

(2003) propose a version of the Simultaneous Perturbation Stochastic Approximation

(SPSA) method that can be applied to cost functions defined on discrete sets. How-

ever, the convergence of these methods is not guaranteed or is based on restrictive

assumptions that are difficult to verify.

Kleijnen (2008a) summarizes the generalized response surface methodology, which

selects one simulation response as goal and the others as constrained variables. Un-

like the steepest ascent method used by traditional RSM, this method combines the

gradients that are based on local first-order polynomial approximations with Mathe-

matical Programming to estimate a better search direction. A bootstrap procedure

is then used for testing whether the estimated solution is indeed optimal or not.

Ahmed et al. (1997) and Alkhamis and Ahmed (2005) use the concept of hypoth-

esis test to handle the stochastic constraints and combine the hypothesis-test-based

criterion with some random search schemes. When deciding whether a solution in

the neighbourhood is feasible or not, they test H0: fi(θ) ≤ 0 against the alternative

hypothesis H1: fi(θ) > 0. They consider θ is feasible if the lower bound of the confi-

dence interval computed for fi(θ) at certain pre-specified significant level is less than

or equal to 0.

Another way of transforming a constrained problem to an unconstrained one is to

use the Lagrangian function. The idea of using the Lagrangian function has already

been adopted when the decision variables are continuous (see Kushner and Sanvicente

(1975) and p. 177 of Kushner and Clark (1978) for example), but this idea has never

been explored in the setting of discrete decision variables. This dissertation explores

this idea in the discrete setting and studies the effectiveness of this approach. One

of our motivations is that in the deterministic optimization problem, the Lagrangian
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method has certain advantages over the penalty function type methods because most

penalty function type methods suffer from numerical instabilities as the controlling

parameter becomes too large or too small, see Murray (1967) for example. We present

this methodology in details in Chapter 3 and propose the framework of applying La-

grangian function method to solve discrete simulation-based optimization problems.

2.2. Convex Regression

In the second part of this dissertation, we aim to study the problem of estimating a

multivariate regression function under a certain shape restriction such as convexity.

This problem is usually referred to as convex regression in the literature.

2.2.1 Applications of Convex Regression

Convex regression has wide applications in both economics and operations research.

In economics, a production function or a customer utility function is often estimated

by fitting a convex function to the empirical data; see, for example, Skiba (1978)

and Meyer and Pratt (1968). In the operations research setting, various performance

measures of stochastic models in queueing systems and inventory systems have the

shape characteristic of convexity. For example, in a single server queue, the mean

waiting time of a customer is convex with respect to the mean service times and

the inter-arrival times when the service and inter-arrival times are subject to certain

probability distributions (Shanthikumar and Yao, 1991); in a queueing system of three

single-server stations connected in tandem, the mean sojourn time of a customer is

convex with respect to the mean service times at the server stations when the service

and inter-arrival times are subject to certain probability distributions (Shanthiku-

mar and Yao, 1991); in a single-item continuous-review (Q, r) inventory system, the
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steady-state mean total costs per unit time is convex in the control parameters Q and

r when the demand follows certain stochastic process (Zheng, 1992).

Convex regression also has promising applications in the domain of simulation-

based optimization. In the case that the simulation response is known to be convex,

convex regression can be used to construct the metamodel, i.e., approximate the ob-

jective function and constraints based on the noisy simulation observations. Then

many deterministic convex optimization methods can be easily applied to find the

optimal solution of the metamodel and provide a good approximate solution of the

original simulation-based optimization problem. Consider the (Q, r) inventory system

mentioned above, our goal is to find the optimal values of Q and r to minimize the

mean total costs per unit time. Instead of solving the simulation-based optimization

directly, we can simply fit a convex function to approximate the costs function given

the observed (Q, r) values and the observed mean total costs. Then we can easily

optimize the fitted function based on some gradient-based schemes in convex opti-

mization, since the sub-gradient at each observation is readily available after we run a

convex regression procedure. Unfortunately, in many applications of simulation-based

optimization, there is no prior guarantee that the true simulation response function

is convex. In the absence of convexity, convex regression can fit a convex function

that is closest to the true response function in some measure space (Lim and Glynn,

2012). As a result, the convex regression based optimization provides a good heuristic

solution or a good start solution for other non-convex optimization procedures.

2.2.2 Univariate Convex Regression

This dissertation is concerned with providing a numerically efficient way of computing

the best fit of a convex function and proving the consistency of the proposed method.

We are interested in estimating the unknown function f∗ : [0, 1]d → R from the
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observed data (X1, Y1), . . . , (Xn, Yn), where

Yi = f∗(Xi) + εi

for i ≥ 1, the Xis are continuous [0, 1]d-valued independent and identically distributed

(iid) random vectors, and the εis are iid random variables with zero median and

E(|ε1|) < ∞.

When f∗ is known to be convex, a natural way to estimate f∗ is to minimize the

sum of squares

ψn(g) � 1

n

n�

i=1

(Yi − g(Xi))
2

over the set of convex functions

C =
�
g : [0, 1]d → R such that g is convex

�
.

When ψn is used as a goodness-of-fit criterion, the fitted function is referred to as

“least squared errors” (LSE) estimator (Hildreth, 1954).

The LSE-based convex regression in one dimension setting (d = 1) is well stud-

ied both theoretically and computationally. The consistency of the LSE estimator is

established by Hanson and Pledger (1976). Many efficient algorithms are also devel-

oped to compute such an estimator. These algorithms rely on the special structure

of pointwise convexity. Given xi−1 < xi < xi+1 for i = 2, 3, . . . , n, the convexity

constraints can be enforced by the following conditions:

g(xi)− g(xi−1)

xi − xi−1
≤

g(xi+1)− g(xi)

xi+1 − xi

, i = 2, 3, . . . , n.

Then the convex regression problem is converted into a quadratic program with n−2
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linear constraints (Dent, 1973). See Wu (1982) and Fraser and Massam (1989) for

algorithms that solve such an quadratic program with linear convexity constraints.

Besides LSE method, some nonparametric methods are also proposed to estimate a

convex function. Meyer (2008) suggests a spline-based method and extends it to a

convex-restricted regression problem. Birke and Dette (2007) study a kernel regression

method which starts with estimating the derivative of the regression function, which

is then isotonized and integrated to obtain a strictly convex regression estimator. For

some other methods in this category, see Turlach (2005), Shively et al. (2011), and

Chang et al. (2007).

2.2.3 Multivariate Convex Regression

When it comes to multiple dimensions setting, less literatures are available. Allon

et al. (2007) introduce a nonparametric maximum likelihood method to fit the convex

function. Aguilera et al. (2011) propose a two-step smoothing and fitting method

which starts from some initial smooth estimator and then obtains the convex estimator

by computing the convex hull. Hannah and Dunson (2011) design a nonparametric

Bayesian method which estimates the regression function as the maximum of a set of

hyperplanes. Kuosmanen (2008) extends the LSE estimator to multiple dimensions

case and formulates the minimization problem as a finite quadratic programming (QP)

problem. Until recently, the consistency of the LSE estimator for multiple dimensions

has been well developed; see Lim and Glynn (2012) and Seijo and Sen (2011). But

the LSE estimator suffers from computational inefficiency. Minimization of ψn over

C can be formulated as a QP with (d + 1)n decision variables and n2 constraints

(Kuosmanen, 2008). The computational burden of solving this QP becomes heavy

especially when dn exceeds a few hundred (Lim, 2010). However, recent studies show

that the idea of fitting a convex function can be applied to large-scale data. For

example, the power, gain, or bandwidth of integrated circuits is often approximated
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as a convex or concave function in the sizes of the transistors contained in integrated

circuits (del Mar Hershenson et al., 2001). In this context, more than a few thousand

data points can be used to estimate the performance measure of the integrated circuits

as a convex function. Thus, there is a growing need of fitting a convex function to

large-scale data.

2.3. Initial Transient Phase Detection

The initial transient phase detection problem has been widely studied in simulation

literature. According to Hoad et al. (2008)’s review, the methods for detecting the

initial transient period in steady-state simulation can be classified into five categories:

graphical methods, heuristic procedures, statistical methods, initialization bias tests

and hybrid methods. Here we present some popular methods in each category and

briefly review the advantages and disadvantages of those methods.

2.3.1 Graphic Methods

The methods in this category determine the warm-up period by visually inspecting

the time-series data of the simulation output. The most famous one is the Welch’s

method, which is based on calculating the moving averages of batch means across

replications and then plotting them. The general procedure of the Welch’s method is

described in Law and Kelton (2000). In the procedure, the moving averages are calcu-

lated within a windows size w, and w is increased until the plot of the moving average

presents smooth trend. Then the warm-up period is viewed as the period before the

plot becomes smooth. Although the Welch’s method is quite simple and doesn’t make

any particular assumption on the simulation output, the performance relies on the

estimation of several parameters such as run length, number of replications, and the
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window size w (Law, 1983). And this method might also overestimating the warm-

up method since it is based on calculating cumulative statistics (Pawlikowski, 1990;

Wilson and Pritsker, 1978; Roth, 1994). Some alternatives to the Welch’s method

include CUSUM plots (Nelson, 1992), cumulative-mean plots (Gordon, 1969; Banks

et al., 2001), and ensemble average plots (Banks et al., 2001; Pawlikowski, 1990).

Recently, a statistical process control (SPC) based method is also introduced to

detect the warm-up period (Robinson, 2002). In such a method, the simulation output

data are batched to reduce potential nonnormality and autocorrelation in the time-

series. Then a control chart of the batch means is constructed and the warm-up period

can be determined by inspecting when the process is in-control and remains in control

according to some rules in SPC. The SPC based procedure can be automated and is

easy to implement. But it does assume independence and normality of the simulation

output data, which might be problematic in some situations even batching technique

is used. In addition, the performance is also affected by the way to estimate the mean

and variance.

2.3.2 Heuristic Procedures

Heuristic procedures usually provide specific rules for how to identify the warm-up

period. Those procedures can be automated and so it is very easy to integrate them

with simulation programs.

Conway (1963) proposes an intuitive rule to truncate the data in the warm-up

period. In a time-series of simulation output, the first data point that is neither the

maximum nor the minimum of the remaining observations is set as the truncation

point. And the procedure can be conducted for several replications and the maximum

of those truncation candidates is selected. Gafarian et al. (1978) provide a specific

procedure to conduct the Conway rule. They also propose a backwards version of

the Conway rule. All these procedures are easy to implement in computer programs
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and are not dependent on any assumption of the simulation data and estimation of

parameters aside from replications. However, such procedures might underestimate

or overestimate the warm-up period when they are used in M/M/1 system.

Fishman (1973) introduces a rule based on counting the number of times the

simulation output data crossing the cumulative mean backwards to the beginning. If

the number of crossing reaches a pre-specified threshold, the time-series have reached

the truncation point. Of course, the larger the value of this number is, the more

confidence we have that the warm-up period has been detected. Gafarian et al. (1978)

provide a detailed algorithm that implements this rule. Although the crossing-of-the-

mean rule is simple to implement, the performance relies on the appropriate value of

the pre-specified threshold, which is very hard to choose.

A marginal standard error rule (MSER) is suggested by White Jnr (1997) to detect

the warm-up period. The idea behind this rule is that a data point is viewed from the

warm-up period if its impact on calculation of the confidence interval is significant.

Given the simulation output time-series Y1, Y2, . . . , Yn, the truncation point is selected

at the point d by solving the following unconstrained minimization problem:

d∗ = arg min
0≤d≤n

�
1

(n− d)2

n�

i=d+1

�
Yi − Y n−d

�
�
,

where Y n−d =
1

n− d

�
n

i=d+1 Yi. However, White Jnr et al. (2000) report that the

performance of MSER decreases when the bias increases. They modified MSER by

using batches of length five to resolve this issue and showed that the MSER-5 rule

performs better than the original one.

2.3.3 Statistical Methods

Kelton and Law (1983) propose to use regression analysis to detect the initial transient

period. In their approach, the simulation output data are grouped into several batches
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and the batch means are calculated to form a new time-series. They then fit the

regression line by using generalized least square regression procedure from the end

of the series and move backwards. The procedure proceeds until the slope of the

fitted line is significantly different from zero, then all data before the stopping point

are identified as the initial transient period data. However, the procedure requires

the estimation of nine parameters, including number of replications, initial length of

each replication, number of batches, maximum initial deletion proportion, minimum

initial deletion proportion, etc. Although Kelton and Law provided some guildlines on

selecting values for those parameters, they might not be applied to all cases. What’s

more, the procedure requires repeatedly running generalized least square regression,

which is very complex and computationally expensive.

Yücesan (1993) presents a method based on randomization tests. In this method,

the simulation output data are grouped into b batches and batch means are calculated

to form a time-series. Then the randomization test is conducted to test the null

hypothesis that there is no initialization bias in the batch means, in other words, the

batch mean is unchanged in the time-series. At the beginning, the batch means are

partitioned into two groups, where the first group consists of the first batch mean

and the second group includes the remaining b − 1 batch means. The grand means

of the two groups are then compared to see if the difference between the two means

is significantly different from zero. And a randomization procedure is used here to

shuffle the batch means to compute the significance level. The procedure is repeated

if the hypothesis is rejected; the first group now includes the first two batch means

and the second group consists of the last b − 2 batch means. The procedure will be

terminated if the test fails to reject the null hypothesis, and the batches in the second

group are from steady-state. The advantage of using this method is that there is no

assumption about the distribution of the output data. However, the method requires
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very large batch size to reduce potential correlations in the data and the shuffling of

the batch means could be computationally expensive.

2.3.4 Initialization Bias Test Methods

Methods in this category is not designed to detect the initial transient period directly.

Instead, they are often used to test whether the warm-up period has been detected.

Schruben (1982) introduces a maximum test method to test the maximum dif-

ference between the mean of the entire output time-series data and the mean of the

first k observations. An F -test is then conducted for the bias statistics. Schruben

et al. (1983) propose an optimal test method that follows the same principle except

that a t-test is used. Although these bias tests perform well when a large initializa-

tion bias presents, the choice of the sample size might affect the power of the tests.

Goldsman et al. (1994) extend the idea of the maximum test and suggest using batch

means instead of the original output time-series. They also propose two alternative

tests: batch-means test and area test. The batch-means test groups the output into

two sets of batches and computes the bias statistics based on the variance of the

batch means. The area test differentiates the batch-means test by computing the test

statistics based on the area under standardized time-series of the batch means.

2.3.5 Hybird Methods

Hybrid methods usually integrate bias tests with graphical methods or heuristic meth-

ods to detect the truncation point for the warm-up period. Pawlikowski (1990) de-

scribes a sequential procedure based on the optimal test. In the procedure, a graphical

or heuristic method is first used to estimate the initial truncation point. The opti-

mal test is then used for the first batch of the truncated time-series to test the null

hypothesis that there is no initialization bias. If the test rejects the null hypothesis,

new simulation output data are collected and the procedure will be repeated until the
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test fails to reject the null hypothesis. Although this procedure takes advantages of

the initialization bias tests and is quite efficient by sequentially screening the data,

the performance requires the estimation of several parameters such as the variance,

the initial truncation point and the number of observations included in the test. Its

performance also heavily relies on the graphic or heuristic method used to detect the

truncation point at each iteration.



Chapter 3

Simulation-based Optimization
over Discrete Sets with Noisy
Constraints

3.1. Overview

We consider the optimization problem of the form:

min
θ∈C∩Zd

f 0(θ) (3.1)

s/t f i(θ) ≤ 0, 1 ≤ i ≤ r,

where C is a nonempty closed convex subset of Rd, and f i : Zd → R (0 ≤ i ≤ r) has

no analytic form and thus must be computed only through simulation at each θ in Zd.

Since we can only obtain noisy simulation observations of constraint functions, it is

very difficult to know if f i(θ) ≤ 0(0 ≤ i ≤ r) for sure. Hence, we consider converting

the original constrained problem into an unconstrained one to overcome this issue.

In particular, we observe that the minimizer of the constrained problem (3.1) can be

found by finding the saddle point of the corresponding Lagrangian L : Zd ×Rr

+ → R

defined by L(θ, λ) = f 0(θ) +
�

r

i=1 λ
if i(θ) for θ ∈ Zd and λ = (λ1, . . . , λr) ∈ Rr

+;

i.e., if L has a saddle point (θ∗, λ∗) satisfying L(θ∗, λ) ≤ L(θ∗, λ∗) ≤ L(θ, λ∗) for all

θ ∈ C ∩Zd and λ ∈ Rr

+, then θ∗ is a minimizer of f 0 subject to the constraints f i ≤ 0

36
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for 1 ≤ i ≤ r. From this observation, we reformulate (3.1) as

max
λ∈Rr

+

min
θ∈C∩Zd

L(θ, λ) (3.2)

and propose a gradient-based method to solve (3.2). In particular, we wish to apply

stochastic approximation to L (and hence update θ in the steepest descent direction

and λ in the steepest ascent direction in each iteration) in search of the saddle point

of L. Stochastic approximation requires gradient estimates of L in each iteration, but

θ is integer-valued; therefore, the gradient of L with respect to θ cannot be defined in

a traditional way. To overcome this obstacle, we extend L from Zd × Zr

+ to Rd ×Rr

+

by extending f i (0 ≤ i ≤ r) from a discrete domain to a continuous domain and

using the extended f is to construct the extended L, and compute the gradient of

the extended L in the usual way. The gradient of the extended L is then used in

each iteration of stochastic approximation in search of the solution to (3.2). We then

propose the Theorem 1 of this dissertation proposal which states that this procedure

is convergent to the optimal solution of the original problem (3.1) almost surely (a.s.)

under suitable conditions.

3.1.1 Lagrangian Function versus Penalty Function

Our proposed method utilizes Lagrangian functions rather than penalty functions be-

cause the Lagrangian method has certain numerical advantages over the penalty func-

tion type methods in the deterministic optimization context. The difference between

the Lagrangian function method and penalty function method can be summarized as

follows:

1. The penalty function method typically involves solving a sequence of nonlinear
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optimization problems (p. 479 of Bazaraa et al. (2006)). Each of these op-

timization problems must be solved through numerical procedures. Thus, the

computational burden of solving these optimization problems can be significant.

2. When solving the optimization problems in 1, the problems can be ill-conditioned

for large values of the penalty parameter (large values of the penalty parameter

are required to guarantee convergence to the optimal solution). Thus, they can

result in undesirable solutions (p. 481 of Bazaraa et al. (2006)).

We illustrate the difference between the Lagrangian function method and penalty

function method more clearly by solving the following two-dimensional problem:

min
θ=(θ1,θ2)

f 0(θ) = (θ1 − 2)2 + (θ2 − 4)2 (3.3)

s/t f 1(θ) = (θ1 − 1)2 + (θ2 − 1)2 − 5 ≤ 0.

In the Lagrangian function method, we solve (3.3) by finding the saddle point of

the corresponding Lagrangian function L(θ, λ) = f 0(θ) + λf 1(θ) for λ ≥ 0. We use a

gradient-based method and update θ and λ iteratively using the following recursion:

θn+1 = θn − an∇Lθ (θn, λn) ,

λn+1 = max (0, λn + an∇Lλ (θn, λn)) ,

where ∇Lθ (θn, λn) and ∇Lλ (θn, λn) are the gradients of the Lagrangian function L

with respect to θ and λ at (θn, λn), respectively, and an is a decreasing sequence

of positive real numbers (Zangwill, 1969). Figure 3.1 shows the performance of the

Lagrangian function method within 5000 iterations when an = 0.6/(n+ 1) for n ≥ 0,

λ0 = 0, and θ0 = (0, 0). In Figure 3.1, we can observe that the Lagrangian function

method does not stay in the feasible region all the time, but it converges to a feasible
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Figure 3.1: The graph of f 0(θn) versus n (left) and graph of f 1(θn) versus n (right).
At the optimal solution θ∗, f 0(θ∗) = 0.8579 and f 1(θ∗) = 0.

solution for sufficiently large n by adjusting the λ values adaptively. When θn enters

an infeasible region, the Lagrangian function method updates λ in the steepest ascent

direction to increase the penalties on the violated constraints and changes the search

direction of θ to force the constraints into satisfaction. This procedure guarantees

{θn, λn} converge to the saddle point of the Lagrangian function, and hence, θn stays

in the feasible region for n sufficiently large.

In the penalty function method, we convert (3.3) into an unconstrained problem

defined by

min
θ=(θ1,θ2)

Lp(θ) = f 0(θ) +
b

2
max(0, f 1(θ))2, (3.4)

where b is a positive real number, which is typically referred to as the penalty value.

Some unconstrained optimization techniques, such as line search methods, steepest

decent methods, and the Newton method can be applied to solve the penalty problem

(3.4). To make the solution of the penalty problem (3.4) arbitrarily close to the
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optimal solution of original problem (3.3), b should be sufficiently large. However,

with a large value of b, (3.4) may be ill-conditioned. This is because with a large

value of b, more emphasis is placed on the penalty part of Lp(θ),
b

2 max(0, f 1(θ))2.

As a result, most unconstrained optimization techniques will force the constraints to

be satisfied by moving toward a feasible point, which might be far from the optimal

solution (Bazaraa et al., 2006). Figure 3.2 shows the performance of the penalty

function method when b takes different values. In this implementation, a steepest

decent method is used to solve each unconstrained problem starting from θ = (10, 10).

In Figure 3.2, we can observe that for a large value of b (b > 103), the solution to
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Figure 3.2: The plot of f 0(θn) versus b. At the optimal solution θ∗, f 0(θ∗) = 0.8579.

(3.3) deviates from the optimal solution because of ill-conditioning.

We present the effectiveness of our proposed method numerically in an illustrative

example. The proposed method displays good performance when compared with

alternative approaches.

The main advantages of the proposed method can be summarized as follows: (1)

it is designed to handle stochastic constraints when the number of feasible solutions

is large or infinite, (2) it is shown to be convergent to the optimal solution a.s. under
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certain technical conditions, and (3) it shows promising numerical performance in

various examples.

This chapter is organized as follows. In Section 3.2, we introduce some definitions.

Section 3.3 describes our proposed method formally and states the main theorem

(Theorem 1) of this chapter. Section 3.4 presents the numerical results and compares

the proposed method with some other methods in the literature. Section 3.5 provides

the proof for the main theorem.

3.2. Definitions

In this section, we introduce some definitions that will be used throughout this chap-

ter. For a positive integer m, Zm, Rm, and Rm

+ denote the set of m–dimensional

integer vectors, the set of m–dimensional real vectors, and the set of m–dimensional

nonnegative real vectors, respectively. We view vectors as columns and write xT to

denote the transpose of a vector x ∈ Rm. For x ∈ Rm, we write its jth component as

xj, so x = (x1, . . . , xm). By �x�, we denote ((x1)2 + · · ·+ (xm)2)1/2. For a subset I of

{1, . . . ,m}, χI is an m–dimensional vector whose jth entry is 1 when j belongs to I

and 0 otherwise (1 ≤ j ≤ m). We denote χ{j} by ej (1 ≤ j ≤ m).

For x ∈ R, �x� and �x� denote the largest integer less than or equal to x and the

smallest integer greater than or equal to x, respectively. For x = (x1, . . . , xm) ∈ Rm,

�x� and �x� denote (�x1�, . . . , �xm�) and (�x1�, . . . , �xm�), respectively. We denote

the closest integer point to x ∈ Rm by [x].

For a function g : Rm → R, a vector ξ ∈ Rm is said to be a subgradient of g at

x ∈ Rm if g(y) ≥ g(x) + ξT (y − x) for all y ∈ Rm. If g is convex, then a subgradient

of g at x exists at every x ∈ Rm (see Theorem 23.4 in p. 217 of Rockafellar (1970)).

For a function g : Rm → R, the partial derivative of g with respect to the jth
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component at x ∈ Rm is denoted by ∂g(x)/∂xj for 1 ≤ j ≤ m if the partial derivative

exists.

For x ∈ R, max(0, x) is x if x ≥ 0, and zero otherwise.

3.3. Problem Formulation

3.3.1 General Approach

We consider the following problem

min
θ∈C∩Zd

f 0(θ) (3.5)

s/t f i(θ) ≤ 0, 1 ≤ i ≤ r,

where C is a nonempty closed convex subset of Rd and we can observe f i : Zd → R

(0 ≤ i ≤ r) via simulation at each θ ∈ Zd.

To convert (3.5) into an unconstrained problem, we consider the Lagrangian L :

Zd × Rr

+ → R defined as follows:

L(θ, λ) = f 0(θ) +
r�

i=1

λif i(θ)

for θ ∈ Zd and λ = (λ1, . . . , λr) ∈ Rr

+. We observe that if θ∗ ∈ C ∩ Zd and λ∗ =

(λ1
∗
, . . . , λr

∗
) ∈ Rr

+ satisfy

i) θ∗ minimizes L(θ, λ∗) over θ ∈ C ∩ Zd, and

ii) For 1 ≤ i ≤ r, λi

∗
> 0 implies f i(θ∗) = 0 and λi

∗
= 0 implies f i(θ∗) ≤ 0,

then θ∗ is an optimal solution to (3.5). To see why this is true, we note that i) and ii)

imply that θ∗ ∈ F , where F �
�
θ ∈ C ∩ Zd : f i(θ) ≤ 0 for 1 ≤ i ≤ r

�
. In addition,

for any θ ∈ F , we have f 0(θ∗) +
�

r

i=1 λ
i

∗
f i(θ∗) ≤ f 0(θ) +

�
r

i=1 λ
i

∗
f i(θ), and hence,

f 0(θ∗) ≤ f 0(θ) +
�

r

i=1 λ
i

∗
(f i(θ)− f i(θ∗)) ≤ f 0(θ).
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Furthermore, it can be easily seen that i) and ii) are equivalent to the condition

L(θ∗, λ) ≤ L(θ∗, λ∗) ≤ L(θ, λ∗)

for all θ ∈ C ∩ Zd and λ ∈ Rr

+; i.e., (θ∗, λ∗) is a saddle-point of L.

Therefore, it is reasonable to attempt to find the optimal solution to (3.5) by

solving

max
λ∈Rm

+

min
θ∈C∩Zd

L(θ, λ). (3.6)

In our proposed method, we search for the solution to (3.6) by updating θ and λ

iteratively using a gradient-based method. One obstacle to this approach is that L

has a discrete input variable θ, so it is impossible to define the gradient of L with

respect to θ in a traditional way. To overcome this, we extend L from Zd × Rr

+ to

Rd × Rr

+ and compute the gradient of the extended L in the usual way. In order to

extend L, we extend f i (0 ≤ i ≤ r) from Zd to Rd and use the extended functions

to extend L. In particular, we denote the extension of f i by �f i ( �f i : Rd → R) for

0 ≤ i ≤ r and define �L : Rd × Rr

+ → R by

�L(θ, λ) = �f 0(θ) +
r�

i=1

λi �f i(θ)

for θ ∈ Rd and λ = (λ1, . . . , λr) ∈ Rr

+.

Our proposed method then solves

max
λ∈Rr

+

min
θ∈C∩Rd

�L(θ, λ) (3.7)

in the hope of solving (3.6). We observe that if (�θ∗, �λ∗) solves (3.7), then �θ∗ solves

the following problem:

min
θ∈C∩Rd

�f 0(θ) (3.8)
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s/t �f i(θ) ≤ 0, 1 ≤ i ≤ r

(see Theorem 2.18 in p. 48 of Zangwill (1969)), which can be viewed as a relaxed

version of (3.5). Thus the remaining question is the relationship between the solution

to (3.8) and the solution to (3.5). The following proposition confirms their relationship

in the case where the solution to (3.8) is an integer point.

Proposition 1. Suppose that there exists a solution to (3.8), say �θ∗, and that �θ∗ ∈ Zd.

Then �θ∗ is a solution to (3.5). Therefore, if (�θ∗, �λ∗) is a saddle point of �L, i.e.,

�L(�θ∗, λ) ≤ �L(�θ∗, �λ∗) ≤ �L(θ, �λ∗)

for all θ ∈ C ∩ Rd and λ ∈ Rr

+, and �θ∗ is an integer point, then �θ∗ is an optimal

solution to (3.5).

Proof. Let �θ∗ be a solution to (3.8) and assume that �θ∗ ∈ Zd. Then for any θ ∈ C∩Zd

satisfying �f i(θ) = f i(θ) ≤ 0 (1 ≤ i ≤ r), we have �f 0(�θ∗) ≤ �f 0(θ). Since �θ∗ and θ are

integer points, we have f 0(�θ∗) ≤ f 0(θ). So �θ∗ is an optimal solution to (3.5).

To prove the last part, we observe that if �θ∗ ∈ C ∩Zd and �λ∗ = (�λ1
∗
, . . . , �λr

∗
) ∈ Rr

+

satisfy

i) �θ∗ minimizes �L(θ, �λ∗) over θ ∈ C ∩ Rd, and

ii) for 1 ≤ i ≤ r, �λi

∗
> 0 implies �f i(�θ∗) = 0 and �λi

∗
= 0 implies �f i(�θ∗) ≤ 0,

then �θ∗ is an optimal solution to (3.5).

To see why this is true, we note that ii) implies that �θ∗ ∈ F � {θ ∈ C ∩ Zd :

f i(θ) ≤ 0 for 1 ≤ i ≤ r}. In addition, for any θ ∈ F , from i), we have

f 0(�θ∗) +
r�

i=1

�λi

∗
f i(�θ∗) ≤ f 0(θ) +

r�

i=1

�λi

∗
f i(θ),
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and hence,

f 0(�θ∗) ≤ f 0(θ) +
r�

i=1

�λi

∗

�
f i(θ)− f i(�θ∗)

�

≤ f 0(θ).

Therefore, �θ∗ is an optimal solution to (3.5).

It remains to show that i) and ii) are implied by the condition:

�L(�θ∗, λ) ≤ �L(�θ∗, �λ∗) ≤ �L(θ, �λ∗) (3.9)

for all θ ∈ C ∩ Rd and λ ∈ Rr

+.

Suppose that (3.9) is true. From �L(�θ∗, �λ∗) ≤ �L(θ, �λ∗), �θ∗ minimizes �L(θ, �λ∗) over

θ ∈ C ∩ Rd. Hence, i) follows.

On the other hand, from �L(�θ∗, λ) ≤ �L(�θ∗, �λ∗), we have

�f 0(�θ∗) +
r�

i=1

λi �f i(�θ∗) ≤ �f 0(�θ∗) +
r�

i=1

�λi

∗
�f i(�θ∗)

for all λ = (λ1, . . . , λr) ∈ Rr

+. Since �λ∗ ∈ Rr

+ and this inequality holds for all λ ∈ Rr

+,

we must have �f i(�θ∗) ≤ 0 for all 1 ≤ i ≤ r because if �f j(�θ∗) > 0 for some j, then

the inequality is violated by λ = (0, . . . , 0, λj, 0, . . . , 0) with λj > 0 sufficiently large.

This implies

�f i(�θ∗) ≤ 0

for all 1 ≤ i ≤ r and
r�

i=1

�λi

∗
�f i(�θ∗) ≤ 0.

In addition, if we let λ = (0, . . . , 0), we obtain

r�

i=1

�λi

∗
�f i(�θ∗) ≥ 0.



46

Thus, we must have
�

r

i=1
�λi

∗
�f i(�θ∗) = 0. Since �f i(�θ∗) ≤ 0 and �λi

∗
≥ 0 for all 1 ≤ i ≤ r,

we must have �λi

∗
�f i(�θ∗) = 0 for 1 ≤ i ≤ r, and hence, ii) follows.

The framework of the proposed method then can be summarized as follows:

1. Extend L from a discrete domain to a continuous domain and obtain the ex-

tended function �L.

2. Obtain subgradients of �L with respect to θ and λ, respectively.

3. Apply stochastic approximation to �L to find the saddle point of �L.

Given the relationship between the saddle point of �L and the solution to (3.5),

the proposed method applies stochastic approximation to �L in order to search for

the saddle point. Denoting the nth estimator of the saddle point of �L by (θn, λn),

we update θn and λn as follows. Given (θ1, λ1), . . . , (θn, λn), we observe a quantity

−Dn(θn, λn) that guides us towards the steepest descent direction in θ (−Dn(θn, λn)

can be interpreted as the negative of the derivative of �L with respect to θ if �L is

differentiable in θ or the negative of the subgradient of �L in θ if �L is convex in θ).

We then update θn by the recursion

θn+1 = ΠC (θn − cnDn(θn, λn)) ,

where ΠC(θ) is the closest point in C to θ ∈ Rd with respect to the norm �·�. (cn : n ≥

1) is a sequence of positive real numbers satisfying the conditions
�

∞

n=1 cn = ∞ and
�

∞

n=1 c
2
n
≤ ∞. The specific form of this sequence will be provided in the numerical

experiments part.

Using the fact that

∂�L(θ, λ)/∂λi = �f i(θ)
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for 1 ≤ i ≤ r provided that the partial derivative exists, we update λn by the recursion

λi

n+1 = max
�
0, λi

n
+ cnF

i(θn)
�

for 1 ≤ i ≤ r, where F i(θn) is an observation of �f i at θn.

Finally, we assume that there exists a known bound K for a saddle point of �L; i.e.,

there exists a positive constant K such that |�θi
∗
| ≤ K for 1 ≤ i ≤ d and |�λi

∗
| ≤ K for

1 ≤ i ≤ r, where (�θ∗, �λ∗) is a saddle point of �L. With this additional information, we

project (θn, λn) onto B � {(θ, λ) ∈ Rd ×Rr : |θi| ≤ K for 1 ≤ i ≤ d, |λi| ≤ K for 1 ≤

i ≤ r} and the projected point is (θn+1, λn+1).

Our proposed method takes the following form in general:

Algorithm 1: General Form of the Proposed Method

Step 0. Initialize: Select a starting point (θ0, λ0) ∈ Zd × Rr. Set n = 0.

Step 1. Update θn and λn: Generate observations Dn(θn, λn) and F i(θn) for

1 ≤ i ≤ r and set

θn+1 = ΠC (θn − cnDn(θn, λn)) ,

λ
i

n+1 = max
�
0, λi

n
+ cnF

i(θn)
�

for 1 ≤ i ≤ r.

Step 2. Project (θn+1, λn+1) onto B and set the projected point equal to

(θn+1, λn+1).

Step 3. Let n = n+ 1 and go to Step 1.
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To investigate the asymptotic behavior of ((θn, λn) : n ≥ 1), we focus on the case

where �f i (0 ≤ i ≤ r) is convex. In this case, differentiability of �f i is not necessary;

only Dn needs to be an unbiased estimate of a subgradient of �L in θ and F i needs to

be an unbiased estimate of �f i for 1 ≤ i ≤ r. In particular, we require:

A1. (cn : n ≥ 1) is a sequence of positive numbers satisfying
�

∞

n=1 cn = ∞ and
�

∞

n=1 c
2
n
≤ ∞.

A2. �f 0 is strictly convex and �f i (1 ≤ i ≤ r) is convex.

A3. There exists η ∈ C such that �f i(η) < 0 for 1 ≤ i ≤ r. The optimal value

of (3.8) is finite.

A4. E [Dn(θn, λn)|Fn] is a subgradient of �L at (θn, λn) as a function of θ; i.e.,

�L(θ, λn) ≥ �L(θn, λn) + E [Dn(θn, λn)|Fn]
T (θ − θn) (3.10)

for all θ ∈ Rd, where Fn is the σ–field generated by (θ1, λ1), . . . , (θn, λn). In

addition, we assume

E
�
F i(θn)|Fn

�
= �f i(θn) (3.11)

for 1 ≤ i ≤ r and n ≥ 1,

E
�
�Dn(θn, λn)− E [Dn(θn, λn)|Fn] �

2
|Fn

�
< σ2, (3.12)

for n ≥ 1, and

E
�
(F i(θn)− E

�
F i(θn)|Fn

�
)2|Fn

�
< σ2 (3.13)
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for 1 ≤ i ≤ r and n ≥ 1 for some positive constant σ2.

Theorem 1. Under A1–A4, i) there exists a saddle point (�θ∗, �λ∗) of �L, ii) �θ∗ is

unique, and iii) θn → �θ∗ a.s. as n → ∞. By Proposition 1, if �θ∗ is an integer point,

then �θ∗ is a solution to (3.5).

3.3.2 Extension via Piecewise Linear Interpolation

The continuous extensions �f i (0 ≤ i ≤ r) introduced in Section 3.3.1 can be chosen

arbitrarily. However to make our procedure more concrete, we introduce one possible

way of extending functions from Zd to Rd. In particular, we consider extending a

function h : Zd → R via the piecewise linear interpolation over a particular partition

of Rd as follows. For θ ∈ Rd, we let p = �θ� and q = (q1, . . . , qd) = θ − p. σ is the

permutation of (1, . . . , d) such that σ(j) is the index of the jth largest of q1, . . . , qd

(if qσ(j) = qσ(k) for some j and k, then let σ(j) > σ(k) when j > k). We set U0 = ∅

and Uj = {σ(1), . . . , σ(j)} for 1 ≤ j ≤ d. We define �h : Rd → R by

�h(θ) =
�
1− qσ(1)

�
h(p) +

�
qσ(1) − qσ(2)

�
h(p+ χU1)

+ · · ·+
�
qσ(d−1)

− qσ(d)
�
h
�
p+ χUd−1

�
+ qσ(d)h (p+ χUd

) . (3.14)

By construction, �h(θ) = h(θ) for θ ∈ Zd, so �h is a continuous extension of h over Rd.

Even though �h is not differentiable at some points in Rd, a subgradient of �h can

be easily computed when �h is convex. We define ϕ�h(θ) = (ϕ�hj(θ) : j = 1, . . . , d) by

ϕ�hj(θ) = �h(p+ χUk
)− �h(p+ χUk−1

) (3.15)

for θ ∈ Rd, where qj = qσ(k).

The following propositions prove that ϕ�h(θ) is a subgradient of h at θ ∈ Rd when

�h is convex.



50

Proposition 2. Let h : Zd → R be given and �h : Rd → R be defined by (3.14).

For any θ ∈ Rd and δ > 0, i) there exists θδ ∈ Rd such that �θ − θδ� ≤ δ, ii) �h is

differentiable at θδ, iii) ϕ�h(θ) = ϕ�h(θδ), and iv) ϕ�h(θδ) is the gradient of �h at θδ.

Proof. Let θ ∈ Rd and δ > 0 be given. Let p = �θ� and q = θ − p. First we consider

the case where q = (q1, . . . , qd) has d distinct components and qj �= 0 for 1 ≤ j ≤ d. In

this case, we let θδ = θ. Note qσ(1) > · · · > qσ(d) > 0 and by the representation (3.14),

there exists a neighborhood of θ where �h is linear. Hence in that neighborhood, �h is

differentiable. (In particular, �h is differentiable at θ = θδ.) To prove that ϕ�h(θ) is

the gradient of �h at θ, it suffices to prove that ϕ�hj(θ) is the right derivative of �h at θ

in the jth component. For j ∈ {1, . . . , d}, let qσ(k) = qj. The right derivative of �h at

θ in the jth component is

lim
γ↓0

�
�h(q1, . . . , qj + γ, . . . , qd)− �h(q1, . . . , qd)

�
/γ

= lim
h↓0

(1/γ)
���

1− qσ(1)
�
h(p) + · · ·+

�
qσ(k−1)

− (qσ(k) + γ)
�
h(p+ χUk−1

)

+
�
(qσ(k) + γ)− qσ(k+1)

�
h(p+ χUk

) + · · ·+ qσ(d)h (p+ χUd
)
�

−
��
1− qσ(1)

�
h(p) + · · ·+

�
qσ(k−1)

− qσ(k)
�
h(p+ χUk−1

)

+
�
qσ(k) − qσ(k+1)

�
h(p+ χUk

) + · · ·+ qσ(d)h (p+ χUd
)
��

= �h(p+ χUk
)− �h(p+ χUk−1

)

= ϕ�hj(θ),

proving that ϕ�hj(θ) is the right derivative of �h at θ in the jth component.

Now we consider the general case. For any qσ(1) ≥ · · · ≥ qσ(d) ≥ 0, there exists

qδ = (q1
δ
, . . . , qd

δ
) such that the order among q1

δ
, . . . , qd

δ
is the same as the order among

q1, . . . , qd, q1
δ
, . . . , qd

δ
are all distinct, qi

δ
�= 0 for 1 ≤ i ≤ d, and �θ− (p+ qδ)� ≤ δ. Let

θδ = p + qδ. Then �θ − θδ� ≤ δ. Since the order among q1
δ
, . . . , qd

δ
is the same as the

order among q1, . . . , qd, we have ϕ�h(θ) = ϕ�h(θδ). From the previous arguments, �h is

differentiable at θδ and ϕ�h(θδ) is the gradient of �h at θδ.
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Proposition 3. Let h : Zd → R be given and �h and ϕ�h be defined by (3.14) and

(3.15), respectively. If �h is convex, then ϕ�h(θ) is a subgradient of �h at θ ∈ Rd.

Proof. First, we prove that the convexity of �h confirms that ϕ�h(θ) is a subgradient of

�h at θ ∈ Rd. For any x, y ∈ Rd, Proposition 2 guarantees the existence of a sequence

(ηi : i ≥ 1) such that

�x− ηi� ≤ 1/i, (3.16)

ϕ�h(ηi) is a gradient of �h at ηi, (3.17)

ϕ�h(ηi) = ϕ�h(x) (3.18)

for i ≥ 1. So

�h(y) = �h(ηi − ηi + y)

≥ �h(ηi)− (ηi − y)Tϕ�h(ηi) by (3.17) and convexity of �h

= �h(ηi)− (ηi − y)Tϕ�h(x) by (3.18).

Letting i → ∞ and using (3.16) and the continuity of �h, we get �h(y) ≥ �h(x) + (y −

x)Tϕ�h(x). Hence ϕ�h(x) is a subgradient of �h at x.

In Example 1, we illustrate how to compute ϕ�h.

Example 1. Suppose d = 3 and θ = (13.2, 9.4, 20.2). Then p = �θ� = (13, 9, 20) and

q = (q1, q2, q3) = θ − p = (0.2, 0.4, 0.2). Since q2 > q1 = q3, we have σ = (2, 1, 3),

U0 = ∅, U1 = {2}, U2 = {2, 1}, and U3 = {2, 1, 3}. Thus

�h(θ) = (1− q2)h(p) + (q2 − q1)h(p+ χ{2}) + (q1 − q3)h(p+ χ{2,1}) + q3h(p+ χ{2,1,3})
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and

ϕ�h1 = �h(p+ χ{2,1})− �h(p+ χ{2}),

ϕ�h2 = �h(p+ χ{2})− �h(p),

ϕ�h3 = �h(p+ χ{2,1,3})− �h(p+ χ{2,1}).

We are now ready to discuss how this strategy of constructing an extension can be

adopted in the proposed method. We define the extensions �f i : Rd → R (0 ≤ i ≤ r)

via the linear interpolation by

�f i(θ) =
�
1− qσ(1)

�
f i(p) +

�
qσ(1) − qσ(2)

�
f i(p+ χU1)

+ · · ·+
�
qσ(d−1)

− qσ(d)
�
f i

�
p+ χUd−1

�
+ qσ(d)f i (p+ χUd

) (3.19)

for θ ∈ Rd, where p, q, σ, U0, . . . , Ud are defined as before. Using these functions, a

continuous extension �L : Rd × Rr → R of L is defined as

�L(θ, λ) = �f 0(θ) +
r�

i=1

λi �f i(θ)

for θ ∈ Rd and λ ∈ Rr

+.

We next define ϕ �f i(θ) = (ϕ �f i

j
(θ) : j = 1, . . . , d) for 0 ≤ i ≤ r by

ϕ �f i

j
(θ) = �f i(p+ χUk

)− �f i(p+ χUk−1
) (3.20)

for θ ∈ Rd, where qj = qσ(k). Propositions 2 and 3 justify our choice of ϕ �f i as a

subgradient of �f i.

With the �f is as the extended functions, our proposed method proceeds as fol-

lows. We denote the nth estimator of the saddle point of �L by (θn, λn). Given

(θ1, λ1), . . . , (θn, λn), we observe f i (0 ≤ i ≤ r) at pn + χUk
for 0 ≤ k ≤ d, and
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presume that

Y i

n
(k) = f i(pn + χUk

) + �n(k), (3.21)

where pn = �θn�, qn = (q1
n
, . . . , qd

n
) = θn − pn, σn is the permutation of (1, . . . , d)

such that σn(j) is the index of the jth largest of q1
n
, . . . , qd

n
(if qσn(j)

n = qσn(k)
n for some

j and k, then let σn(j) > σn(k) when j > k), U0 = ∅, Uk = {σn(1), . . . , σn(k)} for

1 ≤ k ≤ d, and (�n(k) : 0 ≤ k ≤ d, n ≥ 1) are mean zero random variables. We then

update θn and λn by the recursion

θn+1 = ΠC (θn − cnDn(θn, λn)) ,

λi

n+1 = max
�
0, λi

n
+ cn

�
(1− qσ(1)

n
)Y i

n
(0) + · · ·+ qσ(d)

n
Y i

n
(d)

��

for 1 ≤ i ≤ r, where the jth element ofDn(θn, λn) is Y 0
n
(k)−Y 0

n
(k−1)+

�
r

i=1 λ
i

n
(Y i

n
(k)

−Y i

n
(k − 1)) with qj

n
= qσ(k)n . We then project (θn+1, λn+1) onto B and the projected

point becomes (θn+1, λn+1).

We observe that under the assumption that the �n(k)s are mean zero random

variables, (3.20) and (3.21) imply

E [Dn(θn, λn)|(θ1, λ1), . . . (θn, λn)] = ϕ �f 0(θn) +
r�

i=1

λi

n
ϕ �f i(θn).

Below is the proposed method when we adopt the above procedure.

Algorithm 2: Proposed algorithm with Extensions via Linear

Interpolation

Step 0. Initialize: Select a starting point (θ0, λ0) ∈ Zd × Rr. Set n = 0.
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Step 1. Update θn and λn: Generate an observation Y i

n
(k) of f i at pn + χUk

for 0 ≤ i ≤ r and 0 ≤ k ≤ d, where pn and the Uks are defined as before. Set

θn+1 = ΠC (θn − cnDn(θn, λn)) ,

λ
i

n+1 = max
�
0, λi

n
+ cn

�
(1− qσ(1)

n
)Y i

n
(0) + · · ·+ qσ(d)

n
Y i

n
(d)

��
,

where the jth element of Dn(θn, λn) is Y 0
n
(k)− Y 0

n
(k − 1) +

�
r

i=1 λ
i

n
(Y i

n
(k)−

Y i

n
(k − 1)) with qj

n
= qσ(k)n .

Step 2. Project (θn+1, λn+1) onto B and set the projected point equal to

(θn+1, λn+1).

Step 3. Let n = n+ 1 and go to Step 1.

To analyze the behavior of ((θn, λn) : n ≥ 1) generated from Algorithm 2, we shall

impose some assumptions. In particular, we require:

A5. �f 0 is strictly convex and �f i (1 ≤ i ≤ r) is convex.

A6. There exists η ∈ Rd such that �f i(η) < 0 for 1 ≤ i ≤ r. Let f∗ =

minθ∈C∩Rd
�f 0 subject to �f i(θ) ≤ 0 for 1 ≤ i ≤ r and assume f∗ is finite.

A7. The �n(j)s are random variables satisfying

E [�n(j)|Fn] = 0

and

E
�
�n(j)

2
|Fn

�
< κ2

for 0 ≤ j ≤ d, n ≥ 1, and some positive constant κ2, where Fn is the σ–field

generated by (θ1, λ1), . . . , (θn, λn).
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From Theorem 1, we have the following theorem.

Theorem 2. Under A1 and A5–A7, i) there exists a saddle point (�θ∗, �λ∗) of �L, ii)

�θ∗ is unique, and iii) θn → �θ∗ a.s. as n → ∞. By Proposition 1, if �θ∗ is an integer

point, then �θ∗ is the solution to (3.5).

3.4. Numerical Results

In this section, we investigate the performance of the proposed algorithms in the

following four settings: (1) 2-dimensional quadratic problem, (2) inventory control

in a periodically–reviewed single–item inventory system, (3) staffing in a call center

that handles multiple types of calls while maintaining a satisfactory level of customer

service, and (4) staffing in an emergency room. We then compare the proposed

method to the methods proposed by Whitney et al. (2001) and Ahmed et al. (1997).

3.4.1 Competing Methods

The method proposed in Whitney et al. (2001) incorporates a penalty function into

the objective function. In the nth iteration of this method, we generate ∆n =

(∆1
n
, . . . ,∆d

n
), where the ∆i

n
s are independent and identically distributed (iid) random

variables taking values +1 or −1 with equal probability. Denoting the nth estimator

of the optimal solution to (3.5) by θn, we then generate an observation Y i

+ of f i at

θn+∆n, an observation Y i

−
of f i at θn−∆n , and an observation Y i of f i for 0 ≤ i ≤ r,

and update θn by the recursion

θn+1 = ΠC∩Bθ
(θn − [anHn(θn)]) ,
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where the jth component of Hn(θn) is

(Y 0
+ − Y 0

−
+ bn

r�

i=1

max(0, Y i)(Y i

+ − Y i

−
))/(2∆j

n
)

for 1 ≤ j ≤ d and ΠC∩Bθ
is the projection onto the set C ∩ Bθ with Bθ � {θ ∈ Rd :

|θj| ≤ K for 1 ≤ j ≤ d}. (an : n ≥ 1) and (bn : n ≥ 1) are sequences of positive real

numbers.

On the other hand, at the nth iteration of the method proposed by Ahmed et al.

(1997), we set the neighborhood N (θn) of θn as

N (θn) = {θ ∈ Zd : �θ − θn� = 1}, (3.22)

and choose a candidate for θn+1, say θ�
n
, from N (θn) with equal probability. We then

generate iid observations of fi (1 ≤ i ≤ r) at θ�
n
and compute the sample mean and

standard deviation, say �f i and �σi, of those observations. We consider θ�
n
feasible if

�f i
− tn−1,1−α�σi

≤ 0

for 1 ≤ i ≤ r, where tn−1,1−α is the upper 1 − α critical point for the t distribution

with n−1 degrees of freedom. If θ�
n
is considered feasible by this criterion, we generate

an observation Yn of f 0 at θn and an observation Y �
n
of f 0 at θ�

n
, and accept θ�

n
as

θn+1 if Y �
n
≤ Yn or exp(− (Y �

n
− Yn) /Tf ) > Un, where Tf is a positive constant and

Un is a random variable uniformly distributed between 0 and 1. If Y �
n
> Yn and

exp(− (Y �
n
− Yn) /T ) ≤ Un, then θn is chosen as θn+1. If θ�n is not considered feasible,

then θn is chosen as θn+1. We repeat this procedureM times after which Tf is replaced

by TfR, where R < 1 is a positive constant. The procedure is repeated M times again

until Tf is replaced by TfR again. This process is repeated until a stopping criterion

is satisfied.
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The subsequent section reports the performances of the proposed method and the

two competing methods.

3.4.2 An Illustrative Example

We consider the following 2-dimensional quadratic problem:

min
θ=(θ1,θ2)

f 0(θ) = E
�
(θ1 − 10)2 + (θ2 − 30)2 + �0

�
(3.23)

s/t f 1(θ) = E
�
(θ1)2 + (θ2)2 + �1

�
≤ 0,

where θ ∈ Z2. We add iid zero-mean Gaussian noise to both f 0(θ) and f 1(θ), i.e., �0 ∼

N(0, 22) and �1 ∼ N(0, 52). We assume that only noisy measurements of the objective

function f 0(θ) and the constraint function f 1(θ) are available. The deterministic

optimal solution θ∗ of (3.23) occurs at (7, 21) with f 0(θ∗) = 90 and f 1(θ∗) = −10.

We apply Algorithm 2, and the methods proposed by Whitney et al. (2001) and

Ahmed et al. (1997) to find θ∗. Whenever we observe f 0 or f 1 at each point in all

three methods, we use the average of 10 iid simulation replications as an observation

of f 0 or f 1. The initial solution θ1 is set as (0, 0) for all the three methods and λ1 = 0

is used for Algorithm 2. The other parameters used are cn = 0.2/n, an = 0.2/n,

bn = 0.1 log(n0.5), α = 0.95, Tf = 100, R = 0.6,M = 5.

Denoting the number of simulation runs made at iteration n by tn and fixing the

total number N of simulation runs available, we compute θl(N)+1 where l(N) is the

maximum number of iterations given the N simulation runs available; i.e., l(N) is

the largest integer satisfying t1 + · · · + tl(N) ≤ N . Thus, θl(N)+1 is the best estimate

of (θ1
∗
, θ2

∗
) given the computational budget N . We notice that both f 0 and f 1 can

be simultaneously computed in a single simulation run, so tn = 30, 30, and 10 for

Algorithm 2, the method by Whitney et al. (2001), and the method by Ahmed et al.

(1997), respectively. Table 1 reports the averages (Mean) of θl(N)+1 generated by
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Algorithm 2, the method by Whitney et al. (2001), and the method by Ahmed et al.

(1997) based on 50 independent copies of θl(N) for each value of N . To measure how

the distribution of θl(N)+1 is spread out, the average of the sample standard deviation

of θ1
l(N)+1 and θ2

l(N)+1 is reported in Table 3.1. In addition, averages of the f 1(θl(N)+1)

values are reported to show that our method converges to a feasible solution for N

sufficiently large.

Table 3.1: Averages (Mean) and standard deviation (Std) of θl(N)+1 and correspond-
ing averages of f 1(θl(N)+1) generated from three methods applied to the illustrative
problem.

Algorithm 2 Whitney et al. (2001) Ahmed et al. (1997)

N Mean Std f 1(θ) Mean Std f 1(θ) Mean Std f 1(θ)

1000 (7, 22) 0.07 31.85 (6, 19) 2.72 −75.63 (8, 14) 2.84 −217.79
2000 (7, 22) 0.00 33.05 (6, 19) 2.72 −75.50 (10, 20) 1.00 −5.14
3000 (7, 21) 0.00 −9.27 (6, 19) 2.72 −75.39 (9, 20) 0.87 −1.91
4000 (7, 22) 0.00 33.12 (6, 19) 2.72 −75.50 (9, 20) 0.87 −2.25
5000 (7, 21) 0.00 −9.79 (6, 19) 2.72 −75.29 (10, 20) 0.87 −1.22
6000 (7, 21) 0.00 −9.96 (6, 19) 2.72 −75.46 (10, 20) 0.87 −1.54

(θ1
∗
, θ2

∗
) (7, 21) (7, 21) (7, 21)

From Table 3.1 we can conclude that only Algorithm 2 converges to the optimal

solution (7, 21) for N sufficiently large and has the smallest Std value.

Figure 3.3 and Figure 3.4 show the typical behaviour of the objective function

values and the constraint function values for the three methods as the number of

simulation runs N is increasing. From Figure 3.3 and Figure 3.4 we can see that both

Algorithm 2 and the method proposed by Whitney et al. (2001) converge very quickly.

But the later method only converges to a non-optimal feasible solution. We notice

that the performance of this penalty function method is quite sensitive to the choice

of the penalty value bn. If bn is too small, the method cannot guarantee to converge to

a optimal solution; if bn is too large, the method becomes ill-conditioned and returns
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some unmeaningful solutions. Even though (3.23) is a simple optimization problem,

the penalty function method does not perform very well.
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Figure 3.3: The plot of f 0(θl(N)+1) versus N for the three methods.
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Figure 3.4: The plot of f 1(θl(N)+1) versus N for the three methods.

3.4.3 Inventory Control in a Periodic Review System

We consider a finite-horizon, periodically-reviewed, single-item inventory system with

integer-valued iid demands and full backlogging. Orders are received at the beginning

of each period, the demand for the period arrives next, and we review the inventory

position (= on hand stock minus backorders plus any outstanding orders) to make an

ordering decision. The ordering decisions are made according to the (s, S) policy. If

the inventory position is less than s, an order for the amount of S minus the inventory

position is placed. Otherwise, no action is taken. The order lead time is assumed to

be zero. When an order of x units is placed, the ordering cost of K + cx is incurred,

whereK is the fixed setup cost per order and c is the unit cost. A holding cost of h per

unit per period is charged against any unit left at the end of each time period. The
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service level is measured using the fill rate, which is defined as the fraction of demand

that is met directly from stock on hand. By f 0(s, S), we denote the average ordering

and holding costs per period over 1, 000 time periods when the inventory position

at the beginning of the first period is initialized at S and the system is governed by

the (s, S) policy. By g(s, S), we denote the fill-rate over 1, 000 time periods when

the inventory position at the beginning of the first period is initialized at S and the

system is governed by the (s, S) policy. Our goal is to determine the values s and S,

say s∗ and S∗, that minimize f 0(s, S) subject to the constraint that g(s, S) is greater

than or equal to a prescribed level β, i.e., f 1(s, S) � β − g(s, S) ≤ 0.

We apply Algorithm 2, and the methods proposed by Whitney et al. (2001) and

Ahmed et al. (1997) to find (s∗, S∗). Whenever we observe f 0 at each point in

F1 � {(x, y) ∈ Z2 : 1 ≤ x ≤ 100, 1 ≤ y ≤ 100, x ≤ y} in all three methods, the

inventory system is simulated over 1,000 time periods, the ordering and holding costs

are averaged over the 1,000 time periods, and the average of 20 iid such replications

is used as an observation of f 0. Likewise, whenever we observe g at each point in

F1, the inventory system is simulated over 1,000 time periods, the demand which is

met directly from stock over the 1,000 periods is divided by the total demand over

the 1,000 periods, and the average of 20 iid such replications is used as an obser-

vation of g. θ1 is set as (100, 100) for all the three methods and λ1 = 275 is used

for Algorithm 2. The parameters used are cn = 500/(35 + n) for the first 10% of

the total iterations available, cn = 50/(35 + n) for the rest of the iterations avail-

able, an = 200/(35 + n), bn = 10000 log(n0.5), α = 0.95, Tf = 100, R = 0.6,M = 10,

K = 100, c = 3, h = 3, β = 0.95, and demand in each time period follows a Poisson

distribution with a mean of 30.

To compare the estimates of (s∗, S∗) produced by the proposed method and other

methods to the true values, s∗ and S∗ are estimated by evaluating f 0(s, S) and g(s, S),

using the average of 100 iid replications at each point in F1 and selecting the values s
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and S that minimize the estimated f 0 value while the estimated g value is greater than

or equal to β. The “true” optimal solution estimated this way is (s∗, S∗) = (18, 60).

Table 3.2: Averages (Mean) and standard deviation (Std) of θl(N)+1 and corresponding
averages of f 1(θl(N)+1) generated from three methods applied to the periodically-
reviewed inventory system.

Algorithm 2 Whitney et al. (2001) Ahmed et al. (1997)

N Mean Std f 1(θ) Mean Std f 1(θ) Mean Std f 1(θ)
(×10−3) (×10−3) (×10−3)

1000 (17, 62) 5.2 9.0 (42, 68) 25.1 −16.8 (88, 107) 13.3 50.0
2000 (17, 60) 2.4 4.3 (33, 75) 21.0 −16.9 (75, 106) 19.9 49.6
4000 (18, 60) 0.7 0.8 (28, 65) 17.5 −9.2 (34, 77) 21.1 28.5
8000 (18, 60) 0.5 −0.1 (18, 58) 7.7 2.7 (24, 66) 17.0 10.3
12000 (18, 60) 0.4 −0.4 (18, 58) 6.3 6.8 (21, 63) 14.6 4.1
16000 (18, 60) 0.3 −0.7 (17, 58) 4.3 8.6 (19, 61) 13.5 2.4
20000 (18, 60) 0.3 −0.6 (17, 58) 4.0 8.0 (18, 61) 12.8 1.3

(s∗, S∗) (18, 60) (18, 60) (18, 60)

Denoting the number of simulation runs made at iteration n by tn and fixing the

total number N of simulation runs available, we compute θl(N)+1 where l(N) is the

maximum number of iterations given the N simulation runs available; i.e., l(N) is

the largest integer satisfying t1 + · · · + tl(N) ≤ N . Thus, θl(N)+1 is the best estimate

of (s∗, S∗) given the computational budget N . We notice that both f 0 and g can

be simultaneously computed in a single simulation run, so tn = 60, 60, and 20 for

Algorithm 2, the method by Whitney et al. (2001), and the method by Ahmed et al.

(1997), respectively. Table 3.2 reports the averages (Mean) of θl(N)+1 generated by

Algorithm 2, the method by Whitney et al. (2001), and the method by Ahmed et al.

(1997) based on 200 independent copies of θl(N) for each value of N . To measure how

the distribution of θl(N)+1 is spread out, the average of the sample standard deviation

of θ1
l(N)+1 and θ2

l(N)+1 is reported in Table 3.2. In addition, averages of the f 1(θl(N)+1)
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values are reported to show that our method converges to a feasible solution for N

sufficiently large.

It is noteworthy that the extended functions of f 0 and g in the proposed method

are not convex (see Song et al. (2008)), but the proposed method successfully finds

the optimal solution nevertheless.

3.4.4 Staffing in a Call Center

We consider a call center which handles three types of calls; calls that request tech-

nical support, calls that ask for sales information, and calls that wish to check order

status. An incoming call is one of the three types with probability 0.5, 0.3, and 0.2,

respectively. Calls arrive at the call center according to a Poisson process with rate

λ per minute. Calls that enter the center form a single queue of infinite capacity

and are served on a first come first serve basis. The call center opens at 8 AM and

closes at 6 PM. After 6 PM, all remaining calls should be handled before they exit

the system. Thus, each simulation run starts and ends with an empty system.

If a customer requests technical support, they must select one of the three products

(products 1, 2, and 3) that they wish technical support for. We assume that the

percentages of requests for the three products are 25%, 34%, and 41%, respectively.

The request for product i is served by a staff member of type i for 1 ≤ i ≤ 3, and the

service time per customer requested by a staff member of type i follows a triangular

distribution with lower limit 3, upper limit 18, and mode 6. Staff members of type 4

are available to handle the calls for all three products. They serve a customer only

when there are no staff members of types 1, 2, and 3 available. The service time per

customer requested by a staff member of type 4 follows a triangular distribution with

lower limit 3, upper limit 18, and mode 6.

If a customer asks for sales information, then the customer is serviced by a staff

member of type 5. The service time per customer requested by a staff member of
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type 5 follows a triangular distribution with lower limit 4, upper limit 45, and mode

15.

If a customer wishes to check order status, the request is handled by an automatic

phone system, and there is no limit on the number of such calls that the automatic

phone system can handle. The service time spent on the automated system follows

a triangular distribution with lower limit 2, upper limit 4, and mode 3. After this

automated service, 15% of the customers ask for a salesperson and wait on line until

served by a staff member of type 5. The service time per customer requested by a

staff member of type 5 in this case follows a triangular distribution with lower limit

4, upper limit 45, and mode 15.

Each staff member serves calls on a first come first serve basis. All service times

are independent of each other and independent of the arrival process.

We denote the number of staff members of type i by θi (1 ≤ i ≤ 5). By

f 0(θ1, θ2, θ3, θ4, θ5), we denote the daily average operating costs, given the staffing

level (θ1, θ2, θ3, θ4, θ5). By g(θ1, θ2, θ3, θ4, θ5), we denote the fraction of calls waiting

less than 90 seconds in the queue before they initiate their service, given the staffing

level (θ1, θ2, θ3, θ4, θ5). The goal is to find the numbers of staff members of types

1, 2, 3, 4, and 5 minimizing f 0(θ1, θ2, θ3, θ4, θ5) while ensuring that f 1(θ1, θ2, θ3, θ4, θ5) �

0.8 − g(θ1, θ2, θ3, θ4, θ5) ≤ 0. The operating costs consist of labor costs, which are

$100 per day for staff members of types 1, 2, 3, and 5, and $200 per day for a staff

member of type 4.

We apply Algorithm 2, and the methods proposed by Whitney et al. (2001) and

Ahmed et al. (1997) to find the optimal values of θi, say θi
∗
(1 ≤ i ≤ 5). Whenever

we observe f 0 at each point in F2 � {θ ∈ Z5 : 1 ≤ θi ≤ 100 for 1 ≤ i ≤ 5} in

all three methods, we simulate the system over 10 days, and compute the average

of the operating costs over the 10–day time horizon, and use the average of 10 iid

such replications as an observation of f 0. Likewise, whenever we observe the fraction
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of calls that wait less than 90 seconds in the queue, we simulate the system over

10 days, divide the number of calls that waited less than 90 seconds in the queue

by the total number of calls over the 10–day time horizon, and use the average of

10 iid such replications as an observation of g. θ1 is set as (50, 50, 50, 50, 50) for all

the three methods and λ1 = 0 is used for Algorithm 2. The parameters used are

cn = 0.5/(33 + n), an = 2/(50 + n), bn = 200000 log(n0.5), α = 0.95, Tf = 50, R =

0.6,M = 15, and λ = 5.

The optimal policy (θ1
∗
, θ2

∗
, θ3

∗
, θ4

∗
, θ5

∗
) is estimated by evaluating f 0(θ) and the

fraction of calls waited less than 90 seconds, using the average of 50 iid observations

at each θ ∈ F2. The “true” optimal solution estimated this way is (5, 15, 19, 0, 31).

Denoting the number of simulation runs made at iteration n by tn and fixing the

total number N of simulation runs available, we compute θl(N)+1 where l(N) is the

maximum number of iterations given the N simulation runs available; i.e., l(N) is

the largest integer satisfying t1 + · · · + tl(N) ≤ N . Thus, θl(N)+1 is the best estimate

of (θ1
∗
, θ2

∗
, θ3

∗
, θ4

∗
, θ5

∗
) given the computational budget N . We note that both f 0 and g

can be simultaneously computed in a single simulation run, so tn = 60, 30, and 10 for

Algorithm 2, the method by Whitney et al. (2001), and the method by Ahmed et al.

(1997), respectively. Table 3.3 reports the averages (Mean) of θl(N)+1 generated by

Algorithm 2, the method by Whitney et al. (2001), and the method by Ahmed et al.

(1997) based on 50 independent copies of θl(N) for each value of N . To measure how

the distribution of θl(N)+1 is spread out, the average of the sample standard deviation

of θ1
l(N)+1, θ

2
l(N)+1, θ

3
l(N)+1, θ

4
l(N)+1, and θ5

l(N)+1 is reported in Table 3.3. In addition,

averages of the f 1(θl(N)+1) values are reported to show that our method converges to

a feasible solution for N sufficiently large.



66

Table 3.3: Averages (Mean) and standard deviation (Std) of θl(N)+1 and corresponding
averages of f 1(θl(N)+1) generated from three methods applied to the call center.

Algorithm 2

N Mean Std f 1(θ)

1000 (30, 30, 30, 10, 30) 0.00 -0.10
2000 (15, 16, 19, 0, 31) 2.12 -0.03
3000 (10, 15, 19, 4, 35) 5.50 -0.04
4000 (8, 15, 18, 3, 34) 5.43 -0.02
5000 (8, 15, 18, 3, 33) 4.83 -0.01
6000 (8, 14, 17, 2, 33) 4.60 0.00
7000 (8, 14, 17, 2, 33) 4.53 -0.02
8000 (8, 14, 17, 1, 33) 4.03 -0.01
10000 (8, 14, 17, 1, 32) 3.22 -0.01

(θ1∗,θ
2
∗,θ

3
∗,θ

4
∗,θ

5
∗) (5, 15, 19, 0, 31)

Whitney et al. (2001)

N Mean Std f 1(θ)

1000 (19, 27, 28, 12, 41) 23.47 0.01
2000 (19, 24, 28, 8, 39) 19.10 0.01
3000 (19, 21, 23, 9, 40) 16.76 -0.01
4000 (14, 22, 17, 9, 38) 15.67 -0.01
5000 (17, 21, 21, 7, 37) 12.86 -0.03
6000 (16, 18, 22, 7, 37) 14.96 -0.01
7000 (16, 16, 21, 7, 39) 12.48 -0.02
8000 (15, 14, 19, 6, 36) 10.62 0.00
10000 (16, 14, 19, 6, 38) 9.45 -0.02

(θ1∗,θ
2
∗,θ

3
∗,θ

4
∗,θ

5
∗) (5, 15, 19, 0, 31)

Ahmed et al. (1997)

N Mean Std f 1(θ)

1000 (47, 44, 45, 44, 47) 2.15 -0.17
2000 (43, 38, 38, 38, 44) 3.01 -0.15
3000 (40, 31, 32, 32, 41) 3.53 -0.14
4000 (37, 25, 26, 27, 38) 3.94 -0.13
5000 (33, 18, 19, 21, 35) 4.12 -0.12
6000 (31, 12, 13, 14, 31) 4.44 -0.08
7000 (28, 9, 10, 11, 30) 4.28 0.01
8000 (27, 8, 9, 10, 30) 4.32 0.03
10000 (26, 8, 9, 10, 30) 4.31 0.03

(θ1∗,θ
2
∗,θ

3
∗,θ

4
∗,θ

5
∗) (5, 15, 19, 0, 31)
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3.4.5 Staffing in an Emergency Room

We consider an emergency department in a hospital which operates 24 hours a day and

receives two kinds of patients: walk-in patients who are required to see a receptionist

before entering the queue to the examination room, and patients who are delivered

by ambulances and so can enter the queue to the examination room directly without

seeing a receptionist.

The arrival process of the walk-in patients forms a non-homogeneous Poisson

process with the rate parameter λ(t) given as follows:

λ(t) =






5, if 0 ≤ t < 2

4, if 2 ≤ t < 4

3, if 4 ≤ t < 6

5, if 6 ≤ t < 8

7, if 8 ≤ t < 10

8, if 10 ≤ t < 12

9, if 12 ≤ t < 14

8, if 14 ≤ t < 20

6, if 20 ≤ t < 22

3, if 22 ≤ t < 24

(3.24)

per hour. The arrival process of the patients delivered by ambulances forms a homo-

geneous Poisson process with a rate of 2 per hour.

At the examination room, one of the doctors examines the patient and decides

whether any tests are necessary to give a diagnosis; if so, the patient enters the queue

to a lab, where one of the lab technicians performs necessary tests. Once the patient

is released from the lab, he or she re-enters the queue to the examination room to

get the test results from a doctor. The test results are ready immediately after the

tests are conducted, but the patient must wait in the queue to the examination room
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to get the doctor’s opinion on the test results. Based on the test results, the doctor

decides on one of the three types of treatments for the patient: (1) a patient can

take normal treatment, which is performed by the nurses in the treatment room, (2)

a patient can take emergency treatment, which is performed by the nurses in the

emergency room, and (3) a patient can be released from the hospital after receiving

their medication. If a patient does not need any tests, then the doctor decides on one

of the three types of treatments for the patient the first time the patient visits the

doctor in the examination room. Thus, a patient receives an opinion from a doctor

after getting tests in the lab or at the first visit to the examination room. In both

cases, a patient receives a treatment of types (1), (2), and (3) with probabilities 0.4,

0.4, and 0.2, respectively.

All queues are assumed to have infinite capacity and the group of receptionists (or

groups of doctors in the examination room, lab technicians at the lab, nurses in the

treatment room, and nurses in the emergency room, respectively) forms multi-servers

serving a single common queue of patients.

All services are based on a first come first serve basis and all service times are

independent of each other and independent of the arrival processes.

The service times at the receptionists’ desk follow an exponential distribution

with a mean of 7.5. The service times at the examination room follow an exponential

distribution with a mean of 15. The service times at the lab follow a triangular

distribution with lower limit 10, upper limit 30, and mode 20. The service times at

the treatment room follow a triangular distribution with lower limit 20, upper limit

30, and mode 28. The service times at the emergency room follow an exponential

distribution with a mean of 90.

The goal is to find the numbers of receptionists, doctors, lab technicians, nurses in

the treatment room, and nurses in the emergency room, denoted by θ1, θ2, θ3, θ4, and

θ5, respectively, that minimize the average operating cost f 0(θ1, θ2, θ3, θ4, θ5) per day
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over a 150–day period while ensuring that the probability of a patient who receives

a treatment of type 2 waiting less than 1 hour in the queue, g(θ1, θ2, θ3, θ4, θ5), is

greater than or equal to 0.9, i.e., f 1(θ1, θ2, θ3, θ4, θ5) � 0.9 − g(θ1, θ2, θ3, θ4, θ5) ≤ 0.

The daily operational costs consist of labor costs which are $150 per receptionist per

day, $1200 per doctor per day, $500 per lab technician per day, $350 per nurse in the

treatment room per day, and $350 per nurse in the emergency room per day.

We apply Algorithm 2, and the methods proposed by Whitney et al. (2001) and

Ahmed et al. (1997) to find the optimal values of θi, say θi
∗
(1 ≤ i ≤ 5). Whenever

we observe f 0 at each point in F3 � {θ ∈ Z5 : 1 ≤ θi ≤ 50, 1 ≤ i ≤ 5} in all

three methods, the system is simulated over 150 time periods, the operating costs are

averaged over the 150 time periods, and the average of 10 iid such replications is used

as an observation of f 0. Likewise, whenever we observe g, the system is simulated over

150 time periods, the number of patients who receive treatment of type 2 and spend

less than 1 hour in the queue is divided by the total number patients of type 2 over

the 150 periods, and the average of 10 iid such replications is used as an observation

of g. θ1 is set as (30, 30, 30, 30, 30) for all the three methods and λ1 = 0 is used for

Algorithm 2. The parameters used are cn = 0.3/(100 + n) for the first 50% of the

total iterations available, cn = 0.1/(100 + n) for the rest of the iterations available,

an = 0.3/(50 + n), bn = 5000 log(n0.5), α = 0.95, Tf = 50, R = 0.6, and M = 5.

The optimal policy (θ1
∗
, θ2

∗
, θ3

∗
, θ4

∗
, θ5

∗
) is estimated by evaluating f 0(θ) and g(θ),

using the average of 50 iid observations at each θ ∈ F3. The “true” optimal solution

estimated this way is (2, 5, 2, 1, 10).
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Table 3.4: Averages (Mean) and standard deviation (Std) of θl(N)+1 and correspond-
ing averages of f 1(θl(N)+1) generated from three methods applied to the emergency
department.

Algorithm 2

N Mean Std f 1(θ)

1000 (23, 5, 8, 14, 14) 0.00 -0.05
2000 (17, 5, 3, 1, 8) 0.49 0.18
3000 (12, 5, 4, 1, 8) 0.46 0.02
4000 (7, 5, 4, 1, 8) 0.54 0.01
5000 (3, 5, 4, 1, 8) 0.52 0.01
6000 (3, 5, 3, 1, 8) 0.20 0.02
7000 (2, 5, 2, 1, 8) 0.20 0.03
8000 (2, 5, 2, 1, 8) 0.20 0.03
10000 (2, 5, 3, 1, 8) 0.19 0.02

(θ1∗,θ
2
∗,θ

3
∗,θ

4
∗,θ

5
∗) (2, 5, 2, 1, 10)

Whitney et al. (2001)

N Mean Std f 1(θ)

1000 (18, 5, 4, 8, 14) 7.36 0.27
2000 (16, 6, 4, 5, 11) 5.60 0.20
3000 (15, 5, 4, 5, 10) 4.41 0.19
4000 (10, 5, 3, 4, 9) 3.81 0.19
5000 (8, 5, 3, 3, 9) 3.26 0.22
6000 (7, 5, 2, 3, 9) 2.93 0.21
7000 (7, 5, 2, 2, 9) 2.57 0.26
8000 (6, 5, 2, 2, 8) 2.03 0.20
10000 (5, 5, 2, 2, 8) 1.75 0.18

(θ1∗,θ
2
∗,θ

3
∗,θ

4
∗,θ

5
∗) (2, 5, 2, 1, 10)

Ahmed et al. (1997)

N Mean Std f 1(θ)

1000 (28, 27, 27, 27, 29) 1.35 -0.10
2000 (27, 24, 23, 24, 27) 2.02 -0.10
3000 (26, 20, 20, 21, 26) 2.44 -0.10
4000 (24, 18, 17, 18, 24) 2.80 -0.10
5000 (23, 15, 14, 15, 23) 3.08 -0.10
6000 (22, 12, 11, 12, 21) 3.42 -0.09
7000 (20, 10, 8, 8, 19) 3.57 -0.08
8000 (19, 8, 5, 5, 17) 3.48 -0.06
10000 (15, 6, 3, 2, 14) 2.58 -0.03

(θ1∗,θ
2
∗,θ

3
∗,θ

4
∗,θ

5
∗) (2, 5, 2, 1, 10)
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Denoting the number of simulation runs made at iteration n by tn and fixing

the total number N of simulation runs available, we compute θl(N)+1 where l(N)

is the maximum number of iterations given the N simulation runs available; i.e.,

l(N) is the largest integer satisfying t1 + · · · + tl(N) ≤ N . Thus, θl(N)+1 is the best

estimate of θ∗ given the computational budget N . We note that both f 0 and g

can be simultaneously computed in a single simulation run, so tn = 60, 30, and 10

for Algorithm 2, the method proposed by Whitney et al. (2001), and the method

proposed by Ahmed et al. (1997), respectively. Table 3.4 reports the averages (Mean)

of θl(N)+1 generated by Algorithm 2, the method proposed by Whitney et al. (2001),

and the method proposed by Ahmed et al. (1997) based on 50 independent copies of

θl(N) for each value of N . To measure how the distribution of θl(N)+1 is spread out,

the average of the sample standard deviation of θ1
l(N)+1, θ

2
l(N)+1, θ

3
l(N)+1, θ

4
l(N)+1, and

θ5
l(N)+1 is reported in Table 3.4. In addition, averages of the f 1(θl(N)+1) values are

reported to show that our method converges to a feasible solution for N sufficiently

large.

In all three examples, our methods display good performance.

3.5. Proof of Theorem 1

Our proof of Theorem 1 can be broken down into a number of key steps. In Step 1,

we prove i) and ii) of Theorem 1. To prove iii) of Theorem 1, we first show that both

�f i and �L are uniformly bounded in Step 2. We then show the expected value of a

subgradient with respect to θ is bounded in Step 3. With these two conditions and

Lemma 2 in p. 344 of Benveniste et al. (1990), we are able to show the sequence

Z(θn, λn) = �θn − �θ∗�2 + �λn −
�λ∗�

2
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is uniformly bounded and converges in Steps 4 and 5. Finally, we follow the proof

of the theorem in p. 378 of Kushner and Sanvicente (1975) to show θn → �θ∗ a.s. as

n → ∞ in Steps 6, 7 and 8.

Step 1 By A2 and A3, there exists a saddle point (�θ∗, �λ∗) of �L, i.e.,

�L(�θ∗, λ) ≤ �L(�θ∗, �λ∗) ≤ �L(θ, �λ∗)

for θ ∈ C and λ ∈ Rr

+ (see Theorem 1 in p. 217 of Luenberger (1969)). The uniqueness

of �θ∗ follows from the strict convexity of �f 0. (Suppose, on the contrary, there exists a

saddle point (θ, λ) of �L such that θ �= �θ∗, then �f 0(�θ∗) = �f 0(θ), which contradicts the

strict convexity of �f 0.) In fact, if �θ∗ is an integer point, then by Proposition 1, �θ∗ is

an optimal solution to (3.1). Furthermore, (3.1) has a unique solution. To see why

the optimal solution to (3.1) is unique, suppose that there exists an optimal solution

θ� ∈ Zd to (3.1) such that θ� �= �θ∗. For any 0 < t < 1, define θt = tθ�+(1− t)�θ∗. Then

θt is a feasible solution to (3.8). By the strict convexity of �f 0, we have

�f 0(θt) < t �f 0(θ�) + (1− t) �f 0(�θ∗)

= tf 0(θ�) + (1− t)f 0(�θ∗)

= f 0(�θ∗)

= �f 0(�θ∗),

which contradicts the fact that �θ∗ is an optimal solution to (3.8).

Step 2 We observe that �f i is uniformly bounded on Bθ for 0 ≤ i ≤ r and �L is

uniformly bounded on B. To see why this is true, we note that �f i is convex on Rd

and hence is continuous on Bθ (see Theorem 10.1 in p. 82 of Rockafellar (1970)).

By the compactness of Bθ, �f i is uniformly bounded on Bθ (see Theorem 4.4.1 in p.
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189 of Marsden and Hoffman (1993)). By the compactness of B, �L is also uniformly

bounded. In fact, �L is bounded on any compact subset of Rd × Rr.

Step 3 We let dn = E [Dn(θn, λn)|Fn] and observe that dn(θn, λn) is bounded on B.

To see why this is true, let ξn be the d–dimensional vector whose jth component is 1

if the jth component of dn is nonnegative and −1 otherwise. Thus dT
n
ξn =

�
d

j=1 |d
j

n
|,

where dj
n
is the jth component of dn. From (3.10), we obtain

�L(θn + ξn, λn)− �L(θn, λn) ≥ dT
n
ξn =

d�

j=1

|dj
n
|.

Since �L is bounded on any compact subset of Rd × Rr and (θn, λn) ∈ B, �L(θn +

ξn, λn)− �L(θn, λn) is bounded. Thus
�

d

j=1 |d
j

n
| and �dn� are bounded.

Step 4 We let Z : Rd × Rr → R be defined by

Z(θ, λ) = �θ − �θ∗�2 + �λ− �λ∗�
2

for (θ, λ) ∈ Rd × Rr.

We prove that

E [Z(θn+1, λn+1)|Fn+1]− Z(θn, λn) ≤ −2cnQ(θn, λn) + Cc2
n

(3.25)

for n ≥ 1 and for some positive constant C, where

Q(θn, λn) = (θn − �θ∗)Tdn − (λn −
�λ∗)

T ( �f i(θn) : 1 ≤ i ≤ r)

and that

Q(θn, λn) > 0 (3.26)

for θn �= �θ∗.
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To prove (3.25), we first note

�θn+1 −
�θ∗�2 ≤ �θn+1 −

�θ∗�2 (3.27)

because θn+1 is the projection of θn+1 onto Bθ �
�
θ ∈ Rd : |θi| ≤ K for 1 ≤ i ≤ d

�

and �θ∗ is in Bθ, θn+1 is no further from �θ∗ than is θn+1. By a similar reasoning, we

have

�λn+1 −
�λ∗�

2
≤ �λn+1 −

�λ∗�
2. (3.28)

From (3.27),

E
�
�θn+1 −

�θ∗�2|Fn

�
− �θn − �θ∗�2

≤ E
�
�θn+1 −

�θ∗�2|Fn

�
− �θn − �θ∗�2

= E
�
�θn − cnDn(θn, λn)− �θ∗�2|Fn

�
− �θn − �θ∗�2

= −2cn(θn − �θ∗)Tdn + c2
n
E
�
�Dn(θn, λn)�

2
|Fn

�

≤ −2cn(θn − �θ∗)Tdn + 4c2
n
�dn�

2 + 4c2
n
σ2 by (3.12)

≤ −2cn(θn − �θ∗)Tdn + C1c
2
n

by Step 3 (3.29)

for some positive constant C1. The second last inequality follows because �x1 + · · ·+

xl�
m ≤ lm(�x1�

m + · · ·+ �xl�
m) for x1, . . . , xl ∈ Rd and positive integers l and m.

On the other hand, from (3.28) we obtain

E
�
�λn+1 −

�λ∗�
2
|Fn

�
− �λn −

�λ∗�
2

≤ E
�
�λn+1 −

�λ∗�
2
|Fn

�
− �λn −

�λ∗�
2

≤ 2cn(λn −
�λ∗)

T ( �f i(θn) : 1 ≤ i ≤ r) + 2c2
n

r�

i=1

( �f i(θn))
2 + 2c2

n
rσ2

≤ 2cn(λn −
�λ∗)

T ( �f i(θn) : 1 ≤ i ≤ r) + C2c
2
n

by Step 2 (3.30)
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for some positive constant C2.

Equations (3.29) and (3.30) combine to yield (3.25).

Next we prove (3.26). By (3.10),

�L(�θ∗, λn) ≥ �L(θn, λn) + (�θ∗ − θn)
Tdn. (3.31)

On the other hand, by the definition of the Lagrangian,

�L(θn, �λ∗)− (�λ∗ − λn)
T ( �f i(θ) : 1 ≤ i ≤ r) = �L(θn, λn). (3.32)

From (3.31) and (3.32), we get

�L(�θ∗, λn)− �L(θn, �λ∗) ≥ (�θ∗ − θn)
Tdn − (�λ∗ − λn)

T ( �f i(θ) : 1 ≤ i ≤ r)

= −Q(θn, λn). (3.33)

By the definition of the saddle point, we have

�L(�θ∗, λn) ≤ �L(�θ∗, �λ∗) ≤ �L(θn, �λ∗). (3.34)

By the strict convexity of �f 0, for θn �= �θ∗, we obtain

�L(�θ∗, �λ∗) < �L(θn, �λ∗) (3.35)

because otherwise �L(η, �λ∗), as a function of η, will be constant on the line segment

connecting θn and �θ∗, contradicting the strict convexity of �f 0. Combining (3.34) and

(3.35) yields

0 > �L(�θ∗, λn)− �L(θn, �λ∗). (3.36)
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Hence, (3.26) follows from (3.33) and (3.36).

Step 5 We observe that applying Lemma 2 in p. 344 of Benveniste et al. (1990) to

the sequence (Z(θn, λn) : n ≥ 1) yields

∞�

n=1

cnQ(θn, λn) < ∞ (3.37)

a.s. as n → ∞ and Z(θn, λn) → Z∞ a.s. for some finite-valued random variable Z∞

as n → ∞.

Step 6 We prove that for any � > 0, there exists δ > 0 such that Q(θn, λn) ≥ δ

whenever �θn − �θ∗� ≥ �.

To fill in the details, let

δ = inf{�L(θ, �λ∗)− �L(�θ∗, �λ∗) : θ ∈ Bθ, �θ − �θ∗� ≥ �}

for any given � > 0. If δ = 0, then there exists a sequence (θs : s ≥ 1) in Bθ

with �L(θs, �λ∗) → �L(�θ∗, �λ∗) as s → ∞. Since the θss are bounded, there exists a

subsequence (θsk : k ≥ 1) converging to a point θ0 in {θ ∈ Bθ : �θ−�θ∗� ≥ �} such that

�L(θsk , �λ∗) → �L(�θ∗, �λ∗) as k → ∞. By the continuity of �L, �L(θsk , �λ∗) → �L(θ0, �λ∗) as

k → ∞ and hence �L(θ0, �λ∗) = �L(�θ∗, �λ∗), but θ0 �= �θ∗. This contradicts the uniqueness

of �θ∗.

The rest of the proof is similar to the proof of the Theorem in p. 378 of Kushner

and Sanvicente (1975). However, to make this proof self-contained, we present a

complete argument.

Step 7 We show that for any � > 0, �θn − �θ∗� ≤ 3� for all but finitely many n a.s.

Let � > 0 be given. By Step 6, we have �θn − �θ∗� ≤ � for infinitely many n a.s.

because otherwise,
�

∞

n=1 cnQ(θn, λn) → ∞ for some non-null set, which contradicts

(3.37). First we show that |cn(Dn(θn, λn)− dn)| ≥ �/2 for finitely many n a.s. To see
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this, note that

P(�cn(Dn(θn, λn)− dn)� ≥ �/2)

≤ (4c2
n
/�2)E

�
�Dn(θn, λn)− dn�

2
�

by Markov inequality

= (4c2
n
/�2)E

�
E
�
�Dn(θn, λn)− dn�

2
|Fn

��

and that

E
�
�Dn(θn, λn)− dn�

2
|Fn

�
≤ σ2

by (3.12).

So it follows

P(�cn(Dn(θn, λn)− dn)� ≥ �/2) ≤ 4σ2c2
n
/�2.

Because
�

∞

n=1 c
2
n
< ∞, the Borel–Cantelli lemma guarantees �cn(Dn(θn, λn)−dn)� ≥

�/2 for finitely many n a.s.

We consider n sufficiently large so that cn�dn� < �/2, then we get �θn+1 − θn� ≤

�θn+1 − θn� = cn�Dn(θn, λn)− dn + dn� ≤ � for all but finitely many n.

We define the sets

N� = {θ ∈ Rd : �θ − �θ∗� ≤ �},

C3� = {θ ∈ Rd : 2� ≤ �θ − �θ∗� ≤ 3�},

N3� = {θ ∈ Rd : �θ − �θ∗� ≤ 3�},

N4� = {θ ∈ Rd : �θ − �θ∗� ≤ 4�}.

We let � be small enough so that N4� is in Bθ. Note that each time θn goes from N� to

the exterior of N3�, it must enter C3� before ever going to the exterior of N3� because

θn cannot take a step larger than �.
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We define

t1 = min{n ≥ 1 : θn ∈ C3�}

t+1 = min{n ≥ t1 : θn ∈ N� or exterior of N4�}

and, inductively,

tm = min{n > t+
m−1 : θn ∈ C3�}

t+
m

= min{n > tm : θn ∈ N� or exterior of N4�}

for m ≥ 2. The tms and t+
m
s are set equal to ∞ if not otherwise defined. We note

that if tm is finite, then t+
m

is also finite a.s. because θn visits N� infinitely many

times a.s. By Step 4, for any positive integer m and tm < ∞, Q(θn, λn) ≥ δ for

n = tm, . . . , t+m − 1.

We will show that tm is finite for finitely many m a.s. Then it will follow that C3�

is entered for finitely many n a.s. and hence θn can leave N3� finitely many times a.s.,

proving θn → �θ∗ a.s. as n → ∞.

We let I{tm<∞} be 1 if tm is finite and 0 otherwise. It will be shown in Step 8 that

lim inf
m→∞

I{tm<∞}

t
+
m−1�

n=tm

cn ≥ α lim inf
m→∞

I{tm<∞} (3.38)

for some positive constant α.

Equation (3.38) implies that if tm < ∞ infinitely often, then it follows

∞�

n=1

cnQ(θn, λn) ≥
∞�

m=1

I{tm<∞}

t
+
m−1�

n=tm

cnQ(θn, λn) ≥ δ
∞�

m=1

I{tm<∞}

t
+
m−1�

n=tm

cn = ∞

by Step 6. So, tm < ∞ infinitely often on some null set.

Step 8 We now prove (3.38).
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We let

Ws,t =
t�

i=s

ci (Di(θi, λi)− di)

and note that (Ws,t : t ≥ s) is a martingale for each fixed s, as a sequence in t. By

Doob’s martingale inequality (see the Theorem in p. 137 of Williams (1991)),

P
�

sup
s≤t<∞

�Ws,t� ≥ �

�
≤

∞�

i=s

E
�
�ci (Di(θi, λi)− di) �

2
�
/�2 ≤

∞�

i=s

c2
i
σ2/�2 → 0(3.39)

as s → ∞. So we conclude that

lim
m→∞

sup
tm≤t<∞

�Wtm,t�I{tm<∞} = lim
m→∞

sup
tm≤t<∞

�

t�

i=tm

ci (Di(θi, λi)− di) �I{tm<∞} = 0(3.40)

a.s. because otherwise there is a non-null set A on which tm < ∞ infinitely often and

sup
tm≤t<∞

�Wtm,t�I{tm<∞} ≥ �

for infinitely many m, so P
�
sup

s≤t<∞ �Ws,t� ≥ �
�
≥ P (A) > 0 for infinitely many s,

which contradicts (3.39).

Now we prove (3.38). Let C3 be a constant such that �dn� ≤ C3 for (θn, λn) ∈ B.

When tm < ∞,

t
+
m−1�

n=tm

cn ≥ �

t
+
m−1�

n=tm

cndn�/C3

= �

t
+
m−1�

n=tm

cn (Dn(θn, λn) + dn −Dn(θn, λn)) �/C3

= �

t
+
m−1�

n=tm

cnDn −W
tm,t

+
m−1�/C3

= �θ
t
+
m
− θtm −W

tm,t
+
m−1�/C3

≥ �θ
t
+
m
− θtm�/C3 − �W

tm,t
+
m−1�/C3.
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Since �W
tm,t

+
m−1�I{tm<∞}/C3 → 0 a.s. as m → ∞ (by (3.40)) and �θ

t
+
m
− θtm� ≥ �, for

m sufficiently large, we have

t
+
m−1�

n=tm

cn ≥ �/(2C3)

and hence

lim inf
m→∞

I{tm<∞}

t
+
m−1�

n=tm

cn ≥ (�/(2C3)) lim inf
m→∞

I{tm<∞},

proving (3.38).



Chapter 4

Convex Regression

4.1. Overview

In this chapter, we aim to study the problem of estimating a multivariate regression

function under a certain shape restriction such as convexity. This problem is usually

referred to as convex regression in the literature. This chapter is concerned with

providing a numerically efficient way of computing the best fit of a convex function and

proving the consistency of the proposed estimator. We are interested in estimating

the unknown function f∗ : [0, 1]d → R from the observed data (X1, Y1), . . . , (Xn, Yn),

where

Yi = f∗(Xi) + εi

for i ≥ 1, theXis are continuous [0, 1]d–valued independent and identically distributed

(iid) random vectors, and the εis are iid random variables with zero median and

E(|ε1|) < ∞.

When f∗ is known to be convex, a natural way to estimate f∗ is to minimize the

sum of squares

ψn(g) � 1

n

n�

i=1

(Yi − g(Xi))
2

81
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or the sum of absolute deviations

ϕn(g) � 1

n

n�

i=1

|Yi − g(Xi)|

over the set of convex functions

C =
�
g : [0, 1]d → R such that g is convex

�
.

When ψn is used as a goodness-of-fit criterion, the fitted function is referred to as

“least squared errors” (LSE) estimator (Hildreth, 1954). The LSE-based convex re-

gression in one dimension setting (d = 1) is well studied both theoretically and com-

putationally. However, when it comes to multiple dimensions setting, less literatures

are available. One important issue is that the LSE estimator suffers from computa-

tional inefficiency. Minimization of ψn over C can be formulated as a QP with (d+1)n

decision variables and n2 constraints (Kuosmanen, 2008). The computational burden

of solving this QP becomes heavy especially when dn exceeds a few hundred (Lim,

2010). Thus, there is a growing need of fitting a convex function to large-scale data.

To overcome the computational inefficiency of the convex regression estimator,

we propose to use ϕn instead of ψn as a goodness-of-fit criterion. Using ϕn may be

beneficial from a computational point of view because minimization of ϕn over C can

be formulated as an LP rather than a QP. Another advantage of using ϕn is that the

least absolute deviations estimators can provide more robust results because they are

not sensitive to outliers in the dataset (Bassett and Koenker, 1978; Wagner, 1959).

In this chapter, we use ϕn instead of ψn as a goodness-of-fit criterion and investi-

gate the least absolute deviations (LAD) estimator ĝn, which is the minimizer of ϕn

over C. We observe that ĝn can be computed by solving an LP and the LP has a

dual problem that can be solved more efficiently. We further discover that the dual

problem has a block-angular form in its constraints, and hence, allows application
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of decomposition techniques such as Dantzig-Wolfe decomposition. Dantzig-Wolfe

decomposition then enables one to compute ĝn for large-scale data. Our numerical

reaults in Section 4.2 show that ĝn can be computed for a dataset that contains more

than 10, 000 datapoints when d = 1 while the least squares estimator can only be com-

puted for a dataset containing a few hundred data points. In most of our numerical

examples, ĝn was computed much faster than the least squares estimators.

We also establish the consistency of ĝn and the derivative ĝn (when it exists) by

proving that ĝn and the derivative of ĝn converge to the true values a.s. as n increases

to infinity and that this convergence is uniform over any compact subset of (0, 1)d.

This chapter is organized as follows. In Section 4.2, we introduce some definitions.

Section 4.3 introduces the mathematical framework for our analysis, and precisely

states the main theorems (Theorems 3 and 4) of this paper. In Section 4.3, we

provide a numerically efficient LP formulation for computing ĝn while Section 4.5

discusses the numerical behavior of the least absolute deviations estimator compared

to that of the least squares estimator. Proofs of the main results are provided in

Section 4.6.

4.2. Definitions

For x ∈ Rd, we write its kth component as xk, so x = (x1, . . . , xd). We view

x ∈ Rd as a column vector. We let �x�∞ = max(|xi| : 1 ≤ i ≤ d) and �x� =
�
(x1)2 + · · ·+ (xd)2

�1/2
. For y ∈ R, we write y+ = max(0, y).

For a function g : [0, 1]d → R, g is differentiable at x ∈ (0, 1)d if and only if there

exists a vector v ∈ Rd with the property that

lim
z→x

(g(z)− g(x)− vT (z − x))/�z − x� = 0.

Such a v, if it exists, is called the gradient of g at x and is denoted by ∇g(x).
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For any convex function g : [0, 1]d → R, a vector ξ ∈ Rd is said to be a subgradient

of g at x ∈ (0, 1)d if g(y) ≥ g(x) + ξT (y − x) for all y ∈ (0, 1)d. The set of all

subgradients of g at x is called the subdifferential of g at x and is denote by ∂g(x).

The subdifferential ∂g(x) of a convex function g : [0, 1]d → R is non-empty for any

x ∈ (0, 1)d; see pp. 215–217 of Rockafellar (1970).

Let (an : n ≥ 1) and (bn : n ≥ 1) be sequences of real numbers. We say an = O(bn)

if there exist positive constants c and n0 such that |an| ≤ c|bn| for all n ≥ n0.

4.3. The Main Results

We assume that we observe n pairs (X1, Y1), . . . , (Xn, Yn), in which

Yi = f∗(Xi) + εi

for i ≥ 1, the Xis are continuous [0, 1]d–valued iid random vectors, and the εis are iid

random variables with zero median and E(|ε1|) < ∞.

When f∗ is known to be convex, a natural way of estimating it from data is to

minimize the sum of absolute deviations

ϕn(g) =
1

n

n�

i=1

|Yi − g(Xi)|

over the set of convex functions C =
�
g : [0, 1]d → R such that g is convex

�
. Since

there are infinitely many convex functions, this minimization may appear to be com-

putationally intractable. However, the following proposition reveals that this mini-

mization can be formulated as an LP with (d + 3)n decision variables and n2 + 3n

constraints.

Proposition 4. Consider the minimization problem in the decision variables (g1, ξ1),
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. . . , (gn, ξn)

min
1

n

n�

i=1

|Yi − gi|

s/t gj ≥ gi + ξT
i
(Xj −Xi), 1 ≤ i, j ≤ n,

(4.1)

where gi ∈ R and ξi ∈ Rd for 1 ≤ i ≤ n. Then, the problem (4.1) has a minimizer

(ĝ1, ξ̂1), . . . , (ĝn, ξ̂n) and ĝn : [0, 1]d → R, defined by

ĝn(x) = max
1≤i≤n

(ĝi + ξ̂T
i
(x−Xi)) (4.2)

for x ∈ [0, 1]d, minimizes ϕn over C.

Furthermore, the problem (4.1) has a minimizer (ĝ1, ξ̂1), . . . , (ĝn, ξ̂n) if and only if

(ĝ1, (Y1 − ĝ1)+, (−Y1 + ĝ1)+, ξ̂1), . . . , (ĝn, (Yn − ĝn)+, (−Yn + ĝn)+, ξ̂n) is a solution to

the following LP in the decision variables (g1, p1,m1, ξ1), . . . , (gn, pn,mn, ξn):

min
1

n

n�

i=1

(pi +mi)

s/t gj ≥ gi + ξT
i
(Xj −Xi), 1 ≤ i, j ≤ n

Yi − gi = pi −mi, 1 ≤ i ≤ n

pi,mi ≥ 0, 1 ≤ i ≤ n,

where gi ∈ R, pi ∈ R,mi ∈ R, and ξi ∈ Rd for 1 ≤ i ≤ n.

Proof. Let Gn = {(g1, . . . , gn) ∈ Rn such that there exists a convex function g :

[0, 1]d → R satisfying g(Xi) = gi for 1 ≤ i ≤ n}. Then, Gn is nonempty ((0, . . . , 0) ∈

Gn), closed and convex by Lemma 2.3 of Seijo and Sen (2011). Note that ϕn is

continuous and coercive (i.e., |ϕn(g1, . . . , gn)| → ∞ as �(g1, . . . , gn)� → ∞). Thus,

ϕn has a minimizer (ĝ1, . . . , ĝn) over Gn; see Proposition 7.3.1 and Theorem 7.3.7 in

pp. 216 and 217 of Kurdila and Zabarankin (2005). Since (ĝ1, . . . , ĝn) ∈ Gn, there exist

vectors ξ̂1, . . . , ξ̂n in Rd satisfying ĝj ≥ ĝi + ξ̂T
i
(Xj −Xi) for 1 ≤ i, j ≤ n, and hence,
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(ĝ1, ξ̂1), . . . , (ĝn, ξ̂n) is a feasible solution of (4.1). Furthermore, (ĝ1, ξ̂1), . . . , (ĝn, ξ̂n)

becomes a minimizer of (4.1) by p. 337 of Boyd and Vandenberghe (2004). The rest

of the proposition follows trivially.

While Proposition 4 asserts that (ĝ1, . . . , ĝn) exists, it should be noted that (ĝ1, . . . ,

ĝn) may not be unique. A simple example that illustrates the non-uniqueness of

(ĝ1, . . . , ĝn) is the following: When d = 1, n = 4, (X1, Y1) = (0.2, 0), (X2, Y2) =

(0.4, 1), (X3, Y3) = (0.6, 1), and (X4, Y4) = (0.8, 0), any point from the set

�
(ĝ1, ξ̂1) = (a, b), (ĝ2, ξ̂2) = (a, 0), (ĝ3, ξ̂3) = (a, 0), (ĝ4, ξ̂4) = (a, c) :

a ∈ [0, 1], b ∈ (−∞, 0], c ∈ [0,∞)
�

is a minimizer of (4.1). So, (ĝ1, ĝ2, ĝ3, ĝ4) is not unique.

Throughout this paper, we will work with the set of minimizers of ϕn over C:

Sn = {gn ∈ C : ϕn(gn) ≤ ϕn(g) for all g ∈ C}

for n ≥ 1. By Proposition 4, Sn is nonempty for all n ≥ 1 a.s. and Proposition

4 suggests a way of computing an element ĝn in Sn by using (4.1) and (4.2). The

convex function ĝn is our estimator for f∗(·). In order to analyze this estimator,

we shall impose some probabilistic assumptions on the (Xi, Yi)’s. In particular, we

require that:

A1. X1, X2, . . . is a sequence of iid [0, 1]d–valued random vectors having a common

continuous positive density κ : [0, 1]d → R.

A2. For i ≥ 1, Yi = f∗(Xi) + εi, where the εis satisfy

P (εi ∈ dyi, 1 ≤ i ≤ n|X1, X2, . . . ) =
n�

i=1

F (dyi|Xi)
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for some family (F (·|x) : x ∈ [0, 1]d) of cumulative distribution functions.

A3. E (|f∗(X1)|+ |ε1|+ �X1�) < ∞, thereby implying that

E (|ε1| |X1) =

�

R
|y|F (dy|X1) < ∞ a.s.

A4. For each x ∈ [0, 1]d, we have F (0|x) = 1/2.

A5. f∗ is bounded; i.e., there exists a positive constant M such that |f∗(x)| ≤ M

for all x ∈ [0, 1]d.

We are now ready to state our main results.

Theorem 3. Assume A1–A5 and that f∗ ∈ C. Then for each 0 < c < 1/2,

sup
x∈[c,1−c]d,ĝn∈Sn

|ĝn(x)− f∗(x)| → 0 a.s.

as n → ∞.

Theorem 4. Assume A1–A5 and that f∗ ∈ C. If f∗ is differentiable at z ∈ (0, 1)d,

then

sup
ξ∈∂ĝn(z),ĝn∈Sn

�ξ −∇f∗(z)� → 0

as n → ∞ a.s.

Furthermore, if f∗ is differentiable on [c, 1− c]d for any 0 < c ≤ 1/2,

sup
x∈[c,1−c]d,ξ∈∂ĝn(x),ĝn∈Sn

�ξ −∇f∗(x)� → 0

as n → ∞ a.s.

Theorems 3 and 4 justify our choice of the least absolute deviations estimator ĝn

as an estimator of f∗. The next section is concerned with providing an efficient way

of computing ĝn.
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4.4. A More Efficient LP Formulation for Comput-
ing the Proposed Estimator

In this section, we present an efficient LP formulation for computing ĝn. By

Proposition 4, ĝn can be computed by solving the following LP in the decision variables

(g1, p1,m1, ξ1), . . . , (gn, pn, mn, ξn)

min
1

n

n�

i=1

(pi +mi) (4.3)

s/t gj ≥ gi + ξT
i
(Xj −Xi), 1 ≤ i, j ≤ n

Yi − gi = pi −mi, 1 ≤ i ≤ n

pi,mi ≥ 0, 1 ≤ i ≤ n.

We notice that the dual problem of (4.3) is the following LP with the decision variables

(sij : 1 ≤ i, j ≤ n) and (ti : 1 ≤ i ≤ n)

max Y T t

s/t A1s1+ A2s2+ · · ·+ Ansn+ Int = 0n

bT1 s1 = 0

bT2 s2 = 0

. . .
...

bT
n
sn = 0

Int ≤ 1n

Int ≥ −1n

si ≥ 0n, 1 ≤ i ≤ n,

(4.4)

where Y = (Y1, . . . , Yn)T , t = (t1, . . . , tn)T ∈ Rn, si = (si1, . . . , sin)T ∈ Rn for 1 ≤ i ≤
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n, Ai = (ajk : 1 ≤ j, k ≤ n) with

ajk =






1, j = k, j �= i

−1, j = i, k �= i

0, otherwise,

bi = (Xi − X1, . . . , Xi − Xn)T for 1 ≤ i ≤ n, In is an n by n identify matrix, 1n is

an n by 1 vector of all ones, and 0n is an n by 1 vector of all zeros. The sijs and tis

are dual variables corresponding to the first and second sets of constraints of (4.3),

respectively.

The dual problem (4.4) has two sets of decision variables (sij : 1 ≤ i, j ≤ n)

and (ti : 1 ≤ i ≤ n). The two sets of variables are related only through the first

constraint in (4.4). Thus, (4.4) has a block structure in its constraints and hence

allows application of decomposition techniques such as Dantzig-Wolfe decomposition.

4.4.1 Dantzig-Wolfe Decomposition

The Dantzig-Wolfe decomposition improves the computational efficiency of an LP sig-

nificantly especially when the LP problem has a nice block-angular structure. Instead

of solving the original problem with complicating constraints, two types of problems

are solved iteratively, a so-called master problem and a so-called subproblem without

complicating constraints. Since the master problems and the subproblems have much

less decision variables and constraints than the original LP problem, the memory is-

sue can be solved by repeating to solve a series of small LP problems. In such a way,

we can efficiently handle a large-scale LP problem without running out the memory.
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4.4.2 Dantzig-Wolfe Decomposition Algorithm for Convex
Regression

To apply the Dantzig-Wolfe decomposition, we consider the dual problem (4.4). For

i = 1, . . . , n, define Si = {si ≥ 0|bT
i
si = 0} and T = {t|Int ≤ 1n and Int ≥ −1n},

then (4.4) becomes

max Y T t (4.5)

s/t
n�

i=1

Aisi + Int = 0,

si ∈ Si, 1 ≤ i ≤ n

t ∈ T.

For i = 1, . . . , n, let sk
i
, k ∈ Ksi , be all the extreme points of set Si. Let dlsi , l ∈ Lsi ,

denote all the extreme rays of set Si. Also let th, h ∈ Ht, be all the extreme points of

set T . Since T is a bounded set, it does not have any extreme rays. According to the

resolution theorem (Theorem 4.15 of Bertsimas and Tsitsiklis (1997)), any solution

si of Si can be represented as

si =
�

k∈Ksi

λk

si
sk
i
+

�

l∈Lsi

µl

si
dl
si
,

where λk

si
and µl

si
are nonnegative and satisfy the convexity constraint

�

k∈Ksi

λk

si
= 1, 1 ≤ i ≤ n.

Follow the same principle, any solution t of T can be written as

t =
�

h∈Ht

λh

t
th,
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where λh

t
is nonnegative and satisfy

�

h∈Ht

λh

t
= 1.

Then (4.5) can be reformulated as

max
�

h∈Ht

λh

t
Y T th (4.6)

s/t
n�

i=1

�

k∈Ksi

λk

si
Ais

k

i
+

n�

i=1

�

l∈Lsi

µl

si
Aid

l

si
+

�

h∈Ht

λh

t
Int

h = 0, (4.7)

�

k∈Ksi

λk

si
= 1, 1 ≤ i ≤ n (4.8)

�

h∈Ht

λh

t
= 1, (4.9)

λk

si
, λh

t
, µl

si
≥ 0, ∀h, i, k, l.

This so called master problem is equivalent to the original problem (4.4) and is a

standard linear programming problem with decision variables λk

si
, λh

t
and µl

si
. This

equivalent formulation only has 2n+1 equality constraints, where the original one has

(d+ 3)n constraints. But the number of decision variables in this formulation is typ-

ically very large. Since the optimal sets Ksi , Lsi and Ht are very large and unknown

for us, we can use a delayed column generation scheme to generate them iteration

by iteration in order to solve (4.6) more efficient. In this case, the master problem

is called a restricted master problem since only a subset of columns associated with

each decision variables are included. At each iteration, new columns are generated

by solving a series of pricing problems. To decide if a column has potential to im-

prove the current master problem, we evaluate its reduced as we usually do in the

revised simplex method. If the reduced cost is positive for our maximization problem,

then this new column should be selected to enter into the restricted master problem.
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Evaluating the reduced cost explicitly for every λk

si
, λh

t
and µl

si
is computationally

expensive since there are numerous such variables. Instead, we can solve a series of

LP problems to achieve this goal. More specifically, we consider the following LP

problems:

max (−πTAi)si

s/t si ∈ Si,

for i = 1, . . . , n, and

max (Y T − πT In)t

s/t t ∈ T,

where π is the optimal dual solution associated with constraint (4.7) of the current

master problem. Also let σsi and σt be the optimal dual solutions associated with

constraint (4.8) and (4.9), respectively.

The above LP problems are also called subproblems and can be easily solved by

the revised simplex method. When solving such subproblems, there are three possible

results.

1. If the subproblem is bounded and the objective function value (−πTAi)ski > σsi

for some k or (Y T −πT In)th > σt for some h, then the reduced cost of λk

si
or λh

t

is positive. We add a new column





0

Aiski

ei

0





or





Y T th

Inth

0

1





,

where ei is an n× 1 unit vector whose ith entry is 1.
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2. If the subproblem is unbounded, i.e., the extreme ray dl
si
returned by the simplex

method satisfies−πTAidlsi > 0 for some l, then the reduced cost of µl

si
is positive.

So a new column





0

Aidlsi

0

0





associated with µl

si
can be entered into the master problem.

3. If for all subproblems, (−πTAi)ski ≤ σsi and (Y T − πT In)th ≤ σt, then the re-

duced cost for each decision variable in restricted master problem is nonpositive.

Thus, the overall optimal solution of the original problem has been obtained.

Based on the Dantzig-Wolfe decomposition principle introduced above, the de-

composition algorithm on solving our convex regression problem can be summarized

as follows.

Algorithm 3: Dantzig-Wolfe Decomposition Algorithm for Convex

Regression

Step 0. Initialize: Start from the solution s0
i
= {0, . . . , 0} (1 ≤ i ≤ n) and

t0 = {0, . . . , 0}. Set iteration counter v = 0. Let Ksi = {s0
i
}, Ht = {t0} and

Lsi = ∅.

Step 1. Master Problem Step: Solve the master problem (4.6) to obtain the

optimal dual solution πv, σv

si
and σv

t
.
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Step 2. Subproblem Step: Solve the subproblem

max (−(πv)TAi)si

s/t si ∈ Si,
(4.10)

for i = 1, . . . , n, and

max (Y T − (πv)T In)t

s/t t ∈ T.
(4.11)

If the subproblem is bounded and the optimal solution s∗
i
or t∗ satisfies

(−(πv)TAi)s∗i > σv

si
or (Y T − (πv)T In)t∗ > σv

t
, then add a new column





0

Ais∗i

ei

0





or





Y T t∗

Int∗

0

1





,

to the current master problem. Let Ksi = Ksi ∪ {s∗
i
} or Ht = Ht ∪ {t∗}.

If the subproblem is unbounded, i.e., the extreme ray d∗
si
satisfies −(πv)TAid∗si >

0, then add a new column





0

Aid∗si

0

0





to the current master problem. Let Lsi = Lsi ∪ {d∗
si
}.

Step 3. Optimality Check: If for all subproblems, (−(πv)TAi)s∗i ≤ σv

si
and

(Y T − (πv)T In)t∗ ≤ σh

t
, then the solution of the current master problem is the
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overall optimal solution for the original problem; otherwise, let v = v+1, go to

Step 1.

Step 4. Obtain the Estimator: The least absolute deviations estimator ĝn = πv.

The Dantzig-Wolfe decomposition algorithm has been proved to terminate after

a finite number of iterations (Dantzig and Wolfe, 1961).

The reason that formulation (4.4) can be solved more efficiently than formulation

(4.3) is two-fold. When solving an LP problem using the simplex method, it is more

efficient to solve the dual problem than the primal problem if the primal problem

has much more constraints than the decision variables; see p. 147 of Bradley et al.

(1977) and p. 234 of Grover (2004) for details. It is the case with the primal problem

(4.3) and the dual problem (4.4) because (4.3) has O(n) decision variables and O(n2)

constraints while (4.4) has O(n2) decision variables and O(n) constraints. Second,

one can apply Dantzig-Wolfe decomposition to solve (4.4) and thus can compute ĝn

for larger datasets than (4.3) can handle. Note that in Step 2 of this procedure, the

subproblem for si, 1 ≤ i ≤ n, can be easily solved by the revised simplex method.

And the memory requirement for this type of subproblem is O(d2), which is the size

of the revised simplex tableau. The subproblem for t has a straightforward optimal

solution since tj, 1 ≤ j ≤ n, achieves the optimality at either 1 or −1, depending on

the corresponding coefficient in the objective function. So the memory requirement

for this type of subproblem is a constant. In addition, the master problem has 2n+1

equality constraints, which means the revised simplex algorithm will require O((2n+

1)2) memory space. At each iteration, only one simplex tableau is maintained for the

master problem and one for the subproblem. Hence, the decomposition algorithm

requires much less physical memory to compute the estimator and might solve convex

regression problem with very large n.
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4.4.3 Computing Strategies

The Dantzig-Wolfe decomposition algorithms is known to converge very slow at the

later iterations of the process. Here we give several possible ways to accelerate the

algorithm on computing our convex estimator ĝn.

4.4.3.1 Strategies to enter new columns

In order to improve the computational efficiency of the Dantzig-Wolfe decomposition

algorithm, several strategies to enter new columns to the mater problem have been

proposed. One commonly used strategy is choosing the column with the most positive

reduced cost at each iteration. Although this strategy works for small-size problems,

it doesn’t perform well when n is large because after solving n+ 1 subproblems with

a lot of computation time only one candidate is entered into the master problem.

Another strategy is entering as many of the columns provided by the subproblems as

possible into the master problem; that is, for each subproblem, if the reduced cost

is positive then add the corresponding column to the master problem. This strategy

might make the algorithm converge more quickly since no information provided by

the subproblems is wasted. But the drawback is that the size of the master problem

will increase much faster and the simplex method might spend more time to solve the

master problem at each iteration. Our suggested strategy is forming several groups

for the first n subproblems and entering the column with the most negative positive

cost in each group. In this way, we can control the size of the master problem without

losing too much information provided by the subproblems.

4.4.3.2 Reduce the number of convexity constraints

In the master problem (4.6), there are n + 1 convexity constraints((4.8) and (4.9)).

However, we can reduce the number of convexity constraints to 1 by viewing the

n + 1 blocks in (4.6) as a single block. Then at each iteration of the decomposition
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algorithm, we only need to solve one subproblem

max (−(πv)TA0)s0 + . . .+ (−(πv)TAn)sn + (Y T − (πv)T In)t

s/t si ∈ Si, 1 ≤ i ≤ n

t ∈ T.

(4.12)

According to Ho and Loute (1981), every solution of the subproblem with positive re-

duced cost has the potential to improve the master problem. Hence, we can generate

multiple columns from subproblem (4.12) as long as the columns generated have pos-

itive reduced costs. We noticed that subproblem (4.12) is a separable maximization

problem since decision variables si and t have separable coefficients and constraints.

So we can generate a solution of (4.12) by solving a subproblem (4.10) or (4.11) in

Step 2 of our decomposition algorithm. Suppose that s∗
i
is an optimal solution of

(4.10) and satisfies (−(πv)TAi)s∗i > σv

si
, then the solution (0, . . . , (s∗

i
)T , . . . , 0)T is a

solution of (4.12) with positive reduced cost. Then we can generate a column based

on this solution s∗
i
and enter it into the master problem. The same principle applies

to t and dsi . By using this alternative formulation, we are able to reduce the total

number of constraints of the master problem to n + 1 and solve the master problem

much more efficient when n is very large.

4.4.3.3 Stabilization techniques for Dantzig-Wolfe decomposition

When applying the Dantzig-Wolfe decomposition method to (4.4), we observe that

although the algorithm moves to a near optimal solution very fast, it makes little

process per iteration towards the optimum. This poor convergence is known as tailing-

off effect of column generation (L̈ı¿1
2bbecke and Desrosiers, 2005). The reason of this

phenomenon is that the dual solution does not converge smoothly, but oscillates

around the optimum. One simple treatment for this issue is imposing lower and

upper bounds for the dual variables so that the new dual solution is forced to lie
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in the neighborhood of the optimal dual solution of the current restricted master

problem. This method is usually called Boxstep and was introduced by Marsten et al.

(1975). In order to accelerate the Dantzig-Wolfe decomposition method to solve (4.4),

we implement a variant of the Boxstep which uses the linear programming frame

work and combines perturbations and penalties to stabilize the column generation

(du Merle et al., 1999). To constrain the dual variables in the dual space, we consider

an augmented master problem

max
�

h∈Ht

λh

t
Y T th + δT+y+ − δT

−
y−

s/t
n�

i=1

�

k∈Ksi

λk

si
Ais

k

i
+

n�

i=1

�

l∈Lsi

µl

si
Aid

l

si
+

�

h∈Ht

λh

t
Int

h + Iny+ − Iny− = 0,

�

k∈Ksi

λk

si
= 1, 1 ≤ i ≤ n

�

h∈Ht

λh

t
= 1,

y+ ≤ �+

y− ≤ �−

λk

si
, λh

t
, µl

si
≥ 0, ∀h, i, k, l

y+, y− ≥ 0,

where y+ and y− are vectors with upper bounds �+ and �−, respectively. As a result,

the dual variables π are constrained by δ− − z− ≤ π ≤ δ+ + z+ in the corresponding

dual problem. In the above box constraint, z+ and z− decide the amounts to penalize

if dual variables π locate outside of the box [δ−, δ+]. However, to make sure the

augmented master problem has the same solution with the original one, we have

to let y+ = y− = 0 in the final iteration. This goal can be achieved by letting

1)�+ = �− = 0 or 2) δ− ≤ π ≤ δ+. To control the dual variables’ variation, two

possible strategies are used to update parameters �+, �−, δ+ and δ− dynamically. If
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the new dual solution πv obtained at iteration v is outside of the box [δ−, δ+], we

recenter the box at πv and increase the width of the box. This can be done by setting

δ+ and δ− to the new dual solution πv and decreasing the penalty values �+ and �−.

On the other hand, if the new dual solution πv is inside the box defined by [δ−, δ+],

we recenter the box at πv and decrease the width of the box by letting δ+ = δ− = πv

and increasing the penalty values �+ and �−. In addition, to reduce the uncertainty of

estimating stabilization center by πh at each iteration, we can incorporate a positive

perturbation parameter ξ and let δ+ + ξ = δ− − ξ = πv.

In the next section, we compare formulations (4.3) and (4.4) through numerical

examples.

4.5. Numerical Results

In this section, we investigate how fast ĝn can be computed by solving (4.4) through

common LP solving techniques such as the simplex method and the interior point

method. We further illustrate how ĝn can be computed for large datasets by solving

(4.4) with Dantzig-Wolfe decomposition.

We are particularly interested in the relative performance of ĝn compared to

that of the least squares estimator. The least squares estimator is defined as the

minimizing values g̃n(X1), . . . , g̃n(Xn) of the following QP in the decision variables

(g1, ξ1), . . . , (gn, ξn)

min
1

n

n�

i=1

(Yi − gi)
2 (4.13)

s/t gj ≥ gi + ξT
i
(Xj −Xi), 1 ≤ i, j ≤ n;

see Lim and Glynn (2012) for details.

In Section 4.5.1, we observe numerically how ĝn converges to the true value as n
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increases to infinity. The performance of ĝn is compared to that of the least squares

estimator g̃n(X1), . . . , g̃n(Xn).

In Section 4.5.2, we compare formulations (4.4) and (4.13) in three numerical ex-

amples: 1) a stylized model, 2) an inventory control system, and 3) a tandem queueing

network. In each of these examples, we consider four different computational strate-

gies. Estimator 1 is the least squares estimator g̃n(X1), . . . , g̃n(Xn). It is computed

by solving (4.13) through the interior point method in CPLEX. Estimator 2 is ĝn and

is computed by solving (4.4) through the simplex method in CPLEX. Estimator 3 is

ĝn and is computed by solving (4.4) through the interior point method in CPLEX. To

compute estimator 4, we implement the Dantzig-Wolfe decomposition algorithm we

summarized in Section 4.4.1 and include those computing strategies in Section 4.4.3 to

improve the performance. To implement the stabilized column generation technique,

we set δv+ and δv
−
around πv at the first l iterations (v ≤ l) of the algorithm. After l

iterations (v > l), we update δv+ and δv
−
if πv is the best dual solution found so far,

where the quality of πv can be estimated through the lower bound of the restricted

master problem. In addition, we decrease �v+ and �v
−
by a factor of 2 if no column can

be entered into the master problem.

All the numerical experiments are conducted on a computer with a processor of

2.33 GHz and a RAM of 12 GB.

4.5.1 Consistency

4.5.1.1 One-dimensional case

We consider the case where f∗(x) = (x− 0.5)2 for x ∈ [0, 1], Xi = i/n for 1 ≤ i ≤ n,

and εi follows logN(−2, 2) with probability 0.5 and − logN(−2, 2) with probability

0.5, where logN(−2, 2) is a lognormal distribution with normal mean −2 and variance

2. Using (Xi, Yi) for 1 ≤ i ≤ n, we compute ĝn(Xi) and the g̃n(Xi)s. Table 4.1 reports
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the averages (Mean) and the standard deviation (Std) of

d1(ĝn, f∗) � sup
Xi∈[0.2,0.8]

|ĝn(Xi)− f∗(Xi)|

and the averages (Mean) and the standard deviation (Std) of

d1(g̃n, f∗) � sup
Xi∈[0.2,0.8]

|g̃n(Xi)− f∗(Xi)|,

based on 100 iid replications for each value of n.

Table 4.1: Consistency: One-dimensional case

d1(ĝn, f∗) d1(g̃n, f∗)
n Mean Std Mean Std
10 0.31 0.38 0.54 0.54
20 0.16 0.09 0.36 0.28
50 0.10 0.05 0.28 0.23
100 0.06 0.03 0.20 0.13
150 0.06 0.02 0.18 0.10
200 0.05 0.02 0.17 0.11
400 0.04 0.01 0.11 0.06

4.5.1.2 Two-dimensional case

We consider the case where f∗(x) = (x1 − 0.5)2 +(x2 − 1.0)2 for x = (x1, x2) ∈ [0, 1]2,

Xij = (i/n1/2, j/n1/2) for 1 ≤ i, j ≤ n1/2, and the noisy measurement Yij at Xij

follows f∗(Xij) + logN(−2, 2) with probability 0.5 and f∗(Xij) − logN(−2, 2) with

probability 0.5, where logN(−2, 2) is a lognormal distribution with normal mean −2

and variance 2. Using (Xij, Yij) for 1 ≤ i, j ≤ n1/2, we compute ĝn(Xij) and the

g̃n(Xij)s. Table 4.2 reports the averages (Mean) and the standard deviation (Std) of

d2(ĝn, f∗) � sup
Xij∈[0.2,0.8]2

|ĝn(Xij)− f∗(Xij)|



102

and the averages (Mean) and the standard deviation (Std) of

d2(g̃n, f∗) � sup
Xij∈[0.2,0.8]2

|g̃n(Xij)− f∗(Xij)|,

based on 100 iid replications for each value of n.

Table 4.2: Consistency: Two-dimensional case

d2(ĝn, f∗) d2(g̃n, f∗)
n Mean Std Mean Std
16 0.63 1.01 0.89 1.17
64 0.16 0.07 0.54 0.39
144 0.11 0.04 0.38 0.24
225 0.10 0.03 0.33 0.27
400 0.03 0.01 0.12 0.07

In the above examples, the proposed estimator displays good performance.

4.5.2 Time Required to Compute Estimators 1, 2, 3, and 4

4.5.2.1 One-dimensional case: a stylized model

We consider the case where f∗ : [0, 1] → R is defined by f∗(x) = (x − 0.5)2 for

x ∈ [0, 1], Xi = i/n for 1 ≤ i ≤ n, and εi is normally distributed with mean zero and

variance 0.052 for 1 ≤ i ≤ n. Using (Xi, Yi) for 1 ≤ i ≤ n, we compute estimators

1, 2, 3, and 4. The parameters used to stabilize the Dantzig-Wolfe decomposition

method are: l = 200, �0+ = �0
−
= Y , ξ = 0.002 for the first 150 iterations and ξ = 0.01

for the rest.

Table 4.3 reports the averages (Mean) and the standard deviation (Std), based on

30 independent copies, of the CPU time required to compute estimators 1, 2, 3, and

4. The symbol - means that the computer ran out of memory could not execute the

procedure.
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Table 4.3: Performance of estimators 1, 2, 3, and 4 for a quadratic function

n

CPU Time (sec)
Estimator 1 Estimator 2 Estimator 3 Estimator 4
Mean Std Mean Std Mean Std Mean Std

5 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.01
50 2.00 0.09 0.05 0.01 0.09 0.03 0.07 0.01
400 53.73 5.47 5.85 0.16 15.16 0.96 2.27 0.24
600 - - 18.65 0.58 55.24 2.14 5.28 0.47
1000 - - 41.67 1.29 264.97 11.12 15.32 1.45
1400 - - 114.79 5.71 681.80 21.48 32.21 3.35
1600 - - - - - - 44.76 4.75
2000 - - - - - - 71.36 7.20
5000 - - - - - - 679.40 74.05
10000 - - - - - - 4177.68 532.36

4.5.2.2 Two-dimensional case: (Q, r) inventory system

We consider a single–item continuous–review (Q, r) inventory system, where we place

an order with a fixed quantity Q whenever the inventory position (= on hand stock

minus backorders plus any outstanding orders) drops below a prespecified quantity

r. The replenishment lead time is assumed to be one unit of time. When an order

is placed, a fixed setup cost of $100 is incurred. A holding cost of $10 or a penalty

cost of $25 per unit time is charged against any inventory or backorder. We further

assume that demand follows a Poisson process with a rate of 50 per unit time. Any

unfilled demand is backordered. Our goal is to estimate the steady-state mean total

costs per unit time C(Q, r), which is proven to be jointly convex in Q and r (p.

89 of (Zheng, 1992)). To compute C(Q, r), we select the values for (Q, r) at Xij =

(35 + 10i/(n1/2), 35 + 10j/(n1/2)) for 1 ≤ i, j ≤ n1/2, simulate the inventory system

up to time 100 at each Xij, compute the average Yij of all the costs up to time 100

at each Xij, and obtain the average of 20 independent copies of Yij, say Y ij. Using

(Xij, Y ij) for 1 ≤ i, j ≤ n1/2, we compute estimators 1, 2, 3, and 4. The parameters
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used to stabilize the Dantzig-Wolfe decomposition method are: l = 200, �0+ = �0
−
= Y ,

ξ = 0.005 for the first 100 iterations and ξ = 0.01 for the rest.

Table 4.4 reports the averages (Mean) and the standard deviation (Std), based on

30 independent copies, of the CPU time required to compute estimators 1, 2, 3, and

4. The symbol - means that the computer ran out of memory could not execute the

procedure.

Table 4.4: Performance of estimators 1, 2, 3, and 4 for a (Q, r) inventory system

n

CPU Time (sec)
Estimator 1 Estimator 2 Estimator 3 Estimator 4
Mean Std Mean Std Mean Std Mean Std

64 1.98 0.15 0.19 0.02 0.10 0.02 0.48 0.08
100 3.29 0.19 0.32 0.02 0.25 0.03 1.80 0.31
625 - - 56.61 1.72 62.28 1.38 34.39 4.71
1600 - - - - - - 265.30 42.47
2500 - - - - - - 733.65 91.31
6400 - - - - - - 12244.76 1701.47

4.5.2.3 Three-dimensional case: tandem queue

We consider a queueing system of three single-server stations connected in tandem,

where the interarrival times follow a uniform distribution over [2.43, 3.43] and the

service times at server i follow a uniform distribution over [xi − 0.5, xi + 0.5] for

1 ≤ i ≤ 3. The interarrival times and service times are independent of each other

and the first in/first out queueing discipline is used at each server. Each server has

unlimited buffer space. We wish to compute the expected sojourn time s600(x1, x2, x3)

of the 600th customer. Even though there is no explicit formula for s600, the convexity

of s600 has been proven; see p. 141 of Shanthikumar and Yao (1991) for details. To

compute s600, we simulate the tandem queue at Xijk = (2.85 + 0.06i/(n1/3), 2.85 +

0.06j/(n1/3), 2.85 + 0.06k/(n1/3)) for 1 ≤ i, j, k ≤ n1/3 and compute the sojourn time
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Yijk of the 600th customer. We then obtain the average of 30 independent copies of

Yijk, say Y ijk. Using (Xijk, Y ijk) for 1 ≤ i, j, k ≤ n1/3, we compute estimators 1, 2,

3, and 4. The parameters used to stabilize the Dantzig-Wolfe decomposition method

are: l = 200, �0+ = �0
−
= Y , ξ = 0.005 for the first 100 iterations and ξ = 0.01 for the

rest.

Table 4.5 reports the averages (Mean) and the standard deviation (Std), based on

30 independent copies, of the CPU time required to compute estimators 1, 2, 3, and

4. The symbol - means that the computer ran out of memory could not execute the

procedure.

Table 4.5: Performance of estimators 1, 2, 3, and 4 for a tandem queue

n

CPU Time (sec)
Estimator 1 Estimator 2 Estimator 3 Estimator 4
Mean Std Mean Std Mean Std Mean Std

64 0.18 0.04 0.06 0.01 0.07 0.01 0.38 0.06
216 50.06 47.92 2.09 0.09 1.09 0.08 7.51 0.87
512 - - 51.22 2.43 15.81 1.51 27.51 4.50
1000 - - 340.89 19.86 187.18 16.33 121.81 24.29
1728 - - - - - - 862.55 127.83
4096 - - - - - - 11410.52 2895.74

In each of the three examples, the proposed estimator is computed faster and for

larger datasets than the least squares estimator.

4.6. Proofs of Theorems 3 and 4

This section is devoted to supplying the details of the proofs of Theorems 3 and 4.

We first prove Theorem 3 and follow that with a proof of Theorem 4.

4.6.1 Proof of Theorem 3

Our proof of Theorem 3 can be broken down into a number of key steps.
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Step 1 Since ϕn(ĝn) ≤ ϕn(f∗) for any ĝn ∈ Sn, we must have

1

n

n�

i=1

|Yi − ĝn(Xi)| ≤
1

n

n�

i=1

|Yi − f∗(Xi)| (4.14)

=
1

n

n�

i=1

|f∗(Xi) + εi − f∗(Xi)| =
1

n

n�

i=1

|εi| .

Step 2 Observe that, for any ĝn ∈ Sn, we must have

1

n

n�

i=1

|ĝn(Xi)| ≤
1

n

n�

i=1

|εi|+
1

n

n�

i=1

|Yi| by (4.14)

≤
1

n

n�

i=1

|εi|+
1

n

n�

i=1

|f∗(Xi) + εi|

≤
1

n

n�

i=1

|εi|+
1

n

n�

i=1

|f∗(Xi)|+
1

n

n�

i=1

|εi| .

So,

sup
ĝn∈Sn

1

n

n�

i=1

|ĝn(Xi)| ≤ 2E |ε1|+ E |f∗(X1)|+ 1 � β < ∞

a.s. for n sufficiently large by A3 and the strong law of large numbers.

Step 3 We show that for any A ⊂ [0, 1]d with a nonempty interior, there exists β̃(A)

such that

sup
ĝn∈Sn

inf
x∈A

|ĝn(x)− f∗(x)| ≤ β̃(A)

a.s. for n sufficiently large.

To fill in the details, we observe that the strong law of large numbers and A3

ensure

1

n

n�

i=1

|f∗(Xi)| =
1

n

n�

i=1

|Yi − εi|

≤
1

n

n�

i=1

|Yi|+
1

n

n�

i=1

|εi| ≤ E |Y1|+ E |ε1|+ 1 � β̃
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a.s. for n sufficiently large.

The strong law of large numbers also guarantees that

lim inf
n→∞

1

n

n�

i=1

I(Xi ∈ A) ≥ P(X1 ∈ A)

a.s.

Let

B =

�
sup
ĝn∈Sn

1

n

n�

i=1

|ĝn(Xi)| ≤ β for n sufficiently large,

1

n

n�

i=1

|f∗(Xi)| ≤ β̃ for n sufficiently large,

and lim inf
n→∞

1

n

n�

i=1

I(Xi ∈ A) ≥ P(X1 ∈ A)

�
,

then by Step 2 and the above arguments, we have P(B) = 1.

Set β̃(A) � (β + β̃ + 1)/P(X1 ∈ A). We will prove that P(C) = 1, where

C =

�
sup
ĝn∈Sn

inf
x∈A

|ĝn(x)− f∗(x)| ≤ β̃(A) for n sufficiently large

�
,

by showing that B ∩ Cc = ∅.

Suppose, on the contrary, that ω ∈ B ∩Cc. Then for such ω, there exists ĝn ∈ Sn

such that

inf
x∈A

|ĝn(x)− f∗(x)| > β̃(A)

for infinitely many n. So, we would have

lim inf
n→∞

1

n

n�

i=1

|ĝn(Xi)− f∗(Xi)|

≥ lim inf
n→∞

1

n

n�

i=1

|ĝn(Xi)− f∗(Xi)| I(Xi ∈ A)
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≥ lim inf
n→∞

1

n

n�

i=1

I(Xi ∈ A)

· lim inf
n→∞

�
n

i=1 |ĝn(Xi)− f∗(Xi)| I(Xi ∈ A)

max(1,
�

n

i=1 I(Xi ∈ A))

≥ P(X1 ∈ A)β̃(A)

= β + β̃ + 1. (4.15)

On the other hand, we have

1

n

n�

i=1

|ĝn(Xi)− f∗(Xi)| ≤
1

n

n�

i=1

|ĝn(Xi)|+
1

n

n�

i=1

|f∗(Xi)| ≤ β + β̃

for n sufficiently large, which contradicts (4.15). Thus, we must have B ∩ Cc = ∅,

proving Step 3.

Step 4 Let e0 = (0, 0, . . . , 0)T and ei be the ith unit vector for 1 ≤ i ≤ d. Let

v∗ = (1/(4d), 1/d, . . . , 1/d). Let Ai be defined as follows:

A0 =
�
x ∈ [0, 1]d : �x− e0� ≤ τ

�
,

A1 = [1/2, 1]× [0, 1]× · · · × [0, 1] ⊂ [0, 1]d,

Ai =
�
x ∈ [0, 1]d : �x− ei� ≤ τ

�
for 2 ≤ i ≤ d,

Ad+1 =
�
x ∈ [0, 1]d : �x− v∗� ≤ τ

�
.

We will show that there exists a positive constant τ such that for any y in Ad+1 and

xi in Ai for 0 ≤ i ≤ d, there exist nonnegative real numbers p0, p1, . . . , pd summing

to one such that

p0x0 + p1x1 + · · ·+ pdxd = y

and that p1 ≥ 1/(16d).

To fill in the details, let y = (y1, . . . , yd) be any point in Ad+1 and xi = (x1
i
, . . . , xd

i
)

be any point in Ai for 0 ≤ i ≤ d. We will show that there exists a nonnegative solution



109

p0, p1, . . . , pd (summing to one) to the linear system

p0x0 + p1x1 + · · ·+ pdxd = y

with p1 ≥ 1/(16d).

Or equivalently, we will show that there exists a nonnegative solution p1, . . . , pd

(summing less than or equal to one) to the linear system

d�

i=1

pi(xi − x0) = y − x0. (4.16)

The linear system can be reexpressed as Fp = y − x0, where p = (p1, . . . , pd)T and

F = (Fij : 1 ≤ i, j ≤ d) is a square d × d matrix in which the ith column is xi − x0

for 1 ≤ i ≤ d. Note that F is invertible for sufficiently small τ > 0 because we have

|Fii| |Fjj| >

�
n�

k=1,k �=i

Fik

��
n�

k=1,k �=j

Fjk

�

for all i �= j and 1 ≤ i, j ≤ d with sufficiently small τ , and hence, Theorem V of

Taussky (1949) applies.

So, there exists a solution p1, . . . , pd to (4.16). To show that p1, . . . , pd are nonneg-

ative, sum less than or equal to one, and p1 ≥ 1/(16d), we let G = (Gij : 1 ≤ i, j ≤ d)

be a square d× d matrix in which the first column is x1 and the ith column is ei for

2 ≤ i ≤ d. Observe that q1, . . . , qd defined by

q1 = y1/x1
1

qi = yi − y1xi

1/x
1
1

for 2 ≤ i ≤ d satisfy Gq = y, where q = (q1, . . . , qd). Note also that 1/(8d) ≤ q1 ≤ 2y1

and 1/(8d) ≤ qi ≤ yi for 2 ≤ i ≤ d for τ sufficiently small.
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Set |||F ||| � sup�x�=1 �Fx�. Mapping a d × d square matrix to its inverse is

continuous with respect to |||·||| in a neighborhood of F because F is invertible. Thus,

we can make |||F−1 −G−1||| sufficiently small by making |||F −G||| or τ sufficiently

small. Also, |||F−1||| ≤ 1/|||F ||| ≤ 1/max1≤i,j≤d |Fij| ≤ 4 for τ sufficiently small. So,

�p− q� = �F−1(y − x0)−G−1y�

= �(F−1
−G−1)y − F−1x0�

≤ �(F−1
−G−1)y�+ �F−1x0�

≤ |||F−1
−G−1

||| · �y�+ |||F−1
||| · �x0�

≤ |||F−1
−G−1

|||+ |||F−1
|||τ,

and hence, �p−q� ≤ 1/(16d) for sufficiently small τ . Thus, p1, . . . , pd are nonnegative

and sum less than or equal to one, and p1 ≥ 1/(16d). Step 4 is proved.

Step 5 Let ui be the vector identical to ei except that its first element is one minus

ei’s first element for 0 ≤ i ≤ d. Let w∗ = (1−1/(4d), 1/d, . . . , 1/d). Let Bi be defined

as follows:

B0 =
�
x ∈ [0, 1]d : �x− u0� ≤ τ

�
,

B1 = [0, 1/2]× [0, 1]× · · · × [0, 1] ⊂ [0, 1]d,

Bi =
�
x ∈ [0, 1]d : �x− ui� ≤ τ

�
for 2 ≤ i ≤ d,

Bd+1 =
�
x ∈ [0, 1]d : �x− w∗� ≤ τ

�
.

Then, there exists a positive constant τ such that for any y in Bd+1 and xi in Bi for

0 ≤ i ≤ d, there exist nonnegative real numbers p0, p1, . . . , pd summing to one such

that

p0x0 + p1x1 + · · ·+ pdxd = y



111

and p1 ≥ 1/(16d). The proof of Step 5 is similar to the proof of Step 4 and is omitted.

Step 6 There exists a constant γ̃ such that

inf
x∈[0,1]d,ĝn∈Sn

ĝn(x) ≥ γ̃

a.s. for n sufficiently large.

First, we show that

inf
x∈A1,ĝn∈Sn

ĝn(x) ≥ γ̃

a.s. for n sufficiently large. Then it will follow similarly that

inf
x∈B1,ĝn∈Sn

ĝn(x) ≥ γ̃

a.s. for n sufficiently large.

By Step 3, there exists a positive constant γ such that

sup
ĝn∈Sn

inf
x∈Ai

|ĝn(x)− f∗(x)| ≤ γ

a.s. for all 0 ≤ i ≤ d+ 1 and n sufficiently large.

Since |f∗(x)| ≤ M for x ∈ [0, 1]d by A5, we have

sup
ĝn∈Sn

inf
x∈Ai

|ĝn(x)| ≤ M + γ (4.17)

a.s. for all 0 ≤ i ≤ d+ 1 and n sufficiently large.

Set γ̃ = −32d(M + γ + 1). Note that for any ĝn ∈ Sn, if ĝn(x1) ≤ γ̃ for some

x1 ∈ A1 and ĝn(xi) ≤ (γ + M + 1) for some xi ∈ Ai (i = 0, 2, . . . , d), then Step 4

guarantees that for any y in Ad+1, there exist nonnegative real numbers p0, p1, . . . , pd
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summing to one that satisfy

p0x0 + p1x1 + · · ·+ pdxd = y.

So, we have

ĝn(y) = ĝn(p
0x0 + · · ·+ pdxd)

≤ p0ĝn(x0) + p1ĝn(x1) + · · ·+ pdĝn(xd) because ĝn is convex

≤ γ̃/(16d) + (M + γ + 1)

= −(M + γ + 1).

So, if ĝn(x) ≤ γ̃ for some x ∈ A1, then we should either have

inf
x∈Ai

ĝn(x) ≥ M + γ + 1

for some i ∈ {0, 2, . . . , d} or

sup
x∈Ad+1

ĝn(x) ≤ −(M + γ + 1).

Thus,

P
�

inf
x∈A1,ĝn∈Sn

ĝn(x) ≤ γ̃ for infinitely many n

�

≤

�

i=0,2,...,d

P
�

sup
ĝn∈Sn

inf
x∈Ai

ĝn(x) ≥ M + γ + 1 for infinitely many n

�

+P
�

inf
ĝn∈Sn

sup
x∈Ad+1

ĝn(x) ≤ −(M + γ + 1) for infinitely many n

�

≤

�

i=0,2,...,d

P
�

sup
ĝn∈Sn

inf
x∈Ai

|ĝn(x)| ≥ M + γ + 1 for infinitely many n

�

+P
�

sup
ĝn∈Sn

inf
x∈Ad+1

|ĝn(x)| ≥ M + γ + 1 for infinitely many n

�
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= 0

by (4.17), proving Step 6.

Step 7 We prove that for any c > 0 there exists a positive constant γ̃(c) such that

sup
x∈Hc,ĝn∈Sn

ĝn(x) ≤ γ̃(c)

a.s. for n sufficiently large, where Hc = [c, 1− c]d.

First we prove that there exists a positive constant τ(c) such that for any y ∈ Hc

and for any xi ∈ Ci (1 ≤ i ≤ d), where

Ci =
�
x ∈ [0, 1]d : �x− ei� ≤ τ(c)

�
,

there exist nonnegative real numbers p1, . . . , pd such that

p1x1 + · · ·+ pdxd = y

and that pi ≤ 1 for 1 ≤ i ≤ d.

To fill in the details, note that we need to show that there exists a solution

p = (p1, . . . , pd)T to the linear equation

Hp = y (4.18)

with 0 ≤ pi ≤ 1 for 1 ≤ i ≤ d, where H = (Hij : 1 ≤ i, j ≤ d) is a square d × d

matrix in which the ith column is xi for 1 ≤ i ≤ d. Set �H�∞ = max1≤i≤d

�
d

j=1 |Hij|

and note that �H − Id�∞ ≤ τ(c), where Id is the d × d identity matrix. Hence, for

τ(c) < 1/2, H is invertible and we have

�H−1
�∞ = �(Id +H − Id)

−1
�∞ ≤ (1− �H − Id�∞)−1

≤ 2.
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Therefore,

�p− y�∞ = �H−1y − y�∞ ≤ �H−1
− Id�∞�y�∞ ≤ �H−1

− I−1
d

�∞.

Since mapping a d × d matrix to its inverse matrix is continuous with respect to

� · �∞ in a neighborhood of H and �H − Id�∞ ≤ τ(c), there exists a positive number

τ(c) that guarantees �H−1 − I−1
d

� ≤ c/2. So, for such τ(c), �p − y�∞ ≤ c/2. Since

y ∈ [c, 1 − c]d, p1, . . . , pd are nonnegative and each of them is less than or equal to

one.

Now we prove Step 7. For 1 ≤ i ≤ d, r > 0, and ĝn ∈ Sn,

1

n

n�

j=1

I (Xj ∈ Ci, |ĝn(Xj)| ≤ r)

≥
1

n

n�

j=1

I (Xj ∈ Ci)−
1

n

n�

j=1

I (Xj ∈ Ci, |ĝn(Xj)| > r) .

However, Markov inequality and Step 2 imply that

sup
ĝn∈Sn

1

n

n�

j=1

I (Xj ∈ Ci, |ĝn(Xj)| > r) ≤ sup
gn∈Sn

r−1 1

n

n�

j=1

|ĝn(Xj)| ≤ β/r

a.s. for n sufficiently large. Choose r0 so large that β/r0 ≤ γ � min{P(X1 ∈ Ci) :

1 ≤ i ≤ d}/2, then

inf
ĝn∈Sn

1

n

n�

j=1

I (Xj ∈ Ci, |ĝn(Xj)| ≤ r0) ≥ γ

a.s. for n sufficiently large.

For each such n, there exists XI(i) ∈ Ci with 1 ≤ I(i) ≤ n and
��ĝn(XI(i))

�� ≤ r0.

For each y ∈ [c, 1− c]d and XI(i) ∈ Ci for 1 ≤ i ≤ d, there exist p1, . . . , pd such that

y = p1XI(1) + · · ·+ pdXI(d)
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and that 0 ≤ pi ≤ 1 for 1 ≤ i ≤ d. So, the convexity of ĝn yields

ĝn(y) ≤ p1ĝn(XI(1)) + · · ·+ pdĝn(XI(d)) ≤ dr0,

proving that

sup
x∈[c,1−c]d,ĝnSn

ĝn(x) ≤ dr0

a.s. for n sufficiently large.

Step 8 Observe that the a.s. bound on |ĝn| and |f∗| uniformly in n over Hc/2 =

[c/2, 1− c/2]d implies that ĝn and f∗ is Lipschitz over Hc = [c, 1− c]d uniformly in n

a.s. In particular, there exists a positive constant α(c) such that

sup
ĝn∈Sn

|ĝn(x)− ĝn(y)| ≤ α(c)�x− y�

and

|f∗(x)− f∗(y)| ≤ α(c)�x− y�

for x, y ∈ Hc a.s. for n sufficiently large; see, for example, Roberts and Varberg (1974).

Step 9 Let

Cc = {h : Hc → R such that h is convex on Hc,

|h(x)| ≤ |γ̃|+ γ̃(c) and |h(x)− h(y)| ≤ α(c)�x− y� for x, y ∈ Hc} .

Note that Steps 6, 7, and 8 guarantee that for each c ≥ 0 there exists n(c) such that

n ≥ n(c) and ĝn ∈ Sn imply that ĝn restricted to Hc belongs to Cc a.s. Furthermore,

Cc is compact in the uniform metric dc given by

dc(h1, h2) = sup
x∈Hc

|h1(x)− h2(x)| .
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It follows that for each � > 0, there exists a finite collection of functions h1, . . . , hm

in Cc such that
m�

i=1

{h ∈ Cc : dc(hi, h) < �} ⊇ Cc.

That is, h1, h2, . . . , hm is an �–net for Cc; see Theorem 6 of Bronshtein (1976).

Step 10We will prove that for any positive real numbers � and δ and for any z ∈ [0, 1]d

and

B(z, δ) �
�
x ∈ [0, 1]d : �x− z� ≤ δ

�
,

we have

sup
ĝn∈Sn

inf
x∈B(z,δ)

(f∗(x)− ĝn(x)) ≤ �

a.s. for n sufficiently large.

To fill in the details, let

C = { sup
ĝn∈Sn

inf
x∈B(z,δ)

(f∗(x)− ĝn(x)) ≤ � for n sufficiently large}.

We will prove that P(C) = 1 by showing that P(A∩B ∩Cc) = ∅, where A and B are

defined as follows and P(A) = P(B) = 1.

Let

A =

�
1

n

n�

i=1

I(Xi ∈ B(z, δ),−�/2 ≤ εi ≤ 0) ≥ η/2 for n sufficiently large

�
,

where η � P(X1 ∈ B(z, δ),−�/2 ≤ ε1 ≤ 0). By the strong law of large numbers,

P(A) = 1.

On the other hand, the dominated convergence theorem guarantees that

E(I(X1 is not in Hδ)) → 0

as δ → 0 because I(X1 is not in Hδ) ↓ 0 a.s. as δ ↓ 0. So, take δ0 small enough so
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that

E(I(X1 is not in Hδ0)) ≤
�η

24(M + |γ̃|)
(4.19)

and note that
1

n

n�

i=1

I(Xi is not in Hδ0) ≤
�η

12(M + |γ̃|)

a.s. for n sufficiently large by the strong law of large numbers. Also, by Step 6 and

A5, we have (f∗(Xi)− ĝn(Xi)− �/2)+ ≤ M + |γ̃| a.s. for n sufficiently large, so

1

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+I(Xi is not in Hδ0) ≤ �η/12

a.s. for n sufficiently large.

Let h1, . . . , hm be an �η/12–net for Hδ0 . For each j ∈ {1, . . . ,m}, the strong law

of large numbers guarantees that

1

n

n�

i=1

(f∗(Xi)− hj(Xi)− �/2)+(1/2− I(εi ≤ 0))I(Xi ∈ Hδ0) → 0

as n → ∞ because the Xis and the εis are independent and εi’s have zero median.

So,

max
1≤j≤m

�����
1

n

n�

i=1

(f∗(Xi)− hj(Xi)− �/2)+(1/2− I(εi ≤ 0))I(Xi ∈ Hδ0)

����� ≤ �η/24

a.s. for n sufficiently large.

We let

B =

�
1

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+I(Xi is not in Hδ0) ≤ �η/12 for n

sufficiently large

max
1≤j≤m

�����
1

n

n�

i=1

(f∗(Xi)− hj(Xi)− �/2)+(1/2− I(εi ≤ 0))I(Xi ∈ Hδ0)

�����
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≤ �η/24 for n sufficiently large}

Since P(A) = P(B) = 1, it remains to show that A ∩B ∩ Cc = ∅ .

Suppose, on the contrary, that ω ∈ A ∩ B ∩ Cc. Then for such ω, there exists

ĝn ∈ Sn such that

inf
x∈B(z,δ)

(f∗(x)− ĝn(x)) > � (4.20)

for infinitely many n.

Define kn : [0, 1]d → R by kn = max (f∗(x)− �/2, ĝn(x)) for x ∈ [0, 1]d. Since kn

is convex, we must have

ϕn(kn) ≥ ϕn(ĝn),

or equivalently,

0 ≤ ϕn(kn)− ϕ(ĝn)

=
1

n

n�

i=1

|Yi − kn(Xi)| −
1

n

n�

i=1

|Yi − ĝn(Xi)|

=
1

n

�

Xi∈Pn

|Yi − kn(Xi)| −
1

n

�

Xi∈Pn

|Yi − ĝn(Xi)| ,

where Pn =
�
x ∈ [0, 1]d : f∗(x)− �/2 ≥ ĝn(x)

�
.

We denote

Qi,n = {Xi ∈ Pn} ∩ {εi + �/2 < − (f∗(Xi)− ĝn(Xi)− �/2)}

Ri,n = {Xi ∈ Pn} ∩ {− (f∗(Xi)− ĝn(Xi)− �/2) ≤ εi + �/2 < 0}

Si,n = {Xi ∈ Pn} ∩ {0 ≤ εi + �/2}
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for 1 ≤ i ≤ n and observe that

0 ≤ ϕn(kn)− ϕ(ĝn)

=
1

n

�

Xi∈Pn

|Yi − (f∗(Xi)− �/2)| −
1

n

�

Xi∈Pn

|Yi − ĝn(Xi)|

=
1

n

�

Xi∈Pn

|εi + �/2| −
1

n

�

Xi∈Pn

|εi + �/2 + (f∗(Xi)− ĝn(Xi)− �/2)|

=
1

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2) I(Qi,n)

−
1

n

n�

i=1

(2εi + �+ f∗(Xi)− ĝn(Xi)− �/2) I(Ri,n)

−
1

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2) I(Si,n)

= −
1

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ (1− 2I(Qi,n))

−
2

n

n�

i=1

(εi + �/2) I(Ri,n)

= −
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ (1/2− I(Qi,n))

−
2

n

n�

i=1

(εi + �/2) I(Ri,n)

= −
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ (I(εi ≤ 0)− I(Qi,n))

−
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ (1/2− I(εi ≤ 0))

−
2

n

n�

i=1

(εi + �/2) I(Ri,n)

= −
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ (I(Ri,n) + I(−�/2 ≤ εi ≤ 0))

−
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ (1/2− I(εi ≤ 0))

−
2

n

n�

i=1

(εi + �/2) I(Ri,n)
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= −
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi) + εi) I(Ri,n)

−
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ I(−�/2 ≤ εi ≤ 0)

−
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ (1/2− I(εi ≤ 0))

≤ −
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ I(−�/2 ≤ εi ≤ 0)

−
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ (1/2− I(εi ≤ 0)) = I + II, say. (4.21)

By (4.20), we have

I = −
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ I(−�/2 ≤ εi ≤ 0)

≤ −
1

n

n�

i=1

�I(Xi ∈ B(z, δ),−�/2 ≤ εi ≤ 0)

for infinitely many n.

Since ω ∈ A,

I = −
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ I(−�/2 ≤ εi ≤ 0) ≤ −�η/2 (4.22)

for infinitely many n.

On the other hand, note that for each 1 ≤ j ≤ m,

II = −(2/n)
n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ (1/2− I(εi ≤ 0))

= −(2/n)
�

Xi is not in Hδ0

(f∗(Xi)− ĝn(Xi)− �/2)+ (1/2− I(εi ≤ 0))

−(2/n)
n�

i=1

(f∗(Xi)− ĝn(Xi)− �/2)+ (1/2− I(εi ≤ 0))I(Xi ∈ Hδ0)

≤ −(2/n)
�

Xi is not in Hδ0

(f∗(Xi)− ĝn(Xi)− �/2)+ (1/2− I(εi ≤ 0))
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−(2/n)
n�

i=1

(f∗(Xi)− hj(Xi)− �/2)+ (1/2− I(εi ≤ 0))I(Xi ∈ Hδ0)

+(2/n)
n�

i=1

|hj(Xi)− ĝn(Xi)| |1/2− I(εi ≤ 0)| I(Xi ∈ Hδ0)

because − (a+ b)+c ≤ −a+c+ |b||c| for a, b, c ∈ R

≤ (2/n)
�

Xi is not in Hδ0

(f∗(Xi)− ĝn(Xi)− �/2)+ |1/2− I(εi ≤ 0)|

+2 max
1≤j≤m

������
1

n

�

Xi∈Hδ0

(f∗(Xi)− hj(Xi)− �/2)+ (1/2− I(εi ≤ 0))

������

+(2/n)
n�

i=1

sup
x∈Hδ0

|hj(x)− ĝn(x)| |1/2− I(εi ≤ 0)| I(Xi ∈ Hδ0). (4.23)

Since (4.23) holds for any j ∈ {1, . . . ,m},

II ≤ (2/n)
�

Xi is not in Hδ0

(f∗(Xi)− ĝn(Xi)− �/2)+ |1/2− I(εi ≤ 0)|

+ 2 max
1≤j≤m

������
1

n

�

Xi∈Hδ0

(f∗(Xi)− hj(Xi)− �/2)+ (1/2− I(εi ≤ 0))

������
+ �η/12

≤ �η/12 + �η/12 + �η/12 because ω ∈ B

= �η/4 (4.24)

a.s. for n sufficiently large.

Combination of (4.21), (4.22), and (4.24) gives 0 ≤ ϕ(kn) − ϕ(ĝn) ≤ −�η/2 for

infinitely many n, which is a contradiction. This proves that A ∩ B ∩ Cc = ∅ and

that P(C) = 1.

Step 11We will prove that for any positive real numbers � and δ and for any z ∈ [0, 1]d

and

B(z, δ) �
�
x ∈ [0, 1]d : �x− z� ≤ δ

�
,
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we have

sup
ĝn∈Sn

inf
x∈B(z,δ)

(ĝn(x)− f∗(x)) ≤ �

a.s. for n sufficiently large.

To fill in the details, let

C = { sup
ĝn∈Sn

inf
x∈B(z,δ)

(ĝn(x)− f∗(x)) ≤ � for n sufficiently large}.

We will prove that P(C) = 1 by showing that P(A∩B ∩Cc) = ∅, where A and B are

defined as follows and P(A) = P(B) = 1.

Let

A =

�
1

n

n�

i=1

I(Xi ∈ B(z, δ), 0 < εi < �/2) ≥ η/2 for n sufficiently large

�
,

where η � P(X1 ∈ B(z, δ), 0 < ε1 < �/2). By the strong law of large numbers,

P(A) = 1.

On the other hand, the strong law of large numbers and A4 ensure that

1

n

n�

i=1

(1/2− I(εi > 0)) =
1

n

n�

i=1

(I(εi ≤ 0)− 1/2) ≥ −η/16

a.s. for n sufficiently large. Also, similar arguments leading to (4.24) ensure that

1

n

n�

i=1

(f∗(Xi)− ĝn(Xi) + �)+ (1/2− I(ε ≤ 0)) ≥ −�η/16

a.s. as n → ∞.

So, if we let

B =

�
1

n

n�

i=1

(1/2− I(εi > 0)) ≥ −η/16 for n sufficiently large
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1

n

n�

i=1

(f∗(Xi)− ĝn(Xi) + �)+ (1/2− I(ε < 0)) ≥ −�η/16

for n sufficiently large} ,

then P(B) = 1.

Since P(A) = P(B) = 1, it remains to show that A ∩ B ∩ Cc = ∅ .

Suppose, on the contrary, that ω ∈ A ∩ B ∩ Cc. Then for such ω, there exists

ĝn ∈ Sn such that

inf
x∈B(z,δ)

(ĝn(x)− f∗(x)) > � (4.25)

for infinitely many n.

Define kn : [0, 1]d → R by kn(x) = max(ĝn(x) − �, f∗(x)) for x ∈ [0, 1]d. Since kn

is convex, we must have

ϕn(kn) ≥ ϕn(ĝn),

or equivalently,

0 ≤ ϕn(kn)− ϕn(ĝn) =
1

n

n�

i=1

|Yi − kn(Xi)| −
1

n

n�

i=1

|Yi − ĝn(Xi)|

=
1

n

�

Xi∈Pn

|Yi − ĝn(Xi) + �| −
1

n

�

Xi∈Pn

|Yi − ĝn(Xi)|

+
1

n

�

Xi∈P
c
n

|εi| −
1

n

�

Xi∈P
c
n

|εi + f∗(Xi)− ĝn(Xi)|

= I + II + III + IV, say, (4.26)

where Pn =
�
x ∈ [0, 1]d : ĝn(x)− � ≥ f∗(x)

�
.

We denote

Qi,n = {Xi ∈ Pn} ∩ {εi ≥ − (f∗(Xi)− ĝn(Xi))}

Ri,n = {Xi ∈ Pn}
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∩{− (f∗(Xi)− ĝn(Xi) + �) ≤ εi < − (f∗(Xi)− ĝn(Xi))}

Si,n = {Xi ∈ Pn} ∩ {εi < − (f∗(Xi)− ĝn(Xi) + �)}

and observe that

I + II =
1

n

�

Xi∈Pn

|Yi − ĝn(Xi) + �| −
1

n

�

Xi∈Pn

|Yi − ĝn(Xi)|

=
1

n

�

Xi∈Pn

|f∗(Xi)− ĝn(Xi) + εi + �|

−
1

n

�

Xi∈Pn

|f∗(Xi)− ĝn(Xi) + εi|

=
1

n

n�

i=1

�I(Qi,n) +
1

n

n�

i=1

(2f∗(Xi)− 2ĝn(Xi) + 2εi + �) I(Ri,n)

−
1

n

n�

i=1

�I(Si,n)

= −
1

n

�

Xi∈Pn

�
�
1− 2I(Sc

i,n
)
�

+
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi) + εi) I(Ri,n)

= −
2

n

�

Xi∈Pn

�
�
1/2− I(Sc

i,n
)
�

+
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi) + εi) I(Ri,n)

= −
2

n

�

Xi∈Pn

�
�
I(εi > 0)− I(Sc

i,n
)
�

−
2

n

�

Xi∈Pn

� (1/2− I(εi > 0))

+
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi) + εi) I(Ri,n)

= −
2

n

�

Xi∈Pn

�I (0 < εi < − (f∗(Xi)− ĝn(Xi) + �))

−
2

n

�

Xi∈Pn

� (1/2− I(εi > 0))
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+
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi) + εi) I(Ri,n)

≤ −
2

n

�

Xi∈Pn

�I (0 < εi < − (f∗(Xi)− ĝn(Xi) + �))

−
2

n

�

Xi∈Pn

� (1/2− I(εi > 0))

+
2

n

�

Xi∈Pn

(f∗(Xi)− ĝn(Xi) + εi)

·I(− (f∗(Xi)− ĝn(Xi) + �) ≤ εi < − (f∗(Xi)− ĝn(Xi) + �/2))

≤ −
2

n

�

Xi∈Pn

�I (0 < εi < − (f∗(Xi)− ĝn(Xi) + �))

−
2

n

�

Xi∈Pn

� (1/2− I(εi > 0))

−
1

n

�

Xi∈Pn

�I(− (f∗(Xi)− ĝn(Xi) + �) ≤ εi

< − (f∗(Xi)− ĝn(Xi) + �/2))

≤ −
1

n

�

Xi∈Pn

�I (0 < εi < − (f∗(Xi)− ĝn(Xi) + �/2))

−
2

n

�

Xi∈Pn

� (1/2− I(εi > 0))

≤ −
1

n

�

Xi∈Pn

�I (0 < εi < �/2)−
2

n

�

Xi∈Pn

� (1/2− I(εi > 0)) . (4.27)

On the other hand, we have

III + IV =
1

n

�

Xi∈P
c
n

|εi| −
1

n

�

Xi∈P
c
n

|εi + f∗(Xi)− ĝn(Xi)|

= −
2

n

�

Xi∈P
c
n

(f∗(Xi)− ĝn(Xi) + εi)

·I (0 ≤ f∗(Xi)− ĝn(Xi),− (f∗(Xi)− ĝn(Xi)) < εi ≤ 0)

−
2

n

�

Xi∈P
c
n

(f∗(Xi)− ĝn(Xi))

·

�
1

2
I(0 ≤ f∗(Xi)− ĝn(Xi))− I (0 ≤ f∗(Xi)− ĝn(Xi), εi ≤ 0)

�
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+
2

n

�

Xi∈P
c
n

(f∗(Xi)− ĝn(Xi) + εi) I
�
− � < f∗(Xi)− ĝn(Xi) < 0,

0 < εi ≤ − (f∗(Xi)− ĝn(Xi))
�

+
2

n

�

Xi∈P
c
n

(f∗(Xi)− ĝn(Xi))
�1
2
I (−� < f∗(Xi)− ĝn(Xi) < 0)

−I (−� < f∗(Xi)− ĝn(Xi) < 0, εi > 0)
�
.

Since the first and the third terms in the above equations are always negative, we

have

III + IV

≤ −
2

n

�

Xi∈P
c
n

(f∗(Xi)− ĝn(Xi))
�1
2
I(0 ≤ f∗(Xi)

−ĝn(Xi))− I (0 ≤ f∗(Xi)− ĝn(Xi), εi ≤ 0)
�

+
2

n

�

Xi∈P
c
n

(f∗(Xi)− ĝn(Xi))
�1
2
I (−� < f∗(Xi)− ĝn(Xi) < 0)

−I (−� < f∗(Xi)− ĝn(Xi) < 0, εi > 0)
�
.

= −
2

n

�

Xi∈P
c
n

(f∗(Xi)− ĝn(Xi) + �)
�1
2
I(0 ≤ f∗(Xi)− ĝn(Xi))

−I (0 ≤ f∗(Xi)− ĝn(Xi), εi ≤ 0)
�

+
2

n

�

Xi∈P
c
n

�
�1
2
I(0 ≤ f∗(Xi)− ĝn(Xi))

−I (0 ≤ f∗(Xi)− ĝn(Xi), εi ≤ 0)
�

+
2

n

�

Xi∈P
c
n

(f∗(Xi)− ĝn(Xi) + �)
�1
2
I (−� < f∗(Xi)− ĝn(Xi) < 0)

−I (−� < f∗(Xi)− ĝn(Xi) < 0, εi > 0)
�
.

−
2

n

�

Xi∈P
c
n

�
�1
2
I (−� < f∗(Xi)− ĝn(Xi) < 0)

−I (−� < f∗(Xi)− ĝn(Xi) < 0, εi > 0)
�
.

= −
2

n

�

Xi∈P
c
n

(f∗(Xi)− ĝn(Xi) + �)
�1
2
I(0 ≤ f∗(Xi)− ĝn(Xi))
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−I (0 ≤ f∗(Xi)− ĝn(Xi), εi ≤ 0)
�

−
2

n

�

Xi∈P
c
n

�
�1
2
I(0 ≤ f∗(Xi)− ĝn(Xi))

−I (0 ≤ f∗(Xi)− ĝn(Xi), εi > 0)
�

−
2

n

�

Xi∈P
c
n

(f∗(Xi)− ĝn(Xi) + �)
�1
2
I (−� < f∗(Xi)− ĝn(Xi) < 0)

−I (−� < f∗(Xi)− ĝn(Xi) < 0, εi ≤ 0)
�
.

−
2

n

�

Xi∈P
c
n

�
�1
2
I (−� < f∗(Xi)− ĝn(Xi) < 0)

−I (−� < f∗(Xi)− ĝn(Xi) < 0, εi > 0)
�
.

Combining the first and third terms in the above expression and combining the second

and fourth terms in the above expression yield

III + IV

≤ −
2

n

�

Xi∈P
c
n

(f∗(Xi)− ĝn(Xi) + �)
�1
2
I(−� < f∗(Xi)− ĝn(Xi))

−I (−� < f∗(Xi)− ĝn(Xi), εi ≤ 0)
�

−
2

n

�

Xi∈P
c
n

�
�1
2
I(−� < f∗(Xi)− ĝn(Xi))

−I (−� < f∗(Xi)− ĝn(Xi), εi > 0)
�

= −
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi) + �)+ (1/2− I(εi ≤ 0))

−
2

n

�

Xi∈P
c
n

�(1/2− I(εi > 0)). (4.28)

From (4.27) and (4.28), we obtain

I + II + III + IV

≤ −
1

n

�

Xi∈Pn

�I (0 < εi < �/2)−
2

n

�

Xi∈Pn

� (1/2− I(εi > 0))
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−
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi) + �)+ (1/2− I(εi ≤ 0))

−
2

n

�

Xi∈P
c
n

�(1/2− I(εi > 0))

= −
1

n

n�

i=1

�I (Xi ∈ Pn, 0 < εi < �/2)−
2

n

n�

i=1

� (1/2− I(εi > 0))

−
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi) + �)+ (1/2− I(εi ≤ 0)). (4.29)

By (4.25),

−
1

n

n�

i=1

�I (Xi ∈ Pn, 0 < εi < �/2) ≤ −
1

n

n�

i=1

�I (Xi ∈ B(z, δ), 0 < εi < �/2)

for infinitely many n and because ω ∈ A,

−
1

n

n�

i=1

�I (Xi ∈ Pn, 0 < εi < �/2) ≤ −�η/2 (4.30)

for infinitely many n. However, because ω ∈ B,

−
2

n

n�

i=1

� (1/2− I(εi > 0))

−
2

n

n�

i=1

(f∗(Xi)− ĝn(Xi) + �)+ (1/2− I(εi ≤ 0))

≤ �η/4 (4.31)

for n sufficiently large. Combination of (4.26), (4.29), (4.30), and (4.31) gives 0 ≤

ϕ(kn)−ϕ(ĝn) = I+II+III+IV ≤ −�η/4 for infinitely many n, which is a contradiction.

This proves that A ∩ B ∩ Cc = ∅ and that P(C) = 1.

Step 12 We will prove that for any � > 0,

sup
x∈Hc,ĝn∈Sn

(f∗(x)− ĝn(x)) ≤ �
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a.s. for n sufficiently large.

Take δ = �/(6α(c)), where α(c) is given as in Step 8. Since Hc is compact, there

exist a finite number of points y1, . . . , yl in Hc such that Bc(yi, δ) � {x ∈ Hc :

�x− yi� ≤ δ} for 1 ≤ i ≤ l covers Hc.

If there exists ĝn ∈ Sn such that sup
x∈Hc

(f∗(x)− ĝn(x)) > � for infinitely many

n, for each of such n, there exists a point xn in Hc such that

f∗(xn)− ĝn(xn) > �/2. (4.32)

In this case, infinitely many of the xns will be in Bc(yj, δ) for some j, so if we choose

a subsequence (nk : k ≥ 1) so that xnk
is in Bc(yj, δ) for all k ≥ 1, then for any

x ∈ Bc(yj, δ) we have

f∗(x)− ĝn(x)

= f∗(x)− f∗(xnk
) + f∗(xnk

)− ĝn(xnk
) + ĝn(xnk

)− ĝn(x)

≥ −�/6 + �/2− �/6 ≥ �/6

by (4.32).

So, sup
x∈Hc

(f∗(x) − ĝn(x)) > � implies infx∈B(xj ,δ)(f∗(x) − ĝn(x)) ≥ �/6 for some

j, and hence,

P
�

sup
x∈Hc,ĝn∈Sn

(f∗(x)− ĝn(x)) > � for infinitely many n

�

=
l�

j=1

P
�
sup
ĝnSn

inf
x∈B(xj ,δ)

(f∗(x)− ĝn(x)) ≥ �/6 for infinitely many n

�

= 0

by Step 10, proving Step 12.
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Step 13 For any � > 0,

sup
x∈Hc,ĝn∈Sn

(ĝn(x)− f∗(x)) ≤ �

a.s. for n sufficiently large.

The proof is similar to the proof of Step 12 (Step 11 is used instead of Step 10)

and is omitted.

Step 14 Theorem 3 follows from Steps 12 and 13.

4.6.2 Proof of Theorem 4

It suffices to prove the second part of Theorem 4. The first part of Theorem 4 can be

justified similarly to the second part. Suppose that f∗ is differentiable on [c, 1 − c]d.

Take c0 < c and let

A =

�
sup

x∈[c0,1−c0]d,ĝn∈Sn

|ĝn(x)− f∗(x)| → 0 as n → ∞

�
,

then P(A) = 1 by Theorem 3. We will show that P(B) = 1, where

B =

�
sup

x∈[c,1−c]d,ξ∈∂ĝn(x),ĝn∈Sn

�ξ −∇f∗(x)� → 0 as n → ∞

�
,

by proving that A ∩ Bc = ∅.

Suppose, on the contrary, that ω ∈ A ∩ Bc exists. For such an ω, there exists

� > 0, xn ∈ [c, 1− c]d, ĝn ∈ Sn and ξn ∈ ∂ĝn(xn) such that

�ξn −∇f∗(xn)� > �



131

for infinitely many n. Furthermore, there exists an index i ∈ {1, . . . , d} such that

��eT
i
ξn − eT

i
∇f∗(xn)

�� > �/d (4.33)

for infinitely many n, where ei is the ith unit vector. Equation (4.33) implies that

either

eT
i
ξn > eT

i
∇f∗(xn) + �/d (4.34)

or

eT
i
ξn < eT

i
∇f∗(xn)− �/d (4.35)

holds. We first consider the case where (4.34) holds. Since [c, 1 − c]d is compact,

there exists a subsequence (xnk
: 1 ≤ k) that converges to a point x0 in [c, 1 − c]d.

Passing to subsequences if necessary, for any λ > 0 small enough that x0 + λei ∈

[(c+ c0)/2, 1− (c+ c0)/2]d, we have xn + λei ∈ [c0, 1− c0]d for all sufficiently large n

and

eT
i
ξn ≤ (ĝn(xn + λei)− ĝn(xn)) /λ. (4.36)

Since ω ∈ A and the ĝns are continuous on [c0, 1−c0]d, ĝn(xn+λei) tends to f∗(x0+λei)

and ĝn(xn) tends to f∗(x0) as n → ∞. By Theorem 25.5 in p. 246 of Rockafel-

lar (1970), ∇f∗ is continuous on [c, 1 − c]d, and hence, ∇f∗(xn) tends to ∇f∗(x0).

Therefore,

eT
i
∇f∗(x0) + �/d = lim

n→∞
eT
i
∇f∗(xn) + �/d

≤ lim sup
n→∞

eT
i
ξn by (4.34)
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≤ lim
n→∞

(ĝn(xn + λei)− ĝn(xn)) /λ by (4.36)

= (f∗(x0 + λei)− f∗(x0)) /λ. (4.37)

This is supposed to hold for every sufficiently small λ > 0. But

eT
i
∇f∗(x0) = lim

λ↓0
(f∗(x0 + λei)− f∗(x0)) /λ,

which contradicts (4.37). Similar arguments can be applied to reach a contradiction

in case of (4.35). Hence, Theorem 4 is proved.



Chapter 5

A Statistical Technique for the
Initial Transient Problem

5.1. Overview

As we face increasingly complex systems in manufacturing, the service industry, and

telecommunications, discrete-event simulations have become an essential tool for an-

alyzing and evaluating them. Frequently, we wish to compute the steady-state per-

formance of a system via discrete event simulations. While pursuing more efficient

computation, standard estimators for steady-state performance invariably involve a

bias that is induced by the initial transient phase at the beginning of simulation

outputs. Before we proceed further, we will introduce three examples that require

efficient computations of steady-state performance measures.

5.1.1 Motivation Examples

Example 1. Single server queueing systems A single server queueing system is

one of the most commonly used queueing models. It captures the dynamics of a system

with one server that serves incoming customers who wait in queue when not served

immediately upon arrival. Quantities of interest such as the long-run average number

of customers in the system or the long-run average amount of time a customer spends

in the queue cannot be computed exactly even in the simplest setting of independent

133
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interarrival and service times. Hence, simulation becomes a useful means to compute

steady-state performance measures. When starting a simulation, we need to specify

the initial number of customers in the system, the remaining service time for the

customer in service, if any, and the remaining interarrival time. It is desirable to set

these quantities according to the corresponding steady-state distributions, but the

steady-state distributions are not known a priori and hence they are initialized in

some arbitrary fashion at the simulator’s convenience.

Suppose that we wish to compute the long-run average waiting time of customers

in an M/M/1 queue which is equal to
ρ

µ(1− ρ)
, where ρ is the traffic density defined by

λ

µ
, λ is the arrival rate and µ is the service rate. Given λ = 0.96, µ = 1, ρ = 0.96, the

theoretical value of average waiting time in an M/M/1 queue should be 24. However,

the system is initialized empty and idle. Then the average waiting time in the queue

will increase as the system evolves over time until it reaches its steady-state, 24, after

which it stays constant around 24; for details about transient behavior of M/M/1

queue, see Kelton and Law (1985). Figure 5.1 shows a trajectory of the waiting time

of the nth customer in an M/M/1 queue with the arrival rate of 0.96 and the service

rate of 1.

As depicted in Figure 5.1, a typical simulation output includes a transient phase

at the beginning, inducing a significant bias when the long-run average waiting time

in the queue is computed through the arithmetic mean of the observations in the

simulation output. To fix this problem, our proposed algorithm will eliminate the

observations until the steady-state behavior becomes apparent. Then we compute

the arithmetic mean of the rest of the observations as an estimate of the steady-state

mean. The truncation point after which the observations are retained for analysis

will be chosen through simple and powerful proposed technique.
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Figure 5.1: A trajectory of the waiting time of the nth customer in an M/M/1 queue

Example 2. Multi-station queueing networks In a multi-station queueing net-

work with k stations, the long-run average number of customers in each station is

usually computed by utilizing the simulated number of customers in each station over

time (X1(tn), . . . , Xk(tn) : n ≥ 0), where tn is the time when the nth customer depar-

ture occurs. In order to commence the simulation, the simulator needs to initialize

the number of customers in each station, the remaining service times of customers in

the stations, if any, and the remaining interarrival times of externally arriving cus-

tomers, if any. With no information on steady-state distribution, these quantities are

initialized arbitrarily, resulting in a transient phase in simulation output. Figure 5.2

shows a trajectory of the number of customers in each station when the nth customer

departure occurs in a three-station queueing network.
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Figure 5.2: A trajectory of the number of customers in each station when the nth
customer departure occurs

The truncation point tn0 will be chosen so that the data after tn0 , (X1(tn), . . . ,

Xk(tn) : n ≥ n0), are collected for steady-state analysis. It is worthwhile to note

that the simulation output is multi-dimensional because it records the numbers of

customers in several stations. And this multidimensional case was not introduced nor

studied previously in the literature.

Example 3. (s, S) single item inventory model An (s, S) inventory system

is a widely used model in which the inventory position of a single item is reviewed

periodically. At the end of each time period, if the inventory position is found to be

below s units, additional units are ordered to bring the inventory position up to S.

If the inventory position is found to be above s, then no additional units are ordered.
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The following costs are usually considered: a fixed setup cost whenever an order is

placed, an incremental cost per item ordered, a holding cost per unit per unit time,

and a backlog cost per unit per unit time. Suppose that we wish to compute the

long-run average cost per unit time at a fixed (s�, S �), then we need to simulate the

system, compute the total cost incurred in each time period, and obtain the arithmetic

average of the costs over time. The initial inventory position is set arbitrarily, so the

sequence of costs over time exhibits a transient behavior before it converges to its

steady-state. Figure 5.3 shows a trajectory of the total costs over time in an (s, S)

inventory system.
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Figure 5.3: A trajectory of the total costs over time in an (s, S) inventory system

In the above examples, we consider the problem of computing the steady-state

mean of a system performance in the situation where it is not clear how to initialize
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the simulation and hence the simulation must start at some arbitrary position which is

usually atypical of steady-state behavior. This particular initialization will induce an

initial transient phase that introduces a severe bias in the point and interval estimates.

And this bias has great effect on our simulation-based optimization algorithms since

most algorithms rely on point or interval estimates to update the searching direction

and decide the feasibility. To overcome this problem, we will allow the system to warm

up before output data are collected and eliminate the observations until steady-state

behavior becomes apparent. We then compute the arithmetic mean of the remaining

observations as an estimate of the steady-state mean.

5.1.2 General Procedures

In our proposed method, the truncation point after which the observations are re-

tained for steady-state analysis will be chosen according to the following technique:

1. Divide the simulation output into small batches.

2. Obtain the empirical distribution function within each batch.

3. Compare these empirical distribution functions for a change in distribution func-

tions.

The main idea underlying the proposed methodology is that, in a stationary pro-

cess, the distribution in one time period is same as the distribution in the next time

period. So, we want to find a point in the simulation output where the distribution

in one time period is not significantly different from the distribution of the next time

period. Hence after batching the simulation output into several batches, we treat

each batch as one period of time and treat the observations within each batch as

if they follow a common distribution. Then the empirical distribution functions are

obtained from each batch and we consider them representatives of the distribution of

each batch. Assuming that the simulation has evolved long enough so that the last



139

batch is in steady-state, we compare the empirical distribution function from the first

batch to that of the last batch and if the two are significantly different, we conclude

that the first batch is in the transient phase. We then move to the second batch

and compare its empirical distribution function to that of the last batch and see if

the two are significantly different. The procedure is repeated until we find a batch

whose empirical distribution function is not significantly different from that of the

last batch. Observations after this batch are retained for steady-state analysis. The

graphical representation of the proposed procedure is displayed in Figure 5.4.

Figure 5.4: Graphical representation of the proposed procedure

The proposed method is rigorously described in Section 5.2 and its efficiency is

demonstrated in Section 5.3.

5.2. Analysis Framework

We consider a d-dimensional stochastic process (Y1, . . . , Yn) which represents the out-

put of a discrete event simulation. We wish to compute µ � limn→∞ EYn through

simulation. A natural estimator for µ is the sample mean
�

n

i=1 Yi/n. Another point

estimator is the truncated sample mean
�

n

i=t0+1 Yi/(n − t0), which is the mean of
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the reserved series, (Yi : i = t0 + 1, . . . , n), after the first t0 observations have been

deleted.

5.2.1 Kolmogorov-Smirnov Test

In our proposed method, a Kolmogorov-Smirnov test is used to test if the simula-

tion output observations from two different batches follow a common distribution.

In statistics, the Kolmogorov-Smirnov test is a commonly used nonparametric test

technique to determine if data from two samples differ significantly. It measures the

distance between the empirical distribution functions of the two samples. The null

hypothesis in the test is that there is no significant different between the distribution

of the two samples.

The Kolmogorov-Smirnov test compares the empirical cumulative distribution

function (cdf), F 1(x), of the first sample with the empirical cdf, F 2(x), of the second

sample. Here we assume the two sample sizes are equal. By definition, for a particular

data sample i with data Y1, Y2, . . . , Yn, the empirical cdf F i(x) can be computed by

F i(x) =
number of Y1, Y2, . . . , Yn which are ≤ x

n

The cdf of an empirical distribution is a step function which jumps at each ob-

served data point. Figure 5.5 shows a typical behavior of an empirical cdf.

After obtaining the empirical cdf of the two samples, the Kolmogorov-Smirnov

test statistic is computed as the largest absolute deviation between F 1(x) and F 2(x)

over the range of the random variable. Denote the test statistic as D(F 1, F 2),

D(F 1, F 2) = sup |F 1(x)− F 2(x)|. (5.1)

See Figure 5.6 for an illustration to computeD. The sample distribution of Kolmogorov-

Smirnov test statistic D is known; the table of critical values can be found at Banks
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Figure 5.5: Empirical cumulative distribution function

et al. (2001). If the sample statistic D is greater than the critical value, Dα, with

significance level α and size n, the null hypothesis that the two data samples follow

the same distribution is rejected.

Note that we only consider the one-dimensional case in the above Kolmogorov-

Simirnov test. If d ≥ 2, the method mentioned above might not be appropriate to

compute the test statistic based on the maximum distance of the empirical cumulative

distribution function. In one-dimensional case, the test statistic is independent of the

direction of counting the frequency since P (x ≤ X) = 1 − P (x > X). However,

when it comes to the d-dimensional case, we need to consider 2d independent ways of

defining a cumulative distribution function. Taking d = 2 for example, given the 2-

dimensional simulation output data (Xi, Yi), i = 1, 2, . . . , n, the empirical cumulative
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Figure 5.6: Computing Kolmogorov-Smirnov test statistic

distribution function should be defined by considering 4 different directions: (x ≤

X, y ≤ Y ), (x ≤ X, y > Y ), (x > X, y ≤ Y ), and (x > X, y > Y ); see Peacock

(1983). As a result, for each data point (Xi, Yi), i = 1, 2, . . . , n, we should count the

frequencies of points in all 4 quadrants of the plane: (x ≤ Xi, y ≤ Yi), (x ≤ Xi, y >

Yi), (x > Xi, y ≤ Yi), and (x > Xi, y > Yi). Then for each direction, we calculate the

maximum distance of the cumulative distribution function between the two samples

and the maximum distance among the four directions is selected as the test statistic.

There are several advantages of using Kolmogorov-Smirnov test for simulation

output analysis. First of all, Kolmogorov-Smirnov test doesn’t rely any assumptions

on the data distribution. Secondly, Kolmogorov-Smirnov test is a exact test. It
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is sensitive to both location and shape of the empirical cdf of the data samples.

But many other statistical tests used in the warm-up detection only compare the

means, which might reduce the accuracy if the data are not normally distributed.

Furthermore, the procedures to compute Kolmogorov-Smirnov test statistic is quite

simple, and can be automated in most programming languages. Many statistical

software packages such as Matlab, R, and SAS include functions or procedures to

conduct Kolmogorov-Smirnov test. Therefore, Kolmogorov-Smirnov test is a very

promising technique to apply for initial transient period detection.

5.2.2 A Kolmogorov-Smirnov Test based Algorithm

The algorithm to determine the truncation point, t0, is summarized in the proposed

methodology.

Proposed Methodology

1. Run the simulation for n time units. Repeat this m times independently. Let

Yi(j) ∈ Rd be the ith observation from the jth replication. So, i = 1, . . . , n and

j = 1, . . . ,m.

2. Compute the averages over the replications. Set

Y i =
m�

j=1

Yi(j)

m

for i = 1, . . . ,m. Note that a natural point estimator for µ is the untruncated

sample mean:

Y ∗

1 =
1

n

n�

i=1

Y i. (5.2)
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3. The averages (Y i : i = 1, . . . , n) are batched in b batches of size nb = n/b. For

each batch, compute the empirical cumulative distribution function using the

observations within each batch, i.e., the empirical distribution function of the

kth batch is computed by:

F k(x) =
1

nb

inb�

s=(i−1)nb+1

I(Y s ≤ x),

x ∈ R
d, k = 1, . . . , b,

where I denotes the indicator function.

4. Compare the last empirical distribution function, F b, with the previous ones,

F k, k = 1, . . . , b − 1 for a change in distribution functions. For instance, we

can compute the distance between each pair of distribution functions in the

supremum norm,

D(F b, F k) = sup
x∈Rd

|F b(x)− F k(x)| (5.3)

for k = 1, . . . , b − 1 and check whether this quantity is significantly different

from zero.

5. Set b0 to be the first batch that D(F b0 , F b) is below � for some small � > 0. Set

the truncation point t0 to be the position of the first observation in batch b0.

Collect data after t0 for steady-state analysis. The proposed estimator for µ is

the truncated sample mean which is the arithmetic average of the observations

after t0:

Y ∗∗ =
1

n− t0

n�

i=t0+1

Y i. (5.4)
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5.3. Numerical Experiments

In this section, we will study the empirical performance of the proposed procedure

using Examples 1, 2, and 3. We will compare the performance of the proposed

estimator Y ∗∗ to that of the standard estimator Y ∗
1 , as well as another two estimators

Y ∗
2 , Y

∗
3 discussed in Pawlikowski (1990).

Y ∗
2 is obtained based on the rule R4 of Pawlikowski (1990). The basic idea is

that the initial transient period is over after k consecutive values of running mean

Y i approach a constant level with a given accuracy δ. The running mean Y i at a

particular point h is calculated as

Y h =
h�

i=1

Y i

To be specifically, if the running mean Y i after the observation t0 differ less than

100δ% from Y t0+k, i.e., for all i, t0 < i ≤ t0 + k,

|Y t0+k − Y i|

|Y t0+k|

< δ,

then t0 is the truncation point.

Y ∗
3 is calculated based on the rule R5 (crossing of the mean rule) of Pawlikowski

(1990). According to this rule, the initial transient period is over after t0 observations

if the time series Y1, . . . , Yt0 crosses the running mean Y t0 l times.

Example 1 Revisited. We consider an M/M/1 queue with the service rate µ and

the arrival rate λ under the first-come-first-served (FCFS) discipline. We wish to

estimate the long-run average waiting time of customers in the queue. The system is

initialized idle and empty. Note that the expected waiting time of the nth customer
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E(wn) in this setting can be computed by

E(wn) =
1

µ

n�

i=2

(i− 1)P0(n, i),

where P0(n, i) is the probability that there are i customers present in the system

when the nth customer arrives given 0 customer present at time 0 (Kelton and Law,

1985). And P0(n, i) can be calculated by the Algorithm 1 suggested in Kelton and

Law (1985). We conducted two sets of experiments to compare the performance of

the proposed method with the other two methods in detecting the initial transient

period.

In the first experiment, we set λ = 0.8, µ = 1, and the traffic density ρ = 0.8.

The theoretical value of long-run average waiting time of customer in the queue is

w =
ρ

µ(1− ρ)
= 4. In Figure 5.7 we plot the convergence of E(wn) over time.

We define the theoretical truncation point as the smallest point beyond which

E(wn) falls within 5% of w. Then the theoretical truncation point according to

Figure 5.7 is 99. The parameters m,n, and b in the proposed algorithm are set to

be 50, 2000, and 10, respectively. The parameters k, δ in R4 are set to be 30 and

0.01, while l in R5 is set to be 25. Table 5.1 shows the bias, the variance and the

mean squared error of Y ∗
1 , Y

∗
2 , Y

∗
3 and Y ∗∗ based on 20 independent samples. The

last column of the table also reports the average truncation point t0.

Table 5.1: Performance of Y ∗
1 , Y

∗
2 , Y

∗
3 and Y ∗∗ in Examples 1 with ρ = 0.8

|estimator− w| Variance MSE Avg. t0
Y ∗
1 0.1106 0.0124 0.0163 -

Y ∗
2 0.1030 0.0131 0.0131 152

Y ∗
3 0.1055 0.0156 0.0150 258

Y ∗∗ 0.0965 0.0122 0.0120 96

From Table 5.1 we can see that Y ∗∗ has the least bias, variance and MSE. And

the average truncation point suggested by the proposed method is very closed to 99.
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Figure 5.7: E(wn) as a function of n for the M/M/1 queue with ρ = 0.8

In the second experiment, we set λ = 0.96, µ = 1, and the traffic density ρ = 0.96.

The theoretical value of long-run average waiting time of customer in the queue is

w =
ρ

µ(1− ρ)
= 24. In Figure 5.8 we plot the convergence of E(wn) over time.

The theoretical truncation point according to Figure 5.8 is 2634. The parameters

m,n, and b in the proposed algorithm are set to be 50, 4000, and 10, respectively.

The parameters k, δ in R4 are set to be 10 and 0.01, while l in R5 is set to be 10.

Table 5.2 shows the bias, the variance and the mean squared error of Y ∗
1 , Y

∗
2 , Y

∗
3 and

Y ∗∗ based on 20 independent samples. The last column of the table also reports the

average truncation point t0.

Although Table 5.2 shows that the variance and MSE of Y ∗∗ are larger than the
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Figure 5.8: E(wn) as a function of n for the M/M/1 queue with ρ = 0.96

Table 5.2: Performance of Y ∗
1 , Y

∗
2 , Y

∗
3 and Y ∗∗ in Examples 1 with ρ = 0.96

|estimator− w| Variance MSE Avg. t0
Y ∗
1 3.3268 1.7570 12.7368 -

Y ∗
2 2.4504 1.9892 7.8944 311

Y ∗
3 2.6530 1.9815 8.9206 199

Y ∗∗ 2.0863 10.0212 9.5204 2217

other two methods due to the stochastic property of the observed data, the proposed

method provides better estimate of the truncation point.

Example 2 Revisited. We consider a closed Jackson network with 3 stations.

Suppose that a customer departing a station is routed to one of the two remaining

stations with a probability of 0.5 for each. Assume that the total number of customers

in the network is 45. Let X = ((X1
n
, X2

n
, X3

n
) : n ≥ 0) represent the numbers of
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customers in stations 1, 2, and 3 respectively at the n’th epoch of the departure

process of customers. Set (X1
0 , X

2
0 , X

3
0 ) = (45, 0, 0). We wish to estimate the long-

run average number of customers in each station. m,n, b, k, δ, and l are set to be

50, 1500, 10, 50, 0.01 and 10, respectively. It is necessary to note that the original

R4 and R5 are only designed for one-dimension simulation output analysis. For

this three-dimensional queueing network, we should make some modifications for the

original rules. One simple and conservative way to handle this problem is to identify

the truncation points for each dimension first, then the maximum value of these

truncation points is chosen for the overall truncation point. Table 5.3 shows the bias,

variance and the mean squared error of Y ∗
1 , Y

∗
2 , Y

∗
3 and Y ∗∗ based on 20 independent

samples. Note X∗ = (15, 15, 15).

Table 5.3: Performance of Y ∗
1 , Y

∗
2 , Y

∗
3 and Y ∗∗ in Examples 2

|estimator−X∗| Variance MSE
Y ∗
1 (7.75, 3.77, 3.99) (1.73, 0.90, 1.11) (31.74, 15.04, 16.94)

Y ∗
2 (2.85, 1.85, 1.87) (10.45, 7.11, 4.74) (11.71, 6.88, 5.45)

Y ∗
3 (4.79, 2.26, 2.65) (2.41, 1.18, 2.07) (25.23, 6.11, 8.50)

Y ∗∗ (2.35, 1.91, 1.34) (6.74, 7.40, 2.80) (6.63, 7.04, 2.97)

Table 5.3 shows that Y ∗∗ computed by the proposed method has the smallest bias

and MSE.

Example 3 Revisited. We consider (s, S) inventory system with s = S = 22

where the demands D1, D2, . . . are independent identically distributed random vari-

ables with the common probability mass function P (D1 = 10) = 0.1, P (D1 = 15) =

0.1, P (D1 = 20) = 0.4, P (D1 = 25) = 0.3, P (D1 = 30) = 0.1. We assume that the

lead time of an order is zero. The inventory position is defined as the stock on hand

plus that on order minus the backlogged. The fixed setup cost is $0 and the incre-

mental cost is c = $3 per item ordered. The holding cost is h = $1 per unit per unit

time and the backlog cost is p = $4 per unit per unit time. Suppose that each unit
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is sold for a = $10. We wish to compute the long-run average cost per period. Note

that the actual long-run average cost per period is given by

(c− a)ED1 + hEmax(S −D1, 0) + pEmax(D1 − S, 0),

which is −$137.5. See page 285 of Nahmias (2005) for more detail. The initial

inventory position is set to be 100. m,n, b, k, δ, and l are set to be 20, 100, 5, 30, 0.01

and 25, respectively. Table 5.4 shows the bias and the mean squared error of Y ∗
1 ,

Y ∗
2 , Y

∗
3 and Y ∗∗ based on 20 independent samples.

Table 5.4: Performance of Y ∗
1 , Y

∗
2 , Y

∗
3 and Y ∗∗ in Examples 3

|estimator− µ| Variance MSE
Y ∗
1 2.4076 0.6002 6.3668

Y ∗
2 1.0380 1.6351 1.5707

Y ∗
3 1.5025 3.6298 3.6183

Y ∗∗ 0.7591 0.9329 0.9087

Table 5.4 shows that Y ∗∗ beats the other three with the least bias, variance and

MSE.

Table 5.1, 5.2, 5.3 and 5.4 present the effectiveness of the proposed estimator, Y ∗∗,

comparing with the standard estimator, Y ∗
1 and the other estimators Y ∗

2 , Y
∗
3 in terms

of |estimator− µ|, the variance, and the mean squared error. One of the advantages of

the proposed estimator over other alternatives is that the performance of the proposed

estimator is not sensitive to the parameter b, which is the number of batches in each

simulation output. However, to implement Y ∗
2 and Y ∗

3 , more attention should be paid

to the parameters k, δ, and l according for each specific situation. Furthermore, the

system-dependent selection of these parameters seems to be too arduous for users

sometimes. From this point of view, the proposed method is further recommended.

It is worthwhile to note that the simulation output is multi-dimensional in Exam-

ple 2 and the proposed methodology performs efficiently in that case as well.



Chapter 6

Conclusion

In this dissertation, we first propose a novel method for simulation-based optimiza-

tion over discrete sets in the presence of stochastic constraints. The key idea of the

proposed method is to convert constrained optimization into an unconstrained prob-

lem of finding a saddle point of the Lagrangian. This approach is motivated by the

difficulty in identifying a feasible solution in the presence of stochastic constraints.

The proposed approach is a.s. convergent to the optimal solution under appropriate

conditions and it displays good performance in comparison with other competing

methods, as illustrated through numerical experiments.

Then we study the problem of fitting a convex function based on noisy simulation

output data. Traditionally, the convex function is computed by minimizing the sum

of least squares, which is proven to be time-consuming when working with large

dataset. It might also run out of the computer memory since the formulation has

too many constraints. In Chapter 4, we propose a computationally efficient way to

fit the convex function by minimizing the sum of least absolute deviations instead of

the sum of squares. The proposed least absolute deviations formulation can be easily

converted to a linear program. Furthermore, the LP formulation has a dual problem

that exhibits a block-angular structure in its constraints, which enables one to apply

151
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Dantzig-Wolfe decomposition techniques to solve it efficiently. We present several

numerical examples to illustrate that the proposed estimator can be computed faster

and for larger datasets than the traditional least squares estimator. We also establish

the consistency of the proposed estimator both numerically and theoretically.

The last part of the dissertation discusses the initial transient period detection

techniques in the framework of simulation-based optimization. We present a simple

yet efficient statistical test based technique to detect the warm-up period automati-

cally in discrete-event simulations. The statistical test is conducted by comparing the

empirical distribution function of the data samples. We divide the simulation output

time-series into small batches, and then compare the empirical distribution function

from the first batch to that of the last batch. If the test shows statistical significance,

we conclude that the first batch is in the transient phase and the data in this batch

need to be deleted. Then, we move to the second batch and repeat the procedure until

we find a batch whose empirical distribution function is not significantly different from

that of the last batch. The proposed methodology can be viewed as a generalization

of traditional truncation techniques for that it can deal with multi-dimensional state

variable. The numerical experiments show that the suggested method achieves the

best performance in terms of |estimator− µ|, the variance, and the mean squared er-

ror. Moreover, the performance of the proposed method doesn’t rely too much on the

chosen parameters, while other truncation techniques heavily depend on pre-specified

parameters.

While we have seen some promising results of the proposed methods in simulation-

base optimization, convex regression, and initial transient period detection, the fol-

lowing research directions could be explored to improve our proposed methods and

procedures.

For the simulation-based optimization methods that handle noisy constraints and

discrete decision variables in Chapter 3, we might consider the following alternatives:
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• Choose step size sequence. Although the step size sequence cn only needs to

satisfy
�

∞

n=1 cn = ∞ and
�

∞

n=1 c
2
n
≤ ∞ to guarantee the SA procedure to con-

verge, the choice of cn does affect the performance of the proposed method. If

cn is too small, θn proceeds very slowly and cannot achieve the expected per-

formance with a given simulation budget. On the other hand, if cn is too large,

the algorithm becomes unstable and cannot converge to the optimal solution.

In the illustrative example, we use cn = c/n as the step size sequence. However,

there is uncertainty regarding whether this type of sequences will work well in

other optimization problems or not. Hence it is valuable to investigate if there

are any adaptive step sequences which can be used in the proposed method.

• Use common random numbers. In the proposed method, we assume that each

simulation run uses independent stream of random numbers. To provide better

estimates of the subgradient in each iteration, we might consider using common

random numbers (CRN) to run simulations at the d + 1 different designs. By

using the same streams of random numbers on different simulation scenarios, we

might reduce the variances when estimating the mean performance differences

between these designs.

• Integrate the proposed method with other optimization techniques. Some heuris-

tics in the simulation-based optimization literature might be used to get the ini-

tial solutions. Then we may apply the proposed method and start with several

different initial candidates. And the solution with the best performance can be

used as the final optimal solution. Meanwhile, we can also apply our proposed

method within the frame work of optimal computing budget allocation to spend

simulation effort smartly.

With regard to the least absolute deviations formulation to compute the convex

regression estimators, our research could be extended in the following directions:
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• Develop more efficient algorithm to solve (4.4). Although we demonstrate the

efficiency of applying Dantzig-Wolfe decomposition techniques to solve (4.4),

there are many alternative ways to improve the algorithm. For example, in

each iteration of the decomposition algorithm, we need to solve a series of

subproblems. The current method employs simplex algorithm to find the op-

timal solutions of these small linear programs. However, the convergency of

the Dantzig-Wolfe decomposition algorithm does not require us to solve each

subproblem to optimality. As long as we can find a feasible solution of the sub-

problem with positive reduced cost, it can be entered into the master problem.

From this point of view, we can take advantage of the special structure of the

subproblems and develop heuristics to find candidate solutions quickly.

• Apply the convex regression technique in simulation-based optimization. The

proposed convex regression estimator has provable consistency and enjoys com-

putational advantages. Therefore, we can apply it to construct convex response

surface based on noisy simulation output data. Since the response surface is

convex, many efficient optimization algorithms can be used to find the optimal

solution of the approximated convex function.

In order to improve the performance of the Kolmogorov-Simirnov test on detecting

the warm-up period for steady-state simulation, we could further study the following

directions:

• Sample data from steady-state distribution. In the proposed method, we use

the data from the final batch as the steady-state data. This choice is based

on the the assumption that the simulation has been running long enough to

reach the steady state. However, it is not always the case for all steady-state

simulations. Even though the simulation has been running long enough, the

data from the final batch might be highly biased due to the stochastic property
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of the system. As a result, we need to design a way to ensure that the data of

the final batch are indeed from the steady-state distribution. Alternatively, we

might develop some procedures to sample data from the simulation output and

form a new batch. We can conduct some statistical tests to make sure the new

batch has the same distribution as the steady-state. Then, this batch will be

used by our proposed method to find the truncation point.

• Develop efficient algorithms to compare the empirical distribution function

in multi-dimensional case. Although we explain the basic idea of extending

the one-dimensional Kolmogorov-Simirnov test to multi-dimensional simulation

output data, the method of computing the empirical distribution function is not

very efficient. Given two d-dimensional data samples with size n1 and n2, the

method requires computing the cumulative frequencies for each of the (n1+n2)2d

subspace. That could be computationally expensive when d or sample size is

very large. So efficient algorithm is needed to compute the empirical distribution

function in multi-dimensional case and for large dataset.
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